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Preface

The aim of this book is to give a concrete answer to the following question:

Can compressed sensing effectively yield optimized means for signal acquisition,
encoding, and encryption, either in analog or digital circuits and systems, when

implementation constraints are considered in its realization?

The reason why this question is important is that compressed-sensing (CS) has
been intensely discussed in the engineering community for more than a decade as
a hot research topic, gathering a great deal of effort from a large community that
unites scientists in applied mathematics and information theory, as well as engineers
of analog/digital circuits and optical systems. Yet, several investigations have been
dominated by a few misconceptions that somehow hindered the application of this
promising technique to real-world systems.

The first concept is that optimization and adaptivity are fundamentally pointless
since CS is born as a universal technique that cannot be significantly improved.

The second is that even if one wants to optimize CS, the degrees of freedom to
do it are not there, since it is a technique that spreads information so uniformly that
no criteria are able to tell important parts to emphasize from less important parts to
neglect.

Both concepts are grounded in fundamental mathematical results that are indeed
the pillars of CS and are indispensable pieces of the formal construction on which
the whole discipline relies. Regrettably, starting from formally true theorems, the
folklore has sometimes derived misleading design guidelines.

The idea that adaptivity is useless, often indicated as universality, has its roots in
the seminal papers originating the very concept of CS and in other later information-
theoretic results. In the original setting, such an idea is extremely important to put
CS in the right perspective and give it the full dignity of an acquisition method with
general applicability. The mathematical derivations produce upper bounds on the
ratio between the performance of an adaptive strategy with respect to that of non-
adaptive CS. Such bounds being finite, we know that the performance of an agnostic
CS is not too far away for the most specialized technique one may devise. Yet, in
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practical cases, constants are so large that the theoretical bounds say, nothing but
that adaptivity cannot outperform non-adaptivity by more than a factor, say 100.
Clearly, no engineer would be prevented from trying the optimization of a system
by the knowledge that improvements will be less than 10000%!

The other concept that is sometimes invoked to divert people from serious
CS optimization is that of democracy. CS works by encoding high-dimensional
signals into lower-dimensional collections of measurements, and democracy has
been developed to decide how to deal with measurements that may have been
corrupted during acquisition. Under suitably specified conditions, all measurements
can be considered as equally important as they all contribute in the same way to
the mathematical properties that guarantee that the original signal can be retrieved.
This implies that simply discarding the corrupted information leads to a graceful
degradation in performance.

The development is based on a worst-case analysis that is intrinsically invariant
with respect to symmetries of the system since worst-case configurations can be
replicated exploiting the same symmetry. It is not surprising that measurements
computed with substantially the same procedure are equally important from such
a pessimistic point of view. Nevertheless, this does not prevent some measurement
from being more informative than others in non-worst-case conditions.

The truth is that, overall, mathematical universality and democracy have very
little to do with the real performance of CS systems. Measurements can be selected
and can be optimized in a variety of quite effective ways, even taking into account
typical implementation constraints and the need to make the final embodiment less
expensive with respect to common cost functions like area, power, time, etc.

The aim of this book is to show how this can be done and what benefits can be
expected as far as acquisition performance and implementation costs are concerned.

Chapter 1 is dedicated to a brief review of the main ideas defining CS and
guaranteeing that it is a viable option. Chapters 2 and 3 address rakeness-based
design of CS describing how it derives from the highly non-democratic nature
of non-worst-case CS, showing how it improves reconstruction performance over
universal and agnostic CS, and finally discussing pros and cons of adapting sensing
to the class of signals to acquire.

Chapter 4 addresses the computational complexity of CS from the point of view
of hardware implementations. After identifying the key parameters on which the
operating cost of CS-based acquisition depends, it adapts rakeness-based design to
address the trade-off between such a cost and reconstruction performance.

Chapter 5 takes a brief detour to discuss how random processes can be generated
so that they have only a very limited number of values while also reproducing
some prescribed second-order statistical feature. This is a general problem with
applications going beyond implementation-friendly rakeness-based CS.

Chapter 6 describes the main architectural options in implementing CS systems
and shows their implications on signal-level functionality. It also tackles the
problem of saturation with an approach aiming at extracting every little piece of
information even from corrupted measurements with a truly “everything but the
oink” philosophy.
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Chapter 7 lists and discusses several CS implementations that see it embedded in
the analog-to-digital part of the signal chain, giving rise to an analog-to-information
stage. A final comparison chart shows how rakeness-based design of CS allows to
obtain the most effective implementation.

Chapter 8 takes a different point of view and looks at CS as a purely digital
lossy compression stage whose main feature is that of being extremely simple. CS
lossy compression is paired with lossless compression, and overall performance
is evaluated to show that, when rakeness-based CS is adopted, one obtains an
extremely simple but effective bit squeezing mechanism. Such a mechanism is then
put to work for the acquisition of biosignals and implementations with various levels
of complexity being analyzed.

Finally, Chap. 9 focuses on an extremely useful side effect of CS, i.e., that it may
be used simultaneously as an efficient acquisition scheme and as a low-complexity
encryption stage. The fact that encryption comes almost for free implies that security
is somehow limited, but the overall robustness to classical attacks is good enough to
be considered when very low-cost systems are sought.

The book spans a quite wide range of concepts and, though it aims at being self-
contained and easy to follow for those interested in application of CS, it requires
some taste for mathematical issues, especially in the first few chapters. Though
not overly detailed, also system- and circuit-level considerations may require some
confidence in the design of mixed-signal circuits or digital architectures.
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Chapter 1
Introduction to Compressed Sensing:
Fundamentals and Guarantees

1.1 Signal Acquisition and Compressed Sensing

To interact with the physical world, information processing systems must be able to
perform three fundamental activities: acquire information on the phenomenon with
which they are supposed to interact, process this information to decide if and how
to act back, and transform this decision into a physical effect.

This book concentrates on a technique involved in the first of these three
activities, i.e., the acquisition of information. All modern engineering recognizes
that information is carried by signals, i.e., physical quantities like voltages or
currents, that change randomly in time and can be modeled as a stochastic process.

Natural stochastic processes are intrinsically continuous in time and magnitudes
meaning that their instances are function x.t/ W R 7! R

s for some s � 1. Though
vector processes are ubiquitous (group of sensors, images, etc.), we concentrate on
the case s D 1 and note that, nowadays digital processing is discrete in both time and
magnitude. Hence, acquisition always implies sampling in time and quantization so
that the time evolution of the physical signal is translated into a stream of binary
words.

The conventional approach is to decide a sampling rate rx measured in samples
per second, and take samples at multiples of 1=rx to produce the sequence xk W
Z 7! R such that xk D x.k=rx/. Each sample is then quantized into the integer
Q.xk/ equivalent to a binary word that finally enters subsequent digital processing.
Figure 1.1 shows this conventional two-stages approach.

Here, we are not interested in the design of the sampling step, and assume that rx

is the sufficient rate, defined as the minimum rate such that the sequence xk of non-
quantized samples contains the information sought by the application. Quite often,
the sufficient rate rx coincides with the Nyquist rate, i.e., with twice the largest
frequency in the spectrum of the waveform to acquire, since this choice establishes
a mathematical bijection between that waveform and the sequence itself.
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x(t) sampling
xk

quantization Q(xk)

Fig. 1.1 The two-stages decomposition of a basic acquisition

x(t) A sampling B quantization C Q(y j)

y j? y j? y j?

Fig. 1.2 The acquisition signal chain modified by Compressed Sensing. Depending on implemen-
tation choices, the subsufficient-rate sequence yk may appear at different points

Yet, for both practical and theoretical reasons the sufficient rate can be different
from the Nyquist one and all subsequent considerations are independent of it. What
is important here is that Compressed Sensing (CS) aims at translating the signal
waveform into a sequence of scalars yj (that we will call measurements) whose
rate ry < rx is subsufficient and whose quantized version Q.yj/ can be passed to
digital processing since it contains the needed information. This is why, CS is often
advocated as a method to achieve sub-Nyquist sampling.

To reach its goal, CS performs some early processing on the signal by inserting
intermediate stages in the acquisition signal chain. Additional processing may be
added at different points as reported in Fig. 1.2 where:

A is a continuous-time, analog preprocessing stage;
B is a discrete-time, analog processing stage;
C is a digital postprocessing stage.

Depending on the implementation strategies (that will be discussed later in
the book), the subsufficient-rate sequence yj may appear at different points in the
signal chain. Notwithstanding this, the relationship between yj and the sufficient-
rate sequence of samples xj is always block-wise linear.

There are two block sizes m and n, with m < n such that subsequent blocks
of n adjacent samples xk are mapped linearly into subsequent blocks of m adjacent
measurements yj (Fig. 1.3). More formally, for any l 2 Z there are an m � n matrix

A.l/ a vector x.l/ 2 R
n with x.l/k D xlnCk, and a vector y.l/ 2 R

m with y.l/j D ylmCj

such that

y.l/ D A.l/x.l/ (1.1)

Such a block encoding clearly performs a rate reduction rx=ry D n=m. Yet, since
the rate of xj is the sufficient rate, such a rate reduction is feasible only under specific
conditions and assumptions.

Note first that the measurements yk are not samples, i.e., though the sufficient rate
rx was defined as the lowest rate at which samples must be extracted from the signal
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y(l) =A(l)x(l) y(l+1) =A(l)x(l+1) y(l+2) =A(l)x(l+2)

x(l)
x(l+1)

x(l+2)

Fig. 1.3 A two-dimensional random vector that concentrates along a one-dimensional subspace

to preserve information, this does not prevent a smaller number of scalars that are
not samples to contain the same information.

For this to be possible, one must accept that sampling may not be the most
effective way of squeezing information out of a waveform. This is exactly what
happens to the classes of signals for which CS expresses its potential: intrinsically
low-dimensional signals conventionally indicated as sparse.

We will see in the following that, for these signals one may go back from
measurements to samples despite the rate reduction, providing that the linear
mappings A.l/ in (1.1) are properly designed and suitable reconstruction algorithms
are employed.

Actually, though the linear operator A.l/ typically changes with l, CS acquisition
operates independently on each block by segmenting the original signal x.t/ in
non-overlapping windows (whose duration n=rx corresponds to n samples at the
sufficient rate rx), and producing a vector of m measurements for each window.
With this, analysis and design may concentrate on a single window/block, dropping
the �.l/ superscript.

Finally, note that the physical realization of the acquisition system will surely
superimpose noise to the signal, and that the quantization operated on the mea-
surements before they are fed into processing stages can be thought as a further
disturbance. Overall, the relationship between sufficient samples and measurements
produced by CS is in general

y D A.xC �x/C �y (1.2)

where �x and �y take into account all nonidealities affecting x and y, respectively.
As usual, we prefer a unique noise source at the end of the processing chain such
that the encoding stage of CS is summarized by

y D AxC � (1.3)

with � D A�x C �y. The encoding must be conceived so that it is possible to go
back from the m-dimensional vector y to the n-dimensional vector x despite the fact
that we would like m to be as small as possible.

Three concepts interact in the design and operation of such a system: low-
dimensional signal models, sensing operators, and reconstruction algorithms.
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1.2 Low-Dimensional Signal Models

Since we are reasoning block-by-block and the information we need is contained
in the samples xj, we may identify signals with random vectors x 2 R

n. Given any
subset X � R

n one may ask whether X is a good representative of the distribution
of x in the signal space by defining the distance

�.X; x/ D min
�2X
kx � �k2

that is the minimum error in which one incurs when tries to approximate x with the
closest point in X.

The average error energy E� D Ex
�
�.X; x/2

�
may be matched with the signal

average energy Ex D Ex

h
kxk22

i
and if E�=Ex is very small, then one may say that

x concentrates in X.
The subset X in which a signal concentrates may have different shapes. Here,

we are interested in X’s that are subspaces or union of subspaces. The geometric
dimensions of these subspaces are good proxies of the true information content of
the signals since to express a point in a �-dimensional subspace of Rn, only � scalar
quantities are needed.

We may illustrate the subspace/union of subspaces cases with two examples that
allow us to formulate some general definition.

1.2.1 Concentrated and Localized Signals

As an example of the first case, consider a random vector x � N .�;˙ /, i.e.,
distributed according to a multivariate Gaussian with mean vector � and covariance
matrix ˙ whose probability density function (PDF) is

g.�;˙ I �/ D 1
p
.2�/n det ˙

e� 12 .���/>˙ �1.���/ (1.4)

In particular, set n D 2, � D .0; 0/>, and ˙ D
�
5 3

3 2

�
and note that, since x

is zero-mean, its correlation matrix � D ExŒxx>� coincides with the covariance
matrix ˙ and the average energy of the vector is Ex D tr.� / D tr.˙ / D 7 (tr.�/
indicates the trace of its matrix argument).

Figure 1.4 shows a large number of realizations of such a vector as points on
the two-dimensional plane R

2. Simple visual inspection reveals that the points tend
to align with the red straight line that correspond to the subspace span.d0/ of the
multiples of the vector d0 D .1C

p
5; 2/>.
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Fig. 1.4 A two-dimensional
random vector that
concentrates along a
one-dimensional subspace

−5 5

−5

5

x0

x1

X

If the subset X is such a subspace, one may easily compute�.X; x/ by orthogonal
projection yielding �.X; x/ D d>1 x= kd1k2 where d1 D .1 �

p
5; 2/> is orthogonal

to d0. Hence �.X; x/ is a zero-mean Gaussian random variable with variance
d>1 � d1 D d>1 ˙ d1 D E� ' 0:15 and the visual intuition is confirmed by the
fact that the average error energy is only approximately 2% of the signal energy
(E� ' 0:15 vs Ex D 7).

In the language of matrices, d0 and d1 are eigenvectors of the correlation matrix
� and E� is the eigenvalue corresponding to d1, i.e., to the direction that is
orthogonal to the subspace along which x concentrates.

Within this framework, it is easy to generalize our example to a generic dimen-
sionality n. The correlation matrix � is symmetric and positive semidefinite, thus
it features a set of orthogonal eigenvectors d0; : : : ; dn�1 and associated eigenvalues
�0 � �1 � � � � � �n�1 � 0. If the partial sum of eigenvalues

Pn�1
jD� �j is small

compared with the trace tr.� / D Pn�1
jD0 �j, then x can be said to concentrate in

the subspace span.d0; : : : ; d��1/. This is often named principal component analysis
since the first � eigenvectors can be seen as the components along which the signal
has most of the energy.

The point of view of principal component analysis allows also to capture less
sharp behaviors in which there is no true concentration, but the sequence of
eigenvalues is non-constant, thus revealing that the energy of the signal is not
uniformly distributed in the signal space. The degree of non-uniformity can be
measured by defining a localization index.

Definition 1.1 Given a random vector x 2 R
n let� be its correlation matrix� D

ExŒxx>� and �0 � �1 � � � � � 0 its eigenvalues. The degree of localization of x is

Lx D
n�1X

jD0

�
�j

tr.� / �
1

n

�2
D tr.� 2/

tr2.� / �
1

n
(1.5)
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Table 1.1 Lx for real-world
signals classes

Signal Sufficient rate rx n Lx

ECG 720 sample/s 360 0.187

Speech 20 Ksample/s 200 0.069

EMG 400 sample/s 200 0.021

B&W printed letters 24� 24 pixels 576 0.016

Lx is nothing but a normalized squared distance between the eigenvalues of
� and a sequence of uniform eigenvalues that would characterize a white signal.
Localization is such that 0 � Lx � 1�1=n where the upper bound is due to the fact
that� is positive semidefinite. In fact, we must have j� j;kj �

p� j;j� k;k for j; k D
0; : : : ; n � 1, and thus tr.� 2/ DPn�1

jD0
Pn�1

kD0� j;k� k;j �Pn�1
jD0

Pn�1
kD0� j;j� k;k D

tr2.� /.
Clearly, Lx D 0 when all the eigenvalues are equal and there is no preferred

direction along which energy is distributed. At the opposite side, Lx D 1 � 1=n
when only one eigenvalue is non-null and x is always aligned with the corresponding
eigenvector.

Real-world signals typically feature Lx > 0. As an example, Table 1.1 reports
the localization index for 4 real-world signals: Electro Cardio Grams (ECG) and
Electro Myo Grams (EMG) taken from the Physionet database [8], black and white
still images of isolated printed letters [15], and speech segments of 10 ms taken from
the EMU database [11].

ECG, EMG, and speech segments are one-dimensional signals and for each of
them, once the sufficient rate rx is set, we collect windows x.l/ of n subsequent
samples for l D 0; : : : ;N � 1. The correlation matrix� D ExŒxx>� is estimated as

� ' 1
N

PN�1
lD0 x.l/

�
x.l/
�>

and its eigenvalues extracted to compute (1.5).
Still images are constant, two-dimensional signals whose acquisition implicitly

yields a certain number of pixels values. In this case we consider 24 � 24 images
whose pixel values are aligned in the 576-dimensional vectors x.l/ to estimate� as
before.

1.2.2 Sparse and Compressible Signals

As a second example consider n D 3 and three independent vectors d0; d1; d2 2 R
3.

Assume that the vectors have unit length and define the PDF of x exploiting (1.4)
as in

fx.�/ D 1

3

2X

jD0
g

 

0; djd>j C
�2�

3
II �

!
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Fig. 1.5 A three-dimensional
random vector that
concentrates in a union of
one-dimensional subspaces

x0

x1

x2

span(d0)
span(d1)

span(d2)

where 0 D .0; 0; 0/> and I is the 3� 3 identity matrix and �2� 	 1. Since the vector
is zero-mean we still have that correlation and covariance matrices coincide. From��dj

��
2
D 1 we get tr.djd>j C �2� I=3/ D 1C �2� that is also the average energy of x.

Figure 1.5 shows a large number of realizations of such a vector as points in
the three-dimensional space R

3 for d0 D 1=
p
3.1; 1; 1/>, d1 D 1=

p
3.1;�1; 1/>, and

d2 D 1=
p
3.�1; 1; 1/>. Again, visual inspection is enough to reveal that the points

tend to concentrate in one of the three subspaces span.dj/ for j D 0; 1; 2 so that we
may set X D span.d0/ [ span.d1/ [ span.d2/.

Also in this case the error one commits in thinking that x 2 X can be computed by
orthogonal projection and, thanks to the definition of fx, immediately yields E� D
�2� 	 Ex. This kind of concentration is commonly indicated as compressibility and,
in its extreme form when E� D 0, sparsity.

To clarify the reason, note that if we build the matrix D D d0d>0 C d1d>1 C
d2d>2 then D is non-singular and D�1 brings dj on the j-th coordinate axis for j D
0; 1; 2. Therefore, � D D�1x concentrates along coordinate axes, i.e., has only one
substantially non-null component. This allows to generalize the concept to higher
dimensionality saying that x is �-sparse (�-compressible) when there is a basis D
such that x D D� where � is a sparse vector with at most � < n (substantially)
non-null entries.

As a further generalization, we may accept that D is a dictionary, that is a
collection of d > n column vectors that contains a subset of n independent vectors
and thus is able to express every x 2 R

n though not in a unique way.
The rationale behind accepting dictionaries is that very low sparsity counts �

may be extremely beneficial in reducing the number of measurements m. In fact,
we will later see that the minimum number of measurements needed for effectively
reconstructing x from y is m� D O.� log.d//. Adding specialized vectors to the
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set that can be used to express x may help achieving this goal. As an extreme case,
for example, if x could be only one out of a finite number of waveforms, those
waveforms would be collected as columns of D to yield � D 1 and m� D O.log.d//
as it is natural since to identify one out of d possible choices only log2.d/ bits are
needed.

Definition 1.2 Given a random vector x 2 R
n, we say that it is �-sparse (�-

compressible) when there is a full rank n � d matrix (d � n) such that for every
instance of x there is at least one � 2 R

d such that x D D� and � has not more than
� < n (substantially) non-null entries.

Since this does not produce any loss of generality, it is assumed that the columns
D�;0; : : : ;D�;d�1 of D have unit length

��D�;j
��
2
D 1.

Classical CS works on signals that are �-sparse or �-compressible with D being
named the sparsity basis or sparsity dictionary. This is often stated saying that CS
exploits the a priori knowledge that x is sparse or compressible or, in short, the
sparsity prior.

The effectiveness of the whole machinery is usually subsumed by few significant
parameters like

• The compression ratio CR D n=m;
• The sparsity ratio n=�;
• The measurement overhead m=�;
• The dictionary redundancy d=n;

that identify the main goals and trade-offs in the design.
The adaptation method that we will describe specializes the conventional

approach exploiting the fact that Lx > 0 for almost all real-world signals, i.e.,
the localization prior.

1.3 Sensing Operators

If x D D� for some D and �, then, by temporarily assuming that noise effects are
negligible, � D 0, (1.3) can be rewritten as

y D Ax D AD� D B� (1.6)

for an m � d matrix B D AD.
Since m < n � d, the main problem in going from y to � is the non-uniqueness of

the solution since even if B is full rank, the sheer effect of dimensionality reduction
implies ker.B/ ¤ f0g. Hence B is non-injective and each y has multiple possible
counterimages among which � is to be found.

To exemplify how sparsity helps in this, let us analyze a toy case in which n D 3
but x is known to be 1-sparse. This is exactly the situation described in the second
example of the previous section.
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Fig. 1.6 Points representing
a 1-sparse signal x 2 R

3 and
a plane 	 onto which they can
be projected to reduce their
dimensionality
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Sparsity means that the signal x is mapped into a vector � with only one non-null
component. Hence, different instances of x are equivalent to points like �0, �00, and
�000 in Fig. 1.6. Though x 2 R

3, the sparsity prior suggests that each of those points
can be identified by less than three scalars. Yet, even if the axis on which each of
them lies were known, at least 1 scalar should be specified for each point to indicate
its position along that axis. With this one may reasonably expect that the number
of scalars needed to identify each point is 2 (more than a single coordinate but less
than the full three-coordinate set needed for generic points).

To see that this is exactly what happens consider the plane 	 defined by the
equation �0C�1C�2 D 0. The projections on 	 can be obtained by a linear mapping
corresponding to the matrix

B D
0

@
1p
2
� 1p

2
0

� 1p
6
� 1p

6

q
2
3

1

A (1.7)

and produce the points y0 D B�0, y00 D B�00, and y000 D B�000 on 	 in
Fig. 1.7a. Figure 1.7b shows what would be like to look only at the two-dimensional
projections. Since the projections on 	 of the three coordinate axes are well apart
one from the other, the sparsity prior is enough to infer �0 from y0, �00 from y00 and
�000 from y000.

1.4 Coherence

This qualitative behavior can be made more precise. The projection of the coordinate
axes through B are nothing but the columns B�;0; : : : ;B�;d�1 of B, and are important
since the measurements vector y is the linear combination of only � of them (in
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Fig. 1.7 Projection of points representing a 1-sparse signal x 2 R
3 onto the plane 	 and graphical

reconstruction of the original points starting from projections for two differt wiev points

our case � D 1 and thus y actually lies on one of them). Hence, the more they are
distinguishable, the easier to go from y to the original �. In our context, complete
distinguishability would mean linear independence that is impossible since each of
them is a m-dimensional vector and there are d > m of them. Yet, it is possible to
formalize the idea of a set of vectors that is as linear independent as possible given
the dimensionality constraints by resorting to the concept of frame.

The theory of frames is huge and the applicability of frames goes well beyond the
role that we here give to them: that of being an intuitive support to the requirement
we will pose on B. For a more focused but synthetic discussion of the concept one
may refer to [13, 14]. What we need here is the definition of a special kind of frames.

Definition 1.3 A set fb0; : : : ; bd�1g of m-dimensional vectors is said to be a tight,
normalized, and equiangular frame (TNEF) if a length ` and an angle ˛ exist such
that

ˇ
ˇ̌b>j bl

ˇ
ˇ̌ D

(
`2 if j D l

`2 cos.˛/ if j ¤ l
(1.8)

and

m

d
`�2

d�1X

jD0

	
b>j v



bj D v (1.9)

for every v 2 R
m.
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Fig. 1.8 A tight, equiangular normalized frame in R
3 with 4 vectors (a) and its use in signal

reconstruction (b)

Note that (1.8) sets normalization of lengths and equiangularity between the
vectors, while (1.9) says that their collection behaves like an orthogonal basis up
to a constant depending on the dimensionality reduction m=d. For m < d, TNEF are
the collection of vectors that best approximate the behavior of an orthogonal basis
in which vectors are maximally distinguished.

Actually, the celebrated Naimark’s dilation theorem can be specialized to our
finite dimensional, real domain to clarify [13] that every TNEF is actually made of
the orthogonal projections onto R

m of the vectors of an orthonormal basis of Rd.
If such a higher dimensional basis is the one along which our signal is sparse, the
corresponding TNEF is clearly a very good candidate to allow inversion from y to �.

As an example of the power of such an embedding, Fig. 1.8a shows the
arrangement of 4 vectors in R

3 that form a TNEF with ` D 1 and cos.˛/ D 1=3.
If the vectors of such a TNEF are used to build the 3 � 4 matrix B, this can

be used to map 2-sparse vectors �0; �00; �000 2 R
4 into the measurement vectors

y0; y00; y000 2 R
3. In this case the mapping cannot be visualized but its results can be

drawn in R
3 as in Fig. 1.8b.

Since the projections of the coordinate axes of R4 are perfectly distinguishable
in R

3 so are the projection of the coordinate planes to which the � (that are 2-
sparse) belong. Figure 1.8b reports 3 out of the 6 possible coordinate planes. It is
clear that, with the exception of particular cases corresponding to 1-sparse signals,
the measurements y0, y00, and y000 only belong to one of these projections and thus
indicate which components are non-null in the original signals.

Given these extremely favorable behavior, it is a real pity that TNEF do not
exist for every choice of m and d. Actually, their very construction is a thoroughly
investigated but still unsolved problem.

What can be of help in this situation is another important property that hinges on
the concept of mutual coherence [6].
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Definition 1.4 Given an m � d matrix B with column vectors B�;0; : : : ;B�;d�1 the
mutual coherence is


.B/ D 
.B�;0; : : : ;B�;d�1/ D max
j¤l

ˇ̌
ˇB>�;jB�;l

ˇ̌
ˇ

��B�;j
��
2
kB�;lk2

(1.10)

It is well known [18] that mutual coherence, that is nothing but the cosine of the
largest angle between any two vectors Bj, is bounded by

s
.d � m/C

.d � 1/m � 
.B/ � 1 (1.11)

where .�/C D maxf0; �g.
For d > m, the lower bound in (1.11) is achieved by a normalized set of vectors

only if it is a TNEF. In our cases, m and d are set by external constraints and may
prevent the construction of a true TNEF. Yet, it is most natural to require that 
.B/
is as small as possible to be as close as possible to a TNEF, i.e., to guarantee that
the projections of coordinate axes on the measurement space are as distinguishable
as possible to allow reconstruction of �.

In the toy case of Fig. 1.6 the perfect distinguishability of the projections of the
coordinate axes is due to the fact that the set

B�;0 D
 

1p
2

� 1p
6

!

B�;1 D
 � 1p

2
1p
6

!

B�;2 D
 
0q
2
3

!

is a TNEF with ` D p
2=3, and ˛ D �=3 and in fact jB>�;jB�;lj D 1=3 implies


.B/ D 1=2 that is precisely the lower bound in (1.11) for d D 3 and m D 2.
We will see that the coherence of the columns of B regulates the performance

of some algorithms that are able to reconstruct � from y. It is then most natural to
say that a possible design criterion for A is to make the columns of B D AD as
incoherent as possible.

1.5 Restricted Isometries

The previous discussion leverages on sparsity only implicitly by inferring the
need that the projections through B of the coordinate axes in the � space are
as distinguishable as possible. Yet, the sparsity prior can be further exploited to
highlight another property that is desirable for B.

Define the support of a vector v as the set supp.v/ D fjjvj ¤ 0g that contains
the positions of its non-null entries, and for any finite set C, denote with jCj its
cardinality.
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With this notation, if jsupp.�0/j D � and jsupp.�00/j D � and �� D �0 � �00,
then jsupp.��/j � 2� where the upper bound is hit when there is no cancellation in
the componentwise difference �0 � �00.

What we have to avoid in the design of B is that both y D B�0 and y D B�00
and thus �� 2 ker.B/. Hence, if one can provide a matrix A such that the kernel of
B D AD contains only vectors with more than 2� non-null component, then is able
to uniquely associate any possible y in (1.6) with its corresponding �.

To formalize this concept further, consider a generic index subset K �
f0; : : : ; n � 1g and, for any v or matrix M, indicate with vK and M�;K , respectively,
the same entity with its index constrained in K. Set now K D supp.��/ with
jKj D 2�. Whatever K and ��K we would like to have

0 ¤ B�� D B�;K��K

Hence, every possible submatrix B�;K formed by selecting 2� columns from B
must be full rank.

Classical theoretical guarantees elaborate on this concept so that it can be applied
not only to the noiseless case � D 0. When � ¤ 0, (1.6) becomes y D B� C � and
reconstruction of � from y, if possible, is always affected by some error.

What becomes important in this case is the relationship between the amount of
disturbance, the features of B, and the error suffered in retrieving �. This calls for a
translation of our previous considerations in terms of energies.

In general, when �� is mapped by B, it gives a vector �y D B�� D B�;K��K .
Requiring ��K 62 ker.B�;K/ is equivalent to say k�yk2 > 0 and thus that the energy
gain k�yk22 = k��Kk22 between ��K and �y is non-null.

We may first assess the average behavior of such a gain by assuming that B�;K is
full rank and that ��K , a full vector, has a radial distribution, i.e., it can be written
as the product �� D ˛v where v is a vector uniformly distributed on the .n � 1/-
dimensional surface of a unit sphere and ˛ � 0 is a random scalar. With this, the
average energy gain between ��K and �y is

� D E��K

"
kB�;K��Kk22
k��Kk22

#

D Ev

"
kB�;Kvk22
kvk22

#

D Ev

h
v>B>�;KB�;Kv

i

To evaluate the last expression note that B>�;KB�;K is a 2� � 2�, non-singular
symmetric matrix whose eigenvalues are the squares of the so-called singular values
of B�;K . In general we will indicate with �j.�/ the j-th singular value of a matrix
argument and with �min.�/ and �max.�/ the minimum and the maximum of the set of
singular values. Associated with such eigenvalues/squared singular values, there are
the orthonormal eigenvectors bj such that B>�;KB�;K DP2��1

jD0 �2j .B�;K/bjb>j . Hence

Ev

h
v>B>�;KB�;Kv

i
D

2��1X

jD0
�2j .B�;K/E

h
v>bjb>j v

i
D

2��1X

jD0
�2j .B�;K/E

�	
b>j v


2�
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Yet, since the bj are orthonormal, we have
P2��1

jD0
	

b>j v

2 D kvk22 D 1 and, since

v is uniformly distributed on the surface of the .n � 1/-dimensional unit sphere, all

the projections b>j v must be statistically indistinguishable. Overall Ev

�	
b>j v


2� D
1=.2�/ for any j D 0; : : : ; 2� � 1 to yield

� D 1

2�

2��1X

jD0
�2j .B�;K/ D

1

2�
tr.B>�;KB�;K/ D 1

2�

X

j2K

��B�;j
��2
2

(1.12)

where we have first exploited the fact that the singular values are the eigenvalues of
B>�;KB�;K and then that the diagonal of such a matrix contains the squared lengths of
the columns of B�;K , i.e., B�;j for j 2 K. Note that, if the columns of B are normalized
to a certain length ` then � D `2.

The value in (1.12) is such that, on average, k�yk22 is � times k��Kk22, though
every instance of ��K may be amplified in a different way. To avoid pathological
cases, one may think to require that the deviation of the actual energy gain from its
average values is extremely limited.

Definition 1.5 A matrix B is said to enjoy the Restricted Isometry Property (RIP)
for a certain sparsity level � if there is a constant ı2� < 1 such that

�.1 � ı2�/ � kB�;K��Kk22
k��Kk22

� �.1C ı2�/

for every possible subset K � f0; : : : ; n � 1g of cardinality jKj D 2� and any
��K 2 R

2� . The constant ı2� is called the Restricted Isometry Constant (RIC).
Ideally, if ı2� D 0, all 2�-sparse vectors would experience the same energy gain

and BK would be a restricted isometry in the sense that the lengths of 2�-sparse
vectors are preserved up to a scaling factor

p
� .

The non-average energy gain for the specific vector ��K can be written by
defining the unit-length vector v D ��K= k��k2 to obtain

kB�;Kvk22 D
2��1X

jD0
�2j .B�;K/

	
b>j v


2

that, if the singular values of BK are �20 .B�;K/; �21 .B�;K/; : : : ; �22��1.B�;K/, can be
bounded from above by �2max.B�;K/ and from below by �2min.B�;K/. With this and
with (1.12), the requirement on B�;K can be translated in

1 � ı2� � �2min.B�;K/
1
2�

P2��1
jD0 �2j .B�;K/

� �2max.B�;K/
1
2�

P2��1
jD0 �2j .B�;K/

� 1C ı2� (1.13)

that allows to find the minimum possible value for ı2� .
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In our toy case the three matrices B�;K with jKj D 2� D 2 are

B�;f0;1g D
 

1p
2
� 1p

2

� 1p
6
� 1p

6

!

B�;f0;2g D
0

@
1p
2

0

� 1p
6

q
2
3

1

A B�;f1;2g D
0

@
� 1p

2
0

� 1p
6

q
2
3

1

A

(1.14)

and none of them is singular. Moreover they all have the same singular values
�20 .B�;K/ D 1 and �21 .B�;K/ D 1=3 so that (1.12) gives � D 2=3 while (1.13)
becomes 1� ı2� � 1=2 � 3=2 � 1C ı2� yielding ı2� D 1=2. Hence, our projection
preserves on the average 66% and never less than 33% of the energy of 2-sparse
signals.

Clearly, when �, m, and d have realistic values, the computation of the RIC
becomes a task with a combinatorially increasing complexity linked to the number
of matrices B�;K that is

�d
�

�
.

Be it easily computable or not, an objective in designing the sensing matrix A that
tries to more carefully exploit the sparsity prior is to make the RIC of the resulting
B D AD as small as possible.

Note that, though originating from different perspective, coherence and RIP are
all concerned with the features of the matrices ZK D B>�;KB�;K . In particular, if we
assume that all the columns of B are normalized to the same unit length, then � D 1
and the coherence is


.B/ D max
j¤l

ˇ̌
.Zf0;:::;2��1g/j;l

ˇ̌

while the RIC is

ı2� D max
jKjD2�

max f�max.ZK/ � 1; 1 � �min.ZK/g

where �j.�/ indicates the j-th eigenvalue of its matrix argument and �min.�/ and
�max.�/ indicate the minimum and the maximum of the set of eigenvalues.

Since, independently of K, j.ZK/j;kj � maxj¤l

ˇ̌
.Zf0;:::;2��1g/j;l

ˇ̌
and since ZK is

a 2� � 2� matrix, a straightforward application of the Gershgorin’s circle theorem
gives

ı2� � 2�
.B/
Though the bound is typically quite loose, it is often considered to be a hint to

the fact that both coherence and RIC are able to push sensing matrices towards the
structure needed to achieve good sensing performance.

1.5.1 Random Sensing Matrices

One cannot escape from observing that all the above design criteria for A are actually
given on B. Hence, for each class of signals, and thus of D on which sparsity is
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verified, one should re-design A to meet the chosen criterion. What should ideally
be pursued is the solution of one of the two optimization problems

arg min
A2Rm�n


.B/

s:t: B D AD
(1.15)

or

arg min
A2Rm�n

ı2�.B/

s:t: B D AD
(1.16)

where 
.B/ and ı2�.B/ indicate, respectively, the mutual coherence and the RIC of
the columns of the matrix B.

Both problems are too difficult to attack. The one in (1.15) is non-convex and can
be tackled only by resorting to relaxations and approximations that makes the final
sensing performance largely suboptimal. The one in (1.16) owes its hardness to the
combinatorial nature of the definition of RIC and becomes unmanageable even for
relatively small-scale instances.

This is why, the design flow of CS acquisition stages usually pursues a
completely different path. The main idea is that, intuitively speaking, good sensing
matrices are those that are well spread in the signal space. From this point of view
what better strategy to achieve, at least on average, a good spreading than to use a
random matrix?

We list here definitions that cope with this requirement.

Definition 1.6 We say that a p � q random matrix M 2 R
pq comes from a zero-

mean, independent-row Random Gaussian Ensemble (M � RGE .� /) if there is a
q � q symmetric, positive-definite matrix� such that every row of M is a jointly
Gaussian random vector � N .0;� /.

The probability density function of M is

fRGE.M/ D 1
p
.2�/pq detp.� /

e� 12 tr.��1M>M/ (1.17)

Clearly, (1.17) is a structured version of the probability density function of a
pq-dimensional real jointly Gaussian random vector [10].

Note that, if M0 � RGE .I/ where I is the n�n identity matrix, and if
p� is the

symmetric matrix such that
p�p� D � , then M D M0

p� � RGE .� /.
Hence, from the algorithmic point of view matrices M � RGE .� / are very simple
to generate.

Definition 1.7 We say that a p � q random matrix M 2 f�1;C1gpq comes from
an independent-row, zero-mean Random Antipodal Ensemble (M � RAE .� /) if
there is a q�q positive-definite matrix� such that every row of M is an antipodal,
zero-mean random vector with correlation matrix� .
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Definition 1.8 We say that a p � q random matrix M 2 f�1; 0;C1gpq comes from
an independent-row, zero-mean Random Ternary Ensemble (M � RTE .� /) if
there is a q � q positive-definite matrix� such that every row of M is a ternary,
zero-mean random vector with correlation matrix� .

Definition 1.9 We say that a p � q random matrix M 2 f0; 1gpq comes from an
independent-row Random Binary Ensemble (M � RBE .� /) if there is a q � q
positive-definite matrix� such that every row of M is a binary random vector with
correlation matrix� .

Important special cases of the above definitions are the ensembles in which
entries are independent and identically distributed (iid) that will be indicated by
RGE .iid/, RAE .iid/, RTE .iid/, and RBE .iid/.

Note that since for zero-mean Gaussian and balanced antipodal and binary
random variables incovariance is equivalent to independence, we have RGE .iid/ D
RGE .I/, RAE .iid/ D RAE .I/, and RBE .iid/ D RBE

	
I=4C 11>=4



where I

is the q � q identity matrix and 1 D .1; : : : ; 1/>. The iid versions of the above
ensembles have noteworthy asymptotic properties with respect to coherence and
RIP.

By adapting the results in [3, 12] we get

Theorem 1.1 If the p � q matrix M is made of iid entries with EŒMj;l� D 0 and
EŒM2

j;l� D �2M, and p; q!1 with log q D O.p/, then


.M/ D O
�

log q

p

�
(1.18)

In (1.18), the number p of the degrees of freedom of the space hosting the vectors
plays a different role with respect to number q of the vector to spread in that space.
Yet, if the number of vectors to stuff does not increase more than exponentially
with their dimensionality, the coherence vanishes when the size of the matrix
increases.

As far as RIP is concerned we may resort to the classical result of Marchenko e
Pastur [16] that can be adapted to give

Theorem 1.2 If the p � q matrix M is made of iid entries with EŒMj;l� D 0 and
EŒM2

j;l� D �2M, and p; q!1 with q=p! r and 0 < r < 1, then the squares of the
singular values of M=

p
p asymptotically distribute according to

fMP.�/ D
8
<

:

p
.��r�/.rC��/
2�2M�r�

if r� � � � rC

0 otherwise

with r˙ D �2M
�
1˙pr

�2
.

Note that the �2M correction is effective only in the RTE .iid/ case for which we
may have �2M < 1 since in the other cases we have �2M D 1.
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Theorem 1.2 clearly bounds the minimum and maximum singular values of
M=
p

p with �2min.M=
p

p/ � r� and �2max.M=
p

p/ � rC. Moreover, we know that
the average of the squared singular values of M=

p
p is

E
�
�2j .M=

p
p/
� D

Z rC

r�

�fMP.�/d� D �2M

We may now think that M is one of the m � 2� submatrices B�;K to set p D m,
q D 2� and assume that, if 2�=m! r with 0 < r < 1.

Since in general �2j .M/ D p�2j .M=
p

p/ we may asymptotically estimate the
inner terms in (1.13) as

1 � ı2� �
�
1 �pr

�2
<
�
1Cpr

�2 � 1C ı2�
that allows a RIC as small as

ı2� D max
n�
1Cpr

�2 � 1; 1 � �1 �pr
�2o

(1.19)

Hence, by keeping m sufficiently larger than 2� one may ensure that, for matrices
large enough, a small RIC is achieved.

Other approaches exist (see, e.g., [1, 7, chapter 5]) that overcome some of the
limitations of Theorem 1.2 and allow the estimation of RICs in non-asymptotic
conditions and without the need of iid matrices. Yet, as far as the magnitude of the
RIC is concerned, none of these more sophisticated machineries offers a definite
advantage over (1.19) that remains a state-of-the-art estimation of what can be
guaranteed for random choices of B.

From the intuitive point of view, such guarantees should at least approximately
extend to B D AD when A is drawn from one of the ensembles defined above since
if A is random, then also B is random though with a difference coherence and a
different RIC.

To pursue this direction a little further we need to define the concept of sub-
Gaussian norm and sub-Gaussian random variables and vectors relaying on the
definition and on the results in [7, chapter 5].

Definition 1.10 For any real random variable ˛ the quantity

k˛ksG D sup
t�1

1p
t
E1=t

�j˛jt�

is called the sub-Gaussian norm of ˛. For any real random vector ˛, the sub-
Gaussian norm is defined as

k˛ksG D sup
kˇk2D1

�
��ˇ>˛

�
��

sG

where ˇ is any deterministic, unit-length vector.
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The random quantities ˛ and ˛ are said to be sub-Gaussian when their sub-
Gaussian norm is finite, i.e., when k˛ksG <1 and k˛ksG <1.

Sub-Gaussian random variables and vectors are generalization of Gaussian ran-
dom variables and vectors whose construction preserves the properties and the tail
probability decay needed for the measure to concentrate when the dimensionality
increases.

Sub-Gaussianity may be exploited to bracket singular values of random matrix
without requiring that its entries are independent.

Theorem 1.3 If the p�q matrix M is made of independent sub-Gaussian rows Mj;�
with the same correlation matrix EŒMj;�M>j;�� D � , then there are two constants
C; c > 0 depending only on maxjD0;:::;q�1

�
�M�;j

�
�

sG such that if

ı D C
r

q

p
C �p

p

then for every � > 0

�max

�
1

p
M>M ��

�
� maxfı; ı2g

holds with probability at least 1 � 2e�c�2 .
Here, we are not overly interested in the non-asymptotic nature of Theorem 1.3

and thus assume p; q ! 1 and q=p ! r with 0 < r < 1 as before. This allows to
take � arbitrarily large and obtain

�max

�
1

p
M>M ��

�
� � (1.20)

with probability 1 for � D maxfCpr;C2rg.
For any two symmetric and positive-semidefinite matrices P and Q (in our case

P D M>M=p and Q D� ) the matrix P � Q is symmetric (though not necessarily
positive semidefinite) and its singular values coincide with the absolute values of
the eigenvalues. Hence, (1.20) can be translated into

ˇ
ˇ�j .P � Q/

ˇ
ˇ � � for j D 0; : : : ; q � 1 (1.21)

Moreover, any q� q symmetric matrix R can be written as R DPq�1
jD0 �j.R/eje>j

where ej are its orthonormal eigenvectors. Hence, given any unit-length vector s we

have s>Rs D Pq�1
jD0 �j.R/

	
e>j s


2
where the coefficients

	
e>j s


2
are positive and

sum to ksk22 D 1 and thus produce a convex combination of the eigenvalues. Since
bounding the absolute value of a set of quantities is equivalent to bounding all their
convex combinations, (1.21) is equivalent to bounding

ˇ̌
s>.P � Q/s

ˇ̌
and thus to

ˇ̌
s>Ps � s>Qs

ˇ̌ � � 8ksk2 D 1 (1.22)
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This implies j�max.P/� �max.Q/j � �. In fact we may proceed by contradiction
and assume, by possibly exchanging P with Q, that �max.Q/ < �max.P/ � �, a
strict upper bound that holds for all the eigenvalues of Q and thus for all their
convex combinations s>Qs. Yet, a unit-length vector smax exists such that �>max.P/ D
smaxPsmax so that (1.22) is violated for s D smax.

An analogous argument ensures that j�min.P/ � �min.Q/j � �. In fact, if it was
not true and �min.P/ > �min.Q/ C � the same strict lower bound applies to all
the eigenvalues of P and thus to all their convex combinations s>Ps. Yet, a unit-
length vector smin exists such that �min.Q/ D s>minQsmin so that (1.22) is violated for
s D smin.

We may now go back to P D M>M=p and Q D� , so that �j.P/ D �2j .M=pp/
and �j.Q/ D �j.� /, to obtain

�min.� / �� � �2min.M=
p

p/ � �2max.M=
p

p/ � �max.� /C�

In addition to this consequence of Theorem 1.3 we also have information on the
average of the singular values of M=

p
p. In fact,

1

q

q�1X

jD0
�2j .M=

p
p/ D 1

q
tr

�
1

p
M>M

�
D 1

q

q�1X

jD0

1

p

p�1X

lD0
M2

l;j !
1

q
tr.� /

where we have exploited the fact that the rows are independent and EŒM2
l;j� D� j;j

to apply the law of large numbers.
We may now think that M is one of the m � 2� submatrices B�;K whose rows

have a 2� � 2� second-order statistics� to set p D m, q D 2� and assume that, if
2�=m! r with 0 < r < 1.

Since in general �2j .M/ D p�2j .M=
p

p/ we may asymptotically estimate the
inner terms in (1.13) as

1 � ı2� � �min.�/ ��
�ave.�/ � �max.�/C�

�ave.�/ � 1C ı2�

where �ave.�/ D tr.�/=q is the average of the eigenvalues of� . Given the above
bound, ı2� can be taken at least as small as

ı2� D max


�min.�/ ��
�ave.�/ � 1; 1 � �max.�/C�

�ave.�/
�

(1.23)

Since � D maxfCpr;C2rg, by keeping m sufficiently larger than 2� and
assuming that the sub-Gaussian norm of the rows of B is not too large (i.e., the
associated PDF allows a sufficiently fast concentration of measure) the RIC is still
under control.

The fact that the choice of a particular PDF is no longer fundamental but we
may rely on results that hold for a class of PDFs also helps addressing the fact that
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B D AD and we are not designing B directly. Actually, when either A � RGE .� /,
or A � RAE .� /, or A � RTE .� /, or A � RBE .� / for a certain A, it is easy
to prove that, if D is an orthonormal basis, B D AD is made of independent sub-
Gaussian rows whose second-order statistics is� D D>�D.

This covers the random-A approach with some reasonable guarantees that the
resulting measurements vector can be used to retrieve � and thus x.

To illustrate this point with an example, assume that A � RGE .� / or A �
RAE .� / with � j;l D !jj�lj that, for 0 � ! < 1 corresponds to a unit-power
smoothly low-pass process with power spectrum

.f / D 1 � !2
1C !2 � 2! cos.2� f /

with ! D 0 implying a flat spectrum and thus the iid version of our ensembles.
Gaussian A are generated by generating a matrix M 2 RGE .iid/ and setting A Dp�M. Antipodal A are generated by setting Aj;0 D ˙1with PrfAj;0 D C1g D 1=2

and then all the subsequent entries of each row iteratively with PrfAj;l�1Aj;l > 0g D
.1C !/=2 for l D 1; : : : ; n � 1.

The sparsity basis D is taken as the DCT type II orthonormal basis Dj;l D
cos Œ� j.lC 1=2/=d�. From the orthonormality of D we get that A � RGE .� /
implies B D AD � RGE

	p
D
>�pD



is made of (sub-)Gaussian independent

rows. In the A � RAE .� / case, each row of B D AD is such that
��Bj;�

��2
2
D n and

thus is a bounded sub-Gaussian vector.
We also set m D 128, n D 256, and � D 3 to perform a Montecarlo estimation

of the PDF of the singular value of B�;K normalized to their own average

O�2j .B�;K/ D
�j.B�;K/

1
2�

P2��1
lD0 �2l .B�;K/

The results are reported in Fig. 1.9a and b for A � RGE .� / and A � RAE .� /,
respectively, and for ! D 0; 0:1; 0:2. Note how the profiles are extremely similar
regardless of the different ensembles from which A is taken, thus confirming that
what really matter is the sub-Gaussian nature of the vectors. In both cases the PDF
spreads out as ! increases, i.e., as the gap between �min.� / and �max.� / increases
as shown in Fig. 1.10.

Starting from the same data, Fig. 1.11a and b shows the profiles of the probability
that the RIC falls below a certain threshold. The spreading of the above PDF is
reflected in the worsening of this statistic, though values of ı2� less than 1=2 are
obtained approximately 70% of the times even with ! D 0:2.

Actually, the next section shows that coherence and RIC enter the bound on the
reconstruction error made by algorithms that compute � from y. Regrettably, such
bounds are almost often too loose that there is no monotonic relationship between
coherence and RIC and the true reconstruction performance.
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Fig. 1.9 The PDF of the singular values of B�;K for m D 128, n D d D 256, D the DCT
orthonormal basis and (a) A � RGE .� /, (b) A � RAE .� / with� j;l D !jj�lj

Fig. 1.10 The minimum and
maximum eigenvalues of a
256� 256 correlation matrix
� j;l D !jj�lj as a function
of !

0 0.05 0.1 0.15 0.2
0.6

0.8

1

1.2

1.4

w

λmin
λmax

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Pr
{

2k
≤

}

(a)

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Pr
{

2k
≤

}

(b)

= 0 = 0.1 = 0.2

d d

z z

zz

w w w

Fig. 1.11 The probability that a system with (a) A � RGE .� /, (b) A � RAE .� / with� j;l D
!jj�lj, yields a B D AD sensing matrix with a RIC not larger than a certain value



1.6 Signal Reconstruction 23

Equation (1.23), for example, and the evidence in Figs. 1.9 and 1.11 imply that
adopting non-isotropic rows with � ¤ I increases the spread of the eigenvalues
and worsens the RIC apparently hinting at a decay in performance.

Indeed this may be true only if nothing is known about the original signal but
the fact that it is sparse and the worst-case analysis that underlies the concepts of
coherence and RIP is a good proxy of what may happen in an actual acquisition.

Yet, the adaptation technique introduced in the next chapters designs possibly
non-diagonal correlation matrices � and exploits one of the above ensembles
to generate sensing matrices with independent rows whose statistics substantially
optimizes acquisition performance.

Therefore, though they are important technical tools to establish guarantees,
merit figures like coherence and RIC can hardly be considered a design criterion
when things come to performance optimization, especially in the presence of further
information on the original signal, leaving the general idea of making A random as
the unique practical guideline.

1.6 Signal Reconstruction

Signal reconstruction must address the problem of solving (1.3), i.e.,

y D AxC � D B� C � (1.24)

to find � while � is a disturbance that may remain unknown except from the fact
that it is bounded by a certain maximum energy k�k22 � �2 that is possibly small
with respect to kyk22. If this assumption holds, and in absence of further information
on �, any point in the cylinder

ky � B�k2 � � (1.25)

is a candidate solution. Actually, we know that � is �-sparse and assume that B has
been designed to take advantage of this prior. The � we are looking for should satisfy

both (1.25) and k�k0 � � where the usual definition of k�kp D
	Pd�1

jD0 �
p
j


1=p
for

p > 0 is extended to k�k0 D jsupp.�/j (the number of nonzero elements in �) that
is only a pseudo-norm since it does not scale when its argument is scaled, i.e., it is
not a homogeneous function.

Actually, a proper design of B should guarantee that the �-sparse element of
(1.25) is unique. Though this is usually an implicit assumption, it can be made
formal in the noiseless � D 0 case [5, 9].
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Theorem 1.4 Let N� be such that y D B N� and
�� N���

0
D �. If

� <
1

2

�
1C 1


.B/

�

then for any � ¤ N� such that y D B� we have k�k0 > �.
Guarantees like the one above allow us to identify the solution of our reconstruc-

tion problem with the solution of the following minimization problem:

arg min
�2Rd

k�k0
s:t: ky � B�k2 � �

(1.26)

Regrettably, (1.26) is a non-convex optimization problem due to the non-convex
behavior of k�k0. In fact, if one plots, for example, the set of points � 2 R

3 such that
k�k0 � 1 obtains Fig. 1.12 that clearly shows a non-convex set.

Non-convex optimization problems are difficult to solve and, in particular, the
discrete structure of k�k0 implies a combinatorial search that makes (1.26) an
NP-hard problem [17], i.e., something that nobody wants to include in a signal
processing chain.

A possible source of inspiration to cope with this comes from Fig. 1.13. If we
define Sp

d.r/ D f�j� 2 R
d^k�kp � rg, Fig. 1.13 shows Sp

3.1/ for different values of
p > 0. Visual inspection suggests that the lower the p the better Sp

3.1/ approximates
S03.1/ in Fig. 1.12. More formally, one can see that Sp

d.1/! S0d.1/\S2d.1/ as p! 0,
where S0d.1/ is clipped by S2d.1/ to cope with the non-homogeneity of k�k0.

Fig. 1.12 The set of points
� 2 R

3 such that k�k0 � 1
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Fig. 1.13 Three-dimensional spheres with equation k�kp � 1
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Starting from these considerations, we are tempted to approximate k�k0 with k�kp
with a p as small as possible or, formally speaking, the smallest p yielding a convex
merit figure, that is p D 1. Hence, (1.26) becomes

arg min
�2Rd

k�k1
s:t: ky � B�k2 � �

(1.27)

that is usually indicated as Basis-Pursuit with DeNoising (BPDN), with a noiseless
version featuring � D 0 named simply Basis Pursuit (BP).

To illustrate how BP and BPDN may succeed in reconstructing � from y we may
go back to our original example of Figs. 1.6 and 1.7 and assume to be given the
measurement vector y000 on the plane 	 . If � D 0 in (1.27), then the constraint is
y000 D B� requiring that � stays in the 1-dimensional subspace of points that have
the same projection y000 on 	 . Such a subspace is the thick blue line that extends
from y000 perpendicularly to 	 in Fig. 1.14a. Among all the points of that line, (1.27)
chooses the one on the sphere S13.r/ with the least possible r. Due to the peaky shape
of S13.r/ that tends to protrude along the coordinate axes, this yields the point O� that
is the true original signal.

In the noisy case, y000 is not the projection of �000 on 	 . Yet, the set of feasible
solutions ky000 � B�k2 � � is a cylinder with axis y000 D B� that includes the true
signal �000 as shown in Fig. 1.14b. Again, the shape of S13.r/ is such that the solution
of (1.27) is a sparse vector O� with the same nonzero component as �000, though the
presence of noise makes O� ¤ �000.

This intuitive mechanism works in higher dimensions as confirmed by some
classical theorems on the issue.

The first theorem leverages on coherence and ensures the reconstruction of � that
are exactly �-sparse.
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Fig. 1.14 Retrieval of �000 in the setting of Figs. 1.6 and 1.7 by means of BP (a) and BPDN (b)
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Theorem 1.5 ([9]) If 
.B/ < 1=.2� � 1/ and there is a � such that k�k0 D � and
y D B�, then the solution O� of (1.27) with � D 0 is such that O� D �.

Theorem 1.5 can be combined with Theorem 1.1 to give a rough estimation of
how many measurements are needed to achieve signal reconstruction. In fact, if we
use m measurements of an n-dimension signal, Theorem 1.1 allows to estimate the

coherence of the matrix used for sensing as 
 D O
	

log n
m



. Following Theorem 1.5,

reconstruction can be guaranteed if such a coherence is 
 < 1=.2� � 1/ where
� is the sparsity. Overall, we may estimate that to effectively reconstruct an n-
dimensional signal that is �-sparse one should deploy a number of measurements
of the order

m� D O .� log.n// (1.28)

Actually, a different path of reasoning exploiting RIP-related considerations [2]
that are out of the scope of this short rehearsal of the theoretical foundations of CS
suggests the slightly more favorable trend

m� D O
	
� log

	n

�




(1.29)

that is often employed for a rough sizing of CS systems.
Going back to reconstruction performance, a different, more general result admits

that � is not exactly �-sparse and applies to the larger class of original signals that
have a good �-sparse approximation. This is formalized by defining a thresholded
version ��" of � that retains only the � largest components of �.

Theorem 1.6 ([4]) If the RIC of B is ı2� <
p
2 � 1 and there is a � such that

y D B�, then the solution O� of (1.27) with � D 0 is such that

�
�� O� � �

�
��
2
� 21C .

p
2 � 1/ı2�

1 � .p2C 1/ı2�

��
�� � ��"

��
�
1p

�
(1.30)

For � that are exactly �-sparse we have
���� � ��"

���
1
D 0 and thus a perfect

reconstruction of the original signal.
Some guarantees also hold for the noisy case.

Theorem 1.7 ([4]) If the RIC of B is ı2� <
p
2 � 1 and there is a � such that

y D B� C �, with k�k2 � �, then the solution O� of (1.27) is such that

��� O� � �

���
2
� 21C .

p
2 � 1/ı2�

1 � .p2C 1/ı2�

�
��� � ��"

�
��
1p

�
C 4

p
1C ı2�

1 � .p2C 1/ı2�
� (1.31)

Equation (1.31) bounds reconstruction error with the sum of two terms, the first
of which is the same as in Theorem 1.6 as it refers to the possibility of reconstruction
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non-perfectly �-sparse signals, while the second related the uncertainty on the
measurement y with the uncertainty on the reconstructed signal.

Regrettably, the fact that considerations based on mutual coherence and RIP are
implicitly worst-case analyses makes the above bounds quite loose and conditions
under which they hold often too restrictive. As an example, the matrix in (1.7) that
underlies the example in Figs. 1.6, 1.7, and 1.14 has a mutual coherence equal to 1
and is such that, if � D 1 then ı2� D 1=2. With this, Theorem 1.5 does not hold for
� D 1 and Theorems 1.6 and 1.7 cannot be applied since ı2� >

p
2 � 1. Despite

this, perfect reconstruction is clearly possible at least in the noiseless case.
What surely remains is that BP and BPDN can be reasonably expected to help

retrieving the original signal and they are convex and thus more easily tractable than
the original (1.26). Actually, BP is not only convex but even a linear optimization
problem. In fact, if one introduces the additional variables ˛j D j� jj, (1.27) with
� D 0 is equivalent to

arg min
˛j

Pd�1
jD0 ˛j

s:t:

B� D y

� j � ˛j j D 0; : : : ; d � 1
�� j � ˛j j D 0; : : : ; d � 1
˛ � 0 j D 0; : : : ; d � 1

(1.32)

where the last three constraint inequality guarantee that each ˛j is not smaller than
the absolute values of � j and the fact that we minimize

Pd�1
jD0 ˛j pushes each ˛j to

its lower bound.
Hence, though specialized solvers exist for CS-related optimization problems,

BP can be also addressed by means of standard, large-scale linear optimizers.
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Chapter 2
How (Well) Compressed Sensing Works
in Practice

2.1 Non-Worst-Case Assessment of CS Performance

One of the main problems with coherence and restricted isometries is that the
corresponding parameters are explicitly calibrated on worst-case scenarios. This
corresponds to the desire of providing guarantees, thanks to which the system is
known to operate correctly. Yet, acquisition systems work on random inputs and it
is perfectly sensible to characterize their performance by probabilistic means. This
is particularly true when the input is not their unique random components since, for
example, the matrix A is also a possibly time varying, uncertain ingredient of the
processing.

An instructive example of this alternative route is given by a more geometric
approach to the properties of the minimization problem (1.27) (Basis Pursuit—BP)
and to its relationship with the minimization problem (1.26). Everything hinges on
a special kind of polytopes.

Definition 2.1 These are the definitions we need to proceed in our analysis

• A p-dimensional convex polytope P 
 R
p is the convex hull of a set V of points

in R
p.

• If no point in V can be dropped without changing the resulting convex hull, then
the points in V are the vertices of P.

• The intersection P \ h of a p-dimensional convex polytope P with a p � 1-
dimensional hyperplane that does not contain any point of the interior of P is
called a facet of P. Facets can be 0-dimensional (vertices), 1-dimensional (edges),
or in general q-dimensional with q < p.

• Given a convex polytope P 
 R
p with vertices v0; v1; : : : and a q � p matrix B,

the convex hull of the points Bv0;Bv1; : : : is a q-dimensional convex polytope
Q D BP 
 R

q.

© Springer International Publishing AG 2018
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Fig. 2.1 Construction of BS13.1/ starting from S13.1/ using B as in (1.7) (a) and its frontal view
allowing face counting (b)

• A polytope is said to be centrosymmetric if v 2 V implies �v 2 V .
• If ej D .0; : : : ; 0; 1; 0; : : : ; 0/> where the unique 1 appears in the j-th position,

then the crosspolytope in R
p is defined as the centrosymmetric convex hull

of V D f˙e0;˙e1; : : : ;˙ep�1g. In our previous notation the crosspolytope is
nothing but S1p.1/.

Starting from these definitions that are standard elements in the theory of convex
polytopes, one may develop specific concepts related to possibility of reconstructing
the original signal from the measurements vector [7, 8, Theorem 7.5].

Definition 2.2 A p-dimensional centrosymmetric polytope is said to be centrally q-
neighborly if every subset of V with q elements that does not include two antipodal
vertices is the set of vertices of a q � 1-dimensional facet of P.

Theorem 2.1 If y D B� has a unique solution with not more than � non-null
components, then such a solution is the unique solution of BP if and only if BS1d.1/
has 2d vertices and is centrally .� � 1/-neighborly.

The point of interest in Theorem 2.1 is that it gives a necessary and sufficient
condition for signal reconstruction: no worst-case bounding is involved. This has a
substantial impact on the predictability of CS performance. As an example, we may
go back to the matrix B in (1.7) and recall that its mutual coherence equal to 1 and
its RIC equal to 1=2 prevent the application of the results leveraging those concepts,
i.e., of Theorems 1.5, 1.6, and 1.7.

Yet, Theorem 2.1 explains why reconstruction by means of BP is always effective
in the noiseless case. Figure 2.1a reports the construction of BS13.1/ starting from
S13.1/. The same BS13.1/ is visualized in Fig. 2.1b. In this case d D 3 and � D 1 and
it is easy to verify that BS13.1/ has 2d D 6 vertices each of them trivially being a
face so that the polytope is centrally 0-neighborly.
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Fig. 2.2 Construction of BS13.1/ starting from S13.1/ using B as in (2.1) (a) and its frontal view
allowing face counting (b)

The same theorem indicates when the choice of B may prevent us from getting a
reconstruction. As an example consider

B D
 

1p
2
� 1p

2
0

� 1p
3
� 1p

3

1p
3

!

(2.1)

and the resulting BS13.1/ as in Fig. 2.2. In this case, the number of vertices is only
4 < 2d D 6 and Theorem 2.1 implies that reconstruction by means of (1.27) may
be impossible since the sparsity prior may not be enough to select a unique solution
of y D B�. What happens is described in Fig. 2.2 in which S13.1/ is projected with
the new B on a new plane 	 . Two out of 8 faces of S13.1/ are orthogonal to 	 so
that one of the vertices of each of these two faces gets mapped into a point on the
projection of the edge connecting the other two vertices, disappearing in the final
polytope BS13.1/.

This is what prevents reconstruction. In fact, assume that you want to recover
the same point �000 as in Fig. 1.14a. The straight line corresponding to y000 D B�

that is orthogonal to 	 is also parallel to 2 faces of S13.1/ so that its intersection
with S13.

���000
��
1
/ is a whole segment, each point of which is a solution of BP. This is

visualized in Fig. 2.3.
As a further application to our toy case, the very same Theorem 2.1 explains why,

no matter how the plane 	 is positioned, the solution of BP is not able to retrieve �

from y D B� when it is known that � is 2-sparse instead of 1-sparse. In fact, to have
2d vertices, BS13.1/ must be a hexagon. Yet, only the pairs of consecutive vertices
belong to a .� � 1/-dimensional facet (that for � D 2 is an edge) of a hexagon,
while other pairs do not, preventing central neighborliness. Hence, no matter how 	

is positioned, BP cannot be used for signal reconstruction.
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Fig. 2.3 Trying the
reconstruction of �000 starting
from y000 D B�000 by means of
BP. All the points in the blue
thick segment are equally
good solutions
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Fig. 2.4 Successful reconstruction of �0 starting from y0 D B�0 (a) and of �00 from y00 D B�00 (b)
by means of BP

Lastly, this powerful point of view can be extended to the case in which the
signal to retrieve is random. In fact, Theorem 2.1 is a guarantee independent of �,
that ceases to hold if even a single � cannot be reconstructed. Yet, even when the
guarantee does not hold, like for the matrix in (2.1), there are signals that can be
reconstructed.

In particular, in passing from S13.1/ to BS13.1/, 2 out of 6 vertices are lost and the
signals � that cannot be retrieved are exactly those at the corresponding vertices of
S13.k�k1/, like �000 in Fig. 2.3. Yet, Fig. 2.2 shows that two other pairs of vertices
appear in BS13.1/ and signals on the corresponding vertices of S13.k�k1/ can still be
reconstructed. This is shown in Figs. 2.4a and b where the same �0 and �00 as in
Fig. 1.6 are uniquely identified by the intersection of the straight line y D B� and
the minimum radius k�k1 ball.

Intuitively speaking, if the original 1-sparse signal � has the same probability of
aligning with each of the axes, the probability that BP is effective in recovering it
is equal to the ratio of the number of surviving vertices over the number of original
vertices, i.e., 4=6 D 2=3.
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All this can be generalized to cope with a larger sparsity �. To understand how,
we may first define �k.�/ as the operator that counts the number of �-dimensional
facets of its polytope argument and state the following [7, Theorem 3].

Theorem 2.2 Let B be an m�d matrix such that if B˛ D 0 for a vector ˛ with less
than m nonzeros then ˛ D 0. Let also � < m=2.

Given a subset K 
 f0; : : : ; d�1g of cardinality �, we may have that if supp.�/ D
K then � can be reconstructed from y D B� by means of BP. Indicate with KBP the
number of such subsets, and with Ktot D

�d
�

�
the total number of possible subsets of

cardinality �. Then

KBP

Ktot
� ���1.BS1d.1//

���1.S1d.1//
(2.2)

Assuming that the original signal has the same probability of featuring any of
the Ktot supports of cardinality �, the above result can be immediately recast into
probabilistic terms to say that pBP D KBP=Ktot is the probability of successful
reconstruction by means of BP and is not less than the ratio of facets counts in
(2.2). A dual result is available for the case in which B is random [8, Theorem 7.7].

Theorem 2.3 Let B be a random m � d matrix whose probability distribution is
invariant for any signed permutation of rows. Let � 2 R

d be a �-sparse vector and
y D B� the corresponding random measurement vector. The probability pBP that
BP retrieves � from y is bounded by

pBP � EŒ���1.BS1d.1//�

���1.S1d.1//

Note that, in general, facets counting is a combinatorial task so that the compu-
tation of ���1.�/ in high-dimensional settings can be expensive if not impossible.
From this point of view, the introduction of random matrices B can be helpful if
paired with the asymptotic conditions that are the mathematical equivalent of the
high-dimensional setting in which CS is applied. Many sophisticated results are
born in this area, whose simplest prototype is probably the one that we rephrase
here in our terms [10].

Theorem 2.4 Let B � RGE .iid/ with unit variance entries, d D .DR� CR/m, and
m D OH �. There is a function  .�/ such that

lim
d!1

���1.BS1d.1//

���1.S1d.1//
D
(
1 if DR � CR <  .OH/
0 if DR � CR >  .OH/

Collecting the results in Theorems 2.2, 2.3, and 2.4 one gets that, as the
dimensionality increases, there is a crisp phase transition in the possibility of
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reconstructing � from its random projections. The excess of measurements with
respect to the actual degrees of freedom in the signal (OH) controls the possibility of
accommodating a certain dimensionality reduction DR � CR while maintaining the
retrievability of the original signal.

Though Theorem 2.4 leverages RGE .iid/, the existence and shape of the function
 has been empirically found to be a general property [9] when the entries of B are
iid or its rows are an iid random subset of certain orthonormal basis.

In the noiseless and exactly sparse case, this makes polytope-based analysis
much closer to real performance than coherence or RIP-based considerations since
neither the finite-dimension results, nor asymptotics of random B rely on worst-case
bounding.

As a consequence, though neither the theory which heavily relies on symmetry
considerations, nor the empirical evidence gathered so far in the Literature, say
much on the possibility of straightforwardly applying this point of view to the design
of a proper sensing matrix A, we know that if n is large and we increase m enough,
CS will eventually work very well (the probability 1 implicit in Theorem 2.4).

From a more engineering point of view, this can be reversed to say that our aim
is to find the minimum possible m for which CS works very well. Properly evolved
and specialized, this is the key idea behind the discussion in the chapters to follow.

2.2 Beyond Basis Pursuit

Despite its theoretical appeal, BP is only an archetypal reconstruction method.
In practical terms BP and its denoising variant BPDN have been implemented
with a variety of methods, ranging from straightforward mapping to classical
mathematical programming problems leveraging linear and quadratic optimization
tools, to specialized procedures that look at them as a particular case of a convex
optimization task.

The activity in this field revealed, for example, that it is sometimes convenient to
address the BP or BPDN problems not in the synthesis form contained in (1.27) but
in an alternative analysis form.

Note, in fact, that (1.27) depends only on B and thus considers and seeks to
reconstruct the signal � in the sparsity domain. Once that � is known one may
synthesize x D D�.

Assume now that a linear operator D� is available such that if � D D�x then
x D D�. When D is a non-singular square matrix we simply have D� D D�1 and
when D is a frame, D� is the dual frame operator. With this, we may concentrate
directly on the true signal x and try to solve the “equivalent”

arg min
x2Rn

kD�xk1
s:t: ky � Axk2 � �

(2.3)
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Clearly, (1.27) and (2.3) are not equivalent when D is not an invertible matrix.
In fact, D�� is only one of the many possible representations of x in the sparsity
domain and is the only one considered while scanning the feasibility space of (2.3)
while (1.27) considers all of them. What happens is that the choice made by D� acts
as a further prior and in this role, it is often useful to decreased dimensionality of
the analysis form of BP and BPDN and help them finding good solutions.

Beyond this, accounting for all the methods and implementations described in the
Literature and/or made available to practitioners is out of the scope of this book. Yet,
it is useful to mention some of the most widespread tools distinguishing between
those helping the implementation of BP, BPDN, and their other variants, those
tackling the reconstruction problem from a theoretically different point of view,
and those that are mainly based on heuristic considerations and yield lightweight
iterative procedures that may be extremely useful when the resources dedicated to
signal retrieval are limited.

Further to their implementation in commercial, large-scale solvers, BP and
BPDN can be solved by quite a few implementations. Among them it is worthwhile
mentioning those in Table 2.1 where we give the commonly used acronym, a pointer
to some ready-to-use code and references to the relevant Literature.

Since BP and BPDN are convex optimization problems, they can be tackled by
convex solvers with wider applicability. Those in Table 2.2 are particularly effective
in modeling and solving the two standard reconstruction problems. Additionally,
their greater generality can be used to add constraints that model priors further
to sparsity that may available on the signal, thus increasing reconstruction perfor-
mance.

Further to these methods, instead of depending on the k�k1 norm and its favorable
geometry, signal reconstruction can be approached from completely different points
of view, e.g., from the estimation, or machine learning, or regression point of view.
Different approaches result in different algorithms some of which are listed in
Table 2.3.

Table 2.1 Some dedicated
BP/BPDN solvers

Solver Url Reference

SPGL1 www.math.ucdavis.edu/~mpf/spgl1/ [2]

NESTA statweb.stanford.edu/~candes/nesta/ [1]

Table 2.2 Some solvers of
convex optimization
problems that can be used for
signal retrieval

Solver Url Reference

CVX cvxr.com/ [12, 13]

Unlocbox lts2.epfl.ch/unlocbox/ [5]

Table 2.3 Some signal
reconstruction methods based
on various heuristic

Solver Url Reference

GAMP gampmatlab.wikia.com [17]

IRLS http://stemblab.github.io/irls/ [6]

SBL dsp.ucsd.edu/~zhilin/BSBL.html [14]

www.math.ucdavis.edu/~mpf/spgl1/
statweb.stanford.edu/~candes/nesta/
cvxr.com/
lts2.epfl.ch/unlocbox/
gampmatlab.wikia.com
http://stemblab.github.io/irls/
dsp.ucsd.edu/~zhilin/BSBL.html
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Table 2.4 Some signal reconstruction methods based on various heuristic

Solver Url Reference

FOCUSS dsp.ucsd.edu/~jfmurray/software.htm [11]

OMP http://www.mathworks.com/matlabcentral/fileexchange/
32402-cosamp-and-omp-for-sparse-recovery

[16]

CoSaMP [16]

Iterative hard
thresholding

www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html [3]

http://sparselab.stanford.edu/

Table 2.5 Code sketch for CoSaMP

Require: y vector of measurements
Require: � sparsity level
Require: B D AD sensing matrix
O� 0 F signal guess
�y y� BO� D y F error in reproducing measurements
repeat
�� B>�y F error in signal guess
J D supp.O�/[ supp.��2�"/ F support to correct error in signal guess
O� 0

O�J D
�
B�;J

��
y

O� O��" F new signal guess
�y D y� BO� F new error in reproducing measurements

until convergence

Finally, procedures exist that retrieve the original signal by considering that the
main issue in the computation of � is not finding a generic solution to y D B�

but to find the sparse one. Starting from this, it is possible to generate solutions
iteratively adjusting their sparsity at each step. Different heuristics may be used
to promote sparsity and give raise to different methods, some of which are listed
in Table 2.4. The simple structure of these methods and their relatively good
performance make them ideal for CS embodiments in which the resources devoted
to signal reconstruction are limited.

As an example of how simple such algorithms can be, assume that B is well
approximated by a random matrix with i.i.d., zero-average, entries and that the
k�k2 norm of each column is approximately equal. Since the columns of B are
independent, the matrix B>B is well approximated by a diagonal matrix.

Assume now that an estimate O� is given of the true �. The measurement vector
corresponding to O� is Oy D B O� whose difference with respect to the true measurement
vector is �y D B. O� � �/. Thanks to the previous considerations on B>B, we also
have that B>�y D B>B. O� � �/ � kB�;0k2 . O� � �/.

Hence, the largest nonzero components of B>�y indicate the components of the
signal that have been mistaken most by taking O� instead of �. This is the core step
in the CoSaMP algorithm whose complete definition is given in Table 2.5 where:
�p" that takes a vector and gives its thresholded version in which all but the p

dsp.ucsd.edu/~jfmurray/software.htm
http://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
http://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html
http://sparselab.stanford.edu/
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largest component are set to zero, �� indicates the Moore–Penrose pseudo-inverse
of a matrix, and given an index set J, a vector v, and a matrix M, vJ is the subvector
of v containing only the entries of v with indexes in J, while M�;J is the submatrix
of M made of the columns of M whose indexes stay in J.

Though the convergence criterion is not specified, it is clear that the procedure
itself is much simpler than solving a convex optimization problem. This is the reason
why methods like this and like the others in Table 2.4 are often used in limited-
resources realizations of reconstruction stages (see, e.g., [4]).

2.3 A Framework for Performance Evaluation

In the light of the discussions in Chap. 1 and of the initial section of this chapter, it
is easy to state that a precise assessment of the performance of a CS system is far
from easy.

An obvious intuition is that performance must be related to the magnitude of the
reconstruction error, i.e., to the difference between the true sparse representation �
and the one estimated by the reconstruction algorithm O� or between the true signal
x and Ox D D O�.

Yet, the classical theory of Chap. 1 follows a worst-case leitmotif and gives

bounds on quantities like
��� O� � �

���
2

that are either rarely applicable (for example,

because they pose too strict requirements on measurement matrices A) or quite loose
and ultimately very far from actual behavior.

Even the non-worst-case approach described at the beginning of this chapter
has problems since its face-counting argument, though allowing a much sharper
distinction between what can be reconstruct and what cannot, scales poorly as
dimension increase and cannot be applied in practice.

Last but not least, the construction of the matrices A is often done by random
means. This, paired with the intrinsic random nature of the signal to acquire, implies
that reconstruction error is a quite complicated random quantity.

The most straightforward way of addressing all these problems is to resort to
extensive Montecarlo simulations. Such an approach is the most common both in
the Literature and in practice and consists in generating a large number W of signal
instances x.j/ and of measurement matrices A.j/ for j D 0; : : : ;W � 1, use each of
them to compute y.j/ D A.j/x.j/ and then run one of the algorithms mentioned before
to compute the estimation Ox.j/ and consequently the reconstruction error in that case.
The statistic of such an error is usually summarized in single numbers by means of
one of the two approaches.

To begin with, it is most natural to define a Reconstruction Signal-to-Noise-Ratio

RSNR[dB] D 20 log10

� kxk2
kOx � xk2

�

that acts as a merit figure, i.e., the larger the RSNR[dB], the better the reconstruction.
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Then one may try to estimate the Average RSNR[dB] as

ARSNR[dB] D E
�
20 log10

� kxk2
kOx � xk2

��
� 1

W

W�1X

jD0
20 log10

0

@
��x.j/

��
2���Ox.j/ � x.j/
���
2

1

A

(2.4)
Alternatively, one may assume that the reconstruction is correct when the

corresponding RSNR[dB] exceeds a certain RSNR[dB]min and define a Probability
of Correct Reconstruction (PCR) as

PCR D PrfRSNR[dB] � RSNR[dB]ming �

ˇ̌
ˇ̌
ˇ

(
kx.j/k2�

�
�Ox.j/�x.j/

�
�
�
2

� 10 RSNR[dB]min
20

) ˇ̌
ˇ̌
ˇ

W

Clearly, ARSNR[dB] and PCR are general-purpose merit figures and real-world
applications may provide more significant indexes for establishing the acquisition
performance. When applications are addressed at the end of this book, those merit
figures will be possibly described and applied.

Yet, examples made to describe the adaptive method we address will use
ARSNR[dB] and PCR and a uniform framework for the accumulation of Montecarlo
trials.

In particular, we are interested in n-dimensional signals x that are both localized
and �-sparse with respect to a certain reference system D that we assume to be an
orthonormal basis.

To generate samples of x we start from an instance of a zero-mean Gaussian
random vector x0 with covariance/correlation matrix� 0 and do the following steps:

x0 � N
�
0;� 0�

�0  D�1x0 D D>x0
�  .�0/�"
x D D�

that formalize the intuitive idea of taking a possibly non-white vector (x0) project it
onto the basis along which we want our signal to be sparse, sparsify it and map it
back into its original basis. Clearly, if � D n we have x D x0 since no clipping takes
place.

As a first remark, note that from EŒx0� D 0 we have EŒ�0� D 0, EŒ�� D 0

and EŒx� D 0. Moreover, if we define the covariance/correlation matrices � 0 D
EŒxx0>�, � 0 D EŒ�0�0>�, � D EŒ��>�,� D EŒxx>�, we have � 0 D D>� 0D and
� D D� D>.

Hence, if� 0 is a diagonal matrix both the components of x0 and the components
of �0 are independent and the same happens for the nonzero components of � D
.�0/�" causing � , and thus also � to be diagonal. In this case, x will only be �-
sparse but not localized. In fact, by recalling (1.5) we have
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Lx D tr.� 2/

tr2.� / �
1

n
D 0

since for diagonal correlations we have tr.� 2/ D n� 2
0;0 while tr2.� / D n2� 2

0;0.
Localization can be imposed by choosing a non-diagonal� 0 whose features will

approximately be translated into those of� . In fact, since the � largest components
of �0 are carried over to �, � is the best possible �-sparse approximation of �0 and
the same relationship holds between x and x0. Hence, the larger the �, the more
similar the behavior of x to that of x0.

Though, the relationship between the localization of� 0 and that of� is difficult
to model analytically we may provide some numerical evidence on the effectiveness
of this method within the specific framework that we will use in our examples.

In particular we will consider� 0 such that� 0j;k D !jj�kj for some �1 < ! < 1.
As noted in Chap. 1, this means that x0 is a chunk of a stationary stochastic process
with power spectrum

.f / D 1 � !2
1C !2 � 2! cos.2� f /

that assumes a high-pass profile for �1 < ! < 0, a flat/white profile for ! D 0, and
a low-pass profile for 0 < ! < 1. With some calculations one gets

Lx0 D 2

n2

n�1X

jD1
j!2.n�j/ D 2!2

n

n
�
1 � !2�C !2n � 1

n .1 � !2/2 (2.5)

Assume now n D 128, and D as the orthonormal Discrete Cosine Transform
(DCT) basis. By generating a large amount of sample vectors x0 and thus x we may
estimate their localization and the power spectrum of the process from which they
are taken. The result of such estimations is reported in Figs. 2.5 and 2.6 for different
values of ! and sparsity � (remember that � D n implies x D x0, i.e., x is a Gaussian
random vector with an exponential correlation controlled by the decay !).

In particular Fig. 2.5 shows how Lx changes when ! changes. Note that
increasing j!j increases the localization of the generated signal x. As far as what
kind of localization is conferred to x, Fig. 2.6 shows that when x0 is low–low pass
also x is low-pass, and vice versa.

Overall, our generation methods prove itself to be a practical way of ensuring
sparsity while at least qualitatively controlling the localization of the signal and, as
such, will be used in all the non-real-world examples of this volume.

To keep such examples not too far from realistic conditions, we refer to Table 1.1
and focus on processes with localizations compatible with those of real-world
signals. This helps defining some prototype signals that are reported in Table 2.6.
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Fig. 2.5 The localization of
x when ! changes and for
different values of �
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Fig. 2.6 The spectrum of x in a low-pass (b) and high-pass (a) case for different values of �

Table 2.6 Definition of
prototype signals used in the
toy examples

Signal name Lx � !

ZL: Lx D 0—white 0 6 0

12

24

LL: low Lx 0.02 6 ˙0:509
12 ˙0:584
24 ˙0:669

ML: medium Lx 0.06 6 ˙0:810
12 ˙0:853
24 ˙0:878

HL: high Lx 0.2 6 ˙0:959
12 ˙0:964
24 ˙0:966
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Since most of our discussion hinges on the design of the matrix A producing the
compressed measurements y D Ax, all the examples will address a specific design
option or compare a number of them.

To do so we will rely on signals x generated as above and simulate the acquisition
process by first perturbing them with a random vector �x made of independent,
zero-mean Gaussian components whose variance is adjusted to match a prescribed
Intrinsic Signal-to-Noise Ratio

ISNR[dB] D 20 log10

� kxk2
k�xk2

�

Such a perturbation is injected to simulate inaccuracies in the acquisition stages,
including the possible quantization.

The perturbed signal is then used to produce measurements by using the matrix
A under assessment and obtaining y D A.x C �x/. When not explicitly declared
otherwise, we will produce the reconstructed signal to be matched against the true
signal by feeding y, A, and ISNR into the functions provided by the SPGL1 package
mentioned in the previous section implementing either the BP or BPDN method,
whose robustness and ease of use make it the ideal candidate for the concoction of
examples.

2.4 Practical Performance

The first section of this chapter shows that, when not modeled from a worst-case
point of view, CS is a promising technique that may allow to reconstruct an n-
dimensional signal x from m scalar measurements in a vector y with m	 n.

To give a quantitative appreciation of what can be achieved, assume that x is n-
dimensional with n D 128, that is � D 6 sparse with respect to a DCT orthonormal
basis and that is generated as described before with ! D 0 and ISNR[dB] D 60 dB.

Take A � RGE .iid/ and, for each value of m from 6 to 64 perform a Montecarlo
simulation. For each trial compute the RSNR to accumulate a profile of ARSNR as a
function of m. By fixing RSNR[dB]min D ISNR[dB] � 5 dB D 55 dB, we may also
estimate the PCR for each m. The result is reported in Fig. 2.7.

Since both ARSNR and PCR are the-larger-the-better merit figures, the sigmoidal
trends in both plots are the practical implication of theorems like Theorem 2.4.
In fact, coherently with what theory says, there is some critical value of m after
which performance dramatically increases, giving rise to what is often called phase
transition.

Beyond reflecting theoretical results, plots like those in Fig. 2.7 give a quanti-
tative appreciation of achievable compression. For example, Fig. 2.7a shows that
for m D 64 the ARSNR slightly exceeds the ISNR D 60 dB and thus indicates
that the original signal, whose dimensionality is n D 128, can be acquired with a
compression ratio CR ' 2 with no loss of accuracy (actually with a little amount
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Fig. 2.7 Montecarlo assessment of performance for a classical CS system: when the number of
measurements increases both the ARSNR (a) and PCR (b) increase

of denoising). Yet, one may decide that an ARSNR D 55 dB is enough for the
application at hand and derive from the same plot that m D 38 measurements are
enough to meet the specification, increasing the compression ratio to CR ' 3:4.

Clearly, this concerns average performance. A stricter point of view would be
to require that RSNR D 55 dB is not achieved on average but at least 90% of the
times. Since Fig. 2.7b estimates the probability that RSNR exceeds that threshold as
a function of m, one gets that this more stringent specification can be met sizing the
system with m D 46, that still gives CR ' 2:8.

This is a somehow impressive performance since it places well apart from the
worst-case scenarios that were addressed in deriving the guarantees. As an example,
Theorem 1.7, specialized to the case in which x is perfectly �-sparse with respect
to an orthonormal basis, says that the error between the original signal x and its
reconstruction Ox can be bounded as

kOx � xk2 D
���D O� � D�

���
2
D
��� O� � �

���
2
� 4

p
1C ı2k

1 � .p2C 1/ı2k

�

where � is such that k�k2 � �, and ı2k is the RIC of A. For ı2k � 0, the coefficient
of � is monotonically increasing and thus, even in the best possible conditions, the
guarantee of Theorem 1.7 on the RSNR is

RSNR[dB] D 20 log10

� kxk2
kOx � xk2

�
� 20 log10

� kxk2
4 k�k2

�
� ISNR[dB] � 12 dB

that, due to its worst-case nature, gives little hint on the fact that, for example, a
small average denoising effect can be obtained.

Figure 2.8 shows the trends of same merit figures when the signal to acquire is
either � D 6-sparse, or � D 12-sparse, or � D 24-sparse. Clearly, since � is the
minimum number of scalars that are needed to identify x, a progressively larger
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Fig. 2.8 Montecarlo assessment of performance for a classical CS system: when the number of
measurements increases both the ARSNR (a) and PCR (b) increase, though with trends depending
on the sparsity �

Table 2.7 Numerical matching between the asymptotic trend in (1.29) and the empirical evidence
of Fig. 2.8. The increase in the sparsity of the signal � implies an increase in the minimum
number m� of measurements needed to achieve a certain performance that is compared with the
O.� log.n=�// trend

ARSNR � 55 dB PCR � 0:9

� m�

m�

� log2.n=�/ m�

m�

� log2.n=�/

6 38 1.43 46 1.74

12 61 1.49 74 1.81

24 97 1.67 119 2.05

number of measurement is needed to achieve a good signal reconstruction and the
corresponding curves move to the right.

As an example, to obtain ARSNR � 55 dB one needs at least m� D 38

measurements when the signal is � D 6-sparse, but m� D 61 measurements
if the signal to reconstruct is � D 12-sparse, and m� D 97 measurements for
� D 24-sparse signals. Though the trend of m� against n and � is identified only
in asymptotic terms by (1.28) and (1.29), it may be used as a rough estimate of m�
even in finite cases.

In fact, by looking at Table 2.7 one is tempted to adopt as a first sizing criterion
m� D c� log2.n=�/ with a constant c in the range 2 � c � 3.

Though all this may seem a success, from an engineering point of view it is only a
starting point. In fact, performances like those in Fig. 2.7 are estimated for a system
in which A

• has entries that are infinite precision and unbounded;
• is maximally random within the variance constraint on its entries, and thus is

completely agnostic both of its role and of its optimization possibilities.
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Yet, any real-world implementation of the multiplication of x by A will imply
a finite-range calculation with a limited precision, either because of noise if the
implementation is analog, or because of quantization if the implementation is
digital.

Moreover, instead of simply accepting measurements as they happen to be
computed by a maximally random policy, one may try to look for measurements that
best identify the signal itself so to squeeze as much information as possible in the
m < n scalars that will represent x. The hope of this quest for good measurements
is that a smaller number of substantial pieces of information can do the same job of
a larger number of purely random looks at the signal.

Leaving the finite-range/finite-precision issue to a following chapter, note that
this second aim seems to go against a quite commonly accepted idea, suggestively
indicated as democracy, that each measurement carries roughly the same amount
of information about the signal being acquired. The mathematical foundation of
this idea is solid, it has to do with the RIC of the matrices A and with how such
constant changes when few rows are dropped: it turns out that when the number of
surviving rows is still larger than the minimum number needed to guarantee signal
reconstruction, then which row was discarded has little effect on the RIC constant
of the resulting matrix.

Yet, the practical effects of such a formal development are negligible for at least
two reasons. The first is that we have seen how RIC-based performance bounds are
to be taken only as guarantees since they are so loosely correlated with real-world
performance that their use as a design criterion is ineffective. In this case, a small
change in the RIC of A implies a small change in the performance guarantee but
says nothing on the change of the actual performance.

The second is that when seeking for optimally designed CS stages, one never
moves from the minimum m needed for a correct reconstruction far enough to be
able to speculate about dropping some measurements and still working above that
limit. The aim of system optimization is to push m as low as possible.

2.5 Countering the Myth of Democracy and Paving
the Way for Practical Optimization

Beyond the considerations in the previous section, the fact that measurement
democracy is a myth incorrectly inferred from a sound mathematical result can be
demonstrated with an easy formal argument if we go back to the simplified setting
that characterizes the first sections of this chapter: no noise (i.e., ISNR D 1), and
straightforward BP for reconstruction.

Within such a framework, we benefit from a powerful geometric insight on the
reasons why the basic reconstruction strategy is successful and when it fails. In
particular we may concentrate on failures and have a second look at a slightly rotated
and simplified version of Fig. 2.3, that is Fig. 2.9.
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Fig. 2.9 A rotated and
simplified version of Fig. 2.3
that highlights the relative
positions of the signal �00, the
projection y000 and the face of
S13.k�000k1/
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In that figure, it is easy to verify that the solution to BP is not unique (all the
points on the thick blue segment are possible reconstructions of the original signal)
due to the fact that the projection plane contains a direction b that is orthogonal to
one of the 2-dimensional facets of S13.

���000
��
1
/ to which �000 itself belongs.

This may be reworded saying that one of the vectors onto which the signal is
projected (one of the rows b of the matrix B D AD) forms with the signal an angle
ˇ such that its complement ˛ D �=2 � ˇ is equal to the angle between the signal �
and a facet of S13.

���000
��
1
/.

In this case ˛ D arccos
	p

2=3



and if we might ensure that the rows of B avoid

forming with the signal an angle ˇ D �=2 � arccos
	p

2=3



, a case like the one

depicted in Fig. 2.9 never occurs and signals like � 000 are correctly reconstructed.
Clearly, other bad cases may happen. As an example, Fig. 2.10 shows that there

is another choice of b that prevents BP from retrieving the original signal. Again, the
reason is that the angle ˛ between the signal and a facet of S13.

���000
��
1
/ (in this case it

is a 1-dimensional facet) is complementary to the one ˇ between the signal and the

direction b along which we are projecting. In this case ˛ D ˇ D arccos
	p

1=2


D

�=4.
If we avoided choosing directions b whose angle the signal angles is one of the

two computed above, both bad cases would be prevented.
Though the detailed proof is out of the scope of this volume, in the general

n-dimensional case, when the signal is �-sparse, angles between ˇmin D �=2 �
arccos .1=

p
1C�/ and ˇmax D �=2 � arccos

	q
n��

n��C1



must be avoided. In our case

n D 3 and � D 1 so that ˇmin and ˇmax boil down to �=4 and �=2 � arccos
	p

2=3



computed before. To be on the safe side and not to take too subtle decisions
depending on n and �, all angles in Œ�=4; �=2� should be avoided.
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Fig. 2.10 Another bad
choice of a direction b to use
for projection. Also in this
case BP cannot reconstruct
the original signal as all the
points in the thick blue
segment are possible
solutions
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Fig. 2.11 Among many
candidate vectors randomly
pointing in space, only the
two falling in the cone whose
axis is x and whose aperture
is �=4 become the rows A0;�
and A1;� of the matrix A used
for acquisitions
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Hence, to ensure maximum reconstruction performance in a noiseless envi-
ronment, it is advisable to select matrices B whose rows form with � an angle
strictly smaller than �=4. When D is an orthonormal basis, this directly translates
into a prescription for the angle between the rows of A D BD> and the signal
x D D�. Such a prescription translates into a simple geometric criterion: rows
may be generated as n-dimensional vectors whose entries are independent random
variables � N .0; 1/ but are included in A only if their angle with x is less than
�=4. Such a method will be indicated as cone-constrained CS as accepted rows are
vectors falling in the cone whose axis is x and whose aperture is �=4 as exemplified
in Fig. 2.11.

To have a practical appreciation of how much this criterion affects performance
we may adopt the same simulation setting as above in the noiseless ISNR D 1
case and substituting BPDN with BP implemented as a purely linear optimization
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Fig. 2.12 Montecarlo assessment of performance for classical CS (blue) and cone-constrained CS
(gray): the ideal cone-constrained CS clearly exhibits far better performance. (a) performance in
terms of ARSNR while (b) is for PCR

problem (1.32). In these conditions we simulate the performance of classical CS,
and cone-constrained CS. The results are shown in Fig. 2.12.

The absence of noise clearly improves reconstruction performance of classical
CS. By comparing Fig. 2.7 with Fig. 2.12 we get that an average quality ARSNR D
55 dB can be reached with m D 22measurements instead of m D 38measurements,
and an RSNR D 55 dB can be guaranteed 90% of the times with m D 31

measurements instead of m D 48 measurements.
Yet, cone-constrained CS has definitely better performance since the average

reconstruction quality never falls below 80 dB and RSNR D 55 dB can be
guaranteed 90% of the times with only m D 8 measurements.

Overall, the measurements we select are clearly carrying more information about
the signal with respect to measurements picked randomly, and no democracy exists
in the real-world. Although this may be taken as a discomforting truth from a
social point of view, it is actually extremely good news from the point of view of
engineering of CS. In fact, when not all the options are equally good, optimization
may be called into play to look for the best design alternatives.

Regrettably, cone-constrained CS is only a theoretical tool since it has no
concrete chance to be implemented. To understand why, we have to spend a few
words on some very high-level implementation constraints that are at the base of
any successful application of CS.

Though it is true that this book focuses on the design of CS stages according
to the scheme of Fig. 1.2 we cannot avoid to place such an acquisition subsystem
in a slightly more general perspective. This is what Fig. 2.13 does considering the
same quantities as in Fig. 1.2. All the acquisition stages (sampling, quantization,
compression) can be seen as a single block that encodes the analog waveform into
the subsufficient-rate sequence of digital scalars Q.yk/. Such sequence is passed to
some other subsystem that is interested in knowing x.t/ and decodes the sequence
Q.yk/ into an approximation Ox.t/.
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Fig. 2.13 A higher-level view of the role of signal acquisition
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Fig. 2.14 The encoder-channel-decoder view with additional signal paths

The higher-level point of view reveals an encoder–decoder structure that high-
lights the fact that the only continuous communication between the encoder and the
decoder is the subsufficient sequence, i.e., in principle, no other signal dependent
information is passed from the acquisition subsystem to the subsystem that uses the
acquired signal.

In terms of a CS acquisition mechanism, this means that, for example, the
rows of A are not communicated to the decoder, that must be able to know them
independently. This is why, a more realistic view at the scheme in Fig. 2.13 should
comprise few other details.

First, the encoder and the decoder sides must share some a priori information. If,
for example, A is fixed, then it must enter the design of both sides. Alternatively,
if A is a time varying instance of a random matrix ensemble (as in our examples),
the encoder and the decoder may share the design of a reproducible pseudorandom
number generator and the initial state from which it works. In this case the
operations of encoder and decoder must be synchronized thus implying a small
amount of side information to be transferred from encoder to decoder further to the
subsufficient sequence Q.yk/. The resulting more realistic view of the acquisition
system is given in Fig. 2.14. Clearly, for the compression scheme to be effective, the
total transferred information (the subsufficient sequence plus the side information)
must amount to less bits than what would be needed by the sheer transmission of a
sufficient sequence of samples.

This is the main reason why cone-constrained CS cannot be effectively
employed. In fact, what we may do to apply the method in practice is to deploy
two identical copies of a pseudorandom number generator both at the encoder and
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the decoder, synchronize them and let them run to produce candidate rows for the
matrix A. The encoder tests each of them and accepts only the first m of them whose
angle with x is less than �=4 to build A. Then, it computes y D Ax and communicates
to the decoder both the vector y and the side information needed to identify the rows
it used.

If we assume that to find m rows one must examine M candidates, the number of

bits of side information is
l

log2
�M

m

�m
since our task is to identify a specific subset of

m elements among M possible candidates. Overall, the amount of information that

must be transferred from the encoder to the decoder is mby C
l

log2
�M

m

�m
, where by

is the number of bits used for each sample of the subsufficient sequence Q.yk/. This
must be compared with the straightforward option of quantizing each samples with
bx bits so that the bitwise compression ratio is

CRbit D nbx

mby C
&

log2

 
M

m

!' (2.6)

Regrettably, the ratio between m and M suffers from a well-known effect of
dimensionality on the shape of S2n spheres. Assuming that the candidate rows span
all the possible angles uniformly (this is what happens, for example, if their entries
are independent normals), the probability that one of them falls within the proper
cone is equal to the ratio between the measure of the surface of the two spherical
caps � 0[� 00 illustrated in Fig. 2.15 and the measure of the surface @S2n of the whole
sphere S2n.

From [15] we get that such a ratio is


.� 0 [ � 00/

.@S2n/

D Bsin2.�=4/

�
n � 1
2

;
1

2

�
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;
1

2

�

Fig. 2.15 The spherical caps
whose surface is proportional
to the probability of
generating a random
measurement falling into the
�=4 cone

Γ′

4

Γ′′

p



50 2 How (Well) Compressed Sensing Works in Practice

that uses the incomplete regularized beta function

B�.p; q/ D

Z �

0

tp�1.1 � t/q�1dt

Z 1

0

tp�1.1 � t/q�1dt

from which we derive that B1=2

�
n�1
2
; 1
2

� � 2� n�1
2 for n � 1 is decreasing not

less than exponentially with n. This means, for example, that the probability of a
candidate 128-dimensional row of falling into the �=4 cone whose axis is any given
signal x is less than 7:6 � 10�21.

Assume now that we want to guarantee that RSNR � 55 dB at least 90% of the
times. From Fig. 2.12 we get that m D 8measurements are enough. Yet, the average
number of independent candidate rows to evaluate before accumulating m D 8

measurements is 8=.7:6 � 10�21/ D 1:1 � 1021, and the side information that needs
to be communicated amounts to 544 bit. If we assume by D 12 (a sensible choice
to achieve RSNR D 55 dB), the total number of bits needed to encode the n D 128-
dimensional window is 544C 8 � 12 D 640 bit.

Without compression, we may roughly estimate the RSNR achieved by the
straightforward quantization of each sample assuming that signal behaves almost
sinusoidally so that RSNR D 6:02bxC 1:76 dB where bx is the number of bits used
for each sample. To have RSNR D 55 dB we may set bx D 9 so that the total number
of bits would be 128 � 9 D 1152 bit. Hence, the bitwise compression ratio (2.6) of
cone-constrained CS is CRbit D 1152=640 ' 1:8.

Note that, if we decided to use every row produced by the generator we would not
need to send any side information beyond an initial synchronization, while Fig. 2.12
tells us that the same performance level as before would be guaranteed by m D 21

measurements, for a total of mby D 31 � 12 D 372 bit and a corresponding bitwise
compression ratio CRbit D 1152=372 ' 3:1.

All this said, there is no point in trying an implementation of cone-constrained
CS since it does not give any real advantage with respect to purely random CS which
also enjoys a much smaller computational burden (even if generating and testing a
candidate row took a single nanosecond, accumulating 8 measurements in the �=4

cone would take more than 33000 years!1).
However, what we are left with is an intuition that a possible criterion to increase

the amount of information that a measurement y carries about the signal x is to
obtain it as y D a>x using a vector a lying on straight line whose angle with the
straight line containing x is ‘small’, whatever this may signify. From here on what
we do can only be intuitively justified but, as we will see in the more applicative

1To avoid this curse of dimensionality, the simulations leading to Fig. 2.12 had to generate rows
of A by properly modulating the length of random rotations of x itself with angle smaller than �=4,
the conceptual sieving procedure being totally unfeasible.
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Fig. 2.16 Montecarlo assessment of performance for classical CS (solid blue), maximum-energy
CS (dashed blue), and cone-constrained CS (solid gray): maximum-energy CS is not as performing
as cone-constrained CS but it outperforms classical CS. (a) performance in terms of ARSNR while
(b) is for PCR

chapters of this volume, gives raise to a powerful heuristic criterion supporting a
well-defined and effective design flow for practical CS acquisition.

The first trivial remark is that, given two non-collinear vectors v0 and v0,
forming an angle dv0 v00, the angle between the straight lines containing them is
minf dv0 v00; �� dv0 v00g. Hence, such an angle gets smaller when dv0 v00 either goes to

0 or � , i.e., when the absolute values cos2
	
dv0 v00



increases. Since y2 D �a>x

�2 D
kak22 kxk22 cos2 .da x/ and x is assigned, if we may assume that all the rows of A have
approximately the same length, smaller angles correspond to higher energies of the
measurement y.

A new, heuristic method is naturally born from these considerations. In a system
analogous to what has been sketched for cone-constrained CS, let the row generator
produce M candidates. Then compose the matrix A with the rows a corresponding
to the m largest values of .a>x/2. The measurements are computed as y D Ax and
passed to the decoder. This strategy is named maximum-energy CS.

In this new configuration both M and m are degrees of freedom. This gives us

some control on the amount of bits spent on side information
l

log2
�M

m

�m
, an amount

that must be traded with the quality of the reconstruction. In this case we do not have
a theoretical background allowing to anticipate reconstruction performance and we
have to rely on simulations. If we do so, we may add a track to Fig. 2.12 and obtain
Fig. 2.16.

Maximum-energy CS is simulated generating M D 512 candidates and taking the
m largest energy measurements for m D � D 6 to m D n=2 D 64. Since it is only a
heuristic approximation of the cone-constrained policy, performance decreases but
is still much higher than that of classical CS.
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If we assume that our target reconstruction quality is ARSNR � 55 dB, then
classical CS achieves it with m D 22 while maximum-energy CS requires only
m D 9. These numbers allow to compute the bitwise compression ratio (2.6) for
the same case as above in which bx D 9 and by D 12. Classical CS yields
CRbit D 1152= .22 � 12/ D 1152=264 ' 4:4. Maximum-energy CS yields

CRbit D 1152=
	
9 � 12C

l
log2

�
512
9

�m
 D 1152=171 ' 6:7 and is therefore able to

provide a gain further to the mere reduction of the number of scalar measurements.
If we assume that our target reconstruction quality is to guarantee that 90% of

the times we have RSNR � 55 dB, then classical CS achieves it with m D 31

while maximum-energy CS requires only m D 14. The corresponding bitwise
compression ratios are CRbit ' 3:1 for classical CS and CRbit ' 4:5 for maximum-
energy CS.

Overall, maximum-energy CS seems to be a good candidate to leverage the
intuitive criterion we have developed for measurement quality while keeping
adaptivity to a level that can be managed by adding a reasonable amount of side
information.

This is true even in a noisy environment. In fact, we may go back to our original
setting in which ISNR D 60 dB, and keep the same configuration of maximum-
energy CS to obtain curves like the ones in Fig. 2.17.

Since noise is back, performance deteriorates also for maximum-energy CS. Yet,
the new method is still able to yield better bitwise compression ratios. In fact,
looking at Fig. 2.17a we get that the reference quality level ARSNR D 55 dB
is achieved with m D 38 measurements by classical CS, and with m D 16

measurements by maximum-energy CS. The usual computation of CRbit with
bx D 9 and by D 12 gives CRbit D 1152=456 ' 2:5 for classical CS and
CRbit D 1152=292 ' 3:9 for maximum-energy CS.
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Fig. 2.17 Montecarlo comparison between performance of classical CS (solid) and maximum-
energy CS (dashed): both the ARSNR (a) and PCR (b) curves are dramatically improved
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Figure 2.17a also shows that the adapted method is able to provide noteworthy
average denoising. For example, when classical CS achieves our reference perfor-
mance level ARSNR D 55 dB, maximum-energy CS is able to yield ARSNR D
65 dB > ISNR. Clearly, this comes at some expense since maximum-energy CS

accumulates and communicates
l

log2
�
512
38

�m D 192 bit in addition to the 456 bit

used to encode the measurements. Yet, in this case reconstruction provides an
accuracy that would not be attained by simply encoding the samples.

To confirm that what we have observed so far can be of use, we may explore
different types of signals with different sparsities. As before, no formal analysis is
available but an extensive Montecarlo assessment can be pursued using different
values of � and different values of ! in the exponential correlation signal mode we
defined in Sect. 2.3.

A sample of the results of such an assessment is reported in Fig. 2.18 where we
give the trends of both ARSNR and PCR (with target RSNR D 55 dB) when n D 128
and � 2 f6; 12; 24g while trying a high-pass signal with medium localization (ML
HP), a white signal, and a low-pass signal with large localization (HL LP) as defined
in Table 2.6. The white case with � D 6 is the same as the one in Fig. 2.17.

In terms of the minimum number of measurements needed to match a certain
reconstruction quality, the improvement of maximum-energy CS over classical CS
is undoubtable. The fact that it may result in a better bitwise compression ratio must
be checked case by case. From Fig. 2.18 it is clear that the performance of classical
CS is independent of localization while that of maximum-energy CS is not. Hence,
we may focus on the white case and summarize our quantifications in Table 2.8.

Overall, the maximum-energy criterion seems to behave rather well. Yet, its
implementation has two drawbacks that may limit practical application. First, one
has to compute many more measurements (M D 512 in our examples) than what
is then communicated to the decoder. If the cost of computing a measurement
is not negligible, this may have an impact on the encoder complexity. Due to
the dimensionality effect that we already noted when analyzing cone-constrained
CS, such an impact is expected to dramatically increase as n increases. Moreover,
side information must be computed and communicated to the decoder further to
measurements and this may also imply an increased encoder complexity.

Intuitively, this potentially increased complexity depends on the fact that
maximum-energy CS automatically adapt itself to the specific instance x of the
signal it is acquiring.

In the next chapter, we will see that a slightly less performing method can be
devised which, leveraging the same measurement energy principle and adapting to
the class of signals to acquire rather than to a specific instance, allows to increase
performance while keeping encoder complexity to a minimum.
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Fig. 2.18 Montecarlo comparison between performance of classical CS (solid) and maximum-
energy CS (dashed): both the ARSNR (a) and PCR (b) curves are dramatically improved in all
configurations
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Table 2.8 Bitwise compression ratios of classical CS and maximum-energy CS when bx D 8 and
by D 12 and for two different reconstruction quality requirements. Straightforward encoding of
n D 128 samples would require 1152 bit

ARSNR D 55 dB

Maximum-energy CS Classical CS

� m M mby C ˙log2
�

M
m

��
CRbit m mby CRbit

6 16 512 292 3.9 38 452 2.5

12 32 512 553 2.1 59 708 1.6

24 59 512 968 1.2 95 1140 1.0

PCR D 0:9

Maximum-energy CS Classical CS

� m M mby C ˙log2
�

M
m

��
CRbit m mby CRbit

6 19 512 342 3.9 47 564 2.5

12 37 512 632 1.8 73 876 1.3

24 70 512 1131 1.0 119 1428 0.81
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Chapter 3
From Universal to Adapted Acquisition: Rake
That Signal!

3.1 Average Maximum Energy

Chapter 2 showed that, if one moves from a worst-case analysis of CS (the one
classically used to provide mathematically sound guarantees) and get interested
in what really makes an encoder–decoder pair successful, a criterion to improve
performance is to choose measurements y D Ax whose energy is large.

The straightforward application of this criterion to each distinct instance of the
signal x requires some overhead on what is computed at the encoder (the candidate
measurements that are not energetic enough to be chosen as the most representative)
and on what is communicated from the encoder to the decoder (the bits needed
to define which measurements are chosen among those that are computed). These
overheads are due to the adaptivity of the max-energy approach, i.e., its ability
to change the acquisition matrix A in response to the particular signal instance x,
something that must be done at run-time.

Either of these two overheads may be unacceptable in some implementations and
in this chapter we develop what will be our core technique to leverage the maximum-
energy criterion while not imposing any additional burden neither to the encoder nor
to the communication.

The idea is to change from an adaptive approach to an adapted approach, i.e.,
to a mechanism that is tuned at design-time on the specific class of signals to
acquire. To do so, we assume that rows a of A are generated independently and
design their generator so that the energy

�
a>x

�2
is maximized. Since the generation

mechanism is designed a priori, such a maximization cannot be done individually
for each instance of the signal x. Rather, it is sensible to look for maximization of
the average energy.

Assuming that the statistic of the vector a is our design parameter, we may define

�.a; x/ D Ea;x

h�
a>x

�2i
(3.1)
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and look for

argmaxfajx
�.a; x/

where fajx is the conditioned probability density function of a given xj.
The quantity �.a; x/ to maximize is the average ability of the process generating

the rows of A of collecting energy from the signal x and is called rakeness. Clearly
�.˛a; x/ D ˛2�.a; x/ for any ˛ 2 R so that the above maximization has no sense
if we do not set a constraint that prevents scaling from generating solutions that are
seen as different. Since we are dealing with energy, it is most natural to require that
the average energy of a is fixed so that our design is synthesized by the following
optimization problem:

argmax
fajx

�.a; x/

s:t: Ea

h
kak22

i
D 1

where we have decided that the energy of the rows of A is fixed to 1.
To proceed, note that a and x may be assumed independent so that fajx D fa. In

fact, even if our goal is to make the two statistics related, the generation of x is due
to the process to acquire while the generation of a is a task of the acquisition system
that we assume to have no knowledge of the specific instance it is going to acquire.
Exploiting this independence we may write

�.a; x/ D Ea;x

h�
a>x

�2i D Ea;x
�
a>xx>a

� D Ea;x
�
tr
�
aa>xx>

�� D
D tr

�
Ea;x

�
aa>xx>

�� D tr
�
Ea
�
aa>

�
Ex
�
xx>

�� D tr .�� /
where we have introduced the correlation matrices � D Ea

�
aa>

�
and � D

Ex
�
xx>

�
that are symmetric and positive semidefinite. Hence, independence allows

us to simplify the design of fa into the design of the second-order statistic of

a depending on the second-order statistic of x. By noting that Ea

h
kak22

i
D

Pn�1
jD0 Ea

h
a2j

i
D tr .� / and recalling that a correlation matrix of a real random

vector must be positive semidefinite (� � 0) and symmetric (� D � >) we may
reformulate our design problem as

argmax
�2Rn�n

tr .�� /

s:t:
tr .� / D 1
� � 0
� D� >

(3.2)
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This formulation immediately highlights what we loose in changing from an
adaptive to an adapted mechanism, i.e., in optimizing based on ensemble features
rather than on the features of each instance. In fact, if the process to sense is
stationary and white, one has � D �2I, where �2 is the power of the process and
I the n � n identity matrix. With this tr .�� / D �2tr .� /. Thanks to the power
normalization constraint, the merit function of (3.2) is then fixed to tr .�� / D n�2

and no optimization is possible. This means that the method we are developing will
not work when the signal to sense is white or, using the terminology of Chap. 1,
when its localization is null. Luckily enough, most real-world signals are not white
and this is not a fatal weakness.

In general, from an optimization point of view, it is interesting to note that the
trace of the product of two symmetric matrices is actually a scalar product between
them, that induces the Frobenius norm since for any two n � n symmetric matrices
P and Q one has

tr .PQ/ D
n�1X

jD0

n�1X

kD0
Pj;kQj;k and

q
tr
�
P2
� D

vuu
t

n�1X

jD0

n�1X

kD0
P2j;k

Hence, rakeness is linear in our degrees of freedom and its gradient is

r� �.a; x/ D � (3.3)

Moreover, the subspace of symmetric, positive-semidefinite matrices with a
given trace is convex and thus (3.2) is a convex programming problem.

Actually, it is a very simple one, whose solution can be derived considering
the eigenvector decomposition � D UMU> where the diagonal matrix M D
diag .
0; : : : ; 
n�1/ contains the eigenvalues 
j of � and the matrix U aligns
as columns the corresponding eigenvectors uj scaled to be orthonormal. If the
eigenvalues are sorted so that 
0 � 
1 � � � � � 
n�1 � 0, then the solution of
(3.2) is� D nu0u>0 . A process with such a correlation matrix is a degenerate one
in which all the instances are equal to u0. Clearly, such a process cannot generate
independent rows for A.

Yet, all this suggests that an approach close to the well-known method of
Principal Component Analysis (PCA) may be of interest. PCA is an average-
energy-driven analysis technique that aims at finding which subspace of the whole
signal space contains, on average, most of the energy of the signal. If one sets
the dimensionality of the subspace to m, then it turns out that to contain the
largest possible fraction of the signal energy, the subspace itself must be the
span of u0; : : : ;um�1 (where, as before, we have assumed that the corresponding
eigenvalues are sorted in non-increasing order). The m eigenvectors corresponding
to the m largest eigenvalues are called the principal components of x.

Within the framework of PCA, one may think to momentarily relax the assump-
tion that A has independent rows and build it row by row picking properly
normalized versions of the first m principal components. Such a strategy can be
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easily put to test by using the same toy configurations introduced and used in
Chap. 2. The results are reported in Fig. 3.1 where we compare the performance
of classical CS with PCA-based CS for different values of � and localization. Note
that this time we avoid white signals since we already know that the method we are
developing cannot yield improvements since it considers average energies.

To interpret the results one may consider that from the projections y0; : : : ; ym�1
on the first m principal components x could be estimated as Ox DPm�1

jD0 yjuj with an
average error

E
h
kOx � xk22

i
D

n�1X

jDm


j (3.4)

Though our reconstruction does not hinge on a least-square principle, when
such an error becomes extremely small, one may reasonably expect that even the
sparsity-based reconstruction becomes very good. This is what happens for very
high-localization signals (the HL signals in the last row of Fig. 3.1) since when Lx

is very high, the sequence of eigenvalues of � , once sorted in descending order,
exhibit a rapidly vanishing trend that makes (3.4) very small for relatively low m.
On the contrary, for low-localization signals, PCA-based CS performs even worse
than classical CS.

Moreover, overall, PCA-based CS suffers from the increase in sparsity �, that
modifies the very shape of the performance curves worsening it consistently (as
seen in the � D 24 curves in Fig. 3.1).

All this suggests that, to exploit the average energy maximization criterion in a
more robust way one should avoid overspecialization of the matrix A, i.e., allow that
the projections span also less energetic direction in the light of two fundamental
ideas: (i) since energy is considered only on average, excluding less (on average)
energetic directions means leaving out subspaces that are indeed visited by the
instances of the signal; (ii) the energy raked from the signal is only one of the points
on which reconstruction is based, the other being sparsity, so that focusing only on
the former may be suboptimal in a wide variety of cases.

3.2 Rakeness-Localization Trade-Off

The mathematical tool we may use to model this qualitative intuition is localization.
The “process” that generates each row of the matrix A in PCA-based CS is a
degenerate one yielding always the same instance and thus it is maximally localized.
Since A represents the set of directions along which we are probing the signals, such
a maximum localization implies maximum specialization of the probes. To prevent
this from happening we may first revert to random and independent generation of
the rows of A and then put a constraint on the localization of the process generating
each of them.
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Fig. 3.1 Montecarlo comparison between performance of classical CS (solid), max-energy CS
(dashed), and PCA-based CS (dotted). Only ARSNR is shown
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A sensible adjustment of (3.2) is then

argmax
�2Rn�n

tr .�� /

s:t:

tr .� / D 1
� � 0
� D� >
La � L max

a

(3.5)

where we have introduced a bound on La. Clearly the new parameter L max
a > 0

administers the trade-off between maximizing rakeness and preserving a not-too-
high localization of the probing process.

Assuming for � a spectral decomposition of the kind � D V�V> with V
the matrix of orthonormal eigenvectors and � D diag .�0; : : : ; �n�1/ the diagonal
matrix of eigenvalues such that �0 � � � � � �n�1, (3.5) can be recast into

argmax
V2Rn�n;�0;:::;�n�1

tr
	

Vdiag .�0; : : : ; �n�1/V>�



s:t:

V>V D IPn�1
jD0 �j D 1

�0 � � � � � �n�1 � 0Pn�1
jD0

�
�j � 1

n

�2 � L max
a

(3.6)

in which the constraints do not depend on the choice of the matrix V. Hence, the
two sets of available degrees of freedom (the set of eigenvectors in V and the set of
eigenvalues) can be chosen independently.

Yet, whatever values are decided for the eigenvalues, the Wielandt–Hoffman
inequality [5, Theorem 4.3.53] says that, since 
0 � � � � � 
n�1 � 0 and
�0 � � � � � �n�1 � 0, then

tr
	

Vdiag .�0; : : : ; �n�1/V>Udiag .
0; : : : ; 
n�1/U>


�

n�1X

jD0
�j
j

where equality is obtained for V D U. Hence V D U is a condition for the optimum.
With this (3.6) becomes

argmax
�0;:::;�n�1

Pn�1
jD0 �j
j

s:t:

Pn�1
jD0 �j D 1

�0 � � � � � �n�1 � 0Pn�1
jD0

�
�j � 1

n

�2 � L max
a

(3.7)

that highlights the structure of a linear merit function with linear and quadratic
constraints.
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The solution of (3.7) can be obtained in analytical terms [6], for example, by
applying the Karush–Kuhn–Tucker conditions for optimality, and can be written
depending on an integer 1 � J < n and on the two quantities

˙1.J/ D
J�1X

jD0

j ˙2.J/ D

J�1X

jD0

2j

that can be matched with the definition of localization in (1.5) to note that Lx D
˙2.n/=˙2

1 .n/ � 1=n. Based on these we may define

t.J/ D
vuuu
t

L max
a

˙2.J/

˙2
1 .J/
� 1

J

and the sequence

�j.J/ D 
j

˙1.J/
t.J/C 1

J
Œ1 � t.J/�

that, for j D 0; : : : ; J� 1 is an affine combination of the normalized sequence of the
first J eigenvalues of� with the uniform sequence 1=J, depending on the coefficient
t.J/. If

J D max fJj�J�1.J/ � 0g

then the sequence of eigenvalues �j solving (3.5) is

�j D
(
�j.J/ for j D 0; : : : ; J � 1
0 otherwise

(3.8)

In the particular case J D n [2] , t.n/ becomes
p

L max
a =Lx and one has the more

readable

�j D 
j

tr .� /
s

L max
a

Lx
C 1

n

 

1 �
s

L max
a

Lx

!

(3.9)

that is surely valid whenever L max
a � Lx, i.e., when the process generating the rows

of A is not more localized than the process to sense.
This last expression clearly shows how the need to increase localization to

maximize the rakeness interacts with the localization constraint, which forces a
white component (the uniform sequence 1=n) into the blend that yields the optimal
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eigenvalue sequence. When the localization constraint is strict, i.e., L max
a ! 0, the

white component becomes the only ingredient in such a blend and classical CS is
retrieved.

Actually, though (3.9) is not fully general, it is so simple that it is the main design
tool for a rakeness-based design when we are allowed to neglect the additional
constraints that an implementation may pose (and that will be addressed in the next
chapter). In using it, the original degree of freedom L max

a can be replaced by a
generic real number t > 0 so that

�j D 
j

tr .� / tC 1

n
.1 � t/ for j D 0; : : : ; n � 1 (3.10)

or, equivalently,

� D �
tr .� / tC 1

n
I.1 � t/

providing that �n�1 � 0, i.e., for

0 � t � tr .� /
tr .� / � n
n�1

(3.11)

usually, 0 � t � 1 is assumed.
Figure 3.2 tries a visual explanation of (3.5) and its solutions (3.8) and (3.10)

for n D 3. In that case, each point of the three-dimensional space corresponds to a
possible assignment of the eigenvalues �0; �1; �2. The trace constraint tr.� / D 1

translates into the requirements that the point representing the solution lies on the
�0 C �1 C �2 D 1 plane.

Fig. 3.2 A low-dimensional
example of (3.5) and its
solution (3.10)

1
nI

La ≤ L max
a

tr(A ) = 1

λ0 ≥ λ1 ≥ λ2 ≥ 0
X

tr(X )

A ′

A ′′

A (a,x) =Xrè
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From (3.3) we know that the gradient of the merit function of (3.5) is �
itself, that, once projected on the constraining plane, yields the direction (green
arrows) towards which one should go to increase rakeness. On that same plane,
the localization constraint La � L max

a is equivalent to require that the point
representing the solution does not fall outside a circle centered in .1=3; 1=3; 1=3/ that
represents 1

n I. Moreover, the constraint �2 � �1 � �1 � 0 identifies on the same
plane a triangle that must contain the solution.

If the eigenvalues of � are properly sorted, the point representing �=tr.� / lies
within the same triangle but not necessarily within the circle corresponding to
the localization constraint. In that case, since the gradient of the merit function is
constantly pointing from 1

n I to �=tr.� /, the solution of (3.5) is at the intersection of
the segment connecting 1

n I and �=tr.� / and the boundary of the localization circle.
General solutions (3.8) in which J < n are represented by points like� 00 in Fig. 3.2
since they set to zero the last eigenvalues of the solution (�2 D 0 in this case).

In summary, all the above procedure is concretely summarized in the very simple
four-steps design flow reported in Fig. 3.3.

As a final remark on the design flow, if the simplified solution (3.10) is employed,
one may look back at (3.5) to discover that the corresponding value of rakeness is

��.a; x/ D
n�1X

jD0
�j
j D

n�1X

jD0
t

2j

tr .� / C .1 � t/
1

n

n�1X

jD0

j

D t
tr
�� 2

�

tr .� / C .1 � t/
1

n
tr .� / (3.12)

D tr .� /


tLx C 1

n

�

From such an expression we learn a few things

• if t is fixed, �� .a; x/ is increasing in Lx, i.e., the more localized the signal, the
larger the raked energy;

• if Lx is fixed, �� .a; x/ is increasing in t, i.e., the more we relax the constraint on
the localization of the rows of the sensing matrix, the larger the energy we rake;

• for t D 0, a is white and the energy it rakes from x is tr.� /=n, i.e., the average
energy of a single component of x.

It is evident that the design flow depends on the choice of t whose optimal
value may, in principle, depend on the signal x and on the reconstruction quality
one is aiming at. In practice, it can be empirically verified that the sensitivity of
performance on t is quite small so that one may coarsely sample the design space in t
and assess performance by simulation to choose the best value. This is the approach
we used to produce the results shown in Figs. 3.4, 3.5, and 3.6, where the design
flow of rakeness-based CS in Fig. 3.3 is followed for t D 0:1; 0:3; 0:5; 0:7; 0:9 and
the best performing option is considered for each configuration.
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Analyze the target signal x and estimate
its correlation matrix X .
For example, if T samples
x0,x1, . . . ,xT−1 are available one
may set

X ← 1
T

T−1

∑
j=0

x j x j)�

x0,x1, . . . ,xT−1

Obtain the spectral decomposition of X

X =U

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . n−1

⎞
⎟⎟⎟⎠U�

with U orthonormal and 0 ≥ ·· · ≥
n−1 ≥ 0.

Set (3.10)

A ← X

tr(X )
t+

1
n
I (1− t)

t ∈
[

0,
tr(X )

tr(X )−n n−1

]

Starting from any G ∼ RGE(iid) set

A ←G
√
A

A

m

m
m

m
m

Fig. 3.3 Rakeness-based design flow that starts from samples of the signal to sense and from a
choice of the parameter t

Figure 3.4 shows what performance can be expected for signals with a low
localization. Rakeness-based CS is not able to perform as well as maximum-
energy CS.

This is due to the fact that maximum-energy CS adapts to each single instance (at
the price of an increased computational complexity and a communication overhead)
while rakeness adapts sensing to the average behavior of the signal (and does not
require any significant overhead).

In any case, all performance curves show a definite improvement with respect to
classical CS both in the high-pass and low-pass cases that, despite the underlying
signals x are completely different, result in almost identical trends.
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Fig. 3.4 Montecarlo comparison between performance of classical CS (solid), max-energy CS
(dashed), and rakeness-based CS (dotted) for low-localization signals

As an example, even in the most unfavorable situation like the one in Fig. 3.4a
and b that deals with a low-localization high-pass signal with sparsity � D 24,
to ensure ARSNR D 55 dB, classical CS needs m� D 95 measurements while
rakeness-based CS requires m� D 81measurements and this brings from CR ' 1:35
to CR ' 1:58. If the specification is to have RSNR � 55 dB at least 90% of the times,
then the adoption of rakeness-based CS brings from CR ' 1:09 to CR ' 1:27.

Figure 3.5 shows what performance can be expected for signals with a medium
localization. In this case, despite the two techniques are different and with differ-
ent computational costs, rakeness-based CS closely matches the performance of
maximum-energy CS though it seems to suffer from an increase in sparsity (the
� D 24 curves are those for which the difference between rakeness-based CS and
maximum-energy CS is relevant).
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Fig. 3.5 Montecarlo comparison between performance of classical CS (solid), max-energy CS
(dashed), and rakeness-based CS (dotted) for medium-localization signals

Figure 3.6 shows that the match between rakeness-based CS and maximum-
energy CS increases as localization increases. As an example, in the very favorable
case of Fig. 3.6c and d that deals with a high-localization low-pass signal with
sparsity � D 6, to ensure ARSNR D 55 dB classical CS requires m� D 38

measurements while rakeness-based and maximum-energy CS require m� D 23

and this brings from CR ' 3:37 to CR ' 5:57. If the specification is to have
RSNR � 55 dB at least 90% of the times, then the adoption of rakeness-based CS
brings from CR ' 2:78 to CR ' 4:57.
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Fig. 3.6 Montecarlo comparison between performance of classical CS (solid), max-energy CS
(dashed), and rakeness-based CS (dotted) for high-localization signals

To discuss the sensitivity of rakeness-based design with respect to the parameter
t, we may compare the performance curves obtained by selecting the optimal t
for each configuration with those resulting from t D 1=2. This is done in Fig. 3.7
focusing only on ARSNR. Though the solid curves are an upper bound on what
can be obtained for t D 1=2, the two tracks are always very close and, what is
most important, have almost identical phase transitions, i.e., the corresponding
performance reach their maximum value for the same number of measurements.
This phenomenon has been empirically verified in most cases and suggests to take
t D 1=2 at least as a valid starting point for a first draft design.
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Fig. 3.7 Montecarlo comparison between performance of rakeness-based CS optimized in t
(solid) and rakeness-based CS for t D 1=2 (dotted). Only ARSNR is reported
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3.3 Rakeness and the Dark Side of Off-Line Adaptation

We have seen that rakeness-based CS is able to reproduce the performance
improvement of maximum-energy CS for sufficiently localized signals, and that this
is possible notwithstanding the much higher computational complexity of the latter
which needs to compute M  n m measurements instead of only m.

All this does not come for free. In fact, rakeness-based CS relies on an off-line
adaptation to the class of signals to sense, involving an optimization that is made
at design-time. Clearly, this might be a problem whenever the characterization that
can be given at design-time of the process to sense is only approximately true and
there may be deviations at run-time.

As an example, one may want to acquire ECG tracks and to this aim analyzes
a database of tracks acquired from healthy patients to extract the second-order
information � needed to trigger rakeness-based design. Once put to work, the
acquisition system may well be fed with non-healthy patients signals, for example,
arrhythmic beats, whose frequency content is different from regular ones. As an
alternative scenario, one may not have access a priori to samples of x and must base
the design on reasonable but not exact assumptions on the signal to acquire, that
result in approximated second-order features entering the design flow.

The question that naturally arises is whether rakeness-based CS is capable of
acquiring these signals with a sufficient degree of accuracy.

Some specific versions of this problem will be addressed in future chapters
that deal more specifically with implementations and corresponding applicative
scenarios. By now, to keep the discussion as general as possible and give some
quantitative background to the answer, we may formalize the situation as follows. If
� is the true correlation matrix of x, estimation errors or wrong a priori knowledge
cause the rakeness-based design flow to consider a correlation matrix� ¤ � .

Unless the whole framework on which the design relies is heavily flawed,� still
contains some coarse-grain information on the signal though it may mistake some
of its features. To model this, we will assume that the energy of each component
of x (i.e., each of the diagonal elements of � ) is correctly identified while some
uncertainty affects the cross-correlation terms in� .

More mathematically, note that if we start from the above spectral decomposition
� D Udiag .
0; : : : ; 
n�1/U> and set Q D Udiag

�p

0; : : : ;

p

n�1

�
U> then Q

is a positive-semidefinite and symmetric matrix such that QQ D QQ> D � . From
this we get that, if qj is the j-th row of Q, then qq> D kqk22 D �j;j D EŒx2j �.

Assume now that each row qj is rotated by an angle � in a random direction to

yield the j-th row qj of a new matrix Q. Since rotations do not alter vector length, the

matrix� D QQ
>

has the same diagonal entries of� and it is positive semidefinite
and symmetric. It can be therefore assumed as a perturbation of� such that� !
� when � ! 0.
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Looking at this from the opposite side, one may think that � quantifies the error
we make in estimating � that causes � to enter the design instead of � . To give
an intuitive appreciation of how such an error modifies the information that are
passed to the rakeness-based design flow we may adopt a geometric representation
of the distribution of the energy in the signal space. For any given correlation
matrix � , the figure E� D

˚
� 2 R

nj�>� �1� � 1� is an ellipsoid whose axes
align with the eigenvectors of � and � �1 and whose lengths are proportional
to the corresponding eigenvalues of � . Hence, the orientation and size of E�
geometrically represents the anisotropy of the energy distribution in the signal
space: if the signal tend to align to a particular direction, E� will be heavily
elongated along that direction.

Applying this to our case, as� and � have the same diagonal the sum of their
eigenvalues is the same. From a geometric point of view the sum of the axes of
E� and of the axes of E� are the same. Within this constraint, the comparison
between the shape of E� and that of E� allows a visual appreciation of how much
the distribution of signal energy assumed by rakeness-based design may be different
from the true one.

Figure 3.8 reports such comparisons for n D 3 starting from� such that� i;j D
2�ji�jj, and considering typical instances of� for different values of �. It is evident
that for small values of � (e.g., � D �=50) the energy distribution is almost identical
while for larger values (e.g., � D �=5) what is considered by the design flow may be
substantially different from what characterizes the signal to acquire.

The fact that � is used in the design flow instead of � misleads the procedure
and the resulting correlation matrix � is not the one solving (3.5). The rows of
A generated according to such an � will have a suboptimal rakeness and can be
expected to yield a lower performance. Performance plots are affected by � as shown
in Fig. 3.9 where we compare the performance of classical CS with that of rakeness-
based CS based on a� generated from� with � D 0; �=100; �=50; �=20; �=10; �=5 and
assuming t D 1=2 in (3.10).

In those plots, arrows indicate how performance profile changes when �

increases, and their length gives a rough quantitative indication of the effect of
the sensitivity to such an error. Though each case has its own peculiarities, it is clear
that when the error is small the effect is almost negligible while larger differences
cause a non-negligible degradation of performance. Yet, even in the case of large
errors, the performance of rakeness-based CS usually does not become worse than
that of classical CS.

A more quantitative appreciation of this can be obtained by considering the
minimum number of measurements m� needed to reach an ARSNR of 55 dB, i.e.,
5 dB less than the ISNR with which the signal enters the acquisition system.
Figure 3.10 reports how such an m� changes when � increases, and compares
this with the minimum number of measurements needed to achieve the same
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Fig. 3.8 A graphical intuition of how much the distribution of signal energy assumed by rakeness-
based design (represented by E� ) may be different from the true one (represented by E� )

performance level by classical CS. Performance degradation reflects in the fact that
the trends of m� are increasing with m� and tend to reduce the gap between classical
CS and rakeness-based CS (i.e., what we gain in adopting rakeness-based design
instead of classical CS). Yet, such a gap is not bridged completely but in the most
challenging configuration, i.e., when the signal is not so sparse (� D 24) and the
error is sizeable (� D �=5).

Overall, when the second-order model of the signal to acquire is not badly mis-
taken, rakeness-based CS is able to yield improvement with respect to classical CS.
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Fig. 3.9 Montecarlo comparison between performance of classical CS (solid) and rakeness-based
CS (dotted) for different values of �. Only ARSNR is shown. Arrows show how rakeness-based CS
performance changes when � increases, their length gives a quantitative idea of the effect
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Fig. 3.10 The minimum number of measurements m� needed by rakeness-based CS with t D 1=2

to achieve ARSNR � 55 dB as a function of the perturbation angle � (dotted) compared with that
needed by classical CS (solid)



76 3 From Universal to Adapted Acquisition: Rake That Signal!

3.4 Rakeness and the Distribution of Measurements

As both the signal to acquire x and acquisition matrix A are random, the measure-
ment vector y is a random vector and its components yj are random variables.

Since rakeness-based design aims at increasing the average energy of each
measurement, it surely alters the distribution of the yj, a distribution that is
interesting for multiple reasons.

The first of these reasons is that measurements are stored or communicated in
digital form and thus should be quantized either explicitly (if they are computed in
analog terms) or implicitly (it they are computed digitally depending on previously
converted data). The design of quantization schemes depends on the distribution of
the scalar to quantize.

In the following chapters we will also see that the fact that the yj exhibit a certain
distribution is a key point in using CS not only for parsimonious acquisition but also
as a mean to grant a limited but almost zero-cost form of privacy of the acquired
data.

Results on the distributions of the yj are better derived in asymptotic terms, i.e.,
when n!1, and this requires some assumptions on the behavior of the sequence
of random quantities making the rows of A and in the samples of x.

To proceed formally we concentrate on a single measurement y D a>x, where a>
is one of the rows of A and x> is the input signal. Since we are interested in n!1
we should think to a and x as segments of two discrete-time random processes aj

and xj that we will assume independent.
The formal development requires some assumptions to be put on these two

processes, namely

• aj and xj are stationary;
• aj and xj are sufficiently mixing;
• EŒaj� D 0
• EŒa12j � <1
• EŒx12j � <1

The last two assumptions are merely technical and are easily verified by any
real-world implementation that, for example, restricts all its quantities in a finite
range. Stationarity implies that the vectors a and x have the same statistical features
independently of which part of the underlying process they copy and imposes that
the corresponding correlation matrices� and� are Toeplitz.

Mixing implies that, though the processes may be made of dependent random
variables, the dependency between these random variables decreases as they are
pushed apart in time.

This is formalized by considering the generic process zj associating a real random
variable to each index j, two integers p; q > 0 and defining an event P on a set of q
subsequent samples and an event Q on a set of p subsequent samples that are t times
instant apart from those on which P is defined. The situation is the one described by
Fig. 3.11 where we require that the two events tend to be independent as t!1.
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Fig. 3.11 An example of the
two sets of samples on which
the event P and Q are defined
to introduce mixing.
Independence arises when
t!1
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z3+t

z4+t

z5+t

P Qt

In formulas, take any two measurable sets P 
 R
p, Q 
 R

q and let

�P�Q.t/ D Pr
˚�

z0; : : : ; zp�1; zp�1Ct; : : : ; zpCq�2Ct
� 2 P � Q

�

�P D Pr
˚�

z0; : : : ; zp�1
� 2 P

�

�Q D Pr
˚�

zp�1Ct; : : : ; zpCq�2Ct
� 2 Q

� D Pr
˚�

z0; : : : ; zq�1
� 2 Q

�

In the following we will say that the process is sufficiently mixing if

j�P�Q.t/ � �P�Qj D O
�
t�5
�

Most common processes give rise to exponential decay of j�P�Q.t/ � �P�Qj and
thus are mixing enough for our purposes. Moreover, if the processes underlying a
and x are sufficiently mixing, also the process with samples zj D ajxj is sufficiently
mixing and

y D
n�1X

jD0
zj

is therefore the sum of n subsequent samples of a mixing process. We also know
that EŒzj� D EŒajxj� D EŒaj�EŒxj� D 0 and EŒz12j � D EŒa12j x12j � D EŒa12j �EŒx

12
j � <1.

Exploiting these assumptions we are able to define the asymptotic behavior of
y=
p

n as n!1. In particular, we immediately get that E Œy=pn� D 0 and that, under
all the above assumptions, we may exploit the most common version of central limit
theorem that is able to cope with dependent random variables [1, Theorem 27.4] to
say that, if

lim
n!1

E
�
y2
�

n
D �2 > 0
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then

yp
n

n!1� N
�
0; �2

�

meaning that for large n, if the measurements are normalized to keep their energy
finite, they tend to distribute as a Gaussian. The parameter �2 characterizing the
limit distribution is clearly related to the rakeness. In fact, by definition EŒy2� D
�.a; x/ and thus

�2 D lim
n!1

1

n
�.a; x/ D lim

n!1
1

n

n�1X

jD0
�j
j

If the a are drawn according to the simplified solution (3.10) of (3.5), then (3.12)
can be used to anticipate that the variance of the measurements will increase as
either the localization Lx of the target system increases or as the constraint t on the
localization of the rows of the sensing matrix is relaxed.

Figure 3.12 shows the practical effect of the latter property when n is finite. In
particular, we concentrate on medium localization, low-pass signals that are � D 24
sparse and perform a Montecarlo simulation to identify the empirical PDF fy of a
typical measurement for t D 0:1; 0:5; 0:9. The bell-shaped PDFs clearly increase
their variance as t increases.

Figure 3.13 shows how the bell-shaped profiles of the empirical PDF of the
measurement tend to be Gaussian. In fact, the solid lines are the Gaussian trends
anticipated by the asymptotic theory when t D 0:9 and the histogram representing
the empirical PDF clearly conforms to such a prediction as n increases from 64

to 512.

3.5 Rakeness Compared with Other Matrix Optimization
Options

Rakeness-based design is not the only tool that appears in the Literature with the
aim of building a matrix A to improve the performance of CS systems.

The other most significant attempts in such a field are inspired by the coherence
concept as defined in Chap. 1 and its relationship with the idea of making the matrix
B D AD as close as possible to an equiangular frame (see Sect. 1.4).

In practice, the columns of the matrix B are seen as a collection of m-dimensional
vectors whose coherence is the cosine of the largest angle between any two of them.
Clearly, if such a collection has the properties of an equiangular frame, all the angles
are equal and the maximum of such a cosine is minimized.
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Fig. 3.12 The power of the measurements increases when t increases since the overall rakeness
increases

This is beneficial since a number of theorems exist, analogous to the ones we
report as Theorems 1.4 and 1.5, ensuring that the lower the coherence the easier for
a BP or BPDN to retrieve the original signal.

As the construction of (possibly tight) equiangular frames is not an easy task, all
the methods propose a heuristic to approximate their properties in a computationally
feasible way. The result is a deterministic A that is linked to the features of the set
of vectors D with respect to x which is sparse.

As an example, [4] and [7] pursue exactly this path and we will briefly
present them within the framework proposed by [3] that also contain some limited
improvement to those techniques.
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Fig. 3.13 As n increases the asymptotic Gaussian trends becomes an extremely accurate
prediction of the true behavior of the measurements

From the definition in (1.10) we get that coherence has to do with the scalar
products of columns of B. By assuming that the columns are normalized to have
unit norm, the cosines to be minimized are arranged as the entries of the n � n
matrix Z D B>B.

With this, optimizations like (1.15) become

arg min
Z2Rm�n

kZ � Ik1

s:t:

Z � 0
Z> D Z
Zj;j D 1 0 � j < n
rank .Z/ D m

(3.13)

where I is the n � n identity matrix.
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Fig. 3.14 Montecarlo assessment of performance due to coherence-based optimization. In the
light red region performance is worse than conventional CS while in the light blue, performance is
better than best possible rakeness-based CS

The objective function, jointly with the Zj;j D 1 constraint, clearly aims
at reducing the magnitude of the off-diagonal entries of Z, i.e., the cosines to
minimize. The rank and positive semidefiniteness constraints ensure that the matrix
Z can be obtained as Z D B>B where B must be an m � n matrix.

From the solution of (3.13) one then infers A D Zj;jD�, where �� stands for the
Moore–Penrose pseudo-inverse.

Intuitively speaking, the method by Elad et al. [4] and the one by Xu et al.
[7] are two different heuristics addressing (3.13). Their performance is reported in
Fig. 3.14 compared to classical CS and to rakeness-based design. The comparison
highlights that, especially for what concerns the PCR guarantee, coherence-based
design yields some improvement over classical CS. Most notably, when m is large,
the two methods (whose difference is negligible, confirming the fact that they can be
seen as two approaches to the same problem) perform very well. This is due to the
fact that as m approaches n, the m degrees of freedom in each of the columns of B
allow a very effective spreading of the corresponding vector in the n-dimensional
space and Z ' I. Figure 3.14a shows that this phenomenon for m ' n leads
to a noteworthy denoising since the ISNR D 60 dB of the measured signal is
significantly lower than the ARSNR of the reconstructed signal.

Yet, the plots also clarify that adaptivity to the sparsity dictionary D by
coherence-based design is outperformed by rakeness-based design that considers
not only D but also the second-order statistics of x.
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Chapter 4
The Rakeness Problem with Implementation
and Complexity Constraints

4.1 Complexity of CS

Though a mathematically grounded notion of complexity exists with the needed
corollary of abstract results, what we here put under the umbrella of the generic term
is similar to algorithmic time complexity and is whatever matters in quantifying the
operating costs of an acquisition system based on CS.

The focus is on operating costs and, implicitly, on design costs since what we
aim at is a design flow automatically administering the operating cost/performance
trade-off. This is coherent with a framework in which the working-life of each of
the acquisition systems we want to design dominates the implementation cost. In
any case, implementation costs appear in our considerations as constraints to ensure
that the overall design places itself in a neighborhood of what is easy to build.

To proceed we should detail the general architecture of the encoder side in
Fig. 2.14 once CS enters the game as sketched in Fig. 1.2. In particular, we focus on
the design of a sensing node, i.e., one of those small, possibly autonomous pieces of
hardware among the key ingredients for the development of the future ubiquitous
information processing systems that promise to be the implementation of grand
concepts such as the Internet of Things and cyber-physical systems.

The very big picture appears quite often in nowadays technical presentations
and papers and is exemplified in Fig. 4.1 with no claim of being either technically
accurate or exhaustive. Sensing nodes can be deployed within different scenarios:
Electro-Cardio-Gram, Electro-Encephalo-Gram, and sweat chemical composition
can be used to monitor health, activity, and behavior of a human being; PH,
temperature, and unusual sounds can be sensed in open field environments; traffic
intensity, pollution, and wind may be of interest in urban settings; supply level,
process consumption, and produced heat may be key quantities to observe in a
production plant. Independently of the scenario, sensed data are transmitted through
a network (most often but not necessarily wireless, possibly mesh-like and organized
in more than one tier) up to an information hub in which conclusions are drawn and
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Fig. 4.1 The very big picture of the framework in which sensing nodes designed with CS may be
employed

decision taken, depending on the scenario, on medication to apply, on timing of
traffic lights, on pipe throttling in the production plant, etc. In principle, information
hubs dedicated to a certain application may communicate with other information
hubs to take decisions based on information coming from other networks of sensors.

The circles in Fig. 4.1 are the sensing nodes in which CS may have a role.
Figure 4.2 shows a breakdown of each of the three stages (sampling, compression,
dispatch) in one of the such nodes. The Analog Front End (AFE) inputs the external
signal to a Sample-and-Hold (S/H) stage that makes the transition from continuous-
time to discrete-time. The discrete-time nature of the samples is used in a series of
Multiply-and-ACcumulate (MAC) loops in which the entries of A are the coefficient
so that y D Ax is finally computed.

At least two options are available as far as measurement dispatch is con-
cerned: transmit all the m scalars once they are computed or store them in a
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Fig. 4.2 The CS-based signal chain of a sensing node expanded into its main blocks

Non-Volatile-Memory (NVM) and wait until they can be transmitted to the hub. The
second approach allows, for example, to postpone transmission until the encoder
stage receives a proper trigger signal that may also transport the energy needed
for data communication. Clearly, if complexity is associated with the amount of
operations that are borne by the battery of the node, the two options imply a
completely different weight of the dispatch stage.

Depending on where in Fig. 1.2 we put quantization, the Analog-to-Digital (A/D)
converter may be after the S/H or after the application of CS immediately before
dispatch.

With this breakdown, if we identify computation burden with consumed energy,
the need of the three different stages depends on the features of the matrix A in
y D Ax.

The AFE is active whenever a sample is to be provided to the subsequent stage.
This is normally always true unless a whole column in A is made of zeros. If, on the
contrary, we know that A�;Nk D 0 for a certain Nk, then none of the sums

yj D
n�1X

kD0
Aj;kxk D

n�1X

kD0
k¤Nk

Aj;kxk

uses the value of the Nk-th sample that is always multiplied by zero. Assuming that
the AFE can be switched off when not used, its computational burden can be made
proportional to the number of nonzero columns in A.

MAC operations must be performed only for Aj;k ¤ 0 but also in that case,
the complexity of an individual MAC depends on the range of values that such a
coefficient may assume. Two cases are particularly important: Aj;k 2 f�1; 0;C1g
(ternary-CS) and Aj;k 2 f0; 1g (binary-CS). As schematized in Fig. 4.3a for a
digital implementation, when A contains only ternary entries the MAC reduces
to either sum, subtraction, or no update of the accumulator. The architecture can
be further simplified as in Fig. 4.3b when A contains only binary entries. Analog
implementations of MAC (those needed if the A/D stage is postponed immediately
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Fig. 4.3 The simplified MAC stages when A contains only ternary (a) or binary (b) entries

before storage) also clearly benefit from either ternary or binary constraint put on
the elements of A and a thorough discussion of the corresponding architectures can
be found in Chap. 6.

Independently of its analog or digital implementation, the computational burden
of the stage that computes the measurements is proportional to the number of
nonzero entries in A. Yet, some special arrangements of these nonzero entries may
be beneficial, for example, in implementations leveraging parallelism.

In fact, the matrix-by-vector product y D Ax can be unrolled either column-wise
or row-wise depending on which of the two vectors x or y have its components
simultaneously stored in the hardware. Once that the memory elements containing
the measurements are reset to zero, the elementary updates

yj  yj C Aj;kxk

may be performed for each fixed k sweeping all j D 0; : : : ;m � 1 (column-wise
unrolling) or for each fixed j sweeping all k D 0; : : : ; n � 1 (row-wise unrolling).

In analog implementations, it is quite typical to use column-wise unrolling and
to perform all the updates due to the availability of a new sample in parallel. In this
case, the number of nonzeros in each column of A is the number of updates that
have to be performed in parallel.

The same sample-by-sample logic can underlay also digital implementations,
either by means of custom-deployed logic or by means of a short software snippet
that is triggered by the availability of a new sample. In this case the number of
nonzeros in each column of A is proportional to the time needed by the execution of
the code fragment.

When the system is designed to have the ADC in the leftmost position of Fig. 4.2,
samples are available in digital form and can be buffered to have the whole vector
x available for processing. This is commonly exploited to decouple acquisition and
compression stages: two buffers are provided and while the acquisition fills a buffer
with new samples, the compression stages operate on another buffer containing
previously acquired samples. In this case the Ax product may be unrolled row-
wise. What holds for column-wise unrolling can be repeated here in transposed
form considering the number of nonzeros in each row of A.
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As far as the last stage is concerned, the storage or the transmission of the
measurement vector has a cost surely proportional to the number m of the elements
of y.

Overall, the worst-case complexity of CS is O .n/ for the sampling stage entailing
the AFE, the S/H, and possibly the A/D. If is O .mn/ for the stage computing the
measurements and O .m/ for storage and/or transmission. Starting from this worst-
case scenario we may define a certain number of merit figures that measure our
ability to reduce complexity.

The first and most obvious merit figure is the compression ratio (CR) defined as

CR D n

m

so that the larger the compression ratio, the smaller the number of measurements that
are necessary to reconstruct the signal. Other merit figures can be defined starting,
for example, from the number N � n of columns of A that contain at least a nonzero
entry. With this

PR D n

N

may be seen as a puncturing ratio since the original vector x may be punctured
to drop unused samples and remain with nPR�1 useful components. The larger the
puncturing ratio the smaller the number of samples that are actually involved in the
computation of the measurements [1]. Figure 4.4 shows how CR and PR are related
to the structure of the matrix A.

The amount of computation needed to calculate all the measurements is clearly
related to the total number W of the nonzero entries in A and can be quantified in
relative terms defining the sparsity ratio of that matrix

SR D nm

W

that is such that the larger the SR, the lower the computational burden.

Fig. 4.4 Compression ratio
and puncturing ratio from the
structure of the matrix A.
Gray boxes correspond to
nonzero entries
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Fig. 4.5 The interpretation of output throttling in the column-wise unrolling of Ax. The compu-
tational complexity is the same implied by a vertically throttled matrix. Gray boxes correspond to
nonzero entries

Further to that, if Mj is the number of nonzero entries in the j-th column of A, the
quantity

MOT D max
j

˚
Mj
�

can be seen as a an maximum output throttling. In fact, the complexity of computing
Ax is equivalent to that of a product of x by a matrix that is throttled so that the height
of its columns is MOT. Hence, at every sample step not more than MOTmeasurements
need to be updated. Figure 4.5 gives an intuitive view of the output throttling.

Along the same path, if Mj is the number of nonzero entries in the j-th row of A,
the quantity

MIT D max
j

˚
Nj
�

can be seen as a maximum input throttling. In fact, the complexity of computing Ax
is equivalent to that of a product of x by a matrix that is horizontally throttled so
that the width of its rows is at most MIT. Hence, every measurement needs at most
the value of MIT out of the n available samples. Figure 4.6 gives an intuitive view
of input throttling.

Overall, the merit figures we have defined allow us to give a general estimation
of the complexity of each of the stages in Fig. 4.2 as follows:

1. the computational burden of the AFE, S/H, and possibly A/D stages is
O
�
nPR�1

�
;

2. the computational burden of measurement computation is O
�
nmSR�1

�
;

3. the computational burden of storing and/or transmitting measurements is
O
�
nCR�1

�
.

From the above estimations it is clear that the larger the merit figures, the lower
the complexity of performing CS, though the impact of each stage on the overall
complexity/cost depends on the details of the specific implementation. For example,
if complexity is related to power consumption and transmission must be done in
real-time and cannot be delayed to a moment in which it does not impact power
budget, the last stage, and thus CR, will be the key player.
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Fig. 4.6 The interpretation
of input throttling in the
column-wise unrolling of Ax.
The computational
complexity is the same
implied by a horizontally
throttled matrix. Gray boxes
correspond to nonzero entries A

MIT = 5
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If, on the contrary, we are addressing a mostly analog implementation in which
opamp-based processing is employed up to a final conversion that is used mainly to
allow efficient storage of the results, the first stage will be the key part to be kept
under control by means of PR.

As a third option, in a software implementation working on converted samples
and competing for a time share of the micro with other simultaneous tasks, the
matrix-by-vector product may be critical so that the key parameter is SR.

In this case, it may be useful to distinguish input and output throttling. In fact,
the trivial double loop implementing y D Ax can be unrolled in one of the two ways
reported in Table 4.1. These correspond to the classical technique to store sparse
matrices and operate with them. In particular, row-wise unrolling hinges on the
possibility of knowing that, in the j-th row, there are not more than MIT nonzero
entries whose positions can be stored as the indexes k0.j/; k1.j/; : : : ; kMIT�1.j/.
Conversely, column-wise unrolling hinges on the possibility of knowing that, in
the k-th column, there are not more than MOT nonzero entries whose positions can
be stored as the indexes j0.k/; j1.k/; : : : ; j MOT�1.k/.

By looping on the stored indexes the computation burden of the inner loop is
substantially reduced if MIT	 n or MOT	 m, respectively.

The same considerations apply to possible all-digital implementation of CS. in
this case, the most straightforward approach is to consider samples as they arrive
from the analog-to-digital conversion chain as sketched in Fig. 4.7. If MOT	 m, we
may think of storing only the nonzero coefficients of each column and provide them
to multipliers computing Ajl.k/;kxk. A proper multiplexing logic is then in charge of
accumulating the results of the multiplications into the registers corresponding to
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Table 4.1 Two ways of unrolling the calculations in y D Ax to exploit the sparsity of A

Row-wise unrolling Column-wise unrolling

Assume yj D 0 for j D 0; : : : ;m� 1 at initialization

Require: Aj;k D 0 if k ¤ kl.j/ 8l
for j D 0; : : : ;m� 1 do

for l D 0; : : : ;MIT� 1 do
yj  yj C Aj;kl.j/xk

end for
end for

Require: Aj;k D 0 if j ¤ jl.k/ 8l
for k D 0; : : : ; n� 1 do

for l D 0; : : : ;MOT� 1 do
yj  yj C Ajl.k/;kxk

end for
end for
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Fig. 4.7 A dedicated, all-digital implementation of CS with MOT D 4

yjl.k/ for l D 0; : : : ;MOT � 1 so that each measurement is updated only when the
current sample affects it. Once all the samples have been processed, the registers
contain the whole vector y.

With this architecture, the number of multipliers and adders that must be
deployed is only MOT instead of m.

As a dual option, one may think of storing the samples as they arrive from the
conversion chain and make them available in parallel.

If the nonzero coefficients in every row of A are also stored, computation may
proceed measure-by-measure. For each measure, the samples that affect and the
nonzero coefficients in the corresponding row of A are retrieved to be presented at
the inputs of the multipliers that may be summed to give the final value.

The number of multipliers reduces to MIT	 n while the final accumulation has
an overall complexity surely smaller than that of MIT� 1 adders in a full MAC unit
(Fig. 4.8).

The case of dedicated hardware implementations reveals that in some cases, once
throttling is fixed, there is no point in using a matrix A with even less nonzero
entries. In fact, for example, an implementation relying on row-wise unrolling to
exploit the fact that MOT 	 m deploys hardware resources depending on such a
maximum number of nonzeros per column. The presence of even less nonzeros
brings little benefit to resource saving while it further limits the number of times
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Fig. 4.8 A dedicated, all-digital implementation of CS with MIT D 5

in which the signal enters the computation of the measurements, thus potentially
reducing the information content of the latters.

This is why it may be sensible to consider matrices A in which M0 D M1 D � � � D
Mn�1 D OT, i.e., with an output throttling setting exactly the number of nonzeros in
each column. With this, once that n and OT are set, we know that A has nOT nonzero
entries.

If one considers column-wise unrolling to exploit the fact that MIT	 n, it may
be sensible to consider matrixes A in which N0 D N1 D � � � D Nm�1 D IT, i.e.,
with an input throttling setting exactly the number of nonzeros in each row. With
this, once that n and IT are set, we know that A has mIT nonzero entries.

4.2 Rakeness and Zeroing

An ideal design flow would start from some application-related information on the
relative weight of the different stages to identify the key parameter (CR, PR, SR)
that should be increased to reduce operating costs. Then, it would choose a sensing
matrix A that maximizes such a parameter while allowing a reconstruction of the
original signal satisfying some minimum quality requirement.

There is an intuitive trade-off between any of the above parameters and the
quality achievable in signal reconstruction.

The effect of CR and PR is clear (see Fig. 4.4): the higher the CR, the lower the
number of scalars with which the same signal is encoded, while the higher the PR,
the lower the number of samples that are used to generate the final measurements.

The effect of SR is slightly more subtle. We may see it column-wise and observe
that since there are W D nmSR�1 nonzero entries in A and n columns, each column
contains on the average mSR�1 nonzero entries. This means that each sample in x
affects on the average only mSR�1 measurements. Dually, from W D nmSR�1 and
from the fact that there are m rows, we have that, on the average, every measurement
in y depends only on nSR�1 samples.
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Whatever our point of view, the higher one of our parameters, the lower the
chances that we have to look at the signal and extract information. It is then sensible
to expect that an increase in any of such parameters corresponds to a decrease in
reconstruction quality.

Regrettably, it is difficult to address such a trade-off by means of a straightfor-
ward optimization problem of the kind “maximize saving constrained to maintain a
minimum reconstruction quality.” The reason is twofold. First, we have no link but
the intuitive rakeness criterion between the features of A and the reconstruction
quality, and this prevents the formal definition of the “maintain a minimum
reconstruction quality”constraint. Second, the rakeness-based design flow is itself
a maximization problem addressing a trade-off, i.e., the one between the advantage
of focusing on more energetic directions and the necessity of exploring the signal
space to capture all the signal features.

To cope with this, one may reverse the point of view and retain the structure
of the rakeness-localization trade-off problem in (3.5) and inject saving as further
constraints.

The first implicit constraint is that either Aj;k 2 f�1; 0;C1g or Aj;k 2 f0; 1g. This
clearly impacts the kind of correlation matrices� that we may expect, i.e., on the
feasibility space of our optimization problem.

To understand why, we may focus on the elementary case with n D 2 and Aj;k 2
f0; 1g in which the only possible rows of A are the four elements of f0; 1g2. If a 2
f0; 1g2 and pa is the probability that such a row appears in A then

� D E
�
aa>

� D
X

a2f0;1g2
paaa> (4.1)

Since
P

a2f0;1g2 pa D 1 and pa � 0,� belongs to the convex hull of the matrices
corresponding to aa> for a 2 f0; 1g2, i.e., of the four binary matrices

�
0 0

0 0

� �
1 0

0 0

� �
0 0

0 1

� �
1 1

1 1

�

This point of view will be developed and exploited in Chap. 5. By now, we may
use it to check that

� D
0

@
1=2 1=2

1=2 1

1

A D 1

2

�
1 1

1 1

�
C 1

2

�
0 0

0 1

�

is a correlation matrix that can be obtained by a binary process that yields a D .1; 1/
with probability 1=2 and a D .0; 1/ with probability 1=2. On the contrary

� D
0

@
1=2 1=4

1=4 1

1

A D 1

4

�
1 1

1 1

�
C 1

4

�
1 0

0 0

�
C 3

4

�
0 0

0 1

�
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is a correlation matrix (it is symmetric and positive definite since its eigenvalues

are 1=4
	
3˙p2



> 0) but cannot be produced by a binary process since the three

coefficients are not probabilities due to the fact that 1=4C 1=4C 3=4 > 1.
In this trivial case the conditions for (4.1) to hold can be derived by solving

8
ˆ̂<

ˆ̂:

p.0;0/

�
0 0

0 0

�
C p.1;0/

�
1 0

0 0

�
C p.0;1/

�
0 0

0 1

�
C p.1;1/

�
1 1

1 1

�
D�

p.0;0/ C p.1;0/ C p.0;1/ C p.1;1/ D 1
(4.2)

whose solution

p.0;0/ D 1 �� 0;0 �� 1;1 C� 0;1

p.0;1/ D � 1;1 �� 0;1

p.1;0/ D � 0;0 �� 0;1

p.1;1/ D � 0;1

must feature only nonnegative values. Hence, for� to be an 2�2 correlation matrix
of a binary random vector, the entries of� must be such that

max f0; 1 �� 0;0 �� 1;1g �� 1;0 � min f� 0;0;� 1;1g (4.3)

Regrettably, for higher dimensionality, this straightforward path cannot be
followed. In fact, the generic � 0;0 is symmetric and has n.n C 1/=2 degrees of
freedom, so that (4.2) is made of n.nC 1/=2C 1 equations for the 2n unknowns pa.
Hence, its solution is not unique and one should ascertain whether at least one of
the solutions is made of all nonnegative components. The complexity of such a task
prevents the formulation of a constraint guaranteeing that� can be obtained by a
binary process. To cope with this, we formulate only a relaxed constraint.

In particular we note that for � to be the n � n correlation matrix of a binary

process it is necessary that every submatrix

�� j;j � j;k

� k;j � k;k

�
for 0 � j < k < n is

the correlation matrix of a 2-dimensional binary vector of the kind analyzed above.
Hence we will require

�
1 �� j;j �� k;k

�C �� j;k � min
˚� j;j;� k;k

�
0 � j < k < n (4.4)

where .�/C D maxf0; �g.
Clearly, these constraints are necessary but not sufficient to guarantee that

the resulting � can be obtained from a binary process. This is tackled in the
following chapter where we design generators of binary and ternary processes with
a correlation as close as possible to a given one. We will see that such an implicit
approximation step in the resulting design flow does not significantly impair the
final performance gain.
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The same path can be followed to give a necessary conditions for � to be a
correlation matrix of a ternary process, i.e., when Aj;k 2 f�1; 0;C1gn.

In this case the 2 � 2 case yields an expansion in 32 terms and the calculations
are less straightforward. Yet, the results can be intuitively justified quite easily. In
fact, if a is a row of A and� D E

�
aa>

�
, then� j;j D EŒa2j � D Pr

˚
aj ¤ 0

� � 1.
Moreover,

ˇ̌� j;k

ˇ̌ D ˇ̌
E
�
ajak

�ˇ̌ � min
˚
Pr
˚
aj ¤ 0

�
;Pr fak ¤ 0g

�
. In fact, two

ternary random variables are maximally positively (negatively) correlated when
the chance that they have the same (opposite) sign is maximized, a chance that
cannot exceed the probability that each of them is nonzero, i.e., the smallest of the
probabilities of being nonzero. Hence, it must be

ˇ̌� j;k

ˇ̌ � min
˚� j;j;� k;k

�
0 � j < k < n (4.5)

The binary and ternary cases have in common that� j;j D E
h
a2j
i
D Pr

˚
aj ¤ 0

�

and thus that setting � j;j D �j defines a parameter �j that allows to control the
average number of nonzeros at position j in a. If one sets �j D 0, then aj D 0. In
the ternary case, setting �j D 1 implies that aj is no longer ternary but antipodal
aj 2 f�1;C1g.

This control on the zeros of the matrix A is the key to obtain savings on the
running costs along the guidelines described above. To do so, the rakeness-based
design flow described in Chap. 3 can be adjusted to include proper additional
constraints.

In particular, in the ternary case we may solve

argmax
�2Rn�n

tr .�� /

s:t:

� � 0
� D� >
La � �2Lx

� j;j D �j 0 � j < nˇ̌� j;k

ˇ̌ � �j 0 � j ¤ k < n

(4.6)

where �2 is used to parameterize the localization constraint with respect to the
localization of the input signal, and the two last constraints interact with the
symmetry of� , i.e., with the fact that� j;k D� k;j, to ensure (4.5).

In the binary case, the same problem becomes

argmax
�2Rn�n

tr .�� /

s:t:

� � 0
� D� >
La � �2Lx

� j;j D �j 0 � j < n
� j;k � �j 0 � j ¤ k < n

� j;k �
�
�j C �k � 1

�C
0 � j ¤ k < n

(4.7)
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4.3 Solving TRLT and BRLT by Projected Gradient
and Alternating Projections

The two problems in (4.6) and (4.7) cannot be solved analytically due to the
additional constraints we put to cut out some of the points that do not correspond to
correlation matrices of ternary or binary vectors.

In fact, these constraints complicate the shape of the resulting feasibility space.
As an example, consider a 3�3 correlation matrix� in a problems that sets� j;j D
�j, for j D 0; 1; 2. Due to symmetry the available degrees of freedom are only� 0;1,� 0;2, and� 1;2.

The positive semidefinite constraint can be translated into inequalities involving
the degrees of freedom by means of the Sylvester’s criterion yielding

� 2
0;1 � �0�1

�2� 2
0;1 C �1� 2

0;2 C �0� 2
1;2 � 2� 0;1� 0;2� 1;2 � �0�1�2 (4.8)

In the same space of degrees of freedom, the inequalities due to the ternary
constraint are

j� 0;1j � min f�0; �1g
j� 0;2j � min f�0; �2g
j� 1;2j � min f�1; �2g

(4.9)

while the localization constraint becomes

� 2
0;1C� 2

0;2C� 2
1;2 �

1

2

�
1

3
C �2Lx

�
.�0 C �1 C �2/2��

2
0 C �21 C �22

2
(4.10)

Figure 4.9c exemplifies the structure of the feasibility space for values of the
parameters chosen to show all of its features, namely �0 D 7=10, �1 D 3=5, �2 D 3=10,
and �2Lx D 21=100. In these conditions, the inequalities in (4.8) are satisfied within
the region shown in Fig. 4.9a, those in (4.9) are satisfied within the region shown
in Fig. 4.9b, and the inequality in (4.10) is satisfied within the region shown in
Fig. 4.9c. Overall, the feasibility space of (4.6) is the intersection of all the above
and has the shape reported in Fig. 4.9d.

In the binary case (4.9) is substituted by the much stricter

.�0 C �1 � 1/C � � 0;1 � min f�0; �1g

.�0 C �2 � 1/C � � 0;2 � min f�0; �2g

.�1 C �2 � 1/C � � 1;2 � min f�1; �2g
(4.11)

Adopting the same parameters as above, the feasibility space of (4.7) shrinks to
the shape reported in Fig. 4.10.
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(d) Overall feasibility

Fig. 4.9 The feasibility space of (4.6) as the intersection of the different constraints (the range
along every axis is from �7=10 to 7=10)

Fig. 4.10 The feasibility
space of (4.7) (the range
along every axis is from �7=10
to 7=10)
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A 0,2

A 1,2
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Figures 4.9d and 4.10 reveal that the shape of the feasibility space can be very
complicated. Yet, it is not difficult to accept that, independently of n, the set of
admissible solutions remains a convex subset of Rn.n�1/=2. Since the merit function
tr .�� / is linear in� , both (4.6) and (4.7) are convex programming problems.

To tackle them in a general and quite scalable way allowing values of n in
the hundreds, we may resort to the projected gradient method whose theoretical
background is summarized by the following Theorem [3].

Theorem 4.1 For a certain dimensionality p, let c W Rp 7! R a convex cost function
and C 
 R

p a convex feasibility set defining the optimization problem

min
�

c.�/ s:t: � 2 C

whose solution if c .��/ for some �� 2 C.
Let the projection-on-C operator �C be defined as

�C.�/ D arg min� k� � �k2 s:t: � 2 C (4.12)

Starting from any �.0/ 2 C define

�.tC1/ D �C

	
�.t/ � ˛.t/r�c

	
�.t/




(4.13)

for some coefficients ˛.t/ > 0, t D 0; 1; : : : whose sequence is such that
P1

tD0 ˛.t/ D1 but
P1

tD0
�
˛.t/

�2
<1.

If max0�t<T

���r�c
	
�.t/

���

2
<1, then

lim
T!1 c

�
��
� � min

0�t<T

n
c
	
�.t/

o
D 0

In less formal terms, (4.13) allows to move from one candidate solution to the
next in two phases. First, one makes a step along the direction of the gradient
of the cost function to decrease its value. Second, since this possibly yields a
point out of the feasibility space, the projection operator is used to find its closest
admissible approximation. Convergence is guaranteed if the lengths of the steps are
not vanishing too fast and gradients are bounded, something that happens in our
case since r� tr .�� / D � is constant.

Clearly, the critical point here is the computation of �C whose complexity
depends on the structure of C. In particular, C is typically given as the intersection of
a certain number q of simpler convex subsets C0;C1; : : : ;Cq�1, i.e., C D Tq�1

jD0 Cj.
The Cj are simpler in the sense that the corresponding projection operators �Cj are
known and easy to compute.
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A procedure leading from the �Cj to �C is better explained for q D 2. In that

case, let �.t;0/ D �.t/ � ˛.t/r�c
	
�.t/



be the point that is reached at the t-th step by

following the gradient direction, and assume that �.t;0/ 62 C. Since C D C0 \ C1 we
may set

�.t;2sC1/ D �C0

	
�.t;2s/




�.t;2sC2/ D �C1

	
�.t;2sC1/


for s D 0; 1; : : : . If the sequence converges we may set �.tC1/ D �.t;1/ D
lims!1 �.t;s/ since it is sure that the limit belongs both to C0 and C1. This was
first proposed for the case in which C0 and C1 are subspaces [5] since this implies

not only that �.t;1/ 2 C0 \ C1 but also that �.t;1/ D �C0\C1

	
�.t;0/



.

Regrettably, this is not necessarily true when we are dealing with more compli-
cated convex sets Cj. Figure 4.11a shows this with an example. In that case C0 is a
disk and C1 is a half-plane. Starting from �.t;0/ the first two projections are enough
to produce a point in C0 \ C1 that is unchanged by further projections and thus is
the limit of the sequence. Regrettably, such a limit is not the true projection.

To cope with the general case, we have to modify the algorithm as described in
[2]. Formally speaking we may use two auxiliary offset sequences ��

.s/
0 and ��

.s/
1 ,

initialized with ��
.s/
0 D ��

.s/
1 D 0, to write

�.t;2sC1/ D �C0

	
�.t;2s/ ���

.s/
0




��
.sC1/
0 D �.t;2sC1/ � �.t;2s/ ���

.s/
0

�.t;2sC2/ D �C1

	
�.t;2sC1/ ���

.s/
1




��
.sC1/
1 D �.t;2sC2/ � �.t;2sC1/ ���

.s/
1

In words, before applying �Cj , we subtract to its argument the offset caused by
the previous application of the same projection to “cancel” its effect that may have
caused the sequence to stick to a point in C0 \ C1 that is not the projection. The
result of this “cancellation” is exemplified in Fig. 4.11b.

The above formulation can be easily generalized to q > 2 convex components Cj

and ensures that lims!1 �.t;s/ D �Tq�1
jD0 Cj

	
�.t/



.

The only missing ingredient in a recipe to solve (4.6) and (4.7) is the application
to our specific case, i.e., the identification of the Cj and the explicit formulation of
the corresponding �Cj .

To do so, it is convenient to recall (see Chap. 3) that, for n�n symmetric matrices
P and Q, the operator tr .PQ/ is a scalar product that induces the Frobenius norm,
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Fig. 4.11 The alternating
projection method (a) and its
variant ensuring the
convergence to the true
projection (b)

C0

C1

(t,0)

(t,1)

(t,2)= (t, )
C

(
(t,0)

)

(a)

C0

C1

(t,0)

Δ (1)
0

(t,1)

Δ (1)
1

(t,2)

(t,3)

(t,4)= (t, )= C

(
(t,0)

)

(b)

p
∞

p∞

z

zz

z

z

z

z

z

z z z

z

z

z

that is the k�k2 norm of the collection of entries of the matrix, as well as the k�k2
norms of the collection of eigenvalues of the matrix, i.e.,

tr
�
P2
� D kPk22 D

n�1X

jD0

n�1X

kD0
P2j;k D

n�1X

jD0
�2j

if �j is the j-th eigenvalue of P. This allows to specialize the concept of projection
(4.12) to our matrix space.
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To begin with, say that C0 is the set of points corresponding to symmetric and
positive-semidefinite matrices, i.e., the one represented in Fig. 4.9a for the n D 3

case. Thanks to the spectral interpretation of the Frobenius norm, we may write
that for any symmetric matrix P spectrally decomposed as P D U�U> with U
orthogonal and � D diag .�0; : : : ; �n�1/ we have

�C0 .P/ D U max f0;�gU>

Then we may assume that C01 is the set of symmetric matrices that satisfy
the ternary constraints (the one represented in Fig. 4.9b) while C001 is the set of
symmetric matrices that satisfy the binary constraints. In the ternary case we may
define the two matrices

� j;k D
(
�j if j D k

minf�j; �kg if j ¤ k

and

� 0j;k D
(
�j if j D k

�minf�j; �kg if j ¤ k

to write

�C0
1
.P/ D max

n
� 0;min

n
� ;P

oo

In the binary case the lower bound must be redefined as

� 00j;k D
(
�j if j D k

maxf0; �j C �k � 1g if j ¤ k

to yield

�C00
1
.P/ D max

n
� 00;min

n
� ;P

oo

Finally, say that C2 is the set of symmetric matrices obeying the localization
constraint La � �2Lx. Starting from the definition of localization we may write

tr
�� 2

� � tr2 .� /
�
1

n
C �2Lx

�

and thus

k� k22 �
0

@
n�1X

jD0
�j

1

A

2 �
1

n
C �2Lx

�
D R2
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where R2 remains implicitly defined. Hence, C2 is a sphere of radius R and the
corresponding projection operator is a simple scaling

�C2 .P/ D P min


1;

R

kPk2

�

4.4 Unstructured and Structured Zeroing

When no implementation-related consideration puts constraints on the positions of
the zeros in A, the aim is simply to reduce the number of (signed)sums by imposing
that the matrix is sparse with a sparsity controlled by SR. This can be obtained by
setting �j D SR�1 for every j in (4.6) and (4.7).

Though this unstructured design does not allow to leverage the particular nonzero
configurations that underlay puncturing and throttling it produces some resource
saving. Clearly, such a saving comes at the expense of reconstruction quality. The
resulting trade-off can be explored by simulation.

In the following we consider the framework defined in Chap. 2 focusing on
signals that are � D 6-sparse, with a medium localization (ML) and low-pass
spectrum (LP). For the ternary case, we consider solutions � .SR/ of (4.6) with
t D 1=2 and for SR D 1; 2; 4; 8; 16; 32, where SR D 1 stands for a full matrix and
SR D 32 stands for a matrix that, on the average, has only 1 nonzero in 32 entries.
We then use A � RTE .� .SR// and simulate reconstruction performance. As
reference cases, we also consider the reconstruction performance of A � RGE .iid/
(the most conventional CS choice), and A � RGE .� / with� being the solution
of (3.5).

Figure 4.12 shows the corresponding performance in terms of ARSNR and PCR.
By looking at the SR D 1 curves, note that for rakeness-based design, passing
from Gaussian entries to antipodal entries in A does not cause any performance
degradation.

This is a well-known property that allows to avoid the generation and storage
of many-bits samples of Gaussian random variables whenever a parsimonious
implementation is sought [4].

Moreover, curves are practically invariant up to SR D 8, i.e., when up to 87:5%
of the entries in A are zeros. When SR D 16 the performance of a ternary A
with 93:75% of entries equal to zero is substantially equivalent to the performance
of classical CS with A � RGE .iid/. Clearly, performance degradation eventually
becomes an issue for even larger sparsity ratios as clarified by the SR D 32 curves
that correspond to 96:9% of zero entries in A but exhibit worse-than-conventional
performance. In any case, since SR directly maps on resource saving, it is evident
that rakeness-based design of antipodal sensing matrices has a huge potential in
reducing CS working costs.
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Fig. 4.12 Montecarlo comparison between performance of rakeness-based ternary CS with
different sparsity ratios SR. In the light red region performance is worse than conventional CS
while in the light blue region, performance is better than best possible rakeness-based CS

16 54 92 128

0

20

40

60

m

A
R
S
N
R
[d

B
]

(a)

16 54 92 128
0

0.5

1

m

P
C
R

(b)

SR = 1 SR = 2 SR = 4 SR = 8 SR = 16 SR = 32

Fig. 4.13 Montecarlo comparison between performance of random ternary CS with different
sparsity ratios SR. In the light red region performance is worse than conventional CS while in
the light blue region, performance is better than best possible rakeness-based CS

To confirm that performance improvement over classical CS is due to rakeness-
based CS, Fig. 4.13 reports the same cases as in Fig. 4.12 when the nonzero entries
are taken as independent, zero mean ˙1.

Comparing the two figures, we get that the purely random choice of the value
of the nonzeros is more robust to sparsification of A (curves are practically
indistinguishable up to SR D 32), though it is clearly unable to yield any of the
advantages due to adaptation to the incoming signal.

This performance difference descends from a deep difference in the matrices A in
the rakeness-based and conventional cases. Such a difference can be appreciated in
Fig. 4.14. Despite the fact that the two matrices have the same number of nonzeros,
the rakeness-based A adapts to the low-pass nature of the signal to align its nonzeros
in low-pass (constant) runs that increase the amount of energy passed to the resulting
measurement.
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)b()a(

Fig. 4.14 Two typical unstructured projection matrices A with SR D 16 for rakeness-based CS
(a) and for conventional CS (b). Gray zones correspond to zeros while black/white dots mark
�1=C 1 entries
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Fig. 4.15 Montecarlo comparison between performance of rakeness-based binary CS with
different sparsity ratios SR. In the light red region performance is worse than conventional CS
while in the light blue, performance is better than best possible rakeness-based CS

The binary, rakeness-based case is slightly different since the nonzeros are
actually 1 and their positions completely identify the whole matrix. As a first
consequence, there is not a SR D 1 case that would yield a useless constant A.
Furthermore, results for those are reported in Fig. 4.15 where performance is assed
in the same way as for ternary case.

It is evident that, despite the fact that binary matrices give the maximum possible
simplification, their performance is significantly reduced with respect to what
rakeness-based design can offer in general. For SR D 4, ARSNR is analogous to
what can be obtained by classical CS. Yet, when performance must be guaranteed
in the form of a certain PCR, binary is always a poorer choice with respect to the
classical option.

Such a poor performance is partially due to the fact that, if no check is made on
the number of nonzeros in the rows of A, the average number of nonzeros SR�1 may
be met if some rows have a large majority of zeros (and thus collect information
from a very small number of samples) while others are almost full (that, in the
binary case, makes little distinction between samples as all the nonzero coefficients
are equal to 1).
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4.4.1 Puncturing

Puncturing is the simplest way of adding a useful structure to A. Once that PR is
set, we may randomly select the mPR�1 columns that are not forced to be null and
keep their indexes in the index set K � f0; 1; : : : ; n � 1g. Then, we restrict the
signal correlation matrix to the corresponding time instants to obtain � jK and aim
at optimize the correlation matrix of the sensing rows of A focusing only on the
entries that, in each row, are not forced to be zero, i.e., computing the best restricted
� jK by means of the restricted versions of (4.6) and (4.7).

In general, this is not the same as solving (4.6) and (4.7) for the full� and then
dropping the entries that correspond to columns that are zeroed by puncturing. This
is due to the constraint La � t2Lx that mixes the entries of� into those of� 2 in
the expression of La. Yet, if� is Töplitz (i.e., the process generating the samples xk

is a stationary one), we set �j D SR�1 independently of j, n is large, and the number
of zeroed columns remains limited, then samples tend to be indistinguishable and
one may think of solving the largest problem and subsampling the full solution�
to obtain� jK .

To assess the impact of puncturing, we refer to the simulation setting described
above and obtain performances when a variable number of column is zeroed in A.
Figure 4.16 shows the result.

For PR ' 1:5, 1 in 3 columns is zeroed and thus one third of the samples is
neglected and needs not to be acquired and converted. In this case, performance is
practically indistinguishable from what is achieved by a full A with no constraint on
the entries. Improvements over classical CS are present up to PR ' 2, a case 50% of
the columns are zeroed and thus 50% of the samples can be neglected, while with a
little degradation with respect to classical CS one may adopt PR D 2:5, i.e., discard
60% of the samples.
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Fig. 4.16 Montecarlo comparison between performance of rakeness-based ternary CS with
different puncturing ratios PR. In the light red region performance is worse than conventional
CS while in the light blue region, performance is better than best possible rakeness-based CS
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In Chap. 6, we will see that such a noteworthy robustness to puncturing is due
the fact that the support of the vectors in the sparsity basis (the orthonormal Discrete
Cosine Transform basis as defined in Chap. 2) extends over the whole domain, so
that skipping samples does not risk to miss any of them. It is here interesting to see
that, when such an intrinsic robustness is present, rakeness-based design allows to
effectively exploit it to save resources.

4.4.2 Input Throttling

When one considers throttling, things tend to complicate slightly and input throttling
must be distinguished from output throttling.

If IT is set by implementation requirements, we know that n � IT entries will
be zero in each row of A. If only one row at a time is considered, this is equivalent
to puncturing. Hence, if generation proceeds row by row, the above method is an
option and one may randomly select the indexes of the nonzero components, collect
them in the set K, and determine� jK to generate that row. Each row has its own K
and thus� jK .

As an alternative method, one may set �j D IT=n so that, if the resulting �
is used, only IT entries in the generated vector are nonzero on average. Multiple
candidate rows can be generated until one contains exactly IT nonzeros and can
be accepted. This sieving method has the advantage that the position of the zeros
are implicitly effected by the statistic of the signal, something that does not happen
with the first method that decides K a priori. As a drawback, sieving may be time
consuming and can be an option only if A is generated off-line.

This is actually the method that we use to assess the performance that can be
attained by input-throttled matrices produced by rakeness-based design. We perform
Montecarlo simulations in the same conditions as above for different values of IT
thus setting the number of nonzeros in each row of A. Since n D 128, each value of
IT implies a sparsity ratio SR D 128=IT.

Figures 4.17 and 4.18 show the performances of ternary and binary rakeness-
based CS when this kind of structuring is adopted for A.

By comparing them with Figs. 4.12 and 4.15 one immediately realizes that input-
throttling not only eases implementation but also improves performance. This is
particularly true when SR is large and thus IT is small.

In that case, in fact, imposing only an average number of nonzeros by means
of �j D SR�1 would yield a non-negligible probability of generating rows with a
insufficient number of entries (if SR D 32 and thus � D 0:03125, it is quite common
to have rows with 0 or 1 nonzeros) that produce almost useless measurements.
When IT fixes the number of nonzeros in each row, rakeness-based design is able
to administer them to capture the most significant feature of the signal. Such a
phenomenon is more evident when IT is small.

As a result, ternary rakeness-based CS is able to yield the same performance
given by unconstrained rakeness-based CS with full A while avoiding 96:9% of the
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Fig. 4.17 Montecarlo comparison between performance of rakeness-based ternary CS with differ-
ent input throttlings IT and subsequent sparsity ratios SR. In the light red region performance is
worse than conventional CS while in the light blue region, performance is better than best possible
rakeness-based CS
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Fig. 4.18 Montecarlo comparison between performance of rakeness-based binary CS with differ-
ent input throttlings IT and subsequent sparsity ratios SR. In the light red region performance is
worse than conventional CS while in the light blue region, performance is better than best possible
rakeness-based CS

MACs and performing, in our case, only IT D 4 signed sums per measure. Such an
astounding result is somehow mimicked by binary rakeness-based CS that, with the
same computational effort, reproduces the performance of classical unconstrained
CS with full A.

For such an extreme IT D 4, Fig. 4.19 shows what happens when we add
puncturing to the design of ternary rakeness-based CS. Clearly, performance is
reduced but the proper management of the nonzeros due to rakeness-based design
allows to deliver the same performance as conventional unconstrained CS with full
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Fig. 4.19 Montecarlo comparison between performance of rakeness-based ternary CS with
different puncturing ratios PR and input throttling IT D 4. In the light red region performance is
worse than conventional CS while in the light blue region, performance is better than best possible
rakeness-based CS

Fig. 4.20 A typical
projection matrix with
SR D 2 and IT D 4. Gray
zones correspond to zeros
while black/white dots mark
�1=C 1 entries

A, not only computing only 4 signed sums per measurement, but also skipping 50%
of the samples. The strong structure of the resulting projection matrix is exemplified
in Fig. 4.20 in which the constant runs along rows are often broken by the zeroed
columns.

4.4.3 Output Throttling

If OT is set by implementation requirements, the number of nonzero is known for
each column. This does not pair seamlessly with the fact that rakeness-based design
assumes independent rows in A.

The most straightforward way of coping with this is to pre-define the nonzero
pattern of the whole matrix and then slice it row-by-row. Hence, for each column
we decide the positions of the OT nonzero elements and collect this information for
the whole matrix. Then we proceed row by row by inferring K, computing� jK and
generating the proper sensing row a.
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Fig. 4.21 Montecarlo comparison between performance of rakeness-based ternary CS with
different output throttlings OT. In the light red region performance is worse than conventional
CS while in the light blue region, performance is better than best possible rakeness-based CS

The resulting performance is reported in Fig. 4.21 for the ternary case. Perfor-
mance degrades gracefully as IT decreases and remains not worse than classical
CS even for IT D 2, i.e., when only two signed sums are performed at every new
sample xk.
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Chapter 5
Generating Raking Matrices: A Fascinating
Second-Order Problem

As discussed in the previous chapters, sensing matrices characterizing the encoder
stage are in general the row by row composition of random sequences with a proper
second-order statistic characterization. A step towards a practical implementation
imposes that each symbol of such matrices belongs to a finite set of values whose
cardinality L can be limited to either 3 or 2. A trivial approach is to obtain these
symbols by quantizing real quantities with a resulting perturbation on the imposed
second-order statistics. Obviously, the introduced perturbation is strongly related to
L and in particular the corner cases of either binary, antipodal, or ternary sequences
feature the largest distortion. This limitation can drastically reduce the impact of the
proposed sensing matrix design methods on the entire performance of the system.
To overcome this impasse, we list here techniques aiming at generating sequences
of binary, antipodal, or ternary symbols with an assigned second-order statistical
characterization. The adoption of such techniques aims to reduce the impact of L on
the entire system performance as much as possible.

5.1 Signal Modeling and Definitions

As a general guideline for this entire chapter, we refer to a stochastic process capable
of generating random vectors v D .v0; v1; : : : ; vn�1/> 2 R

n. These vectors are
zero-mean, i.e.,

EvŒv� D 0

while, in the more general case, the second-order statistic is given by means of the
correlation matrix � D EvŒvv>� 2 R

n�n.
We will first introduce a simple stationary stochastic process, and then a more

general non-stationary case. We briefly recall that a stationary stochastic process
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generates sequences whose statistical features are independent of the position in the
sequence. As a consequence, the element �j;k of the correlation matrix depends only
on jj � kj.

In the stationary case, we will consider a reference case where v is generated
by a stochastic process whose second-order statistic is described by the correlation
matrix

�j;k D !jj�kj

with ! 2�� 1; 1Œ. In this case, it is also possible to define a power spectrum v, that
is given by

v.f / D 1 � !2
1C !2 � 2! cos.2� f /

The shape of this process depends on the sign of !. For positive values the process
exhibits a low-pass profile, while negative values generate high-pass profiles. When
! D 0, a simple flat/white profile (i.e., v.f / D 1) is achieved.

In the non-stationary case, we limit ourselves to consider the reference case
where the correlation matrix � ns is given by

� ns
j;k D

(
1 if j D k

!jj�kjC jjCk�nj

16 if j ¤ k

for some ! values in the range �0; 1Œ. Note that � ns is not anymore a toeplitz matrix,
but it is still symmetric positive semidefinite, i.e., its eigenvalues are non-negative.

5.2 Quantized Gaussian Sequences

We propose here a first trivial solution given by the direct quantization of real
sensing matrices, i.e., we map each real value in a discrete one by a dictionary of L
possible values. This solution can be effectively implemented in a physical device,
and has been used in [2] as discussed in Sect. 7.4.

As an example, let us focus on the stationary case, and generate the sequences
v � RGE .� / whose correlation matrix (evaluated as discussed both in Chaps. 3
and 4) is given by � . Then, let us consider their quantized version v0 D Q.v;L/ as
shown in Fig. 5.1. Due to the quantization operation, we expect that the correlation
matrix of v0, given by � 0L D EŒv0v0>�, is different from � . Furthermore, we also
expect that this difference is small for high value of L, while when L is low a non-
negligible perturbation arises affecting the statistic of v0 with respect to the ideal
case represented by v.

The approach can be mapped in two separate stages, as in Fig. 5.2.
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Fig. 5.1 Function
performing quantization

L
le

ve
ls

Q(v,L)

v
vj

Q(vj,L)

H( f )

filter

w ∼ RGE(I)
Q(·,L)

v ∼ RGE(V )

ΨΨv( f ) = |H( f )|2
quantization

v′ ∼ RGE(VVV L)

v′ = Q(v,L)

Fig. 5.2 A traditional path for the generation of quantized Gaussian sequences with a proper
second-order characterization

A first block is used to generate v. From a practical point of view, one may
synthesize a linear filter which reshapes realizations of a zero-mean, unit-variance,
i.i.d. Gaussian process represented by w and with correlation/covariance matrix
� D EŒww>� D I into vectors v with correlation � . In terms of power spectrum,
given the transfer function H.f / of the filter, it is enough that jH.f /j2 D v.f / to
obtain the desired process as output.

A second block follows, that is the quantization function where the degree of
freedom is L, i.e., the number of possible output levels. The block quantizes the
input sequences v to get v0. In other words, the quantization stage produces digital
words that assume only one of the L possible values and can be employed in the
practical sensing of signals.

In order to evaluate the impact of the quantizing block on the overall generation
process, the easiest way is to estimate the power spectrum of the quantized vectors
v0 with different L values, including the corner case where L D 2, i.e., v0 2 f�1; 1gn.

Figure 5.3 shows results in terms of power spectrum of the quantized vectors
v0 for n D 128, L D f10; 6; 4; 2g, and for four different cases corresponding to
different values of !, including two low-pass profiles and two high-pass profiles. In
the same plots the power spectrum of the non-quantized vectors v are also shown to
highlight the impact of L in this process.

In particular, the magenta lines in Fig. 5.3 represent the power spectrum profiles
for L D 2, which corresponds to the generation of antipodal sequences, and
for which the introduced perturbation is maximum. This corner case has already
been investigated in literature [3, 8], and the perturbation introduced in terms of
correlation matrices can be estimated as follows.
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Fig. 5.3 Power spectra of both v � RGE .� / and its quantized versions v0 D Q.v;L/ for
different L levels including the corner case L D 2, i.e., where only two levels are allowed. Both (a)
and (b) refer to a high-pass profile, while (c) and (d) have been computed in the high-pass case

Theorem 5.1 Let Q.�; 2/ W R! fC1;�1g be a clipping function such that

Q.�; 2/ D
(
C1 if � � 0
�1 if � < 0

Let � 2 R
n�n be the correlation matrix of a stochastic process generating vector

v D .v0; v1; : : : ; vn�1/>. For a vector vc D .Q.v0; 2/;Q.v1; 2/; : : : ;Q.vn�1; 2//>
the corresponding correlation matrix � c is represented by

� c D 2

�

tr.� /
n

sin�1.� / (5.1)

where sin�1.�/ is applied componentwise.
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Fig. 5.4 Correlation profiles of first n=4 elements of both v � RGE .� / and its clipped versions.
Both (a) and (b) refer to a high-pass profile, while (c) and (d) have been computed in the high-pass
case

When considering our toy case, a visual representation of the two levels
quantization impact in terms of difference between the generic �j;k element of the
correlation matrices is shown in Fig. 5.4. Two pairs of ! have been considered, one
referring to the low-pass case and one to the high-pass profile.

5.3 Antipodal Sensing Sequences

The generation of quantized vectors, with particular reference to antipodal ones,
with a prescribed second-order statistic requires approaches able to reduce, and
possibly to eliminate, the intrinsic limitation described in the previous section.
We describe here a few different strategies to obtain antipodal vectors generators
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able to produce instances with a proper power spectrum or correlation matrix. We
first discuss approaches generating antipodal symbols as instances of stationary
processes, and then the non-stationary case will be taken into account.

5.3.1 Antipodal Generation in the Stationary Case

In order to begin a discussion about the generation of antipodal sensing sequences
with a prescribed spectrum (or correlation profile), let us first consider for the sake
of simplicity the stationary case.

A first method is related to Theorem 5.1, that implicitly suggests a way to counter
the effect of clipping. One can invert equation (5.1) to have vectors v 2 fC1;�1gn
with a proper correlation profile � by clipping zero-mean Gaussian vector g with a
correlation matrix 	 computed as follows:

	 D sin

�
�

2

n

tr.� /�
�

(5.2)

where as in (5.1), the function sin.�/ is computed componentwise. If the obtained
	 is a non-negative definite matrix, vectors v can be obtained by clipping the g �
RGE .	 /. We will refer to this approach as Clipped Gaussian (CG).

For the case ! D 0:9, we propose in Fig. 5.5 the comparison between the
imposed second-order characterizations (power spectrum and correlation) and the
measured profiles evaluated over 10;000 antipodal sequences generated by CG.
Results confirm the capability of the approach to generate antipodal vectors with
a prescribed second-order statistics.
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Fig. 5.5 Power spectrum (a) and correlation profile (b) for antipodal sequences generated by the
Clipped Gaussian approach where ! D 0:9
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Fig. 5.6 Block scheme of
the linear probability
feedback process where 	k is
a random threshold and H.z/
is the transfer function of a
causal time-invariant linear
filter

k ∼U(−1,1)

vk ∈ {−1,1}

−H(z)

−

+

sk ∈ [−1,1]

q

An interesting and alternative way to generate antipodal symbols as instances
of stationary process is the adoption of the so-called linear probability feedback
(LPF) process [6, 7]. The main characteristic of this generator is the simplicity, as
highlighted by the block scheme shown in Fig. 5.6 and adapted from [6]. The LPF
mechanism relies on the design of a causal time-invariant linear filter with finite
impulse response hj with j D f1; 2; : : : ;Zg and transfer function

H.z/ D
ZX

jD1
hjz
�j

The process generated by the filter �H.z/ is then fed into a comparator and
matched again 	k, which is an instance of an independent random threshold
uniformly distributed in Œ�1; 1�. The comparator yields antipodal values vk that are
the LPF output and that are continuously fed back into the filter. As discussed in
[6, 7], the main assumption to ensure a correct symbols generation is that the filter
output sk is limited in the range Œ�1; 1�. Under the assumption that filter inputs are
antipodal values, this constraint can be recast as follows.

ZX

jD1
jhjj � 1 (5.3)

In conclusion. the entire LPF mechanism can be summarized by the following set
of statements.

vk D
 C1; if sk > 	k

�1; otherwise

sk D
ZX

jD1
hjvk�j sk 2 Œ�1; 1�

	k � U.�1; 1/
The main advantage of this generator is the possibility to express the exact

power spectrum of the generated antipodal symbols analytically. If the filter
transfer function H.z/ is known, then the power spectrum of the stationary process
generating vk is obtained by means of the following equation.
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v.f / D
ˇ
ˇ1C H.e2� if /

ˇ
ˇ�2

R 1=2
�1=2 j1C H.e2� if /j�2 df

Despite the fact that this relation cannot be inverted to get H.z/ from v.f /, its
knowledge paves the way for many approximated approaches for the design of the
filter that guarantees the generation of antipodal symbols with the assigned v.f /.

Even if a complete description of the entire procedure is out of scope of this
chapter, we quickly recap here the iterative synthesis procedure proposed in [6].
The approach is based on a simple gradient descent algorithm, modified to yield
feasible solutions that satisfy (5.3), where filter taps hj are iteratively evaluated in
order to reduce an error function � defined as

� D E

2

6
4

0

@vk C
ZX

jD1
hjvk�j

1

A

2
3

7
5

D �0;0 C 2
ZX

jD1
�j�1;0hj C

ZX

jD1

ZX

lD1
�j�1;l�1hjhl

where � 2 R
Z�Z is a toeplitz correlation matrix depending on the desired power

spectrum

�j;k D 2
Z 1=2

0

v.f / cos.2�.j � k/f /df (5.4)

The procedure requires a feasible set of filter taps as starting point. Then, at the
generic l-th step, taps are adjusted by means of the algorithm described in Table 5.1,
where each iteration is basically composed by two steps. In the first step, a set
of possible taps is evaluated following the direction in which the maximum error
decrease is observed. Then, taps are rescaled to ensure that (5.3) is satisfied. The
procedure ends when the residual error � is smaller then a given tolerance.

In order to prove the effectiveness of the aforementioned approach, it has been
used to generate sequences for the two spectral profiles considered in Fig. 5.3,
namely for ! D ˙0:9 and n D 128. To this aim, we first evaluate � by (5.4),
and then apply the above constrained gradient technique to get a set of Z taps.

Results are depicted in Fig. 5.7. The target power spectrum profiles (solid lines)
are shown along with the spectral shapes estimated over 10;000 sequences obtained
from the LPF generator. The order of the filter �H.z/, i.e., the number Z of taps
considered is 2, 3, and 10, respectively. Note that in all considered cases, including
also the simplest one where Z D 2, the observed profiles closely match the desired
ones. These results are actually due in part to the smoothness of the required profile.
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Table 5.1 Code sketch for filter taps evaluation in the LPF design

Require: h.0/j with j D f1; : : : ;Zg such that (5.3) is satisfied
Require: � parameter controlling the rate of convergence
Require: 
 > 0 a small tolerance

l D 0

repeat
for j D 1 to Z do

h0

j  h.l/j � � @
@hj
�2 F direction of minimum error

end for
for j D 1 to Z do

h.lC1/
j  

8
ˆ̂
<̂

ˆ̂̂
:

h0

j if
ZX

jD1

jh0

j j � 1

.1� 
/ h0
jPZ

jD1 jh0
j j

otherwise

F taps rescaling to satisfy (5.3)

end for
l lC 1

until �
	

h.lC1/
1 ; : : : ; h.lC1/

Z


2 � tolerance

−0.5 0 0.5

10−1

100

101

f

v(
f)

(a) = 0.9

−0.5 0 0.5

10−1

100

101

f

v(
f)

(b) = −0.9

expected profile estimated profile, Z = 2

estimated profile, Z = 3 estimated profile, Z = 10

ww

ΨΨ

Fig. 5.7 Power spectrum for antipodal sequences generated by the LPF approach in the case (a)
! D 0:9, (b) ! D �0:9

In a real scenario the desired power spectrum can require a higher Z value depending
on the spectrum shape to be matched. In general, we know that an increase in Z
always corresponds to an improvement in the matching between the desired and
achieved profiles, and in the limit case of Z ! 1 it is possible to have a perfect
match with any desired power spectrum profile.
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Fig. 5.8 Block scheme of the LUT-based antipodal vector generator, where
f.p0;w0/; : : : ; .pNn;wNn/g are couples of antipodal vectors with an associated probabilities to
be generated, and 	.j/ is a random threshold uniformly distributed in Œ0; 1� used to randomly select
a vector wk accordingly to the p0; : : : ; pn

5.3.2 Antipodal Generation in the Non-Stationary Case

In the non-stationary case, the CG approach can still be used for the generation of
sequences with a given correlation profile. In fact, equation (5.2) does not pose any
limitation on the stationarity of � and so of 	 . However, the main limitation of the
CG approach is that it is not a completely general method. As mentioned before,
CG is based on the direct inversion of (5.1), but it is possible that the achieved 	 is
not a positive-semidefinite matrix, and cannot be used as a correlation matrix.

A more general approach is proposed in [1], and it is based on a randomly
addressed digital lookup table (LUT). The general structure of this generator is
schematized in Fig. 5.8, and it is based on the assumption that a correlation profile
corresponds to a probability assignment to all the 2n possible sequences. A simple
digital LUT is used to store sequences candidates for the generation. Each time
an instance is required, the LUT is randomly addressed accordingly to such a
probability assignment.

More formally, the aim of the approach is to generate n-dimensional antipodal
random vectors w 2 Wn with W D f�1; 1g, whose correlation matrix� D EŒww>�
is as close as possible to a given matrix � ns. Note that, since generated sequences
are antipodal, the diagonal of � is made only of 1s, and this implies that either
the diagonal of � ns must presents the same profile, or that it should be possible to
rescale � ns in order to satisfy such constraint, i.e., � ns

j;j is constant for j D 0; : : : ; n.
In the rest of this section we refer to this class of correlation matrix where we also
impose tr.� ns/ D n.

At the generation of the i-th vector wŒi�, the LUT is randomly addressed according
to a proper probability assignment p.w/, in such a way that each vector w appears at
the output with probability p.w/. From a theoretical point of view, this implies that
the content of the LUT (i.e., all possible 2n vectors w and a proper joint probability
function p W Wn 7! Œ0; 1�) needs to be completely defined, with

X

w2Wn

p.w/ D 1
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Accordingly to a more practical point of view, the number of sequence whose
probability is not null is in general much smaller than 2n. If we indicate with P the
support of the joint probability function p

P D supp p D fw 2 Wn j p.w/ > 0g
it has been shown in [1] that its cardinality Nn D jPj is practically limited to a number
of elements that is O.n2/.

This observation is very important from an implementation point of view,
allowing us to estimate the memory allocation required to store the LUT. Each item
is an n-bit string, so that the total number of bits required for the LUT is O.n3/ with
an additional storage needed for the associated probability values, which remains
compatible with a full hardware implementation.

As an example, an amount of 2Mbit of memory is typically enough for n up to
128. Let us assume a number of sequences Nn D n2 � 16 � 103. Let us also assume
that the smaller probability is the one associated with w0, and it is in the order of
magnitude of p0 � 10�8 � 2�26. To express p0 with a simple but inefficient fixed
point representation, 28 bits may be enough. Even with this simple approach, the
memory allocation required to memorize p0 is effectively negligible with respect to
that required to store w.0/. Using the same precision used for p0 for any entry of p,
a total amount of about 2:5Mbit of memory is required.

Note also that this is, actually, a strong overestimation on the actual memory
requirement. Referring to the previous example, vectors with a probability as low
as p0 � 10�8 have an expected impact on the actual correlation matrix � that is
negligible. This paves the way to many possible optimization strategies based on the
implementation point of view.

For example, one could fix a limited number of bit with which the unavoidably
approximated value of pj is represented. Dependently on the quantization and
approximation strategy adopted, a minimum probability pmin exists such that every
pj < pmin will be approximated with pj D 0. As a consequence, the number of
sequences associated with a non-null probability is much smaller with respect to the
ideal case. In other words, the table length Nn is decided by the number of bits used for
representing the pj and it is not necessarily O.n2/. The obtained� is just an approx-
imation of the desired � ns, but the memory requirements are strongly relaxed.

Thus said, let us discuss how it is possible to obtain the set of Nn sequence
representing an assigned correlation profile with the associated probabilities values.
Consider a set of antipodal sequences .w.0/;w.1/; : : : ;w.Nn�1// with associated
probabilities p D .p0; p1; : : : ; pNn�1/>, pj ¤ 0;8j. The corresponding correlation
matrix is given by

� D
Nn�1X

jD0
pjw

.j/w.j/
>

(5.5)

Our aim is to obtain the best possible match between� and the assigned correlation
� ns independently of Nn that can be selected small as possible, and far from the
intrinsic upper bound 2n.



120 5 Generating Raking Matrices: A Fascinating Second-Order Problem

The solution of this problem is achieved by means of the minimization of the
difference matrix � defined as

� D � ns �� D � ns �
Nn�1X

jD0
pjw

.j/w.j/
>

whose non-diagonal entries contain the deviations from the assigned correlation.
This minimization is mapped into the solution on the following optimization
problem:

min k�k

s.t.

pj > 0 for j D f0; 1; : : : ; Nn � 1g
Nn�1X

jD0
pj D 1

(5.6)

where k�k can be simply computed as k�k D P
0�j<k<n

ˇ
ˇ�j;k

ˇ
ˇ by exploiting the

fact that both correlation matrices are symmetric.
The problem represented by (5.6) has a non-linear objective function. This means

that its solution is in general a hard task. Nevertheless, this particular formulation
can be recast in a linear programming problem (LP) by the introduction of additional
variables.

In more detail, � is split into two n � n auxiliary matrices, one containing its
positive part, �C, and another one containing the negative part of �, namely ��.

�Cj;k D maxf�j;k; 0g for j; k D 0; : : : ; n � 1
��j;k D maxf��j;k; 0g for j; k D 0; : : : ; n � 1

having as a consequences that � D �C��� and k�k DP0�j<k<n

	
�Cj;k C��j;k



.

The introduction of these additional variables allows us to recast the optimization
problem (5.6) in the following LP:

min
P

0�j<k<n �Cj;k C��j;k

s:t:

�C ��� D � ns �
Nn�1X

jD0
pjw

.j/w.j/
>

Nn�1X

jD0
pj D 1

�C � 0 with 0 � j < k < n
�� � 0 with 0 � j < k < n
pj > 0 for j D 0; 1; : : : ; Nn � 1

(5.7)
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where matrix equalities and inequalities are meant to hold componentwise.
To see that (5.7) is equivalent to (5.6), note that the minimization of
P

0�j<k<n

	
�Cj;k C��j;k



ensures that at least one of �Cj;k and ��j;k is zero for each

couple of indexes j; k thus implying that �C and �� are, respectively, the positive
and negative part of � as defined before. Let us focus on a certain j; k pair. This
implies �Cj;k C ��j;k D j�j;kj so that

P
0�j<k<n �Cj;k C ��j;k D

P
0�j<k<n j�j;kj as

required.
Clearly, the target is achieved when �C D �� D 0, which means that

the imposed correlation is the assigned one, i.e.,
PNn�1

jD0 pjw
.j/w.j/

> D � ns. As a
further remark, we are considering here the generation of instances of non-stationary
process nevertheless this method can be also used when � ns is a correlation matrix
characterizing a stationary process.

Moving a step forward to the solution of (5.7), we can observe that there are
V D NnC 2N degrees of freedom with N D �N

2

�
coming from:

• Nn degrees of freedom are the probabilities p;
• for each n�n symmetric matrix �C and �� we have N D �n

2

�
degrees of freedom

counting the number of independent non-diagonal entries;

while the number of equality constraint is N C 1:

• N equality constraints given by the matching between � ns and� ;
• one equality constraints to enforce probability normalization.

As previously anticipated, we are assuming that Nn < 2n and in particular that
Nn D O.n2/. The fact that (5.7) is an LP problem motivates this. As a first comment,
the problem is surely feasible since, for any given Ow 2 Wn we may set p. Ow/ D 1,
p.w/ D 0 for w 2 Wn � f Owg, and compute O� D � ns � Ow Ow> which guarantees
the feasibility space is certainly non-null. Moreover, since we are solving an LP
we know that the minimum is surely achieved in a vertex of the polytope that is
its feasibility space. To define a vertex we need as many equality constraints as the
degrees of freedom. Hence at least one of the solution we seek is such that not only
the NC 1 equality constraint are satisfied but also V � .NC 1/ inequality constraint
out of the V available must be active.

If V � .N C 1/ non-equality constraints are active, then V � .N C 1/ degrees of
freedom are set to zero. Since at most 2N of those degrees of freedom can be entries
of �C and ��, we get that at least V � .N � 1/� 2N probabilities are null thus not
more then N C 1 D O.n2/ of them can be nonzero.

To clarify the proposed method, we present a generic formulation of the LP
problem coupled with a simple example. We write (5.7) in a standard form

min cq

s:t:
Cq D b
q � 0

(5.8)



122 5 Generating Raking Matrices: A Fascinating Second-Order Problem

where q is the vector of variables to be determined, expressed as

q D .�C0;1; : : : ;�Cn�2;n�1;��0;1; : : : ;��n�2;n�1; p0; : : : ; pNn�1/>

c 2 R
.NnC2N/ is a vector defining the linear objective function that is composed as

follows:

cj D
(
1 for j D 0; : : : ; 2N � 1
0 for j D 2N; : : : ; 2N C Nn � 1

and finally, the .NC1/�.NnC2N/matrix C and the b 2 R
.NC1/ vector characterizing

equality constraints are

C D
 
0; : : : ; 0 0; : : : ; 0 1; : : : ; 1

IN �IN

�
w.0/w.0/

>�
; : : : ;

�
w.Nn�1/w.Nn�1/>

�
!

and

b D .1;� ns
0;1; : : : ;� ns

n�2;n�1/

where ��� indicates any operator that takes a symmetric matrix and rearranges the
entries in its higher-right part (excluding the diagonal) in a column vector. In this
set of constraint the first row of C and the first element of b impose that the sum of
all probability values is equal to one, while all remaining elements are used for the
match between actual and desired correlation profile.

The solution of this optimization problem is a lookup table with Nn � N C 1 D
n.n�1/
2
C1 entries coupled with the associated probability vector. As an example, for

n D 3 and for an assigned correlation matrix

� ns D
0

@
1 0:92 0:92:5

0:92 1 0:91

0:92:5 0:91 1

1

A

and by setting Nn D N � 1 D 4, we have

c D .1; 1; 1; 1; 1; 1; 0; 0; 0; 0/

C D

0

BB
@

0 0 0 0 0 0 1 1 1 1

1 0 0 �1 0 0 1 1 �1 �1
0 1 0 0 �1 0 1 �1 �1 1

0 0 1 0 0 �1 1 �1 1 �1

1

CC
A

b D .1; 0:92; 0:92:5; 0:91/>
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w.0/ D .1; 1; 1/
w.1/ D .1; 1;�1/
w.2/ D .1;�1;�1/
w.3/ D .1;�1; 1/

The LP problem in (5.8) maps the task of designing the random vector generator
into a precise mathematical procedure and highlights its main property (i.e., the fact
that the cardinality of the lookup table is O.n2/) that ensures the viability of the
proposed approach. Nevertheless, an important aspect is a stumbling block to the
straightforward implementation of such a method in a real scenario.

Though, the solution has a number of non-null entries that is a O.n2/, the
optimization problem entails a number of variables that is exponential in the size of
the problem due to the fact that the positions of non-null p elements are unknown.
Actually, though it goes out of the scope of this book, it can be proved that
solving (5.8) including all 2n possible antipodal vector is NP-hard. To tackle it
for reasonable and useful values of n we should rely on slightly more advanced
Operation Research methods. The fact that the number of columns of C is huge
(it increases exponentially with n) encourages us to look into column generation
methods especially because we know that a solution exists involving not more than
2N C 1 columns: this is corresponding to the N C 1 probabilities and to the N
potentially nonzero deviations.

Thanks to the linearity of (5.8) the proposed approach, column generation
methods guarantee that optimality can be pursued iteratively by taking any candidate
set of columns in the objective function and in the matrices C and possibly
substituting its columns with new columns one at a time so that the objective
function value decreases at each iteration.

The first step is to define a point in the feasibility space, as a trivial solution we
select only one antipodal vector w.0/ with probability equal to one such that (5.8)
can be recast in the following optimization problem.

min OcOq

s:t:
OCOq D Ob
Oq � 0

(5.9)

with:

Oc D �1; : : : ; 1 1; : : : ; 1 0 �

and

OC D
 
0; : : : ; 0 0; : : : ; 0 1

IN �IN

�
w.0/w.0/

>�
!
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The second step is to identify a second column that can be added to the
problem such that the corresponding solution has a lower objective function and
then iteratively solve the new optimization problem and search for a new column
until a proper stop criteria is satisfied. In this way the LP problem is never solved
with a number of variables greater than 2N C Nn.

To deal with this aspect we need a function that counts the impact of a single
antipodal vector that is not currently addressed in the objective function, such a
function is the reduced cost that quantifies the increase in the objective function that
one obtains by introducing a new antipodal vector w.1/ in (5.9). For the optimization
problem under investigation, the reduced cost associated with w.1/,fC.w.1//, can be
evaluated as

fC.w1/ D �Oc. OC/�1
 

1�
w.1/w.1/

>�
!

The aim is to look for a new column with a minimum negative reduced cost so
that the objective function value decreases either until it is zero or until there is
not any new column with a negative reduced cost. The first stop criterion means
that the problem solution perfectly matches the desired correlation matrix while no
other columns with a negative reduced cost means that the minimum point in the
objective function is reached although the corresponding LUT generates antipodal
sequences with a correlation matrix that does not match the desired profile.

Therefore, the iterative mechanism requires a new column with minimum
negative reduced cost to be added to the optimization problem. Let w.1/ be the
obtained antipodal vector, introducing this vector in the optimization problem means
a new column in the matrix OC and a new coefficient in the vector Oc such that:

Oc D �1; : : : ; 1 1; : : : ; 1 0 0 �

and

OC D
 
0; : : : ; 0 0; : : : ; 0 1 1

IN �IN

�
w.0/w.0/

>� �
w.1/w.1/

>�
!

The problem is now how to identify a column with a minimum negative reduced
cost without spanning all possible antipodal vectors. This is a special case of a
Binary Quadratic Problem (BQP) in n antipodal variables, i.e., the element of the
vector w.i/ that is added to the problem in the i-th iteration. Since BQPs are NP-hard
the authors in [1] recast the problem of finding w.i/ with the minimum reduced cost
into a Binary Linear Programming (BLP) problem solved by heuristic approaches
(among which they chose the evolutionary technique tailored to BQP problems as
in [4]).

It is important to remark that the optimization problem (5.6) is solved off-line
only once for each desired correlation matrix, i.e., only once for every class of signal
to be acquired in according to methods described in Chaps. 3 and 4. The sequence
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generation is instead running on-line, and simply requires a selection on the LUT
entries with the probability profile that is the off-line solution of (5.6). As already
anticipated, the evaluated profile p needs to be quantized within a finite set of value
to be used in a real implementation, thus introducing unavoidable approximations.

In this last part, we want to focus on this aspect, highlighting that a twofold
consequence follows:

• The solution of (5.6) is a set of antipodal sequences .w.0/;w.1/; : : : ;w.Nn�1// with
associated probabilities p D .p0; p1; : : : ; pNn�1/>, pj ¤ 0;8j, both sets made of
Nn elements. In the physically implemented lookup table, however, a quantized
probabilities vector Qp is used, with bp bit precision. Since it is only Qp � p, then

Q� D
Nn�1X

jD0
Qpjw

.j/w.j/
>

that is just an approximation of the � computed in (5.5). The higher the b, the
better the approximation.

• Due to the approximation, some elements in Qp may be zero, even if the
corresponding elements of p are nonzero. In other words, the used entries of
the antipodal sequence set are Qn < Nn.

We address the impact of such a limitation by directly showing the deviation in
the correlation profile from the desired one in a single case, when n D 32, and the
desired � ns depicted in Fig. 5.9. In this case, solution of (5.6) gives Nn D 497, and
indicating with w.0/ the vector with the smallest probability, it is p0 D 1:14 � 10�7.

By considering a proper quantization function to encode the p with bp 2
f4; 6; 8; 10g, the number of nonzero elements of the approximated probability vector
Qp ranges from Qn D 43, for bp D 4, to Qn D 447, for bp D 10. The achieved Q�
matrices are shown in Fig. 5.10. Note that using bp D 8 may be considered enough
to get satisfactory results.

Fig. 5.9 Desired � ns to be
achieved in the example of
the LUT-based antipodal
vector generator V ns
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bp = 4, ñ = 43 bp = 6, ñ = 188
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Fig. 5.10 Approximated correlation matrices Q� achieved by quantizing the probability vector p
using a different number of bits bp

5.3.3 Feasibility Space for Antipodal Sequences Generation

As discussed before, generating antipodal sequences v D .v0; : : : ; vn�1/> with a
prescribed n�n correlation matrix could be a hard task and the discussed generators
must be taken into account in order to overcome such impasse. Nevertheless it is not
enough to affirm that, with the constraint that sequences are composed by only ones
and minus ones, we may impose any correlation profile.

Without the constraint v 2 f�1; 1gn, the set of matrices � that are candidates
to be a correlation matrix is that of n � n non-negative definite matrices. Taking a
first step towards imposing antipodality we first observe that � must be an n � n
non-negative definite matrix with unit diagonal entries, since v 2 f�1; 1gn we have
� j;j D EŒvjvj� D 1. If the diagonal values are not ones but they are identical, one
can simply rescale the matrix.

Let us indicate the set of non-negative definite n � n matrices with unit diagonal
entries as SNND

n . More formally, for an n�n matrix� , we define� .l/ as its l�l upper-
left submatrix such that, in addition to the requirements over the diagonals entries
values, the Sylvester’s criterion guarantees that � 2 SNND

n , if the determinants of all
possible submatrices � .l/ are non-negative, with l D 1; : : : ; n.
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det� .l/ � 0 for l D 1; : : : ; n (5.10)

Where these inequalities are defined in the space of the parameters �j;k with 0 <
j < k < n since correlation matrices are symmetric by definition, �j;k D EŒvjvk� D
EŒvkvj� D �k;j. As an example, for n D 2 the equation (5.10) is 1� � 20;1 � 0 which
implies j� 0;1j < 1.

When we impose v 2 f�1; 1gn, due to the discrete nature of the vector v, we can
express the correlation matrix � in a different way.

� D EŒvv>� D
X

v2f�1;C1gn
p.v/vv> D

X

v2f�1;1gn
p.v/v� (5.11)

where the n � n matrices v� D vv> remain implicitly defined. Note that, from
v 2 f�1; 1gn we get v� D .�1v/�. As a consequence the probabilities associated
with v and �1v are the same, i.e., p.v/ implicitly defines p.�1v/.

Such a notation is useful to highlight how all possible matrices v� with the
associated probabilities values p.v/ are the degree of freedom that one can use to
impose that � 2 SNND

n , i.e., the selected pairs v�, p.v/ are such that (5.10) holds.
Since all possible p.v/ are probabilities that an antipodal sequence occurs, we have
p.v/ � 0 and

P
v2f�1;1gn p.v/ D 1, and considering also (5.11), we are defining

a convex hull of the 2n points v� with v 2 f�1; 1gn, i.e., a polytope that we will
indicate as SAnt

n . Such a polytope represents the ensemble of correlation matrices �
that satisfy the antipodality constrain.

For example, if n D 2 only four sequences exist,

v0 D
��1
�1
�
; v1 D

��1
1

�
; v2 D

�
1

�1
�
; v3 D

�
1

1

�

and the associated v� matrices are

v�0 D v�3 D
�
1 1

1 1

�
; v�1 D v�2 D

�
1 �1
1 �1

�

where v� D .�1v/� holds such that only two probabilities values are enough to
obtain (5.11).

� D p0

�
1 1

1 1

�
C p1

�
1 �1
�1 1

�
D
�

1 p0 � p1
p0 � p1 1

�
(5.12)

with p0; p1 � 0 and p0 C p1 D 1 that yield values of � 0;1 D p0 � p1 in Œ�1; 1�.
Such constraints, as expected, confirm (5.10) that says 1� .p0� p1/

2 > 0. Note that
(5.11) represents a convex combination of non-negative definite matrices which is
by definition a non-negative defined matrix.

Referring to the CG approach discussed in Sect. 5.3.1, the generator produces
antipodal sequences by clipping instances of a multivariate zero-mean, unit-variance
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Gaussian vector with correlations matrix 	 evaluated by (5.2). Focusing on an
assigned profile � with unit entries on the diagonal we have

	 j;k D sin
	�
2
�j;k



(5.13)

Such an approach is successful only if the matrix 	 built from � is non-negative
definite, i.e., it satisfies the Sylvester’s criterion

det	 .l/ � 0 for l D 1; : : : ; n (5.14)

Let us indicate with SGau
n the set of matrices � for which this happens, i.e., the set

of correlation profile that can be obtained with the GC approach. This additional
constraint implies that if one wants to use CG generation, the set of possible
correlation profiles is restricted as follows:

SGau
n � SAnt

n � SNND
n (5.15)

For the first inclusion, CG is a method to generate antipodal sequences and so the
imposed correlation profile must be a point inside SAnt

n . It is easy to anticipate that,
for n large enough, the above inclusions are strict. In fact, having in mind the set of
involved parameters �j;k with 0 < j < k < n:

• SNND
n is defined by a set of n-th degree polynomial inequalities (5.10);

• SAnt
n is an n-dimensional polytope (5.11) defined by linear inequalities;

• SGau
n is defined by a set of transcendental inequalities (5.14).

Without any surprise, SGau
1 D SAnt

1 D SNND
1 . Also for n D 2 we have

for SNND
n (5.10) requires 1 � � 20;1 � 0

for SAnt
n (5.12) requires j� 0;1j � 1

for SGau
n (5.14) requires 1 � sin2

�
�
2
� 0;1� � 0

where first two constraints hold for � 0;1 2 Œ�1; 1� while last one is always true such
that the only requirement for CG method is on � , i.e., 1 � � 20;1 � 0.

For larger n, the difference between polynomial and linear inequalities comes
into play. When n D 3 we have the following parameters:

� D
0

@
1 a b
a 1 c
b c 1

1

A

where a D � 0;1 D � 1;0, b D � 0;2 D � 2;0, and c D � 1;2 D � 2;1. All these
parameter are mapped in the 3 set of matrices as follows. For � 2 SNND

3 we have
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Fig. 5.11 Feasibility spaces in the three parameters composing a correlation matrix with n D 4.
(a) is for unit diagonal non-negative definite matrices � 2 SNND

3 ; (b) is for unit diagonal non-
negative definite matrices that can be a correlation profile associated with antipodal sequences
� 2 SAnt

3

8
<

:

1 � a2 � 0
1C 2abc � a2 � b2 � c2 � 0

(5.16)

Such inequalities define the set SNND
3 shown in Fig. 5.11a while if we are imposing

the v 2 f�1; 1g3 the feasibility space is limited as in Fig. 5.11b. This last polytope is
defined following the procedure used for (5.12). With n D 3 the correlation profile
of a stochastic process generating antipodal sequences is defined by four matrices
and by the associated probabilities,

� D
0

@
1 a b
a 1 c
b c 1

1

A D p0

0

@
1

1

1

1

A

�

C p1

0

@
1

1

�1

1

A

�

C p2

0

@
1

�1
1

1

A

�

C p3

0

@
1

�1
�1

1

A

�

where the correlation matrix entries can be written as function of the probabilities
values.

a D �p0 � p1 C p2 C p3
b D �p0 C p1 � p2 C p3
c D p0 � p1 � p2 C p3

In order to guarantee that values p0; : : : ; p3 are probabilities we impose p0p1p2p3 �
0 and

P3
iD0 pi D 1. Such inequalities identify the set of correlation matrices subject

to the antipodality constraint shown in Fig. 5.11b.
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 � 1

4
.1 � a � bC c/ � 1

0 � 1

4
.1 � aC b � c/ � 1

0 � 1

4
.1C a � b � c/ � 1

0 � 1

4
.1C aC bC c/ � 1

(5.17)

Also for n D 3 the feasibility space of the correlation profiles that can be obtained by
CG is congruent with SAnt

3 . In this case the region shown in Fig. 5.11b corresponds
also to the following inequalities obtained by (5.14) for n D 3.
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(5.18)

Although for n � 3 the GC method correctly works for every � 2 SAnt
n we do

not have yet evidence on how it works for higher values of n. For n D 4 we may
consider
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To apply the CG method we should use (5.13). Yet, the resulting matrix features
a minimum eigenvalue of � �0:019 and thus is not positive semidefinite although
the considered correlation matrix is in SAnt

4 .
To further reinforce such evidence another example could be discussed, here we

scan all the 4 � 4 correlation matrices whose out diagonal entries can be written
as w

10
for w D �10; : : : ; 10 and find that 75480 of them are compatible with

the antipodality constrain but cannot be obtained with the CG generator, i.e., the
matrices that are in SAnt

4 when they are processed with (5.13) present at least one
negative eigenvalue and so they do not belong to SGau

4 . This shows that with n D 4

the inclusions (5.15) are strict as expected.
For higher values of n we proceed as follows. If � is the correlation matrix

of v D .v0; : : : ; vn�1/> 2 R
n, then � .n�1/ is the correlation of the subvector

.v0; : : : ; vn�2/> 2 R
n�1. Hence, if the desired correlation profile is in one of the

previously defined sets, i.e., if � 2 S�n where � is any of “NND,” “Ant,” or “Gau,”
then it must also be � .n�1/ 2 S�n�1. By reversing the implication we also get that if
an .n� 1/� .n� 1/ matrix exist not belonging to S�n�1, then there is a whole family
of matrices not belonging to S�n .

This means that, if any of the inclusions SGau
n � SAnt

n � SNND
n is strict for a certain

On then it is strict also for any n � On.
In the light of this and of the above examples, for all relevant dimensionalities

(n � 4), the antipodality constraint limits the ability of synthesizing second-
order statistical properties and the CG method is not completely general. When
it fails the LUT method discussed in Sect. 5.3.2 is still able to correctly match
the desired correlation profile so that for any possible correlation matrix associated
with a process generating antipodal sequences at least a generation method able to
reproduce such a profile exists.

In order to complete our analysis we discuss here cases where the process
generating antipodal sequences is a stationary one. Its implies that we are looking
for toeplitz non-negative definite matrices with the additional constraint to impose
unit entries on the main diagonal. Having in mind this class of processes in the rest
of this section we always refer to a matrix � defined as follows.
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Fig. 5.12 Feasibility spaces
of the two parameters in a
correlation matrix of a
stationary stochastic process
with n D 3 where two
different ensembles are
considered: unit diagonal
non-negative definite matrices
� 2 SNND

3 , and unit diagonal
non-negative definite matrices
that can be a correlation
profile associated with
antipodal sequences � 2 SAnt
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With respect to the more general setting discussed before, here the degree of
freedom in the design is limited to the free n � 1 values over each diagonals named
� .0/; : : : ;� .n�2/.

As before we first define the set of non-definite positive matrices with unit
diagonal by (5.10) in order to obtain RNND

n which represents the correlation matrices
of a stationary process. After that we consider the impact of the antipodality
constraint by (5.11) to obtain RAnt

n and finally we look at RGau
n which is the set of the

correlation profiles where GC method correctly works (5.14).
As before we have

• RNND
1 D RAnt

1 D RGau
1

• RNND
2 D RAnt

2 D RGau
2

• RNND
3 
 RAnt

3 , and RAnt
3 D RGau

3

Where the last inclusion is shown in Fig. 5.12. With respect to the general setting, in
the stationary cases, when n D 4we have only 3 parameters and a complete analysis
is reported in Fig. 5.13 showing that

RNND
4 
 RAnt

4 
 RGau
4

Furthermore, such a strict inclusions holds for every n � 4, i.e., for all relevant
dimensionality. This is why CG method is not a general approach also for the
stationary process cases while the LPF process discussed in Sect. 5.3.1 is able to
generate any � 2 RAnt

n .
As final remark, in terms of complexity, CG is a quite complex method. First, it

requires the implementation of the sin.�/ function, that is not commonly available
in the simplest architectures. Then, the solution provided by CG is defined only in
terms of correlation matrix: an additional block capable of generating sequences
with a prescribed correlation matrix is required. Note that this block has to be more
complex than that depicted in Fig. 5.6 where a simple H.f / filter and a quantization
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Fig. 5.13 Feasibility spaces in the three parameters composing a correlation matrix of a stationary
process with n D 4. (a) is for unit diagonal non-negative definite toeplitz matrices � 2 RNND

4 ;
(b) is for unit diagonal non-negative definite toeplitz matrices that can be a correlation profile
associated with antipodal sequences � 2 RAnt

4 ; (c) is the feasibility space of correlation matrices
associated with antipodal sequences generated by adopting the GC generator � 2 RGau

4

block are present. Furthermore, the scheme of Fig. 5.6 can be considered only for
the stationary case. For these reasons CG is a candidate for off-line generations.
Conversely, LPF and LUT present very simple architectures, easily implementable
both as software algorithms and with hardware primitives. In both approaches
complexity can be further reduced depending on the desired performance so that
they can be used for on-line generation.

5.4 Ternary and Binary Sensing Sequences

As already discussed in Chap. 4, the sensing matrix A plays an important role in the
determination of the cost (either in terms of energy or in terms of number of basic
operations) of the evaluation of the measurements vector y. All solutions proposed
in Chap. 4 for reducing this cost take into account the reduction of cardinality of y,
of the number of input samples used in the computation of y, or of the number of
arithmetic operations necessary to compute y D Ax. In particular, it has been shown
how this optimization can be achieved by means of adopting sensing matrices whose
rows are instances of ternary or binary processes with a prescribed second-order
statistics.

In Sect. 5.3 we have discussed how to generate, given a prescribed second-
order statistic, antipodal sensing vectors, i.e., v 2 fC1;�1gn. We discuss here
a generalization of the discussed CG method able to deal with the ternary, i.e.,
v 2 fC1; 0;�1gn, and the binary case, i.e., v 2 fC1; 0gn.
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5.4.1 Ternary Sensing Sequences

The generation of ternary vectors v 2 fC1; 0;�1gn with a prescribed correlation
matrix can be pursued by generalizing the methods proposed for antipodal vectors
(see, e.g., [1, 3, 6, 7]).

In particular, we focus on the thresholding of Gaussian random vectors approach
described in Sect. 5.3.1. As already observed, though not completely general, this
is a very simple method and allows an almost equally simple generalization to the
ternary case.

The generation of antipodal sequences v D .v0; : : : ; vn�1/> with a prescribed
correlation matrix � is achieved by introducing an auxiliary random Gaussian
vector g D .g0; : : : ; gn�1/> generated with zero-mean, unit-variance, and a
correlation matrix 	 . By computing v componentwise from g according to

vj D
(
�1 if gj � 0
C1 if 0 < gj

(5.19)

we know that v has the desired correlation matrix if (5.2) holds, i.e.,

	 D sin

�
�

2

n

tr.� /�
�

(5.20)

In order to generate v as a ternary vector, we follow the approach proposed in
[5] and we introduce again, as in the antipodal case, the auxiliary random Gaussian
vector g. Then, (5.19) v has to be replaced by a three-level quantization function
vj D � t

	j
.gj/, namely

� t
	j
.gj/ D

8
ˆ̂<

ˆ̂:

�1 if gj � �	j

0 if � 	j < gj � 	j

C1 if 	j < gj

(5.21)

where 	j represents its symmetric threshold. Note that, for the maximum flexibility,
it may be sensitive not to have a single threshold for the whole vector, but each entry
vj may be computed according to a different threshold 	j.

Since we have changed the distortion function to get v from g with respect to the
antipodal case, it is necessary to look also for a different distortion function to get 	
from � . In other words, we need a replacement for equation (5.20). The calculations
to switch from the desired � to 	 given the desired thresholds 	0; : : : 	n�1 for the
ternary case have been proposed in [5].

First of all, each gj is a unit-variance Gaussian variable. The probability Prfjgjj �
	jg D erfc

	
	j=
p
2



, and from (5.21) we get Prfjgjj � 	jg D Prfv2j D 1g D � j;j.

Hence we must set
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	j D
p
2erfc�1.� j;j/ (5.22)

i.e., the thresholds 	0; : : : 	n�1 are not a degree of freedom of the system, but are
univocally determined by the main diagonal of the desired correlation matrix �.

Then, we recall that the element �j;k is the correlation between the elements vj

and vk, and it is defined as

�j;k D E
�
vjvk

� D E
h
� t
	j
.gj/�

t
	k
.gk/

i
(5.23)

where gj and gk, by definition, are zero-mean unit-variance jointly Gaussian random
variables whose correlation is given by	 j;k In the more general form, let us consider
that if the correlation � between two unit-variance jointly Gaussian random variable
˛ and ˇ is known, then their joint probability density is

f .˛; ˇ; �/ D 1

2�
p
1 � �2 e

� ˛2Cˇ2�2�˛ˇ

2.1��2/

so that the correlation between �T
	 0.˛/ and �T

	 00.ˇ/ is

E
�
� t
	 0.˛/�

t
	 00.ˇ/

� D

D 2
Z 1

	 0

Z 1

	 00

f .˛; ˇ; �/d˛dˇ � 2
Z 1

	 0

Z �	 00

�1
f .˛; ˇ; �/d˛dˇ D

D 1p
2�

Z 1

	 00

e�
ˇ2

2 erfc

 
	 0 � �ˇ
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2.1 � �2/

!

dˇC

� 1p
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Z �	 00
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ˇ2
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	 0 � �ˇ
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2.1 � �2/

!

dˇ

(5.24)

where we have exploited the property f .�˛;�ˇ; �/ D f .˛; ˇ; �/.
Pairing (5.24) and (5.23), and expressing thresholds accordingly to (5.22), we

can obtain a function T�0;�00 such that

�j;k D T� j;j;� k;k

�	 j;k
�

Note that this function depends not only on the correlation terms 	 j;k between
the elements gj and gk, but also on the two thresholds 	j and 	k, that can be more
conveniently expressed as a function of � j;j and � k;k.

Regrettably, such a function cannot be given a fully analytical expression but has
some recognizable properties. In particular, T�0;�00.�/ D T�00;�0.�/ D �T�0;�00.��/
is continuous and monotonically increasing in � , and can be extended by continuity
in the domain Œ�1; 1� with T�0;�00.˙1/ D ˙minf�0; �00g. Moreover, coherently with
[8], we have T1;1.�/ D 2

�
sin�1.�/.
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The range of T�0;�00 is compatible with that of a correlation between two ternary
variables. Hence, any desired matrix � can be transformed into a corresponding
	 by means of the T�1� j;j;� j;j

defined as the inverse of T� j;j;� k;k . The replacement for
(5.20) is given by

	 j;k D T�1� j;j;� k;k
.�j;k/

5.4.2 Binary Sensing Sequences

Binary random vectors v D .v0; : : : ; vn�1/> with a prescribed correlation matrix
� can be generated following the very same approach used for the ternary case.
Given an auxiliary random Gaussian vector g D .g0; : : : ; gn�1/> generated with
zero-mean, unit-variance, and a correlation matrix 	 , we need now a two-level
quantization function vj D �b

	j
.gj/ as

�b
	j
.gj/ D

(
0 if gj < 	j

1 if gj � 	j

defined starting from a proper choice of the threshold levels 	0; : : : ; 	n�1.
As in the previous case, threshold 	j is related to � j;j by

	j D
p
2erfc�1.2� j;j/

while the element �j;k, defined as

�j;k D E
�
vjvk

� D E
h
� t
	j
.gj/�

t
	k
.gk/

i

can be exploited by observing that if two jointly Gaussian zero-mean and unit-
variance random variables ˛ and ˇ have correlation � then

EŒ�b
	 0.˛/�

b
	 00.ˇ/� D

Z 1

	 0

Z 1

	 00

f .˛; ˇ; �/d˛dˇ D

D 1

2
p
2�

Z 1

	 00

e�
ˇ2

2 erfc

 
	 0 � �ˇ

p
2.1 � �2/

!

dˇ

Following the same path that we used for ternary vectors, we obtain a function
B�0;�00 that transforms the correlation of jointly Gaussian random variable in the
correlation of the corresponding binarized random variable with assigned averages
�0 and �00 such that

�j;k D B� j;j;� k;k

�	 j;k
�
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This function has the same favorable properties as the function T�0;�00 of the
ternary case. In particular, B�0;�00.�/ D B�00;�0.�/ is continuous and monotonically
increasing in � , and can be extended by continuity in the domain Œ�1; 1� with
B�0;�00.�1/ D maxf0; �0 C �00 � 1g and B�0;�00.1/ D minf�0; �00g.

Hence, any desired matrix � can be transformed into the corresponding 	 by
defining B�1

�0;�00.�/ is the inverse of B�0;�00.�/, as

	 j;k D B�1� j;j;� k;k
.�j;k/
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Chapter 6
Architectures for Compressed Sensing

The aim of this chapter is to move a first step into the hardware implementation
of a compressed sensing (CS) based analog-to-information converter (AIC), pro-
viding a high-level overview of the different architectures and different solutions
introduced so far in the scientific literature. For each architecture advantages and
disadvantages will be analyzed, both from the architectures point of view and from
the performance point of view. A more detailed analysis focusing on real circuits
and including specific circuital solutions is presented in Chaps. 7 and 8.

6.1 Introduction and Definitions

In order to introduce this overview, it is necessary to briefly recall the introduction
on signal acquisition systems of Chap. 1. In the conventional approach, depicted in
Fig. 6.1a, samples are taken from an input signal x.t/ at a sufficiently high sampling
rate rx D 1=T thus generating the sequence xk W Z 7! R such that xk D x.k T/. Each
sample is then quantized into the binary word Q.xk/.

Two main differences can be identified in a CS based signal acquisition chain.
The first can be observed in Fig. 6.1b. Differently from the standard sampling
approach, in the CS some early additional processing is performed. The additional
signal processing block may be added at different points in the chain and, accord-
ingly, both the signal processing mathematical model and the position in which the
subsufficient-rate sequence of measurements yj appears may change.

The second difference is illustrated in Fig. 6.2. In the conventional approach,
given a signal mathematically represented by the realization of a stochastic process
in real domain x.t/ W R 7! R and a sampling rate rx (or a sampling time step
T D 1=rx), it is possible to generate the sequence of real numbers xk W Z 7! R

associated with x.t/ by defining xk D x.k T/. Since x.t/ is defined for 8t 2 R, it
follows that xk is defined 8k 2 Z, i.e., the sequence of the xk is infinite-length.

© Springer International Publishing AG 2018
M. Mangia et al., Adapted Compressed Sensing for Effective Hardware
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x(t) sampling
xk

quantization Q(xk)

(a)

x(t) A sampling B quantization C Q(y j)

y j? y j? y j?

(b)

Fig. 6.1 (a) Basic two-stages decomposition of an acquisition process. (b) The acquisition signal
chain modified accordingly to the CS paradigm

x(l) x(l+1) x(l+2)
B

U
FFE

R

B
U

FFE
R

x(l), x(l+1), x(l+2) y(l), y(l+1), y(l+2)x y
A

actual input signal actual measurement vector

Fig. 6.2 Time window slicing approach used in the CS paradigm

In CS, in order to avoid dealing with infinite-dimension optimization problems,
it is mandatory for signals to be defined in a finite-dimension space. In practical
cases, the more common approach is to assume that x.t/ is defined only over
a time windows of width Tw, i.e., only for 0 � t < Tw. Given n 2 N with
Tw D n T , the Nyquist-rate sampling process maps x.t/ to the finite-length sequence
x0; x1; : : : ; xn�1 with xk D x.k T/, or more conveniently to the sample vector x 2 R

n,
where in the following we will use the notation xk to refer to k-th element of
x. Under this assumption all the developed CS theory can be applied to x, i.e.,
m measurements are generated accordingly to an m � n sensing matrix A by
means of the linear operation y D Ax, with y D .y0; y1; : : : ; ym�1/> 2 R

m the
vector composed by the m compressed measurements. Each measurement can also
be individually expressed as yj D

Pn�1
kD0 Aj;k xk (where Aj;k is the element of A

positioned at the j-th row and k-th column) or yj D Aj;� x (where Aj;� is the sensing
vector given by the j-th row of A).
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Of course, real-world signals are unavoidably defined for t 2 R. To apply CS, it
is necessary to slice any real signal x.t/ in adjacent windows of width Tw such that
x.l/.t/ D x.l Tw C t/, with 0 � t < Tw and l 2 Z. The n samples obtained at rate
rx D 1=T from each slice x.l/.t/ are collected in a vector x.l/ 2 R

n and with them it
is possible to generate, by means of the sensing matrix1 A, the measurement vector
y.l/. This strategy is illustrated in Fig. 6.2.

In the following, in order to keep the mathematical notation as simple as possible,
we will focus on a single slice of signal implicitly assuming that the signal slicing
process is made a priori. In other words, in all this chapter the signal x.t/ is modeled
as the realization of a continuous-time stochastic process defined only for 0 � t <
Tw, that can be sampled at a rate rx D 1=T with Tw D n T , giving rise to the sampling
vector x D .x.0/; x.T/; : : : ; x.n T � T//> or, with a more compact notation, x D
.x0; x1; : : : ; xn�1/>.

6.2 The CS Signal Acquisition Chain

From a formal point of view, the scheme of Fig. 6.1b identifies three classes of pro-
cessing chain accordingly to the position where the additional linear computational
block is added, as detailed in Fig. 6.3. These three classes, referred to as case A,
case B, and case C, are detailed in the following.

In particular, the aim of this section is to give a mathematical background with
which the three cases can be handled within the general framework considered
up to now, where measurements are given by the matrix relation y D A x, with
x 2 R

n the vector of Nyquist-rate samples of the input signal, y 2 R
m the vector

of the compressed measurements, and A 2 R
m�n the sensing matrix. Since the m

measurements are usually obtained by replicating an identical structure m times
using different sensing vectors Aj;�, we will actually focus on the computation of a
single measurement yj D Aj;� x.

• Case A The traditional processing chain is modified by adding a linear computa-
tional block at its beginning, taking x.t/ as input. Since x.t/ is mathematically an
analog continuous-time process, the additional computational block needs to be
a continuous-time analog one. This block has to be modeled as a linear sensing
functional operator Ajf�g, taking the continuous-time function x.t/ as input, and
producing the continuous-time function yj.t/ as output

yj.t/ D Ajfxg .t/ :

1In principle, it is possible to process each x.l/ vector with a different sensing matrix A.l/. This
case is not considered here only for the sake of simplicity, and only one sensing matrix A is taken
8l 2 Z.
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x(t) A sampling B quantization C Q(y j)

Case A: x(t) A j{x} sampling
Tw

quantization
Q(·) Q(y j)y jy j(t)

Case B: x(t)
sampling

T
A j,·

quantization
Q(·) Q(y j)x y j

Case C: x(t)
sampling

T
quantization

Q(·) A j,· y j
x Q(x)

Fig. 6.3 Three classes of processing chain adopted by CS compared to the standard acquisition
process. In case A a linear computational block is added before the sampling stage. In case B
it is inserted between the sampling and the quantization stages. In case C it is added after the
quantization stage

Then, the subsequent sampling stage generates the compressed measurement
yj by sampling the yj.t/ function at the time Tw

yj D yj.Tw/ D Ajfxg .Tw/ :

Assuming that m is the number of operators applied in parallel, then m
measurements yj D Ajfxg .Tw/, j D 0; 1; : : : ;m� 1 are simultaneously collected
at time Tw to generate the measurement vector y. The measurement rate is
actually ry D m=Tw. Under the assumption that, when using a standard approach,
the input signal could be sampled at Nyquist rate rx D 1=T and that Tw D n T , it
is immediate to get the desired relation rx=ry D n=m.

Clearly, this mathematical approach is pretty general and allows a lot of
degrees of freedom, but it is also quite difficult to handle it within the general CS
framework considered up to now. In particular, two aspects suggest to introduce a
more simple and practical modeling for this case. (i) The hardware realization of
a generic Ajf�g operator may be complex. In particular, and remembering that the
Ajf�g operators should be actually programmable ones as a necessary condition
to get different yj measurements, we should limit ourselves to consider operators
that can be easily identified by a (possibly small) number of coefficients stored
into a digital memory. (ii) It is mandatory to have a clear and simple relation
between Ajf�g and the sensing vector Aj;� in order to apply all the theoretical
background developed so far.
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On the basis of the aforementioned observations, we can limit ourselves to
consider Ajf�g composed by a mixing stage (i.e., the analog multiplication)
with a pulse-amplitude modulated (PAM) sensing signal aj.t/ followed by an
integrator. Mathematically we can express this either in the form of a convolution
or multiply-and-integrate operation

yj.t/ D 1

T

Z Tw

0

aj.t � �/x .�/ d� (6.1)

yj.t/ D 1

T

Z t

0

aj.�/x .�/ d� (6.2)

where the constant 1=T is used for dimensionality purpose only (d� has the
physical dimension of a time), and where in both cases the integration interval
has been reduced to keep into account the fact that x.t/, accordingly to the
aforementioned slicing approach, is defined only for 0 � t < Tw.

The sensing function aj.t/ is a PAM signal with symbol period T D Tw=n and
where the amplitude of pulses are stored in the sensing vector Aj;�

aj.t/ D
n�1X

kD0
Aj;k g

	 t

T
� k



(6.3)

being g.t/ a normalized pulse. This modeling approach clearly solves the two
issues identified above.

Among the convolution form expressed by (6.1) and the multiply-and-
integrate one expressed by (6.2), the latter is the more commonly considered in
CS theory. For this reason, and despite the fact that the two notations are almost
identical and could be easily integrated in a single framework, we will limit
ourselves to the second one. The actual case A considered can be represented
by the diagram of Fig. 6.4.

Now, by combining (6.2) with (6.3), it is easy to get

yj D yj.Tw/ D 1

T

Z Tw

0

n�1X

kD0
Aj;k g

	 �
T
� k



x .�/ d�

D
n�1X

kD0
Aj;k

Z Tw

0

1

T
g
	 �

T
� k



x .�/ d�: (6.4)

x(t)
∫

a j( )x( )d

a j(t)

sampling
Tw

quantization
Q(·) Q(y j)yjy j(t)

ttt

Fig. 6.4 Actual case A considered in this chapter
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By defining

Qxk D 1

T

Z Tw

0

g
	 �

T
� k



x .�/ d� (6.5)

as the generalized Nyquist-rate samples2 of the input signal then (6.4) can be
rewritten in the desired form

yj D
n�1X

kD0
Aj;k Qxk D Aj;� Qx

where the generalized Nyquist-rate samples vector Qx D .Qx0; Qx1; : : : ; Qxn�1/> 2 R
n

plays the role of the standard Nyquist-rate samples vector x. Measurements are
finally converted into digital words to be processed by the following (digital)
processing stage.

In conclusion, this case can be included in the general CS framework by
replacing the sampling vector x with the generalized sampling vector Qx given
by (6.5).

Yet, two comments are mandatory.
First of all, even if it has been possible with some assumptions and with

a specific mathematical background to include this case in the general CS
framework, it is also possible to argue that by feeding A and y in any CS
reconstruction algorithm, we would get the Qx instead of the x. So, in this
considered case, it is not possible to reconstruct the actual x.t/ signal.

However, as a second comment, we can argue that in many practical cases,
the Qx is not so different from x. Equation (6.5) represents the true Nyquist-rate
sampling of x.t/, i.e., Qx D x, when g.t/ D T ı.t/ is given by the standard
Dirac delta operator. In a more practical case, being ı.t/ just a mathematical
abstraction with poor practical implementation possibilities, it is common to
consider a normalized pulse g.t/ equal to the ideal rectangular pulse �.t/ D 1

when 0 � t < 1 and 0 elsewhere. In this case it is easy to note from (6.5)
that the generalized coefficient vector can be considered a good approximation
of Nyquist-rate sample vector, i.e., Qx � x if x.t/ is the realization of a quasi-
stationary stochastic process.

From a hardware point of view, this case has raised some interest in the field
of high-frequency applications, such as radio-frequency (RF) receivers [3, 4] or
radar receivers [16, 17]. The main reason is that accurately sampling a signal at
a very high rate is much more difficult with respect to accurately mixing it with

2We adopt this name since, as observed in the following, it is possible to generate actual Nyquist-
rate samples xk as a particular case of (6.5) when the g.�/ is a Dirac delta operator.
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another signal, even if at very high frequencies (the PAM signal x.t/ must have
a update time T equal to the Nyquist frequency of x.t/) [17]. In Chap. 7 a few
integrated circuits implementing this case will be described.

• Case B A linear computational block is inserted between the sampling and the
quantization stages, taking as input the sampling vector x 2 R

n containing
the samples of x.t/, 0 < t < n T at Nyquist rate rx D 1=T , and generating
the compressed measurement yj. This additional stage is a discrete-time analog
processing block.

Being linear, this block performs a weighted sum of all samples in x. By
assuming that the coefficients are the real quantities stored in the j-th sensing
vector Aj;�, we can mathematically describe this operator as

yj D
n�1X

kD0
Aj;k xk D Aj;� x

that is directly the desired relation.
Note that, assuming again that m operators similar to the described one are

applied in parallel, then m measurements are delivered each nT time units.
The measurement rate can be expressed as ry D m=n=T , with a compression
ratio equal to rx=ry D n=m. As in the previous case, measurements are finally
quantized to deal with the following allegedly digital world.

Note also that this case, conversely from the previous one, represents the direct
implementation of the standard CS framework developed so far without the need
of any approximation. No additional hypotheses need to be assumed, nor specific
mathematical framework developed in order to get x from any CS reconstruction
algorithm given A and y.

Form a hardware point of view, this case finds application when x.t/ is low-
frequency and it is particularly easy and unexpensive (form energetic point of
view) to accurately sample it. Commonly, this case is implemented by exploiting
intrinsic sampling capabilities of the switched-capacitor architecture [6, 12, 14].
A few integrated circuits implementing this case by means of switched-capacitor
implementation will be detailed in Chap. 7.

• Case C The (linear) computational block is added at the end of the original
processing stage, taking the quantized values Q .x/ of the input signal samples
vector x, where the quantization function Q.�/ applied to x has to be considered
element-wise.

This case is very similar to the previously considered one. We can assume
that coefficients used in the weighted sum are stored in the j-th sensing vector
Aj;�, and this mathematically leads to

yj D
n�1X

kD0
Aj;kQ .xk/ D Aj;�Q .x/ (6.6)
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x(t)
sampling

T
quantization

Q(·) A j,·
quantization

Q′(·) Q′(yj)x Q(x) y j

Fig. 6.5 Actual case C considered in this chapter

Furthermore, assuming m operators working in parallel, the measurement rate
can be expressed as ry D m=n=T , with rx=ry D n=m.

This case is of particular interest when also the Aj;k values belong to a
quantized set, so that this additional computational block takes the form of a
digital postprocessing stage, i.e., a digital algorithm. In other words, relation
(6.6) does not require any particular hardware, and can be implemented on any
finite-state machine equipped with a proper arithmetic and logic unit (ALU). In
the following, we always implicitly make this assumption when considering this
case.

Note also that in this case the y is already composed by digital quantities
that can be delivered as is to the following digital reconstruction algorithm.
However, it is a common practice to apply an additional re-quantization function
(such as the Q0.�/ in Fig. 6.5) for the purpose of reducing the bitrate required to
transmit measurements. The case C of Fig. 6.3 is more adequately described by
the processing chain of Fig. 6.5 [2].

The first two aforementioned cases will be referred to as analog CS, being x
(or Qx) made of analog quantities, and will be detailed in Chap. 7. In particular,
case A identifies continuous-time analog CS systems, while case B discrete-time CS
systems. Conversely, we refer to the third case as digital CS, that will be detailed in
Chap. 8.

In the rest of this chapter we take into account some overall considerations
that can be applied both to analog CS architectures and to the digital ones.
The aim is twofold. On the one side, we clearly identify a few CS different
hardware families accordingly to topological properties of the sensing matrix A.
The structure of A, in fact, is directly mapped into the hardware complexity needed
to compute y.

As an example, in order to reduce hardware complexity both in the the analog
and in the digital case, the multiplication with the Aj;k coefficients may be relaxed
by representing the Aj;k as digital quantities using a very limited number of bits.
This reduces the complexity of the digital-to-analog converter (DAC) used for the
Aj;k generation in the analog case [6] as well as the complexity of the required ALU
in the digital case. As an extreme case, it is also possible to require that Aj;k are
1-bit quantities, i.e., that Aj;k 2 f�1; 1g or Aj;k 2 f0; 1g. Here, a full multiplier
block (either an analog or a digital one) is not necessary anymore, and can be
replaced, respectively, by a sign inversion block [3, 12] or by an enable/disable
block [14].

On the other side, CS performance is strongly dependent on A. Typically, matri-
ces A presenting a structure that allows easy hardware implementation are mapped
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into CS systems with poor performance either in terms of signal reconstruction
quality or flexibility, defined as the property of a CS acquisition system to correctly
work with many different input signal classes.

Accordingly to this, the choice of A represents a trade-off between hardware
complexity and CS performance.

6.3 Architectures and Implementation Guidelines

Mainly, three architectures can be identified in the recent CS literature, namely
the Random Sampling (RS), Random Demodulator (RD), and Random Modulation
Pre-Integration (RMPI). In this section we not only provide an overview of these
three approaches that require very different implementation efforts, but also achieve
different performances.

In particular, we are interested in two aspects:

• how the differences in the described architectures are transposed in the sensing
matrices A or,

• how CS performance changes accordingly to the considered architecture.

In order to estimate system performance, we use the same setup considered since
Chap. 2. In detail, we run several Montecarlo simulations, where we assume that
x is an instance of an n-dimensional stationary a stochastic process with n D 128,
that is � D 6 sparse with respect to an orthonormal basis D, and (for the sake of
simplicity) that has no localization, i.e., Lx D 0.

With respect to D, three cases are taken into account. In the first one, D is the
orthonormal Discrete Cosine Transform (DCT) [1], commonly used in compression
of digital images. In the second cases sparsity is considered on a wavelet basis, more
in detail D is taken as the 4-th order Daubechies family [5] (Daub), that is a common
choice in almost all biological signal processing systems. Finally the n � n identity
basis D D In is considered.

As observed in Chap. 1, many CS properties are based on the assumption of inco-
herence between A and D. Due to the different D, we expect different performance
depending on the combination of the sparsity basis and of the architecture used.

At the end of the section we will also introduce a hybrid RD-RMPI architecture,
that is commonly used in many practical cases to reduce hardware complexity with
respect to the RMPI approach, with performance similar to the RMPI and much
higher with respect to the RD.

6.3.1 Random Sampling

In standard acquisition systems, samples of the signal are taken regularly on the
time axis at a given rate (usually not less than the Nyquist one). AICs relying on
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RS avoid this regularity to produce a number m of randomly spaced measurements
that, on the average, are less than those produced by Nyquist sampling, while still
allowing the reconstruction of the whole signal, thanks to sparsity and other priors.
The approach is actually the very same used since many years when looking for
statistical properties of a very large population set.

In more general terms, m sampling instants �j, j D 0; 1; : : : ;m � 1 are defined
anywhere along the time axis, so that the j-th measurements are given by

yj D
Z Tw

0

ı.t � �j/x.t/dt:

Yet, any straightforward implementation will choose the �j among regularly
spaced time points, thus allowing to select them by digital quantities. In this case, a
random sampling approach can be considered as consisting in taking only a random
subset of size m among the n samples of the original signals.

From a hardware point of view, this is the most simple architecture one can use
for CS, as is enough to properly modulate the clock of a standard analog-to-digital
converter (ADC) to implement described operations, as illustrated in Fig. 6.6. The
sensing matrix can be achieved by simply considering a sparse A, where elements
equal to 1 are present, one in each row, in all columns corresponding to a position in
which sampling takes place. An example of A is depicted in Fig. 6.7. Such a matrix
has the following properties:

8
ˆ̂<

ˆ̂
:

Aj;k 2 f0; 1g; 8j;8k

kAj;�k0 D 1; 8j

kA�;kk0 � 1; 8k

Fig. 6.6 Block scheme of the
random sampling architecture

x(t) S/H
x(kT )

ADC yS/Pxk

m−1

Σ
j=0

A j,k

Fig. 6.7 Example of an
8� 16 sensing matrix A
corresponding to the
implementation of a RS
architecture. White blocks
correspond to zero elements
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Fig. 6.8 Montecarlo comparison between performance of a RS system with n D 128, � D 6 in
terms of signal reconstruction quality—plot (a)—and probability of correct reconstruction—plot
(b)—as a function of the number of measurement m. The considered sparsity bases are the Discrete
Cosine Transform (DCT), the Daubechies-4 Wavelet (Daub), and the n� n identity matrix (In)

i.e., there is one non-null element in each row, and at most one non-null element
in each column. Sampling events take place at each time instant associated with a
non-null column of A, as indicated in Fig. 6.6.

Note that, according to this definition, random sampling belongs at the same time
to all of the three cases defined in Sect. 6.2.

Such a hardware simplicity is, however, counterbalanced by low performance in
terms of signal quality reconstruction. When looking for incoherence between D and
A, and given the structure of A as in Fig. 6.7, it is reasonable to assume that good
performance is achieved only in the DCT case, since all DCT basis elements have
a very large support. Conversely, in both the Wavelet case and the identity matrix
case, the coherence between A and D is higher, and reconstruction performance is
expected to be very poor. Results are shown in Fig. 6.8, and confirm this intuition.

In conclusion, RS is a very simple approach, but can ensure good quality only for
particular signals, mainly those sparse on a Fourier (or similar) basis. In practical
approaches, RS finds application only in the sampling of very high-frequency
sinusoidal tones [15]. For this lack of generality, it will not be considered in the
rest of this manuscript.

6.3.2 Random Demodulator

In the computation of y D Ax, and assuming that A has not a particular structure, m
parallel hardware blocks are necessary, each one computing the each measurements
by means of an integrator or an adder depending on the case identified by Sect. 6.2.

The architecture known as RD avoids this replication. In other words, a single
adder (or integrator) is used to compute all measurements by designing A such that
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x(t) S/H
x(kT ) Σ

k∈supp(Aj,.)
A j,kx(kT )

ADC yS/P
y j

Fig. 6.9 Block scheme of the Random Demodulator architecture in the analog discrete-time case

Fig. 6.10 Example of an
8� 16 sensing matrix A
corresponding to the
implementation of a RD
architecture. White blocks
correspond to zero elements A
the support of the j-th row has no intersections with the support of all other rows.
This architecture, assuming an analog discrete-time implementation, is depicted in
Fig. 6.9, while an example of a sensing matrix A allowing this simplified structure
is depicted in Fig. 6.10.

Roughly speaking, and allowing Aj;k 2 R to consider the general case, each
column has only one non-null element, while more than one non-null elements
in a single row are allowed. The number of nonzero elements of the j-th row has
been defined in Chap. 4 as Nj, so that also here we use Nj D kAj;�k0. Particularly
interesting is the case where the system is symmetric, i.e., all rows have the same
number of nonzero elements Nj D N, 8j. In this case it is clearly mN D n.
Otherwise, it is

Pm�1
jD0 Nj D n.

Note, however that, for the sake of exactness, we should consider that the Aj;k

identified up to now as non-null entries of A are actually random variables drawn
accordingly to a given reference distribution. If zero is an acceptable value for
this distribution, then there is a probability that an expected non-null Aj;k may be
actually equal to zero. To cope with this, we redefine the Nj constant and the k � k0
operator, considering that Aj;k belongs to the support of A (and so it is counted in the
computation of the k � k0 norm) if, given all possible A instances, at least in some of
them it is Aj;k ¤ 0. With this, we can formally write conditions for a sensing matrix
A in order to be implemented on a RD system as

8
<̂

:̂

m�1X

jD0
kAj;�k0 D n; 8j

kA�;kk0 D 1; 8k

:
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Fig. 6.11 Montecarlo comparison between performance of a RD system with n D 128, � D 6 in
terms of signal reconstruction quality—plot (a)—and probability of correct reconstruction—plot
(b)—as a function of the number of measurement m. The considered sparsity bases are the Discrete
Cosine Transform (DCT), the Daubechies-4 Wavelet (Daub), and the n� n identity matrix (In)

Due to the lack of any parallel structure, however, performance is very similar
to that of the RS. Simulation results for the same setting considered in the previous
subsection (i.e., n D 128 and � D 6) in terms of the number m of measurements
are plotted in Fig. 6.11. The RD system is considered symmetric whenever possible,
i.e., N D n=m if n is an integer multiple of m. Otherwise, Nj for j D 1; : : : ;m � 2 is
the smallest integer larger than n=m, i.e., Nj D dn=me, while Nm�1 is smaller than
the Nj and computed to satisfy the constraint

Pm�1
jD0 Nj D n.

Acceptable performance is achieved only in the DCT case, while in both the
Daub and the identity matrix cases performance is very poor. Note also that, in
order to have a sufficient number of measurements m, it is necessary that N is small.
This is more evident when plotting the same performance curves as a function of N,
as in Fig. 6.12. Only for very low values such as N D 2 or N D 3 the input signal
can be effectively reconstructed. Note that in this plot, N has to be considered equal
to N D n=m if n is an integer multiple of m, and N D dn=me otherwise.

6.3.3 Random Modulator Pre-Integration

Let us assume that no constraints are posed on the A, i.e.,

( kAj;�k0 D n; 8j

kA�;kk0 D m; 8k
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Fig. 6.12 Montecarlo comparison between performance of a RD system with n D 128, � D 6 in
terms of signal reconstruction quality—plot (a)—and probability of correct reconstruction—plot
(b)—as a function of N. The considered sparsity bases are the Discrete Cosine Transform (DCT),
the Daubechies-4 Wavelet (Daub), and the n� n identity matrix (In)

where the k � k0 norm has to be intended in the extended way considered in the
previous subsection. The hardware architecture capable of implementing this matrix
is the RMPI, made of m parallel paths, each one with an integrator (or an adder)
computing a single measurement yj. An RMPI architecture can be implemented in
many different ways. An example for the analog discrete-time case is depicted in
Fig. 6.13, highlighting the presence of m identical parallel paths. Of course, real
implemented architectures could be slightly different. For example, blocks such as
the sample/hold or the ADC can be multiplexed and shared [12].

Clearly, since this structure allows any possible sensing matrix A (an example
of which is depicted in Fig. 6.14), it has optimal performance but at the cost of
increasing hardware complexity (in terms, for example, of both area and power
consumption) with m due to the parallel nature of the approach.

The plots of RMPI performance in terms of both signal reconstruction quality and
probability of correct reconstruction can be found in Fig. 6.15. Results are clearly
independent of the sparsity basis D, and can be considered satisfactory starting from
low values of m. Almost all of the AIC prototypes presented in the literature are
based on an RMPI architecture [6, 12].

6.3.4 Hybrid RD-RMPI Architecture

The RMPI architecture has proven to be the most reliable one in terms of flexibility
with respect to the input signal. Furthermore when considering biomedical signals,
since it is known that they are sparse with respect to a Wavelet [5] or a Gabor [13]
basis, this approach is the only one allowing a correct reconstruction.



6.3 Architectures and Implementation Guidelines 153

x(t)

S/H
x(kT )

S/H
x(kT )

S/H
x(kT )

n−1

∑
k=0

A0,kx(kT )

n−1

∑
k=0

A1,kx(kT )

n−1

∑
k=0

Am−1,kx(kT )

ADC y0

ADC y1

ADC ym−1

Fig. 6.13 Block scheme of the Random Modulator Pre-Integration architecture, highlighting the
m parallel paths structure

Fig. 6.14 Example of an
8� 16 sensing matrix A
corresponding to the
implementation of a Random
Modulator Pre-Integration
architecture A

However, when dealing with a hardware implemented system, embedding a large
number of parallel channels may be an issue, for example, in terms of area or power
consumption [14], or even due to clock distribution issues in high speed circuits
[16]. In conclusion, and with particular reference to analog implementations, the
number of parallel paths that can be implemented (and consequently, the number of
measurements that can be computed at the same time) is limited.

The problem can be solved by using an approach that is actually hybrid between
the RD and the RMPI ones. Let us assume that only a small number M of
measurements can be computed at the same time, and that these measurements are
computed by using only the first N samples of the actual time windows. If this is
the case, by taking other N different samples (e.g., the ones immediately following
those already considered) it would be possible to use the M paths used to compute
the first set of measurements to generate M additional measurements. By repeating
this q times, we end with an amount of m D qM measurements computed by using
n D qN different input samples. This approach is sketched in Fig. 6.16.
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Fig. 6.15 Montecarlo comparison between performance of an RMPI system with n D 128, � D 6

in terms of signal reconstruction quality—plot (a)—and probability of correct reconstruction—plot
(b)—as a function of the number of measurement m. The considered sparsity bases are the Discrete
Cosine Transform (DCT), the Daubechies-4 Wavelet (Daub), and the n� n identity matrix (In)

x(t)

(x0,x1, . . . ,xN−1)� (xN , . . . ,x2N−1)� (x(q−1)N , . . . ,xqN−1)�

Tw
(x0,x1,x2, . . . ,xqN−1)�

(y0, y1, . . . , yM−1)� (yM, . . . , y2M−1)� (y(q−1)M, . . . , yqM−1)�

Fig. 6.16 Timing approach used in hybrid RD/RMPI architectures

This approach can be described by a highly structured A, an example of that is
depicted in Fig. 6.17. This sensing matrix is block diagonal, composed by q blocks.
Each block is an M � N, and describes how a block of N samples gives rise to
a block of M measurements. Roughly speaking, each block represents an M � N
RMPI system, that is applied to a different slice of the input signal in a way that is
very similar to that used in the RD approach. By collecting the measurements from
all blocks, it is possible to get a sufficient number of measurements to reconstruct the
entire signal. According to another point of view, it is possible to see this approach
as M RD systems working in a parallel fashion, as a full RMPI system. Note that
each sensing block in A could be different from the each other, but they could also
be identical to allow a simpler hardware implementation.
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Fig. 6.17 Example of an
8� 16 sensing matrix A
corresponding to the
implementation of a hybrid
RD-RMPI architecture with
q D 4. White blocks
correspond to zero elements
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Fig. 6.18 Montecarlo comparison between performance of a hybrid RD/RMPI system with n D
128, m D 64, � D 6 in terms of signal reconstruction quality—plot (a)—and probability of correct
reconstruction—plot (b)—as a function of the number of blocks q. The considered sparsity bases
are the Discrete Cosine Transform (DCT), the Daubechies-4 Wavelet (Daub), and the n�n identity
matrix (In)

Performance of a hybrid RD/RMPI system in terms of both signal reconstruction
quality and probability of correct reconstruction can be found in Fig. 6.18. The
system considered is the same as in the other cases, i.e., n D 128 and � D 6. The
number of measurements is fixed to m D 64, and results have been plotted as a
function of the number of blocks q, with N D n=q and M D m=q. The behavior
is intermediate between the RD and the RMPI. For small values of q, a few large
blocks can be found in the A (i.e., N and M are large) and performance are similar to
that of the RMPI: independently of the sparsity basis D, reconstruction is achieved
with high quality and high probability to be correct. As q increases, blocks are
smaller (M and N decrease), and the structure of A is similar to that of the RD
approach. Here, exactly like in the RD case, good results are achieved only for the
DCT sparsity basis, but the system is not capable anymore to correctly reconstruct
signals sparse on the Daub or identity basis.
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6.4 The Saturation Problem

Independently of the architecture adopted from those in Sect. 6.2, in general the
computation of the j-th measurements can be written as

yj D
n�1X

kD0
Aj;k xk (6.7)

Then, the result yj is quantized as Q.yj/ before being either transmitted or stored
into memory.

One or more of the Aj;k, k D 0; : : : ; n � 1, are different from zero and give a
contribution to the sum. We indicate this quantity as kAj;�k0 D Nj.

As already seen in Chap. 3, the central limit theorem can be applied to (6.7).
In detail, under the assumption that Nj is large enough (in practical cases, starting
from values of Nj in the order of 10), then yj can be assumed having a Gaussian
distribution. This relies on the following assumptions:

i let us ignore in the sum (6.7) all terms for which Aj;k D 0, i.e., let indicate
with K the subset of indexes for which Aj;k ¤ 0 if and only if k 2 K. In this
way

yj D
n�1X

kD0
Aj;k xk D

X

k2K

Aj;k xk:

Alternatively, we can also assume that Aj;k ¤ 0, 8k, with Nj D n.
ii the Nj random variables given by the product Aj;k xk for k 2 K can be

considered independent of each other. This happens when either the Aj;k are
independent of each other, or the xk are independent of each other.

iii the Nj random variables Aj;k xk with k 2 K can be considered identically
distributed, with zero-mean EŒAj;k xk� D 0 and variance EŒA2j;k x2k � that is finite
and independent of k.

Then, central limit theorem can be applied considering the random variables �j;k D
Aj;k xk=

q
EŒA2j;k x2k �, that are independent of each other, with zero-mean and unity

variance. The sum
P

k2K �j;k=
p

Nj can be approximated, for large Nj, with a standard
normal random variable. Observing that

yj D
q

NjEŒA2j;k x2k �
X

k2K

1
p

Nj
�j;k

then if �y D
q

Nj EŒA2j;k x2k � has a finite value, also yj can be seen as a zero-mean

Gaussian variables with variance �2y . The larger the Nj, the better this approximation.
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The Gaussian limit implies a potentially serious design problem, assuming a
pure Gaussian approximation, yj can take value in the whole real set. In more
practical cases, we can say that yj may assume very large values, but the majority
of the observed cases are located around the mean value EŒyj� D 0. This is an
important issue when paired with a quantization function Q.�/ that is uniform, i.e.,
all quantization steps have the same size, and with a limited conversion range, i.e.,
it presents two thresholds (an upper one and a lower one) identifying an interval
inside which conversion is achieved, while outside saturation happens. All real-
world quantizers (so, all real-word ADCs) are uniform with a finite conversion
range.

Assuming for the sake of simplicity that �y is known, let us indicate with
�Q�y and with ��Q�y the upper and the lower saturation thresholds of the Q.�/,
respectively. This implicitly define a quantization step � D 2�Q�y=l, where l is
the number of levels of the quantizer. However, due to the Gaussian approximation,
instances of yj may fall outside the quantization interval Œ��Q�y; �Q�y�. In other
words, there is a certain probability psat that Q.�/ saturates, and due to the Gaussian
approximation this is given by

psat D Pr.jyjj > �Q�y/ D erfc

�
�Qp
2

�

and consequently a probability of non-saturation, given by

p:sat D 1 � psat D 1 � erfc

�
�Qp
2

�

where erfc.�/ is the complementary error function. We refer to this as static
saturation.

Yet, a second more subtle problem exists. Let us recast (6.7) as

y.i/j D
iX

kD0
Aj;k xk

yj D y.n�1/j

(6.8)

In other words, y.i/j is the intermediate value of yj accumulated on the hardware
computing (6.7) at step i. Also this block has an upper and a lower bound
due, for example, to the limited number of bits in case (6.8) is computed on
a digital hardware, or to saturation of the adder (or the integrator) used in an
analog implementation. Let us indicate them with �˙�y and ��˙�y, respectively.

If at any time step i it happens that jy.i/j j > �˙�y, we deal with a dynamic
saturation.

Note that a static saturation is an event that can be easily detected, since
measurements outside the conversion range are automatically converted either to the
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Fig. 6.19 Example of evolution of the computation of the j-th measurement by means of
intermediate values y.i/j . If dynamic saturation happens at time step O{, evolution ends with a non-
correct, corrupted value. Note that the final corrupted measurement value at time step n may still
fall inside the Q.�/ conversion range

maximum or minimum digital value by Q.�/. Conversely, when a dynamic saturation
happens at time step O{ < n� 1, the final value yj is irreparably corrupted. Note that,
depending on the values of Aj;k xk for k D O{; : : : ; n�1, the computed yj may actually
fall in the Q.�/ conversion range as in the example of Fig. 6.19. Due to this, simply
examining yj is not useful for detecting these events.

The computation of the probability of a dynamic saturation is not an easy task,
since the path followed by y.i/k has to be modeled as a random walk. By indicating
with Qp:sat the probability that, while computing (6.7), neither a static saturation, nor
a dynamic saturation happens, it is, however, certainly Qp:sat � p:sat.

At this point, one may wonder how to deal with the above described static
and dynamic saturation in real-world AICs. Some theoretical considerations on the
effect of static saturation can be found in [10] while a discussion of both static and
dynamic saturation in the more realistic model we adopt here has been first proposed
in [11].

Two considerations are worth mentioning here. The first one regards the correct
way in which �Q and �˙ should be selected. This is actually a trade-off and, referring
in particular to �Q, we can say:

• when designing a system, it should be �˙ � �Q.
• when �Q has a low value, then the quantization step � is small, it is the

quantization error in each measurement. Even if relating the measurement
quantization error with the reconstruction error is not trivial (see Chap. 8 for
details), it reasonable that the higher the measurement quantization error, the
higher the reconstruction error. From this point of view, a low �Q is preferable.
However, since p:sat, and so Qp:sat is decreasing with �Q, we have to deal with
many saturated or corrupted measurements;
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• when �Q has a high value, Qp:sat may be low. However, � is large thus producing
a non-negligible quantization error that either is inevitably reflected in poor
reconstruction performance, or must be compensated by using a large number
of quantization levels l.

The second consideration is about the way in which saturated measurements
should be considered in the reconstruction algorithm. A first, straightforward
approach to cope with static saturation is to exploit the allegedely “democracy”
of the set of measurements [10], i.e., the fact that, under certain conditions, one
may assume that the information content of each measurement is identical. If
this were true, simply discarding saturated measurement would produce a graceful
performance degradation since the acquisition system would behave as if it were
designed to use a number of measurement equal to the number of non-saturated
measurement. Moreover, non-degraded performance could be restored by simply
taking further measurement until the original number is reached. Following [7],
we will name this approach as SPD since it concretizes in Saturated Projection
Dropping.

This aspect has been intensively discussed in Sect. 2.5. Perfect democracy only
holds between measurement that are taken as perfect linear combinations of the
samples. Saturation acts as a selector discarding those that have a larger value while
keeping the smaller ones. From the point of view of the signal-to-noise ratio this
is clearly not a democratic behavior and causes non-saturated measurements to be
less useful than those that have to be dropped and cannot be perfectly replaced
by simply trying more measurements. In fact, as discussed in Sect. 2.5, discarded
measurements are the ones with the higher energy, i.e., those containing the largest
quantity of information.

The problem of dealing with saturated measurements has been addressed in detail
in [11], and has no simple solutions other than using a large value of �Q and an even
larger �˙ thus unavoidably increasing measures quantization error. According to
simulation results proposed in [11], exploiting at the decoder side the information
that the j-th channel is saturated by replacing the corresponding equation

Pn�1
kD0 D yj

with the inequality
Pn�1

kD0 > �Q�y or
Pn�1

kD0 < ��Q�y (for a positive and negative
static saturation, respectively) does not increase reconstruction performance with
respect to simply dropping saturated measurements.

However, [11] proposes a possible workaround. By recalling that the philosophy
underlying the entire CS framework is to recover a signal with the lowest possible
amount of information, the number of measurement m is usually not far from its
lower theoretical bound, and so discarding even a single measurement may lead to
an insufficient quantity of information to correctly reconstruct the signal. In other
words, in order to ensure reconstruction one should try to recover some amount
of information even from corrupted measurements by replacing them with the last
reliable data we have. As in the old common saying, exploiting “everything but the
Oink!,” one should be able to plug into the reconstruction algorithm whatever kind
of information agrees with the measurement outcomes.
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The workaround proposed in [11] is to introduce an almost negligible hardware
overhead in order to be able to check at any time step i if saturation happens. This
allows to exactly detect the time instant O{ when dynamic saturation occurs.

Given O{, we can reasonably assume that y.O{/j � �˙�y if a positive dynamic

saturation occurs, and that y.O{/j � ��˙�y if a negative one happens. In other words,

O{X

jD0
Aj;k xk D

(
�˙�y if positive saturation occurred

��˙�y if negative saturation occurred
: (6.9)

Replacing the equation associated with the j-th corrupted measurement with
(6.9) in the decoding algorithm makes possible to effectively exploit all known
information on the signal. This can be easily done by replacing the sensing matrix
A with an adjusted one A0 where the j-th row Aj;� elements have been zeroed in
correspondence to all time instants after the one in which saturation occurs. More
formally, we may set

A0j;k D
(

Aj;k for k D 0; : : : ; O{ � 1
0 for k D O{; : : : ; n � 1 (6.10)

as well as

y0j D

8
ˆ̂<

ˆ̂
:

yj if no saturation occurred

�˙�y if positive saturation occurred

��˙�y if negative saturation occurred

(6.11)

to reformulate the measurement equation (6.7) with

y0j D
n�1X

kD0
A0j;k xk

that holds independently of any dynamic saturation event observed. Of course, if
multiple saturation events are detected for the same j-th measurement, only the first
one may to be used. Following [7], we indicate this approach as SPW, standing for
Saturated Projection Windowing.

Note that this solution makes the matrix A0 used for reconstruction a function of
the signal samples xk that caused saturation. Hence, the measurement vector passed
to the decoder must contain also the information needed to switch from the signal-
independent A to A0. Note also that saturation may happen in more than one row at
different time steps. This case is illustrated in the example of Fig. 6.20.

In [11] a comparison of the performance of the SPD and the SPW approaches is
also proposed. We want to recall here just some results in terms of probability of
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Fig. 6.20 Example of an
RMPI sensing matrix A0

corrected accordingly to
(6.10) in order to cope with
saturated measurement (SPW
approach)

0 0 0 0 0 0

0 0

A′
Fig. 6.21 PCR as a function
of �Q and �˙=�Q in a
Montecarlo simulation
adopting the SPD approach
(adapted from [11])
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correct reconstruction, that has been defined in [11] exactly as in Sect. 2.3, but with
a different target RSNRŒdB�min and different ISNR levels, in a system with n D 256,
m D 64, � D 6, A 2 f�1;C1gm�n and, for the sake of simplicity, D D In.

We have plotted in Fig. 6.21 the contour plot of the relationship between PCR and
the two parameters �Q and �˙=�Q (darker colors correspond to lower PCR values)
obtained from Montecarlo simulations of a system implementing the SPD approach,
i.e., dropping all saturated measurements. Even for very high values of �˙=�Q for
which the probability of an undetected corruption at the summing stage vanishes,
performance degradation is always substantial: a system aiming at 99% of PCR,
while keeping the two saturation thresholds as close as possible, should reserve a
�Q > 3 for the quantization stage and �˙ > 1:5� �Q D 4:5 for the summing stage.

Figure 6.21 should be compared with Fig. 6.22, showing performance of the SPW
under the same simulation setting. When corruption is properly handled, a 99% PCR
can be easily reached for �˙=�Q ' 1 and for very small values of �Q, thus allowing
an extremely effective implementation. The approach suffers from a small drawback
only for �˙ large and �Q small. The reason is clear: in this region, static saturation
has a high probability, while dynamic saturation has a low one. In other words,
we are dealing with a lot of saturated measurements that have to be discarded, not
being possible to retrieve information from (6.9) due to lack of dynamic saturation.
As in the SPD case, for all saturated measurements, using inequalities like �Q�y <
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Fig. 6.22 PCR as a function
of �Q and �˙=�Q in a
Montecarlo simulation
adopting the SPW approach
(adapted from [11])
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yj < �˙�y or ��˙�y < yj < ��Q�y does not increase reconstruction performance.
Accordingly to this observation, the optimal choice for SPW is to set �˙ D �Q.

The aforementioned SPW approach has been implemented in the RMPI proto-
type described in [12] with very good results. A short summary of this real-world
case can be found in Sect. 7.6.

6.5 From Temporal Domain to Mixed Spatial–Temporal
Domain

In the general model for CS systems defined in Sect. 6.2, the computation of the m-
dimensional measurement vector y is achieved starting from an n-size input signal
vector x 2 R

n by means of the sensing matrix A 2 R
m�n where x is known to

be sparse in a properly defined basis D. Reconstruction is achieved with the usual
minimization problem

arg min
�2Rn

k�k1
s:t: ky � B�k2 � �

with x D D�, B D AD (B 2 R
m�n), and with � a proper positive constant.

In all this chapter, the input signal has been modeled as a 1-dimension time-
domain signal x.t/, that is sampled during a single time window 0 � t < Tw yielding
an input signal vector x D .x0; x1; : : : ; xn�1/> achieved, for example, by sampling
x.t/ at Nyquist rate, i.e., xk D x.kT/.

Of course, many different signal models exist. In this section we want to deal with
the case where the input signal is an nS-dimension one, as in the case of a multi-lead
electrocardiographic (ECG) or electroencephalographic (EEG) signal [14]. In this
case, we have to model the input signal as an array of nS time-domain functions
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x.t/ D .x.0/.t/; x.1/.t/; : : : ; x.nS�1/.t//. Assuming that this signal is observed in a
time windows 0 � t < Tw, and that Tw D dT , than we deal with an input matrix
X 2 R

d�nS defined as

X D

0

B
BB
@

x.0/.0/ x.1/.0/ � � � x.nS�1/.0/
x.0/.T/ x.1/.T/ � � � x.nS�1/.T/
:::

:::
: : :

:::

x.0/..d � 1/T/ x.1/..d � 1/T/ � � � x.nS�1/..d � 1/T/

1

C
CC
A

9
>>>=

>>>;

d rows

„ ƒ‚ …
nS colums

(6.12)

where Xj;k D x.k/.jT/. We can still define n D dnS to keep the same complexity (in
terms of dimensionality) as the standard CS problem considered up to now.

For nS D 1 this model is equivalent to the formulation already considered. The
dual case, i.e., d D 1 takes into account a 1-dimension spatial-domain system.
From a mathematical point of view, the only difference with respect to the standard
approach is that we have an input row vector instead of an input column vector. Of
course, it is not difficult to deal with this system under the framework developed so
far.

More interesting is the case where nS > 1, d > 1. From a physical point of view,
we are dealing with a mixed time-spatial system, where we could exploit sparsity
properties in both domains. To cite a few examples, it is known that in a stereo audio
recording, right and left channels are strongly correlated. This information is always
used in coding algorithms: the most used approach is to encode in high quality the
common-mode information (i.e., the sum of the left and of the right channels) and
in low quality the differential information [8]. A similar situation is present in a
multi-lead EEG system, since signals coming from adjacent channels are strongly
correlated [14].

Yet, in this section we are more interested in the mathematical aspect of this
approach. So, we neglect the system physical aspects and assume that for some
reason the input signal takes the form of a d � nS matrix as in (6.12). In this
case the relation y D A x used in the standard CS approach holds as y D A X if
we assume that A is a three-dimensional m � d � nS object, and that we define a
proper product Rm�d�nS ı Rd�nS ! R

m, so that y is still an m-size measurements
vector. In the same way, the relation x D D�, which has to be written now as
X D D� , holds only if this product is not considered anymore a matrix/vector
product, but a suitable defined product involving higher-dimension objects. Despite
possible, this approach poses several issues, in particular in the definition of the A
and of the D.

A more pragmatic approach is to define a reshaping operator P W Rd�nS ! R
d nS

taking the sample matrix X as input and concatenating its rows or columns after
each other, thus generating a sample vector x 2 R

d nS . Defining n D dnS, this system
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can be included in the general CS framework considering x D P.X/ as sampling
vector. In other words, measurements are obtained by the usual matrix/vector
multiplication

y D AP.X/

where A 2 R
m�d nS is the standard two-dimension sampling matrix.

This approach has been followed in [14]. In particular, authors used two different
reshaping operators: one gathering elements of X accordingly to their sampling
instant in order to simplify the computation of the measurements, and one gathering
elements of X accordingly to the channel number in order to exploit the temporal
sparsity properties of the EEG signal.

In more detail, measurements in [14] are taken accordingly to time-priority
reshaping operator P.�/ defined as

P.X/ D �x.0/.0/; x.1/.0/; : : : ; x.nS�1/.0/; x.0/..d � 1/T/; : : : ; x.nS�1/..d � 1/T/�>

where X is defined as in (6.12). In other words, the first nS elements of x D P.X/
are the sampling of the nS EEG channels at the first sampling instant. Measurements
are taken accordingly to y D AP.X/, where

A D

0

BB
B
@

A.0/ 0 � � � 0

0 A.1/ � � � 0
:::

:::
: : :

:::

0 0 � � � A.d�1/

1

CC
C
A

9
>>>=

>>>;

d mS D m rows

„ ƒ‚ …
d nS D n colums

where the A.j/ 2 R
mS�nS are sampling sub-matrices. In this way, the A.0/ generates

mS measurements from the nS samples, one for each channel, at the time step 0,
the A.1/ generates mS measurements from samples at time step 1, and so on. The
generation of measurements, from a hardware point of view, is simplified since at
each time step nS samples are generated and used to compute mS measurements.
After that, samples are discarded, and new ones are used to compute other mS

measurements. The total amount of measurement is m, with m D d mS. Note that,
accordingly to this definition, it is still A 2 R

m�n.
In order to avoid a complex definition in the whole spatial–temporal domain,

sparsity in [14] is considered in the temporal domain only. In details, authors exploit
the well-known property of EEG signals to be sparse in a Gabor domain [13]. To
this aim, a second spatial-priority reshaping operator is introduced

S .X/ D �x.0/.0/; x.0/.T/; : : : ; x.0/..d � 1/T/; x.1/.0/; : : : ; x.nS�1/..d � 1/T/�>
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where the first d elements of x D S .X/ are the d Nyquist samples of the first EEG
channel. By introducing � 2 R

d�nS as the sparse coefficient matrix of X 2 R
d�nS ,

mathematically

S .X/ D DS .� /

the sparsity matrix D is defined as

D D

0

BBB
@

D.0/ 0 � � � 0

0 D.1/ � � � 0
:::

:::
: : :

:::

0 0 � � � D.nS�1/

1

CCC
A

9
>>>=

>>>;

d ns D n rows

„ ƒ‚ …
dnS D n colums

where the D.0/ D D.1/ D : : : D D.nS�1/ 2 R
d�d are all equal to the each other,

and given by the standard d � d sparsity matrix of a single channel EEG made by d
samples.

In other words, due to the particular structure of D, the sparsity properties of the
k-th EEG channel given by the k-th column X�;k�1 of X, are determined only by the
k-th column � �;k�1 of the sparse coefficient matrix � as

0

BB
B
@

x.k�1/.0/
x.k�1/.T/

:::

x.k�1/..d � 1/T/

1

CC
C
A
D D.k�1/

0

BB
B
@

� 0;k�1
� 1;k�1
:::

� d�1;k�1

1

CC
C
A

This approach easily allows to transfer all the know-how on the sparsity for a
single channel to the multichannel approach. Reconstruction can be achieved by
asking that the k-th EEG channel is sparse accordingly to its D.k�1/ sparsity matrix.
Mathematically

arg min
�2Rd�nS

kS .� /k1
s:t: ky � BS .� /k2 � �

(6.13)

with B D AD as usual.
However, even if this makes the reconstruction approach aligned with the general

CS theory, it is easy to see that, due to the block-diagonal nature of D, (6.13) induces
coefficient-wise sparsity without considering the inter-channel correlation of the
neural signals. The neural recovery model should employ the cross correlations of
EEG signals to improve the reconstruction quality. To cope with this, an appropriate
more complex model for multichannel neural signals is also introduced.
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Authors of [14] modeled the dependency of neural signals using a mixed `1;2
norm [9]. The mixed `1;2 norm of � is defined as

k� k1;2 D
d�1X

jD0

vuut
ns�1X

kD0
� j;k

2

i.e., the `2 norm of every row of � is computed, and the `1 norm of all results
gives the desired result. The solution to the multichannel neural recovery using the
mixed `1;2 norm is obtained by replacing the `1 norm by the mixed norm in the
reconstruction problem as

arg min
�2Rd�nS

kS .� /k1;2
s:t: ky � BS .� /k2 � �

(6.14)

According to [14], the `1;2 norm respects the group structure of neural signals
and imposes sparsity on the group of coefficients rather than each coefficient
independently. Results show an improvement in the joint reconstruction of the
multichannel EEG signal of about 5 dB when (6.14) is used with respect to the case
when (6.13) is used.
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Chapter 7
Analog-to-Information Conversion

No monolithic implementations of Compressed Sensing (CS)-based acquisition
systems have been proposed so far as commercial products. Yet, a number of
prototypes have appeared in the scientific literature. In this chapter we present some
hardware architectures recently proposed in the most important microelectronics
conferences and journals, capable of working as CS-based analog-to-information
converters (AICs).

All the works considered here share a common methodology. In fact, despite
being very different from each other, the front-end implementation is always
analog, i.e., all of them belong to the class of analog Compressed Sensing systems
exploiting the random modulation pre-integration (RMPI) architecture. The order in
which these works are considered is the same order in which they appeared in the
literature.

Conversely, no architectures exploiting the random sampling (RS) architecture is
considered here, even if some implementation of AIC based on this approach has
been proposed so far [26]. The main reason is that a RS-based AIC is basically
a standard analog-to-digital converter (ADC) where randomization is added into
the control logic. However, the core architecture is typically the very same of a
standard ADC with performance (bandwidth, precision, etc.) similar to that of the
ADC embedded in the AIC, while RMPI solutions require a full-custom design.
Furthermore, based on the observations of Chap. 6, RS architectures are not general
purpose ones and are able to achieve good performance only on a limited class of
input signals.

© Springer International Publishing AG 2018
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7.1 Introduction and Notation

To the best of authors’ knowledge, the first RMPI prototype appeared in the
literature has been presented by Yoo et al. at the 2012 IEEE Radio Frequency
Integrated Circuits Symposium [27], while some design aspects appeared a few
months before in [28]. The circuit is a sub-Nyquist-rate receiver for radar pulse
signal designed in 90 nm technology, with up to 2GHz signals, and it is presented
in Sect. 7.2.

In Sect. 7.3 we review the work of Chen et al. preliminarily appeared in [9]
and then successively fully characterized at the end of 2012 in [8]. The circuit,
fabricated in 90 nm CMOS process, implements a data acquisition front end for
a radio frequency (RF) communication system when assuming a multi-tone input
signal.

In Sect. 7.4 another analog-to-information converter for biomedical signal is
presented. In more detail this circuit, presented in [12] by Gangopadhyay et al. and
designed in 180 nm CMOS process, is an analog front end for electrocardiographic
(ECG) signals. This architecture features a 6-bit multiplying digital-to-analog
converter (DAC) embedded in the integrator circuit as multiplying block.

In Sect. 7.5 we propose a short review of [25] presented by Shoaran et al. in 2014.
This work is a low-power sub-Nyquist sampler for the multichannel acquisition
of cortical intracranial electroencephalographic (EEG) signals. The peculiarity of
this architecture, which has been fabricated in 180 nm CMOS process, is to exploit
sparsity in the spatial domain instead of in the temporal domain.

The last considered architecture has been presented by Pareschi et al. in [21].
This circuit, which has been designed in 180 nm CMOS process, is an analog-to-
information converter for generic biomedical signals. Authors propose measure-
ments both on ECG signals and electromyographic (EMG) signals. The peculiarity
of this converter is to introduce a smart saturation checking mechanism, with which
it is possible to reconstruct the acquired signal even if many measurements suffer
saturation, and to exploit the rakeness approach [17] to minimize the number of
measurement required to achieve signal reconstruction.

In this overview we will not focus on circuit performance (even if a detailed
summary of measurements proposed by authors will be provided for every proto-
type), but on architectural solutions adopted to solve CS issues strictly related to
the hardware implementation. When dealing with an actual implementation of a CS
system, in fact, and in particular when referring to analog CS approaches, additional
issues arise that are not encountered when the CS is studied from a signal processing
point of view.

With the additional aim of providing a brief overview on CS theory and of
introducing the notation used in this chapter, in the following we list the three main
issues that any implementation of a CS-based AIC should face.

1. Time continuity The peculiarity of the CS paradigm is, in order to avoid infinite-
dimension reconstruction problems, to deal with input signals x.t/ defined only
for 0 � t < Tw. Considering, for example, a discrete-time approach, the signal
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x.t/, 0 � t < Tw, can be sampled at Nyquist frequency fN D 1=T , with Tw D n T ,
giving rise to n samples xj D x.j T/ with j D 0; 1; : : : ; n � 1.

Given this, and referring to the continuous-time case, a set of m measurements
y D .y0; y1; : : : ; ym�1/> 2 R

m of the input signal are computed by integrating the
product between x.t/ and m different sensing signals aj.t/, j D 0; 1; : : : ;m � 1.
Each sensing function is typically given by pulse-amplitude modulated (PAM)
signal, whose pulses length is set by the Nyquist rate, while amplitudes Aj;k are
stored in the sensing matrix A, i.e.,

aj.t/ D
n�1X

kD0
Aj;k �

	 t

T
� k



(7.1)

where �.�/ is the normalized rectangular function �.�/ D 1 when 0 � � < 1

and 0 elsewhere. Mathematically, the j-th measurement is given by

yj D
Z Tw

0

aj.�/ x.�/ d�: (7.2)

In the discrete-time approach, the AIC directly deals with the n Nyquist-rate
input signal samples xk D x.k T/. In this case, by collecting all samples in
the vector x D .x0; x1; : : : ; xn�1/> 2 R

n, the aim of the AIC is to compute m
measurements by means of the matricial relation

yj D Aj;� x (7.3)

being Aj;� the vector made by the j-th row of the sensing matrix A.
Of course, real-world signals are defined for t 2 R, or j 2 Z. To cope with this,

the slicing approach is typically adopted, as explained in Chap. 6 and illustrated
in Fig. 7.1 along with a basic block diagram of a practical RMPI architecture
both for continuous-time and discrete-time implementation.

In few words, and referring to the continuous-time case regulated by (7.2),
the input signal x.t/ is sliced into subsequent adjacent blocks x.l/.t/; x.lC1/.t/; : : :,
each of them defined only over a time interval of length Tw, i.e., x.l/.t/ D x.l TwC
t/, 8l 2 Z and with 0 � t < Tw. With this, the mathematical relation (7.2) can be
applied and a set of measurements y can be computed, separately for each signal
slice. From a circuital point of view, in order to get the y referred to x.l/.t/, it
is necessary first to shift in time the aj.t/ functions in order to align them with
the currently considered signal slice. Then, each aj.t/ is mixed with x.t/, and the
result is integrated over a time interval of length Tw, more precisely from the
time instant l Tw up to the time instant .l C 1/Tw. After that, the output of the
integrator (from a hardware point of view, typically a voltage level or a charge
quantity) needs to be transferred to an ADC for the conversion into a digital word.

Yet, at the same time .l C 1/Tw, the successive slice x.lC1/.t/ starts, and all
the aforementioned process needs to be repeated. It is reasonable to assume that
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Fig. 7.1 Basic working principle of RMPI architecture, highlighting the slicing process applied
to the input signal and the need for a design allowing time continuity in the elaboration of the
signal slices, and the two different solutions realized by the continuous-time and the discrete-time
approaches

the slice x.lC1/.t/ is processed on the same hardware block used to process the
slice x.l/.t/; however, three conditions must be satisfied in order to do this. (i) The
yj value has to be completely transferred to the ADC. This operation requires a
certain amount of time, which we indicate with TADC. (ii) The integrator has to
be reset (e.g., the accumulated charge cleared) in order to make measurements
of x.lC1/.t/ independent of the previous ones computed for x.l/.t/. Let us indicate
with Treset the amount of time required for this operation. (iii) The aj.t/ functions
have to be re-shifted to be aligned with x.lC1/.t/.

While the third requirement is easily satisfied by periodically repeating the
aj.t/ with period Tw, the first two represent a serious problem. In fact both TADC

and Treset are typically non-negligible times, with the consequence that either
some information of the input signal is lost, or additional resources need to be
included in the design of the RMPI stage.

Of course, the same issue is present for discrete-time architectures, since the
sum in (7.3) is typically computed with discrete-time integrators, which require
a finite time TADC for transferring results to ADCs, and finite time Treset to be
cleared.
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2. Resource saving The main goal of an AIC based on CS is, typically, energy
saving. Yet, being AICs analog circuits, many classical solutions existing for
reducing the power consumption of analog circuits can be applied, such as
designing amplifiers working in sub-threshold conduction mode and exploiting
technology scaling. Here we are interested in circuital solutions developed ad-
hoc for reducing the power consumption of an RMPI integrators capable to
limit the number of active elements, including trade-offs between complexity
and performance of the designed hardware.

A very simple example is the following one. In order to get m different
measurements, both in the discrete-time and in the continuous-time approaches,
m (identical) parallel structures are typically replicated and driven with different
sensing functions aj.t/ or sensing vectors Aj;�, with j D 0; 1; : : : ;m�1. According
to this, a crucial requirement to limit the energy consumption of any AIC is
to keep the number m of measurements as low as possible, since the overall
energy requirements increases linearly with the parallelism and so with m. In
other words, the higher the achievable compression ratio CR D n=m, the lower
the energy requirements of the sensing stage. However, as clearly explained in
Chap. 1, there is a lower bound for m that is related to the sparsity level �,
typically expressed by means of the mathematical relation

m > O
	
� log

	n

�




(7.4)

i.e., the minimum number of measurement is almost linearly increasing with �,
and is logarithmically increasing with n.

In many practical cases the lower bound for m given by (7.4) is too high for
allowing a match between the AIC energy consumption and the usually very
tight energetic budget available. In other cases, the problem is not given only by
energetic constraints, but the lower bound for m is so high that size issues arise.

To cite another example, both (7.2) and (7.3) require analog multiplications,
which are very complex hardware operations. In order to reduce complexity, it
is a common strategy to relax the representation of the coefficients Aj;k by using
a very limited number of bits. As an extreme case, it is also possible to ask that
Aj;k are 1-bit quantities, i.e., that Aj;k 2 f�1; 1g or Aj;k 2 f0; 1g, so that a full
multiplier block is not necessary.

3. Saturation Despite the fact that sometimes this aspect is not considered, when
dealing with an AIC composed by multiple stages (as in the example of Fig. 7.1
where two basic stages, a continuous-time or a discrete-time integrator and an
ADC, are present) saturation may occur in any of them.

This issue has been exhaustively discussed in Sect. 6.4 and can be summarized
as follows. The main problem is not that the ADC converter value may fall
outside of its conversion range. This event in fact can be easily detected, as these
measurements are automatically converted either to the maximum or minimum
digital value, and can be ignored by the reconstruction algorithm. This, of course,
may reduce the number of available measurement to a value smaller than the
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minimum one given by (7.4), impacting correct signal reconstruction. However,
reconstruction stage is aware of this situation, and could generate a proper
warning message.

Conversely, more serious problems occur when the integrator reaches satura-
tion for a time instant in the middle of the integration interval. In this case, the
amplifier used in the integrator block enters a non-linear region, and the mea-
surement yk is irreparably corrupted. Furthermore, depending on the evolution
of the system from the saturation event to the end of the integration interval, it
may happen that the integrator output value fall in the ADC conversion range. In
this case reconstruction stage is not aware of the erroneous measurement unless
additional dedicated hardware is used.

7.2 AIC for Radar Pulse Signals by Yoo et al., 2012

The first circuit considered in this overview is a 100MHz–2GHz radar pulse
receiver whose working principle and preliminary measurement results from a
signal processing point of view have been presented at the IEEE International
Conference on Acoustics, Speech and Signal Processing [28], held in Kyoto,
Japan, 25–30 March, 2012, while detailed hardware description and measurements
appeared a few months later at the IEEE Radio Frequency Integrated Circuits
Symposium [27], Montreal, Canada, 17–19 June, 2012. In a joint work by the
California Institute of Technology, CA, and Stanford University, CA, authors
designed an RMPI analog preprocessor in CMOS 90 nm technology including 8
elaboration channels, resulting in an AIC with a dynamic range of 54 dB while
digitizing measurement samples at a rate of 320Ms=s, that is a factor 12.5
below the Nyquist rate fN D 4GHz. Total area occupation is 8:85mm2, while
the power consumption is evaluated in 506:4mW excluding the analog output
buffers.

The microphotograph of the integrated circuit, taken from [27], is depicted in
Fig. 7.2, while the simplified block diagram is depicted in Fig. 7.3. Basically, the
circuit consists of 8 RMPI parallel channels with a common input node driven by a
shared low-noise amplifier (LNA). Each channel includes a passive mixer capable
of multiplying the input signal by a PAM sensing signal whose amplitudes Aj;k 2
f�1;C1g are stored as 1-bit values in a local digital memory. The system is validated
by using single tones and radar pulses as test signal.

7.2.1 Hardware Architecture

A simplified block diagram of the architecture of the AIC described in [27] is
reported in Fig. 7.3. A LNA with 18 dB gain and 3GHz bandwidth works as input
stage. The output of the LNA drives M D 8 parallel RMPI channels, whose design
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Fig. 7.2 Die microphotograph of the integrated circuit considered in Sect. 7.2 (adapted from [27])
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Fig. 7.3 Simplified block diagram of the architecture of the integrated circuit considered in
Sect. 7.2

is based on a fully differential architecture, and it is almost identical to that of
a standard RF receivers exploiting frequency down-conversion using a current-
domain approach [3].

In detail, the large voltage-amplitude output of the LNA is converted into a large
current-domain signal with a transconductor amplifier with gain gm. While the LNA
is shared, each RMPI channel has its own transconductor amplifier in order to
reduce cross-talk among channels. The generated current signals are then mixed
by standard analog passive mixers, where the port usually connected to the local
oscillator (LO) in a classic down-conversion-based RF receiver is now connected to
a programmable 128-bit shift registers playing the role of a serial memory. In other
words, the LO ports of the k-th RMPI channel is driven by the PAM voltage signal
that can be mathematically modeled as aj.t/ D PN�1

kD0 Aj;k �.t=T � k/, where �.t/
is the normalized rectangular function �.t/ D 1 when 0 � t < 1 and 0 elsewhere,
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where T D 1=fN , and where the Aj;k 2 f�1;C1g are the 1-bit digital values stored
in the shift register. In such a way, the designed integrated circuit implements an
antipodal RMPI architecture.

The use of a programmable shift register for storing the sensing vector has mainly
two reasons. First of all, this solution has been chosen for testing purposes, easily
allowing to load any bit sequence of any length up to 128 bit. The other reason is due
to speed issues. The mixing with the sensing sequence needs to be at the Nyquist
rate, that is in this case fN D 4GHz. Using an internal serial memory is the only
solution allowing versatility at this speed.

The current signal output by the mixer is first buffered for noise purposes, and
then elaborated by the cascade of a class-A op-amp-based transconductance RC-
integrator and a buffer that serves as the integrator stage in the RMPI stage and as
the driver for the off-chip ADC, respectively.

Mathematically, this case belongs to continuous-time analog CS class (case
A accordingly to the definition of Chap. 6). Indicating with x.t/ the differential
voltage signal at the output of the LNA and assuming all buffers are unit gain,
the mixer takes as input the current signal gmx.t/ and the voltage signal aj.t/ DPn�1

kD0 Aj;k �.t=T � k/. The product is fed into the integrator input. Indicating with
Ti D N T the integration time, and assuming that the integrator gain is 1=C
(from a dimensional point of view, must be the inverse of a capacitance), the j-th
measurement is given by the output of the j-th integrator at the end of the integration
time

yj D
Z Ti

0

gm x.�/
1

C

N�1X

kD0
Aj;k �

	 �
T
� k



d� D gm T

C

N�1X

kD0
Aj;k Qxk (7.5)

where the Qxk, k D 0; 1; : : : ;N�1 implicitly defined in (7.5) represent the generalized
Nyquist samples as detailed in Chap. 6, with Qxj � x.j T/ for a quasi-stationary
signal. The dimensionless constant G D gm T=C represents the gain of the system;
by introducing Qx D .Qx0; Qx1; : : : ; QxN�1/> 2 R

N as the vector containing all the
generalized Nyquist samples, we can write (7.5) in the more compact and usual
notation yj D G Aj;� Qx.

While both papers [28] and [27] detail many aspects of the designed integrated
circuit, with particular emphasis on circuital solutions adopted to cope with
problems arising in an AIC dealing with input signal with Nyquist frequency
fN D 4GHz, no time continuity mechanism is mentioned, nor saturation aspects
are considered. Conversely, a hybrid RD-RMPI approach for signal reconstruction
is adopted and detailed in both papers.

In each integrated circuit, only M D 8 RMPI channels have been placed. This
number is actually too small to cope with the minimum number of measurements
required for correct reconstruction given by (7.4). As a workaround, each time
windows Tw D n T is split into a number q of continuous-time intervals with length
Ti D N T , namely integration windows, with Tw D q Ti and consequently n D qN.
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In each integration window a number M of measurements are taken from the M
integration paths. In a time Tw, an amount of measurement equal to m D qM is
generated. This approach, known as hybrid RD/RMPI, has been detailed in Sect. 6.3,
and allows performance similar to that of a full RMPI implementation, even with a
limited number of integration channels.

This choice has also been pushed by a pure practical reason. Even with a number
of RMPI channels limited to M D 8, and considering that fN D 4GHz, timing
differences can be significant, and differences in time and phase delays may hurt
system performance. In order to minimize the timing differences, minimize jitter at
the mixer, and minimize power consumption, the system clock is distributed in a
binary symmetric tree topology that has been highlighted in Fig. 7.2. This has been
detailed in [27].

In conclusion, we can summarize here the main aspects of the proposed
architecture.

1. Time continuity: No time continuity mechanism is mentioned in [28] nor in
[27].

2. Resource saving: Antipodal mode; hybrid RD-RMPI architecture.
3. Saturation: No saturation checking mechanism is mentioned in [28] nor

in [27].

7.2.2 Experimental Results

Testing results for the designed prototype have been included both in [28] and in
[27]. Here, we propose a selection of results taken from both papers.

In all measurements, the input signal has been generated by an arbitrary
waveform generator, assuming a Nyquist frequency fN D 1=T D 4GHz. The
integration time has been set to Ti D N T D 25 ns, i.e., measurements yj are
sampled at the rate 1=Ti D 40MHz, so N D 100. The outputs of the RMPI
channels are digitized off-chip by an external ADC, and then exported to a PC for
reconstruction. The actual number of bits used in the digitization is not declared by
authors. All measurements are achieved exploiting the full parallelism of a single
integrated circuit, i.e., M D 8, leading to a measurement rate of M=Ti D 320MS=s,
with a compression ratio, in terms of number of samples required for correct
reconstruction, equal to CR D 12:5.

In all experiments, a hybrid RD-RMPI approach is used, collecting a number of
measurements m D qM in a time Tw D q Ti D n T before each reconstruction.
However, the actual value of the time window Tw used in the reconstruction
algorithm (and therefore, of m and of n) is not specified. The digitized samples
are used to reconstruct the input signal via a numerical optimization procedure
and the input signal has been reconstructed using a variant of basis pursuit with
reweighting [4].
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Fig. 7.4 Power spectrum
density (PSD) of the
reconstruction of a signal
made of a 400�V
peak-to-peak amplitude
single tone with frequency
437:5MHz for the AIC
considered in Sect. 7.2
(adapted from [27])
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In the tests, two different stimuli have been considered as input signal.
The first one is given by a single tone low-amplitude sinusoidal signal used to

verify the dynamic range achievable by the system. Figure 7.4 shows the power
spectrum density (PSD) of the reconstruction of a signal made of a single tone
with 400�V peak-to-peak amplitude. The deviation of the measured frequency
(437:42MHz) with respect to the actual frequency (437:5MHz) is negligible,
proving the good behavior of the AIC in detecting very small amplitude sinusoidal
tones. The dynamic range is evaluated in 54 dB.

In the second and more realistic test, pulses of multiple widths and frequencies
are taken into account. In Fig. 7.5 two cases are considered, showing the envelope
and the power spectrum (PSD) of reconstructions of signals made of 400 ns pulses
compared with the original ones. Two cases are considered where carrier frequency
is set to the two endpoints of its theoretical working frequency band, i.e., about
87MHz and about 1947MHz. The visually correct reconstruction shows the correct
behavior of the CS system without any change in operating conditions (e.g., tuning
of the sensing sequences). The frequency estimation error in all considered cases is
negligible, since its average value is smaller than 69 kHz.

A more challenging test is represented in Fig. 7.6, where two overlapping pulses
at different frequencies are considered, that accordingly to [27] is a signal that is
difficult to handle even from standard Nyquist-rate receivers. The figure compares
the reconstructed envelopes and the power spectra with the original ones in a case
with two pulses of length 400 ns and frequencies 275MHz and 401MHz present an
overlap (in time) equal to 200 ns. In the reconstructed signal, the carrier frequency
of both pulses is estimated within an error of 234 kHz, while the mean-square error
of the pulse-envelope reconstruction is less than 10%.

Finally, the limits of the proposed architecture are shown in Fig. 7.7 where short
pulses are considered. The figure shows the reconstructed envelope of a 50 ns and
of a 75 ns pulses. Despite the fact that the pulse-envelope reconstructions are of
low quality, what is notable is that an accurate frequency estimation (evaluated
in only 1:4MHz) is possible in both cases starting from 16 and 24 compressed
measurements, respectively.
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Fig. 7.5 Comparison between envelope amplitude and PSD of original and reconstructed signal
made of 400 ns frequency pulses, in the case the carrier frequency is set to about 87MHz (top
plots) and to about 1947MHz (bottom plots) for the AIC considered in Sect. 7.2 (adapted from
[27])

7.3 AIC for Wideband Multi-tone BPSK Signals
by Chen et al., 2012

In the September 2012 Special Issue on Circuits, Systems and Algorithms for Com-
pressive Sensing of the IEEE Journal of Emerging and Selected Topics in Circuits
and Systems, Chen et al. published the results of a joint work of the Department of
Electrical Engineering, Texas A&M University, College Station, and of the Army
Research Laboratory (ARL) in Adelphi, MD [8]. Preliminary simulation results
were previously published in a 2011 issue of the IEEE Transactions on Circuits
and Systems–I: Regulars Papers [9].
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Fig. 7.6 Comparison
between envelope amplitudes
and PSD of original and
reconstructed signal made of
two 400 ns superimposing
frequency pulses, with carrier
frequency equal to 275MHz
and 401MHz, respectively,
for the AIC considered in
Sect. 7.2. Envelope
amplitudes have been
normalized to the
corresponding input signal
ones (adapted from [27])
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Fig. 7.7 Comparison
between envelope amplitudes
of original and reconstructed
signal made of short
frequency pulses (50 ns width
on the left, 75 ns on the right)
for the AIC considered in
Sect. 7.2. Envelope
amplitudes have been
normalized to the
corresponding input signal
ones (adapted from [27])
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Fig. 7.8 Die photograph of
the integrated circuit
considered in Sect. 7.3
(adapted from [8])

The microphotograph of the integrated circuit, designed in 90 nm CMOS process,
has been depicted in Fig. 7.8. The active area is 350�330�m and includes a
single RMPI channel, whose simplified schematic is depicted in Fig. 7.9. The
circuit has been designed to virtually target multi-tone binary phase-shift keying
(BPSK) signal with a 1:5GHz instantaneous signal bandwidth (equivalent Nyquist
frequency 3GS=s), but experimental characterization with only a signal bandwidth
of 500MHz has been reported by authors due to limitations in testing equipment.
A complete CS system employing eight instances of the designed circuit in a single
board has been tested. The testing Nyquist rate has been set to fN D 1:25GHz that
is a value somewhat above the minimum required for a 500MHz bandwidth signal.

Each integrated circuit includes the RMPI block composed by a mixer, an
integrator, and a pseudorandom generator producing the Aj;k coefficients (an 11-bit
linear feedback shift register). In this design Aj;k 2 f�1;C1g, i.e., an antipodal
RMPI is realized. The ADC is not implemented on-chip; instead, a high-speed
digital oscilloscope is used to digitize the yj and to transfer them to a PC where
signal reconstruction is achieved by using Matlab software.

A single observation time window is set to Tw D 1=5MHz D 200 ns, delivering
the m D 72 samples. This leads to a system throughput of 360MS=s, equivalent
to 28:8% of the Nyquist rate with an equivalent compression ratio of about CR D
3:5. The overall power consumption of the CS system is 54mW for the on-chip
components, plus the power of the external ADC and of the system clock generator.

7.3.1 Hardware Architecture

The schematic of the core of the AIC architecture proposed in [8] has been depicted
in Fig. 7.9. Basically, it is a differential circuit composed of a voltage/current
converter (the gm stage), followed by a digital mixer, which is actually made with



182 7 Analog-to-Information Conversion

Fig. 7.9 Simplified
schematic of the RMPI circuit
embedded in the integrated
circuit considered in Sect. 7.3
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a few pass-transistors allowing either a direct path or an inverted path (i.e., the two
differential lines can be inverted) in order to implement the multiplication by the
Aj;k 2 f�1;C1g. The mixed signal is used as input signal for two OTA-based
integrators working in interleaved mode.

The two integration paths are alternatively accumulating the input current into
two couples of differential feedback capacitances CF to solve the time continuity
issue. Let us assume that, initially, the time window selection signal WND is high,
while the two reset signals RST1 and RST2 are low and high, respectively. In this
configuration, the second integrator is in clearing mode to remove all the charge
accumulated on the CF (thus forcing to zero the output voltage), while the first
one is in integrating mode being connect to the mixer output. At the end of the
integration time Ti, both WND and RST2 go low and the signal from the mixer
is disconnected from the first integrator, which starts to operate as a hold circuit
retaining its voltage value. At the very same time the second integrator is switched
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Fig. 7.10 Time diagram for
the signals regulating the
behavior of the two
integration paths of Fig. 7.9
in the system considered in
Sect. 7.3
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from clearing to integrating mode by routing the signal from the mixer to its input, so
that a new integration window can immediately start on the second path. This allows
enough time to perform both the conversion of the charge accumulated into the first
integrator (signal RD1 asserted), in the proposed circuit by means of transferring the
accumulated voltage to an external ADC, and then a complete removal (signal RST1
asserted) of the charge accumulated on CF. The only, non-stringent, requirement is
that these two operations have to be completed in a time smaller than Ti to allow
the first path to start a new integration period as soon as the second one enters the
hold mode. A time diagram showing the signals controlling all these operations is
depicted in Fig. 7.10.

With this approach it is easy to ensure integration time continuity at the cost of
replicating only part of the active circuit (the integrator), while all other parts are
shared among the two paths.

From a mathematical point of view this CS system, similarly to the previously
considered case, is a continuous-time analog one, referred to as case A accordingly
to the notation of Chap. 6. The input signal x.t/, assumed to be the differential
voltage at the input port, is first transformed into a current signal gm x.t/, then mixed
with the Aj;k symbols by means of the pass-transistors of Fig. 7.9. This operation can
be modeled as the multiplication between the gm x.t/ and the PAM signal aj.t/ DPN�1

kD0 Aj;k �.t=T�k/. The measurement yj is given by the voltage level at the output
of the integrator, sampled after a time Ti D N T , so that

yk D
Z Ti

0

gm x.�/
1

CF

N�1X

kD0
Aj;k �

	 �
T
� k



d� D gm T

CF

N�1X

kD0
Aj;k Qxk (7.6)

where the Qxk, k D 0; 1; : : : ;N � 1 represent the generalized Nyquist samples
accordingly to the definition of Chap. 6. As in the previous case, by defining the
vector Qx 2 R

N of the generalized Nyquist samples, and the dimensionless constant
G D gm T=CF as the gain of the system, we can write (7.6) in the more usual and
compact notation yk D G Aj;� Qx.
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The system tested in [8], for the sake of energy reduction, embeds only a limited
number M D 8 of analog RMPI cores, so it is able to produce 8 measurements in
each integration window Ti. According to (7.4), this value is typically too small to
ensure a correct signal reconstruction. In order to increase the available number m
of measurements with respect to M, and similarly to previously considered system,
authors propose a hybrid RD-RMPI approach.

In other words, and as detailed in Sect. 6.3, each time window Tw D n T is
split into a number q of continuous integration windows of length Ti D N T , with
Tw D q Ti and n D qN. Since in each Ti, a number M of measurements are collected,
reconstruction is a time window Tw based on a total of m D qM measurements.
This is reflected in a highly structured, block diagonal overall sensing matrix A,
and allows performance similar to that of a full RMPI approach even with a small
number of integration paths [29].

In conclusion, we can summarize here the main aspects of the proposed
architecture.

1. Time continuity: Integrator is duplicated to allow time continuity.
2. Resource saving: Antipodal mode (no need for analog multiplier); hybrid RD-

RMPI architecture.
3. Saturation: No saturation checking mechanism is mentioned neither in [8] nor

in [9].

7.3.2 Experimental Results

The input considered in [8] is a wideband multi-tone BPSK signal with up to
100 carriers allocated from 5 to 500MHz with 5MHz frequency spacing between
adjacent carriers. The sparsity is up to 4%, meaning that there are at most four active
tones in a given sampling interval. Input signal is externally generated, along with
the master clock for the pseudorandom generator at fN D 1:25GHz. The periodic
triggering signal to reset pseudorandom generator initial state is also externally
provided.

In the system proposed for testing in [8] authors set M D 8 to limit the power
consumption to 54mW. Furthermore, aiming at Tw D 1=5MHz D 200 ns, authors
set Ti D 1=45MHz � 22:2 ns and q D 9. This leads to a sampling rate of the
external DAC connected to each channel equal to 45MS=s, and a total amount of
measurement available in each signal slice equal to m D qM D 72. Since the
Nyquist frequency is fN D 1:25GHz, it is n D fN Tw D 250.

Results for a sparsity level � D 1, i.e., considering a single sinusoidal tone
whose frequency is swept in the 50–450MHz frequency range, have been depicted
in Fig. 7.11. Results are presented in terms of signal-to-noise and distortion ratio
(SNDR), defined as the overall signal power over the noise power of all other
undesired frequency components, including the overall integrated noise power and
harmonic distortion components. The reconstruction algorithm is the one described
in [29] and based on OMP technique. The maximum achievable SNDR with the
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Fig. 7.11 Reconstructed
single tone SNDR vs input
tone frequency in
experimental results proposed
in [8]
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Table 7.1 Reconstructed
SNDR with multi-tone BPSK
input signals in experimental
results proposed in [8]

Case Input frequencies (MHz) RSNR (dB)

#1 50, 250, 490 29.3

#2 50, 250, �490 29.6

#3 20, 70, 250, 450 27.7

#4 50, 150, 250, 490 29.4

#5 �20, �70, 250, 450 29.5

single tone test is around 40 dB. The SNDR degrades gradually down to 34 dB as
the frequency increase because of the front-end gain roll-off at high frequency.

An actual BPSK modulated signal, i.e., a multi-tone (with � D 3 or � D 4)
wideband signal where tones have either a 0ı phase or 180ı phase accordingly to
the encoded symbols, has also been used for system characterization. This signal
has been generated by an arbitrary waveform generator, and an external magnitude
equalizer has also been employed to allow the different carrier tones of the test signal
to have unequal amplitudes. Some of the obtained results are given in Table 7.1,
where a positive frequency has the meaning of a 0ı phase shift, while a negative
one that of a 180ı phase shift. The input frequency components were successfully
located by the CS algorithm, and unequal carrier amplitudes agree with the original
input spectrum. In this case, however, the maximum achievable SNDR is about
10 dB lower than that of the single tone test.

The effective number of bits (ENOBs) of the CS data acquisition system has
been estimated by authors in up to 6:4 bit from the 40 dB SNDR achieved by the
single tone sweep. This value should be decreased by 1–2 bits when considering the
multi-tone environment.

7.4 AIC for ECG Signals by Gangopadhyay et al., 2014

This circuit appeared in a 2014 issue of the IEEE Journals of Solid-State Circuits
[12]. Gangopadhyay et al. presented description and achieved results of a fully
integrated low-power CS analog front end for an ECG sensor. Switched-capacitor
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Fig. 7.12 Microphotograph of the integrated circuit described in Sect. 7.4 (adapted from [12])

circuits are used to achieve high accuracy and low power. The prototype has been
implemented in 0:13�m CMOS technology, embedding a 384-bit Fibonacci–Galois
hybrid linear feedback shift register for generating sensing matrix elements Aj;k

and 64 RMPI channels, each of them consisting of a switched-capacitor 6-bit C-
2C multiplying DAC/integrator (MDAC/I) and of a 10-bit C-2C SAR ADC. The
chip size is 2�3mm (each channel has a height of ' 36�m) and, when clocked
at 2 kHz, the total power dissipation, mainly of static power, is 28 nW and 1:8�W
for one and 64 active channels, respectively. The microphotograph of the integrated
circuit is reported in Fig. 7.12. The core of the circuit is a differential 6-bit C-2C
MDAC/I circuit whose simplified schematic is depicted in Fig. 7.13. The circuit
is basically a switched-capacitor integrator where the sampling capacitor has been
replaced by a C-2C network, thus being capable of performing at the same time both
a multiplication by a 6-bit digital value and the integration. This approach allows the
proposed circuit, differently from that considered up to now, to implement a sensing
matrix with real values and not only with binary ones. The value of n is externally
programmable among many values (n 2 f128; 256; 512; 1024g).

7.4.1 Hardware Architecture

The analog core of the circuit proposed in [12] is the differential 6-bit C-2C MDAC/I
circuit whose simplified schematic is reported in Fig. 7.13. Basically, the circuit
is a switched-capacitor integrator, whose behavior is regulated by the two non-
overlapping clock signals �1 and �2. When �1 is high (and �2 is low), the circuit
is in a sampling mode. The op-amp inverting pin is forced to reference voltage
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Fig. 7.13 Basic schematic (single-ended simplification) of the C-2C MDAC/I circuit embedded
in each RMPI channel of the integrated circuit of Fig. 7.12 described in Sect. 7.4

(virtual short on op-amp input pins), and the input voltage is connected to the C�2C
ladder, which has a unit capacitance CS and it is controlled by the 5-bit digital word
c4 c3 c2 c1 c0. An additional bit c5 decides if the input voltage is connected directly
or reversed (i.e., the two differential line are inverted) setting in this way the sign of
the input signal. Note that the switched-capacitor approach makes this stage working
as a sampling circuit. In fact, by indicating with Ot the time instant in which �1 has
a high-to-low transition, the CS ladder is actually loaded by the voltage level˙x.Ot/.
Due to this, and even if directly connected to x.t/, this circuit belongs to the analog
discrete-time class, i.e., case B accordingly to the definition of Chap. 6. During the
sampling mode, the feedback capacitor of value 2CF is disconnected from the op-
amp, and the charge previously accumulated in it is unaltered.

In the accumulation mode �2 is raised (and �1 lowered) and (part of) the charge
stored into the C � 2C ladder is transferred to the feedback capacitance 2CF ,
re-connected to the op-amp. Due to the C � 2C architecture, only a fraction of
the maximum charge is transferred to the feedback capacitance. More precisely,
indicating with c the 6-bit number whose sign is given by c5 and value determined
by c4; : : : ;c0, and normalized such that �1 < c < 1, the charge transferred to the
feedback capacitance is 2x.Ot/cCS.

When this process is repeated n times, indicating with x0, x1, : : :, xn�1 the value
of the input signal at the n high-to-low transitions of �1, and assuming that at every
cycle the value of c is changed according to the sensing matrix A (for the j-th
accumulator at the k-th cycle it is c D Aj;k) the voltage at the MDAC/I output is
given by

yj D
CS

CF

n�1X

kD0
Aj;k xj D G Aj;� x
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where x is the vector of the input signal samples at the MDAC/I input, and
where the implicitly defined dimensionless constant G is the gain of the integrator
stage, which has been set to � 1=3 to prevent saturation at the output during
integration.

In this way the MDAC/I is capable of approximating an RMPI channel controlled
by a sensing matrix A made of real coefficients. The approximation of A entries with
a 6-bit quantized values has been found to be enough for accurate reconstruction [1].

In the proposed circuit, in order to avoid the implementation of a dedicated
large memory block for the A (assuming n D 256 and m D 64, it would require
almost a 100-Kbit memory), coefficients c are generated with an on-chip hybrid
linear feedback shift register (LFSR). Basically, 64 6-bit Fibonacci LFSRs have
been integrated into the circuit, one for each of the C � 2C MDAC/I circuits,
and outputting the 6-bit coefficients programming the 6-bit MDAC. Then, these
64 LFSRs are further randomized by dithering their less significant bits (LSBs)
in a Galois fashion, each LFSR using the MSBs of another stage. In this way, a
Fibonacci–Galois 384-bit LFSR is designed. An external trigger signal enables a
384-bit seed load at the beginning of each integration frame.

With this generator, sensing matrices A whose random elements have two
different statistical distributions can be generated.

1. 6-bit uniform distribution;
2. 1-bit Bernoulli (i.e., antipodal) distribution, achieved by setting only the most

significant bit (MSB) of c by using the 6-bit LFSRs, and by forcing all other bits
to 1.

Finally, a SAR ADC is connected to each RMPI channel to provide a digital
representation of the measurement. At the end of each time frame, the accumulated
charge is transferred to the DAC, and then the residual charge of each MDAC/I
is cancelled. A C � 2C SAR ADC [2] is used, thus minimizing the dynamic
power dissipation and eliminating the input sampling buffer. To achieve an 8-bit
ENOB, a 10-bit C � 2C DAC is implemented. According to [12], time continuity
between consecutive time signal slices is ensured by connecting the MDAC/I
and the ADC in a pipeline way; however, no further details on this aspect are
provided.

The aforementioned hardware is replicated m D 64 times (i.e., with j D
1; 2; : : : ;m � 1) in a single integrated circuit to allow generating up to m D 64

measurements every Tw D n T time units.
The main features of the proposed architecture are as follows:

1. Time continuity: pipelining between the MDAC/I and the following
SAR ADC.

2. Resource saving: embedding MDAC and integrator in a single op-amp circuit.
On-chip LFSR for MDAC programming.

3. Saturation: No saturation checking mechanism is mentioned. Only reduced
integrator gain.
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7.4.2 Experimental Results

Testing results proposed in [12] involve both a synthetic input signal and realistic
signals, and the use of different values of n D 128; 256; 512, and 1024, and different
value of m D 1 � 64. The clock and input signal have been generated by arbitrary
waveform generators, while digital words output from the 64 ADC stages are
connected to a logic analyzer. Input signals are reconstructed using a standard basic
pursuit algorithm on MATLAB environment.

Measurements on the SAR ADC show a SNDR of 40:6 dB, equivalent to
an effective number of bits of 6.5-bit for a 200Hz bandwidth signal. On-chip
calibration was not implemented.

Measured results when using a two-tones sinusoidal signal are shown in
Fig. 7.14. An input signal composed by the superimposition of two sinusoids
(28Hz and 50Hz) is used. Signal has been reconstructed using n D 256 and
m D 64, m D 32 and m D 13, i.e., a compression ratio of CR D 4, CR D 8,
and CR D 20, respectively. The signal is reconstructed using a Fourier sparsity
basis and a CVX `1-norm convex optimization [14]. According to the figure, the
two-tone sinusoidal signal is well reconstructed, with an error between �80LSB
and 100LSB. Performance results in terms of SNR are not provided.

Results when using a realistic ECG signal input (waveforms taken from the
PhysioBank database [13]) are shown in Fig. 7.15. The ECG signal has been
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Fig. 7.14 Measured reconstructions for a two-tone signal (28Hz and 50Hz sinusoids) for the
circuit proposed in [12]. From the top: raw signal; reconstructed waveforms for n D 256 and
m D 64, m D 32, and m D 13, respectively, with compression factor equal to 4, 8, and 20,
respectively (adapted from [12])
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Fig. 7.15 Measured reconstructions of a synthesized ECG signal sparse in the Daubechies-4
wavelet domain using eight frames with n D 128 samples each. From the top: raw ECG;
reconstructed waveforms with m D 64, m D 32, and m D 10, respectively, with compression
factor equal to 2, 4, and 6, respectively (adapted from [12])

compressed by the proposed circuit and reconstructed using a wavelet basis as
sparsity basis derived from the Daubechies db4 mother-wavelet [10] using the
Tree Matching Pursuit algorithm [11]. Despite the fact that results in terms of
SNR are not provided, also in this case there is a good visual match between
input and reconstructed signal up to a compression rate equal to CR D 4,
while visible reconstruction artifacts are added at a compression rate equal
to CR D 6.

7.5 AIC for Intracranial EEG by Shoaran et al., 2014

The circuit considered in this section is an area- and power-efficient approach for
compressed recording of cortical signals used in an implantable system (i.e., for
intracranial EEG signals), and appeared in the December 2014 issue of the IEEE
Transactions on Biomedical circuits and systems [25], authors Shoaran et al. from
EPFL, Lausanne, Switzerland. The paper is the follow-up of a paper appeared at the
IEEE Biomedical circuits and systems conference in October, 2014 [24].

The peculiarity of this circuit is to propose a new multichannel Compressed Sens-
ing scheme which exploits time- and the spatial-sparsity of the signals recorded from
the electrodes of the sensor array. The circuit has been designed and implemented in
a 0:18�m CMOS technology, and its microphotograph is shown in Fig. 7.16. The
main target of the design consists of accommodating a large number of recording



7.5 AIC for Intracranial EEG by Shoaran et al., 2014 191

Fig. 7.16 Die microphotograph and single channel layout of the integrated circuit described in
Sect. 7.5 (adapted from [24])

units into the available die area, while at the same time preserving sufficiently
low-noise and low-power performance, since low power consumption and compact
area are crucial aspects of any implantable recording system.

Each integrated circuit includes 16 recording channels consisting of a low-
noise amplifier with a band-pass transfer function, an additional low-pass filter to
limit the high cut-off frequency, a second gain stage, and a buffered sample-and-
hold circuit, all presenting a differential architecture. The outputs of all channels
are connected to a single summing and randomly accumulating stage based on
a switched-capacitor architecture, performing the Compressed Sensing function.
The result is then digitized through a single low-power ADC. The architecture is
schematized in Fig. 7.17.

According to simulation and subsequent reconstruction results, the circuit is
capable of achieving a fourfold compression on intracranial EEG signals with a
signal-to-noise ratio (SNR) as high as 21:8 dB, with an overall power consumption
of 10:5�W within an effective area of 250�250�m per channel.

7.5.1 Hardware Architecture

The hardware architecture of the circuit presented in [25] and schematized in
Fig. 7.17 can be divided into a low-power small-size analog front end made of
N D 8 channels for amplifying, filtering, and sampling the intracranial EEG signals,
i.e., signal conditioning and the actual analog-to-information converter.

Despite the fact that the design of the signal conditioning block has some note-
worthy features to deal with stringent requirements in terms of both area and power,
a detailed overview is out of the scope of this chapter, whose aim is to compare
different and efficient analog solution for the implementation of CS-based AICs.
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Fig. 7.17 Simplified architecture of the integrated circuit of Fig. 7.16 and proposed in [25], with
circuital details of the AIC core

For this reason, we focus on the randomly controlled summing stage imple-
menting an RMPI architecture, which nevertheless exhibits the interesting feature
to exploit a mixed spatial- and time-domain signal sparsity. This circuit is based
on a switched-capacitor integrator working in two phases (sampling and summing
phases). Three different clock signals �S1, �S2, and �S3 (along with additional signals
�A;0, �A;1, : : :, �A;N�1 directly controlled by the j-th row Aj;� of the sensing matrix)
are used to control the behavior providing a proper timing strategy (�S1 comes
before �S2 and �S2 before �S3) to reduce the effect of channel charge injection due
to the switching activity both on the sampling capacitors CS and on the feedback
capacitors CF.
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In detail, the operation is as follows. Let us indicate with x0.t/, x1.t/, . . . , xN�1.t/
the N differential signals at the analog front-end input. The aim of this block is to
amplify, filter, and sample the input signals at the Nyquist rate fN D 1=T . For the
sake of simplicity, we can model this circuit as a simple sample/hold, outputting
the sampled version x0, x1, . . . , xN�1 of the input signals to the AIC every T , or
using a more compact notation, outputting the vector x made of the samples of the
input signals. This causes the following AIC to belong to the discrete-time analog
CS class (case B according to Chap. 6).

In sampling mode, �S1, �S2, and �S3 are high, allowing the differential voltages
across the k-th sampling capacitors CS couple to be set to xk. At the same time, �S1

shorts the feedback capacitors CF, clearing any previously accumulated charge.
In summation mode (�S1, �S2, and �S3 are low), the charge stored on all the

capacitors CS is summed and stored to the CF only if the control signal �A;k of
the corresponding k-th channel is high, with k D 0; 1; : : : ;N � 1. By directly
controlling the �A;k signal with the Aj;k coefficient, this strategy implements a binary
multiplication by Aj;k 2 f0; 1g. Mathematically, the differential voltage yj at the
integrator output, at the and of the summation phase, is

yj D �
CS

g CF

N�1X

kD0
Aj;kxk D G Aj;� x

where g is an external parameter, with g 2 f1; 2; 3; 4g, capable of controlling the
gain of the summing stage by means of switches including additional capacitors in
the integrator feedback path, i.e., capable of altering the actual value of CF, and
where the implicitly defined dimensionless coefficient G is the actual gain of the
system. The possibility to run-time change the value of G (by means of changing g)
is exploited to cope with saturation issues of the summing stage.

The yj is then converted into a digital word with a Successive Approxima-
tion Register (SAR) ADC embedded into the integrated circuit to provide the
measurement. A hybrid two-stage class A/AB topology [23] is used as the OTA,
providing the desired rail-to-rail output swing. Based on the stringent area and
power constraints of the implantable system, a 10-bit ADC capable of a sampling
rate up to 20 kS=s is used. A popular SAR architecture, which enables low-power
data conversion for medium resolution/speed applications, is used exploiting a
binary-weighted capacitive array with attenuation capacitor as embedded DAC.

In a time period T , i.e., in the time period where x is constant, the aforemen-
tioned process is repeated M times with different rows A0;�;A1;�; : : : ;AM�1;� of the
sensing matrix to get M measurements y0; y1; : : : ; yM�1. Elements Aj;k are internally
generated with a simple linear feedback shift register due to hardware constraints.
The timing diagram regulating this behavior is depicted in Fig. 7.18.

The process is repeated d times using different sample vectors x. This allows
to gather a total amount of m D dM measurements as a linear combination of the
samples of the N channels at different d sampling instants, i.e., an amount of n D
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Fig. 7.18 Timing diagram for the signals regulating the behavior of the multichannel integrator of
Fig. 7.17

dN sampling points. This mixed spatial–temporal approach allows to exploit the
spatial–temporal sparsity properties of this particular signal, as detailed in Sect. 6.5.

The main aspects of the proposed architecture can be summarized as follows:

1. Time continuity: Each measurement is spawned over multiple channels in a
single time step T , no need for synchronization mechanism.

2. Resource saving: Binary mode (no need for analog multiplier).
3. Saturation: A variable gain control is implemented in the integrator stage.

7.5.2 Experimental Results

Many measurement results are proposed in [25]. Here, we neglect those related to
the signal conditioning block and we propose a summary for those referred to AIC
performance. A long segment of multichannel intracranial EEG signal recorded
from subdural strip and greed electrodes implanted on the left temporal lobe of
a patient with medically refractory epilepsy have been used as input. Signals are
recorded during an invasive pre-surgical evaluation phase to pinpoint the areas of
the brain involved in seizure generation and to study the feasibility of a resection
surgery. Data includes some minutes of pre-ictal, ictal, and post-ictal activities,
sampled at 32 kS=s. The intracranial EEG signal has been recorded with a standard
medical equipment, and the traces of 16 adjacent electrodes are applied to the
proposed CS system as test signal.

The considered sparsity basis is the Gabor one [22] that, along with the wavelet
basis, is the most commonly considered when applying CS to biomedical signals
[7]. Given the multichannel architecture, neural recovery is performed using the
standard reconstruction algorithm adopting the `1 norm and then adopting the mixed
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Fig. 7.19 Example (one channel trace only) of human intracranial EEG recording data used for
testing the circuit considered in Sect. 7.5. Performance in terms of RSNR is calculated by averaging
over the 100 blocks of signal (25:6 s total) in the low-voltage fast activity region indicated in the
figure (adapted from [24])

`1;2 norm. As detailed in Sect. 6.5, when using the `1 norm, only temporal sparsity
is used to recover the input signal, while the mixed `1;2 norm is capable to exploit
the spatial–temporal sparsity properties of the signal. Results are compared in terms
of reconstruction RSNR.

The performance of the circuit is validated for low-voltage fast activities which
are shown to be associated with seizure onset. In detail, an example of a single
channel of the intracranial EEG used in the test is plotted in Fig. 7.19. Performance
is computed by averaging reconstruction quality over the 100 blocks of the signal
highlighted in the figure, each one with length equal to n D 1024 samples, i.e.,
Tw D 256ms at a fN D 4 kHz sampling frequency, covering an overall observation
time of 25:6 s.

A comparison showing the reconstruction of one block in a single channel when
using the two reconstruction approaches is depicted in Fig. 7.20. As shown in the
figures, applying the recovery considering the adjacent channels as in the `1;2 case
(bottom plot) results in an improved performance compared to the standard sparse
recovery as in the `1 case (top plot).

When considering all the 100 blocks and all the 16 channels ARSNR are 16:6 dB
and 21:8 dB for the `1 reconstruction and the `1;2 reconstruction, respectively.
Based on the statistical analysis reported in [15], a minimum SNR of 10:5 dB
(corresponding to a percentage root-mean squared difference of 30%) is acceptable
to maintain the diagnostically important data in the recovered signal, e.g., for
successful seizure detection.

Results in terms of ARSNR when decreasing the number of measurements (i.e.,
increasing the compression ratio) are shown in Fig. 7.21. Even if, as expected,
performance is decreasing when increasing CR, the target SNR of 10:5 dB indicating
a potentially capability to correctly recover the low-voltage intracranial EEG signal
over the entire recording period is achieved when using the mixed `1;2 norm for a
compression ratio as high as CR D 16.
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Fig. 7.20 Comparison of
recovery performance using
different reconstruction
methods for a single block
with length n D 1024 and
compression ratio CR D 4 for
the circuit considered in
Sect. 7.5. Top plot: using
standard `1 reconstruction,
RSNR D 21:3 dB. Bottom
plot: using mixed `1;2
reconstruction,
RSNR D 28:0 dB (adapted
from [24])
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7.6 AIC for Biomedical Signals by Pareschi et al., 2016

In the February, 2016 issue of the IEEE Transactions on Biomedical circuits and
systems, Pareschi et al. proposed an analog-to-information converter specifically
designed for biomedical signals [21]. The circuit has been designed and fabri-
cated in 180 nm 1:8V CMOS technology, and its microphotograph is depicted in
Fig. 7.22.

The circuit size is 2:3�3:7mm, including 16 switched-capacitor integrators
implementing 16 RMPI channels, and a shared 11-bit SAR ADC. The digital control
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Fig. 7.22 Microphotograph
of the integrated circuit
considered in Sect. 7.6
(adapted from [21])

logic (excluding that of the SAR) has not been embedded in the circuit, and testing
results provided in [21] have been obtained by controlling the designed circuit with
an external FPGA.

The core of the circuit is shown in Fig. 7.23. It is a low-power fully differential
switched-capacitor integrator capable of implementing an antipodal modulation,
where multiplication with the sensing matrix elements Aj;k is achieved by means
of simple switches that invert the differential input signal pair. The peculiarity
of this circuit is the proposed joint hardware-algorithms optimization, that allows
to increase performance without any cost in terms of hardware complexity or
computational power spent by decoding. The prototype, in fact, is capable to
exploit rakeness-based CS capable of increasing performances by exploiting the fact
that biosignals are not only sparse, but also localized. Additionally, each channel
also includes a smart saturation checking capability [18] by means of the two
comparators of Fig. 7.22 that, with a minimal hardware cost, makes it possible to
retrieve information from RMPI channels even in presence of saturation.

7.6.1 Hardware Architecture

The architecture of a single RMPI channel of the circuit described in [21] is the
standard fully differential switched-capacitor integrator of Fig. 7.23. Due to the
switched-capacitor architecture, this circuit has intrinsic sampling capabilities and,
even if directly connected to x.t/, it actually processes its samples xj, xjC1, xjC2, : : :.
According to the definition of Chap. 6, the AIC belongs the class of discrete-time
analog CS (case B) systems.

This circuit behavior is regulated by two non-overlapping clock signals �1 and
�2 of period T . In sampling mode (�1 high, �2 low) the differential input signal is
connected to the differential pair of sampling capacitors CS. Two additional switches
at the input stage are used to select whether the signal has to be connected directly or
by reversing the two differential line, acting as a modulator capable of performing a
multiplication with Ak;j 2 f�1;C1g. This works as an analog mixer, taking x.t/ and
Ak;j as input signals. At the time instant in which there is a high-to-low transition of
�1 there is the sampling of the x.t/ input signal.
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the integrated circuit of Fig. 7.22 considered in Sect. 7.6
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In the following summation mode (�1 low, �2 high) the charge stored in the
differential couple CS is removed and transferred either to one of the two differential
couples CF accordingly to the signal WND. This approach is used to solve the
problem of ensuring continuity between successive windows of the input signal.
When integrating even signal slices (WND is high, so WND is low) one differential
couple of feedback capacitors CF is used for integrating, while the other one is
disconnected from the circuit, retaining the charge previously accumulated. During
odd signal slices (WND is low and WND is high) the roles of the two couples are
reversed, and the one previously used for integrating is disconnected for the circuit,
allowing its accumulated charge to be converted into a digital word by a properly
designed ADC, and to be cleared (RST signal asserted, not shown in Fig. 7.23 for
the sake of clarity) to be able to start again a new integration process.

Mathematically, assuming Tw D n T , and indicating with xk the differential
voltage samples of the input signal available at the modulator differential input at
the sampling instant of the k-th time step, the integrator voltage output after n time
steps is given by

yj D �
CS

CF

n�1X

kD0
Aj;k xx D G Aj;�x (7.7)

where the dimensionless constant G represents, as in previous cases, the gain of the
integrator stage.

After Tw, the differential CF couples retaining the measurements of all the 16
embedded RMPI channels are connected, one at a time, to a shared output buffer
and to the SAR ADC.

The timing diagram regulating this behavior is depicted in Fig. 7.24.
The values of the sampling capacitor CS and the feedback capacitors CF values

have been selected accordingly to leakage constraints. Aiming at an integration

t
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Fig. 7.24 Timing diagram for the signals regulating the behavior of the switched-capacitor circuit
depicted in Fig. 7.23
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time of Tw D n T � 1 s (that is enough for all biomedical signals of interest),
and carefully designing the op-amp and the switches, the voltage dropout at the
integrator output is comparable to the ADC LSB for a Tw D 1 s when CF � 40 pF
without applying any digital compensation technique [19]. With this value the gain
of the integrator is set to G D �1=8 by designing CS D 5 pF, thus limiting saturation
effects on the integrator.

Furthermore, two additional features are considered in the design of the AIC.
The first one is the possibility to adopt rakeness-based sensing matrices as detailed
in Chap. 3.

As a second, additional, feature, two comparators for each RMPI channel (clearly
visible in Fig. 7.23) have been embedded. This allows to check if either the final or
the intermediate integration voltage goes above or below the two threshold levels,
enabling the smart saturation checking capability suggested in Chap. 6 [18]. In
more detail, the Saturated Projection Windowing (SPW) algorithm is implemented,
and whenever a dynamic saturation is detected, a flag signal (either indicating a
positive or a negative saturation event) is generated. This information is useful
for the reconstruction algorithm to recover information. Details can be found in
Sect. 6.4

In conclusion, the main aspects of the proposed architecture can be summarized
as follows:

1. Time continuity: Additional couple of feedback capacitors to allow time
continuity without the need for any additional active circuit.

2. Resource saving: Antipodal mode (no need for analog multiplier). Rakeness-
based sensing matrix to reduce the number of measurements.

3. Saturation: Reduced integration gain, additional comparators for smart satura-
tion checking.

7.6.2 Experimental Results

Intensive experimental measurements are provided in [21]. Tests are divided into
two parts. The first one is dedicated to measuring the circuit performance with
some suitable artificial test signals. Then, results are provided for the behavior of the
AIC by using real ECGs and EMGs taken from the PhysioNet database [13]. In all
tests, signals have been generated with an external DAC driven by the same FPGA
controlling the designed circuit, and reconstructed by using the iterative convex
solvers SPGL-1 [5].

The performance of the integrated ADC is summarized as follows. The integral
non-linearity (INL) is within 3.4 LSB at 11 bit resolution, with a spurious free
dynamic range is measured in 64:2 dB with ENOB evaluated in approximately 9
bits. The power consumption is measured in 10�W, yielding a figure of merit
(defined as energy required per conversion per effective number of levels) of
198 fJ=conversion-level [20].
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Fig. 7.25 Example of
reconstruction of a signal
sparse on the canonical basis
with � D 2, n D 20, and
m D 8 for the circuit
considered in Sect. 7.6. 5
signal slices are plotted, each
with Tw D 7:2ms. All steps
with non-vanishing amplitude
are highlighted with a marker
(adapted from [21]) 0 5 10 15 20 25 30 35
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The first measurement provided involves an input signal whose sparsity basis D
is made with normalized unit pulses, i.e., accordingly to the notation of Chap. 1:

x.t/ D
n�1X

kD0
�k u

	 t

T
� k



(7.8)

where u.�/ D 1; 0 < � < 1 and 0 elsewhere. In this test, n D 20 and the sparsity
level is set to � D 2, i.e., only 10% of the � j is nonzero. By manipulating (7.4),
the authors of [21] were able to assert that the minimum number of measurements
required for an accurate signal reconstruction in this setting is m � 8. Accordingly,
only 8 RMPI channels of the designed circuit are used. In this test, the designed
prototype with T D 360�s, i.e., with a switched-capacitor frequency equal to fN D
1=T D 2:78 kHz, was capable to achieve an ARSNR equal to 37:7 dB. An example
showing both the input signal and the reconstructed signal over 5 consecutive time
windows is depicted in Fig. 7.25.

Next, a more complex situation dealing with a synthetic signal where D is the
Fourier basis is presented, i.e.,

x.t/ D
n=2X

kD0
� j cos.k t/C

n�1X

kDn=2C1
� j sin..n � k/t/ (7.9)

In this setup, authors set n D 64 and � D 3; to ensure accurate reconstruction
according to (7.4), m � 16; as such all channels of the RMPI prototype are used.
By setting T D 360�s (i.e., fN D 2:78 kHz) measurements indicate an RSNR of
30:0 dB. The input and the reconstructed signal for this example in a single time
window are been depicted in Fig. 7.26.

The Fourier-based setting has also been used for two additional and extremely
interesting tests.

1. The first one regards the behavior of the circuit at different clock speed. The
upper limit is given by the op-amp used in the integrator circuit, and has been
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Fig. 7.26 Example of
reconstruction of a signal
sparse on the Fourier basis
with � D 3, n D 64, and
m D 16 for the circuit
considered in Sect. 7.6. A
single signal slice with
Tw D 23ms is plotted. Actual
sampling points are
highlighted with a marker
(adapted from [21]) 0 5 10 15 20
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Fig. 7.27 RSNR for the
Fourier sparse signal with
� D 3, n D 64, and m D 16,
for different time window
lengths Tw for the circuit
considered in Sect. 7.6
(adapted from [21])
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evaluated in approximately fN D 125 kHz. For any clock speed below this
limit, the reconstruction SNR is approximately constant around 30 dB. The lower
bound is set by constraints imposed by the leakage currents.

Performance in terms of RSNR for different fN as functions of the integration
window length Tw D n=fN (that is the actual parameter determining the voltage
drop due to leakage) is shown in Fig. 7.27. Performance is constant up to a
value of Tw in the order of magnitude of the second. By defining the maximum
integration time the one causing a 3 dB reconstruction SNR loss, this limit is
Tw < 1:6 s. This ensures that the designed circuit can be correctly employed for
the acquisition of low-bandwidth biomedical signals.

2. The second experiment is used to test the behavior of the AIC in presence of
an input signal whose amplitude is large enough to cause a saturation into the
system. The same input signal, sparse in the Fourier domain, has been scaled by
a factor 0 < s � 2. For s � 1 the voltage level associated with the measurements
y is such that none of the 16 used RMPI channels reaches final or intermediate
saturation, while some saturation is observed for s > 1. Results are shown in
Fig. 7.28.

For very low values of s low performance is observed, mainly due to the low
energy of the measurements, that scales with s. As s increases, the reconstruction
SNR increases. Intriguingly, when s > 1 a few saturation events occur. In this
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Fig. 7.28 Performance of the Fourier basis example at different signal gain s for the circuit
considered in Sect. 7.6. The plot shows reconstruction SNR when adopting the proposed smart
saturation check (SSC) and when saturated measurements are simply dropped (SD). The number
of saturated measurements per time window is also indicated (adapted from [21])

cases, two reconstruction approaches are proposed by authors. (i) With saturation
drop (SD in the plot) measurements where a saturation event is detected are
discarded, and reconstruction is performed using only “good measurements.”
(ii) When smart saturation checking (SSC in the plot) is enabled. Interestingly,
since mM is taken around its minimum value, dropping saturated measurements
reduces the data available to the CS decoder to an insufficient level, and, as
expected, one is not able to correctly reconstruct the input signal anymore. As
in the figure, the reconstruction SNR has an abrupt fall at s � 1. Conversely,
when SSC is employed, some amount of information is still recovered even
from saturated measurements, and performance is still increasing with s when
only a limited number of saturation events are detected. This can be intuitively
explained as due to two effects. First, only a few of the 16 RMPI channels
saturate, and most probably the saturation events are observed at the end of the
integration windows, and this is assumed to bring a large quantity of information
since the signal has been observed for a long time. Second, as s increases, also
the power of the non-saturated measurements increases, with a better conversion
accuracy. However, when s (and so the number of saturated measurements)
further increases, performance drops even if it is still possible to reconstruct the
input signal with an acceptable SNR. Note that for s D 2 reconstruction is still
possible even if most of the measurements (i.e., 10 out of 16) reach saturation.

The prototype is then tested with real biomedical signals, more precisely, by
using ECG and EMG input signals (including regular, irregular, and pathological
ones) recorded from undisclosed healthy/unhealthy patients and made publicly
available by the PhysioNet database [13]. In this test, both rakeness (using only
two rakeness-based sensing matrices, one for the ECG, one for the EMG, estimated
by using a training set not including the considered input signal to avoid biasing)
and the SSC approaches have been used. In the first example an ECG signal with a
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heartbeat of approximately 60 bpm from a healthy patient is considered. The signal
is sampled at fN D 256Hz, with Tw D n=fN D 0:5 s, so n D 128. The number of
measurement for each time windows is m D 16. The sparsity basis used for signal
reconstruction is the Symmlet-6 family of the orthogonal Wavelet functions [16].
Results are shown in Fig. 7.29 with three different scale factors, and compared with
results obtained when using the standard (i.e., not rakeness-based, binaries antipodal
random A) approach.

By using a standard CS approach the signal reconstruction quality is visually
very poor. Instead, when exploiting the rakeness approach the performance is visibly
much higher. Furthermore, also this (realistic) system is capable to tolerate a limited
amount of saturation events. For all considered scaling factors the signal has been
reconstructed without any noticeable performance loss, considering that with s D 1
no saturation events are observed, with s D 1:5 an average number of 0:4 saturation
events per time window is observed, while when s D 2 an amount of 1.5 saturation
events are detected per time windows. For all cases, the obtained compression factor
is equal to CR D 8.

The second biomedical signal example is similar to the first one, but an EMG
signal of an healthy patient is considered. In this setting fN D 20 kHz (the EMG
signal is usually sampled at a higher frequency with respect to the ECG [6, 7]), n D
256, and Tw D 12:8ms. The considered sparsity basis is, as in the previous example,
the Symmlet-6 Wavelet function family, and m D 24 is obtained by simultaneously
using two prototypes. Results are shown in Fig. 7.30.

Again, there is a clear failure in the reconstruction effort in the standard
CS approach, while in the rakeness approach reconstruct of the input signal is
successfully achieved for s D 1 (no saturation events detected), for s D 1:5 (an
average of 1.2 saturation events per time window is present), and also for s D 2

(corresponding to 2.5 saturation events per time windows). The compression factor
in this example is equal to CR � 10.

Finally, a few tests on both irregular and pathological ECG and EMG signals are
presented and shown in Fig. 7.31. In the figure small chunks of these uncommon
signal instances taken from the PhysioNet database superimposed with the corre-
sponding reconstructed signals are considered. The system setting is the same as
in the healthy cases considered above (i.e., m D 16 for ECG signals, and m D 24

for EEG signals). The input signal is always correctly reconstructed, even if a few
saturation events are registered in all cases.

7.7 Prototype Comparison

Table 7.2 presents a comparison between the most important features of the AICs
presented in this chapter.

Note that the aim of the table is not to compare performance of the different
solutions that, in our opinion, would not be truly meaningful. All considered
integrated circuits share the same RMPI architecture, but with many differences.
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Fig. 7.29 Example of reconstruction of a real ECG signal with fN D 256Hz, n D 128, m D 16 for
the circuit considered in Sect. 7.6 (10 consecutive time windows are plotted). From top to bottom:
input signal, reconstructed signal with the standard CS approach, i.e., by using independent ak;j

symbols (no rakeness), and signal reconstructed using the rakeness CS with the three scaling factor
s D 1, s D 1:5, and s D 2 (adapted from [21])
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Fig. 7.30 Example of reconstruction of a real EMG signal with fN D 20 kHz, n D 256, m D 24

for the circuit considered in Sect. 7.6 (10 consecutive time windows are plotted). From top to
bottom: input signal, reconstructed signal with the standard CS approach, i.e., by using independent
ak;j symbols (no rakeness), and signal reconstructed using the rakeness CS with the three scaling
factor s D 1, s D 1:5, and s D 2 (adapted from [21])
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Fig. 7.31 Short chunks of real pathological/irregular ECGs and EMGs (4 consecutive time
windows are shown for each signal) compared with the corresponding reconstructed signals for
the circuit considered in Sect. 7.6 adopting the settings used in previous examples. (a) ECG signal
track from a patient with arrhythmia, 2:5 saturation events per time windows on average. (b) ECG
signal corrupted by motion artifacts, 1:75 saturation events per time windows. (c) EMG signal
from a patient with myopathy, 1:5 saturation events occur per time windows. (d) EMG signal from
a patient with chronic low back pain and neuropathy, 2 saturation events per time window (adapted
from [21])

Some of them (see Shoaran et al. [25], Gangopadhyay et al. [12], and Pareschi
et al. [21]) are AIC specifically designed for biomedical signals, with a switched-
capacitor implementation that leads to a discrete-time approach. Furthermore, some
solutions propose a very specific design, that allow them to work only with a
peculiar class of signal [12, 25] while others are more general-purpose [21].

Other integrated circuits (see Yoo et al. [27] and Chen et al. [8]) are high
frequency continuous-time AICs, tested only with sinusoidal signals and that do
not embed the final ADC. Due to this, a comparison in what is typically the
most interesting feature of AICs, i.e., the power consumption, is not possible even
considering any normalization factor.
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Yet, we think that a comparison between the different features, different solution
adopted, and different application scenarios could be interesting to the reader. More
interestingly, the peculiarity of Table 7.2 is to highlight the versatility of CS-based
solution for the design of AIC. Even if still in embryonic state, CS technology has
successfully proven to be effective in building AICs that can be used in an extremely
wide range of applications.
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Chapter 8
Low-Complexity Biosignal Compression Using
Compressed Sensing

In this chapter we discuss the use of Compressed Sensing (CS) as a means to provide
lossy digital signal compression with minimal hardware requirements, focusing our
analysis on the specific case of biosignal compression for different types of time-
series data. The driving intuition is that in future sensor network scenarios the
nodes devoted to acquiring such signals will be heavily and increasingly resource-
constrained, the most limiting factor therefore being power consumption spent to
acquire, encode, and transmit the sensed data.

Thus, after discussing in the previous chapters how beneficial CS is to reducing
the resources spent in signal acquisition, we now “zoom in” on the encoding
stage, and present digital-to-digital embodiments of CS as a building block for
digital signal compression. Indeed, as hinted in the previous chapters, CS with
Random Antipodal Ensemble (RAE) sensing matrices (either i.i.d. or synthesized
using the rakeness-based design flow introduced in Chaps. 3 and 4) only requires
signed sums of samples; hence, it can be implemented with fixed-point digital
hardware architectures that use multiplierless schemes and can be swiftly coded,
e.g., on a field programmable gate array. With this common concept of CS being
a low-complexity building block to provide lossy compression, we expand these
considerations in the following sections.

8.1 Low-Complexity Biosignal Encoding by CS

To understand which resources are taken by the encoding stage in the budget of
a typical sensor node, we recall the scheme of Fig. 2.13 and put it in the context
of digital signal compression as in Fig. 8.1. In a few words, a sensor digitizes an
analog signal by means of, e.g., Nyquist-rate analog-to-digital converters (ADC) or
similar means of signal acquisition. The acquired samples are then compressed on-
board by a lossy or lossless encoder that typically operates by .i/ applying a suitable

© Springer International Publishing AG 2018
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Fig. 8.1 A standard sensor node–processing node pair, highlighting the role of digital signal
compression prior to transmission. Channel coding is regarded as part of the transmitter/receiver

transform (e.g., a discrete cosine transform (DCT) or wavelet transform (DWT)),
.ii/ quantizing the transformed coefficients, and .iii/ a further lossless (or lossy)
encoding, such as an entropy coding stage [39, Chapter 4], is applied to eliminate
residual redundancy in the encoded bitstream and yield a compressed bitstream
ready for channel coding, i.e., v. This result can then be transmitted to a remote
location or stored on a suitable local memory. The received (or stored) data will then
be processed by an off-board decoding unit that retrieves the information content
up to the data fidelity allowed by noise (both due to quantization and to intrinsic
sources in the measurement process) and lossy encoding, by inverting exactly or
approximately the operations performed by the encoding stage.

Since resource consumption in a sensor node is typically dominated by the
power cost of data transmission, minimizing its rate by suitable lossy or lossless
encoding stages is critical in reducing the nodes’ resources. Hence, even if an
encoder had non-negligible computational complexity, to minimize the amount
of bits transmitted on a channel the system-level designer would tend to spend
more resources on the encoding stage. However, its complexity also consumes
resources by a non-negligible amount; let us then assume that signal acquisition
and data compression are performed by low-power and low-complexity sensor
nodes, and that these nodes connect to one or more processing nodes providing
much larger computational power. In the event of such an asymmetry of available
resources, we must reconsider the use of compression schemes designed for more
common multimedia access, i.e., on the opposite assumption that the encoding is
performed only once, and is therefore as computationally demanding as required,
while decoding is performed only as multiple users access the information content,
and must be as lightweight as possible to meet the resources of, e.g., mobile access
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terminals. Hence, compression schemes that exploit only a few and very elementary
computations are appealing to cope with such resource partitioning that is evidently
unbalanced on the decoder side.

In this view, CS could act as a lossy compression stage in an encoder, which oper-
ates by projecting the signal onto a RAE sensing matrix (as given in Definition 1.7).
Thus, the expense of computational or digital hardware complexity is expected to
be minimal. On the other hand, the decoding stage will require the computational
effort of solving a sparse (or structured) signal recovery problem, with the aid of
efficient algorithms as they were recalled in Sect. 2.2.

Existing information-theoretic investigations that analyze CS as a digital-to-
digital lossy compression, such as [17], did show that its rate-distortion perfor-
mances [11] are asymptotically suboptimal w.r.t. simple transform-coding tech-
niques that implement the scheme of Fig. 8.1 without resorting to CS. Although
formally correct, these works do not account for a down-to-bits analysis of the
digital hardware requirements of such transform-coding schemes, that often require
floating-point multiplications to be accurately implemented and yield the desired
performances. On the other hand, CS with RAE sensing matrices is extremely
lightweight and multiplierless w.r.t. standard compression schemes. To improve its
rate, we will also pair CS with a further entropy coding stage (i.e., Huffman coding
[20]) to attain an even more compressed output bitstream v.

Thus, we will illustrate how the task of encoding a signal by CS is well-suited
to the tight resource requirements of sensor nodes, whereas signal recovery is more
appropriately targeted to a central node that receives all the encoded streams. As
a practical case for this application, we compare the performances of CS with
some reference compression schemes for single-lead electrocardiographic (ECG)
signal compression. In addition, we show that a direct application of the adaptation
principles developed in Chap. 3 and the related techniques in Chaps. 4 and 5 allows
for a further, significant code rate reduction for the proposed compression scheme
w.r.t. non-adapted CS.

8.1.1 Lossy Compression Schemes for Biosignals

We here consider the specific case of ECG signals as a relevant example for the
development of wireless health monitoring sensors; the appeal of such signals is due
to the fact that they exhibit a quasi-stationary behavior over time, as they convey
information on an essentially periodic phenomenon. Thus, n-samples windows x
(i.e., when they are considered as random vectors) of this signal class are not only
typically compressible w.r.t. a suitable DWT (i.e., they are accurately represented
by only � 	 n nonzero wavelet coefficients), but are also endowed with additional
structure given by the higher-order moments (i.e., the correlation properties) of this
signal ensemble that can be leveraged by a suitable adaptation.

The standard approach to acquiring such signals is depicted in Fig. 8.1: the
analog ECG is first acquired by ADC that discretizes it into n Nyquist-rate samples
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collected in x. Moreover, the ADC intrinsically requires quantization of the signal
range to yield standard, pulse-code modulated (PCM) samples xQ D Qbx.x/, with
Qbx denoting uniform1 scalar quantization at bx bits per sample (hereafter bps)
whose bins cover the full analog input range. The task of encoding xQ prior to
transmission can be divided into two stages (the bitstream lengths are denoted by
B�):

1. a lossy encoding stage that allows for a reduced-size bitstream yQ by accepting
some information loss w.r.t. xQ. This is divided into a discrete transform that
maps xQ in a domain where a compressible behavior is observed followed by an
additional quantization step, where information loss is allowed with the purpose
of reducing the code rate;

2. a lossless encoding stage that eliminates the remaining redundancy in yQ by
operating on its symbols, returning a compressed binary string (i.e., a bitstream)
v at the output. Typical examples of such a stage are entropy coding schemes as
described in [39, Chapter 4].

The two stages achieve for an n-samples window a code rate of r D Bv

n bps
with a total of Bv bits in the encoded bitstream. In particular, we here evaluate
the possibility of using CS as digital signal compression scheme which applies
linear dimensionality reduction on xQ, that is suitably used as a discrete transform
in the scheme of Fig. 8.1. We now proceed as follows: firstly, we introduce two
common compression techniques (one lossless, and one lossy w.r.t. xQ) that may
be considered as terms of comparison for this task. Then we discuss a lossy
compression scheme based on CS and tune it to attain optimal performances.
Finally, we compare the three techniques as tuned as possible to see what are the
optimal rates they achieve on ECG signals. We proceed by summarizing the first
two schemes.

Huffman Coding

A low-complexity lossless compression scheme considered for this comparison
amounts to processing the PCM samples in xQ with standard Huffman coding
(HC) [39], a simple and widely used entropy coding technique. HC takes a binary
string as an input, and encodes it by a prefix-free variable-length code. This code
entails the construction of an optimal codebook based on the probability distribution
of the input, i.e., the most probable symbol in the input string is encoded by the
shortest codeword, and so on in the construction of a binary tree that uniquely
encodes all nonzero probability symbols.

The codebook is here assumed to be known a priori and is practically trained
on the empirical distribution of a very large set of PCM samples (in particular, of a

1The integration of non-uniform, minimum-distortion quantizers at the ADC is a technologically
complex task; for this reason, we limit this study to uniform scalar quantizers.
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Fig. 8.2 A system-level view of Huffman coding

large dataset of ECG samples). Since this training set might not contain all possible
words an escape codeword is added to the codebook, followed by dlog2 qe bits to
represent all of the q symbols not appearing in the above set. Thus, the “quality
loss” here is only due to the inevitable quantization of x into xQ caused by ADC.

This compression scheme requires a minimum amount of computational
resources: after the signal is quantized, we straightforwardly encode xQ by using
a lookup table that maps its fixed-length words to variable-length codewords in
the encoded bitstream v. Thus, provided there is enough storage available at the
sensor node to allocate the optimal codebook, HC achieves a code rate rHC with no
fixed-point signal processing operation involved, and in an absolutely inexpensive
fashion as it amounts to a suitably initialized lookup table. This scheme is depicted
in Fig. 8.2.

Set Partition Coding of Wavelet Coefficients

To the other end of our complexity comparison, we consider the application of Set
Partition coding in Hierarchical Trees (SPIHT, [27]) that serves as a basic building
block following the application of a wavelet transform in digital signal compression
schemes (see Fig. 8.3). The SPIHT encoder operates on the DWT coefficients of
xQ (in particular, the authors of [27] suggest the optimality of 9/7 bi-orthogonal
wavelets [28] for ECG signals) by constructing a map of their significance w.r.t. their
magnitudes and dependencies in a tree representation of the wavelet coefficients.

The critical arithmetic complexity in this lossy encoding is in implementing the
chosen DWT that, as efficient (e.g., as [24]) and specific (e.g., as [6]) as it can
be made, requires at best fixed-point multiplications with carefully quantized filter
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Fig. 8.3 A system-level view of set partition coding in hierarchical trees

coefficients. Such a complexity is considered high for straightforward integration
into low-resources digital processing stages for sensor nodes; we will report its
attained code rates rSP as a reference case that is generally expected to outperform
the other schemes discussed in this chapter.

8.1.2 Lossy Compression by CS

8.1.2.1 The Encoding Stage

As mentioned in Sect. 8.1.2 a dimensionality reduction is simply obtained as
y D Ax; in this chapter, we will refer to A as the encoding matrix to emphasize
that it is implemented in a digital-to-digital fashion; in particular, we let A 2
f�1;C1gm�n;m < n since we want to implement it in very low-complexity digital
hardware.

The proposed encoding stage is reported in Fig. 8.4a and summarized as follows.
As dimensionality reduction is here performed in the digital domain, we will operate
on quantized xQ; thus, the encoding operation is actually y D AxQ represented by
m digital words. Their wordlength will be by D bx C dlog2 ne bits since each yj

is obtained by an inner product of the PCM samples in xQ with a vector of sign
changes, i.e., yj D ˙xQ0 ˙ xQ1 ˙ : : :˙ xQn�1. This operation can be conveniently
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mapped on mn cycles of a single accumulator, i.e., by an extremely simple and
multiplierless scheme as that of Fig. 8.5.

To reduce the rate of the encoded bitstream, we quantize y by a second uniform
scalar quantizer as yQ D Qb0

y
.AxQ/ with by

0 � by. Qb0
y

is scaled to operate in the
range of y but keeps only by

0 MSBs from each yj. We also note that the alternative
of a non-uniform, minimum-distortion scalar quantizer (i.e., a Lloyd-Max quan-
tizer [32]) could indeed be pursued here as only requiring the implementation of a
suitable pre-distortion prior to uniform quantization, whereas vector quantization
commonly requires more computational effort on the encoder [18]. In a low-
complexity perspective we assume that a uniform quantizer is the simplest choice
for this task, although other alternatives are indeed worth exploring (and has already
been addressed in some works [22, 44]).
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To further compress the encoded bitstream we evaluate the option of applying
lossless HC with an optimal codebook trained on the empirical PMFs of each ele-
ment of yQ, that are approximately Gaussian-distributed due to the mixing effect of
A. Thus, the encoded bitstream v attains a code rate rCS that depends on .m;bx;by/,
the choice of A and the presence or absence of HC in the encoder/decoder.

8.1.2.2 Rakeness-Based Encoder Design

We now proceed to discuss a further degree of freedom in the choice of A as drawn
from a suitably chosen, rakeness-based design of A rather than the non-adaptive
choice of i.i.d. random symbols. Although assuming A � RAE.I/ fits equally well
any kind of signal [7], we have shown how rakeness and signal localization can
be leveraged to design A � RAE.� / that maximizes the average energy of y and
allows for lowering the requirements on the minimum m to attain successful signal
recovery. We therefore use it as an encoder-side option to reduce the code rate, at
the price of some side information as follows.

To carry out the design of A (i.e., the choice of � ), we recall that the quasi-
stationary behavior of ECGs allows for a meaningful estimation of the signal’s
correlation matrix� D UMU�, where U is equivalent to that of optimal transform-
coding by the Karhunen–Loève Transform (KLT) [16], that is essentially identical to
PCA. In many applications, the stationarity of� over time could be insufficient, and
the update and transmission of its estimate b� would make the KLT disadvantageous
w.r.t. computing other transforms. However, for this particular type of biosignal the
estimated� is not only stable, but typically also attains high values of Lx in (1.5).

To leverage this structure, given the quasi-stationary behavior of ECGs, we here
apply the synthesis methods and the design flow of Sect. 3.2, using an estimate of
the correlation matrix b� (depicted in Fig. 8.6a) given by the sample correlation of
a large training set of 104 instances of n D 256 samples ECG window x. Thus, the

Fig. 8.6 Correlation matrices depicting the phases of a rakeness-based design flow for the
encoding of ECG signals: from (a) to (c), the estimated correlation bXc is fed into the design flow
to yield a target correlation� , which is synthesized as RAE.� / by clipping the realizations of a
Gaussian ensemble RGE.	 /
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synthesis problem is solved with the purpose of defining a RAE.� / from which A
can then be generated. To do so, we follow precisely the scheme of Fig. 3.3, setting
the parameter t D 1=2; to document this process, we report � in Fig. 8.6b. Given
this target correlation for the RAE, we use the antipodal generation method in the
stationary case described in Sect. 5.3.1. By plugging the obtained� as � in (5.2),
we obtain 	 as depicted in Fig. 8.6c, which can then be used as the correlation of
a Random Gaussian Ensemble (RGE) with zero-mean and the designed covariance
matrix 	 , RGE.	 /. A � RAE.� / can be obtained by clipping provided 	 � 0;
this feasibility is widely discussed in Chaps. 4 and 5, and turns out to be practically
true for all considered cases of � at parameter t D 1=2 resulting from ECG
correlation matrices � . In a sense, this whole synthesis strategy can be considered
similar to a KLT with antipodal-valued random projection vectors, yet more robust
due to how the rakeness-localization trade-off is tackled.

Thus, the resulting y will have by design (i.e., by the very definition of our
adaptation criterion, that is rakeness) a larger variance than that produced by the
classic RAE.I/ case, so the following quantizer and Huffman code in Fig. 8.4a will
require an adaptation to the new distribution of y to yield an appropriately quantized
yQ.

8.1.2.3 The Decoding Stage

Since A is a dimensionality reduction and y undergoes a second quantization,
this scheme is by definition lossy. However, we have previously recalled some
theoretical guarantees that relate the sparsity of x w.r.t. D and the minimum number
of measurements m D O.� log.p=�// ensuring that x may be stably recovered from
yQ even in the presence of quantization noise. This guarantee allows us to consider
the possibility that, when x is sufficiently sparse w.r.t. D, some denoising may indeed
be possible by a suitable choice of dictionary and recovery algorithm.

The decoding stage discussed in this section is reported in Fig. 8.4b. As a
recovery algorithm we indeed considered analysis-basis pursuit with denoising (a-
BPDN), i.e., as defined in (2.3) with " � 0 set proportionally to the energy of the
quantization noise introduced in the processing chain by both Qbx and Qb0

y
.

As for .D;D�/ we assume they are the synthesis and analysis operators of an
undecimated DWT (also known as “translation invariant” or “redundant” DWT), i.e.,
an overcomplete transform whose operators form a tight frame (see Sect. 1.4), that
is obtained by modifying the filter-bank and removing the decimation/up-sampling
blocks to obtain an oversampled DWT instead of the usual critically sampled DWT
(which results in D being orthonormal). This arrangement of a signal recovery
algorithm and an analysis-sparsity prior was shown to be robust w.r.t. additive noise
in several contributions [8, 12, 42]. We precisely aim at leveraging this robustness
to mitigate the impact of quantization on the quality of Ox.
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8.1.3 Performance Evaluation

In this section we evaluate the performances after decoding of the schemes in
Fig. 8.4, with an emphasis on CS and its variants. We adopt the average reconstruc-
tion signal-to-noise ratio of the decoded signal (ARSNR, (2.4)) between x and Ox as a
performance index, where Ox is taken at the decoded output of each of the considered
techniques. We now proceed to specify some details of how this evaluation is carried
out.

Dataset and Samples’ Quantization

We here use a synthetic ECG generator [33] to produce 104 training instances of x
with n D 256, corresponding to 1 s windows sampled at 256Hz. The parameters
of the generator are randomly drawn to obtain a training set oscillating at various
heart rates and not corrupted by intrinsic or quantization noise. Each window is then
quantized to its PCM samples xQ at bx bps. Since the ECG PCM samples generally

have a high crest factor CF D 20 log10
p

nkxk1
kxk2 � 11 dB they are non-uniformly

distributed in the quantizer range. Thus, the SNR w.r.t. uniform white quantization

noise is estimated as SNRQbx
ŒdB� D 10 log10

OEŒkxk22�
OEŒkxQ�xk22�

� 6:02bx � 11 dB (as will

be reported in Fig. 8.8a,b) where the second term is indeed due to the ECG signals’
high crest factor.

Decoding Stage Details

The choice of a suitable wavelet family for the UDWT and of a decoding algorithm
for solving (2.3) is crucial for a fair evaluation of CS. We here assume that .D;D�/
are those of the Symmlet-6 UDWT with J D 4 sub-bands (i.e., p D .J C 1/n) [28,
Chapter 5.2], and adopt this transform for signal recovery. For what concerns a-
BPDN, we solve (2.3) by the UnLocBox implementation (i.e., [40]) of Douglas–
Rachford splitting [10] with the data fidelity constraint of (2.3) tuned to the noise
norm " D kyQ � Axk2 and ensuring that the algorithm converges up to a relative
variation of 10�7 in the objective function.

Measurements’ Quantization Effects

The main noise sources in the evaluated coding schemes are the uniform PCM
quantizers Qbx ;Qb0

y
. While the former is common to all evaluated schemes, the latter

is only used in the CS encoding to reduce each element of y to b0y < by bits. Since
these measurements are approximately Gaussian-distributed (as partly discussed in
Sect. 3.4) b0y D by D bx C dlog2 ne would largely exceed the precision actually
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Fig. 8.7 ARSNR for the RAE.I/ (dashed) and rakeness-based RAE.� / (solid) CS with different
quantization policies. For both figures bx D 6; : : : ; 16. For bx D 10, the points corresponding to
bit budgets that allow an ARSNR 	 30 dB highlight the i.i.d. RAE.I/ case (cross) and RAE.� /
case (square)

required to represent y with negligible losses. Thus, to explore the effect of by

we .i/ encode by CS the ECG training set and train Qb0
y

with either b0y D bx

or b0y D bx C d 12 log2 ne .ii/ apply the same operation on 64 new test instances,
solve (2.3) and compute ARSNR while varying m D 20; : : : ; 128 (up to m D n=2),
bx D 6; : : : ; 16. Moreover, we run the very same procedure for rakeness-based CS
trained as discussed in Sect. 8.1.3, with a suitably scaled range for Qb0

y
that must

compensate for the fact that the measurements have a larger average energy as a
result of our adapted CS methodology.

The outcome of this procedure is reported in Fig. 8.7, where it is observed that
.i/ rakeness-based CS with maximum energy RAE.� / outperforms standard CS
with the RAE.I/ in all the examined cases, as it relies on some a priori information
on the signal being acquired; .ii/ the quality gain obtained by using more bits for
both .bx;b0y/ progressively saturates at an ARSNR limit imposed by the sparsity
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level of ECG signals; .iii/ for a fixed value of bx, the total bit budget By D mb0y
required to reach an ARSNR target hints at how redundant the chosen quantization
policy is. This quantity is highlighted in both Fig. 8.7a,b, and shows how the quality
improvement of choosing a more accurate quantizer Qb0

y
for yQ must be matched

with a smaller m, and in particular that b0y D bx is a better choice for achieving
lower code rates with CS.

8.1.3.1 Rate Performances

Given the observed quantization effects, to understand which uniform scalar
quantizer Qb0

y
enables the lowest code rate, yQ must be post-processed by optimally

trained HC. In addition, we here assess how this attained rate, rCS, compares with
the rate performances achieved by the other schemes (Fig. 8.4) at some fixed target
decoding performances, i.e., ARSNRŒdB� D f25; 30; 35; 40; 45; 50g.

For a fair comparison, SPIHT for ECGs [27] is run from the authors’ code by
fitting instances of xQ into full frames of 1024 PCM samples quantized at different
bx. The SPIHT encoder takes rSP as an input, which we vary in Œ1=n; 2�; the minimum
rSP that guarantees the target ARSNR after decoding is then reported in Fig. 8.8a,b.
As a further reference, we report the rates of uniform PCM quantization and its
optimal HC, achieving a rate rHC; since it is lossless, achieving an ARSNR target
depends on bx. While the average codeword length (and rHC) could be estimated as
the entropy of PCM samples, to account for the presence of escape symbols we run
this encoding to find the actual rHC of the test set.

These two reference methods are compared with various embodiments of CS
(i.e., with or without HC; with different quantization policies; with or without a
rakeness-based, maximum energy RAE.� / encoding matrix design) in Fig. 8.8a,b.
It is observed that the rates attained in Fig. 8.8a are generally lower than those in
Fig. 8.8b, thus confirming the small quality loss compared to the rate gain when
assuming b0y D bx. In addition, the use of HC on the measurements reduces
significantly the code rate of CS, as also does the use of rakeness-based encoding
matrices. Moreover, by considering rCS of rakeness-based CS with HC, Fig. 8.8a
shows that an ARSNR[dB] � 25 dB is achieved at b0y D bx D 10 bit by rCS �
1:41 bps, while rHC D 3:27 bps. At higher ARSNR targets, CS is increasingly
advantageous, placing itself at less than 50% of the code rate of PCM with optimal
HC.

We conclude that, as a lossy compression, CS can achieve relatively low code
rates, at the same time maintaining a globally low computational complexity on the
encoder side. Given these low requirements, it lends itself as an agile lossy scheme
for resource-constrained signal compression applications. This said, many degrees
of freedom are still to be explored to improve upon these results; as mentioned, since
the second scalar quantizer is fully digital and can be arbitrarily tuned, Lloyd-Max
quantization could be used to reduce the measurements’ distortion for a given code
rate, exploiting the fact that their statistics are approximately Gaussian-distributed.
In addition, we expect that recent developments in the modeling of quantization
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noise in the signal recovery problem, as done in [21, 36] (at the cost of an additional
uniform dithering prior to quantization, as specified therein), could enable even
higher recovery quality for this class of signals, and consequently lower code rates
for the chosen distortion levels.

8.2 Dual Mode ECG Monitor by Bortolotti et al., 2015

The application discussed in [5] presents an interesting application that uses CS
as a basic building block for ECGs signal compression properly designed for both
Healthcare (HC) and Wellness (WN) applications. The presented system envisions
a dual-mode wearable ECG monitor based on a multi-core DSP for multi-lead ECG
compression. Furthermore impact of different technologies for either transmission
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or local storage of the evaluated measurements is also analyzed showing the
effectiveness of the rakeness-based approach.

8.2.1 System Architecture and Mathematical Model

The processing chain for a wearable biomedical monitoring system is typically
split into three phases. First, input biosignals acquisition, followed by a stage
aiming to process/compress the acquired digital data and finally management of
the processed/compressed input. In the first stage the analog input biosignal is
sampled and made available to a digital signal processor (DSP) block for processing.
Subsequently the compressed output can be transmitted (to a personal server such
as a smartwatch or smartphone) or locally stored for later off-line medical analysis.
Motivated by the inherent parallel nature of medical-grade biomedical monitoring,
where multi-channel signal analysis is suitable for parallel processing, the authors
of this contribution propose a multi-core DSP to process in parallel data acquired
from more than one lead or from more than one biosignal. From a technological
point of view, emerging non-volatile memories (NVM) allow to have on-chip low-
power storage, suitable for keeping a record of medical-grade compressed data
on-board, i.e., directly on the device. As a matter of fact, it is quite important from
a medical point of view to distinguish the triggering event that marks the distinction
between normal, healthy heart activity to a suspicious behavior that requires medical
attention.

Hereafter, we describe a unified architecture capable of offering signal qualities
suitable for both medical-grade and lifestyle applications leveraging the quality
offered by the rakeness-based CS. The envisioned dual-mode ECG monitor is able
to handle in highly energy efficient way different application scenarios, such as
healthcare and wellness, according to an external command. The main points are
the following:

• It presents a dual-mode ECG monitor, suitable for healthcare applications, in
which the target is medical-grade signal quality, and for wellness applications,
e.g., heart rate detection, for which a lower signal quality level is acceptable.

• Identify different operating points for healthcare and wellness scenarios with
their associated compression ratios. This work highlights that rakeness-based CS,
as presented in Chaps. 3 and 4, leads to significant improvements w.r.t. standard
CS in terms of data compression and energy efficiency for both application
scenarios.

• Provide an up-to-date analysis on the energy gains including transmission and
storage impact, considering several possible use-cases.

The main idea is to exploit the trade-off between data compression (i.e., to
reduce as much as possible the number of entries in the measurement vector) and
the goodness of the reconstruction for two different reconstruction quality standards
used as targets for, respectively, HC and WN applications:
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• High quality (HQ): the achieved data compression is such that ECG instances
are correctly reconstructed for healthcare quality (i.e., medical-grade, with an
accurate waveform representation of the heart cycle).

• Low quality (LQ): the achieved data compression is such that the reconstruction
quality targets wellness applications (i.e., only tailored to provide accurate heart
rate detection).

For a fixed class of signals, and as widely discussed in the prior sections, the
reconstruction quality achieved by CS mainly depends on the cardinality of y such
that a subset of the measurements used for HQ reconstruction can also be used for
the LQ standard.

Before discussing the proposed architecture and related performance we briefly
recap the mathematical model presented in first three chapters with specialization
to the ECG class of signals. In agreement with the rest of this book, the acquired
samples of a given time window are the entries of an R

n vector x while the
encoder stage performs compression by projecting x on a set of m sensing sequences
arranged as row of the sensing matrix A such that

y D AxC �

where � models, in an additive fashion and for the sake of simplicity, sources of
noise such quantization and other nonidealities in the measurement process. At
the decoder stage the original samples are decoded by solving (1.27) adopting the
SPGL1 optimization toolbox [4].

In more detail, we here adopt as input signals synthetic ECGs generated by [33]2;
it is then sampled at 256Hz with 1 s epochs leading to n D 256; for each window,
additive white Gaussian noise is considered as a model for all nonidealities, with
noise power so that the intrinsic signal-to-noise ratio ISNR[dB] D 45 dB. Moreover,
we adopt as sparsity basis D the orthonormal Symmlet-6; as A � RAE.� / (we
will specify later which design is chosen for � ), all sensing sequences Aj;: are
comprised of antipodal values in order to limit the computational burden of the
DSP stage. System performance are in terms of ARSNR for both the rakeness-based
CS and standard CS are obtained by performing Montecarlo simulations over 600
trials.

For the standard CS approach we always refer to RAE sensing matrices A �
RAE.� / with � D I (in particular, so that their antipodal symbols are all
i.i.d.), whereas rakeness-based CS imposes that the rows of the sensing matrix A
are designed with a correlation profile � ¤ I evaluated by (3.10), where � is
estimated over 1000 randomly generated synthetic ECG instances. Furthermore,
Linear Probability Feedback Processes as discussed in Sect. 5.3.1 are considered
for the generation of the sensing matrix rows in this rakeness-based design case.

2The setup for synthetic ECG generation is widely described in [29]: the heart rate of each instance
is randomly fixed in the range 40
120 bpm.
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Fig. 8.9 ARSNR
performances as a function of
CR for synthetic ECGs with
both CS approaches. The
values of ARSNR that identify
two operating points for HQ
and LQ ECG reconstructions
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The resulting ARSNR as a function of the CR is shown in Fig. 8.9 where the
ARSNR values for both signal quality levels are also reported. Starting from an ISNR
D 45 dB the HQ standard was marked for ARSNR[dB] � 35 dB (considering 10 dB
loss as the price paid for data compression). The associated minimum CRs are 1:91
for standard CS and 3:46 for rakeness-based CS. Remarkably, an increase of CR
is directly translated into a reduction of the amounts of bits to be transmitted or
stored so that, in a scenario involving the acquisition of more than one channel, the
reduced m implies a reduction of the computational load and the “memory footprint”
required for each channel to compute its own measurement vector y.

For the LQ operating point the reconstruction quality is fixed by a correct
heart rate estimation, i.e., the amount of extracted signal information is enough to
detect ECG peaks. To determine the minimum number of measurements required
to achieve the desired quality, the reconstructed signals were processed by an
automatic tool able to count intervals between two successive peaks interval.3 We
consider compatible with the LQ target the minimum number of measurements
ensuring that, over 600 s of reconstructed signal, heart rate detection is correct over
98% of the detected peaks. The results show that this rate is always reached with
ARSNR � 7 dB that correspond to CR D 5:45 for standard CS and CR D 12:19 for
rakeness-based CS.

To corroborate this analysis, the operating points that were determined con-
sidering synthetic ECGs are tested with real ECGs taken from PhysioNet [15],
confirming the goodness of the proposed approach. Three seconds of real ECG
signal with the corresponding reconstructed tracks for HQ an LQ and for both
CS approaches are shown in Fig. 8.10. The same plot reports also the CR value
associated with each configuration.

3The heart rate estimation was done by ecgBag, available at http://www.robots.ox.ac.uk/~gari/
CODE/ECGtools/.

http://www.robots.ox.ac.uk/~gari/CODE/ECGtools/
http://www.robots.ox.ac.uk/~gari/CODE/ECGtools/
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Fig. 8.10 Visual representation of the reconstruction quality for real ECG samples for both CS
approaches operating in LQ and HQ. Each plot reports CR value that identifies the couple CS
approach and operating point

8.2.2 Hardware Implementation and Energy Performance

A representation of the dual-mode ECG monitor is presented in Fig. 8.11. The
reported block scheme is comprised of three separate blocks: the Analog Front-
End (AFE), the multi-core DSP (MC-DSP), and the back-end for transmission (TX)
or storage in a non-volatile memory (NVM).

In the considered architecture 8-lead biosignals are acquired and sampled by the
AFE during the Data Collection phase, with a sampling frequency set according to
the properties of the biosignal to analyze and the accuracy needed in the considered
scenario. Once a set of new samples is ready in the AFE buffer, data are moved to
the MC-DSP memory to perform data Compression. Data compression is achieved
by matrix multiplications where sensing matrices are composed by antipodal values
in order to limit the computational burden of the DSP stage. As a consequence
during this phase, for most of the time, the whole system is idle thus it is possible to
consider a deep low-power state (almost zero power) for both the MC-DSP and
the TX & NVM back-end. As a matter of fact, this avoids unnecessary power
consumption. The last stage, that is Transmission & Storage, manages compressed
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Fig. 8.11 Dual-mode ECG monitor block scheme (top) and the operating points for the three
different use case scenarios (CS1, CS2, and CS3) for both wellness (WN) and healthcare (HC)
applications

data for the current time window depending on the target usage, i.e., the data are
either transmitted or stored in the device for future off-line medical analysis.

As described in the previous Sect. 8.2, the systems’ operating points are designed
for two different reconstruction quality levels, namely HQ and LQ. Such targets
define two corresponding families of applications, i.e., the systems operating in HC
mode require that the compressed signal achieves the HQ reconstruction quality
target, while the WN mode is tuned to meet an LQ reconstruction quality target.
These definitions pave the way to different realistic applications for the proposed
device, which can be put in context as three use-cases that differ in the provided
signal quality and potential medical usage of the device:

• SC1

(
WN D CSLQ C TXLQ

HC D CSHQ C TXLQ C NVMHQ

• SC2

(
WN D CSHQ C TXLQ C BUF1min

HQ

HC D CSHQ C TXLQ C NVMHQ

• SC3

(
WN D CSHQ C TXLQ C BUF1min

HQ

HC D CSHQ C TXHQ
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In these definitions �LQ denotes the cases where the minimum number of measure-
ments m for the LQ standard is computed (CSLQ), transmitted (TXLQ), or stored
(NVMLQ). In a similar fashion, �HQ denotes that m, and thus CR, are increased as to
meet the HQ target. The main difference between those definitions is based on the
fact that the measurements for the LQ target are a subset of those for the HQ one.
As an example, in a HC application for SC2, the MC-DSP first computes all the
measurements required to meet the HQ target, and then only a subset is actually
transmitted to the user for heart rate monitoring purposes, while the remaining
measurements are stored locally for future medical-grade analysis.

The proposed device can switch from WN to HC operation by an external input
that can be activated by the patient with arrhythmia symptoms (it is an optional
feature in SC2 and SC3). To cope with this requirements BUF1min

HQ refers to a circular
buffer, located inside the MC-DSP memory, capable of storing the last observed
minute in high quality to record the transition event from WN to HC operation.
Figure 8.11 (bottom) summarizes behaviors in the three considered scenarios.

To understand the benefits introduced by rakeness-based CS, the energy required
for compression and transmission/storage of a 1 s window may be analyzed as
a measure of system-wise energy efficiency. The MC-DSP architecture has been
modeled and integrated in a SystemC-based cycle-accurate virtual platform, with
back-annotated power numbers for the architectural elements extracted from an
equivalent register transfer logic architecture (RTL-equivalent)[13]. The design
corner for the power numbers are (RVT,25C,0:6V) @ 10MHz in a 28 nm FDSOI
technology. A reverse body bias voltage VRBB D 1V is also considered to reduce
the leakage contribution during the idle phases. Moreover, considering that the
compression task is memory-bound by nature, the requirements in terms of core-
memory bandwidth imply higher supply voltage for the memory (0:8V) in order
to sustain the throughput. Remarkably, the execution time discrepancy between the
SystemC and the RTL platforms is less than 7%. Due to the multi-lead nature of
the system a 1KB instruction memory and a stack portion of 512B per core is
considered. In terms of data storage, the memory requirements to allocate the input
samples amount to 256 samples=s and 8 channels at a 12-bit ADC resolution (per
sample). Static data allocation is performed by means of cross-compiler attributes
and linker script sections. The remaining memory footprint contributions (output
and sensing data structures) depend on the proper CS approach and on the quality of
service. Detailed numbers are shown in Table 8.1, along with the execution cycles
required to perform CS approaches for both HQ/LQ operating points. As already
mentioned, the sensing sequences associated with the LQ quality standard consist
of a subset of the HQ sensing matrix rows; this limits the overhead of the dual-mode
operation in terms of sequence storage and computation.

For the scenarios SC2 and SC3, the impact of the buffer to track the transition
event (BUF1min

HQ ) corresponds to 69:4KB. The data reported in Table 8.1 also
highlight the benefits introduced by the rakeness-based approach. In particular:

• Rakeness-based CS reduces the amount of measurements on thus it reduces also
the memory requirements;
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Table 8.1 Execution cycles and memory footprint requirements for both CS approaches in
LQ/HQ operating points

CS approach DSP time (cycles) Mem.�Output (B) Mem.�Sensing (KB)

LQ
Standard CS 109642 752 11.75

Rakeness-based CS 49048 336 5.25

HQ
Standard CS 312246 2144 33.5

Rakeness-based CS 172428 1184 18.5
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Fig. 8.12 Energy/1 sec-window for the different scenarios (SC1,SC2,SC3) and operation modes
(HC,WN)

• Computing less measurements w.r.t. standard CS implies a reduction of the
execution time (approaching � 55% for the LQ target) which positively affects
the computation costs.

In addition, let us consider the energy requirements of the last stage in our
biomedical monitoring system, i.e., the resources spent for storage or transmission.
For the transmission subsystem, a Low-Energy (LE) Bluetooth transceiver was
considered. The figure of merit to compute these resource requirements is the energy
per transmitted bit, which for Bluetooth LE is ETX D 5 nJ=bit [26], while for the
storage technology the cost per bit is set at ENVM D 0:1 nJ=bit [43]. Note that this
analysis does not account for the AFE contribution, as it does not depend on either
the used CS approach or the considered scenario and is therefore not taken into
account.

The results of this evaluation in terms of energy for computation, storage, and
transmission are shown in Fig. 8.12, which reports the energy consumed in the
different use case scenarios (SC1,SC2,SC3) operating in the HC and WN modalities
during a 1 sec compression window and when rakeness-based CS is employed. The
bars report the stacked contribution of the MC-DSP and the NVM & TX back-end.
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On top of each bar we report the energy gains, taking as the baseline a biomedical
system performing standard CS and transmitting in HQ the compressed ECG data.

8.3 Zeroing for HW-Efficient CS in WSNs by Mangia et al.,
2016

We here present a work that focuses further on the design of a sensor node for
wireless body sensor networks based on the MC-DSP platform. The architecture
presented by Mangia et al. in [31] is the same used in [5] whose block scheme is
reported in Fig. 8.11 (top). Its focus is on a multi-channel biosignal sensor that takes
care of the operations of acquisition, data compression and output transmission, or
storage by leveraging CS.

One of the main results in [5] is that rakeness-based CS can reduce the
computational burden of algorithms for data compression as well as the energy
budget to transmit or locally store the compressed signals. Furthermore it is
clarified that, although CS is a good candidate to reduce the computational cost
for data compression, the energy spent on this task is not negligible w.r.t. the
energy cost of transmission/storage; since sensor nodes are usually battery-powered,
minimizing this energy is a fundamental issue, which is best tackled by means of
cross-stage system-level optimization. By reducing the number of measurements,
the rakeness-based CS paradigm achieves this near-optimality, particularly when
combined with an additional design optimization named zeroing which we present
below with the goal of reducing the global energy requirements. Interestingly, the
analysis shows results for different strategies in transmission and storage including
emerging technologies, i.e., the trade-off between energy for data compression
and measurements’ dispatch is explored as driven by the technology chosen to
implement the last stage.

Chapter 4 discusses this topic offering approaches to limit the operational cost of
the compression stage with very limited performance degradation in terms of data
compression for a proper quality of service. In particular the computational burden
is limited by imposing that a non-negligible amount of entries in A are zero. To
achieve this goal, different strategies in the positioning of the zero entries of A are
proposed depending on the properties of the DSP running this CS-based encoding
stage. Furthermore, Sect. 4.2 presents parsimonius encoding stategies which include
adaptivity in the sensing sequences to the signal class being acquired.

As aforementioned, we will dub this approach “zeroing” as we refer to the fact
that it only sets the null value to a subset of entries in A, with a clear reduction of
the energy spent by the encoder to process the acquired samples since Aj;k D 0

means that no operation is needed. The main focus will therefore be to find an
optimal positioning for the zeros by means of rakeness-based CS, i.e., as to preserve
high ARSNR recovery quality; this essentially involves an application of the design
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flow in Sect. 4.2. Our results shall provide additional design guidelines for what
concerns energy consumption and monitoring time, up to consider approaches to
further squeeze the energy spent by the whole sensor node.

In more detail, the design of the sensing matrix shall follow two steps. Firstly,
rakeness-based CS is considered to obtain antipodal random matrices with an n � n
covariance matrix� designed starting from an estimation of the correlation profile
characterizing the signal class being acquired, � . After that, the antipodal matrix
A is altered by randomly zeroing some entries and thus allowing the generation of
A 2 fC1; 0;�1gm�n.

Resuming the discussion in Sect. 4.1 we recall the design parameter OT, i.e.,
output throttling, which counts the nonzero entries in each column of A such that
0 < OT � m. For each k-th column A�;k; k D 0 : : : n � 1, m � OT randomly chosen
entries are set to zero, leaving only OT nonzeros per column. At the end of the
process, the computational complexity of the measurement vector y evaluation is
reduced from m � n signed sums to OT � n signed sums.

The clear drawback is that zeroing alters the statistical characterization of A
initially imposed by the rakeness approach; clearly, the smaller the OT value, the
higher the introduced distortion will be. As a consequence, a reduction of the
benefits introduced by rakeness-based CS is expected, with the ARSNR performance
eventually degrading back to that of standard CS for low OT values. In a case study
where the signals of interest are real-world single-lead ECGs, we will see that:

• the performance (in terms of ARSNR) of the zeroing approach is higher than the
standard approach for almost all considered value of OT;

• the ARSNR for a fixed m decreases with OT, while energy requirements are
increasing with OT.

The performance in terms of ARSNR is here evaluated over real ECG signals
available from the MIT-BIH arrhythmia on-line database [15], in particular, the
results for the first 71:1 s of record number 101 are presented as a reference. This
signal is sampled at 360Hz and quantized with a 11-bit ADC, so that it is possible
to estimate its ISNR � 38:5 dB. This input signal is then split into 50 time windows
with n D 512 samples each, leading to � 1:42 s per window. For each value of m,
we generate a unique sensing matrix A as selected by means of preliminary tests on
synthetic ECG tracks [33]. The generation of A follows one of the options below:

• for standard CS, A � RAE.I/ is the antipodal random matrix ensuring the best
ARSNR performances among the trials;

• for rakeness-based CS, synthetic ECGs are used to estimate the correlation profile
� required by (3.10) in order to obtain� . After that, we draw A � RAE.� /
from a pool of sensing matrices distributed according to this ensemble, choosing
the one which maximizes the ARSNR over the trials. For a fair comparison, �
was estimated over synthetic ECGs rather than the real ECG trials used in this
comparison;

• for the zeroing CS, the matrix used to test rakeness-based CS performance was
zeroed by randomly set to zero m � OT entries in every column.
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As a decoding procedure (2.3) was considered, i.e., with the reconstructed
signals being obtained by promoting a sparse signal model on a UDWT in
the family of Symmlet-6 wavelets with 4 sub-bands [28, Chapter 5.2]. As in
Sect. 8.1.2.3, the decoder implementation uses Douglas-Rachford splitting as
provided by UNLocBoX [8, 10, 40].

The results in terms of ARSNR are shown in Fig. 8.13 for the three considered
approaches and with different values of OT. As expected, rakeness-based CS
outperforms all other approaches in terms of ARSNR for all considered CR values.
Furthermore, performance for the zeroing CS is increasing with OT and drops to
standard CS only for OT D 2. This results confirms that CS suffers from the
introduced perturbation in the statistics of the rows of A, corroborating the idea that
a carefully optimized zeroing could actually prevent such performance degradation.

Another important issue involved in the zeroing approach is its algorithmic
implementation, which can be made quite efficient for a fixed OT and for both
standard and rakeness-based CS. Since zeroing yields sparse sensing matrices, the
trivial double loop implementing the measurements’ evaluation (i.e., y D Ax)
can be column-wise unrolled in a way similar to such reported in Table 4.1. The
main difference in the software implementation of both approaches is in how the
sensing matrix is locally stored. In the double loop implementation its entries are
simply allocated in the data memory; on the other hand, the column-wise unrolled
implementation stores only the information related to the position and sign of the
nonzero elements of A.

To compare all mentioned CS approaches, a proper “quality of service” is
assigned and then comparison can be done in terms of compression ratio, memory
footprint end energy cost per processing, and for transmission/storage. Starting from
an ISNR � 38:5 dB the target is set to ARSNR[dB] D 28 dB, with the corresponding
operating points reported in Table 8.2. The same table also reports, for all the
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Table 8.2 MC-DSP data memory footprint requirements for standard CS, rakeness-based CS, and
zeroing CS (with OT D 2; 8; 16; 32; 64), targeting ARSNR D 28 dB

CS approach
DSP imple-
mentation m CR

y memory
footprint (B)

A memory
footprint (KB)

Rakeness-based CS Double loop 130 3.94 2080 65

Zeroing CS

OT D 64 Column-wise unrolled 175 2.93 2800 64

OT D 32 Column-wise unrolled 192 2.67 3072 32

OT D 16 Column-wise unrolled 200 2.56 3200 16

OT D 8 Column-wise unrolled 209 2.45 3344 8

OT D 2 Column-wise unrolled 218 2.35 3488 2

Standard CS Double loop 256 2.00 4096 128
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Fig. 8.14 Energy spent in the compression stage for standard CS, rakeness-based CS, and zeroing
CS for different OT values

considered approaches, the memory footprint in the DSP data storage for both the
output measurements and the sensing matrix allocation.

As for the application described in the previous sections, in order to quantify
the energy spent in the DSP block, RTL simulations were run to profile the power
consumption of the architectural elements to be later back-annotated inside the
power models of a SystemC simulator where the design corner is the same as
before. Figure 8.14 shows, for each CS use-case, the energy cost for multi-channel
input data compression. The results show that both rakeness-based CS and zeroing
CS improve the energy efficiency when compared to standard CS. Indeed, w.r.t.
standard CS,� 37% less energy was consumed by rakeness-based CS while zeroing
CS with OT D 2 leads to an energy gain approaching � 91%. This is achieved,
thanks to the few nonzero entries in the sensing matrix, coupled with an efficient
implementation of this strategy.
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8.3.1 Energy Analysis of Transmission/Storage Phase

To complete the previous analysis, we now estimate the energy consumption of the
last stage for both cases: on one hand, wireless transmission of the outputs, and on
the other hand, locally stored outputs with either widespread or forthcoming high-
efficiency storage technologies.

For the case of wireless transmission of the compressed signals, the considered
protocols ranged between power-hungry Near-Field Communication (NFC) to the
more efficient Narrow-Band (NB) solution. In the storage scenario a non-volatile
memory (NVM) is used to locally storage the compressed data; to this end, different
promising technologies were considered ranging from the Resistive RAM (ReRAM)
to the Conductive Bridging RAM (CBRAM). Table 8.3 reports the energy per bit
for all these technologies.

As a first scenario, consider a last stage aiming at wireless transmission of the
compressed data. The first set of results relies on the total energy consumed by the
bio-sensing node to compress and transmit a window of samples with a compression
ratio guaranteeing ARSNR[dB] D 28 dB. For this setting, the results are in Fig. 8.15,
which refers to the transmission technologies listed in Table 8.3 and reports the
total energy cost. The performances evaluated here account for all considered CS
approaches, and for the case where no compression algorithm was run and the sensor
node simply transmits the raw data. The same plots highlight also how the energy
cost is split into the two main contributions, i.e., DSP (bottom part of each bar) and
transmission (top part of each bar). It is then evident that the lowest transmission
energy is always attained by rakeness-based CS; indeed, zeroing CS can approach
this gain by lowering the DSP energy. When comparing to the “no compression”
case (i.e., to transmitting the raw data), interesting results can be observed.

• For both NB and HBC (low energy per bit), the DSP power dominates the
transmission, making data compression not convenient. Obviously, this is by all
means not true in general, but it is found to hold for this peculiar general-purpose
architecture. However, zeroing CS shows its effectiveness especially for OT D 2.

Table 8.3 Energy per transmitted/stored bit assuming different transmission (TX) and storage
(NVM) technologies

Type Technology Energy [nJ/bit] Reference

TX

Bluetooth Low Energy (BLE) 1 [26]

Narrow Band (NB) 0.1 [38]

Human Body Channel Communication (HBC) 0.24 [2]

Near Field Communication (NFC) 10 [25]

NVM

Resistive RAM (ReRAM) 2 [9]

Spin-torque-transfer magneto-resistive RAM (STT-MRAM) 0.1 [19]

Flash memory (FLASH) 0.01 [43]

Conductive Bridging RAM (CBRAM) 0.001 [14]
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Fig. 8.15 Energy per window, considering different TX technologies and different CS approaches
which include the case where any compression algorithm is used. From top to bottom: Near Field
Communication, Human Body Channel, Narrow Band, and Bluetooth Low Energy

• Over the considered transmission technologies, BLE is an intermediate case.
Here the introduced random zeroing shows the best energy-efficiency perfor-
mance.

• For high transmission cost, as for NFC, energy in transmission dominates the
DSP contribution. As a consequence, the rakeness-based CS, with the highest
compression ratio, achieves the best energy efficiency. Note that the zeroing
approach with OT D 64 is relatively close to the minimum reached by rakeness-
based CS.

Clearly, the adoption of more sophisticated zeroing procedures (amply discussed in
Chap. 4) is a promising approach in the reduction of the energy cost also for cases
where DSP cost is far from negligible.



8.3 Zeroing for HW-Efficient CS in WSNs by Mangia et al., 2016 237

no
C

S

Standard

R
akeness

Z
.O

T
=

64

Z
.O

T
=

32

Z
.O

T
=

16

Z
.O

T
=

8

Z
.O

T
=

2

0

50

100

150

CS approach

E
ne

rg
y

[m
J]

DSP NVM

CBRAM

0
50

100
150
200
250 ReRAM

E
ne

rg
y

[m
J]

0

50

100

150 STT-MRAM

E
ne

rg
y

[m
J]

0

50

100

150 FLASH

E
ne

rg
y

[m
J]

Fig. 8.16 Energy per window for different NVM technologies and different CS approaches which
include the case where any compression algorithm is used. From top to bottom: Flash technology,
Conductive Bridge RAM, Spin-transfer torque magnetic RAM, and Resistive RAM

The second analyzed scenario assumes that the bio-sensing node locally stores
the compressed data. As before, a single plot for each considered technology reports
results for both DSP and storage energy consumptions. Such results are in Fig. 8.16.
Firstly, STT-MRAM, CBRAM, and FLASH configurations are characterized by
a negligible storage energy cost w.r.t. the DSP, which makes the case of storing
uncompressed data (no CS in plots) more energy efficient. However, for the case
of ReRAM technology conclusions changes so that both rakeness-based CS and
zeroing CS guarantee a non-negligible improvement.

For this scenario another figure of merit counts the impact of all analyzed CS
approach, it is the memory footprint. Due to the fact that data are locally stored
directly in the bio-sensing node, also the storage footprint is important due to area
limitations in the sensor node. Results referring to this figure of merit, maximum
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Table 8.4 Monitoring time as a function of different NVM storage capacities (technology
independent)

CS approach 32KB (s) 1MB (m) 128MB (h) 1GB (d)

Rakeness-based CS 11.04 5.89 12.56 4.19

Zeroing CS

OT D 64 8.26 4.41 9.40 3.13

OT D 32 7.61 4.06 8.66 2.89

OT D 16 7.23 3.86 8.23 2.74

OT D 8 6.79 3.62 7.72 2.57

OT D 2 6.60 3.52 7.51 2.50

Standard CS 6.66 3.55 7.58 2.53

No CS 2.82 1.51 3.21 1.07

monitoring time for different embedded storage size, are shown in Table 8.4 for
different memory sizes.

As an example, for 128MB embedded NVM, rakeness-based CS allows to store
more than 12 h of ECG track, 5 h more than standard CS. Without any data
compression only 3 h can be stored. As expected, the zeroing approach is in between
monitoring times of standard and rakeness-based CS.

8.4 Design of Low-Complexity CS by Mangia et al., 2017

The design flow described by Mangia et al. in [30] merges sensing matrix design
based on rakeness with the zeroing approach presented in the previous section. The
discussed approach is also discussed in Chap. 4 where, as in [30], such a merge was
translated in the solution of two different optimization problems, (4.6) and (4.7), that
give us the correlation matrices to be imposed to either ternary (Aj;k 2 f�1; 0; 1g)
or binary (Aj;k 2 f0; 1g) sensing matrix rows. Both Chap. 4 and [30] name these
optimization problems, respectively, TRLT and BRLT and discussions on their
solutions are amply reported. The entire design flow can also explored by a set
of freely available4 MATLAB© functions along with some demo examples.

To recall the notation and parameters defined in Chap. 4, the most obvious design
parameter is the compression ratio (CR D n=m); the sparsity ratio SR of A and the
puncturing ratio PR are also fundamental as they count the ratio in the amount of
elementary operations required to compute y and the ratio in the amount on input
samples involved in the same computation, respectively. These are estimated as

SR D n m

W
PR D n

N

4http://cs.signalprocessing.it/download.html.

http://cs.signalprocessing.it/download.html
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where W counts the total amount of needed operations and N counts the actual
number of input samples used to compress the data.

Two other parameters drive this section, they are the input throttling IT and
the output throttling OT which measure the computational burden of each iteration
when the matrix multiplication y D Ax is either horizontally or vertically throttled.
All these parameters allow us to explore different options as far as the computation
of projections is concerned. We present these results in a real-world scenario, along
with a comparison with other approaches proposed in the literature so far.

8.4.1 Low-Complexity Sensor Node for ECGs Acquisition

The analysis discussed hereafter refers to the use of a synthetic generator [33] that
provides noiseless ECG signals, to which additive white Gaussian noise is added to
achieve an ISNR D 40 dB. The parameters of the generator are randomly drawn
in the same ranges used in [29] to obtain a profile population from which the input
signal statistics � can be estimated. Tracks are sampled at 256 Hz so that one-
second windows correspond to n D 256. The resulting vectors x are analyzed by an
overcomplete dictionary, that is a Symmlet-6 UDWT with 4 sub-bands in order to
provide a decoding algorithm similar to one used in [31] (as it was also presented in
Sect. 8.1.2.3).

Figure 8.17 reports the reconstruction performance for ternary-valued random
matrices A. ARSNR is plotted against CR for different configurations as far as throt-
tling and puncturing are concerned for standard CS (i.i.d. ternary-valued random
sequences) and for the rakeness-based CS (ternary-valued random sequences with a
given correlation matrix � imposed by the solution of TRLT). In the same plot,
as references, black solid track identifies performance attainable with antipodal,
rakeness-based, projections and a black dashed track corresponds to purely random
antipodal projections.

Beyond that, the relative position of solid (for rakeness-based projections) and
dashed (for purely random projections) lines show the effect of statistical adaptation
when different saving policies are adopted. Specifically, we report the results for
IT D 4 (i.e., each row of A has 4 nonzero entries so that SR D 64) and for
PR D 1:1 (it means that 233 input samples over 256 are involved in the computation,
or equivalently, A has 23 null columns).

A different point of view is given by the results shown in Table 8.5, which reports
the savings for ECGs reconstructions with a fixed ARSNR. Here, such a quality
threshold is set to 34 dB and, the savings are arranged so that each row corresponds
to the parameter controlling a stage in a signal chain: PR accounts for how many
samples are acquired, IT for the complexity in data compression, and CR for the
measurement dispatch.

The first two columns report the savings for the two reference cases with
full sensing matrices, i.e., the entries are never zeroed, for both rakeness-based
projections and purely random projections. Then, column groups correspond to
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Fig. 8.17 ARSNR of
synthetic ECG signals as a
function of CR for different
choices of projections and
saving policies
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Table 8.5 The savings achieved in the sampling, projection, and transfer stages when different
strategies are employed to achieve a target ARSNR D 34 dB for synthetic ECGs

Antipodal Ternary
Stand. CS Rak.-base CS Rak.-base CS and Punc. Rak.-base CS and Throt.

PR 1 1 1.35 1.56 1 1

IT 256 256 190 164 4 8

CR 2.75 3.56 3.34 2.11 3.62 3.7

applying puncturing or throttling. Overall, empirical evidence shows that, even for
this more realistic class of signals, target reconstruction quality can be achieved with
noteworthy compression and saving in terms of projection computation.

As a further step towards more realistic scenarios it was considered real ECG
tracks taken from the MIT-BIH Arrhythmia Database and from the MIT-BIH noise
stress database [15, 34, 35]. The reason to target highly non-typical waveform is to
assess the robustness of adaptation that is implicit in rakeness-based methods.

The statistical characterization we use at design-time is the one derived from
the synthetic, noiseless, and artifact-free profiles used in the previous examples
avoiding any bias. The acquisition is sized according to Table 8.5 with the aim of
maximizing CR, i.e., as in the last column of that table. Hence, one-second windows
of n D 256 samples are projected using a n=CR � n D 69 � 256 ternary matrix A.
Such a matrix is drawn at random according to a second-order statistic resulting
from the solution of a TRLT with SR D 1=8 and by selecting throttled rows that
have only IT D 8 nonzero entries. In Figs. 8.18 and 8.19 we report 10 seconds
of an ECG signal with arrhythmia (Fig. 8.18) and 10 second of an ECG signal
with arrhythmia and affected by motion artifacts (Fig. 8.19). In the entire figure the
true waveform are rendered with dashed lines and coincide almost perfectly with
the reconstructed waveform rendered as solid lines. From the quantitative point of
view, notwithstanding a compression ratio of 3:7, the RSNR are 26 dB for the first
case and 44 dB for the second case, that are achieved with a computational effort
equivalent to only 8 sums/subtractions per measurement. Such results confirm in a
real scenario the noteworthy performance of this approach.
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Fig. 8.18 Reconstruction of real-world ECG tracks by means of a ternary sparse matrix generated
by rakeness-based design. The reported track is an ECG exhibiting arrhythmia
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Fig. 8.19 Reconstruction of real-world ECG tracks by means of a ternary sparse matrix generated
by rakeness-based design. The reported track is an ECG exhibiting arrhythmia whose acquisition
is affected by motion artifacts
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8.4.2 Comparison with Other Methods

In [47] the authors propose both a method to construct binary matrices A with
optimized features and a decoding mechanism properly tuned for ECG reconstruc-
tion. The matrix A is built by placing a certain number d of nonzeros in each
column so that the mutual coherence of the columns is kept as low as possible
resulting in Minimal Mutual Coherence (MMC). Referring to the aforementioned
design parameters, this means that the sensing mechanism is followed by an output
throttling such that OT D d. To guide the reader, let us recall the definition of mutual
coherence as already presented in (1.10), i.e.,


.B/ D max
j¤l

ˇ̌
ˇB>�;jB�;l

ˇ̌
ˇ

��B�;j
��
2
kB�;lk2

;

where B D A D and D is the basis (or dictionary) in which the input signal is sparse.
In particular the main contribution regarding the encoder side is an algorithm that
constructs binary matrices A with a proper OT that minimizes the mutual coherence
for an assigned matrix D.

At the decoder side, the reconstruction algorithm improves the general approach
based on the sparsity criterion by exploiting a priori knowledge on the decay of the
coefficients representing typical ECG signals when expressed on a Daubechies-6
DWT, so that standard `1 minimization is adapted to the ECG signal ensemble. The
authors dubbed the resulting algorithm as Weighted `1 Minimization (WLM).

There is a main difference between this approach and the rakeness-based design
flow; Zhang et al. propose to optimize a more general property of A than rakeness,
as MMC does not account for the second-order statistics of the input signal; this
approach of Zhang is also paired with an adapted decoder. On the contrary, rakeness-
based CS is only limited to adapting the sensing procedure to the acquired signals,
without any hint on how the signal should be decoded; in this way, the decoder
does not necessarily require prior information on � , hence avoiding the potential,
non-negligible communication overhead of sharing� .

Nevertheless, a performance comparison is possible and referring to the setting of
[47, Section III] real ECG tracks were considered. In particular, the simulated setting
uses the MIT-BIH arrhythmia database [34] where for the approach proposed by
Zhang et al. input signals were acquired by means of binary matrices with n D 512
and different .m;OT/ pairs, from m D 96;OT D 4 to m D 256;OT D 12. For each
configuration,5 the MMC matrices were constructed by means of [47, Algorithm
1]; on the other hand, binary rakeness-based matrices were built with the same
compression ratios and with SR values that guaranteed the same amount on nonzero

5Although not explicitly reported in [47], to be effective a shuffling column of the highly structured
generated matrix is needed. Note that this procedure keeps the low value of mutual coherence.
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Table 8.6 Performance
comparison between the
rakeness-based approach and
[47]

Average PRD
m OT CR [47] [30] Rakeness-based is better

96 4 5.33 13.3% 10.7% 85%

128 5 4 8.85% 7.42% 80%

160 6 3.2 6.37% 5.81% 75%

256 8 2 3.40% 3.01% 83%

256 12 2 3.44% 3.09% 81%

entries. As additional requirements for the rakeness-based approach, the nonzero
entries are equally divided into each row to ensure a constant IT.

The following comparisons are made encoding randomly selected windows from
the first tracks of each pair in the database with a MMC matrix and with a rakeness-
based matrix, and decoding the two resulting measurement vectors with WLM. As
in [47], performance is measured by percentage root-mean-square difference (PRD)
defined as follows:

PRD D 100 � kx � Oxk=kxk

where Ox is the reconstructed signal which means that its values must be reduced as
possible. Table 8.6 shows the result of such a comparison when 1000 trials are made
for each configuration. The average PRD is reported for both encoding strategies
along with the percentage of cases in which rakeness-based sensing outperforms
MMC sensing. It is evident that, though performance tends to saturate to the same
level, rakeness-based design is always convenient w.r.t. minimum coherence design.

Authors in [30] propose a second comparison with an interesting application
discussed in [48]. In this work, the authors do not advocate any specialized encoding
procedure, but mainly focus on a reconstruction algorithm dubbed Block-Sparse
Bayesian Learning (BSBL), which is applied to the difficult problem of acquiring
a signal coming from ECG sensor in which a mother’s signal and that of her fetus
superimpose, so that the latter can be retrieved by Independent Component Analysis
(ICA).

The comparison proposed in [30] addresses the setting in [48, Section III.B],
that is the most challenging one covered in [48]. Although the authors of [48]
do not propose a new encoding strategy, their implementation is based on binary
sensing matrices, which makes for an interesting comparison with the rakeness-
based approach discussed in this section.

In the mentioned setting, the ground truth is the fetal ECG extracted by ICA
directly from the non-compressed track. Also here, the reference case is based on
matrices A with OT nonzeros per column. w.r.t. [47], the positioning of the nonzero
entries is drawn at random. Rakeness-based matrices are still horizontally unrolled
with a constant number of nonzero entries per row and a total number of nonzeros
equal to the reference case. Signal windows of length n D 512 are then encoded
by means of either m D 256 with OT D 12, or m D 205 with OT D 10 (higher
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Table 8.7 Performance
comparison between the
rakeness-based approach and
[48]

Average PCC
m OT CR [48] [30] Rakeness-based is better

256 12 2 0.876 0.936 96%

205 10 2.5 0.793 0.858 97%

compression ratios do not allow a high quality recovery of the fetal track). The
resulting measurement vectors are decoded by means of BSBL, and ICA is applied
on the resulting tracks to find the fetal ECG.

In agreement with [48], the approaches’ performance is quantified by the
Pearson’s Correlation Coefficient (PCC) between the ground truth and the extracted
fetal ECG. For 100 trials, Table 8.7 shows the result of such a comparison. The
average PCC is reported for the two encoding strategies, along with the percentage
of cases in which rakeness-based sensing outperforms random sensing.

8.5 Implantable Neural Recording System by Zhang et al.,
2014

The application considered in this section focuses on an area and power efficient
multi-electrode arrays (MEA) to record neural signals. In particular, Zhang et al.
proposed in [46] a signal dependent CS approach outperforming previously pre-
sented works in terms of compression rate and reconstruction quality. Additionally,
the authors discussed a hardware implementation occupying an area of about
200�300�m per recording channel, with a power consumption of 0:27�W at the
operating frequency of 20KHz. The considered signals are neural action potentials,
commonly referred to as spikes, with a bandwidth up to 10KHz and amplitude
ranging from 50�V to 500�V. The main characteristic of the systems developed to
acquire this class of signals is the large number of channels that simultaneously
record the neuronal activity in a certain brain area by a MEA containing up to
hundreds of electrodes. So many electrodes generate a large amount of data that
requires, in a wireless transmission scenario, a power in the order of tens of mW.
This motivates the effort of proposing CS as a compression algorithm able to reduce
the transmitted data without a drastic increase in area and energy cost for data
compression, in a way similar to other approaches focusing on wavelet transform-
based compression methods [23, 37].

8.5.1 Signal Dependent CS

Requirements of this scenario are a high compression ratio and a compression algo-
rithm as simple as possible, in order to not increase area and power consumption.
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Despite the fact that CS seems a very good candidate for achieving this, to the best
of our knowledge this is the only work in the literature proposing, for this class of
signal, a CS approach capable of achieving a compression ratio in the same order of
magnitude w.r.t. methods based on wavelet transform. This is obtained by authors of
[46] with a two-step signal dependent approach. First, a training procedure identifies
a set of atom functions that, rearranged in a signal dictionary, are able to guarantee a
good sparse representation of the signal. Then, the signal is reconstructed by using
both the computed signal dependent dictionary and a standard wavelet transform
basis.

To recall the contents of Sect. 1.2.2, we say that a signal is sparse if a dictionary
D 2 R

n�d exists, with d > n, such that x D D�, with � a vector with only a
few non-null entries. One can say that x is �-sparse over D when � has � non-
null entries with � 	 n. As known, the achieved compression ratio is strongly
related to � value. This is the reason why authors investigate a Dictionary Learning
technique trained over the same signal to be acquired in order to reduce as much as
possible the amount of columns in D required to represent a generic window of a
spike signal. The procedure starts by collecting an initial set of raw data split into
n-length windows and then the K-SVD algorithm described in [1] is executed to
determine the D columns that minimize the `2 norm between raw data and sparse
representation for a fixed value of �, i.e., the K-SVD method in [1] is used to solve
the optimization problem

arg min
D;f�.l/gL�1

lD0

PL�1
lD0

���x.l/ � D�.l/
���
2

2

s.t.
�
���.l/

�
��
0
� � with 0 � l � L � 1

where the fx.0/; : : : ; x.L�1/g are the raw data used for training and f�.0/; : : : ; �.L�1/g
the associated �-sparse representation.

The signal recovery framework is based on the assumption that each instance
x is composed by two main contributions, one containing the mean shape of the
spike signal, namely xc, and another vector xf representing details characterizing
the waveform, i.e.,

x D xc C xf :

A visual representation of both contributions can be found in Fig. 8.20, showing a
collection of recorded waveforms along with their average waveform. Accordingly
to the signal representation proposed by Zhang et al., xc can be represented as a
1-sparse signal �c over the trained dictionary D, while the residual part xf has a
wavelike nature and can be represented as a vector � f sparse in a wavelet basis

x D D�c CW�1� f



246 8 Low-Complexity Biosignal Compression Using Compressed Sensing

Fig. 8.20 Spikes segments
(gray lines) from one neuron
and corresponding mean
(black line) of these spike
frames (adapted from [46])

where W�1 is the basis corresponding to an inverse DWT. Due to the linearity of
the sensing operator A, this notation can be used also to identify the contributions
of these two vectors to the measurement vector

y D yc C yf D AD�c C AW�1� f

Indeed, the authors of [46] suggested to use a sensing matrix A � RAE.I/. As a
consequence of this assumption, the recovering of x is achieved in two steps. Firstly,
�c is estimated by looking among signals that are 1-sparse in the trained dictionary.
Referring to this signal with O�c, its contribution AD O�c to the measurement vector is
computed. After that, the measurement residual vector yres D y�AD O�c is computed,
and used to estimate a vector O� f sparse on the Wavelet basis and containing
signal details. Authors name this recovery approach as Signal Dependent Neural
Compressed Sensing (SDNCS). Its flow is summarized in Table 8.8.

As already anticipated, there is a twofold difference w.r.t. a standard CS recovery
procedure. Signal recovery is split into the identification of the two vectors O�c and
O� f , and proper optimization problems are addressed for both recovery stages. In
the recovery of �c authors impose a fixed sparsity level, while the recovery of � f
is a standard `1 minimization with a regularization parameter � that balances the
trade-off between data fidelity and sparsity.

To further improve reconstruction performance, the authors propose to exploit
the implementation of a simple on-chip spike detection circuit implementing the
algorithm discussed in [3]. For a spike occurring at temporal location, instead of
searching within the entire dictionary D, the first recovery stage focuses through
a much smaller set of atoms belonging to a sub-dictionary. This additional step
increases the probability to converge on the global minimal solution instead of a
local one, with a consequent increase in noise rejection. We refer to this approach
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Table 8.8 Code sketch for the Signal Dependent Neural Compressed Sensing proposed in [46]

Require: y vector of measurements
Require: � sparsity level for xv
Require: A sensing matrix
Require: D trained dictionary
Require: W�1 inverse wavelet transform

Compute estimator O�c by solving: F Trained dictionary related component
O�c  arg min

�c

��y� AD�c

��
2

s.t.
���c

��
0
D �

Compute yres by: yres  y� ADO�c

Compute estimator O� f by solving: F Signal details related components

O� f  arg min
�f

��
�yres �W�1� f

��
�
2

2
s.t.

��
�� f

��
�
1
� �

return Ox D DO�c CW�1 O� f F Final estimation

as Signal Dependent Neural Compressed Sensing approach with Prior recovery
information (SDNCS-P).

To highlight performance of both SDNCS and SDNCS-P w.r.t. other approaches,
sample signals from University of Leicester neural signal database are used for
simulations.6 In particular, three different pieces of neural signals referred to as
Easy1, Easy2, and Hard1 have been considered. The naming of the signals, which
is consistent with that used in the dataset, refers to the effort required by spike
classification. Easy1 and Easy2 contain spike shapes having large temporal variance,
while spike shapes in the Hard1 set are very close in the temporal domain. All
these data contain spikes from 3 different neurons sampled at 24KHz, each segment
containing only one spike. From the 2046 signal frames extracted for each task, 20%
of them are used to train the signal dependent dictionaries (one for each task), while
the remaining 80% are used for testing.

The quality of the recovered frames by SDNCS and SDNCS-P are compared with
other compression methods representing the state of the art is spike detection. In
particular, three approaches are considered: the spike detection windowing, where
m samples are kept around a threshold crossing location while other samples of
the signal are discarded; the wavelet transformed and thresholding (DWT), where
signals are transformed into wavelet domain and only the m most significant
coefficients are retained; and Compressed Sensing based on a single recovery step
using wavelet basis as sparsity matrix (CS-DWT). In addition to the commonly
used ARSNR, Classification Successful Rate is used as metric for measuring the
quality of reconstructed signal. This is defined as the percentage of total number
of spikes correctly classified using labels contained in the database as ground truth.
In particular, authors refer to two different types of spike classifiers. The first one

6The dataset is on-line available: http://www2.le.ac.uk/departments/engineering/research/
bioengineering/neuroengineering-lab.

http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab
http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab
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Fig. 8.21 Comparison of spike detection, DWT, CS-DWT, SDNC, and SDNC-P for the dataset
named Easy1. Temporal view of spikes (a); the ARSNR as a function of m (c); Classifications
Successes Rate with SRC classifier (b), and WLC classifier (d)

is the wavelet-based classifier (WLC) discussed in [41] and the second the Sparse
Representation Classifier (SRC) proposed in [45].

The temporal shapes of the spikes from the three databases, along with results
for the aforementioned figures of merit are shown in Figs. 8.21, 8.22, and 8.23,
respectively. The SDNCS and SDNCS-P algorithms outperform both CS-DWT
and Spike Detection across all merit figures while the results of both SDNCS and
SDNCS-P are comparable with that obtained by DWT in terms of Classification
Successes rate. However, as expected, DWT outperforms the proposed methods
in terms of ARSNR. Although spikes signals are moderately sparse in the Wavelet
domain, the DWT method considers the higher m wavelet coefficients only. Using
them for the reconstruction of the neural signal, there is a good match with raw data
for m � 30. Although the authors propose a comparison between DWT and CS-
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Fig. 8.22 Comparison of spike detection, DWT, CS-DWT, SDNC, and SDNC-P for the dataset
named Easy2. Temporal view of spikes (a); the ARSNR as a function of m (c); Classifications
Successes Rate with SRC classifier (b), and WLC classifier (d)

like methods for a fixed m, it is our opinion such a comparison is not fair. In fact,
we have to take into account that DWT must transmit both the m higher coefficient
of the wavelet atoms and their indexes. In other words, the amount of information
required by this approach is much higher than only m coefficients as in the other
approaches.

These considerations reinforce the conclusion that, for this particular class of
signals, the proposed decoding approaches outperform standard CS and achieve
similar performance of DWT method, but it is more suitable for low-area and low-
power implementation.
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Fig. 8.23 Comparison of spike detection, DWT, CS-DWT, SDNC, and SDNC-P for the dataset
named Hard1. Temporal view of spikes (a); the ARSNR as a function of m (c); Classifications
Successes Rate with SRC classifier (b), and WLC classifier (d)

8.5.2 Hardware Implementation

In [46] authors also proposed a proof of concept device implementing the discussed
CS approaches. A high-level block diagram of the system is shown in Fig. 8.24
along with the off-chip system performing first the dictionary training phase, and
then the spike signals decoding and classification.

The signal processing chain includes first a conditioning block made of on-
chip amplifiers and band pass filters in order to express captured phenomena with
the appropriate bandwidth and amplitude. Then, an ADC digitizes the signal at
its Nyquist rate generating digital words available either for a direct transmission
(training phase) or for compression and transmission to the off-chip system, the
compression phase. Collected raw data can also be used for optimal threshold
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Fig. 8.24 Block diagram for implementation system proposed in [46]

configuration for the SDNCS-P. When the training phase is complete, the CS stage is
activated so that the ADC output is mixed with random sensing matrix implemented
using digital accumulators, one for each CS channel. This stage generates the
compressed measurements that are ready for wireless transmission to the off-chip
system. Note that, even if antipodal sensing matrices (i.e., with Ai;k 2 f�1;C1g) are
used in the proposed simulation of the system, in the proof of concept design binary
matrices (with Ai;k 2 f0; 1g) are implemented. This implementation is proposed to
further reduce active power of the digital circuit. However, it is also highlighted in
[46] that for high compression ratio values, antipodal sensing matrices outperform
the adoption of binary sensing matrices. This paves the way for a trade-off that
is strongly related to the transmission power cost. For the implementation of the
sensing matrix generator the authors do not propose a specific implementation, but
refer to both a random number generator, implemented by a Linear Feedback Shift
Register, and a locally stored pre-generated sensing matrix.

Authors also detail power consumption measurements of the Compressed Sens-
ing sub-system. This contribution is dominated by the active power of the accu-
mulator circuits where such results refer to an implemented test structures of the CS
Channel on the TSMC 180 nm with layout and microphotograph shown in Fig. 8.25.
This device is designed with 100 CS channels, i.e., with m up to 100. The designed
ADC is a 10 bit SAR ADC operating at 20KHz. An additional cost must be taken
into account for the SDNCS-P approach, it requires extra implementation of a 10
bit digital comparator before the CS mixing circuits to detect spikes occurrences.
A buffer is also necessary to save data from a subwindows (in the proposed
implementation the buffer size is such that 15 samples of the spike are saved prior to
threshold crossing event). For a setting where 25 measurement are enough to reach
a desired target quality, the total power consumption is 0:27W at 20KHz sampling
frequency when the VDD is at 0:6V. Note that this number is for the case where the
Threshold Detect is not active. Regarding the area of the device, the 25 CS channels
used as target occupy an area of 200�300�m, black blocks in Fig. 8.25.
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Fig. 8.25 Micro-graph and layout of the chip TSMC 0:18�m process implementing CS
compression. Picture is from [46]
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Chapter 9
Security at the Analog-to-Information Interface
Using Compressed Sensing

The rise of paradigms such as the Internet of Things, which envisions that the next
generation of communication technologies will have to provide network access
to billions of sensor nodes with minimal communication overhead, brings the
matter of defending the privacy of data gathered and distributed by networked
devices to the system designer’s attention. In particular, since it is reasonable that
large-scale networks will be comprised of a massive number of low-complexity
nodes, even the resources spent for security purposes must be carefully tailored
to the actual requirements of each application. Moreover, security becomes of even
greater concern when the sensor nodes acquire sensitive biometric information or
biomedical signals, e.g., for remote health monitoring or authentication purposes.

At the current state of the art, security is granted by dedicated encryption stages
with varying levels of complexity. These stages protect the storage or transmission
of information only after analog-to-digital conversion of the signal of interest, and
generally correspond to a considerable expense of resources, especially in terms
of power consumption and implementation costs. Thus, methods to balance this
expense to the actual amount of security that is needed in each case are desirable.

To this end, we here investigate the possibility of using CS with i.i.d. RAE
sensing matrices (i.e., comprised of sequences with i.i.d. antipodal symbols), whose
properties have been largely illustrated in the previous chapters, as a method to
introduce security directly into the acquisition process at the analog-to-information
interface (e.g., using the schemes in Chaps. 6 and 7), or even jointly with digital
signal compression (as it was discussed in Chap. 8).

As will be shown below, due to its linearity CS cannot be regarded in general
as a means to provide perfect secrecy in the Shannon sense, since some general
information about the signal will leak into the compressive measurements that are
transmitted to the receiver. With this fact at hand, our treatment of security by CS is
developed to show what privacy properties can still be gained by using on one hand
an encoding algorithm as simple as a linear random projection, and on the other
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hand a non-linear decoding algorithm on which the presence of noise sources and
missing information have critical impact.

In Sect. 9.1 we will explore some basics and elementary definitions of secrecy.
In Sect. 9.2, we discuss the types of conditions that have been recently proposed to
address theoretically the security of CS, and evaluate some approaches to attack the
compressive measurements by statistical cryptanalysis. Then, we proceed to discuss
computational attacks to the simplest form of encoding by CS with RAE matrices in
Sect. 9.3. Reassured of the security shown by CS against both types of attacks, we
propose an encryption scheme based on CS in Sect. 9.4, which also enables multiple
quality of access to the encrypted information by leveraging matrix perturbations.
To further test the security of this multiclass encryption scheme, we also present
computational attacks, as well as attacks based on signal recovery under matrix
uncertainty.

Our overview provides some insight on the simplest and lowest-complexity form
of cryptosystems that can be devised by means of CS, i.e., by projecting a signal
using pseudorandomly generated universal encoding matrices in the sense of [14].
Indeed, this chapter focuses on obtaining fundamental results regarding the security
provided solely by the latter matrices; many recent contributions should also be
acknowledged in having gone further in the study of security by CS with more
complex arrangements, including the use of further cryptographic layers [21, 59],
security over finite fields [8], and CS with circulant matrices [6].

9.1 A Security Perspective on CS

9.1.1 CS as a Cryptosystem

In Chaps. 1 and 2 we have seen how some classes of random sensing matrices
(hereafter dubbed encoding matrices) are universal for what concerns CS, i.e., that
they are near-optimal in providing a non-adaptive linear dimensionality reduction
method for any signal having a sparse representation on some basis D. Due to this
striking fact, the thought that such randomness could be used to provide, at least
to some extent, a form of encryption has been anticipated since the foundations of
CS [13, 14].

The first work to formally address a security perspective on CS is the one of
Rachlin and Baron [49]. There, the authors look at CS with fundamental notions
of classical information-theoretic secrecy [52]. Thus, they regard the source of
information, Alice, as a transmitter who provides a plaintext x (the signal of interest)
to an intended receiver. This receiver, Bob, is thus provided with the ciphertext y
(the measurement vector) that is a secret, suitably transformed representation of
the plaintext. He is therefore able to successfully recover x from y if he is also
granted A, or equivalently the encryption key or shared secret required to generate
the encoding matrix at the receiver. This exchange is mediated by an encryption
algorithm that, in our case, amounts to .i/ generating in a secure fashion a stream
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of pseudorandom bits containing the symbols of some encoding matrix A, and
.ii/ applying A as y D Ax, i.e., a linear transformation with a random encoding
matrix, and transmitting the ciphertext via a standard communication channel.
A cryptosystem is therefore the ensemble of operations required to encrypt the
plaintext sent by Alice, and to decrypt it from the ciphertext that Bob received from
the channel. In this perspective CS is properly regarded as a private or symmetric
key cryptosystem, that is any means to provide security in which the encryption key
is identical for both parties in a secure communication.

On the other hand, a malicious user, Eve, could intercept y on the channel and be
interested in retrieving either x, or even the encoding matrix A that contains symbols
obtained from the encryption key; thus, an attack or cryptanalysis is any procedure
capable of providing either the plaintext or the encryption key.

9.1.2 Preliminary Considerations

At first sight CS is similar to a linear block code, in a fashion analog to the
McEliece and Niederreiter ciphers [41, 44]; however, two crucial differences can
be highlighted. Firstly, the comparison of standard CS to other digital-to-digital
means of encryption is not straightforward: while the basic theory of CS considers
both the plaintext and ciphertext over the reals, even when quantized CS [27, 28]
is considered, x is always regarded as a vector over the reals (i.e., Rn) rather than
integers (i.e., Zn), while the ciphertext y is instead comprised of suitably quantized,
1- to B-bit measurements. Secondly, the encoding matrix is not invertible: due to
this, the successful decryption of a plaintext is actually depending on the output of
a non-linear operation, i.e., the decoding algorithm. This is in turn influenced by the
sparsity of the plaintext w.r.t. a suitable basis D, and the perfect knowledge of A that
is necessary in the recovery of x given y. Due to these two basic facts, a successful
means of decryption is any decoding algorithm that provides a sufficiently accurate
recovery of x (in terms of RSNR) given the measurements y and A;D.

Since private-key cryptosystems operate by agreeing on a finite number of bits
that form the above encryption key, the mn symbols that comprise A 2 R

m�n will
be extracted from a pseudorandom sequence of bits that is obtained from the initial
seed. In the case of CS, we can consider this seed as the encryption key itself, and the
expanded pseudorandom binary sequence will eventually repeat depending on the
number of bits spent into the encryption key. In the following we will assume that
the period of the pseudorandom sequences generated by algorithmic expansion of
the secret (e.g., by a pseudorandom number generator, PRNG) is sufficiently long
as to guarantee that in a reasonable observation time the same A will never occur
twice. This hypothesis is fundamental to ensure that A cannot be recovered from the
knowledge of a sufficient number of plaintexts and ciphertexts, a simple observation
first made by Drori [18], and is very close to the concept of one-time pad [57,
Section 2.9]. Most of the literature on security by CS agrees on this fundamental
requirement [4, 10, 11, 49] which, if violated, potentially allows the collection of
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several plaintext–ciphertext pairs corresponding to the same encoding matrix, and
with it the possibility of a successful cryptanalysis.

Another relevant effect is the dimension of the plaintext in our analysis. Since
we will consider an input signal x, it is sensible to consider two regimes or models
w.r.t. its sample size:

• M1: for finite n, we let x 2 R
n be a real-valued random vector. Its realizations

are finite-length plaintexts denoted by the same letter x, and are assumed to have
finite energy Ex D kxk22. We will let each x D D� with D an orthonormal basis
and � being �-sparse to comply with sparse signal recovery guarantees. x is then
mapped as y D Ax to the measurements’ random vector y Rm whose realizations
are finite-length ciphertexts;

• M2: for n ! 1, we let X D fxkgC1kD0 be a real-valued random process. Its
realizations or infinite-length plaintexts x are assumed to have finite power Wx D
limn!1 1

n

Pn�1
kD0 x2k . We may denote them as sequences x D fx.n/gC1nD0 of finite-

length plaintexts x.n/ D �
x0 � � � xn�1

�>
. X is mapped to either a random vector

y of finite-length ciphertexts for finite m, or a random process Y D fyjgC1jD0 of
infinite-length ciphertexts for m; n ! 1; m

n ! q. Both cases are comprised of

random variables yj D 1p
n

Pn�1
kD0 Aj;kxk.

We remark that the 1p
n

scaling in the second model is meant to normalize the
ciphertext to the length of the plaintext; this is not only theoretically needed for nor-
malization purposes, but also practically required in the design of quantizer ranges.

Moreover, since both RGE and RAE random matrices are suitable to draw the
encoding matrix (at least as long as they are chosen with i.i.d. symbols), we assume
that the A � RAE.I/. This choice is motivated by the fact that the number of
bits required to produce a single encoding matrix symbol is maximized, as the
bits output by the PRNG when the key is expanded into a pseudorandom sequence
are a precious resource. With this hypothesis, we will let any instance of the RAE
encoding matrix be a generic, unique element in a long-period repeatable sequence.

Finally, the exploration of the security properties of CS will therefore require a
discussion of two main forms of cryptanalysis: .i/ statistical approaches that attempt
to extract information about the plaintext from the ciphertext, and .ii/ computational
approaches that attempt to retrieve from the ciphertext and some other prior
information (at worst amounting to the full plaintext), which encryption key was
used to generate the encoding matrix by means of an exhaustive solution search.

9.1.3 Fundamental Security Limits

The golden standard in assessing whether a cryptosystem is endowed with security
properties dates back to the seminal work of Claude Shannon [52]. In fact, the
notion of secrecy introduced by Shannon requires that the distribution of the
ciphertexts is identical independently of the plaintext being encrypted. This strict



9.1 A Security Perspective on CS 259

condition ensures that any statistical analysis operated by collecting an arbitrarily
large amount of ciphertexts shall not be able to produce at its output any information
regarding the plaintext. Mathematically, this corresponds to the following statement.

Definition 9.1 (Perfect Secrecy) We say that a cryptosystem has perfect secrecy
in the Shannon sense [52] if for all x 2 R

n; f .yjx/ D f .y/, or equivalently f .xjy/ D
f .x/.
This notion has also been expressed in terms of the mutual information [16, Section
8.5] between x and y (since we will not use this notion below, we leave its
study to the reader and maintain our focus on the conditional PDFs mentioned in
Definition 9.1).

The encoding performed by CS is a linear mapping, and as such it cannot
completely hide the information contained in a plaintext x. This has two main
consequences. Firstly, linearity propagates scaling; hence, if we were provided with
a plaintext x0 and another one that is x00 D ˛x0 for some ˛ 2 R, it would be simple
to extract at least the scaling factor ˛. For the particular choice of ˛ D 0 this leads to
a known argument of Rachlin and Baron [49] against the fundamental requirement
for perfect secrecy.

Theorem 9.1 (Non-Perfect Secrecy of CS (from [49, Lemma 1])) Let x 2
R

n; y D Ax 2 R
m be random vectors representing a plaintext and a ciphertext,

and A 2 R
m�n;m < n be any encoding matrix generated from an encryption key.

This cryptosystem does not have perfect secrecy, i.e., the PDF of the ciphertext
conditioned on the plaintext, f .yjx/ ¤ f .y/.
To provide insight on the main security limit of CS, we also report the proof given
in [49] with a slightly different notation.

Proof (Theorem 9.1) Assume there exists at least one plaintext x … ker A such that
f .x/ > 0 (i.e., the plaintexts’ PDF has nonzero density outside the null space of A).
Consider the ciphertext y D 0m. Then, we have

f .y/jyD0m �
Z

ker A�Rn
f .yjx/jyD0m f .x/ dx D

Z

ker A�Rn
f .x/ dx < 1;

Thus, since any one plaintext x 2 ker A is such that f .yjx/jyD0m D 1, this suffices
to conclude that f .yjx/jyD0m ¤ f .y/jyD0m and so that in all generality f .yjx/ ¤ f .y/.
Note how this proof simply relies on the existence of ker A.

Secondly, linearity implies continuity. Hence, whenever x0 and x00 are close to
each other for some fixed A, the corresponding y0 and y00 will also be close to
each other. The fact that m < n would slightly complicate this setting since the
counterimages of y00 through A belong to a subspace in which points arbitrarily far
from x0 exist in principle (i.e., ker A ¤ ;). Yet, encoding matrices A are chosen by
design as distance-preserving embeddings by the definition of RIP matrices. This
fact is substantially opposite to the notion of diffusion (or avalanche effect) for
digital-to-digital ciphers [52], i.e., the requirement that a change of one symbol in
the plaintext should cause the change of all symbols in the ciphertext. Hence, close
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ciphertexts strongly hint at close plaintexts (in the Euclidean sense) for some fixed
A. As an objection to this seemingly unavoidable issue, we resort to the assumption
that a single draw of A may only be used once during the very large period of
the pseudorandom encoding matrix generator. Thus, two neighboring plaintexts
x0; x00 will be mapped by different encoding matrices A0;A00 to non-neighboring
ciphertexts y0; y00; if A0;A00 � RAE.I/, then mn

2
of their symbols will differ on

average, ensuring a diffusion-like property on the linear encoding performed by CS.
It is therefore well understood that two main security limits are observed in

standard CS: firstly, perfect secrecy cannot be granted in general due to the existence
of ker A; secondly, the design of encoding matrices with the RIP implies the
preservation of distances between plaintexts and ciphertext, so the only way to
design a cipher by CS is to ensure that any plaintext–ciphertext pair within the
observation time of a malicious user is related by a different A.

9.2 Statistical Cryptanalysis

We now focus on which security properties can still be achieved, and what
information leaks into the distribution of the ciphertext by showing with a slightly
different argument that the information leaking into the ciphertext by means of
a linear encoding is the energy of the plaintext, as was confirmed in several
independent works [5, 9, 49]. Moreover, we will prove that with any i.i.d. sub-
Gaussian random encoding matrix a scaling factor ˛ is actually all that can be
inferred from the statistical analysis of CS-encoded ciphertexts.

The achievable security properties are shown in asymptotic and non-asymptotic
configurations of CS, i.e., for n!1 and finite n in full analogy with the models in
Sect. 9.4.3.1. No guarantee of perfect secrecy can be given in full generality. We also
remark that the presented evidence formally corresponds to statistical ciphertext-
only attacks [57].

9.2.1 Asymptotic Secrecy

While perfect secrecy is unachievable, we now introduce the notion of asymptotic
spherical secrecy. This is a weak form of secrecy, similar in principle to that
of Wyner [58], yet posing an emphasis on same-power plaintexts. We show that
CS with i.i.d. sub-Gaussian random encoding matrices has this property, i.e., no
information can be inferred on a plaintext x in model .M2/ from the statistical
properties of all its possible ciphertexts but its power. The implication of this
property is the basic guarantee that a malicious eavesdropper intercepting the
measurement vector y will not be able to extract any information on the plaintext
except for its power.
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Definition 9.2 (Asymptotic Spherical Secrecy) Let X be a random process
whose plaintexts have finite power 0 < Wx < 1, Y be the random process of
the corresponding ciphertexts. A cryptosystem has asymptotic spherical secrecy if
for any of its plaintexts x D fx.n/gC1nD0 and ciphertexts y D fy.m/gC1mD0 we have

fYjX .yjx/�!
dist:

fYjWx.y/ (9.1)

where the subscripts of f indicate the joint and conditional PDFs of the respective
random processes, fYjWx denotes conditioning over plaintexts x with identical power
Wx, and �!

dist:
denotes convergence in distribution as m; n!1.

From an eavesdropper’s point of view, asymptotic spherical secrecy means that
given any ciphertext y we have

fX jY .xjy/ ' fYjWx.y/

fY.y/
fX .x/ (9.2)

implying that any two different plaintexts with an identical, prior, and equal power
Wx will remain indistinguishable from their ciphertexts in this asymptotic setting;
thus, the following proposition holds.

Theorem 9.2 (Asymptotic Spherical Secrecy of i.i.d. Sub-Gaussian Random
Encoding Matrices) Let X be a random process with bounded-value plaintexts
of finite power Wx, yj any random variable in the random process Y as in .M2/. For
n!1 we have

fyjjX .yj/�!
dist:

N .0;Wx/ (9.3)

Thus, i.i.d. sub-Gaussian random encoding matrices provide independent, asymp-
totically secret measurements as in (9.1).
Since the rows of A are independent, the measurements yjjWx conditioned over the
power of the plaintext are also independent and Theorem 9.2 asserts that, although
not secure in the Shannon sense, CS with suitable encoding matrices is able to
conceal the plaintext up to the point of guaranteeing its security for n ! 1. The
proof of this statement follows.

Proof (Theorem 9.2) The proof is given by simple verification of the Lindeberg-
Feller central limit theorem (see [7, Theorem 27.4]) for yj in Y conditioned on a
plaintext x of X in .M2/. By the hypotheses, the plaintext x D fxkgn�1kD0 has power
0 < Wx < 1 and 8k 2 f0; n � 1g; x2k � Mx for some finite Mx > 0. Any yjjX D
limn!1

Pn�1
kD0 zj;k where we let zj;k D Aj;k

xkp
n

be a sequence of independent, non-

identically distributed random variables of moments 
zj;k D 0; �2zj;k
D x2k

n . By letting

the partial sum S.n/j D
Pn�1

kD0 zj;k, its mean 

S
.n/
j
D 0 and �2

S
.n/
j

D 1
n

Pn�1
kD0 x2k . Thus,

we verify the necessary and sufficient condition [7, (27.19)]
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lim
n!1 max

kD0;:::;n�1
�2zj;k

�2
S
.n/
j

D 0;

by straightforwardly observing

lim
n!1 max

kD0;:::;n�1

x2k
n

1
n

Pn�1
kD0 x2k

� Mx

Wx
lim

n!1
1

n
D 0:

The verification of this condition guarantees that yjjX D limn!1 S.n/j is

normally distributed with 
yj
D 0 and variance �2yjjX D limn!1 EŒ.S.n/j /2� D

Wx, yielding (9.3).
The consequence of this definition of secrecy is that perfect secrecy for finite

n can be achieved by a suitable normalization of the measurements, at least in the
Gaussian random encoding matrix case. This has been formally stated by Bianchi
et al. [5]. While this definitely holds in the mathematical sense, such a normalization
clearly comes at a loss of relevant information about the power of the signal (or
energy, for finite n); hence, the recovery of the original plaintext would be possible
only up to a scaling (i.e., an information loss, albeit acceptable as similar to what
happens in 1-bit CS [28]). If, moreover, the energy were to be transmitted separately
on a secure channel, the perfect secrecy requirement would be delegated to the latter
side-channel. Nevertheless, in the special case of a CS scheme designed to provide
an exact normalization of the measurements perfect secrecy can be achieved; in
general, this will be affected by the presence of quantization, leaving the interplay
between the measurements’ security and their resolution open to an interesting
analysis.

Summarizing what we discussed, the asymptotic regime allowed the derivation of
a weak notion of secrecy that shows how the information leakage from the plaintext
into the ciphertext is only limited to Wx when the encoding matrices are drawn with
i.i.d. sub-Gaussian entries.

9.2.2 Non-Asymptotic Secrecy

Since prospective applications of CS as a cryptosystem, and in general CS with
i.i.d. sub-Gaussian random encoding matrices will entail finite-size configurations
with n on the order of a few hundreds to over a million variables, it is of primary
concern to show how the security properties introduced in the previous section scale
in a non-asymptotic setting. The achievable security properties are tested below by
two empirical methods and one theoretical result, that guarantees an extremely sharp
rate of convergence to the distribution in (9.3) for finite n.
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9.2.2.1 Statistical Cryptanalysis by Hypothesis Testing

As a first empirical illustration of the consequences of asymptotic spherical secrecy
for finite n, we consider a statistical ciphertext-only attack aiming at distinguishing
two unknown, orthogonal plaintexts x0; x00 W hx0; x00i D 0 from their ciphertexts
y0; y00. We assume that both plaintexts have finite energy (as in .M1/). Then we
let the attacker have access to a large number of ciphertexts collected in a set Y 0
obtained by applying different, randomly generated RAE.I/ encoding matrices to
a certain x0, and to another set Y 00 of ciphertexts, all of them corresponding either
to x0 or to x00, and attempts to distinguish which is the true plaintext between the
two.

This reduces the attack to an application of statistical hypothesis testing [16,
Section 11.7], the null assumption being that the distribution underlying the
statistical samples in Y 00 is the same as that underlying the statistical samples in
Y 0. For maximum reliability we adopt a two-level testing approach: we repeat the
above experiment for many random instances of the orthogonal plaintexts x0 and x00,
performing a two-way Kolmogorov–Smirnov (KS) test to compare the empirical
distributions obtained from Y 0 and Y 00 produced by such orthogonal plaintexts.
Each of the above KS tests yields a p-value quantifying the probability that two
datasets coming from the same distribution exhibit larger differences w.r.t. those at
hand. Given their meaning, individual p-values could be compared against a desired
significance level to give a first assessment whether the null hypothesis (i.e., equality
in distribution) can be rejected.

Yet, since it is known that p-values of independent tests on distributions for which
the null assumption is true must be uniformly distributed in Œ0; 1� we collect P of
them and feed this second-level set of samples into a one-way KS test to assess
uniformity at the standard significance level 5%.

This testing procedure is done for n D 256 in the cases Ex0 D Ex00 D 1 (same
energy plaintexts) and Ex0 D 1;Ex00 D 1:01, i.e., with a 1% difference in energy
between the two plaintexts. The resulting p-values for P D 5000 are computed by
matching pairs of sets containing 5 �105 ciphertexts, yielding the p-value histograms
depicted in Fig. 9.1. We report these empirical PDFs of the p-values in the two
cases along with the p-value of the second-level assessment, i.e., the probability that
samples from a uniform distribution exhibit a deviation from a flat histogram larger
than the observed one. When the two plaintexts have the same energy, all evidence
concurs to say that the ciphertext distributions are statistically indistinguishable. In
the second case, even a small difference in energy causes statistically detectable
deviations and leads to a correct inference of the true plaintext between the two.

9.2.2.2 Statistical Cryptanalysis by the Kullback–Leibler Divergence

To reinforce even further the fact that any two plaintexts x0; x00 2 R
n under different

i.i.d. sub-Gaussian random encoding matrices cannot be inferred by a statistical
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Fig. 9.1 Outcome of
second-level KS statistical
tests to distinguish between
two orthogonal plaintexts
x0; x00. When Ex0 D Ex00 (a),
spherical secrecy applies and
the uniform distribution of
p-values shows that the
corresponding ciphertexts are
statistically indistinguishable.
When Ex0 ¤ Ex00 (b),
spherical secrecy does not
apply and the distribution of
p-values shows that the
corresponding ciphertexts are
distinguishable
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analysis of their ciphertexts y0; y0 2 R
m even for finite n, we here attempt to do so by

recalling the Kullback–Leibler divergence [16, (8.46)] of any two random variables
a; b, i.e.,

D .akb/ D
Z C1

�1
f .a/ log

�
f .a/

f .b/

�
da db (9.4)

that is a simple measure of similarity between the PDF of a and b. We now evaluate
D.y0jjx0ky00j jx00/ in (9.4) by considering two plaintexts x0; x00 2 R

2500 and extracting
sequences of n D f50; 100; 150; : : : ; 2500g samples from each of them. For every
n the two sample collections are normalized to Ex0 D Ex00 D 1 and projected along
108 i.i.d. random vectors drawn as rows of matrices drawn from RAE.I/, forming a
large set of instances of y0jjx0; y00j jx00. These samples are used to form the empirical1

1In order to enhance this evaluation, an optimal non-uniform binning is applied in the estimation
of the histograms, since the PDFs are expected to be distributed as N.0; 1/. This binning amounts
to taking the inverse CDF of the standard normal distribution to obtain 256 uniform-probability
bins, thus maximizing their entropy.
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Fig. 9.2 Estimated
Kullback–Leibler divergence
between the probability
distributions of two ciphertext
elements corresponding to
different plaintexts x0; x00
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PDF Of .y0jjx0/; Of .y00j jx00/ and thus estimate the Kullback–Leibler divergence that is
plotted in Fig. 9.2 against the value of n.

As a reference, we also report the theoretical expected value of the divergence
estimated using two sets of n samples drawn from N.0; 1/, i.e., due to the bias of
the histogram estimator ˇ ' 3:67 � 10�6 bit. It is clear that the distributions of
the ciphertexts become statistically indistinguishable for n above a few hundreds,
since the number of bits of information that can be apparently inferred from their
differences (about 10�5 bit for n > 500) is mainly due to the bias ˇ and thus cannot
support a statistical cryptanalysis.

9.2.2.3 Non-Asymptotic Rate of Convergence

By now, we have observed with two methods how asymptotic spherical secrecy has
finite-n effects; from a more formal point of view, we now evaluate the convergence
rate of (9.3) for finite n to conclude with a guarantee that an eavesdropper inter-
cepting the ciphertext will observe samples of an approximately Gaussian random
vector bearing very little information in addition to the energy of the plaintext. We
hereby consider x a random vector as in .M1/, for which a plaintext x of energy
Ex lies on the sphere ExS2n�1 D

˚
x 2 R

n W kxk22 � E2x
�
. The procedure to verify

the rate of convergence of (9.3) in this specific case substantially requires a study
of the distribution of a linear combination of random variables, yj D

Pn�1
kD0 Aj;kxk

conditioned on x D �x0 � � � xn�1
�> 2 ExS2n�1.

The most general convergence rate for sums of i.i.d. random variables is given
by the well-known Berry-Esseen Theorem [3] as O.n� 12 /. In our case we apply a
recent, remarkable result of [31] that improves and extends this convergence rate,
i.e., that addresses the case of inner products of i.i.d. random vectors (i.e., any row
of A) and vectors (i.e., the plaintexts x) uniformly distributed on Σn�1

Ex
.
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Fig. 9.3 Empirical
evaluation of C.�/ in the
convergence rate (9.5) based
on a large number of
plaintexts x on the sphere
S2n�1 and n D 24; 25; : : : ; 210.
In the range � 2 .0; 1/ (a)
and zoomed in the range
� 2 .0; 0:01/ (b)
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Theorem 9.3 (Rate of Convergence with i.i.d. Sub-Gaussian Random Encoding
Matrices) Let x; y be random vectors as in .M1/ with A drawn from an i.i.d. sub-
Gaussian random matrix ensemble with entries having zero-mean, unit-variance,
and finite fourth-moment entries. For any � 2 .0; 1/, there exists a subset B �
ExS2n�1 with a probability measure ¢n�1.B/ � 1 � � such that all entries yj in y
verify

sup
˛<ˇ

ˇ̌
ˇ̌
ˇ

Z ˇ

˛

f .yjjx 2 B/ dyj �
1p
2�

Z ˇ

˛

e�
t2
2Ex dt

ˇ̌
ˇ̌
ˇ
� C.�/

n
(9.5)

for C.�/ a non-increasing function of �.
Theorem 9.3 with � sufficiently small means that it is most likely (actually, with
probability exceeding 1��) to observe an O.n�1/ convergence between f .yjjx/ and
the limiting distribution N.0;Ex/. The function C.�/ is loosely bounded in [31],
so to complete this analysis we performed a thorough Montecarlo evaluation of
its possible values. In particular, we have taken 104 instances of a random vector
x uniformly distributed on S2n�1 for each n D 24; 25; : : : ; 210. The PDF f .yjjx/ is
estimated with the following procedure: we generate 5 � 107 rows drawn from the
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RAE.I/ and perform the usual linear encoding, thus yielding the same number of
instances of yj for each x and n. On this large sample set we are able to accurately
estimate the previous PDF on 4096 equally probable intervals, and compare it to
the same binning of the normal distribution as in the l.h.s. of (9.5) for each .x; n/.
This method yields sample values for (9.5), allowing an empirical evaluation of the
quantity C.�/, as reported in Fig. 9.3. In this example, when � � 10�3 Theorem 9.3
holds with C.�/ D 1:34 � 10�2.
Proof (Theorem 9.3) We start by considering yj in y of model .M1/ conditioned
on a given x with finite energy Ex. Each of such variables is a linear combination
of n i.i.d. random variables Aj;k with zero-mean, unit-variance, and finite fourth-
moments. The coefficients of this linear combination are the plaintext x, which by
now we assume to have Ex D 1, i.e., to lie on the unit sphere S2n�1 of Rn. Define

” D
	
1
n

Pn�1
kD0 EŒA4j;k�


 1
4
< 1, which for RAE.I/ encoding matrices is ” D 1,

whereas for Gaussian random matrices ” D 3
1
4 . This setting verifies [31, Theorem

1.1]: for any � 2 .0; 1/ there exists a subset B � S2n�1 with a probability measure
�.B/ such that ¢n�1.B/ D �.B/

�.S2n�1/
� 1 � � and if x 2 B, then

sup
.˛;ˇ/2R2
˛<ˇ

ˇ̌
ˇ̌
ˇ
P

"

˛ �
n�1X

kD0
Aj;kxk � ˇ

#

� 1p
2�

R ˇ
˛

e� t2
2 dt

ˇ̌
ˇ̌
ˇ
� C.�/”4

n (9.6)

with C.�/ a positive, non-increasing function. An application of this result to x with
energy Ex, i.e., on the sphere of radius

p
Ex, ” D 1 (A Gaussian random) can be

done by straightforwardly scaling the standard normal PDF in (9.6) to N.0;Ex/, thus
yielding the statement of Theorem 9.3.

9.3 Computational Cryptanalysis

In this section, we focus on quantifying the resistance of the lowest-complexity
form of a CS cryptosystem, i.e., standard CS with RAE.I/ encoding matrices,
against known-plaintext attacks. These represent the most threatening form of
computational cryptanalysis such a scheme will suffer. The properties and results
of these attacks are fully explored here by theoretical means, as they can be mapped
to a combinatorial optimization problem that models the most informed attack a
malicious user may attempt.

We are going to show how the average number of candidate encoding matrix
rows that match a plaintext–ciphertext pair is huge, thus making the search for the
true encoding matrix inconclusive. Such a conclusion was anticipated by [46, 49],
where the presented evidence essentially addressed brute-force enumeration; the
main difference with our approach is that this quantification is theoretical, and yet
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matches with surprising precision the odds of empirical attacks. Thus, the findings
support a notion of computational security for CS-based encryption schemes.

9.3.1 Preliminary Considerations

We here focus on encoding matrices A 2 f�1;C1gm�n drawn from a RAE.I/, as
they are remarkably simple and therefore suitable to be generated, implemented,
and stored in digital devices. Due to their simplicity, these matrices are more easily
subject to cryptanalysis. On the contrary, if many symbols were used in each element
of A this would cause a rapid consumption of the bits generated by expansion of the
secret. Thus, the RAE case serves as a basic reference for other random matrix
ensembles and more complex configurations of cryptosystems based on CS.

To understand the relevance of the security issues addressed in this section, let us
consider a first sequence of matrices f.A/tgt2Z obtained by pseudorandom expansion
of a seed Key .A/. Clearly, the strong assumption that any encoding matrix is never
reused in the encoding is incompatible with the use of such sequences, as they will
eventually repeat due to their pseudorandom nature. Nevertheless, we may assume
that the sequences’ period is sufficiently long to avoid repetition in the attacker’s
observation time. But even with this assumption standing, if an attacker was able to
recover even a few elements in the above matrix sequences, this would potentially
enable, e.g., PRNG cryptanalysis strategies (e.g., [39] for LFSRs) to break the
cipher by retrieving the seeds in Fig. 9.12. Hence, to avoid such an event we focus
on showing that a single, generic instance of A in y D Ax cannot be recovered even
with the highest level of information, i.e., given x and y.

Thus, we are considering a threatening situation in which an attacker has gained
access to a known plaintext x corresponding to a known ciphertext y. Based on
these priors, the attacker aims at computing the true encoding A, i.e., this malicious
user attempts a known-plaintext attack (KPA). In the following we will consider this
attack by assuming that only one .x; y/ pair is known for a certain A, consistently
with the hypothesis that the same A only reappears after a long period.2

Starting from a single pair .x; y/, depending on the level of information available
to the attacker we obtain a KPA with increasing levels of threat (see Fig. 9.4); in
fact, we could consider either a pure eavesdropper, Eve, and address the problem
of retrieving A given .x; y/, or allow even partial information about A, leading to
more sophisticated attacks; these will be expanded in Sect. 9.4.6.3. Since the KPA
we discuss relies on deterministic knowledge of x and y, we assume throughout this
section that both plaintexts and ciphertexts are represented by digital words. This
quantization is unavoidable as x and y will be stored, processed, and applied by a
digital architecture from which the attacks are carried out. For simplicity, we let x be

2Note that if n independent .x; y/ pairs were known for the same A, one could resort to elementary
linear algebra and infer the true encoding matrix by solving a simple linear system.
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Fig. 9.4 A basic scheme of
a known-plaintext attack as
carried out by an
eavesdropper Eve

Alice × Bob

Key(A) PRNG

x y

Eve Â

A

such that its entries xk 2 f�L; : : : ;�1; 0; 1; : : : ;Lg for some L 2 ZC. Note that the
number of bits representing the plaintext in this fashion is at least bx D dlog2.2LC
1/e, so we may assume bx is less than a few tens in typical embodiments (actually,
bx � 16 bit if the plaintext was previously generated by a common analog-to-digital
converter). Consequently, the ciphertext will be represented by y, so that each of its
entries yj is quantized with as many bits as needed to avoid any information loss. In
this necessarily digital-to-digital perspective, we will see how the solutions in A are
also a function of the number of bits representing the plaintext (and consequently
the ciphertext).

Our KPA analysis applies on a single row3 of A. Furthermore, we note that
the analysis is carried out in full compliance with Kerckhoffs’s principle [30],
i.e., the only information that the attackers are missing is their respective part of
the encryption key, while any other detail on the sparsity basis is here regarded
as known. The actual breaking of the encryption protocol would entail iterating
the following attack for all m rows of many of the matrices in the sequence,
thus requiring an even larger effort than the one described below. Nevertheless,
even knowing one row without uncertainty could lead to a decryption of the
pseudorandom sequence generating A, hence the relevance of this simplified case.

9.3.2 Eavesdropper’s Known-Plaintext Attack

Given a plaintext x and the corresponding ciphertext y D Ax we now assume the
perspective of an eavesdropper, Eve, and attempt to recover Aj;� with a set of symbols
. OA/j;� 2 f�1;C1gn such that the j-th symbol in the ciphertext,

yj D
n�1X

kD0
Aj;kxk D

n�1X

kD0
OAj;kxk: (9.7)

3Aj;� here denotes the j-th row of a matrix A.
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Moreover, to favor the attacker4 we assume all xk ¤ 0. We now introduce a
combinatorial optimization problem at the heart of the analyzed KPAs.

Problem 9.1 (Subset-Sum Problem) Let fukgn�1kD0;uk 2 f1; : : : ;Lg and � 2 ZC.
We define subset-sum problem (SSP, [38, Chap. 4]) the optimization problem of
assigning n binary variables bk 2 f0; 1g, l D f0; : : : ; n � 1g so that

� D
n�1X

kD0
bkuk (9.8)

We define solution any fbkgn�1kD0 verifying (9.8). In this configuration, the density of
this combinatorial problem is defined as [32]

ı.n;L/ D n

log2 L
(9.9)

Although in general a SSP is NP-complete, not all of its instances are equally hard.
In fact, it is known that high-density instances (i.e., with ı.n;L/ > 1) have plenty
of solutions found or approximated by, e.g., dynamic programming, whereas low-
density instances are harder, although for special cases polynomial-time algorithms
have also been found [32]. On a historical note, such low-density hard SSP instances
have been used in cryptography to develop the family of public-key knapsack
cryptosystems [15, 42] although most have been broken with polynomial-time
algorithms [45]. Problem 9.1 finds a direct application to model Eve’s KPA as
follows.

Theorem 9.4 (Eve’s Known-Plaintext Attack) The KPA to Aj;� given .x; y/ is
equivalent to a SSP where each uk D jxkj, the variables

bk D 1

2

	
sign.xk/ OAj;k C 1




and the sum

� D 1

2

 

yj C
n�1X

kD0
jxkj

!

This SSP has a true solution fNbkgn�1kD0 that is mapped to the row Aj;�, and other
candidate solutions that verify (9.8) but correspond to matrix rows OAj;� ¤ Aj;�.
We also define .x; y;Aj;�/ a problem instance. This mapping is obtained as follows.

4If any xk D 0 each corresponding term would give no contribution to the sum (9.7), thus making
OAj;k an undetermined variable in the attack. Hence, the sparsity of x would actually be an issue for
the attacker, which is why the sparsity basis D never appears in the present evaluation.
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Proof (Theorem 9.4) Define the binary variables bk 2 f0; 1g so that sign.xk/ OAj;k D
2bk � 1 and the positive coefficients uk D jxkj. With this choice (9.7) is equivalent

to yj D
Pn�1

kD0.2bk � 1/uk which leads to a SSP with � D 1
2

	
yj C

Pn�1
kD0 jxkj



.

Since we know that each ciphertext entry yj must correspond to the inner product
between x and the row Aj;�, the latter’s entries are straightforwardly mapped to the
true solution of this SSP, i.e., fNbkgn�1kD0.

In our case we see that the density (9.9) is high since n is large and log2 L is fixed
by the digital representation of x (e.g., so that bx � 64). We are therefore operating
in a high-density region of problem (9.8). In fact, the resistance of the analyzed
embodiment of CS to KPAs is not due to the hardness of the corresponding SSP but,
as we show below, to the huge number of candidate solutions as n increases, among
which an attacker should find the true solution to guess a single row of A. Since no
a priori criterion exists to select them, we consider them indistinguishable.

9.3.3 Expected Number of Solutions to an Eavesdropper’s
Known-Plaintext Attack

The next theorem calculates the expected number of candidate solutions to Eve’s
KPA by applying the theory developed in [51].

Theorem 9.5 (Expected Number of Solutions to Eve’s Known-Plaintext Attack)
For large n, the expected number of candidate solutions of the KPA in Theorem 9.4,
in which (i) all the coefficients fukgn�1kD0 are i.i.d. uniformly drawn from f1; : : : ;Lg,
and (ii) the true solution fNbkgn�1kD0 is drawn with equiprobable and independent
binary values, is

SEve.n;L/ ' 2n

L

r
3

�n
(9.10)

The proof of Theorem 9.5 is given in the next section. This result (as well as the
whole statistical mechanics framework from which it is derived) gives no hint on
how much (9.10) is representative of finite-n behaviors. To compensate for that, we
enumerated the solutions of several randomly generated small-n problem instances
by using CPLEX as a binary programming solver [26] and forcing the computation
of the full solution pool; this allowed a verification of the asymptotic expression
of (9.10) by comparing its expected number of solutions with those effectively
yielded by a computational implementation of Eve’s KPA.

Such numerical evidence is reported in Fig. 9.5, where the empirical average
number of solutions OSEve.n;L/ to 50 problem instances with L D 104 and
n D f16; : : : ; 32g is plotted and compared with (9.10). The remarkable matching
observed there allows us to estimate, for example, that a KPA to the encoding of a
gray-scale image of n D 64 � 64 pixel quantized with bx D 8 bit (unsigned) would
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Fig. 9.5 Empirical average
number of solutions for Eve’s
KPA compared to the
theoretical approximation
of (9.10) for L D 104
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have to discriminate on the average between 1:25 � 101229 equally good candidate
solutions for each of the rows of the encoding matrix. This number is not far from
the total possible rows, 24096 D 1:04 � 101233. Hence, any attacker using this strategy
is faced with a deluge of candidate solutions, from which it would choose one
presumed to be a piece of the encoding matrix to attempt a guess on A.

Before proceeding to the proof of Theorem 9.5, let us introduce a technical
definition required in the following developments.

Definition 9.3 We define the functions

Fp.a; b/ D
Z 1

0

�p

1C ea��b
d�; (9.11)

Gp.a; b/ D
Z 1

0

�p

�
1C ea��b

� �
1C eb�a�

� d�: (9.12)

We now proceed to proving the main statement by means of an interface with the
theory developed by Sasamoto et al. [51] on the number of solutions of the SSP.

Proof (Theorem 9.5) Let us first note that, for large n, � in Theorem 9.4 is an
integer in the range Œ0; nL

2
�, with the values outside this interval being asymptotically

unachievable as n!1 (see [51, Section 4]). We let � D �
nL , � 2 Œ0; 1

2
�, and a.�/ be

the solution in a of the equation � D F1.a; 0/ (i.e., [51, (4.2)]) that is unique since
Fp.a; 0/ in (9.11) is monotonically decreasing in a.

From [51, (4.1)] the number of solutions of a SSP with integer coefficients
fukgn�1kD0 uniformly distributed in Œ1;L� is

SEve.�; n;L/ ' enŒa.�/�C
R 1
0 log.1Ce�a.�/� /d��p

2�nL2G2.a.�/;0/

that we anticipate to have an approximately Gaussian profile (see Fig. 9.6).
We now compute the average of SEve.�; n;L/ in � , that clearly depends on the

probability of selecting any value of � 2 Œ0; nL
2
�, i.e., of � 2 Œ0; 1

2
�. Since � is

the result of a linear combination, the probability that a specific value appears in a



9.3 Computational Cryptanalysis 273

Fig. 9.6 Gaussian
approximation of SEve.�; n;L/
for n D 64;L D 104 by
letting �2 	 1
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random instance of the SSP is proportional to the number of solutions associated
with it. In normalized terms, the PDF of � must be proportional to SEve.�; n;L/, i.e.,
� is distributed as

f� .t/ D 1
R 1
2

0 SEve.�; n;L/d�

(
SEve.t; n;L/; 0 � t � 1

2

0; otherwise

With f� .t/ we can compute the expected number of solutions:

E� ŒSEve.�; n;L/� D
R 1
2

0 S2Eve.�; n;L/d�
R 1
2

0 SEve.�; n;L/d�
(9.13)

Although we could resort to numerical integration, (9.13) can be simplified by
exploiting what noted above, i.e., that SEve.�; n;L/ has an approximately Gaussian
profile in � (Fig. 9.6) with a maximum in � D 1

4
. Hence, the expectation in �

becomes

E� ŒSEve.�; n;L/� ' SEve

�
1

4
; n;L

�

Z 1

�1

0

B
B
@e

�

.�� 14 /
2

2�2

1

C
C
A

2

d�

Z 1

�1
e

�
.�� 1

4 /
2

2�2 d�

D SEve

�
1

4
; n;L

�
1p
2
D 2n

L

r
3

�n

that is actually independent of the �2 used in the Gaussian approximation, and in
which we have exploited a. 1

4
/ D 0 to obtain the statement of the theorem.
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9.3.4 Expected Distance of Solutions to an Eavesdropper’s
Known-Plaintext Attack

A legitimate concern when Eve is presented with a large set of solutions output from
a complete KPA to a row of A is that most of them could be good approximations
of the true encoding matrix row. To see whether this is the case, we quantify the
difference between Aj;� and the corresponding candidate OAj;� resulting from a KPA
in terms of their Hamming distance, i.e., as the number of entries in which they
differ.

Theorem 9.6 (Expected Number of Solutions to Eve’s Known-Plaintext Attack
at a Given Hamming Distance from the True One) The expected number of
candidate solutions at Hamming distance h from the true solution of the KPA in
Theorem 9.4, in which (i) all the coefficients fukgn�1kD0 are i.i.d. uniformly drawn
from f1; : : : ;Lg, (ii) the true solution fNbkgn�1kD0 is drawn with equiprobable and
independent binary values, is

S.h/Eve.n;L/ D
 

n

h

!
Ph.L/

2hLh
(9.14)

where Ph.L/ is a polynomial in L whose coefficients are reported in Table 9.1 for
h D f2; : : : ; 15g.
The proof of this theorem and the derivation of Table 9.1 are reported below. We
first want to propose some empirical evidence that the expression in (9.14) correctly
anticipates the expected number of solutions at a given Hamming distance. The
procedure simply entails processing the enumerated solutions in Sect. 9.3.2. Thus,
Fig. 9.7 reports for n D f21; 23; : : : ; 31g the empirical average, over 50 problem
instances, of the number of solutions to Eve’s KPA whose Hamming distance from
the true one is a given value h D f2; : : : ; 15g, as compared against the value
predicted by (9.14) with the polynomial coefficients in Table 9.1. The remarkable
matching we observe allows us to estimate that, in the case of a gray-scale image
(n D 4096, L D 128), only 1:95 � 1041 candidate solutions out of the average
1:25�101229 are expected to have a Hamming distance h � 16, while 6:33�1076 attain
a Hamming distance h � 32. Since these results apply to each row of the matrix
being inferred, this indicates how the chance that a randomly chosen candidate
solution is (or is close to) the true one is negligible.

We now proceed to present a proof of the result in (9.14) based on a counting
argument.

Proof (Theorem 9.6) We here concentrate on counting the number of candidate
solutions b to Eve’s KPA that differ from the true one, Nb, by exactly h components
(at Hamming distance h). We assume that K � f0; : : : ; n � 1g is the set of indices
for which there is a disagreement, i.e., for all entries with index k 2 K we have
bk D 1 � Nbk; this set has cardinality h, and is one among

�n
h

�
possible sets. Since
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Fig. 9.7 Empirical average
number of solutions for Eve’s
KPA at Hamming distance h
from the true one, compared
to the theoretical
approximation of (9.14) for
L D 104 and n D 22; 26; 30
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both b and Nb are solutions to the same SSP, and since the entries bk D Nbk are identical
for k … K,

P
k2K

�
1 � Nbk

�
uk DPk2K

Nbkuk must hold, implying the equality

X

k2KNbkD0

uk �
X

k2KNbkD1

uk D 0 (9.15)

Although (9.15) recalls the well-known partition problem, in our case K is chosen
by each problem instance that sets all uk and Nbk. Thus, (9.15) holds in a number of
cases that depends on how many of the 2hLh possible assignments of all uk and Nbk

satisfy it. The only feasible cases are for h > 1, and to analyze them we assume
K D f0; : : : ; h � 1g (the disagreements occur in the first h ordered indices) without
loss of generality.

Moreover, when (9.15) holds for some fNbkgn�1kD0 it also holds for f1 � Nbkgn�1kD0.
Hence, we may count the configurations that verify (9.15) with Nb0 D 0, knowing
that their number will be only half of the total. With this, the configurations with
Nb0 D 0 must have Nbk D 1 for at least one l > 0 in order to satisfy (9.15), giving
2h�1 � 1 total cases to check.

The following paragraphs illustrate that, for h < L, the number of configurations
that verify (9.15) can be written as a polynomial of order h � 1. With this in mind
we can start with the explicit computation for h D f2; 3g.
1. for h D 2, there is only one feasible assignment for the entries Nbk of Nb, so u0 D u1

in (9.15), which makes 2L cases out of 22L2;
2. for h D 3, one has 3 feasible assignments for the entries Nbk of Nb. Due to the

symmetry of (9.15) all the configurations have the same behavior and we may
focus on, e.g., Nb0 D Nb1 D 0 and Nb2 D 1) u0 C u1 D u2; this can be satisfied
only when u0 C u1 � L, i.e., for L.L�1/

2
configurations. This makes a total of

2 � 3 � L.L�1/
2
D 3L.L � 1/ over the 23L3 possible configurations;

3. for h > 3, this procedure is much less intuitive; nevertheless, we can at least
prove that the function Ph.L/ counting the configurations for which (9.15) holds
is a polynomial in L of degree h�1. To show this, let us proceed in three steps.
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a. Indicate with �Nb the .h � 1/-dimensional subspace of R
h defined byP

k2KNbkD0
�k �

P
k2KNbkD1

�k D 0; � 2 R
h. The intersection ˛Nb.L/ D Œ1;L�h \ �Nb is

such that each assignment of fukgh�1kD0 2 Œ1;L�h satisfying (9.15) is an integer
point in ˛Nb. To count those points define ˇNb.L/ D Œ0;LC1�\�Nb and note that
the number of integer points in ˛Nb is equal to the number of integer points in
the interior of ˇNb (the points on the frontier of ˇNb have at least one coordinate
that is either 0 or LC 1).

Note how Œ0;LC 1�h scales linearly with LC 1 while �Nb is a subspace and
therefore scale-invariant. Hence, their intersection ˇNb.L/ is a h�1-dimensional
polytope that scales proportionally to the integer L C 1, as required by
Ehrhart’s theorem [20]. The number NNb.L/ of integer points in ˇNb.L/ is then
a polynomial in L C 1 (and so L) of degree equal to the dimensionality of
ˇNb.L/, i.e., h � 1. From Ehrhart–Macdonald’s reciprocity theorem [36] we
know that the number of integer points in the interior of ˇNb and thus in ˛Nb is
.�1/h�1NNb.�L/, that is also a polynomial in L of degree h � 1.

b. If two different assignments Nb0 and Nb00 are considered, then ˛Nb0.L/\˛Nb00.L/ D
Œ1;L�h\�Nb0 \�Nb00 . The same argument we used above tells us that the number
of integer points in such an intersection is a polynomial in L of degree h � 2
and, in general that the number of integer points in the intersection of any
number of polytopes ˛Nb.L/ is a polynomial of degree not larger than h � 1.

c. The number of configurations of fukgh�1kD0 and Nb that satisfy (9.15) w.r.t.
the above K is the number of integer points in the union of all possible
polytopes ˛Nb, i.e.,

S
fNbkgh�1

kD0
˛Nb.L/. Such a number can be computed by

the inclusion–exclusion principle that amounts to properly summing and
subtracting the number of integer points in those polytopes and their various
intersections. Since sum and subtraction of polynomials yield polynomials of
non-increasing degree, we know that number is the evaluation of a polynomial
Ph.L/ with degree not greater than h � 1.

Let us finally write Ph.L/ D Ph�1
jD0 ph

j Lj. In order to compute its coefficients ph
j

we may fix a binary configuration fbkgh�1kD0, count the points fukgh�1kD0 2 Z
hC for

which (9.15) is verified by means of integer partition functions (that also have a
polynomial expansion), and subtract the points in which fukgh�1kD0 … Œ1;L�h. By
summation over all binary configurations, one can extract the coefficients associated
with Lj for each h. Table 9.1 reports the result of this procedure as carried out by
symbolic computation for h � 15.

9.4 Multiclass Encryption by Compressed Sensing

In this section we introduce a methodology for differentiating in a secure fashion
the recovery quality attained by sets of receivers that are granted non-equal classes
of access to the information content encoded by CS. We attain this by introducing
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controlled matrix perturbations; hence, a study of their effect on signal recovery
anticipates the proposed multiclass encryption protocol.

9.4.1 Security and Matrix Uncertainty by Random
Perturbations

The sensitivity of recovery algorithms w.r.t. a perfect knowledge of the encoding
matrix is a general issue for many applications in which CS acquires natural signals
complying with a sparse signal model.

Quantifying this sensitivity in order to predict the result of signal recovery is
therefore valuable when no a priori information can be exploited, e.g., when the
encoding matrix is randomly perturbed without any exploitable structure. In this
chapter we focus on this aspect by means of a simplified least-squares model for the
signal recovery problem, which enables the derivation of its average performance
estimate that depends only on the interaction between the encoding and perturbation
matrices.

The effectiveness and stability of the resulting heuristic in CS configurations
where this evaluation is meaningful is demonstrated by numerical exploration of
signal recovery under three simple random perturbation matrix models in a variety
of cases; the aim of this treatment is to develop a sense of the fact that this
observation can be leveraged to introduce a CS-based cryptosystem that exploits
such a sensitivity to missing information. Thus, understanding the effects of a
perturbation in the encoding matrix is a valuable information in most applications
of CS.

We here assume that the encoding matrix can be decomposed as5 A.1/ D A.0/ C
�A, where A.0/ 2 R

m�n is known to the decoder while �A 2 R
m�n is a perturbation

matrix. In this case any clue on �A is generally unavailable, and the corresponding
term of y D A.1/x D A.0/x C �Ax is signal dependent noise. We here let D be a
known orthonormal basis that is available to the decoder, leaving the uncertainty to
a perturbation matrix �A and the actual sparse vector O� so that Ox D D O�.

9.4.1.1 Signal Recovery Algorithms with Matrix Perturbations

In the following, we will essentially discuss the sensitivity of signal recovery
algorithms depending on the given prior information; this is indicated in the
following as parameters in a “call” to these algorithms. Let us now start with the
basic information that some structured noise is present on the measurements; with
this information, a decoder may either:

5The reason for the superscripts .1/ and .0/ substantially distinguishes two levels of information,
where the former denotes perfect knowledge of the truth and the latter a partial version of it.
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1. choose to be naive and estimate O� D BP.y;A.0/D/ using Basis Pursuit (see
Sect. 1.6), but feeding it the erroneous assumption that the measurements are
not affected by noise, forcing y D A.0/ Ox;

2. in a more informed fashion, attempt to guess a noise threshold " so that O� D
BPDN.y;A.0/D; "/ using Basis Pursuit with Denoising (BPDN) which at least
attempts denoising with the prior information that the solution is sparse. The
noise threshold must be set so that the norm k�Axk2 � ". In a particularly
optimistic case, the actual norm "? D k�Axk2 is here assumed to be known,
in the so-called genie-tuning fashion;

3. in an ideal setting, be provided with the actual support of � in D, T , so
that it may estimate the solution via Oracle Least-Squares (OLS), i.e., O� D
OLS.y;A.0/D;T/ W O�T D .A.0/D�;T/Cy, O�Tc D 0. Note that this non-perfectly
informed oracle solution is missing any prior on �A, therefore yielding the
solution O� that minimizes the amount of error w.r.t. the components in T .

A variety of algorithms and problem formulations tackle the general case of
signal recovery under perturbations [47, 60], where significant improvements are
therein shown to be possible when some structure in�A can be leveraged. However,
we explicitly focus on the case in which �A is drawn from a random matrix
ensemble with i.i.d. entries that changes at each instance of x; as noted in [47],
signal recovery performances in this case are substantially limited by those of the
aforementioned non-perfectly informed OLS estimate.

9.4.1.2 Recovery Guarantees with Matrix Perturbations

In terms of evaluating the effect of such matrix perturbations a first fundamental
result was given by Herman and Strohmer [24], extending the established theoretical
signal recovery guarantees for convex optimization [12] to such perturbed cases; the
following definition is required for a summary of this result.

Definition 9.4 (Perturbation Constants (from [24])) Let

�
.�/

min =max.A/ D min =max
T�f0;:::;n�1g;jTjD�

�min =max.A�;T/

denote the extreme singular values among all �-column sub-matrices of a matrix
A 2 R

m�n. We define the perturbation constants

�
.�/

A.1/
� �

.�/
max.�A D/

�
.�/
max.A.1/ D/

�A.1/ �
�max.�A D/

�max.A.1/ D/
� �.�/

A.1/

(9.16)
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The modification of the celebrated stability theorem of CS [12] is here rephrased for
the recovery of �-sparse vectors in absence of other noise sources.

Theorem 9.7 (Stable Recovery by BPDN in the Presence of Perturbations (from
[24, Theorem 2])) Let y D .A.0/ C �A/x 2 R

m be noisy measurements with
additive perturbation noise �Ax 2 R

m; x D D� with D an orthonormal basis and
� 2 R

n W k�k0 D �; A.1/ D A.0/ C �A 2 R
m�n verify the RIP with constant

ı2� <
p
2
	
1C �.2�/

A.1/


�2�1 and �.2�/
A.1/

< 2
1
4 �1. Then O� D BPDN.y;A.0/ D; �/ with

noise threshold

� D �.�/
A.1/

s
1C ı�
1 � ı� kyk2

is so that

kO� � �k2 � c01� (9.17)

where

c01 D
4
p
1C ı2�

	
1C �.2�/

A.1/




1 � .p2C 1/
�
.1C ı2�/

	
1C �.2�/

A.1/


2 � 1
� (9.18)

While formally correct, as in most other analyses based on the RIP the typical
performances are significantly higher than the error norm bound (9.17). While
prior works exist exploring the lower bound to the error at the output of sparse
signal recovery [1, 2], the particular case of matrix perturbations is covered in some
contributions [34, 35]. We then seek a design criterion following the principle that,
given the non-linear behavior of sparse signal recovery algorithms (e.g., of convex
optimization methods for non-smooth objective functions, such as the `1-norm), an
approach based on sensible mathematical intuition and sufficiently motivated by
simulation delivers applicable results.

9.4.1.3 Average Performances with Matrix Perturbations

The relative sophistication of BP and BPDN as non-smooth convex optimization
problems prevents an average analysis of the sensitivity w.r.t. the perturbation
matrix in typical recovery problems. Let us now assume in a simplified model
that (i) .A.0/; �A/ are drawn from two random matrix ensembles with known and
i.i.d. distributions of entries, and (ii) an approximation of Ox D D O� is obtained by
solving BP.y;A.0/D/ to satisfy y D A.0/ Ox. Pairing this with the original y D A.1/x
and with �A D A.1/ � A.0/ we obtain

A.0/�x D �Ax; �x D Ox � x (9.19)
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Starting from this, we further assume that �A is indeed a perturbation, i.e., that its
entity is small w.r.t. A.0/. In this way, the least-squares approximation error �x is
supposed to be small, so we could assume that Ox lies in a ball centered on x, and
minimize its radius under the constraint (9.19), yielding the least-squares solution

�x D argmin �� 2 R
nk��k22 s:t: A.0/�� D �Ax (9.20)

that is �x D .A.0//C�Ax (recalling that �C denotes the Moore–Penrose pseudoin-
verse). To investigate the expectation of �x when considered as a random vector,
i.e., the mean square error of such a solution, we may then compute

E
�k�xk22

� D tr � �x

D tr EA.0/;�A;x

�
.A.0//C�Axx>�A>

h
.A.0//C

i>�
;

D tr EA.0/;�A

�
.A.0//C�A��A>

h
.A.0//C

i>�
;

in the assumption that A.0/ and �A are drawn from random matrix ensembles that
are independent of x, so the ratio

E
�k�xk22

�

E
�kxk22

� D tr EA.0/;�A

�
.A.0//C�A

�
Ex
�A>

h
.A.0//C

i>�
(9.21)

where the energy-normalized correlation matrix �Ex
takes into account the second-

order moments of the signal to acquire. Since D is assumed an orthonormal basis
we may adopt a sparse signal model where each of

�n
�

�
supports of � has the

same probability, and its � nonzero components are i.i.d. zero-mean random
variables. With this, the correlation matrix � �

E�
D 1

n In and � DD� �D> D E�

n In.

In this particular case, a simplified evaluation of the ARSNR D EŒkxk22�
EŒk�xk22�

due to a

perturbation of the encoding matrix is possible, yielding

ARSNR D n

�
tr EA.0/;�A

�
.A.0//C�A�A>

h
.A.0//C

i>���1
: (9.22)

The expectation on A.0/ and�A depends on the CS configuration we are considering
and may be computed in an empirical fashion by Montecarlo simulations for any
random matrix ensemble of interest. On the other hand, the more suggestive and
equivalent

ARSNR D
0

@EA.0/;�A

2

41
n

n�1X

jD0

h
�j

	
.A.0//C�A


i2
3

5

1

A

�1

(9.23)
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links the expected performance to the average of the singular values of
	

A.0/

C
�A,

yet it is much less attractive in terms of computational requirements for a numerical
exploration. Note that such an estimate has a number of clear limitations:

1. since it focuses on non-denoising recovery (i.e., the solution of BP.y;A.0/D/)
it underestimates the attained recovery quality when the disturbance due to
the perturbation can be compensated by the relative abundance of information
on the problem due to (i) the availability of a large number of measurements
in excess of the minimum required for recovery (therefore allowing efficient
denoising) and (ii) knowing each instance’s error norm "? D k�Axk2 with which
BPDN.y;A.0/D; "?/ may be solved;

2. the estimate will lose its validity for small values of m that do not allow an
effective recovery, i.e., when even the perfectly informed BP.y;A.1/D/ fails. In
this case it is not sensible to assume that either BP or BPDN identifies a good
approximation of the true signal; the intrinsic reason is that k�xk2 is not small
(as the least-squares hypothesis in the neighborhood of x will not hold6) and the
estimate will not yield a relevant prediction of the recovery quality.

Thus (9.22) and the more general (9.21) are expected to be most effective when
m is sufficiently large, so that the phase transition of BP.y;A.1/D/ to the almost-sure
recovery region has occurred, but not much larger than the minimum m required
to achieve it. Actually, this is how efficient CS configurations will be designed and
why (9.22) will match the examples presented below.

9.4.1.4 Practical Performances with Random Matrix Perturbations

In this section we choose different random matrix ensembles from which �A is
drawn, and introduce the projection-to-perturbation ratio,

PPRA.0/;�A D
EŒkA.0/k2F�
EŒk�Ak2F�

indicating the relative average energy of A.0/ w.r.t. �A to control its impact.

Perturbation Models

We here focus on three perturbation models:

1. Dense Gaussian Additive (DGA):�A is drawn from the Gaussian random matrix
ensemble with i.i.d. entries of variance �2�A D 1

PPRA.0/;�A
;

6A more formal, yet similar intuition drives some of the considerations in [2], albeit addressing a
slightly different estimation problem.
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2. Dense Uniform Multiplicative (DUM): �A D U ı A.0/, where ı denotes the
entry-wise product �Aj;k D Aj;k � Uj;k and the matrix U is drawn from a random
matrix ensemble that is independent of A.0/ and has i.i.d. entries distributed as

Uj;k � U
	
�ˇ
2
;
ˇ

2



and ˇ D 2

q
3

PPRA.0/;�A
;

3. Sparse Sign-Flipping (SSF): a random set of index pairs C is independently
generated so that each entry

�Aj;k D
(
�2A.0/j;k ; .j; k/ 2 C

0; .j; k/ … C
(9.24)

corresponds to a sign-flipping of an element of A.0/, where each pair of
f0; : : : ;m�1g�f0; : : : ; n�1g has a probability � of being chosen. The resulting
sparse random matrix ensemble has a density � D 1

4PPRA.0/;�A
which controls

�2�A D 4�.

Experiments and Estimates

In this numerical experiment we consider a simple setting of dimensionality
n D 256 and assume D is the DCT; we generate � as a white random vector
by assuming equal probability of each of its

�n
�

�
possible supports, letting its �

nonzero components be i.i.d. random variable distributed as N.0; 1
�
/. We consider

� D 8; 16; 32 as prototypes of high- to low-sparsity signals.
The matrix A.0/ 2 R

m�n is here drawn from the Gaussian random matrix
ensemble with i.i.d. and unit-variance entries. As noted in the previous section, we
expect the estimate (9.22) to apply after a perfectly informed BP yields a solution
with sufficiently large m.

For a quantitative evaluation of this aspect, we generate 200 instances of �,
encode them with no perturbation, and then apply BP.y;A.1/D/ to measure the
ARSNR with different values of m by means of SPGL1. Given that the precision
setting of the solver allows a maximum RSNR � 120 dB, by looking at the evidence
in Fig. 9.8 we derive that a target ARSNR level of 110 dB is reached when m D 103
for � D 8, m D 138 for � D 16, and m D 184 for � D 32, at which it is safe to
assume that the decoder is operating after the phase transition.

At these .m; �/ pairs we explore the effect of perturbations and how closely it is
predicted by (9.22); we choose the distribution parameters of the three models in
section “Perturbation Models” to obtain a given PPRA.0/;�A 2 f0; 5; : : : ; 80g dB. For

the chosen .m; �/, we generate 200 instances of .�;A.0/; �A/, encode x D D� with
A.1/ D A.0/ C �A and attempt to recover O� by BP.y;A.0/D/, BPDN.y;A.0/D; "?/
and the non-perfectly informed OLS.y;A.0/D;T/. These three results are compared
with the outcome of a Montecarlo simulation of our estimate in (9.22) averaged over
200 instances of .A.0/; �A/.
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Fig. 9.8 ARSNR curves used
to set m beyond the phase
transition of BP.y;A.1/D/

0

20

40

60

80

100

120

50 100 150 200 250

103 138 184

A
R
S
N
R
[d

B
]

m

κ = 8
κ = 16
κ = 32

The results are depicted in Figs. 9.9, 9.10, and 9.11 in the case of � D 16

and for the three different perturbation models. The ARSNR of each decoder can
be compared with the estimate as the PPRA.0/;�A increases (i.e., the perturbation is
made progressively smaller).

Moreover, since the estimate has negligible variations w.r.t. the perturbation
model, we fix the latter to DGA and explore the effect of different sparsity levels
at values for which the phase transition has occurred; the results are reported
in Fig. 9.9. Note that, although it is only an estimate, (9.22) appears to be quite
effective in anticipating the average performances right between BP.y;A.0/D/ and
BPDN.y;A.0/D; "?/. This is coherent with its derivation that starts from a non-
denoising, naive BP but assumes that the recovery has the ability of coming as close
as possible to the true solution in the least-squares sense.

As a result of this performance estimate, we can conclude that the estimate
in (9.22) (or its extension to non-white signals in (9.21)) is indeed sufficiently
accurate to predict the average recovery performances of signal recovery algorithms
under matrix perturbations right between BP.y;A.0/D/ and BPDN.y;A.0/D; "?/, and
in particular when the configuration of CS being used is operating in the appropriate
region of the phase transition curve, i.e., when the set of .m; n; �/ is so that recovery
by BP is always feasible.

In the next section, we will focus on SSF as a method to introduce a controlled,
conveniently generated perturbation in an encoding matrix to deliver data protection
embedded in the sensing or encoding process; hence the interest in the devised
estimate, that serves as a design formula for a lightweight encryption protocol.

9.4.2 Elements of Multiclass Encryption

We here discuss the introduction of a lightweight scheme for data protection, namely
multiclass encryption by CS. Let us consider a scenario where multiple users receive
the same ciphertext y D A.1/x, know the orthonormal basis D in which the plaintext
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Fig. 9.9 Comparison of the
ARSNR versus PPRA.0/;�A
with the average performance
estimate in (9.22) (dashed)
against BP.y;A.0/D/ (empty
circles), BPDN.y;A.0/D; "?/
(filled circles),
OLS.y;A.0/D;T/ (solid line)
for the DGA perturbation
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x is �-sparse, but are made different by the fact that some of them know the true
encoding matrix A.1/, whereas the other users are only provided an approximate
version of it, i.e., A.0/. The resulting mismatch between A.1/ and A.0/—which will
be used in the decoding process by the latter set of receivers—will then limit the
quality of their signal recovery as detailed below.
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Fig. 9.10 Comparison of the
ARSNR versus PPRA.0/;�A
with the average performance
estimate in (9.22) (dashed)
against BP.y;A.0/D/ (empty
circles), BPDN.y;A.0/D; "?/
(filled circles),
OLS.y;A.0/D;T/ (solid line)
for the DUM perturbation
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The Two-Class Case

With this principle in mind, a straightforward and undetectable method to introduce
controlled perturbations is flipping the sign of a subset of the entries of the encoding
matrix in a random pattern. More formally, let A.0/ 2 f�1;C1gm�n denote the initial
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Fig. 9.11 Comparison of the
ARSNR versus PPRA.0/;�A
with the average performance
estimate in (9.22) (dashed)
against BP.y;A.0/D/ (empty
circles), BPDN.y;A.0/D; "?/
(filled circles),
OLS.y;A.0/D;T/ (solid line)
for the SSF perturbation
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encoding matrix and C.0/ be a subset of c < mn index pairs chosen at random for
each A.0/. We therefore construct the true encoding matrix A.1/ by taking

8.j; k/ 2 f0; : : : ;m � 1g � f0; : : : ; n � 1g;

A.1/j;k D
(

A.0/j;k ; .j; k/ … C.0/

�A.0/j;k ; .j; k/ 2 C.0/
(9.25)
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and use it to encode x by y D A.1/x. Although this alteration simply involves
inverting c randomly chosen sign bits in a buffer of mn pseudorandom symbols,
we will use its linear perturbation model

A.1/ D A.0/ C�A (9.26)

as in Sect. 9.4.1, where �A is a c-sparse random matrix7

8.j; k/ 2 f0; : : : ;m � 1g � f0; : : : ; n � 1g;

�Aj;k D
(
0; .j; k/ … C.0/

�2A.0/j;k ; .j; k/ 2 C.0/
(9.27)

or equivalently

8.j; k/ 2 f0; : : : ;m � 1g � f0; : : : ; n � 1g;

�Aj;k D
(
0; .j; k/ … C.0/

2A.1/j;k ; .j; k/ 2 C.0/
(9.28)

with sparse sign-flipping density � D c
mn . By doing so, any receiver is still

provided an encoding matrix differing from the true one by an instance of �A. This
perturbation is undetectable, i.e., A.1/ and A.0/ are statistically indistinguishable
since they are equal-probability realizations of the same RAE.I/ ensemble, with
all points in f�1;C1gm�n having the same probability.

A first-class user receiving y D A.1/x D .A.0/ C �A/x and knowing A.1/ is
therefore able to recover, in absence of other noise sources and with m sufficiently
larger than the sparsity � W x D D�; k�k0 D �, the exact sparse solution O� D �

by solving BP.y;A.1/D/. A second-class user only knowing y and A.0/ is instead
subject to an equivalent signal- and perturbation-dependent, non-white noise term 	

due to missing pieces of information on A.1/, that is

y D A.1/x D A.0/xC 	 (9.29)

where 	 D �Ax is a pure disturbance since both �A and x are unknown to
the second-class receiver. Its approximation Ox is obtained as the solution of, e.g.,
BP.y;A.0/D/ or BPDN.y;A.0/D; "?/ with "? D k	k2, where the considerations
made in Sect. 9.4.1 seamlessly apply; performing signal recovery in the erroneous
assumption that y D A.0/ Ox, i.e., with a corrupted encoding matrix, will lead to a
noisy Ox D D O�.

7To be specific, it can be seen as drawn from a ternary-valued random matrix ensemble
�A 2 f�2; 0; 2gm�n constructed from all the equiprobable assignments of c nonzero elements
verifying (9.27). In a simplifying view, we let it have i.i.d. entries 8.j; k/ 2 f0; : : : ;m �
1g; f0; : : : ; n � 1g;PŒ�Aj;k D �2� D PŒ�Aj;k D 2� D �

2
;PŒ�Aj;k D 0� D 1 � �, so the density

parameter actually controls the probability assignment.
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In terms of recovery guarantees, while upper bounds on the recovery error norm
kOx � xk2 have been anticipated in the form of Theorems 1.7 and 9.7, the crucial
matter in this section will be finding a lower bound to the error norm, i.e., a best-case
analysis of the second-class recovery error. We anticipate that this will depend on
the perturbation density �, which will be suitably chosen to fix the desired quality
range for each class. This is precisely obtained in Sect. 9.4.3.1, together with a
quantification of the upper bound by a direct application of Theorem 9.7.

A Multiclass Encryption Scheme

The two-class scheme may be iterated to devise an arbitrary number of user classes:
a sparse sign-flipping can be applied on disjoint subsets of index pairs C.u/; u 2
f0; : : : ;w � 2g of A.0/ so that

A.uC1/j;k D
(

A.u/j;k ; .j; k/ … C.u/

�A.u/j;k ; .j; k/ 2 C.u/

yielding the corresponding fA.u/gw�1uD0 , each in turn associated with one of w user
classes that progressively complete the knowledge of the true encoding A.w�1/.
Thus, if the plaintext x is encoded with A.w�1/ we may distinguish high-class users
knowing the complete encoding A.w�1/, low-class users knowing only A.0/, and
mid-class users knowing AuC1 with u D 0; : : : ;w � 3. This simple technique can
be applied to provide multiple classes of access to the information in x granting
different signal recovery performances at the decoder.

A System Perspective

The strategy described in this section provides a multiclass encryption architecture
where the shared secret between the CS encoder and each receiver is distributed
depending on the quality level granted to the latter. In particular, the full
encryption key of a w-class CS scheme is composed of w seeds, i.e., low-
class users are provided the secret Key.A.0//, class-1 users are provided
Key.A.1// D .Key.C.0//;Key.A.0/// up to high-class users, which are given the key

Key.A.w�1// D
	

Key.C.w�2//; � � � ;Key.C.0//;Key.A.0//


:

An exemplary network implementing this policy is depicted in Fig. 9.13. This is
reduced to the simple scheme of Fig. 9.12 in the case of a two-class encryption,
where Key.C.0//;Key.A.0// fully define the key-agreement.

From the resources point of view, multiclass CS can be implemented with
practically zero computational overhead. The encoding matrix generator is
substantially a PRNG (e.g., an LFSR) and is structurally identical at both the
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x × y

◦PRNG PRNG Key(A(0))Key(C(0))

A(1)

C(0) A(0)

(a)

y +

e = ΔAx

BP(y,A(0)D)

Key(A(0))

x̂

(b)

Fig. 9.12 An overview of two-class encryption by CS. (a) The encoder; cross here denotes the
matrix-vector product, open circle the composition by (9.25). (b) A second-class decoder; the
virtual effect of missing information on the encoding matrix at the decoder is highlighted in red

x(u) ≈ x Encoder

Single Encoder

Key(A(w−1))

y

Decoder

High-class

Key(A(w−1))

x
y

Decoder

Mid-class

Key(A(1))

x̂(1)
y

...

Decoder

Low-class

Key(A(0))

x̂(0)
y

Fig. 9.13 A single-transmitter, multiple-receiver multiclass CS network: the encoder acquires an
analog signal x.u/ by CS and transmits the measurement vector y. Low-quality decoders recon-
struct a signal approximation with partial knowledge of the encoding, resulting in perturbation
noise and leading to an approximate solution Ox.u/ for the u-th user class

encoder and high-class decoder side, whereas lower-class decoders may use the
same encoding matrix generation scheme but are unable to rebuild the true one due
to the missing pieces of the shared secret, i.e., Key.C.u//.
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PRNG

PRNG

Key(A(0))

{Key(Cu)}w−2
u=0

A(0)

Aw−1

Fig. 9.14 Encoding matrix generator architecture

The initial matrix A.0/ is, as anticipated, updated from a pseudorandom binary
stream generated by expanding Key.A.0// with a PRNG. The introduction of sign-
flipping is a simple postprocessing step carried out on the stream buffer by reusing
the same PRNG architecture and expanding the corresponding Key.C.u//, thus
having minimal computational cost (see Fig. 9.14). Of course, the PRNGs have to
be carefully chosen to avoid cryptanalysis [39]; however, since the values generated
by this PRNG are never exposed, cryptographically secure PRNGs [40] or security-
enhancing primitives on the output [19] may be avoided to save resources, provided
that the period with which the matrices are reused is kept sufficiently large.

9.4.3 Properties and Main Results

9.4.3.1 Recovery Error Guarantees and Bounds

We now analyze the properties of multiclass CS starting from some statistical
priors on the signal being encoded. Rather than relying on its a priori distribution,
our analysis uses general moment assumptions that may correspond to many
probability distributions on the signal domain. In order to quantify the recovery
quality performance gap between low- and high-class users receiving the same
measurements y D A.1/x, we now provide performance bounds on the recovery
error in the simple two-class case, starting from the basic intuition that if the
sparsity basis of x is not the canonical basis, then most plaintexts x … ker �A so the
perturbation noise 	 ¤ 0m.

Main Results

The following results aim at predicting the best-case recovery quality (or equiva-
lently, a recovery error lower bound) of any second-class decoder that assumes y
was encoded by A.0/, whereas y D A.1/x in absence of other noise sources and
regardless of the sparsity of x. Since A.1/ � RAE.I/, any exact signal recovery
guarantee based on the properties of this matrix ensemble holds when encoding x
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by A.1/. By such guarantees, the dimensionality m of the measurement vector y must
exceed the sparsity � by a quantity depending on the rate �

n . In the following, we
will assume that m

n and �
n grant that a decoder knowing the true encoding A.1/ is able

to accurately reconstruct the original signal by BP.y;A.1/D/.
We now introduce a result that shows how the recovery error norm suffered

by a second-class receiver is at least (rather than at most, as is usually the case
for performance guarantees in CS) a certain quantity essentially depending on the
nature of the perturbation �A D A.1/ � A.0/; this will serve as a basic design
guideline for multiclass encryption schemes.

Theorem 9.8 (Second-Class Recovery Error Lower Bound (Non-Asymptotic
Case)) Let:

• A.0/;A.1/ 2 f�1;C1gm�n be drawn from the RAE.I/ and �A be as in (9.27) with
density � � 1

2
;

• x 2 R
n be as in .M1/ with finite Ex D E

hPn�1
kD0 x2k

i
, Fx D E

�	Pn�1
kD0 x2k


2�
.

For any 	 2 .0; 1/, and any instance of y D A.1/x, Ox that satisfies y D A.0/ Ox is such
that

P
h
kOx � xk22 � 4�mEx

�max.A.0//2
	
i
� � (9.30)

where

� D 1

1C .1 � 	/�2
hh
1C 1

m

	
3
2�
� 1


i
Fx
E2x
� 1

i (9.31)

This is extended to the asymptotic case (i.e., model .M2/) as follows.

Theorem 9.9 (Second-Class Recovery Error Lower Bound (Asymptotic Case))
Let:

• A.0/;A.1/; �A; � be as in Theorem 9.8 as m; n!1; m
n ! q;

• X be as in .M2/ , ˛-mixing [7, (27.25)], with finite Wx D limn!1 1
n E
hPn�1

kD0 x2k
i

and uniformly bounded EŒx4k � � mx for some mx > 0.

For any 	 2 .0; 1/, and any instance of y D 1p
n
A.1/x, Ox that satisfies y D 1p

n
A.0/ Ox

is such that8

P
h
WOx�x � 4�qWx

.1Cpq/2
	
i
' 1: (9.32)

8Clearly the recovery error power WOx�x D limn!1
1
n

Pn�1
kD0.Oxk � xk/

2.
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The proof of these statements is given below. Simply put, Theorems 9.8 and 9.9
state that a second-class decoder recovering with any algorithm Ox such that y D
A.0/ Ox is subject to a recovery error whose norm, with high probability, exceeds a
quantity depending on the density � of the perturbation �A, the undersampling rate
m
n , and the average energy Ex or power Wx, respectively.

In particular, the non-asymptotic case in (9.30) is a probabilistic lower bound:
as a quantitative example, by assuming it holds with probability � D 0:98 and that
Fx
E2x
D 1:0001; n D 1024;m D 512; �max.A.0// ' pm C pn one could take an

arbitrary 	 D 0:1) � D 0:1594 to obtain kOx�xk22 � 0:0109 w.r.t. random vectors
having average energy Ex D 1. In other words, with probability 0:98 a perturbation
of density � D 0:1594 will cause a minimum recovery error norm of 19:61 dB.

A stronger asymptotic result holding with probability 1 on the recovery error
power WOx�x is then reported in Theorem 9.9 under broadly verified assumptions on
the random process X , where 	 can be arbitrarily close to 1 and only affecting the
convergence rate to this lower bound. The bounds in (9.30) and (9.32) are adopted
as reference best-cases in absence of other noise sources for the second-class
decoder, which actually exhibits higher recovery error for most problem instances
and reconstruction algorithms as well illustrated in the exemplary applications of
Sect. 9.4.5.

9.4.3.2 Proof of Main Results on Multiclass Encryption

We now give a technical proof of Theorems 9.8 and 9.9. We first introduce a Lemma
that gives a self-contained probabilistic result on the Euclidean norm of 	 in (9.29).

Lemma 9.1 Let:

• ! 2 R
n be a random vector with E! D E

hPn�1
kD0 !2

k

i
, F! D E

�	Pn�1
kD0 !2

k


2�
;

• �A 2 f�2; 0; 2gm�n be the sparse random matrix in (9.27) drawn from a random
matrix ensemble with i.i.d. entries and density � D c

mn � 1
2
.

If ! and �A are independent, then for any 	 2 .0; 1/

P
�k�A!k22 � 4m�E!	

� � � (9.33)

with

� D

1C .1 � 	/�2

��
1C 1

m

�
3

2�
� 1

��
F!

E2!
� 1

���1
(9.34)
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A proof is given as follows.

Proof (Lemma 9.1) Consider

k�A!k22 D
m�1X

jD0

n�1X

kD0

n�1X

iD0
�Aj;k�Aj;i!k!i

We now derive the first and second moments of this positive random variable as
follows; �A is drawn from a random matrix ensemble of i.i.d. entries with mean

�A D 0, variance �2�A D 4�, and 8.j; k/ 2 f0; : : : ;m � 1g � f0; : : : ; n �
1g;EŒ�A4j;k� D 16�. Using the independence between ! and �A, and the fact that
�A is drawn from a random matrix ensemble with i.i.d. entries we have that the first
moment

E
�k�A!k22

� D
m�1X

jD0

n�1X

kD0

n�1X

iD0
EŒ�Aj;k�Aj;i�EŒ!k!i�

D
m�1X

jD0

n�1X

kD0

n�1X

iD0
�2�A•.l; i/EŒ!k!i� D

m�1X

jD0
�2�A

n�1X

kD0
EŒ!2

k � D 4m�E!

For the aforementioned properties of �A we also have

EŒ�Aj;k�Aj;i�Av;h�Av;o� D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�4�A;

8
ˆ̂̂
<̂

ˆ̂̂
:̂

j ¤ v; k D i; h D o

j D v; k D i; h D o; l ¤ h

j D v; k D h; i D o; l ¤ i

j D v; k D o; i D h; k ¤ i

EŒ�A4j;k�; j D v; k D i D h D o

0; otherwise

(9.35)

illustrating the expectation of all possible 4-ples of entries of �A. After cumber-
some but straightforward calculations that involve the substitution of (9.35) into
E
�
.k�A!k22/2

�
we obtain

E
�
.k�A!k22/2

� D 16m�.�.m � 1/F! C 3�.F! � G!/C G!/

where G! D E
hPn�1

kD0 !4
k

i
. We are now in the position of using a one-sided version

of Chebyshev’s inequality for positive random variables, i.e., any random variable
z � 0 verifies

8	 2 .0; 1/; P Œz � 	EŒz�� � .1 � 	/2
2z
.1 � 	/2
2z C �2z

(9.36)
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By applying this inequality to k�A!k22 we have that, 8	 2 .0; 1/,

P
�k�A!k22 � 	EŒk�A!k22�

�

�
�
1C .1 � 	/�2

�
EŒ.k�A!k22/2�
EŒk�A!k22�2

� 1
���1

D
�
1C .1 � 	/�2

��
1 � 1

m

�
F!

E2!
C 3�.F! � G!/C G!

�mE2!
� 1

���1

which yields (9.34) by considering that when � � 1
2
, 3�.F! � G!/C G! � 3

2
F!.

We are now in the position of proving Theorem 9.8.

Proof (Theorem 9.8) Since all decoders receive in absence of other noise sources
the same measurements y D A.1/x, a second-class decoder would naively assume
y D A.0/ Ox with Ox an approximation of x obtained by a decoder that satisfies this
equality, e.g., as the naive BP in Sect. 9.4.1.1. Since A.1/ D A.0/C�A, if we define
�x D Ox� x we may write A.0/xC�Ax D A.0/ Ox and thus A.0/�x D �Ax. k�xk22 can
then be bounded straightforwardly as �max.A.0//2k�xk22 � k�Axk22 yielding

kOx � xk22 � k�Axk22
�max.A.0//2

(9.37)

By applying the probabilistic lower bound of Lemma 9.1 on k�Axk22 in (9.37), we
have that k�Axk22 � 4m�Ex	 for 	 2 .0; 1/ and a given probability value exceeding
� in (9.34). Plugging the r.h.s. of this inequality in (9.37) yields (9.30).
The following lemma applies to finding the asymptotic result (9.32) of Theorem 9.9.

Lemma 9.2 Let X be an ˛-mixing random process with uniformly bounded fourth
moments EŒx4k � � mx for some mx > 0. Define

Ex D E

"
n�1X

kD0
x2k

#

and Fx D E

2

4

 
n�1X

kD0
x2k

!23

5 :

If

Wx D lim
n!1

1

n
Ex > 0;

then

lim
n!1

Fx
E2x
D 1:
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Proof (Lemma 9.2) Note first that from Jensen’s inequality Fx � E2x, so
limn!1 1

n Ex > 0 also implies that limn!1 1
n2

E2x > 0 and limn!1 1
n2

Fx > 0.
Since limn!1 1

n2
E2x D W2

x > 0 we may write

lim
n!1

Fx

E2x
D 1C limn!1 1

n2
Fx � 1

n2
E2x

W2
x

(9.38)

and observe that

ˇ̌
ˇ̌ 1
n2

Fx � 1

n2
E2x

ˇ̌
ˇ̌ � 1

n2

n�1X

jD0

n�1X

kD0
j�j;kj

where

�j;k D EŒx2kx2k � � EŒx2k �EŒx
2
k � D EŒ.x2k � EŒx2k �/.x

2
k � EŒx2k �/�

From the ˛-mixing assumption we know that
ˇ̌
�j;k

ˇ̌ � ˛.jj � lj/ � mx with the
sequence ˛.h/ vanishing to 0 as h!1. Hence,

ˇ̌
ˇ̌ 1
n2

Fx � 1

n2
E2x

ˇ̌
ˇ̌ � 1

n2

n�1X

jD0

ˇ̌
�j;j

ˇ̌C 2

n2

n�1X

hD1

n�h�1X

jD0

ˇ̌
�j;jCh

ˇ̌

� n mx

n2
C 2

n2

n�1X

hD1
.n � h/˛.h/ � mx

n
C 2

n

n�1X

hD1
˛.h/

The thesis of this lemma follows from the fact that the above upper bound vanishes
to 0 as n ! 1. This is obvious when

PC1
hD0 ˛.h/ is convergent. Otherwise,

if
PC1

hD0 ˛.h/ is divergent we may resort to the Stolz–Cesàro theorem to find
limn!1 1

n

Pn�1
hD1 ˛.h/ D limn!1 ˛.n/ D 0.

We are now in the position of proving Theorem 9.9, that is a mere extension of the
proof of Theorem 9.8 to the asymptotic case.

Proof (Theorem 9.9) The inequality (9.37) in the proof of Theorem 9.8 is now
modified for the asymptotic case, i.e., for a random process X . Note that A.0/

is drawn from the RAE.I/ with zero-mean, unit-variance entries; thus, when
m; n ! 1 with m

n ! q the value
p

n �max.A.0// is known from [22] since all

its singular values belong to the interval
h
1 � 1p

q ; 1C 1p
q

i
. We therefore assume

�max.A.0// ' pmCpn and take the limit of (9.37) normalized by 1
n for m; n!1,

i.e., the recovery error power

WOx�x D lim
n!1

1

n

n�1X

kD0
.Oxk � xk/

2 � lim
m;n!1

�
���A x.n/p

n

�
��
2

2�p
mCpn

�2 (9.39)
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with x.n/ the n-th finite-length term in a plaintext x D fx.n/gC1nD0 of X . We may

now apply Lemma 9.1 in ! D x.n/p
n

for each k�A!k22 at the numerator of the

r.h.s. of (9.39) with F! D 1
n2

Fx, E! D 1
n Ex, and Ex;Fx as in Lemma 9.2. For

m; n!1 and � � 1
2
, the probability in (9.34) becomes

8	 2 .0; 1/; lim
m;n!1 � D

"

1C .1 � 	/�2
"

lim
n!1

1
n2

Fx

1
n2

E2x
� 1

##�1

Since X also satisfies by hypothesis the assumptions of Lemma 9.2, we have that

lim
n!1

F!

E2!
D 1

and thus limm;n!1 � D 1. Hence, with m
n ! q and probability 1 the r.h.s. of (9.39)

becomes

8	 2 .0; 1/; lim
m;n!1

k�A!k22
n.1Cpm

n /
2
D lim

m;n!1
4m�Ex

n2.1Cpm
n /
2
	

and the recovery error power is shown to satisfy (9.32).
Thus, Theorems 9.8 and 9.9 were shown to hold in the respective cases.

An Upper Bound for the Second-Class Recovery Error

The second-class recovery error norm is substantially bounded from above by direct
application of Theorem 9.7. To apply it, we have to compute �.�/

A.1/
; �
.2�/

A.1/
in our

particular case. Theoretical results exist for estimating their value by bounding
the extreme singular values in (9.16), since both A.1/ and �A are drawn from
i.i.d. random matrix ensembles.

To estimate �.�/
A.1/

we may proceed in the following fashion: since �A is drawn
from a random matrix ensemble with i.i.d. zero-mean entries for which

8.j; k/ 2 f0; : : : ;m � 1g � f0; : : : ; n � 1g; EŒ�A2j;k� D 4�;EŒ�A4j;k� D 16�

(9.40)

we may use [33, Theorem 2] to find

EŒ�.�/max.�A/� D 2c0
	p

��Cpm�C .m��/ 14



(9.41)
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for c0 > 0 a universal constant. Then, using the non-asymptotic estimate given
in [55, Theorem 5.39], we may assume �.�/max.A.1// D c00.

p
� C pm/ for another

universal constant c00 > 0. Thus, we have

�
.�/

A.1/
' 2c

p
��Cpm�C .m��/ 14p

� Cpm
(9.42)

for c D c0

c00 > 0 a universal constant, where the approximation is due to the fact
that (9.41) actually yields an expectation of the maximum. However, this estimate
is easily applicable only when D is the canonical basis; since in many practical
cases this does not hold, we simply resort to a Montecarlo simulation of �.�/

A.1/
with,

e.g., D a random orthonormal basis. As an example of such a numerical analysis,
we calculate (9.16) for 104 instances of sub-matrices of A.1/ and �A with m D
512; � D 1; 4; 16 and � 2 Œ5 � 10�4; 10�2�. This allows us to find typical values
of �.�/

A.1/
as reported in Fig. 9.15a. In this test case, we have found that c � 0:5741

in (9.42) would match the simulations. In the same setting �.�/
A.1/

< 2
1
4 � 1 only when

� � 8 � 10�3. In Fig. 9.15b we report the corresponding range of allowed constants
ı.2�/ � ı.2�/max that comply with Theorem 9.7, i.e., the RIP constraints of the encoding
matrices must be met so that (9.17) holds.

Once again, RIP-based analyses provide very strong sufficient conditions for
signal recovery, which in our case result in establishing a formal upper bound for a
small range of �. As observed by the very authors of [24], typical recovery errors are
substantially smaller than this upper bound. We will therefore rely on another less
rigorous, yet practically effective least-squares approach using the same hypotheses
of Theorem 9.8 to bound the average recovery quality performances, as presented
in the following section.

Average Signal-to-Noise Ratio Bounds

We have already discussed how the perturbation density � is the main design
parameter for the proposed multiclass encryption by CS, and have presented in
Sect. 9.4.1 a method to predict the average recovery performances under a variety
of perturbations, including the sparse sign-flipping which is at the heart of our
encryption scheme. To provide criteria for the choice of � we adopt two ARSNR
bounds derived as follows.

The Lower Bound Although rigorous, the second- (or lower-) class recovery error
upper bound derived by applying Theorem 9.7 is only compatible with small values
of .�; �/, as shown by the evidence gathered in Fig. 9.15. To bound the typical
recovery performances in a larger range we follow a method similar to the one used
in Sect. 9.4.1.3, i.e., we analyze the behavior of a lower-class decoder that naively
recovers Ox such that y D A.0/ Ox D .A.0/C�A/x and A.0/.Ox�x/ D �Ax. In most cases,
such a recovery produces Ox lying close to x, so we approximate Ox�x D .A.0//C�Ax,
i.e.,
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Fig. 9.15 Empirical
evaluation of the constants in
Theorem 9.7 based on a large
number of A.1/; �A with
m D 512; � 2 Œ5 �10�4; 10�2�

and D a random orthonormal
basis. The forbidden areas in
the statement of Theorem 9.7
are marked with stripes. (a)
Empirical values of �.�/

A.1/
. (b)
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By taking an empirical expectation on both sides, our criterion becomes ARSNR >
LB.m; n; �/ where

LB.m; n; �/ D �10 log10 OE
	
�max..A.0//C�A/2



dB (9.43)

(9.43) is then calculated by a thorough Montecarlo simulation of �max..A.0//C�A/.

The Upper Bound The opposite criterion is found by assuming ARSNR <

UB.m; n; �/ where

UB.m; n; �/ D �10 log10
4�m

.
p

mCpn/2
dB (9.44)

that is obtained from a simple rearrangement of (9.32) with 	 ' 1. We will see
how (9.43) and (9.44) fit well the ARSNR performances of the examples, and enable
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a sufficiently reliable estimate of the range of performances of lower-class receivers
from a given configuration of .m; n; �/

9.4.4 Application Examples

In this section we detail some example applications for the multiclass CS scheme
we proposed. For each exemplary case, we study the recovery quality attained by
first-class receivers against second-class ones in a two-class scheme; these results
encompass the multiclass setting since high-class receivers will correspond to first-
class recovery performances (i.e., at a perturbation density � D 0), while lower-class
users will attain the performances of a second-class receiver at a fixed � > 0.

9.4.4.1 Experimental Framework

For each plaintext x D D� being reconstructed and each approximation Ox D DOs, we
evaluate once again the ARSNR of (2.4); this average performance index is compared
against (9.43) and (9.44) with the purpose of choosing a suitable perturbation
density � so that lower-class recovery performances are set to the desired quality
level. In particular, each example reports (9.43) obtained by a Montecarlo simulation
of the singular values of .A.0//C�A over 5 � 103 cases.

Since our emphasis is on showing that, despite its simplicity, this method is
effective in avoiding the access to high-quality information content for lower-class
receivers, we complement the ARSNR evidence of each example with an automated
assessment of the information content intelligible from Ox by means of feature-
extraction algorithms. These are equivalent to partially informed attacks to the
encryption, attempting to expose the sensitive content inferred from the recovered
signal. More specifically, we will try to recover an English sentence from a speech
segment, the location of the PQRST peaks in an ECG, and printed text in an image.

9.4.4.2 Recovery Algorithms

While we have widely discussed the use of BP and BPDN in this book, and in
particular w.r.t. their sensitivity to matrix perturbations, these convex problems are
often replaced in practice by a variety of high-performance algorithms. In detail,
probabilistic inference algorithms such as those in [17, 50] are capable of solving
essentially the same problem as BPDN with statistical priors on the nature of the
additive noise affecting the measurements. Thus, they are particularly well-fit to
our application if we want to assess the best achievable performances of lower-
class decoders. For completeness, as reference cases for most common algorithmic
classes we preliminarily tested the solution of BPDN as implemented in SPGL1; this
was compared to the greedy algorithm CoSaMP [43] and the GAMP algorithm [50].
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To optimize these preliminary tests, the algorithms were optimally tuned in a
“genie” fashion: BPDN was solved as BPDN.y;A.0/D; "?/, i.e., as if "? D k�Axk2
was known beforehand; CoSaMP was initialized with the exact sparsity level � for
each case; GAMP was run with the sparsity-enforcing, i.i.d. Bernoulli–Gaussian
prior (see, e.g., [56]) and initialized with the exact sparsity ratio �

n of each instance,
and the exact mean and variance of each considered test set. Moreover, signal-
independent parameters were hand-tuned in each case to yield optimal recovery
performances.

For the sake of brevity, in each example we select and report the algorithm
that yields the most accurate recovery quality at a lower-class decoder as the
amount of perturbation varies. We found that GAMP achieves the highest ARSNR
in all the settings explored in the examples, consistently with the observations
in [56] that assess the robust recovery capabilities of this algorithm under a broadly
applicable sparsity-enforcing prior. Moreover, as �A verifies [47, Proposition 2.1]
the perturbation noise 	 is approximately Gaussian for large .m; n/ and thus GAMP
tuned as above yields the optimal performances as expected.

Note that recovery algorithms which attempt to jointly identify x and�A [47, 60]
can be seen as explicit attacks to multiclass encryption and are evaluated in more
detail in Sect. 9.4.6.3, anticipating that their performances are compatible with those
of GAMP.

9.4.4.3 Speech Signals

We consider a subset of spoken English sentences from the PTDB-TUG
database [48] with original sampling frequency fs D 48 kHz, variable duration,
and sentence length. Each speech signal is divided into segments of n D 512

samples and encoded by two-class CS with m D n
2

measurements. We obtain the
sparsity basis D by applying principal component analysis to 500 n-dimensional
segments yielding an orthonormal basis. The encoding matrix A.1/ is generated
from A.0/ � RAE.I/, by adding to the latter a sparse sign-flipping perturbation �A
chosen as in (9.27) with density �. The encoding in (9.29) is simulated in a realistic
setting, where each window x of n samples is acquired with a different instance
of A.1/ yielding m measurements per speech segment. As for the decoding stage,
we apply GAMP as specified above to recover Ox given A.1/ (first-class) and A.0/

(second-class).
For a given encoding matrix a first-class receiver is capable of decoding a clean

speech signal with ARSNR D 38:76 dB, whereas a second-class receiver is subject
to significant ARSNR degradation when � increases, as shown in Fig. 9.16a. Note
that while the RSNROx;x for � D 0 has a relative deviation of 2:14 dB around its mean
(i.e., the ARSNR), as � increases the observed relative deviation is less than 0:72 dB
due to the perturbation becoming the dominant effect in limiting the recovery quality
w.r.t. the fact that x are compressible, but not �-sparse. Note how the ARSNR values
lie in the highlighted range between (9.43), (9.44).
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Fig. 9.16 Multiclass CS of
speech signals: (a) ARSNR as
a function of the perturbation
density � 2 Œ0; 0:1� (solid)
and second-class RSNR upper
bound (dashed); (b) Ratio of
words correctly recognized
by ASR in � 2 Œ0; 0:1�
(bottom) and typical
recovered instances for
� D f0; 0:03g (top)
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To further quantify the limited quality of attained recoveries, we process the
recovered signal with the Google Web Speech interface [25, 53] which provides
basic Automatic Speech Recognition (ASR). The ratio of words correctly rec-
ognized by automatic speech recognition for different values of � is reported in
Fig. 9.16b; there we also depict a typical recovered signal instance, on which a
first-class user (i.e., � D 0) attains RSNR D 36:58 dB, whereas a second-class
decoder only achieves RSNR D 8:42 dB when � D 0:03. The corresponding ratio
of recognized words is 14

14
against 8

14
. In both cases the sentence is intelligible to

a human listener, yet the second-class decoder recovers a signal that is sufficiently
corrupted to avoid straightforward automatic speech recognition.
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9.4.4.4 ECG Signals

We now process a large subset of ECGs from the PhysioNet database [23] sampled
at fs D 256Hz. In particular, we report the case of a typical 25-min ECG (sequence
e0108) and encode windows of n D 256 samples by two-class CS with m D 90

measurements, amounting to a dataset of 1500 ECG instances. The encoding and
decoding scheme is identical to that of Sect. 9.4.4.3, and we assume the Symmlet-6
orthonormal DWT [37] as the sparsity basis D.

In this configuration the first-class decoder is able to reconstruct the original
signal with ARSNR D 25:36 dB, whereas a second-class decoder subject to a
perturbation of density � D 0:03 achieves an ARSNR D 11:08 dB; the recovery
degradation depends on � as reported in Fig. 9.17a. As an additional quantification
of the encryption at second-class decoders we apply PUWave [29], an Automatic
Peak Detection algorithm (APD), to first- and second-class signal reconstructions.
In more detail, PUWave is used to detect the position of the P,Q,R,S and T peaks, i.e.,
the sequence of pulses whose positions and amplitudes summarize the diagnostic
properties of an ECG.

The application of this APD yields the estimated peak instants OtP;Q;R;S;T for
each of J D 1500 reconstructed signal windows and each decoder class, which
are afterwards compared to the corresponding peak instants as detected on the
original signal prior to encoding. Thus, we define the average time displacement

�t D
q

1
J

PJ�1
iD0 .Ot.i/ � t.i//2 and evaluate it for tR and tPQST. A first-class receiver

is subject to a displacement �tR D 0:6msrms of the R-peak and �tPQST D 9:8msrms

of the remaining peaks w.r.t. the original signal. On the other hand, a second-class
user is able to determine the R-peak with �tR D 4:4msrms while the displacement
of the other peaks is �tPQST D 55:3msrms. As � varies in Œ0; 0:05� this displacement
increases as depicted in Fig. 9.17b, thus confirming that a second-class user will not
be able to accurately determine the position and amplitude of the peaks with the
exception of the R-peak.

9.4.4.5 Sensitive Text in Images

In this final example we consider an image dataset of people holding printed
identification text and apply multiclass CS to selectively hide this sensitive content
to lower-class users. The 640�512 pixel images are encoded by CS in 10�8 blocks
each of 64�64 pixel while the two-class strategy is only applied to a relevant image
area of 3 � 4 blocks. We adopt as sparsity basis the bidimensional Daubechies-
4 orthonormal DWT [37] and encode each block of n D 4096 pixels with m D
2048 measurements; two-class encoding is then applied with a sparse sign-flipping
perturbation density � 2 Œ0; 0:4�.

The ARSNR performances of this example are reported in Fig. 9.18a as averaged
on 20 instances per case, showing a rapid degradation of the ARSNR[dB] as � is
increased. This degradation is highlighted in the typical case of Fig. 9.18b for � 2
f0:03; 0:2g.
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Fig. 9.17 Multiclass CS of ECG signals: (a) ARSNR as a function of the perturbation density
� 2 Œ0; 0:05� (solid) and second-class RSNR upper bound (dashed); (b) Time displacement (left)
of the R (solid) and P,Q,S,T (dashed) peaks as evaluated by APD for � 2 Œ0; 0:05� with typical
recovered instances (right) for first-class (top) and second-class (bottom) users

In order to assess the effect of our encryption method with an automatic infor-
mation extraction algorithm, we have applied Tesseract [54], an optical character
recognition algorithm (OCR), to the images reconstructed by a second-class user.
The text portion in the recovered image data is preprocessed to enhance their
quality prior to OCR: the images are first rotated, then we apply standard median
filtering to reduce the high-pass noise components. Finally, contrast adjustment
and thresholding yield the two-level image which is processed by Tesseract. To
assess the attained OCR quality we have measured the average number of correctly
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Fig. 9.18 Multiclass CS of
images: (a) ARSNR as a
function of the perturbation
density � 2 Œ0; 0:4� (solid)
and second-class RSNR upper
bound (dashed); (b) Average
CRC by OCR for � 2 Œ0; 0:4�
(bottom) and typical
recovered instances for
� 2 f0; 0:03; 0:2g (top)
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recovered characters (CRC) from the decoded text image. In Fig. 9.18b the average
CRC is reported as a function of �: as the perturbation density increases the OCR
fails to recognize an increasing number of ordered characters, i.e., a second-class
user progressively fails to extract text content from the decoded image.

9.4.5 Resilience Against Known-Plaintext Attacks

We now focus on how robust is our two- to multi-class encryption scheme to
malicious attempts at the recovery of the exact encoding matrix by a partially
informed user.
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9.4.5.1 Preliminary Considerations

Still in computational security terms, since missing information on the encoding
matrices might be treated as a perturbation matrix, we attempt an additional
computational attack specifically targeted to a multiclass scheme and attempting
to nullify its effect. This form of attack is carried out by a second-class user that
attempts to upgrade its knowledge by using signal recovery algorithms specifically
accounting for encoding matrix uncertainty [47, 60]. As expected from the random
nature of the SSF perturbation introduced in Sect. 9.4.1.4 the results will, however,
show no practical improvement w.r.t. the bounds and performances illustrated in
Sect. 9.4.4.

Practical computational attacks are then exemplified by applying CS as an
encryption scheme to the same signal classes of Sect. 9.4.4, showing how the
extracted information on the true encoding matrix from a plaintext–ciphertext
pair leads to no significant signal recovery quality increase. This theoretical and
empirical evidence clarifies that, although not perfectly secure, both standard CS
and multiclass encryption based on it feature a noteworthy level of security against
KPAs, thus increasing its appeal as a zero-cost encryption method for resource-
limited sensor nodes.

Contextualizing the above findings to multiclass encryption by CS, we have
shown how a malicious eavesdropper attempting to break the encoding by means
of a straightforward statistical analysis of y is effectively presented with Gaussian-
distributed ciphertexts when the encoding matrix is drawn from an i.i.d. sub-
Gaussian random matrix ensemble.

In addition, one could consider the threat of a malicious second-class user
attempting to upgrade itself to the knowledge of the true encoding matrix A.1/ given
A.0/. Letting A.0/;A.1/ be drawn from RAE.I/ encoding matrix ensembles, in the
worst-case we may also assume that this attacker has access to 	 D �Ax, and is
able to compute f .	/ for a statistical cryptanalysis. Clearly, this will depend on the
density of �A D A.1/ � A.0/, that is a sparse sign-flipping drawn from a random
matrix ensemble with i.i.d. entries. Informally and intuitively, this will result in
f .	jx/�!dist: N.0m;� 	/ where � 	 D �2�AExIm where �2�A D 4� and Ex D kxk22,
i.e., the information that leaks to a malicious second-class user is the sparse sign-
flipping density � as well as the energy of the plaintext. A more thorough verification
can be derived by application of the procedures detailed in this section. Hence, the
ciphertext is statistically indistinguishable from the one that could be produced by
encoding the same plaintext with A.0/ instead of A.1/, and such second-class users
will be unable to exploit the statistical properties of y to upgrade their encoding
matrix to A.1/.

Thus, we may safely conclude that straightforward statistical attacks to multiclass
encryption based on CS only extract very limited information from the ciphertext;
the more threatening case of known-plaintext attacks is expanded in the next section.
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9.4.5.2 Class-Upgrade Known-Plaintext Attack

A KPA may also be attempted by Steve, a malicious second-class receiver aiming
to improve its signal recovery performances with the intent of reaching the same
quality of a first-class receiver. In this KPA, a partially correct encoding matrix A.0/

that differs from A.1/ by c entries is also known in addition to x and y. With this
prior, Steve may compute 	 D y� A.0/x D �Ax where �A D A.1/ � A.0/ here is an
unknown matrix with ternary-valued entries, i.e., �A 2 f�2; 0; 2gm�n. Hence, Steve
performs a KPA by searching for a set of ternary symbols f�Aj;kgn�1kD0 such that each
entry of 	,

�j D
n�1X

kD0
�Aj;kxk (9.45)

of which it is known a priori that �Aj;k ¤ 0 only in c cases. Moreover, to ease the
solution of this problem and make it row-wise separable, we assume that Steve
gains access to an even more accurate information, i.e., the exact number cj of
nonzero entries for each row�Aj or equivalently the number of sparse sign-flippings

mapping A.0/j;� into the corresponding9 A.1/j;�. By assuming this, we may prove the

equivalence between Steve’s KPA to each row of A.1/ and a slightly adjusted SSP.

Problem 9.2 (� -Cardinality Subset-Sum Problem) Let fukgn�1kD0; uk2f1; : : : ;Qg,
� 2 f1; : : : ; ng and � 2 ZC. We define � -cardinality subset-sum problem
(� -SSP) the optimization problem of assigning n binary variables bk 2 f0; 1g,
k D 0; : : : ; n � 1 so that

� D
n�1X

kD0
bkuk (9.46)

� D
n�1X

kD0
bk (9.47)

We define solution any fbkgn�1kD0 verifying (9.46) and (9.47).
Again, a mapping of Steve’s KPA to Problem 9.2 is easily obtained.

Theorem 9.10 (Steve’s Known-Plaintext Attack) The KPA to A.1/j;� given x,

y, A.0/, and cj is equivalent to a � -SSP where � D cj, Q D 2L, uk D �A.0/j;k xk C L,
the variables

bk D 1

2

0

@1 �
OA.1/j;k

A.0/j;k

1

A

9Clearly, the total number of nonzero entries in �A is c DPm�1
jD0 cj.
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and the sum

� D 1

2
�j C L cj

This SSP has a true solution fNbkgn�1kD0 that is mapped to the row A.1/j;�, and other
candidate solutions that verify (9.46) and (9.47) but correspond to matrix rows
. OA/j ¤ A.1/j;�.

We also define .x; y;A.0/j;� ;A
.1/

j;�/ a problem instance; Steve can therefore use the

result of (9.46) to obtain the perturbation entries �Aj;k D �2A.0/j;k bk. The derivation
of Theorem 9.10 is obtained as follows.

Proof (Theorem 9.10) In this case the attacker knows .A.0/; x; y/, and is able to
calculate 	 D y � A.0/x, i.e., �j D yj �

Pn�1
kD0 A.0/j;k xk D Pn�1

kD0 �Aj;kxk where all
the entries �Aj;k are unknown. For the j-th row, the attacker also knows there are cj

non-zero elements in �Aj;k D �2A.0/j;k bk with bk 2 f0; 1g binary variables that are
1 if the flipping occurred and 0 otherwise. Note that from the above information
cj D Pn�1

kD0 bk. With this we define a set of even weights Dk D �2A.0/j;k xk, i.e.,
Dk 2 f�2L; : : : ;�2; 0; 2; : : : ; 2Lg so the KPA is defined by satisfying the equalities

�j D
n�1X

kD0
Dkbk (9.48)

cj D
n�1X

kD0
bk (9.49)

To obtain a standard � -SSP with positive weights and � D cj we sum 2L to all Dk

so (9.48) becomes �jC2L
Pn�1

kD0 bk DPn�1
kD0.DkC2L/bk. Multiplying both sides by

1
2

and using (9.49) yields � D 1
2
�j C Lcj DPn�1

kD0 ukbk where uk D �A.0/j;k xk C L 2
f0; : : : ;Qg. Q D 2L. Finally, we note the exclusion of uk D 0 to facilitate the attack.

In the following, we will denote with r D cj

n the row-density of perturbations.
Since in [51] the � -cardinality SSP case is obtained as an extension of the results on
the unconstrained SSP, we obtain the following theorem.

Theorem 9.11 (Expected Number of Solutions to Steve’s Known-Plaintext
Attack) For large n, the expected number of candidate solutions of the KPA in
Theorem 9.10, in which (i) all the coefficients fukgn�1kD0 are i.i.d. uniformly drawn
from f1; : : : ; 2Lg, and (ii) the true solution fNbkgn�1kD0 is drawn with equiprobable
independent binary values, is

SSteve.n;L; r/ '
r
3

2

r�1�nr .1 � r/�1�n.1�r/

2�nL
(9.50)
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The proof of Theorem 9.11 is reported below. The number of candidate solutions
found by Steve’s KPA is by many orders of magnitude smaller than Eve’s KPA,
the reason being that Steve requires much less information to achieve complete
knowledge of the true encoding A.1/. In order to provide numerical evidence, we
simulate Steve’s KPA on a set of 50 randomly generated problem instances with
row-density of perturbations r D ˚

5
n ;

10
n ;

15
n

�
for n D f20; : : : ; 32g and L D 5 � 103;

the problem is still formulated as binary programming in CPLEX, albeit with the
additional equality constraint (9.49); the full solution pool can still be populated for
the given dimensions.10

The empirical average number of solutions OSSteve.n;L; r/ reported in Fig. 9.19
is well predicted by the theoretical value in (9.50); note that this approximation is
increasingly accurate for large n. Moreover, by resuming the previous example our
n D 64 � 64 pixel gray-scale image quantized at bx D 8 bit and encoded with
two-class CS using �A with r D 0:03 will have on-average 6:25 � 10234 candidate
solutions of indistinguishable quality.

The previous analysis hinges on a counting argument in a general setting, without
any other prior assumption on the structure of A.1/ or �A. This class-upgrade KPA
has been examined by assuming very accurate prior information on the number of
perturbations per row, thus implying a best-case situation for the attacker. As we will
show in the experiments of Sect. 9.4.6, these attacks yield no advantage in terms of
recovery performances to unintended receivers.

Let us now prove Theorem 9.11; the proof draws again from the work of
Sasamoto et al. [51] and is therefore similar in principle to that of Theorem 9.5,
i.e., it is merely an interface to existing results on the � -SSP. It is worth noting that
the proof draws on Definition 9.3.

Proof (Theorem 9.11) Assume Fp.a; b/ and Gp.a; b/ as in (9.11), (9.12). Define
the normalized constraint r D cj

n and two quantities a.�; r/ and b.�; r/ that are the
solutions of the following system of equalities

r D F0.a; b/

� D F1.a; b/

that are, respectively, equivalent to [51, (5.3-4)]. We also define

G.�; r/ D
�

G0.a .�; r/ ; b .�; r// G1.a .�; r/ ; b .�; r/
G1.a .�; r/ ; b .�; r/ G2.a .�; r/ ; b .�; r//

�

10In the first case, full enumeration is still feasible in an acceptable computation time up to about
n D 48.
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Fig. 9.19 Empirical average
number of solutions for
Steve’s KPA compared to the
theoretical approximation
of (9.50) for L D 5 � 103 with
row-density of perturbations
r D 5
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With this, [51, (5.8-9)] prove that the number of solutions of a � -SSP with integer
coefficients fukgn�1kD0 uniformly distributed in f1; : : : ;Qg;Q D 2L; � D cj is

SSteve.�; n;L; r/ D en.a.�;r/��b.�;r/r/

4�nL
p

det .G.�; r//
en
R 1
0 logŒ1Ceb.�;r/�a.�;r/� � d�

(9.51)

Using the same arguments as in the proof of Theorem 9.5, we average on � and
obtain an expression identical to (9.13) for the computation of E� ŒSSteve.�; n;L; r/�.
Since SSteve.�; n;L; r/ has once again an approximately Gaussian profile in � with a
maximum in � D r

2
we approximate the expectation in � ,

E� ŒSSteve.�; n;L; r/� ' SSteve

	 r

2
; n;L; r


 1p
2

D
r
3

2

r�1�n� .1 � r/�1�n.1�r/

2�nL
(9.52)

by using the fact that a
�

r
2
; r
� D 0 and b

�
r
2
; r
� D log

�
r
1�r

�
.

9.4.6 Practical Attack Examples

In this section we exemplify KPAs in a common framework which entails the
following procedure. When Eve is performing a KPA as in Sect. 9.3.1, it knows
a single plaintext–ciphertext pair .x0; y0/ and attacks a matrix A.1/ row-by-row; we
here infer each row A.1/j;� by generating random instances of a RAE.I/ encoding

matrix until a chosen number of candidate rows OA.1/j;� that verify y0j D OA
.1/

j;� x0 has been

found. Thus, the inferred OA.1/ is actually composed by collecting the outputs of m
random searches. This approach is preferable to solving Eve’s KPA by means of
linear programming as in Sect. 9.3.1 for two reasons.

Firstly, it is known from Theorem 9.5 that the expected number of solutions is
very large and thus the probability of success of a random search is far from being
negligible, while its computational cost is relatively low.

Secondly, the theoretical conditions that guarantee when x0 can be retrieved from
y0 despite the dimensionality reduction are applicable when A.1/ is comprised of
sensing sequences with i.i.d. antipodal symbols. On the contrary, the chosen integer
programming solver explores solutions in a systematic way and, while crucial in
the enumeration of all candidate solutions as in Sect. 9.3.1 (with computational cost
growing exponentially in n), it tends to generate them in an ordered fashion. When
only some of these solutions are considered (as necessary when n is large and the
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number of solutions scales according to our results) this results in sets of OA.1/j;� that

could be very distant from A.1/j;� .

To test the obtained guess OA.1/, Eve may then pretend to ignore x0 and recover

its approximation Ox0 from .y0; OA.1// by using a high-performance signal recovery
algorithm such as GAMP [50] optimally tuned as in Sect. 9.4.6.3. This sets11 the

RSNROx0
;Ox level which is adopted as a quality indicator for OA.1/. Then, Eve attempts

signal recovery from a second ciphertext y00 D A.1/x00 where the plaintext x00 is
unknown, i.e., as if somehow A.1/ was reused twice. In this case, and if Eve’s KPA

was successful in retrieving OA.1/, the recovery Ox00 obtained by means of GAMP
would yield a new RSNROx00

;x00 � RSNROx0
;x0 . To remark what is shown below, we

evaluate how the .RSNROx0
;x0 ;RSNROx00

;x00/ pairs are distributed w.r.t. fixed plaintexts

x0; x00 encoded with the same A.1/ and candidate solutions OA.1/ are considered in
the decoding; if Eve is successful, an RSNROx00

;x00 compatible with RSNROx0
;x0 must be

observed.
The examples of class-upgrade KPAs follow the same procedure as those

performed by Eve, with the exception that Steve generates the rows of OA.1/ by

random search of the index set that maps the known A.1/j;� to OA.1/j;� that verifies

y0j D OA
.1/

j;� x0. Coherently with the theoretical setting of Sect. 9.4.5.2, we also assume
that Steve knows that exactly cj entries are flipped in each row. Repeating this search

for m rows provides the candidate solutions OA.1/, of which we will study how the
corresponding .RSNROx0

;x0 ;RSNROx00
;x00/ pairs are distributed as mentioned above.

9.4.6.1 ECG Signals

We now consider ECG signals in the same conditions of Sect. 9.4.5, focusing on two
windows x0; x00 of n D 256 samples quantized with bx D 12 bit; these correspond
to the measurement vectors y0; y00 of dimensionality m D 90. Signal recovery is
allowed by the sparsity level of the windowed signal when decomposed with D
chosen as a Symmlet-6 orthonormal DWT [37].

We generate 2000 candidate solutions for both Eve and Steve’s KPA that
correspond to the recovery performances reported in Fig. 9.20. While both malicious
users are able to reconstruct the known plaintext x0 with a relatively high12 average
RSNROx0

;x0 � 25 dB, on the second window of samples x00 the eavesdropper
achieves an average RSNROx00

;x00 � �0:20 dB (Fig. 9.20a), whereas the second-class
decoder achieves an average RSNROx00

;x00 � 12:15 dB (Fig. 9.20b) when the two-class

encryption scheme is set to a sign-flipping density � D c
mn D 0:03 between A.1/ and

11Hereafter, we specify the RSNROu;u between a signal u and its approximation Ou.
12Their KPAs indeed yield solutions to y0 D OA.1/x0.
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Fig. 9.20 Effectiveness of (a) Eve and (b) Steve’s KPA in recovering a hidden ECG. Each point
is a guess of the encoding matrix A.1/ whose quality is assessed by decoding the ciphertext
y0 corresponding to the known plaintext x0 (RSNR

Ox0
;x0 ) and by decoding a new ciphertext y00

(RSNR
Ox00
;x00 ). The Euclidean distance from the average .RSNR

Ox0
;x0 ;RSNROx00

;x00 / is highlighted by
color gradient

A.1/. In this case, the nominal second-class RSNR D 11:08 dB when reconstructing
x00 from y00 with A.1/, while the correlation coefficient between RSNROx0

;x0 and
RSNROx00

;x00 is 0:0140; these figures clearly highlight the ineffectiveness of KPAs

at inferring A.1/ in this case. This is also confirmed by the perceptual quality of Ox00
corresponding to the maximum RSNROx00

;x00 highlighted in Fig. 9.20.
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9.4.6.2 Sensitive Text in Images

In this example we consider the same test images used in Sect. 9.4.5, i.e., 640 �
512 pixel gray-scale images of people holding a printed identification text concealed
by means of two-class encryption. To reduce the computational burden of KPAs
we assume a block size of 64 � 64 pixel, bx D 8 bit per pixel, and encode the
resulting n D 4096 pixels into m D 2048 measurements. Signal recovery is
performed by assuming the blocks have a sparse representation on a bidimensional
Daubechies-4 orthonormal DWT [37]. Two-class encryption is applied on the blocks
containing printed text: we choose two adjacent blocks x0; x00 containing some letters
and encoded with the same A.1/; in this case, the second-class decoder nominally
achieves RSNR D 12:57 dB without attempting class-upgrade due to the flipping
of c D 251658 entries (corresponding to a perturbation density � D 0:03) in the
encoding matrix.

In order to test Eve and Steve’s KPA we randomly generate 2000 solutions for the
j-th row of the encoding given x0; y0: it is worth noting that while in the previous case
the signal dimensionality is sufficiently small to produce a solution set in less than
two minutes, in this case generating 2000 different solutions for a single row may
take up to several hours for particularly hard instances. By using these candidate
solutions to find Ox0; Ox00 we obtain the results of Fig. 9.21: while both attackers attain
an average RSNROx0

;x0 � 33 dB on x0, Eve is only capable of reconstructing x00 with
an average RSNROx00

;x00 � 0:14 dB where Steve reaches an average RSNROx00
;x00 �

12:80 dB with � D 0:03.
Note also that, although lucky guesses exist with RSNROx00

;x00 > 12:57 dB, it is
impossible to identify them by looking at RSNROx0

;x0 since the correlation coefficient
between RSNROx0

;x0 and RSNROx00
;x00 is �0:0041. Thus, Steve cannot rely on observing

the RSNROx0
;x0 to choose the best performing solution OA.1/, so both Eve and Steve’s

KPAs are inconclusive. As a further perceptual evidence of this, the best recoveries
according to the RSNROx00

;x00 are reported in Fig. 9.21.

9.4.6.3 Signal Recovery-Based Class-Upgrade Attacks

Class-upgrade attacks to two-class encryption by CS are closely related to a recovery
problem that has attracted the attention of prior contributions, i.e., sparse signal
recovery under matrix uncertainty, as was partly introduced in Sect. 9.4.1. In this
case, we assume the perspective of Steve and let A.1/ D A.0/ C�A be the encoding
matrix, where A.0/ is known a priori and �A is an unknown random sparse sign-
flipping perturbation matrix. This qualifies as a class-upgrade known-ciphertext
attack, as Steve is given .y;A.0// and no other information—if x was also provided,
the best approach would still be the KPA in Theorem 9.10.

Steve’s information could be paired with a sparsity prior on x to attempt the
joint recovery of x and �A, eventually leading to a mere refinement of the estimate
Ox instead of an actual estimate of �A. Two main algorithms specifically address
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Fig. 9.21 Effectiveness of (a) Eve and (b) Steve’s KPA in recovering hidden image blocks. Each
point is a guess of the encoding matrix A.1/ whose quality is assessed by decoding the ciphertext
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this problem setup for a generic �A, namely Matrix-Uncertainty Generalized
Approximate Message Passing (MU-GAMP, [47]) and Sparsity-cognizant Total
Least Squares (S-TLS, [60]).

Although appealing in principle, this joint recovery approach can be anticipated
to fail for multiple reasons. First, this attack is intrinsically harder than Steve’s KPA
in that the true plaintext x here is unknown. Whatever �A is a candidate solution to
Steve’s KPA given x, it will also be possible solution of joint recovery with the same
x. Since we know from Sect. 9.4.5.2 that Steve’s KPA typically has a huge number of
indistinguishable and equally sparse candidate solutions, at least as many will verify
the joint recovery problem when the plaintext is unknown. Hence, this approach has
negligible odds of yielding more information on �A than Steve’s KPA.

Furthermore, note that joint recovery amounts to solving y D A.0/xC�Ax with
�A and x unknown, that is clearly a non-linear equality involving non-convex/non-
concave operators; in general, this is a hard problem that can only be solved in a
relaxed form (as, in fact, does S-TLS).

The aforementioned algorithms are indeed able to compensate matrix uncer-
tainties when �A depends on a low-dimensional, deterministic set of parameters.
However, such a model does not apply to two-class encryption by CS: even if �A
is c-sparse, it has no deterministic structure to leverage in the attack—to make it so,
one would need to know the exact set C0 of c index pairs at which the sign-flipping
randomly occurred, which by itself entails a combinatorial search.

In fact, �A is uniform in the sense of [47] since it is a realization of a random
matrix ensemble with i.i.d. entries having zero-mean and bounded variance. Hence,
we expect the accuracy of the estimate Ox with joint recovery (both using S-TLS
and MU-GAMP) to agree with the uniform matrix uncertainty case of [47], where
negligible improvement is shown w.r.t. the (standard, non-joint) recovery algorithm
Generalized Approximate Message Passing (GAMP, [50]). The advocated reason is
that the perturbation noise 	 D �Ax is asymptotically Gaussian for a given x [47,
Proposition 2.1]; thus, it is reasonable that a suitably tuned application of GAMP
attains near-optimal performances.

We now provide empirical evidence on the ineffectiveness of joint recovery as a
class-upgrade attack for finite n;m and sparsity �. As an example, we let n D 256,
m D 128, � D 20, and � D c

mn 2 Œ0:005; 0:1� and generate 100 random instances
of x D D� with x being �-sparse w.r.t. a randomly chosen orthonormal basis D.
For each �, we also generate 100 pairs of matrices .A.0/;A.1// related as (9.26) and
encode x by y D A.1/x.

Signal recovery is performed by MU-GAMP, S-TLS, and GAMP. To maximize
their performances, each of the algorithms is “genie”-tuned to reveal the exact value
of the required features of x. In particular, MU-GAMP and GAMP are provided with
an i.i.d. Bernoulli–Gaussian sparsity-enforcing signal model [50, 56] having the
exact mean, variance, and sparsity level of the instances �. As far as the perturbation
�A is concerned, MU-GAMP is given the PMF of its i.i.d. entries. On the other
hand, GAMP is initialized with the noise variance of 	 D �Ax, that is assumed
as additive white Gaussian noise. S-TLS is run in its locally optimal, polynomial-
time version [60, Section IV-B] and fine-tuned w.r.t. its regularization parameter as
� varies.
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Since the typically very low accuracy of the recovered �A is not as relevant to a
class-upgrade attack as improving the estimate of Ox, we here focus on measuring the
usual ARSNR, as reported in Fig. 9.22. The standard deviation from the average is
less than 1:71 dB in all the reported curves. The maximum ARSNR performance gap
between GAMP and MU-GAMP is 1:22 dB while S-TLS attains generally lower
performances for high values of �. These observed performances confirm what is
also found in [47], i.e., that GAMP, MU-GAMP, and S-TLS substantially attain the
same performances under uniform matrix uncertainty. As expected, class-upgrade
attacks based on joint recovery are ineffective even for finite n and m, since GAMP
under the same conditions is the reference case adopted in Sect. 9.4.5 for the design
of two-class encryption by CS.
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