LANGE'S HANDBOOK OF CHEMISTRY

James G. Speight, Ph.D.

CD&W Inc., Laramie, Wyoming

Sixteenth Edition

McGRAW-HILL

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

The McGraw·Hill Companies

Library of Congress Catalog Card Number 84-643191 ISSN 0748-4585

Copyright © 2005, 1999, 1992, 1985, 1979, 1973, 1967, 1961, 1956 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

Copyright renewed 1972 by Norbert Adolph Lange.

Copyright 1952, 1949, 1946, 1944, 1941, 1939, 1937, 1934 by McGraw-Hill, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 1 0 9 8 7 6 5 4

ISBN 0-07-143220-5

The sponsoring editor for this book was Kenneth P. McCombs and the production supervisor was Sherri Souffrance. It was set in Times Roman by International Typesetting and Composition. The art director for the cover was Anthony Landi.

Printed and bound by RR Donnelley.

This book is printed on acid-free paper.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

ABOUT THE EDITOR

James G. Speight, Ph.D., has more than 35 years' experience in fields related to the properties and processing of conventional and synthetic fuels. He has participated in, and led, significant research in defining the uses of chemistry with heavy oil and coal. The author of well over 400 professional papers, reports, and presentations detailing his research activities, he has taught more than 50 related courses. Dr. Speight is the author, editor, or compiler of a total of 25 books and bibliographies related to fossil fuel processing and environmental issues. He lives in Laramie, Wyoming.

PREFACE TO THE SIXTEENTH EDITION

This Sixteenth Edition of *Lange's Handbook of Chemistry* takes on a new format under a new editor. Nevertheless, the Handbook remains the one-volume source of factual information for chemists and chemical engineers, both professionals and students. The aim of the Handbook remains to provide sufficient data to satisfy the general needs of the user without recourse to other reference sources. The many tables of numerical data that have been compiled, as well as additional tables, will provide the user with a valuable time-saver.

The new format involves division of the Handbook into four major sections, instead of the 11 sections that were part of previous editions. Section 1, Inorganic Chemistry, contains a group of tables relating to the physical properties of the elements (including recently discovered elements) and several thousand compounds. Likewise, Section 2, Organic Chemistry, contains a group of tables relating to the physical properties of the elements and several thousand compounds. Following these two sections, Section 3, Spectroscopy, presents the user with the fundamentals of the various spectroscopic techniques. This section also contains tables that are relevant to the spectroscopic properties of elements, inorganic compounds, and organic compounds. Section 4, General Information and Conversion Tables, contains all of the general information and conversion tables that were previously found in different sections of the Handbook.

In Sections 1 and 2, the data for each compound include (where available) name, structural formula, formula weight, density, refractive index, melting point, boiling point, flash point, dielectric constant, dipole moment, solubility (if known) in water and relevant organic solvents, thermal conductivity, and electrical conductivity. The presentation of alternative names, as well as trivial names of long-standing use, has been retained. Section 2 also contains expanded information relating to the names and properties of condensed polynuclear aromatic compounds.

Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic and Inorganic Compounds, and Heats of Melting, Vaporization, and Sublimation and Specific Heat at Various Temperatures, are also presented in Sections 1 and 2 for organic and inorganic compounds, as well as information on the critical properties (critical temperature, critical pressure, and critical volume).

As in the previous edition, Section 3, Spectroscopy, retains subsections on infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, mass spectrometry, and X-ray spectrometry. The section on Practical Laboratory Information (now Section 4), has been retained as it offers valuable information and procedures for laboratory methods.

As stated in the prefaces of earlier editions, every effort has been made to select the most useful and reliable information and to record it with accuracy. It is hoped that users of this Handbook will continue to offer suggestions of material that might be included in, or even excluded from, future editions and call attention to errors. These communications should be directed to the editor through the publisher, McGraw-Hill.

JAMES G. SPEIGHT, PH.D. Laramie, Wyoming

PREFACE TO THE FIFTEENTH EDITION

This new edition, the fifth under the aegis of the present editor, remains the one-volume source of factual information for chemists, both professionals and students—the first place in which to "look it up" on the spot. The aim is to provide sufficient data to satisfy all one's general needs without recourse to other reference sources. A user will find this volume of value as a time-saver because of the many tables of numerical data that have been especially compiled.

Descriptive properties for a basic group of approximately 4300 organic compounds are compiled in Section 1, an increase of 300 entries. All entries are listed alphabetically according to the senior prefix of the name. The data for each organic compound include (where available) name, structural formula, formula weight, Beilstein reference (or if un- available, the entry to the *Merck Index*, 12th ed.), density, refractive index, melting point, boiling point, flash point, and solubility (citing numerical values if known) in water and various common organic solvents. Structural formulas either too complex or too ambiguous to be rendered as line formulas are grouped at the bottom of each facing double page on which the entries appear. Alternative names, as well as trivial names of long-standing usage, are listed in their respective alphabetical order at the bottom of each double page in the regular alphabetical sequence. Another feature that assists the user in locating a desired entry is the empirical formula index.

Section 2 on General Information, Conversion Tables, and Mathematics has had the table on general conversion factors thoroughly reworked. Similarly the material on Statistics in Chemical Analysis has had its contents more than doubled.

Descriptive properties for a basic group of inorganic compounds are compiled in Section 3, which has undergone a small increase in the number of entries. Many entries under the column "Solubility" supply the reader with precise quantities dissolved in a stated solvent and at a given temperature. Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under "Ionization Energy of Molecular and Radical Species" now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on "Electron Affinities of the Elements, Molecules, and Radicals" now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sections.

Revised material for Section 5 includes the material on surface tension, viscosity, dielectric constant, and dipole moment for organic compounds. In order to include more data at several temperatures, the material has been divided into two separate tables. Material on surface tension and viscosity constitute the first table with 715 entries; included is the temperature range of the liquid phase. Material on dielectric constant and dipole moment constitute another table of 1220 entries. The additional data at two or more temperatures permit interpolation for intermediate temperatures and also permit limited extrapolation of the data. The Properties of Combustible Mixtures in Air has been revised and expanded to include over 450 compounds. Flash points are to be found in Section 1. Completely revised are the tables on Thermal Conductivity for gases, liquids, and solids. Van der Waals' constants for gases have been brought up to date and expanded to over 500 substances.

Section 6, which includes Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic and Inorganic Compounds, and Heats of Melting, Vaporization, and Sublimation and Specific Heat at Various Temperatures for organic and inorganic compounds, has expanded by

11 pages, but the major additions have involved data in columns where it previously was absent. More material has also been included for critical temperature, critical pressure, and critical volume.

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31.

In Section 8, the material on solubility constants has been doubled to 550 entries. Sections on proton transfer reactions, including some at various temperatures, formation constants of metal complexes with organic and inorganic ligands, buffer solutions of all types, reference electrodes, indicators, and electrode potentials are retained with some revisions. The material on conductance has been revised and expanded, particularly in the table on limiting equivalent ionic conductance.

Everything in Sections 9 and 10 on physiochemical relationships, and on polymers, rubbers, fats, oils, and waxes, respectively, has been retained.

Section 11, Practical Laboratory Information, has undergone significant changes and expansion. Entries in the table on "Molecular Elevation of the Boiling Point" have been increased. McReynolds' constants for stationary phases in gas chromatography have been reorganized and expanded. The guide to ion-exchange resins and discussion is new and embraces all types of column packing and membrane materials. Gravimetric factors have been altered to reflect the changes in atomic weights for several elements. Newly added are tables listing elements precipitated by general analytical reagents, and giving equations for the redox determination of the elements with their equivalent weights. Discussion on the topics of precipitation and complexometric titration include primary standards and indicators for each analytical technique. A new topic of masking and demasking agents includes discussion and tables of masking agents for various elements, for anions and neutral molecules, and common demasking agents. A table has been added listing the common amino acids with their pI and pK_a values and their 3-letter and I-letter abbreviations. Lastly a 9-page table lists the threshold limit value (TL V) for gases and vapors.

As stated in earlier prefaces, every effort has been made to select the most useful and reliable information and to record it with accuracy. However, the editor's 50 years of involvement with textbooks and handbooks bring a realization of the opportunities for gremlins to exert their inevitable mischief. It is hoped that users of this handbook will continue to offer suggestions of material that might be included in, or even excluded from, future editions and call attention to errors. These communications should be directed to the editor. The street address will change early in 1999, as will the telephone number.

JOHN A. DEAN Knoxville, Tennessee

PREFACE TO THE FIRST EDITION

This book is the result of a number of years' experience in the compiling and editing of data useful to chemists. In it an effort has been made to select material to meet the needs of chemists who cannot command the unlimited time available to the research specialist, or who lack the facilities of a large technical library which so often is not conveniently located at many manufacturing centers. If the information contained herein serves this purpose, the compiler will feel that he has accomplished a worthy task. Even the worker with the facilities of a comprehensive library may find this volume of value as a time-saver because of the many tables of numerical data which have been especially computed for this purpose.

Every effort has been made to select the most reliable information and to record it with accuracy. Many years of occupation with this type of work bring a realization of the opportunities for the occurrence of errors, and while every endeavor has been made to prevent them, yet it would be remarkable if the attempts towards this end had always been successful. In this connection it is desired to express appreciation to those who in the past have called attention to errors, and it will be appreciated if this be done again with the present compilation for the publishers have given their assurance that no expense will be spared in making the necessary changes in subsequent printings.

It has been aimed to produce a compilation complete within the limits set by the economy of available space. One difficulty always at hand to the compiler of such a book is that he must decide what data are to be excluded in order to keep the volume from becoming unwieldy because of its size. He can hardly be expected to have an expert's knowledge of all branches of the science nor the intuition necessary to decide in all cases which particular value to record, especially when many differing values are given in the literature for the same constant. If the expert in a particular field will judge the usefulness of this book by the data which it supplies to him from fields other than his specialty and not by the lack of highly specialized information in which only he and his co-workers are interested (and with which he is familiar and for which he would never have occasion to consult this compilation), then an estimate of its value to him will be apparent. However, if such specialists will call attention to missing data with which they are familiar and which they believe others less specialized will also need, then works of this type can be improved in succeeding editions.

Many of the gaps in this volume are caused by the lack of such information in the literature. It is hoped that to one of the most important classes of workers in chemistry, namely the teachers, the book will be of value not only as an aid in answering the most varied questions with which they are confronted by interested students, but also as an inspiration through what it suggests by the gaps and inconsistencies, challenging as they do the incentive to engage in the creative and experimental work necessary to supply the missing information.

While the principal value of the book is for the professional chemist or student of chemistry, it should also be of value to many people not especially educated as chemists. Workers in the natural sciences—physicists, mineralogists, biologists, pharmacists, engineers, patent attorneys, and librarians—are often called upon to solve problems dealing with the properties of chemical products or materials of construction. For such needs this compilation supplies helpful information and will serve not only as an economical substitute for the costly accumulation of a large library of monographs on specialized subjects, but also as a means of conserving the time required to search for

information so widely scattered throughout the literature. For this reason especial care has been taken in compiling a comprehensive index and in furnishing cross references with many of the tables.

It is hoped that this book will be of the same usefulness to the worker in science as is the dictionary to the worker in literature, and that its resting place will be on the desk rather than on the bookshelf.

> N. A. LANGE Cleveland, Ohio May 2, 1934

CONTENTS

Preface to the Sixteenth Edition Preface to the Fifteenth Edition Preface to the First Edition xi	vii ix	
Section 1. Inorganic Chemistry	1.	.1
Section 2. Organic Chemistry	2.	.1
Section 3. Spectroscopy	3.	.1
Section 4. General Information a	and Conversion Tables 4.	.1

Index I.1

SECTION 1 INORGANIC CHEMISTRY

SECTION 1 INORGANIC CHEMISTRY

1.1	NOMENCL	ATURE OF INORGANIC COMPOUNDS	1.3
1.1.1	Writing Fo	ormulas	1.4
1.1.2	Naming C	Compounds	1.5
1.1.3	Cations		1.8
1.1.4	Anions		1.8
1.1.5	Acids		1.9
	Table 1.1	Trivial Names for Acids	1.10
1.1.6	Salts and	Functional Derivatives of Acids	1.11
1.1.7	Coordinat	ion Compounds	1.11
1.1.8	Addition	Compounds	1.13
1.1.9	Synonym	s and Irade Names	1.13
4.0	lable 1.2	Synonyms and Mineral Names	1.13
1.2	PHYSICAL	ROPERTIES OF INORGANIC COMPOUNDS	1.10
1.2.1	Density		1.10
1.2.2	Roiling P	oint (Freezing lemperature)	1.10
1.2.3	Bolling PC	ant Andex	1.10
1.2.4		Physical Constants of Increanic Compounds	1.17
	Table 1.3	Color Crystal Symmetry and Refractive Index of Inorganic Compounds	1.10
	Table 1.5	Befractive Index of Minerals	1.04
	Table 1.6	Properties of Molten Salts	1.00
	Table 1.7	Triple Points of Various Materials	1 90
	Table 1.8	Density of Mercury and Water	1.91
	Table 1.9	Specific Gravity of Air at Various Temperatures	1.92
	Table 1.10	Boiling Points of Water	1.93
	Table 1.11	Boiling Points of Water	1.94
	Table 1.12	Refractive Index, Viscosity, Dielectric Constant, and Surface Tension	
		of Water at Various Temperatures	1.95
	Table 1.13	Compressibility of Water	1.95
	Table 1.14	Flammability Limits of Inorganic Compounds in Air	1.96
1.3	THE ELEME	INTS	1.96
	Table 1.15	Subdivision of Main Energy Levels	1.96
	Table 1.16	Chemical Symbols, Atomic Numbers, and Electron Arrangements	
		of the Elements	1.97
	Table 1.17	Atomic Numbers, Periods, and Groups of the	
		Elements (The Periodic Table)	1.121
	Table 1.18	Atomic Weights of the Elements	1.122
	Table 1.19	Physical Properties of the Elements	1.124
	Table 1.20	Conductivity and Resistivity of the Elements	1.128
	Table 1.21	Work Functions of the Elements	1.132
	Table 1.22	Relative Abundances of Naturally Occurring Isotopes	1.132
	Table 1.23	Radioactivity of the Elements (Neptunium Series)	1.135
		nauloactivity of the Elements (Inofium Series)	1.130
	Table 1.23	Radioactivity of the Elements (Actilituti Series)	1.13/
14		I FNFRGV	1 1 1 2 2
1.7	Table 1 27	Ionization Energy of the Elements	1 138
	Table 1 28	Ionization Energy of Molecular and Badical Species	1 141
	10010 1.20		

1.5	ELECTRONE	GATIVITY	1.145
	Table 1.29	Electronegativity Values of the Elements	1.145
1.6	ELECTRON	AFFINITY	1.146
	Table 1.30	Electron Affinities of Elements, Molecules, and Radicals	1.146
1.7	BOND LENG	STHS AND STRENGTHS	1.150
1.7.1	Atom Radi	us	1.151
1.7.2	Ionic Radii		1.151
1.7.3	Covalent R	adii	1.151
	Table 1.31	Atom Radii and Effective Ionic Radii of Elements	1.151
	Table 1.32	Approximate Effective Ionic Radii in Aqueous Solutions at 25°C	1.157
	Table 1.33	Covalent Radii for Atoms	1.158
	Table 1.34	Octahedral Covalent Radii for CN = 6	1.158
	Table 1.35	Bond Lengths between Elements	1.159
	Table 1.36	Bond Dissociation Energies	1.160
1.8	DIPOLE MO	MENTS	1.171
	Table 1.37	Bond Dipole Moments	1.171
	Table 1.38	Group Dipole Moments	1.172
1.8.1	Dielectric (Constant	1.172
	Table 1.39	Dipole Moments and Dielectric Constants	1.173
1.9	MOLECULA	R GEOMETRY	1.174
	Table 1.40	Spatial Orientation of Common Hybrid Bonds	1.175
	Table 1.41	Crystal Lattice Types	1.176
	Table 1.42	Crystal Structure	1.177
1.10	NUCLIDES	•	1.177
	Table 1.43	Table of Nuclides	1.177
1.11	VAPOR PRE	ESSURE	1.199
1.11.	1 Vapor Pre	essure Equations	1.199
	Table 1.44	Vapor Pressures of Selected Elements at Different Temperatures	1.201
	Table 1.45	Vapor Pressures of Inorganic Compounds up to 1 Atmosphere	1.203
	Table 1.46	Vapor Pressures of Various Inorganic Compounds	1.212
	Table 1.47	Vapor Pressure of Mercury	1.220
	Table 1.48	Vapor Pressure of Ice in Millimeters of Mercury	1.222
	Table 1.49	Vapor Pressure of Liquid Ammonia, NH ₃	1.223
	Table 1.50	Vapor Pressure of Water	1.224
	Table 1.51	Vapor Pressure of Deuterium Oxide	1.225
1.12	VISCOSITY	AND SURFACE TENSION	1.226
	Table 1.52	Viscosity and Surface Tension of Inorganic Substances	1.226
1.13	THERMAL	CONDUCTIVITY	1.230
	Table 1.53	Thermal Conductivity of the Elements	1.231
	Table 1.54	Thermal Conductivity of Various Solids	1.232
1.14	CRITICAL P	PROPERTIES	1.233
1.14	1 Critical Te	emperature	1.233
1.14	.2 Critical P	ressure	1.233
1.14	.3 Critical Vo	olume	1.234
1.14	4 Critical C	ompressibility Factor	1.234
	Table 1.55	Critical Properties	1.234
1.15	THERMOD	YNAMIC FUNCTIONS (CHANGE OF STATE)	1.237
	Table 1.56	Enthalpies and Gibbs Energies of Formation, Entropies,	,
		and Heat Capacities of the Elements and Inorganic Compounds	1.237
	Table 1.57	Heats of Fusion, Vaporization, and Sublimation and Specific Heat	
		at Various Temperatures of the Elements	
		and Inorganic Compounds	1,280
1 16	ΔΟΤΙΛΙΤΑ	COFFFICIENTS	1 299
	Table 1 58	Individual Activity Coefficients of Ions in Water at 25°C	1 300
	Table 1.50	Constants of the Debye-Hückel Equation from 0 to 100°C	1 300
	Table 1 60	Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25°C	1 201
	10016 1.00	maining a line Activity coefficients at higher folic Strengths at 25 C	1.301

1.17	BUFFER SC	DLUTIONS	1.301
1.17.1	Standards	s of pH Measurement of Blood and Biological Media	1.301
	Table 1.61	National Bureau of Standards (U.S.) Reference pH Buffer Solutions	1.303
	Table 1.62	Compositions of Standard pH Buffer Solutions	
		[National Bureau of Standards (U.S.)]	1.304
	Table 1.63	Composition and pH Values of Buffer Solutions 8.107	1.304
	Table 1.64	Standard Reference Values pH* for the Measurement of Acidity	
		in 50 Weight Percent Methanol-Water	1.306
	Table 1.65	pH Values for Buffer Solutions in Alcohol-Water Solvents at 25°C	1.307
1.17.2	Buffer Sol	utions Other than Standards	1.307
	Table 1.66	pH Values of Biological and Other Buffers for Control Purposes	1.308
1.18	SOLUBILIT	Y AND EQUILIBRIUM CONSTANTS	1.310
	Table 1.67	Solubility of Gases in Water	1.311
	Table 1.68	Solubility of Inorganic Compounds and Metal Salts of Organic Acids	
		in Water at Various Temperatures	1.316
	Table 1.69	Dissociation Constants of Inorganic Acids	1.330
	Table 1.70	Ionic Product Constant of Water	1.331
	Table 1.71	Solubility Product Constants	1.331
	Table 1.72	Stability Constants of Complex lons	1.343
	Table 1.73	Saturated Solutions	1.343
1.19	PROTON-TI	RANSFER REACTIONS	1.350
1.19.1	Calculatio	on of the Approximate Value of Solutions	1.350
1.19.2		on of the Concentrations of Species Present at a Given pH	1.351
4 00	lable 1./4	Proton Iransfer Reactions of Inorganic Materials in Water at 25°C	1.352
1.20	FORMATIO		1.357
	Table 1.75	Cumulative Formation Constants for Wetal Complexes with	4 050
	Table 1 76	Inorganic Ligands	1.358
	Table 1.76	cumulative Formation Constants for Metal Complexes	1 262
1 01			1.303
1.21	ELECTROD	E PUTENTIALS Betentials of the Elements and Their Compounds at 25°C	1.360
	Table 1.77	Potentials of the Elements and Their Compounds at 25 C	1.300
	Table 1.70	Overnetentials for Common Electrode Positions at 25°C	1.333
	Table 1.79	Half Ways Potentials of Inorgania Materials	1.350
		Standard Electrode Potentials for Aguagus Solutions	1.357
	Table 1.01	Potentials of Potentials for Aqueous Solutions	1.401
	10016 1.02	of Temperature	1 404
	Table 183	Potentials of Reference Electrodes (in Volts) at 25°C for Water-Organic	1.404
		Solvent Mixtures	1 405
1 22	CONDUCT		1.405
	Table 1 84	Properties of Liquid Semi-Conductors	1 407
	Table 1.85	Limiting Equivalent Ionic Conductances in Aqueous Solutions	1 408
	Table 1.86	Standard Solutions for Calibrating Conductivity Vessels	1 411
	Table 1 87	Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C	1 4 1 2
	Table 1.88	Conductivity of Very Pure Water at Various Temperatures and the	
		Equivalent Conductance's of Hydrogen and Hydroxyl lons	1.417
1.23	THERMAL	PROPERTIES	1,418
	Table 1.89	Eutectic Mixtures	1.418
	Table 1.90	Transition Temperatures	1.418
		-	

1.1 NOMENCLATURE OF INORGANIC COMPOUNDS

The following synopsis of rules for naming inorganic compounds and the examples given in explanation are not intended to cover all the possible cases.

1.1.1 Writing Formulas

1.1.1.1 Mass Number, Atomic Number, Number of Atoms, and Ionic Charge. The mass number, atomic number, number of atoms, and ionic charge of an element are indicated by means of four indices placed around the symbol:

mass number atomic number **SYMBOL** ionic charge $\frac{15}{7}N_2^{3-}$

Ionic charge should be indicated by an Arabic superscript numeral preceding the plus or minus sign: Mg^{2+} , PO_4^{3-}

1.1.1.2 Placement of Atoms in a Formula. The electropositive constituent (cation) is placed first in a formula. If the compound contains more than one electropositive or more than one electronegative constituent, the sequence within each class should be in alphabetical order of their symbols. The alphabetical order may be different in formulas and names; for example, $NaNH_4HPO_4$, ammonium sodium hydrogen phosphate.

Acids are treated as hydrogen salts. Hydrogen is cited last among the cations.

When there are several types of ligands, anionic ligands are cited before the neutral ligands.

1.1.1.3 Binary Compounds between Nonmetals. For binary compounds between nonmetals, that constituent should be placed first which appears earlier in the sequence:

Rn, Xe, Kr, Ar, Ne, He, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F

Examples: AsCl₃, SbH₃, H₃Te, BrF₃, OF₂, and N₄S₄.

1.1.1.4 Chain Compounds. For chain compounds containing three or more elements, the sequence should be in accordance with the order in which the atoms are actually bound in the molecule or ion.

Examples: SCN^- (thiocyanate), HSCN (hydrogen thiocyanate or thiocyanic acid), HNCO (hydrogen isocyanate), HONC (hydrogen fulminate), and HPH₂O₂ (hydrogen phosphinate).

1.1.1.5 Use of Centered Period. A centered period is used to denote water of hydration, other solvates, and addition compounds; for example, $CuSO_4 \cdot 5H_2O$, copper(II) sulfate 5-water (or pentahydrate).

1.1.1.6 *Free Radicals.* In the formula of a polyatomic radical an unpaired electron(s) is (are) indicated by a dot placed as a right superscript to the parentheses (or square bracket for coordination compounds). In radical ions the dot precedes the charge. In structural formulas, the dot may be placed to indicate the location of the unpaired electron(s).

Examples: $(HO)^{-}$ $(O_2)^{2}$ $(\dot{N}H_3^+)$

1.1.1.7 Enclosing Marks. Where it is necessary in an inorganic formula, enclosing marks (parentheses, braces, and brackets) are nested within square brackets as follows:

 $[()], [\{()\}], [\{[()]\}], [\{\{[()]\}\}]$

1.1.1.8 *Molecular Formula.* For compounds consisting of discrete molecules, a formula in accordance with the correct molecular weight of the compound should be used.

Examples: S₂Cl₂, S₈, N₂O₄, and H₄P₂O₆; not SCl, S, NO₂, and H₂PO₃.

1.1.1.9 Structural Formula and Prefixes. In the structural formula the sequence and spatial arrangement of the atoms in a molecule are indicated.

Examples: NaO(O=C)H (sodium formate), Cl—S—S—Cl (disulfur dichloride).

Structural prefixes should be italicized and connected with the chemical formula by a hyphen: *cis-*, *trans-*, *anti-*, *syn-*, *cyclo-*, *catena-*, *o-* or *ortho-*, *m-* or *meta-*, *p-* or *para-*, *sec-* (secondary), *tert-* (tertiary), *v-* (vicinal), *meso-*, *as-* for asymmetrical, and *s-* for symmetrical.

The sign of optical rotation is placed in parentheses, (+) for dextrorotary, (-) for levorotary, and (\pm) for racemic, and placed before the formula. The wavelength (in nanometers is indicated by a right subscript; unless indicated otherwise, it refers to the sodium D-line.

The italicized symbols *d*- (for deuterium) and *t*- (for tritium) are placed after the formula and connected to it by a hyphen. The number of deuterium or tritium atoms is indicated by a subscript to the symbol.

Examples:	cis-[PtCl ₂ (NH ₃) ₂]	methan- d_3 -ol
	di-tert-butyl sulfate	$(+)_{589} [Co(en)_3]Cl_2$
	methan-ol-d	

1.1.2 Naming Compounds

1.1.2.1 Names and Symbols for Elements. Names and symbols for the elements are given in Table 1.3. Wolfram is preferred to tungsten but the latter is used in the United States. In forming a complete name of a compound, the name of the electropositive constituent is left unmodified except when it is necessary to indicate the valency (see oxidation number and charge number, (formerly the Stock and Ewens-Bassett systems). The order of citation follows the alphabetic listing of the names of the cations followed by the alphabetical listing of the anions and ligands. The alphabetical citation is maintained regardless of the number of each ligand.

Example: K[AuS(S₂)] is potassium (disulfido)thioaurate (1–).

1.1.2.2 Electronegative Constituents. The name of a monatomic electronegative constituent is obtained from the element name with its ending (-en, -ese, -ic, -ine, -ium, -ogen, -on, -orus, -um, -ur, -y, or -ygen) replaced by -ide. The elements bismuth, cobalt, nickel, zinc, and the noble gases are used unchanged with the ending -ide. Homopolyatomic ligands will carry the appropriate prefix. A few Latin names are used with affixes: cupr- (copper), aur- (gold), ferr- (iron), plumb- (lead), argent-(silver), and stann- (tin).

For binary compounds the name of the element standing later in the sequence in Sec. 1.1.1.3 is modified to end in -ide. Elements other than those in the sequence of Sec. 1.1.1.3 are taken in the reverse order of the following sequence, and the name of the element occurring last is modified to end in -ide; e.g., calcium stannide.

ELEMENT SEQUENCE

1.1.2.3 Stoichiometric Proportions. The stoichiometric proportions of the constituents in a formula may be denoted by Greek numerical prefixes: mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-(Latin), deca-, undeca- (Latin), dodeca-, ..., icosa- (20), henicosa- (21), ..., triconta- (30), tetraconta-(40), ..., hecta- (100), and so on, preceding without a hyphen the names of the elements to which they refer. The prefix mono can usually be omitted; occasionally hemi- (1/2) and sesqui- (3/2) are used. No elisions are made when using numerical prefixes except in the case of icosa- when the letter "i" is elided in docosa- and tricosa-. Beyond 10, prefixes may be replaced by Arabic numerals.

When it is required to indicate the number of entire groups of atoms, the multiplicative numerals bis-, tris-, tetrakis-, pentakis-, and so on, are used (i.e., -kis is added starting from tetra-). The entity to which they refer is placed in parentheses.

Examples: Ca[PF₆]₂, calcium bis(hexafluorophosphate); and $(C_{10}H_{21})_3PO_4$, tris(decyl) phosphate instead of tridecyl which is $(C_{13}H_{27})$.

Composite numeral prefixes are built up by citing units first, then tens, then hundreds, and so on. For example, 43 is written tritetraconta- (or tritetracontakis-).

In indexing it may be convenient to italicize a numerical prefix at the beginning of the name and connect it to the rest of the name with a hyphen; e.g., *di*-nitrogen pentaoxide (indexed under the letter "n").

1.1.2.4 Oxidation and Charge Numbers. The oxidation number (Stock system) of an element is indicated by a Roman numeral placed in parentheses immediately following the name of the element. For zero, the cipher 0 is used. When used in conjunction with symbols, the Roman numeral may be placed above and to the right. The *charge number* of an ion (Ewens-Bassett system) rather than the oxidation state is indicated by an Arabic numeral followed by the sign of the charge cited and is placed in parentheses immediately following the name of the ion.

Examples: P_2O_5 , diphosphorus pentaoxide or phosphorus(V) oxide; Hg_2^{2+} . mercury(I) ion or dimercury (2+) ion; $K_2[Fe(CN)_6]$, potassium hexacyanoferrate(II) or potassium hexacyanoferrate(4–); $Pb_2^{IP}b^{IV}O_4$, dilead(II) lead(IV) oxide or trilead tetraoxide.

Where it is not feasible to define an oxidation state for each individual member of a group, the overall oxidation level of the group is defined by a formal ionic charge to avoid the use of fractional oxidation states; for example, O_2^- .

1.1.2.5 Collective Names. Collective names include:

Halogens (F, Cl, Br, I, At) Chalcogens (O, S, Se, Te, Po) Alkali metals (Li, Na, K, Rb, Cs, Fr) Alkaline-earth metals (Ca, Sr, Ba, Ra) Lanthanoids or lanthanides (La to Lu) Rare-earth metals (Sc, Y, and La to Lu inclusive) Actinoids or actinides (Ac to Lr, those whose 5*f* shell is being filled) Noble gases (He to Rn)

A transition element is an element whose atom has an incomplete d subshell, or which gives rise to a cation or cations with an incomplete d subshell.

1.1.2.6 Isotopically Labeled Compounds. The hydrogen isotopes are given special names: 1 H (protium), 2 H or D (deuterium), and 3 H or T (tritium). The superscript designation is preferred because D and T disturb the alphabetical ordering in formulas.

Other isotopes are designated by mass numbers: ¹⁰B (boron-10).

Isotopically labeled compounds may be described by inserting the italic symbol of the isotope in brackets into the name of the compound; for example, $H^{36}Cl$ is hydrogen chloride[^{36}Cl] or hydrogen chloride-36, and $^{2}H^{38}Cl$ is hydrogen [^{2}H] chloride[^{38}Cl] or hydrogen-2 chloride-38.

1.1.2.7 Allotropes. Systematic names for gaseous and liquid modifications of elements are sometimes needed. Allotropic modifications of an element bear the name of the atom together with the descriptor to specify the modification. The following are a few common examples:

Symbol	Trivial name	Systematic name
Н	Atomic hydrogen	Monohydrogen
O_2	(Common oxygen)	Dioxygen
O_3	Ozone	Trioxygen
P_4	White phosphorus	Tetraphosphorus
S ₈	α -Sulfur, β -Sulfur	Octasulfur
\mathbf{S}_{n}	μ -Sulfur (plastic sulfur)	Polysulfur

Trivial (customary) names are used for the amorphous modification of an element.

1.1.2.8 Heteroatomic and Other Anions. A few heteroatomic anions have names ending in -ide. These are

—OH, hydroxide ion (not hydroxyl)	—NH—, imide ion
—CN, cyanide ion	—NH—NH ₂ , hydrazide ion
-NH ² hydrogen difluoride ion	-NHOH, hydroxylamide ion
-NH ₂ , amide ion	—HS ⁻ , hydrogen sulfide ion
Added to these anions are	
-triiodide ion	—O—O—, peroxide ion
$-N_3$, axide ion	—S—S—, disulfide ion
$-O_3$, ozonide ion	

1.1.2.9 Binary Compounds of Hydrogen. Binary compounds of hydrogen with the more electropositive elements are designated hydrides (NaH, sodium hydride).

Volatile hydrides, except those of Periodic Group VII and of oxygen and nitrogen, are named by citing the root name of the element (penultimate consonant and Latin affixes, Sec. 1.1.2.2) followed by the suffix -ane. Exceptions are water, ammonia, hydrazine, phosphine, arsine, stibine, and bismuthine.

Examples: B_2H_6 , diborane; $B_{10}H_{14}$, decaborane (14); $B_{10}H_{16}$, decaborane (16); P_2H_4 , diphosphane; Sn_2H_6 , distannane; H_2Se_2 , diselane; H_2Te_2 , ditellane; H_2S_5 , pentasulfane; and pbH₄, plumbane.

1.1.2.10 Neutral Radicals. Certain neutral radicals have special names ending in -yl:

HO	hydroxyl	РО	phosphoryl
CO	carbonyl	SO	sulfinyl (thionyl)
ClO	chlorosyl*	SO_2	sulfonyl (sulfuryl)
ClO ₂	chloryl*	S_2O_5	disulfuryl
ClO ₃	perchloryl*	SeO	seleninyl
CrO ₂	chromyl	SeO ₂	selenoyl
NO	nitrosyl	UO_2	uranyl
NO_2	nitryl (nitroyl)	NpO ₂	neptunyl [†]

Radicals analogous to the above containing other chalcogens in place of oxygen are named by adding the prefixes thio-, seleno-, and so on; for example, PS, thiophosphoryl; CS, thiocarbonyl.

^{*}Similarly for the other halogens.

[†]Similarly for the other actinide elements.

1.1.3 Cations

1.1.3.1 Monatomic Cations. Monatomic cations are named as the corresponding element; for example, Fe^{2+} , iron(II) ion; Fe^{3+} , iron(III) ion.

This principle also applies to polyatomic cations corresponding to radicals with special names ending in -yl (Sec. 1.1.2.10); for example, PO⁺, phosphoryl cation; NO⁺, nitrosyl cation; NO₂²⁺, nitryl cation; O₂²⁺ oxygenyl cation.

Use of the oxidation number and charge number extends the range for radicals; for example, UO_2^{2+} uranyl(VI) or uranyl(2+) cation; UO_2^{+} , uranyl(V) or uranyl(1+) cation.

1.1.3.2 Polyatomic Cations. Polyatomic cations derived by addition of more protons than required to give a neutral unit to polyatomic anions are named by adding the ending -onium to the root of the name of the anion element; for example, PH_4^+ phosphonium ion; H_2I^+ , iodonium ion; H_3O^+ , oxonium ion; $CH_3OH_2^+$ methyl oxonium ion.

Exception: The name ammonium is retained for the NH_4^+ ion; similarly for substituted ammonium ions; for example, NF_4^+ tetrafluoroammonium ion.

Substituted ammonium ions derived from nitrogen bases with names ending in -amine receive names formed by changing -amine into -ammonium. When known by a name not ending in -amine, the cation name is formed by adding the ending -ium to the name of the base (eliding the final vowel); e.g., anilinium, hydrazinium, imidazolium, acetonium, dioxanium.

Exceptions are the names uronium and thiouronium derived from urea and thiourea, respectively.

1.1.3.3 Multiple Ions from One Base. Where more than one ion is derived from one base, the ionic charges are indicated in their names: $N_2H_7^+$, hydrazinium(1+) ion; $N_3H_{6^+}^+$, hydrazinium(2+) ion.

1.1.4 Anions

See Secs. 1.1.2.2 and 1.1.2.8 for naming monatomic and certain polyatomic anions. When an organic group occurs in an inorganic compound, organic nomenclature (q.v.) is followed to name the organic part.

1.1.4.1 Protonated Anions. Ions such as HSO_4^- are recommended to be named hydrogensulfate with the two words written as one following the usual practice for polyatomic anions.

1.1.4.2 Other Polyatomic Anions. Names for other polyatomic anions consist of the root name of the central atom with the ending -ate and followed by the valence of the central atom expressed by its oxidation number. Atoms and groups attached to the central atom are treated as ligands in a complex.

Examples: $[Sb(OH)_6^-]$, hexahydroxoantimonate(V); $[Fe(CN_6]^{3-}, hexacyanoferrate(III); [Co(NO_2)_6]^{3-}, hexanitritocobaltate(III); <math>[TiO(C_2O_4)_2(H_2O)_2]^{2-}$, oxobisoxalatodiaquatitanate(IV); $[PCl_6]^-$, hexachlorophosphate(V).

Exceptions to the use of the root name of the central atom are antimonate, bismuthate, carbonate, cobaltate, nickelate (or niccolate), nitrate, phosphate, tungstate (or wolframate), and zincate.

1.1.4.3 Anions of Oxygen. Oxygen is treated in the same manner as other ligands with the number of -oxo groups indicated by a suffix; for example, SO_3^{2-} , trioxosulfate.

The ending -ite, formerly used to denote a lower state of oxidation, may be retained in trivial names in these cases (note Sec. 1.1.5.3 also):

[†]Similarly for the other actinoid elements.

AsO_3^{3-}	arsenite	NOO_2^-	peroxonitrite
BrO ⁻	hypobromite	PO ₃ ³⁻	phosphite*
ClO ⁻	hypochlorite	SO_{3}^{2-}	sulfite
ClO_2^-	chlorite	$S_2O_5^{2-}$	disulfite
IO ⁻	hypoiodite	$S_2O_4^{2-}$	dithionite
NO_2^-	nitrite	$S_2O_2^{2-}$	thiosulfite
$N_2O_2^{2-}$	hyponitrite	SeO_3^{2-}	selenite

However, compounds known to be double oxides in the solid state are named as such; for example, Cr_2CuO_4 (actually $Cr_2O_3 \cdot CuO$) is chromium(III) copper(II) oxide (and not copper chromite).

1.1.4.4 Isopolyanions. Isopolyanions are named by indicating with numerical prefixes the number of atoms of the characteristic element. It is not necessary to give the number of oxygen atoms when the charge of the anion or the number of cations is indicated.

Examples: Ca₃Mo₇O₂₄, tricalcium 24-oxoheptamolybdate, may be shortened to tricalcium heptamolybdate; the anion, $Mo_7O_{24}^{6-}$, is heptamolybdate(6–); $S_2O_7^{7-}$, disulfate(2–); $P_2O_7^{4-}$, diphosphate(V)(4-).

When the characteristic element is partially or wholly present in a lower oxidation state than corresponds to its Periodic Group number, oxidation numbers are used; for example, $[O_2HP - O_2H]^{2-}$, dihydrogendiphosphate(III, V)(2-).

A bridging group should be indicated by adding the Greek letter μ immediately before its name and separating this from the rest of the complex by a hyphen. The atom or atoms of the characteristic element to which the bridging atom is bonded, is indicated by numbers.

Examples: $[O_3P - S - PO_2 - O - PO_3]^{5-}$, 1, 2- μ -thiotriphosphate(5-) $[S_3P - O - PS_2 - O - PS_3]^{5-}$, di- μ -oxo-octathiotriphosphate(5-)

1.1.5 Acids

1.1.5.1 Acids and -ide Anions. Acids giving rise to the -ide anions (Sec. 1.1.2.2) should be named as hydrogen \dots -ide; for example, HCl, hydrogen chloride; HN₃, hydrogen azide.

Names such as hydrobromic acid refer to an aqueous solution, and percentages such as 48% HBr denote the weight/volume of hydrogen bromide in the solution.

1.1.5.2 Acids and -ate Anions. Acids giving rise to anions bearing names ending in -ate are treated as in Sec. 1.1.5.1; for example, H_2GeO_4 , hydrogen germanate; $H_4[Fe(CN)_6]$, hydrogen hexa-cyanoferrate(II).

1.1.5.3 Trivial Names. Acids given in Table 1.1 retain their trivial names due to long-established usage. Anions may be formed from these trivial names by changing -ous acid to -ite, and -ic acid to -ate. The prefix hypo- is used to denote a lower oxidation state and the prefix per- designates a higher oxidation state. The prefixes ortho- and meta- distinguish acids of differing water content; for example, H_4SiO_4 is orthosilicic acid and H_2SiO_3 is metasilicic acid. The anions would be named silicate (4–) and silicate(2–), respectively.

1.1.5.4 *Peroxo- Group.* When used in conjunction with the trivial names of acids, the prefix peroxo- indicates substitution of -O-by-O-O-.

^{*}Named for esters formed from the hypothetical acid P(OH)₃.

H ₃ AsO ₄	arsenic acid	$H_4P_2O_7$	diphosphoric acid (or pyro-
H ₃ AsO ₃	arsenious acid		phosphoric acid)
H ₃ BO ₃	orthoboric acid (or boric acid)	$H_4P_2O_8$	peroxodiphosphoric acid
HBO ₂	metaboric acid	(HO),OP	diphosphoric(IV) acid or
HBrO ₃	bromic acid		hypophosphoric acid
HBrO ₂	bromous acid	(HO) ₂ OP	
HBrO	hypobromous acid	(HO) ₂ PO	diphosphoric(III,V) acid
H ₂ CO ₃	carbonic acid		
HOCN	cyanic acid	$(HO)_2 P - O$	
HNCO	isocyanic acid	H_2PHO_3	phosphonic acid
HONC	fulminic acid	$H_2P_2H_2O_5$	diphosphonic acid
HClO₄	perchloric acid	HPH_2O_2	phosphinic acid (formerly
HClO ₃	chloric acid		hypophosphorous acid)
HClO ₂	chlorous acid	HReO₄	perrhenic acid
HCIO	hypochlorous acid	H_2ReO_4	rhenic acid
H ₂ CrO ₄	chromic acid	H_2SO_4	sulfuric acid
H ₂ Cr ₂ O ₇	dichromic acid	$H_2S_2O_7$	disulfuric acid
H,IO,	orthoperiodic acid	H ₂ SO ₅	peroxomonosulfuric acid
HIO	periodic acid	$H_2S_2O_3$	thiosulfuric acid
HIO	iodic acid	$H_2S_2S_6$	dithionic acid
ню	hypoiodous acid	H_2SO_3	sulfurous acid
HMnO.	permanganic acid	$H_2S_2O_5$	disulfurous acid
H _a MnO.	manganic acid	$H_2S_2O_2$	thiosulfurous acid
HNO.	peroxonitric acid	$H_2S_2O_4$	dithionous acid
HNO.	nitric acid	$H_2S_xO_6$	polythionic acid
HNO.	nitrous acid	$(x = 3, 4, \ldots)$	(tri-, tetra-,)
H.NO.	nitroxylic acid	H_2SO_2	sulfoxylic acid
H.N.O.	hyponitrous acid	HSb(OH)6	hexahydrooxoantimonic acid
	perovonitrous acid	H ₂ SeO ₄	selenic acid
HPO	orthophosphoric acid (or	H ₂ SeO ₃	selenious acid
1131 04	phosphoric acid)	H ₄ SiO ₄	orthosilicic acid
HPO.	metaphosphoric acid	H ₂ SiO ₃	metasilicic acid
H.PO.	nerovomononhosphoric acid	HTcO₄	pertechnetic acid
1131 05	peroxonionophosphorie acid	H ₂ TcO ₄	technetic acid
		H ₆ TeO ₆	orthotelluric acid

TABLE 1.1 Trivial Names for Acids

1.1.5.5 Replacement of Oxygen by Other Chalcogens. Acids derived from oxoacids by replacement of oxygen by sulfur are called thioacids, and the number of replacements are given by prefixes di-, tri-, and so on. The affixes seleno- and telluro- are used analogously.

Examples: HOO—C=S, thiocarbonic acid; HSS—C=S, trithiocarbonic acid.

1.1.5.6 Ligands Other than Oxygen and Sulfur. See Sec. 1.1.7, Coordination Compounds, for acids containing ligands other than oxygen and sulfur (selenium and tellurium).

1.1.5.7 Differences between Organic and Inorganic Nomenclature. Organic nomenclature is largely built upon the scheme of substitution, that is, the replacement of hydrogen atoms by other atoms or groups. Although rare in inorganic nomenclature: NH₂Cl is called chloramine and NHCl₂ dichloroamine. Other substitutive names are fluorosulfonic acid and chlorosulfonic acid derived from HSO₃H. These and the names aminosulfonic acid (sulfamic acid), iminodisulfonic acid, and nitrilotrisulfonic acid should be replaced by the following based on the concept that these names are formed by adding hydroxyl, amide, imide, and so on, groups together with oxygen atoms to a sulfur atom:

HSO ₃ F	fluorosulfuric acid	$NH(SO_3H)_2$	imidobis(sulfuric) acid
HSO ₃ Cl	chlorosulfuric acid	N(SO ₃ H) ₃	nitridotris(sulfuric) acid
NH ₂ SO ₃ H	amidosulfuric acid		

1.1.6 Salts and Functional Derivatives of Acids

1.1.6.1 Acid Halogenides. For acid halogenides the name is formed from the corresponding acid radical if this has a special name (Sec. 1.1.2.10); for example, NOCl, nitrosyl chloride. In other cases these compounds are named as halogenide oxides with the ligands listed alphabetically; for example, BiClO, bismuth chloride oxide; VCl₂O, vanadium(IV) dichloride oxide.

1.1.6.2 Anhydrides. Anhydrides of inorganic acids are named as oxides; for example, N_2O_5 , dinitrogen pentaoxide.

1.1.6.3 *Esters.* Esters of inorganic acids are named as the salts; for example, $(CH_3)_2SO_4$, dimethyl sulfate. However, if it is desired to specify the constitution of the compound, the nomenclature for coordination compounds should be used.

1.1.6.4 *Amides.* Names for amides are derived from the names of the acid radicals (or from the names of acids by replacing acid by amide); for example, $SO_2(NH_2)_2$, sulfonyl diamide (or sulfuric diamide); NH_2SO_3H , sulfamidic acid (or amidosulfuric acid).

1.1.6.5 Salts. Salts containing acid hydrogen are named by adding the word hydrogen before the name of the anion (however, see Sec. 1.1.4.1), for example, KH_2PO_4 , potassium dihydrogen phosphate; NaHCO₃, sodium hydrogen carbonate (not bicarbonate); NaHPHO₃, sodium hydrogen phosphonate (only one acid hydrogen remaining).

Salts containing O^{2-} and HO^{-} anions are named oxide and hydroxide, respectively. Anions are cited in alphabetical order which may be different in formulas and names.

Examples: FeO(OH), iron(III) hydroxide oxide; VO(SO₄), vanadium(IV) oxide sulfate.

1.1.6.6 *Multiplicative Prefixes.* The multiplicative prefixes bis, tris, etc., are used with certain anions for indicating stoichiometric proportions when di, tri, etc., have been preempted to designate condensed anions; for example, $AIK(SO_4)_2 \cdot 12H_2O$, aluminum potassium bis(sulfate) 12-water (recall that disulfate refers to the anion $S_2O_7^{-7}$).

1.1.6.7 Crystal Structure. The structure type of crystals may be added in parentheses and in italics after the name; the latter should be in accordance with the structure. When the typename is also the mineral name of the substance itself, italics are not used.

Examples: MgTiO₃, magnesium titanium trioxide (*ilmenite* type); FeTiO₃, iron(II) titanium trioxide (ilmenite).

1.1.7 Coordination Compounds

1.1.7.1 Naming a Coordination Compound. To name a coordination compound, the names of the ligands are attached directly in front of the name of the central atom. The ligands are listed in alphabetical order regardless of the number of each and with the name of a ligand treated as a unit. Thus "diammine" is listed under "a" and "dimethylamine" under "d." The oxidation number of the central atom is stated last by either the oxidation number or charge number.

1.1.7.2 Anionic Ligands. Whether inorganic or organic, the names for anionic ligands end in -o (eliding the final -e, if present, in the anion name). Enclosing marks are required for inorganic anionic ligands containing numerical prefixes, and for thio, seleno, and telluro analogs of oxo anions containing more than one atom.

If the coordination entity is negatively charged, the cations paired with the complex anion (with -ate ending) are listed first. If the entity is positively charged, the anions paired with the complex cation are listed immediately afterward.

The following anions do not follow the nomenclature rules:

F^-	fluoro	HO_2^-	hydrogen peroxo
Cl⁻	chloro	S ²⁻	thio (only for single sulfur)
Br ⁻	bromo	S_2^{2-}	disulfido
I-	iodo	HS^{-}	mercapto
O ²⁻	охо	CN^-	cyano
H^-	hydrido (or hydro)	$\rm CH_3O^-$	methoxo or methanolato
OH-	hydroxo	CH_3S^-	methylthio or methanethiolato
O_2^{2-}	peroxo		

I.1.7.3 Neutral and Cationic Ligands. Neutral and cationic ligands are used without change in name and are set off with enclosing marks. Water and ammonia, as neutral ligands, are called "aqua" and "ammine," respectively. The groups NO and CO, when linked directly to a metal atom, are called nitrosyl and carbonyl, respectively.

1.1.7.4 Attachment Points of Ligands. The different points of attachment of a ligand are denoted by adding italicized symbol(s) for the atom or atoms through which the attachment occurs at the end of the name of the ligand; e.g., glycine-N or glycinato-O, N. If the same element is involved in different possible coordination sites, the position in the chain or ring to which the element is attached is indicated by numerical superscripts: e.g., tartrato(3–)- O^1 , O^2 , or tartrato(4–)- O^2 , O^3 or tartrato(2–) O^1 , O^4

1.1.7.5 Abbreviations for Ligand Names. Except for certain hydrocarbon radicals, for ligand (L) and metal (M), and a few with H, all abbreviations are in lowercase letters and do not involve hyphens. In formulas, the ligand abbreviation is set off with parentheses. Some common abbreviations are

Ac	acetyl	en	ethylenediamine
acac	acetylacetonato	Him	imidazole
Hacac	acetylacetone	H ₂ ida	iminodiacetic acid
Hba	benzoylacetone	Me	methyl
Bzl	benzyl	H ₃ nta	nitrilotriacetic acid
Hbg	biguanide	nbd	norbornadiene
bpy	2, 2'-bipyridine	ox	oxalato(2–) from parent H_2 ox
Bu	Butyl	phen	1, 10-phenanthroline
Су	cyclohexyl	Ph	phenyl
D ₂ dea	diethanolamine	pip	piperidine
dien	diethylenetriamine	Pr	propyl
dmf	dimethylformamide	pn	propylenediamine
H ₂ dmg	dimethylglyoxime	Hpz	pyrazole
dmg	dimethylglyoximato(2-)	ру	pyridine
Hdmg	dimethylglyoximato(1-)	thf	tetrahydrofuran
dmso	dimethylsulfoxide	tu	thiourea
Et	ethyl	H ₃ tea	triethanolamine
H ₄ edta	ethylenediaminetetraacetic acid	tren	2, 2', 2"-triaminotriethylamine
Hedta, edta	coordinated ions derived	trien	triethylenetetraamine
	from H ₄ edta	tn	trimethylenediamine
Hea	ethanolamine	ur	urea

Examples: Li[B(NH₂)₄], lithium tetraamidoborate(1–) or lithium tetraamidoborate(III); [Co(NH₃)₅Cl]Cl₃, pentaamminechlorocobalt(III) chloride or pentaamminechlorocobalt(2+) chloride; K₃[Fe(CN)₅CO], potassium carbonylpentacyanoferrate(II) or potassium carbonylpentacyanoferrate(3–); [Mn{C₆H₄(O)(COO)}₂(H₂O)₄]⁻, tetraaquabis[salicylato(2–)]manganate(III) ion; [Ni(C₄H₇N₂O₂)₂] or [Ni(dmg)] which can be named bis-(2, 3-butanedione dioximate)nickel(II) or bis[dimethylglyoximato(2–)]nickel(II).

1.1.8 Addition Compounds

The names of addition compounds are formed by connecting the names of individual compounds by a dash (—) and indicating the numbers of molecules in the name by Arabic numerals separated by the solidus (diagonal slash). All molecules are cited in order of increasing number; those having the same number are cited in alphabetic order. However, boron compounds and water are always cited last and in that order.

Examples: $3CdSO_4 \cdot 8H_2O$, cadmium sulfate—water (3/8); $Al_2(SO_4)_3 \cdot K_2SO_4 \cdot 24H_2O$, aluminum sulfate—potassium sulfate—water (1/1/24); $AlCl_3 \cdot 4C_2H_5OH$, aluminum chloride—ethanol (1/4).

1.1.9 Synonyms and Mineral Names

FABLE 1.2	Synonyms and Mineral Names
-----------	----------------------------

Acanthite, see Silver sulfide	Borax, see Sodium tetraborate 10-water
Alabandite, see Manganese sulfide	Braunite, see Manganese(III) oxide
Alamosite, see Lead(II) silicate(2-)	Brimstone, see Sulfur
Altaite, see Lead telluride	Bromellite, see Beryllium oxide
Alumina, see Aluminum oxide	Bromosulfonic acid, see Hydrogen bromosulfate
Alundum, see Aluminum oxide	Bromyrite, see Silver bromide
Alunogenite, see Aluminum sulfate 18-water	Brookite, see Titanium(IV) oxide
Amphibole, see Magnesium silicate(2-)	Brucite, see Magnesium hydroxide
Andalusite, see Aluminum silicon oxide (1/1)	Bunsenite, see Nickel oxide
Anglesite, see Lead sulfate	Cacodylate, see Sodium dimethylarsonate 3-water
Anhydrite, see Calcium sulfate	Caesium. <i>see</i> under Cesium
Anhydrone, see Magnesium perchlorate	Calamine, see Zinc carbonate
Aragonite, see Calcium carbonate	Calcia. see Calcium oxide
Arcanite, see Potassium sulfate	Calcite. see Calcium carbonate
Argentite, see Silver sulfide	Calomel, see Mercury(I) chloride
Argol, see Potassium hydrogen tartrate	Caro's acid. see Hydrogen peroxosulfate
Arkansite, see Titanium(IV) oxide	Cassiopeium, see Lutetium
Arsenolite, see Arsenic(III) oxide dimer	Cassiterite. see Tin(IV) oxide
Arsine, see Arsenic hydride	Caustic potash. see Potassium hydroxide
Auric and aurous, see under Gold	Caustic soda, see Sodium hydroxide
Azoimide, see Hydrogen azide	Celestite, see Strontium sulfate
Azurite, see Copper(II) carbonate-dihydroxide	Cementite, see tri-Iron carbide
(2/1)	Cerargyrite, see Silver chloride
Baddelevite, see Zirconium(IV) oxide	Cerussite, see Lead carbonate
Baking soda, see Sodium hydrogen carbonate	Chalcanthite, see Copper(II) sulfate 5-water
Barite (barytes), see Barium sulfate	Chalcocite, see Copper(I) sulfide
Bieberite, see Cobalt sulfate 7-water	Chalk, see Calcium carbonate
Bismuthine, see Bismuth hydride	Chile nitre, see Sodium nitrate
Bismuthinite, see Bismuth sulfide	Chile saltpeter, see Sodium nitrate
Bleaching powder, see Calcium hydrochlorite	Chloromagnesite, see Magnesium chloride
Bleaching solution, see Sodium hydrochlorite	Chlorosulfonic acid, see Hydrogen chlorosulfate
Blue copperas, see Copper(II) sulfate 7-water	Cinnabar, see Mercury(II) sulfide
Boracic acid, see Hydrogen borate	Claudetite, see Arsenic(III) oxide dimer

TABLE 1.2 Synonyms and Mineral Names (Continued)

Clausthalite. see Lead selenide Clinoenstatite, see Magnesium silicate(2-) Columbium, see under Niobium Corrosive sublimate, see Mercury(II) chloride Corundum, see Aluminum oxide Cotunite. see Lead chloride Covellite, see Copper(II) sulfide Cream of tartar, see Potassium hydrogen tartrate Crocoite, see Lead chromate(VI)(2-) Cryolite, see Sodium hexafluoroaluminate Cryptohalite, see Ammonium hexafluorosilicate Cupric and cuprous, see under Copper Cuprite, see Copper(I) oxide Dakin's solution, see Sodium hypochlorite Dehydrite, see Magnesium perchlorate Dental gas, see Nitrogen(I) oxide Diamond, see Carbon Dichlorodisulfane, see di-Sulfur dichloride Diuretic salt, see Potassium acetate Dolomite, see Calcium magnesium carbonate (1/1) Dry ice, see Carbon dioxide (solid) Enstatite, see Magnesium silicate(2-) Epsom salts, see Magnesium sulfate 7-water Epsomite, see Magnesium sulfate 7-water Eriochalcite, see Copper(II) chloride Fayalite, see Iron(II) silicate(4-) Ferric and ferrous, see under Iron Fluorine oxide, see Oxygen difluoride Fluoristan, see Tin(II) fluoride Fluorite, see Calcium fluoride Fluorosulfonic acid, see Hydrogen fluorosulfate Fluorspar, see Calcium fluoride Forsterite, see Magnesium silicate(4-) Freezing salt, see Sodium chloride Fulminating mercury, see Mercury fulminate Galena, see Lead sulfite Glauber's salt, see Sodium sulfate 10-water Goethite, see Iron(II) hydroxide oxide Goslarite, see Zinc sulfate 7-water Graham's salt, see Sodium phosphate(1-) Graphite, see Carbon Greenockite, see Cadmium sulfide Gruenerite, see Iron(II) silicate(2-) Guanajuatite, see Bismuth selenide Gypsum, see Calcium sulfate 2-water Halite, see Sodium chloride Hausmannite, see Manganese(II,IV) oxide Heavy hydrogen, see Hydrogen $[^{2}H]$ or name followed by -d

Heavy water, see Hydrogen[²H] oxide Heazlewoodite, see tri-Nickel disulfide Hematite, see Iron(III) oxide Hermannite, see Manganese silicate Hessite, see Silver telluride Hieratite, see Potassium hexafluorosilicate Hydroazoic acid, see Hydrogen azide Hydrophilite, see Calcium chloride Hydrosulfite, see Sodium dithionate(III) Hypo (photographic), see Sodium thiosulfate 5-water Hypophosphite, see under Phosphinate Ice, see Hydrogen oxide (solid) Iceland spar, see Calcium carbonate Iodyrite, see Silver iodide Jeweler's borax, see Sodium tetraborate 10-water Jeweler's rouge, see Iron(III) oxide Kalinite, see Aluminum potassium bis(sulfate) Kernite, see Sodium tetraborate Kyanite, see Aluminum silicon oxide (1/1) Laughing gas, see Nitrogen(I) oxide Lautarite, see Calcium iodate Lawrencite, see Iron(II) chloride Lechatelierite, see Silicon dioxide Lime, see Calcium oxide Litharge, see Lead(II) oxide Lithium aluminum hydride, see Lithium tetrahydridoaluminate Lodestone, see Iron(II,III) oxide Lunar caustic, see Silver nitrate Lye, see Sodium hydroxide Magnesia, see Magnesium oxide Magnesite, see Magnesium carbonate Magnetite, see Iron(II,III) oxide Malachite, see Copper carbonate dihydroxide Manganosite, see Manganese(II) oxide Marcasite, see Iron disulfide Marshite, see Copper(I) iodide Mascagnite, see Ammonium sulfate Massicotite, see Lead oxide Mercuric and mercurous, see under Mercury Metacinnabar, see Mercury(II) sulfide Millerite, see Nickel sulfide Mirabilite, see Sodium sulfate Mohr's salt, see Ammonium iron(II) sulfate 6-water Moissanite, see Silicon carbide Molybdenite, see Molybdenum disulfide Molybdite, see Molybdenum(VI) oxide Molysite, see Iron(III) chloride Montroydite, see Mercury(II) oxide Morenosite, see Nickel sulfate 7-water Mosaic gold, see Tin disulfide Muriatic acid, see Hydrogen chloride, aqueous solutions Nantokite, see Copper(I) chloride Natron, see Sodium carbonate Naumannite, see Silver selenide Neutral verdigris, see Copper(II) acetate Nitre (niter), see Potassium nitrate

TABLE 1.2 Synonyms and Mineral Names (Continued)

Nitric oxide, see Nitrogen(II) oxide Nitrobarite, see Barium nitrate Nitromagnesite, see Magnesium nitrate 6-water Nitroprusside, see Sodium pentacyanonitrosylferrate(II) 2-water Oldhamite, see Calcium sulfide Opal, see Silicon dioxide Orpiment, see Arsenic trisulfide Oxygen powder, see Sodium peroxide Paris green, see Copper acetate arsenate(III) (1/3) Pawellite, see Calcium molybdate(VI)(2-) Pearl ash, see Potassium carbonate Perborax. see Sodium peroxoborate Periclase, see Magnesium oxide Persulfate, see Peroxodisulfate Phosgene, see Carbonyl chloride Phosphine, see Hydrogen phosphide Pickling acid, see Hydrogen sulfate Pitchblende, see Uranium(IV) oxide Plaster of Paris, see Calcium sulfate hemihydrate Plattnerite, see Lead(IV) oxide Polianite, see Manganese(IV) oxide Polishing powder, see Silicon dioxide Potash, see Potassium carbonate Potassium acid phthalate, see Potassium hydrogen phthalate Prussic acid, see Hydrogen cyanide Pyrite, see Iron disulfide Pyrochroite, see Manganese(II) hydroxide Pyrohytpophosphite, see diphosphate(IV) Pyrolusite, see Manganese(IV) oxide Pyrophanite, see Manganese titanate(IV)(2-) Pyrophosphate, see Diphosphate(V) Pyrosulfuric acid, see Hydrogen disulfate Quartz, see Silicon dioxide Quicksilver, see Mercury Realgar, see di-Arsenic disulfide Red lead, see Lead(II,IV) oxide Rhodochrosite, see Manganese carbonate Rhodonite, *see* Manganese silicate(1-)Rochelle salt, see Potassium sodium tartrate 4-water Rock crystal, see Silicon dioxide Rutile, see Titanium(IV) oxide Sal soda, see Sodium carbonate 10-water Saltpeter, see Potassium nitrate Scacchite, see Manganese chloride Scheelite, see Calcium tungstate(VI)(2-) Sellaite, see Magnesium fluoride Senarmontite, see Antimony(III) oxide Siderite, see Iron(II) carbonate Siderotil, see Iron(II) sulfate 5-water Silica, see Silicon dioxide Silicotungstic acid, see Silicon oxide-tungsten oxide-water (1/12/26) Sillimanite, see Aluminum silicon oxide (1/1)

Smithsonite, see Zinc carbonate Soda ash, see Sodium carbonate Spelter, see Zinc metal Sphalerite, see Zinc sulfide Spherocobaltite, see Cobalt(II) carbonate Spinel, see Magnesium aluminate(2-) Stannic and stannous, see under Tin Stibine, see Antimony hydride Stibnite, see Antimony(III) sulfide Stolzite, see Lead tungstate(VI)(2-) Strengite, see Iron(III) phosphate Strontianite, see Strontium carbonate Sugar of lead, see Lead acetate Sulfamate, see Amidosulfate Sulphate, see Sulfate Sulfurated lime, see Calcium sulfide Sulfuretted hydrogen, see Hydrogen sulfide Sulphur, see Sulfur Sulfuryl, see Sulfonyl Sycoporite, see Cobalt sulfide Sylvite, see Potassium chloride Szmikite, see Manganese(II) sulfate hydrate Tarapacaite, see Potassium chromate(VI) Tellurite, see Tellurium dioxide Tenorite, see Copper(II) oxide Tephroite, see Manganese silicate(1-) Thenardite, see Sodium sulfate Thionyl, see Sulfinyl Thorianite, see Thorium dioxide Topaz, see Aluminum hexafluorosilicate Tridymite, see Silicon dioxide Troilite, see Iron(II) sulfide Trona, see Sodium carbonate-hydrogen carbonate dihvdrate Tschermigite, see Aluminum ammonium bis(sulfate) Tungstenite, see Tungsten disulfide Tungstite, see Hydrogen tungstate

Uraninite, see Uranium(IV) oxide

Valentinite, *see* Antimony(III) oxide Verdigris, *see* Copper acetate hydrate Vermillion, *see* Mercury(II) sulfide Villiaumite, *see* Sodium fluoride Vitamin B₃, *see* Calcium (+)pantothenate

Washing soda, see Sodium carbonate 10-water Whitlockite, see Calcium phosphate Willemite, see Zinc silicate(4-) Wolfram, see Tungsten Wuestite, see Iron(II) oxide Wulfenite, see Lead molybdate(VI)(2-) Wurtzite, see Zinc sulfide

Zincite, see Zinc oxide Zincosite, see Zinc sulfate Zincspar, see Zinc carbonate Zirconia, see Zirconium oxide

1.2 PHYSICAL PROPERTIES OF INORGANIC COMPOUNDS

Names follow the IUPAC Nomenclature. Solvates are listed under the entry for the anhydrous salt. Acids are entered under hydrogen and acid salts are entered as a subentry under hydrogen.

Formula weights are based upon the International Atomic Weights and are computed to the nearest hundredth when justified. The actual significant figures are given in the atomic weights of the individual elements. Each element that has neither a stable isotope nor a characteristic natural isotopic composition is represented in this table by one of that element's commonly known radioisotopes identified by mass number and relative atomic mass.

1.2.1 Density

Density is the mass of a substance contained in a unit volume. In the SI system of units, the ratio of the density of a substance to the density of water at 15°C is known as the *specific gravity (relative density)*. Various units of density, such as kg/m³, lb-mass/ft³, and g/cm³, are commonly used. In addition, molar densities or the density divided by the molecular weight is often specified.

Density values are given at room temperature unless otherwise indicated by the superscript figure; for example, 2.487^{15} indicates a density of 2.487 g/cm³ for the substance at 15°C. A superscript 20 over a subscript 4 indicates a density at 20°C relative to that of water at 4°C. For gases the values are given as grams per liter (g/L).

1.2.2 Melting Point (Freezing Temperature)

The *melting point* of a solid is the temperature at which the vapor pressure of the solid and the liquid are the same and the pressure totals one atmosphere and the solid and liquid phases are in equilibrium. For a pure substance, the *melting point* is equal to the *freezing point*. Thus, the *freezing point* is the temperature at which a liquid becomes a solid at normal atmospheric pressure.

The *triple point* of a material occurs when the vapor, liquid, and solid phases are all in equilibrium. This is the point on a *phase diagram* where the solid-vapor, solid-liquid, and liquid-vapor equilibrium lines all meet. A *phase diagram* is a diagram that shows the state of a substance at different temperatures and pressures.

Melting point is recorded in a certain case as 250 d and in some other cases as d 250, the distinction being made in this manner to indicate that the former is a melting point with decomposition at 250°C while in the latter decomposition only occurs at 250°C and higher temperatures. Where a value such as $-6H_2O$, 150 is given it indicates a loss of 6 moles of water per formula weight of the compound at a temperature of 150°C. For hydrates the temperature stated represents the compound melting in its water of hydration.

1.2.3 Boiling Point

The normal boiling point (boiling temperature) of a substance is the temperature at which the vapor pressure of the substance is equal to atmospheric pressure.

At the boiling point, a substance changes its state from liquid to gas. A stricter definition of boiling point is the temperature at which the liquid and vapor (gas) phases of a substance can exist in equilibrium. When heat is applied to a liquid, the temperature of the liquid rises until the *vapor pressure* of the liquid equals the pressure of the surrounding atmosphere (gases). At this point there is no further rise in temperature, and the additional heat energy supplied is absorbed as *latent heat* of vaporization to transform the liquid into gas. This transformation occurs not only at the surface of the liquid (as in the case of *evaporation*) but also throughout the volume of the liquid, where bubbles of gas are formed. The boiling point of a liquid is lowered if the pressure of the surrounding atmosphere (gases) is decreased. On the other hand, if the pressure of the surrounding atmosphere (gases) is increased, the boiling point is raised. For this reason, it is customary when the boiling point of a substance is given to include the pressure at which it is observed, if that pressure is other than standard, i.e., 760 mm of mercury or 1 atmosphere (STP, Standard Temperature and Pressure). The boiling point of a solution is usually higher than that of the pure solvent; this boiling-point elevation is one of the colligative properties common to all solutions.

Boiling point is given at atmospheric pressure (760 mm of mercury or 101 325 Pa) unless otherwise indicated; thus 82^{15mm} indicates that the boiling point is 82°C when the pressure is 15 mm of mercury. Also, subl 550 indicates that the compound sublimes at 550°C. Occasionally decomposition products are mentioned.

1.2.4 Refractive Index

The refractive index *n* is the ratio of the velocity of light in a particular substance to the velocity of light in vacuum. Values reported refer to the ratio of the velocity in air to that in the substance saturated with air. Usually the yellow sodium doublet lines are used; they have a weighted mean of 589.26 nm and are symbolized by D. When only a single refractive index is available, approximate values over a small temperature range may be calculated using a mean value of 0.000 45 per degree for dn/dt, and remembering that n_D decreases with an increase in temperature. If a transition point lies within the temperature range, extrapolation is not reliable.

The specific refraction $r_{\rm D}$ is given by the Lorentz and Lorenz equation,

$$r_{\rm D} = \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \cdot \frac{1}{\rho}$$

where ρ is the density at the same temperature as the refractive index, and is independent of temperature and pressure. The molar refraction is equal to the specific refraction multiplied by the molecular weight. It is a more or less additive property of the groups or elements comprising the compound. An extensive discussion will be found in Bauer, Fajans, and Lewin, in *Physical Methods of Organic Chemistry*, 3d ed., A. Weissberger (ed.), vol. 1, part II, chap. 28, Wiley-Interscience, New York, 1960.

The empirical Eykman equation

$$\frac{n_{\rm D}^2 - 1}{n_{\rm D} + 0.4} \cdot \frac{1}{\rho} = \text{constant}$$

offers a more accurate means for checking the accuracy of experimental densities and refractive indices, and for calculating one from the other, than does the Lorentz and Lorenz equation.

The refractive index of moist air can be calculated from the expression

$$(n-1) \times 10^6 = \frac{103.49}{T} p_1 + \frac{177.4}{T} p_2 + \frac{86.26}{T} \left(1 + \frac{5748}{T}\right) p_3$$

where p_1 is the partial pressure of dry air (in mmHg), p_2 is the partial pressure of carbon dioxide (in mmHg), p_3 is the partial pressure of water vapor (in mmHg), and *T* is the temperature (in kelvins).

Example: 1-Propynyl acetate has $n_D = 1.4187$ and density = 0.9982 at 20°C; the molecular weight is 98.102. From the Lorentz and Lorenz equation,

$$r_D = \frac{(1.4187)^2 + 1}{(1.4187)^2 + 2} \cdot \frac{1}{0.9982} = 0.2528$$

The molar refraction is

$$Mr_{\rm D} = (98.102)(0.2528) = 24.80$$

From the atomic and group refractions, the molar refraction is computed as follows:

$$\begin{array}{cccc}
6 \text{ H} & 6.600 \\
5 \text{ C} & 12.090 \\
1 \text{ C} \equiv \text{C} & 2.398 \\
1 \text{ O(ether)} & 1.643 \\
1 \text{ O(carbonyl)} & 2.211 \\
Mr_{\text{D}} = 24.942 \end{array}$$

TABLE 1.3 Physical Constants of Inorganic Compounds

Abbreviations Used in the Table

a, acid	ca., approximately	fctetr, face-centered	L, liter	soln, solution
abs, absolute	chl, chloroform	tetragonal	lq, liquid	solv, solvent (s)
abs ale, anhydrous ethanol	cone, concentrated	FP, flash point	MeOH, methanol	subl, sublimes
acet, acetone	cub, cubic	fum, fuming	min, mineral	sulf, sulfides
alk, alkali (aq NaOH or KOH)	d, decomposes	fus, fusion, fuses	mL, milliliter	tart, tartrate
anhyd, anhydrous	dil, dilute	g, gas, gram	org, organic	THF, tetrahydrofuran
aq, aqueous	disprop, disproportionates	glyc, glycerol	oxid, oxidizing	v, very
aq reg, aqua regia	EtOAc, ethyl acetate	h, hot	PE, petroleum ether	vac, vacuum
atm, atmosphere	eth, diethyl ether	hex, hexagonal	pyr, pyridine	viol, violently
BuOH, butanol	EtOH, 95% ethanol	HOAc, acetic acid	s, soluble	volat, volatilizes
bz, benzene	expl, explodes	i, insoluble	satd, saturated	<, less than
c, solid state	fcc, face-centered cubic	ign, ignites	sl, slightly	>, greater than

N				Melting point,	Boiling point,	Solubility
Name	Formula	Formula weight	Density	°C	°C	in 100 parts solvent
Actinium-227	Ac	227.0278	10.07	1050(50)	ca. 3200	d aq; s acids
bromide	AcBr ₃	466.74	5.85	subl 800		s aq
Aluminum	Al	26.981539	2.70	660.323	2518	s HCl, H ₂ SO ₄ , alk
acetylacetonate	$Al(C_5H_7O_2)_3$	324.31	1.27	190-193	315	i aq; v s alc; s bz, eth
ammonium bis(sulfate)	$AINH_4(SO_4)_2 \cdot 12H_2O$	453.33	1.65	anhyd > 280		14.3 g/100 mL aq; s glyc; i alc
12-water						
antimonide	AlSb	148.74	4.26	1060		
arsenide	AlAs	101.90	3.76	1740		
bis(acetylsalicylate)	Al(OOCC ₆ H ₄ OCOCH ₃) ₂ OH	402.30				v sl s aq, alc, eth
borate (2/1)	$2Al_2O_3 \cdot B_2O_3$	273.54		ca. 1050		i aq
bromide	AlBr ₃	266.69	3.205^{18}_{0}	97.5	subl 253	d (viol) aq; s alc, acet, bz, CS ₂
butoxide, sec-	$Al(C_4H_9O)_3$	246.33	0.967		200-206 ^{30mm}	FP 27; v s org solv
butoxide, tert-	$Al(C_4H_9O)_3$	246.33	1.025_0^{20}		subl 180	v s org solv
carbide (4/3)	Al_4C_3	143.96	2.360	2100	d >2200400mm	d aq; fire hazard
chlorate	$Al(ClO_3)_3$	277.35				v s aq; s alc
chloride	AlCl ₃	133.34	2.44025	192.6	subl 181.1	g/100 mL: 70 aq (viol), 100^{12} abs alc; s CCl ₄ , eth; sl s bz
ethoxide	$Al(C_2H_5O)_3$	162.16	1.142_0^{20}	140	205 ^{14mm}	s hot aq d; v sl s alc, eth
fluoride	AlF ₃	83.98	2.882_4^{25}	1090	subl 1272	0.56 aq; i a, alk, alc, acet
hydroxide	Al(OH) ₃	78.01	2.42	to Al ₂ O ₃ , 300		i aq; s acids, alkalis
iodide	AlI ₃	407.69	3.9817	191.0	382	d aq; s alc, eth, CS ₂
isopropoxide	$Al(C_3H_7O)_3$	204.25	1.0346_0^{20}	118.5	135 ^{10mm}	d aq; s alc, bz, chl, PE
methoxide	Al(CH ₃ O) ₃	72.07		0	130	

nitrate 9-water	$Al(NO_3)_3 \cdot 9H_2O$	375.13	1.72	73	d 135	g/100 mL: 64 aq, 100 alc; s acet
nitride	AIN	40.99	3.05	d 2517		d aq, acid, alkali
oxide (alpha-)	AlO ₃	101.96	3.97	2054(6)	2980	i aq; v sl s a, alk
perchlorate 6-water	$Al(ClO_4)_3 \cdot 6H_2O$	433.43	2.020	120.8	anhyd 178	133 g/100 mL ²⁰ aq
phenoxide	$Al(C_6H_5O)_3$	306.27	1.23	d 265		d aq; s alc, chl, eth
phosphate	AlPO ₄	121.95	2.56	>1460		i aq; sl s a
phosphide	AlP	57.96	2.85415	2550		d aq
phosphinate (hypophos- phite)	$Al(H_2PO_2)_3$	221.94		d to PH ₃ , 220		i aq; s HCl, warm alkali
potassium bis(sulfate) 12-water	$AlK(SO_4)_2 \cdot 12H_2O$	474.39	1.75720	– 9H ₂ O, 92	anhyd, 200	11.4 g/100 mL aq; v s glyc; i alc
propoxide	$Al(C_3H_7O)_3$	204.25	1.0578^{20}_{0}	106	248 ^{14mm}	d aq; s alc
selenide	Al ₂ Se ₃	290.84	3.437 ²⁰	947		d aq, acid
silicon oxide (1/1)	$Al_2O_3 \cdot SiO_2$	162.05	3.247			i aq; d HF; s fused alkali
sodium bis(sulfate)	$AlNa(SO_4)_2 \cdot 12H_2O$	458.28	1.67520	61		110 g/100 mL ¹⁵ aq; i alc
12-water						c
stearate	$Al(C_{18}H_{35}O_2)_3$	877.41	1.070	117-120		i aq, alc; s bz, alk
sulfate	$Al_2(SO_4)_3$	342.15	1.61	770 d		36.4 g/100 mL ²⁰ aq; sl s alc
sulfate 18-water	$Al_2(SO_4)_3 \cdot 18H_2O$	666.46	1.6917	d 86.5		87 g/100 mL ⁰ aq; i alc
sulfide	Al ₂ S ₃	150.16	2.2013	1097	subl 1500	hyd aq; s acid
tetrahydridoborate	Al(BH ₄) ₃	71.53		-64.5	44.5	d aq; ign air; expl in O ₂ , 20
Americium	Am	243	12	1176	2011	sa
Ammonia	NH ₃	17.03	lq: 0.6818 at bp g: 0.6175 ^{15, 7.2atm}	-77.75	-33.35	g/100 mL: 34 aq; 13.2 alc; s eth, organic solvents
Ammonium acetate	$NH_4C_2H_3O_2$	77.08	1.17^{20}	114	d	g/100 mL: 1484 aq, 7.915 MeOH; s alc
amidosulfate	NH ₄ SO ₃ NH ₂	114.13		131	d 160	v s aq; sl s alc
benzoate	NH ₄ C ₆ H ₅ O ₂	139.15	1.260	198	subl 160	g/100 mL: 2015 aq, 2.8 alc; s glyc
bromide	NH₄Br	97.94	2.429	452 (subl under pressure)	d 397 vacuo	76 g/100 mL ²⁰ aq; v s acet, alc, eth
calcium arsenate 6-water	$NH_4CaAsO_4 \cdot 6H_2O$	305.13	1.90515	d 140		0.02 aq; s NH₄Cl
carbamate	NH₄COONH₂	78.07		subl 60		v s aq; sl s alc; i eth
carbonate 1-water	$(NH_4)_2CO_3 \cdot H_2O$	114.10		volatilizes 60		v s aq; i alc
chloride	NH₄Cl	53.49	1.527425	237.8	520	g/100 mL: 26 ¹⁵ aq, 0.6 ¹⁹ abs alc; i acet, eth
chromate(VI)	$(NH_4)_2CrO_4$	152.07	1.91 ¹²	d 185		34 g/100 mL ²⁰ aq; sl s MeOH
chromium(III) bissulfate 12-water	$NH_4Cr(SO_4)_2 \cdot 12H_2O$	478.34	1.72	94 d		7.2 g/100 mL ⁰ aq
copper(II) tetrachloride 2-water	$(\mathrm{NH_4})_2\mathrm{CuCl_4}\cdot\mathrm{2H_2O}$	277.46	1.993	anhyd, 110	d >120	40.3 g/100 mL ²⁰ aq; s alc

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
cyanide	NH₄CN	44.06	1.10	d 36		v s aq, alc
dichromate(VI)	$(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7$	252.07	2.155	d 180 to Cr_2O_3		35.6 g/100 mL ²⁰ aq; s alc; flammable
dihydrogen arsenate	NH ₄ H ₂ AsO ₄	158.97	2.311	d 300		v s aq
dihydrogen phosphate	NH ₄ H ₂ PO ₄	115.03	1.80319	d 190		37 g/100 mL ²⁰ aq; sl s alc; i acet
disulfatocobatate(II) 6-water	$(\mathrm{NH}_4)_2[\mathrm{Co}(\mathrm{SO}_4)_2]\cdot 6\mathrm{H}_2\mathrm{O}$	395.23	1.902			18 g/100 mL ²⁰ aq; v sl s alc
disulfatoferrate(II) 6-water	$(NH_4)_2[Fe(SO_4)_2] \cdot 6H_2O$	392.14	1.864	d 100		36.4 g/100 mL ²⁰ aq; i alc
disulfatoferrate(III) 12-water	$NH_4[Fe(SO_4)_2] \cdot 12H_2O$	482.19	1.71	39-41	d 230	124 g/100 mL aq
disulfatonickelate(II) 6-water	$(\mathrm{NH_4})_2[\mathrm{Ni}(\mathrm{SO}_4)_2]\cdot 6\mathrm{H_2O}$	395.00	1.923			8.95 g/100 mL ²⁰ aq
dithiocarbamate	$NH_4S(C=S)NH_2$	110.20	1.451_{4}^{20}	99 d		v s aq; s alc; sl s eth
diuranate(VI)	$(NH_4)_2U_2O_7$	624.22	-			v sl s aq, alk; s acids
fluoride	NH₄F	37.04	1.00925	d to $NH_3 + HF$		$100 \text{ g/}100 \text{ mL}^0 \text{ aq; s alc}$
formate	NH4OOCH	63.06	1.27	116	d 180	143 g/100 mL ²⁰ aq; s alc, eth
heptamolybdate(VI)(6-) 4-water	$(NH_4)_2Mo_7O_{24} \cdot 4H_2O$	1235.86	2.498	anhyd 90	d 190	43 g/100 mL aq; s acids; i alc
hexachloropalladate(IV)	$(NH_4)_2[PdCl_6]$	355.20	2.418	d		sl s aq
hexachloroplatinate(IV)	$(NH_4)_2[PtCl_6]$	443.87	3.065	d 380		0.5 aq
hexadecanoate	NH ₄ OOC(CH ₂) ₁₄ CH ₃	273.45		21-22		s aq; sl s bz; i alc, acet
hexafluoroaluminate(3-)	$(NH_4)_3[AlF_6]$	195.09	1.78	d >100		vsaq
hexafluorogallate	$(NH_4)_3GaF_6$	237.83	2.10	d 200		
hexafluorogermanate	$(NH_4)_2GeF_6$	222.68	2.564	380	subl	s aq; i eth
hexafluorophosphate	NH ₄ [PF ₆]	163.00	2.180^{18}_{4}	d 68		74.8 g/100 mL ²⁰ aq; s alc, acet
hexafluorosilicate	$(NH_4)_2[SiF_6]$	178.15	2.011	d		18.6 g/100 mL ²⁰ aq; i alc, acet
hexanitratocerate(IV)	$(NH_4)_2[Ce(NO_3)_6]$	548.22				135 g/100 mL ²⁰ aq; s alc, HNO
hydrogen carbonate	NH ₄ HCO ₃	79.06	1.586	107 (rapid heating)		g/100 mL: 17.4 ²⁰ aq, 10 glyc
hydrogen citrate	$(NH_4)_2HC_6H_5O_7$	226.19	1.48	0,		100 g/100 mL aq; sl s alc
hydrogen difluoride	NH₄HF₂	57.04	1.51	124.6	240 d	v s aq; sl s alc
hydrogen oxalate hydrate	$NH_4HC_2O_4 \cdot H_2O$	125.08	1.556	anhyd, 170		s aq, alc; i bz, eth
hydrogen phosphate	$(NH_4)_2 HPO_4$	132.06	1.619	d 155		$69 \text{ g/100 mL}^{20} \text{ aq}$; i alc, acet
hydrogen sulfate	NH ₄ HSO ₄	115.11	1.78	146.9	d 350	100 g/100 mL aq; i alc, acet

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

hydrogen sulfide	NH₄HS	51.11	1.17	d 25 to NH ₃ + H ₂ S		128 g/100 mL ^o aq; s glyc; i alc, acet
hydrogen sulfite	NH ₄ HSO ₃	99.11	2.03	subl 150 in N ₂		267 g/100 mL ¹⁰ aq
hydrogen (±)tartrate	NH4HC4H4O6	167.12	1.68	d 200		2.2 ¹⁵ aq; i alc
hydroxide	NH₄OH	35.05		- 77		49% dissolved NH ₃
hypophosphite	NH ₄ H ₂ PO ₂	83.03		d		v s aq; sl s alc; i acet
iodate	NH ₄ IO ₃	192.94	3.309	d 150		2.6 ¹⁵ aq
iodide	NH₄I	144.94	2.514 ²⁵	subl 551	220 vacuo	167 g/100 mL ²⁰ aq; v s alc, acet
lactate	NH ₄ C ₃ H ₅ O ₃	107.11	1.215	92		v s aq, alc, glyc; i acet, eth
magnesium arsenate 6-water	NH ₄ MgAsO ₄ · 6H ₂ O	289.36	1.923	d		0.038 ²⁰ aq
molybdate(VI)(2-)	$(NH_{4})_{2}MOO_{4}$	196.04	2.276 ²⁵	d		s acids
nitrate	NH ₄ NO ₃	80.04	1.72525	169.6	d 210	g/100 mL: 192 ²⁰ aq; 3.8 ²⁰ alc; 17 ²⁰ MeOH; s acet
octadecanoate	NH ₄ OOC(CH ₂) ₁₆ CH ₃	301.50		21-22		sl s aq; s alc; i acet
octanoate	NH4OOC(CH2)6CH3	161.24		d on standing		v s aq, alc, acet; sl s eth
oxalate hydrate	$(NH_4)_2C_2O_4 \cdot H_2O$	142.11	1.50	d 70		5.1^{20} aq; s alc
oxodioxalatotitanate(IV)	$(NH_4)_2TiO(C_2O_4)_2$	276.02				v s aq
perchlorate	NH ₄ ClO ₄	117.49	1.95	d 240		g/100 mL ²⁵ : 21.9 aq, 1.49 EtOH, 0.014 BuOH, 0.029 EtOAc
permanganate	NH ₄ MnO ₄	136.97	2.20810	explodes, 110		0.8 ¹⁵ aq
peroxodisulfate	$(NH_4)_2S_2O_8$	228.20	1.982	d 120	expl 180	58 g/100 mL ^o aq
phosphinate	NH ₄ PH ₂ O ₂	83.04	1.634	200	d 240	g/100 mL: 100 aq, 5 alc; i acet
phosphomolybdate hydrate	$(NH_4)_3PO_4 \cdot 12MoO_3 \cdot H_2O$	1894.36		d		sl s aq
picrate	NH ₄ C ₆ H ₂ N ₃ O ₇	246.14	1.719	d	expl 423	1.1 ²⁰ aq; sl s alc
selenate(VI)	$(NH_4)_2SeO_4$	179.04	2.193 ²⁰	d		117 g/100 mL ⁷ aq; s HOAC; i alc
stearate	NH ₄ C ₁₈ H ₃₅ O ₂	301.51	0.89	22		sl s aq, bz; s alc; i acet
sulfamate	NH ₄ NH ₂ SO ₃	114.13		131	d 160	v s aq; sl s alc
sulfate	$(NH_4)_2SO_4$	132.14	1.76920	d >280		43.5 g/100 mL ²⁰ aq; i alc, acet
sulfide	(NH ₄) ₂ S	68.14		d ≈0		v s aq; s alc, alk
sulfite hydrate	$(NH_4)_2SO_3 \cdot H_2O$	134.16	1.41	d 60		75 g/100 mL ²⁰ aq; i alc, acet
(±)tartrate	$(NH_4)_2C_4H_4O_6$	184.15	1.601	d		58 g/100 mL ¹⁵ aq; sl s alc
tetraborate 4-water	$(\mathrm{NH}_4)_2\mathrm{B}_4\mathrm{O}_7\cdot 4\mathrm{H}_2\mathrm{O}$	263.44				s aq; i alc

(Continued)

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
tetrachloroaluminate	NH ₄ [AlCl ₄]	186.83		304		s aq, eth
tetrachloropalladate(II)	$(NH_{4})_{2}[PdCl_{4}]$	284.29	2.170	d		v s aq; i abs alc
tetrachloroplatinate(II)	$(NH_4)_2[PtCl_4]$	372.97	2.936	140 d		s aq; i alc
tetrachlorozincate	$(NH_4)_2[ZnCl_4]$	243.28	1.879	150 d	subl 341	vsaq
tetrafluoroborate	NH ₄ [BF ₄]	104.84	1.871	subl		25 g/100 mL ¹⁶ aq
thiocyanate	NH₄SCN	76.12	1.305	149.6	d 170	$128 \text{ g/100 mL}^0 \text{ aq}; \text{ v s alc}; \text{ s acet}$
thiosulfate	$(NH_4)_2S_2O_3$	148.21	1.679	d 150		2.15 ¹⁵ aq; i alc, eth
vanadate(V) $(1-)$	NH₄VO3	116.98	2.326	d 200		0.48 ²⁰ aq
Antimony	Sb	121.760(1)	6.697 ²⁵	630.7	1587	s hot conc H_2SO_4 , aqua regia
arsenide	SbAs	196.68	6.0	≈680		
(III) bromide	SbBr ₃	361.47	4.35	96.6	280	s acet, bz, chl
(III) chloride	SbCl ₃	228.12	3.14_{4}^{20}	73.4	220.3	10 g/100 mL ²⁰ aq; s alc, bz, chl
(V) chloride	SCl ₅	299.02	2.336420	3.5	79 ^{22mm}	d aq; s HCl, chl, CCl ₄
(III) fluoride	SbF ₃	178.75	4.37920	292	376	444 g/100 mL ²⁰ aq
(V) fluoride	SbF ₃	216.75	2.9923	8.3	141	d viol aq; s HOAc; forms solids with alc, bz, CS ₂ , eth
hydride (stibine)	SbH ₃	124.78	5.475 g/L	-91.5	-18.4	$20 \text{ mL}/100 \text{ mL}^{20} \text{ ag}; \text{ s CS}_2, \text{ alc}$
(III) iodide	SbI ₃	502.47	4.92	168	401	g/100 g ²⁵ : 1.16 bz, 1.24 tol, 0.16 chl
(III) oxide (valentinite)	Sb ₂ O ₃	291.52	5.7	655	1425	v sl s aq; s HCl, KOH
(V) oxide	Sb ₂ O ₃	323.52	3.78	$-O_2$, >300		v sl s ag; sl s warm KOH, eth
(III) selenide	Sb ₂ Se ₃	480.40	5.81	612		v sl s aq; s conc HCl
(III) sulfate	$SB_2(SO_4)_3$	531.71	3.62	d		sl s aq
(III) sulfide	Sb_2S_3	339.72	4.56	546		0.002^{20} aq (d); s H ₂ SO ₄
(V) sulfide	Sb_2S_5	403.85	4.120	75 d		i aq; s HCl (d), NaOH
(III) telluride	Sb ₂ Te ₃	626.32	6.52	620		i aq; s HNO ₃
triethyl	$Sb(C_2H_5)_3$	209.0	1.32414	-29	159.5	i aq
trimethyl	Sb(CH ₃) ₃	166.9	1.52315		80.6	sl s aq
Argon	Ar	39.948(1)	1.7824 g/L ^o	- 189.38		3.36 mL/100 mL ²⁰ aq
Arsenic	As	74.92159(2)	5.72745	817	subl 615	i aq; s HNO ₃
(III) bromide	AsBr ₃	314.63	3.3972 ²⁵	31.1	220.0	hyd aq; s HCl, CS ₂ , PE
(III) chloride	AsCl ₃	181.28	2.1497_{4}^{25}	-16.2	130.2	misc chl, CCl ₄ , eth; s HCl
(di-) disulfide	As_2S_2	213.97	3.254 ¹⁹	320	565	s alkali; v sl s bz
(III) fluoride	AsF ₃	131.92	2.7315	- 5.95	57.8	s alc, bz, eth, HF
(V) fluoride	AsF ₅	169.91	7.46 g/L	- 79.8	-52.8	hyd aq; s alc, bz, eth

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

(III) hydride (arsine)	AsH ₃	77.95	3.420 g/L	-116.9	-62.5	28 mL/100 mL ²⁰ aq; s bz, chl
(III) iodide	AsI3	455.63	4.73	140.9	424	s bz, tol; sl s aq, alc, eth
(III) oxide (arsenolite)	As_2O_3	197.84	3.86	274	460	1.8^{20} aq; s alc
(III) oxide (claudetite)	As_2O_3	197.84	3.74	313	460	sl s aq; s dil acid, alk
(V) oxide	As_2O_5	229.84	4.32	315	d 800	66 g/100 mL ²⁰ aq; s alc
(III) selenide	As_2Se_3	386.72	4.75	260		s alkali, HNO₃
(III) sulfide	As_2S_3	246.04	3.460	310	707	i aq; s alk, slowly s hot HCl
(V) sulfide	As_2S_5	310.17		subl 500		0.0003 aq; s alkali, HNO_3
(III) telluride	As ₂ Te ₃	532.64	6.50	621		
Astatine	At	210		302		
Barium	Ba	137.33	3.5120	726.9	1845	d aq to Ba(OH)
acetate hydrate	$Ba(C_2H_3O_2)_2 \cdot H_2O$	273.43	2.19	anhyd 110	d 150	58.8 g/100 mL ^o aq; 0.014 alc
benzenesulfonate	$Ba(O_3SC_6H_5)_2$	451.70				s aq; sl s alc
bromate hydrate	$Ba(BrO_3)_2 \cdot H_2O$	411.14	3.9918	d 260		0.96 ³⁰ aq; s acet; i alc
bromide	BaBr ₂	297.14	4.781	856	1835	92 g/100 mL ^o aq; s MeOH, acet
carbonate	BaCO ₃	197.34	4.2865	d 1300 to BaO		0.0024 aq; s acids
				$+ CO_2$		
chlorate hydrate	$Ba(ClO_3)_2 \cdot H_2O$	322.24	3.179	anhyd 120	-O ₂ , 250	34 g/100 mL ²⁰ aq; sl s alc, acet
chloride	BaCl ₂	208.24	3.85624	962	1560	36 g/100 mL ²⁰ aq; s MeOH; i acet, EtAc
chloride dihydrate	$BaCl_2 \cdot 2H_2O$	244.26	3.097	anhyd 113		31.7 g/100 mL ^o aq
chromate(VI)	BaCrO₄	253.33	4.498 ²⁰	d		0.001 ²⁰ aq; s mineral acids
cyanide	Ba(CN) ₂	189.36				80 g/100 mL ¹⁴ aq; s alc
fluoride	BaF ₂	175.32	4.89	1368	2260	0.161 ²⁰ aq; s acids
hexafluorosilicate	Ba[SiF ₆]	279.40	4.29 ²¹	d 300		0.0235 ²⁵ aq; s NH ₄ Cl soln; i alc
hydrogen phosphate	BaHPO₄	233.31	4.16515	d 410		0.01 aq; s HCl, HNO_3
hydroxide 8-water	$Ba(OH)_2 \cdot 8H_2O$	315.48	2.18 ¹⁶	78		3.9 ²⁰ aq
iodate	$Ba(IO_3)_2$	487.13	5.23 ²⁰	d 476		0.033 ²⁰ aq; s HCl
iodide	Bal ₂	391.14	5.15	711	2027	169 g/100 mL ²⁰ aq; s alc, acet
manganate(VI)(2-)	BaMnO ₄	256.26	4.85			disprop to $Ba(MnO_4)_2 + MnO_2$
molybdate	BaMoO ₄	297.27	4.975	1450		0.0058 ²⁵ aq
niobate	$Ba(NbO_3)_2$	419.14	5.44	1455		i aq
nitrate	$Ba(NO_3)_2$	261.34	3.24 ²³	592	d	5.0 aq; v sl s alc, acet
nitrite hydrate	$Ba(NO_2)_2 \cdot H_2O$	247.35	3.17330	d 115		54.8 g/100 mL ⁰ aq; i alc

(Continued)

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
oxalate	BaC₂O₄	225.35	2.658	400 d		i aq
oxide	BaO	153.33	5.72	1973	3088	3.5^{20} aq; s acids, EtOH
perchlorate	$Ba(ClO_4)_2$	336.23	3.20	505		g/100 mL ²⁵ : 129 aq, 78 EtOH, 42 BuOH, 81 EtOAc; i eth
perchlorate 3-water	$Ba(ClO_4)_2\cdot 3H_2O$	390.27	2.74	d 400		198 g/100 mL ²⁵ aq; s MeOH; sl s acet
permanganate	$Ba(MnO_4)_2$	375.20	3.77	d 200		v s aq
peroxide	BaO ₂	169.33	4.96	450 d	$-O_2$, 800	1.5° aq
selenide	BaSe	216.29	5.02	1780	-	d ag
stearate	$Ba(C_{18}H_{35}O_2)_2$	704.28	1.145	160		i aq
sulfate	BaSO ₄	233.39	4.5015	1580	d >1600	0.00285 aq
sulfide	BaS	169.39	4.2515	2230		7.9 ²⁰ aq; dec in acids
sulfite	BaSO ₃	217.39	4.44	d .		0.02° aq; i alc
tetracyanoplatinate(II)- 4-water	$Ba[Pt(CN)_4] \cdot 4H_2O$	508.54	2.076			2.86 aq; i alc
thiocyanate 2-water	Ba(SCN) ₂ · 2H ₂ O	289.53	2.28618	d 160		170 g/100 mL ²⁰ aq; s alc, acet
thiosulfate hydrate	BaS ₂ O ₃ · H ₂ O	267.47	3.518	d 220		0.21 ²⁰ aq; i alc, acet, eth, CS
titanate(IV) $(2-)$	BaTiO ₃	233.19	6.02	1625		i aq
vanadate	$Ba_3(VO_4)_2$	641.86	5.14	707		-
zirconate	BaZrO ₃	276.55	5.52	2500		i aq, alk; sl s acids
Berkelium (α form)	Bk	247	14.78	1050		-
$(\beta \text{ form})$	Bk	247	13.25	986		
Beryllium	Be	9.012	1.8477 ²⁰	1287	2467	i aq; s acid, alk
bromide	BeBr ₂	168.82	3.465 ²⁵	508	521	v s aq; s alc; 18.6 pyr
carbide	Be ₂ C	30.04	1.9015	d >2127		d aq; s acids, alkali giving CH ₄
chloride	BeCl ₂	79.92	1.899 ²⁵	415 (alpha)	482.3	42 g/100 mL aq; s alc, eth, pyr, CS ₂
fluoride	BeF ₂	47.01	1.986	555	subl 1036 ^{1mm}	v s aq (slowly)
hydride	BeH ₂	11.03	0.65	$-H_2$, 220		d aq (slowly), acids (rapidly)
hydroxide	Be(OH) ₂	43.03	1.909	93		s hot conc acids and alkali (viol)
iodide	BeI ₂	262.82	4.32	480	487	hyd aq violently; s alc, eth, CS ₂
nitrate 3-water	$Be(NO_3)_2 \cdot 3H_2O$	187.07	1.557	60.5	d 125	166 g/100 mL ²⁰ aq
nitride	Be ₃ N ₂	55.05	2.71	2200		d hot aq, alkali
oxide	BeO	25.01	3.025	2578 (alpha)	3787	s conc H_2SO_4
selenate 4-water	$BeSeO_4 \cdot 4H_2O$	224.03	2.03	anhyd 300	d 560	49 g/100 mL ²⁵ aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

silicate	Be ₂ SiO ₄	110.11	3.0	1560		i aq
sulfate 4-water	$BeSO_4 \cdot 4H_2O$	177.14	1.713	anhyd 270	d 580	39 g/100 mL ²⁰ aq; i alc
sulfide	BeS	41.08	2.36	d		i aq; s HNO3
Bismuth	Bi	208.9804	9.78	271.5	1564	i aq; s hot H_2SO_4
(III) bromide	BiBr ₃	448.69	5.72	218	453	d aq; s dil acids, acet
bromide oxide	BiBrO	304.88	8.08215	d		i aq; s acids
(III) chloride	BiCl ₃	315.34	4.75	233.5	447	d aq; s HCl, alc, eth, acet
chloride oxide	BiClO	260.43	7.7215	d		i aq; s HCl
(III) fluoride	BiF ₃	265.98	8.32	727	900	i aq; s HF
(V) fluoride	BiF ₅	303.97	5.55 ²⁵	154.4	subl 550	d (viol) aq giving $O_3 + BiF_3$
hydride	BiH ₃	212.00	9.303 g/L	-67	16.8	very unstable liquid
(III) hydroxide	Bi(OH) ₃	260.00	4.96215	-water, 100		d aq; s HCl
(III) iodide	Bil3	589.69	5.77840	408.6	subl 439	i aq; s HCl, alc
iodide oxide	BilO	351.88	7.922	d red heat		i aq; s HCl
(III) nitrate 5-water	Bi(NO ₃) ₃ · 5H ₂ O	485.07	2.83	anhyd 80		d aq; s HNO ₃ , acet, glyc
(III) oxide	Bi ₂ O ₃	465.96	8.76	817	1890	i aq; s HCl, HNO3
(V) oxide	Bi ₂ O ₅	497.96	5.10	d 150		i aq; s KOH
(III) phosphate	BiPO₄	303.95	6.32315	d		s conc HCl, HNO ₃
(III) selenide	Bi ₂ Se ₃	654.84	7.70420	710 d	d	i aq; d aq reg
(III) sulfate	$Bi_2(SO_4)_3$	706.14	5.08	d 405		d aq, alc; s HCl
(III) sulfide	Bi ₂ S ₃	514.16	6.78	850		i aq, EtAc; s HNO ₃ , HCl
(III) telluride	Bi ₂ Te ₃	800.76	7.74	588.5		i aq; s alc
Boranes						_
diborane(6)	B_2H_6	27.67	1.214 g/L	-165.5	-92.5	FP -68 ; s NH ₄ OH, conc H ₂ SO ₄
tetraborane(10)	B_4H_{10}	53.32	2.340 g/L	-120	18	sl s aq; s bz
pentaborane(9)	B ₅ H ₉	63.13	0.60	-46.81	60.0	hyd aq
pentaborane(11)	B ₅ H ₁₁	65.14	0.745	- 123	63	daq
hexaborane(10)	B_6H_{10}	74.95	0.67	-62.3	108 d	d hot aq
decaborane(14)	$B_{10}H_{14}$	122.22	0.948	99.5	213	sl s aq; s bz, CS_2 , eth
Borazine	B ₃ H _c N ₃	80.50	lq: 0.81 ^{bp}	- 58	55	sl s aq (d)
Boric acids, see under	5 6 5		•			
Hydrogen						
Boron	В	10.811	2.34	2076	3864	i aq
carbide	B₄C	55.25	2.510 ²⁵	2350	>3500	s fused alkalis
tribromide	BBr ₃	250.52	2.6	-46.0	91.3	d aq, alc
trichloride	BCl ₃	117.17	5.141 g/L	-107	12.7	d aq, alc
	-		U			-

(Continued)

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
trifluoride	BF ₃	67.81	3.077 g/L ^{STP}	- 127.1	-100.4	332 g/100 mL ^o aq; s bz, chl, CCl ₄
trifluoride 1-diethyl ether	$BF_3 \cdot O(C_2H_5)_2$	141.94	1.125	-60.4	125.7	d aq
trifluoride 1-methanol	$BF_3 \cdot HOCH_3$	131.89	1.203		59 ^{4mm}	
nitride	BN	24.82	2.18	2967		sl s hot acids
oxide	B_2O_3	69.62	2.55	450.0	2065	3.3 aq (slowly); s alc, glyc
Bromine	Br ₂	159.808	3.102345	-7.25	58.8	3.4 g/100 mL ²⁰ aq; v s alc, chl, eth
pentafluoride	BF ₅	174.90	2.460	-60.5	40.76	explodes with water; s HF
trifluoride	BF3	136.90	2.80325	8.77	125.74	d viol aq; d alk; smokes in air
Cadmium	Cd	112.411	8.6525	321	765	i aq, alk; s HNO ₃ , hot HCl
acetate	$Cd(C_2H_3O_2)_2$	230.50	2.341	255	d	v s aq; s alc
bromide	CdBr ₂	272.22	5.192	566	963	99 g/100 mL ²⁰ aq; s acet; sl s eth
carbonate	CdCO ₃	172.42	4.2584	d 500		s acids, NH₄OH
chloride	CdCl ₂	183.32	4.0525	568	960	120 g/100 mL ²⁵ aq
cyanide	$Cd(CN)_2$	164.44	2.226	d 200		1.71 g/100 mL ¹⁵ aq; sl s alc
fluoride	CdF ₂	150.41	6.33	1110	1748	4.3 g/100 mL ²⁵ aq
hydroxide	Cd(OH) ₂	146.43	4.79	$-H_2O$, 130	CaO, 200	0.00026 ²⁰ aq; s acids
iodide	CdI ₂	366.22	5.670	388	742	84.7 g/100 mL ²⁰ aq; s alc, acet, eth
nitrate 4-water	$Cd(NO_3)_2 \cdot 4H_2O$	308.48	2.455	59.4		167 g/100 mL ²⁵ aq; s alc, acet
oxide	CdO	128.41	8.15 cubic	1540		i aq; s acids
phosphide	Cd_3P_2	399.18	5.96	700		s dil acid
selenide	CdSe	191.37	5.8115	1350		i aq; d acids
sulfate-water (3/8)	$3CdSO_4 \cdot 8H_2O$	769.56	3.08	monohydrate, 80	1	94.4 g/100 mL ²⁵ aq; i alc, EtAc
sulfide	CdS	144.48	4.83	1750		0.13^{18} aq; s acids
telluride	CdTe	240.01	6.20415	1041		i aq; d HNO ₃
tungstate(VI)	CdWO ₄	360.25	8.0			i aq, dil acids; s alkali CN's
Calcium	Ca	40.078(4)	1.55	842	1484	d aq; s acids
acetate	$Ca(C_2H_3O_2)_2$	158.17	1.50	d >160		37.4 g/100 mL ⁰ aq; i alc, bz, acet
arsenate	$Ca_3(AsO_4)_2$	398.07	3.620			0.013 ²⁵ aq
bromide	CaBr ₂	199.89	3.38	742	1815	143 g/100 mL ²⁰ aq; v s alc, acet
carbide	CaC ₂	64.10	2,222	2300		reacts with aq giving C ₂ H ₂
carbonate (aragonite)	CaCO ₃	100.09	2.83	d 825 to CaO		s dil acids
carbonate (calcite)	CaCO ₃	100.09	2.711	d 825 to CaO		0.0013 g/100 mL ²⁰ ; s acids
chlorate 2-water	$Ca(ClO_3)_2 \cdot 2H_2O$	243.01	2.711	anhyd 100		167 g/100 mL ²⁰ aq; s alc

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)
chloride	CaCl ₂	110.98	2.16_{4}^{25}	775	ca. 1940	42 g/100 mL ²⁰ aq; s alc, acet
chloride 6-water	$CaCl_2 \cdot 6H_2O$	219.07	1.71	anhyd 200		74.5 g/100 mL20 aq; v s alc
chlorite	$Ca(ClO_2)_2$	174.99	2.71^{25}	100		167 g/100 mL aq; s alc
chromate(VI) 2-water	$CaCrO_4 \cdot 2H_2O$	192.10	2.50	anhyd 200		sl s aq; s dil acids
citrate 4-water	$CaC_6H_6O_7 \cdot 4H_2O$	570.51		anhyd 120		0.10 aq; i alc
cyanamide	CaCN ₂	80.10	2.29	ca. 1340	subl	no known solv without dec
cyanide	Ca(CN) ₂	92.11		s >350		s aq
dichromate(VI)	CaCr ₂ O ₇	256.10	2.370 ³⁰	d >100		v s aq; i eth; d alc
dihydrogen phosphate hydrate	$Ca(H_2PO_4)_2 \cdot H_2O$	252.07	2.22048	anhyd 100	d 200	1.8 ³⁰ aq
diphosphate (pyrophos- phate)	$Ca_2P_2O_7$	254.10	3.09	1353		i aq; s HCl, HNO ₃
fluoride	CaF ₂	78.08	3.180	1418	2533	0.0015 ²⁰ aq; s conc mineral acids
formate	$Ca(CHO_2)_2$	130.11	2.015	300 d		16.6 g/100 mL ²⁰ aq; i alc
(+)gluconate	Ca[OOC(CHOH) ₂ CH ₄ OH] ₂	430.38				3.72 ²⁰ aq
glycerophosphate	Ca[C ₃ H ₅ (OH) ₃]PO ₄	210.16		d >170		1.66 ²⁰ aq; i alc
hexafluorosilicate	Ca[SiF ₆]	182.17	2.662			i aq, acet
hydride	CaH ₂	42.09	1.70	1000		d aq, alc
hydroxide	Ca(OH) ₂	74.09	2.343	−H ₂ O, 580		0.17^{10} aq; s acids
hypochlorite	Ca(OCl) ₂	142.99	2.35	100 d		d aq evolving Cl ₂ ; i alc
iodate	Ca(IO ₃) ₂	389.88	4.519 ¹⁵	d >540		0.10° aq; i alc
iodide	Cal ₂	293.89	3.956	783	1755	68 g/100 mL ²⁰ aq; v s alc, acet; i eth
lactate 5-water	$Ca(C_3H_5O_3)_2 \cdot 5H_2O$	308.30		$-3H_2O$, 100	anhyd 120	5.4^{15} aq; v sl s alc
magnesium carbonate	Ca[Mg(CO ₃) ₂]	184.41	2.872	d 730		0.03218 aq; s HCl
molybdate(VI)(2-)	CaMoO ₄	200.02	4.35			s conc mineral acids
nitrate	$Ca(NO_3)_2$	164.09	2.504	561		152 g/100 mL ³⁰ aq
nitride	Ca ₃ N ₂	148.25	2.67	1195		d aq; s dilute acids (d)
nitrite 4-water	$Ca(NO_2)_2 \cdot 4H_2O$	204.15	1.674	d		84.5 g/100 mL18 aq; sl s alc
oleate	$Ca(C_{18}H_{33}O_2)_2$	603.01		83-84	d >400	0.04 aq; s chl, bz; v sl s alc, eth
oxalate hydrate	$CaC_2O_4 \cdot H_2O$	146.11	2.2	anhyd 200		0.0006 aq; s acids
oxide	CaO	56.08	3.34	2900	3500	0.13 ²⁵ aq; s acids
palmitate	$Ca(C_{16}H_{31}O_2)_2$	550.93		d >155		0.003 aq; sl s bz, chl, HOAc
(+)panthothenate (vitamin B ₃)	Ca[O ₂ CH ₂ CH ₂ NHO- CH(OH)C(CH ₃) ₂ CH ₂ OH] ₂	476.55		d 195–196		36 g/100 mL aq; sl s alc, acet
perchlorate	Ca(ClO ₄) ₂	238.98	2.65	d 270		g/100 mL ²⁵ : 112 aq, 89.5 EtOH, 68 BuOH, 57 EtOAc, 43 acet

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
permanganate 5-water	$Ca(MnO_4)_2 \cdot 5H_2O$	368.03	2.4	d		338 g/100 mL aq
peroxide	CaO ₂	72.08	2.92	explodes 275		sl s aq; s acids
phenoxide	$Ca(OC_6H_5)_2$	226.28	d in air			sl s aq, alc
phosphate	$Ca_3(PO_4)_2$	310.18	3.14	1670		0.03 ²⁵ aq; s HCl, HNO ₃ ; i alc
phosphide	Ca ₃ P ₂	182.18	2.51	ca. 1600		d aq; s acids; i alc, eth
phosphinate	$Ca(PH_2O_2)_2$	170.06		d >300		15.4 g/100 mL aq; sl s glyc
propanoate	$Ca(OOCC_3H_5)_2$	186.22				s aq; sl s alc; i acet, bz
salicylate 2-water	$Ca(C_7H_5O_3)_2 \cdot 2H_2O$	350.34		anhyd 200	d 240	2.8 ¹⁵ aq; 0.015 ¹⁶ EtOH
selenate 2-water	$CaSeO_4 \cdot 2H_2O$	219.07	2.75	anhyd 200	d 698	9.2 g/100 mL ²⁵ aq
selenide	CaSe	119.04	3.82			
silicate	Ca ₂ SiO ₄	172.24	3.27	2130		i aq
stearate	$Ca(C_{18}H_{35}O_2)_2$	607.04		179-180		0.004 ¹⁵ aq; s hot pyr; i acet, chl
succinate 3-water	$CaC_4H_6O_4 \cdot 3H_2O$	212.22				1.28^{20} aq; s acids; i alc
sulfate	CaSO ₄	136.14	2.960	1460		0.20 aq; s acids
sulfate hemihydrate	$CaSO_4 \cdot 0.5H_2O$	145.15		anhyd 163		0.3^{20} aq; s acids, glyc
sulfate 2-water	$CaSO_4 \cdot 2H_2O$	172.17	2.32	– 1.5 H ₂ O, 128	anhyd 163	0.26 ²⁰ aq; s acid, glyc
sulfide	CaS	72.14	2.59	2525		0.02 (d) aq; d acids
sulfite 2-water	$CaSO_3 \cdot 2H_2O$	156.17		anhyd 100		0.004 aq; s acids d; sl s alc
(±)tartrate 4-water	$CaC_4H_4O_6 \cdot 4H_2O$	260.21		anhyd 200		0.0045^{25} aq; s acids; sl s alc
telluride	СаТе	167.68	4.873			
tetraborate	CaB₄O ₇	195.36				s dil acids
tetrahydridoaluminate	$Ca[AlH_4]_2$	102.10		ign moist air		d viol aq, alc; i bz, eth
thiocyanate 3-water	$Ca(SCN)_2 \cdot 3H_2O$	210.29		d >160		150 g/100 mL aq; v s alc
thioglycollate 3-water	$Ca(-OOCCH_2S-) \cdot 3H_2O$	184.24		$-H_2O$, >95	d >220	s aq; v sl s alc, chl; i bz, eth
thiosulfate 6-water	$CaS_2O_3 \cdot 6H_2O$	260.30	1.872	d >45		92 g/100 mL ²⁵ aq; i alc
titanate	CaTiO ₃	135.84	3.98	1980		
tungstate(VI)(2-)	CaWO ₄	287.93	6.06220			0.0032 aq; d hot acids
Californium-252	Cf	252.1		900		
chloride	CfCl ₃	358.5	5.88			
Carbon (diamond)	С	12.011	3.513	3500 ^{63,5atm}	3930	i aq, alc
(graphite)	С		2.267	subl 3915-4020		
dioxide	CO_2	44.01	c: 1.56 ⁻⁷⁹	-78.44 subl		88 mL/100 mL ²⁰ aq
			g: 1.975 g/L ^o			
diselenide	CSe ₂	169.93	2.662645	-45.5	125.1	i aq; s acet, eth; misc CCl ₄ ; d alc
disulfide	CS ₂	76.14	1.2555	-111.6	46.56	$FP - 30; 0.29^{20} aq; s alc, eth$

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

hydride (methane)	CH ₄	16.04	0.415-164	-182.48	- 161.49	s bz
monoxide	CO	28.01	lq: 0.814 ⁻¹⁹⁵ g: 1.250 g/L ⁰	-205.05	- 191.49	2.3 mL/100 mL ²⁰ aq; 16 mL/100 ml alc; s HOAc. EtAc
suboxide	C_3O_2	68.03	1.114 ⁰ 2.985 g/L	-111.3	6.8	d aq to malonic acid; sl s CS_2
tetrabromide	CBr ₄	331.65	3.42	90.1	190	i aq; s alc, chl, eth
tetrachloride	CCl ₄	153.82	1.58925	-22.9	76.7	0.05 mL/100 mL aq; s alc, chl, eth
tetrafluoride	CF_4	88.00	1.96^{-184}	-183.6	-127.8	sl s aq
tetraiodide	CI_4	519.63	4.34420	171	subl 130	slowly hyd aq; s bz, chl, eth
Carbonyl bromide	COBr ₂	187.82	2.5		64.5	hyd aq
chloride	COCl ₂	98.92	4.340 g/L	- 127.9	8.2	hyd aq; s bz, HOAc
fluoride	COF ₂	66.01	lq: 1.139	-114.0	-83.1	hyd aq
			g: 2.896 g/L			· ·
sulfide	COS	60.07	2.636 g/L	-138.81	- 50.23	54 mL/100 mL ²⁰ aq; s alc, CS_2
Cerium	Ce	140.11	6.773	795	3440	i aq; s acids
(III) bromide	CeBr ₃	379.83	5.18	733	1460	s aq, alc
(III) chloride	CeCl ₃	246.47	3.97 ²⁵	817	1730	s aq, alc
(III) fluoride	CeF ₃	197.11	6.157	1430	2327	i but slowly hyd aq; s H_2SO_4
(IV) fluoride	CeF ₄	216.11	4.77	d >550		iaq
(III) iodide	CeI ₃	520.83		766	1400	saq
(III) nitrate 3-water	$Ce(NO_3)_3$ 3H ₂ O	380.17		anhyd 150	d 200	$234 \text{ g}/100 \text{ mL}^{20} \text{ aq}$
(IV) oxide	CeO ₂	172.11	7.65	2400		i aq; s acids
(III) sulfate	$Ce_2(SO_4)_3$	568.42	3.912	d 1000		$9.72 \text{ g}/100 \text{ mL}^{21} \text{ aq}$
(IV) sulfate	$Ce(SO_4)_2$	332.24	3.91	d 195		hyd aq; s dil H_2SO_4
Cesium	Cs	132.9054	1.8785 ¹⁵	28.44	668.2	d aq; s acids
bromide	CsBr	212.81	4.44	636	≈1300	$107 \text{ g/100 mL}^{18}$ aq; s alc; i acet
carbonate	Cs ₂ CO ₃	325.82	4.24	792		v s aq; 11 g/100 mL ²⁰ alc; s eth
chloride	CsCl	168.36	3.99	646	1300	g/100 mL: 187 ²⁰ aq; 34 ²⁵ MeOH; v s
fluoride	CsF	151.90	4.115	703	1231	$322 \text{ g/}100 \text{ mL}^{18} \text{ ag}$
hydroxide	CsOH	149.91	3.68	272	990	$386 \text{ g}/100 \text{ mL}^{15} \text{ ac} \text{ s alc}$
iadata	CalO	307.81	1 03/20	565	<i></i>	2.6 ²³ a0
iodide		250.81	4.554	621	≈1280	$76.5 \text{ g/}100 \text{ mL}^{20} \text{ ag: s EtOH: i acet}$
	CaNO	104 01	3.66	414	d 849	$23 \text{ g/100 mL}^{20} \text{ act} \text{ s acet: v sl s alc}$
nurate	CSINO3	174.91	5.00	717	u 017	25 g 100 mill aq, 6 abot, 7 bi 6 ate

Nome	Formatio	Eamaula maight	Density	Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	÷Ľ	Ŀ	100 parts solvent
oxide	Cs ₂ O	281.81	4.65	490		v s aq
perchlorate	CsClO ₄	232.36	3.327	250		g/100 mL ²⁵ : 1.96, 0.0086 EtOH,
						0.118 acet, 0.0048 BuOH; 1
						EtOAc, eth
selenate	Cs ₂ SeO ₄	408.77	4.453			244 g/100 mL ¹² aq
sulfate	Cs ₂ SO ₄	361.87	4.243	1005		$179 \text{ g/100 mL}^{20} \text{ aq; 1 alc, acet, pyr}$
Chlorine	Cl_2	70.905	g: 2.98 ²⁰ g/L lg: 1.5649 ⁻³⁵	- 101.5	- 34.04	199 mL/100 mL ²³ aq
dioxide	ClO	67.45	2.960 g/L	- 59.6	10.9	11.2 g/100 mL ¹⁰ aq
fluoride	CIF	54.45	4.057 g/L	- 155.6	- 100.1	d viol aq; organics burst into flame
heptoxide	Cl ₂ O ₇	182.90	1.80525	-91.5	82	hyd aq slowly; explodes on concus-
neptonide	2-7					sion or on contact with flame or I_2
monoxide	Cl ₂ O	86.90	3.813 g/L	-120.6	2.2	v s aq (forms HClO); s CCl ₄
pentafluoride	CIF₅	130.44	5.724 g/L	-103	-13.1	
trifluoride	ClF ₃	92.45	g: 4.057 g/L	-76.3	11.75	hyd viol aq; organic matter and
	5		lq: 1.825 ^{bg} ₂₈			glass wool burst into flame
trioxide (dimer)	$(ClO_3)_2$	166.90	1.9220	3.5	≈200	reacts with aq
Chromium	Cr	51.996	7.15	1907	2679	s dil HCl
(II) acetate	$Cr(C_2H_3O_2)_2$	170.09	1.79			sl s aq, alc; s a; i eth
(III) acetate	$Cr(C_2H_3O_2)_3$	229.13				s aq
(II) bromide	CrBr ₂	211.80	4.236	842		s aq, alc
(III) bromide	CrBr ₃	291.71	4.68			s hot aq; v s alc
(II) chloride	CrCl ₂	122.90	2.8825	814	subl 1300	v s aq
(III) chloride	CrCl ₃	158.35	2.87	1152	d >1300	s aq, alc (slow); i acet
(II) fluoride	CrF ₂	89.99	3.79	894		sl s aq; s hot HCl
(III) fluoride	CrF ₃	108.99	3.8	1400		aq, alc; s HF, HCl
(III) formate 6-water	$Cr(CHO_2)_3 \cdot 6H_2O$	295.15		d >300		s aq
hexacarbonyl	Cr(CO) ₆	220.06	1.77	d 130	explodes 210	i aq, alc; s eth, chl
(III) hydroxide	Cr(OH) ₃	101.02		d		i aq; s acids
(III) nitrate 9-water	$Cr(NO_3)_3 \cdot 9H_2O$	400.15	1.80	66	d >100	$208 \text{ g/100 mL}^{15} \text{ aq; s alc}$
(III) oxide	Cr_2O_3	151.99	5.21	2330	≈3000	i aq, alc; sl s acids, alkalis
(IV) oxide	CrO ₂	84.00	4.89	197	$-O_2, 250$	1 aq; s HNO ₃
(VI) oxide	CrO ₃	99.99	2.7025	198	d 250	61.7 g/100 mL aq; may ign organics
(III) phosphate	CrPO ₄	146.97	4.6	>1800		i aq, acids, aq reg

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

potassium bissulfate	$CrK(SO_4)_2 \cdot 12H_2O$	499.41	1.82625	89	anhyd 400	22 g/100 mL ²⁵ aq; i alc
12-water						
(II) sulfate 7-water	$CrSO_4 \cdot 7H_2O$	274.17				22.9 g/100 mL ⁰ aq; sl s alc
(III) sulfate 18-water	$Cr_2(SO_4)_3 \cdot 18H_2O$	716.45	1.7	d 100		220 g/100 mL ²⁰ aq
Chromyl chloride	CrO ₂ Cl ₂	154.90	1.9145_{4}^{25}	-96.5	117	d aq; s bz, chl, eth, CCl ₄
fluoride	CrO_2F_2	121.99		31.6 ^{885mm}	subl 29.6	
Cobalt	Co	58.9332	8.90	1494	2927	i aq; s dil HNO3
(II) acetate 4-water	$Co(C_2H_3O_2)_2 \cdot 4H_2O$	249.08	1.70519	anhyd 140		s aq; 2.1 g/100 mL ¹⁵ MeOH
(III) acetate	$Co(C_2H_3O_2)_3$	236.07		d >100		s aq, HOAc, alc
(II) bromide	CoBr ₂	218.74	4.90945	678 (in N ₂)		112 g/100 mL ²⁰ aq; s alc, acet
(II) carbonate	CoCO ₃	118.94	4.13	d		0.18 ¹⁵ aq; s hot acids
(II) chloride	CoCl ₂	129.84	3.36745	735	1049	53 g/100 mL ²⁰ aq; s alc, acet, eth, glyc, pyr
(II) chloride 6-water	$CoCl_2 \cdot 6H_2O$	237.93	1.924	anhyd 110		97 g/100 mL ²⁰ aq
(II) chromate	CoCrO ₄	174.93	≈4.0	d		i aq; s acids
(II) cyanide	$Co(CN)_2$	110.97	1.872_{4}^{25}	d 300		0.004218 aq; s KCN
(II) fluoride	CoF ₃	96.93	4.46	1127	≈1400	1.36 ²⁰ aq; s warm mineral acids
(III) fluoride	CoF ₃	115.93	3.88	926		d aq
(II) formate 2-water	$Co(CHO_2)_2 \cdot 2H_2O$	185.00	2.129_4^{22}	anhyd 140	d 175	5.03 g/100 mL ³⁰ aq; i alc
(II) hydroxide	Co(OH) ₂	92.95	3.37	168 (vacuo)		0.00018 aq; v s acids
(III) hydroxide	Co(OH) ₃	109.96	4.46	$-H_{2}O, 100$	d	0.00032 aq; s acids
(II) iodide (alpha, black)	CoI ₂	312.74	5.58445	515 (vacuo)	570 (vacuo)	203 aq
(II) nitrate 6-water	$Co(NO_3)_3 \cdot 6H_2O$	291.03	1.88	55	d >74	155 g/100 mL ³⁰ aq; v s alc
(II) oxalate	$C_0C_2O_4$	146.95	3.021	d 250		0.002 ¹⁸ aq
(II) oxide	CoO	74.93	6.44	-s1935		i aq; s acids, alkalis
(II,III) oxide	Co ₃ O ₄	240.80	6.07	d >900		i aq; s acids, alkalis
(II) phosphate 8-water	$Co_3(PO_4)_2 \cdot 8H_2O$	510.87	2.769	anhyd 200		v sl s aq; s mineral acids
(II) sulfate 7-water	$CoSO_4 \cdot 7H_2O$	281.10	2.03	anhyd 420	d 1140	$65 \text{ g}/100 \text{ mL}^{20} \text{ ag}; \text{ sl s alc}$
(II) sulfide	CoS	91.00	5.4518	1180		i aq; s acids
(II) thiocyanate 3-water	$Co(SCN)_2 \cdot 3H_2O$	229.14		anhyd 105		7.8^{18} ag; s alc, eth
Copper	Cu	63.546	8.9620	1084.62	2561.5	i; s HNO ₃ , hot H ₂ SO ₄
(II) acetate 1-water	$Cu(C_2H_3O_2) \cdot H_2O$	199.65	1.882	115	d 240	8 g/100 mL aq; 0.48 MeOH; sl s eth
acetate <i>meta</i> -arsenate (1/3)	$Cu(C_2H_3O_2)_2 \cdot 3Cu(AsO_2)_2$	1013.80				unstable in acids, bases; s NH ₄ OH
(II) borate $(1-)$	$Cu(BO_2)_2$	149.17	3.859			s a; i aq
(I) bromide	CuBr	143.45	4.98	497	1345	v sl s ag; s HCl, HBr, NH ₄ OH
(II) bromide	CuBr ₂	223.35	4.71	498	900	126 g/100 mL aq; s alc, acet, pyr; i

				Malting point	Dailing naint	Solubility in
Name	Formula	Formula weight	Density	°C	вонид рони, °С	100 parts solvent
(II) carbonate hydroxide		221 12	4.0	4 200	-	i ng: e noide
(1/1) (malachite)	$CuCO_3 \cdot Cu(OII)_2$	221.12	4.0	u 200		1 aq, s acius
(II) chlorate 6-water	$C_{11}(C O_{2})_{2} \cdot 6H_{2}O_{2}$	338 54		65	d 100	242 g/100 mL ¹⁸ ag: y s alc: s acet
(I) chloride	CuCl	99.00	4.14	430	≈1400	0.024 ag: s conc HCL conc NH OH
(II) chloride	CuCl	134.45	3.386	300 d	1.00	$73 \text{ g/100 mL}^{20} \text{ ag: s alc. acet}$
(II) chloride 2-water	$CuCl_2 \cdot 2H_2O$	170.48	2.51	anhvd 200	d >300	$76.4 \text{ g}/100 \text{ mL}^{25} \text{ ag; } \text{v s alc; s acet}$
(I) chromium(III)	$Cr_2O_2 \cdot Cu_2O$	295.07	5.2420	d >900		i aq: s HNO ₂
oxide (1/1)	- 2 - 3 2 -					
(II) citrate 2.5-water	$Cu_2C_6H_4O_7 \cdot 2.5H_2O$	360.22		anhyd 100		0.17 aq; s acids
(I) cyanide	CuCN	89.56	2.92	473 (in N ₂)	d	i aq; s NH₄OH, KCN; d hot dil HCl
(II) fluoride	CuF ₂	101.54	4.23	836	1676	4.75 g/100 mL ²⁰ aq; s acids
(II) formate	$Cu(CHO_2)_2$	153.58	1.831			12.5 aq
(II) hexafluorosilicate	$Cu[SiF_6] \cdot 4H_2O$	277.60	2.56	d		124 g/100 mL ²⁰ aq
4-water						
(II) hydroxide	Cu(OH) ₂	97.56	3.368	d 160		i aq; s acids
(I) iodide	CuI	190.45	5.67	606	≈1290	i aq; s KCN, NH₄OH, KI
(II) nitrate 3-water	$Cu(NO_3)_2 \cdot 3H_2O$	241.60	2.32	114.5	170 d	138 g/100 mL ⁰ aq; v s alc
(II) oleate	$Cu(OOCC_{17}H_{33})_2$	626.46				i aq; sl s alc; s eth
(II) oxalate hemihydrate	$CuC_2O_4 \cdot 0.5H_2O$	160.57		anhydr > 200	d 310	0.002 aq; s NH₄OH
(I) oxide	Cu ₂ O	143.09	6.0^{25}_{4}	1235	-O ₂ , 1800	i aq; s HCl
(II) oxide	CuO	79.54	6.315_{4}^{14}	1450		i aq, alc; s acids, KCN
(II) perchlorate	$Cu(ClO_4)_2$	262.45	2.225^{23}	d >130		146 g/100 mL ³⁰ aq; s eth, EtAc; i bz
(II) phosphate 3-water	$Cu_3(PO_4)_2 \cdot 3H_2O$	434.63		d		i aq; s acids
(II) salicylate 4-water	$Cu(C_7H_5O_3)_2 \cdot 4H_2O$	409.83		dehyd in air		v s aq; s alc
(II) selenate 5-water	$CuSeO_4 \cdot 5H_2O$	296.58	2.559	anhyd 265	d ca. 480	25 g/100 mL ²⁰ aq; v sl s acet
(I) selenide	Cu ₂ Se	206.05	6.84_{4}^{21}	1113		d HCl
(II) selenide	CuSe	142.51	6.0	d 550		s acids
(II) stearate	$Cu(OOCC_{17}H_{35})_2$	630.50		≈250		i aq, alc, eth; s hot bz, pyr
(II) sulfate	CuSO ₄	159.61	3.603	d >560		14.3 g/100 mL ⁰ aq; i alc
(II) sulfate 5-water	$CuSO_4 \cdot 5H_2O$	249.69	2.284_4^{16}	anhyd 200		32 g/100 mL ²⁰ aq; s MeOH, glyc
(I) sulfide	Cu ₂ S	159.16	5.6_4^{20}	1130		i aq; d HNO3, s KCN
(II) sulfide	CuS	95.61	4.76			i aq; s hot HNO3, KCN

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

(I) sulfite hydrate	$Cu_2SO_3\cdot H_2O$	225.16	3.8315	d		sl s aq; s HCl
(II) tartrate 3-water	$CuC_4H_4O_6 \cdot 3H_2O$	265.66				0.4220 aq; s acids, alkalis
(I) thiocyanate	CuSCN	121.62	2.85	1084		0.00044 aq; s NH₄OH, eth, alkali SCN
(II) tungstate(VI)(2-)	CuWO₄ · 2H ₂ O	347.41				0.1 ¹⁵ aq; d acids; s NH₄OH
Curium-244	Cm	244.063	13.51	1340	≈3110	s acids
Cyanogen	NC-CN	52.03	2.335 g/L	-27.84	-21.15	mL/100 mL: 450 ²⁰ aq, 230 alc;
azide	NC—N ₃	68.04	C			s acetonitrile; pure azide detonates upon shock. Handle only in sol- vents.
bromide	NCBr	105.92	2.005	52	61.5	v s aq, alc, eth
chloride	NCCI	61.47	2.697 g/L	-6.5	13.8	s aq, alc, eth
fluoride	NCF	45.02	1.975 g/L	-82	-46	
Deuterium	D_2 or 2H_2	4.03	0.169 ^{mp} lq	-252.89	-249.49	sl s aq
oxide	D_2O	20.03	1.105620	3.82	101.43	misc aq
Dysprosium	Dy	162.50	8.54025	1412	2567	s acids
bromide	DyBr ₃	402.21	4.78	880	1480	s aq
chloride	DyCl ₃	268.86	3.67	680	1530	s aq
fluoride	DyF ₃	219.50	7.465	1154	2230	i aq
oxide	Dy_2O_3	373.00	7.8127	2408		s aq
Einsteinium	Es	252.083	8.84	860		
Erbium	Er	167.26	9.066	1529	2868	s acid
chloride	ErCl ₃	273.62	4.1	776	1500	s aq; sl s alc
oxide	Er ₂ O ₃	382.52	8.640	2418		0.0005^{25} aq; s acids
sulfate 8-water	$Er_2(SO_4)_3 \cdot 8H_2O$	766.83	3.205	anhyd 110	d 630	16.0 g/100 mL ²⁰ aq
Europium	Eu	151.965	5.244	822	1527	s acids
(III) chloride	EuCl ₃	258.32	4.89	623 d		s aq
(III) oxide	Eu ₂ O ₃	351.93	7.42	2350		i aq; s acids
(III) sulfate 8-water	$Eu_2(SO_4)_3 \cdot 8H_2O$	736.24	– 8H ₂ O, 375			2.56 ²⁰ aq
Fermium-257	Fm	257.0951		1527		
Fluorine	F ₂	38.00	1.513 ^{bp} lq 1.667 g/L	-219.61	- 188.13	d aq viol; ignites organics and sili- cates
nitrate	FONO ₂	81.00	1.507 ^{bp} lq	- 175	-45.9	hyd aq; s acet; ignites alc, eth; liquid explodes on slight concussion
perchlorate	FOClO ₃	118.45	5.20 g/L	-167.3	- 15.9	explodes on slightest provocation
Francium-223	Fr	223.02	č			· · · ·

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
Gadolinium	Gd	157.25	7 90	1312	3273	s acids
chloride	GdCl	263.61	4 520	~609	1580	s aq
fluoride	GdE	214 25	7.047	1231	2277	i aq
nitrate 6-water	Gd(NO ₂) ₂ · 6H ₂ O	451 36	2 332	91	2277	s ag alc
oxide	Gd.O.	362.50	7 40715	2340		s acids
sulfate 8-water	$Gd_2(SQ_2)_2 \cdot 8H_2Q$	746.81	3.01018	anhvd 400	d 500	4 08 ag
Gallium	Ga	69.723	$5.904^{29.6}$ (c) $6.095^{29.8}$ (lq)	29.7646	2203	s conc HCl, halogens, alkalis
antimonide	GaSb	191.48	5.614	712		s HCl
arsenide	GaAs	144.65	5.31845	1238		s HCl
chloride	GaCl ₃	176.08	2.47	77.9	201.2	d aq; s bz, CCl_4 , CS_2
fluoride	GaF ₃	126.72	4.47	>1000	subl 950	0.004 ²⁵ aq; s HF
nitrate	Ga(NO ₃) ₃	255.74		d 110	\rightarrow Ga ₂ O ₃ , 200	v s aq
phosphide	GaP	100.70		1465		-
selenide	GaSe	148.68	5.03 ²⁵	960	d	
triethyl	$Ga(C_2H_5)_3$	146.90	1.05830	- 82.3	142.8	
trimethyl	Ga(CH ₃) ₃	114.84	1.15115	-15.7	55.8	
Germanium	Ge	72.61	5.323	937.3	2830	i aq; s hot H ₂ SO ₄
(IV) bromide	GeBr ₄	392.23	3.132	26.1	186.4	hyd aq; s bz, eth
IV) chloride	GeCl ₄	214.42	1.879	-49.5	86.5	hyd aq; s bz, eth; sl s dil HCl
(IV) fluoride	GeF ₄	148.60	6.521 g/L	-15	d >1000	hyd aq; s dil HCl
hydride (germane)	GeH ₄	76.64	3.363 g/L	- 164.8	- 88.1	sl s hot HCl
(IV) oxide	GeO ₂	104.61	4.25	1115	1200	0.43 ²⁰ aq; s acids, alkalis
sulfide	GeS ₂	136.74	3.01	530		
Gold	Au	196.967	19.3	1064.18	2856	s aq reg, KCN, hot H ₂ SO ₄
(I) chloride	AuCl	232.42	7.57	289		s HCl, HBr, KCN
(III) chloride	AuCl ₃	303.33	4.7	d >160	subl 180	68 g/100 mL ²⁰ aq; s EtOH
(I) cyanide	AuCN	222.99	7.1440	d		s aq reg, KCN, NH₄OH
(III) cyanide 3-water	$Au(CN)_3 \cdot 3H_2O$	329.07		d 50		v s aq; sl s alc
diantimonide	AuSb ₂	440.47		460		
(III) fluoride	AuF ₃	253.96	6.75	subl 300	d 500	
(III) oxide	Au_2O_3	441.93		d 150		s HCl, KCN

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

(I) sodium thiosulfate	AuNa ₃ (S ₂ O ₃) ₂ \cdot 2H ₂ O	526.24	3.09	anhyd 160		50 g/100 mL aq; i alc
2-water		A		44.0		
stannide	AuSn	315.66		418		
(III) sulfide	Au_2S_3	490.13	8.754	d 197		$i aq; s Na_2S$
Hafnium	Hf	178.49	13.31	2227	4450	s HF
chloride	HfCl ₄	320.30		432	subl 317	hyd aq; s acet, MeOH
oxide	HfO ₂	210.49	9.6820	2774		i aq
Helium	He	4.00260	0.176 g/L 0.1249 (lq)	-272.15 ^{25atm}	-268.935	0.861 mL/100 mL ²⁰ aq
Holmium	Но	164.9304	8.79	1474	2720	s acids; oxidizes in moist air
bromide	HoBr ₃	404.64	4.86	914	1470	s aq
chloride	HoCl ₃	271.29	3.7	718	1510	s aq
Hydrazine	$H_2N - NH_2$	32.05	1.0036425	2.0	113.5	FP 52; misc aq, alc
hydrate	$H_2N - NH_2 \cdot H_2O$	50.06	1.030	-51.7 & -65	118-119	misc aq, alc; i chl, eth
Hydrazinium(1+) chloride	H ₂ NNH ₃ Cl	68.51	1.5	89	d 240	v s aq; i org solv
(2+) chloride	ClH ₃ N-NH ₃ Cl	104.97	1.423	198	d 200	v s aq; sl s alc
(1+) iodide	H ₂ NNH ₃ I	159.96		125		s aq
(+1) perchlorate	H ₂ N-NH ₃ ClO ₄	132.51	1.93915	137	d 145	d aq; s alc
(2+) sulfate	(H ₃ NNH ₃)SO ₄	130.13	1.378	254	d	3.4 ²⁰ aq; i alc
(1+) tartrate	$(H_2N - NH_3)_2C_4H_4O_6$	182.13		183		6.0 g/100 mL ⁰ aq
Hydrogen	H ₂	2.0159	0.088 g/L	-259.35	-252.88	1.9 mL aq
		0.07099 ^{bp}	•			-
		(lq)				
amidosulfate (sulfamate)	H ₂ NSO ₃ H	97.09	2.126	205	d	14.7 g/100 mL aq; sl s alc, acet
azide	HN ₃	43.03	1.1260	-80	37	v s aq; (very explosive)
borate(1-) (cubic)	HBO ₂	43.83	2.486	236		v sl s ag
borate(3-) (ortho)	H ₃ BO ₃	61.83	1.43515	171.0	d 357	5.56 g/100 mL ³⁰ aq
bromide	HBr	80.91	3.388 g/L ²⁰	-86.87	-66.71	193 g/100 mL ²⁵ aq; misc alc
bromide (constant boiling)	48% HBr + H ₂ O		1.49	-11	126	vsaq
bromide-d	² HBr	81.91	3.39 g/L ²⁰	- 87.46	-66.5	v s aq
bromosulfate	HOSO ₂ Br	240.90	U	-6 to -8	d	hvd ag
chlorate (40% solution)	HClO ₃	84.46	1.282^{20}_{4}			
chloride	HCI	36.46	1.526 g/L ²⁰	-114.18	- 85.05	72 g/100 mL ²⁰ aq
chloride (constant boiling)	20.24% HCl + H ₂ O		1.097		110	vsag
chloride-d	² HCl	37.47	1.49 g/L ²⁵	-114.64	-84.72	vsaq
chlorosulfate	HSO ₃ Cl	116.52	1.753	- 80	152	hvd viol \rightarrow HCl + H ₂ SO ₄
cvanate	HOCN	43.03	1.140^{-20}	- 86	23.5	s aq d: s bz. eth

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
cyanide	HCN	27.03	0.687	-13.4	25.6	misc aq
deuteride	¹ H ² H or HD	3.02		-256.56	-251.03	-
diphosphate(IV)	$(HO)_2OP - PO(OH)_2$	162.01	70	d 100	d	aq
diphosphate(V)	H₄P ₂ O ₇	177.98		61		709 g/100 mL ²³ aq
fluoride	HF	20.01	0.922 g/L ^o	-83.57	19.52	v s aq, alc; 2.54 g/100 g ⁵ bz
fluoride (constant boiling)	35.35% HF + H ₂ O		-		120	v s aq
fluoride-d	² HF	21.02		-83.6	18.65	s aq
fluoroborate	H[BF ₄]	87.81		d 130		v s aq
fluorophosphate	H ₂ PO ₃ F	99.99	1.818	-80		-
fluorosulfate	HOSO ₂ F	100.07	1.72645	-87.3	165.5	s aq
hexafluorosilicate 2-water	$H_2[SiF_6] \cdot 2H_2O$	180.11	1.463	19		60-70% ag solution
iodate	HIO	175.91	4.629 ⁰ ₄	$110 \rightarrow H_{5}IO_{6}$	$220 \rightarrow I_2O_5$	269 g/100 mL ²⁰ aq; s alc; i eth
iodide	н	127.91	5.37 g/L ²⁰	- 50.8	-35.1	$234 \text{ g}/100 \text{ mL}^{10} \text{ aq}; \text{ misc alc}$
iodide (constant boiling)	57% HI + H ₂ O		1.70		127	vsaq
iodide-d	ні	128.91		-51.87	-35.7	v s aq
molybdate hydrate	H ₂ MoO ₄ · H ₂ O	179.97	3.12415	-HO, 70		0.133^{18} aq; s alk
nitrate	HNO ₃	63.02	1.5492º lq	-41.59	83	V S
nitrate (constant boiling)	$69\% HNO_3 + H_2O$		1.4120		120.5	misc aq
oxide (water)	H ₂ O	18.02	1.000	0.00	100.00	1
oxide-d ₂	$D_{2}^{V}O$ or $^{2}H_{2}O$	20.03	1.104425	3.81	101.42	misc aq
perchlorate 2-water	HClO ₄ · 2H ₂ O	136.49	1.6720	- 17.8	203	v s aq (commercial 72% acid)
periodate(1-) (meta)	HIO	191.91		subl 110	d 138	440 g/100 mL ²⁵ aq
periodate $(5-)$	H-IO	227.94		122	d 130–140	misc aq: s alc
peroxide	H ₂ O ₂	34.01	1.463°	-0.43	152	misc aq: s alc, eth
peroxodisulfate	HO ₃ S—O—OSO ₃ H	194.14		d 60		v s aq
phosphate(V) $(1-)$ (meta)	HPO ₃	79.98	2.2-2.5	subl	red heat	slowly s ag \rightarrow H ₃ PO ₄ ; s alc
phosphate(V)($3-$) (ortho)	H₃PO₄	98.00	1.86825	42.35	d 213	v s aq
commercial 85% acid	J - 4		1.685	anhyd 150	H ₄ P ₂ O ₇ , 200	$\rightarrow HPO_{3} > 300$
phosphate(V)(3-)- d_3	$^{2}H_{3}PO_{4}$	101.03	1.90825	46.0	4- 2- 1, 200	v s aq
phosphide, see Phosphine	у т Т					*
phosphinate	HPH ₂ O ₂	66.0	1.493 ¹⁹	26.5	d 50	s ag
phosphonate (phosphorous acid)	H ₂ PHO ₃	82.00	1.651_4^{25}	≈73	d >180	v s aq, alc

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

selenate	H_2SeO_4	144.98	2.950845	58	260	vs aq (viol)
selenide	H ₂ Se	80.98	2.12^{-bp}_{4}	-65.73	-41.4	9.5 mL/100 mL ²⁰ aq; s CS ₂
sulfate	H_2SO_4	98.08	1.831820	10.38	335.5	misc aq
sulfate- d_2	$^{2}\text{H}_{2}\text{SO}_{4}$ or $D_{2}\text{SO}_{4}$	100.09	1.8620	14.35		misc aq
sulfide	H ₂ S	34.08	1.5392 g/L ⁰	- 85.49	-60.33	0.334 mL ²⁵ aq
tellurate(IV)	H ₂ TeO ₃	177.63	3.0	d to TeO ₂		0.0007 aq; s acid, alkali
tellurate(VI) (monoclinic)	H ₆ TeO ₆	229.66	3.068	$-2H_{2}O, 120$	$320 \rightarrow \text{TeO}$	30 g/100 mL ¹⁸ aq
telluride	H ₂ Te	129.62	5.687 g/L	-49	-2	s aq d
trithiocarbonate	(HS) ₂ CS	110.21	1.48340	-26.9	57.8	d aq, alc
tungstate(VI)(2-)	H ₂ WO ₄	249.86	5.5	anhyd 100		i aq; s HF, alkalis
Hydroxylamine	HONH ₂	33.03	1.204^{40}_{4}	33	58 ^{22mm}	v s aq, MeOH; sl s bz, eth
Hydroxylammonium chloride	HONH₃CI	69.49	1.680^{20}	150.5	d	g/100 mL: 83 ¹⁷ aq, 12.5 ²⁰ MeOH, 5.1 ²⁰ EtOH; s glyc
sulfate	(HONH ₃) ₂ SO ₄	164.14		170		69 g/100 mL ²⁰ aq
Indium	In	114.82	7.31	156.60	2072	s acids
antimonide	InSb	236.58	5.77	525		i aq
arsenide	InAs	189.74	5.67	942		-
chloride	InCl ₃	221.18	4.0	583	subl 500	212 g/100 mL ²⁵ aq
fluoride	InF ₃	171.82	4.39	1170		0.040^{25} aq; s dilute acids
oxide	In ₂ O ₃	277.63	7.179		850	s hot mineral acids
phosphide	InP	145.79	4.81	1062		v sl s acids
telluride	In ₂ Te ₃	612.44	5.75	667		
trimethyl	In(CH ₃) ₃	159.93	1.568	88.4	135.8	d aq; s acet, bz
Iodine	I ₂	253.809	4.6325	113.60	185.24	g/100 mL ²⁵ : 0.029 aq, 14.1 bz, 16.5 CS ₂ , 21.4 EtOH, 25.2 eth, 2.6 CCl ₄ ; s chl, HOAc
heptafluoride	IF ₇	259.89	lq: 2.86	6.45	4.77 subl	s aq (d), s NaOH
monobromide	IBr	206.81	4.416	40	116 d	s aq, alc, eth, CS_2
monochloride	ICl	162.36	3.10429	27.2 α -form	97 d	d aq; s alc, eth, HOAc
pentafluoride	IF ₅	221.90	3.1925	9.43	100.5	d aq viol
pentoxide	I ₂ O ₅	333.81	4.98	d 275		187 g/100 mL ¹³ aq
trichloride	ICl ₃	233.26	3.202-4	~33	64 subl	d aq; s alc, bz, HCl
Iridium	Ir	192.217	22.65420	2447	~2550	s K_2SO_4 fusion, KOH + KNO ₃ fusion
hexafluoride	IrF ₆	306.21	4.82	44.4	53.6	d aq
(III) oxide	Ir ₂ O ₃	432.43		$d \sim 1000$ to Ir + O_2		s boiling HCl
(IV) oxide	IrO ₂	224.22	11.7	d 1100		0.0002 ²⁰ aq; s HCl
trichloride	IrCl ₃	298.58	5.30	d 763		i acids, alkalis

				Melting point	Boiling point	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
Iron	Fe	55.845	7.86	1535	2861	i aq; s acids
(III) arsenate 2-water	$FeAsO_4 \cdot 2H_2O$	230.79	3.18	1020		v sl s aq; s acids
(II) bromide	FeBr ₂	126.75	3.16	677	1023	117 g/100 mL ²⁰ aq; v s alc
(III) bromide	FeBr ₃	295.67	4.5	d		s aq, alc, eth, HOAc
(tri-) carbide	Fe ₃ C	179.55	7.694	1227		s acids
(II) carbonate	FeCO ₃	115.85	3.9	d		0.072^{18} aq; s acids
(II) chloride	FeCl ₂	126.75	3.16	677	1024	62.5 g/100 mL ²⁰ aq; v s alc, acet
(III) chloride	FeCl ₃	162.20	2.898	304	≈316	74 g/100 mL ⁰ aq; s alc, acet, eth
disulfide (pyrite)	FeS ₂	119.98	5.02	d 602		s acids d
(II) fluoride	FeF ₂	93.84	4.09	1100	1837	sl s aq; s dil HF; i alc, bz, eth
(III) fluoride	FeF ₃	112.84	3.87	subl 1000		0.091 ²⁵ aq; s HF
(III) hexacyanoferrate(II)	$Fe_4[Fe(CN)_6]_3$	859.23	1.80	250 d		i aq; s HCl
(II) hydroxide	Fe(OH) ₂	89.86	3.4			0.006 aq; s acids
(III) hydroxide oxide	FeO(OH)	88.85	4.26	anhyd 136		i aq, alc; s HCl
(II) iodide	FeI ₂	309.65	5.315	587	1093	s aq
(III) nitrate 9-water	$Fe(NO_3)_3 \cdot 9H_2O$	404.00	1.684	47	d 100	138 g/100 mL ²⁰ aq
(di-) nitride	Fe ₂ N	125.70	6.35	d 200		s HCl
(II) oxalate 2-water	$FeC_2O_4 \cdot 2H_2O$	179.89	2.28	d 150		0.044 ¹⁸ aq; s mineral acids
(II) oxide	FeO	71.84	6.0	1377	d 3414	i aq; s acids
(II,III) oxide	Fe ₃ O ₄	231.53	5.17	1597		i aq; s acids
(III) oxide	Fe_2O_3	159.69	5.25	1565		i aq; s HCl
pentacarbonyl	Fe(CO) ₅	195.90	1.49	-20.0	103.9	FP - 20; i aq; s alc, bz, eth
(II) phosphate 8-water	$Fe_3(PO_4)_2 \cdot 8H_2O$	501.60	2.58			i aq; s acids
phosphide	Fe ₂ P	142.66	6.85	1370		s hot mineral acids
(II) selenide	FeSe	134.81	6.78	d		s HCl
(II) silicate(2-)	FeSiO ₃	131.93	3.5	1140		
(II) silicate(4–)	Fe ₂ SiO ₄	203.77	4.30	1220		d HCl
(II) sulfate 7-water	FeSO ₄ · 7H ₂ O	278.01	1.89	anhyd 300	d 671	48 g/100 mL ²⁰ aq
(III) sulfate	$Fe_2(SO_4)_3$	399.88	3.09718	d 1178		slowly s aq (hyd); sl s alc
(II) sulfide	FeS	87.92	4.7	1190	d	0.0006^{18} ag; s acid
(III) thiocyanate	Fe(SCN) ₃	230.09				v s aq
Krypton	Kr	83.80	3.7493 g/L	-157.36	-153.22	5.94 mL/100 mL ²⁰ aq
difluoride	KrF ₂	121.80	3.24	sub1-60		s anhyd HF
Lanthanum	La	138.9055	6.162	920	3464	i aq; s HCl
chloride	LaCl ₃	245.26	3.84	852	1812	v s aq
chloride 7-water	$LaCl_3 \cdot 7H_2O$	371.37		anhyd 852 (in HCl atm)		v s aq; s alc

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

fluoride	LaF ₃	195.90	5.9	1493	2327	
nitrate 6-water	$La(NO_3)_3 \cdot 6H_2O$	433.01		40	d 126	181 g/100 mL ²⁰ aq; v s alc
oxide	La_2O_3	325.81	6.51	2305	4200	s acids
sulfate	$La_2(SO_4)_3$	566.00	3.60	d white heat		2.33 g/100 mL ²⁰ aq; i alc
sulfate 9-water	$La_2(SO_4)_3 \cdot 9H_2O$	728.14	2.821	anhyd 400		2.92 g/100 mL ²⁰ aq; i alc
Lawrencium	Lr	262		1627		
Lead	Pb	207.2	11.34 ²⁰ (fcc)	327.43	1749	s hot conc HNO ₃ , HCl, H ₂ SO ₄
(II) acètate 3-water	$Pb(C_2H_3O_2)_2 \cdot 3H_2O$	427.3	2.55	75	d >200	g/100 mL: 63 ¹⁵ aq, 3.3 alc
(IV) acetate	$Pb(C_2H_3O_2)_4$	443.4	2.228	≈75–180		s hot HOAc, bz, chl, conc HX acids
(II) azide	$Pb(N_3)_2$	291.2	4.7	expl 350 or		0.023 ¹⁸ aq; v s HOAc
				when shocked	1	-
(II) borate(1-) hydrate	$Pb(BO_2)_2 \cdot H_2O$	310.8	5.598 anhyd	anhyd 160	mp 500	s acids
(II) bromide	PbBr ₂	367.0	6.69	371	912	0.450° aq; s acids; i alc
(II) carbonate	PbCO ₃	267.2	6.61	d 340 \rightarrow PbO		i aq; s acids, alkalis
(II) chlorate	$Pb(ClO_3)_2$	374.1	3.89	d 230		$140 \text{ g}/100 \text{ mL}^{18} \text{ aq}; \text{ v s alc}$
(II) chloride	PbCl ₂	278.1	5.98	501	950	0.99^{20} aq
(II) chloride fluoride	PbClF	261.7	7.05			*
(II) chromate(VI)(2-)	PbCrO ₄	323.2	6.12	844	d	i aq; s dil HNO3, alkalis
(II) fluoride	PbF ₂	245.2	8.445	830	1297	0.064 ²⁰ aq
(IV) fluoride	PbF ₄	283.2	6.7	≈ 600		hyd aq
(II) formate	$Pb(CHO_2)_2$	297.2	4.63	d 190		1.6 g/100 mL ²⁰ aq
(II) hydrogen arsenate	PbHAsO₄	347.1	5.94	d 280 to		s HNO3, alkalis
				Pb ₂ As ₂ O ₇		
(II) hydroxide	Pb(OH) ₂	241.2	7.59	d 145		0.016 ²⁰ aq; s acids, alkalis
(II) iodide	PbI ₂	461.0	6.16	410	872	0.063^{20} aq; s KI, Na ₂ S ₂ O ₃ , alkalis
(II) molybdate(VI)(2-)	PbMoO	367.1	6.7	1065		s acids, alkalis
(II) nitrate	$Pb(NO_3)_2$	331.2	4.53	470		g/100 mL: 56 ²⁰ aq, 1.3 MeOH
(II) oleate	$Pb(C_{18}H_{33}O_2)_2$	770.1				s alc, bz, eth
(II) oxalate	PbC ₂ O ₄	295.2	5.28	d 300		s acids, alkalis
(II) oxide (litharge)	РЬО	223.2	9.35 (red)	886	1472 d	0.0017 ²⁰ aq; s HNO ₃
(IV) oxide	PbO ₂	239.2	9.64	d 290, Pb ₃ O ₄	d 595, PbO	s HCl, dil HNO ₃ + H ₂ O ₂₃ , H ₂ C ₂ O ₄
(II,IV) oxide (red lead)	Pb ₃ O ₄	685.6	8.92	d 595 → PbO		s HNO3, hot HCl
(II) phosphate	$Pb_3(PO_4)_2$	811.5	7.0	1014		s HNO3, alkalis
(II) selenide	PbSe	286.2	8.15	1078		s HNO3
(II) silicate(2–)	PbSiO ₃	283.3	6.5	764		s acids
(II) silicate(4–)	Pb ₂ SiO ₄	506.5	7.60	743		
(II) stearate	$Pb(C_{18}H_{35}O_2)_2$	774.2	1.4	≈125		0.05 ³⁵ aq; s hot alc
(II) sulfate	PbSO ₄	303.3	6.29	1170		0.00425 aq; s NaOH
(II) sulfide	PbS	239.3	7.60	1118	1300 subl	0.0006 ¹⁸ aq; s HNO ₃ , hot dil HCl

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
(II) telluride	PbTe	334.8	8.16	924		i acids and alkalis
tetraethyl	$Pb(C_2H_5)_4$	323.45	1.653	-137	≈200	i aq; s bz, hydrocarbons
tetramethyl	$Pb(CH_3)_4$	267.35	1.995	-30.2	110	s hydrocarbons
(II) thiocyanate	Pb(SCN) ₂	323.4	3.82	d 190		0.44 ¹⁸ aq, s HNO ₃ , NaOH
Lithium	Li	6.941	0.53420	180.54	1341	d aq to LiOH
acetate 2-water	$LiC_2H_3O_2 \cdot 2H_2O$	102.02	1.3	58	d	$63 \text{ g}/100 \text{ mL}^{20} \text{ aq}; \text{ v s alc}$
aluminate(1-)	LiAlO ₂	65.92	2.554	1700		
amide	LiNH2	22.96	1.178	380	d 450 vacuo	d aq (\rightarrow LiOH + NH ₃); i bz, eth
benzoate	LiC ₇ H ₅ O ₂	128.06		>300		g/100 mL: 33 aq; 7.7 alc
borate(1-)	LiBO ₂	49.75	2.18	849	1719	2.7 g/100 mL ²⁰ aq; i alc
borohydride	Li[BH₄]	21.78	0.66	268	d 380	s aq, eth, THF, aliphatic amines
bromate	LiBrO ₃	134.85	3.62			179 g/100 mL ²⁰ aq
bromide	LiBr	86.84	3.464	552	1289	164 g/100 mL aq; s alc, eth
carbonate	Li ₂ CO ₃	73.89	2.11	720	d 1300	1.3 g/100 mL ²⁰ aq; i alc; s acids
chloride	LiČl	42.39	2.07	613	1360	77 g/100 mL ²⁰ aq; s alc, acet
chromate(VI)(2-) 2-water	$Li_2CrO_4 \cdot 2H_2O$	165.91	2.15	anhyd 75		142 g/100 mL ¹⁸ aq; s EtOH
citrate 4-water	$Li_3C_6H_5O_7 \cdot 4H_2O$	281.98		anhyd 105		$61 \text{ g}/100 \text{ mL}^{15} \text{ aq}; \text{ sl s alc}$
fluoride	LiF	25.94	2.640	848	1681	0.13 ²⁵ aq; s acids
hexafluoroaluminate(3-)	Li ₃ [AlF ₆]	161.79		1012		
hydride	LiH	7.95	0.76-0.77	680	d 950	no solvent known; flammable
hydride-d	Li ² H or LiD	8.96	0.881	686		
hydroxide	LiOH	23.95	1.45	471.2	1626	12.4 g/100 mL ²⁰ aq; sl s alc
iodate	LiIO ₃	181.84	4.502	450		66 g/100 mL aq; in alc
iodide	LiI	133.84	4.061	469	1174	165 g/100 mL ²⁰ aq & alc; v s acet
nitrate	LiNO ₃	68.95	2.38	~ 255		50 g/100 mL ²⁰ aq; s alc
nitride	Li ₃ N	34.83	1.27	813		d aq
oxide	Li ₂ O	29.88	2.013	1570	2563	forms LiOH in aq
perchlorate	LiClO ₄	106.39	2.43	236	d ~ 400	47.4 g/100 mL ²⁵ aq; v s organic solv
					$LiCl + O_2$	
peroxide	Li_2O_2	45.88	2.31	$d > 195$ to Li_2O		
silicate(2-)	Li ₂ SiO ₃	89.97	2.52_4^{25}	1201		d dil HCl
sulfate	Li ₂ SO ₄	109.95	2.22	859		34.5 g/100 mL ²⁰ aq; i alc
tetraborate(2-)	$Li_2B_4O_7$	169.12		917		sl s aq
tetrahydridoaluminate	Li[AlH₄]	37.95	0.917	d 137		d aq, alc; g/100 mL: 30 eth, 13 THF; flammable
tetrahydridoborate	LiBH ₄	21.79	0.666	268	d 380	s aq pH $>$ 7; s eth, THF
Lutetium	Lu	174.967	9.841	1663	3402	s acids
chloride	LuCl ₃	281.33	3.98	892	subl >750	s aq
sulfate 8-water	$Lu_2(SO_4)_3 \cdot 8H_2O$	782.25				42.3 g/100 mL ²⁰ aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Magnesium	Mg	24.305	1.73820	651	1100	i aq; s dilute acids
acetate	$Mg(C_2H_3O_2)_2$	142.00	1.42	323 d		53.4 g/100 mL ²⁰ aq; v s alc
aluminate(2-)	MgAl ₂ O ₄	142.25	3.6	2135		v sl s HCl
amide	$Mg(NH_2)_2$	56.35	1.3945	ign in air		d viol water giving NH ₃
borate(1-) 8-water	$Mg(BO_2)_2 \cdot 8H_2O$	254.04	2.30			sl s aq; s acids
bromide	MgBr ₂	184.11	3.722	711 d	1158	$101 \text{ g/}100 \text{ mL}^{20} \text{ aq}$
carbonate	MgCO ₃	84.31	3.05	990		0.01 aq; s acids
chloride	. MgCl ₂	95.21	2.33	714	1412	54.6 g/100 mL ²⁰ aq
fluoride	MgF ₂	62.30	3.148	1263	2270	0.013 ²⁵ aq; s HNO ₃
(di-) germanide	Mg ₂ Ge	121.22	3.09	1115		
hexafluorosilicate 6-water	$Mg[SiF_6] \cdot 6H_2O$	274.47	1.788	– SiF ₄ , 120		51 g/100 mL ²⁰ aq; i alc
hydride	MgH ₂	26.32	1.45	d 200 vacuo	ign in air	d aq and alc violently
hydrogen phosphate	$MgHPO_4 \cdot 3H_2O$	174.33	2.1315	anhyd 205	d 550	sl s aq; s acids
3-water						-
hydroxide	Mg(OH) ₂	58.32	2.36	350 d		0.00125 aq; s acids
iodide	MgI ₂	278.12	4.43	634	0	140 g/100 mL ²⁰ aq; s alc
lactate 3-water	$MgC_6H_{10}O_6 \cdot 3H_2O$	256.51				4 g/100 mL aq; sl s alc
mandelate	$MgC_{16}H_{14}O_6$	326.59				0.004 ¹⁰⁰ aq; i alc
nitrate	$Mg(NO_3)_2 \cdot 6H_2O$	256.41	1.464	95	d 129	120 g/100 mL ²⁰ aq; v s alc
nitride	Mg ₃ N ₂	100.93	2.712	d 270		d aq; s acids
oleate	$Mg(C_{18}H_{33}O_2)_2$	587.22				sl s alc, eth, PE
oxide	MgO	40.30	3.65-3.75	2800	3600	i aq, alc; s acids
perchlorate	Mg(ClO ₄) ₂	223.21	2.21	d >251		g/100 mL ²⁵ : 73 aq, 18 EtOH, 44.6 BuOH, 54 EtOAc, 32 acet
permanganate	$Mg(MnO_4)_2$	262.19				v s aq
peroxide	MgO ₂	56.30	≈3.0	d 100		s acids
peroxoborate 7-water	$Mg(BO_3)_2 \cdot 7H_2O$	268.09				sl s aq d; s dilute acids
phosphate 5-water	$Mg_3(PO_4)_2 \cdot 5H_2O$	352.96	1.6415	anhyd ~ 400		0.02 aq; s acids
silicate(2–)	MgSiO ₃	100.39	3.19245	d 1557		i aq; v sl s HF
silicate(4–)	Mg ₂ SiO ₄	140.69	3.21	1898		i aq; d hot HCl
(di-) silicide	Mg ₂ Si	76.70	2.0	1100		d aq, HCl
(<i>di</i> -) stannide	Mg ₂ Sn	167.32	3.60	778		s aq, HCl
sulfate 7-water	$MgSO_4 \cdot 7H_2O$	246.47	1.67	anhyd 250		27.2 g/100 mL aq; sl s alc
sulfite 6-water	$MgSO_3 \cdot 6H_2O$	212.46	1.725	anhyd 200	mp: 2227	0.66 ²⁵ aq
tungstate(VI)(2-)	MgWO ₄	272.14	6.89	-	-	i aq; d acids
Manganese	Mn	54.9380	7.2120	1244 fctetr	2095	d aq; s acids
acetate 4-water	$Mn(C_2H_3O_2)_2\cdot 4H_2O$	245.09	1.589	80		38 g/100 mL ⁵⁰ aq; v s alc

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
bromide	MnBr ₂	214.75	4.39	698	1027	147 g/100 mL ²⁰ aq; s alc
(tri-) carbide	Mn ₃ C	176.83	6.89	1520		d aq; s acid
carbonate	MnCO ₃	114.95	3.125	d >200		0.0065^{25} aq; s acids
chloride	MnCl ₂	125.84	2.977	650	1210	74 g/100 mL ²⁰ aq; s alc, pyr; i eth
chloride 4-water	$MnCl_2 \cdot 4H_2O$	187.91	2.01	97.5	anhyd 198	143 g/100 mL aq; s alc; i eth
decacarbonyl	$Mn_2(CO)_{10}$	389.98	1.75	d 110		i aq; s organic solvents
diphosphate	$Mn_2P_2O_7$	283.82	3.707	1196		i aq; s acid
(II) fluoride	MnF_2	92.93	3.98	930	1820	0.66 ⁴⁰ aq; s HF, conc HCl
(III) fluoride	MnF ₃	111.93	3.54	d >600		hyd aq; s acid
hydroxide	$Mn(OH)_2$	88.95	3.258	d		0.002^{18} aq; s acids
iodide	MnI ₂	308.75	5.04	638	1017	s aq
nitrate 6-water	$Mn(NO_3)_2 \cdot 6H_2O$	287.04	1.8	25.8		v s aq, alc
(II) oxide	MnO	70.94	5.37	1840		i aq; s acids
(III) oxide	Mn_2O_3	157.87	4.89	877 d		i aq; s HCl giving off Cl ₂
(IV) oxide	MnO ₂	86.94	5.08	$-O_2$, 530		s HCl; i HNO ₃ , cold H ₂ SO ₄
(II,IV) oxide	Mn_3O_4	228.81	4.84	1567		i aq; s HCl
(VII) oxide	Mn ₂ O ₇	221.87	2.396	ca 20	ca. 25	explodes 85; v s aq
phosphinate hydrate	$Mn(PH_2O_2)_2 \cdot H_2O$	202.93		d to PH ₃		15 g/100 mL aq; i alc
silicate, meta-	MnSiO ₃	131.02	3.48	1290		i aq, HCl
sulfate	MnSO ₄	151.00	3.25	700	d 850	52 g/100 mL aq; i alc
sulfate hydrate	$MnSO_4 \cdot H_2O$	169.02	2.95	anhyd 400–450		70 g/100 mL ²⁰ aq
sulfate 7-water	$MnSO_4 \cdot 7H_2O$	277.11	2.09	anhyd 280		115 g/100 mL ²⁰ aq
sulfide	MnS	87.00	3.99	1610		0.0006^{18} aq; s acids
titanate(IV)(2-)	Mn_2TiO_4	150.84	4.54	1360		-
Mercury	Hg	200.59	13.534	-38.83	356.7	i aq; s HNO ₃ , hot conc H_2SO_4
(II) acetate	$Hg(C_2H_3O_2)_2$	318.68	3.28	178–180 d		g/100 mL: 40 ¹⁰ aq, 7.5 ¹⁵ MeOH
(II) benzoate	$Hg(C_7H_5O_2)_2$	424.83		165		v s NaCl soln; sl s alc
(I) bromide	Hg ₂ Br ₂	560.99	7.307	subl 393 d		i aq, alc, eth; d hot HCl
(II) bromide	HgBr ₂	360.40	6.05	237	322 subl	g/100 mL: 0.56 ²⁰ aq; 20 ²⁵ alc; v s HCl, HBr
(I) chloride	Hg_2Cl_2	472.09	7.16	subl 382	d without melt- ing	s aqua regia; i aq, alc, eth
(II) chloride	HgCl ₂	271.50	5.4	277	304	g/100 mL ²⁰ : 7.15 aq, 26 alc, 4 eth 8.3 glyc, 0.5 bz; s HOAc. EtAc
(II) cyanide	Hg(CN) ₂	252.63	4.00	d 320		g/100 mL ²⁰ : 9.3 aq, 25 MeOH, 8 EtOH
(I) fluoride	Hg_2F_2	439.18	8.73	>570 d		hydrolyses in water

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

(II) fluoride	HgF ₂	238.59	8.95	d 645	d >650	hyd aq; s HF
(II) fulminate	Hg(ONC) ₂	284.62	4.42	explodes		sl s aq; s alc; dangerously flammable
(I) iodide	Hg_2I_2	654.99	7.70	290 d	subl 140	i aq, alc, eth; s KI
(II) iodide	HgI ₂	454.40	6.28	259	350 subl	g/100 mL: 0.006 ²⁵ aq, 0.8 alc, 0.8 eth, 1.7 acet
(I) nitrate 2-water	$Hg_2(NO_3)_2 \cdot 2H_2O$	561.22	4.79	70 d		hyd aq; s HNO3
(II) nitrate	$Hg(NO_3)_2$	324.60	4.3	79	d	v s aq; s acet
(I) oxide	Hg ₂ O	417.18	9.8	d 100		i aq; s HNO3
(II) oxide	HgO	216.59	11.14	d 500		0.005 ²⁵ aq; s dil HCl, HNO , I ⁻ , CN ⁻
(I) sulfate	Hg ₂ SO ₄	497.24	7.56	d		0.06 ²⁵ aq; s HNO ₃
(II) sulfate	HgSO ₄	296.65	6.47	d		d aq; s acid
(II) sulfide (cinnabar)	HgS	232.66	8.17	subl 583	→ blk HgO, 386	i aq; s aqua regia
(II) thiocyanate	$Hg(SCN)_2$	316.76	3.71	d 165		0.063 ²⁵ aq; s HCl
Molybdenum	Мо	95.94	10.28	2622	4825	s hot H_2SO_4 , HNO ₃ , fused KNO ₃
(III) bromide	MoBr ₃	335.65	4.89	subl 977		d alkalis
(IV) chloride	MoCl ₄	237.75		317	407	s conc acids
(V) chloride	MoCl ₅	273.19	2.928	194	268	s conc acids, dry eth, dry alc
(VI) fluoride	MoF ₆	209.93	2.54	17.6	35.0	hyd aq; s alkalis; 31 g/100 g HF
hexacarbonyl	Mo(CO) ₆	264.00	1.96	150 d	subl	s bz
(IV) oxide	MoO ₂	127.94	6.47	d ≈1100		i aq
(VI) oxide	MoO ₃	143.94	4.69646	801	1155	0.05 ²⁸ aq; s conc mineral acids, alk
(III) sulfide	Mo_2S_3	288.07	5.91 ¹⁵	1807	d 1867	d hot HNO ₃
(IV) sulfide	MoS ₂	160.07	5.06 ¹⁵	2375	subl 450	s aqua regia
Neodymium	Nd	144.24	7.01	1024	3074	s hot aq, acids
chloride	NdCl ₃	250.60	4.134	760	1600	98 g/100 mL ²⁰ aq; s alc
oxide	Nd_2O_3	336.48	7.28	1900		s dilute acids
sulfate 8-water	$Nd_2(SO_4)_3 \cdot 8H_2O$	720.79	2.85	d 700-800		8.87 g/100 mL ²⁰ aq
Neon	Ne	20.180	0.8999 g/L ^o	-248.67	-246.05	1.05 mL ²⁰ aq
Neptunium	Np	237.0482	20.2	644	>3900	s HCl
(IV) oxide	NpO ₂	269	11.1	2547		
Nickel	Ni	58.69	8.908 ²⁰	1453	2884	i aq; s HNO3
acetate 4-water	$Ni(C_2H_3O_2)_2\cdot 4H_2O$	248.86	1.744	d		16 g/100 mL aq; s alc

trifluoride

fluoride

Nitrosyl chloride

hydrogen sulfate

tetrafluoroborate

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
acetylacetonate	$Ni(C_5H_7O_2)_2$	256.91	1.45517	230	235 ^{11atm}	s aq, alc, bz, chl; i eth
bromide	NiBr ₂	218.50	5.098	963	subl	100 g/100 mL ²⁰ aq
carbonate hydroxide (1/2)	$NiCO_3 \cdot 2Ni(OH)_2$	304.12	2.6			s dilute acids
carbonyl	Ni(CO) ₄	170.73	1.31	- 19.3	43 (expl 60)	s EtOH, bz, acet
chloride	NiCl	129.60	3.51	1009	subl 973	61 g/100 mL ²⁰ aq
chloride 6-water	$NiCl_2 \cdot 6H_2O$	237.69				100 g/100 mL ²⁰ aq; s alc
cyanide 4-water	$Ni(CN)_2 \cdot 4H_2O$	182.79		anhyd 400		0.006¹ ⁸ aq; s KCN, NH₄OH
dimethylglyoxime	$Ni(HC_2H_6N_2O_2)_2$	288.92		subl 250		i aq; s abs alc, dilute acids
(tri-) disulfide	Ni_3S_2	240.21	5.87	790	d 2967	s HNO3
fluoride	NiF ₂	96.69	4.72	1450	1740	4 g/100 mL ²⁰ aq; i alc, eth
formate 2-water	$Ni(CHO_2)_2 \cdot 2H_2O$	184.78	2.15420	anhyd 130	d 180–200	s aq; i alc
nitrate 6-water	$Ni(NO_3)_2 \cdot 6H_2O$	290.81	2.05	56.7	136.7	150 g/100 mL ²⁰ aq
(II) oxide	NiO	74.71	7.45	2000		s acids
(III) oxide	Ni ₂ O ₃	165.42	4.83	$-O_2, 600$		s hot HCl, HNO ₃ , H ₂ SO ₄
sulfate	NiSO ₄	154.78	3.68	– SO ₃ , 840		29 g/100 mLº aq
sulfate 6-water	$NiSO_4 \cdot 6H_2O$	262.86	2.07	anhyd 280		40 g/100 mL ²⁰ aq
sulfide	NiS	90.77	5.3-5.6	976	d 2047	s HNO ₃ , KHS
tetracarbonyl	Ni(CO) ₄	170.74	1.318517	- 19.3	42.3	explodes 63; FP -4 ; s organic
						solvents
Niobium	Nb	92.9064	8.5720	2468	4860	s fused alkali hydroxides
(V) chloride	NbCl ₅	270.20	2.75	206	247.0	s HCl, CCl ₄
(V) fluoride	NbF ₅	187.91	2.696_{4}^{80}	80.0	234.9	hyd aq, alc; sl s CS ₂ , CCl ₄
(V) oxide	Nb_2O_5	265.82	4.55	1512		s HF, hot H ₂ SO ₄
Nitrogen	N ₂	28.0341	1.165 g/L ²⁰	-210.01	- 195.79	mL/100 mL: 1.6 ²⁰ aq, 0.112 alc
	¹⁵ N ₂	30.01	1.25 g/L ²⁰	-209.952	- 195.73	
(I) oxide	N ₂ O	44.02	1.843 g/L ²⁰	-90.81	-88.46	130° mL aq; s alc, eth
(II) oxide	NO	30.01	1.249 g/L ²⁰	- 163.64	- 151.76	4.6 mL/100 mL ²⁰ aq
(III) oxide	N_2O_3	76.02	1.447 g/L ²	-100.7	2	s ėth
(IV) oxide dimer	N_2O_4	92.02	1.448_{4}^{20}	-9.3	21.15 d	s conc HNO_3 , conc H_2SO_4 , chl
(V) oxide	N_2O_5	108.01	2.05	30	47.0	v s chl; s CCl_4
selenide	N_4Se_4	371.87	4.2	explosive		sl s bz, CS ₂
sulfide	N_4S_4	184.28	2.2418	180	185	s organic solvents
trichloride	NCl ₃	120.37	1.65320	-27	71	i aq; s bz, CS_2 , CCl_4

70.01

65.47

49.01

127.08

116.83

2.96 g/L²⁰ 1.592⁻⁵

2.788 g/L²⁰

 2.185_{4}^{25}

-208.5

-61.5

d 73.5

-132.5

subl 2500.01mm

-129.06

-5.5

- 59.9

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

NF₃

NOCI

NOF

NOHSO₄

NO[BF₄]

hyd aq; s fuming H_2SO_4 hyd aq d aq; s H_2SO_4 d aq

Nitryl chloride	NO ₂ Cl	81.46	2.81 g/L ¹⁰⁰	- 145	-14.3	d aq
fluoride	NO ₂ F	65.00	2.7 g/L ²⁰	- 166.0	-72.4	d aq
Osmium	Os	190.2	22.61 ²⁰	3045	5225	s molten alkali or oxidizing fluxes
hexafluoride	OsF ₆	304.2		32.1	45.9	hyd aq
tetrachloride	OsCl ₄	332.0	4.38420	subl 450		slow hyd aq
tetraoxide	OsO ₄	254.20	4.91	40.6	130.0	g/100 mL: 7.24 ²⁵ aq; 375 ²⁵ CCl ₄ ; s bz, eth, alc
Oxygen	O ₂	31.9988	1.331 g/L ²⁰	-218.4	-182.96	mL/100 mL ²⁰ : 3.13 aq, 14.3 alc
difluoride	OF ₂	54.00	2.26 g/L ²⁰	-223.8	- 145.3	6.8 mL/100 mL ⁰ aq
(<i>di</i> -) difluoride	O_2F_2	70.00	1.45 ^{bp} (lq)	-154	d - 100	
Ozone	O_3	48.00	1.998 g/L ²⁰	-192.5	-111.9	49.4 mL/100 mL ^o aq
Palladium	Pd	106.42	12.02320	1555	3167	s hot HNO ₃ , H ₂ SO ₄
acetate	$Pd(C_2H_3O_2)_2$	224.49		205 d		i aq, alc; s acet, chl, eth
chloride	PdCl ₂	177.30	4.018	680	d >680	s alc, acet, HCl
nitrate	$Pd(NO_3)_2$	230.42		d		s dil HNO3
oxide	PdO	122.40	8.7020	879 d		s 48% HBr; sl s aqua regia
Perchloryl fluoride	ClO₃F	102.46	0.637 g/L	- 147.74	-46.67	
Phosphorus (white)	P ₄ molecules	123.8950	1.82325	44.15	280.3	g/100 mL: 2.86 bz, 2.50 chl, 1.25 CS ₂ ; 0.025 abs alc, 1.0 eth
(red)	P ₄	123.8950	2.34	597	subl 416	i aq; ignites in air, 260
hydride, see Phosphine						
pentabromide	PBr ₅	430.56	3.4620	106 d		d aq; s CCl ₄ , CS ₂
pentachloride	PCl ₅	208.27	2.11920	subl 100	166 d	hyd aq; s CCl_4 , CS_2
pentafluoride	PF ₅	125.98	5.805 g/L	-93.8	- 84.6	hyd aq
pentoxide (dimer)	P_4O_{10}	283.88	2.30	340	subl 360	d aq; s H_2SO_4
pentasulfide	P_2S_5	222.29	2.09	288	514	hyd aq; s alkali; 0.222 ¹⁷ CS ₂
tribromide	PBr ₃	270.73	2.8515	-41.5	173.2	d aq, alc; s acet, CS_2
trichloride	PCl ₃	137.35	1.575 ²⁰	-93.6	76.1	d aq, alc; s bz, chl
trifluoride	PF ₃	87.98	3.907 g/L	- 151.30	- 101.38	hyd aq
trioxide (dimer)	P ₄ O ₆	219.90	2.136420	23.8	173 (N ₂ atm)	hyd aq; s bz, CS ₂
(tetra-) triselenide	P₄Se ₃	360.80	1.31	245-246	360-400	flammable in air; s bz, acet, chl, CS ₂
(tetra-) trisulfide	P_4S_3	220.09	2.0317	167	407	100 g/100 mL ¹⁷ CS ₂ ; s tolune

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
Phosphine	PH ₃	34.00	1.529 g/L	- 133.81	- 87.78	mL/100 mL ¹⁷ : 1025 CS ₂ , 726 bz, 319 HOAc, 26 aq; s alc, eth
Phosphonium iodide	PH₄I	161.91	2.86	18.5	subl 62.5	d aq
Phosphoryl chloride difluor- ide	POCIF ₂	120.43	1.6560	-96.4	3.1	
dichloride fluoride	POCl ₂ F	136.89	1.5497 ²⁰	-80.1	52.90	
tribromide	POBr ₃	286.72	2.822	56	191.7 d	s bz, CS_2 , eth
trichloride	POCl ₃	153.35	1.64525	1.25	105	d aq, alc
Platinum	Pt	195.08	21.0920	1769	3824	s aqua regia, fused alkali
(II) chloride	PtCl ₂	266.00	5.87	d 581		i aq, alc; s HCl, NH ₄ OH
(IV) chloride	PtCl ₄	336.90	4.30325	d 370		143 g/100 mL ²⁵ aq
(VI) fluoride	PtF ₆	309.08	3.826 (lq)	61.3	69.14	
(II) oxide	PtO	211.09	14.915	d 550		i aq; s HCl
(IV) oxide	PtO ₂	227.09	10.2	450		i aqua regia
(IV) sulfide	PtS ₂	259.22	7.66	d 225		s HCl, HNO ₃
Plutonium	Pu	239.052	19.816 ²⁰	639.5	3230	i aq; s acids
(III) bromide	PuBr ₃	478.79	6.69	681	d >1300	s aq
(III) chloride	PuCl ₃	345.42	5.70	760	1767	i aq; v s acids
(III) fluoride	PuF ₃	296.06	9.32	1425	d 2000	hyd aq
(IV) fluoride	PuF ₄	315.05	7.00	1037 d		i aq
(VI) fluoride	PuF ₆	353.05	4.86	51.59	62.16	
(II) hydride	PuH ₂	241.08	10.40	ca. 727		
(III) hydride	PuH ₃	242.08	9.61	ca. 327		
(II) oxide	PuO	255.05	13.9	1900		
(III) oxide	Pu ₂ O ₃	526.12	10.2	2085 (in He)		
(IV) oxide	PuO ₂	271.05	11.46	2390 (in He)	d 2800	
(III) sulfide	Pu_2S_3	574.30	9.95	1727		
Polonium	Ро	208.9824	9.196 alpha 9.398 beta	254	962	sl s aq; s acids
(IV) chloride	PoCl ₄	350.79		300 (in Cl ₂)	390 (in Cl ₂)	sl hyd aq; v s HCl; s alc, acet
(IV) oxide	PoO	240.98	d 550			v s dilute HCl

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Potassium	К	39.0983	0.89	63.38	759	d aq to KOH; s acids
acetate	KC ₂ H ₃ O ₂	98.14	1.57	292		g/100 mL: 200 aq, 34 alc
arsenate	K ₃ AsO ₄	256.21	2.8	1310		19 g/100 mL aq; slowly s glyc; s alc
borate(1-)	KBO ₂	81.91		947	1401	71 g/100 mL ³⁰ aq
bromate	KBrO ₃	167.00	3.27	≈350	d 370	6.9 g/100 mL ²⁰ aq
bromide	KBr	119.00	2.75	734	1435	g/100 mL: 65 ²⁰ aq, 22 glyc, 0.4 alc
carbonate	K ₂ CO ₃	138.21	2.29	901	d to K ₂ O	90 g/100 mL ²⁰ aq; i alc
chlorate	KClO ₃	122.55	2.32	368	d >400	g/100 mL: 7.3 ²⁰ aq, 2 glyc
chloride	KC1	74.55	1.988	771	1437	g/100 mL: 34 ²⁰ aq, 7 glyc, 0.4 alc
chromate(VI)	K ₂ CrO ₄	194.19	2.732	975		64 g/100 mL ²⁰ aq; i alc
citrate hydrate	$K_3C_6H_5O_7 \cdot H_2O$	324.42	1.98	anhyd 180	d 230	g/100 mL: 154 aq; 40 glyc
cyanate	KOCN	81.11	2.05	d ≈700		s aq; sl s alc
cyanide	KCN	65.12	1.55	634	1625	g/100 mL: 50 aq, 50 glyc, 4 MeOH
dichromate(VI)	$K_2Cr_2O_7$	294.19	2.676 ²⁵	398	d 500	11.7 g/100 mL ²⁰ aq
dicyanoargentate(I)	$K[Ag(CN)_2]$	199.01	2.36			25 g/100 mL ³⁰ aq
dihydrogen arsenate	KH ₂ AsO ₄	180.03	2.867	288		g/100 mL: 19 ⁶ aq, 63 glyc; i alc
dihydrogen phosphate	KH ₂ PO ₄	136.09	2.338	d 400 (KPO ₃)		22.6 g/100 mL ²⁰ aq; i alc
dioxide	KO ₂	71.10	2.14	509	d	v s aq with decomposition
diphosphate(V) 3-water	$K_4P_2O_7 \cdot 3H_2O$	384.38	2.33	anhyd 300	mp: 1090	s aq; i alc
disulfate(IV)	$K_2S_2O_5$	222.32		-	-	s aq; flammable if ground
disulfate(VI) (pyrosulfate)	$K_2S_2O_7$	254.32	2.28	≈325		s aq
ethyldithiocarbonate	KOCSSC ₂ H ₅	160.30	1.558	d 200		v s aq
fluoride	KF	58.10	2.48	859.9	1505	95 g/100 mL ²⁰ aq
formate	КСНО	84.12	1.91	167.5	d >mp	250 g/100 mL aq
gluconate	KC ₆ H ₁₁ O ₇	234.25		d 180	-	v s aq; i alc, bz, chl
heptaiodobis-	K ₄ [BiI ₇]	1253.82				d aq; s alkali iodide solutions
muthate(III)(4-)						
hexachloroplatinate(IV)	K ₂ [PtCl ₆]	485.99	3.50	d 250		0.48 ²⁰ aq
hexacyanoferrate(II)	$K_4[Fe(CN)_6] \cdot 3H_2O$	422.39	1.85	anhyd 100	d	28 g/100 mL ²⁰ aq
bexacyanoferrate(III)	K-IFe(CN)-1	329.25	1 89	d		40 $\sigma/100 \text{ mJ}^{20}$ ag (slow): sl s alc
hexafluorosilicate	K.[SiF.]	220.27	2 27	d		sl s ag: i alc
hexafluorozirconate	$K_{a}[Z_{r}F_{c}]$	283.41	3.58	-		$2.7 \text{ g/}100 \text{ mL}^{20}$ ad
hexanitritocobaltate(III)	$K_{1}[C_{0}(NO_{1})] + 1.5H_{1}O_{1}$	479 30	5.50	d 200		0.089^{18} are s HOAc: y sl s alc
1.5-water	13100(1102)61 1.01120			a 200		oross uy, briorio, v bi b die
hydride	КН	40.11	1.43	417 d		d aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

				Melting point	Boiling point	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
hydrogen carbonate	кнсо	100 11	2 17	d >100		$34 \text{ g}/100 \text{ mJ}^{20} \text{ act} i \text{ alc}$
hydrogen difluoride	KHF	78.10	2.37	238.80	d 477	$39 \text{ g}/100 \text{ mL}^{20} \text{ ag}; \text{ s alc}$
hydrogen phosphate	K ₃ HPO	174.18		d to K ₂ P ₂ O ₇		150 g/100 mL ag
hydrogen phthalate	KHC ₈ H ₄ O ₄	204.22	1.636	d		8.3 g/100 mL aq; sl s alc
hydrogen sulfate	KHSÕ₄	136.17	2.24	197	d to K ₂ S ₂ O ₇	48 g/100 mL ²⁰ aq
hydrogen sulfide	KHS	72.17	1.70	≈455	,	s aq, alc
hydrogen tartrate	KHC₄H₄O ₆	188.18	1.956			0.5^{20} aq; s acids; v sl s alc
hydroxide	кон	56.11	2.044	406	1323	g/100 mL: 112 ²⁰ aq, 33 alc, 40 glyc
iodate	KIO3	214.00	3.89	560 d		8.1 g/100 mL ²⁰ aq; i alc
iodide	KI	166.00	3.12	681	1345	g/100 mL: 144 ²⁰ aq, 4.5 alc, 50 glyc
manganate(VI)	K ₂ MnO ₄	197.13		190 d		s aq; stable in KOH
molybdate(VI)	K ₂ MoO ₄	238.14	2.3	919	d 1400	160 g/100 mL aq
nitrate	KNO ₃	101.10	2.11	333	d 400	g/100 mL: 32 ²⁰ aq, 0.16 alc, s glyc
nitrite	KNO ₂	85.10	1.915	441	d 350	306 g/100 mL ²⁰ aq; sl s alc
oxalate hydrate	$K_2C_2O_4 \cdot H_2O$	184.23	2.13	anhyd 160	d to K_2CO_3	36 g/100 mL ²⁰ aq
oxide	K ₂ O	94.20	2.35	350 d		d aq to KOH, s alc
oxobisoxalatodiaquati-	$K_2[TiO(C_2O_4)_2(H_2O)_2]$	354.18				v s aq
tanate(IV)						
perchlorate	KClO ₄	138.55	2.52	d 400		2.04 ²⁵ aq; 0.0036 ²⁵ BuOH; 0.0013 EtOAc
periodate	KIO₄	230.010	3.618	582		0.42 ²⁰ aq, sl s KOH
permanganate	KMnO ₄	158.03	2.7	$d 240 \rightarrow O_2$		6.34 g/100 mL ²⁰ aq; d HCl
peroxide	K ₂ O ₂	110.20		490		d aq
peroxodicarbonate hydrate	$K_2C_2O_6 \cdot H_2O$	216.24				6.5 g/100 mL aq; d hot aq
peroxodisulfate	$K_2S_2O_8$	270.32	2.48	d 100		2.5 g/100 mL ²⁰ aq; i alc
perrhenate	KReO ₄	289.30	4.38	555	1370	0.99 ²⁰ aq
phenolsulfonate hydrate	$KC_6H_4(OH)SO_3 \cdot H_2O$	240.28	1.87			s aq, alc
phosphate	K ₃ PO ₄	212.27	2.564417	1340		50.8 g/100 mL ²⁰ aq; i alc
selenocyanate	KSeCN	144.08		d 100		s aq
silicate(2-)	K ₂ SiO ₃	154.29		976		s aq
sodium hexanitritocobal- tate(III) hydrate	$K_2Na[Co(NO_2)_6] \cdot H_2O$	454.18	1.633	d 135		0.07 aq
sodium tartrate 4-water	$KNaC_4H_4O_6 \cdot 4H_2O$	282.23	1.790	70-80	anhyd 130–140	54 g/100 mL ¹⁵ aq
sorbate	KC ₆ H ₇ O ₂	150.22	1.36325	d >270		g/100 mL: 58.2 ²⁰ aq, 6.5 alc
stannate(IV) 3-water	$K_2SnO_3 \cdot 3H_2O$	298.94	3.197	anhyd 140		100 g/100 mL ²⁰ aq; i alc

Previous Page

stearate	KOOCC ₁₇ H ₃₅	322.57				readily soluble hot aq or alc
sulfate	K ₂ SO₄	174.26	2.66	1069	1670	g/100 mL: 11 ²⁰ aq, 1.3 glyc, i alc
sulfide	K ₂ S	110.26	1.74	948		
sulfite 2-water	$\tilde{K_2SO_3} \cdot 2H_2O$	194.29		d		28.6 g/100 mL ²⁰ aq
tartrate hemihydrate	$K_2C_4H_4O_6 \cdot 0.5H_2O$	235.28	1.98	anhyd 155	d 200	$138 \text{ g/100 mL}^{20} \text{ ag}$
tellurate(IV)	K ₂ TeO ₃	253.79		•		sag
tetrachloroaurate(III)	K[AuCl₄]	377.88	3.75	d 357		$61.8 \text{ g}/100 \text{ mL}^{20} \text{ ag}$
tetrafluoroborate	K[BF₄]	125.90	2.505^{20}_{4}	530		0.45 ²⁰ aq
tetrahydridoborate	K[BH ₄]	53.94	1.11	d 497		g/100 mL: 21 ²⁵ aq, 3.5 ²⁰ MeOH
tetraiodocadmate 2-water	$K_4[CdI_4] \cdot 2H_2O$	698.21	3.359 ²¹			$g/100$ mL: 137^{15} aq, 71^{15} alc, 4 eth
tetraiodomercurate(II)	K₂[HgI₄]	786.48				v s aq; s alc, acet, eth
thiocyanate	KSCN	97.18	1.89	173	d 500	g/100 mL: 217 ²⁰ aq, 200 acet, 8 alc
thiosulfate	$K_2S_2O_3$	190.33		d 400		155 g/100 mL ²⁰ aq; i alc
trihydrogen bisoxalate 2-water	$KH_3(C_2O_4) \cdot 2H_2O$	254.20	1.836	d		1.8 aq
trisoxalatoantimonate(III)	$K_3[Sb(C_2O_4)_3]$	503.12				a aq
trithiocarbonate	K_2CS_3	186.41		d		v s aq
uranyl(VI) acetate hydrate	$K(UO_2)(C_2H_3O_2)_2 \cdot H_2O$	504.28	3.29615	anhyd 275		s aq
Praseodymium	Pr	140.9077	6.475 α -form	935	3520	s hot water and acids
chloride	PrCl ₃	247.27	4.0	769 to 782	1710	104 g/100 mL ¹³ aq; s alc
(III) oxide	Pr ₂ O ₃	329.81	7.07	oxidizes to Pr ₆ O ₁₁		i aq; s acids
(IV)	PrO ₂	172.91	6.82	tr 350 to Pr ₆ O ₁₁		
Promethium-147	Pm	146.915	7.22	1080	3000 est	
bromide	PmBr ₃	386.7	5.38	727	1667	s aq
chloride	PmCl ₃	153.4		737	1670	s aq
Protoactinium	Pa	231.0359	15.37	1568(8)	4227	
(IV) chloride	PaCl₄	372.85	4.72	subl 400		i aq; s HCl
(V) chloride	PaCl ₅	408.31	3.74	301	420	hyd aq; s THF, CH₃CN
Radium	Ra	226.03	5.5	700.1	1737	d aq; s acids
bromide	RaBr ₂	385.88	5.79	728	subl 900	s aq
chloride	RaCl ₂	296.93	4.91	1000		s aq
Radon Rhenium	Rn Re	222.0 186.207	9.73 g/L 21.02	-71 3180	-62 5678	23 mL/100 mL ²⁰ aq; s org solv s HNO_3

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
chloride trioxide	ReClO ₃	269.66		4.5	128	hyd in water to $HReO_4$; s CCl_4
(IV) fluoride	ReF ₄	262.20	5.38	124.5	795	hyd aq
(VI) fluoride	ReF ₆	300.20	3.58	18.5	33.8	52.5 g/100 mL anhyd HF; s HNO_3
(VII) fluoride	ReF ₇	319.20	3.65	48.3	73.7	hyd aq
(VI) oxide	ReO ₃	234.20	6.9-7.4	disprop 400	750	s HNO ₃
(VII) oxide	Re_2O_7	484.41	6.1	300.3	360.3	v s aq, org solv
(VII) sulfide	Re_2S_7	596.88	4.866	d 460		i aq; s HNO ₃
(VI) tetrachloride oxide	ReCl₄O	344.02	3.309	29.3	225	hyd aq; s CCl ₄
Rhodium	Rh	102.9055	12.4120	1963	3727	s fused KHSO ₄
(III) chloride	RhCl ₃	209.26	5.38	d 450		i aq; s KOH, KCN
(III) fluoride	RhF ₃	159.90	5.4	sub1 600		i acids, alkalis
(III) oxide	Rh ₂ O ₃	253.81	8.20	d 1100		i aq reg, KOH
tetracarbonyldi-μ-chloro- dichloride	$Rh_2(CO)_4Cl_2$	388.76		124-125		s org solv except hydrocarbons
Rubidium	Rb	85.4678	1.532	39.31	691	d aq to RbOH
acetate	RbC ₂ H ₃ O ₂	144.52		246		86 g/100 mL ⁴⁵ aq
bromide	RbBr	165.37	3.35	682	1346	108 g/100 mL ²⁰ aq
carbonate	Rb ₂ CO ₃	230.95		837	d 900	g/100 mL: 450 ²⁰ aq, 0.74 ₁₉ alc
chlorate	RbClO ₃	168.94	3.184	342		5.4 g/100 mL ²⁰ aq
chloride	RbCl	120.92	2.76	715	1390	g/100 mL: 91 ²⁰ aq, 1.1 MeOH
dihydrogen phosphate	RbH ₂ PO ₄	182.47		840		s aq
fluoride	RbF	104.47	3.2	833	1410	131 g/100 mL ¹⁸ aq
hexachloroplatinate(IV)	Rb ₂ [PtCl ₆]	578.75	3.94	d		0.028 ²⁰ aq
hydroxide	RbOH	102.47	3.20	301		180 g/100 mL ¹⁸ aq; s alc
iodide	RbI	212.37	3.55	642	1304	163 g/100 mL ²⁵ aq; s alc
nitrate	RbNO ₃	147.47	3.11	305		19.5 g/100 mL ²⁰ aq
oxide	Rb ₂ O	186.93	4.0	400 d		s aq \rightarrow RbOH
sulfate	Rb ₂ SO ₄	267.00	3.5	1050		48 g/100 mL ²⁰ aq
Ruthenium	Ru	101.07	12.45420	2334	4150	s fused alkali, oxidizing fluxes
(III) chloride (hexagonal)	RuCl ₃	207.43	3.11	d >500		i aq; s HCl, alc
(V) fluoride	RuF ₅	196.06	3.90	86.5	227	d aq
(IV) oxide	RuO ₂	133.07	6.97	d		i aq; s fused alkali
Samarium	Sm	150.36	7.52	1074	1794	s acids
(II) chloride	SmCl ₂	221.27	3.687	855	2030	s aq dec; i alc
(III) chloride	SmCl ₃	256.72	4.46	682	d	93.4 g/100 mL ²⁰ aq
(III) fluoride	SmF ₃	207.36	6.643	1306	2427	i aq; s H ₂ SO ₄
(III) oxide	Sm ₂ O ₃	348.72	8.347	2335		s acids
(III) sulfate 8-water	$Sm_2(SO_4)_3 \cdot 8H_2O$	733.03	2.93	anhyd 450		2.7 g/100 mL ²⁰ aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Scandium	Sc	44.956	2.985 hex	1541	2836	d aq
chloride	ScCl ₃	151.31	2.39	967	967	v s aq; i alc
oxide	Sc ₂ O ₃	137.91	3.864	2485		s hot or conc acids
sulfate 5-water	$Sc_2(SO_4)_3 \cdot 5H_2O$	468.17	2.519	anhyd 250	d 550	54.6 g/100 mL ²⁵ aq
Selenium (hexagonal)	Se	78.96	4.81420	217	685	s eth, KOH, KCN; i aq, alc
(IV) bromide	SeBr ₄	398.58	4.029	123		d aq; s HBr, chl, CS ₂
(IV) chloride	SeCl₄	220.77	2.6	305	subl 196	d aq
(di-) dibromide	Se ₂ Br ₂	317.73	3.60445		225 d	d aq; s chl, CS_2
dibromide oxide	SeBr ₂ O	254.77	3.3850	41.6	217 d	d aq
(di-) dichloride	Se ₂ Cl ₂	228.83	2.774 ²⁵	-85	127 dec	d aq; s bz, chl, CS_2
dichloride oxide	SeCl ₂ O	165.867	2.44	8.5	177.2	d aq; misc bz, chl, CCl ₄ , CS ₂
difluoride oxide	SeF ₂ O	132.96	2.8	15	125	d aq
(IV) fluoride	SeF₄	154.95	2.75	-10	106	reacts aq viol; misc alc, eth; s chl
(VI) fluoride	SeF ₆	192.95	8.467 g/L	-34.6		
(di-) hexasulfide	Se_2S_6	350.32	2.44	121.5		s CS ₂ ; 1.2 g/100 mL ²⁰ bz
(IV) oxide	SeO ₂	110.96	3.95	340	subl 315	w/w %: 38 ¹⁴ aq, 10 ¹² MeOH, 4.35 acet, 6.7 ¹⁴ EtOH, 1.1 ¹² HOAc; s H ₂ SO ₄
(tetra-) tetrasulfide	Se ₄ S ₄	444.10	3.20	113 d		i aq; 0.04 g/100 mL ²⁰ bz; s CS ₂
Silane	SiH₄	32.12	1.409 g/L	-185	-111.9	d aq slowly; i alc, bz, chl, eth
chloro-	SiH ₃ Cl	66.56	2.921 g/L	-118	-30.4	
dichloro-	SiH ₂ Cl ₂	101.01	4.432 g/L	-122	8.3	d aq
iodo-	SiH ₃ I	158.01	2.035	-57	45.5	d aq
trichloro-	SiHCl ₃	135.45	1.331	-128	33	d aq; s bz, chl
Silicon	Si	28.0855	2.33	1412	3265	s HF + HNO ₃ , fused alkali oxides
carbide (beta)	SiC	40.10	3.16	2830		s fused alkali oxides
dioxide (α quartz)	SiO ₂	60.08	2.648	573 tr	2950	i aq; s HF
· - ·	-			β quartz		
dioxide - tungsten trioxide - water (silicotungstic acid)	$SiO_2 \cdot 12WO_3 \cdot 26H_2O$	3310.66				v s aq, alc
disulfide	SiS ₂	92.22	2.04	1090		s d aq, alc; i bz

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
tetrabromide	SiBr₄	347.70	2.81	5.2	154	hyd aq viol
tetrachloride	SiCl ₄	169.90	1.5	-68.8	57.6	hyd aq; s bz, CCl_4 , eth
tetrafluoride	SiF	104.08	4.567 g/L	-90.3	-86	hyd aq; s HF
tetraiodide	SiI4	535.70	4.1	120.5	287.3	d aq; 2.2 g/100 mL ²⁷ CS ₂
(tri-) tetranitride	Si ₃ N ₄	140.28	3.17	1878		i aq; s HF
Silver	Ag	107.8682	10.49	961.78	2164	s HNO ₃
acetate	$AgC_2H_3O_2$	166.91	3.259	d		1.04^{20} aq; s dil HNO ₃
antimonide	Ag ₃ Sb	445.35		559		
azide	AgN ₃	149.89	4.9	exp ~252		i aq; s KCN, HNO ₃ (explosive)
bromide	AgBr	187.77	6.473	432	1500	i aq; s KCN
carbonate	Ag_2CO_3	275.75	6.077	218		0.003 ²⁰ aq; s KCN, HNO ₃ , NH ₄ OH
chlorate	AgClO ₃	191.32	4.43040	231	d 270	10 g/100 mL ¹⁵ aq
chloride	AgCl	143.32	5.56	455	1547	i aq; 7.7 g/100 mL NH ₄ OH, KCN, Na ₂ S ₂ O ₃
chromate(VI)	Ag_2CrO_4	331.73	5.62525			0.002 ²⁰ aq; s HNO ₃ , NH ₄ OH
cyanide	AgCN	133.89	3.95	320 d		i aq; s KCN
fluoride	AgF	126.87	5.852	435	≈1150	182 g/100 mL ²⁰ aq; s HF, CH ₃ CN
(II) fluoride	AgF_2	145.87	4.57	690	d 700	hyd viol aq
iodate	AgIO ₃	282.77	5.52520	>200	d	0.053 ²⁵ aq; 40 g/100 mL 10% NH₄OH
iodide (alpha)	AgI	234.77	5.683 ³⁰	558	1505	i aq; s KCN, KI, (NH ₄) ₂ CO ₃
nitrate	AgNO ₃	169.87	4.35219	212	d 440	g/100 mL: 216 ²⁰ aq, 3.3 alc, 0.4 acet
nitrite	AgNO ₂	153.87	4.453	d >140		0.33 ²⁵ aq; d dilute acids
oxalate	$Ag_2C_2O_4$	303.76	5.034	explodes 140		0.004 ²⁰ aq; s HNO ₃ , NH ₄ OH
oxide	Ag ₂ O	231.73	7.22_{4}^{25}	d 200 (d light))	0.002 ²⁵ aq; s dil HNO ₃ , NH₄OH
(II) oxide	AgO	123.87	7.48345	d >100		i aq; d alk and acids
perchlorate	AgClO ₄	207.32	2.806 ²⁵	d 486		557 g/100 mL ²⁰ aq; s bz, glyc, pyr
permanganate	AgMnO ₄	226.80	4.49	d by light		0.9 aq; d alc
phosphate	Ag ₃ PO ₄	418.62	6.37	849		0.006 aq; v s dil HNO ₃ , KCN, (NH ₄) ₂ CO ₃
selenate(IV)	Ag ₂ SeO ₃	342.69	5.93	530	d >530	sl s aq; s HNO3
sulfate	Ag_2SO_4	311.80	5.45	660	d 1085	0.80 ²⁰ aq (slow); s HNO ₃ , NH ₄ OH, H ₂ SO ₄
sulfide (agentite)	Ag_2S	247.80	7.234420	845	d	i aq; s HNO3, alk CN's
Sodium	Na	22.98977	0.96820	97.82	881.4	d aq to NaOH
acetate	$NaC_2H_3O_2$	82.03	1.528	324		75 g/100 mL ²⁰ aq
acetate 3-water	$NaC_2H_3O_2 \cdot 3H_2O$	136.08	1.45	anhyd 120	d >120	g/100 mL: 125 ²⁰ aq, 5.1 alc
aluminate(1-)	NaAlO ₂	81.97	4.63	1650		v s aq; i alc

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

aluminum sulfate 12-water	$NaAl(SO_4)_2 \cdot 12H_2O_1$	458.28	1.61	-60		110 g/100 mL ¹⁵ ag: i alc
amide	NaNHa	39.01	1.39	210	subl 400	d > 500, reacts ag viol
ammonium phosphate	NaNH $_{\rm HPO}$ · 4H $_{\rm O}$	209.07	1.54	≈80	anhvd > 280	14.3 g/100 mL ag
4-water		20,00	1.0 1		umja - 200	The groot has uq
arsenate(III)(1-)	NaAsO ₂	129.91	1.87			v s aq: sl s alc
ascorbate	NaC ₂ H ₂ O ₂	198.11		d 218		$62 \text{ g}/100 \text{ mL}^{20} \text{ ag}$
azide	NaN ₂	65.01	1.84620	d to Na + N ₂		$41 \text{ g/100 mL}^{20} \text{ ag}; 0.3 \text{ alc}$
benzoate	NaO ₂ C ₄ H ₅	144.11		2		g/100 mL: 63 ²⁵ aq: 1.3 alc
bismuthate(V) $(1-)$	NaBiO ₂	279.96		d		i cold aq: dec by hot aq & acids
bismuthide	Na₂Bi	277.95		766		dag
bromate	NaBrO ₂	150.89	3.34	381 d		$40 \text{ g}/100 \text{ mL}^{20} \text{ ag}; \text{ i alc}$
bromide	NaBr	102.89	3.200^{20}_{4}	755	1390	g/100 mL: 90 ²⁰ aq, 6 alc; 16 MeOH
carbonate	Na ₂ CO ₂	105.99	2.533^{20}	858.1	d	29 g/100 mL ²⁰ ag; s glyc; i alc
carbonate hydrate	$Na_{2}CO_{3} \cdot H_{2}O$	124.00	2.25	anhyd 100		g/100 mL: 33 aq, 14 glyc; i alc
carbonate 10-water	$Na_{3}CO_{3} \cdot 10H_{2}O$	286.14	1.46	34 d		50 g/100 mL aq; s glyc
carbonate - hydrogen	Na ₂ CO ₃ · NaHCO ₃	226.02	2.112			13 g/100 mL ⁰ aq
carbonate 2-water (trona)	· 2H ₂ O					0 1
chlorate(V)	NaClO ₃	106.44	2.5	248	$d > 300 \rightarrow O_2$	g/100 mL: 96 ²⁰ aq, 0.77 alc, 25 glyc
chloride	NaCl	58.44	2.17	800.8	1465	g/100 mL: 36 ²⁰ aq, 10 glyc
chlorite	NaClO ₂	90.44		d 180-200		$34 \text{ g/100 mL}^{17} \text{ aq}$
chromate(VI)	Na ₂ CrÕ₄	161.97	2.72	792		84 g/100 mL ²⁰ aq
citrate 2-water	$Na_3C_6H_5O_7 \cdot 2H_2O$	294.10		anhyd 150		77 g/100 mL ²⁵ aq; i alc
cyanate	NaOCN	65.01	1.89	550		s aq d; 0.22° alc
cyanide	NaCN	49.01	1.6	563		58.7 g/100 mL ²⁰ aq
cyanohydridoborate	Na[BH ₃ CN]	62.84	1.12	>240 d		g/100 mL: 212 aq, 37.2 THF; v s
dichromate 2-water	$Na_2Cr_2O_7 \cdot 2H_2O$	298.00	2.34845	anhyd 100; mp 356	d 400	73.1 g/100 mL ²⁰ aq
diethyldithiocarbamate	$NaS_2CN(C_2H_5)_2 \cdot 3H_2O$	225.31		anhyd 94–96		s aq, alc
dihydrogen arsenate(V) hydrate	$NaH_2AsO_4 \cdot H_2O$	181.94	2.53	anhyd 130	d 200	s aq
dihydrogen diphos- phate(V)	$Na_2H_2P_2O_7$	221.94	1.9	d 220		4.5 g/100 mL ⁰ aq
dihydrogen phosphate(V) dihydrate	$NaH_2PO_4\cdot 2H_2O$	156.01	1.91	anhyd 100	d NaPO ₃ , 200	71 g/100 mL ⁰ aq; i alc

				Malting point	Doiling point	Salukility in
Name	Formula	Formula weight	Density	°C	вонид point, °С	100 parts solvent
dimethylarsonate 3-water (cacodylate)	NaO ₂ As(CH ₃) ₂	214.03		anhyd 120		g/100 mL: 200 aq, 40 alc
dioxide	NaO ₂	54.99		552		
diphosphate(V)	$Na_4 P_2 O_7$	265.90	2.53	988		2.26° aq
dithionate(V) 2-water	$Na_2S_2O_6 \cdot 2H_2O$	242.14	2.19	anhyd 110	d 267 to Na ₂ SO ₄ + SO ₂	13.4 g/100 mL ²⁰ aq; i alc
dithionate(III)	$Na_2S_2O_4$	174.11		d	-	22 g/100 mL ²⁰ aq; sl s alc
diuranate(VI)	$Na_2U_2O_7$	634.03				i aq; s acids
dodecylbenzenesulfonate	$NaO_3SC_6H_4C_{12}H_{25}$	348.49				-
dodecylsulfate	NaO ₃ SOC ₁₂ H ₂₅	288.38				10 g/100 mL aq
ethoxide	NaOC ₂ H ₅	68.06		>300		d aq; s abs alc
ethylenebis(imino- diacetate) (EDTA)	(NaOOCCH ₂) ₂ NC ₂ H ₄ - N(CH ₂ COONa) ₂	380.20				103 g/100 mL aq
ethylsulfate	NaO ₃ SOC ₂ H ₅	148.12				140 g/100 mL aq; s alc
fluoride	NaF	41.99	2.78	996	1704	4 g/100 mL ¹⁵ aq; i alc
formate	NaHCO ₂	68.01	1.92	253	d >253	81 g/100 mL ²⁰ aq; s glyc; sl s alc
gluconate	$NaC_6H_{11}O_7$	218.14				59 g/100 mL ²⁵ aq; sl s alc; i eth
glycerophosphate	Na ₂ C ₃ H ₅ (OH) ₂ PO ₄	216.04		d >130		67 g/100 mL aq; i alc
hexachloroplatinate(IV)	$Na_2[PtCl_6] \cdot 6H_2O$	561.88	2.50	-6H ₂ O, 110		v s aq; s alc
hexacyanoferrate(II) 10-water	$Na_4[Fe(CN)_6] \cdot 10H_2O$	484.06	1.46	anhyd 82	d 435	28 g/100 mL ²⁰ aq
hexacyanoferrate(III) hy-	$Na_3[Fe(CN)_6] \cdot H_2O$	298.93				18.9 g/100 mL ⁰ aq
hexafluoroaluminate	Na ₂ [A]F ₂]	209.94	2.97	1009		\$ 20
hexanitritocobaltate(III)	$Na_{0}[Co(NO_{0})_{c}]$	403.98	2.51	1007		v s ag: sl s alc
hydride	NaH	24.00	1.39	425 d		ign spontaneously moisture; d alc
hydrogen arsenate(V) 7-water	$Na_2HAsO_4 \cdot 7H_2O$	312.01	1.87	anhyd 130	d 150	61 g/100 mL ¹⁵ aq; s glyc; sl s alc
hydrogen carbonate	NaHCO	84 01	2.20	to Na ₂ CO ₂	270	$8 \text{ g/100 mL}^{20} \text{ ac}$; i alc
hydrogen difluoride	NaHF	62.00	2.08	d > 160	2.0	$3.7 \text{ g/100 mL}^{20} \text{ ag}$
hydrogen phosphate 7-water	$Na_2HPO_4 \cdot 7H_2O$	268.07	1.7	d		$25 \text{ g/100 mL}^{40} \text{ aq; v sl s alc}$
hydrogen sulfate	NaHSO.	120.06	2,435	315	d	$50 \text{ g}/100 \text{ mL}^{20} \text{ ac}; \text{ d alc}$
hydrogen sulfide	NaHS	56.06	1.79	350	-	s aq. alc. eth
hydrogen sulfite	NaHSO ₃	104.06	1.48	d		g/100 mL: 29 aq, 1.4 alc

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

hydroxide	NaOH	40.00	2.130	323	1388	g/100 mL: 108 ²⁰ aq, 14 abs alc, 24 MeOH; s glyc
hydroxymethanesulfinate dihydrate	$Na[HOCH_2SO_2] \cdot 2H_2O$	154.12		63–64	d >64	v s aq; i abs alc, bz, eth
hypochlorite 5-water	NaClO · 5H ₂ O	164.52	1.6	18	d by CO_2 from air	29 g/100 mL ⁰ aq
iodate	NaIO ₃	197.89	4.28	d		8.1 g/100 mL ²⁰ aq
iodide	NaI	149.89	3.67	660	1304	g/100 mL: 200 ²⁰ aq, 100 glyc, 50 alc; s acet
lactate	NaOOCCHOHCH ₃	112.06		d		misc aq, alc
methoxide	NaOCH ₃	54.02		>300		d aq; s alc
molybdate(VI) 2-water	$Na_2MoO_4 \cdot 2H_2O$	241.95	≈3.5	anhyd 100	mp 687	65 g/100 mL ²⁰ aq
nitrate	NaNO ₃	85.00	2.26	307	d ≈500	g/100 mL: 88 ²⁰ aq, 0.8 alc
nitrite	NaNO ₂	69.00	2.17	271	d >320	67 g/100 mL ²⁰ aq
oxalate	$Na_2C_2O_4$	134.00	2.34	d ≈250		3.4 g/100 mL ²⁰ aq; i alc
oxide	Na ₂ O	61.98	2.27	dull red heat	d >400	d aq to NaOH violently
pentacyanonitrosylfer- rate(III) 2-water (nitro- prusside)	Na ₂ [Fe(CN) ₅ NO] · 2H ₂ O	297.65	1.72			40 g/100 mL ¹⁶ aq
perchlorate	NaClO ₄	122.44	2.52	480 d		g/100 mL ²⁵ ; 114 aq, 1.5 BuOH, 8.4 EtOAc
periodate	KIO₄	213.89	3.865	d ≈300		10.3 g/100 mL ²⁰ aq
peroxide	Na ₂ O ₂	77.98	2.805	675	d	v s aq (dec)
peroxoborate 4-water	$NaBO_3 \cdot 4H_2O$	153.88		d >60		2.5 g/100 mL aq
peroxodisulfate(VI)	Na ₂ S ₂ O ₈	238.11		d		55 g/100 mL aq; d by alc
perrhenate	NaReO ₄	273.19	5.24	300		33 g/100 mL ²⁰ aq
phosphate	Na ₃ PO ₄	163.94	2.537	1340		12.1 g/100 mL ²⁰ aq
phosphate 12-water	$Na_3PO_4 \cdot 12H_2O$	380.12	1.62	73.4	-11H ₂ O, 100	28.3 g/100 mL ²⁰ aq; i alc
phosphinate hydrate	$NaPH_2O_2 \cdot H_2O_2$	105.99		anhyd 200	d to PH ₃	100 g/100 mL ²⁰ aq; s glyc, alc
propanoate	NaOOCC ₂ H ₅	96.06				g/100 mL ²⁵ : 100 aq, 4.1 alc
salicylate	NaOOCC ₆ H ₄ OH	160.10				g/100 mL: 110 ²⁰ aq, 11 alc, 25 glyc
selenate(VI)	Na ₂ SeO ₄	188.94	3.098			27 g/100 mL ²⁰ aq
silicate(2–) meta-	Na ₂ SiO ₃	122.06	2.614	1089		s aq; hyd by hot aq; i alc
silicate(2-) 5-water	$Na_2SiO_3 \cdot 5H_2O$	212.14	1.749	72.2	anhyd 100	v s aq
silicate(4–)	Na ₄ SiO ₄	184.04		1018		s aq

N	Ermuda	E	Densite	Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	÷C	100 parts solvent
stannate(IV) 3-water	$Na_2SnO_3 \cdot 3H_2O$	266.71		d 140 (slow)		59 g/100 mL ²⁰ aq; i alc
stearate	NaOOCC ₁₇ H ₃₅	306.47		d		sl s aq
sulfate	Na_2SO_4	142.04	2.7	8800	d 2227	28 g/100 mL ²⁰ aq
sulfate 10-water	$Na_2SO_4 \cdot 10H_2O$	322.20	1.46	32.4	anhyd 100	67 g/100 mL ²⁵ aq; s glyc; i alc
sulfide	Na_2S	78.05	1.856	1172 vacuo		18.6 g/100 mL ²⁰ aq; sl s alc
sulfide 9-water	$Na_2S \cdot 9H_2O$	240.18	1.43	d ≈50		200 g/100 mL aq; sl s alc
sulfite	Na_2SO_3	126.04	2.63	d		31 g/100 mL ²⁰ aq; s glyc; i alc
tartrate dihydrate	$Na_2C_4H_4O_6 \cdot 2H_2O$	230.08	1.82	anhyd \sim 120		29 g/100 mL ⁶ aq; i alc
tetraborate	$Na_2B_4O_7$	201.22	2.4	742.5		2.6 ²⁰ aq
tetraborate 10-water (bo-	$Na_2B_4O_7 \cdot 10H_2O$	381.37	1.73	75 d	anhyd 320	g/100 mL: 6.3 aq, 100 glyc
rax)						
tetrachloroaluminate	Na[AlCl ₄]	191.78	2.01	151		s aq
tetrachloroaurate	$Na[AuCl_4] \cdot 2H_2O$	397.80		d >100		166 g/100 mL ²⁷ aq; s alc, chl
tetrafluoroborate	Na[BF ₄]	109.82	2.47	384	d	108 g/100 mL ²⁷ aq
tetrahydridoborate	Na[BH ₄]	37.83	1.074	497	d 315	18 ²⁵ DMF; 16.4 ²⁰ MeOH (reacts)
thiocyanate	NaSCN	81.07		287		134 g/100 mL ²⁰ aq
thiosulfate	$Na_2S_2O_3$	158.11	2.345			s aq; i alc
thiosulfate 5-water	$Na_2S_2O_3 \cdot 5H_2O$	248.19	1.69	anhyd 100	d >100	70 g/100 mL ²⁰ aq (dec slowly)
trimetaphosphate 6-water	$(NaPO_3)_3 \cdot 6H_2O$	414.04	1.786	53	anhyd 100	22 g/100 mL aq; i alc
tungstate(VI) dihydrate	$Na_2WO_4 \cdot 2H_2O$	329.85	3.25	anhyd 100	mp: 695.6	88 g/100 mL ⁰ aq; i alc
vanadate(V)	NaVO ₃	121.93				s hot aq
Strontium	Sr	87.62	2.64	757	1366	d to Sr(OH) ₂ in water
bromide	SrBr ₂	247.43	4.216	657	2045	100 g/100 mL ²⁰ aq
carbonate	SrCO ₃	147.63	3.5	d 1100 to SrO + CO_2		i aq; s acids
chlorate	$Sr(ClO_3)_2$	254.52	3.152	$120 \text{ d} \rightarrow \text{O}_2$		167 g/100 mL ²⁰ aq
chloride	SrCl ₂	158.53	3.052	874	1250	52.9 g/100 mL ²⁰ aq
chromate(VI)	SrCrO₄	203.61	3.89	d		0.12 ²⁰ aq; s HCl
fluoride	SrF ₂	125.62	4.24	1477	2460	0.011^{20} aq; s hot HCl
hydrogen phosphate	SrHPO₄	183.60	3.544			i aq; s acids
hydroxide	Sr(OH) ₂	121.64	3.625	535	– H ₂ O, 744	0.8^{20} aq
iodate	$Sr(IO_2)_2$	437.43	5.045 ¹⁵			0.03 ¹⁵ aq
iodide	SrI ₂	341.43	4.42	402	1773 d	178 g/100 mL ²⁰ aq; s alc
lactate 3-water	Sr(OOCCHOHCH ₃) ₂ · 3H ₂ C) 319.81		anhyd 150		33 g/100 mL aq
nitrate	Sr(NO ₃) ₂	211.63	2.99	570	645	$69.5 \text{ g}/100 \text{ mL}^{20} \text{ aq; sl s alc, acet}$
oxide	SrO	103.62	4.7	2430		0.69 ²⁰ aq
perchlorate	Sr(ClO ₄) ₂	286.52	3.0025			g/100 mL ²⁵ : 157 aq, 71 BuOH, 77

TABLE 1.3 Physical Constants of Inorganic Compounds (*Continued*)

						EtOAc, 90 acet
peroxide	SrO ₂	119.62	4.78	215 d		0.018^{20} ag; d hot ag
sulfate	SrSÕ₄	183.68	3.96	1607		0.013^{20} ag; sl s acid
sulfide	SrS	119.69	3.70	2227		sl s ag; s acid (dec)
Sulfinyl bromide (Thionyl)	SOBr ₂	207.87	2.688^{20}_{4}	-52	140	hyd ag (slow); misc bz, chl, CCl ₄
chloride	SOCI ₂	118.97	1.638	- 104.5	76	hyd aq; misc bz, chl, CCl₄
fluoride	SOF	86.06	3.776 g/L	- 129.5	-43.8	hyd aq; s bz, chl, eth
Sulfonyl chloride (Sulfuryl)	SO ₂ Čl ₂	134.97	1.6674_{4}^{20}	- 54.1	69.3	hyd ag; misc bz, eth, HOAc
diamide	$SO_{2}(NH_{2})_{2}$	96.11	1.807	93	d 250	s ag, hot EtOH, acet
fluoride	SO ₂ F ₂	102.06	4.478 g/L	-135.8	-55.38	mL gas/100 mL: 4 aq, 24 alc, 136 CCL, 210 toluene
Sulfur (gamma)	S	32.066	1.92	106.8	444.72	23 g/100 mL ^{0} CS _{2} ; s alc, bz
(alpha) orthorhombic	S ₈	256.53	2.0820	tr 94.5 to beta	444.6	i aq; s organic solvents
				form		
(beta) monoclinic tr slowly to rhombic	S ₈	256.53	1.96	115.21	444.6	23 g/100 mL ⁰ CS ; s alc, bz
(<i>di</i> -) decafluoride	S_2F_{10}	254.11	2.08	- 52.7	30	d fusion with KOH
(<i>di</i> -) dichloride	CISSCI	135.04	1.688	-77	137	hyd aq; s alc, bz, eth, CS ₂ , CCl ₄
dichloride	SCl ₂	102.97	1.622	-122	59.5	hyd aq
dioxide	SO ₂	64.07	2.811 g/L	-75.47	-10	mL/100 mL: 3937 ²⁰ aq, 25 alc, 32 MeOH: s chl. eth
hexafluoride	SF ₆	146.06	6.409 g/L	- 50.8	subl - 63.8	sl s aq; s alc, KOH
tetrafluoride	SF₄	108.06	4.742 g/L	-121.0	-38	d aq viol; v s bz
trioxide (alpha)	SO ₃	80.06	U	62.3	vp 73mm at 25	stable modification
(beta)	SO ₃	80.06		32.5	vp 344mm at 25	
(gamma)	SO ₃	80.06	1.92	16.8	44.8	v s ag (slow)
Sulfuryl, see Sulfonyl	5					
Tantalum	Та	180.9479	16.69	2996	5429	s HF, fused alkali (slowly)
(V) bromide	TaBr ₅	580.47	4.99	265	349	hyd aq; s abs alc, eth
carbide	TaC	192.96	14.3	3880	4780	sl s HF
(di-) carbide	Ta ₂ C	373.91	15.1	3327		
(V) chloride	TaCl ₅	358.21	3.68	216	239.3	hyd aq; s abs alc
diboride	TaB ₂	202.57	11.2	3140		
(V) fluoride	TaF ₅	275.94	4.74 ²⁰	96.8	229.5	s aq, eth, conc HNO_3
(V) iodide	Tal	815.47	5.80	496	543	hyd aq; s eth
_ nitride	TaN	194.95	13.7	3090		sl s aq reg; reacts alkalis
(V) oxide	Ta ₂ O ₅	441.89	8.2	1785		s HF; d fused KHSO₄ or KOH
Technetium-98	Тс	97.9072	11	2157	4265	s HNO ₃ , aq reg, conc H ₂ SO ₄
(VI) fluoride	TcF ₆	212.91	3.0	37.4	55.3	s HCl
(IV) oxide	TcO ₂	130.91	6.9	subl 1000		s acid, alkali
(VII) oxide	Tc_2O_7	309.81		119.5	310.6	s aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
Tellurium	Te	127.60	6.24	449.8	989.9	s HNO ₃ , KOH, conc H₂SO₄
(IV) bromide	TeBr	447.22	4.3	380	≈20 d	s HBr, eth, HOAc
(II) chloride	TeCl ₂	198.51	6.9	208	328	disprop with eth, diox; s acid
(IV) chloride	TeCl ₄	269.41	3.0	225	380	hyd aq; s HCl, abs alc, bz
(IV) fluoride	TeF₄	203.59		129	d >195	daq
(VI) fluoride	TeF ₆	241.59	10.601 g/L	-37.68	subl - 38.9	hyd aq, KOH
(IV) iodide	TeI ₄	635.22	5.05	280		hyd aq; s HI, alkali; sl s acet
(IV) oxide	TeO ₂	159.60	5.9	733	1245	s HCl, HF, NaOH
Terbium	Tb	158.9254	8.23	1356	3230	s acids
chloride	TbCl₃	265.28	4.35	588	1550	v s aq
nitrate 6-water	$Tb(NO_3)_3 \cdot 6H_2O$	453.03		89.3		s aq
Thallium	Tl	204.383	11.85	303.5	1457	i aq; s HNO ₃
(I) bromide	TlBr	284.29	7.5	460	820	0.05^{20} aq; s alc
(I) carbonate	Tl ₂ CO ₃	468.78	7.11	272		4.1 g/100 mL ²⁰ aq; i alc
(I) chloride	TICI	239.84	7.00	430	720	0.33^{20} aq; i alc
(I) cyanide	TICN	230.40	6.523	d		16.8 g/100 mL ²⁸ aq; s alc, acid
(I) ethoxide	TIOC ₂ H ₅	249.44	3.49	-3	d 130	s eth; sl s alc; d aq
(I) fluoride	TIF	223.38	8.36	326	826	78.6% ¹⁵ aq
(III) fluoride	TIF ₃	261.38	8.65	550 d		d aq
(I) iodide (rhombic)	TII	331.29	7.1	442	823	i aq, alc; s KI
(I) nitrate	TINO ₃	266.39	5.55	206	d 450	9.55 g/100 mL ²⁰ aq; i alc
(I) oxide	Tl ₂ O	424.77	9.52	579	1080	v s aq; s acid, alc
(III) oxide (hexagonal)	Tl_2O_3	456.77	10.2	834	$-O_2$, 875	i aq; d by HCl, H_2SO_4
(I) selenate(VI)	Tl ₂ SeO₄	551.73	6.875	>400	-	2.8 g/100 mL ²⁰ aq; i alc, eth
(I) selenide	Tl ₂ Se	487.73	9.05	340		i aq, acid
(I) sulfate	Tl ₂ SO₄	504.83	6.77	632	d	4.87 g/100 mL ²⁰ aq
(I) sulfide	Tl ₂ S	440.83	8.39	448	1367	0.02^{20} aq; s mineral acids
Thiocarbonyl chloride	S=CCl	114.98	1.50915		73.5	d aq; s eth
Thiocyanogen	(SCN) ₂	116.16		ca2		d aq; s alc, CS_2 , eth
Thionyl, see Sulfinyl						
Thiophosphoryl tribromide	PSBr ₃	302.78	2.8517	38.0	209 d	s aq, eth, CS_2
trichloride (alpha)	PSCl ₃	169.41	1.635	-40.8	125	hyd aq; s bz, chl, CS ₂
trifluoride	PSF ₃	120.03		-148.8	-52.2	
Thiosulfinyl difluoride	$S = SF_2$	102.13		- 165	- 10.6	hyd aq
Thorium	Th	232.038	11.7	1750	4788	s acids
chloride	ThCl₄	373.85	4.59	770	921	s aq, alc
fluoride	ThF₄	308.03	6.1	1110	1680	s acids
iodide	ThI₄	739.66	6.00	570	837	hyd aq
nitrate	Th(NO ₃) ₄	400.06		d 630, ThO ₂		191 g/100 mL ²⁰ aq; v s alc

1.58

ThO ₂	264.04	10.0	3390	4400	s hot H ₂ SO ₄
$Th(SO_4)_2 \cdot 9H_2O$	586.30	2.77	anhyd 400		1.57 g/100 mL ²⁵ aq
Tm	168.9342	9.32	1545	1950	s acids
TmCl ₃	275.29		824	1490	s aq, alc
TmF ₃	225.93	7.971	1158	2230	s H ₂ SO ₄
Sn	118.710	7.265	231.928	2602	s conc HCl, hot H_2SO_4
$Sn(C_2H_3O_2)_2$	236.80	2.31	182.5	240	d aq; s dilute HCl
SnBr ₂	278.52	5.12	215	639	85 g/100 mL ^{0} aq; s alc, eth
SnBr ₄	438.33	3.34	31	205	v a (hyd) aq; s acet, alc
SnCl ₂	189.61	3.90	246.9	623	84 g/100 mL ⁰ aq; s acet, alc, eth
SnCl ₄	260.52	2.234	-3.3	114.1	s aq (hyd), alc, acet, bz, eth
SnF ₂	156.71	4.57	213	850	30% aq
SnF ₄	194.70	4.78		subl 705	hyd aq
Sn[ZrF ₆]	323.92	4.21			s aq
SnI ₂	372.52	5.285	320	714	0.98 ²⁰ aq (d); s bz, chl, alk Cl ⁻ or I ⁻
SnI_4	626.33	4.46	143	364	hyd aq; s alc, bz, chl, eth, CCl ₄ , CS ₂
SnC_2O_4	206.73	3.56	280 d		s dilute HCl
SnO	134.71	6.45	to SnO ₂ , 300		s acids, conc KOH
SnO ₂	150.71	6.95	1630		s hot conc KOH (slow)
SnSe	197.67	6.179	861		s aqua regia, alkali sulfides
SnSO ₄	214.77	4.15	to SnO ₂ , 378		18.9 g/100 mL ²⁰ aq; s dilute H_2SO_4
SnS	150.78	5.08	880	1210	s conc HCl, hot conc H_2SO_4
SnS ₂	182.84	4.5	d 600		s aq reg, alkali hydroxides & sul- fides
SnTe	246.31	6.5	790		i aq
Ti	47.867	4.506	1668	3287	s hot acid, HF
TiBr ₃	287.58	4.24		subl 794	
TiBr ₄	367.48	3.37	39	230	hyd aq; 187 g/100 mL abs alc
TiCl ₂	118.77	3.13	1035	1500	d aq; s alc
TiCl ₃	154.23	2.64	425 d		s aq (heat evolved), alc
TiCl₄	189.68	1.73	-25	136.4	s cold aq, alc
TiH ₂	49.88	3.752	d 450		-
TiF₄	123.86	2.798	>400	subl 285.5	s aq (slow hyd); s alc, pyr
TiI₄	555.49	4.3	150	377	s dry nonpolar solvents
Ti[OCH(CH ₃) ₂] ₄	284.22	0.9711^{20}_{4}	~20	220	d aq; s bz, chl, eth
TiO	63.87	4.95	1750	3660	s H ₂ SO ₄
	$ \begin{array}{l} ThO_2 \\ Th(SO_4)_2 \cdot 9H_2O \\ Tm \\ TmCl_3 \\ TmF_3 \\ Sn \\ Sn(C_2H_3O_2)_2 \\ SnBr_2 \\ SnBr_4 \\ SnCl_2 \\ SnCl_4 \\ SnF_2 \\ SnCl_4 \\ SnF_2 \\ SnF_4 \\ Sn[ZrF_6] \\ SnI_2 \\ SnI_4 \\ SnC_2O_4 \\ SnO \\ SnO \\ SnO_2 \\ SnSe \\ SnSO_4 \\ SnS \\ SnS_2 \\ \end{array} $	$\begin{array}{ccccc} ThO_2 & 264.04 \\ Th(SO_4)_2 \cdot 9H_2O & 586.30 \\ Tm & 168.9342 \\ TmCl_3 & 275.29 \\ TmF_3 & 225.93 \\ Sn & 118.710 \\ Sn(C_2H_3O_2)_2 & 236.80 \\ SnBr_2 & 278.52 \\ SnBr_4 & 438.33 \\ SnCl_2 & 189.61 \\ SnCl_4 & 260.52 \\ SnF_2 & 156.71 \\ SnF_4 & 194.70 \\ Sn[ZrF_6] & 323.92 \\ SnI_2 & 372.52 \\ SnI_4 & 626.33 \\ SnC_2O_4 & 206.73 \\ SnO & 134.71 \\ SnO_2 & 150.71 \\ SnSe & 197.67 \\ SnSO_4 & 214.77 \\ SnS & 150.78 \\ SnS_2 & 182.84 \\ \hline \\ SnTe & 246.31 \\ Ti & 47.867 \\ TiBr_3 & 287.58 \\ TiBr_4 & 367.48 \\ TiCl_2 & 118.77 \\ TiCl_3 & 154.23 \\ TiCl_4 & 189.68 \\ TiH_2 & 49.88 \\ TiF_4 & 123.86 \\ TiH_2 & 49.88 \\ TiF_4 & 123.86 \\ TiI_4 & 555.49 \\ Ti[OCH(CH_3)_2]_4 & 284.22 \\ TiO & 63.87 \\ \hline \end{array}$	$\begin{array}{c cccccc} ThO_2 & 264.04 & 10.0 \\ Th(SO_4)_2 \cdot 9H_2O & 586.30 & 2.77 \\ Tm & 168.9342 & 9.32 \\ TmCl_3 & 275.29 & \\ TmF_3 & 225.93 & 7.971 \\ Sn & 118.710 & 7.265 \\ Sn(C_2H_3O_2)_2 & 236.80 & 2.31 \\ SnBr_2 & 278.52 & 5.12 \\ SnBr_4 & 438.33 & 3.34 \\ SnCl_2 & 189.61 & 3.90 \\ SnCl_4 & 260.52 & 2.234 \\ SnF_2 & 156.71 & 4.57 \\ SnF_4 & 194.70 & 4.78 \\ Sn[ZrF_6] & 323.92 & 4.21 \\ SnI_2 & 372.52 & 5.285 \\ SnI_4 & 626.33 & 4.46 \\ SnC_2O_4 & 206.73 & 3.56 \\ SnO & 134.71 & 6.45 \\ SnO_2 & 150.71 & 6.95 \\ SnSe & 197.67 & 6.179 \\ SnSO_4 & 214.77 & 4.15 \\ SnS & 150.78 & 5.08 \\ SnS_2 & 182.84 & 4.5 \\ \hline \\ SnTe & 246.31 & 6.5 \\ Ti & 47.867 & 4.506 \\ TiBr_3 & 287.58 & 4.24 \\ TiBr_4 & 367.48 & 3.37 \\ TiCl_2 & 118.77 & 3.13 \\ TiCl_2 & 118.77 & 3.13 \\ TiCl_3 & 154.23 & 2.64 \\ TiCl_4 & 189.68 & 1.73 \\ TiH_2 & 49.88 & 3.752 \\ TiF_4 & 123.86 & 2.798 \\ TiI_4 & 555.49 & 4.3 \\ Ti[OCH(CH_3)_2]_4 & 284.22 & 0.97111_2^0 \\ TiO & 63.87 & 4.95 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 1.3	Physical Constants of Inorganic Compounds (Continued)
	Thysical constants of morganic compounds (continuea)

Name	Formula	Formula weight	Density	Melting point, °C	Boiling point, °C	Solubility in 100 parts solvent
(III) oxide	Ti.O.	143 73	4 486	1842		s H ₂ SO ₄ , hot HF
(IV) oxide (nutile)	TiO.	79.87	4.23	1843		s HF, hot conc H_2SO_4
oxide sulfate	TiOSO	159.94				dag
(III) sulfate	$Ti_{1}(SO_{1})_{2}$	383.93				s dilute HCl, dilute H₂SO₄
Tungsten	W	183.84	19.25	3387	5900	s HNO ₃ + HF, fusion NaOH + NaNO ₃
(V) bromide	WBr _c	583.36		286	333	hyd aq; s chl, eth
(VI) bromide	WBr	663.26	6.9	309	subl 327	hyd aq; s eth CS_2
(V) chloride	WCL	361.10	3.875	242	286	hyd ag
(VI) chloride	WCL	396.56	3.52	279	347	hyd ag; s CS_2 , CCl_4
dichloride dioxide	WCloo	286.74	4.67	265	d 369	hyd ag; s HCl
(VI) fluoride	WF.	297.83	3.441	2.3	17.5	hyd ag; s anhyd HF
(IV) oxide	WO	215.84	10.8	1550	d 1724	s acids, KOH
(VI) oxide	WO ₂	231.84	7.16	1472	1837	i aq; s hot alkali
(IV) sulfide	WS.	247.97	7.6	d 1250		s HNO ₃ + HF
tetrachloride oxide	WCLO	341.65	11.92	211	227	hvd ag
tetrafluoride oxide	WF.O	275.83	5.07	106	186	
Uranium	II II	238.0289	19.1	1135	4131	s acid
(IV) bromide	UBr.	557.65	5.55	519	777	v s aq
(III) chloride		344.39	5.51	837	1657	v s aq
(IV) chloride	UCL	379.84	4.725	590	790	v s aq (d); s polar org solvents
(V) chloride	UCL	415.29		287	527	d aq; s CS ₂
(VI) chloride	UCL	450.75	3.6	177	392	hyd aq; s chl
(IV) fluoride	UF.	314.02	6.70	1036	1417	s conc acids (d); alk (d)
(VI) fluoride	UF ₄	352.02	5.09	64.0	subl 56.5	hyd aq; s chl, CCl_4
(III) hydride	UH ₂	241.05	11.1			iaq
(IV) iodide	UL.	745.65	5.6	506	757	saq
(IV) oxide (pitchblende)	UO ₂	270.03	10.97	2827		s conc HNO ₃
(VI) oxide	UO ₂	286.03	7.29	d 1300		i aq; s HCl, HNO3
octaoxide [(V,VI) oxide]	U ₂ O ₂	842.08	8.38	d 1300 to UO ₂		s HNO ₃
peroxide 2-water	UO ₄ ·2H ₂ O	338.06		d 90–195 to U ₂ O ₇ (slow)	$d > 200$ to UO_2	d by HCl
Uranyl(VI) acetate 2-water	$UO_2(C_2H_2O_2)_2 \cdot 2H_2O_2$	422.13	2.893	anhyd 110	d 275	7.7 g/100 mL ¹⁵ aq; sl s alc
chloride	UO ₂ Cl ₂	340.93	5.43	577		320 g/100 mL ¹⁸ aq; s acet, alc
fluoride	UO_2F_2	308.03	6.37	d 300		v s aq

nitrate 6-water	$UO_2(NO_3)_2 \cdot 6H_2O$	502.13	2.807	60	d 118	155 g/100 mL ²⁰ aq; v s alc, eth
sulfate 3-water	$UO_2SO_4 \cdot 3H_2O$	420.14	3.28	d 100		g/100 mL: 21 aq, 4 alc
Vanadium	V	50.9415	6.11 ¹⁹	1917	3421	s HF, HNO ₃ , hot H ₂ SO ₄ , aq reg
(IV) chloride	VCl ₄	192.75	1.82	-25.7	148	hyd aq; s nonpolar solvents
dichloride oxide	VCl ₂ O	137.86	2.88	disprop 384		hyd (slow) aq; s abs alc, HOAc
(III) fluoride	VF ₃	107.94	3.363	≈1400	subl 800	i almost all organic solvents
(IV) fluoride	VF ₄	126.94	3.15	subl 120 (vac)		s aq, acet, HOAc
				& disprop		
(V) fluoride	VF ₅	145.93	2.50	19.5	48	hyd aq; v s anhyd HF, acet, alc
(II) oxide	VO	66.94	5.76	1790		s HCl
(III) oxide	V_2O_3	149.88	4.87	1940		sl s acids
(IV) oxide	VO ₂	82.94	4.34	1967		s acids, alkalis
(V) oxide	V ₂ O ₅	181.88	3.35	670	d 1800	0.07 aq; s conc acids, alkalis
(IV) oxide sulfate	VOSO₄	163.00				s aq
(III) sulfate	$V_2(SO_4)_3$	390.07		410 (vac)		s (slow) aq, HNO ₃
(III) sulfide	V ₂ S ₃	198.08	4.72	d 600		s hot acids, alkali sulfides
Xenon	Xe	131.29	5.761 g/L	-111.8	-108.04	10.8 mL/100 mL ²⁰ aq
difluoride	XeF	169.29	4.32	129.0	subl 114.3	2.5 g/100 mL ⁰ aq
hexafluoride	XeF ₆	245.28	3.56	49.5	75.6	hyd aq
tetrafluoride	XeF ₄	207.28	4.04	117.1	subl 115.7	hyd aq; s F ₃ CCOOH
trioxide	XeO ₃	179.29	4.55	explodes 25		s aq giving xenic acid
Ytterbium	Yb	173.04	6.90	819	1196	s acids
(II) chloride	YbCl ₂	243.95	5.27	721	1930	s aq
(III) chloride 6-water	$YbCl_3 \cdot 6H_2O$	387.49	2.57	anhyd 180	mp: 865	v s aq
(III) fluoride	YbF ₃	230.04	8.17	1157	2230	s H ₂ SO ₄
(III) nitrate 4-water	$Yb(NO_3)_3 \cdot 4H_2O$	431.12				s aq
(III) oxide	Yb ₂ O ₃	394.08	9.18	2435		s dilute acids
(III) sulfate 8-water	$Yb_2(SO_4)_3 \cdot 8H_2O$	778.39	3.3			34.8 g/100 mL ²⁰ aq
Yttrium	Y	88.9059	4.472	1522	3345	s hot water (d)
chloride	YCl ₃	195.26	2.61	721	1510	79 g/100 mL ²⁰ aq; s alc
fluoride	YF ₃	145.90	4.0	1152	2230	s conc acids (d)
nitrate 6-water	$Y(NO_3)_3 \cdot 6H_2O$	383.01	2.68	$-3H_2O, 100$	1000	171 g/100 mL ²⁰ aq
oxide	Y_2O_3	225.81	5.03	2440	4300	s acids
sulfate 8-water	$Y_2(SO_4)_3 \cdot 8H_2O$	610.12	2.56	anhyd 400	d >1000	9.6 g/100 mL ²⁰ aq
Zinc	Zn	65.39	7.14	419.527	907	i aq; s acids, alkalis (slow)
acetate dihydrate	$Zn(C_2H_3O_2)_2 \cdot 2H_2O$	219.51	1.735	237 d		g/100 mL: 41.6 ²⁰ aq, 3.3 alc
arsenate(III)(1-)	$Zn(AsO_2)_2$	279.23				s acids

				Melting point,	Boiling point,	Solubility in
Name	Formula	Formula weight	Density	°C	°C	100 parts solvent
arsenate(V)(3-) 8-water	$Zn_3(AsO_4)_2 \cdot 8H_2O$	618.13	3.33			s acids and alkalis
bromide	ZnBr ₂	225.20	4.5	394	697	g/100 mL: 471 ²⁵ aq, 200 alc; s KOH, eth
carbonate	ZnCO ₃	125.40	4.4	-CO ₂ , 300		0.02 ²⁵ aq; s acids, KOH, NH ₄ salts
chloride	ZnCl ₂	136.29	2.907	290	732	g/100 ml: 395 ²⁰ aq, 77 alc, 50 glyc; v s acet
chromate(VI)	ZnCrO ₄	181.39	3.40			s acids
cyanide	$Zn(CN)_2$	117.43	1.852	d 800		0.05818 aq; s acids, KCN, KOH
fluoride	ZnF ₂	103.39	4.9	872	1500	s HNO3, HCl, NH4OH
hexafluorosilicate 6-water	$Zn[SiF_6] \cdot 6H_2O$	315.56	2.104	d 100		v s aq
iodate	$Zn(IO_3)_2$	415.20	5.063	d		0.87 ²⁰ aq; s HNO ₃ , KOH
iodide	ZnI ₂	319.20	4.74	446	625 d	g/100 mL: 332 ²⁰ aq, 50 glyc; v s alc
nitrate 6-water	$Zn(NO_3)_2 \cdot 6H_2O$	297.49	2.067	-6H ₂ O, 131		146 g/100 mL ⁰ aq; v s alc
oxide	ZnO	81.39	5.60	1975		i aq; s acids, KOH, NH₄OH
peroxide	ZnO ₂	97.39	1.57	d >150	explodes 212	d (slow) aq; s dilute acids (d)
1,4-phenolsulfonate 8-water	$Zn[C_6H_4(OH)SO_3]_2 \cdot 8H_2O$	555.84		anhyd 120		g/100 mL: 63 aq, 56 alc
phosphate(V)	$Zn_3(PO_4)_2$	386.11	3.998	900		s acids, NH₄OH
phosphide	Zn_3P_2	258.12	4.55	420	1100	d aq, HCl (viol); s bz, CS ₂
propionate	$Zn(C_3H_5O_2)_2$	211.53				32% ¹⁵ aq; 2.8% ¹⁵ alc
selenide	ZnSe	144.35	5.65	>1100		d dilute HNO ₃
silicate(2-)	Zn ₂ SiO₄	222.86	4.10	1512		i ag or dilute acids
stearate	$Zn(C_{18}H_{35}O_2)_2$	632.34	1.095	130		d dil acids; s bz; i aq, alc, eth
sulfate	ZnSO ₄	161.45	3.8	680 d		53.8% ²⁰ aq
sulfate 7-water	$ZnSO_4 \cdot 7H_2O$	287.56	1.97	anhyd 280	d >500	g/100 mL: 167 aq, 40 glyc; i alc
sulfide (wirzite)	ZnS	97.46	4.09	1722		i aq; s dilute mineral acids
telluride	ZnTe	192.99	6.34	1239		d (slow) aq or dilute HCl
thiocyanate	$Zn(SCN)_2$	181.56				0.14 aq; s alc
Zirconium	Zr	91.224	6.52	1852	3577	s aq reg, HF, hot H_3PO_4 , fusion with KOH + KNO ₃
(IV) bromide	ZrBr ₄	410.84	3.98	450	subl 357	
carbide	ZrC	103.23	6.73	3532	5100	sl s conc H ₂ SO ₄
(II) chloride	ZrCl ₂	162.13	3.6	727	1292	d aq

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)
(IV) chloride	ZrCl ₄	233.03	2.80	437 (25 atm)	subl 334	hyd aq to ZrCl ₂ O; s alc, eth
diboride	ZrB ₂	112.85	6.17	3245	d 4193	
dichloride oxide 8-water	$ZrCl_2O \cdot 8H_2O$	322.25	1.91	anhyd 210	d 410	v s aq, alc
dihydride	ZrH ₂	93.24	5.61			i aq
(IV) fluoride	ZrF ₄	167.22	4.436	932 ^{tp}	subl 912	1.32 g/100 mL ²⁰ aq
(IV) hydroxide	Zr(OH) ₄	159.25	3.25	to ZrO ₂ , 500		s mineral acids
(IV) iodide	ZrI ₄	598.84		499 (sealed	subl 432.5	s aq (d), eth
				tube)		
(IV) nitrate 5-water	$Zr(NO_3)_4 \cdot 5H_2O$	429.32		d 100		v s aq; s alc
(IV) oxide	ZrO ₂	123.22	5.68	2678	4300	s hot H_2SO_4 , HF (slow)
(IV) silicate(4–)	ZrSiO ₄	183.31	4.56	d 1540 to		unaffected by aqueous reagents
				$ZrO_2 + SiO_2$		
sulfate 4-water	$Zr(SO_4)_2 \cdot 4H_2O$	355.41	2.80	anhyd 380		52.5 g/100 g aqueous solution

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds

Abbreviations Used in the Table

Color B BE BK CL G GN O P	brown blue black colorless gray green orange purple	R SL V W Y	red silver violet white yellow		C H R RH T TG TR	Crystal cubic hexago monocl rhombi Rhombi tetrago trigona triclinic	Symmetry nal inic c ohedral nal l
Compound	Formula	Mole we	ecular ight	Color	C syı	rystal mmetry	Refractive index $n_{\rm D}$
Actinium			0			2	
Bromide	AcBr ₃	46	66.7	W		Н	
Chloride	AcCl ₃	33	33.4	W		Н	
Fluoride	AcF ₃	28	34.0	W		Н	
Oxide	Ac_2O_3	50	02.0	W		Н	
Aluminum							
Bromide	AlBr ₂	26	6.7	CL		R	
Carbide	Al_4C_3	14	13.9	Y		Н	2.70
Chloride	ACl ₂	13	33.3	W		Н	1.56
Fluoride	AlF ₃	8	34.0	CL		TR	1.38
Hvdroxide	Al(OH) ₂	7	78.0	W		М	
Iodide	All ₃	40)7.7	W			
Nitrate	$Al(NO_2)_2 \cdot 9H_2O$	37	75.1	CL		R	1.54
Nitride	AIN	2	41.0	W		Н	
Oxide	Al ₂ O ₃	10	02.0	CL		Н	1.68
Phosphate	AlPO	12	22.0	W		R	1.56
Silicate	Al ₂ SiO ₅	16	52.0	W		R	1.66
Sulfate	$Al_2(SO_4)_2$	34	12.2	W		R	1.47
Sulfide	Al_2S_3	15	50.2	Y		Н	
Americium							
Oxide IV	AmO ₂	27	75.1	В		С	
Ammonium							
Bromide	NH Br	c	0.80	W		C	1 711
Carbonata	(NH) CO H O	11	4.1	w		C C	1./11
Chlorate	$(111_4)_2 CO_3 \cdot 11_2 O$	10)1 5	W		м	
Chloride	NH Cl	10	53.5	W		C	1.642
Chromate	(NH) CrO	14	52.1	v		м	1.042
Fluoride	$(NH_4)_2 CIO_4$	1.	87.0	W		н	1 315
Indate	NH IO	10	02.0	W		R R	1.515
Iodide	NH I	1/	1/ 0	w		к С	1 703
Nitrate	NH NO.		20.0	w		P	1.703
Nitrite	NH NO.	é	50.0 54.0	v		ĸ	1.415
Ovalate	(NH_4) , C_2	1/	12.1	ĊI		R	1 44_1 50
Perchlorate	NH.CIO	11	7.5	W		R	1 49
Hydrogen Phoenhate	(NH.), HPO	13	32.1	w		M	1.53
Dihydrogen Phoenhate	NH ₄ H ₂ PO	11	50	w		 Т	1 48_1 53
Sulfate	$(NH_4)_2SO_4$	13	32.1	w		R	1.53
Hydrogen sulfide	NHLHS	1.	51.1	W		R	1.74
Thiocvanate	NH4SCN	7	76.1	CL		M	1.61–1
						-	•

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	Index $n_{\rm D}$
Antimony					
Bromide III	SbBr ₃	361.5	CL	R	1.74
Chloride III	SbCl ₃	228.1	CL	R	1.74
Chloride V	SbCl ₅	299.0	W	LIQ	1.601^{1}
Fluoride III	SbF ₃	178.8	CL	R	
Fluoride V	SbF ₅	216.7	CL	LIQ	
Hvdride III	SbH ₂	124.8	CL	GAS	
Iodide III	SbI ₂	502.5	RD	Н	
Iodide V	SbL	756.3	В		
Oxide III	Sb ₂ O ₂	291.5	CL	R	2.35
Oxide V	Sh ₂ O ₅	323.5	Ŷ	C	
Oxychloride III	Sb0C1	173.2	W	M	
Sulfate III	Sb.(SQ.).	531.7	w	111	
Sulfide III	Sb ₂ (SO ₄) ₃ Sb ₂ S	330.7	BK	R	4 064
Sulfide V	Sb ₂ S ₃	403.8	V	K	4.004
Sunde v	30 ₂ 3 ₅	405.8	1		
Arsenic					
Acid, ortho	$H_3AsO_4 \cdot {}^1/_2H_2O$	151.0	CL		
Bromide III	AsBr ₃	314.7	CL	R	
Chloride III	AsCl ₃	181.3	CL	LIQ	1.598
Chloride V	AsCl ₅	252.2	CL		
Fluoride III	AsF ₂	131.9	CL	LIQ	
Fluoride V	AsF ₅	169.9	CL	GAS	
Hydride III	AsH ₂	77.9	CL	GAS	
Iodide III	AsI	455.6	R	Н	
Iodide V	AsL	709.5	В	M	
Oxide III	As ₂ O ₂	197.2	CL	C	
Oxide V	As ₂ O ₅	229.9	W	Ū.	
Sulfide II	AsaSa	214.0	R	М	2 46-2 52
Sulfide III	As	246.0	Y	M	2.10 2.52
Sulfide V	As.S.	310.2	v	M	2.4 2.0
Sunde V	A3235	510.2	1	141	
Barium					
Bromate	$Ba(BrO_3)_2 \cdot H_2O$	411.2	CL	Μ	
Bromide	$BaBr_2$	297.2	CL	R	1.75
Carbide	BaC_2	161.4	G	Т	
Carbonate	BaCO ₃	197.4	W	R	1.676
Chlorate	$Ba(ClO_3)_2 \cdot H_2O$	322.3	CL	Μ	1.56-1
Chloride	BaCl ₂	208.3	CL	Μ	1.736
Chromate	$BaCrO_4$	253.3	Y	R	
Fluoride	BaF_2	175.3	CL	С	1.474
Hydride	BaH_2	139.4	G		
Hydroxide	$Ba(OH)_2 \cdot 8H_2O$	315.5	CL	М	1.502
Iodide	BaI ₂	391.2	CL	М	
Nitrate	$Ba(NO_3)_2$	261.4	CL	С	1.572
Oxalate	BaC ₂ O ₄	225.4	W		
Oxide	BaO	153.3	CL	С	1.98
Perchlorate	Ba(ClO ₄)	336.2	CL	Ĥ	1.20
Sulfate	BaSO.	233.4	W	R	1.636
Sulfide	BaS	169.4	CI	C	2 155
Titanate	BaTiO	232.3	CL	С Т/Н	2.155
1 nanau	Barro ₃	233.3		1/П	2.40

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index n _D
D				~jj	D
Berymum	DoD.	169.9	W	OP	
Carbida	Bebl ₂	108.8	v	UK	
Chlorida	Be ₂ C	30.0 70.0	1 W	OP	
Eluarida		19.9	W CI	UK T	
Fluoride	BeF_2	47.0		I D	
Indida		45.0	W CI		
Niture	Bel_2	202.8		КП	
Nitrate	$Be(NO_3)_2 \cdot 3H_2O$	18/.1	W	C	
Nuride	Be_3N_2	55.1 25.0		U U	1 70
	BeO	25.0	W	н	1.72
Sulfate	$BesO_4$	105.1	CL	I	1 4 4 1 47
Suitate	$BeSO_4 \cdot 4H_2O$	1//.1	CL	1	1.44–1.47
Bismuth					
Bromide III	BiBr ₃	448.7	Y		
Chloride III	BiCl ₃	315.4	W		
Fluoride III	BiF ₃	266.0	G	С	1.74
Hydroxide III	Bi(OH) ₃	260.0	W		
Iodide III	BiI ₃	589.7	RD	Н	
Nitrate III	$Bi(NO_3)_3 \cdot 5H_2O$	485.1	CL	TR	
Nitrate, Basic III	$BiO(NO_3) \cdot H_2O$	305.0	W	Н	
Oxide III	Bi ₂ O ₃	466.0	Y	R	1.91
Oxide IV	$Bi_2O_4 \cdot 2H_2O$	518.0	В		
Oxide V	Bi ₂ O ₅	498.0	В		
Oxychloride III	BiOCl	260.5	W	Т	2.15
Phosphate III	$BiPO_4$	304.0	W	М	
Sulfate III	$Bi_2(SO_4)_3$	706.1	W		
Sulfide III	Bi ₂ S ₃	514.2	В	R	1.34–1.46
Boron					
Arsenate	BAsO.	149 7	W	т	1.68
Boric Acid	H ₂ BO ₄	61.8	w	TR	1.00
Bromide	BBr.	250.5	Ċ	LIO	1.5312^{16}
Carbide	B.C	55.3	BK	RH	1.5512
Chloride	BCl.	117.2	CI	LIO	
Diborane	B-H	27.7	CL	GAS	
Fluoride	BE.	67.8	CL	GAS	
Iodide	BI 3	301.6	W	0/10	
Nitride	BN	24.8	w	н	
Ovide	BO	2 4 .0 69.6	w	C II	
Sulfide	B_2S_3 B_2S_3	117.8	w	C	
D					
Dromine Chlasida I	D.:C1	115 4	р	C + 5	
	BrCl	115.4	R	GAS	
Fluoride I	BrF	98.9	B	GAS	1 452 (25
Fluoride III	BrF ₃	136.9	CL	LIQ	1.453625
Fluoride V	BrF ₅	174.9	CL	LIQ	1.352925
Hydride I	H Br	80.9	CL	GAS	1.325.0
Cadmium					
Bromide	CdBr ₂	272.2	W	Н	
Carbonate	CdCO ₃	172.4	W	TG	
Chloride	CdCl ₂	228.4	W	Н	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	wymmetry	index $n_{\rm D}$
		0		<i>, ,</i>	D
Cadmium (Continuea)	CHE	150 4	W	C	1.56
Hudrovido		130.4	W		1.50
Iodida		266.2	VV D		
Nitroto	Cd(NO) = 4HO	300.2	B W	п	
Orida	$Cd(NO_3)_2 \cdot 4\Pi_2O$	108.5	W D	C	
Sulfate	CdSO	126.4	D W	P	
Sulfate		208.3	W CI	ĸ	1 565
Sulfade	$5CdSO_4 \cdot 8H_2O$	/09.0		M	1.303
Sunde	Cus	144.5	1	п	2.31
Calcium					
Bromate	$CaBrO_{a} \cdot H_{a}O$	313.9		М	
Bromide	$CaBr_{a} \cdot 6H_{a}O$	308.0	CL	Н	
Carbide		64.1	CL	Т	1 75
Carbonate	$C_{2}C_{2}$	100.1	CL	R	1.75
Chloride		111.0	CL	C K	1.52
Chloride	$C_2C_1 \rightarrow 6H_0$	210.1	CL C	т	1.52
Chromete	$C_{a}C_{12} \cdot 0H_{2}O$	102.1	v	1 M	1.417
Eluorido	$C_{a}C_{1}O_{4} \cdot 2H_{2}O$	792.1		C NI	1 424
Fluoride Headwide		/ 8.1		C D	1.434
Hydride	CaH_2	42.1	W	K	1 574
Hydroxide	$Ca(OH)_2$	/4.1		H	1.574
lodide		293.9	W	H	
Nitrate	$Ca(NO_3)_2$	164.1	CL	C	1 400
Nitrate	$Ca(NO_3)_2 \cdot 4H_2O$	236.2	CL	M	1.498
Nitride	Ca_3N_2	148.3	В	H	
Oxalate	CaC_2O_4	128.1	CL	С	
Oxide	CaO	56.1	CL	C	1.838
Perchlorate	$Ca(ClO_4)_2$	239.0	CL		
Peroxide	CaO ₂	72.1	W	Т	
Sulfate	$CaSO_4$	136.1	CL	Μ	1.576
Sulfate	$CaSO_4 \cdot 2H_2O$	172.2	CL	М	1.5226
Sulfide	CaS	72.1	CL	С	2.137
C. L.					
Carbon	<u>co</u>	44.0	CI	CAS	
Dioxide	CO_2	44.0	CL	GAS	1 (200
Disulide	CS_2	/0.1	CL	LIQ	1.6290
Monoxide	COP	28.0	CL	GAS	
Oxybromide	COBr ₂	187.8	CL	LIQ	
Oxychloride	$COCI_2$ (Phosgene)	98.9	CL	GAS	
Oxysulfide	COS	60.1	CL	GAS	
Corium					
Bromide III	CeBr.	380.0		н	
Chloride III		246.5	CI	и И	
Eluoride III	CeE	107.1	W	и Ц	
Indate IV	Ce(IO)	830.7	v	11	
Iodate IV		520.9	ı V	D	
Molybdate III	C_{a} (MaQ)	520.8 760.0	I V	к	2.01
Nitroto III	$C_2(MOU_4)_3$	/00.0	I CI	1	2.01
	$C_2(NO_3)_3 \cdot OH_2O$	434.2		11	
	Ce_2O_3	528.2	GN	п	
Oxide IV	CeO_2	1/2.1	W		
	$Ce_2(SO_4)_3$	508.4		M/K	
Sumde	Ce_2S_3	3/6.4	Ŷ	C	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index n _D
Cesium					
Bromide	CsBr	212.8	CL	С	1.642
Carbonate	Cs_2CO_3	325.8	CL		
Chloride	CsCl	168.4	CL	С	1.534
Fluoride	CsF	151.9	CL	С	1.481
Hydroxide	CsOH	149.9	W		
Iodide	CsI	259.8		С	1.661; 1.669
Iodide III	CsI ₃	513.7	BK	R	
Nitrate	CsNO ₃	194.9	W	Н	1.55
Oxide	Cs ₂ O	281.8	R		
Perchlorate	CsClO ₄	232.4	CL	R	1.479
Periodate	CsIO ₄	323.8	W	R	
Peroxide	Cs_2O_2	297.8	Y	R	
Sulfate	$C_{s_2}SO_4$	361.9	CL	R	1.564
Superoxide	C_{SO_2}	164.9	Y		11001
Trioxide	Cs_2O_3	313.8	В	С	
Chlorine					
Dioxide	ClO	67.5	Y	GAS	
Fluoride	CIF	54.5	CL	GAS	
Trifluoride	CIFa	92.5	CL	GAS	
Monoxide	CloQ	86.9	B	GAS	
Hydrochloric Acid		36.5	CI	GAS	1.254^{10}
Perchloric Acid	HClO ₄	100.5	CL	LIQ	1.234
Chromium					
Bromide II	CrBr ₂	211.8	W	М	
Carbide III	Cr_2C_2	180.0	G	R	
Chloride II	CrCl	122.9	W	R	
Chloride III	CrCl ₂	158.4	V	R	
Fluoride II	CrFa	90.0	GN	M	
Fluoride III	CrF ₂	109.0	GN	R	
Iodide II	CrL	305.8	В	M	
Nitrate III	$Cr(NO_2)_2$	238.0	GN		
Nitrate III	CrN	66.0	GIV	C	
Oxide II	CrO	68.0	BK	H	
Oxide III	$Cr_{2}O_{2}$	152.0	GN	Н	2,551
Oxide IV	CrO ₂	84.0	B		21001
Oxide VI	CrO_2	100.0	RD	R	
Phosphate III	$CrPO_{1} \cdot 6H_{2}O$	255.1	V	TR	
Sulfate III	$Cr_{2}(SO_{4}) + 18H_{2}O_{2}$	716.5	v	C	1 564
Sulfide II	CrS	84 1	BK	M	1.504
Sulfide III	Cr_2S_3	200.2	B	TG	
Cobalt					
Bromide II	CoBr ₂	218.8	GN	Н	
Chlorate II	$C_0(C_1O_2)_2 \cdot 6H_2O_1$	333.9	R	С	1.55
Chloride II	CoCl	129.8	BE	Н	
Fluoride II	CoF ₂	96.9	R	M	
Fluoride III	CoF ₂	115.9	В	Н	
Hydroxide II	Co(OH)	92.9	R	R	
Iodate II	$Co(IO_3)_2$	408.7	V		

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Compound	Formula	weight	Color	crystal	index n _n			
	Torinaia	weight	000	synnicaly				
Cobalt (Continued)	C-I	212.7	DV	11				
Iodide II	Col_2	312.7	BK	H				
Nitrate II	$Co(NO_3)_2 \cdot OH_2O$	291.0	K CN	M				
Oxide II	C00	14.9	D	C D				
Oxide III	$C_0 O_3$	240.8	D DV	K C				
Date II-III Derchlorate II	Co_3O_4	240.8	DK	C	1.50			
Sulfate II	$C_0 SO$	155.0	RE	C	1.50			
Sulfate II	C_0SO_4	281.1	R	м	1.48			
Sulfide II	CoS	91.0	R	н	1.40			
Sulfide III	Co_2S_3	214.1	BK	11				
Connor								
Bromide I	CuBr	1/13 5	W	C				
Bromide II	CuBr	223 4	W BK	M				
Carbonate Basic II	$2CuCO_{12}$	344.7	BE	M	1 731			
Chloride I	CuCl	99.0	W	C	1.751			
Chloride II	CuCl	134.5	v	м				
Chloride II	$CuCl_2 + 2H_2O$	170.5	Y	R				
Fluoride II	$CuE_1 + 2H_2O$	137.6	w	M				
Hydroxide I	CuOH	80.6	Ŷ	101				
Hydroxide II	Cu(OH)	97.6	BE					
Iodide I	CuI	190.5	W	С	2.346			
Nitrate II	$Cu(NO_2)_2 + 3H_2O_1$	241.6	BE	e	2.510			
Oxide I	Cu ₂ O	143.1	R	С	2.705			
Oxide II	CuO	79.5	BK	TR	2.63			
Sulfate II	CuSO ₄	159.6	W	R				
Sulfate II	$CuSO_4 \cdot 5H_2O$	249.7	BE	TR	1.52			
Sulfide I	Cu ₂ S	159.1	BK	С				
Sulfide II	CuS	95.6	BK	Н				
Thiocyanate I	CuSCN	121.6	W					
Curium								
Bromide III	CmBr ₃	488		R				
Chloride III	CmCl ₃	353	W	Н				
Fluoride III	CmF ₃	304	W	Н				
Fluoride IV	CmF_4	323	В	М				
Iodide III	CmI ₃	628	W	Н				
Dysprosium								
Bromide	DyBr ₃	402.3	CL	R				
Chloride	DyCl ₃	268.9	Y	М				
Fluoride	DyF ₃	219.5	CL	Н				
Iodide	DyI ₃	543.2	GN	Н				
Nitrate	$Dy(NO_3)_3 \cdot 5H_2O$	438.6	Y	TR				
Oxide	Dy_2O_3	373.0	W	С				
Sulfate	$Dy_2(SO_4)_3\cdot 8H_2O$	757.3	Y	М				
Erbium								
Bromide	ErBr ₃	407.1	V	R				
Chloride	ErCl ₃	273.6	V	Μ				
Fluoride	ErF ₃	224.3	RD	R				

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

	Molecular			Crystal	Refractive	
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$	
Erbium (Continued)						
Iodide	ErL	548.0	V	н		
Oxide	Er.O.	382.6	R	C		
Sulfate	$Er_2(SQ_2)$	622.7	W	e		
Sulfide	$Er_2(SO_4)_3$ Er_2S_2	263.5	R	М		
Sunde	11203	200.0	R			
Europium						
Bromide II	EuBr ₂	311.8		R		
Bromide III	EuBr ₃	391.7	G	R		
Chloride II	EuCl ₂	222.9	W	R		
Chloride III	EuCl ₃	258.3	Y	Н		
Fluoride II	EuF ₂	190.0	Y	С		
Fluoride III	EuF ₃	209.0	W	R		
Iodide II	EuI ₂	405.8	GN	М		
Iodide III	EuI ₃	532.7				
Oxide III	Eu ₂ O ₂	351.9	R	С		
Sulfate III	$Eu_2(SO_4)_3 \cdot 8H_2O$	736.2	R	М		
	2. 05 2					
Fluorine			_			
Dioxide	F_2O_2	70.0	В	GAS		
Hydride	HF	20.0	CL	GAS		
Oxide	F ₂ O	54.0	CL	GAS		
Cadolinium						
Bromide	GdBr	397.0	W	н		
Chloride	GdCl	263.6	W	н		
Fluoride	GdE	205.0	W	R		
Indide	GdI	538.0	v	н		
Nitrote	$Gd(NO) \rightarrow 6HO$	451.4	1	т		
Ovide	Gd.O.	362.5	W	ſ		
Sulfate	Gd(SO)	502.5 602.7	CI	C		
Sulfida	$Gd_2(SO_4)_3$	410.7	V CL	C		
Suilide	00_20_3	410.7	I	C		
Gallium						
Arsenide III	GaAs	144.6	G	С		
Bromide III	GaBr ₃	309.5	CL			
Chloride II	Ga_2Cl_4	281.3	W			
Chloride III	GaCl ₃	176.0	CL	TR		
Fluoride III	GaF ₃	126.7	W	RH		
Iodide III	GaI ₃	450.4	Y			
Oxide I	Ga ₂ O	155.4	G			
Oxide III	Ga ₂ O ₂	187.4	G	M (β)	1.95	
Sulfide I	Ga ₂ S	171.5	G	4-7		
Sulfide II	Ga_2S_3	235.6	Y	Н		
~ .						
Germanium		202.2	C		1 (07	
Bromide IV	GeBr ₄	392.2	G		1.627	
Chloride IV	GeCl ₄	214.4	CL	LIQ	1.464	
Fluoride IV	GeF ₄	148.6	CL	GAS		
Hydride IV	GeH ₄ (Germane)	76.6	CL	GAS	1.00089	
Iodide IV	GeI ₄	580.2	R	С		
Oxide II	GeO	88.6	G		1.607	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index n _D
Germanium (Continued)					
Oxide IV	GeO ₂	104.6	CL	Н	
Sulfide II	GeS	104.7	Y	R	
Sulfide IV	GeS ₂	136.7	W	R	
Gold					
Bromide I	AuBr	276.9	G		
Bromide III	AuBr ₃	436.7	В		
Chloride I	AuCl	232.4	Y	R	
Chloride III	AuCl ₃	303.3	R		
Hydroxide III	$Au(OH)_3$	248.0	В		
Iodide	AuI	323.9	Y	TR	
Iodide III	AuI ₃	577.7	G		
Sulfate III	$Au_2(SO_4)_3 \cdot H_2O$	490.5	В		
Sulfide I	Au_2S	426.0	В		
Sulfide III	Au_2S_3	490.1	В		
Hafnium					
Bromide	$HfBr_4$	498.1	W		
Carbide	HfC	190.5		С	
Chloride	$HfCl_4$	320.3	W		
Fluoride	HfF_4	254.5	CL	Μ	1.56
Iodide	HfI_4	686.1			
Nitride	HfN	192.5	Y	С	
Oxide	HfO_2	210.5	W	Т	
Sulfide	HfS_2	242.6		Н	
Holmium					
Bromide	HoBr ₃	404.7	Y	R	
Chloride	HoCl ₃	271.3	Y	Μ	
Fluoride	HoF_3	221.9	В	Н	
Iodide	HoI ₃	545.6	Y		
Oxide	Ho ₂ O ₃	377.9		С	
Hydrogen					6
Bromide	HBr	80.9	CL	GAS	2.77-07
Chloride	HCl	36.5	CL	GAS	
Fluoride	HF	20.0	CL	GAS	
Iodide	HI	127.9	CL	GAS	1.466
Oxide	H ₂ O	18.0	CL	LIQ	1.3333
Oxide-Deutero	$2H_2O$	20.0	CL	LIQ	1.3284
Peroxide	H_2O_2	34.0	CL	LIQ	1.41422
Selenide	H_2Se	81.0	CL	GAS	
Sulfide	H_2S	34.1	CL	GAS	1.374
Telluride	H ₂ Te	129.9	CL	GAS	
Indium	L D	10/ -	P		
Bromide I	InBr	194.7	В		
Bromide III	InBr ₃	354.5	CL	~	
Chloride I	InCl	150.3	R	C	
Chloride III	InCl ₃	221.2	CL	M	
Fluoride III	InF ₃	171.8	CL	Н	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive	
Compound	Formula	weight	Color	symmetry	index np	
Indium (Continued)		6		.,	D	
Indida I	InI	241.7	D			
Iodide III	IIII InI	241.7	D V	м		
Ovide III	III_3	495.5	I V	NI C		
	III_2O_3	277.0	I	C M		
	$\ln_2(SO_4)_3$	517.8	W D (Q)	M		
Sulfide III	$\ln_2 S_3$	325.8	к (<i>p</i>)	C		
Iodine						
Bromide I	IBr	206.8	BK	OR		
Chloride I. α	ICl	162.4	R	C		
Chloride L β	ICI	162.4	R	LIO		
Chloride III	ICla	233.3	Y	R		
Fluoride V	IE.	221.9	ĊL	LIO		
Fluoride VII	IF-	259.9	CL	GAS		
Ovide IV		317.8	V V	UAS		
Oxide V		333.8	CI			
India Aaid	1205 HIO	175.0	W	D		
Iouic Aciu		173.9	W CI	K CAS	1 466	
nyurogen toulde	пі	127.9	CL	GAS	1.400	
Iridium						
Bromide II	$IrBr_3 \cdot 4H_2O$	504.0	GN			
Bromide IV	$IrBr_4$	511.8	BK			
Chloride III	IrCl ₃	298.6	GN	Н		
Chloride IV	IrCl ₄	334.0	R	С		
Fluoride VI	IrF ₆	306.2	Y	Т		
Iodide III	IrI ₂	572.9	GN			
Iodide IV	IrL	699.8	BK			
Oxide IV	IrO ₂	224.2	BK			
Sulfide IV	IrS ₂	256.3	BK			
	2					
Iron						
Arsenide	FeAs	130.8	W	R		
Arsenide, di-	FeAs ₂	205.7	G	R		
Bromide II	FeBr ₂	215.7	GN	Н		
Bromide III	$FeBr_3 \cdot 6H_2O$	403.7	R			
Carbide	Fe ₃ C	179.6	G	С		
Carbonate II	FeCO ₃	115.9	G			
Chloride II	FeCl ₂	126.8	G	Н		
Chloride III	FeCl ₃	162.2	GN	Н		
Fluoride III	FeF ₃	112.9	W	R		
Hydroxide II	Fe(OH) ₂	89.9	GN	Н		
Hydroxide III	Fe(OH) ₃	106.9	В			
Iodide II	FeL.	309.7	BK	Н		
Nitrate II	$Fe(NO_2)_2 \cdot 6H_2O_1$	288.0	GN	R		
Nitrate III	$Fe(NO_2)_2 \cdot 9H_2O$	404.0	CL	M		
Nitride	Fe.N	125.7	G			
Ovide II	FeO	71.0	BK	C	2 32	
Oxide III	FeaOa	159.7	B	TG	3.04	
Ovide II-III	Fe O	231.6	BK	C	2.04	
Dhosphate III		186.0	W	M	2.42	
Phosphide	Fe. P	142.7	Ğ	H	1.55	
Sulfate II	FeSO 74 O	278.0	GN	M	1.48	
Sunate II	$1000_4 \cdot 10_20$	270.0	UN	111	1.40	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Compound	Formula	Molecular	Color	Crystal	Refractive
	Tormula	weight	COIOI	synniedy	
Sulfate III	$\mathbf{F}_{\alpha}(\mathbf{SO})$	200.0	v	D	1 9 1
Sulfate II Ammonium	$(NH) E_2(SO_4)_3$	202.2	I CN	K M	1.01
Sulfate II, Allinoilluin	$(\mathrm{NH}_4)_2 \operatorname{Fe}(\mathrm{SO}_4) \cdot \mathrm{OH}_2\mathrm{O}$	392.2 87.0			1.49
Sulfide III	FeS Ea S	207.9		п	
Sulfide di	Fe_2S_3	207.9	BK V	н	
Sumue, ai	1.632	120.0	1	C	
Lanthanum					
Bromate	$La(BrO_3)_3 \cdot 9H_2O$	684.8		Н	
Bromide	LaBr ₃	378.6	W	Н	
Chloride	LaCl ₃	245.3	W	Н	
Fluoride	LaF ₃	195.9	W	Н	
Iodide	LaI ₃	519.6	G	R	
Molybdate	$La_2(MoO_4)_3$	757.6		Т	
Oxide	La_2O_3	325.8	W	R	
Sulfate	$La_2(SO_4)_3$	566.0	W		
Sulfide	La_2S_3	374.0	Y	Н	
Trad					
		225.2	XX 7		
Acetate II	$Pb(C_2H_3O_2)_2$	325.3	W		
Acetate IV	$Pb(C_2H_3O_2)_4$	443.4	CL	M	
Arsenate II	$Pb_3(AsO_4)_2$	899.4	w	_	
Bromide II	PbBr ₂	367.0	W	R	
Carbonate II	PbCO ₃	267.2	CL	R	1.80-2.08
Chloride II	PbCl ₂	278.1	W	R	2.22
Chloride IV	PbCl ₄	349.0	Y	LIQ	
Chromate II	PbCrO ₄	323.2	Y	М	2.33
Fluoride II	PbF ₂	245.2	CL	R	
Hydroxide II	$Pb(OH)_2$	241.2	W	Н	
Iodate II	$Pb(IO_3)_2$	557.0	W		
Iodide II	PbI ₂	461.0	Y	Н	
Molybdate II	PbMoO ₄	367.2	CL	Т	2.30
Nitrate II	$Pb(NO_3)_2$	331.2	CL	С	1.782
Oxide II	PbO	223.2	R	Т	
Oxide IV	PbO ₂	239.2	В	Т	
Oxide II–IV	Pb ₃ O ₄	685.6	R	Т	
Phosphate, III	$Pb_3(PO_4)_2$	811.6	W	Н	1.95
Sulfate II	PbSO ₄	303.3	W	R	1.85
Sulfide II	PbS	239.3	BK	С	3.911
Tungstate II	$PbWO_4$	455.1	CL	М	
Lithium					
Aluminum Hydride	LiAIH	37.0	W		
Promide		86.0	W	C	1 794
Carbonata		72.0	W	M	1./04
Chloride		13.9	vv XV	C	1.40, 1.0
Eluorido	LICI	42.4	vv \\\	C	1.002
Fuonde	LIF I ;U	23.9	W CI	C	1.391
nyanae Uvdrovido	LIH	8.U 24.0		U T	1.40
		24.0 122.0	W NV	I C	1.40
Iouide		133.9	W		1.955
Nitrate	LINU ₃	68.9	W	TG	1.435;1.439
Oxide	L1 ₂ U	29.9	w	U	1.644

TABLE 1.4	Color, Crystal Symmet	ry and Refractive Index of	f Inorganic Compounds	(Continued)
-----------	-----------------------	----------------------------	-----------------------	-------------

		Molecular	Molecular		Refractive	
Compound	Formula	weight	Color	symmetry	index np	
I :41:					D	
Denovido	1:0	45.0		п		
Peroxide	$L_{12}U_{2}$	45.9	N 7	н		
Perchlorate		160.4	W	H		
Phosphate	Li_3PO_4	115.8	CL	ĸ		
Sulfate,	$L_{12}SO_4$	109.9	CL	M	1.465	
Sulfide	$L_{12}S$	45.9	W	С		
Lutetium						
Bromide	LuBr ₃	414.7	W	TG		
Chloride	LuCl ₃	281.3	W	М		
Fluoride	LuF ₃	232.0	W	R		
Iodide	LuI ₃	555.7	В	Н		
Oxide	Lu_2O_3	397.9		С		
Magnesium						
Aluminate	$MgO \cdot Al_2O_2$	142.3	CL	С	1.723	
Bromide	MgBr ₂	184.1	W	Н		
Carbonate	MgCO ₂	84.3	W	TG	1.51:1.70	
Chloride	MgCl.	95.2	w	H	1 59: 1 67	
Fluoride	MgE.	62.3	ĊI	Т	1 38	
Hydroxide	$M_{g}(OH)$	58.3	CL	н	1.50	
Iodide	Mg(OII) ₂	278.2	W	н	1.57	
Nitrata	Mg_2 Mg(NO) 6H O	276.2	W CI	M		
Orida	$\operatorname{Mg}(\operatorname{NO}_3)_2 \cdot \operatorname{OH}_2\operatorname{O}$	230.4		NI C	1 726	
	MgO Ma Si	40.3		C	1.730	
Silicide	Mg_2S1	/0./	BE	C V	1.77	
Silicate, m	MgS1O ₃	100.4	W	M	1.66	
Silicate, o	Mg_2SiO_4	140.7	W	R	1.65	
Sulfate	$MgSO_4$	120.4	CL	R		
Sulfide	MgS	56.4	R	С	2.271	
Manganese						
Bromide II	MnBr ₂	214.8	W	Н		
Carbonate II	MnCO ₃	114.9	W	R	1.817	
Chloride II	MnCl ₂	125.9	W	Н		
Fluoride II	MnF ₂	92.9	R	Т		
Iodide II	MnI_2	308.8	W	Н		
Oxide II	MnÕ	70.9	GN	С	2.16	
Oxide III	Mn ₂ O ₂	157.9	BK	С		
Oxide IV	MnO ₂	86.9	BK	R		
Oxide II–IV	Mn ₂ O ₄	228.8	BK	R		
Potassium Permanganate	KMnQ.	158.0	P	R	1 59	
Silicide	MnSi	83.0	-	C	1.57	
Sulfate II	MnSO	151.0	P	C		
Sulfide II	MnSO ₄ MnS	87.0	GN	С		
Moreury						
Dramida I	Ha Da	561 1	W	т		
Dronnide I	$\Pi g_2 B \Gamma_2$	301.1	w	I D		
Chloride II	HgBr ₂	300.4		ĸ	1.07.0.00	
	Hg_2Cl_2	4/2.1	w	I	1.9/; 2.66	
Chloride II	HgCl ₂	271.5	CL	ĸ	1.72; 1.97	
Cyanide II	$Hg(CN)_2$	252.7	CL	Т	1.645	
Fluoride I	Hg_2F_2	439.2	Y	С		

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index np
	1 official		00101	symmetry	
Mercury (Continued)	II-E	228 (CI	C	
	HgF ₂	238.6		C T	
	Hg_2I_2	655.0	Y D/W	I T/D	0.45.07
lodide II	Hgl_2	454.4	R/Y	1/K	2.45; 2.7
Nitrate I	$Hg_2(NO_3)_2 \cdot 2H_2O$	561.2		M	
Nitrate II	$Hg(NO_3)_2 \cdot T_2H_2O$	333.6	W		
Oxide I	Hg ₂ O	417.2	BK	P	2 27 2 (
	HgO	216.6	Y/R	R	2.37; 2.6
Sulfate I	Hg_2SO_4	497.3	CL	M	
Sulfate II	HgSO ₄	296.7	CL	R	
Sulfide III	HgS	232.7	R	Н	2.85; 3.2
Molyhdenum					
Carbide II	Mo.C	203.9	W	н	
Carbide IV	Mo ₂ C MoC	108.0	G	н	
Chloride II	MoCL	166.0	v	11	
Chloride III	MoCl	202.3	R		
Chloride W	MoCl ₃	202.3		м	
Eluorido VI	MoCl ₅	275.2		IVI	
	MOF ₆	202.9			
		349.8	В	м	
Molybdic Acid	$H_2MOO_4 \cdot 4H_2O$	180.0	Ŷ	M	
Oxide IV	MoO ₂	127.9	G	T	
Oxide VI	MoO ₃	143.9	CL	R	
Silicide IV	MoSi ₂	152.1	G	Т	
Sulfide IV	MoS_2	160.1	BK	Н	4.7
Neodymium					
Bromide	NdBr ₂	384.0	v	R	
Chloride	NdCl	250.6	v	Н	
Fluoride	NdFa	201.2	v	н	
Iodide	NdL	524.9	Ġ	R	
Oxide	Nd.O.	336.5	BF	н	
Sulfide	Nd.S.	384.7	GN	11	
Sunde	10203	504.7	UIV		
Neptunium					
Bromide II	NpBr ₃	476.7	GN	R	
Chloride III	NpCl ₃	343.4	GN	Н	
Chloride IV	NpCl ₄	378.8	BN	Т	
Fluoride III	NpF ₃	294.0	Р	Н	
Fluoride VI	NpF ₆	351.0	0	R	
Iodide III	NpI ₂	617.7	В	R	
Oxide IV	NpO ₂	269.0	GN	С	
Nickel	27.4	122.6			
Arsenide	N1As	133.6	W	Н	
Bromide II	NiBr ₂	218.5	Y		4 4 7 9 10
Carbonyl	$Ni(CO)_4$	170.7	CL	LIQ	1.45810
Chloride II	NíCl ₂	129.6	Y	H	
Fluoride II	NíF ₂	96.7	Y	Т	
Hydroxide II	Ni(OH) ₂	92.7	GN		
Iodide II	NiI ₂	312.5	BK	Н	
Nitrate II	$Ni(NO_3)_2 \cdot 6H_2O$	290.8	GN	Μ	
Oxide II	NiO	74.7	G	С	2.37

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Compound Formula weight Color symmetry index n_D Nickel Continued) Phosphide Nis.P 148.4 G Sulfate II NiSO ₄ 154.8 Y C Sulfate II NiSO ₄ 154.8 Y C Sulfate II NiSO ₄ 154.8 Y C Bromide NbBr, 90.8 BK TR Note 104.9 Note C Sulfate II NiSP 90.8 BK TR Note 104.9 Note C Sulfate II NiSP 90.8 BK TR Sulfate II NiSP 104.7 20.2 W M Fundate Note Note Sulfate II NiSP 120.4 M Note Sulfate II NiSP 120.4 W Note			Molecular		Crystal	Refractive	
Nickel (Continued) Ni,P 148.4 G Phosphide NiSO ₄ 154.8 Y C Sulfate II NiSO ₄ 154.8 Y C Sulfate II NiSO ₄ 154.8 Y C Sulfate II NiSO 90.8 BK TR Nobium Bromide NbBr, 270.2 W M Idide NbF, 187.9 CL M Iodide NbF, Iodide NbL, 727.4 BRASS M Oxide Namonia NH ₁ 17.0 CL GAS 1.325 Hydrazia Ng,O ₅ 265.8 W R 1.440 ^{23.5} Mitric Acid NH ₁ 32.0 CL LQ 1.440 ^{23.5} Mydrazia co NH ₂ OH 33.0 W R 1.440 ^{23.5} Nitric Acid HNO ₃ 63.0 CL GAS 1.139 ¹⁶ Oxide II (nitric-) NO 30.0 CL GAS <t< th=""><th>Compound</th><th>Formula</th><th>weight</th><th>Color</th><th>symmetry</th><th>index $n_{\rm D}$</th></t<>	Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$	
Nite Commute) Nip 148.4 G Sulfate II NiSO, 154.8 Y C Sulfate II NiSO, 154.8 Y C Sulfate II NiSO, 154.8 Y C Sulfate II NiSO, 90.8 BK TR Noblum E C Choride NbEr, 492.5 R R Carbide NbC, 104.9 BK C Choride NbT, CL M Fluoride NbF, 187.9 CL M M C C C Carbide Nb2.05 265.8 W R N N C LiQ 1.4707 Hydrazine NH,H 32.0 CL LIQ 1.440 ^{23.5} N N N S <td>Nickel (Continued)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nickel (Continued)						
Sulfate II NiSO ₄ 154.8 Ý C Sulfate II NiS 90.8 BK TR Nistim \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} Bromide NbEr 104.9 BK C Carbide NbC 104.9 BK C Chloride NbC1 270.2 W M Iodide NbF5 187.9 CL M Iodide NbL5 727.4 BRASS M Oxide Nitrogen	Phosphide	Ni ₂ P	148.4	G			
Sulfade II NiS 90.8 BK TR Niobium Bromide NbBr, 492.5 R R Carbide NbC, 104.9 BK C Chloride NbC1, 270.2 W M Fluoride NbF ₅ 187.9 CL M Iodide NbF ₅ 187.9 CL M Oxide Nb20.5 265.8 W R Mirrogen	Sulfate II	NiSO	154.8	Ŷ	С		
Nobium Nober 492.5 R R Bromide NbC 104.9 BK C Carbide NbC 104.9 BK C Choride NbC1 270.2 W M Fluoride NbF5 187.9 CL M lodide Nb16, 727.4 BRASS M Oxide Nb20,5 265.8 W R Mamonia NH,1 17.0 CL GAS 1.325 Hydrazoic Acid NH,3 43.0 CL LIQ 1.410 ⁸¹³⁵ Nitric Acid HNO,1 63.0 CL LIQ 1.440 ⁸¹³⁵ Choirde NC1,3 120.4 Y LIQ 1.997 ¹⁶ Choirde NR,3 394.7 BK 0xide II (nitros-) NO 30.0 CL GAS Oxide II (nitric-) NO,2 46.0 B GAS 0xide II (nitric-) NO,2 46.0 B GAS Oxi	Sulfide II	NiS	90.8	BK	TR		
Nomula Nomula R R Bromide NbErs 492.5 R R Carbide NbC 104.9 BK C Chloride NbC1 270.2 W M Fluoride NbF3 187.9 CL M Iodide Nb13 727.4 BRASS M Oxide Nb205 265.8 W R Anmonia NH3 17.0 CL GAS 1.325 Hydrazoic Acid NH4 32.0 CL LIQ 1.400214 Hydrazoic Acid NH4 33.0 W R 1.440 ^{21.5} Nitric Acid HN03 63.0 CL LIQ 1.397 ¹⁶ Chloride NC13 120.4 Y LIQ 1.397 ¹⁶ Chide I (nitrous-) No 30.0 CL GAS 0.306 Oxide I (nitrous-) No 30.0 CL GAS 0.306 Oxide I (nitrous-) N	Nichium						
Dromatic Nucl. Nucl. Nucl. Nucl. Nucl. Chloride NbCl, 270.2 W M Fluoride NbF, 187.9 CL M Iodiae Nbf, 727.4 BRASS M Oxide Nbp.05, 265.8 W R Mitrogen Ammonia NH, 17.0 CL GAS 1.325 Hydrazine N.H, 32.0 CL LIQ 1.4707 Hydrazine N.H, 33.0 W R 1.440 ^{23.5} Nitric Acid HNO, 63.0 CL LIQ 1.430 ^{23.5} Nitric Acid HNO, 63.0 CL GAS 1.40 ^{23.5} Iodiae NI, 120.4 Y LIQ 1.40 ^{23.5} Notide I (nitrous-) N20 44.0 CL GAS 1.03 ²¹⁶ Oxide I (nitrous-) N20, 76.0 B GAS 0.0461 0.01 1.93 ¹⁶ Oxide I (nitric-) N20, 108.0 W R	Bromide	NbBr	102.5	P	R		
Calinitie NuC 104.9 DK C Fluoride NbC1 270.2 W M Fluoride NbF5 187.9 CL M lodide Nb1, 727.4 BRASS M Oxide Nb205 265.8 W R Mitrogen Ammonia NH3 17.0 CL GAS 1.325 Hydrazoic Acid NH4 32.0 CL LIQ 1.400 ²¹⁵ Hydrazoic Acid NH5 33.0 W R 1.440 ²¹⁵ Itydrazoic Acid HNG3 63.0 CL LIQ 1.397 ¹⁶ Chloride NF3 71.0 CL GAS 1.193 ¹⁶ Oxide II (nitric-) NO 30.0 CL GAS 1.193 ¹⁶ Oxide II (nitric-) NO2 46.0 B GAS 1.193 ¹⁶ Oxide IV (per-) NO2 46.0 B GAS 1.193 ¹⁶ <td>Carbida</td> <td>NbC</td> <td>492.5</td> <td></td> <td>K C</td> <td></td>	Carbida	NbC	492.5		K C		
	Chlorida	NDC	104.9	DK W	C M		
Pludinde Nors, 167.9 CL M Iodide Nbfs, 727.4 BLRASS M Oxide Nb ₂ O ₅ 265.8 W R Ammonia NH ₃ 17.0 CL GAS 1.325 Hydrazine N ₂ H ₄ 32.0 CL LIQ 1.4707 Hydrazine N ₄ OH 33.0 W R 1.440 ^{23.5} Nitric Acid HNO ₃ 63.0 CL LIQ 1.397 ¹⁶ Chloride NCI ₃ 120.4 Y LIQ 1.397 ¹⁶ Oxide I (nitrous-) N ₂ O 44.0 CL GAS 0.0xide II (nitric-) NO 30.0 CL GAS 0.0xide II (nitric-)	Elucride	NUC15 NIFE	270.2	W CI	M		
Induce Nots 127.4 DRASS M Oxide Nb ₂ O ₅ 265.8 W R Nitrogen Ammonia NH ₃ 17.0 CL GAS 1.325 Hydrazoic Acid NH ₄ 32.0 CL LIQ 1.4707 Hydrazoic Acid NH ₃ 43.0 CL LIQ 1.325 Hydrazoic Acid NH ₅ OH 33.0 W R 1.440 ^{33.5} Nitric Acid HNO ₃ 63.0 CL LIQ 1.397 ¹⁶ Chloride NG ₁₃ 120.4 Y LIQ 1.397 ¹⁶ Oxide I (nitrous-) N ₂ O 44.0 CL GAS 0.000 CL GAS 0.001 0.55.0 O.6AS 0.002 46.0 B GAS 0.002 0.00 W R Sulfde II (nitrous-) N ₂ O ₂ 46.0 B GAS 0.002 0.00 CL GAS 0.002 0.01 0.55.5 O GAS 0.01 0.55.5 <td>Indida</td> <td>NDF5</td> <td>107.9</td> <td>DDASS</td> <td>M</td> <td></td>	Indida	NDF5	107.9	DDASS	M		
Oxide No S_{05} 25.8 W R Ammonia NH3 17.0 CL GAS 1.325 Ammonia NH3 17.0 CL LA 1.325 Hydraznie NH4 32.0 CL LIQ 1.4707 Hydraznie NH2OH 33.0 W R 1.440 ^{23.5} Nitric Acid HNO3 63.0 CL LIQ 1.397 ¹⁶ Fluoride NC13 120.4 Y LIQ 1.397 ¹⁶ Solide II (nitrous-) N2O 44.0 CL GAS 0.000 Class 0.000 0.000 CL GAS 0.0016 1193 ¹⁶ 0.0116	Iodide	NDI ₅	121.4	BKASS	M		
Nitrogen Virtual NH3 17.0 CL GAS 1.325 Hydrazine N,H4 32.0 CL LIQ 1.440 ^{23.5} Hydrazoic Acid NH3 43.0 CL LIQ 1.440 ^{23.5} Nitric Acid HNO3 63.0 CL LIQ 1.397 ¹⁶ Chloride NC13 120.4 Y LIQ 1.397 ¹⁶ Chloride NG3 394.7 BK 0xide I (nitrous-) NgO 44.0 CL GAS 0.397 ¹⁶ Oxide I (nitrous-) NgO 44.0 CL GAS 0.397 ¹⁶ 0xide II (nitric-) NO 30.0 CL GAS 0.397 ¹⁶ 0xide II (nitric-) NO 30.0 CL GAS 0.397 0.60 B GAS 0.391 ¹⁶ 0xide II (nitric-) NO 30.0 CL GAS 0.319 ¹⁶ 0xide II (nitric-) NO 30.0 CL GAS 0.319 ¹⁶ 0xide II (nitric-) NO 1.440 ^{23.5} 0.0 MS 2.046<	Oxide	ND_2O_5	203.8	w	ĸ		
Ammonia NH3 17.0 CL GAS 1.325 Hydrazine N,H4 32.0 CL LIQ 1.4707 Hydrazine NH3 43.0 CL LIQ 1.4707 Hydroxylamine NHQH 33.0 W R 1.440 ^{23.5} Nitric Acid HNO3 63.0 CL LIQ 1.397 ¹⁶ Chloride NG3 71.0 CL GAS 1.397 ¹⁶ Chloride NG3 394.7 BK	Nitrogen						
Hydrazoic Acid N;H4 32.0 CL LIQ 1.4707 Hydrazoic Acid NH3 43.0 CL LIQ H4707 Hydrazoic Acid NH03 63.0 CL LIQ 1.340 ^{23.5} Nitric Acid HNO3 63.0 CL LIQ 1.397 ¹⁶ Chloride NC13 120.4 Y LIQ 1.397 ¹⁶ Iodide NI3 394.7 BK Oxide I (nitrous-) NyO 44.0 CL GAS Oxide I (nitrous-) NyO 44.0 CL GAS 0.000 CL GAS 1.193 ¹⁶ Oxide I (nitro-) NyO3 76.0 B GAS 0.016 0.000 CL GAS 1.193 ¹⁶ Oxide V (per-) NQO3 108.0 W R Sulfide II NyO3 108.0 W R Sulfide IV 0.02 46.0 B GAS NitrosyI Phoride NOCI 65.5 O GAS NitrosyI Phoride NO2_CI	Ammonia	NH ₃	17.0	CL	GAS	1.325	
Hydrazoic Acid NH ₃ 43.0 CL LQ Hydroxylamine NH ₂ OH 33.0 W R $1.440^{23.5}$ Nitric Acid HNO ₃ 63.0 CL LIQ 1.397^{16} Chloride NCl ₃ 120.4 Y LIQ 1.397^{16} Chloride NG ₃ 394.7 BK Oxide I (nitrous-) N ₂ O 44.0 CL GAS Oxide II (nitric-) NO 30.0 CL GAS Oxide IV (per-) NO ₂ 46.0 B GAS Oxide V (penta-) N ₂ O ₅ 108.0 W R Sulfide II N ₄ S ₄ 184.3 O M 2.046 Nitrosyl Chloride NOCI 65.5 O GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Chloride NOsF 304.2 GN C Fluoride VI OsF ₆	Hydrazine	N_2H_4	32.0	CL	LIQ	1.4707	
Hydroxylamine NH ₂ OH 33.0 W R $1.440^{2.3}$ Nitric Acid HNO ₃ 63.0 CL LIQ 1.397^{16} Chloride NC1 ₃ 120.4 Y LIQ Fluoride NF ₃ 71.0 CL GAS Iodide NI ₃ 394.7 BK Oxide I (nitrous-) N2O 44.0 CL GAS Oxide I (nitrous-) N2O 44.0 CL GAS 1.193 ¹⁶ Oxide IV (per) NO 30.0 CL GAS 0.193 ¹⁶ Oxide V (penta-) N2O ₃ 76.0 B GAS 0.193 ¹⁶ Oxide V (penta-) N2O ₅ 108.0 W R Sulfide II N4S4 184.3 O M 2.046 Nitrosyl Fluoride NOC1 65.5 O GAS Sulfide IV Sulfide II N4S4 184.3 O M 2.046 Piloride V OsC1 ₄ 332.0 R F F F	Hydrazoic Acid	NH_3	43.0	CL	LIQ	22.5	
Nitric Acid HNO ₃ 63.0 CL LIQ 1.397^{19} Chloride NCl ₃ 120.4 Y LIQ Fluoride NF ₃ 71.0 CL GAS lodide NI ₃ 394.7 BK Oxide I (nitrous-) N ₂ O 44.0 CL GAS Oxide I (nitrous-) N ₂ O 44.0 CL GAS 1.193 ¹⁶ Oxide IV (per-) N ₂ O ₃ 76.0 B GAS 1.193 ¹⁶ Oxide V (penta-) N ₂ O ₃ 108.0 W R Sulfide II N ₆ S ₄ 184.3 O M 2.046 Nitrosyl Chloride NOC1 65.5 O GAS Sulfide II N ₆ S ₄ 184.3 O M 2.046 Nitrosyl Fluoride NOF 49.0 CL GAS Sulfide IV Oscl ₄ 332.0 R Fluoride VI OsF ₅ 285.2 G M Sulfide IV Osl ₄ 697.8 SK Oxide IV Osl ₄ 2	Hydroxylamine	NH ₂ OH	33.0	W	R	1.440 ^{23.5}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nitric Acid	HNO_3	63.0	CL	LIQ	1.39716	
Fluoride NF3 71.0 CL GAS lodide NI3 394.7 BK	Chloride	NCl ₃	120.4	Y	LIQ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fluoride	NF_3	71.0	CL	GAS		
Oxide I (nitrous-) N ₂ O 44.0 CL GAS Oxide II (nitric-) NO 30.0 CL GAS 1.193^{16} Oxide II (nitric-) NQ 30.0 CL GAS 1.193^{16} Oxide IV (per-) NQ 46.0 B GAS 0.002 <td< td=""><td>Iodide</td><td>NI₃</td><td>394.7</td><td>BK</td><td></td><td></td></td<>	Iodide	NI ₃	394.7	BK			
Oxide II (nitric-) NO 30.0 CL GAS 1.193^{16} Oxide III (tri-) N ₂ O ₃ 76.0 B GAS Oxide IV (per-) N ₂ O ₃ 76.0 B GAS Oxide IV (per-) N ₂ O ₅ 108.0 W R Sulfide II N ₄ S ₄ 184.3 O M 2.046 Nitrosyl Chloride NOCI 65.5 O GAS	Oxide I (nitrous-)	N_2O	44.0	CL	GAS		
Oxide III (tri-) N_2O_3 76.0 B GAS Oxide IV (per-) NO_2 46.0 B GAS Oxide V (penta-) N_2O_3 108.0 W R Sulfde II N_4S_4 184.3 O M 2.046 Nitrosyl Chloride NOF 49.0 CL GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NO ₂ Cl 81.5 CL GAS Osmium C GAS S S S Chloride IV OsCl ₄ 332.0 R S S Fluoride V OsF ₅ 285.2 G M S Fluoride VI OsF ₆ 304.2 GN C S Oxide IV OsI ₄ 697.8 BK S S S Oxide IV OsO ₂ 222.2 BK T S	Oxide II (nitric-)	NO	30.0	CL	GAS	1.19316	
Oxide IV (per-) NO2 46.0 B GAS Oxide V (penta-) N2O3 108.0 W R Sulfide II N4S4 184.3 O M 2.046 Nitrosyl Chloride NOCI 65.5 O GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NO2CI 81.5 CL GAS Osmium C GAS Chloride IV OsCl4 332.0 R Fluoride V OsF5 285.2 G M Fluoride VI OsF6 304.2 GN C Fluoride VII OsF8 342.2 Y M	Oxide III (tri-)	N_2O_3	76.0	В	GAS		
Oxide V (penta-) N_2O_5 108.0 W R Sulfide II N_sS_4 184.3 O M 2.046 Nitrosyl Chloride NOCI 65.5 O GAS Nitrosyl Fluoride NOCI 81.5 CL GAS Nitrol Chloride NO ₂ Cl 81.5 CL GAS Osmium C Chloride IV OscI ₄ 332.0 R Fluoride V OsF ₅ 285.2 G M Fluoride VI OsF ₆ 304.2 GN C Fluoride VI OsF ₈ 342.2 Y V Iodide IV OsG ₂ 222.2 BK T Oxide VIII OsG ₂ 254.1 CL M Sulfide IV OsS ₂ 254.3 BK C Oxygen F Sulfide IV OsS ₂ 254.3 BK C Ozone O ₃ 48.0 CL GAS Ozone O ₃ 48.0<	Oxide IV (per-)	NO_2	46.0	В	GAS		
Sulfide II N_4S_4 184.3 O M 2.046 Nitrosyl Chloride NOCI 65.5 O GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NO ₂ Cl 81.5 CL GAS Osmium CL GAS GAS GAS Osnide IV OsCl ₄ 332.0 R Fluoride V OSF5 285.2 G M Fluoride VI OsF6 304.2 GN C Fluoride VI OsF8 342.2 Y Iodide IV OsI4 697.8 BK Oxide IV OsO2 222.2 BK T Oxide VII OsO4 254.1 CL M Sulfide IV OsO2 222.2 BK T Oxide VIII OsO52 254.3 BK C Oxide VIII OsO52 254.3 BK C GAS Sulfide IV OsS2 254.3 BK C GAS C GAS Ozone O3 48.0 CL GAS GAS Gas Gas Gas	Oxide V (penta-)	N_2O_5	108.0	W	R		
Nitrosyl Chloride NOCI 65.5 O GAS Nitrosyl Fluoride NOF 49.0 CL GAS Nitrosyl Fluoride NO ₂ Cl 81.5 CL GAS Osmium Chloride IV OsCl ₄ 332.0 R Fluoride V OsF ₅ 285.2 G M Fluoride VI OsF ₆ 304.2 GN C Fluoride VII OsF ₆ 304.2 Y Intervention Iodide IV OsF ₈ 342.2 Y Intervention Intervention Oxide IV OsI ₄ 697.8 BK Intervention Intervention Intervention Oxide IV OsO ₂ 222.2 BK T Intervention Intervention Sulfide IV OsO ₂ 254.3 BK C Intervention Intervention <td>Sulfide II</td> <td>N_4S_4</td> <td>184.3</td> <td>0</td> <td>М</td> <td>2.046</td>	Sulfide II	N_4S_4	184.3	0	М	2.046	
Nitrosyl Fluoride NOF 49.0 CL GAS Nitryl Chloride NO ₂ Cl 81.5 CL GAS Osmium C State GAS Chloride IV OsCl ₄ 332.0 R Fluoride V OsF ₅ 285.2 G M Fluoride VI OsF ₆ 304.2 GN C Fluoride VIII OsF ₈ 342.2 Y V Iodide IV OsI ₄ 697.8 BK T Oxide IV OsO ₂ 222.2 BK T Oxide VIII OsO ₄ 254.1 CL M Sulfide IV OsS ₂ 254.3 BK C Oxygen E E Fluoride O GAS Ozone O ₃ 48.0 CL GAS Ozone O ₃ 48.0 CL GAS Palladium PdE ₂ 177.3 R C Fluoride II PdF ₂	Nitrosyl Chloride	NOCI	65.5	0	GAS		
Nitryl Chloride NO ₂ Cl 81.5 CL GAS Osmium Chloride IV OscCl ₄ 332.0 R Fluoride V OsF ₅ 285.2 G M Fluoride VI OsF ₆ 304.2 GN C Fluoride VII OsF ₆ 304.2 GN C Fluoride VIII OsF ₈ 342.2 Y V Iodide IV OsI ₄ 697.8 BK T Oxide VI OsO ₂ 222.2 BK T Oxide VII OsO ₄ 254.1 CL M Sulfide IV OsS ₂ 254.3 BK C Oxygen F Fluoride OF ₂ 54.0 B GAS Ozone O ₃ 48.0 CL GAS Palladium F PdGr ₂ 144.4 B T Bromide II PdF ₂ 144.4 B T T Iodide II PdI ₂	Nitrosyl Fluoride	NOF	49.0	CL	GAS		
Osmium Chloride IV OsCl ₄ 332.0 R Fluoride V OsF ₅ 285.2 G M Fluoride VI OsF ₆ 304.2 GN C Fluoride VIII OsF ₈ 342.2 Y Idide IV OsI4 697.8 BK Oxide IV OsO ₂ 222.2 BK T Oxide VIII OsO ₄ 254.1 CL M Sulfide IV OsS ₂ 254.3 BK C Oxygen C Fluoride OF ₂ 54.0 B GAS GAS Ozone O ₃ 48.0 CL GAS Palladium B F GAS Polioride II PdBr ₂ 266.6 B C Chloride II PdCl ₂ 177.3 R C Fluoride II PdF ₂ 144.4 B T Iodide II PdI ₂ 360.2 BK G Oxide II PdO 122.4 G<	Nitryl Chloride	NO ₂ Cl	81.5	CL	GAS		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Osmium						
Fluoride V OsF_5 285.2 G M Fluoride VI OsF_6 304.2 GN C Fluoride VIII OsF_8 342.2 Y V Iodide IV OsI_4 697.8 BK T Oxide IV OsO_2 222.2 BK T Oxide VIII OsO_4 254.1 CL M Sulfide IV OsS_2 254.3 BK C Oxygen Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Bromide II $PdBr_2$ 266.6 B C Chloride II $PdCl_2$ 177.3 R C Fluoride II PdF_2 144.4 B T Iodide II PdI_2 360.2 BK $Oxide II$ PdO Iodide II PdS 138.5 BK T	Chloride IV	$OsCl_4$	332.0	R			
Fluoride VI OsF_6 304.2 GN C Fluoride VIII OsF_8 342.2 Y Iodide IV OsI_4 697.8 BK Oxide IV OsO_2 222.2 BK T Oxide VIII OsO_4 254.1 CL M Sulfide IV OsS_2 254.3 BK C Oxygen Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Bromide II $PdBr_2$ 266.6 B C Chloride II $PdCl_2$ 177.3 R C Fluoride II PdF_2 144.4 B T Iodide II PdI_2 360.2 BK $Oxide$ T Sulfide II PdS 138.5 BK T	Fluoride V	OsF ₅	285.2	G	М		
Fluoride VIII Os F_8 342.2 Y Iodide IV OsI4 697.8 BK Oxide IV OsO2 222.2 BK T Oxide VIII OsO4 254.1 CL M Sulfide IV OsS2 254.3 BK C Oxygen Fluoride OF2 54.0 B GAS Ozone O3 48.0 CL GAS Palladium Bromide II PdBr2 266.6 B C Chloride II PdCl2 177.3 R C Fluoride II PdF2 144.4 B T Iodide II PdI2 360.2 BK Oxide II PdO Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Fluoride VI	OsF ₆	304.2	GN	С		
Iodide IV OsI_4 697.8 BK Oxide IV OsO_2 222.2 BK T Oxide VIII OsO_4 254.1 CL M Sulfide IV OsS_2 254.3 BK C Oxygen Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Bromide II $PdBr_2$ 266.6 B C Fluoride II $PdCl_2$ 177.3 R C Fluoride II PdF_2 144.4 B T Iodide II PdI_2 360.2 BK $Oxide II$ PdO 122.4 G T Sulfide II PdS 138.5 BK T	Fluoride VIII	OsF ₈	342.2	Y			
Oxide IV Os O_2 222.2 BK T Oxide VIII Os O_4 254.1 CL M Sulfide IV Os S_2 254.3 BK C Oxygen Fluoride OF2 54.0 B GAS Ozone O3 48.0 CL GAS Palladium Enomide II PdBr2 266.6 B C Chloride II PdCl2 177.3 R C Fluoride II PdF2 144.4 B T Iodide II PdI2 360.2 BK Oxide II Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Iodide IV	OsI_4	697.8	BK			
Oxide VIII OsO ₄ 254.1 CL M Sulfide IV OsS ₂ 254.3 BK C Oxygen Fluoride OF ₂ 54.0 B GAS Ozone O ₃ 48.0 CL GAS Palladium Emonide II PdBr ₂ 266.6 B C Chloride II PdCl ₂ 177.3 R C Fluoride II PdF ₂ 144.4 B T Iodide II PdI ₂ 360.2 BK Oxide II Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Oxide IV	OsO ₂	222.2	BK	Т		
Sulfide IV OsS_2 254.3 BK C Oxygen $Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Fluoride II PdBr2 266.6 B C Fluoride II PdPl2 177.3 R C Fluoride II PdF2 144.4 B T Iodide II PdI2 360.2 BK Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T $	Oxide VIII	OsO_4	254.1	CL	М		
Oxygen Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Bromide II PdBr ₂ 266.6 B C Chloride II PdCl ₂ 177.3 R C Fluoride II PdF ₂ 144.4 B T Iodide II PdI ₂ 360.2 BK Oxide II Oxide II PdS 138.5 BK T	Sulfide IV	OsS ₂	254.3	BK	С		
Fluoride OF_2 54.0 B GAS Ozone O_3 48.0 CL GAS Palladium Bromide II PdBr2 266.6 B C Chloride II PdCl2 177.3 R C Fluoride II PdF2 144.4 B T Iodide II PdI2 360.2 BK Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Oxvgen						
Ozone O_3 48.0 CL GAS Palladium Bromide II PdBr ₂ 266.6 B C Chloride II PdCl ₂ 177.3 R C Fluoride II PdF ₂ 144.4 B T Iodide II PdI ₂ 360.2 BK Oxide II Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Fluoride	OF ₂	54.0	В	GAS		
Palladium PdBr2 266.6 B Bromide II PdBr2 177.3 R C Fluoride II PdF2 144.4 B T Iodide II PdI2 360.2 BK Oxide II Oxide II PdS 138.5 BK T	Ozone	O_3	48.0	CL	GAS		
Bromide II $PdBr_2$ 266.6 B Chloride II $PdCl_2$ 177.3 R C Fluoride II PdF_2 144.4 B T Iodide II PdI_2 360.2 BK Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T T	Palladium						
Chloride II PdCl ₂ 177.3 R C Fluoride II PdF ₂ 144.4 B T Iodide II PdI ₂ 360.2 BK Oxide II Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Bromide II	PdBr ₂	266.6	В			
Fluoride II PdF_2 144.4 B T Iodide II PdI_2 360.2 BK Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Chloride II	PdCl	177.3	R	С		
Indice II PdI_2 360.2 BK Oxide II PdO 122.4 G T Sulfide II PdS 138.5 BK T	Fluoride II	PdF ₂	144 4	B	Ť		
Oxide IIPdO122.4GTSulfide IIPdS138.5BKT	Iodide II	PdI	360.2	BK	-		
Sulfide II PdS 138.5 BK T	Oxide II	PdO	122.4	G	Т		
	Sulfide II	PdS	138.5	BK	Т		

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$
Phosphorus					
Hypophosphorous Acid	H ₂ PO ₂	66.0	CL		
Phosphoric Acid	H ₂ PO ₄	98.0	CL	R	
Phosphorous Acid	H ₂ PO ₂	82.0	CL		
Bromide III	PBr ₂	270.7	CL	LIO	1.6945^{19}
Bromide V	PBr	430.5	Ŷ	R	1107.10
Chloride III	PCl	137.3	ĊL	LIO	
Chloride V	PCL	208.3	W	T	
Fluoride III	PE	88.0	ĊL	GAS	
Fluoride V	PF.	126.0	CL	GAS	
Hydride (Phosphine)	PH.	34.0	CL	GAS	
Iodide III	PI.	/11 7	R	н	
Ovide III	P O	210.0	W	M	
Oxide IV	P_4O_6	63.0	CI	D	
Oxide V		142.0	W	к ц	
Oxubromida V	1 205 DOPr	286.7	CI	11	
Oxybiolilide v		152.4	CL	LIO	
Oxychionde	POCI ₃	104.0			
Sulfide	POF ₃	248.4		GAS	
	P_4S_7	346.4	I V		
Suinde V	P_2S_5	222.3	Y	C	
Thiobromide V	PSBr ₃	302.8	Y	U	1 (2525
Thiochloride V	PSCI ₃	169.4	CL	LIQ	1.63525
Platinum					
Bromide II	PtBr ₂	354.9	В	С	
Bromide IV	$PtBr_4$	514.8	В		
Chloride II	PtCl ₂	260.0	GN	Н	
Chloride IV	PtCl ₄	336.9	В		
Fluoride IV	PtF ₄	271.2	R		
Fluoride VI	PtF ₆	309.1	R		
Hydroxide II	Pt(OH) ₂	229.1	BK		
Hydroxide IV	Pt(OH) ₄	263.1	В		
Iodide II	PtI ₂	448.9	BK		
Oxide II	PtO	211.1	G	Т	
Oxide IV	PtO ₂	227.1	BK		
Sulfate IV	$Pt(SO_4)_2 \cdot 4H_2O$	459.4	Y		
Sulfide II	PtS	227.2	BK	Т	
Sulfide III	Pt ₂ S ₂	486.6	G		
Sulfide IV	PtS ₂	259.2	G		
Plutonium					
Bromide III	DuBr	481 7	GN	P	
Carbida IV	FuDi ₃	401.7	SI	K C	
Chlorido III	FuC DuCl	230.0	SL	U U	
Elucride III	PuCl ₃	200.0	D	п	
Fluoride III	гиг ₃ DuF	299.0	r D	п	
	гиг ₄ DuF	518.U	D	IVI D	
	rur ₆	550.U	B	ĸ	
	Pul ₃	622.7	GN	ĸ	
	PUN	256.0	BK	C	2.4
Oxide IV	PuO ₂	274.0	GN	C	2.4

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index n _D
Polonium (Continued)					
Bromide IV	PoBr ₄	529.7	R	С	
Chloride II	PoCl	281.0	R	R	
Chloride IV	PoCl	351.9	Y	М	
Oxide IV	PoO ₂	242.0	R/Y	T/C	
Dotossium					
Promata	KD*O	167.0	CI	тр	
Bromide	KBIO ₃	107.0			1 550
Carbonata	KDI K CO	119.0	CL	м	1.339
Chlorate	K_2CO_3	130.2		M	1.420, 1.431
Chloride	KCIO ₃	122.0		M	1.409; 1.423
Chioride	KCI	/4.0		C	1.490
Cyanide	KUN	05.1			1.410 1.720 TD
Dichromate	$K_2Cr_2O_7$	294.2	U V	M/TK	1./38 IK
Ferrocyanide	$K_4[Fe(CN)_6] \cdot 3H_2O$	422.4	Ŷ	M/T	1.577
Fluoride	KF	58.1	CL	C	1.35
Hydroxide	KOH	56.1	W	C/R	
Iodate	KIO ₃	214.0	CL	M	
lodide	KI	166.0	W	С	1.677
Nitrate	KNO ₃	101.1	CL	R/TR	1.335; 1.?
Oxide	K ₂ O	94.2	CL	С	
Perchlorate	KClO ₄	138.6	CL	R	1.47
Periodate	KIO_4	230.0	CL	Т	1.63
Permanganate	$KMnO_4$	158.0	Р	R	1.59
Peroxide	K_2O_2	110.2	Y	R	
Phosphate, o	K_3PO_4	212.3	CL	TR	
Sulfate	K_2SO_4	174.3	CL	R/H	1.495
Sulfide	K ₂ S	110.3	В	С	
Superoxide	KO_2	71.1	Y	Т	
Thiocyanate	KSCN	97.2	CL	R	
Praseodymium					
Bromide	PrBr ₃	380.6	GN	Н	
Chloride	PrCl ₃	247.3	GN	Н	
Fluoride	PrF ₃	197.9	GN	Н	
Iodide	PrI ₃	521.6	G	R	
Oxide	Pr_2O_3	329.8	Y	Н	
Sulfate	$Pr_2(SO_4)_3 \cdot 8H_2O$	714.1	GN	М	1.55
Sulfide	Pr_2S_3	378.0	В		
Protactinium					
Bromide IV	$PaBr_4$	470.9	R	Т	
Chloride IV	PaCl ₄	372.9	GN	Т	
Fluoride IV	PaF	307.1	В	М	
Iodide III	Pal	611.8	BK	R	
Oxide IV	PaO ₂	263.1	BK	С	
Radium					
Bromide	RaBr ₂	385.8	Y	М	
Chloride	RaCl2	296.1	Y	М	
Sulfate	$RaSO_4$	322.1	CL	R	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		M-11		Createl	Deferretions
Compound	Formula	weight	Color	symmetry	index n _p
	Tonnuu	weight	Color	symmetry	
Rhenium	D D	125.0	D		
Bromide III	ReBr ₃	425.9	В		
Chloride III	ReCl ₃	292.6	R		
Chloride V	ReCl ₅	363.5	B	m	
Fluoride IV		262.5	GN	I	
Flouride VI	ReF ₆	300.2	Ŷ	LIQ	
Flouride VII	ReF ₇	319.2	0	C V	
Oxide IV	ReO ₂	218.2	BK	M	
Oxide VI	ReO ₃	234.2	R	C	
	$\operatorname{Re}_2 \operatorname{O}_7$	484.4	Y	н	
Oxybromide VII	ReO ₃ Br	314.1	W	1.10	
Oxychloride VII	ReO ₃ Cl	269.7	CL	LIQ	
Sulfide IV	ReS ₂	250.4	BK	Н	
Sulfide VII	$\operatorname{Re}_2 S_7$	596.9	BK	Т	
Rhodium					
Chloride III	RhCl ₃	209.3	R		
Fluoride III	RhF ₃	159.9	R	R	
Hydroxide III	Rh(OH) ₃	155.9	Y		
Oxide III	Rh_2O_3	253.8	G		
Oxide IV	RhO ₂	134.9	В		
Sulfide III	Rh_2S_3	302.0	BK		
Rubidium					
Bromate	RbBrO ₃	213.4	CL	С	
Bromide	RbBr	165.4	CL	С	1.5530
Carbonate	Rb ₂ CO ₃	231.0	CL		
Chloride	RbCl	120.9	CL	С	1.493
Fluoride	RbF	104.5	CL	С	1.398
Hydroxide	RbOH	102.5	W	R	
Iodide	RbI	212.4	CL	С	1.6474
Nitrate	RbNO ₃	147.5	CL		1.52
Oxide	Rb ₂ O	187.0	Y	С	
Perchlorate	RbClO ₄	189.4		C/R	1.4701
Peroxide	Rb_2O_2	202.9	Y	С	
Sulfate	Rb_2SO_4	267.0	CL	R	1.513
Sulfide	Rb ₂ S	203.0	Y		
Superoxide	RbO ₂	117.5	Y	Т	
Ruthenium					
Chloride III	RuCl ₃	207.4	R	TR/H	
Fluoride V	RuF ₅	196.1	GN	М	
Oxide IV	RuO ₂	133.1	BE	Т	
Oxide VIII	RuO_4	165.1	Y	R	
Sulfide IV	RuS ₂	165.2	BK	С	
Samarium					
Bromate III	Sm(BrO ₃) ₃ · 9H ₂ O	696.2	Y	Н	
Bromide II	SmBr ₂	310.2	В		
Bromide III	SmBr ₃	390.1	Y	R	
Chloride II	SmCl ₂	221.3	В	R	
	-				

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Malagular		Carvatal	Defrective
Compound	Formula	weight	Color	Crystal	index n
	Torniula	weight	000	symmetry	
Samarium (Continued)					
Chloride III	SmCl ₃	256.7	Y	Н	
Fluoride II	SmF_2	188.4	Y	С	
Fluoride III	SmF ₃	207.4	W	R	
Iodide II	SmI_2	404.2	Y	М	
Iodide III	SmI_3	531.1	Y	Н	
Nitrate III	$Sm(NO_3)_3 \cdot 6H_2O$	444.5	Y	TR	
Oxide III	Sm_2O_3	348.7	Y	М	
Sulfate III	$Sm_2(SO_4)_3 \cdot 8H_2O$	733.0	Y	М	1.55
Sulfide III	Sm_2S_3	396.9	Y	С	
Scandium					
Bromide	ScBr ₃	284.7	W		
Chloride	ScCl ₃	151.3	CL	RH	
Fluoride	ScF ₃	102.0		RH	
Iodide	ScI ₂	425.7	W	Н	
Nitrate	$Sc(NO_2)_2$	231.0	CL		
Oxide	Sc ₂ O ₂	137.9	W	С	
Sulfate	$Sc_2(SO_4)_3$	378.1	CL		
Selenium					
Bromide I	SeaBra	317.7	R	LIO	
Bromide IV	SeBr.	398.6	B	2.14	
Chloride I	SeaCla	228.8	B	LIO	
Chloride IV	SeCL	220.8	CL	C	1 807
Fluoride IV	SeE.	154.9	CL	ŬO	1.007
Fluoride VI	SeF.	192.9	CL	GAS	1 895
Hydride II	H-Se	81.0	CL	GAS	1.095
Oxide IV	SeO.	111.0	CL	т	>1.76
Oxide VI	SeO ₂	127.0	W	Т	21.70
Oxybromide	SeOBr.	254.8	Ő	LIO	
Oxychloride	SeOCI.	165.9	v	LIQ	1 651
Oxyfluoride	SeOE.	133.0	CI		1.051
Selenic Acid	H SeO	145.0	W	R	
Selenous Acid	H_2SeO_4 H_2SeO_2	129.0	CL .	Н	
Silicon	SiBr	3177	CI	LIO	1 57071
Carbida	SIDI ₄	347.7 40.1			2.67
Chlorida	SIC	40.1			2.07
Elisarida	SICI ₄	109.9			
Fluoride	51F ₄	104.1		GAS	
Hydride (sliane)	SIH ₄	32.1		GAS	
Hydride (dishalle)	$Sl_2\Pi_6$	02.2		UAS	
nyunde (tristiane)	S13H8	92.3 525 7			
Nitrido	511 ₄ S: N	555.7 140.2			
	51 ₃ 1N ₄	140.5	G	н	
Oxide II	SIU	44.1	W	C	1 4500
Oxide IV (amorph)	SIU ₂	00.1			1.4588
Oxychloride	SI ₂ UCI ₆	284.9		LIQ	
Sumde	S1S2	92.2	W	K	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$
Silver					
Bromate	AgBrO ₃	235.8	CL	Т	1.874,1.904
Bromide	AgBr	187.8	Y	С	2.253
Carbonate	Ag_2CO_3	257.8	Y		
Chlorate	AgClO ₃	191.3	W	Т	
Chloride	AgCl	143.3	W	С	2.071
Cyanide	AgCN	133.9	W	Н	1.685,1.9
Fluoride	AgF	126.9	Y	С	
Iodate	AgIO ₃	282.8	CL	R	
Iodide	AgI	234.8	Y	H/C	2.21
Nitrate	AgNO ₃	169.9	CL	R	1.74
Nitrite	AgNO ₂	153.9	Y	R	
Oxide	Ag ₂ O	231.8	В	С	
Perchlorate	AgCIO ₄	207.4	W	Ċ	
Phosphate, o	Ag ₂ PO ₄	418.6	Y	C	
Sulfate	Ag ₂ SO ₄	311.8	W	R	
Sulfide	Ag ₂ S	247.8	BK	C/R	
Telluride	AgaTe	343.4	G	M	
Thiocyanate	AgSCN	166.0	CI	101	
Sadium					
Disarbanata	Nauco	84.0	W	м	1 500
Dicardonate	Nanco ₃	84.0 150.0	w	M C	1.500
Bromate	NaBrO ₃	150.9	CL	C	1.594
Bromide	NaBr	102.9	U W	C	1.0412
Carbonate	Na_2CO_3	106.0	W	C	1.555
Chlorate	NaClO ₃	106.4	CL	C	1.513
Chloride	NaCl	58.4	CL	C	1.544
Cyanide	NaCN	49.0	CL	C	1.452
Fluoride	NaF	42.0	CL	C	1.336
Hydride	NaH	24.0	SL	C	1.470
Hydroxide	NaOH	40.0	W	R/C	1.358
Iodate	NaIO ₃	197.9	W	R	
lodide	Nal	149.9	CL	C	1.775
Nitrate	NaNO ₃	85.0	CL	TR	1.34;1
Nitrite	NaNO ₂	69.0	Ŷ	R	
Oxide	Na ₂ O	62.0	G	С	
Perchlorate	NaClO ₄	122.4	W	C/R	1.46
Periodate	$NaIO_4$	213.9	CL	Т	
Peroxide	Na_2O_2	78.0	Y	Н	
Phosphate, o	Na_3PO_4	163.9	W		
Silicate, m	Na_2SiO_3	122.1	CL	М	1.52
Sulfate	Na_2SO_4	142.1	CL	R	1.48
Sulfide	Na_2S	78.1	W	С	
Sulfite	Na_2SO_3	126.1	W	Н	1.5
Thiosulfate	$Na_2S_2O_3$	158.1	CL	М	
Strontium					
Bromide	SrBr ₂	247.5	W	R	1.575
Carbonate	SrCO ₃	147.6	CL	R	1.521
Chloride	SrCl ₂	158.5	CL	С	1.650
Fluoride	SrF ₂	125.6	CL	С	1.442
Hydride	SrH ₂	89.6	W	R	
J	2				

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$
Strontium (Continued)					
Hydroxide	$Sr(OH)_2$	121.7	W		
Iodate	$Sr(IO_3)_2$	437.4		TR	
Iodide	SrI ₂	341.4	CL		
Nitrate	$Sr(NO_3)_2$	211.7	CL	С	1.567
Oxide	SrO	103.6	W	C	1.870
Peroxide	SrO ₂	119.6	CL	Т	
Sulfate	SrSQ.	183.7	CL	R	1.62
Sulfide	SrS	119.7	CL	C	2.107
Sulfur					
Bromide I	S ₂ Br ₂	224.0	R	LIO	1.736
Chloride I	S ₂ Cl ₂	135.0	Y	LIÒ	1.666^{14}
Chloride II	SCh	103.0	R	LIO	1.557
Chloride IV	SCL	173.9	R	LIQ	1.007
Fluoride I	S ₂ F ₂	102.1	CL	GAS	
Fluoride VI	SE.	146.0	CL	GAS	
Hydride	HaS	34.1	CL	GAS	1 374
Oxide IV	SO.	64.1	CL	GAS	1.574
Oxide VI	SO ₂	80.1	CL	LIO	
Pyrosulfuric Acid	503 H.S.O.	178.1	CL	LIQ	
Sulfuric Acid	H SO	08.1	CL	LIQ	1 / 2023
Sulfuryl Chlorida	112304 SO C1	125.0	CL	LIQ	1.429
Thionyl Promide	SOPr	207.0			1.444
Thionyl Chloride	SOCI	207.9	CI		1 52710
Thionyl Chioride	30Cl ₂	119.0	CL	LIQ	1.327
Tantalum					
Bromide	TaBr ₅	580.5	Y	R	
Carbide	TaC	193.0	BK	С	
Chloride	TaCl ₅	358.2	Y	М	
Fluoride	TaF,	275.9	CL	М	
Iodide	Tal	815.4	BK	R	
Nitride	TaN	194.9	BK	Н	
Oxide	Ta ₂ O ₅	441.9	CL	R	
Sulfide	Ta_2S_4	490.1	BK	Н	
Tellurium					
Bromide II	TeBr ₂	287.4	GN		
Bromide V	TeBr	447.3	Y		
Chloride II	TeCl	198.5	GN		
Chloride IV	TeCl	269.4	W	М	
Fluoride VI	TeE	241.6	CL	GAS	
Hydride	HaTe	129.6	CL	GAS	
Iodide IV	TeL	635.2	BK	R	
Oxide IV	TeO.	159.6	W	T/R	2 00-2 35
Oxide VI		175.6	v	1/1	2.00-2.55
Telluric Acid o	HaTeO	229.7	W	C	
ionano riola, o	1121006	227.1	••	č	
Terbium					
Bromide	TbBr ₃	398.6	W		
Chloride	TbCl ₃	265.3	W		

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

a 1		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index n _D
Terbium (Continued)					
Fluoride	TBF_3	215.9	W	R	
Iodide	TbI ₃	539.6		Н	
Nitrate	$Tb(NO_3)_3 \cdot 6H_2O$	453.0	CL	М	
Oxide	Tb ₂ O ₃	365.8	W	С	
Thalliun					
Bromide I	TlBr	284.3	W	С	2.4 - 2.8
Carbonate I	Tl ₂ CO ₂	468.8	CL	М	
Chloride I	TICI	239.8	W	C	2.247
Chloride III	TICI.	310.8	w	н	2.217
Fluoride	TIE	223 4	CI	R	
Hudrovide I	TIOU	223.4	v	D	
Indida I	TU	221.4	I V/D		2.78
Nitroto I		266.4	1/K W	C/TP	2.78
Orida I	$TINO_3$	200.4	W DV		
		424.7	BK	KH	
	$\Pi_2 O_3$	456.7	CL	C	1.07
Sulfate I	TI_2SO_4	504.8	CL	R	1.87
Sulfide I	T1 ₂ S	440.8	ВК	Т	
Thorium					
Bromide	ThBr ₄	551.7	W	Т	
Carbide	ThC_2	256.1	Y	Т	
Chloride	ThCl ₄	373.9	W	Т	
Fluoride	ThF_4	308.0	W	Μ	
Iodide	ThI_4	739.7	Y	М	
Oxide	ThO ₂	264.0	W	С	
Sulfate	$Th(SO_4)_2$	424.2	W	М	
Sulfide	ThS ₂	296.2	BK	R	
Thulium					
Bromide	TmBr ₃	408.7	W	Н	
Chloride	TmCl ₃	275.2	Y	М	
Fluoride	TmF ₃	225.9	W	R	
Iodide	TmL	549.6	Y	Н	
Oxide	Tm_2O_3	385.9	Y	С	
Tin					
Bromide II	SnBr ₂	278.5	Y	R	
Bromide IV	SnBr	438.4	CL	R	
Chloride II	SnCl ₂	189.6	W	R	
Chloride IV	SnCl.	260.5	ĊL.	LIO	1 512
Fluoride II	SnE.	156.7	W	M	1.512
Fluoride IV	SnF.	194.7	W	M	
Hydride	SnH.	122.7	**	GAS	
Iodide II	SnI 4 SnI	372.5	R	R	
Iodide IV	Sm ₂	676.2	D	к С	2 106
Ovida II	Sm4	142 7		с т	2.100
Oxide IV	SIIO	143.7	DK W	I T	1 006
Oxiue IV	SIIO ₂	150.7	W DV	I D	1.990
Sumde II	SnS	150.8	вк	K	
Sumae IV	$5nS_2$	182.8	r	Н	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular		Crystal	Refractive
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$
Titanium					
Bromide IV	TiBr₄	367.6	0	М	
Carbide IV	TiC	59.9	Ğ	C	
Chloride II	TiCl	118.8	BK	Н	
Chloride III	TiCl	154.3	V	Н	
Chloride IV	TiCl ₄	189.7	Y	LIO	1.61
Fluoride IV	TiF₄	123.9	W		
Iodide IV	TiI4	555.5	В	С	
Nitride	TiN	61.9	Y	С	
Oxide II	TiO	63.9	BK	С	
Oxide IV	TiO ₂	79.9	BK	Т	2.55
Sulfide IV	TiS ₂	112.0	Y	Н	
Tungsten					
Bromide V	WBr ₅	583.4	В		
Carbide II	W ₂ C	379.7	G	Н	
Carbide IV	WC	195.9	G	С	
Chloride V	WCl ₅	361.1	GN		
Chloride VI	WCl ₆	396.6	BE	С	
Fluoride VI	WF ₆	297.8	CL	GAS	
Oxide IV	WO ₂	215.9	В	Т	
Oxide VI	WO ₃	231.9	Y	М	
Sulfide IV	WS_2	248.0	BK	Н	
Tungstic Acid	H_2WO_4	250.0	Y	R	2.24
Uranium					
Bromide III	UBr ₃	477.8	R	Н	
Bromide IV	UBr_4	557.7	В	М	
Carbide	UC	250.0	BK	С	
Carbide	UC_2	262.0	BK	Т	
Chloride III	UCl ₃	344.4	R	Н	
Chloride IV	UCl_4	379.9	GN	Т	
Fluoride IV	UF_4	314.1	GN	М	
Fluoride VI	UF_6	352.1	Y	R	1.38
Nitride	UN	252.0	В	С	
Oxide IV	UO_2	270.1	BK	С	
Oxide VI	UO_3	286.1	R	Н	
Oxide IV–VI	U_3O_8	842.2	BK	R	
Uranyl Acetate	$UO_2(C_2H_3O_2)_2 \cdot 6H_2C_2$	422.1	Y	R	
Uranyl Nitrate	$UO_2(NO_3)_2 \cdot 6H_2O$	502.1	Y	R	1.49
Vanadium				-	
Carbide IV	VC	62.9	BK	С	
Chloride IV	VCl_4	192.7	R	LIQ	1
Fluoride III	VF ₃	107.9	GN	R	
Fluoride V	VF ₅	145.9	CL	R	
Iodide II	VI ₂	304.7	V	H	
Oxide III	V_2O_3	149.9	BK	RH	
Oxide IV	VO ₂	82.9	BE	T	
Oxide V	V ₂ O ₅	181.9	R	R	
Oxychloride V	VOCl ₃	173.3	Y	LIQ	
Sulfide II	VS	83.0	BK	Н	

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

		Molecular			Refractive	
Compound	Formula	weight	Color	symmetry	index $n_{\rm D}$	
Xenon						
Fluoride II	XeF ₂	169.3	CL	Т		
Fluoride IV	XeF	207.3	CL	М		
Fluoride VI	XeF	245.3	CL	М		
Oxide VI	XeO ₃	179.3	CL	R	1.79	
Yttebium						
Bromide III	YbBr ₃	412.8	CL			
Chloride II	YbCl ₂	244.0	GN	R		
Chloride III	YbCl ₃	279.3	W	Μ		
Fluoride III	YbF ₃	230.0	W	R		
Iodide II	YbI ₂	426.9	BK	Н		
Iodide III	YbI ₃	553.8	Y	Н		
Oxide III	Yb ₂ O ₃	394.1	CL	С		
Sulfate III	$Yb_2(SO_4)_3$	634.3	CL			
Yttrium						
Bromide	YBr ₃	328.6	W			
Chloride	YCl ₃	195.3	W	М		
Fluoride	YF_3	145.9	W			
Iodide	YI_3	469.6	W	Н		
Oxide	Y_2O_3	225.8	W	С		
Sulfate	$Y_{2}(SO_{4})_{3}$	466.0	W			
Zinc						
Acetate	$Zn(C_2H_3O_2)_2$	183.5	CL	М		
Bromide	$ZnBr_2$	225.2	CL	R	1.5452	
Calbonate	ZnCO ₃	125.4	CL	TR	1.168	
Chloride	$ZnCl_2$	136.3	W	Н	1.687	
Fluoride	ZnF_2	103.4	CL	Μ		
Hydroxide	$Zn(OH)_2$	99.4	CL	R		
Iodide	ZnI_2	319.2	CL	С		
Nitrate	$Zn(NO_3)_2 \cdot 6H_2O$	297.5	CL	Т		
Oxide	ZnO	81.4	W	Н	2.01	
Sulfate	$ZnSO_4$	161.4	CL	R	1.669	
Sulfide	ZnS	97.5	CL	C/H	2.36	
Zirconium						
Bromide	$ZrBr_4$	410.9	W			
Carbide	ZrC	103.2	G	С		
Chloride	$ZrCI_4$	233.1	W	С		
Fluoride	ZrF_4	167.2	W	М	1.59	
Iodide	ZrI_4	598.8	W			
Nitride	ZrN	105.2	В			
Oxide	ZrO_2	123.2	W	М		

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Mineral name	Refractive index	Mineral name	Refractive index
Actinolite	1.618-1.641	Crocoite	2.31-2.66
Adularia moonstone	1.525	Cuprite	2.85
Adventurine feldspar	1.532-1.542	-	
Adventurine quartz	1.544-1.533	Danburite	1.633
Agalmatoite	1.55	Demantoid garnet	1.88
Agate	1.544-1.553	Diamond	2.417-2.419
Albite feldspar	1.525-1.536	Diopsite	1.68-1.71
Albite moonstone	1.535	Dolomite	1.503-1.682
Alexandrite	1.745-1.759	Dumortierite	1.686-1.723
Almandine garnet	1.76-1.83		
Almandite garnet	1.79	Ekanite	1.60
Amazonite feldspar	1.525	Elaeolite	1.532-1.549
Amber	1.540	Emerald	1.576-1.582
Amblygonite	1.611-1.637	Enstatite	1.663-1.673
Amethyst	1.544-1.553	Epidote	1.733-1.768
Anatase	2.49-2.55	Euclase	1.652-1.672
Andalusite	1.634-1.643		
Andradite garnet	1.82-1.89	Fibrolite	1.659-1.680
Anhydrite	1.571-1.614	Fluorite	1.434
Apatite	1.632-1.648		
Apophyllite	1.536	Gaylussite	1.517
Aquamarine	1.577-1.583	Glass	1.44-1.90
Aragonite	1.530-1.685	Grossular garnet	1.738-1.745
Augelite	1.574-1.588		
Axinite	1.675-1.685	Hambergite	1.559-1.631
Azurite	1.73-1.838	Hauynite	1.502
		Hematite	2.94-3.22
Barite	1.636-1.648	Hemimorphite	1.614-1.636
Barytocalcite	1.684	Hessonite garnet	1.745
Benitoite	1.757-1.8	Hiddenite	1.655-1.68
Beryl	1.577-1.60	Howlite	1.586-1.609
Beryllonite	1.553-1.562	Hypersthene	1.67-1.73
Brazilianite	1.603-1.623		
Brownite	1.567-1.576	Idocrase	1.713-1.72
		Iolite	1.548
Calcite	1.486-1.658	Ivory	1.54
Cancrinite	1.491-1.524		
Cassiterite	1.997-2.093	Jadeite	1.66-1.68
Celestite	1.622-1.631	Jasper	1.54
Cerussite	1.804-2.078	Jet	1.66
Ceylanite	1.77-1.80		
Chalcedony	1.53-1.539	Kornerupine	1.665-1.682
Chalybite	1.63-1.87	Kunzite	1.655-1.68
Chromite	2.1	Kyanite	1.715-1.732
Chrysoberyl	1.745		
Chrysocolla	1.50	Labradorite feldspar	1.565
Chrysoprase	1.534	Lapis gem	1.50
Citrine	1.55	Lazulite	1.615-1.645
Clinozoisite	1.724-1.734	Leucite	1.5085
Colemanite	1.586-1.614		
Coral	1.486-1.658	Magnesite	1.515-1.717
Cordierite	1.541	Malachite	1.655-1.909
Corundum	1.766-1.774	Meerschaum	1.53 none

TABLE 1.5 Refractive Index of Minerals

Mineral name	Refractive index	Mineral name	Refractive index
Microcline feldspar	1.525	Serpentine	1.555
Moldavite	1.50	Shell	1.53-1.686
Moss agate	1.54-1.55	Sillimanite	1.658-1.678
		Sinhalite	1.699-1.707
Natrolite	1.48-1.493	Smaragdite	1.608-1.63
Nephrite	1.60-1.63	Smithsonite	1.621-1.849
Nephrite jade	1.600-1.627	Sodalite	1.483
		Spessartite garnet	1.81
Obsidian	1.48-1.51	Spinel	1.712-1.736
Oligoclase feldspar	1.539-1.547	Sphalerite	2.368-2.371
Olivine	1.672	Sphene	1.885-2.05
Onyx	1.486-1.658	Spodumene	1.65-1.68
Opal	1.45	Staurolite	1.739-1.762
Orthoclase feldspar	1.525	Steatite	1.539-1.589
1		Stichtite	1.52-1.55
Painite	1.787-1.816	Sulfur	1.96-2.248
Pearl	1.52-1.69		
Periclase	1.74	Taaffeite	1.72
Peridot	1.654-1.69	Tantalite	2.24-2.41
Peristerite	1.525-1.536	Tanzanite	1.691-1.70
Petalite	1.502-1.52	Thomsonite	1.531
Phenakite	1.65-1.67	Tiger eve	1.544-1.553
Phosgenite	2.117-2.145	Topaz (white)	1.638
Prase	1.54-1.533	Topaz (blue)	1.611
Prasiolite	1.54-1.553	Topaz (pink, yellow)	1.621
Prehnite	1 61–1 64	Tourmaline	1.616–1.652
Proustite	2.79–3.088	Tremolite	1.60-1.62
Purpurite	1.84-1.92	Tugtupite	1.496-1.50
Pvrite	1.81	Turquoise	1.61-1.65
Pyrone	1 74	Turquoise gem	1.61
1 910 pe	11/ 1	Turquoise geni	1101
Ouartz	1.55	Ulexite	1.49-1.52
		Uvarovite	1.87
Rhodizite	1.69		
Rhodochrisite	1.60-1.82	Variscite	1.55-1.59
Rhodolite garnet	1.76	Vivianite	1.580-1.627
Rhodonite	1.73-1.74		
Rock crystal	1.544-1.553	Wardite	1.59-1.599
Ruby	1.76–1.77	Willemite	1.69-1.72
Rutile	2.61-2.90	Witherite	1.532-1.68
		Wulfenite	2.300-2.40
Sanidine	1.522		
Sapphire	1.76-1.77	Zincite	2.01-1.03
Scapolite	1.54-1.56	Zircon	1.801-2.01
Scapolite (yellow)	1.555	Zirconia (cubic)	2.17
Scheelite	1.92-1.934	Zoisite	1.695

TABLE 1.5 Refractive Index of Minerals (Continued)

Material	Melting point Tm (°K)	Boiling point (°K)	Density at melting point (g · cm ⁻³)	Critical temperature (°K)	Volume change on melting $\Delta V_f / \Delta V_s$ 100	Surface tension at melting point (dynes · cm ⁻¹)	Viscosity at melting point (centipoise)	Sound velocity at melting point $(m \cdot cm^{-1})$	Cryoscopic constant (°K/mole · kg)
LiF	1121	1954	1.83	4140	29.4	252		2546	2.77
NaF	1268	1977	1.96	4270	27.4	185		2080	16.6
KF	1131	1775	1.91	3460	17.2	141		1827	21.8
RbF	1048	1681	_	3280	_	167			38.4
LiCl	883	1655	1.60	3080	26.2	137	1.73	2038	13.7
NaCl	1073	1738	1.55	3400	25.0	116	1.43	1743	20.0
KCl	1043	1680	1.50	3200	17.3	99	1.38	1595	25.4
LiBr	823	1583	2.53	3020	24.3	_		1470	27.6
NaBr	1020	1665	2.36	3200	22.4	100		1325	34.0
KBr	1007	1656	2.133	3170	16.6	90		1256	55.9
$NaNO_2$	544	<i>d</i> > 593	1.81		_	120			
KNO_2	692	d623	_		_	109			
LiNO ₃	527	_	1.78		21.4	116	5.46	1853	5.93
NaNO ₃	583	d653	1.90		10.7	116	2.89	1808	15.4
KNO ₃	610	d > 613	1.87		3.32	110	2.93	1754	30.8
RbNO ₃	589	_	2.48		-0.23	109			89.0
AgNO ₃	483	d > 485	3.97			148	4.25	1607	25.9
TINO ₃	480	706	4.90			94			58
Li_2SO_4	1132	_	2.00			225			142
Na_2SO_4	1157	_	2.07			192			66.3
K_2SO_4	1347	_	1.88			144			68.7
$ZnCl_2$	548	1005	2.39			53		1002	
HgCl ₂	550	577	4.37			_			39.3
PbCl ₂	771	1227	3.77			137	4.25	4952	
Na_2WO_4	969	_	3.85			202			
Na ₃ AlF ₆	1273	_	1.84			135			
KCNS	450	—	1.60			101			12.7

TABLE 1.6 Properties of Molten Salts

Notes: (a) 5893 Å; (b) 5890 Å.

Material	Heat capacity, Cp (cal./°K · mole)	Heat of fusion at melting point (kcal · mole ⁻¹)	Entropy of fusion at melting point (entropy units)	Equivalent conductance at 1.1 Tm [(ohm) ⁻¹ cm ² (equiv) ⁻¹]	Decom- position potential of melt (volts)	Measurement temperature for decomposition potential (°K)	Molar refractivity at 5461 Å (cm ³ · mole ⁻¹)	Refractive index at 5461 Å	Measurement temperature for refractive index, (°K)
LiF	15.50	6.47	5.77	151	2.20	1273	2.89	1.32	1223
NaF	16.40	8.03	6.33	120	2.76	1273	3.41	1.25	1273
KF	16.00	6.75	5.97	148	2.54	1273	5.43	1.28	1173
RbF		6.15	5.76						
LiCl	15.0	4.76	5.39	178.5	3.30	1073	8.32	1.501	883
NaCl	16.0	6.69	6.23	152.3	3.25	1073	9.65	1.320	1173
KC1	16.0	6.34	6.08	122.4	3.37	1073	11.75	1.329	1173
LiBr		4.22	5.13	181	2.95	1073	11.81	1.60	843
NaBr		6.24	6.12	149	2.83	1073	13.19	1.486	1173
KBr		6.10	6.06	108	2.97	1073	15.40	1.436	1173
NaNO ₂				58			9.63 ^a	1.416 ^a	573
KNO ₂				~87			11.67	1.356 ^a	873
LiNO ₃	26.6	5.961	11.66	44			10.74	1.467	573
NaNO ₃	37.0	3.696	6.1	58			11.54	1.431	573
KNO ₃	29.5	2.413	4.58	46			13.57	1.426	573
RbNO ₃		1.105	1.91	35			15.31 ^b	1.431 ^b	573
AgNO ₃	30.6	2.886		38			16.20 ^a	1.660 ^a	573
TINO ₃		2.264		27			21.38	1.688 ^b	573
Li ₂ SO ₄		1.975		123			14.87	1.452	1173
Na_2SO_4		5.67		90			16.53	1.395	1173
K_2SO_4	47.8	9.06		157			20.93	1.388	1173
$ZnCl_2$	24.1	2.45		~0.08	1.43	973	18.2	1.588	593
HgCl ₂	25.0	4.15		0.00096	0.86	973	22.9	1.661	563
PbCl ₂		4.40		52.3	1.12	973	26.1	2.024	873
Na_2WO_4				46			24.58	1.542	1173
Na ₃ AlF ₆		27.64					17.2	1.290	1273
KCNS		3.07		17.3			19.65	1.537	573

Substance	Triplet point, oK	Pressure, mmHg
Ammonia	195.46	45.58
Argon	83.78	516
Boron tribromide	226.67	
Bromine	280.4	44.1
Carbon dioxide	216.65	
Cyclopropane	145.59	
Deuterium oxide	276.97	
1-Hexene	133.39	
Hydrogen, normal	13.95	54
Hydrogen, para	13.81	
Hydrogen bromide	186.1	~232
Hydrogen chloride	158.8	
Iodine heptafluoride	279.6	
Krypton	115.95	548
Methane	90.67	87.60
Methane- d_1	90.40	84.52
Methane-d ₂	90.14	81.80
Methane- d_3	89.94	80.12
Methane- d_A	89.79	79.13
Molybdenum oxide tetrafluoride	370.3	
Molybdenum pentafluoride	340	
Neon	24.55	324
Neptunium hexafluoride	328.25	758.0
Niobium pentabromide	540.6	
Niobium pentachloride	476.5	
Nitrogen	63.15	94
1-Octene	171.45	
Oxygen	54.34	
Phosphorus, white	863	32 760
Plutonium hexafluoride	324.74	533.0
Propene	103.95	
Radon	202	~500
Rhenium dioxide trifluoride	363	
Rhenium heptafluoride	321.4	
Rhenium oxide pentafluoride	313.9	
Rhenium pentafluoride	321	
Succinonitrile (NIST standard)	331.23	
Sulfur dioxide	197.68	1.256
Tantalum pentabromide	553	
Tantalum pentachloride	489.0	
Tungsten oxide tetrafluoride	377.8	
Uranium hexafluoride	337.20	1 1 39.6
Water	273.16	
Xenon	161.37	612

TABLE 1.7 Triple Points of Various Materials

TABLE 1.8 Density of Mercury and Water

The density of mercury and pure air-free water under a pressure of 101, 325 Pa(1 atm) is given in units of grams per cubic centimeter ($g \cdot cm^{-3}$). For mercury, the values are based on the density at 20°C being 13.545 884 g \cdot cm⁻³. Water attains its maximum density of 0.999 973 g \cdot cm⁻³ at 3.98°C. For water, the temperature (t_m , °C) of maximum density at different pressures (p) in atmospheres is given by

Density	Temp.,	Density	Density	Temp.,	Density
of water	°C	of mercury	of water	°C	of mercury
	-20	13.644 59	0.987 12	52	13.467 68
	-18	13.639 62	0.986 18	54	13.462 82
	-16	13.634 66	0.985 21	56	13.457 96
	-14	13.629 70	0.984 22	58	13.453 09
	-12	13.624 75	0.983 20	60	13.448 23
	-10	13.619 79	0.982 16	62	13.443 37
	- 8	13.614 85	0.981 09	64	13.438 52
	-6	13.609 90	0.980 01	66	13.433 67
	-4	13.604 96	0.978 90	68	13.428 82
	-2	13.600 02	0.977 77	70	13.423 97
0.999 84	0	13.595 08	0.976 61	72	13.419 13
0.999 94	2	13.590 15	0.975 44	74	13.414 28
0.999 97	4	13.585 22	0.974 24	76	13.409 43
0.999 94	6	13.580 29	0.973 03	78	13.404 60
0.999 85	8	13.575 36	0.971 79	80	13.399 77
0.999 70	10	13.570 44	0.970 53	82	13.394 92
0.999 50	12	13.565 52	0.969 26	84	13.390 09
0.999 24	14	13.560 60	0.967 96	86	13.385 26
0.998 94	16	13.555 70	0.966 65	88	13.380 42
0.998 60	18	13.550 79	0.965 31	90	13.375 60
0.998 20	20	13.545 88	0.963 96	92	13.370 77
0.997 77	22	13.540 97	0.962 59	94	13.365 94
0.997 30	24	13.536 06	0.961 20	96	13.361 12
0.996 78	26	13.531 17	0.959 79	98	13.356 30
0.996 23	28	13.526 26	0.958 36	100	13.351 48
0.995 65	30	13.521 37		120	13.303 4
0.995 03	32	13.516 47		140	13.255 4
0.994 37	34	13.511 58		160	13.207 6
0.993 69	36	13.506 70		180	13.159 8
0.992 97	38	13.501 82		200	13.112 0
0.992 22	40	13.496 93		220	13.064 5
0.991 44	42	13.492 07		240	13.016 9
0.990 63	44	13.487 18		260	12.969 2
0.989 79	46	13.482 29		280	12.921 5
0.988 93	48	13.477 42		300	12.873 7
0.988 04	50	13.472 56			

TABLE 1.9 Specific Gravity of Air at Various Temperatures

t℃.	Sp.Gr. \times 10 ⁴	t℃.	Sp.Gr. \times 10 ⁴	t°C.	Sp.Gr. \times 10 ⁴	t℃.	Sp.Gr. \times 10 ⁴
-25	14.240	15	12.255	60	10.596	140	8.541
-24	14.182	16	12.213	62	10.532	142	8.500
-23	14.125	17	12.170	64	10.470	144	8.459
-22	14.069	18	12.129	66	10.408	146	8.419
-21	14.013	19	12.087	68	10.347	148	8.379
-20	13.957	20	12.046	70	10.286	150	8.339
- 19	13.902	21	12.004	72	10.227	155	8.242
-18	13.847	22	11.964	74	10.168	160	8.147
-17	13.793	23	11.923	76	10.109	165	8.054
-16	13.739	24	11.883	78	10.052	170	7.963
- 15	13.685	25	11.843	80	9.995	175	7.874
- 14	13.632	26	11.803	82	9.938	180	7.787
-13	13.580	27	11.764	84	9.882	185	7.702
-12	13.527	28	11.725	86	9.828	190	7.619
-11	13.476	29	11.686	88	9.773	195	7.537
-10	13.424	30	11.647	90	9.719	200	7.457
-9	13.373	31	11.609	92	9.666	205	7.379
-8	13.322	32	11.570	94	9.613	210	7.303
-7	13.272	33	11.533	96	9.561	215	7.228
-6	13.222	34	11.495	98	9.509	220	7.155
-5	13.173	35	11.458	100	9.458	230	7.013
-4	13.124	36	11.420	102	9.408	240	6.881
-3	13.075	37	11.383	104	9.358	250	6.753
-2	13.026	38	11.347	106	9.308	260	6.624
-1	12.978	39	11.310	108	9.259	270	6.504
0	12.931	40	11.274	110	9.211	280	6.389
+1	12.883	41	11.238	112	9.163	290	6.277
2	12.836	42	11.202	114	9.116	300	6.166
3	12.790	43	11.167	116	9.069	310	6.062
4	12.743	44	11.132	118	9.022	320	5.942
5	12.697	45	11.097	120	8.976	330	5.847
6	12.652	46	11.062	122	8.931	340	5.755
7	12.606	47	11.027	124	8.886	350	5.664
8	12.561	48	10.993	126	8.841	360	5.578
9	12.517	49	10.958	128	8.797	370	5.493
10	12.472	50	10.924	130	8.753	380	5.407
11	12.428	52	10.857	132	8.710	400	5.248
12	12.385	54	10.791	134	8.667	420	5.101
13	12.341	56	10.725	136	8.625	440	4.952
14	12.298	58	10.660	138	8.583	460	4.812

The table below gives the weight in grams $\cdot 10^4$ of 1 mL of air at 760 mm of mercury pressure and at the temperature indicated. Density in grams per milliliter is the same as the specific gravity referred to water at 4°C as unity. To convert to density referred to air at 70°F as unity, divide the values below by 12.00.

psi	Boiling point, °F	psi	Boiling point, °F	psi	Boiling point, °F
0.5	79.6	44	273.1	150	358.5
1	101.7	46	275.8	175	371.8
2	126.0	48	278.5	200	381.9
3	141.4	50	281.0	225	391.9
4	125.9	52	283.5	250	401.0
5	162.2	54	285.9	275	409.5
6	170.0	56	288.3	300	417.4
7	176.8	58	290.5	325	424.8
8	182.8	60	292.7	350	431.8
9	188.3	62	294.9	375	438.4
10	193.2	64	297.0	400	444.7
11	197.7	66	299.0	425	450.7
12	201.9	68	301.0	450	456.4
13	205.9	70	303.0	475	461.9
14	209.6	72	304.9	500	467.1
14.69	212.0	74	306.7	525	472.2
15	213.0	76	308.5	550	477.1
16	216.3	78	310.3	575	481.8
17	219.4	80	312.1	600	486.3
18	222.4	82	313.8	625	490.7
19	225.2	84	315.5	650	495.0
20	228.0	86	317.1	675	499.2
22	233.0	88	318.7	700	503.2
24	237.8	90	320.3	725	507.2
26	242.3	92	321.9	750	511.0
28	246.4	94	323.4	775	514.7
30	250.3	96	324.9	800	518.4
32	254.1	98	326.4	825	521.9
34	257.6	100	327.9	850	525.4
36	261.0	105	331.4	875	528.8
38	264.2	110	334.8	900	532.1
40	267.3	115	338.1	950	538.6
42	270.2	120	341.3	1000	544.8

TABLE 1.10 Boiling Points of Water

	A. Barometric Pressures at Various Temperatures							
Temp. °C.	0.0°	0.2°	0.4°	0.6°	0.8°			
	mm of Hg	mm of Hg	mm of Hg	mm of Hg	mm of Hg			
80	355.40	358.28	361.19	364.11	367.06			
81	370.03	373.01	376.02	379.05	382.09			
82	385.16	388.25	391.36	394.49	397.64			
83	400.81	404.00	407.22	410.45	413.71			
84	416.99	420.29	423.61	426.95	430.32			
85	433.71	437.12	440.55	444.01	447.49			
86	450.99	454.51	458.06	461.63	465.22			
87	468.84	472.48	476.14	479.83	483.54			
88	487.28	491.04	494.82	498.63	502.46			
89	506.32	510.20	514.11	518.04	521.99			
90	525.97	529.98	534.01	538.07	542.15			
91	546.26	550.40	554.56	558.75	562.96			
92	567.20	571.47	575.76	580.08	584.43			
93	588.80	593.20	597.63	602.09	606.57			
94	611.08	615.62	620.19	624.79	629.41			
95	634.06	638.74	643.45	648.19	652.96			
96	657.75	662.58	667.43	672.32	677.23			
97	682.18	687.15	692.15	697.19	702.25			
98	707.35	712.47	717.63	722.81	728.03			
99	733.28	738.56	743.87	749.22	754.59			
100	760.00	765.44	770.91	776.42	781.95			

 TABLE 1.11
 Boiling Points of Water

B. Boiling Points of Water at Various Pressures

Pressure, Boiling	Pressure,	Boiling	Pressure,	Boiling	Pressure,	Boiling
atm. Point, °C	atm.	Point, °C.	atm.	Point, °C.	atm.	Point, °C.
0.5 80.9 1 100.0 2 119.6 3 132.9 4 142.9 5 151.1 6 150.1	7	164.2	14	194.1	21	213.9
	8	169.6	15	197.4	22	216.2
	9	174.5	16	200.4	23	218.5
	10	179.0	17	203.4	24	220.8
	11	183.2	18	206.1	25	222.9
	12	187.1	19	208.8	26	225.0

Temp., °C	Refractive index, <i>n</i> _D	$\begin{array}{c} Viscosity \\ mN\cdot s\cdot m^{-2} \end{array}$	Dielectric constant, <i>ɛ</i>	$\begin{array}{c} Surface \\ tension \\ mN\cdot s\cdot m^{-2} \end{array}$
0	1.333 95	1.793	87.90	75.83
5	1.333 88	1.521	85.84	75.09
10	1.333 69	1.307	83.96	74.36
15	1.333 39	1.135	82.00	73.62
20	1.333 00	1.002	80.20	72.88
25	1.332 50	0.890 3	78.35	72.14
30	1.331 94	0.797 7	76.60	71.40
35	1.331 31	0.719 0	74.83	70.66
40	1.330 61	0.653 2	73.17	69.92
50	1.329 04	0.547 0	69.58	68.45
60	1.327 25	0.466 5	66.73	66.97
70	1.325 11	0.404 0	63.73	65.49
80		0.354 4	60.86	64.01
90		0.314 5	58.12	62.54
100		0.281 8	55.51	61.07

TABLE 1.12Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at VariousTemperatures

TABLE 1.13 Compressibility of Water

In the table below are given the relative volumes of water at various temperatures and pressures. The volume at 0° C and one normal atmosphere (760 mm of Hg) is taken as unity.

P, atm	−10°C.	0°C.	10°C.	20°C.	40°C.	60°C.	80°C.
1	1.0017	1.0000	1.0001	1.0016	1.0076	1.0168	1.0287
500	0.9788	0.9767	0.9778	0.9804	0.9867	0.9967	1.0071
1000	0.9581	0.9566	0.9591	0.9619	0.9689	0.9780	0.9884
1500	0.9399	0.9394	0.9424	0.9456	0.9529	0.9617	0.9717
2000	0.9223	0.9241	0.9277	0.9312	0.9386	0.9472	0.9568
2500	0.9083	0.9112	0.9147	0.9183	0.9257	0.9343	0.9437
3000	0.8962	0.8993	0.9028	0.9065	0.9139	0.9225	0.9315
3500	0.8852	0.8884	0.8919	0.8956	0.9030	0.9115	0.9203
4000	0.8751	0.8783	0.8818	0.8855	0.8931	0.9012	0.9097
4500	0.8658	0.8692	0.8725	0.8762	0.8838	0.8919	0.9001
5000	0.8573	0.8606	0.8639	0.8675	0.8752	0.8832	0.8913
6000		0.8452	0.8481	0.8517	0.8595	0.8674	0.8752
7000			0.8340	0.8374	0.8456	0.8534	0.8610
8000				0.8244	0.8330	0.8408	0.8483
9000				0.8128	0.8219	0.8297	0.8371
10000				0.8027	0.8119	0.8196	0.8268
11000					0.8023	0.8101	0.8172
12000					0.7931	0.8009	0.8080

	Limits of Flammability		
Compound	Lower volume %	Upper volume %	
Ammonia	15.50	27.00	
Carbon monoxide	12.50	74.20	
Carbonyl sulfide	11.90	28.50	
Cyanogen	6.60	42.60	
Hydrocyanic acid	5.60	40.00	
Hydrogen	4.00	74.20	
Hydrogen sulfide	4.30	45.50	

TABLE 1.14 Flammability Limits of Inorganic Compounds in Air

1.3 THE ELEMENTS

The chemical elements are the fundamental materials of which all matter is composed. From the modern viewpoint a substance that cannot be broken down or reduced further is, by definition, an element.

The Periodic Table presents organized information about the chemical elements. The elements are grouped into eight classes according to their properties.

The electronic configuration for an element's ground state is a shorthand representation giving the number of electrons (superscript) found in each of the allowed sublevels (s, p, d, f) above a noble gas core (indicated by brackets). In addition, values for the thermal conductivity, the electrical resistance, and the coefficient of linear thermal expansion are included.

Hund's Rule states that for a set of equal-energy orbitals, each orbital is occupied by one electron before any oribital has two. Therefore, the first electrons to occupy orbitals within a sublevel have parallel spins.

Main energy level	1	2	3	4
Number of sublevels(n)	1	2	3	4
Number of orbitals(n ²)	1	4	9	16
Kind and no. of orbitals	s	s p	s p d	spd f
per sublevel	1	1 3	1 3 5	1 3 5 7
Maximum no. of electrons				
per sublevel	2	2 6	2 6 10	2 6 10 14
Maximum no. of electrons				
per main level (2n ²)	2	8	18	32

TABLE 1.15 Subdivision of Main Energy Levels

Element name	Chemical symbol	Atomic number
Actinium	Ac	89
Aluminum	Al	13
Americium	Am	95
Antimony	Sb	51
Argon	Ar	18
Arsenic	As	33
Astatine	At	85
Barium	Ba	56
Berkelium	Bk	97
Beryllium	Be	4
Bismuth	Bi	83
Bohrium	Bh	107
Boron	В	5
Bromine	Br	35
Cadmium	Cd	48
Calcium	Ca	20
Californium	Cf	98
Carbon	С	6
Cerium	Ce	58
Cesium	Cs	55
Chlorine	Cl	17
Chromium	Cr	24
Cobalt	Со	27
Copper	Cu	29
Curium	Cm	96
Dubnium	Db	105
Dysprosium	Dy	66
Einsteinium	Es	99
Erbium	Er	68
Europium	Eu	63
Fermium	Fm	100
Fluorine	F	9
Francium	Fr	87
Gadolinium	Gd	64
Gallium	Ga	31
Germanium	Ge	32
Gold	Au	79
Hafnium	Hf	72
Hassium	Hs	108
Helium	He	2
Holmium	Но	67
Hydrogen	Н	1
Indium	In	49
Iodine	I	53
Iridium	Ir	77
Iron	Fe	26
Krypton	Kr	36
Lanthanum	La	57
Lawrencium	Lr or Lw	103
Lead	Pb	82
Lithium	Li	3
Lutetium	Lu	71
Magnesium	Mg	12
Manganese	Mn	25

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements

Element name	Chemical symbol	Atomic number
Meitnerium	Mt	109
Mendelevium	Md	101
Mercury	Hg	80
Molybdenum	Mo	42
Neodymium	Nd	60
Neon	Ne	10
Neptunium	Np	93
Nickel	Ni	28
Niobium	Nb	41
Nitrogen	Ν	7
Nobelium	No	102
Osmium	Os	76
Oxvgen	0	8
Palladium	Pd	46
Phosphorus	Р	15
Platinum	Pt	78
Plutonium	Pu	94
Polonium	Po	84
Potassium	ĸ	19
Praseodymium	Pr	59
Promethium	Pm	61
Protactinium	Pa	91
Radium	Ra	88
Radon	Rn	86
Rhenium	Re	75
Rhodium	Rb	45
Rubidium	Rb	37
Ruthenium	Ru	44
Rutherfordium	Rf	104
Samarium	Sm	62
Scandium	Sc	21
Seaborgium	Sg	106
Selenium	Se	34
Silicon	Si	14
Silver	Δσ	47
Sodium	Na	11
Strontium	Sr	38
Sulfur	S	16
Tantalum	5 To	73
Technetium		13
Tellurium	Te	52
Torbium	Th	52
Thellium	10 T1	05 81
Thorium		81
Thulium	Tm	90 60
Thuhum	1 III Sp	50
Titanium	511	22
Tungston	11 W	22
Iungstell	vv Luab	/4
Ununbovium	Uub	112
	Uun T	110
	Uun U	110
Ununoctium	Uuo Uu	118
	Unq	114
	Uuu	111
Uranium	U	92

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements (Continued)
Element name	Chemical symbol	Atomic number
Vanadium	V	23
Xenon	Xe	54
Ytterbium	Yb	70
Yttrium	Y	39
Zinc	Zn	30
Zirconium	Zr	40

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements (Continued)

*As of the time of writing, there were no known elements with atomic numbers 113, 115, or 117.

Hydrogen (1) Symbol, H. A colorless, odorless gas at room temperature. The most common isotope has atomic weight 1.00794. The lightest and most abundant element in the universe.

• Electrons in first energy level: 1

Helium (2) Symbol, He. A colorless, odorless gas at room temperature. The most common isotope has atomic weight 4.0026. The second lightest and second most abundant element in the universe.

• Electrons in first energy level: 2

Lithium (3) Symbol, Li. Classified as an alkali metal. In pure form it is silver-colored. The lightest elemental metal. The most common isotope has atomic weight 6.941.

- Electrons in first energy level: 2
- Electrons in second energy level: 1

Beryllium (4) Symbol, Be. Classified as an alkaline earth. In pure form it has a grayish color similar to that of steel. Has a relatively high melting point. The most common isotope has atomic weight 9.01218.

- Electrons in first energy level: 2
- Electrons in second energy level: 2

Boron (5) Symbol, B. Classified as a metalloid. The most common isotope has atomic weight 10.82. Can exist as a powder or as a black, hard metalloid. Boron is not found free in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 3

Carbon (6) Symbol, C. A nonmetallic element that is a solid at room temperature. Has a characteristic hexagonal crystal structure. Known as the basis of life on Earth. The most common isotope has atomic weight 12.011. Exists in three well-known forms: *graphite* (a black powder) which is common, *diamond* (a clear solid) which is rare, and *amorphous*.

Another form of carbon is graphite. Used in electrochemical cells, air-cleaning filters, thermocouples, and noninductive electrical resistors. Also used in medicine to absorb poisons and toxins in the stomach and intestines. Abundant in mineral rocks such as

- Electrons in first energy level: 2
- Electrons in second energy level: 4

Nitrogen (7) Symbol, N. A nonmetallic element that is a colorless, odorless gas at room temperature. The most common isotope has atomic weight 14.007. The most abundant component of the

earth's atmosphere (approximately 78 percent at the surface). Reacts to some extent with certain combinations of other elements.

- Electrons in first energy level: 2
- Electrons in second energy level: 5

Oxygen (8) Symbol, O. A nonmetallic element that is a colorless, odorless gas at room temperature. The most common isotope has atomic weight 15.999. The second most abundant component of the earth's atmosphere (approximately 21 percent at the surface).

Combines readily with many other elements, particularly metals. One of the oxides of iron, for example, is known as common rust. Normally, two atoms of oxygen combine to form a molecule (O_2) . In this form, oxygen is essential for the sustenance of many forms of life on Earth. When three oxygen atoms form a molecule (O_3) , the element is called *ozone*. This form of the element is beneficial in the upper atmosphere because it reduces the amount of ultraviolet radiation reaching the earth's surface. Ozone is, ironically, also known as an irritant and pollutant in the surface air over heavily populated areas.

- Electrons in first energy level: 2
- Electrons in second energy level: 6

Fluorine (9) Symbol, F. The most common isotope has atomic weight 18.998. A gaseous element of the halogen family. Has a characteristic greenish or yellowish color. Reacts readily with many other elements.

- Electrons in first energy level: 2
- Electrons in second energy level: 7

Neon (10) Symbol, Ne. The most common isotope has atomic weight 20.179. A noble gas present in trace amounts in the atmosphere.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

Sodium (11) Symbol, Na. The most common isotope has atomic weight 22.9898. An element of the alkali-metal group. A solid at room temperature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 1

Magnesium (12) Symbol, Mg. The most common isotope has atomic weight 24.305. A member of the alkaline earth group. At room temperature it is a whitish metal.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 2

Aluminum (13) Symbol, Al. The most common isotope has atomic weight 26.98. A metallic element and a good electrical conductor. Has many of the same characteristics as magnesium, except it reacts less easily with oxygen in the atmosphere.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 3

Silicon (14) Symbol, Si. The most common isotope has atomic weight 28.086. A metalloid abundant in the earth's crust. Especially common in rocks such as granite, and in many types of sand.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 4

Phosphorus (15) Symbol, P. The most common isotope has atomic weight 30.974. A nonmetallic element of the nitrogen family. Found in certain types of rock.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 5

Sulfur (16) Symbol, S. Also spelled *sulphur*. The most common isotope has atomic weight 32.06. A nonmetallic element. Reacts with some other elements.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 6

Chlorine (17) Symbol, Cl. The most common isotope has atomic weight 35.453. A gas at room temperature and a member of the halogen family. Reacts readily with various other elements.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 7

Argon (18) Symbol, A or Ar. The most common isotope has atomic weight 39.94. A gas at room temperature; classified as a noble gas. Present in small amounts in the atmosphere.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 8

Potassium (19) Symbol, K. The most common isotope has atomic weight 39.098. A member of the alkali metal group.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 8
- Electrons in fourth energy level: 1

Calcium (20) Symbol, Ca. The most common isotope has atomic weight 40.08. A metallic element of the alkaline-earth group. Calcium carbonate, or calcite, is abundant in the earth's crust, especially in limestone

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 8
- Electrons in fourth energy level: 2

Scandium (21) Symbol, Sc. The most common isotope has atomic weight 44.956. In the pure form it is a soft metal. Classified as a transition metal.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 9
- Electrons in fourth energy level: 2

Titanium (22) Symbol, Ti. The most common isotope has atomic weight 47.88. Classified as a transition metal.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 10
- Electrons in fourth energy level: 2

Vanadium (23) Symbol, V. The most common isotope has atomic weight 50.94. Classified as a transition metal. In its pure form it is whitish in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 11
- Electrons in fourth energy level: 2

Chromium (24) Symbol, Cr. The most common isotope has atomic weight 51.996. Classified as a transition metal. In its pure form it is grayish in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 13
- Electrons in fourth energy level: 1

Manganese (25) Symbol, Mn. The most common isotope has atomic weight 54.938. Classified as a transition metal. In its pure form it is grayish in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 13
- Electrons in fourth energy level: 2

Iron (26) Symbol, Fe. The most common isotope has atomic weight 55.847. In its pure form it is a dull gray metal.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 14
- Electrons in fourth energy level: 2

Cobalt (27) Symbol, Co. The most common isotope has atomic weight 58.94. Classified as a transition metal. In the pure form it is silvery in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 15
- Electrons in fourth energy level: 2

Nickel (28) Symbol, Ni. The most common isotope has atomic weight 58.69. Classified as a transition metal. In its pure form it is light gray to white.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 16
- Electrons in fourth energy level: 2

Copper (29) Symbol, Cu. The most common isotope has atomic weight 63.546. Classified as a transition metal. In its pure form it has a characteristic red or wine color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 1

Zinc (30) Symbol, Zn. The most common isotope has atomic weight 65.39. Classified as a transition metal. In pure form, it is a dull blue-gray color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 2

Gallium (31) Symbol, Ga. The most common isotope has atomic weight 69.72. A semiconducting metal. In pure form it is light gray to white.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 3

Germanium (32) Symbol, Ge. The most common isotope has atomic weight 72.59. A semiconducting metalloid.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 4

Arsenic (33) Symbol, As. The most common isotope has atomic weight 74.91. A metalloid used as a dopant in the manufacture of semiconductors. In its pure form it is gray in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 5

Selenium (34) Symbol, Se. The most common isotope has atomic weight 78.96. Classified as a nonmetal. In its pure form it is gray in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- · Electrons in third energy level: 18
- Electrons in fourth energy level: 6

Bromine (35) Symbol, Br. The most common isotope has atomic weight 79.90. A nonmetallic element of the halogen family. A reddish-brown liquid at room temperature. Has a characteristic unpleasant odor. Reacts readily with various other elements.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 7

Krypton (36) Symbol, Kr. The most common isotope has atomic weight 83.80. Classified as a noble gas. Colorless and odorless. Present in trace amounts in the earth's atmosphere. Some common isotopes of this element are radioactive.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 8

Rubidium (37) Symbol, Rb. The most common isotope has atomic weight 85.468. Classified as an alkali metal. In its pure form it is silver-colored. Reacts easily with oxygen and chlorine.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 8
- Electrons in fifth energy level: 1

Strontium (38) Symbol, Sr. The most common isotope has atomic weight 87.62. A metallic element of the alkaline-earth group. In pure form it is gold-colored.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 8
- Electrons in fifth energy level: 2

Yttrium (39) Symbol, Y. The most common isotope has atomic weight 88.906. Classified as a transition metal. In its pure form it is silver-colored.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 9
- Electrons in fifth energy level: 2

Zirconium (40) Symbol, Zr. The most common isotope has atomic weight 91.22. Classified as a transition metal. In its pure form it is grayish in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 10
- Electrons in fifth energy level: 2

Niobium (41) Symbol, Nb. The most common isotope has atomic weight 92.91. Classified as a transition metal. This element is sometimes called *columbium*. In pure form it is shiny, and is light gray to white in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 12
- Electrons in fifth energy level: 1

Molybdenum (42) Symbol, Mo. The most common isotope has atomic weight 95.94. Classified as a transition metal. In its pure form, it is hard and silver-white.

Used as a catalyst, as a component of hard alloys for the aeronautical and aerospace industries, and in steel-hardening processes. It is known for high thermal conductivity, low thermal-expansion coefficient, high melting point, and resistance to corrosion. Most molybdenum compounds are relatively nontoxic.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 13
- Electrons in fifth energy level: 1

Technetium (43) Symbol, Tc. Formerly called *masurium*. The most common isotope has atomic weight 98. Classified as a transition metal. In its pure form, it is grayish in color. This element is not found in nature; it occurs when the uranium atom is split by nuclear fission. It also occurs when molybdenum is bombarded by high-speed deuterium nuclei (particles consisting of one proton and one neutron). This element is radioactive.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 14
- Electrons in fifth energy level: 1

Ruthenium (44) Symbol, Ru. The most common isotope has atomic weight 101.07. A rare element, classified as a transition metal. In pure form it is silver-colored.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 15
- Electrons in fifth energy level: 1

Rhodium (45) Symbol, Rh. The most common isotope has atomic weight 102.906. Classified as a transition metal. In its pure form it is silver-colored. Occurs in nature along with platinum and nickel.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 16
- Electrons in fifth energy level: 1

Palladium (46) Symbol, Pd. The most common isotope has atomic weight 106.42. Classified as a transition metal. In its pure form it is light gray to white. In nature, palladium is found with copper ore.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- · Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 0

Silver (47) Symbol, Ag. The most common isotope has atomic weight 107.87. Classified as a transition metal. In its pure form it is a bright, shiny, and silverish-white colored metal.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 1

Cadmium (48) Symbol, Cd. The most common isotope has atomic weight 112.41. Classified as a transition metal. In its pure form it is silver-colored.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 2

Indium (49) Symbol, In. The most common isotope has atomic weight 114.82. A metallic element used as a dopant in semiconductor processing. In pure form it is silver-colored. In nature, it is often found along with zinc.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 3

Tin (50) Symbol, Sn. The most common isotope has atomic weight 118.71. In pure form it is a white or grayish metal. It changes color (from white to gray) when it is cooled through a certain temperature range. It is ductile and malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 4

Antimony (51) Symbol, Sb. The most common isotope has atomic weight 121.76. Classified as a metalloid. In pure form, it is blue-white or blue-gray in color. Has a characteristic flakiness and brittleness.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 5

Tellurium (52) Symbol, Te. The most common isotope has atomic weight 127.60. A rare metalloid element related to selenium. In pure form, it is silverish-white and has high luster. In nature it is found along with other metals such as copper. It has a characteristic brittleness.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 6

Iodine (53) Symbol, I. The most common isotope has atomic weight 126.905. A member of the halogen family. In pure form it has a black or purple-black color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 7

Xenon (54) Symbol, Xe. The most common isotope has atomic weight 131.29. Classified as a noble gas. Colorless and odorless; present in trace amounts in the earth's atmosphere.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 8

Cesium (55) Symbol, Cs. Also spelled *caesium* (in Britain). The most common isotope has atomic weight 132.91. Classified as an alkali metal. In pure form, it is silver-white in color, is ductile, and is malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 1

Barium (56) Symbol, Ba. The most common isotope has atomic weight 137.36. Classified as an alkaline earth. In pure form it is silver-white in color, and is relatively soft; it is sometimes mistaken for lead.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Lanthanum (57) Symbol, La. The most common isotope has atomic weight 138.906. Classified as a rare earth. In pure form it is white in color, malleable, and soft.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 18
- Electrons in fifth energy level: 9
- Electrons in sixth energy level: 2

Cerium (58) Symbol, Ce. The most common isotope has atomic weight 140.13. Classified as a rare earth. In pure form it is light silvery-gray. It reacts readily with various other elements and is malleable and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 20
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Praseodymium (59) Symbol, Pr. The most common isotope has atomic weight 140.908. Classified as a rare earth. In pure form it is silver-gray, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 21
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Neodymium (60) Symbol, Nd. The most common isotope has atomic weight 144.24. Classified as a rare earth. In pure form it is shiny and is silvery in color.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 22

- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Promethium (61) Symbol, Pm. Formerly called *illinium*. The most common isotope has atomic weight 145. Classified as a rare earth. In pure form it is gray in color, and is highly radioactive.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 23
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Samarium (62) Symbol, Sm. The most common isotope has atomic weight 150.36. Classified as a rare earth. In pure form it is silvery-white in color with high luster.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 24
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Europium (63) Symbol, Eu. The most common isotope has atomic weight 151.96. Classified as a rare earth. In pure form it is silver-gray in color, and has ductility similar to that of lead.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 25
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Gadolinium (64) Symbol, Gd. The most common isotope has atomic weight 157.25. Classified as a rare earth. In pure form it is silver in color, is ductile, and is malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 25
- Electrons in fifth energy level: 9
- Electrons in sixth energy level: 2

Terbium (65) Symbol, Tb. The most common isotope has atomic weight 158.93. Classified as a rare earth. In pure form it is silver-gray, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18

- Electrons in fourth energy level: 27
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Dysprosium (66) Symbol, Dy. The most common isotope has atomic weight 162.5. Classified as a rare earth. In pure form it has a bright, shiny silver color. It is soft and malleable, but it has a relatively high melting point.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 28
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Holmium (67) Symbol, Ho. The most common isotope has atomic weight 164.93. Classified as a rare earth. In pure form it is silver in color. It is soft and malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 29
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Erbium (68) Symbol, Er. The most common isotope has atomic weight 167.26. Classified as a rare earth. In pure form it is silverish, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 30
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Thulium (69) Symbol, Tm. The most common isotope has atomic weight 168.93. Classified as a rare earth. In pure form this element is grayish in color, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 31
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Ytterbium (70) Symbol, Yb. The most common isotope has atomic weight 173.04. Classified as a rare earth. In pure form it is silver-white in color, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 8
- Electrons in sixth energy level: 2

Lutetium (71) Symbol, Lu. The most common isotope has atomic weight 174.967. Classified as a rare earth. In its pure form, it is silver-white and radioactive, with a half-life on the order of thousands of millions of years.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 9
- Electrons in sixth energy level: 2

Hafnium (72) Symbol, Hf. The most common isotope has atomic weight 178.49. Classified as a transition metal. In pure form, it is silver-colored, shiny, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 10
- Electrons in sixth energy level: 2

Tantalum (73) Symbol, Ta. The most common isotope has atomic weight 180.95. Classified as a transition metal; an element of the vanadium family. In pure form it is grayish-silver in color, ductile, and hard, with a high melting point.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 11
- Electrons in sixth energy level: 2

Tungsten (74) Symbol, W. Also known as *wolfram*. The most common isotope has atomic weight 183.85. Classified as a transition metal. In pure form it is silver-colored. It has an extremely high melting point.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 12
- Electrons in sixth energy level: 2

Rhenium (75) Symbol, Re. The most common isotope has atomic weight 186.207. Classified as a transition metal. In pure form it is silver-white, has high density, and has a high melting point.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 13
- Electrons in sixth energy level: 2

Osmium (76) Symbol, Os. The most common isotope has atomic weight 190.2. A transition metal of the platinum group. In pure form it is bluish-silver in color, dense, hard, and brittle.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 14
- Electrons in sixth energy level: 2

Iridium (77) Symbol, Ir. The most common isotope has atomic weight 192.22. A transition metal of the platinum group. In pure form it is yellowish-white in color with high luster; it is hard, brittle, and has high density.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 15
- Electrons in sixth energy level: 2

Platinum (78) Symbol, Pt. The most common isotope has atomic weight 195.08. Classified as a transition metal. In pure form it has a brilliant, shiny, white luster. It is malleable and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 17
- Electrons in sixth energy level: 1

Gold (79) Symbol, Au. The most common isotope has atomic weight 196.967. A transition metal. In pure form it is shiny, yellowish, ductile, malleable, and comparatively soft.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32

- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 1

Mercury (80) Symbol, Hg. The most common isotope has atomic weight 200.59. Classified as a transition metal. In pure form it is silver-colored and liquid at room temperature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 2

Thallium (81) Symbol, Tl. The most common isotope has atomic weight 204.38. A metallic element. In pure form it is bluish-gray or dull gray, soft, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 3

Lead (82) Symbol, Pb. The most common isotope has atomic weight 207.2. A metallic element. In pure form it is dull gray or blue-gray, soft, and malleable; relatively low melting temperature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 4

Bismuth (83) Symbol, Bi. The most common isotope has atomic weight 208.98. A metallic element. In pure form it is pinkish-white and brittle.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 5

Polonium (84) Symbol, Po. The most common isotope has atomic weight 209. Classified as a metalloid. It is produced from the decay of radium and is sometimes called radium-F. Polonium is radioactive; it emits primarily alpha particles.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 6

Astatine (85) Symbol, At. The most common isotope has atomic weight 210. Formerly called *alabamine*. Classified as a halogen. The element is radioactive.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 7

Radon (86) Symbol, Rn. The most common isotope has atomic weight 222. Classified as a noble gas. It is radioactive, emitting primarily alpha particles, and has a short half-life. Radon is a colorless gas that results from the disintegration of radium.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 8

Francium (87) Symbol, Fr. The most common isotope has atomic weight 223. Classified as an alkali metal. This element is radioactive, and all isotopes decay rapidly. Produced as a result of the radioactive disintegration of actinium.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 1

Radium (88) Symbol, Ra. The most common isotope has atomic weight 226. Classified as an alkaline earth. In pure form it is silver-gray, but darkens quickly when exposed to air. This element is radioactive, emitting alpha particles, beta particles, and gamma rays. It has a moderately long half-life.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Actinium (89) Symbol, Ac. The most common isotope has atomic weight 227. Classified as a rare earth. In pure form it is silver-gray in color. This element is radioactive, emitting beta particles. The most common isotope has a half-life of 21.6 years.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Thorium (90) Symbol, Th. The most common isotope has atomic weight 232.038. Classified as a rare earth and a member of the actinide series. In pure form it is silver-colored, soft, ductile, and malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 18
- Electrons in sixth energy level: 10
- Electrons in seventh energy level: 2

Protactinium (91) Symbol, Pa. Formerly called *protoactinium*. The most common isotope has atomic weight 231.036. Classified as a rare earth. In pure form it is silver-colored.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 20
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Uranium (92) Symbol, U. The most common isotope has atomic weight 238.029. Classified as a rare earth. In pure form it is silver-colored, malleable, and ductile.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 21
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Neptunium (93) Symbol, Np. The most common isotope has atomic weight 237. Classified as a rare earth. In pure form it is silver-colored, and reacts with various other elements to form compounds.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 23
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Plutonium (94) Symbol, Pu. The most common isotope has atomic weight 244. Classified as a rare earth. In pure form it is silver-colored; when it is exposed to air, a yellow oxide layer forms. Plutonium reacts with various other elements to form compounds.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 24
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Americium (95) Symbol, Am. The most common isotope has atomic weight 243. Classified as a rare earth. In pure form it is silver-white and malleable.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 25
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Curium (96) Symbol, Cm. The most common isotope has atomic weight 247. Classified as a rare earth. In pure form it is silvery in color, and it reacts readily with various other elements. This element, like most transuranic elements, is dangerously radioactive.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 25
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Berkelium (97) Symbol, Bk. The most common isotope has atomic weight 247. Classified as a rare earth. It is radioactive with a short half-life. Berkelium is a human-made element and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32

- Electrons in fifth energy level: 26
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Californium (98) Symbol, Cf. The most common isotope has atomic weight 251. Classified as a rare earth. It is radioactive, emitting neutrons in large quantities. It is human-made element, not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 28
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Einsteinium (99) Symbol, E or Es. The most common isotope has atomic weight 252. Classified as a rare earth. It is radioactive with a short half-life. Einsteinium is a human-made element and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 29
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Fermium (100) Symbol, Fm. The most common isotope has atomic weight 257. Classified as a rare earth. It has a short half-life, is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 30
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Mendelevium (101) Symbol, Md or Mv. The most common isotope has atomic weight 258. Classified as a rare earth. It has a short half-life, is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 31
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Nobelium (102) Symbol, No. The most common isotope has atomic weight 259. Classified as a rare earth. It has a short half-life (seconds or minutes, depending on the isotope), is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 8
- Electrons in seventh energy level: 2

Lawrencium (103) Symbol, Lr or Lw. The most common isotope has atomic weight 262. Classified as a rare earth. It has a half-life less than one minute, is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 9
- Electrons in seventh energy level: 2

Rutherfordium (104) Symbol, Rf. Also called *unnilquadium* (Unq) and *Kurchatovium* (Ku). The most common isotope has atomic weight 261. Classified as a transition metal. It has a half-life on the order of a few seconds to a few tenths of a second (depending on the isotope), is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 10
- Electrons in seventh energy level: 2

Dubnium (105) Symbol, Db. Also called *unnilpentium* (Unp) and *Hahnium* (Ha). The most common isotope has atomic weight 262. Classified as a transition metal. It has a half-life on the order of a few seconds to a few tenths of a second (depending on the isotope), is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 11
- Electrons in seventh energy level: 2

Seaborgium (106) Symbol, Sg. Also called *unnilhexium* (Unh). The most common isotope has atomic weight 263. Classified as a transition metal. It has a half-life on the order of one second or less, is human-made, and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 12
- Electrons in seventh energy level: 2

Bohrium (107) Symbol, Bh. Also called *unnilseptium* (Uns). The most common isotope has atomic weight 262. Classified as a transition metal. It is human-made and is not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 13
- Electrons in seventh energy level: 2

Hassium (108) Symbol, Hs. also called *unniloctium* (Uno). The most common isotope has atomic weight 265. Classified as a transition metal. It is human-made and not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 14
- Electrons in seventh energy level: 2

Meitnerium (109) Symbol, Mt. Also called *unnilenium* (Une). The most common isotope has atomic weight 266. Classified as a transition metal. It is human-made and not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 15
- Electrons in seventh energy level: 2

Ununnilium (110) Symbol, Uun. The most common isotope has atomic weight 269. Classified as a transition metal. It is human-made and not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8

- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 17
- Electrons in seventh energy level: 1

Unununium (111) Symbol, Uuu. The most common isotope has atomic weight 272. Classified as a transition metal. It is human-made and not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 18
- Electrons in seventh energy level: 1

Ununbium (112) Symbol, Uub. The most common isotope has atomic weight 277. Classified as a transition metal. It is human-made and not known to occur in nature.

- Electrons in first energy level: 2
- Electrons in second energy level: 8
- Electrons in third energy level: 18
- Electrons in fourth energy level: 32
- Electrons in fifth energy level: 32
- Electrons in sixth energy level: 18
- Electrons in seventh energy level: 2

(113) As of this writing, no identifiable atoms of an element with atomic number 113 have been reported. The synthesis of or appearance of such an atom is believed possible because of the observation of ununqadium (Uuq, element 114) in the laboratory.

Ununquadium (114) Symbol, Uuq. The most common isotope has atomic weight 285. First reported in January 1999. It is human-made and not known to occur in nature.

(115) As of this writing, no identifiable atoms of an element with atomic number 115 have been reported. The synthesis or appearance of such an atom is believed possible because of the observation of ununhexium (Uuh, element 116) in the laboratory.

Ununhexium (116) Symbol, Uuh. The most common isotope has atomic weight 289. First reported in January 1999. It is a decomposition product of ununoctium, and it in turn decomposes into ununquadium. It is not known to occur in nature.

(117) As of this writing, no identifiable atoms of an element with atomic number 117 have been reported. The synthesis or appearance of such an atom is believed possible because of the observation of ununoctium (Uuo, element 118) in the laboratory.

Ununoctium (118) Symbol, Uuo. The most common isotope has atomic weight 293. It is the result of the fusion of krypton and lead and decomposes into ununhexium. It is not known to occur in nature.

Group Period	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1																	1	2
	Н																	Н	He
2	3	4												5	6	7	8	9	10
	Li	Be												В	С	Ν	0	F	Ne
3	11	12												13	14	15	16	17	18
	Na	Mg												Al	Si	Р	S	Cl	Ar
4	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Κ	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
6	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
7	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra		Lr	Unq	Unp	Unh	Uns	Uno	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
*Lanth	anides		*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
†Actin	ides		**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

TABLE 1.17 Atomic Numbers, Periods, and Groups of the Elements (The Periodic Table)

Name	Atomic number	Symbol	Atomic weight
Actinium	89	Ac	[227]
Aluminium	13	Al	26.981538
Americium	95	Am	[243]
Antimony	51	Sb	121.76
Argon	18	Ar	39.948
Arsenic	33	As	74.9216
Astatine	85	At	[210]
Barium	56	Ba	137.327
Berkelium	97	Bk	[247]
Beryllium	4	Be	9.012182
Bismuth	83	Bi	8.98038
Bohrium	107	Bh	[264]
Boron	5	В	10.811
Bromine	35	Br	79.904
Cadmium	48	Cd	112.411
Caesium	55	Cs	132.90545
Calcium	20	Ca	40.078
Californium	98	Cf	[251]
Carbon	6	C	12.0107
Cerium	58	Ce	140.116
Chlorine	17	Cl	35,4527
Chromium	24	Cr	51,9961
Cobalt	27	Co	8.9332
Copper	29	Cu	63.546
Curium	96	Cm	[247]
Dubnium	105	Db	[262]
Dysprosium	66	Dv	162.5
Einsteinium	99	Es	[252]
Erbium	68	Er	167.26
Europium	63	Eu	151.964
Fermium	100	Fm	[257]
Fluorine	9	F	18,9984032
Francium	87	Fr	[223]
Gadolinium	64	Gd	157.25
Gallium	31	Ga	69.723
Germanium	32	Ge	72.61
Gold	79	Au	196,96655
Hafnium	72	Hf	178 49
Hassium	108	Hs	[265]
Helium	2	He	4 002602
Holmium	67	Но	164,93032
Hydrogen	1	Н	1 00794
Indium	49	In	114 818
Iodine	53	I	126 90447
Iridium	77	Ir	192 217
Iron	26	Fe	55 845
Krypton	36	Kr	83.8
Lanthanum	57	La	138 9055
Lawrencium	103	L.r.	[262]
Lead	82	Ph	207 2
Lithium	3	Li	6 941
Lutetium	71	In	174 967
Magnesium	12	Ma	24 305
Manganese	25	Mn	5/ 0380/0
Meitnerium	109	Mt	[268]
Mendelevium	101	Md	[258]
interfacto viulli	101	1410	[20]

TABLE 1.18 Atomic Weights of the Elements

Name	Atomic number	Symbol	Atomic weight
Mercury	80	Hg	200.59
Molybdenum	42	Mo	95.94
Neodymium	60	Nd	144.24
Neon	10	Ne	20.1797
Neptunium	93	Np	[237]
Nickel	28	Ni	58.6934
Niobium	41	Nb	92.90638
Nitrogen	7	N	14 00674
Nobelium	102	No	[259]
Osmium	76	05	190.23
Oxygen	8	0	15 9994
Palladium	46	Pd	106.42
Phoenhorue	40	D	30.073761
Distinum	15	I Dt	105.079
Platinum Distantisma	78	Ft Du	195.078
Plutonium	94	Pu D-	[244]
Polonium	84	Po	[209]
Potassium	19	K	39.0983
Praseodymium	59	Pr	140.90765
Promethium	61	Pm	[145]
Protactinium	91	Pa	231.03588
Radium	88	Ra	[226]
Radon	86	Rn	[222]
Rhenium	75	Re	186.207
Rhodium	45	Rh	102.9055
Rubidium	37	Rb	85.4678
Ruthenium	44	Ru	101.07
Rutherfordium	104	Rf	[261]
Samarium	62	Sm	150.36
Scandium	21	Sc	44.95591
Seaborgium	106	Sg	[263]
Selenium	34	Se	78.96
Silicon	14	Si	28.0855
Silver	47	Ag	107.8682
Sodium	11	Na	22.98977
Strontium	38	Sr	87.62
Sulfur	16	S	32.066(6)
Tantalum	73	Та	180.9479
Technetium	43	Tc	[98]
Tellurium	52	Te	127.6
Terbium	65	Tb	158.92534
Thallium	81	Tl	204.3833
Thorium	90	Th	232.0381
Thulium	69	Tm	168.93421
Tin	50	Sn	118.71
Titanium	22	Ti	47.867
Tungsten	74	W	183.84
Ununbium	112	Uub	[277]
Ununnilium	110	Uun	[269]
Ununnunium	111	Uuu	[272]
Uranium	92	U	238.0289
Vanadium	23	v	50 9415
Xenon	54	Xe	131 29
Ytterhium	70	Yh	173.04
Vttrium	20	V	22 00525
Zinc	39	1 7n	65 20
Zirconium	40	Zr	91.224

TABLE 1.18 Atomic Weights of the Elements (Continued)

TABLE 1.19 Physical Properties of the Elements

The relative atomic masses in the following table are based on the ${}^{12}C = 12$ scale; a value in brackets denotes the mass number of the most stable isotope. The data are based on the most recent values adopted by IUPAC, with a maximum of six significant figures.

 ρ denotes density, $\theta_{C,m}$ denotes melting temperature, $\theta_{C,b}$ denotes boiling temperature, and c_p denotes specific heat capacity. subl. denotes sublimes

Element	Symbol	Atomic number	Relative atomic mass	ho/g cm ⁻³	$ heta_{\mathrm{C,m}}$ /°C	$ heta_{\mathrm{C,b}}/^{\circ}\mathrm{C}$	c_p /J kg ⁻¹ K ⁻¹	Oxidation states
Actinium	Ac	89	227.028	10.1	1050	3200		3
Aluminium	Al	13	26.9815	2.70	660	2470	900	3
Americium	Am	95	(243)	11.7	(1200)	(2600)	140	3, 4, 5, 6
Antimony	Sb	51	121.75	6.62	630	1380	209	3, 5
Argon	Ar	18	39.948	1.40 (87 K)	-189	-186	519	
Arsenic (α , grey)	As	33	74.9216	5.72		613 subl.	326	3, 5
Astatine	At	85	(210)		(302)	(380)	(140)	
Barium	Ba	56	137.33	3.51	714	1640	192	2
Berkelium	Bk	97	(247)					3, 4
Beryllium	Be	4	9.01218	1.85	1280	2477	1.82×10^{3}	2
Bismuth	Bi	83	208.980	9.80	271	1560	121	3,5
Boron	В	5	10.81	2.34	2300	3930	1.03×10^{3}	3
Bromine	Br	35	79.904	3.12	-7.2	58.8	448	1, 3, 4, 5, 6
Cadmium	Cd	48	112.41	8.64	321	765	230	2
Caesium	Cs	55	132.905	1.90	28.7	690	234	1
Calcium	Ca	20	40.08	1.54	850	1487	653	2
Californium	Cf	98	(251)					3
Carbon	С	6	12.011	2.25 (graphite) 3.51 (diamond)	3730 subl.	4830	711 (graphite) 519 (diamond)	2,4
Cerium	Ce	58	140.12	6.78	795	3470	184	3,4
Chlorine	Cl	17	35.453	1.56 (238 K)	-101	-34.7	477	1, 3, 4, 5, 6, 7
Chromium	Cr	24	51.996	7.19	1890	2482	448	2,3,6
Cobalt	Co	27	58.9332	8.90	1492	2900	435	2,3
Copper	Cu	29	63.546	8.92	1083	2595	385	1,2
Curium	Cm	96	(247)					3
Dysprosium	Dy	66	162.50	8.56	1410	2600	172	3
Einsteinium	Es	99	(252)					3

Erbium	Er	68	167.26	9.16	1500	2900	167	3
Europium	Eu	63	151.96	5.24	826	1440	138	2, 3
Fermium	Fm	100	(257)					3
Fluorine	F	9	18.9984	1.11 (85 K)	-220	-188	824	1
Francium	Fr	87	(223)		(27)	(680)	(140)	1
Gadolinium	Gd	64	157.25	7.95	1310	3000	234	3
Gallium	Ga	31	69.72	5.91	29.8	2400	381	3
Germanium	Ge	32	72.59	5.35	937	2830	322	4
Gold	Au	79	196.967	19.3	1063	2970	130	1, 3
Hafnium	Hf	72	178.49	13.3	2220	5400	146	4
Helium	He	2	4.00260	0.147 (4 K)	-270	-269	5.19×10^{3}	
Holmium	Но	67	164.930	8.80	1460	2600	163	3
Hydrogen	Н	1	1.0079	0.070 (20 K)	-259	-252	1.43×10^{4}	1
Indium	In	49	114.82	7.30	157	2000	238	1, 3
Iodine	Ι	53	126.905	4.93	114	184	218	1, 3, 5, 7
Iridium	Ir	77	192.22	22.5	2440	5300	134	2, 3, 4, 6
Iron	Fe	26	55.847	7.86	1535	3000	448	2, 3, 6
Krypton	Kr	36	83.80	2.16 (121 K)	-157	-152	247	2
Lanthanum	La	57	138.906	6.19	920	3470	201	3
Lawrencium	Lr	103	(260)					
Lead	Pb	82	207.2	11.3	327	1744	130	2,4
Lithium	Li	3	6.941	0.53	180	1330	3.39×10^{3}	1
Lutetium	Lu	71	174.967	9.84	1650	3330	155	3
Magnesium	Mg	12	24.305	1.74	650	1110	1.03×10^{3}	2
Manganese	Mn	25	54.9380	7.20	1240	2100	477	2, 3, 4, 6, 7
Mendelevium	Md	101	(258)					3
Mercury	Hg	80	200.59	13.6	-38.9	357	138	1, 2
Molybdenum	Mo	42	95.94	10.2	2610	5560	251	2, 3, 4, 5, 6
Neodymium	Nd	60	144.24	7.00	1020	3030	188	3
Neon	Ne	10	20.179	1.20 (27 K)	-249	-246	1.03×10^{3}	
Neptunium	Np	93	237.048	20.4	640			3, 4, 5, 6
Nickel	Ni	28	58.69	8.90	1453	2730	439	2, 3
Niobium	Nb	41	92.9064	8.57	2470	3300	264	3, 5

(Continued)

			Relative					
	a 1 1	Atomic	atomic	-3	0 100	0.00	(T 1 - T 7 -	Oxidation
Element	Symbol	number	mass	ρ /g cm ³	$\theta_{C,m}/C$	$\theta_{C,b}/$ °C	c_p/J kg ⁻ K ⁻	states
Nitrogen	Ν	7	14.0067	0.808 (77 K)	-210	-196	1.04×10^{3}	1, 2, 3, 4, 5
Nobelium	No	102	(259)					
Osmium	Os	76	190.2	22.5	3000	5000	130	2, 3, 4, 6, 8
Oxygen	0	8	15.9994	1.15 (90 K)	-218	-183	916	2
Palladium	Pd	46	106.42	12.0	1550	3980	243	2, 4
Phosphorus	Р	15	30.9738	1.82 (white) 2.34 (red)	44.2 (white) 590 (red)	280 (white)	757 (white) 670 (red)	3, 5
Platinum	Pt	78	195.08	21.4	1769	4530	134	2, 4, 6
Plutonium	Pu	94	(244)	19.8	640	3240		3, 4, 5, 6
Polonium	Ро	84	(209)	9.4	254	960	126	2,4
Potassium	K	19	39.0983	0.86	63.7	774	753	1
Praseodymium	Pr	59	140.908	6.78	935	3130	192	3, 4
Promethium	Pm	61	(145)		1030	2730	184	3
Protoactinium	Pa	91	231.036	15.4	1230		121	4, 5
Radium	Ra	88	226.025	5.0	700	1140	121	2
Radon	Rn	86	(222)	4.4 (211 K)	-71	-61.8	92	
Rhenium	Re	75	186.207	20.5	3180	5630	138	2, 4, 5, 6, 7
Rhodium	Rh	45	102.906	12.4	1970	4500	243	2, 3, 4
Rubidium	Rb	37	85.4678	1.53	38.9	688	360	1
Ruthenium	Ru	44	101.07	12.3	2500	4900	238	3, 4, 5, 6, 8
Samarium	Sm	62	150.36	7.54	1070	1900	197	2, 3
Scandium	Sc	21	44.9559	2.99	1540	2730	556	3
Selenium	Se	34	78.96	4.81	217	685	322	2, 4, 6
Silicon	Si	14	28.0855	2.33	1410	2360	711	4
Silver	Ag	47	107.868	10.5	961	2210	234	1
Sodium	Na	11	22.9898	0.97	97.8	890	1.23×103	1
Strontium	Sr	38	87.62	2.62	768	1380	284	2
Sulphur (α , rhombic)	S	16	32.06	$2.07 (\alpha)$ $1.96 (\beta)$	$\frac{113}{119} \left(\alpha \right)$	445	732	2, 4, 6
Tantalum	Ta	73	180.948	16.6	3000	5420	138	5
Technetium	Tc	43	(98)	11.5	2200	3500	243	7
Tellurium	Te	52	127.60	6.25	450	990	201	2, 4, 6

TABLE 1.19 Physical Properties of the Elements (Continued)

Terbium	Tb	65	158.925	8.27	1360	2800	184	3, 4
Thallium	Tl	81	204.383	11.8	304	1460	130	1, 3
Thorium	Th	90	232.038	11.7	1750	3850	113	3, 4
Thulium	Tm	69	168.934	9.33	1540	1730	159	2, 3
Tin (white)	Sn	50	118.71	7.28 (white)	232	2270	218	2,4
				5.75 (grey)				
Titanium	Ti	22	47.88	4.54	1675	3260	523	2, 3, 4
Tungsten	W	74	183.85	19.4	3410	5930	134	2, 4, 5, 6
Uranium	U	92	238.029	19.1	1130	3820	117	3, 4, 5, 6
Vanadium	V	23	50.9415	5.96	1900	3000	481	2, 3, 4, 5
Xenon	Xe	54	131.29	3.52 (165 K)	-112	-108	159	2, 4, 6, 8
Ytterbium	Yb	70	173.04	6.98	824	1430	146	2, 3
Yttrium	Y	39	88.9059	4.34	1500	2930	297	3
Zinc	Zn	30	65.39	7.14	420	907	385	2
Zirconium	Zr	40	91.224	6.49	1850	3580	276	2, 3, 4

Name	Symbol	Atomic number	Electronic configuration	Thermal conductivity, $W \cdot (m \cdot K)^{-1}$ at 25°C	Electrical resistivity, $\mu \Omega \cdot cm$ at 20°C	Coefficient of linear thermal expansion (25°C), m · m ⁻¹ (× 10 ⁶)
Actinium	Ac	89	[Rn] 6d ² 7s	12		
Aluminum	Al	13	[Ne] 3s ² 3p	237	2.6548	23.1
Americium	Am	95	[Rn] $5f^7 7s^2$	10		
Antimony	Sb	51	[Kr] $4d^{10} 5s^2 5p^3$	24.4	41.7	11.0
Argon	Ar	18	[Ne] $3s^2 3p^6$	0.017 72		
Arsenic	As	33	[Ar] $3d^{10} 4s^2 4p^3$	50.2	33.3	
Astatine	At	85	[Xe] $4f^{14} 5d^{10} 6s^2 6p^5$	1.7		
Barium	Ba	56	[Xe] 6s ²	18.4	33.2	20.6
Berkelium	Bk	97	[Rn] 5f ⁸ 6d 7s ²	10		
Beryllium	Be	4	[He] $2s^2$	200	3.56	11.3
Bismuth	Bi	83	[Xe] $4f^{14} 5d^{10} 6s^2 6p^3$	7.97	129	13.4
Boron	В	5	[He] $2s^2 2p$	27.4	1.5×10^{12}	5-7
Bromine	Br	35	[Ar] $3d^{10} 4s^2 4p^5$	0.122	7.8×10^{18}	
Cadmium	Cd	48	[Kr] $4d^{10} 5s^2$	96.6	7.27 (22°C)	30.8
Calcium	Ca	20	[Ar] 4 <i>s</i> ²	201	3.36	22.3
Californium	Cf	98	[Rn] 5f ¹⁰ 7s ²			
Carbon	C	6	[He] $2s^2 2p^2$			
(amorphous)			_	1.59		
(diamond)				900-2320	0.8	
(graphite)				119-165	1375	
Cerium	Ce	58	[Xe] 4f 5d 6s ²	11.3	82.8 (β, hex)	6.3
Cesium	Cs	55	[Xe] 6s	35.9	20.5	
Chlorine	CI	17	[Ne] $3s^2 3p^5$	0.0089	>109	
Chromium	Cr	24	[Ar] 3d ⁵ 4s	93.9	12.5	4.9
Cobalt	Co	27	[Ar] $3d^7 4s^2$	100	6.24	13.0
Copper	Cu	29	[Ar] $3d^{10} 4s$	401	1.678	16.5
Curium	Cm	96	[Rn] $5f^7 6d 7s^2$			
Dysprosium	Dy	66	[Xe] $4f^{10} 6s^2$	10.7	92.6	9.9
Einsteinium	Es	99	[Rn] 5f ¹¹ 7s ²			
Erbium	Er	68	[Xe] $4f^{14} 6s^2$	14.5	86.0	12.2
Europium	Eu	63	[Xe] $4f^7 6s^2$	13.9	90.0	35.0

TABLE 1.20 Conductivity and Resistivity of the Elements

100 [Rn] $5f^{12} 7s^2$ Fermium Fm Fluorine F 9 [He] $2s^2 2p^5$ 0.0277 Francium Fr 87 [Rn] 7s [Xe] 4f⁷ 5d 6s² 9.4 (100°C) Gadolinium Gd 64 10.5 131 Gallium Ga 31 [Ar] 3d¹⁰ 4s² 4p 29.4(lq) 40.6(c) 25.795 (30°C) 120 Germanium Ge 32 [Ar] 3d¹⁰ 4s² 4p² 60.2 53 000 6.0 Gold (aurum) Au 79 [Xe] $4f^{14} 5d^{10} 6s$ 318 2.214 14.2 23.0 5.9 Hf 72 [Xe] $4f^{14} 5d^2 6s^2$ 33.1 Hafnium Helium He 2 $1s^2$ 0.1513 67 [Xe] 4f¹¹ 6s² 81.4 Holmium Ho 16.2 11.2 Hydrogen Н 1 0.1805 15 49 Indium In [Kr] $4d^{10} 5s^2 5p$ 81.8 8.37 32.1 [Kr] 4d10 5s2 5p5 449 1.3×10^{15} (0°C) Iodine Ι 53 77 [Xe] 4f¹⁴ 5d⁷ 6s² 6.4 Iridium Ir 147 4.71 Fe 26 [Ar] $3d^6 4s^2$ 80.4 9.61 11.8 Iron • Kr 36 [Ar] 3d¹⁰ 4s² 4p⁶ 9.43 Krypton Lanthanum La 57 [Xe] 5d 6s² 13.4 61.5 12.1 [Rn] $4f^{14}$ 6d $7s^2$ Lawrencium Lr 103 [Xe] $4f^{14} 5d^{10} 6s^2 6p^2$ Pb 82 35.3 28.9 Lead 20.8 Lithium Li 3 $1s^2 2s$ 84.8 9.28 46 Lutetium Lu 71 [Xe] $4f^{14} 5d 6s^2$ 16.4 58.2 9.9 Magnesium Mg 12 [Ne] 3s² 156 4.39 24.8 Manganese Mn 25 [Ar] $3d^5 4s^2$ 7.81 144 21.7 Mendelevium Md 101 [Rn] 5f13 7s2 [Xe] $4f^{14} 5d^{10} 6s^2$ 80 8.30 Mercury Hg 95.8(lq); 21(c) Molybdenum Мо 42 [Kr] 4d⁵ 5s 138 5.34 4.8 Neodymium Nd 60 [Xe] $4f^4 6s^2$ 16.5 64.3 9.6 $1s^2 2s^2 2p^6$ Neon Ne 10 0.0491 Neptunium Np 93 [Rn] $5f^4$ 6d $7s^2$ 6.3 122.0 (22°C) Nickel Ni 28 [Ar] $3d^8 4s^2$ 90.9 6.93 13.4 Niobium Nb 53.7 7.3 41 [Kr] 4d⁴ 5s 15.2 (0°C) Nitrogen Ν 7 $1s^2 2s^2 2p^3$ 0.025 83 Nobelium No [Rn] 5f14 7s2 102 [Xe] $4f^{14} 5d^6 6s^2$ Osmium Os 5.1 76 87.6 8.12 (0°C) Oxygen 0 8 $1s^2 2s^2 2p^4$ 0.026 58 (g) 0.149 (lq) Pd Palladium 46 [Kr] 4d¹⁰ 71.8 10.54 11.8

(Continued)

Name	Symbol	Atomic number	Electronic configuration	Thermal conductivity, $W \cdot (m \cdot K)^{-1}$ at 25°C	Electrical resistivity, $\mu \Omega \cdot cm at 20^{\circ}C$	Coefficient of linear thermal expansion (25°C), m · m ⁻¹ (× 10 ⁶)
Phosphorus	Р	15	[Ne] $3s^2 3p^3$	0.236 17	10	
Platinum	Pt	78	[Xe] $4f^{14} 5d^9 6s$	71.6	10.6	8.8
Plutonium	Pu	94	[Rn] $5f^6 7s^2$	6.74	146.0 (0°C)	46.7
Polonium	Ро	84	[Xe] $4f^{14}$ $5d^{10}$ $6s^2$ $6p^4$	0.2	40.0 (0°C) alpha	
Potassium	K	19	[Ar] 4s	102.5	7.2	
Praseodymium	Pr	59	[Xe] $4f^3 6s^2$	12.5	70.0	6.7
Promethium	Pm	61	[Xe] $4f^5 6s^2$	17.9	64.0 (25°C)	est [11.]
Protactinium	Pa	91	[Rn] $5f^2$ 6d $7s^2$	47	19.1 (22°C)	
Radium	Ra	88	$[Rn]$ $7s^2$	18.6	100	
Radon	Rn	86	[Xe] $4f^{14}$ $5d^{10}$ $6s^2$ $6p^6$	0.003 61		
Rhenium	Re	75	[Xe] $5f^{14}$ $5d^5$ $6s^2$	48.0	19.3	6.2
Rhodium	Rh	45	$[Kr] 4d^8 5s$	150	4.33 (0°C)	8.2
Rubidium	Rb	37	[Kr] 5s	58.2	12.8	
Ruthenium	Ru	44	[Kr] $4d^7$ 5s	117	7.1 (0°C)	6.4
Samarium	Sm	62	[Xe] $4f^6 6s^2$	13.3	94.0	12.7
Scandium	Sc	21	[Ar] $3d 4s^2$	15.8	56.2	10.2
Selenium	Se	34	[Ar] $3d^{10} 4s^2 4p^4$	0.519	1.2 (0°C)	37
Silicon	Si	14	[Ne] $3s^2 3p^2$	149	105	
Silver	Ag	47	$[Kr] 4d^{10} 5s$	429	1.587	18.9
Sodium	Na	11	[Ne] 3s	142	4.77	71
Strontium	Sr	38	[Kr] 5 <i>s</i> ²	35.4	13.2	22.5
Sulfur	S	16	[Ne] $3s^2 3p^4$	0.205	$2 imes 10^{23}$	
Tantalum	Ta	73	[Xe] $4f^{14} 5d^3 6s^2$	57.5	13.5	6.3
Technetium	Tc	43	[Kr] $4d^5 5s^2$	50.6	22.6 (100°C)	
Tellurium	Te	52	[Kr] $4d^{10} 5s^2 5p^4$	1.97-3.38	$(5.8-33) \times 10^{3}$	
Terbium	Tb	65	[Xe] $4f^9 6s^2$	11.1	115	10.3
Thallium	Tl	78	[Xe] $4f^{14} 5d^{10} 6s^2 6p$	46.1	18	29.9
Thorium	Th	90	[Rn] $6d^2 7s^2$	54.0	15.4 (22°C)	11.1
Thullium	Tm	69	[Xe] $4f^{13} 6s^2$	16.9	67.6	13.3
Tin (stannum)	Sn	50	[Kr] $4d^{10} 5s^2 5p^2$	66.8	11.5 (0°C)	22.0

TABLE 1.20 Conductivity and Resistivity of the Elements (*Continued*)

Titanium	Ti	22	[Ar] $3d^2 4s^2$	21.9	42.0	8.6
Tungsten (wolframium)	W	74	[Xe] $4f^{14} 5d^4 6s^2$	173	5.28	4.5
Uranium	U	92	[Rn] $5f^3 6d 7s^2$	27.5	28.0 (0°C)	13.9
Vanadium	v	23	[Ar] $3d^3 4s^2$	30.7	19.7	8.4
Xenon	Xe	54	[Kr] $4d^{10} 5s^2 5p^6$	0.005 65		
Ytterbium	Yb	70	[Xe] $4f^{14} 6s^2$	38.5	25	26.3
Yttrium	Y	39	[Kr] $4d \ 5s^2$	17.2	59.6	10.6
Zinc	Zn	30	[Ar] $3d^{10} 4s^2$	116	5.9	30.2
Zirconium	Zr	40	[Kr] $4d^2 5s^2$	22.6	42.1	5.7

TABLE 1.21 Work Functions of the Elements

Element	<i>φ</i> , eV	Element	<i>φ</i> , eV	Element	ø,eV
Ag	4.64	Hg	4.50	Ru	4.80
Al	4.19	In	4.08	Sb	4.56
As	(3.75)	Ir	5.6	Sc	3.5
Au	5.32	K	2.30	Se	5.9
В	(4.75)	La	3.40	Si	4.85
Ba	2.35	Li	3.10	Sm	2.95
Be	5.08	Mg	3.66	Sn	4.35
Bi	4.36	Mn	3.90	Sr	2.76
С	(5.0)	Мо	4.30	Ta	4.22
Ca	2.71	Na	2.70	Tb	3.0
Cd	4.12	Nb	4.20	Te	4.70
Ce	2.80	Nd	3.1	Th	3.71
Co	4.70	Ni	5.15	Ti	4.10
Cr	4.40	Os	4.83	Tl	4.02
Cs	1.90	Pb	4.18	U	3.70
Cu	4.70	Pd	5.00	V	4.44
Eu	2.50	Ро	4.6	W	4.55
Fe	4.65	Pr	2.7	Y	3.1
Ga	4.25	Pt	5.40	Zn	4.30
Ge	5.0	Rb	2.20	Zr	4.00
Gd	3.1	Re	4.95		
Hf	3.65	Rh	4.98		

The work function ϕ is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. Values are dependent upon the experimental technique (vacua of 10^{-9} or 10^{-10} torr, clean surfaces, and surface conditions including the crystal face identification).

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes

	Mass			Mass	
Element	number	Percent	Element	number	Percent
Aluminum	27	100	Cadmium	106	1.25(4)
Antimony	121	57.21(5)		108	0.89(2)
	123	42.79(5)		110	12.49(12)
Argon	36	0.337(3)		111	12.80(8)
	38	0.063(1)		112	24.13(14)
	40	99.600(3)		113	12.22(8)
Arsenic	75	100		114	28.7(3)
Barium	130	0.106(2)		116	7.49(9)
	132	0.101(2)	Calcium	40	96.941(18)
	134	2.42(3)		42	0.647(9)
	135	6.59(2)		43	0.135(6)
	136	7.85(4)		44	2.088(12)
	137	11.23(4)		46	0.004(3)
	138	71.70(7)		48	0.187(4)
Beryllium	9	100	Carbon	12	98.89(1)
Bismuth	209	100		13	1.11(1)
Boron	10	19.9(2)	Cerium	136	0.19(1)
	11	80.1(2)		138	0.25(1)
Bromine	79	50.69(7)		140	88.43(10)
	81	49.31(7)		142	11.13(10)

	Mass			Mass	
Element	number	Percent	Element	number	Percent
Cesium	133	100	Iodine	127	100
Chlorine	35	75.77(7)	Iridium	191	37.27(9)
	37	24.23(7)		193	62.73(9)
Chromium	50	4.345(13)	Iron	54	5.85(4)
	52	83.79(2)		56	91.75(4)
	53	9.50(2)		57	2.12(1)
	54	2.365(7)		58	0.26(1)
Cobalt	59	100	Krypton	78	0.35(2)
Copper	63	69.17(3)		80	2.25(2)
	65	30.83(3)		82	11.6(1)
Dysprosium	156	0.06(1)		83	11.5(1)
	158	0.10(1)		84	57.0(3)
	160	2.34(6)		86	17.3(2)
	161	18.9(2)	Lanthanum	138	0.0902(2)
	162	25.5(2)		139	99.9098(2)
	163	24.9(2)	Lead	204	1.4(1)
	164	28.2(2)		206	24.1(1)
Erbium	162	0.14(1)		207	22.1(1)
	164	1.61(2)		208	52.4(1)
	166	33.6(2)	Lithium	6	7.5(2)
	167	22.95(15)		7	92.5(2)
	168	26.8(2)	Lutetium	175	97.41(2)
	170	14.9(2)		176	2.59(2)
Europium	151	47.8(5)	Magnesium	24	78.99(3)
	153	52.2(5)	-	25	10.00(1)
Fluorine	19	100		26	11.01(2)
Gadolinium	152	0.20(1)	Manganese	55	100
	154	2.18(3)	Mercury	196	0.15(1)
	155	14.80(5)		198	9.97(8)
	156	20.47(4)		199	16.87(10)
	157	15.65(3)		200	23.10(16)
	158	24.84(12)		201	13.18(8)
	160	21.86(4)		202	29.86(20)
Gallium	69	60.108(9)		204	6.87(4)
	71	39.892(9)	Molybdenum	92	14.84(4)
Germanium	70	21.23(4)		94	9.25(3)
	72	27.66(3)		95	15.92(5)
	73	7.73(1)		96	16.68(5)
	74	35.94(2)		97	9.55(3)
	76	7.44(2)		98	24.13(7)
Gold	197	100		100	9.63(3)
Hafnium	174	0.162(3)	Neodymium	142	27.13(12)
	176	5.206(5)		143	12.18(6)
	177	18.606(13)		144	23.80(12)
	178	27.297(4)		145	8.30(6)
	179	13.629(6)		146	17.19(9)
	180	35.100(7)		148	5.76(3)
Helium	4	100		150	5.64(3)
Holmium	165	100	Neon	20	90.48(3)
Hydrogen	1	99.985(1)		21	0.27(1)
	2	0.015(1)		22	9.25(3)
Indium	113	4.29(2)	Nickel	58	68.077(9)
	115	95.71(2)		60	26.223(8)

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued)

(Continued)

	Mass			Mass	
Element	number	Percent	Element	number	Percent
	61	1.140(1)		154	22.7(2)
	62	3.634(2)	Scandium	45	100
	64	0.926(1)	Selenium	74	0.89(2)
Niobium	93	100		76	9.36(11)
Nitrogen	14	99.634(9)		77	6.63(6)
	15	0.366(9)		78	23.78(9)
Osmium	184	0.020(3)		80	49.61(10)
	186	1.58(2)		82	8.73(6)
	187	1.6(4)	Silicon	28	92.23(2)
	188	13.3(1)		29	4.67(2)
	189	16.1(1)		30	3.10(1)
	190	26.4(2)	Silver	107	51.839(7)
	192	41.0(3)		109	48.161(7)
Oxygen	16	99.76(1)	Sodium	23	100
	17	0.04	Strontium	84	0.56(1)
	18	0.20(1)		86	9.86(1)
Palladium	102	1.02(1)		87	7.00(1)
	104	11.14(8)		88	82.58(1)
	105	22.33(8)	Sulfur	32	95.02(9)
	106	27.33(3)		33	0.75(4)
	108	26.46(9)		34	4.21(8)
	110	11.72(9)		36	0.02(1)
Phosphorus	31	100	Tantalum	180	0.012(2)
Platinum	190	0.01(1)		181	99.988(2)
	192	0.79(6)	Tellurium	120	0.096(2)
	194	32.9(6)		122	2.603(4)
	195	33.8(6)		123	0.908(2)
	196	25.3(6)		124	4.816(6)
	198	7.2(2)		125	7.139(6)
Potassium	39	93.258(4)		126	18.952(11)
	40	0.0117(1)		128	31.687(11)
	41	6.730(3)		130	33.799(10)
Praseodymium	141	100	Terbium	159	100
Protoactinium	230	100	Thallium	203	29.52(1)
Rhenium	185	37.40(2)		205	70.48(1)
	187	62.60(2)	Thorium	228	100
Rhodium	103	100	Thullium	169	100
Rubidium	85	72.17(2)	Tin	112	0.97(1)
	87	27.83(2)		114	0.65(1)
Ruthenium	96	5.52(6)		115	0.34(1)
	98	1.88(6)		116	14.53(11)
	99	12.7(1)		117	7.68(7)
	100	12.6(1)		118	24.23(11)
	101	17.0(1)		119	8.59(4)
	102	31.6(2)		120	32.59(10)
	104	18.7(2)		122	4.63(3)
Samarium	144	3.1(1)		124	5.79(5)
	147	15.0(2)	Titanium	46	8.25(3)
	148	11.3(1)		47	7.44(2)
	149	13.8(1)		48	73.72(3)
	150	7.4(1)		49	5.41(2)
	152	26.7(2)		50	5.4(1)
					\$ A

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued)
	Mass			Mass	
Element	number	Percent	Element	number	Percent
Tungsten	180	0.12(1)		170	3.05(6)
-	182	26.50(3)		171	14.3(2)
	183	14.31(1)		172	21.9(3)
	184	30.64(1)		173	16.12(2)
	186	28.43(4)		174	31.8(4)
Uranium	234	0.0055(5)		176	12.7(2)
	235	0.720(1)	Yttrium	89	100
	238	99.275(2)	Zinc	64	48.6(3)
Vanadium	50	0.250(2)		66	27.9(2)
	51	99.750(2)		67	4.1(1)
Xenon	124	0.10(1)		68	18.8(4)
	126	0.09(1)		70	0.6(1)
	128	1.91(3)	Zirconium	90	51.45(3)
	129	26.4(6)		91	11.22(4)
	130	4.1(1)		92	17.15(2)
	131	21.2(4)		94	17.38(4)
	132	26.9(5)		96	2.80(2)
	134	10.4(2)			
	136	8.9(1)			
Ytterbium	168	0.13(1)			

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued)

TABLE 1.23 Radioactivity of the Elements (Neptunium Series)

Element	Symbol	Radiation	Half-life
Plutonium	²⁴¹ Pu	β	13.2 years
↓ Americium	²⁴¹ Am	α	462 years
Neptunium	²³⁷ Np	α	2.20×10^6 years
Protactinium	²³³ Pa	β	27.4 days
Uranium	²³³ U	α	1.62×10^5 years
Thorium	²²⁹ Th	α	7.34×10^3 years
Radium	²²⁵ Ra	β	14.8 days
Actinium	²²⁵ Ac	α	10.0 days
Francium	²²¹ Fr	α	4.8 min
Astatine ↓	²¹⁷ At	α	$1.8 \times 10^{-2} m sec$

Element	Symbol	Radiation	Half-life
Bismuth	²¹³ Bi	β and α	47 min
98% 2% ↓			
Polonium	²¹³ Po	α	4.2×10^{-6} sec
Thallium	²⁰⁹ Tl	β	2.2 min
Lead ↓	²⁰⁹ Pb	β	3.32 hr
Bismuth (End Product)	²⁰⁹ Bi	Stable	—

TABLE 1.23 Radioactivity of the Elements (Neptunium Series) (Continued)

TABLE 1.24 Radioactivity of the Elements (Thorium Series)

Radioelement	Corresponding element	Symbol	Radiation	Half-life
Thorium	Thorium	²³² Th	α	1.39×10^{10} years
↓ Mesothorium I	Radium	²²⁸ Ra	β	6.7 years
↓ Mesothorium II	Actinium	²²⁸ Ac	β	6.13 hr
↓ Radiothorium	Thorium	²²⁸ Th	α	1.91 years
Thorium X	Radium	²²⁴ Ra	α	3.64 days
Th Emanation	Radon	²²⁰ Rn	α	52 sec
Thorium A	Polonium	²¹⁶ Po	α	0.16 sec
Thorium B	Lead	²¹² Pb	β	10.6 hr
 ✓ Thorium C 66.3% 33.7% 	Bismuth	²¹² Bi	eta and $lpha$	60.5 min
Thorium C'	Polonium	²¹² Po	α	3×10^{-7} sec
Thorium C"	Thallium	²⁰⁸ Tl	β	3.1 min
Thorium D (End Product)	Lead	²⁰⁸ Pb	Stable	_

Radioelement	Corresponding element	Symbol	Radiation	Half-life
Actinouranium	Uranium	²³⁵ U	α	7.13×10^8 years
↓ Uranium Y ↓	Thorium	²³¹ Th	β	25.6 hr
Protactinium	Protactinium	²³¹ Pa	α	3.43×10^4 years
Actinium 98.8% 1.2%	Actinium	²²⁷ Ac	eta and $lpha$	21.8 years
Radioactinium	Thorium	²²⁷ Th	α	18.4 days
Actinium K	Francium	²²³ Fr	β	21 min
lI				
Actinium X	Radium	²²³ Ra	α	11.7 days
Ac Emanation	Radon	²¹⁹ Rn	α	3.92 sec
Actinium A $a \cdot 100\%$ $a \cdot 5 \times 10^{-4\%}$	Polonium	²¹⁵ Po	lpha and eta	$1.83 \times 10^{-3} \text{ s}$
↓ ↓				
Actinium B	Lead	²¹¹ Pb	β	36.1 min
Astatine-215	Astatine	²¹⁵ At	α	${\sim}10^{-4}\mathrm{sec}$
Actinium C 99.7% 0.3%	Bismuth	²¹¹ Bi	lpha and eta	2.16 min
Actinium C'	Polonium	²¹¹ Po	α	0.52 sec
Actinium C"	Thallium	²⁰⁷ Tl	β	4.8 min
Actinium D (End Product)	Lead	²⁰⁷ Pb	Stable	_

TABLE 1.25	Radioactivity of the Elements	(Actinium Series)
-------------------	-------------------------------	------------------	---

TABLE 1.26 Radioactivity of the Elements (Uranium Series)

Radioelement	Corresponding element	Symbol	Radiation	Half-life
Uranium I	Uranium	²³⁸ U	α	4.51×10^9 years
Uranium X_1	Thorium	²³⁴ Th	β	24.1 days
Uranium X_2^*	Protactinium	²³⁴ Pa	β	1.18 min
Uranium II ↓	Uranium	²³⁴ U	α	2.48×10^5 years
Ionium	Thorium	²³⁰ Th	α	8.0×10^4 years
Radium ↓	Radium	²²⁶ Ra	α	1.62×10^3 years

Radioelement	Corresponding element	Symbol	Radiation	Half-life
Ra Emanation ↓	Radon	²²² Rn	α	3.82 days
Radium A 99.98% 0.02%	Polonium	²¹⁸ Po	lpha and eta	3.05 min
Radium B	Lead	²¹⁴ Pb	β	26.8 min
Astatine-218	Astatine	²¹⁸ At	α	2 sec
Radium Č 99.96% 0.04% ↓]	Bismuth	²¹⁴ Bi	eta and $lpha$	19.7 min
Radium C'	Polonium	²¹⁴ Po	α	1.6×10^{-4} sec
Radium C″ ↓↓	Thallium	²¹⁰ Tl	β	1.32 min
Radium D ↓	Lead	²¹⁰ Pb	β	19.4 years
Radium E $\sim 100\% 2 \times 10^{-4}\%$	Bismuth	²¹⁰ Bi	eta and $lpha$	5.0 days
Radium F	Polonium	²¹⁰ Po	α	138.4 days
Thallium-206	Thallium	²⁰⁶ Tl	β	4.20 min
Radium G (End Product)	Lead	²⁰⁶ Pb	Stable	—

TABLE 1.26 Radioactivity of the Elements (Uranium Series) (Continued)

*Uranium X₂ is an excited state of 234 Pa and undergoes isomeric transition to a small extent to form uranium Z (234 Pa in its ground state); the latter has a half-life of 6.7 h, emitting beta radiation and forming uranium II (234 U).

1.4 IONIZATION ENERGY

TABLE 1.27 Ionization Energy of the Elements

The minimum amount of energy required to remove the least strongly bound electron from a gaseous atom (or ion) is called the ionization energy and is expressed in $MJ \cdot mol^{-1}$.

At			Spectrum (in $MJ \cdot mol^{-1}$)				
no.	Element	Ι	II	III	IV	V	VI
1	Н	1.312					
2	He	2.372	5.251				
3	Li	0.520	7.298	11.815			
4	Be	0.899	1.757	14.849	21.007		
5	В	0.801	2.427	3.660	25.027	32.828	
6	С	1.086	2.353	4.620	6.223	37.832	47.191
7	Ν	1.402	2.856	4.578	7.475	9.445	53.268
8	0	1.314	3.388	5.300	7.469	10.989	13.326
9	F	1.681	3.374	6.147	8.408	11.022	15.164

no. Element I II III IV V VI 10 Ne 2.081 3.952 6.122 9.370 12.177 15.2 11 Na 0.496 4.562 6.912 9.543 13.353 16.6 12 Mg 0.738 1.817 2.745 11.577 14.81 18.3 14 Si 0.786 1.577 3.231 4.355 16.091 19.7 15 P 1.012 1.903 2.912 4.956 6.274 21.2 16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 C1 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.666 3.931 5.771 7.288 8.44 10.4 12 Sc 0.631 1.235 2.389 7.089 8.844 10.4 12 Sc 0.556	At				Spectrum (in M	$MJ \cdot mol^{-1}$)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	no.	Element	Ι	II	III	IV	V	VI
11 Na 0.496 4.562 6.912 9.543 13.353 16.66 12 Mg 0.738 1.451 7.733 10.540 13.629 17.9 13 Al 0.578 1.817 2.745 11.577 14.831 18.3 14 Si 0.786 1.577 3.231 4.355 16.091 19.7 15 P 1.012 1.903 2.912 4.956 6.274 21.2 16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 Cl 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.666 3.931 5.771 7.238 8.7 20 Ca 0.590 1.441 2.828 4.107 9.573 11.57 23 V 0.650 1.414 2.828 4.507 6.29 9.23 24 Cr 0.653 <td< td=""><td>10</td><td>Ne</td><td>2.081</td><td>3.952</td><td>6.122</td><td>9.370</td><td>12.177</td><td>15.238</td></td<>	10	Ne	2.081	3.952	6.122	9.370	12.177	15.238
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Na	0.496	4.562	6.912	9.543	13.353	16.610
13 A_1 0.578 1.817 2.745 11.577 14.831 18.3 14 Si 0.786 1.577 3.231 4.355 16.091 19.7 15 P 1.012 1.903 2.912 4.956 6.274 21.2 16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 Cl 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.666 3.931 5.771 7.238 8.7 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.651 1.414 2.828 4.507 6.299 12.3 23 V 0.655 1.592 2.987 4.743 6.70 8.7 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.759 1.561 2.957 5.63 7.24 9.5 27 Co 0.745 </td <td>12</td> <td>Mg</td> <td>0.738</td> <td>1.451</td> <td>7.733</td> <td>10.540</td> <td>13.629</td> <td>17.994</td>	12	Mg	0.738	1.451	7.733	10.540	13.629	17.994
14 Si 0.766 1.577 3.231 4.355 16.091 19.7 15 P 1.012 1.903 2.912 4.956 6.274 21.2 16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 C1 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.297 3.822 5.158 6.54 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.389 7.089 8.844 10.7 23 V 0.658 1.310 2.652 4.175 9.573 11.5 24 Cr 0.653 1.541 2.957 5.63 7.24 9.5 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.758	13	Al	0.578	1.817	2.745	11.577	14.831	18.377
15 P 1.012 1.903 2.912 4.956 6.274 21.21 16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 Cl 1.251 2.266 3.931 5.771 7.238 8.7 19 K 0.419 3.051 4.411 5.87 7.976 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.389 7.089 8.844 10.7 22 Ti 0.658 1.310 2.652 4.175 9.573 11.5 23 V 0.650 1.414 2.828 4.507 6.299 12.3 24 Cr 0.653 1.592 2.987 5.63 7.24 9.5 25 Mn 0.737 1.753 3.393 5.30 7.34 10.4 29 Cu 0.745 1.958 3.555 5.536 7.70 9.9 31 Ga 0.579	14	Si	0.786	1.577	3.231	4.355	16.091	19.784
16 S 1.000 2.251 3.361 4.564 7.004 8.4 17 Cl 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.297 3.822 5.158 6.54 9.3 19 K 0.419 3.051 4.411 5.877 7.976 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.387 4.743 6.70 8.7 23 V 0.653 1.592 2.987 4.743 6.70 8.7 24 Cr 0.653 1.592 2.987 4.743 6.70 8.7 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.758 1.646 3.232 4.95 7.67 9.8 28 Ni 0.737 1.733 3.383 5.73 7.95 10.4 31 Ga 0.579	15	Р	1.012	1.903	2.912	4.956	6.274	21.268
17 Cl 1.251 2.297 3.822 5.158 6.54 9.3 18 Ar 1.521 2.666 3.931 5.771 7.238 8.7 19 K 0.419 3.051 4.411 5.877 7.976 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.389 7.089 8.844 10.7 22 Ti 0.658 1.414 2.828 4.507 6.299 12.3 24 Cr 0.653 1.592 2.987 4.743 6.70 8.7 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.759 1.561 2.957 5.63 7.24 9.5 27 Co 0.758 1.646 3.232 4.95 7.67 9.8 28 Ni 0.337 1.958 3.555 5.536 7.70 9.9 30 Zn 0.906	16	S	1.000	2.251	3.361	4.564	7.004	8.495
18 Ar 1.521 2.666 3.931 5.771 7.238 8.7 19 K 0.419 3.051 4.411 5.877 7.976 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.389 7.089 8.844 10.7 22 Ti 0.658 1.310 2.652 4.175 9.573 11.5 23 V 0.650 1.414 2.828 4.507 6.299 12.3 24 Cr 0.6533 1.592 2.987 4.743 6.79 9.92 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.759 1.561 2.957 5.63 7.67 9.8 28 Ni 0.737 1.733 3.833 5.73 7.95 10.4 29 Cu 0.745 1.958 3.555 5.536 7.70 9.9 30 Zn 0.9066	17	Cl	1.251	2.297	3.822	5.158	6.54	9.362
19 K 0.419 3.051 4.411 5.877 7.976 9.6 20 Ca 0.590 1.145 4.912 6.474 8.144 10.4 21 Sc 0.631 1.235 2.389 7.089 8.844 10.7 22 Ti 0.658 1.310 2.652 4.175 9.573 11.5 23 V 0.650 1.414 2.828 4.507 6.299 12.3 24 Cr 0.655 1.592 2.987 4.743 6.70 8.7 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.759 1.561 2.957 5.63 7.67 9.8 27 Co 0.737 1.753 3.393 5.30 7.34 10.4 29 Cu 0.745 1.958 3.555 5.536 7.70 9.9 30 Zn 0.906 1.733	18	Ar	1.521	2.666	3.931	5.771	7.238	8.787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	K	0.419	3.051	4.411	5.877	7.976	9.649
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	Ca	0.590	1.145	4.912	6.474	8.144	10.496
22 Ti 0.658 1.310 2.652 4.175 9.573 11.5 23 V 0.650 1.414 2.828 4.507 6.299 12.3 24 Cr 0.653 1.592 2.987 4.743 6.70 8.7 25 Mn 0.717 1.509 3.248 4.94 6.99 9.2 26 Fe 0.759 1.646 3.232 4.95 7.67 9.8 28 Ni 0.737 1.753 3.393 5.30 7.34 10.4 29 Cu 0.745 1.958 3.555 5.536 7.70 9.9 30 Zn 0.906 1.733 3.833 5.73 7.95 10.4 31 Ga 0.579 1.979 2.963 6.2 22 23 As 0.947 1.798 2.735 4.837 6.043 12.3 33 As 0.947 1.798 2.735 4.837 6.043 12.3 34 Sc 0.9403 2.632 3.9	21	Sc	0.631	1.235	2.389	7.089	8.844	10.719
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Ti	0.658	1.310	2.652	4.175	9.573	11.516
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	v	0.650	1.414	2.828	4.507	6.299	12.362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	Cr	0.653	1.592	2.987	4.743	6.70	8.738
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	Mn	0.717	1.509	3.248	4.94	6.99	9.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	Fe	0.759	1.561	2.957	5.63	7.24	9.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	Co	0.758	1.646	3.232	4.95	7.67	9.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	Ni	0.737	1.753	3.393	5.30	7.34	10.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	Cu	0.745	1.958	3.555	5.536	7.70	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	Zn	0.906	1.733	3.833	5.73	7.95	10.4
32Ge 0.762 1.537 3.302 4.410 9.022 33As 0.947 1.798 2.735 4.837 6.043 12.3 34Sc 0.941 2.045 2.974 4.143 6.99 7.8 35Br 1.140 2.10 3.47 4.56 5.76 8.5 36Kr 1.351 2.350 3.565 5.07 6.24 7.5 37Rb 0.403 2.632 3.9 5.08 6.85 8.1 38Sr 0.549 1.064 4.138 5.5 6.91 8.7 39Y 0.616 1.181 1.980 5.96 7.43 8.9 40Zr 0.660 1.267 2.218 3.313 7.75 41Nb 0.664 1.382 2.416 3.695 4.877 9.8 42Mo 0.685 1.558 2.621 4.477 5.91 6.6 43Tc 0.702 1.472 2.850 4.477 5.91 6.6 44Ru 0.711 1.617 2.747 4.477 5.91 6.6 45Rh 0.720 1.744 2.997 46 Pd 0.805 1.875 3.177 47Ag 0.731 2.073 3.361 4.26 5.4 10.4 52Te 0.868 1.631 3.616 5.26 5.668 6.8 53I 1.008 1.846	31	Ga	0.579	1.979	2.963	6.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	Ge	0.762	1.537	3.302	4.410	9.022	
34Sc 0.941 2.045 2.974 4.143 6.99 7.8 35Br 1.140 2.10 3.47 4.56 5.76 8.5 36Kr 1.351 2.350 3.565 5.07 6.24 7.5 37Rb 0.403 2.632 3.9 5.08 6.85 8.1 38Sr 0.549 1.064 4.138 5.5 6.91 8.7 39Y 0.616 1.181 1.980 5.96 7.43 8.9 40Zr 0.660 1.267 2.218 3.313 7.75 41Nb 0.664 1.382 2.416 3.695 4.877 9.8 42Mo 0.685 1.558 2.621 4.477 5.91 6.64 43Tc 0.702 1.472 2.850 -4.477 5.91 6.64 44Ru 0.711 1.617 2.747 -4.477 5.91 6.64 45Rh 0.720 1.742 2.850 -4.477 5.91 6.64 48Cd 0.805 1.875 3.177 -4.777 -4.777 -5.91 6.66 48Cd 0.868 1.631 3.616 -5.2 -5.668 6.87 50Sn 0.709 1.412 2.943 3.930 6.974 51Sb 0.834 1.595 2.44 4.26 5.4 10.46 52Te 0.869 1.795	33	As	0.947	1.798	2.735	4.837	6.043	12.31
35Br1.1402.10 3.47 4.56 5.76 8.5 36Kr 1.351 2.350 3.565 5.07 6.24 7.5 37Rb 0.403 2.632 3.9 5.08 6.85 8.1 38Sr 0.549 1.064 4.138 5.5 6.91 8.7 39Y 0.616 1.181 1.980 5.96 7.43 8.9 40Zr 0.660 1.267 2.218 3.313 7.75 41Nb 0.664 1.382 2.416 3.695 4.877 9.8 42Mo 0.685 1.558 2.621 4.477 5.91 6.67 43Tc 0.702 1.472 2.850 4.877 9.8 44Ru 0.711 1.617 2.747 4.477 5.91 6.67 44Ru 0.711 1.617 2.747 4.677 5.2 5.67 6.974 45Rh 0.720 1.742 2.997 466 Pd 0.805 1.875 3.177 4.775 5.2 50Sn 0.709 1.412 2.943 3.930 6.974 51Sb 0.834 1.595 2.44 4.26 5.4 10.4568 53I 1.008 1.846 3.2 568 6.68 6.875668 6.875668668 53I 1.008 1.8466 3.2699 5.944 5.954 5.954 5.954	34	Sc	0.941	2.045	2.974	4,143	6.99	7.883
36Kr1.3512.3503.5655.07 6.24 7.537Rb0.4032.6323.95.08 6.85 8.138Sr0.5491.0644.1385.5 6.91 8.739Y0.6161.1811.9805.967.438.940Zr0.6601.2672.2183.3137.7541Nb0.6641.3822.4163.6954.8779.842Mo0.6851.5582.6214.4775.916.643Tc0.7021.4722.85044Ru0.7111.6172.74745Rh0.7201.7442.99746940.8051.8753.17747Ag0.7312.0733.36148Cd0.8681.6313.6164.8205.945.55.410.451Sb0.8341.5952.444.265.410.452Te0.8691.7952.6983.6105.6686.853I1.0081.8463.25.945.945.555.5556Ba0.5030.9655.745.5515.5515.551	35	Br	1.140	2.10	3.47	4.56	5.76	8.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	Kr	1.351	2.350	3.565	5.07	6.24	7.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	Rb	0.403	2.632	39	5.08	6.85	8 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	Sr	0.549	1.064	4.138	5.5	6.91	8.76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	Ŷ	0.616	1,181	1.980	5.96	7.43	8.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	Zr	0.660	1.267	2.218	3.313	7.75	0177
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	Nb	0.664	1.382	2.416	3.695	4.877	9.847
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	Мо	0.685	1.558	2.621	4.477	5.91	6.641
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	Tc	0.702	1.472	2.850			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	Ru	0.711	1.617	2.747			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	Rh	0.720	1.744	2.997			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	Pd	0.805	1.875	3.177			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	Ag	0.731	2.073	3.361			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	Cd	0.868	1.631	3.616			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	In	0.558	1.821	2.704	5.2		
51 Sb 0.834 1.595 2.44 4.26 5.4 10.4 52 Te 0.869 1.795 2.698 3.610 5.668 6.8 53 I 1.008 1.846 3.2 54 Xe 1.170 2.046 3.099 55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	50	Sn	0.709	1 412	2.943	3 930	6 974	
52 Te 0.869 1.795 2.698 3.610 5.668 6.8 53 I 1.008 1.846 3.2 54 Xe 1.170 2.046 3.099 55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	51	Sh	0.834	1 595	2.44	4 26	54	10.4
53 I 1.008 1.846 3.2 54 Xe 1.170 2.046 3.099 55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	52	Te	0.869	1 795	2.698	3 610	5 668	6.82
54 Xe 1.170 2.046 3.099 55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	53	ī	1.008	1.846	3.2	2.010	2.000	0.02
55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	54	Xe	1,170	2.046	3.099			
56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	55	Cs	0.376	2.234	5.077			
57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	56	Ba	0.503	0.965				
58 Ce 0.528 1.047 1.949 3.547 6.325 7.4 59 Pr 0.523 1.018 2.086 3.761 5.551	57	La	0.538	1.067	1 850	4 820	5 94	
59 Pr 0.523 1.018 2.086 3.761 5.551	58	Ce	0.528	1.007	1 949	3 547	6 325	7 487
57 II 0.525 I.010 2.000 5.701 J.JJI	59	Pr	0.523	1.047	2,086	3 761	5 551	7.07
60 Nd 0.530 1.035 2.13 3.90	60	Nd	0.530	1.035	2.13	3.90	5.551	

TABLE 1.27 Ionization Energy of the Elements (Continued)

Δt				Spectrum (in M	$(J \cdot mol^{-1})$		
no.	Element	Ι	II	III	IV	V	VI
61	Pm	0.535	1.052	2.15	3.97		
62	Sm	0.543	1.068	2.26	3.99		
63	Eu	0.547	1.085	2.40	4.12		
64	Gd	0.592	1.167	1.99	4.26		
65	Tb	0.564	1.112	2.114	3.839		
66	Dy	0.572	1.126	2.20	3.99		
67	Ho	0.581	1.139	2.204	4.10		
68	Er	0.589	1.151	2.194	4.13		
69	Tm	0.596	1.163	2.285	4.13		
70	Yb	0.603	1.174	2.417	4.203		
71	Lu	0.524	1.34	2.022	4.366		
72	Hf	0.68	1.44	2.25	3.216		
73	Та	0.761					
74	W	0.770					
75	Re	0.760					
76	Os	0.84					
77	Ir	0.88					
78	Pt	0.87	1.791				
79	Au	0.890	1.98				
80	Hg	1.007	1.810	3.30			
81	Tl	0.589	1.971	2.878			
82	Pb	0.716	1.450	3.081	4.083	6.64	
83	Bi	0.703	1.610	2.466	4.371	5.40	8.52
84	Po	0.812					
85	At						
86	Rn	1.037					
87	Fr						
88	Ra	0.509	0.979				
89	Ac	0.67	1.17	1.00			
90	Th	0.587	1.11	1.93	2.78		
91	Pa	0.568					
92	U	0.598					
93	Np	0.605					
94	Pu	0.585					
95	Am	0.578					
96	Cm	0.581					
97	Bk	0.601					
98	Cf	0.608					
99	Es	0.619					
100	Fm	0.627					
101	Md	0.635					
102	No	0.642					

TABLE 1.27 Ionization Energy of the Elements (Continued)

	Ionizatio		
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\Delta_{\rm f} H$ (ion) in kJ · mol ⁻¹
Aluminum tribromide	1.00	10.4	593
Aluminum trichloride	1.159	12.01	573
Aluminum trifluoride	1.394	14.45	282
Aluminum triiodide	0.88	9.1	673
Amidogen (NH ₂)	1.075(1)	11.14(1)	1264
Ammonia	0.980(1)	10.16(1)	934
Antimony trichloride	0.97(1)	10.1(1)	661
Arsenic trichloride	1.018(3)	10.55(3)	754
Arsenic trifluoride	1.239(5)	12.84(5)	452
Arsine	0.954	9.89	1021
Barium oxide	0.667(6)	6.91(6)	543
Bismuth trichloride	1.00	10.4	736
Borane (BH ₃)	1.19(1)	12.3(1)	1287
Boron dioxide (BO ₂)	1.30(3)	13.5(3)	1001
Boron oxide (B_2O_3)	1.303(14)	13.50(15)	460
Boron tribromide	1.014(2)	10.51(2)	809
Boron trichloride	1.119(2)	11.60(2)	718
Boron trifluoride	1.501(3)	15.56(3)	365
Boron triodide	0.893(3)	9.25(3)	964
Bromine (Br ₂)	1.0146(5)	10.515(5)	1046
Bromine chloride (BrCl)	1.062	11.01	1079
Bromine fluoride (BrF)	1.136(1)	11.77(1)	1077
Bromine pentafluoride	1.271(1)	13.17(1)	840
Bromosilane (BrSiH ₃)	1.02	10.6	943
Calcium oxide	0.67	6.9	691
Cesium chloride	0.756(5)	7.84(5)	510
Cesium fluoride	1.221(1)	12.65(1)	1170
Cesium fluoride	0.849(10)	8.80(10)	489
Chlorine (Cl_2)	1.1424(5)	11.840(5)	1108
Chlorine difluoride	1.232(5)	12.77(5)	1128
Chlorine dioxide	1.000(2)	10.36(2)	1096
Chlorine oxide	1.057	10.95	1159
Chlorine trifluoride	1.221(5)	12.65(5)	1057
Chlorosilane (ClSiH ₃)	1.10	11.4	899
Chromyl chloride (CrO_2Cl_2)	1.12	11.6	580
Diborane (B_2H_6)	1.098(3)	11.38(3)	1134
Dichlorosilane (Cl_2SiH_2)	1.10	11.4	765
Difluoramine (HNF_2)	1.112(8)	11.53(8)	1046
Difluoroamidogen (NF ₂)	1.122(1)	11.628(1)	1155
Diffuorosilane (F_2SiH_2)	1.18	12.2	386
Dioxygen fluoride	1.22(2)	12.6(2)	1228
Disilane	0.94	9.7	1015
Disulfur oxide	1.01/(4)	10.54(4)	967
Fluorine (F_2)	1.5140(5)	15.09/(3)	1515
$\mathbf{Callium harmida}$	1.13	11./	/52
Gallium promide	1.005	10.40	/11
Gallium triiodide	1.112	0.40	048
Gallium(I) fluoride	0.93(5)	9.40 9.6(5)	765 700

TABLE 1.28 Ionization Energy of Molecular and Radical Species

	Ionizatio			
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\Delta_{\rm f} H$ (ion) in kJ · mol ⁻¹	
Germane (GeH ₄)	1.093	11.33	1185	
Germanium oxide (GeO)	1.085(1)	11.25(1)	1044	
Germanium sulfide (GeS)	0.963(2)	9.98(2)	1055	
Germanium tetrachloride	1.1270(5)	11.68(5)	629	
Germanium tetrafluoride	1.50	15.5	307	
Germanium tetraiodide	0.909	9.42	850	
Hafnium bromide	1.05	10.9	366	
Hafnium chloride	1.13	11.7	246	
Hexaborane (B_6H_{10})	0.87	9.0	965	
Hydrazine	7.82(14)	8.10(15)	877	
Hydrazoic acid (HN ₃)	1.0344(24)	10.720(25)	1328	
Hydrogen (H ₂)	1.488413(5)	15.42589(5)	1488	
Hydrogen bromide	1.125(3)	11.66(3)	1087	
Hydrogen chloride	1.2299	12.747	1137	
Hydrogen fluoride	1.5481(3)	16.044(3)	1276	
Hydrogen iodide	1.0004(1)	10.368(1)	1028	
Hydrogen peroxide	1.017	10.54	881	
Hydrogen selenide	0.9535(1)	9.882(1)	983	
Hydrogen sulfide	1.0085(8)	10.453(8)	988	
Hydroperoxy (HOO)	1.095(1)	11.35(1)	1106	
Hydroxyl (OH)	1.254	13.00	1293	
Hydroxylamine (NH ₂ OH)	0.947	10.00	923	
Hypochlorous acid (HOCl)	1.073(1)	11.12(1)	993	
Hypofluorous acid (HOF)	1.075(1) 1.226(1)	12.71(1)	1130	
Imidogen (NH)	1.220(1) 1.302(1)	13.49(1)	1678	
Iodine (L)	0.90694(12)	9 3995(12)	969	
Iodine bromide	0.9446(4)	9 790(4)	986	
Iodine chloride	0.9734(10)	10.088(10)	900	
Iodine fluoride	1 025	10.600(10)	930	
Iodine pentafluoride	1 2488(5)	12 943(5)	408	
Lead oxide (PbO)	0.976(10)	9.08(10)	030	
Lead (II) chloride	0.96	10.0	789	
Lead(II) fluoride	1 1 1	11.5	679	
Lead(II) sulfide	0.825	8 5(5)	954	
Lithium bromide	0.84	87	685	
Lithium chloride	0.923	9.57	727	
Lithium hydride	0.74	77	882	
Lithium iodide	0.74	7.5	633	
Lithium oxide	0.815	8 45(20)	895	
Magnesium fluoride	1 29	13.4	569	
Magnesium oxide	0.93	07	992	
Mercanto (SH)	1.001	10.37	1140	
Mercury(II) bromide	1.001	10.57	035	
Mercury(II) chloride	1.019(3)	11 380(3)	952	
Mercury(II) iodide	0.01748(22)	9 5088(22)	952	
Molybdenum bexafluoride	1 40(1)	14 5(1)	- 1 5 0	
Molybdenum(V) chloride	0.84	87	302	
Nichium(V) chloride	1.058	10.97	572 656	
Nitric acid	1 153(1)	11 95(1)	1019	
	1.135(1)	11.75(1)	1017	

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	on energy	$\Delta_{\rm f} H$ (ion) in kJ \cdot mol ⁻¹	
Species	In $Mj \cdot mol^{-1}$	In electron volts		
Nitric oxide	0.893900(6)	9.26436(6)	985	
Nitrogen (N ₂)	1.59336	15.5808	1503	
Nitrogen dioxide	0.941(1)	9.75(1)	974	
Nitrogen pentoxide	1.15	11.9	1161	
Nitrogen tetroxide	1.04(2)	10.8(2)	1050	
Nitrogen trichloride	0.9765(10)	10.12(10)	1244	
Nitrogen trifluoride	1.254(2)	13.00(2)	1125	
Nitrosyl bromide	0.981(3)	10.17(3)	1065	
Nitrosyl chloride (NOCl)	1.049(1)	10.87(1)	1099	
Nitrosyl fluoride (NOF)	1.219(3)	12.63(3)	1152	
Nitrous acid (HONO)	1.09	11.3	977	
Nitrous oxide (N_2O)	1.2433	12.886	1325	
Nitryl chloride (NO ₂ Cl)	1.142	11.84	1155	
Nitryl fluoride (NO_2F)	1.263	13.09	1154	
Osmium tetroxide	1.1895	12.320	850	
Oxygen (O_2)	1.1647(1)	12.071(1)	1165	
Oxygen dichloride	1.056	10.94	1135	
Oxygen difluoride (OF_2)	1.265(1)	13.11(1)	1290	
Oxygen fluoride	1.232	12.77	1341	
Ozone (O_3)	1.199	12.43	1342	
Pentaborane $(B_{s}H_{o})$	0.955(4)	9.90(4)	1028	
Perchloryl fluoride (ClO ₃ F)	1.2490(5)	12.945(5)	1224	
Phosphine (PH ₃)	0.9522(2)	9.869(2)	958	
Phosphorus (P_2)	1.016	10.53	1160	
Phosphorus nitride	1.143	11.85	1248	
Phosphorus pentachloride	1.03	10.7	656	
Phosphorus pentafluoride	1.46	15.1	- 137	
Phosphorus sulfur trichloride (PSCl ₃)	0.956	9.91	668	
Phosphorus tribromide	0.94	9.7	798	
Phosphorus trichloride	0.956	9.91	668	
Phosphorus trifluoride	1.104	11.44	146	
Phosphoryl chloride (POCl ₃)	1.096(2)	11.36(2)	540	
Phosphoryl trifluoride (POF ₃)	1.231(1)	12.76(1)	- 24	
Potassium bromide	0.757(10)	7.85(10)	578	
Potassium chloride	0.77(4)	8.0(4)	557	
Potassium iodide	0.696(29)	7.21(30)	570	
Rhenium(VII) oxide	1.23(2)	12.7(2)	125	
Rubidium bromide	0.766(3)	7.94(3)	583	
Rubidium chloride	0.820(3)	8.50(3)	590	
Ruthenium tetroxide	1.172(3)	12.15(3)	988	
Silane	1.124	11.65	1158	
Silicon oxide (SiO)	1.103	11.43	1002	
Silicon tetrachloride	1.136(1)	11.79(1)	527	
Silicon tetrafluoride	1.51	15.7	- 100	
Silver chloride	0.973	10.08	1065	
Silver fluoride	1.06(3)	11.0(3)	1071	
Sodium bromide	0.802(10)	8.31(10)	660	
Sodium chloride	0.861(6)	8.92(6)	681	
Sodium iodide	0.737(2)	7.64(2)	659	
Stibine (SbH ₃)	0.920(3)	9.54(3)	1067	

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued)

	Īonizatio			
Species	In $Mj \cdot mol^{-1}$	In electron volts	$\Delta_{\rm f} H$ (ion) i in kJ · mol ⁻¹	
Strontium oxide	0.675(14)	7.00(15)	662	
Sulfur (S ₂)	0.9027(2)	9.356(2)	1031	
Sulfur chloride pentafluoride	1.1921(5)	12.335(5)	144	
Sulfur dichloride	0.912(3)	9.45(3)	895	
Sulfur difluoride	0.973	10.08	676	
Sulfur dioxide	1.189(2)	12.32(2)	892	
Sulfur hexafluoride	1.479(3)	15.33(3)	259	
Sulfur oxide (SO)	0.996(2)	10.32(2)	1001	
Sulfur pentafluoride	1.01(1)	10.5(1)	97	
Sulfur trioxide	1.235(4)	12.80(4)	839	
Sulfuryl chloride (SO ₂ Cl ₂)	1.163	12.05	807	
Sulfuryl fluoride (SO_2F_2)	1.110	11.5	679	
Tantalum(V) chloride	1.069	11.08	348	
Tetraborane (B_4H_{10})	1.038(4)	10.76(4)	1105	
Tetrafluorohydrazine (gauche)	1.152(3)	11.94(3)	1119	
Thallium(I) bromide	0.882(2)	9.14(2)	844	
Thallium(I) chloride	0.936(3)	9.70(3)	869	
Thallium(I) fluoride	1.015	10.52	835	
Thionitrosyl fluoride (NSF)	1.111(4)	11.51(4)	1090	
Thionyl chloride	1.058	10.96	844	
Thionyl fluoride	1.182	12.25	688	
Thiophosphoryl trifluoride (PSF ₃)	1.066(4)	11.05(4)	58	
Thorium(IV) oxide	0.847(14)	8.70(15)	342	
Tin(II) bromide	0.87	9.0	830	
Tin(II) chloride	0.965	10.0	760	
Tin(II) fluoride	1.07	11.1	586	
Tin(II) oxide	0.926(2)	9.60(2)	944	
Tin(II) sulfide	0.85	8.8	966	
Tin(IV) bromide	1.02	10.6	709	
Tin(IV) chloride	1.146(5)	11.88(5)	673	
Tin(IV) hydride	1.037	10.75	1200	
Titanium(IV) bromide	0.99	10.3	375	
Titanium(IV) chloride	1.124(14)	11.65(15)	363	
Titanium(IV) oxide	0.920(10)	9.54(10)	623	
trans-Difluorodiazine	1.24	12.8	1315	
Trifluoramine oxide (NOF ₃)	1.279(1)	13.26(1)	1116	
Trifluorosilane (F_3 SiH)	1.35	14.0	150	
Trisilane	0.89	9.2	1009	
Tungsten(VI) chloride	0.92	9.5	348	
Uranium hexafluoride	1.350(10)	14.00(10)	- 796	
Uranium(IV) oxide	5.2(1)	5.4(1)	57	
Uranium(VI) oxide	1.01(5)	10.5(5)	214	
Vanadium(IV) chloride	0.89	9.2	210	
Vanadium(V) oxychloride (VOCl ₃)	1.120	11.61	425	
Water	1.2170(10)	12.612(10)	975	
Xenon difluoride	1.192(1)	12.35(1)	1083	
Xenon tetrafluoride	1.221(10)	12.65(10)	1016	
Zirconium bromide	1.03	10.7	388	
Zirconium chloride	1.08	11.2	392	

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued)

Source: Sharon, G., et al., J. Phys. Chem. Ref. Data, 17:Suppl. No 1 (1988).

1.5 ELECTRONEGATIVITY

Electronegativity χ is the relative attraction of an atom for the valence electrons in a covalent bond. It is proportional to the effective nuclear charge and inversely proportional to the covalent radius:

$$\chi = \frac{0.31(n+1\pm c)}{r} + 0.50$$

where *n* is the number of valence electrons, *c* is any formal valence charge on the atom and the sign before it corresponds to the sign of this charge, and *r* is the covalent radius. Originally the element fluorine, whose atoms have the greatest attraction for electrons, was given an arbitrary electronegativity of 4.0. A revision of Pauling's values based on newer data assigns -3.90 to fluorine. Values in Table 1.29 refer to the common oxidation states of the elements.

Н 2.20																
Li 0.98	Be 1.57										В 2.04	С 2.55	N 3.04	0 3.44	F 3.90	
Na 0.93	Mg 1.31										Al 1.61	Si 1.90	Р 2.19	S 2.58	Cl 3.16	
K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96
Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 2.10	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	I 2.66
Cs 0.79	Ba 0.89	La 1.10	Hf 1.3	Та 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac 1.1														
Lanth	anides		Ce 1.12	Pr 1.13	Nd 1.14		Sm 1.17		Gd 1.20		Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25		Lu 1.0
Actin	ides		Th 1.3	Ра 1.5	U 1.7	Np 1.3	Pu 1.3	Am 1.3	Cm 1.3	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	

TABLE 1.29 Electronegativity Values of the Elements

The greater the difference is electronegativity, the greater is the ionic character of the bond. The amount of ionic character I is given by:

$$I = 0.46 | \chi_{\rm A} - \chi_{\rm B} | + 0.035(\chi_{\rm A} - \chi_{\rm B})^2$$

The bond is fully covalent when $(\chi_A - \chi_B) < 0.5$ (and I < 6%).

1.6 ELECTRON AFFINITY

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals

Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion in the gas phase.

 $A(g) + e^- = A^-(g)$

Data are limited to those negative ions which, by virtue of their positive electron affinity, are stable. Uncertainty in the final data figures is given in parentheses. Calculated values are enclosed in brackets.

	A. Atoms	
	Electron	affinity,
Atom	in eV	in kJ \cdot mol ⁻¹
Aluminum	0.441(10)	42.5(10)
Antimony	1.046(5)	100.9(5)
Arsenic	0.81(3)	78.(3)
Astatine	[2.8(3)]	[270.(30)]
Barium	[0.15]	[14.]
Bismuth	0.946(10)	91.3(10)
Boron	0.277(10)	26.7(10)
Bromine	3.363590(3)	324.5367(3)
Calcium	0.0185(25)	1.78(24)
Carbon	1.2629(3)	121.85(3)
Cesium	0.471626(25)	45.5048(24)
Chlorine	3.61269	348.570
Chromium	0.666(12)	64.3(12)
Cobalt	0.662(3)	63.9(3)
Copper	1.235(5)	119.2(5)
Fluorine	3.401190(4)	328.1638(4)
Francium	[0.46]	[44]
Gallium	0.30(15)	29.(15)
Germanium	1.233(3)	119.0(3)
Gold	2.30863(3)	222.748(3)
Hafnium	[≈0.]	[≈0.]
Hydrogen	0.75195(19)	72.552(18)
Hydrogen- d_1 deuterium	0.75459(7)	72.807(7)
Indium	0.3(2)	29.(2)
Iodine	3.05904(1)	295.151(1)
Iridium	1.565(8)	151.0(8)
Iron	0.151(3)	14.6(3)
Lanthanum	[0.5(3)]	[48.(30)]
Lead	0.364(8)	35.1(8)
Lithium	0.6180(5)	59.63(5)
Molybdenum	0.748(2)	72.2(2)
Nickel	1.156(10)	111.5(10)
Niobium	0.893(25)	86.2(24)
Osmium	[0.2(1)]	[19.(10)]
Oxygen	1.4611103(7)	140.97523(7)
Palladium	0.562(5)	54.2(5)
Phosphorus	0.7465(3)	72.03(3)
Platinum	2.128(2)	205.3(2)
Polonium	[1.9(3)]	[183.(30)]

	A. Atoms	
	Electron	affinity,
Atom	in eV	in kJ \cdot mol ⁻¹
Potassium	0.50147(10)	48.384(10)
Rhenium	[0.15(15)]	[14.(14)]
Rubidium	0.48592(2)	46.884(2)
Ruthenium	[1.05(15)]	[101.(14)]
Scandium	0.188(20)	18.1(19)
Selenium	2.020670(25)	194.9643(24)
Silver	1.302(7)	125.6(7)
Sodium	0.547926(25)	52.86666(24)
Strontium	0.048(6)	4.6(6)
Sulfur	2.077104(1)	200.4094(1)
Tantalum	0.322(12)	31.1(12)
Technetium	[0.55(20)]	[53.(19)]
Tellurium	1.9708(3)	190.15(3)
Thallium	0.2(2)	19.(19)
Tin	1.112(4)	107.3(4)
Titanium	0.079(14)	7.6(14)
Tungsten	0.815(2)	78.6(2)
Vanadium	0.525(12)	50.7(12)
Yttrium	0.307(12)	29.6(12)
Zirconium	0.426(14)	41.1(14)

als (Continued)
als (Continued

B. Molecules

	Electron affinity,			
Molecule	in eV	in kJ \cdot mol ⁻¹		
BF ₃	2.65	256		
BH ₃	0.038(15)	3.7(15)		
1,4-Benzoquinone	1.91(10)	184.(10)		
Br ₂	2.55(10)	246.(10)		
CBrF ₃	0.91(20)	89.(19)		
CF ₃ I	1.57(20)	151.(19)		
COS	0.46(20)	44.(19)		
CS ₂	0.895(20)	86.3(19)		
C_6F_6 hexafluorobenzene	0.52(10)	50.(10)		
$1,2-C_6H_4(NO_3)_2$ (also 1,3-)	1.65(10)	159.(10)		
$1,4-C_6H_4(NO_3)_2$	2.00(10)	193.(10)		
C ₆ H ₅ Br bromobenzene	1.15(11)	111.(11)		
C ₆ H ₅ Cl chlorobenzene	0.82(11)	79.(11)		
C ₆ H ₅ I iodobenzene	1.41(11)	136.(11)		
$C_6H_5NO_2$ nitrobenzene	1.01(10)	97.(10)		
$1,4-C_6H_4(CN)NO_2$	1.72(10)	166.(10)		
Cl ₂	2.38(10)	229.(10)		
CoH ₂	1.450(14)	139.9(13)		
CsCl	0.455(10)	43.9(10)		
CuO	1.777(6)	171.5(6)		
F ₂	3.08(10)	297.(10)		
FeO	1.493(5)	144.1(5)		
I ₂	2.55(5)	246.(5)		

Previous Page

1.148 SECTION ONE

CHBr

CHCl

CHF

	B. Molec	cules (continued)			
		Electron affinity,			
Molecule		in eV	in kJ \cdot mol ⁻¹		
IBr		2.55(10)	246.(10)		
IrF ₆		6.5(4)	627.(40)		
KBr		0.642(10)	61.9(10)		
KCl		0.582(10)	56.1(10)		
KI		0.728(10)	70.2(10)		
LiCl		0.593(10)	54.3(10)		
LiH		0.342(12)	33.0(12)		
MoO ₃		2.9(2)	280.(20)		
NO		0.026(5)	2.5(5)		
NO ₂		2.273(5)	219.3(5)		
$N_2 O$		0.22(10)	21.(10)		
NaBr		0.788(10)	76.0(10)		
NaCl		0.727(10)	70.1(10)		
NaI		0.865(10)	83.5(10)		
NaK		0.465(30)	44.9(30)		
0,		0.451(7)	43.5(7)		
0 ₃		2.103(3)	202.9(9)		
OsF ₆		6.0(3)	579.(29)		
PBr ₃		1.59(15)	153.(14)		
PCl ₃		0.82(10)	79.(10)		
PF,		0.75(15)	72.(14)		
POCl		1.41(2)	136.(2)		
PbO		0.722(6)	69.7(6)		
PtF ₆		7.0(4)	675.(40)		
RbCl		0.544(10)	52.5(10)		
RuF ₆		7.5(3)	724.(28)		
SF₄		1.5(2)	145.(19)		
SF ₆		1.05(10)	101.(10)		
SO ₂		1.107(8)	106.8(8)		
SeF ₆		2.9(2)	280.(19)		
SeO		1.456(20)	140.5(19)		
SeO ₂		1.823(50)	175.9(48)		
TeF ₆		3.34(17)	322.(16)		
TeO		1.695(22)	163.5(21)		
UF ₆		5.1(2)	492.(19)		
$V_4 O_{10}$		4.2(6)	405.(60)		
WO ₃		3.9(2)	376.(19)		
	C	. Radicals			
		Electro	on affinity		
Radical		in eV	in kJ · mol⁻¹		
AsH ₂		1.27(3)	123.(3)		
CCl ₂		1.591(10)	153.5(10)		
CF ₂		0.165(10)	15.9(10)		
CH		1.238(8)	119.4(8)		

1.454(5)

1.210(5)

0.542(5)

140.3(5)

117.5(5)

52.3(5)

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued)

C. Radical		
	Electro	n affinity,
Radical	in eV	in $kJ \cdot mol^{-1}$
СНІ	1.42(17)	137.(17)
CHO ₂	3.498(5)	337.5(5)
CH ₂	0.652(6)	62.9(6)
CH ₂ S	0.465(23)	44.9(22)
CH ₂ =SiH	2.010(10)	193.9(10)
CH ₃	0.08(3)	7.7(3)
CH_3CH_2O ethoxide	1.726(33)	166.5(32)
CH ₃ O	1.570(22)	151.5(21)
CH ₃ S	1.861(4)	179.6(4)
CH ₃ SCH ₂	0.868(51)	83.7(49)
CH ₄ Si	0.852(10)	82.2(10)
CH ₃ SiH ₂	1.19(4)	115.(4)
C_2F_2 diffuorovinylidene	2.255(6)	217.6(6)
C_2H_2 vinylidene	0.490(6)	47.3(6)
$CH_2 = CH vinvl$	0.667(24)	64.3(23)
$C_{2}H_{2}O$ acetaldehyde enolate	1.82476(12)	176.062(12)
CH ₂ CH ₂ S	1.953(6)	188.4(6)
$HC \equiv C - CH_{2}$	0.893(25)	86.2(24)
CH ₂ CHCN	1.247(12)	120.3(12)
C ₂ H ₂ O ethoxide	1.726(33)	166.5(31)
C ₂ H ₂ S ethyl sulfide	1.953(6)	188.4(6)
C ₂ H ₂ propargyl radical	0.893(25)	86.2(24)
CH ₂ CH−CN	1.247(12)	120.3(12)
C ₂ H _e allvl	0.362(19)	34.9(18)
C ₂ H ₂ O acetone enolate	1.758(19)	169 2(18)
propionaldehyde enolate	1.621(6)	156.4(6)
C ₂ H ₂ O ₂ methyl acetate enolate	1.80(6)	174.(6)
C ₂ H ₂ O propoxide	1.789(33)	172.6(31)
isopropyl oxide	1 839(29)	177.4(28)
C-H-S propyl sulfide	2.00(2)	193 (2)
isopropyl sulfide	2.00(2)	195.(2)
C H O cyclobutanone enolate	1.801(8)	173 8(8)
C H O butyraldebyde enolate	1.67(5)	161 (5)
C + O tert-butovyl	1.07(5) 1.912(54)	184 5(52)
C H S butyl sulfide	2.03(2)	104.5(52) 196 (2)
tart-butyl sulfide	2.05(2)	200(2)
C H avalopentadienvl	1.804(7)	174.1(7)
C ₅ H ₅ cyclopentadienyl	1.804(7)	1/4.1(7)
$C_{5}\Pi_{7}$ perinducity C_{5} pe	1 508(7)	154 2(7)
C_5H_7O cyclopentatione enolate	1.598(7)	154.2(7)
$C_5 \Pi_9 O$ 5-pentanone enotate	1.09(3)	103.(3)
$C_{5}H_{11}S$ pentyl sunde	2.09(2)	202.(2)
C ₆ ft ₅ pitelityi	1.090(0)	103.7(0)
C_6H_5NH annue	1.70(3)	104.(3)
$C_{6}\Pi_{5}O$ pilelloxyi C H S this phonovide	2.233(0)	217.4(0)
$C_6 \pi_5 \circ$ unopnenoxide	$\geq 2.4/(0)$	$\geq 238.(0)$
$C_6 \Pi_5 C \Pi_2$ Denzyl	0.912(6)	88.0(6)
$C_6H_5CH_2O$ benzyl oxide	2.14(2)	200.(2)
C_6H_9O cyclonexanone enolate	1.526(10)	147.2(10)
$H_2 C = CH - CH = CH - CH = CH - CH_2$ heptatrienyl	1.27(3)	122.(3)
UN	3.862(4)	372.6(4)

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued)

	C. Radical	
	Electron	affinity,
Radical	in eV	in kJ \cdot mol ⁻¹
CNCH ₂ cyanomethyl	1.543(14)	148.9(14)
CO ₃	2.69(14)	259.(14)
CS	0.205(21)	19.8(20)
ClO	2.275(6)	219.5(6)
HCO	0.313(5)	30.2(5)
HNO	0.338(15)	32.6(14)
HO ₂	1.078(17)	104.0(6)
FO	2.272(6)	219.2(6)
N ₃	2.70(12)	260.(12)
NCO	3.609(5)	348.2(5)
NCS	3.537(5)	341.3(5)
NH	0.370(4)	35.7(4)
NO ₃	3.937(14)	379.9(14)
NS	1.194(11)	115.2(11)
O ₂ Aryl	0.52(2)	50.(2)
ocio	2.140(8)	206.5(8)
OH	1.82767(2)	176.343(2)
OIO	2.577(8)	248.6(8)
PH	1.028(10)	99.2(10)
PH ₂	1.27(1)	123.(1)
PO	1.092(10)	105.4(10)
PO ₂	3.42(1)	330.(1)
SF	2.285(6)	220.5(6)
SH	2.314344(4)	223.300(4)
SO	1.125(5)	108.5(5)
SeH	2.21252(3)	213.475(3)
SiF ₃	≤2.95(10)	285.(10)
SiH	1.277(9)	123.2(9)
SiHa	1.124(20)	108.4(19)
SiH ₃	1.406(14)	106.7(14)

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued)

Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Reference Data 14:731 (1985).

1.7 BOND LENGTHS AND STRENGTHS

Distances between centers of bonded atoms are called *bond lengths*, or *bond distances*. Bond lengths vary depending on many factors, but in general, they are very consistent. Of course the bond orders affect bond length, but bond lengths of the same order for the same pair of atoms in various molecules are very consistent.

The *bond order* is the number of electron pairs shared between two atoms in the formation of the bond. Bond order for C=C and O=O is 2. The amount of energy required to break a bond is called *bond dissociation energy* or simply *bond energy*. Since bond lengths are consistent, bond energies of similar bonds are also consistent.

Bonds between the same type of atom are *covalent bonds*, and bonds between atoms when their electronegativity differs slightly are also predominant covalent in character. Theoretically, even ionic bonds have some covalent character. Thus, the boundary between ionic and covalent bonds is not a clear line of demarcation.

For covalent bonds, bond energies and bond lengths depend on many factors: electron affinities, sizes of atoms involved in the bond, differences in their electronegativity, and the overall structure of the molecule. There is a general trend in that *the shorter the bond length, the higher the bond energy* but there is no formula to show this relationship, because of the widespread variation in bond character.

1.7.1 Atom Radius

The *atom radius* of an element is the shortest distance between like atoms. It is the distance of the centers of the atoms from one another in metallic crystals and for these materials the atom radius is often called the metal radius. Except for the lanthanides (CN = 6), CN = 12 for the elements.

1.7.2 Ionic Radii

One of the major factors in determining the structures of the substances that can be thought of as made up of cations and anions packed together is ionic size. It is obvious from the nature of wave functions that no ion has a precisely defined radius. However, with the insight afforded by electron density maps and with a large base of data, new efforts to establish tables of ionic radii have been made.

Effective ionic radii are based on the assumption that the ionic radius of O^{2-} (CN 6) is 140 pm and that of F^- (CN 6) is 133 pm. Also taken into consideration is the coordination number (CN) and electronic spin state (HS and LS, high spin and low spin) of first-row transition metal ions. These radii are empirical and include effects of covalence in specific metal-oxygen or metal-fluorine bonds. Older "crystal ionic radii" were based on the radius of F^- (CN 6) equal to 119 pm; these radii are 14–18 percent larger than the effective ionic radii.

1.7.3 Covalent Radii

Covalent radii are the distance between two kinds of atoms connected by a covalent bond of a given type (single, double, etc.).

			Effective ionic radii, pm						
	Atom			Coordinator number					
Element	pm	charge	4	6	8	12			
Actinium Aluminum Americium	187.8 143.1 173	3+ 3+ 2+ 3+ 4+ 5+ 6+	39	111 53.5 97.5 89 86 80	126 109 95				
Antimony	145	3-1+3+5+	76	245 89 76 60					

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements

		Effective ionic radii, pm				
	Atom		Coordinator number			
Element	radius, pm	lon charge	4	6	8	12
Arsenic	124.8	3-		222		
		3+	22.5	58		
Astatine		1-	55.5	227		
		5+		57		
		7+		62		
Barium	217.3	2+		136	142	160
Berkelium		2+		118		
		3+		98	02	
Barullium	111.2	4+	105	8/	93	
Berymum	111.5	2+	27	45		
Bismuth	154.7	3-	27	213		
2101114111		3+		103	111	
		5+		76		
Boron	86	1+	35			
		3+	11	27		
Bromine		1-	70	196		
		3+	59	47		
		5+ 7+	51*	4/		
Cadmium	148 9	2+	78	95	110	131
Calcium	197	2+	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	112	135
Californium	186(2)	2+		117		
		3+		95		
		4+		82.1		
Carbon		4-	260			
a .	101.0	4+	15	16	1140	104
Cerium	181.8	3+		102	114.3	134
Casium	265	4+		167	97	114
Chlorine	205	1-		181	1/4	100
		5+	34			
		7+	8	27		
Chromium	128	1+	81			
		2+		73 LS		
		a .		80 HS		
		3+		61.5		
		4+	41	55	57	
		5+ 6+	34.5	49	57	
Cobalt	125	2+	38	651.5	90	
cooun	1		20	74.5 HS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		3+		54.5 LS		
				61 HS		
		4+	40	53 HS		
Copper	128	1+	60	77		
		2+	57	73		
		3+		54 LS		

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

		Effective ionic radii, pm					
	Atom		Coordinator number				
Element	pm	charge	4	6	8	12	
Curium	174	3+		97			
		4+		85	95		
Dysprosium	178.1	2+		107	119		
		3+		91.2	102.7		
Einsteinium	186(2)	3+		98			
Erbium	176.1	3+		89.0	100.4		
Europium	208.4	2+		117	125	135	
		3+		94.7	106.6		
Fluorine	71.7	1-	131	133			
		7+		8			
Francium	270	1+		180			
Gadolinium	180.4	3+		93.8	105.3		
Gallium	135	2+		120			
		3+	47	62.0			
Germanium	128	2+		73			
		4+	39.0	53.0			
Gold	144	1+		137			
		3+	68	85			
Hafnium	159	4+	58	71	83		
Holmium	176.2	3+		90.1	101.5*	112	
Hydrogen	1.0.2	1-		154	10110		
Indium	167	1+		140			
	107	3+	62	80.0	92		
Iodine		1-	02	220	12		
Toumo		5+		95			
		7+	42	53			
Iridium	135.5	3+	12	68			
maram	155.5	4+		62.5			
		5+		57			
Iron	126			6115			
non	120	21	63 45	78 HS	02 HS		
		21	05115	5518	92 115		
		51	10 45	64 5 HS	78 45		
		1-	47 115	58.5	76115		
		6	25	56.5			
Lonthonum	192		23	102.2	116.0	126	
Lanulanum	165	5-		103.2	110.0	150	
Lead	175	2+	98	119	129	149	
		4+		78	94		
Lithium	152	1+	59	76			
Lutetium	173.8	3+		86.1	97.7		
Magnesium	160	2+	57	72.0	89		
Manganese	127	2+	66 HS	67 LS	96		
				83 HS			
		3+		58 LS			
		1		64.5 HS			
		4+	39	53			
		5+	33				
		6+	25.5				
		7+	25	46			

$ \begin{array}{ c c c c c c c } \hline \text{Element} & \begin{array}{ c c c c } \hline \text{Atom} & \hline \text{radius,} & \hline \text{Ion} & \hline \text{charge} & \hline 4 & 6 & 8 & 12 \\ \hline \text{Mercury} & 151 & 1+ & 111^* & 119 & & & \\ 12+ & 96 & 102 & 114 & & \\ 139 & 3+ & & 69 & & \\ 4+ & & 65.0 & & & \\ 5+ & 46 & 61 & & & \\ 6+ & 41 & 59 & 73^{\dagger} & & \\ 6+ & 41 & 59 & 73^{\dagger} & & \\ 8& & & & & 129 & \\ 8& & & & & & 129 & \\ 8& & & & & & & 129 & \\ 8& & & & & & & & & \\ 8& & & & & & &$
Element radius, pm Ion charge 4 6 8 12 Mercury 151 1+ 111* 119 114 119 114 Molybdenum 139 3+ 69 102 114 65.0 114 Molybdenum 139 3+ 69 102 114 69 Neodymium 181.4 2+ 98 73† 129 129 Neptunium 155 2+ 110 110.9 127 Neptunium 155 2+ 110 114 10.9 127 Nickel 124 2+ 75 69.0 3+ 100 101 101 101 101 114 114 114 114 115 114 115 114 115 114 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Molybdenum 139 2^+ 96 102 114 Molybdenum 139 3^+ 69 114 5^+ 46 61 129 Neodymium 181.4 24 129 Neptunium 155 2^+ 110 129 Neptunium 155 2^+ 110 129 3^+ 98.3 110.9 127 Neptunium 155 2^+ 101 14 4^+ 87 98 16 4^+ 87 98 16 14 Nickel 124 27 76 14 Niobium 146 3+ 72 14 Nibrogen 4^+ 48 56 15 3^+ 72 14 14 14 14 4^+ 48 14 14 14 14 Nickel 124 3+ 16 14 14
Molybdenum 1.39 $3+$ 69 69 $4+$ 65.0 61 $5+$ 46 61 $6+$ 41 59 73† Neodymium 181.4 2+ 129 Neptunium 155 2+ 110 $3+$ 98.3 110.9 127 Neptunium 155 2+ 110 $3+$ 75 98 $6+$ 72 75 $6+$ 72 74 $7+$ 71 98 Nickel 124 2+ 55 $6+$ 72 72 Nickel 124 2+ 55 $6+$ 72 74 $6+$ 72 74 Nibium 146 3+ 72 $8+$ 72 74 74 124 2+ 55 69.0 $3+$ 72 74 74 Nibium 146 3+ 72 $3+$ 16 74 <td< td=""></td<>
Neodymium 181.4 5+ 46 61 73† Neodymium 181.4 2+ 129 129 Neptunium 155 2+ 110 129 Neptunium 155 2+ 110 129 $3+$ 101 4+ 87 98 $5+$ 75 6+ 72 Nickel 124 2+ 55 69.0 $3+$ 56 LS 6 6 Nickel 124 2+ 55 69.0 $3+$ 56 LS 6 5 Nickel 124 2+ 55 69.0 $3+$ 72 79 6 $3+$ 72 79 6 Nitrogen $3-$ 146 74 $3+$ 16 14 14 $3+$ 16 14 10 $3+$ 110 0 14 $3+$ 51.5 14 54.
Neodymium 181.4 5^+ 46 61 73† Neptunium 181.4 2+ 129 129 Neptunium 155 2+ 110 129 3+ 101 3+ 101 129 3+ 101 3+ 101 127 Neptunium 155 2+ 110 110 127 3+ 101 3+ 101 127 127 Mickel 124 2+ 55 69.0 127 Nickel 124 2+ 55 69.0 14 3+ 56 LS 60 HS 14 14 Nibium 146 3+ 72 14 Nitrogen 3- 146 14 14 5+ 48 64 74 13 Nobelium 135 4+ 63.0 14 140 142 91adium 137 2+ 138 140 142 91adium 137 2+ 64 86 142
Neodymium 181.4 $2+$ 41 59 757 Neptunium 181.4 $2+$ 129 129 127 Neptunium 155 $2+$ 110 10.9 127 $3+$ 101 $4+$ 87 98 5 $4+$ 87 98 5 6 75 6 $6+$ 72 71 7 7 7 7 Nickel 124 $2+$ 55 69.0 6 18 6 Niobium 146 $3+$ 72 6 6 18 6 14 74 16 18 16 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 16 14 14 15 16 14 16 14 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
Needuyindin 131.4 $2+$ 98.3 110.9 127 Neptunium 155 $2+$ 110 110.9 127 Neptunium 155 $2+$ 110 101 110.9 127 Nickel 124 $2+$ 55 69.0 101 110 101 101 101 101 101 101 110 110 110 110 110 110 110 110 110 110 110 110 110 110 111 110 111 110 111 110 111 110 111 11
Neptunium 155 $3+$ 100 127 110 3+ 101 101 101 4+ 87 98 5+ 75 6+ 72 71 71 71 Nickel 124 2+ 55 69.0 66 7+ 71 71 72 75 66 Nickel 124 2+ 55 69.0 56 158 Niobium 146 3+ 72 72 74 72 Nitrogen 3- 146 72 74 74 74 74 Nitrogen 3- 146 74 74 74 74 74 Nobelium 2+ 110 74 74 74 74 74 Osmium 135 4+ 63.0 75
Nephnium 133 $2+$ 110 $3+$ 101 $4+$ 87 98 $5+$ 75 $6+$ 72 $7+$ 71 Nickel 124 $2+$ $3+$ 56 LS 60 HS 60 HS $4+$ 48 LS Niobium 146 $3 146$ $1+$ 25 $3+$ 16 $5+$ 48 63.0 -146 $1+$ 25 $3+$ 16 $5+$ 133 $2+$ 110 Osmium 135 $4+$ 63.0 $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 0 $2 137$ $2+$ $4+$ 61.5
3 + 4 + 5 101 98 $5 + 6 + 72$ 75 $6 + 72$ 71 $7 + 71$ 71 $7 + 71$ 71 $7 + 71$ 60 $3 + 55$ 69.0 $3 + 56$ 56 800 88 Niobium 146 $4 + 4$ 48 800 79 $5 + 48$ 64 72 74 Nitrogen $3 - 146$ $1 + 25$ $3 - 146$ $3 - 146$ 11 $3 - 146$ 11 $3 - 146$ 11 $3 - 146$ 11 $3 - 146$ 11 $3 - 146$ 11 $3 - 146$ 11 $5 + 13$ 10 0 $5 + 57.5$ $6 + 54.5$ 57.5 $6 + 54.5$ 74 $7 + 52.5$ 88 86 86 74 140 142 142 864 86
Nickel 124 $5+$ 75 75 Nickel 124 $2+$ 55 69.0 $3+$ 56 LS 60 HS $3+$ 60 HS 60 HS Niobium 146 $3+$ 72 Nirogen $3-$ 146 72 $3-$ 146 74 Nitrogen $3-$ 146 74 Nitrogen $3-$ 146 74 $3+$ 16 $5+$ 13 Nobelium $2+$ 110 52.5 $6+$ 54.5 77.5 $6+$ 54.5 74.5 $7+$ 52.5 74.5 $7+$ 52.5 74.5 $7+$ 52.5 74.5 $7+$ 52.5 74.5 $7+$ 52.5 74.5 $7+$ 75.5 74.5 $7+$ 75.5 74.5 $7+$ 75.5 74.5 $7+$ 76.5 76.5
Nickel 124 2+ 55 69.0 $3+$ 56 LS 60 HS $3+$ 56 LS 60 HS $4+$ 48 LS 72 Niobium 146 $3+$ 72 Nitrogen $3 146$ 74 Nitrogen $3 146$ 74 Nobelium $2+$ 110 63.0 $5+$ $4+$ 63.0 $5+$ $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 Oxygen $2 138$ 140 142 Palladium 137 $2+$ 64 86 $3+$ 64 86 76
Nickel 124 2+ 55 69.0 $3+$ 56 LS 60 HS $4+$ 48 LS 60 HS Niobium 146 $3+$ 72 60 HS $4+$ 68 79 $5+$ 48 64 74 Nitrogen $3 146$ $1+$ 25 Nobelium $2+$ 110 63.0 $5+$ $5+$ 57.5 $6+$ 54.5 $7+$ 71 52.5 $8+$ 39 72 $0xygen$ $2 138$ 140 142 Palladium 137 $2+$ 64 86 $3+$ 76 76 76
Nickel 124 2+ 55 69.0 3+ 56 LS 60 HS 4+ 48 LS Niobium 146 3+ 72 4+ 68 79 5+ 48 64 3- 146 1+ 3- 146 1+ 1+ 25 3+ 3+ 16 13 Nobelium 2+ 110 Osmium 135 4+ 63.0 5+ 57.5 6+ 6+ 54.5 7.5 6+ 54.5 7.5 6+ 54.5 7.5 6+ 54.5 7.5 6+ 54.5 7.5 6+ 54.5 7.5 7+ 52.5 7.5 8+ 39 2- 0xygen 2- 138 140 137 2+ 64 86 3+ 76 64.55 61.5
Nikol 121 <t< td=""></t<>
Niobium 146 $4+$ 60 HS $4+$ 48 LS $4+$ 68 79 $5+$ 48 64 74 Nitrogen $3 146$ 74 $1+$ 25 $3+$ 16 $3+$ 16 $5+$ 13 Nobelium $2+$ 110 0 0 smium 135 $4+$ 63.0 $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ $8+$ 39 $2 138$ Oxygen $2 138$ 140 142 Palladium 137 $2+$ 64 86 $4+$ 61.5 76 61.5
Niobium146 $4+$ 48 LSNitrogen $3+$ 72 $3 146$ $1+$ 25 $3+$ 16 $1+$ 25 $3+$ 16 $5+$ 13 Nobelium $2+$ $0smium$ 135 $4+$ 63.0 $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 Oxygen $2 137$ $2+$ 64 86 $3+$ 76 $4+$ 61.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nitrogen $4+$ 68 79 Nitrogen $3 146$ 74 $1+$ 25 16 $1+$ 25 16 $3+$ 16 $5+$ 13 Osmium 135 $4+$ 63.0 $5+$ $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 Oxygen $2 137$ $2+$ 64 86 $3+$ 76 $4+$ 61.5
Nitrogen $5+$ 48 64 74 Nobelium $1+$ 25 16 $3+$ 16 $5+$ 13 $2+$ 110 $0smium$ 135 $4+$ 63.0 $5+$ 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 $0xygen$ $2 137$ $2+$ 64 86 $3+$ 76 $4+$ 61.5
Nitrogen $3-$ 146 $ -$ <th< td=""></th<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Osmium 135 $4+$ 63.0 $5+$ 57.5 57.5 $6+$ 54.5 $7+$ 52.5 $8+$ 39 Oxygen $2 138$ 140 142 Palladium 137 $2+$ 64 86 $3+$ 76 $4+$ 61.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Oxygen $6+$ 54.5 $8+$ 39 $2 138$ 140 137 $2+$ 64 $3+$ 76 $4+$ 61.5
Oxygen $7+$ 52.5 Palladium $2 138$ 140 142 Palladium 137 $2+$ 64 86 $3+$ 76 $4+$ 61.5
Oxygen $2 138$ 140 142 Palladium 137 $2+$ 64 86 $3+$ 76 $4+$ 61.5
Oxygen $2-$ 138 140 142 Palladium 137 $2+$ 64 86 $3+$ 76 $4+$ 61.5
Palladium 137 $2+$ 64 86 $3+$ 76 $4+$ 61.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Phosphorus 108 $3-$ 212
5T 44 5 17 29
Platinum 138.5 2+ 80
4+ 60 675
Plutonium 159 3+ 100
6+ 71

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

*CN = 3 †CN = 7

		Effective ionic radii, pm					
	Atom	Ion	Coordinator number				
Element	pm	charge	4	6	8	12	
Polonium	164	2-		(230)			
		4+		94	108		
		6+		67			
Potassium	232	1+	137	138	151	164	
Praseodymium	182.4	3+		99	112.6		
Dromothium	102 /	4+		85	90		
Protocctinium	163.4	3+		104	109.5		
riotoactinium	105	1+		00	101		
		5+		78	91		
Radium	(220)	2+		,	148	170	
Rhenium	137	4+		63	1.0	1.0	
		5+		58			
		6+		55			
		7+	38	53			
Rhodium	134	3+		66.5			
		4+		60			
		5+		55			
Rubidium	248	1+		152	161	172	
Ruthenium	134	3+		68			
		4+		62.0			
		5+		56.5			
			38				
Comonium	190.4	8+	30		107		
Samarium	180.4	2+		05.8	107.0	124	
Saandium	162			95.6	87.0	124	
Selenium	116	2-		108	07.0		
Sciellium	110	$\begin{vmatrix} 2\\ 4+ \end{vmatrix}$		50			
		6+		42			
Silicon	118	4+	26	40.0			
Silver	144	1+	100	115	130		
		2+	79	94			
		3+	67	75			
Sodium	186	1+	99	102	118	139	
Strontium	215	2+		118	126	144	
Sulfur	106	2-		184			
		4+		37			
		6+	12	29			
Tantalum	146	3+					
		4+		68	74		
Tachnatium	126			04 64 5	/4		
recimentum	150	4 ⁺⁺ 5+		60			
		7+	37	56			
Tellurium	142		51	221			
1 onur fuill	114	$ \tilde{4}+$	66	97		ł	
		6+	43	56			
	1				1		

TARIE 1 21	Atom Padii and Effective Ionic Padii of Elements (Continued)
IADLE 1.31	Atom Radii and Effective Ionic Radii of Elements (Continuea)

		Effective ionic radii, pm					
Atom		Ţ	Coordinator number				
Element	pm	Charge	4	6	8	12	
Terbium	177.3	3+		92.3	104.0		
		4+		76	88		
Thallium	170	1+		150	159	170	
		3+	75	88.5	98		
Thorium	179	4+		94	105	121	
Thullium	175.9	2+		103			
		3+		88.0	99.4	105*	
Tin	151	2+		118			
		4+	55	69.0	81		
Titanium	147	2+		86			
		3+		67.0			
		4+	42	60.5	74		
Tungsten	139	4+		66			
e		5+		62			
		6+	42	60			
Uranium	156	3+		102.5			
		4+		89	100	117	
		5+		76			
		6+	52	73	86		
Vanadium	134	2+		79			
		3+		64.0			
		4+		58	72		
		5+	35.5	54			
Xenon		8+	40	48			
Ytterbium	193.3	2+		102	114		
		3+		86.8	98.5	104*	
Yttrium	180	3+		90.0	101.9	108*	
Zinc	134	2+	60	74.0	90	100	
Zirconium	160	4+	59	72	84	89*	

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

*CN = 11

å (in Å)	Inorganic ions	å (in Å)	Organic ions
2.5	$ \begin{array}{l} Rb^-, Cs^+, NH_4^+, Tl^+, Ag^+ \\ K^+, Cl^-, Br^-, I^-, CN^-, NO_2^-, NO_3^- \\ OH^-, F^-, SCN^-, OCN^-, HS^-, ClO_3^-, ClO_4^-, BrO_3^-, IO_4^-, MnO_4^- \\ Na^-, CdCl^+, Hg_2^{++}, ClO_2^-, IO_3^-, HCO_3^-, H_2PO_4^-, HSO_3^-, \\ H_2AsO_4^-, SO_4^{2}, S_2O_3^{2}, S_2O_8^{2}, ScO_4^{2}, CrO_4^{2}, HPO_4^{2}, S_2O_6^{2}, \\ PO_4^{3}, Fe(CN)_6^{3}, Cr(NH_3)_3^{3+}, Co(NH_3)_3^{3+}, Co(NH_3)_5H_2O^{3+} \\ Pb^{2-}, CO_3^{3}, SO_3^{3}, MOO_4^{2}, Co(NH_3)_5Cl^{2+}, Fe(CN)_5MO^{2} \\ Sr^{2}, Ba^{2+}, Ra^{2+}, Cd^{2+}, Hg^{2+}, S^{2}, S_2O_4^{2}, WO_4^{2}, Fe(CN)_6^{4} \\ Li^+, Ca^{2+}, Cu^{2+}, Zn^{2+}, Sn^{2+}, Mn^{2+}, Fe^{2+}, Ni^{2+}, Co^{2+}, Co(en)_3^{3+}, \\ Co(S_2O_3)(CN)_5^{} \\ Mg^{2+}, Be^{2+} \\ H^+, Al^{3+}, Fe^{3+}, Cr^{3+}, Sc^{3+}, Y^{3+}, La^{3+}, In^{3+}, Ce^{3+}, Pr^{3+}, Nd^{3+}, \\ Sm^{3+}, Co(SO_3)_2(CN)_5^{} \\ Th^{4+}, Zr^{4+}, Ce^{4+}, Sn^{4+} \end{array} $	3.5 4 5 6 7 8	$\begin{array}{l} HCOO^-, H_2Cit^-, CH_3NH_3^+, (CH_3)_2NH_2^+ \\ H_3N^+CH_2COOH, (CH_3)_3NH^+, C_2H_5NH_3^+ \\ CH_3COO^-, CICH_2COO^-, (CH_3)_4N^+, (C_2H_5)_2NH_2^+, \\ H_2NCH_2COO^-, oxalate^{2-}, HCit^{2-} \\ Cl_2CHCOO^-, Cl_3COO^-, (C_2H_5)_3NH^+, C_3H_7NH_3^+, Cit^{3-}, succinate^{2-}, malonate^{2-}, tartrate^{2-} \\ benzoate^-, hydroxybenzoate^-, chlorobenzoate^-, phenylace-tate^-, vinylacetate^-, (CH_3)_2C==CHCOO^-, (C_2H_5)_4N^+, \\ (C_3H_7)_2NH_2^+, phthalate^{2-}, glutarate^{2-}, adipate^{2-} \\ trinitrophenolate^-, (C_3H_7)_3NH^+, methoxybenzoate^-, pime-late^{2-}, suberate^{2-}, Congo red anion^{2-} \\ (C_6H_5)_2CHCOO^-, (C_3H_7)_4N^+ \end{array}$

TABLE 1.32 Approximate Effective Ionic Radii in Aqueous Solutions at 25°C

	Single-bond	Double-bond	Triple-bond
Element	radius, pm*	radius, pm	radius, pm
Aluminum	126		
Antimony	141	131	
Arsenic	121	111	
Beryllium	106		
Boron	88		
Bromine	114	104	
Cadmium	148		
Carbon	77.2	66.7	60.3
Chlorine	99	89	
Copper	135		
Fluorine	64	54	
Gallium	126		
Germanium	122	112	
Hydrogen	30		
Indium	144		
Iodine	133	123	
Magnesium	140		
Mercury	148		
Nitrogen	70	60	55
Oxygen	66	55	
Phosphorus	110	100	93
Silicon	117	107	100
Selenium	117	107	
Silver	152		
Sulfur	104	94	87
Tellurium	137	127	
Tin	140	130	
Zinc	131		

TABLE 1.33 Covalent Radii for Atoms

* Single-bond radii are for a tetrahedral (CN = 4) structure.

TABLE 1.34 Octahedral Covalent Radii for CN = 6

Atom	Octahedral covalent radius, pm	Atom	Octahedral covalent radius, pm
Cobalt(II)	132	Nickel(III)	130
Cobalt(III)	122	Nickel(IV)	121
Gold(IV)	140	Osmium(II)	133
Iridium(III)	132	Palladium(IV)	131
Iron(II)	123	Platinum(IV)	131
Iron(IV)	120	Rhodium(III)	132
Nickel(II)	139	Ruthenium(II)	133

Elements	Bond type	Bond Length, pm	Elements	Bond type	Bond Length, pm
	Boron			Oxygen	
B-B	B_2H_6	177(1)	O-H	H ₂ O	95.8
B-Br	BBr ₃	187(2)		ROH	97(1)
B-Cl	BCl ₃	172(1)		OH^+	102.89
B-F	BF_3 , R_2BF	129(1)		HOOH	96.0(5)
B-H	Boranes	121(2)		$D_2O(^2H_2O)$	95.75
	Bridge	139(2)		OD	96.99
B-N	Borazoles	142(1)	0-0	НО-ОН	148(1)
B-O	$B(OH)_3$, $(RO)_3B$	136(5)		O_2^+	122.7
	Hydrogen			$O_2 \\ O_3^{2-}$	126(2) 149(2)
H-A1	AlH	164.6		O_3	127.8(5)
H-As	AsHa	151.9	O-Al	AlO	161.8
H-Be	BeH	134.3	O-As	As ₂ O ₆ bridges	179
H-Br	HBr	140.8	O-Ba	BaO	190.0
H-Ca	CaH	200.2	O-Cl	ClO ₂	148.4
H-Cl	HC1	127.4		OCl ₂	168
H-F	HF	91.7	O-Mg	MgO	174.9
H-Ge	GeH ₄	153	O-Os	OsO_4	166
H-I	HI	160.9	O-Pb	PbO	193.4
H-K	KH	224.4		Phosphorus	
H-Li	LiH	159.5		1 nosphorus	·
H-Mg	MgH	173.1	P-Br	PBr ₃	223(1)
H-Na	NaH	188.7	P-Cl	PCl ₃	200(2)
H-Sb	H ₃ Sb	170.7	P-F	PFCl ₂	155(3)
H-Se	H_2Se	146.0	P-H	PH_3, PH_4	142.4(5)
H-Sn	SnH ₄	170.1	P-I	PI_3	252(1)
D-Br	DBr (² HBr)	141.44	P-N	Single bond	149.1
D-CI	DCI	127.40	P-0	Single bond	144.7
D-I T D#	DI TDr (³ UDr)	101.05		p bonding	107
		141.44	DS	sp bonding	134(4) 212(5)
1-01	ICI	127.40	r-3	p bonding	212(3) 208(2)
	Nitrogen			In rings	200(2) 220(3)
		170(2)	P-C	Single bond	156.2
N-CI	NO ₂ CI	1/9(2)	10	n^3 bonding	187(2)
IN-F	INГ ₃ NIII+	130(2) 102 4(2)		p contains	107(2)
IN-II	NH PNH	103.4(3)		Silicon	
	H.NNH.	103.8	Si_Br	SiBr. R.SiBr	216(1)
	R - CO - NH	99(3)	Si-Cl	SiCl, R ₃ SiCl	201 9(5)
	HN = C = S	101.3(3)	Si-F	SiE4, RaSiE	156.1(3)
N-D	$ND (N^2H)$	104.1	511	SiF ₄	158
N-N	HN ₂	102(1)	Si-H	SiH₄	148.0(5)
	R ₂ NNH ₂	145.1(5)		R ₂ SiH	147.6(5)
	N ₂ O	112.6(2)	Si-I	Sil4	234
	$N_2^{\tilde{+}}$	111.6		R ₃ Sil	246(2)
N-O	NO ₂ Cl	124(1)	Si-O	R ₃ SiOR	153.3(5)
	$RO - NO_2$	136(2)	Si-Si	H ₃ SiSiH ₃	230(2)
	NO ₂	118.8(5)			
N=O	N_2O	118.6(2)		Sulfur	
	RNO_2	122(I)	S-Br	SOBr ₂	227(2)
	NO ⁺	106.19	S-Cl	S ₂ Cl ₂	158.5(5)
N-Si	SiN	157.2	S-F	SOF ₂	158.5(5)
			S-H	H_2S	133.3
				RŠH	132.9(5)
				D_2S	134.5
			S-O	$\tilde{SO_2}$	143.21
				SOCl ₂	145(2)
			S-S	RSSR	205(1)

TABLE 1.35 Bond Lengths between Elements

TABLE 1.36 Bond Dissociation Energies

The bond dissociation energy (enthalpy change) for a bond A-B which is broken through the reaction

$$AB \rightarrow A + B$$

is defined as the standard-state enthalpy change for the reaction at a specified temperature, here at 298 K. That is,

$$\Delta H f_{298} = \Delta H f_{298}(\mathbf{A}) + \Delta H f_{298}(\mathbf{B}) - \Delta H f_{298}(\mathbf{AB})$$

All values refer to the gaseous state and are given at 298 K. Values of 0 K are obtained by subtracting RT from the value at 298 K.

To convert the tabulated values to kcal/mol, divide by 4.184.

Bond	$\Delta H f_{298},$ kJ/mol	Bond	∆ <i>Hf</i> ₂₉₈ , kJ/mol
Aluminum		Antin	nony (<i>continued</i>)
Al—Al Al—As	186(9) 180	Sb—O Sb—P	372(84) 357
Al—Au Al—Br Al—C	326(6) 439(8) 255	Sb—S Sb—Te	379 277.4(38)
Al—Cl AlCl—Cl	494(13) 402(8) 272(8)	ΔεΔε	Arsenic
$AlO_2 - Cl$ AlO - Cl Al - Cu	572(8) 515(84) 216(10)	As As As—Cl As—Ga	448 209.6(12)
Al—D Al—F	291 664(6)	As—H As—N	272(12) 582(126)
AIF—F AIF ₂ —F	546(42) 544(46)	As—O As—P	481(8) 534(13) (478)
AIO—F AI—H AI—I	285(6) 368(4)	As—S As—Se As—Tl	(478) 96 198(15)
Al—Li Al—N	176(15) 297(96)		Astatine
Al—O AlCl—O AlF—O	512(4) 540(41) 582	At—At	(115.9)
Al—P Al—Pd	213(13) 259(12)		Barium
Al—S Al—Se Al—Si Al—Te	374(8) 334(10) 251(3) 268(10)	Ba—Br Ba—Cl Ba—F Ba—I Ba—O	370(8) 444(13) 487(7) >431(4) 563(42)
AI—U Antimony	326(29)	Ba-OH Ba-S	477(42) 400(19)
Sb—Sb	299(6)		Beryllium
Sb—Br Sb—Cl Sb—F Sb—N	314(59) 360(50) 439(96) 301(50)	Be—Be Be—Br Be—Cl	59 381(84) 388(9)

Bond	$\Delta H f_{298},$ kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol	
Beryllium (continued)		Bromine	Bromine	
BeCl—Cl Be—F Be—H Be—O Be—S	540(63) 577(42) 226(21) 448(21) 372(59)	$Br - Br$ $Br - C$ $Br - CH_3$ $Br - CH_2Br$ $Br - CHBr_2$	193.870(4) 280(21) 284(8) 255(13) 259(17)	
Bismı	ıth	BrCBr ₃ BrCCl ₃	209(13) 218(13)	
$\begin{array}{c} Bi - Bi \\ Bi - Br \\ Bi - Cl \\ Bi - D \\ Bi - F \\ Bi - Ga \\ Bi - H \\ Bi - O \\ Bi - P \\ Bi - P \\ Bi - Pb \\ Bi - S \end{array}$	$197(4) \\ 267(4) \\ 305(8) \\ 284 \\ 259(29) \\ 159(17) \\ 279 \\ 343(6) \\ 280(13) \\ 142(15) \\ 316(5)$	$ \begin{array}{c} & \text{Br} - \mathbb{C}F_3 \\ & \text{Br} - \mathbb{C}F_2\mathbb{C}F_2\mathbb{C}F_3 \\ & \text{Br} - \mathbb{C}F_2\mathbb{C}F_2\mathbb{C}F_3 \\ & \text{Br} - \mathbb{C}HF_2 \\ & \text{Br} - \mathbb{C}HF_2$	$285(13) \\287.4(63) \\278.2(63) \\289 \\218.84(4) \\381 \\268 \\233.8(2) \\276(21) \\222 \\120.1(63) \\235.1(4)$	
Bi-Sb Bi-Se	251(4) 280(6) 232(11)	Cadmium	1	
Bi-Tl	121(13)	Cd—Cd Cd—Br	11.3(8) 159(96)	
$B \rightarrow B$ $H_{3}B \rightarrow BH_{3}$ $OB \rightarrow BO$ $B \rightarrow Br$ $B \rightarrow C$ $B \rightarrow Cl$	297(21) 146 506(84) 435(21) 448(29) 536(29)	$- \begin{array}{c} Cd - Cl \\ Cd - F \\ Cd - H \\ Cd - I \\ Cd - In \\ Cd - O \\ Cd - S \\ Cd - Se \end{array}$	206.7(34) 305(21) 69.0(4) 138(21) 138 142(42) 196 310	
$BO-CI$ $B-D$ $B-F$ $BF-F$ BF_2-F $B-H$ $B-I$ $B-I$ $B-N$	460(42) 341(6) 766(13) 523(63) 557(84) 330(4) 384(21) 389(21)	Calcium Ca—Ca Ca—Br Ca—Cl Ca—F Ca—H	14.98(46) 321(23) 398(13) 527(21) 167.8	
BO BCIO BP BS PSo	806(5) 715(41) 347(17) 581(9) 462(15)	Ca—I Ca—O Ca—S	285(63) 464(84) 314(19)	
B-Si B-Te	402(13) 289(29) 354(20)	Ce-Ce Ce-F Ce-N Ce-O Ce-S Ce-Se Ce-Te	243(21) 582(42) 519(21) 795(13) 573(13) 495(15) 389(42)	

TABLE 1.36 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298},$ kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol
Cesium		Chroi	nium (<i>continued</i>)
Cs—Cs Cs—Br Cs—Cl Cs—F Cs—H Cs—I Cs—O Cs—OH	41.75(93) 397.5(42) 439(21) 514(8) 178.1(38) 339(4) 297(25) 385(13)	$Cr - Cu$ $Cr - F$ $Cr - Ge$ $Cr - H$ $Cr - 1$ $Cr - N$ $Cr - O$ $OCr - O$ $O_2Cr - O$ $Cr - S$	$155(21) \\ 437(20) \\ 170(29) \\ 280(50) \\ 287(24) \\ 378(19) \\ 427(29) \\ 531(63) \\ 477(84) \\ 339(21)$
Cl—Cl	242.580(16)		Cobalt
$CI - C$ $CI - CH_{3}$ $CI - CH_{3}^{+}$ $CI - C(CH_{3})_{3}$ $CI - CL_{2}CI$ $CI - CCI_{3}$ $CI - CCI_{2}F$ $CI - CCI_{2}F$ $CI - CCIF_{2}$ $CI - CCF_{2}CF_{2}$ $CI - CH = CH_{2}$	$338(42) \\339(21) \\213 \\328.4 \\310(13) \\293(21) \\360(33) \\305(8) \\318(8) \\346.0(71) \\351$	Co-Co Co-Br Co-Cl Co-Cu Co-F Co-Ge Co-I Co-O Co-S	$167(25) \\ 331(42) \\ 398(8) \\ 162(17) \\ 435(63) \\ 239(25) \\ 235(81) \\ 368(21) \\ 343(21)$
Cl = CN Cl = CN Cl = COCl	439		Copper
$CI - COCH_{3}$ $CI - COCH_{3}$ $CI - COC_{6}H_{5}$ $CI - CI^{+}$ $CI - CIO$ $O_{3}CI - CIO_{4}$ $CI - F$ $O_{3}CI - F$ $CI - NCI$ $CI - NCI_{2}$ $CI - NF_{2}$ $CI - NH_{2}$ $CI - NO$ $CI - NO_{2}$ $CI - O$	$\begin{array}{c} 349.4\\ 310(13)\\ 393\\ 143.3(42)\\ 243\\ 250.54(8)\\ 255\\ 389(50)\\ 280\\ 381\\ ca. 134\\ 251(25)\\ 159(6)\\ 142(4)\\ 272(4)\\ \end{array}$	Cu - Cu $Cu - Br$ $Cu - Cl$ $Cu - F$ $Cu - Ge$ $Cu - H$ $Cu - H$ $Cu - I$ $Cu - Ni$ $Cu - O$ $Cu - S$ $Cu - Se$ $Cu - Sn$ $Cu - Te$	202(4) 331(25) 383(21) 431(13) 216(15) 209(21) 280(8) 197(21) 206(17) 343(63) 285(17) 293(38) 177(17) 176(38)
0C1—0 0 ₂ C1—0	243(13) 201(4)		Curium
Cl—P Cl—SiCl ₃	289(42) 464	Cm—O	736
Chi	romium	-	Dysprosium
Cr—Cr Cr—Br Cr—Cl	155(21) 328(24) 366(24)	Dy—F Dy—O Dy—Se Dy—Te	527(21) 611(42) 322(42) 234(42)

TABLE 1.36 Bond Dissociation Energies (Continued)

	$\Delta H f_{298},$	Dond	$\Delta H f_{298},$
Bond	KJ/III0I	Bolid	KJ/IIOI
	Erbium	Galli	um (continued)
Er—F Er—O Er—S Er—Se	565(17) 611(13) 418(42) 326(42)	Ga—O Ga—P Ga—Sb Ga—Te	285(63) 230(13) 209(13) 251(25)
Er—Te	239(42)	(Germanium
	Europium	Ge-Ge	274(21)
Eu—Eu Eu—Cl Eu—F Eu—O Eu—S Eu—Se Eu—Se Eu—Te	33.5(165) ca. 326 528(18) 557(13) 364(15) 301(15) 243(15) Fluorine	$ \begin{array}{c} Ge \longrightarrow Br \\ Ge \longrightarrow Cl \\ Ge \longrightarrow F \\ Ge \longrightarrow H \\ Ge \longrightarrow O \\ Ge \longrightarrow S \\ Ge \longrightarrow Se \\ Ge \longrightarrow Si \\ Ge \longrightarrow Te \end{array} $	255(29) $431.8(4)$ $485(21)$ $321.3(8)$ $662(13)$ $551.0(25)$ $490(21)$ $301(21)$ $402(8)$
F—F	156.9(96)		C-14
$\begin{array}{c} F - F^{+} \\ F - CH_{3} \\ F - C(CH_{3})_{3} \\ F - C_{6}H_{5} \\ F - CCl_{3} \\ F - CCl_{2}F \\ F - CCI_{2}F \\ F - CF_{3} \\ F - FO \\ F - FO \\ F - FO \\ F - NF \\ F - NO \\ F - NO \\ F - NO \\ \end{array}$	>251 452(21) 439 485 444(21) 460(25) 490(25) 523(17) 498 272(13) 81.0 301(42) 318(25) 243(8) 235.6(42) 197(25) Gadolinium	Au—Au Au—B Au—Be Au—Bi Au—Cl Au—Co Au—Cr Au—Cc Au—Cc Au—Ga Au—Ge Au—Ge Au—H Au—La Au—Li Au—Mg Au—Mn Au—Ni	221.3(21) 368(11) 285(8) 293(84) 343(10) 215(13) 215(6) 232(9) 187(17) 294(15) 277(15) 314(10) 80(5) 68.0(16) 243(42) 185(13) 274(21)
Gd—F Gd—O Gd—S Gd—Se	590(27) 716(17) 525(15) 431(15) Gallium	Au - Pb $Au - Pd$ $Au - Rh$ $Au - S$ $Au - Si$ $Au - Sn$ $Au - Te$	130(42) 143(21) 231(29) 418(25) 312(12) 244(17) 247(67)
Ga - Ga Ga - Br $(CH_3)_3 Ga - CH_2$	138(21) 444(17) 253	Au—U	318(29) Hafnium
Ga—Cl Ga—F Ga—H Ga—I	481(13) 577(15) <274 339(10)	Hf—C Hf—N Hf—O	548(63) 534(29) 791(8)

TABLE 1.36 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}$, kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol	
Hydrogen		Hydrogen (a	Hydrogen (continued)	
н—н	436.002(4)	H—CHCl	414.2	
$H^{-2}H$ or $H^{-}D$	439.446(4)	H-CCl ₂	377(8)	
^{2}H — ^{2}H or D—D	443.546(4)	H-CBr ₂	377(8)	
H—Br	365.7(21)	H-CCl ₂ CHCl ₂	393(8)	
H—C	337.2(8)	H—CH ₂ F	423(8)	
н—сн	452(33)	H-CHF ₂	423(8)	
H—CH ₂	473(4)	$H - CF_2$	444(13)	
H—CH ₂	431(8)	H-CE ₂ Cl	435(4)	
$^{2}H - C^{2}H_{a}$ or D - CD	442,75(25)	H-CH ₂ CE ₂	446(45)	
H—C≡CH	523(4)	H—CE-CH-	416(4)	
H-CH=CH.	427	H-CF-CF-	431(63)	
H-CH-CH-	410(4)	H—CH-I	431(8)	
H-CH-C=CH	392 9(50)	H—CHI.	431(8)	
H - CH - CH = CH	356	H-CN	540(25)	
H—cyclopropyl	423(13)	H-CH CN	ca 389	
н—сн сн сн	410(8)	H—CH(CH)CN	377(8)	
H = CH(CH)	305 /	H = C(CH) CN	364(8)	
H—evelobutyl	307(13)	H = CH NH	307(8)	
	360	$H \rightarrow CH Si(CH)$	<i>414(4</i>)	
H = CH(CH) CH CH	307(4)		414(4) 303(75)	
$H = C(CH_3)CH_2CH_3$	291	$H = Cl_2 COCH_3$	393(73) A21 9(A)	
$H = C(CH_3)_3$	301		431.0(4)	
ч	339(4)		120(8)	
n-	555(1)		304(4) 277	
-			377	
CH=CH ₂			304(4)	
H—CH	335(4)	n-coch ₂ ch ₃	304(4)	
CH=CH.				
~ ~		н— Д	385	
u	343(4)		· · · · ·	
n –	545(4)	H-COC ₆ H ₅	364(4)	
		H-COCF ₃	381(8)	
H-CH ₂ CH ₃		H—F	568.6(13)	
Ç.	414(4)	H—I	298.7(8)	
CH, CH,		H—N	314(17)	
3 3		H—NH	377(8)	
$H - C(CH_3)_2 CH = CH_2$	331	H—NH ₂	435(8)	
H—cyclopentyl	395(42)	H—NHCH ₃	431(8)	
$H-CH_2C(CH_3)_3$	418(4)	$H - N(CH_3)_2$	397(8)	
$H - C_6 H_5$	431	H-NHC ₆ H ₅	335(13)	
$H-CH_2C_6H_5$	356(4)	$H - N(CH_3)C_6H_5$	310(13)	
$H - C(C_6H_5)_3$	314	HNF ₂	318(13)	
		H-N ₃	356	
н— ()	310	H-NO	<205	
\ <u></u> /		Н—О	428.0(21)	
H—cyclohexyl	399.6(42)	Н—ОН	498.7(8)	
H—cycloheptyl	387.0(42)	H-OCH ₃	436.8(42)	
H—norbornyl	406(13)	H-OCH ₂ CH ₃	436.0	
H—CH ₂ Br	410(25)	H—OC(CH ₃) ₃	439(4)	
H-CHBr ₂	435	H-OC ₆ H ₅	368(25)	
H-CH ₂ Cl	423	H-ONO	327.6(25)	

TABLE 1.36 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298},$ kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol
Hydrogen (continued)		Iridiu	m
H—ONO₂ H—OOH	423.4(25) 374(8)	Ir—O Ir—Si	352(21) 463(21)
$H = OOCCH_3$ $H = OOCCH_2CH_3$	469(17) 460(17)	Iron	
$H - OOCC_{3}H_{7}$ $H - P$ $H - S$ $H - SH$ $H - SCH_{3}$ $H - Se$ $H - Si$	431(17) 343(29) 344(12) 381(4) ca. 368 305(2) 298,49(46)	Fe—Fe Fe—Br Fe—Cl Fe—O Fe—S Fe—Si	100(21) 247(96) ca. 352 409(13) 339(21) 297(25)
$H - SiH_3$ $H - Si(CH_3)_3$	393(13) 377(13)	Krypt	on
H—Te 268(2) Indium		- Kr—Kr Kr—F	5.4(8) 54
In—In	100(8)	Lanthar	num
In—Br In—Cl In—F In—O In—P In—S In—Sb	418(21) 439(8) 506(15) 360(21) 197.9(85) 289(17) 152(11)	La—La La—C La—F La—N La—O La—S	247(21) 506(63) 598(42) 519(42) 799(13) 577(25)
In—Se In—Te	247(17) 218(17)	Lead	1
Iodin	e	Pb—Pb	339(25)
$I-I \\ I-Br \\ I-CH_3 \\ I-C_2H_5 \\ I-CH(CH_3)_2 \\ I-CI(CH_3)_3 \\ I-CH_2CF_3 \\ I-CF_2CH_3 \\ I-CF_2CH_3 \\ I-C_3F_7$	152.549(8) 179.1(4) 232(13) 223.8 222 207.1 234(4) 216(4) 209(4)	$\begin{array}{c} Pb - Br \\ Pb(CH_3)_3 - CH_3 \\ Pb - Cl \\ Pb - F \\ Pb - H \\ Pb - H \\ Pb - I \\ Pb - O \\ Pb - S \\ Pb - Se \\ Pb - Te \end{array}$	247(38) $207(42)$ $301(29)$ $356(8)$ $176(21)$ $197(38)$ $378(4)$ $346.0(17)$ $303(4)$ $251(13)$
I-CH=CHCH ₃ I-C ₆ H ₅	172 268(4)	Lithiu	ım
$I - C_6 F_5 I - Cl I - COCH_3 I - CN I - F I - N I - NO I - NO I - NO I - O$	276 213.3(4) 219.7 305(4) 280(4) 159(17) 71(4) 75(4) 184(21)	$\begin{array}{c} \text{Li} & -\text{Li} \\ \text{Li} & -\text{Br} \\ \text{Li} & -\text{Cl} \\ \text{Li} & -\text{F} \\ \text{Li} & -\text{H} \\ \text{Li} & -\text{H} \\ \text{Li} & -\text{I} \\ \text{Li} & -\text{Na} \\ \text{Li} & -\text{O} \\ \text{Li} & -\text{OH} \end{array}$	$\begin{array}{c} 106(4) \\ 106(4) \\ 423(21) \\ 469(13) \\ 577(21) \\ 247 \\ 352(13) \\ 88 \\ 341(6) \\ 427(21) \end{array}$

TABLE 1.36 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298},$ kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol
Lutetium		Molyt	odenum
Lu—Lu Lu—F Lu—O Lu—S Lu—Te	142(34) 569(42) 695(13) 507(15) 326(17)	Mo—I Mo—O MoO—O MoO ₂ —O	372 607(34) 678(84) 565(84) ymium
Magnesiur Mg—Mg Mg—Br Mg—Cl Mg—F MgF—F	n 8.522(4) 297(63) 318(13) 462(21) 569(42)	- Nd—F Nd—O Nd—S Nd—Se Nd—Te	545(13) 703(34) 474(15) 385(17) 305(17)
Mg—H Mg—I Mg—O	197(50) ca. 285 394(35)	Ne—Ne	eon 3.93
Mg—OH Mg—S	238(21) 310(75)	Nept	unium
Manganes	e	Np—O	720(29)
Mn—Mn Mn—Br Mn—Cl Mn—F Mn—I Mn—Cu Mn—O Mn—S Mn—Se Mn—Se Mn—Se	42(29) 314(10) 361(10) 423(15) 283(10) 159(17) 402(34) 301(17) 201(13)	Ni—Ni Ni—Br Ni—Cl Ni—F Ni—H Ni—I Ni—O Ni—S Ni—Si	ckel 261.9(25) 360(13) 372(21) 435 289(13) 293(21) 391.6(38) 360(21) 318(17)
$H_{g}-H_{g}$ $H_{g}-B_{r}$ $CH_{3}-H_{g}CH_{3}$ $CH_{4}-H_{g}CH_{4}$	17.2(21) 72.8(42) 240.6 182.8(42)	Nio Nb—O	bium 753(13)
$C_{3}H_{7} - HgC_{3}H_{7}$ Isopropyl - Hgisopropyl $C_{6}H_{5} - HgC_{6}H_{5}$ Hg - Cl Hg - F Hg - H Hg - H Hg - K Hg - Na Hg - S Hg - Se Hg - Te	$ \begin{array}{r} 197.1 \\ 170.3 \\ 285 \\ 100(8) \\ 130(38) \\ 39.8 \\ 38 \\ 8.24(21) \\ > 6.7 \\ 213 \\ (167) \\ (142) \end{array} $	$\begin{tabular}{ c c c c }\hline & & & & & \\ \hline & & & & & \\ N & & & & & \\ N & & & & & \\ ON & & & & & \\ F & & & & & \\ F & & & & & \\ F & & & &$	rogen 945.33(59) 276(21) 28.7(15) 389(50) 159(6) 142(4) 301(42) 318(21) 243(8) 236(4) 188(21)

TABLE 1.36 Bond Dissociation Energies (Continued)

Bond	$\Delta H f_{298}$, kJ/mol	Bond	$\Delta H f_{298}$, kJ/mol
Nitrogen (continued)		Oxygen (continued)	
N—I	159(17)	$C_2H_5O-OC_2H_5$	159
$F_2N - NF_2$	88(4)	$C_3H_7O-OC_3H_7$	155
$H_2N - NH_2$	297(8)		
H_2N —NHC H_3	271	Palladium	
$H_2N - N(CH_3)_2$	264	DI O	
$H_2N - NHC_6H_5$	213	Pd=0	234(29)
$HN - N_2$	38	Dhaanharus	
ON-N	480.7(42)	Filosphorus	
$ON - NO_2$	39.8(8)	PP	400(11)
$O_2 N - N O_2$	57.3(21)	P-Br	266 5
	456(42)	P-C	513(8)
N=N	946		289(42)
N=0	630.57(13)	P—F	439(96)
HN=0	481	Р—Н	3/3(20)
NN-O	167	P 11 P-N	5+3(29) 617(21)
UN-U	305		596.6
N—P	617(21)	Br P=0	408(21)
N—S	464(21)	$G_1 P = 0$	498(21) 510(21)
		E P = 0	510(21) 544(21)
Osmium		$P_3 = 0$	344(21) 3460(17)
	201/21)		240.0(17) 247
0308-0	301(21)		262(10)
Oxygen		P—Te	298(10)
	· · · · · · · · · · · · · · · · · · ·		
0—0	498.34(20)	Platinum	
O—Br	235.1(4)		
HO—CH ₃	377(13)	Pt—B	478(17)
$HO-CH=CH_2$	364	Pt—H	352(38)
$HO-CH_2CH=CH_2$	456	Pt-O	347(34)
$HO-C_6H_5$	431	Pt—P	417(17)
$HO-CH_2C_6H_5$	322	Pt—Si	501(18)
но-сно	402(13)	Determine	
HO-COCH ₃	452(21)	Potassium	
$HO - COC_2H_5$	180	<i>v</i> _ <i>v</i>	57 2(42)
0—Cl	272(4)		292(9)
HO-CI	251(13)		JOJ(0)
0—F	222(17)		427(8)
0—F0	467		497.3(23)
FO—OF	261(84)		103(13) 221(12)
0—1	184(21)		551(15) 63 6(20)
HO—I	234(13)		220(24)
0—N	630.57(13)		239(34)
$HO - NCH_3$	209	к—Оп 	343(8)
$HO - OC(CH_3)_3$	192(8)	Drasaodumium	
HO—OH	213.8(21)	Flaseouyinum	
	268(4)	Pr-F	582(46)
$CF_3 U = U CF_3$	192	Pr—O	753(17)
$CH_3O - OCH_3$	157.3(8)	Pr—S	492.5(46)

	$\Delta H f_{298},$		$\Delta H f_{298},$		
Bond	kJ/mol	Bond	kJ/mol		
Praseodymi	um (<i>continued</i>)	Scandium	Scandium		
Pr—Se	446(23)	Sc—Sc	163(21)		
PrTe	326(42)	Sc—Br	444(63)		
		- Sc-C	393(63)		
Pror	nethium	Sc—Cl	318		
		Sc—F	589(13)		
Pm—F	540(42)	Sc—N	469(84)		
Pm-O	6/4(63)	Sc—O	674(13)		
Pm—S	423(63)	sc-s	478(13)		
Pm—Se	339(03)	Sc—Se	385(17)		
	233(03)	Sc—le	289(17)		
R	adium	Selenium			
Ra—Cl	343(75)	Se—Se	332.6(4)		
DL	a dium	Se—Br	297(84)		
KI	louium	Se-C	582(96)		
Rh-Rh	285(21)	Se-Cl	322		
Rh—B	476(21)		339(42) 305(2)		
Rh—C	583.7(63)		303(2)		
Rh—O	377(63)		301(03) 422(12)		
Rh—Si	395(18)	SeP	$\frac{423(13)}{364(10)}$		
Rh—Ti	391(15)	Se-S	381(21)		
		- Se-Si	531(25)		
Ru	bidium	Se—Te	268(8)		
Rb—Rb	45.6(21)	Silicon			
Rb—Br	389(13)				
Rb—Cl	448(21)	Si—Si	327(10)		
Rb—F	494(21)	Si—Br	343(50)		
Rb—H	167(21)	Si-C	435(21)		
Rb—I	335(13)	Si—Cl	456(42)		
Rb—O	255(84)	Si—F	540(13)		
KD-OH	351(8)	Si—H	298.49(46)		
Dut	hanium	Si—I	339(84)		
Kut	nemum		439(38)		
Ru—O	481(63)	Si-O	798(8)		
$\Omega_{n}R_{11}=0$	439	<u>S1-S</u>	619(13)		
Ru—Si	397(21)	51—5e	331(23) 220(17)		
Ru—Th	592(42)	$\Pi_3 SI = SI \Pi_3$	339(17)		
		$- (CII_3)_3 SI - SI(CII_3)_3 $	368(31)		
Sar	narium	Si—Te	506(38)		
Sm—Cl	423(13)	Silver			
Sm—F	531(18)				
Sm—O	619(13)	Ag—Ag	163(8)		
sm—s	389	Ag—Au	203(9)		
Sm—Se	331(15)	Ag—Bi	193(42)		
sm—1e	272(15)				

TABLE 1.36 Bond Dissociation Energies (Continued)

	A TTC		A TT/:
	$\Delta H f_{298}$,	D 1	$\Delta H f_{298}$,
Bond	KJ/mol	Bond	KJ/mol
Silver (continued)		Tantalum	
Ag-Br	293(29)	Ta-N	611(84)
Ag—Cl	341 4	Ta-O	805(13)
Ag—Cu	176(8)	14 0	005(15)
Ag—E	354(16)	т	ellurium
Ag—Ga	180(15)		
Ag Ga	175(21)	Te-B	354(20)
Ag—Ue	175(21)		268(2)
Ag—n	220(8)		103(42)
Ag—1	234(29)		195(42)
Ag—In	176(17)		391(8)
Ag—O	213(84)	Te-P	298(10)
Ag—Sn	136(21)	Te—S	339(21)
Ag—Te	293(96)	Te—Se	268(8)
Sodium			Terbium
Na—Na	77.0	Tb—F	561(42)
Na-Br	370(13)	Tb—O	707(13)
Na-Cl	410(8)	Tb-S	515(42)
Na—F	481(8)	Th-Te	339(42)
	-101(0)		
NoI	201(21) 201(8)		Fhallium
Na K	501(6)		
	03.0(29)	T1T1	63
Na-O	257(17)	TIBr	333 0(17)
Na-OH	381(13)		272 8(21)
Na—Rb	59(4)		<i>372.</i> 6(21)
			443(19)
Strontium		TI-H TI-I	272(8)
Sr—Br	332(19)		
Sr—Cl	406(13)		Thorium
Sr—F	542(7)		
Sr—H	163(8)	Th—Th	289
Sr—I	263(42)	Th—C	484(25)
Sr—O	454(15)	Th-N	577.4(21)
Sr—OH	381(42)	Th—O	854(13)
Sr—S	314(21)	Th-P	377
Sulfur			 Fhullium
Sultu			
s—s	429(6)	Tm—F	569(42)
S—Cl	255	Tm—O	557(13)
S—F	343(5)	Tm—S	368(42)
O ₂ S—F	71	Tm—Se	276(42)
S—N	464(21)	Tm—Te	276(42)
s—o	521.70(13)		
OS—O	551.4(84)		Tin
O ₂ S—O	348.1(42)	Q., Q.,	105/17
HS—SH	272(21)	sn—sn	195(17)
		Sn—Br	339(4)

TABLE 1.36	Bond Dissociation	Energies	(Continued)	
------------	-------------------	----------	-------------	--

Bond	$\Delta H f_{298},$ kJ/mol		
Tin (continued)		Vanadium (a	continued)
BrSn—Br Br ₃ Sn—Br $(C_2H_5)_3$ Sn— C_2H_5 Sn—Cl Sn—F Sn—H	326 272 ca. 238 406(13) 467(13) 267(17)	V-Cl $V-F$ $V-N$ $V-O$ $V-S$ $V-Se$	477(63) 590(63) 477(8) 644(21) 490(16) 347(21)
Sn—I Sn—O Sn—S Sn—Se Sn—Te	234(42) 548(21) 464(3) 401.3(59) 319.2(8)	XeXe XeF XeO	6.53(30) 13.0(4) 36.4
Titani	um		ium
Ti—Ti Ti—Br Ti—C Ti—Cl Ti—F Ti—H	141(21) 439 435(25) 494 569(34) ca. 159	Yb-Cl Yb-F Yb-H Yb-O Yb-S	322 521(10) 159(38) 397.9(63) 167
Ti—I Ti—N	310(42) 464	Yttri	um
Ti—O Ti—S Ti—Se Ti—Te	662(16) 426(8) 381(42) 289(17)	$\begin{array}{c} Y - Y \\ Y - Br \\ Y - C \\ Y - Cl \end{array}$	159(21) 485(84) 418(63) 527(42)
Tungs	sten	Y-F Y-N	605(21) 481(63)
WCl WF WO OWO	423(42) 548(63) 653(25) 632(84) 598(42)	Y-O Y-S Y-Se Y-Te	715.1(30) 528(11) 435(13) 339(13)
WP	305(4)	Zin	c
Urani	um	Zn-Zn Zn-Br	29 142(29)
U—O OU—O O ₂ U—O U—S	761(17) 678(59) 644(88) 523(10)	$ \begin{array}{c} C_2H_5C-C_2H_5\\ Zn-Cl\\ Zn-F\\ Zn-H\\ Zn-H \end{array} $	ca. 201 229(20) 368(63) 85.8(21) 138(29)
Vanad	ium	Zn-O	284.1
V—V V—Br V—C	242(21) 439(42) 469(63)	Zn—S Zn—Se Zn—Te	205(13) 136(13) 205

TABLE 1.36 Bond Dissociation Energies (Continued)
Zin	rconium	Zirconiu	m (continued)
Zr—C	561(25)	Zr—O	760(8)
Zr-F	623(63)	Zr—S	575(17)
Zr—N	565(25)		

TABLE 1.36 Bond Dissociation Energies (Continued)

1.8 DIPOLE MOMENTS

The dipole moment is the mathematical product of the distance between the centers of charge of two atoms multiplied by the magnitude of that charge. Thus, the dipole moment (μ) of a compound or molecule is:

$$\mu = Q \times r$$

where Q is the magnitude of the electrical charge(s) that are separated by the distance r; the unit of measurement is the Debye (D)

All bonds between equal atoms are given zero values. Because of their symmetry, methane and ethane molecules are nonpolar. The principle of bond moments thus requires that the CH_3 group moment equal one H—C moment. Hence the substitution of any aliphatic H by CH_3 does not alter the dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedral angles are maintained.

Bond	Moment, D*	Bond	Moment, D*
н—с		C—N, aliphatic	0.45
Aliphatic	0.3	C=N	1.4
Aromatic	0.0	C≡N (nitrile)	3.6
С—С	0.0	NC (isonitrile)	3.0
C≡C	0.0	N—H	1.31
С—О		N—O	0.3
Ether, aliphatic	0.74	N=O	2.0
Alcohol, aliphatic	0.7	N (lone pair on sp^3 N)	1.0
C=0		C—P, aliphatic	0.8
Aliphatic	2.4	P—O	(0.3)
Aromatic	2.65	P=O	2.7
0—Н	1.51	P—S	0.5
C—S	0.9	P==S	2.9
C=S	2.0	B—C, aliphatic	0.7
S—H	0.65	В—О	0.25
S—O	(0.2)	Se—C	0.7
S=0		Si—C	1.2
Aliphatic	2.8	Si—H	1.0
Aromatic	3.3	Si—N	1.55

TABLE 1.37 Bond Dipole Moments

*To convert debye units D into coulomb-meters, multiply by 3.33564×10^{-30} .

Bond	Moment, D*	Bond	Moment, D*
H—Sb	-0.08	BrF	1.3
H—As	-0.10	Cl—F	0.88
НР	0.36	Li-C	1.4
н—і	0.38	K—Cl	10.6
H-Br	0.78	KF	7.3
H-Cl	1.08	Cs—Cl	10.5
H—F	1.94	Cs—F	7.9
C-Te	0.6		
N—F	0.17	Dative (coo	ordination) bonds
P—I	0.3		,
P-Br	0.36	$N \rightarrow B$	2.6
P-Cl	0.81	$O \rightarrow B$	3.6
As—I	0.78	$S \rightarrow B$	3.8
As—Br	1.27	$P \rightarrow B$	4.4
As—Cl	1.64	$N \rightarrow O$	4.3
As—F	2.03	P → O	2.9
SbI	0.8	S → O	3.0
Sb—Br	1.9	$As \rightarrow O$	4.2
Sb-Cl	2.6	$Se \rightarrow O$	3.1
S-Cl	0.7	$Te \rightarrow O$	2.3
Cl—O	0.7	$P \rightarrow S$	3.1
I—Br	1.2	$P \rightarrow Se$	3.2
I—Cl	1	$Sb \rightarrow S$	4.5
BrCl	0.57		

TABLE 1.38 Group Dipole Moments

*To convert debye units D into coulomb-meters, multiply by 3.33564×10^{-30} .

The group moment always includes the C—X bond. When the group is attached to an aromatic system, the moment contains the contributions through resonance of those polar structures postulated as arising through charge shifts around the ring.

1.8.1 Dielectric Constant

The *dielectric constant* (also referred to as the *relative permittivity*, K) is the ratio of the permittivity of the material to the permittivity of free space and is the property of a material that determines the relative speed with which an electrical signal will travel in that material.

$$K = \mathcal{E}_T / \mathcal{E}_0$$

Signal speed is roughly inversely proportional to the square root of the dielectric constant. A low dielectric constant will result in a high signal propagation speed and a high dielectric constant will result in a much slower signal propagation speed.

The *dielectric loss factor* is the tangent of the loss angle and the *loss tangent* (tan Δ) is defined by the relationship:

$$\tan \Delta = 2\sigma/\varepsilon v$$

 σ is the electrical conductivity, ε is the dielectric constant, and v is the frequency. The loss tangent is roughly wavelength independent.

	Dielectric	Dipole		Dielectric	Dipole
Substance	constant, ε	moment, D	Substance	constant, ε	moment, D
Air	1.000 536 4		GeClH ₃		2.13
AlBr ₃	3.38100	5.2	$H_2(g)$	1.000 253 8	0
Ar			t		
(g)	1.000 517 2		(lq)	1.279 ^{13.5 к} ,	
(lq)	1.538 ⁻¹⁹¹ ,		_	1.228 ^{20.4 K}	
	1.325-132	0	HBr(g)	$1.003 \ 13^{0}$	0.827
AsBr ₃	8.83 ³⁵	1.61	(lq)	$8.23^{-86}, 3.82^{25}$	
AsCl ₃	12.6^{20}	1.59	He (g)	1.000 0565 0	0
AsH ₃ (arsine)	$2.40^{-72}, 2.05^{20}$	0.20	(lq) (II)	1.055 ^{2.055 K}	
BBr ₃	2.58°	0	(III)		
BCl ₃		0	(IV)		
BF ₃		0	HCl (g)	1.0046°	1.109
B ₂ H ₆ (diborane)	$1.872^{-92.5}$	0	(lq)	14.3-114,	
B_4H_{10}	25	0.486		4.60^{28}	
B_5H_9	21.1^{25}	2.13	HCIO	20	1.3
$B_{6}H_{10}$		2.50	HCN	114.9^{20}	2.98
$B_3H_6N_3$	20	0	HCNO (isocyanate)		1.6
$\operatorname{Br}_{2}(g)$	1.0128^{20}		HCNS	0	1.7
(lq)	3.1484 ²⁵	0	HF	83.60	1.826
BrF ₃	106.825	1.1	HFO	0	2.23
BrF ₅	7.9124.5	1.51	HI (g)	1.002 340	0.448
$\operatorname{Cl}_{2}(g)$	15	0	(lq)	$3.87^{-55}, 2.90^{22}$	
(lq)	2.147-65,		HN ₃ (azide)		1.70
	1.91 ¹⁴		H_2O (see Table 1.12))	
ClF ₃	$4.394^{20}, 4.29^{23}$	0.554	H_2O_2	84.2°, 74.6 ¹⁷	1.573
ClF ₅	4.28-80		HNO ₃		2.17
CIO ₃ F	2.194-125	0.023	$H_2S(g)$	1.0040	0.97
CO (g)	1.000 70°	0.112	(lq)	5.9310	
(lq)	1 000 022	0	H_2Se	6060	0.24
$CO_2(g)$	1.000 922	0	HSO ₃ CI	60°°	
(lq)	1.60°C,*****,		HSO ₃ F	ca. 120^{-5}	
COCI	1.449-	1 17	H_2SO_4	100-	-0.2
	4.34	1.17	H ₂ Ie		<0.2
COF ₂	4 47-88	0.95	нg		0
COS	4.47	0.712	I ₂	11.1^{118}	0
COSE	5.47	0.75	IBr		0.726
CS	1.00200	1.98	IF		1.95
$CS_2(g)$	1.0029°	0	IF ₅	37.1320	2.18
(\mathbf{Iq})	2.032	0.47	IF ₇	1.97^{23}	
CIO_2CI_2	2.0 1 200-255	0.47	IOF ₅	1.75^{25}	
D_2 (deuterium)	1.290 ,		Kr (g)	152.4	< 0.05
חח	1.277 1.260 ^{16.78} K		(lq)	$1.644^{-153.4}$	
	1.209 70.75 ²⁰	1.97	Mn_2O_7	3.2820	
$D_{2}O$	19.15°, 78.25 ²⁵	1.67	Ne (g)	$1.000\ 063\ 9^{20}$	0
Б	1 401-220		(lq)	1.1907-247.1	
Γ_2	1.491 ,		$N_2(g)$	$1.000\ 548\ 0^{20}$	0
GaCl	1.34	0.85	(lq)	1.468^{-210} ,	
GaBr		0.65		1.454-203	
GeBr	2 05526		$NH_{3}(g)$	1.00720	1.471
GeOl	2.933	0	(lq)	22.4-33.5	
GeCl ₄	2.405 , 2.450 *	U		16.61 ²⁰	

TABLE 1.39 Dipole Moments and Dielectric Constants

Substance	Dielectric constant, ε	Dipole moment, D	Substance	Dielectric constant, ε	Dipole moment, D
N.H. (hydrazine)	52 9 ²⁰ 51 7 ²⁵	1.75	S-Cl. dimer	4 79 ¹⁵	1.0
Ni(CO)	52.9 , 51.7	1.75	S ₂ E ₂	1.77	1.0
NO		0.159	FSSF isomer		1.45
$N_2O(g)$	$1.001\ 13^{0}$	0.161	$S = SF_2$ isomer		1.03
(lg)	1.52^{15}		SF ₄		0.632
NO ₂		0.316	SF ₆	1.81^{-50}	0
N_2O_4	$2.56^{25}, 2.44^{20}$	0.5	S E	2 02020	0
N_2O_3		2.122	$S_2\Gamma_{10}$	1.0003^{0}	1.62
NOBr	13.4 ¹⁵	1.8	$3O_2(g)$	1.0093 16 3 ²⁵	1.05
NOCI	18.212	1.9	(iq)	10.5 3 11 ¹⁸	0
NO ₂ Cl		0.53	SOBr	9.06 ²⁰	0 11
NOF		1.73		0.25 ²⁰ 8.675 ²⁵	9.11
NO ₂ F		0.47	SOE ₂	9.23 , 8.075	1.45
NO ₃	31.13 ⁻⁷⁰		SO CL	0 15 ²⁰	1.05
$O_2(g)$	$1.000\ 494\ 7^{20}$	0	SO E).15	1.01
(la)	1 568-218.7		SbCl	33 275	3.93
(Iq)	1.500^{-193}		SbCl.	$3 2 2^{20}$	0
0.	4 75 ⁻¹⁸³	0 534	SbEr	5.22	0
OF.	1.75	0.297	SbH		0.12
$O_{2}E_{2}$ (FOOF)		1 44	Se (la)	5 44 ^{237.5}	0.12
$O_{2}O_{2}O_{1}$		0	SeF4	5.11	1.78
P(la)	4.096^{34}	0	SeF ₄		0
PBr ₂	3.920	0.56	SeOCh	46.2^{20}	2.64
PCl ₂	3.43^{25} , 3.50^{17}	0.78	SeO ₂		2.62
PCl	$2.85^{160}, 2.7^{165}$	0.9	SiCl	2.248°	0
PCl ₂ F ₂	2.813^{-45}		SiF		0
PCl ₃ F ₂	2.375^{-5}		SiH4		0
PCl ₄ F	$2.65^{0.5}$		SiHCl ₃		0.86
PF ₃		1.03	SiH ₃ Cl		1.31
PF ₅		0	SnBr ₄	3.169^{30}	0
PH ₃	2.9^{15}	0.574	SnCl ₄	$3.014^0, 2.89^{20}$	0
PI ₃	4.12^{65}	0	TeF ₆		0
PO ₃			TiCl ₄	$2.843^{14}, 2.80^{20}$	0
POCl ₃	13.7^{25}	2.54	$UF_{6}(g)$	1.002 9267	0
POF ₃		1.868	(lq)	2.18^{65}	
PSCl ₃	5.8^{22}	1.42	VCl ₄	3.05^{25}	0
PSF ₃		0.64	VOBr ₃	3.6^{25}	
PbCl ₄	2.78^{20}		VOCl ₃	3.4 ²⁵	0.3
ReO ₂ Cl ₃			Xe (g)	1.001 23	0
ReO ₃ Cl	104		(lq, II)	$1.880^{-111.9}$	
S	3.499		XeF ₆	4.10^{125}	
SCl ₂	2.91525	0.36			

TABLE 1.39 Dipole Moments and Dielectric Constants (Continued)

1.9 MOLECULAR GEOMETRY

Molecular geometry is the specific three-dimensional arrangement of atoms and the positions of the atomic nuclei in a molecule.

Various instrumental techniques such as x-ray crystallography and other experimental techniques can be used to derive information about the locations of atoms in a molecule.

Thus, molecular geometry is associated with the specific orientation of bonding atoms. A careful analysis of electron distribution in various orbitals will usually result in correct determination of the molecular geometry.

TABLE 1.40 Spatial Orientation of Common Hybrid Bonds

On the assumption that the pairs of electrons in the valency shell of a bonded atom in a molecule are arranged in a definite way which depends on the number of electron pairs (coordination number), the geometrical arrangement or shape of molecules may be predicted. A multiple bond is regarded as equivalent to a single bond as far as molecular shape is concerned.

Coordination number	Orbitals hybridized	Geometrical arrangement	Minimum radius ratio
	sp dp	Linear	
2	$ \begin{array}{c} p^2\\ ds\\ d^2 \end{array} $	Bent (angular)	
_	sp^2 ds^2	Trigonal planar	0.155
3	p^3 d^2p	Trigonal pyramidal	-
	$\frac{sp^2d}{p^2d^2}$	Square planar	
4	sp^3 d^3s	Tetrahedral	0.225
	<i>d</i> ⁴	Tetragonal pyramidal	
5	sp ³ d d ³ sp	Trigonal bipyramidal	0.155
6	d ² sp ³	Octahedral	0.414
	d ⁴ sp	Trigonal prism	
7		One atom above the face of an octahedron, which is distorted chiefly by separating the atoms at the cor- ners of this face.	0.592
8	d ⁴ sp ³	Square antiprism (dodec- ahedral)	0.645
		Cube	0.732
9		Formed by adding atoms beyond each of the vertical faces of a right triangular prism.	0.732
12		Cube-octahedron	1.000

 TABLE 1.41
 Crystal Lattice Types

TABLE 1.42 Crystal Structure

System	Characteristics	Essential symmetry	Axes in unit cell	Angles in unit cell
Cubic	Three axes equal and mutually perpendicular	Four threefold axes	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	Two equal axes and one un- equal axis mutually perpen- dicular	One fourfold axis	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Orthorhombic (or rhom- bic)	Three unequal axes mutually perpendicular	Three mutually perpendicular twofold axes, or two planes inter- secting in a two- fold axis	<i>a</i> ≠ <i>b</i> ≠ <i>c</i>	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal or trigonal	Three equal axes inclined at 120° with a fourth axis un- equal and perpendicular to the other three	One sixfold axis or one threefold axis	$a = b \neq c$ $a = b = c$	$\alpha = \beta = 90^{\circ};$ $\gamma = 120^{\circ}$ $\alpha = \beta = \gamma \neq 90^{\circ}$
Monoclinic	Two axes at an oblique angle with a third perpendicular to the other two	One twofold axis or one plane	$a \neq b \neq c$	$\alpha = \beta = 90^{\circ};$ $\gamma \neq 90^{\circ}$
Triclinic	Three unequal axes intersecting obliquely	No planes or axes of symmetry	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Rhombohedral	Two equal axes making equal angle with each other			

Unit cells of the different lattice types in each system are illustrated in Table 1.41

1.10 NUCLIDES

The nuclide is the nucleus of a particular isotope.

TABLE 1.43Table of Nuclides

Explanation of Column Headings

Nuclide. Each nuclide is identified by element name and the mass number *A*, equal to the sum of the numbers of protons *Z* and neutrons *N* in the nucleus. The *m* following the mass number (for example, ^{69m}Zn) indicates a metastable isotope. An asterisk preceding the mass number indicates that the radionuclide occurs in nature. *Half-life*. The following abbreviations for time units are employed: y = years, d = days, h = hours, min = minutes, s = seconds, ms = milliseconds, and ns = nanoseconds.

Natural abundance. The natural abundances listed are on an "atom percent" basis for the stable nuclides present in naturally occurring elements in the earth's crust.

Thermal neutron absorption cross section. Simply designated "cross section," it represents the ease with which a given nuclide can absorb a thermal neutron (energy less than or equal to 0.025 eV) and become a different nuclide. The cross section is given here in units of barns (1 barn = 10^{-24} cm²). If the mode of reaction is other than (n, γ) , it is so indicated.

Major radiations. In the last column are the principal modes of disintegration and energies of the radiations in million electronvolts (MeV). Symbols used to represent the various modes of decay are:

α , alpha particle emission	K, electron capture
β^{-} , beta particle, negatron	IT, isomeric transition
β^{+} , positron	x, X-rays of indicated element (e.g., O-x,
γ , gamma radiation	oxygen X-rays, and the type, K or L)

For β^- and β^+ , values of E_{max} are listed. Radiation types and energies of minor importance are omitted unless useful for identification purposes.

			Natural	Cross	
Element	А	Half-life	%	barns	Radiation (MeV)
Hydrogen	1 2		99.985(1) 0.015(1)	0.332(2) 0.000 52(1)	
	3	12.32 y			$\beta^{-}(0.0186)$
Beryllium	7 9	53.28 d	100	0.008(1)	K , $\gamma(0.478)$
n	10	1.52 × 10° y	10.0(2)	0007(10)(р (0.555)
Boron	10		80.1(6)	0.005(3)	
Carbon	11	20.3 min	08 80(1)	0.0025(1)	$\beta^{+}(0.961)$
	12	5715 y	98.89(1)	0.0055(1)	β ⁻ (0.156)
Nitrogen	13	9.965 min			$\beta^{+}(1.190)$
5	14		99.634(9)	1.8(1)(n, p)	
Oxygen	15 19	122.2 s 26.9 s			$\beta^+(2.754)$ $\beta^-(4.82); \gamma(0.197, 1.357)$
Fluorine	18	1.8295 h			β ⁺ (0.635); K, O-x
	19 20	11.00 s	100	0.0095(7)	$\beta^+(2.754)$ $\beta^-(5.40); \gamma(1.63)$
Sodium	22	2.605 y		2800.(300)(n, p)	$\beta^+(0.545, 1.83);$ K, Ne-x, $\gamma(1.275)$
	23		100	0.53	N (1.275)
	24	14.659 h			$\beta^{-}(1.39); \gamma(2.75, 1.37)$
Magnesium	24		78.89(3)	0.053(6)	
	25 27	9.45 min	10.00(1)	0.17(5) 0.07(2)	$\beta^{-}(1.75, 1.59); \gamma(0.844, 1.014)$
	28	20.90 h			$\beta^{-}(0.459); \gamma(1.342, 0.942, 0.401, 0.031)$
Aluminum	26	7.1 × 10⁵ y			$\beta^+(1.16);$ K, Mg-x; $\gamma(1.809)$
	27		100	0.230(2)	
	28	2.25 min			$\beta^{-}(2.865); \gamma(1.778)$
Silicon	28		92.23(2)	0.17(1)	
	29 30		4.07(2)	0.12(1) 0.107(4)	
	31	2.62 h	5.10(1)	0.073(6)	$\beta^{-}(1.471); \gamma(1.266)$
	32	$1.6 \times 10^{2} \text{ y}$			$\beta^{-}(0.213)$
Phosphorus	30 31	2.50 min	100	0.16(2)	$\beta^{+}(3.245)$
	32	14.28 d	100	0.10(2)	$\beta^{-}(1.710)$
	33	25.3 d			$\beta^{-}(0.249)$
Sulfur	32		95.02(9)	0.55(2)	
	35	87 51 d	4.21(6)	0.29(0)	$B^{-}(0.167)$
	37	5.05 min			$\beta^{-}(4.75, 1.64); \gamma(3.103, 0.908)$
	38	2.84 h			$\beta^{-}(1.00, 3.0); \gamma(1.942, 0.196)$

TABLE 1.43 Table of Nuclides (Continued)

			Natural	Cross	
Element	Α	Half-life	%	barns	Radiation (MeV)
Chlorine	35		75.77(5)	43.7(4)	
	36	$3.01 \times 10^{5} \text{ y}$	04.02/5	46.(2)	$\beta^{-}(0.709);$ K, S-x
	37	37.24 min	24.23(5)	0.4	$\beta^{-}(4.91, 1.11, 2.77);$ $\gamma(2.168, 1.642)$
	39	55.6 min			$\beta^{-}(1.91, 2.18, 3.45);$ $\gamma(1.267, 0.250, 1.52)$
Argon	37	35.0 d			K, Cl-x
	39	268 y			$\beta^{-}(0.565)$
	40	4	99.600(3)	0.64(3)	
	41	1.82 h		0.5(1)	$\beta^{-}(1.20, 2.49); \gamma(1.29)$
	42	33 y			β (0.60)
Potassium	39	1.96 1 100	93.258(4)	2.1(2)	
	*40	$1.26 \times 10^{9} \text{ y}$	0.0117(1)	30.(8)	$\beta^{-}(1.312); K, Ar-x;$ $\gamma(1.461)$
	41	10.000.1	6.730(4)	1.46(3)	
	42	12.360 h			$\beta^{-}(3.523, 1.97); \gamma(1.525)$
	45	22.5 11			$\begin{array}{c} \beta \ (0.823, \ 0.43, \ 1.24, \\ 1.814); \ \gamma (0.618, \ 0.373, \\ 0.39, \ 0.221) \end{array}$
Calcium	40		96.941(18)	0.41(3)	
	42	$1.02 \times 10^{5} \text{ y}$		≈4	
	43	-	0.135(6)	6.(1)	
	44		2.086(12)	0.8(2)	
	45	162.7 d		≈15	$\beta^{-}(0.257)$
	47 49	4.536 d 8.72 min			$\beta^{-}(1.98, 0.684); \gamma(1.297)$ $\beta^{-}(1.95, 0.89); \gamma(3.084, 4.07)$
Scandium	42 <i>m</i>	61.6 s			$\beta^+(2.82); \ \gamma(0.438, 1.227, 1.524)$
	43	3.89 h			$\beta^{+}(1.22)$
	44 <i>m</i>	2.442 d			IT, Sc-x; $\gamma(0.271)$
	44	3.927 h			$\beta^+(1.47); K, \gamma(1.16)$
	45		100	27	
	46m	19.5 s		9 (1)	$\gamma(0.142)$
	46	83.81 d		8.(1)	$\beta^{-}(0.357); \gamma(1.12, 0.889); Ti-x$
	47	3.341 d			$\beta^{-}(0.439, 0.60); \gamma(0.159)$
	48	1.821 d			$\beta^{-}(0.65); \gamma(1.31, 1.04, 0.984)$
Titanium	44	47.3 y			Κ, γ(0.68, 0.078)
	45	3.08 h			$\beta^+(1.044); K, Sc-x$
	48		73.72(3)	7.9(9)	
	49		5.41(2)	1.9(5)	
	50	5 76 min	5.18(2)	0.179(3)	Q-(2 14 1 50) (0 220
	51	3.70 mm			$p_{(2,14,1,50)}, \gamma_{(0,320,1)}, 0.928)$
Vanadium	48	16.0 d			$\beta^+(0.698); \gamma(0.511, 0.945, 0.983, 1.312, 2.24)$

			Natural	Cross	
Element	А	Half-life	abundance, %	section, barns	Radiation (MeV)
Vanadium	49	330 d			K, Ti-x
(cont.)	50	$>1.4 \times 10^{17} \text{ y}$	0.250(2)	40.(20)	
	51		99.750(2)	4.9(1)	
	52	3.75 min			$\beta^{-}(2.47); \gamma(1.434)$
Chromium	48	21.6 h			K, V-x; γ(0.116, 0.305)
	50	00.00	4.345(13)	15.(1)	TT XI (0.000)
	51	27.70 d	82 70(2)	0.9(1)	K, V-x; $\gamma(0.320)$
	52		9 50(2)	18 (2)	
Manaanaaa	55	46.0 min	9.50(2)	10.(2)	(2+(2,2)), $(2,0,7,4)$, $(1,15)$
Wanganese	52	40.2 mm 5 60 d			$\beta^{+}(2.2); \gamma(0.749, 1.13)$ $\beta^{+}(0.575); \gamma(0.511)$
	52	5.00 u			0.744, 1.434
	53	$3.7 imes 10^6 ext{ y}$		70.(10)	
	54	312.2 d		<10	γ(0.834)
	55		100	13.3(1)	
	56	2.5785 h			$\beta^{-}(1.028, 1.03, 0.718);$ $\gamma(0.847, 1.81, 2.11)$
Iron	52	8.275 h			β^+ (0.804); K, Mn-x; γ (0.169)
	54		5.85(4)	2.7(5)	
	55	2.73 у	01.75(4)	13.(2)	K, Mn-x
	50 57		91.75(4)	2.6(2)	
	59	44.51 d	2.12(1)	13.(3)	$\beta^{-}(0.273, 0.475); \gamma(1.10, 1.29)$
Cobalt	55	17.53 h			$\beta^+(1.04, 1.50);$ K, Fe-x; $\gamma(0.932, 0.480, 1.41)$
	56	77.3 d			$\beta^+(1.46);$ K, Fe-x; $\gamma(0.847, 1.04, 1.24, 1.77, 2.60, 3.26, 2.02)$
	57	271.77 d			K, Fe-x; $\gamma(0.136, 0.122)$
	58m	9.1 h		$1.4(1) \times 10^{5}$	γ(0.025)
	58	70.88 d		$1.9(2) \times 10^{3}$	K, $\beta^+(0.474)$; Fe-x; $\gamma(0.811)$
	59		100	19	
	60 <i>m</i> 60	10.47 min 5.271 y		58.(8) 2.0(2)	$\beta^{-}(1.55)$ $\beta^{-}(0.318); \gamma(1.173, 1.173)$
	61	1.650 h			$\beta^{-}(1.22); \gamma(0.842 - 0.909)$
Nickel	56	6.08 d			K, Co-x; γ(0.158, 0.270, 0.480, 0.75, 0.812, 1.56)
	57	35.6 h			K, β ⁺ (0.849, 0.712); Co- x, γ(1.378, 0.0127, 1.76)
	58		68.077(9)	4.6(4)	
	60		26.22(1)	2.9(3)	
	63	100 y		24.(3)	β-(0.067)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Nickel (cont.)	64		0.926(1)	1.8(1)	
	65	2.517 h		22.(2)	$\beta^{-}(2.14, 0.65, 1.020);$ $\gamma(1.48, 0.366, 1.116)$
	66	2.275 d			$\beta^{-}(0.23)$
Copper	61	3.408 h			β^+ (1.220); K, Ni-x; γ (0.283, 0.656)
	63		69.17(3)	4.5(2)	
	64	12.701 h		≈270	$\beta^{-}(0.578); \beta^{+}(0.65); \text{Ni-} x; \gamma(1.346)$
	65		30.83(3)	2.17(3)	
	66	5.07 min		$1.4(1) \times 10^{2}$	$\beta^{-}(2.74); \gamma(1.039)$
	67	2.580 d			$\beta^{-}(0.395, 0.484, 0.577);$ $\gamma(0.185, 0.092)$
Zinc	62	9.26 h			K, β ⁺ (0.66); Cu-x; γ(0.041, 0.597)
	64		48.6(3)	0.46	
	65	243.8 d		66.(8)	K, $\beta^+(0.325)$, Cu-x; $\gamma(1.116)$
	66		27.9(2)	1.0(2)	
	67		4.1(1)	6.9(1)	
	68		18.8(4)	0.87	
	69m	13.76 h			IT, Zn-x, γ(0.439)
	69	56 min			$\beta^{-}(0.905)$
	71m	3.97 h			$\beta^{-}(1.45); \gamma(0.386, 0.487, 0.620)$
	72	46.5 h			$\beta^{-}(0.30, 0.25); \gamma(0.145, 0.191)$
Gallium	66	9.5 h			$\beta^+(1.84, 4.153); \gamma(1.039, 2.752)$
	67	3.260 d			K, Zn-x; γ(0.093, 0.184, 0.300)
	68	1.130 h			β^+ (1.83); K, Zn-x; γ (1.077)
	69		60.108(9)	1.68(7)	
	70	21.1 min	00.000/0	1.5(2)	$\beta^{-}(1.65); \gamma(0.175, 1.042)$
	71	14 10 1	39.892(9)	4.7(2)	0-(0.64, 1.61, 0.60
	12	14.10 h			$\beta^{-}(0.64, 1.51, 2.52, 3.15); \gamma(0.63, 2.20, 2.50)$
	73	3.120 d			$B^{-}(1.59)$: $\gamma(0.053, 0.297)$
Germanium	66	2.66 h			K, $\beta^+(1.02)$; Ga-x;
	68	270.8.4			γ(0.044, 0.582) Ga K y
	69.	1.63 d			$\beta^+(0.70, 1.22); \gamma(1.107, 0.574)$
	71	11.2 d			Ga-x
	72		27.66(3)	0.9(2)	
	73		7.73(1)	15.(1)	
	74		35.94(2)	0.3	
	75	1.380 h			$\beta^{-}(1.19); \gamma(0.265, 0.419)$

			Natural	Cross	
Element	А	Half-life	abundance, %	barns	Radiation (MeV)
Germanium (cont.)	77	11.30 h			$\beta^{-}(0.71, 1.38, 2.19);$ $\gamma(0.211, 0.215, 0.264)$ $\beta^{-}(0.95); \gamma(0.277, 0.294)$
. .	70	1.43 1			$p(0.93); \gamma(0.277, 0.294)$
Arsenic	71	2.70 d 1.083 d			K, β'(0.81); Ge-x; γ (0.175, 1.096) β ⁺ (3.339, 2.498, 1.884); K, Ge-x; γ (0.834, 1.051)
	73	80.30 d			K, y(0.0534, 0.0133)
	74	17.78 d			$\beta^+(0.94); \beta^-(0.71, 1.35); \gamma(0.596, 0.635)$
	75		100	4.0(4)	
	76	1.096 d			$\beta^{-}(2.97, 2.41, 1.79);$ $\gamma(0.559, 0.657)$
	77	38.8 h			$\beta^{-}(0.683); \gamma(0.239, 0.250, 0.521)$
	/8	91 min			$\beta^{(4.21)}; \gamma(0.614, 0.70, 1.31)$
Selenium	72	8.40 d			K, As-x; $\gamma(0.046)$
	73	7.1 h	0.80(2)	50 (4)	$\beta^{+}(1.32); \gamma(0.361, 0.067)$
	74	119 78 d	0.69(2)	50.(4)	K. v(0.265, 0.136); As-x
	77m	17.5 s			$\gamma(0.162)$
	77		7.63(6)	42.(4)	
	80		49.61(10)	0.5	
	81	18.5 min			$\beta^{-}(1.58); \gamma(0.276, 0.290, 0.828)$
Bromine	75	1.62 h			$\beta^+(3.03); \gamma(0.287)$
	76	16.2 h		224.(42)	β^+ (1.9, 3.68); K, Se-x; γ (0.559, 1.86)
	77	2.376 d			γ(0.239, 0.521)
	79	4 40 h	50.69(7)	10.8	IT D
	80 <i>m</i> 80	4.42 n 17.66 min			$\beta^{-}(1.997, 1.38); K, \beta^{+}(0.85), Se-x; \gamma(0.617)$
	81		49.31(7)	2.6	
	82	1.4708 d			$\beta^{-}(0.444); \gamma(0.554, 0.619, 0.776)$
Krypton	76	14.8 h			K, γ(0.252)
	77	1.24 h			β ⁺ (1.875, 1.700, 1.550); K, Br-x; γ(0.130, 0.147)
	79	1.455 d			$\beta^+(1.626); \gamma(0.261, 0.398, 0.606)$
	81 <i>m</i>	13 s			IT, Kr-x; γ(0.190)
	81	$2.10 imes 10^5$ y	11 6(1)	102 (20)	K, Br-x; $\gamma(0.276)$
	83		11.5(1) 57.0(2)	183.(30)	
	04 85m	4 48 h	57.0(5)	0.10	B=(0.83); v(0.151_0.305)
	0.511				P (0.05), (0.151, 0.505)

TABLE 1.43 Table of Nuclides (Continued)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Krypton (cont.)	85 87	10.72 y 1.27 h			$eta^-(0.67); \ \gamma(0.517) \ eta^-(3.49, \ 0.389, \ 1.38); \ \gamma(0.403, \ 2.55)$
	88	2.84 h			β ⁻ (2.91); γ(0.196, 2.392)
Rubidium	84	32.9 d			$eta^{-}(0.894); \ eta^{+}(2.681); \ \gamma(0.882)$
	85		72.17(2)	0.5	
	86	18.65 d	07.00/0	< 20	$\beta^{-}(1.775); \gamma(1.08)$
	87	$4.88 \times 10^{10} \text{ y}$	27.83(2)	0.10(1)	$\beta^{-}(0.283)$
	88	1/./ min		1.2(3)	$\beta^{-}(5.31); \gamma(1.836, 0.898)$
	89	15.4 min			β (1.26, 2.2, 4.49); γ (1.032, 1.248, 2.196)
Strontium	82	25.36 d			K, Rb-x
	85 <i>m</i>	1.126 h			K, Rb-x, Sr-x; γ(0.150, 0.231)
	85	64.84 d			K, Rb-x; $\gamma(0.514)$
	87 <i>m</i>	2.795 h	00 50(1)	0.0058(4)	IT, $\gamma(0.388)$
	88	50 52 4	82.58(1)	0.0058(4)	R = (1, 40.7), - (0, 0.00)
	09 00	20.32 u		0.42(4)	β (1.497); γ (0.909) β =(0.546)
	91	9.5 h		0.0097(7)	$\beta^{-}(1.09, 1.36, 2.66);$ $\gamma(0.556, 0.750, 1.024)$
	92	2.71 h			$\beta^{-}(0.55, 1.5); \gamma(1.383)$
Yttrium	85 <i>m</i>	4.86 h			β^+ (2.24); K, Sr-x; γ (0.767, 0.232, 2.124)
	85	2.68 h			$\beta^+(1.58, 1.15);$ K, Sr-x; $\gamma(0.504, 0.232)$
	86	14.74 h			$\beta^+(5.24); \gamma(0.307, 0.628, 1.077, 1.153, 1.921)$
	87 <i>m</i>	12.9 h			Y-x; γ(0.381)
	88	106.6 d			$\beta^{-}(0.76); \gamma(0.898, 1.836, 2.734, 3.219)$
	90	2.67 d		<7	$\beta^{-}(2.28); \gamma(2.186)$
	91m	49.71 min		1 4(2)	Y-x; IT; $\gamma(0.556)$
	91	58.5 d		1.4(3)	$\beta^{-}(1.545); \gamma(1.21)$
	92	5.54 II			β (3.04); γ (0.448, 0.301, 0.934, 1.405)
	93	10.2 h			$\beta^{-}(2.88); \gamma(0.267, 0.947, 1.918)$
Zirconium	86	16.5 h			Κ, Υ-x; γ(0.243, 0.612)
	87	1.73 h			β^+ (2.260); K, Y-x; γ (0.381, 1.228)
	88	83.4 d			K, Y-x; γ(0.393)
	89	3.27 d			K, $\beta^+(0.897)$; Y-x; $\gamma(0.909)$
	91		11.22(4)	1.2(3)	
	93	$1.5 \times 10^{6} \text{ y}$			$\beta^{-}(0.091)$
	95	64.02 d			$\beta^{-}(0.366, 0.400);$ $\gamma(0.724, 0.757)$
	97	16.90 h			$\beta^{-}(1.91); \gamma(0.743)$

			Natural abundance.	Cross section.	
Element	А	Half-life	%	barns	Radiation (MeV)
Niobium	89 90	2.03 h 14.60 h			$\beta^+(3.320); \gamma(1.627)$ $\beta^+(1.50); K, Zr-x;$ $\gamma(0.141, 1.129, 2.186, 2.319)$
	91 <i>m</i>	62 d			IT, Nb-x; $\gamma(0.1045, 1.205)$
	91	700 у			Mo-x
	92m	10.15 d			Κ, γ(0.913, 0.934, 1.848)
	93m	16.1 y			Nb-x
	93		100	1.1	(0.0=1)
	94 <i>m</i> 94	6.26 min $2.4 \times 10^4 \text{ y}$			$\chi(0.871)$ $\beta^{-}(0.473); \ \gamma(0.703, 0.871)$
	95m	3.61 d			$\gamma(0.204, 0.236)$
	95	35.0 d		<7	$\beta^{-}(0.160); \gamma(0.765)$
	96	23.4 h			$eta^{-}(0.748, 0.500); \ \gamma(0.778, 1.091)$
	97 <i>m</i>	58.1 s			IT; γ(0.766)
	97	1.23 h			$\beta^{-}(1.267); \gamma(0.481, 0.658)$
Molybdenum	90	5.67 h			K, $\beta^+(1.085)$; Nb-x; $\gamma(0.122, 0.257)$
	93 <i>m</i>	6.85 h			IT, Mo-x; γ(0.264, 0.685, 1.477)
	95		15.92(5)	13.4(5)	
	97		9.55(3)	2.5(3)	
	98	0.75	24.13(7)	0.14(1)	0-(1.257) T
	99	2.75 d			$\beta^{-}(1.357); 1c-x;$
	101	14.6 min			$\beta^{-}(2.23, 0.7); \gamma(0.192, 0.591)$
Technetium	93	2.73 h			$\beta^+(0.81); \ \gamma(1.363, 1.477, 1.520)$
	94	4.88 h			$\beta^+(4.256); \gamma(0.449, 0.703, 0.850, 0.871)$
	95 <i>m</i>	61 d			$egin{array}{llllllllllllllllllllllllllllllllllll$
	95	20.0 h			K, Mo-x; γ(0.766, 1.074)
	96	4.3 d			K, Mo-x; γ(0.778, 0.813, 0.850, 1.122)
	97 <i>m</i>	90 d			K, Tc-x; γ(0.0965)
	97	$2.6 \times 10^{6} \text{ y}$			K, Mo-x
	98	$4.2 \times 10^{\circ} \text{ y}$			$\beta^{-}(0.40); \gamma(0.652, 0.745)$
	99 <i>m</i> 00	2.012 n 2.13 × 10 ⁵ v		20	$B^{-}(0.292)$
Ruthenium	99 95	1.64 h		20	$\beta^{+}(0.292)$ $\beta^{+}(1.20, 0.91); \gamma(0.290,$
	97	2.88 d			0.336, 0.627) K, Tc-x; γ(0.216, 0.324,
	100		12.6(1)	5.8(6)	0.461)
	100		(-)		

TABLE 1.43 Table of Nuclides (Continued)

			Natural	Cross	
Element	А	Half-life	abundance, %	barns	Radiation (MeV)
Ruthenium	101		17.0(1)	5.(1)	
(cont.)	102		31.6(2)	1.2(1)	
	103	39.27 d		<20	$\beta^{-}(0.12, 0.223); \gamma(0.295, 0.4444, 0.497, 0.557, 0.610)$
	105	4.44 h			$\beta^{-}(1.187, 0.11, 1.134);$ $\gamma(0.149, 0.263, 0.317, 0.469, 0.676, 0.724)$ $\beta^{-}(0.0394)$
	100	1.020 y			β (0.0594)
Rhodium	99m	4.7 h			$\beta^+(0.74); \gamma(0.277, 0.341, 0.618, 1.261)$
	99	16 d			$\beta^+(0.54, 0.68); \gamma(0.089, 0.353, 0.528)$
	100	20.8 h			$\beta^+(2.62, 2.07); \gamma(0.446, 0.540, 0.588, 0.823, 1.553, 2.376)$
	101 <i>m</i>	4.35 d			K, IT, Ru-x, Rh-x; γ(0.127, 0.307, 0.545)
	101	3.3 y			K, Ru-x; γ(0.127, 0.198, 0.325)
	102m	207 d			$\beta^{-}(1.15); \beta^{+}(1.29, 0.82);$ $\gamma(0.469, 0.475, 0.557, 0.628, 1, 103)$
	102	2.9 у			6.628, 1.105) K, Ru-x; γ(0.475, 0.631, 0.697, 0.767, 1.047, 1.103)
	103m 103	56.12 min	100	145	IT, Rh-x, γ(0.0.040)
	104m	4.36 min		800.(100)	$\gamma(0.051, 0.097, 0.556)$
	104	42.3 s		40.(30)	$\beta^{-}(2.44), \gamma(0.358, 0.556, 1.237)$
	105m	40 s			IT, Rh-x; $\gamma(0.130)$
	105	35.4 h		$1.1(3) \times 10^4$	$\beta^{-}(0.567, 0.247);$ $\gamma(0.280, 0.306, 0.319)$
	106m	2.18 h			$\beta^{-}(0.92); \gamma(0.222, 0.451, 0.512, 0.616, 0.717, 0.784, 1.046, 1.528)$
	106	29.80 s			$\beta^{-}(3.54, 3.0, 2.4);$ $\gamma(0.512, 0.622)$
Palladium	100	3.63 d			K, Rh-x; γ(0.0748, 0.0840, 0.0327)
	101	8.47 h			K, Rh-x; $\beta^+(0.776)$; $\gamma(0.296, 0.590)$
	103 105	16.99 d	22.33(8)	22.(2)	K, Rh-x; γ(0.357, 0.497)
	107	$6.5 imes 10^6 ext{ y}$		1.8(2)	$\beta^{-}(0.03)$
	108		26.46(9)	8.7	
	109	13.5 h			$\beta^{-}(1.028); \text{ Ag-x};$ $\gamma(0.088, 0.311, 0.636)$

			Natural	Cross	
Element	А	Half-life	abundance, %	barns	Radiation (MeV)
Palladium (cont.)	111m	5.5 h			$\beta^{-}(0.35, 0.77); \gamma(0.070, 0.172, 0.391)$
(,	111	23.4 min			$\beta^{-}(2.2); \gamma(0.060, 0.245, 0.580, 0.650, 1.389, 1.459)$
	112	21.4 h			$\beta^{-}(0.28); \gamma(0.018)$
Silver	103	1.10 h			$\beta^+(1.7, 1.3); \gamma(0.119, 0.148)$
	104	69 min			$\beta^+(0.99); \gamma(0.556, 0.926, 0.942)$
	105	41.29 d			K, Pd-x; γ(0.064, 0.280, 0.344, 0.443)
	106m	8.4 d			K, Pd-x; $\gamma(0.451, 0.512, 0.717, 1.046)$
	107m	44.2 8	51.839(7)	35	$\mathbf{K}, \mathrm{Ag-x}; \gamma(0.095)$
	108 <i>m</i> 108	130 y 2.42 min			$\gamma(0.434, 0.614, 0.723)$ $\beta^{-}(1.65); \beta^{+}(0.90);$ $\gamma(0.434, 0.619, 0.633)$
	109		48.161(7)	91	(0.454, 0.017, 0.055)
	110m	249.8 d		82.(11)	β (0.087, 0.530); IT, γ(0.658, 0.764, 0.885, 0.937, 1.384)
	111m	1.08 min			K, Ag-x; γ(0.060, 0.245)
	111 112	7.47 d 3.13 h		3.(2)	$\beta^{-}(1.04); \gamma(0.245, 0.342)$ $\beta^{-}(3.94, 3.4); \gamma(0.607, 0.617, 1.39)$
Cadmium	107	6.52 h			$\beta^+(0.302);$ K, Ag-x; $\gamma(0.093, 0.829)$
	109	462 d			K, Ag-x; $\gamma(0.088)$
	111m 111	48.5 min	12 80(8)	24 (3)	K, Cd-x; $\gamma(0.151, 0.245)$
	113m	14.1 y	12.00(0)	24.(3)	β-(0.59); γ(0.264)
	113	$9 \times 10^{15} \mathrm{y}$	12.22(6)	20 060.(40)	
	115m	44.6 d			$\beta^{-}(1.62); \gamma(0.934, 1.29, 0.485)$
	115	2.228 U			$\gamma(0.231, 0.260, 0.336, 0.492, 0.528)$
	117m	3.4 h			$\beta^{-}(0.72); \gamma(0.159, 0.553); In-x$
	117	2.49 h			β ⁻ (0.67, 2.2); γ(0.221, 0.273, 0.345, 1.303)
Indium	109	4.2 h			K, Cd-x; $\beta^+(0.79)$; $\gamma(0.203, 0.623)$
	110m 110	4.9 h 1.15 h			$\gamma(0.658, 0.885, 0.937)$ $\beta^+(2.22); K, Cd-x;$ $\gamma(0.658)$
	111	2.805 d			K, Cd-x; γ(0.171, 0.245)

TABLE 1.43 Table of Nuclides (Continued)

			Natural	Cross	
Element	А	Half-life	%	barns	Radiation (MeV)
Indium (cont.)	113m 114m 114	1.658 h 49.51 d 1.1983 min			IT, In-x; $\gamma(0.392)$ IT, K, In-x; $\gamma(0.190)$ $\beta^{-}(1.99)$; K, Cd-x, $\beta^{+}(0.40)$; $\gamma(0.558)$,
	115 <i>m</i>	4.486 h	05 71(2)	205	$\beta^{-}(0.83);$ K, In-x; $\gamma(0.336, 0.497)$
	116m	$4.4 \times 10^{-4} \text{ y}$ 54.1 min	95.71(2)	205	β (0.493) $\beta^{-}(1.00); \gamma(0.138, 0.417, 1.09, 1.293)$
	117m	1.94 h			$\beta^{-}(1.77); \gamma(0.159, 0.315, 0.553)$
	117	44 min			$\beta^{-}(0.74); \gamma(0.159, 0.397, 0.553)$
Tin	110 113 116	4.1 h 115.1 d	14.53(11)	≈9 1.1(1)	K, In-x; γ(0.283) K, In-x, γ(0.392, 0.255)
	117m 119m	13.60 d 293 d	0.50(4)	2(1)	K, Sn-x; γ(0.159) K, Se-x; γ(0.239)
	119 121 <i>m</i>	≈55 y	8.39(4)	2.(1)	$\beta^{-}(0.354);$ K, In-x; $\gamma(0.0372)$
	121 123	1.128 d 129.2 d			$\beta^{-}(0.383)$ $\beta^{-}(1.42); \gamma(0.160, 1.030, 1.089)$
	125 127	9.63 d 2.10 h			$\beta^{-}(2.35); \gamma(1.067)$ $\beta^{-}(2.42, 3.2); \gamma(0.823, 1.096)$
Antimony	115 116m	32.1 min 1.00 h			$egin{array}{llllllllllllllllllllllllllllllllllll$
	117 118m 118 119	2.80 h 5.00 h 3.6 min 38.1 h			$\beta^+(0.57); \gamma(0.159)$ $\gamma(0.254, 1.051, 1.280)$ $\beta^+(2.65); \gamma(1.230)$ $\gamma(0.0239)$
	120 121 122	2.72 d	57.21(5)	6	$\beta^{-}(1.72); \ \gamma(0.704, 1.171)$ $\beta^{-}(1.414); \ \beta^{+}(1.980); \ \gamma(0.564, 0.693, 1.141, 1.257)$
	123 124	60.20 d	42.7(9)	3.3	$\beta^{-}(0.61, 2.301); \gamma(0.603,$
	126	12.4 d			0.646, 1.69, 0.723) $\beta^{-}(1.9); \gamma(0.279, 0.415, 0.666, 0.695, 0.720)$
	127	3.84 d			$\beta^{-}(0.89, 1.10, 1.50);$ $\gamma(0.252, 0.291, 0.412, 0.437, 0.686, 0.784)$
	128	9.1 h			$\beta^{-}(2.3); \gamma(0.215, 0.314, 0.527, 0.743, 0.754)$

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Antimony (cont.)	129	4.40 h			$\beta^{-}(0.65); \gamma(0.181, 0.359, 0.460, 0.545, 0.813, 0.915, 1.030)$
Tellurium	116 117	2.49 h 1.03 h			$\gamma(0.0937)$ $\beta^+(1.78); \gamma(0.920, 1.716, 2.300)$
	119m	4.69 d			$\gamma(0.154, 0.271, 1.213)$
	119	16.0 h			$\beta^+(0.627; \gamma(0.644, 0.700))$
	121 <i>m</i>	≈154 d			γ(0.212)
	121	16.8 d			γ(0.508, 0.573)
	123m	119.7 d			γ(0.159)
	125		7.139(6)	1.6(2)	
	127m	109 d			$\beta^{-}(0.77); \gamma(0.088)$
	127	9.35 h			$\beta^{-}(0.696); \gamma(0.360)$
	129m 129	33.6 d 1.160 h			β (1.60); γ (0.460, 0.696) $\beta^{-}(1.453, 0.989);$ I-x, γ (0.460, 0.487)
	131m	1.35 d			$\beta^{-}(0.42)$; IT, Te-x, I-x; $\gamma(0.150, 0.774, 0.794, 0.852)$
	131	25.0 min			$\beta^{-}(2.14, 1.69, 1.35);$ I-x; $\gamma(0.150, 0.453, 0.493)$
	132	25.0 min			$\beta^{-}(0.215); \gamma(0.050, 0.112, 0.228)$
Iodine	121	2.12 h			$\beta^+(1.2); \gamma(2.12)$
	122	3.6 min			$\beta^+(3.1); \gamma(0.564)$
	123	13.2 h			K, Te-x; $\gamma(0.159)$
	124	4.18 d		0 (1) + 107	$\beta^+(1.54, 2.14, 0.75);$ $\gamma(0.603, 0.723, 1.691)$
	125 126	59.4 d 13.0 d		$9.(1) \times 10^{2}$	K, Te-x; $\gamma(0.035)$ $\beta^+(1.13); \beta^-(0.87, 1.25);$
	127		100	6 15(10)	7(0.389, 0.002)
	127	24.99 min	100	22 (4)	$B^{-}(2 \ 13): \ \sqrt{0} \ 443 \ 0 \ 527)$
	120	$1.7 \times 10^7 \text{ v}$		22.(1)	$\beta^{-}(0.15); \gamma(0.040)$
	130	12.36 h		18.(3)	$\beta^+(1.13); \beta^-(0.87, 1.25);$ $\gamma(0.389, 0.662)$
	131	8.040 d		≈0.7	$\beta^{-}(0.606); \gamma(0.284, 0.364, 0.637)$
	132	208 h			$\beta^{-}(0.80, 1.03, 1.2, 1.6, 2.16); \gamma(0.098, 0.506, 0.523, 0.630, 0.651, 0.667, 0.723, 0.955)$
	133	20.8 h			$\beta^{-}(1.24); \gamma(0.511, 0.530, 0.875)$
	135	6.57 h			$\beta^{-}(0.9, 1.3); \gamma(0.418, 0.527, 1.132, 1.260)$
Xenon	123 125	2.00 h 17.1 h			$\beta^+(1.51); \gamma(0.149, 0.178)$ $\gamma(0.188, 0.243)$

TABLE 1.43 Table of Nuclides (Continued)

			Natural	Cross	
Element	А	Half-life	%	barns	Radiation (MeV)
Xenon (cont.)	127 <i>m</i>	1.15 min			γ(0.127, 0.173)
	127	36.4 d			$\gamma(0.172, 0.203, 0.375)$
	129m	8.89 d			$\gamma(0.040, 0.197)$
	129		26.4(6)	22.(5)	
	131m	11.9 d			$\gamma(0.164)$
	131		21.2(4)	90.(10)	
	133m	2.19 d		· · ·	$\gamma(0.233)$
	133	5.243 d		190.(90)	$\beta^{-}(0.346); \text{Cs-x};$ $\gamma(0.081)$
	135m	15.3 min			γ(0.527)
	135	9.1 h			$\beta^{-}(0.91); \gamma(0.250, 0.608)$
Casium	126	1.64 min			P+(2,4,2,7), $r(0,0380)$
Cesium	120	1.04 mm			$(3.4, 3.7); \gamma(0.0389, 0.491, 0.925)$
	127	6.2 n			$\beta^{+}(0.65, 1.06); \gamma(0.125, 0.412)$
	128	3.62 min			$\beta^+(2.44, 2.88); \gamma(0.443)$
	129	1.336 d			γ(0.372, 0.412)
	132	6.48 d			$\gamma(0.465, 0.630, 0.668)$
	133		100	28	
	134m	2.91 h			IT, K, Cs-x; $\gamma(0.127)$
	134	2.065 y		140.(10)	$\beta^{-}(0.658, 0.089);$ $\gamma(0.563, 0.569, 0.605, 0.796)$
	135	$2.3 imes 10^6$ y		8.9(5)	$\beta^{-}(0.205)$
	136	13.16 d			$\beta^{-}(0.341); \gamma(0.341, 0.819, 1.048)$
	137	30.2 у			$\beta^{-}(0.514);$ K, Ba-x; $\gamma(0.662)$
Barium	126	1.65 h			$\gamma(0.218, 0.234, 0.258)$
	128	2.43 d			v(0.273); K. Cs-x
	129m	2.17 h			γ(0.177, 0.182, 0.202, 1.459)
	129	2.2 h			$\beta^+(1.42); \gamma(0.129, 0.214, 0.221)$
	131	11.7 d			y(0.124, 0.216, 0.496)
	133 <i>m</i>	1.621 d			γ(0.276)
	133	10.53 y		4.(1)	$\gamma(0.081, 0.356)$
	135m	1.196 d		. ,	IT, Ba-x; $\gamma(0.268)$
	135		6.59(2)	5.8	
	137		11.23(4)	5.(1)	
	137 <i>m</i>	2.552 min	(-)		IT. K. Ba-x: $\gamma(0.662)$
	138		71,70(7)	0.41(2)	· · · · · · · · · · · · · · · ·
	139	1.396 h		5.1	$\beta^{-}(2.27, 2.14); \text{ K, La-x;}$
	140	12.75 d			$\beta^{-}(0.48, 1.02); \gamma(0.163, 0.305, 0.537)$
	142	10.7 min			$\beta^{-}(1.0, 1.1); \gamma(0.231, 0.255, 0.309, 1.204)$

			Natural abundance.	Cross section.	
Element	А	Half-life	%	barns	Radiation (MeV)
Lanthanum	131	59 min			$\beta^+(1.42, 1.94); \gamma(0.526, 0.109, 0.366)$
	132	4.8 h 3.91 h			$\beta^{+}(2.6, 5.2, 5.7);$ $\gamma(0.465, 0.567)$ $\beta^{+}(1.2); \gamma(0.279, 0.290, 0.290);$
	134	6.5 min			0.302) B+(2.67): v(0.605)
	135	19.5 h			$\gamma(0.481)$
	136	8.87 min			$\beta^+(1.8); \gamma(0.816)$
	*138	$1.06 \times 10^{11} \text{ y}$		57.(6)	
	139		99.9098(2)	9.2(2)	
	140	1.68 d		2.7(3)	$\beta^{-}(1.670, 1.35)$
	141	3.90 h			$\beta^{-}(2.43)$
	142	1.54 h			$\beta^{-}(2.11, 2.98, 4.52)$
Cerium	132 133	3.5 h 5.4 h			$\gamma(0.154, 0.182)$ $\beta^+(1.3); \gamma(0.058, 0.131, 0.472, 0.510)$
	135	17.7 h			$\beta^+(0.8); \gamma(0.266, 0.300, 0.607)$
	137m	1.43 d			IT K, Ce-x; $\gamma(0.169, 0.254)$
	137	9.0 h			$\gamma(0.447)$
	139	137.6 d			γ(0.166)
	140		88.43(10)	0.58(4)	
	141	32.50 d			$\beta^{-}(0.436, 0.581); \text{ K},$ Pr-x; $\gamma(0.145)$
	142		11.13(10)	0.97(3)	
	143	1.38 d		6.1(7)	$\beta^{-}(1.404, 1.110);$ K, Pr-x; $\gamma(0.293)$
	144	284.6 d		1.0(1)	$\beta^{-}(0.318, 0.185);$ K, Pr-x; $\gamma(0.080, 0.134)$
Praseodymium	136	13.1 min			$\beta^+(2.98); \gamma(0.540, 0.552)$
	137	1.28 h			$\beta^+(1.68); \gamma(0.434, 0.514, 0.837)$
	138 <i>m</i>	2.1 h			$\beta^+(1.65); \gamma(0.304, 0.789, 1.038)$
	139	4.41 h	100		$\beta^+(1.09); \gamma(0.255, 1.347, 1.631)$
	141	10.10.1	100	11.5	
	142	19.12 h		20.(3)	$\beta^{-}(2.164); \gamma(1.5/6)$
	143 145	13.57 d 5.98 h		90.(10)	β (0.933); γ (0.742) $\beta^{-}(1.80); \gamma$ (0.073, 0.676, 0.748)
Neodymium	139m	5.5 h			$\beta^+(1.17); \gamma(0.114, 0.738)$
	141	2.49 11	27 13(2)	10(1)	p (0.602)
	142		27.13(2) 12 18(6)	220 (10)	
	*144	$2.1 \times 10^{15} v$	23 8(1)	3 6(3)	
	145		8.3(6)	47.(6)	

TABLE 1.43 Table of Nuclides (Continued)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Neodymium	146		17.19(9)	1.5(2)	
(cont.)	147	10.98 d		440.(150)	$\beta^{-}(0.805); \gamma(0.091, 0.531)$
	149	1.73 h			$\beta^{-}(1.03, 1.13); \gamma(0.211, 0.114)$
Promethium	143	265 d			K, Nd-x; γ(0.742)
	144	360 d		0.4(0) >(.10)	K, Nd-x; $\gamma(0.618, 0.696)$
	146	5.53 y		$8.4(2) \times 10^3$	K, $\beta^{-}(0.795)$; Nd-x; $\gamma(0.453, 0.75)$
	147	2.6234 у		180	$\beta^{-}(0.224); \gamma(0.122, 0.197)$
	148 <i>m</i>	41.29 d		$106.(8) \times 10^2$	$\beta^{-}(0.69, 0.50, 0.40);$ IT, Pm-x, Sm-x; $\gamma(0.550, 0.630, 0.726)$
	148	5.37 d		≈1000	$\beta^{-}(1.02, 2.47); \gamma(0.550, 0.915, 1.465)$
	149	2.212 d		$14.(2) \times 10^{2}$	$\beta^{-}(1.072, 0.78); \gamma(0.286, 0.591, 0.859)$
	150	2.68 h			$\beta^{-}(1.6, 2.3, 1.8);$ $\gamma(0.334, 1.166, 0.132)$
	151	1.183 d		≈150	$\beta^{-}(0.84); \gamma(0.168, 0.275, 0.340)$
Samarium	142	1.208 h			$\beta^{+}(1.0);$ K, Pr-x
	144		3.1(1)	1.6(1)	
	145	340 d		280.(20)	γ(0.061, 0.492); K, Pm-x
	146	$1.03 \times 10^{\circ} \text{ y}$	15.0(2)	<i>C(1)</i>	$\alpha(2.50)$
	*147	1.06 × 10 ¹¹ y	15.0(2)	56.(4)	$\alpha(2.23)$
	148	7 X 10 ¹⁵ y	11.3(1)	2.4(0)	$\alpha(1.96)$
	149	10 ¹⁰ y	15.8(1)	$401.(6) \times 10^{-1}$	
	150	90 v	7.4(1)	102.(3)	$B^{-}(0.076)$
	152	<i>J</i> 0 <i>J</i>	267(2)	206 (15)	p (0.070)
	153	1.929 d	2017(2)	420.(180)	$\beta^{-}(0.64, 0.69); \gamma(0.103)$
	154		22.7(2)	7.5(3)	
	155	22.2 min			$\beta^{-}(1.52); \gamma(0.104)$
	156	9.4 h			$\beta^{-}(0.43, 0.71); \gamma(0.166, 0.204)$
Europium	148	54.5 d			$\beta^+(0.92); \gamma(0.550, 0.630)$
-	149	93.1 d			K, Sm-x; γ(0.277, 0.328)
	150m	12.8 h			$\beta^{-}(1.013); \gamma(0.334, 0.407)$
	150	36 y			γ(0.334, 0.439, 0.584)
	151		47.8(5)	9000	
	152m	9.30 h			$\beta^{-}(1.85); \gamma(0.122, 0.841, 0.963)$
	152	13.48 y		$11.(2) \times 10^{3}$	K, $\beta^{-}(1.47, 0.690)$; K, Gd-x, K, Sm-x; $\gamma(0.122, 0.344, 1.408)$
	153		52.2(5)	320.(20)	,(0.122, 0.0, 1.100)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Europium (cont.)	154	8.59 y		1.5(3) × 10 ³	$\beta^{-}(0.27, 0.58, 0.843, 1.87); \gamma(0.123, 0.723, 1.274)$
	155 156	4.76 y 15.2 d		$3.9(2) \times 10^3$	$ \begin{array}{l} \beta^-(0.15); \ \gamma(0.087, \ 0.105) \\ \beta^-(0.30, \ 0.49, \ 1.2, \ 2.45); \\ \gamma(0.089, \ 0.646, \ 0.723, \ 0.812) \end{array} $
	157	15.13 h			$\beta^{-}(1.30); \gamma(0.064, 0.371, 0.411)$
	158	45.9 min			β ⁻ (2.5); γ(0.898, 0.944, 0.977)
Gadolinium	146	48.3 d			$\beta^+(0.35); \gamma(0.115, 0.155)$
	147	1.588 d			$\beta^+(0.93); \gamma(0.229, 0.370, 0.396, 0.929)$
	151 153	124 d 241.6 d			$\alpha(2.73); \gamma(0.154, 0.243)$ $\gamma(0.94, 0.103)$
	155		14.80(5)	$61.(1) \times 10^{3}$	
	157		15.65(3)	$2.54(3) \times 10^{5}$	
	158		24.84(12)	2.3(5)	
	159	18.56 h			$\beta^{-}(0.971);$ Tb-x; $\gamma(0.363)$
	160		21.86(4)	1.5(7)	
Terbium	158	180 y			γ(0.944, 0.962)
	159		100	23.2(5)	
	160	72.3 d		$5.7(11) \times 10^2$	$\beta^{-}(0.57, 0.86); \gamma(0.299, 0.879, 0.966)$
Dysprosium	159	144 d		$8.(2) \times 10^{3}$	K, Tb-x; γ(0.326)
	161		18.9(2)	600.(150)	
	162		25.5(2)	170.(20)	
	163		24.9(2)	120.(10)	
	164		28.2(2)	2000	
	165 165m	2.33 h 1.26 min		$3.5(3) \times 10^3$	$\beta^{-}(1.29);$ Ho-x; $\gamma(0.095)$ $\gamma(0.108, 0.515)$
Holmium	156 159	56 min 33.0 min			γ(0.138, 0.267) γ(0.121, 0.132, 0.253, 0.310)
	167	3.1 h			$\beta^{-}(0.31, 0.62, 0.96);$ $\gamma(0.238, 0.321, 0.347)$
	165		100	61	
	1 66 m	$1.2 imes 10^3 ext{ y}$		$9.14(65) \times 10^3$	Er-x; γ(0.810, 0.712, 0.184)
	166	1.117 d			β ⁻ (1.855, 1.776); γ(1.379)
Erbium	166		33.6(2)	20	
	167		22.95(15)	$7.(2) \times 10^{2}$	
	168		26.8(2)	2.0(6)	
	169	9.40 d			$\beta^{-}(0.35)$
	170		14.9(2)	6.2(2)	

TABLE 1.43 Table of Nuclides (Continued)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Erbium (<i>cont</i> .)	171 172	7.52 h 2.05 d		370.(40)	$β^{-}(1.49);$ Tm-x; γ(0.112, 0.296, 0.308) $β^{-}(0.28, 0.36);$ γ(0.407, 0.610)
Thullium	166	7.70 h			$\gamma(0.184, 0.779, 1.273, 2.052)$
	169		100	106	
	170	128.6 d		100.(20)	$\beta^{-}(0.968, 0.884)$
	171	1.92 у		≈160	$\beta^{-}(0.096); \gamma(0.067)$
	172	2.65 d			$\beta^{-}(1.79, 1.86); \gamma(1.387, 1.466, 1.530, 1.609)$
	173	8.2 h			$\beta^{-}(0.80, 0.86); \gamma(0.399, 0.461)$
Ytterbium	165	9.9 min			$\beta^{+}(1.58); \gamma(1.090)$
	166	2.363 d			γ(0.184, 0.779, 1.273, 2.052)
	169	32.03 d		$3.6(3) \times 10^3$	$\gamma(0.110, 0.177, 0.198)$
	171		14.3(2)	50.(10)	,
	173		16.12(21)	16.(2)	
	174		31.8(4)	120	
	175	4.19 d			β ⁻ (0.466); Lu-x; γ(0.396)
	176		12.7(2)	3.1(2)	
	177	1.9 h			$\beta^{-}(1.40);$ K, Lu-x; $\gamma(0.150)$
	178	1.23 h			$\beta^{-}(0.25); \gamma(0.141, 0.325, 0.352, 0.381, 0.613)$
Lutetium	164	3.14 min			$\beta^+(1.6, 3.8); \gamma(0.124, 0.262, 0.740, 0.864, 0.880)$
	165	16.7 min			$\beta^+(2.06); \gamma(0.121, 0.132, 0.174, 0.204)$
	175		97.41(2)	24	
	176m	3.66 h			$\beta^{-}(1.229, 1.317);$ Hf-x; $\gamma(0.0884)$
	176	$3.8 \times 10^{16} \text{ y}$		2100	γ(0.202, 0.307)
	177	6.75 d		$10.(3) \times 10^2$	$\beta^{-}(0.497)$, Hf-x; $\gamma(0.113, 0.208)$
Hafnium	178		27.297(4)	85	
	179		13.629(6)	46	
	†179 <i>m</i> 1 †179 <i>m</i> 2	18.7 s 25.1 d			$\gamma(0.161, 0.214)$ $\gamma(0.123, 0.146, 0.363, 0.146)$
	190		35 100(7)	13(1)	0.434)
	180 <i>m</i>	5.519 h	55.100(7)	13.(1)	IT, Hf-x; $\gamma(0.215, 0.332, 0.443)$
	181	42.4 d		30.(25)	$\beta^{-}(0.408); \text{ Ta-x}; $ $\gamma(0.133, 0.346, 0.482)$

[†]Two different metastable states possessing the same mass number but different half-lives.

			Natural	Cross	
Element	А	Half-life	%	barns	Radiation (MeV)
Hafnium (cont.)	183	1.07 h			$\beta^{-}(1.18, 1.54); \gamma(0.459, 0.784)$
(,	184	4.1 h			$\beta^{-}(0.74, 0.85, 1.10);$ $\gamma(0.139, 0.345)$
Tantalum	181		99.988(2)	20	
	182m 182	16.5 min 114.43 d		$8.2(6) \times 10^{3}$	$\gamma(0.147, 0.172, 0.184)$ $\beta^{-}(0.25, 0.44, 0.52);$ $\gamma(0.068, 1.121)$
	183	5.1 d			$\beta^{-}(0.62); \gamma(0.108, 0.246, 0.304)$
	184	8.7 h			$\beta^{-}(1.17); \gamma(0.253, 0.414)$
Tungsten	182		26.50(3)	20.(1)	
	183		14.31(1)	10.5(3)	
	184		30.64(1)	2	
	185	74.8 d		≈3.3	$\beta^{-}(0.433); \gamma(0.125)$
	186		28.43(4)	37.(2)	
	187	23.9 h		70.(10)	$\beta^{-}(1.315, 0.624; \text{ K}, \text{ Re-x; } \gamma(0.072, 0.480, 0.686)$
	188	69.4 d			$\beta^{-}(0.349); \ \gamma(0.227, 0.291)$
Rhenium	182m	12.7 h			β ⁺ (0.55, 1.74); γ(1.121, 1.221)
	184	38 d			γ(0.790, 0.903)
	185		37.40(2)	110	
	186	3.718 d			$\beta^{-(1.07, 0.933)}; K, W-x, Os-x; \gamma(0.123, 0.137, 0.632, 0.768)$
	*187	4.2×10^{10}	62.60(2)	74	. ,
	188	16.94 h			β ⁻ (2.12, 1.96); Os-x; γ(0.155)
	189	24 h			$\beta^{-}(1.01); \gamma(0.147, 0.22, 0.245)$
Osmium	186	$2 imes 10^{15}~{ m y}$	1.58(2)	≈80	
	188		13.3(1)	≈5	
	190m	9.9 min			IT, Os-x; γ(0.187, 0.361, 0.503, 0.616)
	190		26.4(2)	13	
	191	15.4 d		$3.8(6) \times 10^2$	$\beta^{-}(0.143); \text{ Os-x}; \gamma(0.129)$
	192	00 5 1	41.0(3)	3.(1)	
	193	30.5 h			$\beta^{-}(1.04); \text{ If-x}; \gamma(0.139, 0.460)$
	196	34.9 min			$\beta^{-}(0.84); \gamma(0.126, 0.408)$
Iridium	184	3.0 h			$\beta^+(2.3, 2.9); \gamma(0.120, 0.264, 0.390)$
	185	14 h			$\gamma(0.254, 1.829)$
	186	15.7 h			γ(0.137, 0.296, 0.435)
	188	1.72 d			γ(0.155, 0.478, 0.633, 2.215)

TABLE 1.43 Table of Nuclides (Continued)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Iridium (cont.)	189 190	13.2 d 11.8 d			K, Os-x; γ(0.245) γ(0.187, 0.407, 0.519, 0.558, 0.605)
	191 192	73.83 d	37.27(9)	920	$\beta^{-}(0.672);$ K, Pt-x; $\gamma(0.316, 0.468)$
	193		62.73(9)	116	
	194	19.3 h		$1.5(3) \times 10^{3}$	$\beta^{-}(2.25); \gamma(0.294, 0.328, 0.645)$
	195m	3.9 h			$\beta^{-}(0.41, 0.97); \gamma(0.320, 0.365, 0.433, 0.685)$
Platinum	187	2.35 h			γ(0.105, 0.110, 0.201, 0.285, 0.709)
	188	10.2 d			γ(0.188, 0.195)
	189	10.89 h			K, Ir-x; γ(0.094, 0.608, 0.721)
	194	4.00.1	32.9(6)	1.2	X77 D: (0.000)
	195m	4.02 d	22.8(0)	29 (1)	11, Pt-x; $\gamma(0.099)$
	195		33.8(0) 25.3(6)	28.(1)	
	190 107m	1 573 h	23.3(0)	55	TT Pt-v: x(0.053, 0.346)
	1977	18.3 h			$\beta^{-}(0.719);$ K, Au-x; $\gamma(0.191, 0.269)$
	1 99 m	14.1 s			γ(0.392)
	199	30.8 min		≈16	$\beta^{-}(0.90, 1.14); \gamma(0.186, 0.317, 0.494, 0.549)$
	200	12.5 h			γ(0.136, 0.227, 0.244)
Gold	197		100	98.7(1)	
	197m	7.8 s			IT, K, Au-x; γ(0.130, 0.279)
	198	2.694 d		$26.5(15) \times 10^3$	$\beta^{-}(0.961);$ K, Hg-x; $\gamma(0.412)$
	199	3.139 d			β ⁻ (0.292, 0.250); K, Hg-x; γ(0.158, 0.208)
	200m	18.7 h			$\beta^{-}(0.56); \gamma(0.111, 0.368, 0.498, 0.597, 0.760)$
	200	48.4 min			$\beta^{-}(2.2); \gamma(0.368, 1.225)$
Mercury	196		0.15(1)	3150	
	197m	23.8 h			IT, K, Hg-x; γ(0.134)
	197	2.6725 d			K, Au-x; $\gamma(0.077)$
	199m	42.6 min	16.05(10)	0.1(0) > (.103	γ(0.158)
	199		16.87(10)	$2.1(2) \times 10^{3}$	
	200		23.10(16)	<00	
	202	46 61 d	29.80(20)	4.9(3)	$B^{-}(0.213) \cdot \alpha(0.270)$
	203	-+0.01 U			μ (0.213), γ (0.213)
Thallium	201	3.040 d			K, Hg-x; $\gamma(0.135, 0.167)$
	202	12.23 d	20 52(1)	11 (1)	k, Hg-x; γ(0.440)
	203	2 79 1	29.52(1)	11.(1)	0-10 762) V Uav
	204	5.18 y		22.(2)	p (0.703); K, ng-X

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Thallium	205		70.48(1)	0.11(2)	
(cont.)	*206	4.20 min			$\beta^{-}(1.53);$ K, Pb-x; $\gamma(0.803)$
	*207	4.77 min			$\beta^{-}(1.43); \gamma(0.897)$
	208	3.053 min			$eta^{-}(1.796, 1.28, 1.52);$ $\gamma(0.277, 0.511, 0.583, 0.614)$
	209	2.16 min			$\beta^{-}(1.8); \gamma(1.567, 0.465)$
	210	1.30 min			$\beta^{-}(1.9, 1.3); \gamma(0.298, 0.798)$
Lead	201	9.33 h			γ(0.331, 0.361)
	203	2.1615 d			γ(0.279)
	204 <i>m</i>	1.120 h			IT, Pb-x; γ(0.375, 0.899, 0.912)
	207	0.050.1	22.1(1)	0.70(1)	
	209	3.253 h			$\beta^{-}(0.645)$
	*210 *211	22.0 y 36.1 min			$\alpha(3.12)$ B=(1.36): $\alpha(0.405, 0.427)$
	*010	10.64 h			β (1.30), γ (0.403, 0.427, 0.832)
	*212	10.04 n			$\beta^{-}(0.569, 0.28); B1-x; \gamma(0.239)$
	*214	26.9 min			β ⁻ (0.67, 0.73); γ(0.24, 0.30, 0.352)
Bismuth	205	15.31 d			γ(0.703, 1.764)
	206	6.243 d	100	0.024	$\gamma(0.516, 0.803, 0.881)$
	209 *210	5 012 d	100	0.034	R = (1, 16); a(0, 266, 0, 252)
	210	1.0092 h			$\beta^{-}(2.25); \gamma(0.288, 0.727, 0.786, 1.621); TI-x; \alpha(6.05, 6.09)$
	*214	19.7 min			$\beta^{-}(3.26); \gamma(0.609, 1.120, 1.764)$
Polonium	204	3.53 h			γ(0.270, 0.884, 1.016)
	205	1.7 h			γ(0.837, 0.850, 0.872, 1.001)
	206	8.8 d			$\alpha(5.233); \gamma(0.286, 0.312, 0.807)$
	208	2.898 y			a(5.116)
	209	102 y			$\alpha(4.88)$; IT, K, Bi-x; $\gamma(0.260, 0.896)$
	210	138.38 d			$\alpha(5.304); \gamma(0.803)$
	212	298 ns			α(8.784)
	214	0.1637 ms			α(7.686)
	216	145 ms			$\alpha(6.778)$
	218	3.04 min			$\alpha(5.18)$
Astatine	207	1.81 h			$\alpha(5.76); \gamma(0.168, 0.588, 0.814)$
	208	1.63 h			α (5.641); K, Po-x, γ (0.177, 0.660, 0.685, 0.845, 1.028)

TABLE 1.43 Table of Nuclides (Continued)

			Natural	Cross	
Element	А	Half-life	%	barns	Radiation (MeV)
Astatine (cont.)	209	5.41 h			α(5.65), K, Po-x; γ(0.545, 0.782, 0.790)
	210	8.1 h			K, Po-x; γ(0.245, 0.528, 1.181, 1.437, 1.483)
	211	7.214 h			α (5.87); K, Po-x; γ (0.669, 0.742)
Radon	210	2.4 h			α(6.039); γ(0.196, 0.458, 0.571, 0.649)
	211	14.68 h			$\alpha(5.784, 5.851); \gamma(0.169, 0.250, 0.370, 0.674, 0.678, 1.363)$
	212	24 min			<i>α</i> (6.260)
	220	55.6 s			$\alpha(6.288)$
	222	2.8235 d		0.74(5)	$\alpha(5.49); \gamma(0.510)$
Francium	212	20 min			α(6.41, 6.26); γ(1.186, 1.275)
	220	27.4 s			α (6.686, 0.641, 6.582); γ (0.106, 0.154, 0.162)
	221	4.8 min			$\alpha(6.341); \gamma(0.218, 0.409)$
	222	14.3 min			$\beta^{-}(0.1/8)$ $\beta^{-}(0.117)$
	225	22.0 min			β (0.117)
Radium	*224	3.66 d		12.0(5)	α (5.685, 5.45); K, Rn-x; γ (0.241, 0.409, 0.650)
	*226	1599 y		≈13	α (4.78, 4.60); K, Rn-x; γ (0.186, 0.262)
	*228	5.76 y		36.(5)	γ(0.0135)
Actinium	*227	21.77 у		$8.8(7) \times 10^2$	β ⁻ (0.045); α(4.95, 4.94); K, Th-x; γ(0.084, 0.160, 0.270)
	*228	6.15 h			$\beta^{-}(2.18, 1.85, 1.11);$ K, Th-x; $\gamma(0.339, 0.911, 0.969)$
Thorium	226	30.6 min			α(6.337, 6.228); γ(0.206, 0.242)
	228	1.913 y		$1.2(2) \times 10^2$	α(5.42, 5.34, 5.18); K, Ra-x
	*230	$7.54 \times 10^4 \text{ y}$		23.4(5)	α (4.68, 4.62); K, Ra-x; γ (0.068)
	231	1.063 d			$\beta^{-}(0.305, 0.218, 0.138)$
	*232	1.405×10^{10} y	y	7.37(4)	$\alpha(4.01, 3.95); \gamma(0.059)$
	233	22.3 min		$1.5(1) \times 10^{3}$	$\beta^{-}(1.245); \gamma(0.459)$
	*234	24.10 d		1.8(5)	β (0.198, 0.102); K, Pa-x
Protactinium	230	17.4 d		$1.5(3) \times 10^{3}$	$\beta^{-}(0.51); \gamma(0.444, 0.455, 0.899, 0.952)$
	*231	3.25 × 10⁴ y		$2.0(1) \times 10^2$	α(5.06, 5.03, 5.01, 4.95, 4.73); K, Ac-x; γ(0.260, 0.284, 0.300, 0.330)

TABLE 1.43 Table of Nuclides (Continued)

			Natural abundance,	Cross section,	
Element	А	Half-life	%	barns	Radiation (MeV)
Protactinium (cont.)	232 233	1.31 d 27.0 d		4.6(10) × 10 ²	$β^{-}(1.34); γ(0.109, 0.150, 0.894, 0.969)$ $β^{-}(0.256, 0.15, 0.568);$ K,L U-x; γ(0.300, 0.312, 0.341)
	234m 235	1.17 min 24.4 min			β ⁻ (2.29); IT, K, U-x β ⁻ (1.4)
Uranium	230 232 233	20.8 d 68.9 y 1.592 × 10 ⁵ y		73.(2) 47.(2)	$ \begin{array}{l} \alpha(5.89, 5.82) \\ \alpha(5.320, 5.263) \\ \alpha(4.825, 4.783); L, Th-x; \\ \gamma(0.029, 0.042, 0.055, \\ 0.097, 0.119, 0.146, \\ 0.164, 0.22, 0.291, \\ 0.32) \end{array} $
	*234	$2.454 \times 10^{5} \text{ y}$	0.0055(5)	96.(2)	$\alpha(4.776, 4.723);$ L, Th-x; $\gamma(0.121)$
	*235	$7.037 imes 10^8$ y	0.720(1)	95.(5)	α (4.40, 4.37, 4.22); K,L Th-x; γ (0.14, 0.16, 0.186, 0.20)
	237	675 d		≈100	0.100, 0.20)
	*238	$4.46 \times 10^9 v$	00 2745(15)	27(1)	$\alpha(4, 196, 4, 147)$
	239	23.47 min	<i>)).21+</i> J(13)	22.(2)	$\beta^{-}(1.21, 1.29)$
Neptunium	236 237 238 239	$1.55 \times 10^{5} \text{ y}$ 2.14 × 10 ⁶ y 2.117 d 2.355 d		180 51 5.1(2) × 10 ²	$\beta^{-}(0.49), \gamma(0.104, 0.160)$ $\alpha(4.79, 4.77);$ K,L Pa-x $\beta^{-}(1.2); \gamma(0.984, 1.029)$ $\beta^{-}(0.438, 0.341);$
Plutonium	237	457 d			γ(0.228, 0.278) K J. Np-x
- Milling	238	87.74 y			$\alpha(5.50, 5.46); \text{ K, U-x;}$ $\gamma(0.0435)$
	239	2.411 × 10⁴ y		$2.7(1) \times 10^2$	$\alpha(5.16, 5.14, 5.11);$ K, U-x; $\gamma(0.375, 0.414, 0.129)$
	240	$6.537 \times 10^{3} \text{ v}$		$2.9(1) \times 10^{2}$	α(5.168, 5.124); L. U-x
	242	$3.763 \times 10^5 \text{ y}$		19.(1)	$\alpha(4.90, 4.86); \gamma(0.045, 0.103)$
	244 246	$8.2 imes10^7$ y 10.85 d		1.7(1)	$\alpha(4.59, 4.55);$ L, U-x $\beta^{-}(0.150, 0.35); \gamma(0.224)$
Americium	241	432.2 y		600	$\alpha(5.49, 5.44); \gamma(0.12, 0.14)$
	243	7370 у		80	$\alpha(5.277, 5.234); \gamma(0.075)$
Curium	242	162.8 d		≈20	α(6.113, 6.069); L, Pu-x
	243 244	28.5 y 18.11 y		$1.3(1) \times 10^2$ 15.(1)	α(5.786, 5.742) α(5.805, 5.753); γ(0.099, 1.526)
Berkelium	247 249 250	$1.4 imes 10^3$ y 320 d 3.217 h		7.(1) × 10 ²	$ \begin{array}{l} \alpha(5.532, 5.678, 5.712) \\ \alpha(5.42); \beta^-(0.125) \\ \beta^-(0.74); \gamma(0.989, 1.032) \end{array} $

Element	А	Half-life	Natural abundance, %	Cross section, barns	Radiation (MeV)
Californium	251 252	900 y 2.645 y		2.9(2) × 10 ² 20.(2)	α(5.677, 5.851, 6.014) α(6.118, 6.076); L, Cm-x; γ(0.043, 0.100)
Einsteinium	253 254 255	20.47 d 275.7 d 40 d		186 28.(3) ≈55	$\alpha(6.64); \gamma(0.389)$ $\alpha(6.43)$ $\beta^{-}(0.29); \alpha(6.26)$
Fermium	255 257	20.1 h 100.5 d		26.(3)	α (7.023) α (6.519); L, Cf-x; γ (0.179, 0.241)
Mendelevium	258 260	51.5 d 32 d			α(6.718, 6.763); γ(0.368)
Nobelium	255 259	3.1 min 58 min			$\alpha(8.12, 7.93); \gamma(0.187)$ $\alpha(7.52, 7.55)$
Lawrencium	260 261 262	3 min 40 min 3.6 h			

TABLE 1.43 Table of Nuclides (Continued)

1.11 VAPOR PRESSURE

Vapor pressure is the pressure exerted by a pure component at equilibrium, at any temperature, when both liquid and vapor phases exist and thus extends from a minimum at the triple point temperature to a maximum at the critical temperature (the critical pressure), and is the most important of the basic thermodynamic properties affecting liquids and vapors.

Except at very high total pressures (above about 10 MPa), there is no effect of total pressure on vapor pressure. If such an effect is present, a correction can be applied. The pressure exerted above a solid-vapor mixture may also be called vapor pressure but is normally only available as experimental data for common compounds that sublime.

1.11.1 Vapor Pressure Equations

Numerous mathematical formulas relating the temperature and pressure of the gas phase in equilibrium with the condensed phase have been proposed. The Antoine equation (Eq. 1) gives good correlation with experimental values. Equation 2 is simpler and is often suitable over restricted temperature ranges. In these equations, and the derived differential coefficients for use in the Haggenmacher and Clausius-Clapeyron equations, the *p* term is the vapor pressure of the compound in pounds per square inch (psi), the *t* term is the temperature in degrees Celsius, and the *T* term is the absolute temperature in kelvins ($t^{\circ}C + 273.15$).

Eq.	Vapor-pressure equation	dp/dT	$-[d(\ln p)/d(1/T)]$
1	$\log p = A - \frac{B}{t+C}$	$\frac{2.303 pB}{(t+C)^2}$	$\frac{2.303 BT^2}{(t+C)^2}$
2	$\log p = A - \frac{B}{T}$	$\frac{2.303 pB}{T^2}$	2.303 <i>B</i>
3	$\log p = A - \frac{B}{T} - C \log T$	$p\left(\frac{2.303B}{T^2} - \frac{C}{T}\right)$	2.303 <i>B</i> – <i>CT</i>

Equations 1 and 2 are easily rearranged to calculate the temperature of the normal boiling point:

$$t = \frac{B}{A - \log p} - C \tag{5.1}$$

$$T = \frac{B}{A - \log p} \tag{5.2}$$

The constants in the Antoine equation may be estimated by selecting three widely spaced data points and substituting in the following equations in sequence:

$$\begin{pmatrix} y_3 - y_2 \\ y_2 - y_1 \end{pmatrix} \begin{pmatrix} t_2 - t_1 \\ t_3 - t_2 \end{pmatrix} = 1 - \begin{pmatrix} t_3 - t_1 \\ t_3 + C \end{pmatrix}$$
$$B = \begin{pmatrix} y_3 - y_1 \\ t_2 + t_1 \end{pmatrix} (t_1 + C)(t_3 + C)$$
$$A = y_2 + \begin{pmatrix} B \\ t_2 + C \end{pmatrix}$$

In these equations, $y_i = \log p_i$.

	• . •	• • •	D 11	Vapor pressure temperature, °C								
Element	Atomic number	Atomic symbol	Boiling point, °C	E-08	E-07	E-06	E-05	E-04	E-03	E-02	E-01	1
Aluminum	13	Al	2467	685	742	812	887	972	1082	1217	1367	1557
Antimony	52	Sb	1750	279	309	345	383	425	475	533	612	757
Arsenic	33	As	613	104	127	150	174	204	237	277	317	372
Barium	56	Ba	1140	272	310	354	402	462	527	610	711	852
Beryllium	4	Be	2970	707	762	832	907	997	1097	1227	1377	1557
Bismuth	83	Bi	1560	347	367	409	459	517	587	672	777	897
Boron	5	В	2550	1282	1367	1467	1582	1707	1867	2027	2247	2507
Cadmium	48	Cd	765	74	95	119	146	177	217	265	320	392
Calcium	20	Ca	1484	282	317	357	405	459	522	597	689	802
Carbon	6	С	4827	1657	1757	1867	1987	2137	2287	2457	2657	2897
Cobalt	27	Co	2870	922	992	1067	1157	1257	1382	1517	1687	1907
Chromium	24	Cr	2672	837	902	977	1062	1157	1267	1397	1552	1737
Copper	29	Cu	2567	722	787	852	937	1027	1132	1257	1417	1617
Dysprosium	66	Dy	2562	625	682	747	817	897	997	1117	1262	1437
Erbium	68	Er	2510	649	708	777	852	947	1052	1177	1332	1527
Europium	63	Eu	1597	283	319	361	409	466	532	611	708	827
Gallium	31	Ga	2403	619	677	742	817	907	1007	1132	1282	1472
Germanium	32	Ge	2830	812	877	947	1037	1137	1257	1397	1557	1777
Gold	79	Au	2807	807	877	947	1032	1132	1252	1397	1567	1767
Indium	77	In	2000	488	539	597	664	742	837	947	1082	1247
Iron	26	Fe	2750	892	957	1032	1127	1227	1342	1477	1647	1857
Lanthanum	57	La	3469	1022	1102	1192	1297	1422	1562	1727	1927	2177
Lead	82	Pb	1740	342	383	429	485	547	625	715	832	977
Lithium	49	Li	1347	235	268	306	350	404	467	537	627	747
Magnesium	12	Mg	1107	185	214	246	282	327	377	439	509	605
Manganese	25	Mn	1962	505	554	611	675	747	837	937	1082	1217
Mercury	80	Hg	357	-72	-59	-44	-27	7	16	46	80	125
Molybdenum	42	Mo	4612	1592	1702	1822	1957	2117	2307	2527	2787	3117
Nickel	28	Ni	2732	927	997	1072	1157	1262	1382	1527	1697	1907
Niobium	41	Nb	4927	1762	1867	1987	2127	2277	2447	2657	2897	3177
Palladium	46	Pd	2927	842	912	992	1082	1192	1317	1462	1647	1877
Phosphorus	15	Р	2804	54	69	88	108	129	157	185	222	261

TABLE 1.44 Vapor Pressures of Selected Elements at Different Temperatures

1.201

	• • •		D '''			Va	por pressure	e temperatur	e, ⁰C			
Element	number	symbol	point, °C	E-08	E-07	E-06	E-05	E-04	E-03	E-02	E-01	1
Platinum	78	Pt	3827	1292	1382	1492	1612	1747	1907	2097	2317	2587
Potassium	19	Κ	774	21	42	65	91	123	161	208	267	345
Praseodymium	59	Pr	3127	797	867	947	1042	1147	1277	1427	1617	1847
Rhenium	75	Re	5627	1947	2077	2217	2387	2587	2807	3067	3407	3807
Rhodium	45	Rh	3727	1277	767	1472	1582	1707	1857	2037	2247	2507
Scandium	21	Sc	2832	772	837	917	1007	1107	1232	1377	1567	1797
Selenium	34	Se	685	63	83	107	133	164	199	243	297	363
Silicon	14	Si	4827	992	1067	1147	1237	1337	1472	1632	1817	2057
Silver	47	Ag	2212	574	626	685	752	832	922	1027	1162	1322
Sodium	11	Na	553	74	97	123	155	193	235	289	357	441
Strontium	38	Sr	1384	241	273	309	353	394	465	537	627	732
Sulfur	16	S	45	-10	3	17	37	55	80	109	147	189
Tantalum	73	Та	5425	1957	2097	2237	2407	2587	2807	3057	3357	3707
Tellurium	52	Te	990	155	181	209	242	280	323	374	433	518
Thallium	81	TI	1457	283	319	359	407	463	530	609	706	827
Tin	50	Sn	2270	682	747	807	897	997	1107	1247	1412	1612
Titanium	22	Ti	3287	1062	1137	1227	1327	1442	1577	1737	1937	2177
Tungsten	74	W	5660	2117	2247	2407	2567	2757	2977	3227	3537	3917
Ytterbium	70	Yb	1466	247	279	317	365	417	482	557	647	787
Yttrium	39	Y	3337	957	1032	1117	1217	1332	1467	1632	1832	2082
Zinc	30	Zn	907	123	147	177	209	247	292	344	408	487

TABLE 1.44 Vapor Pressures of Selected Elements at Different Temperatures (Continued)

						Pr	essure, mn	n Hg				
		1	5	10	20	40	60	100	200	400	760	
Compound name	Formula		Temperature, °C									
Aluminum	Al	1284	1421	1487	1555	1635	1684	1749	1844	1947	2056	660
borohydride	$Al(BH_4)_3$		-52.2	-42.9	-32.5	-20.9	-13.4	-3.9	+11.2	28.1	45.9	-64
bromide	AlBr ₃	81.3	103.8	118.0	134.0	150.6	161.7	176.1	199.8	227.0	256.3	97
chloride	Al_2Cl_6	100.0	116.4	123.8	131.8	139.9	145.4	152.0	161.8	171.6	180.2	192.4
fluoride	AlF ₃	1238	1298	1324	1350	1378	1398	1422	1457	1496	1537	1040
iodide	All ₃	178.0	207.7	225.8	244.2	265.0	277.8	294.5	322.0	354.0	385.5	
oxide	Al_2O_3	2148	2306	2385	2465	2549	2599	2665	2766	2874	2977	2050
Ammonia	NH ₃	-109.1	-97.5	-91.9	-85.8	-79.2	-74.3	-68.4	-57.0	-45.4	-33.6	-77.7
heavy	ND ₃						-74.0	-67.4	-57.0	-45.4	-33.4	-74.0
Ammonium bromide	NH ₄ Br	198.3	234.5	252.0	270.6	290.0	303.8	320.0	345.3	370.8	396.0	
carbamate	N ₂ H ₆ CO ₂	-26.1	-10.4	-2.9	+5.3	14.0	19.6	26.7	37.2	48.0	58.3	
chloride	NH ₄ Cl	160.4	193.8	209.8	226.1	245.0	256.2	271.5	293.2	316.5	337.8	520
cyanide	NH ₄ CN	-50.6	-35.7	-28.6	-20.9	-12.6	-7.4	-0.5	+9.6	20.5	31.7	36
hydrogen sulfide	NH ₄ HS	-51.1	-36.0	-28.7	-20.8	-12.3	-7.0	0.0	+10.5	21.8	33.3	
iodide	NH ₄ I	210.9	247.0	263.5	282.8	302.8	316.0	331.8	355.8	381.0	404.9	
Antimony	Sb	886	984	1033	1084	1141	1176	1223	1288	1364	1440	630.5
tribromide	SbBr ₃	93.9	126.0	142.7	158.3	177.4	188.1	203.5	225.7	250.2	275.0	96.6
trichloride	SbCl ₃	49.2	71.4	85.2	100.6	117.8	128.3	143.3	165.9	192.2	219.0	73.4
pentachloride	SbCl ₅	22.7	48.6	61.8	75.8	91.0	101.0	114.1				2.8
triiodide	SbI ₃	163.6	203.8	223.5	244.8	267.8	282.5	303.5	333.8	368.5	401.0	167
trioxide	Sb_4O_6	574	626	666	729	812	873	957	1085	1242	1425	656
Argon	А	-218.2	-213.9	-210.9	-207.9	-204.9	-202.9	-200.5	-195.6	-190.6	-185.6	-189.2
Arsenic	As	372	416	437	459	483	498	518	548	579	610	814
Arsenic tribromide	AsBr ₃	41.8	70.6	85.2	101.3	118.7	130.0	145.2	167.7	193.6	220.0	
trichloride	AsCl ₃	-11.4	+11.7	+23.5	36.0	50.0	58.7	70.9	89.2	109.7	130.4	-18
trifluoride	AsF ₃					-2.5	+4.2	13.2	26.7	41.4	56.3	-5.9
pentafluoride	AsF ₅	-117.9	-108.0	-103.1	-98.0	-92.4	-88.5	-84.3	-75.5	-64.0	-52.8	-79.8
trioxide	As_2O_3	212.5	242.6	259.7	279.2	299.2	310.3	332.5	370.0	412.2	457.2	312.8
Arsine	AsH ₃	-142.6	-130.8	-124.7	-117.7	-110.2	-104.8	-98.0	-87.2	-75.2	-62.1	-116.3
Barium	Ba		984	1049	1120	1195	1240	1301	1403	1518	1638	850

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere

						Pre	essure, mr	n Hg				
		1	5	10	20	40	60	100	200	400	760	
Compound name	Formula					Te	emperature	e, °C				Melting point, °C
Beryllium borohydride	$Be(BH_4)_2$	+1.0	19.8	28.1	36.8	46.2	51.7	58.6	69.0	79.7	90.0	123
bromide	BeBr ₂	289	325	342	361	379	390	405	427	451	474	490
chloride	$BeCl_2$	291	328	346	365	384	395	411	435	461	487	405
iodide	BeI ₂	283	322	341	361	382	394	411	435	461	487	488
Bismuth	Bi	1021	1099	1136	1177	1217	1240	1271	1319	1370	1420	271
tribromide	BiBr ₃		261	282	305	327	340	360	392	425	461	218
trichloride	BiCl ₃		242	264	287	311	324	343	372	405	441	230
Diborane hydrobromide	B_2H_5Br	-93.3	-75.3	-66.3	-56.4	-45.4	-38.2	-29.0	-15.4	0.0	+16.3	-104.2
Borine carbonyl	BH ₃ CO	-139.2	-127.3	-121.1	-114.1	-106.6	-101.9	-95.3	-85.5	-74.8	-64.0	-137.0
triamine	$B_3N_3H_6$	-63.0	-45.0	-35.3	-25.0	-13.2	-5.8	+4.0	18.5	34.3	50.6	-58.2
Boron hydrides												
dihydrodecaborane	$B_{10}H_{14}$	60.0	80.8	90.2	100.0	117.4	127.8	142.3	163.8			99.6
dihydrodiborane	B_2H_6	-159.7	-149.5	-144.3	-138.5	-131.6	-127.2	-120.9	-111.2	-99.6	-86.5	-169
dihydropentaborane	B_5H_9		-40.4	-30.7	-20.0	-8.0	-0.4	+9.6	24.6	40.8	58.1	-47.0
tetrahydropentaborane	$B_{5}H_{11}$	-50.2	-29.9	-19.9	-9.2	+2.7	10.2	20.1	34.8	51.2	67.0	
tetrahydrotetraborane	B_4H_{10}	-90.9	-73.1	-64.3	-54.8	-44.3	-37.4	-28.1	-14.0	+0.8	16.1	-119.9
Boron tribromide	BBr ₃	-41.4	-20.4	-10.1	+1.5	14.0	22.1	33.5	50.3	70.0	91.7	-45
trichloride	BCl ₃	-91.5	-75.2	-66.9	-57.9	-47.8	-41.2	-32.4	-18.9	-3.6	+12.7	-107
trifluoride	BF ₃	-154.6	-145.4	-141.3	-136.4	-131.0	-127.6	-123.0	-115.9	-108.3	-100.7	-126.8
Bromine	Br ₂	-48.7	-32.8	-25.0	-16.8	-8.0	-0.6	+9.3	24.3	41.0	58.2	-7.3
pentafluoride	BrF ₅	-69.3	-51.0	-41.9	-32.0	-21.0	-14.0	-4.5	+9.9	25.7	40.4	-61.4
Cadmium	Cd	394	455	484	516	553	578	611	658	711	765	320.9
chloride	CdCl ₂		618	656	695	736	762	797	847	908	967	568
fluoride	CdF_2	1112	1231	1286	1344	1400	1436	1486	1561	1651	1751	520
iodide	CdI ₂	416	481	512	546	584	608	640	688	742	796	385
oxide	CdO	1000	1100	1149	1200	1257	1295	1341	1409	1484	1559	
Calcium	Ca		926	983	1046	1111	1152	1207	1288	1388	1487	851
Carbon (graphite)	С	3586	3828	3946	4069	4196	4273	4373	4516	4660	4827	
dioxide	CO_2	-134.3	-124.4	-119.5	-114.4	-108.6	-104.8	-100.2	-93.0	-85.7	-78.2	-57.5
disulfide	CS ₂	-73.8	-54.3	-44.7	-34.3	-22.5	-15.3	-5.1	+10.4	28.0	46.5	-110.8
monoxide	CO	-222.0	-217.2	-215.0	-212.8	-210.0	-208.1	-205.7	-201.3	-196.3	-191.3	-205.0

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (*Continued*)

oxyselenide	COSe	-117.1	-102.3	-95.0	-86.3	-76.4	-70.2	-61.7	-49.8	-35.6	-21.9	
oxysulfide	COS	-132.4	-119.8	-113.3	-106.0	-98.3	-93.0	-85.9	-75.0	-62.7	-49.9	-138.8
selenosulfide	CSeS	-47.3	-26.5	-16.0	-4.4	+8.6	17.0	28.3	45.7	65.2	85.6	-75.2
subsulfide	C_3S_2	14.0	41.2	54.9	69.3	85.6	96.0	109.9	130.8			+0.4
tetrabromide	CBr_4					96.3	106.3	119.7	139.7	163.5	189.5	90.1
tetrachloride	CCl_4	-50.0	-30.0	-19.6	-8.2	+4.3	12.3	23.0	38.3	57.8	76.7	-22.6
tetrafluoride	CF_4	-184.6	-174.1	-169.3	-164.3	-158.8	-155.4	-150.7	-143.6	-135.5	-127.7	-183.7
Cesium	Cs	279	341	375	409	449	474	509	561	624	690	28.5
bromide	CsBr	748	838	887	938	993	1026	1072	1140	1221	1300	636
chloride	CsCl	744	837	884	934	989	1023	1069	1139	1217	1300	646
fluoride	CsF	712	798	844	893	947	980	1025	1092	1170	1251	683
iodide	CsI	738	828	873	923	976	1009	1055	1124	1200	1280	621
Chlorine	Cl_2	-118.0	-106.7	-101.6	-93.3	-84.5	-79.0	-71.7	-60.2	-47.3	-33.8	-100.7
fluoride	CIF		-143.4	-139.0	-134.3	-128.8	-125.3	-120.8	-114.4	-107.0	-100.5	-145
trifluoride	CIF ₃		-80.4	-71.8	-62.3	-51.3	-44.1	-34.7	-20.7	-4.9	+11.5	-83
monoxide	Cl ₂ O	-98.5	-81.6	-73.1	-64.3	-54.3	-48.0	-39.4	-26.5	-12.5	+2.2	-116
dioxide	ClO ₂			-59.0	-51.2	-42.8	-37.2	-29.4	-17.8	-4.0	+11.1	-59
heptoxide	Cl_2O_7	-45.3	-23.8	-13.2	-2.1	+10.2	+18.3	29.1	44.6	62.2	78.8	-91
Chlorosulfonic acid	HSO ₃ Cl	32.0	53.5	64.0	75.3	87.6	95.2	105.3	120.0	136.1	151.0	-80
Chromium	Cr	1616	1768	1845	1928	2013	2067	2139	2243	2361	2482	1615
carbonyl	$Cr(CO)_6$	36.0	58.0	68.3	79.5	91.2	98.3	108.0	121.8	137.2	151.0	
oxychloride	CrO_2Cl_2	-18.4	+3.2	13.8	25.7	38.5	46.7	58.0	75.2	95.2	117.1	
Cobalt chloride	CoCl ₂					770	801	843	904	974	1050	735
nitrosyl tricarbonyl	Co(CO) ₃ NO				-1.3	+11.0	18.5	29.0	44.4	62.0	80.0	-11
Columbium fluoride	CbF ₃			86.3	103.0	121.5	133.2	148.5	172.2	198.0	225.0	75.5
Copper	Cu	1628	1795	1879	1970	2067	2127	2207	2325	2465	2595	1083
Cuprous bromide	Cu_2Br_2	572	666	718	777	844	887	951	1052	1189	1355	504
chloride	Cu_2Cl_2	546	645	702	766	838	886	960	1077	1249	1490	422
iodide	Cu ₂ I ₂		610	656	716	786	836	907	1018	1158	1336	605
Cyanogen	C_2N_2	-95.8	-83.2	-76.8	-70.1	-62.7	-57.9	-51.8	-42.6	-33.0	-21.0	-34.4
bromide	CNBr	-35.7	-18.3	-10.0	-1.0	+8.6	14.7	22.6	33.8	46.0	61.5	58
chloride	CNCl	-76.7	-61.4	-53.8	-46.1	-37.5	-32.1	-24.9	-14.1	-2.3	+13.1	-6.5
fluoride	CNF	-134.4	-123.8	-118.5	-112.8	-106.4	-102.3	-97.0	-89.2	-80.5	-72.6	
Deuterium cyanide	DCN	-68.9	-54.0	-46.7	-38.8	-30.1	-24.7	-17.5	-5.4	+10.0	26.2	-12
Fluorine	F_2	-223.0	-216.9	-214.1	-211.0	-207.7	-205.6	-202.7	-198.3	-193.2	-187.9	-223
oxide	F_2O	-196.1	-186.6	-182.3	-177.8	-173.0	-170.0	-165.8	-159.0	-151.9	-144.6	-223.9

1.206

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued)

		Pressure, mm Hg										
	Formula	1	5	10	20	40	60	100	200	400	760	
Compound name		Temperature, °C									Melting point, °C	
Germanium bromide	GeBr ₄		43.3	56.8	71.8	88.1	98.8	113.2	135.4	161.6	189.0	26.1
chloride	$GeCl_4$	-45.0	-24.9	-15.0	-4.1	+8.0	16.2	27.5	44.4	63.8	84.0	-49.5
hydride	GeH ₄	-163.0	-151.0	-145.3	-139.2	-131.6	-126.7	-120.3	-111.2	-100.2	-88.9	-165
Trichlorogermane	GeHCl ₃	-41.3	-22.3	-13.0	-3.0	+8.8	16.2	26.5	41.6	58.3	75.0	-71.1
Tetramethylgermane	$Ge(CH_3)_4$	-73.2	-54.6	-45.2	-35.0	-23.4	-16.2	-6.3	+8.8	26.0	44.0	-88
Digermane	Ge ₂ H ₆	-88.7	-69.8	-60.1	-49.9	-38.2	-30.7	-20.3	-4.7	+3.3	31.5	-109
Trigermane	Ge ₃ H ₆	-36.9	-12.8	-0.9	+11.8	26.3	35.5	47.9	67.0	88.6	110.8	-105.6
Gold	Au	1869	2059	2154	2256	2363	2431	2521	2657	2807	2966	1063
Helium	He	-271.7	-271.5	-271.3	-271.1	-270.7	-270.6	-270.3	-269.8	-269.3	-268.6	
para-Hydrogen	H_2	-263.3	-261.9	-261.3	-260.4	-259.6	-258.9	-257.9	-256.3	-254.5	-252.5	-259.1
Hydrogen bromide	HBr	-138.8	-127.4	-121.8	-115.4	-108.3	-103.8	-97.7	-88.1	-78.0	-66.5	-87.0
chloride	HC1	-150.8	-140.7	-135.6	-130.0	-123.8	-119.6	-114.0	-105.2	-95.3	-84.8	-114.3
cyanide	HCN	-71.0	-55.3	-47.7	-39.7	-30.9	-25.1	-17.8	-5.3	+10.2	25.9	-13.2
fluoride	H_2F_2		-74.7	-65.8	-56.0	-45.0	-37.9	-28.2	-13.2	+2.5	19.7	-83.7
iodide	нĨ	-123.3	-109.6	-102.3	-94.5	-85.6	-79.8	-72.1	-60.3	-48.3	-35.1	-50.9
oxide(water)	H ₂ O	-17.3	+1.2	11.2	22.1	34.0	41.5	51.6	66.5	83.0	100.0	0.0
sulfide	H ₂ S	-134.3	-122.4	-116.3	-109.7	-102.3	-97.9	-91.6	-82.3	-71.8	-60.4	-85.5
disulfide	HSSH	-43.2	-24.4	-15.2	-5.1	+6.0	12.8	22.0	35.3	49.6	64.0	-89.7
selenide	H ₂ Se	-115.3	-103.4	-97.9	-91.8	-84.7	-80.2	-74.2	-65.2	-53.6	-41.1	-64
telluride	H ₂ Te	-96.4	-82.4	-75.4	-67.8	-59.1	-53.7	-45.7	-32.4	-17.2	-2.0	-49.0
Iodine	I ₂	38.7	62.2	73.2	84.7	97.5	105.4	116.5	137.3	159.8	183.0	112.9
heptafluoride	ĨF	-87.0	-70.7	-63.0	-54.5	-45.3	-39.4	-31.9	-20.7	-8.3	+4.0	5.5
Iron	Fe	1787	1957	2039	2128	2224	2283	2360	2475	2605	2735	1535
pentacarbonyl	Fe(CO) ₅		-6.5	+4.6	16.7	30.3	39.1	50.3	68.0	86.1	105.0	-21
Ferric chloride	Fe ₂ Cl ₆	194.0	221.8	235.5	246.0	256.8	263.7	272.5	285.0	298.0	319.0	304
Ferrous chloride	FeCl ₂			700	737	779	805	842	897	961	1026	
Krypton	Kr	-199.3	-191.3	-187.2	-182.9	-178.4	-175.7	-171.8	-165.9	-159.0	-152.0	-156.7
Lead	Pb	973	1099	1162	1234	1309	1358	1421	1519	1630	1744	327.5
bromide	PbBr ₂	513	578	610	646	686	711	745	796	856	914	373
chloride	PbCl ₂	547	615	648	684	725	750	784	833	893	954	501
fluoride	PbF ₂		861	904	950	1003	1036	1080	1144	1219	1293	855
iodide	PbI ₂	479	540	571	605	644	668	701	750	807	872	402
---------------------------	---------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
oxide	PbŌ	943	1039	1085	1134	1189	1222	1265	1330	1402	1472	890
sulfide	PbS	852	928	975	1005	1048	1074	1108	1160	1221	1281	1114
Lithium	Li	723	838	881	940	1003	1042	1097	1178	1273	1372	186
bromide	LiBr	748	840	888	939	994	1028	1076	1147	1126	1310	547
chloride	LiCl	783	880	932	987	1045	1081	1129	1203	1290	1382	614
fluoride	LiF	1047	1156	1211	1270	1333	1372	1425	1503	1591	1681	870
iodide	LiI	723	802	841	883	927	955	993	1049	1110	1171	446
Magnesium	Mg	621	702	743	789	838	868	909	967	1034	1107	651
chloride	MgCl ₂	778	877	930	968	1050	1088	1142	1223	1316	1418	712
Manganese	Mn	1292	1434	1505	1583	1666	1720	1792	1900	2029	2151	1260
chloride	MnCl ₂		736	778	825	879	913	960	1028	1108	1190	650
Mercury	Hg	126.2	164.8	184.0	204.6	228.8	242.0	261.7	290.7	323.0	357.0	-38.9
Mercuric bromide	HgBr ₂	136.5	165.3	179.8	194.3	211.5	221.0	237.8	262.7	290.0	319.0	237
chloride	HgCl ₂	136.2	166.0	180.2	195.8	212.5	222.2	237.0	256.5	275.5	304.0	277
iodide	HgI_2	157.5	189.2	204.5	220.0	238.2	249.0	261.8	291.0	324.2	354.0	259
Molybdenum	Mo	3102	3393	3535	3690	3859	3964	4109	4322	4553	4804	2622
hexafluoride	MoF ₆	-65.5	-49.0	-40.8	-32.0	-22.1	-16.2	-8.0	+4.1	17.2	36.0	17
oxide	MoO ₃	734	785	814	851	892	917	955	1014	1082	1151	795
Neon	Ne	-257.3	-255.5	-254.6	-253.7	-252.6	-251.9	-251.0	-249.7	-248.1	-246.0	-248.7
Nickel	Ni	1810	1979	2057	2143	2234	2289	2364	2473	2603	2732	1452
carbonyl	Ni(CO) ₄					-23.0	-15.9	-6.0	+8.8	25.8	42.5	-25
chloride	NiCl ₂	671	731	759	789	821	840	866	904	945	987	1001
Nitrogen	N_2	-226.1	-221.3	-219.1	-216.8	-214.0	-212.3	-209.7	-205.6	-200.9	-195.8	-210.0
Nitric oxide	NO	-184.5	-180.6	-178.2	-175.3	-171.7	-168.9	-166.0	-162.3	-156.8	-151.7	-161
Nitrogen dioxide	NO_2	-55.6	-42.7	-36.7	-30.4	-23.9	-19.9	-14.7	-5.0	+8.0	21.0	-9.3
Nitrogen pentoxide	N_2O_5	-36.8	-23.0	-16.7	-10.0	-2.9	+1.8	7.4	15.6	24.4	32.4	30
Nitrous oxide	N_2O	-143.4	-133.4	-128.7	-124.0	-118.3	-114.9	-110.3	-103.6	-96.2	-85.5	-90.9
Nitrosyl chloride	NOCl					-60.2	-54.2	-46.3	-34.0	-20.3	-6.4	-64.5
fluoride	NOF	-132.0	-120.3	-114.3	-107.8	-100.3	-95.7	-88.8	-79.2	-68.2	-56.0	-134
Osmium tetroxide (yellow)	OsO_4	3.2	22.0	31.3	41.0	51.7	59.4	71.5	89.5	109.3	130.0	56
(white)	OsO_4	-5.6	+15.6	26.0	37.4	50.5	59.4	71.5	89.5	109.3	130.0	42
Oxygen	O_2	-219.1	-213.4	-210.6	-207.5	-204.1	-201.9	-198.8	-194.0	-188.8	-183.1	-218.7
Ozone	O ₃	-180.4	-168.6	-163.2	-157.2	-150.7	-146.7	-141.0	-132.6	-122.5	-111.1	-251
Phosgene	COCl ₂	-92.9	-77.0	-69.3	-60.3	-50.3	-44.0	-35.6	-22.3	-7.6	+8.3	-104
Phosphorus (yellow)	Р	76.6	111.2	128.0	146.2	166.7	179.8	197.3	222.7	251.0	280.0	44.1
(violet)	Р	237	271	287	306	323	334	349	370	391	417	590
tribromide	PBr ₃	7.8	34.4	47.8	62.4	79.0	89.8	103.6	125.2	149.7	175.3	-40

						Pr	essure, mn	n Hg				
		1	5	10	20	40	60	100	200	400	760	
Compound name	Formula					T	emperature	e, °C				Melting point, °C
trichloride	PCl ₃	-51.6	-31.5	-21.3	-10.2	+2.3	10.2	21.0	37.6	56.9	74.2	-111.8
pentachloride	PCl ₅	55.5	74.0	83.2	92.5	102.5	108.3	117.0	131.3	147.2	162.0	
Phosphine	PH ₃					-129.4	-125.0	-118.8	-109.4	-98.3	-87.5	-132.5
Phosphonium bromide	PH_4Br	-43.7	-28.5	-21.2	-13.3	-5.0	+0.3	7.4	17.6	28.0	38.3	
chloride	PH ₄ Cl	-91.0	-79.6	-74.0	-68.0	-61.5	-57.3	-52.0	-44.0	-35.4	-27.0	-28.5
iodide	PH_4I	-25.2	-9.0	-1.1	+7.3	16.1	21.9	29.3	39.9	51.6	62.3	
Phosphorus trioxide	P_4O_6		39.7	53.0	67.8	84.0	94.2	108.3	129.0	150.3	173.1	22.5
pentoxide	P_4O_{10}	384	424	442	462	481	493	510	532	556	591	569
oxychloride	POCl ₃			2.0	13.6	27.3	35.8	47.4	65.0	84.3	105.1	2
thiobromide	PSBr ₃	50.0	72.4	83.6	95.5	108.0	116.0	126.3	141.8	157.8	175.0	38
thiochloride	PSCl ₃	-18.3	+4.6	16.1	29.0	42.7	51.8	63.8	82.0	102.3	124.0	-36.2
Platinum	Pt	2730	3007	3146	3302	3469	3574	3714	3923	4169	4407	1755
Potassium	K	341	408	443	483	524	550	586	643	708	774	62.3
bromide	KBr	795	892	940	994	1050	1087	1137	1212	1297	1383	730
chloride	KCl	821	919	968	1020	1078	1115	1164	1239	1322	1407	790
fluoride	KF	885	988	1039	1096	1156	1193	1245	1323	1411	1502	880
hydroxide	KOH	719	814	863	918	976	1013	1064	1142	1233	1327	380
iodide	KI	745	840	887	938	995	1030	1080	1152	1238	1324	723
Radon	Rn	-144.2	-132.4	-126.3	-119.2	-111.3	-106.2	-99.0	-87.7	-75.0	-61.8	-71
Rhenium heptoxide	Re_2O_7	212.5	237.5	248.0	261.0	272.0	280.0	289.0	307.0	336.0	362.4	296
Rubidium	Rb	297	358	389	422	459	482	514	563	620	679	38.5
bromide	RbBr	781	876	923	975	1031	1066	1114	1186	1267	1352	682
chloride	RbCl	792	887	937	990	1047	1084	1133	1207	1294	1381	715
fluoride	RbF	921	982	1016	1052	1096	1123	1168	1239	1322	1408	760
iodide	RbI	748	839	884	935	991	1026	1072	1141	1223	1304	642
Selenium	Se	356	413	442	473	506	527	554	594	637	680	217
dioxide	SeO_2	157.0	187.7	202.5	217.5	234.1	244.6	258.0	277.0	297.7	317.0	340
hexafluoride	SeF ₆	-118.6	-105.2	-98.9	-92.3	-84.7	-80.0	-73.9	-64.8	-55.2	-45.8	-34.7
oxychloride	SeOCl ₂	34.8	59.8	71.9	84.2	98.0	106.5	118.0	134.6	151.7	168.0	8.5
tetrachloride	SeCl ₄	74.0	96.3	107.4	118.1	130.1	137.8	147.5	161.0	176.4	191.5	

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued)

Silicon	Si	1724	1835	1888	1942	2000	2036	2083	2151	2220	2287	1420
dioxide	SiO ₂			1732	1798	1867	1911	1969	2053	2141	2227	1710
tetrachloride	SiCl ₄	-63.4	-44.1	-34.4	-24.0	-12.1	-4.8	+5.4	21.0	38.4	56.8	-68.8
tetrafluoride	SiF ₄	-144.0	-134.8	-130.4	-125.9	-120.8	-117.5	-113.3	-170.2	-100.7	-94.8	-90
Trichlorofluorosilane	SiFCl ₃	-92.6	-76.4	-68.3	-59.0	-48.8	-42.2	-33.2	-19.3	-4.0	+12.2	-120.8
Iodosilane	SiH ₃ I		-53.0	-47.7	-33.4	-21.8	-14.3	-4.4	+10.7	27.9	45.4	-57.0
Diiodosilane	SiH ₂ I ₂		3.8	18.0	34.1	52.6	64.0	79.4	101.8	125.5	149.5	-1.0
Disiloxan	(SiH ₃) ₂ O	-112.5	-95.8	-88.2	-79.8	-70.4	-64.2	-55.9	-43.5	-29.3	-15.4	-144.2
Trisilane	Si ₃ H ₈	-68.9	-49.7	-40.0	-29.0	-16.9	-9.0	+1.6	17.8	35.5	53.1	-117.2
Trisilazane	(SiH ₃) ₃ N	-68.7	-49.9	-40.4	-30.0	-18.5	-11.0	-1.1	+14.0	31.0	48.7	-105.7
Tetrasilane	Si_4H_{10}	-27.7	-6.2	+4.3	15.8	28.4	36.6	47.4	63.6	81.7	100.0	-93.6
Octachlorotrisilane	Si ₃ Cl ₃	46.3	74.7	89.3	104.2	121.5	132.0	146.0	166.2	189.5	211.4	
Hexachlorodisiloxane	(SiCl ₃) ₂ O	-5.0	17.8	29.4	41.5	55.2	63.8	75.4	92.5	113.6	135.6	-33.2
Hexachlorodisilane	Si ₂ Cl ₆	+4.0	27.4	38.8	51.5	65.3	73.9	85.4	102.2	120.6	139.0	-1.2
Tribromosilane	SiHBr ₃	-30.5	-8.0	+3.4	16.0	30.0	39.2	51.6	70.2	90.2	111.8	-73.5
Trichlorosilane	SiHCl ₃	-80.7	-62.6	-53.4	-43.8	-32.9	-25.8	-16.4	-1.8	+14.5	31.8	-126.6
Trifluorosilane	SiHF ₃	-152.0	-142.7	-138.2	-132.9	-127.3	-123.7	-118.7	-111.3	-102.8	-95.0	-131.4
Dibromosilane	SiH_2Br_2	-60.9	-40.0	-29.4	-18.0	-5.2	+3.2	14.1	31.6	50.7	70.5	-70.2
Difluorosilane	SiH ₂ F ₂	-146.7	-136.0	-130.4	-124.3	-117.6	-113.3	-107.3	-98.3	-87.6	-77.8	
Monobromosilane	SiH ₃ Br		-85.7	-77.3	-68.3	-57.8	-51.1	-42.3	-28.6	-13.3	+2.4	-93.9
Monochlorosilane	SiH ₃ Cl	-117.8	-104.3	-97.7	-90.1	-81.8	-76.0	-68.5	-57.0	-44.5	-30.4	
Monofluorosilane	SiH ₃ F	-153.0	-145.5	-141.2	-136.3	-130.8	-127.2	-122.4	-115.2	-106.8	-98.0	
Tribromofluorosilane	SiFBr ₃	-46.1	-25.4	-15.1	-3.7	+9.2	17.4	28.6	45.7	64.6	83.8	-82.5
Dichlorodifluorosilane	SiF ₂ Cl ₂	-124.7	-110.5	-102.9	-94.5	-85.0	-78.6	-70.3	-58.0	-45.0	-31.8	-139.7
Trifluorobromosilane	SiF ₃ Br								-69.8	-55.9	-41.7	-70.5
Trifluorochlorosilane	SiF ₃ Cl	-144.0	-133.0	-127.0	-120.5	-112.8	-108.2	-101.7	-91.7	-81.0	-70.0	-142
Hexafluorodisilane	Si ₂ F ₆	-81.0	-68.8	-63.1	-57.0	-50.6	-46.7	-41.7	-34.2	-26.4	-18.9	-18.6
Dichlorofluorobromosilane	SiFCl ₂ Br	-86.5	-68.4	-59.0	-48.8	-37.0	-29.0	-19.5	-3.2	+15.4	35.4	-112.3
Dibromochlorofluorosilane	SiFClBr ₂	-65.2	-45.5	-35.6	-24.5	-12.0	-4.7	+6.3	23.0	43.0	59.5	-99.3
Silane	SiH_4	-179.3	-168.6	-163.0	-156.9	-150.3	-146.3	-140.5	-131.6	-122.0	-111.5	-185
Disilane	Si ₂ H ₆	-114.8	-99.3	-91.4	-82.7	-72.8	-66.4	-57.5	-44.6	-29.0	-14.3	-132.6
Silver	Ag	1357	1500	1575	1658	1743	1795	1865	1971	2090	2212	960.5
chloride	AgCl	912	1019	1074	1134	1200	1242	1297	1379	1467	1564	455
iodide	AgI	820	927	983	1045	1111	1152	1210	1297	1400	1506	552
Sodium	Na	439	511	549	589	633	662	701	758	823	892	97.5
bromide	NaBr	806	903	952	1005	1063	1099	1148	1220	1304	1392	755
chloride	NaCl	865	967	1017	1072	1131	1169	1220	1296	1379	1465	800

		Pressure, mm Hg										
		1	5	10	20	40	60	100	200	400	760	
Compound name	Formula					Т	emperature	e, °C				Melting point, °C
cyanide	NaCN	817	928	983	1046	1115	1156	1214	1302	1401	1497	564
fluoride	NaF	1077	1186	1240	1300	1363	1403	1455	1531	1617	1704	992
hydroxide	NaOH	739	843	897	953	1017	1057	1111	1192	1286	1378	318
iodide	NaI	767	857	903	952	1005	1039	1083	1150	1225	1304	651
Strontium	Sr		847	898	953	1018	1057	1111	1192	1285	1384	800
Strontium oxide	SrO	2068	2198	2262	2333	2410						2430
Sulfur	S	183.8	223.0	243.8	264.7	288.3	305.5	327.2	359.7	399.6	444.6	112.8
monochloride	S_2Cl_2	-7.4	+15.7	27.5	40.0	54.1	63.2	75.3	93.5	115.4	138.0	-80
hexafluoride	SF ₅	-132.7	-120.6	-114.7	-108.4	-101.5	-96.8	-90.9	-82.3	-72.6	-63.5	-50.2
Sulfuryl chloride	SO_2Cl_2		-35.1	-24.8	-13.4	-1.0	+7.2	17.8	33.7	51.3	69.2	-54.1
Sulfur dioxide	SO ₂	-95.5	-83.0	-76.8	-69.7	-60.5	-54.6	-46.9	-35.4	-23.0	-10.0	-73.2
trioxide (α)	SO ₃	-39.0	-23.7	-16.5	-9.1	-1.0	+4.0	10.5	20.5	32.6	44.8	16.8
trioxide (β)	SO ₃	-34.0	-19.2	-12.3	-4.9	+3.2	8.0	14.3	23.7	32.6	44.8	32.3
trioxide (γ)	SO ₃	-15.3	-2.0	+4.3	11.1	17.9	21.4	28.0	35.8	44.0	51.6	62.1
Tellurium	Te	520	605	650	697	753	789	838	910	997	1087	452
chloride	$TeCl_4$			233	253	273	287	304	330	360	392	224
fluoride	TeF ₅	-111.3	-98.8	-92.4	-83.0	-78.4	-73.8	-67.9	-57.3	-48.2	-38.6	-37.8
Thallium	T1	825	931	983	1040	1103	1143	1196	1274	1364	1457	3035
Thallous bromide	TlBr		490	522	559	598	621	653	703	759	819	460
chloride	TICI		487	517	550	589	612	645	694	748	807	430
iodide	TII	440	502	531	567	607	631	663	712	763	823	440
Thionyl bromide	SOBr ₂	-6.7	+18.4	31.0	44.1	58.8	68.3	80.6	99.0	119.2	139.5	-52.2
Thionyl chloride	SOCl ₂	-52.9	-32.4	-21.9	-10.5	+2.2	10.4	21.4	37.9	56.5	75.4	-104.5
Tin	Sn	1492	1634	1703	1777	1855	1903	1968	2063	2169	2270	231.9
Stannic bromide	$SnBr_4$		58.3	72.7	88.1	105.5	116.2	131.0	152.8	177.7	204.7	31.0
Stannous chloride	SnCl ₂	316	366	391	420	450	467	493	533	577	623	246.8
Stannic chloride	SnCl ₄	-22.7	-1.0	+10.0	22.0	35.2	43.5	54.7	72.0	92.1	113.0	-30.2
iodide	SnI ₄		156.0	175.8	196.2	218.8	234.2	254.2	283.5	315.5	348.0	144.5
hydride	SnH_4	-140.0	-125.8	-118.5	-111.2	-102.3	-96.6	-89.2	-78.0	-65.2	-52.3	-149.9

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued)

Tin tetramethyl	Sn(CH ₃) ₄	-51.3	-31.0	-20.6	-9.3	+3.5	11.7	22.8	39.8	58.5	78.0	
trimethyl-ethyl	$Sn(CH_3)_3 \cdot C_2H_5$	-30.0	-7.6	+3.8	16.1	30.0	38.4	50.0	67.3	87.6	108.8	
trimethyl-propyl	$Sn(CH_3)_3 \cdot C_3H_7$	-12.0	+10.7	21.8	34.0	48.5	57.5	69.8	88.0	109.6	131.7	
Titanium chloride	TiCl ₄	-13.9	+9.4	21.3	34.2	48.4	58.0	71.0	90.5	112.7	136.0	-30
Tungsten	W	3990	4337	4507	4690	4886	5007	5168	5403	5666	5927	3370
Tungsten hexafluoride	WF ₆	-71.4	-56.5	-49.2	-41.5	-33.0	-27.5	-20.3	-10.0	+1.2	17.3	-0.5
Uranium hexafluoride	UF ₆	-38.8	-22.0	-13.8	-5.2	+4.4	10.4	18.2	30.0	42.7	55.7	69.2
Vanadyl trichloride	VOCl ₃	-23.2	+0.2	12.2	26.6	40.0	49.8	62.5	82.0	103.5	127.2	
Xenon	Xe	-168.5	-158.2	-152.8	-147.1	-141.2	-137.7	-132.8	-125.4	-117.1	-108.0	-111.6
Zinc	Zn	487	558	593	632	673	700	736	788	844	907	419.4
chloride	ZnCl ₂	428	481	508	536	566	584	610	648	689	732	365
fluoride	ZnF_2	970	1055	1086	1129	1175	1207	1254	1329	1417	1497	872
diethyl	$Zn(C_2H_5)_2$	-22.4	0.0	+11.7	24.2	38.0	47.2	59.1	77.0	97.3	118.0	-28
Ziroconium bromide	$ZrBr_4$	207	237	250	266	281	289	301	318	337	357	450
chloride	ZrCl ₄	190	217	230	243	259	268	279	295	312	331	437
iodide	ZrI_4	264	297	311	329	344	355	369	389	409	431	499

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds

Substance	State	Eq.	Range, ^o C	Α	В	C
Aluminum						
AlCl ₃		2	70-190	16.24	6 006	
Al ₂ O ₂		2	1840-2000	14.22	28 200	
Ammonium						
NH ₂	с*	1		9.963 82	1 617.907	272.55
	lia	1		7.360 50	926.132	240.17
NH ₄ Br	subl c	1		9.220 0	3 947	227.0
NHLCI	subl c	1		9.355 7	3 703.7	232.0
NHJ	subl c	î		9 147 0	3 858	226.0
NH.N.	c	1		10 433 4	2 821 0	240.0
Antimony	Ũ			10.155 1	2 021.0	210.0
Sh	c	2	1070-1325	9.051	0 871	
SbBr	C	2	235324	8.005	2 873	
SUDI3 SHCI		2	170 253	8.000	2 597 2	
SUCI3 Shi		2	220 445	7 921	2 350 55	
SUI3 Sh So	mbl a	2	550-445	7.031 9.700 6	5 550.55	
30 ₂ 30 ₃	subi c	2		8.790 0	0 432.5	
Argon		1		7 505 91	200.095	272 62
Ar	C I	1		7.303 81	399.083	272.03
A	nd	1		0.010 51	304.227	267.32
Arsenic		•	440 015	10,000	6.047	
As		2	440-815	10.800	6 947	
		2	800860	6.692	2 460	
AsCl ₃		2	50-100	7.953	2 042.7	
As_2O_3		2	100-310	12.127	5 815.81	
		2	315-490	6.513	2 722.2	
Barium						
Ba		2	9301130	15.765	18 280	
BaH ₂ [97% pure]		2	500-1000	6.86	4 000	
Bismuth						
Bi		2	1210-1420	8.876	10 446	
BiCl ₃		2	91-213	2.681	685.519	
Boron						
BBr ₃		2	-40 to 90	7.655	1 740.3	
BCl ₃		1		6.188 11	756.89	214.0
$B(CH_3)_3$		2	-118 to -20	7.459 5	1 157.99	
B_2H_6	liq	1		6.366 38	521.490	241.98
B ₅ H ₁₁	liq	2	-43 to 8.4	7.901	1 690.3	
Bromine	•					
Br ₂	с	1		9.7209	2 041.3	260.1
-	lia	1		6.877 80	1 119.68	221.38
BrF ₂	lia	1		7,729 74	1 673.95	219.48
BrFe	lia	1		7.273 68	1 219.28	236.40
BrO ₂ F	lia	1		7.436 51	1 195.8	260.1
Cadmium		^		11100 01	1 19510	20011
Cd		2	150-321	8 564	5 693	
24		2	500-840	7 897	5 218	
CdL		2	385-450	9.269	6 383	
Calcium		2	JUJ	1.401	0.000	
Co		2	500. 700	0 607	10 185	
Ca		2	060 1100	16 240	10 225	
		4	300-1100	10.240	17 343	

*Crystalline solid.

Substance	State	Eq.	Range,°C	Α	В	С
Carbon						
C [as C(g)]	liq	1		11.042 8	37 736	302.2
$[as C_2(g)]$	liq	1		12.583 2	43 281	318.3
[all species]	liq	1		9.381 3	27 240	264.0
Carbon						
CNBr	subl c	1		9.488 9	2 041.8	251.70
CNF		1	-76 to -47	6.778 9	697.61	224.95
CO	c I	1		7.414 8	342.50	269.0
	liq	1		6.694 22	291.743	267.99
CO_2	с	1		9.810 66	1 347.786	273.00
C_3O_2	liq	1	-71 to 7	7.188 99	1 100.94	249.15
COCl ₂	liq	1		6.971 33	998.770	236.68
COF ₂	-	1	-109 to -84	6.885 5	576.70	228.58
COS		1	-111 to -49	6.907 23	804.48	250.0
CS ₂		1	3-80	6.942 79	1 169.11	241.59
CSe ₂		1	0-50	6.776 73	1 353.20	219.95
CSeS		1	-16 to 84	6.699 6	1 161.97	219.59
Cesium						
Cs		2	200-350	6.949	3 833.7	
CsBr		2	978-1305	7,990	8 022.53	
CsCl		2	986-1295	8.340	8 523.94	
CsE		2	1033-1255	7.703	7 359.21	
CsH		2	245-378	11.79	5 900	
Carr		2	340-440	9.25	4 4 10	
Cel		2	1052-1280	9.124	9 699 11	
Chlorine		2	1052 1200	J.124	9 099.11	
Cl	C	1		0 705 12	1 444 10	267 13
C12	lia	1		6 027 00	861.24	207.15
CIE	liq	1		6.080	692.1	240.55
CIF	lia	1		7 266 95	1 006 28	220
CIF	nq	1		6 260 33	653.06	206.6
	lia	1		6.036.11	500.00	200.0
	lia	1		7 122 69	1 021 56	170.15
	nq	1		7.132.00	1 404 18	256.10
	nq 11-	1		7.338.07	1 404.18	237.00
Cl_2O_7	nq	1		0.009 29	1 214.00	220.79
ClO_2F	nq	1		0.077 15	809.78	218.90
CIO ₃ F	nq	1		0.895 19	/91./3	243.88
Copper		2	007 1251	5 460	4 172 0	
CuBr		2	997-1351	5.460	4 1/3.2	
CuCl		2	8/8-1369	5.454	4 215.0	
Cul		2	991-1154	5.570	4 215.0	
Fluorine				< - <	20105	
F ₂	liq	1		6.765 88	304.35	266.54
FNO ₃	liq	1		6.658 6	769.5	248.0
Germanium						
GeCl ₄		2	10.4-86	7.340	2 010.9	
Helium						
³ He	liq	1	-271.13 to -270.86	4.272 7	5.594	273.840
	liq	1	-271.13 to -269.92	5.100 0	11.062	274.950
⁴He		1	-271.4 to -270.1	4.558 7	8.1548	273.710
		1	-271.4 to -268.9	5.320 75	14.6515	274.950
		1	-271.4 to -268.1	6.004 60	24.0668	276.650

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Substance	State	Eq.	Range,°C	A	В	С
Hydrogen						
¹ H ₂ normal, 25% para	с	1		6.043 86	66.507	274.630
	liq	1		5.824 38	67.5078	275.700
equilibrium	с	1		6.042 07	65.961	274.60
	liq	1		5.814 64	66.7945	275.650
¹ H ² H (DH)	с	1		6.960 08	99.968	276.590
	liq	1		6.016 12	77.1349	275.620
$^{2}\text{H}_{2}$ (D ₂) normal,	с	1		7.726 05	135.461	278.550
66.7% ortho	liq	1		6.128 25	83.5251	275.216
² H ₂ equilibrium,	с	1		7.751 10	135.58	278.50
97.8% ortho	liq	1		6.044 68	79.5888	274.680
³ H ₂ (T ₂) normal, 25%	с	1		6.184 03	76.7445	271.850
para	liq	1		6.089 21	81.8971	273.650
¹ HBr	с	1		7.667 61	878.57	253.2
	liq	1		6.287 53	540.82	225.44
² HBr (DBr)	с	1		7.500 93	820.68	247.3
	liq	1		6.162 38	505.68	220.6
¹ HCl	с	1		8.134 73	941.57	268.06
	liq	1		7.170 00	745.80	258.88
² HCl (DCl)	с	1		7.850 47	843.32	258.32
	liq	1		6.935 96	668.20	249.50
HCN	liq	1	-16 to 46	7.528 2	1329.5	260.4
¹ HF	liq	1		7.680 98	1475.60	287.88
² HF (DF)	liq	1		7.217 04	1268.37	273.87
¹ HI	с	1		7.315 6	894.32	239.6
	liq	1		5.608 9	416.04	188.1
² HI (DI)	с	1		7.314 9	889.52	238.8
	liq	1		5.601 8	413.98	187.8
HN_3	liq	1		6.857	1 066	232
HNO ₃	liq	1		7.511 9	1 406	221.0
¹ H ₂ O			[See Ta	ables 5.4 and 5.6]		
${}^{2}\text{H}_{2}\text{O}$ (D ₂ O)			[See Ta	able 5.7]		
$H_2^{18}O$		1	0-60	8.133 2	1 762.39	235.660
		1	60 - 120	7.972 08	1 668.84	227.700
H_2O_2	liq	1		7.969 17	1 886.76	220.6
HPO ₂ F	liq	1		6.735 3	1 342.9	232.0
H_2S	с	1		7.614 18	885.319	250.25
	liq	1		6.993 92	768.130	249.09
H_2S_2	liq	1		6.974	1 232	225
H_2S_3	liq	1		6.807	1 488	209
H_2S_4	liq	1		6.945	1 772	196
H_2S_5	lıq	1		7.320	2 104	189
HSO ₃ Cl	liq	1.		7.049	1 480	201
HSO₃F	liq	1		7.399 5	1 521	174.0
H_2Se	c	1		7.635 4	927.6	240.0
II T	liq	1		6.966 0	787.67	235.0
H ₂ 1e	lıq	1		7.000	935	229
lodine				0.010.0	0.001.0	054.00
1 ₂	C	1		9.810 9	2 901.0	256.00
	liq	1		7.018 1	1 610.9	205.0
ICI IE	lıq	1		7.702 1	1 517.9	217.0
11r ₅	C 1	l		10.964	2 538	245
TE	lıq	1		7.464 8	1 460	216.0
11 ⁴ 7	с	1		/.998	1 340	230

iridium 0 Ir T_6 iq 2 0.4–44 8.618 1 868 Iron iq 2 0.4–44 7.952 1 657 Iron iq 2 708–834 9.794 7 455 Iron iq 2 700–930 8.33 7 061 FeCl, c 2 601–636 9.674 7.716 Krypton Kr c 1 6.630 70 416.38 264.45 Lead 1 6.630 70 416.38 264.45 269.8 Libt 2 505–1325 7.827 9.845.4 264.45 Lead 1 7.359.918 8.064 6163.1 264.45 LiCl 2 1010–1265 8.068 7.975.5 1.1407 LiKl 2 1010–1265 8.068 7.975.5 1.1407 LiKl 2 100–270 10.094 4.18.34 LiCl 2 1010–1265 8.068 7.975.5	Substance	State	Eq.	Range,°C	Α	В	С
	Iridium		1	0			
liq 2 44–54 7.952 1 657 Iron	IrF ₆	с	2	0.4-44	8.618	1 868	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	U U	liq	2	44-54	7.952	1 657	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Iron	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeCl ₂	liq	2	708-834	9.794	7 455	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		liq	2	700-930	8.33	7 061	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FeCl ₃	с	2	160-304	15.11	7 142	
krypton2 $601-686$ 9.674 777Krc17.53955 539.48 269.8 Lead78.0646163.1264.45PbCl22 $525-1325$ 7.8279845.4PbCl32 $525-1325$ 7.8279845.4PbCl22 $500-950$ 8.9617411.4PbCl22 $500-950$ 8.9617411.4PbF221010-12658.0687975.5LiCl21045-13257.9398142.7LiF21398-16668.75311407LiH2500-65011.2279600LiH2900-107012.99313579.8Mgg2900-107012.99313579.8Mgg2300-107012.99313579.8Mgt423270-27010.0944188.04HgBr22130-27010.0944188.04HgL322266-3608.1153278.5Neon7100100410.61272.00HgL3222222Metu1002222Mg1002223Mgt622223Mgt722223Mgt8222 <td>FeI₂</td> <td></td> <td>2</td> <td>517-577</td> <td>13.183</td> <td>10 778</td> <td></td>	FeI ₂		2	517-577	13.183	10 778	
Kry c 1 7.539 55 539.48 269.8 liq 1 6.630 70 416.38 264.45 Lead 2 525–1325 7.827 9 845.4 PbBr2 2 735–918 8.064 6 163.1 PbF2 2 1078–1289 8.391 8 623.2 Lithium 2 1010–1265 8.068 7 975.5 LitCl 2 1010–1265 8.068 7 975.5 LitGl 2 1010–1265 8.068 7 975.5 Magnesium 2 1027 9.600 1227 9.600 Magnesium 2 1029.93 13 579.8 3 857 Mercury 108 <			2	601-686	9.674	7 716	
Kr c 1 7.539 55 539.48 269.8 Lead	Krypton						
liq 1 6.630 70 416.38 264.45 Lead $ -$ <t< td=""><td>Kr</td><td>с</td><td>1</td><td></td><td>7.539 55</td><td>539.48</td><td>269.8</td></t<>	Kr	с	1		7.539 55	539.48	269.8
Lead Pb 2 $525-1325$ 7.827 9 845.4 1 PbBr ₂ 2 $735-918$ 8.064 6 163.1 1 PbF ₂ 2 $500-950$ 8.961 7 411.4 1 PbF ₂ 2 $1078-1289$ 8.391 8 623.2 1 Lift 2 $1010-1265$ 8.068 7 975.5 1 407 LiF 2 $1038-1325$ 7.939 8 142.7 1 1407 12.979 600 12.979 600 12.993 13 579.8 387 3857 Lif 2 $900-1070$ 12.993 13 579.8 3857 MgH_2 2 $337-415$ 9.78 3857 MgH ₂ 2 $300-270$ 10.094 4 168.0 187.1 HgSr ₂ 2 $130-270$ 10.094 4 168.0 168.0 Hg2L ₂ 2 $266-360$ 8.115 3278.5 72.00 191.1		liq	1		6.630 70	416.38	264.45
Pb 2 $525-1325$ 7.827 9 845.4 PbBr2 2 $735-918$ 8.064 6163.1 PbCl2 2 $500-950$ 8.961 7411.4 PbF2 2 $1078-1289$ 8.391 8623.2 Lihium 2 $1010-1265$ 8.068 $7.975.5$ LiCl 2 $1045-1325$ 7.939 8142.7 LiF 2 $10398-1666$ 8.753 11.407 LiH 2 $500-650$ 11.227 9.600 LiH 2 $500-650$ 11.227 9.600 Magnesium 2 $900-1070$ 12.993 $13.579.8$ MgH2 2 $300-270$ 10.094 $4.18.34$ MgH2 2 $205-270$ 10.094 $4.18.34$ MgC2 2 $275-309$ 8.409 $3.187.1$ Hg2 2 $266-360$ 8.115 $3.278.5$ Neon 1 $6.084.444$ 78.380 270.050 NpF6 liq $55.1-76.8$	Lead						
PbBr2 2 $735-918$ 8.064 6163.1 PbCl2 2 $500-950$ 8.961 7411.4 PbF2 2 $1078-1289$ 8.391 8623.2 Lithium 2 $1010-1265$ 8.068 7975.5 LiCl 2 $1045-1325$ 7.939 8142.7 LiF 2 $1045-1325$ 7.939 8142.7 LiF 2 $100-800$ 9.926 8204 LiI 2 $900-1070$ 12.993 13579.8 Mg 2 $300-570$ 10.094 4168.0 MgH2 2 $337-415$ 9.78 3857 Mercury 2 $275-309$ 8.409 3187.1 HgCl2 2 $230-270$ 10.094 4168.0 Hg2L2 2 $266-360$ 8.115 3278.5 Neron 6.081444 78.380 270.550 Netoinm 6.084444 78.380 270.550 NoF5 liq $2.20-264$ 8.92 3850 </td <td>Pb</td> <td></td> <td>2</td> <td>525-1325</td> <td>7.827</td> <td>9 845.4</td> <td></td>	Pb		2	525-1325	7.827	9 845.4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PbBr ₂		2	735-918	8.064	6 163.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PbCl ₂		2	500950	8.961	7 411.4	
Lithium LiBr 2 1010–1265 8.068 7 975.5 LiCl 2 1045–1325 7.939 8 142.7 LiF 2 1398–1666 8.753 11 407 LiH 2 500–650 11.227 9 600 LiH 2 900–1070 9.926 8 204 LiI 2 940–1140 8.011 7 500 Magnesium	PbF ₂		2	1078-1289	8.391	8 623.2	
LiBr 2 1010-1265 8.068 7 975.5 LiCl 2 1045-1325 7.939 8 142.7 LiF 2 1398-1666 8.753 11 407 LiH 2 500-650 11.227 9 600 2 700-800 9.926 8 204 LiI 2 940-1140 8.011 7 500 Magnesium 940-1140 8.011 7 500 Magnesium 937.415 9.78 3 857 Mercury [See Table 5.3] 4 168.0 Hg [See Table 5.3] 187.1 6 8.0 8 857 8 857 Mercury 2 275-309 8.409 3 187.1 8 850 6 8.0 8 850 8 850 8 850 8 850 8 850 8 850 8 850 8 850 8 850 3 278.5 8 850 2 8 24 2 2 0.0 50 8 820 2 7 0.50 8 820	Lithium						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LiBr		2	1010-1265	8.068	7 975.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LiCl		2	1045-1325	7.939	8 142.7	
Lift 2 500-650 11.27 9 600 2 700-800 9.926 8 204 LiI 2 940-1140 8.011 7 500 Magnesium Mg 2 2 900-1070 12.993 13 579.8 MgH ₂ 2 337-415 9.78 3 857 Mercury Hg [See Table 5.3] HgBr ₂ 2 130-270 10.094 4 168.0 HgCl ₂ 2 130-270 10.094 4 118.34 2 275-309 8.409 3 187.1 Hg ₂ Cl ₂ 1 8.521 51 3 110.96 168.0 HgI ₂ 2 266-360 8.115 3 278.5 Neon Ne c 1 7.065 16 110.61 272.00 liq 1 6.084 44 78.380 270.550 Neptunium NpF ₆ liq 3 55.1-76.8 0.010 23 1 191.1 -2.582 : Nickel Nickel Nickel Nickol NbBr ₅ liq 2 210-254 8.37 2 827 NbF ₅ liq 1 6.494 57 255.680 266.550 ¹⁵ N ₂ c 1 7.345 12 322.222 269.980 NiCl ₉ liq 1 6.494 57 255.680 266.550 ¹⁵ N ₂ c 1 7.345 12 322.222 269.980 NCl ₃ liq 1 6.494 14 255.535 266.451 NCl ₃ liq 1 6.797 66 501.913 257.79 NH ₃	LiF		2	1398-1666	8.753	11 407	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LiH		2	500-650	11.227	9 600	
Lii 2 940–1140 8.011 7 500 Magnesium Mg 2 900–1070 12.993 13 579.8 MgH ₂ 2 337–415 9.78 3 857 Mercury Hg [See Table 5.3] HgBr ₂ 2 130–270 10.094 4 168.0 HgCl ₂ 2 130–270 10.094 4 118.34 2 275–309 8.409 3 187.1 Hg2 ₂ Cl ₂ 1 8.521 51 3 110.96 168.0 Hg1 ₂ 2 266–360 8.115 3 278.5 Neon Ne c 1 7.065 16 110.61 272.00 Liq 1 6.084 44 78.380 270.550 Neptunium NpF ₆ liq 3 55.1–76.8 0.010 23 1 191.1 -2.582 5 Nickel Nickel NiCO ₃ 2 2–40 7.780 1 556.5 Niobium NbBr ₅ liq 2 8.92 3 850 NbCl ₅ liq 2 8.92 3 850 NbCl ₅ liq 2 8.439 2 824 Nitrogen N ₂ natural c 1 7.345 12 322.222 269.980 Liq 1 6.494 57 255.680 266.550 ¹⁵ N ₂ c 1 7.363 96 323.17 269.88 Liq 1 6.494 14 255.355 266.451 NCl ₃ Liq 1 6.494 14 255.355 266.451 NCl ₃ Liq 1 6.494 14 255.355 266.451 NCl ₃ Liq 1 6.956 1 190 221 NF ₃ Liq 1 6.779 66 501.913 257.79 NH ₃			2	700-800	9.926	8 204	
Magnesium 2 900–1070 12.993 13 579.8 MgH ₂ 2 337–415 9.78 3 857 Mercury [See Table 5.3] [HgBr ₂ 2 130–270 10.094 4 168.0 HgCl ₂ 2 130–270 10.094 4 18.34 2 275–309 8.409 3 187.1 HgL ₂ 2 266–360 8.115 3 278.5 Neon 7.065 16 110.61 272.00 NpF ₆ liq 3 55.1–76.8 0.010 23 1 91.1 -2.582 1 Nickel	LiI		2	940-1140	8.011	7 500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Magnesium						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg		2	900-1070	12.993	13 579.8	
$\begin{tabular}{ c c c c c c } \hline Mercury & [See Table 5.3] & [See Table 5.3] & [See Table 5.3] & [HgBr_2 & 2 & 130-270 & 10.094 & 4 & 168.0 & \\ HgCl_2 & 2 & 130-270 & 10.094 & 4 & 118.34 & & \\ & & & & & & & & & & & & & & & & $	MgH ₂		2	337-415	9.78	3 857	
Hg[See Table 5.3]HgBr22 $130-270$ 10.094 4 168.0 HgCl22 $130-270$ 10.094 4 118.34 2 $275-309$ 8.409 3 187.1 Hg2Cl21 8.521 51 3 10.96 168.0 Hg122 $266-360$ 8.115 3 278.5 Neon1 6.084 44 78.380 270.550 Nepfliq 3 $55.1-76.8$ 0.010 23 1 191.1 -2.582 Nickel $Nickel$ 3 55.5 35.5 35.5 Niobium $355.1-76.8$ 0.010 23 1 191.1 -2.582 Nickel $355.1-76.8$ 0.010 23 1 191.1 -2.582 25.535 Niobium $355.1-76.8$ 0.010 23 1 191.1 -2.582 25.535 Niobium $355.1-76.8$ 0.010 23 1 191.1 -2.582 25.535 NibFsliq 2 $2-40$ 7.780 1 556.5 Niobium $355.1-76.8$ 0.010 23 1 91.1 -2.582 25.535 NbFsliq 2 $2-40$ 7.780 1 556.5 Niobium 357.79 357.79 357.79 357.79 357.79 NbF3liq 1 6.956 1 190 221 NcI3 $11q$ 110 221 6.779 66 501.91	Mercury						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg			[See	e Table 5.3]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HgBr ₂		2	130-270	10.094	4 168.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HgCl ₂		2	130-270	10.094	4 118.34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	275-309	8.409	3 187.1	
HgI2 2 266-360 8.115 3 278.5 Neon Ne c 1 7.065 16 110.61 272.00 liq 1 6.084 44 78.380 270.550 Neptunium NpF6 liq 3 55.1–76.8 0.010 23 1 191.1 -2.582 Nickel Nickel Nickol 1 2 2–40 7.780 1 556.5 Niobium NbBr5 liq 2 2–40 7.780 1 556.5 NioCl3 liq 2 210–254 8.37 2 827 NbF5 liq 2 210–254 8.37 2 827 NbF5 liq 2 210–254 8.37 2 827 NbF5 liq 2 210–254 8.37 2 824 Nitrogen 1 6.494 57 255.680 266.550 15N2 c 1 6.494 14 255.535 266.451 NCl3 1iq 1 6.956 1 190 221 NF3 liq 1 6.779 66 501.913 <	Hg_2Cl_2		1		8.521 51	3 110.96	168.0
Neon c 1 7.065 16 110.61 272.00 liq 1 6.084 44 78.380 270.550 Neptunium NpF6 liq 3 55.1–76.8 0.010 23 1 191.1 -2.582 Nickel Nickel 100 2 2–40 7.780 1 556.5 Niobium NbBr5 liq 2 2–40 7.780 1 556.5 Nioblum NbCl5 liq 2 210–254 8.37 2 827 NbF5 liq 2 20–254 8.37 2 824 Nitrogen 110 6.494 57 255.680 266.550 15N2 c 1 6.494 14 255.535 266.451 NCl3 1iq 1 6.956 1 190 221 NF3 liq 1 6.779 66 501.913	HgI ₂		2	266-360	8.115	3 278.5	
Ne c 1 7.065 16 110.61 272.00 liq 1 6.084 44 78.380 270.550 Neptonium 0.010 23 1 191.1 -2.582 Nickel 0.010 23 1 191.1 -2.582 Nickel 0.010 23 1 191.1 -2.582 Nickel 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 556.5 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 191.1 -2.582 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 556.5 0.010 23 1 191.1 -2.582 Niobium 0.010 23 1 556.5 0.010 23 1 556.5 NbBr5 liq 2 210-254 8.37 2 827 NbF5 liq 2 210-254 8.37 2 824 Nitrogen 0.10 231.17 269.88 266.550 255.535 266.451 <td>Neon</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Neon						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ne	с	1		7.065 16	110.61	272.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		liq	1		6.084 44	78.380	270.550
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neptunium						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NpF ₆	liq	3	55.1-76.8	0.010 23	1 191.1	-2.5825
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nickel		-	a 10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Ni(CO)_4$		2	2-40	7.780	1 556.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Niobium				0.00	0.050	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NbBr ₅	liq	2		8.92	3 850	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NbCl ₅	liq	2	210-254	8.37	2 827	
Nirogen 7.345 12 322.222 269.980 liq 1 6.494 57 255.680 266.550 $^{15}N_2$ c 1 7.363 96 323.17 269.88 liq 1 6.494 14 255.535 266.451 NCl ₃ 1 6.956 1 190 221 NF ₃ liq 1 6.779 66 501.913 257.79 NH ₃ [See Table 1.49]	NbF ₅	liq	2		8.439	2 824	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen				7 0 4 F 10		0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N_2 natural	c	1		7.345 12	322.222	269.980
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1587	liq	1		0.494 57	255.680	200.330
inq i 6.494 14 255.535 266.451 NCl ₃ 1 6.956 1 190 221 NF ₃ liq 1 6.779 66 501.913 257.79 NH ₃ [See Table 1.49]	¹⁰ IN ₂	C	1		7.303 90	523.17	209.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NCI	lıd	1		0.494 14	255.535	200.451
INF3 IIQ I 6.7/9 66 501.913 257.79 NH3 [See Table 1.49]	NCI3		1		0.950	1 190	221
	NF ₃	lıq	T	10	0.//9.00 Table 1.401	501.913	251.19
	infl ₃			[See	e 1aole 1.49]		

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Substance	State	Eq.	Range,°C	Α	В	С
Nitrogen (cont.)						
N_2H_4	liq	1		7.801 9	1 679.07	227.7
NO natural	c	1		9.628 26	758.736	266.00
	liq	1		8.743 00	682.938	268.27
N ₂ O	c	1		9.437 00	1 174.020	268.22
	lia	1		7.003 94	654.260	247.16
N ₂ O ₄ equilibrium	c	1		10.736 31	2 075.53	252.80
mixture	lia	1		8.917 12	1 798.54	276.80
N ₂ O ₅	с	1		11.644.5	2 510	253.0
NOCI	c	1		8.540.8	1 397.3	261.0
	lia	1		7.361.54	1 094 73	249.70
N ₂ O ₂		2	-25 to 0	10.30	2.057.9	2.0170
NOF	lia	1	23 10 0	6 4 4 3 5	556.13	216.0
NO ₂ CI	lia	1		5 372 3	395.40	174.0
NO ₂ EI	liq	1		6 833 4	654 55	238.0
Osmium	nq			0.055 4	054.55	250.0
OsF-		2	75-180	9.75	3 429	
OsF.		2	34_48	7 470	1 473	
OsE.		2	38-47	7.470	1 525	
		2	-38 to 40	10 710 0	2 951 00	
$O_{3}O_{4}$		2	50-105	7 00/	1 011	
		2	59-105	1.774	1 711	
Oxygen	lia	1		6 601 44	210.012	266 607
O_2	liq	1		6 827	559.5	200.097
OF	liq	1		7 226 10	545.05	251.0
	nq	1		7.250 19	345.05	209.91
$O_2 \Gamma_2$	nq	1	70 114	0.779 02	130.39	230.10
D ₃ r ₂ Delladium		2	/9-114	0.154 5	075.57	
		2	600 057	6 20	5.022	
PuCl ₂		2	080-837	0.32	5 052	
P nod V	auhl a	1		11.060	5 202	220
P red, V	subi c	1		11.000	3 323	100.0
D blash a sh	subl c	1		0.930 9	1 907.0	190.0
P_4 black, o-m	1	1	40 +- 172	12.405	0 0/1	247
PBI ₃	nq	1	-40 to 173	0.915 5	1 590.5	221.0
PBI5	nq	1	to 104	6.948	1 320	214
PBIF ₂	nq	1	-133 to -10	6.904 2	885.12	236.0
PBr ₂ F	liq	1	-115 to 78	6.858 0	1 210.3	226.0
PCI ₃	liq	1	-92 to 76	6.826 /	1 196	227.0
PCI ₅	c	1	to 160	10.206 8	2 903.1	237.0
DOID	liq	I	165	7.033	1 490	200.0
PCIF ₂	nq	1	-165 to -4/	0.039 0	/80.88	255.0
PCI ₂ F	liq	I	-144 to 14	6.796 56	982.332	237.00
$P(OCN)_3$	nd	2	-2 to 169	8.745 5	2 595	057 0
PF ₃	liq	1	-152 to -101	6.860 4	620.22	257.0
PF ₅	liq	I	-93.8 to -84.5	6.914 4	647.21	245.0
PH_3	c	I		7.482 35	794.496	265.20
	liq	I		6.715 59	645.512	256.066
P_2H_4	liq	1		6.862 8	1 137	227.0
P_4O_6	liq	1	24-175	6.716 37	1 412.8	193.0
P_4O_{10}	c III	1		9.707 0	3 822	201.0
	c I	1		10.843 2	6 424	213
	liq	1		6.935 2	3 069	152
POBr ₃	liq	1	51-192	7.007 8	1 609.2	198.0
POBrCl ₂	liq	1	31-165	6.924	1 411	213
POBrClF	liq	1		6.914	1 214	222

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Substance	State	Eq.	Range,°C	Α	В	С
Phosphorus (continu	ued)					
POBrF ₂	liq	1	-85 to 32	7.101 9	1 118.9	233.0
POBr ₂ F	liq	1	-117 to 110	6.721 2	1 328.9	236.0
POCl ₃	liq	1	1.2 - 105	6.865 8	1 297.2	220.0
POCIF ₂	liq	1	-96 to 3	6.926 6	946.96	231.0
POCl ₂ F	liq	1	-80 to 53	7.084 65	1 201.86	233.00
POF ₃	c	1		10.930 5	1 783	261.0
-	liq	1		7.115 5	810.1	231.0
PO(OCN) ₃	-	2	5-193	9.168 2	2 931	
PO(SCN) ₃		2	14-300	8.533 0	3 240	
P_4S_{10}		2		9.17	4 940	
PSBr ₂	с	2		10.105	3 196.2	
	lia	2		8.338 3	2 641.9	
PS(OCN) ₂	1	2		10.032	3 492	
Platinum		_				
Pt		2	1425-1765	7.786	25 384	
PtF.	lia	1	61.3-81.7	89.15	5 686	27.49
Polonium				07110	0 000	
Po	lia	1		7.041.4	5 017 6	241.0
PoCL	lia	1		7 554	2 360	115
Potassium	пч	•		1.554	2 500	115
K		2	260-760	7 183	4 434 33	
KBr		2	1095-1375	7.105	8 555 3	
KCI		2	1116-1418	8 130	8 863 4	
KCI		2	1278 1500	0.000	10 838	
KOU		2	1276-1300	9.000	7 102 2	
KUN VI		2	1062 1222	7.550	/ 105.5	
NI Ducto atinium	lia	2	1005-1555	17.949	0 152.2	
Radon	nq	2		17.27	1 311	
Rn	с	1		7.495 5	884.41	255.0
	lia	1		6.701 5	718.25	250.0
Rhenium	1	_				
ReF	с	2		9.024	3 037	
ReF	c	3	-3.45 to 18.5	9.123 0	1 765.4	0.1790
	lia	3	18.5-48	18,208,1	1 956.7	3,599
ReF-	c .	3	-14.5 to 48.3	13.043.2	2 205.8	1,470.3
ROL 7	lia	3	48 3-74 6	-21 583 5	244 28	-9.908.3
ReO.	nq C	2	650-785	11.65	14 437	2.200 2
1002	lia	2	480-660	5 345	4 742	
ReO	nq	$\tilde{2}$	325-420	15.16	10 882	
ReO3	lia	2	300-480	7 745	4 966	
ReO	lia	2	230-360	8.98	3 868	
Re ₂ O ₇	liq	2	108-172	10.00	3 206	
ReOF ₄	liq	2	100-172	10.09	1 670	
Reor ₅	nq	2	500 700	3 214	1 075	
ReS ₂	c	2	260 410	9.86	4 970	
Re ₂ S ₇	c	2	200-410	0.00	4 800	
Rubiaium		2	250 270	6.076	2 060 5	
KD DLCI		2	250-570	0.970	5 209.5	
RDCI		2	1142-1395	9.111	10 3/3	
KDF Duth aminu		2	1142-1400	8.570	9 208.4	
Ruthenium		~	100 100	0.70	0.616	
KUOF ₄		2	120160	8.60	2 616	
Selenium						
Se	liq	1		7.631 6	4 213.0	202.0
	+					

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Substance	State	Eq.	Range,°C	Α	В	С
Selenium (Continued)						
SeF.	lia	1		7.888 7	1 603.0	215.0
SeF ₄	c	î		8.385 4	1 121.4	250.0
SeO	•	1		6.577 81	1 879.81	179.0
SeOCl ₂	liq	1		6.257 3	970.87	112.0
SeOF,	lia	1		7,420	1 380	178
Silicon	1					
SiCl₄	liq	1	0-53	6.857 26	1 138.92	228.88
SiH	1	2	-160 to -112	6.881	645.9	
Si ₂ H ₆		2	-115 to -14.6	7.258	1 133.4	
Si ₃ H ₈		2	-70 to 52	7.676	1 559.1	
Silver						
AgCl		2	1255-1442	8.179	9 688.7	
Sodium						
Na		2	180-883	7.553	5 395.4	
NaCl		2	976-1155	8.329 7	9 417.07	
NaCI		2	1156-1430	8.548	9 704.3	
NaCN		2	800-1360	7.472	8 122.81	
NaF		2	1562-1701	8.640	11 396.6	
NaI		2	1063-1307	8.371	8 623.2	
NaOH		2	1010-1402	7.030	6 894	
Strontium						
Sr		2	940-1140	16.056	18 802.8	
Sulfur						
S equilibrium	liq	1		6.843 59	2 500.12	186.30
S_2Br_2	liq	1		7.177	1 660	185
SCl ₂	liq	1		8.454	1 594	227
S_2Cl_2	liq	1		6.783 6	1 341	206.0
S_2F_2	liq	1		6.684	628	256
SF_4	liq	1		6.839 5	823.4	248.0
SF ₆	с	1		8.416 0	1 096.5	262.0
S_2F_{10}	liq	1		7.067 6	1 100.6	234.0
SO ₂	с	1		9.754 3	1 553.8	225.0
	liq	1		7.282 28	999.900	237.190
SO ₃ "icelike"	c III	1		10.565 7	2 273.8	255.0
"woollike"	c II	1		11.590 1	2 665.6	264.0
	cI	1		14.255 9	3 692.1	273.0
	liq	1		9.050 85	1 735.31	236.50
SOBr ₂	liq	1		7.056	1 445	206
SOCl ₂	liq	1		7.287 45	1 446.7	252.7
SOCIF	liq	1		7.173 1	1 100.1	244.00
SOF ₂	lıq	1		6.959 06	775.48	234.00
SOF ₄	liq	1		7.071 8	840.3	249.0
$S_2O_2F_{10}$	liq	1		6.874	1 110	229
$S_2O_5Cl_2$	liq	1		7.019	1 460	202
S ₂ O ₅ CIF	liq	1		7.015 6	1 257.4	204.0
$S_2O_5F_2$	liq	1		6.881	1 120	229
$S_2O_5F_4$	liq	1		6.885	1 140	227
SU ₂ BIF	IIQ	1		7.142 8	1 155	231.0
SU ₂ Cl ₂	liq	1		7.001 7	1 209	224.0
SO₂CIF	liq	1		6.521 5	793.73	210.70
SO_2F_2	liq	1		6.907 0	784.3	250
Tantalum	1.	~		0 1 1	2.000	
TaBr ₅	liq	2	000 010	8.11	3 200	
TaCl ₅	lıq	2	220-240	8.68	2 970	

Substance	State	Eq.	Range,°C	Α	В	С
Tantalum (Continued)						
TaF₅	liq	2		8.524	2 834	
Tal ₅	liq	2		7.67	3 950	
Technetium						
TcF ₆	liq	3	37.4-51.7	24.808 7	2 405	5.803 6
TcO ₃ F	liq	2	18.3-51.8	8.417	2 065	
Tc_2O_7	c	2		18.279	7 205	
2 /	liq	2		8.999	3 571	
Tellurium	1					
Те	lia	1		7.301 0	5 370.6	221
TeCl	lia	1		7,558 6	2 355	115
TeF	lia	1		6.748.8	807.0	247.0
TerFra	lia	1		6 901 8	1 150	227.0
TeO	nq	ĵ	450-733	12 328 4	13 222	227.0
Thellium		2	450-755	12.520 4	15 222	
TI		2	050 1200	6 1240	6 268	
		2	292 208	12 52	5 494	
The		2	202-290	12.52	J 464	
THE	lia	2		10.901	15 070	
	nq	2	. 000	10.821	15 270	
InH ₂		2	up to 883	9.50	/ 650	
lin		•	50 . 00	0.001		
SnCl ₄		2	-52 to -38	9.824	2 441.23	
SnH ₄		2	-148 to -49	7.400	999.68	
Titanium						
TiCl ₂	subl c	2		9.30	8 500	
TiCl₃	subl c	2	455-550	10.401	8 296	
TiCl ₄	liq	2	-23 to 136	7.683	1 964	
TiI_4	liq	2	160-360	7.577	3 054	
Tungsten						
W		2	2230-2770	9.920	46 850	
Uranium						
UF ₆	liq	1	64-116	6.994 64	1 126.288	221.963
	liq	1	116-230	7.690 69	1 683.165	302.148
UH ₃ dissociation	-	2	200-430	9.39	4 590	
$U^{2}H_{3}(UD_{3})$		2		9.43	4 500	
$U^{3}H_{3}(UT_{3})$		2		9.46	4 471	
Vanadium						
VBr ₂	с	2	541-716	9.08	10 460	
2	subl c	2	800-905	5.9	9 830	
VBr ₂		2	314-427	11.12	7 470	
VCl	subl.c	2	910-1100	5 725	9 721	
VCl-	5457 6	2	352-567	11.20	9 777	
VCI	lia	2	30-153	7.62	2 020	
VE	subl c	2	650-920	12 357	15 603	
VE	subl c	2	-20 to 19.5	8 168	2 608	
¥15	lia	2	10.5 45.5	7 540	2 403	
VI	ny mblo	2	850 1016	7.549	5 600	
	Subi C	2	15 4 125	2.50	1 020	
V UCI3	цц	2	13.4-123	7.09	1 920	
Xellon		1		7 101 5	714 906	264.0
AC	C Ba	1		1,484 J	/14.090	204.0
V-F	nd	1		0.042 89	200.282	238.000
Aer ₂	SUDI C	1		10.019 47	2 005 05	201.08
Xer ₄	subl c	I		10.913 87	3 092.06	209.56
Zine		•	050 110	0.000	6.045.5	
Zn	с	2	250-419	9.200	6 946.6	

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Temp. °C	mm of Hg	Temp. °C	mm of Hg	Temp. °C	mm of Hg
0	0.000 185	92	0.1769	184	10.116
2	0.000 228	94	0.1976	186	10.839
2 4	0.000 276	96	0.2202	188	11.607
6	0.000 335	98	0.2453	190	12.423
8	0.000 406	100	0.2729	192	13 287
10	0.000 490	102	0 3032	194	14 203
10	0.000 500	104	0.3366	196	15 173
12	0.000 588	106	0.3731	198	16 200
14	0.000 706	108	0.4132	200	17 287
10	0.000 846	110	0.4572	200	10.427
18	0.001 009	110	0.5052	202	18.437
20	0.001 201	112	0.5052	204	19.652
22	0.001 426	114	0.5576	206	20.936
24	0.001 691	116	0.6150	208	22.292
26	0.002 000	118	0.6776	210	23.723
28	0.002 359	120	0.7457	212	25.233
30	0.002 777	122	0.8198	214	26.826
32	0.003 261	124	0.9004	216	28.504
34	0.003 823	126	0.9882	218	30.271
36	0.004 471	128	1.084	220	32.133
38	0.005 219	130	1.186	222	34.092
40	0.006 079	132	1.298	224	36.153
42	0.007.067	134	1.419	226	38.318
42	0.007 007	136	1.551	228	40.595
44	0.008 200	138	1.692	230	42.989
40	0.009 497	140	1.845	232	15 503
50	0.010 98	142	2.010	232	45.505
50	0.012 07	142	2.010	234	50 000
52	0.014 59	144	2.100	230	53 812
54	0.016 77	140	2.575	230	56 855
56	0.019 25	150	2.505	240	50.055
58	0.022 06	150	2.007	242	60.044
60	0.025 24	152	3.046	244	63.384
62	0.028 83	154	3.303	246	66.882
64	0.032 87	156	3.578	248	70.543
66	0.037 40	158	3.873	250	74.375
68	0.042 51	160	4.189	252	78.381
70	0.048 25	162	4.528	254	82.568
72	0.054 69	164	4.890	256	86.944
74	0.061 89	166	5.277	258	91.518
76	0.069 93	168	5.689	260	96.296
78	0.078 89	170	6.128	262	101.28
80	0.088 80	172	6.596	264	106.48
87	0.100.0	174	7.095	266	111.91
02 81	0.100 0	176	7.626	268	117.57
04 86	0.112 4	178	8.193	270	123.47
80	0.120 1	180	8.796	272	120.62
00	0.1413	182	0 /36	274	127.02
90	0.1302	102	2, 4 30	2/4	150.02

TABLE 1.47 Vapor Pressure of Mercury

Temp. °C	mm of Hg	Temp. °C	mm of Hg	Temp. °C	mm of Hg
276	142.69	332	478.13	388	1299.1
278	149.64	334	497.12	390	1341.9
280	156.87	336	516.74	202	1296 1
282	164 39	338	537.00	392	1380.1
284	172.21	340	557.90	394	1431.3
286	180.34	342	579.45	308	14/7.7
288	188.79	344	601.69	400	1574 1
290	197.57	346	624.64	400	13/4.1
202	206 70	348	648.30	430	2464
292	200.70	350	672.69	460	3715
294	210.17	350	607 82	490	5420
290	220.00	354	773 73	520	7691
300	230.21	356	750 43	550	10650
500	240.00	358	730.43	600	22.87 atm
302	257.78	360	806.23	650	35 49 atm
304	269.17	500	800.25	700	52 51 atm
306	280.98	362	835.38	,00	52.51 aun
308	293.21	364	865.36	750	74.86 atm
310	305.89	366	896.23	800	103.31 atm
312	319.02	368	928.02	850	138.42 atm
314	332.62	370	960.66	900*	180.92 atm
316	346.70	372	994.34	950	226.58 atm
318	361.26	374	1028.9	1000	290 5 atm
320	376.33	376	1064.4	1050	358 1 atm
322	391.92	378	1100.9	1100	437 3 atm
324	408.04	380	1138.4	1150	521 3 atm
326	424.71	382	1177.0	1200	616.8 atm
328	441.94	384	1216.6	1250	721.4 atm
330	459.74	386	1257.3	1300	835.9 atm

TABLE 1.47 Vapor Pressure of Mercury (Continued)

*Critical point.

TABLE 1.48 Vapor Pressure of Ice in Millimeters of Mercury

For temperatures from -99 to $0^{\circ}C$.

The values in the table are for ice in contact with its own vapor. Where the ice is in contact with air at a temperature t° C, this correction must be added: Correction = 20p/(100)(t + 273).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t, °C	p, mm Hg	t, °C	<i>p</i> , mm Hg	t, °C	p, mm Hg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 99	0.000 012	-51	0.026 1	- 16.5	1.080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 98	0.000 015	- 50	0.029 6	- 16.0	1.132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	0.000 018	-49	0.033 4	- 15.5	1.186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 96	0.000 022	-48	0.037 8	-15.0	0.241
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-95	0.000 027	-47	0.042 6	- 14.5	1.300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-94	0.000 033	-46	0.048 1	- 14.0	1.361
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-93	0.000 040	-45	0.054 1	-13.5	1.424
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	92	0.000 048	- 44	0.060 9	-13.0	1.490
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-91	0.000 058	-43	0.068 4	-12.5	1.559
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	0.000 070	42	0.076 8	- 12.0	1.632
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 89	0.000 084	-41	0.086 2	-11.5	1.707
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 88	0.000 10	-40	0.096 6	-11.0	1.785
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-87	0.000 12	- 39	0.108 1	- 10.5	1.866
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-86	0.000 14	-38	0.120 9	- 10.0	1.950
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 85	0.000 17	-37	0.135 1	- 9.8	1.985
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-84	0.000 20	-36	0.150 7	-9.6	2.021
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-83	0.000 24	-35	0.168 1	-9.4	2.057
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-82	0.000 29	-34	0.187 3	9.2	2.093
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-81	0.000 34	-33	0.208 4	- 9.0	2.131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-80	0.000 40	-32	0.231 8	8.8	2.168
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 79	0.000 47	-31	0.257 5	- 8.6	2.207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 78	0.000 56	- 30.0	0.285 9	- 8.4	2.246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-77	0.000 66	-29.5	0.301	- 8.2	2.285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-76	0.000 77	-29.0	0.317	- 8.0	2.326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-75	0.000 90	-28.5	0.334	-7.8	2.367
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-74	0.001 05	-28.0	0.351	-7.6	2.408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-73	0.001 23	-27.5	0.370	-7.4	2.450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-72	0.001 43	-27.0	0.389	-7.2	2.493
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-71	0.001 67	26.5	0.409	-7.0	2.537
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-70	0.001 94	-26.0	0.430	-6.8	2.581
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-69	0.002 25	-25.5	0.453	-6.6	2.626
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 68	0.002 61	-25.0	0.476	-6.4	2.672
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-67	0.003 02	-24.5	0.500	-6.2	2.718
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	0.003 49	-24.0	0.526	-6.0	2.765
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-65	0.004 03	-23.5	0.552	5.8	2.813
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-64	0.004 64	-23.0	0.580	-5.6	2.862
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-63	0.005.34	- 22.5	0.609	-5.4	2.912
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-62	0.006 14	- 22.0	0.640	-5.2	2.962
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-61	0.007 03	-21.5	0.672	-5.0	3.013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-60	0.008 08	-21.0	0.705	-4.8	3.065
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 59	0.009 25	- 20.5	0.740	-4.6	3.117
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 58	0.010 6	- 20.0	0.776	-4.4	3.171
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-57	0.012 1	- 19.5	0.814	-4.2	3.225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-56	0.013 8	- 19.0	0.854	-4.0	3.280
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-55	0.015 7	- 18.5	0.895	-3.8	3.336
-53 0.020 3 17.5 0.984 -3.4 3.451 -52 0.023 0 -17.0 1.031 -3.2 3.509	-54	0.017 8	- 18.0	0.939	-3.6	3.393
-52 0.023 0 -17.0 1.031 -3.2 3.509	-53	0.020 3	- 17.5	0.984	-3.4	3.451
	-52	0.023 0	-17.0	1.031	-3.2	3.509

t, °C	p, mm Hg	t, °C	<i>p</i> , mm Hg	t, °C	p, mm Hg
-3.0 -2.8 -2.6 -2.4 -2.2 -2.0	3.568 3.360 3.691 3.753 3.816 3.880	-1.8 -1.6 -1.4 -1.2 -1.0	3.946 4.012 4.079 4.147 4.217	$ \begin{array}{r} -0.8 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \end{array} $	4.287 4.359 4.431 4.504 4.579

TABLE 1.48 Vapor Pressure of Ice in Millimeters of Mercury (Continued)

TABLE 1.49 Vapor Pressure of Liquid Ammonia, NH₃

t°C.	p in atm	t°C.	<i>p</i> in atm	t°C.	<i>p</i> in atm
-78	0.0582	-6	3.3677	66	29.784
-76	0.0683	-4	3.6405	68	31.211
-74	0.0797	-2	3.9303	70	32.687
-72	0.0929	0	4.2380	72	34.227
-70	0.1078	+2	4.5640	74	35.813
-68	0.1246	4	4.9090	76	37.453
-66	0.1437	6	5.2750	78	39.149
-64	0.1651	8	5.6610	80	40.902
-62	0.1891	10	6.0685	82	42.712
-60	0.2161	12	6.4985	84	44.582
-58	0.2461	14	6.9520	86	46.511
-56	0.2796	16	7.4290	88	48.503
-54	0.3167	18	7.9310	90	50.558
-52	0.3578	20	8.4585	92	52.677
-50	0.4034	22	9.0125	94	54.860
-48	0.4536	24	9.5940	96	57.111
-46	0.5087	26	10.2040	98	59.429
-44	0.5693	28	10.8430	100	61.816
-42	0.6357	30	11.512	102	64.274
-40	0.7083	32	12.212	104	66.804
-38	0.7875	34	12.943	106	69.406
-36	0.8738	36	13.708	108	72.084
-34	0.9676	38	14.507	110	74.837
-32	1.0695	40	15.339	112	77.668
-30	1.1799	42	16.209	114	80.578
-28	1.2992	44	17.113	116	83.570
-26	1.4281	46	18.056	118	86.644
-24	1.5671	48	19.038	120	89.802
-22	1.7166	50	20.059	122	93.045
-20	1.8774	52	21.121	124	96.376
-18	2.0499	54	22.224	126	99.796
-16	2.2349	56	23.372	128	103.309
-14	2.4328	58	24.562	130	106.913
-12	2.6443	60	25.797	132	110.613
-10	2.8703	62	27.079	132.3	111.3(c.p.)
-8	3.1112	64	28.407		

TABLE 1.50Vapor Pressure of Water

For temperatures from -10 to $120^{\circ}C$.

The values in the table are for water in contact with its own vapor. Where the water is in contact with air at a temperature *t* in degrees. Celsius, the following correction must be added: Correction (when $t \le 40^{\circ}$ C) = $p(0.775 - 0.000 \ 313t)/100$; correction (when $t > 50^{\circ}$ C) = $p(0.0652 - 0.000 \ 087 \ 5t)/100$.

t, ⁰C	p, mm Hg	t, °C	p, mm Hg	t, °C	p, mm Hg	t, °C	p, mm Hg
- 10.0	2.149	13.0	11.231	23.4	21.583	32.6	36.891
-9.5	2.236	13.5	11.604	23.6	21.845	32.8	37.308
-9.0	2.326	14.0	11.987	23.8	22.110	33.0	37.729
-8.5	2.418	14.5	12.382	24.0	22.387	33.2	38.155
-8.0	2.514	15.0	12.788	24.2	22.648	33.4	38.584
-7.5	2.613	15.2	12.953	24.4	22.922	33.6	39.018
-7.0	2.715	15.4	13.121	24.6	23.198	33.8	39.457
-6.5	2.822	15.6	13.290	24.8	23.476	34.0	39.898
-6.0	2.931	15.8	13.461	25.0	23.756	34.2	40.344
-5.5	3.046	16.0	13.634	25.2	24.039	34.4	40.796
5.0	3.163	16.2	13.809	25.4	24.326	34.6	41.251
-4.5	3.284	16.4	13.987	25.6	24.617	34.8	41.710
-4.0	3.410	16.6	14.166	25.8	24.912	35.0	42.175
-3.5	3.540	16.8	13.347	26.0	25.209	35.2	42.644
-3.0	3.673	17.0	14.530	26.2	25.509	35.4	43.117
- 2.5	3.813	17.2	14.715	26.4	25.812	35.6	43.595
-2.0	3.956	17.4	14.903	26.6	26.117	35.8	44.078
-1.5	4.105	17.6	15.092	26.8	26.426	36.0	44.563
-1.0	4.258	17.8	15.284	27.0	26.739	36.2	45.054
-0.5	4.416	18.0	15.477	27.2	27.055	36.4	45.549
0.0	4.579	18.2	15.673	27.4	27.374	36.6	46.050
0.5	4.750	18.4	15.871	27.6	27.696	36.8	46.556
1.0	4.926	18.6	16.071	27.8	28.021	37.0	47.067
1.5	5.107	18.8	16.272	28.0	28.349	37.2	47.582
2.0	5.294	19.0	16.477	28.2	28.680	37.4	48.102
2.5	5.486	19.2	16.685	28.4	29.015	37.6	48.627
3.0	5.685	19.4	16.894	28.6	29.354	37.8	49.157
3.5	5.889	19.6	17.105	28.8	29.697	38.0	49.692
4.0	6.101	19.8	17.319	29.0	30.043	38.2	50.231
4.5	6.318	20.0	17.535	29.2	30.392	38.4	50.774
5.0	6.543	20.2	17.753	29.4	30.745	38.6	51.323
5.5	6.775	20.4	17.974	29.6	31.102	38.8	51.879
6.0	7.013	20.6	18.197	29.8	31.461	39.0	52.442
6.5	7.259	20.8	18.422	30.0	31.824	39.2	53.009
7.0	7.513	21.0	18.650	30.2	32.191	39.4	54.580
7.5	7.775	21.2	18.880	30.4	32.561	39.6	54.156
8.0	8.045	21.4	19.113	30.6	32.934	39.8	54.737
8.5	8.323	21.6	19.349	30.8	33.312	40.0	55.324
9.0	8.609	21.8	19.587	31.0	33.695	40.5	56.81
9.5	8.905	22.0	19.827	31.2	34.082	41.0	58.34
10.0	9.209	22.2	20.070	31.4	34.471	41.5	59.90
10.5	9.521	22.4	20.316	31.6	34.864	42.0	61.50
11.0	9.844	22.6	20.565	31.8	35.261	42.5	63.13
11.5	10.176	22.8	20.815	32.0	35.663	43.0	64.80
12.0	10.518	23.0	21.068	32.2	36.068	43.5	66.51
12.5	10.870	23.2	21.324	32.4	36.477	44.0	68.26

t, °C	<i>p</i> , mm Hg	t, °C	<i>p</i> , mm Hg	t, °C	<i>p</i> , mm Hg	t, °C	p, mm Hg
44.5	70.05	63.0	171.38	81.5	377.3	97.0	682.07
45.0	71.88	63.5	175.35	82.0	384.9	97.2	687.04
45.5	73.74	64.0	179.31	82.5	392.8	97.4	692.05
46.0	75.65	64.5	183.43	83.0	400.6	97.6	697.10
46.5	77.61	65.0	187.54	83.5	408.7	97.8	702.17
47.0	79.60	65.5	191.82	84.0	416.8	98.0	707.27
47.5	81.64	66.0	196.09	84.5	425.2	98.2	712.40
48.0	83.71	66.5	200.53	85.0	433.6	98.4	717.56
48.5	85.85	67.0	204.96	85.5	442.3	98.6	722.75
49.0	88.02	67.5	209.57	86.0	450.9	98.8	727.98
49.5	90.24	68.0	214.17	86.5	459.8	99.0	733.24
50.0	92.51	68.5	218.95	87.0	468.7	99.2	738.53
50.5	94.86	69.0	223.73	87.5	477.9	99.4	743.85
51.0	97.20	69.5	228.72	88.0	487.1	99.6	749.20
51.5	99.65	70.0	233.7	88.5	496.6	99.8	754.58
52.0	102.09	70.5	238.8	89.0	506.1	100.0	760.00
52.5	104.65	71.0	243.9	89.5	515.9	101.0	787.57
53.0	107.20	71.5	249.3	90.0	525.76	102.0	815.86
53.5	109.86	72.0	254.6	90.5	535.83	103.0	845.12
54.0	112.51	72.5	260.2	91.0	546.05	104.0	875.06
54.5	115.28	73.0	265.7	91.5	556.44	105.0	906.07
55.0	118.04	73.5	271.5	92.0	566.99	106.0	937.92
55.5	120.92	74.0	277.2	92.5	577.71	107.0	970.60
56.0	123.80	74.5	283.2	93.0	588.60	108.0	1004.42
56.5	126.81	75.0	289.1	93.5	599.66	109.0	1038.92
57.0	129.82	75.5	295.3	94.0	610.90	110.0	1074.56
57.5	132.95	76.0	301.4	94.5	622.31	111.0	1111.20
58.0	136.08	76.5	307.7	95.0	633.90	112.0	1148.74
58.5	139.34	77.0	314.1	95.2	638.59	113.0	1187.42
59.0	142.60	77.5	320.7	95.4	643.30	114.0	1227.25
59.5	145.99	78.0	327.3	95.6	648.05	115.0	1267.98
60.0	149.38	78.5	334.2	95.8	652.82	116.0	1309.94
60.5	152.91	79.0	341.0	96.0	657.62	117.0	1352.95
61.0	156.43	79.5	348.1	96.2	662.45	118.0	1397.18
61.5	160.10	80.0	355.1	96.4	667.31	119.0	1442.63
62.0	163.77	80.5	362.4	96.6	672.20	120.0	1489.14
62.5	167.58	81.0	369.7	96.8	677.12		

TABLE 1.50 Vapor Pressure of Water (Continued)

TABLE 1.51 Vapor Pressure of Deuterium Oxide

t, °C	<i>p</i> , mm Hg	t, °C	<i>p</i> , mm Hg	t, °C	p, mm Hg
0	3.65	20	15.2	80	331.6
1	3.93	30	28.0	90	495.5
2	4.29	40	49.3	100	722.2
3	4.65	50	83.6	101.43	760.0
3.8	5.05	60	136.6		
10	7.79	70	216.1		

1.12 VISCOSITY AND SURFACE TENSION

Viscosity is the shear stress per unit area at any point in a confined fluid divided by the velocity gradient in the direction perpendicular to the direction of flow. If this ratio is constant with time at a given temperature and pressure for any species, the fluid is called a Newtonian fluid.

The *absolute viscosity* (μ) is the sheer stress at a point divided by the velocity gradient at that point. The most common unit is the poise (1 kg/m sec) and the SI unit is the Pa.sec (1 kg/m sec). As many common fluids have viscosities in the hundredths of a poise the centipoise (cp) is often used. One centipoise is then equal to one mPa sec.

The *kinematic viscosity* (v) is ratio of the absolute viscosity to density at the same temperature and pressure. The most common unit corresponding to the poise is the stoke $(1 \text{ cm}^2/\text{sec})$ and the SI unit is m^2/sec .

The molecules in a gas-liquid interface are in tension and tend to contract to a minimum surface area. This tension may be quantified by the surface tension (σ), which is the force in the plane of the surface per unit length.

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

For the majority of compounds the dependence of the surface tension γ on the temperature can be given as:

$\gamma = a - bt$

where a and b are constants and t is the temperature in degrees Celsius. The values of the dipole moment are for the gas phase.

	Vienerite	Surface tension $mN \cdot m^{-1}$		
Substance	$mN \cdot s \cdot m^{-2}$	а	Ь	
Air	$0.0182^{20},$ 0.0231^{127}			
AlBr	0.0251			
Ar				
(g)	0.0233 ²⁰ , 0.0288 ¹²⁷			
(lq)		34.28	0.2493	
AsBr₃ AsCl₃ AsH₂ (arsine)		54.41 41.67	0.1043 0.097 81	
BBr ₃ BCl		31.90	0.1280	
BF ₃	0.0171 ²⁷ , 0.0217 ¹²⁷	-2.92	0.2030	
B_2H_6 (diborane) B_4H_{10} B_5H_9 B_6H_{10} $B_3H_6N_3$ B_7 (9)		-3.13	0.1783	
(lq)	$1.252^{0}, 1.03^{16}, 0.744^{25}$	45.5	0.1820	
BrF3 BrF5	2.22 ²⁰ 0.62 ²⁴	38.30 25.24	0.0999 0.1098	

	Viscosity	Surface mN	e tension $\cdot m^{-1}$
Substance	$mN \cdot s \cdot m^{-2}$	а	b
Cl ₂ (g) (lq)	0.013220	19.87	0.1897
CIF ₃	0.4812	26.9	0.1660
ClO ₃ F CO (g)	0.0175 ²⁰ ,	12.24	0.1576
(lq) CO ₂ (g)	0.0147 ²⁰ ,	- 30.20	0.2073
(lq)	0.0197 ¹²⁷ 0.071 ²⁰	6.14-10	2.6710
COCl ₂ COF ₂		22.59	0.1456
COS COSe CS CS		12.12	0.1779
(lq)	$\begin{array}{c} 0.429^{0}, 0.375^{20}, \\ 0.352^{25} \end{array}$	35.29	0.1484
CrO_2Cl_2 D_2 (deuterium)	0.0126 ²⁷ , 0.0154 ¹²⁷		
DH D ₂ O	0.0111^{25} (g), 1.098^{25} (lq)	6.537 71.72 ²⁰	0.1883 68.38 ⁴⁰
F ₂		- 16.10	0.1646
GaCl ₃ GeBr ₄ GeCl ₄ GeCl ₄		35.0 35.51 ³⁰ 35.51 ³⁰ 22.44 ³⁰	0.1000 33.70 ⁵⁰ 33.70 ⁵⁰
$H_2(g)$	0.0088 ²⁰ , 0.109 ¹²⁷		
(lq)		2.80-258	2.12 ⁻²⁵⁴
HBr (g) (lq) He (g)	$\begin{array}{c} 0.83^{-67} \\ 0.0196^{27}, \\ 0.0244^{27} \end{array}$	13.10	0.2079
(lq) (II) (III) (IV)	0.0274	0.351 ^{0.50 к} 0.151 ^{3.61 к} 0.372 ^{0.50 к}	0.317 ^{2.00 К} 0.131 ^{1.13 К} 0.354 ^{1.40 К}
HCl (g)	$\begin{array}{c} 0.0146^{27},\\ 0.0197^{127}\\ 0.51005 \end{array}$		
(lq)	0.51-95		

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

 (Continued)

		Surface t mN ·	tension m ⁻¹
Substance	Viscosity, mN \cdot s \cdot m ⁻²	a	b
HCIO HCN	$0.235^{\circ}, 0.206^{18}, 0.183^{25}$	19.45 ¹⁰	18.33 ²⁰
HCNO (iso- cyanate) HCNS			
HF HFO HI (g)	0.256º	10.41	0.078 67
(lq) HN ₃ (azide) H ₂ O (see Table 5 19)			
H_2O_2 HNO_3 H S (g)	1.25 ²⁰	78.97	0.1549
(lq) H_2Se	0.4120	48.95 22.32	0.1758 0.1482
HSO₃CI HSO₃F H₂SO₄	1.56 ²⁵ 24.54 ²⁵		
H ₂ Te Hg	1.552 ²⁰ , 1.526 ²⁵ , 1.402 ⁵⁰	29.03 490.6	0.2619 0.2049
I ₂ IBr IF	1.98116		
IF ₅ IF ₇ IOF ₅		33.16	0.1318
Kr (g) (lq)	0.0250 ²⁰ , 0.0331 ¹²⁷	40.576 (in K)	0.2890 (in K)
Mn_2O_7 Ne (g)	0.0303 ²⁰ , 0.0389 ¹²⁷		
(lq) N ₂ (g)	$\begin{array}{c} 0.0176^{20}, \\ 0.0222^{127} \end{array}$		
(lq)	,	26.42 (in K)	0.2265 (in K)
NH ₃ (g) (lq)	0.254-33.5	37.91-50	35.38-40
N_2H_4 (hydra- zine)	$0.97^{20}, 0.876^{25}, 0.628^{50}$	72.41	0.2407
Ni(CO) ₄ NO	0.0192 ²⁷ , 0.0238 ¹²⁷	18.11 - 67.48	0.1117 0.5853

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

 (Continued)
 (Continued)

	Viceosity	$\frac{Surface\ tension}{mN\cdot m^{-1}}$		
Substance	$mN \cdot s \cdot m^{-2}$	а	b	
(lq) NO ₂	0.0146 ²⁰ , 0.0194 ¹²⁷ 0.532 ⁰ , 0.402 ²⁵	5.09	0.2032	
N ₂ O ₄ N ₂ O ₃ NOBr		20.40	0 1402	
NO ₂ Cl		14.00	0.1495	
NO ₂ F NO ₃		8.26	0.1854	
O ₂ (g)	0.0204 ²⁰ , 0.0261 ¹²⁷	22.72	0.0561	
(lq)		- 33.72	0.2561	
O_3 OF_2 O_2F_2 (FOOF) OsO_4 P (lq)		38.17103		
PBr ₃ PCl ₃	0.662°, 0.529 ²⁵ , 0.439 ⁵⁰	45.34 31.14	0.1283 0.1266	
PCl ₅ PCl ₂ F ₃ PCl ₃ F ₂ PCl ₄ F PF ₃ PF ₅ PF ₉				
PI ₃		61.66	0.067 71	
POCl ₃ POCl ₃	1.06525	35.22	0.1158	
PSCl ₃ PSF ₃ PbCl		37.00	0.1272	
ReO ₂ Cl ₃ ReO ₃ Cl S		57.00 54.05	0.2485 0.1979	
SCl_2 S_2Cl_2 dimer S_2F_2 ESSE incomes		46.23	0.1464	
$S=SF_2$ isomer		12.87	0 1734	
SF ₆	0.0153 ²⁷ , 0.0198 ¹²⁷	5.66	0.1190	

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

 (Continued)
 (Continued)

	Viscosity	$\begin{array}{c} Surface \ tension \\ mN \cdot m^{-1} \end{array}$		
Substance	mN \cdot s \cdot m ⁻²	а	b	
$\frac{S_2F_{10}}{SO_2}(g)$	0.0129 ²⁷ , 0.0175 ¹²⁷			
(lq)		26.58	0.1948	
SO_3 $SOBr_2$ $SOCl_2$		46.28 36.10	0.0750 0.1416	
SOF_2 SO_2Cl_2 SO_2F_2		32.10	0.1328	
SbCl ₃		47.87	0.1238	
SbCl₅ SbF₅ SbH ₃		49.07	0.1937	
Se (lq) SeF ₄		38.61	0.1274	
SeF ₆ SeOCl ₂ SeO ₂				
SiCl ₄ SiF ₄	99.4 ²⁵ , 96.2 ⁵⁰	20.78	0.099 62	
SiHCl ₃ SiH3Cl	0.415°, 0.326 ²⁵	20.43	0.1076	
SnBr ₄ SnCl ₄ TeF-		29.92	0.1134	
TiCl₄		33.5420	31.0640	
UF ₆ (g) (lq) VCl₄		25.5	0.1240	
VOBr ₃ VOCl ₃ Xe (g)	0 022820	36.36 ²⁰	33.6040	
(lq, II) XeF ₆	0.030 ¹²⁷	0.345 ^{1.00 к}	0.317 ^{2.00 к}	

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

 (Continued)
 (Continued)

1.13 THERMAL CONDUCTIVITY

The thermal conductivity is a measure of the effectiveness of a material as a thermal insulator. The energy transfer rate through a body is proportional to the temperature gradient across the body and the cross sectional area of the body. In the limit of infinitesimal thickness and temperature difference, the fundamental law of heat conduction is:

where Q is the heat flow, A is the cross-sectional area, dT/dx is the temperature/thickness gradient, and λ is the thermal conductivity.

A substance with a large thermal conductivity value is a good conductor of heat; one with a small thermal conductivity value is a poor heat conductor i.e. a good insulator.

Element number	Element symbol	Thermal conductivity (W/m)/K 27°C, 81°F	Element number	Element symbol	Thermal conductivity (W/m)/K 27°C, 81°F
1	Н	0.1815	2	He	0.152
3	Li	84.7	4	Be	200
5	В	27	6	С	155
7	Ν	0.02598	8	0	0.02674
9	F	0.0279	10	Ne	0.0493
11	Na	141	12	Mg	156
13	Al	237	14	Si	148
15	Р	0.235	16	S	0.269
17	Cl	0.0089	18	Ar	0.0177
19	K	102.5	20	Ca	200
21	Sc	15.8	22	Ti	21.9
23	V	30.7	24	Cr	93.7
25	Mn	7.82	26	Fe	80.2
27	Со	100	28	Ni	90.7
29	Cu	401	30	Zn	116
31	Ga	40.6	32	Ge	59.9
33	As	50	34	Se	2.04
35	Br	0.122	36	Kr	0.00949
37	Rb	58.2	38	Sr	35.3
39	Y	17.2	40	Zr	22.7
41	Nb	53.7	42	Mo	138
43	Tc	50.6	44	Ru	117
45	Rh	150	46	Pd	71.8
47	Ag	429	48	Cd	96.8
49	In	81.6	50	Sn	66.6
51	Sb	24.3	52	Te	2.35
53	Ι	0.449	54	Xe	0.00569
55	Cs	35.9	56	Ba	18.4
57	La	13.5	58	Ce	11.4
59	Pr	12.5	60	Nd	16.5
61	Pm	17.9	62	Sm	13.3
63	Eu	13.9	64	Gd	10.6
65	Tb	11.1	66	Dy	10.7
67	Но	16.2	68	Er	14.3

TABLE 1.53 Thermal Conductivity of the Elements

TABLE 1.54 Thermal Conductivity of Various Solids

All values of thermal conductivity, k, are in millijoules $cm^{-1} \cdot s^{-1} \cdot K^{-1}$. To convert to $mW \cdot m^{-1} \cdot K^{-1}m$, divide values by 10. For values in millicalories, divide by 4.184.

Substance	t, °C	k	
Asphalt	20	7.447	
Basalt	20	21.76	
Bauxite	600	5.56	
Boiler scale	66	13.1	
Brick, common	20	6.3	
Blotting paper	20	0.628	
Cardboard	20	2.1	
Cement Portland	90	2.97	
Chalk	20	9.2	
Chemical elements see Table 4 1	20		
Coal	0	1.69	
Concrete	20	9.2	
Cork sp gray $= 0.2$	30	0.54	
Cork meal	100	0.54	
Cotton sp grav = 0.081	100	0.550	
Distomaceous earth	20	0.509	
Ebonite	20	1.58	
Eiderdown	20	0.046	
Eactborg (with air)	20	0.040	
Feldspar	20	23.4	
Feldspar Falt (dark gravi)	20	23.4	
Feit (dark gray)	40	0.025	
File Dilck	20	4.0	
Flannel	00	0.148	
Fint	20	10.0	
Glass, crown	12.5	0.82	
nint	12.5	5.98	
Jena	22	9.50	
quartz	0	13.89	
	100	19.12	
soda	20	7.1	
	100	7.5	
Granite	20	34.2	
Graphite, sp. grav. $= 1.58$	50	441.4	
Graphite powder, sp. grav. $= 0.7$	40	11.92	
Gypsum	0	13.0	
Horse hair, sp. grav. $= 0.172$	20	0.510	
Ice		23.8	
Leather, cowhide	84	1.76	
Linen	20	0.879	
Magnesia brick	20	11.3	
	1130	30.1	
Marble, white		32.6	
Mica	41	3.60	
Naphthalene	0	3.77	
Paper	20	1.3	
Paraffin	0	2.88	
Plaster of Paris	20	2.93	
Porcelain	95	10.38	
Quartz, parallel to axis	0	136.0	
	100	90.0	

Substance	t, °C	k
Quartz, perpendicular to axis	0	72.43
	100	55.77
Plastics, see Section 10		
Roofing paper	0	1.90
Rubber, natural and synthetic, see Section	10	
Sand, dry	20	3.89
Sandstone, sp. grav. $= 2.259$	40	18.37
Silk, sp. grav. $= 0.101$	0	0.510
Slate	20	19.66
Soil, dry	20	1.38
Wax, bees	20	0.866
Wood, maple, parallel to face	20	4.25
perpendicular to face	50	1.82
Wood, oak, parallel to face	15	3.49
perpendicular to face	15	2.09
Wood, pine, parallel to face	20	3.49
perpendicular to face	15	1.51

TABLE 1.54	Thermal	Conductivity	of Various	Solids ((Continued))
	rnerman	Conductivity	or various	Sonas i	commutu.	,

1.14 CRITICAL PROPERTIES

Critical temperature (T^c), critical pressure (P_c), and critical volume (V_c) represent three widely used pure component constants. These critical constants are very important properties in chemical engineering field because almost all other thermo chemical properties are predictable from boiling point and critical constants with using corresponding state theory. Therefore, precise prediction of critical constants is very necessary.

1.14.1 Critical Temperature

The critical temperature of a compound is the temperature above which a liquid phase cannot be formed, no matter what the pressure on the system. The critical temperature is important in determining the phase boundaries of any compound and is a required input parameter for most phase equilibrium thermal property or volumetric property calculations using analytic equations of state or the theorem of corresponding states. Critical temperatures are predicted by various empirical methods according to the type of compound or mixture being considered.

Another somewhat simpler method for estimating the critical temperature of pure compounds requires the normal boiling point, the relative density, and the compound family.

$$\log Tc = A + B \log_{10} (relative density) + C \log T_{b}$$

where T_c and T_b are the critical and normal boiling temperatures, respectively, expressed in degrees Kelvin. The relative density of the liquid at 15°C is 0.1 MPa. The regression constants *A*, *B*, and C are available by family (Table 2-384).

For pure inorganic compounds, the method only requires the normal boiling point as input.

 $T_{c} = 1.64T_{b}$

1.14.2 Critical Pressure

The critical pressure of a compound is the vapor pressure of that compound at the critical temperature. Below the critical temperature, any compound above its vapor pressure will be a liquid.

1.234 SECTION ONE

1.14.3 Critical Volume

The critical volume of a compound is the volume occupied by a specified mass of a compound at its critical temperature and critical pressure.

1.14.4 Critical Compressibility Factor

The critical compressibility factor of a compound is calculated from the experimental or predicted values of the critical properties.

 $Z_{c} = (P_{c}V_{c})/(RT_{c})$

Critical compressibility factors are used as characterization parameters in corresponding states methods to predict volumetric and thermal properties. The factor varies from approximately 0.23 for water to 0.26-0.28 for most hydrocarbons to above 0.30 for light gases.

TABLE 1.55 C	ritical Properties
--------------	--------------------

Substance	$T_{\rm c}, ^{\circ}C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	p_c , g · cm ⁻³
Air	-140.6	37.2	3.77	92.7	0.313
Aluminum tribromide	490	28.5	2.89	310	0.860
Aluminum trichloride	356	26	2.63	261	0.510
Ammonia	132.4	111.3	11.28	72.5	0.235
Antimony tribromide	631.4	56	5.67		
Antimony trichloride	521			270	0.84
Argon	-122.3	48.1	4.87	74.6	0.536
Arsenic	1400				
Arsenic trichloride	318	58.4	5.91	252	0.720
Arsine	99.9	63.3	6.41	133	0.588
Arsine-d ₃	98.9				
Bismuth tribromide	946			301	1.49
Bismuth trichloride	906	118	11.96	261	1.21
Boron pentafluoride	205				
Boron tribromide	308	48.1	4.87	272	0.921
Boron trichloride	178.8	38.2	3.87	266	0.441
Boron trifluoride	-12.3	49.2	4.98	124	0.549
Bromine	315	102	10.3	135	1.184
Antimony tribromide	631.4	56	5.67		
Antimony trichloride	521			270	0.84
Argon	-122.3	48.1	4.87	74.6	0.536
Arsenic	1400				
Arsenic trichloride	318	58.4	5.91	252	0.720
Arsine	99.9	63.3	6.41	133	0.588
Arsine-d ₃	98.9				
Benzaldehyde	422	45.9	4.65	324	0.327
Benzene	288.90	48.31	4.895	255	0.306
Benzoic acid	479	41.55	4.21	341	0.358
Benzonitrile	426.3	41.55	4.21	339	0.304
Benzyl alcohol	422	42.4	4.3	334	0.324
Biphenyl	516	38.0	3.85	502	0.307
Bismuth tribromide	946			301	1.49
Bismuth trichloride	906	118	11.96	261	1.21
Boron pentafluoride	205				
Boron tribromide	308	48.1	4.87	272	0.921
Boron trichloride	178.8	38.2	3.87	266	0.441

Substance	$T_{\rm c}, ^{\circ}C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	p_c , g · cm ⁻³
Carbon dioxide	31.1	72.8	7.38	94.0	0.468
Carbon disulfide	279	78.0	7.90	173	0.41
Carbon monoxide	-140.2	34.5	3.50	93.1	0.301
Carbonyl chloride	182	56	5.67	190	0.52
Carbonyl sulfide	102	58	5.88	140	0.44
Cesium	1806			300	0.44
Chlorine	143.8	76.1	7.71	124	0.573
Chlorine pentafluroide	142.6	51.9	5.26	230.9	0.565
Chlorine trifluoride	153.5				
Deuterium (equilibrium)	-234.8	16.28	1 650	60.4	0.0668
Deuterium (normal)	-234.7	16.43	1.665	60.3	0.0669
Deuterium bromide	88.8	10110	11000	0010	010007
Deuterium chloride	50.3				
Deuterium hydride (DH)	-237.3	14 64	1 483	62.8	0.0481
Deuterium iodide	148.6	11.01	1.105	02.0	0.0101
Deuterium oxide	370.9	213.8	21.66	55.6	0 360
Diborane	166	39.5	4 00	55.0	0.500
Dibydrogen disulfide	299	58.3	5.91		
Dihydrogen hentasulfide	742	33	3 34		
Dihydrogen hexasulfide	707	36	3 65		
Dihydrogen octasulfide	767	32	3.05		
Dihydrogen pentasulfide	657	38.4	3.89		
Dihydrogen tetrasulfide	582	13 1	1 37		
Dihydrogen trisulfide	465	50.6	5.13		
Flurorine	-129.0	51.47	5.215	66.2	0 574
Germanium tetrachloride	276.9	38	3.85	330	0.650
	472			415	1.20
Hainium tetrabromide	473	57.0	5.00	415	1.20
Hainium tetrachionde	450	57.0	5.80	504	1.05
	045	2.261	0 2280	528	1.50
Helium (equilibrium)	-207.90	2.201	0.2289	72.5	0.00930
Helium 4	-209.85	1.15	0.1162	12.3	0.0414
Hellull-4	-207.90	2.24	0.227	06.1	0.0098
Hydrogon (aquilibrium)	240.17	14.5	1.47	90.1 65.4	0.333
Hydrogen (equilibrium)	-240.17	12.77	1.294	65.0	0.0308
Hydrogen (normal)	-259.91	12.8	1.297	100.0	0.0510
Hydrogen bronnde	09.0 51.40	04.4 92.0	0.33 9.21	100.0	0.809
Hydrogen chloride	31.40 192.5	82.0 52.0	6.51 5.20	81.0 120	0.45
Hydrogen deuteride	105.5	14 64	1 492	62.9	0.195
Hydrogen fluoride	-257.25	14.04 64	1.465	60	0.048
Hydrogen indida	100	04 82.0	0.5	121	0.29
Hydrogen iolanida	130.7	82.0	8.51	151	0.970
Hydrogen sulfide	157	00	8.9 8.04	08.5	0.21
Ladina	100.4 546	00.2	0.94	96.5	0.51
Iodine V mente n	540	54.2	5.50	155	0.104
Марация	-05.75	34.3 1597	3.30	91.2	0.9085
Moreury	14//	136/	100.8		
Moreury(II) of larida	709				
Moreury(II) indide	700				
wiercury(II) Iodide	199				
Neon	-228.71	27.2	2.77	41.7	0.4835
Niobium pentabromide	737			469	1.05
Niobium pentachloride	534			400	0.68
Niobium pentafluoride	464	62	6.28	155	1.21

TABLE 1.55	Critical Properties (Continued)

Substance	$T_{\rm c}, ^{\circ}C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	p_c , g · cm ⁻³
Nitric oxide	-92.9	64.6	6.55	58	0.52
Nitrogen-14	146.94	33.5	3.39	89.5	0.313
Nitrogen-15	146.8	33.5	3.39	90.4	0.332
Nitrogen chloride difluoride	64.3	50.8	5.15		
Nitrogen dioxide (equilibrium)	158.2	100	10.1	170	0.557
Nitrogen trideuteride (ND ₃)	132.4				
Nitrogen trifluoride	-39.3	44.7	4.53		
Nitrous oxide	36.434	71.596	7.2545	97.4	0.4525
Nitrosyl chloride	167	90	9.12	139	0.471
Nitryl fluoride	76.3				
Osmium tetroxide	132	170	17.2		
Oxygen	-118.56	49.77	5.043	73.4	0.436
Oxygen difluoride	-58.0	48.9	4.95	97.7	0.553
Ozone	-12.10	53.8	5.45	88.9	0.540
Phosgene	182	56	5.67	190	0.52
Phosphine	51.3	64.5	6.54		
Phosphine-d ₃	50.4				
Phosphonium chloride	49.1	72.7	7.37		
Phosphorus	721				
Phosphorus bromide difluoride	113				
Phosphorus chloride difluoride	89.2	44.6	4.52		
Phosphorus dibromide fluoride	254				
Phosphorus dichloride fluoride	189.9	49.3	5.00		
Phosphorus pentachloride	372				
Phosphorus trichloride	290			260	0.528
Phosphorus trifluoride	-1.9	42.7	4.33		
Phosphoryl chloride difluoride	150.7	43.4	4.40		
Phosphoryl trichloride	329				
Phosphoryl trifluoride	73.4	41.8	4.24		
Radon	104	62	6.28	139	1.6
Rhenium(VII) oxide	669			334	
Rhenium(VI) oxide tetrachloride	508			161	0.95
Rubidium	1832			250	0.34
Selenium	1493				
Silane	-3.5	47.8	4.84		
Silicon chloride trifluoride	34.5	34.2	3.47		
Silicon tetrabromide	390				
Silicon tetrachloride	234	37	3.75	326	0.521
Silicon tetrafluoride	-14.0	36.7	3.72		
Silicon trichloride fluoride	165.4	35.3	3.57		
Sulfur	1041	116	11.7		
Sulfur dioxide	157.7	77.8	7.88	122	0.5240
Sulfur hexafluoride	45.6	37.1	3.76	198	0.734
Sulfur tetrafluoride	91.7				
Sulfur trioxide	217.9	81	8.2	130	0.633
Tantalum pentabromide	701			461	1.26
Tantalum pentachloride	494			400	0.89
Tin(IV) chloride	318.7	37.0	3.75	351	0.742
Titanium tetrachloride	365	46	4.66	340	0.558
Tungsten (VI) oxide tetrachloride	509			338	1.01
Uranium hexafluoride	232.7	45.5	4.61	250	1.41
Water	374.2	217.6	22.04	56.0	0.325

TABLE 1.55	Critical Properties (Continued))

Substance	$T_{\rm c}, ^{\circ}C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$p_c, \mathbf{g} \cdot \mathbf{cm}^{-3}$
Xenon	16.583	57.64	5.84	118	1.105
Zirconium tetrabromide	532			415	0.99
Zirconium tetrachloride	505	56.9	5.77	319	0.730
Zirconium tetraiodide	687			528	1.13

ed))
•	ed)

1.15 THERMODYNAMIC FUNCTIONS (CHANGE OF STATE)

All substances can exist in one of three forms (also called *states* or *phases*) that basically depend on the temperature of the substance. These states or phases are (1) solid, (2) liquid, and (3) gas.

The solid-to-liquid transition is a melting process, and the heat required is the heat of melting. The liquid-to-solid transition is the reverse process, and the heat liberated is the heat of freezing. The solid-to-gas transition is a sublimation process, and the heat required is the heat of sublimation. The liquid-to-gas transition is a vaporization process, and the heat required is the heat of vaporization (heat of boiling). Both the gas-to-solid and the gas-to-liquid processes are condensation processes and have an associated heat of condensation.

Each change of state is accompanied by a change in the energy of the system. Wherever the change involves the disruption of intermolecular forces, energy must be supplied. The disruption of intermolecular forces accompanies the state going toward a less ordered state. As the strengths of the intermolecular forces increase, greater amounts of energy are required to overcome them during a change in state. The melting process for a solid is also referred to as fusion, and the enthalpy-change associated with melting a solid is often called the heat of fusion (AH_{fus}). The heat needed for the vaporization of a liquid is called the heat of vaporization (AH_{vap}).

The specific heat is the amount of heat per unit mass required to raise the temperature by one degree Celsius. The relationship between heat and temperature change is usually expressed in the form shown below where c is the specific heat. The relationship does not apply if a phase change is encountered, because the heat added or removed during a phase change does not change the temperature.

$Q = cm\Delta T$

i.e., heat added is equal to the specific heat multiplied by the mass (weight) multiplied by the temperature difference ($\Delta T = t_{final} - t_{initial}$)

	Physical	$\Lambda:H^{\circ}$	ΔG°	S°	C°_{-}	
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$	
Ac Actinium	с	0	0	56.5	27.2	
Al Aluminum	с	0	0	28.30(10)	24.4	
	g	330.0(40)	289.4	164.554(4)	21.4	
Al3+ std. state	aq	-538.4(15)	-485.3	-325.(10)		
Al ₆ BeO ₁₀	c	-5624	-5317	175.6	265.19	
$Al(BH_4)_3$	lq	-16.3	145.0	289.1	194.6	
AlBr ₃	c	-527.2	-488.5	180.2	100.58	
std. state	aq	-895	-799	-74.5		
Al_4C_3	c	-216	-203	89		
Al(CH ₃) ₃	lq	136.4	-10.0	209.4	155.6	
$Al(OAc)_3$	c	-1892.4				
AlCl ₃	с	-704.2	-628.8	109.29	91.13	
std. state	aq	-1033	-878	-152.3		
$AlCl_3 \cdot 6H_2O$	c	-2692	-2269	377		
AlF ₃	с	-1510.4(13)	-1431.1	66.5(5)	75.13	
std. state	aq	-1531.0	-1322	-363.2		

TABLE 1.56Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds

0.1.4	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S°	C_p°
Substance	state	kJ · mol ¹	kJ · mol	J · deg ¹ · mol ¹	J · deg ¹ · mol ⁻¹
$AlF_3 \cdot H_2O$	с	- 2297	-2052	209	
AlH ₃	с	-46.0		30.0	40.2
AlI ₃	с	-313.8	- 300.8	159.0	98.7
std. state	aq	- 699	- 640	12.1	
AlK(SO ₄) ₂ · 12H ₂ O	с	- 6061.8	- 5141.7	687.4	651.0
AlN	с	-318.1	- 287.0	20.14	30.10
Al(NO ₃) ₃ std. state	aq	- 1155	-820	117.6	
Al(NO ₃) ₃ · 6H ₂ O	с	-2850.5	-2203.9	467.8	433.0
$Al(NO_3)_3 \cdot 9H_2O$	с	- 3757.1	- 2929.6	569	
AlO_2^- std. state	aq	- 930.9	- 830.9	- 36.8	
Al ₂ O ₃ corundum	с	-1675.7(13)	1582.3	50.92(10)	79.15
Al(OH) ₃	с	- 1284	- 1306	71	93.1
Al(OH) $_{4}^{-}$ std. state	aq	-1502.5	- 1305.3	102.9	
AIP	c	- 166.5			
AIPO, berlinite	с	- 1733.8	- 1618.0	90.79	93.18
Al ₂ S ₂	с	- 724.0	-640	116.85	105.06
Al-Se	c	- 565			
Al ₂ SiO ₂ and alusite	c	- 2592.0	2444.8	93.2	122.76
Al ₂ (SO ₂) ₂	c	- 3435	- 3507	239.3	259.4
std state	30	- 3790	- 3205	- 583 3	20711
Al-Te-	eq C	- 326	5205	505.5	
Americium	c	520			
Δm	C	0	0	62.7	
Am ³⁺	e 20	- 682.8	-6715	- 159.0	
Λm ⁴⁺	aq	- 511 7	- 461.1	- 372	
Am O	aq	- 1757	- 1678	154 7	
AmQ	c	- 1005.0	050.2	06.2	
Amo ₂	C	1005.0	950.2	90.2	
MU	-	45 04(35)	- 16 4	102 776(5)	25.65
ING3	g	-43.94(33)	- 10.4	111.2	33.03
MD	aq	- 59 6	- 26.0	202.0	20.02
NU ⁺ atd state	g	- 36.0	- 20.0	203.9	36.23 70.0
NH ₄ std. state	aq	- 133.20(23)	- 19.37	111.17(40)	19.9
NH ₄ OH undissoc;	aq	- 301.2	- 254.0	165.5	
std. state		262.50	226.65	100 5	(0.(
ionized; std. state	aq	- 362.50	- 236.65	102.5	- 68.6
NH ₄ OAc	с	-616.14	440.70	200.0	5 2 (
std. state	aq	-618.52	- 448.78	200.0	73.6
$NH_4Al(SO_4)_2$	с	-2352.2	-2038.4	216.3	226.44
std. state	aq	- 2481	-2054	- 168.2	
NH_4AsO_2 std. state	aq	- 561.54	- 429.41	154.8	
$NH_4H_2AsO_3$ std. state	с	- 847.30	- 666.60	223.8	
NH ₄ H ₂ AsO ₄	с	-1059.8	- 833.0	172.05	151.17
std. state	aq	-1042.07	- 832.66	230.5	
(NH ₄) ₂ HAsO ₄ std. state	aq	-1171.1	-873.20	225.1	
(NH ₄) ₃ AsO ₄ std. state	aq	-1286.7	- 886.63	177.4	
NH₄Br	с	-271.8	- 175.2	113.0	96.0
std. state	aq	-254.05	- 183.34	194.97	-61.9
NH ₄ BrO ₃	aq	- 199.58	- 60.84	275.10	
NH ₄ carbamate	с	-657.60	- 448.07	133.5	
NH ₄ Cl	с	-314.5	-202.9	94.6	84.1
std. state	aq	- 299.66	-210.62	169.9	- 56.5
NH ₄ ClO ₃ std. state	aq	- 236.48	87.40	275.7	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

TABLE 1.56	Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements
and Inorganic	Compounds (Continued)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	kJ · mol ^{−1}	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
NH ₄ ClO ₄	с	- 295.3	-88.8	186.2	128.1
std. state	aq	- 261.84	87.99	295.4	
NH₄CN	с	0.4			134.0
std. state	aq	18.0	92.9	207.5	
NH₄CNO cyanate	aq	- 278.7	177.0	220.1	
std. state					
(NH ₄) ₂ CO ₃ std. state	aq	- 942.15	- 686.64	169.9	
(NH ₄) ₂ C ₂ O ₄ oxalate	с	- 1123.0			226.0
(NH ₄) ₂ CrO ₄	с	-1167.3			
std. state	aq	-1144.3	886.59	277.0	
$(NH_4)_2Cr_2O_7$	aq	- 1755.2	- 1459.5	488.7	
NH ₄ dithiocarbonate	c	126.8			
NH₄F	с	- 463.96	- 348.78	71.97	65.27
std. state	aq	-465.14	- 358.19	99.6	-26.8
NH ₄ formate std. state	aq	558.06	430.5	205.0	- 7.9
NH₄HCO₃	с	- 849.4	- 665.9	120.9	
	aq	- 824.5	- 666.1	204.6	
NH₄I	с	-201.4	- 112.5	117.0	81.8
std. state	aq	- 187.69	- 130.96	224.7	-62.3
NH4IO3	с	385.8			
std. state	aq	- 354.0	-207.5	231.8	
NH ₄ N ₃ azide	с	115.5	274.1	112.6	
	aq	142.7	268.6	221.3	
NH ₄ NO ₂	aq	-237.2	-111.6	236.4	-17.6
NH ₄ NO ₃	с	365.56	184.01	151.08	139.3
std. state	aq	- 339.87	-190.71	259.8	-6.7
NH ₄ H ₂ PO ₄	с	-1145.07	- 1210.56	151.96	142.26
std. state	aq	1428.79	- 1209.76	203.8	
(NH ₄) ₂ HPO ₄	с	- 1556.91		188.0	
std. state	aq	- 1557.16	1248.00	193.3	
NH ₄ H ₃ P ₂ O ₇	aq	- 2409.1	-2102.6	326.0	
NH₄HS	с	- 156.9	- 50.6	97.5	
	aq	- 150.2	- 67.2	176.1	
NH₄HSO3	aq	- 758.7	-607.0	253.1	
NH ₄ HSO ₄	с	- 1026.96			
std. state	aq	- 1019.85	835.38	245.2	- 3.8
(NH ₄) ₃ PO ₄	с	- 1671.9			
std. state	aq	- 1674.9	1256.9	117	
(NH ₄) ₄ P ₂ O ₇ std. state	aq	-2801.2	-2236.8	335	
(NH ₄) ₂ PtCl ₆	с	- 803.3			237.7
NH₄ReO₄	с	- 945.6	- 774.9	232.6	
$(NH_4)_2S$	aq	-231.8	-72.8	212.1	
NH₄SCN	aq	56.1	13.4	257.7	39.7
NH ₄ HSeO ₄ std. state	aq	-714.2	-531.6	262.8	
(NH ₄) ₂ SeO ₄	aq	- 864.0	- 599.8	280.7	
(NH ₄) ₂ SiF ₆	с	-2681.69	-2365.3	280.24	228.11
$(NH_4)_2SO_3$	aq	- 900.4	-645.0	197.5	
$(NH_4)_2SO_4$	с	-1180.9	- 901.70	220.1	187.49
std. state	aq	- 1174.28	- 903.37	246.9	- 133.1
$(NH_4)_2S_2O_8$	с	- 1648.08			
std. state	aq	- 1610.0	- 1273.6	471.1	
NH ₄ VO ₃	с	- 1053.1	-888.3	140.6	129.33

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1} J$	$\cdot \ deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Antimony					
Sb	с	0	0	45.7	25.2
	g	262.3	222.1	180.3	20.8
SbBr ₃	с	- 259.4	-239.3	207.1	
	g	194.6	- 223.9	372.9	80.2
SbCl ₃	с	-382.0	-323.7	184.1	107.9
SbCl ₅	lq	- 440.16	-350.2	301	
SbF ₃	с	915.5			
SbH3	g	145.11	147.74	232.8	41.05
SbI ₃	с	100.4		215.5	97.57
Sb ₂ O ₃	с	- 708.8		123.01	101.25
Sb ₂ O ₅	с	971.9	- 829.2	125.1	117.61
Sb ₂ S ₃	с	- 174.9		182.0	117.74
Sb ₂ Te ₃	с	- 56.5	- 55.2	234	
Argon					
Ar	g	0	0	154.846(3)	20.79
Arsenic	Ũ				
As gray	с	0	0	35.1	24.64
AsBr ₃	g	-130.0	- 159.0	363.9	79.16
AsCl	la	305.0	- 259.4	216.3	133.5
	g	-261.5	-248.9	327.06	75.73
AsF	la	821.3	774.2	181.2	126.2
	g	-785.8	- 770.8	289.1	65.6
AsH-	g	66.44	68.91	222.8	38.07
AsI	c	- 58.2	- 59.4	213.05	105.77
AsO ₇	aq	- 429.0	- 350.0	40.6	
AsO ³⁺	-4 aq	888.1	- 648.4	162.8	
As ₂ O ₆	c	-924.87	-782.3	105.4	116.5
As ₄ O ₄ octahedral	c	- 1313.94	-1152.52	214.2	191.29
As ₂ S ₂	c	- 169.0	- 168.6	163.6	116.3
Astatine	-				
At	с	0	0	121.3	
Barium	•	-	Ū		
Ba	с	0	0	62.48	28.10
Ba ²⁺ std. state	aq	- 537.64	- 560.74	9.6	
Ba(OAc), acetate	c	- 1484.5			
std. state	aq	1509.67	1299.55	182.8	
BaBr	c	-757.3	-736.8	146.0	77.0
std. state	an	780.73	- 768.68	174.5	
BaBra · 2HaO	-4 C	- 1366.1	- 1230.5	226	
$Ba(BrO_a)_a$	c	-752.66	- 577.4	243	
BaC-O, oxalate	c	1368 6	577.4	213	
BaCl.	c	- 855.0	- 806 7	123.67	75 14
$B_{2}C_{1}$	c	1456 9	- 1293 2	202.9	161.96
Ba(ClO ₂)	č	-762.7	- 27 0 12	/	101.50
$B_{2}(C \Omega_{3})_{2}$	c c	- 1691 6	- 1270 7	303	
BaCO. witherite		- 1213.0	- 1134 4	112 1	<u>86 0</u>
BaCrO	0	1446 0	1245 2	1586	66.0
BaE	c	- 1207 1	1156.8	96.4	71.20
std state		- 1202 00	- 1118 38	- 17.0	/1.40
Ba(HCO) and state	ay	1071 62	- 1724 4	107.1	
$Da(11CO_3)_2$ stu. state	aq	1741.03	1/34.4	174.1	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	D1 1	A 110	1 60	C 0	<i>C</i> ⁰
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S° I dag ⁻¹ mol ⁻¹	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J·ueg · mor	J·deg · mor
$Ba(H_2PO_2)_2$	c	- 1762.3			
BaI ₂	с	-602.1	- 601.4	165.1	77.49
std. state	aq	-648.02	- 663.92	232.2	
$Ba(IO_3)_2$	с	- 1027.2	- 864.8	249.4	187.4
std. state	aq	- 980.3	- 816.7	246.4	
BaMnO ₄	с	1548	1439.7	138	140.6
BaMoO ₄	с	- 1507.5	- 1439.7	144.3	114.7
$Ba(NO_2)_2$	с	- 768.2			
$Ba(NO_3)_2$	с	- 988.0	- 792.6	213.8	151.38
std. state	aq	-952.36	- 783.41	302.5	
BaO	с	- 548.0	- 520.4	72.07	47.28
BaO ₂	с	-634.3			
Ba(OH) ₂	с	944.7	- 859.5	107	101.6
$Ba(OH)_2 \cdot H_2O$	с	- 3342.2	-2793.2	427	
BaS	с	-460.0	- 456.0	78.2	49.37
BaSe	с	- 372			
BaSeO ₃	с	- 1040.6	- 968.2	167	
BaSiF	с	- 1952.2	- 2794.1	163	
BaSO ₃	с	-1179.5			
BaSO	с	- 1473.19	- 1362.2	132.2	101.75
BaTiO	c	- 1659.8	- 1572.4	108.0	102.47
Bervllium					
Be	с	0	0	9.50(8)	16.38
	g	324.(5)		136.275(3)	
Be ²⁺ std. state	ag	- 382.8	- 379.7	- 129.7	
BeAl ₂ O ₄ chrysoberyl	c	-2301.0	-2178.5	66.29	105.38
BeBra	c	- 353.5	-337	108.0	69.4
Be ₂ C	c	91	- 88	16.3	43.2
BeCl. β form	c	- 490 4	- 445 6	75.81	62.43
BeCO.	c	1025.0	1.510	52.0	65.0
BeE, α form	c	- 1026.8	- 979 4	53.35	51.82
Bel.	c	- 192 5	- 187	121.0	71.1
Be N ₂ cubic	c	588 3	- 532 9	34.13	64.36
BeO a form	c	609 4(25)	- 580 1	13 77(4)	25 56
BeO ^{2⁻}	20	- 700 8	- 640.1	- 159.0	25.50
3BeO, B O	aq C	3105	2030	100	130 7
B_2O_3 Ba(OH) β form	c			155	62.1
Be(OII) ₂ p tolin BeS	c	- 734 3	- 233.0	45.5	34.0
Bes	C	- 1205 2	- 1002 9	770	95 7
atd_state	C	- 1203.2	- 820.0	-757	65.7
Ba SiO	aq			73.7	05.6
Bc23104 BaSO	C	- 1200 8	- 2003	77 07	95.0
Besto ₄	C an	- 1200.0	- 1009.4	100.6	83.70
stu. state	aq	- 1290.0		- 109.0	016 (1
BesO ₄ ·H ₂ O	с	- 2423.75	2080.00	232.97	210.01
Bew0 ₄	с	- 1515	1405	ðð.4	91.3
BISMUM D:		0	0	567	25.5
BI	с	U 207 1	U	20.7	25.5
ה'ח.	g	207.1	168.2	187.0	20.8
BiBr ₃	с	264	234	226	109
BiCl ₃	с	-379.1	- 315.1	177.0	105.0
BiH ₃	g	277.8			

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	DI 1	A 110	1 60	G 0	C ⁰
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	J doo-l mol-l	C_p°
Substance	state	kJ · mol	KJ · mol	J · deg · · mol ·	J · deg · · mol ·
BiI ₃	с	-100.4	-175.3		
Bi ₂ O ₃	с	- 574.0	- 493.7	151.5	113.5
BiOCl	с	- 366.9	- 322.2	120.5	
Bi ₂ S ₃	с	- 143.1	- 140.6	200.4	122.2
$Bi_2(SO_4)_3$	с	-2544.3			
Bi ₂ Te ₃	с	-78.24		260.91	152.21
Boron					
В	с	0	0	5.90(8)	11.1
	g	565.(5)		153.436(15)	
BBr ₃	lq	-239.7	-238.5	229.7	128.03
B_4C	с	-62.7	-62.1	27.18	53.76
BCl ₃	g	- 403.8	-388.7	290.1	62.7
BF ₃	g	-1136.0(8)	-1119.4	254.42(20)	50.45
BF_4^- std. state	aq	- 1574.9	-1487.0	179.9	
BH3	g	100.0	111	187.9	36.22
BH ₄ std. state	aq	48.16	114.27	110.5	
B_2H_6 diborane(6)	g	35.6	86.7	232.1	56.9
B ₅ H ₉ pentaborane(9)	lq	42.7	171.8	184.2	151.13
$B_{10}H_{14}$ decaborane(14)	c	-29.83	212.9	234.9	221.2
BN	с	-254.4	- 228.4	14.80	19.72
$B_3N_3H_6$ borazine	la	- 541.0	- 392.7	199.6	
- 3- 3- 0	g	510	- 389	288.61	96.94
BO ₅ std. state	ad	-772.37	- 678.94	- 37.24	
B ₂ O ₂		-1273.5(14)	-1194.3	53.97(30)	62.8
B(OH); std. state	ao	- 1344.03	-1153.32	102.5	
B ₂ O ₂ H ₂ boroxin	1 C	- 1262	- 11.56	167	98.3
B _a S _a	c	- 240.6		100.0	111.7
Bromine	•	2.010		20010	
Bratomic	σ	111 87(12)	82.4	175 018(4)	20.8
Br atonne Br- std state	80	-12141(15)	- 103.97	82 55(20)	- 141 8
Br.	la	0	0	152 21(30)	75.67
D12	rd d	30 91(11)	U	245 468(5)	15.07
Br- etd state	5	-130.42	- 107.07	215 5	
BrCl	aq	14.6	-0.96	230.01	34.08
DrE	e e	- 03.8		239.91	32.07
DIT D-E	8 Ia	- 300 8	- 240.5	178.0	124.6
DIT ₃	iq a	- 255.6	240.5	202.5	66.6
D.F	g la	- 459.6	229.4	292.5	00.0
BIP5	IQ T	-438.0	- 551.9	223.1	00.4
DuOs and atom	g	- 428.9	- 551.0	323.2	99.0
BrO std. state	aq	- 94.1	- 33.3	42.0	
	aq	-07.07	10.0	101.71	
BrO ₄	aq	15.0	118.1	199.0	
Cadmium		0	0	51 00(15)	25.0
Ca	с	U 111 00/000	0	51.80(15)	25.9
C 12+	g	111.80(20)		107.749(4)	20.8
	aq	- /5.92(60)	007.01	- 72.8(15)	57 5
CdBr ₂	с	- 316.18	- 296.31	137.2	/6./
std. state	aq	- 318.99	-285.52	91.6	
CdCl ₂	с	- 391.6	- 343.9	115.3	74.7
std. state	aq	-410.20	- 340.12	39.8	
$CdCl_2 \cdot 5/2H_2O$	с	1131.94	- 944.08	227.2	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)
	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Cd(CN) ₂	с	162.3			
std. state	aq	225.5	267.4	115.1	
CdCO ₃	с	- 750.6	- 669.4	92.5	
Cd(OAc) ₂ std. state	aq	- 1047.9	- 816.4	100	
CdF ₂	с	-700.4	647.7	77.4	
std. state	aq	-741.15	-635.21	-100.8	
CdI ₂	с	-203.3	-201.4	161.1	80.0
std. state	aq	- 186.3	-180.8	149.4	
CdI_4^- std. state	aq	-341.8	-315.9	326	
$Cd(NH_3)_4^{2+}$ std. state	aq	- 450.2	- 226.4	336.4	
Cd(NO ₃) ₂	с	-456.3			
std. state	aq	- 490.6	- 300.2	219.7	
CdO	с	-258.35(40)	-228.7	54.8(15)	43.4
Cd(OH) ₂	c	- 560.7	-473.6	96.0	
CdS	с	- 161.9	156.5	64.9	55.5
CdSO ₄	с	-933.4	- 822.7	123.0	99.6
std. state	aq	-985.2	822.2	53.1	
$CdSO_4 \cdot 8/3H_2O$	c	- 1729.30(80)	- 1465.3	229.65(40)	213.3
CdSeO ₄	с	-633.0	- 531.8	164.4	
std. state	aq	- 674.9	-518.8	- 19.3	
CdTe	с	- 92.5	- 92.0	100.0	
Calcium					
Ca	с	0	0	41.59(40)	25.9
	g	177.8(8)		154.887(4)	
Ca ²⁺ std. state	aq	- 543.0(10)	- 553.54	- 56.2(10)	
Ca(OAc) ₂	с	- 1479.5			
std. state	aq	- 1514.73	1292.35	120.1	
$Ca_3(AsO_4)_2$	с	- 3298.7	- 3063.1	226	
Ca(BO ₂) ₂	с	- 2030.9	- 1924.1	104.85	103.98
CaB ₄ O ₇	с	- 3360.3	-3167.1	134.7	157.9
CaBr ₂	с	- 682.8	- 663.6	130.0	75.04
std. state	aq	- 785.9	761.5	111.7	
CaC ₂	с	- 59.8	- 64.9	69.96	62.72
CaCl ₂	с	- 795.4	- 748.8	108.4	72.9
std. state	aq	- 877.13	- 816.05	59.8	
$CaCl_2 \cdot 2H_2O$	с	- 1402.9			738
CaCN ₂ cyanamide	с	- 350.6			
Ca(CN) ₂	с	- 184.5			
CaCO ₃ calcite	c	- 1207.6	- 1129.1	91.7	83.5
aragonite	с	- 1207.8	1128.2	88.0	82.3
	aq	- 1220.0	- 1081.4	-110.0	
CaC ₂ O ₄	с	- 1360.6			
$CaC_2O_4 \cdot H_2O$	с	- 1674.9	- 1514.0	156.5	152.8
CaCrO₄	с	- 1379.1	- 1277.4	134	
CaF ₂	с	-1228.0	- 1175.6	68.6	67.0
	aq	- 1208.1	-1111.2	-80.8	
Ca(formate) ₂	c	1386.6			
CaH ₂	с	- 181.5	- 142.5	41.4	41.0
$CaHPO_4 \cdot 2H_2O$	с	- 2403.58	-2154.75	189.45	197.07
Ca(H ₂ PO ₂) ₂ hypophosphite	с	- 1752.7			
$Ca(H_2PO_4)_2$ std. state	aq	-3135.41	-2814.33	127.6	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Ca(H ₂ PO ₄) ₂ · H ₂ O	с	- 3409.67	- 3058.42	259.8	258.82
Cal ₂	с	- 533.5	- 528.9	142.0	77.16
std. state	aq	-653.2	- 656.7	169.5	
Ca(IO ₂) ₂	c	- 1002.5	- 839.3	230	
$Ca[Mg(CO_3)_3]$ dolomite	c	-2326.3	-2163.6	155.18	157.53
CaMoO ₄	c	- 1541.4	- 1434.7	122.6	114.3
Ca-Na	c	-4393		105.0	113.0
$Ca(NO_2)_2$	c	- 741.4			
$C_{2}(NO_{2})_{2}$	c	- 938 2	- 742 8	193 3	149 37
std_state	ап	- 957 55	- 776 22	239.7	1,0107
CaO	eq C	634 92(90)	- 603 3	38 1(4)	42.0
Ca(OH)-	c	- 985 2	- 897 5	83.4	87.5
Ca.P.	c	506	071.5	05.4	07.5
$C_{23}(PO_{1})$	c	-4120.8	3884 8	236.0	227.8
$C_{2}P_{0}$	c	- 3338 8	- 3132 1	189.24	187.8
C_{2} (PO) F	c	13 744	- 12 083	7757	751.0
$Ca_{10}(1 O_4)_{6}\Gamma_2$	Ľ	15,744	12,905	113.1	751.5
Cas	2	- 192.4	177 1	56.5	17 1
CaSa	C	- 402.4	-4/7.4	50.5	47.4
Case	c	- 308.2	- 363.2	07	95 07
	c	- 1054.9	~ 1349.7	01.92	63.27
	c	- 2307.5	- 2192.8	127.7	128.8
$3CaO \cdot SiO_2$	c	2929.2	2784.0	108.0	171.9
$CaSO_3 \cdot 2H_2O$	с	-1/52.7	- 1555.2	184	1/8./
CaSO ₄	с	- 1425.2	- 1309.1	108.4	99.0
	aq	- 1451.1	- 1298.1	- 33.1	
$CaSO_4 \cdot \frac{1}{2}H_2O$	с	- 1576.7	- 1436.8	130.5	119.4
$CaSO_4 \cdot 2H_2O$	c	- 2022.6	- 1797.5	194.1	186.0
$Ca(VO_3)_2$	c	- 2329.3	2169.7	179.1	166.8
CawO₄	с	- 1645.15	- 1538.50	126.40	114.14
Carbon					
C graphite	с	0	0	5.74(10)	8.517
	g	716.68(45)		158.100(3)	
diamond	c	1.897	2.900	2.377	6.116
CN-	aq	150.6	172.4	94.1	
$(CN)_2$ cyanogen	g	306.7	297.2	241.9	56.9
CNBr	g	186.2	165.3	248.36	46.9
CNCI	g	137.95	131.02	236.2	45.0
CNF	g			224.7	41.8
CNI	с	166.2	185.0	96.2	
	g	225.5	196.6	256.8	48.3
CNN ₃ cyanogen azide	с	387.4			
OCN-	aq	- 146.0	-97.4	106.7	
CO	g	- 110.53(17)	-137.16	197.660(4)	29.14
CO ₂	g	- 393.51(13)	394.39	213.785(10)	37.13
undissoc; std. state	aq	-413.26(20)	- 386.0	119.36(60)	
CO ₃	aq	-675.23(25)	- 527.9	- 50.0(10)	
C_3O_2 suboxide	g	- 93.7	- 109.8	276.4	67.0
COBr ₂	g	- 96.2	- 110.9	309.1	61.8
COCl ₂ phosgene	g	219.1	- 204.9	283.50	57.70
COCIF	g			276.7	52.4
COF ₂	g	-639.8	- 623.33	258.89	46.8

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dhusiaal	A 110	A C°	C0	C°
Substance	Physical	$\Delta_{\rm f} H^2$ kL mol ⁻¹	$\Delta_{\rm f} G^2$ kL mol ⁻¹	S^{-1} . mol ⁻¹	C_p^-
Substance	state	KJ * IIIOI	KJ · IIIOI	J · deg · moi	J deg inor
COS carbonyl sulfide	g	142.0	- 166.9	231.56	41.50
CS_2	lq	89.0	(2.1	007.0	74.6
CTTP.	g	117.7	67.1	237.8	45.4
	pl	164.8			
Cerium		0	0	70.0	06.0
Ce γ , fcc	c	0	0	72.0	20.9
Ce ⁴⁺ std. state	aq		- 0/2.0	203.0	
Cer state	aq	- 557.2	- 503.8	- 301.0	07 /
cecl ₃	C		964.6	131.0	07.4
Sid. State	aq	- 1625.0	- 1003.7	36.0	00.2
Cel.	C	- 1055.9	- 1550	115.1	99.5
	c	- 1225 0	- 0/4	209	
$Ce(NO_3)_3$	c	- 1223.9	10247	62.20	61 62
	C	- 1088.7	- 1024.7	150.6	01.05
Ce_2O_3	C	- 1790.2	- 1700.2	130.0	50.0
	C	- 2054 2	4,51.5	76.2	50.0
$Ce_2(SO_4)_3$	C		- 3657 6	- 318	
$C_{e}(SO) \cdot SHO$	aq	5522.0	5607.4		
$C_{2}(3O_{4})_{3} \cdot \delta D_{2}O$	ι ι	JJLL.7	5007.4		
Ce	c	0	0	85 23(40)	32.20
C3	la	2 087	0.025	92.1	32.20
	a	76 5(10)	0.025	175 601(3)	52.4
Cs ⁺ std. state	80	- 258 00(50)	- 292.0	132,1(5)	10.5
Cs acetate	aq	- 744 3	-661.3	219.7	1010
CsBO ₂	c	-972.0	-915.0	104.4	80.6
CsBr	c	-405.8	- 391.4	113.05	52.93
std. state	aq	- 379.8	- 396.0	215.5	
CsCl	c	- 442.8	414.4	101.18	52.44
std. state	aq	-425.4	-423.3	189.4	- 146.9
CsClO₄	c	- 443.1	-314.3	175.1	108.3
Cs ₂ CO ₃	с	-1139.7	- 1054.4	204.5	123.9
std. state	aq	- 1193.7	- 1111.9	209.2	
CsF	c	553.5	- 525.5	92.8	51.1
std. state	aq	- 590.9	- 570.8	119.2	
Cs formate	aq	- 683.8	-643.0	226.0	
CsHCO ₃	c	- 966.1			
CsHF	с	-923.8	-858.9	135.2	87.3
CsHSO₄	с	-1158.1			
	aq	- 1145.6	- 1047.9	264.8	
CsI	с	- 346.6	340.6	123.1	52.8
std. state	aq	-313.5	- 343.6	244.4	- 152.7
CsIO ₃	с	- 525.9	-433.9		167
CsNO ₃	с	- 506.0	- 406.6	155.2	
std. state	aq	-465.6	-403.3	279.5	- 99.2
Cs ₂ O	с	345.8	- 308.2	146.9	76.0
CsOH	с	-417.2	370.7	98.7	67.9
std. state	aq	- 488.3	- 449.3	122.3	
Cs ₂ PtCl ₆ std. state	aq	- 1184.9	- 1066.9	485.8	
Cs ₂ S	aq	-483.7	- 498.3	251.0	
Cs ₂ Se	aq		454.8		

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	DI 1		1 60	60	<i>c</i> ⁰
Cash at an an	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	5° L des-l met-l	C_p°
Substance	state	KJ · mol	KJ · mol	J · deg · · mol ·	J · deg · · mol ·
Cs ₂ SO ₄	с	- 1443.0	- 1323.6	211.9	134.9
std. state	aq	- 1425.8	- 1328.6	286.2	
Chlorine					
Cl atomic	g	121.301(8)		165.190(4)	
Cl ⁻ std. state	aq	- 167.08(10)	- 131.3	56.60(20)	- 136.4
Cl ₂	g	0	0	233.08(10)	33.95
CIF	g	- 50.3	- 51.84	217.9	32.08
CIF ₃	g	- 163.2	- 123.0	281.6	63.85
ClF₅	g	-239	- 147	310.74	97.17
CIO	g	101.8	98.1	226.6	31.5
ClO ⁻ std. state	aq	- 107.1	- 36.8	41.8	
ClO ₂	g	102.5	120.5	256.8	42.00
ClO_2^- std. state	aq	- 66.5	17.2	101.3	
ClO_3^- std. state	aq	- 104.0	- 8.0	162.3	
ClO ₃ F perchloryl fluoride	g	-23.8	48.2	279.0	64.9
ClO_4^- std. state	aq	- 128.10(40)	- 8.62	184.0(15)	
Cl₂O	g	80.3	97.9	266.2	45.4
Cl ₂ O ₇	lq	238.1			
	g	1138			
Chromium					
Cr	c	0	0	23.8	23.43
Cr^{2+} std. state	aq	- 143.5			
CrBr ₂	с	- 302.1			
CrCl ₂	с	- 395.4	356.0	115.3	71.2
CrCl ₃	c	- 556.5	- 486.1	123.0	91.8
Cr(CO) ₆ hexacarbonyl	с	1077.8		293.01	226.23
CrF ₂	с	- 778.0			
CrF ₃	с	- 1159	-1088	93.9	78.7
Cr ₂ FeO ₄	с	1444.7	- 1343.8	146.0	133.6
CrI ₂	с	- 156.9			
CrI ₃	с	205.0			
CrN	с	-117	-93	38	52.7
CrO ₂	с	- 598.0			
Cr ₂ O ₃	с	- 1140	- 1058.1	81.2	118.7
Cr ₃ O ₄	c	-1131.0			
CrO ₂ Cl ₂	g	- 538.1	-501.6	329.8	84.5
CrO_4^{2-} std. state	aq	881.15	727.85	50.21	
$HCrO_{4}$ std. state	aq	- 878.22	- 764.84	184.1	
$Cr_2O_7^{2-}$ std. state	aq	- 1490.3	-1301.2	261.9	
$Cr_2(SO_4)_3$	с	- 609.6		269.9	302.6
Cobalt					
Со	c	0	0	30.0	24.8
Co ²⁺ std. state	aq	- 58.2	- 54.4	-113	
Co ³⁺ std. state	aq	92	134	- 305	
CoBr ₂	с	- 220.9	a (a -	-	79.5
std. state	aq	-301.3	-262.3	50	a c 10
CoCl ₂	с	- 312.5	269.8	109.2	78.49
std. state	aq	- 392.5	-316.7	0	
CoCO ₃	с	-713.0		0 0 ·	<i></i>
CoF2	с	- 692	- 647	82.4	68.9
CoF ₃	с	- 790	-719	95	92

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	D1 1	A 770	1 60	C 0	C 0
Substance	Physical	$\Delta_{\rm f} H^{\circ}$ k I · mol ⁻¹	$\Delta_{\rm f}G^{\circ}$ kI · mol ⁻¹	S^{\sim} I · deg ⁻¹ · mol ⁻¹	C_p^{\sim} I · deg ⁻¹ · mol ⁻¹
	state	KJ 11101	Kỹ IIIOI	J deg mor	J deg mor
Col ₂	c	88./	1577	100.0	
CoOUL V2+ and atom	aq	- 108.0	- 137.7	109.0	
Co(NH ₃) ⁵ std. state	aq	584.9	157.5	140	
$C_0(NH_3)_6^{-1}$ state	aq	100 5	- 189.5		
$Co(NO_3)_2$	с	420.5	077.0	100	
std. state	aq	-472.8	-277.0	180	
0	с		-214.0	53.0	55.3
Co_3O_4	с	- 891	-774	102.5	123.4
Co(OH) ₂	с	- 539.7	454.4	79.0	
CoS	с	- 82.8			
Co ₂ S ₃	с	- 147.3			
CoSO ₄	с	- 888.3	- 782.4	118.0	103
std. state	aq	- 967.3	- 799.1	- 92.0	
$CoSO_4 \cdot 7H_2O$	с	2979.93	- 2473.83	406.06	390.49
Copper					
Cu	с	0	0	33.15(8)	24.44
	g	337.4(12)		166.398(4)	
Cu ⁺ std. state	aq	71.67	50.00	40.6	
Cu ²⁺ std. state	aq	64.9(10)	65.52	- 98.(4)	
Cu(OAc) ₂ acetate	c	- 893.3			
std. state	aq	- 907.25	- 673.29	73.6	
Cu ₂ (AsO ₄) ₂ std. state	ad	- 1581.97	-1100.48	- 804.2	
CuBr	c	- 104.6	- 100.8	96.2	54.7
CuBra	c	- 141.84			
CuCl	c	-137.2	- 119.9	86.2	48.5
CuCl	c	220 1	- 175 7	108.09	71.88
Cu(ClO ₂), std_state	an	- 193 89	48.28	264.4	71.00
CuCN	uq C	95.0	108.4	90.00	61.04
CuCNS and state	C 20	138 11	142.67	18/ 03	01.04
Cu(CNS) and state	aq	217.65	250.87	104.95	
$Cu(CINS)_2$ sid. state	aq	217.05	230.87	109.1	51.0
CuF	C	280	- 200	04.9	J1.9 65.55
CuF_2	с	- 542.7	- 492	77.45	03.33
Cu(formate) ₂	aq	- /80.34	- 030.4	84	<i></i>
Cul	c	67.8	- 69.5	96.7	54.1
$Cu(NH_3)_4^{4+}$ std. state	aq	- 348.5	-111.3	273.6	
$Cu(NO_3)_2$	с	- 302.9			
std. state	aq	- 349.95	- 157.15	193.3	
CuO	с	-157.3	- 129.7	42.6	42.2
Cu ₂ O	c	168.6	149.0	93.1	63.6
Cu(OH) ₂	с	- 450	-373	108.4	95.19
CuS	с	- 53.1	53.7	66.5	47.8
Cu ₂ S	c	- 79.5	- 86.2	120.9	76.3
CuSe	с	- 39.5			
Cu ₂ Se	с	- 59.4		157.3	88.70
CuSO ₄	с	-771.4(12)	-662.2	109.2(4)	98.87
std. state	aq	- 844.50	-679.11	- 79.5	
$CuSO_4 \cdot 5H_2O$	с	-2279.65	- 1880.04	300.4	280
CuWO ₄	с	- 1105.0			
Dysprosium					
Dy	с	0	0	75.6	27.7
Dy ³⁺ std. state	aq	699.0	- 665.0	231.0	21.0
-,			00010		=

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
DyCl ₃	с	- 1000			100.0
	aq	- 1197.0	- 1059.0	-61.9	- 389.0
DyF ₃	с	- 1711.0			
Dy ₂ O ₃	с	- 1863.1	- 1771.5	149.8	116.27
Erbium					
Er	с	0	0	73.18	28.12
Er ³⁺ std. state	aq	-705.4	- 669.1	-244.3	21.0
ErCl ₃	с	- 998.7			100.0
	aq	- 1207.1	- 1062.7	- 75.3	389.0
Er ₂ O ₃	с	- 1897.9	-1808.7	155.6	108.49
Europium					
Eu	с	0	0	77.78	27.66
Eu ²⁺ std. state	aq	- 527.0	540.2	- 8.0	
Eu ³⁺	aq	-605.0	- 574.0	-222.0	8.0
EuCl ₂	aq	- 862.0			
EuCl ₃	с	- 936.0	856	144.1	
	aq	- 1106.2	- 967.7	- 54.0	-402.0
EuF ₃	с	- 1571			
Eu ₂ O ₃ monoclinic	с	- 1651.4	- 1556.9	146	122.2
Eu ₃ O ₄	с	- 2272.0	-2142.0	205.0	
Eu(OH) ₃	с	- 1332	- 1195	119.9	
Fluorine					
F atomic	g	79.38(30)	62.3	158.751(4)	22.7
F-	aq	- 335.35(65)	- 278.8	- 13.8(8)	- 106.7
F ₂	g	0	0	202.791(5)	31.30
FNO ₃	g	10.5	73.7	292.9	65.22
FO	g	109.0	105.0	216.8	30.5
F ₂ O	g	24.7	41.9	247.4	43.3
F_2O_2	g	18.0			
Francium					
Fr	c	0	0	95.40	31.80
FrCl	с	- 439		113.0	53.56
Fr ₂ O	с	- 338	299.2	156.9	
Gadolinium					
Gd	с	0	0	68.07	37.03
Gd ³⁺ std. state	aq	686.0	661.0	205.9	
GdCl ₃	с	-1008.0	-933	151.4	88.0
std. state	aq	-1188.0	- 1059.0	- 36.8	-410.0
GdF ₃	lq	- 1297			
Gd ₂ O ₃ monoclinic	с	- 1819.6	- 1730	150.6	106.7
Gallium					
Ga	c	0	0	40.8	26.06
	lq	5.6			
	g	272.0	233.7	169.0	25.3
Ga ³⁺	aq	-211.7	- 159.0	-331.0	
GaAs	с	71.0	67.8	64.2	46.2
GaBr ₃	c	- 386.6	- 359.8	180.0	
GaCl ₃	с	- 524.7	- 454.8	142.0	
GaF ₃	с	-1163.0	- 1085.3	84	
GaI ₃	c	-238.9		205.0	100
Ga ₂ O ₃ rhombic	с	-1089.1	- 998.3	84.98	92.1

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

					~~
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S° L daa ⁻¹ mal ⁻¹	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg · moi	J · deg · moi
Ga(OH) ₃	c	- 964.4	831.3	100.0	
GaSb	с	-41.8	- 38.9	76.07	48.53
Germanium		0	0	a1 00(15)	a a a
Ge	с	0	0	31.09(15)	23.3
A P	g	372.0(30)	331.2	167.904(5)	30.7
GeBr ₄	lq	- 347.7	- 331.4	280.8	101.0
0.01	g	- 300.0	-318.0	396.2	101.8
GeCl ₄	lq	- 531.8	-462.8	245.6	06.1
a r	g	- 495.8	-457.3	347.7	96.1
GeF ₄	g		-1150.0	301.9(10)	81.84
GeH ₄	g	90.8	113.4	217.02	45.02
Gel ₄	с	141.8		271.1	1011
	g	- 56.9	106.3	428.9	104.1
GeO ₂ tetragonal	с	- 580.0(10)	- 521.4	39.71(15)	52.1
GeP	c	-21.0	- 17.0	63.0	
GeS	с	-69.0	-71.6	71	
Gold					
Au	с	0	0	47.4	25.36
AuBr	с	- 14.0			
AuBr ₃	с	-53.3			
AuCl	с	-34.7		92.9	48.74
AuCl ₃	с	-117.6		148.1	94.81
AuCl $_4$ std. state	aq	- 322.2	- 237.32	266.9	
Au $(CN)_2^-$ std. state	aq	242.3	285.8	172	01.00
AuF ₃	с	- 363.6		114.2	91.29
AuSb ₂	с	- 19.46		119.2	77.40
AuSn	с	- 30.5		93.7	49.41
Hafnium				10.00	
Hf hexagonal	с	0	0	43.56	25.69
HfC	с	- 230.1		41.21	34.43
HfCl₄	с	- 990.4	-901.3	190.8	120.46
HfF ₄ monoclinic	с	1930.5	- 1830.5	113	<i>co</i> a a
HfO ₂	с		- 1088.2	59.3	60.25
Helium					
He	g	0	0	126.153(2)	20.786
Holmium		0	0		05.15
Но	с	0	0	75.3	27.15
Ho ³⁺ std. state	aq	- 705.0	-673.7	226.8	17.0
HoCl ₃	. C	1005.4			88
std. state	aq	1206.7	- 1067.3	-57.7	- 393.0
HoF ₃	с	- 1707.0			
Ho ₂ O ₃	с	- 1880.7	-1791.2	158.2	115.0
Hydrogen					
H atomic	g	217.998(6)	203.3	114.717(2)	20.8
H ⁺ std. state	aq	0	0	0	0
H ₂	g	0	0	130.680(3)	28.84
H ² H	g	0.321	- 1.463	143.80	29.20
$^{2}\text{H}_{2}$ (D ₂) deuterium	g	0	0	144.96	29.19
$HAsO_2^-$ undissoc;	aq	- 456.5	-402.71	125.9	
std. state					

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
$H_2AsO_3^-$ undissoc; std. state	aq		- 587.22	110.5	
H ₃ AsO ₃ undissoc; std.	aq	-742.2	- 639.90	195.0	
HAsO ²⁻ undissoc: std. state	ad	- 906.34	-714.70	-1.7	
$H_2AsO_4^-$ undissoc; std. state	aq	- 909.56	- 753.29	117	
H ₃ AsO ₃	с	- 906.30			
undissoc; std. state	aq	- 902.5	- 766.1	184	
HBO ₂	c	- 794.3	- 723.4	38	54.4
H ₃ BO ₃	с	-1094.8(8)	- 968.9	89.95(60)	86.1
undissoc	aq	- 1072.8(8)		162.4(6)	
HBr	g	- 36.29(16)	- 53.4	198.700(4)	29.1
std. state	aq	- 121.55	- 103.97	82.4	-141.8
HBrO undissoc; std. state	aq	-113.0	-82.4	142	
HBrO ₃ std. state	aq	-67.07	18.54	161.71	
HCI	g	-92.31(10)	- 95.30	186.902(5)	29.12
std. state	aq	- 167.15	- 131.25	56.5	-136.4
² HCl deuterium chloride	g	93.35	- 95.94	192.63	29.17
HCIO	g	-78.7	-66.1	236.7	37.15
undissoc; std. state	aq	- 120.9	- 79.9	142	
HClO ₂ undissoc; std. state	aq	- 51.9	5.9	188.3	
HClO ₃ std. state	aq	- 103.97	- 8.03	162.3	
HClO ₄	lq	-40.58			
std. state	aq	- 129.33	- 8.62	182.0	
$HClO_4 \cdot H_2O$	с	- 302.21			
$HClO_4 \cdot 2H_2O$	lq	-677.98			
HCN	lq	108.87	124.93	112.84	70.63
	g	135.1	124.7	201.81	35.86
ionized; std. state	aq	150.6	172.4	94.1	
undissoc; std. state	aq	107.11	119.66	124.7	
HCNO ionized; std. state	aq	-146.0	- 97.5	106.7	
undissoc; std. state	aq	- 154.39	-117.2	144.8	
HCNS ionized; std. state	aq	76.44	92.68	144.4	-40.2
HCOO ⁻ formate	aq	-425.6	-351.0	92.0	- 87.9
CH ₃ COO [−] acetate	aq	- 486.0	- 369.3	86.6	-6.3
HCO_3^- std. state	aq	- 689.93(20)	- 586.85	98.4(5)	
H_2CO_3 std. state	aq	- 699.65	-623.16	187.4	
$HC_2O_4^-$	aq	818.4	- 698.3	149.4	
$H_2C_2O_4$	с	- 821.7	723.7	109.8	91.0
$C_2 O_4^{2-}$	aq	- 825.1	- 673.9	45.6	
H ₂ CS ₃ trithiocarbonic acid	lq	25.1	27.82	233.0	149.8
HF	g	- 273.30(70)	-275.4	173.779(3)	29.14
	lq	- 299.78	75.40	51.67	
undissoc; std. state	aq	- 320.08	- 296.86	88.7	
F-	aq	- 332.63	-278.8	- 13.8	- 106.7
² HF	g	- 275.5	- 277.27	179.70	29.14
HF_{2}^{-} std. state	aq	- 649.94	-578.15	92.5	
	-				
H ₂ F ₂ dimer	g	- 572.66	- 544.51	238	44.89

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_{n}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
HFO	g	98	- 86	226.8	35.93
HI	g	26.50(10)	1.7	206.590(4)	29.16
std. state	aq	- 55.19	- 51.59	111.3	-142.3
HIO undissoc; std. state	aq	- 138.1	- 99.2	95.4	
HIO ₃	c	-230.1			
H ₂ MoO ₄	с	- 1046.0			
HN	g	351.5	345.6	181.2	29.2
HN ₃	lq	264.0	327.2	140.6	
	g	294.1	328.1	239.0	43.7
H ₂ N	g	184.9	194.6	195.0	33.9
² H ₂ N ₂ cis-diazine	g	207	241	224.09	39.02
HNCO isocyanic acid	g	- 116.73	- 107.36	238.11	44.85
HNCS isothiocyanic acid	g	127.61	112.88	248.03	46.40
HNO ₂	g	- 79.5	- 46.0	254.1	45.5
HNO ₃	lq	- 174.1	- 80.7	155.60	109.9
	g	-133.9	- 73.54	266.9	54.1
std. state	aq	- 207.36	-111.34	146.4	- 86.6
H ₂ N ₂ O ₂ hyponitrous acid	aq	-57.3	36.0	218	
HO hydroxyl	g	39.0	34.2	183.64	30.00
HO-	aq	- 230.015	- 157.28	- 10.90	- 148.5
HO ₂	g	10.5	22.6	229.0	34.9
HO ₂ std. state	aq	- 160.33	67.4	23.9	
H ₂ O	c	- 292.72			37.11
	lq	- 285.830(40)	-237.14	69.95(3)	75.35
	g	- 241.826(40)	-228.61	188.835(10)	33.60
¹ H ² HO	g	245.37	-233.18	199.51	33.79
² H ₂ O deuterium oxide	g	249.20	- 234.54	198.33	34.25
H ₂ O ₂ hydrogen peroxide	lq	- 187.78	- 120.42	109.6	89.1
	g	- 136.3	- 105.6	232.7	43.14
undissoc; std. state	aq	- 191.17	- 134.10	143.9	
HOCN undissoc; std. state	aq	- 154.39	-117.2	144.8	
OCN ⁻ cyanate std. state	aq	- 146.02	- 97.5	106.7	
HPO ₃	с	- 948.51			
HPO ₄ ²⁻ std. state	aq	- 1299.0(15)	- 1089.26	- 33.5(15)	
H ₂ PO ₄ std. state	aq	- 1302.6(15)	- 1130.39	92.5(15)	
HPH ₂ O ₂ hypophosphorous					
acid	с	604.6			
H ₃ PO ₃	с	964.4			
H ₃ PO ₄	с	- 1284.4	-1124.3	110.5	106.1
	lq	- 1271.7	- 1123.6	150.8	145.06
ionized; std. state	aq	- 1277.4	- 1018.8	222	
undissoc; std. state	aq	- 1288.34	- 1142.65	158.2	
$HP_{2}O_{7}^{3-}$	aq	- 2274.8	- 1972.2	46.0	
$H_2P_{27}^{2-}$	aq	-2278.6	-2010.2	163.0	
$H_4P_2O_7$	с	-2241.0			
undissoc; std. state	aq	-2268.6	- 2032.2	268	
HReO₄	с	-762.3	- 656.4	158.2	
HS	g	142.7	113.3	195.7	32.3
HS ⁻ std. state	aq	- 16.3(15)	12.05	67.(5)	
H ₂ S	g	-20.6(5)	-33.4	205.81(5)	34.19
undissoc; std. state	aq	- 38.6(15)	-27.87	126.(5)	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	DI 1	A 110	1 00	C 0	<i>C</i> ⁰
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	J° I daa-l mal-l	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg · moi	J · deg · moi
² H ₂ S	g	-23.9	-35.3	215.3	35.76
H_2S_2	g	15.5			51.5
HSbO2 undissoc; std. state	aq	-487.9	-407.5	46.6	
HSCN undissoc; std. state	aq	76.4	97.7	144.3	-40.2
SCN ⁻ std. state	aq	76.44	92.68	144.5	-40.2
HSe ⁻ std. state	aq	1 5.9	43.9	79.0	
H ₂ Se	g	29.7	15.9	219.0	34.7
$HSeO_3^-$ std. state	aq	-514.55	-411.54	135.1	
H_2SeO_3	с	- 524.46			
undissoc; std. state	aq	- 507.48	-426.22	207.9	
HSeO ₄ std. state	aq	- 581.6	-452.3	149.4	
H ₂ SeO ₄	c	- 530.1			
H ₂ SiO ₃	с	-1188.67	- 1092.4	134.0	
undissoc; std. state	aq	-1182.8	- 1079.5	109	
H₄SiO₄	c	-1481.1	- 1333.0	192	
undissoc; std. state	aq	- 1468.6	- 1316.7	180	
HSO_{3}^{-} std. state	aq	-626.22	-527.8	139.8	
HSO	aq	- 886.9(10)	- 755.9	131.7(30)	- 84.0
HSO ₄ Cl	la	-601.2		. ,	
HSO ₄ F	la	- 795.0			
	g	- 753	- 691	297	75.24
H ₂ SO ₂ undissoc: std. state	ап	- 608.81	- 537.90	232.2	
H ₂ SO.	10	- 814.0	- 689.9	156.90	138.9
std. state	-4 ag	- 909.27	- 744 63	20.1	293
HaSO + HaO	la	-1127.6	- 950 3	211.5	214 3
H_SO 2H_O	10	- 1427.1	- 1199.6	276.4	261.5
H-SO - 3H-O	la	- 1720.4	-1443.9	345.4	319.1
$H_{2}SO_{4} - 3H_{2}O$	la	-2011.2	1685 8	414.5	386.4
H.S.O	~~	- 1273.6	1005.0	111.0	500.7
н те	c c	99 K		228.0	35 56
H-WO.	6	- 1131.8	- 1003 9	145	113
Indium	e	1151.0	1005.7	145	115
In	c	0	0	57.8	26.7
In ³⁺	с ад	- 105 0	-98.0	- 151.0	20.7
InAs	aq	- 58.6	- 53.6	757	17 78
InBr	C	- 428.0	55.0	15.1	47.78
	c	- 527 2			
InE	c	- 203 4			
Int.	g	203.4	100.3	207 52	20.59
11111	g	215.5	190.5	120.0	29.50
1111 In I	C	- 110.3	- 120.3	150.0	
1111 ₃	C	- 236.0	- 212.0		
	aq	- 370.3	- 515.0	- 88.0	
	aq	- 019.0	- 525.0	23.0	02
	c	- 923.21	- 030.73	104.2	92 AE AA
mr Ins	C	- 68.7	- //.0	59.8 67	45.44
1115 I- S	C	- 138.1	- 131.8	0/	110.0
In ₂ 5 ₃	С	-42/	-412.5	103.0	118.0
m_2Se_3	с	- 343	05 F	96.0	40.5
InSb	с	- 30.5	- 25.5	86.2	49.5
Iodine		105 5540		100 000/0	6 0 0
1 atomic	g	106.76(4)	70.2	180.787(4)	20.8

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Lambda_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C°_{-}
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
I ⁻ std. state	aq	- 56.78(5)	- 51.59	106.45(30)	- 142.3
I_2	с	0	0	116.14(30)	54.44
	g	62.42(8)	19.37	260.687(5)	36.86
std. state	aq	22.6	16.40	137.2	
I_3^- std. state	aq	-51.5	- 51.5	239.3	
IBr	с	- 10.5			
	g	40.8	3.7	258.8	36.4
ICl	с	- 35.4	- 14.05	97.93	55.23
	lq	-23.93	- 13.6	135.1	
	g	17.8	- 5.5	247.6	35.6
ICl ₃	с	- 89.5	- 22,34	167.4	
IF	g	-95.7	-118.5	236.3	33.4
IF ₅	lq	- 864.8			
	g	-822.5	-751.5	327.7	99.2
IF ₇	g	-961.1	-835.8	347.7	134.5
IO	g	175.1	149.8	245.5	32.9
IO ⁻ std, state	aq	107.5	-38.5	- 5.4	
IO_3^- std. state	aq	-221.3	128.0	118.4	
IO_4^- std. state	aq	- 151.5	- 58.6	222	
I_2O_5	С	- 158.07			
Iridium					
Ir	С	0	0	35.48	25.06
IrCl ₃	с	- 245.6	180	113	
IrF ₆	с	- 579.65	- 461.66	247.7	
IrO ₂	с	- 274.1		57.3	57.32
IrS ₂	с	-138.0			
Iron			0		
Fe alpha	с	0	0	27.32	25.09
Fe ²⁺ std. state	aq	- 89.1	- 78.87	- 137.7	
Fe^{3+} std. state	aq	- 48.5	-4.7	-315.9	
FeBr ₂	с	- 249.8	-238.1	140.7	80.2
std. state	aq	- 332.2	-286.81	27.2	
FeBr ₃	с	-286.2		<i>(</i>) <i>(</i>	
	aq	-413.4	- 316.7	- 68.6	105.0
Fe ₃ C α -cementite	с	25.1	20.1	104.6	105.9
FeCl ₂	с	- 341.8	- 302.3	118.0	/0./
E-O	aq	- 423.4	- 341.3	- 24.7	06.65
FeCl ₃	с	- 399.4	- 333.9	142.34	90.05
std. state	aq	- 550.2	- 398.3	146.4	
$Fe(CN)_6^2$ std. state	aq	501.9	129.3	270.3	
Fe(CN) ^{2⁻} std. state	aq	455.6	094.9	95.0	
FeCNS ²⁺ std, state	aq	23.4	/1.1	- 130	PO 1
FeCO ₃	с 1-	- 740.6	- 000.7	92.9	82.1
Fe(CO)5	1q 2	- 14.0	- 1242.0	330.1 146 0	240.0
FeUr2U4	c	- 1440.0	- 1343.9	140.2	133.8
rur ₂	c	- 711.5	- 636 5	00.99	06.12
sta, state	aq	- 1042	- 030.5	- 105.5	01.0
rer ₃	c	~ 1042 	-9/2	20 	91.0
Fal	aq	- 1040.4	- 640.9	167 4	02 7
rul2	c	- 100 6	- 192 1	107.4 84 O	03.1
sta. state	aq	- 199.0	- 182.1	04.9	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	Λ <i>H</i> ⁰	ΛC°	C _o	C°
Substance	state	$kJ \cdot mol^{-1}$	$\Delta_{\rm f} O$ kJ · mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
FeL	aq	-214.2		18.0	
FeMoO ₄	c	- 1075.0	-975.0	129.3	118.5
FenN	c	-3.8		101.3	70.0
Fe(NO ₃) ₃ std. state	ao	-670.7	- 338.5	123.4	1010
FeO	1 C	-272.0	-251.4	60.75	49.91
Fe ₂ O ₃ hematite	C	- 824.2	-742.2	87.40	103.9
Fe ₃ O ₄ magnetite	с	-1118.4	- 1015.4	145.27	143.4
FeOH ⁺ std. state	aq	324.7	-277.4	- 29	
Fe(OH) ²⁺ std. state	aq	-290.8	-229.4	-142	
Fe(OH) ₂	c	- 574.0	- 490.0	87.9	97.1
Fe(OH) ₃	с	- 833	- 705	104.6	101.7
FeS	с	- 100.0	100.4	60.32	50.52
FeS_2 marcasite	с	- 167.4	- 156.1	53.87	62.39
FeS_2 pyrite	с	-178.2	- 166.9	52.92	62.12
FeSiO ₃	с	-1155		87.5	89.4
Fe ₂ SiO ₄	С	1479.9	-1379.0	145.18	132.9
FeSO ₄	с	-928.4	820.8	107.5	100.6
std. state	aq	998.3	- 823.4	-117.6	
$Fe_2(SO_4)_3$	с	-2583.0	-2262.7	307.5	264.8
std. state	aq	-2825.0	2243.0	- 571.5	
FeTiO ₃	с	-1246.4		105.9	99.5
FeWO ₄	с	-1155.0	1054.0	131.8	114.4
Krypton					
Kr	g	0	0	164.085(3)	20.786
Lanthanum					
La	с	0	0	56.9	27.11
La ³⁺	aq	- 707.1	683.7	-217.6	-13.0
LaCl ₃	с	1072.2		144.4	108.8
std. state	aq	-1208.8	- 1077.4	- 50.0	-423.0
$LaCl_3 \cdot 7H_2O$	с	3178.6	-2713.3	462.8	431.0
LaI ₃	c	- 668.9			
La(NO ₃) ₃	с	1254.4			
std. state	aq	-1329.3			
La_2O_3	с	- 1793.7	- 1705.8	127.32	108.78
$La_2(SO_4)_3$	с	3941.3		280	
La ₂ Te ₃	c	- 724	-714.6	231.63	132.13
Lead				.	
Pb	c	0	0	64.80(30)	26.84
D1 2+	g	195.2(8)	162.2	175.375(5)	20.8
	aq	0.92(25)	-24.4	18.5(10)	
$Pb(OAC)_2$	c	904.4	1450	101	107 1
	c	1550	- 1450	131	107.1
PDB ₄ O ₇	c	- 2858	- 2007	161 5	108
POBI ₂	C	- 2/8.7	201.9	101.5	80.1
Ph(CU)	aq	244.8	-232.3	175.5	
$PD(CH_3)_4$	1q 1-	97.9		1616	207.4
ru(U ₂ n ₅) ₄ PhC1	рі Г	32.1 - 250 4	_ 214 1	404.0	207.4 77.1
ruci ₂	c	- 226 0		100	//.1
DECI	aq	- 220.2	280.9	123.4	
PUCI4 DECIE	рі рі	- 529.5	- 499 2	101.9	
FUCII.	C	- 554.7	400.3	121.0	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
PbCO ₃	с	- 699.2	-625.5	131.0	87.40
PbC ₂ O ₄	с	- 851.4	- 750.2	146.0	105.4
PbCrO ₄	с	- 930.9			
PbF ₂	с	- 664	-617.1	110.5	72.3
	aq	- 666.9	- 582.0	- 17.2	
PbF₄	с	- 941.8			
PbI ₂	с	- 175.5	-173.58	174.9	77.4
	aq	-112.1	- 127.6	233.0	
PbMoO₄	с	- 1051.9	-951.4	166.1	119.70
$Pb(N_3)_2$ monoclinic	с	478.2	624.7	148.1	
Pb(NO ₃) ₂	с	-451.9			
	aq	-416.3	- 246.9	303.3	
PbO litharge	с	- 219.0	- 188.9	66.5	45.8
PbO ₂	с	-277.4	-217.3	68.60	64.6
Pb ₃ O ₄	с	-718.4	-601.2	211.3	146.9
$Pb_3(PO_4)_2$	с	- 2595.3	- 2432.6	353.1	256.3
PbS	с	-100.4	- 98.7	91.3	49.4
PbSe	с	- 102.9	- 101.7	102.5	50.2
PbSeO₄	с	- 609.2	505.0	167.8	
PbSiO ₃	с	-1145.7	-1062.1	109.6	90.04
PbSiO ₄	с	-2023.8	1909.6	84.01	98.66
Pb ₂ SiO ₄	с	- 1363.1	- 1252.6	186.6	137.2
PbSO ₃	с	- 669.9			
PbSO ₄	с	- 919.97(40)	- 813.0	148.50(60)	103.2
PbSO ₄ · PbO	с	-1182.0		225.06	150.16
PbTe	с	-70.7	- 69.5	110.0	50.5
Lithium					
Li	с	0	0	29.12(20)	24.8
	g	159.3(10)		138.782(10)	
Li ⁺ std. state	aq	- 278.47(8)	- 293.30	12.24(15)	68.6
Li ₃ AlF ₆ cryolite	с	- 3317	- 3152	238.5	215.7
LiAlH ₄	с	-116.3	- 44.7	78.7	83.2
LiAlO ₂	с	-1188.7	-1126.3	53.3	67.78
LiBeF ₃	с	- 1651.8	- 1576.3	89.2	91.8
LiBH₄	с	- 190.8	- 125.0	75.9	82.6
LiBH₄ · tetrahydrofuran	с	-415.5	-220.5	289	
Li ₂ BeF ₄	с	- 2274	-2171	130.6	135.3
LiBO ₂	с	- 1032.2	- 976.1	51.5	59.8
$Li_2B_4O_7$	с	- 3362	- 3170	156	183.0
LiBr	с	- 351.2	-342.00	74.27	48.91
std. state	aq	-400.03	- 397.27	95.81	-73.2
LiBrO ₃	с	- 346.98			
std. state	aq	- 345.56	- 274.89	174.9	
LiCl	c	-408.6	- 384.4	59.3	48.03
	aq	445.6	424.6	69.9	-67.8
LiClO	c	-381.0	- 254	126	105
std. state	aq	407.81	- 302.1	195.4	-7.5
Li ₂ CO ₃	c	- 1215.9	-1132.12	90.4	99.1
2 2	ao	- 1234.1	-1114.6	- 29.7	
LiF	c	-616.0	- 587.7	35.66	41.6
std. state	ad	-611.12	- 571.9	-0.4	- 38.1
	1				

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{ m o}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
LiH	C	90 5	- 68 45	20.04	27.96
LiI	c	- 270.4	- 270.3	86.8	51.0
std state	- 90	-333.67	- 344 8	124.7	-736
L iIO.	aq	- 503 38	544.0	124.7	75.0
std state	20	400 82	421 33	131.4	55 2
J N	aq			62.50	75 27
	c	- 272 4	- 202.0	02.39	12.21
	t a	- 372.4	- 302.0	90.0	
LINO ₃	C	405.1	381.1	90.0	19.0
std. state	aq	- 463.9	- 404.3	100.2	-18.0
	C	- 397.9	301.2	57.0	70.6
	с	- 634.3	- 578.9	56.5	/0.6
LIOH	с	- 484.9	439	42.82	49.7
std. state	aq	508.40	- 451.9	7.1	
	с	-2095.8			
Li ₂ SiO ₃	с	- 1648.1	- 1557.2	79.8	99.1
$Li_2Si_2O_5$	с	-2561	-2417	125.5	138.1
Li ₂ SO ₄	с	- 1436.4	- 1321.7	115.1	117.6
std. state	aq	1466.2	1331.2	7.3	- 155.6
Li ₂ TiO ₃	с	- 1670.7	- 1579.8	91.8	109.9
Lutetium					
Lu	с	0	0	50.96	26.86
Lu ³⁺	aq	- 665.0	-628.0	-264.0	25.0
LuCl ₃	с	- 945.6			
std. state	aq	1167.0	1021.0	- 96.0	-385.0
LuI ₃	с	- 548.0			
Lu_2O_3	с	- 1878.2	- 1789.1	109.96	101.75
Magnesium					
Mg	с	0	0	32.67(10)	24.87
	g	147.1(8)		148.648(3)	
Mg ²⁺ std. state	aq	-467.0(6)	454.8	137.(4)	
MgAl ₂ O ₄	c	- 2299	-2177	89.0	116.20
MgBr ₂	с	-524.3	- 503.8	117.2	73.16
std. state	aq	709.94	662.8	26.8	
MgBr ₂ · 6H ₂ O	c	-2410.0	- 2056.0	397	
MgCl ₂	с	-641.3	- 591.8	89.63	71.38
std. state	aq	- 801.15	- 717.1	-25.1	
MgCl ₂ · 6H ₂ O	c	2499.0	-2115.0	315.1	
Mg(ClO ₄) ₂	с	- 568.90			
std. state	ад	- 725.51	-472.0	225.4	
Mg(CIQ.) - 6H_Q		-2445.6	- 1863 1	520.1	
MgCO.	c	1095.8	1012 1	65.7	75 51
MgC-O.	c	- 1269.0	1012.1	05.7	15.51
std state	20	- 1202.0	- 1128.8	02 5	
MaE	aq	- 1292.0	1071.1	57 2(5)	61.5
Mg Go	C	- 109 9	- 105.0	96 49	60.54
Mau	C C	- 100.0	- 105.9	00.40 21 1	25 /
Mal	С	- 13.3	33.9	31.1 120.7	33.4
IVIBI2	c	- 577.00	- 558.2	129.1	/4.8
sta. state	aq	-5/1.22	- 558.1	84.5	1017
Mg ₃ N ₂	с	401.1	- 400.9	87.9	104.5
$MgNH_4PO_4 \cdot 6H_2O$	с	- 3681.9		164.0	
$Mg(NO_3)_2$	с	- 790.65	- 589.5	164.0	141.9
std. state	aq	881.6	- 677.4	154.8	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	kJ · mol ·	kJ · mol ⁺	J · deg ¹ · mol ¹	$J \cdot \deg^{-1} \cdot \mod^{-1}$
$Mg(NO_3)_2 \cdot 6H_2O$	с	-2613.3	-2080.7	452	
MgO microcrystal	с	- 601.6(3)	- 569.3	26.95(15)	37.2
Mg(OH) ₂	с	- 924.7	-833.7	63.24	77.25
std. state	aq	- 926.8	- 769.4	- 149.0	
$Mg_3(PO_4)_2$	с	- 3780.7	- 3538.8	189.20	213.47
MgS	с	- 346.0	-341.8	50.3	45.6
MgSeO₄	с	-968.51			
std. state	aq	- 1066.1	- 896.2	-84.1	
Mg ₂ Si	с	- 77.8	-77.1	81.6	67.9
MgSiO ₃ clinoenstatite	с	- 1548.9	- 1462.0	67.8	81.9
Mg ₂ SiO ₄ forsterite	с	-2174.0	-2055.1	95.1	118.5
Mg ₃ Si ₄ O ₁₀ (OH) ₂ talc	с	- 5922.5	- 5543.0	260.7	321.8
$MgSO_3 \cdot 3H_2O$	с	- 1931.8			
MgSO ₃ · 6H ₂ O	с	-2817.5			
MgSO ₄	с	- 1284.9	- 1170.6	91.6	96.5
std. state	aq	- 1376.1	- 1199.5	-118.01	
MgSO₄ · H₂O kieserite	c	-1602.1	-1428.8	126.4	
$MgSO_4 \cdot 7H_2O$ epsomite	с	-3388.71	- 2871.9	372	
MgTiO ₃	с	- 1497.6	- 1420.1	111.08	91.88
Mg ₂ TiO₄	с	-2164.0	-2048	115.0	129
MgTi ₂ O ₅	с	-2509	- 2369	135.6	146.9
$Mg_{2}V_{2}O_{2}$ triclinic	с	-2835.9	- 2645.29	200.4	203.47
MgWO	с	- 1516	- 1404	101.2	109.1
Manganese					
Mn	с	0	0	32.01	26.30
Mn ²⁺ std. state	ag	-220.75	-228.1	-73.6	50
MnBr ₂	c	- 384.9	-372	138.1	75.31
std. state	ad	- 464.0	- 409.2		
Mn ₂ C	c	-4.6	5.4	98.7	93.51
MnCl	с	-481.3	- 440.5	118.20	72.9
std. state	aq	- 555.05	-490.8	38.9	- 222
MnCO ₂	c	- 894.1	-816.7	85.8	81.5
$Mn_2(CO)_{10}$	c	- 1677.4			
MnFa	c	-795.0	- 749	92.26	67.99
MnIa	c	-242.7		150.6	75.35
z	aq	-331.0			
Mn(NO ₂) ₂	c	- 576.26			
std. state	aq	-635.6	-451.0	218.0	- 121.0
MnO	c	- 385.2	- 362.9	59.8	45.4
MnOa	c	- 520.1	-465.2	53.1	54.1
Mn ₂ O ₂	c	- 959.0	- 881.2	110.5	107.7
MnO-	an	- 541 4	- 447 3	191.2	- 82.0
MnO ²⁻	ad 2d	- 653.0	- 500.8	59	0210
Mn.O.	uq C	- 1387 8	- 1283 2	155.6	139.7
Mn ₃ O ₄	c	-31167	1205.2	155.0	157.7
MnS	c	- 214 2	- 218 4	78.2	50.0
MnSe	c	- 106 7	210. 4 111 7	00.2	51.0
Mise	c	- 1320.0	_ 1240.6	90.0 80.1	95.0 96.4
Masio	U C	- 1320.9	- 1240.0	162.2	00.4 120.0
MaSO	c	- 1/50.5	- 1032.1	105.2	129.9
	c	- 1005.5	- 957.42	112.1 52.6	100.4
sta. state	aq	- 1130.1	-972.8	- 55.0	- 243
MnTiO ₃	с	-1355.6		105.9	99.8

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Mercury					
Hg	lq	0	0	75.90(12)	28.00
	g	61.38(4)	31.8	174.971(5)	20.8
Hg ²⁺	aq	170.21(20)		- 36.19(80)	
Hg⁺	aq	166.87(50)		65.74(80)	
HgBr ₂	с	- 170.7	- 153.1	172.0	75.3
Hg ₂ Br ₂	с	206.9	- 181.1	218.0	104.6
Hg(CH ₃) ₂	lq	59.8	140.2	209	
$Hg(C_2H_5)_2$	lq	30.1			
HgCl ₂	с	- 224.3	- 178.6	146.0	73.9
Hg_2Cl_2	с	- 265.37(40)	-210.7	191.6(8)	102.0
Hg(CN) ₂	с	263.6			
Hg ₂ CO ₃	С	- 553.5	- 468.1	180.0	
HgC ₂ O ₄	с	- 678.2			
HgF ₂	с	- 405	- 362	134.3	74.86
Hg ₂ F ₂	с	- 485	- 469	161	100.4
HgI ₂	с	- 105.4	- 101.7	180.0	77.75
Hg ₂ I ₂	с	- 121.3	-111.1	233.5	105.9
$Hg_2(N_3)_2$	с	594.1	746.4	205	
HgO	с	- 90.79(12)	- 58.49	70.25(30)	44.06
HgS	с	- 58.2	- 50.6	82.4	48.4
HgSO ₄	с	-707.5	- 594		
Hg ₂ SO ₄	с	- 743.09(40)	- 625.8	200.70(20)	131.96
HgTe	с	- 42.0			
Molybdenum					
Мо	с	0	0	28.71	24.13
MoBr ₃	с	284	- 259	175	105.4
MoCl ₄	с	- 477	-402	224	128
MoCl ₅	с	527	-423	238	155.6
MoCl ₆	с	- 523	- 391	255	175
Mo(CO) ₆	с	982.8	877.8	325.9	242.3
MoF ₆	lq	- 1585.66	- 1473.17	259.69	169.8
MoO ₂	с	- 588.9	- 533.0	46.3	56.0
MoO ₃	с	- 745.2	-668.1	77.8	75.0
MoO ₄ ² std. state	aq	- 997.9	- 836.4	27.2	
MoS ₂	с	-235.1	-225.9	62.57	63.56
Mo ₂ S ₃	с	270.3	278.6	181.2	109.3
Neodymium					
Nđ	с	0	0	71.6	27.5
Nd ³⁺ std. state	aq	- 696.2	-671.5	- 206.7	-21
NdCl ₃	С	- 1041.0			113
std. state	aq	1197.9	1065.7	- 37.7	- 431
NdF ₃	с	- 1657.0			
Nd(NO ₃) ₃	с	- 1230.9			
Nd ₂ O ₃	с	- 1807.9	- 1720.9	158.6	111.3
Neon					
Ne	g	0	0	146.328(3)	20.786
Neptunium					
Np	С	0	0		29.46
NpF ₆	с	- 1937			
NpO ₂	с	- 1029	-979	80.3	66.1

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Nickel					
Ni	с	0	0	29.87	26. 1
Ni ²⁺ std. state	aq	- 54.0	-45.6	-128.9	
Ni(OAc) ₂ std. state	aq	- 1025.9	-784.5	44.4	
NiBr ₂	с	-212.1			
	aq	- 297.1	-253.6	36.0	
NiCl ₂	с	- 305.3	-259.0	97.7	71.66
std. state	aq	- 388.3	- 307.9	-15.1	
Ni(CN) ₄ ²⁻ std. state	aq	367.8	472.0	218	
Ni(CO) ₄	lq	-633.0	- 588.2	313	404.6
	g	-602.9	- 587.2	410.6	145.2
NiC ₂ O ₄	с	- 856.9			
NiF ₂	с	- 651.5	-604.2	73.6	64.1
	aq	- 719.2	-603.3	- 156.5	
NiI ₂	с	-78.8			
	aq	- 164.4	- 149.0	93.7	
Ni(NO ₃) ₂	с	-415.1			
std. state	aq	468.6	- 268.6	164.0	
NiO	с	-240.6	-211.7	38.00	44.31
Ni ₂ O ₃	с	489.5			
NiOH ⁺	aq	-287.9	- 227.6	-71.0	
Ni(OH) ₂	c	- 529.7	- 447.3	88.0	
NiS	с	- 82.0	- 79.5	53.0	47.1
Ni_3S_2	c	-216.0	-210	133.9	117.7
NiS ₂	с	- 131.4	- 124.7	72	70.6
$NiSO_4$	с	- 872.9	- 759.8	92.0	138.0
std. state	aq	963.2	- 790.3	-108.8	327.9
$NiSO_4 \cdot 7H_2O$	с	-2976.3	-2462.2	378.94	364.59
NiWO ₄	с	-1128.4		118.0	136.0
Niobium					
Nb	с	0	0	36.4	24.67
NbBr ₅	с	- 556	- 508	258.8	147.9
NbC	с	-138.9	- 136.8	34.98	36.23
NbCl ₅	с	- 797.5	- 683.3	210.5	148.1
NbF₅	с	- 1813.8	1699.0	160.3	134.7
NbI ₅	с	- 268.6		343	155.6
NbN	с	- 236.4	- 205.9	34.5	39.0
NbO	с	- 405.8	- 392.6	48.1	41.3
NbO ₂	с	- 796.2	- 740.5	54.5	57.45
Nb ₂ O ₅	с	- 1899.5	- 1765.8	137.3	132.0
NbOCl ₃	с	- 879.5	-782	159	120.0
Nitrogen				150 001 (0)	
N atomic	g	472.68(40)		153.301(3)	
N ₂	g	0	0	191.609(4)	29,124
N ₃	aq	2/5.1	348.2	107.9	
NCI ₃	lq	230.0	67 0	240.0	
NF ₂	g	43.1	57.8	249.9	41.0
NF ₃	g	- 132.1	- 90.6	260.8	53.37
H ₂ NOH	с	- 114.2	100	250.0	40.07
$N_2 F_2 ClS$	g	5.20	109	239.8	49.96
trans	g	82.0	120.5	202.6	53.47

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dl	A 110	1 69	C 0	<u> </u>
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	\int_{-1}^{∞} mol ⁻¹	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg · mor	J · deg · mor
N ₂ F ₄	g	- 8.4	79.9	301.2	79.2
N_2H_4 hydrazine	lq	50.6	149.3	121.2	98.84
$N_2^2H_4$ hydrazine- d_4	g	81.6	150.9	248.86	55.52
$N_2H_5^+$ std. state	aq	-7.5	82.4	151	70.3
N ₂ H ₅ Br	c	- 155.6			
std. state	aq	- 128.9	-21.8	233.1	-71.6
N ₂ H ₅ Cl	c	- 197.1			
std. state	aq	- 174.9	- 49.0	207.1	-66.1
$N_2H_5CI \cdot HCI$	c	- 367.4			
N ₂ H ₅ OH	lq	- 242.7			
undissoc; std. state	aq	-251.50	- 109.2	207.9	73.2
N ₂ H ₅ NO ₃	с	-251.58			
std. state	aq	-215.10	28.91	297	
$(N_2H_5)_2SO_4$	c	- 959.0			
std. state	aq	924.7	- 579.9	322	- 151
NO	g	91.29	87.60	210.76	29.85
NOBr	g	82.23	82.42	273.7	45.48
NOCI	g	51.71	66.10	261.68	44.7
NOF	g	- 66.5	- 51.0	248.02	41.3
NOF ₃	g	- 163	- 96	278.40	67.86
NO ₂	g	33.1	51.3	240.1	37.2
NO ₂	aq	- 104.6	- 32.2	123.0	97.5
NO ₂ Cl	g	12.6	54.4	272.19	53.19
NO₂F	g	109	- 66	260.2	49.8
NO ₃	g	69.41	114.35	252.5	46.9
NO ₃	aq	206.85(40)	-111.3	146.70(40)	- 86.6
N₂O	g	81.6	103.7	220.0	38.62
N_2O_2	g	170.37	202.88	287.52	63.51
$N_2O_2^{2-}$ hyponitrite	aq	- 17.2	138.9	27.6	
N_2O_3	g	86.6	142.4	314.7	72.72
N_2O_4	lq	- 19.5	97.5	209.20	142.71
	g	11.1	99.8	304.38	79.2
N_2O_5	g	11.3	117.1	355.7	95.30
NSF	g			259.8	44.1
Osmium					
Os	c	0	0	32.6	24.7
OsCl ₃	с	- 190.4	- 121	130	
OsCl ₄	с	-254.8	- 159	155	
OsF ₆	g			358.1	120.8
OsO ₄	с	-394.1	-305.0	143.9	
	g	337.2	- 292.8	293.8	74.1
Oxygen					
O atomic	g	249.18(10)	231.7	161.059(3)	21.9
O ₂	g	0	0	205.152(5)	29.4
O ₃	g		142.7	163.2	238.92
OF ₂	g	24.5	41.8	247.5	57.11
O_2F_2	g	18.0	61.42	268.11	54.06
OH-	aq	-230.015(40)	- 157.28	10.90(20)	- 148.5
Palladium					
Pd	с	0	0	37.61	25.94
Pd ²⁺ std. state	aq	149.0	176.6	- 184.0	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dl	A 110	1.00	C 0	<u>C</u> ⁰
Substance	state	$\Delta_{\rm f} H^2$ kL mol ⁻¹	$\Delta_{\rm f} G^2$ kL mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	C_p^{-1}
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg · mor	J deg inor
PdBr ₂	c	- 104.2			
$PdBr_4^{2-}$ std. state	aq	- 384.9	-318.0	247	
PdCl ₂	с	- 171.5	- 125.1	105	
$PdCl_4^{2-}$ std. state	aq	- 550.2	-416.7	167	
Pd ₂ H	с	- 19.7	- 5.0	91.6	
PdO	c	- 85.4		56.1	31.5
PdS	с	-75	-67	46	
PdS ₂	с	-81.2	- 74.5	80	
Phosphorus					
P white	с	0	0	41.09(25)	23.83
	g	316.5(10)	280.1	163.1199(3)	20.8
red, V	с	- 17.46	12.46	22.85	21.19
P ₂	g	144.0(20)		218.123(4)	
P ₄	g	58.9(3)	24.4	280.01(50)	67.16
PBr ₃	lq	-184.5	- 175.5	240.2	
	g	- 139.3	- 162.8	348.15	76.02
PBr ₅	c	- 269.9			
PCla	lq	-319.7	-272.4	217.2	
-	g	-227.1	- 267.8	311.8	71.8
PCI	c	- 443.5			
5	g	- 374.9	- 305.0	364.6	112.8
PF ₃	g	- 958	- 937	273.1	58.69
PF.	g	- 1594.4	- 1520.7	300.8	84.8
PH ₂	g	5.4	13.4	210.24	37.10
std. state	aq	- 9.50	25.31	120.1	
PH-Br	c	- 127.6	-47.7	110.0	
PH.Cl	c	- 145.2			
PHJ	c	- 69.9	0.8	123.0	109.6
PH.OH undissoc: std_state	ап	- 295.35	-211.88	190.0	
PL	-4 C	-45.6		1,010	
PO ₂	ø	- 279.9	281.6	252.1	39.5
POF	8 an	-977.0	20110		0710
PO ³⁻ std_state	aq	- 1277 4	- 1018 8	- 220 5	
$P_{-}O^{4-}$ std. state	aq	- 2271 1	- 1919 2	- 117.0	
$(\mathbf{P}_{1}\mathbf{O}_{2})_{1}$ dimer	ed C	- 1640 1	1717.2	117.0	
P.O.	c	- 3009 9	- 2723 3	228 78	211 71
	c	- 458 6	2123.3	220.70	211.71
10013	с с	- 389 11	390 91	359 84	89.87
POCL	5	597 1	520.9	222.46	138.87
10013	ny a	- 558 5	512.9	325 5	84.94
POCIE	· 5	970 7	- 024 1	301.68	68.83
POCLE	g	765 7		320.38	70 32
POE	5	- 1254.0	1206	285 1	69.97
PSCI	5	- 363 2	- 2/7 7	203.4	00.02 80.83
PSE	5	1009		208 1	74 55
DS	5	- 155		270.1	14.55
1 403 Distinum	U	- 155	- 139	201	140
Fiauliulii De		0	41.62	75 07	
Гl D+D-	c	U _ 00 0	41.03	23.81	
ribr ₂	C	- 82.0			
rtBr3	с	- 120.9			
PtBr ₄	с	- 156.5			

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dhysical	A 110	A C ⁰	C0	C°
Substance	state	$\Delta_{\rm f} \Pi$ kL·mol ⁻¹	$\Delta_{\rm f}G$ kL mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	C_p I · deg ⁻¹ · mol ⁻¹
	state	KJ IIIOI	KJ IIIOI		J deg mor
PtCl ₂	с	-123.4	124	117	
PtCl ₃	с	- 182.0	-134	151	
PtCl₄	с	- 3218			
PtCl ₄ ^{2~}	с	-231.8	- 172	176	
$PtCl_4^{2-}$ std. state	aq	- 499.2	- 361.5	155	
$PtCl_6^2$ std. state	aq	-668.2	-482.8	220.1	
PtF ₆	g			348.3	122.8
PtI₄	с	- 72.8			
PtS	с	-81.6	- 76.2	55.06	43.39
PtS ₂	с	-108.8	- 99.6	74.68	65.90
Plutonium					
Pu	c	0	0	51.5	35.5
Pu ³⁺	aq	- 579.9	- 587.9	- 163	
Pu ⁴⁺	aq	- 579.9	-1490		
PuBr ₃	с	-831.8	- 804.6	192.88	107.86
PuCl ₃	с	-961.5	- 892.7	159.00	102.84
PuCl ₄	с	- 1381			
PuF ₃	с	-1552	-1478.8	112.97	96.82
PuF ₄	с	- 1732	- 1644.7	161.9	120.8
PuF ₆	с	25.48	27.2	222.59	167.36
PuH ₂	с	- 139.3	- 101.7	59.8	39.0
PuH	с	- 138	- 82.4	64.9	43.2
Pula	с	648.5	- 643.9	214.2	111.8
PuO	с	- 565	- 538.9	70.7	51.3
PuO ₂	с	- 1058.1	-1005.8	82.4	68.6
$Pu_{2}O_{2}$ beta	с	- 1715.4	-1632.3	152.3	131.0
$Pu(SO_{1})$	c	-2200.8	- 1969.5	163.18	181.96
PuS	c	-439.3	-436.7	78.24	53.97
PusSa	c	- 989.5	- 985.5	192.46	129.66
Polonium	-	, 6, 10	,		
Po	c	0	0	62.8	26.4
PoO	c	-251	- 197	71	61.5
Potassium	č	231	177	/1	01.5
K	c	0	0	64 68(20)	29.60
n	la la	2 284	0 264	71 46	32 72
	iq T	2.204	0.204	160 241(2)	52.12
V ⁺ and state	g	-25214(9)	- 202 26	100.341(3)	21.8
K Sid. State	aq	-232.14(0) -732.0	- 205.20	101.20(20)	21.0
KOAC acetate	C	- 723.0	652 66	190.1	15.5
	aq	- / 38.39	- 032.00	189.1	15.5
KAg(CN) ₂	aq	18.0	22.2	297	
KAgCl ₂	aq	- 497.4	- 498.7	355.9	
K ₂ Agl ₃	aq	-080.0	- 720.5	458.1	1.000
	с	97	- 1094	197	156.4
K ₃ AlCl ₆	с	-2092.0	- 1938	377	248.9
K ₃ AlF ₆	с	- 3358.1		284.5	221.1
$KAl(SO_4)_2$	с	- 2470.2	-2240.1	204.47	192.92
K ₃ AsO ₄ std. state	aq	- 1645.27	- 1498.29	144.8	
KBF ₄	с	- 1887	-1785	133.9	114.48
std. state	aq	-1827.2	- 1770.3	285	
KBH_4	с	-227.4	-160.2	106.31	96.57
std. state	aq	-204.22	- 168.99	212.97	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

<u>C 1 /</u>	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S°	C_p°
Substance	state	kJ · mol ·	kJ · mol ·	J · deg · · mol ·	J · deg · · mol ·
KBO ₂	c	-981.6	-923.4	79.98	66.7
std. state	aq	~ 1024.75	-962.19	65.3	170 5
$K_2B_4O_7$	с	- 3334.2	- 3136.8	208	170.5
KBr	с	- 393.8	- 380.7	95.9	52.3
std. state	aq	- 373.92	- 387.23	184.9	- 120.1
KBrO3	с	- 360.2	-271.2	149.2	105.2
	aq	- 319.45	- 264.72	264.22	
KBrO ₄	с	- 287.86	- 174.47	170.01	120.2
KCl	с	-436.5	- 408.5	82.55	51.29
std. state	aq	419.53	-414.51	159.0	-114.6
KClO std. state	aq	- 359.4	-320.1	146	
KClO ₂ std. state	aq	-318.8	-266.1	203.8	
KClO3	c	- 397.73	- 296.31	143.1	100.3
std. state	aq	- 356.35	- 291.29	264.9	
KClO ₄	с	-432.8	- 303.1	151.0	112.41
std. state	aq	-381.71	-291.88	284.5	
KCN	с	-113.1	- 101.9	128.52	66.3
std. state	aq	- 101.7	-110.9	196.7	
K ₂ CO ₃	с	-1151.0	1063.5	155.5	114.44
std. state	aq	- 1181.90	- 1094.41	148.1	
$K_2C_2O_4$	с	-1346.0			
	aq	- 1329.72			
K ₂ CrO ₄	c	- 1403.7	-1295.8	200.12	145.98
std. state	aq	- 1385.91	- 1294.36	255.2	
$K_2Cr_2O_7$	c	- 2061.5	- 1882.0	291.2	219.2
$K_2CuCl_4 \cdot 2H_2O$	с	-1707.1	1492.9	355.43	253.22
KF	с	- 567.2	- 537.8	66.5	48.98
std. state	aq	- 585.01	-562.08	88.7	- 84.9
K ₄ Fe(CN) ₆	c	249.8	- 129.7	426.06	
std. state	aq	-139.4	- 120.5	577.8	
K/Fe(CN)	c	- 594.1	-453.1	418.8	322.2
std. state	aq	- 554.0	-438.11	505.0	
K formate	c	- 679.73			
std. state	aq	-677.93	-634.3	192	-66.1
K glycinate	<u>1</u> aq	-722.16	- 598.23	221.8	
кн	c	- 57.72	- 53.01	50.21	37.91
K ₂ HAsO ₄ std. state	ad	- 1411.10	-1281.22	203.3	
KH-AsO	c	- 1180.7	- 1036.0	155.02	126.73
std state	ad	- 1161.94	- 1036.54	218	
KHCrO. std state	aq	- 1130.5	- 1048.1	286.6	
KHCO	c .	- 963 2	- 863.6	115 5	
std_state	au	- 944 33	- 870 10	193.7	
KHC O std state	aq	- 1070 7	- 981 7	251.9	
KHE	aq C	- 927 7	- 859 7	104.3	76 94
1111 2	•a	- 902 32	- 861 40	195.0	
KHaBr	aq C	- 550 20	001.40	170.0	
etd state	L	- 545 6	- 542 7	360	
SIU. SIAIC	ay	- 062 6	574.1	500	
N2RBOI4	c	- 905.0	-0276	515	
siu. state	aq	- 671 1	- 957.0	515	
	С	-0/1.1	502 5	214	
std. state	aq	-041.0	- 392.3	514	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
K ₂ Hg(CN) ₄	с	- 32.2			
std. state	aq	21.8	51.9	510	
K₂HgI₄	с	-775.0			
std. state	aq	-739.7	-778.2	565	
KH₂PO₄	с	- 1568.33	- 1415.95	134.85	116.57
std. state	aq	- 1548.67	- 1622.85	192.9	
K ₂ HPO₄ std. state	aq	- 1796.90	- 1655.78	171.5	
$K_2H_2P_2O_7$	с	-2815.8			
	aq	-2783.2	- 2576.9	368	
K ₃ HP ₂ O ₇	aq	- 3032.1	-2822.1	351	
KHS	с	-265.10			75.3
std. state	aq	269.9	-271.21	165.3	
KHSO3	aq	- 878.60	811.07	242.3	
KHSO₄	c	- 1160.6	-1131.4	138.1	
std. state	aq	-1139.72	-1039.26	234.3	-63.0
KI	с	- 327.9	- 324.9	106.3	52.9
	aq	307.57	- 334.85	213.8	- 120.5
KIO ₃	c	- 510.43	418.4	151.46	106.48
•	aq	-473.6	-411.3	220.9	
KIO₄	c	467.23	- 361.41	175.7	
•	aq	-403.8	- 341.8	322	
KMnO₄	c	- 837.2	- 737.6	171.71	117.6
K2M0O4	с	- 1498.71			
std. state	aq	-1502.5	- 1402.9	232.2	
KNH ₂ amide	c	- 128.9			
KNO ₂	с	- 369.82	- 306.60	152.09	107.40
std. state	aq	- 356.9	-315.5	225.5	
KNO ₂	c	- 494.63	394.93	133.05	96.4
std. state	aq	-459.74	- 394,59	249.0	-64.9
K ₂ Ni(CN), std. state	aq	136.8	94.6	423	
K ₂ O	c	- 361.5	- 322.1	94.1	83.7
KO ₂	с	284.9	- 239.4	122.5	77.53
K ₂ O ₂	с	- 494.1	- 425.1	102.0	110
KOCN cyanate	с	-418.65			
std. state	aq	398.3	380.7	209.2	
КОН	c	-424.7	- 378.7	78.9	64.9
std. state	aq	482.37	- 440.53	91.6	-126.8
K ₂ PdBr ₄	c	938.1			
std. state	aq	- 889.5	- 884.5	452	
K ₂ PO ₄	c	- 1950.2			
std. state	aq	-2034.7	- 1868.6	87.9	
K.P.O.	1 aq	- 3280.7	- 3052.2	293	
K-PtBr	c	-915.0			
std. state	aa	-872.8	- 828.4	326.4	
K-PtBr	C.	- 1021.3			
std. state	an	-975.3	898.7	368	
KaPiCL		1054 4	570.7		180.2
std state	an	- 1003 7	928 0	360	
K-PiCL	4 C	- 1229 3	- 1078.6	333.9	205.60
std. state	an	1171 8	- 1049.4	424.7	200100
K-ReCL		- 1310 4	-1172.8	371.71	214 68
std_state	an	1266 92	- 1156 0	460	# 1 T.UU
Jun Jun	44	1400.74	1100.0	100	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	ΛH°	$\Lambda_{\cdot}G^{\circ}$	C ₀	C°
Substance	state	$\Delta_{\rm f} II$ kJ · mol ⁻¹	$\Delta_{\rm f} O$ kJ · mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot me$
KReO₄	с	- 1097.0	994.5	167.82	122.55
std. state	aq	- 1039.7	-977.8	303.8	8.4
K ₂ S	c	- 380.7	- 364.0	105.0	74.7
std. state	aq	- 471.5	- 480.7	190.4	
K_2S_2	c	-432.2			
	aq	- 474.5	- 487.0	233.5	
KSCN	c	- 200.16	- 178.32	124.26	88.53
std. state	aq	175.94	- 190.58	246.9	-18.4
K ₂ SeO ₃	c	- 979.5			
std. state	aq	- 1013.8	- 936.4	218.0	
K ₂ SeO₄	c	-1110.02	- 1002.9	222	
std. state	aq	-1103.7	- 1007.9	259.0	
K ₂ SiF ₆	c	- 2956.0	-2798.7	225.9	
std. state	aq	- 2893.7	2766.0	327.2	
KaSiOa	c c	- 1548.1	- 1455.7	146.1	118.4
K-SnBr.	c	- 1218.0	- 1160.2	443 1	246.0
K-SnCl.	c	- 1477 0	- 1333.0	366 5	246.0
K-SO.	c	- 1125 5	1000.0	500.5	210.0
ctd state	20	- 1140 1	1053 1	176	
K SO	aq		- 1321 4	175.6	131 5
R ₂ 504	20	- 1414 0	- 1311 1	225.1	- 251.0
K 80	aq	- 1/37 7	1319.6	175 5	131.3
std state	20	1414 02		225.1	- 251
K S O	ay	- 1172 6	1511.14	443.1	231
$K_2 S_2 O_3$	0		1090 1	272	
SIU. State	aq	- 1150.9	- 1069.1	272	
K20204	aq			297	
$K_2 S_2 O_7$	c	- 1960.0		233	212.2
$K_2 S_2 O_8$	C	- 1910.10	- 1097.41	278.7	213.2
SIG. STATE	aq	- 1649.5	- 1081.0	449.4	220.70
$K_2S_4U_6$	c	- 1780.7	1013.43	309.00	230.79
sid, state	aq	-1/28.8	- 1607.1	402.3	24.3
KSU ₃ F	c	- 1159.0			
K ₂ UO ₄	c	1921.3			
KVO ₄	с	- 1154.8			
std. state	aq	- 1140.6	- 1066.9	155	
$K_2Zn(CN)_4$	c	- 100.0	110.5		
std. state	aq	- 162.3	- 119.7	431	
raseodymium					
Pr	c	0	0	73.2	27.20
Pr ³⁺ std. state	aq	- 704.6	- 679.1	- 209.0	- 29.0
$Pr(OAc)_3$ std. state	aq	-2147.52	1805.56	164.9	
PrCl ₃	с	- 1056.9			100.0
std. state	aq	- 1206.3	- 1072.8	-42.0	- 439.
Pr(NO ₃) ₃	с	- 1229.3			
Pr ₂ O ₃	с	- 1809.6			117.40
Promethium					
PmCl ₃	с	- 1054.0			
Protactinium					
Ра	c	0	0	51.8	
Pa ⁴⁺	aq	-619.2			
PaBr ₄	с	- 824.0	- 787.9	234.0	
PaBr.	c	- 862	820	289	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

~ .	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
PaCl ₄	с	-1043.1	-953.0	192.0	
PaCl ₅	с	-1144.7	-1034.3	238.0	
Radium					
Ra	с	0	0	71	
Ra ²⁺	aq	- 527.6	- 561.5	54.0	
RaCl ₂ std. state	aq	- 861.9	- 823.8	167.0	
$Ra(NO_3)_2$	с	- 992	- 796.2	222	
std. state	aq	- 942.2	-784.1	347.0	
RaSO₄	с	1471.1	- 1365.7	138	
std. state	aq	- 1436.8	-1306.2	75.0	
Radon					
Rn	g	0	0	176.235	20.79
Rhenium					
Re	с	0	0	36.9	25.5
	g	769.9	724.6	188.9	20.8
Re^{-} std. state	aq	46.0	10.1	230.0	
ReBr ₃	с	- 167.0			
ReCl ₃	с	-264	-188	123.9	92.4
ReCl ²⁻ std. state	aq	-761	590	251	
ReO ₂	с	-423	- 368	172	
ReO ₃	с	- 605.0	531	257.3	
Re ₂ O ₇	с	-1240.1	- 1066.1	207.1	166.1
	g	-1100.0	- 994.0	452.0	
Rhodium					
Rh	с	0	0	31.51	24.98
RhCl ₃	с	- 299.2			
Rh ₂ O ₃	с	- 343.0		110.9	104.0
Rubidium					
Rb	с	0	0	76.78(30)	31.06
	g	80.9(8)	53.1	170.094(3)	20.8
Rb ⁺ std. state	aq	-251.12(10)	- 283.97	121.75(25)	
Rb acetate	aq	-737.2	-653.3	207.9	
RbBO ₂	с	-971.0	-913.0	94.3	74.1
RbBr	с	- 394.59	- 381.79	109.96	52.84
std. state	aq	-372.71	- 387.94	203.93	
RbBrO ₃	с	- 367.27	- 278.11	161.1	
Rb ₂ CO ₃	с	-1136.0	-1051.0	181.33	117.61
std. state	aq	- 1179.5	- 1095.8	186.2	
RbCl	с	- 435.35	- 407.81	95.90	52.41
std. state	aq	-418.32	-415.22	178.0	
RbClO ₃	с	- 402.9	300.4	151.9	103.2
std. state	aq	- 355.14	- 291.9	283.68	
RbClO ₄	c	-437.19	- 306.9	161.1	
std. state	aq	- 380.49	- 292.59	303.3	
RbF	с	- 557.7		75.3	50.5
std. state	aq	- 583.79	- 562.79	107.53	
Rb formate	aq	- 676.7	- 635.1	213.0	
RbHCO ₃	c	-963.2	-863.6	121.3	
std. state	aq	-943.16	870.82	212,71	
RbHF ₂	c	-922.6	- 855.6	120.08	79.37
std. state	aq	-901.11	-862.11	213.8	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
RbHSO ₄	С	- 1159.0			
std. state	aq	- 1138.51	- 1039.98	253.1	
RbI	c	- 333.8	- 328.9	118.4	53.18
std. state	aq	- 306.35	- 335.56	232.6	
RbNO ₂	с	- 367.4	- 306.2	172.0	
RbNO ₃	с	- 495.05	- 395.85	147.3	102.1
std. state	aq	-458.52	- 395.30	267.8	
Rb ₂ O	с	- 339			
Rb ₂ O ₂	с	- 472.0			
RbOH	с	-418.19			
std. state	aq	- 481.16	441.24	110.75	
Rb ₂ PtCl ₆	с	- 1245.6	-1109.6	406	
std. state	aq	- 1170.7	- 1056.6	464	
RbReO ₄	с	-1102.9	- 996.2	167	
std. state	aq	- 1038.5	- 978.6	322.6	
Rb ₂ S	aq	- 469.4	-482.0	228.4	
Rb ₂ SeO ₄	с	-1114.2			
std. state	aq	1101.7	- 1009.2	297.1	
Rb₂SO₄	с	- 1435.61	- 1316.96	197.44	134.06
std. state	aq	- 1411.60	- 1312.56	263.2	
Ruthenium					
Ru	с	0	0	28.53	24.1
RuBr ₃	с	-138.0			
RuCl ₃	с	-205.0			
Rula	с	-65.7			
RuO ₂	с	- 305.0			
RuO₄	с	- 239.3	- 152.3	146.4	
	lq	-228.5	- 152.3	183.3	
Samarium	•				
Sm	с	0	0	69.58	29.54
Sm ³⁺ std. state	aq	- 691.6	- 666.5	-211.7	21
SmCl ₂	c	- 815.5			
SmCl ₃	с	- 1025.9			
std. state	aq	- 1193.3	- 1060.2	42.7	431
SmF ₃	c	- 1778.0			
SmF. 1/4H.O	с	- 1825.1			
SmI	c	-620.1			
Sm(IO)	c	1381			
$Sin(1O_3)_3$ Sm(NO)	c	- 1212 1			
$Sm(NO_3)_2$ Sm O	c	- 1212.1	1724 7	151.0	114.5
Sin_2O_3 Sm (SO)	C O		11,54.7	1.71.0	114.5
$Sin_2(SO_4)_3$	c	- 3899.1			
Scalidiulli	-	0	0	24 64	25.52
So3t and state	C		U	24.04 	23.32
Sc ² sid. state	aq	-014.2	- 580.0	- 255.0	
SCBI3	c	- 743.1		101.2	02 64
SUCI3 R-E	c	923.1	1888 6	121.5	95.04
SCF3	C	- 1629.2	- 1555.6	92	
SCOH**	aq	801.5	801.2		01.0
Sc_2O_3	с	- 1908.8	- 1819.41	76.99	94.2

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	ΛH°	$\Lambda_{\cdot}G^{\circ}$	C ₀	C°
Substance	state	$\Delta_{\rm f} n$ kJ · mol ⁻¹	$\Delta_{\rm f} O$ kJ · mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Selenium	state	no mor	no mor	t deg mor	t deg mor
Se	c	0	0	41 97	24 98
50	σ	227 1	187.0	174.8	22.1
SeBra	Б gr	21.0	10/10	17110	
SeCL	6	- 188.3			
SeF.	g	- 1117.0	- 1017.0	313.8	110.5
SeO	g	53.4	26.8	234.0	31.3
SeO ₂	c	-225.4			
SeO ₂	c	- 166.9			
SeO ^{2⁻} std. state	ag	- 509.2	- 369.9	13	
SeO ^{2⁻}	aq	- 599.2	- 441.4	54.0	
Silicon	-1				
Si	с	0	0	18.81(8)	20.00
	g	450.(8)	-	167.981(4)	
SiBr.	la	-457.3	- 433.9	277.5	146.4
	-1 9	-415.5	-431.8	377.9	97.1
SiBrCl	g			350.1	90.9
SiC alpha	c	-62.8	-60.2	16.49	26.76
beta	c	65.3	62.8	16.61	26.9
SiCL	la	- 686.93	- 620.0	239.7	145.3
	g	657.0	-617.0	330.7	90.26
SiClBr ₂	g			377.1	95.3
SiClF	g	- 1318	-1280	309	79.4
SiF	g	1615.0(8)	1572.7	282.76(50)	73.62
SiH	g	34.3	56.8	204.65	42.83
SiHBr.	g	-317.6	- 328.5	348.6	80.8
SiHCL	la	- 539.3	-482.5	227.6	
	g	-513.0	-482.0	313.7	75.8
SiHF,	g			271.9	60.5
SiHaCla	g	-320.5	- 295.0	285.7	60.5
SiH	g	- 142	-119	250.8	51.10
SiH ₂ F	g	-377	353	238.4	47.20
Si ₂ H ₆	g	80.3	127.2	272.7	80.79
SiL	c	- 189.5	- 191.6	258.1	108.0
•	la	- 174.60	- 187.49	294.30	159.79
Si ₃ N ₄	c	-743.5	-642.1	101.3	99.5
SiO	g	99.6	- 126.4	211.6	29.9
SiO ₂ quartz	c	- 910.7(10)	- 856.4	41.46(20)	44.4
high cristobalite	с	905.5	853.6	50.05	26.58
SiOF ₂	g	- 967	- 951	271.3	53.69
SiS ₂	c	-213.4	-212.6	80.3	77.5
Silver					
Ag	с	0	0	42.55(20)	25.4
0	g	284.9(8)		172.997(4)	
Ag ⁺ std. state	aq	105.79(8)	77.12	73.45(40)	21.8
Ag ²⁺ in 4M HClO.	 aq	268.6	269.0	- 88	
AgAt	c	-45.2		133.1	55.7
AgBr	c	- 100.37	- 96.90	107.11	52.38
AgBrO ₃	c	- 10.5	71.3	151.9	
AgCl	c	- 127.01(5)	- 109.8	96.25(20)	50.79
AgClO ₂	c	8.79	75.7	134.56	87.32

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon}H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C°_{-}
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
AgClO ₃	с	- 30.3	64.5	142.0	
AgClO ₄	с	-31.13		162.3	
std. state	aq	-23.77	68.49	254.8	
AgCN	с	146.0	156.9	107.19	66.73
$Ag(CN)_2^-$ std. state	aq	270.3	305.4	192	
Ag ₂ CrO ₄	c	-731.74	- 641.83	217.6	142.26
Ag ₂ CO ₃	с	- 505.9	-436.8	167.4	112.26
$Ag_2C_2O_4$	с	- 673.2	- 584.1	209	
AgF	с	-204.6		83.7	51.92
AgF ₂	с	- 360.0			
AgI	с	-61.84	-66.19	115.5	56.82
AgIO ₃	с	- 171.1	-93.7	149.4	102.93
AgN ₃	с	308.8	376.1	104.2	
$Ag(NH_3)^+_2$ std. state	aq	-111.29	- 17.24	245.2	
AgNO ₃	с	-124.4	- 33.47	140.92	93.05
std. state	aq	-101.80	- 34.23	219.2	-64.9
AgO	с	- 12.15	13.83	58.5	44.0
Ag ₂ O	с	-31.1	-11.21	121.3	65.86
Ag ₂ O ₃	с	33.9	121.4	100.0	
Ag ₂ S argentite	с	- 32.59	-40.67	143.9	76.53
Ag ₃ Sb	с	-23.0		171.5	101.7
AgSCN	с	87.9	101.38	131.0	63
Ag ₂ Se	с	- 38	- 44.4	150.71	81.76
Ag_2SO_4	с	-715.9	-618.4	200.4	131.4
std. state	aq	- 698.10	- 590.36	165.7	-251
Ag ₂ Te	с	- 37.2	-43.1	154.8	87.5
Sodium					
Na	с	0	0	51.30(20)	28.15
	g	107.5(7)		153.718(3)	
Na ⁺ std. state	aq	- 240.34(6)	-261.88	58.45(15)	46.4
NaAg(CN) ₂ std. state	aq	30.12	43.5	251	
NaOAc	с	-708.81	-607.27	123.0	79.9
std. state	aq	-726.13	- 631.28	145.6	40.2
NaAlCl ₄	с	-1142.0	- 996.4	188.3	154.98
Na ₃ AlCl ₆	с	- 1979.0	- 1829	347.0	244.1
NaAlF ₄	g	- 1869.0	-1827.5	345.7	105.9
Na_3AlF_6	с	- 3361.2	-3136.7	239.5	215.89
NaAlH₄	с	115.5			
NaAlO ₂	с	-1137.3	- 1069.2	70.40	73.64
NaAl(SO ₄) ₂ std. state	aq	-2590	- 2238	-222.6	
NaAlSiO ₄	с	-2092.8	-1978.2	124.3	
NaAsO ₂	с	- 660.53			
std. state	aq	- 669.15	-611.91	99.6	
Na ₃ AsO ₄	с	- 1540			
std. state	aq	-1608.50	- 1434.19	14.2	
NaAu(CN) ₂	aq	2.1	23.9	230	
NaBF₄	с	- 1844.7	- 1750.1	145.31	120.3
std. state	aq	-1812.1	- 1748.9	243	
NaBH₄	с	-188.6	- 123.9	101.3	86.8
std. state	aq	199.60	- 147.61	169.5	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
NaBO ₂	с	977.0	- 920.7	73.54	65.94
std. state	aq	- 1012.49	- 940.81	21.8	
$NaBO_3 \cdot 4H_2O$	с	-2114.2			
Na ₂ B ₄ O ₇	c	- 3291.1	- 3096.0	189.0	186.8
std. state	aq	- 3271.1	3076.9	192.9	
$Na_2B_4O_7 \cdot 10H_2O$	с	- 6298.6	- 5516.6	586	614.5
NaBr	с	- 361.08	- 349.00	86.82	51.38
std. state	aq	- 361.66	- 365.85	141.4	95.4
NaBr ₃ std. state	aq	- 370.54	- 368.95	274.5	
NaBrO std. state	aq	- 384.3	- 295.4	100	
NaBrO ₃	С	- 334.09	-242.6	128.9	
std. state	aq	- 307.19	- 243.34	220.9	
NaBrO ₄ std. state	aq	-227.19	- 143.93	-258.57	
Na ₂ [Cd(CN) ₄]	aq	- 52.3	- 16.3	439	
NaCl	с	-411.2	- 384.1	72.1	50.51
std. state	aq	407.27	- 393.17	115.5	- 90.0
NaClO std. state	aq	- 347.3	- 298.7	100	
NaClO ₂	с	- 307.02		115.9	
std. state	aq	306.7	-244.8	160.3	
NaClO ₃	с	- 365.77	- 262.34	123.4	
std. state	aq	344.09	- 269.91	221.3	
NaClO ₄	С	- 383.3	- 254.9	142.3	111.3
std. state	aq	- 369.45	- 270.50	241.0	
NaCN	С	- 87.5	- 76.4	115.6	70.4
std. state	aq	- 89.5	89.5	153.1	
$Na_3[Co(NO_2)_6]$	с	- 1423.0			
Na ₂ CO ₃	с	- 1130.7	1044.4	135.0	112.3
	aq	-1157.4	- 1051.6	61.6	
$Na_2CO_3 \cdot H_2O$	с	- 1431.26	- 1285.41	168.11	145.60
$Na_2CO_3 \cdot 10H_2O$	с	-4081.32	- 3428.20	564.0	550.32
$Na_2C_2O_4$	с	1318.0			142
std. state	aq	- 1305.4	1197.9	163.6	
Na ₂ CrO ₄	с	-1342.2	-1235.0	176.61	142.13
std. state	aq	- 1361.39	- 1251.64	168.2	
Na ₂ Cr ₂ O ₇	с	- 1978.6			
std. state	aq	- 1970.7	- 1825.1	379.9	
Na ethoxide	с	-413.80			
NaF	с	- 576.6	- 546.3	51.11	46.85
std. state	aq	- 572.75	- 540.70	45.2	- 60.3
Na ₃ [Fe(CN) ₆] std. state	aq	- 158.6	56.5	447.3	
Na ₄ [Fe(CN) ₆] std. state	aq	505.0	- 352.63	231.0	
Na formate	с	- 666.5	600.00	103.76	82.68
std. state	aq	- 666.67	-613.0	151	41.4
NaH	с	56.34	- 33.55	40.02	36.39
Na ₂ HAsO ₄ std. state	aq	- 1386.58	- 1238.51	116.3	
NaH ₂ AsO₄ std. state	aq	1149.68	- 1015.16	176	
NaHCO ₃	с	-950.81	- 851.0	101.7	87.61
std. state	aq	-932.11	- 848.72	150.2	
NaHCrO ₄ std. state	aq	1118.4	- 1026.8	243.1	
NaHF ₂	с	-920.27	- 852.20	90.92	75.02
std. state	aq	- 890.06	- 840.02	151.5	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$.	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mc$
Na ₂ H ₂ [Fe(CN) ₆]	aq	-24.7	134.64	335	
NaH ₂ PO ₄	с	- 1536.8	-1386.2	127.49	116.86
std. state	aq	- 1536.4	- 1392.27	149.4	
Na ₂ HPO ₄	с	- 1748.1	- 1608.3	150.50	135.31
std. state	aq	-1772.38	- 1613.06	84.5	
$Na_2H_2P_2O_7$	с	-2764.8	-2522.5	220.20	198.15
NaHS	с	-237.23			
std. state	aq	-257.73	-249.83	121.8	
NaHSeO3	с	- 759.23			
std. state	aq	- 754.67	-673.41	194.1	
NaHSeO₄	с	- 821,40			
std. state	aq	- 821.74	-714.2	208.4	
NaHSO4	c	-1125.5	- 992.9	113.0	
std. state	aq	-1127.46	-1017.88	190.8	- 38
NaI	c	- 287.9	- 286.1	98.50	52.1
std. state	aq	- 295.31	- 313.47	170.3	- 95.8
NaI ₃	aq	- 291.6	-313.4	298.3	
NaIO	c	- 481.79		135.1	92.1
std. state	aq	-461.50	- 389.95	177.4	
NaIO4	c	- 429.28	- 323.09	163.0	
std. state	ag	- 391.62	- 320.49	280	
Na methoxide	c	-367.8	-294.80	110.58	69.45
std. state	ao	-433.59	- 332.46	17.6	
NaMnO ₄ std. state	ad	-781.6	- 709.2	250.2	
Na ₂ MnO ₄	c	-1156.0			
std. state	ao	-1134	-1024.7	176	
Na-MoO.	c	-1468.12	-1354.30	159.70	141.71
std. state	aq	-1478.2	- 1360.2	145.2	
Na ₂ Mo ₂ O ₂		- 2245.05	- 2058.19	250.6	217.15
NaNa	c	21.71	93.76	96.86	76.61
std. state	an	35.02	86.2	166.9	10101
NaNH	c .	-123.9	-64.0	76.90	66.15
NaNbO ₂	c	- 1315.9	1233.0	117	00.15
std. state	20	- 1265 7	- 1194 1	155	
NaNOa	ury C	- 358 65	- 284 60	103.8	
std. state	an	- 344 8	- 294 1	182.0	-51.0
NaNO		- 467 85	- 367.06	116.52	92.88
std. state	80	- 447 48	- 373 21	205.4	- 40 2
Na-INi(CN).1	44 80	-112.6	- 51.9	335	70.2
NaO.	ay c	- 260.2	-2184	1159	72 14
Na ₀	c	- 414 2	- 375 5	75.04	69.10
Na.O.	C	- 510.9	- 440 K	94.8	80.3
NaOCN cyanate	C	- 405 30	- 358 2	94.0	07.J 86.6
etd etate	U	- 386 2	_ 250.4	165 7	60.0
SIG. STATE	aq	- 300.2	- 339.4	64 4	50.5
atd atota	C	- 423.0	- 3/9.4	04.4 10 1	39.3 - 102 1
SIU, SIAIC	aq	- 409.13	- 419.20	40.1	102.1
ina ₃ rU ₄	c	- 1917.40	- 1/88.8/	1/3.80	153.47
sta. state	aq	- 1997.9	- 1804.6	- 40	041.10
$Na_4P_2O_7$	с	- 3188	- 2969.4	270.29	241.12
sid. state	aq	- 3231.7	- 2966.9	117	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

			4 60	<i>20</i>	<i>c</i> ^
Substance	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S°	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI		J· deg · mor
	с	- 1057.09	-953.74	151.5	133.89
std. state	aq	- 1027.6	- 956.5	260.2	00.0
Na ₂ S	С	- 364.8	- 349.8	83.7	82.8
sta. state	aq	443.3	- 438.1	103.3	
Na ₂ S ₂	с	- 397.0	392	151	
sid. state	aq	-450.2	444,3	146.4	
NaSCN	c	- 170.50	1(0.00	002.04	()
sid. state	aq	- 103.08	- 169.20	203.84	0.5
Na ₂ Se	c	- 541.4			
	c	938.0	002 7	120	
SIG. STATE	aq	989.5	893.7	130	
Na ₂ SeO ₄	c	- 1069.0	0754.0	207.1	107 1
Na_2S1F_6	c	- 2909.6		207.1	187.1
Na_2SIO_3	c	- 1554.9	- 1462.8	113.8	111.9
$Na_2SI_2O_5$	С	2470.1	~~ 2324.1	104.1	157.0
NaShBr ₃	aq	-615.1	-608.8	310	
NaShCl ₃	aq	- 727.2	- 692.0	318	100.05
Na ₂ SO ₃	c	1100.8	- 1012.5	145.94	120.25
std. state	aq	- 1115.87	- 1010.44	87.9	100.0
Na ₂ SO ₄	с	- 1387.1		149.0	128.2
SIG. STATE	aq	- 1389.51	- 1268.40	138.1	-201
$Na_2SO_4 \cdot 10H_2O$	c	-4327.20	3047.40	592.0	
$Na_2S_2O_3$	c		1028.0	155	
stal state	aq	- 1132.40	- 1046.0	184.1	
$Na_2S_2O_3 \cdot SH_2O$	C	- 2607.93	- 2230.1		
Na ₂ S ₂ O ₄ diunonate	C	- 1232.2	1104.0	200.2	
Sid. State	aq	- 1233.9	- 1124.2	209.2	
$Na_2S_2O_7$	c	- 1923.1		202.1	
$Na_2O_2O_8$	aq	- 1623.1	- 1038.9	502.5	
Na ₂ 1e	C	349.4			
$Na_2 TO 4$	C	- 1591 2	- 1406 2	121.67	125.65
Na LIO bata	C		1490.2	121.07	146.65
$N_{2}UO_{4}$ beta Na UO	t c	- 2025 1	1001 2	108.02	173.01
NaVO	c	- 1145 79		113.68	97.57
std state	90	1128 4	1045.6	109	51.51
Na.VO.	<u>.</u>	- 1757 87	- 1637 83	190.0	164.85
Na V-O	Č	2918 84	2712 52	318.4	269 74
Na-WO.	c	- 1544 7	- 1429.8	160.3	139.8
$Na_{2}(CN)$	ап	- 138.1	- 77 0	343	159.0
Strontium			7110	5.0	
Sr	с	0	0	55.0	26.79
Sr ²⁺ std. state	aq	545.8	~ 559.44	32.6	
Sr(OAc) ₂	c	- 1487.4			
$Sr_3(AsO_4)_2$	с	-3317.1	3080.3	255	
SrBr ₂	с	-717.6	- 697.1	135.1	75.3
-	aq	- 788.89	- 767.39	132.2	
SrCl ₂	c	828.9	- 781.1	114.9	75.59
std. state	aq	-880.10	-821.95	80.3	
Sr(ClO ₄) ₂	с	- 762.69			
std. state	aq	804.46	576.68	331.4	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dhusiaal	A 110	1 C°	C0	C°
Substance	state	$\Delta_{\rm f} n$ kL mol ⁻¹	$\Delta_{\rm f} G$ kL mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	\mathbf{U}_p $\mathbf{I} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
	state	1220.1	1140.1	07.1	91 42
SICO3	C ag	- 1220.1	- 1140.1	97.1	01.42
8-0.0	aq	- 1222.9		09.J	
SIC ₂ O ₄	c	- 1370.7	-1164	87.1	70.0
SIF ₂ Sr formate	c		-1104	02.1	70.0
S-UDO	c	- 1821 7	1688 7	121	
STILL D(c	- 3134 7	1000.7	121	
SI(112F 04)2 SrI	c		557 7	150 1	77 95
std state	с 30	- 656 18	- 662 62	100.0	11.55
Sr(IQ.)	aq		- 855 2	234	
Sr(103)2 SrMoO	e	- 1561 1	055.2	128.9	117.07
Sr(NO)	e	762 3		120.9	117.07
$Sr(NO_2)_2$	c	- 978 22	780.0	194 56	149 87
std state	20	- 960 52	-782.12	260.2	149.07
STO.	aq	592 0	- 561.9	54 4	45.0
SrO.	c	- 654 4	501.9	54	79.45
Sr(OH)	c	959	881	97	74.9
Sr.(PO.)-	c	-4122.9	001	51	,,
SrS	c	-472.4	-467	68.2	48.7
SrSe	c	- 385.8	107	0012	1017
SrSeO.	c	- 1047.7			
SrSeO.	c	- 1142.7			
SrSiO ₂	c	- 1633.9	- 1549.8	96.7	88.53
Sr ₂ SiO ₄	c	-2304.6	-2191.2	153.1	134.26
SrSO ₂	c				10 1100
SrSQ.	c	- 1453.1	- 1341.0	117.0	107.78
	aq	- 1455.1	- 1304.0	-12.6	
Sr ₂ TiO4	c		-2178.6	159.0	143.68
Sulfur					
S rhombic	с	0	0	32.054(50)	22.60
monoclinic	с	0.360	-0.070	33.03	23.23
	g	277.17(15)		167.829(6)	
S_2^{2-}	aq	33.1	85.8	- 14.6	
S ₂	g	128.60(30)		228.167(10)	
S ₈	g	101.25	49.16	430.20	156.06
S ₂ Br ₂	lq	-13.0			
SCl ₂	lq	-50.0	-28.5	184	91.0
SCIF ₅	lq	1065.7			
S ₂ Cl ₂	lq	- 59.4	- 39	224	124.3
SCN-	aq	76.4	92.7	144.3	40.2
SF ₄	g	-763.2	-722.0	299.6	77.60
SF ₆	g	- 1220.5	- 1116.5	291.5	96.96
S_2F_{10}	g	-2064	- 1861	397	176.7
SO	g	6.3	- 19.9	222.0	30.2
SO ₂	g	296.81(20)	- 300.13	248.223(50)	39.88
SO3	g	- 395.7	- 371.02	256.77	50.66
SOCl ₂	g	-212.50	- 198.3	309.8	66.5
SOF ₂	g	- 544	- 502	278.7	56.81
SO ₂ Cl ₂	g	- 364.0	-320.0	311.9	77.01
SO ₂ ClF	g	556	-513	303	71.6
SO ₂ F ₂	g	- 759	-712	284.0	66.0

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
SO ₃ ²⁻	aq	-635.5	- 486.5	29.0	
SO ₄ ²⁻	aq	- 909.34(40)	-744.5	18.50(40)	- 293.0
$S_2O_3^{2-}$	aq	-652.3	- 522.5	67.0	
$S_2O_4^{2-}$	aq	-753.5	600.3	92.0	
S ₂ O ₈ ²⁻	aq	- 1344.7	- 1114.9	244.3	
Tantalum	-				
Та	с	0	0	41.47	25.40
TaB ₂	с	-209.2		44.4	48.12
TaBr ₅	с	- 598.3		305.4	155.73
TaC	с	- 144.1	- 142.7	42.37	36.79
Ta ₂ C	с	- 197.5		83.7	60.96
TaCl ₅	с	- 859.0	- 746	222	148
TaF	с	- 1903.6		195.0	130.46
Ta ₂ H	с	- 32.6	- 69.0	79.1	90.8
Tals	с	490		343	155.6
TaN	с	-251		50.6	42.1
TaO	g	-201	- 209	280	44.0
Ta ₂ O ₅	c	- 2046	- 1911.0	143.1	135.0
TaOCl	g	780.7		361.5	98.53
Technetium	8	,		00110	20100
Тс	с	0	0	33.47	24.27
Tc ₂ O ₂	c	-1113	-		
Tellurium	· ·				
Те	c	0	0	49 70	25 70
TeBr.	c	- 190 4	0	19.10	20.10
TeCl.	c	- 326.4		209	138 5
TeF	a			335 77	116.90
TeO-	e C	- 322 6	-270.3	79.5	63.89
$Te(OH)^+$	30	322.0	- 496.1	111.7	05.07
Terbium	uq	522.0	490.1	111.7	
ть	c	0	0	73.77	28.01
Th ³⁺ etd. state	20	682 8	651.9		17.0
	aq	- 997 1	051.7	220.0	17.0
std state	C BC		- 1045.6	- 59.0	- 303 0
ThO	ay		1045.0	39.0	595.0
160 ₂	C Q	- 1965 2			115.0
10_20_3	6	1605.2	2507 4		115.9
Thellium	aq	4151.7	5597.4		
TI	2	0	0	64.18	26.32
T1 atd state	C an	5 26		125.5	20.32
T13+ and state	aq	106.6	- 32.36	102.0	
TIP- sid, state	aq	190.0	214.0	- 192.0	50 50
	c	-173.2	- 107.30	120.5	50.50
sid. state	aq	- 116.19	- 136.30	207.9	
	aq	108.2	-9/.1	54.0	
	с	- 136.4	- 53.14	108.6	
std. state	aq	- 78.2	- 30.5	288.7	50.00
TICI	с	-204.10	- 184.93	111.30	50.92
std. state	aq	- 161.80	- 163.64	182.00	
TICl ₃	с	-315.1			
std. state	aq	- 305.0	- 179.1	- 23.0	
TICIO3	aq	-93.7	- 35.6	287.9	

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Tl ₂ CO ₃	с	700	-614.6	155.2	
TIF	с	- 324.6		83.3	54.77
std. state	aq	- 327.27	-311.21	111.7	
TII	c	- 123.9	- 125.39	127.6	52.51
std. state	aq	-49.83	- 83.97	236.8	
TINO3	c	-243.93	- 152.46	160.7	99.50
	aq	- 202.0	- 143.7	272.0	
Tl ₂ O	c	- 178.7	- 147.3	126	
TIOH	с	-238.9	- 195.8	88	
std. state	aq	- 224.64	- 189.66	114.6	
Tl ₂ S	c	-97.1	-93.7	151.0	
Tl ₂ Se	с	- 59.0	59.0	172.0	
Tl ₂ SO ₄	с	-931.8	- 830.48	230.5	
std. state	aq	- 898.56	- 809.40	271.1	
Thorium	•				
Th	с	0	0	51.8(5)	27.32
	g	602.(6)		190.17(5)	
Th4+ std. state	aq	-769.0	- 705.1	- 422.6	
ThBr₄	c	- 965.3	-927.2	230	
ThC ₁₉₄	с	- 146	- 147.7	68.49	56.69
ThCl₄	с	-1186.2	- 1094.1	190.4	120.3
ThF ₃	g	-1166.1	-1160.6	339.2	73.3
ThF	c	-2097.8	-2003.4	142.05	110.7
undissoc; std. state	aq	-2115.0	- 1947.2	- 105	
ThH ₂	c	- 139.8	-100.0	50.71	36.69
ThI₄	с	- 664.8	-655.2	255	
ThN	с	- 391.2	- 363.6	56.07	45.2
Th_3N_4	с	- 1315.0	- 1212.9	201	155.90
Th(NO ₃)₄	с	- 1441.4			
ThO ₂	с	- 1226.4(35)	-1169.20	65.23(20)	61.76
ThOCl	с	-1232.2	-1156.0	123.4	91.25
ThOF ₂	с	- 1665.2	- 1589.5	105	
Th(OH) ³⁺	aq	-1030.1	-920.5	-343.0	
Th(OH) ²⁺	aq	-1282.4	-1140.9	-218.0	
Th ₃ P ₄	c	-1140.2	-1112.9	221.8	
ThS ₂	с	-626.3	-620.1	96.2	
Th_2S_3	с	- 1083.7	-1077.0	180	
Th(SO ₄) ₂	с	-2542.6	-2310.4	159.0	173.47
Thullium					
Tm	с	0	0	74.01	27.03
Tm ³⁺ std. state	aq	- 697.9	-661.9	-243.0	25.0
TmCl ₃	c	-986.6			
std. state	aq	- 1199.1	- 1055.6	- 75.0	-385.0
Tm ₂ O ₃	c	-1888.7	- 1794.5	139.8	116.7
Tin					
Sn white	с	0	0	51.08(8)	26.99
	aq	301.2(15)		168.492(4)	
gray	c	-2.09	0.13	44.14	25.77
Sn ²⁺ in aqueous HCl	aq	- 8.9(10)	-27.2	- 16.7(40)	
Sn ⁴⁺ in aqueous HCl	aq	30.5	2.5	- 117	
SnBr ₂	c	-243.5			

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

			1 60	60	C 2
0.1	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S°	C_p°
Substance	state	kJ · mol	kJ · mol ¹	J · deg · · mol ·	J · deg ¹ · mol ¹
$SnBr_4$	с	- 377.4	-350.2	264.4	136.44
	g	-314.6	-331.4	411.9	103.4
SnCl ₂	с	- 325.1		130	79.33
std. state	aq	329.7	- 299.6	172	
SnCl ₄	lq	-511.3	- 440.2	258.6	165.3
	g	-471.5	-432.2	365.8	98.3
SnH ₄	g	162.8	188.3	227.7	48.95
SnI ₂	с	- 143.5			
SnI ₄	g			446.1	105.4
SnO tetragonal	с	- 280.71(20)	- 251.9	57.17(30)	44.31
SnO ₂ tetragonal	с	- 577.63(20)	- 515.8	49.04(10)	52.59
Sn(OH)+	aq	- 286.2	- 254.8	50.0	
Sn(OH) ₂	с	- 561.1	491.6	155.0	
SnS	с	- 100	- 98.3	77.0	49.25
SnS ₂	с	- 167.4		87.4	70.12
Titanium					
Ti	с	0	0	30.72(10)	25.0
	g	473.(3)		180.298(10)	
TiB	с	- 160	- 160	35	29.7
TiB ₂	с	-280	- 275	28.5	44.3
TiBr ₂	с	- 402	- 383	108	78.7
TiBr ₃	с	- 548.5	- 523.8	176.6	101.7
TiBr ₄	с	-616.7	- 589.5	243.5	131.5
TiC	с	184	-180	24.2	33.81
TiCl ₂	с	- 513.8	- 464.4	87.4	69.8
TiCl ₃	с	- 720.9	-653.5	139.7	97.2
TiCl₄	lq	804.2	- 737.2	252.3	145.2
	g	- 763.2(30)	- 726.3	353.2(40)	95.4
TiF ₃	с	- 1435	- 1362	88	92
TiF₄	с	- 1649	- 1559	133.96	114.27
TiH ₂	с	- 144	- 105.1	29.71	30.09
TiI₄	с	- 375	- 371.5	249.4	125.6
TiN	С	-265.8	-243.8	52.73	37.08
TiO	с	- 519.7	- 495.0	50.0	39.9
TiO ₂	с	- 944.0(8)	-888.8	50.62(30)	55.0
Ti ₂ O ₃	с	- 1520.9	- 1434.2	78.8	97.4
Ti ₃ O ₅	с	2459.4	-2317.4	129.3	154.8
Tungsten					
W	с	0	0	32.6	24.3
WBr ₅	с	-312	-270	272	155
WBr ₆	с	348.5	- 290.8	314	181.4
W(CO) ₆	с	-953.5		331.8	242.5
WCl₄	с	- 443	- 360	198.3	129.7
WCl ₅	с	515	- 402	217.6	155.6
WCl ₆	с	-602.5	- 456	238.5	175.4
WF ₆	lq	- 1747.7	- 1631.4	251.5	
	g	- 1721.7	- 1631.4	341.1	119.0
WO ₂	с	- 589.9	- 533.86	50.5	56.1
WO ₃	с	- 842.9	- 764.1	75.9	73.8
WO ₄ ²⁻	aq	- 1075.7			
WOCl ₄	с	-671	- 549	173	146

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Physical	$\Delta_{ m f} H^{\circ}$	$\Delta_{ m f}G^{\circ}$.	S°	C_p°
Substance	state	kJ · mol ^{−1}	kJ · mol ^{−1}	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
WOF ₄	с	- 1407	-1298	176.0	133.6
WO ₂ Cl ₂	с	- 780	703	200.8	104.4
Uranium					
U	с	0	0	50.20(20)	27.66
	g	533.(8)		199.79(10)	
U ³⁺	aq	- 489.1	- 476.2	-188.0	
U ⁴⁺	aq	- 591.2	- 531.9	-410.0	
UB ₂	с	- 161.6	- 159.4	55.52	55.77
UBr ₃	с	-699.2	- 673.6	192	108.8
UBr ₄	с	- 802.5	- 767.8	238.0	128.0
UBr ₅	с	-810.9	- 769.9	293	160.7
UC	с	- 98.3	- 99.2	59.20	50.12
UCl ₃	с	- 866.5	799.1	159.0	102.5
UCl ₄	с	- 1019.2	-930.1	197.1	122.0
	aq	- 1259.8	- 1056.8	- 184.0	
UCl₅	с	-1058	- 950	242.7	144.6
UCl ₆	с	- 1092	- 962	285.8	175.7
UF ₃	с	- 1502.1	-1433.4	123.43	95.10
UF ₄	с	- 1921.2	- 1823.3	151.67	116.02
UF ₅	с	2075.3	- 1958.6	199.6	132.3
UF ₆	с	-2197.0	- 2068.6	227.6	166.8
UH3	с	- 127.2	- 72.8	63.68	49.29
UI ₃	с	-460.7	459.8	222	11 2 .1
UI₄	с	-512.1	- 506.7	264	134.3
UN	с	- 290.8	- 265.7	62.43	47.57
UO ₂	с	- 1085.0(10)	- 1031.8	77.03(20)	63.60
UO ₂ ²⁺ std. state	aq	- 1019.0(15)	- 953.5	- 98.2(30)	
UO3 gamma	с	-1223.8(12)	-1145.7	96.11(40)	81.67
U_3O_7	с	-3427.1	- 3242.9	250.5	215.5
U ₃ O ₈	с	- 3574.8(25)	- 3369.8	282.55(50)	238.36
U ₄ O ₉	с	-4510.4	-4275.1	334.1	293.3
UOBr ₂	с	-973.6	- 929.7	158.00	98.00
UOCl ₂	с	- 1066.9	- 996.2	138.32	95.06
UOF ₂	с	- 1499.1	-1428.8	119.2	
UO ₂ (OAc) ₂	с	- 1963.55			
UO ₂ Br ₂	с	- 1137.6	- 1066.5	169.5	
UO ₂ Cl ₂	с	- 1243.9	- 1146.4	150.5	107.86
std. state	aq	- 1353.9	- 1215.9	15.5	
UO ₂ CO ₃	c	-1691.2	-1562.7	138	
std. state	aq	1696.6	- 1481.6	-154.4	
UO ₂ C ₂ O ₄	c	- 1796.94			
UO_2F_2	с	- 1653.5	- 1557.4	135.56	103.22
std. state	ac	1684.0	- 1551.3	- 125.1	
$UO_{2}(NO_{3})_{2}$	c	- 1349.3	-1105.0	243	
std. state	ao	- 1434.3	-1176.1	195.4	
UO ₂ (OH) ₂ std. state	ad	- 1479.5	- 1267.8	-118.8	
UO2SO		- 1845.1	- 1683.6	154.8	145.2
- 2 4	-	1000.0	1608.2	_ 77 4	
std. state	ao	- 1928.8	- 1098.1	- / /.4	
std. state US ₂	aq c	- 1928.8 - 527	- 1698.3 - 526.4	110.42	74.64

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

	Dhan 1	A 110	A C0	00	C 0
Substance	Physical	$\Delta_{\rm f} H^{\circ}$ kL·mol ⁻¹	$\Delta_{\rm f} G^{\circ}$ kL · mol ⁻¹	S^{\sim} L · deg ⁻¹ · mol ⁻¹	C_p° L deg ⁻¹ , mo
Substance	state	KJ * IIIOI	KJ · IIIOI	J deg mor	J deg ino
Vanadium	0	0	0	28.04	24.00
V	C	0	0	28.94	24.90
VBr ₄	g	- 336.8	100	07.1	70.00
	с	- 452	- 406	97.1	72.22
VCl ₃	c	- 580.7	-511.3	131.0	93.18
VCl ₄	lq	569.4	503.8	255.0	161.7
VF ₅	lq	- 1480.3	-1373.2	175.7	
	g	1433.9	- 1369.8	320.9	98.58
VN	с	-217.15	- 191.08	37.28	38.00
vo	с	431.8	-404.2	39.0	45.5
VO ₂	с	-717.6		51.5	62.59
VO_2^+ std. state	aq	- 649.8	- 587.0	- 42.3	
VO_2^{2+} std. state	aq	- 486.6	- 446.4	133.9	
VO_3^- std. state	aq	-888.3	- 783.7	50.2	
V ₂ O ₃	с	- 1218.8	- 1139.3	98.3	103.2
V_2O_4	с	- 1427	- 1318.4	103	115.4
V ₂ O ₅	с	- 1550	- 1419.3	130	130.6
V ₃ O ₅	с	- 1933	- 1803	163	
VOCl ₃	lq	-734.7	- 668.6	244.4	150.62
	g	- 695.6	- 659.3	344.4	89.9
VOSO₄	c	- 1309.2	- 1169.9	108.8	
Xenon					
Xe	g	0	0	169.685(3)	20.786
XeF ₂	c	- 164.0			
XeF	с	-261.5	- 123.0		
XeF	с	360			
0	g	- 297			
XeO ₂	c	402			
XeOF.	la	146			
Ytterbium					
Yb	c	0	0	59.87	26.74
Vh ²⁺ std_state	9 0	Ũ	- 527 0	0,10,1	10111
Yb ³⁺ std. state	ad	674 5	- 643.9	238.0	25.0
Yb(OAc), undissoe, std	ad		1772 84	183 3	25.0
state	uy	2105.0	1772.04	105.5	
VhC1	<u> </u>				
YbCl	c	- 959.8			
std state	C	- 1176 1	- 1037.6	-71.0	- 385.0
Sill. State Vb(NO) std state	ay		1057.0	/1.0	
Vh O	ay	- 1290.0	- 1726 7	122.1	115.25
10203	C		- 1720.7	155.1	113.35
v		0	0	44.4	76 51
I V3t atd atat-	C		U 	44.4	20.31
1 State	aq	/23.4	- 093.7		ar o
Y Cl ₃	с	- 1000		136.8	75.0
YF ₃	с	- 1718.8	- 1644.7	100	
Y ₂ O ₃	с	- 1905.31	1816.65	99.08	102.51
Y(OH) ₃	с	- 1435	- 1291	99.2	
Zinc					
Zn	с	0	0	41.63(15)	25.40
	g	130.40(40)		160.990(4)	
Zn ²⁺ std. state	aq	- 153.39(20)	- 147.1	-109.8(5)	46.0

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)
	Physical	$\Delta_{\rm f} H^{\circ}$	$\Delta_{\rm f} G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
ZnBr ₂	с	- 328.65	- 312.13	138.5	65.7
std. state	aq	- 396.98	- 354.97	52.72	-238.0
ZnCl ₂	с	-415.05	- 369.45	111.46	71.34
std. state	aq	- 488.19	- 409.53	0.84	- 226.0
$Zn(CN)_4^2$ std. state	aq	342.3	446.9	226	
ZnCO ₃	с	-812.78	- 731.57	82.4	79.71
ZnF ₂	с	- 764.4	-713.3	73.68	65.7
std. state	aq	- 819.14	- 704.67	- 139.8	- 167.0
ZnI ₂	с	-208.03	-208.95	161.1	65.69
	aq	-264.3	-250.2	110.5	-238.0
$Zn(NO_3)_2$	с	- 483.7			
	aq	- 568.6	- 369.6	180.7	- 126.0
ZnO	с	- 350.46(27)	- 320.52	43.65(40)	40.25
$Zn(OH)_2$	с	-641.91	- 553.59	81.2	
std, state	aq	613.88	-461.62	- 133.5	-251
ZnS sphalerite	с	-205.98	-201.29	57.7	46.02
wurtzite	с	- 192.6			
ZnSe	с	- 163	- 163	84.0	
ZnSO ₄	с	-982.84	-871.5	110.5	99.2
	aq	- 1063.2	- 891.6	-92.0	-247.0
Zn_2SiO_4	с	- 1636.7	-1523.2	131.42	123.3
Zirconium					
Zr	с	0	0	39.0	25.40
ZrB	с	-322	-318.2	35.94	48.24
ZrBr ₂	с	-405	-382	116	86.7
$ZrBr_4$	с	-760.7	- 725.3	224	124.8
ZrC	с	197	- 193	33.32	37.90
ZrCl ₂	с	-502.0	- 386	110	72,6
ZrCl ₃	с	-714	- 646	146	96
ZrCl ₄	с	- 981	- 890	181.4	119.8
ZrF ₂	с	-962	-913	75	66
ZrF ₄	с	- 1911.3	-1810.0	104.7	103.6
ZnH_2	с	-169.0	-128.8	35.0	31.0
ZrI ₂	с	-259	-258	150.2	94.1
ZrI ₃	с	- 397.5	- 394.9	204.6	103.8
ZrI_4	с	-488	-485.4	260	127.8
ZrN	с	- 365	- 336.7	38.86	40.44
ZrO ₂	с	-1100.6	-1042.8	50.36	56.19
ZrSiO ₄	с	-2033.4	- 1919.1	84.1	98.7
ZrSO ₄	с	-2217.1			172.0

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (*Continued*)

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the

 Elements and Inorganic Compounds

Abbreviation Used in the Table

Hm, enthalpy of melting (at the melting point) in $kJ \cdot mol^{-1}$

Hv, enthalpy of vaporization (at the boiling point) in kJ \cdot mol⁻¹

Hs, enthalpy of sublimation (or vaporization at 298 K) in kJ \cdot mol⁻¹

 C_p , specific heat (at temperature specified on the Kelvin scale) for the physical state in existence (or specified: c, lq, g) at that temperature in J · K⁻¹ (mol⁻¹

Ht, enthalpy of transition (at temperature specified, superscript, measured in degrees Celsius) in kJ \cdot mol⁻¹

Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Aluminum							
Al	10.71	294.0	326.4	25.8	27.9	30.6	34.9(lq)
Al(BH ₄) ₃		30					_
Al ₆ BeO ₁₀	402			324.3	380.6	407.8	425.2
AlBr ₃	11.25	23.5		125.0	125.0	125.0	125.0
Al ₄ C ₃				138.5	159.2	169.7	176.1
AlCl ₃	35.4		116	100.1	117.7	135.2	152.8
AlF ₃ , $\Delta Ht = 0.56^{455}$	98			86.3	97.3	98.5	100.8
AlI ₃	15.9	32.2	112	108.5	121.3		
AlN				36.7	43.5	46.8	48.5
Al_2O_3 corundum	111.4			96.1	112.5	120.1	124.8
AlOCI				64.3	72.6	76.9	79.3
Al ₂ SiO ₅ andalusite				149.6	174.5	186.1	194.0
kyanite				148.3	176.2	188.3	196.2
sillimanite				147.5	173.0	185.0	193.5
Al ₆ Si ₂ O ₁₃ mullite				390.7	459.8	494.1	513.4
Al_2S_3	55			115.0	124.1	129.7	134.0
Al ₂ TiO ₅				162.0	182.8	192.9	200.0
Americium							
Am	14.39						
Ammonium							
NH ₃	5.66	23.35	19.86	38.7	45.3	51.1	56.2
ND_3 ammonia- d_3				42.9	51.5	58.6	64.3
$NH_4Br, \Delta Ht = 3.22^{138}$							
NH ₄ Cl, $\Delta Ht = 1.046^{-30.6}$				103			
$\Delta Ht = 3.950^{184.6}$							
NH ₄ ClO ₄				148.7			
$NH_4I, \Delta Ht = 2.93^{-13}$	20.9		168.5 ⁵²⁵	89.0	103.3	117.7	
NH ₄ NO ₃	6.40						
Antimony							
Sb	19.87	193.43		25.9	27.7	29.5	31.4
SbBr ₃	14.6	59		125.5(lq)	81.6(g)	82.2	82.5
SbCl ₃	12.7	45.2		123.4(lq)	81.6(g)	82.2	82.5
SbCl ₅	10.0	48.4					
SbH ₃		21.3					
SbI ₃	22.8	68.6		106.6(lq)	143.5(lq)	82.2(g)	82.5(g)
$Sb_2O_3, \Delta Ht = 7.1^{573}$	54.4	74.6		108.5	122.8	137.1	150.6
Sb ₂ S ₃				123.3	134.4	145.4	
Argon							
Ar	1.12	6.43		20.8	20.8	20.8	20.8

				C_p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Arsenic							
As	24.44			25.6	27.5	29.3	
AsBr ₃	11.7	41.8					
AsCl	10.1	35.0		133.5(la)	88.3(g)	88.3	
AsF ₂	10.4	29.7		(-1)	(8)		
AsF _€		20.8					
AsHa		16.7		45.4	53.2	58.8	63.9
AsIa		59.3			0012	5010	0015
As ₂ O ₂	18.4			116.4			
Barium							
Ba	7.12	140.3		33.2	33.9(c)		39.1(la)
BaBr.	32.2	11015		79.2	83 5	87.9	92.2
BaCl. $\Lambda Ht = 16.9^{925}$	15.85	246.4		773	80.4	84 3	89.5
$B_{a}CO_{a}$ $AHt = 18 8^{806}$	40	240.4		99.0	113.0	124.2	134.6
BaE. $AHt = 2.67^{1207}$	17.8	285.4	405.1	75.9	80.3	84.0	94.6
$B_{2}H$	25	203.4	405.1	15.9	80.5	04.9	94.0
	25	12.0	202.5	70.5	92 5	97 5 (a)	112.0(1a)
	20.5	43.9	502.5	120.5	142.5	152.2	150.2
	16	220 6	121 2	129.5	143.3	132.2	139.5
BaO Da(OII)	40	550.0	424.5	49.9	33.Z	33.4	57.1
$Ba(Ori)_2$	10			112.0	122.7(0)	141.0(lq)	
Bas	63			110.4	101 6	125.0	107.0
BaSO ₄	40			119.4	131.6	135.9	137.9
BallO ₃ , $\Delta Ht = 0.067^{13}$				111.5	121.8	126.1	128.7
Beryllium		007					
Ве	7.895	297	291	20.0	23.3	25.5	27.3
$BeAl_2O_4$, chrysoberyl	170.0			130.3	155.0	166.8	174.2
BeBr ₂	18	100.0	515	70.6	77.6(c)	113.0(lq)	113.0
Be ₂ C	75.3			47.6	51.9	64.7	73.2
BeCl ₂ , $\Delta Ht = 6.8^{403}$	8.66	105	136.0	68.7	75.8(c)	121.4(lq)	121.4
BeF ₂ , $\Delta Ht = 0.92^{227}$	4.77	199.4		62.5	67.5	74.1(c)	85.6(lq)
BeI ₂	18	70.5	125	76.9	84.2		
Be_3N_2	129.3			84.4	106.5	117.6	123.6
BeO, $\Delta Ht = 6.7^{2100}$	86			33.8	42.4	46.7	49.3
BeS				120.8	149.2	166.0	174.1
Be ₂ SiO ₄				103.9	126.8	149.8	174.4
BeSO ₄ , $\Delta Ht = 1.113^{590}$ $\Delta Ht = 19.55^{635}$	6			103.9	126.8	149.8	174.4
BeWO ₄				113.0	131.3	142.9	153.0
Bismuth							
Bi	11.30	151		27.0(c)	31.8(lq)	31.8	31.8
BiBr ₃	21.7	75.4					
BiCl ₃	10.9	72.6					
Bila		20.9					
$Bi_2O_3, \Delta Ht = 116.7^{717}$	28.5			116.9	123.6	130.3	137.0
Bi ₂ S ₃				131.1	136.2	141.3	146.4
Bi ₂ Te ₃	120.5			164.3	179.7	192.3	
Boron							
В	50.2	480	552	15.7	20.8	23.4	25.0
BBr ₃		30.5		72.6(g)	77.6	79.8	81.1
B₄C	105			76.4	98.4	107.7	114.3
•							

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C.		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
BCl.	2.10	23.8	23.1	68.4(g)	75.0	78.2	79.8
BF ₂	4.20	19.3	57.5	67.1	72.6	75.8	
F ₂ B-BF ₂		28					
BH ₂				38.9	45.4	52.3	58.4
BaHc	4.44	14.3		74.3	101.3	121.7	136.4
-2-3 B ₄ H ₂	6.13	28.4		130.2(g)	187.6	227.4	254.4
B.H.	0110	27.1		10 01-(B)			
BeH.,		31.8					
BioHia	32.5	48.5	76.7	250.0(lg)	351.6(g)	417.2	460.4
BI ₂		40.5					
BN	81		728	26.3	35.2	40.5	44.3
$B_2N_2H_2$ borazine		32.1		126.9	169.4	197.2	216.6
B ₂ O ₂	24.56	390.4		77.9	98.1(c)	129.7(la)	129.7
$B_{2}O_{2}H_{2}$ boroxin			44.8	120.1	162.8	194.6	214.2
Bromine							
Br ₂	10.57	29.96	30.9	36.7(g)	37.3	37.6	37.8
BrCl	10.4	34.7					
BrF		25.1					
BrF ₂	12.05	47.6		72.6	78.0	80.1	81.2
BrFs	5.67	30.6		113.0	123.2	127.3	129.3
Cadmium							
Cd	6.19	99.9		27.1(c)	29.7(lg)	29.7	29.7
CdBr ₂	20.9	115			× 2/		
CdCl	48.58	124.3		79.8	86.3	92.7	104.6
CdF ₂	22.6	214					
CdI ₂	15.3	115					
$Cd(NO_3)_2 \cdot 4H_2O$	32.6						
CdO			225.1	43.8	45.6	47.3	49.1
CdS			209.6	55.5	56.2	57.0	57.7
CdSO₄				108.3	123.8	139.2	154.7
Calcium							
Ca, $\Delta Ht = 0.93^4$	8.54	154.7		26.9	30.0	33.8	39.7
$Ca(BO_2)_2$	74.1			125.0	144.9	157.2	176.2
CaB ₄ O ₇	113.4			202.0	243.0	267.7	287.8
CaBr ₂	29.1	200	298.3	78.0	80.5	83.5	88.6
CaC_2 carbide	32						
CaCl ₂	28.05	235		75.6	78.2	80.9	85.8
CaCN ₂ cyanamide	0.432						
CaCO ₃	36						
$CaF_2, \Delta Ht = 4.8^{1151}$	29.3	308.9	441	73.9	78.5	83.9	90.1
CaH ₂	6.7						
CaI ₂	41.8	179.4	243	79.2	83.1	87.1	91.0
Ca[Mg(CO ₃) ₂] dolomite				143.3	163.3	176.8	188.3
CaMoO ₄				131.3	144.9	153.5	150.6
Ca ₃ N ₂				122.2	140.8	159.2	
$Ca(NO_3)_2$	21.4			173.7	210.5	243.4	
CaO	79.5			46.6	50.5	52.4	53.7
$Ca(OH)_2$, $\Delta Hdec = 99.2$				98.4	107.4		
$Ca_3(PO_4)_2, \Delta Ht = 15.5^{1100}$				255.1	295.6	331.3	365.7
CaS	70			49.2	51.5	53.0	54.1

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					\mathbf{C}_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
CaSiO ₃ , $\Delta Ht = 7.1^{1190}$	56.1			100.4	113.0	119.2	123.8
Ca ₂ SiO ₄ , $\Delta Ht = 4.44^{675}$ $\Delta Ht = 3.26^{1420}$				146.4	162.8	179.2	184.0
$3CaO \cdot SiO_2$				196.4	218.4	230.8	240.4
CaSO	28.0			109.7	129.5	149.2	169.0
$CaSO_4 \cdot \frac{1}{2}H_2O$				147.4	167.2	186.9	206.7
$CaSO_4 \cdot 2H_2O$				260.7	280.3	300.0	319.8
$CaTiO_{3}, \Delta H t = 2.30^{1257}$				112.3	123.1	127.7	130.4
$Ca(VO_2)_2$				182.9	206.7	230.5	254.4
CaWO ₄				127.6	140.2	147.3	152.8
Carbon							
C graphite	117			12.0	16.6	19.7	21.7
$(CN)_2$ cyanogen	8.1	23.3	19.7	61.9(g)	68.2	72.9	76.4
CNBr			45.4	50.19(g)	53.7	56.2	58.1
CNCl	11.4			48.7	52.8	55.7	57.7
CNI			59.4	50.8	53.7	55.8	57.4
CO, $\Delta Ht = 0.632^{-211.6}$	0.837	6.04		29.3	30.4	31.9	33.2
CO ₂	9.02	15.8	25.2	41.3	47.3	51.4	54.3
C_2O_3	5.40	26.9 ^{43.5}		75.0	85.5	92.7	97.7
COCl ₂	5.74	24.4		63.9	71.1	75.0	77.4
COF ₂		16.1		54.8	64.9	70.8	74.4
COS	7.73	18.6		45.9	51.3	54.7	57.0
CS ₂	4.40	26.7	27.5	49.7	54.6	57.4	59.3
Cerium							
Ce, $\Delta Ht = 3.01^{730}$	5.46	398	419	30.6	30.8	32.1	33.8
CeCl ₃	54.4	170.1	326				
Cel ₃	51.9						
CeO ₂				66.9	69.0	71.1	73.2
Cesium							
Cs	2.09	63.9	76.6	31.5	31.0	30.9(lq)	20.8(g)
CsBr	23.6	151		52.9	55.0	57.2(c)	77.4(lq)
CsCl, $\Delta Ht = 3.77^{470}$	15.9	115.1		54.7	59.1	63.7(c)	77.4(lq)
CsF	21.7	115.5		53.8	57.4	60.9(c)	74.1(lq)
CsI	23.9	150.2		51.9	57.8(c)	65.5(lq)	67.8
CsIO ₃	13.0						
CsOH, $\Delta Ht = 1.30^{137}$ $\Delta Ht = 6.1^{220}$	4.56	120		74.4(c)	81.6(lq)	81.6	81.6
$Cs_2SO_4, \Delta Ht = 4.3^{667}$	35.7		76.5	112.1	132.2	163.2	194.2
Chlorine							
Cl_2	6.406	20.41	17.65	35.3	36.6	37.1	37.4
ClF		24		33.8	35.6	36.5	37.0
ClF ₃	7.61	27.5		70.6(g)	76.8	79.4	80.7
ClF ₅		22.9		110.0	121.6	126.3	128.6
ClO				33.2	35.3	36.3	36.9
ClO ₂		30		46.1	51.4	54.2	55.8
ClO ₃ F	3.83	19.33		75.9	89.2	96.1	100.0
Cl ₂ O		25.9		51.4	54.7	56.2	56.9
Cl ₂ O ₇		34.69					
Chromium							
Cr, $\Delta Ht = 0.0008^{38.5}$	21.0	339.5	397	25.2	27.7	29.4	31.9

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					\mathbf{C}_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
CrCl ₂	32.2	196.7		72.6	77.0	81.5	85.9
CrCl ₃			237.7	93.1	99.0	104.9	110.7
Cr(CO) ₆			72.0	233.9			
$CrN. \Delta H dec = 112$			49.1	50.4	51.7	53.0	
CrO ₂ Cl ₂		35.1					
CrO ₂ E ₂	23.4	34.3					
CrO	15 77	2.112		63.9	72.5	767	78.8
$Cr_{-}O_{-}$	129.7			1127	120.5	124.3	127.0
$C_{12}C_{3}$	129.7			316.9	345.2	373 5	401.8
Cobalt				510.9	545.2	575.5	401.0
$C_0 \Lambda Ht = 0.452427$	16.2	377	124	26.5	20.7	32.4	37.0
$C_0, \Delta m = 0.452$	10.2	146	210	20.5	29.7	96.9	00 1
CoE	4J 50	202	215	01.7	04.0	80.8	00.Z
CoF ₂	39	202	515	73.7	00.0	02.9	104.2
CoF ₃				97 52.0	100	102	104
C00				52.9	54.3	54.8	56.0
$C_{0_3}O_4$				143	163	185	210
$\cos O_4, \Delta Ht = 2.1^{691}$				119	141	152	158
Copper	10.04	.					
Cu	13.26	300.4	337.7	25.3	26.5	27.4	28.7
$\Delta Ht = 2.9^{465}$	9.6			56.5	59.8(c)	66.9(lq)	66.9
CuCl	10.2	54	241.8	56.9	61.5(c)	66.9(lq)	66.9
CuCl ₂ , $\Delta Ht = 0.700^{402}$ $\Delta Ht = 15.001^{598}$	20.4			76.3	80.2(c)	82.4(lq)	100.0
CuCN		12			66.7	73.1	78.0
CuF			268	55.5	59.6		
CuF ₂	55	156	261	72.4	81.9	87.0	90.4
Cul	10.9			55.4	57.8	60.2	66.9
CuO	11.8			46.8	50.8	53.2	55.0
Cu ₂ O	64.8			67.6	73.3	77.6	81.5
CuS	0.110			48.8	51.0	53.2	55.4
Cu ₂ S $\Delta Ht = 3.85^{103}$	10.9			97.3	97.3	85.0	85.0
$\Delta Ht = 0.84^{350}$	10.7			57.5	11.5	05.0	05.0
Cu-Se $\Delta Ht = 4.85^{110}$				90.9	91.7	92.5	93.4
CuSO				114.9	136.3	147.7	153.4
Dysprosium				114.9	150.5	14/./	155.0
Dy	11.06	280	200.4				
Dy Erbium	11.00	200	290.4				
Erolum E-	10.00	200	217.2				
	19.90	280	517.2				
Europium	0.01	177	170				
Eu	9.21	1/0	1/8				
Fluorine	0.510				25.2	262	
$F_2, \Delta Ht = 0.728^{-221.0}$	0.510	6.62		33.0	35.2	36.3	37.1
FNO ₃				/5.1	87.8	94.8	98.9
Gadolinium	10.05					<u> </u>	
Gd	10.05	301.3		36.6	35.5	34.5	33.5
Gd ₂ O ₃				113.4	120.1	124.4	127.9
Gallium							
Ga	5.59	254		27.1(lq)	26.7	26.6	26.6
GaBr ₃	12.1	38.9					

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					\mathbf{C}_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
GaCl ₃	11.13	23.9					
GaI ₃	12.9	56.5					
Ga_2O_3	100			91.4	112.5	133.5	
GaSb	25.1						
Germanium							
Ge, $\Delta Ht = 37.03^{938.3}$	36.94	334		24.3	25.4	26.2	26.9
GeBr ₄		41.4					
GeCl ₄		27.9		100.7	104.6	106.1	106.8
GeH ₄		14.1					
Ge ₂ H ₆		25.1					
Ge ₃ H ₈		32.2					
GeO ₂	43.9			61.39	69.1	72.4	75.0
Gold							
Au	12.55	324		25.8	26.8	27.8	28.8
AuSn	25.6			54.1	63.3(c)	60.6(lq)	
Hafnium							
Hf, $\Delta Ht = 5.9^{1750}$	27.2	571	618.4	26.7	28.6	30.3	31.9
HfCl ₄	75		99.6	125.4	105.8	106.7	107.1
HfO ₂ , $\Delta Ht = 10.5^{1700}$	104.6			67.7	73.9	77.3	79.9
Helium							
He	0.0138	0.0829		20.79	20.79	20.79	20.79
Holmium							
Но	16.8	71		280	317		
Hydrogen							
H ₂	0.117	0.904		29.2	29.3	29.6	30.2
¹ H ² H				29.2	29.4	29.9	30.7
² H ₂	14.0		0.40.1	29.2	29.6	30.5	31.6
HBO₂ U DO	14.3		242.1	61.5(c)			
H_3BO_3	22.3	177 (1	10.7	20.2	20.0	21.1	20.2
	2.406	17.01	12.7	29.2	29.8	31.1	32.3
HCl, $\Delta Ht = 1.188^{-1/4.17}$	1.992	16.14	9.1	19.2	29.2	29.6	31.0
				29.4	30.0	32.1	33.3 49 E
HCN	9 406	25.22		40.0	44.0	40.0	48.3 51.0
	6.400 4.58	23.22		39.4 20.1	44.Z 20.2	47.9	20.2
2HF	4.56			29.1	29.2	29.5	31.6
HE dimer				29.2 10 7	29.3 56.5	50.5 61.0	64.4
HEO				42.7	128	157	47.0
HI	2 87	10 77	174	20.3	30.3	31.8	33.1
HNCO isocyanic acid	2.07	17.11	17.4	50.6	58.3	63.5	67.5
HNCS isothiocyanic acid				53.2	61.0	65.9	69.3
HNO. cis				51.4	50.0	65.4	69.2
trans				52.1	60.3	65.6	69.3
HNO	10.47	39.46	39.1	63 1	76.8	85.0	90.4
HN.	10.47	30.5	57.1	05.1	70.0	05.0	70.4
H ₋ O	6 009	40.66	44 0	343(9)	36.4	38.8	414
1H2HO				34.8	37.5	40.4	43.3
² H ₂ O				35.6	38.8	42.2	45.4
H_2O_2	12.50		51.63	48.5	55.7	59.8	66.7
$^{2}\tilde{H_{2}O_{2}}$	12.68		52.4				

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
HPH ₂ O ₂	9.67						
H ₃ PO ₃	12.84						
H₄PO₄	13.4			175.7	236.0	296.2	365.5
$H_{2}S, \Delta Ht = 1.531^{-169.61}$	23.8	18.67	14.1	38.9	42.5	45.8	
H ₂ S ₂		33.8					
H ₂ Se		19.7					
HSO₄F				87.5	102.6	111.0	116.3
H ₂ SO₄	10.71	50.2		158.2	197.0(lq)	125.9(g)	132.7
H ₂ SO ₄ · H ₂ O	19.46			228.5	. 2		
$H_2SO_4 \cdot 2H_2O$	18.24			294.6			
$H_2SO_4 \cdot 3H_2O$	24.0			347.8			
$H_2SO_4 \cdot 4H_2O$	30.64			410.3			
H ₂ Te		19.2					
Indium							
In	3.28	231.8	243.1	28.5(c)	30.1(lq)	30.1	30.1
InBr	15	92					
InBr ₃	26						
InCl	21.3						
InCl ₃	27						
InF ₃	64						
InI	17.3	90.8					
InI ₃	18.5						
In ₂ O ₃	105						
InSb	25.5						
Iodine							
I ₂	150.66	41.6	62.4	79.6(lq)	37.6(g)	37.9	38.1
ICI	11.60		52.9	98.3(lq)	90.0	81.6	73.2
IF				35.1	36.6	37.3	37.7
IF ₅		41.3		476.1(g)	516.7	533.0	541.4
IF ₇				152.0(g)	167.6	173.9	177.0
Iridium							
Ir	41.12	231.8	243.1	28.5(c)	30.1(lq)	30.1	30.1
IrF ₆	8.40	36					
IrO ₂				63.8	76.5	89.2	102.0
Iron		A 40					
Fe, $\Delta Ht = 0.90^{911}$ $\Delta Ht = 0.837^{1392}$	13.81	340	415.5	27.4	32.1	38.0	54.4
FeBr ₂	50.2						
FeBr ₃ , $\Delta Ht = 0.418^{377}$	50.2		207.5	83.0	87.0	91.4	95.9
Fe ₂ C, $\Delta Ht = 0.75^{190}$	51.5			115.7	114.7	117.2	119.8
FeCl ₂	43.01	26.3		79.7	83.1	85.5	101.2
FeCl ₃	43.1	43.76		106.7(c)	133.9(lq)	82.3(g)	81.5
FeCO ₃				93.5	115.9	138.3	
Fe(CO) ₅	13.23	33.72		189.0	209.8	223.1	232.2
FeCr ₂ O ₄				152.0	167.7	175.9	182.2
FeF ₂	51.9	224.4	316	72.0	77.1	80.3	82.1
FeF ₃			274	96.4	96.8	99.3	101.8
FeI ₂ , $\Delta Ht = 0.8^{377}$	45	104.6	192	83.9	84.4	110.9	113.0(lq)
Fe ₃ N				72.6	77.7	82.8	87.9
FeO	24.06			51.8	54.9	57.3	59.4

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Fe ₂ O ₃ , $\Delta Ht = 0.67^{677}$				120.1	141.2	158.2	150.6
Fe ₃ O ₄	138.1			171.1	212.5	252.9	
Fe(OH)			243.5	102.1	111.3	118.9	123.4
Fe(OH) ₂				118.0	140.6	154.8	164.9
FeS. $\Delta Ht = 0.40^{138}$	31.5			89.2	62.0	58.6	59.0
$\Delta Ht = 0.095^{325}$	0.10					5010	2210
FeS ₂ marcasite				69.2	74.6	78.7	82.8
pyrite				68.9	74.3	78.3	82.5
FeSiO ₃				100.8	114.3	124.5	133.9
Fe ₂ SiO ₄	92			150.9	168.5	179.7	189.1
FeSO ₄				116.7	138.0	149.4	
$Fe_2(SO_4)_3$				307.0	363.3	393.3	409.2
FeTiO ₃ ilminite	90.8	111.4	122.0	128.1	132.8		
Krypton							
Kr	1.37	9.08					
Lanthanum							
La. $\Delta Ht = 2.85^{868}$	6.20	402.1		28.5	29.8	31.2	32.5
	43.1	192.1		105.8	110.1	114.3	118.7
La ₂ O ₂				117.3	124.7	128.9	132.3
Lead						12017	10210
Ph	4 77	179 5	195.2	27.7	29.4	30.0	29.4
Pb(BO ₂)		177.5	175.2	129.7	162.3	50.0	27.1
				207	265	305	330
PbBr	16.44	133	173	813	888	112 1(la)	112.1
\mathbf{P}	10.44	155	175	01.5	00.0	112.1(14)	112.1
Pb(C H)	10.80		•				
$PD(C_2\Pi_5)_4$	0.00	107	105 2	20 1	95.0	1115(1a)	1115
PDCI ₂	21.9	127	165.5	00.1	03.9	111.3(lq)	111.5
$PbCU_3$	147	157		99.7	123.0	147.0	05.0
$PDF_2, \Delta Ht = 1.40^{510}$	14.7	157	170	/0.1	82.5	89.1	95.0 100.6
	23.4	104	172	/8.9	83.7(c)	108.6(lq)	108.0
				135.3	148.9	159.0	168.2
PbO, $\Delta Ht = 0.17^{488}$	25.5	207		50.4	55.4	55.0	57.8
PbO ₂				67.6			
Pb ₃ O ₄				173.1	190.8	199.2	
PbS	18.8	230		50.5	52.4	54.3	56.2
PbSiO ₃	26.0			101.5	113.5	125.6	138.4
Pb ₂ SiO ₄	51.0			152.0	173.3	184.2	189.1
PbSO ₄ , $\Delta Ht = 17.2^{866}$	40.2			108.7	128.6	152.4	177.3
$PbSO_4 \cdot PbO$				157.3	182.5	211.7	242.0
Lithium							
Li	3.00	147.1	159.3	27.6(c)	29.5(lq)	28.9	28.8
Li_2AlF_6 , $\Delta Ht = 9.5^{562}$	110.5			236.4	262.8	290.8	318.6
LiAlO ₂	87			81.5	92.7	98.2	102.0
LiBH₄				91.0			
LiBeF ₃	27.2			104.6	129.7(c)	159.0(lq)	159.0
Li ₂ BeF ₄	44.0			150.5	180.2(c)	232.1(lq)	232.1
LiBO ₂	33.8	265		81.1	85.1	96.9	108.3
$Li_2B_4O_7$	121			197.6	241.1	274.4	300.2
LiBr	17.6	107.1		51.3	56.1	64.5(c)	65.3(la)
LiCl	19.9			51.0	55.6	65.8	

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
LiClO₄	29			130.0(c)	161.0(lq)	161	161
Li ₂ CO ₃ , $\Delta Ht = 0.561^{350}$ $\Delta Ht = 2.238^{410}$	41			112.2	149.4	159.0	
LiF	27.09	146.8	276.1	46.5	51.6	55.7	59.6
LiH	22.6		231.3	34.8	46.4	57.3	
LiI	14.6						
LiIO ₃ , $\Delta Ht = 2.22^{260}$							
Li ₃ N				87.1	106.4	124.4	141.0
LiNO ₃	24.9						
Li ₂ O	58.6			64.0	73.8	80.6	86.2
Li_2O_2				82.7(c)	80.2(g)	81.4	82.1
LiOH	20.88	187.9	250.6	58.0	68.2(c)	87.1(lq)	87.1
Li ₂ SiO ₃	28.0			118.8	134.3	144.4	152.3
$Li_2Si_2O_5$, $\Delta Ht = 0.941^{936}$	53.8			174.9	205.7	222.6	235.4
$Li_2SO_4, \Delta Ht = 28.5^{575}$	7.50			139.2	168.5	196.1	223.4
Li_2TiO_3 , $\Delta Ht = 11.51^{1212}$	110.7			127.4	141.5	149.0	153.9
Lutetium							
Lu	(22)	414					
Magnesium							
Mg	8.48	128	147	26.1	28.2	30.5	
MgAl ₂ O ₄	192			138.0	157.9	169.5	178.7
MgBr ₂	39.3	149	222	77.3	81.4	84.5	
MgCl ₂	43.1	156.2	249.2	75.7	79.9	82.5	
MgCO ₃	59			89.9	109.0	122.3	131.8
MgF ₂	58.5	274.1	399.5	68.5	75.3	78.6	80.5
MgH ₂	14						
Mgl ₂	26		206	78.4	83.0	96.3(c)	100.4(lq)
$Mg_{3}N_{2}, \Delta Ht = 0.46^{350}$ $\Delta Ht = 0.92^{788}$			107.6	113.8	119.9	123.8	
$Mg(NO_3)_2$				168.5	225.5		
MgO	77			42.6	47.4	49.7	51.2
Mg(OH) ₂				91.7			
$Mg_3(PO_4)_2$	121			240.2	282.2	320.6	351.5
MgS	63						
Mg ₂ Si	85.8			73.8	79.8	83.9	87.4
MgSiO ₃ , $\Delta Ht = 0.67^{630}$ $\Delta Ht = 1.63^{985}$	71			94.2	107.0	115.8	120.3
Mg ₂ SiO ₄				137.6	156.4	167.1	174.6
MgSO ₄	14.6			110.0	127.6	140.5	151.7
MgTiO ₃				105.2	118.5	125.4	129.9
Mg ₂ TiO ₄				146	164	175	184
MgWO ₄				123.4	137.0	146.1	154.8
Manganese							
Mn, $\Delta Ht = 2.23^{727}$	12.9	221		28.5	31.9	34.9	37.5
$\Delta Ht = 2.12^{1101}$							
$\Delta Ht = 1.88^{1137}$							
MnBr ₂	33	113		77.8	82.8	87.7	
Mn ₃ C, $\Delta Ht = 14.94^{1037}$				104.4	115.0	121.7	127.4
MnCl ₂	30.7	149.0		77.2	81.8	85.1	96.2(lq)
$Mn_2(CO)_{10}$			62.8				

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
MnF ₂	23.0			70.6	75.7	80.7	85.9
MnI	42			78.1	83.6	89.0	108.8
MnO	54.4			47.5	50.3	52.4	54.2
MnOa				63.4	71.1	75.1	
Mn ₂ O ₂				109.0	120.8	129.4	137.2
Mn_O, $\Lambda Ht = 20.79^{1172}$				157 3	169 5	179.7	189 3
MnS	26.4			50.7	52.2	537	55.2
MnSiO.	66.9			100.9	113.1	119.5	124.2
MnSIO3	00.7			119.0	1367	1477	121.2
MnTiO				111.0	121.2	125.7	128.8
Mercury				111.7	121.2	12.5.7	120.0
Ha	2 20	50.1	61 4	27.4	$27.1(l_{\rm c})$	20.8(a)	20.8
LaDr	17.0	58.0	01.4	27.4	$\frac{27.1(lq)}{102.1(lq)}$	20.8(g)	102.1
H_2	17.9	30.9		100.6	102.1(iq)	102.1	102.1
H_2DI_2	10.41	59.0		77.0(2)	102.0/1~)		
HgCl ₂	19.41	38.9		10(0)	102.9(1q)		
Hg_2Cl_2	00 0	0.0		100.0	112.1	05.4()	100.04
HgF ₂	23.0	92		//.0	81.2	85.4(c)	102.9(lq)
Hg ₂ F ₂		50 0		104.7	111.7	116.9	(2.2
$Hgl_2, \Delta Ht = 2.52^{129}$	18.9	59.2		82.0(c)	84.1(lq)	62.2(g)	62.2
Hg_2I_2	27.8			110.4(c)	136.4(lq)		
HgO				48.3	54.1		
HgS, $\Delta Ht = 4.2^{386}$				48.0	51.0	54.1	
Molybdenum							
Мо	37.48	617	664	25.1	26.5	27.4	28.4
MoBr ₃				106.9	109.8	112.7	
MoCl ₄	17	61.5		135.0(c)	146.4(lq)		
MoCl ₅	18.8	62.8		167.4(c)	175.7(lq)	175.7	175.7
Mo(CO) ₆		72.5	69.9				
MoF ₆ , $\Delta Ht = 8.17^{-9.65}$	4.33	27.2	28.0	133.1	145.3	150.4	153.0
MoO ₂				63.5	71.2	76.5	81.4
MoO ₃	48	138		83.1	91.8	100.0	109.0
MoS ₂				68.9	73.6	76.2	78.2
Mo ₂ S ₃	130			117.5	127.4	135.2	142.3
Neodymium							
Nd, $\Delta Ht = 2.98^{862}$	7.14	289		28.2	32.1	36.9	42.0
Nd ₂ O ₃				120.3	130.0	137.7	144.4
Neon							
Ne	0.335	1.71					
Neptunium							
Np, $\Delta Ht = 8.37^{280}$	3.20	336		34.8			
Nickel							
Ni	17.48	377.5		28.5	30.0	31.0	32.2
NiCl ₂	71.2		231.0	76.3	79.9	80.9	
Ni(CO)	13.8	29.3		160.4(g)	173.2	182.1	188.6
NiFa				76.4	78.5	82.6	
NiO				52.2	51.8	53.6	55.2
NiS. $\Delta Ht = 6.4^{379}$	30.1			12.1	13.2	13.7	15.1
Ni_2S_2 $\Delta Ht = 56.2^{556}$	19.7			127.1	139.9	150.7	188.6
NiS	65.7			72.8	70.0	81.0	85.2
NiSO				142.6	150.8	159.2	167.4
						~~	

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					\mathbf{C}_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
NiWO4				138.9	144.6	150.3	155.9
Niobium							
Nb	30	689.9	726	25.4	26.3	27.2	28.0
NbBr ₅	24.0	50.2	112.5	147.9(c)	147.9(lq)	1	
NbCl ₅	38.3	52.7		170.7(c)	127.9(g)	129.8	130.7
NbF ₅	12.2	52.3		43.5(lq)			
NbI ₅	37.7	58.6		182.0(c)			
NbN, $\Delta Ht = 4.2^{1370}$	46.0			45.4	49.9	51.6	53.2
NbO	85	618		44.0	47.2	49.5	51.5
NbO ₂ , $\Delta Ht = 3.42^{817}$	92		598.0	63.5	71.7	70.5	87.5
Nb ₂ O ₅	104.3			145.0	160.7	170.0	175.5
Nitrogen							
N ₂ , $\Delta Ht = 0.230^{-237.53}$	0.720	5.577		29.2	30.1	31.4	32.7
NF_3		11.6		61.9	71.4	76.0	78.4
N_2F_2 cis	15.4	91.6		58.2	68.3	73.6	76.6
trans	14.2	87.9		60.2	68.9	73.8	76.7
N_2F_4		13.3					
NH ₃ (see Ammonium)							
N_2H_4	12.66	41.8	44.7	61.7(g)	77.6	88.2	96.4
NO	2.30	13.83		29.9	31.2	32.8	34.0
NOCI		25.8		47.1	50.7	53.2	54.9
NOF		19.3		44.6	48.9	51.7	53.5
NOF ₃				78.7	90.9	97.0	100.5
NO ₂				40.5	46.4	50.4	53.0
NO ₂ Cl		25.7		59.6	68.1	73.1	76.1
NO ₂ F		18.0		57.0	66.4	71.9	75.3
NO ₃				55.9	67.4	73.3	76.5
N ₂ O	6.54	16.53		42.7	48.4	52.2	54.9
N_2O_4	14.65	38.12		88.5	104.0	113.4	119.2
N_2O_5			62.3	110.9	128.4	137.0	141.4
NSF		22.2					
Osmium		70 0				04.0	07.4
Os	57.85	738		25.1	25.9	26.7	27.4
OsF ₆		28.62					
OsO ₄	9.8	39.54					
Oxygen $0.002 - 249.49$	0.444	6 000	0 204	20.11	22.00	22 71	24 00
$\Delta Ht = 0.745^{-229.38}$	0.444	0.820	6.204	30,11	52.09	55.74	34.00
$\Delta m = 0.745$		10.84		13 71	10.86	53 15	55.02
OF		11.00		64.3	72 /	76.4	78.6
0.F.		19.1		04.5	12.7	70.4	70.0
Palladium		17.1					
Pd	16 74	362		26.5	27.7	28.8	30.0
PdC1.	40.1	502		2012	27.17	2010	2010
PdO	10.1			37.6	49.5	61.3	
Phosphorus				27.0		0110	
P		0.66	12.4	14.2			
$P_4, \Delta Ht = 0.521^{-77.8}$	0.659	56.5	58.9	73.3(g)	78.4	80.4	81.4
PBr ₃		38.8		78.9	81.2	82.0	82.4
PClF ₂		17.6					

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
PCIF ₃		17.6					
PCl ₂ F		24.9					
PCl ₃	7.10	30.5	32.1	76.0(g)	79.7	81.2	81.9
PCl ₅			64.9	120.1(g)	126.8	129.5	130.7
PF		16.5		66.3(g)	74.0	77.6	79.5
PF,		17.2		99.2(g)	114.7	121.9	125.6
PH ₃	1.130	14.60		41.8	50.9	58.5	64.3
P_2H_4		28.8					
PI		43.9					
P_4O_6	14.06	43.43		172.1	200.8	213.5	220.0
P_4O_{10}	27.2		106.0	260.3	336.0(c)		
POBr ₃	38				.,		
POCI	13.1	34.3	38.6	92.0(g)	99.1	102.5	108.5
POCIF ₂		25.4		79.3	91.6	97.7	101.1
POCl ₂ F		30.96		87.7	96.6	100.9	103.2
POF	15.06	23.22	21.1	79.1	91.2	97.4	100.9
PSCI ₃				96.5	102.4	104.8	105.9
PSF ₃		19.58		84.5	95.3	100.3	102.9
P_4S_3	9.2	59.8		184.1	184.1(lq)	155.0(g)	155.0
Platinum							
Pt	22.17	469	545	26.4	27.5	28.5	29.6
PtS				51.4	53.8	56.2	58.6
PtS ₂				69.9	75.9	81.9	87.9
Plutonium							
Pu, $\Delta Ht = 13.4^{122}$	2.82	333.5		39.5	46.9	40.6	40.6
$\Delta Ht = 2.9^{206}$							
$\Delta Ht = 3.3^{319}$							
$\Delta Ht = 66.9^{480}$							
PuBr ₃	55.2	236.4	292.5				
PuCl ₃	63.6	241.0	304.6				
PuF ₃	59.8		374.9				
PuF ₄	65.3		299.6				
PuF ₆	17.6	29.9	48.5				
PuI ₃	50.2						
PuO ₂		559.8					
Polonium							
Ро		102.91					
Potassium							
K	2.321	76.90	88.8	31.5(lq)	30.1	29.8	30.7
KAlCl₄				165.5	183.2	196.6	202.1
K ₃ AlCl ₆				259.2	279.5	295.8	
K ₃ AlF ₆				244.5	269.4	286.8	302.0
$\text{KBF}_4, \Delta Ht = 14.06^{283}$	17.7			130.8	142.1	150.9	167.2
KBH₄				100.9	106.0	118.4	
KBO ₂	31	238.9		76.7	89.8	98.5	
$K_2B_4O_7$	104			206.3	250.5	271.1	283.3
KBr	25.5	149.2		53.8	56.4	60.4	68.0
KCl	26.53	124.3		53.0	55.9	59.2	64.0
KClO ₄ , $\Delta Ht = 13.77^{299.6}$				138.5	165.3		
KCN, $\Delta Ht = 1.167^{-104.9}$	14.6	157.1		66.3	66.4	66.5(c)	66.5(lq)

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
K ₂ CO ₃	27.6			128.1	150.7	170.0	189.0
K₂CrO₄	29.0						
K ₂ Cr ₂ O ₇	36.7						
KF	27.2	141.8	231.8	51.0	54.3	57.4	61.2
КН				44.1	51.9		
KHF ₂ , $\Delta Ht = 11.22^{196.7}$	6.62			86.1(c)	104.6(lq)		
KI	24.0	190.9	202.4	53.9	57.3	62.6(c)	72.4(lq)
$\text{KNO}_3, \Delta Ht = 5.10^{128}$	10.1			108.4	120.5		
$K_2O, \Delta Ht = 6.20^{372}$				79.1	100.0	100.0	100.0
$\text{KO}_2, \Delta Ht = 0.302^{-79.7}$ $\Delta Ht = 0.157^{-42.3}$				83.9	90.2		
K.O.				107	121		
$K_2 O_2$ KOH $\Lambda Ht = 6.4^{243}$	8 60	142.7	107	72.5	79.0(c)	83 0(la)	83.0
KPO-	8.8	172.7	174	72.5	19.0(0)	05.0(iq)	05.0
K-PO	37.2						
K-P-O-	58.6						
KReO.	85.4						
K.S	16.15	77 3	82.5	877			
K-SiO	50	11.5	02.5	135.6	157.7	1707	170 1
$K_2 SIO_3$ K.SO. $\Lambda Ht = 8.45^{584}$	34 39			147.6	172.5	100.6	226.1
K-WO.	19.5			147.0	172.5	177.0	220.1
$K_2 T C_4$ K_ZrCl.	23.0						
Praseodymium	25.0						
Pr	6.89	331	356				
Promethium	0.07	551	550				
Pm	7 13	280	328				
Protectinium	7.15	207	520				
Pa	12 34	481					
PaCl	02.04	613					
Radium	12.1	01.5					
Ra	8 5	113					
Radon	0.5	115					
Bn	3 247	18 10					
Rhenium	5.277	10.10					
Re	60.43	704	770	26.0	26.9	28.0	20.1
ReF	00.45	58.1	117	20.0	20.9	20.0	29.1
ReF.	4.6	28.7					
ReF.	75	383					
ReO.	1.5	50.5	274.6				
ReO.	21.8		208.4				
Re-O-	64.2	74 1	200.4				
ReOCL	01.2	45.6					
ReOF.	13.5	61.0					
ReOF-	10.0	32.0	37.4				
Rhodium		52.0	57.1				
Rh	26 59	494	556	26.0	28.0	30.0	32.0
Rh ₂ O ₂	20.07		550	109.9	121.4	133.0	144 5
Rubidium				107.7	141.7	100.0	177.5
Rb	2.19	75.77		31.7	30.9	30.7	
RbBr	15.5	154.8		52.8	54.9	57.1(c)	66.9(1a)
	_ • • •					- · · • (-)	

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						C_p		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RbCl RbClO ₄ , $\Delta Ht = 12.59^{284}$	18.4	165.7		52.3	54.3	56.4(c)	64.0(lq)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RbF	17.3	177.8		51.9	57.9	64.9	72.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RbI	12.5	150.6			55.1	57.3(c)	66.9(lq)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RbNO3	5.61						
	RbOH	6.78						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ruthenium							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Run, $\Delta Ht = 0.13^{1035}$	38.59	591.6		24.5	25.7	27.0	28.2
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	$\Delta Ht = 0.96^{1500}$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Samarium							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm, $\Delta Ht = 3.11^{917}$	8.62	165	207	33.3	39.1	44.3	49.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm_2O_3 , $\Delta Ht = 1.05^{922}$				125.2	135.3	141.4	146.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Scandium							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc	14.1	332.7	376				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ScCl ₃				96.7	102.7	108.7	114.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sc_2O_3				106.4	111.1	115.8	120.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Selenium							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se, $\Delta Ht = 0.75^{150}$	6.69	95.48		28.1(c)	35.2(lq)	35.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SeF ₄		47.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SeF ₆	8.4		26.8	127.9	141.3	147.1	150.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SeO ₂		94.5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SeOCl ₂	4.23	42.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Silicon							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si	50.21	359	450	22.3	24.5	25.7	26.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiBr ₄		37.9		146.4(lq)	104.9(g)	106.2	106.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiC beta				34.1	41.8	45.9	48.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiCl ₄	7.60	28.7	29.7	96.9(g)	102.6	104.8	106.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiClF ₃		18.7		88.3	97.5	101.7	103.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiCl ₂ F ₂		21.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiF			25.7	83.1	94.1	99.4	102.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₄	0.67	12.1		51.5	65.9	76.7	84.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si ₂ H ₆		21.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si ₃ H ₈		28.5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₃ Br		24.4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₂ Br ₂		31					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiHBr ₃		34.8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₃ Cl		21		60.7	74.0	83.1	89.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₂ Cl ₂		25.2	24.2	71.5	82.9	90.0	94.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiHCl ₃		26.6	25.7	83.7	92.5	97.2	100.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₃ F		18.8		57.2	71.8	81.7	88.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiH ₂ F ₂		16.3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiHF ₃		16.2					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sil₄	19.7	56.9	79	164.0(lq)	106.0(g)	106.9	107.3
SiO2 cristobalite8.51SiO2 quartz7.760053.564.476.268.94 $\Delta Ht = 0.73^{574}$ $\Delta Ht = 2.0^{806}$ 61.370.475.077.6SiOF261.370.475.077.6SiS220.978.681.783.485.4	Si ₃ N ₄				110.7	129.7	145.8	158.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂ cristobalite	8.51						
$\begin{array}{c} \Delta Ht = 0.73^{574} \\ \Delta Ht = 2.0^{806} \\ \mathrm{SiOF}_2 & 61.3 & 70.4 & 75.0 & 77.6 \\ \mathrm{SiS}_2 & 20.9 & 78.6 & 81.7 & 83.4 & 85.4 \end{array}$	SiO_2 quartz	7.7		600	53.5	64.4	76.2	68.94
$\begin{array}{c cccccc} \Delta Ht = 2.0^{806} \\ SiOF_2 & 61.3 & 70.4 & 75.0 & 77.6 \\ SiS_2 & 20.9 & 78.6 & 81.7 & 83.4 & 85.4 \end{array}$	$\Delta H t = 0.73^{574}$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta Ht = 2.0^{806}$							
SiS ₂ 20.9 78.6 81.7 83.4 85.4	SiOF ₂				61.3	70.4	75.0	77.6
	SiS ₂	20.9			78.6	81.7	83.4	85.4

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

					C		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Silver							
Ag	11.95	258		25.7	26.8	28.4	30.0
AgBr	9.12	198		59.0	71.8(c)	62.3(la)	62.3
AgCl	13.2	199		56.9	54.4	54.4	54.4
Ag ₂ CO ₂	10.2	.,,,		2017	122.6	0	0.111
AgF	16.7	179.1		54.1(c)	58.4		
AgI. $\Delta Ht = 6.15^{147}$	9.41	143.9		64.7	56.5	56.5	58.6(la)
AgNO ₂ , $\Delta Ht = 2.5^{160}$	11.5			112.5	128.0		(1)
Ag ₂ O				73.0			
Ag ₂ S, $\Delta Ht = 5.86^{176}$	14.1			86.6	90.5	90.5	90.5
$\Delta Ht = 5.86^{586}$							
Sodium							
Na	2.60	97.42	107.5	31.5(lq)	29.3	29.9	29.0
NaAlCl₄				164.8(c)			
Na ₃ AlCl ₆				254.4	273.0		
$Na_3AlF_6, \Delta Ht = 8.37^{565}$	107.28			234.6	261.8	196.8	282.8
$\Delta Ht = 0.42^{880}$							
NaAlO ₂ , $\Delta Ht = 1.297^{467}$				83.4	94.3	98.7	102.3
NaBH ₄ , $\Delta Ht = 0.999^{-83.3}$				94.6	108.6		
NaBO ₂	36.2	239.7	322.2	75.4	88.6	97.2	103.2
$Na_2B_4O_7$	76.9			221.7	268.6	444.9(lq)	
NaBr	26.11	160.7	217.5	53.5	56.1	58.6	61.1
NaBrO ₃	28.11						
NaCl	28.16			52.3	55.5	59.3	72.5
NaClO ₃	22.1						
NaClO ₄ , $\Delta Ht = 13.98^{308}$				136.0(c)			
NaCN	8.79	148.1	172.8	68.7	68.8	69.0	
$Na_2CO_3, \Delta Ht = 0.690^{450}$	29.64			125.1	163.3	153.3	179.8
NaF	33.35	176.1	284.9	49.6	52.7	55.7	59.5
NaH				42.5	50.7		
NaI	23.60			53.8	56.2	58.5(c)	64.9(lq)
NaIO ₃ , $\Delta Ht = 35.1^{422}$							
NaNO ₃	15						
NaO ₂ , $\Delta Ht = 1.464^{-76.7}$				76.3	84.5	92.6	
$\Delta Ht = 1.548^{-49.9}$							
$Na_2O, \Delta Ht = 1.76^{750.1}$	47.7			75.8	85.7	91.3	94.9
$\Delta Ht = 11.92^{9/0.1}$							
$Na_2O_2, \Delta Ht = 5.73^{512}$				97.7	108.4	113.6	~ -
NaOH, $\Delta Ht = 72^{299.6}$	6.60	175.3	228.2	64.9(c)	86.1(lq)	84.9	83.7
Na ₂ S	19.3			20.1	20.9	21.5	22.0
Na_2S_2	51 0			104.3	115.4(c)	124.7(lq)	124.7
Na_2SiO_3	51.8			127.8	147.1	159.7	169.4
$Na_2Si_2O_5, \Delta Ht = 0.42^{6/6}$	35.0			183.4	217.6	235.2	292.9
$Na_2SO_4, \Delta Ht = 10.91^{241}$	23.6			145.1	175.3	187.3	200.3
$Na_2 I I U_3$	/0.3			155 0	170.0	100 7	
$Na_2 W U_4, \Delta Ht = 30.85^{367.7}$	23.80			155.5	1/8.2	198./	
$\Delta H I = 4.113^{300.7}$							
Substituting $S_{2} = A_{14} = 0.94547$	7 40	126.0	164.0	77.0	20.9	21.0	24.1
$SI, \Delta HI = 0.84^{-4}$	1.43	100.9	104.0	21.8 70.0	27.8 92.7	51.9 97.6(~)	34.1 116 4(1-)
$SIDI_2, \Delta III = 12.2^{0.0}$	10.1	174.1	210	19.0	02.1	01.0(C)	110.4(IQ)

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
$SrCl_2, \Delta Ht = 6.0^{727}$	17.5	248.1	356	78.9	83.7	90.8	105.8
SrCO ₃ , $\Delta Ht = 19.7^{924}$	40			95.1	107.1	116.1	124.0
$SrF_{2}, \Delta Ht = 0.04^{1148}$ $\Delta Ht = 0.04^{1211}$	28.5	320	451.0	74.7	79.8	81.0	85.8
SrI ₂ SrH ₂	19.67 23	189.7	286.6	80.7	86.3	91.8(c)	110.0(lq)
SrMoO₄				131.5	145.4	154.0	161.2
SrO	81			48.5	52.0	54.3	56.1
SrO ₂				81.3	85.0		
Sr(OH) ₂	23			88.5	115.0(c)	157.8(lq)	157.8
SrS	63			50.2	53.2	54.9	56.2
SrSO.	36			113.5	124.6	135.7	146.9
Sulfur							
S monoclinic $\Delta Ht = 0.400^{95.2}$	1.727	45	62.2	23.2	23.3(lq)	21.8(g)	21.5
S ₈				167.1	177.9	186.7	193.6
SCl ₂		32.4		53.6	56.0	56.9	57.4
S_2Cl_2		36.0		124.3(lq)	80.8(g)	82.6	83.5
SF ₄		26.4		87.5	97.3	101.7	103.8
SF ₆	5.02	17.1	9.0	116.4	136.1	144.8	149.3
$S_{2}F_{10}$				211.4	246.4	261.8	269.2
SO ₂	7.40	24.94	22.92	43.43	48.9	52.3	54.3
SO ₃	8.60	40.7	43.14	57.7	67.3	72.8	76.0
SOCI		31.7	31	71.3	76.4	78.9	80.3
SOF		21.8		64.3	72.4	76.4	78.6
SO ₂ Cl ₂		31.38	30.1	85.2	94.5	99.4	102.1
SO ₂ CIF				81.1	92.1	97.9	101.1
SO ₂ F ₂		20.0		76.5	89.3	96.1	99.9
Tantalum		2010		, 012	0,10		
Тя	36 57	732.8	778	25.8	26.8	27.5	27.9
TaB.	83.7			57.6	66.6	72.2	83 3
TaBr-	45.6	62.3		168.2	0010		0010
TaC	105	0210		41.7	46.5	49.1	51.1
Ta ₂ C	100			66.7	72.4	76.2	79.5
TaCle	41.6	54.8	94.1	148.(c)	129.(g)	131	132
TaF.	18.8	56.9		182.0(la)	(8)		
TaL	41.8	64.9		164.6	182.0(c)	120.0(g)	120.6
TaN	67	0.115		45.4	51.9	58.5	65.0
TaO.	07			47.7	52 3	54.6	55.7
Ta-O-	120			147.5	164.4	175.2	182.8
Technetium	120			111.0	10	110.2	102.0
Te	33 29	585.2		25.1	26.8	28 5	30.1
TcF.	4 72	31.1		23.1	20.0	20.5	5011
T_{cO} F	22.5	30.5					
Tellurium	22.5	57.5					
Te	17 40	114 1		28.0	37 3(0)	37.7(1a)	377
TeCl	17.47	77		138.9(0)	222.5(0)	108.8(m)	108.8
	10.0	312		130.7(0)	222.0(IY)	100.0(g)	100.0
		34.3	<u> </u>	122.2	1/2 8	149.7	1517
		20.5	20.2	132.2	143.0	140./	131.7
1 ^c 2 ^r 10		39.3					

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
TeH ₂		23.9					
TeO ₂	29.1			67.9	72.5	76.1	79.2
Terbium							
Tb	10.15	293	389				
Thallium							
Tl, $\Delta Ht = 0.38^{234}$	4.14	165	181	27.5(c)	30.1(lq)	30.1	30.1
TlBr	16.4	99.6		53.5	59.5(c)	75.5(lq)	67.8
TICI	15.56	102.2		53.6	55.2(c)	59.4(lq)	59.4
Tl ₂ CO ₃	18.4						
TIF	13.87	115.9			66.8(lq)	67.3	
TlI	14.73	104.7		53.9	60.6(c)	72.0(lq)	72.0
TINO₃	9.56						
Tl ₂ O	30.3						
Tl ₂ O ₃	53						
Tl ₂ S	12	154					
Tl_2SO_4	23.0						
Thorium							
Th, $\Delta Ht = 2.73^{1360}$	13.81	514		28.4	30.5	32.7	34.4
ThBr ₄	66.9						
ThCl ₄ , $\Delta Ht = 5.0^{406}$	40.2	146.4		126.7	132.7	136.4	139.6
ThF₄	44.0	258					
ThI_4	61.4	56.9					
Th_3N_4				169.5	196.5	222.7	
ThO ₂	1218.0			67.4	72.4	75.3	77.7
ThOCl ₂				97.0	102.5	105.9	108.6
$Th(SO_4)_2$				197.0	243.2	289.4	
Thullium							
Im	16.84	247	232.2				
l'in	=			•••	2 222		
Sn white, $\Delta Ht = 2.09^{13}$	7.03	296.1		28.9	28.9(c)	28.7(lq)	28.7
SnBr ₂	7.2	102		150.04	106.04	107.2	107.5
SnBr ₄	11.9	43.5		158.0(lq)	106.8(g)	107.3	107.5
SnCl ₂	12.8	80.8		83.3(c)	92.1(lq)	92.1	92.1
	9.20	34.9 10.1					
SnH ₄		19.1					
5111 ₂ SnO		105		15 9	19 7	517	516
$S_{nO} = A H_{t} = 1.99410$				43.0	40.7	J1.7 70 5	01 0
$\Delta Ht = 1.26540$				04.4	73.9	78.5	01.0
$\Delta H t = 1.20^{-12}$				50.5	55 5	61 3	
$SnS, \Delta m = 0.07$				50.5 71.0	55.5 75 A	70.0	825
Titanium				/1.9	75.4	19.0	02.5
Ti $AHt = 1.2893$	14 15	125	460	26.0	28.6	20.5	32.1
$T_{iB} = 4.2$	14.15	723	407	40.3	48.6	50.0	51.0
TiB.	100.4			54.9	40.0 66 2	72 1	769
TiBr.	100.4		206.2	79.9	82.1	84 4	867
TiBr			138.8	105.8	125.5	147.3	156.7
TiBr	12.9	44.4	10010	151.9(la)	106.1(g)	106.9	107.3
TiC	71			40.7	47.7	49.9	51.2
TiCl ₂		232	212	73.4	78.4	82.2	85.9
-							

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					\mathbf{C}_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
TiCl ₃		124	166.3	98.6	102.0	104.4	106.7
TiCl ₄	9.97	36.2		146.2(lq)	104.4(g)	106.0	106.7
TiF ₃			222	93	98	103	109
TiF₄			97.9	126.7(c)	100.2(g)	103.3	104.9
TiH ₂				39.3	53.8	63.1	68.5
Til			217	87.0	88.4	89.9	91.3
Til				117.5	119.0	120.4(c)	20.6(g)
TiL. $\Delta Ht = 9.9^{106}$	19.8	58.4		148.1(c)	156.6(la)	25.7(g)	27.8
TiN	66.9			43.8	48.7	50.6	52.1
TiO. $\Delta Ht = 4.2^{992}$	41.8			45.0	50.8	55.2	59.1
TiO, rutile	58.0		673	63.6	70.9	73.9	75.3
$Ti_{0}O_{1} \Lambda Ht = 1.138^{197}$	105		075	117.5	136.4	143.0	146.4
Tungsten	105			117.5	120.1	1 1010	1.0.1
W	52 31	806.7	851	24.9	25.9	26.7	27.6
WBr	17.1	81.5	001	166 (c)	182 (la)	132.2(m)	132.5
WBr	17.1	01.5		100.(c) 102 5(c)	156.3(q)	157.0	157.4
WC1				135.3	130.3(g) 146.2(c)	106.7(a)	107.7
WCl ₄	20.5	69.1	100	155.5	140.2(c) 120.5(c)	100.7(g)	107.2
WCI_5 WCI AH = 4 1177	20.5	52.7	70.2	107.4(c)	129.3(g)	151.0 155.9(x)	151.0
$WCI_6, \Delta Hi = 4.1^{117}$	0.00	52.1	79.2	192.5(0)	200.8(iq)	133.0(g)	130.0
$W(CO)_6$	4 10	27.05	72.0	122 4(-)	145.0	150 2	152.0
$WF_6, \Delta H l = 2.067$	4.10	27.03	20.05	152.4(g)	145.0	130.5	135.0
WO_2	72.4	76.6	000.3 550.2	03.4	/1.5	/5.5	/8.2
$WO_3, \Delta Ht = 1.49'''$	/3.4	/6.6	550.2	82.2	93.1	98.2	101./
WOCI4	45	67.8		157.(c)	123.2(g)	127.0	129.1
WOF ₄	5.0	56		107.8	119.8	125.0	127.8
WO_2CI_2				115.1	135.6(c)		
Uranium	0.14	4177 1	505	20.0	24.9	A1 C	41.0
$0, \Delta Ht = 2.93^{5/2}$	9.14	417.1	525	29.0	34.8	41.0	41.8
$\Delta Ht = 4.79172$	40.0						
UBr ₃	43.9	110.0		101 /	140.1()	160.041.	1 (2) 0
	55.2	119.2		131.4	140.1(c)	103.2(lq)	103.2
UC	16.1	102.0		04.0	38.3	00.3	02.2
	46.4	193.0		102.8	107.7	113.0	119.9
	44.8	141.4		126.1	134.4	142.0	162.5
	35.6	75.3		150.9	159.8(c)	186./(lq)	134.5(g)
UCI6	20.9	50.2		182.8	214.0	158.8	168.0
UF ₃	10.7			99.0	104.9	111.0	117.2
UF_4	42.7	221.8		119.1	125.0	130.9	136.8
UFs	33.5			136.4	143.1(c)	166.6(lq)	
UF ₆	19.19	28.90	48.20	140.5(g)	148.7	152.2	154.4
UH ₃				50.9	57.4	66.1	
UI_4	70.7	130.6		140.6	149.5(c)	165.7(lq)	165.7
UN				52.2	56.3	58.3	59.8
$\cup O_2$				72.7	79.8	83.2	85.5
UO ₃				88.9	95.3	99.0	
U_3O_8				266.0	290.7	304.2	
UOCl ₂				101.9	109.6	115.1	
UO_2Cl_2				118.1	126.2	130.0	
UO_2F_2				113.9	122.5	126.7	129.5

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Vanadium							
V	21.5	459	516	26.2	27.5	28.7	30.1
VCl ₄	2.30	41.4	42.5	161.7(lq)	100.1(g)	102.6	104.7
VF ₅	50.0	44.5					
VN, $\Delta H dec = 227.6^{2346}$			741	43.3	48.2	51.2	53.7
VO	63			49.6	53.5	57.1	60.5
$VO_2, \Delta Ht = 4.21^{72}$	56.9			67.2	74.3	77.8	80.2
$V_2O_3, \Delta Ht = 1.623^{-104.3}$	117.2			117.5	127.3	132.6	138.0
$V_2O_4, \Delta Ht = 9.0^{67}$	112.1			135.3	148.4	155.5	160.7
V_2O_5	64.5	263.6		151.0	168.3	177.3	183.7
VOCl ₃		36.8					
Xenon							
Xe	1.81	12.64		20.79(g)	20.79	20.79	20.79
Ytterbium							
Yb	7.66	159					
Yttrium							
Y, $\Delta Ht = 4.97^{1485}$	11.42	365	425	27.3	28.5	29.9	31.5
$Y_2O_3, \Delta Ht = 1.30^{1057}$	105			113.3	121.3	124.7	126.9
Zinc							
Zn	7.32	123.6		26.3	28.6(c)	31.4(lq)	31.4
ZnBr ₂	16.7	118		70.1(c)	78.8(lq)	113.8	61.5(g)
ZnCl ₂	10.25	126		69.9(c)	100.8(lq)	100.8	100.8
ZnF ₂		190.1		66.9	69.1	71.4	73.7
ZnO, $\Delta Ht = 13.4^{1020}$	52.3			49.4	52.4	54.1	55.5
Zn_2SiO_4				129.4	141.4	153.4	165.4
$ZnSO_4, \Delta Ht = 20.3^{740}$				116.0	137.4	139.7	142.0
Zirconium							
Zr, $\Delta Ht = 4.02^{862}$	21.00	573	610.0	25.9	27.3	29.0	31.1
ZrB ₂	104.6			57.5	65.8	69.7	72.1
ZrBr ₂	63	131.5	230	87.9	90.2	92.5	94.8
ZrBr ₄				129.3	133.3(c)	107.2(g)	107.6
ZrC	79.5			43.6	49.4	52.3	53.4
ZrCl ₂	27	45.0		76.0	80.0	83.1	85.9
ZrCl ₃			190	101	106	109	112
ZrCl ₄	50		110.5	125.4	131.1(c)	106.5(g)	107.1
ZrF ₂	33	289	404	70	76	81	84
ZrF ₄	64.2		237.7	113.5	124.0	129.4	134.1
ZrI_2	25.1	113		95.0	96.6	106.1	123.6
ZrI ₃			176	105.9	106.7	107.1(c)	82.9(g)
ZrI_4			126.4	131.0	134.6(c)	107.6(g)	107.6
ZrN	67.4			44.8	48.7	50.9	52.7
$ZrO_2, \Delta Ht = 5.02^{1205}$	87.0	624		63.9	70.2	73.5	75.7
ZrSiO ₄				114.6	133.7	142.7	147.3

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (*Continued*)

1.16 ACTIVITY COEFFICIENTS

The activity coefficient is the ratio of the chemical activity of any substance to its molar concentration. The measured concentration of a substance may not be an accurate indicator of its chemical effectiveness, as represented by the equation for a particular reaction, in which case an activity coefficient is arbitrarily established and used instead of the concentration...

Although it is not possible to measure an individual ionic activity coefficient, f_i , it may be estimated from the following equation of the Debye-Hückel theory:

$$-\log f_i = \frac{Az_i^2 \sqrt{I}}{I + B\dot{a} \sqrt{I}}$$

where *I* is the ionic strength of the medium, and a is the ion-size parameter—the effective ionic radius (Table 1.32). The values of *A* and *B* vary with the temperature and dielectric constant of the solvent; values from 0 to 100C for aqueous medium (a in angstrom units) are listed in Table 1.59. Corresponding values of *A* and *B* for unit weight of solvent (when employing molality) can be obtained by multiplying the corresponding values for unit volume (molarity units) by the square root of the density of water at the appropriate temperature.

The ionic strength can be estimated from the summation of the product molarity times ionic charge squared for all the ionic species present in the solution, i.e., $I = 0.5 (c_1 z_1^2 + c_2 z_2^2 + \dots + c_i z_i^2)$.

Values for the activity coefficients of ions in water at 25°C are given in Table 8.1 in terms of their effective ionic radii.

At moderate ionic strengths a considerable improvement is effected by subtracting a term *bI* from the Debye-Hückel expression; *b* is an adjustable parameter which is 0.2 for water at 25°C. Table 1.58 gives the values of the ionic activity coefficients (for z_i from 1 to 6) with *å* taken to be 4.6Å.

In general, the mean ionic activity coefficient is given by

$$f_{\pm} = {}^{(x+y)} \sqrt{f_{+}^{x} f_{-}^{y}}$$

where f_+ , f_- are the individual ionic activity coefficients, and *x*, *y* are the charge numbers (z_+, z_-) of the respective ions. In binary electrolyte solution.

$$f_{\pm} = \sqrt{f_+ f_-}$$

In ternary electrolytes, e.g., BaCl₂ or K₂SO₄,

$$f_{\pm} = \sqrt[3]{f_+ f_-^2}$$
 or $f_{\pm} = \sqrt[3]{f_+^2 f_-}$

In quaternary electrolytes, e.g., LaCl₃ or K₃[Fe(CN)₆],

$$f_{\pm} = \sqrt[4]{f_+ f_-^3}$$
 or $f_{\pm} = \sqrt[4]{f_+^3 f_-}$

		f_i at I	onic Strength	ı of	
Effective Ionic Radii å (in Å)	0.001	0.005	0.01	0.05	0.1
Univalent Ions					
9	0.967	0.933	0.914	0.86	0.83
8	0.966	0.931	0.912	0.85	0.82
7	0.965	0.930	0.909	0.845	0.81
6	0.965	0.929	0.907	0.835	0.80
5	0.964	0.928	0.904	0.83	0.79
4	0.964	0.928	0.902	0.82	0.775
3.5	0.964	0.926	0.900	0.81	0.76
3	0.964	0.925	0.899	0.805	0.755
2.5	0.964	0.924	0.898	0.80	0.75
Divalent Ions					
8	0.872	0.755	0.69	0.52	0.45
7	0.872	0.755	0.685	0.50	0.425
6	0.870	0.749	0.675	0.485	0.405
5	0.868	0.744	0.67	0.465	0.38
4.5	0.868	0.741	0.663	0.45	0.36
4	0.867	0.740	0.660	0.445	0.355
Trivalent Ions					
6	0.731	0.52	0.415	0.195	0.13
5	0.728	0.51	0.405	0.18	0.115
4	0.725	0.505	0.395	0.16	0.095
Tetravalent Ions					
11	0.588	0.35	0.255	0.10	0.065
5	0.57	0.31	0.20	0.048	0.021
Pentavalent Ions					
9	0.43	0.18	0.105	0.020	0.009

TABLE 1.58Individual Activity Coefficients of Ions in Water at 25°C

TABLE 1.59 Constants of the Debye-Hückel Equation from 0 to 100°C

$$-\log f_i = \frac{Az_i^2 \sqrt{I}}{I + Ba^2 \sqrt{I}}$$

	Unit Volum	ne of Solvent	T	Unit Volume of Solvent		
°C	$^{\circ}$ C A B	°C	A	В		
0	0.4918	0.3248	55	0.5432	0.3358	
5	0.4952	0.3256	60	0.5494	0.3371	
10	0.4989	0.3264	65	0.5558	0.3384	
15	0.5028	0.3273	70	0.5625	0.3397	
20	0.5070	0.3282	75	0.5695	0.3411	
25	0.5115	0.3291	80	0.5767	0.3426	
30	0.5161	0.3301	85	0.5842	0.3440	
35	0.5211	0.3312	90	0.5920	0.3456	
40	0.5262	0.3323	95	0.6001	0.3471	
45	0.5317	0.3334	100	0.6086	0.3488	
50	0.5373	0.3346				

The values for unit weight of solvent (molality scale) can be obtained by multiplying the corresponding values for unit volume by the square root of the density of water at the appropriate temperature.

TABLE 1.60 Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25°C

The values were calculated from the modified Debye-Hückel equation utilizing the modifications proposed by Robinson and by Guggenheim and Bates:

$$-\frac{\log f_i}{z_i^2} = \frac{0.511I}{1+1.5I} - 0.2I$$

where *I* is the ionic strength and a is assumed to be 4.6 Å.

			f_i for $z_i =$								
Ι	$-\frac{\log_{10} f_i}{z_i^2}$	1	2	3	4	5	6				
0.05	0.0756	0.840	0.498	0.209	0.0617	0.0129	0.00190				
0.1	0.0896	0.814	0.438	0.156	0.0369	0.00576	0.000595				
0.2	0.0968	0.800	0.410	0.138	0.0283	0.00380	0.000328				
0.3	0.0936	0.806	0.422	0.144	0.0318	0.00457	0.000427				
0.4	0.0858	0.821	0.454	0.169	0.0424	0.00716	0.000815				
0.5	0.0753	0.841	0.500	0.210	0.0624	0.0131	0.00195				
0.6	0.0631	0.865	0.559	0.2705	0.0978	0.0265	0.00535				
0.7	0.0496	0.892	0.633	0.358	0.161	0.05755	0.0164				
0.8	0.0352	0.922	0.723	0.482	0.273	0.132	0.0541				
0.9	0.0201	0.955	0.831	0.659	0.477	0.314	0.189				
1.0	0.0044	0.900	0.960	0.913	0.850	0.776	0.694				

1.17 BUFFER SOLUTIONS

A buffer solution is a solution that resists changes in pH when small quantities of an acid or an alkali are added.

An acidic buffer solution is a solution that has a pH less than 7. Acidic buffer solutions are commonly made from a weak acid and one of its salts. A common example is a mixture of ethanoic acid and sodium ethanoate in solution. In this case, if the solution contained equal molar concentrations of both the acid and the salt, the pH would be 4.76. The pH of the buffer solution can be changed by changing the ratio of acid to salt, or by choosing a different acid and one of its salts.

An alkaline buffer solution has a pH greater than 7. Alkaline buffer solutions are commonly made from a weak base and one of its salts. An example is a mixture of ammonia solution and ammonium chloride solution. If these were mixed in equal molar proportions, the solution would have a pH of 9.25.

To prepare the standard pH buffer solutions recommended by the National Bureau of Standards (U.S.), the indicated weights of the pure materials should be dissolved in water of specific conductivity not greater than 5 micromhos. The tartrate, phthalate, and phosphates can be dried for 2 h at 100°C before use. Potassium tetroxalate and calcium hydroxide need not be dried. Fresh-looking crystals of borax should be used. Before use, excess solid potassium hydrogen tartrate and calcium hydroxide must be removed. Buffer solutions pH 6 or above should be stored in plastic containers and should be protected from carbon doxide with soda-lime traps. The solutions should be replaced within 2 to 3 weeks, or sooner if formation of mold is noticed. A crystal of thymol may be added as a preservative.

1.17.1 Standards for pH Measurement of Blood and Biological Media

Blood is a well-buffered medium. In addition to the NBS phosphate standard of 0.025 M (pH_s = 6.480 at 38°C), another reference solution containing the same salts, but in the molal ratio 1:4, has an ionic

strength of 0.13. It is prepared by dissolving 1.360 g of KH_2PO_4 and 5.677 g of Na_2HPO_4 (air weights) in carbon dioxide-free water to make 1 liter of solution. The pH_s is 7.416 ± 0.004 at 37.5 and 38°C.

The compositions and pH_s values of *tris*(hydroxymethyl)aminomethane, covering the pH range 7.0 to 8.9, are listed in Table 1.63.

When there are two or more acid groups per molecule, or a mixture is composed of several overlapping acids, the useful range is larger. Universal buffer solutions consist of a mixture of acid groups which overlap such that successive pK_a values differ by 2 pH units or less. The Prideaux-Ward mixture comprises phosphate, phenyl acetate, and borate plus HCl and covers the range from 2 to 12 pH units. The McIlvaine buffer is a mixture of citric acid and Na₂HPO₄ that covers the range from pH 2.2 to 8.0. The Britton-Robinson system consists of acetic acid, phosphoric acid, and boric acid plus NaOH and covers the range from pH 4.0 to 11.5. A mixture composed of Na₂CO₃, NaH₂PO₄, citric acid, and 2-amino-2-methyl-1,3-propanediol covers the range from pH 2.2 to 11.0.

General directions for the preparation of buffer solutions of varying pH but fixed ionic strength are given by Bates.* Preparation of McIlvaine buffered solutions at ionic strengths of 0.5 and 1.0 and Britton-Robinson solutions of constant ionic strength have been described by Elving et al.† and Frugoni,[‡] respectively.

^{*}Bates, Determination of pH, Theory and Practice, Wiley, New York, 1964, pp. 121–122.
†Elving, Markowitz, and Rosenthal, Anal. Chem., 28:1179 (1956).
*Frugoni, Gazz. Chim. Ital., 87:L403 (1957).

Temperature °C	Secondary standard 0.05 <i>M</i> K tetraoxalate	KH tartrate (saturated at 25°C)	0.05 <i>M</i> KH ₂ citrate	0.05 <i>M</i> KH phthalate	0.025 <i>M</i> KH ₂ PO ₄ , 0.025 <i>M</i> Na ₂ HPO ₄	0.0087 <i>M</i> KH ₂ PO ₄ , 0.0302 <i>M</i> Na ₂ HPO ₄	0.01 <i>M</i> Na ₂ B ₄ O ₇	0.025 <i>M</i> NaHCO ₃ , 0.025 <i>M</i> Na ₂ CO ₃	Secondary standard Ca(OH) ₂ (saturated at 25°C)
0 5 10 15 20	1.666 1.668 1.638 1.642 1.644		3.860 3.840 3.820 3.802 3.788	4.003 3.999 3.997 3.998 4.002	6.984 6.951 6.923 6.900 6.881	7.534 7.500 7.472 7.448 7.429	9.464 9.395 9.332 9.276 9.225	10.317 10.245 10.179 10.118 10.062	13.423 13.207 13.003 12.810 12.627
25 30 35 38 40	1.646 1.648 1.649 1.650	3.557 3.552 3.549 3.548 3.547	3.776 3.766 3.759 3.756 3.753	4.005 4.011 4.018 4.030 4.035	6.865 6.853 6.844 6.840 6.838	7.413 7.400 7.389 7.384 7.380	9.180 9.139 9.102 9.088 9.068	10.012 9.966 9.925 9.910 9.889	12.454 12.289 12.133 12.043 11.984
45 50 55 60	1.653 1.660	3.547 3.549 3.554 3.560	3.749	4.047 4.050 4.075 4.081	6.834 6.833 6.834 6.836	7.373 7.367	9.038 9.011 8.985 8.962	9.828	11.841 11.705 11.574 11.449
70 80 90 95	1.671 1.689 1.72 1.73	3.580 3.609 3.650 3.674		4.116 4.164 4.205 4.227	6.845 6.859 6.877 6.886		8.921 8.885 8.850 8.833		
Dilution value $\Delta p H_{1/2}$	+0.186	+ 0.049	0.024	+0.052	+ 0.080	+0.070	+ 0.01	0.079	-0.28

TABLE 1.61 National Bureau of Standards (U.S.) Reference pH Buffer Solutions

Source: R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 66A:179(1962) and B. R. Staples and R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 73A:37 (1969). Note: The uncertainty is ±0.003 in pH in the range 0–50°C, rising to ±0.02 above 70°C.

Standard	Weight, g
$KH_3(C_2O_4)_2 \cdot 2H_2O, \ 0.05M$	12.61
Potassium hydrogen tartrate, about 0.034M	Saturated at 25°C
Potassium hydrogen phthalate, 0.05M	10.12
Phosphate:	
$\dot{\rm KH}_{2}\rm PO_{4}, 0.025M$	3.39
$Na_2HPO_4, 0.025M$	3.53
Phosphate:	
KH ₂ PO ₄ , 0.008665M	1.179
Na ₂ HPO ₄ , 0.03032M	4.30
$Na_2B_4O_7 \cdot 10H_2O_1, 0.01M$	3.80
Carbonate:	
NaHCO ₃ , 0.025M	2.10
$Na_2CO_3, 0.025M$	2.65
$Ca(OH)_2$, about $0.0203M$	Saturated at 25°C

TABLE 1.62 Compositions of Standard pH Buffer Solutions [National Bureau of Standards (U.S.)]

TABLE 1.63 Composition and pH Values of Buffer Solutions 8.107

Values based on the conventional activity pH scale as defined by the National Bureau of Standards (U.S.) and pertain to a temperature of 25°C [Ref: Bower and Bates, *J. Research Natl. Bur. Standards (U.S.)*, **55:**197 (1955) and Bates and Bower, *Anal. Chem.*, **28:**1322 (1956)]. Buffer value is denoted by column headed β .

25 ml 0.2 <i>M</i> KCl + <i>x</i> ml 0.2 <i>M</i> HCl, Diluted to 100 ml		50 ml $0.1M$ KH Phthalate + x ml $0.1M$ HCl, Diluted to 100 ml			50 ml $0.1M$ KH Phthalate + x ml $0.1M$ NaOH, Diluted to 100 ml			
pН	x	β	pН	x	β	pH	x	β
1.00 1.20 1.40 1.60 1.80 2.00 2.20	67.0 42.5 26.6 16.2 10.2 6.5 3.9	0.31 0.34 0.19 0.077 0.049 0.030 0.022	2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80	49.5 42.2 35.4 28.9 22.3 15.7 10.4 6.3 2.9	0.036 0.033 0.032 0.030 0.026 0.023 0.018 0.015	$\begin{array}{r} 4.20 \\ 4.40 \\ 4.60 \\ 4.80 \\ 5.00 \\ 5.20 \\ 5.40 \\ 5.60 \\ 5.80 \end{array}$	3.0 6.6 11.1 16.5 22.6 28.8 34.1 38.8 42.3	0.017 0.020 0.025 0.029 0.031 0.030 0.025 0.020 0.015

50 ml $0.1M$ KH ₂ PO ₄ + x ml $0.1M$ NaOH, Diluted to 100 ml		50 ml 0.1 <i>M Tris</i> (hydroxy- methyl)aminomethane + x ml 0.1 <i>M</i> HCl, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.028$ I = 0.001x		50 ml of a Mixture 0.1 <i>M</i> with Respect to Both KCl and H_3BO_3 + <i>x</i> ml 0.1 <i>M</i> NaOH, Diluted to 100 ml					
pΗ	x	β	pН	x	β	pH	x	β	
5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00	$\begin{array}{c} 3.6\\ 5.6\\ 8.1\\ 11.6\\ 16.4\\ 22.4\\ 29.1\\ 34.7\\ 39.1\\ 42.4\\ 44.5\\ 46.1 \end{array}$	$\begin{array}{c} 0.010\\ 0.015\\ 0.021\\ 0.027\\ 0.033\\ 0.031\\ 0.025\\ 0.020\\ 0.013\\ 0.009\\ \end{array}$	7.007.207.407.607.808.008.208.408.608.809.00	46.6 44.7 42.0 38.5 34.5 29.2 22.9 17.2 12.4 8.5 5.7	$\begin{array}{c} 0.012\\ 0.015\\ 0.018\\ 0.023\\ 0.029\\ 0.031\\ 0.026\\ 0.022\\ 0.016\\ \end{array}$	8.00 8.20 8.40 8.60 9.00 9.20 9.40 9.60 9.80 10.00 10.20	3.9 6.0 8.6 11.8 15.8 20.8 26.4 32.1 36.9 40.6 43.7 46.2	0.011 0.015 0.018 0.022 0.027 0.029 0.027 0.022 0.016 0.014	
50 n + Dil Δpl	hl 0.025 <i>M</i> B x ml 0.1 <i>M</i> H luted to 100 H/ $\Delta t \approx -0$. I = 0.025	orax ICl, ml 008	$50 n + x$ Dil Δpl $I = 0$	hl 0.025 <i>M</i> B ml 0.1 <i>M</i> Na luted to 100 H/ $\Delta t \approx -0$.	orax aOH, ml 008 - x)	50 ml 0.05 <i>M</i> NaH0 + x ml 0.1 <i>M</i> NaC Diluted to 100 m $\Delta pH/\Delta t \approx -0.00$ I = 0.001(25 + 2)		HCO ₃ JaOH,) ml 0.009 + 2x)	
pН	x	β	pH	x	β	pH	x	β	
8.00 8.20 8.40 8.60 8.80	20.5 19.7 16.6 13.5 9.4	0.010 0.012 0.018 0.023	9.20 9.40 9.60 9.80 10.00	0.9 3.6 11.1 15.0 18.3	0.026 0.022 0.018 0.014	9.60 9.80 10.00 10.20 10.40	5.0 6.2 10.7 13.8 16.5	0.014 0.016 0.015 0.013	
50 ml 0.025 <i>M</i> Borax + x ml 0.1 <i>M</i> HCl, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.008$ I = 0.025		50 ml 0.025 <i>M</i> Borax + x ml 0.1 <i>M</i> NaOH, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.008$ I = 0.001(25 + x)		50 ml 0.05 <i>M</i> NaHCO ₃ + x ml 0.1 <i>M</i> NaOH, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.009$ I = 0.001(25 + 2x)		HCO_3 aOH, ml 009 2x)			
pH	x	β	pH	x	β	pН	x	β	
9.00 9.10	4.6 2.0	0.026	10.20 10.40 10.60	20.5 22.1 23.3	0.009 0.007 0.005	10.60 10.80 11.00	19.1 21.2 22.7	0.012 0.009	

TABLE 1.63 Composition and pH Values of Buffer Solutions 8.107 (Continued)

50 ml 0.05 <i>M</i> Na ₂ HPO ₄ + x ml 0.1 <i>M</i> NaOH, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.025$ I = 0.001(77 + 2x)			2	25 ml 0.2 <i>M</i> KCl + <i>x</i> ml 0.2 <i>M</i> NaOH, Diluted to 100 ml $\Delta pH/\Delta t \approx -0.033$ <i>y</i> = 0.001(50 + 2 <i>x</i>))	
pH	x	β	pH x µ			
11.00 11.20 11.40 11.60 11.80 11.90	4.1 6.3 9.1 13.5 19.4 23.0	0.009 0.012 0.017 0.026 0.034 0.037	12.00 12.20 12.40 12.60 12.80 13.00	6.0 10.2 16.2 25.6 41.2 66.0	0.028 0.048 0.076 0.12 0.21 0.30	

TABLE 1.63	Composition and pH Values of Buffer Solutions 8.107	(Continued)

The phosphate-succinate system gives the values of pH_s

$\frac{\text{Molality}}{\text{KH}_2\text{PO}_4} = \frac{\text{Molality}}{\text{Na}_2\text{HC}_6\text{H}_5\text{O}_7}$	pH _s	$\Delta(pH_s/\Delta t)$
0.005	6.251	-0.000 86 deg-1
0.010	6.197	-0.000 71
0.015	6.162	
0.020	6.131	
0.025	6.109	-0.004

TABLE 1.64 Standard Reference Values pH for the Measurement
 of Acidity in 50 Weight Percent Methanol-Water

Temperature, ℃	0.02m HOAc, 0.02m NaOAc, 0.02m NaCl	0.02 <i>m</i> NaHSuc, 0.02 <i>m</i> NaCl	0.02m KH ₂ PO ₄ , 0.02m Na ₂ HPO ₄ , 0.02m NaCl
10	5.560	5.806	7.937
15	5.549	5.786	7.916
20	5.543	5.770	7.898
25	5.540	5.757	7.884
30	5.540	5.748	7.872
35	5.543	5.743	7.863
40	5.550	5.741	7.858

Suc = succinate

OAc = acetate Suc = succina Reference: R. G. Bates, Anal Chem., 40(6):35A (1968).

TABLE 1.65	pH Values for Buffer Solutions in Alcohol-Water Solvents at 25°C
------------	--

Solvent composition			
(weight per	$0.01M H_2 C_2 O_4,$	0.01M H ₂ Suc,	0.01 <i>M</i> HSal,
cent alcohol)	0.01M NH ₄ HC ₂ O ₄	0.01M LiHSuc	0.01 <i>M</i> NaSal
	Methanol-Water	r Solvents	
0	2.15	4.12	
10	2.19	4.30	
20	2.25	4.48	
30	2.30	4.67	
40	2.38	4.87	
50	2.47	5.07	
60	2.58	5.30	
70	2.76	5.57	
80	3.13	6.01	
90	3.73	6.73	
92	3.90	6.92	
94	4.10	7.13	
96	4.39	7.43	
98	4.84	7.89	
99	5.20	8.23	
100	5.79	8.75	7.53
	Ethanol-Water	Solvents	
0	2.15	4.12	
30	2.32	4.70	
50	2.51	5.07	
71.9	2.98	5.71	
100			8.32
	Suc = succinate	Sal = salicylate	

Liquid-junction potential not included.

1.17.2 Buffer Solutions Other Than Standards

The range of the buffering effect of a single weak acid group is approximately one pH unit on either side of the pK_a . The ranges of some useful buffer systems are collected in Table 1.66. After all the components have been brought together, the pH of the resulting solution should be determined at the temperature to be employed with reference to standard reference solutions. Buffer components should be compatible with other components in the system under study; this is particularly significant for buffers employed in biological studies. Check tables of formation constants to ascertain whether metal-binding character exists.

Materials	Acronym	pK _a	pH range
<i>p</i> -Toluenesulfonate and <i>p</i> -toluenesulfonic acid		1.7	1.1-3.3
Glycine and HCl		2.35	1.0 - 3.7
Citrate and HCl		3.13	1.3-4.7
Formate and HCl		3.71	2.8 - 4.6
Succinate and borax		4.21, 5.64	3.0 - 5.8
Phenyl acetate and HCl		4.31	3.5 - 5.0
Acetate and acetic acid		4.76	3.7-5.6
Succinate and succinic acid		4.21, 5.64	4.8-6.3
2-(N-Morpholino)ethanesulfonic acid	MES	6.1	5.5-6.7
Bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane	BIS-TRIS	6.5	5.8-7.2
KH_2PO_4 and borax		2.2, 7.2; 9	5.8-9.2
<i>N</i> -(2-Acetamido)-2-iminodiacetic acid	ADA	6.6	6.0-7.2
2-[(2-Amino-2-oxoethyl)amino]ethanesulfonic acid	ACES	6.8	6.1-7.5
Piperazine- N, N' -bis(2-ethanesultonic acid)	PIPES	6.8	6.1-7.5
3-(N-Morpholino)-2-hydroxypropanesultonic acid	MOPSO	6.9	6.2-7.6
1,3-Bis[tris(hydroxymethyl)methylamino]propane	BIS-TRIS	6.8, 9.0	6.3-9.5
	PROPANE		
KH_2PO_4 and Na_2HPO_4	DEG	7.2	6.1-7.5
N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid	BES	7.1	6.4-7.8
3-(N-Morpholino)propanesultonic acid	MOPS	7.2	6.5-7.9
N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)	HEPES	7.5	6.8-8.2
<i>N</i> -Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid	TES	7.5	6.8-8.2
3-[<i>N</i> , <i>N</i> -Bis(2-nydroxyetnyi)amino]-2-nydroxypropanesuironic acid	DIPSO	7.6	7.0-8.2
3-[N-tris(nydroxymetnyi)metnyiamino]-2-nydroxypropanesuironic acid	TAPSO	7.6	7.0-8.2
5,5-Diethylbarbiturate (veronal) and HCl		8.0	7.0-8.5
Tris(hydroxymethyl)aminoethane	TRIZMA	8.1	7.0-9.1
N-(2-hydroxyethyl)piperazine- N' -(2-hydroxypropanesulfonic acid)	HEPPSO	7.8	7.1 - 8.5
Piperazine- N,N' -bis(2-hydroxypropanesulfonic acid)	POPSO	7.8	7.2-8.5
Triethanolamine	TEA	7.8	6.9-8.5
N-Tris(hydroxymethyl)methylglycine	TRICINE	8.1	7.4-8.8
Borax and HCl			7.6-8.9
N,N-Bis(2-hydroxyethyl)glycine	BICINE	8.3	7.6–9.0
N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid	TAPS	8.4	7.7–9.1
3-[(1,1-Dimethyl-2-hydroxyethyl)-2-hydroxypropanesulfonic acid	AMPSO	9.0	8.3-9.7
Ammonia (aqueous) and NH ₄ Cl		9.2	8.3-9.2
2-(N-Cyclohexylamino)-2-hydroxy-1-propanesulfonic acid	CHES	9.3	8.6-10.0
Glycine and NaOH		9.7	8.2 - 10.1
Ethanolamine (2-aminoethanol) and HCl		9.5	8.6-10.4
3-(Cyclohexylamino)-2-hydroxy-1-propanesulfonic acid	CAPSO	9.6	8.9-10.3
2-Amino-2-methyl-1-propanol	AMP	9.7	9.0-10.5
Carbonate and hydrogen carbonate		10.3	9.2-11.0
Borax and NaOH			9.4-11.1
3-(Cyclohexylamino)-1-propanesulfonic acid	CAPS	10.4	9.7-11.1
Na ₂ HPO ₄ and NaOH		11.9	11.0-12.0

TABLE 1.66	pH Values of Biological and Other Buffers for Control Purposes
------------	--

x Acetate	mL of 0.2 <i>M</i> S e (27.199 g Na per liter) plus of 0.2 <i>M</i> Acetic	Sodium aOAc · 3H ₂ O y mL c Acid		x mL of 0 y mL of N	.1 <i>M</i> KH₂PO₄ 0.05 <i>M</i> Borax a₂B₄O ₇ · 10H	(13.617 g Solution ($_{2}$ O per Lite	· L ⁻¹) plus (19.404 g er)	
pH	NaOAc, mL	Acetic Acid, mL	рН	KH2PO4, mL	Borax, mL	pH	KH2PO4, mL	Borax, mL
3.60	7.5	92.5	5.80	92.1	7.9	7.60	51.7	48.3
3.80	12.0	88.0	6.00	87.7	12.3	7.80	49.2	50.8
4.00	18.0	82.0	6.200	83.0	17.0	8.00	46.5	53.5
4.20	26.5	73.5	6.40	77.8	22.2	8.20	43.0	57.0
4.40	37.0	63.0	6.60	72.2	27.8	8.40	38.7	61.3
4.60	49.0	51.0	6.80	66.7	33.3	8.60	34.0	66.0
4.80	60.0	40.0	7.00	62.3	37.7	8.80	27.6	72.4
5.00	70.5	29.5	7.20	58.1	41.9	9.00	17.5	82.5
5.20	79.0	21.0	7.40	55.0	45.0	9.20	5.0	95.0
5.40	85.5	14.5						
5.60	90.5	9.5						
x mL of Veronal (20.6 g Na Diethylbarbiturate per Liter) plus y mL of 0.1 <i>M</i> HCl		x mL of 0.2M Aqueous NH ₃ Solution plus y mL of 0.2M NH ₄ Cl (10.699 g \cdot L ⁻¹)			x mL of 0.1 <i>M</i> Citrate (21.0 g Citric Acid Monohydrate + 200 mL 1 <i>M</i> NaOH per Liter) plus y mL of 0.1 <i>M</i> NaOH			
	Veronal,	HCl,		Aq NH ₃ ,	NH₄CI,		Citrate,	NaOH
рН	mL	mL	рН	mL	mL	рН	mL	mL
7.00	53.6	46.4	8.00	5.5	94.5	5.10	90.0	10.0
7.20	55.4	44.6	8.20	8.5	91.5	5.30	80.0	20.0
7.40	58.1	41.9	8.40	12.5	87.5	5.50	71.0	29.0
7.60	61.5	38.5	8.60	18.5	81.5	5.70	67.0	33.0
7.80	66.2	33.8	8.80	26.0	74.0	5.90	62.0	38.0
8.00	71.6	28.4	9.00	36.0	64.0			
8.20	76.9	23.1	9.25	50.0	50.0			
8.40	82.3	17.7	9.40	58.5	41.5			
8.60	87.1	12.9	9.60	69.0	31.0			
8.80	90.8	9.2	9.80	78.0	22.0			
9.00	93.6	6.4	10.00	85.0	15.0			

TABLE 1.00 pri values of biological and Other Burlets for Control 1 urposes (Continue	TABLE 1.66	pH Values of Biological and Other Buffers for Control Purposes (Continued
--	------------	--	-----------

x mL of 0.2M NaOH Added to 100 mL of Stock Solution (0.04M Acetic Acid, 0.04M H_3PO_4 , and 0.04M Boric Acid)

pН	NaOH, mL	pН	NaOH, mL	pН	NaOH, mL	pН	NaOH, mL
1.81	0.0	4.10	25.0	6.80	50.0	9.62	75.0
1.89	2.5	4.35	27.5	7.00	52.5	9.91	77.5
1.98	5.0	4.56	30.0	7.24	55.0	10.38	80.0
2.09	7.5	4.78	32.5	7.54	57.5	10.88	82.5
2.21	10.0	5.02	35.0	7.96	60.0	11.20	85.0
2.36	12.5	5.33	37.5	8.36	62.5	11.40	87.5
2.56	15.0	5.72	40.0	8.69	65.0	11.58	90.0
2.87	17.5	6.09	42.5	8.95	67.5	11.70	92.5
3.29	20.0	6.37	45.0	9.15	70.0	11.82	95.0
3.78	22.5	6.59	47.5	9.37	72.5	11.92	97.5

x mL of 0.1 <i>M</i> HCl plus y mL of 0.1 <i>M</i> Glycine (7.505 g Glycine + 5.85 g NaCl per Liter)			x mL of 0 Citric 200 r	of 0.1 <i>M</i> HCl).1 <i>M</i> Citrate (2 Acid Monol nl 1 <i>M</i> NaOH	plus y mL 21.008 g hydrate + [per Liter)	x mL of 0.05 <i>M</i> Succinic Acid (5.90 g \cdot L ⁻¹) plus y mL of Borax Solution (19.404 g Na ₂ B ₄ O ₇ \cdot 10H ₂ O per Liter)			
pН	HCl, mL	Glycine, mL	pH	HCl, mL	Citrate, mL	рН	Succinic Acid, mL	Borax, mL	
1.20	84.0	16.0	3.50	52.8	47.2	3.60	90.5	9.5	
1.40	71.0	29.0	3.60	51.3	48.7	3.80	86.3	13.7	
1.60	61.8	38.2	3.80	48.6	51.4	4.00	82.2	17.8	
1.80	55.2	44.8	4.00	43.8	56.2	4.20	77.8	22.2	
2.00	49.1	50.9	4.20	38.6	61.4	4.40	73.8	26.2	
2.20	42.7	57.3	4.40	34.6	65.4	4.60	70.0	30.0	
2.40	36.5	63.5	4.60	24.3	75.7	4.80	66.5	33.5	
2.60	30.3	69.7	4.80	11.0	89.0	5.00	63.2	36.8	
2.80	24.0	76.0				5.20	60.5	39.5	
3.00	17.8	82.2				5.40	57.9	42.1	
3.30	10.8	89.2				5.60	55.7	44.3	
3.60	6.0	94.0				5.80	54.0	46.0	

TABLE 1.66 pH Values of Biological and Other Buffers for Control Purposes (*Continued*)

x mL of 0.2M Na₂HPO₄ · 2H₂O (35.599 g · L⁻¹) plus y mL of 0.1M Citric Acid (19.213 g · L⁻¹)

pН	Na ₂ HPO ₄ , mL	Citric Acid, mL	pН	Na ₂ HPO ₄ , mL	Citric Acid, mL	pН	Na ₂ HPO ₄ , mL	Citric Acid, mL
2.20	2.00	98.00	4.20	41.40	58.60	6.20	66.10	33.90
2.40	6.20	93.80	4.40	44.10	55.90	6.40	69.25	30.75
2.60	10.90	89.10	4.60	46.75	53.25	6.60	72.75	27.25
2.80	15.85	84.15	4.80	49.30	50.70	6.80	77.25	22.75
3.00	20.55	79.45	5.00	51.50	48.50	7.00	82.35	17.65
3.20	24.70	75.30	5.20	53.60	46.40	7.20	86.95	13.05
3.40	28.50	71.50	5.40	55.75	44.25	7.40	90.85	9.15
3.60	32.20	67.80	5.60	58.00	42.00	7.60	93.65	6.35
3.80	35.50	64.50	5.80	60.45	39.55	7.80	95.75	4.25
4.00	38.55	61.45	6.00	63.15	36.85	8.00	97.25	2.75

1.18 SOLUBILITY AND EQUILIBRIUM CONSTANT

The equilibrium constant is the value of the reaction quotient for a system at equilibrium. The reaction quotient is the ratio of molar concentrations of the reactants to those of the products, each concentration being raised to the power equal to the coefficient in the equation.

For the hypothetical chemical reaction

$$A + B \leftrightarrow C + D$$

the equilibrium constant, K, is:

K = [C][D]/[A][B]

The notation [A] signifies the molar concentration of species A. An alternative expression for the equilibrium constant can involve the use of partial pressures.

The equilibrium constant can be determined by allowing a reaction to reach equilibrium, measuring the concentrations of the various solution-phase or gas-phase reactants and products, and substituting these values into the relevant equation.

TABLE 1.67 Solubility of Gases in Water

The column (or line entry) headed " α " gives the volume of gas (in milliliters) measured at standard conditions (0°C and 760 mm or 101.325 kN · m⁻²) dissolved in 1 mL of water at the temperature stated (in degrees Celsius) and when the pressure of the gas without that of the water vapor is 760 mm. The line entry "A" indicates the same quantity except that the gas itself is at the uniform pressure of 760 mm when in equilibrium with water.

The column headed "I" gives the volume of the gas (in milliliters) dissolved in 1 mL of water when the pressure of the gas plus that of the water vapor is 760 mm.

The column headed "q" gives the weight of gas (in grams) dissolved in 100 g of water when the pressure of the gas plus that of the water vapor is 760 mm.

	Ace	Acetylene Air*				nonia	Bromine	
°C	α	q	α(×10 ³)	% oxygen in air	α	q	α	q
0	1.73	0.200	29.18 28.42	34.91 34.87	1130	89.5	60.5	42.9
2	1.63	0.188	27.69	34.82			54.1	38.3
3	1.58	0.182	26.99	34.78				
4	1.53	0.176	26.32	34.74	1047	79.6	48.3	34.2
5	1.49	0.171	25.68	34.69				
6	1.45	0.167	25.06	34.65			43.3	30.6
/ 8	1.41	0.162	24.47	34.60 34.56	047	72.0	38.0	27.5
9	1.34	0.154	23.36	34.52		12.0		
10 11	1.31	0.150	22.84 22.34	34.47 34.43	870	68.4	35.1	24.8
12	1.24	0.142	21.87	34.38	857	65.1	31.5	22.2
13	1.21	0.138	21.41	34.34	837	63.6		
14	1.18	0.135	20.97	34.30			28.4	20.0
15	1.15	0.131	20.55	34.25	770			
16	1.13	0.129	20.14	34.21	775	58.7	25.7	18.0
17	1.10	0.125	19.75	34.17 34.12			23.4	16.4
19	1.05	0.125	19.02	34.08				
20	1.03	0.117	18 68	34.03	680	52.9	213	14 9
21	1.01	0.115	18.34	33.99				
22	0.99	0.112	18.01	33.95			19.4	13.5
23	0.97	0.110	17.69	33.90				
24	0.95	0.107	17.38	33.86	639	48.2	17.7	12.3
25	0.93	0.105	17.08	33.82			16.2	
20 27	0.91	0.102	16.79	33.77			10.5	11.3
28	0.87	0.098	16.21	33.68	586	44.0	15.0	10.3
29	0.85	0.095	15.92	33.64				
30	0.84	0.094	15.64	33.60	530	41.0	13.8	9.5
35						••••••		
40			14.18		400	31.6	9.4	6.3
45			12.07		200	22.5	65	
50			12.97		290	25.5	0.5	4.1
60 70			12.16		200	16.8	4.9	2.9
80			11.26			6.5	3.0	1.9
90				*****		3.0		
100			11.05			0.0		

*Free from NH₃ and CO₂; total pressure of air + water vapor is 760 mm.

TABLE 1.67 Solubility of Gases in Water

Temp.	Carbor	1 dioxide	Carbon monoxide		Chlorine		Ethane		Ethylene		Hydrogen	
°C	α	q	α	q	1	q	α	q	α	q	α	q
0	1.713	0.334 6	0.035 37	0.004 397	_	_	0.098 74	0.013 17	0.226	0.028 1	0.021 48	0.000 192 2
1	1.646	0.321 3	0.034 55	0.004 293	—	_	0.094 76	0.012 63	0.219	0.027 2	0.021 26	0.000 190 1
2	1.584	0.309 1	0.033 75	0.004 191	_	_	0.090 93	0.012 12	0.211	0.026 2	0.021 05	0.000 188 1
3	1.527	0.297 8	0.032 97	0.004 092	—	_	0.087 25	0.011 62	0.204	0.025 3	0.020 84	0.000 186 2
4	1.473	0.287 1	0.032 22	0.003 996			0.083 72	0.011 14	0.197	0.024 4	0.020 64	0.000 184 3
5	1.424	0.277 4	0.031 49	0.003 903	—		0.080 33	0.010 69	0.191	0.023 7	0.020 44	0.000 182 4
6	1.377	0.268 1	0.030 78	0.003 813		_	0.077 09	0.010 25	0.184	0.022 8	0.020 25	0.000 180 6
7	1.331	0.258 9	0.030 09	0.003 725			0.074 00	0.009 83	0.178	0.022 0	0.020 07	0.000 178 9
8	1.282	0.249 2	0.029 42	0.003 640	_	_	0.071 06	0.009 43	0.173	0.021 4	0.019 89	0.000 177 2
9	1.237	0.240 3	0.028 78	0.003 559			0.068 26	0.009 06	0.167	0.020 7	0.019 72	0.000 175 6
10	1.194	0.231 8	0.028 16	0.003 479	3.148	0.997 2	0.065 61	0.008 70	0.162	0.020 0	0.019 55	0.000 174 0
11	1.154	0.223 9	0.027 57	0.003 405	3.047	0.965 4	0.063 28	0.008 38	0.157	0.019 4	0.019 40	0.000 172 5
12	1.117	0.216 5	0.027 01	0.003 332	2.950	0.934 6	0.061 06	0.008 08	0.152	0.018 8	0.019 25	0.000 171 0
13	1.083	0.209 8	0.026 46	0.003 261	2.856	0.905 0	0.058 94	0.007 80	0.148	0.018 3	0.019 11	0.000 169 6
14	1.050	0.203 2	0.025 93	0.003 194	2.767	0.876 8	0.056 94	0.007 53	0.143	0.017 6	0.018 97	0.000 168 2
15	1.019	0.197 0	0.025 43	0.003 130	2.680	0.849 5	0.055 04	0.007 27	0.139	0.017 1	0.018 83	0.000 166 8
16	0.985	0.190 3	0.024 94	0.003 066	2.597	0.823 2	0.053 26	0.007 03	0.136	0.016 7	0.018 69	0.000 165 4
17	0.956	0.184 5	0.024 48	0.003 007	2.517	0.797 9	0.051 59	0.006 80	0.132	0.016 2	0.018 56	0.000 164 1
18	0.928	0.178 9	0.024 02	0.002 947	2.440	0.773 8	0.050 03	0.006 59	0.129	0.015 8	0.018 44	0.000 162 8
19	0.902	0.173 7	0.023 60	0.002 891	2.368	0.751 0	0.048 58	0.006 39	0.125	0.015 3	0.018 31	0.000 161 6
20	0.878	0.168 8	0.023 19	0.002 838	2.299	0.729 3	0.047 24	0.006 20	0.122	0.014 9	0.018 19	0.000 160 3
21	0.854	0.164 0	0.022 81	0.002 789	2.238	0.710 0	0.045 89	0.006 02	0.119	0.014 6	0.018 05	0.000 158 8
22	0.829	0.159 0	0.022 44	0.002 739	2.180	0.691 8	0.044 59	0.005 84	0.116	0.014 2	0.017 92	0.000 157 5
23	0.804	0.154 0	0.022 08	0.002 691	2.123	0.673 9	0.043 35	0.005 67	0.114	0.013 9	0.017 79	0.000 156 1
24	0.781	0.149 3	0.021 74	0.002 646	2.070	0.657 2	0.042 17	0.005 51	0.111	0.013 5	0.017 66	0.000 154 8
25	0.759	0.144 9	0.021 42	0.002 603	2.019	0.641 3	0.041 04	0.005 35	0.108	0.013 1	0.017 54	0.000 153 5
26	0.738	0.140 6	0.021 10	0.002 560	1.970	0.625 9	0.039 97	0.005 20	0.106	0.012 9	0.017 42	0.000 152 2
27	0.718	0.136 6	0.020 80	0.002 519	1.923	0.611 2	0.038 95	0.005 06	0.104	0.012 6	0.017 31	0.000 150 9
28	0.699	0.132 7	0.020 51	0.002 479	1.880	0.597 5	0.037 99	0.004 93	0.102	0.012 3	0.017 20	0.000 149 6
29	0.682	0.129 2	0.020 24	0.002 442	1.839	0.584 7	0.037 09	0.004 80	0.100	0.012 1	0.017 09	0.000 148 4
30	0.665	0.125 7	0.019 98	0.002 405	1.799	0.572 3	0.036 24	0.004 68	0.098	0.011 8	0.016 99	0.000 147 4

35	0.592	0.110 5	0.018 77	0.002 231	1.602	0.510 4	0.032 30	0.004 12	—		0.016 66	0.000 142 5
40	0.530	0.097 3	0.017 75	0.002 075	1.438	0.459 0	0.029 15	0.003 66			0.016 44	0.000 138 4
45	0.479	0.086 0	0.016 90	0.001 933	1.322	0.422 8	0.026 60	0.003 27			0.016 24	0.000 134 1
50	0.436	0.076 1	0.016 15	0.001 797	1.225	0.392 5	0.024 59	0.002 94			0.016 08	0.000 128 7
60	0.359	0.057 6	0.014 88	0.001 522	1.023	0.329 5	0.021 77	0.002 39		_	0.016 00	0.000 117 8
70			0.014 40	0.001 276	0.862	0.279 3	0.019 48	0.001 85			0.016 0	0.000 102
80			0.014 30	0.000 980	0.683	0.222 7	0.018 26	0.001 34			0.016 0	0.000 079
90		-	0.014 2	0.000 57	0.39	0.127	0.017 6	0.000 8			0.016 0	0.000 046
100	l —	_	0.014 1	0.000 00	0.00	0.000	0.017 2	0.000 0	_		0.016 0	0.000 000
0	4.670	0.706 6	0.055 63	0.003 959	0.073 81	0.009 833	0.023 54	0.002 942	0.048 89	0.006 945	79.789	22.83
1	4.522	0.683 9	0.054 01	0.003 842	0.071 84	0.009 564	0.022 97	0.002 869	0.047 58	0.006 756	77.210	22.09
2	4.379	0.661 9	0.052 44	0.003 728	0.069 93	0.009 305	0.022 41	0.002 798	0.046 33	0.006 574	74.691	21.37
3	4.241	0.640 7	0.050 93	0.003 619	0.068 09	0.009 057	0.021 87	0.002 730	0.045 12	0.006 400	72.230	20.66
4	4.107	0.620 1	0.049 46	0.003 513	0.066 32	0.008 816	0.021 35	0.002 663	0.043 97	0.006 232	69.828	19.98
5	3.977	0.600 1	0.048 05	0.003 410	0.064 61	0.008 584	0.020 86	0.002 600	0.042 87	0.006 072	67.485	19.31
6	3.852	0.580 9	0.046 69	0.003 312	0.062 98	0.008 361	0.020 37	0.002 537	0.041 80	0.005 918	65.200	18.65
7	3.732	0.562 4	0.045 39	0.003 217	0.061 40	0.008 147	0.019 90	0.002 477	0.040 80	0.005 773	62.973	18.02
8	3.616	0.544 6	0.044 13	0.003 127	0.059 90	0.007 943	0.019 45	0.002 419	0.039 83	0.005 632	60.805	17.40
9	3.505	0.527 6	0.042 92	0.003 039	0.058 46	0.007 747	0.019 02	0.002 365	0.038 91	0.005 498	58.697	16.80
10	3.399	0.511 2	0.041 77	0.002 955	0.057 09	0.007 560	0.018 61	0.002 312	0.038 02	0.005 368	56.647	16.21
11	3.300	0.496 0	0.040 72	0.002 879	0.055 87	0.007 393	0.018 23	0.002 263	0.037 18	0.005 246	54.655	15.64
12	3.206	0.481 4	0.039 70	0.002 805	0.054 70	0.007 233	0.017 86	0.002 216	0.036 37	0.005 128	52.723	15.09
13	3.115	0.467 4	0.038 72	0.002 733	0.053 57	0.007 078	0.017 50	0.002 170	0.035 59	0.005 014	50.849	14.56
14	3.028	0.454 0	0.037 79	0.002 665	0.052 50	0.006 930	0.017 17	0.002 126	0.034 86	0.004 906	49.033	14.04
15	2.945	0.441 1	0.036 90	0.002 599	0.051 47	0.006 788	0.016 85	0.002 085	0.034 15	0.004 802	47.276	13.54
16	2.865	0.428 7	0.036 06	0.002 538	0.050 49	0.006 652	0.016 54	0.002 045	0.033 48	0.004 703	45.578	13.05
17	2.789	0.416 9	0.035 25	0.002 478	0.049 56	0.006 524	0.016 25	0.002 006	0.032 83	0.004 606	43.939	12.59
18	2.717	0.405 6	0.034 48	0.002 422	0.048 68	0.006 400	0.015 97	0.001 970	0.032 20	0.004 514	42.360	12.14
19	2.647	0.394 8	0.033 76	0.002 369	0.047 85	0.006 283	0.015 70	0.001 935	0.031 61	0.004 426	40.838	11.70
20	2.582	0.384 6	0.033 08	0.002 319	0.047 06	0.006 173	0.015 45	0.001 901	0.031 02	0.004 339	39.374	11.28
21	2.517	0.374 5	0.032 43	0.002 270	0.046 25	0.006 059	0.015 22	0.001 869	0.030 44	0.004 252	37.970	10.88
22	2.456	0.364 8	0.031 80	0.002 222	0.045 45	0.005 947	0.014 98	0.001 838	0.029 88	0.004 169	36.617	10.50
23	2.396	0.355 4	0.031 19	0.002 177	0.044 69	0.005 838	0.014 75	0.001 809	0.029 34	0.004 087	35.302	10.12
24	2.338	0.346 3	0.030 61	0.002 133	0.043 95	0.005 733	0.014 54	0.001 780	0.028 81	0.004 007	34.026	9.76
25	2.282	0.337 5	0.030 06	0.002 091	0.043 23	0.005 630	0.014 34	0.001 751	0.028 31	0.003 931	32.786	9.41
26	2.229	0.329 0	0.029 52	0.002 050	0.042.54	0.005 530	0.014 13	0.001 724	0.027 83	0.003 857	31.584	9.06

Temp. ℃	Carbon dioxide		Carbon monoxide		Chlorine		Ethane		Ethylene		Hydrogen	
	α	q	α	q	1	q	α	q	α	q	α	q
26	2.229	0.329 0	0.029 52	0.002 050	0.042 54	0.005 530	0.014 13	0.001 724	0.027 83	0.003 857	31.584	9.06
27	2.177	0.320 8	0.029 01	0.002 011	0.041 88	0.005 435	0.013 94	0.001 698	0.027 36	0.003 787	30.422	8.73
28	2.128	0.313 0	0.028 52	0.001 974	0.041 24	0.005 342	0.013 76	0.001 672	0.026 91	0.003 718	29.314	8.42
29	2.081	0.305 5	0.028 06	0.001 938	0.040 63	0.005 252	0.013 58	0.001 647	0.026 49	0.003 651	28.210	8.10
30	2.037	0.298 3	0.027 62	0.001 904	0.040 04	0.005 165	0.013 42	0.001 624	0.026 08	0.003 588	27.161	7.80
35	1.831	0.264 8	0.025 46	0.001 733	0.037 34	0.004 757	0.012 56	0.001 501	0.024 40	0.003 315	22.489	6.47
40	1.660	0.236 1	0.023 69	0.001 586	0.035 07	0.004 394	0.011 84	0.001 391	0.023 06	0.003 082	18.766	5.41
45	1.516	0.211 0	0.022 38	0.001 466	0.033 11	0.004 059	0.011 30	0.001 300	0.021 87	0.002 858		
50	1.392	0.188 3	0.021 34	0.001 359	0.031 52	0.003 758	0.010 88	0.001 216	0.020 90	0.002 657		_
60	1.190	0.148 0	0.019 54	0.001 144	0.029 54	0.003 237	0.010 23	0.001 052	0.019 46	0.002 274		_
70	1.022	0.110 1	0.018 25	0.000 926	0.028 10	0.002 668	0.009 77	0.000 851	0.018 33	0.001 856	_	_
80	0.917	0.076 5	0.017 70	0.000 695	0.027 00	0.001 984	0.009 58	0.000 660	0.017 61	0.001 381	—	_
90	0.84	0.041	0.017 35	0.000 40	0.026 5	0.001 13	0.009 5	0.000 38	0.017 2	0.000 79		
100	0.81	0.000	0.017 0	0.000 00	0.026 3	0.000 00	0.009 5	0.000 00	0.017 0	0.000 00	_	—

TABLE 1.67 Solubility of Gases in Water (*Continued*)

*Atmospheric nitrogen containing 98.815% N_2 by volume + 1.185% inert gases.
Substance		0°	10°	20°	30°	40°	60°	80°
Argon Helium	α	0.052 8	0.041 3	0.033 7	0.028 8	0.025 1	0.020 9	0.018 4
Hydrogen bromide	i	612	582	0.000 0	53325	0.000 11	469 ^{50°}	40675
Hydrogen chloride	α	512	475	442	412	385	339	
Krypton	α	0.110 5	0.081 0	0.062 6	0.051 1	0.043 3	0.035 7	
Neon	A		0.011 7 ^{9°}	0.010 6	0.010 0	0.009 4842°		0.009 8473
Nitrous oxide	A		0.88	0.63				
Ozone	$g \cdot L^{-1}$	0.039 4	0.029 912"	0.021 019"	0.013927	0.004 2	0	
Radon	α	0.510	0.326	0.222	0.162	0.126	0.085	
Xenon	α	0.242	0.174	0.123	0.098	0.082		

TABLE 1.67 Solubility of Gases in Water

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures

Solubilities are expressed as the number of grams of substance of stated molecular formula which when dissolved in 100 g of water make a saturated solution at the temperature stated (°C).

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
Aluminum chloride	AICl ₃	43.9	44.9	45.8	46.6	47.3	48.1	48.6		49.0
fluoride	AIF	0.56	0.56	0.67	0.78	0.91	1.1	1.32		1.72
nitrate	Al(NO ₂) ₂	60.0	66.7	73.9	81.8	88.7	106	132	153	160
perchlorate	Al(ClO ₄) ₃	122	128	133		-	-			182
sulfate	Al ₂ (SO ₄) ₁	31.2	33.5	36.4	40.4	45.8	59.2	73.0	80.8	89.0
thallium(l) sulfate	Al ₂ Tl ₂ (SO ₄) ₄	3.15	4.60	6.39	9.37	14.39	35.35			
Ammonium aluminum	1 20 47									
sulfate	NH ₄ Al(SO ₄) ₂	2.10	5.00	7.74	10.9	14.9	26.7			
azide	NH ₄ N ₃	16.0		25.3	2	37.1				
bromide	NH₄Br	60.5	68.1	76.4	83.2	91.2	108	125	135	145
chloride	NH₄Cl	29.4	33.2	37.2	41.4	45.8	55.3	65.6	71.2	77.3
chloroiridate(IV)	(NH ₄) ₂ TrCl ₆	0.56	0.71	0.95	1.20	1.56	2.45	4.38		
chloroplatinate(IV)	(NH ₄) ₂ PtCl ₆	0.289	0.374	0.499	0.637	0.815	1.44	2.16	2.61	3.36
chromate	(NH ₄) ₂ CrO ₄	25.0	29.2	34.0	39.3	45.3	59.0	76.1		
chromium(III) sulfate	$(NH_4)Cr(SO_4)_2$	3.95			18.8	32.6				
cobalt(II) sulfate	$(NH_4)_2Co(SO_4)_2$	6.0	9.5	13.0	17.0	22.0	33.5	49.0	58.0	75.1
dichromate	$(NH_4)_2Cr_2O_7$	18.2	25.5	35.6	46.5	58.5	86.0	115		156
dihydrogen arsenate	NH ₄ H ₂ AsO ₄	33.7		48.7		63.8	83.0	107	122	
dihydrogen phosphate	NH ₄ H ₂ PO ₄	22.7	29.5	37.4	46.4	56.7	82.5	118		173
dithionate	$(NH_4)_2S_2O_6$	133	151	166	179					
formate	NH ₄ CHO ₂	102		143		204	311	533		
hydrogen carbonate	NH₄HCO ₃	11.9	16.1	21.7	28.4	36.6	59.2	109	170	354
hydrogen phosphate	(NH ₄) ₂ HPO ₄	42.9	62.9	68.9	75.1	81.8	97.2			
hydrogen tartrate	NH ₄ C ₄ H ₅ O ₆	1.00	1.88	2.70						
iodide	NH₄I	155	163	172	182	191	209	229		250
iron(II) sulfate	$(NH_4)_2Fe(SO_4)_2$	12.5	17.2	26.4	33	46				
Ammonium magnesium										
sulfate	$(NH_4)_2Mg(SO_4)_2$	11.8	14.6	18.0	21.7	25.8	35.1	48.3		65.7
nickel sulfate	$(NH_4)_2Ni(SO_4)_2$	1.00	4.00	6.50	9.20	12.0	17.0			
nitrate	NH ₄ NO ₃	118	150	192	242	297	421	580	740	871
oxalate	$(NH_4)_2C_2O_4$	2.2	3.21	4.45	6.09	8.18	14.0	22.4	27.9	34.7
perchlorate	NH ₄ ClO ₄	12.0	16.4	21.7	27.7	34.6	49.9	68.9		
selenite	(NH.)-SeO ₂	96	105	115	126	143	192			

sulfate	(NH ₄) ₂ SO ₄	70.6	73.0	75.4	78.0	81	88	95		103
sulfite	(NH ₄) ₂ SO ₃	47.9	54.0	60.8	68.8	78.4	104	144	150	153
tartrate	$(NH_4)_2C_4H_4O_6$	45.0	55.0	63.0	70.5	76.5	86.9			
thioantimonate(V)	(NH ₄) ₃ SbS ₄	71.2		91.2	120					
thiocyanate	NH₄SCN	120	144	170	208	234	346			
vanadate	NH₄VO₃			0.48	0.84	1.32	2.42			
zinc sulfate	$(NH_4)_2 Zn(SO_4)_2$	7.0	9.5	12.5	16.0	20.0	30.0	46.6	58.0	72.4
Antimony(III) chloride	SbCl ₃	602		910	1087	1368	[compl	etely miscible a	t 72°]	
fluoride	SbF ₃	385		444	562					
Arsenic hydride										
(760 mm), cc	AsH ₃	42	30	28						
oxide (pent-)	As ₂ O ₅	59.5	62.1	65.8	69.8	71.2	73.0	75.1		76.7
oxide (tri-)	As ₂ O ₃	1.20	1.49	1.82	2.31	2.93	4.31	6.11		8.2
Barium acetate	$Ba(C_2H_3O_2)_2 \cdot 3H_2O$	58.8	62	72	75	78.5	75.0	74.0		74.8
azide	$Ba(N_3)_2$	12.5	16.1	17.4 ¹⁷ *						
bromate	$Ba(BrO_3)_2 \cdot H_2O$	0.29	0.44	0.65	0.95	1.31	2.27	3.52	4.26	5.39
bromide	$BaBr_2 \cdot 2H_2O$	98	101	104	109	114	123	135		149
n-butyrate	$Ba(C_4H_7O_2)_2$	37.0	36.1	35.4	34.9	35.2	37.2	41.7	45.5	48.1 ^{95°}
caproate	$Ba(C_6H_{11}O_2)_2 \cdot 3.5H_2O$	11.71	8.38	6.89	5.87	5.79	8.39	14.71	19.28	
chlorate	$Ba(ClO_3)_2 \cdot H_2O$	20.3	26.9	33.9	41.6	49.7	66.7	84.8		105
chloride	$BaCl_2 \cdot 2H_2O$	31.2	33.5	35.8	38.1	40.8	46.2	52.5	55.8	59.4
chlorite	Ba(ClO ₂) ₂	43.9	44.6	45.4		47.9	53.8	66.6		80.8
fluoride	BaF ₂		0.159	0.160	0.162					
formate	Ba(CHO ₂) ₂	26.2	28.0	29.9	31.9	34.0	38.6	44.2	47.6	51.3
hydroxide	Ba(OH) ₂	1.67	2.48	3.89	5.59	8.22	20.94	101.4		
iodate	Ba(IO ₃) ₂			0.035	0.046	0.057				
iodiđe	$BaI_2 \cdot 2H_2O$	182	201	223	250		264		291	301
nitrate	$Ba(NO_3)_2$	4.95	6.67	9.02	11.48	14.1	20.4	27.2		34.4
nitrite	$Ba(NO_2)_2 \cdot H_2O$	50.3	60	72.8		102	151	222	261	325
perchlorate	$Ba(ClO_4)_2 \cdot 3H_2O$	239		336		416	495	575		653
propionate	$Ba(C_3H_5O_2)_2 \cdot H_2O$	57.2	56.8		57.5	59.0	62.0	67.8	73.0	82.7
<i>iso</i> succinate	$BaC_4H_4O_4$	0.421	0.432	0.418	0.393	0.366	0.306	0.237		
sulfamate	$Ba(SO_3NH_2)_2$	18.3	22.3	26.8	32.5	38.5	49.6	61.5		73.5
sulfide	BaS	2.88	4.89	7.86	10.38	14.89	27.69	49.91	67.34	60.29
tartrate	$Ba(C_2H_2O_3)_2$	0.021	0.024	0.028	0.032	0.035	0.044	0.053		
Beryllium nitrate	$Be(NO_3)_2$	97	102	108	113	125	178			
sulfate	BeSO ₄	37.0	37.6	39.1	41.4	45.8	53.1	67.2		82.8
Boric acid	H_3BO_3	2.67	3.73	5.04	6.72	8.72	14.81	23.62	30.38	40.25
Cadmium bromide	CdBr ₂	56.3	75.4	98.8	129	152	153	156		160

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
chlorate	Cd(ClO.).	299	308	322	348	376	455			
chloride	$CdCl_{2} \cdot 2.5H_{2}O$	90	100	113	132	570	155			
Childrade	CdCl ₂ H ₂ O	10	135	135	135	135	136	140		147
formate	Cd(CHO ₂)	83	111	14.4	18.6	25.3	59.5	80.5	85.2	94.6
iodide	CdL	78.7		84.7	87.9	92.1	100	111		125
nitrate	Cd(NO ₂)	122	136	150	167	194	310	713		
perchlorate	Cd(ClO ₄) ₂ · 6H ₂ O		180	188	195	203	221	243		272
selenate	CdSeO.	72.5	68.4	64.0	58.9	55.0	44.2	32.5	27.2	22.0
sulfate	CdSO.	75.4	76.0	76.6		78.5	81.8	66.7	63.1	60.8
Calcium acetate	$Ca(OAc)_{a} \cdot 2H_{a}O$	37.4	36.0	34.7	33.8	33.2	32.7	33.5	31.1	29.7
benzoate	$Ca(OBz)_2 \cdot 3H_2O$	2.32	2.45	2.72	3.02	3.42	4.71	6.87	8.55	8.70
bromide	$CaBr_{a} \cdot 6H_{a}O$	125	132	143	185 ^{34°}	213	278	295		312 ^{105°}
butvrate	$Ca(C_1H_2O_2)_2$	20.31	19.15	18.20	17.25	16.40	15.15	14.95		15.85
cacodylate	$Ca(C_3H_cAsO_3)_3 \cdot 9H_2O$	48	52	59	71					
chloride	CaCl ₂ · 6H ₂ O	59.5	64.7	74.5	100	128	137	147	154	159
chromate	CaCrO	4.5		2.25	1.83	1.49	0.83			
(mn)	CaCrO ₄ · 2H ₂ O	17.3		16.6	16.1			1		
formate	Ca(CHO ₂) ₂	16.15		16.60		17.05	17.50	17.95		18.40
gluconate	$Ca(C_6H_{11}O_7)_2 \cdot H_2O$			3.72		5.29		12.11	36.80	57.2 ^{96°}
hydrogen carbonate	Ca(HCO ₃) ₂	16.15		16.60		17.05	17.50	17.95		18.40
hydroxide	Ca(OH) ₂	0.189	0.182	0.173	0.160	0.141	0.121		0.086	0.076
Calcium iodate	$Ca(IO_3)_2 \cdot 6H_2O$	0.090	1	0.24	0.38	0.52	0.65	0.66	0.67	1
iodide		64.6	66.0	67.6	69.0	70.8	74	78		81
lactate	$Ca(C_3H_5O_3)_2 \cdot 5H_2O$	3.1		5.4 ^{15°}	7.9					
levulinate	$Ca(C_{10}H_{14}O_6) \cdot 2H_2O$	38.1		45.1 ^{16°}	55.0	70.345°	88.7 ^{55°}			
malonate	$Ca(C_3H_2O_4)$	0.29	0.33	0.36	0.40	0.42	0.46	0.48		
nitrate	$Ca(NO_3)_2 \cdot 4H_2O$	102	115	129	152	191		358		363
nitrite	$Ca(NO_2)_2 \cdot 4H_2O$	63.9		84.518"	104		134	151	166	178
propionate	$Ca(C_3H_5O_2)_2 \cdot H_2O$	42.80		39.85			38.25	39.85	42.15	48.44
selenate	$CaSeO_4 \cdot 2H_2O$	9.73	9.77	9.22	8.79	7.14				
succinate	$Ca(C_3H_2O_2)_2 \cdot 3H_2O$	1.127	1.22	1.28	1	1.18	0.89	0.68		0.66
sulfamate	Ca(SO ₃ NH ₂) ₂	56.5	62.8	72.3	84.5	100.1	150.0	215.2	24295*	
sulfate	CaSO ₄ · ¹ / ₂ H ₂ O			0.32	0.2925°	0.2635*	0.2145°	0.14565°	0.1275*	0.071
	CaSO ₄ · 2H ₂ O	0.223	0.244	0.25518°	0.264	0.265	0.24465°	0.23475°		0.205
tartrate	$CaC_4H_4O_6 \cdot 4H_2O$	0.026	0.029	0.034	0.046	0.063	0.091	0.130		
uranyl carbonate	Ca ₂ UO ₂ (CO ₃) ₃ · 10H ₂ O	0.1		0.423		0.8	1.555			

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

valerate	Ca(C ₅ H ₉ O ₂) ₂	9.82	9.25	8.80	8.40	8.05	7.78	7.95	8.20	8.78
<i>iso</i> valerate	$Ca(C_5H_9O_2)_2 \cdot 3H_2O$	26.05	22.70	21.80	21.68	22.00	18.38	16.88	16.65	16.55
Carbon disulfide	CS ₂	0.204	0.194	0.179	0.155	0.111				
oxide sulfide (STP)										
mL/100 mL	COS	133.3	83.6	56.1	40.3					
tetrafluoride (STP)										
mL/100 g	CF ₄		0.595	0.490	0.415	0.366				
Cerium(III) ammonium										
nitrate	$Ce(NH_4)_2(NO_3)_5$		242	276	318	376	681			
(IV) ammonium										
nitrate	$Ce(NH_4)_2(NO_3)_6$			135	150	169	213			-
(III) ammonium										
sulfate	$Ce(NH_4)(SO_4)_2$			5.53	4.49	3.48	2.02	1.33		
(III) selenate	$Ce_2(SeO_3)_3$	39.5	37.2	35.2	33.2	32.6	13.7	4.6	2.1	
(III) sulfate	$Ce_2(SO_4)_3 \cdot 9H_2O$	21.4		9.84	7.24	5.63	3.87		1	1
	$Ce_2(SO_4)_3 \cdot 8H_2O$			9.43	7.10	5.70	4.04			
Cesium aluminum sulfate	$Cs_2Al_2(SO_4)_4$	18.8	0.30	0.40	0.61	0.85	2.00	5.40	10.5	22.7
bromate	CsBrO ₃	0.21		3.66 ^{25°}	4.53	5.30 ^{35°}				
chlorate	CsClO ₃		3.8	6.2	9.5	13.8	26.2	45.0	58.0	79.0
chloride	CsC1	2.46	175	187	197	208	230	250	260	271
chloroaurate(III)	CsAuCl₄	161	0.5	0.8	1.7	3.3	8.9	19.5	27.7	37.9
chloroplatinate(IV)	Cs ₂ PtCl ₆	0.0047	0.0064	0.0087	0.0119	0.0158	0.0290	0.0525	0.0675	0.0914
formate	CsCHO ₂	335	381	450	533	694				
iodide	CsI	44.1	58.5	76.5	96	124 ^{45°}	150	190	205	
nitrate	CsNO ₃	9.33	14.9	23.0	33.9	47.2	83.8	134	163	197
perchlorate	CsClO ₄	0.8	1.0	1.6	2.6	4.0	7.3	14.4	20.5	30.0
sulfate	Cs ₂ SO ₄	167	173	179	184	190	200	210	215	220
Chlorine dioxide	ClO ₂	2.76	6.00	8.70 ^{15°}						
Chromium(III) nitrate	Cr(NO ₃) ₃	1085°	124 ^{15°}	130 ^{25°}	152 ^{35°}					
(VI) oxide	CrO ₃	164.8		167.2		172.5	183.9	191.6		206.8
(III) perchlorate	Cr(ClO ₄) ₃	104	123	130						
Cobalt(II) bromide	CoBr ₂	91.9		112	128	163	227	241		257
chlorate	Co(ClO ₃) ₂	135	162	180	195	214	316			
chloride	CoCl ₂	43.5	47.7	52.9	59.7	69.5	93.8	97.6	101	106
iodate	$Co(IO_3)_2$			1.02	0.90	0.88	0.82	0.73		0.70
nitrate	$C_0(NO_3)_2$	84.0	89.6	97.4	111	125	174	204	300	
nitrite	Co(NO ₂) ₂	0.076	0.24	0.40	0.61	0.85				
sulfate	CoSO ₄	25.5	30.5	36.1	42.0	48.8	55.0	53.8	45.3	38.9
	CoSO ₄ · 7H ₂ O	44.8	56.3	65.4	73.0	88.1	101			

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
Copper(II) ammonium chloride	CuCl ₂ · 2NH₄Cl	28.2	32.0 ^{12°}	35.0	38.3	43.8	56.6	76.5	76.5	
ammonium sulfate	$CuSO_4 \cdot (NH_4)_2SO_4$	11.5	15.1	19.4	24.4	30.5	46.3	69.7	86.1	107
bromide	CuBr ₂	107	116	126	128	131 ^{50°}				
chloride	CuCl ₂	68.6	70.9	73.0	77.3	87.6	96.5	104	108	120
fluorosilicate	CuSiF ₆	73.5	76.5	81.6	84.125	91.2 ^{50°}		93.2 ^{75°}		
nitrate	Cu(NO ₃) ₂	83.5	100	125	156	163	182	208	222	247
potassium sulfate	$CuSO_4 \cdot K_2SO_4$	5.1	7.2	10.0	13.6	18.2				
selenate	CuSeO ₄	12.04	14.53	17.51	21.04	25.22	36.50	53.68		
sulfate	$CuSO_4 \cdot 5H_2O$	23.1	27.5	32.0	37.8	44.6	61.8	83.8		114
tartrate	CuC₄H₄O ₆ · 3H ₂ O		0.02015°	0.042	0.089	0.142	0.197	0.144		
Gadolinium bromate	Gd(BrO ₃) ₃ · 9H ₂ O	50.2	70.1	95.6	126	166				
sulfate	$\operatorname{Gd}_2(\operatorname{SO}_4)_3$	3.98	3.30	2.60	2.32	0.61	1			
Germanium(IV) oxide	GeO ₂		0.49	0.43	0.50	0.61				
Holmium suifate	$Ho_2(SO_4)_3 \cdot 8H_2O$		1.75	8.18	6./123	4.52				
Hydrazinium (1+) nitrate	$N_2H_5NO_3$		175	266	402	607	2127	14.00		
(2+) sulfate	$N_2H_6SO_4$			2.87	3.89	4.15	9.08	14.39		
(1+) suifate	$(N_2H_5)_2SO_4$			204.015	221	300	554	1 50 5359		100.0
Hydrogen bromide	HBr	221.2	210.3	204.013	(7.0	1/1.5%		150.575		130.0
chloride	HCI	82.3	77.2	72.1	67.3	63.3	56.1			
selenide, mL at STP	H ₂ Se	386	351	289	0.020	0.050	0.100	0.005	0.015	0.445
lodine		0.014	0.020	0.029	0.039	0.052	0.100	0.225	0.315	0.445
Iridium(IV) ammonium chloride	(NH ₄) ₂ lrCl ₆	0.556	0.706	0.77	1.21	1.57	2.46	4.38	dec	
sodium chloride	Na ₂ IrCl ₆		34.4613		56.17	96.00	191.2	279.3		
Iron(II) ammonium		12.00		0.6.17	15.0					
sulfate	$FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$	17.23	31.0	36.47	45.0			1.00	1.74	1.04
(II) bromide	FeBr ₂	101	109	117	124	133	144	168	176	184
(II) chloride	FeCl ₂	49.7	59.0	62.5	66.7	/0.0	/8.3	88.7	92.3	94.9
(III) chloride	FeCl ₃ ·6H ₂ O	/4.4		91.8	106.8					
(II) fluoro-		70.1	74.4		77.035		00.75%	00.175		100 1104
silicate	$FeSiF_6 \cdot 6H_2O$	/2.1	74.4		11.025		83./30	88.175		100.1100
(II) nitrate	$Fe(NO_3)_2 \cdot 6H_2O$	113	134	107.7		175.0	266			
(III) nitrate	$Fe(NO_3)_3 \cdot 9H_2O$	112.0		137.7	100	175.0	770			
(III) perchlorate		289	40.0	308	422	4/8	112		(0.0	
(II) sulfate	resU ₄ ·/H ₂ U	28.8	40.0	48.0	60.0	73.3	100.7	/9.9	68.3	57.8
Lanthanum bromate	La(BrO ₃) ₃	98	120	149	200	1/0	0.07			
nitrate	$La(NO_3)_3$	100	1	136	1	108	247			

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

selenate	La ₂ (SeO ₃) ₃	50.5	45	45	45	45	18.5	5.4	2.2	
sulfate	$La_2(SO_4)_3$	3.00	2.72	2.33	1.90	1.67	1.26	0.91	0.79	0.68
Lead(II) acetate	$Pb(C_2H_3O_2)_2$	19.8	29.5	44.3	69.8	116				
bromide	PbBr ₂	0.45	0.63	0.86	1.12	1.50	2.29	3.23	3.86	4.55
chloride	PbCl ₂	0.67	0.82	1.00	1.20	1.42	1.94	2.54	2.88	3.20
fluorosilicate	PbSiF ₆	190		222			403	428		463
Germanium(IV) oxide	GeO ₂		0.49	0.43	0.50	0.61				
Holmium sulfate	$Ho_2(SO_4)_3 \cdot 8H_2O$			8.18	6.71 ^{25°}	4.52				
Hydrazinium (1+) nitrate	N ₂ H ₅ NO ₃		175	266	402	607	2127			
(2+) sulfate	N ₂ H ₆ SO ₄			2.87	3.89	4.15	9.08	14.39		
(1+) sulfate	$(N_2H_5)_2SO_4$				221	300	554			
Hydrogen bromide	HBr	221.2	210.3	204.015°		171.5 ^{50°}		150.5 ^{75°}		130.0
chloride	HCl	82.3	77.2	72.1	67.3	63.3	56.1			
selenide, mL at STP	H ₂ Se	386	351	289						
Iodine	I ₂	0.014	0.020	0.029	0.039	0.052	0.100	0.225	0.315	0.445
Iridium(IV) ammonium chloride	(NH ₄) ₂ IrCl ₆	0.556	0.706	0.77	1.21	1.57	2.46	4.38	dec	
sodium chloride	Na ₂ IrCl ₆		34.4615*		56.17	96.00	191.2	279.3		
Iron(II) ammonium										
sulfate	$FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$	17.23	31.0	36.47	45.0					
(II) bromide	FeBr ₂	101	109	117	124	133	144	168	176	184
(II) chloride	FeCl ₂	49.7	59.0	62.5	66.7	70.0	78.3	88.7	92.3	94.9
(III) chloride	FeCl ₃ · 6H ₂ O	74.4		91.8	106.8					
(II) fluoro-										
silicate	FeSiF ₆ · 6H ₂ O	72.1	74.4		77.0 ^{25°}		83.7 ^{50°}	88.1 ^{75°}		100.1106
(II) nitrate	$Fe(NO_3)_2 \cdot 6H_2O$	113	134				266			
(III) nitrate	$Fe(NO_3)_3 \cdot 9H_2O$	112.0		137.7		175.0				
(III) perchlorate	Fe(ClO ₄) ₃	289		368	422	478	772			
(II) sulfate	FeSO ₄ · 7H ₂ O	28.8	40.0	48.0	60.0	73.3	100.7	79.9	68.3	57.8
Lanthanum bromate	La(BrO ₃) ₃	98	120	149	200					
nitrate	La(NO ₃) ₃	100		136		168	247			
selenate	$La_2(SeO_3)_3$	50.5	45	45	45	45	18.5	5.4	2.2	
sulfate	$La_2(SO_4)_3$	3.00	2.72	2.33	1.90	1.67	1.26	0.91	0.79	0.68
Lead(II) acetate	$Pb(C_2H_3O_2)_2$	19.8	29.5	44.3	69.8	116				
bromide	PbBr ₂	0.45	0.63	0.86	1.12	1.50	2.29	3.23	3.86	4.55
chloride	PbCl ₂	0.67	0.82	1.00	1.20	1.42	1.94	2.54	2.88	3.20
fluorosilicate	PbSiF	190		222			403	428		463
		1	1	1	1		1			l

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
iodide	PbI ₂	0.044	0.056	0.069	0.090	0.124	0.193	0.294		0.42
nitrate	Pb(NO ₃) ₂	37.5	46.2	54.3	63.4	72.1	91.6	111		133
Lithium acetate	LiC ₂ H ₃ O ₂	31.2	35.1	40.8	50.6	68.6				
ammonium sulfate	LiNH ₄ SO ₄		55.2		55.9	56.1	56.5			
azide	LiN ₃	61.3	64.2	67.2	71.2	75.4	86.6			100
benzoate	LiC ₇ H ₅ O ₂	38.9	41.6	44.7	53.8					
borate (meta-)	LiBO ₂	0.90	1.3	2.7	5.7	10.9				
bromate	LiBrO ₃	154	166	179	198	221	269	308	329	355
bromide	LiBr	143	147	160	183	211	223	245		266
carbonate	Li ₂ CO ₃	1.54	1.43	1.33	1.26	1.17	1.01	0.85		0.72
chlorate	LiClO ₃	241	283	372	488	604	777			
chloride	LiCl	69.2	74.5	83.5	86.2	89.8	98.4	112	121	128
chloroaurate(III)	LiAuCl₄		113	136	167	206	324	599		
cyanoplatinate(II)	Li ₂ Pt(CN) ₄	105		141	153	160	178	216	239	
formate	LiCHO ₂	32.3	35.7	39.3	44.1	49.5	64.7	92.7	116	138
hydrogen phosphite	Li ₂ HPO ₃	9.97			7.61	7.11	6.03			4.43
hydroxide	LiOH	11.91	12.11	12.35	12.70	13.22	14.63	16.56		19.12
iodide	LiI	151	157	165	171	179	202	435	440	481
molybdate	Li ₂ MoO ₄	82.6		79.5	79.4	78.0				73.9
nitrate	LiNO ₃	53.4	60.8	70.1	138	152	175			
nitrite	LiNO ₂	70.9	82.5	96.8	114	133	177	233	272	324
perchlorate	LiClO ₄	42.7	49.0	56.1	63.6	72.3	92.3	128	151	
phosphate (meta-)	LiPO ₃	0.101	-	0.058 ^{25°}		0.048				
selenite	Li ₂ SeO ₃	25.0	23.3	21.5	19.6	17.9	14.7	11.9	11.1	9.9
sulfate	Li ₂ SO ₄	36.1	35.5	34.8	34.2	33.7	32.6	31.4	30.9	
tartrate (d-)	Li ₂ C ₄ H ₄ O ₆	42.0	31.8	27.1	26.6	27.2	29.5			
thiocyanate	LISCN			114	131	153				
vanadate	Li ₃ VO ₄	2.50		4.82	6.28	4.38	2.67			
Magnesium acetate	$Mg(C_2H_3O_2)_2$	56.7	59.7	53.4	68.6	75.7	118			
bromide	MgBr ₂	98	99	101	104	106	112			125
chlorate	Mg(ClO ₃) ₂	114	123	135	155	178	242		268	
chloride	MgCl ₂	52.9	53.6	54.6	55.8	57.5	61.0	66.1	69.5	73.3
fluorosilicate	MgSiF ₆	26.3		30.8		34.9	44.4			
formate	Mg(CHO ₂) ₂	14.0	14.2	14.4	14.9	15.9	17.9	20.5	22.2	23.9
iodate	Mg(IO ₃) ₂		7.2	8.6	10.0	11.7	15.2	15.5	15.6	
iodide	MgI ₂	120		140		173		186		

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

selenate MgSeO ₄ 20.0 30.4 38.3 44.3 48.6 55.8 sulfate MgSO ₄ 22.0 28.2 33.7 38.9 44.5 54.6 55.8 52.9 sulfate MgSO ₃ 0.339 0.446 0.573 0.751 0.959 0.779 0.642 0.622	50.4 228
sulfate MgSO ₄ 22.0 28.2 33.7 38.9 44.5 54.6 55.8 52.9 sulfite MgSO ₃ 0.339 0.446 0.573 0.751 0.959 0.779 0.642 0.622	50.4 228
sulfite MgSO3 0.339 0.446 0.573 0.751 0.959 0.779 0.642 0.622	228
	228
tartrate $MgC_4H_4O_6$ 0.54 0.78 1.06 1.02	228
Manganese bromide MnBr ₂ 127 136 147 157 169 197 225 226 22	
chloride MnCl ₂ 63.4 68.1 73.9 80.8 88.5 109 113 114 1	115
fluoride MnF ₂ 1.06 0.67 0.44	0.48
nitrate Mn(NO ₃) ₂ 102 118 139 206	
oxalate MnC ₂ O ₄ 0.020 0.024 0.028 0.033	
sulfate MnSO ₄ 52.9 59.7 62.9 62.9 60.0 53.6 45.6 40.9	35.3
Mercury(II) bromide HgBr ₂ 0.30 0.40 0.56 0.66 0.91 1.68 2.77	4.9
(II) chloride HgCl ₂ 3.63 4.82 6.57 8.34 10.2 16.3 30.0	61.3
(I) perchlorate $Hg_2(CIO_4)_2$ 282 325 367 407 455 499 541 5	580
Molybdenum trioxide MoO ₃ 0.134 0.285 0.454 1.08 1.74	
Neodymium bromate Nd(BrO ₃) ₃ 43.9 59.2 75.6 95.2 116	
chloride NdCl ₃ 96.7 98.0 99.6 102 105	
nitrate Nd(NO ₃) ₃ 127 133 142 145 159 211	
selenate Nd ₂ (SeO ₃) ₃ 46.2 44.6 41.8 39.9 39.9 43.9 7.0 3.3	
sulfate Nd ₂ (SQ ₄) ₃ 13.0 9.7 7.1 5.3 4.1 2.8 2.2 1.2	
Nickel bromide NiBr ₂ 113 122 131 138 144 153 154 1	155
chlorate Ni(ClO ₃) ₂ 111 120 133 155 181 221 308	
chloride NiCl ₂ 53.4 56.3 60.8 70.6 73.2 81.2 86.6	87.6
fluoride NiF ₂ 2.55 2.56 2.56 2.59	
iodate Ni(IO ₃) ₂ 1.15 1.06 1.00	
Ni(IO_{1})·4H ₂ O 0.74 1.09 1.43	
iodide NiL, 124 135 148 161 174 184 187 188	
nitrate Ni(NO ₃), 79.2 94.2 105 119 158 187 188	
perchlorate Ni(ClQ _a), 105 107 110 113 117	
Nickel sulfate NiSQ.: 6H.O (pale 40.1 43.6 47.6	
blue)	
(green) 44.4 46.6 49.2 55.6 64.5 70.1	76.7
NiSQ. 7H.O 26.2 32.4 37.7 43.4 50.4	
Osmium tetroxide OSO 5.26 5.75 6.43	
Oxalic acid H.C.O. 3.54 6.08 9.52 14.23 21.52 44.32 84.5 120	
Potassium acetate KCH-Q. 216 233 256 283 324 350 381 398	
aluminum sulfate KA(SQ), 3.00 3.99 5.90 8.39 11.7 24.8 71.0 109	
azide KN 41.4 46.2 50.8 55.8 61.0	106
benzoate KC.H.O. 65.8 70.7 76.7 82.1	

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
bromate	KBrO ₃	3.09	4.72	6.91	9.64	13.1	22.7	34.1		49.9
bromide	KBr	53.6	59.5	65.3	70.7	75.4	85.5	94.9	99.2	104
cadmium bromide	KCdBr ₃	116	133	150	170	191	233	276	298	325
cadmium chloride	KCdCl ₃	26.6	32.3	38.9	45.6	53.1	67.5	83.5		101
carbonate	K ₂ CO ₃	105	108	111	114	117	127	140	148	156
chlorate	KClO ₃	3.3	5.2	7.3	10.1	13.9	23.8	37.6	46.0	56.3
chloride	KCI	28.0	31.2	34.2	37.2	40.1	45.8	51.3	53.9	56.3
chloroaurate(III)	KAuCl₄		38.3	61.8	94.9	145	405			
chloroplatinate(IV)	K ₂ PtCl ₆	0.48	0.60	0.78	1.00	1.36	2.45	3.71		5.03
chromate	K ₂ CrO₄	56.3	60.0	63.7	66.7	67.8	70.1		74.5	
citrate	K ₃ C ₆ H ₅ O ₇		153	172	194					
cobalt(II) sulfate	$K_2Co(SO_4)_2$	8.5	11.7	15.5	19.3	23.3	32.5	47.7		
copper(II) sulfate	$K_2Cu(SO_4)_2$	5.1	7.2	10.0	13.6	18.2				
cyanoplatinate(II)	$K_2Pt(CN)_4$	11.6	19.8	33.9	52.0	78.3	139	177	194	
dichromate	K ₂ Cr ₂ O ₇	4.7	7.0	12.3	18.1	26.3	45.6	73.0		
dihydrogen phosphate	KH ₂ PO ₄	14.8	18.3	22.6	28.0	33.5	50.2	70.4	83.5	
dithionate	K ₂ S ₂ O ₆	2.6	4.2	6.6	9.3					
ferricyanide	K ₃ Fe(CN) ₆	30.2	38	46	53	59.3	70			91
ferrocyanide	K₄Fe(CN) ₆	14.3	21.1	28.2	35.1	41.4	54.8	66.9	71.5	74.2
fluoride	KF	44.7	53.5	94.9	108	138	142	150		
fluorogermanate(IV)	K ₂ GeF ₆	0.25	0.36	0.50	0.66	0.96				
fluorosilicate	K ₂ SiF ₆	0.077	0.102	0.151	0.202	0.253				
fluorotitanate(IV)	K ₂ TiF ₆	0.55	0.91	1.28						
formate	KCHO ₂		313	337	361	398	471	580	658	
hydrogen carbonate	KHCO,	22.5	27.4	33.7	39.9	47.5	65.6			
Potassium hydrogen	KHF ₂	24.5	30.1	39.2	46.8	56.5	78.8	114		
fluoride										
hydrogen selenite	KH ₃ (SeO ₃) ₂	115	162	215	300	408	900			
hydrogen sulfate	KHSO ₄	36.2		48.6	54.3	61.0	76.4	96.1		122
hydrogen tartrate	KC₄H₅O ₆	0.231	0.358	0.523	0.762					
hydroxide	КОН	95.7	103	112	126	134	154			178
iodate	KIO3	4.60	6.27	8.08	10.3	12.6	18.3	24.8		32.3
iodide	KI	128	136	144	153	162	176	192	198	206
iron(II) sulfate	$K_2Fe(SO_4)_2$	19.6	24.5	32.1	39.1	44.9	57.2			
magnesium sulfate	$K_2Mg(SO_4)_2$	14.0	19.5	25.0	30.4	36.6	50.2	63.4		

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

nickel sulfate	$K_2Ni(SO_4)_2$	3.37	4.50	5.94	7.72	9.85	15.4	23.0	27.8	33.4
nitrate	KNO3	13.9	21.2	31.6	45.3	61.3	106	167	203	245
nitrite	KNO ₂	279	292	306	320	329	348	376	390	410
oxalate	K ₂ C ₂ O ₄	25.5	31.9	36.4	39.9	43.8	53.2	63.6	69.2	75.3
perchlorate	KClO₄	0.76	1.06	1.68	2.56	3.73	7.3	13.4	17.7	22.3
periodate	KIO4	0.17	0.28	0.42	0.65	1.0	2.1	4.4	5.9	
permanganate	KMnO₄	2.83	4.31	6.34	9.03	12.6	22.1			
peroxodisulfate	K ₂ S ₂ O ₈	1.65	2.67	4.70	7.75	11.0				
perrhenate	KReO₄	0.34	0.63	0.99	1.47	2.2	4.58	8.7		
phosphate	K ₃ PO₄		81.5	92.3	108	133				
salicylate	KC ₂ H ₂ O ₃	21.2	32.4	47.1	61.3	78.6	116	156		
selenate	K ₂ SeO ₄	107	109	111	113	115	119	121		122
selenite	K ₂ SeO ₃	169	186	203	217	217	220			217
sulfate	K ₂ SO	7.4	9.3	11.1	13.0	14.8	18.2	21.4	22.9	24.1
sulfite	K ₂ SO ₁	106		106	107	107	108			112
tellurate	K ₂ TeO ₄	8.8		27.5	50.4					
thioantimonate(V)	K ₃ SbS ₄	306	320		302	315		381		
thiocyanate	KSCN	177	198	224	255	289	372	492	571	675
thiosulfate	K ₂ S ₂ O ₃	96		155	175	205	238	293	312	
zinc sulfate Praseodymium bromate	$K_2Zn(SO_4)_2 \cdot 6H_2O$ Pr(BrO ₃) ₃	13.0 55.9	18.9 73.0	25.9 91.8	35.0 114	44.9 144	72.1			
nitrate	Pr(NO ₃) ₃			112	162	178				
selenate	$Pr_2(SeO_3)_3$	36.2		1	32.4	31.2	30.4	5.43	3.6	
sulfate	$Pr_2(SO_4)_3$	19.8	15.6	12.6	9.89	2.56	5.04	3.5	1.1	0.91
Rubidium aluminum									-	
sulfate	Rb ₂ Al ₂ (SO ₄) ₄	0.72	1.05	1.50	2.20	3.25	7.40	21.6		
bromate	RbBrO ₃				3.6	5.1				
bromide	RbBr	90	99	108	119	132	158			
chlorate	RbClO ₃	2.1	3.4	5.4	8.0	11.6	22	38	49	63
chloride	RbCl	77	84	91	98	104	115	127	133	143
chloroaurate(III)	RbAuCl₄		4.8	9.9	15.5	21.5	36.2	54.6	65.8	79.2
chloroplatinate(IV)	Rb ₂ PtCl ₆	0.014	0.020	0.028	0.040	0.056	0.090	0.182	0.247	0.33
chromate	Rb ₂ CrO ₄	62.0	67.5	73.6	78.9	85.6	95.7			
cobalt sulfate	$Rb_2Co(SO_4)_2$	5.10	7.47	10.8	14.5	18.2	30.2	44.9	55.0	70.1
dichromate (mn)	Rb ₂ Cr ₂ O ₇			5.9	10.0	15.2	32.3			
(tric)				5.8	9.5	14.8	32.4			
formate	RbCHO ₂		443	554	614	694	900	1		
iron(III) sulfate	$RbFe(SO_4)_2 \cdot 12H_2O$		8.0	20	35	52				
nitrate	RbNO ₃	19.5	33.0	52.9	81.2	117	200	310	374	452

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
perchlorate	RbClO ₄	1.09	1.19	1.55	2.20	3.26	6.27	11.0	15.5	22.0
salicylate	RbC ₇ H ₅ O ₃		187	212	238	268	324			
sulfate	Rb ₂ SO ₄	37.5	42.6	48.1	53.6	58.5	67.5	75.1	78.6	81.8
Samarium bromate	Sm(BrO ₃) ₃	34.2	47.6	62.5	79.0	98.5				
chloride	SmCl ₃		92.4	93.4	94.6	96.9				
Selenic acid	H ₂ SeO ₄	426		567	1328					
Selenious acid	H_2SeO_3	90.1	122.2	166.7	235.6	344.4	383.1	383.1	385.4	
Selenium dioxide	SeO ₂		222	257	291	335	440			
Silver acetate	AgC ₂ H ₃ O ₂	0.73	0.89	1.05	1.23	1.43	1.93	2.59		
bromate	AgBrO ₃		0.11	0.16	0.23	0.32	0.57	0.94	1.33	
chlorate	AgClO ₃		10.4	15.3	20.9	26.8				
fluoride	AgF	85.9	120	172	190	203				
nitrate	AgNO ₃	122	167	216	265	311	440	585	652	733
nitrite	AgNO ₂	0.16	0.22	0.34	0.51	0.73	1.39			
perchlorate	AgClO ₄	455	484	525	594	635				793
sulfamate	AgNH ₂ SO ₃	2.30	4.82	7.53	10.3	15.3	28.5			
sulfate	Ag ₂ SO ₄	0.57	0.70	0.80	0.89	0.98	1.15	1.30	1.36	1.41
Sodium acetate	NaC ₂ H ₃ O ₂	36.2	40.8	46.4	54.6	65.6	139	153	161	170
aluminum sulfate	Na ₂ Al ₂ (SO ₄) ₄	37.4	39.3	39.7	41.7	43.8				
azide	NaN ₃	38.9	39.9	40.8						55.3
benzoate	NaC ₇ H ₅ O ₂	62.6	62.8	62.8	62.9	63.1	64.5	68.6	70.6	73.3
borate (penta-)	Na ₂ B ₁₀ O ₁₆	6.4	8.6	12.0	16.4	22.0	37.9	63.4	83.5	108
borate (tetra-)	Na ₂ B ₄ O ₇	1.11	1.60	2.56	3.86	6.67	19.0	31.4	41.0	52.5
bromate	NaBrO ₃	24.2	30.3	36.4	42.6	48.8	62.6	75.7		90.8
bromide	NaBr	80.2	85.2	90.8	98.4	107	118	120	121	121
carbonate	Na ₂ CO ₃	7.00	12.5	21.5	39.7	49.0	46.0	43.9	43.9	
chlorate	NaClO ₃	79.6	87.6	95.9	105	115	137	167	184	204
chloride	NaCl	35.7	35.8	35.9	36.1	36.4	37.1	38.0	38.5	39.2
chloroaurate(III)	NaAuCl₄		139	151	178	227	900			
chloroiridate(IV)	Na ₂ IrCl ₆		31.6	39.3	56.2	96.1	192	279		
chromate	Na ₂ CrO ₄	31.7	50.1	84.0	88.0	96.0	115	125		126
cyanide	NaCN	40.8	48.1	58.7	71.2					
dichromate	Na ₂ Cr ₂ O ₇	163	172	183	198	215	269	376	405	415
diethyl barbiturate	NaC ₈ H ₁₁ N ₂ O ₃		12.7	21.5	24.7				48.0	
dihydrogen										
phosphate (ortho-)	NaH ₂ PO ₄	56.5	69.8	86.9	107	133	172	211	234	ł

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

dihydrogen			1	1			1			
phosphate (pyro-)	Na ₂ H ₂ P ₂ O ₇	4.47	6.95	12.0	17.1	18.4				
dithionate	Na ₂ S ₂ O ₆	6.3	• 11.1	15.1	19.6	24.7	36.1	49.3	56.3	64.7
dodecanesulfonate	NaC ₁₂ H ₂₅ SO ₃			0.13	0.25	6.54				
dodecanoate	NaC ₁₂ H ₂₃ O ₂				4.58	22.7	105	170		
EDTA (Y)*	$Na_2H_2Y \cdot 2H_2O$	10.6	1	11.1	12.8	14.2	17.0	22.2	24.3	27.098
ferrocyanide	Na ₄ Fe(CN) ₆	11.2	14.8	18.8	23.8	29.9	43.7	62.1		
fluoride	NaF	3.66		4.06	4.22	4.40	4.68	4.89		5.08
fluoroberyllate	Na₂BeF₄	1.33		1.44		1.92	2.24	2.62	2.73	
fluorogermanate	Na ₂ GeF	1.52	1.68		2.25	2.83		3.36		
fluorosilicate	Na2SiF6	4.35	5.7	7.2	8.6	10.3	14.3	18.7	21.5	24.5
formate	NaCHO ₂	43.9	62.5	81.2	102	108	122	138	147	160
germanate	Na ₂ GeO ₃	14.4	18.8	23.8	28.7	37.2	65.0	116		
hydrogen arsenate	Na₂HAsO₄	5.9	13.0	33.9	49.3	69.5	144	186	188	198
hydrogen carbonate	NaHCO ₃	7.0	8.1	9.6	11.1	12.7	16.0			
hydrogen phosphate	Na ₂ HPO ₄	1.68	3.53	7.83	22.0	55.3	82.8	92.3	102	104
hydrogen phosphite	Na ₂ HPO ₃	418	424	429	566					
hydrogen succinate	NaC₄H₅O₄	17.5	25.3	34.8	47.7	61.6	74.5	90.1		
hydroxide	NaOH		98	109	119	129	174			
hydroxostannate(IV)	Na ₂ Sn(OH) ₆	46.0		43.7	42.7	38.9				
hypochlorite	NaClO	29.4	36.4	53.4	100	110				
iodate	NaIO ₃	2.48	4.59	8.08	10.7	13.3	19.8	26.6	29.5	33.0
iodide	Nal	159	167	178	191	205	257	295		302
molybdate	Na ₂ MoO ₄	44.1	64.7	65.3	66.9	68.6	71.8			
nitrate	NaNO ₃	73.0	80.8	87.6	94.9	102	122	148		180
nitrite	NaNO ₂	71.2	75.1	80.8	87.6	94.9	111	133		160
oxalate	$Na_2C_2O_4$	2.69	3.05	3.41	3.81	4.18	4.93	5.71		6.50
perchlorate	NaClO ₄	167	183	201	222	245	288	306		329
periodate	NaIO₄	1.83	5.6	10.3	19.9	30.4				
phosphate	Na ₃ PO ₄	4.5	8.2	12.1	16.3	20.2	29.9	60.0	68.1	77.0
potassium tartrate	NaKC ₄ H ₄ O ₆	31.9	46.6	67.8	102					
salicylate	NaC ₇ H ₅ O ₃		44.7	95.3	111	117	130	144		
selenate	Na ₂ SeO ₄	13.3	25.2	26.9	77.0	81.8	78.6	74.8	73.0	72.7
selenite	Na ₂ SeO ₃	78.6	81.2	86.2	94.2	96.5	91.6	86.6	84.5	82.5
sulfate	Na_2SO_4	4.9	9.1	19.5	40.8	48.8	45.3	43.7	42.7	42.5
	$Na_2SO_4 \cdot 7H_2O$	19.5	30.0	44.1						
sulfide	Na ₂ S	9.6	12.1	15.7	20.5	26.6	39.1	55.0	65.3	
sulfite	NaSO	14.4	19.5	26.3	35.5	37.2	32.6	29.4	27.9	
this section constants (V)					1	1	1	1		
unoanninonate(v)	Na ₃ SbS ₄	13.4	20.0	27.9	37.2	49.3	53.8	88.3		

Substance	Formula	0°	10°	20°	30°	40°	60°	80°	90°	100°
thiosulfate	Na ₂ S ₂ O ₃ · 5H ₂ O	50.2	59.7	70.1	83.2	104				
tungstate	Na_2WO_4	71.5		73.0		77.6		90.8		97.2
vanadate	NaVO ₃			19.3	22.5	26.3	33.0	40.8		
Strontium acetate	$Sr(C_2H_3O_2)_2$	37.0	42.9	41.1	39.5	38.3	36.8	36.1	36.2	36.4
bromide	SrBr ₂	85.2	93.4	102	112	123	150	182		223
chloride	SrCl ₂	43.5	47.7	52.9	58.7	65.3	81.8	90.5		101
chromate	SrCrO ₄		0.085	0.090				0.058		
Strontium fluoride	SrF ₂	0.0113		0.0117	0.0119					
formate	Sr(CHO ₂) ₂	9.1	10.6	12.7	15.2	17.8	25.0	31.9	32.9	34.4
hydroxide	Sr(OH) ₂	0.91	1.25	1.77	2.64	3.95	8.42	20.2	44.5	91.2
iodide	SrI ₂	165		178		192	218	270	365	383
nitrate	Sr(NO ₃) ₂	39.5	52.9	69.5	88.7	89.4	93.4	96.9	98.4	
nitrite	Sr(NO ₂) ₂			65	72	79	97	130	134	
oxide	SrO				1.03	1.05	3.40	9.15	13.13	12.15
sulfate	SrSO₄	0.0113	0.0129	0.0132	0.0138	0.0141	0.0131	0.0116	0.0115	
Sulfamic acid	H ₂ NSO ₃ H	14.7	18.6	21.3	26.1	29.5	37.1	47.1		
Telluric acid	H ₂ TeO ₄	16.2	33.8	41.6	50.0	57.2	77.5	106		155
Terbium bromate	Tb(BrO ₃) ₃ · 9H ₂ O	66.4	89.7	117	152	198				
Thallium(I) azide	TIN ₃	0.171	0.236	0.364						
bromide	TlBr	0.022	0.032	0.048	0.068	0.097	0.177			
carbonate	Tl ₂ CO ₃			5.3			12.2			27.2
chlorate	TICIO ₃	2.00		3.92		12.7 ^{50°}		36.6		57.3
chloride	TICI	0.21	0.25	0.33	0.42	0.52	0.80	1.20		1.80
hydroxide	TIOH	25.4	29.6	35.0	40.4	49.4	73.3	106	126	150
iodide	TH	0.002		0.006		0.015	0.035	0.070		0.120
nitrate	TINO ₃	3.90	6.22	9.55	14.3	21.0	46.1	110	200	414
nitrite	TINO ₂	17.9	28.9	40.3	53.2	83.6	216	1150	750	
perchlorate	TICIO₄	6.00	8.04	13.1	19.7	28.3	50.8	81.5		
picrate	TIOC ₆ H ₂ (NO ₂) ₃	0.135		0.40	0.57	0.83	1.73			
selenate	Tl ₂ SeO ₄		2.17	2.80				8.50		10.8
sulfate	Tl ₂ SO ₄	2.73	3.70	4.87	6.16	7.53	11.0	14.6	16.5	18.4
Thorium nitrate	Th(NO ₃) ₄	186	187	191						
sulfate	Th(SO ₄) ₂ · 4H ₂ O					4.04	1.63			
	$Th(SO_4)_2 \cdot 9H_2O$	0.74	0.99	1.38	1.99	3.00				
Tin(II) iodide	SnI ₂			0.99	1.17	1.42	2.11	3.04	3.58	4.20
Uranium(IV) sulfate	$U(SO_4)_2 \cdot 4H_2O$				10.1	9.0	7.7		-	
	$U(SO_4)_2 \cdot 8H_2O$			11.9	17.9	29.2	55.8			

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

Uranyl nitrate	$UO_2(NO_3)_2$	98	107	122	141	167	317	388	426	474
oxalate	$UO_2C_2O_4$		0.45	0.50	0.61	0.80	1.22	1.94		3.16
Ytterbium sulfate	$Yb_2(SO_4)_3$	44.2	37.5		22.2	17.2	10.4	6.4	5.8	4.7
Yttrium bromide	YBr ₃	63.9		75.1		87.3	101	116	123	
chloride	YCl ₃	77.3	78.1	78.8	79.6	80.8				
nitrate	Y(NO ₃) ₃	93.1	106	123	143	163	200			
sulfate	$Y_2(SO_4)_3$	8.05	7.67	7.30	6.78	6.09	4.44	2.89	2.2	
Zinc bromide	ZnBr ₂	389		446	528	591	618	645		672
chlorate	$Zn(ClO_3)_2$	145	152	200	209	223				
chloride	ZnCl ₂	342	363	395	437	452	488	541		614
formate	$Zn(CHO_2)_2$	3.70	4.30	5.20	6.10	7.40	11.8	21.2	28.8	38.0
iodide	ZnI ₂	430		432		445	467	490		510
nitrate	$Zn(NO_3)_2$	98			138	211	i i			
sulfate (rh)	ZnSO ₄	41.6	47.2	53.8	61.3	70.5	75.4	71.1		60.5
sulfate (mn)			54.4	60.0	65.5					
tartrate	ZnC ₄ H ₄ O ₆			0.022	0.041	0.060	0.104	0.059		

*Properly called dihydrogen ethylenediaminetetraacetate (Na₂H₂ EDTA \cdot 2H₂O).

TABLE 1.69 Dissociation Constants of Inorganic Acids

The *dissociation constant* of an acid K_a may conveniently be expressed in terms of the p K_a value where $pK_a = -\log_{10} (K_a/\text{mol dm}^{-3})$. The values given in the following table are for aqueous solutions at 298 K: the p K_1 , p K_2 , and p K_3 values refer to the first, second, and third ionizations respectively.

Name	Formula	pK _a
Aluminium ion (hydrated)	[Al(H ₂ O) ₆] ³⁺	$4.9 (pK_1)$
Ammonium ion	NH_4^+	9.25
Arsenic(III) acid	H ₃ AsO ₃	9.22 (p K_1)
Arsenic(V) acid	H_3AsO_4	$2.30 (pK_1)$
Boric acid	H ₃ BO ₃	$9.24 (pK_1)$
Bromic(1) acid	HOBr	8.70
Carbonic acid	H_2CO_3	$\int 6.38^a (pK_1)$
		$10.32 (pK_2)$
Chloric(I) acid	HOCI	7.43
Chloric(III) acid	HClO ₂	2.0
Chromium(III) ion (hydrated)	$[Cr(H_2O)_6]^{3+}$	$3.9 (pK_1)$
Hydrazinium ion	$N_2H_5^+$	7.93
Hydrocyanic acid	HCN	9.40
Hydrofluoric acid	HF	3.25
Hydrogen peroxide	H_2O_2	$11.62 (pK_1)$
Hydrogen sulphide	H_2S	$\int 7.05 (pK_1)$
		$12.92 (pK_2)$
Hydroxyammonium ion	NH_3OH^+	5.82
Iodic(I) acid	HOI	10.52
Iodic(V) acid	HIO ₃	0.8
Iron(III) ion (hydrated)	$[Fe(H_2O)_6]^{3+}$	2.22 (p K_1)
Lead(II) ion (hydrated)	$[Pb(H_2O)_n]^{2+}$	$7.8 (pK_1)$
Nitrous acid	HNO ₂	3.34
Phosphinic acid	H_3PO_2	2.0
Phosphoric(V) acid	H_3PO_4	$2.15 (pK_1)$
		7.21 (pK ₂)
		12.36 (pK ₃)
Phosphonic acid	H_3PO_3	$\int 2.00 (pK_1)$
		l 6.58 (p K_2)
Silicic acid	H ₂ SiO ₃	$\int 9.9 (pK_1)$
		$11.9 (pK_2)$
Sulphuric acid	H_2SO_4	1.92 (p <i>K</i> ₂)
Sulphurous acid	H_2SO_3	$\int 1.92 (pK_1)$
		$17.21 (pK_2)$

^{*a*}Some of the unionized acid exists as dissolved CO₂ molecules rather than H_2CO_3 : pK₁ for the molecular species H_2CO_3 is approximately 3.7.

TABLE 1.70 Ionic Product Constant of Water

Temp.,		Temp.,		Temp.,	
°C	p <i>Kw</i>	°C	p <i>Kw</i>	°C	p <i>Kw</i>
0	14.938	45	13.405	95	12.345
5	14.727	50	13.275	100	12.264
10	14.528	55	13.152	125	11.911
15	14.340	60	13.034	150	11.637
18	14.233	65	12.921	175	11.431
20	14.163	70	12.814	200	11.288
25	13.995	75	12.711	225	11.207
30	13.836	80	12.613	250	11.192
35	13.685	85	12.520	275	11.251
40	13.542	90	12.431	300	11.406

This table gives values of p*Kw* on a modal scale, where *Kw* is the ionic activity product constant of water. Values are from W. L. Marshall and E. U. Franck, *J. Phys. Chem. Ref. Data*, **10**:295 (1981).

TABLE 1.71 Solubility Product Constants

The data refer to various temperatures between 18 and 25°C, and were complied from values cited by Bjerrum, Schwarzenbach, and Sillen, *Stability Constants of Metal Complexes*, Part II, Chemical Society, London, 1958, and values taken from publications of the IUPAC Solubility Data Project: *Solubility Data Series*, international Union of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979–1992; H. L. Clever, and F. J. Johnston, *J. Phys Chem. Ref. Data*, **9**:751 (1980); Y. Marcus, *Ibid.* **9**:1307 (1980); H. L. Clever, S. A. Johnson, and M. E. Derrick, *Ibid.* **14**:631 (1985), and **21**:941 (1992).

In the table, "L" is the abbreviation of the organic ligand.

Compound	Compound Formula		$K_{ m sp}$	
Actinium				
hydroxide	Ac(OH) ₃	15	1×10^{-15}	
Aluminum				
arsonate	AlAsO ₄	15.80	1.6×10^{-16}	
cupferrate	AlL ₃	18.64	2.3×10^{-19}	
hydroxide	Al(OH) ₃	32.89	1.3×10^{-33}	
phosphate	AlPO	20.01	9.84×10^{-21}	
8-quinolinolate	AlL ₃	29.00	1.00×10^{-29}	
selenide	Al ₂ Se ₃	24.4	4 × 10 ⁻²⁵	
sulfide	Al ₂ S ₃	6.7	2×10^{-7}	
Americium				
(III) hydroxide	Am(OH) ₃	19.57	2.7×10^{-20}	
(IV) hydroxide	$Am(OH)_4$	56	1×10^{-56}	
Ammonium				
uranyl arsenate	NH ₄ UO ₂ AsO ₄	23.77	1.7×10^{-24}	
Arsenic				
(III) sulfide	As ₂ S ₃	21.68	2.1×10^{-22}	

Compound	Formula	pK _{sp}	K _{sp}
Barium			
arsenate	$Ba_3(AsO_4)_2$	50.11	$8.0 imes 10^{-51}$
bromate	$Ba(BrO_3)_2$	5.50	2.43×10^{-4}
carbonate	BaCO ₃	8.59	$2.58 imes 10^{-9}$
chromate	BaCrO ₄	9.93	1.17×10^{-10}
ferricyanide 6-hydrate	$Ba_2[Fe(CN)_6] \cdot 6H_2O$	7.49	$3.2 imes 10^{-8}$
fluoride	BaF ₂	6.74	$1.84 imes 10^{-7}$
hexafluorosilicate	BaSiF ₆	6	1×10^{-6}
hydrogen phosphate	BaHPO ₄	6.49	$3.2 imes 10^{-7}$
hydroxide 8-hydrate	$Ba(OH)_2 \cdot 8H_2O$	3.59	2.55×10^{-4}
iodate hydrate	$Ba(IO_3)_2 \cdot H_2O$	8.40	4.01×10^{-9}
molybdate	BaMoO ₄	7.45	$3.54 imes 10^{-8}$
niobate	$Ba(NbO_3)_2$	16.50	3.2×10^{-17}
nitrate	$Ba(NO_3)_2$	2.33	4.64×10^{-3}
oxalate	BaC ₂ O ₄	6.79	1.6×10^{-7}
oxalate hydrate	$BaC_2O_4 \cdot H_2O$	7.64	$2.3 imes 10^{-8}$
permanganate	$Ba(MnO_4)_2$	9.61	$2.5 imes 10^{-10}$
perrhenate	$Ba(ReO_4)_2$	1.28	$5.2 imes 10^{-2}$
phosphate	$Ba_3(PO_4)_2$	22.47	3.4×10^{-23}
pyrophosphate	$Ba_2P_2O_7$	10.50	3.2×10^{-11}
8-quinolinolate	BaL ₂	8.30	$5.0 imes10^{-9}$
selenate	BaSeO ₄	7.47	$3.40 imes 10^{-8}$
sulfate	BaSO ₄	9.97	1.08×10^{-10}
sulfite	BaSO ₃	9.30	$5.0 imes 10^{-10}$
thiosulfate	BaS ₂ O ₃	4.79	1.6×10^{-5}
Beryllium			
carbonate 4-hydrate	BeCO ₃ ·4H ₂ O	3	1×10^{-3}
hydroxide (amorphous)	Be(OH) ₂	21.16	$6.92 imes 10^{-22}$
molybdate	BeMoO ₄	1.49	3.2×10^{-2}
niobate	$Be(NbO_3)_2$	15.92	$1.2 imes 10^{-16}$
Bismuth			
arsenate	BiAsO ₄	9.35	$4.43 imes 10^{-10}$
cupferrate	BiL ₃	27.22	$6.0 imes 10^{-28}$
hydroxide	Bi(OH) ₃	30.4	$6.0 imes 10^{-31}$
iodide	BiI ₃	18.11	$7.71 imes 10^{-19}$
oxide bromide	BiOBr	6.52	$3.0 imes 10^{-7}$
oxide chloride	BiOCl	30.75	$1.8 imes 10^{-31}$
oxide hydroxide	BiO(OH)	9.4	4×10^{-10}
oxide nitrate	BiO(NO ₃)	2.55	$2.82 imes 10^{-3}$
oxide nitrite	BiO(NO ₂)	6.31	$4.9 imes 10^{-7}$
oxide thiocyanate	BiO(SCN)	6.80	$1.6 imes 10^{-7}$
phosphate	BiPO₄	22.89	$1.3 imes 10^{-23}$
sulfide	Bi ₂ S ₃	97	1×10^{-97}
Cadmium	2 9		
anthranilate	CdL ₂	8.27	$5.4 imes 10^{-9}$
arsenate	$Cd_3(AsO_4)_2$	32.66	2.2×10^{-33}
benzoate 2-hydrate	$CdL_2 \cdot 2H_2O$	2.7	2×10^{-3}
borate, meta	$Cd(BO_2)_2$	8.64	$2.3 imes 10^{-9}$
carbonate	CdCO ₃	12.0	$1.0 imes 10^{-12}$
cyanide	$Cd(CN)_2$	8.0	$1.0 imes 10^{-8}$
ferrocyanide	$Cd_2[Fe(CN)_6]$	16.49	$3.2 imes 10^{-17}$
fluoride	CdF ₂	2.19	$6.44 imes 10^{-3}$

TABLE 1.71 Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	K _{sp}
hydroxide	Cd(OH) ₂ fresh	14.14	$7.2 imes 10^{-15}$
iodate	Cd(IO ₃) ₂	7.60	$2.5 imes 10^{-8}$
oxalate 3-water	$CdC_2O_4 \cdot 3H_2O$	7.85	1.42×10^{-8}
phosphate	$Cd_3(PO_4)_2$	32.60	2.53×10^{-33}
quinaldate	CdL ₂	12.30	5.0×10^{-13}
sulfide	CdS	26.10	$8.0 imes 10^{-27}$
tungstate	CdWO ₄	5.7	2×10^{-6}
Calcium			
acetate 3-water	$Ca(OAc)_2 \cdot 3H_2O$	2.4	4×10^{-3}
arsenate	$Ca_3(AsO_4)_2$	18.17	6.8×10^{-19}
benzoate 3-water	$CaL_2 \cdot 3H_2O$	2.4	4×10^{-3}
carbonate	CaCO ₃	8.54	2.8×10^{-9}
carbonate (calcite)	CaCO ₃	8.47	3.36×10^{-9}
carbonate (aragonite)	CaCO ₃	8.22	$6.0 imes 10^{-9}$
carbonatomagnesium	$Ca[Mg(CO_3)_2]$ dolomite	11	1×10^{-11}
chromate	CaCrO ₄	3.15	7.1×10^{-4}
fluoride	CaF ₂	8.28	$5.3 imes 10^{-9}$
hexafluorosilicate	Ca[SiF ₆]	3.09	8.1×10^{-4}
hydrogen phosphate	CaHPO ₄	7.0	1.0×10^{-7}
hydroxide	Ca(OH) ₂	5.26	5.5×10^{-6}
iodate 6-water	$Ca(IO_3)_2 \cdot 6H_2O$	6.15	7.10 \times 10 ⁻⁷
molybdate	CaMoO ₄	7.84	1.46×10^{-8}
niobate	$Ca(NbO_3)_2$	17.06	8.7×10^{-18}
oxalate hydrate	$CaC_2O_4 \cdot H_2O$	8.63	2.32×10^{-9}
phosphate	$Ca_3(PO_4)_2$	28.68	2.07×10^{-29}
8-quinolinolate	CaL ₂	11.12	7.6×10^{-12}
selenate	CaSeO ₄	3.09	8.1×10^{-4}
selenite	CaSeO ₃	5.53	8.0×10^{-6}
silicate, <i>meta</i>	$CaSiO_3$	7.60	2.5×10^{-6}
sulfate		4.31	4.93×10^{-3}
sulfate dihydrate	$CaSO_4 \cdot 2H_2O$	4.50	3.14×10^{-3}
sume		/.1/	0.8×10^{-3}
sumte 0.5-water	$CaSO_3 \cdot 0.5H_2O$	0.51	3.1×10^{-7}
		0.11	7.7 × 10 °
Corium	CawO ₄	8.00	0.7 × 10 ×
(III) fluoride	CaE	15.1	8 × 10-16
(III) hudrovide		10.80	1.6×10^{-20}
(III) hydroxide	$Ce(OH)_3$	19.80	1.0×10^{-48}
(III) iodate	$C_{e}(IO)$	9.50	2×10 $3 2 \times 10^{-10}$
(III) iodate	$Ce(IO_3)_3$	16.3	5.2×10^{-17}
(III) oxalate 9-water	$Ce(C, \Omega)$, 9H Ω	25 50	3.2×10^{-26}
(III) phosphate	CePO	23.50	1×10^{-23}
(III) selenite	$Ce_{2}(SeO_{2})$	24 43	3.7×10^{-25}
(III) sulfide	Ce ₂ (5003)3	10.22	60×10^{-11}
(III) tartrate	CeaLa	19.0	1.0×10^{-19}
Cesium	00203	19.0	1.0 / 10
bromate	CsBrOa	17	5×10^{-2}
chlorate	CsClO	14	4×10^{-2}
cobaltibexanitrite	Csa[Co(NOa)]	15.24	57×10^{-16}
hexachloroplatinate(IV)	Cs ₂ [PtCL ₁]	7 50	3.2×10^{-8}
hexafluoroplatinate(IV)	$Cs_2[PtF_6]$	5.62	2.4×10^{-6}
hexafluorosilicate	$Cs_2[SiF_2]$	4.90	1.3×10^{-5}
menandorobiniouto	C52[OH 6]	1.20	1.5 / 10

TABLE 1.71	Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$,
perchlorate	CsClO₄	2.40	3.95×10^{-3}
periodate	CsIO ₄	5.29	5.16×10^{-6}
permanganate	CsMnO ₄	4.08	8.2×10^{-5}
perrhanate	CsReO ₄	3.40	$4.0 imes 10^{-4}$
tetrafluoroborate	Cs[BF ₄]	4.7	5×10^{-5}
Chromium(II)			
hydroxide	$Cr(OH)_2$	15.7	$2 imes 10^{-16}$
Chromium(III)			
arsenate	CrAsO ₄	20.11	7.7×10^{-21}
fluoride	CrF ₃	10.18	6.6×10^{-11}
hydroxide	Cr(OH) ₃	30.20	6.3×10^{-31}
phosphate 4-water	$CrPO_4 \cdot 4H_2O$ green	22.62	2.4×10^{-23}
 	violet	17.00	1.0×10^{-17}
Cobalt	~ -		
anthranilate	CoL ₂	9.68	2.1×10^{-10}
arsenate	$Co_3(AsO_4)_2$	28.17	6.80×10^{-29}
carbonate	CoCO ₃	12.84	1.4×10^{-13}
ferrocyanide	$Co_2[Fe(CN)_6]$	14.74	1.8×10^{-15}
hydrogen phosphate	CoHPO ₄	6.7	2×10^{-7}
(II) hydroxide	$Co(OH)_2$ fresh	14.23	5.92×10^{-15}
(III) hydroxide	Co(OH) ₃	43.80	1.6×10^{-44}
iodate	$Co(IO_3)_2$	4.0	1.0×10^{-4}
phosphate	$Co_3(PO_4)_2$	34.69	2.05×10^{-35}
selenite	CoSeO ₃	6.80	$1.6 imes 10^{-7}$
quinaldate	CoL ₂	10.80	1.6×10^{-11}
8-quinolinolate	CoL ₂	24.80	1.6×10^{-25}
sulfide	α -CoS	20.40	4.0×10^{-21}
	β-CoS	24.70	$2.0 imes 10^{-25}$
Copper(I)			
azide	CuN ₃	8.31	4.9×10^{-9}
bromide	CuBr	8.20	6.27×10^{-9}
chloride	CuCl	6.76	1.72×10^{-7}
cyanide	CuCN	19.46	3.47×10^{-20}
hydroxide	CuOH	14	1×10^{-14}
iodide	CuI	11.90	1.27×10^{-12}
sulfide	Cu ₂ S	47.60	2.5×10^{-48}
tetraphenylborate	CuL	8.0	1.0×10^{-8}
thiocyanate	CuSCN	12.75	1.77×10^{-13}
Copper(II)			
anthranilate	CuL ₂	13.22	6.0×10^{-14}
arsenate	$Cu_3(AsO_4)_2$	35.10	7.95×10^{-36}
azide	$Cu(N_3)_2$	9.20	6.3×10^{-10}
carbonate	CuCO ₃	9.86	1.4×10^{-10}
chromate	CuCrO ₄	5.44	$3.6 imes 10^{-6}$
dithiooxamide	CuL	15.12	7.67×10^{-16}
ferrocyanide	$Cu_2[Fe(CN)_6]$	15.89	1.3×10^{-16}
hydroxide	Cu(OH) ₂	19.66	2.2×10^{-20}
iodate	$Cu(IO_3)_2$	7.16	6.94×10^{-8}
oxalate	CuC ₂ O ₄	9.35	4.43×10^{-10}
phosphate	$Cu_3(PO_4)_2$	36.85	1.40×10^{-37}
pyrophosphate	$Cu_2P_2O_7$	15.08	8.3×10^{-16}
quinaldate	CuL ₂	16.80	1.6×10^{-17}
8-quinolinolate	CuL ₂	29.70	2.0×10^{-30}

TABLE 1.71 Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$
selenite	CuSeO ₃	7.68	2.1×10^{-8}
sulfide	CuS	35.20	6.3×10^{-36}
Dysprosium			
chromate 10-water	$Dy_2(CrO_4)_3 \cdot 10H_2O$	8	1×10^{-8}
hydroxide	Dy(OH) ₃	21.85	1.4×10^{-22}
Erbium			
hydroxide	Er(OH) ₃	23.39	4.1×10^{-24}
Europium			
hydroxide	Eu(OH) ₃	23.03	9.38×10^{-24}
Gadolinium			
hydrogen carbonate	Gd(HCO ₃) ₃	1.7	2×10^{-2}
hydroxide	Gd(OH) ₃	22.74	1.8×10^{-23}
Gallium			
ferrocyanide	$Ga_4[Fe(CN)_6]_3$	33.82	1.5×10^{-34}
hydroxide	Ga(OH) ₃	35.14	7.28×10^{-36}
8-quinolinolate	GaL ₃	40.80	1.6×10^{-41}
Germanium			
oxide	GeO ₂	57.0	1.0×10^{-57}
Gold(I)	_		
chloride	AuCl	12.70	2.0×10^{-13}
iodide	AuI	22.80	1.6×10^{-23}
Gold(III)			
chloride	AuCl ₃	24.50	3.2×10^{-25}
hydroxide	Au(OH) ₃	45.26	$5.5 imes 10^{-46}$
iodide	AuI ₃	46	1×10^{-46}
oxalate	$Au_2(C_2O_4)_3$	10	1×10^{-10}
Hafnium			
hydroxide	Hf(OH) ₃	25.40	$4.0 imes 10^{-26}$
Holmium			
hydroxide	Ho(OH) ₃	22.3	$5.0 imes 10^{-23}$
Indium			
ferrocyanide	$In_4[Fe(CN)_6]_3$	43.72	1.9×10^{-44}
hydroxide	In(OH) ₃	33.2	$6.3 imes 10^{-34}$
quinolinolate	InL ₃	31.34	4.6×10^{-32}
selenite	$In_2(SeO_3)_3$	32.60	$4.0 imes 10^{-33}$
sulfide	In ₂ S ₃	73.24	5.7×10^{-74}
Iron(II)			
carbonate	FeCO ₃	10.50	3.13×10^{-11}
fluoride	FeF ₂	5.63	2.36×10^{-6}
hydroxide	Fe(OH) ₂	16.31	4.87×10^{-17}
oxalate dihydrate	$FeC_2O_4 \cdot 2H_2O$	6.50	3.2×10^{-7}
sulfide	FeS	17.20	6.3×10^{-18}
Iron(III)			
arsenate	FeAsO ₄	20.24	5.7×10^{-21}
ferrocyanide	$Fe_4[Fe(CN)_6]_3$	40.52	3.3×10^{-41}
hydroxide	Fe(OH) ₃	38.55	2.79×10^{-39}
phosphate dihydrate	FePO ₄ ·2H ₂ O	15.00	9.91 × 10 ⁻¹⁶
quinaldate	FeL ₃	16.89	1.3×10^{-17}
selenite	$Fe_2(SeO_3)_3$	30.70	2.0×10^{-31}
Lanthanum			
bromate 9-water	La(BrO ₃) ₃ ·9H ₂ O	2.50	3.2×10^{-3}
fluoride	LaF ₃	16.2	7×10^{-17}

TABLE 1.71	Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$,
hydroxide	La(OH) ₃	18.70	$2.0 imes 10^{-19}$
iodate	$La(IO_3)_3$	11.12	7.50×10^{-12}
molybdate	$La_2(MoO_4)_3$	20.4	4×10^{-21}
oxalate 9-water	$La_2(C_2O_4)_3$	26.60	$2.5 imes 10^{-27}$
phosphate	LaPO	22.43	3.7×10^{-23}
sulfide	La_2S_3	12.70	$2.0 imes 10^{-13}$
tungstate trihydrate	$La_2(WO_4)_3 \cdot 3H_2O$	3.90	1.3×10^{-4}
Lead			
acetate	$Pb(OAc)_2$	2.75	1.8×10^{-3}
anthranilate	PbL ₂	9.81	1.6×10^{-10}
arsenate	$Pb_3(AsO_4)_3$	35.39	$4.0 imes 10^{-36}$
azide	$Pb(N_3)_2$	8.59	$2.5 imes 10^{-9}$
borate, meta	$Pb(BO_2)_2$	10.78	1.6×10^{-11}
bromate	$Pb(BrO_2)_2$	1.70	2.0×10^{-2}
bromide	PbBr ₂	6.82	6.60×10^{-6}
carbonate	PbCO ₂	13.13	7.4×10^{-14}
chloride	PbCla	4.77	1.70×10^{-5}
chloride fluoride	PbClF	8.62	2.4×10^{-9}
chlorite	$Pb(C O_n)_n$	8.4	4×10^{-9}
chromate	PbCrO.	12.55	2.8×10^{-13}
ferrocyanide	$Pb_{1}[Fe(CN)_{1}]$	14.46	35×10^{-15}
fluoride	PbF-	7 48	3.3×10^{-8}
fluoride iodide	PhFI	8.07	8.5×10^{-9}
hydrogen phosphate	PhHPO	0.07	1.3×10^{-10}
hydrogen phosphite	PhHPO.	6.24	5.8×10^{-7}
hydroxide		14.84	1.43×10^{-15}
hydroxide bromide	PbOHBr	14.70	$1.+5 \times 10$ 2.0 × 10-15
hydroxide chloride	PLOHCI	13.7	2.0×10^{-14}
hydroxide pitrate	PLOHNO	3 55	2×10 28 × 10 ⁻⁴
iodate	Pb(IO)	12 /3	2.0×10^{-13}
iodide	PhI	8 01	0.09×10^{-9}
molybdate		13.00	9.0×10^{-13}
niobate	Pb(NbO)	16.62	1.0×10 2.4×10^{-17}
ovalate	PbC O	0.32	2.4×10 4.8×10^{-10}
nhosphate	PbC_2O_4	42.10	4.0×10^{-43}
phosphate	$PO_3(PO_4)_2$	42.10	0.0×10^{-11}
quinaidate		10.00	2.3×10^{-1}
selenite	PbSeO ₄	11.50	1.37×10^{-12}
selenne	PUSEO3	7.60	5.2×10^{-2}
sunate		7.00	2.33×10^{-28}
suinde	PDS	27.10	8.0×10^{-20}
thiocyanate	$Pb(SCN)_2$	4.70	2.0×10^{-3}
thiosulfate		6.40	4.0×10^{-7}
tungstate	PbWO₄	6.35	4.5×10^{-7}
		65.50	0.0.1.10.44
hydroxide	Pb(OH) ₄	65.50	3.2×10^{-60}
Lithium		1.00	
carbonate	$L_{12}CO_3$	1.60	2.5×10^{-2}
fluoride		2.74	1.84×10^{-3}
phosphate	Li ₃ PO ₄	10.63	2.37×10^{-11}
uranylarsenate	LiUO ₂ AsO ₄	18.82	1.5×10^{-19}
Lutetium			
hydroxide	Lu(OH) ₃	23.72	1.9×10^{-24}

TABLE 1.71 Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	K _{sp}
Magnesium			I
ammonium phosphate	MgNH ₄ PO ₄	12.60	$2.5 imes 10^{-13}$
arsenate	$Mg_3(AsO_4)_2$	19.68	$2.1 imes 10^{-20}$
carbonate	MgCO ₃	5.17	$6.82 imes 10^{-6}$
carbonate trihydrate	MgCO ₃ ·3H ₂ O	5.62	$2.38 imes 10^{-6}$
fluoride	MgF ₂	10.29	5.16×10^{-11}
hydroxide	Mg(OH) ₂	11.25	5.61×10^{-12}
iodate 4-water	$Mg(IO_3)_2 \cdot 4H_2O$	2.50	3.2×10^{-3}
niobate	$Mg(NbO_3)_2$	16.64	2.3×10^{-17}
oxalate dihydrate	$MgC_2O_4 \cdot 2H_2O$	5.32	4.83×10^{-6}
phosphate	$Mg_3(PO_4)_2$	23.98	1.04×10^{-24}
8-quinolinolate	MgL ₂	15.40	4.0×10^{-16}
selenite	MgSeO ₃	4.89	1.3×10^{-5}
sulfite	MgSO ₃	2.50	$3.2 imes 10^{-3}$
Manganese			
anthranilate	MnL ₂	6.75	1.8×10^{-3}
arsenate	$Mn_3(AsO_4)_2$	28.72	1.9×10^{-29}
carbonate	MnCO ₃	10.63	2.34×10^{-11}
ferrocyanide	$Mn_2[Fe(CN)_6]$	12.10	8.0×10^{-13}
iodate	$Mn(IO_3)_2$	6.36	4.37×10^{-7}
hydroxide	Mn(OH) ₂	12.72	1.9×10^{-13}
oxalate dihydrate	$MnC_2O_4 \cdot 2H_2O$	6.77	1.70×10^{-7}
8-quinolinolate	MnL ₂	21.70	2.0×10^{-22}
selenite	MnSeO ₃	6.90	1.3×10^{-7}
sulfide	MnS amorphous	9.60	2.5×10^{-10}
Mercury(I)	MnS crystalline	12.60	2.5×10^{-13}
azide	$H_{\alpha}(\mathbf{N})$	0.15	7.1×10^{-10}
bromide	$H_{g_2}(1\sqrt{3})_2$	22.19	6.40×10^{-23}
carbonate		16.44	3.6×10^{-17}
chloride	Hg ₂ Cl ₂	17.84	1.43×10^{-18}
cvanide	Hg_2CI_2 $Hg_2(CN)_2$	39.3	5×10^{-40}
chromate	$Hg_2(Crt)_2$	8 70	20×10^{-9}
ferricyanide	$(Hg_{a})_{a}[Fe(CN)_{c}]_{a}$	20.07	85×10^{-21}
fluoride	$Hg_{0}F_{0}$	5.51	3.10×10^{-6}
hydrogen phosphate	Hg_HPO	12.40	40×10^{-13}
hydroxide	$Hg_2(OH)_2$	23.70	2.0×10^{-24}
iodate	$Hg_2(IO_2)_2$	13.71	2.0×10^{-14}
iodide	Hg ₂ I ₂	28.72	5.2×10^{-29}
oxalate	Hg ₂ C ₂ O ₄	12.76	1.75×10^{-13}
quinaldate	Hg_2L_2	17.90	1.3×10^{-18}
selenite	Hg ₂ SeO ₂	14.20	8.4×10^{-15}
sulfate	Hg ₂ SO ₄	6.19	6.5×10^{-7}
sulfite	Hg ₂ SO ₃	27.0	$1.0 imes 10^{-27}$
sulfide	Hg ₂ S	47.0	1.0×10^{-47}
thiocyanate	$Hg_2(SCN)_2$	19.49	3.2×10^{-20}
tungstate	Hg ₂ WO ₄	16.96	1.1×10^{-17}
Mercury(II)	02 4		
bromide	HgBr ₂	19.21	$6.2 imes 10^{-20}$
hydroxide	Hg(OH) ₂	25.52	$3.2 imes 10^{-26}$
iodate	Hg(IO ₃) ₂	12.49	3.2×10^{-13}
iodide	HgI ₂	28.54	2.9×10^{-29}
1,10-phenanthroline	HgL ₂	24.70	2.0×10^{-25}

TABLE 1.71	Solubility Product Constants ((Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$
quinaldate	HgL ₂	16.80	1.6×10^{-17}
selenite	HgSeO ₃	13.82	1.5×10^{-14}
sulfide	HgS red	52.4	4×10^{-53}
	HgS black	51.80	$1.6 imes 10^{-52}$
Neodymium	_		
carbonate	$Nd_2(CO_3)_3$	32.97	1.08×10^{-33}
hydroxide	Nd(OH) ₃	21.49	3.2×10^{-22}
Neptunyl(VI)			
hydroxide	NpO ₂ (OH) ₂	21.60	2.5×10^{-22}
Nickel			
ammine perrhenate	$[Ni(NH_3)_6][ReO_4]_2$	3.29	5.1×10^{-4}
anthranilate	NiL ₂	9.09	8.1×10^{-10}
arsenate	$Ni_3(AsO_4)_2$	25.51	3.1×10^{-26}
carbonate	NiCO ₃	6.85	1.42×10^{-7}
ferrocyanide	$Ni_2[Fe(CN)_6]$	14.89	1.3×10^{-15}
hydrazine sulfate	$[Ni(N_2H_4)_3]SO_4$	13.15	7.1×10^{-15}
hydroxide	Ni(OH) ₂ fresh	15.26	5.48×10^{-16}
iodate	Ni(IO ₃) ₂	4.33	4.71×10^{-5}
oxalate	NiC ₂ O ₄	9.4	4×10^{-10}
phosphate	$Ni_3(PO_4)_2$	31.32	4.74×10^{-32}
pyrophosphate	Ni ₂ P ₂ O ₇	12.77	1.7×10^{-13}
quinaldate	NiL ₂	10.1	8×10^{-11}
8-quinolinolate	NiL ₂	26.1	8×10^{-27}
selenite	NiSeO ₃	5.0	$1.0 imes 10^{-5}$
α -sulfide	α-NiS	18.50	$3.2 imes 10^{-19}$
β -sulfide	β-NiS	24.0	$1.0 imes 10^{-24}$
γ-sulfide	γ-NiS	25.70	$2.0 imes 10^{-26}$
Palladium			
(II) hydroxide	Pd(OH) ₂	31.0	1.0×10^{-31}
(IV) hydroxide	Pd(OH) ₄	70.20	6.3×10^{-71}
quinaldate	PdL ₂	12.90	1.3×10^{-13}
thiocyanate	Pd(SCN) ₂	22.36	4.39×10^{-23}
Platinum			
(IV) bromide	PtBr ₄	40.50	3.2×10^{-41}
(II) hydroxide	Pt(OH) ₂	35	1×10^{-35}
Plutonium			
(III) fluoride	PuF ₃	15.60	2.5×10^{-16}
(IV) fluoride	PuF ₄	19.20	6.3×10^{-20}
(IV) hydrogen phosphate	$Pu(HPO_4)_2 \cdot xH_2O$	27.7	$2 imes 10^{-28}$
(III) hydroxide	Pu(OH) ₃	19.70	$2.0 imes 10^{-20}$
(IV) hydroxide	Pu(OH) ₄	55	1×10^{-55}
(IV) iodate	$Pu(IO_3)_4$	12.3	$5 imes 10^{-13}$
(VI) carbonate	PuO ₂ CO ₃	12.77	1.7×10^{-13}
(V) hydroxide	PuO ₂ (OH)	9.3	5×10^{-10}
(VI) hydroxide	PuO ₂ (OH) ₂	24.7	2×10^{-25}
Polonium			
sulfide	PoS	28.26	$5.6 imes 10^{-29}$
Potassium			
hexabromoplatinate	K ₂ [PtBr ₆]	4.20	$6.3 imes 10^{-5}$
hexachloropalladinate	K ₂ [PdCl ₆]	5.22	$6.0 imes 10^{-6}$
hexachloroplatinate	K ₂ [PtCl ₆]	5.13	$7.48 imes 10^{-6}$
hexafluoroplatinate	$K_2[PtF_6]$	4.54	2.9×10^{-5}

TABLE 1.71 Solubility Product Constants (Continued)

hexafluorosilicate K ₂ [SiF ₄] 6.0 8.7 × 10 ⁻⁷ hexafluorozirconate K ₁ [ZiF ₄] 3.3 5 × 10 ⁻⁷ iodate KIO ₂ 3.43 3.74 × 10 ⁻⁴ perchlorate KCIO ₄ 1.98 1.05 × 10 ⁻² sodium cobaltinitrite K ₂ (Cl ₂ (K) ₂) ₂]·H ₂ O 10.66 2.2 × 10 ⁻⁴ hydrate K[UO ₄ AsO ₄] 22.60 2.5 × 10 ⁻²³ uranyl arsenate K[UO ₄ AsO ₄] 22.60 2.5 × 10 ⁻²³ uranyl arsenate K ₄ [UO ₄ (Co ₃) ₃] 4.20 6.3 × 10 ⁻²⁴ hydroxide Pr(OH) ₃ 23.45 3.39 × 10 ⁻²⁴ Promethium hydroxide Pm(OH) ₃ 2.1 1 × 10 ⁻²¹ Radium a 1.05 × 10 ⁻¹⁹ 1.16 × 10 ⁻⁹ sulfate RaSO ₄ 10.44 3.66 × 10 ⁻¹¹ Rubidim Rb ₁ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻¹³ recobaltinitrite Rb ₁ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻³ periodate Rb(Q 3.26 5.5 × 10 ⁻⁴ hydroxide </th <th>Compound</th> <th>Formula</th> <th>pK_{sp}</th> <th>K_{sp}</th>	Compound	Formula	pK _{sp}	K _{sp}
hexafluorozirconate $K_1^{1}ZF_0^{-1}$ 3.3 5 × 10 ⁻⁴ iodate KIQ 3.43 3.74 × 10 ⁻⁴ iodate KCQ 1.98 1.05 × 10 ⁻² sodium cobaltinitrite K_Na[Co(NO ₂) ₀]-H ₂ O 10.66 2.2 × 10 ⁻¹¹ hydrate K[B(C,H ₂) ₁] 7.66 2.2 × 10 ⁻²² uranyl arsenate K[B(C,H ₂) ₁] 7.66 2.2 × 10 ⁻²³ uranyl arsenate K[UO ₂ (AS ₀) ₁] 2.00 2.5 × 10 ⁻²³ Prascodymium hydroxide PrnO(H) ₃ 2.1 1 × 10 ⁻²¹ Radium Promethium 2.3.45 3.39 × 10 ⁻²⁴ 10.44 hydroxide Ra(IO ₃) ₂ 8.94 1.1.16 × 10 ⁻⁹ Rubidium Promethium 10.44 3.66 × 10 ⁻¹¹ hydroxide Rh(OH) ₃ 23 1 × 10 ⁻²³ Rubidium Cobaltinitrite Rb_1Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻⁴ hydroxide Rh(OH) ₃ 23 1 × 10 ⁻²⁵ 3.0 × 10 ⁻⁷ recolatinitrite Rb_1PtPf ₁] 6.12 <	hexafluorosilicate	Ka[SiFz]	6.06	8.7×10^{-7}
iodate Rio of the set of	hexafluorozirconate	$K_{a}[ZrF_{c}]$	3.3	5×10^{-4}
perchlorate KClO ₄ 1.08 1.05 × 10 ⁻² sodium cobaltinitrite K,Na[Co(NO ₂) ₆]-H ₂ O 10.66 2.2 × 10 ⁻¹¹ hydrate K[B(C,H ₂) ₆]-H ₂ O 10.66 2.2 × 10 ⁻²¹ uranyl arsenate K[B(C,H ₂) ₆] 2.60 2.5 × 10 ⁻²³ uranyl carbonate K ₄ [UO ₂ (AsO ₄] 2.2.60 2.5 × 10 ⁻²³ phydroxide Pr(OH) ₃ 2.1 1 × 10 ⁻²¹ Radium adium 2.3.45 3.3.9 × 10 ⁻⁴⁴ hydroxide Pm(OH) ₃ 2.1 1 × 10 ⁻²¹ Radium adium 10.44 3.66 × 10 ⁻¹¹ hydroxide Rh(OH) ₃ 2.3 1 × 10 ⁻²³ Rubidium colatinitrite Rb ₂ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻⁴³ hexachloroplatinate Rb ₁ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻⁴³ hexafluorosilicate Rb ₁ [SiF ₆] 6.12 7.7 × 10 ⁻⁷ hexafluorosilicate Rb ₁ [SiF ₆] 6.22 3.0 × 10 ⁻³ periodate RblO ₄ 3.26 5.5 × 10 ⁻⁴	iodate	KIO.	3.43	3.74×10^{-4}
product K_2Na[Co(NO_2)_6]-H_2O 10.66 2.2×10^{-11} hydrate K_2Na[Co(NO_2)_6]-H_2O 10.66 2.2×10^{-11} uranyl arsenate K[B(C_6H_3)_1] 7.66 2.2×10^{-23} uranyl arsenate K[UO_2ASO_1] 22.60 2.5×10^{-23} Praseodymium hydroxide Pr(OH)_3 4.20 6.3×10^{-5} Promethium hydroxide Pm(OH)_3 21 1×10^{-21} Radium iodate Ra(IO_3)_2 8.94 1.16×10^{-9} sulfate RaSO_4 10.44 3.66×10^{-11} Rhodium cobatinitrite Rb_[Co(NO_2)_6] 14.83 1.5×10^{-15} hexaflooroplatinate Rb_[PF[a] 6.12 7.7×10^{-7} hexaflooroplatinate Rb_[PF[a] 6.30 5.0×10^{-7} periodate RbIO4 3.26 5.5×10^{-4} hydroxide Sm(OH)_3 22.08 8.3×10^{-23} Samarium	perchlorate	KCIO.	1 98	1.05×10^{-2}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sodium cobaltinitrite	$K_{a}Na[Co(NO_{a})_{c}] \cdot H_{a}O$	10.66	2.2×10^{-11}
Introduction K[B($C_gH_g)_1$] 7.66 2.2 × 10 ⁻⁸ uranyl arsenate K[UO ₂ ASO ₃] 22.60 2.5 × 10 ⁻²³ Praseodymium 4.20 6.3 × 10 ⁻⁵⁴ hydroxide Pr(OH) ₃ 23.45 3.39 × 10 ⁻²⁴ Promethium hydroxide Pm(OH) ₃ 21 1 × 10 ⁻²¹ Radium iodate Ra(IO ₃) ₂ 8.94 1.16 × 10 ⁻⁹ sulfate RaSO ₄ 10.44 3.66 × 10 ⁻¹¹ Rhodium cobaltinitrite Rb ₃ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻¹⁵ hexachloroplatinate Rb ₃ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻¹⁵ 10 ⁻²⁴ hexafluoroplatinate Rb ₃ [PfC ₆] 6.12 7.7 × 10 ⁻⁷ hexafluoroplatinate Rb ₃ [SF ₆] 6.30 5.0 × 10 ⁻⁴ hydroxide Sm(OH) ₃ 22.08 8.3 × 10 ⁻²³ Samarium Intoride Scf ₅ 23.24 5.81 × 10 ⁻⁴⁴ hydroxide Sm(OH) ₃ 22.08 8.3 × 10 ⁻²³ Silver acetate AgOAc 2.7	hydrate		10.00	2.2 / 10
uranyl arsenate K[U0_2ASQ_1] 22.60 2.5×10^{-23} uranyl carbonate K_4[U0_2(CO_3)_3] 4.20 6.3×10^{-5} Praseodymium Pr(OH)_3 23.45 3.39×10^{-24} hydroxide Pm(OH)_3 21 1×10^{-21} Radium radium 10.44 3.66×10^{-11} Radium radium radium 10.44 3.66×10^{-11} Rhodium Rhodium Rho(OH)_3 23 1×10^{-21} Rubidium Rho(DH)_3 23 1×10^{-21} rescaltinitric Rho[Co(NO_2)_0] 14.83 1.5×10^{-15} hexaflooroplatinate Rb_[PPCL] 7.20 6.3×10^{-5} hexafluoroplatinate Rb_[SiF_0] 6.30 5.0×10^{-7} perchlorate Rb[O4 3.26 5.5×10^{-4} hydroxide Sm(OH)_3 22.08 8.3×10^{-23} fuoride Scf_3 23.24 5.81×10^{-24} hydroxide Sc(OH)_3 30.65 2.22 \times 10^{-31} Stord<	tetraphenylborate	K[B(C,H_r),]	7.66	2.2×10^{-8}
Tarayl carbonate $K_4(UO_2(CO_3)_3)$ 4.20 6.3 × 10^{-5} Praseodymium Pr(OH)_3 23.45 3.39 × 10^{-24} hydroxide Pr(OH)_3 21 1 × 10^{-21} Radium added Ra(IO_3)_2 8.94 1.16 × 10^{-9} Radium codate Ra(IO_3)_2 8.94 1.16 × 10^{-9} Rubidum resconder RaSO_4 10.44 3.66 × 10^{-11} Nubidium codatinitritie Rb_[CO(NO_2)_6] 14.83 1.5 × 10^{-15} hexafluoroplatinate Rb_[PtF_6] 6.12 7.7 × 10^{-7} hexafluoroplatinate Rb[0A 3.26 5.5 × 10^{-4} hydroxide Ru(OH)_3 36 1 × 10^{-28} Samarium hydroxide Sm(OH)_3 22.08 8.3 × 10^{-29} hydroxide Sm(OH)_3 36 1 × 10^{-26} 10^{-24} samarium hydroxide Sc(OH)_3 30.65 2.22 × 10^{-31} 10^{-14} hydroxide Sc(OH)_3 30.65 2.22 × 10^{-31} 10^{-14} 10^{-2	uranyl arsenate	$K[UO_{2}AsO_{4}]$	22.60	2.5×10^{-23}
Praceodymium Pr(OH)3 23.45 3.39×10^{-24} hydroxide Pr(OH)3 21 1×10^{-21} hydroxide Pm(OH)3 21 1×10^{-21} Radium iodate Ra(IO ₃)2 8.94 1.16×10^{-9} sulfate RaSO ₄ 10.44 3.66×10^{-11} Rhodium Phydroxide Rh(OH)3 23 1×10^{-23} Rubidium cobaltinitrite Rb ₃ [Co(NO ₃)a] 14.83 1.5×10^{-15} hexachtoroplatinate Rb ₂ [Pt(P ₄] 7.20 6.3×10^{-8} hexaftoroplatinate Rb ₂ [Pt(P ₄] 7.20 6.3×10^{-8} periodate RbClO ₄ 2.52 3.0×10^{-7} periodate RbClO ₄ 2.52 3.0×10^{-7} periodate RbClO ₄ 2.52 3.0×10^{-7} hydroxide Sm(OH)3 36 1×10^{-23} Samarium hydroxide Sm(OH)3 32.20 8.3×10^{-23} Silver acetate AgOAc 2.71 1.94×10^{-3} azide AgBAS_4 $2.2.08$	uranyl carbonate	$K_{1}[UO_{2}(CO_{2})_{2}]$	4.20	6.3×10^{-5}
bydroxide Pr(OH) ₃ 23.45 3.39×10^{-24} Promethium hydroxide Pm(OH) ₃ 21 1×10^{-21} Radium iodate Ra(IO ₃) ₂ 8.94 1.16×10^{-9} Rubidium RaSO ₄ 10.44 3.66×10^{-11} Rhodium hydroxide Rh(OH) ₃ 23 1×10^{-23} Rubidium cobaltinitrite Rb ₃ [Co(NO ₂) ₆] 14.83 1.5×10^{-15} hexafluoroplatinate Rb ₂ [PtP ₄] 6.12 7.7×10^{-7} hexafluoroplatinate Rb ₂ [PtP ₄] 6.12 7.7×10^{-7} hexafluoroplatinate Rb ₂ [PtP ₄] 6.22 3.0×10^{-7} periodate RbIO ₄ 3.26 5.5×10^{-4} Ruthenium hydroxide Sm(OH) ₃ 22.08 8.3×10^{-23} hydroxide Sm(OH) ₃ 22.08 8.3×10^{-23} stanarium hydroxide Sm(OH) ₃ 22.08 8.3×10^{-23} stanarium hydroxide Sc(OH) ₃ 30.65 2.22×10^{-3	Praseodymium	4[0 02(0 03/3]		010
Promethium Promethium </td <td>hydroxide</td> <td>Pr(OH)₂</td> <td>23.45</td> <td>3.39×10^{-24}</td>	hydroxide	Pr(OH) ₂	23.45	3.39×10^{-24}
hydroxide Pm(OH) ₃ 21 1×10^{-21} Radium Ra(IO ₃) ₂ 8.94 1.16×10^{-9} sulfate RaSO ₄ 10.44 3.66×10^{-11} hydroxide Rh(OH) ₃ 23 1×10^{-23} Rubidium robuiltimitrite Rb ₂ [PtCl ₆] 7.20 6.3×10^{-8} hexachloroplatinate Rb ₂ [PtCl ₆] 6.12 7.7×10^{-7} hexafluorosilicate Rb ₂ [SiF ₆] 6.30 5.0×10^{-7} periodate RblO ₄ 3.26 5.5×10^{-4} hydroxide Sm(OH) ₃ 22.08 8.3×10^{-23} Samarium nydroxide Sm(OH) ₃ 30.65 2.22×10^{-31} fluoride Sc(OH) ₃ 30.65 2.22×10^{-31} silver acetate Ag0Ac 21.99 1.03×10^{-22} arsenate Ag3ASO ₄ 21.99 1.03×10^{-22} arsenate Ag3ASO ₄ 21.99 1.03×10^{-22} arsenate Ag3ASO ₄ 21.99 1.03×10^{-22}	Promethium			
Radium Ra(IO ₃)2 8.94 1.16 × 10 ⁻⁹ Radium Ra(IO ₃)2 8.94 1.16 × 10 ⁻⁹ Rhodium hydroxide Rh(OH)3 23 1 × 10 ⁻²³ Rubidium cobaltinitrite Rb ₂ [PtCl ₆] 7.20 6.3 × 10 ⁻¹³ hexachloroplatinate Rb ₂ [PtCl ₆] 7.20 6.3 × 10 ⁻²³ hexafluoroplatinate Rb ₂ [PtCl ₆] 6.12 7.7 × 10 ⁻⁷ hexafluoroplatinate Rb ₂ [St ₆] 6.30 5.0 × 10 ⁻⁷ perchlorate RbClO ₄ 2.52 3.0 × 10 ⁻³ periodate RbHO ₄ 3.26 5.5 × 10 ⁻⁴ Ruthenium hydroxide Sm(OH)3 22.08 8.3 × 10 ⁻²³ Scandium fluoride ScF ₃ 23.24 5.81 × 10 ⁻²⁴ hydroxide Su(OH)3 20.08 8.3 × 10 ⁻²³ Scandium acetate AgOAc 2.71 1.94 × 10 ⁻³ acetate AgOAc 2.71 1.94 × 10 ⁻³ acetate AgBrO3 4.27 5.38 × 10 ⁻⁵ bromate AgBrO3 4.27 5.38 × 10 ⁻⁵	hydroxide	Pm(OH) ₂	21	1×10^{-21}
Instruction Ra(IO ₃) ₂ 8.94 1.16 × 10 ⁻⁹ sulfate RaSO ₄ 10.44 3.66 × 10 ⁻¹¹ Rhodium hydroxide Rh(OH) ₃ 23 1 × 10 ⁻²³ Rubidium cobaltinitrite Rb ₃ [Co(NO ₂) ₆] 14.83 1.5 × 10 ⁻¹⁵ hexachloroplatinate Rb ₂ [PtCl ₆] 7.20 6.3 × 10 ⁻⁸ hexafluorositicate Rb ₂ [PtCl ₆] 6.12 7.7 × 10 ⁻⁷ perchlorate RbClO ₄ 2.52 3.0 × 10 ⁻⁷³ periodate RbIO ₄ 3.26 5.5 × 10 ⁻⁴ Ruthenium hydroxide Sm(OH) ₃ 36 1 × 10 ⁻²³ Scandium fluoride ScF ₃ 23.24 5.81 × 10 ⁻²⁴ hydroxide Sc(OH) ₃ 30.65 2.22 × 10 ⁻³¹ Silver acetate AgOAc 2.71 1.94 × 10 ⁻³ arsenate Ag ₂ AsO ₄ 21.99 1.03 × 10 ⁻²² aride AgBrO ₅ 4.27 5.38 × 10 ⁻⁵ bromide AgBr 12.27 5.35 × 10 ⁻¹³	Radium			
sulfate RaSO ₄ 10.44 3.66×10^{-11} Rhodium Rho(OH) ₃ 23 1×10^{-23} Rubidium Rho(OH) ₃ 23 1×10^{-23} cobaltinitrite Rb ₃ [Co(NO ₂) ₆] 14.83 1.5×10^{-15} hexachloroplatinate Rb ₂ [PtCl ₆] 7.20 6.3×10^{-8} hexafluoroplatinate Rb ₂ [PtF ₃] 6.30 5.0×10^{-7} periodate RbClO ₄ 2.52 3.0×10^{-7} periodate RbO ₄ 3.26 5.5×10^{-4} Ruthenium Hydroxide Sm(OH) ₃ 36 1×10^{-26} Samarium Hydroxide Sm(OH) ₃ 32.24 5.81×10^{-24} Scandium fluoride ScF ₃ 23.24 5.81×10^{-24} hydroxide Sc(OH) ₃ 30.65 2.22×10^{-31} Silver azetate AgOAc 2.711 1.94×10^{-3} azetate AgBrO ₃ 4.27 5.38×10^{-9} bromate AgBrO ₃ 4.27 5.3	iodate	Ra(IO ₂) ₂	8.94	1.16×10^{-9}
Rhodium Rhodium Rh(OH) ₃ 23 1×10^{-23} Rubidium cobaltinitrite Rb ₃ [Co(NO ₂) ₆] 14.83 1.5×10^{-15} nexachloroplatinate Rb ₂ [PtCl ₆] 7.20 6.3×10^{-8} hexafluoroplatinate Rb ₂ [PtCl ₆] 7.20 6.3×10^{-8} hexafluoroplatinate Rb ₂ [SiF ₄] 6.12 7.7×10^{-7} hexafluoroplatinate Rb ₂ [SiF ₄] 6.32 5.5×10^{-4} hexafluoroplatinate Rb ₂ [SiF ₄] 6.32 5.5×10^{-4} periodate RblO ₄ 3.26 5.5×10^{-4} Ruthenium H H H 10^{-36} hydroxide Sm(OH) ₃ 36 1×10^{-36} Scandium Huoride ScF ₃ 23.24 5.81×10^{-24} hydroxide Sc(OH) ₃ 30.65 2.22×10^{-31} silver acetate AgOAc 2.199 1.03×10^{-22} acetate AgeAsO ₄ 21.99 1.03×10^{-22} acaronate Agg	sulfate	RaSO	10.44	3.66×10^{-11}
hydroxide Rh(OH) ₃ 23 1×10^{-23} Rubidium Rb $_3[Co(NO_2)_6]$ 14.83 1.5×10^{-15} hexachloroplatinate Rb ₂ [PiCl ₆] 7.20 6.3 \times 10^{-8} hexafluoroplatinate Rb ₂ [PiCl ₆] 7.20 6.3 \times 10^{-8} hexafluoroplatinate Rb ₂ [SiF ₆] 6.12 7.7×10^{-7} hexafluoroplatinate Rb ₂ [SiF ₆] 6.30 5.0×10^{-8} periodate RbClO ₄ 2.52 3.0×10^{-3} periodate RblO4 3.26 5.5×10^{-4} Ruthenium	Rhodium	10004	10111	
RubidiumRu(CU)3RuRubidiumcobaltinitriteRb_1[Co(NO_2)_6]14.83 1.5×10^{-15} hexachloroplatinateRb_2[PtCl_6]7.20 6.3×10^{-8} hexafluoroplatinateRb_2[PtF_6] 6.12 7.7×10^{-7} hexafluoroplatinateRbClO4 2.52 3.0×10^{-3} periodateRbClO4 3.26 5.5×10^{-4} Ruthenium 36 1×10^{-36} hydroxideRu(OH)336 1×10^{-36} Samarium 30.65 fluorideScF_3 23.24 5.81×10^{-23} fluorideScC(OH)3 30.65 2.22×10^{-31} scatateAgOAc 2.71 1.94×10^{-3} arsenateAg3ASO4 21.99 1.03×10^{-22} arideAgBrO3 4.27 5.38×10^{-9} bromateAgBrO3 4.27 5.38×10^{-19} chlorideAgBr 12.27 5.35×10^{-11} chlorideAgCO3 11.07 8.46×10^{-12} chlorideAgCO4 1.95 1.12×10^{-12} chlorideAgCO3 11.07 8.54 2.3×10^{-7} chlorideAgCO3 10.07 8.5×10^{-21} chlorideAgCO4 2.77 5.38×10^{-5} bromateAg2CO3 11.07 8.46×10^{-12} chlorideAgCO3 10.77 2.0×10^{-4} chlorideAgCO4 1.95 1.12×10^{-12} chlorideAgCO4 2.97 <td>hydroxide</td> <td>Rh(OH)₂</td> <td>23</td> <td>1×10^{-23}</td>	hydroxide	Rh(OH) ₂	23	1×10^{-23}
cobaltinitrite $Rb_3[Co(NO_2)_6]$ 14.83 1.5×10^{-15} hexachloroplatinate $Rb_2[PtCl_6]$ 7.20 6.3×10^{-8} hexafluoroplatinate $Rb_2[PtF_6]$ 6.12 7.7×10^{-7} hexafluoroplatinate $Rb_2[PtF_6]$ 6.30 5.0×10^{-7} perchlorate $RbClO_4$ 2.52 3.0×10^{-3} periodate $RbIO_4$ 3.26 5.5×10^{-4} Ruthenium hydroxide $Ru(OH)_3$ 36 1×10^{-36} Samarium hydroxide $Sm(OH)_3$ 22.08 8.3×10^{-23} Scandium fluoride ScF_3 23.24 5.81×10^{-24} hydroxide Sc(OH)_3 30.65 2.22×10^{-31} silver acetate $AgOAc$ 2.71 1.94×10^{-3} arsenate AgA_3ASQ_4 21.99 1.03×10^{-22} azide AgBrO_3 4.27 5.38×10^{-9} bromate AgBrO_3 4.27 5.38×10^{-13} carbonate Ag2CO_4 <	Rubidium			
Instruction Instruction Instruction hexachloroplatinate Rb ₂ [PtCl ₆] 7.20 6.3×10^{-8} hexafluoroplatinate Rb ₂ [PtCl ₆] 6.12 7.7×10^{-7} hexafluoroplatinate Rb ₂ [SiF ₆] 6.30 5.0×10^{-7} periodate RbIO ₄ 3.26 5.5×10^{-4} Ruthenium ndroxide Ru(OH) ₃ 36 1×10^{-36} Samarium ndroxide Sm(OH) ₃ 22.08 8.3×10^{-24} Scandium fluoride ScF ₃ 23.24 5.81×10^{-24} hydroxide Sc(OH) ₃ 30.65 2.222×10^{-31} Silver acetate AgOAc 2.71 1.94×10^{-3} azide AgBrO ₃ 4.54 2.8×10^{-9} bromate AgBrO ₃ 4.27 5.38×10^{-24} bromate AgBrO ₃ 4.27 5.38×10^{-24} bromate AggArO ₄ 21.99 1.03×10^{-22} azide AggRO ₃ 4.54 2.8×10^{-9}	cobaltinitrite	$Rb_{2}[Co(NO_{2})_{2}]$	14.83	1.5×10^{-15}
hexafluoroplatinate Rb_2[PtP_6] 6.12 7.7×10^{-7} hexafluoroplatinate Rb_2[SiF_6] 6.30 5.0×10^{-7} perchlorate RbClO ₄ 2.52 3.0×10^{-3} perchlorate RbUO ₄ 3.26 5.5×10^{-4} Ruthenium hydroxide Ru(OH) ₃ 36 1×10^{-36} Samarium fluoride Scr5 ₃ 23.24 5.81×10^{-24} hydroxide Sm(OH) ₃ 30.65 2.22×10^{-31} scandium fluoride Scr5 ₃ 23.24 5.81×10^{-24} hydroxide Sc(OH) ₃ 30.65 2.22×10^{-31} Silver acetate AgQAc 2.199 10.3×10^{-22} azide AggAsO ₄ 21.99 10.3×10^{-22} $azide$ $AggAsO_4$ 21.99 10.3×10^{-23} subromate AggAsO ₄ 21.99 10.3×10^{-23} $azide$ $AggCO_3$ 11.07 8.46×10^{-12} bromate AggCO ₃ 11.07 8.46×10^{-12} a	hexachloroplatinate	$Rb_{2}[PtCl_{2}]$	7.20	6.3×10^{-8}
hexafluorosilicate perchlorate perchlorate $Rb_2[SiF_6]$ 6.30 5.0×10^{-7} perchlorate perchlorate $RbClO_4$ 2.52 3.0×10^{-3} Ruthenium hydroxide $Ru(OH)_3$ 36 1×10^{-36} Samarium hydroxide $Ru(OH)_3$ 36 1×10^{-36} Samarium fluoride ScF_3 23.24 5.81×10^{-23} Scandium fluoride ScF_3 23.24 5.81×10^{-24} hydroxide $Sc(OH)_3$ 30.65 2.22×10^{-31} Silver acctate $AgOAc$ 2.71 1.94×10^{-3} arsenate Ag_3AsO_4 21.99 1.03×10^{-22} azide $AgBr_3$ 8.54 2.8×10^{-9} bromate $AgBr_3$ 4.27 5.38×10^{-12} choride $AgBr_3$ 4.27 5.35×10^{-11} choride $AgBr_3$ 4.27 5.35×10^{-11} choride $AgCI$ 9.75 1.77×10^{-10} choride Ag_2CO_2 3.70 2.0×10^{-7} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanamide $AgCN$ 6.64 2.3×10^{-7} cyanide $AgCN$ 6.64 2.3×10^{-7} cyanide $AgCN$ 6.64 2.3×10^{-7} cyanide $AgCN_2$ 8.85 1.4×10^{-3} choride $Ag2CN_2$ 10.14 7.2×10^{-11} choride $Ag2CN_2$ 10.14 7.2×10^{-11} <	hexafluoroplatinate	Rb ₂ [PtF ₄]	6.12	7.7×10^{-7}
International perchlorate Rb2CQ ₄ 2.52 3.0×10^{-3} periodate RbIO ₄ 3.26 5.5×10^{-4} Ruthenium hydroxide Ru(OH) ₃ 36 1×10^{-36} Samarium hydroxide Sm(OH) ₃ 22.08 8.3×10^{-23} Scandium fluoride ScF ₃ 23.24 5.81×10^{-24} hydroxide Sc(OH) ₃ 30.65 2.22×10^{-31} scatate AgOAc 2.71 1.94×10^{-3} acctate AgOAc 2.71 1.94×10^{-3} arsenate Ag ₃ AsO ₄ 21.99 1.03×10^{-22} azide AgOAc 2.71 1.94×10^{-3} arsenate Ag ₃ AsO ₄ 21.99 1.03×10^{-22} azide AgBrO ₃ 4.27 5.38×10^{-5} bromate Ag ₃ CO ₃ 11.07 8.46×10^{-12} carbonate Ag ₃ CO ₃ 11.07 8.46×10^{-12} chlorite Ag ₂ CO ₃ 11.07 8.5×10^{-21} <tr< td=""><td>hexafluorosilicate</td><td>$Rb_{2}[SiF_{2}]$</td><td>6.30</td><td>5.0×10^{-7}</td></tr<>	hexafluorosilicate	$Rb_{2}[SiF_{2}]$	6.30	5.0×10^{-7}
periodate RbIO4 3.26 5.5 × 10 ⁻⁴ Ruthenium hydroxide Ru(OH)3 36 1×10^{-36} Samarium hydroxide Sm(OH)3 36 1×10^{-36} Scandium fluoride ScF3 22.08 8.3×10^{-23} fluoride ScF3 23.24 5.81×10^{-24} hydroxide Sc(OH)3 30.65 2.22×10^{-31} Silver accetate AgOAc 2.71 1.94×10^{-3} arsenate Ag3AsO4 21.99 1.03×10^{-22} azide AgBrO3 4.27 5.38×10^{-9} bromate AgBrO3 4.27 5.38×10^{-5} bromide AgBr 12.27 5.35×10^{-13} carbonate Ag2CO3 11.07 8.46×10^{-12} chloride AgCl 9.75 1.77×10^{-10} chloride Ag2CO2 3.70 2.0×10^{-7} chloride Ag2CrO4 11.95 1.12×10^{-11} cobaltinitrite Ag2(Co(NO2)6] 20.07 8.5×10^{-21} cobaltinitrite	perchlorate	RbClO	2.52	3.0×10^{-3}
Putching hydroxideRu(OH)_336 1×10^{-36} Samarium hydroxideSm(OH)_336 1×10^{-36} Samarium hydroxideSm(OH)_322.08 8.3×10^{-23} Scandium fluorideScF_323.24 5.81×10^{-24} hydroxideSc(OH)_330.652.22 \times 10^{-31}Silver acetateAgOAc2.71 1.94×10^{-3} acetateAgOAc2.71 1.94×10^{-3} acetateAgBAG_3 4.27 5.38×10^{-9} bromateAgBrO_3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2CO_3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAgCl 3.70 2.0×10^{-4} chlorideAg2CO_2 3.70 2.0×10^{-4} chlorideAg2CN_2 10.14 7.2×10^{-11} cyanamideAg2CN_2 10.14 7.2×10^{-17} cyanamideAg2CN_2 6.70 2.0×10^{-7} dichromateAg2CN_2 6.70 2.0×10^{-7} dichromateAg2CN_2 10.14 7.2×10^{-11} dichromateAg2Cr_2/7 6.70 2.0×10^{-7} dichromateAg2Cr_2/7 6.70 2.0×10^{-7} dichromateAg2N(CN)_2 8.85 1.4×10^{-9} ferrocyanideAg4[Fe(CN)_6] 40.81 1.6×10^{-41} hydroxideAg0H 7.71 2.0×10^{-8} <td< td=""><td>periodate</td><td>RbIO</td><td>3.26</td><td>5.5×10^{-4}</td></td<>	periodate	RbIO	3.26	5.5×10^{-4}
Number hydroxideRu(OH)336 1×10^{-36} Samarium hydroxideSm(OH)322.08 8.3×10^{-23} ScandiumScF323.24 5.81×10^{-24} fluorideScF330.65 2.22×10^{-31} silveracetateAgOAc 2.71 1.94×10^{-3} acetateAgOAc 2.71 1.94×10^{-3} arsenateAg3AsO4 21.99 1.03×10^{-22} azideAgN3 8.54 2.8×10^{-9} bromateAgBrO3 4.27 5.38×10^{-5} bromideAgBrO3 4.27 5.38×10^{-5} chorideAgCI 9.75 1.77×10^{-10} chlorideAgCI 9.75 1.77×10^{-10} chorideAg2CO3 11.07 8.46×10^{-12} chorideAg2CO4 11.95 1.12×10^{-12} cobaltinitriteAg2CO3 10.14 7.2×10^{-11} cyanamideAg2CN2 6.64 2.3×10^{-7} cyanateAgCN 6.64 2.3×10^{-7} cyanateAgCN 6.64 2.0×10^{-7} dichromateAg2CrQ7 6.70 2.0×10^{-11} cyanateAgCN 6.64 2.3×10^{-9} regressionAgCN 6.64 2.3×10^{-7} cyanateAg2CrQ7 6.70 2.0×10^{-7} dichromateAg2CrQ7 6.70 2.0×10^{-11} cyanateAg2CrQ7 6.70 2.0×10^{-11} cyanateAg2CrQ7 6.70 2.0×10^{-11} <	Ruthenium	110104	0.20	
InstitutionInstitutionInstitutionhydroxideSm(OH)_3 22.08 8.3×10^{-23} ScandiumfluorideScF_3 23.24 5.81×10^{-24} hydroxideSc(OH)_3 30.65 2.22×10^{-31} SilveracetateAgOAc 2.71 1.94×10^{-3} acetateAgOAc 2.71 1.94×10^{-3} arsenateAg3ASO_4 21.99 1.03×10^{-22} azideAgBr 2.27 5.38×10^{-9} bromateAgBrO_3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2CO_3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAg2CO_2 3.70 2.0×10^{-4} chlorideAg2CO_2 10.14 7.2×10^{-11} cobaltinitriteAg_2CN_2 10.14 7.2×10^{-11} cyanatideAg2CN_2 6.64 2.3×10^{-7} cyanatideAg2CN_2 8.85 1.4×10^{-9} ferrocyanideAg2CN_2 8.85 1.4×10^{-9} ferrocyanideAg2CN_2 8.85 1.4×10^{-9} ferrocyanideAg2Hec(N)_2 8.85 1.4×10^{-9} hydroxideAgOH 7.71 2.0×10^{-8} hyponitriteAg2N_O2 18.88 1.3×10^{-19}	hydroxide	Ru(OH)	36	1×10^{-36}
hydroxideSm(OH)322.08 8.3×10^{-23} ScandiumfluorideScF323.24 5.81×10^{-24} hydroxideSc(OH)330.65 2.22×10^{-31} SilveracctateAgOAc 2.71 1.94×10^{-3} arsenateAg3ASO421.99 1.03×10^{-22} azideAgBrO3 4.27 5.38×10^{-9} bromateAgBrO3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2CO3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chloriteAgClO2 3.70 2.0×10^{-4} chromateAg2CO3 11.07 8.5×10^{-21} cynamideAg2CN4 11.95 1.12×10^{-12} cynamideAg2CN2 10.14 7.2×10^{-11} cynamideAg2CN2 16.64 2.3×10^{-7} cynamideAg2CN2 16.22 5.97×10^{-17} dichromateAg2Cr20,7 6.70 2.0×10^{-7} dichromateAg2Cr20,7 6.70 2.0×10^{-7} dichromateAg2Cr20,7 6.70 2.0×10^{-7} dicynimideAg2N(CN)2 8.85 1.4×10^{-9} ferrocynideAg2(Fe(CN)6] 40.81 1.6×10^{-41} hydroxideAg0H 7.71 2.0×10^{-8} hydroxideAg0H 7.71 2.0×10^{-8} hydroxideAg2N_Q2 18.89 1.3×10^{-19}	Samarium	(/3		
Scandium fluorideScF3 Sc(OH)323.24 30.65 5.81×10^{-24} 5.81×10^{-24} 1.02×10^{-31} Silver acetateAgOAc AgSASO42.71 21.99 1.94×10^{-3} 1.03×10^{-22} 2.22×10^{-31} acetateAgOAc AgSASO421.99 21.99 1.03×10^{-22} 1.03×10^{-22} 2.22×10^{-31} acetateAgOAc AgN3 8.54 $2.27 \times 5.38 \times 10^{-9}$ bromateAgBrO3 AgBr 4.27 5.35×10^{-13} bromideAgBr Ag2CO3 11.07 8.46×10^{-12} carbonateAg2CO3 AgCl 11.07 9.75 chromateAg2CO4 Ag2CI2 9.75 1.77×10^{-10} chlorideAg2CO4 Ag2CN2 11.95 1.12×10^{-12} cobaltinitriteAg2CN2 Ag2CN2 0.14 16.22 cyanamideAg2CN2 Ag2CN2 6.64 2.3×10^{-7} cyanateAg2CN2 AgCN 16.22 5.97×10^{-17} dichromateAg2CP2O7 Ag2CN2 6.70 2.0×10^{-7} dicyanimideAg2CP2O7 Ag4(Fe(CN)6] 40.81 1.6×10^{-41} hydroxideAgOH Ag2N2O2 7.71 2.0×10^{-8} hydroxideAgOH Ag2N2O2 7.71 2.0×10^{-8}	hydroxide	Sm(OH)₂	22.08	8.3×10^{-23}
fluoride hydroxideScF3 Sc(OH)323.24 30.65 5.81×10^{-24} 2.22×10^{-31} silveracetateAgOAc 2.71 1.94×10^{-3} 2.22×10^{-31} acetateAgOAc 2.71 1.94×10^{-3} 2.22×10^{-31} arsenateAg3AsO4 21.99 1.03×10^{-22} 2.8×10^{-9} azideAgN3 8.54 2.8×10^{-9} bromateAgBrO3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2CO3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAgClO2 3.70 2.0×10^{-4} chromateAg2CO4 11.95 1.12×10^{-12} cobaltinitriteAg2CO4 11.95 1.12×10^{-12} cobaltinitriteAg2CO4 11.95 1.12×10^{-12} cobaltinitriteAg2CO4 11.95 1.12×10^{-12} cobaltinitriteAg2CN2 10.14 7.2×10^{-11} cyanatideAg2CN2 10.14 7.2×10^{-11} cyanateAgOCN 6.64 2.3×10^{-7} cyanideAg2N2O2 8.85 1.4×10^{-9} dichromateAg2Cr2O7 6.70 2.0×10^{-7} dichromateAg2Cr2O7 6.70 2.0×10^{-7} dichromateAg2Cr2O7 6.70 2.0×10^{-7} dichromateAg2N2O2 8.85 1.4×10^{-9} hyponitriteAg2N2O2 18.89 1.3×10^{-19}	Scandium	(
hydroxideSc(OH)330.65 2.22×10^{-31} silveracetateAgOAc 2.71 1.94×10^{-3} arsenateAg3AsO4 21.99 1.03×10^{-22} azideAgN3 8.54 2.8×10^{-9} bromateAgBrO3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2O3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAgClO2 3.70 2.0×10^{-4} chromateAg2CrO4 11.95 1.12×10^{-12} cobaltinitriteAg2CrO4 10.14 7.2×10^{-11} cyanatideAg2CN2 8.85 1.4×10^{-9} cyanideAg2CrQ7 6.70 2.0×10^{-7} dichromateAg2CrQ07 6.70 2.0×10^{-8} <td>fluoride</td> <td>ScF₂</td> <td>23.24</td> <td>5.81×10^{-24}</td>	fluoride	ScF ₂	23.24	5.81×10^{-24}
Silver acetateAgOAc 2.71 1.94×10^{-3} 1.03×10^{-22} 2.199 arsenateAg3AsO4 21.99 1.03×10^{-22} 1.03×10^{-22} 2.199 azideAgN3 8.54 2.8×10^{-9} bromateAgBrO3 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg2CO3 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAgClO2 3.70 2.0×10^{-4} chormateAg2CrO4 11.95 1.12×10^{-12} cobaltinitriteAg2CrO4 11.95 1.12×10^{-12} cobaltinitriteAg2CrO4 10.14 7.2×10^{-11} cyanamideAg2CN2 10.14 7.2×10^{-11} cyanateAgOCN 6.64 2.3×10^{-7} cyanideAg2CrQ7 6.70 2.0×10^{-7} dichromateAg2CrQ7 6.70 2.0×10^{-7} dichromateAg2CrQ2 8.85 1.4×10^{-9} fetrocyanideAg4[Fe(CN)6] 40.81 1.6×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hydroxideAgOH 7.71 $2.0 \times$	hydroxide	Sc(OH) ₂	30.65	2.22×10^{-31}
acetateAgOAc 2.71 1.94×10^{-3} arsenateAg ₃ AsO ₄ 21.99 1.03×10^{-22} azideAgN ₃ 8.54 2.8×10^{-9} bromateAgBrO ₃ 4.27 5.38×10^{-5} bromideAgBr 12.27 5.35×10^{-13} carbonateAg ₂ CO ₃ 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chlorideAgClO ₂ 3.70 2.0×10^{-4} chromateAg ₂ CO ₄ 11.95 1.12×10^{-12} cobaltinitriteAg ₂ CN ₂ 0.07 8.5×10^{-21} cyanamideAg ₂ CN ₂ 10.14 7.2×10^{-11} cyanateAgOCN 6.64 2.3×10^{-7} cyanideAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ N ₂ O ₂ 18.89 1.3×10^{-19} hydroxideAgOH 7.71 2.0×10^{-8} hyponitriteAg ₂ N ₂ O ₂ 18.89 1.3×10^{-19}	Silver			
arsenate Ag_3AsO_4 21.99 1.03×10^{-22} azide AgN_3 8.54 2.8×10^{-9} bromate $AgBrO_3$ 4.27 5.38×10^{-5} bromide $AgBr$ 12.27 5.35×10^{-13} carbonate Ag_2CO_3 11.07 8.46×10^{-12} chloride $AgCl$ 9.75 1.77×10^{-10} chloride $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CO_4 11.95 1.12×10^{-12} cobaltinitrite Ag_2CN_4 10.14 7.2×10^{-11} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgCN$ 6.64 2.3×10^{-7} cyanide $Ag_2Cr_2O_7$ 6.70 2.0×10^{-4} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dichromate $Ag_2N_2O_2$ 18.89 1.3×10^{-19} hydroxide $AgOH$ 7.71 2.0×10^{-8}	acetate	AgOAc	2.71	1.94×10^{-3}
azide AgN_3 8.54 2.8×10^{-9} bromate $AgBrO_3$ 4.27 5.38×10^{-5} bromide $AgBr$ 12.27 5.35×10^{-13} carbonate Ag_2CO_3 11.07 8.46×10^{-12} chloride $AgCl$ 9.75 1.77×10^{-10} chlorite $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CrO_4 11.95 1.12×10^{-12} cobaltinitrite Ag_2CN_2 10.14 7.2×10^{-11} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgCN$ 6.64 2.3×10^{-7} cyanide $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dichromate $AgQ(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $AgOH$ 7.71 2.0×10^{-8}	arsenate	Ag ₂ AsO ₄	21.99	1.03×10^{-22}
bromate $AgBO_3$ 4.27 5.38×10^{-5} bromide $AgBr$ 12.27 5.35×10^{-13} carbonate Ag_2CO_3 11.07 8.46×10^{-12} chloride $AgCl$ 9.75 1.77×10^{-10} chlorite $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CO_4 11.95 1.12×10^{-12} cobaltinitrite Ag_2CN_2 10.14 7.2×10^{-11} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $Ag_2Cr_2O_7$ 6.70 2.0×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dicyanimide $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $AgOH$ 7.71 2.0×10^{-8}	azide	AgN ₃	8.54	$2.8 imes 10^{-9}$
bromideAgBr 12.27 5.35×10^{-13} carbonateAg ₂ CO ₃ 11.07 8.46×10^{-12} chlorideAgCl 9.75 1.77×10^{-10} chloriteAgClO ₂ 3.70 2.0×10^{-4} chromateAg ₂ CrO ₄ 11.95 1.12×10^{-12} cobaltinitriteAg ₃ [Co(NO ₂) ₆] 20.07 8.5×10^{-21} cyanamideAg ₂ CN ₂ 10.14 7.2×10^{-11} cyanateAgOCN 6.64 2.3×10^{-7} cyanideAg2Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ Cr ₂ O ₇ 6.70 2.0×10^{-7} dichromateAg ₂ (CN) ₂ 8.85 1.4×10^{-9} ferrocyanideAgOH 7.71 2.0×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hydroxideAgOH 7.71 2.0×10^{-8}	bromate	AgBrO ₃	4.27	5.38×10^{-5}
carbonate Ag_2CO_3 11.07 8.46×10^{-12} chloride $AgCl$ 9.75 1.77×10^{-10} chlorite $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CO_4 11.95 1.12×10^{-12} cobaltinitrite $Ag_3[Co(NO_2)_6]$ 20.07 8.5×10^{-21} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanate $AgCN$ 16.22 5.97×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dichromate $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $AgOH$ 7.71 2.0×10^{-8}	bromide	AgBr	12.27	5.35×10^{-13}
chloride $AgCl$ 9.75 1.77×10^{-10} chlorite $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CrO_4 11.95 1.12×10^{-12} cobaltinitrite $Ag_3[Co(NO_2)_6]$ 20.07 8.5×10^{-21} cyanamide Ag_2CN_2 10.14 7.2×10^{-111} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $AgCN_2$ 10.14 7.2×10^{-111} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $AgCN$ 16.22 5.97×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dicyanimide $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgH(Fe(CN)_6]$ 40.81 1.6×10^{-41} hydroxide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $Ag2N_2O_2$ 18.89 1.3×10^{-19}	carbonate	Ag ₂ CO ₂	11.07	8.46×10^{-12}
chlorite $AgClO_2$ 3.70 2.0×10^{-4} chromate Ag_2CrO_4 11.95 1.12×10^{-12} cobaltinitrite $Ag_3[Co(NO_2)_6]$ 20.07 8.5×10^{-21} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $AgCN_2$ 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $AgCN_2$ 16.22 5.97×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dicyanimide $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgA_4[Fe(CN)_6]$ 40.81 1.6×10^{-41} hydroxide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $Ag2N_2O_2$ 18.89 1.3×10^{-19}	chloride	AgCl	9.75	1.77×10^{-10}
chromate Ag_2CrO_4 11.95 1.12×10^{-12} cobaltinitrite $Ag_3[Co(NO_2)_6]$ 20.07 8.5×10^{-21} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanate $AgCN$ 16.22 5.97×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dichromate $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgOH$ 7.71 2.0×10^{-8} hydroxide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $Ag_2N_2O_2$ 18.89 1.3×10^{-19}	chlorite	AgClOa	3.70	2.0×10^{-4}
cobaltinitrite $Ag_3[Co(NO_2)_6]$ 20.07 8.5×10^{-21} cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanate $AgOCN$ 6.64 2.3×10^{-7} cyanide $AgCN$ 16.22 5.97×10^{-17} dichromate $Ag_2Cr_2O_7$ 6.70 2.0×10^{-7} dicyanimide $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $AgA_4[Fe(CN)_6]$ 40.81 1.6×10^{-41} hydroxide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $Ag_2N_2O_2$ 18.89 1.3×10^{-19}	chromate	Ag ₂ CrO ₄	11.95	1.12×10^{-12}
cyanamide Ag_2CN_2 10.14 7.2×10^{-11} cyanateAgOCN 6.64 2.3×10^{-7} cyanideAgCN 16.22 5.97×10^{-17} dichromateAg2Cr_2O_7 6.70 2.0×10^{-7} dicyanimideAgN(CN)_2 8.85 1.4×10^{-9} ferrocyanideAg4[Fe(CN)_6] 40.81 1.6×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hyponitriteAg2N_2O_2 18.89 1.3×10^{-19}	cobaltinitrite	$Ag_{2}[Co(NO_{2})_{6}]$	20.07	8.5×10^{-21}
cyanateAgOCN 6.64 2.3×10^{-7} cyanideAgCN 16.22 5.97×10^{-17} dichromateAg2Cr2O7 6.70 2.0×10^{-7} dicyanimideAgN(CN)2 8.85 1.4×10^{-9} ferrocyanideAg4[Fe(CN)6] 40.81 1.6×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hyponitriteAg2N2O2 18.89 1.3×10^{-19}	cvanamide	Ag ₂ CN ₂	10.14	7.2×10^{-11}
cyanideAgCN 16.22 5.97×10^{-17} dichromateAg2Cr2O7 6.70 2.0×10^{-7} dicyanimideAgN(CN)2 8.85 1.4×10^{-9} ferrocyanideAg4[Fe(CN)6] 40.81 1.6×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hyponitriteAg2N2O2 18.89 1.3×10^{-19}	cyanate	AgOCN	6.64	2.3×10^{-7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cyanide	AgCN	16.22	5.97×10^{-17}
dicyanimide $AgN(CN)_2$ 8.85 1.4×10^{-9} ferrocyanide $Ag_4[Fe(CN)_6]$ 40.81 1.6×10^{-41} hydroxide $AgOH$ 7.71 2.0×10^{-8} hyponitrite $Ag2N_2O_2$ 18.89 1.3×10^{-19} iodeta $AgOD$ 7.50 2.17×10^{-8}	dichromate	Ag ₂ Cr ₂ O ₇	6.70	$2.0 imes 10^{-7}$
ferrocyanide hydroxide $Ag_4[Fe(CN)_6]$ 40.81 1.6×10^{-41} hydroxideAgOH 7.71 2.0×10^{-8} hyponitrite $Ag_2N_2O_2$ 18.89 1.3×10^{-19} iodeta $AgIO$ 7.50 2.17×10^{-8}	dicyanimide	AgN(CN) ₂	8.85	1.4×10^{-9}
hydroxide AgOH 7.71 2.0×10^{-8} hyponitrite Ag2N_2O_2 18.89 1.3×10^{-19} iodeta Ag2N_2O_2 17 × 10^{-8}	ferrocyanide	$Ag_4[Fe(CN)_6]$	40.81	1.6×10^{-41}
hyponitrite $Ag_2N_2O_2$ 18.89 1.3 × 10 ⁻¹⁹ iodate AzIO 750 217 × 10 ⁻⁸	hydroxide	AgOH	7.71	2.0×10^{-8}
	hyponitrite	$Ag_2N_2O_2$	18.89	1.3×10^{-19}
$AgiO_3$ 7.50 3.17 × 10 ⁻⁶	iodate	AgIO ₃	7.50	3.17×10^{-8}

TABLE 1.71	Solubility Product Constants	(Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$
iodide	AgI	16.07	8.52×10^{-17}
molybdate	Ag ₂ MoO ₄	11.55	$2.8 imes 10^{-12}$
nitrite	AgNO ₂	3.22	$6.0 imes 10^{-4}$
oxalate	$Ag_2C_2O_4$	11.27	$5.40 imes 10^{-12}$
phosphate	Ag ₃ PO ₄	16.05	$8.89 imes 10^{-17}$
quinaldate	AgL	16.89	$1.3 imes 10^{-17}$
perrhenate	AgReO₄	4.10	$8.0 imes 10^{-5}$
selenate	Ag_2SeO_4	7.25	5.7×10^{-8}
selenite	Ag_2SeO_3	15.00	$1.0 imes 10^{-15}$
selenocyanate	AgSeCN	15.40	$4.0 imes 10^{-16}$
sulfate	Ag_2SO_4	4.92	1.20×10^{-5}
sulfite	Ag ₂ SO ₃	13.82	$1.50 imes 10^{-14}$
sulfide	Ag ₂ S	49.20	6.3×10^{-50}
thiocyanate	AgSCN	11.99	1.03×10^{-12}
vanadate	AgVO ₃	6.3	5×10^{-7}
tungstate	Ag ₂ WO ₄	11.26	5.5×10^{-12}
Sodium			
ammonium cobaltinitrite	$Na(NH_4)_2[Co(NO_2)_6]$	10.66	$2.2 imes 10^{-11}$
antimonate	Na[Sb(OH) ₆]	7.4	4×10^{-8}
hexafluoroaluminate	Na ₂ [AlF ₆]	9.39	$4.0 imes 10^{-10}$
uranyl arsenate	NaUO ₂ AsO ₄	21.87	1.3×10^{-22}
Strontium	2 .		
arsenate	$Sr_3(AsO_4)_2$	18.37	$4.29 imes 10^{-19}$
carbonate	SrCO ₃	9.25	$5.60 imes 10^{-10}$
chromate	SrCrO₄	4.65	2.2×10^{-5}
fluoride	SrF ₂	8.36	4.33×10^{-9}
iodate	$Sr(IO_3)_2$	6.94	1.14×10^{-7}
iodate hydrate	$Sr(IO_3)_2 \cdot H_2O$	6.42	3.77×10^{-7}
molybdate	SrMoO ₄	6.7	2×10^{-7}
niobate	$Sr(NbO_3)_2$	17.38	$4.2 imes 10^{-18}$
oxalate hydrate	$SrC_2O_4 \cdot H_2O$	6.80	1.6×10^{-7}
phosphate	$Sr_3(PO_4)_2$	27.39	$4.0 imes 10^{-28}$
8-quinolinolate	SrL ₂	9.3	$5 imes 10^{-10}$
selenate	SrSeO₄	3.09	8.1×10^{-4}
selenite	SrSeO ₃	5.74	$1.8 imes 10^{-6}$
sulfate	SrSO ₄	6.46	3.44×10^{-7}
sulfite	SrSO ₃	7.4	$4 imes 10^{-8}$
tungstate	SrWO₄	9.77	$1.7 imes 10^{-10}$
Terbium			
hydroxide	Tb(OH) ₃	21.70	$2.0 imes 10^{-22}$
Tellurium			
hydroxide	Te(OH)₄	53.52	$3.0 imes 10^{-54}$
Thallium(I)			
azide	TIN ₃	3.66	$2.2 imes 10^{-4}$
bromate	TlBrO ₃	4.96	1.10×10^{-5}
bromide	TlBr	5.43	3.71×10^{-6}
chloride	TICI	3.73	1.86×10^{-4}
chromate	Tl₂CrO₄	12.06	$8.67 imes 10^{-13}$
ferrocyanide dihydrate	$Tl_{4}[Fe(CN)_{6}] \cdot 2H_{2}O$	9.3	5×10^{-10}
hexachloroplatinate	Tl ₂ [PtCl ₆]	11.40	4.0×10^{-12}
iodate	TIIO3	5.51	3.12×10^{-6}
iodide		7.26	5.54×10^{-8}

TABLE 1.71 Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	K _{sp}
oxalate	Tl ₂ C ₂ O ₄	3.7	2×10^{-4}
selenate	Tl ₂ SeO ₄	4.00	1.0×10^{-4}
selenite	Tl_2SeO_3	38.7	2×10^{-39}
sulfide	Tl ₂ S	20.30	5.0×10^{-21}
thiocyanate	TISCN	3.80	1.57×10^{-4}
Thallium(III)			
hydroxide	Tl(OH) ₃	43.77	1.68×10^{-44}
8-quinolinolate	TIL ₃	32.40	4.0×10^{-33}
Thorium			
hydrogen phosphate	$Th(HPO_4)_2$	20	1×10^{-20}
hydroxide	Th(OH) ₄	44.40	4.0×10^{-45}
iodate	Th(IO ₃) ₄	14.60	2.5×10^{-15}
oxalate	$Th(C_2O_4)_2$	22	1×10^{-22}
phosphate	$Th_3(PO_4)_4$	78.60	2.5×10^{-79}
Thullium			
hydroxide	Tm(OH) ₃	23.48	3.3×10^{-24}
Tin			
(II) hydroxide	Sn(OH) ₂	27.26	5.45×10^{-28}
(IV) hydroxide	Sn(OH) ₄	56	1×10^{-56}
(II) sulfide	SnS	25.00	1.0×10^{-25}
Titanium			
(III) hydroxide	Ti(OH) ₃	40	1×10^{-40}
(IV) oxide hydroxide	TiO(OH) ₂	29	1×10^{-29}
Uranium(IV)			
fluoride 2.5-water	$UF_4 \cdot 2.5H_2O$	21.24	5.7×10^{-22}
Uranyl(VI)(2+)			
carbonate	UO_2CO_3	11.73	1.8×10^{-12}
ferrocyanide	$UO_2[Fe(CN)_6]$	13.15	7.1×10^{-14}
hydrogen arsenate	UO ₂ HAsO ₄	10.50	3.2×10^{-11}
hydrogen phosphate	UO_2HPO_4	10.67	2.1×10^{-11}
nydroxide	$UO_2(OH)_2$	21.95	1.1×10^{-22}
lodate hydrate	$UO_2(IO_3)_2 \cdot H_2O$	7.50	3.2×10^{-6}
oxalate trinydrate	$UU_2U_2U_4 \cdot 3H_2U$	3.1	2×10^{-47}
phosphate	$(00_2)_3(P0_4)_2$	40.7	2×10^{-9}
sume	(U_2SU_3)	0.30	2.0×10^{-4}
Vanadium	$(00_2)(30N)_2$	5.4	4 × 10
(IV) bydroxide	VO(OH)	22.12	5.0×10^{-23}
(III) phosphate	(VO) PO	22.15	3.9×10^{-25}
Vtterbium	$(VO_2)_{31}O_4$	24.1	0 × 10
hydroxide	Vt(OH)	23.60	2.5×10^{-24}
Vttrium	11(011)3	25.00	2.5 × 10
carbonate	Y (CO)	2 99	1.03×10^{-3}
fluoride	YF-	20.06	8.62×10^{-21}
hydroxide	Y(OH)	22.00	1.00×10^{-22}
iodate	$Y(IO_{2})$	9.95	1.00×10 1 12 × 10 ⁻¹⁰
oxalate	$Y_{-}(C_{-}O_{-})_{-}$	28.28	5.3×10^{-29}
Zinc	12(0204)3	20.20	5.5 / 10
anthranilate	ZnLa	9.23	5.9×10^{-10}
arsenate	$Zn_2(AsO_4)_2$	27.55	2.8×10^{-28}
borate hydrate	$Zn(BO_2)_2 \cdot H_2O$	10.18	6.6×10^{-11}
carbonate	ZnCO ₂	9.94	1.46×10^{-10}
ferrocvanide	$Zn_2[Fe(CN)_2]$	15.40	4.0×10^{-15}
	21		1

TABLE 1.71 Solubility Product Constants (Continued)

Compound	Formula	pK _{sp}	$K_{ m sp}$,
fluoride	ZnF ₂	1.52	3.04×10^{-2}
hydroxide	$Zn(OH)_2$	16.5	3×10^{-17}
iodate dihydrate	$Zn(IO_3)_2 \cdot 2H_2O$	5.37	4.1×10^{-6}
oxalate dihydrate	$ZnC_2O_4 \cdot 2H_2O$	8.86	1.38×10^{-9}
phosphate	$Zn_3(PO_4)_2$	32.04	9.0×10^{-33}
quinaldate	ZnL ₂	13.80	$1.6 imes 10^{-14}$
8-quinolinolate	ZnL_2	24.30	$5.0 imes 10^{-25}$
selenide	ZnSe	25.44	3.6×10^{-26}
selenite hydrate	$ZnSeO_3 \cdot H_2O$	6.80	1.57×10^{-7}
sulfide	α -ZnS	23.80	1.6×10^{-24}
	β-ZnS	21.60	2.5×10^{-22}
Zirconium			
oxide hydroxide	$ZrO(OH)_2$	48.20	6.3×10^{-49}
phosphate	$Zr_3(PO_4)_4$	132	1×10^{-13}

TABLE 1.71	Solubility	Product	Constants	(Continued)
				\[

TABLE 1.72 Stability Constants of Complex Ions

The stability constant of a complex ion is a measure of its stability with respect to dissociation into its constituent species at a given temperature, e.g. the formation of the tetra-amminecopper(II) ion may be represented by the equation

$$Cu^{2+} + 4NH_3 = [Cu(NH_3)_4]^{2+}$$

and the stability constant is given by

_

$$K_{\text{stab}} = \frac{[\text{Cu}(\text{NH}_3)_4^{2^+}]}{[\text{Cu}^{2^+}][\text{NH}_3]^4}$$

The higher the stability constant the more stable the complex ion. v denotes the stoichiometric number of a molecule, atom or ion, and is positive for a product and negative for a reactant.

Equilibrium	$\frac{K_{\rm stab}}{({\rm mol}\cdot{\rm dm}^{-3})^{\Sigma_{\rm V}}}$	$\log_{10}\left\{\frac{K_{\rm stab}}{(\rm mol\cdot dm^{-3})^{\Sigma_{\nu}}}\right\}$
$Ag^{+} + 2CN^{-} = [Ag(CH)_2]^{-}$	1.0×10^{21}	21.0
$Ag^{+} + NH_3 = [Ag(NH_3)]^{+}$	2.5×10^{3}	3.4
$[Ag(NH_3)]^+ + NH_3 = [Ag(NH_3)_2]^+$	6.3×10^{3}	3.8
$Ag^{+} + 2NH_3 = [Ag(NH_3)_2]^{+}$	1.7×10^{7}	7.2
$Ag^{+} + 2S_2O_3^{2-} = [Ag(S_2O_3)_2]^{3-}$	1.0×10^{13}	13.0
$Al^{3+} + 6F^{-} = [AlF_6]^{3-}$	6×10^{19}	19.8
$Al(OH)_3 + OH^- = [Al(OH)_4]^-$	40	1.6
$Cd^{2+} + 4CN^{-} = [Cd(CN)_4]^{2-}$	7.1×10^{16}	16.9
$Cd^{2+} + 4I^{-} = [CdI_4]^{2-}$	2×10^{6}	6.3
$Cd^{2+} + 4NH_3 = [Cd(NH_3)_4]^{2+}$	4.0×10^{6}	6.6
$Co^{2+} + 6NH_3 = [Co(NH_3)_6]^{2+}$	$7.7 imes 10^4$	4.9
$Co^{3+} + 6NH_3 = [Co(NH_3)_6]^{3+}$	4.5×10^{33}	33.7
$Cr(OH)_3 + OH^- = [Cr(OH)_4]^-$	1×10^{-2}	-2
$Cu^{+} + 4CN^{-} = [Cu(CN)_{4}]^{3-}$	2.0×10^{27}	27.3
$Cu^{2+} + 4Cl^{-} = [CuCl_4]^{2-}$	4.0×10^{5}	5.6
$Cu^{+} + 2NH_3 = [Cu(NH_3)_2]^{+}$	1×10^{11}	11

Equilibrium	$\frac{K_{\rm stab}}{({\rm mol}\cdot{\rm dm}^{-3})^{\Sigma_{\rm v}}}$	$\log_{10}\left\{\frac{K_{\mathrm{stab}}}{(\mathrm{mol}\cdot\mathrm{dm}^{-3})^{\Sigma_{\nu}}}\right\}$
$Cu^{2+} + NH_3 = [Cu(NH_3)]^{2+}$	$2.0 \times 10^4 (K_1)$	4.3
$[Cu(NH_3)]^{2+} + NH_3 = [Cu(NH_3)_2]^{2+}$	$4.2 \times 10^3 (K_2)$	3.6
$[Cu(NH_3)_2]^{2+} + NH_3 = [Cu(NH_3)_3]^{2+}$	$1.0 \times 10^3 (K_3)$	3.0
$[Cu(NH_3)_3]^{2+} + NH_3 = [Cu(NH_3)_4]^{2+}$	$1.7 \times 10^2 (K_4)$	2.2
$Cu^{2+} + 4NH_3 = [Cu(NH_3)_4]^{2+}$	1.4×10^{13}	13.1
	$(K = K_1 K_2 K_3 K_4)$	
$Fe^{2+} + 6CN^{-} = [Fe(CN)_6]^{4-}$	ca. 10 ²⁴	ca. 24
$Fe^{3+} + 6CN^{-} = [Fe(CN)_6]^{3-}$	ca. 10 ³¹	ca. 31
$Fe^{3+} + 4Cl^{-} = [FeCl_4]^{-}$	8×10^{-2}	-1.1
$Fe^{3+} + SCN^{-} = [Fe(SCN)]^{2+}$	1.4×10^{2}	2.1
$[Fe(SCN)]^{2+} + SCN^{-} = [Fe(SCN)_2]^{+}$	16	1.2
$[Fe(SCN)_2]^+ + SCN^- = Fe(SCN)_3$	1	0
$Hg^{2+} + 4CN^{-} = [Hg(CN)_4]^{2-}$	2.5×10^{41}	41.4
$Hg^{2+} + 4Cl^{-} = [HgCl_4]^{2-}$	1.7×10^{16}	16.2
$Hg^{2+} + 4I^{-} = [HgI_4]^{2-}$	2.0×10^{30}	30.3
$I^- + I_2 = I_3^-$	7.1×10^{2}	2.9
$Ni^{2+} + 6NH_3 = [Ni(NH_3)_6]^{2+}$	4.8×10^{7}	7.7
$Pb(OH)_2 + OH^- = [Pb(OH)_3]^-$	50	1.7
$Sn(OH)_4 + 2OH^- = [Sn(OH)_6]^{2-}$	5×10^{3}	3.7
$Zn^{2+} + 4CN^{-} = [Zn(CN)_4]^{2-}$	5×10^{16}	16.7
$Zn^{2+} + 4NH_3 = [Zn(NH_3)_4]^{2+}$	3.8×10^{9}	9.6
$Zn(OH)_2 + 2OH^- = [Zn(OH)_4]^{2-}$	10	1.0

TABLE 1.72 Stability Constants of Complex Ions (Continued)

TABLE 1.73 Saturated Solutions

The following table provides the data for making saturated solutions of the substances listed at the temperature designated. Data are provided for making saturated solutions by weight (g of substance per 100 g of saturated solution) and by volume (g of substance per 100 ml of saturated solution and the ml of water required to make such a solution).

To make one *fluid ounce* of a saturated solution: multiply the grams of substance per 100 ml of saturated solution by 4.55 to obtain the number of grains required, by 0.01039 to obtain the number of avoirdupois ounces, by 0.00947 to obtain the number of apothecaries (Troy) ounces; also multiply the ml of water by 16.23 to obtain the number of minims, or divide by 100 to obtain the number of fluid ounces.

To make one *fluid dram*: multiply the grams of substance per 100 ml of saturated solution by 0.5682 to obtain the number of grains required; also multiply the ml of water by 0.60 to obtain the number of minims required.

Substance	Formula	Temp, °C	g/100 g satd soln	g/100 ml satd soln	ml water/ 100 ml satd soln	Specific gravity
acetanilide	C ₆ H ₅ NHCOCH ₃	25	0.54	0.54	99.2	0.997
<i>p</i> -acetophenetidin	C ₆ H ₄ (OC ₂ H ₅)NHCH ₃ CO	25	0.0766	0.0766	99.92	1.00
<i>p</i> -acetotoluide	CH ₃ CONHC ₆ H ₄ CH ₃	25	0.12	0.12	99.7	0.9979
alanine	CH ₃ CH(NH ₂)COOH	25	14.1	14.7	89.5	1.042
aluminum ammonium sulfate	$Al_2(SO_4)_3(NH_4)_2SO_4 \cdot 24H_2O$	25	12.4	13	92	1.05
aluminum chloride hydrated	$AlCl_3 \cdot 6H_2O$	25	55.5	75	60	1.35
aluminum fluoride	$Al_2F_6 \cdot 5H_2O$	20	0.499	0.5015	100.0	1.0051
aluminum potassium sulfate	$AlK(SO_4)_2$	25	6.62	7.02	99.1	1.061
aluminum sulfate	$Al_2(SO_4)_3\cdot 18H_2O$	25	48.8	63	66	1.29

					ml	
					water/	
			g/100 g	g/100 ml	100 ml	
~ .		Temp,	satd	satd	satd	Specific
Substance	Formula	°C	soln	soln	soln	gravity
o-aminobenzoic acid	C ₆ H ₄ NH ₂ COOH	25	0.52	0.519	99.4	0.999
DL- α -amino- <i>n</i> -butyric acid	CH ₃ CH ₂ CH(NH ₂)COOH	25	17.8	18.6	86.2	1.046
DL- α -aminoisobutyric acid	(CH ₃) ₂ C(NH ₂)COOH	25	13.3	13.7	89.5	1.031
ammonium arsenate	NH ₄ H ₂ AsO ₄	20	32.7	40.2	83.0	1.228
ammonium benzoate	$NH_4C_7H_5O_2$	25	18.6	19.4	84.7	1.040
ammonium bromide	NH_4Br	15	41.7	53.8	75.2	1.290
ammonium carbnonate		25	20	22	88	1.10
ammonium chloride	NH ₄ Cl	15	26.3	28.3	79.3	1.075
ammonium citrate, dibasic	$(NH_4)_2HC_6H_5O_7$	25	48.7	60.5	61.5	1.22
ammonium dichromate	$(NH_4)_2Cr_2O_7$	25	27.9	33	85	1.18
ammonium iodide	NH_4I	25	64.5	106.2	58.3	1.646
ammonium molybdate	$(NH_4)_6Mo_7O_{24}\cdot 4H_2O$	25	30.6	39	88	1.27
ammonium nitrate	NH_4NO_3	25	68.3	90.2	41.8	1.320
ammonium oxalate	$(NH_4)_2C_2O_4\cdot H_2O$	25	4.95	5.06	97.0	1.019
ammonium perchlorate	NH_4ClO_4	25	21.1	23.7	88.7	1.123
ammonium periodate	NH_4IO_4	16	2.63	2.68	99.2	1.018
ammonium persulfate	$(NH_4)_2S_2O_8$	25	42.7	53	71	1.24
ammonium phosphate, dibasic	$(NH_4)_2 \cdot HPO_4$	14.5	56.2	75.5	58.8	1.343
ammonium phosphate, monobasic	$NH_4H_2PO_4$	25	28.4	33	83	1.16
ammonium salicylate	NH ₄ C ₇ H ₅ O ₃	25	50.8	58.2	56.4	1.145
ammonium silicofluoride	$(NH_4)_2SiF_6$	17.5	15.7	17.2	92.3	1.095
ammonium sulfate	$(NH_4)_2SO_4$	20	42.6	53.1	71.7	1.248
ammonium sulfite	$(NH_4)_2SO_3.H_2O$	25	39.3	47.3	73.2	1.204
ammonium thiocyanate	NH ₄ CNS	25	62.2	71	43	1.14
amyl alcohol	C ₅ H ₁₁ OH	25	2.61	2.60	96.9	0.995
aniline	$C_6H_5NH_2$	22	3.61	3.61	96.2	0.998
aniline hydrochloride	$C_6H_5NH_2 \cdot HCl$	25	49	54	56	1.10
aniline sulfate	$(C_6H_5NH_2)_2 \cdot H_2SO_4$	25	5.88	6	96	1.02
L-asparagine	NH ₂ COCH ₂ CH(NH ₂)COOH	25	2.44	2.46	98.2	1.007
barium bromide	BaBr ₂	20	51	87.2	83.8	1.710
barium chlorate	$Ba(ClO_3)_2$	25	28.5	36.8	92.6	1.294
barium chloride	BaCl ₂	20	26.3	33.4	93.8	1.27
barium iodide	$BaI_2 \cdot 7\frac{1}{2}H_2O$	25	68.8	157.0	71.1	2.277
barium nitrate	$Ba(NO_3)_2$	25	9.4	10.2	97.9	1.080
barium nitrite	$Ba(NO_2)_2$	17	40	59.6	89.4	1.490
barium perchlorate	$Ba(ClO_4)_2$	25	75.3	145.8	47.8	1.936
benzamide	$C_6H_5CONH_2$	25	1.33	1.33	98.6	0.999
benzoic acid	$C_7H_6O_2$	25	0.367	0.367	99.63	1.00
beryllium sulfate	$BeSO_4 \cdot 4H_2O$	25	28.7	37.3	93.0	1.301
boric acid	H_3BO_3	25	4.99	5.1	97	1.02
<i>n</i> -butyl alcohol	$CH_3(CH_2)_2CH_2OH$	25	79.7	67.3	17.1	0.845
cadmium bromide	$CdBr_2 \cdot 4H_2O$	25	52.9	94.0	83.9	1.775
cadmium chlorate	$Cd(ClO_3)_2 \cdot 12H_2O$	18	/6.4	174.5	54.0	2.284
cadmium chloride	$CdCl_2 \cdot 2\frac{1}{2}H_2O$	25	54.7	97.2	80.8	1.778
cadmium iodide		20	45.9	73.0	86.3	1.590
cadmium sulfate	$3(CdSO_4) \cdot 8H_2O$	25	43.4	/0.3	91.8	1.619
calcium bromide	CaBr ₂	20	58.8	107.2	/5.0	1.82

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						ml	
						water/	
				g/100 g	g/100 ml	100 ml	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Temp,	satd	satd	satd	Specific
calcium chlorate CaClO ₂ , 2H ₂ O 18 64.0 110.7 62.3 1.729 calcium chlorate CaCl ₂ , 6H ₂ O 25 46.1 67.8 79.2 1.47 calcium chlorate CaCl ₂ , 2H ₂ O 18 14.3 16.4 98.7 1.147 calcium iofide Ca ₂ Fe(CN _k 25 36.5 49.6 86.2 1.357 calcium infarte Ca(C), 2.41,O 18 45.8 65.7 77.8 1.427 calcium sulfate CaNO ₂ , 2H ₂ O 25 0.208 0.208 99.70 0.999 camphoric acid C4H ₄ (COH) ₂ 25 0.754 0.754 99.63 0.998 carbon disulfde CS1 2.24 0.173 99.63 0.998 cesium bornide CS1 2.25 6.57 17.4 80.5 1.923 cesium prohode CS1 2.28 6.47 1.80 1.81 1.81 cesium prohode CS1 2.25 6.57 12.0 31	Substance	Formula	°C	soln	soln	soln	gravity
calcium chloride CaCQ ₁ , 6H ₂ O 25 46.1 67.8 79.2 1.47 calcium chloride CaCQ ₂ , 2H ₂ O 18 14.3 16.4 98.7 1.149 calcium indide CaL ₂ +(O_1) ₂ , 5H ₂ O 25 36.5 40.6 86.2 1.337 calcium latate CaC ₂ H ₂ O ₁) ₂ , 5H ₂ O 25 47.8 65.7 77.8 1.427 calcium nitrite CaNO ₂) ₂ , 4H ₂ O 18 45.8 65.7 77.8 1.427 calcium nitrite CaNO ₂) ₂ , 4H ₂ O 25 0.754 0.754 0.990 0.999 cambon disulfide CS 22 0.173 0.63 0.998 cesium nitrate CeNO ₂) ₃ , 6H ₂ O 25 63.7 119.9 68.2 1.880 cesium nitrate CaCl 25 63.7 126.3 65.9 1.92.9 cesium nitrate CaCl 25 21.9 26.1 92.9 1.01 cesium perchlorate CSIO ₄ 25 21.0	calcium chlorate	$Ca(ClO_3)_2 \cdot 2H_2O$	18	64.0	110.7	62.3	1.729
	calcium chloride	$CaCl_2 \cdot 6H_2O$	25	46.1	67.8	79.2	1.47
	calcium chromate	$CaCrO_4 \cdot 2H_2O$	18	14.3	16.4	98.7	1.149
	calcium ferrocyanide	$Ca_2Fe(CN)_6$	25	36.5	49.6	86.2	1.357
	calcium iodide	Cal	20	67.6	143.8	69.0	2.125
$ \begin{array}{c} {\rm calcium nitrite} & {\rm Ca(NO_2)_2}^{-1} {\rm cH}_{2} {\rm O} & 18 & 45.8 & 65.7 & 77.8 & 1.427 \\ {\rm calcium sulfate} & {\rm CaSO_4}, {\rm 2H}_{2} {\rm O} & 25 & 0.208 & 90.208 & 99.70 & 0.999 \\ {\rm carbon disulfide} & {\rm CS}_{5} & 22 & 0.173 & 0.173 & 99.63 & 0.998 \\ {\rm cerium nitrate} & {\rm Ce(N_3)_3}, {\rm 6H_3O} & 25 & 63.7 & 119.9 & 68.2 & 1.880 \\ {\rm cesium bromide} & {\rm CsB_7} & 21.4 & 53.1 & 89.8 & 79.5 & 1.693 \\ {\rm cesium chloride} & {\rm CsCI} & 25 & 63.7 & 126.3 & 65.9 & 1.923 \\ {\rm cesium nitrate} & {\rm Ce(N_3)_3}, {\rm 6H_3O} & 25 & 2.10 & 2.03 & 99.0 & 1.010 \\ {\rm cesium periodate} & {\rm CsI} & 22.8 & 48.0 & 74.1 & 80.5 & 1.545 \\ {\rm cesium periodate} & {\rm CsIO_4} & 25 & 2.10 & 2.03 & 99.0 & 1.010 \\ {\rm cesium periodate} & {\rm CsIO_4} & 25 & 64.5 & 129.8 & 71.7 & 2.013 \\ {\rm cesium sulfate} & {\rm Cs}{\rm SO_4} & 25 & 64.5 & 129.8 & 71.7 & 2.013 \\ {\rm cloral hydrate} & {\rm CCl}{\rm C,CHO} + {\rm H_O} & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm chloroform} & {\rm CHC_5} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm chromic oxide} & {\rm Cc}{\rm CO_9} & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ {\rm chromium potassium sulfate} & {\rm Cs}{\rm Cl}{\rm G_{2}} & 24 & 9.7 & 78.2 & 79.1 & 1.572 \\ {\rm cobalt hiorate} & {\rm Co(NO_3)_2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ {\rm cobalt chorate} & {\rm CaCl}{\rm Cl}_{2} & 24 & 0.7 & 33 & 35.5 & 82 & 1.17 \\ {\rm cupric annonium chloride} & {\rm CuCl}_{2} - 20{\rm H_Cl}_{2} - 218 & 49.7 & 78.2 & 79.1 & 1.572 \\ {\rm cupric damnonium chloride} & {\rm CuCl}_{2} - 218 & 25 & 53.3 & 80 & 70 & 1.50 \\ {\rm cupric horate} & {\rm CuCl}_{2} - 218 & 25 & 53.3 & 80 & 70 & 1.50 \\ {\rm cupric chlorate} & {\rm CuCl}_{2} - 218 & 25 & 53.3 & 80 & 70 & 1.50 \\ {\rm cupric damnonium chloride} & {\rm CuCl}_{2} - 218 & 25 & 53.4 & 93.0 & 0.985 \\ {\rm ethyl acetate} & {\rm Cu}{\rm COO_2} + {\rm S}_2 & 53.5 & 53.4 & 93.0 & 0.985 \\ {\rm ethyl acetate} & {\rm Cu}{\rm CuO_2} + 104.2 & 55 & 73.4 & 13.11 & 1.688 \\ {\rm cupric chlorate} & {\rm Cu}{\rm Cu}{\rm CoO_2} + 104.2 & 55 & 73.4 & 13.1 & 1.688 \\ {\rm cupric chlorate} & {\rm Cu}{\rm Cl}{\rm C}{\rm J}{\rm L}{\rm OD} & 25 & 73.4 & 73.4 & 1.650 \\ {\rm ferric anmo$	calcium lactate	$Ca(C_3H_5O_3)_2 \cdot 5H_2O_3$	25	4.95	5	96	1.01
$ \begin{array}{c} {\rm calcium sulfate} & {\rm CaSQ}_{4}^{2} {\rm H}_{2} {\rm O}^{2} & 25 & 0.208 & 0.208 & 9.70 & 0.999 \\ {\rm campon fsulfide} & {\rm C}_{8} {\rm H}_{4}({\rm COOH})_{2} & 25 & 0.754 & 0.754 & 9.246 & 1.00 \\ {\rm carbon disulfide} & {\rm CS}_{2} & 22 & 0.173 & 0.173 & 99.63 & 0.998 \\ {\rm cerium nitrate} & {\rm Ce(NO_{1})_{1}} \cdot 6 {\rm H}_{2} {\rm O} & 25 & 63.7 & 119.9 & 68.2 & 1.880 \\ {\rm cesium cloride} & {\rm CSI} & 25 & 65.7 & 126.3 & 65.9 & 1.923 \\ {\rm cesium inditate} & {\rm CsI} & 25 & 65.7 & 126.3 & 65.9 & 1.923 \\ {\rm cesium percholate} & {\rm CsI} & 25 & 21.9 & 26.1 & 92.9 & 1.187 \\ {\rm cesium percholate} & {\rm CsIO_{4}} & 25 & 2.19 & 26.1 & 92.9 & 1.187 \\ {\rm cesium percholate} & {\rm CsIO_{4}} & 25 & 24.9 & 2.13 & 99.5 & 1.017 \\ {\rm cesium percholate} & {\rm CsIO_{4}} & 25 & 64.5 & 129.8 & 71.7 & 2.013 \\ {\rm chorofrom} & {\rm CHCl_{3}} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm chorofrom} & {\rm CHCl_{3}} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm chorofrom} & {\rm CHCl_{3}} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm choroinum potassium sulfate} & {\rm Cr}_{5} {\rm K}_{5} {\rm O}_{4} {\rm L}_{2} & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ {\rm corbalt hirrate} & {\rm Co(OO_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ {\rm cobalt hirrate} & {\rm Co(OO_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ {\rm cobalt nitrate} & {\rm Co(OO_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ {\rm cobalt chlorate} & {\rm CuCl}_{2} \cdot 2{\rm H}_{4}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric annonium sulfate} & {\rm CuSO}_{4} & 0.13 & 35.5 & 82 & 1.17 \\ {\rm cupric annonium sulfate} & {\rm CuSO}_{4} & 0.12 & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chlorate} & {\rm CuCl}_{3} \cdot 2{\rm H}_{4}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chlorate} & {\rm CuCl}_{3} \cdot 5{\rm H}_{2}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chlorate} & {\rm CuCl}_{3} \cdot 5{\rm H}_{2}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chlorate} & {\rm CuCl}_{3} \cdot 5{\rm H}_{2}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chlorate} & {\rm CuCl}_{3} \cdot 5{\rm H}_{3}{\rm O} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric c$	calcium nitrite	$Ca(NO_2)_2 \cdot 4H_2O$	18	45.8	65.7	77.8	1.427
$\begin{array}{c} \mbotic acid & C_{a} H_{14}({\rm COOH})_{2} & 25 & 0.754 & 0.754 & 99.246 & 1.00 \\ {\rm carbon disulfide} & C_{5} & 22 & 0.173 & 0.173 & 99.63 & 0.998 \\ {\rm cerium nitrate} & Ce(NO_{3}) \cdot 6H_{2}O & 25 & 63.7 & 119.9 & 68.2 & 1.880 \\ {\rm cesium bromide} & C_{S}Br & 21.4 & 53.1 & 89.8 & 79.5 & 1.693 \\ {\rm cesium bromide} & C_{S}C & 25 & 65.7 & 126.3 & 65.9 & 1.923 \\ {\rm cesium choride} & C_{S}C & 228 & 48.0 & 74.1 & 80.5 & 1.545 \\ {\rm cesium periodate} & C_{S}O_{3} & 25 & 21.9 & 26.1 & 92.9 & 1.187 \\ {\rm cesium periodate} & C_{S}O_{4} & 25 & 20.1 & 2.03 & 99.0 & 1.010 \\ {\rm cesium periodate} & C_{S}O_{4} & 25 & 64.5 & 129.8 & 71.7 & 2.013 \\ {\rm choral hydrate} & C_{C}(C_{1}C) & 15 & 2.10 & 2.13 & 99.5 & 1.017 \\ {\rm cesium suffate} & C_{S}SO_{4} & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm choroform} & CHCl_{3} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm choroform} & CHCl_{3} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 79.4 & 120 & 31 & 1.51 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 78.8 & 6 & 42.7 & 1.311 \\ {\rm corbit caid} & (CH_{2})_{2}CH(COOH)_{3} \cdot H_{2}O & 25 & 78.8 & 6 & 42.7 & 1.311 \\ {\rm corbit caid} & CO(O_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ {\rm corbit caid} & CuCl_{3} & 26 & 71.8 & 113.5 & 17.3 & 96.0 & 1.131 \\ {\rm cupric chorate} & CuCl_{3} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chorate} & CuCl_{3} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chorate} & CuCl_{3} & 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ {\rm cupric chorate} & CuCl_{3} & 25 & 7.47 & 7.44 & 92.1 & 0.996 \\ {\rm ferric ammonium sulfate} & CuSO_{4} & (H_{4})_{3}O_{3} & 25 & 7.3 & 93.0 & 0.855 \\ {\rm ether} & (CH_{4})_{3}O_{4} & 15.0 & 25 & 73.4 & 73.4 & 93.0 & 0.985 \\ {\rm ether} & (CH_{4})_{3}O_{4} & 15.0 & 25 & 73.4 & 73.4 & 93.0 &$	calcium sulfate	$CaSO_4 \cdot 2H_2O$	25	0.208	0.208	99.70	0.999
carbon disulfideCS 10000012CS 2000000000000000000000000000000000000	camphoric acid	C _e H ₁₄ (COOH) ₂	25	0.754	0.754	99.246	1.00
$ \begin{array}{c} \operatorname{cerium nitrate} & \operatorname{Ce}(NO_3)_1 \cdot \operatorname{6H}_2O & 25 & 63.7 & 119.9 & 68.2 & 1.880 \\ \operatorname{cesium bromide} & \operatorname{CsBr} & 21.4 & 53.1 & 89.8 & 79.5 & 1.693 \\ \operatorname{cesium bromide} & \operatorname{CsI} & 25 & 65.7 & 126.3 & 65.9 & 1.923 \\ \operatorname{cesium nitrate} & \operatorname{CsIO}_4 & 25 & 21.9 & 26.1 & 92.9 & 1.187 \\ \operatorname{cesium periodate} & \operatorname{CsIO}_4 & 25 & 2.01 & 2.03 & 99.0 & 1.010 \\ \operatorname{cesium periodate} & \operatorname{CsIO}_4 & 25 & 2.01 & 2.03 & 99.5 & 1.017 \\ \operatorname{cesium periodate} & \operatorname{CsIO}_4 & 25 & 7.94 & 120 & 31 & 1.51 \\ \operatorname{chloral hydrate} & \operatorname{CCl}_{CHO + H_2O} & 25 & 79.4 & 120 & 31 & 1.51 \\ \operatorname{chloral hydrate} & \operatorname{Crl}_{2}(\operatorname{CrO}_3) & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ \operatorname{chromic oxide} & \operatorname{Cr}_0 & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ \operatorname{chromic oxide} & \operatorname{Cr}_0 & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ \operatorname{chromic oxide} & \operatorname{Cr}_0 & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ \operatorname{cobalt nitrate} & \operatorname{Co}(\operatorname{CO}_3)_2 & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ \operatorname{cobalt nitrate} & \operatorname{Co}(\operatorname{CO}_3)_2 & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ \operatorname{cobalt nitrate} & \operatorname{Co}(\operatorname{CO}_3)_2 & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ \operatorname{cobalt nitrate} & \operatorname{Cu}(\operatorname{CO}_3)_2 & 18 & 64.2 & 105.2 & 64.1 & 1.572 \\ \operatorname{cupric ammonium chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 26 & 71.8 & 113.5 & 44.7 & 1.581 \\ \operatorname{cupric chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \operatorname{cupric chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \operatorname{cupric chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \operatorname{cupric chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 25 & 53.3 & 80 & 70 & 1.50 \\ \operatorname{cupric sluftat} & \operatorname{Cu}(\operatorname{SO}_4 \cdot \operatorname{SH}_2O & 25 & 63.0 & 94.5 & 74.3 & 1.688 \\ \operatorname{cupric chloride} & \operatorname{Cu}(\operatorname{Cl}_3)_2 & 25 & 7.47 & 7.74 & 92.1 & 0.996 \\ \operatorname{curlic sulfate} & \operatorname{Cu}(\operatorname{SO}_4 \cdot \operatorname{SH}_2O & 25 & 7.47 & 7.74 & 92.1 & 0.996 \\ \operatorname{curlic sulfate} & \operatorname{Cu}(\operatorname{CO}_3)_3 & 35.2 & 5 & 7.47 & 7.74 & 92.1 & 0.996 \\ \operatorname{curlic sulfate} & \operatorname{Cu}(\operatorname{SO}_4 \cdot \operatorname{SH}_2O & 25 & 51.5 & 65 & 61 & 1.26 \\ \operatorname{ferric ammonium sulfate} & \operatorname{Fe}(\operatorname{NA}_3)_1(\operatorname{CO}_2O_3 \cdot 34_2 & 55 & 7.47 & 7.74 & 92.1 & 0.996 \\ \operatorname{ferric ammonium sulfate} & \operatorname{Fe}(\operatorname{CO}_3)_3 & 25 $	carbon disulfide	CS ₂	22	0.173	0.173	99.63	0.998
cesium bromideCsBr ops21.453.180.879.51.693cesium chlorideCsCl2565.7126.365.91.923cesium indideCsI22.848.074.180.51.545cesium perchlorateCsClO ₄ 252.192.6.192.91.187cesium perchlorateCsClO ₄ 252.012.0399.01.010cesium perchlorateCsGO ₄ 252.012.0399.51.017cesium perchloateCS ₅ SO ₄ 2564.5129.871.72.013chloral hydrateCCl ₅ CHO · H ₂ O2579.4120311.51chloral hydrateCrG ₄ S(SO ₄) · 24H ₂ O259.40.7030.70599.571.0028chromium potassium sulfateCrG ₄ S(SO ₄) · 24H ₂ O2567.588.642.71.311cobalt chlorateCo(ClO ₄)1864.2119.366.51.857cobalt chlorateCo(ClO ₄)1864.2119.366.51.857cobalt nitrateCo(ClO ₄)2530.335.5821.17cupric ammonium sulfateCuSO ₄ · 2H ₂ O2555.810.2.581.21.84cupric chlorateCuClClO ₄)1862.2105.264.11.692cupric chlorateCuClO ₄)2555.810.2.581.21.84cupric chlorateCuSO ₄ · 5H ₂ O2553.380701.50 <td>cerium nitrate</td> <td>$Ce(NO_2)_2 \cdot 6H_2O_1$</td> <td>25</td> <td>63.7</td> <td>119.9</td> <td>68.2</td> <td>1.880</td>	cerium nitrate	$Ce(NO_2)_2 \cdot 6H_2O_1$	25	63.7	119.9	68.2	1.880
cesium chlorideCsCl2565.7126.365.91.923cesium irodideCsI22.848.074.180.51.545cesium perchlorateCsClO ₄ 252.1926.192.91.187cesium perchlorateCsClO ₄ 252.012.0399.01.010cesium perchlorateCsClO ₄ 252.012.1399.51.017cesium uffateCsSO ₄ 2579.4120311.51chloroformCHCl ₃ 29.40.7030.70599.571.0028chromic oxideCrO ₅ 1862.5106.364.01.703chromic oxideCrK_S(SO ₄)24P_O2519.622901.12citric acid(CH) ₂ OCH(COCH) ₃ -H ₂ O2567.588.642.71.311cobalt chlorateCo(CO ₃)21864.2119.366.51.857cobalt nitrateCo(CO ₃)21849.77.8.279.11.572cobalt perchlorateCu(CO ₃)21862.2105.281.21.84cupric ammonium chlorideCuSo ₄ · (NH ₄) ₂ SO ₄ 1915.317.396.01.131cupric broindeCuSo ₄ · (NH ₄) ₂ SO ₄ 1915.381.21.84cupric chlorateCu(CO ₃)21862.2105.264.11.692cupric nitrateCuSO ₄ · SH ₂ O2553.380701.50cupric chlorateCuSO ₄	cesium bromide	CsBr	21.4	53.1	89.8	79.5	1.693
$\begin{array}{ccc} \text{cesium iolide} & \text{CsL} & 22.8 & 3.0.7 & 12.0.7 & 30.7 & 172.5 \\ \text{cesium nitrate} & \text{CsNO}_{3} & 22.8 & 48.0 & 74.1 & 80.5 & 1.545 \\ \text{cesium perchlorate} & \text{CsNO}_{4} & 25 & 2.19 & 2.0.1 & 92.9 & 1.187 \\ \text{cesium perchlorate} & \text{CsCIO}_{4} & 25 & 2.01 & 2.03 & 99.0 & 1.010 \\ \text{cesium sulfate} & \text{CsSO}_{4} & 25 & 64.5 & 129.8 & 71.7 & 2.013 \\ \text{chloral hydrate} & \text{CCl}_{5}\text{CHO} + I_{2}\text{O} & 25 & 79.4 & 120 & 31 & 1.51 \\ \text{chlorof nm} & \text{CHCI}_{3} & 29.4 & 0.703 & 0.705 & 99.57 & 1.0028 \\ \text{chromiu potassium sulfate} & \text{Cr}_{5}\text{K}_{5}(SO_{4})_{*} \cdot 24H_{2}\text{O} & 25 & 67.5 & 88.6 & 42.7 & 1.311 \\ \text{cobalt chlorate} & \text{Co(COO}_{3})_{2} & 18 & 64.2 & 19.6 & 22 & 90 & 1.12 \\ \text{citric acid} & (\text{CH}_{2})_{2}\text{COH(COOH}_{3} + H_{2}\text{O} & 25 & 67.5 & 88.6 & 42.7 & 1.311 \\ \text{cobalt chlorate} & \text{Co(CIO}_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ \text{cobalt perchlorate} & \text{Co(CO}_{3})_{2} & 18 & 64.2 & 119.3 & 66.5 & 1.887 \\ \text{cupric anmonium sulfate} & \text{CuSO}_{4} \cdot (\text{ML}_{4})_{2}\text{SO}_{4} & 19 & 15.3 & 17.3 & 96.0 & 1.131 \\ \text{cupric anmonium sulfate} & \text{CuSO}_{4} \cdot (\text{ML}_{4})_{2}\text{SO}_{4} & 19 & 15.3 & 17.3 & 96.0 & 1.131 \\ \text{cupric chlorate} & \text{Cu(CO}_{3})_{2} & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{Co(CIO}_{3} + 19 & 15.3 & 17.3 & 96.0 & 1.131 \\ \text{cupric anmonium sulfate} & \text{CuSO}_{4} \cdot (\text{ML}_{4})_{2}\text{SO}_{4} & 19 & 15.3 & 17.3 & 96.0 & 1.131 \\ \text{cupric chlorate} & \text{Cu(CO}_{3})_{2} & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{CuSO}_{4} \cdot \text{Cu}_{2} = 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ \text{cupric chlorate} & \text{CuSO}_{4} \cdot \text{Cu}_{2} = 25 & 55.8 & 102.5 & 81.2 & 1.84 \\ \text{cupric chlorate} & \text{CuSO}_{4} \cdot \text{Cu}_{4} = 2.2 & 94.5 & 59 & 60 & 1.19 \\ \text{cupric selenate} & \text{CuSO}_{4} \cdot \text{SU}_{2} = 2.5 & 5.15 & 5.4 & 93.0 & 0.985 \\ \text{ferric anmonium sulfate} & \text{Fe}(\text{NL}_{4})_{3}(\text{CO}_{4})_{4} = 2.5 & 7.7 & 7.44 & 92.1 & 0.996 \\ \text{ferric anmonium sulfate} & \text{CuSO}_{4} \cdot \text{ML}_{2} = 2.5 & 51.5 & 65 & 61 & 1.26 \\ \text{ferric anmonium sulfate} & \text{Fe}(\text{NL}_{4})_{4}(\text$	cesium chloride	CsCl	25	65.7	126.3	65.9	1 923
$\begin{array}{cccc} Control Determination of the control of t$	cesium iodide	CsI	22.8	48.0	74.1	80.5	1.545
$\begin{array}{cccc} Calcon mutual constraints and the constraints of the constra$	cesium nitrate	CeNO	22.0	21.0	26.1	02.0	1 187
$\begin{array}{cccc} ccccc} ccccccccccccccccccccccccc$	cesium perchlorate	C ₂ ClO	25	21.9	2 03	99.0	1.010
$\begin{array}{cccc} cccccccccccccccccccccccccccccccc$	casium periodata	CsIO	15	2.01	2.03	99.5	1.017
Costain statuteCost204 (C) CHO H2O2567.3122.8 (12.8)11.72.013 (17.7)chloral hydrateCC1C1CHO H2O2579.4120311.51chloroformCHC1329.40.7030.70599.571.0028chromic oxideCrO31862.5106.364.01.703chromium potassium sulfateCrEx[5(SQ)]_4 · 24H2O2519.622901.12citric acid(CH2)_2COH(COOH)_3 · H2O2567.588.642.71.311cobalt chlorateCo(CIO_3)21864.2119.366.51.857cobalt nitrateCo(CIO_3)21849.778.279.11.572cobalt perchlorateCo(CIO_3)22671.8113.544.71.581cupric ammonium sulfateCuSQ · 2NH4C1 · 2H2O2530.335.5821.17cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)21862.2105.264.11.692cupric chorateCu(CIO_3)22553.380701.50 <t< td=""><td>cesium sulfate</td><td>$C_{\rm s}$ SO</td><td>25</td><td>64.5</td><td>120.8</td><td>99.J 71.7</td><td>2.013</td></t<>	cesium sulfate	$C_{\rm s}$ SO	25	64.5	120.8	99.J 71.7	2.013
$\begin{array}{c} \text{Chordin Hydrate} & \text{CC}_3 < \text{Fr}_2 & \text{Fr}_2 $	cestum sunate	CS_2SO_4	25	70.4	129.0	21	2.013
$\begin{array}{c} \text{Chronic oxide} & \text{CrQ}_3 & 29.4 & 0.705 & 0.705 & 99.37 & 1.0028 \\ \text{chronic oxide} & \text{CrQ}_3 & 18 & 62.5 & 106.3 & 64.0 & 1.703 \\ \text{chronium potassium sulfate} & \text{Cr}_5 K_2(SQ_4)_4 \cdot 24H_2O & 25 & 19.6 & 22 & 90 & 1.12 \\ \text{citric acid} & (\text{CH}_2)_2\text{COH}(\text{COOH})_3 \cdot \text{H}_2O & 25 & 67.5 & 88.6 & 42.7 & 1.311 \\ \text{cobalt chlorate} & \text{Co}(\text{CO}_3)_2 & 18 & 64.2 & 119.3 & 66.5 & 1.857 \\ \text{cobalt perchlorate} & \text{Co}(\text{CO}_4)_2 & 26 & 71.8 & 113.5 & 44.7 & 1.581 \\ \text{cupric ammonium chloride} & \text{CuCl}_2 \cdot 2NH_4\text{Cl} \cdot 2H_2O & 25 & 30.3 & 35.5 & 82 & 1.17 \\ \text{cupric ammonium sulfate} & \text{CuSO}_4 \cdot (\text{NH}_4)_2\text{SO}_4 & 19 & 15.3 & 17.3 & 96.0 & 1.131 \\ \text{cupric chlorate} & \text{Cu}(\text{CO}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{Cu}(\text{CO}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{Cu}(\text{CO}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{Cu}(\text{CO}_3)_2 & 18 & 62.2 & 105.2 & 64.1 & 1.692 \\ \text{cupric chlorate} & \text{Cu}(\text{NO}_3)_2 \cdot 6H_2O & 25 & 53.3 & 80 & 70 & 1.50 \\ \text{cupric chlorate} & \text{CuSO}_4 \cdot 5H_2O & 25 & 18.5 & 22.3 & 98.7 & 1.211 \\ \text{dextrose} & \text{CaSO}_4 \cdot 5H_2O & 25 & 18.5 & 22.3 & 98.7 & 1.211 \\ \text{dextrose} & \text{CaSO}_4 \cdot 5H_2O & 25 & 49.5 & 59 & 60 & 1.19 \\ \text{ether} & (\text{C}_2\text{H}_3)_2O & 22 & 5.45 & 5.34 & 93.0 & 0.985 \\ \text{ethyl acetate} & \text{CH}_5\text{COOC}_2\text{H}_5 & 25 & 7.47 & 7.44 & 92.1 & 0.996 \\ \text{ferric ammonium sulfate} & \text{Fe}(\text{NH}_4)_3(\text{CO}_4)_3 \cdot 3H_2O & 25 & 73.1 & 131.1 & 48.3 & 1.793 \\ \text{ferric antmonium sulfate} & \text{Fe}(\text{NH}_4)_2\text{SO}_4 & 16.5 & 19.1 & 22.4 & 94.3 & 1.165 \\ \text{ferric antmonium sulfate} & \text{Fe}(\text{NH}_4)_3(\text{CO}_4)_3 \cdot 3H_2O & 25 & 73.1 & 131.1 & 48.3 & 1.793 \\ \text{ferric antmonium sulfate} & \text{Fe}(\text{NH}_4)_3(\text{CO}_4)_3 \cdot 3H_2O & 25 & 73.1 & 131.1 & 48.3 & 1.793 \\ \text{ferric antmonium sulfate} & \text{Fe}(\text{N}_4)_3(\text{CO}_4)_3 \cdot 3H_2O & 25 & 73.1 & 131.1 & 48.3 & 1.793 \\ \text{ferric antmonium sulfate} & \text{Fe}(\text{N}_4)_3 \cdot 10H_2O & 25 & 73.1 & 131.1 & 48.3 & 1.793 \\ \text{ferric antionium sulfate} & \text{Fe}(\text{N}_4)_3 \cdot 10H_2O & $	chloraform	CUCI	20 4	0 702	0 705	JI 00 57	1.0028
$\begin{array}{c} \text{Chronium oxade} & \text{CrO}_3 & \text{rbs} & \text$	chioroforni abromia avida		29.4	62.5	0.705	99.37	1.0028
Circliniting potassium surface $C_{12}(S_{2}(S_{0}, I_{1}, 2H_{2}O)$ 2.5 19.5 2.2 9.0 1.12 citric acid $(CH_{2})_{2}COH(COOH)_{3} \cdot H_{2}O$ 2.5 67.5 88.6 42.7 1.311 cobalt chlorate $Co(CIO_{3})_{2}$ 18 64.2 119.3 66.5 1.857 cobalt nitrate $Co(CIO_{3})_{2}$ 18 49.7 78.2 79.1 1.572 cobalt perchlorate $Co(CIO_{4})_{2}$ 26 71.8 113.5 44.7 1.581 cupric ammonium chloride $CuC_{1} \cdot 2NH_{4}CI \cdot 2H_{2}O$ 25 30.3 35.5 82 1.17 cupric ammonium sulfate $CuSO_{4} \cdot (NH_{4})_{2}SO_{4}$ 19 15.3 17.3 96.0 1.131 cupric bromide $CuE_{1} \cdot 2H_{2}O$ 25 55.8 102.5 81.2 1.84 cupric chlorate $Cu(CIO_{3})_{2}$ 18 62.2 105.2 64.1 1.692 cupric chlorate $Cu(CIO_{3})_{2} \cdot 6H_{2}O$ 25 53.3 80 70 1.50 cupric selenate $CuSO_{4} \cdot SH_{2}O$ 25 18.5 22.3 98.7 1.211 dextrose $C_{4}H_{12}O_{6} \cdot H_{2}O$ 25 18.5 22.3 98.7 1.211 dextrose $C_{4}H_{12}O_{6} \cdot H_{2}O$ 25 7.47 7.44 92.1 0.996 ether $(C_{2}H_{3})_{2}O_{6}$ 25 7.47 7.44 92.1 0.996 ferric ammonium sulfateFe(N4_{4})_{3}(C_{2}O_{4})_{	chromium notossium sulfate	$C_{\rm T} V (SO) = 24 U O$	10	10.6	100.5	04.0	1.705
Cluric acid $(CH_2)_2 OH(COOH)_3 \cdot H_2 O2567.588.642.71.311cobalt chlorateCo(ClO_3)_21864.2119.366.51.857cobalt perchlorateCo(ClO_4)_22671.8113.544.71.581cupric ammonium chlorideCuCl_2 \cdot 2NH_4Cl \cdot 2H_2O2530.335.5821.17cupric ammonium sulfateCuSO_4 \cdot (NH_4)_2SO_41915.317.396.01.131cupric chlorateCu(ClO_3)_21862.2105.264.11.692cupric chlorateCu(ClO_3)_21862.2105.264.11.692cupric chlorateCu(NO_3)_2 \cdot 6H_2O2553.380701.50cupric chlorateCu(NO_3)_2 \cdot 6H_2O2056.094.574.31.688cupric sulfateCuSO_4 \cdot 5H_2O2518.522.398.71.211dextroseC_6H_12O_6 \cdot H_2O257.477.4492.10.996ether(C_1H_3)_2O_4 + 2O_42551.565611.26ferric ammonium oxalateFe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O257.31131.148.31.793ferric ammonium sulfateFeSO_4 · (NH_4)_2SO_416.519.122.494.31.165ferric ammonium sulfateFe(NO_3)_3 · 10H_2O257.31131.148.31.793ferric ammonium sulfateFe(OA_3) · 10H_2O257.31131.148.31.793$	chronnum potassium sunate	$CI_2 R_2 (SO_4)_4 \cdot 24 H_2 O$	25	19.0	22	90	1.12
Cobalt chlorateCo(ClO_3)_21864.2119.360.31.857cobalt nitrateCo(NO_3)_21849.778.279.11.572cobalt perchlorateCo(ClO_4)_22671.8113.544.71.581cupric ammonium chlorideCuCl_2 · 2NH_4Cl · 2H_2O2530.335.5821.17cupric ammonium sulfateCuSO_4 · (NH_4)_2SO_41915.317.396.01.131cupric chlorateCu(ClO_3)_21862.2105.264.11.692cupric chlorateCu(ClO_3)_21862.2105.264.11.692cupric chlorateCu(NO_3)_2 · 6H_2O2056.094.574.31.688cupric selenateCuSO_4 · 5H_2O2518.522.398.71.211dextroseCaH_1Q_6 · H_2O2549.559601.19ether(C2H_5)_2O257.477.4492.10.996ferric ammonium oxlateFe(NH_4)_3CO_4)_3 · 3H_2O2551.565611.26ferric ammonium sulfateFe(NH_4)_3CO_416.519.122.494.31.165ferric ammonium sulfateFe(NO_3)_32573.1131.148.31.793ferric ammonium sulfateFe(Ol_3) · 10H_2O2579.9132.133.21.656ferric ammonium sulfateFe(Ol_3) · 10H_2O2579.9132.133.21.656ferric ammonium sulfateFe(Ol_3) · 10H_2O <td< td=""><td></td><td>$(CH_2)_2COH(COOH)_3 \cdot H_2O$</td><td>23</td><td>67.5</td><td>88.0</td><td>42.7</td><td>1.311</td></td<>		$(CH_2)_2COH(COOH)_3 \cdot H_2O$	23	67.5	88.0	42.7	1.311
Cobalt nurateCo(NO3)21849.778.279.11.572cobalt perchlorateCo(ClO4)22671.8113.544.71.581cupric ammonium chlorideCuC2-2NH4Cl · 2H2O2530.335.5821.17cupric ammonium sulfateCuSO4 · (NH4)2SO41915.317.396.01.131cupric bromideCuBr22555.8102.581.21.84cupric chlorateCu(ClO3)21862.2105.264.11.692cupric chlorideCuC12 · 2H2O2553.380701.50cupric chlorideCuSO4 · 6H2O2056.094.574.31.668cupric sulfateCuSO4 · 5H2O2518.522.398.71.211dextroseC6H2O6 · H2O2549.559601.19ether(C2H3)2O257.477.4492.10.996ferric ammonium citrate257.7797461.43ferric ammonium oxalateFe(NH4)3(C2O4)3 · 3H2O2551.565611.26ferric ammonium sulfateFeSO4 · (NH4)2SO416.519.122.494.31.165ferric chlorideFeCl32573.1131.148.31.793ferric chlorideFeCl32579.9132.133.21.656ferric anmonium sulfateFeSO4 · 7H2O2579.9132.133.21.656ferric andonium sulfateFeSO4	cobalt chlorate	$C_0(CIO_3)_2$	18	04.2	119.3	00.5	1.857
Cobait perchiorateCo(ClO4)2Cb71.8113.544.71.581cupric ammonium chlorideCuC12 · 2NH4C1 · 2H2O2530.335.5821.17cupric ammonium sulfateCuSO4 · (NH4)2SO41915.317.396.01.131cupric chlorateCu(ClO3)21862.2105.264.11.692cupric chlorateCu(ClO3)2 · 2H2O2553.380701.50cupric chlorateCu(NO3)2 · 6H2O2056.094.574.31.688cupric selenateCuSO4 · SH2O2518.522.398.71.211dextroseC ₆ H12O6 · H2O2549.559601.19ether(C2H3)2O257.477.4492.10.996ferric ammonium citrateEq(2H3) · 3H2O2551.565611.26ferric ammonium oxalateFe(NH4)3(C2O4)3 · 3H2O2551.565611.26ferric ammonium sulfateFeSO4 · (NH4)2SO416.519.122.494.31.165ferric chlorideFeCl32573.1131.148.31.793ferric chlorideFeCl043 · 10H2O2579.9132.133.21.656ferric chlorideFeCl043 · 10H2O2571.111.148.31.793ferric ammonium sulfateFeSO4 · 7H2O2546.870.279.81.50ferric ammonium sulfateFeCl043 · 10H2O2579.9132.1		$Co(NO_3)_2$	18	49.7	/8.2	/9.1	1.572
cupric ammonium chlorideCuCl_2 · 2/H_4Cl · 2H_2O2530.335.5821.17cupric ammonium sulfateCuSQ_4 · (NH_4)_2SQ_41915.317.396.01.131cupric bromideCuBr_22555.8102.581.21.84cupric chlorateCu(ClO_3)_21862.2105.264.11.692cupric chlorideCuCl_2 · 2H_2O2553.380701.50cupric chlorateCuSeO_421.214.717.299.41.165cupric sulfateCuSeO_421.214.717.299.41.165cupric sulfateCuSO_4 · 5H_2O2518.522.398.71.211dextroseC_6H_12O_6 · H_2O2549.559601.19ether(C,H5)_2O225.455.3493.00.985ethyl acetateCH_3COOC_2H_5257.477.4492.10.996ferric ammonium oxalateFe(NH_4)_3(C_2O_4)_3 · 3H_2O2551.565611.26ferric chlorideFeCl_3257.3.1131.148.31.793ferric perchlorateFe(NO_3)_32546.870.279.81.50ferric perchlorateFe(ClO_4)_3 · 10H_2O2579.9132.133.21.656ferric perchlorateFe(ClO_4)_3 · 10H_2O2579.9132.133.21.656ferric perchlorateFe(ClO_4)_3 · 10H_2O251.151.1599.05<	cobalt perchlorate	$Co(CIO_4)_2$	26	/1.8	113.5	44.7	1.581
cupric ammonium sulfateCuSO4 \cdot (NH4)2SO41915.317.396.01.131cupric bromideCuBr22555.8102.581.21.84cupric chlorateCu(ClO3)21862.2105.264.11.692cupric chlorideCuCl2 \cdot 2H2O2553.380701.50cupric selenateCuSO421.214.717.299.41.165cupric sulfateCuSO4 \cdot 5H2O2518.522.398.71.211dextroseC6H12O6 \cdot H2O2549.559601.19ether(C,H5)2O257.477.4492.10.996ferric ammonium citrateCuSO4 \cdot (NH4)3(C2O4)3 \cdot 3H2O2551.565611.26ferric ammonium oxalateFe(NH4)3(C2O4)3 \cdot 3H2O2551.565611.26ferric anmonium oxalateFe(NH4)3(C2O4)3 \cdot 3H2O2573.1131.148.31.793ferric chlorideFeCl32573.1131.148.31.793ferric nitrateFe(NO3)32546.870.279.81.50ferric perchlorateFe(ClO4)3 \cdot 10H2O2579.9132.133.21.656ferric outrateFeSO4 \cdot 7H2O2546.870.279.81.50ferric chlorideFeCl32573.1131.148.31.793ferric nitrateFe(ClO4)3 \cdot 10H2O251.151.1599.051.0002<	cupric ammonium chloride	$CuCl_2 \cdot 2NH_4Cl \cdot 2H_2O$	25	30.3	35.5	82	1.17
cupric bromideCuBr22555.8102.581.21.84cupric chlorateCu(ClO ₃)21862.2105.264.11.692cupric chlorideCuCl2 · 2H2O2553.380701.50cupric selenateCuSeO ₄ 21.214.717.299.41.165cupric selenateCuSO ₄ · 5H2O2518.522.398.71.211dextrose $C_6H_{12}O_6 \cdot H_2O$ 2549.559601.19ether(C2H ₃)2O257.477.4492.10.996ferric ammonium citrateCuSO ₄ · SH2O2551.565611.26ferric ammonium oxalateFe(NH ₄) ₃ (C ₂ O ₄) ₃ · 3H ₂ O2551.565611.26ferric ammonium sulfateFeSO ₄ · (NH ₄) ₂ SO ₄ 16.519.122.494.31.165ferric nitrateFe(NO ₃)32573.1131.148.31.793ferric nitrateFe(Olo ₄)3 · 10H ₂ O2579.9132.133.21.656ferric solutiateFe(ClO ₄)3 · 10H ₂ O2579.9132.133.21.656ferric ammonium sulfateFeSO ₄ · 7H ₂ O2579.9132.133.21.656ferric antronium sulfateFe(ClO ₄)3 · 10H ₂ O2579.9132.133.21.656ferric antronium sulfateFeSO ₄ · 7H ₂ O250.860.8699.151.0002galitia caidC ₆ H ₂ (OH) ₃ COOH · H ₂ O <td>cupric ammonium sulfate</td> <td>$CuSO_4 \cdot (NH_4)_2 SO_4$</td> <td>19</td> <td>15.3</td> <td>17.3</td> <td>96.0</td> <td>1.131</td>	cupric ammonium sulfate	$CuSO_4 \cdot (NH_4)_2 SO_4$	19	15.3	17.3	96.0	1.131
cupric chlorateCu(ClO_3)_218 62.2 105.2 64.1 1.692 cupric chlorateCuCl_2 · 2H_2O25 53.3 80 70 1.50 cupric nitrateCu(NO_3)_2 · 6H_2O20 56.0 94.5 74.3 1.688 cupric selenateCuSO_4 · 5H_2O25 18.5 22.3 98.7 1.211 dextroseC_6H_12O_6 · H_2O25 49.5 59 60 1.19 ether(C_1H_3)_2O22 5.45 5.34 93.0 0.985 ethyl acetateCH_3COOC_2H_525 7.47 7.44 92.1 0.996 ferric ammonium citrateFe(NH_4)_3(C_2O_4)_3 · 3H_2O 25 51.5 65 61 1.26 ferric ammonium sulfateFe(NH_4)_3(C_2O_4)_3 · 3H_2O 25 51.5 65 61 1.26 ferric chlorideFeCl_3 25 73.1 131.1 48.3 1.793 ferric perchlorateFe(ClO_4)_3 · 10H_2O 25 79.9 132.1 33.2 1.656 ferrio sulfateFeSO_4 · 7H_2O 25 42.1 52.8 72.7 1.255 gallic acidC_6H_2(OH)_3COOH · H_2O 25 1.15 1.15 99.05 1.0002 Jutamic acidC_3H_9OAN 25 0.86 0.86 99.15 1.0002 glycineNH_2CH_2COOH 25 0.975 0.975 99.03 1.000	cupric bromide	CuBr ₂	25	55.8	102.5	81.2	1.84
cupric chlorideCuCl ₂ · 2H ₂ O2553.380701.50cupric nitrateCu(NO ₃) ₂ · 6H ₂ O2056.094.574.31.688cupric selenateCuSeO ₄ 21.214.717.299.41.165cupric sulfateCuSO ₄ · 5H ₂ O2518.522.398.71.211dextroseC ₆ H ₁₂ O ₆ · H ₂ O2549.559601.19ether(C ₂ H ₅) ₂ O225.455.3493.00.985ethyl acetateCH ₃ COOC ₂ H ₅ 257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalateFe(NH ₄) ₃ (C ₂ O ₄) ₃ · 3H ₂ O2551.565611.26ferric chlorideFeCl ₃ 2573.1131.148.31.793ferric ri nitrateFe(NO ₃) ₃ · 10H ₂ O2579.9132.133.21.656ferric perchlorateFe(ClO ₄) ₃ · 10H ₂ O251.151.1599.051.002gallic acidC ₆ H ₂ (OH) ₃ COOH · H ₂ O251.151.1599.051.002glycineNH ₂ CH ₂ COOH250.860.8699.151.0002glycineNH ₂ CH ₂ COOH250.9750.97599.031.000	cupric chlorate	$Cu(ClO_3)_2$	18	62.2	105.2	64.1	1.692
cupric nitrateCu(NO_3)_2 \cdot 6H_2O2056.094.574.31.688cupric selenateCuSeO_421.214.717.299.41.165cupric sulfateCuSO_4 \cdot 5H_2O2518.522.398.71.211dextrose $C_6H_{12}O_6 \cdot H_2O$ 2549.559601.19ether(C_2H_3)_2O225.455.3493.00.985ethyl acetateCH_3COOC_2H_5257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalateFe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O2551.565611.26ferric ammonium sulfateFeSO_4 · (NH_4)_2SO_416.519.122.494.31.165ferric chlorideFeCl_32573.1131.148.31.793ferric perchlorateFe(OO_4)_3 · 10H_2O2579.9132.133.21.656ferrous sulfateFeSO_4 · 7H_2O251.151.1599.051.002D-glutamic acidC_6H_2(OH)_5COOH · H_2O251.151.1599.051.002glycineNH_2CH_2COOH250.860.8699.151.0002glycineNH_2CH_2COOH250.021.786.81.083hydroquinoneC_6H_4(OH)_2206.76.7894.41.012 <i>m</i> -hydroxybenzoic acidC_6H_4OHCOOH250.9750.97599.031.000 </td <td>cupric chloride</td> <td>$CuCl_2 \cdot 2H_2O$</td> <td>25</td> <td>53.3</td> <td>80</td> <td>70</td> <td>1.50</td>	cupric chloride	$CuCl_2 \cdot 2H_2O$	25	53.3	80	70	1.50
cupric selenateCuSeO ₄ 21.214.717.299.41.165cupric sulfateCuSO ₄ · 5H ₂ O2518.522.398.71.211dextrose $C_6H_{12}O_6 \cdot H_2O$ 2549.559601.19ether(C2H_5)_2O225.455.3493.00.985ethyl acetateCH_3COOC_2H_5257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalateFe(NH_4)_3(C_2O_4)_3 · 3H_2O2551.565611.26ferric ammonium sulfateFeSO ₄ · (NH_4)_2SO_416.519.122.494.31.165ferric chlorideFeCl_32573.1131.148.31.793ferric perchlorateFe(CO_4)_3 · 10H_2O2579.9132.133.21.656ferrous sulfateFeSO_4 · 7H_2O251.151.1599.051.002D-glutamic acidC_6H_2(OH)_3COOH · H_2O251.151.1599.051.002glycineNH_2CH_2COOH250.860.8699.151.0002glycineNH_2CH_2COOH250.9750.97599.031.000	cupric nitrate	$Cu(NO_3)_2 \cdot 6H_2O$	20	56.0	94.5	74.3	1.688
cupric sulfateCuSO ₄ · 5H ₂ O2518.522.398.71.211dextrose $C_6H_{12}O_6 \cdot H_2O$ 2549.559601.19ether(C_2H_5)_2O225.455.3493.00.985ethyl acetateCH_3COOC_2H_5257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalateFe(NH_4)_3(C_2O_4)_3 · 3H_2O2551.565611.26ferric ammonium sulfateFeSO_4 · (NH_4)_2SO_416.519.122.494.31.165ferric chlorideFeCl_32573.1131.148.31.793ferric perchlorateFe(ClO_4)_3 · 10H_2O2579.9132.133.21.656ferrous sulfateFeSO_4 · TH_2O251.151.1599.051.002D-glutamic acidC_6H_2(OH)_3COOH · H_2O251.151.1599.051.002glycineNH_2CH_2COOH2520.021.786.81.083hydroquinoneC_6H_4(OH)_2206.76.7894.41.012 <i>m</i> -hydroxybenzoic acidC_6H_4OHCOOH250.9750.97599.031.000	cupric selenate	CuSeO ₄	21.2	14.7	17.2	99.4	1.165
dextrose $C_6H_{12}O_6 \cdot H_2O$ 2549.559601.19ether $(C_2H_5)_2O$ 225.455.3493.00.985ethyl acetate $CH_3COOC_2H_5$ 257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalate $Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$ 2551.565611.26ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.519.122.494.31.165ferric chloride $FeCl_3$ 2573.1131.148.31.793ferric perchlorate $Fe(NO_3)_3$ 2546.870.279.81.50ferric perchlorate $Fe(SO_4 \cdot TH_2O$ 2579.9132.133.21.656ferrous sulfate $FeSO_4 \cdot TH_2O$ 251.151.1599.051.002D-glutamic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 251.151.1599.051.002glycineNH_2CH_2COOH2520.021.786.81.083hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012 <i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	cupric sulfate	$CuSO_4 \cdot 5H_2O$	25	18.5	22.3	98.7	1.211
ether $(C_2H_5)_2O$ 225.455.3493.00.985ethyl acetate $CH_3COOC_2H_5$ 257.477.4492.10.996ferric ammonium citrate2567.797461.43ferric ammonium oxalate $Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$ 2551.565611.26ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.519.122.494.31.165ferric chloride $FeCl_3$ 2573.1131.148.31.793ferric perchlorate $Fe(NO_3)_3$ 2546.870.279.81.50ferrio perchlorate $FeSO_4 \cdot 7H_2O$ 2579.9132.133.21.656ferrous sulfate $FeSO_4 \cdot 7H_2O$ 2542.152.872.71.255gallic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 251.151.1599.051.0002glycineNH_2CH_2COOH2520.021.786.81.083hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012 <i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	dextrose	$C_6H_{12}O_6 \cdot H_2O$	25	49.5	59	60	1.19
ethyl acetate $CH_3COOC_2H_5$ 25 7.47 7.44 92.1 0.996 ferric ammonium citrate25 67.7 97 46 1.43 ferric ammonium oxalate $Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$ 25 51.5 65 61 1.26 ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.5 19.1 22.4 94.3 1.165 ferric chloride $FeCl_3$ 25 73.1 131.1 48.3 1.793 ferric perchlorate $Fe(NO_3)_3$ 25 46.8 70.2 79.8 1.50 ferric perchlorate $Fe(SO_4 \cdot TH_2O$ 25 79.9 132.1 33.2 1.656 ferrous sulfate $FeSO_4 \cdot TH_2O$ 25 42.1 52.8 72.7 1.255 gallic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 25 1.15 1.15 99.05 1.0002 D -glutamic acid $C_5H_9O_4N$ 25 0.86 0.86 99.15 1.0002 glycine NH_2CH_2COOH 25 20.0 21.7 86.8 1.083 hydroquinone $C_6H_4(OH_2)_2$ 20 6.7 6.78 94.4 1.012 <i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 25 0.975 0.975 99.03 1.000	ether	$(C_2H_5)_2O$	22	5.45	5.34	93.0	0.985
ferric ammonium citrate25 67.7 97 46 1.43 ferric ammonium oxalate $Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$ 25 51.5 65 61 1.26 ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.5 19.1 22.4 94.3 1.165 ferric chloride $FeCl_3$ 25 73.1 131.1 48.3 1.793 ferric nitrate $Fe(NO_3)_3$ 25 46.8 70.2 79.8 1.50 ferric perchlorate $Fe(ClO_4)_3 \cdot 10H_2O$ 25 79.9 132.1 33.2 1.656 ferrous sulfate $FeSO_4 \cdot 7H_2O$ 25 42.1 52.8 72.7 1.255 gallic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 25 1.15 1.15 99.05 1.002 D-glutamic acid $C_5H_9O_4N$ 25 0.86 0.86 99.15 1.0002 glycineNH_2CH_2COOH 25 20.0 21.7 86.8 1.083 hydroquinone $C_6H_4(OH)_2$ 20 6.7 6.78 94.4 1.012 <i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 25 0.975 0.975 99.03 1.000	ethyl acetate	CH ₃ COOC ₂ H ₅	25	7.47	7.44	92.1	0.996
ferric ammonium oxalate $Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$ 2551.565611.26ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.519.122.494.31.165ferric chloride $FeCI_3$ 2573.1131.148.31.793ferric nitrate $Fe(NO_3)_3$ 2546.870.279.81.50ferric perchlorate $Fe(CIO_4)_3 \cdot 10H_2O$ 2579.9132.133.21.656ferrous sulfate $FeSO_4 \cdot 7H_2O$ 2542.152.872.71.255gallic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 251.151.1599.051.002D-glutamic acid $C_5H_9O_4N$ 250.860.8699.151.0002glycineNH_2CH_2COOH2520.021.786.81.083hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012m-hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	ferric ammonium citrate		25	67.7	97	46	1.43
ferric ammonium sulfate $FeSO_4 \cdot (NH_4)_2SO_4$ 16.519.122.494.31.165ferric chloride $FeCI_3$ 2573.1131.148.31.793ferric nitrate $Fe(NO_3)_3$ 2546.870.279.81.50ferric perchlorate $Fe(CIO_4)_3 \cdot 10H_2O$ 2579.9132.133.21.656ferrous sulfate $FeSO_4 \cdot 7H_2O$ 2542.152.872.71.255gallic acid $C_6H_2(OH)_3COOH \cdot H_2O$ 251.151.1599.051.002D-glutamic acid $C_5H_9O_4N$ 250.860.8699.151.0002glycineNH_2CH_2COOH2520.021.786.81.083hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012m-hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	ferric ammonium oxalate	$Fe(NH_4)_3(C_2O_4)_3 \cdot 3H_2O$	25	51.5	65	61	1.26
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ferric ammonium sulfate	$FeSO_4 \cdot (NH_4)_2SO_4$	16.5	19.1	22.4	94.3	1.165
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ferric chloride	FeCl ₃	25	73.1	131.1	48.3	1.793
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ferric nitrate	$Fe(NO_3)_3$	25	46.8	70.2	79.8	1.50
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ferric perchlorate	$Fe(ClO_4)_3 \cdot 10H_2O$	25	79.9	132.1	33.2	1.656
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ferrous sulfate	$FeSO_4 \cdot 7H_2O$	25	42.1	52.8	72.7	1.255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gallic acid	$C_6H_2(OH)_3COOH\cdot H_2O$	25	1.15	1.15	99.05	1.002
glycineNH2CH2COOH2520.021.786.81.083hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012m-hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	D-glutamic acid	$C_5H_9O_4N$	25	0.86	0.86	99.15	1.0002
hydroquinone $C_6H_4(OH)_2$ 206.76.7894.41.012 <i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 250.9750.97599.031.000	glycine	NH ₂ CH ₂ COOH	25	20.0	21.7	86.8	1.083
<i>m</i> -hydroxybenzoic acid $C_6H_4OHCOOH$ 25 0.975 0.975 99.03 1.000	hydroquinone	$C_6H_4(OH)_2$	20	6.7	6.78	94.4	1.012
	<i>m</i> -hydroxybenzoic acid	C ₆ H ₄ OHCOOH	25	0.975	0.975	99.03	1.000

					ml	
					water/	
			g/100 g	g/100 ml	100 ml	
		Temp.	satd	satd	satd	Specific
Substance	Formula	°C	soln	soln	soln	gravity
lactose	$C_{12}H_{22}O_{11} + H_2O_{12}$	25	15.9	17	90	1.07
lead acetate	$Pb(C_2H_2O_2)_2$	25	36.5	49.0	85.1	1.340
lead bromide	PbBr ₂	25	0.97	0.98	99.6	1.006
lead chlorate	$Pb(ClO_3)_2$	18	60.2	117.0	77.3	1.944
lead chloride	PbCl ₂	25	1.07	1.08	99.6	1.007
lead iodide	PbI ₂	25	0.08	0.08	99.7	0.998
lead nitrate	$Pb(NO_3)_2$	25	37.1	53.6	91.0	1.445
DL-leucine	$C_6H_{13}O_2N$	25	0.976	0.975	98.9	0.999
L-leucine	$C_6H_{13}O_2N$	25	2.24	2.24	97.85	1.0012
lithium benzoate	$LiC_7H_5O_2$	25	27.7	30.4	79.6	1.100
lithium bromate	LiBrO ₃	18	60.4	110.5	72.5	1.830
lithium carbonate	Li ₂ CO ₃	15	1.36	1.38	100.0	1.014
lithium chloride	LiCl · H ₂ O	25	45.9	59.5	70.2	1.296
lithium citrate	$Li_3C_6H_5O_7$	25	31.8	38.6	82.8	1.213
lithium dichromate	$Li_2Cr_2O_7 \cdot H_2O$	18	52.6	82.9	74.8	1.574
lithium fluoride	LiF	18	0.27	0.27	99.9	1.002
lithium formate	LiCHO ₂	18	27.9	31.8	80.4	1.140
lithium iodate	LiIO ₃	18	44.6	69.9	86.8	1.566
lithium nitrate	LiNO ₃	19	48.9	64.5	67.5	1.318
lithium perchlorate	$LiClO_4 \cdot 3H_2O$	25	37.5	47.6	79.5	1.269
lithium salicylate	LiC ₇ H ₅ O ₃	25	52.7	63.6	57.1	1.206
lithium sulfate	$Li_2SO_4 \cdot H_2O$	25	27.2	33	88.5	1.21
magnesium bromide	$MgBr_2 \cdot 6H_2O$	18	50.1	83.1	82.8	1.655
magnesium chlorate	$Mg(ClO_3)_2$	18	56.3	90.0	69.7	1.594
magnesium chloride	$MgCl_2 \cdot 6H_2O$	25	62.5	79	47.5	1.26
magnesium chromate	$MgCr_2O_4 \cdot 7H_2O$	18	42.0	59.7	82.5	1.422
magnesium dichromate	$MgCrO_7 \cdot 5H_2O$	25	81.0	138.8	32.6	1.712
magnesium iodate	$Mg(IO_3)_2 \cdot 4H_2O$	18	6.44	6.95	100.8	1.078
magnesium iodide	MgI ₂ .8H ₂ O	18	59.7	114.0	77.1	1.909
magnesium molybdate	$MgMoO_4$	25	15.9	18.4	97.4	1.159
magnesium nitrate	$Mg(NO_3)_2 \cdot 6H_2O$	25	42.1	58.6	80.5	1.388
magnesium perchlorate	$Mg(ClO_4)_2 \cdot 6H_2O$	25	49.9	73.6	73.9	1.472
magnesium selenate	$MgSeO_4$	20	35.3	50.8	93.0	1.440
magnesium sulfate	$MgSO_4 \cdot 7H_2O$	25	55.3	72	58.5	1.30
manganese chloride	MnCl ₂	25	43.6	63.2	82.0	1.449
manganese nitrate	$Mn(NO_3)_2 \cdot 6H_2O$	18	57.3	93.2	69.2	1.624
manganese silicofluoride	MnSiF ₆	17.5	37.7	54.5	90.1	1.446
manganese sulfate	$MnSO_4$	25	39.4	59.1	90.8	1.499
mercuric acetate	$Hg(C_2H_3O_2)_2$	25	30.2	38	88	1.26
mercuric bromide	HgBr ₂	25	0.609	0.610	99.6	1.0023
mercury bichloride	HgCl ₂	25	6.6	6.96	98.5	1.054
methylene blue	$C_{16}H_{18}N_3ClS\cdot 3H_2O$	25	4.25	4.3	97	1.01
methyl salicylate	$C_6H_4OHCOOCH_3$	25	0.12	0.12	99.88	1.00
monochloracetic acid	CH ₂ ClCOOH	25	78.8	105	28	1.33
<i>p</i> -naphthalenesulfonic acid	$C_{10}H_7SO_3H$	30	56.9	67.9	51.4	1.193
nickel ammonium sulfate	$N_1SO_4(NH_4)_2SO_4 \cdot 6H_2O$	25	9.0	9.5	96	1.05
nickel chlorate	$Ni(ClO_3)_2$	18	56.7	94.2	72.0	1.658
nickel chlorate	$N1(CIO_3)_2 \cdot 6H_2O$	18	64.5	107.2	59.1	1.661
nickel nitrate	$N1(NO_3)_2 \cdot 6H_2O$	25	11	122	36	1.58

					ml water/	
			g/100 g	g/100 ml	100 ml	
		Temp,	satd	satd	satd	Specific
Substance	Formula	°C	soln	soln	soln	gravity
nickel perchlorate	Ni(ClO ₄) ₂	26	70.8	112.2	46.4	1.584
nickel perchlorate	$Ni(ClO_4)_2 \cdot 9H_2O$	18	52.4	82.7	75.1	1.576
nickel sulfate	$NiSO_4 \cdot 6H_2O$	25	47.3	64	71	1.35
DL-norleucine	C ₆ H ₁₃ NO ₂	25	1.13	1.13	98.97	0.999
oxalic acid	$H_2C_2O_4 \cdot 2H_2O$	25	9.81	10.3	94.2	1.044
phenol	C ₆ H ₅ OH	20	6.1	6.14	94.5	1.0057
β -phenylalanine	C ₆ H ₅ CH ₂ CH(NH ₂)COOH	25	2.88	2.89	97.5	1.0035
<i>m</i> -phenylenediamine	$C_6H_8N_2$	20	23.1	23.8	79.3	1.032
<i>p</i> -phenylenediamine	$C_6H_8N_2$	20	3.69	3.70	96.67	1.0038
phenyl salicylate	C ₆ H ₄ OHCOOC ₆ H ₅	25	0.015	0.015	99.84	0.999
phenyl thiourea	CS(NH ₂)NHC ₆ H ₅	25	0.24	0.24	99.6	0.998
phosphomolybdic acid	$20MoO_3\cdot 2H_3PO_4\cdot 48H_2O$	25	74.3	135	46	1.81
phosphotungstic acid	Approx. $20WO_3 \cdot 2H_3PO_4 \cdot 25H_2O$	25	71.4	160	64	2.24
potassium acetate	KC ₂ H ₃ O ₂	25	68.7	97.1	44.3	1.413
potassium antimony tartrate	KSbOC ₄ H ₄ O ₆	25	7.64	8.02	96.9	1.049
potassium bicarbonate	KHCO ₃	25	26.6	31.6	87.5	1.188
potassium bitartrate	KC ₄ H ₅ O ₆	25	0.65	0.65	99.3	0.999
potassium bromate	KBrO ₃	25	7.53	7.89	97.5	1.054
potassium bromide	KBr	25	40.6	56.0	82.0	1.380
potassium carbonate	$K_2CO_3 \cdot 1\frac{1}{2}H_2O$	25	52.9	82.2	73.5	1.559
potassium chlorate	KClO ₃	25	8.0	8.41	96.6	1.051
potassium chloride	KCl	25	26.5	31.2	86.8	1.178
potassium chromate	K_2CrO_4	25	39.4	54.1	83.7	1.381
potassium citrate	$K_3C_6H_5O_7$	25	60.91	92.1	59.2	1.514
potassium dichromate	$K_2Cr_2O_7$	25	13.0	14.2	95.0	1.092
potassium ferricyanide	$K_3Fe(CN)_6$	22	32.1	38.1	80.8	1.187
potassium ferrocyanide	K ₄ Fe(CN) ₆	25	24.0	28.2	89.2	1.173
potassium fluoride	$KF \cdot 2H_2O$	18	48.0	72.0	78.0	1.500
potassium formate	KCHO ₂	18	76.8	120.6	36.4	1.571
potassium hydroxide	КОН	15	51.7	79.2	74.2	1.536
potassium iodate	KIO ₃	25	8.40	8.99	98.0	1.071
potassium iodide	KI	25	59.8	103.2	69.1	1.721
potassium meta-antimonate	KSbO ₃	18	2.73	2.81	99.7	1.025
potassium nitrate	KNO ₃	25	28.0	33.4	86.0	1.193
potassium nitrite	KNO ₂	20	74.3	121.5	42.3	1.649
potassium oxalate	$K_2C_2O_4 \cdot H_2O$	25	28.3	34	86	1.20
potassium perchlorate	KClO ₄	25	2.68	2.72	99.0	1.014
potassium periodate	KIO ₄	13	0.658	0.661	99.83	1.005
potassium permanganate	KMnO ₄	25	7.10	7.43	97.3	1.046
potassium sodium tartrate	$KNaC_4H_4O_6 \cdot 4H_2O$	25	39.71	51.9	78.8	1.308
potassium stannate	K ₂ SnO ₃	15.5	42.7	69.2	92.9	1.620
potassium sulfate	K_2SO_4	25	10.83	11.8	96.9	1.086
quinine salicylate	$C_{20}H_{24}N_2O_2 \cdot C_6H_4(OH)COOH.2H_2O$	25	0.065	0.065	99.84	0.999
resorcinol	$C_6H_4(OH)_2$	25	58.8	67.2	47.2	1.142
rubidium bromate	KDBrO3	16	2.15	2.18	99.4	1.016
rubidium bromide	KOBI	25	52.7	85.6	/0.9	1.625
rubidium chloride	KDUI	25	48.6	72.8	//.1	1.050
rubidium iodate		15.6	2.12	2.78	99.5	1.022
rubidium iodide	KDI DI NIO	24.3	03.0	11/./	0/.3	1.850
rubidium nitrate	KDINU3	25	40.1	55.0	82.4	1.3/5

					ml	
					water/	
			g/100 g	g/100 ml	100 ml	
		Temp,	satd	satd	satd	Specific
Substance	Formula	°C	soln	soln	soln	gravity
rubidium perchlorate	RbClO ₄	25	1.88	1.90	99.3	1.012
rubidium periodate	RbIO ₄	16	0.645	0.648	99.85	1.0052
rubidium sulfate	Rb_2SO_4	25	33.8	45.6	89.7	1.354
silicotungstic acid	$H_4SiW_{12}O_{40}$	18	90.6	258	26.8	2.843
silver acetate	$Ag(C_2H_3O_2)$	25	1.10	1.11	99.40	1.0047
silver bromate	AgBrO ₃	25	0.204	0.2037	99.65	0.9985
silver fluoride	$AgF \cdot 2H_2O$	15.8	64.5	168.4	92.7	2.61
silver nitrate	AgNO ₃	25	71.5	164	65.5	2.29
silver perchlorate	$AgClO_4 \cdot H_2O$	25	84.5	237.1	43.5	2.806
sodium acetate	NaC ₂ H ₃ O ₂	25	33.6	40.5	80.0	1.205
sodium ammonium sulfate	NaNH ₄ SO ₄	15	25.2	29.6	87.9	1.174
sodium arsenate	$Na_3AsO_4 \cdot 12H_2O$	17	21.1	23.5	88.0	1.119
sodium benzenesulfonate	NaC ₆ H ₅ SO ₃	25	16.4	17.6	90.1	1.076
sodium benzoate	NaC ₇ H ₅ O ₂	25	36.0	41.5	73.9	1.152
sodium bicarbonate	NaHCO ₃	15	8.28	8.80	97.6	1.061
sodium bisulfate	NaHSO ₄ · H ₂ O	25	59	87	60	1.47
sodium bromide	$NaBr \cdot 2H_2O$	25	48.6	75.0	79.4	1.542
sodium carbonate	$Na_2CO_3 \cdot 10H_2O$	25	22.6	28.1	96.5	1.242
sodium chlorate	NaClO ₃	25	51.7	74.3	69.6	1.440
sodium chloride	NaCl	25	26.5	31.7	88.1	1.198
sodium chromate	Na ₂ CrO ₄	18	40.1	57.4	85.7	1.430
sodium citrate	$Na_{2}C_{4}H_{5}O_{7} \cdot 5H_{2}O$	25	48.1	61.2	66.0	1.272
sodium dichromate	Na ₂ Cr ₂ O ₇	18	63.9	111.4	63.0	1.743
sodium ferrocvanide	Na ₄ Fe(CN) ₆	25	17.1	19.4	93.9	1.131
sodium fluoride	NaF	25	3.98	4.14	99.7	1.038
sodium formate	NaCHO ₂	18	44.7	58.9	73.0	1.316
sodium hydroxide	NaOH	25	50.8	77	74	1.51
sodium hypophosphite	NaH ₂ PO ₂	16	52.1	72.4	66.6	1.386
sodium iodate	$NaIO_3 \cdot H_2O$	25	8.57	9.21	98.5	1.075
sodium iodide	NaI	25	64.8	124.3	67.7	1.919
sodium molybdate	Na ₂ MoO ₄	18	39.4	56.6	87.0	1.435
sodium nitrate	NaNO ₂	25	47.9	66.7	72.5	1.391
sodium nitrite	NaNO ₂	20	45.8	62.3	73.8	1.359
sodium oxalate	$Na_2(CO_2)_2$	25	3.48	3.58	99.1	1.025
sodium paratungstate	$(Na_2O)_3(WO_3)_7 \cdot 16H_2O$	0	26.7	35.2	96.5	1.316
sodium perchlorate	NaClO ₄	25	67.8	114.1	54.1	1.683
sodium periodate	NaIO ₄ · 3H ₂ O	25	12.6	13.9	96.2	1.103
sodium phenolsulfonate	C ₆ H ₄ (OH)SO ₂ Na	25	16.1	17.4	90.5	1.079
sodium phosphate dibasic	Na ₂ HPO ₄	17	4.2	4.4	99.9	1.043
sodium phosphate tribasic	Na ₂ PO ₄	14	9.5	10.5	99.8	1.103
sodium pyrophosphate	$Na_2H_2P_2O_7 \cdot 6H_2O$	25	13.0	14.4	95.8	1.104
sodium salicylate	$NaC_7H_5O_3$	25	53.6	67.0	58.0	1.248
sodium selenate	Na ₂ SeO ₄	18	29.0	38.1	93.4	1.313
sodium silicofluoride	NaSiF ₄	20	0.773	0.737	99.76	1.0054
sodium sulfate	Na ₂ SO ₄	25	21.8	26.4	94.5	1.208
sodium sulfate	$Na_2SO_4 \cdot 10H_2O$	25	27.7	33.3	87.0	1.207
sodium sulfide	$Na_2S \cdot 9H_2O$	25	52.3	63	57	1.20
sodium sulfite, anhvdrous	Na ₂ SO ₃	25	23	28.5	95.5	1.24
sodium thiocyanate	NaCNS	25	62.9	87	51	1.38

					ml	
			~/100 ~	$\alpha/100 m^{-1}$	water/	
		Tomm	g/100 g	g/100 III	100 III	Specific
Substance	Formula	°C	salu	salu	salu	oravity
Substance	Formula	C	som	som	som	gravity
sodium thiosulfate	$Na_2S_2O_3 \cdot 5H_2O$	25	66.8	93	46	1.39
sodium tungstate	$Na_2WO_4 \cdot 10H_2O$	18	42.0	66.1	91.3	1.573
stannous chloride	SnCl ₂	15	72.9	133.1	49.5	1.827
strontium chlorate	$Sr(ClO_3)_2$	18	63.6	117.0	67.0	1.839
strontium chloride	$SrCl_2 \cdot 6H_2O$	15	33.4	45.5	90.7	1.36
strontium iodide	$SrI_2 \cdot 6H_2O$	20	64.0	137.8	77.5	2.15
strontium nitrate	$Sr(NO_3)_2$	25	44.2	65.3	82.5	1.477
strontium nitrite	$Sr(NO_2)_2$	19	39.3	56.8	87.8	1.445
strontium perchlorate	$Sr(ClO_4)_2$	25	75.6	158.5	50.8	2.084
strontium salicylate	$Sr(C_7H_5O_3)_2$	25	4.58	4.68	97.5	1.019
succinic acid	$(CH_2)_2(COOH)_2$	25	7.67	7.82	94.5	1.021
succinimide	$(CH_2CO)_2NH \cdot H_2O$	25	30.6	32.7	74.2	1.067
sucrose	$C_{12}H_{22}O_{11}$	25	67.89	90.9	43.0	1.340
tartaric acid	$C_2H_2(OH)_2(COOH)_2$	15	58.5	76.9	54.7	1.31
tetraethyl ammonium iodide	$N(C_2H_5)_4I$	25	32.9	36.2	74.0	1.102
tetramethyl ammonium	N(CH ₃) ₄ I	25	5.51	5.60	96.1	1.016
iodide						
thallium chloride	TICI	25	0.40	0.40	99.6	1.0005
thallium nitrate	TINO ₃	25	10.4	11.4	98.0	1.093
thallium nitrite	TINO ₂	25	32.1	43.7	92.5	1.360
thallium perchlorate	TlClO ₄	25	13.5	15.2	97.1	1.122
thallium sulfate	Tl_2SO_4	25	5.48	5.74	99.0	1.047
trichloroacetic acid	CCl ₃ COOH	25	92.3	149.6	12.41	1.615
uranyl chloride	UO ₂ Cl ₂	18	76.2	208.5	65.2	2.736
uranyl nitrate	$UO_2(NO_3)_2 \cdot 6H_2O$	25	68.9	120	54.5	1.74
urea	(NH ₂) ₂ CO	25	53.8	62	53.5	1.15
urea phosphate	$CO(NH_2)_2 \cdot H_3PO_4$	24.5	52.4	66.1	60.1	1.26
urethan	NH ₂ CO ₂ C ₂ H ₅	25	82.8	88.8	18.5	1.073
D-valine	(CH ₃) ₂ CHCH(NH ₂)COOH	25	8.14	8.26	93.3	1.015
DL-valine	(CH ₃) ₂ CHCH(NH ₂)COOH	25	6.61	6.68	94.5	1.012
zinc acetate	$Zn(C_2H_3O_2)_2$	25	25.7	30.0	86.5	1.165
zinc benzenesulfonate	$Zn(C_6H_5SO_3)_2$	25	29.5	34.9	83.4	1.182
zinc chlorate	$Zn(ClO_3)_2$	18	65.0	124.4	67.0	1.914
zinc chloride	ZnCl ₂	25	67.5	128	61	1.89
zinc iodide	Znl ₂	18	81.2	221.3	51.2	2.725
zinc phenolsulfonate	$(C_6H_5OSO_3)_2Zn \cdot 8H_2O$	25	39.8	47.3	71.5	1.185
zinc selenate	ZnSeO ₄	22	37.8	58.9	97.0	1.559
zinc silicofluoride	$ZnSiF_6 \cdot 6H_2O$	20	32.9	47.2	96.3	1.434
zinc sulfate	$ZnSO_4 \cdot 7H_2O$	25	36.7	54.6	94.7	1.492
zinc valerate	$Zn(C_5H_9O_2)_2$	25	1.27	1.27	98.8	1.001

1.19 PROTON TRANSFER REACTIONS

A proton transfer reaction is a reaction in which the main feature is the intermolecular or intramolecular transfer of a proton from one binding site to another.

In the detailed description of proton transfer reactions, especially of rapid proton transfers between electronegative atoms, it should always be specified whether the term is used to refer to the overall process, including the more-or-less *encounter-controlled* formation of a hydrogen bonded complex and the separation of the products or, alternatively, the proton transfer event (including solvent rearrangement) by itself.

For the general proton transfer reaction:

$$HB = H^+ + B$$

the acidic dissociation constant is formulated as follows:

$$K_a = \frac{[\mathrm{H}^+][\mathrm{B}]}{[\mathrm{HB}]}$$

The most common charge types for the acid HB and its conjugate base B are

 $CH_{3}COOH = H^{+} + CH_{3}COO-(acetic acid, acetate ion)$ $HSO_{4}^{-} = H^{+} + SO_{4}^{2-} (hydrogen sulfate ion, sulfate ion)$ $NH_{4}^{+} = H^{+} + NH_{3} (ammonium ion, ammonia)$

Acids which have more than one acidic hydrogen ionize in steps, as shown for phosphoric acid:

$H_3PO_4 = H^+ + H_2PO_4^-$	$pK_1 = 2.148$	$K_1 = 7.11 \times 10^{-3}$
$H_2PO_4^- = H^+ + HPO_4^{2-}$	$pK_2 = 7.198$	$K_2 = 6.34 \times 10^{-8}$
$HPO_4^{2-} = H^+ + PO_4^{3-}$	$pK_3 = 11.90$	$K_3 = 1.26 \times 10^{-12}$

If the basic dissociation constant K_b for the equilibrium such as

$$NH_3 + H_2O = NH_4 + OH$$

is required, pK_b may be calculated from the relationship

$$pK_b = pK_w - pK_a$$

 I_a general, for an organic acid, a useful estimate of its pK_a value can sometimes be obtained by making a comparison with recognizably similar compounds for which pK_a values are known: (1) alkyl chains, alicyclic rings, or saturated carbocyclic rings fused to aromatic or heterocyclic rings can be replaced by methyl or ethyl groups; (2) acid-strengthening inductive and mesomeric effects of a nitro group attached to an aromatic ring are very similar to those of a nitrogen atom located at the same position in a heteroaromatic ring (e.g., 3-hydroxypyridine and 3-nitrophenol).

1.19.1 Calculation of the Approximate pH Value of Solutions

Strong acid:	pH = -log [acid]
Strong base:	$pH = 14.00 + \log [base]$
Weak acid:	$pH = 1/2pK_a - 1/2 \log [acid]$
Weak base:	$pH = 14.00 - 1/2pK_b + 1/2 \log [base]$
Salt formed by a weak acid and a strong base:

$$pH = 7.00 + 1/2pK_a + 1/2 \log[salt]$$

Acid salts of a dibasic acid:

$$pH = 1/2pK_1 + 1/2pK_2 - 1/2 \log [salt] + 1/2 \log (K_1 + [salt])$$

Buffer solution consisting of a mixture of a weak acid and its salt:

$$pH = pK_a + \log\left(\frac{[salt] + [H_3O^+] - [OH^-]}{[acid] + [H_3O^+] - [OH^-]}\right)$$

1.19.2 Calculation of Concentrations of Species Present at a Given pH

$$\alpha_{0} = \frac{[\mathrm{H}^{+}]^{n}}{[\mathrm{H}^{+}]^{n} + K_{1}[\mathrm{H}^{+}]^{n-1} + K_{1}K_{2}[\mathrm{H}^{+}]^{n-2} + \dots + K_{1}K_{2}\cdots K_{n}} = \frac{[\mathrm{H}_{n}\mathrm{A}]}{C_{\mathrm{acid}}}$$

$$\alpha_{1} = \frac{K_{1}[\mathrm{H}^{+}]^{n-1}}{[\mathrm{H}^{+}]^{n} + K_{1}[\mathrm{H}^{+}]^{n-1} + K_{1}K_{2}[\mathrm{H}^{+}]^{n-2} + \dots + K_{1}K_{2}\cdots K_{n}} = \frac{[\mathrm{H}_{n-1}\mathrm{A}^{-}]}{C_{\mathrm{acid}}}$$

$$\alpha_{2} = \frac{K_{1}K_{2}[\mathrm{H}^{+}]^{n-2}}{[\mathrm{H}^{+}]^{n} + K_{1}[\mathrm{H}^{+}]^{n-1} + K_{1}K_{2}[\mathrm{H}^{+}]^{n-2} + \dots + K_{1}K_{2}\cdots K_{n}} = \frac{[\mathrm{H}_{n-2}\mathrm{A}^{2-}]}{C_{\mathrm{acid}}}$$

$$\vdots$$

$$\alpha_{n} = \frac{K_{1}K_{2}\cdots K_{n}}{[\mathrm{H}^{+}]^{n} + K_{1}[\mathrm{H}^{+}]^{n-1} + K_{1}K_{2}[\mathrm{H}^{+}]^{n-2} + \dots + K_{1}K_{2}\cdots K_{n}} = \frac{[\mathrm{A}^{n-}]}{C_{\mathrm{acid}}}$$

Substance	Formula or remarks	p <i>K</i> 1	p <i>K</i> ₂
Aluminic acid	H ₃ AlO ₃	11.2	
Aluminum ion (aquo)	Al ³⁺ (aquo)	4.98(4)	
Americium(III) ion	Am^{3+} (aquo) $\mu = 0.1$	5.92	
Ammonium ion	NH_4^+	9.246(2)	
Ammonium-d ₃	ND ₃ H ⁺	9.757	
Antimonic acid	$HSb(OH)_{6} = Sb(OH)_{6}^{-} + H^{+} \mu = 0.5$	2.55	
Antimony(III) ion	$SbO^{+} + H_2O = Sb(OH)_3 + H^{+} \mu = 1.0$	1.42	
Barium ion	pK_h of Ba(OH) ⁺ $\mu = 0.1$	0.64	
Berkelium(III) ion	pK for hydrolysis of Bk ³⁺ $\mu = 0.1$	5.66	
Beryllium(II) ion	Be^{2+} (aquo) = $BeOH^+ + H^+ \mu = 1.0$	6.5	
Bismuth(III) ion	$Bi^{3+} = BiOH^{2+} + H^+ \mu = 3.0$	1.58	
Boric acid, tetra-	$H_2B_4O_7$	4	9
Bromine	$Br_{2}^{+} + H_{2}O = HBrO + H^{+} + Br^{-}$	7.92	
Cadmium ion	Cd^{2+} (aquo) hydrolysis	9.2(1)	
Calcium ion	Ca ²⁺ (aquo) hydrolysis	12.67(3)	
Californium(III) ion	Cf ³⁺ (aquo) hydrolysis $\mu = 0.1$	5.62	
Carbon dioxide	CO ₂ (aquo)	6.352(1)	10.329
	CO_2 in D_2O	6.77	10.93
Cerium(III) ion	Ce^{3+} (aquo) hydrolysis	ca. 9.3	
Cerium(IV) ion	Hydrolysis to Ce(OH) ³⁺ and Ce(OH) ²⁺	-1.15	0.82
Chromium(III) ion	Cr^{3+} (aquo) hydrolysis	3.95	
Cobalt(II) ion	Co ²⁺ (aquo) hydrolysis	8.9	
Cobalt(III) ion	Co^{3+} (aquo) hydrolysis $m = 1$	1.75	
Copper(II) ion	Cu ²⁺ (aquo) hydrolysis	7.34	
Curium(III) ion	Cm^{3+} (aquo) hydrolysis $m = 0.1$	6.00(5)	
Deuterium oxide	D_2O (molal scale)	14.956(1)	
Dysprosium(III) ion	Dv^{3+} (aquo) hydrolysis	8.10	
Erbium(III) ion	Er^{3+} (aquo) hydrolysis $\mu = 3$	9.0	
Europium(III) ion	Eu ³⁺ (aquo) hydrolysis	8.03	
Fermium(III) ion	Fm^{3+} hydrolysis $\mu = 0.1$	3.8	
Gadolinium(III) ion	Gd ³⁺ hydrolysis	8.27	
Gallium(III) ion	Ga ³⁺ (successive values for hydrolysis)	2.92	3.77
		pK ₂ 4.75	
Gold(III) hydroxide	H₃AuO₃	<11.7	13.36
Hafnium(IV) ion	Hf ⁴⁺ hydrolysis $\mu = 1$	-0.12	0.23
Hexaminotriphosphazene	$N_{3}P_{3}(NH_{2})_{6}$	<3.2	7.68(3)
Holmium(III) ion	Ho ³⁺ hydrolysis $\mu = 0.3$	8.04	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 $\label{eq:table_$

Hydrazinium(2+) ion	+H ₃ N—NH ₃	0.27	7.94(3)
Hydrogen amidodisulfonate	$HNSO(OH)_2$	pK ₃ 8.50	
Hydrogen amidophosphate	H_2 NPO(OH) ₂ (26°C)	2.739	8.102
Hydrogen arsenate	H_3AsO_4	2.223	6.760
Hydrogen- d_3 arsenate	D_3AsO_4	2.596	
Hydrogen arsenite	HAsO ₂	9.28(10)	
Hydrogen azide	HN ₃	4.62	
Hydrogen-d azide	DN_3 (in D_2O)	5.115	
Hydrogen borate (3–)	H ₃ BO ₃	9.236	
Hydrogen bromate	$HBrO_3$ (in formamide)	1.02	
Hydrogen bromide	HBr	-8.72(15)	
Hydrogen chlorate	$HClO_3$ (theoretical prediction)	-2.7	
Hydrogen chloride	HCl	-6.2(1)	
Hydrogen-d chloride	DCl (in dimethylformamide)	3.58	
Hydrogen chlorite	HClO ₂	1.94	
Hydrogen chromate	H ₂ CrÔ ₄	0.74	6.488
Hydrogen cyanate	HOCN	3.46	
Hydrogen cyanide	HCN	9.21	
Hydrogen-d cyanide	DCN (in D ₂ O) $\mu = 0.11$	8.97	
Hydrogen diamidophosphate	$(NH_{2})PO(OH) (30^{\circ}C)$	1.279(+1)	4,889
Hydrogen diamidothiophosphate	$(NH_2)PO(SH) (20^{\circ}C)$	2.0(+1)	4.3
Hydrogen diimidotriphosphate	$(HO)_{PO}(NH)PO(OH)(NH)PO(OH)_{PO}(HO$	~1	~2
nyarogen anniaourphosphate		nK_{a} 3 03	nK. 661
		$nK_{c} 9.84$	pii 4 0.01
Hydrogen dinhosnhate	H.P.O.	0.91	2 10
nyarogon apriospitato	1141 207	$nK_{2} = 6.70$	nK. 935
Hydrogen disulfate	$H_{2}S_{2}O_{2}$ (theoretical prediction)	-12	-8
Hydrogen dithionate	H ₂ S ₂ O ₄ (alcoretical prediction)	-34	-02
Hydrogen dithionite	$H_2 S_2 O_6$	0.35	2 45
Hydrogen fluoride	$H_2 S_2 C_4$ $H_2 F_1$	3 20(4)	2.15
Hydrogen germanate	H.GeO.	9.01	12 30
Hydrogen bevafluorosilicate	H SiF	2.01	1 92
Hydrogen hydrosulfite	$H_2 S G$	0.35	2 50
Hydrogen hynobromite	HBrO	8 55	2.50
Hydrogen hypoblorite	HCIO	7 537	
Hydrogen hypotholite		10 5(5)	
Hydrogen hypotoulic		7.21	11 45(10)
Hydrogen hypolinune	$\Pi_2 \Pi_2 U_2$	7.21	11.43(10)
riyurogen iouale		0.804	

Substance	Formula or remarks	pK_1	p <i>K</i> ₂
Hydrogen-d iodate	DIO_3 (in D_2O)	1.15	
Hydrogen iodide	HI	- 8.56	
Hydrogen manganate(VI)	H_2MnO_4 (35°C) $\mu = 0.1$		10.15
Hydrogen nitrate	HNO ₃	-1.37(7)	
Hydrogen nitrite	HNO ₂	3.14(1)	
Hydrogen perchlorate	HClO4	-1.6	
Hydrogen periodate	HIO_4	1.64	
Hydrogen peroxide	H_2O_2	11.64(2)	
Hydrogen peroxophosphate	$H_3 PO_5 \mu = 0.2$	1.1	5.5
		pK ₃ 12.8	
Hydrogen peroxosulfate	H_2SO_5	1.0	9.86
Hydrogen perrhenate	HReO₄	-1.25	
Hydrogen pertechnetate	HTcO	0.3	
Hydrogen perthiocarbonate	H ₂ CS	3.54	7.24
Hydrogen perxenate	H ₄ XeO ₆	pK ₂ 10.5	
Hydrogen phosphate($3-$)	H ₂ PO ₄	2.148(20)	7,198(10)
, , , , ,	5 4	$pK_3 12.32(6)$	
Hydrogen-d ₂ phosphate	D_2PO_4 (in D_2O)	7.780	
Hydrogen phosphinate	H ₂ PHO ₂	1.23	
Hydrogen phosphonate	H ₂ PHO ₂	1.43	6.68(14)
Hydrogen selenate	H ₂ SeO ₄		1.66
Hydrogen selenide	$H_{2}Se \mu = 0.03$	3.89	11.0
Hydrogen selenite	H ₂ SeO ₃	2.62	8.30(15)
Hydrogen silicate(4–)	H ₄ SiO ₄	9.60(10)	11.8(1)
Hydrogen sulfamate	H ₂ NSO ₂ H	0.99	
Hydrogen sulfate	H ₂ SO ₄		1.99(1)
Hydrogen sulfide	H ₂ S	6.97	12.90
Hydrogen sulfite	$SO_{2} + H_{2}O = HSO_{2} = H^{+}$	1.89	7.205
Hydrogen tellurate	H ₄ TeO ₄	7.65(5)	11.00(5)
Hydrogen telluride	$H_{a}Te$ (18°C)	2.64	11-12
Hydrogen tellurite	$H_{1}TeO_{2}$ (20°C)	6.27	8.43
Hydrogen tetrafluoroborate	HBF	0.5	
Hydrogen tetracyanonickelate	$H_{1}Ni(CN)$	4.69	6.59
Hydrogen tetraperoxochromate	H_2CrO_0 (30°C) $\mu = 3$	7.16	
Hydrogen tetrapolyphosphate	$H_4 P_4 O_{12} \mu = 0.034$	1.99	2.64
	4-4-137	pK ₃ 6.62	pK ₄ 8.2

TABLE 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C (Continued)

Hydrogen tetrathiophosphate	H_3PS_4	1.5	3.5
Hydrogen thiocyanate	HSCN $\mu = 3$	-1.8	
Hydrogen thiophosphate	H ₃ PO ₃ S	1.788	5.427
		pK ₃ 10.08	
Hydrogen thiosulfate	$H_2S_2O_3$	0.6	1.74
Hydrogen tripolyphosphate	$H_3P_3O_9$	~1	1.7
		pK ₃ 2.00(10)	
		pK ₄ 5.83(7)	
		pK ₅ 8.51(6)	
Hydrogen triselenocarbonate	H_2CSe_3	1.16	7.70
Hydrogen trithiocarbonate	H_2CS_3 (20°C)	2.68	8.18
Hydrogen tungstate	H_2WO_4	2.20	3.70
Hydrogen vanadate(-1)	HVO_3	3.80	7 70(4)
Hydrogen vanadate(3-)	$H_3 V U_4$	3./8	/./8(4)
Hydroxylamine-/v,/v-disulfonic acid	$HON(SO_3H)_2 \mu = 1.0$	pK ₃ 11.85	
Hydroxylamine O-sulfonate	$\mu = 1$ (IIO) PO(NII) PO(OII) $\mu = 0.2$	1.48	2.05
mindouipnosphorie acid	$(\Pi O)_2 PO(\Pi n) PO(O n)_2 \mu = 0.2$	~ 2	2.6J
Indium(III) ion	In ³⁺ hydrolysic	pK ₃ 7.00	$p_{K_4} 9.72$
Indium(III) ion	III^{3+} hydrolysis $\mu = 1$	<i>J.J</i> 4 <i>A</i> 37	5.20
Iron(II) ion	E^{2+} hydrolysis $\mu = 1$	68	5.20
Iron(III) ion	E^{3+} hydrolysis $\mu = 1$	2.19	
I anthanum(III) ion	La^{3+} hydrolysis	9.06	
Lead(II) ion	Pb^{2+} hydrolysis $\mu = 0.3$	7.8	
Lead(IV) ion	Pb ⁴⁺ hydrolysis	1.8	3.2
Lithium(I) ion	Li ⁺	13.8	
Lutetium(III) ion	Lu ³⁺ hydrolysis	7.94	
Magnesium(II) ion	Mg ²⁺ hydrolysis	11.41	
Manganese(II) ion	Mn ²⁺ hydrolysis	10.59	
Manganese(III) ion	Mn ³⁺ hydrolysis	0.4	
Mercury(I) ion	Hg_2^{2+} hydrolysis $\mu = 0.5$	5.0	
Mercury(II) ion	Hg ²⁺ hydrolysis $\mu = 0.5$	3.70	2.65
Neodymium(III) ion	Nd ³⁺ hydrolysis $\mu = 3$	9.0(5)	
Neptunium(III) ion	Np ³⁺ hydrolysis $\mu = 0.3$	7.43	
Neptunium(IV) ion	Np ⁴⁺ hydrolysis $\mu = 2$	2.30	
Neptunium(V) ion	NpO ₂ ⁺ hydrolysis	8.90(2)	
Nickel(II) ion	Ni ²⁺ hydrolysis	9.86	
Osmium tetroxide	OsO_4 hydrolysis $\mu = 1$		10.0
Palladium(II) ion	Pd^{2+} (stepwise pK _b values)	13.0	12.8
Pentacyanoaquoterrate(11) 10n	$Fe(CN)_{5}(H_{2}O)^{5-}\mu = 0.1$	2.03	

Substance	Formula or remarks	pK ₁	p <i>K</i> ₂
Plutonium(III) ion	Pu ³⁺ hydrolysis $\mu = 0.07$	7.2(2)	
Plutonium(IV) ion	Pu^{4+} hydrolysis $\mu = 2$	1.26	
Plutonium(V) ion	PuO_2^+ hydrolysis $\mu = 0.003$	9.7	
Plutonium(VI) ion	PuO_2^{2+} hydrolysis	3.33	4.05
Polonium(IV) ion	Po ⁴⁺ hydrolysis	0.48	2.74
		pK ₃ 5.58	
Praseodymium(III) ion	Pr^{3+} hydrolysis $\mu = 0.3$	8.55	
Protoactinium(IV) ion	Pa ⁴⁺ hydrolysis $\mu = 3$	0.14	0.38
Protoactinium(V) ion	Pa ⁵⁺ hydrolysis $\mu = 3$	1.05	
Scandium(III) ion	Sc ³⁺ hydrolysis $\mu = 0.05$	4.58(3)	
Silver(I) ion	Ag ⁺ hydrolysis	>11.1	
Sodium ion	Na ⁺ (aquo)	14.67(10)	
Strontium ion	Sr^{2+} (aquo)	13.18	
Terbium(III) ion	Tb ³⁺ hydrolysis $\mu = 0.3$	8.16	
Thallium(I) ion	Tl ⁺	13.36(15)	
Thallium(III) ion	Tl ³⁺ hydrolysis $\mu = 3$	1.14	
Thorium(IV) ion	Th ⁴⁺ hydrolysis $\mu = 0.5$	3.89	4.20
Tin(II) ion	Sn^{2+} hydrolysis $\mu = 3$	3.81(10)	
Titanium(III)	Ti ³⁺ hydrolysis $\mu = 3$	2.55	
Titanium(IV)	$TiO^{2+} + H_2O = TiO(OH)^+ + H^+$	1.3	
Tritium oxide	$pK_{\mu\nu}$ for $T_2\tilde{O} = T^+ + OH^-$	15.21	
Uranium(IV) ion	U ⁴⁺ hydrolysis	0.68	
Uranyl(VI) ion	$UO_2^{2+} \mu = 0.035$	5.82	
Vanadium(II) ion	V ²⁺ hydrolysis	6.85	
Vanadium(III) ion	V ³⁺ hydrolysis	2.92	3.5
Vanadyl(IV) ion	VO ²⁺ hydrolysis	6.86(10)	
Vanadyl(V) ion	$VO_2^+(20^{\circ}C) \ \mu = 0.1$	1.83	
Xenon trioxide	$XeO_3 + H_2O = HXeO_4 + H^+$	10.5	
Ytterbium(III) ion	Yb ³⁺ hydrolysis	7.99(6)	
Yttrium(III) ion	Y^{3+} hydrolysis $\mu = 0.3$	8.34	
Zinc ion	Zn ²⁺ hydrolysis	8.96	
Zirconium(IV) ion	Zr^{4+} hydrolysis $\mu = 1$	-0.32	0.06
		pK ₃ 0.35	

TABLE 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C (Continued)

Source: J. J. Christensen, L. D. Hansen, and R. M. Izatt, Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley-Interscience, New York, 1976; D. D. Perrin, Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, 2d ed., Pergamon Press, 1982.

1.20 FORMATION CONSTANTS

The formation constant of a metal complex is the equilibrium constant for the formation of a complex ion from its components in solution.

Each value listed is the logarithm of the overall formation constant for the cumulative binding of a ligand L to the central metal cation M, viz.:

	Comulative formation constant	Stepwise stability constants		
M + L = ML	K_1	k_1		
$M + 2L = ML_2$	K_2	$k_1 k_2$		
$M + nL = ML_n$	K_n	$k_1k_2\cdots k_n$		

As an example, the entries in Table 1.75 for the zinc ammine complexes represent these equilibria:

$Zn^{2+} + NH_3 = Zn(NH_3)^{2+}$	$K_1 = \frac{[\text{Zn}(\text{NH}_3)^{2^+}]}{[\text{Zn}^{2^+}][\text{NH}_3]}$
$Zn^{2+} + 2NH_3 = Zn(NH_3)_2^{2+}$	$K_2 = \frac{[\text{Zn}(\text{NH}_3)_2^{2+}]}{[\text{Zn}^{2+}][\text{NH}_3]^2}$
$Zn^{2+} + 3NH_3 = Zn(NH_3)_3^{2+}$	$K_3 = \frac{[\text{Zn}(\text{NH}_3)_3^{2+}]}{[\text{Zn}^{2+}][\text{NH}_3]^3}$
$Zn^{2+} + 4NH_3 = Zn(NH_3)_4^{2+}$	$K_4 = \frac{[\text{Zn}(\text{NH}_3)_4^{2+}]}{[\text{Zn}^{2+}][\text{NH}_3]^4}$

If the stepwise stability or formation constants of the reactions are desired, for the first step $\log K_1 = \log k_1 = 2.37$. For the second and succeeding steps the equilibria and corresponding constants are as follows:

$Zn(NH_3)^{2+} + NH_3 = Zn(NH_3)_2^{2+}$	$\log k_2 = \log k_2 - \log k_1 = 2.44$
$Zn(NH_3)_2^{2+} + NH_3 = Zn(NH_3)_3^{2+}$	$\log k_3 = \log k_2 - \log k_1 = 3.50$
$Zn(NH_3)_3^{2+} + NH_3 = Zn(NH_3)_4^{2+}$	$\log k_4 = \log k_4 - \log k_3 = 2.15$

The reverse of the association or formation reactions would represent the dissociation or instability constant for the systems, i.e., $-\log K_f = \log K_{instab}$.

The data in the tables generally refer to temperatures of about 20 to 25°C. Most of the values in Table 1.75 refer to zero ionic strength, but those in Table 1.76 often refer to a finite ionic strength.

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_6$
Ammonia						
Cadmium	2.65	4.75	6.19	7.12	6.80	5.14
Cobalt(II)	2.11	3 74	4 79	5 55	5 73	5 11
Cobalt(III)	67	14.0	20.1	25.7	30.8	35.2
Copper(I)	5.93	10.86	20.1	20.7	50.0	00.2
Copper(II)	4 31	7.98	11.02	13 32	12.86	
Iron(II)	1.51	22	11.02	15.52	12.00	
Manganese(II)	0.8	13				
Manganese(II)	8.8	17.5	18.5	19.28		
Nickel	2.80	5.04	677	7.96	8 71	874
Platinum(II)	2.00	5.04	0.77	1.50	0.71	35.3
Silver(I)	3.24	7.05				55.5
Zinc	2 37	/.05	731	9.46		
Bromido	2.57	4.01	7.51	2.40		
Astatine	2.51 [A	' 'Brl				
Bismuth(III)	2.51 [A	5 55	5 80	782		0.70
Bromine	1.24 FB	r-1	5.69	7.02		9.70
Cadmium	1.24 [D	224	2 22	2 70		
Carium(III)	0.42	2.54	5.52	5.70		
Connor(I)	0.42	5 80				
Copper(1)	0.20	5.89				
Copper(II)	0.50	10.46				
	1 20	12.40	2.49			
Indium	1.30	1.88	2.48			
lodine	2.64 [1]	srj				
Iron(III)	-0.30	-0.50				
Lead	1.2	1.9	10.74	1.1		
Mercury(II)	9.05	17.32	19.74	21.00		
Palladium(II)				13.1		
Platinum(II)				20.5	10.1	
Rhodium(III)		14.3	16.3	17.6	18.4	17.2
Scandium	2.08	3.08				
Silver(1)	4.38	7.33	8.00	8.73		
Thallium(I)	0.93					
Thallium(III)	9.7	16.6	21.2	23.9	29.2	31.6
Tin(II)	1.11	1.81	1.46			
Uranium(IV)	0.18					
Yttrium	1.32					
Chloride						
Americium(III)	1.17					
Antimony(III)	2.26	3.49	4.18	4.72		
Bismuth(III)	2.44	4.7	5.0	5.6		
Cadmium	1.95	2.50	2.60	2.80		
Cerium(III)	0.48					
Copper(I)		5.5	5.7			
Copper(II)	0.1	-0.6				
Curium(III)	1.17					
Gold(III)		9.8				
Indium	1.42	2.23	3.23			
Iron(II)	0.36					
Iron(III)	1.48	2.13	1.99	0.01		
Lead	1.62	2.44	1.70	1.60		
Manganese(II)	0.96					
Mercury(II)	6.74	13.22	14.07	15.07		

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_6$
Palladium(II)	6.1	10.7	13.1	15.7		
Platinum(II)		11.5	14.5	16.0		
Plutonium(III)	1.17					
Silver(I)	3.04	5.04		5.30		
Thallium(I)	0.52					
Thallium(III)	8.14	13.60	15.78	18.00		
Thorium	1.38	0.38				
Tin(II)	1.51	2.24	2.03	1.48		
Tin(IV)						4
Uranium(IV)	0.8					
Uranium(VI)	0.22					
Zinc	0.43	0.61	0.53	0.20		
Zirconium	0.9	1.3	1.5	1.2		
Cyanide						
Cadmium	5.48	10.60	15.23	18.78		
Copper(I)		24.0	28.59	30.30		
Gold(I)		38.3				
Iron(II)						35
Iron(III)						42
Mercury(II)				41.4		
Nickel				31.3		
Silver(1)		21.1	21.7	20.6		
Zinc				16.7		
Fluoride	6.10	11.15	15.00	10.00	10.07	10.04
Aluminum	6.10	11.15	15.00	17.75	19.37	19.84
Beryllium Carium (III)	5.1	8.8	12.0			
Chromium (III)	3.20	7.01	10.20			
Cadalinium	4.41	/.81	10.29			
Gallium	5.40					
Indium	3.08	6.25	8 60	0.70		
Iron(III)	5.70	0.25	12.06	9.70		
L anthanum	2 77	9.50	12.00			
Magnesium	1 30					
Manganese(II)	5 48					
Plutonium(III)	677					
Scandium						17.3
Thallium(I)	0.1		1			
Thallium(III) [TlO ⁺]	6.44					
Thorium	7.65	13.46	17.97			
Titanium(IV) [TiO ²⁺]	5.4	9.8	13.7	18.0		
Uranium(VI)	4.59	7.93	10.47	11.84		
Yttrium	4.81	8.54	12.14			
Zirconium	8.80	16.12	21.94			
Hydroxide			1			
Aluminum	9.27			33.03		
Antimony(III)		24.3	36.7	38.3		
Arsenic [as AsO ⁺]	14.33	18.73	20.60	21.20		
Beryllium	9.7	14.0	15.2			
Bismuth(III)	12.7	15.8		35.2		
Cadmium	4.17	8.33	9.02	8.62		
Cerium(III)	14.6					
Cerium(IV)	13.28	26.46				

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_6$
Chromium(III)	10.1	17.8		29.9	-	
Copper(II)	7.0	13.68	17.00	18.5		
Dysprosium	5.2					
Erbium(III)	5.4					
Gadolinium	4.6					
Gallium	11.0	21.7		34.3	38.0	40.3
Indium	9.9	19.8		28.7		
Iodine	9.49	11.24				
Iron(II)	5.56	9.77	9.67	8.58		
Iron(III)	11.87	21.17	29.67			
Lanthanum	3.3					
Lead(II)	7.82	10.85	14.58			61.0
Lutetium	6.6					
Magnesium	2.58					
Manganese(II)	3.90		8.3			
Neodymium	5.5					
Nickel	4.97	8.55	11.33			
Praseodymium	4.30					
Plutonium(III)	7.0					
Plutonium(IV)	12.39					
Plutonium [as PuO ₂ ²⁺]	8.3	16.6	20.9			
Samarium(III)	4.8					
Scandium	8.9					
Tellurium(IV)			41.6	53.0	64.8	72.0
Thallium(III)	12.86	25.37				
Titanium(III)	12.71					
Uranium(IV)	13.3				41.2	
Uranium(VI) [as UO_2^{2+}]	9.5	22.80		32.4		
Vanadium(III)	11.1	21.6		1		
Vanadium(IV) [as VO ²⁺]	8.6		[25.8 for V	₂ O ₄ (OH) ⁻]		
Vanadium(V) [as VO ³⁺]		25.2		46.2	58.5	
Yttrium	5.0			1- 11		
Zinc	4.40	11.30	14.14	17.66		
Zirconium	14.3	28.3	41.9	55.3		
lodide	2.02			14.05	16.00	10.00
Bismuth	3.63	2.42		14.95	16.80	18.80
Cadmium	2.10	3.43	4.49	5.41		
Copper(1)	1.00	8.85				
Indium	1.00	2.26				
lodine	2.89	5.79				
Iron(III)	1.88	2.15	2.02	4.47		
Lead	2.00	3.15	3.92	4.47		
Mercury(II)	12.87	23.82	27.60	29.83		
Silver Thallisson (I)	0.58	11.74	13.08			
Thallium(I)	0.72	0.90	1.08	21.92		
Inamum(III)	11.41	20.88	27.00	51.82		
Dorium	1.05					
Calcium	1.05					
Magnesium	0.89					
Strontium	1.00					
Thorium	2.00	4 70	7 15			
inorrani	1 2.00	I T.I.J	1 1.15		1	1

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_6$
Nitrate						
Barium	0.92					
Beryllium	1.62					
Bismuth(III)	1.26					
Cadmium	0.40					
Calcium	0.28					
Cerium(III)	1.04	2.55				
Curium(III)	0.57	2.00				
Hafnium	0.92	2.43	4 32	6 40	8 4 8	10.29
Iron(III)	10	2.1.5		0.10	0.10	10.23
Lanthanum	0.26	0.69	1 27			
Lead	1 18	0.05	1.27			
Mercury(II)	0.35					
Neodymium	0.55	1 18				
Neptunjum(IV)	0.32	1.10				
Plutonium(III)	0.50	1 03	3.00			
Plutonium(IV)	0.54	1.75	5.09			
Strontium	0.54					
Thallium(I)	0.32					
Thallium(II)	0.55					
Thorium	0.92	1 80	2.80	3.63		
$\operatorname{Uranium}(\mathbf{N})$	0.78	0.37	2.09	5.05		
Uranium(VI)	0.20	0.37				
Vttorhium	0.34	1.40	2.42			
7 iroonium [as $7rO^{2+1}$]	0.45	1.30	2.42	254		
Burenhoghate		1.91		5.54		
Porium	16					
Calaium	4.0					
Cadmium	4.0					
Connor(II)	5.0	0.0				
Lond	0.7	9.0				
Magnasium	57	5.5				
Niahal	5.1	74				
Streatting	3.8	7.4				
Suomum Vttrium	4.7	0.7				
Turiunin Zinoonium		9.1				
Ziicoiiiuiii		0.5				
Corium(III)	2.40					
Erbium	2.59					
Godolinium	3.50					
Holmium	2.59					
Indium	5.50	1 00	2.26			
	1.70	1.00	2.50			
Lonthonum	2.05	2.98				
Needumium	2.64					
Niekel	2.04					
Diutonium(TV)	2.4					
Preseodumium	3.00					
Samarium	3.02					
Thorium	3.00	5 50				
	3.32	5.30				
Uranium(1V)	3.24	3.42	2 20			
Uranium(VI)	1.70	2.45	3.30			

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_{6i}$
Yttrium	3.47					
Ytterbium	3.58					
Zirconium	3.79	6.64	7.77			
Sulfite						
Copper(I)	7.5	8.5	9.2			
Mercury(II)		22.66				
Silver	5.30	7.35				
Thiocyanate						
Bismuth	1.15	2.26	3.41	4.23		
Cadmium	1.39	1.98	2.58	3.6		
Chromium(III)	1.87	2.98				
Cobalt(II)	-0.04	-0.70	0	3.00		
Copper(I)	12.11	5.18				
Gold(I)		23		42		
Indium	2.58	3.00	4.63			
Iron(III)	2.95	3.36				
Mercury(II)		17.47		21.23		
Nickel	1.18	1.64	1.81			
Ruthenium(III)	1.78					
Silver		7.57	9.08	10.08		
Thallium(I)	0.80					
Uranium(IV)	1.49	2.11				
Uranium(VI)	0.76	0.74	1.18			
Vanadium(III)	2.0					
Vanadium(IV)	0.92					
Zinc	1.62					
Thiosulfate						
Cadmium	3.92	6.44				
Copper(I)	10.27	12.22	13.84			
Iron(III)	2.10					
Lead		5.13	6.35			
Mercury(II)		29.44	31.90	33.24		
Silver	8.82	13.46				

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued)

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands

	1			
	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
Acetate				
Ag(I)	0.73	0.64		
Ba(II)	0.41			
Ca(II)	0.6			
Cd(II)	1.5	2.3	2.4	
Ce(III)	1.68	2.69	3.13	3.18
Co(II)	1.5	1.9		
Cr(III)	1.80	4.72		
Cu(II) a	2.16	3.20		
Fe(II) c	3.2	6.1	8.3	
Fe(III) a.d	3.2			
In(III)	3.50	5.95	7.90	9.08
Hg(II)	5.50	8 43	1.50	2.00
La(III) ar	1.56	2.48	2.98	2.95
Mg(II)	0.8	2.10	2.90	2.55
Mn(II)	9.84	2.06		
Ni(II)	1.12	1.81		
Ph(II)	2.52	4.0	64	85
Rare earths ae	16-19	28-30	33_37	0.5
Sr(II)	0.44	2.0 5.0	5.5 5.7	
	0.44			15.4
IIQ (II) a e	2 38	4 36	6 34	15.4
V(III) a a	1.53	2.65	3 38	
$\mathbf{T}(\mathbf{H}) = u, e$ $\mathbf{Z}_{\mathbf{n}}(\mathbf{H})$	1.55	2.05	5.50	
A cotylocotopo	1.5			
	86	15.5		
$\mathbf{R}_{\mathbf{n}}(\mathbf{H}) = \mathbf{D}$	0.0	14.5		
	7.0	6 6 6		
Co(III)	5.04	0.00	12.65	
Cr(II)	5.50	9.27	12.05	
Cr(II)	5.9	0.54		
	5.40	9.54		
Cu(II)	6.27	10.34	14.04	
Dy(III) b Er(III) h	5.00	10.70	14.04	
EI(III) D $E_{11}(III) h$	5.99	10.07	14.09	
Eu(III) D $E_{-}(II)$	5.87	10.55	15.04	
Fe(II)	3.07	0.07	267	
	11.4	22.1	20.7	
Ga(III)	9.5	17.9	23.0	
Gd(III) D	5.90	10.38	15.79	00.1
	8.7	15.4	21.8	28.1
Ho(III)	6.05	10.73	14.13	
	8.0	15.1	11.00	
La(III) b	5.1	8.90	11.90	
Lu(III) b	6.23	11.00	13.63	
Mg(II)	3.05	0.27		
Min(II)	4.24	1.35	0.00	
Mn(111)			3.86	
Nd(III)	5.6	9.9	13.1	
Ni(II) a	6.06	10.77	13.09	

Temperature is 25°C and ionic strengths are approaching zero unless indicated otherwise: (a) At 20°C, (b) at 30°C, (c) 0.1 *M* uni-univalent salt, (d) 1.0 *M* uni-univalent salt, (e) 2.0 *M* uni-univalent salt present.

		1		
	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
Pd(II) b	16.2	27.1		
Pr(III) b	5.4	9.5	12.5	
Pu(IV) c	10.5	19.7	28.1	34.1
Sc(III) b	8.0	15.2		
Sm(III) b	5.9	10.4		
Tb(III) b	6.02	10.63	14.04	
Th(IV)	8.8	16.2	22.5	26.7
Tm(IV) b	6.09	10.85	14.33	
U(IV) a,c	8.6	17.0	23.4	29.5
$UO_{2}(II)$ b	7.74	14.19		
VO(II)	8.68	15.79		
V(II)	5.4	10.2	14.7	
Y(III) b	6.4	11.1	13.9	
Yb(III) b	6.18	11.04	13.64	
$Zn(II)^{\prime} b$	4.98	8.81		
Zr(IV)	8.4	16.0	23.2	30.1
Alizarin red				
Cr(VI)	4.7			
Cu(II)	4.1			
Hf(IV)		10.4		
Mo(VI)		9.6		
Pb(II)	6.0			
Th(IV)		8.24		
UO ₂ (II)	4.22			
V(V)		8.6		
W(VI)		7.8		
Arsenazo				
Hf(IV)	10.07			
Zr(IV)	12.95			
Aurintricarboxylic acid				
Be(II)	4.54			
Cu(II)	4.1	8.81		
Fe(III)	4.68			
Th(IV)	5.04			
UO ₂ (II)	4.77			
Benzoylacetone (75% dioxane)				
Ba(II)		9.4		
Be(II)	12.59	24.01		
Cd(II)	7.79	14.36		
Ce(III)	10.09	19.42	27.04	
Co(II)	9.42	17.83		
Cu(II)	12.05	23.01		
La(III)	6.33	11.66	16.78	
Mg(II)	7.69	14.09		
Mn(II)	8.66	15.78		
Ni(II)	9.58	18.00		
Pb(II)	8.84	16.35		
Pr(III)	7.02	13.62	18.74	
UO ₂ (II)	12.15	23.27		
Y(III)	8.24	14.98	20.57	
Zn(II)	9.62	17.90		1

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$]	$\log K_2$ log		$\log K_3$ $\log R$	
	6.05 8.05					
Complex of	HL ^{2–} Anion	Com	plex of L ³⁻	Anion	Comp	lex of H ₂ L ⁻
$\log K_1$	$\log K_2$	log	K ₁	log K ₂		log K ₃
7.1 7.0 2.98 4.52 4.68		20.0	0			
4.8 4.35	6.18	11. 12. 14.	5 2	9.65		3.2
3.08 12.5	6.46	15. 25.	5	9.80		())
3.29 3.67	6.32			9.45		6.22
5.11 6.50	0.02	14.	3	2110		3.4
2.36 2.8 1.04	10.8					
4.71	10.8	11.	4	8		3.6
$\log K_1$	log	<i>K</i> ₂	log K ₃		I	
ane- <i>N</i> , <i>N</i> , <i>N'</i> , <i>N'</i> -1	tetraacetic acid					
17.63 8.64 12.3 19.88 16.76 19.57 21.95 19.69 20.20 18.77 27.48						
	Complex of log K ₁ 7.1 7.0 2.98 4.52 4.68 3.98 4.8 4.35 3.08 12.5 3.29 3.67 5.11 6.50 2.36 2.8 1.04 8.5 4.71 log K ₁ ane-N, N, N', N'-1 17.63 8.64 12.3 19.88 16.76 19.57 21.95 19.69 20.20 18.77 27.48 22 91	log K_1 6.05 8.05 Complex of HL ²⁻ Anion log K_1 log K_2 7.1 7.0 2.98 4.52 4.68 3.98 6.18 4.8 4.35 6.46 3.08 12.5 6.97 3.29 3.67 6.32 5.11 6.50 2.36 2.8 1.04 8.5 1.04 8.5 10.8 4.71 log K_1 log ane-N, N, N', N' - tetraacetic acid 17.63 8.64 12.3 19.88 16.76 19.57 21.95 19.69 20.20 18.77 27.48 22.91	log K_1 log K_1 6.05 8.05 Complex of HL ²⁻ Anion Com log K_1 log K_2 log J 7.1 10g K_2 log J 7.1 20.0 2.98 4.52 4.68 3.98 4.52 4.68 11. 4.68 5.18 12.5 6.46 3.08 15. 12.5 6.97 3.29 3.67 6.32 5.11 6.50 2.36 2.8 1.04 8.5 10.8 4.71 11. 11. log K_1 log K_2 ane-N, N, N', N' - tetraacetic acid 17.63 8.64 12.3 12.3 19.88 16.76 19.57 21.95 19.69 20.20 18.77 21.95 19.69 20.20 18.77 27.48 22.91 1	$ \begin{array}{ $	$\log K_1$ $\log K_2$ $\log K_2$ $\log K_2$ $\log K_1$ $\log K_2$ $\log K_2$ $\log K_2$ $1 \log K_1$ $\log K_2$ 20.0 1.3 9.55 4.52 4.68 11.3 9.65 4.52 4.68 11.3 9.65 4.68 6.18 12.5 9.80 3.08 6.18 12.5 9.80 12.5 6.97 9.45 9.70 3.08 6.32 14.3 9.70 5.11 6.32 14.3 9.70 5.11 6.32 14.3 8 1.04 8.5 10.8 8 1.04 8.5 10.8 8 $1.06 K_1$ $\log K_2$ $\log K_3$ 1.5 $10 g K_1$ $\log K_2$ $\log K_3$ 1.5 1.57 2.36 8.64 12.36 8.64 <t< td=""><td>$\begin{array}{ c c c c } & \log K_1 & \log K_2 & \log K_3 \\ \hline \\$</td></t<>	$ \begin{array}{ c c c c } & \log K_1 & \log K_2 & \log K_3 \\ \hline \\ $

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
Gd c	18.80			
Hg(II) c	24.4			
Ho c	19.89			
La c	16.35			
Lu c	21.51			
Mg c	10.41			
Mn(II) c	17.43			
Ndc	17.69			
Ni c	19.4			
Pb c	20.33			
Pr c	17.23			
Sm(III) c	18.63			
Sr c	8.92			
Th c	19.30			
Tm c	20.46			
VO(II) c	19 40			
Y	19.10			
Yhic	20.80			
7n c	18.6			
Dibenzovlmethane (7	5% dioxane)			
Ba	6 10	11 50		
Be	13.62	26.03		
Ca	7 17	13 55		
Cd	8.67	16.63		
	10.07	21.53	30.38	
Co(III)	10.35	21.55	50.56	
	12.08	20.03		
	2 42	24.90		
E ₂ (II)	5.42	21.50		
re(II)	2.67	21.50		
	5.07			
	5.95	16.01		
Mg Ma(II)	8.54	10.21		
MIN(II)	9.32	17.79		
Na	4.18	20.72		
N1	10.83	20.72		
Pb	9.75	18.79		
Rb	3.52	10.10		
Sr	6.40	12.10		
Zn	10.23	19.65		
	$\log K_1$	$\log K_2$	log K ₃	$\log K_f$ [MHL]
4.5-Dihvdroxybenzen	e-1.3-disulfonic acid	(Tiron)		
Al	19.02	31.10	33.5	
Ва	4.10			14.6
Ca	5.80			14.8
Cd d	7.69	13.29		
Ce(III)		3.75		
$C_0(II) d$	8,19	14.41		15.7
$C_{\rm H}({\rm II}) d$	12.76	23 73		18.1
	12.10	20.10		10.1

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	lc	og K ₂	lo	og <i>K</i> ₃	log K _f [MHL]
Fe(III) <i>a</i> , <i>c</i> La Mg <i>a</i> , <i>c</i>	20.7 12.9 6.86	3	5.9		16.9	22.6 18.6 [La(OH)L] 14.6
Mn(II) c	8.6					1.5.4
N1 a,c	8.56		4.90			15.6
Pb a	11.95		8.28			
SIC	4.33					
$UO_2(II)$ c	15.90					
Zn d	9.00	1	6.91			15.9
	$\log K_1$		log .	<i>K</i> ₂	10	og $K_f [M_2 L_3]$
2,3-Dimercaptopropa	n-1-of (BAL)					
Fe(II)	15.8					
Fe(III)	30.6 [Fe(OH)	L]				28
Mn(II)	5.23	-	10.4	43		
Ni			22.7	78		
Zn	13.48		23.3	3		40.6
	$\log K_1$		$\log K_2$	le	og K ₃	$\log K_4$
Dimethylglyoxime (5	0% dioxane)					
Cd	5.7		10.7			
Co(II)	9.80		18.94			
Cu(II)	12.00		33.44			
Fe(II)			7.25			
La	6.6		12.5			
Ni	11.16					
Pb	7.3		10.0			
Zn	7.7		13.9			
2,2°-Dipyridyi	2.65		7 16			
Ag	3.03		7.15		0.47	
Co(II)	4.20		11 57		7 50	
Cr(II)	4.5		10.5		4.0	
Cu(I)			14.2		14.0	
Cu(II)	80		13.60		7 08	
Fe(II)	4.36		8.0		7.45	
Hg(II)	9.64		16.74		9.54	
Mg	0.5					
Mn(II) d	4.06		7.84	1	1.47	
Ni	6.80		13.26		18.46	
Pb	3.0					
Ti(III)					25.28	
V(II)	4.9		9.6		13.1	
Zn	5.30		9.83		13.63	
Eriochrome Black T						
Ca	5.4					
Mg	7.0		20.6			
Zn	13.5		∠0.0			

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Ethanolamine				
Ag	3.29	6.92		
Cu(II)		6.68		16.48
Hg(II)	8.51	17.32		
Ethylenediamine				
Ag	4.70	7.70		
Cď a	5.47	10.09	12.09	
Co(II)	5.91	10.64	13.94	
Co(III)	18.7	34.9	48.69	
Cr(II)	5.15	9.19		
Cu(I)		10.8		
Cu(II)	10.67	20.00	21.0	
Fe(II)	4 34	7.65	9.70	
	14.3	23.3	5.10	
Μσ	0.37	23.5		
Mn(II)	2 73	4 70	5.67	
Ni	7 52	13.84	18 33	
Pd(II)	1.52	26.90	10.55	
V(II)	4.6	75	8.8	
7 (11) 7 n	577	10.83	14 11	
Ethylenediamine- <i>N</i> , <i>N</i> , <i>N'</i> , <i>N</i>	V'-tetraacetic acid	10.05	17.11	
Ag	7.32			
Al	16.11			
Am(III)	18.18			
Ва	7.78			
Be	9.3			
Bi	22.8			
Ca	11.0			
Cd	16.4			
Ce(III)	16.80			
Cf(III)	19.09			
Cm(III)	18.45			
Co(II)	16.31			
Co(III)	36			
Cr(II)	13.6			
Cr(III)	23			
Cu(II)	18.7			
Dy	18.0			
Er	18.15			
Eu(III)	17.99			
Fe(II)	14.33			
Fe(III)	24.23			
Ga	20.25			
Gd	17.2			
Hg(II)	21.80			
Но	18.1			
In	24.95			
La	16.34			
Li	2.79			
Lu	19.83			
Mg	8.64			
Mn(II)	13.8			
Mo(V)	6.36			

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Na	1.66			
Nd	16.6			
Ni	18.56			
Pb	18.3			
Pd(II)	18.5			
Pm(III)	17.45			
Pr	16.55			
Pu(III)	18.12			
Pu(IV)	17.66			
Pu(VI)	17.66			
Ra	7.4			
Sc	23.1			
Sm	16.43			
Sn(II)	22.1			
Sr	8.80			
ТЪ	17.6			
Th	23.2			
Ti(III)	21.3			
TiO(II)	17.3			
TI(III)	22.5			
Tm	19.49			
U(IV)	17.50			
VIII	12.70			
VIII)	25.9			
VO(II)	18.0			
V(V)	18.05			
Y	18.32			
Yb	18.70			
Zn	16.4			
Zr	19.40			
Glycine				
Ag	3.41	6.89		
Ba	0.77			
Be	0177	4.95		
Ca	1.38			
Cd	4.74	8.60		
Co(II)	5.23	9.25	10.76	
Cu(II)	8.60	15.54	16.27	
Dv		12.2		
Er		12.7		
Fe(II) a	4.3	7.8		
Fe(III) a.d	10.0			
Gd		11.9		
Hg(II)	10.3	19.2		
La		11.2		
Mg	3.44	6.46		
Mn(II)	3.6	6.6		
Ni	6.18	11.14	15	
Pb	5.47	8.92		
Pd(II)	9.12	17.55		
Pr		11.5		
Sm		11.7		
	1		1	1

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

Previous Page

1.370 SECTION ONE

				$\log K_4$
Sr	0.91			
Y		12.5		
Yb		13.0		
Zn	5.52	9.96		
N'-(2-Hydroxyethyl)ethyle	nediamine-N, N, N	-triacetic acid		
Ba c	5.54			
Ca c	8.43			
Cd c	13.0			
Ce(III) c	14.11			
Co(II) c	14.4			
Cu(II) c	17.40			
Dv c	15.30			
Er c	15.50			
Eu(III) c	15.12			
Ee(II) c	11.6			
Fe(III) c	19.8			
Gd c	15.0			
	20.1			
Ho c	15 32			
	13.52			
	15.88			
	13.00			
Mrg C	10.7			
NH(II) C	14.96			
	14.60			
INI C Dh	17.0			
PD C	15.5			
Pf c	14.01			
Sm c	15.28			
Sr c	6.92			
	15.32			
In c	18.5			
Im c	15.59			
Y C	14.65			
Yb c	15.88			
Zn c	14.5	I		
8-Hydroxy-2-methylquinol	ine (50% dioxane)		16.60	
Cd	9.00	9.00	16.60	
Ce(III)	7.71	10.50		
Co(II)	9.63	18.50		
Cu(II)	12.48	24.00		
Fe(II)	8.75	17.10		
Mg	5.24	9.64		
Mn(II)	7.44	13.99		
Ni	9.41	17.76		
Pb	10.30	18.50		
UO ₂ (II)	9.4	17		
Zn	9.82	18.72		
8-Hydroxyquinoline-5-sulf	onic acid			
Ba	2.31			
Ca	3.52			
Cd	7.70	14.20		
Ce(III)	6.05	11.05	14.95	

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Co(II)	8.11	15.05	20.41	
Cu(II)	11.92	21.87		
Er	7.16	13.34	18.56	
Fe(II)	8.4	15.7	21.75	
Fe(III)	11.6	22.8	35.65	
Gd	6.64	12.37	17.27	
La	5.63	10.13	13.83	
Mg	4 79	8 19	15.05	
Mn(II)	5.67	10.72		
Nd	63	11.6	16.0	
Ni	0.5	18.27	22.0	
Ph	8.53	16.27	22.9	
10 Dr	6.55	10.15	15.67	
FI Sm	6.59	11.57	17.07	
5111 S-	0.38	12.20	17.04	
51 Th	2.75	19.00	25.02	22.04
	9.50	18.29	25.92	52.04
$00_2(11)$	8.52	15.07		
Zn	8.65	16.15		
Lactic acid	0.64			
Ba	0.64			
Ca	1.42			
Cd	1.70			
Ce(III) a,c	2.76	4.73	5.96	
Co(II)	1.90			
Cu(II)	3.02	4.85		
Er	2.77	5.11	6.70	
Eu(III)	2.53	4.60	5.88	
Fe(III)	7.1			
Gd	2.53	4.63	5.91	
Но	2.71	4.97	6.55	
La a,c	2.60	4.34	5.64	
Li	0.20			
Mg	1.37			
Mn(II)	1.43			
Nd	2.47	4.37	5.60	
Ni	2.22			
Pb	2.40	3.80		
Pr a,c	2.85	4.90	6.10	
Rare earths a,c	2.8-3.0	4.9-5.4	6.1-7.8	
Sm	2.56	4.58	5.90	
Sr	0.98			
Tb	2.61	4.73	6.01	
Ŷ	2.53	4.70	6.12	
Ŷb	2.85	5.27	7.96	
Zn	2 20	3.75		
Nitrilotriacetic acid	2.20	5.75		
A]	>10			
Ba <i>a</i>	5.88			
	7.60	11.61		
Cd a	0.00	15.0		
	10.92	19.4		
	10.65	10.07		

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Co(II) c	10.38	14.5		
Cr(III)	>10			
Cu(II) c	13.10			
Dy c	11.74	21.15		
Er c	12.03	21.29		
Eu(III) c	11.52	20.70		
Fe(II) c	8.84			
Fe(III) c	15.87	24.32		
Gd c	11.54	20.80		
Hg(II)	12.7			
Ho c	11.90	21.25		
In	15			
La <i>c</i>	10.36	17.60		
Li a	3.28			
Lu c	12.49	21.91		
Mg c	5.36	10.2		
Mn(II)	8.60	11.1		
Na	2.15			
Nd c	11.26	19.73		
Ni	11.26	16.0		
Pb a,c	11.8			
Pr c	11.07	19.25		
Sm(III) c	11.53	20.53		
Sr	6.73			
Tb c	11.59	20.97		
Tl(I)	3.44			
Th c	12.4			
Tm c	12.22	21.45		
Y c	11.48	20.43		
Yb c	12.40	21.69		
Zn c	10.45	13.45		
Zr c	20.8			
1-Nitroso-2-naphthol (75%	dioxane)			
Ag	7.74			
Cd	6.18	11.38		
Co(II)	10.67	22.81		
Cu(II)	12.52	23.37		
Mg	6.2	10.60		
Nd	9.5	17.7	25.6	
Ni	10.75	21.29	28.09	
Pb	9.73	17.31		
Pr	9.04	17.06	23.85	
Th c	8.50	16.13	24.03	30.29
Y	9.02	17.74	25.04	
Zn	9.32	17.02		
Zr	3.6			
Oxalate				
Ag	2.41			
Al	7.26	13.0	16.3	
Am(III)		9.8		[Am(HL) ₄ 11.0]
Ва	2.31			

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Be	4.90			
Ca	3.0			
Cd	3.52	5.77		
Ce(III)	6.52	10.5	11.3	
Co(II)	4.79	6.7	9.7	
Co(III)			~20	
Cu(II)	6.16	8.5		
Er	4.82	8.21	10.03	
Fe(II)	2.9	4.52	5.22	
Fe(III)	9.4	16.2	20.2	
Gd	7.04			
Hg(II)		6.98		
Mg	3.43	4.38		
Mn(II)	3.97	5.80		
Mn(III) e	9.98	16.57	19.42	
Mo(III)	3.38			
Mo(VI)				$[MoO_{2}(L)^{2} - 13.0]$
Nd	7.21	11.5	>14	
Ni	5.3	7.64	~8.5	
NpO ₂ (II)	3.30	7.07		
Pb		6.54		
Pu(III)	9.31	18.70	28	
Pu(IV)	8.74	16.91	23.39	27.50
PuO ₂ (II)		11.4		21100
Sr	2.54			
Th	2.51			24 48
TiO(II)	2.67			21.10
TI(I)	2.03			
UQ	2.05	10.57		
VO(II)		9.80		
V(II)	~27	5.00		
Y	6.52	10.10	11 47	
Yh	7 30	11.7	>14	
7n	4.89	7.60	8 15	
Zn 7r	9.80	17.14	20.86	21.15
1 10-Phenanthroline	2.00	17.14	20.00	21.15
	5.02	12.07		
Ca	0.7	12.07		
Cd	5.03	10.53	1/ 31	
Ce(II)	7.25	13.05	10.00	
Cu(II)	0.08	15.95	20.04	
Eu(II)	5.00	11.70	20.94	
	5.65	11.45	21.5	
Ha(II)	0.5	10.4	23.3	
Ma	1.2	19.05	23.33	
Mn(II)	3.90	7.04	10.11	
Ni	2.00	17.04	24 90	
DP	0.00	75	24.60	
	4.05	/.5	9	
vO(II) 7-	5.4/	9.09	17.55	
	0.33	12.35	17.55	

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

				$\log K_4$
Phthalic acid				
Ва	2.33			
Ca	2.43			
Cd	2.5			
Co(II)	1.81	4.51		
Cu(II)	3.46	4.83		
La		7.74		
Ni	2.14			
Pb d	3.4			
UQ ₂ (II)	4.38			
Zn	2.2			
Pineridine	2.2			
Ag	3 30	6.48		
H _a (II)	8 70	17 44		
Dt(II)	0.70	17.44	$\log K 57$	log K 82
Propylene_1 2_diamine			10g K5 5.7	$\log K_6 0.2$
Cd bc		0.07	12.12	
$C_{0}(\mathbf{I}) d$	5.42	9.97	12.12	
$C_0(\Pi) = a$	5.42	20.06	14.72	
	0.41	20.00	22.05	
$\operatorname{Hg}(\Pi) c$	10.78	23.55	23.23	
NI a	7.43	13.62	17.89	
Zn <i>b,c</i>	5.89	10.87	12.57	
Pyridine	1.07	1.05		
Ag	1.97	4.35		
	1.40	1.95	2.27	2.50
Co(II)	1.14	1.54		
Cu(I)		3.34	4.51	5.44
				$\log K_6 6.89$
Cu(II)	2.59	4.33	5.93	6.54
			$\log K_5$ 7.00	$\log K_6 10.2$
Fe(II)	0.71			
Hg(II)	5.1	10.0	10.4	
Mn(II)	1.92	2.77	3.37	3.50
VO(II)	-1.70			
Zn	1.41	1.11	1.61	1.93
Pyridine-2,6-dicarboxylic a	cid			
Ba <i>a,d</i>	3.46			
Ca a,d	4.6	7.2		
Cd a,d	5.7	10.0		
Ce(III) a,d	8.34	14.42	18.80	
Co(II) a,d	7.0	12.5		
Cu(II) a,d	9.14	16.52		
Dy a,d	8.69	16.19	22.14	
Er a,d	8.77	16.39	22.14	
Eu(III) a,d	8.84	15.98	21.00	
Fe(II) a,d	5.71	10.36		
Fe(III) a,d	10.91	17.13		
Gd a,d	8.74	16.06	21.83	
Ho a,d	8.72	16.23	22.08	
La <i>a,d</i>	7.98	13.79	18.06	
Lu a,d	9.03	16.80	21.48	
	1	1		

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

					$\log K_4$
Hg(II) a.d	20.2	8			
Mg a,d	2.7				
Mn(II) a,d	5.01		8.49		
Nd <i>a,d</i>	8.7	8	15.60	20.66	
Ni a,d	6.9	5	13.50		
Pb a,d	8.7	0	10.60		
Pr a.d	8.6	3	15.10	19.94	
Sm a.d	8.8	6	15.88	21.23	
Sr a.d	3.8	9			
Tb a.d	8.6	8	16.11	22.03	
Tm a.d	8.8	3	16.54	22.04	
Y a.d	8.4	6	15.73	21.34	
Yb a.d	8.8	5	16.61	21.83	
Zn a d	6.3	5	11.88		
1-(2-Pyridylazo)-2-nanhthol	(PAN)	-	11100		
Co(II)	>12				
Cu(II)	16				
Mn(II)	85		16.4		
Ni	12.7		25.3		
	2.7	9	25.5		
Zn	11.2	-	21.7		
		lo	g K_f [ML]	$\log K_f$ [MHL]	$\log K_f [\mathrm{M}(\mathrm{HL})_2]$
4-(2-Pyridylazo)resorcinal (PAR)				
Co(II)				>12	
Cu(II)			10.3		
Mn(II)				9.7	18.9
Ni				13.2	26.0
Sc			4.8		
TIIII)			4.23		
Zn				12.4	23.5
		lo	g K.[ML]	$\log K_{\rm c}[M_{\rm s}L]$	log K.[MHL]
			8	~~B ~~j [~~~2=]	
Pyrocatechol-3,5-disulfonat	e (Pyrocate	chol Vi	olet)		
Al			19.13	4.95	
Bi			27.07	5.25	
Cd			8.13		5.86
Co(II)			9.01		6.53
Cu(II)			16.47		11.18
Ga			22.18	4.65	
In			18.10	4.81	
Mg			4.42	4.6	3.66
Mn(II)			7.13		5.36
Ni			9.35	4.38	6.85
Pb			13.25		10.19
Th			23.36	4.42	
Zn			10.41	6.21	7.21
Zr			27.40	4.18	

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	log	<i>K</i> ₂	$\log K_3$	$\log K_4$
Ba	2.07				
Be	3.36				
Ca (75% dioxane)	7.3	13	.2		
Cd	7.2	13	.4		
Ce(III) (50% dioxane)	9.15	17	.13		
Co(II)	9.1	17	.2		
Cu(II)	12.2	23	.4		
Fe(II)	8.58	16	.93	22.23	
Fe(III)	12.3	23	.6	33.9	
La	5.85	16	.95		
Mg (50% dioxane)	6.38	11	.81		
Mn(II) (50% dioxane)	8.28	15	.45		
Ni (50% dioxane)	11.44	21	.38		
Pb (50% dioxane)	10.61	18	.70		
Sm	6.84			19.50	
Sr	2.89	6	.08		
Th	10.45	20	.40	29.85	38.80
UO ₂ (II) (50% dioxane)) 11.25	20	.89		
V(II)	12.8	23	.6		
VO(II)	10.97	20	.19		
Y	8.15	14	.90	20.25	
Zn (50% dioxane)	9.96	18	.86		
	lo	g <i>K_f</i> [MHL ⁺]			$\log K_f [\mathrm{M(HL)}_2]$
Salicylaldoxime					
Ba		0.53			3.72
Be		<7			
Ca		0.92			3.72
Cd		<4.4			
Co(II)					8.13
Cu(II)					8.13
Mg		0.64			4.10
Ni					3.77
Sr					3.77
Zn		<5.2			
	$\log K_1$	log K ₂	log K ₃	1	$\log K_4$
Salicylic acid					
Al	14.11				
Be	17.4				
Cd	5.55				
Ce(III)	2.66				
Co(II)	6.72	11.42			
Cr(II)	8.4	15.3			
Cu(II)	10.60	18.45			
Fe(II)	6.55	11.25			
Fe(III) a,c	16.48	28.12	36.80		
La	2.64				

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
Mg (75% dioxane)	4.7			
Mn(II)	5.90	9.80		
Nd	2.70			
Ni	6.95	11.75		
Pr	2.68			
Th	4.25	7.60	10.05	11.60
TiO(II)	6.09			
UO ₂ (II)	13.4			
V(II)	6.3			
Zn	6.85			
Succinic acid				
Ba	2.08			
Be	3.08			
Ca	2.0			
Cd	2.2			
Co(II)	2.22			
Cu(II)	3.33			
Fe(III)	7.49			
Hg(II)		7.28		
La	3.96			
Mg	1.20			
Mn(II)	2.26		1	
Nd	8.1			
Ni	2.36			
Pb	2.8			
Ra	1.0			
Sr	1.06			
Zn	1.6			
5-Sulfosalicylic acid				
Al c	13.20	22.83	28.89	
Be c	11.71	20.81		
Cd c	16.68	29.08		
Co(II) c	6.13	9.82		
Cr(II) c	7.1	12.9		
Cr(III) c	9.56			
Cu(II) c	9.52	16.45		
Fe(II) c	5.90			
Fe(III) c	14.64	25.18	32.12	
La c	9.11			
Mn(II) c	5.24	8.24		
NbO(III) c	4.0	7.7		
Ni c	6.42	10.24		
$UO_2(II)$ c	11.14	19.20		
Zn c	6.05	10.65		
Tartaric acid				
Ba		1.62		
Bi			8.30	
Ca	2.98	9.01		
Cd	2.8			
Co(II)	2.1			
Cu(II)	3.2	5.11	4.78	6.51
				$\log K_f 19.14 [Cu(OH)_2 L^{2-}]$
	1	I	I	L

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
Eu(III)	4.98	8.11		
Fe(III)	7.49			
La	3.06			
Mg		1.36		
Nd	9.0			
Pb	3.78		4.7	$\log K_f 14.1 \ [Pb(OH)_2 L^{2-}]$
Ra	1.24			
Sr	1.60			
Zn	2.68	8.32		
Thioglycolic acid				
Ce(III) a,c	1.99	3.03		
Co(II)	5.84	12.15		
Fe(II)		10.92		
Hg(II)		43.82		
La <i>a</i> , <i>c</i>	1.98	2.98		
Mn(II)	4.38	7.56		
Pb	8.5			
Ni	6.98	13.53		
Rare earths a,c	1.9–2.1	3.0-3.3		
Y a,c	1.91	3.19		
Zn	7.86	15.04		
Thiourea				
Ag	7.4	13.1		
Bi				$\log K_6 11.9$
Cd	0.6	1.6	2.6	4.6
Cu(I)			13	15.4
Hg(11)		22.1	24.7	26.8
Pb	1.4	3.1	4.7	8.3
Ru(III)	1.21		0.72	
Thoron		10.15		
In This diamateria		10.15		
1 rietnanolamine	0.00	2.64		
Ag	2.30	3.64		
Co(II)	1.73			
	4.30	12.09		
ng(II)	0.90	13.08		
INI Zn	2.7			
Zill Triathylanotatromina (Tri	2.00			
A a				
Ag Cd	10.75	12.0		
Co(II)	11.0	15.9		
Cu(II)	20.4			
Fe(II)	7 8			
Fe(III)	21.0			
Ho(II)	21.7			
Mn(II)	40			
Ni	14.0			
Ph	10.4			
7n	11.4			
Z _111	11.7			

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$
1,1,1-Trifluoro-3-2'-Then	oylacetone (TTA)			
Ba		10.6		
Cu(II)	6.55	13.0		
Fe(III)	6.9			
Ni	10.0			
Pr	9.53			
Pu(III)	9.53			
Pu(IV)	8.0			
Th	8.1			
U(IV)	7.2			
Zr	3.03 [as ZrL ³⁺]			
Xylenol orange				
Bi	5.52			
Fe(III)	5.70			
Hf	6.50			
Tl(III)	4.90			
Zn	6.15			
Zr	7.60			
Zincon				
Zn	13.1			

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

1.21 ELECTRODE POTENTIALS

The electrode potential is the difference between the charge on an electrode and the charge in the solution.

The electrode potential is denoted as the electromotive force (EMF) and the electromotive force of any electrolytic cell is the sum of the potentials produced at two electrodes.

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C

Standard potentials are tabulated except when a solution composition is stated; the latter are formal potentials and the concentrations are in mol/liter.

Half-reaction	Standard or formal potential	Solution composition
Actinium $Ac^{3+} + 3e^{-} = Ac$	-213	
	2.15	
Aluminum Al ³⁺ \pm 3 ²⁻ \pm Al	-1676	
$AIF^{3-} + 3e^{-} = AI + 6F^{-}$	-2.07	
$Al(OH)_{4}^{-} + 3e^{-} = Al + 4OH^{-}$	-2.310	
Americium		
$AmO_{2}^{2+} + 4H^{+} + 2e^{-} = Am^{4+} + 2H_{2}O$	1.20	
$AmO_2^{2+} + e^- = AmO_2^+$	1.59	
$AmO_2^+ + 4H^+ + e^- = Am^{4+} + 2H_2O$	0.82	
$AmO_2^+ + 4H^+ + 2e^- = Am^{3+} + 2H_2O$	1.72	
$Am^{4+} + e^- = Am^{3+}$	2.62	
$Am^{4+} + 4e^- = Am$	-0.90	
$Am^{3+} + 3e^- = Am$	-2.07	
Antimony		
$Sb(OH)_4^- + 2e^- = SbO_2^- + 2OH^- + 2H_2O$	-0.465	1 NaOH
$SbO_2^- + 2H_2O + 3e^- = Sb + 4OH^-$	0.639	1 NaOH
$Sb + 3H_2O + 3e^- = SbH_3 + 3OH^-$	-1.338	1 NaOH
$Sb_2O_5 + 6H^+ + 4e^- = 2SbO^+ + 3H_2O$	0.605	
$Sb_2O_5 + 4H^+ + 4e^- = Sb_2O_3 + 2H_2O$	0.699	
$Sb_2O_5 + 2H^+ + 2e^- = Sb_2O_4 + H_2O_4$	1.055	
$Sb_2O_4 + 2H^+ + 2e^- = Sb_2O_3 + H_2$	0.342	
$SbU^{+} + 2H^{+} + 3e^{-} = Sb + H_2U$	0.204	
$SD + 3H' + 3e = SDH_3$	-0.510	
Arsenic	0.500	
$H_3AsO_4 + 2H^+ + 2e^- = HAsO_2 + 2H_2O_1$	0.560	
$HASO_2 + 3H^+ + 3e^- = AS + 2H_2O$	0.240	
$As + 5H' + 5e' - AsH_3$ $AsO^{3-} + 2H' + 2e^{-} - AsO^{-} + 4OH^{-}$	-0.225	
$AsO_4^- + 2H^- + 2e^ AsO_2^- + 4OH^-$	-0.68	
$As + 3H_{2}O + 3e^{-} = AsH_{2} + 3OH^{-}$	-1.37	
A stating	1.57	
HATO + $4H^+$ + $4a^-$ = HATO + 2H	ca 14	
$2HAtO + 2H^{+} + 2\rho^{-} = At_{r} + 2H_{r}O$	ca 07	
$At_{a} + 2e^{-} = 2At^{-}$	0.20	
Portium		
$B_{2}O_{1} + 4H^{+} + 2e^{-} = B_{2}^{2+} + 2H_{1}O_{2}$	2 365	
$BaO_2 + TII + 2e^- = Ba$	-2.305	
bu i 2t - Da	4.74	

Half-reaction	Standard or formal potential	Solution composition
Berkelium $Bk^{4+} + 4e^{-} = Bk$ $Bk^{4+} + e^{-} = Bk^{3+}$ $Bk^{3+} + 3e^{-} = Bk$	-1.05 1.67 -2.01	
Beryllium B $e^{2+} + 2e^- = Be$	- 1.99	
Bismuth $Bi_{2}O_{4}$ (bismuthate) + 4H ⁺ + 2e ⁻ = 2BiO ⁺ + 2H ₂ O $Bi^{3+} + 3e^{-} = Bi$ $Bi + 3H^{+} + 3e^{-} = BiH_{3}$ $BiCl_{4}^{-} + 3e^{-} = Bi + 4Cl^{-}$ $BiBr_{4}^{-} + 3e^{-} = Bi + 4Br^{-}$ $BiOCl + 2H^{+} + 3e^{-} = Bi + H_{2}O + Cl^{-}$	1.59 0.317 -0.97 0.199 0.168 0.170	
Boron $B(OH)_3 + 3H^+ + 3e^- = B + 3H_2O$ $BO_2^- + 6H_2O + 8e^- = BH_3^- + 8OH^-$ $B(OH)_4^- + 3e^- = B + 4OH^-$	-0.890 -1.241 -1.811	
Bromine $BrO_4^- + 2H^+ + 2e^- = BrO_3^- + H_2O$ $BrO_3^- + 6H^+ + 6e^- = Br^- + 3H_2O$ $BrO_3^- + 5H^+ + 4e^- = HBrO + 2H_2O$ $2BrO_3^- + 12H^+ + 10e^- = Br_2 + 6H_2O$ $2HBrO + 2H^+ + 2e^- = Br_2 + 2H_2O$ $HBrO + H^+ + 2e^- = Br^- + H_2O$ $BrO^- + H_2O + 2e^- = Br^- + 2OH^-$ $Br_3^- + 2e^- = 3Br^-$ $Br_3(ac) + 2e^- = 2Br^-$	$1.853 \\ 1.478 \\ 1.444 \\ 1.5 \\ 1.604 \\ 1.341 \\ 0.76 \\ 1.050 \\ 1.050 \\ 1.087$	1 NaOH
Cadmium $Cd^{2+} + 2e^- = Cd$ $Cd^{2+} + Hg + 2e^- = Cd(Hg)$ $CdCl_4^2 + 2e^- = Cd + 4Cl^-$ $Cd(CN)_4^2 + 2e^- = Cd + 4CN^-$ $Cd(NH_3)_4^2 + 2e^- = Cd + 4NH_3$ $Cd(OH)_4^2 - 2e^- = Cd + 4OH^-$	$ \begin{array}{r} -0.403 \\ -0.352 \\ -0.453 \\ -0.943 \\ -0.622 \\ -0.670 \end{array} $	
Calcium $CaO_2 + 4H^+ + 2e^- = Ca^{2+} + H_2O$ $Ca^{2+} + 2e^- = Ca$ $Ca + 2H^+ + 2e^- = CaH_2$	2.224 - 2.84 0.776	
Californium $Cf^{3+} + 3e^{-} = Cf$ $Cf^{3+} + e^{-} = Cf^{2+}$ $Cf^{2+} + 2e^{-} = Cf$	- 1.93 - 1.6 - 2.1	
Carbon $CO_2 + 2H^+ + 2e^- = CO + H_2O$ $CO_2 + 2H^+ + 2e^- = HCOOH$ $2CO_2 + 2H^+ + 2e^- = H_2C_2O_4$ $C_2O_4^2 - 2H^+ + 2e^- = 2HCOO^-$ $HCOOH + 2H^+ + 2e^- = HCHO + H_2O$	$ \begin{array}{c} -0.106 \\ -0.20 \\ -0.481 \\ 0.145 \\ 0.034 \end{array} $	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

	Standard or formal	Solution
Half-reaction	potential	composition
$C_2N_2 + 2H^+ + 2e^- = 2HCN$ HCNO + 2H ⁺ + 2e ⁻ = CO + H ₂ O HCHO + 2H ⁺ + 2e ⁻ = CH ₃ OH CNO ⁻ + H ₂ O + 2e ⁻ = CN ⁻ + 2OH ⁻	0.373 0.330 0.2323 - 0.97	
Cerum $Ce(IV) + e^- = Ce(III)$ $Ce^{3+} + 3e^- = Ce$ Cesium $Cs^+ + e^- = Cs$	$ \begin{array}{r} 1.70 \\ 1.61 \\ 1.44 \\ 1.28 \\ -2.34 \\ -2.923 \end{array} $	1 HClO ₄ 1 HNO ₃ 0.5 H ₂ SO ₄ 1 HCl
$Cs^+ + Hg + e^- = Cs(Hg)$	-1.78	
Chlorine $ClO_4^- + 2H^+ + 2e^- = ClO_3^- + H_2O$ $2ClO_4^- + 16H^+ + 14e^- = Cl_2 + 8H_2O$ $ClO_4^- + 8H^+ + 8e^- = Cl^- + 4H_2O$ $ClO_3^- + 2H^+ + e^- = ClO_2(g) + H_2O$ $ClO_3^- + 3H^+ + 2e^- = HClO_2 + H_2O$ $2ClO_3^- + 12H^+ + 10e^- = Cl_2 + 6H_2O$ $ClO_3^- + 6H^+ + 6e^- = Cl^- + 3H_2O$ $ClO_2(g) + H^+ + e^- = HClO_2$ $HClO_2 + 2H^+ + 2e^- = HClO + H_2O$ $HClO_2 + 3H^+ + 4e^- = Cl^- + 2H_2O$ $2HClO_2 + 6H^+ + 6e^- = Cl_2(g) + 4H_2O$ $2ClO^- + H_2O + 2e^- = Cl_2(g) + 4OH^-$ $ClO^- + H_2O + 2e^- = Cl^- + 2OH^-$ $Cl_3^- + 2e^- = 3Cl^-$	$\begin{array}{c} 1.201 \\ 1.392 \\ 1.388 \\ 1.175 \\ 1.181 \\ 1.468 \\ 1.45 \\ 1.188 \\ 1.64 \\ 1.584 \\ 1.659 \\ 0.421 \\ 0.890 \\ 1.415 \\ 1.396 \end{array}$	1 NaOH 1 NaOH
Chromium	1090	
$Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O$ $CrO_{4}^{2-} + 4H_{2}O + 3e^{-} = Cr(OH)_{4}^{-} + 4OH^{-}$ $Cr^{3+} + e^{-} = Cr^{2+}$ $Cr^{3+} + 3e^{-} = Cr$ $Cr^{2+} + 2e^{-} = Cr$	$1.36 \\ 1.15 \\ 1.03 \\ -0.13 \\ -0.424 \\ -0.74 \\ 0.90$	0.1 H ₂ SO ₄ 1 HClO ₄ 1 NaOH
Cobalt		
$\begin{array}{l} {\rm CoO}_2 + 4{\rm H}^+ + e^- = {\rm Co}^{3+} + 2{\rm H}_2{\rm O} \\ {\rm Co}({\rm H}_2{\rm O})^{3+}_6 + e^- = {\rm Co}({\rm H}_2{\rm O})^{2+}_6 \\ {\rm Co}({\rm NH}_3)^{3+}_6 + e^- = {\rm Co}({\rm NH}_3)^{2+}_6 \\ {\rm Co}({\rm OH})_3 + e^- = {\rm Co}({\rm OH})_2 + {\rm OH}^- \\ {\rm Co}({\rm cn})^{3+}_6 + e^- = {\rm Co}({\rm cn})^{3+}_5 e^- = {\rm cohy}^{3+}_5 e^- $	$1.416 \\ 1.92 \\ 0.058 \\ 0.17 \\ -0.2 \\ -0.8 \\ -0.277 \\ -0.422 \\ -0.40$	7 NH ₃ 0.1 en 0.8 KOH

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal	Solution
	potentia	
Copper		
$Cu^{2+} + 2e^{-} = Cu$	0.340	
$Cu^{2+} + e^{-} = Cu^{+}$	0.159	
$Cu^{2} + e^{-} = Cu^{2}$	0.520	
$Cu^{2+} + 2Br^{-} + e^{-} = CuBr^{-}$	0.539	1 KBr
$Cu^{2+} + I^{-} + e^{-} + CuI$	0.52	I KDI
$Cu^{2+} + 2CN^- + e^- = Cu(CN)_2^-$	1.12	
$Cu(NH_3)_{4}^{2+} + e^- = Cu(NH_3)_{4}^{2+} + 2NH_3$	0.10	1 NH ₃
$Cu(en)_{2^{+}}^{2^{+}} + e^{-} = Cu(en)^{+} + en$	-0.35	
$\mathrm{Cu}(\mathrm{CN})_2^- + e^- = \mathrm{Cu} + 2\mathrm{CN}^-$	-0.44	
$\mathrm{Cu}\mathrm{Cl}_{3}^{2-} + e^{-} = \mathrm{Cu} + 3\mathrm{Cl}^{-}$	0.178	1 HCl
$Cu(NH_3)_2^+ + e^- = Cu + 2NH_3$	-0.100	
Curium		
$Cm^{4+} + e^- = Cm^{3+}$	3.2	1 HClO ₄
$Cm^{3+} + 3e^{-} = Cm$	-2.06	
Dysprosium		
$Dy^{3+} + 3e^{-} = Dy$	-2.29	
$Dy^{3+} + e^- = Dy^{2+}$	-2.5	
$Dy^{2+} + 2e^{-} = Dy$	-2.2	
Einsteinium		
$\mathrm{Es}^{3+} + 3e^{-} = \mathrm{Es}$	-2.0	
$Es^{3+} + e^- = Es^{2+}$	-1.5	
$\mathbf{E}\mathbf{s}^{2+} + 2e^{-} = \mathbf{E}\mathbf{s}$	-2.2	
Erbium		
$\mathrm{Er}^{3+} + 3e^{-} = \mathrm{Er}$	-2.32	
Europium		
$\mathrm{Eu}^{3+} + 3e^{-} = \mathrm{Eu}$	- 1.99	
$Eu^{3+} + e^- = Eu^{2+}$	-0.35	
$\mathrm{Eu}^{2+} + 2e^{-} = \mathrm{Eu}$	-2.80	
Fermium		
$\mathrm{Fm}^{3+} + 3e^{-} = \mathrm{Fm}$	-1.96	
$Fm^{3+} + e^- = Fm^{2+}$	-1.15	
$Fm^{2+} + 2e^- = Fm$	-2.37	
Fluorine		
$F_2 + 2H^+ + 2e^- = 2HF$	3.053	
$F_2 + H^+ + 2e^- = HF_2^-$	2.979	
$F_2 + 2e^- = 2F^-$	2.87	
$OF_2 + 3H^+ + 4e^- = HF_2^- + H_2O$	2.209	
Francium		
$Fr^+ + e^- = Fr$	ca2.9	
Gadolinium		
$\mathrm{Gd}^{3+} + 3e^{-} = \mathrm{Gd}$	-2.28	
Gallium		
$Ga^{3+} + 3e^- = Ga$	-0.529	
$Ga^{3+} + e^- = Ga^{2+}$	-0.65	
$Ga^{2+} + 2e^- = Ga$	-0.45	
	0.10	1

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal potential	Solution composition
$ \begin{array}{l} \textbf{Germanium} \\ \textbf{GeO}_2(tetr) + 2H^+ + 2e^- &= \textbf{GeO}(yellow) + H_2O \\ \textbf{GeO}_2(tetr) + 4H^+ + 2e^- &= \textbf{Ge}^{2+} + 2H_2O \\ \textbf{GeO}_2(hex) + 4H^+ + 2e^- &= \textbf{Ge}^{2+} + 2H_2O \\ \textbf{H}_2\textbf{GeO}_3 + 4H^+ + 4e^- &= \textbf{Ge} + 3H_2O \\ \textbf{Ge}^{4+} + 2e^- &= \textbf{Ge}^{2+} \\ \textbf{Ge}^{2+} + 2e^- &= \textbf{Ge} \\ \textbf{Ge}O + 2H^+ + 2e^- &= \textbf{Ge} + H_2O \\ \textbf{Ge} + 4H^+ + 4e^- &= \textbf{GeH}_4 \\ \end{array} $	$\begin{array}{c} -0.255 \\ -0.210 \\ -0.132 \\ 0.012 \\ 0.0 \\ 0.247 \\ -0.255 \\ -0.29 \end{array}$	
Gold $Au^{3+} + 3e^- = Au$ $Au^{3+} + 2e^- = Au^+$ $Au^+ + e^- = Au$ $AuCl_4^- + 2e^- = AuCl_2^- + 2Cl^-$ $AuBr_4^- + 2e^- = AuBr_2^- + 2Br^-$ $Au(SCN)_4^- + 2e^- = Au (SCN)_2^- + 2SCN^-$ $AuBr_4^- + 3e^- = Au + 4Br^-$ $Au(Cl_4^- + 3e^- = Au + 4Cl^-$ $Au(SCN)_4^- + 3e^- = Au + 4SCN^-$ $Au(OH)_3 + 3H^+ + 3e^- = Au + 3H_2O$ $AuBr_2^- + e^- = Au + 2Br^-$ $AuCl_2^- + e^- = Au + 2Cl^-$ $Aul_2^- + e^- = Au + 2Cl^-$ $Au(CN)_2^- + e^- = Au + 2CN^-$ $Au(SCN)_2 + e^- = Au + 2SCN^-$	$\begin{array}{c} 1.52\\ 1.36\\ 1.83\\ 0.926\\ 0.802\\ 0.623\\ 0.854\\ 1.002\\ 0.662\\ 1.45\\ 0.960\\ 1.15\\ 0.576\\ -0.596\\ 0.69\end{array}$	
Hafnium $Hf^{4+} + 4e^{-} = Hf$ $HfO_2 + 4H^+ + 4e^{-} = Hf + 2H_2O$	1.70 1.57	
$Ho^{3+} + 3e^{-} = Ho$	-2.23	
Hydrogen $2H^+ + 2e^- = H_2$ $2D^+ + 2e^- = D_2$ $2H_2O + 2e^- = H_2 + 2OH^-$	0.0000 0.029 	
Indium $In^{3+} + 3e^{-} = In$ $In^{3+} + 2e^{-} = In^{+}$ $In^{+} + e^{-} = In$	-0.338 -0.444 -0.126	
$ \begin{array}{l} \text{Iodine} \\ \text{H}_{3}\text{IO}_{6} + \text{H}^{+} + 2e^{-} = \text{IO}_{3}^{-} + 3\text{H}_{2}\text{O} \\ \text{IO}_{3}^{-} + 5\text{H}^{+} + 4e^{-} = \text{HIO} + 2\text{H}_{2}\text{O} \\ \text{HIO}_{3} + 5\text{H}^{+} + 2\text{Cl}^{-} + 4e^{-} = \text{ICl}_{2}^{-} + 3\text{H}_{2}\text{O} \\ 2\text{IO}_{3}^{-} + 12\text{H}^{+} + 10e^{-} = \text{I}_{2}(\text{c}) + 3\text{H}_{2}\text{O} \\ \text{IO}_{3}^{-} + 3\text{H}_{2}\text{O} + 6e^{-} = \text{I}^{-} + 6\text{OH}^{-} \\ 2\text{IB}\text{r}_{2}^{-} + 2e^{-} = \text{I}_{2}\text{B}\text{r}^{-} + 3\text{B}\text{r}^{-} \\ 2\text{IB}\text{r}_{2}^{-} + 2e^{-} = \text{I}_{2}(\text{c}) + 4\text{B}\text{r}^{-} \\ 2\text{IB}\text{r} + 2e^{-} = \text{I}_{2}\text{B}^{-} + \text{B}\text{r}^{-} \\ 2\text{IB}\text{r} + 2e^{-} = \text{I}_{2} + 2\text{B}\text{r}^{-} \\ 2\text{IB}\text{r} + 2e^{-} = \text{I}_{2} + 2\text{B}\text{r}^{-} \\ 2\text{ICl} + 2e^{-} = \text{I}_{2}(\text{c}) + 2\text{Cl}^{-} \end{array} $	$1.603 \\ 1.14 \\ 1.214 \\ 1.195 \\ 0.257 \\ 0.821 \\ 0.874 \\ 0.973 \\ 1.02 \\ 1.20$	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal potential	Solution composition
$2ICl_{2}^{-} + 2e^{-} = I_{2}(c) + 4Cl^{-}$ $2ICN + 2H^{+} + 2e^{-} = I_{2}(c) + 2HCN$ $2ICN + 2H^{+} + 2e^{-} = I_{2}(aq) + 2HCN$ $2HIO + 2H^{+} + 2e^{-} = I_{2} + 2H_{2}O$ $HIO + H^{+} + 2e^{-} = I^{-} + H_{2}O$ $I_{3}^{-} + 2e^{-} = 3I^{-}$ $I_{2}(aq) + 2e^{-} = 2I^{-}$ $I_{2}(c) + 2e^{-} = 2I^{-}$	1.07 0.695 0.609 1.45 0.985 0.536 0.621 0.5355	
Iridium IrBr ² ₆ ⁻ + $e^- = IrBr^3_6^-$ IrCl ² ₆ ⁻ + $e^- = IrCl^3_6^-$ Irl ² ₆ ⁻ + $e^- = Irl^3_6^-$ IrO ₂ + 4H ⁺ + $e^- = Ir^{3+} + 2H_2O$ IrO ₂ + 4H ⁺ + 4 $e^- = Ir + 2H_2O$ Ir ³⁺ + 3 $e^- = Ir$ IrCl ² ₆ ⁻ + 4 $e^- = Ir + 6Cl^-$ IrCl ² ₆ ⁻ + 3 $e^- = Ir + 6Cl^-$	$\begin{array}{c} 0.805\\ 0.867\\ 0.49\\ 0.223\\ 0.935\\ 1.156\\ 0.835\\ 0.77\end{array}$	1 H ₂ SO ₄
Iron $FeO_4^{2^-} + 8H^+ + 3e^- = Fe^{3+} + 4H_2O$ $FeO_4^{2^-} + 2H_2O + 3e^- = FeO_2^- + 4OH^-$ $Fe^{3+} + e^- = Fe^{2+}$ $Fe(CN)_6^{3^-} + e^- = Fe(CN)_6^{4^-}$ $Fe(EDTA)^- + e^- = Fe(EDTA)^{2^-}$ $Fe(OH)_4^- + e^- = Fe(OH)_4^{2^-}$ $Fe^{2^-} + 2e^- = Fe(OH)_4^{2^-}$	$\begin{array}{c} 2.2\\ 0.55\\ 0.771\\ 0.70\\ 0.67\\ 0.44\\ 0.361\\ 0.71\\ 0.12\\ -0.73\\ 0.44\end{array}$	10 NaOH 1 HCl 0.5 H ₂ SO ₄ 0.3 H ₃ PO ₄ 1 HCl 0.1 EDTA, pH 4–6 1 NaOH
$Fe^{-t} + 2e^{-t} - Fe^{-t}$ $[Fe(CO)_4]_3 + 6e^{-t} = 3Fe(CO)_4^{2-t}$ Lanthanum $La^{3+} + 3e^{-t} = La$ Lawrencium $Lr^{3+} + 3e^{-t} = Lr$	-0.44 -0.70 -2.38 -2.0	
Lead $Pb^{4+} + 2e^- = Pb^{2+}$ $PbO_2(alpha) + SO_4^2 + 4H^+ + 2e^- = PbSO_4 + 2H_2O$ $PbO_2 + 4H^+ + 2e^- = Pb^{2+} + 2H_2O$ $PbO_2 + 2H^+ + 2e^- = PbO_2^- + 3OH^-$ $PbO^{2-} + H_2O + 2e^- = Pb + 3OH^-$ $PbPO_4 + 2e^- = Pb + HPO_4^2$ $PbSO_4 + 2e^- = Pb + SO_4^2$ $PbF_2 + 2e^- = Pb + 2F^-$ $PbCl_2 + 2e^- = Pb + 2Cl^-$ $PbBr_2 + 2e^- = Pb + 2Br^-$ $PbI_2 + 2e^- = Pb + 2I^-$ $PbI_2 + 2e^- = Pb + 2I^-$ $Pb + 2H^+ + 2e^- = PbH_2$	$\begin{array}{c} 1.65\\ 1.690\\ 1.46\\ 0.28\\ 0.3\\ -0.126\\ -0.54\\ -0.465\\ -0.356\\ -0.356\\ -0.344\\ -0.268\\ -0.280\\ -0.365\\ -1.507\end{array}$	2 NaOH

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal potential	Solution composition
Lithium $Li^+ + e^- = Li$ $Li^+ + Hg + e^- = Li(Hg)$	- 3.040 - 2.00	
Lutetium $Lu^{3+} + 3e^- = Lu$	-2.30	
MagnesiumMg2+ + 2e- = MgMg(OH)2 + 2e- = Mg + 2OH-	- 2.356 - 2.687	
$\begin{array}{l} \textbf{Manganese} \\ MnO_4^- + e^- = MnO_4^{} \\ MnO_4^- + 4H^+ + 3e^- = MnO_2(beta) + 2H_2O \\ MnO_4^- + 2H_2O + 3e^- = MnO_2 + 4OH^- \\ MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O \\ MnO_4^{2-} + e^- = MnO_4^{3} \\ MnO_4^{2-} + 2H_2O + 2e^- = MnO_2 + 4OH^- \\ MnO_4^{3-} + 2H_2O + e^- = MnO_2 + 4OH^- \\ MnO_2 + 4H^+ + e^- = Mn^{3+} + 2H_2O \\ MnO_2(beta) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O \\ Mn^{3+} + e^- = Mn^{2+} \\ Mn(H_2P_2O_7)_3^{3-} + 2H^+ + e^- = Mn(H_2P_2O_7)_2^{2-} + H_4P_2O_7 \\ Mn(CN)_6^{3-} + e^- = Mn(CN)_6^{4} \\ Mn^{2+} + 2e^- = Mn \end{array}$	$\begin{array}{c} 0.56 \\ 1.70 \\ 0.60 \\ 1.51 \\ 0.27 \\ 0.62 \\ 0.96 \\ 0.95 \\ 1.23 \\ 1.5 \\ 1.15 \\ -0.24 \\ -1.17 \end{array}$	0.4 H ₂ P ₂ O ⁷⁻ 1.5 NaCN
Mendelevium $Md^{3+} + 3e^- = Md$ $Md^{3+} + e^- = Md^{2+}$ $Md^{2+} + 2e^- = Md$	-1.7 -0.15 -2.4	
Mercury $2Hg^{2+} + 2e^- = Hg_2^{2+}$ $2HgCl_2 + 2e^- = Hg_2Cl_2 + 2Cl^-$ $Hg^{2+} + 2e^- = Hg(lq)$ $HgO(c,red) + 2H^+ + 2e^- = Hg + H_2O$ $Hg_2^{2+} + 2e^- = 2Hg$ $Hg_2F_2 + 2e^- = 2Hg + 2F^-$ $Hg_2Cl_2 + 2e^- = 2Hg + 2Cl^-$ $Hg_2Br_2 + 2e^- = 2Hg + 2Br^-$ $Hg_2I_2 + 2e^- = 2Hg + 2I^-$ $Hg_2SO_4 + 2e^- = 2Hg + SO_4^{2-}$	$\begin{array}{c} 0.911\\ 0.63\\ 0.8535\\ 0.926\\ 0.7960\\ 0.656\\ 0.2682\\ 0.1392\\ -0.0405\\ 0.614\end{array}$	
MolybdenumMoO42- + 4H2O + 6e- = Mo + 8OH-H2MoO4 + 6H+ + 6e- = Mo + 4H2OH2MoO4 + 2H+ + 2e- = MoO2 + 2H2OMoO2 + 4H+ + 4e- = Mo + 2H2OH2MoO4 + 6H+ + 3e- = Mo3+ + 4H2OMo(CN)83- + e- = Mo(CN)84-Mo3+ + 3e- = Mo	$ \begin{array}{r} -0.913 \\ 0.114 \\ 0.646 \\ -0.152 \\ 0.428 \\ 0.725 \\ -0.2 \end{array} $	
Neodynium $Nd^{3+} + 3e^{-} = Nd$ $Nd^{3+} + e^{-} = Nd^{2+}$ $Nd^{2+} + 2e^{-} = Nd$	-2.32 -2.6 -2.2	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)
Half-reaction	Standard or formal potential	Solution composition
Neptunium $NpO_3^+ + 2H^+ + e^- = NpO_2^+ + H_2O$ $NpO_2^{++} e^- = NpO_2^+$ $NpO_2^{++} + 4H^+ + 2e^- = Np^{4+} + 2H_2O$ $Np^{4+} + e^- = Np^{3+}$ $Np^{4+} + 4e^- = Np$	2.04 1.34 0.95 0.18 -1.30	
$NiO_{4}^{0^{+}} + 3e^{-} = NiO_{2} + 2H_{2}O$ $NiO_{2}^{-} + 4H^{+} + 2e^{-} = NiO_{2} + 2H_{2}O$ $NiO_{2} + 4H^{+} + 2e^{-} = Ni^{2^{+}} + 2H_{2}O$ $NiO_{2} + 2H_{2}O + 2e^{-} = Ni(OH)_{2} + 2OH^{-}$ $Ni(CN)_{4}^{2^{-}} + e^{-} = Ni(CN)_{3}^{2^{-}} + CN^{-}$ $Ni^{2^{+}} + 2e^{-} = Ni$ $Ni(OH)_{2} + 2e^{-} = Ni + 2OH^{-}$ $Ni(NH_{3})_{6}^{2^{+}} + 2e^{-} = Ni + 6NH_{3}$	$ \begin{array}{r} 1.8 \\ 1.593 \\ 0.490 \\ -0.401 \\ -0.257 \\ -0.72 \\ -0.49 \\ \end{array} $	
Niobium $Nb_2O_5 + 10H^+ + 4e^- = 2Nb^{3+} + 5H_2O$ $Nb_2O_5 + 10H^+ + 10e^- = 2Nb + 5H_2O$ $Nb^{3+} + 3e^- = Nb$	-0.1 -0.65 -1.1	
Nitrogen $2NO_{3}^{-} + 4H^{+} + 2e^{-} = N_{2}O_{4} + 2H_{2}O$ $NO_{3}^{-} + 3H^{+} + 2e^{-} = HNO_{2} + H_{2}O$ $N_{2}O_{4} + 2H^{+} + 2e^{-} = 2HNO_{2}$ $HNO_{2} + H^{+} + e^{-} = NO + H_{2}O$ $2HNO_{2} + 4H^{+} + 4e^{-} = N_{2}O(g) + 3H_{2}O$ $2HNO_{2} + 4H^{+} + 4e^{-} = H_{2}N_{2}O_{2} + 2H_{2}O$ $2NO + 2H^{+} + 2e^{-} = H_{2}N_{2}O_{2}$ $2NO + 2H^{+} + 2e^{-} = N_{2}O + H_{2}O$ $H_{2}N_{2}O_{2} + 6H^{+} + 4e^{-} = 2HONH_{3}^{+}$ $N_{2}O + 2H^{+} + 2e^{-} = N_{2} + H_{2}O$ $N_{2}O + 6H^{+} + H_{2}O + 4e^{-} = 2HONH_{3}^{+}$ $N_{2} + 2H_{2}O + 4H^{+} + 2e^{-} = 2HONH_{3}^{+}$ $N_{2} + 5H^{+} + 4e^{-} = N_{2}H_{5}^{+}$ $HONH_{3}^{+} + 2H^{+} + 2e^{-} = N_{2}H_{5}^{+} + 2H_{2}O$ $N_{2}H_{5}^{+} + 3H^{+} + 2e^{-} = 2NH_{4}^{+}$ $3N_{2} + 2H^{+} + 2e^{-} = 2HN_{3}$	$\begin{array}{c} 0.803\\ 0.94\\ 1.07\\ 0.996\\ 1.297\\ 0.86\\ 0.71\\ 1.59\\ 0.496\\ 1.77\\ -0.05\\ -1.87\\ -0.23\\ 1.35\\ 1.41\\ 1.275\\ -3.40\end{array}$	
Nobelium $No^{3+} + 3e^- = No$ $No^{3+} + e^- = No^{2+}$ $No^{2+} + 2e^- = No$	-1.2 1.4 -2.5	
$\begin{array}{l} \textbf{Osmium} \\ OsO_4(aq) + 4H^+ + 4e^- = O_8O_2 \cdot 2H_2O + 2H_2O \\ OsO_4(c, yellow) + 8H^+ + 8e^- = O_8 + 4H_2O \\ OsO_2 + 4H^+ + 4e^- = O_8 + 2H_2O \\ OsCl_6^2 - + e^- = O_8Cl_6^3 \\ OsBr_6^2 - + e^- = O_8Br_6^3 - \end{array}$	0.964 0.85 0.687 0.45 0.35	
Oxygen $O_3 + 2H^+ + 2e^- = O_2 + H_2O$ $O_3 + H_2O + 2e^- = O_2 + 2OH^-$	2.075 1.240	1 NaOH

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Holf reaction	Standard or formal	Solution
Hall-leaction	potentiai	composition
$O_{2} + 4H^{+} + 4e^{-} = 2H_{2}O$ $O_{2} + 2H^{+} + 2e^{-} = H_{2}O$ $O_{2} + H_{2}O + 2e^{-} = HO_{2}^{-} + OH^{-}$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ $HO_{2}^{-} + H_{2}O + 2e^{-} = 3OH^{-}$ $O_{2} + 2H_{2}O + 4e^{-} = 4OH^{-}$	1.229 0.695 0.076 1.763 0.867 0.401	1 NaOH
Palladium	2 020	
$PdO_{3} + 2H^{+} + 2e^{-} = PdO_{2} + H_{2}O$ $PdCl_{2}^{-} + 2e^{-} = PdCl_{4}^{2-} + 2Cl^{-}$ $PdBr_{6}^{2-} + 2e^{-} = PdBr_{4}^{2-} + 2Br^{-}$ $PdI_{6}^{2-} + 2e^{-} = PdI_{4}^{2-} + 2I^{-}$ $Pd^{2+} + 2e^{-} = Pd$ $PdCl_{4}^{2-} + 2e^{-} = Pd + 4Cl^{-}$ $PdBr_{4}^{2-} + 2e^{-} = Pd + 4Br^{-}$ $Pd(NH_{3})_{4}^{2+} + 2e^{-} = Pd + 4NH_{3}$ $Pd(CN)_{4}^{2-} + 2e^{-} = Pd + 4CN^{-}$	$\begin{array}{c} 2.030 \\ 1.470 \\ 0.99 \\ 0.48 \\ 0.915 \\ 0.62 \\ 0.49 \\ 0.0 \\ -1.35 \end{array}$	1 HC1 1 NH₃ 1 KCN
Phosphorus		
$\begin{split} H_{3}PO_{4} &+ 2H^{+} + 2e^{-} = H_{3}PO_{3} + H_{2}O \\ 2H_{3}PO_{4} &+ 2H^{+} + 2e^{-} = H_{4}P_{2}O_{6} + 2H_{2}O \\ H_{4}P_{2}O_{6} &+ 2H^{+} + 2e^{-} = 2H_{3}PO_{3} \\ H_{3}PO_{3} &+ 2H^{+} + 2e^{-} = HPH_{2}O_{2} + H_{2}O \\ HPH_{2}O_{2} &+ H^{+} + e^{-} = P + 2H_{2}O \\ H_{3}PO_{3} &+ 3H^{+} + 3e^{-} = P + 3H_{2}O \\ 2P(white) &+ 4H^{+} + 4e^{-} = P_{2}H_{4} \\ P_{2}H_{4} &+ 2H^{+} + 2e^{-} = 2PH_{3} \\ P(white) &+ 3H^{+} + 3e^{-} = PH_{3} \end{split}$	$\begin{array}{r} -0.276 \\ -0.933 \\ 0.380 \\ -0.499 \\ -0.365 \\ -0.502 \\ -0.100 \\ -0.006 \\ -0.063 \end{array}$	
Platinum $PtO + 2H^+ + 2a^- = PtO + HO$	2.0	
$PtO_{3} + 2t^{+} + 2e^{-} = PtO_{2} + H_{2}O$ $PtO_{2} + 2H^{+} + 2e^{-} = PtO + H_{2}O$ $PtCl_{6}^{2-} + 2e^{-} = PtCl_{4}^{2-} + 2Cl^{-}$ $PtBr_{6}^{2-} + 2e^{-} = PtBr_{4}^{2-} + 2Br^{-}$ $Ptl_{6}^{2-} + 2e^{-} = Ptl_{4}^{2-} + 2l^{-}$ $PtCl_{4}^{2-} + 2e^{-} = Pt$ $PtCl_{4}^{2-} + 2e^{-} = Pt + 4Cl^{-}$ $PtBr_{4}^{2-} + 2e^{-} = Pt + 4Br^{-}$	$\begin{array}{c} 2.0\\ 1.045\\ 0.726\\ 0.613\\ 0.321\\ 1.188\\ 0.758\\ 0.698\end{array}$	1 KBr 1 KI
Plutonium $P_{II}O_{2}^{2+} + e^{-} = P_{II}O_{2}^{+}$	1.02	
$PuO_2^{2+} + 4H^+ + 2e^- = Pu^{4+} + 2H_2O$ $Pu^{4+} + e^- = Pu^{3+}$	1.04 1.01 0.80 0.50	1 H₃PO₄ 1 HF
$Pu^{4+} + 4e^{-} = Pu$ $Pu^{3+} + 3e^{-} = Pu$	-1.25 -2.00	
Polonium		
$PoO_2 + 4H^+ + 2e^- = Po^{2+} + 2H_2O$	1.1	
$P0^{*+} + 4e^- = P0$ $P0^{2+} + 2e^- = P0$	0.73	
$Po + 2H^+ + 2e^- = H_2Po$	ca1.0	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half reaction	Standard or formal	Solution
Hall-reaction	potentiai	composition
Potassium $K^+ + e^- = K$ $K^+ + Hg + e^- = K(Hg)$	-2.924 ca1.9	
Praseodymium $Pr^{4+} + e^- = Pr^{3+}$ $Pr^{3+} + e^- = Pr$	3.2 -2.35	
Promethium $Pm^{3+} + 3e^- = Pm$	-2.42	
Protoactinium $PaOOH^{2+} + 3H^+ + e^- = Pa^{4+} + 2H_2O$ $PaOOH^{2+} + 3H^+ + 5e^- = Pa + 2H_2O$ $Pa^{4+} + 4e^- = Pa$	-0.10 -1.19 -1.46	
$\begin{array}{l} \textbf{Radium} \\ \textbf{Ra}^{2+} + 2e^{-} = \textbf{Ra} \end{array}$	-2.916	
Rhenium ReO ₄ ⁻ + 2H ⁺ + $e^- = \text{ReO}_3 + \text{H}_2\text{O}$ ReO ₄ ⁻ + 4H ⁺ + $3e^- = \text{ReO}_2 + 2\text{H}_2\text{O}$ ReO ₄ ⁻ + 2H ₂ O + $3e^- = \text{ReO}_2 + 4\text{OH}^-$ ReO ₄ ⁻ + 6Cl ⁻ + 8H ⁺ + $3e^- = \text{ReCl}_6^2 + 4\text{H}_2\text{O}$ 2ReO ₄ ⁻ + 10H ⁺ + $8e^- = \text{Re}_2\text{O}_3 + 5\text{H}_2\text{O}$ ReO ₃ + 2H ⁺ + $2e^- = \text{ReO}_2 + \text{H}_2\text{O}$ ReO ₂ + 4H ⁺ + $4e^- = \text{Re} + 2\text{H}_2\text{O}$ ReCl ² ₆ ⁻ + $4e^- = \text{Re} + 6\text{Cl}^-$ Re + $e^- = \text{Re}^-$ Rhodium RhO ₂ + 4H ⁺ + $e^- = \text{Rh}^{3+} + 2\text{H}_2\text{O}$ Rh ³⁺ + $3e^- = \text{Rh}$	$\begin{array}{c} 0.768\\ 0.51\\ -0.594\\ 0.12\\ -0.808\\ 0.63\\ 0.22\\ 0.51\\ -0.10\\ \hline 1.881\\ 0.76\\ 0.5\\ \end{array}$	
Rubidium $Rb^+ + e^- = Rb$ $Rb^+ + Hg + e^- = Rb(Hg)$	- 2.924	
Ruthenium RuO ₄ + $e^- = RuO_4^-$ RuO ₄ + $4H^+ + 4e^- = RuO_2 + 2H_2O$ RuO ₄ + $8H^+ + 8e^- = Ru + 4H_2O$ RuO ₄ ⁻ + $e^- = RuO_4^-$ RuO ₄ ²⁻ + $4H^+ + 2e^- = RuO_2 + 2H_2O$ RuO ₂ + $4H^+ + 4e^- = Ru + 2H_2O$ Ru($H_2O)_{6^+}^{2^+} + e^- = Ru(H_2O)_{6^+}^{2^+}$ Ru(NH ₃) ₆ ³⁺ + $e^- = Ru(RH_3)_{6^+}^{2^+}$ Ru(CN) ₆ ³⁻ + $e^- = Ru(CN)_{6^-}^{4^-}$ Ru ³⁺ + $e^- = Ru^{2+}$	0.89 1.4 1.04 0.593 2.0 0.68 0.249 0.10 0.86 0.249	
Samarium $Sm^{3+} + 3e^{-} = Sm$ $Sm^{3+} + e^{-} = Sm^{2+}$ $Sm^{2+} + 2e^{-} = Sm$	-2.30 -1.55 -2.67	
$\begin{array}{l} \textbf{Scandium} \\ \textbf{Sc}^{3+} + 3e^{-} = \textbf{Sc} \end{array}$	-2.03	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal potential	Solution
	potentia	
Selenium $SeQ_4^{2^-} + 4H^+ + 2e^- = H_2SeO_3 + H_2O$ $H_2SeO_3 + 4H^+ + 4e^- = Se + 3H_2O$ $Se(c) + 2H^+ + 2e^- = H_2Se(aq)$ $Se + H^+ + 2e^- = HSe^-$ $Se + 2e^- = Se^{2^-}$	$1.151 \\ 0.74 \\ -0.115 \\ -0.227 \\ -0.670$	1 NaOH
Silicon		
$\begin{split} &\text{SiO}_2(\text{quartz}) + 4\text{H}^+ + 4e^- = \text{Si} + 2\text{H}_2\text{O} \\ &\text{SiO}_2 + 2\text{H}^+ + 2e^- = \text{SiO} + \text{H}_2\text{O} \\ &\text{SiO}_2 + 8\text{H}^+ + 8e^- = \text{SiH}_4 + 2\text{H}_2\text{O} \\ &\text{SiF}_6^{2-} + 4e^- = \text{Si} + 6\text{F}^- \\ &\text{SiO} + 2\text{H}^+ + 2e^- = \text{Si} + \text{H}_2\text{O} \\ &\text{Si} + 4\text{H}^+ + 4e^- = \text{SiH}_4(\text{g}) \end{split}$	$\begin{array}{r} -0.909 \\ -0.967 \\ -0.516 \\ -1.37 \\ -0.808 \\ -0.143 \end{array}$	
Silver		
$AgO^{+} + 2H^{+} + e^{-} = Ag^{2+} + H_2O$ $Ag_2O_3 + 2H^{+} + 2e^{-} = 2AgO + H_2O$ $Ag_2O_3 + H_2O + 2e^{-} = 2AgO + 2OH^{-}$ $Ag_2O_3 + 6H^{+} + 4e^{-} = 2Ag^{+} + 3H_2O$ $Ag^{2+} + e^{-} = Ag^{+}$ $AgO + 2H^{+} + e^{-} = Ag^{+} + H_2O$ $Ag^{+} + e^{-} = Ag$ $Ag_2SO_4 + 2e^{-} = 2Ag + SO_4^{2-}$ $Ag_2C_2O_4 + 2e^{-} = 2Ag + C_2O_4^{2-}$ $Ag_2CrO_4 + 2e^{-} = 2Ag + CrO_4^{2-}$ $Ag(NH_3)_2^{+} + e^{-} = Ag + 2NH_3$ $AgCI + e^{-} = Ag + Br^{-}$ $AgCN + e^{-} = Ag + CN^{-}$ $AgI + e^{-} = Ag + I^{-}$ $Ag(CN) + e^{-} = Ag + 2CN^{-}$ $AgSCN + e^{-} = Ag + SCN^{-}$ $Ag2SCN + e^{-} = 2Ag + SCN^{-}$ $Ag_2S + 2e^{-} = 2Ag + S^{2-}$ Sodium	$\begin{array}{c} 1.360\\ 1.569\\ 0.739\\ 1.670\\ 1.980\\ 1.772\\ 0.7991\\ 0.653\\ 0.47\\ 0.447\\ 0.373\\ 0.2223\\ 0.071\\ -0.017\\ -0.017\\ -0.0152\\ -0.31\\ 0.09\\ -0.71\\ \end{array}$	1 NaOH
$Na^+ + e^- = Na$	-2.713	
$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	- 1.04	
$\frac{\text{SrO}_{1} + 4\text{H}^{+} + 2e^{-} = \text{Sr}^{2+}}{\text{Sr}^{2+} + 2e^{-} = \text{Sr}}$	2.33 -2.89	
Sulfur $S_2O_8^{2^-} + 2e^- = 2SO_4^{2^-}$ $S_2O_8^{2^-} + 2H^+ + 2e^- = 2HSO_4^-$ $2SO_4^{2^-} + 4H^+ + 2e^- = S_2O_6^{2^-} + 2H_2O$ $SO_4^{2^-} + 4H^+ + 2e^- = SO_2(aq) + H_2O$ $SO_4^{2^-} + H_2O + 2e^- = SO_3^{2^-} + 2OH^-$ $S_2O_6^{2^-} + 4H^+ + 2e^- = 2H_2SO_3$ $S_2O_6^{2^-} + 2e^- = 2SO_3^{2^-}$ $2HSO_3^- + 2H^+ + 2e^- = S_2O_4^{2^-} + 2H_2O$ $2SO_3^{2^-} + 2H_2O + 2e^- = S_2O_4^{2^-} + 4OH^-$ $4H_2SO_3 + 4H^+ + 6e^- = S_4O_6^{2^-} + 6H_2O$	$\begin{array}{c} 1.96\\ 2.08\\ -0.25\\ 0.158\\ -0.936\\ 0.569\\ 0.037\\ 0.099\\ -1.13\\ 0.507\end{array}$	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

		1
	Standard	
	or formal	Solution
Half-reaction	potential	composition
		ļ
$4\text{HSO}_3^- + 8\text{H}^+ + 6e^- = S_4\text{O}_6^{2-} + 6\text{H}_2\text{O}$	0.577	
$2SO_{2}(aq) + 2H^{+} + 4e^{-} = S_{2}O_{2}^{2-} + H_{2}O_{2}^{2-}$	0.400	
$2SO_{2}^{2-} + 3H_{2}O + 4e^{-} = S_{2}O_{2}^{2-} + 6OH^{-}$	-0.576	1 NaOH
$SO^{2-}_{2-} + 3H_{2}O_{2-} + 4e^{-}_{2-} = S_{2-} + 6OH^{-}_{2-}$	-0.59	1 NaOH
$SO_3^{2-} + 2e^- = 2SO_2^{2-}$	0.080	i muon
$S_4O_6^{-1} + 2C^{-1} = 2S_2O_3^{-1}$	0.000	
$S_2O_3 + 0H + 4e = 2S + 5H_2O$ SE(a) + $A_2 = -S + 4E^-$	0.5	
$3r_4(g) + 4e = 3 + 4r$	0.97	
$S_2 C_1(g) + 2e = 2S + 2C_1$	1.19	
$S + H^+ + 2e^- = HS^-$	0.287	
$S + 2H^+ + 2e^- = H_2S(aq)$	0.144	
$S + 2H^+ + 2e^- = H_2S(g)$	0.174	
$S + 2e^{-} = S^{2-}$	-0.407	
Tantalum		
$T_{2}O_{2} + 10H^{+} + 10e^{-} = 2T_{2} + 5H_{2}O_{2}$	-0.81	
$T_2E_2^2 + 5e_1^2 - T_2 + 7E_2^2$	-0.45	
$1a1_{7} + 3e - 1a + 71$	-0.45	
Technetium		
$TcO_4^- + 4H^+ + 3e^- = TcO_2 + 2H_2O$	0.738	
$TcO_4^- + 2H^+ + e^- = TcO_3 + H_2O$	0.700	
$\mathrm{TcO}_{4}^{-} + e^{-} = \mathrm{TcO}_{4}^{2-}$	0.569	
$TcO_{4}^{-} + 8H^{+} + 7e^{-} = Tc + 4H_{2}O$	0.472	
$T_{c}O_{c}^{2-} + 4H^{+} + 2e^{-} = T_{c}O_{c} + 2H_{c}O_{c}$	1.39	
$T_{c}O_{a} + 4H^{+} + 4e^{-} = T_{c} + 2H_{c}O_{a}$	0.272	
$T_{C} + e^{-} = T_{C}^{-}$	$c_{a} = 0.5$	
	Cu. 0.5	
Tellurium		
$H_2 TeO_4 + 6H^+ + 2e^- = Te^{4+} + 4H_2O$	0.929	
$H_2 TeO_4 + 2H^+ + 2e^- = TeO_2(c) + 2H_2O$	1.02	
$\text{TeO}_4^{2-} + 2\text{H}^+ + 2e^- = \text{TeO}_3^{2-} + \text{H}_2\text{O}$	0.897	
$TeOOH^+ + 3H^+ + 4e^- = Te + 2H_2O$	0.559	
$H_2 TeO_3 + 4H^+ + 4e^- = Te + 3H_2O$	0.589	
$TeO_3^{2-} + 6H^+ + 4e^- = Te + 3H_2O$	0.827	
$TeO_{2}^{2-} + 3H_{2}O + 4e^{-} = Te + 6OH^{-}$	-0.415	
$TeO_{2}(c) + 4H^{+} + 4e^{-} = Te + 2H_{2}O$	0.521	
$Te + 2H^+ + 2e^- = H_0 Te(aq)$	-0.740	
$Te + H^+ + 2e^- = HTe^-$	-0.817	
$Te^{2-} + 2H^+ + 2e^- = 2HTe^-$	-0.794	
	0.794	
Terbium		
$Tb^{3+} + 3e^{-} = Tb$	-2.31	
Thallium		
$Tl^{3+} + 2\rho^{-} = Tl^{+}$	1 25	1 HC10.
	0.77	1 HCl
$T1^{3+} + 3e^{-} = T1$	0.77	1 1101
TI + Je = TI	_0.72	
$T + e = T$ $T[C] + e^{-T} = T[+C]^{-1}$	-0.550	
$\Pi \cup \tau e = \Pi + \cup I$	-0.557	
$\Pi BT + e = \Pi + BT^{-}$	-0.658	
$111 + e^- = 11 + 1^-$	-0.752	
Thorium		
$\mathbf{T}\mathbf{h}^{4+} + 4e^{-} = \mathbf{T}\mathbf{h}$	- 1.83	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal	Solution
	potentia	composition
Thullium $Tm^{3+} + 3e^{-} = Tm$	-2.32	
Tin $Sn^{4+} + 2e^- = Sn^{2+}$ $SnCl_6^2 + 2e^- = SnCl_4^2 + 2Cl^-$ $SnO_3^2 + 6H^+ + 2e^- = Sn^{2+} + 3H_2O$ $SnF_6^2 + 4e^- = Sn + 6F^-$ $Sn^{2+} + 2e^- = Sn$ $SnCl_4^2 + 2e^- = Sn + 4Cl^-$ $HSnO_2^- + H_2O + 2e^- = Sn + 3OH^-$ $Sn + 4H^+ + 4e^- = SnH_4$	$\begin{array}{c} 0.154\\ 0.14\\ 0.849\\ -0.200\\ -0.1375\\ -0.19\\ -0.91\\ -1.07\end{array}$	1 HCl
Titanium $TiO^{2+} + 2H^+ + e^- = Ti^{3+} + H_2O$ $TiO^{2+} + 2H^+ + 4e^- = Ti + H_2O$ $Ti^{3+} + e^- = Ti^{2+}$ $Ti^{3+} + 3e^- = Ti$ $Ti^{2+} + 2e^- = Ti$	-0.10 -0.86 -0.37 -1.21 -1.63	
Tungsten $2WO_3 + 2H^+ + 2e^- = W_2O_5 + H_2O$ $WO_3 + 6H^+ + 6e^- = W + 3H_2O$ $WO_4^{} + 4H_2O + 6e^- = W + 8OH^-$ $WO_4^{} + 2H_2O + 2e^- = WO_2 + 4OH^-$ $W_2O_5 + 2H^+ + 2e^- = 2WO_2 + H_2O$ $W(CN)_8^{} + e^- = W(CN)_8^{+-}$ $WO_2 + 4H^+ + 4e^- = W + 2H_2O$ $WO_2 + 2H_2O + 4e^- = W + 4OH^-$	$\begin{array}{c} -0.029 \\ -0.090 \\ -1.074 \\ -1.259 \\ -0.031 \\ 0.457 \\ -0.119 \\ -0.982 \end{array}$	
Uranium $UO_2^{2+} + e^- = UO_2^+$ $UO_2^{2+} + 4H^+ + 2e^- = U^{4+} + 2H_2O$ $UO_2^+ + 4H^+ + e^- = U^{4+} + 2H_2O$ $U^{4+} + e^- = U^{3+}$ $U^{4+} + 4e^- = U$ $U^{3+} + 3e^- = U$	0.16 0.27 0.38 - 0.52 - 1.38 - 1.66	
Vanadium $VO_2^+ + 2H^+ + e^- = VO^{2+} + H_2O$ $VO_2^+ + 4H^+ + 2e^- = V^{3+} + 2H_2O$ $VO_2^+ + 4H^+ + 3e^- = V^{2+} + 2H_2O$ $VO_2^+ + 4H^+ + 5e^- = V + 4H_2O$ $VO^{2+} + 2H^+ + e^- = V^{3+} + H_2O$ $V^{3+} + e^- = V^{2+}$ $V^{2+} + 2e^- = V$	$\begin{array}{c} 1.000 \\ 0.668 \\ 0.361 \\ - 0.236 \\ 0.337 \\ - 0.255 \\ - 1.13 \end{array}$	
Xenon $H_4XeO_6 + 2H^+ + 2e^- = XeO_3 + 3H_2O$ $HXeO_3^{-} + 2H_2O + e^- = HXeO_4 + 4OH^-$ $XeO_3 + 6H^+ + 2F^- + 4e^- = XeF_2 + 3H_2O$ $XeO_3 + 6H^+ + 6e^- = Xe(g) + 3H_2O$ $XeF_2 + e^- = XeF + F^-$ $XeF_2 + 2H^+ + 2e^- = Xe(g) + 2HF$ $XeF + e^- = Xe(g) + F^-$	2.42 0.9 1.6 2.10 0.9 2.64 3.4	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction	Standard or formal potential	Solution composition
Ytterbium		
$Yb^{3+} + e^- = Yb^{2+}$	-1.05	
$Yb^{2+} + 2e^{-} = Yb$	-2.8	
$Yb^{3+} + 3e^{-} = Yb$	-2.22	
Yttrium		
$\mathbf{Y}^{3+} + 3e^- = \mathbf{Y}$	-2.37	
Zinc		
$Zn^{2+} + 2e^{-} = Zn$	-0.7626	
$Zn(NH_3)_4^{2+} + 2e^- = Zn + 4NH_3$	-1.04	
$Zn(CN)_4^2 + 2e^- = Zn + 4CN^-$	-1.34	
$Zn(tartrate)_4^{6-} + 2e^- = Zn + 4(tartrate)^{2-}$	-1.15	
$Zn(OH)_4^{2-} + 2e^- = Zn + 4OH^-$	- 1.285	
Zirconium		
$Zr^{4+} + 4e^{-} = Zr$	- 1.55	
$ZrO_2 + 4H^+ + 4e^- = Zr + 2H_2O$	-1.45	

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (*Continued*)

Source: A. J. Bard, R. Parsons, and J. Jordan (eds.), Standard Potentials in Aqueous Solution (prepared under the auspices of the International Union of Pure and Applied Chemistry), Marcel Dekker, New York, 1985; G. Charlot et al., Selected Constants: Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution, Butterworths, London, 1971.

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C

A summary of oxidation-reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.

	E 0 1.
Half-reaction	E° , volts
$F_2(g) + 2H^+ + 2e^- = 2HF$	3.053
$O_3 + H_2O + 2e^- = O_2 + 2OH^-$	1.246
$O_3 + 2H^+ + 2e^- = O_2 + H_2O$	2.075
$Ag^{2+} + e^- = Ag^+$	1.980
$S_2O_8^{2-} + 2e^- = 2SO_4^{2-}$	1.96
$HN_3 + 3H^+ + 2e^- = NH_4^+ + N_2$	1.96
$H_2O_2 + 2H^+ + 2e^- = 2H_2O$	1.763
$Ce^{4+} + e^{-} = Ce^{3+}$	1.72
$MnO_4^- + 4H^+ + 3e^- = MnO_2(c) + 2H_2O$	1.70
$2HClO + 2H^+ + 2e^- = Cl_2 + H_2O$	1.630
$2HBrO + 2H^+ + 2e^- = Br_2 + H_2O$	1.604
$H_5IO_6 + H^+ + 2e^- = IO_3 + 3H_2O$	1.603
$NiO_2 + 4H^+ + 2e^- = Ni^{2+} + 2H_2O$	1.593
Bi_2O_4 (bismuthate) + 4H ⁺ + 2e ⁻ = 2BiO ⁺ + 2H ₂ O	1.59
$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$	1.51
$2BrO_3^- + 12H^+ + 10e^- = Br_2 + 6H_2O$	1.478
$PbO_2 + 4H^+ + 2e^- = Pb^{2+} + 2H_2O$	1.468
$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$	1.36
$Cl_2 + 2e^- = 2Cl^-$	1.3583
$2HNO_2 + 4H^+ + 4e^- = N_2O + 3H_2O$	1.297
$N_2H_5^+ + 3H^+ + 2e^- = 2NH_4^+$	1.275
$MnO_2 + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	1.23
$O_2 + 4H^+ + 4e^- = 2H_2O$	1.229
$ClO_4^- + 2H^+ + 2e^- = ClO_3^- + H_2O$	1.201

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{split} & N_2O_4 + 2H^+ + 2e^- = 2HNO_3 & 1.07 \\ & 2ICl_2^- + 2e^- = 4Cl^- + I_2 & 1.07 \\ & Br_2(1q) + 2e^- = 2Br^- & 1.065 \\ & N_2O_4 + 4H^+ + 4e^- = 2NO + 2H_2O & 1.039 \\ & HNO_2 + H^+ + e^- = NO + H_2O & 0.996 \\ & NO_3^- + 4H^+ + 3e^- = NO + 2H_2O & 0.957 \\ & NO_5^- + 3H^+ + 2e^- = HNO_6 + H_2O & 0.94 \\ \end{split} $
$2ICl_{2}^{-} + 2e^{-} = 4Cl^{-} + I_{2}$ $Br_{2}(1q) + 2e^{-} = 2Br^{-}$ $N_{2}O_{4} + 4H^{+} + 4e^{-} = 2NO + 2H_{2}O$ $HNO_{2} + H^{+} + e^{-} = NO + H_{2}O$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO + 2H_{2}O$ $NO_{5}^{-} + 3H^{+} + 2e^{-} = HNO_{2} + H_{2}O$ 0.996 0.957 0.94
$\begin{array}{ll} Br_2(1q) + 2e^- = 2Br^- & 1.065\\ N_2O_4 + 4H^+ + 4e^- = 2NO + 2H_2O & 1.039\\ HNO_2 + H^+ + e^- = NO + H_2O & 0.996\\ NO_3^- + 4H^+ + 3e^- = NO + 2H_2O & 0.957\\ NO_7^- + 3H^+ + 2e^- = HNO_2 + H_2O & 0.94 \end{array}$
$ \begin{array}{ll} N_2O_4 + 4H^+ + 4e^- = 2NO + 2H_2O & 1.039 \\ HNO_2 + H^+ + e^- = NO + H_2O & 0.996 \\ NO_3^- + 4H^+ + 3e^- = NO + 2H_2O & 0.957 \\ NO_7^- + 3H^+ + 2e^- = HNO_2 + H_2O & 0.94 \\ \end{array} $
$ \begin{array}{ll} HNO_2 + H^+ + e^- = NO + H_2O & 0.996 \\ NO_3^- + 4H^+ + 3e^- = NO + 2H_2O & 0.957 \\ NO_7^- + 3H^+ + 2e^- = HNO_2 + H_2O & 0.94 \end{array} $
$NO_{3}^{-} + 4H^{+} + 3e^{-} = NO + 2H_{2}O $ $NO_{5}^{-} + 3H^{+} + 2e^{-} = HNO_{6} + H_{2}O $ 0.957 0.94
$NO_{2}^{-} + 3H^{+} + 2e^{-} = HNO_{2} + H_{2}O_{2} = 0.94$
$2Hg^{2+} + 2e^- = Hg^{2+}$ 0.911
$Cu^{2+} + I^- + e^- = CuI$ 0.861
$O_{s}O_{s}(c) + 8H^{+} + 8e^{-} = O_{s} + 4H_{2}O$ 0.84
$Ag^+ + e^- = Ag$ 0.7991
$Hg^{2+} + 2e^- = 2Hg$ 0.7960
$Fe^{3+} + e^- = Fe^{2+}$ 0.771
$H_{2}SeO_{2} + 4H^{+} + 4e^{-} = Se + 3H_{2}O$ 0.739
$H_{2} + 11H^{+} + 8e^{-} = 2NH^{+}$
$\Omega_{0} + 2H^{+} + 2e^{-} = H_{0}\Omega_{0}$ 0.695
$Ag_{s}SQ_{s} + 2e^{-} = 2Ag + SQ_{s}^{2-}$ 0.654
$Cn^{2+} + Br^{-} + e^{-} = CuBr(c)$ 0.654
$A_{\rm H}({\rm SCN}_7 + 3e^- = A_{\rm H} + 4{\rm SCN}^-)$ 0.636
$2H\sigma Cl_1 + 2e^- = H\sigma_2 Cl_2(c) + 2Cl^-$ 0.63
$Sb_{2}O_{2} + 6H^{+} + 4e^{-} = 2SbO^{+} + 3H_{2}O$ 0605
$H_{-ASO} + 2H^{+} + 2e^{-} = HASO_{+} + 2H_{-}O$ 0560
$T_{2} = OOH^{+} + 3H^{+} + 4e^{-} = T_{2} + 2H_{2}O$ 0,559
$Cu^{2+} + Cl^{-} + e^{-} = CuCl(c)$ 0559
$L_{-}^{-} + 2e^{-} = 3L^{-}$ 0.536
$L_{2} + 2e^{-} = 2L^{-}$ 0.536
$C_{1}^{++} e^{-} = C_{1}$ 0.53
$4H_{*}SO_{*} + 4H^{+} + 6e^{-} = S_{*}O_{*}^{2-} + 6H_{*}O_{*}$ 0 507
A_{2} , $CrO_{2} + 2e^{-2} = 2Ag + CrO^{2-}$ 0449
$2H_{-}SO_{+} + 2H^{+} + 4e^{-} = S_{-}O_{+}^{2} + 3H_{-}O_{-} = 0.400$
$U_{0,2} + 4H^{+} + e^{-} = U_{1,2}^{4+} + 2H_{0,2}^{4-} \qquad \qquad$
$e_{C}(N)^{3-} + e^{-} = e_{C}(N)^{4-}$ 0.361
$C_{12^{+}+2e^{-}} = C_{11}$ 0.340
$VO^{2+} + 2H^+ + e^- = V^{3+} + H_2O$ 0.337
$BiO^+ + 2H^+ + 3e^- = Bi + H_2O$ 0.32
$IIO^{2+} + 4H^+ + 2e^- = II^{4+} + 2H_0 $ 0.27
$H_{\sigma_{n}}(\Gamma_{n}(c)) + 2e^{-2} = 2H\sigma + 2C\Gamma^{-1}$ 0.2676
$A_{0}C _{+}e^{-} = A_{0}e^{-}C ^{-}$
$SbQ^+ + 2H^+ + 3e^- = Sb + H_2Q$ 0.212
$CnCl^2 + e^- = Cn + 3Cl^-$ 0.178
$SO^{2-} + 4H^+ + 2e^- = H_sO_s + H_sO_s$ 0158
$Sn^{4+} + 2e^{-} = Sn^{2+} $ 0.15
$S_{1} + 2E_{1} = H_{1}S_{1}$ 0.144
$H_{\alpha}Br_{\alpha}(c) + 2c^{-} = 2Ha + 2Br^{-} \qquad 0.1392$
$C_{\rm H}C_{\rm I} + e^{-} = C_{\rm H} + C_{\rm I}^{-}$ 0.121
$TiO^{2+} + 2H^+ + e^- = Ti^{3+} + H_0$ 0 100
$S_1 \Omega^{2-} + 2\rho^- = 2S_2 \Omega^{2-}_2$
$A\sigma Br + e^- = A\sigma + Br^-$ 0.001
$HCOOH + 2H^+ + 2\rho^- = HCHO + H_0 0056$
$CuBr + e^{-} = Cu + Br^{-} \qquad 0.033$
$2H^+ + 2\rho^- = H_{c}$
$\frac{1}{Hg_2I_2 + 2e^-} = 2Hg + 2I^- \qquad \qquad$

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C (Continued)

Half-reaction	E°, volts
$Pb^{2+} + 2e^{-} = Pb$	-0.125
$\mathrm{Sn}^{2+} + 2e^{-} = \mathrm{Sn}$	-0.136
$AgI + e^- = Ag + I^-$	-0.1522
$N_2 + 5H^+ + 4e^- = N_2H_5^+$	-0.225
$V^{3+} + e^- = V^{2+}$	-0.255
$Ni^{2+} + 2e^{-} = Ni$	-0.257
$\mathrm{Co}^{2+} + 2e^{-} = \mathrm{Co}$	-0.277
$Ag(CN)_2^- + e^- = Ag + 2CN^-$	-0.31
$PbSO_4 + 2e^- = Pb + SO_4^{2-}$	-0.3505
$Cd^{2+} + 2e^{-} = Cd$	-0.4025
$Cr^{3+} + e^- = Cr^{2+}$	-0.424
$\mathrm{F}\mathrm{e}^{2+} + 2\mathrm{e}^{-} = \mathrm{F}\mathrm{e}$	-0.44
$H_3PO_3 + 2H^+ + 2e^- = HPH_2O_2 + H_2O_3$	-0.499
$2CO_2 + 2H^+ + 2e^- = H_2C_2O_4$	-0.49
$U^{4+} + e^- = U^{3+}$	-0.52
$Zn^{2+} + 2e^{-} = Zn$	-0.7626
$Mn^{2+} + 2e^- = Mn$	-1.18
$Al^{3+} + 3e^- = Al$	-1.67
$Mg^{2+} + 2e^{-} = Mg$	-2.356
$Na^+ + e^- = Na$	-2.714
$\mathbf{K}^+ + e^- = \mathbf{K}$	-2.925
$Li^+ + e^- = Li$	-3.045
$3N_2 + 2H^+ + 2e^- = 2HN_3$	-3.10

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C (Continued)

TABLE 1.79 Overpotentials for Common Electrode Reactions at 25°C

The overpotential is defined as the difference between the actual potential of an electrode at a given current density and the reversible electrode potential for the reaction.

	Current Density, A/cm ²					
	0.001	0.01	0.1	0.5	1.0	5.0
Electrode	Overpotential, volts					
Liberation of H ₂ f	rom 1M H ₂ SO ₄					
Ag	0.097	0.13	0.3		0.48	0.69
AÌ	0.3	0.83	1.00		1.29	
Au	0.017		0.1		0.24	0.33
Bi	0.39	0.4			0.78	0.98
Cd		1.13	1.22		1.25	
Co		0.2				
Cr		0.4				
Cu		0.1	0.35		0.48	0.55
Fe		0.56	0.82		1 20	0.55
Granhite	0.002	0.50	0.32		0.60	0.73
Uapinte Ua	0.002	0.03	1.03		1.07	0.75
пg Гт	0.0	0.93	1.05		1.07	
II Ni	0.0020	0.2			0.56	0.71
INI Dh	0.14	0.5			0.50	0.71
PD	0.40	0.4			0.52	1.06
Pd	0	0.04	0.00		0.00	
Pt (smooth)	0.0000	0.16	0.29		0.68	
Pt (platinized)	0.0000	0.030	0.041		0.048	0.051
Sb		0.4				
Sn		0.5	1.2			
Та		0.39	0.4			
Zn	0.48	0.75	1.06		1.23	
Liberation of O ₂ f	rom 1M KOH					
Ag	0.58	0.73	0.98		1.13	
Au	0.67	0.96	1.24		1.63	
Cu	0.42	0.58	0.66		0.79	
Graphite	0.53	0.90	1.09		1 24	
Ni	0.35	0.52	0.73		0.85	
Pt (smooth)	0.22	0.85	1.28		1 49	
Pt (platinized)	0.40	0.52	0.64		0.77	
	0.10	0.02		-		
Liberation of Cl ₂	from saturated I	NaCl solution				
Graphite			0.25	0.42	0.53	
Platinized Pt	0.006		0.026	0.05		
Smooth Pt	0.008	0.03	0.054	0.161	0.236	
Liberation of Br ₂	from saturated	NaBr solution				
Graphite		0.002	0.027	0.16	0.33	
Platinized Pt		0.002	0.012	0.069	0.21	
Smooth Pt		0.002	0.006*	0.26	0.38†	
Liberation of L fr	om saturated N	al solution				
Crombito	0.000	0.014	0.007			
Distinized Dt	0.002	0.014	0.097		0.100	
riduilized Pl		0.000	0.032	0.10	0.190	
SHIOOUI Pt		0.005	0.03	0.12	0.22	1

* At 0.23 A/cm².† At 0.72 A/cm².

The overpotential required for the evolution of O_2 from dilute solutions of $HClO_4$, HNO_3 , H_3PO_4 or H_2SO_4 onto smooth platinum electrodes is approximately 0.5 V.

TABLE 1.80 Half-Wave Potentials of Inorganic Materials

All values are in volts vs. the saturated calomel electrode.

Element	E _{1/2} , volts	Solvent system
Aluminum		
3+	-0.5	0.2 <i>M</i> acetate, pH 4.5–4.7, plus 0.07% azo dye Pontochrome Violet SW; reduction wave of complexed dye is 0.2 V more negative than that of the free dye.
Antimony		
3+ to 0	$ \begin{array}{c} -0.15 \\ -0.31(1) \\ -0.8 \\ -1.0; -1.2 \\ -1.26 \\ -1.32 \end{array} $	1 <i>M</i> HCl 1 <i>M</i> HNO ₃ (or $0.5M$ H ₂ SO ₄) 0.5 <i>M</i> tartrate, pH 4.5 0.5 <i>M</i> tartrate, pH 9 (waves not distinct) 1 <i>M</i> NaOH; also anodic wave (3 + to 5 +) at -0.45 0.5 <i>M</i> tartrate plus 0.1 <i>M</i> NaOH
5+	0.0; -0.257	6 <i>M</i> HCl. First wave (5+ to 3+) starts at the oxidation po- tential of Hg; second wave is 3+ to 0.
5 + to 0	-0.35	1M HCl plus 4M KBr
Arsenic		
3 + to 5 + 3 + 3 + 3	$ \begin{array}{c} -0.26 \\ -0.8; -1.0 \\ -0.7; -1.0 \end{array} $	0.5 <i>M</i> KOH (anodic wave); only suitable wave 0.1 <i>M</i> HCl; ill-defined waves 0.5 <i>M</i> H ₂ SO ₄ (or 1 <i>M</i> HNO ₃)
Barium		
2 + to 0	- 1.94	$0.1M (C_2H_5)_4 NI$
Bismuth		
3+ to 0	$ \begin{array}{c} -0.025(15) \\ -0.09 \\ -0.29 \\ -0.7 \\ -1.0 \end{array} $	1 <i>M</i> HNO ₃ (or $0.5M$ H ₂ SO ₄) 1 <i>M</i> HCl 0.5 <i>M</i> tartrate, pH 4.5 0.5 <i>M</i> tartrate (pH 9), wave not well-developed 0.5 <i>M</i> tartrate plus 0.1 <i>M</i> NaOH, poor wave
Dromino		
5 + to 1 - 0 to $1 -$ Br ⁻	-1.75 0.13 0.0	0.1 <i>M</i> alkali chlorides (or 0.1 <i>M</i> NaOH) 0.05 <i>M</i> H_2SO_4 Wave (anodic) starts at zero; Hg_2Br_2 forms Oxidation of Hg to form mercury(L) bromide
	0.1	Oxidation of fig to form mercury(f) bronnide
2 + to 0	-0.60 -0.64 -0.81	0.1 <i>M</i> KCl, or 0.5 <i>M</i> H ₂ SO ₄ , or 1 <i>M</i> HNO ₃ 0.5 <i>M</i> tartrate at pH 4.5 or 9 1 <i>M</i> NH ₄ Cl plus 1 <i>M</i> NH ₃
Calcium		
2 + to 0	-2.22 -2.13	$0.1M (C_2H_5)_4NCl$ $0.1M (C_2H_5)_4NCl in 80\%$ ethanol
Cerium		
3 + to 0	- 1.97	0.02 <i>M</i> alkali sulfate
Cesium $1 + to 0$	-2.05	$0.1M (C_2H_5)_4$ NOH in 50% ethanol
Chlorine Cl ⁻	0.25	Oxidation of Hg to form Hg ₂ Cl ₂
Chromium		
6 + to 3 + 3 + to 0 3 + to 2 + 3 + 10 + 3 + to 2 + 3 + 10 + 3 + to 2 + 3 + 10 + 10	$\begin{array}{c c} -0.85 \\ -0.35; -1.70 \\ -0.95 \end{array}$	$ \begin{array}{c} \text{CrO}_{4}^{2-} \text{ to } \text{CrO}_{2}^{-} \text{ in } 0.1 \text{ to } 1M \text{ NaOH} \\ 1M \text{ NH}_{4}\text{Cl} - \text{NH}_{3} \text{ buffer (pH 8-9); } 3 + \text{ to } 2 + \text{ to } 0 \\ 0.1M \text{ pyridine} - 0.1M \text{ pyridinium chloride} \end{array} $

Element	E _{1/2} , volts	Solvent system
2 + to 0 2+ to 3+	-1.54 -0.40	1 <i>M</i> KCl 1 <i>M</i> KCl (anodic wave)
Cobalt		
3 + to 0	-0.5; -1.3	$1M \text{ NH}_4\text{Cl plus } 1M \text{ NH}_3$; 3 + to 2 + to 0
2 + to 0	-1.07	0.1 <i>M</i> pyridine plus pyridinium chloride
	-1.03	Neutral 1 <i>M</i> potassium thiocyanate
	-1.4	$Co(H_2O)_6^{2+}$ in noncomplexing systems
3+ to 2+	0.0	1M sodium oxalate in acetate buffer (pH 5); diffusion current measured between 0 and -0.1 V
Copper		
2 + to 0	0.04	0.1M KNO ₃ , $0.1M$ NH ₄ ClO ₄ , or $1M$ Na ₂ SO ₄
	-0.085	0.1M Na ₄ P ₂ O ₇ plus 0.2M Na acetate, pH 4.5
	-0.09	0.5M Na tartrate, pH 4.5
	-0.20	0.1M potassium oxalate, pH 5.7 to 10
	-0.22	0.5M potassium citrate, pH 7.5
	-0.4	0.5M Na tartrate plus 0.1M NaOH (pH 12)
	-0.568	0.1M KNO ₂ plus $1M$ ethylenediamine
2+	0.04; -0.22	1 <i>M</i> KCl; consecutive waves: $2 + \text{ to } 1 + \text{ to } 0$
	-0.02; -0.39	0.1M KSCN; consecutive waves: $2 + to 1 + to 0$
	0.05; -0.25	0.1 <i>M</i> pyridine plus 0.1 <i>M</i> pyridinium chloride; consecutive
	,	waves: $2 + to 1 + to 0$
	-0.24; -0.50	1M NH ₄ Cl plus $1M$ NH ₃ ; consecutive waves
Gallium		
$3 \pm to 0$	-11	Not more than $0.001M$ HCl or wave masked by hydrogen
5+100	1.1	wave which immediately follows
C		
Germanium	0.45	(MUC) and the time with UDU O to 0 b
2 + to 0	-0.45	6/M HCI; prior reduction with HPH ₂ O ₂ to 2+
Gold		
3 + to 1 +	0	1 <i>M</i> KCN; wave starts at 0 V
1 + to 0	-1.4	$Au(CN)_2^-$ wave best for analytical purposes
Indium		
3 + to 0	-0.60	1 <i>M</i> KCl
		In Na acetate, pH 3.9 to 4.2
Iodine		
IO7	0.36	First wave at pH 0 (shifts to -0.08 at pH 12); second wave
4		corresponds to iodate reduction
IO ²	-0.075	0.2M KNO ₂ (shifts -0.13 V/pH unit increase)
203	-0.305	0.1 <i>M</i> hydrogen phthalate, pH 3.2
	-0.500	0.1M acetate plus $0.1M$ KCl, pH 4.9
	-0.650	0.1 <i>M</i> citrate, pH 5.95
	-1.050	0.2M phosphate. pH 7.10
	-1.20	0.05M borax + $0.1M$ KCl, pH 9.2: or NaOH plus $0.1M$
		KCl, pH 13.0
0 to 1-	0.0	Wave starts from zero in acid media: Hg _a I ₂ formed
1-	-0.1	Oxidation of Hg to form $Hg_{3}I_{2}$
Iron		
3+	-0.44 - 1.52	1M(NH)CO: two wayes: 3+ to 2+ to 0
51	$-0.17 \cdot -1.50$	0.5M Na tartrate nH 5.8: two waves: 3 + to 2 + to 0
	-09 - 15	0.5M Figure 1.1 a tarting $0.5M$ KOH plus 8% mappital: $3 + to 2 + to 0$
	0.9, 1.5	$\begin{bmatrix} 0.1 & 0 & 0.1 \\ 0 & 0 & 0 \end{bmatrix}$

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued)

Element	E _{1/2} , volts	Solvent system
3+ to 2+	$ \begin{array}{r} -0.13 \\ -0.27 \\ -0.28 \\ -1.46(2) \\ 1.25 \end{array} $	0.1 <i>M</i> EDTA plus 2 <i>M</i> Na acetate, pH 6–7 0.2 <i>M</i> Na oxalate, pH 7.9 or less 0.5 <i>M</i> Na citrate, pH 6.5 1 <i>M</i> NH ₄ ClO ₄
2+ to 3+	- 1.36 - 0.28 - 0.27 - 0.17 - 1.36	0.1 <i>M</i> KHF ₂ , pH 4 or less 0.5 <i>M</i> Na citrate, pH 6.5 0.2 <i>M</i> Na oxalate, pH 7.9 or less 0.5 <i>M</i> Na tartrate, pH 5.8 0.1 <i>M</i> KHF ₂ , pH 4 or less
Lead		
2+ to 0	-0.405 -0.435 -0.49(1) -0.72 -0.75	1 <i>M</i> HNO ₃ 1 <i>M</i> KCl (or HCl) 0.5 <i>M</i> Na tartrate, pH 4.5 or 9 1 <i>M</i> KCN
	-0.73	IM KOH OI 0.5M INA tarifate plus 0.1M INAOH
Lithium $1 + $ to 0	-2.31	$0.1M (C_2H_5)_4$ NOH in 50% ethanol
$\begin{array}{c} \textbf{Magnesium} \\ 2+ \text{ to } 0 \end{array}$	-2.2	0.1M (C ₂ H ₅) ₄ NCl (poorly defined wave)
Manganese 2+ to 0	- 1.65 - 1.55 - 1.33	1 <i>M</i> NH₄Cl plus 1 <i>M</i> NH₃ 1 <i>M</i> KCNS 1.5 <i>M</i> KCN
	1.00	
Molybdenum 6+	-0.26; -0.63	0.3M HCl, two waves: $6+$ to $5+$ to $3+$
Nickel		
2 + to 0	-0.70	1 <i>M</i> KSCN
	-0.78	1M KCl plus 0.5M pyridine
	- 1.09	$1M \text{ NH}_4\text{Cl plus } 1M \text{ NH}_3$
	-1.1	$Ni(H_2O)_6^{2+}$ in NH_4ClO_4 or KNO_3
	-1.36	$Ni(CN)_4^{2-}$ in 1 <i>M</i> KCN (alkaline media)
Niobium 5+ to 3+	-0.80(4)	1 <i>M</i> HNO ₃
Nitrogen		
Nitrate	-145	0.017M L aCl. (reduced to hydroxylamine)
HNO	-0.77	0.01/M LaCi3 (reduced to hydroxylamine)
C_2N_2	-1.2: -1.55	0.1M Na acetate, two waves
Oxamic acid	-1.55	0.1 <i>M</i> Na acetate
Cyanide	-0.45	0.1M NaOH; anodic wave starts at -0.45
Thiocyanate	0.18	Anodic wave; neutral or weakly alkaline medium
Osmium		
OsO ₄	0.0; -0.41; -1.16	Sat'd Ca(OH) ₂ . Three waves: first starts at 0; second wave is OsO_4^{2-} to $Os(V)$; and third wave is $Os(V)$ to $Os(III)$
Oxygen		
O ₂	-0.05; -0.9	Buffer solutions of pH 1 to 10. Two waves: O_2 to H_2O_2 , and H_2O_2 to H_2O . Second wave extends from -0.5 to -1.3
H ₂ O ₂	-0.9	Very extended wave (see above); sharper in presence of Aerosol OT

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (*Continued*)

Element	$E_{1/2}$, volts	Solvent system
Palladium		
2+ to 0	-0.31	1 <i>M</i> pyridine plus 1 <i>M</i> KCl
	-0.64	0.1M ethylenediamine plus $1M$ KCl
	-0.72	1M NH ₄ Cl plus $1M$ NH ₂
D-4		
Potassium	0.10	
1+to 0	-2.10	0.1M (C ₂ H ₅) ₄ NOH in 50% ethanol
Rhenium		
7+ to 4+	-0.44	2M HCl or (better) $4M$ HClO ₄
4+ to 3+	-0.51	$\operatorname{ReCl}_{6}^{2-}$ ion in 1 <i>M</i> HCl
Rhodium		
$3 \pm to 2 \pm$	-0.41	1M pyridine plus 1M KCl
51 10 21	0.41	im pyrianic plus im Ker
Rubidium		
1 + to 0	-1.99	$0.1M (C_2H_5)_4$ NOH in 50% ethanol
Scandium		
3+ to 0	-1.80	0.1M LiCl. KCl. or BaCl ₂
G.1		
Selenium	1.44	
4 + to 2 -	-1.44	1M NH ₄ Cl plus NH ₃ , pH 8.0
	- 1.54	Same system adjusted to pH 9.5
2-	-0.49	Anodic wave at pH 0 due to HgSe
	-0.94	Anodic wave at pH 12 (0.01 <i>M</i> NaOH)
Silver		
1+ to 0		Wave starts at oxidation potential of Hg
1 + to 0	-0.3	0.0014M KAg(CN), without excess cyanide
C. Ji		
	2.07	0.1M(C, H) NOU in 50% other al
1 + to 0	-2.07	$0.1M (C_2H_5)_4$ NOH in 50% ethanol
Strontium		
2 + to 0	-2.11	$0.1M (C_2H_5)_4$ NI, water or 80% ethanol
Sulfur		
SO.	-0.38	$1M$ HNO. (or other strong acid): $4 \pm to 2 \pm$
SO_2^{-}	-0.43	0.5M (NH) HPO plus 1M NH (anodic wave)
S_2O_4	-0.15	1M strong goid: anodic mercury wave
$3_2 0_3$	-0.15	00% methonol 0.5% puriding 0.5% HCl (pH 6)
0102-	-0.30	90% methanol, 9.5% pynume, 0.5% HCI (pH 0)
пз	-0.76	0.11/ NaOH (anotic mercury wave)
Tellurium		
4 + to 0	-0.4	Citrate buffer, pH 1.6 (second of two waves)
	-0.63	Ammoniacal buffer, pH 9.4
4+ to 2-	-1.22	0.1 <i>M</i> NaOH
2- to 0	-0.72	1 <i>M</i> HCl (true anodic reversible wave)
	-0.08	1M NaOH (same as above; intermediate values at pH 1 to
		13)
Thallium		
$3 \pm to 0$	-0.48	1MKCLKNO KSO KOU or NU
	0.70	$101 \text{ KCI}, \text{ KIVO}_3, \text{ K}_2 \text{ OO}_4, \text{ KOII}, \text{ OI } \text{ NII}_3$
Tin		
4+ to 2+	-0.25; -0.52	$4M \text{ NH}_4\text{Cl} + 1M \text{ HCl}$; two waves: $4 + \text{ to } 2 + \text{ to } 0$
2+ to 0	-0.59	0.5M tartrate, pH 4.3
	-1.22	1 <i>M</i> NaOH (stannite ion to tin)
2+ to 4+	-0.28	0.5M Na tartrate, pH 4.3 (anodic wave)
	-0.73	1M NaOH (stannite ion to stannate ion)
	1	

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued)

Element	$E_{1/2}$, volts	Solvent system		
Titanium				
4+ to 3+	-0.173	$0.1M \text{ K}_2\text{C}_2\text{O}_4$ plus $1M \text{ H}_2\text{SO}_4$		
	- 1.22	0.4M tartrate, pH 6.5		
Tungsten				
6+	0.0; -0.64	6 <i>M</i> HCl; two waves: first wave starts at zero and is W(VI) to W(V), the second wave is W(V) to W(III)		
Uranium				
6+	-0.180; -0.92	UO_2^{2+} to UO_2^{+} , then U^{3+} in 0.02 <i>M</i> HCL		
Vanadium				
5+ to 4+ to 2+	-0.97; -1.26	1M NH ₄ Cl plus $1M$ NH ₃ and $0.08M$ Na ₂ SO ₃		
4+ to 2+	-0.98	0.05M H ₂ SO ₄		
3+ to 2+	-0.55	0.5M H ₂ SO ₄		
4+ to 5+	-0.32	1M NH ₄ Cl, $1M$ NH ₃ , and $0.08M$ Na ₂ SO ₃		
4+ to 5+	0.76	$0.05M H_2SO_4$; anodic wave starting from zero		
2+ to 3+	-0.55	$0.5M H_2 SO_4$; anodic wave		
Zinc				
2+ to 0	-0.995	0.1 <i>M</i> KCl		
	- 1.01	0.1 <i>M</i> KSCN		
	- 1.15	0.5M tartrate, pH 9		
	-1.23	0.5M tartrate, pH 4.5		
	-1.33	$1M \text{ NH}_4\text{Cl plus } 1M \text{ NH}_3$		
	- 1.53	1 <i>M</i> NaOH		

TABLE 1.80	Half-Wave l	Potentials of	Inorganic	Materials ((Continued))
-------------------	-------------	---------------	-----------	-------------	-------------	---

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions

Acidic solutions ($[H^+] = 1.0 \text{ mol kg}^{-1}$)				
Half-reaction	$E^{\circ}(V)$			
$Li^+ + e^- \rightleftharpoons Li$	-3.045			
$K^+ + e^- \rightleftharpoons K$	-2.925			
$Na^+ + e^- \rightleftharpoons Na$	-2.714			
$La^{3+} + 3e^{-} \rightleftharpoons La$	-2.37			
$Mg^{2+} + 2e^{-} \rightleftharpoons Mg$	-2.356			
$\frac{1}{2}H_2 + e^- \rightleftharpoons H^-$	-2.25			
$Be^{2+} + 2e^{-} \rightleftharpoons Be$	-1.97			
$Zr^{4+} + 4e^{-} \rightleftharpoons Zr$	-1.70			
$Al^{3+} + 3e^{-} \rightleftharpoons Al$	-1.67			
$Ti^{3+} + 3e^- \rightleftharpoons Ti$	-1.21			
$Mn^{2+} + 2e^{-} \rightleftharpoons Mn$	-1.18			
$V^{2+} + 2e^{-} \rightleftharpoons V$	-1.13			
$SiO_2(glass) + 4H^+ + 4e^- \rightleftharpoons Si + 2H_2O$	-0.888			
$Zn^{2+} + 2e^{-} \rightleftharpoons Zn$	-0.763			
$\mathrm{U}^{4+} + e^- \rightleftharpoons \mathrm{U}^{3+}$	-0.52			
$Fe^{2+} + 2e^{-} \rightleftharpoons Fe$	-0.44			
$Cr^{3+} + e^{-} \rightleftharpoons Cr^{2+}$	-0.424			
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd$	-0.403			
$PbSO_4 + 2e^- \rightleftharpoons Pb + SO_4^{2-}$	-0.351			
$\mathrm{Eu}^{3+} + e^{-} \rightleftharpoons \mathrm{Eu}^{2+}$	-0.35			

Acidic solutions ([H ⁺] =	1.0 mol kg ⁻¹)
Half-reaction	<i>E</i> °(<i>V</i>)
$\mathrm{Co}^{2+} + 2e^{-} \rightleftharpoons \mathrm{Co}$	-0.277
$H_3PO_4 + 2H^+ + 2e^- \rightleftharpoons H_3PO_3 + H_2O$	-0.276
$Ni^{2+} + 2e^{-} \rightleftharpoons Ni$	-0.257
$V^{3+} + e^- \rightleftharpoons V^{2+}$	-0.255
$2SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons S_2O_6^{2-} + 2H_2O$	-0.253
$N_2 + 5H^+ + 4e^- \rightleftharpoons N_2H_5^+$	-0.23
$CO_2 + 2H^+ + 2e^- \rightleftharpoons HCOOH$	-0.16
$AgI + e^- \rightleftharpoons Ag + I^-$	-0.152
$\operatorname{Sn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}$	-0.136
$Pb^{2+} + 2e^- \rightleftharpoons Pb$	-0.125
$2H^+ + 2e^- \rightleftharpoons H_2$	0.000
$HCOOH + 2H^+ + 2e^- \rightleftharpoons HCHO + H_2O$	+0.056
$AgBr + e^- \rightleftharpoons Ag + Br^-$	+0.071
$TiO^{2+} + 2H^+ \rightleftharpoons e^- Ti^{3+} + H_2O$	+0.100
$S + 2H^+ + 2e^- \rightleftharpoons H_2S$	+0.144
$\operatorname{Sn}^{4+} + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}$	+0.15
$SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons H_2SO_3 + H_2O_3$	+0.158
$Cu^{2+} + e^- \rightleftharpoons Cu^+$	+0.159
$AgCl + e^- \rightleftharpoons Ag + Cl^-$	+0.222
$HCHO + 2H^+ + 2e^- \rightleftharpoons CH_2OH$	+0.232
$UO_2^{2+} + 4H^+ + 2e^- \rightleftharpoons U^{4+} + 2H_2O$	+0.27
$VO^{2+} + 2H^+ + e^- \rightleftharpoons V^{3+} + H_2O^2$	+0.337
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu^{2+}$	+0.340
$\operatorname{Fe}(\operatorname{CN})_6^{3-} + e^- \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_6^{4-}$	+0.361
$2H_2SO_3 + 2H^+ + 4e^- \rightleftharpoons S_2O_3^{2-} + 3H_2O$	+0.400
$H_2SO_3 + 4H^+ + 4e^- \rightleftharpoons S + 3H_2O^-$	+0.500
$4H_2SO_3 + 4H^+ + 6e^- \rightleftharpoons S_4O_6^{2-} + 6H_2O$	+0.507
$Cu^+ + e^- \rightleftharpoons Cu^-$	+0.520
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.5355
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$MnO_4^- + e^- \rightleftharpoons MnO_4^{2-}$	+0.56
$S_2O_6^{2-} + 4H^+ + 2e^- \rightleftharpoons 2H_2SO_3$	+0.569
$CH_{3}OH + 2H^{+} + 2e^{-} \rightleftharpoons CH_{4} + H_{2}O$	+0.59
$HN_3 + 11H^+ + 8e^- \rightleftharpoons 3NH_4^+$	+0.695
$O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+0.695
$Rh^{3+} + 3e^- \rightleftharpoons Rh$	+0.76
$(NCS)_2 + 2e^- \rightleftharpoons 2NCS^-$	+0.77
$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	+0.771
$Hg_2^{2+} + 2e^- \rightleftharpoons 2Hg$	+0.796
$Ag^+ + e^- \rightleftharpoons Ag$	+0.799
$2NO_3^- + 4H^+ + 2e^- \rightleftharpoons N_2O_4 + 2H_2O$	+0.803
$Hg^{2+} + 2e^{-} \rightleftharpoons Hg$	+0.911
$NO_3^- + 3H^+ + 2e^- \rightleftharpoons HNO_2 + H_2O$	+0.94
$NO_3^- + 4H^+ + 3e^- \rightleftharpoons NO + 2H_2O$	+0.957
$\text{NHO}_2 + \text{H}^+ + e^- \rightleftharpoons \text{NO} + \text{H}_2\text{O}$	+0.996
$N_2O_4 + 4H^+ + 4e^- \rightleftharpoons 2NO + 2H_2O$	+1.039
$Br_2 + 2e^- \rightleftharpoons 2Br^-$	+1.065
$N_2O_4 + 2H^+ + 2e^- \rightleftharpoons 2HNO_2$	+1.07
$H_2O_2 + H^+ + e^- \rightleftharpoons OH + H_2O$	+1.14
$\text{ClO}_4^- + 2\text{H}^+ + 2e^- \rightleftharpoons \text{ClO}_3^- + \text{H}_2\text{O}$	+1.201
$O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$MnO_2 + 4H^+ + 2e^- \rightleftharpoons Mn^{2+} + 2H_2O$	+1.23

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

Acidic Solutions ($[H^+] = 1.0 \text{ mol } \text{kg}^{-1}$)				
Half-reaction	$E^{\circ}(V)$			
$N_2H_5^+ + 3H^+ + 2e^- \rightleftharpoons 2NH_4^+$	+1.275			
$Cl_2 + 2e^- \rightleftharpoons 2Cl^-$	+1.358			
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O$	+1.36			
$PbO_2 + 4H^+ + 2e^- \rightleftharpoons Pb^{2+} + 2H_2O$	+1.468			
$2BrO_3^- + 12H^+ + 10e^- \rightleftharpoons Br_2 + 6H_2O$	+1.478			
$Mn^{3+} + e^- \rightleftharpoons Mn^{2+}$	+1.51			
$Au^{3+} + 3e^{-} \rightleftharpoons Au$	+1.52			
$NiO_2 + 4H^+ + 2e^- \rightleftharpoons Ni^{2+} + 2H_2O$	+1.593			
$2\text{HBrO} + 2\text{H}^+ + 2e^- \rightleftharpoons \text{Br}_2 + 2\text{H}_2\text{O}$	+1.604			
$2\text{HClO} + 2\text{H}^+ + 2e^- \rightleftharpoons \text{Cl}_2 + 2\text{H}_2\text{O}$	+1.630			
$PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons PbSO_4 + 2H_2O$	+1.698			
$MNO_4^- + 4H^+ + 3e^- \rightleftharpoons MnO_2 + 2H_2O$	+1.70			
$Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}$	+1.72			
$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$	+1.763			
$Au^+ + e^- \rightleftharpoons Au$	+1.83			
$\mathrm{Co}^{3+} + e^{-} \rightleftharpoons \mathrm{Co}^{2+}$	+1.92			
$HN_3 + 3H^+ + 2e^- \rightleftharpoons NH_4^+ + N_2$	+1.96			
$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$	+1.96			
$O_3 + 2H^+ + 2e^- \rightleftharpoons O_2 + H_2O$	+2.075			
$(OH + H^+ + e^- \rightleftharpoons H_2O)$	+2.38			
$F_2 + 2H^+ + 2e^- \rightleftharpoons 2HF$	+3.053			
Basic Solutions ($[OH^-] = 1.0$ n	nol kg^{-1})			
Half-reaction	$E^{\circ}(V)$			
$Ca(OH)_2 + 2e^- \rightleftharpoons Ca + 2OH^-$	-3.026			
$Mg(OH)_2 + 2e^- \rightleftharpoons Mg + 2OH^-$	-2.687			
$Al(OH)_4^- + 3e^- \rightleftharpoons Al + 4OH^-$	-2.310			
$SiO_3^{2-} + 3H_2O + 4e^- \rightleftharpoons Si + 6OH^-$	-1.7			
$Mn(OH)_2 + 2e^- \rightleftharpoons Mn + 2OH^-$	-1.56			
$2\text{TiO}_2 + \text{H}_2\text{O} + 2e^- \rightleftharpoons \text{Ti}_2 \text{O}_3 + 2\text{OH}^-$	-1.38			
$Cr(OH)_3 + 3e^- \rightleftharpoons Cr + 3OH^-$	-1.33			
$Zn(OH)_4^{2^-} + 2e^- \rightleftharpoons Zn + 4OH^-$	-1.285			
$Zn(NH_3)_4^{24} + 2e^- \rightleftharpoons Zn + 4NH_3$	-1.04			
$MnO_2 + 2H_2O + 4e^- \rightleftharpoons Mn + 4OH^-$	-0.980			
$Cd(CN)_4^2 + 2e^- \rightleftharpoons Cd + 4CN^-$	-0.943			
$SO_4^{2-} + H_2O + 2e^- \rightleftharpoons SO_3^{2-} + 2OH^-$	-0.94			
$2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-$	-0.828			
$HFeO_2^- + H_2O + 2e^- \rightleftharpoons Fe + 3OH^-$	-0.8			
$\operatorname{Co(OH)}_2 + 2e^- \rightleftharpoons \operatorname{Co} + 2\operatorname{OH}^-$	-0.733			
$\operatorname{CrO}_4^{2^+} + 4\operatorname{H}_2\operatorname{O} + 3e^- \rightleftharpoons \operatorname{Cr}(\operatorname{OH})_4^- + 4\operatorname{OH}^-$	-0.72			
$Ni(OH)_2 + 2e \rightleftharpoons Ni + 2OH$	-0.72			
$FeO_2 + H_2O + e^- \rightleftharpoons HFeO_2^- + OH^-$	-0.69			
$2SO_3^2 + 3H_2O + 4e^- \rightleftharpoons S_2O_3^{2-} + 6OH^-$	-0.58			
$N_1(NH_3)_6^{-1} + 2e \rightleftharpoons N_1 + 6NH_3$	-0.4/6			
$S + 2e^- \rightleftharpoons S^{2}$	-0.45			
$O_2 + e^- \rightleftharpoons O_2^-$	-0.33			
$CuO + H_2O + 2e^- \rightleftharpoons Cu + 2OH^-$	-0.29			
$Mn_2O_3 + 3H_2O + 2e^- \rightleftharpoons 2Mn(OH)_2 + 2OH^-$	-0.25			
$2CuO + H_2O + 2e^- \rightleftharpoons Cu_2O + 2OH^-$	-0.22			
$O_2 + H_2O + 2e \rightleftharpoons HO_2 + OH$	-0.065			
$MnO_2 + 2H_2O + 2e^- \rightleftharpoons Mn(OH)_2 + 2OH^-$	-0.05			

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

Basic solutions ($[OH^-] = 1.0$	$0 \mod kg^{-1}$	
Half-reaction	$E^{\circ}(V)$	
$NO_3^- + H_2O + 2e^- \rightleftharpoons NO_2^- + 2OH^-$	+0.01	
$Co(NH_3)_6^{3+} + e^- \rightleftharpoons Co(NH_3)_6^{2+}$	+0.058	
HgO (red form) + $H_2O + 2e^- \rightleftharpoons Hg + 2OH^-$	+0.098	
$N_2H_4 + 2H_2O + 2e^- \rightleftharpoons 2NH_3 + 2OH^-$	+0.1	
$Co(OH)_3 + e^- \rightleftharpoons Co(OH)_2 + OH^-$	+0.17	
$HO_2^- + H_2O + e^- \rightleftharpoons ^-OH + 2OH^-$	+0.184	
$O_2^- + H_2O + e^- \rightleftharpoons HO_2^- + OH^-$	+0.20	
$\text{ClO}_3^- + \text{H}_2\text{O} + 2e^- \rightleftharpoons \text{ClO}_2^- + 2\text{OH}^-$	+0.295	
$Ag_2O + H_2O + 2e^- \rightleftharpoons 2Ag + 2OH^-$	+0.342	
$Ag(NH_3)_2^+ + e \rightarrow Ag + 2NH_3$	+0.373	
$ClO_4^- + H_2O + 2e^- \rightleftharpoons ClO_3^- + 2OH^-$	+0.374	
$O_2 + 2H_2O + e^- \rightleftharpoons 4OH^-$	+0.401	
$NiO_2 + 2H_2O + 2e^- \rightleftharpoons Ni(OH)_2 + 2OH^-$	+0.490	
$\operatorname{FeO}_4^{2-} + 2\operatorname{H}_2O + 3e^- \rightleftharpoons \operatorname{FeO}_2^- + 4O\mathrm{H}^-$	+0.55	
$BrO_3^- + 3H_2O + 6e^- \rightleftharpoons Br^- + 6OH^-$	+0.584	
$MnO_4^{2-} + 2H_2O + 2e^- \rightleftharpoons MnO_2 + 4OH^-$	+0.62	
$ClO_2^- + H_2O + 2e^- \rightleftharpoons ClO^- + 2OH^-$	+0.681	
$BrO^- + H_2O + 2e^- \rightleftharpoons Br^- + 2OH^-$	+0.766	
$HO_2^- + H_2O + 2e^- \rightleftharpoons 3OH^-$	+0.867	
$ClO^- + H_2O + 2e^- \rightleftharpoons Cl^- + 2OH^-$	+0.890	
$ClO_2 + e^- \rightleftharpoons ClO_2^-$	+1.041	
$O_3 + H_2O + 2e^- \rightleftharpoons O_2 + 2OH^-$	+1.246	
$OH + e^{-} \rightleftharpoons OH^{-}$	+1.985	

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

TARIE 1 02	Detentials of Deference Electrodes in Voltage a Eurotion of Temperature
IADLE 1.02	Potentials of Reference Electrodes in volts as a Function of Temperature

Liquid-junction	potential	included.

Temp., °C	0.1 <i>M</i> KCl Calomel*	1.0 <i>M</i> KCl Calomel*	3.5 <i>M</i> KCl Calomel*	Satd. KCl Calomel*	1.0 <i>M</i> KCl Ag/AgCl†	1.0 <i>M</i> KBr Ag/AgBr‡	1.0 <i>M</i> KI Ag/AgI§
0 5 10	0.3367 0.3362 0.3361	0.2883 0.2868	0.2556	0.25918 0.25387 0.2511	0.23655 0.23413 0.23142 0.22857	0.08128 0.07961 0.07773 0.07572	-0.14637 -0.14719 -0.14822 -0.14942
20 25 30 35	0.3358 0.3356 0.3354 0.3351	0.2844 0.2830 0.2815	0.2520 0.2501 0.2481	0.24775 0.24453 0.24118 0.2376	0.22557 0.22234 0.21904 0.21565	0.07349 0.07106 0.06856 0.06585	-0.1502 -0.15081 -0.15244 -0.15405 -0.15590
38 40 45 50	0.3350 0.3345 0.3315	0.2782	0.2448 0.2439	0.2355 0.23449 0.22737	0.21208 0.20835 0.20449	0.06310 0.06012 0.05704	-0.15788 -0.15988 -0.16219
55 60 70 80 90	0.3248	0.2702		0.2235	0.20056 0.19649 0.18782 0.1787 0.1695	0.0251	
20					0.1095	0.0231	

* Bates et al., J. Research Natl. Bur. Standards, 45, 418 (1950).

† Bates and Bower, J. Research Natl. Bur. Standards, 53, 283 (1954).

‡ Hetzer, Robinson and Bates, J. Phys. Chem., 66, 1423 (1962).

§ Hetzer, Robinson and Bates, J. Phys. Chem., 68, 1929 (1964).

Solvent, wt %	Methanol, Ag/AgCl	Ethanol, Ag/AgCl	2-Propanol, Ag/AgCl	Acetone, Ag/AgCl	Dioxane, Ag/AgCl	Ethylene glycol, Ag/AgCl	Methanol, calomel	Dioxane, calomel
5			0.2180	0.2190		0.2190		
10	0.2153	0.2146	0.2138	0.2156		0.2160		
20	0.2090	0.2075	0.2063	0.2079	0.2031	0.2101	0.255	0.2501
30		0.2003				0.2036		
40	0.1968	0.1945		0.1859		0.1972	0.243	
45		-			0.1635			0.2104
50		0.1859		0.158				
60	0.1818	0.173				0.1807		
70		0.158			0.0659		0.216	0.1126
80	0.1492	0.136						
82					-0.0614			-0.0014
90	0.1135	0.096		-0.034				
94.2	0.0841							
98		0.0215						
99							0.103	
100	- 0.0099	-0.0081		-0.53				

TABLE 1.83 Potentials of Reference Electrodes (in Volts) at 25°C for Water-Organic Solvent Mixtures

1.22 CONDUCTANCE

Conductivity. The standard unit of conductance is electrolytic conductivity (formerly called specific conductance) κ , which is defined as the reciprocal of the resistance $[\Omega^{-1}]$ of a 1-m cube of liquid at a specified temperature $[\Omega^{-1} \cdot m^{-1}]$. See Table 1.86 and the definition of the cell constant.

In accurate work at low concentrations it is necessary to subtract the conductivity of the pure solvent (Table 2.69) from that of the solution to obtain the conductivity due to the electrolyte.

Resistivity (Specific Resistance)

$$\rho = \frac{1}{k}$$
 [$\Omega \cdot m$]

Conductance of an Electrolyte Solution

$$\frac{1}{R} = k \frac{S}{d} \qquad [\Omega^{-1}]$$

where S is the surface area of the electrode, or the mean cross-sectional area of the solution $[m^2]$, and d is the mean distance between the electrodes [m].

Equivalent Conductivity

$$\Lambda = \frac{\mathbf{k}}{C} \qquad [\Omega^{-1} \cdot \mathbf{m}^2 \cdot \mathbf{equiv}^{-1}]$$

In the older literature, *C* is the concentration in equivalents per liter. The volume of the solution in cubic centimeters per equivalent is equal to 1000/*C*, and $\Lambda = 1000 \text{ k/C}$, the units employed in Table 8.32 $[\Omega^{-1} \cdot \text{cm}^2 \cdot \text{equiv}^{-1}]$. The formula unit used in expressing the concentration must be specified; for example, NaCl, $\frac{1}{2}\text{K}_2\text{SO}_4$, $\frac{1}{3}\text{LaCl}_3$.

The equivalent conductivity of an electrolyte is the sum of contributions of the individual ions. At infinite dilution: $\Lambda^{\circ} = \lambda_{c}^{\circ} + \lambda_{a}^{\circ}$, where λ_{c}° and λ_{a}° are the ionic conductances of cations and anions, respectively, at infinite dilution (Table 1.87).

Ionic Mobility and Ionic Equivalent Conductivity

$$\lambda_c = Fu_c$$
 and $\lambda_a = Fu_a$ $[\Omega^{-1} \cdot m^2 \cdot equiv^{-1}]$

where F is the Faraday constant, and u_c , u_a are the ionic mobilities $[m^2 \cdot s^{-1} \cdot V^{-1}]$.

$$\Lambda = \alpha F(u_c + u_a) = \alpha (\lambda_c + \lambda_a)$$

where α is the degree of electrolytic dissociation, Λ/Λ° . The electric mobility *u* of a species is the magnitude of the velocity in an electric field [m · s⁻¹] divided by the magnitude of the strength of the electric field *E*[V · m⁻¹].

Ostwald Dilution Law

$$K_d = \frac{\alpha^2 C}{1 - \alpha}$$

where K_d is the dissociation constant of the weak electrolyte. In general for an electrolyte which yields *n* ions:

$$K_d = \frac{C^{(n-1)}\Lambda^n}{\Lambda^{\circ (n-1)}(\Lambda^{\circ} - \Lambda)}$$

Transference Numbers or Hittorf Transport Numbers

$$T_{c} = \frac{\lambda_{c}}{\lambda_{c} + \lambda_{a}} \qquad T_{a} = \frac{\lambda_{a}}{\lambda_{c} + \lambda_{a}} \qquad T_{c} + T_{a} = 1$$
$$\frac{T_{c}}{T_{a}} = \frac{u_{c}}{u_{a}} = \frac{\lambda_{c}}{\lambda_{a}}$$
$$\lambda_{c} = T_{c}\Lambda \qquad \lambda_{a} = T_{a}\Lambda$$

	Melting	Der at ((g c	nsity °K* m ⁻³)	Ele cond at Ω^{-1}	ectrical luctivity c°K* · cm ⁻¹	Atomization	Heat of	Entropy	The ele po (µV	ermo- ectric ower per °K)	Activation energy for viccous flow	Entropy of	Viscosity of
Material	point (°K)	Solid	Liquid	Solid	Liquid	(kcal/mole)	(kcal/mole)	(e.u.)	Solid	Liquid	(kcal per mole)	(e.u.)	(centipoises)
Si	1693	2.30	2.53	580	12000	204	12.1	7.1			8.63	2.1	0.348
Ge	1210	5.26	5.51	1250	14000	178	8.35	6.9	-90	0	2.74	2.85	0.135
AlSb	1353	4.18	4.72	160	9900	160	14.2	5.2	-160	-60	10	2.2	0.250
GaSb	985	5.60	6.06	280	10600	134	12.0	6.1	-60	0	2.7	5.0	0.368
InSb	809	5.76	6.48	2900	10000	121	11.6	7.2	-120	-20	2.0	9.4	0.363
GaAs	1511	5.16	5.71	300	7900	146	23.2	7.7	_	—	6.5	7.8	0.320
InAs	1215	5.5	5.89	3600	6800	130	12.6	5.2		_	6.2	3	0.174
ZnTe	1512					109					9.0	6.5	0.868
CdTe	1365					99					5.75	7.7	0.435
Cul	875	5.36	4.84				2.6		550	490			0.432
Ga ₂ Te ₃	1063	5.35	5.086						-290	-85	11	7	0.546
In ₂ Te ₃	940	5.77	5.54						-50	30	13	7.5	0.323
Mg ₂ Si	1375	1.84	2.27	1120	9800		20.4	5.0			13.9	2.3	0.299
Mg ₂ Ge	1388		3.20	1140	8400						9.5	3.8	0.311
Mg ₂ Sn	1051	3.45	3.52	2040	10600		11.4	3.6			9.5	5.8	0.520
Mg ₂ Pb	823	5.00	5.20	3530	8600		9.3	3.8			9.6	6.2	0.560
GeTe	998	5.97	5.57	2400	2600		11.3	5.7	130	21	4.70	5.8	0.375
SnTe	1063	6.15	5.85	1440	1800		8.0	3.7	140	28	4.90	6.1	0.348
PbTe	1190	7.69	7.45	420	1520		7.5	3.1	-60	-10	6.85	6.0	0.243
PbSe	1361	7.57	7.10	300	450		8.5	3.1	-120	-60	6.85	7.5	0.240
PbS	1392	7.07	6.45	250	220		8.7	3.1	-220	-220	9.80	7.5	0.319
Bi ₂ Se ₃	979	7.27	6.97	450	900				-90	-35	9.7	5.05	0.540
Bi ₂ Te ₃	858	7.5	7.26	1250	2580		28.35	6.6	-45	-3	2.7	7.80	0.198
Sb ₂ Te ₃	895	6.29	6.09	900	1850		23.65	5.3	90	11	6.1	7.35	0.513
Se (hex)	493	4.69	3.975				1.5	3			3.94	6.7	6.63
Te	725	6.1	5.775				4.17	5.7			1.18	6.7	0.357

TABLE 1.84 Properties of liquid Semi-conductors

*At melting point.

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions

In $10^{-4} m^2 \cdot S \cdot equiv^{-1}$ or $mho \cdot cm^2 \cdot equiv^{-1}$.

		Temperature, °C	
Ion	0	18	25
Inorganic cations			
Ag ⁺	33	54.5	61.9
Al ³⁺	29		61
Ba ²⁺	33.6	54.3	63.9
Be ²⁺			45
Ca ²⁺	30.8	51	59.5
Cd ²⁺	28	45.1	54
Ce ³⁺			70
Co ²⁺	28	45	53
$Co(NH_3)_{6}^{3+}$			100
$Co(ethylenediamine)_3^{3+}$			74.7
Cr ³⁺			67
Cs ⁺	44	68	77.3
Cu ²⁺	28	45.3	56.6
D ⁺ (deuterium)		213.7	
Dy ³⁺			65.7
Er ³⁺			66.0
Eu ³⁺			67.9
Fe ²⁺	28	45.3	53.5
Fe ³⁺			69
Gd ³⁺			67.4
H^+	224.1	315.8	350.1
Hg ₂ ⁺			68.7
Hg ²⁺			63.6
Ho ³⁺			66.3
K+	40.3	64.6	73.5
La ³⁺	35.0	59.2	69.6
Li ⁺	19.1	33.4	38.69
Mg ²⁺	28.5	46	53.06
Mn ²⁺	27	44.5	53.5
NH_4^+	40.3	64	73.7
$N_2H_5^+$ (hydrazinium 1+)			59
Na ⁺	25.85	43.5	50.11
Nd ³⁺			69.6
Ni ²⁺	28	45	50
Pb ²⁺	37.5	60.5	71
Pr ³⁺			69.6
Ra ²⁺	33	56.6	66.8
Rb ⁺	43.5	67.5	77.8
Sc ³⁺			64.7
Sm ³⁺			68.5
Sr ²⁺	31	51	59.46
11+	43.3	66	74.9
Tm ³⁺			65.5
$UO_2^{2^+}$			32
Y ³⁺			62
Yb ³⁺		/ = =	65.2
Zn^{2+}	28	45.0	52.8

		Temperature, °C	ure, °C		
Ion	0	18	25		
Inorganic anions					
$Au(CN)_2^-$			50		
Au(CN) ₄			36		
$B(C_6H_5)_4^-$			21		
Br-	43.1	67.6	78.1		
Br ₃		10.0	43		
BrO ₃	31.0	49.0	55.7		
	41.4	65.5	76.31		
	26	55.0	52		
	30	55.0	64.6		
CIU ₄	37.3	59.1	07.3		
CN CO ²⁺	26	60.5	/8		
$C_{0}(CN)^{3-}$	30	00.5	09.3		
$C_{r}O^{2-}$	42	77	90.9		
	42	12	6J 55 A		
Fe(CN)4-		40.0	110.4		
$Fe(CN)_6$			100.4		
H_{A}			34		
HCO-			44 5		
HE-			75		
HPO ²⁻			33		
H ₂ POT		28	33		
HS ⁻	40	57	65		
HSO ₇	27		50		
HSO			50		
$H_2SbO_4^-$			31		
I ⁻	42.0	66.5	76.9		
IO_3^-	21.0	33.9	40.5		
IO_4^-		49	54.5		
MnO ₄	36	53	61.3		
MoO ₄ ²⁻			74.5		
N ₃			69.5		
$N(CN)_2^-$			54.5		
NO ₂	44	59	71.8		
NO_3^-	40.2	61.7	71.42		
$NH_2SO_3^-$ (sulfamate)			48.6		
OCN ⁻ (cyanate)		54.8	64.6		
OH-	117.8	175.8	198		
PF_6^-			56.9		
PO_3F^{2-}			63.3		
PO ₄ ³⁻			69.0		
$P_2O_7^{4-}$			96		
$P_3O_9^{3-}$			83.6		
P ₃ O ₁₀			109		
ReO ₄		46.5	54.9		
SCN ⁻ (thiocyanate)	41.7	56.6	66.5		
SeCN-		<i>i</i> -	64.7		
SeO ₂ ⁻		65	75.7		
SU3 ⁻			79.9		

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued)

		Temperature, °C	
Ion	0	18	25
	41	68.3	80.0
$S_2O_3^{2-}$			85.0
$S_2O_4^{2-}$	34		66.5
$S_2O_6^{2-}$			93
$S_2O_8^{2-}$			86
WO_4^{2-}	35	59	69.4
Organic cations			
Decylpyridinium ⁺			29.5
Diethylammonium ⁺			42.0
Dimethylammonium ⁺			51.5
Dipropylammonium ⁺			30.1
Dodecylammonium ⁺			23.8
Ethylammonium ⁺			47.2
Ethyltrimethylammonium ⁺			40.5
Isobutylammonium ⁺			38.0
Methylammonium ⁺			58.3
Piperidinium ⁺			37.2
Propylammonium ⁺			40.8
Tetrabutylammonium ⁺			19.5
Tetraethylammonium ⁺			32.6
Tetramethylammonium ⁺			44.9
Tetrapropylammonium ⁺			23.5
Triethylsulfonium ⁺			36.1
Trimethylammonium ⁺			47.2
Trimethylsulfonium ⁺			51.4
Tripropylammonium ⁺			26.1
Organic anions			
Acetate ⁻	20	34	41
Benzoate ⁻			32.4
Bromoacetate ⁻			39.2
Bromobenzoate ⁻			30
Butanoate ⁻			32.6
Chloroacetate ⁻			42.2
<i>m</i> -Chlorobenzoate ⁻			31
o-Chlorobenzoate ⁻			30.5
Citrate(3-)			70.2
Crotonate ⁻			33.2
Cyanoacetate ⁻			43.4
Cyclohexanecarboxylate ⁻			28.7
Cyclopropane-1,3-dicarboxylate ²⁻			53.4
Decylsulfonate ⁻			26
Dichloroacetate ⁻			38.3
Diethylbarbiturate $(2-)$			26.3
Dihydrogencitrate ⁻			30
Dimethylmalonate $(2-)$			49.4
3,5-Dinitrobenzoate ⁻			28.3
Dodecylsulfonate ⁻			24
Ethylmalonate ⁻			49.3
Ethylsulfonate ⁻			39.6

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued)

TABLE 1.86 Standard Solutions for Calibrating Conductivity Vessels

The values of conductivity κ are corrected for the conductivity of the water used. The cell constant θ of a conductivity cell can be obtained from the equation

$$\theta = \frac{KRR_{\text{solv}}}{R_{\text{solv}} - R}$$

where *R* is the resistance measured when the cell is filled with a solution of the composition stated in the table below, and R_{solv} is the resistance when the cell is filled with solvent at the same temperature.

	Conductivity in $ohm^{-1} \cdot cm^{-1}$ at							
solution (in vacuo)	0°C	18°C	25°C					
71.135 2 7.419 13 0.745 263*	$\begin{array}{cccc} 0.065 & 14_4 \\ 0.007 & 134_4 \\ 0.000 & 773 & 2_6 \end{array}$	$\begin{array}{c} 0.097 \ 79_0 \\ 0.011 \ 161_2 \\ 0.001 \ 219 \ 9_2 \end{array}$	$\begin{array}{c} 0.111 & 28_7 \\ 0.012 & 849_7 \\ 0.001 & 408 & 0_8 \end{array}$					

*Virtually 0.0100 M.

From the data of Jones and Bradshaw, J. Am. Chem. Soc., 55, 1780 (1933). The original data have been converted from (int. ohm)⁻¹cm⁻¹.

The unit of Λ in the table is $\Omega^{-1} \cdot cm^{-2} \cdot equiv^{-1}$. The entities to which the equivalent relates are given in the first column.

					С	oncentration,	N				
Electrolyte	0.001	0.005	0.01	0.05	0.1	0.5	1.0	2.0	3.0	4.0	5.0
Acetic acid	41	20.0	14.3	6.48	4.60	2.01	1.32		0.54		0.29
AgNO ₃	113.2	110.0	107.8	99.5	94.3	77.8	67.8	56.0	48.2	42.1	37.2
1/2Ag ₂ SO ₄	116.3	108.4	102.9								
¹ / ₃ AlBr ₃ (25°)	132	124	119	103	97						
1/3AlCl	121.1	105.0	93.8			65.0	56.2	44.2	34.7	27.2	
¹ / ₃ All ₃ (25°)	131	124	119	108							
$\frac{1}{3}$ Al(NO ₃) ₃ (25°)	123	115	110	94	88						
$\frac{1}{6} Al_2 (SO_4)_3 (25^{\circ})$	107.2	76.8	60.6								
$\frac{1}{2}Ba(OAc)_{2}$	85.0	80.4	77.1	65.7	60.2	43.8	34.3				
$\frac{1}{2}Ba(BrO_3)_2$ (25°)	113.6	106.8	102.7								
¹ /2BaCl ₂	115.6	112.3	106.7	96.0	90.8	77.3	70.1	60.3	52.3		
$\frac{1}{2}$ Ba(\tilde{NO}_3) ₂	111.7	105.3	101.0	86.8	78.9	56.6	48.4		29.8	23.4	
¹ /2Ba(OH) ₂	216	213	207	191	180						
Butyric acid						1.66	0.98	0.46	0.26	0.18	0.11
$\frac{1}{2}Ca(OAc)_{2}$	79.6	75.0	71.9	60.3	54.0	36.3	26.3				
1/2 CaCl	112.0	106.7	103.4	93.3	88.2	74.9	67.5	58.3	49.7	42.4	35.6
$\frac{1}{2}Ca(\tilde{NO}_3)_2$	108.5	103.0	99.5	88.4	82.5	65.7	55.9	43.5	35.5	26.0	21.5
¹ /2Ca(OH) ₂		233	226								
1/2 CaSO4	104.3	86.3	77.4								
¹ / ₂ CdBr ₂		86.5	76.3	53.2	44.6	25.3	18.3	12.5	9.1	6.8	5.3
¹ / ₂ CdCl ₂		91	83	59	50	30.8	22.4	14.4	9.9	7.1	5.4
¹ / ₂ CdI ₂		76.7	65.6	40.1	31.0	18.3	15.4	12.3	9.7	8.0	
$\frac{1}{2}Cd(NO_3)_2$		100	96	86.4	80.8	63.9	54.5	41.0	31.4	23.7	17.6
½CdSO₄	97.7	79.7	70.3	49.6	42.2	28.7	23.6	17.7	14.0	11.0	8.35
$\frac{1}{3}CeCl_{3}(25^{\circ})$	137.4		122.1		99.0						
$\frac{1}{6}Ce_{2}(C_{2}O_{4})_{3}(25^{\circ})$	85.5	54	45.8	29							
Chloroacetic acid (25°)					42.9	20.2	13.6	8.1	5.6	4.2	3.3
Citric acid	88.4	54	42.5	22.0	16.1	7.3	5.4				
¹ / ₂ CoCl ₂		99.3	95.6	82.3	75.0	51.5	45.3	40.3	35.4	30.5	26.4
¹ / ₃ CrCl ₃						68.6	56.8	44.8	35.2		

	i .										
$\frac{1}{2}CrO_{3}(H_{2}CrO_{4})$ (25°)	201	195	193	191	186						
CsCl	130.7	127.5	125.2		113.5	104.3	100.3	95.7	85.1		
$\frac{1}{2}Cu(OAc)_{2} (25^{\circ})$	55.7	50.6	47.2	34.9	28.4						
¹ / ₂ CuCl ₂								41.2	31.5	24.5	19.1
$\frac{1}{2}Cu(NO_3)_2$ (15°)	107.9	97.1	93.7	83.7	78.2	67.5	56.8	45.4	35.3	27.8	21.4
¹ / ₂ CuSO ₄	98.5	81.0	71.7	53.6	43.8	30.5	25.6	19.7	16.5		
Dichloroacetic acid (25°)					207.5	119	82	44.6	26.5	16.3	9.6
$\frac{1}{2}$ FeCl ₂ (25°)	131	125	120	103	93						
¹ / ₃ FeCl ₃						66.5	52.9	37.6	28.1	20.5	15.9
¹ /2FeSO ₄	82	75	70	54	44.5	30.8	25.8	19.5	15.37		
Formic acid	125.6						5.18	3.68	2.93	2.39	1.92
H_3AsO_4 (1 <i>M</i>) (25°)	308.2	230.0	187.0	103.4	80.4						
H ₃ BO ₃	13.5										
HBr					356	306	282	243	214	179	
HBrO ₃ (25°)	401	387	373	272	156						
HCl	377	373	370	360	351	327	301		215		152.2
HClO ₃					343	317	292	247	207		
$HClO_{4}(25^{\circ})$	413	406	402	392	386	358					
HF		90	60	35.9	31.3	27.0	25.7		24.2		24.0
HI					347	322	297	255	215	179	
HIO ₃	343.3	332.8	323.9		253	175	141	106	87	71	
HNO ₃	375	371	368	357	350	324	310		220		156
$H_{4}PO_{4}(1 M)$	318	279	255				66		53.1		51.3
HSCN (25°)	399	394	390	377	370						
¹ /2H ₂ SO ₄	361	330	308	253	225	205	198		166.8		135.0
¹ /2HgCl ₂				1.85	1.23						
¹ / ₃ InBr ₃					53.9	37.0	28.7	19.8	14.4	10.1	
KOAc	98.3	95.7	94.0	87.7	83.8	71.6	63.4	50.0	40.7	31.4	24.5
KBr	129.4	126.4	124.4	117.8	114.2	105.4	102.5	98.0	93.3	87.9	
KBrO₃	109.9	106.9	104.7	97.3	93.0						
¹ / ₃ K ₃ citrate		109.9	103	87.8	80.8						
KCI	127.3	124.4	122.4	115.8	112.0	102.4	98.3	92.0	88.9		
KClO ₃	116.9	113.6	111.6	103.7	99.2	85.3					
KClO ₄ (25°)	137.9	134.2	131.5	121.6	115.2						

TABLE 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C (Continued)

The unit of Λ in the table is $\Omega^{-1} \cdot cm^{-2} \cdot equiv^{-1}$. The entities to which the equivalent relates are given in the first column.

		Concentration, N												
Electrolyte	0.001	0.005	0.01	0.05	0.1	0.5	1.0	2.0	3.0	4.0	5.0			
KCN (15°)						104.2	99.7							
¹ / ₂ K ₂ CO ₃	133.0	121.6	115.5	100.7	94.1	77.8	70.7	65.0	55.6	49.2	42.9			
$\frac{1}{2}K_{2}C_{2}O_{4}$	122.4	116.7	112.5	100.8	94.9	80.4	73.7							
$\frac{1}{2}K_2CrO_4$					100.5	86.4	79.5	72.0	59.9					
$\frac{1}{2}K_{2}Cr_{2}O_{7}$					98.2	85.4								
KF	108.9	106.2	104.3	97.7	94.0	82.6	76.0	63.4	56.5	51.7	46.5			
$\frac{1}{3}K_{3}[Fe(CN)_{6}]$	163.1	150.7												
$\frac{1}{4}K_4$ [Fe(CN) ₆]	167.2	146.1	134.8	107.7	97.9									
KHCO ₃ (25°)	115.3	112.2	110.1			86.5	78.9							
KH phthalate	119.3	103.7	99.9	89.3	83.8									
KHŚ						92.5	91.7	86.4	80.7		69.3			
KHSO₄						21.0	18.4	15.2						
KH_2PO_4 (1 <i>M</i>) (25°)	107.1	100.8	98.0	90.7	85.6	60.018	45.8 ¹⁸							
KI	128.2	125.3	123.4	117.3	114.0	106.2	103.6	101.3	96.4	89.0	81.2			
KIO3	96.0	93.2	91.2	84.1	79.7									
KIO_{4} (25°)	124.9	121.2	118.5	106.7	98.1									
$KMnO_4$ (25°)	133.3		126.5		113									
KNO3	123.6	120.5	118.2	109.9	104.8	89.2	80.5	69.4	61.3					
KOH	234	230	228	219	213	197	184		140.6		105.8			
KReO₄ (25°)	125.1	121.3	118.5	106.4	97.4									
1/2K2S							135.6	119.7	108.3	97.2	86.1			
KSČN	118.6	115.8	113.9	107.7	104.3	95.7	91.6	86.8	74.6					
½K₂SO₄	126.9	120.3	115.8	101.9	94.9	78.5	71.6							
¹ / ₂ LaCl ₃ (25°)	137.0	127.5	121.8	106.2	99.1									
¹ / ₃ La(NO ₃) ₃				86.1	72.1	65.4	54.0	39.1	28.5	19.9				
$\frac{1}{6}La_2(SO_4)_3$				25.7	21.5									
Lactic acid	108.9	53.5	39	18.1	13.2									
LiOAc					51.3	37.7	28.9	18.2	11.9	7.2				
LiBr				87.9	84.4	73.9	67.2	57.7		44.2				
LiCl	96.5	93.9	92.1	86.1	82.4	70.7	63.4	53.1	45.3		33.3			
LiClO ₄ (25°)	103.4	100.6	98.6	92.2	88.6									

1/2Li2CO3				64.2	59.1						
LiI						75.3	69.2	61.0			
LiIO ₃	65.3	62.9	61.2	55.3	51.5	39.0	31.2	21.4	14.6		
LiNO ₃	92.9	90.3	88.6	82.7	79.2	68.0	60.8	50.3	34.9	27.3	
LiOH						149.0	134.5	113.5	95.7		
¹ / ₂ Li ₂ SO ₄	96.4		86.9	74.7	68.2	50.5	41.3	30.7	23.3	18.1	13.9
¹ /2MgCl ₂	106.4	101.3	98.1	88.5	83.4	69.6	61.5	52.3	43.3	35.0	28.0
$\frac{1}{2}Mg(NO_3)_2$	102.6	97.7	94.7	85.3	80.5	67.0	59.0	47.0	39.8		
¹ /2MgSO ₄	99.8	84.5	76.2	56.9	49.7	35.4	28.9	23.0	17.3	12.9	9.3
¹ /2MnCl ₂					86.0	68.5	61.0	48.5	38.8	30.2	23.0
¹ /2MnSO ₄						27.6	24.4	18.3	14.0	10.5	7.3
NH ₃ (aq)	28.0	13.2	9.6	4.6	3.3	1.35	0.89		0.36		0.20
NH ₄ OAc		92.9	91.4	84.9		60.5	54.7	42.9	34.0	26.5	
NH ₄ Cl	127.3	124.3	122.1	115.2	110.7	101.4	97.0	92.1	88.2	85.0	80.7
NH₄F					90.1	74.5	65.7	55.3	47.9	42.2	
NHI				118.0	115.0	106.0	103.1	100.0		91.4	84.5
NH₄NO₄	124.5		118.0	110.0	106.6	94.5	88.8	85.1		71.9	47.6
NHJSCN					104.3	94.0	89.9	84.7	79.2	74.0	
1/2(NH4)2SO4		120.0	116.5		89.0	79.5	73.0	65.0		55.2	
NaOAc	75.2	72.4	70.2	64.2	61.1	49.4	41.2	29.8	21.5	15.3	10.5
NaBr				99.1	96.0	84.6	78.1	69.1		53.0	
NaBrO₁						61.8	54.5	44.1			
Na <i>n</i> -butyrate (25°)	80.3	77.6	75.8	69.3	65.3						
NaCl	106.5	103.8	102.0	95.7	92.0	80.9	74.3	64.8	56.5	49.4	42.7
NaClO ₄	114.925	111.7 ²⁵	109.625	102.425	98.4 ²⁵	71.7	65.0	55.1	46.0	38.8	
¹ /2Na ₂ CO ₂	112	102.5	96.2	80.3	72.9	54.5	45.5	34.5	27.2		
¹ /2Na ₂ CrO ₄					82.5	66.4	57.7	46.6	38.3	31.1	
$\frac{1}{2}Na_{2}Cr_{2}O_{7}(25^{\circ})$		103		98.3	94.9						
NaF	87.8	85.2	83.5	77.0	73.1	60.0	51.9				
$\frac{1}{4}Na_{4}[Fe(CN)_{6}](25^{\circ})$		129.6	120.0	97.0	88.2						
Na formate	88.6					61.4	53.7	43.1	34.8	28.2	
NaHCO ₂ (25°)	93.5	90.5	88.4	80.6	76.0						
¹ /3Na ₂ HPO ₄	58.4		54.0		44.0	33.5	28.0				
NaH ₂ PO ₄	67.9	65.8	64.4	57.8	54.1						
1/4 Na_H_P_O7	41.1	39.4	38.2	34.6	32.5	25.4					
Nal	124.2	121.2	119.2	112.8	108.8	97.5	89.9	78.6	69.9	62.2	
	1										

TABLE 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C (Continued)

<i>The unit of</i> Λ <i>in the table is</i> Ω^{-}	$h^{-1} \cdot cm^{-2} \cdot equiv^{-1}$	¹ . The entities to which the ed	quivalent relates are	given in the first column.
--	---	---	-----------------------	----------------------------

		Concentration, N									
Electrolyte	0.001	0.005	0.01	0.05	0.1	0.5	1.0	2.0	3.0	4.0	5.0
NaIO ₃	75.2	72.6	70.9	64.4	60.5						
¹ /2Na ₂ MoO ₄	120.8	113	110								
NaN ₃ (25°)	117.1	113.8	110.5	101.3	95.7		68.0				
$NaNO_2$ (25°)							75.9	63.1	53.6		39.7
NaNO ₃	102.9	100.1	98.2	91.4	87.2	74.1	65.9	54.5	46.0	39.0	
NaOH	208	203	200	190	183	172	160		108.0		69.0
Na picrate (25°)	78.6	75.7	73.7	66.3	61.8						
¹ / ₃ Na ₃ PO ₄	125	122	119	91							
Na propionate (25°)	83.5	80.9	79.1								
1/2Na2S						117.0	104.3	85.0	71.0	59.0	47.2
NaSĈN						74.3	68.9	59.8	50.9	43.7	
¹ /2Na ₂ SiO ₃	144	139	136	124	116	88	72	51	38	27	19
¹ ⁄2Na ₂ SO₄	106.7	100.8	96.8	83.9	78.4	59.7	50.8	40.0	33.5		
(mono) Na tartrate	120	81.5	74.8	64.3	60.4						
$\frac{1}{2}$ Na ₂ WO ₄ (25°)	116.1	109.2	104.8	92.2	85.8						
½NiŠO₄	96.3	79.5	70.8	51.0	43.8	30.4	25.1	19.3	15.1		
¹ / ₂ Oxalic acid	180.7		158.2	132.9	116.9	75.9	59.4				
$\frac{1}{2}$ Pb(NO ₃) ₂	116.1	108.6	103.5	86.3	77.3	53.2	42.0	31.0			
Propionic acid						1.57	1.00	0.54		0.20	
RbCl	130.3	127.4	125.3	117.8	113.9		101.9	97.1	92.7	87.2	
RbOH					220.6	204.8	192.0	170.0	148.3		
¹ / ₄ SnCl ₄						216.8	121.7	66.9	47.9	32.7	
¹ /2SrCl ₂	114.5	108.9	105.4	94.4	90.2	75.7	68.5	58.7	49.9	42.2	
$\frac{1}{2}$ Sr(NO ₂)	108.3	102.7	99.0	87.3	80.9	62.7	52.1	38.0	29.3	29.3	16.4
Tartaric acid (15°)							7.03	4.58	3.32	2.48	1.83
¹ / ₄ ThCl						61.0	54.0	44.3	36.3	29.8	
TICI	128.2	123.7	120.2								
TIF	113.3	108.2	105.4	97.4	92.6	78.8	71.5	62.7			
TINO	124.7	121.1	118.4	107.9	101.2			0200			
¹ / ₂ Th SO	127.4	118.4	112.3	92.7	83.1						
Trichloroacetic acid			11210								
(25°)						273	207	127	79	44	19
$\frac{1}{100}F_{10}(25^{\circ})$	26.10	12.31	9.17	5.43	4.74	3.75	3.22				
$\frac{1}{2}$ UO SO (25°)	106.5	63.2	49.2	27.6	22.2	14.4	11.6				2.7
$\frac{1}{3}$ YCl ₂ (25°)	129	122	118	109		1	1110				2
$\frac{1}{27}$ n(OAc), (25°)	83	77	73	58	49						
$\frac{1}{2}$ 2nCl	107	101	98	87	82	65	55	39.6	29.6	23.2	18 5
$\frac{1}{2}$ $\frac{1}$	120	114	111	100	02	00	55	57.0	<i>20</i> ,00		10.5
$\frac{1}{7}$ 2nSO.	98.4	82.1	73.2	53.0	45.6	32.3	26.6	20.0	159	12.0	9.0
/2211004	70.7	02.1	13.2	55.0	-5.0	52.5	20.0	20.0	10.7	12.0	2.0

1.416

			Equivalent conductance, $cm^2 \cdot ohm^{-1} \cdot equivalent^{-1}$		
Temp., °C	Conductivity, $\mu S \cdot cm^{-1}$	Resistivity, M $\Omega \cdot cm$	λ^0 , H ⁺	λº, OH-	
0	0.011 61	86.14	224.1	117.8	
5	0.016 61	60.21	250.0	133.6	
10	0.023 15	43.21	275.6	149.6	
15	0.031 53	31.71	300.9	165.9	
18	0.037 54	26.64	315.8	491.6	
20	0.042 05	23.78	325.7	182.5	
25	0.055 08	18.15	350.1	199.2	
30	0.070 96	14.09	374.0	216.1	
35	0.090 05	11.10	397.4	233.0	
40	0.112 7	8.88	420.0	267.2	
45	0.139 3	7.18	442.0	267.2	
50	0.170 2	5.88	463.3	284.3	
55	0.205 5	4.86	483.8	301.4	
60	0.245 7	4.06	503.4	318.5	
65	0.291 2	3.43	522.0	335.4	
70	0.341 6	2.93	539.7	352.2	
75	0.397 8	2.51	556.4	368.8	
80	0.459 3	2.18	572.0	385.2	
85	0.525 8	1.90	586.4	401.4	
90	0.597 7	1.67	599.6	417.3	
95	0.675 3	1.48	611.6	432.8	
100	0.756 9	1.32	622.2	448.1	
150	1.84	0.543			
200	2.99	0.334	824	701	
250	3.31	0.302			
300	2.42	0.413	894	821	

TABLE 1.88 Conductivity of Very Pure Water at Various Temperatures and the Equivalent Conductances ofHydrogen and Hydroxyl Ions

Source: Data from T. S Light and S.L. Licht. Anal Chem., 59: 2327–2330(1987).

1.23 THERMAL PROPERTIES

TABLE 1.89 Eutectic Mixtures

The *eutectic temperature* $\theta_{C,E}$ is the lowest temperature at which both the solid components of a mixture are in equilibrium with the liquid phase. $\theta_{C,m}$ denotes melting temperature.

Component 1	$ heta_{ m c,m}/^{\circ} m C$	Component 2	$\theta_{\rm C,m}^{\rm o}/^{\rm o}{\rm C}$	$\theta_{\mathrm{C,E}}^{}/^{\mathrm{o}}\mathrm{C}$	Composition of eutectic mixture (per cent by mass)	
Sn	232	Pb	327	183	Sn, 63.0	Pb, 37.0
Sn	232	Zn	420	198	Sn, 91.0	Zn, 9.0
Sn	232	Ag	961	221	Sn, 96.5	Ag, 3.5
Sn	232	Cu	1083	227	Sn, 99.2	Cu, 0.8
Sn	232	Bi	271	140	Sn, 42.0	Bi, 58·0
Sb	630	Pb	327	246	Sb, 12.0	Pb, 88.0
Bi	271	Pb	327	124	Bi, 55.5	Pb, 44.5
Bi	271	Cd	321	146	Bi, 60·0	Cd, 40.0
Cd	321	Zn	420	270	Cd, 83.0	Zn, 17.0

TABLE 1.90 Transition Temperatures

 $\theta_{C,t}$ denotes transition temperature

Substance	System	$\theta_{C,t}/^{\circ}C$
sulphur	Rhombic (α) \rightleftharpoons Monoclinic (β)	95.6
Tin	Grey (α) White (β)	
Iron	α (body-centered cubic) $\rightleftharpoons \gamma$ (face-centered cubic)	906
	γ (body-centered cubic) $\rightleftharpoons \delta$ (face-centered cubic)	1401
Sodium sulphate	$Na_2So_4 10H_2O \rightleftharpoons Na_2SO_4 + 10H_2O$	32.4
Mercury(II) iodide	Tetragonal (red) \rightleftharpoons Orthorhombic (yellow)	126
Ammonium chloride	α (CsCl structure) $\rightleftharpoons \beta$ (NaCl structure)	184
Caesium chloride	CsCl structure \rightleftharpoons NaCl structure	445
Copper(I) mercury(II) Iodide	Tetragonal (red) \rightleftharpoons Cubic (dark brown)	69

SECTION 2 ORGANIC CHEMISTRY

SECTION 2 ORGANIC CHEMISTRY

2.1 NOMENCLATURE OF ORGANIC COMPOUNDS	2.4
2.1.1 Nonfunctional Compounds	2.4
Table 2.1 Straight-Chain Alkanes	2.4
Table 2.2 Fused Polycyclic Hydrocarbons	2.10
Table 2.3 Heterocyclic Systems	2.13
Table 2.4 Suffixes for Heterocyclic Systems	2.13
Table 2.5 Trivial Names of Heterocyclic Systems Suitable	
for Use in Fusion Names	2.14
Table 2.6 Trivial Names for Heterocyclic Systems that are Not	
Recommended for Use in Fusion Names	2.17
2.1.2 Functional Compounds	2.18
Table 2.7 Characteristic Groups for Substitutive Nomenclature	2.19
Table 2.8 Characteristic Groups Cited Only as Prefixes	
in Substitutive Nomenclature	2.20
Table 2.9 Radicofunctional Nomenclature	2.23
2.1.3 Specific Functional Groups	2.23
Table 2.10 Alcohols and Phenols	2.24
Table 2.11 Names of Some Carboxylic Acids	2.30
Table 2.12 Phosphorus-Containing Compounds	2.35
2.1.4 Stereochemistry	2.38
2.1.5 Amino Acids	2.47
Table 2.13 Formula and Nomenclature of Amino Acids	2.47
Table 2.14 Acid-Base Properties of Amino Acids	2.48
Table 2.15 Acid-Base Properties of Amino Acids with Ionizable Side Chains	2.48
2.1.6 Carbohydrates	2.48
2.1.7 Miscellaneous Compounds	2.54
Table 2.16 Representative Terpenes	2.54
Table 2.17 Representative Fatty Acids	2.55
Table 2.18 Pyrimidines and Purines that Occur in DNA and RNA	2.56
Table 2.19 Organic Radicals	2.57
2.2 PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS	2.64
Table 2.20 Physical Constants of Organic Compounds	2.65
Table 2.21 Melting Points of Derivatives of Organic Compounds	2.254
Table 2.22 Melting Points of n-Paraffins	2.255
Table 2.23 Boiling Point and Density of Alkyl Halides	2.255
Table 2.24 Properties of Carboxylic Acids	2.256
Table 2.25 The Structure, Melting Point, and Boiling Points	
of Polycyclic Aromatic Hydrocarbons	2.257
Table 2.26 Properties of Naturally Occurring Amino Acids	2.267
Table 2.27 Hildebrand Solubility Parameters of Organic Liquids	2.268
Table 2.28 Hansen Solubility Parameters of Organic Liquids	2.269
Table 2.29 Group Contributions to the Solubility Parameter	2.270
2.3 VISCOSITY AND SURFACE TENSION	2.270
Table 2.30 Viscosity and Surface Tension of Organic Compounds	2.272
Table 2.31 Viscosity of Aqueous Glycerol Solutions	2.287
Table 2.32 Viscosity of Aqueous Sucrose Solutions	2.287
2.4 REFRACTION AND REFRACTIVE INDEX	2.287
Table 2.33 Atomic and Group Refractions	2.288

		Table 2.34	Refractive Indices of Organic Compounds	2.289
		Table 2.35	Solvents Having the Same Refractive Index and the Same	
			Density at 25°C	2.294
1	2.5	VAPOR PRES	SSURE AND BOILING POINTS	2.296
		Table 2.36	Vapor Pressures of Various Organic Compounds	2.297
		Table 2.37	Boiling Points of Common Organic Compounds	
			at Selected Pressures	2.315
		Table 2 38	Organic Solvents Arranged by Boiling Points	2 348
		Table 2 39	Boiling Points of n-Paraffins	2 350
	26			2.000
	2.0	Table 2 40	Roiling Points Elash points and Ignition Tomporatures	2.551
		10016 2.40	of Organia Compounds	2 252
		Table 2.41	Drementing of Compounds	2.302
			Properties of Combustible Wixtures in Air	2.420
1	2.1	AZEUTRUP		2.434
		lable 2.42	Binary Azeotropic (Constant-Boiling) Mixtures	2.435
		Table 2.43	Ternary Azeotropic Mixtures	2.454
-	2.8	FREEZING N	AIXTURES	2.460
		Table 2.44	Compositions of Aqueous Antifreeze Solutions	2.460
- 1	2.9	BOND LENG	THS AND STRENGTHS	2.464
		Table 2.45	Bond Lengths between Carbon and Other Elements	2.464
		Table 2.46	Bond Dissociation Energies	2.467
1	2.10	DIPOLE MC	DMENTS AND DIELECTRIC CONSTANTS	2.468
		Table 2.47	Bond Dipole Moments	2.468
		Table 2.48	Group Dipole Moments	2.469
		Table 2.49	Dielectric Constant (Permittivity) and Dipole Moment	
			of Organic Compounds	2.470
:	2.11	IONIZATION	N ENERGY	2.494
		Table 2.50	Ionization Energy of Molecular and Radical Species	2,495
	2.12	THERMAL	CONDUCTIVITY	2.506
		Table 2 51	Thermal Conductivities of Gases as a Function of Temperature	2 506
		Table 2.57	Thermal Conductivities of Causes as a random of temperature	2 500
	2 12			2.505
	2.13			2 5 1 2
	0 10		o (chande of State)	2.012
1	2.13.		Francisco and Cibbs analysics of Formation Entranias and Heat	2.512
		Table 2.53	Enthalpies and Globs energies of Formation, Entropies, and Heat	0 5 4 5
		-	Capacities of Organic Compounds	2.515
		lable 2.54	Heats of Fusion, Vaporization, Sublimation, and Specific Heat at Vari	ous
			lemperatures of Organic Compounds	2.561
	2.14	CRITICAL P	ROPERTIES	2.591
		Table 2.55	Critical Properties	2.592
		Table 2.56	Lydersen's Critical Property Increments	2.607
		Table 2.57	Vetere Group Contribution to Estimate Critical Volume	2.608
		Table 2.58	Van der Waals' Constants for Gases	2.609
1	2.15	EQUILIBRI	JM CONSTANTS	2.620
		Table 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C	2.620
		Table 2.60	Selected Equilibrium Constants in Aqueous Solution	
			at Various Temperatures	2.670
		Table 2.61	<i>pK</i> , Values for Proton-Transfer Reactions in Non-aqueous Solvents	2.676
:	2.16	INDICATOR	IS	2.677
	-	Table 2.62	Acid-Base Indicators	2.677
		Table 2.63	Mixed Indicators	2.680
		Table 2 64	Fluorescent Indicators	2 682
		10010 2.04		2.002

	Table 2.65	Selected List of Oxidation-Reduction Indicators	2.684
	Table 2.66	Indicators for Approximate pH Determination	2.686
	Table 2.67	Oxidation-Reduction Indicators	2.686
2.17	ELECTROD	E POTENTIALS	2.687
	Table 2.68	Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic	
		Compounds at 25°C	2.687
2.18	ELECTRICA	L CONDUCTIVITY	2.698
	Table 2.69	Electrical Conductivity of Various Pure Liquids	2.698
	Table 2.70	Limiting Equivalent Ionic Conductance in Aqueous Solutions	2.699
	Table 2.71	Properties of Organic Semi-Conductors	2.700
2.19	LINEAR FR	EE ENERGY RELATIONSHIPS	2.702
	Table 2.72	Hammett and Taft Substituent Constants	2.703
	Table 2.73	<i>pK</i> ° _a and Rho Values for Hammett Equation	2.707
	Table 2.74	pK°_{a} and Rho Values for Taft Equation	2.708
	Table 2.75	Special Hammett Sigma Constants	2.709
2.20	POLYMERS		2.709
	Table 2.76	Names and Structures of Polymers	2.730
	Table 2.77	Plastics	2.739
	Table 2.78	Properties of Commercial Plastics	2.740
	Table 2.79	Properties of Natural and Synthetic Rubbers	2.776
	Table 2.80	Density of Polymers Listed by Trade Name	2.777
	Table 2.81	Density of Polymers Listed by Chemical Name	2.778
	Table 2.82	Density of Polymers at Various Temperatures	2.780
	Table 2.83	Surface Tension (Liquid Phase) of Polymers	2.782
	Table 2.84	Interfacial Tension (Liquid Phase) of Polymers	2.783
	Table 2.85	Thermal Expansion Coefficients of Polymers	2.784
	Table 2.86	Heat Capacities of Polymers	2.786
	Table 2.87	Thermal Conductivity of Polymers	2.798
	Table 2.88	Thermal Conductivity of Foamed Polymers	2.798
	Table 2.89	Thermal Conductivity of Polymers with Fillers	2.799
	Table 2.90	Resistance of Selected Polymers and Rubber to Various	
		Chemicals at 20°C	2.800
	Table 2.91	Gas Permeability Constants (10 ¹⁰ <i>P</i>) at 25°C	
		for Polymers and Rubber	2.801
	Table 2.92	Vapor Permeability Constants (10 ¹⁰ <i>P</i>) at 35°C	
		for Polymers	2.803
	Table 2.93	Hildebrand Solubility Parameters of Polymers	2.804
	Table 2.94	Hansen Solubility Parameters of Polymers	2.805
	Table 2.95	Refractive Indices of Polymers	2.807
2.21	FATS, OILS	, AND WAXES	2.807
	Table 2.96	Physical Properties of Fats and Oils	2.808
	Table 2.97	Physical Properties of of Waxes	2.810
2.22	PETROLEU	M PRODUCTS	2.811
	Table 2.98	Physical Properties of Petroleum Products	2.811
2.1 NOMENCLATURE OF ORGANIC COMPOUNDS

The following synopsis of rules for naming organic compounds and the examples given in explanation are not intended to cover all the possible cases.

2.1.1 Nonfunctional Compounds

2.1.1.1 Alkanes. The saturated open-chain (acyclic) hydrocarbons (C_nH_{2n+2}) have names ending in -ane. The first four members have the trivial names *methane* (CH₄), *ethane* (CH₃CH₃ or C₂H₆), *propane* (C₃H₈), and *butane* (C₄H₁₀). For the remainder of the alkanes, the first portion of the name is derived from the Greek prefix that cites the number of carbons in the alkane followed by -ane with elision of the terminal -a from the prefix.

TAB	LE	2.'	St	raigh	t-Ch	ain	Alkanes
-----	----	-----	----	-------	------	-----	---------

n*	Name	<i>n</i> *	Name	<i>n</i> *	Name	n*	Name
1	Mathana	11	Undecone+	21	Uaniaosana	60	Horacontano
T	wiethane	11	Undecane ₄	21	Hemcosane	00	nexacontane
2	Ethane	12	Dodecane	22	Docosane	70	Heptacontane
3	Propane	13	Tridecane	23	Tricosane	80	Octacontane
4	Butane	14	Tetradecane			90	Nonacontane
5	Pentane	15	Pentadecane	30	Triacontane	·100	Hectane
6	Hexane	16	Hexadecane	31	Hentriacontane	110	Decahectane
7	Heptane	17	Heptadecane	32	Dotriacontane	120	Icosahectane
8	Octane	18	Octadecane			121	Henicosahectane
9	Nonane [†]	19	Nonadecane	40	Tetracontane		
10	Decane	20	Icosane§	50	Pentacontane		
						1	

* n = total number of carbon atoms.

[†] Formerly called enneane.

[‡] Formerly called hendecane.

§ Formerly called eicosane.

For branching compounds, the parent structure is the longest continuous chain present in the compound. Consider the compound to have been derived from this structure by replacement of hydrogen by various alkyl groups. Arabic number prefixes indicate the carbon to which the alkyl group is attached. Start numbering at whichever end of the parent structure that results in the lowest-numbered locants. The arabic prefixes are listed in numerical sequence, separated from each other by commas and from the remainder of the name by a hyphen.

If the same alkyl group occurs more than once as a side chain, this is indicated by the prefixes di-, tri-, tetra-, etc. Side chains are cited in alphabetical order (before insertion of any multiplying prefix). The name of a complex radical (side chain) is considered to begin with the first letter of its complete name. Where names of complex radicals are composed of identical words, priority for citation is given to that radical which contains the lowest-numbered locant at the first cited point of difference in the radical. If two or more side chains are in equivalent positions, the one to be assigned the lowest-numbered locant is that cited first in the name. The complete expression for the side chain may be enclosed in parentheses for clarity or the carbon atoms in side chains may be indicated by primed locants.

If hydrocarbon chains of equal length are competing for selection as the parent, the choice goes in descending order to (1) the chain that has the greatest number of side chains, (2) the chain whose side chains have the lowest-numbered locants, (3) the chain having the greatest number of carbon atoms in the smaller side chains, or (4) the chain having the least-branched side chains.

These trivial names may be used for the unsubstituted hydrocarbon only:

Isobutane	(CH ₃) ₂ CHCH ₃	Neopentane	$(CH_3)_4C$
Isopentane	(CH ₃) ₂ CHCH ₂ CH ₃	Isohexane	(CH ₃) ₂ CHCH ₂ CH ₂ CH ₃

Univalent radicals derived from saturated unbranched alkanes by removal of hydrogen from a terminal carbon atom are named by adding -yl in place of -ane to the stem name. Thus the alkane *ethane* becomes the radical *ethyl*. These exceptions are permitted for unsubstituted radicals only:

Isopropyl	$(CH_3)_2CH$ —	Isopentyl	(CH ₃) ₂ CHCH ₂ CH ₂ —
Isobutyl	(CH ₃) ₂ CHCH ₂	Neopentyl	(CH ₃) ₃ CCH ₂ —
sec-Butyl	CH ₃ CH ₂ CH(CH ₃)—	tert-Pentyl	CH ₃ CH ₂ C(CH ₃) ₂ —
<i>tert</i> -Butyl	(CH ₃) ₃ C—	Isohexyl	(CH ₃) ₂ CHCH ₂ CH ₂ CH ₂ —

Note the usage of the prefixes iso-, neo-, *sec-*, and *tert-*, and note when italics are employed. Italicized prefixes are never involved in alphabetization, except among themselves; thus *sec*-butyl would precede isobutyl, isohexyl would precede isopropyl, and *sec*-butyl would precede *tert*-butyl.

Examples of alkane nomenclature are

$$\overset{4}{C}H_{3} - \overset{3}{C}H_{2} - \overset{2}{C}H - \overset{1}{C}H_{3}$$

2-Methylbutane (or the trivial name, isopentane)

$${}^{5}_{CH_{3}}$$
 - ${}^{4}_{CH_{2}}$ - ${}^{3}_{CH}$ - CH₃ 3-Methylpentane (not 2-ethylbutane)
 ${}^{1}_{2}_{2H_{2}}$ - CH₃

$$\overset{c}{\overset{c}{\operatorname{CH}_{3}}}_{\overset{c}{\operatorname{CH}_{2}}-\overset{5}{\overset{c}{\operatorname{CH}_{2}}-\overset{5}{\overset{c}{\operatorname{CH}_{2}}-\overset{4}{\overset{c}{\operatorname{CH}_{2}}-\overset{3}{\underset{l}{\operatorname{CH}_{2}}-\overset{2}{\overset{l}{\operatorname{C}}-\overset{1}{\underset{l}{\operatorname{CH}_{3}}-\overset{1}{\underset{L}{\operatorname{CH}_{3}}-\overset{1}{\underset{L}{\operatorname{CH}_{3}}-\overset{1}{\underset{L}{\operatorname{CH}$$

5-Ethyl-2,2-dimethyloctane (note cited order)

$$\overset{\text{\&}}{\overset{\text{L}}{\text{CH}_3}} - \overset{7}{\overset{\text{C}}{\text{CH}_2}} - \overset{6}{\overset{\text{C}}{\text{CH}_2}} - \overset{5}{\overset{\text{C}}{\text{CH}_2}} - \overset{4}{\overset{\text{C}}{\text{CH}_2}} - \overset{3}{\overset{\text{C}}{\text{CH}_2}} - \overset{2}{\overset{\text{C}}{\text{CH}_2}} - \overset{1}{\overset{\text{C}}{\text{CH}_3}} + \overset{2}{\overset{\text{C}}{\text{CH}_2}} - \overset{1}{\overset{\text{C}}{\text{CH}_3}} + \overset{2}{\overset{\text{C}}{\text{CH}_2}} - \overset{1}{\overset{\text{C}}{\text{CH}_3}} + \overset{2}{\overset{\text{C}}{\text{CH}_2}} - \overset{1}{\overset{1}{\text{CH}_3}} + \overset{2}{\overset{1}{\overset{\text{C}}{\text{CH}_2}} - \overset{1}{\overset{1}{\overset{\text{C}}{\text{CH}_3}}} + \overset{2}{\overset{1}{\overset{1}{\overset{\text{C}}{\text{CH}_3}}} + \overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}}{\text{C}}{\text{CH}_3}}} + \overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}}{\text{C}}{\text{C}}{\text{CH}_3}}} + \overset{2}{\overset{2}{\overset{1}{\overset{1}{\overset{1}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}{\text{C}}} + \overset{2}{\overset{1}{\overset{1}{\overset{1}}{\text{C}}{{C}}{\text{C}}{{C}}{\text{C}}{{C}}{{C}}{\text{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{{C}}{$$

3-Ethyl-6-methyloctane (note locants reversed)

$$\overset{2}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{1}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{1}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{CH_{3}}{\overset{C}{\text{CH}_{3}}}_{CH_{2}} - \overset{CH_{3}}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{2}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{2}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{1}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{1}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{2}{\overset{C}{\text{CH}_{3}}}_{CH_{3}} - \overset{2}{\overset{C}{\text{CH}_{3}}}$$

4,4-Bis(1,1-dimethylethyl)-2-methyloctane 4,4-Bis-1',1'-dimethylethyl-2-methyloctane 4,4-Bis(*tert*-butyl)-2-methyloctane Bivalent radicals derived from saturated unbranched alkanes by removal of two hydrogen atoms are named as follows: (1) If both free bonds are on the same carbon atom, the ending -ane of the hydrocarbon is replaced with -ylidene. However, for the first member of the alkanes it is methylene rather than methylidene. Isopropylidene, *sec*-Butylidene, and neopentylidene may be used for the unsubstituted group only. (2) If the two free bonds are on different carbon atoms, the straight-chain group terminating in these two carbon atoms is named by citing the number of methylene groups comprising the chain. Other carbon groups are named as substituents. Ethylene is used rather than dimethylene for the first member of the series, and propylene is retained for $CH_3 - CH - CH_2 - (but trimethylene is - CH_2 - CH_2 - CH_2 -)$.

Trivalent groups derived by the removal of three hydrogen atoms from the same carbon are named by replacing the ending -ane of the parent hydrocarbon with -ylidyne.

2.1.1.2 Alkenes and Alkynes. Each name of the corresponding saturated hydrocarbon is converted to the corresponding alkene by changing the ending -ane to -ene. For alkynes the ending is -yne. With more than one double (or triple) bond, the endings are -adiene, -atriene, etc. (or -adiyne, -atriyne, etc.). The position of the double (or triple) bond in the parent chain is indicated by a locant obtained by numbering from the end of the chain nearest the double (or triple) bond; thus $CH_3CH_2CH_2CH_2$ is 1-butene and $CH_3C=CCH_3$ is 2-butyne.

For multiple unsaturated bonds, the chain is so numbered as to give the lowest possible locants to the unsaturated bonds. When there is a choice in numbering, the double bonds are given the lowest locants, and the alkene is cited before the alkyne where both occur in the name. Examples:

Unsaturated branched acyclic hydrocarbons are named as derivatives of the chain that contains the maximum number of double and/or triple bonds. When a choice exists, priority goes in sequence to (1) the chain with the greatest number of carbon atoms and (2) the chain containing the maximum number of double bonds.

These nonsystematic names are retained.

Ethylene
$$CH_2 = CH_2$$
Allene $CH_2 = C = CH_2$ Acetylene $HC = CH$

An example of nomenclature for alkenes and alkynes is

$$HC^{6} = \overset{CH_{2} - CH_{2} - CH_{3}}{\overset{I}{\underset{CH=CH_{2}}{\overset{G}{=}}} \overset{CH_{2} - CH_{3}}{\overset{CH_{2} - CH_{3}}{\overset{I}{\underset{CH=CH_{2}}{\overset{CH_{2}}{=}}}} 4-Propyl-3-vinyl-1,3-hexadien-5-yne$$

Univalent radicals have the endings -enyl, -ynyl, -dienyl, -diynyl, etc. When necessary, the positions of the double and triple bonds are indicated by locants, with the carbon atom with the free valence numbered as 1. Examples:

These names are retained:

 $\begin{array}{ll} \mbox{Vinyl (for ethenyl)} & \mbox{CH}_2 = \mbox{CH}- \\ \mbox{Allyl (for 2-propenyl)} & \mbox{CH}_2 = \mbox{CH}- \mbox{CH}_2 - \\ \mbox{Isopropenyl (for 1-methylvinyl but for unsubstituted radical only)} & \mbox{CH}_2 = \mbox{C(CH}_3) - \\ \end{array}$

Should there be a choice for the fundamental straight chain of a radical, that chain is selected which contains (1) the maximum number of double and triple bonds, (2) the largest number of carbon atoms, and (3) the largest number of double bonds. These are in descending priority.

Bivalent radicals derived from unbranched alkenes, alkadienes, and alkynes by removing a hydrogen atom from each of the terminal carbon atoms are named by replacing the endings -ene, -diene, and -yne by -enylene, -dienylene, and -ynylene, respectively. Positions of double and triple bonds are indicated by numbers when necessary. The name *vinylene* instead of ethenylene is retained for -CH=CH-.

2.1.1.3 *Monocyclic Aliphatic Hydrocarbons.* Monocyclic aliphatic hydrocarbons (with no side chains) are named by prefixing cyclo- to the name of the corresponding open-chain hydrocarbon having the same number of carbon atoms as the ring. Radicals are formed as with the alkanes, alkenes, and alkynes. Examples:

For convenience, aliphatic rings are often represented by simple geometric figures: a triangle for cyclopropane, a square for cyclobutane, a pentagon for cyclopentane, a hexagon (as illustrated) for cyclohexane, etc. It is understood that two hydrogen atoms are located at each corner of the figure unless some other group is indicated for one or both.

2.1.1.3 *Monocyclic Aromatic Compounds.* Except for six retained names, all monocyclic substituted aromatic hydrocarbons are named systematically as derivatives of benzene. Moreover, if the substituent introduced into a compound with a retained trivial name is identical with one already present in that compound, the compound is named as a derivative of benzene. These names are retained:

The position of substituents is indicated by numbers, with the lowest locant possible given to substituents. When a name is based on a recognized trivial name, priority for lowest-numbered locants is given to substituents implied by the trivial name. When only two substituents are present on a benzene ring, their position may be indicated by *o*- (*ortho*-), *m*- (*meta*-), and *p*- (*para*-) (and alphabetized in the order given) used in place of 1,2-, 1,3-, and 1,4-, respectively.

Radicals derived from monocyclic substituted aromatic hydrocarbons and having the free valence at a ring atom (numbered 1) are named phenyl (for benzene as parent, since benzyl is used for the radical $C_6H_5CH_2$ —), cumenyl, mesityl, tolyl, and xylyl. All other radicals are named as substituted phenyl radicals. For radicals having a single free valence in the side chain, these trivial names are retained:

Benzyl	C ₆ H ₅ CH ₂ -	-	-	Phenethyl	C ₆ H ₅ CH ₂ CH ₂ —
Benzhydryl	l (alternative	e to	,	Styryl	C ₆ H ₅ CH=CH-
diphenyl	methyl)	$(C_6H_5)_2CH$ —		Trityl	$(C_6H_5)_3C -$
Cinnamyl	C ₆ H ₅ CH	$I = CH - CH_2 - CH_2$			

Otherwise, radicals having the free valence(s) in the side chain are named in accordance with the rules for alkanes, alkenes, or alkynes.

The name *phenylene* (o-, m-, or p-) is retained for the radical $-C_6H_4-$. Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals, with the carbon atoms having the free valences being numbered 1,2-, 1,3-, or 1,4-, as appropriate.

Radicals having three or more free valences are named by adding the suffixes -triyl, -tetrayl, etc. to the systematic name of the corresponding hydrocarbon.

2.1.1.4 *Fused Polycyclic Hydrocarbons.* The names of polycyclic hydrocarbons containing the maximum number of conjugated double bonds end in -ene. Here the ending does not denote one double bond. Names of hydrocarbons containing five or more fixed benzene rings in a linear arrangement are formed from a numerical prefix followed by -acene.

Numbering of each ring system is fixed but it follows a systematic pattern. The individual rings of each system is oriented so that the greatest number of rings are (1) in a horizontal row and (2) the maximum number of rings is above and to the right (upper-right quadrant) of the horizontal row. When two orientations meet these requirements, the one is chosen that has the fewest rings in the lower-left quadrant. Numbering proceeds in a clockwise direction, commencing with the carbon atom not engaged in ring fusion that lies in the most counterclockwise position of the uppermost ring (upper-right quadrant); omit atoms common to two or more rings. Atoms common to two or more rings are designated by adding lowercase roman letters to the number of the position immediately preceding. Interior atoms follow the highest number, taking a clockwise sequence wherever there is a choice. Anthracene and phenanthrene are two exceptions to the rule on numbering. Two examples of numbering follow:

When a ring system with the maximum number of conjugated double bonds can exist in two or more forms differing only in the position of an "extra" hydrogen atom, the name can be made specific by indicating the position of the extra hydrogen(s). The compound name is modified with a locant followed by an italic capital H for each of these hydrogen atoms. Carbon atoms that carry an indicated hydrogen atom are numbered as low as possible. For example, 1*H*-indene is illustrated in Table 2.2; 2*H*-indene would be

Names of polycyclic hydrocarbons with less than the maximum number of noncumulative double bonds are formed from a prefix dihydro-, tetrahydro-, etc., followed by the name of the corresponding unreduced hydrocarbon. The prefix perhydro- signifies full hydrogenation. For example, 1,2dihydronaphthalene is

Examples of retained names and their structures are as follows:

Polycyclic compounds in which two rings have two atoms in common or in which one ring contains two atoms in common with each of two or more rings of a contiguous series of rings and which contain at least two rings of five or more members with the maximum number of noncumulative double bonds and which have no accepted trivial name are named by prefixing to the name of the parent ring or ring system designations of the other components. The parent name should contain as many rings as possible (provided it has a trivial name). Furthermore, the attached component(s) should be as simple as possible. For example, one writes dibenzophenanthrene and not naphthophenanthrene because the attached component benzo- is simpler than napththo-. Prefixes designating attached components are formed by changing the ending -ene into -eno-; for example, indeno- from indene. Multiple prefixes are arranged in alphabetical order. Several abbreviated prefixes are recognized; the parent is given in parentheses:

Acenaphtho	o- (acenaphthylene)	Naphtho-	(naphthalene)
Anthra-	(anthracene)	Perylo-	(perylene)
Benzo-	(benzene)	Phenanthro-	(phenanthrene)

TABLE 2.2 Fused Polycyclic Hydrocarbons

^{*}Asterisk after a compound denotes exception to systematic numbering.

For monocyclic prefixes other than benzo-, the following names are recognized, each to represent the form with the maximum number of noncumulative double bonds: cyclopenta-, cyclohepta-, cyclohepta-, etc.

Isomers are distinguished by lettering the peripheral sides of the parent beginning with a for the side 1,2, and so on, lettering every side around the periphery. If necessary for clarity, the numbers of the attached position (1,2, for example) of the substituent ring are also denoted. The prefixes are cited in alphabetical order. The numbers and letters are enclosed in square brackets and placed immediately after the designation of the attached component. Examples are

 $Benz[\alpha]$ anthracene

Anthra[2,1- α]naphthacene

2.1.1.5 Bridged Hydrocarbons. Saturated alicyclic hydrocarbon systems consisting of two rings that have two or more atoms in common take the name of the open-chain hydrocarbon containing the same total number of carbon atoms and are preceded by the prefix bicyclo-. The system is numbered commencing with one of the bridgeheads, numbering proceeding by the longest possible path to the second bridgehead. Numbering is then continued from this atom by the longer remaining unnumbered path back to the first bridgehead and is completed by the shortest path from the atom next to the first bridgehead. When a choice in numbering exists, unsaturation is given the lowest numbers. The number of carbon atoms in each of the bridges connecting the bridgeheads is indicated in brackets in descending order. Examples are

2.1.1.6 *Hydrocarbon Ring Assemblies.* Assemblies are two or more cyclic systems, either single rings or fused systems, that are joined directly to each other by double or single bonds. For identical systems naming may proceed (1) by placing the prefix bi- before the name of the corresponding radical or (2), for systems joined through a single bond, by placing the prefix bi- before the name of the corresponding hydrocarbon. In each case, the numbering of the assembly is that of the corresponding radical or hydrocarbon, one system being assigned unprimed numbers and the other primed numbers. The points of attachment are indicated by placing the appropriate locants before the name; an unprimed number is considered lower than the same number primed. The name *biphenyl* is used for the assembly consisting of two benzene rings. Examples are

1,1'-Bicyclopropyl or 1,1'-bicyclopropane 2-Ethyl-2'-propylbiphenyl

For nonidentical ring systems, one ring system is selected as the parent and the other systems are considered as substituents and are arranged in alphabetical order. The parent ring system is assigned unprimed numbers. The parent is chosen by considering the following characteristics in turn until a decision is reached: (1) the system containing the larger number of rings, (2) the system containing the larger ring, (3) the system in the lowest state hydrogenation, and (4) the highest-order number of ring

systems. Examples are given, with the deciding priority given in parentheses preceding the name:

- (1) 2-Phenylnaphthalene
- (2) and (4) 2-(2'-Naphthyl)azulene
- (3) Cyclohexylbenzene

2.1.1.7 *Radicals from Ring Systems.* Univalent substituent groups derived from polycyclic hydrocarbons are named by changing the final *e* of the hydrocarbon name to -yl. The carbon atoms having free valences are given locants as low as possible consistent with the fixed numbering of the hydrocarbon. Exceptions are naphthyl (instead of naphthalenyl), anthryl (for anthracenyl), and phenanthryl (for phenanthrenyl). However, these abbreviated forms are used only for the simple ring systems. Substituting groups derived from fused derivatives of these ring systems are named systematically.

2.1.1.8 Cyclic Hydrocarbons with Side Chains. Hydrocarbons composed of cyclic and aliphatic chains are named in a manner that is the simplest permissible or the most appropriate for the chemical intent. Hydrocarbons containing several chains attached to one cyclic nucleus are generally named as derivatives of the cyclic compound, and compounds containing several side chains and/or cyclic radicals attached to one chain are named as derivatives of the acyclic compound. Examples are

2-Ethyl-l-methylnaphthalene	Diphenylmethane
1,5-Diphenylpentane	2,3-Dimethyl-l-phenyl-l-hexene

Recognized trivial names for composite radicals are used if they lead to simplifications in naming. Examples are

1-Benzylnaphthalene 1,2,4-Tris(3-*p*-tolylpropyl)benzene

Fulvene, for methylenecyclopentadiene, and stilbene, for 1,2-diphenylethylene, are trivial names that are retained.

2.1.1.9 *Heterocyclic Systems.* Heterocyclic compounds can be named by relating them to the corresponding carbocyclic ring systems by using replacement nomenclature. Heteroatoms are denoted by prefixes ending in *a*. If two or more replacement prefixes are required in a single name, they are cited in the order of their listing in the table. The lowest possible numbers consistent with the numbering of

TABLE 2.3 Heterocyclic Systems

Element	Valence	Prefix	Element	Valence	Prefix
Oxygen Sulfur Selenium Tellurium Nitrogen Phosphorus Arsenic	2 2 2 3 3 3 3	Oxa- Thia- Selena- Tellura- Aza- Phospha-* Arsa-*	Antimony Bismuth Silicon Germanium Tin Lead Boron	3 3 4 4 4 4 3	Stiba-* Bisma- Sila- Germa- Stanna- Plumba- Bora-
Nitrogen Phosphorus Arsenic	3 3 3	Aza- Phospha-* Arsa-*	Tin Lead Boron Mercury	4 4 3 2	Stanna- Plumba- Bora- Mercura-

Heterocyclic atoms are listed in decreasing order of priority.

*When immediately followed by -in or -ine, phospha- should be replaced by phosphor-, arsa- by arsen-, and stiba- by antimon-. The saturated six-membered rings corresponding to phosphorin and arsenin are named *phosphorinane* and *arsenane*. A further exception is the replacement of borin by borinane.

the corresponding carbocyclic system are assigned to the heteroatoms and then to carbon atoms bearing double or triple bonds. Locants are cited immediately preceding the prefixes or suffixes to which they refer. Multiplicity of the same heteroatom is indicated by the appropriate prefix in the series: di-, tri-, tetra-, penta-, hexa-, etc.

If the corresponding carbocyclic system is partially or completely hydrogenated, the additional hydrogen is cited using the appropriate H- or hydro- prefixes. A trivial name along with the state of hydrogenation may be used. In the specialist nomenclature for heterocyclic systems, the prefix or prefixes (Table 2.3) are combined with the appropriate stem from Table 2.4, ending in an *a* where necessary. Examples of acceptable usage, including (1) replacement and (2) specialist nomenclature, are

 1-Oxa-4-azacyclohexane
 1,4-Oxazoline Morpholine 1,3-Diazacyclohex-5-ene
 1,2,3,4-Tetrahydro-1,3-diazine

- (1) Thiacyclopropane
- (2) Thiirane Ethylene sulfide

TABLE 2.4 Suffixes for Heterocyclic Systems

Number of	Rings Containi	ng Nitrogen	Rings Containing Nitrogen		
members	Unsaturation*	Saturation	Unsaturation*	Saturation	
3	-irine	-iridine	-irene	-irane	
4	-ete	-etidine	-ete	-etane	
5	-ole	-olidine	-ole	-olane	
6	-ine†	‡	-in	-ane§	
7	-epine	+	-epin	-epane	
8	-ocine	‡	-ocin	-ocane	
9	-onine	\$	-onin	-onane	
10	-ecine	‡	-ecin	-ecane	

*Unsaturation corresponding to the maximum number of noncumulative double bonds. Heteroatoms have the normal valences.

† For phosphorus, arsenic, antimony, and boron, there are special provisions (Table 2.3).

‡ Expressed by prefixing perhydro- to the name of the corresponding unsaturated compound.

§ Not applicable to silicon, germanium, tin, and lead; perhydro- is prefixed to the name of the corresponding unsaturated compound.

TABLE 2.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names

Listed in order of increasing priority as senior ring system.

Structure	Parent name	Radical name	Structure	Parent name	Radical name
$5 \underbrace{5}_{4}^{1} \underbrace{5}_{3}^{2}$	Thiophene	Thienyl	s CH ₂	2H-Pyrrole	2H-Pyrrolyl
8 7 5 5	2		S $N $ $N $ $N $ $N $ $N $ $N $ N	Pyrrole	Pyrrolyl
6 5	Thianthrene	Thianthrenyl	H	Imidazole	Imidazolyl
5 0 2	Furan	Furyl	$\int \frac{1}{1} \frac{1}{N_3}^2$		
	Pyran (2 <i>H</i> -shown)	Pyranyl		Pyrazole	Pyrazolyl
s 4 4			5 N 2	Isothiazole	Isothiazolyl
	Isobenzofuran	Isobenzo- furanyl		Isoxazole	Isoxazolyl
	Chromana	Chromenyl		Pyridine	Pyridyl
	(2H-shown)	Chromenyi		Pyrazine	Pyrazinyl
° 5 0 10	Xanthene*	Xanthenyl		Pyrimidine	Pyrimidinyl
	23		6 N N ²	Pyridazine	Pyridazinyl
-	Phenoxathiin	Phenoxa- thiinyl	5 4 3		

* Asterisk after a compound denotes exception to systematic numbering.

Structure	Parent name	Radical name	Structure	Parent name	Radical name
$ \begin{array}{c} $	Indolizine	Indolizinyl		Phthalazine	Phthalazinyl
6 5 4 3 1 2NH	Isoindole	Isoindolyl		Naphthyri- dine (1,8-shown)	Naphthyri- dinyl
	3H-Indole	3 <i>H</i> -Indolyl		Quinoxaline	Quinoxalinyl
6 5 4 3 4 3	Indole	Indolyl	7 6 5 7 N 2 N 3	Quinazoline	Quinazolinyl
6 5 4 3 4 3	1 <i>H</i> -Indazole	l <i>H-</i> Indazolyl		Cinnoline	Cinnolinyl
⁵ N ⁶ N ⁷ ² N ⁶ N ⁷ ³ N ⁶ N ⁷ N ⁷ ³ N ⁶ N ⁷	Purine*	Purinyl		Pteridine	Pteridinyl
$ \begin{array}{c} $	4 <i>H</i> -Quin- olizine	4 <i>H</i> -Quin- olizinyl		2	
$\begin{bmatrix} 7\\ 6\\ 5\\ 4 \end{bmatrix}$	Isoquinoline	Isoquinolyl	ј ^з н . н	4 4αH- Carbazole*	4 <i>αH</i> - Carbazolyl
	Quinolone	Quinolyl		Carbazole*	Carbazolyl

TABLE 2.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (Continued)

* Asterisk after a compound denotes exception to systematic numbering.

Radicals derived from heterocyclic compounds by removal of hydrogen from a ring are named by adding -yl to the names of the parent compounds (with elision of the final *e*, if present). These exceptions are retained:

Furyl (from furan)	Furfuryl (for 2-furylmethyl)
Pyridyl (from pyridine)	Furfurylidene (for 2-furylmethylene)
Piperidyl (from piperidine)	Thienyl (from thiophene)
Quinolyl (from quinoline)	Thenylidyne (for thienylmethylidyne)
Isoquinolyl	Furfurylidyne (for 2-furylmethylidyne)
Thenylidene (for thienylmethylene)	Thenyl (for thienylmethyl)

Also, piperidino- and morpholino- are preferred to 1-piperidyl- and 4-morpholinyl-, respectively.

TABLE 2.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (Continued)

* Asterisk after a compound denotes exception to systematic numbering.

TABLE 2.6 Trivial Names for Heterocyclic Systems That Are Not Recommended for Use in Fusion Names

 Listed in order of increasing priority.

Structure	Parent name	Radical name	Structure	Parent name	Radical name
$\frac{1}{10^2}$			^{1}N ^{1}N ^{1}N ^{1}N ^{1}N ^{1}N 2	Pyrazoline (3-shown*)	Pyrazolinyl
	Isochroman	Isochromanyl	$ \begin{array}{c} H\\ 6\\ 5\\ 4 \end{array} $	Piperidine	Piperidyl†
š š	Chroman	Chromanyl		Piperazine	Piperazinyl
$\frac{H}{N}$	Pyrrolidine	Pyrrolinyl	s A 3 H		
$\begin{array}{c} 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Pyrroline (2-shown*)	Pyrrolinyl		Indoline	Indolinyl
	Imidazolidine	Imidazolidinyl	⁶ ² NH	Isoindoline	Isoindolinyl
$H = \frac{1}{\sqrt{2}}$	Imidazoline (2-shown*)	Imidazolinyl	8 -N 5 -N -N -N -N -N -N -N -N -N -N -N -N -N		
4 N 3				Quinuclidine	Quinuclidinyl
¹ H 5 NH ²	Pyrazolidine	Pyrazolidinyl	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^2$	Morpholine	Morpholinyl‡
4 3			Н		

* Denotes position of double bond.

† For 1-piperidyl, use piperidino.

‡ For 4-morpholinyl, use morpholino.

If there is a choice among heterocyclic systems, the parent compound is decided in the following order of preference:

- 1. A nitrogen-containing component
- 2. A component containing a heteroatom, in the absence of nitrogen, as high as possible (Table 2.3).
- 3. A component containing the greater number of rings

- 4. A component containing the largest possible individual ring
- 5. A component containing the greatest number of heteroatoms of any kind
- 6. A component containing the greatest variety of heteroatoms
- 7. A component containing the greatest number of heteroatoms first listed in Table 2.3

If there is a choice between components of the same size containing the same number and kind of heteroatoms, choose as the base component that one with the lower numbers for the heteroatoms before fusion. When a fusion position is occupied by a heteroatom, the names of the component rings to be fused are selected to contain the heteroatom.

2.1.2 Functional Compounds

There are several types of nomenclature systems that are recognized. Which type to use is sometimes obvious from the nature of the compound. Substitutive nomenclature, in general, is preferred because of its broad applicability, but radicofunctional, additive, and replacement nomenclature systems are convenient in certain situations.

2.1.2.1 Substitutive Nomenclature. The first step is to determine the kind of characteristic (functional) group for use as the principal group of the parent compound. A characteristic group is a recognized combination of atoms that confers characteristic chemical properties on the molecule in which it occurs. Carbon-to-carbon unsaturation and heteroatoms in rings are considered nonfunctional for nomenclature purposes.

Substitution means the replacement of one or more hydrogen atoms in a given compound by some other kind of atom or group of atoms, functional or nonfunctional. In substitutive nomenclature, each substituent is cited as either a prefix or a suffix to the name of the parent (or substituting radical) to which it is attached; the latter is denoted the parent compound (or parent group if a radical).

When oxygen is replaced by sulfur, selenium, or tellurium, the priority for these elements is in the descending order listed. The higher valence states of each element are listed before considering the successive lower valence states. Derivative groups have priority for citation as principal group after the respective parents of their general class.

Systematic names formed by applying the principles of substitutive nomenclature are single words except for compounds named as acids. First, select the parent compound, and thus the suffix, from the characteristic group (Table 2.7). All remaining functional groups are handled as prefixes that precede, in alphabetical order, the parent name. Two examples are:

Structure I contains an ester group and an ether group. Since the ester group has higher priority, the name is ethyl 2-methoxy-6-methyl-3-cyclohexene-1-carboxylate. Structure II contains a carbonyl group, a hydroxy group, and a bromo group. The latter is never a suffix. Between the other two, the carbonyl group has higher priority, the parent has -one as suffix, and the name is 4-bromo-l-hydroxy-2-butanone.

Selection of the principal alicyclic chain or ring system is governed by these selection rules:

1. For purely alicyclic compounds, the selection process proceeds successively until a decision is reached: (a) the maximum number of substituents corresponding to the characteristic group

(Table 2.7) (b) the maximum number of double and triple bonds considered together, (c) the maximum length of the chain, and (d) the maximum number of double bonds.

- 2. If the characteristic group occurs only in a chain that carries a cyclic substituent, the compound is named as an aliphatic compound into which the cyclic component is substituted; a radical prefix is used to denote the cyclic component. This chain need not be the longest chain.
- 3. If the characteristic group occurs in more than one carbon chain and the chains are not directly attached to one another, then the chain chosen as parent should carry the largest number of the characteristic group. If necessary, the selection is continued as in rule 1.
- 4. If the characteristic group occurs only in one cyclic system, that system is chosen as the parent.
- 5. If the characteristic group occurs in more than one cyclic system, that system is chosen as parent which (a) carries the largest number of the principal group or, failing to reach a decision, (b) is the senior ring system.
- 6. If the characteristic group occurs both in a chain and in a cyclic system, the parent is that portion in which the principal group occurs in largest number. If the numbers are the same, that portion is chosen which is considered to be the most important or is the senior ring system.

TABLE 2.7 Characteristic Groups for Substitutive Nomenclature

Class	Formula*	Prefix	Suffix
1. Cations:		-onio-	-onium
	H_4N^+	Ammonio-	-ammonium
	H ₃ O ⁺	Oxonio-	-oxonium
	H ₃ S ⁺	Sulfonio-	-sulfonium
	H ₃ Se ⁺	Selenonio-	-selenonium
	H_2Cl^+	Chloronio-	-chloronium
	H ₂ Br ⁺	Bromonio-	-bromonium
	H ₂ I ⁺	Iodonio-	-iodonium
2. Acids:			
Carboxylic	—СООН	Carboxy-	-carboxylic acid
	(C)OOH		-oic acid
	-C(=0)00H		-peroxy carboxylic
	-(C=0)00H		-peroxyoic acid
Sulfonic	-SO.H	Sulfo-	-sulfonic acid
Sulfinic	-SO ₃ H	Sulfino-	-sulfinic acid
Sulfenic		Sulfeno-	-sulfenic acid
Salts		Guileno	Metalcarboxylate
Suits	-(C)OOM		Metaloate
	-SO-M		Metalsulfonate
	-SO M		Metalsulfinate
	-SOM		Metalsulfenate
3. Derivatives of			Metal Bullehade
Annydrides	-c(=0)0c(=0)-		-carboxylic annydride
	-(l=0)0(l=0)-	D	-oic annydride
Esters		R-oxycarbonyl-	R····carboxylate
	-C(OOR)		Roate
Acid halides		Haloformyl	-carbonyl nalide
Amides	$-CO-NH_2$	Cardamoyl-	-carboxamide
	$(C)O = NH_2$		-amide

Listed in order of decreasing priority for citation as principal group or parent name.

(Continued)

	1		
Class	Formula*	Prefix	Suffix
Hydrazides	-CO-NHNH ₂	Carbonyl- hydrazino-	-carbohydrazide
	$-(CO)$ $- NHNH_2$	-	-ohydrazide
Imides	-co-nh-co-	R-imido-	-carboximide
Amidines	$-C(=NH)-NH_2$	Amidino-	-carboxamidine
	$-(C=NH)-NH_2$		-amidine
Nitrile (cyanide)	-CN	Cyano-	-carbonitrile
	—(C)N		-nitrile
5. Aldehydes	—СНО	Formyl-	-carbaldehyde
	—(C==O)H	Oxo-	-al
	(then their analogs an	d derivatives)	
6. Ketones	>(C=0)	Oxo-	-one
	(then their analogs an	d derivatives)	
7. Alcohols (and phenols)	—он	Hydroxy-	-ol
Thiols	-SH	Mercapto-	-thiol
8. Hydroperoxides	—О—ОН	Hydroperoxy-	
9. Amines	-NH ₂	Amino-	-amine
Imines	>NH	Imino-	-imine
Hydrazines	-NHNH ₂	Hydrazino-	-hydrazine
10. Ethers	—OR	R-oxy-	
Sulfides	SR	R-thio-	
11. Peroxides	-O-OR	R-dioxy-	

TABLE 2.7 Characteristic Groups for Substitutive Nomenclature (Continued)

*Carbon atoms enclosed in parentheses are included in the name of the parent compound and not in the suffix or prefix.

Characteristic group	Prefix	Characteristic group	Prefix
-Br -Cl	Bromo- Chloro-	—IX ₂	X may be halogen or a radical; dihalogenoiodo- or diacetoxyiodo-, e.g., —ICl ₂ is dichloroido-
-00	Chlorosyi-	N.1.	
$-CIO_2$	Chloryl-	$>N_2$	Diazo-
$-ClO_3$	Perchloryl-	N ₃	Azido-
—F	Fluoro-	-NO	Nitroso-
—I	Iodo-	$-NO_2$	Nitro-
—I0	Iodosyl-	>N(=0)OH	aci-Nitro-
$-IO_2$	Iodvl*	-OR	R-oxv-
$-I(OH)_{2}$	Dihydroxyiodo-	-SR	R-thio-
-(/2	;n; 1000	-SeR (-TeR)	R-seleno- (R-telluro-)

TABLE 2.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature

*Formerly iodoxy.

- 7. When a substituent is itself substituted, all the subsidiary substituents are named as prefixes and the entire assembly is regarded as a parent radical.
- 8. The seniority of ring systems is ascertained by applying the following rules successively until a decision is reached: (a) all heterocycles are senior to all carbocycles, (b) for heterocycles, the preference follows the decision process described under Heterocyclic Systems (p. 1.11) (c) the largest number of rings, (d) the largest individual ring at the first point of difference, (e) the largest number of atoms in common among rings, (f) the lowest letters in the expression for ring functions, (g) the lowest numbers at the first point of difference in the expression for ring junctions, (h) the lowest state of hydrogenation, (i) the lowest-numbered locant for indicated hydrogen, (j) the lowest-numbered locant for an attached group expressed as a suffix, (l) the maximum number of substituents cited as prefixes, (m) the lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order independent of their nature, and (n) the lowest-numbered locant for the substituent named as prefix which is cited first in the name.

2.1.2.2 *Numbering of Compounds.* If the rules for aliphatic chains and ring systems leave a choice, the starting point and direction of numbering of a compound are chosen so as to give lowest-numbered locants to these structural factors, if present, considered successively in the order listed below until a decision is reached. Characteristic groups take precedence over multiple bonds.

- 1. Indicated hydrogen, whether cited in the name or omitted as being conventional
- 2. Characteristic groups named as suffix following ranking order (Table 2.7)
- 3. Multiple bonds in acyclic compounds; in bicycloalkanes, tricycloalkanes, and polycycloalkanes, double bonds having priority over triple bonds; and in heterocyclic systems whose names end in -etine, -oline, or -olene
- 4. The lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order
- 5. The lowest locant for that substituent named as prefix which is cited first in the name

For cyclic radicals, indicated hydrogen and thereafter the point of attachment (free valency) have priority for the lowest available number.

2.1.2.3 *Prefixes and Affixes.* Prefixes are arranged alphabetically and placed before the parent name; multiplying affixes, if necessary, are inserted and *do not* alter the alphabetical order already attained. The parent name includes any syllables denoting a change of ring number or relating to the structure of a carbon chain. Nondetachable parts of parent names include

- 1. Forming rings; cyclo-, bicyclo-, spiro-
- 2. Fusing two or more rings: benzo-, naphtho-, imidazo-
- 3. Substituting one ring or chain member atom for another: oxa-, aza-, thia-
- 4. Changing positions of ring or chain members: iso-, sec-, tert-, neo-
- 5. Showing indicated hydrogen
- 6. Forming bridges: ethano-, epoxy-
- 7. Hydro-

Prefixes that represent complete terminal characteristic groups are preferred to those representing only a portion of a given group. For example, for the prefix $-C(=O)CH_3$, the name (formylmethyl) is preferred to (oxoethyl).

The multiplying affixes di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, and so on are used to indicate a set of *identical* unsubstituted radicals or parent compounds. The forms bis-, tris-, tetrakis-, pentakis-, and so on are used to indicate a set of identical radicals or parent compounds *each*

substituted in the same way. The affixes bi-, ter-, quater-, quinque-, sexi-, septi-, octi-, novi-, deci-, and so on are used to indicate the number of identical rings joined together by a single or double bond.

Although multiplying affixes may be omitted for very common compounds when no ambiguity is caused thereby, such affixes are generally included throughout this handbook in alphabetical listings. An example would be ethyl ether for diethyl ether.

2.1.2.4 Conjunctive Nomenclature. Conjunctive nomenclature may be applied when a principal group is attached to an acyclic component that is directly attached by a carbon-carbon bond to a cyclic component. The name of the cyclic component is attached directly in front of the name of the acyclic component carrying the principal group. This nomenclature is not used when an unsaturated side chain is named systematically. When necessary, the position of the side chain is indicated by a locant placed before the name of the cyclic component. For substituents on the acyclic chain, carbon atoms of the side chain are indicated by Greek letters proceeding from the principal group to the cyclic component. The terminal carbon atom of acids, aldehydes, and nitriles is omitted when allocating Greek positional letters. Conjunctive nomenclature is not used when the side chain carries more than one of the principal group, except in the case of malonic and succinic acids.

The side chain is considered to extend only from the principal group to the cyclic component. Any other chain members are named as substituents, with appropriate prefixes placed before the name of the cyclic component.

When a cyclic component carries more than one identical side chain, the name of the cyclic component is followed by di-, tri-, etc., and then by the name of the acyclic component, and it is preceded by the locants for the side chains. Examples are

$$H_{3}C \xrightarrow{5 \quad 6}_{3 \quad 2} \overset{\beta}{\xrightarrow{C}} H_{2} \xrightarrow{\alpha}_{2} \overset{\beta}{\xrightarrow{C}} \overset{\beta}{\xrightarrow{C$$

When side chains of two or more different kinds are attached to a cyclic component, only the senior side chain is named by the conjunctive method. The remaining side chains are named as prefixes. Likewise, when there is a choice of cyclic component, the senior is chosen. Benzene derivatives may be named by the conjunctive method only when two or more identical side chains are present. Trivial names for oxo carboxylic acids may be used for the acyclic component. If the cyclic and acyclic components are joined by a double bond, the locants of this bond are placed as superscripts to a Greek capital delta that is inserted between the two names. The locant for the cyclic component precedes that for the acyclic component, e.g., indene- $\Delta^{1,\alpha}$ -acetic acid.

2.1.2.5 *Radicofunctional Nomenclature.* The procedures of radicofunctional nomenclature are identical with those of substitutive nomenclature except that suffixes are never used. Instead, the functional class name (Table 2.9) of the compound is expressed as one word and the remainder of the molecule as another that precedes the class name. When the functional class name refers to a characteristic group that is bivalent, the two radicals attached to it are each named, and when different, they are written as separate words arranged in alphabetical order. When a compound contains more than one kind of group, that kind is cited as the functional group or class name that occurs higher in the table, all others being expressed as prefixes.

Radicofunctional nomenclature finds some use in naming ethers, sulfides, sulfoxides, sulfones, selenium analogs of the preceding three sulfur compounds, and azides.

TABLE 2.9 Radicofunctional Nomenclature

or oups are usied in order of decredibility prior up	Groups are	listed in	order of	decreasing	priority.
--	------------	-----------	----------	------------	-----------

Group	Functional class names
X in acid derivatives	Name of X (in priority order: fluoride, chloride, bromide, iodide, cyanide, azide; then the sulfur and selenium analogs)
—CN, —NC	Cyanide, isocyanide
>co	Ketone; then S and Se analogs
—ОН	Alcohol; then S and Se analogs
-O-OH	Hydroperoxide
>0	Ether or oxide
>s, $>$ so, $>$ so ₂	Sulfide, sulfoxide, sulfone
>Se, $>$ SeO, $>$ SeO ₂	Selenide, selenoxide, selenone
-F, $-Cl$, $-Br$, $-I$	Fluoride, chloride, bromide, iodide
N ₃	Azide

2.1.2.5 **Replacement Nomenclature.** Replacement nomenclature is intended for use only when other nomenclature systems are difficult to apply in the naming of chains containing heteroatoms. When no group is present that can be named as a principal group, the longest chain of carbon and heteroatoms terminating with carbon is chosen and named as though the entire chain were that of an acyclic hydrocarbon. The heteroatoms within this chain are identified by means of prefixes aza-, oxa-, thia-, etc. Locants indicate the positions of the heteroatoms in the chain. Lowest-numbered locants are assigned to the principal group when such is present. Otherwise, lowest-numbered locants are assigned to the heteroatoms considered together and, if there is a choice, to the heteroatoms cited earliest in Table 2.3. An example is

$$HO - \overset{13}{C}H_2 - \overset{12}{O} - \overset{12}{C}H_2 - \overset{10}{C}H_2 - \overset{0}{O} - \overset{8}{C}H_2 - \overset{7}{C}H_2 - \overset{6}{N} - \overset{5}{C}H_2 - \overset{4}{C}H_2 - \overset{3}{N} - \overset{2}{C}H_2 - \overset{1}{C}OOH$$

13-Hydroxy-9,12-dioxa-3,6-diazatridecanoic acid

2.1.3 Specific Functional Groups

2.1.3.1 Acetals and Acylals. Acetals, which contain the group $>C(OR)_2$, where R may be different, are named (1) as dialkoxy compounds or (2) by the name of the corresponding aldehyde or ketone followed by the name of the hydrocarbon radical(s) followed by the word acetal. For example, $CH_3 - CH(OCH_3)_2$ is named either (1) 1,1-dimethoxyethane or (2) acetaldehyde dimethyl acetal.

A cyclic acetal in which the two acetal oxygen atoms form part of a ring may be named (1) as a heterocyclic compound or (2) by use of the prefix methylenedioxy for the group $-O - CH_2 - O - O$ as a substituent in the remainder of the molecule. For example, (1) 1,3-Benzo[*d*]dioxole-5-carboxylic acid

(2) 3,4-Methylenedioxybenzoic acid

Acylals, R¹R²C(OCOR³)₂, are named as acid esters;

Butylidene acetate propionate

 α -Hydroxy ketones, formerly called acyloins, had been named by changing the ending -ic acid or -oic acid of the corresponding acid to -oin. They are preferably named by substitutive nomenclature; thus

$$CH_3 - CH(OH) - CO - CH_3$$
 3-Hydroxy-2-butanone (formerly acetoin)

2.1.3.2 Acid Anhydrides. Symmetrical anhydrides of monocarboxylic acids, when unsubstituted, are named by replacing the word *acid* by *anhydride*. Anhydrides of substituted monocarboxylic acids, if symmetrically substituted, are named by prefixing bis- to the name of the acid and replacing the word *acid* by *anhydride*. Mixed anhydrides are named by giving in alphabetical order the first part of the names of the two acids followed by the word *anhydride*, e.g., acetic propionic anhydride or acetic propanoic anhydride. Cyclic anhydrides of polycarboxylic acids, although possessing a heterocyclic structure, are preferably named as acid anhydrides. For example,

1,8;4,5-Napthalenetetracarboxylic dianhydride (note the use of a semicolon to distinguish the pairs of locants)

2.1.3.3 Acyl Halides. Acyl halides, in which the hydroxyl portion of a carboxyl group is replaced by a halogen, are named by placing the name of the corresponding halide after that of the acyl radical. When another group is present that has priority for citation as principal group or when the acyl halide is attached to a side chain, the prefix haloformyl- is used as, for example, in fluoroformyl-.

2.1.3.4 Alcohols and Phenols. The hydroxyl group is indicated by a suffix -ol when it is the principal group attached to the parent compound and by the prefix hydroxy- when another group with higher priority for citation is present or when the hydroxy group is present in a side chain. When confusion may arise in employing the suffix -ol, the hydroxy group is indicated as a prefix; this terminology is also used when the hydroxyl group is attached to a heterocycle, as, for example, in the name 3-hydroxythiophene to avoid confusion with thiophenol (C_6H_5SH). Designations such as isopropanol, *sec*-butanol, and *tert*-butanol are incorrect because no hydrocarbon exists to which the suffix can be added. Many trivial names are retained. (Table 2.10).

TABLE 2.10 Alcohols and Phenols

Ally alcohol	$CH_2 = CHCH_2OH$
Perryl alcohol	
Benzyi alconoi	
Phenethyl alcohol	$C_6H_5CH_2CH_2OH$
Ethylene glycol	HOCH ₂ CH ₂ OH
1,2-Propylene glycol	CH ₃ CHOHCH ₂ OH
Glycerol	HOCH ₂ CHOHCH ₂ OH
Pentaerythritol	$C(CH_2OH)_4$
Pinacol	(CH ₃) ₂ COHCOH(CH ₃) ₂
Phenol	C ₆ H ₅ OH
	OH
Xylitol	носн ₂ сн—сн—сн—сн ₂ он
	і І Он Он
Geraniol	$(CH_3)_2C = CHCH_2CH_2C = CHCH_2OH$
	ĊH ₃

TABLE 2.10 Alcohols and Phenols (Continued)

The radicals (RO—) are named by adding -oxy as a suffix to the name of the R radical, e.g., pentyloxy for CH₃CH₂CH₂CH₂CH₂CH₂O—. These contractions are exceptions: methoxy (CH₃O—), ethoxy (C₂H₅O—), propoxy (C₃H₇O—), butoxy (C₄H₉O—), and phenoxy (C₆H₅O—). For unsubstituted radicals only, one may use isopropoxy [(CH₃)₂CH—O—], isobutoxy [(CH₃)₂CH₂CH—O—], *sec*-butoxy [CH₃CH₂CH(CH₃)—O—], and *tert*-botoxy [(CH₃)₃C—O—].

Bivalent radicals of the form O-Y-O are named by adding -dioxy to the name of the bivalent radicals except when forming part of a ring system. Examples are $-O-CH_2-O-$ (methylene-dioxy), -O-CO-O- (carbonyldioxy), and $-O-SO_2-O-$ (sulfonyldioxy). Anions derived from alcohols or phenols are named by changing the final -ol to -olae.

Salts composed of an anion, RO – , and a cation, usually a metal, can be named by citing first the cation and then the RO anion (with its ending changed to -yl oxide), e.g., sodium benzyl oxide for $C_6H_5CH_2ONa$. However, when the radical has an abbreviated name, such as methoxy, the ending -oxy is changed to -oxide. For example, CH₃ONa is named sodium methoxide (not sodium methylate).

2.1.3.5 Aldehydes. When the group -C(=O)H, usually written -CHO, is attached to carbon at one (or both) end(s) of a linear acyclic chain the name is formed by adding the suffix -al (or -dial) to the name of the hydrocarbon containing the same number of carbon atoms. Examples are butanal for $CH_3CH_2CH_2CHO$ and propanedial for, $OHCCH_2CHO$.

Naming an acyclic polyaldehyde can be handled in two ways. First, when more than two aldehyde groups are attached to an unbranched chain, the proper affix is added to -carbaldehyde, which becomes the suffix to the name of the longest chain carrying the maximum number of aldehyde groups. The name and numbering of the main chain do not include the carbon atoms of the aldehyde groups. Second, the name is formed by adding the prefix formyl- to the name of the -dial that incorporates the principal chain. Any other chains carrying aldehyde groups are named by the use of formylalkyl- prefixes. Examples are

(1) 4-(2-Formylethyl)-3-(formylmethyl)-1,2,7-heptanetricarbaldehyde

(2) 3-Formyl-5-(2-formylethyl)-4-(formylmethyl)nonanedial

When the aldehyde group is directly attached to a carbon atom of a ring system, the suffixcarbaldehyde is added to the name of the ring system, e.g., 2-naphthalenecarbaldehyde. When the aldehyde group is separated from the ring by a chain of carbon atoms, the compound is named (1) as a derivative of the acyclic system or (2) by conjunctive nomenclature, for example, (1) (2-naphthyl)propionaldehyde or (2) 2-naphthalenepropionaldehyde.

An aldehyde group is denoted by the prefix formyl- when it is attached to a nitrogen atom in a ring system or when a group having priority for citation as principal group is present and part of a cyclic system.

When the corresponding monobasic acid has a trivial name, the name of the aldehyde may be formed by changing the ending -ic acid or -oic acid to -aldehyde. Examples are

Formaldehyde	Acrylaldehyde (not acrolein)
Acetaldehyde	Benzaldehyde
Propionaldehyde	Cinnamaldehyde
Butyraldehyde	2-Furaldehyde (not furfural)

The same is true for polybasic acids, with the proviso that all the carboxyl groups must be changed to aldehyde; then it is not necessary to introduce affixes. Examples are

Glyceraldehyde	Succinaldehyde
Glycolaldehyde	Phthalaldehyde (o-, m-, p-)
Malonaldehvde	

These trivial names may be retained: citral (3,7-dimethyl-2,6-octadienal), vanillin (4-hydroxy-3methoxybenzaldehyde), and piperonal (3,4-methylenedioxybenzaldehyde).

2.1.3.6 Amides. For primary amides the suffix -amide is added to the systematic name of the parent acid. For example, CH_3 —CO—NH₂ is acetamide. Oxamide is retained for H_2N —CO—CO—NH₂. The name -carboxylic acid is replaced by -carboxamide.

For amino acids having trivial names ending in -ine, the suffix -amide is added after the name of the acid (with elision of e for monomides). For example, H_2N — CH_2 —CO— NH_2 is glycinamide.

In naming the radical R—CO—NH—, either (1) the -yl ending of RCO— is changed to -amido or (2) the radicals are named as acylamino radicals. For example,

The latter nomenclature is always used for amino acids with trivial names.

N-substituted primary amides are named either (1) by citing the substitutents as N prefixes or (2) by naming the acyl group as an N substituent of the parent compound. For example,

2.1.3.7 Amines. Amines are preferably named by adding the suffix -amine (and any multiplying affix) to the name of the parent radical. Examples are

CH₃CH₂CH₂CH₂CH₂NH₂ Pentylamine $H_2NCH_2CH_2CH_2CH_2CH_2NH_2$ 1,5-Pentyldiamine or pentamethylenediamine

Locants of substituents of symmetrically substituted derivatives of symmetrical amines are distinguished by primes or else the names of the complete substituted radicals are enclosed in parentheses. Unsymmetrically substituted derivatives are named similarly or as N-substituted products of a primary amine (after choosing the most senior of the radicals to be the parent amine). For example,

Complex cyclic compounds may be named by adding the suffix -amine or the prefix amino- (or aminoalkyl-) to the name of the parent compound. Thus three names are permissible for

Complex linear polyamines are best designated by replacement nomenclature. These trivial names are retained: aniline, benzidene, phenetidine, toluidine, and xylidine.

The bivalent radical —NH— linked to two identical radicals can be denoted by the prefix imino-, as well as when it forms a bridge between two carbon ring atoms. A trivalent nitrogen atom linked to three identical radicals is denoted by the prefix nitrilo-. Thus ethylenediaminetetraacetic acid (an allowed exception) should be named ethylenedinitrilotetraacetic acid.

2.1.3.8 Ammonium Compounds. Salts and hydroxides containing quadricovalent nitrogen are named as a substituted ammonium salt or hydroxide. The names of the substituting radicals precede the word *ammonium*, and then the name of the anion is added as a separate word. For example, $(CH_3)_4 N^+ I^-$ is tetramethylammonium iodide.

When the compound can be considered as derived from a base whose name does not end in -amine, its quaternary nature is denoted by adding ium to the name of that base (with elision of e), substituent groups are cited as prefixes, and the name of the anion is added separately at the end. Examples are

C₆H₅NH⁺₃HSO⁻₄ Anilinium hydrogen sulfate $[(C_6H_5NH_3)^+]_2PtCl_6^{2-}$ Dianilinium hexachloroplatinate

The names *choline* and *betaine* are retained for unsubstituted compounds.

In complex cases, the prefixes amino- and imino- may be changed to ammonio- and iminio- and are followed by the name of the molecule representing the most complex group attached to this nitrogen atom and are preceded by the names of the other radicals attached to this nitrogen. Finally the name of the anion is added separately. For example, the name might be 1-trimethylammonio-acridine chloride or 1-acridinyltrimethylammonium chloride.

When the preceding rules lead to inconvenient names, then (1) the unaltered name of the base may be used followed by the name of the anion or (2) for salts of hydrohalogen acids only the unaltered name of the base is used followed by the name of the hydrohalide. An example of the latter would be 2-ethyl-p-phenylenediamine monohydrochloride.

2.1.3.9 Azo Compounds. When the azo group (-N=N-) connects radicals derived from identical unsubstituted molecules, the name is formed by adding the prefix azo- to the name of the parent unsubstituted molecules. Substituents are denoted by prefixes and suffixes. The azo group has priority for lowest-numbered locant. Examples are azobenzene for C_6H_5 – N=N – C_6H_5 , azobenzene-4-sulfonic acid for $C_6H_5 - N = N - C_6H_5SO_3H$, and 2',4-dichloroazobenzene-4'-sulfonic acid for $ClC_6H_4 - N = N - C_6H_3ClSO_3H.$

When the parent molecules connected by the azo group are different, azo is placed between the complete names of the parent molecules, substituted or unsubstituted. Locants are placed between the affix azo and the names of the molecules to which each refers. Preference is given to the more complex parent molecule for citation as the first component, e.g., 2-aminonaphthalene-l-azo-(4'chloro-2'-methylbenzene).

In an alternative method, the senior component is regarded as substituted by RN=N-, this group R being named as a radical. Thus 2-(7-phenylazo-2-naphthylazo)anthracene is the name by this alternative method for the compound named anthracene-2-azo-2'-naphthalene-7'-azobenzene.

2.1.3.10 Azoxy Compounds. Where the position of the azoxy oxygen atom is unknown or immaterial, the compound is named in accordance with azo rules, with the affix azo replaced by azoxy. When the position of the azoxy oxygen atom in an unsymmetrical compound is designated, a prefix NNO- or ONN- is used. When both the groups attached to the azoxy radical are cited in the name of the compound, the prefix NNO- specifies that the second of these two groups is attached directly to -N(O); the prefix ONN- specifies that the first of these two groups is attached directly to -N(O)-. When only one parent compound is cited in the name, the prefixed ONN- and NNO- specify that the group carrying the primed and unprimed substituents is connected, respectively, to the -N(O) group. The prefix NON- signifies that the position of the oxygen atom is unknown; the azoxy group is then written as $-N_2O-$. For example,

2.1.3.11 Boron Compounds. Molecular hydrides of boron are called boranes. They are named by using a multiplying affix to designate the number of boron atoms and adding an Arabic numeral within parentheses as a suffix to denote the number of hydrogen atoms present. Examples are pentaborane(9) for B_5H_9 and pentaborane(11) for B_5H_{11} .

Organic ring systems are named by replacement nomenclature. Three- to ten-membered monocyclic ring systems containing uncharged boron atoms may be named by the specialist nomenclature for heterocyclic systems. Organic derivatives are named as outlined for substitutive nomenclature.

2.1.3.12 Carboxylic Acids. Carboxylic acids may be named in several ways. First, —COOH groups replacing CH_3 — at the end of the main chain of an acyclic hydrocarbon are denoted by adding -oic acid to the name of the hydrocarbon. Second, when the —COOH group is the principal group, the suffix -carboxylic acid can be added to the name of the parent chain whose name and chain numbering *does not include* the carbon atom of the —COOH group. The former nomenclature is preferred unless use of the ending -carboxylic acid leads to citation of a larger number of carboxyl groups as suffix. Third, carboxyl groups are designated by the prefix carboxy- when attached to a group named as a substituent or when another group is present that has higher priority for citation as principal group. In all cases, the principal chain should be linked to as many carboxyl groups as possible even though it might not be the longest chain present. Examples are

C₆H₁₁COOH

(2) Cyclohexanecarboxylic acid

$$\begin{array}{c} \text{COOH} & \text{CH}_2\text{COOH} \\ | & | \\ \text{CH}_3-\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}-\text{CH}_2-\text{COOH} \end{array}$$

(3) 2-(Carboxymethyl)-1,4-hexanedicarboxylic acid

Removal of the OH from the —COOH group to form the acyl radical results in changing the ending -oic acid to -oyl or the ending -carboxylic acid to -carbonyl. Thus the radical $CH_3CH_2CH_2CH_2CO$ — is named either pentanoyl or butanecarbonyl. When the hydroxyl has not been removed from all carboxyl groups present in an acid, the remaining carboxyl groups are denoted by the prefix carboxy-. For example, HOOCCH₂CH₂CH₂CH₂CH₂CO— is named 6-carboxyhexanoyl.

Many trivial names exist for acids (Table 2.11). Generally, radicals are formed by replacing -ic acid by -oyl.^{*} When a trivial name is given to an acyclic monoacid or diacid, the numeral 1 is always given as locant to the carbon atom of a carboxyl group in the acid or to the carbon atom with a free valence in the radical RCO—.

2.1.3.13 Ethers $(R^1 - O - R^2)$. In substitutive nomenclature, one of the possible radicals, R-O-, is stated as the prefix to the parent compound that is senior from among R¹ or R². Examples are methoxyethane for CH₃OCH₂CH₃ and butoxyethanol for C₄H₉OCH₂CH₂OH.

When another principal group has precedence and oxygen is linking two identical parent compounds, the prefix oxy- may be used, as with 2,2'-oxydiethanol for HOCH₂CH₂OCH₂CH₂OH.

Compounds of the type RO—Y—OR, where the two parent compounds are identical and contain a group having priority over ethers for citation as suffix, are named as assemblies of identical units. For example, HOOC— CH_2 —O— CH_2CH_2 —O— CH_2 —COOH is named 2,2'-(ethylenedioxy) diacetic acid.

^{*}Exceptions: formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, oxalyl, malonyl, succinyl, glutaryl, furoyl, and thenoyl.

Systematic name	Trivial name	Systematic name	Trivial name
Methanoic	Formic	trans-Methylbutenedioic	Mesaconic*
Ethanoic	Acetic		
Propanoic	Propionic	1,2,2-Trimethyl-1,3-cyclopen-	Camphoric
Butanoic	Butyric	tanedicarboxylic acid	
2-Methylpropanoic	Isobutyric*		
Pentanoic	Valeric	Benzenecarboxylic	Benzoic
3-Methylbutanoic	Isovaleric*	1,2-Benzenedicarboxylic	Phthalic
2,2-Dimethylpropanoic	Pivalic*	1,3-Benzenedicarboxylic	Isophthalic
Hexanoic	(Caproic)	1,4-Benzenedicarboxylic	Terephthalic
Heptanoic	(Enanthic)	Naphthalenecarboxylic	Naphthoic
Octanoic	(Caprylic)	Methylbenzenecarboxylic	Toluic
Decanoic	(Capric)	2-Phenylpropanoic	Hydratropic
Dodecanoic	Lauric*	2-Phenylpropenoic	Atropic
Tetradecanoic	Myristic*	trans-3-Phenylpropenoic	Cinnamic
Hexadecanoic	Palmitic*	Furancarboxylic	Furoic
Octadecanoic	Stearic*	Thiophenecarboxylic	Thenoic
		3-Pyridinecarboxylic	Nicotinic
Ethanedioic	Oxalic	4-Pyridinecarboxylic	Isonicotinic
Propanedioic	Malonic		
Butanedioic	Succinic	Hydroxyethanoic	Glycolic
Pentanedioic	Glutaric	2-Hydroxypropanoic	Lactic
Hexanedioic	Adipic	2,3-Dihydroxypropanoic	Glyceric
Heptanedioic	Pimelic*	Hydroxypropanedioic	Tartronic
Octanedioic	Suberic*	Hydroxybutanedioic	Malic
Nonanedioic	Azelaic*	2,3-Dihydroxybutanedioic	Tartaric
Decanedioic	Sebacic*	3-Hydroxy-2-phenylpropanoic	Tropic
Propenoic	Acrylic	2-Hydroxy-2,2-diphenyl-	Benzilic
Propynoic	Propiolic	ethanoic	
2-Methylpropenoic	Methacrylic	2-Hydroxybenzoic	Salicylic
trans-2-Butenoic	Crotonic	Methoxybenzoic	Anisic
cis-2-Butenoic	Isocrotonic	4-Hydroxy-3-methoxybenzoic	Vanillic
cis-9-Octadecenoic	Oleic		
trans-9-Octadecenoic	Elaidic	3,4-Dimethoxybenzoic	Veratric
cis-Butenedioic	Maleic	3,4-Methylenedioxybenzoic	Piperonylic
trans-Butenedioic	Fumaric	3,4-Dihydroxybenzoic	Protocatechuic
cis-Methylbutenedioic	Citraconic*	3,4,5-Trihydroxybenzoic	Gallic

TABLE 2.11 Names of Some Carboxylic Acids

* Systematic names should be used in derivatives formed by substitution on a carbon atom.

Note: The names in parentheses have been discontinued.

Linear polyethers derived from three or more molecules of aliphatic dihydroxy compounds, particularly when the chain length exceeds ten units, are most conveniently named by open-chain replacement nomenclature. For example, $CH_3CH_2 - O - CH_2CH_2 - O - CH_2CH_3$ could be 3,6dioxaoctane or (2-ethoxy)ethoxyethane.

An oxygen atom directly attached to two carbon atoms already forming part of a ring system or to two carbon atoms of a chain may be indicated by the prefix epoxy-. For example, $CH_2 - CH - CH_2Cl$ is named 1-chloro-2,3-epoxypropane.

Symmetrical linear polyethers may be named (1) in terms of the central oxygen atom when there is an odd number of ether oxygen atoms or (2) in terms of the central hydrocarbon group when there is an even number of ether oxygen atoms. For example, $C_2H_5 - O - C_4H_8 - O - C_4H_8 - O - C_2H_5$ is bis-(4-ethoxybutyl)ether, and 3,6-dioxaoctane (earlier example) could be named 1,2-bis(ethoxy)ethane.

Partial ethers of polyhydroxy compounds may be named (1) by substitutive nomenclature or (2) by stating the name of the polyhydroxy compound followed by the name of the etherifying radical(s) followed by the word *ether*. For example,

Cyclic ethers are named either as heterocyclic compounds or by specialist rules of heterocyclic nomenclature. Radicofunctional names are formed by citing the names of the radicals R^1 and R^2 followed by the word *ether*. Thus methoxyethane becomes ethyl methyl ether and ethoxyethane becomes diethyl ether.

2.1.3.14 Halogen Derivatives. Using substitutive nomenclature, names are formed by adding prefixes listed in Table 2.8 to the name of the parent compound. The prefix perhalo- implies the replacement of all hydrogen atoms by the particular halogen atoms.

Cations of the type $R^1R^2X^+$ are given names derived from the halonium ion, H_2X^+ , by substitution, e.g., diethyliodonium chloride for $(C_2H_3)_2I^+CI^-$.

Retained are these trivial names; bromoform (CHBr₃), chloroform (CHCl₃), fluoroform (CHF₃), iodoform (CHI₃), phosgene (COCl₂), thiophosgene (CSCl₂), and dichlorocarbene radical (\geq CCl₂). Inorganic nomenclature leads to such names as carbonyl and thiocarbonyl halides (COX₂ and CSX₂) and carbon tetrahalides (CX₄).

2.1.3.15 Hydroxylamines and Oximes. For RNH—OH compounds, prefix the name of the radical R to hydroxylamine. If another substituent has priority as principal group, attach the prefix hydroxyamino- to the parent name. For example, C_6H_5 NHOH would be named *N*-phenylhydroxylamine, but HOC₆H₄NHOH would be (hydroxyamino)phenol, with the point of attachment indicated by a locant preceding the parentheses.

Compounds of the type $R^1NH - OR^2$ are named (1) as alkoxyamino derivatives of compound R^1H , (2) as *N*,*O*-substituted hydroxylamines. (3) as alkoxyamines (even if R^1 is hydrogen), or (4) by the prefix aminooxy- when another substituent has priority for parent name. Examples of each type are

- 1. 2-(Methoxyamino)-8-naphthalenecarboxylic acid for CH₃ONH-C₁₀H₆COOH
- 2. O-Phenylhydroxylamine for H₂N-O-C₆H₅ or N-phenylhydroxylamine for C₆H₅NH-OH
- 3. Phenoxyamine for H_2N —O—C₆ H_5 (not preferred to *O*-phenylhydroxylamine)
- 4. Ethyl (aminooxy)acetate for H₂N-O-CH₂CO-OC₂H₅

Acyl derivatives, RCO—NH—OH and H₂N—O—CO—R, are named as *N*-hydroxy derivatives of amides and as *O*-acylhydroxylamines, respectively. The former may also be named as hydroxamic acids. Examples are *N*-hydroxyacetamide for CH₃CO—NH—OH and *O*-acetylhydroxylamine for H₂N—O—CO—CH₃. Further substituents are denoted by prefixes with *O*- and/or *N*-locants. For example, C₆H₅NH—O—C₂H₅ would be *O*-ethyl-*N*-phenylhydroxylamine or *N*-ethoxylaniline.

For oximes, the word *oxime* is placed after the name of the aldehyde or ketone. If the carbonyl group is not the principal group, use the prefix hydroxyimino-. Compounds with the group >N—OR are named by a prefix alkyloxyimino- oxime *O*-ethers or as *O*-substituted oximes. Compounds with the group >C—N(O)R are named by adding *N*-oxide after the name of the alkylideneaminc compound. For amine oxides, add the word *oxide* after the name of the base, with locants. For example, C₅H₅N—O is named pyridine *N*-oxide or pyridine 1-oxide.

2.1.3.16 Imines. The group \geq C==NH is named either by the suffix -imine or by citing the name of the bivalent radical R¹R²C < as a prefix to amine. For example, CH₃CH₂CH₂CH=NH could be named 1-butanimine or butylideneamine. When the nitrogen is substituted, as in CH₂=N - CH₂CH₃, the name is *N*-(methylidene)ethylamine.

Quinones are exceptions. When one or more atoms of quinonoid oxygen have been replaced by >NH or >NR, they are named by using the name of the quinone followed by the word *imine* (and preceded by proper affixes). Substituents on the nitrogen atom are named as prefixes. Examples are

2.1.3.17 Ketenes. Derivatives of the compound ketene, $CH_2 = C = O$, are named by substitutive nomenclature. For example, $C_4H_9CH = C = O$ is butyl ketene. An acyl derivative, such as $CH_3CH_2 - CO - CH_2CH = C = O$, may be named as a polyketone, 1-hexene-1,4-dione. Bisketene is used for two to avoid ambiguity with diketene (dimeric ketene).

2.1.3.18 *Ketones.* Acyclic ketones are named (1) by adding the suffix -one to the name of the hydrocarbon forming the principal chain or (2) by citing the names of the radicals R^1 and R^2 followed by the word *ketone*. In addition to the preceding nomenclature, acyclic monoacyl derivatives of cyclic compounds may be named (3) by prefixing the name of the acyl group to the name of the cyclic compound. For example, the three possible names of

When the cyclic component is benzene or naphthalene, the -ic acid or -oic acid of the acid corresponding to the acyl group is changed to -ophenone or -onaphthone, respectively. For example, $C_6H_5 - CO - CH_2CH_2CH_3$ can be named either butyrophenone (or butanophenone) or phenyl propyl ketone.

Radicofunctional nomenclature can be used when a carbonyl group is attached directly to carbon atoms in two ring systems and no other substituent is present having priority for citation.

When the methylene group in polycarbocyclic and heterocyclic ketones is replaced by a keto group, the change may be denoted by attaching the suffix -one to the name of the ring system. However, when \geq CH in an unsaturated or aromatic system is replaced by a keto group, two alternative names become possible. First, the maximum number of noncumulative double bonds is added after introduction of the carbonyl group(s), and any hydrogen that remains to be added is denoted as indicated hydrogen with the carbonyl group having priority over the indicated hydrogen for lower-numbered locant. Second, the prefix oxo- is used, with the hydrogenation indicated by hydro prefixes; hydrogenation is considered to have occurred before the introduction of the carbonyl group. For example,

When another group having higher priority for citation as principal group is also present, the ketonic oxygen may be expressed by the prefix oxo-, or one can use the name of the carbonyl-containing radical, as, for example, acyl radicals and oxo-substituted radicals. Examples are

HOOC
$$-\begin{pmatrix} 2 & 3 \\ 1 & 2' & 3' \\ 0 & -5 \end{pmatrix} \stackrel{1'}{\xrightarrow{2'}} CH_2CH_2CH_2CH_2CH_3 = 4-(4'-Oxohexyl)-1-benzoic acid$$

Diketones and tetraketones derived from aromatic compounds by conversion of two or four >CH groups into keto groups, with any necessary rearrangement of double bonds to a quinonoid structure, are named by adding the suffix -quinone and any necessary affixes.

Polyketones in which two or more contiguous carbonyl groups have rings attached at each end may be named (1) by the radicofunctional method or (2) by substitutive nomenclature. For example,

(1) 2-Naphthyl 2-pyridyl diketone
 (2) 1-(2-Naphthyl)-2-(2-pyridyl)ethanedione

Some trivial names are retained: acetone (2-propanone), biacetyl (2,3-butanedione), propiophenone ($C_6H_5 - CO - CH_2CH_3$), chalcone ($C_6H_5 - CH = CH - CO - C_6H_5$), and deoxybenzoin ($C_6H_5 - CH_2 - CO - C_6H_5$).

These contracted names of heterocyclic nitrogen compounds are retained as alternatives for systematic names, sometimes with indicated hydrogen. In addition, names of oxo derivatives of fully saturated nitrogen heterocycles that systematically end in -idinone are often contracted to end in -idone when no ambiguity might result. For example,

2.1.3.19 Lactones, Lactides, Lactams, and Lactims. When the hydroxy acid from which water may be considered to have been eliminated has a trivial name, the lactone is designated by substituting -olactone for -ic acid. Locants for a carbonyl group are numbered as low as possible, even before that of a hydroxyl group.

Lactones formed from aliphatic acids are named by adding -olide to the name of the nonhydroxylated hydrocarbon with the same number of carbon atoms. The suffix -olide signifies the change of \geq CH···CH₃ into \geq C···C=O.

Structures in which one or more (but not all) rings of an aggregate are lactone rings are named by placing -carbolactone (denoting the -O-CO bridge) after the names of the structures that remain when each bridge is replaced by two hydrogen atoms. The locant for -CO is cited before that for the ester oxygen atom. An additional carbon atom is incorporated into this structure as compared to the -olide.

These trivial names are permitted: γ butyrolactone, γ valerolactone, and δ -valerolactone. Names based on heterocycles may be used for all lactones. Thus, γ -butyrolactone is also tetrahydro-2-furanone or dihydro-2(3*H*)-furanone.

Lactides, intermolecular cyclic esters, are named as heterocycles. *Lactams* and *lactims*, containing a -CO-NH- and -C(OH) = N- group, respectively, are named as heterocycles, but they may also be named with -lactam or -lactim in place of -olide. For example,

2.1.3.20 Nitriles and Related Compounds. For acids whose systematic names end in -carboxylic acid, nitriles are named by adding the suffix -carbonitrile when the -CN group replaces the -COOH group. The carbon atom of the -CN group is excluded from the numbering of a chain to which it is attached. However, when the triple-bonded nitrogen atom is considered to replace three hydrogen atoms at the end of the main chain of an acyclic hydrocarbon, the suffix -nitrile is added to the name of the hydrocarbon. Numbering begins with the carbon attached to the nitrogen. For example, $CH_3CH_2CH_2CH_2CH_2CN$ is named (1) pentanecarbonitrile or (2) hexanenitrile.

Trivial acid names are formed by changing the endings -oic acid or -ic acid to -onitrile. For example, CH_3CN is acetonitrile. When the —CN group is not the highest priority group, the —CN group is denoted by the prefix cyano-.

In order of decreasing priority for citation of a functional class name, and the prefix for substitutive nomenclature, are the following related compounds:

Functional group	Prefix	Radicofunctional ending
—NC	Isocyano-	Isocyanide
-OCN	Cyanato-	Cyanate
-NCO	Isocyanato-	Isocyanate
-ONC		Fulminate
—SCN	Thiocyanato-	Thiocyanate
-NCS	Isothiocyanato-	Isothiocyanate
-SeCN	Selenocyanato-	Selenocyanate
-NCSe	Isoselenocyanato-	Isoselenocyanate

2.1.3.21 Peroxides. Compounds of the type R - O - OH are named (1) by placing the name of the radical R before the word *hydroperoxide* or (2) by use of the prefix hydroperoxy- when another parent name has higher priority. For example, C_2H_5OOH is ethyl hydroperoxide.

Compounds of the type $R^1O - OR^2$ are named (1) by placing the names of the radicals in alphabetical order before the word *peroxide* when the group -O - O links two chains, two rings, or a ring and a chain, (2) by use of the affix dioxy to denote the bivalent group -O - O - O for naming assemblies of identical units or to form part of a prefix, or (3) by use of the prefix epidioxy- when the peroxide group forms a bridge between two carbon atoms, a ring, or a ring system. Examples are methyl propyl peroxide for $CH_3 - O - O - C_3H_7$ and 2,2'-dioxydiacetic acid for HOOC - $CH_2 - O - O - CH_2 - COOH$.

2.1.3.21 *Phosphorus Compounds.* Acyclic phosphorus compounds containing only one phosphorus atom, as well as compounds in which only a single phosphorus atom is in each of several functional groups, are named as derivatives of the parent structures (Table 2.12). Often these are purely hypothetical parent structures. When hydrogen attached to phosphorus is replaced by a hydrocarbon group, the derivative is named by substitution nomenclature. When hydrogen of an —OH group is replaced, the derivative is named by radicofunctional nomenclature. For example, $C_2H_3PH_2$ is ethylphosphine; $(C_2H_3)_2PH$, diethylphosphine; $CH_3P(OH)_2$, dihydroxy-methyl-phosphine or methylphosphonous acid; C_2H_5 —PO(Cl)(OH), ethylchlorophosphonic acid or ethylphosphonochloridic acid or hydrogen chlorodioxoethylphosphate(V); $CH_3CH(PH_2)COOH$, 2-phosphinopropionic acid; $HP(CH_2COOH)_2$, phosphinediyldiacetic acid; $(CH_3)HP(O)OH$, methylphosphinic acid or hydrogen hydridomethyldioxophosphate(V); $(CH_3O)_3PO$, trimethyl phosphate; and $(CH_3O)_3P$, trimethyl phosphite.

2.1.3.22 Salts and Esters of Acids. Neutral salts of acids are named by citing the cation(s) and then the anion, whose ending is changed from -oic to -oate or from -ic to -ate. When different acidic residues are present in one structure, prefixes are formed by changing the anion ending -ate to -ato-or -ide to -ido-. The prefix carboxylato- denotes the ionic group $-COO^-$. The phrase (metal) salt of (the acid) is permissible when the carboxyl groups are not all named as affixes.

Acid salts include the word *hydrogen* (with affixes, if appropriate) inserted between the name of the cation and the name of the anion (or word *salt*).

Esters are named similarly, with the name of the alkyl or aryl radical replacing the name of the cation. Acid esters of acids and their salts are named as neutral esters, but the components are cited

Formula	Parent name	Substitutive prefix	Radicofunctional ending
H₃P H₅P	Phosphine Phosphorane	H_2P — Phosphino- H_4P — Phosphoranyl- H_3P < Phosphoroanediyl- H_2P Phosphoranetriyl-	Phosphide
$H_{3}PO$ $H_{3}PS$ $H_{3}PNH$ $P(OH)_{3}$ $HP(OH)_{2}$ $H_{2}POH$ $P(O)(OH)_{3}$ $HP(O)(OH)_{2}$ $H_{2}P(O)OH$	Phosphine oxide Phosphine sulfide Phosphorous acid Phosphorous acid Phosphonous acid Phosphonic acid Phosphonic acid Phosphonic acid	P(O) ≤ Phosphoryl- HP(O) < Phosphonoyl- −P(O)OH ₂ Phosphono- H ₂ P(O) − Phosphinoyl- ≥P(O)OH Phosphinoco- Phosphinato-	Phosphite Phosphonite Phosphinite Phosphate(V) Phosphonate Phosphinate

TABLE 2.12 Phosphorus-Containing Compounds

in the order: cation, alkyl or aryl radical, hydrogen, and anion. Locants are added if necessary. For example,

$$CH_2 - CO - OC_2H_5$$

HOC - COO⁻ K⁺ H⁺ Potassium 1-ethyl hydrogen citrate
CH₂ - COO⁻

Ester groups in R^1 —CO—OR² compounds are named (1) by the prefix alkoxycarbonyl- or aryloxycarbonyl- for —CO—OR² when the radical R^1 contains a substituent with priority for citation as principal group or (2) by the prefix acyloxy- for R^1 —CO—O— when the radical R^2 contains a substituent with priority for citation as principal group. Examples are

Methyl 3-methoxycarbonyl-2-naphthalenebutyrate

 $[CH_3O-CO-CH_2CH_2N(CH_3)_3]Cl^-$ [(2-Methoxycarbonyl)ethyl]trimethylammonium chloride

 C_6H_5 —CO—OCH₂CH₂COOH 3-Benzoyloxypropionic acid

The trivial name *acetoxy* is retained for the CH_3 —CO—O— group. Compounds of the type $R^2C(OR^2)_3$ are named as R^2 esters of the hypothetical ortho acids. For example, $CH_3C(OCH_3)_3$ is trimethyl orthoacetate.

2.1.3.22 Silicon Compounds. SiH₄ is called silane; its acyclic homologs are called disilane, trisilane, and so on, according to the number of silicon atoms present. The chain is numbered from one end to the other so as to give the lowest-numbered locant in radicals to the free valence or to substitutents on a chain. The abbreviated form silyl is used for the radical SiH₃— . Numbering and citation of side chains proceed according to the principles set forth for hydrocarbon chains. Cyclic nonaromatic structures are designated by the prefix cyclo-.

When a chain or ring system is composed entirely of alternating silicon and oxygen atoms, the parent name *siloxane* is used with a multiplying affix to denote the number of silicon atoms present. The parent name *silazane* implies alternating silicon and nitrogen atoms; multiplying affixes denote the number of silicon atoms present.

The prefix sila- designates replacement of carbon by silicon in replacement nomenclature. Prefix names for radicals are formed analogously to those for the corresponding carbon-containing compounds. Thus silyl is used for SiH_3 , silyene for $-SiH_2$, silylidyne for $-SiH_2$, as well as trily, tetrayl, and so on for free valences(s) on ring structures.

2.1.3.23 Sulfur Compounds Bivalent Sulfur. The prefix thio, placed before an affix that denotes the oxygen-containing group or an oxygen atom, implies the replacement of that oxygen by sulfur. Thus the suffix -thiol denotes —SH, -thione denotes —(C)=S and implies the presence of an =S at a nonterminal carbon atom, -thioic acid denotes $[(C)=S]OH \Rightarrow [(C)=O]SH$ (that is, the *O*-substituted acid and the *S*-substituted acid, respectively), -dithioc acid denotes [-C(S)SH, and -thial denotes -(C)HS (or -carbothialdehyde denotes -CHS). When -carboxylic acid has been used for acids, the sulfur analog is named -carbothioic acid or -carbodithioic acid.

Prefixes for the groups HS— and RS— are mercapto- and alkylthio-, respectively; this latter name may require parentheses for distinction from the use of thio- for replacement of oxygen in a trivially named acid. Examples of this problem are $4-C_2H_5-C_6H_4$ —CSOH named *p*-ethyl(thio)benzoic acid and $4-C_2H_5-S-C_6H_4$ —COOH named *p*-(ethylthio)benzoic acid. When —SH is not the principal group, the prefix mercapto- is placed before the name of the parent compound to denote an unsubstituted —SH group.

The prefix thioxo- is used for naming =S in a thioketone. Sulfur analogs of acetals are named as alkylthio- or arylthio-. For example, CH₃CH(SCH₃)OCH₃ is 1-methoxy-1-(methylthio)ethane. Prefix forms for -carbothioic acids are hydroxy(thiocarbonyl)- when referring to the *O*-substituted acid and mercapto(carbonyl)- for the *S*-substituted acid.

Salts are formed as with oxygen-containing compounds. For example, $C_2H_5 - S - Na$ is named either sodium ethanethiolate or sodium ethyl sulfide. If mercapto- has been used as a prefix, the salt is named by use of the prefix sulfido- for $-S^-$.

Compounds of the type R^1 —S— R^2 are named alkylthio- (or arylthio-) as a prefix to the name of R^1 or R^2 , whichever is the senior.

2.1.3.24 Sulfonium Compounds. Sulfonium compounds of the type $R^1R^2R^3S^+X^-$ are named by citing in alphabetical order the radical names followed by -sulfonium and the name of the anion. For heterocyclic compounds, -ium is added to the name of the ring system. Replacement of >CH by sulfonium sulfur is denoted by the prefix thionia-, and the name of the anion is added at the end.

2.1.3.25 Organosulfur Halides. When sulfur is directly linked only to an organic radical and to a halogen atom, the radical name is attached to the word *sulfur* and the name(s) and number of the halide(s) are stated as a separate word. Alternatively, the name can be formed from R - SOH, a sulfenic acid whose radical prefix is sulfenyl-. For example, CH_3CH_2-S —Br would be named either ethylsulfur monobromide or ethanesulfenyl bromide. When another principal group is present, a composite prefix is formed from the number and substitutive name(s) of the halogen atoms in front of the syllable thio. For example, BrS—COOH is (bromothio)formic acid.

2.1.3.26 Sulfoxides. Sulfoxides, R^1 —SO— R^2 , are named by placing the names of the radicals in alphabetical order before the word *sulfoxide*. Alternatively, the less senior radical is named followed by sulfinyl- and concluded by the name of the senior group. For example, CH_3CH_2 —SO— $CH_2CH_2CH_3$ is named either ethyl propyl sulfoxide or 1-(ethylsulfinyl)propane.

When an >SO group is incorporated in a ring, the compound is named an oxide.

2.1.3.27 Sulfones. Sulfones, R^1 —SO₂— R^2 , are named in an analogous manner to sulfoxides, using the word *sulfone* in place of *sulfoxide*. In prefixes, the less senior radical is followed by -sulfonyl-. When the >SO₂ group is incorporated in a ring, the compound is named as a dioxide.

2.1.3.28 Sulfur Acids. Organic oxy acids of sulfur, that is, $-SO_3H$, $-SO_2H$, and -SOH, are named sulfonic acid, sulfinic acid, and sulfenic acid, respectively. In subordinate use, the respective prefixes are sulfo-, sulfino, and sulfeno-. The grouping $-SO_2-O-SO_2-$ or -SO-O-SO is named sulfonic or sulfinic anhydride, respectively.

Inorganic nomenclature is employed in naming sulfur acids and their derivatives in which sulfur is linked only through oxygen to the organic radical. For example, $(C_2H_5O)_2SO_2$ is diethyl sulfate and C_2H_5O — SO_2 —OH is ethyl hydrogen sulfate. Prefixes *O*- and *S*- are used where necessary to denote attachment to oxygen and to sulfur, respectively, in sulfur replacement compounds. For example, CH_3 —S— SO_2 —ONa is sodium *S*-methyl thiosulfate.

When sulfur is linked only through nitrogen, or through nitrogen and oxygen, to the organic radical, naming is as follows: (1) *N*-substituted amides are designated as *N*-substituted derivatives of the sulfur amides and (2) compounds of the type R—NH—SO₃H may be named as *N*-substituted sulfamic acids or by the prefix sulfoamino- to denote the group HO₃S—NH—. The groups —N—SO and —N—SO₂ are named sulfinylamines and sulfonylamines, respectively.

2.1.3.29 Sultones and Sultams. Compounds containing the group $-SO_2-O$ as part of the ring are called -sultone. The $-SO_2-$ group has priority over the -O group for lowest-numbered locant.

Similarly, the $-SO_2-N=$ group as part of a ring is named by adding -sultam to the name of the hydrocarbon with the same number of carbon atoms. The $-SO_2-$ has priority over -N= for lowest-numbered locant.

2.1.4 Stereochemistry

Concepts in stereochemistry, that is, chemistry in three-dimensional space, are in the process of rapid expansion. This section will deal with only the main principles. The compounds discussed will be those that have identical molecular formulas but differ in the arrangement of their atoms in space. *Stereoisomers* is the name applied to these compounds.

Stereoisomers can be grouped into three categories: (1) Conformational isomers differ from each other only in the way their atoms are oriented in space, but can be converted into one another by rotation about sigma bonds. (2) Geometric isomers are compounds in which rotation about a double bond is restricted. (3) Configurational isomers differ from one another only in configuration about a chiral center, axis, or plane. In subsequent structural representations, a broken line denotes a bond projecting behind the plane of the paper and a wedge denotes a bond projecting in front of the plane of the paper. A line of normal thickness denotes a bond lying essentially in the plane of the paper.

2.1.4.1 Conformational Isomers. A molecule in a conformation into which its atoms return spontaneously after small displacements is termed a *conformer*. Different arrangements of atoms that can be converted into one another by rotation about single bonds are called *conformational isomers* (see Fig. 2.1). A pair of conformational isomers can be but do not have to be mirror images of each other. When they are not mirror images, they are called *diastereomers*.

FIGURE 2.1 Conformations of ethane. (*a*) Eclipsed; (*b*) staggered.

2.1.4.2 Acyclic Compounds. Different conformations of acyclic compounds are best viewed by construction of ball-and-stick molecules or by use of Newman projections (see Fig. 2.2). Both types of representations are shown for ethane. Atoms or groups that are attached at opposite ends of a single bond should be viewed along the bond axis. If two atoms or groups attached at opposite ends of the bond appear one directly behind the other, these atoms or groups are described as eclipsed. That portion of the molecule is described as being in the eclipsed conformation. If not eclipsed, the atoms or groups and the conformation may be described as staggered. Newman projections show these conformations clearly.

Certain physical properties show that rotation about the single bond is not quite free. For ethane there is an energy barrier of about $3 \text{ kcal} \cdot \text{mol}^{-1}$ ($12 \text{ kJ} \cdot \text{mol}^{-1}$). The potential energy of the molecule is at a minimum for the staggered conformation, increases with rotation, and reaches a maximum at the eclipsed conformation. The energy required to rotate the atoms or groups about the carbon-carbon bond is called *torsional energy*. Torsional strain is the cause of the relative instability of the eclipsed conformation or any intermediate skew conformations.

FIGURE 2.2 Newman projections for ethane. (*a*) Staggered; (*b*) eclipsed.

In butane, with a methyl group replacing one hydrogen on each carbon of ethane, there are several different staggered conformations (see Fig. 2.3). There is the *anti*-conformation in which the methyl groups are as far apart as they can be (dihedral angle of 180°). There are two *gauche* conformations in which the methyl groups are only 60° apart; these are two nonsuperimposable mirror images of each other. The *anti*-conformation is more stable than the *gauche* by about 0.9 kcal \cdot mol⁻¹ (4 kJ \cdot mol⁻¹). Both are free of torsional strain. However, in a *gauche* conformation the methyl groups are closer together than the sum of their van der Waals' radii. Under these conditions van der Waals' forces are repulsive and raise the energy of conformation. This strain can affect not only the relative stabilities of

FIGURE 2.3 Conformations of butane. (*a*) Anti-staggered; (*b*) eclipsed; (*c*) gauche-staggered; (*d*) eclipsed; (*e*) gauche-staggered; (*f*) eclipsed. (Eclipsed conformations are slightly staggered for convenience in drawing; actually they are superimposed.)

various staggered conformations but also the heights of the energy barriers between them. The energy maximum (estimated at 4.8 to 6.1 kcal \cdot mol⁻¹ or 20 to 25 kJ \cdot mol⁻¹) is reached when two methyl groups swing past each other (the eclipsed conformation) rather than past hydrogen atoms.

2.1.4.3 *Cyclic Compounds.* Although cyclic aliphatic compounds are often drawn as if they were planar geometric figures (a triangle for cyclopropane, a square for cyclobutane, and so on), their struc-

tures are not that simple. Cyclopropane does possess the maximum angle strain if one considers the difference between a tetrahedral angle (109.5°) and the 60° angle of the cyclopropane structure. Nevertheless the cyclopropane structure is thermally quite stable. The highest electron density of the carbon-carbon bonds does not lie along the lines connecting the carbon-carbon bonds does not lie along the lines connecting the carbon atoms. Bonding electrons lie principally outside the triangular internuclear lines and result in what is known as *bent bonds* (see Fig. 2.4).

Cyclobutane has less angle strain than cyclopropane (only 19.5°). It is also believed to have

FIGURE 2.4 The bent bonds ("tear drops") of cyclopropane.

some bent-bond character associated with the carbon-carbon bonds. The molecule exists in a nonplanar conformation in order to minimize hydrogen-hydrogen eclipsing strain.

Cyclopentane is nonplanar, with a structure that resembles an envelope (see Fig. 2.5). Four of the carbon atoms are in one plane, and the fifth is out of that plane. The molecule is in continual motion so that the out-of-plane carbon moves rapidly around the ring.

FIGURE 2.5 The conformations of cyclopentane.

FIGURE 2.6 The two chair conformations of cyclohexane; a = axial hydrogen atom and e = equatorial hydrogen atom.

The 12 hydrogen atoms of cyclohexane do not occupy equivalent positions. In the chair conformation six hydrogen atoms are perpendicular to the average plane of the molecule and six are directed outward from the ring, slightly above or below the molecular plane (see Fig. 2.6). Bonds which are perpendicular to the molecular plane are known as axial bonds, and those which extend outward from the ring are known as equatorial bonds. The three axial bonds directed upward originate from alternate carbon atoms and are parallel with each other; a similar situation exists for the three axial bonds directed downward. Each equatorial bond is drawn so as to be parallel with the ring carbon-carbon bond once removed from the point of attachment to that equatorial bond. At room temperature, cyclohexane is interconverting rapidly between two chair conformations. As one chair form converts to the other, all the equatorial hydrogen atoms become axial and all the axial hydrogens become equatorial. The interconversion is so rapid that all hydrogen atoms on cyclohexane can be considered equivalent. Interconversion is believed to take place by movement of one side of the chair structure to produce the twist boat, and then movement of the other side of the twist boat to give the other chair form. The chair conformation is the most favored structure for cyclohexane. No angle strain is encountered since all bond angles remain tetrahedral. Torsional strain is minimal because all groups are staggered.

In the boat conformation of cyclohexane (see Fig 2.7) eclipsing torsional strain is significant, although no angle strain is encountered. Nonbonded interaction between the two hydrogen atoms across the ring from each other (the "flagpole" hydrogens) is unfavorable. The boat conformation is about 6.5 kcal \cdot mol⁻¹ (27 kJ \cdot mol⁻¹) higher in energy than the chair form at 25°C.

A modified boat conformation of cyclohexane, known as the twist boat (see Fig. 2.8), or

FIGURE 2.7 The boat conformation of cyclohexane. a = axial hydrogen atom and e = equatorial hydrogen atom.

skew boat, has been suggested to minimize torsional and nonbounded interactions. This particular conformation is estimated to be about 1.5 kcal \cdot mol⁻¹ \cdot (6 kJ \cdot mol⁻¹) lower in energy than the boat form at room temperature.

The medium-size rings (7 to 12 ring atoms) are relatively free of angle strain and can easily take a variety of spatial arrangements. They are not large enough to avoid all nonbonded interactions between atoms.

FIGURE 2.8 Twist-boat conformation of cyclohexane.

Disubstituted cyclohexanes can exist as *cistrans* isomers as well as axial-equatorial con-

formers. Two isomers are predicted for 1,4-dimethylcyclohexane (see Fig. 2.9). For the *trans* isomer the diequatorial conformer is the energetically favorable form. Only one *cis* isomer is observed, since the two conformers of the *cis* compound are identical. Interconversion takes place between the conformational (equatorial-axial isomers) but not configurational (*cis-trans*) isomers.

The bicyclic compound decahydronaphthalene, or bicyclo[4.4.0]decane, has two fused six-membered rings. It exists in *cis* and *trans* forms (see Fig. 2.10), as determined by the configurations at the

FIGURE 2.9 Two isomers of 1,4-dimethylcyclohexane. (a) Trans isomer; (b) cis isomer.

bridgehead carbon atoms. Both *cis*- and *trans*-decahydronaphthalene can be constructed with two chair conformations.

2.1.4.4 Geometrical Isomerism. Rotation about a carbon-carbon double bond is restricted because of interaction between the *p* orbitals which make up to pi bond. Isomerism due to such restricted rotation about a bond is known as *geometric isomerism*. Parallel overlap of the *p* orbitals of each carbon atom of the double bond forms the molecular orbital of the pi bond. The relatively large barrier to rotation about the pi bond is estimated to be nearly 63 kcal \cdot mol⁻¹ (263 kJ \cdot mol⁻¹).

When two different substituents are attached to each carbon atom of the double bond, *cis-trans* isomers can exist. In the case of *cis*-2-butene (see Fig. 2.11a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as *trans*-2-butene (see Fig. 2.11b). Their physical properties are quite different. Geometric isomerism can also exist in ring systems; examples were cited in the previous discussion on conformational isomers.

For compounds containing only double-bonded atoms, the reference plane contains the double bonded atoms and is perpendicular to the plane containing these atoms and those directly attached to them. It is customary to draw the formulas so that the reference plane is perpendicular to that of the paper. For cyclic compounds the reference plane is that in which the ring skeleton lies or to which it approximates. Cyclic structures are commonly drawn with the ring atoms in the plane of the paper.

FIGURE 2.10 Two isomers of decahydronaphthalene, or bicyclo[4.4.0]decane. (a) *Trans* isomer; (b) *cis* isomer.

FIGURE 2.11 Two isomers of 2-butene. (a) *Cis* isomer, bp 3.8° C, mp -138.9° C, dipole moment 0.33 D; (b) trans isomer, bp 0.88° C, mp -105.6° C, dipole moment 0 D.

2.1.4.5 Sequence Rules for Geometric Isomers and Chiral Compounds. Although *cis* and *trans* designations have been used for many years, this approach becomes useless in complex systems. To eliminate confusion when each carbon of a double bond or a chiral center is connected to different groups, the Cahn, Ingold, and Prelog system for designating configuration about a double bond or a chiral center has been adopted by IUPAC. Groups on each carbon atom of the double bond are assigned a first (1) or second (2) priority. Priority is then compared at one carbon relative to the other. When both first priority groups are on the *same side* of the double bond, the configuration is designated as *Z* (from the German *zusammen*, "together"), which was formerly *cis*. If the first priority groups are on *opposite sides* of the double bond, the designation is *E* (from the German *entgegen*, "in opposition to"), which was formerly *trans*. (See Fig. 2.12).

When a molecule contains more than one double bond, each E or Z prefix has associated with it the lower-numbered locant of the double bond concerned. Thus (see also the rules that follow)

When the sequence rules permit alternatives, preference for lower-numbered locants and for inclusion in the principal chain is allotted as follows in the order stated: Z over E groups and cis over *trans* cyclic groups. If a choice is still not attained, then the lower-numbered locant for such a preferred group at the first point of difference is the determining factor. For example,

Rule 1. Priority is assigned to atoms on the basis of atomic number. Higher priority is assigned to atoms of higher atomic number. If two atoms are isotopes of the same element, the atom of higher mass number has the higher priority. For example, in 2-butene, the carbon atom of each methyl group receives first priority over the hydrogen atom connected to the same carbon atom. Around the asymmetric carbon atom in chloroiodomethanesulfonic acid, the priority sequence is I, Cl, S, H. In 1-bromo-1-deuteroethane, the priority sequence is Cl, C, D, H.

FIGURE 2.12 Configurations designated by priority groups. (*a*) *Z* (*cis*); (*b*) *E* (*trans*).

Rule 2. When atoms attached directly to a double-bonded carbon have the same priority, the second atoms are considered and so on, if necessary, working outward once again from the double bond or chiral center. For example, in 1-chloro-2-methylbutene, in CH_3 the second atoms are H, H, H and in CH_2CH_3 they are C, H, H. Since carbon has a higher atomic number than hydrogen, the ethyl group has the next highest priority after the chlorine atom.

Rule 3. When groups under consideration have double or triple bonds, the multiple-bonded atom is replaced conceptually by two or three single bonds to that same kind of atom.

example, among the groups OH, CHO, CH₂OH, and H, the OH group has the highest priority, and the C(O, O, H) of CHO takes priority over the C(O, H, H) of CH₂OH. 2.1.4.6 Chirality and Optical Activity. A compound is chiral (the term *dissymmetric* was formerly

2.1.4.6 Chirality and Optical Activity. A compound is chiral (the term *dissymmetric* was formerly used) if it is not superimposable on its mirror image. A chiral compound does not have a plane of symmetry. Each chiral compound possesses one (or more) of three types of chiral element, namely, a chiral center, a chiral axis, or a chiral plane.

2.1.4.7 *Chiral Center.* The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One "ligand" may be a lone pair of electrons; another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Fig. 2.13.)

FIGURE 2.13 Asymmetric (chiral) carbon in the lactic acid molecule.

A simpler representation of molecules containing asymmetric carbon atoms is the Fischer projection, which is shown here for the same lactic acid configurations. A Fischer projection involves

drawing a cross and attaching to the four ends the four groups that are attached to the asymmetric carbon atom. The asymmetric carbon atom is understood to be located where the lines cross. The horizontal lines are understood to represent bonds coming toward the viewer out of the plane of the paper. The vertical lines represent bonds going away from the viewer behind the plane of the paper as if the vertical line were the side of a circle. The principal chain is depicted in the vertical direction;

the lowest-numbered (locant) chain member is placed at the top position. These formulas may be moved sideways or rotated through 180° in the plane of the paper, but they may not be removed from the plane of the paper (i.e., rotated through 90°). In the latter orientation it is essential to use thick-ened lines (for bonds coming toward the viewer) and dashed lines (for bonds receding from the viewer) to avoid confusion.

2.1.4.8 Enantiomers. Two nonsuperimposable structures that are mirror images of each other are known as *enantiomers*. Enantiomers are related to each other in the same way that a right hand is related to a left hand. Except for the direction in which they rotate the plane of polarized light, enantiomers are identical in all physical properties. Enantiomers have identical chemical properties except in their reactivity toward optically active reagents.

Enantiomers rotate the plane of polarized light in opposite directions but with equal magnitude. If the light is rotated in a clockwise direction, the sample is said to be dextrorotatory and is designed as (+). When a sample rotates the plane of polarized light in a counterclockwise direction, it is said to be levorotatory and is designed as (-). Use of the designations *d* and *l* is discouraged.

2.1.4.9 Specific Rotation. Optical rotation is caused by individual molecules of the optically active compound. The amount of rotation depends upon how many molecules the light beam encounters in passing through the tube. When allowances are made for the length of the tube that contains the sample and the sample concentration, it is found that the amount of rotation, as well as its direction, is a characteristic of each individual optically active compound.

Specific rotation is the number of degrees of rotation observed if a 1-dm tube is used and the compound being examined is present to the extent of 1 g per 100 mL. The density for a pure liquid replaces the solution concentration.

Specific rotation = $[\alpha] = \frac{\text{observed rotation (degrees)}}{\text{length (dm)} \times (g/100 \text{ ml})}$

The temperature of the measurement is indicated by a superscript and the wavelength of the light employed by a subscript written after the bracket; for example, $[\alpha]_{590}^{20}$ implies that the measurement was made at 20°C using 590-nm radiation.

2.1.4.10 Optically Inactive Chiral Compounds. Although chirality is a necessary prerequisite for optical activity, chiral compounds are not necessarily optically active. With an equal mixture of two enantiomers, no net optical rotation is observed. Such a mixture of enantiomers is said to be *racemic* and is designated as (\pm) and not as *dl*. Racemic mixtures usually have melting points higher than the melting point of either pure enantiomer.

A second type of optically inactive chiral compounds, *meso* compounds, will be discussed in the next section.

2.1.4.11 Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image; it has an internal mirror plane. This is an example of a diastereomer. The achiral structure is denoted as a *meso* compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a *meso* compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 2.14), and one of its isomers is a *meso* compound.

When the asymmetric carbon atoms in a chiral compound are part of a ring, the isomerism is more complex than in acyclic compounds. A cyclic compound which has two different asymmetric carbons with different sets of substituent groups attached has a total of $2^2 = 4$ optical isomers: an enantiometric pair of *cis* isomers and an enantiometric pair of *trans* isomers. However, when the two

FIGURE 2.14 Isomers of tartaric acid.

asymmetric centers have the same set of substituent groups attached, the *cis* isomer is a *meso* compound and only the *trans* isomer is chiral. (See Fig. 2.15).

2.1.4.12 *Torsional Asymmetry.* Rotation about single bonds of most acyclic compounds is relatively free at ordinary temperatures. There are, however, some examples of compounds in which nonbonded interactions between large substitutent groups inhibit free rotation about a sigma bond. In some cases these compounds can be separated into pairs of enantiomers.

A *chiral axis* is present in chiral biaryl derivatives. When bulky groups are located at the *ortho* positions of each aromatic ring in biphenyl, free rotation about the single bond connecting the two rings is inhibited because of torsional strain associated with twisting rotation about the central single bond. Interconversion of enantiomers is prevented (see Fig. 2.16).

For compounds possessing a chiral axis, the structure can be regarded as an elongated tetrahedron to be viewed along the axis. In deciding upon the absolute configuration it does not matter from which end it is viewed; the nearer pair of ligands receives the first two positions in the order of precedence (see Fig. 2.17).

A *chiral plane* is exemplified by the plane containing the benzene ring and the bromine and oxygen atoms in the chiral compound (see Fig. 2.18). Rotation of the benzene ring around the oxygen-to-ring single bonds is inhibited when *x* is small (although no critical size can be reasonably established).

2.1.4.13 Absolute Configuration. The terms absolute stereochemistry and absolute configuration are used to describe the three-dimensional arrangement of substituents around a chiral element. A general system for designating absolute configuration is based upon the priority system and sequence rules. Each group attached to a chiral center is assigned a number, with number one the highest-priority group. For example, the groups attached to the chiral center of 2-butanol (see Fig. 2.19) are assigned

FIGURE 2.15 Isomers of cyclopropane-1,2-dicarboxylic acid. (a) Trans isomer; (b) meso isomer.

FIGURE 2.16 Isomers of biphenyl compounds with bulky groups attached at the *ortho* positions.

FIGURE 2.18 Example of a chiral plane.

FIGURE 2.19 Viewing angle as a means of designating the absolute configuration of compounds with a chiral axis. (*a*) (*R*)-2-Butanol (sequence clockwise); (*b*) (*S*)-2-butanol (sequence counterclockwise).

these priorities: 1 for OH, 2 for CH_2CH_3 , 3 for CH_3 , and 4 for H. The molecule is then viewed from the side opposite the group of lowest priority (the hydrogen atom), and the arrangement of the remaining groups is noted. If, in proceeding from the group of highest priority to the group of second priority and thence to the third, the eye travels in a clockwise direction, the configuration is specified *R* (from the Latin *rectus*, "right"); if the eye travels in a counterclockwise direction, the configuration is specified *S* (from the Latin *sinister*, "left"). The complete name includes both configuration and direction of optical rotation, as for example, (*S*)-(+)-2-butanol.

The relative configurations around the chiral centers of many compounds have been established. One optically active compound is converted to another by a sequence of chemical reactions which are stereospecific; that is, each reaction is known to proceed spatially in a specific way. The configuration of one chiral compound can then be related to the configuration of the next in sequence. In order to establish absolute configuration, one must carry out sufficient stereospecific reactions to relate a new compound to another of known absolute configuration. Historically the configuration of D-(+)-2,3-dihydroxypropanal has served as the standard to which all configuration has been compared. The absolute configuration assigned to this compound has been confirmed by an X-ray crystallographic technique.

2.1.5 Amino Acids

An *amino acid* is an organic compound containing an amine group $(-NH_2)$ and a carboxylic acid group $(-CO_2H)$ in the same molecule. While there are many forms of amino acids, all of the important amino acids found in living organisms are alpha-amino acids. Alpha amino acids have the carboxylic acid group and the amino group attached to the same carbon atom.

The simplest amino acid is glycine (H_2NCH_2COOH) and contains no asymmetric carbon atoms (tetrahedral carbon atoms with four different groups attached). All of the other amino acids contain an asymmetric carbon atom and are therefore optically active. Under physiological aqueous conditions a proton transfer from the acid to the base occurs, forming a dipolar ion or zwitterion, because

Name	Abbr.	Linear structural formula
Alanine	ala	CH ₃ —CH(NH ₂)—COOH
Arginine	arg	HN=C(NH ₂)-NH-(CH ₂) ₃ -CH(NH ₂)-COOH
Asparagine	asn	H ₂ N-CO-CH ₂ -CH(NH ₂)-COOH
Aspartic acid	asp	$HOOC - CH_2 - CH(NH_2) - COOH$
Cysteine	cys	HS-CH ₂ -CH(NH ₂)-COOH
Glutamine	gln	H_2N —CO—(C H_2) ₂ —CH(N H_2)—COOH
Glutamic acid	glu	$HOOC - (CH_2)_2 - CH(NH_2) - COOH$
Glycine	gly	NH ₂ —CH ₂ —COOH
Histidine	his	NH-CH=N-CH=C-CH ₂ CH(NH ₂)-COOH
Isoleucine	ile	CH_3 - CH_2 - $CH(CH_3)$ — $CH(NH_2)$ — $COOH$
Leucine	leu	(CH ₃) ₂ —CH—CH ₂ —CH(NH ₂)—COOH
Lysine	lys	H_2N —(CH ₂) ₄ —CH(NH ₂)—COOH
Methionine	met	CH_3 — S — $(CH_2)_2$ — $CH(NH_2)$ — $COOH$
Phenylalanine	phe	C ₆ H ₅ -CH ₂ -CH(NH ₂)-COOH
Proline	pro	NH—(CH ₂) ₃ —CH-COOH
Serine	ser	HO-CH2-CH(NH2)-COOH
Threonine	thr	CH ₃ —CH(OH)—CH(NH ₂)—COOH
Tryptophan	trp	C ₆ H ₄ -NH-CH=C-CH ₂ -CH(NH ₂)-COOH
Tyrosine	tyr	HO-p-C ₆ H ₄ -CH ₂ -CH(NH ₂)-COOH
Valine	val	(CH ₃) ₂ —CH—CH(NH ₂)—COOH

TABLE 2.13 Formula and Nomenclature of Amino Acids

Amino acid	pK_{a1}^*	p <i>K</i> _{a2} *	pl
Glycine	2.34	9.60	5.97
Alanine	2.34	9.69	6.00
Valine	2.32	9.62	5.96
Leucine	2.36	9.60	5.98
Isoleucine	2.36	9.60	6.02
Methionine	2.28	9.21	5.74
Proline	1.99	10.60	6.30
Phenylalanine	1.83	9.13	5.48
Tryptophan	2.83	9.39	5.89
Asparagine	2.02	8.80	5.41
Glutamine	2.17	9.13	5.65
Serine	2.21	9.15	5.68
Threonine	2.09	9.10	5.60
Tyrosine	2.20	9.11	5.66

TABLE 2.14 Acid-Base Properties of Amino Acids

*In all cases pK_{a1} corresponds to ionization of the carboxyl group; pK_{a2} corresponds to deprotonation of the ammonium ion.

the carboxylic acid is a much stronger acid than is the ammonium ion. The actual structure of glycine in solution, for example, is ${}^{+}H_3NCH_2COO^-$ at pH 7 rather than H_2NCH_2COOH . At very low pH the acid group can be protonated and at very high pH the ammonium group can be deprotonated, but the forms of amino acids relevant to living organisms are the zwitterions.

Amino acid	pK _{al} *	pK _{a2}	pK_a of side chain	pl
Aspartic acid	1.88	9.60	3.65	2.77
Glutamic acid	2.19	9.67	4.25	3.22
Lysine	2.18	8.95	10.53	9.74
Arginine	2.17	9.04	12.48	10.76
Histidine	1.82	9.17	6.00	7.59

TABLE 2.15 Acid-Base Properties of Amino Acids with Ionizable Side Chains

*In all cases pK_{a1} corresponds to ionization of the carboxyl group of RCHCO₂H, and pK_{a2} to ionization of the ammonium ion.

2.1.6 Carbohydrates

Carbohydrates consist of the elements carbon, hydrogen, and oxygen. In their basic form, carbohydrates are simple sugars or *monosaccharides*. These simple sugars can combine with each other to form more complex carbohydrates. The combination of two simple sugars is a *disaccharide*. Carbohydrates consisting of two to ten simple sugars are called *oligosaccharides*, and those with a larger number are called *polysaccharides*.

2.1.6.1 Sugars. Sugars are white crystalline carbohydrates that are soluble in water and generally have a sweet taste. Monosaccharides are simple sugars

Number of carbon atoms	Category name	Examples
4	Tetrose	Erythrose, Threose
5	Pentose	Arabinose, Ribose, Ribulose,
		Xylose, Xylulose, Lyxose
6	Hexose	Allose, Altrose, Fructose,
		Galactose, Glucose, Gulose,
		Idose, Mannose, Sorbose, Talose
7	Heptose	Sedoheptulose

The classification system of monosaccharides is based on the number of carbons in the sugar:

Many saccharide structures differ only in the orientation of the hydroxyl groups (-OH). This slight structural difference makes a big difference in the biochemical properties, organoleptic properties (e.g., taste), and in the physical properties such as melting point and Specific Rotation (how polarized light is distorted). A chain-form monosaccharide that has a carbonyl group (C=O) on an end carbon forming an aldehyde group (-CHO) is classified as an *aldose*. When the carbonyl group is on an inner atom forming a ketone, it is classified as a *ketose*.

2.1.6.1.1 Tetroses

 $\begin{array}{ccc} H & & H \\ C & & H \\ C & & C \end{array}$ $\begin{array}{ccc} H & & H \\ H - C - OH & H \\ H - C - OH & H \\ H - C - OH & H \\ C \\ H_2 OH & C \\ C \\ H_2 OH \end{array}$

2.1.6.1.2 *Pentoses* The ribose structure is a component of deoxyribonucleic acid (DNA) and ribonucleic acids (RNA).

H N	H	H	H
C	C	C	C
H-C-OH	H-C-OH	H – C – OH	НО-С-Н
н-с-он	н-с-он	но – С – н	но-с-н
н-с-он	н-с-он	н-с-он	н-с-он
CH ₂ OH	CH ₂ OH	CH ₂ OH	Г СН ₂ ОН
D-Ribose	D-Arabinose	D-Xylose	D-Lyxose

2.1.6.1.3 Hexoses. Hexoses, such as the ones illustrated here, have the molecular formula $C_6H_{12}O_6$.

H C ^{\$0} Н-С-ОН НО-С-Н Н-С-ОН НО-С-Н $H-C-OH HO^{3}C-H HO-C-H$ н-с-он н-с-он но-с-н Н-С-ОН но-с-н H - C - OHн-с-он Н-С-ОН НО-С-Н НО-С-Н H-C-OH но-с-н но-с-н <u>н ⁵</u> с −он H-C-OH H-C-OH H-C-OH H-C-OH н-с-он H-C-OH H-C-OH ⁶ CH₂OH CH₂OH CH₂OH CH₂OH CH₂OH CH₂OH CH₂OH CH₂OH D-Allose D-Altrose D-Glucose D-Mannose D-Gulose D-Idose D-Galactose D-Talose

Structures that have opposite configurations of a hydroxyl group at only one position, such as glucose and mannose, are called *epimers*.

Glucose, also called dextrose, is the most widely distributed sugar in the plant and animal kingdoms and it is the sugar present in blood as "blood sugar". The chain form of glucose is a polyhydric aldehyde, meaning that it has multiple hydroxyl groups and an aldehyde group. Fructose, also called levulose, is shown here in the chain and ring forms.

2.1.6.1.4 *Heptoses* Sedoheptulose has the same structure as fructose, but it has one extra carbon.

 $CH_{2}OH$ C = O HO - C - H H - C - OH H - C - OH H - C - OH H - C - OHH - C - OH

D-Sedoheptulose

2.1.6.1.5 Chain and Ring Structure. Many simple sugars can exist in a chain form or a ring form, as illustrated by the hexoses above. The ring form is favored in aqueous solutions, and the mechanism of ring formation is similar for most sugars. The glucose ring form is created when the oxygen on carbon number 5 links with the carbon comprising the carbonyl group (carbon number 1) and transfers its hydrogen to the carbonyl oxygen to create a hydroxyl group. The rearrangement produces *alpha*-glucose when the hydroxyl group is on the opposite side of the -CH₂OH group, or *beta*-glucose when the hydroxyl group is on the same side as the -CH₂OH group. Isomers that differ only in their configuration about their carbonyl carbon atom are called *anomers*.

The symbol 'd' (or 'D') is used to indicate that the shows that a sugar is *dextrorotary*, i.e., it rotates polarized light to the right, but can also denote a specific configuration. On the other hand, the symbol '1' (or 'L') indicates that the sugar is *laevorotatory*, i.e., it rotates polarized light to the left. Again the symbol may be used to indicate a specific configuration.

2.1.6.2 Stereochemistry. Saccharides with identical functional groups but with different spatial configurations have different chemical and biological properties. Stereochemistry is the study of the arrangement of atoms in three-dimensional space. Stereoisomers are compounds in which the atoms are linked in the same order but differ in their spatial arrangement. Compounds that are mirror images of each other but are not identical are called *enantiomers*. The following structures illustrate the difference between β -D-glucose and β -L-glucose. Identical molecules can be made to correspond to their mirror images by flipping and rotating. However, enantiomers cannot be made to correspond to their site a more accurate representation of the bond angles of the molecule.

2.1.6.3 Sugar Alcohols, Amino Sugars, and Uronic Acids. Sugars may be modified by natural or laboratory processes into compounds that retain the basic configuration of saccharides, but have different functional groups. Sugar alcohols, also known as polyols, polyhydric alcohols, or polyalcohols, are the hydrogenated forms of the aldoses or ketoses. For example, glucitol, also known as sorbitol, has the same linear structure as the chain form of glucose, but the aldehyde (-CHO) group is replaced with a -CH₂OH group. Other common sugar alcohols include the monosaccharides erythritol and xylitol and the disaccharides lactitol and maltitol. Sugar alcohols have about half the calories of sugars and are frequently used in low-calorie or "sugar-free" products.

Amino sugars or aminosaccharides replace a hydroxyl group with an amino $(-NH_2)$ group. Glucosamine is an amino sugar used to treat cartilage damage and reduce the pain and progression of arthritis.

Uronic acids have a carboxyl group (-COOH) on carbon number six.

Disaccharide	Description	Component monosaccharides
Sucrose	common table sugar	Glucose + fructose
Lactose	main sugar in milk	galactose + glucose
Maltose	product of starch hydrolysis	glucose + glucose

2.1.6.3 Disaccharides. Disaccharides consist of two simple sugars and the common disaccharides are sucrose, lactose, and maltose.

Lactose has a molecular structure consisting of galactose and glucose. It is of interest because it is associated with lactose intolerance, which is the intestinal distress caused by a deficiency of lactase, an intestinal enzyme needed to absorb and digest lactose in milk. Undigested lactose ferments in the colon and causes abdominal pain, bloating, gas, and diarrhea. Yogurt does not cause these problems because lactose is consumed by the bacteria that transform milk into yogurt.

Maltose consists of two α -D-glucose molecules with the alpha bond at carbon 1 of one molecule attached to the oxygen at carbon 4 of the second molecule. This is called a $1\alpha \rightarrow 4$ linkage.

Cellobiose is a disaccharide consisting of two β -D-glucose molecules that have a $1\beta \rightarrow 4$ linkage. Cellobiose has no taste, whereas maltose is about one-third as sweet as sucrose.

2.1.6.4 Polysaccharides. Polysaccharides are polymers of simple sugars but, unlike sugars, polysaccharides are insoluble in water.

2.1.6.4.1 Starch. Starch is the major form of stored carbohydrate in plants. Starch is composed of a mixture of two substances: *amylose*, an essentially linear polysaccharide, and *amylopectin*, a highly branched polysaccharide. Both forms of starch are polymers of α -d-glucose. Natural starch contains 10–20% amylose and 80–90% amylopectin.

Amylose molecules consist typically of 200 to 20,000 glucose units that form a helix as a result of the bond angles between the glucose units.

Amylose

Amylopectin differs from amylose in being highly branched. Short side chain of about 30 glucose units are attached approximately every twenty to thirty glucose units along the chain. Amylopectin molecules may contain up to two million glucose units.

Starches are transformed into many commercial products by hydrolysis with acids or enzymes. The resulting products are assigned a Dextrose Equivalent (DE) value that is related to the degree of hydrolysis. A DE value of 100 corresponds to completely hydrolyzed starch, which is pure glucose (dextrose). Maltodextrins are not sweet and have DE values less than 20. Syrups, such as corn syrup, have DE values from 20 to 95. "High fructose corn syrup," commonly used to sweeten soft drinks, is made by enzymatically isomerizing a portion of the glucose into fructose, which is about twice as sweet as glucose.

2.1.6.4.2 Glycogen. Glucose is stored as glycogen in animal tissues by the process of glycogenesis. When glucose cannot be stored as glycogen or used immediately for energy, it is converted to fat. Glycogen is a polymer of α -d-glucose identical to amylopectin, but the branches in glycogen tend to be shorter (about 13 glucose units) and more frequent. The glucose chains are organized globularly, like the branches of a tree, surrounding a pair of molecules of glycogenin, a protein with a molecular weight of 38,000 that acts as a primer at the core of the structure. Glycogen is easily converted back to glucose to provide energy.

2.1.6.4.2 Cellulose. Cellulose is a polymer of β -d-glucose, which in contrast to starch, is oriented with -CH₂OH groups alternating above and below the plane of the cellulose molecule thus producing long, unbranched chains. The absence of side chains allows cellulose molecules to lie close together and form rigid structures. Cellulose is the major structural material of plants. Wood is largely cellulose, and cotton is almost pure cellulose. Cellulose can be hydrolyzed to its constituent glucose units by microorganisms that inhabit the digestive tract of termites and ruminants. Cellulose may be modified in the laboratory by treating it with nitric acid (HNO₃) to replace all the hydroxyl groups with nitrate groups (-ONO₂) to produce cellulose nitrate that is an explosive component of smokeless powder.

2.1.7 Miscellaneous Compounds

Number o Carbons	f Common name	Systematic name	Structural formula	Melting point °C
Saturated	l fatty acids			
12 14 16 18 20	Lauric acid Myristic acid Palmitic acid Stearic acid Arachidic acid	Dodecanoic acid Tetradecanoic acid Hexadecanoic acid Octadecanoic acid Icosanoic acid	$\begin{array}{l} CH_{3}(CH_{2})_{10}CO_{2}H\\ CH_{3}(CH_{2})_{12}CO_{2}H\\ CH_{3}(CH_{2})_{14}CO_{2}H\\ CH_{3}(CH_{2})_{16}CO_{2}H\\ CH_{3}(CH_{2})_{18}CO_{2}H\\ \end{array}$	44 58 63 69 75
Unsatura	ted fatty acids			
18	Oleic acid	cis-9-Octadecenoic acid	$\begin{array}{c} H \\ C = C \\ H_{3}(CH_{2})_{7} \end{array} \begin{array}{c} H \\ CH_{3}(CH_{2})_{7}COH \end{array}$	4
18	Linoleic acid	<i>cis,cis-</i> 9, 12- Octadecadienoic acid	$\begin{array}{c} H \\ C = C \\ CH_{3}(CH_{2})_{4} \end{array} \begin{array}{c} H \\ CH_{2} \\ CH_{2} \end{array} \begin{array}{c} H \\ CH_{2} \\ CH_{2} \end{array} \begin{array}{c} H \\ CH_{2} \\$	-12
18	Linoleimic acid	<i>cis,cis,cis-</i> 9, 12, 15- Octadecatrienoic acid	$\begin{array}{c} H \\ C = C \\ CH_{3}CH_{2} \\ CH_{2} \\ CH_{2$	_
20	Arachidonic acid	<i>cis,cis,cis,cis</i> -5, 8, 11, 14- Icosatetraenoic acid	$\begin{array}{c} H \\ C = C \\ CH_3(CH_2)_4 \\ CH_2 \\ CH_$	–49 ЭН

TABLE 2.17 Representative Fatty Acids

	Name	Structure	Occurrence
Pyrimidines	Cytosine	$ \begin{array}{c} $	DNA and RNA
	Thymine	$H_{3}C \xrightarrow[]{5}{0} H_{4}$	DNA
Purines	Uracil	$ \begin{bmatrix} 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 1 \\ H \end{bmatrix} $	RNA
	Adenine	$\begin{array}{c} NH_2 \\ N \\ 8 \\ 9N \\ H \\ N \\ 3N \\ 9N \\ 4 \\ 3N \\ 2 \end{array}$	DNA and RNA
	Guanine	$ \begin{array}{c} $	DNA and RNA

TABLE 2.18 Pyrimidines and Purines That Occur in DNA and RNA

TABLE 2.19 Organic Radicals

Name	Formula	Name	Formula
Acenaphthenyl	C ₁₂ H ₉	Azido	N ₃
Acenaphthenylene	-C ₁₂ H ₈ -	Azino	=N-N=
Acenaphthenylidene	$C_{12}H_8 =$	Azo	NN
Acetamido	CH ₃ -CONH	Azoxy	—N(O)—N—
Acetimidoyl	CH ₃ C(==NH)	Azulenyl	C ₁₀ H ₇ —
Acetoacetyl	CH ₃ -CO-CH ₂ -CO-	Benzamido	C ₆ H ₅ —CO—NH—
Acetohydrazonoyl	$CH_3 - C(=NNH_2) - $	Benzeneazo	C ₆ H ₅ N=-N
Acetohydroximoyl	CH ₃ -C(=NOH)-	Benzeneazoxy	C ₆ H ₅ -N ₂ O
Acetonyl	CH ₃ —CO—CH ₂ —	1,2-Benzenedicarbonyl,	
Acetonylidene	СН ₃ —СО—СН=	see Phthaloyl	
Acetoxy	CH ₃ COO	1,3-Benzenedicarbonyl (or	-CO-C ₆ H ₄ -CO-(<i>m</i> -)
Acetyl (not ethanoyl)	CH ₃ -CO-	isophthaloyl)	
Acetylamino	CH ₃ -CO-NH	1,4-Benzenedicarbonyl (or	
Acetylhydrazino	CH ₃ -CO-NH-NH-	terephthaloyl)	
Acetylimino	CH ₃ -CO-N=	Benzenesulfinyl	C ₆ H₅SO
Acridinyl (from acridine)	NC13H8	Benzenesulfonamido	C ₆ H ₅ —SO ₂ —NH—
Acroyloyl (or propenoyl)	CH ₂ =CH-CO-	Benzenesulfonyl	C ₆ H ₅ —SO ₂ —
Adipoyl (or hexanedioyl)		Benzenesulfonylamino	C ₆ H ₅ SO ₂ NH
Alanyl	CH ₃ -CH(NH ₂)-CO-	Benzenetriyl	C ₆ H ₃
β-Alanyl	H ₂ N-CH ₂ -CH ₂ -CO-	Benzhydryl (or diphenyl-	(C ₆ H ₅) ₂ CH—
Allyl (or 2-propenyl)	CH ₂ =CH-CH ₂ -	methyl)	
Allylidene	CH ₂ =CH-CH=	Benzidino	$p-H_2N-C_6H_4-C_6H_4-$
Allyloxy	$CH_2 = CH - CH_2 - O - O$		NH
Amidino	$H_2N-C(=NH)-$	Benziloyl (or 2-hydroxy-	(C ₆ H ₅) ₂ C(OH)CO
Amino	H ₂ N	2,2-diphenylethanoyl)	
Aminomethyleneamino	H ₂ N-CH=N-	Benzimidazolyl	$N_2C_7H_5$
Aminooxy	H ₂ N-O	Benzimidoyl	C_6H_5 — $C(==NH)$ —
Ammonio	+H ₃ N	Benzofuranyl	OC ₈ H ₅ —
Amyl, see Pentyl		Benzopyranyl	OC ₉ H ₇
Anilino	C ₆ H ₅ NH	Benzoquinonyl (1,2- or	$(O=)_2C_6H_3-$
Anisidino (o-, m-, or	CH ₃ O-C ₆ H ₄ -NH-	1,4-)	
<i>p</i> -)		Benzo[b]thienyl	SC ₈ H ₅ —
Anisoyl (o-, m-, or	CH ₃ O-C ₆ H ₄ -CO-	Benzoyl	C ₆ H ₅ —CO—
p-; or methoxyben-		Benzoylamino	C ₆ H ₅ CONH
zoyl)		Benzoylhydrazino	C ₆ H ₅ —CO—NH—NH—
Anthraniloyl	o-NH₂C ₆ H₄CO	Benzoylimino	C_6H_5 —CO—N=
Anthryl (from anthracene)	C ₁₄ H ₉ —	Benzoyloxy	C ₆ H ₅ —CO—O—
Anthrylene		Benzyl	C ₆ H ₅ CH ₂
Arginyl	$H_2N-C(=NH)-NH-$	Benzylidene	C ₆ H ₅ —CH=
	[CH ₂] ₃ —CH(NH)—	Benzylidyne	C ₆ H ₅ −−C≡
	CO	Benzyloxy	C ₆ H ₅ —CH ₂ —O—
Asparaginyl	H ₂ N-CO-CH ₂ -	Benzyloxycarbonyl	C ₆ H ₅ -CH ₂ -O-CO-
	CH(NH ₂)CO	Benzylthio	C ₆ H ₅ CH ₂ S
Aspartoyl		Biphenylenyl	C ₁₂ H ₇
	CH(NH ₂)—CO—	Biphenylyl	C ₆ H ₅ —C ₆ H ₄ —
α-Aspartyl	HO ₂ C-CH ₂ CH(NH ₂)-	Bornenyl	C ₁₀ H ₁₅
Atropoyl (or 2-phenylpro-	C ₆ H ₅ -C(=CH ₂)-CO	Bornyl (not camphyl or	C ₁₀ H ₁₇
penoyl)		bornylyl)	
Azelaoyl, see Nonane-		Bromo	Br
dioyl		Bromoformyl	Br—CO—

For more comprehensive lists, see the various lists of radicals given in the subject indexes of the annual and decennial indexes of Chemical Abstracts.

Non	Equal 1-	Nome	Eamma-1-
Name	Formula	Name	Formula
Bromonio Butadienyl (1,3- shown) Butanedioyl, <i>see</i> Succinyl Butanediylidene	$^{+}HBr-CH=CH=CH-CH=CH-CH=CH-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH=CH=CH_{2}-CH=CH_{2}-CH=CH=CH-CH_{2}-CH=CH-CH_{2}-CH=CH-CH-CH_{2}-CH=CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C$	Cinnamoyl (or 3-phenyl- propenoyl) Cinnamyl Cinnamylidene	C ₆ H ₅ -CH=CH-CO C ₆ H ₅ -CH=CH-CH ₂ - C ₆ H ₅ -CH=CH=CH=CH= HC-CO-
Butanediylidyne Butanoyl, see Butyryl cis-Butenedioyl, see Ma-	$\equiv C - CH_2 - CH_2 - C \equiv$	Citraconoyl (unsubstituted only) Crotonoyl	$ \begin{array}{c} & \\ \parallel \\ CH_3 - C - CO - \\ CH_3 - CH = CH - CO - \\ (trans) \end{array} $
leoyl trans-Butenedioyl, see Fu- maroyl Butenoyl, see Crotonoyl and Isocroto- noyl		Crotyl, <i>see</i> 2-Butenyl Cumenyl (<i>o</i> -, <i>m</i> -, <i>or p</i> -) Cyanato Cyano	(CH ₃) ₂ CH−C ₆ H ₄ − NCO−− NC−
1-Butenyl 2-Butenyl (not crotyl) 2-Butenylene	$\begin{array}{c} CH_3-CH_2-CH=CH-\\ CH_3-CH=CH-CH_2-\\ -CH_2-CH=CH-\\ CH_2-CH=CH-\\ CH_2-\end{array}$	Cycloheptyl	$C_{4}H_{7} - C_{7}H_{13} - C_{1}H_{13} - C$
Butenylidene (2- shown)	СН ₃ СН=СН-СН=		СН—СН,—С
Butenylidyne (2- shown)	CH ₃ −CH=CH−C≡	(2.4. shown)	
BUIOXY	CH_{3} — $[CH_{2}]_{3}$ — O —	(2,4- silowii) Cyclobexapecarbopyl	
only)	C2115 CH(CH3) 0	Cyclohexanecarbothiovl	$C_6H_{11} = CS =$
tert-Butoxy (unsubstituted	(CH ₃) ₃ C—O—	Cyclohexanecarboxamido	C ₆ H ₁₁ -CO-NH-
only)	× 575	Cyclohexanecarboximidoyl	$C_6H_{11} - C(=NH) - $
Butyl	$CH_3 - [CH_2]_3 - or$	Cyclohexenyl	C ₆ H ₉ —
-	C₄H ₉ —	2-Cyclohexenylidene	Çн=сн−с<
sec-Butyl (unsubstituted only)	C ₂ H ₅ —CH(CH ₃)—	Cycloberyd	H_2C — CH_2 — CH_2
tert-Butyl (unsubstituted	(CH ₃) ₃ C—	Cyclohexylcarbonyl	$C_{6}H_{11}$
only)		Cyclohexylene	
Butylidene	$CH_3 - CH_2 - CH_2 - CH =$	Cyclohexylidene	
sec-Butylidene (unsubsti- tuted only)	$C_2H_5C(CH_3) =$	Cyclonexyndene	$H_2 \to H_2 \to H_2$ $H_2 \to H_2 \to H_2$
Butylidyne	$CH_3 - [CH_2]_2 - C \equiv$	Cyclohexylthiocarbonyl	C ₆ H ₁₁ —CS—
Butyryl (or butanoyl)	CH ₃ —CH ₂ —CH ₂ —CO—	Cyclopentadienyl	C ₅ H ₅
Camphoroyl	$C_{10}H_{14}O_2$	Cyclopentadienylidene	СН=СН-СН=СН-С=
Carbamoyi	$H_2N - CO - $	Cyclopenta[a]phenanthryl	C ₁₇ H ₁₇ —
Carbazory	H N - NH - CO - H N - NH - C	1,2-Cyclopentenophenan-	$C_{17}H_{11}$
Carbonimidovl	C(=NH)	thryl	C II
Carbonohydrazido (pre-	H _N -NH-CO-NH-	Cyclopentenyl	$C_{5}H_{7}$
ferred to carbohydazido	NH—	Cyclopentyl	C ₅ H ₉ —
or carbazido)		Cyclopentylene	$-C_{5}H_{8}$
Carbonyl	-CO- or $=C(O)$	Cyclopropyl	$C_3 \Pi_5 \longrightarrow$
Carbonyldioxy	-0-c0-0-	Cystemy	CO-
Carboxy	HO ₂ C	Cystyl	$-CO-CH(NH_{2})-$
Carboxylato	-O ₂ C	Cystyr	CH ₂ —S—S—CH ₂ —
Chloro	CI—		CH(NH ₂)—CO—
Chlorocarbonyl, see Chlo-		Decanedioyl	-CO-[CH ₂] ₈ -CO-
roformyl		Decanoyl	CH ₃ -[CH ₂] ₈ -CO-
Chloroformyl	CI-C(O)-	Decyl	CH3-[CH2]9-
Chlorosyl	OCI-	Diacetoxyiodo	(CH ₃ —CO—O) ₂ I—
Chlorothio	CIS—	Diacetylamino	(CH ₃ —CO) ₂ N—
Chloryl	O ₂ Cl—	Diaminomethyleneamino	$(NH_2)_2C = N - $

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Name	Formula	Name	Formula
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Diazo	N ₂	Fluorenyl	C13H9-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Diazoamino	N==NH	Fluoro	F
Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Dichloridod Protocatechnoyl 2.5-Dihydroxybtanedioyl, see Tartaroyl Dihydroxyptonaoyl, see Gilyceroyl 3.4-Dimethoxybenzoyl, see Veratroyl 3.4-Dimethoxybenzoyl, see Veratroyl 3.4-Dimethoxybenzoyl, see Veratroyl 3.4-Dimethoxybenzoyl, see Veratroyl 3.4-Dimethoxybenzoyl, see Veratroyl Dimethylsenzoyl CH ₃ O ₂ C _H ₂ C _H ₂ C _H ₂ C _H -CD- UCH ₃ O ₂ C _H ₄ C _H ₃ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₂ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ O ₄ C _H ₄ C _H ₄ -CO- Dimethylsenzoyl CH ₃ (CH ₃) ₆ C-H Didtio Dimethylsenzoyl CH ₃ (CH ₃) ₆ C-H Didtio CH ₃ (CH ₃) ₆ C-H Epidithol (cas a bridge) -S=-S- Epitimio (cas a bridge) -NH- Epidethoy (cas a bridge) EhanosulfO and CH ₃ -CCH ₂ -CH ₂ -CH ₂ - CH ₄ (CH ₃) ₆ C-CO- CH ₃ -CCH ₃ -CO- CH ₃ -CCH ₁ -CO- CH ₁ (CH ₃) ₆ -CO- CH ₃ -CCH ₁ -CO- CH ₁ (CH ₃) ₆ -CO- CH ₃ (C	Dibenzoylamino	(C ₆ H ₅ CO) ₂ N	Fluoroformyl	F—CO—
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dichloroiodo	Cl.I—	Formamido	OCH-NH-
3.4-Dihydroxybenzoyl, see ProtocatechuoylFormyl (nor methanoyl) ProtocatechuoylOCH—or —CO(H) H—CO–NH— Formylianino Formylianino Formylianino Formylianino Formylianino Formylianino FormylioxyOCH—or —CO(H) H—CO–NH— H=CO–NH— (crans)3.4-Dinethoxybenzoyl, see Veratroyl 3.4-Dimethoybenzoyl, see Veratroyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Dimethylenzoyl Difteriou trans-9-octa- Epidithic (as a bridge) Epidithic (as a bridge) Epidithic (as a bridge) Epidenzo (as a bridge) Epidenzo (as a bridge) Epidenzo (as a bridge) Epidenzo (as a bridge) Epidenzon (as a bridge) Epidenzon (as a bridge) Epidenzon (as a bridge) Epidenzon (as a bridge) Ehooxalyl, see Acetyl Ethoxalyl Ethoxalyl Ethonzalyl C,H ₁ —COC—COC—COC—CI CH3/C,H ₁ —COC—COC—CI CH3/C,H ₂ ,CH,=COC—COC CH3/C,H ₂ ,CH,=COC—COC CH3/C,H ₂ ,CH,=COC—COC CH3/C,H ₂ ,CH,=COC—COC CH3/C,H ₂ ,CCD—COC—CI CH3/C,H ₂ ,CCD—COC—CI CH3/C,H ₂ ,CCD—COC—CI CH3/C,H ₂ ,CCD—COC—CI CH3/C,H ₂ ,CCD—CI CH3/C,H ₂ ,CCD—CI CH3/	Diethylamino	$(C_{2}H_{2})_{2}N_{}$	Formimidovl	CH(=NH)-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.4-Dihydroxybenzoyl, see	(-2-3)2	Formyl (not methanoyl)	OCH orC(O)H
2.3-Dihydroxybutanedioyl, se Tartaroyl Dihydroxybota 2.3-Dihydroxyboropanoyl, se Glyceroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl 3.4-Dimethoxybenzoyl, se Veratroyl Dimethylamino (CH ₃) ₂ C _{H₃} CH ₂ CH ₋ Dimethylamino (CH ₃) ₂ C _e H ₃ CH ₂ CH ₋ Dimethylamino (CH ₃) ₂ C _e H ₃ CH ₂ CC- Dimethylamino (CH ₃) ₂ C _e H ₃ CH ₂ CC- Dithiosuffor HOS ₋ Dithiosuffor HOS ₋ Dithiosuffor HOS ₋ Elidioyl (or trans-9-octa- decony) Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CH=CH Elidioyl (or trans-9-octa- decony) Elidioyl (or trans-9-octa- decony) Elidioyl (or trans-9-octa- decony) Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CH=CH Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CCO Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CH=CH Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CH=CH Elidioyl (or trans-9-octa- CH ₃ (CH ₃),CCO CH ₃ (CH ₃),CCD CH ₃ (CH ₃),CCD Elidioyl (or hydroxycy- ethanoyl, see Actyl Elidioyl (or hydroxycy- ethanoyl, see Actyl Elidioyl (or hydroxycy- Elidioyl (or hydroxycy- Elidioyl (or hydroxycy- Elidioyl (or hydroxycy- Elidioyl (or hydroxycy- Elidioyl (o	Protocatechuovl		Formylamino	H-CO-NH-
see Tartaryi Dilydroxyiodo 2.3-Dihydroxyiodo 2.3-Dihydroxyiodo 2.3-Dihydroxypropanoyl, see Gyceroyl 3.4-Dimethoxybenzoyl, see Varatoyl 3.4-Dimethoxybenzoyl, see Varatoyl 3.4-Dimethoxybenzoyl, see Varatoyl 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, 3.4-Dimethoxybenzoyl, Dimethylamino Dimethylamino Dimethylamino Diphenylamino Diphenylamino Dibtio CH ₃ (CH ₃) _A C= Dibtio CH ₃ (CH ₃) _A C= CH ₃ (CH ₃) _A C= Dibtio CH ₃ (CH ₃) _A C= CH ₃ (CH ₃) _A C= Dibtio CH ₃ (CH ₃) _A C= Dibtio CH ₃ (CH ₃) _A C= CH ₃ (CH ₃) _A C=	2.3-Dibydroxybutanedioyl.		Formylimino	H-CO-N=
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	see Tartaroyl		Formyloxy	H-CO-O-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dihydroxyiodo	(HO)J	Furnarovi (or trans-butene-	-CO-CH=CH-CO-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3-Dihydroxypropanoyl	(10)/2	diavD	(trans)
A-Dimethoxybenzoyl, see Veratroyl3.4- C(H=C)C(H=C)C(H=C)C(H=C)3.4- (CH)(CH,O)2C_{H}GH_2CO- (CH)(CH,O)2C_{H}GH_2CO- (CH)Furfuryl (2 - only)C(H=C)C(H=C)3.4- (CH)(CH,O)2C_{H}GH_2CO- (CH)(CH,O)2C_{H}GH_2CO- (CH)Furgyl (3 - shown; pre- ferred to furancarboryl)C(H=C)C(H=C)Dimethylanino Dimethylbenzoyl Diphenylmethylene (CH,H)2,C=H Dibhio(CH,J)2C= (CH)2,C=H (CH)2,C=H (CH)2,C=HFurgyl (3 - shown; pre- ferred to furancarboryl)C(H=C)Diphenylmethylene Dodecarboxy Dodecarolyl CH4[CH]1,(CH,J)2C= (CH,J)2,C=H (CH,J)2,C=HGalloyl (or 3.4,5-trihy- droxybenzoyl)CH=CH (CH=C)Dodecarolyl Dodecarolyl Epiditios (as a bridge) Epiditios (as a bridge)CH_1(CH,J),C= CH=C)Galloyl (or 3.4,5-trihy- droxybenzoyl)CH,H,CH,J)-CO (CH,GH,J)-CCDEpiditios (as a bridge) Epiditios (as a bridge)-Se-Se COGlutamoylCH(NH,J)-CO CO-CH,CH,D-CDEpiditios (as a bridge) Epiditios (as a bridge)-Se CGlutamylCOC(CH,CH,J) COCO-(CH(NH,J) COEthoxalyl Ethoxalyl EthoxalylC,H,OCC-CO C,H,CH,CH,GlutamylCO-C COEthoylene Ethylamino Ethylene EthylaninoC,H,OCD C,H,CH,CH,Gluanyl, see Amidino Ho-CH,COEthylanino Ethylane Ethylane Ethylane Ethylane CH,CH,CH,CH,CH,Gluanyl, see Amidino Ho-CH,COHo-CH,CO COEthylane Ethylane Ethylane Ethylane CH,CH,C	see Giveerovi		Eurancarbonyl see Euroyl	(11413)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4-Dimethoxybenzovl			CH=C-CH-
3.4-Dimethory 3.4-Dimethoxyphenethyl3.4- (CH_3O)_2C_gH_3CH_3CH- 3.4- (CH_3O)_2C_gH_3CH_3CH- 3.4- (CH_3O)_2C_gH_3CH_3CO- (CH_3)_2N- Dimethylaminoferred to 2-furylmethyl Furdylidene (2- only)CH= \dot{O} CH= $-\dot{O}$ CH= $-O-$ CH=C-CH CH= $-O-$ CH= $-CH_2-$ CH= $-CH_2-$ <b< td=""><td>see Veratrovl</td><td></td><td>Furfuryl (2- only; pre-</td><td>HC I</td></b<>	see Veratrovl		Furfuryl (2- only; pre-	HC I
$\begin{array}{c} (CH_3O)_2C_gH_3CH_3CH \\ (CH_3O)_2C_gH_3CH_3CO \\ (CH_3O)_2C_gH_3CH \\ (CH_3O)_2C_gH \\ (CH_3O)_2C_gH_3CH \\ (CH_3O)_2C_gH_3$	3 4 Dimethoxyphenethyl	3.4	ferred to 2-furylmethyl)	‴сн—о́
3.4-Dimethosyphenylace- tyl $(CH_{3}O_{2}C_{e}H_{3}CH_{2}CH)$ $(CH_{3}O_{2}C_{e}H_{3}CH_{2}CO-$ Dimethylbenzoyl $(CH_{3}O_{2}C_{e}H_{3}CH_{2}-CO-$ Dimethylbenzoyl $(CH_{3}O_{2}C_{e}H_{3}-CO-$ Diphenylmethylene $(C_{e}H_{3})_{N}$ $-$ Diphenylmethylene $(C_{e}H_{3})_{N}C=$ Dithio $-S-S (CH_{3}O_{2}C-)$ $(CH_{3}O_{2}C_{e}H_{3}-CO-$ Diphenylmethylene $(C_{e}H_{3})_{N}C=$ Dithio carboxy $HSSC (Galloyl (or 3, 4, 5-trihy-$ $droxybenzoyl)$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $droxybenzoyl$ $CH_{3}(CH_{2}]_{n}CO (CH_{3}-CH_{2}-$ $CH_{2}-CH_{2} CH_{2} CH_$	5,4-Diffeetioxypitetioutyr			_сн=с−сн<
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.4 Dimethoxynhenylace	3 4	Furfurylidene (2- only)	HC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5,4-Dimenioxyphenylace-	(CH O) C H CH CO	E (1/2 I	CH-O
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tyi Dimathulamina	$(CH_3O)_2C_6H_3CH_2CO^{$	Furoyl (3- shown; pre-	CH=C-CO-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimethylannio	$(CH_3)_2 N - CH_1 N - CO_1 N$	ferred to furancarbonyl)	н
Dioly Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino Diphenylamino C4H_3/2C= S=S= CH_3(CH_2)_10-CO CO CH_3(CH_2)_10-CO CO CH_3(CH_2)_10-CO CO CH_3(CH_2)_10-CO CO	Dinethyloenzoyi	$(CH_3)_2C_6H_6H_3$ CU	Furyl	OC.H.—
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Diotxy		3-Furylmethyl	CH=C-CH-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Diphenylamino	$(C_6H_5)_2N^{}$		0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diphenyimeinyiene	$(C_6H_5)_2C_{max}$		` СН=-СН
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Diathia and ann	-2-2-	Colloy! (or 2.4.5 triby	2 4 5 (HO) C H CO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dithiamlfa	HSSC	drosphenson	5,4,5-(n0) ₃ C ₆ H ₂ CO
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Dadaaanaad	HUS_2	Goropyi (from goropia)	С Ч —
DodeCH3[LR]_1/TOutdatinity1H2N=CCH2^-CH2^-CH2^-CH2^-Elaidoyl (or trans-9-octa- decencyl)CH3[CH2]_7CH=CH [CH2]_7COGlutamoylCH(NH2)-CO CH(NH2)-COEpidioxy (as a bridge) $-Se-Se-$ Piditibito (as a bridge) $-Se-Se-$ Piditibito (as a bridge) $a-Glutamyl$ HOOC[CH2]_2CH(NH2) COEpidioxy (as a bridge) $-Se-Se-$ Piditibito (as a bridge) $-Se-Se-$ Piditibito (as a bridge) $a-Glutamyl$ HOOC[CH2]_2CH(NH2) COEpiditibito (as a bridge) $-Se-$ Piditio (as a bridge) $-Se-$ Piditio (as a bridge) $-CO-$ CO $[CH_1]_2-CO$ [CH2]_2CH(NH2) COEpidito (as a bridge) $-Se-$ Piditio (as a bridge) $-Se-$ Piditio (as a bridge) $-CO-$ COEpithio (as a bridge) $-Se-$ Poxy (as a bridge) $-O Glutaryl (or pentanedioyl)$ $droxypropanoyl)-CO-EthanesulfonamideC_2H_5-SO_2-NH droxypropanoyldroxypropanoyl)CO-Ethonyl, see AcetylGlycoloyl (or hydroxy-ethanoyl)HO-CH_2CO-EthoxyC_2H_5-O-CO GlycylaminoH_2N-CH2-CO H_2N-CH_2-CO-EthoylC_2H_5-O-CO GlycylaminoH_2N-CH2-CO H_2N-CH_2-CO-EthylaminoC_2H_5-NH GuanidinoH_2N-CH_2-CO-Ethylene-CH_2CH_2-HeptanemidoCH_3[CH_2]_5-CO-Ethylene-CH_2CH_2-Heptanoyl-CO[CH_2]_5-CO-EthylideneCH_3CH_2-HeptanoylCH_3[CH_2]_5-CO-EthylideneCH_3CH_2-Hept$	Dodecanoyi	$CH_3[CH_2]_{10}$	Chutominul	$U_{10}n_{17}$
Handoyi (of trans-y-beta- decenoyi) $CH_{3}[CH_{2}]_{7}-CO$ $[CH_{2}]_{7}-CO$ $[CH_{2}]_{7}-CO$ $[CH_{2}]_{7}-CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})CO$ $CH(NH_{2})COCH(NH_{2})CO$	Dodecyl	$CH_3[CH_2]_{11}$	Gutanunyi	$H_2N = CU = CH_2 = CH_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elaidoyi (or trans-9-octa-	CH ₃ [CH ₂] ₇ CH==CH=	Glutomovi	
Bindoxy (as a bridge) $-0-0 -0-0-$ Epidiseleno (as bridge) $-Se-Se a^{-}$ Glutamyl $HOOC[CH_2]_2CH(NH_2)-$ Epidithio (as a bridge) $-S-S p^{-}$ Glutamyl $HOOC[-CH(NH_2)-$ Episeleno (as a bridge) $-Se [CH_2]_2-CO-$ Epithio (as a bridge) $-Se [CH_2]_2-CO-$ Epithio (as a bridge) $-Se [CH_2]_2-CO-$ Epithio (as a bridge) $-S [CH_2]_2-CO-$ Epithio (as a bridge) $-O [CH_2]_2-CO-$ Ethoxyl (as a bridge) $C_2H_3-SO_2-NH [Ch_2]_2CO-$ Ethoxyl, see Varyl $[C_2H_3-OOC-CO [Clycoly](or hydroxy-ethanoyl)$ Ethoxyl (as a bridge) $C_2H_3-O [Clycy][amino]$ Ethoxyl (as a bridge) $C_2H_3-O [Clycy][amino]$ Ethoxyl (as a bridge) $C_2H_3-O [Clycy][amino]$ Ethoxyl (as a bridge) $C_2H_3 CO-$ Ethyl (ac	aecenoyi)	[CH ₂] ₇	Giutanioyi	$-cu - ch_2 - c$
Explicition (as a bridge) $-Se-Se deCruitality$ $HOOC([C_1_{2}]_{2}CH(H_{2})]^{-}$ Epidithio (as a bridge) $-S-S CO-$ Epimino (as a bridge) $-Se PGlutamyl$ $HOOC-CH(H_{2})-$ Episeleno (as a bridge) $-Se [CH_{2}]_{2}-CO [CH_{2}]_{2}-CO-$ Epithio (as a bridge) $-Se Glutaryl$ (or pentanedioyl) $-CO-[CH_{2}]_{3}-CO-$ Episeleno (as a bridge) $-O Glyceroyl$ (or 2,3- dihy- $HOOC-C_{4}-CH(OH)-$ Ethenyl, see Acetyl $droxypropanoyl$ $CO-$ Ethenyl, see Vinyl $Glycologl$ (or hydroxy- ethanoyl) $HO-CH_{2}-CO-$ Ethoxalyl $C_{2}H_{5}-O-CO Glycylamino$ $H_{2}N-CH_{2}-CO-$ Ethoxalyl $C_{2}H_{5}-O-CO Glycylamino$ $H_{2}N-CH_{2}-CO-$ Ethoxalyl $C_{2}H_{5}-O-CO Glycylamino$ $H_{2}N-CH_{2}-CO-$ Ethoxalyl $C_{2}H_{5}-O-CO Glycylamino$ $H_{2}N-CH_{2}-CO-$ Ethylamino $C_{2}H_{5}-O-CO Glycylamino$ $H_{2}N-CH_{2}-CO-$ Ethylamino $C_{2}H_{5}-O-CO Gluanyl, see$ Amidino $H_{2}N-CH_{2}-CO-$ Ethylene $-CH_{2}-CH_{2} Guanyl, see$ Amidino $H_{2}N-CH_{2}-CO-$ Ethylene $-CH_{2}-CH_{2} Heptanamido$ $CH_{3}-[CH_{2}]_{5}-CO-$ Ethylidene $CH_{2}-CH_{2} Heptanoyl$ $CH_{3}-[CH_{2}]_{5}-CO-$ Ethylidene $CH_{2}-CH_{2} Heptanoyl$ $CH_{3}-[CH_{2}]_{5}-CO-$ Ethylidene $CH_{3}-CH=$ $Heptanoyl$ $CH_{3}-[CH_{2}]_{5}-CO-$ Ethylidene $CH_{3}-$	Epidioxy (as a bridge)	-0-0-	a Chatamad	
Binimio (as a bridge) $-S-S CO-$ Epimino (as a bridge) $-NH \gamma$ -Glutamyl $HOOCCH(NH_2)-$ Episeleno (as a bridge) $-Se [CH_2]_2-CO-$ Epithio (as a bridge) $-S Glutamyl$ $HOOC-CH(NH_2)-$ Epithio (as a bridge) $-O Glutamyl$ $HOOC-CH_2_{2l_3}-CO-$ Epoxy (as a bridge) $-O Glyceroyl$ (or 2,3- dihy- $HO-CH_2-CH(OH)-$ Ethanoyl, see Acetyl $Glycologl (or hydroxy HO-CH_2CO-$ Ethoxalyl $C_2H_5-OOC-CO Glycyl$ H_2N-CH_2-CO- Ethoxalyl $C_2H_5-O-CO Glycyl$ minino H_2N-CH_2-CO- Ethoxy $C_2H_5-O-CO Glycyl$ minino H_2N-CH_2-CO- Ethoxy $C_2H_5-O-CO Glycylamino$ H_2N-CH_2-CO- Ethyl $C_2H_5-O-CO Glycylamino$ H_2N-CH_2-CO- Ethyl $C_2H_5-O-CO Glyoxyloyl$ $OHC-CO-$ Ethylamino $C_2H_5-NH Guanyl, see$ Amidino $H_2N-CH_2-CO-NH-$ Ethylene $-CH_2-CH_2$ Heptanamido $CH_3-[CH_2]_5-CO-NH-$ Ethylene $-O-CH_2-CH_2$ Heptanamido $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidione $CH_3-CH=$ Heptal $CH_3-[CH_2]_5-CO-$ Ethylidino $C_2H_5-SO_2-NH-$ Heptalcanoyl $CH_3-[CH_2]_5-CD-$ Ethylidionylamino $C_2H_5-SO_2-NH-$ Heptalcanoyl $CH_3-[CH_2]_5-CD-$ Ethylidion C_2	Epidiseleno (as bridge)	Se	a-Glutamyt	$HOOC[CH_2]_2CH(INH_2)$
Bipmino (as a bridge) $-NH \gamma$ -Citulatiff $HOOC-CH(NF_2)=$ Episeleno (as a bridge) $-Se [CH_2]_2-CO-$ Epithio (as a bridge) $-S [CH_2]_2-CO-$ Epoxy (as a bridge) $-O Glyceroyl (or 2,3- dihy HO-CH_2-CH(OH)-$ Ethanoyl, see Acetyl $droxypropanoyl$ $CO-$ Ethenyl, see Vinyl $Glycologl (or hydroxy HO-CH_2-CH_2-CH(OH)-$ Ethoxalyl $C_2H_5-O-C Glycyl$ H_2N-CH_2-CO- Ethoxy $C_2H_5-O-C Glycyl$ H_2N-CH_2-CO- Ethoxy $C_2H_5-O-C Glycyl$ H_2N-CH_2-CO- Ethoxy $C_2H_5-O-C Glycyl$ H_2N-CH_2-CO- Ethoy C_2H_5-O-CO- $Glycyl$ $HO-CH_2-CO-$ Ethyl $C_2H_5-O-C Glyoxyloyl$ $OHC-CO-$ Ethylene $-CH_2-CH_2$ $Guanidino$ H_2N-CH_2-CO- Ethylene $-CH_2-CH_2$ Heptanamido $CH_3-[CH_2]_5-CO-$ Ethylene $-CH_2-CH_2$ Heptanedioyl $-CO-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidionyle $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidionyle $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidione $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidione	Epiditnio (as a bridge)	-5-5-	Chutamul	
Episeteno (as a bridge)Se $[CH_{2}]_{2}$ -COEpithio (as a bridge)-SGlutaryl (or pentanedioyl) $-CO[CH_{2}]_{3}$ -COEpoxy (as a bridge)-OGlutaryl (or 2,3- dihy- $HOCH_{2}$ CH(OH)Ethanosulfonamide $C_{2}H_{5}$ SONHGlycoroyl (or 2,3- dihy- $HOCH_{2}$ COEthanosulfonamide $C_{2}H_{5}$ OOCCOGlycoloyl (or hydroxy- $HOCH_{2}$ COEthoxalyl $C_{2}H_{5}$ OOCCOGlycyl (or hydroxy- $HOCH_{2}$ COEthoxy $C_{2}H_{5}$ OCOGlycylamino $H_{2}NCH_{2}$ COEthoxy $C_{2}H_{5}$ OCOGlycylamino $H_{2}NCH_{2}$ COEthyl $C_{2}H_{5}$ O-COGlycylamino $H_{2}NCH_{2}$ COEthylamino $C_{2}H_{5}$ O-COGlyoxyloylOHCCOEthylamino $C_{2}H_{5}$ O-CCHeptanamidoH_{2}NC(H_{2}CONHEthylene-CC+_2CH_{2}HeptanamidoCH_{3}[CH_{2}]_{5}CONHEthylene-CC+_2-CH_{2}HeptanamidoCH_{3}[CH_{2}]_{5}COEthylideneCH_{3}CH=HeptanoylCH_{3}[CH_{2}]_{5}COEthylideneCH_{3}CH=HeptanoylCH_{3}[CH_{2}]_{5}COEthylideneCH_{3}CH=HeptanoylCH_{3}[CH_{2}]_{5}COEthylidionylaminoC_{2}H_{5}SO_{2}-NHHeexadecanoylCH_{3}[CH_{2}]_{5}COEthylithioC_{2}H_{5}SO_{2}-NHHexadecanoylCH_{3}[CH_{2}]_{1,4}CO_{2}EthylithioC_{2}H_{5}SO_{2}-NHHexa	Epimino (as a bridge)		y-Glutamyl	$HOOC - CH(NH_2) - GO$
Entitio (as a bridge) $-S-$ Gilutary (or pentanealogy) $-CO-[CH_{2}]_{3}-CO-$ Epoxy (as a bridge) $-O-$ Glycore(ar 2,3- dihy- $HO-CH_2-CH(OH)-$ Ethanesulfonamide $C_2H_3-SO_2-NH-$ Glycologi (or 2,3- dihy- $HO-CH_2-CH(OH)-$ Ethanoyl, see AcetylGlycologi (or hydroxy- $HO-CH_2-CH(OH)-$ Ethanyl, see Vinyl $C_2H_5-O-CO-$ Glycologi (or hydroxy- $HO-CH_2-CO-$ Ethoxy $C_2H_5-O-CO-$ Glycyl Hamino H_2N-CH_2-CO- Ethoxy crabonyl $C_2H_5-O-CO-$ Glycylamino H_2N-CH_2-CO- Ethyl $C_2H_5-O-CO-$ Glycylamino $H_2N-C(=NH)-NH-$ Ethylamino $C_2H_5-O-CO-$ Glycylamino $H_2N-C(=NH)-NH-$ Ethylene $-CH_2-CH_2-$ Heptanamido $CH_3-[CH_2]_5-CO-$ Ethylene $-CH_2-CH_2-$ Heptanedioyl $-CO-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylsulfonylamino $C_2H_5-SO_2-NH-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylsulfonylamino $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CD-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$	Episeleno (as a bridge)	Se		$[CH_2]_2 - CO - CO$
Epoxy (as a bridge) $-O-$ Glyceroyl ($\delta r 2, 5 \cdot diny$ - droxypropanoyl) $HO-CH_2-CH(OH)$ CO-Ethanesulfonamide $C_2H_5-SO_2-NH droxypropanoyl$ $CO-$ Ethanoyl, see AcetylGlycoloyl ($\delta r 2, 5 \cdot diny$ - droxypropanoyl) $HO-CH_2-CH(OH)$ CO-Ethoxyl, see Vinyl $C_2H_5-OOC-CO-$ Glycyl ($\delta r kydroxy$ - ethanoyl) $HO-CH_2-CO-$ Ethoxy $C_2H_5-O-CO-$ Glycyl ($\delta r kydroxy$ - ethanoyl) $HO-CH_2-CO-$ Ethoxy $C_2H_5-O-CO-$ Glycyl ($\delta r kydroxy$ - ethanoyl) $HO-CH_2-CO-$ Ethoxy $C_2H_5-O-CO-$ Glycylamino H_2N-CH_2-CO- Ethyl $C_2H_5-O-CO-$ Glyoxyloyl $OHC-CO-$ Ethylamino $C_2H_5-O-CO-$ Glyoxyloyl $OHC-CO-$ Ethylene $-CH_2-CH_2-$ Guanidino $H_2N-C(=NH)-NH-$ Ethylene $-CH_2-CH_2-$ Heptanamido $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidonylamino $C_2H_5-SO_2-NH-$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidionylamino $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$ Ethylithio $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_1,-CH_2-$	Epithio (as a bridge)	-8-	Glutaryl (or pentanealoyi)	
Ethanesulfonamide $C_2H_5 - SO_2 - NH - M$ $drostypropanoy()$ $CO - M$ Ethanoyl, see AcetylGlycoloyl (or hydroxy- ethanoyl) $HO - CH_2 - CO - M$ Ethoxalyl $C_2H_5 - OC - CO - M$ Glycylamino $H_2N - CH_2 - CO - M$ Ethoxy $C_2H_5 - O - CO - M$ Glycylamino $H_2N - CH_2 - CO - M$ Ethoy $C_2H_5 - O - CO - M$ Glycyloyl $OHC - CO - M$ Ethyl $C_2H_5 - O - CO - M$ Glycyloyl $OHC - CO - M$ Ethyl $C_2H_5 - O - CO - M$ Glycyloyl $OHC - CO - M$ Ethylene $-CH_2 - CH_2 - M$ Guanidino $H_2N - C(=NH) - NH - M$ Ethylene $-CH_2 - CH_2 - M$ Heptanamido $CH_3 - [CH_2]_5 - CO - M$ Ethylene $-CH_2 - CH_2 - M$ Heptanamido $CH_3 - [CH_2]_5 - CO - M$ Ethylidene $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidene $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidyne $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidyne $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidyne $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidione $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidione $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidione $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidione $CH_3 - CH = M$ Heptanoyl $CH_3 - [CH_2]_5 - CO - M$ Ethylidione $CH_3 - CH = M$	Epoxy (as a bridge)		Giveroyi (or 2,3- ainy-	HO-CH ₂ -CH(OH)-
Ethanoyl, see AcetylClycologi (or hyaroxy- ethanoyl) HO^{CH_2-CO} Ethenyl, see Vinyl $c_{2H_5}^{O-}OCO$ $Glycyl$ $H_2N^{CH_2CO}$ Ethoxalyl $C_2H_5^{O-}OCO$ $Glycyl$ $H_2N^{CH_2CO}$ Ethoxy $C_2H_5^{OCO}$ $Glycylamino$ $H_2N^{CH_2CO}$ Ethylamino $C_2H_5^{OCO}$ $Glycyloyl$ OHC^{CO} Ethylamino $C_2H_5^{NH}$ Guandino $H_2N^{C(H_2CO)$ Ethylene $-CH_2^{CH_2}$ Heptanamido $CH_3^{}[CH_2]_5^{CO}$ Ethylene $CH_3^{CH_2}CH_2^{}$ Heptanedioyl $-CO^{}[CH_2]_5^{CO}$ Ethylidene $CH_3^{CH_2}CH_2^{}$ Heptanoyl $CH_3^{}[CH_2]_5^{CO}$ Ethylidyne $CH_3^{CH_2}CH_2^{}$ Heptanoyl $CH_3^{}[CH_2]_5^{CO}$ Ethylsulfonylamino $C_2H_5^{SO_2NH}$ Hexadecanoyl $CH_3^{}[CH_2]_5^{CO}$ Ethylibhio $C_2H_5^{SO_2NH}$ Hexadecanoyl $CH_3^{}[CH_2]_1_4^{CO}$	Ethanesulfonamide	C_2H_5 - SO_2 - NH -	aroxypropanoyi)	
Ethenyl, see Vinyl C_2H_5 —OOC—CO— $ethanoyl$ Ethoxalyl C_2H_5 —OOC—CO— $Glycyl$ H_2N — CH_2 —CO—Ethoxy C_2H_5 —O— $Glycylamino$ H_2N — CH_2 —CO—Ethoxy C_2H_5 —O—CO— $Glycylamino$ H_2N — CH_2 —CO—NH—Ethoy C_2H_5 —or CH_5—CH_2— $Guanidino$ H_2N — $C(=NH)$ —NH—Ethylamino C_2H_5 —NH— $Guanidino$ H_2N — $C(=NH)$ —NH—Ethylene $-CH_2$ — CH_2 —Heptanamido CH_3 — $[CH_2]_5$ —CO—NH—Ethylene $-CH_2$ — CH_2 —O—Heptanedioyl $-CO$ — $[CH_2]_5$ —CO—Ethylidene CH_3 — $CH=$ Heptanoyl CH_3 — $[CH_2]_5$ —CO—Ethylidyne CH_3 — $CH=$ Heptanoyl CH_3 — $[CH_2]_5$ —CO—Ethylsulfonylamino C_2H_5 —SO—Heexadccanoyl CH_3 — $[CH_2]_4$ —COEthylsulfonylamino C_2H_5 —SO—Hexadccanoyl CH_3 — $[CH_2]_4$ —COEthylsulfonylamino C_2H_5 —SO—Hexadccanoyl CH_3 — $[CH_2]_4$ —COEthylsulfonylamino C_2H_5 —S—Hexadccanoyl CH_3 — $[CH_2]_4$ —CO	Ethanoyi, see Acetyi		Giycoloyi (or hydroxy-	H0CH ₂ CO
Bitoxalyl C_2H_5OCCCO $Glycyl$ H_2N-CH_2-CO Ethoxy C_2H_5O $Glycylamino$ H_2N-CH_2CONH Ethoxycarbonyl C_2H_5-OCO $Glycylamino$ H_2NCH_2CONH Ethylamino C_2H_5NH $Guanidino$ H_2NCCNH Ethylene $-CH_2CH_2$ $Guanidino$ H_2NCCNH Ethylene $-CH_2CH_2$ Heptanamido $CH_3[CH_2]_5CONH$ Ethylene $-CH_2CH_2$ Heptanedioyl $-CO[CH_2]_5CO$ Ethylidene $CH_3CH=-$ Heptanoyl $CH_3[CH_2]_5CO$ Ethylidyne $CH_3CE=$ Heptyl $CH_3[CH_2]_5CD$ Ethylsulfonylamino C_2H_5SONH Hexadecanoyl $CH_3[CH_2]_5CD$ Ethylsulfonylamino C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CD$ Ethylsulfonylamino C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CD$ Ethylsulfonylamino C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CD$ Ethylsulfon C_2H_5S Hexadecol $CH_3[CH_2]_1,-CD$	Ethenyl, see Vinyl	A.H. 000 00	ethanoyi)	
Ethoxy C_2H_5O Glycylamino $H_2NCH_2CH_2ONH$ Ethoxycarbonyl C_2H_5O-CO Glyoxyloyl $OHCCO$ Ethyl $C_2H_5O-CH_2$ Guanidino $H_2NC(H_2ONH$ Ethylene $-CH_2CH_2$ Guanyl, see Amidino $H_2NC(H_2)_5CONH$ Ethylene $-CH_2CH_2$ Heptanamido $CH_3[CH_2]_5CONH$ Ethylene $-CH_2CH_2O$ Heptanedioyl $-CO[CH_2]_5CO$ Ethylidene $CH_3CH=$ Heptanoyl $CH_3[CH_2]_5CO$ Ethylidyne $CH_3CE=$ Heptyl $CH_3[CH_2]_5-CH_2$ Ethylsulfonylamino $C_2H_5SO_2NH$ Hexadecanoyl $CH_3[CH_2]_1,-CO$ Ethylsulfonylamino C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CO$ Ethylsulfonylamino C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CO$ Ethylsulfon C_2H_5S Hexadecanoyl $CH_3[CH_2]_1,-CO$ Ethylsulfon C_2H_5S Hexadecol $CH_3[CH_2]_1,-CO$	Ethoxalyl	C_2H_5	Glycyl	$H_2N - CH_2 - CO - H_2N - CH_2 $
Ethoxycarbonyl $C_2H_50-CO GiyoxyloylOHC-CO-EthylC_2H_5 or CH_3CH_2GuanidinoH_2N-C(=NH)NH-EthylaminoC_2H_5-NH-Guanidi, ee AmidinoH_2N-C(=NH)-NH-Ethylene-CH_2CH_2HeptanamidoCH_3-[CH_2]_5-CO-NH-EthylideneCH_3-CH=Heptanoyl-CO-[CH_2]_5-CO-EthylideneCH_3-CH=HeptanoylCH_3-[CH_2]_5-CO-EthylideneCH_3-CH=HeptanoylCH_3-[CH_2]_5-CO-EthylidyneCH_3-CE=HeptylCH_3-[CH_2]_5-CO-EthylsulfonylaminoC_2H_5-SO_2-NH-HexadecanoylCH_3-[CH_2]_1-CO-EthylsulfonylaminoC_2H_5-S-HexadecanoylCH_3-[CH_2]_1+-CO-EthylsulfonylaminoC_2H_5-S-HexadecanoylCH_3-[CH_2]_1+-CD-EthylsulfonylaminoC_2H_5-S-HexadecanoylCH_3-[CH_2]_1+-CD-EthylsulfonylaminoC_2H_5-S-Hexadecol CH_3-[CH_2]_1+-CH_2-EthylsulfonylaminoC_2H_5-S-Hexadecol CH_3-[CH_2]_1+-CH_2-$	Ethoxy	$C_2H_5 - 0 - 0$	Glycylamino	H ₂ NCH ₂ CONH
Ethyl $C_2H_5 - \text{or } CH_3 - CH_2 - CH_$	Ethoxycarbonyl	$C_2H_5 = 0 = CO = 0$	Giyoxyloyi	
Ethylamino C_2H_5NH- Guanyi, see AmidinoEthylene $-CH_2CH_2$ Heptanamido $CH_3-[CH_2]_5-CONH$ Ethylenedioxy $-O-CH_2-CH_2-O$ Heptanedioyl $-CO-[CH_2]_5-CO$ Ethylidene $CH_3-CH=-$ Heptanoyl $CH_3-[CH_2]_5-CO$ Ethylidyne $CH_3-CE=-$ Heptyl $CH_3-[CH_2]_5-CO$ Ethylsulfonylamino $C_2H_5-SO_2-NH$ Hexadecanoyl $CH_3-[CH_2]_5-CH_2$ Ethylthio $C_2H_5-SO_2-NH$ Hexadecyl $CH_3-[CH_2]_{14}-CO$ Ethylthio C_2H_5-S Hexadecyl $CH_3-[CH_2]_{14}-CH_2$	Ethyl	C_2H_5 or CH_3 CH_2	Guandino	$H_2N - C = NH - NH - $
Ethylene $-CH_2CH_2$ Hepfanamido $CH_3-[CH_2]_5-CONH$ Ethylenedioxy $-OCH_2-CH_2-O-$ Heptanedioyl $-CO-[CH_2]_5-CO$ Ethylidene $CH_3CH=-$ Heptanoyl $CH_3[CH_2]_5-CO$ Ethylidyne $CH_3-CE=-$ Heptyl $CH_3[CH_2]_5-CH_2$ Ethylsulfonylamino $C_2H_5-SO_2-NH$ Hexadecanoyl $CH_3[CH_2]_4-CO$ Ethylthio C_2H_5-S Hexadecyl $CH_3[CH_2]_4-CO$ Ethylthio C_2H_5-S Hexadecyl $CH_3[CH_2]_4-CH_2$	Ethylamino	C_2H_5 —NH—	Guanyl, see Amidino	
Ethylenedioxy $-O-CH_2-CH_2$ Heplanediolyi $-CO-[CH_2]_5-CO-$ Ethylidene $CH_3-CH=$ Heptanoyl $CH_3-[CH_2]_5-CO-$ Ethylidyne $CH_3-CE=$ Heptyl $CH_3-[CH_2]_5-CH_2-$ Ethylsulfonylamino $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_4-CO-$ Ethylthio C_2H_5-S- Hexadecyl $CH_3-[CH_2]_4-CH_2-$ Ethylthio C_2H_5-S- Hexadecyl $CH_3-[CH_2]_4-CH_2-$	Ethylene	$-CH_2$ $-CH_$	Heptanamido	$CH_3 - [CH_2]_5 - CO - NH - CO - ICU - CO$
Ethylache $CH_3-CH=$ Heptanoyi $CH_3-[CH_2]_5-CD-$ Ethylidyne $CH_3-C\equiv$ Heptyl $CH_3-[CH_2]_5-CH_2-$ Ethylsulfonylamino $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_{14}-CO-$ Ethylthio C_2H_5-S- Hexadecyl $CH_3-[CH_2]_{14}-CH_2-$ Ethylthio C_2H_5-S- Hexadecyl $CH_3-[CH_2]_{14}-CH_2-$	Emylenedioxy	$-0-CH_2-CH_2-0-$	Hestered	$-c_1 - c_1 - c_2 - c_2 - c_3 - c_4 - c_5 - c_5$
Ethyndyne $CH_3-C\equiv$ Heptyl $CH_3-[CH_2]_5-CH_2-$ Ethylsulfonylamino $C_2H_5-SO_2-NH-$ Hexadecanoyl $CH_3-[CH_2]_{14}-CO-$ Ethylthio C_2H_5-S- Hexadecyl $CH_3-[CH_2]_{14}-CH_2-$ Ethynul $UC=C-$ Hexadecyl $CH_3-[CH_2]_{14}-CH_2-$	Ethylidene	CH ₃ —CH==	Hentyl	$CH_3 - [CH_2]_5 - CO - CU$
Ethylsultonylamino C_2H_5 SO2NHHexadecanoyl CH_3 [CH_2] ₁₄ COEthylsultono C_2H_5 SHexadecyl CH_3 [CH_2] ₁₄ CH2Ethylsultono LC CHexadecyl CH_3 [CH_2] ₁₄ CH2	Ethylidyne	CH₃—C≡	Heptyl	$CH_3 - [CH_2]_5 - CH_2 - CH_$
Ethylthio $C_2H_5 - S - Hexadecyl H$	Ethylsulfonylamino	C_2H_5 - SO ₂ - NH -	Hexadecanoyl	$CH_3 - [CH_2]_{14} - CO - C$
Lithumul UC-C	Ethylthio	C ₂ H ₅ —S—	Hexadecyl	$CH_3 - [CH_2]_{14} - CH_2 - $
	Ethynyl	HC≡≡C—	Hexamethylene	[CH ₂] ₆
Ethynylene $-C \equiv C - Hexanamido CH_3 - [CH_2]_4 - CO - NH - Hexanamido CH_3 - [CH_2]_4 - CO - NH - CH_3 - [CH_3]_4 - CO - [CH$	Ethynylene	C==C	Hexanamido	CH ₃ —[CH ₂] ₄ —CO—NH—
Fluoranthenyi $C_{16}H_9$ Hexanedioyi (or adipoyi)CO-[CH ₂] ₄ CO-	Fluoranthenyl	С ₁₆ Н9	Hexanedioyi (or adipoyl)	

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

Name	Formula	Name	Formula
Hexanimidoyl	CH ₃ -[CH ₂] ₄ -C(=NH)-	Iodonio	+HI—
Hexanoyl	CH ₃ -[CH ₂] ₄ -CO-	Iodosyl	OI—
Hexanoylamino	CH ₃ -[CH ₂] ₄ -CO-NH-	Iodyl	O ₂ I
Hexyl	CH ₃ -[CH ₂] ₄ -CH ₂ -	Isobutoxy (unsubstituted	(CH ₃) ₂ CH—CH ₂ —O—
Hexylidene	$CH_3 - [CH_2]_4 - CH =$	only)	
Hexyloxy	CH ₃ [CH ₂] ₅ -O	Isobutyl (unsubstituted	(CH ₃) ₂ CH—CH ₂ —
Hippuroyl	C ₆ H ₅ -CO-NH-CH ₂ -	only)	
	CO—	Isobutylidene (unsubsti-	(CH ₃) ₂ CH—CH==
Histidyl	$N_2C_3H_3$ — CH_2 — $CH(NH_2)$ —	tuted only)	
	CO—	Isobutylidyne (unsubsti-	$(CH_3)_2CH-C\equiv$
Homocysteinyl	HS-CH ₂ -CH ₂ -	tuted only)	
	CH(NH ₂)—CO—	Isobutyryl (unsubstituted	(CH ₃) ₂ CH—CO—
Homoseryl	$HO-CH_2-CH_2$	only; or 2-methylpropa-	
TT	$CH(NH_2) - CO - UN CU$	noyl)	UN N-COD NU
Hydantoyi	$H_2N - CO - NH - CH_2 - CO$	Isocarbononydrazido	NUL-
Hudrotropoul (or 2 phonul		Isocratonovi	
nydrauopoyi (<i>Dr 2-pnenyi-</i>	$C_6n_5 - Cn(Cn_3) - CO - C$	Isociolonoyi	(ais)
Hudrazi	-NH-NH- (to single	Isocyanato	OCN
Tiyutazi	atom)	Isocyano	CN—
Hydrazino	H-NNH	Isobexyl (unsubstituted	(CH ₂) ₂ CH—[CH ₂] ₂ —
Hydrazo	-NH-NH- (to different	only)	
njuluo	atoms)	Isoleucyl	C ₂ H ₅ —CH(CH ₂)—
Hydrazono	H ₂ N-N=		CH(NH ₂)—CO
Hydroperoxy	HO—O—	Isonicotinoyl (or 4-pyridi-	$NC_{5}H_{4}$ — CO — (4-)
Hydroseleno	HSe—	necarbonyl)	
Hydroxy	но—	Isopentyl (unsubstituted	(CH ₃) ₂ CH-CH ₂ -CH ₂ -
Hydroxyamino	HONH	only)	
o-Hydroxybenzoyl (or sal-	o-HO—C ₆ H ₄ —CO—	Isophthaloyl (or 1,3-	-CO-C ₆ H ₄ -CO-
icyloyl)		benzenedicarbonyl)	(<i>m</i> -)
m-Hydroxybenzoyl	<i>m</i> -HOC ₆ H ₄ CO	Isopropenyl (unsubstituted	$CH_2 = C(CH_3) - C(CH_3)$
p-Hydroxybenzoyl	<i>p</i> -HO—C ₆ H ₄ —CO—	only; or 1-methylvinyl)	
Hydroxybutanedioyl, see		Isopropoxy (unsubstituted	(CH ₃) ₂ CH—O—
Maloyl		only)	
2-Hydroxy-2,2-diphenyl		Isopropyl (unsubstituted	(CH ₃) ₂ CH
ethanoyl, see Benziloyl		only)	
Hydroxyethanoyi, see Gly-		<i>p</i> -isopropyibenzoyi	p-(CH ₃) ₂ CH-C ₆ H ₄ -CU-
Ludrouvimino	HO-N-	Isopropyidenzyi	$(CH_3)_2 CH - C_6 H_4 - CH_2 - CH_2 - CH_3 C - CH_3 - CH$
4 Hydroxy 3 methoxy		Isoselenocyanato	$S_{2}C_{}$
henzovi (or vanillovi)	4-HO,3-CH ₃ O	Isosemicarbazido	H N-NH-C(OH)-N-
3-Hydroxy-2-phenylpropa-	$C_{H} = CH(CH_{O}H) = CO =$	Isothiocyanato	SCN
povl (or tropovl)		Isothioureido	HN = C(SH) - NH -
Hydroxypropanedioy] (or	—со—сн(он)—со	isounouroido	$H_{n}N - C(SH) = N - $
tartronovl)		Isoureido	HN = C(OH) - NH
2-Hydroxypropanoyl (or	CH ₃ —CH(OH)—CO—		$H_{2}N - C(OH) = N - $
lactoyl)	5	Isovaleryl (unsubstituted	(CH ₃) ₂ CH—CH ₂ —CO—
Icosyl	CH ₃ -[CH ₂] ₁₈ -CH ₂ -	only; or 3-methylbutan-	
Imino	-NH-, HN=	oyl)	
Iminomethylamino	HN=CH-NH-	Lactoyl	СН ₃ —СН(ОН)—СО—
Iodo	I—	Lauroyl (unsubstituted	CH ₃ -[CH ₂] ₁₀ -CO-
Iodoformyl	ICO	only)	

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

Name	Formula	Name	Formula
Leucyl	$(CH_3)_2CH - CH_2 - C$	5-Methylhexyl	$(CH_3)_2CH - [CH_2]_4 - $
I vevi	$H N_{mm} [CH] = 0$	Methylaulfinimidayl	n = CH - S(=NP) - CH - S(=NP)
Lysyi	$\Pi_2 N = [C \Pi_2]_4 = C \square$	Methylsulfinghydrogongyl	$CH_{3} - S(-NH) - CH_{3} - S(-NH) - S$
Malaoyi	-CO-CH-CH-CO-	Methylsulfinohydroxi	$CH_{3} = S(=N-OH) = CH_{3} = S(=N-OH) = CH_{$
Malopyl	$-c_{0}-c_{1}-c_{0}-c_{1}$	movi	Ch ₃ 5(—N OII)
Malovl	$-CO-CH(OH)-CH_{-}$	Methylsulfinyl	CH
Muloji		Methylsulfinylamino	CH ₃ —SO—NH—
Mercapto-	HS—	Methylsulfonohydrazo-	$CH_3 - S(O)(NNH_2) -$
Mesaconovl (unsubstituted	-со-сн	noyl	
only)		Methylsulfonimidoyl	$CH_3 - S(O) = NH$
	СН ₃ —С—СО—	Methylsulfonohydroxa-	CH ₃ —S(O)(N—OH)—
Mesityl	2,4,6-(CH ₃) ₃ C ₆ H ₂	moyl	
Mesoxalo	ноос-со-со-	Methylsulfonyl	CH ₃ —SO ₂ —
Mesoxalyl	—со—со—со—	Methylthio	CH ₃ S—
Mesyl	CH ₃ —SO ₂ —	(Methylthio)sulfonyl	CH ₃ S—SO ₂ —
Methacryloyl (or 2-methyl-	$CH_2 = C(CH_3) - CO - CO$	1-Methylvinyl, see Isopro-	
propenoyl)		penyi	CH ₂ -CH ₂
Methaneazo	$CH_3 - N = N - CH_3 - CH_3 - N - CH_3 - CH_$	Morpholino (4- only)	
Methaneaulfnomide	$CH_3 - N_2 O - NH_2 O - NH_2$		$CH_2 - CH_2$
Methanesulfinul	$CH_{3} = 30 = 10$	Morpholinyl (3- shown)	O NH
Methanesulfonamido	$CH_3 = SO_2 - NH_2$		CH ₂ —CH
Methanesulfonyl. see	013 502 111	Munistra I (
Mesvl		(unsubstituted	$CH_3 - [CH_2]_{12} - CO - CO$
Methanoyl, see Formyl		Naphthalenazo	С Н — N== N
Methionyl	CH ₃ -S-CH ₂ -CH ₂ -	Naphthalenecarbonyl, see	
·	CH(NH ₂)-CO-	Naphthoyl	
Methoxalyl	CH ₃ OOC—CO—	Naphthoyl	$C_{10}H_2$ —CO—
Methoxy	CH ₃ O—	Naphthoyloxy	C ₁₀ H ₇ —CO—O—
Methoxybenzoyl (o-, m-,	CH ₃ O-C ₆ H ₄ -CO-	Naphthyl	C ₁₀ H ₇
or p-)		Naphthylazo	$C_{10}H_7 - N = N - $
Methoxycarbonyl	CH ₃ O—CO—	Naphthylene	-C ₁₀ H ₆ -
Methoxyimino	$CH_3O - N =$	Naphthylenebisazo	$-N = N - C_{10}H_6$
Methoxyphenyl	$CH_3O - C_6H_4 - CH_3O - CH_3$		N=N-
Methoxysulfinyl	$CH_{3}O = SO = 0$	Naphthyloxy	C ₁₀ H ₇ O
Methoxy(thiosulfonyl)	$CH_{3}O = 3O_{2} = 0$	Neopentyl (unsubstituted	$(CH_3)_3C - CH_2 - CH_2$
Methyl	$CH_{3}O$ $S_{2}O$ CH_{2}	only)	
Methylallyl	$CH_3 = C(CH_3) - CH_3 - CH_3$	Niteilo	$NC_5H_4 - CO - (3-)$
Methylamino	CH ₂ NH	Nitro	
Methylazo	CH ₃ —N=N—	aci-Nitro	HO = (O =)N =
Methylazoxy	CH ₃ —N ₂ O—	Nitroso	ON—
α -Methylbenzyl	C ₆ H ₅ -CH(CH ₃)	Nonanediovl	$-CO-[CH_{2}]_{7}-CO-$
Methylbenzyl	CH ₃ -C ₆ H ₄ -CH ₂ -	Nonanoyl	CH ₃ -[CH ₂] ₇ -CO-
3-Methylbutanoyl	(CH ₃) ₂ CH—CH ₂ —CO—	Nonyl	CH ₃ -[CH ₂] ₇ -CH ₂ -
cis-Methylbutenedioyl	нс со	Norbornyl	C ₇ H ₁₁ —
	CH - C - CO -	Norbornylyl, see Norbor-	
trans-Methylbutenediovl	—CO—CH	nyl	
		Norcamphyl, see Norbor-	
	CH ₃ —C—CO—	nyl	
Methyldithio	CH ₃ —S—S—	Norleucyl	$CH_3 - [CH_2]_3 - CH(NH_2) - $
Methylene	$-CH_2-, H_2C=$		CO—
Methylenedioxy	$-0-CH_2-0-$	Norvalyl	CH ₃ —CH ₂ —CH ₂ —
5,4-Meinylenedloxyben-	$3,4-CH_2U_2:C_6H_3$		$CH(NH_2)$ — CO —
LOYI		Octadecanoyi	$CH_3 - [CH_2]_{16} - CO - CO$

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

Name	Formula	Name	Formula
Inallie	Formula	Name	Forniula
cis-9-Octadecenoyl	H[CH ₂] ₈ —CH=CH—	Phenylsulfamoyl	C_6H_5 —NH—SO ₂
	$[CH_2]_7$ —CO—	Phenylsulfinyl	C_6H_5 —SO—
Octadecyl	$CH_3 - [CH_2]_{16} - CH_2 - CH_2 - CH_3 - $	Phenylsulfonyl Dhamlaulfonyl	$C_6H_5 - SO_2 - SO_2$
Octanedioyi	$-CO - [CH_2]_6 - CO - C$	Phenylsuironylamino	C_6H_5 — SO_2 — NH —
Octanoyi	$CH_3 - [CH_2]_6 - CU - CU$	Phenylthio	$C_6H_5 = S =$
Olassi	$CH_3 - [CH_2]_6 - CH_2 - U$	3-Phenylureido Phthalamoyl	$H_{\rm N}$
Oleoyi	$H[CH_2]_8$ — CH = CH —	1 Multimuticity 1	(<i>o</i> -)
Ormithyl	$U_{2}^{(1)} = U_{2}^{(1)} = $	Phthalidyl	C ₆ H ₄ —CO—O—CH—
Offinitiyi	(H(NH)) = CO =	-	
Ovalacetyl	-CO-CH - CO-	Phthalimido	CO-C ₆ H ₄ -CO-N-
Oxalacetyl	CO = CO	Phthaloyl	$-CO-C_6H_4-CO-(o-)$
Oxalaceto		Picryl	2,4,6-(NO ₂) ₃ C ₆ H ₂ -
Oxalacció		Pimelovl (unsubstituted	-CO-[CH ₂] ₅ -CO-
Oxalo	HOOC-CO-	only)	
Oxalvi		Piperidino (1- only)	C ₅ H ₁₀ N
Oxamovl	H ₋ NCOCO	Piperidyl (2-, 3-, 4-)	NC ₅ H ₁₀ —
Oxido	-O (ion)	Piperonyl	3,4-CH ₂ O ₂ :C ₆ H ₃ -CH ₂ -
Oxo	0=	Pivaloyl (unsubstituted	(CH ₃) ₃ CCO
Oxonio	+H2O	only)	
Oxy	_0_	Polythio	S ₄
Palmitoyl (unsubstituted	CH ₃ -[CH ₂] ₁₄ -CO-	Propanedioyl, see Ma-	
only)		lonyl	
Pentafluorothio	F ₅ S—	Propanoyl, see Propionyl	
Pentamethylene	$-CH_2-CH_2-CH_2-$	Propargyl, see 2-Pro-	
	CH ₂ —CH ₂ —	pynyl	
Pentanedioyl, see Glu-		Propenoyl, see Acryloyl	CH -CH-CH-
taryl		1-Propenyl	Ch ₃ —Ch—Ch—
Pentanoyl, see Valeryl		2-Propenyl, see Allyl	
Pentenyl (2- shown)	CH ₃ —CH ₂ —CH=CH—	Propenylene	CH = C - CO
	CH ₂ —	Propiologi	CH = CH = CO = NH =
Pentyl	$CH_3 - CH_2 - $	Propional	$CH_3 = CH_2 = CO = CO = CH_2 = CO = CH_2 = CH_2 = CH_2 = CO = CH_2 = CH_2 = CO = CH_2 = CH_$
Destala	CH ₂	Propionylamino	$CH_3 - CH_2 - CO - NH - CO - NH - CO - NH - CH_2 - $
Pentyloxy	$CH_3 - [CH_2]_4 - 0 - 0$	Propionylamino	$CH_3 - CH_2 - CO - O - O$
Phenoayl		Proposy	$CH_3 - CH_2 - CH_3 - O$
Phenacyl	$C_6H_5 = CO = CH_2$	Propyl	CH ₂ CH ₂ CH ₂
Phenapthrul		Pronvlene	
Phenethyl	$C H \rightarrow CH \rightarrow CH -$	Propylidene	CH ₃ -CH ₂ -CH=
Phenetiding (a_1, m_2, a_1, n_2)	$C_{1}H_{2} = C_{1}H_{2}$	Propylidyne	$CH_3 - CH_2 - C \equiv$
Phenoxy	C.HO-	Propynoyl, see Propiolyl	
Phenyl	C.H.	1-Propynyl	CH ₃ —C≡C—
Phenylacetyl	C.HCHCO-	2-Propynyl	$HC \equiv C - CH_2 -$
Phenylazo	$C_{4}H_{4}$ $-N$ $=$ N $-$	Protocatechuoyl	3,4-(HO) ₂ C ₆ H ₃ CO
Phenylazoxy	C ₆ H ₅ -N ₂ O	3-Pyridinecarbonyl	NC ₅ H ₄ —CO— (3-)
Phenylcarbamoyl	C ₄ H ₅ —NH—CO	4-Pyridinecarbonyl	NC_5H_4 —CO— (4-)
Phenylene		Pyridinio	⁺ NC ₅ H ₅ — (ion)
Phenylenebisazo	$-N = N - C_6 H_4 - C_6 H_4$	Pyridyl	NC ₅ H ₄ —
-	NN	2-Pyridylcarbonyl	NC ₅ H ₄ —CO— (2-)
Phenylimino	$C_6H_5-N=$	Pyridyloxy	NC ₅ H ₄ O
2-Phenylpropanoyl	C ₆ H ₅ CH(CH ₃)CO	Pyruvoyl	СН ₃ —СО—СО—
3-Phenylpropenoyl, see	-	Salicyl	<i>о</i> -НО—С ₆ Н ₄ —СН ₂ —
Cinnamoyl		Salicylidene	<i>o</i> -HOC ₆ H ₄ CH=
3-Phenylpropyl	C_6H_5 — CH_2 — CH_2 —	Salicyloyl	<i>о</i> -но—С ₆ н ₄ —Со—
	CH ₂ —	Sarcosyl	CH ₃ —NH—CH ₂ —CO—

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

Name	Formula	Name	Formula
Sebacoyl (unsubstituted	-CO-[CH ₂] ₈ -CO-	(Terthiophen)yl	SC4H3-SC4H2-SC4H2-
only)		Tetradecanoyl	CH ₃ -[CH ₂] ₁₂ -CO-
Seleneno	HOSe	Tetradecyl	CH ₃ -[CH ₂] ₁₂ -CH ₂ -
Selenino	HO ₂ Se—	Tetramethylene	$-CH_2-CH_2-CH_2-$
Seleninyl	OSe=	-	CH ₂ —
Seleno	Se		_co-
Selenocyanato	NC—Se—	Thenov! (2- shown)	CH==C's
Selenoformyl	HSeC—	Thenoyi (2- shown)	CH=CH
Selenonio	⁺ H ₂ Se— (ion)	Thenyl	SC.HCH
Selenono	HO ₃ Se	Thienvl	SC.H.
Selenonyl	O ₂ Se—	Thio	— <u>S</u> —
Selenoureido	H ₂ N—CSe—NH—	Thioacetyl	CHCS
Selenoxo	(C)=Se	Thiobenzovl	C.H.—CS—
Semicarbazido	H ₂ N—CO—NH—NH—	Thiocarbamovl	H ₀ N—CS—
Semicarbazono	H ₂ N-CO-NH-N=	Thiocarbazono	HN=N-CS-NH-
Seryl	HO-CH ₂ -CH(NH ₂)-		NH—
	CO—	Thiocarbodiazono	HN=N-CS-N=N-
Stearoyl (unsubstituted only)	$CH_3 - [CH_2]_{16} - CO - CO$	Thiocarbonohydrazido	H ₂ NNHCSNH NH
Styryl	C ₆ H ₅ —CH=CH—	Thiocarbonyl	-cs-, sc=
Suberoyl (unsubstituted	-CO-[CH ₂] ₆ -CO-	Thiocarboxy	HSOC-, HS-CO
only)		Thiocyanato	NCS—
Succinamoyl	H ₂ N-CO-CH ₂ -CH ₂ -	Thioformyl	SHC—, HCS—
	CO-	Thiophenecarbonyl, see	
	0	Thenoyl	
Succinimido	$ U_{H_2} - U_{N_1} - U_{N_2} - U_$	Thiosemicarbazido	H ₂ N-CS-NH-NH-
	CH2-C	Thiosulfino	HOS ₂ —
	- ~0	Thiosulfo	HO ₂ S ₂ —
Succinimidoyl	$-C(=NH)-CH_2-$	Thioreido	H ₂ N-CS-NH-
	CH ₂ C(==NH)	Thioxo	S==
Succinyl	-CO-CH ₂ -CH ₂ -CO-	Threonyl	CH ₃ CH(OH)
Sulfamoyl	H ₂ N—SO ₂ —		CH(NH ₂)—CO—
Sulfanilamido	$p-H_2N-C_6H_4-SO_2-$	Toluenesulfonyl (o-, m-)	CH ₃ -C ₆ H ₄ -SO ₂ -
	NH—	Toluidino (o -, m -, $or p$ -)	CH ₃ —C ₆ H ₄ —NH—
Sulfanilyl	$p-H_2N-C_6H_4-SO_2-$	Toluoyl (<i>o</i> -, <i>m</i> -, <i>or p</i> -)	$CH_3 - C_6H_4 - CO - CO$
Sulfenamoyl	H ₂ N—S—	Tolyl (<i>o</i> -, <i>m</i> -, <i>or p</i> -)	$CH_3 - C_6H_4 - $
Sulfeno	HO—S—	Tolylsulfonyl	$CH_3 - C_6H_4 - SO_2 - C_6H_4$
Sulfido	-S— (ion)	Tosyl (p- only)	$p-CH_3-C_6H_4-SO_2-$
Sulfinamoyl	H ₂ NSO	Triazano	$H_2N - NH - NH - H_2N - NH - H_2N - NH - H_2N - NH - H_2N - H_2$
Sulfino	HO ₂ S—	Triablanathia	$H_2N - N = N - Cl S$
Sulfnyl		Tridageneral	Cl_3S –
Sullo Sulfa amina	$HO = SO_2 =$	Tridecul	$CH_3 - [CH_2]_{11} - CO - CH_2 - [CH_2]_{11} - [CH$
Suitoamino	$HO_2S - NH - $	Triffuorothio	$E_{13} = [C_{12}]_{12} = 0$
Sulfonio	$U_3S = (ion)$	3.4.5 Tribydroxybenzoyl	г ₃ 5— 3 4 5-(HO) С H —СО—
Sulfonul	$-so_{-}$	Trimethylammonio	$(CH) N^+ - (ion)$
Sulfanyldiary	-30_2	Trimethylanilino (all iso-	$(CH_3)_{3}$ (IOI)
Tartarovi	$-0-30_2-0-$	mers)	
i maioyi	CH(OH)—CO	Trimethylene	СНСНСН
Tartronovl		Trimethylenedioxy	-0-CHCH
Taury	H _N -CH ₂ -CH ₂ -SO ₂ -		CH ₂ —O—
Telluro	Te replacing Ω	Triphenylmethyl	(C ₄ H ₄) ₄ C
Terephthalovl	$-CO-C_{eH_4}-CO-(p-)$	Trithio	—S ₃ —
Terphenvlvl	C _c H _s -C _c H _s -C _c H _s -	Trithiosulfo	HS—S ₃ —
1	0 04 -04		-

TABLE 2.19	Names and Formulas of Organic Ra	adicals (Continued)
------------	----------------------------------	---------------------

Name	Formula	Name	Formula
Trityl	(C ₆ H ₅) ₃ C—	Vanilloyl	3,4-CH ₃ O(HO)C ₆ H ₃ -
Tropoyl	C ₆ H ₅ CH(CH ₂ OH)	_	CO
	CO—	Vanillyl	3,4-CH ₃ O(HO)C ₆ H ₃
Tyrosyl	<i>p</i> -HO—C ₆ H ₄ —CH ₂ —		CH ₂ —
	CH(NH ₂)CO	Veratroyl	3,4-(CH ₃ O) ₂ C ₆ H ₃
Undecanoyl	CH ₃ [CH ₂] ₉ CO		CO-
Undecyl	CH ₃ -[CH ₂] ₉ -CH ₂ -	Veratryl	3,4-(CH ₃ O) ₂ C ₆ H ₂
Ureido	H ₂ N-CO-NH-		CH ₂ —
Ureylene	-NH-CO-NH-	Vinyl	CH ₂ =CH-
Valeryl	CH ₃ [CH ₂] ₃ CO	Vinylene	—СН—СН—
Valyl	(CH ₃) ₂ CH-CH(NH ₂)-	Xylidino (all isomers)	(CH ₃) ₂ C ₆ H ₃ -NH-
	со—	Xylyl (all isomers)	(CH ₃) ₂ C ₆ H ₃ —

TABLE 2.19 Names and Formulas of Organic Radicals (Continued)

2.2 PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS

Names of the compounds (Table 2.20) are arranged alphabetically. Usually substitutive nomenclature is employed; exceptions generally involve ethers, sulfides, sulfones, and sulfoxides. Each compound is given a number within its letter classification; thus compound c209 is 3-chlorophenol.

Formula Weights are based on the International Atomic Weights of 1993 and are computed to the nearest hundredth when justified. The actual significant figures are given in the atomic weights of the individual elements; see Table 3.2.

Density values are given at room temperature unless otherwise indicated by the superscript figure; thus 0.9711^{112} indicates a density of 0.9711 for the substance at 112° C. A density of 0.899_{14}^{16} indicates a density of 0.899 for the substance at 16° C relative to water at 4° C.

Refractive Index, unless otherwise specified, is given for the sodium line at 589.6 nm. The temperature at which the measurement was made is indicated by the superscript figure; otherwise it is assumed to be room temperature.

Melting Point is recorded in certain cases as 250 d and in some other cases as d 250, the distinction being made in this manner to indicate that the former is a melting point with decomposition at 250°C, while the latter decomposition occurs only at 250°C and higher temperatures. Where a value such as $-2H_2O$, 120 is given, it indicates a loss of 2 moles of water per formula weight of the compound at a temperature of 120°C.

Boiling Point is given at atmospheric pressure (760 mmHg) unless otherwise indicated; thus 82^{15mm} indicates that the boiling point is 82°C when the pressure is 15 mm Hg. Also, subl 550 indicates that the compound sublimes at 550°C.

Flash Point is given in degrees Celsius, usually using a closed cup. When the method is known, the acronym appears in parentheses after the value: closed cup (CC), Cleveland closed cup (CCC), open cup (OC), Tag closed cup (TCC), and Tag open cup (TOC). Because values will vary with the specific procedure employed, and many times the method was not stated, the values listed for the flash point should be considered only as indicative.

Solubility is given in parts by weight (of the formula weight) per 100 parts by weight of the solvent and at room temperature. Other temperatures are indicated by the superscript. Another way in which solubility is explicitly stated is in weight (in grams) per 100 mL of the solvent. In the case of gases, the solubility is often expressed as 5 mL^{10} , which indicates that at 10°C, 5 mL of the gas is soluble in 100 g (or 100 mL, if explicitly stated) of the solvent.

TABLE 2.20 Physical Constants of Organic Compounds

Abbreviations Used in the Table

abs, absolute	DMF, dimethylformamide	misc, miscible; soluble in all proportions	vac, vacuo or vacuum
acet, acetone	E, trans (German "entgegen")	NaOH, aqueous sodium hydroxide	vols, volumes
alc, alcohol (ethanol usually)	EtOAc, ethyl acetate	o, ortho configuration	Z, cis (German "zusamman")
alk, alkali (aqueous NaOH or KOH)	eth, diethyl ether	org, organic	>, greater than
anhyd, anhydrous	EtOH, ethanol, 95%	p, para configuration	<, less than
aq, aqueous, water	expl, explodes	PE, petroleum ether	~, approximately
as, asymmetrical	glyc, glycerol	pyr, pyridine	\pm , inactive [50% (+) and 50% (-)]
atm, atmosphere	h, hot	s, soluble	α , alpha (first) position
BuOH, 1-butanol	HOAc, acetic acid	sec, secondary	β , beta (second) position
bz, benzene	hyd, hydrolysis	sl, slight, slightly	γ, gamma (third) position
c, cold	hygr, hygroscopic	soln, solution	δ , delta (fourth) position
chl, chloroform	i, insoluble	solv, solvent	ω , omega position (farthest from parent
conc, concentrated	ign, ignites	subl, sublimes	functional group)
d, decomposes or decomposed	i-PrOH, isopropyl alcohol,	s, symmetrical	
D, dextrorotatory	2-propanol	sym, symmetrical	
deliq, deliquescent	L, levorotatory	tert, tertiary	
dil, dilute	m, meta configuration	v, very	
diox, 1,4-dioxane	Me, methyl	v sl s, very slightly soluble	
DL, inactive (50% D and 50% L)	MeOH methanol	v, s very soluble	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point,°C	Boiling point,°C	Flash point,°C	Solubility in 100 parts solvent
al	(→)-Abietic acid		302.46	9², 424			172–175			i aq; s acet, alc, bz, chl, CS ₂ , eth, dil alk
a2	Acenaphthene		154.21	5, 586	1.189	1.604895	93.4	279		i aq; 3.2 alc; 20 bz; 10 chl; 1.8 MeOH; 3.2 g in 100 mL HOAc
a3	Acenaphthylene		152.20	5, 625	0.899 ¹⁶		8891	280		i aq; v s alc, eth
a4	Acetaldehyde	CH₃CHO	44.05	1, 594	0.788616	1.331620	- 123	21	- 38(CC)	misc aq, alc, eth
a5	Acetaldoxime	CH ₃ CH=NOH	59.07	1, 608	0.966	1.41520	46.5(α) 12(β)	114.5	40	v s aq, alc, eth
a6	Acetamide	CH ₃ CONH ₂	59.07	2², 177	0.99978	1.4158110	81	222		70 aq; 50 alc; 16 pyr; s chl, glyc, hot bz

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a7 a8	Acetamidine HCl N-(2-Acetamido)-2- aminoethanesulfonic acid	CH ₃ C(==NH)NH ₂ ·HCl H ₂ N(CO)CH ₂ NHCH ₂ CH ₂ SO ₃ H	94.54 182.20	2, 185			164–166 >220 dec			v s aq; s alc; i acet, eth
a9	4-Acetamidobenzalde- hvde	CH ₃ CONHC ₆ H ₄ CHO	163.18	14, 38			156-158			s aq, bz; sl s alc
a10	4-Acetamidobenzene- sulfonyl chloride	CH ₃ CONHC ₆ H ₄ SO ₃ Cl	233.67	14, 702			148 dec			d aq; v s alc, bz, eth, acet
all	2-Acetamidobenzoic acid	CH₃CONHC6H₄CO2H	179.18	14, 337			185-187			sl s aq; v s alc, bz, eth, acet
a12	4-Acetamidobenzoic acid	CH ₃ CONHC ₆ H ₄ CO ₂ H	179.18	14, 432			262 dec			i aq; s alc; sl s eth
a13	2-Acetamidofluorene		223.28	12, 1331			192-196			i aq; s alc, glycols
a14	N-(2-Acetamido)imi- nodiacetic acid	H ₂ NCOCH ₂ N(CH ₂ CO ₂ H) ₂	190.16				219 d			
a15	2-Acetamidophenol	CH₃CONHC ₆ H₄OH	151.17	13, 370			207-210			
a16	3-Acetamidophenol	CH ₃ CONHC ₆ H₄OH	151.17	13, 415			146-149			
a17	4-Acetamidophenol	CH₃CONHC ₆ H₄OH	151.17	13, 460	1.293 ²¹		170-172			s alc, acet
a18	Acetanilide	CH3CONHC6H2	135.17	12, 237	1.21945		114	304-305	173	0.56 aq ²⁵ ; 25 acet; 29 alc; 2 bz; 27 chl; 5 eth
a19	Acetic acid	CH ₄ CO ₂ H	60.05	2,96	1.049220	1.371820	16.7	118	39 (CC)	misc aq, alc, eth, CCl ₄
a20	Acetic acid-d	CH ₃ CO ₂ D	61.06	2 ³ , 202	1.059	1.271520		115.5	40	misc aq, alc, eth, CCl ₄
a21	Acetic-d3 acid-d	CD ₃ CO ₂ D	64.08	2³, 203	1.137	1.368720		114.4	40	misc aq, alc, eth, CCl ₄
a22	Acetic anhydride	(CH ₃ CO) ₂ O	102.09	2, 166	1.080 ¹⁵	1.390420	-73	139	54 (CC)	s chl, eth; slowly s aq forming HOAc, alc forming EtOAc
a23	Acetic anhydride-d ₆	(CD ₃ CO) ₂ O	108.14			1.387520		65 ^{65mm}	54	see acetic anhydride
a24	Acetoacetanilide	CH ₃ COCH ₂ CONHC ₆ H ₅	177.20	12, 518	1.26020		85	dec	185	s alc, hot bz, acids, al- kalis, chl, eth
a25	Acetoacetic acid	CH3COCH2COOH	102.09	3, 630			36-37	d viol 100		misc aq, alc
a26	Acetone	CH ₃ COCH ₃	58.08	1, 635	0.790820	1.359120	- 94	56	-20	misc aq, alc, chl, DMF
a27	Acetone- d_6	CD ₃ COCD ₃	64.13		0.872	1.355420	-93.8	55.5	-17	see acetone

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

a28	Acetone oxime	$(CH_3)_2C = NOH$	73.10	1, 649	0.91122		60	135		v s aq, alc, eth
a29	Acetonitrile	CH ₃ CN	41.05	2, 183	0.787545	1.346015	-44	81.6	6	misc aq, acet, alc, chl, eth EtOAc
930	A cetonitrile_d	CD-CN	44 08	24 428	0.844	1 340620		80.7	5	mise an ale, chl
a31	A cetonhenone	C.H.COCH.	120.15	7 271	1.02620	1 537220	20	202	77	0.55 aq; s alc, chl, eth.
asi	Accophenone	C ₆ H ₅ COCH ₃	120,15	7, 271	1.0204	1.5572	20	202		glyc
a32	Acetophenone- methyl-d ₃	C ₆ H ₅ COCD ₃	123.18	7⁴ , 626	1.055	1.532520		201-202	82	
a33	4-Acetylbenzenesul- fonic acid, sodium salt	CH3COC6H5SO3 Na+	222.20	11², 186			>300			
a34	Acetylbiphenyl	C4H4C4H4COCH3	196.25	72, 337			116-118	325-327		i aq; v s alc, acet
a35	Acetyl bromide	CH ₃ COBr	122.95	2, 174	1.66316	1.448620	-96	76	>110	dec viol by aq or alc;
				-	-					misc bz, chl, eth
a36	2-Acetylbutyrolactone		128.13	17 ³ , 5837	1.1846420	1.458520		107 ^{5mm}	>110	20% v/v aq
a37	Acetyl chloride	CH3COCI	78.50	2, 173	1.10420	1.389620	-113	51	4 (CC)	dec viol aq or alc; misc bz, chl, eth,
										HOAc, PE
a38	Acetylcholine bromide	(CH ₃) ₃ N(Br)CH ₂ CH ₂ - O ₂ CCH ₃	226.11	4 ¹ , 428			144–146			v s aq (dec by hot aq or alkalis); s alc; i eth
a39	Acetylcholine chloride	(CH ₂) ₂ N(Cl)CH ₂ CH ₂ -	181.66	4. 281			150-152			v s ag, alc; dec by hot
		O ₂ CCH ₃		, -						aq or alkalis; i eth
a40	2-Acetylcyclopentan-		126.16	7, 558	1.043	1.490520		75 ^{8mm}	72	-
a41	Acetylene	НС≡СН	26.04	1. 228	0.90(g)		- 85(subl)		- 18	1 vol in 1 vol aq. in 6
			20101	1, 220	0150(8)					vol HOAc or alc: s
										bz, eth; acet dis-
										solves 25 vol ¹⁵ but
										300 vols at 12 atm
a42	Acetylenedicarboxylic	HO ₂ CC=CCO ₂ H	114.06	2, 801			180 d			v s aq, alc, eth
	acid	GVI 0 7	(2.0.4	0.170	1.00015					<i></i>
a43	Acetyl nuoride	CH ₃ OF	62.04	2, 172	1.0024		<-60	20.8		5 aq(dec); si s acet,
o44	2 Acetulfuren		110.11	17 286	1.008	1 506520	20 20	6710mm	71	aic, oz, ein
auri	2-Accivitutali		110.11	11,200	1.090	1,5005-2	27-30	0/	11	

TABLE 2.20 Physical Constants of Organic Compounds (<i>Continued</i>)	
--	--

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Name	Formula	Formula weight	Beilstein reference	Density,	Refractive	Melting	Boiling point, °C	Flash	Solubility in 100 parts solvent
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	045 N A	A costul (_) glutomia		190.17	12 009	5,1112	mach	200 201	Found, C	Point, C	Puito sorrent
a46 N-Acetylglycine CH ₂ CONHCH ₂ CO ₂ H 117.10 4, 354 J 206-208 J 103-105 J 103-105 J J 103-105 J		acid	NHCOCH ₃	169.17	4-, 908			200-201			
a47 1-Acetylimidazole 10.12 10.2 10.3-105 10.3-105 a48 Acetyl iodide CH ₂ CO ₁ CH(CH ₂)CH ₂ . 169.95 2,174 Acetyl. 172-173 108 40 40 a50 2-Acetyl-phenolhazine C ₄ H ₂ CO(CH(CH ₂)CH ₂ . 241.31 10,699 1.46 15203 ²⁰ 180-185 92-94 188 92-94 188 92-94 188 92-94 188 92-94 188 110 1100 1100 1100 1100	a46 <i>N</i> -A	Acetylglycine	CH ₃ CONHCH ₂ CO ₂ H	117.10	4, 354			206–208			2.7 aq ¹⁵ ; s alc; sl s acet, chl, HOAc; i bz. eth
a48 a49 Acetyl iodide Acetyl-z-methylcho- line chloride a50 CH ₃ COI (H ₂ CO ₂ CH(CH ₃)CH ₂ N(Br)(CH ₃)3 169.95 195.69 2, 174 Merck: 12, 6003 1.5491 ²⁰ 172-173 108 1	a47 1-Ao	Acetylimidazole		110.12				103-105			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a48 Acet a49 Acet	etyl iodide etyl-2-methylcho-	CH ₃ COI CH ₃ CO ₂ CH(CH ₃)CH ₂	169.95 195.69	2, 174 Merck:	2.0674420	1.549120	172–173	108		dec aq, alc; s bz, eth v s aq, alc, chl; i eth;
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		line chloride	N(Br)(CH ₃) ₃	041.01	12, 6003			100 105			dec by alkalis, eth
$ \begin{array}{c} a52\\ a53\\ a53\\ a54\\ a55\\ a56\\ a56\\ a56\\ a56\\ a56\\ a56\\ a56$	a50 2-Ac a51 2-Ac	Acetylphenotniazine Acetylphenylaceto- nitrile	C ₆ H ₅ CH(CN)COCH ₃	241.31 159.19	10, 699			180-185	92-94		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a52 1-Ac	Acetyl-4-pipidone		141.17		1.146	1.502620		218	>110	
a54 a55 a563-Acetylpyridine 4-Acetylsaticylic acid $(C_{3}H_{4}N)COCH_{3}$ $(C_{3}H_{4}N)COCH_{3}$ $HO_{2}C_{6}H_{4}-2-O_{2}CCH_{3}$ 121.14 121.1421, 279 1, 21, 279 1, 0671.002 1, 0551.5350 ²⁰ 1, 055220 1, 250 ²⁰ 150 212v >110a57 a58 a592-Acetylthiophene 1-Acetvl-2-thiourea phan Acerdine $(C_{4}H_{5}S)COCH_{3}$ $CH_{3}C(O)NHC(S)NH_{3}$ 126.18 126.1817, 287 222, 4691.168 ²² 1.351.5564 ²⁰ 10-11 20621421414150ma60 a61AcridineH_2C=CHCONH_271.08 2, 4002, 4001.222 ³⁰ 1.005 ³⁰ 4.50106-110 subl 100346 subl 100346 <b< td=""><td>a53 2-Ac</td><td>Acetylpyridine</td><td>(C₅H₄N)COCH₃</td><td>121.14</td><td>21, 279</td><td>1.080</td><td>1.520320</td><td></td><td>188-189</td><td>73</td><td>v s alc, eth</td></b<>	a53 2-Ac	Acetylpyridine	(C ₅ H ₄ N)COCH ₃	121.14	21, 279	1.080	1.520320		188-189	73	v s alc, eth
a55 a564-Acetylpyridine Acetylsalicylic acid(C_3H_4N)COCH_3 HO_2C_6H_4^-2-O_2CCH_3121.14 180.1621, 279 10, 671.095 1.351.535020 1.35212 135>110 v v v 135a57 a58 a592-Acetylthiophene 1-Acetyl-2-thiourea phan a60(C_4H_3S)COCH_3 C(0)NHC(S)NH_3126.18 118.16 246.2717, 287 222, 4691.16842 222, 4691.55642010-11 167 206214\$10 \$10 \$167\$10 \$10 \$167\$10 214\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10\$10 \$10<	a54 3-Ac	Acetylpyridine	(C ₅ H ₄ N)COCH ₃	121.14	21, 279	1.102	1.533620		220	150	v s acids, alc, eth; s aq
a56Acetylsalicylic acid $HO_2C_6H_4-2-O_2CCH_3$ 180.1610, 671.351351350a572-Acetylthiophene 1-Acetyl-2-thiourea phan a60(C_4H_3S)COCH_3 CH_3C(O)NHC(S)NH_3126.18 118.16 246.2717, 287 22², 4691.1682² 246.271.55642010-11 167 2062141415084a60Acridine a61AcrylamideH_2C=CHCO_2H71.062, 3971.0511201.42242012-1414150m	a55 4-Ao	Acetylpyridine	(C ₅ H ₄ N)COCH ₃	121.14	21, 279	1.095	1.535020		212	>110	v s alc, eth
a57 2-Acetylthiophene (C_4H_3S)COCH_3 126.18 17, 287 1.16822 1.556420 10-11 214 s s s a59 N-Acetyl-(±)-trypto-phan N-Acetyl-(±)-trypto-phan 118.16 3.191 222, 469 1.00520 106-110 346 s s s a60 Acridine H2C=CHCONH2 71.08 2, 400 1.22230 1.00520 106-110 346 s s a62 Acrylic acid H2C=CHCO2H 72.06 2, 397 1.051120 1.422420 12-14 141 50 m	a56 Acet	etylsalicylic acid	HO ₂ C ₆ H ₄ -2-O ₂ CCH ₃	180.16	10, 67	1.35		135			0.33 aq ²⁵ ; 29 acet; 20 alc; 5.9 chl; 5 eth; s bz
a58 a591-Acetv1-2-thiourea N-Acety1-(\pm)-trypto- phan AcridineCH_3C(O)NHC(S)NH_3118.16 246.273.191 22 ² , 469167 	a57 2-Ac	Acetylthiophene	(C₄H ₃ S)COCH ₃	126.18	17, 287	1.16842	1.556420	10-11	214		sl s aq; misc alc, eth
a59N-Acetyl-(±)-trypto- phan AcridineN-Acetyl-(1-)-trypto- phan AcridineN-Acetyl-(1-)-trypto- phan AcridineN-Acetyl-(1-)-trypto- phan AcridineN-Acetyl-(1-)-trypto- AcridineN-Acetyl-(1-)-trypto- phan AcridineN-Acetyl-(1-)-trypto- phan AcridineN-Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypto- Acetyl-(1-)-trypt	a58 1-Ac	Acetvl-2-thiourea	CH ₃ C(O)NHC(S)NH ₃	118.16	3. 191			167			s hot aq, alc; sl s eth
a60 Acridine 179.22 20, 459 1.005 ²⁰ 106-110 346 s s a61 Acrylamide H ₂ C=CHCONH ₂ 71.08 2, 400 1.222 ³⁰ 1.4224 ²⁰ 192.6 192.6 at a62 Acrylic acid H ₂ C=CHCO ₂ H 72.06 2, 397 1.0511 ²⁰ 1.4224 ²⁰ 12-14 141 50 m	a59 <i>N</i> -A pl	Acetyl-(±)-trypto- phan		246.27	22², 469			206			s aq, alc; v s eth
a61 Acrylamide H ₂ C=CHCONH ₂ 71.08 2, 400 1.222 ³⁰ 84.5 192.6 at a62 Acrylic acid H ₂ C=CHCO ₂ H 72.06 2, 397 1.0511 ²⁰ 1.4224 ²⁰ 12-14 141 50 m	a60 Acri	ridine		179.22	20, 459	1.0054		106-110 subl 100	346		s alc, eth, CS ₂ , PE; sl s hot aq
a62 Acrylic acid $H_2C=CHCO_2H$ 72.06 2, 397 1.0511 ²⁰ 1.4224 ²⁰ 12-14 141 50 m	a61 Acry	rylamide	H ₂ C=CHCONH ₂	71.08	2, 400	1.2224		84.5	192.6		at 30°, g/100 mL: 215 aq, 155 MeOH, 86 EtOH, 63 acet, 12.6 EtOAc, 2.7 chl, 0.3 bz
	a62 Acry	rylic acid	H ₂ C=CHCO ₂ H	72.06	2, 397	1.051120	1.422420	12-14	141	50	misc aq, alc, bz, eth, chl, acet
a63 Acrylonitrile H_2C =CHCN 53.06 2, 400 0.8060_4^{20} 1.3911^{20} -83.5 77.3 0 7.4	a63 Acry	rylonitrile	H ₂ C=CHCN	53.06	2,400	0.8060420	1.391120	- 83.5	77.3	0	7.3 aq; misc org solv

a63a	Acryloyl chloride	H ₂ C==CHCOCl	90.51	2,400	1.114	1.435020		7276	15	d aq; v s chl
a64	1-Adamantanamine		151.25	Merck:			160-190			sl s aq
				12, 389						
a65	Adamantane		136.24	Merck:	1.09	1.568	270 (sealed	205 subl		s acet
				12, 149	[tube)			
a66	Adenine		135.13	26, 420			360 dec	subl 220		0.005 aq; sl s alc; i
										chl, eth
a67	(-)-Adenosine		267.24	31, 27			235			s aq; i alc
a68	(\pm) - α -Alanine	CH ₃ CH(NH ₂)CO ₂ H	89.09	4, 387	1.424		264-269	subl >200		16.7 aq ²⁵ ; 0.009 alc ²⁵ ; i
					-		(de-			eth
							pends			
							on heat-			
							ing rate)			
a69	(-)-α-Alanine	CH ₃ CH(NH ₂)CO ₂ H	89.09	4, 381	1.401		dec 297			16.7 aq ²⁵ ; 0.2 alc ²⁵ ; i
										eth
a70	β -Alanine	H ₂ NCH ₂ CH ₂ CO ₂ H	89.09	4, 401	1.437-5		197 dec			v s aq; sl s alc; i eth
a71	Allantoin		158.12	25, 474			238			0.45 aq; 0.2 alc; i eth
a72	Allene	$H_2C = C = CH_2$	40.06	1, 248	1.787	1.4168	- 136	-34		
a73	Alloxan monohydrate		160.09	24, 500			anhyd: 256			s aq, alc, acet, HOAc;
							dec			sl s chl, EtOAc, PE
a74	Allyl acetate	H ₂ C==CHCH ₂ OCOCH ₃	100.12	2, 136	0.97740	1.404020		104	22	i aq; misc alc, eth
a75	Allyl alcohol	H ₂ C=CHCH ₂ OH	58.08	2, 436	0.854040	1.413420	- 129	97	21	misc aq, alc, chl, eth
a76	Allylamine	H ₂ C==CHCH ₂ NH ₂	57.10	4, 205	0.76140	1.418520	- 88.2	5355	-29	misc aq, alc, chl, eth
a77	N-Allylaniline	C ₆ H ₅ NHCH ₂ CH==CH ₂	133.19	12, 170	0.98225	1.563020		220	89	i aq; s alc, eth
a78	Allylbenzene	C ₆ H ₅ CH ₂ CH==CH ₂	118.18	5, 484	0.89200	1.512220		157	33	i aq; s alc, eth
a79	Allyl bromide	$H_2C = CHCH_2Br$	120.98	1, 201	1.398420	1.465420	- 119	70	-2	sl s aq; misc org solv
a80	Allyl butanoate	CH ₃ CH ₂ CH ₂ COOCH ₂ -	128.17	2, 272	0.902	1.414220	44 ^{15mm}	41		
		CH=CH ₂								
a81	Allyl chloride	H ₂ C=CHCH ₂ Cl	76.53	1, 198	0.93840	1.415420	- 134.5	44-46	-31	sl s aq; misc alc, chl,
									(CC)	eth, PE
a82	Allyl chloroformate	H ₂ C=CHCH ₂ OOCC1	120.54	3, 12	1.136	1.4223	110	27	31	
a83	Allylcyclohexylamine	(C ₆ H ₁₁)NHCH ₂ CH==CH ₂	139.24		0.962	1.466420		66 ^{12mm}	53	
a84	4-Allyl-1,2-dimethoxy-	H ₂ C=CHCH ₂ C ₆ H ₄ (OCH ₄) ₂	178.23	6, 963	1.036	1.534420	-4	255		
	benzene	2050 55								
a85	N-Allyl-N,N-dimethyl-	H ₂ C=CHCH ₂ N(CH ₃) ₂	85.0			1.401020		64		
	amine									
a86	Allyl ethyl ether	H ₂ C=CHCH ₂ OCH ₂ CH ₃	86.13	1, 438	0.76540	1.388120		68	-20	i aq; misc alc, eth
a87	Allyl iodide	H,C=CHCH,I	167.98	1, 202	1.82540	1,554021	- 99	103		i aq; misc alc, eth
a88	Allyl isothiocyanate	H ₂ C=CHCH ₂ NCS	99.16	4, 214	1.01325	1.524825	- 80	152	46	0.2 aq; misc org solv

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

									1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a89	Allyl methacrylate	H ₂ C=C(CH ₃)COOCH ₂ -	126.16	2 ³ , 1290	0.938	1.4360	-	61 ^{43mm}	33	
		CH=CH ₂								
a90	Allyl methyl sulfide	H ₂ C=CHCH ₂ SCH ₃	88.17	1, 440	0.803	1.471420		91-93	18	
a91	1-Alloxy-2,3-epoxy-	H ₂ C—CHCH ₂ OCH ₂ -	114.14		0.962	1.433220		154	57	
	propane	O CH=CH ₂	· ·							
a92	3-Alloxy-1,2-propane-	H ₂ C=CHCH ₂ -	132.16	1, 513	1.068	1.462020		142 ^{28mm}	>110	
-02	diol Alluloxytrimathyl	H_2 CH(OH)CH ₂ OH	130.26		0.7830	1 407525		102	0	
a95	silane	$n_2 c - c n c n_2 c c n (c n_3)_3$	130.20		0.7850	1.4075		102		
a94	2-Allylphenol	H ₂ C==CHCH ₂ C ₆ H ₄ OH	134.18	6, 572	1.03345	1.545020	10	220	88	s alc, eth
a95	Allyl phenyl ether	H ₂ C=CHCH ₂ OC ₆ H ₅	134.18	6, 144	0.98345	1.520020		192	62	i aq; s alc, misc eth
a96	Allyl propyl ether	H ₂ C==CHCH ₂ OC ₃ H ₇	100.16	1, 438	0.7674	1.399020		90-92	5	s alc; misc eth
a97	1-Allyl-2-thiourea	$H_2C = CHCH_2NHC(S)NH_2$	116.19	4, 211	1.21920		70-72			3.3 aq; s alc; i bz; v sl
a98	Allyltrichlorosilane	H ₂ C=CHCH ₂ SiCl ₂	175.52	4 ³ , 1909	1.201120	1.455020		117.5	31	seur
a99	Allyltriethoxysilane	H ₂ C=CHCH ₂ Si(OC ₂ H ₂) ₂	204.34	4 ³ , 1909	0.903020	1.406220		176 ^{740mm}	21	
a100	Allyl trifluoroacetate	CF ₃ COOCH ₂ CH=CH ₂	154.09	24, 464	1.183	1.335020		6667	-1	
a101	Allyltrimethylsilane	H ₂ C==CHCH ₂ Si(CH ₃) ₃	114.27		0.7193420	1.408020		84-88	7	
a102	Allylurea	H ₂ C=CHCH ₂ NHCONH ₂	100.12	4, 209			85			v s aq, alc; i chl, CS_2 eth, toluene
a103	Aminoacetonitrile	H ₂ NCH ₂ CN	56.07	4, 344				58 ^{15mm} d		s acids, alc
a104	Aminoacetonitrile hy- drogen sulfate	H ₂ NCH ₂ CN · H ₂ SO ₄	154.14	4, 344			121	d 165		v s aq; sl s alc; i eth
a105	2'-Aminoaceto- phenone	H ₂ NC ₆ H ₄ COCH ₃	135.17	14, 41				70 ^{3mm}	>110	v sl s aq; s alc, eth
a106	3'-Aminoaceto- phenone	H ₂ NC ₆ H ₄ COCH ₃	135.17	14, 45			99	290		
a107	4'Âminoacetophenone	H ₂ NC ₆ H ₄ COCH ₃	135.17	14, 46			106	293–295		s hot aq, alc, eth, HOAc; sl s bz
a108	1-Aminoanthra- quinone		223.23	14, 177			ca. 250	subl		i aq; v s alc, bz, chl, eth, HOAc, HCl
a109	2-Aminoanthra- quinone		223.23	14, 191			295 d	subl		i aq, eth; s alc, bz
a110	4-Aminoantipyrine		203.25	24, 273			109			s aq, alc, bz; sl s eth
a111	p-Aminoazobenzene	C ₆ H ₅ N=NC ₆ H ₄ NH ₂	197.24				128	>360		sl a aq; v s alc, bz, chl, eth
a112	2-Aminobenzamide	H ₂ NC ₆ H ₄ CONH ₂	136.15	14, 320			110	300 sl d		v s hot aq, alc; i bz; sl s eth
a113	4-Aminobenzene-	H ₂ NC ₆ H ₄ AsO(OH) ₂	217.06	16, 878			232			s hot aq; alk CO ₃ ,

	arsonic acid		ł			1			l	conc'd mineral ac-
			}							ids; i acet, bz, chl,
										eth
a114	5-Aminobenzene-1,3-	H ₂ NC ₆ H ₃ (COOH) ₂	181.15	14 ¹ , 636			>300			
110			172.10	14 (01			1.005			1 5 1 1 1
a115	2-Aminobenzene- sulfonic acid	$H_2NC_6H_4SO_3H$	173.19	14, 681			ca. d 325			1.5 aq ¹³ ; v si s aic, eth
a116	3-Aminobenzene- sulfonic acid	H₂NC6H₄SO3H	173.19	14, 688	1.69		>300			2 aq ¹⁵ ; sl s alc, MeOH
a117	4-Aminobenzene-	H₂NC6H₄SO3H	173.19	14, 695		:	d 288			1 aq ²⁰ ; sl s hot MeOH;
.110	2 Aminohongoio opid	H NC H COOH	127.14	14 210			144 146	cubl		v s hot ng nla eth
a110	2-Aminobenzoic acid		137.14	14, 510	1 5 1 1 4		172 174	Subi		v s hot ag, alc, cui
a119	3-Aminobenzoic acid	$H_2NC_6H_4COOH$	137.14	14, 363	1.511		1/2-1/4			0 50 ogu 12 alau 2 athu
a120 .	4-Aminobenzoic acio	H ₂ NC ₆ H ₄ COOH	157.14	14, 410	1.574		167			s EtOAc, HOAc
a121	2-Aminobenzonitrile	H ₂ NC ₆ H ₄ CN	118.14	14, 322			49	268	>110	s alc, eth
a122	3-Aminobenzonitrile	H ₂ NC ₆ H ₄ CN	118.14	14, 391			53	288290	>110	s hot aq; v s alc, eth
a123	4-Aminobenzonitrile	H ₂ BC ₆ H ₄ CN	118.14	14, 425			85	dec		v s hot aq, alc, eth
a124	2-Aminobenzophenone	H ₂ NC ₆ H ₄ COC ₆ H ₅	197.24	14, 76			108	223226		sl s aq; s alc, eth
a125	2-Aminobenzothiazole		150.20	27, 182			132	dec		v s conc'd acids, alc, chl, eth
a126	2-Aminobenzotri-	H ₂ NC ₆ H₄CF ₃	161.13	12 ¹² , 453	1.29025	1.478525	34	175	55	
	fluoride									
a127	3-Aminobenzotri- fluoride	$H_2NC_6H_4CF_3$	161.13	12, 870	1.290	1.480020	6	187	85	
a128	4-Aminobenzotri-	H ₂ NC ₆ H ₄ CF ₃	161.13	12³, 2151	1.28327	1.481525	38	83 ^{12mm}	86	- -
100	fluoride		104.10	142.050			100 100			
a129	N-(4-Aminobenzoyi)- glycine	H ₂ NC ₆ H ₄ CONHCH ₂ COOH	194.19	142, 258			198-199			i aq; s aic, bz, chi
a130	2-Aminobiphenyl	$H_2NC_6H_4C_6H_5$	169.23	12, 1317			50-53	299	>110	sl s aq; s alc
a131	4-Aminobiphenyl	H ₂ NC ₆ H ₄ C ₆ H ₅	169.23	12, 1318			52-54	191 ^{15mm}	>110	s hot aq, alc, eth
a132	2-Amino-5-bromo- benzoic acid	Br(NH ₂)C ₆ H ₃ COOH	216.03	14, 370			218-219			s alc, bz, chl, eth, HOAc; v s acet
a133	(±)-2-Aminobutanoic	CH ₃ CH ₂ CH(NH ₂)COOH	103.12	4, 408			304 d	subl >300		21 aq ²⁵ , 0.18 hot alc; i eth
a133a	3-Aminobutanoic acid	H-CCH-CH(NH-)COOH	103.12	4, 412			193-194			125 aq; i alc, eth
a134	4-Aminobutanoic acid	H-NCH-CH-COOH	103.12	4, 413			195 d			v s aq; i org solv
a135	2-Amino-1-butanol	CH,CH,CH(NH,)CH2OH	89.14	4, 291	0.94420	1.452120	-2	176-178	74 (OC)	misc aq; s alc
										-

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a136	3-(4-Aminobutyl)-	(HNC ₅ H ₉)(CH ₂) ₄ NH ₂	156.27	22 ³ , 3788	0.910		39-42	148 ^{10mm}	>110	
	piperidine			-						
a137	4-Amino-6-chloro-1,3- benzenedisulfon- amide	$H_2NC_6H_2(Cl)(SO_2NH_2)_2$	285.73	144, 2810			257–261			
a138	2-Amino-4-chloroben- zoic acid	H ₂ N(Cl)C ₆ H ₃ COOH	171.58	14, 365			231-233			
a139	5-Amino-2-chloroben- zoic acid	H ₂ N(Cl)C ₆ H ₃ COOH	171.58	14, 412			188 d			
a140	2-Amino-4'-chloro- benzophenone	H ₂ NC ₆ H ₄ COC ₆ H ₄ Cl	231.68	14 ¹ , 389			104			
a141	2-Amino-5-chloroben- zophenone	H ₂ N(Cl)C ₆ H ₃ COC ₆ H ₅	231.68	14, 79			98-100			
a142	2-Amino-5-chloroben- zotrifluoride	H ₂ N(Cl)C ₆ H ₃ CF ₃	195.57	12³, 1921	1.386	1.506920		67 ^{3mm}	none	
a143	5-Amino-2-chloroben- zotrifluoride	H ₂ N(Cl)C ₆ H ₃ CF ₃	195.57				36–38		>110	
a144	2-(3-Amino-4-chloro- benzoyl)benzoic acid	H ₂ N(Cl)C ₆ H ₃ COC ₆ H ₄ COOH	275.69	14, 661			171–173			
a145	4-Amino-4'-chloro- biphenyl	$H_2NC_6H_{4^-}C_6H_4Cl$	203.67				128134			i aq; s alc, acet, bz, chl, HOAc
a146	4-Amino-5-chloro-2- methoxybenzoic acid	H ₂ NC ₆ H ₂ (Cl)(OCH ₃)COOH	201.61				206 d			
a147	2-Amino-4-chloro- phenol	H ₂ N(Cl)C ₆ H ₃ OH	143.57	13, 383			139–143			
a148	2-Amino-5-chloro- pyridine	$H_2N(Cl)(C_5H_3N)$	129.56	22², 332			135-138	128 ^{11mm}		
a149 a150	3-Aminocrotononitrile 1-[(2-Aminoethyl)- amino]-2-propanol	CH ₃ C(NH ₂)==CHCN CH ₃ CH(OH)CH ₂ NHCH ₂ - CH ₂ NH ₂	82.11 118.18	3, 660	0.9837 ²⁵	1.478825		112 ^{10mm}		
a151	5-Amino-2,3-dihydro- 1,4-phthalazinedione		177.16	25 ¹ , 698			319-320			
a152	2-Amino-4,6-dihy- droxypyrimidine		127.10	24, 468			>300			
a153	4-Amino-2,6-dihy- droxypyrimidine		127.10	24, 469			>300			
a154	2-Amino-3,3-dimethyl- butane	(CH ₃) ₃ CCH(NH ₂)CH ₃	101.19	4, 193	0.755	1.413020	-20	102–103	1	

a155	2-Amino-4,6-dimethyl-	$(CH_3)_2(NH_2)(C_5H_2N)$	122.17	22, 435			63-64	235		
a156	4-Amino-2,6-dimethyl-		123.16	24², 45			184–186			156 aq; 18.9 alc
a157	6-Amino-1,3-dimethyl- uracil		155.16	24, 471			295 d			
a158	5-Amino-2,6-dioxo- 1,2,3,6-tetrahydro- 4-pyrimidinecarbox- vlic acid		171.11	25, 264			>300			
a159	α-Aminodiphenyl- methane	(C ₆ H ₅) ₂ CHNH ₂	183.25	12, 1323	1.063542	1.595020	34	304	>110	sl s aq; s acids
a160	2-Aminoethanesulfonic acid	H ₂ NCH ₂ CH ₂ SO ₃ H	125.15	4, 528			d ca. 300			5.45 aq ¹² ; 0.004 alc ¹⁷
a161	2-Aminoethanethiol	HSCH ₂ CH ₂ NH ₂	77.14	4, 286			97–99			v s aq; s alc
a162	1-Aminoethanol	CH ₂ CH(OH)NH ₂	61.08		1.011.005		97	110 d		s aq; sl s eth
a163	2-Aminoethanol	H ₂ NCH ₂ CH ₂ OH	61.08	4, 274	1.011745	1.453920	10.3	171	93	misc aq, org solv
a164	2-(2-Aminoethoxy)- ethanol	H ₂ NCH ₂ CH ₂ OCH ₂ CH ₂ OH	105.14	43, 642	1.048			218-224		
a165	2-(2-Aminoethyl- amino)ethanol	H ₂ NCH ₂ CH ₂ NHCH ₂ CH ₂ OH	104.15	4, 286	1.030	1.486120		240 ^{753mm}	>110	v s aq, alc; sl s eth
a166	1-[(2-Aminoethyl)- amino]-2-propanol	CH ₃ CH(OH)CH ₂ NHCH ₂ - CH ₂ NH ₂	118.18	Merck: 12, 458	0.983745	1.473825		112 ^{10mm}		s acids
a167	3-(2-Aminoethyl- amino)propyltri- methoxysilane	H ₂ NCH ₂ CH ₂ NHCH ₂ CH ₂ - Si(OCH ₃) ₃	222.1		1.01425	1.441825		140 ^{15mm}	150	
a168	3-Amino-9-ethylcarba- zole		210.28	22 ¹ , 642			98-100			
a169	2-Aminoethyl hydro- gen sulfate	H ₂ NCH ₂ CH ₂ OSO ₃ H	141.15	4, 276			277 d			
a170	3-(2-Aminoethyl)-		160.22	22 ¹ , 636			118	137 ^{0.15mm}		i aq, bz, chl, eth; s alc, acet. HCl
a171	S-2-Aminoethyliso- thiouronium bro- mide HBr		281.01	Merck: 12, 176			194195			
a172	N-(2-Aminoethyl)- morpholine		130.19	27³, 370	0.992	1.475520	25.6	205	175	s aq, alc, bz, acet, acids
a173	4-(2-Aminoethyl)- phenol	HOC ₆ H ₄ CH ₂ CH ₂ NH ₂	137.18	13, 625			164-165	166 ^{2mm}		1 aq ¹⁵ ; 10 boiling alc; s HCl

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a174	N-(2-Aminoethyl)-		129.21		0.98520	1,498320	-26	218-222	93 (OC)	I
	piperazine				20					
a175	N-(2-Aminoethyl)-1,3-	H2NCH2CH2CH2NHCH2-	117.20		0.928	1.481520			96	
	propanediamine	CH ₂ NH ₂								
a176	2-Amino-2-ethyl-1,3-	HOCH ₂ C(NH ₂)(C ₂ H ₅)-	119.16	4,3,850	1.09920	1.49020	38	152 ^{10mm}	>110	misc aq; s alc
	propanediol	CH ₂ OH								
a177	2-(2-Aminoethyl)-	$H_2NCH_2CH_2(C_5H_4N)$	122.17	22, 434	1.021	1.536020		93 ^{12mm}	100	
	pyridine							_		
a178	4-(2-Aminoethyl)-	$H_2NCH_2CH_2(C_5H_4N)$	122.17		1.012	1.540320		104 ^{9mm}		
	pyridine			100 1001	1.0-01			0120	50	
a179	2-Amino-5-fluoroben-	$H_2N(F)C_6H_3CF_3$	179.12	123, 1991	1.3781	1.460820		8120mm	70	
100	zotrifluoride		126.11	2 117			170 4			i agu d bot og
a180	drogen corbonate	$H_2NNHC(NH)$ -	130.11	5, 117			1/2 u			r aq, u nor aq
a181	N A minobexamethyle-	(C H N)NH	114.19		0.984	1 485020		165	56	
aroi	neimine	(061121), (112			0.501	111000		100	200	
a182	(±)-2-Aminohexanoic	CH ₂ (CH ₂) ₂ CH(NH ₂)COOH	131.17	4, 433	1.172		301			1.15 aq ²⁵ ; 0.42 alc ²⁵ ; s
	acid			,						acids
a183	6-Aminohexanoic acid	H ₂ N(CH ₂) ₅ COOH	131.17	4, 434			204-206			v s aq; i alc, s acids
a184	6-Amino-1-hexanol	H ₂ N(CH ₂) ₅ CH ₂ OH	117.19	4², 748			56-58	135 ^{30mm}		
a185	(-)-2-Amino-3-	CH ₃ CH(OH)CH(NH ₂)-	119.12	4, 514			d 255			v s aq; i alc, chl, eth
	hydroxybutanoic acid	СООН								
a186	(±)-4-Amino-3-	H ₂ NCH ₂ CH(OH)CH ₂ -	119.12	4², 938			218 d			s aq; sl s alc, chl, eth,
	hydroxybutanoic acid	СООН								EtOAc
a187	4-Amino-6-hydroxy-2-		161.18	24, 476			>300			
	mercaptopyrimidine									
100	hydrate		105.10	24.242			> 200			
a188	2-Amino-4-nydroxy-6-		125.13	24, 343			>300			
a180	4-Amino-3-bydroxy-1-		230.25	14 846			295 d			i ag alc hz eth
a109	nanhthalenesulfonic		239.23	14, 040			275 0			1 aq, ale, 02, em
	acid									
a190	4-Amino-5-hydroxy-1-		239.25	14, 835						sl s aq; i alc, eth
	naphthalenesulfonic									
- 101	acid		220.25							sls hot navieth
a191	5-Amino-6-nydroxy-2-		239.25							si s not aq, i eui
	acid									
a192	6-Amino-7-hydroxy-2-		239.25	14, 849			>300			
u172	naphthalenesulfonic									
	acid									

2.74

a193	2-Amino-3-hydroxy-	$H_2N(HO)(C_5H_3N)$	110.12	12², 408			172-174			
-104	pyridine		111 10	24 314			>300			0.77 ag: sl s alc
a194	4-Amino-2-nyuroxy-		111.10	24, 314			~ 500			0.77 aq, 313 ac
a195	1-Aminoindane		133 19	12 1191	1 038!5	1 561320	15	978mm	94	slsaa
a196	5-Aminoindane		133.19	12 ¹ , 511	1.00.04		36	249 ^{745mm}	>110	si s aq
a197	5-Aminoindazole		133.15	25 ² , 308			175-178			
a198	6-Aminoindazole		133.15	25, 317			206 d			
a199	2-Amino-5-iodoben-	H ₂ N(I)C ₆ H ₃ COOH	263.03	14, 373			221 d			sl s aq, PE; s alc
	zoic acid									_
a200	(±)-2-Amino-4-mer-	HSCH ₂ CH ₂ CH(NH ₂)COOH	135.19	4 ³ , 1647			232-233			
	captobutanoic acid									
a201	Aminomethanesulfonic	H ₂ NCH ₂ SO ₃ H	111.12	1, 583			185 d		ł	v s aq
	acid									
a202	3-Amino-4-methoxy-	CH ₃ O(NH ₂)C ₆ H ₃ COOH	167.16	141, 657			210			
000	benzoic acid		04.14	4 1615	0.045	1 40 (520		02		
a203	2-Amino-I-methoxy-	CH ₃ OCH ₂ CH(CH ₃)NH ₂	84.14	44, 1615	0.845	1.406520		93	8	
n204	5 Amino 2 methovy		124.14	222 408		1 574520	21	001mm	>110	
a204	pyridine	$CH_3O(INH_2)(C_5H_3N)$	124,14	22,408		1.5745	51	90	-110	
a205	4'-Amino-N-methyl-	CH_ON(CH_)C_H_NH_	164.21	131, 30			90-92			
u 205	acetanilide			10,00						
a206	4-Amino-3-methyl-	H ₂ NC ₆ H ₃ (CH ₃)SO ₃ H	187.22	14, 726			>300			
	benzenesulfonic acid									
a207	2-Amino-5-methyl-	H ₂ N(CH ₃)C ₆ H ₃ COOH	151.17	14, 481			175 d			sl s aq; s alc, eth
	benzoic acid									
a208	3-Amino-4-methyl-	H ₂ N(CH ₃)C ₆ H ₃ COOH	151.17	14, 487			167169			s aq
	benzoic acid									
a209	2-Amino-3-methyl-1-	(CH ₃) ₂ CHCH(NH ₂)CH ₂ OH	103.17	4 ³ , 805	0.906	1.454320	35-36	80 ^{8mm}	90	
	butanol		100.00		0.007	1 466520		6016mm	60	
a210	2-(Aminomethyl)-1-		128.22		0.887	1.406520		60 ¹⁰⁰⁰⁰⁰⁰	60	
a211	2 Amino 2 methyl 1		117 10			1 / 58020	30	0714mm	100	
4211	2-Amino-3-mentyi-1-	CHOH	117.17			1.4505	50	31	100	
a212	2-Amino-4-methyl-1-	CH ₂ CH(CH ₂)CH ₂ CH(NH ₂)-	117.19	4, 298	0.917	1.449620		200	90	
44.2	pentanol	СН-ОН		.,						
a213	4-Amino-3-methyl-	H ₂ N(CH ₃)C ₃ H ₃ OH	123.16				179			
	phenol									
a214	4-(Aminomethyl)-		114.19			1.490020	25	200	78	
	piperidine									
-			-	-	-					
------	--	---	-------------------	-----------------------	------------------	----------------------	----------------------	----------------------	--------------------	--
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a215	2-Amino-2-methyl-1,3- propanediol	HOCH ₂ C(CH ₃)(NH ₂)CH ₂ OH	105.14				108-110	151 ^{10mm}		250 aq ²⁰ ; s alc
a216	2-Amino-2-methyl-1- propanol	(CH ₃) ₂ C(NH ₂)CH ₂ OH	89.14	4 ³ , 783	0.93420	1.4480 ²⁰	25	165	67	misc aq; s alc, org solv
a217	2-Amino-2-methyl- propionic acid	(CH ₃) ₂ C(NH ₂)COOH	103.12	4, 414			335 (sealed tube)	280 subl		v s aq
a218	2-(Aminomethyl)- pyridine	$H_2NCH_2(C_5H_4N)$	108.14		1.049	1.544020		85 ^{12mm}	90	
a219	3-(Aminomethyl)- pyridine	$H_2NCH_2(C_5H_4N)$	108.14		1.062	1.551020	-21	74 ^{1mm}	100	
a220	4-(Aminomethyl)- pyridine	$H_2NCH_2(C_5H_4N)$	108.14	22³, 4181	1.065	1.551520	-8	230	108	
a221	2-Amino-3-methyl- pyridine	$H_2N(CH_3)(C_5H_3N)$	108.14	22², 342	1.073	1.582320	32–34	222	111	
a222	2-Amino-4-methyl- pyridine	$H_2N(CH_3)(C_4H_3N)$	108.14	22², 342			98–100	230		v s aq, alc, DMF
a223	2-Amino-6-methyl- pyridine	$H_2N(CH_3)(C_4H_3N)$	108.14	22 ¹ , 633			42-45	209	103	v s aq
a224	2-Amino-4-methyl- pyrimidine		109.13	24, 84			160	subl		s hot aq; s alc
a225	2-Amino-4-methyl- thiazole		114.17	27, 159			44–46	232	>110	v s aq, alc, eth
a226	2-Aminomethyl-3,5,5- trimethylcyclo- hexanol		171.29		0.969	1.4904 ²⁰	43-48	265	>110	
a227	N-Aminomorpholine		102.14	27, 8	1.059	1.477220		168	58	
a228	1-Aminonaphthalene	$(C_{10}H_7)NH_2$	143.18	12, 1212	1.13		48-50	301	157	0.17 aq; v s alc, eth
a229	2-Aminonaphthalene	$(C_{10}H_7)NH_2$	143.18	12, 1212			111-113	306		s hot aq, alc, eth
a230	2-Amino-1-naphtha- lenesulfonic acid	$H_2N(C_{10}H_6)SO_3H$	223.25	14, 736			dec			0.031 aq; sl s hot aq; s dil alkali
a231	5-Amino-2-naphtha- lenesulfonic acid	$\mathrm{H_2N}(\mathrm{C_{10}H_6})\mathrm{SO_3H}$	223.25	14, 758			180			sl s aq; s hot aq
a232	8-Amino-2-naphthol	H ₂ NC ₁₀ H ₆ OH	159.19	13, 685			207			
a233	2-Amino-4-nitro- benzoic acid	H ₂ N(NO ₂)C ₆ H ₃ COOH	182.14	14, 374			270 d			i aq; v s alc, eth
a234	2-Amino-5-nitro- benzonitrile	H ₂ N(NO ₂)C ₆ H ₃ CN	163.14	14², 234			200-207			
a235	5-Amino-5-nitro- benzophenone	C ₆ H ₅ COC ₆ H ₄ (NH ₂)NO ₂	242.23	14, 79			166–168			

a236	2-Amino-6-nitro-		195.20	27², 232	1		247-249		1	
	benzothiazole									
a237	4-Amino-3-nitro-	H ₂ N(NO ₂)C ₆ H ₃ CF ₃	206.12				105-106			
	benzotrifluoride									
a238	2-Amino-4-nitrophenol	O ₂ N(NH ₂)C ₆ H ₃ OH	154.13	13 ² , 192	ľ		143-145			
a239	2-Amino-5-nitrophenol	O ₂ N(NH ₂)C ₆ H ₃ OH	154.13	13, 390			202 d			
a240	4-Amino-2-nitrophenol	O ₂ N(NH ₂)C ₆ H ₃ OH	154.13	13, 520			125-127			
a241	D-(-)-threo-2-Amino-	HOCH ₂ C(NH ₂)C(OH)-	212.21				163-165			
	1-(4-nitrophenyl)-	C ₆ H ₄ NO ₂								
	1,3-propanediol									
a242	2-Amino-5-(4-nitro-		285.30				222-226			
	phenylsulfonyl-									
	thiazole									
a243	2-Amino-5-nitro-	$H_2N(C_5H_3N)NO_2$	139.11	22 ¹ , 631			186188			sl s aq, bz, eth
	pyridine									
a244	2-Amino-5-nitro-		145.14	Merck:			d 202			s sl s aq; 0.7 alc; 0.4
	thiazole			12, 477	J					ether; s dil acids
a245	exo-2-Aminonor-		111.19	12 ³ , 160	0.938	1.480720		49 ^{10mm}	35	
	bornane									
a246	2-Aminopentane	H(CH ₂) ₃ CH(NH ₂)CH ₃	87.17	4, 177	0.73920	1.404720		91–92		s aq, alc, eth, PE
a247	3-Aminopentane	C ₂ H ₅ CH(NH ₂)C ₂ H ₅	87.17	4, 179	0.74940	1.405520		91	1	misc aq, alc, eth
a248	DL-2-Aminopentanoic	H(CH ₂) ₃ CH(NH ₂)COOH	117.15	4, 416			303	320 subl		5.5 aq^{18} ; v sl s alc, chl,
	acid									eth, PE
a249	5-Aminopentanoic acid	H₂N(CH₂)₄COOH	117.15	4, 418			158-161			v s aq; sl s alc; i eth
a250	5-Amino-1-pentanol	H ₂ N(CH ₂) ₅ OH	103.17	4 ¹ , 441	0.949	1.461520	35-37	122 ^{16mm}	65	
a251	2-Aminophenethyl al-	H₂NC ₆ H₄CH₂CH₂OH	137.18	13 ³ , 1679	1.045	1.584920		148 ^{4mm}	>112	
	cohol									
a252	2-Aminophenol	H₂NC ₆ H₄OH	109.13	13, 354			170–174			2 aq; 4.3 alc; v s eth
a253	3-Aminophenol	H₂NC ₆ H₄OH	109.13	13, 401			122-123	164 ^{11mm}		2.5 aq; v s hot aq, alc,
										eth
a254	4-Aminophenol	H ₂ NC ₆ H ₄ OH	109.13	13, 427			190	150 ^{3mm}		0.65 aq; 4.5 alc; 9.3
										EtMeKetone ⁵⁸ ; s eth
a255	4'-Aminophenylaceto-	H ₂ NC ₆ H ₄ CH ₂ CN	132.17				45-48	312	>110	sl s hot aq; s alc
	nitrile						<i>co</i> = 1			
a256	1-(3-Aminophenyl)-	H ₂ NC ₆ H ₄ CH(CH ₃)OH	137.18	133, 1654			68-71			
	ethanol		107.10	102.041				1 (0)7mm		,
a257	2-Amino-1-phenyl-	H ₂ NCH ₂ CH(C ₆ H ₅)OH	137.18	134, 361			56-58	100		v s aq; s alc
	ethanol				1	1	1			

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a258	1 <i>S</i> ,2 <i>S</i> -(+)-2-Amino-1-	C ₆ H ₅ CH(OH)CH(NH ₂)-	167.21	13,4, 2968	6		109-113	r y y	r · · · ·	I
	diol	Cn ₂ On								
a259	L-2-Amino-3-phenyl- 1-propapol	C ₆ H ₅ CH ₂ (NH ₂)CH ₂ OH	151.21	13³, 1757			92-94			
a260	3-Amino-1-phenyl-2-		175.19				210 d			
a261	N-Aminopiperidine		100.17	20, 89	0.928	1.475020		146 ^{730mm}	36	
a262	3-Amino-1,2-propane- diol	H ₂ NCH ₂ CH(OH)CH ₂ OH	91.11	4, 301	1.175	1.4920 ²⁰		265 ^{739mm}	>110	
a263	DL-1-Amino-2-pro- panol	CH ₃ CH(OH)CH ₂ NH ₂	75.11	4, 289	0.973	1.448320	-2	160	76	v s aq, alc; i eth
a264	DL-2-Amino-1-pro- panol	CH ₃ CH(NH ₂)CH ₂ OH	75.11	4 ¹ , 432	0.943	1.449520		173-176	83	v s aq, alc, eth
a265	S-(+)-2-Amino-1-pro- panol	CH ₃ CH(NH ₂)CH ₂ OH	75.11	4³, 735	0.965	1.449820		176	62	v s aq, alc, eth
a266	3-Amino-1-propanol	H ₂ NCH ₂ CH ₂ CH ₂ OH	75.11	4, 288	0.982	1.461020	10-12	188	79 (TOC)	s aq, alc
a267	2-Amino-1-propene- 1,1,3-tricarbonitrile	$NCC(CN) = C(NH_2)CH_2CN$	132.13	Merck: 11, 495			171–173			s aq
a268	3-Aminopropyl-(dieth- oxy)methylsilane	H ₂ N(CH ₂) ₃ Si(CH ₃)- (OCH ₂ CH ₂) ₂	191.4		0.91640	1.42720		88 ^{8mm}		
a269	1-(3-Aminopropyl)- imidazole	(125.18	23³, 577	1.049	1.519020			>110	
a270	N-(3-Aminopropyl)-	H ₂ N(CH ₃)N(CH ₂ CH ₂ OH) ₂	162.23		0.1071	1.498020		170 ^{2mm}	137	
a271	N-(3-Aminopropyl)-		144.22		0.987220	1.476120	-15	224	98	misc aq, alc, bz
a272	N-(3-Aminopropyl)-2-		142.20		1.014	1.50020		123 ^{1mm}	>110	
a273	3-Aminopropyltri- ethoxysilane	$H_2N(CH_2)_3Si(OC_2H_5)_3$	221.37	0.9506420	1.422520			217	104	
a274	3-Aminopropyltri- methoxysilane	H ₂ N(CH ₂) ₃ Si(OCH ₃) ₃	179.29		1.0145	1.42025		80 ^{8mm}	83	
a275	2-Aminopyridine	(C ₅ H₄N)NH ₂	94.12	22, 428			58.1	210.6	92	s aq, alc, bz, eth
a276	3-Aminopyridine	(C ₅ H₄N)NH ₂	94.12	22, 431			64	250-252		s aq, alc, bz, eth
a277	4-Aminopyridine	(C ₅ H ₄ N)NH ₂	94.12	22, 433			160-162	273		s aq, alc; sl s bz, eth
a278	2-Aminopyrimidine		95.11	24, 80			125-127	subl		v s aq
a279	4-Aminoquinaldine		158.20	22, 453			167–169	333		sl s aq; v s alc, eth, acet; s hot bz

a280	4-Aminosalicylic acid	H ₂ NC ₆ H ₃ (OH)CO ₂ H	153.14	14, 579			150-151			0.2 aq; 4.8 alc; s dil
a281	5-Aminosalicylic acid	HANC/H4(OH)COAH	153.14	14, 579			280 d			acius, aik, si s cui
a282	2-Aminoterephthalic	$H_2NC_6H_3(CO_2H)_2$	181.15	14, 558			324 d			
a283	5-Amino-1,2,3,4-tetra- zole hydrate		103.08	26, 403			204 d			
a284	2-Amino-1,3,4-thiadi- azole		101.13	27, 624			190192			
a285	2-Aminothiazole		100.14	27, 155			93			sl s aq, alc, eth; s hot aq, HCl
a286	2-Amino-2-thiazoline		100.14	27, 136			79-82			s HCl
a287	2-Aminothiophenol	H₂NC ₆ H₄SH	125.19	13, 397	1.170	1.642020	19-21	72 ^{0.1mm}	79	
a288	2-Aminotoluene-5-sul- fonic acid	H ₂ NC ₆ H ₃ (CH ₃)SO ₃ H	187.22	14, 726			>300			i aq ¹² ; v s hot aq
a289	3-Amino-1,2,4-triazole		84.08	26, 137			150-153			s aq, alc, chl
a290	5-Amino-1,3,3-tri- methylcyclohexane- methylamine	$H_2N(C_6H_7)(CH_3)_3CH_2NH_2$	170.30		0.922	1.488020	10	247	>110	
a291	5-Amino-2,2,4-tri- methylcyclopentane- methylamine		156.27		0.901	1.473320		221	97	
a292	11-Aminoundecanoic acid	H ₂ N(CH ₂) ₁₀ CO ₂ H	201.31				190-192			
a293	Aniline	C ₆ H ₅ NH ₂	93.12	12, 59	1.02720	1.586320	-6	184-186	70	3.5 aq ²⁵ ; s acids; misc most org solv
a294	Aniline hydrochloride	C ₆ H ₅ NH ₂ ·HCl	129.59	Merck: 12, 696	1.222		198	245	193 (CC)	100 aq; v s alc
a295	2-Anilinoethanol	C ₆ H ₅ NHCH ₂ CH ₂ OH	137.18	12, 182	1.085	1.579320		152 ^{10mm}	153	sl s aq; v s alc, chl, eth
a296	3-Anilinopropionitrile	C ₆ H ₅ NHCH ₂ CH ₂ CN	146.19				52-53		>110	
a297	Anthracene		178.23	5, 657	1.2547		215-218	339-342	121 (CC)	1.5 alc; 1.6 bz; 1.2 chl; 3.1 CS ₂ ; 0.5 eth; i
a298	9,10-Anthraquinone		208.20	7, 781	1.4340		286	377	185 (CC)	0.44 alc^{25} ; 0.6 chl ²⁰ ; 0.2 bz ²⁰ ; 0.11 eth ²⁵
a299	Antipyrine		188.23	24, 27	1.0884113		111-114	319		100 aq; 77 alc; 100 chl; 2.3 eth
a300	L-(+)-Arabinose		150.13	31, 32			157-160			100 aq; 0.4 alc
a301	L-(+)-Arginine	$\begin{array}{c} H_2NC(=NH)NH(CH_2)_3-\\ CH(NH_2)CO_2H \end{array}$	174.20	4, 420			d 240			15 aq ²¹ ; sl s alc

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
a302	L-(+)-Ascorbic acid		176.12	18 ³ . 3038	1.6525		190-192			33 aq; 3.3 alc; 1 glyc;
a303	L-(+)-Asparagine	H ₂ NCOCH ₂ CH(NH ₂)CO ₂ H	132.12	4, 476			235			i bz, chl, eth, PE 3.5 aq ²⁸ ; s alkalis, ac- ids: i alc, bz, eth
a304	L-(+)-Aspartic acid	HO ₂ CCH ₂ CH(NH ₂)CO ₂ H	133.10	4, 472	1.66112.5		270–272			0.45 aq; s alkalis, acids: i alc. eth
a305	Atropine		289.38	21, 27			114–116	subl 110 high vac		0.22 aq; 50 alc; 4 eth; 100 chl; 3.9 glyc; s bz dil acids
a306	Aurintricarboxylic acid, triammonium salt		473.44	10², 775			225 d	, and		v s aq
a307	2-Azacyclooctanone		127.19	21, 242			35-38	148 ^{10mm}	>110	
a308	2-Azacyclotridecanone		197.32				150-153			
a309	Azidotrimethylsilane	(CH ₃) ₃ SiN ₃	115.21		0.868	1.414020	- 95	9596	23	
a310	Azidotriphenylsilane	$(C_6H_5)_3SiN_3$	301.4				83-84	100 ^{0.01mm}		
a311	1-Aziridineethanol	(C ₂ H ₄ N)CH ₂ CH ₂ OH	87.12		1.088	1.456020		168	67	
a312	Azobenzene	$C_6H_5N = NC_6H_5$	182.23	16, 8	1.2034		67–68	293		4.2 alc^{20} ; s eth, HOAc
a313	2,2'-Azobis(2-methyl- propionitrile)	$(CH_3)_2C(CN)N=N-$ $C(CN)(CH_3)_2$	164.21	4, 563				107 d		2 EtOH ²⁰ ; 5 MeOH ²⁰ ; can explode in ace-
o214	Azodicarbonamida	H NCON-NCONH	116.08	3 123			225 d			i aq alc: s hot aq
a314 a315	4,4'-Azoxydianisole	$\begin{array}{c} H_2(CON = N(CONH_2) \\ H_3OC_6H_4N = N(\rightarrow O)C_6H_4 \\ OCH_3 \end{array}$	258.28	16, 637			120 L25 G			r ay, ato, s not ay
a316	Azulene	3	128.17	5², 432			99-100	242		i aq; s org solvents
b1	Barbituric acid		128.09	24, 467			252 d			s hot aq, dil acids
b2	Basic fuchsin		337.86	13, 765	1.22		250 d			0.3 aq; s alc, acids
b3	Benzaldehyde	C ₆ H ₅ CHO	106.12	7, 174	1.05045	1.545620	-26	179	63	0.3 aq; misc alc, eth
b4	Benzamide	C ₆ H ₅ CONH ₂	121.13	9, 195	1.3414		129-130	288-290		1.3 aq; 17 alc; 30 pyr
b5	Benzanilide	C ₆ H ₅ CONHC ₆ H ₅	197.24	12, 262	1.315		163	117 ^{10mm}		i aq; 1.7 alc; sl s eth
b6	1,2-Benzanthracene		228.29	5, 718			155-157	437.6		sl s hot aq; s org solv
b7	2,3-Benzanthracene		228.29	5 ² , 628	1.35		357 (Cu	subl		sl s most org solv
b8	Benzene	C ₆ H ₆	78.11	5, 179	0.87874 ¹⁵	1.501120	5.5	80.0	-11 (CC)	0.17 aq; misc most org solv
b9	Benzene-1,3,5- d_3	C ₆ H ₃ D ₃	81.14	5 ³ , 518	0.908	1.499020		80	-11 (CC)	similar to ordinary benzene
b10	Benzene- ¹³ C_6	¹³ C ₆ H ₆	84.07		0.949	1.501020	5.5	80	-11 (CC)	similar to ordinary benzene

b11	Benzene-d ₆	C ₆ D ₆	84.16	5 ³ , 519	0.950	1.498620	6.8	79.1	-11 (CC)	similar to ordinary benzene
b12	Benzenearsonic acid	C ₆ H ₅ AsO(OH) ₂	202.03	16, 868	1.76025		162			2.5 aq; 2 alc; i chl
b13	Benzeneboronic acid	C ₆ H ₅ B(OH) ₂	121.94	16, 920			216			2.5 aq; 1.8 bz; 30 eth; 178 MeOH
b14	1,4-Benzenedicarb- aldehyde	C ₆ H ₄ (CHO) ₂	134.13	7, 675			113	248		i aq; 6 bz; 17 acet; 2 eth; 14 diox; 46 MeOH
b15	1,2-Benzenedicarbonyl dichloride	C ₆ H ₄ (COCl) ₂	203.02	9, 834	1.40920		15-16	280282		d aq, alc; s eth
b16	1,4-Benzenedicarbonyl dichloride	C ₆ H ₄ (COCl) ₂	203.02	9, 844			81	266	180	37 bz; 9 CCl ₄
b17	1,3-Benzenedicarbox- ylic acid	C ₆ H ₄ (COOH) ₂	166.13	9, 832			345-348	subl		0.012 aq; v s alc, HOAc; i bz, PE
b18	1,4-Benzenedicarbox- ylic acid	C ₆ H ₄ (COOH) ₂	166.13	9, 841			subl 402			sl s alc; s alkalis; v sl s aq, chl, eth
b19	1,4-Benzenedimetha- nol	C ₆ H ₄ (CH ₂ OH) ₂	138.17	6, 919	1.100117		117-119	143 ^{1mm}	188	
b20	Benzenehexacar- boxylic acid	C ₆ (COOH) ₆	342.17	9, 1008			286 d			v s aq, alc
b21	Benzenesulfinic acid	C ₆ H ₅ S(=O)OH	142.16	11, 2			85	100 d		sl s aq; s alc, bz, eth
b22	Benzenesulfonamide	$C_6H_5SO_2NH_2$	157.19	11, 39			150-152		1	i aq; sl s alc; s eth
b23	Benzenesulfonic acid	C ₆ H ₅ SO ₂ OH	158.18	11, 26			5051			v s aq, alc; sl s bz; i CS ₂ , eth
b24	Benzenesulfonyl chlo- ride	C ₆ H ₅ SO ₂ Cl	176.62	11, 34	1.384215	1.551820	14.5	120 ^{10mm}	>110	i aq; s alc, eth
b25	Benzenesulfonyl fluo- ride	C ₆ H ₅ SO ₂ F	160.17	11², 23	1.3286420	1.492020	-5	207-208	87	s alc, eth
b2 <u>6</u>	Benzenesulfonyl hy- drazide	C ₆ H ₅ SO ₂ NHNH ₂	172.21	11, 52			d 104			flammable solid
b27	1,2,4,5-Benzenetetra- carboxylic acid	C ₆ H ₂ (COOH) ₄	254.15	9, 997			276			1.5 aq; v s alc
b28	1,2,4,5-Benzenetetra- carboxyl dianhy- dride		218.12	19, 196			283-286	397–400		
b29	1,2,3-Benzenetricarb- oxylic acid dihyrate	C ₆ H ₃ (COOH) ₃ ·2H ₂ O	246.18	9, 976			192 d			sl s aq; v s eth

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
b30	1,2,4-Benzenetricarb- oxylic acid	C ₆ H ₃ (COOH) ₃	210.14	9, 997			231 d			2.1 aq; 25.3 alc; 7.9 acet; v s eth
b31	1,3,5-Benzenetricarb- oxylic acid	C ₆ H ₃ (COOH) ₃	210.14	9, 978			>330			sl s aq; v s alc; s eth
b32	1,2,4-Benzenetricarb- oxylic anhydride		192.13	18, 468			161-163	245 ^{14mm}		50 acet; 22 EtOAc; 15 DMF
b33	1,3,5-Benzenetricarb- oxylic trichloride	C ₆ H ₃ (COCl) ₃	265.48				35-36	180 ^{16mm}	>110	
b34	1,2,4-Benzenetriol	C ₆ H ₃ (OH) ₃	126.11	6, 1087			141			v s aq, alc, eth, EtOAc
b35	Benzil	C ₆ H ₅ CO—COC ₆ H ₅	210.23	7,747	1.23415		95	346–348		i aq; s alc, bz, chl, EtOAc, eth
b36	Benzil dioxime	$C_{6}H_{5}C(=NOH)-C(=NOH)C_{6}H_{5}$	240.25	7³, 3816			(α) 240 (β) 214			i aq, HOAc, eth; sl s alc; s NaOH
b37	Benzilic acid	(C ₆ H ₅) ₂ C(OH)COOH	228.24	10, 342			150			sl s aq; v s alc, eth hot aq
b38	Benzil monohydrazone	$C_6H_5C(=NNH_2)COC_6H_5$	224.26	7 ¹ , 394			150-152	- 4-		
b39	Benzimidazole		118.13	23, 131			170.5	>360		sl s aq, eth; v s alc
D4V	spiro[4,5]decane- 2,4-dione		216.23	12, 9372			208			s aic, HOAC
b41	1,4-Benzodioxan		136.15		1.142	1.549020		103 ^{6mm}	87	
b42	2,3-Benzofuran		118.13	17, 54	1.072	1.566020	<18	173–175	56	i aq; misc alc, bz, eth, PE
b43	Benzofurazan-1-oxide		136.11	27 ¹ , 740			6971			
b44	Benzoic acid	С₀Н₅СООН	122.12	9, 92	1.321		122.4	249	121 (CC)	0.29 aq ²⁵ ; 43 alc; 10 bz; 22 chl; 33 eth; 33 acet; 30 CS ₂
b45	Benzoic anhydride	(C ₆ H ₅ CO) ₂ O	226.22	9, 164	1.198945		42	360	110	i aq; s alc, acet, chi bz, HOAc, EtOAc
b46	DL-Benzoin	C6H3COCH(OH)C6H3	212.25	8, 167	1.3100420		137	194 ^{12mm}		s hot alc, acet; 20 pyr; si s eth
b47	Benzoin ethyl ether	C ₆ H ₅ CH(C ₂ H ₅)COC ₆ H ₅	240.30	8, 174	1.101647	1.572717	62	195 ^{20mm}		s alc, bz, eth
b48	Benzoin isobutyl ether	C ₆ H ₅ CH[OCH ₂ CH(CH ₃) ₂]- COC ₆ H ₅	268.36		0.985	1.548520		133 ^{0.5mm}	85	
b49	Benzoin methyl ether	C ₆ H ₅ CH(OCH ₃)COC ₆ H ₅	226.28	8, 174	1.127844		48	189 ^{15mm}	>110	v s alc, bz, eth
b50	α -Benzoinoxime	C ₆ H ₅ CH(OH)C(=NOH)- C ₆ H ₅	227.26	8, 175			152-156			sl s aq; s alc, NH₄OH
b51	Benzonitrile	C ₆ H ₅ CN	103.12	9, 275	1.010	1.528920	- 12.7	191	71	0.2 aq; misc org solv
b52	1,2-Benzophen- anthrene		202.26	5, 718	1.2744		258	448		i aq; s alc, eth

b53 b54	Benzophenone Benzophenone hydra-	C ₆ H ₅ COC ₆ H ₅ C ₆ H ₅ C(=NNH ₂)C ₆ H ₅	182.22 196.25	7, 411 7, 417	1.110848	1.597545	48 95–98	305 230 ^{55mm}	>110	13.3 alc; 17 eth; s chl
b55	zone 1-Benzopyran-4(4H)-		146.15	17, 327			55-60			
b56	one 1,2-Benzo[a]pyrene		252.32	Merck:			179	312 ^{10mm}		s bz; sl s alc
b57	4,5-Benzo[e]pyrene		252.32	Merck: 12, 1105			179			s bz
b58	1,4-Benzoquinone	C ₆ H ₄ (==-O) ₂	108.10	7, 609	1.318420		116			sl s aq; s alc, hot bz, eth, hot PE; alkalis with dec
b59	Benzothiazole		135.19	Merck: 12, 1139	1.2460420	1.637920	2	131 ^{34mm}	>110	sl s aq; v s alc, CS_2
b6 0	Benzo[b]thiophene		134.20	17, 59	1.193740	1.630240	32	221	>110	s alc, bz, chl, eth
b61	1,2,3-Benzotriazole		119.13	26, 38	1.238	1.642020	98.5	204 may explode		si s aq; s alc, bz, chl, DMF
b62	Benzoxazole		119.12	27, 42		1.5594	30	182	58	sl s aq
b63	1-Benzoylacetone	C ₆ H ₅ COCH ₂ COCH ₃	162.19	7, 680	1.0906		60	260 sl d		sl s aq; v s alc, eth
b64	2-Benzoylbenzoic acid	C6H2COC6H4COOH	226.23	10, 747			129	265		sl s aq; v s alc, eth
b65	Benzoyl bromide	C ₆ H ₅ COBr	185.03	9, 195	1.546720	1.588320	-24	219	90	d aq, alc; misc eth
b66	Benzoyl chloride	C ₆ H ₅ COCl	140.57	9, 182	1.2114	1.553720	- 1.0	197.2	88 (CC)	d aq, alc; misc bz, eth CS ₂
b67	Benzoyl cyanide	C ₆ H₅COCN	131.13	10, 659	1.106		32	206		iaq
b68	Benzoyl fluoride	C ₆ H ₅ COF	124.11	9, 181	1.140	1.496020	- 28	161	48	d hot aq; v s alc, eth
b69	Benzoylformic acid	C6H2COCOOH	150.13	10, 654]	6769			
b70	N-Benzoylglycine	C ₆ H₅CONHCH₂COOH	179.18	9, 225			179			0.4 aq; 0.1 chl; 0.25 eth; sl s alc; i bz, PE
Ь71	Benzoylhydrazine	C ₆ H ₅ CONHNH ₂	136.15	9, 319			117			
b71a	Benzoyl peroxide	(C ₆ H ₅ CO) ₂ O ₂	242.23	9, 179			103-106	explodes		2.5 CS ₂ ; s bz, chl, eth
b72	3-Benzoylpropanoic acid	C ₆ H ₅ COCH ₂ CH ₂ COOH	178.19	10, 696			117–119			sl s aq; s alc
b73	2-Benzoylpyridine	C ₆ H ₅ CO(C ₅ H₄N)	183.21	21, 330			44	317	150	
b74	3-Benzoylpyridine	C ₆ H ₅ CO(C ₅ H₄N)	183.21	21, 331			40	397	150	s alc, bz, eth
b75	4-Benzoylpyridine	C ₆ H ₅ CO(C ₅ H₄N)	183.21	21, 331			71	315	150	s alc, bz, eth
b76	Benzyl acetate	CH ₃ CO ₂ CH ₂ C ₆ H ₅	150.18	6, 435	1.05045	1.499825	- 51.5	213.5	102 (CC)	i aq; misc alc, eth
b77	Benzyl acetoacetate	CH ₃ COCH ₂ CO ₂ CH ₂ C ₆ H ₅	192.21	6, 438	1.112	1.512120		159 ^{10mm}	>110	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b77a	Benzylacetone	C ₆ H ₅ CH ₂ CH ₂ COCH ₃	148.21	7, 314	0.989	1.512220	_	235	98	
b78	Benzyl alcohol	C ₆ H ₅ CH ₂ OH	108.14	6, 428	1.0453420	1.540320	-15.2	205	93 (CC)	0.08 aq; misc alc, chl, eth
b79	Benzylamine	C ₆ H ₅ CH ₂ NH ₂	107.16	12, 1013	0.983 ¹⁹	1.540120	10	185	60	misc aq, alc, eth
b80	N-Benzylaminoethanol	C ₆ H ₅ CH ₂ NHCH ₂ CH ₂ OH	151.21	12, 1040	1.065	1.543520		156 ^{12mm}	>110	
b 81	3-(Benzylamino)- propanonitrile	C ₆ H ₅ CH ₂ NHCH ₂ CH ₂ CN	160.22		1.024	1.530820			>110	
ь82	N-Benzylbenzamide	C ₆ H ₅ CH ₂ NHCH ₂ C ₆ H ₅	211.26				106			
b83	Benzyl benzoate	C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	212.25	9, 121	1.11845	1.568121	21	323	148	misc alc, chl, eth
b84	2-Benzylbenzoic acid	C ₆ H ₅ CH ₂ C ₆ H ₄ COOH	212.24	9 ² , 471			110-113			sl s aq; s alc, bz, chl, eth
Ъ85	Benzyl bromide	C ₆ H ₅ CH ₂ Br	171.04	5, 306	1.4380022	1.575220	-3.9	199	86	slowly dec aq
b86	Benzyl 2-bromoacetate	BrCH ₂ CO ₂ CH ₂ C ₆ H ₅	229.08	6 ¹ , 220	1.446	1.544020		170 ^{22mm}	>110	
Ь87	Benzyl-tert-butanol	C ₆ H ₅ CH ₂ CH ₂ C(CH ₃) ₂ OH	164.25	6, 548		1.509020	31-33	144 ^{85mm}	>110	
b88	Benzyl butyl 1,2- phthalate	C ₆ H ₅ CH ₂ O ₂ C ₆ H ₄ CO ₂ C ₄ H ₉	312.37	9², 594	1.11925	1.540020			199	
b89	Benzyl carbamate	C6H5CH2OCONH2	151.17	6, 437			87-89	220 d		v s alc; sl s eth
b9 0	Benzyl chloride	C ₆ H ₅ CH ₂ Cl	126.59	5, 292	1.100^{20}_{20}	1.538120	-43 to -49	179	67	misc alc, chl, eth
b91	Benzyl chloroformate	C ₆ H ₅ CH ₂ OCOCl	170.60	6, 437	1.195	1.519020		103 ^{20mm}	91	dec aq; s eth
b92	Benzyl chlorothiol- formate	C ₆ H ₅ CH ₂ SCOCl	186.5		1.23740	1.5711 ³⁰		80 ^{0.13mm}	118	
b93	Benzyl cinnamate	C ₆ H ₅ CH==CHCO ₂ CH ₂ C ₆ H ₅	238.29	9, 584			39	200 ^{5mm}	>110	s alc, eth; i aq, glyc
b94	S-Benzyl-L-cysteine	C ₆ H ₅ CH ₂ SCH ₂ CH(NH ₂)- COOH	211.28	6, 465			214 d			
b95	Benzyl N,N-dimethyl- dithiocarbamate	(CH ₃) ₂ NCS ₂ CH ₂ C ₆ H ₅	211.35				41		>110	
b96	Benzyldimethylstearyl- ammonium chloride hydrate	C ₆ H ₅ CH ₂ N[(CH ₂) ₁₇ CH ₃]- (CH ₃) ₂ Cl·H ₂ O	442.18	12³, 2212			67–69			
b96a	N-Butyl-N-ethylaniline	C ₆ H ₅ N(CH ₂ C ₆ H ₅)C ₂ H ₅	211.31	12, 1026	1.029	1.595020		164 ^{6mm}	>110	
b97	Benzyl ethyl ether	C ₆ H ₅ CH ₂ OC ₂ H ₅	136.20	Merck: 12, 1168	0.947820	1.495520		186		misc alc, eth; i aq
b98	N-Benzylformamide	C ₆ H ₅ CH ₂ NHCHO	135.17	12, 1043			61			
b99	Benzyl formate	C ₆ H ₅ CH ₂ O ₂ CH	136.15	Merck: 12, 1169	1.08140			203		i aq; s alc
ь100	Benzyl 4-hydroxy-	HOC ₆ H ₄ CO ₂ CH ₂ C ₆ H ₅	228.25	10,3, 311			110-112			
b101	O-Benzylhydroxyl- amine hydrochlo- ride	C ₆ H ₅ CH ₂ ONH ₂ ·HCl	159.62	6, 440				238 subl	>110	

2.84

b102 b103	Benzylidineaniline Benzylidenemalono-	$C_{6}H_{5}N = CHC_{6}H_{5}$ $C_{6}H_{5}CH = C(CN)_{2}$	181.24 154.17	12, 195 9, 895	1.04545		56 83-85	300	>110	s alc, chl, CS ₂
	nitrile									
b104	N-Benzylidenemethyl- amine	C ₆ H ₅ CH==NCH ₃	119.17	7, 213	0.967	1.552020		80 ^{18mm}	>112	
ь105	3-Benzylidene- phthalide		124.21	17, 376			99–102			
b106	Benzyl mercaptan	C ₆ H ₅ CH ₂ SH	222.24	6, 453	1.05820	1.575120		206 ^{30mm}	>110	
b107	Benzyl methacrylate	$H_2C = C(CH_3)CO_2CH_2C_6H_5$	176.22	6 ³ , 1481	1.040	1.512020		98 ^{4mm}	77	
ь108	N-Benzylmethylamine	C ₆ H ₅ CH ₂ NHCH ₃	138.23	12, 1019	0.939	1.523020		184-189	77	
b109	3-(N-Benzyl-N-methyl- amino)-1,2-propane- diol	C ₆ H ₅ CH ₂ N(CH ₃)CH ₂ - CH(OH)CH ₂ OH	195.26		1.084	1.534120		206 ^{30mm}	>110	
b 110	Benzyl methyl sulfide	C ₆ H ₅ CH ₂ SCH ₃	138.23	6, 453	1.015	1.562020		195-198	73	
b 111	1-Benzyl-3-methyl-2- thiourea	$C_6H_5CH_2NHC(=S)NHCH_3$	180.27	12, 1052			74–76			
b112	Benzyl nicotinate	(C ₅ H ₄ N)CO ₂ CH ₂ C ₆ H ₅	213.24	22, <i>3</i> , 366	1.165	1.570020	21-23	189 ^{12mm}	>110	
b113	4-Benzyloxybenz- aldehyde	C ₆ H ₅ CH ₂ OC ₆ H₄CHO	212.25	8, 73			73–74			
b114	4-Benzyloxybenzyl al- cohol	C ₆ H ₅ CH ₂ OC ₆ H ₄ CH ₂ OH	214.26				86–87			
b115	2-Benzyloxyethanol	C ₆ H ₅ CH ₂ OCH ₂ CH ₂ OH	152.20	6², 413	1.07^{20}_{20}	1.521020		265	129	0.4 aq
b116	4-Benzyloxy-3-meth- oxybenzaldehyde	C ₆ H ₅ CH ₂ OC ₆ H ₄ (OCH ₃)CHO	242.29				63-65			
b117	4-(Benzyloxymethyl)- 2,2-dimethyl-1,3- dioxolane		222.28	19², 73	1.051	1.494020		91 ^{0.1mm}	>110	
b118	Benzyl phenyl sulfide	C ₆ H ₅ CH ₂ SC ₆ H ₅	200.30	6, 454			41-44	197 ^{27mm}	>110	i aq; sl s alc; s eth
Ь119	1-Benzylpiperazine		176.26		1.014	1.546720			>110	s aq, alc, eth
b120	4-Benzylpiperidine		175.28	20, 296	0.997	1.537920	6–7	279	>110	
b121	1-Benzyl-4-piperidone		189.26		1.021	1.539920		134 ^{7mm}	>110	
b122	2-Benzylpyridine	$C_6H_5CH_2(C_5H_4N)$	169.23	20, 425	1.054	1.579020	810	276	125	i aq; v s alc, eth
b123	4-Benzylpyridine	$C_6H_5CH_2(C_5H_4N)$	169.23	20, 426	1.06120	1.581820		287	115	s alc; v s eth
b124	1-Benzyl-2-pyrrolidi- none		175.23		1.095	1.552520			>110	
b125	Benzyl salicylate	HOC ₆ H ₄ CO ₂ CH ₂ C ₆ H ₅	228.25	Merck: 12, 1181	1.17520			208 ^{25mm}		sl s aq; misc alc, eth
b126	Benzyl thiocyanate	C ₆ H ₅ CH ₂ SCN	149.22	6, 460			43	235	>110	i aq; s alc; v s eth
ь127	Benzyltributyl- ammonium chloride	$C_6H_5CH_2N(C_4H_9)_3^+Cl^-$	312.94				164 d			

No.	Name	Formula	Formula weight	Beilstein reference	Density,	Refractive index	Melting	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
	D 1:11		225.20	16 012	1 29920	1 525020	r, .	147100mm	03	
b128 b120	Benzyltrichlorosilane	$C_6H_5CH_2SICI_3$	223.20	10, 912	0.98620	1.5250		175 ^{70mm}	,,,	
b130	Benzyltriethylammo-	$C_6H_5CH_2N(C_2H_5)_3^+Cl^-$	227.78	12, 1021	01,5004		185 d			
ыз1	Benzyltrimethylam- monium chloride	C ₆ H ₅ CH ₂ N(CH ₃) ⁺ Cl [−]	185.70	12, 1021			239 d		none	
b132	Benzyltrimethylsilane	C ₆ H ₅ CH ₂ Si(CH ₃) ₃	164.32	16, /, 526	0.893320	1.494120		190	57	
b133	Betaine	(CH ₃) ₃ N ⁺ CH ₂ COO ⁻	117.15	4, 347			dec 310			160 aq; 55 MeOH; 8.7 EtOH
b134	Bicyclo[2.2.1]hepta- 2,5-diene		92.14		0.90920	1.470720	- 20	89	-11	i aq; s PE
b135	Bicyclo[2.2.1]-2-hep- tene		94.16				4446	96	- 15	s eth
b136	Bicyclo[2.2.1]-2-hep- tene-2-carbaldehyde		122.16		1.108	1.488320		70 ^{12mm}	51	
b137	Biguanide	H ₂ NC(=NH)NH- C(=NH)NH ₂	101.11	3, 93			130	dec 142		s aq, alc; i bz, chl, eth
b138	Biphenyl	C ₆ H ₅ C ₆ H ₅	154.20	5, 578	0.99145	1.58877	69-71	256	113 (CC)	i aq; s alc, eth
b139	4-Biphenylcarboxylic acid	C ₆ H ₅ -C ₆ H ₄ COOH	198.22	9, 671			226	subl		v s alc, eth; s bz; i aq
b140	4,4'-Biphenyldiamine	$H_2NC_6H_4-C_6H_4NH_2$	184.24	13, 214			120	ca. 400		s alc; 2 eth; 20 hot alc
b141	2,2'-Biphenyldi- carboxylic acid	HOOCC ₆ H ₄ —C ₆ H ₄ COOH	242.23	9, 922			228-229			0.06 aq; s org solvents
b142	4-Biphenylsulfonic acid	C ₆ H ₅ —C ₆ H ₄ SO ₃ H	234.26				138			
b143	2-Biphenylyl glycidyl ether		226.28				30-32	120 ^{0.1mm}		
b144	2,2-Bis[4-(allyloxy)- phenyl]-propane	$H_2C = CHCH_2OC_6H_4$ - C(CH_3)_3C_6H_4 - OCH_2CH = CH_3	308.42		1.022	1.563620			>110	
b145	N,N'-Bis(3-amino- propyl)ethylenedi- amine	$\begin{array}{c} H_2N(CH_2)_3NHCH_2-\\ CH_2NH(CH_2)_3NH_2 \end{array}$	174.29		0.952	1.491020		160 ^{5mm}	>110	
b146	N,N'-Bis(3-amino-		200.33	232, 12	0.973	1.501520	15	152 ^{2mm}	162	
b147	N,N'-Bis(3-amino- propyl)-1,3-propane- diamine	$\begin{array}{l} H_2N(CH_2)_3NHCH_2CH_2CH_2-\\ NH(CH_2)_3NH_2 \end{array}$	188.32	4⁴, 1278	0.920	1.491520		103 ^{1mm}		
b148	Bis(2-bromoethyl) ether	BrCH ₂ CH ₂ OCH ₂ CH ₂ Br	231.92					107 ^{20mm}		

b149	1,3-Bis(bromoethyl)- tetramethyldisilox-	[BrCH ₂ Si(CH ₃) ₂] ₂ O	320.17		1.39184	1.471920		104 ^{15mm}		
ь150	ane 2,2-Bis(bromomethyl)-	HOCH ₂ CH(CH ₂ Br) ₂ CH ₂ OH	261.95	11, 251			114			
b151	Bis(2-butoxyethyl)- ether	(C ₄ H ₉ OCH ₂ CH ₂) ₂ O	218.34		0.885320	1.424020	- 60.2	256	118	0.3 aq; misc alc, es- ters, eth, CCl ₄ ke-
b152	Bis[2-(2-butoxyethoxy)- ethyl] adipate	[-CH ₂ CH ₂ CO ₂ (CH ₂ CH ₂ O) ₂ - (CH ₂) ₃ CH ₃] ₂	434.58	2 ³ , 1718	1.010	1.448020	-11		110	tones
b153	2,5-Bis(5- <i>tert</i> -butyl-2- 2'-benzoxazolyl)- thiophene		430.57				201			
b154 b155	Bis(<i>sec</i> -butyl) disulfide Bis(<i>tert</i> -butyl) disul- fide	[CH ₃ CH ₂ CH(CH ₃)] ₂ S ₂ (CH ₃) ₃ CSSC(CH ₃) ₃	178.36 178.36	1 ³ , 1549 1, 379	0.957 0.909	1.4920 ²⁰ 1.4930 ²⁰		164 ^{739mm} 204	112 79	
b156	1,1-Bis(tert-butylper- oxy)cyclohexane	C ₆ H ₁₀ [OOC(CH ₃) ₃] ₂	260.38		0.970	1.457020		54 ^{15mm}	90	
b157	2,5-Bis(<i>tert</i> -butylper- oxy)-2,5-dimethyl- hexane	[(CH ₃) ₃ COOC(CH ₃) ₂ CH ₂ -] ₂	290.45		0.877	1.423020		57 ^{7mm}	41	
b158	2,5-Bis(<i>tert</i> -butylper- oxy)-2,5-dimethyl- 3-bexyne	(CH ₃) ₃ COOC(CH ₃) ₂ C≡C- C(CH ₃) ₂ OOC(CH ₃) ₃	286.41	14, 2701	0.881	1.432020		67 ^{2mm}	85	
b159	Bis[1-(<i>tert</i> -butylper- oxy)-1-methylethyl- benzene	C ₆ H ₄ [C(CH ₃) ₂ OOC(CH ₃) ₃] ₂	338.49				44-48			flammable solid oxi- dizer
ь160	1,1-Bis(<i>tert</i> -butylper- oxy)-3,3,5-tri- methyl-cyclohexane	[(CH ₃) ₃ COO] ₂ C ₆ H ₇ (CH ₃) ₃	302.46		0.906	1.441020			87	
b161	1,2-Bis(2-chloro- ethoxy)ethane	(ClCH ₂ CH ₂ OCH ₂ -) ₂	187.07	1 ³ , 2079	1.197420	1.461020		235	121	
b162	Bis(2-chloroethoxy)- methylsilane	H(CH ₃)Si(OCH ₂ CH ₂ Cl) ₂	203.1		1.1643420	1.443120		97 ^{18mm}		
b163	Bis(2-chloroethyl) ether	CICH ₂ CH ₂ OCH ₂ CH ₂ Cl	143.01	1², 335	1.222020	1.457520	- 50 to - 52	178.5	55	s most org solvents
b164	Bis(2-chloroethyl)-N- methylamine	CH ₃ N(CH ₂ CH ₂ Cl) ₂	156.07		1.11845		-60	75 ^{10mm}		v sl s aq; misc most org solvents

						1			1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b165	Bis(chloromethyl)di- methylsilane	(CH ₃) ₂ Si(CH ₂ Cl) ₂	157.12	4 ³ , 1845	1.975420	1.460020		160	46	
b165a	Bis(chloromethyl) ether	CICH ₂ OCH ₂ Cl	114.96	Merck: 12, 3119	1.31540	1.4346	-41.5	106		dec aq
b166	Bis(2-chloro-1- methyl)ethyl ether	ClCH ₂ CH(CH ₃)OCH(CH ₃)- CH ₂ Cl	171.07		1.1122_{20}^{20}			187.3	85	
b167	1,3-Bis(chloromethyl)- tetramethyldisilox- ane	[CICH ₂ Si(CH ₃) ₂] ₂ O	231.3	4 ³ , 1864	1.050	1.440520		205	73	
b168	Bis(4-chlorophenoxy)- acetic acid	(CIC ₆ H₄O)₂CHCOOH	313.14				140-142			
b169	2,2-Bis(4-chloro- phenyl)-1,1-di- chloroethane	(ClC ₆ H ₄) ₂ CHCHCl ₂	320.05	5³, 1830			110			similar to b168
b170	1,1-Bis(4'-chloro- phenyl)ethanol	(ClC ₆ H ₄) ₂ C(OH)CH ₃	267.16	6 ³ , 3396			69			s org solvents
b171	Bis(4-chlorophenyl) sulfone	ClC ₆ H ₄ SO ₂ C ₆ H ₄ Cl	287.16	6, 327			145-148	250 ^{10mm}		
b172	Bis(4-chlorophenyl) sulfoxide	ClC ₆ H ₄ S(O)C ₆ H ₄ Cl	271.17	6 ¹ , 149			141-144			
b173	1,1-Bis(4-chloro- phenyl)-2,2,2-tri- chloroethane	(ClC ₆ H ₄) ₂ CHCCl ₃	354.49	5 ³ , 1833			109–111			58 acet; 78 bz; 45 chl; v s pyr, 1,4-dioxane
b174	1,2-Bis(dichlorometh- ylsilyl)ethane	[-CH ₂ Si(CH ₃)Cl ₂] ₂	256.11	4⁴, 19 2	1.263	1.476020	33-35	210	90	
b175	1,3-Bis(dichloro- methyl)tetramethyl- disiloxane	[CICH(CH ₃) ₂ Si] ₂ O	300.16		1.2213 ²⁰	1.466020		149 ^{40mm}		
b176	N,N-Bis(2,2-diethoxy- ethyl)methylamine	[(C ₂ H ₅ O) ₂ CHCH ₂] ₂ NCH ₃	263.38	4, 311	0.945	1.425920		222 ^{244mm}	60	
b177	4,4'-Bis(diethyl- amino)benzo-	$[(C_2H_5)_2NC_6H_4]_2C==0$	324.47	14, 98			95			
Ь178	4,4'-Bis(dimethyl- amino)benzophe-	(CH ₃) ₂ NC ₆ H ₄] ₂ C==O	268.35	14, 89			172	>360 d		s alc, warm bz; v sl s eth; i aq
b179	Bis(dimethylamino)di-	[(CH ₃) ₂ N]Si(CH ₃) ₂	146.31	44, 4143	0.81022	1.417020	-98	128-129	-7	
Ь 180	1,3-Bis(dimethyl- amino)-2-propanol	[(CH ₃) ₂ NCH ₂] ₂ CHOH	146.23	4, 290	0.897	1.442220			>110	

b181	2,4-Bis(α, α -dimethyl- benzyl)phenol	[C ₆ H ₅ C(CH ₃) ₂] ₂ C ₆ H ₃ OH	330.47	6⁴, 5076			63-65	206 ^{15mm}		
b182	1,1-Bis(3,4-dimethyl- phenyl)ethane	[(CH ₃) ₂ C ₆ H ₃] ₂ CHCH ₃	238.38	5 ³ , 1908	0.982	1.564020		174 ^{5mm}	>110	
b183	Bis(dimethylthio- carbamyl) disulfide	[(CH ₃) ₂ NC(==S)S-] ₂	240.43	4, 76	1.29		155–156			s alc, eth; sl s bz, acet; i aq
b184	Bis(3,4-epoxycyclo- hexylmethyl) adi-		366.46		1.149	1.4930			>110	
b185	1,4-Bis(2,3-epoxy-pro- poxy)butane	[H ₂ C—CHCH ₂ OCH ₂ CH ₂ -] ₂	202.25		1.049	1.453020		160 ^{11mm}	>110	
b186	Bis(2-ethoxyethyl) ether	(C ₂ H ₅ OCH ₂ CH ₂) ₂ O	162.23	1², 519	0.90740	1.411020	-45	188	82	v s aq, alc, org sol- vents
b187	Bis(2-ethylhexyl) adipate	[-CH ₂ CH ₂ CO ₂ CH(C ₂ H ₅)- (CH ₂) ₃ CH ₃] ₂	370.58	2 ³ , 1715	0.990	1.442520		167 ^{1mm}	>110	
b188	Bis(2-ethylhexyl)- amine	[CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- (CH ₂) ₃ CH ₃] ₂	241.46	4 ³ , 388	0.805	1.442520		123 ^{5mm}	>110	
b189	Bis(2-ethylhexyl) chlorendate		613.28		1.240	1.50020		233 ^{0.3mm}	>110	
ь190	Bis(2-ethylhexyl) decanedioate	CH ₃ (CH ₂) ₃ CH(C ₂ H ₃)CH ₂ - OOC(CH ₂) ₈ COOCH ₂ - CH(C ₂ H ₄)(CH ₂) ₈ CH ₃	426.66		0.911925	1.4496 ²⁵				
b191	Bis(2-ethylhexyl) hydrogen phosphate	[CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- CH ₂ O] ₂ P(O)OH	322.43	14, 1786	0.965	1.443020	-60	209 ^{10mm}	>110	
b192	Bis(2-ethylhexyl) hydrogen phosphite	[CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- CH ₂ O] ₂ POH	306.43		0.916	1.442020			>110	
b193	Bis(2-ethylhexyl) o-phthalate	[CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- CH ₂ OOC] ₂ C ₆ H ₄	390.56	Merck: 12, 1291	0.984320	1.485920	- 50 to - 55	384	218	0.01 aq
b194	Bis(2-ethylhexyl) 1,4-phthalate	[CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- CH ₂ OOC] ₂ C ₆ H ₄	390.56	9,4, 3306	0.980	1.490020	30-34	400	>110	
b195	Bis(4-fluorophenyl)- methane	(FC ₆ H ₄) ₂ CH ₂	204.22	5 ³ , 1789	1.145	1.536220	29-30	260 ^{742mm}	>110	
b196	Bis(hexamethylene)- triamine	[H ₂ N(CH ₂) ₆] ₂ NH	215.39				33-36	165 ^{4mm}	>110	
b197	1,4-Bis(2-hydroxy- ethoxy)-2-butyne	HOCH ₂ CH ₂ OCH ₂ C≡CCH ₂ - OCH ₂ CH ₂ OH	174.20		1.144	1.485020			>110	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

									1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b198	Bis(2-hydroxyethyl) ether	HOCH ₂ CH ₂ OCH ₂ CH ₂ OH	106.12	1, 468	1.118420	1.446020	- 10.4	246	118	misc aq, alc, acet, eth
b199	N,N-Bis(2-hydroxy- ethyl)glycine	(HOCH ₂ CH ₂) ₂ NCH ₂ COOH	163.17	Merck: 12, 1248			193–195			17.9 aq ⁰
b200	2,6-Bis(hydroxy- methyl)-p-cresol	CH ₃ C ₆ H ₂ (CH ₂ OH) ₂ OH	168.19	6, 1127			128-130			
b201	2,2-Bis(hydroxy- methyl)propanoic acid	(HOCH ₂) ₂ C(CH ₃)COOH	134.13	3, 401			181-185			s aq, MeOH; sl s acet; i bz
b202	4,8-Bis(hydroxy- methyl)tricyclo- [5.2.1.0 ^{2,6}]decane		196.29	6⁴, 5538		1.528020			110	
b203	4,4-Bis(4-hydroxy- phenyl)pentanoic acid	CH ₃ C(C ₆ H ₄ OH) ₂ CH ₂ - CH ₂ COOH	286.33	Merck: 12, 3370			171–172 higher melting form			s hot aq, acet, alc, HOAc, MeEtKe
b204	Bis(2-hydroxypropyl) ether	HO(CH ₂) ₃ O(CH ₂) ₃ OH	134.18	1², 537	1.025220	1.441020		231.8	137	misc aq, alc
b205	1,3-Bis(isocyanato- methyl)benzene	C ₆ H ₄ (CH ₂ NCO) ₂	188.19	13³, 334	1.202	1.591020	-7	130 ^{2mm}	>110	
b206	1,3-Bis(isocyanato- methyl)cyclohexane	C ₆ H ₁₀ (CH ₂ NCO) ₂	194.24		1.101	1.485020			>110	
b207	1,3-Bis(1-isocyanato- 1-methylethyl)- benzene	$C_6H_4[C(CH_3)_2NCO]_2$	244.30		1.060	1.511020		106 ^{0.9mm}	153	
b208	Bis(2-mercaptoethyl)	(HSCH ₂ CH ₂) ₂ O	138.25		1.114		- 80	217	98	
b209	Bis(2-mercaptoethyl) sulfide	(HSCH ₂ CH ₂) ₂ S	154.32		1.183	1.596120		136 ^{10mm}	90	
b210	1,4-Bis(methanesulfon- oxy)butane	(CH ₃ SO ₂ OCH ₂ CH ₂ -) ₂	246.30				115-117			sl hyd aq; 0.1 alc; 1.4 acet
b211	1,2-Bis(methoxy- ethoxy)ethane	(CH ₃ OCH ₂ CH ₂ OCH ₂ -) ₂	178.23		0.990420	1.422420	-45	216	110	misc aq
b212	Bis[2-(2-methoxy- ethoxy)ethyl] ether	(CH ₃ OCH ₂ CH ₂ OCH ₂ CH ₂) ₂ O	228.28	1 ³ , 2107	1.0087420	1.433020	-27	275	140	s aq
b213	Bis(2-methoxyethyl)- amine	(CH ₃ OCH ₂ CH ₂) ₂ NH	133.19	4 ³ , 691	0.902	1.419020		172	58	

b214	Bis(2-methoxyethyl) ether	(CH ₃ OCH ₂ CH ₂) ₂ O	134.18	1², 520	0.944025	1.404325	-64 to -68	162	67	misc aq
b214a	2,2-Bis(4-methoxy- phenyl)-1,1,1- trichloroethane	(CH ₃ OC ₆ H ₄) ₂ CHCCl ₃	345.66	6, 1007			86-88			v sl s aq; s alc
Ь215	Bis(2-methylallyl) carbonate	[H ₂ C==C(CH ₃)CH ₂ O] ₂ C==O	170.21		0.943	1.437020		202	72	
b216	Bis(3-nitrophenyl) disulfide	O ₂ NC ₆ H ₄ SSC ₆ H ₄ NO ₂	308.33	6, 339			83			i aq; s alc; v s eth
b217	Bis(octadecyl)penta- erythritol diphos- phite	[C ₁₈ H ₃₇ OP(OCH ₂) ₂ -] ₂	721.01		0.925	1.457	40		261	
b218	1,4-Bis(5-phenyloxa-		364.40				244			
	zol-2-yl)benzene									
b219	N,N'-Bis(salicylidene)-	$HOC_6H_4CH == N(CH_2)_4$ -	296.37	8 ³ , 163			8890			
	1,4-butanediamine	N=CHC ₆ H ₄ OH								
b220	N,N'-Bis(salicylidene)-	(-CH ₂ N==CHC ₆ H ₄ OH) ₂	268.32	8, 48			128			
1.001	ethylenediamine		224.44	03 165			60			
D221	1.6 bevanediamine	N = C H C H O H	324.44	85, 105			09			
h222	Bis(p-tolyl) disulfide	CHCHSSCHCH	246 39	6 425			43-46			i act e alc: y e ath
b223	Bis(<i>p</i> -tolyl) sulfoxide	CH ₂ C ₂ H ₂ SSC ₂ H ₄ CH ₃ CH ₂ C ₂ H ₂ S(→O)C ₂ H ₂ CH ₂	230 33	6 419			94-96			v salc bz chl eth
b224	Bis(tributyltin) oxide	(C_1H_2) -SnOSn (C_2H_2) -	596.08	0, 115	1.170	1.486020		180 ^{2mm}	>110	
b225	1.4-Bis(trichloro-	CIACCHLCCI	312.84	5, 385			108-110	100		i aq: 26 acet: 38 bz
	methyl)benzene	5 6 4 5		ŕ						1,,,
b226	Bis(2,4,5-trichloro-	Cl ₃ C ₆ H ₂ SSC ₆ H ₂ Cl ₃	425.01			[140144			
	phenyl) disulfide									
Ъ227	1,2-Bis(trichlorosilyl)-	Cl ₃ SiCH ₂ CH ₂ SiCl ₃	296.94	4 ⁴, 4266	1.483420	1.475020	24.5	202	65	
	ethane									
b228	3,5-Bis(trifluoro-	$(F_3C)_2C_6H_3NH_2$	229.13		1.467	1.434020		85 ^{15mm}	83	
	methyl)aniline									
b229	1,3-Bis(trifluoro-	$(F_3C)_2C_6H_4$	214.11	5 ³ , 834	1.379025	1.391625		116	26	
	methyl)benzene									
b230	N,O-Bis(trimethyl-	$CH_3 - C = N - Si(CH_3)_3$	203.43		0.83240	1.417020		73 ^{35mm}	11	
	silyl)acetamide	OSi(CH ₂) ₂								
b231	Bis(trimethylsilyl)- acetylene	(CH ₃) ₃ SiC≡CSi(CH ₃) ₃	170.41		0.77040	1.427020		137	2	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b 232	Bis(trimathylailyl)	HC = NSi(CH)	180.41		0.885	1 / 38 120	r	5513mm	r · · · ·	L
0252	formamide		107.41		0.005	1.4301		55		
	Tormanad	OSi(CH ₃) ₃								
b233	N, O-Bis(trimethyl- silyl)hydroxyl-	(CH ₃) ₃ SiONHSi(CH ₃) ₃	177.40		0.830	1.411220		80 ^{100mm}	28	
1.004	amine		006.40		0.040	1 402 420		100	10	
0234	1,2-Bis(trimethylsilyi-	$(CH_3)_3 SIOCH_2 CH_2 OSI(CH_3)_3$	200.43		0.842	1.4034-5		100	40	
b235	N,O-Bis(trimethyl- silyl)trifluoroace-	F ₃ C[=NSi(CH ₃) ₃]OSi(CH ₃) ₃	257.40		0.969	1.383920	- 10	50 ^{14mm}	23	
b236	1,3-Bis(trimethylsilyl)- urea	(CH ₃) ₃ SiNHCONHSi(CH ₃) ₃	204.42				232 dec			
b237	1,3-Bis[tris(hydroxy- methyl)methyl- amino]propane	CH ₂ [CH ₂ NHC(CH ₂ OH) ₃] ₂	282.34	4³, 859			170			s aq
b238	Biuret	$H_2NC(=O)NHC(=O)NH_2$	103.08	3, 70	1.46745		anhyd 110	dec 190		v s alc; 2 aq ²⁵
b239	Borane-tert-butylamine	$(CH_3)_3CNH_2 \cdot BH_3$	86.97				100 dec			
b240	Borane-N,N-diethyl- aniline	$C_6H_5N(C_2H_5)_2 \cdot BH_3$	163.07				- 30		21	
b241	Borane- <i>N,N</i> -di- isopropylethylamine	[(CH ₃) ₂ CH] ₂ C ₂ H ₅ ·BH ₃	143.08		0.822	1.460020	15–17		40	
b242	Borane-dimethylamine	(CH ₃) ₂ NH·BH ₃	58.92				36		43	
b243	Borane-dimethyl sulfide	$(CH_3)_2 S \cdot BH_3$	75.97		0.801				18	
b244	Borane-pyridine	C₅H₄N·BH₃	92.93		0.920	1.532020	10-11		21	
b245	(1S-endo)-(-)-Borneol		154.25	6, 72	1.01120		204	210 ^{779mm}	65	i aq; 176 alc; s eth
b246	()-1-Bornyl acetate		196.29	6, 82	0.982	1.4626	27	224	84	v sl s aq; s alc, eth
b247	N-Bromoacetamide	CH₃CON(Br)H	137.96	2, 181			102-105			sl s aq; v s eth
b248	p-Bromoacetanilide	BrC ₆ H₄NHCOCH₃	214.06	12, 642	1.717		168			s alc, bz, chl, EtOAc
b249	Bromoacetic acid	BrCH ₂ COOH	138.95	2, 213	1.9344	1.480450	50	208	>110	v s aq, alc
b250	Bromoacetonitrile	BrCH ₂ CN	119.95	2, 216	1.722	1.480020		62 ^{24mm}	>110	
b251	2-Bromoacetophenone	C ₆ H ₅ COCH ₂ Br	199.05	7, 283	1.647 ²⁰		50	135 ^{18mm}	>110	v s alc, bz, chl, eth
b253	p-Bromoacetophenone	BrC ₆ H₄COCH₃	199.05	7, 283	1.647		54	255	>110	s alc, bz, CS ₂ , HOAc PE
b254	Bromoacetyl bromide	BrCH ₂ COBr	201.86	2, 215	2.31722	1.548020		150	none	dec aq, alc
b255	Bromoacetyl chloride	BrCH ₂ COCl	157.40	2, 215	1.908	1.496020		128	none	dec aq, alc

b256	2-Bromoaniline	BrC ₆ H₄NH ₂	172.03	12, 631	1.578420	1.622320	31	229	>110	i aq; s alc, eth
b257	3-Bromoaniline	BrC ₆ H ₄ NH ₂	172.03	12, 633	1.580420	1.625020	16.8	251	>110	sl s aq; s alc, eth
b258	4-Bromoaniline	BrC ₆ H ₄ NH ₂	172.03	12, 636	1.49704100		66.3			i aq; v s alc, eth
b259	2-Bromoanisole	BrC ₆ H ₄ OCH ₃	187.04	6, 197	1.502	1.574020	2	223	96	
b260	4-Bromoanisole	BrC ₆ H ₄ OCH ₃	187.04	6, 199	1.494	1.564020	9-10	223	94	
b261	3-Bromobenzaldehyde	BrC ₆ H ₄ CHO	185.03	7,238	1.587	1.593520		230	96	i aq; v s alc, eth
b262	Bromobenzene	C ₆ H ₅ Br	157.01	5, 206	1.495240	1.560220	- 30.6	156	51	0.045 aq ³⁰ ; 10.4 alc ²⁵ ; 71.6 eth ²⁵ ; misc bz, chl PE
b 263	Bromobenzene-d ₅	C ₆ D ₅ Br	162.06		1.539	1.558520		53 ^{23mm}	51	····, · 2
b264	4-Bromobenzene- sulfonyl chloride	BrC ₆ H₄SO ₂ Cl	255.52	11, 57			74.5	153 ^{15mm}		i aq; s alc (dec); v s eth
Ъ265	2-Bromobenzoic acid	BrC ₆ H₄COOH	201.02	9, 347			148-150			
b266	4-Bromobenzoic acid	BrC ₆ H₄COOH	201.02	9, 351	1.92945		251-253			0.18 aq ²⁵ ; s alc, eth
b267	4-Bromobenzo- phenone	BrC ₆ H ₄ COC ₆ H ₅	261.12	7, 422				82	350	i alc; sl s bz, eth
b268	2-Bromobenzotri- fluoride	BrC ₆ H ₄ CF ₃	225.01		1.65220	1.482020		168	51	
b269	3-Bromobenzotri- fluoride	BrC ₆ H ₄ CF ₃	225.01		1.613	1.4730 ²⁰		152	43	
ь270	3-Bromobenzoyl chloride	BrC ₆ H ₄ COCl	219.47	9, 350	1.662	1.596520		75 ^{0.5mm}	107	
b271	4-Bromobenzyl bromide	$BrC_6H_4CH_2Br$	249.94	5, 308		1.619320	61	124 ^{12mm}	>110	s aq, alc, bz, eth, CS ₂ , HOAc
Ե272	α-Bromobenzyl cya- nide	C ₆ H ₅ CH(Br)CN	196.05		1.53949	1.569620	29	242 dec	>110	sl s aq; v s alc, acet, eth. A war gas.
b273	4-Bromobiphenyl	BrC ₆ H₄C ₆ H₅	233.11	5, 580	0.932745		90-92	310		i aq; s alc, bz, eth
b274	1-Bromobutane	CH ₃ CH ₂ CH ₂ CH ₂ Br	137.02	1, 119	1.268645	1.437425	-112.4	101.6	18	i aq; s alc, bz, eth
b275	2-Bromobutane	CH ₃ CH ₂ CHBrCH ₃	137.02	1, 119	1.258520	1.436020	-112.7	91.4	21	<0.1 aq; v s alc, eth
b276	1-Bromo-2-butene	CH ₃ CH=CHCH ₂ Br	135.01	1, 205	1.312	1.476520		99	11	
b277	2-Bromo-2-butene	CH ₃ CH=C(Br)CH ₃	135.01	1, 205	1.328	1.459020		90 ^{740mm}	1	Mixture of cis, trans
b278	4-Bromo-1-butene	BrCH ₂ CH ₂ CH=CH ₂	135.01	1 ¹ , 84	1.3230420	1.460820		100	9	i aq; s alc, eth
b279	4-Bromobutyl acetate	CH ₃ CO ₂ (CH ₂) ₄ Br	195.06	2 ³ , 39	1.348	1.460020		93 ^{12mm}	109	
Ъ280	1-Bromo-4- <i>tert</i> -butyl- benzene	(CH ₃)3CC ₆ H ₄ Br	213.12	5, 416	1.229	1.533020	15-16	81 ^{2mm}	97	
b281	4-Bromobutyl phenyl ether	C ₆ H ₅ O(CH ₂) ₄ Br	229.12	6², 82			41-43	156 ^{18mm}	>110	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
b282 b283	2-Bromobutyric acid α-Bromo-γ-butyro- lactone	CH ₃ CH ₂ CH(Br)COOH	167.00 164.99	2, 281	1.5669^{20}_{20} 1.990^{20}	1.4720 ²⁰ 1.5080 ²⁰	-4	103 ^{10mm} 138 ^{6mm}	>110 >110	6.7 aq; s alc, eth
b284	[1 <i>R-endo</i>]-(+)-3- Bromocamphor		231.14	7, 120	1.449		75–78	244		15 alc; 200 chl; 62 eth; s olive oil
b285	1-Bromocarbonyl-1- methylethyl acetate	CH ₃ CO ₂ C(CH ₃) ₂ COBr	209.05		1.431	1.457020		77 ^{12mm}	110	
b286	2-Bromo-4'-chloro- acetophenone	ClC ₆ H ₄ COCH ₂ Br	233.50							
b287	2-Bromochloro-ben- zene	BrC ₆ H₄Cl	191.46	5, 209	1.6382425	1.578925		204	79	i aq; v s bz
b288	3-Bromochloro-ben- zene	BrC ₆ H ₄ Cl	191.46	5, 209	1.6302420	1.577020	-21	196	80	i aq; v s alc, bz, eth
b296	4-Bromochloro- benzene	BrC ₆ H ₄ Cl	191.46	5, 209	1.576471	1.553170	66	196		0.1 aq; misc MeOH, eth
b297	3-Bromo-4-chloro- benzotrifluoride	Br(Cl)C ₆ H ₃ CF ₃	259.46	5³, 715	1.726	1.499020	-22	190	94	
b298	1-Bromo-4-chloro- butane	ClCH ₂ CH ₂ CH ₂ CH ₂ Br	171.47	5 ³ , 294	1.488	1.487520		82 ^{30mm}	60	i aq; s alc, chl, eth
b299	4'-Bromo-4-chloro- butyrophenone	BrC ₆ H ₄ CO(CH ₂) ₃ Cl	261.55				36-38		>110	
b300	4-Bromo-6-chloro-o- cresol	Br(Cl)C ₆ H ₂ (OH)CH ₃	221.49	6, 360			45-47		>110	
b301	Bromochlorodifluoro- methane	Br(Cl)CF ₂	165.36		6.579 g/L		- 160	-3.7		
Ь302	3-Bromo-1-chloro-5,5- dimethyl-hydantoin		241.48				160-164			
b303	1-Bromo-2-chloro- ethane	CICH ₂ CH ₂ Br	143.41	1, 89	1.7392420	1.491720	-18.4	106.6		0.7 aq; misc org solv
b303a	Bromochlorofluoro- methane	Br(Cl)CHF	149.37		1.97710	1.414455	- 115	36		
b304	7-Bromo-5-chloro-8- hydroxyquinoline		258.51	211, 222			177-179			
b305	Bromochloromethane	ClCH ₂ Br	129.38	1, 67	1.92345	1.48025	-88	68		0.9 aq; misc MeOH, eth
b306	1-Bromo-3-chloro-2- methylpropane	ClCH ₂ CH(CH ₃)CH ₂ Br	171.47	1³, 324	1.467	1.480920		154	>110	

b307	1-Bromo-3-chloro-	CICH ₂ CH ₂ CH ₂ Br	157.44	1, 109	1.492	1.485120	<-50	143.5		0.1 aq; misc org solv
b308	2-Bromo-2-chloro-	BrCH(Cl)CF ₃	197.39	14 156	1.863625	1.369120		50.2	none	
b309	2-Bromocinnam- aldehvde	C ₆ H ₄ CH=C(Br)CHO	211.06	7, 358			66–68			
b310 b311	Bromocycloheptane Bromocyclohexane	$Br(C_7H_{13})$ Br(C_6H_{11})	177.09 163.06	5, 29 5, 24	$\frac{1.2887_4^{22}}{1.3264_4^{15}}$	1.5052 ²⁰ 1.4956 ¹⁵		72 ^{10mm} 165.8	68 62	i aq; v s chl, eth 0.1 aq; 10 MeOH; 71
b312 b313	3-Bromocyclohexene Bromocyclopentane	Br(C ₅ H ₉)	161.04 149.04	5², 40 5, 19	$\frac{1.3890_{4}^{20}}{1.3900_{4}^{20}}$	1.5292 ²⁰ 1.4881 ²⁰		65 ^{15mm} 137–139	54 35	
b314 b315	Bromocyclopropane 1-Bromodecane	Br(C ₃ H ₅) CH ₃ (CH ₂) ₉ Br	120.98 221.18	1², 130	1.510 1.0658_4^{20}	1.4605 ²⁹ 1.4560 ²⁰	- 30	69 238–240	-6 94	i aq; v s chl, eth
b316	Bromodichloro- methane	BrCHCl ₂	163.83	1, 67	1.98020	1.496720	-55	87	none	sl s aq; misc org solv
b317	2-Bromo-1,1-di- ethoxyethane	BrCH ₂ CH(OC ₂ H ₅) ₂	197.08	1, 625	1.310	1.438520		67 ^{18mm}	51	s hot alc
b318	4-Bromo-1,2-di- methoxybenzene	BrC ₆ H ₃ (OCH ₃) ₂	217.07	6, 784	1.702	1.574320	256	109		
b319	2-Bromo-1,1-di-	BrCH ₂ CH(OCH ₃) ₂	169.02	1, 624	1.430	1.445020		150	53	
b320	1-Bromo-2,2-di- methoxypropane	CH ₃ C(OCH ₃) ₂ CH ₂ Br	185.05		1.355	1.447520		87 ^{80mm}	40	
b321	4-Bromo-2,6-di- methylphenol	BrC ₆ H ₂ (CH ₃) ₂ OH	201.07	6, 485			79–81			
b322	3-Bromo-2,2-dimethyl- 1-propanol	BrCH ₂ C(CH ₃) ₂ CH ₂ OH	167.05	1 ¹ , 201	1.358	1.479420		184–187	75	
b323	2-Bromo-4,6-dinitro- aniline	BrC ₆ H ₂ (NO ₂) ₂ NH ₂	262.03	12, 761			154	subl		v s hot alc, hot acet
b324	1-Bromo-2,4-dinitro- benzene	BrC ₆ H ₃ (NO ₂) ₂	247.01				71–73			
b325	4-Bromodiphenyl ether	BrC ₆ H ₄ OC ₆ H ₅	249.11	6 ¹ , 105	1.423	1.607020	18	305	>110	
b326	1-Bromodiphenyl- methane	C ₆ H ₅ CH(Br)C ₆ H ₅	247.14	5, 592			40-42	184 ^{20mm}	>110	
b327	1-Bromododecane	CH ₃ (CH ₂) ₁₁ Br	249.24	1², 133	1.038	1.458020	-11	135 ^{6mm}	>110	0.1 aq; s alc, eth
b328	1-Bromo-2,3-epoxy- propane	H ₂ C—CHCH ₂ Br	136.98	17, 9	1.60120	1.482020	-40	134–136	56	i aq; sl s alc; s eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b329	Bromoethane	CH ₃ CH ₂ Br	108.97	1, 88	1.4612420	1.424220	-119	38.2	-23	0.91 aq ²⁰ ; misc alc, chl. eth
b330	2-Bromoethanesulfonic acid, sodium salt	BrCH ₂ CH ₂ SO ₂ Na ⁺	211.02	4, 7			283 dec			,
b331	2-Bromoethanol	BrCH ₂ CH ₂ OH	124.98	1, 338	1.7629420	1.493620		57 ^{20mm}	>110	misc aq; s org solv ex- cept PE
b332	2-Bromoethyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ Br	167.01	21, 57	1.51440	1.454720	- 13.8	159	71	v s aq; misc alc, eth
b333	2-Bromoethylamine HBr	BrCH ₂ CH ₂ NH ₂ ·HBr	204.90	4, 134			172–174			v s aq, alc
b334	(1-Bromoethyl)- benzene	C ₆ H ₅ CH(CH ₃)Br	185.07	5, 355	1.356	1.560020		94 ^{16mm}	81	
b334a	(2-Bromoethyl)- benzene	C ₆ H ₅ CH ₂ CH ₂ Br	185.07	5, 355	1.355	1.556020		221	89	
b335	1-Bromo-2-ethyl- benzene	BrC ₆ H₄CH₂CH₃	185.07	5, 355	1.338	1.549020		194 ^{16mm}	71	
b336	Bromoethylene	H ₂ C==CHBr	106.95	1, 188	1.49320	1.438020	139	15.8	none	i aq; misc alc, eth
b337	2-Bromoethyl ethyl ether	BrCH ₂ CH ₂ OCH ₂ CH ₃	153.02	1, 338	1.357240	1.445020		150	21	sl s aq; misc alc, eth
b338	2-Bromoethyl phenyl ether	BrCH ₂ CH ₂ OC ₆ H ₅	201.07	6, 142			34	144 ^{40mm}	65	i sq; v s alc, eth
b339	N-(2-Bromoethyl)- phthalimide		254.09	21, 461			81-84			s hot aq; v s eth
b 340	1-Bromo-2-fluoro- benzene	BrC₀H₄F	175.01		1.601	1.533720		156	43	
b 341	1-Bromo-3-fluoro- benzene	BrC ₆ H₄F	175.01		1.567	1.525720		150	38	
b342	1-Bromo-4-fluoro- benzene	BrC ₆ H₄F	175.01	5, 209	1.59315	1.531015	- 17.4	152	60	
b343	1-Bromoheptane	H(CH ₂) ₇ Br	179.11	1, 155	1.1384420	1.450520	- 58	180	60	i aq; v s alc, eth
b344	2-Bromoheptane	H(CH ₂) ₅ CH(Br)CH ₃	179.11	1, 155	1.142	1.447020		66 ^{21mm}	47	
Ь345	1-Bromohexadecane	H(CH ₂) ₁₆ Br	305.35	1², 138	0.9991	1.461820	17.8	336	177	i aq; misc org solv
b346	1-Bromohexane	H(CH ₂) ₆ Br	165.08	1, 144	1.1763 ²⁰	1.4475 ²⁰	- 85	154-158	57	i aq; misc alc, eth
b347	DL-2-Bromohexanoic acid	CH ₃ (CH ₂) ₃ CH(Br)COOH	195.06	2, 325	1.370	1.472020		138 ^{18mm}	>110	s alc, eth
b348	5-Bromoisatin		226.03	21, 453			251-253			
b350	(2-Bromoisopropyl)-	C ₆ H ₅ CH(CH ₃)CH ₂ Br	199.10	5 ¹ , 191	1.316	1.548020		108 ^{18mm}	91	
	benzene									

Previous Page

b351	2-Bromo-4-isopropyl- 1-methylbenzene	CH ₃ (Br)C ₆ H ₃ CH(CH ₃) ₂	213.0		1.25325	1.53525	- 20	120		i aq; 50 MeOH; misc org solvents
b352	Bromomaleic anhy- dride		176.96	17, 435	1.905	1.540020		215	>110	_
b353 b354	2-Bromomesitylene Bromomethane	1,3,5-(CH ₃) ₃ C ₆ H ₂ Br CH ₃ Br	199.10 94.94	5, 408 1, 67	1.301 1.7328	1.5520 ²⁰ 1.4234 ¹⁰	2 -94	255 3.56	96 none	0.1 aq; s alc, chl, eth
b355	4-Bromomandelic acid	BrC ₆ H₄CH(OH)COOH	231.05	10, 210			117-118			sisaq
b356	5-Bromo-2-methoxy- benzaldehyde	BrC ₆ H ₃ (OCH ₃)CHO	215.05	8, 55			116-119			
b357	2-Bromo-1-methoxy- benzene	BrC ₆ H₄OCH₃	187.04	6, 197	1.501840	1.573720	2	223	96	i aq; v s alc, eth
b358	3-Bromo-1-methoxy- benzene	BrC ₆ H ₄ OCH ₃	187.04	6, 198	1.477	1.563520	211	93		i aq; s alc, eth
b359	4-Bromo-1-methoxy- benzene	BrC ₆ H₄OCH₃	187.04	6, 199	1.45644	1.563020	10	223	94	sl s aq; v s alc, eth
b360	4-Bromo-2-methyl- aniline	CH ₃ (Br)C ₆ H ₃ NH ₂	186.06	12, 838			57-59	240	>110	sl s aq; v s alc
b361	1-Bromo-3-methyl- benzyl alcohol	BrC ₆ H₄CH(CH₃)OH	201.07	6², 447	1.460		36-38	121 ^{7mm}	63	
b362	1-Bromo-3-methyl- butane	(CH ₃) ₂ CHCH ₂ CH ₂ Br	151.05	1, 136	1.21045	1.440920	-112	119.7	32	0.02 aq; misc alc, eth
b363	2-Bromo-2-methyl-	C ₂ H ₅ C(CH ₃) ₂ Br	151.05	1, 136	1.182	1.442320		107 ^{735mm}	5	
b364	2-Bromo-3-methyl- butanoic acid	(CH ₃) ₂ CHCH(Br)COOH	181.04	2, 317			44	126 ^{20mm}	107	sl s aq; s alc, eth
b365	4-Bromo-2-methyl-2- butene	BrCH ₂ C==C(CH ₃) ₂	149.04	1², 189	1.293	1.489820		60 ^{60mm}	32	
b366	(Bromomethyl)chloro- dimethylsilane	BrCH ₂ Si(CH ₃) ₂ Cl	187.5	4⁴, 4024	1.375	1.465020		130 ^{740mm}	41	
b367	(Bromomethyl)cyclo- hexane	(C ₆ H ₁₁)CH ₂ Br	177.09	5², 18	1.269	1.490720		77 ^{26mm}	57	
b368	2-Bromomethyl-1,3- dioxalane		167.01	19², 8	1.613	1.481720		82 ^{27mm}	62	
b369	Bromomethyl methyl ether	BrCH ₂ OCH ₃	124.97	1, 582	1.531	1.455020		87	26	
Ь370	1-Bromo-2-methyl- naphthalene	Br(C ₁₀ H ₆)CH ₃	221.10	5, 568	1.418	1.648620		296	>110	

TABLE 2.20	Physical	Constants of	of Organic	Compounds	(Continued)
-------------------	----------	--------------	------------	-----------	------------	---

Name	Formula	Formula weight	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100 parts solvent
		107.00	1.100	9,	1.10.6000	point, e	point, c	point, e	
1-Bromo-2-methyl- propane	(CH ₃) ₂ CHCH ₂ Br	137.03	1, 126	1.264120	1.436220	- 119	91.5	18	0.06 aq; misc alc, eth
2-Bromo-2-methyl- propane	(CH ₃) ₃ CBr	137.03	1, 127	1.2125 ²⁵	1.42525	- 16.2	73.1	18	i aq; misc org solv
2-Bromo-2-methyl- propanoic acid	BrC(CH ₃) ₂ COOH	167.01	2, 295	1.52		48–49	200	>110	sl s aq; s alc, eth; dec by hot aq
2-Bromo-2-methyl-	(CH ₃) ₂ C(Br)COBr	229.91	2, 297	1.860	1.506424		164	110	
2-Bromo-2-methyl- propiophenone	C ₆ H ₅ CO(CH ₃) ₂ Br	227.11	7, 316	1.350	1.556120		148 ^{30mm}	>112	
1-Bromonaphthalene	(C ₁₀ H ₇)Br	207.07	5, 547	1.4834 ²⁰	1.658020	- 1.8	281	>110	misc alc, bz, chl, eth
1-Bromo-1-naphthol	BrC ₁₀ H ₆ OH	233.07	6, 650			78	130 dec		i aq; s alc, bz, eth
1-Bromo-2-naphthol	BrC ₁₀ H ₆ OH	223.07	6, 650			78-81			
1-Bromo-2-nitroben- zene	BrC ₆ H ₄ NO ₂	202.01	5 ¹ , 247	1.62454		43	261	110	v s alc; s bz, eth
5-Bromo-2-nitrobenzo- trifluoride	O ₂ N(Br)C ₆ H ₃ CF ₃	270.02	5³, 755	1.7992 ²⁵	1.518025	33-35	100 ^{5mm}	>110	
2-Bromo-2-nitro-1,3- propanediol	(HOCH ₂) ₂ C(Br)NO ₂	199.99	1, 476			120-122			s aq, alc, EtOAc; sl s bz, acet, chl, eth
1-Bromononane	H(CH ₂) ₉ Br	207.16	1 ¹ , 63	1.084	1.454020		201	90	i aq; s chl, eth
exo-2-Bromo-norbor- nane		175.07		1.363	1.514820		82 ^{29mm}	60	-
1-Bromooctadecane	H(CH ₂) ₁₈ Br	333.41	1 ¹ , 69	0.976		23	216 ^{12mm}	>110	i aq; s alc, eth
1-Bromooctane	H(CH ₂) ₈ Br	193.13	1, 160	1.10845	1.4518 ²⁵	- 55	201	78	i aq; misc alc, eth
Bromopentafluoro- benzene	BrC ₆ F ₅	246.97		1.947 ²⁰	1.449020	-31	137	87	-
1-Bromopentane	H(CH ₂) ₅ Br	151.05	1, 131	1.223745	1.4444 ²⁰	- 88	129.6	31	i aq; s alc; misc eth
2-Bromopentane	CH ₄ CH ₂ CH ₂ CH(Br)CH ₄	151.05	1, 131	1.203940	1.440320		117	20	1 , 1
3-Bromopentane	C,H,CH(Br)C,H,	151.05	11, 43	1.216	1.444520		119	18	
5-Bromopentyl acetate	CH ₃ CO ₂ (CH ₂) ₅ Br	209.09	2 ³ , 249	1.255	1.462020		110 ^{15mm}	>110	
9-Bromophenanthrene	5 5 5 5	257.14	5,671	1.409101		54-58	190 ^{2mm}	>110	i aq; s alc, eth
2-Bromophenol	BrC ₆ H ₄ OH	173.01	6, 197	1.492	1.589220	6	194	42	s aq; misc chl, eth
3-Bromophenol	BrC _k H₄OH	173.01	6, 198			32	236	>110	
4-Bromophenol	BrC₄H₄OH	173.01	6, 198	1.587580		64	238		14 aq; v s alc, chl
1-ethoxyethane	CH ₃ CH(OC ₆ H ₄ Br)OC ₂ H ₅	245.12	,	1.348	1.522920		125 ^{8mm}	106	
	Name I-Bromo-2-methyl- propane 2-Bromo-2-methyl- propane 2-Bromo-2-methyl- propanoic acid 2-Bromo-2-methyl- propionyl bromide 2-Bromo-2-methyl- propiophenone 1-Bromonaphthalene 1-Bromo-2-nitroben- zene 5-Bromo-2-nitroben- zene 5-Bromo-2-nitroben- zene 1-Bromooctane Bromopentane 1-Bromooctadecane 1-Bromooctadecane 1-Bromooctadecane 1-Bromopentane 2-Bromopentane 3-Bromopentane 5-Bromopentane 5-Bromopentane 2-Bromopentane 3-Bromopentane 1-(4-Bromophenol) 1-ethoxyethane	NameFormula1-Bromo-2-methyl- propane $(CH_3)_2CHCH_2Br$ propane2-Bromo-2-methyl- propanoic acid $(CH_3)_3CBr$ 2-Bromo-2-methyl- propanoic acid $BrC(CH_3)_2COOH$ propanoic acid2-Bromo-2-methyl- propionyl bromide $(CH_3)_2C(Br)COBr$ 2-Bromo-2-methyl- propionyl bromide $(C_{\eta}J_{\tau})CBr$ 2-Bromo-2-methyl- propionyl bromide $(C_{\eta}J_{\tau})Br$ 1-Bromo-2-methyl- propiophenone $(C_{\eta}H_{\tau})Br$ 1-Bromo-2-methyl- propiophenone $(C_{10}H_{\tau})Br$ 1-Bromo-2-naphthol 1-Bromo-2-nitroben- zene $BrC_{10}H_6OH$ 1-Bromo-2-nitroben- zene $BrC_{0}H_4OF_3$ 2-Bromo-2-nitroben- zene $(HOCH_2)_2C(Br)NO_2$ 1-Bromoctadecane trifluoride $H(CH_2)_{3}Br$ 1-Bromooctadecane 1-Bromooctadecane $H(CH_2)_{4}Br$ 1-Bromootadecane 1-Bromopentafluoro- benzene $H(CH_2)_3Br$ 2-Bromopentane 2-Bromopentane $C_{2}H_3CH(Br)C_{2}H_3$ 3-Bromopentane 2-Bromophenol $C_{10}H_2OH_3$ 3-Bromophenal 4-Bromophenol BrC_6H_4OH 3-Bromophenol BrC_6H_4OH </td <td>Name Formula Formula 1-Bromo-2-methyl- propane $(CH_3)_2CHCH_2Br$ 137.03 2-Bromo-2-methyl- propane $(CH_3)_3CBr$ 137.03 2-Bromo-2-methyl- propanoic acid $BrC(CH_3)_2COOH$ 167.01 2-Bromo-2-methyl- propionyl bromide $BrC(CH_3)_2COBr$ 229.91 2-Bromo-2-methyl- propiophenone $C_6H_5CO(CH_3)_2Br$ 227.11 2-Bromo-2-methyl- propiophenone $C_6H_5CO(CH_3)_2Br$ 227.11 1-Bromo-2-methyl- propiophenone $C_{0}H_5O(CH_3)_2Br$ 227.11 1-Bromo-1-naphthol $BrC_{10}H_6OH$ 233.07 1-Bromo-2-naththol $BrC_{10}H_6OH$ 233.07 1-Bromo-2-nitroben- zene $BrC_6H_4NO_2$ 202.01 zene $O_2N(Br)C_6H_3CF_3$ 270.02 rifluoride 1 175.07 2-Bromo-norbor- nane 14(CH_2)_9Br 207.16 exv-2-Bromo-norbor- nane 193.13 333.41 1-Bromopentane $H(CH_2)_1_8Br$ 333.41 1-Bromopentane $H(CH_2)_2Br$ 151.05 2-Bromopentane $C_2H_4CH_5CH_5CH_5CH_5$</td> <td>NameFormulaPortunaPortuna1-Bromo-2-methyl- propane(CH_3)_2CHCH_2Br137.031, 1262-Bromo-2-methyl- propane(CH_3)_2CBr137.031, 127propaneBrC(CH_3)_2COOH167.012, 2952-Bromo-2-methyl- propionsl bromideBrC(CH_3)_2COBr229.912, 2972-Bromo-2-methyl- propionyl bromideC₄H₃CO(CH_3)_2Br227.117, 3162-Bromo-2-methyl- propionyl bromideC₄H₃CO(CH_3)_2Br227.117, 3162-Bromo-2-methyl- propionyl bromideC₄H₃CO(CH_3)_2Br207.075, 5471-Bromo-1-naphtholBrC₁₀H₆OH233.076, 6501-Bromo-2-nitroben- z-naphtholBrC₁₀H₆OH223.076, 6501-Bromo-2-nitroben- z-nitroben-BrC₁₀H₆OH223.076, 6501-Bromo-2-nitroben- z-nitroben-BrC₁₀H₆OH223.076, 6501-Bromo-2-nitroben- z-nitroben-O_2N(Br)C₆H₃CF₃270.025³, 755trifluoride11.6011.6311.632-Bromo-2-nitrobro- naneH(CH₂)₆Br233.4111.691-Bromooctadecane bromopentaneH(CH₂)₆Br333.4111.691-Bromopentane c-gF_5C₄G-(HBr)CH₃151.051, 1312-Bromopentane bromopentaneCH₃C₄CH(Br)CH₃151.051, 1312-Bromopentane c-BromophenolCH₃C₄CH(Br)CH₃151.051, 1312-Bromopentane c-BromophenolBrC₆H₄OH173.016, 1983-Bromophenol<td>NameFormulaFormulaDefinitionDefinition1-Bromo-2-methyl- propane$(CH_3)_2CHCH_3Br$137.031, 1261.2641202-Bromo-2-methyl- propanic acid$(CH_3)_2CBr$137.031, 1271.2125232-Bromo-2-methyl- propanoic acidBrC(CH_3)_2COOH167.012, 2951.522-Bromo-2-methyl- propionyl bromideCdH_3)_2C(Br)COBr229.912, 2971.8602-Bromo-2-methyl- propionyl bromideCdH_5CO(CH_3)_2Br227.117, 3161.3502-Bromo-2-methyl- propiophenoneCdH_5CO(CH_3)_2Br227.117, 3161.3501-Bromon-1-naphthol BrCupH_6OHBrCu,H_6OH233.076, 65011-Bromo-2-nitroben- zeneBrC_GH_4OH233.076, 65011-Bromo-2-nitroben- propanctiolBrCu,H_6OH233.076, 65011-Bromo-2-nitroben- propanctiolGM(H)C_dH_3CF_3270.025³, 7551.7992251-Bromon-2-nitroben- propanctiolGM(H)C_dH_3CF_3270.025³, 7551.7992251-Bromononane ex-o2-Bromo-norbor- naneIT5.071.3631.0841-Bromocatalecane H(CH_2)_BBr199.991, 4761.3631-Bromopentane D-BromopentaneH(CH_2)_Br131.11.2237152-Bromopentane D-BromopentaneH(CH_2)_BF131.11.2339293-Bromopentane CH_3CH_CH_3CH(Br)CH_3151.051, 1311.2237153-Bromopentane CH_3CH_CH_CH_CH_CH_CH_S151.051, 14094912-Bromopentane</br></br></br></br></td><td>NameFormulaFormulaBernsteinBernsteinDensity, referenceKernactive g/mL1-Bromo-2-methyl- propane(CH_3)_2CHCH_3Br137.031, 1261.2641201.4362202-Bromo-2-methyl- propane(CH_3)_2CBr137.031, 1271.2125231.425232-Bromo-2-methyl- propaneBrC(CH_3)_2COOH167.012, 2951.521.5064242-Bromo-2-methyl- propiophenoeCH_3)_2C(Br)COBr229.912, 2971.8601.5064242-Bromo-2-methyl- propiophenoeC₄H₂CO(CH₃)_2Br227.117, 3161.3501.5561201-Bromo-2-methyl- propiophenoeC₄H₂CO(CH₃)_2Br227.117, 3161.3501.5561201-Bromo-1-naphtholBrC₁₀H₄OH233.076, 6501.6580201-Bromo-2-nitroben- propanediofBrC₁₀H₄OH223.076, 6501.6245502-Bromo-2-nitroben- propanediofDisC₁₀H₄OH223.076, 6501.5180231-Bromo-2-nitroben- propanediofDisC₁₀H₄OH207.075', 7551.7992331.5180231-Bromo-2-nitroben- propanediofDisC₁₀H₄OH207.075', 7551.7992331.5180231-Bromo-2-nitroben- propanetiofH(CH₂)₂Br207.161', 631.0841.4540201-Bromooctadecane H(CH₂)₄Br193.131, 1601.108251.4518231-Bromooctadecane H(CH₂)₄Br151.051, 1311.2039211.4440302-Bromopentane DenzeneCH₂CH₂CH₃Br<</td><td>NameFormulaPortulua<td>NameFormulaFormulaDefinition veightDefinition referenceDefinity g/mLInterfue intDefinity cPoint, °C point, °C1-Bromo-2-methyl- propane(CH,),CBr137.031, 1261.2641281.436229-11991.52-Bromo-2-methyl- propane caid(CH,),CBr137.031, 1271.2125231.42535-16.273.12-Bromo-2-methyl- propion/s caidBC(CH,),COBr229.912, 2951.5248-492002-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/bromoneC(H,),Br207.075, 5471.4834291.658039-1.82811-Bromo-1-anphthol 1-Bromo-2-naphthol BC,$_{\mu}LOH$223.076, 65078130 dec78-81130 dec1-Bromo-2-nitroben- propanediaBC,$_{\mu}LOH$223.076, 6507833-35100³mm1-Bromo-2-nitroben- arifluorideBC,$_{\mu}LOH$207.161', 631.0841.4540392232232-Bromo-2-nitroben- nameH(CH,),Br207.161', 631.0841.45403923232012-Bromo-2-nitrober- nameH(CH,),Br207.161', 631.0841.454039232333-35100³mm1-Bromo-2-nitrober- nameH(CH,),Br207.161',</td><td>NameFormulaPointing</td></td></br></br></br></td>	Name Formula Formula 1-Bromo-2-methyl- propane $(CH_3)_2CHCH_2Br$ 137.03 2-Bromo-2-methyl- propane $(CH_3)_3CBr$ 137.03 2-Bromo-2-methyl- propanoic acid $BrC(CH_3)_2COOH$ 167.01 2-Bromo-2-methyl- propionyl bromide $BrC(CH_3)_2COBr$ 229.91 2-Bromo-2-methyl- propiophenone $C_6H_5CO(CH_3)_2Br$ 227.11 2-Bromo-2-methyl- propiophenone $C_6H_5CO(CH_3)_2Br$ 227.11 1-Bromo-2-methyl- propiophenone $C_{0}H_5O(CH_3)_2Br$ 227.11 1-Bromo-1-naphthol $BrC_{10}H_6OH$ 233.07 1-Bromo-2-naththol $BrC_{10}H_6OH$ 233.07 1-Bromo-2-nitroben- zene $BrC_6H_4NO_2$ 202.01 zene $O_2N(Br)C_6H_3CF_3$ 270.02 rifluoride 1 175.07 2-Bromo-norbor- nane 14(CH_2)_9Br 207.16 exv-2-Bromo-norbor- nane 193.13 333.41 1-Bromopentane $H(CH_2)_1_8Br$ 333.41 1-Bromopentane $H(CH_2)_2Br$ 151.05 2-Bromopentane $C_2H_4CH_5CH_5CH_5CH_5$	NameFormulaPortunaPortuna1-Bromo-2-methyl- propane(CH_3)_2CHCH_2Br137.031, 1262-Bromo-2-methyl- propane(CH_3)_2CBr137.031, 127propaneBrC(CH_3)_2COOH167.012, 2952-Bromo-2-methyl- propionsl bromideBrC(CH_3)_2COBr229.912, 2972-Bromo-2-methyl- 	NameFormulaFormulaDefinitionDefinition1-Bromo-2-methyl- propane $(CH_3)_2CHCH_3Br$ 137.031, 1261.2641202-Bromo-2-methyl- propanic acid $(CH_3)_2CBr$ 137.031, 1271.2125232-Bromo-2-methyl- propanoic acidBrC(CH_3)_2COOH167.012, 2951.522-Bromo-2-methyl- propionyl bromideCdH_3)_2C(Br)COBr229.912, 2971.8602-Bromo-2-methyl- propionyl bromideCdH_5CO(CH_3)_2Br227.117, 3161.3502-Bromo-2-methyl- propiophenoneCdH_5CO(CH_3)_2Br227.117, 3161.3501-Bromon-1-naphthol BrCupH_6OHBrCu,H_6OH233.076, 65011-Bromo-2-nitroben- zeneBrC_GH_4OH233.076, 65011-Bromo-2-nitroben- propanctiolBrCu,H_6OH233.076, 65011-Bromo-2-nitroben- propanctiolGM(H)C_dH_3CF_3270.025³, 7551.7992251-Bromon-2-nitroben- propanctiolGM(H)C_dH_3CF_3270.025³, 7551.7992251-Bromononane ex-o2-Bromo-norbor- naneIT5.071.3631.0841-Bromocatalecane H(CH_2)_BBr199.991, 4761.3631-Bromopentane 	NameFormulaFormulaBernsteinBernsteinDensity, referenceKernactive g/mL1-Bromo-2-methyl- propane(CH_3)_2CHCH_3Br137.031, 1261.2641201.4362202-Bromo-2-methyl- propane(CH_3)_2CBr137.031, 1271.2125231.425232-Bromo-2-methyl- propaneBrC(CH_3)_2COOH167.012, 2951.521.5064242-Bromo-2-methyl- propiophenoeCH_3)_2C(Br)COBr229.912, 2971.8601.5064242-Bromo-2-methyl- propiophenoeC ₄ H ₂ CO(CH ₃)_2Br227.117, 3161.3501.5561201-Bromo-2-methyl- propiophenoeC ₄ H ₂ CO(CH ₃)_2Br227.117, 3161.3501.5561201-Bromo-1-naphtholBrC ₁₀ H ₄ OH233.076, 6501.6580201-Bromo-2-nitroben- propanediofBrC ₁₀ H ₄ OH223.076, 6501.6245502-Bromo-2-nitroben- propanediofDisC ₁₀ H ₄ OH223.076, 6501.5180231-Bromo-2-nitroben- propanediofDisC ₁₀ H ₄ OH207.075', 7551.7992331.5180231-Bromo-2-nitroben- propanediofDisC ₁₀ H ₄ OH207.075', 7551.7992331.5180231-Bromo-2-nitroben- propanetiofH(CH ₂) ₂ Br207.161', 631.0841.4540201-Bromooctadecane H(CH ₂) ₄ Br193.131, 1601.108251.4518231-Bromooctadecane H(CH ₂) ₄ Br151.051, 1311.2039211.4440302-Bromopentane DenzeneCH ₂ CH ₂ CH ₃ Br<	NameFormulaPortulua <td>NameFormulaFormulaDefinition veightDefinition referenceDefinity g/mLInterfue intDefinity cPoint, °C point, °C1-Bromo-2-methyl- propane(CH,),CBr137.031, 1261.2641281.436229-11991.52-Bromo-2-methyl- propane caid(CH,),CBr137.031, 1271.2125231.42535-16.273.12-Bromo-2-methyl- propion/s caidBC(CH,),COBr229.912, 2951.5248-492002-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/bromoneC(H,),Br207.075, 5471.4834291.658039-1.82811-Bromo-1-anphthol 1-Bromo-2-naphthol BC,$_{\mu}LOH$223.076, 65078130 dec78-81130 dec1-Bromo-2-nitroben- propanediaBC,$_{\mu}LOH$223.076, 6507833-35100³mm1-Bromo-2-nitroben- arifluorideBC,$_{\mu}LOH$207.161', 631.0841.4540392232232-Bromo-2-nitroben- nameH(CH,),Br207.161', 631.0841.45403923232012-Bromo-2-nitrober- nameH(CH,),Br207.161', 631.0841.454039232333-35100³mm1-Bromo-2-nitrober- nameH(CH,),Br207.161',</td> <td>NameFormulaPointing</td>	NameFormulaFormulaDefinition veightDefinition referenceDefinity g/mLInterfue intDefinity cPoint, °C point, °C1-Bromo-2-methyl- propane(CH,),CBr137.031, 1261.2641281.436229-11991.52-Bromo-2-methyl- propane caid(CH,),CBr137.031, 1271.2125231.42535-16.273.12-Bromo-2-methyl- propion/s caidBC(CH,),COBr229.912, 2951.5248-492002-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/s bromideC(H,),C(Br)COBr229.912, 2971.8601.5064241642-Bromo-2-methyl- propion/bromoneC(H,),Br207.075, 5471.4834291.658039-1.82811-Bromo-1-anphthol 1-Bromo-2-naphthol BC, $_{\mu}LOH$ 223.076, 65078130 dec78-81130 dec1-Bromo-2-nitroben- propanediaBC, $_{\mu}LOH$ 223.076, 6507833-35100 ³ mm1-Bromo-2-nitroben- arifluorideBC, $_{\mu}LOH$ 207.161', 631.0841.4540392232232-Bromo-2-nitroben- nameH(CH,),Br207.161', 631.0841.45403923232012-Bromo-2-nitrober- nameH(CH,),Br207.161', 631.0841.454039232333-35100 ³ mm1-Bromo-2-nitrober- nameH(CH,),Br207.161',	NameFormulaPointing

b396	4-Bromophenylacetic	BrC ₆ H ₄ CH ₂ COOH	215.05	9, 451			119			sl s aq; v s alc, eth
b397	4-Bromophenylaceto- nitrile	BrC ₆ H ₄ CH ₂ CN	196.05	9, 451			47-49		>110	i aq; sl s alc; v s bz
b398	4-Bromophenyl phenyl ether	BrC ₆ H ₄ OC ₆ H ₅	249.11	6 ¹ , 105	1.423	1.607020	18	305	>110	
b399	1-Bromo-3-phenyl- propane	BrC ₆ H ₄ CH ₂ CH ₂ CH ₂ Br	199.10	5, 391	1.310	1.545020		220	101	
b400	1-Bromopropane	CH ₃ CH ₂ CH ₂ Br	122.99	1, 108	1.359715	1.437015	-110.1	71.0		0.23 aq ³⁰ ; misc alc
b401	2-Bromopropane	CH ₃ CH(Br)CH ₃	123.99	1, 108	1.322215	1.428515	- 89.0	59.5	19	0.3 aq ¹⁸ ; misc alc, bz, chl, eth
b402	3-Bromo-1-propanol	BrCH ₂ CH ₂ CH ₂ OH	139.00	1, 356	1.5374420	1.485820		62 ^{5mm}	93	s aq; misc alc, eth
b403	1-Bromo-2-propanone	CH ₃ OCH ₂ Br	136.98	Merck: 12, 1422	1.63423	1.469715	- 36.5	137		v sl s aq; s alc, acet
b404	1-Bromo-1-propene	CH ₃ CH=CHBr	120.98	1, 200	1.413340	1.453820	-116	70	-6	i aq
b405	2-Bromo-2-propene	$CH_3C(Br) = CH_2$	120.98	1, 200	1.36240	1.442520	- 125	47-49	4	
b406	2-Bromopropionic acid	CH₃CH(Br)COOH	152.98	2, 254	1.700020	1.475020	25.7	203	100	v s aq, alc, bz, chl, eth
b407	3-Bromopropionic acid	BrCH ₂ CH ₂ COOH	152.98	2, 256	1.480		62.5		65	s aq, alc, bz, chl, eth
b408	3-Bromopropionitrile	BrCH ₂ CH ₂ CN	133.98	2 ² , 231	1.6152420	1.480020		78 ^{10mm}	98	v s alc, eth
b409	2-Bromopropionyl bromide	CH₃CH(Br)COBr	215.88	2, 256	2.061	1.518220		50 ^{10mm}	>110	
b410	2-Bromopropionyl chloride	CH ₃ CH(Br)COCl	171.43	2, 256	1.70011	1.480020		133	51	d aq; s chl, eth
b411	3-Bromopropionyl chloride	CH ₃ CH(Br)COCl	171.43	2², 231	1.701	1.496820		57 ^{17mm}	79	
b412	2-Bromopropio- phenone	C ₆ H ₅ COCH(Br)CH ₃	213.08	7, 302	1.430420	1.571520		250	>110	s alc, bz, eth, acet
b413	3-Bromopropyl phenyl ether	C ₆ H ₅ OCH ₂ CH ₂ CH ₂ Br	215.10	6, 142	1.365	1.546420	10-11	134 ^{14mm}	96	
b414	3-Bromopropyltri- chlorosilane	Br(CH ₂) ₃ SiCl ₃	256.44		1.605	1.490020		202–204	76	
b415	3-Bromopropyne	BrCH ₂ C≡CH	118.97	1, 248	1.335	1.490520		88-90	18	
b416	2-Bromopyridine	$Br(C_5H_4N)$	158.00	20, 233	1.65718	1.572020		194	54	i aq; s org solv
b417	3-Bromopyridine	$Br(C_5H_4N)$	158.00	20, 233	1.6454	1.569520	142-143	173	51	s aq; v s alc, eth
b418	3-Bromoquinoline		208.06	20, 363	1.533	1.664020	15	276	>110	s HOAc
b419	5-Bromosalicylic acid	Br(HO)C ₆ H ₃ COOH	217.02	10, 107			166			0.3 aq ⁸⁰ ; 85 alc ²⁵ ; 70 eth ²⁵
b420	β -Bromostyrene	C ₆ H ₅ CH=CHBr	183.05	5, 477	1.42240	1.606620	7	112 ^{20mm}	79	i aq; misc alc, eth

No	Name	Formula	Formula weight	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
110.	Itallic	Torinaia	weight	Tererence	g/IIIL	maex	point, c	point, C	point, c	parts sorvent
b42 1	(±)-Bromosuccinic acid	HOOCH ₂ CH(Br)COOH	196.99	2, 621	2.073		161			18 aq; s alc, acet, eth
b422	N-Bromosuccinimide		177.99	21, 380	2.098		173 sl dec			1.5 aq ²⁵ ; 14.4 acet ²⁵ ; 3.1 HOAc ²⁵
b423	1-Bromotetradecane	H(CH ₂) ₁₄ Br	277.30	1², 136	1.0124425	1.460020	6	178 ^{20mm}	>110	s alc; v s chl; misc bz, acet
b424	3-Bromotetrahydro-2- methyl-2 <i>H</i> -pyran		179.06	17³, 75	1.366	1.483020		61 ^{17mm}	57	
b425	3-Bromothioanisole	BrC _c H ₄ SCH ₃	203.11	6, 330			38-40		>110	
b426	2-Bromothiophene	$Br(C_4H_3S)$	163.04	17, 33	1.684_{4}^{20}	1.586020		151	60	v s acet, eth
b427	3-Bromothiophene	$Br(C_{4}H_{3}S)$	163.04		1.740	1.591020		150	56	
b428	4-Bromothiophenol	BrC ₆ H₄SH	189.08	6, 330			76	239		
b429	2-Bromotoluene	BrC ₆ H ₄ CH ₃	171.04	5, 304	1.422_{25}^{25}	1.55225	-26	181	78	0.1 aq; misc alc, bz, chl, eth
b430	3-Bromotoluene	BrC ₆ H ₄ CH ₃	171.04	5, 305	1.409920	1.551720	- 39.8	183.7	60	s alc, bz, eth
b431	4-Bromotoluene	BrC ₆ H₄CH ₃	171.04	5, 305	1.395935	1.5490	28.5	184.5	85	s alc, bz, eth
b432	Bromotrichloro- methane	BrCCl ₃	198.28	1, 67	1.99725	1.506320	-6	104-105		misc org solv
b433	1-Bromotridecane	$H(CH_2)_{13}Br$	263.27	1², 134	1.026240	1.459220	7	150 ^{10mm}	>110	v s chl
b434	Bromotrifluoro- methane	BrCF ₃	148.91	1 ³ , 83	6.087 g/L		- 168 to - 172	- 57.8		v s chl
b435	5-Bromo-1,2,4-tri- methylbenzene	BrC ₆ H ₂ (CH ₃) ₃	199.10	5, 403	Ŭ		73	235		i aq; s alc
b436	2-Bromo-1,3,5-tri- methylbenzene	BrC ₆ H ₂ (CH ₃) ₃	199.10	5, 408	1.301	1.551120	2	225	96	i aq; s bz; v s eth
b437	Bromotrimethyl- germane	(CH ₃) ₃ GeBr	197.60		1.54418	1.470520	-25	113.7	37	
Ъ438	Bromotrimethylsilane	(CH ₃) ₃ SiBr	153.10		1.160	1.414020		79	32	
b439	Bromotriphenyl- ethylene	$(C_6H_5)_2C = C(Br)C_6H_5$	335.22	5, 722			115-117			
b440	Bromotriphenyl- methane	(C ₆ H ₅) ₃ CBr	323.24	5, 704			152-154	230 ^{15mm}		
b441	1-Bromoundecane	CH ₂ (CH ₂) ₁₀ Br	235.22	1 ² , 132	1.954	1.456320	-9	138 ^{18mm}	>110	
b442	11-Bromoundecanoic	Br(CH ₂) ₁₀ COOH	265.20	2², 315			51	174 ^{2mm}	>110	i aq; v s alc
b443	α-Bromo-1 2-xylene	BrCH_C_H_CH	185.07	5 365	1 38123	1 38120	21	224	82	salc eth
b444	α-Bromo-1.3-xylene	BrCH ₂ C ₄ H ₂ CH ₂	185.07	5. 374	1.37023	1.556020		185 ³⁴⁰ mm	82	s alc. eth
b445	2-Bromo-1,4-xylene	BrCH ₂ C ₆ H ₃ CH ₃	185.07	5, 385	1.340	1.550520	9-10	199-201	79	v s chl, hot ether

Ъ446 Ъ447	4-Bromo-1,2-xylene Brucine	BrCH ₂ C ₆ H ₃ CH ₃	185.07 394.45	5, 365 27², 797	1.37015	1.556020	178	215	80	v s alc, eth 77 alc; 1 bz; 20 chl; 4 EtOAc
b448	1,2-Butadiene	CH ₃ CH=C=CH ₂	54.09	1, 249	0.67610	1.42051	- 136.2	10.9		misc alc, eth
Ъ449	1,3-Butadiene	H ₂ C=CHCH=CH ₂	54.09	1, 249	2.211	1.4293-25	- 108.9	-4.4	-76	misc alc, eth
b450	Butadiene sulfone		118.15	17 ³ , 144			66		>110	
b451	1,3-Butadienyl acetate	CH ₃ CO ₂ CH=CHCH=CH ₂	112.13	2 ³ , 295	0.945	1.469020		60 ^{40mm}	33	
b452	1,3-Butadiyne	HC≡CC≡CH	50.06	1 ³ , 1056	0.73644	1.41895	36	10.3		v s eth; s acet, bz
b453	2-Butanamine	CH ₃ CH ₂ CH(NH ₂)CH ₃	73.14	4, 160	0.730845	1.396315	- 104.5	66	-19	misc aq, alc
b454	Butane	CH ₃ CH ₂ CH ₂ CH ₃	58.12	1, 118	0.6011°	1.3562-13	- 138.3	- 0.50	- 60	 vol aq dissolves 0.15 vol and 1 vol alc 18 vols at 17° and 770 mm; 1 vol ether or CHCl₃ dissolves 25 or 30 vols, resp.
b455	1,4-Butanediamine	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ NH ₂	88.15	4, 264	0.877_4^{25}	1.456920	28	158-160	51	s aq
Ъ456	Butanedinitrile	NCCH ₂ CH ₂ CN	80.09	2, 615	0.98674	1.417360	54.5	266	132	11.5 aq; s acet, chl, 1,4-dioxane; sl s bz
b457	1,2-Butanediol	CH ₃ CH ₂ CH(OH)CH ₂ OH	90.12	1, 477	1.00618	1.4380 ²⁰		207.5	93	s aq, alc, acet
b457a	1,3-Butanediol	CH ₃ CH(OH)CH ₂ CH ₂ OH	90.12	1, 477	1.0053^{20}_{20}	1.44120	<-50	207.5	121	s aq, alc, acet; 9 eth
b457b	1,4-Butanediol	HOCH ₂ CH ₂ CH ₂ CH ₂ OH	90.12	1, 478	1.01645	1.445220	20	235	121	misc aq, alc, acet; 0.3 bz; 3.1 eth; 0.9 PE
b458	meso-2,3-Butanediol	CH ₃ CH(OH)CH(OH)CH ₃	90.12	1, 479	0.993945	1.432435	25	182	85	misc aq, alc
b459	1,4-Butanediol di- methanesulfonate	CH ₃ SO ₂ O(CH ₂) ₄ OSO ₂ CH ₃	246.30	4 ⁴ , 19			114–117			2.4 acet ²⁵ ; 0.1 alc ²⁵
b460	1,3-Butanediol di- acetate	CH ₃ CO ₂ CH ₂ CH ₂ CH(CH ₃)- O ₂ CCH ₃	174.20	2, 143	1.028	1.419920		99 ^{8mm}	85	
b461	1,4-Butanediol di- acrylate	(H ₂ C=CHCO ₂ CH ₂ CH ₂ -) ₂	198.22	24, 170	1.051	1.4560 ²⁰		83 ^{0.3mm}	>110	
b462	1,3-Butanediol di- methacrylate	$H_2C = C(CH_3)CO_2CH_2CH_2$ - CH(CH_2)O_2CC(CH_2) = CH_2	226.28		1.010	1.452020		290	>110	
b463	1,4-Butanediol di- methacrylate	$[H_2C = C(CH_3)CO_2CH_2CH_2-]_2$	226.28	24, 1534	1.010	1.456020		134 ^{4mm}	>110	
b464	1,4-Butanediol divinyl ether	(-CH ₂ CH ₂ OCH=CH ₂) ₂	142.20	14, 2518	0.898	1.44420	-8	64 ^{10mm}	62	
b 465	1,4-Butanediol vinyl ether	H ₂ C=CHO(CH ₂) ₄ OH	116.16	14, 2518	0.939	1.444020		95 ²⁰	85	

TABLE 2.20	Physical Constants	of Organic Compound	ls (Continued)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
b466 b467	2,3-Butanedione 2,3-Butanedione mon- oxide	$CH_{3}C(=O)C(=O)CH_{3}$ $CH_{3}C(=NOH)C(=O)CH_{3}$	86.09 101.11	1, 769 1, 772	0.99015	1.395120	75-78	86 186	7	25 aq; misc alc, eth
b468	1,4-Butanedithiol	HSCH ₂ CH ₂ CH ₂ CH ₂ SH	122.25	1, 479	1.042	1.529020		106 ^{30mm}	70	i aq; v s alc
b468a	Butanenitrile	CH ₃ CH ₂ CH ₂ CN	69.11	2², 252	0.7936	1.444020	-112	117.6	24	3.3 aq; misc alc, eth
b469	1,2,3,4-Butanetetra- carboxylic acid	[-CH(COOH)CH ₂ COOH] ₂	234.16	2, 863			196			
b470	1-Butanethiol	CH ₃ CH ₂ CH ₂ CH ₂ SH	90.19	1, 370	0.836745	1.443025	-116	98.5	2	0.06 aq; v s alc, eth
b471	2-Butanethiol	CH ₃ CH ₂ CH(SH)CH ₃	90.19	1, 373	0.824645	1.433825	- 165	85.0	21	sl s aq; v s alc, eth
b472	1,2,4-Butanetriol	HOCH ₂ CH ₂ CH(OH)CH ₂ OH	106.12	1, 519	1.19020	1.474820		191 ^{18mm}	167	v s aq, alc
b473	1-Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	74.12	1, 367	0.8097420	1.399320	- 89.5	117.7	37	7.4 aq; misc alc, eth
b474	2-Butanol	CH ₃ CH ₂ CH(OH)CH ₃	74.12	1, 371	0.8069420	1.397220	-114.7	99.5	24	12.5 aq; misc alc, eth
b475	2-Butanone	CH ₃ CH ₂ COCH ₃	72.11	1, 666	0.8054420	1.378820	- 86.7	79.6	-9	24 aq; misc alc, bz, eth
b476	2-Butanone oxime	CH ₃ CH ₂ C(=NOH)CH ₃	87.12	1, 668	0.924	1.442020		60 ^{15mm}	60	- · · ·
b477	1-Butene	CH ₃ CH ₂ CH=CH ₂	56.11	1, 203	0.6255 ^{mp}	1.396220	- 185.3	-6.5	- 80	i aq; v s alc, eth
b478	cis-2-Butene	CH ₃ CH=CHCH ₃	56.11	13, 728	0.6213	1.3931-25	- 139.3	3.7	-73	i aq; v s alc, eth
b479	trans-2-Butene	CH ₃ CH=CHCH ₃	56.11	1, 205	0.6041	1.3848-25	-105.8	0.9	-73	i aq; v s alc, eth
b480	cis-2-Butene-1,4-diol	HOCH ₂ CH=CHCH ₂ OH	88.11	1², 567	1.0700420	1.478020	2	234	128	s aq; v s alc
b481	trans-2-Butene-1,4- diol	HOCH ₂ CH=CHCH ₂ OH	88.11	13, 2252	1.070420	1.475520	25	132		v s aq, alc
b482	3-Butenenitrile	H ₂ C==CHCH ₂ CN	67.09	2, 408	0.834140	1.406020	- 87	119	21	sl s ag; misc alc, eth
Ъ483	cis-2-Butenoic acid	CH ₃ CH=CHCOOH	86.09	2, 412	1.026740	1.448314	1415	168-169		v s aq; s alc
b484	trans-2-Butenoic acid	СН ₃ СН=СНСООН	86.09	2, 408	0.9604480	1.424877	72	185	87	55 aq; 52 EtOH; 53 acet; 37 toluene
b485	3-Butenoic acid	H ₂ C=CHCH ₂ COOH	86.09	2, 407	1.009140	1.424920	- 39	163	65	s aq; misc alc, eth
b486	cis-2-Buten-1-ol	CH ₃ CH=CHCH ₂ OH	72.11	1, 442	0.866240	1.434220	- 89.4	123.6	56	16.6 aq; misc alc
b487	trans-2-Buten-1-ol	CH ₃ CH==CHCH ₂ OH	72.11	1, 442	0.8524420	1.428920	<-30	121.2	56	16.6 aq; misc alc
b488	3-Buten-2-one	$H_2C = CHCOCH_3$	70.09	1, 728	0.863640	1.408620		81.4	-6	v s aq, alc, acet, eth
b489	1-Buten-3-yne	$HC \equiv CCH = CH_2$	52.07	1 ³ , 1032	0.70951	1.4161		5.1		
b490	4-Butoxyaniline	CH ₃ (CH ₂) ₃ OC ₆ H ₄ NH ₂	165.24	13², 226	0.992	1.554320		149 ^{13mm}	>110	
b491	4-Butoxybenzoic acid	CH ₃ (CH ₂) ₃ OC ₆ H ₄ COOH	194.23	10², 93			150			
b492	Butoxycarbonylmethyl butyl phthalate	2-[CH ₃ (CH ₂) ₃ O ₂ CCH ₂ O ₂ C]- C ₆ H ₄ CO ₂ (CH ₂) ₃ CH ₃	336.39	9, <i>3</i> , 4187	1.100	1.490020		219 ^{5mm}	>110	
b493	2-Butoxyethanol	CH ₃ (CH ₂) ₃ OCH ₂ CH ₂ OH	118.18	1², 519	0.901240	1.419820	-75	168	69	5 aq; s most org solv
b494	1- <i>tert</i> -Butoxy-2-ethox- yethane	(CH ₃) ₃ COCH ₂ CH ₂ OC ₂ H ₅	146.23	1 ³ , 2085	0.834	1.401520		148	33	

b495	2-(2-Butoxyethoxy)- ethanol	HOCH ₂ CH ₂ OCH ₂ CH ₂ OC ₄ H ₉	162.23	1², 521	0.953620	1.430620	-68.1	230.4	100	misc aq, alc, bz, acet, CCl ₄ , PE
b496	2-(2-Butoxyethoxy)- ethyl acetate	CH ₃ CO ₂ (CH ₂ CH ₂ O) ₂ CH ₂ - CH ₂ CH ₂ CH ₃	204.27	2 ³ , 308	0.978	1.426020		245	>110	
b497	2-Butoxyethyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ O(CH ₂) ₃ CH ₃	160.22	2³, 307	0.942	1.413620		192	76	
b498	2- <i>tert</i> -Butoxy-2-meth- oxyethane	(CH ₃) ₃ CO ₂ CH ₂ CH ₂ OCH ₃	132.20	1³, 2084	0.840	1.398520		132	25	
b499	1-tert-Butoxy-2-pro- panol	(CH ₃) ₃ COCH ₂ CH(OH)CH ₃	132.10	1 ³ , 2148	0.874	1.413020		143-145	44	
b500	3-Butoxypropylamine	CH ₃ (CH ₂) ₃ O(CH ₂) ₃ NH ₂	73.14	4 ³ , 739	0.853	1.426020		170	63	
ь501	Butyl acetate	$C_4H_9O_2CH_3$	116.16	2, 130	0.8813420	1.394120	-77/-78	126	22	0.43 aq; misc alc, eth; s most org solvents
ь502	DL-sec-Butyl acetate	CH ₃ CO ₂ CH(CH ₃)C ₂ H ₅	116.16	2 ² , 131	0.874820	1.388820	-99	112	31	0.62 aq; s alc, eth
ь503	tert-Butyl acetate	(CH ₃) ₃ CO ₂ CCH ₃	116.16	2, 131	0.866540	1.387020		95.1	16	i aq; misc alc, eth
b504	tert-Butylacetic acid	(CH ₃)CCH ₂ COOH	116.16	2, 337	0.912	1.411520	67	190		-
b505	tert-Butyl acetoacetate	(CH ₃) ₃ COC(==0)CH ₂ - C(==0)CH ₃	158.20		0.954	1.418020			60	
ь506	2-Butylacrolein	(CH ₃ (CH ₂) ₃ C(=CH ₂)CHO	112.17	1 ⁴ , 3482	0.843	1.434820		139	33	
Ь507	N-tert-Butylacrylamide	H ₂ C=CHCONHC(CH ₃) ₃	127.19	4⁴, 66 4			128-129			
b507a	Butyl acrylate	H ₂ ==CHCO ₂ (CH ₂) ₃ CH ₃	128.17	2², 388	0.894	1.418020	-64	145	39	0.14 aq ²⁰
b508	tert-Butyl acrylate	$H_2C = CHCO_2C(CH_3)_3$	128.17	2 ³ , 1228	0.875	1.410820		63 ^{60mm}	17	
ь509	Butylamine	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂	73.14	4, 156	0.732745	1.399225	- 50/ 49	77	- 12	misc aq, alc, eth
ь510	(±)-sec-Butylamine	C ₂ H ₅ CH(NH ₂)CH ₃	73.14	4, 160	0.724420	1.392820	- 104	63	-9	misc aq, alc
Ь511	tert-Butylamine	(CH ₃) ₃ CNH ₂	73.14	4, 173	0.695140	1.378820	66	44	-9	misc aq, alc
b512	Butyl-4-aminobenzoate	$H_2NC_6H_4CO_2(CH_2)_3CH_3$	193.25	14², 249			5759	174 ^{8mm}		v sl s aq; s dil acids, alc, chl, eth
b513	2-(<i>tert</i> -Butylamino)- ethanol	(CH ₃) ₃ CNHCH ₂ CH ₂ OH	117.19				42-45	92 ^{25mm}	68	
b514	2-(<i>tert</i> -Butylamino)- ethyl methacrylate	$H_2C == C(CH_3)CO_2CH_2 - CH_2NC(CH_3)_3$	185.27	4ª, 1509	0.914	1.442020		82 ^{10mm}	71	
b515	3-(<i>tert</i> -Butylamino)- 1,2-propanediol	(CH ₃) ₃ CNHCH ₂ CH(OH)- CH ₂ OH	147.22				70	92 ^{1mm}		
b516	2-Butylaniline	CH ₃ (CH ₂) ₃ C ₅ H ₄ NH ₂	149.24	12 ² , 633	0.953	1.538020		123 ^{12mm}	108	
Ь517	2-sec-Butylaniline	C ₂ H ₅ CH(CH ₃)C ₆ H ₄ NH ₂	149.24	123, 2721	0.957	1.541020		122 ^{16mm}	>110	
b518	4-Butylaniline	CH ₃ (CH ₂) ₃ C ₆ H ₄ NH ₂	149.24	12 ¹ , 503	0.945	1.535020		120 ^{15mm}	101	
b519	4-sec-Butylaniline	C ₂ H ₅ CH(CH ₃)C ₆ H ₄ NH ₂	149.24	122, 635	0.977	1.537020		245 ^{727mm}	107	

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued))
-------------------	----------	--------------	---------	-----------	-------------	---

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
b520	2- <i>tert</i> -Butylanthra- quinone		264.32				98-100			
b521	Butylbenzene	CH ₃ CH ₂ CH ₂ CH ₂ CH ₅ C ₆ H ₅	134.22	5, 413	0.86044	1.489820	- 88	183	71	misc alc, bz, eth
b522	sec-Butylbenzene	C ₂ H ₅ CH(CH ₃)C ₆ H ₅	134.22	5, 414	0.860840	1.489020	- 82.7	173	52	misc alc, bz, eth
b523	tert-Butylbenzene	(CH ₃) ₃ CC ₆ H ₅	134.22	5, 415	0.866940	1.492320	- 58.1	168.5	60	misc alc, bz, eth
b524	Butyl benzoate	C ₆ H ₅ CO ₂ C ₄ H ₉	178.23	9, 112	1.000020	1.496	-22	250	106	i aq; s alc, eth
b525	2-Butylbenzofuran		174.25	-	0.987	1.533020			101	-
b526	4- <i>tert</i> -Butylbenzoic acid	(CH ₃) ₃ CC ₆ H ₄ COOH	178.23	9, 560	1.14240		166.3			i aq; v s alc, bz
b527	4- <i>tert</i> -Butylbenzoyl chloride	(CH ₃) ₃ CC ₆ H ₄ COCl	196.68		1.007	1.536420		135 ^{20mm}	87	
b528	N-(tert-Butyl)benzyl- amine	C ₆ H ₅ CH ₂ NHC(CH ₃) ₃	163.27	12, 1022	0.881	1.496820		80 ^{5mm}	80	
b529	tert-Butyl bromo- acetate	BrCH ₂ CO ₂ C(CH ₃) ₃	195.06	2¹, 96	1.321	1.445020		50 ^{10mm}	49	
b530	Butyl 2-butoxy-2- hydroxyacetate	CH ₃ (CH ₂) ₃ OCH(OH)CO ₂ -	204.27	34, 1497	0.996	1.429120		90 ^{40mm}	74	
b531	Butyl butyrate	CH_CH_CH_CCO_C_H_	144.22	2. 271	0.869220	1.406420	-91.5	166	49	i ag: misc alc, eth
b532	Butyl carbamate	$H_{2}NCO_{2}(CH_{2})_{2}CH_{2}$	117.15		-		53-55		108	1, ,
b533	Butyl carbazate	H ₂ NNHCO ₂ C(CH ₃) ₃	132.16				39-42	65 ^{0.03mm}	91	
b534	4-tert-Butylcatechol	(CH ₃) ₃ C ₆ H ₃ -1,2-(OH) ₂	166.22		1.049%		52-55	285	151	0.2 aq; ⁸⁰ 240 eth; ²⁵ s alc; v s acet
b535	tert-Butyl chloro- acetate	CICH ₂ CO ₂ C(CH ₃) ₃	150.61	2 ³ , 444	1.053	1.423020		49 ^{11mm}	46	
b536	4- <i>tert</i> -Butyl-1-chloro- benzene	(CH ₃) ₃ C ₆ H ₄ Cl	158.67	5, 416	1.006	1.510820	23-25	217		
b537	tert-Butylchlorodi- phenylsilane	(CH ₃) ₃ CSi(C ₆ H ₅) ₂ Cl	274.87		1.057	1.567520		90 ^{0.02mm}	>110	
b538	Butyl chloroformate	ClCO ₂ C ₄ H _o	136.58	3 ² . 11	1.07425	1.411420		142	25	d aq, alc; misc eth
b539	Butyl cyanoacetate	NCCH ₂ CO ₂ C ₄ H ₂	141.17	21, 255	0.993	1.425420		115 ^{15mm}	87	
b540	tert-Butyl cyanoacetate	NCCH ₂ CO ₂ C(CH ₃) ₃	141.17		0.972	1.420020		108	91	
b541	Butylcyclohexane	$(C_6H_{11})_{s}C_4H_{9}$	140.27	5 ¹ , 20	0.818	1.440020	- 78	178-180	41	
b542	tert-Butylcyclohexane	$(C_6H_{11})C(CH_3)_3$	140.27	5 ¹ , 20	0.831	1.447020		167	42	
b543	2-tert-Butylcyclo- hexanol	(CH ₃) ₃ C(C ₆ H ₁₀)OH	145.27	6 ³ , 126	0.902		43-46		79	i aq
b544	4- <i>tert</i> -Butylcyclo- hexanol	(CH ₃) ₃ C(C ₆ H ₁₀)OH	156.27	61, 18			62-70	115 ^{15mm}	105	i aq

b545	2-tert-Butylcyclo- hexanone	(CH ₃) ₃ C(C ₆ H ₉)(==O)	154.25	73, 143	0.896	1.456520		63 ^{4mm}	72	
b546	4- <i>tert</i> -Butylcyclo- hexanone	(CH ₃) ₃ C(C ₆ H ₉)(=O)	154.25	7 ¹ , 29			47-50	116 ^{20mm}	96	i aq
b547	Butyl decyl <i>o</i> - phthalate	$C_4H_9O_2C_6H_4CO_2C_{10}H_{21}$	362.51		0.99425				202	
b548	4-sec-Butyl-2,6-di-tert- butylphenol	C ₂ H ₅ CH(CH ₃)C ₆ H ₂ (OH)- [C(CH ₃) ₃]	262.44	6, <i>3</i> , 2094	0.902		25	142 ^{10mm}	>110	
b549 b550	N-Butyldiethanolamine Butyl 3,4-dihydro-2,2- dimethyl-4-oxo-2 <i>H</i> - pyran-6-carboxylate	C ₄ H ₉ N(CH ₂ CH ₂ OH) ₂	161.25 226.27	4, 285	0.986 ²⁰ 1.054 ²⁵ 25	1.4625 ²⁰ 1.4767 ²⁰	- 70	276 256–270	126 >110	
b551	tert-Butyldimethyl- chlorosilane	(CH ₃) ₃ CSi(CH ₃) ₂ Cl	150.73	4,4, 4076			89	124-126	22	
b552	6- <i>tert</i> -Butyl-2,4-di- methylphenol	(CH ₃) ₃ CC ₆ H ₂ (CH ₃) ₂ OH	178.28	6³, 2020		1.517820	23	249	111	
b553	N-Butylethanolamine	HOCH ₂ CH ₂ NHC₄H ₉	117.19		0.8920	1.44420	-3.5	192	77	
b554	Butyl ethyl ether	C₄H₀OC₂H₅	102.18	1, 369	0.749540	1.381820	- 124	92	4	i aq; misc alc, eth
b555	2-Butyl-2-ethyl-1,5- pentanediamine	$H_2N(CH_2)_3C[(CH_2)_3CH_3]-$ (C ₂ H ₅)CH ₂ NH ₂	186.34		0.876	1.470020		269 ^{750mm}	>110	
b556	2-Butyl-2-ethyl-1,3- propanediol	HOCH ₂ C(C ₂ H ₅)(C ₄ H ₉)CH ₂ OH	160.25	1 ³ , 2228	0.93120	1.458725	41-44	178 ^{50mm}	>110	0.8 aq
b557	Butyl ethyl sulfide	C ₄ H ₉ SC ₂ H ₅	118.24	13, 1522	0.8376420	1.4491 ²⁰	- 95.1	144.2		s chl
b558	N-tert-Butyl- formamide	HCONHC(CH ₃) ₃	101.15	4 ³ , 324	0.903	1.433020	16	202	95	
b559 b560	Butyl formate Butyl glycidyl ether	HCO ₂ C ₄ H ₉ H ₂ C—CHCH ₂ OC ₄ H ₉	102.13	2, 21	0.892	1.388920	-91.5	106	18	
b561	<i>tert</i> -Butyl glycidyl ether	H ₂ C—CHCH ₂ OC(CH ₃) ₃	130.19	173, 988	0.917	1.416620			43	
b562	tert-Butylhydrazine HCl	(CH ₃) ₃ CNHNH ₂ ·HCl	124.61	4 ³ , 1734			194			
b563	tert-Butyl hydro- peroxide	(CH ₃) ₃ C—O—OH	90.12	1 ³ , 1579	0.896420	1.400720	-8	34 ^{17mm}	37	s aq, alc, chl, eth
b564	1-Butylimidazole		124.19	23², 36	0.945	1.480020		116 ^{12mm}	>110	
b565	Butyl isocyanate	C₄H₅NCO	99.13		0.880	1.406120		115	17	

TABLE 2.20 Physical Constants of Organic Compounds (Compounds)	ontinued)
---	-----------

N	N		Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
b566	tert-Butyl isocyanate	(CH ₃) ₃ CNCO	99.13	4, 175	0.868	1.386520		86	-4	
b567	Butyl lactate	CH ₃ CH(OH)CO ₂ C ₄ H ₉	148.19	3², 207	0.984	1.421020	-28	185-187	69	
b568	Butyl levulinate	CH ₃ COCH ₂ CH ₂ CO ₂ C ₄ H ₉	172.22		0.974	1.427020		108 ^{5.5mm}	91	
b569	Butyl 3-mercapto- propionate	HSCH ₂ CH ₂ CO ₂ C ₄ H ₉	162.25		0.795	1.410020		101 ^{12mm}	93	
b570	Butyl methacrylate	H ₂ C==C(CH ₃)CO ₂ C ₄ H ₉	142.19	2 ³ , 1286	0.88925	1.423025		170	50	i aq; misc alc, eth
ь571	sec-Butyl-2-methyl-2-	CH ₃ CH==C(CH ₃)CO ₂ -	156.23		0.889	1.435020		85 ^{27mm}	66	-
	butenoate	CH(CH ₃)C ₂ H ₅								
b572	tert-Butyl methyl ether	(CH ₃) ₃ COCH ₃	88.15	1, 381	0.74044	1.368920	- 109	52	-28	4.8 aq; v s alc, eth; un- stable acid solns
b573	2-tert-Butyl-4-methyl- phenol	(CH ₃) ₃ CC ₆ H ₃ (CH ₃)OH	164.25		0.924745	1.496975	51.7	237	100	i aq; s org solv
b574	2- <i>tert</i> -Butyl-5-methyl- phenol	(CH ₃) ₃ CC ₆ H ₃ (CH ₃)OH	164.25	6², 507	0.964	1.519220		118 ^{12mm}	105	
b575	2- <i>tert</i> -Butyl-6-methyl- phenol	(CH ₃) ₃ CC ₆ H ₃ (CH ₃)OH	164.25			1.519020	30-32	230	107	
b576	<i>tert</i> -Butyl-1-methyl-2- propynyl ether	(CH ₃) ₃ COCH(CH ₃)C≡CH	126.20		0.795	1.410020		41 ^{25mm}	10	
b577	<i>tert</i> -Butyl methyl sulfide	(CH ₃) ₃ CSCH ₃	104.21	1 ³ , 1591	0.826420	1.44120	-97.8	102	-3	v s alc
b578	Butyl nitrite	C₄H ₉ ONO	103.12	1, 369	0.9114 ⁰	1.3768		78	-13	misc alc, eth
b579	tert-Butyl nitrite	(CH ₃) ₃ CONO	103.12	1, 382	0.867140	1.368720		63	-13	sl s aq; v s alc, chl, eth, CS ₂
b580	Butyl 4-nitrobenzoate	O ₂ NC ₆ H ₄ CO ₂ C ₄ H ₉	223.23	9², 259			35-39	160 ^{8mm}	>110	_
b581	Butyl octadecanoate	CH ₃ (CH ₂) ₁₆ CO ₂ C ₄ H ₉	340.60	2², 352	0.8551 ²⁰	1.442225	26.3	343	160	s alc; v s acet
b581a	Butyl cis-9-octa- decenoate	$CH_3(CH_2)_8CH == CH(CH_2)_7 - CO_2C_4H_7$	338.57		0.870415	1.448025	-26		180	s eth
b582	Butyl 4-oxopentanoate	$CH_3C(=O)CH_2CH_2CO_2C_4H_9$	172.22		0.9735 ²⁰	1.427020		107 ^{6mm}	91	s alc, acet, eth
Ь583	4-(1-Butylpentyl)-	C ₄ H ₉ CHC(CH ₂) ₃ CH ₃	205.35	20 ³ , 2872	0.887	1.487720		267	>110	
	pyridine	 C₅H₄N								
b584	<i>tert</i> -Butyl peroxo- benzoate	C ₆ H ₅ C(=0)0-0-C(CH ₃) ₃	194.23		1.021	1.499020		76 ^{0.2mm}	93	
b585	2-sec-Butylphenol	CH ₃ CH ₂ CH(CH ₃)C ₆ H ₄ OH	150.22		0.982	1.522220	12	228	112	i aq; s alc; v s eth
b586	2-tert-Butylphenol	(CH ₃) ₃ CC ₆ H ₄ OH	150.22	6², 489	0.9783 ²⁰	1.522820	-7	221-224	>110	
b587	4-sec-Butylphenol	CH ₃ CH ₂ CH(CH ₃)C ₆ H ₄ OH	150.22	6, 522	0.969420	1.5150	62	136 ^{25mm}	115	s hot aq, alc, eth
b588	4-tert-Butylphenol	(CH ₃) ₃ CC ₆ H₄OH	150.22	6, 524	0.9084114	1.4787114	98	237		i aq; s alc, eth

b589	tert-Butyl 4-phenoxy- phenol ketone	$C_6H_5OC_6H_4C(=O)C(CH_3)_3$	254.33	8 ³ , 491			52-54	175 ^{3mm}	>110	
ь590	<i>tert</i> -Butyl phenyl carbonate	$C_6H_5OC(==O)OC(CH_3)_3$	194.23		1.047	1.480520		79 ^{0.8mm}	101	
b591 b592	Butyl phenyl ether 4- <i>tert</i> -Butylphenyl salicylate	CH ₃ CH ₂ CH ₂ CH ₂ OC ₆ H ₅ HOC ₆ H ₄ CO ₂ CH ₆ H ₄ C(CH ₃) ₃	150.22 270.31	6, 143	0.9351420	1.497020	19 6264	210.3	82 (OC)	<0.1 aq; 79 alc; 153 EtOAc: 158 toluene
b593 b594 b595 b596	Butyl propionate tert-Butyl propionate 4-tert-Butyl pyridine tert-Butyl 1-pyrrole-	CH ₃ CH ₂ CO ₂ C ₄ H ₉ CH ₃ CH ₂ CO ₂ C(CH ₃) ₃ (CH ₃) ₃ C(C ₅ H ₄ N) (C ₄ H ₄ N)CO ₂ C(CH ₃) ₃	130.19 130.19 135.21 167.21	2, 241 2 ³ , 528 20, 252	0.8818 ¹⁵ 0.865 0.915 1.000	1.3982 ²⁵ 1.3930 ²⁰ 1.4952 ²⁰ 1.4685 ²⁰	- 89	146.8 118 197 92 ^{20mm}	38 20 63 75	v s alc, eth; v sl s aq
b597 b598 b599	carboxylate 1-Butylpyrrolidine 4- <i>tert</i> -Butylstyrene 1-Butyl-3-sulfanilyl-	$(C_4H_8N)C_4H_9$ $(CH_3)_3CC_6H_4CH==CH_2$ $4\cdot(H_2N)C_8H_4SO_2NH-$	127.23 160.26 271.34	20 ² , 4 5 ³ , 1254 14, <i>4</i> , 2667	0.814 0.875	1.4440 ²⁰ 1.5260 ²⁰	- 37 143-145	157 92 ^{9mm}	36 80	
ь600 ь601	Butyltin trichloride Butyltin tris(2-ethyl- hexanoate)	CONHC ₄ H ₉ C ₄ H ₉ SnCl ₃ [CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CO ₂] ₃ - SnC ₄ H ₉	282.17 605.43	4⁴, 4346	1.693 1.105	1.5229 ²⁰ 1.4650 ²⁰		93 ^{10mm}	81 >110	
b602 b603 b604	4-tert-Butyltoluene Butyltrichlorosilane tert-Butyltrichloro-	(CH ₃) ₃ CC ₆ H ₄ CH ₃ C ₄ H ₉ SiCl ₃ (CH ₃) ₃ CSiCl ₃	148.25 191.56 191.56	5, 439 4, <i>I</i> , 582 4 ³ , 1905	0.8612 ²⁰ 1.160	1.4918 ²⁰ 1.4370 ²⁰	-52 97-100	190 149 132-134	68 45 40	
b605 b606 b607	silane Butyl trifluoroacetate Butyltrimethoxysilane tert-Butyl trimethyl-	$CF_{3}CO_{2}C_{4}H_{9}$ $C_{4}H_{9}Si(OCH_{3})_{3}$ $(CH_{3})_{3}C-O-O-Si(CH_{3})_{3}$	170.1 178.3 162.3		$\begin{array}{c} 1.0268^{22} \\ 0.9312^{20}_4 \\ 0.8219^{20}_4 \end{array}$	1.353 ²² 1.3979 ²⁰ 1.3935 ²⁰	dec 135	100.1 164–165 41 ^{41mm}		
b608 b609 b610 b610a	Butylurea Butyl vinyl ether 5- <i>tert</i> -Butyl- <i>m</i> -xylene	$C_4H_9NHCONH_2$ $C_4H_9OCH==CH_2$ $(CH_3)_3CC_6H_3(CH_3)_2$ $CH_CH_C==CH_2$	116.16 100.16 162.28 54.09	4 ¹ , 371 5, 447	0.7792 ²⁰ 0.867 2.211	1.4007 ²⁰ 1.4946 ²⁰	9698 92	94.2 205–206	-9 72	s aq, alc, eth 0.3 aq
b610b b611	2-Butyne 2-Butyne-1,4-diol	$CH_3C \equiv C - CH_3$ $HOCH_2C \equiv CCH_2OH$	54.09 86.09	1 ¹ , 261	g/L 0.688	1.45025	- 32 56-58	27 238	152	374 aq; 83 als; 0.04
b612	Butyraldehyde	CH ₃ CH ₂ CH ₂ CHO	72.11	1, 662	0.8016420	1.384320	-96/-99	74.8	-22	7.1 aq; misc alc, acet, eth, EtOAc

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued))
-------------------	----------	--------------	---------	-----------	-------------	---

No	Nomo	Formula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Name	Formula	weight	reference	g/mL	index	point, 'C	point, 'C	point, 'C	parts solvent
b613	Butyramide	CH ₃ CH ₂ CH ₂ CONH ₂	87.12	2, 275			116	216		16 aq; s alc
b614	Butyric acid	CH ₃ CH ₂ CH ₂ COOH	88.11	2, 264	0.958240	1.399120	-5.3/-5.7	163.5	72	misc aq, alc, eth
b615	Butyric anhydride	$[CH_3CH_2CH_2C(=0)]_2O$	158.20	2, 274	0.966840	1.407020	-75/-66	199.5	54	s aq (dec); alc (dec), eth
b616	β -Butyrolactone		86.09	17 ¹ , 130	1.056	1.410920	-43.5	204	60	
b617	γ -Butyrolactone		86.09	17, 234	1.12445	1.434825	-43.5	204	98	misc aq; s alc, acet, bz, eth
b618	Butyronitrile	CH ₃ CH ₂ CH ₂ CN	69.11	2², 252	0.795445	1.444020	-112	117.6	24	3.3 aq; misc alc, eth
b619	Butyrophenone	$C_6H_5C(=O)C_3H_7$	148.21	7, 313	1.021	1.519520	11-13	230	88	
b620	Butyryl chloride	CH ₃ CH ₂ CH ₂ COCl	106.55	2, 274	1.026341	1.41220	- 89	102	21	s aq (dec), alc (dec);
										misc eth
c 1	Caffeine		194.19	26, 461	1.2348		238	subl 178		2.1 aq; 1.5 alc; 18 chl; 0.19 eth; 1 bz; 2 acet
c2	(±)-Camphene		136.24	5, 156	0.842254	1.455154	51-52	159	36	i aq: s alc, chl, eth
c3	(1R)-(+)-Camphor		152.24	7, 101	0.99245	1.5462	179	207	66	100 alc; 100 eth; 200 chl: 250 acet
c4	(1R,3S)-Camphoric acid		200.23	9, 745	1.186420		186–188			at 25°C: 0.8 aq, 100 alc, 250 acet, 200 eth, 200 HOAc; s chl
c5	(±)-10-Camphor- sulfonic acid		232.30	11, 314			194 dec			deliq moist air; sl s HOAc, EtOAc: i eth
сб	Carbazole		167.21	20, 433	1.1048		245	355		16 pyr; 11 acet; 3 eth; 0.8 bz; sl s HOAc, PE
c7	4-Carbethoxy-2- methyl-3-cyclo- bexen-1-one		182.22	10, 631	1.078	1.488020		268–272	>110	
c8	Carbobenzyloxy-	C ₆ H ₅ CH ₂ OC(=O)NH-	209.20				122			
c9	Carbohydrazide	H ₂ NNHC(=0)NHNH ₂	90.08	3, 121			157-158			v s aq; i alc, bz, eth; forms salts with acids
c10	Carbon disulfide	CS ₂	76.14	3, 197	1.2632420	1.627020	- 111.6	46.5	- 30	0.3 aq; misc bz, chl, eth, CCl ₄

c 11	Carbon monoxide	со	28.01	Merck:	1.145		-205	- 191.5		2.3 aq; 16 alc; s chl,
c12	Carbon oxide sulfide	COS	60.07	12, 1801	2.456		- 138.8	- 50		EIUAC, HUAC
c13	Carbon tetrabromide	CBr ₄	331.65	1, 68	3.42		90	190	none	
c14	Carbon tetrachloride	CCl_4	153.82	1, 64	1.589 ²⁵	1.460720	-23	76.7	none	0.05 aq; misc alc, bz, chl, eth, CS ₂ , PE
c15	Carbon tetrafluoride	CF ₄	88.01	1, 59	1.89 ⁻¹⁸³ lia		- 183.6	- 127.8		· · · 2·
c16	Carbon tetraiodide	CL	519.63	1, 74	4.3240		171			s bz, chl; dec hot alc
c17	4-Carboxybenzene- sulfonamide	HOOCC ₆ H ₄ SO ₂ NH ₂	201.20	11, 390			dec 280			v s alc; s alkalis; i aq, bz, eth
c18	(4-Carboxybutyl)tri- phenylphosphonium bromide	HOOC(CH ₂) ₄ (C ₆ H ₅) ₃ Br	443.33				205-207			
c19	1-(Carboxymethyl)- pyridinium chloride		173.60				189 dec			
c20	R-(-)-Carvone		150.22	7, 157	0.96540	1.498920	<15	230	88	i aq; misc alc
c21	Catechol	C ₆ H ₄ -1,2-(OH) ₂	110.11		1.344		104-106	245	137	43 aq; v s alkalis, pyr; s alc, bz, chl, eth
c22	Catecholborane		119.92		1.125	1.507020	12	50 ^{50mm}	2	
c23	Chalcone	C ₆ H ₅ CH=CHCOC ₆ H ₅	208.26	7, 478	1.07124		55-57	208 ^{25mm}	>110	v s bz, chl, CS ₂ , eth; si s alc
c23a	Chloroacetaldehyde	CICH ₂ CHO	78.50	1, 610			- 16	85-86		s aq, alc, eth
c24	2-Chloroacetamide	CICH ₂ CONH ₂	93.51	2, 199			119	225 dec		10 aq; 10 alc; sl s eth
c25	2'-Chloroacetanilide	ClC ₆ H ₄ NHCOCH ₃	169.61	12, 559			88-90			s alc
c26	3'-Chloroacetanilide	ClC ₆ H₄NHCOCH ₃	169.61	12, 604			79-81			v s alc, bz, CS_2
c26a	4'-Chloroacetanilide	ClC ₆ H₄NHCOCH ₃	169.61	12, 611	1.3854		179			i aq; v s alc, eth, CS ₂
c27	Chloroacetic acid	CICH ₂ COOH	94.50	2, 194	1.580 (c)	1.429765	61	189	126	v s aq; s alc, bz, eth
c28	Chloroacetic anhydride	$[CICH_2C(=0)]_2O$	170.98	2, 199	1.5494420		46	203		v s chl, eth; sl s bz; dec by aq, alc
c29	4'-Chloroacetoacet- anilide	CH ₃ COCH ₂ CH ₂ CO- NHC ₆ H ₄ Cl	211.65				134	dec	160 (CC)	
c30	Chloroacetonitrile	CICH ₂ CN	75.50	2, 201	1.193	1.422520		126	47	
c31	2-Chloroacetophenone	C ₆ H ₅ COCH ₂ Cl	154.60	7, 282	1.32415		54-56	245		i aq; v s alc, bz, eth
c32	o-Chloroacetophenone	ClC ₆ H ₄ COCH ₃	154.60	7 ¹ , 151	1.188	1.543820		228 ^{738mm}	88	sl s aq; s eth

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
c33	p-Chloroacetophenone	CIC ₆ H ₄ COCH ₃	154.60	7, 281	1.192420	1.55520	20-21	237	90	i aq; misc alc, eth
c34	Chloroacetyl chloride	CICH ₂ COCl	112.94	2, 199	1.420 ²⁰	1.454120	-21.8	106	none	dec by aq, MeOH
c36	2-Chloroacrylonitrile	$H_2C = C(Cl)CN$	87.51		1.096	1.429020	- 65	89	6	
c37	2-Chloro-4-amino-	ClC ₆ H ₃ (CH ₃)NH ₂	141.60	12, 988	1.1671	1.584020	24-25	238	100	
	toluene									
c38	2-Chloroaniline	CIC ₆ H ₄ NH ₂	127.57	12, 597	1.2125_4^{20}	1.589520	- 14	208.8	97	0.88 aq; s acids, most
			100.00	10.000	1 01 5022	1 503130	10.4	000 5	100	common org solvents
c39	3-Chloroaniline	CIC ₆ H₄NH ₂	127.57	12, 602	1.21504	1.593120	- 10.4	230.5	123	aq; s most common
c40	4-Chloroaniline	CIC-H-NH-	127.57	12, 607	1,16977	1.554685	72.5	232		s hot ag: v s alc. acet.
0,0				,						eth, CS_2
c41	1-Chloroanthra-		242.66	7, 787			160	sublimes		sl s alc; s hot bz; misc
	quinone									eth
c42	2-Chloroanthra-		242.66	7, 787			211	sublimes		sl s alc, bz; i eth
	quinone			5 000	1.0.(0000			015	07	
c43	2-Chlorobenzaldehyde	CIC ₆ H ₄ CHO	140.57	7, 233	1.24834	1.5658	11	215	87	si s aq; s alc, bz, eth
c44	3-Chlorobenzaldehyde	CIC ₆ H ₄ CHO	140.57	7, 234	1.241	1.554520	18	214	88	
c45	4-Chlorobenzaldehyde	ClC ₆ H ₄ CHO	140.57	7, 235	1.1964	1.55261	47	214	87	s aq; v s alc, bz, eth
c46	2-Chlorobenzamide	ClC ₆ H ₄ CONH ₂	155.58	9, 336			142-144			
c47	Chlorobenzene	C ₆ H ₅ Cl	112.56	5, 199	1.106320	1.524820	-45.3	131.7	28	0.049 aq ³⁰ ; v s alc, bz, chl, eth
c48	4-Chlorobenzene- sulfonamide	ClC ₆ H ₄ SO ₂ NH ₂	191.64	11, 55			146			s hot aq, hot alc, hot eth
c49	4-Chlorobenzene-	CIC+H_SO_H	192.62	11, 54				149 ^{22mm}	107	
	sulfonic acid	0 4 5		· ·						
c50	4-Chlorobenzene-	ClC ₆ H ₄ SO ₂ Cl	211.07	11, 55			55	141 ^{15mm}	107	dec aq, alc; v s bz, eth
	sulfonyl chloride									
c51	2-Chlorobenzoic acid	ClC ₆ H ₄ COOH	156.57	9, 334	1.544_4^{20}		140			0.11 aq; v s alc, eth
c52	3-Chlorobenzoic acid	ClC ₆ H₄COOH	156.57	9, 337	1.496 ²⁵		158			0.04 aq; v s alc, eth
c53	4-Chlorobenzoic acid	ClC ₆ H ₄ COOH	156.57	9, 340			241-243			0.02 aq; v s alc, eth
c54	2-Chlorobenzonitrile	ClC ₆ H₄CN	137.57	9, 336			46	232	108	s alc, eth
c55	4-Chlorobenzonitrile	ClC ₆ H₄CN	137.57	9, 341			93	223		s alc, bz, chl, eth
c56	2-Chlorobenzo-	CIC ₆ H ₄ COC ₆ H ₅	216.67	7, 419			44-47	300	>110	
	phenone									
c57	4-Chlorobenzo-	CIC ₆ H ₄ COC ₆ H ₅	216.67	7, 419			77	196 ^{17mm}		s alc, acet, bz, eth
	phenone									

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

c58	2-Chlorobenzotri- chloride	ClC ₆ H ₄ CCl ₃	229.92	5, 302	1.508	1.581720	29	264	98	
c59	4-Chlorobenzotri- chloride	ClC ₆ H ₄ CCl ₃	229.92	5, 303	1.495	1.572220		245	>110	
c60	2-Chlorobenzotri- fluoride	ClC ₆ H ₄ CF ₃	180.56	5 ³ , 692	1.354025	1.451325	-6.4	152	58	
c61	3-Chlorobenzotri- fluoride	CIC ₆ H ₄ CF ₃	180.56	5³, 692	1.331125	1.443825	- 56.7	137.7	38	
c62	4-Chlorobenzotri- fluoride	ClC ₆ H ₄ CF ₃	180.56		1.35320	1.4463	- 36	138.7	47	
c63	2-(4-Chlorobenzoyl)- benzoic acid	ClC ₆ H₄COC ₆ H₄COOH	260.68	10, 750			150			s alc, bz, eth
c64	2-Chlorobenzoyl chloride	ClC ₆ H ₄ COCl	175.01	9, 336	1.382	1.571820	-3	238	>110	dec by aq & alc
c65	4-Chlorobenzoyl chloride	ClC ₆ H ₄ COCl	175.01	9, 341	1.377	1.578020	14	222	105	dec by aq & alc
c66	4-Chlorobenzyl alcohol	ClC ₆ H ₄ CH ₂ OH	142.59	6, 444			72	234		v s alc, eth
c67	2-Chlorobenzylamine	ClC ₆ H ₄ CH ₂ NH ₂	141.60	12, 1073	1.173	1.563020		104 ^{11mm}	88	
c68	4-Chlorobenzylamine	ClC ₆ H ₄ CH ₂ NH ₂	141.60	12, 1074	1.164	1.558620		215	90	
c69	2-Chlorobenzyl chloride	ClC ₆ H ₄ CH ₂ Cl	161.03	5, 297	1.274	1.559120	- 17	214	82	
c70	4-Chlorobenzyl chloride	ClC ₆ H ₄ CH ₂ Cl	161.03	5, 308			30	222	97	s alc, v s eth
c71	2-Chlorobenzyl cyanide	ClC ₆ H ₄ CH ₂ CN	151.60	9, 448		1.554020	24	242	>110	
c72	4-Chlorobenzyl cyanide	ClC ₆ H ₄ CH ₂ CN	151.60	9, 448			30.3	267	>110	
c73	4-Chlorobenzyl mercaptan	ClC ₆ H₄CH₂SH	158.65	6, 466	1.202	1.589320	20		76	
c74	1-Chloro-1,3-butadiene	H ₂ C==CHCH==CHCl	88.54	1 ³ , 949	0.960140	1.4712 ²⁰		68	- 20	v s chl
c74a	2-Chloro-1,3-butadiene	$H_2C = CHC(Cl) = CH_2$	88.54		0.952			59		
c75	1-Chlorobutane	CH ₃ CH ₂ CH ₂ CH ₂ Cl	92.57	1, 118	0.8864420	1.402120	- 123.1	78.4	-9	0.11 aq; misc alc, eth
c76	2-Chlorobutane	CH ₃ CH ₂ CH(Cl)CH ₃	92.57	1, 119	0.8732420	1.397120	- 131.3	68.2	- 15	0.1 aq; misc alc, eth
c77	4-Chloro-1-butanol	ClCH ₂ CH ₂ CH ₂ CH ₂ OH	108.56	1 ² , 398	1.0883420	1.451820		89 ^{20mm}	32	s alc, eth
c78	3-Chloro-2-butanone	CH ₃ CH(Cl)C(=O)CH ₃	106.55	1, 669	1.055	1.417220		117	21	v s alc, eth
c79	cis-1-Chloro-2-butene	CH₃CH=CHCH₂Cl	90.55	1², 176	0.942620	1.439020		84.1	-15	s alc, acet
TABLE 2.20 Physical Constants of Organic Compounds (Continued)

								i	1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
c80	trans-1-Chloro-2- butene	CH ₃ CH=CHCH ₂ Cl	90.55	1², 176	0.929	1.439020		85	-5	s alc, acet
c81	3-Chloro-1-butene	CH-CH(CI)CH==CH-	90.55	1 ² , 174	0.900120	1.415520		65	-20	v s acet
c82	4-Chlorobutyl acetate	CH ₂ CO ₂ CH ₂ CH ₂ CH ₂ CH ₂ Cl	150.61	2^2 , 141	1.072	1.433820		92 ^{22mm}	64	
c83	3-Chloro-1-butyne	CH ₂ CH(Cl)C≡CH	88.54	14, 970	0.961	1.428020		68-70	1	
c84	3-Chlorobutyric acid	CH ₃ CH(CI)CH ₃ COOH	122.55	2,277	1.1864	1.442120	16.3	109 ^{17mm}	>110	s alc, eth
c85	4-Chlorobutyric acid	СІСН-СН-СООН	122.55	2, 278	1.223640	1.452120	12-16	196 ^{22mm}	>110	sl s aq; v s eth
c86	4-Chlorobutyronitrile	CICH,CH,CH,CN	103.55	2, 278	1.158	1.441320		197	85	s alc, eth
c87	4-Chlorobutyryl chlo-	CICH,CH,CH,COCI	141.00	2, 278	1.258	1.460920		174	72	dec by aq, alc; s eth
	ride			-						
c88	Chloro(chloromethyl)- dimethylsilane	ClCH ₂ Si(CH ₃) ₂ Cl	143.09		1.086	1.437320		114 ^{752mm}	21	
c89	3-Chloro-2-chloro-	$H_2C = C(CH_2CI)_2$	125.00	1², 181	1.080	1.475320	- 14	138	36	
	methyl-1-propene									
c90	trans-2-Chloro- cinnamic acid	ClC ₆ H ₄ CH==CHCO ₂ H	182.61	9, 594			208-210			
c91	Chlorocyclohexane	ClC ₆ H ₁₁	118.61	5, 21	1.0004	1.462020	- 44	142	28	i aq; s alc, eth
c92	1-Chloro-3-cyclo- hexylpropane	$C_6H_{11}(CH_2)_3Cl$	160.69	5², 23	0.997	1.466220		79 ^{5mm}	78	-
c93	Chlorocyclopentane	C-H-Cl	104.58	5, 19	1.005120	1.451220		114	15	i aq
c94	1-Chlorodecane	CH ₃ (CH ₂) ₀ Cl	176.73	1, 168	0.868	1.436220	-34	223	83	i aq
c95	Chlorodicyclohexyl- borane	$(C_6H_{11})_2BCl$	212.57	164, 1637	0.970			101 ^{1mm}		-
c96	2-Chloro-1,1-diethoxy- ethane	CICH ₂ CH(OC ₂ H ₅) ₂	152.62	1, 611	1.018	1.415720		157	29	
c97	3-Chloro-1,1-diethoxy- propane	ClCH ₂ CH ₂ CH(OC ₂ H ₅) ₂	166.65	1, 632	0.995	1.424020		84 ^{25mm}	36	
c98	Chlorodifluoroacetic acid	F ₂ C(Cl)COOH	130.48	2, 201	1.540	1.355920	24-26	122	none	
c99	1-Chloro-2,4-difluoro- benzene	$ClC_6H_3F_2$	148.54	5 ⁴ , 653	1.353	1.4750 ²⁰		127	32	
c100	1-Chloro-1,1-difluoro- ethane	CH ₃ C(CI)F ₂	100.50	1 ³ , 138	4.108 g/L		- 131	-10		0.19 aq
c100a	1-Chloro-2,2-difluoro- ethylene	CICH=CF ₂	98.48		4.025 g/L		- 138.5	- 18.5		
c101	Chlorodifluoro- methane	HCCIF ₂	86.47	1 ³ , 41	1.4909- ⁶⁹		- 157	-40.8		0.30 aq

c102	1-Chloro-2,4-di-	CIC ₆ H ₃ (OH) ₂	144.56	6², 818			107	147 ^{18mm}		v s aq, alc, chl, eth
c103	2-Chloro-1,4-di-	ClC ₆ H ₃ (OH) ₂	144.56	6, 849			101-102	263		v s aq; i alc, s eth
c104	2-Chloro-1,4-di-	ClC ₆ H ₃ (OCH ₃) ₂	172.61	6³, 4432	1.211	1.546720		234	110	
c105	2-Chloro-1,1-di-	ClCH ₂ CH(OCH ₃) ₂	124.57		1.09420	1.414820		130	28	
c107	2-Chloro-4,6-di-	CIC ₆ H ₂ (CH ₃) ₂ NH ₂	155.63	12, 1125	1.110		38-40		>110	
c108	4-Chloro-3,5-di- methylphenol	ClC ₆ H ₂ (CH ₃) ₂ OH	156.61	6², 463			115.5	246		0.03 aq; 100 alc; s bz, eth_alkalis
c109	1-Chloro-2,2-di- methylpropane	(CH ₃) ₃ CCH ₂ Cl	106.59	1, 141	0.866420	1.404220	-20	84.4	32	
c110	3-Chloro-2,2- dimethyl-1-propanol	CICH ₂ C(CH ₃) ₂ CH ₂ OH	122.60			1.450420	34-36	87 ^{35mm}	71	
c111	Chlorodimethylsilane	(CH ₃) ₂ Si(Cl)H	94.62		0.85240	1.382720	- 111	36	-28	
c112	Chlorodimethylvinyl- silane	(CH ₃) ₂ Si(Cl)CH=CH ₂	120.7	4,4, 4080	0.88445	1.41425		82.5	-5	
c113	6-Chloro-2,4-dinitro- aniline	$ClC_6H_2(NO_2)_2NH_2$	217.57	12 ¹ , 367			159			
c114	1-Chloro-2,4-dinitro- benzene	ClC ₆ H ₃ (NO ₂) ₂	202.55	5, 263	1.4982475	1.585760	5254	315	186	sl s alc; s hot alc, bz, eth
c115	2-Chloro-3,5-dinitro- benzoic acid	ClC ₆ H ₂ (NO ₂) ₂ COOH	246.56	9, 415			198	241 explodes		0.3 aq
c116	Chlorodiphenyl- methane	C ₆ H ₅ CH(Cl)C ₆ H ₅	202.68	5², 500	1.140420	1.595120	17	140 ^{3mm}	>110	
c117	Chlorodiphenylmethyl- silane	(C ₆ H ₅) ₂ Si(Cl)CH ₃	232.8	16², 606	1.1277420	1.574220		295	>110	
c118	Chlorodiphenyl- phosphine	$(C_6H_5)_2PCl$	220.64	16, 763	1.229	1.633820		320	>110	
c119	1-Chlorododecane	CH ₃ (CH ₂) ₁₁ Cl	204.79		0.8673420	1.4426	9	116	93	v s alc; s bz
c120	1-Chloro-2,3-epoxy- propane	H ₂ C—CHCH ₂ Cl	92.53	17, 6	1.1812420	1.435820	-57.2	116.1	31	5.9 aq; misc alc, chl
c121	Chloroethane	CH ₃ CH ₂ Cl	64.52	1, 82	0.9214 ⁰	1.374210	- 139	12.3	- 50	0.45 aq ⁰ ; 48 alc; misc
c122	2-Chloroethanol	CICH ₂ CH ₂ OH	80.52	1, 337	1.201920	1.442220	-67.5	128.6	60	misc aq, alc

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

						1				
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
c123	2-(2-Chloroethoxy)- ethanol	CICH ₂ CH ₂ OCH ₂ CH ₂ OH	124.57	1, 467	1.180	1.452920		81 ^{5mm}	90	
c124	2-[2-(2-Chloroethoxy)- ethoxy]ethanol	CICH ₂ CH ₂ OCH ₂ CH ₂ O- CH ₂ CH ₂ OH	168.62	1, 468	1.160	1.458020		120 ^{5mm}	107	
c125	2-Chloroethoxytri- methylsilane	CICH ₂ CH ₂ OSi(CH ₃) ₃	152.70	4 ³ , 1856	0.944	1.414020		134	30	
c126	2-Chloroethylamine hydrochloride	CICH ₂ CH ₂ NH ₂ ·HCl	115.99	4, 133			146			
c127	1-Chloro-2-ethyl- benzene	ClC ₆ H ₄ C ₂ H ₅	140.61		1.05525		- 81	179.2	66	i aq; misc alc, eth
c128	(2-Chloroethyl)- benzene	C ₆ H ₅ CH ₂ CH ₂ Cl	140.61	5, 354	1.069	1.530020		84 ^{16mm}	66	s alc, bz, eth
c129 c130	Chloroethylene N-(2-Chloroethyl)-N- ethylamine	H ₂ C=CHCl C ₆ H ₃ N(C ₂ H ₅)CH ₂ CH ₂ Cl	62.50 183.68	1, 186 12 ³ , 263	0.97 ¹⁴ 1.075	1.558420	154	- 13.4 164 ^{42mm}	-78 >110	sl s aq; s alc
c131	2-Chloroethyl ethyl ether	CICH ₂ CH ₂ OCH ₂ CH ₃	108.57	1, 337	0.989	1.412020		107	15	
c132	2-Chloroethyl methyl ether	ClCH ₂ CH ₂ OCH ₃	94.54	1, 337	1.035	1.409020		90	15	
c133	N-(2-Chloroethyl)- morpholine HCl		186.08				186			
c133a	2-Chloroethyl phenyl ether	C ₆ H ₅ OCH ₂ CH ₂ Cl	156.61	6 ³ , 675	1.129	1.534020		98 ^{15mm}	100	
c134	N-(2-Chloroethyl)- piperidine HCl		184.11	20, 17			236			
c135	2-Chloroethyl p- toluenesulfonate	CH ₃ C ₆ H ₄ SO ₃ CH ₂ CH ₂ Cl	234.70	11², 45	1.294	1.529020		153 ^{0.3mm}	>110	
c136	2-Chloroethyl vinyl ether	H ₂ C==CHOCH ₂ CH ₂ Cl	106.55	1², 473	1.052515	1.437020	- 69.7	110	16	0.6 aq
c137	1-Chloro-2-fluoro- benzene	ClC₀H₄F	130.55	5 ¹ , 110	1.244	1.501020	- 42.4	138.5	31	s alc, eth
c138	1-Chloro-3-fluoro- benzene	ClC₀H₄F	130.55		1.219	1.494420		126	20	s alc, eth
c139	2-Chloro-6-fluoro- benzyl chloride	Cl(F)C ₆ H ₃ CH ₂ Cl	179.02		1.401	1.537220			93	
c140	4-Chloro-4'-fluoro- butyrophenone	FC ₆ H ₄ C(=O)CH ₂ CH ₂ CH ₂ CH ₂ Cl	200.64		1.220	1.525520			>110	

c141	3-Chloro-4-fluoro- nitrobenzene	Cl(F)C ₆ H ₃ NO ₂	175.55	5 ¹ , 130	1.602817	1.567417	41.5	127 ^{17mm}		
c142	2-Chloro-4-fluoro- phenol	Cl(F)C ₆ H ₃ OH	146.55	6 ⁴ , 880	1.344	1.5300	23	88 ^{4mm}	75	
c143	2-Chloro-6-fluoro- toluene	Cl(F)C ₆ H ₃ CH ₃	144.58		1.191	1.502620		156	46	
c 144	4-Chloro-2-fluoro- toluene	Cl(F)C ₆ H ₃ CH ₃	144.58	5⁴, 813	1.186	1.499820		158 ^{743mm}	51	
c145	Chloroform	CHCl ₃	119.39	1, 61	1.483220	1.445920	-63.6	61.1		0.50 aq ²⁵ ; misc alc, bz, eth, PE, CCl ₄
c146	Chloroform-d	CDCl ₃	120.39	1 ³ , 63	1.500	1.444520	- 64	60.9		see under chloroform
c147	1-Chloroheptane	CH ₃ (CH ₂) ₆ Cl	134.65	1, 154	0.88106	1.425020	- 69	159-161	41	misc alc, eth
c148	1-Chlorohexadecane	CH ₃ (CH ₂) ₁₅ Cl	260.89	1, 172	0.865	1.449020		149 ^{1mm}	>110	
c149	1-Chlorohexane	CH ₃ (CH ₂) ₅ Cl	120.62	1, 143	0.8780420	1.419520	- 94	134	26	i aq
c150	6-Chloro-1-hexanol	CI(CH ₂),OH	136.62		1.204	1.456020		110 ^{14mm}	98	sl s aq; v s alc, eth
c151	4-Chloro-4'-hydroxy-	$ClC_{\epsilon}H_{4}C(=O)C_{\epsilon}H_{4}OH$	232.67	8 ² , 187			175-178	257 ^{13mm}		-
	benzophenone	04()04								
c152	5-Chloro-8-hydroxy- 7-iodoguinoline		305.50	21, 98			172			i alc, eth; 0.8 chl; 0.6 HOAc
c153	5-Chloro-8-hydroxy- quinoline		179.61	21, 95			130			sl s aq HCl
c154	1-Chloro-4-iodo- benzene	ClC ₆ H₄I	238.46	5, 221	1.186457		53–54	227	108	s alc
c155	1-Chloro-3-iodo- propane	Cl(CH ₂) ₃ I	204.44	1, 114	1.904	1.546320		170-172	>110	
c156	1-Chloro-3-mercapto- 2-propanol	HSCH ₂ CH(OH)CH ₂ Cl	126.61	13, 2156	1.277	1.527620		57 ^{1.3mm}	97	
c157	Chloromethane	CH₃Cl	50.49	1, 59	2.064 g/L	1.3712-24	-97.7	-24.2	<0	0.48 aq; ²⁵ s alc,; misc chl, eth, HOAc
c158	3-Chloro-4-methoxy- aniline	ClC ₆ H ₃ (OCH ₃)NH ₂	157.60	13, 511			50-55		110	
c159	5-Chloro-2-methoxy- aniline	ClC ₆ H ₃ (OCH ₃)NH ₂	157.60	13, 383			83-85			
c160	1-Chloro-2-methoxy- benzene	ClC ₆ H ₄ OCH ₃	1 42.59	6, 184	1.123	1.544520		196	76	i aq; s alc, eth
c161	5-Chloro-2-methoxy- benzoic acid	ClC ₆ H ₃ (OCH ₃)COOH	186.59	10, 103			98-100			

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

			1			1		1	1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
c162	2-Chloro-6-methoxy- pyridine	CH ₃ O(Cl)(C ₅ H ₃ N)	143.57		1.207	1.526320	-	186	*	
c163	2-Chloro-6-methyl- aniline	CH ₃ O(Cl)C ₆ H ₃ NH ₂	141.60	12 ¹ , 388	1.152	1.576120	2	215	98	s alc
c164	3-Chloro-2-methyl- aniline	CH ₃ O(Cl)C ₆ H ₃ NH ₂	141.60	12, 836	1.185	1.587420	2	117 ^{30mm}	>110	
c165	3-Chloro-4-methyl- aniline	CH ₃ O(CI)C ₆ H ₃ NH ₂	141.60	12, 988		1.583020	25	238	100	
c166	4-Chloro-2-methyl- aniline	CH ₃ O(Cl)C ₆ H ₃ NH ₂	141.60	12, 835		1.5848 ²⁰	27	241	99	s hot alc
c167	5-Chloro-2-methyl- aniline	CH ₃ O(Cl)C ₆ H ₃ NH ₂	141.60	12, 835		1.584020	22	237	160	
c168	3-(Chloromethyl)- benzoyl chloride	CICH ₂ C ₆ H ₄ COCI	189.04	9², 325	1.330	1.574820		150 ^{20mm}	>110	
c169	DL-4-Chloro-2-(α- methylben- zyl)phenol	C ₆ H ₅ CH(CH ₃)C ₆ H ₃ (Cl)OH	232.71	6⁴, 4710	1.238	1.5994 ²⁰		155 ^{2mm}	>110	
c169a	1-Chloro-3-methyl- butane	ClCH ₂ CH ₂ CH(CH ₃)CH ₃	106.60		0.875020	1.408420	- 104	99	<21	sl s aq; misc alc, eth
c170	2-Chloro-2-methyl- butane	CH ₃ CH ₂ CCI(CH ₃) ₂	106.59	1, 134	0.8650420	1.405220	- 73.7	85	-9	i aq; s alc, eth
c171	Chloromethyldichloro- methylsilane	ClCH ₂ Si(Cl) ₂ CH ₃	163.5	4 ³ , 1888	1.286	1.449420		121	110	
c172	Chloromethyl ethyl ether	CICH ₂ OCH ₂ CH ₃	94.54	1², 645	1.0440	1.404020		7983	19	s alc; v s eth
c172a	3-(Chloromethyl)- heptane	CH ₃ CH ₂ CH ₂ CH ₂ CH(CH ₂ Cl)- CH ₃ CH ₂	148.68		0.876920	1.431920		172	60	
c173	Chloromethyl methyl ether	CICH ₂ OCH ₃	80.51	1, 580	1.07034 ²⁰	1.396120	- 103.5	57-59	15	dec by aq; s acet, CS ₂
c174	Chloromethyl methyl sulfide	CICH ₂ SCH ₃	95.48		1.153	1.496320		105	17	
c175	1-(Chloromethyl)- naphthalene	C ₁₀ H ₇ CH ₂ Cl	176.65	5, 566	1.180	1.638020	32	169 ^{25mm}	>110	
c176	4-Chloro-2-methyl- phenol	CH ₃ (Cl)C ₆ H ₃ OH	142.59	6, 359			4548	220-225	>110	sl s ag

c177	4-Chloro-3-methyl- phenol	CH ₃ (Cl)C ₆ H ₃ OH	142.59	6, 381			65–68	235		i aq; s alc, bz, chl, eth, acet
c178	1-Chloro-2-methyl-2- phenylpropane	$C_6H_5(CH_3)_2CH_2Cl$	168.67	5 ² , 320	1.047	1.5240 ²⁰		96 ^{10mm}	92	
c179	1-Chloro-2-methyl-	(CH ₃) ₂ CHCH ₂ Cl	92.57	1, 124	0.882915	1.401015	- 130.3	68.9	<21	0.09 aq; misc alc, eth
c180	2-Chloro-2-methyl-	(CH ₃) ₃ CCl	92.57	1, 125	0.842020	1.385620	- 26	50.8	<0	sl s aq; misc alc, eth
c181	1-Chloro-2-methyl-	(CH ₃) ₂ C=CHCl	90.55	1, 209	0.9186420	1.422520		68.1	-1	misc alc, eth
c182	3-Chloro-2-methyl-	ClCH ₂ C(CH ₃)=CH ₂	90.55	1, 209	0.921045	1.427220	- 80	72	- 12	misc alc, eth
c183	Chloromethyltri- methylsilane	ClCH ₂ Si(CH ₃) ₃	122.67	4 ³ , 1844	0.886140	1.418020		99	-2	
c184	6-(Chloromethyl)- uracil		160.56	23 ¹ , 328			257 dec			
c185	1-Chloronaphthalene	C ₁₀ H ₇ Cl	162.62	5, 541	1,19384	1.632620	-2.3	259	121	s alc, bz, PE
c186	2-Chloronaphthalene	C ₁₀ H ₂ Cl	162.62		1.137771	1.607971	60	256		s alc, bz, chl, eth
c187	4'-Chloro-3'-nitro- acetophenone	$CIC_6H_3(NO_2)C(=O)CH_3$	199.60	7³, 995			101			
c188	2-Chloro-4-nitro- aniline	ClC ₆ H ₃ (NO ₂)NH ₂	172.57	12, 733			107-109			sl s aq; v s alc, eth
c189	2-Chloro-5-nitro- aniline	CIC ₆ H ₃ (NO ₂)NH ₂	172.57	12, 732			119–121			
c190	4-Chloro-2-nitro- aniline	ClC ₆ H ₃ (NO ₂)NH ₂	172.57	12, 729			117–119			v s alc, eth
c191	4-Chloro-3-nitro- aniline	CIC ₆ H ₃ (NO ₂)NH ₂	172.57	12, 731			99–101			v s alc; s eth
c192	1-Chloro-2-nitro- benzene	CIC ₆ H ₄ NO ₂	157.56	5, 241	1.348		33	246	123	s alc, bz, eth
c193	1-Chloro-3-nitro- benzene	ClC ₆ H ₄ NO ₂	157.56	5, 243	1.53444		44	236	103	sl s alc; v s chl, eth
c194	1-Chloro-4-nitro- benzene	CIC ₆ H ₄ NO ₂	157.56	5, 243	1.520		83-84	242	>110	sl s alc; v s eth, CS_2
c195	2-Chloro-4-nitro- benzoic acid	ClC ₆ H ₃ (NO ₂)COOH	201.57	9, 404			139–141			s hot aq, hot bz
c1 96	2-Chloro-5-nitro- benzoic acid	CIC ₆ H ₃ (NO ₂)COOH	201.57	9, 403	1.60818		166–168			si s aq; s alc, bz, eth
c197	4-Chloro-3-nitro- benzoic acid	CIC ₆ H ₃ (NO ₂)COOH	201.57	9, 402	1.64518		180-183			sl s alc; s hot aq
c198	4-Chloro-3-nitro- benzophenone	$ClC_6H_3(NO_2)C(=O)C_6H_5$	261.66	71, 230			104-106	235 ^{13mm}		

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
c199	2-Chloro-5-nitro-	ClC ₆ H ₃ (NO ₂)CF ₃	225.55		1.527	1.508320		231	98	
	benzotrifluoride									
c200	4-Chloro-3-nitro-	ClC ₆ H ₃ (NO ₂)CF ₃	225.55		1.511	1.489320	-2.5	222	101	
	benzotrifluoride									
c201	4-Chloro-2-nitrophenol	ClC ₆ H ₃ (NO ₂)OH	173.56	6, 238			85-87			
c202	2-Chloro-6-nitro-	ClC ₆ H ₃ (NO ₂)CH ₃	171.58	5, 327		1.537770	36	238	125	i aq
	toluene		171.50	r 007			20	0.40718mm	> 110	· .
c203	4-Chloro-2-nitro-	$CIC_6H_3(NO_2)CH_3$	171.58	5, 327			39	240710000	>110	1 aq
-202-	toluene		200.05	13 566	0.840	1 451620		1591.5mm	>110	
c203a	1-Chlorooctadecane	$CH_3(CH_2)_{17}CI$	288.93	1, 500	0.849	1.4310-	58	192	70	0.02 age miss also oth
c204	1-Chloropentane	$CH_3(CH_2)_7CI$	106.60	1,139	0.873	1.4256		102	13	0.02 aq, mise ale, em
c204a	3-Chloro-2 4-pentane-		134 56	1, 150	1 1 2 9	1 483020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5218mm	12	
0205	dione	engeoen(en)eoeng	151.50	1, 705	1.125	1.1050		52		
c206	5-Chloro-2-pentanone	CICH ₂ CH ₂ CH ₂ COCH ₂	120.58	1², 738	1.057118	1.439020		72 ^{20mm}	35	s acet, eth
c207	3-Chloroperoxy-	CIC ₄ H ₄ C(0)OOH	172.57	94, 972	4		6971			
	benzoic acid									
c208	2-Chlorophenol	ClC _c H₄OH	128.56	6, 183	1.2573 ²³	1.556520	9.8	175	63	sl s aq; v s alc, eth,
	1	0 4		ŕ						caustic alkali
c209	3-Chlorophenol	ClC6H4OH	128.56	6, 185	1.24545	1.556540	33	214	>110	sl s aq; s alc, eth
c210	4-Chlorophenol	ClC ₆ H₄OH	128.56	6, 186	1.22384	1.547940	43	220	115	sl s aq; v s alc, chl,
										eth, CHCl ₃ , glyc
c211	4-Chlorophenoxyacetic	ClC ₆ H₄OCH ₂ COOH	186.59	6, 187			157-159			s aq; MeOH
	acid									
c212	2-(4-Chlorophenoxy)-	ClC ₆ H ₄ OC(CH ₃) ₂ COOH	214.65	Merck:			118-119			
	2-methylpropanoic			12, 2437						
	acid		200 (0	63 60 F						
c213	(\pm) -2-(4-Chlorophen-	CIC ₆ H ₄ UCH(CH ₃)COOH	200.62	6 ³ , 695			117			
-214	oxy)propanoic acid		170.60	0.449			109			voor de sthus hr
C214	4-Chiotophenylaceuc	Cic ₆ n ₄ Cn ₂ COON	170.00	9,440			100			v s ay, aic, cui, s uz
c215	(4-Chlorophenyl)-	CIC H CH CN	151.60	9 448			30.5	265-267	>110	
0215	acetonitrile	cic ₆ 114c112c1V	151.00	2, 110			50.5	205 207	2 110	
c216	2-Chloro-1.4-phenyl-	HaNCaHa(CI)NHa · HaSOa	240.67	13, 117			251-253			sac
	enediamine sulfate			,						1
c217	4-Chloro-1,2-phenyl-	$ClC_6H_3(NH_2)_2$	142.59	13, 25			70-73			s mineral acids
	enediamine	نية ∞نية > در ن								
c218	1-(4-Chlorophenyl)-	CIC ₆ H ₄ CH(CH ₃)OH	156.61	6 ¹ , 236	1.171	1.541020		119 ^{10mm}	>110	
	ethanol									

c219	3-Chlorophenyl iso- cyanate	ClC ₆ H₄NCO	153.57	12, 606	1.260	1.557620	-4.4	114 ^{43mm}	86	
c220	4-Chlorophenyl iso- cyanate	ClC ₆ H₄NCO	153.57	12, 616	1.200	1.561820	29-31	204	>110	
c221	4-Chlorophenyl phenyl sulfone	CIC ₆ H ₄ SO ₂ C ₆ H ₅	252.72	6 ¹ , 149			94			at 20°C: 74 acet; 44 bz; 5 CCl ₄ ; 65 diox; 21 i-PrOH
c222	1-Chloro-3-phenyl- propane	C ₆ H ₅ (CH ₂) ₃ Cl	154.64	5, 391	1.080	1.520720		219	87	
c223	4-Chlorophenyl sulfone	(ClC ₆ H ₅) ₂ SO ₂	287.17	6, 327			145148	250 ^{10mm}		
c224	3-Chlorophthalide		168.58	17 ¹ , 162			58	150 ^{10mm}		
c225	1-Chloropropane	CH4CH4CH4Cl	78.54	1, 104	0.889920	1.388620	- 122.8	46-47	-31	0.27 aq; misc alc, eth
c226	2-Chloropropane	CH ₃ CHCICH ₃	78.54	1, 105	0.856320	1.377720	-117	35-36	-35	0.2 aq ²⁰ ; misc alc, bz, chl, eth
c227	3-Chloro-1,2-propane- diol	CICH ₂ CH(OH)CH ₂ OH	110.54	1, 473	1.3218420	1.480520		213	>110	s aq, alc, eth
c228	2-Chloropropanoic acid	CH3CH(Cl)COOH	108.52	2, 248	1.182	1.434520		170190	101	misc aq, alc, eth
c229	3-Chloropropanoic acid	CICH ₂ CH ₂ COOH	108.52	2, 249			41	200 ^{765mm}	>110	v s aq, alc, chl; s eth
c230	1-Chloro-2-propanol	CH ₃ CH(OH)CH ₂ Cl	94.54	1, 363	1.11520	1.4375420		126-127	51	misc aq; s alc
c231	3-Chloro-1-propanol	CICH ₂ CH ₂ CH ₂ OH	94.54	1, 356	1.130940	1.445020		160162	73	
c232	Chloro-2-propanone	CICH ₂ COCH ₃	92.53	1, 653	1.13515	1.432020	-44.5	119.7	27	10 aq; misc alc, chl, eth
c233	3-Chloropropano- nitrile	CICH ₂ CH ₂ CN	89.53	2, 250	1.144318	1.434120	-51	95 ^{50mm} d > 130	75	
c234	3'-Chloropropano- phenone	ClC ₆ H ₄ C(=O)CH ₂ CH ₃	168.62	7 ³ , 1028			45-47	124 ^{14mm}	>110	
c235	2-Chloropropanyl chloride	CH3CH(Cl)COCl	126.97	2, 248	1.308	1.440020		109111	31	dec aq, alc
c236	3-Chloropropanyl chloride	CICH ₂ CH ₂ COCI	126.97	2, 250	1.330713	1.457020		143-145	61	i aq; d hot aq, hot alc; s alc; v s eth
c236a	3-Chloro-1-propene	CICH ₂ CH==CH ₂	76.53	1, 198	0.93840	1.415420	- 134.5	45	32	0.36 aq; misc alc, PE
c237	3-Chloropropylacetate	CH ₃ CO ₂ (CH ₃) ₃ Cl	130.02	4, 148			148-150			
c238	3-Chloropropyl thiolactate	CH ₃ C(=O)SCH ₂ CH ₂ Cl	152.64	2³, 493	1.159	1.494620		84 ^{10mm}	77	

No	Name	Formula	Formula weight	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
	Traine	1 official	weight	Tererence	g/IIIL	maex	point, c	point, C	point, C	
c239	(3-Chloropropyl)tri- ethoxysilane	CI(CH ₂) ₃ Si(OC ₂ H ₅) ₃	240.81		1.00940	1.42020		102 ^{10mm}		
c240	(3-Chloropropyl)tri- methoxysilane	Cl(CH ₂) ₃ Si(OCH ₃) ₃	198.72		1.07745	1.418325		195 ^{750mm}	78	
c241	3-Chloropropyne	CICH₂C≡CH	74.51	1, 248	1.030645	1.456020	- 78	57	- 13	misc alc, bz, eth, EtOAc
c242	2-Chloropyridine	Cl(C₅H₄N)	113.55	20, 230	1.20515	1.532020		166 ^{714mm}	65	sl s aq; s alc, eth
c243	3-Chloropyridine	$Cl(C_5H_4N)$	113.55	20, 230	1.194	1.530020		148	65	-
c244	4-Chlororesorcinol	$CIC_6H_3-1,3(OH)_2$	144.56	6 ² , 818			106108	147 ^{18mm}		
c245	4-Chlorosalicylic acid	CIC ₆ H ₃ (2-OH)COOH	172.57	10, 101			210-212			
c246	5-Chlorosalicylic acid	CIC ₆ H ₃ (2-OH)COOH	172.57	10, 102			172			
c247	N-Chlorosuccinimide		133.53	21, 380	1.65		150-151			1.4 aq; 0.67 alc; 2 bz; sl s chl, CCL, eth
c248	Chlorosulfonic acid	CIHO₃S	116.52	Merck:	1.75340	1.43714	80	152 ^{755mm}	none	s pyr, dichloroethane; ag dec with violence
c249	Chlorosulfonyl isocyanate	CISO₂NCO	141.53	12, 2210	1.626	1.4470 ²⁰	44	107	none	
c250	1-Chlorotetradecane	CH_(CH_)_Cl	232.84	12, 135	0.859	1.446020		142.4mm	>110	
c251	2-Chlorothionhene	CI(C-H-S)	118 59	17 32	1 286	1 548320	-72	127-129	22	i ac: misc alc. eth
c252	4-Chlorothiophenol	CIC.H.SH	144 62	6 326	1.200	110 100	49-52	205-207	>110	x adj milos are, sar
c253	8-Chlorothiophylline	0.06,14011	214.61	26 473			dec 290	200 207		s alkali
c254	Chlorotitanium triiso-	[(CH ₃) ₂ CHO] ₃ TiCl	260.62	20, 115	1.091				22	
c255	2-Chlorotoluene	CIC ₆ H ₄ CH ₃	126.59	5, 290	1.0826420	1.526820	35.6	159.0	47	sl s aq; v s alc, bz, chl,
c256	3-Chlorotoluere	CIC.H.CH.	126 59	5 291	1.076019	1 521820	47 8	161.8	50	s alc hz chl misc eth
~257	4 Chlorotoluene		126.59	5,202	1.060720	1.515020	75	162.4	49	si s ag: s alc bz eth
c258	N-Chloro-p-toluene sulfonamide, so- dium salt	CH ₃ C ₆ H ₄ SO ₂ NCl ⁻ Na ⁺	227.67	5, 272	1.00974	1.5150	167 dec	102.1		s aq; i bz, chl, eth
c259	4-(4-Chloro- <i>o</i> -tolyl- oxy)butyric acid	CIC ₆ H ₃ (CH ₃)O(CH ₂) ₃ COOH	228.68				99–100			
c260	Chlorotriethylgermane	(C ₂ H ₂) ₂ GeCl	195.23	43, 1912	1.175	1.459020			>110	
c261	Chlorotriethylsilane	(C ₁ H ₂) ₃ SiCl	150.73	4, 624	0.898	1.430020		142-144	29	
c262	Chloro-2,2,2-trifluoro- ethane	CF ₃ CH ₂ Cl	118.5	1,3, 138	1.3890	1.3090°	- 105	6.9		
c263	Chlorotrifluoro- ethylene	CF ₂ =CFCl	116.47	13, 646	1.315		-158.2	- 28		

c264	Chlorotrifluoro- methane	CICF ₃	104.46	13, 42	4.270 g/L		-181	-81		
c265	Chlorotrimethyl- germane	(CH ₃) ₃ GeCl	153.16		1.238222	1.428320	-13	102	1	
c266	Chlorotrimethylsilane	(CH ₃) ₃ SiCl	108.64	4,3, 1857	0.8580420	1.387020	-40	57	-27	
c 267	Chlorotriphenyl- methane	(C ₆ H ₅) ₃ CCl	278.78	5, 700			110-112	235 ^{20mm}		v s bz, chl, eth
c268	Chlorotriphenyltin	(C ₆ H ₅) ₃ SnCl	385.46	12, 914			108 dec	240 ^{14mm}		
c268a	Chloro-tris(dimethyl- amino)silane	[(CH ₃) ₂ N] ₃ SiCl	195.8		0.975420	1.44220		63 ^{12mm}		
c269	α -Chloro-o-xylene	CH ₃ C ₆ H ₄ CH ₂ Cl	140.61	5, 364	1.063	1.539120		96 ^{25mm}	73	i aq; misc alc, eth
c270	α -Chloro- <i>m</i> -xylene	CH ₃ C ₆ H ₄ CH ₂ Cl	140.61	5, 373	1.06420	1.535020		195-196	75	i aq; misc alc, eth
c271	α -Chloro-p-xylene	CH ₃ C ₆ H ₄ CH ₂ Cl	140.61	5, 384		1.533020	4.5	200	75	misc alc, bz, eth, acet
c272	2-Chloro-p-xylene	ClC ₆ H ₃ (CH ₃) ₂	140.61	5, 384	1.049	1.524020	2	186	57	
c273	4-Chloro-p-xylene	ClC ₆ H ₃ (CH ₃) ₂	140.61	5, 363	1.047	1.528020		221-223	66	misc alc, bz, eth, acet
c274	Cholesterol		386.66	6,3, 2607	1.052¦3		148.5	203 ^{0.5mm}		1.3 alc; 35 eth; 22 chl; s bz, PE
c275	Cholic acid		408.58	10³, 2162			198			(15°): 0.03 aq; 3.1 alc; 2.8 acet; 15.2 HOAc; 0.5 chl; 0.036 bz
c276	Cinchonine		194.40	23², 369			ca. 260			1.6 alc; 0.9 chl; 0.2 eth
c277	1,8-Cineole		154.25	17, 23	0.92125	1,457220	1	176.4	48	misc alc, chl, eth
c278	trans-Cinnamaldehyde	С ₆ Н ₅ СН==СНСНО	132.16	7, 348	1.05025	1.621920	-7.5	136 ^{20mm}	71	0.014 aq; misc alc, chl, eth
c279	trans-Cinnamic acid	C6H2CH=CHCOOH	148.16	9, 573	1.24754		133	300		0.05 aq; 16 alc; 8 chl
c280	trans-Cinnamoyl chlo- ride	C ₆ H ₅ CH==CHCOCI	166.61	9², 390	1.161745	1.61443	35-36	258	>110	s hot alc, CCl ₄
c281	Cinnamyl acetate	CH ₃ CO ₂ CH ₂ CH=CHC ₆ H ₅	176.22	6², 527	1.0571	1.542120		265	>110	
c282	Cinnamyl alcohol	C ₆ H ₅ CH=CHCH ₂ OH	134.18	6, 570	1.039735	1.575833	33	250.0	>110	s aq; v s common or- ganic solvents
c283	Cinnamyl chloride	C ₆ H ₅ CH==CHCH ₂ Cl	159.62	5, 482	1.096	1.584020	- 19	108 ^{12mm}	79	-
c284	Citraconic acid	CH ₃ C(COOH)=CHCOOH	130.10	2, 768	1.62		92 dec			v s aq, alc, eth; sl s chl; i bz, PE
c285	Citraconic anhydride		112.08	17, 440	1.247	1.471220	8	214	101	
c286	Citral (geranial plus neral, <i>cis</i> and <i>trans</i> forms, resp.)	(CH ₃) ₂ C=CHCH ₂ CH ₂ - C(CH ₃)=CHCHO	152.24		0.888	1.4876 ²⁰		229	101	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
c287	Citral dimethyl acetal	(CH ₃) ₂ C=CHCH ₂ CH ₂ -	198.31	14, 3570	0.890	1.454020	-	106 ^{10mm}	92	
c288	Citrazinic acid	C(CH ₃)=CH(OCH ₃) ₂	155.11	22, 254			carbonizes without melting > 300			i aq; s alkali
c289	Citric acid	HOOCCH₂C(OH)(COOH)- CH-COOH	192.12	3, 556	1.665		154			59 aq
c290	β -Citronellol	$(CH_3)_2C = CHCH_2CH_2$ - CH(CH_2)CH_2CH_2-	156.27	11, 232	0.8570420	1.456020		222	98	v sl s aq; misc alc, eth
c299	Cocaine	0.1(01.3)01.201.201	303.35	22², 150		1.502298	98	187 ^{0.1mm}		0.17 aq; 15 alc; 140 chl; 28 eth; s acet; EtOAc, CS ₂
c300	Coumarin		146.15	17, 328	0.93540		68–70	298		0.25 aq; v s alc, chl, eth: s alkali
c301	Creatine	HOOCCH ₂ N(CH ₃)- C(===NH)NH ₂	131.14	4, 363			dec 303			1.3 aq; 0.11 alc; i eth
c302	Creatinine	0(111)/112	113.12	24, 245			255 dec			8 ag; sl s alc; i eth
c303	o-Cresol	CH₃C ₆ H₄OH	108.14	6, 349	1.027341	1.536141	30	191	81	3.1 aq ⁴⁰ ; misc alc, chl, eth; s alkali
c304	m-Cresol	CH₃C₅H₄OH	108.14	6, 373	1.034420	1.543820	12	202.2	86	2.5 aq ⁴⁰ ; misc alc, chl, eth: s alkali
c305	p-Cresol	CH₃C₅H₄OH	108.14	6, 389	1.017941	1.531241	34.8	201.9	86	2.3 aq ⁴⁰ ; misc alc, chl, eth: s alkali
c306	trans-Crotonaldehvde	СН.СН=СНСНО	70.09	1, 728	0.851620	1.437320	-76	102-104	13	18.1 aq ²⁰
c307	Crotonic acid	CH ₃ CH=CHCOOH	86.19	2, 408	0.964 ⁸	1.422880	71.6	185	87	54.6 aq ²⁰ ; 52.5 EtOH ²⁵ ; 53 acet; 37.5 toluene
c308	Crotonic anhydride	(CH CH=CHO).0	154.17	2 411	1 040	1 474020		248	110	J7.J totuene
c309	Crotononitrile	CH-CH=CHCN	67.09	2, 412	1.419020	1.419020		121	20	
c310	Crotonyl chloride	CH-CH=CHCOCI	104.54	2, 411	1.091	1.460020		120-123	35	
c311	Crotyl alcohol	CH ₃ CH=CHCH ₂ OH	72.11	1, 442	0.845	1.427020		122	37	17 aq; misc alc
c312	Crotyl chloride	CH ₃ CH=CHCH ₂ Cl	90.55	1², 176	0.929	1.436020		85	-5	-
c313	12-Crown-4		176.21		1.089	1.463020		70 ^{0.5mm}	>110	specific for Li+
c314	18-Crown-6		264.32				42-45		>110	
c315	Crystal Violet		407.99	13, 756			215 dec			
c316	Cumene hydro- peroxide	C ₆ H ₅ C(CH ₃) ₂ OH	152.20	6 ³ , 1814	1.030	1.521020		101 ^{8mm}	56	

c316a c317 c318	Cumylphenol Cupferron Cyanamide	C ₆ H₅C(CH₃)₂C ₆ H₄OH C ₆ H₅N(NO)O [−] NH‡ H₂NCN	212.29 155.16 42.04	16 ¹ , 395 3 ² , 63	1.282420		74–76 163–164 46	335 83 ^{380mm}	>110	v s aq, alc 78 aq; 29 BuOH; 42
c319	2-Cyanoacetamide	NCCH ₂ CONH ₂	84.08	2, 589			119.5	10915mm	215	EtOAc; s alc, eth 25 aq; 3.1 alc
c320	Cyanoacetohydrazide	NCCH ₂ C(==0)NHNH ₂	99.09	Merck: 11, 2688			115	dec	107	v s aq; s alc; i eth
c322	Cyanoacetylurea	$NCCH_2C(=O)NH-C(=O)NH_2$	127.10	3, 66			214 dec			
c323	2-Cyanoethanol	NCCH ₂ CH ₂ OH	71.08	3², 213	1.05880			108 ^{11mm}		misc aq, alc; sl s eth
c324	2-Cyanoethyl acrylate	H ₂ C=CHCO ₂ CH ₂ CH ₂ CN	125.13	3 ³ , 543	1.052	1.447020		108 ^{12mm}	103	
c325	Cyanogen bromide	BrCN	105.93	3, 39	2.015420		52	6162	5	v s aq, alc, eth
c326	1-Cyano-3-methyliso- thiourea, sodium	CH₂NH(≔NCN)S ⁻ Na ⁺	137.14	4, 71			290 dec			
-277	Sau 1 Cuanananhthalana	C H CN	152 18	0 640	1 1 1 1 2 2 5	1 620818	38	200		i ag: y c alc eth
c328	2-Cyanonaphinaiche	NC(C H N)	104 11	22 36	1.081	1.528820	26-28	215	80	sag v salc by eth
c320	3-Cyanopyridine	NC(C,H,N)	104.11	22, 50	1.001	1.5200	50-52	201	84	v s an alc bz eth
c330	4-Cyanopyridine	NC(C.H.N)	104 11	22, 46			78-80	201	0.	s an alc. hz. eth
c331	Cyanotrimethylsilane	(CH _a) _a SiCN	99.21	44, 3893	0.78320	1.392420	11-12	118-119	1	5 uq, are, 62, 641
c332	Cyanuric acid	(0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	129.08	26, 239	1.7680		>360: dec		-	0.5 aq; s hot alc, pvr; i
				,			to HOCN			acet, bz, chl, eth
c333	Cyclobutane	C_4H_8	56.10	5, 17	0.70380	1.37520	91	13		i aq; v s alc, acet
c334	Cyclobutanecarboxylic acid	(C₄H ₇)COOH	100.12	9, 5	1.047	1.443320	-20 to -7.5	195	83	
c335	Cyclodecane	C ₁₀ H ₂₀	140.27		0.871	1.470720		201	65	
c336	Cyclododecanol	C ₁₂ H ₂₃ OH	184.32				77			
c337	Cyclododecanone	C ₁₂ H ₂₂ (==O)	182.31	7², 48	0.90662		5961	85 ^{1mm}		
c338	trans, trans, cis-1,5,9- cyclododecatriene		162.28	54, 1115	0.8925420	1.507020	-18	231	87	
c339	Cyclododecene		166.31		0.863	1.482220		232-245	93	
c340	Cyclododecylamine	(C ₁₂ H ₂₃)NH ₂	183.34				28-30	124 ^{7mm}	121	
c341	Cycloheptane	$C_{7}H_{14}$	98.18	5, 29	0.8114	1.445520	- 8.0	118	6	v s alc, eth
c342	Cycloheptanol	C ₇ H ₁₃ OH	114.19	6, 10	0.9484	1.476020	2	185	71	sl s aq; v s alc, eth
c343	Cycloheptanone	$C_{7}H_{12}(=0)$	112.17	7, 13	0.949040	1.461120		179–181	55	i aq; v s alc; s eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
c344	1,3,5-Cyclohepta-		92.13	5, 280	0.888	1.521120	-75.3	115.5	26	s alc, eth; v s bz, chl
c345 c346	Cycloheptene 8-Cyclohexadecene-1-	$C_7 H_{12}$	96.17 236.40	5, 65 7 ³ , 521	0.824	1.4585 ²⁰ 1.4890 ²⁰		114.7 195 ^{19mm}	-6 >110	s alc, eth
c347	Cyclohexane	C ₆ H ₁₂	84.16	5, 20	0.7786420	1.426220	6.6	80.7	-20	0.01 aq; misc acet, alc,
c348 c349	Cyclohexane- d_{12} 1,3-Cyclohexanebis- (methylamine)	$C_6 D_{12}$ $C_{10} H_{10} (NHCH_3)_2$	92.26 142.25	53, 36	0.893 0.945	1.4210 ²⁰ 1.4930 ²⁰		78	- 18 106	$62, CCl_4, etn$
c350	1,3-Cyclohexane- carbonitrile	C ₆ H ₁₁ CN	109.17	9, 9	0.919	1.450520		76 ^{16mm}	65	
c351	Cyclohexanecarbonyl	C ₆ H ₁₁ COCl	146.62	9, 9	1.096	1.470020		184	66	
c352	Cyclohexanecarbox-	C ₆ H ₁₁ CHO	112.17	7, 19	0.926	1.450020		163	40	
c353	Cyclohexanecarboxylic	C ₆ H ₁₁ COOH	128.17	9, 7	1.048045	1.453020	29	232.5	>110	0.21 aq; s alc, bz, eth
c354	trans-1,2-Cyclo- hexanediamine	$C_6H_{10}(NH_2)_2$	114.19	13 ³ , 8	0.951	1.488420	14-15	92 ^{18mm}	68	
c355	1,3-Cyclohexanedi- carboxylic acid	$C_6H_{10}(COOH)_2$	172.18	9, 732			132–141			
c356	cis-1,2-Cyclohexanedi-		154.17	17, 452			32–34	158 ^{17mm}	>110	
c357	1,4-Cyclohexanedi- methanol	C ₆ H ₁₀ (CH ₂ OH) ₂	144.21		0.978100	1.489320	43	283	161	misc aq, alc; 2.5 eth
c358	1,4-Cyclohexane-	C ₆ H ₁₀ (OCH=CH ₂) ₂	196.29		0.919	1.472020		126 ^{14mm}	>110	
c359	1,4-Cyclohexanediol	$C_{6}H_{10}(OH)_{2}$	116.16	6, 741			98100	150 ^{20mm}	65	
c360	1,3-Cyclohexanedione	$C_6H_8(=O)_2$	112.13	7, 554	1.0861 ⁹¹	1.4576 ¹⁰²	103-105			s aq, alc, acet, chl
c361	1,2-Cyclohexanedione dioxime	$C_6H_8(=NOH)_2$	142.16	7², 526			185188			s aq
c362	Cyclohexanemethyl- amine	$C_6H_{11}CH_2NH_2$	113.20	12, 12	0.870	1.463020		145–147	43	
c363	Cyclohexanepropionic acid	C ₆ H ₁₁ CH ₂ CH ₂ COOH	156.23	9, 82	0.912	1.463620	14-17	275.8	>110	
c364 c365	Cyclohexanethiol Cyclohexanol	C ₆ H ₁₁ SH C ₆ H ₁₁ OH	116.23 100.16	6, 8 6, 5	0.950 0.9416 ³⁰	1.4921 ²⁰ 1.4629 ³⁰	25,4	158–160 161	43 68	3.8 ag ²⁵ ; misc alc, bz

c366	Cyclohexanone	C ₆ H ₁₀ (=O)	98.15	7, 8	0.9478420	1.451020	-31	155.7	44	15 aq10; s alc, eth
c367	Cyclohexanone oxime	C ₆ H ₁₀ (=NOH)	113.16	7, 10			89-91	206-210		s aq, eth; sI s alc
c368	Cyclohexene	C ₆ H ₁₀	82.15	5, 63	0.80944	1.446420	-103.5	83.0	-12	0.02 aq; misc alc, bz, acet, eth
c369	3-Cyclohexene-1- methanol	C ₆ H ₉ CH ₂ OH	112.17	6 ³ , 215	0.961	1.485320		85 ^{18mm}	76	
c370	Cyclohexene oxide		98.15	17, 21	0.970	1.452020		130	27	
c371	2-Cyclohexene-1-one	$C_6H_8(==0)$	96.13	7², 55	0.993	1.488520	- 53	168	56	v s alc
c372	4-(3-Cyclohexene-1- yl)pyridine		159.23	203, 3239	1.021	1.548020		141 ^{20mm}	>110	
c373	Cyclohexyl acetate	CH ₃ CO ₂ C ₆ H ₁₁	142.20	6, 7	0.966	1.439520		173	57	sl s aq; s org solv
c374	Cyclohexylacetic acid	C ₄ H ₁₁ CH ₂ COOH	142.20	9 ² , 9	1.007	1.463020	31-33	242-244	>110	
c375	Cyclohexylamine	$C_6H_{11}NH_2$	99.18	12, 5	0.867120	1.459320	18	134	31	misc aq, alc, chl, eth
c376	Cyclohexylbenzene	C ₆ H ₁₁ C ₆ H ₅	160.26	5, 503	0.950240	1.525820	7	240	98	i aq; v s alc, eth
c377	Cyclohexyldimethoxy-	C ₆ H ₁₁ Si(OCH ₃) ₂ CH ₃	188.35		0.940	1.439020		201.2	73	
	methylsilane									
c378	2-Cyclohexylethanol	C ₆ H ₁₁ CH ₂ CH ₂ OH	128.22	6, 17	0.919	1.464720		207 ^{745mm}	86	
c379	Cyclohexylethyl	CH ₃ CO ₂ CH ₂ CH ₂ C ₆ H ₁₁	170.25		0.949	1.4461		98 ^{15mm}	81	
	acetate									
c380	N-Cyclohexyl- formamide	C ₆ H ₁₁ NHCHO	127.18	122, 11			38-40	113 ^{10mm}	>110	
c381	Cyclohexyl isocyanate	C ₆ H ₁₁ NCO	125.17	12 ² , 12	0.980	1.455120		168-170	48	
c382	Cyclohexyl isothio- cyanate	C ₆ H ₁₁ NCS	141.24	12², 12	0.996	1.535020		219	95	
c383	Cyclohexyl meth- acrylate	$H_2C = C(CH_3)CO_2C_6H_{11}$	168.24	6 ³ , 25	0.964	1.458020		70 ^{4mm}	82	
c384	Cyclohexylmethanol	C ₄ H ₁₁ CH ₂ OH	114.19	6, 14	0.921545	1.464025		181	71	s alc, eth
c385	3-Cyclohexyl-1-	C ₆ H ₁₁ CH ₂ CH ₂ CH ₂ OH	142.24	6 ¹ , 15	1.007	1.497520		218	101	
c386	N-Cvclohexvl-2-		167.25	213, 3149	1.026	1.495	12	284	>110	
	pyrrolidinone									
c387	cis, cis-1,3-Cyclo-		108.18	5⁴, 401	0.869	1.492820	-53 to	55 ^{34mm}	24	
	octadiene		100.10		0.00107	1 100 525	-51			
c388	1,5-Cyclooctadiene		108.18	5, 116	0.881845	1.490525	-69	149-150	31	s CCI ₄
c389	Cyclooctane	C_8H_{16}	112.22	5,35	0.834	1.457420	14.8	151.1	30	
c390	trans-1,2-Cyclo- octanediol	$C_8H_{14}(OH)_2$	144.21	б°, 4094	1.080	1.498020	32	940.500	>110	

TABLE 2.20	Physical Constants of Organic Compounds (Continued)

	i	i								
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
o201	Cyclocatanol	CH OH	128.22	62 25	0.074020	1 485020	14 15	1092200	86	
c302	Cyclooctanore	$C_{8}n_{15}On$	126.22	7 21	0.97404	1.4630	41-43	105-107	72	
c303	cir Cyclooctene	C H	110.20	51 35	0.93644	1.0494	- 16	145_146	25	
c394	Cyclooctylamine		127.23	5,55	0.928	1.4000	48	190	62	
c305	Cyclopentadiene	Cerristing	66.10	Merck	0.802120	1 446316	- 85	41_42	02	misc alc by CCL eth:
0575	Cyclopeniadiene		00.10	12, 2807	0.00214	1.1105				s aniline, HOAc,
a206	Cyclopentope	CH	70.12	5 10	0.746020	1 406920		10.3	37	LS_2
c390	Cyclopentane	$C_5 \Pi_{10}$	114.14	5,19	1.05220	1.4008	- 94	49.5	- 57	al a ora a MaOU
0397	carboxylic acid		114.14	9,0	1.0554	1.4340-	4	210	95	SI'S aq, S MCOH
c398	Cyclopentanol	C₅H₀OH	86.13	6, 5	0.948840	1.452120	- 19	140	51	sl s aq; s alc
c399	Cyclopentanone	$C_5H_8(==0)$	84.12	7,5	0.950948	1.436620	-51	130.6	26	sl s aq; misc alc, eth
c400	Cyclopentanone oxime	$C_5H_8(=NOH)$	99.13	7,7			53-55	196	92	s aq, alc, bz, chl, eth
c401	Cyclopentene	C ₅ H ₈	68.11	5, 61	0.772020	1.422820	-135.1	44.2	-29	
c402	2-Cyclopentene-1- acetic acid	C ₅ H ₇ CH ₂ COOH	126.16	9, 42	1.047	1.467520	19	94 ^{2.5mm}	>110	
c403	N-(1-Cyclopenten-1- yl)morpholine		153.23		0.957	1.510520		106 ^{12mm}	60	
c404	Cyclopentylamine	C ₅ H ₀ NH ₂	85.15	12, 4	0.863	1.448220		106-108	17	
c405	3-Cyclopentyl- propanoic acid	C ₅ H ₉ CH ₂ CH ₂ COOH	142.20		0.996	1.457020		130 ^{12mm}	46	
c406	Cyclopropane	C ₃ H ₆	42.08	5, 15	0.7204 ⁻⁷⁹		- 127	- 32.8		37 mL/100 mL aq ¹⁵ ; v
c407	Cyclopropanecarbo-	C₃H₅CN	67.09	9, 4	0.91116	1.420720		135	32	s eth
c408	Cyclopropanecarbonyl chloride	C ₃ H ₅ COCl	104.54	9, 4	1.152	1.452220		119	23	
c409	Cyclopropane- carboxylic acid	C ₃ H ₅ COOH	86.09	9, 4	1.088	1.438020	17–19	182–184	71	sl s hot aq; s alc, eth
c410	Cyclopropyl methyl ketone	C ₃ H ₅ COCH ₃	84.12	7,7	0.899340	1.424020		114	21	s aq, alc, eth
c411	I -Cysteine	HSCH_CH(NH_)COOH	121.16	4, 506			220 dec			v s aq, alc; i bz, eth
c412	L-Cystine	HOOCCH(NH ₂)SSCH ₂ - CH(NH ₂)COOH	240.30	4, 507			dec 240			0.01 aq; s acid, alkali; i alc
d1	1.9-Decalene	H ₂ C==CH(CH ₂) ₂ CH==CH ₂	138.25	11, 123	0.750	1.432020		169	41	
d2	cis-Decahydro-	CuHue	138.25	5,92	0.896340	1.481020	-43	195.8	58 (CC)	v s alc, chl, eth; misc
32	naphthalene	- 1010		-,						most ketones, esters

d3	trans-Decahydro- naphthalene	$C_{10}H_{18}$	138.25	5², 56	0.8700420	1.469020	- 30.4	187.3	54	see under <i>cis</i>
d4	Decahydro-2-naphthol	C ₁₀ H ₁₇ OH	154.25	6, 67	0.996	1.50020		109 ^{14mm}	>110	
d5	Decamethylcyclo- pentasiloxane	$[-Si(CH_3)_2O-]_5$	370.78	44, 4128	0.959340	1.398220	-38	101 ^{20mm}	72	i aq
d6	Decamethyltetra- siloxane	(CH ₃) ₃ SiO[Si(CH ₃) ₂ O] ₂ - Si(CH ₃) ₃	310.69	4 ³ , 1879	0.8536420	1.389520	-68	194	62	sl s alc; s bz, PE
d7	Decanal	H(CH ₂) ₉ CHO	156.27	1, 711	0.83045	1.428020	-5	208-209	85	i aq; s alc, eth
d8	Decane	CH ₃ (CH ₂) ₈ CH ₃	142.29	1, 168	0.730140	1.411020	- 29.7	174.1	46	0.07 aq
d9	1,10-Decanediamine	$H_2N(CH_2)_{10}NH_2$	172.32	4, 273			62-63	140 ^{12mm}		
d10	Decanedioic acid	HOOC(CH ₂) ₈ COOH	202.25	2, 718	1.20740	1.422134	134.5	232 ^{10mm}		0.1 aq ²⁰ , eth ¹⁷ ; v s alc, esters, ketones
d11	1,2-Decanediol	CH ₃ (CH ₂) ₇ CH(OH)CH ₂ OH	174.28	1, 494			48-50	255	>110	
d12	1,10-Decanediol	HO(CH ₂) ₁₀ OH	174.28	1², 560			74	170 ^{8mm}	>110	sl s aq, eth; v s alc
d13	Decanedioyl dichloride	$ClC(=O)(CH_2)_{8}COCl$	239.14	2, 719	1.121220	1,467820		220 ^{75mm}	>110	dec aq, alc
d13a	Decanenitrile	CH ₃ (CH ₂) ₈ CN	153.27	2, 356	0.829545	1.429520	- 15	235-237		misc alc, chl, eth
d14	1-Decanethiol	CH ₃ (CH ₂) ₉ SH	174.35	1², 459	0.841	1.456520	-26	114 ^{13mm}	98	
d15	Decanoic acid	CH ₃ (CH ₂) ₈ COOH	172.27	2², 309	0.8752450	1.428840	32	270	>110	0.015 aq; s alc, bz, chl, CS ₂
d16	1-Decanol	CH ₃ (CH ₂) ₉ OH	158.29	1, 425	0.829740	1.435920	6.9	232	82	i aq; s alc, eth
d17	δ-Decanolactone	5. 277	170.25	175,9, 91	0.954	1.458020		120 ^{0.02mm}	>110	
d18	2-Decanone	CH ₃ (CH ₂) ₇ COCH ₃	156.27	1, 711	0.825	1.425020	3.5	211	71	
d19	3-Decanone	CH ₃ (CH ₂) ₆ COC ₂ H ₅	156.27	11, 367	0.825	1.424120	-3.8	205	25	
d20	4-Decanone	$CH_3(CH_2)_6C(=O)(CH_2)_2CH_3$	156.27	1, 711	0.82420	1.423720		207	71	i aq; misc alc, eth
d21	Decanoyl chloride	CH ₃ (CH ₂) ₈ COCl	190.71	2, 356	0.919	1.441020	- 34.5	96 ^{5mm}	106	dec aq. alc; s eth
d22	1-Decene	H(CH ₂) ₈ CH==CH ₂	140.27	1 ³ , 858	0.740820	1.421020	- 66	170.6	47	i aq; misc alc, eth
d23	Decylamine	H(CH ₂) ₁₀ NH ₂	157.30	4, 199	0.787	1.436020	12–14	216–218	85	sl s aq; misc alc, bz, eth, acet
d24	Dehydroabeitylamine		285.48	124, 3005		1.546020			>110	
d25	Dehydroacetic acid		168.15	17, 559			111–113	270		at 25°: 22 acet; 18 bz; 5 eth; 3 EtOH; 5 MeOH
d26	Deoxybenzoin	C ₄ H ₅ CH ₂ COC ₄ H ₅	196.25	7², 368	1.201		55-56	320	110	i aq; v s alc, eth
d27	Diacetoxydimethyl-	(CH ₃) ₂ Si(OOCCH ₃) ₂	176.3		1.05440	1.403020		164166		
	silane	<u><u></u></u>								
d28	trans-1,1-Diacetoxy-	(CH ₃ CO ₂) ₂ CHCH=CHCH ₃	172.18	2, 154	1.057	1.429020		106 ^{20mm}	87	
	2-butene							1	1	
d29	1,1-Diacetoxy-2-	(CH ₃ CO ₂) ₂ CHCH=CH ₂	158.16	2, 154	1.078	1.419020		184	78	
	propene									

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

		_	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
d30	Diallylamine	(H ₂ C=CHCH ₂) ₂ NH	97.16	4, 208	0.787	1.440520	- 88	112	15	
d31	Diallyl ether	$(H_2C = CHCH_2)_2O$	98.15	1, 438	0.80508	1.4160 ²⁰		94–95	-6 (OC)	i aq; misc alc, eth
d32	Diallyl maleate	H ₂ C=-CHCH ₂ O ₂ CCH=-CH-	196.20	2 ³ , 1926	1.073	1.4702 ²⁰	47	116 ^{4mm}	>110	
		$CO_2CH_2CH = CH_2$								
d33	Diallyl 1,2-phthalate	$C_6H_4(CO_2CH_2CH=CH_2)_2$	246.27	9 ³ , 4120	1.121	1.5187 ²⁰		167 ^{5mm}	>110	
d34	Diallyl sulfide	$(H_2C = CHCH_2)_2S$	114.21	1, 440	0.88774	1.4889 ²⁰	- 85	138	46	sl s aq; misc alc, eth
d35	(+)-N,N-Diallyl-	[-CH(OH)CONHCH ₂ -	228.25	4, 218			186-188			
	tartardiamide	$CH = CH_2]_2$								
d36	1,2-Diaminoanthra-		238.25	14 ¹ , 459			289291			sl s alc, eth
	quinone									
d37	1,4-Diaminoanthra-		238.25	14, 197			265-269			sl s aq, alc; v s bz
	quinone									
d38	1,5-Diaminoanthra-		238.25	14, 203			308 dec			
	quinone									
d39	2,6-Diaminoanthra-		238.25	14, 215			>325			sl s hot aq, pyr
	quinone									
d40	3,5-Diaminobenzoic	(H ₂ N) ₂ C ₆ H ₃ COOH	152.15	14, 453			228	$-H_2O$,		si s aq; s alc, eth
	acid							110		
d41	1,4-Diaminobutane	$H_2N(CH_2)_4NH_2$	88.15	4, 264	0.877	1.456920	27.3	158-160	51	
d42	4,4'-Diaminodiphenyl-	$H_2NC_6H_4NHC_6H_4NH_2 \cdot H_2SO_4$	297.33	13, 110			300			s aq
	amine sulfate									
d43	trans-1,2-Diamino-	$C_6H_{10}(NH_2)_2$	114.19	133, 8	0.951	1.288620	14-15	81 ^{15mm}	68	
	cyclohexane									
d44	trans-1,4-Diamino-	$C_6H_{10}(NH_2)_2$	114.19	13 ¹ , 3			69–72	197	71	
	cyclohexane									
d45	trans-1,2-Diamino-	$C_6H_{10}[N(CH_2COOH)_2]_2 \cdot H_2O$	364.36	133, 10			213-216			v s aq
	cyclohexane-									
	N,N,N',N'-tetra-									
	acetic acid hydrate		100.00	10.000						
d46	4,4'-Diaminodiphenyl-	$H_2NC_6H_4CH_2C_6H_4NH_2$	198.27	13, 238			91-92	398	221	sl s aq; v s alc, bz, eth
	methane		240.00	12.426			170 170			
d47	3,3'-Diaminodiphenyl	$H_2NC_6H_4SO_2C_6H_4NH_2$	248.30	13, 426			1/0-1/3			1 aq; s alc, bz
	sulfone		240.00	10.506			196 196			
d48	4,4'-Diaminodiphenyl	$H_2NC_6H_4SO_2C_6H_4NH_2$	248.30	13, 536			1/5-1/6			1 aq; s alc, acet, dil
140	sultone		106.10	24.460			205 1			HCI
d49	2,4-Diamino-6-		126.12	24, 469			285 dec			s aq
150	nyaroxypyrimidine		109.10	42 040			179 170			
d50	Diaminomaleonitrile	$NU(NH_2) = U(NH_2)UN$	108.10	4~, 949			1/8-1/9			

d51	1,8-Diamino-p-men-		170.30	13, 4	0.914	1.480520	-45	125 ^{10mm}	93	
d52	3,3'-Diamino-N- methyldipropylam- ine	CH ₃ N[(CH ₂) ₃ NH ₂] ₂	145.25	4 ⁴ , 1279	0.901	1.4725 ²⁰		112 ^{6mm}	102	
d53	2,4-Diamino-6-phenyl- 1,3,5-triazine		187.21	26 ¹ , 69	1.40425		227228			0.06 aq; s alc, eth, dil HCl; sl s DMF
d54	1,2-Diaminopropane	CH ₃ CH(NH ₂)CH ₂ NH ₂	74.13	4, 257	0.878	1.446020		119-120	33	v s aq
d55	1,3-Diaminopropane	$H_2N(CH_2)_3NH_2$	74.13	4, 261	0.888	1.457020	-12	140	48	vsaq
d56	1,3-Diamino-2- propanol	H ₂ NCH ₂ CH(OH)CH ₂ NH ₂	90.13	4, 290			40-45	235	>110	
d58	2,6-Diaminopyridine	$(H_2N)_2C_5H_3N$	109.13	22 ¹ , 647			120-122			s aq, alc
d59	2,4-Diaminotoluene	$(H_2N)_2C_6H_3CH_3$	122.17	13, 124			97-99	283-285		
d60	3,4-Diaminotoluene	(H ₂ N) ₂ C ₆ H ₃ CH ₃	122.17	13, 148			91-93	156 ^{18mm}		
d61	1,4-Diazabicyclo[2.2.2]- octane		112.18	23 ³ , 484			158-160	174	62	45 aq; 77 EtOH; 51 bz; 13 acet; 26 MeEtKe
d62	1,8-Diazabicyclo[5.4.0]- undec-7-ene		152.24		1.018	1.521920		80 ^{0.6mm}	>110	
d63	Diazomethane	CH ₂ =N=N	42.04	23, 25			- 145	-23		VERY EXPLOSIVE; s eth, dioxane
d64	1-Diazo-2-naphthol-4- sulfonic acid		272.22	16, 595			160 dec			
d65	1,2,5,6-Dibenz- anthracene		278.33	51, 369			266 subl	524		s bz, PE; sl s alc, eth
d66	Dibenzofuran		168.20	17, 70	1.0886499	1.607999	81-83	285		s alc, bz, eth; i aq
d67	Dibenzothiophene		184.26	17, 72			97-100	332-333		s aq; v s alc, bz
d68	Dibenzoylmethane	C ₆ H ₅ COCH ₂ COC ₆ H ₅	224.26	7, 769			7879	220 ^{18mm}		4.4 alc; s eth, aq NaOH
d69	Dibenzoyl peroxide	C ₆ H ₅ C(=0)OOC(=0)C ₆ H ₅	242.23	9, 179			103106	may explode when heated		sl s aq, alc; s bz, chl, eth
d70	(-)-Dibenzoyl-L- tartaric acid hydrate	[(C ₆ H ₅ COOCH(COOH)-] ₂ · H ₂ O	376.34	9, 170			90-92			
d71	Dibenzylamine	C6H5CH2NHCH2C6H5	197.28	12, 1035	1.026	1.573120	- 26	300	143	i aq; s alc, eth
d72	Dibenzyldisulfide	C6H5CH2SSCH2C6H5	246.39	6, 465			69	d > 270		s hot alc, bz, eth
d73	Dibenzyl ether	C ₆ H ₅ CH ₂ OCH ₂ C ₆ H ₅	198.27	6, 434	1.0014420	1.516820	2	298	135 (CC)	misc alc, acet, chl, eth

N	Nama	E	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Name	Formula	weight	reference	g/mL	index	point, 'C	point, 'C	point, 'C	parts solvent
d74	N,N'-Dibenzyl- ethylenediamine	(C ₆ H ₅ CH ₂ NHCH ₂ -) ₂	240.35	12, 1067	1.024420	1.562420	26	195 ^{4mm}	>110	v s alc, bz, chl, eth
d75	Dibenzyl malonate	CH ₂ [CO ₂ CH ₂ C ₆ H ₅] ₂	284.31	6, 436	1.137	1.544720		188 ^{0.2mm}	>110	
d76	Dibromoacetic acid	Br ₂ CHCOOH	217.86	2, 218			39-41	130 ^{16mm}	>110	
d77	Dibromoacetonitrile	Br ₂ CHCN	198.86	2, 219	2.296	1.539320		69 ^{24mm}		
d78	2,4'-Dibromoaceto-	BrC ₆ H ₄ C(=O)CH ₂ Br	277.96	7, 285			108-110			v s warm alc; s eth
	phenone									
d79	1,4-Dibromobenzene	C ₆ H ₄ Br ₂	235.92	5, 211	0.9641100	1.5743100	87.3	220		1.4 alc; v s eth; s bz
d80	4,4'-Dibromobiphenyl	BrC ₆ H ₄ C ₆ H ₄ Br	312.00	5, 580			167-170	355-360		s bz; sl s hot alc
d81	1,2-Dibromobutane	CH ₃ CH ₂ CH(Br)CH ₂ Br	215.93	1, 120	1.789	1.514120		60 ^{20mm}	>110	
d82	1,3-Dibromobutane	CH ₃ CH(Br)CH ₂ CH ₂ Br	215.93	1, 120	1.80020	1.508520		175		s chl, eth
d83	1,4-Dibromobutane	BrCH ₂ CH ₂ CH ₂ CH ₂ Br	215.93	1, 120	1.808040	1.518620	- 20	198	110	s chl
d84	meso-2,3-Dibromo-	CH ₃ CH(Br)CH(Br)CH ₃	215.93	1.121	1.767	1.510020		74 ^{47mm}	>110	
	butane									
d85	2,3-Dibromo-1,4-	HOCH ₂ CH(Br)CH(Br)-	247.93	1 ³ , 2176			8890	150 ^{1.5mm}		
	butanediol	CH₂OH								
d86	1,4-Dibromo-2,3- butanediol	$BrCH_2C(=O)C(=O)CH_2Br$	243.89	1, 774			117119			
d87	trans-2,3-Dibromo-2-	HOCH ₂ C(Br)=C(Br)CH ₂ OH	245.91	1 ¹ , 260			112–114			
	butene-1,4-diol									
d88	Dibromochloro-	HCClBr ₂	208.29	1, 67	2,451	1.546520	-22	120 ^{748mm}	none	misc alc, bz, eth
	methane									
d89	trans-1,2-Dibromo- cyclohexane	$C_6H_{10}Br_2$	241.96	5, 24	1.784	1.551520		146 ^{10mm}	>110	
d90	1,2-Dibromo-2-chloro-	FCCl(Br)C(Br)F ₂	276.5		2.2478 ²⁰	1.427520		9394	none	
	1,1,2-trifluoroethane									
d91	1,10-Dibromodecane	Br(CH ₂) ₁₀ Br	300.09	1 ¹ , 64	1.33530	1.491220	27	160 ^{15mm}	>110	sl s alc; s eth
d92	1,2-Dibromo-1,1-	CH ₂ BrC(Br)F ₂	223.87	1, 92	2.2238 ²⁰	1.445620	-61.3	92.4	none	i aq
	difluoroethane									
d93	Dibromodifluoro-	Br ₂ CF ₂	209.81	1 ¹ , 16	2.28845	1.401620	-110	25	none	0.1 aq; misc alc, bz,
	methane									chl, eth
d94	1,2-Dibromo-3,3-di-	(CH ₃) ₃ CCH(Br)CH ₂ Br	243.98	1, 151	1.610	1.505320		73 ^{3mm}	83	
	methylbutane									
d95	1,3-Dibromo-5,5-di-		185.93				197 dec			
	methylhydantoin									
d96	1,1-Dibromoethane	CH ₃ CHBr ₂	187.86	1, 90	2.055 ²⁰	1.537920		113	none	i aq; v s alc, eth
d97	1,2-Dibromoethane	BrCH ₂ CH ₂ Br	187.86	1, 90	2.180240	1.538720	10.0	131.7	none	0.43 aq; misc alc, eth
d98	(1,2-Dibromoethyl)- benzene	C ₆ H ₅ CH(Br)CH ₂ Br	263.97	5, 356			70–74	140 ^{15mm}		

d99	cis-1,2-Dibromo- ethylene	BrCH=CHBr	185.86	1, 190	2.2147	1.543118	- 53	112.5	none	s alc, bz, chl, eth
d100	trans-1,2-Dibromo- ethylene	BrCH=CHBr	185.86	1, 190	2.246	1.550518	- 6.5	108	none	
d101	1,2-Dibromoethyltri- chlorosilane	BrCH ₂ CH(Br)SiCl ₃	321.3		2.04640	1.53720		90 ^{11mm}		
d102	4'5'-Dibromo- fluorescein		490.12	19, 228			270–273			s hot alc, HOAc
d103	1,4-Dibromo-2-fluoro- benzene	Br ₂ C ₆ H ₃ F	253.91	5⁴, 684			33-36	216	101	
d104	2,4-Dibromo-1-fluoro- benzene	$Br_2C_6H_3F$	253.91		2.04720	1.584020		105 ^{22mm}	92	
d104a	Dibromofluoro- methane	Br ₂ CHF	191.83				- 78	65		
d105	1,2-Dibromohexa- fluoropropane	CF ₃ CF(Br)C(Br)F ₂	309.84	14, 218	2.169	1.360520	-95	72 ^{734mm}	none	
d106	1,6-Dibromohexane	Br(CH ₂) ₆ Br	243.98	1, 145	1.58648	1.506620		243	>110	misc eth
d107	2,5-Dibromo-3,4- hexanedione	CH ₃ CHBrC(=O)C(=O)- CH(Br)CH ₃	271.95	13, 3132	1.766	1.512020	- - -	103 ^{10mm}	>110	
d108	5,7-Dibromo-8- hydroxyquinoline		302.96	21, 97			200-201	subl		s alc, bz; v s eth
d109	2,4-Dibromomesitylene	1,3,5-(CH ₃) ₃ -C ₆ HBr ₂	278.00	5, 408			61-63	278279		
d110	Dibromomethane	CH ₂ Br ₂	173.85	1, 67	2.4956420	1.541920	- 52.7	96–97	none	1.15 aq; misc alc, bz, acet, chl, eth
d111	2,6-Dibromo-4-methyl- phenol	Br ₂ C ₆ H ₂ (CH ₃)OH	265.94	6, 406			49-50		>110	
d112	5,7-Dibromo-2-methyl- 8-quinolinol		316.99	21 ³ , 1240			126-130			
d113	1,6-Dibromo-2- naphthol	Br ₂ C ₁₀ H ₅ OH	301.98	6, 652			105-107			
d114	2,6-Dibromo-4-nitro- aniline	Br ₂ C ₆ H ₂ (NO ₂)NH ₂	295.93	12, 743			206-208			sl s aq; s HOAc
d115	2,5-Dibromonitro- benzene	Br ₂ C ₆ H ₃ NO ₂	280.91	5, 250	2.374		82-84			s bz, hot alc
d116	1,8-Dibromooctane	Br(CH ₂) ₈ Br	272.03	1, 160	1.477	1.4981 ²⁰	15-16	272	>110	
d117	1,4-Dibromopentane	CH ₃ CH(Br)CH ₂ CH ₂ CH ₂ Br	229.95	1, 131	1.687	1.508520	- 34	99 ^{25mm}	>110	
d118	1,5-Dibromopentane	Br(CH ₂) ₅ Br	229.95	1, 131	1.687945	1.509220	- 34	110 ^{15mm}	>110	
d119	2,4-Dibromophenol	Br ₂ C ₆ H ₃ OH	251.92	6, 202			40-42	154 ^{11mm}	>110	

TABLE 2.20	Physical	Constants of	of Organic	Compounds	(Continued)
-------------------	----------	--------------	------------	-----------	-------------

	N	E 1	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
d120	1,2-Dibromopropane	CH ₃ CH(Br)CH ₂ Br	201.90	1, 109	1.93320	1.520320	- 55.5	142	none	0.2 aq; misc alc, bz, chl, eth
d121	1,3-Dibromopropane	BrCH ₂ CH ₂ CH ₂ Br	201.90	1, 110	1.9712425	1.523320	-36	166.8	54	0.17 aq; s alc, eth
d122	1,3-Dibromo-2- propanol	BrCH ₂ CH(OH)CH ₂ Br	217.90	1, 365	2.136	1.551420		83 ^{7mm}	46	
d123	2,3-Dibromo-1- propanol	BrCH ₂ CH(Br)CH ₂ OH	217.90	1, 357	2.120420	1.559920		97 ^{10mm}	>110	sl s aq; misc alc, bz, acet, eth
d124	2,3-Dibromopropene	BrCH ₂ C(Br)=CH ₂	199.88	1, 201	1.93364	1.547020		140-143	81	
d125	2,3-Dibromopropionic acid	BrCH ₂ CH(Br)COOH	231.88	2, 258			64–66	160 ^{20mm}		s aq, alc, bz
d126	2,3-Dibromopropio- nitrile	BrCH ₂ CH(Br)CN	212.88	2, 259	2.140	1.545020		173		
d127	2,6-Dibromopyridine	BrC ₅ H ₃ N	236.91	20 ² , 153			118-119	255		
d128	meso-2,3-Dibromo- succinic acid	HOOCCH(Br)CH(Br)- COOH	275.89	2, 625			275 subl			v s aq, alc
d129	1,2-Dibromotetra- chloroethane	BrCCl ₂ CCl ₂ Br	325.65	1, 93	2.713		222 dec		none	
d130	1,2-Dibromotetra- fluoroethane	BrCF ₂ CF ₂ Br	259.83		2.14925	1.36725	-110.5	47	none	
d131	2,5-Dibromothiophene	Br ₂ C ₄ H ₂ S	241.94	17, 33	2.14723	1.628920	-6	211	99	i aq; v s alc, eth
d132	α, α -Dibromotoluene	C ₆ H ₅ CHBr ₂	249.94	5, 308	1.51015	1.614720		156 ^{23mm}	>110	i aq; misc alc, eth
d133	1,2-Dibromo-1,1,2- trifluoroethane	HC(Br)FC(Br)F ₂	241.8	1, 92	2.27427	1.419124		76.5		
d134	α,α-Dibromo-o-xylene	$C_6H_4(CH_2Br)_2$	263.97	5, 366	1.960		92-94			sl s alc, chl, eth
d135	α, α -Dibromo- <i>p</i> -xylene	$C_6H_4(CH_2Br)_2$	263.97	5, 386	1.0120		7274	261		v s alc, chl; s eth
d136	Dibutoxydibutyltin	[CH ₃ (CH ₂) ₃ O] ₂ Sn[(CH ₂) ₃ CH ₃] ₂	379.15		1.110	1.474020		138 ^{0.05mm}	40	
d137	1,2-Dibutoxyethane	C ₄ H ₉ OCH ₂ CH ₂ OC ₄ H ₉	174.28		0.837420	1.413120	- 69.1	203.6	85	0.2 aq; misc alc, acet
d138	Dibutyl adipate	[-CH ₂ CH ₂ CO ₂ (CH ₂) ₃ CH ₃] ₂	258.36	2², 575	0.962	1.436020		305	>110	
d139	Dibutylamine	(C ₄ H ₉) ₂ NH	129.25	4, 157	0.767020	1.417720	-62	159.6	47	0.47 aq; s alc, acet, eth EtOAc, PE
d140	Di-sec-butylamine	[C ₂ H ₃ CH(CH ₃)] ₂ NH	129.25	4, 162	0.753	1.410020		135	20	
d141	N,N-Dibutylamino- ethanol	(C ₄ H ₉) ₂ NCH ₂ CH ₂ OH	173.29	4 ³ , 682	0.86020	1.44420	< -70	229-230	91	
d142	N,N-Dibutylaniline	$C_6H_5N(C_4H_9)_2$	205.34	12 ³ , 95	0.90420	1.529720		267–275	>110	i aq, MeOH; s acet, bz, EtOH, EtOAc, eth
d143	Dibutyl decanedioate	C ₄ H ₉ O ₂ C(CH ₂) ₈ CO ₂ C ₄ H ₉	214.45	2, 719	0.936620	1.441520	- 10	344-345	178	0.004 aq

d144	Di-tert-butyl di- carbonate	(CH ₃) ₃ COC(==O)OC(CH ₃) ₃	218.25		0.950	1.410320	23	56 ^{0.5mm}	37	
d145	2,5-Di- <i>tert</i> -butyl-1,4- dihydroxybenzene	$[(CH_3)_3C]_2C_6H_2(OH)_2$	222.33				217-219			
d146	Dibutyl disulfide	C4H9SSC4H9	178.36	1 ² , 400	0.9383420	1.492020	-71	231.2	93	i aq; misc alc, eth
d147	Di-tert-butyl disulfide	(CH ₃) ₃ CSSC(CH ₃) ₃	178.36		0.935	1.4920		229-233	93	
d148	Dibutyl ether	C₄H ₉ OC₄H ₉	130.22	1, 369	0.7689420	1.399220	-95	140	25	0.03 aq; misc alc, eth
d149	2,6-Di- <i>tert</i> -butyl-4- (dimethylamino- methyl)phenol	(CH ₃) ₂ NCH ₂ C ₆ H ₂ - [C(CH ₃) ₃] ₂ OH	263.43	134, 2014			9394	172 ^{30mm}		
d150	N,N-Dibutylethylene- diamine	[CH ₃ (CH ₂) ₃] ₂ NCH ₂ CH ₂ NH ₂	172.32	44, 1182	0.823	1.443020		117 ^{24mm}	87	
d151	N,N-Dibutylformamide	$HC(==O)N(C_4H_9)_2$	157.26		0.864	1.442920		120 ^{15mm}	100	
d152	Dibutyl hexanedioate	[-CH ₂ CH ₂ CO ₂ (CH ₂) ₃ CH ₃] ₂	258.36	2², 575	0.962	1.435820		305	>110	
d153	2,5-Di-tert-butyl-	$[(CH_3)_3C]_2C_6H_2-1,4-(OH)_2$	222.33	6, 3, 4741			217-219			
	hydroquinone									
d154	Dibutyl maleate	C ₄ H ₉ O ₂ CCH=CHCO ₂ C ₄ H ₉	228.29	2 ³ , 1925	0.995020	1.445420	< -80	281	141	0.05 aq
d155	Di-tert-butyl malonate	CH ₂ CO ₂ C(CH ₃) ₃	216.27	2 ³ , 1621		1.418420	-6.0	93 ^{10mm}	88	
		CO ₂ C(CH ₃) ₃								
d156	2,6-Di- <i>tert</i> -butyl-4- methylphenol	[(CH ₃) ₃ C] ₂ C ₆ H ₂ (CH ₃)OH	220.36	6 ³ , 2073	1.048420	1.485975	70	265	127	s alc, bz, acet, PE
d157	Dibutyl octanedioate	[-(CH ₂) ₃ CO ₂ (CH ₂) ₃ CH ₃] ₂	286.41	2 ³ , 1767	0.948	1.439020		176 ^{4.5mm}	>110	
d158	Dibutyl oxalate	C ₄ H ₉ O ₂ CCO ₂ C ₄ H ₉	202.25	2, 540	0.98620	1.423220	- 30.0	239-240	108	misc alc, ketones, PE
d159	Di-tert-butyl peroxide	(CH ₃) ₃ COOC(CH ₃) ₃	146.23	1 ³ , 1580	0.79420	1.389020	-40	110	1	misc acet, octane
d160	2,4-Di-tert-butylphenol	[(CH ₃) ₃ C] ₂ C ₆ H ₃ OH	206.33				56.5	263.5	115	s hot alc; i alk
d161	2,6-Di-sec-butylphenol	[CH ₃ CH ₂ CH(CH ₃)] ₂ C ₆ H ₃ OH	206.23		0.918	1.510020	-42	255-260	127	
d162	2,6-Di-tert-butylphenol	[(CH ₃) ₃ C] ₂ C ₆ H ₃ OH	206.23	6 ³ , 2061			35-38	253	118	s hot alc; i alk
d163	3,5-Di-tert-butylphenol	[(CH ₃) ₃ C] ₂ C ₆ H ₃ OH	206.23				87-89			
d 164	Dibutyl phosphite	$(C_4H_9O)_2P(O)H$	194.21	1 ¹ , 187	0.995	1.423920		119 ^{11mm}	121	
d165	Dibutyl 1,2-phthalate	$C_6H_4 \ 1,2-[CO_2C_4H_9]_2$	278.35	9², 586	1.046540	1.491120	-35	340	157	0.01 aq; v s alc, bz, acet, eth
d166	N,N-Dibutyl-1,3- propanediamine	C4H9NH(CH2)3NHC4H9	186.34		0.827	1.446320		205	103	
d167	Dibutyl suberate	CH ₃ (CH ₂) ₃ O ₂ C(CH ₂) ₆ CO ₂ - (CH ₂) ₂ CH ₂	286.41	2 ³ , 1767	0.948	1.439020		175.5 ^{4.5mm}	>110	
d168	Dibutyl succinate	[C.H.O.CCH]	230.30	22, 551	0.976840	1.429920	-29.0	274.5		i aq; s alc, eth
d169	Dibutyl sulfate	C4HoOSO2OC4Ho	210.29	· ·	1.05945	1.421320		132 ^{11mm}		
d170	Dibutyl sulfide	C4H9SC4H9	146.30	1, 370	0.838620	1.453020	- 80	185	76	i aq; v s alc, eth
	1			1		1	1	1		

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

N.	Nama	Ermula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Name	Formula	weight	reference	g/mL	index	point, ^o C	point, 'C	point, 'C	parts solvent
d 171	Di-tert-butyl sulfide	(CH ₃) ₃ CSC(CH ₃) ₃	146.30		0.815	1.450620		151	48	
d 172	Dibutyl sulfite	$(C_4H_9O)_2S(==O)$	194.29	1², 397	0.9944422	1.431020		108 ^{15mm}		
d173	Dibutyl sulfone	$(C_4H_9)_2SO_2$	178.29	1, 371			46	295	143	i aq; s alc, eth
d 174	Dibutyl L-tartrate	[-CH(OH)CO ₂ (CH ₂) ₃ CH ₃] ₂	262.31	3, 518	1.091	1.446520	22	175 ^{5mm}	>110	
d175	N,N-Dibutyl-2-thiourea	$C_4H_9NC(=S)NHC_4H_9$	188.34				6365			i aq; s alc; sl s eth
d176	Dibutyltin diacetate	$(CH_{3}CO_{2})_{2}Sn(C_{4}H_{9})_{2}$	351.01		1.320	1.470020		145 ^{10mm}	>110	
d 177	Dibutyltin dichloride	(C ₄ H ₉)SnCl ₂	303.83				39-41	135 ^{10mm}	>110	
d178	Dibutyltin dilaurate	[CH ₃ (CH ₂) ₁₀ CO ₂] ₂ Sn(C ₄ H ₉) ₂	631.56	Merck: 12, 3089	1.066	1.468320	22-24		>110	s PE, bz, acet, eth, org esters
d179	Dibutyltin maleate		346 98				135-140			
d180	Dibutyltin oxide	(C.H.)-SnO	248.92	41, 588			> 300			
d181	Dicaprolactone 2-	HO(CH ₃) ₂ CO ₃ (CH ₃) ₂ CO ₃ -	344.41	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.100	1.466020			>110	
	(acryloxy)ethyl	CH ₂ CH ₂ O ₂ CCH==CH ₂								
	ester									
d182	Dichloroacetic acid	Cl ₂ CHCOOH	128.94	2, 202	1.56340	1.446220	9-11	193-194	>110	misc aq, alc, eth
d183	1,1-Dichloroacetone	$CH_3C(==O)CHCl_2$	126.97	1, 654	1.305	1.445520		120	24	s sl aq; s alc, eth
d184	1,3-Dichloroacetone	$ClCH_2C(=O)CH_2Cl$	126.97	1,655	1.383		39-41	173	89	
d185	2',4'-Dichloroaceto-	$Cl_2C_6H_3C(=O)CH_3$	189.04	7, 282		1.563520	33-34	145 ^{15mm}	>110	i aq
	phenone									-
d186	Dichloroacetyl	$Cl_2CHC(=O)Cl$	147.39	2, 204	1.531546	1.460320		107-108	none	dec aq, alc; misc eth
	chloride									
d187	2,3-Dichloroaniline	Cl ₂ C ₆ H ₃ NH ₂	162.02	12, 621		1.596920	23-24	252	>110	s alc; v s eth
d188	2,4-Dichloroaniline	Cl ₂ C ₆ H ₃ NH ₂	162.02	12, 621	1.56720		59-62	245		sl s aq; s alc, eth
d189	2,5-Dichloroaniline	Cl ₂ C ₆ H ₃ NH ₂	162.02	12, 625			49-51	251	>110	s alc, bz, eth
d190	2,6-Dichloroaniline	$Cl_2C_6H_3NH_2$	162.02	12, 626			38-41		>110	
d191	3,4-Dichloroaniline	Cl ₂ C ₆ H ₃ NH ₂	162.02	12, 626			70-72	272		s alc, eth; sl s bz
d192	3,5-Dichloroaniline	$Cl_2C_6H_3NH_2$	162.02	12, 626			5153	259 ^{741mm}	>110	i aq; s alc, eth
d193	1,5-Dichloro-		277.11	7, 787			245-247			sl s alc, bz, acet
	anthraquinone									
d194	2,3-Dichlorobenz-	Cl ₂ C ₆ H ₃ CHO	175.01	7 ³ , 878			64-67			
	aldehyde									
d195	2,4-Dichlorobenz- aldehyde	Cl ₂ C ₆ H ₃ CHO	175.01	7, 236			69-73	233		i aq; s alc
d196	2,4-Dichlorobenzamide	Cl ₂ C ₆ H ₃ CONH ₂	190.03	9 ³ , 1376			191-194			
d197	2,6-Dichlorobenzamide	Cl ₂ C ₆ H ₃ CONH ₂	190.03	9 ¹ , 149			196-199			
d198	1,2-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	5, 201	1.3059420	1.551020	- 17.0	180.4	66	misc alc, bz, eth
d199	1,3-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	5, 202	1.2884420	1.546020	- 24.8	173.1	72	0.01 aq; s alc, eth
d200	1,4-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	5, 203	1.24176	1.528520	53	174.1	66	s alc, bz, chl, eth

d201	2,5-Dichlorobenzene- sulfonyl chloride	Cl ₂ C ₆ H ₃ SO ₂ Cl	245.51	11 ¹ , 15			36-37		>110	d hot alc, hot aq
d202	2,4-Dichlorobenzoic acid	Cl ₂ C ₆ H ₃ COOH	191.01	9, 342			157-160			s hot aq, alc, bz, chl
d203	2,5-Dichlorobenzoic acid	Cl ₂ C ₆ H ₃ COOH	191.01	9, 342			154–157	301		sl s aq; s alc, eth
d204	3,4-Dichlorobenzoic acid	Cl ₂ C ₆ H ₃ COOH	191.01	9, 343			207–209			s hot aq, eth; v s alc
d205	4,4'-Dichlorobenzo- phenone	$(ClC_6H_4)_2C=O$	251.11	7, 420			144–146	353		s hot alc, v s chl, eth
d206	2,4-Dichlorobenzo- trifluoride	Cl ₂ C ₆ H ₃ CF ₃	215.00	5 ³ , 698	1.484	1.481020		117-118	72	
d207	3,4-Dichlorobenzo- trifluoride	Cl ₂ C ₆ H ₃ CF ₃	215.00	5 ³ , 698	1.478	1.475020	- 12	173–174	65	
d208	2,4-Dichlorobenzoyl chloride	Cl ₂ C ₆ H ₃ C(==O)Cl	209.46	9, 342	1.494	1.529720	16-18	150 ^{34mm}	137	dec aq, alc
d209	3,4-Dichlorobenzoyl chloride	Cl ₂ C ₆ H ₃ C(==O)Cl	209.46	9, 344			30-33	242	142	dec aq, alc
d210	1,4-Dichlorobutane	CICH ₂ CH ₂ CH ₂ CH ₂ CI	127.01	1, 119	1.159820	1.456620	- 38	161-163	40	i aq; s chl
d211	cis-1,4-Dichloro-2- butene	CICH ₂ CH=CHCH ₂ Cl	125.00	1³, 743	1.18845	1.488725	48	152	55	i aq; s org solvents
d212	3,4-Dichloro-1-butene	ClCH ₂ CH(Cl)CH==CH ₂	125.00	1 ³ , 725	1.150	1.465820	-61	123	28	
d213	1,4-Dichloro-2-butyne	ClCH ₂ C=CCH ₂ Cl	122.98	1 ³ , 927	1.258420	1.504820		165-168	160	
d214	Dichloro(2-chloro- ethyl)methylsilane	ClCH ₂ CH ₂ SiCl ₂ (CH ₃)	177.53	4 ³ , 1892	1.261	1.458020		157 ^{744mm}	32	
d215	Dichloro(3-chloro- propyl)methylsilane	Cl(CH ₂) ₃ Si(CH ₃)Cl ₂	191.56	4 ⁴ , 4170	1.227	1.462020	-	80 ^{18mm}	59	
d216	1,10-Dichlorodecane	Cl(CH ₂) ₁₀ Cl	211.18	1 ³ , 522	0.999	1.460520	15.6	168 ^{28mm}	>110	
d217	1,1-Dichloro-2,2-di- ethoxyethane	Cl ₂ CHCH(OC ₂ H ₅) ₂	187.07	1, 614	1.138	1.436020		183-184	60	
d218	Dichlorodifluoro- methane	Cl ₂ CF ₂	120.91	1, 61	1.486 ³⁰		- 158	- 29.8		0.01 aq; 9 bz; 5.5 chl; 6 diox; s alc, eth
d219	1,1-Dichloro-3,3- dimethylbutane	(CH ₃) ₃ CCH ₂ CHCl ₂	155.07	1 ³ , 409	1.027	1.438820	- 56	148	36	
d220	1,3-Dichloro-3,5-		197.02	24², 158			134-136			
	dimethylhydantoin									
d221	Dichlorodiphenyl- methane	(C ₆ H ₅) ₂ CCl ₂	237.13	5, 590	1.235	1.604020		305	>110	
	1			1	1	1	1			

TABLE 2.20	Physical Constants of Organic Compounds (Continued)
	Thysical Constants of Organic Compounds (Continueu)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
d222	Dichlorodimethylsilane	(CH ₃) ₂ SiCl ₂	129.06		1.064420	1.403820	- 16	70	-16	
d223	Dichlorodiphenylsilane	$(C_6H_5)_2SiCl_2$	253.20	16, 910	1.22220		308-309	157	dec aq,	
									alc	
d224	1,12-Dichlorododecane	Cl(CH ₂) ₁₂ Cl	239.23	1', 67	1 1 7 5 7 20	1 11 6 120	28-30	172 ^{10mm}	>110	0.51 . 1
d225	1,1-Dichloroethane	CH ₃ CHCl ₂	98.96	1, 83	1.17574	1.416420	-97	57.3	-1/	0.51 aq; misc alc
d226	1,2-Dichloroethane	CICH ₂ CH ₂ CI	98.90	1, 84	1.23514	1.444820	- 35./	83.5	13	eth
d227	1,1-Dichloroethylene	$H_2C = CCl_2$	96.94	1, 186	1.21294	1.424720	-122.6	31.6	-28	0.01 aq; s alc, bz, chl, eth
d228	cis-1,2-Dichloro- ethylene	CICH=CHCl	96.94	1, 188	1.2838420	1.449020	- 80.1	60	2	0.7 aq; s alc, eth
d229	trans-1,2-Dichloro-	CICH=CHCI	96.94	1, 188	1.256520	1.445220	49.8	48.7	2	0.6 aq; s alc, eth
d230	2,2'-Dichloroethyl	ClCH ₂ CH ₂ OCH ₂ CH ₂ Cl	143.01	1², 335	1.2220^{20}_{20}	1.45720		178.5	55	1.1 aq; s alc, bz, eth
	ether									
d231	2,2-Dichloroethyl methyl ether	Cl ₂ CHCH ₂ OCH ₃	128.99		1.226	1.437520			33	
d232	Dichloroethylmethyl- silane	(C ₂ H ₅)Si(CH ₃)Cl ₂	143.09		1.063	1.419020		100	43	
d233	Dichlorofluoro- methane	FCHCl ₂	102.92	1, 61	1.4059	1.37249	- 135	8.9		69 HOAc; 108 diox; s alc. eth: i ag
d234	1.6-Dichlorohexane	Cl(CH ₂) _c Cl	155.07	1, 144	1.068	1.456820		87 ^{15mm}	73	s chl
d235	Dichloromethane	CH ₂ Cl ₂	84.93	1, 60	1.326520	1.424620	- 95	40	none	1.3 aq; misc alc, eth
d236	Dichloromethane-d ₂	CD ₂ Cl ₂	86.95	1 ⁴ , 39	1.3621	1.421820		40	none	
d237	α, α -Dichloromethyl	Cl ₂ CHOCH ₃	114.96		1.271	1.430020		85	42	
d238	Dichloro(methyl)octyl- silane	CH ₃ (CH ₂) ₇ Si(CH ₃)Cl ₂	227.25	4, <i>4</i> , 4182	0.973	1.4440 ²⁰		94 ^{6mm}	98	
d239	Dichloro(methyl)- phenylsilane	C ₆ H ₅ Si(CH ₃)Cl ₂	191.13		1.176	1.519020		205	82	
d240	Dichloro(methyl)silane	HSi(CH ₃)Cl ₂	115.04	41, 581	1.105	1.39820	-93	41	- 32	
d241	Dichloro(methyl)vinyl- silane	H ₂ C=CHSi(CH ₃)Cl ₂	141.07		1.0874	1.430020		92	4	
d242	2,4-Dichloro-1- naphthol	Cl ₂ C ₁₀ H ₅ OH	213.06	6, 612			108			

d243	2,3-Dichloro-1,4-		227.05	7, 729			190-192			sl s alc, bz, eth
	naphthoquinone									
d244	2,6-Dichloro-4-nitro- aniline	$Cl_2C_6H_2(NO_2)NH_2$	207.02	12, 735			190–192			
d245	2,3-Dichloronitro-	Cl ₂ C ₆ H ₃ NO ₂	192.00	5, 245	1.72114		61–62	257–258	123	s PE
d246	2,4-Dichloronitro-	Cl ₂ C ₆ H ₃ NO ₂	192.00	5, 245	1.439 ⁸⁰		29-32	258	>110	s hot alc; misc eth
d247	2,5-Dichloronitro- benzene	Cl ₂ C ₆ H ₃ NO ₂	192.00	5, 245			5457	266–269	>110	
d248	3,4-Dichloronitro- benzene	Cl ₂ C ₆ H ₃ NO ₂	192.00	5, 246	1.45675		41-44	256	123	
d249	2,4-Dichloro-6- nitrophenol	Cl ₂ C ₆ H ₂ (NO ₂)OH	208.00	6, 241			118-120			
d250	1,7-Dichloroocta- methyltetrasiloxane	[Cl(CH ₃) ₂ SiOSi(CH ₃) ₂ -] ₂	351.53	4 ³ , 1884	1.0114	1.40320	- 62	222		
d251	1,5-Dichloropentane	Cl(CH ₂) ₅ Cl	141.04	1, 131	1.1058420	1.455320	- 72	66 ^{10mm}	26	i aq; s alc, eth
d252	2,3-Dichlorophenol	Cl ₂ C ₆ H ₃ OH	163.00	6 ¹ , 102			58-60	206		s alc, eth
d253	2,4-Dichlorophenol	Cl₂C ₆ H₃OH	163.00	6, 189			42-43	210	113	v s alc, bz, chl, eth
d254	2,5-Dichlorophenol	Cl ₂ C ₆ H ₃ OH	163.00	6, 189			56-58	211		v s alc, bz, eth
d255	2,6-Dichlorophenol	Cl ₂ C ₆ H ₃ OH	163.00	6, 190			65-68	218-220		v s alc, eth
d256	2,4-Dichlorophenoxy- acetic acid	Cl ₂ C ₆ H ₃ OCH ₂ COOH	221.04				136-140	160 ^{0.4mm}		s alc, bz, chl, eth
d257	4-(2,4-Dichlorophen- oxy)butanoic acid	Cl ₂ C ₆ H ₃ O(CH ₂) ₃ CO ₂ H	249.10	6³, 708			117–119			46 ppm aq ²⁵ ; s acet, alc, eth; sl s bz
d258	2-(2,4-Dichlorophen- oxy)propanoic acid	Cl ₂ C ₆ H ₃ OCH(CH ₃)CO ₂ H	235.07	6, 189			110–112			350 ppm aq ²⁰ ; v s org solvents
d259	3,4-Dichlorophenyl isocyanate	Cl ₂ C ₆ H ₃ NCO	188.01	12 ³ , 1405			42-44	1 20^{18mm}	>110	
d260	Dichlorophenylphos- phine	C ₆ H ₅ PCl ₂	178.99	16, 763	1.319	1.598020	-51	222	>112	
d261	4,5-Dichloro- <i>o</i> - phthalic acid	Cl ₂ C ₆ H ₂ (CO ₂ H) ₂	235.02	9 ¹ , 366			201-203			s aq; v s eth
d262	1,2-Dichloropropane	CH ₃ CH(Cl)CH ₂ Cl	112.99	1, 105	1.155820	1,439020	- 100	96	4	0.26 aq; misc alc, bz, chl. eth
d263 d264	1,3-Dichloropropane 1,3-Dichloro-2- propanol	ClCH ₂ CH ₂ CH ₂ Cl ClCH ₂ CH(OH)CH ₂ Cl	112.99 128.99	1, 105 1, 364	1.187840 1.198	1.4487 ²⁰ 1.4835 ²⁰	- 99.5 - 4	120–122 174.3	32 85	v s alc, eth 9.1 aq; misc alc, eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d265 d266	1,3-Dichloropropene 2,3-Dichloro-1-	CICH ₂ CH=CHCl CICH ₂ C(Cl)=CH ₂	110.97 110.97	1, 199 1, 199	$\frac{1.217_4^{20}}{1.204_{25}^{25}}$	1.470 ²⁰ 1.4611 ²⁰		97–112 94	25 10	i aq; s chl, eth misc alc; s eth
d267 d268 d269 d270 d270a	3,6-Dichloropyridazine 2,6-Dichloropyridine 3,5-Dichloropyridine 4,7-Dichloroquinoline Dichlorosilane	Cl ₂ C ₃ H ₃ N Cl ₂ C ₃ H ₃ N Cl ₂ SiH ₂	148.98 147.99 147.99 198.05 101.01	20, 231 20, 231 20 ³ , 3384			66-69 86-88 65-67 84-86 - 122	148 ^{10mm} 8.3		
d270b	1,1-Dichlorotetra- fluoroethane	F ₃ CCFCl ₂	170.92		1.455 ²⁵ satd pres-	1.3092º	- 57	4		
d271	1,2-Dichloro-1,1,2,2- tetrafluoroethane	CICF ₂ CF ₂ CI	170.93	1 ³ , 152	1.470 ²⁰ satd pres- sure	1.309220	- 94	3.6		s alc, eth
d272	2.5-Dichlorothiophene	Cl ₂ (C ₄ H ₂ S)	153.03	17.33	1.442	1.562120	-40.5	162	59	i ag; misc alc, eth
d273	α, α -Dichlorotoluene	C ₆ H ₄ CHCl ₂	161.03	5, 297	1.254	1.550020	- 16/17	205	92	v s alc, eth
d274	2,4-Dichlorotoluene	Cl ₂ C ₆ H ₃ CH ₃	161.03	5, 295	1.2460^{20}_{20}	1.551120	-13	200.5	79	i aq
d275	2,6-Dichlorotoluene	Cl ₂ C ₆ H ₃ CH ₃	161.03	5, 296	1.254	1.550720		196-203	82	i aq; s chl
d276	3,4-Dichlorotoluene	Cl ₂ C ₆ H ₃ CH ₃	161.03	5, 296	1.25125	1.547220	- 15	209	85	i aq
d277	α, α -Dichloro- o -xylene	$C_6H_4(CH_2Cl)_2$	175.06	5, 364			55-57	239-241	107	
d278	α,α-Dichloro- <i>p</i> -xylene	$C_6H_4(CH_2Cl)_2$	175.06	5, 384			99–101	254		22.5 acet; 20 bz; 4.5 CCl ₄ ; 11 eth; 18 EtOAc
d279	2,5-Dichloro-p-xylene	$Cl_2C_6H_2(CH_3)_2$	175.06	5, 384			71	222		27 acet; 44 bz; 39 eth; 32 EtOAc; 5 MeOH
d280	Dicumyl peroxide	$[C_6H_5C(CH_3)_2]_2O_2$	270.37				39-41		>110	
d281	Dicyandiamide	$H_2NC(=NH)NHCN$	84.08	3, 91	1.40045		208-211			2.3 aq; 1.3 alc; i bz
d282	1,2-Dicyanobenzene	$C_6H_4(CN)_2$	128.13	9, 815			139-141			v s bz, alc; s hot eth
d283	1,3-Dicyanobenzene	$C_6H_4(CN)_2$	128.13	9, 836			158-160			s alc, bz, chl, eth
d284	1,4-Dicyanobutane	NC(CH ₂) ₄ CN	108.14	2, 653	0.951	1.438020	1-3	295	93	
d285	1,6-Dicyanohexane	NC(CH ₂) ₆ CN	136.20	2, 694	0.954	1.443620	-3.5	185 ^{15mm}	>110	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

d286	2,4-Dicyano-3-methyl- glutaramide	CH ₃ CH[CH(CN)CONH ₂] ₂	194.19	2², 704			159-160			
d287	1,5-Dicyanopentane	NC(CH ₂) ₅ CN	122.17	2, 671	0.951	1.441020		176 ^{14mm}	>110	
d288	Dicyclohexyl	C ₆ H ₁₁ C ₆ H ₁₁	166.31	5, 108	0.864	1.478220	3-4	227	92	7 MeOH; misc bz, acet, eth
d289 d290	Dicyclohexylamine N,N'-Dicyclohexyl- carbodiimide	$(C_6H_{11})_2NH$ $C_6H_{11}N=C=NC_6H_{11}$	181.32 206.33	12, 6 Merck: 12, 3146	0.910	1.484220	-2 35-36	255.8 124 ^{6mm}	96 110	misc alc, bz, chl, eth
d291	Dicyclohexyl <i>o</i> - phthalate	C ₆ H ₄ -1,2-(CO ₂ C ₆ H ₁₁) ₂	330.43	9, 799			6466			
d292 d293	Dicyclopentadiene Dicyclopentenyl methacrylate		132.21 218.30	5, 495 6 ³ , 1942	0.9304 ²⁵ 1.050	1.5050 ²⁵ 1.5080 ²⁰	- 1	170 137 ^{13mm}	26 >110	s alc, eth
d294 d295	Dicyclopropyl ketone Didodecyl 3,3'-thiodi- propionate	$(C_3H_5)_2C=O$ S[CH ₂ CH ₂ CO ₂ (CH ₂) ₁₁ CH ₃] ₂	110.16 514.86	3³, 556	0.977 0.915	1.467020	4042	160–162	39 >110	
d296	Dieldrin		380.92	17³, 526			176–177			i aq; s common org solvents except PE
d297	Diethanolamine	HOCH ₂ CH ₂ NHCH ₂ CH ₂ OH	105.14	4, 283	1.0881430	1.4747 ³⁰	28.0	269	172	96 aq; 4 bz; 0.8 eth; misc MeOH, acet
d298	2,2-Diethoxyacet- ophenone	$C_6H_5C(==O)CH(OC_2H_5)_2$	208.26	7 ¹ , 361	1.034	1.499520		134 ^{10mm}	>110	
d299	4,4-Diethoxybutyl- amine	H ₂ N(CH ₂) ₃ CH(OC ₂ H ₅) ₂	161.25	4, 319	0.933	1.427520		196	62	
d300	2,2-Diethoxy- <i>N</i> , <i>N</i> -di- methylethylamine	(C ₂ H ₅ O) ₂ CHCH ₂ N(CH ₃) ₂	161.25	4, 308	0.883	1.412920		170	45	
d301	Diethoxydimethyl- silane	$(C_2H_5O)_2Si(CH_3)_2$	148.28		0.84040	1.381120	- 87	114	11	
d302	Diethoxydiphenyl- silane	$(C_2H_5O)_2Si(C_6H_5)_2$	272.42	16², 608	1.0329420	1.526920		139 ^{2mm}	>110	
d303	1,1-Diethoxyethane	CH ₃ CH(OC ₂ H ₅) ₂	118.18	1, 603	0.8254 ²⁰	1.381920	- 100	102.2	-21	5 aq; misc alc, eth
d304	1,2-Diethoxyethane	C ₂ H ₅ OCH ₂ CH ₂ OC ₂ H ₅	118.18	1, 468	0.842	1.392220	- 74	121.4	27	21 aq
d305	2,2-Diethoxyethanol	(C ₂ H ₅ O) ₂ CHCH ₂ OH	134.18	1, 818	0.88844	1.416020		167	67	s alc, eth
d306	2,2-Diethoxyethyl- amine	(C ₂ H ₅ O) ₂ CHCH ₂ NH ₂	133.19	4, 308	0.916	1.4170		162-163	45	
d307	Diethoxymethane	$(C_2H_5O)_2CH_2$	104.15		0.839	1.373220		8788	-5	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d308	3-(Diethoxymethyl-	CH ₃ Si(OC ₂ H ₅) ₂ (CH ₂) ₃ NH ₂	191.35	4, <i>4</i> , 4201	0.916	1.426020		88 ^{8mm}	75	
d309	2,5-Diethoxynitro-	(C ₂ H ₅ O) ₂ C ₆ H ₅ NO ₂	211.22	6, 857			48-51	169 ^{13mm}	>110	
d310	Diethoxymethylvinyl-	(C ₂ H ₃ O) ₂ Si(CH ₃)CH=CH ₂	160.29	4⁴ , 4183	0.858420	1.40020		133–134	17	
d311	1,1-Diethoxypropane	CH ₃ CH ₂ CH(OC ₂ H ₅) ₂	132.20	1, 630	0.8232420	1.388420		122.8	7	v s alc, eth
d312	3,3-Diethoxy-1- propene	(C ₂ H ₅ O) ₂ CHCH=CH ₂	130.19	1, 727	0.854	1.400020		125	4	
d313	2,2-Diethoxytri- ethylamine	(C ₂ H ₅ O) ₂ CHCH ₂ N(C ₂ H ₅) ₂	189.30	4, 309	0.850	1.418920		194–195	65	
d314	N,N-Diethylacetamide	$CH_3C(=O)N(C_2H_5)_2$	115.18	4, 110	0.925	1.440120		182-186	70	
d315	Diethyl 1,3-acetone- dicarboxylate	C ₂ H ₅ OOCCH ₂ C(=O)CH ₂ - CO ₂ C ₃ H ₅	202.21	3, 791	1.113	1.438520		250	86	
d316	Diethyl 2-acetyl- glutarate	C ₂ H ₃ O ₂ CCH ₂ CH ₂ CH- [C(==0)CH ₃]CO ₂ C ₂ H ₄	230.26	3, 809	1.071	1.438620		154 ^{11mm}	>110	
d317	Diethyl acetylsuccinate	$C_2H_5O_2CCH_2CH[C(=O)-CH_3]CO_2C_3H_4$	216.23	3, 801	1.081	1.434620		183 ^{50mm}	>110	
d318	Diethyl adipate	$C_2H_5O_2C(CH_2)_4CO_2C_2H_5$	202.25	2,652	1.009	1.427020	-18	251	110	
d319	Diethyl allylmalonate	C ₂ H ₅ O ₂ CCH(CH ₂ CH=CH ₂)- CO ₂ C ₂ H ₅	200.23	2, 776	1.015	1.430420		222-223	71	
d320	Diethylaluminum chloride	(C ₂ H ₃) ₂ AlCl	120.56	4³, 1972	0.961		- 50	126 ^{50mm}	-18	
d321	Diethylaluminum ethoxide	$(C_2H_5)_2AIOC_2H_5$	130.17	4³, 1972	0.850		2.5-4.5	109 ^{10mm}	-18	
d322	Diethylaluminum iodide	(C ₂ H ₃) ₂ All	212.01	4², 1024	1.609			120 ^{4mm}	- 18	
d323	Diethylamine	(C ₂ H ₅) ₂ NH	73.14	4, 95	0.7074420	1.386410	- 50.0	55.5	-23	misc aq, alc
d324	Diethylamine HCl	$(C_2H_5)_2NH \cdot HCl$	109.60	4, 95	1.048_{4}^{21}		227-230	320-330		s aq, alc, chl; i eth
d325	2-(Diethylamino)- acetonitrile	(C ₂ H ₅) ₂ NCH ₂ CN	112.18	4, 350	0.866	1.426020		170	53	
d326	4-(Diethylamino)- benzaldehyde	(C ₂ H ₅) ₂ NC ₆ H ₄ CHO	177.25	14², 25			39-41	174 ^{7mm}	>110	
d327	2-Diethylaminoethanol	(C ₂ H ₅) ₂ NCH ₂ CH ₂ OH	117.19	4, 282	0.880025	1.438920	-70	163	48	s aq, alc, bz, eth
d328	2-Diethylaminoethyl- chloride HCl	$ClCH_2CH_2N(C_2H_5)_2 \cdot HCl$	172.10	4², 618			108-210			
d329	2-(Diethylamino)ethyl methacrylate	$H_2C = C(CH_3)CO_2CH_2CH_2-$ N(C ₂ H ₅) ₂	185.27	4³, 676	0.922	1.444020		80 ^{10mm}	76	

d330	3-(Diethylamino)- phenol	(C ₂ H ₅) ₂ NC ₆ H ₄ OH	165.24	13, 408			6569	170 ^{15mm}		s aq, alc, eth
d331	3-Diethylamino-1,2- propanediol	(C ₂ H ₅) ₂ NCH ₂ CH(OH)- CH ₂ OH	147.22	4, 302	0.97320	1.460220		233–235	107	s aq, alc, chl, eth
d332	1-Diethylamino-2- propanol	(C ₂ H ₅) ₂ NCH ₂ CH(OH)CH ₃	131.22	4², 737	0.889	1.425520	13.5	59 ^{13mm}	33	s alc
d333	3-Diethylamino-1- propanol	(C ₂ H ₅) ₂ NCH ₂ CH ₂ CH ₂ OH	131.22	4, 288	0.884	1.4435		83 ^{15mm}	65	
d334	3-Diethylaminopropyl- amine	(C ₂ H ₅) ₂ NCH ₂ CH ₂ CH ₂ NH ₂	130.24		0.826	1.441620		159	58	
d335	N,N-Diethylaniline	$C_6H_5N(C_2H_5)_2$	149.24	12, 164	0.930245	1.539425	- 38	216	97	1 aq; sl s alc, eth
d336	2,6-Diethylaniline	$(C_2H_3)_2C_6H_3NH_2$	149.24		0.906	1.545220	3	243	123	
d337	Diethyl azelate	C ₂ H ₅ O ₂ C(CH ₂) ₇ CO ₂ C ₂ H ₅	244.33	2, 709	0.973	1.435020	- 16	172 ^{18mm}	>110	
d338	Diethyl azodi- carboxylate	$C_2H_5O_2CN = NCO_2C_2H_5$	174.16	3, 123	1.106	1.428020		106 ^{13mm}	>110	
d339	5,5-Diethylbarbituric acid		184.19	24², 279	1.220		188–192			0.7 aq; 7 alc; 1.3 chl; 3.2 eth; s acet, HOAc
d340	Diethyl benzalmalonate	C,H,CH=C(CO,C,H,),	248.28	9, 892	1.107	1.536520		215 ^{30mm}	>110	
d340a	1,2-Diethylbenzene	$C_6H_4(C_2H_5)_2$	134.22	5, 426	0.880	1.502020	-31	184	49	
d341	1,3-Diethylbenzene	$C_6H_4(C_2H_5)_2$	134.22	5, 426	0.864040	1.495020	- 83.9	181.1	50	s alc, eth
d342	1,4-Diethylbenzene	$C_6H_4(C_2H_5)_2$	134.22	5, 426	0.8620420	1.4940 ²⁰	- 42.8	183.8	56	s alc, eth
d343	Diethyl benzyl- malonate	C ₆ H ₅ CH ₂ CH(CO ₂ C ₂ H ₅) ₂	250.29	9, 869	1.064	1.486820		162 ^{10mm}	>110	
d 344	Diethyl benzo- phosphonate	C ₆ H ₅ CH ₂ P(O)(OC ₂ H ₅) ₂	228.23	12, 164	1.095	1.4970 ²⁰		108 ^{1mm}	>110	
d345	Diethyl bis(hydroxy- methyl)malonate	(HOCH ₂) ₂ C(CO ₂ C ₂ H ₅) ₂	220.22				49-51		>110	
d346	Diethyl bromomalonate	BrCH(CO ₂ C ₂ H ₅) ₂	239.07	2, 594	1.402245	1.455020	- 54	235 dec	>110	i aq; misc alc, eth
d347	Diethyl butylmalonate	$C_4H_9CH(CO_2C_2H_5)_2$	216.28	2 ¹ , 282	0.983	1.4220		235-240	93	v s alc, eth
d348	Diethylcarbamoyl chloride	$(C_2H_5)_2N(O)Cl$	135.59	4, 120	1.070	1.451520	32	187-190	75	d hot aq, hot alc
d349	Diethyl carbonate	$(C_2H_5O)_2C==O$	118.13	3, 5	0.976440	1.384320	- 43.0	126	25	69 aq; misc alc, bz, eth, esters
d350	Diethyl chloro- phosphate	(C ₂ H ₅ O) ₂ P(O)Cl	172.55	1, 332	1.194	1.416520		60 ^{2mm}	61	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d351	Diethyl chlorothio-	(C,H,O),P(S)Cl	188.61	13, 1332	1.200	1.471520		45 ^{3mm}	>110	
	phosphate									
d352	Diethyl cyano-	$(C_2H_5O)_2P(O)CN$	163.11		1.075	1.401220		105 ^{19mm}	80	
	phosphate									
d353	N,N-Diethylcyclo-	$C_6H_{11}N(C_2H_5)_2$	155.29	12, 6	0.850	1.456220		194-195	57	
	hexylamine									
d354	Diethyl diethyl-	$(C_2H_5)_2C(CO_2C_2H_5)_2$	216.28	2, 686	0.990	1.423020		228-230	94	
1755	malonate		268.26	10,400			72 75			
a335	1,3-Dietnyi-1,3-	$[C_6H_5N(C_2H_5)]_2C == 0$	208.30	12, 422			13-15			
4356	Diethyl disulfide	C.H.SSC.H.	122.25	1 347	0 00820	1 506320	- 101 5	154.0	40	sl s ao: misc alc eth
u550	Dicutyl disuniac	C211535C2115	122.25	1, 547	0.3304	1.5005	101.5	134.0	-0	si s aq, mise ale, cui
d357	Diethyldithiocarbamic acid sodium salt	$(C_2H_5)_2NC(\Longrightarrow)S^-Na^+ \cdot 3H_2O$	225.31	4², 613			9599			
d358	Diethyl dithio-	(C-H-O)-P(S)SH	186.23	1. 333	1.111	1.512020		60 ^{1mm}	82	
	phosphate	(-23-)2-(-)		-,						
d359	N,N-Diethyldodecan-	$CH_3(CH_2)_{10}C(=O)N(C_2H_5)_2$	255.45		0.847	1.454520		166 ^{2mm}	>110	
	amide									
d360	Diethyl dodecane-	C ₂ H ₅ O ₂ C(CH ₂) ₁₀ CO ₂ C ₂ H ₅	186.41	2², 616	0.951	1.440220	15	193 ^{14mm}	>110	
	dioate									
d361	Diethylene glycol	(HOCH ₂ CH ₂) ₂ O	106.12	1, 468	1.119715	1.446020	- 10	246	124	
d362	Diethylenetriamine	(H ₂ NCH ₂ CH ₂)NH	103.17	4, 255	0.9542^{20}_{20}	1.482620	- 35/- 39	207	98	misc aq, alc, bz, eth
d363	Diethylenetriamine-	[(HO ₂ CCH ₂) ₂ NCH ₂ CH ₂] ₂ N-	393.35	44, 2454			219-220			
	pentaacetic acid	$(CH_2CO_2H)N(CH_2CO_2H)_2$								
d364	N,N-Diethylethanol-	$HOCH_2CH_2N(C_2H_5)_2$	117.19	4, 282	0.884	1.441020		161	48	
d365	Diethyl ether	C-H-OC-H-	74.12	1. 314	0.713420	1.352720	-116.3	34.6	45	6 au: misc alc. bz. chl
d366	Diethyl ethoxymethyl-	(C ₂ H ₅ O ₂ C) ₂ C==CHOC ₂ H ₅	216.23	3, 469	1.070	1.462020		279-281	155	,,,,,,
	enemalonate									
d367	N,N-Diethylethylene-	(C ₂ H ₅) ₂ NCH ₂ CH ₂ NH ₂	116.21	4, 251	0.827	1.436020		145147	30	
	diamine									
d368	Diethyl ethylmalonate	$C_2H_5CH(CO_2C_2H_5)_2$	188.22	2, 644	1.004^{20}_{20}	1.415820		77 ^{5mm}	88	sl s aq; v s alc, eth
d369	N,N-Diethylformamide	(C ₂ H ₅) ₂ NCHO	101.15	4, 109	0.908	1.434020		176–177	60	misc aq; v s alc, eth
d370	Diethyl fumarate	C ₂ H ₅ O ₂ CCH==CHCO ₂ C ₂ H ₅	172.18	2, 742	1.05240	1.440620	1-2	218-219	91	
d371	Diethyl glutarate	C ₂ H ₅ O ₂ CCH ₂ CH ₂ CH ₂ - CO ₂ C ₂ H ₅	188.22	2, 633	1.022	1.424020	-23.8	237	96	0.9 aq; v s alc; s eth
d372	2.4-Diethyl-2.6-	H,C=CHCH,CH(C,H,)-	166.27		0.862	1.467620		91 ^{12mm}	86	
	heptadienal	CH=C(C ₂ H ₅)CHO								
d373	Diethyl heptanedioate	C ₂ H ₅ O ₂ C(CH ₂) ₅ CO ₂ C ₂ H ₅	216.28	2, 671	0.994520	1.428020	-24	192 ^{100mm}	>110	i aq; s alc, eth

d374	Di-(2-ethylhexyl)-o- phthalate	$\begin{array}{c} C_6H_4[CO_2CH_2CH(C_2H_5)-\\ C_4H_9]_2 \end{array}$	390.56	10, 1248	0.98125	1.485320	- 50	384	207	
d375	Diethyl hydrogen phosphonate	$(C_2H_5O)_2P(O)H$	138.10	1, 330	1.079420	1.4076 ²⁰		51 ^{2mm}	90	hyd aq; s alc, eth
d376	N,N-Diethylhydroxyl- amine	(C ₂ H ₅) ₂ NOH	89.14	4, 536	1.867	1.4195 ²⁰	- 25	125-130	45	
d377	Diethyl maleate	C ₂ H ₅ O ₂ CCH=CHCO ₂ C ₂ H ₅	172.18	2, 751	1.068720	1.440020	- 8.8	225.3	93	1.4 aq; s alc, eth
d378	Diethyl malonate	C ₂ H ₅ O ₂ CCH ₂ CO ₂ C ₂ H ₅	160.17	2, 573	1.0550	1.413620	- 49.9	199.3	93	2.7 aq; misc alc, eth
d379 d380	Diethylmalonic acid N,N-Diethylmethyl- amine	$HO_2CU(C_2H_5)_2CO_2H$ $(C_2H_5)_2NH_3$	87.17	2, 686 4, 99	0.720	1.388720	127	63-65	-23	v s aq, aic, eth
d381	Diethyl methyl- malonate	C ₂ H ₅ O ₂ CCH(CH ₃)CO ₂ C ₂ H ₅	174.20	2, 629	1.01840	1.413020		198	76	
d382	Diethyl 2-methyl-2'- oxosuccinate	$C_2H_5O_2CCH(CH_3)C(=O)-CO_2C_2H_5$	202.21	3, 794	1.073	1.431320		138 ^{23mm}	>110	
d383	N,N-Diethyl-4-nitroso- aniline	$C_6H_4(NO)N(C_2H_5)_2$	178.24	12, 684			82-84			
d384	Diethyl octanedioate	C ₂ H ₅ O ₂ C(CH ₂) ₆ CO ₂ C ₂ H ₅	230.30	2, 693	0.982220	1.432320	5.9	282	>112	i aq; s alc, eth
d385	Diethyl oxalate	C ₂ H ₅ O ₂ CCO ₂ C ₂ H ₅	146.14	2, 535	1.0785420	1.410220	40.6	185.4	76	3.6 aq (gradual dec) misc alc, eth
d386	Diethyl oxydiformate	$[C_2H_5OC(=0)]_2O$	162.14	Merck: 12, 8182	1.12_4^{20}	1.398020		93 ^{18mm}	69	50 alc; s esters, ke- tones; s aq
d386a	3,3-diethylpentane	$C(C_2H_5)_4$	128.26		0.753620	1.420620	-33	146		
d387	N ¹ ,N ¹ -Diethyl-1,4- pentanediamine	CH ₃ CH(NH ₂)(CH ₂) ₃ N(C ₂ H ₅) ₂	158.29	Merck: 12, 6819	0.817	1.442920		200	68	s aq, alc, eth
d388	N ¹ ,N ¹ -Diethyl-1,4- phenylenediamine	(C ₂ H ₅) ₂ NC ₆ H₄NH ₂	164.25	13, 75	0.988	1.5710 ²⁰		116 ^{5mm}	>110	
d389	Diethyl phenyl- malonate	C ₆ H ₅ CH(CO ₂ C ₂ H ₅) ₂	236.27	9, 854	1.0950420	1.491320	16	170 ^{14mm}	>110	i aq; s alc
d390	Diethyl phosphite	$(C_2H_5)_2P(O)H$	138.10	1, 330	1.079 ²⁰	1.4079 ²⁰		51 ^{2mm}	90	hyd aq; s alc, eth
d391	Diethyl o-phthalate	$C_6H_4(CO_2C_2H_5)_2$	222.24	9, 798	1.23244	1.504914	-40	295	160	i aq; misc alc, eth
d392	N,N-Diethyl-1,3- propanediamine	(C ₂ H ₅) ₂ NCH ₂ CH ₂ CH ₂ NH ₂	130.24		0.826	1.441620		159	58	
d393	2,2-Diethyl-1,3- propanediol	(C ₂ H ₅) ₂ C(CH ₂ OH) ₂	132.20		1.05220	1.457425	61.3	125 ^{10mm}		25 aq; v s alc, eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
4204	Distbul propul		202.25	2 657	0.097	1 419520		221 222	01	1
0394	Dieuryi propyi-	$C_2 n_5 O_2 CC n(C_3 n_7) CO_2 C_2 n_5$	202.25	2,057	0.967	1.416.5**		221-222	91	
4305	Diathyl sebecate	CHOC(CH)COCH	258 36	2 717	0.963	1 436020	1_2	312	>110	0.14 ag: misc alc. eth
4306	Diethyl succinate	$C_2 \Pi_5 O_2 C(CH_2)_8 CO_2 C_2 \Pi_5$	174.20	2,717	1.04020	1.4300	- 21	2177	100	i ag: misc alc eth
4307	Diethyl sulfate	(C + O) SO	154.18	1 327	1.0404	1.4200	_25	208	78	i aq, mise ale, eth
4308	Diethyl sulfide	(C H) S	90.19	1, 344	0.836720	1 443020	- 103.9	92.1	-9	i aq; misc alc, eth
4300	Diethyl sulfite	(C + 0) = 0	138 19	1, 325	1 883	1.45020	105.5	158	53	s aq(dec) alc
d377	(+)-Diethyl-I-tartrate	[-CH(OH)CO.C.H.].	206.19	3 512	1 20520	1 446020	17	280	93	sl s ag: misc alc, eth
d401	(-)-Diethyl-D-tartrate	I-CH(OH)CO-C-H-1	206.19	31 181	1 205	1 446020	1,	162 ^{19mm}	93	sl s aq; misc alc, eth
d402	N N-Diethyl-m-	$CH_CH_C = ON(CH_2)$	191.27	9 ² 325	0.99620	1 521220		1111mm	>110	i ag: v s alc bz eth
0102	toluamide		191.27	, 525	0.3304	1.5212				1 44, 1 5 40, 50, 50
d403	N,N-Diethyl-m-	$CH_3C_6H_4CN(C_2H_5)_2$	163.26	12, 857	0.922	1.536020		231-232	100	
d404	N.N-Diethyl-1.1.1-tri-	(C ₂ H ₄) ₂ NSi(CH ₂) ₂	145.32	43, 1861	0.767	1.411020		125-126	10	
u	methylsilvlamine	(-2-3)2-10-(3)3		.,						
d405	Diethylzinc	$(C_2H_3)_2Zn$	123.49	6, 672	1.20654	1.498320	- 28	118	-23	
d406	1,2-Difluorobenzene	C _c H ₄ F ₂	114.09	5 ² , 147	1.158	1.443020	- 34	92	2	
d406a	1,4-Difluorobenzene	$C_6H_4F_2$	114.09	5, 199	1.170120	1.441020	- 13	89	2	
d407	1,1-Difluoroethane	CH ₄ CHF ₂	66.05	1 ³ , 130	0.90921	1.3011-72	-117	-24.7		0.32 aq
d408	1,1-Difluoroethylene	$CH_2 = CF_2$	64.04	1, 186			- 144	- 86		-
d409	Difluoromethane	CH ₂ F ₂	52.02	1, 59	2.126 g/L		- 136	-51.6		FLAMMABLE GAS
d410	2,4-Difluoronitro-	$F_2C_6H_3NO_2$	159.09	5 ¹ , 129	1.451	1.511020	9-10	203-204	90	
	benzene									
d411	1,1-Difluorotetra-	CIF ₂ CCCl ₃	203.83	1, 86	1.649	1.413	41	91	none	sl s alc; v s eth
	chloroethane									
d412	1,2-Difluorotetra-	FCl ₂ CCCl ₂ F	203.83	1 ³ , 365	1.644745	1.41325	23.8	203.8		i aq; s alc, eth
	chloroethane									
d413	Dihexylamine	$(C_6H_{13})_2NH$	185.36	4 ¹ , 384	0.795	1.432020		192-195	95	s alc, eth
d414	Dihexyl ether	$(C_6H_{13})_2O$	186.34	1 ³ , 1656	0.793640	1.420420		226.2	77	i aq; s ethers
d415	9,10-Dihydro-		180.25	5, 641	0.880		108-110	312		i aq; s alc, bz, eth
	anthracene									
d416	(+)-Dihydrocarvone		152.24	7 ³ , 337	0.92919	1.471820		221-222	81	
d417	Dihydrocoumarin		148.16	17, 315	1.16918	1.556320	25	272	>110	sl s alc, eth; s chl
d418	2,5-Dihydro-2,5-di-	· · · · ·	159.19	183, 7426	1.102	1.460020		96 ^{12mm}	96	
	methoxyfurfuryl-			,						
	amine									
d419	2,3-Dihydro-2,2-di-		164.21	175, 4, 47	1.101	1.541020			110	
	methyl-7-benzo-									
	furanol									

d420	3,4-Dihydro-2-ethoxy-		128.17		0.957	1.439420		42 ^{16mm}	24	
d421	2 3-Dihydrofuran		70.09	173, 141	0.927	1.423920		54-55	-24	
d422	3.4-Dihydro-2-		114.14	.,	0.527	1.442520			16	
	methoxy-2H-pyran									
d423	3,4-Dihydro-1(2H)- naphthalenone		146.19	7, 370	1.099	1.568520	56	116 ^{6mm}	>110	
d424	3,4-Dihydro-2H-pyran		84.12		0.92219	1.441020	- 70	86	-15	s aq, alc
d425	2',4'-Dihydroacet- ophenone	$(HO)_2C_6H_3C(=O)CH_3$	152.15	8, 266	1.180		145-147			s warm alc, HOAc, pyr; i bz, eth
d426	1,8-Dihydroxyanthra- quinone		240.21	8, 458			193–197	subl		0.005 alc; 0.2 eth; s chl
d427	2,4-Dihydroxybenz- aldehyde	(HO) ₂ C ₆ H ₃ CHO	138.12	8, 241			135-136	226 ^{22mm}		v s aq, alc, chl, eth
d428	1,2-Dihydroxybenzene	C ₆ H ₄ (OH) ₂	110.11	6, 759	1.3444		104–106	245.5	137	43 aq; s alc, bz, chl, eth; v s pyr, alkalis
d429	1,3-Dihydroxybenzene	C ₆ H ₄ (OH) ₂	110.11	6², 802	1.27215		109-110	276	171	110 aq; 110 alc; v s eth, glyc; sl s chl
d430	1,4-Dihydroxybenzene	C ₆ H ₄ (OH) ₂	110.11	6, 836	1.33215		170-171	285-287		7 aq; v s alc, eth
d431	2,4-Dihydroxybenzoic acid	(HO) ₂ C ₆ H ₃ CO ₂ H	154.12	10, 377			213 rapid heating			s hot aq, alc, eth
d432	2,5-Dihydroxybenzoic acid	(HO) ₂ C ₆ H ₃ CO ₂ H	154.12	10, 384			199–200			0.5 aq; s alc, eth
d433	3,4-Dihydroxybenzoic acid	(HO) ₂ C ₆ H ₃ CO ₂ H	154.12	10, 389 -	1.54		200-202			2 aq; s alc, eth
d434	3,5-Dihydroxybenzoic acid	(HO) ₂ C ₆ H ₃ CO ₂ H	154.12	10, 404			236 dec			sl s aq; s alc, eth
d435	2,4-Dihydroxybenz- ophenone	$(HO)_2C_6H_3C(=O)C_6H_5$	214.22	8, 312			144-145			v s alc, eth, HOAc
d436	2,2'-Dihydroxybiphenyl	HOC ₆ H₄C ₆ H₄OH	186.21	6, 989			110	315		s alc, bz, eth; sl s aq
d437	4,6-Dihydroxy-2- mercaptopyrimidine		144.15	24, 476			236			
d438	1,2-Dihydroxy-4- methylbenzene	(HO) ₂ C ₆ H ₃ CH ₃	124.14	6, 878	1.12944	1.542574	6769	251		v s aq, alc, eth
d439	1,5-Dihydroxy- naphthalene	C ₁₀ H ₆ (OH) ₂	160.17	6, 980			259 dec			sl s aq; s alc; v s eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d440	1.6-Dihydroxy-	C ₁₀ H ₄ (OH) ₂	160.17	6, 981			138-140	•		v s alc. eth
	naphthalene	10 0 12		-,						
d441	2,3-Dihydroxy- naphthalene	$C_{10}H_6(OH)_2$	160.17	6, 982			162164			v s alc, eth
d442	2,7-Dihydroxy- naphthalene	$C_{10}H_6(OH)_2$	160.17	6, 985			187 dec			sl s aq; v s alc, eth
d443	1,4-Dihydroxy-2- naphthoic acid	$(\mathrm{HO})_{2}\mathrm{C}_{10}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}$	204.19	10, 442			220 dec			
d444	3,5-Dihydroxy-2- naphthoic acid	$(\mathrm{HO})_{2}\mathrm{C}_{10}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{H}$	204.19	10, 444			277 dec			
d445	1,3-Dihydroxy-2- propanone	HOCH ₂ C(=O)CH ₂ OH	90.08	1, 846			65–71			v s aq, alc, acet, eth
d446	7-(2,3-Dihydroxy- propyl)theophylline		254.25				158			33 aq; 2 alc; 1 chl
d447	3,6-Dihydroxy- pyridazine		112.09	24, 312			306-308			sl s ahot alc; s hot aq
d448	2,3-Dihydroxypyridine	(HO)₂C₅H₃N	111.10	21², 107			245 dec			
d449	1,4-Diiodobenzene	$C_6H_4I_2$	329.91	5, 227			131-133	285		sl s alc; v s eth
d450	1,4-Diiodobutane	I(CH ₂) ₄ I	309.92	1, 123	2.350	1.621220	6	152 ^{26mm}	none	
d451	1,2-Diiodoethane	ICH ₂ CH ₂ I	281.86	1, 99	2.132 ¹⁰		81-84	200		sl s aq; s alc, eth
d452	Diiodomethane	CH ₂ I ₂	267.84	1, 71	3.325420	1.7425 ²⁰	6	181	>110	0.12 aq; misc alc, bz, eth, PE
d453	1,5-Diiodopentane	I(CH ₂) ₅ I	323.94	1, 133	2.177	1.600220		102 ^{3mm}	>110	
d454	1,3-Diiodopropane	I(CH ₂) ₃ I	295.88	1, 115	2.575540	1.642320	- 13	222	>110	i aq; s chl, eth
d455	Diisobutylaluminum chloride	[(CH ₃) ₂ CHCH ₂] ₂ AlCl	176.67	44, 4403	0.905	1.450620	-40	152 ^{10mm}	-18	
d456	Diisobutylaluminum hydride	[(CH ₃) ₂ CHCH ₂] ₂ AlH	142.22	4 ⁴ , 4400	0.798			118 ^{1mm}	- 18	
d457	Diisobutylamine	[(CH ₃) ₂ CHCH ₂] ₂ NH	129.25	4, 166	0.740	1.408120	- 77	137-139	29	s alc, acet, eth, chl
d458	Diisobutyl ether	[(CH ₃) ₂ CHCH ₂] ₂ O	130.22		0.76115			122-124	8	i aq; misc alc, eth
d459	Diisobutyl hexane- dioate	[(CH ₃) ₂ CHCH ₂ O ₂ CCH ₂ CH ₂ -] ₂	258.36		0.95025				160	
d460	Diisobutyl o-phthalate	C ₆ H ₄ [CO ₂ CH ₂ CH(CH ₃) ₂] ₂	278.35	9², 587	1.03825	1.490020			174	
d461	1,6-Diisocyanato- hexane	OCN(CH ₂) ₆ NCO	168.20	4², 711	1.040	1.452520		255	140	
d462	Diisodecyl phenyl phosphite	(C ₁₀ H ₂₁ O) ₂ P(O)C ₆ H ₅	438.64		0.940	1.480020		176 ^{5mm}		
d463	Diisoheptyl o-phthalate	$C_6H_4(CO_2C_7H_{15})_2$		ļ	0.990	1.486020	.		>110	

d464	Diisononyl o-phthalate	$C_6H_4(CO_2C_9H_{19})_2$			0.972	1.485020			>110	
d465	Diisooctyl nonane-	C ₈ H ₁₇ O ₂ C(CH ₂) ₇ CO ₂ C ₈ H ₁₇	412.66		0.905	1.451010		210 ^{2mm}	>110	
	dioate									
d466	Diisooctyl o-phthalate	$C_6H_4(CO_2C_8H_{17})_2$	390.56		0.983	1.486020			>110	
d466a	Diisopentyl ether	[(CH ₃) ₂ CHCH ₂ CH ₂] ₂ O	158.28		0.777720	1.408520		172.5		
d467	1,3-Diisopropenyl-	$C_6H_4[C(CH_3)=:CH_2]_2$	158.25		0.925	1.557120		231	91	
	benzene									
d468	Diisopropylamine	[(CH ₃) ₂ CH] ₂ NH	101.19	4, 154	0.715320	1.392420	-61	83.5	-1	11 aq; s alc
d469	2-(Diisopropylamino)-	[(CH ₃) ₂ CH] ₂ NCH ₂ CH ₂ OH	145.25	4 ¹ , 430	0.826	1.441720		187-192	57	
	ethanol									
d470	3-Diisopropylamino-	[(CH ₃) ₂ CH] ₂ NCH ₂ CH(OH)-	175.27		0.962	1.458320		131 ^{10mm}	>110	
	1,2-propanediol	CH ₂ OH								
d471	2,6-Diisopropylaniline	$[(CH_3)_2CH]_2C_6H_3NH_2$	177.29	12, 168	0.940	1.533220	-45	257	123	
d472	Diisopropyl azodi-	(CH ₃) ₂ CHO ₂ CNCO ₂ -	202.21		1.027	1.420020		75 ^{0.25mm}	106	
	carboxylate	CH(CH ₃) ₂								
d473	1,3-Diisopropyl-	$C_6H_4[CH(CH_3)_2]_2$	162.28	5, 447	0.856420	1.489020	- 63	203	76	misc alc, bz, eth, acet
	benzene									
d474	1,4-Diisopropyl-	$C_6H_4[CH(CH_3)_2]_2$	162.28	5², 339	0.8574	1.488920	- 17	204	76	misc alc, bz, acet, eth
	benzene									
d475	Diisopropylcyanamide	[(CH ₃) ₂ CH] ₂ NCN	126.20	4 ³ , 279	0.839	1.427020		93 ^{25mm}	78	
d476	Diisopropyl ether	I(CH_)_CH]_O	102.17	1, 362	0.725820	1.367920	- 86.9	68.4	-28	1.2 aq: misc alc. bz.
0110	2 Hooptopji valor	1(01.3/2011)20		1,002	0.1.2004					chl. eth
d477	N.N-Diisopropyl-	I(CH_)_CH]_NC_H	129.25	4, 4, 511	0.742	1.413320	< -50	127	10	
••••	ethylamine	((013)20132.0213		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
d478	Diisopropyl malonate	(CH_)_CHO_CCH_CO	188.22	23, 1620	0.991	1.412020		9512mm	88	
	2 moopropji maronano	CH(CH ₂)		-,			1			
d479	2.6-Diisopropylphenol	I(CH_),CH],C_H_OH	178.28	6 ¹ , 272	0.962	1.514020	18	256	110	
d480	Diisopropyl phosphite	I(CH ₂),CHOI ₂ P(O)H	166,16	1, 363	0.997	1.407020		72-7520	>110	
d481	(+)-Diisopropyl	[-CH(OH)CO ₂ CH(CH ₄) ₂] ₂	234.25	3, 517	1.114	1.438720		152 ^{12mm}	109	
	L-tartrate			, , , , , , , , , , , , , , , , , , ,			1			
d482	1.3-Diisopropyl-2-	(CH ₄), CHNHCSNH-	160.28	4, 155			143-145			
	thiourea	CH(CH ₄),		, , , , , , , , , , , , , , , , , , ,						
d483	Diketene	5/2	84.07	17 ³ , 4297	1.090	1.433020		127	34	
d484	threo-1,4-Dimercapto-	HSCH,CH(OH)CH(OH)-	154.25				42.43			v s aq, alc, chl, eth
	2,3-butanediol	CH ₂ SH								· · · ·
d485	2,3-Dimercapto-1-	HSCH,CH(SH)CH,OH	124.22		1.238545	1.527025		120 ^{15mm}	>110	8 aq(dec); s alc, eth
	propanol				1					
		1	1	1	1	1	1	1	1	I
TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d486	2,5-Dimercapto-1,3,4-		150.24	27, 677			162 dec			
d487	3'4'-Dimethoxy-	(CH ₃ O) ₂ C ₆ H ₃ COCH ₃	180.20	8², 298			49-51	286-288	>110	sl s aq, alc, eth
d488 d489 d490 d491	2,4-Dimethoxyaniline 2,5-Dimethoxyaniline 3,4-Dimethoxyaniline	(CH ₃ O) ₂ C ₆ H ₃ NH ₂ (CH ₃ O) ₂ C ₆ H ₃ NH ₂ (CH ₃ O) ₂ C ₆ H ₃ NH ₂ (CH ₃ O) ₂ C ₄ H ₃ NH ₂	153.18 153.18 153.18 166.18	13, 784 13, 788 13, 780 8, 245	1.075		34-37 80-82 88 49-52	270 176 ^{22mm} 14610mm	>110	s alc, bz, eth s aq, alc s hot eth
d492	aldehyde 3,4-Dimethoxybenz-	$(CH_3O)_2C_6H_3CHO$	166.18	8, 255			42-43	281	>110	v s alc, eth
d493	aldehyde 1,2-Dimethoxybenzene	C ₆ H ₄ (OCH ₃) ₂	138.17	6, 771	1.081925	1.523225	22.5	206.3	87	sl s aq; s alc, eth
d494 d495 d496	1,3-Dimethoxybenzene 1,4-Dimethoxybenzene 3,4-Dimethoxybenzoic	C ₆ H ₄ (OCH ₃) ₂ C ₆ H ₄ (OCH ₃) ₂ (CH ₃ O) ₂ C ₆ H ₃ CO ₂ H	138.17 138.17 182.18	6, 813 6, 843 10 ¹ , 188	1.055 1.036 ⁶⁵	1.5240	55 55-60 180181	87 ^{7mm} 213	87	s alc, bz, eth s alc; v s bz, eth 0.05 aq; v s alc, eth
d497	acid 3,5-Dimethoxybenzoic acid	(CH ₃ O) ₂ C ₆ H ₃ CO ₂ H	182.18	10, 405			182184			
d498	2,6-Dimethoxybenzoyl	(CH ₃ O) ₂ C ₆ H ₃ COCl	200.62	10³, 1402			6466			
d499	3,4-Dimethoxybenzyl alcohol	(CH ₃ O) ₂ C ₆ H ₃ CH ₂ OH	168.19	5, 1113	1.157	1.552020		297 ^{732mm}	>110	
d500	2,2-Dimethoxycyclo- hexanol	(CH ₃ O) ₂ C ₆ H ₉ OH	160.22		1.072	1.462020		90 ^{9mm}	40	
d501	2,5-Dimethoxy-2,5-		130.14		1.073	1.433920		160-162	47	
d502	Dimethoxydimethyl- silane	(CH ₃ O) ₂ Si(CH ₃) ₂	120.23		0.880	1.369020		81.4	10	
d503	Dimethoxydiphenyl- silane	(C ₆ H ₅) ₂ Si(OCH ₃) ₂	244.4		1.0771420	1.544720		161 ^{15mm}		
d504 d505 d506	1,1-Dimethoxyethane 1,2-Dimethoxyethane (2,2'-Dimethoxy)- ethylamine	CH ₂ CH(OCH ₃) ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ H ₂ NCH ₂ CH(OCH ₃) ₂	90.12 90.12 105.14	1, 603 1, 467 4 ² , 758	0.8502 ²⁰ 0.8620 ²⁰ 0.965	1.3668 ²⁰ 1.3796 ²⁰ 1.4170 ²⁰	-113 -68	64.5 85.2 135 ^{95mm}	- 17 1 53	s aq, alc, chl, eth misc aq, alc; s PE
d507 d508	Dimethoxymethane 1,1-Dimethoxy-2- methylaminoethane	CH ₂ (OCH ₃) ₂ CH ₃ NHCH ₂ CH(OCH ₃) ₂	76.10 119.16	1, 574 4², 759	0.8601 ²⁰ 0.928	1.3514 ²⁰ 1.4115 ²⁰	- 104.8	42.3 140	32 29	32 aq

d509	Dimethoxymethylvinyl- silane	CH ₃ Si(OCH ₃) ₂ CH=CH ₂	132.24		0.884	1.395020		106	3	
d510	Dimethoxymethyl- phenylsilane	(CH ₃ O) ₂ Si(CH ₃)C ₆ H ₅	182.3		0.993420	1.46920		199–200		
d511	1,2-Dimethoxy-4- nitrobenzene	(CH ₃ O) ₂ C ₆ H ₃ NO ₂	183.16	6, 789	1.18884333		95-98	230 ^{17mm}		v s alc, eth; s chl
d512	2,6-Dimethoxyphenol	(CH ₃ O) ₂ C ₆ H ₃ OH	154.17	6, 1081			53-56	261	>110	s alc, alk; v s eth
d513	3,4-Dimethoxyphenyl- acetic acid	(CH ₃ O) ₂ C ₆ H ₃ CO ₂ H	196.20	10, 409			96-98			s aq; v s alc, eth
d514	3,4-Dimethoxyphenyl- acetonitrile	(CH ₃ O) ₂ C ₆ H ₃ CN	177.20	10 ¹ , 198			62-63	178 ^{10mm}		
d515	2,2-Dimethoxy-2- phenylacetophenone	C ₆ H ₅ C(0)C(0CH ₃) ₂ C ₆ H ₅	256.30				67–70			
d516	1,1-Dimethoxy-2- phenylethane	C ₆ H ₅ CH ₂ CH(OCH ₃) ₂	166.22	7, 293	1.004	1.495020		221	83	
d517	2-(3,4-Dimethoxy- phenyl)ethylamine	(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CH ₂ NH ₂	181.24	13, 800	1.074	1.546420		188 ^{15mm}	>110	
d518	1,2-Dimethoxypropane	CH ₃ CH(OCH ₃)CH ₂ OCH ₃	104.15	14, 2471	0.855	1.383520		96	0	
d519	2,2-Dimethoxypropane	$(CH_3)_2C(OCH_3)_2$	104.15	1, 648	0.847	1.378020		83	-11	
d520	1,1-Dimethoxy-2- propanone	CH ₃ C(O)CH(OCH ₃) ₂	118.13	11, 395	0.976	1.397820		143–147	37	
d521	3,3-Dimethoxy-1- propene	(CH ₃ O) ₂ CHCH=CH ₂	102.13	11, 378	0.862	1.395420		89-90	-2	
d522	1,2-Dimethoxy-4- propenylbenzene	CH ₃ CH=CHC ₆ H ₅ (OCH ₃) ₂	178.23	6, 956	1.055	1.568020		262-264	>110	
d523	3,3-Dimethoxy- propionitrile	(CH ₃ O) ₂ CHCH ₂ CN	115.13	34, 521	1.026	1.413020		92 ^{30mm}	86	
d524	2,6-Dimethoxypyridine	(CH ₃ O) ₂ C ₅ H ₃ N	139.15		1.053	1.512920		178-180	61	
d525	2,5-Dimethoxytetra- hydrofuran	(CH ₃ O) ₂ C ₄ H ₆ O	132.16		1.020	1.418020		145-147	35	
d526	N,N-Dimethylacet- amide	CH ₃ C(O)N(CH ₃) ₂	87.12	4, 59	0.936625	1.437620	- 20	165.5	70	misc aq, alc, bz, eth
d527	2',6'-Dimethylacet- anilide	CH ₃ C(O)NHC ₆ H ₃ (CH ₃) ₂	163.22	12, 1109			182184			
d528	Dimethyl 1,3-acetone- dicarboxylate	[CH ₃ O ₂ CCH ₂] ₂ C=O	174.15	3, 790	1.185	1.443420		150 ^{25mm}	>110	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d529	Dimethyl acetylenedi- carboxylate	CH ₃ O ₂ CC≡CCO ₂ CH ₃	142.11	2, 803	1.156	1.4470 ²⁰		98 ^{19mm}	86	
d530	Dimethyl acetyl- succinate	CH ₃ O ₂ CC ₂ CH(COCH ₃)- CO ₂ CH ₂	188.18	34, 1825	1.160		33	134 ^{12mm}	>110	
d531	N,N-Dimethylacryl- amide	$H_2C = CHC(O)N(CH_3)_2$	99.13	4 ³ , 130	0.962	1.4730 ²⁰		81 ^{20mm}	71	
d532	3,3-Dimethylacrylic acid	(CH ₃) ₂ C=CHCO ₂ H	100.12	2, 432			69	195		
d533	Dimethylaluminum chloride	(CH ₃) ₂ AlCl	92.51	4 ³ , 1971	0.996		-21	126–127	-18	
d534 d535	Dimethylamine Dimethylamino- acetonitrile	(CH ₃) ₂ NH ₂ (CH ₃) ₂ NCH ₂ CN	45.08 84.12	4, 39 4, 346	0.680 ⁰ 0.863	1.350 ¹⁷ 1.4101 ²⁰	-92.2	6.9 138	20 36	v s aq; s alc, eth
d536	4-(Dimethylamino)- benzaldehyde	(CH ₃) ₂ NC ₆ H₄CHO	149.19	14, 31			74	176 ^{17mm}		s alc, chl, eth, HOAc
d537	3-Dimethylamino- benzoic acid	(CH ₃) ₂ NC ₆ H ₄ CO ₂ H	165.19	14, 392			148-152			
d538	4-Dimethylamino- benzoic acid	(CH ₃) ₂ NC ₆ H ₄ CO ₂ H	165.19	14, 426			241 dec			s alc; sl s eth
d539	2-(Dimethylamino)- ethanol	(CH ₃) ₂ NCH ₂ CH ₂ OH	89.14	4, 276	0.8876 ²⁰	1.429420		135	40	misc aq, alc, eth
d540	2-[2-(Dimethylamino)- ethoxy]ethanol	(CH ₃) ₂ NCH ₂ CH ₂ OCH ₂ - CH ₂ OH	133.19	4², 719	0.954	1.442020		95 ^{15mm}	92	
d541	2-(Dimethylamino)- ethyl acrylate	$H_2C = CHCO_2CH_2CH_2 - N(CH_3)_2$	143.19	4 ³ , 649	0.943	1.428020		64 ^{12mm}	58	
d542	2-(Dimethylamino)- ethyl benzoate	C ₆ H ₅ CO ₂ CH ₂ CH ₂ N(CH ₃) ₂	193.26		1.014	1.507720		159 ^{20mm}	>110	
d543	2-(Dimethylamino)- ethyl methacrylate	$\begin{array}{l} H_2C == C(CH_3)CO_2CH_2CH_2 - \\ N(CH_3)_2 \end{array}$	157.22	4 ³ , 649	0.933	1.440020		182–192	70	
d544	3-Dimethylamino- phenol	(CH ₃) ₂ NC ₆ H ₄ OH	137.18	13, 405	1.589525		82-84	265-268		v s alc, bz, eth, acet
d545	3-Dimethylamino-1,2- propanediol	(CH ₃) ₂ NCH ₂ CH(OH)CH ₂ OH	119.16	4, 302	1.004	1.460920		216-217	105	s aq, alc, chl, eth
d546	1-Dimethylamino-2- propanol	CH ₃ CH(OH)CH ₂ N(CH ₃) ₂	103.17		0.837	1.419320		121–127	35	
d547	3-Dimethylamino-1- propanol	(CH ₃) ₂ NCH ₂ CH ₂ OH	103.17	4 ¹ , 433	0.872	1.436020		163–164	36	

d548	3-(Dimethylamino)- propionitrile	(CH ₃) ₂ NCH ₂ CH ₂ CN	98.15	4 ³ , 1265	0.870	1.425820	-43	171 ^{750mm}	62	
d549	3-Dimethylamino- propylamine	(CH ₃) ₂ N(CH ₂) ₃ NH ₂	102.18	4³, 554	0.812	1.4350		133	15	
d550	N-[3-(Dimethylamino)- propyl]methacryl- amide	H ₂ C==C(CH ₃)CONH(CH ₂) ₃ - N(CH ₃) ₂	170.26		0.940	1.479020		134 ^{2mm}	>110	
d551	4-(Dimethylamino)- pyridine	$(CH_3)_2N(C_5H_4N)$	122.17	22², 341			112–114			v s aq, alc, bz, chl
d552	Dimethyl 2-amino-1,4- phthalate	$H_2NC_6H_3(CO_2CH_3)_2$	209.20	14, 559			127-130			
d553	N,N-Dimethylaniline	$C_6H_5N(CH_3)_2$	121.18	12, 141	0.9559420	1.558420	2.5	194.2	63	v s alc, chl, eth
d554	2,3-Dimethylaniline	(CH ₃) ₂ C ₆ H ₃ NH ₂	121.18	12, 1101	0.993320	1.568520	< -15	221-222	97	sl s aq; s alc, eth
d555	2,4-Dimethylaniline	(CH ₃) ₂ C ₆ H ₃ NH ₂	121.18	12, 1111	0.972320	1.5568620	- 14.3	214	90	s alc, bz, eth
d556	2,5-Dimethylaniline	(CH ₃) ₂ C ₆ H ₃ NH ₂	121.18	12, 1135	0.979041	1.559220	15.5	214	93	sl s aq; s alc, eth
d557	2,6-Dimethylaniline	(CH ₃) ₂ C ₆ H ₃ NH ₂	121.18	12, 1107	0.984220	1.560120	11.2	215	96	sl s aq; s alc, eth
d558	3,4-Dimethylaniline	$(CH_3)_2C_6H_3NH_2$	121.18	12, 1103	1.07618		51	228	98	sl s aq; s alc
d559	3,5-Dimethylaniline	$(CH_3)_2C_6H_3NH_2$	121.18	12, 1131	0.970620	1.557820	9.8	220.5	93	sls aq; s alc
d560	Dimethylarsinic acid	(CH ₃) ₂ As(O)OH	138.00	4, 610			195-196			v s alc; 200 aq; i eth
d561	1,3-Dimethylbarbituric acid		156.14	24, 471			124–126			
d562	N,N-Dimethylbenz- amide	C ₆ H ₅ CON(CH ₃) ₂	149.19	9, 201			4345	133 ^{15mm}	>110	
d563	3,4-Dimethylbenzoic acid	(CH ₃) ₂ C ₆ H ₃ CO ₂ H	150.18	9², 353			165167	subl		s alc, bz
d564	2,5-Dimethylbenzo- nitrile	(CH ₃) ₂ C ₆ H ₃ CN	131.18	9, 535	0.957	1.528420	13-14	223 ^{730mm}	92	
d565	N,N-Dimethylbenzyl- amine	C ₆ H ₅ CH ₂ N(CH ₃) ₂	135.21	12, 1019	0.900	1.501120	- 75	183	54	
d566	2,3-Dimethyl-1,3- butadiene	$H_2C == C(CH_3)C(CH_3) == CH_2$	82.15	1 ³ , 991	0.7222425	1.436225	76.0	69.2	-22	
d567	2,2-Dimethylbutane	CH ₃ CH ₂ C(CH ₃) ₃	86.18	1, 150	0.649220	1.368820	99.9	49.7	-48	
d568	2,3-Dimethylbutane	(CH ₃) ₂ CHCH(CH ₃) ₂	86.18	1, 151	0.661620	1.375020	- 128.5	58.0	29	
d569	2,3-Dimethyl-2,3- butanediol	(CH ₃) ₂ C(OH)C(OH)(CH ₃) ₂	86.18	1, 487			41.1	174.4	77	v s hot aq, alc, eth
d570	2,3-Dimethyl-2-butanol	(CH ₃) ₂ CHC(CH ₃) ₂ OH	102.18	1, 413	0.8236420	1.417620	14	118	29	s aq; misc alc, eth
d570a	3,3-Dimethyl-1-butanol	(CH ₃) ₃ CCH ₂ CH ₂ OH	102.18	1 ³ , 1677	0.82420	1.417620	-60	143	47	
					1		1	1		1

2.152

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d571 d572	3,3-Dimethyl-2-butanol 3,3-Dimethyl-2- butanone	(CH ₃) ₃ CCH(OH)CH ₃ (CH ₃) ₃ CCOCH ₃	102.18 100.16	1, 412 1, 694	$\begin{array}{c} 0.8185_4^{20} \\ 0.7250_{25}^{25} \end{array}$	1.4151 ²⁰ 1.3939 ²⁵	5.6 - 52.5	120 106	28 23	s alc; misc eth 2.5 aq; s alc, eth
d572a d573 d574 d575	2,3-Dimethyl-1-butene 2,3-Dimethyl-2-butene 3,3-Dimethyl-1-butene <i>N</i> , <i>N</i> -Dimethylbutyl-	$(CH_3)_2CHC(CH_3)=CH_2$ $(CH_3)_2C=C(CH_3)_2$ $(CH_3)_3CCH=CH_2$ $CH_3(CH_2)_3N(CH_3)_2$	84.16 84.16 84.16 101.19	1 ³ , 816 1, 218 1.217 4, <i>1</i> , 371	$\begin{array}{c} 0.680 \\ 0.7081^{20}_4 \\ 0.6531^{20}_4 \\ 0.721 \end{array}$	1.3890 ²⁰ 1.4124 ²⁰ 1.3762 ²⁰ 1.3980 ²⁰	- 157 - 75 - 115	55.6 73 41 93 ^{750mm}	-18 -16 -28 -3	s alc, eth
d576	2,2-Dimethylbutyric	$C_2H_5C(CH_3)_2CO_2H$	116.16	2, 335	0.928	1.415420		96 ^{5mm}	79	
d577	3,3-Dimethylbutyric acid	(CH ₃) ₃ CCH ₂ CO ₂ H	116.16	2, 337	0.9124 ²⁰	1.410020	67	190	88	s alc, eth
d578	Dimethylcadmium	(CH ₃) ₂ Cd	142.48		1.9846 ¹⁷	1.5488	-4.5	105.5	>150 ex- plodes	dec aq; s PE
d579	Dimethylcarbamyl chloride	(CH ₃) ₂ NCOCl	107.54	4, 73	1.168	1.454020	-33	168	68	
d580 d581	Dimethyl carbonate Dimethyl chloro- malonate	(CH ₃ O) ₂ C=O CICH(CO ₂ CH ₃) ₂	90.08 166.56	3, 4 2, 592	1.065 ¹⁷ 1.305	1.3682 ²⁰ 1.4370 ²⁰	0.5	90-91 106 ^{19mm}	18 106	i aq; misc alc, eth
d582	Dimethyl chlorothio- phosphate	(CH ₃ O) ₂ P(S)Cl	160.56	1 ¹ , 143	1.322	1.4819 ²⁰		67 ^{16mm}	105	
d583 d584	Dimethylcyanamide Dimethyl N-cyanothio- iminocarbonate	(CH ₃) ₂ NCN (CH ₃ S) ₂ C=NCN	70.09 146.23	4, 74 3, 220	0.867	1.410020	46-50	161–163	58 110	
d584a	1,1-Dimethylcyclo- hexane	(CH ₃) ₂ C ₆ H ₁₀	112.22	5, 35	0.777	1.4280 ²⁰	-33	120	7	
d585	cis-1,2-Dimethylcyclo- hexane	$(CH_3)_2C_6H_{10}$	112.22	5, 36	0.796320	1.4335 ²⁰	- 49.9	129.7	16	i aq; s alc, bz
d586	trans-1,2-Dimethyl- cyclohexane	(CH ₃) ₂ C ₆ H ₁₀	112.22	5, 36	0.776020	1.4273 ²⁰	-90	123.4	11	i aq; s alc, bz
d587	cis-1,3-Dimethylcyclo- hexane	(CH ₃) ₂ C ₆ H ₁₀	112.22	5, 36	0.784	1.423020	-76	120	5	
d587a	trans-1,3-Dimethyl- cyclohexane	$(CH_3)_2C_6H_{10}$	112.22	5², 21	0.780	1.430520	-90	124.5	7	
d588	cis-1,4-Dimethylcyclo- hexane	$(CH_3)_2C_6H_{10}$	112.22	5², 22	0.783	1.429720	88	125	6	
d589	5,5-Dimethyl-1,3- cyclohexanedione		140.18	7, 559			dec 149			0.4 aq; s alc, bz

Previous Page

d590	2,3-Dimethylcyclo- hexanol	(CH ₃) ₂ C ₆ H ₉ OH	128.22		0.934	1.465320			65	
d591	3,5-Dimethylcyclo- hexanol	(CH ₃) ₂ C ₆ H ₉ OH	128.22	6, 18	0.892	1.4552	11-12	186	73	
d592	2,6-Dimethylcyclo- hexanone	$(CH_3)_2C_6H_8(=O)$	126.20	7, 23	0.925	1.446020		175	51	i aq; s alc, eth
d593	N,N-Dimethylcyclo- hexylamine	C ₆ H ₁₁ N(CH ₃) ₂	127.23		0.849	1.453520		159	42	
d594	2,3-Dimethylcyclo- hexylamine	(CH ₃) ₂ C ₆ H ₉ NH ₂	127.23		0.835	1.459520		160	51	
d595	1,5-Dimethyl-1,5- cyclooctadiene		136.24		0.867	1.489620		74 ^{16mm}	55	
d596	Dimethyl 1,1-cyclo- propanedicarboxy- late	C ₃ H ₄ (CO ₂ CH ₃) ₂	158.16	9 ¹ , 314	1.147	1.441020		196–198	95	
d597	Dimethyl decanedioate	CH ₃ O ₂ C(CH ₂) ₈ CO ₂ CH ₃	230.30	2, 719	0.98320	1.433528	23	144 ^{5mm}	145	i aq; s alc, eth
0398	dioxane-4,6-dione		144.13				94-90			s aq, acei
d599	2,2-Dimethyl-1,3- dioxolane-4-metha- nol		132.16	19, 65	1.063	1.4340 ²⁰		188-189	80	misc aq, alc, bz, esters, eth, PE, acetals
d600	Dimethyl disulfide	CH ₃ SSCH ₃	94.20	1, 291	1.062520	1.528920	- 84.7	109.8	24	i aq; misc alc, eth
d601	Dimethyldithio- carbamic acid, Zn salt	[(CH ₃) ₂ NCS ₂] ₂ Zn	305.80	4 ³ , 149	1.66		250-252			< 0.2 alc, eth; $< 0.5acet, bz; 0.5naphtha$
d602	N,N-Dimethyldodecyl-	CH ₃ (CH ₂) ₁₁ N(CH ₃) ₂	213.41	4³, 409	0.775	1.437520	- 20	112 ^{3mm}	>110	r
d603	Dimethyl ether	(CH ₃) ₂ O	46.07	1, 281	0.66120		- 141.5	- 24.9	-41	35 aq(5 atm); 15 bz; 11.8 acet
d604	N,N-Dimethylethyl- amine	C ₂ H ₅ N(CH ₃) ₂	73.14	4, 94	0.675	1.372020	- 140	36-38	- 36	
d605	N,N-Dimethylethylene- diamine	C ₂ H ₅ NCH ₂ CH ₂ NH ₂	88.15	4², 690	0.803	1.426020		106	23	
d606	N,N-Dimethylform- amide	(CH ₃) ₂ NCHO	73.10	4, 58	0.944545	1.430520	- 60.4	153.0	57	misc aq, alc, bz, eth
d607	N,N-Dimethylform- amide dimethyl acetal	(CH ₃) ₂ NCH(OCH ₃) ₂	119.16		0.897	1.397220		103 ^{720mm}	7	

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d608	Dimethyl fumarate	CH ₃ O ₂ CCH=CHCO ₂ CH ₃	144.13	2, 741	1.045106		105	193		sl s alc, eth
d609	2,5-Dimethylfuran	$(CH_3)_2(C_4H_2O)$	96.13	17, 41	0.900040	1.441420	-62	93	-1	i aq; misc alc, eth
d610	Dimethylglyoxime	$CH_{1}C(=NOH)$ -	116.12	1, 772			240			s alc, acet, eth, pyr
		C(==NOH)CH ₃								
d611	2,4-Dimethyl-1,6-	H ₂ C=CHCH ₂ CH(CH ₃)-	138.21		0.870	1.466420		47 ^{2mm}	64	
	heptadienal	CH=C(CH_)CHO								
d612	2,4-Dimethyl-2,6-	$H_2C = CHCH_2CH(CH_3)$ -	140.23		1.351	1.464020		86 ^{10mm}	78	
	heptadien-1-ol	CH=C(CH ₃)CH ₂ OH								
d613	2,6-Dimethyl-2,5-	$(CH_3)_2C = CHC (= 0)$ -	138.21	1, 751	0.88540	1.496821	28	198-199	79	sł s aq; s alc, eth
	heptadien-4-one	$CH = (CH_3)_2$								-
d613a	2,2-Dimethylheptane	(CH ₃) ₃ C(CH ₂) ₄ CH ₃	128.26		0.710520	1.401620	- 113	132.7		
d614	Dimethyl heptane-	CH ₃ O ₂ C(CH ₂) ₅ CO ₂ CH ₃	188.22	2 ¹ , 281	1.0625420	1.431420	-21	12211mm	>110	s alc
	dioate									
d615	2,6-Dimethyl-4-	(CH ₃) ₂ CHCH ₂ CH(OH)-	144.26	1, 425	0.809	1.423620		178	66	
	heptanol	CH ₂ CH(CH ₃) ₂								
d616	2,6-Dimethyl-4-	[(CH ₃) ₂ CHCH ₂] ₂ C==O	142.24	1, 710	0.80620	1.411420	-41.5	169.4	49	0.06 aq; misc alc, bz,
	heptanone									chl, eth
d616a	2,4-Dimethylhexane	C ₂ H ₅ CH(CH ₃)CH ₂ CH(CH ₃) ₂	114.23	1, 162	0.696225	1.392925		109.5	10	
d617	Dimethyl hexanedioate	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ CH ₃	174.20	1, 652	1.0600420	1.428520	8	112 ^{10mm}	107	i aq; s alc, eth
d618	2,5-Dimethyl-2,5-	$[(CH_3)_2C(OH)CH_2-]_2$	146.23	1, 492			86-90	214-215	126	
	hexanediol									
d619	1,5-Dimethylhexyl-	(CH ₃) ₂ CH(CH ₂) ₃ -	129.25	Merck:	0.767	1.420920		154-156	48	
	amine	CH(NH ₂)CH ₃		11, 6678						
d620	2,5-Dimethyl-3-	(CH ₃) ₂ C(OH)C≡C-	142.20	1, 501			94-95	205-206		
	hexyne-2,5-diol	C(OH)(CH ₃) ₂								
d621	3,5-Dimethyl-1-	(CH ₃) ₂ CHCH ₂ C(CH ₃)(OH)C≡CH	126.20	1², 507	0.859	1.433520		151	44	
	hexyn-3-ol									
d622	5,5-Dimethylhydantoin		128.13	24, 289			176178			v s aq, alc, bz, chl, eth,
										acet
d623	1,1-Dimethylhydrazine	$(CH_3)_2NNH_2$	60.10	4, 547	0.79142	1.407520	- 58	63.9	1	misc aq, alc, eth, PE
d624	1,2-Dimethylhydrazine	CH ₃ NHNHCH ₃	60.10	4, 547	0.82744	1.420920		81	flam-	misc aq, alc, eth, PE
									mable	
d625	Dimethyl hydrogen	(CH ₃ O) ₂ P(O)H	110.05	1, 285	1.2004	1.400920		170-171	29	s aq(hyd); misc alc,
	phosphonate									acet, eth
d626	1,2-Dimethylimidazole		96.13	23, 66	1.084		29-30	204	92	
d627	1,3-Dimethyl-2-		114.15		1.044	1.472020		108 ^{17mm}	80	
	imidazolidinone								1	

d628	N,N-Dimethyliso- propylamine	(CH ₃) ₂ CHN(CH ₃) ₂	87.17	4², 630	0.715	1.390520		66	-9	
d629	Dimethyl maleate	CH ₃ O ₂ CCH=CHCO ₂ CH ₃	144.13	2, 751	1.160620	1.442220	- 19	202	113	8.7 aq
d630	Dimethyl malonate	CH ₃ O ₂ CCH ₂ CO ₂ CH ₃	132.12	2, 572	1.154420	1.4135 ²⁰	-62	180181	90	sl s aq; misc alc, eth
d631	Dimethylmercury	(CH ₃) ₂ Hg	230.66	4, 678	3.187420	1.545220	- 43	92–94	5	i aq; s alc, eth
d632	3,4-Dimethyl-1-	(CH ₃) ₂ C ₆ H ₃ OCH ₃	136.19	6, 481	0.974444	1.519814		200		i aq; s alc, bz, eth
	methoxybenzene									_
d633	3,5-Dimethyl-1-	(CH ₃) ₂ C ₆ H ₃ OCH ₃	136.19	6, 493	0.962745	1.510715		193	65	i aq; s alc, bz, eth
	methoxybenzene									-
d634	Dimethyl methyl-	CH ₃ CH(CO ₂ CH ₃) ₂	146.14	2, 628	1.098	1.4140 ²⁰		176-177	76	
	malonate									
d635	Dimethyl methyl-	(CH ₃ O) ₂ P(O)CH ₃	124.08	41, 572	1.145	1.413020		181	68	
	phosphonate									
d636	Dimethyl methyl-	CH ₃ O ₂ CCH ₂ CH(CH ₃)-	160.17	2 ³ , 1696	1.076	1.420020		196	83	
	succinate	CO ₂ CH ₃								
d637	2,6-Dimethyl-		115.18		0.934620	1.447020	- 85	147	48	misc aq, alc, bz
	morpholine									-
d637a	1.2-Dimethylnaphtha-	C ₁₀ H ₄ (CH ₃) ₂	156.23	51, 267	1.017920	1.616620	0.8	266.5	>110	
	lene	-10 00 572								
d638	1.2-Dimethyl-3-nitro-	(CH _a) ₂ C _c H _a NO ₂	151.17	5, 367	1.129	1.543420	7–9	245	107	i aq; s alc
	benzene	572 0 5 2								-
d639	1.2-Dimethyl-4-nitro-	(CH ₃) ₂ C ₆ H ₃ NO ₂	151.17	5, 368	1.139		29-31	143 ^{20mm}	>110	i aq; s alc
	benzene	()/2 () 2								_
d640	1.3-Dimethyl-2-nitro-	(CH ₃) ₂ C ₆ H ₃ NO ₂	151.17	5, 378	1.112	1.522020	14-16	225 ^{744mm}	87	i aq; s alc
	benzene									_
d641	1,3-Dimethyl-4-nitro-	(CH ₃) ₂ C ₆ H ₃ NO ₂	151.17	5, 378	1.117	1.5497 ²⁰	2	237–239	107	s alc, bz, chl, eth
	benzene									
d642	N.N-Dimethyl-4-	(CH ₁) ₂ NC ₄ H ₄ NO	150.18	12, 677			86	flammable		i aq; s alc, eth
	nitrosoaniline							solid		
d643	Dimethyl 2-nitro-1,4-	O ₂ NC ₆ H ₃ -1,4-(CO ₂ CH ₃) ₂	239.18	9, 826			72–75			
	phthalate			-						
d644	cis-3,7-Dimethyl-2,6-		152.24		0.8888420	1.489820		229	101	misc alc, eth, glyc
	octadienal									
d645	trans-3,7-Dimethyl-		152.24		0.886940	1.486920		229	101	misc alc, eth, glyc
	2,6-octadienal									
d646	3,7-Dimethyl-1-octanol	(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)-	158.29	1, 426	0.840	1.435520		96 ^{9mm}	95	
		Сн,сн,он								
d647	3,7-Dimethyl-3-octanol	(CH ₃) ₂ CH(CH ₂) ₃ -	158.29	1, 426	0.826	1.433620		73 ^{6mm}	76	1
		C(OH)(CH ₃)C ₂ H ₅								
			l	1	1	1	1	1	l .	

TABLE 2.20	Physical	Constants	of Organic	Compounds	(Continued)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
d648	2,6-Dimethyl-2,4,6- octatriene	CH ₃ CH==C(CH ₃)CH==CH- CH==C(CH ₃) ₂	136.24	1 ³ , 1050	0.811	1.542920		75 ^{14mm}	68	
d649	N,N-Dimethyloctyl- amine	CH ₃ (CH ₂) ₇ N(CH ₃) ₂	157.30	4 ¹ , 386	0.765	1.424320	-57	195	65	
d650	3,6-Dimethyl-4- octyne-3,6-diol	$C_2H_5C(CH_3)(OH)C\equiv C-C(CH_3)(OH)C_2H_5$	170.35	11, 263			5355	214 ^{680mm}	>110	
d651	Dimethyl octanedioate	CH ₃ O ₂ C(CH ₂) ₆ CO ₂ CH ₃	202.25	2, 693	1.021040	1.432520	4.8	268		i aq; s alc
d652	Dimethyl oxalate	CH ₃ O ₂ CCO ₂ CH ₃	118.09	2, 534	1.14854	1.37980	50-54	163.5	75	6 aq; s alc, eth
d653	3,3-Dimethyloxetane		86.13	172, 21	0.835	1.3990		81	-9	
d654	2,3-Dimethylpentane	C ₂ H ₃ CH(CH ₃)CH(CH ₃) ₂	100.21	1 ² , 120	0.695140	1.392020		89.8	<-7	i aq; s alc, eth
d655	2,4-Dimethylpentane	(CH ₃) ₂ CHCH ₂ CH(CH ₃) ₂	100.21	1, 158	0.672720	1,381520	- 120	80.4	-12	
d656	Dimethyl pentane- dioate	CH ₃ O ₂ C(CH ₂) ₃ CO ₂ CH ₃	160.17	2, 633	1.087620	1.4244 ²⁰	-42.5	214	102	v s alc, eth
d657	2,4-Dimethyl-3- pentanol	(CH ₃) ₂ CHCH(OH)CH(CH ₃) ₂	116.20	1, 417	0.829420	1.425420		140	37	sl s aq; s alc, eth
d658	2,4-Dimethyl-3- pentanone	(CH ₃) ₂ CHC(O)CH(CH ₃) ₂	114.19	1, 703	0.8062420	1.398620	-69	125	15	
d659	2,3-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 480		1.542020	72.8	217		v s alc, bz, chl, eth
d660	2,4-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 486	1.027614	1.542014	24.5	211	>110	v s alc, bz, chl, eth
d661	2,5-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 494	0.96580		74.5	211.5		v s alc, bz, chl, eth
d662	2,6-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 485			45.7	201	73	v s alc, bz, chl, eth
d663	3,4-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 480	0.983020		60.8	227		v s alc, bz, chl, eth
d664	3,5-Dimethylphenol	(CH ₃) ₂ C ₆ H ₃ OH	122.17	6, 492	0.968020		64	222		v s alc, bz, chl, eth
d665	N,N-Dimethyl-1,4- phenylenediamine	$(CH_3)_2NC_6H_4NH_2$	136.20	13, 72			36	262	90	v s aq; s alc
d666	4,4-Dimethyl-2- phenyl-2-oxazoline		175.23	274, 1114	1.025	1.532220	20-24	124 ^{20mm}	102	
d667	2,2-Dimethyl-3-	C ₆ H ₅ CH ₂ C(CH ₃) ₂ CH ₂ OH	164.25				35	126 ^{15mm}	109	
d668	Dimethyl 1,2-phthalate	$C_6H_4(CO_2CH_3)_2$	194.19	9, 797	1.190520	1.513820	5.5	283.7	146	0.4 aq; misc alc, chl, eth: i PE
d669	Dimethyl 1 3-phthalate	C.H.(CO.CH.).	194 19	9 834	1 19420	1 516820	67-68	282		i an
d670	Dimethyl 1 4-phthalate	C_{1}	194.19	9.843			140-142	288		0.3 hot ag: s hot ale: s
1071	1 4 Dimethod		114.10	22 7	0.844	1 446320		120750mm	19	eth
06/1	1,4-Dimetnyl- piperazine		114.19	23, 1	0.044	1.4403-*		132	10	
d672	cis-2,6-Dimethyl- piperidine		113.20	20, 108	0.840	1.439420		127	11	

d673	2,2-Dimethylpropane	(CH ₃) ₄ C	72.15	Merck: 12, 6545	0.6130	1.34766	- 16.6	9.5	65	
d674	2,2-Dimethyl-1,3- propanediamine	H ₂ NCH ₂ C(CH ₃) ₂ CH ₂ NH ₂	102.18	4 ³ , 595	0.851	1.4566 ²⁰	31	154	47	
d675	2,2-Dimethyl-1,3- propanediol	(CH ₃) ₂ C(CH ₂ OH) ₂	104.15	1, 483	1.1125		127–128	208–210	107	180 aq; 12 bz; 60 acet; v s alc, eth
d676	2,2-Dimethyl-1- propanol	(CH ₃) ₃ CCH ₂ OH	88.15	1, 406	0.81240		52.5	113.1	36	3.6 aq; misc alc, eth
d677	2,2-Dimethylpropion- aldehyde	(CH ₃) ₃ CCHO	186.25		0.793	1.3794 ²⁰	6	74 ^{730mm}	<1	
d678	N,N-Dimethylpropion- amide	$C_2H_5C(O)N(CH_3)_2$	101.15	4 ³ , 126	0.920	1.440020	- 45	175	62	
d679	2,2-Dimethylpropionic acid	(CH ₃) ₃ CCO ₂ H	102.13	2, 319	0.90550	1.3931 ³⁷	35.5	163.8	63	2.5 aq; v s alc, eth
d680	2,2-Dimethylpropionic anhydride	[(CH ₃) ₃ DD(O)] ₂ O	186.25	2, 320	0.918	1.409220		193	57	
d681	2,2-Dimethylpropionyl chloride	(CH ₃) ₃ CC(O)CI	120.58	2, 320	0.979	1.412020		105-106	<1	dec aq, alc; v s eth
d682	1,1-Dimethylpropyl- amine	CH ₃ CH ₂ C(CH ₃) ₂ NH ₂	87.17	4, 179	0.73145	1.399620	- 105	77	65	misc aq, alc, eth
d683	1,1-Dimethyl-2- propynylamine	$HC \equiv CC(CH_3)_2 NH_2$	83.13		0.790	1.423520		79–80	2	
d684	3,5-Dimethylpyrazole		96.13	23, 74			108	218		s aq; v s bz, eth
d685	2,3-Dimethylpyridine	$(CH_3)_2(C_5H_3N)$	107.16	20, 243	0.945	1.5080	- 15	163	50	-
d686	2,4-Dimethylpyridine	$(CH_3)_2(C_5H_3N)$	107.16	20, 244	0.930920	1.501020	< 64	158.3	37	17 aq; v s alc, bz, eth
d687	2,6-Dimethylpyridine	$(CH_3)_2(C_5H_3N)$	107.16	20, 244	0.922620	1.495620	- 6.0	144	33	43 aq45; s alc, eth
d688	3,4-Dimethylpyridine	$(CH_3)_2(C_5H_3N)$	107.16	20, 246	0.95445	1.510025	-12	1 64	53	sl s aq; s alc, eth
d689	3,5-Dimethylpyridine	$(CH_3)_2(C_5H_3N)$	107.16	20, 246	0.93945	1.503325	-9	170	53	s aq, alc, eth
d690	Dimethyl pyro- carbonate	O(CO ₂ CH ₃) ₂	134.09	34, 17	1.250	1.393320		46 ^{5mm}	80	
d691	Dimethyl succinate	CH ₃ O ₂ CCH ₂ CH ₂ CO ₂ CH ₃	146.14	2, 609	1.119820	1.419020	19	1 96.4	85	0.83 aq; 2.9 alc
d692	Dimethylsulfamoyl chloride	(CH ₃) ₂ NSO ₂ Cl	143.59	4, 84	1.337	1.451820		114 ^{75mm}	94	
d693	Dimethyl sulfate	(CH ₃ O) ₂ SO ₂	126.13	1, 283	1.3322420	1.387420	-31.8	188 dec	83	2.8 aq(hyd); s acet, bz, dioxane, eth
d694	Dimethyl sulfide	(CH ₃) ₂ S	62.13	1, 288	0.848320	1.443820	- 98.3	37.3	-36	2 aq; s alc, eth
d695	Dimethyl sulfite	(CH ₃ O) ₂ SO	110.13	1, 282	1.294	1.408320		126127	30	
d696	Dimethyl sulfone	(CH ₃) ₂ SO ₂	94.13	1, 289			109	238	143	v s aq, alc, acet
d697	Dimethyl sulfoxide	(CH ₃)₂SO	78.13	1, 289	1.10140	1.417020	18.5	189.0	95	s alc, acet, bz, chl

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d698 d699	Dimethyl-d ₆ sulfoxide (+)-Dimethyl L-	(CD ₃) ₂ SO CH ₃ O ₂ CH(OH)CH(OH)-	84.18 178.14	14, 1279 3, 510	1.190 1.328 ²⁰	1.475820	48-50	55 ^{5mm} 163 ^{23mm}	95 >110	s aq; 200 alc ¹⁵ ; v s bz
d700	Dimethyltelluride	$(CH_3)_2$ Te	157.68	1, 291	0.922	1 4041	-10	91-92	26	dec aq; v s alc; i eth
a 701	2,3-Dimetrylletra- hydrofuran	$(CH_3)_2(C_4H_2O)$	100.16	17, 14	0.835	1.4041		90-92	20	
d702	1,3-Dimethyl-3,4,5,6- tetrahydro-2(1 <i>H</i>)- pyrimidinone		128.18	243, 32	1.060	1.488020		146 ^{44mm}	>110	
d703	Dimethyl 3,3'-dithio-	(CH ₃ O ₂ CCH ₂ CH ₂) ₂ S	206.26		1.198	1.474020		148 ^{18mm}	>110	
ď704	N,N-Dimethylthio-	(CH ₃) ₂ NC(S)H	89.16	4, 70	1.047	1.575720		58 ^{1mm}	99	
d705	N,N'-Dimethylthiourea	(CH ₃ NH) ₂ C=S	104.18	4, 70			6062			v s aq, alc, acet
d706	N,N-Dimethyl-p- toluidine	CH ₃ C ₆ H ₄ N(CH ₃) ₂	135.21	12, 902	0.937	1.545820		211	83	
d707	N,N-Dimethyltri- methylsilylamine	(CH ₃) ₃ SiN(CH ₃) ₂	117.27		0.732	1.397020		84	- 19	
d708	1,3-Dimethylurea	(CH ₃ NH) ₂ C==O	88.11	4, 65			101-104	268270		v s aq, alc; i eth
d709	Dimethylzinc	(CH ₃) ₂ Zn	95.45	Merck: 12, 3312	0.724		- 40	46	-1	misc bz, PE; s eth
d710	2,4-Dinitroaniline	$(O_2N)_2C_6H_3NH_2$	183.12	12, 747	1.61514		176-178			i aq; 0.75 alc
d711	1,3-Dinitrobenzene	$C_6H_4(NO_2)_2$	168.11	5, 258	1.368		8990	297		0.05 aq; 2.7 alc; v s bz, chl, EtOAc
d712	2,4-Dinitrobenzene- sulfenyl chloride	$(O_2N)_2C_6H_3SCl$	234.62	6 ² , 316			96			s bz, HOAc; dec alc
d713	3,5-Dinitrobenzoic acid	(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	212.12	9, 413			205-207			1.9 hot aq; v s alc; sl s bz, eth
ď714	3,5-Dinitrobenzoyl chloride	(O ₂ N) ₂ C ₆ H ₃ COCI	230.56	9, 414			6971	196 ^{11mm}		dec aq, alc; s eth
d715	2,6-Dinitro-p-cresol	(O ₂ N) ₂ C ₆ H ₂ (OH)CH ₃	198.13	6, 414			77–79			
d716	4,6-Dinitro-o-cresol	$(O_2N)_2C_6H_2(OH)CH_3$	198.13	6, 368			8387			v s alc, acet, eth, alk
d717	2,4-Dinitrodiphenyl- amine	$(O_2N)_2C_6H_3NHC_6H_5$	259.22	12, 751			159-161			
d718	2,4-Dinitro-1-fluoro- benzene	$FC_6H_3(NO_2)_2$	186.10	5, 262	1.482	1.569020	27-30	178 ^{25mm}	>110	s bz, eth, glyc
d719	1,5-Dinitronaphthalene	$C_{10}H_6(NO_2)_2$	218.17	5, 558		.	216-217	subl	ļ	s bz; v s eth; sl s alc

d720	2,4-Dinitrophenol	(O ₂ N) ₂ C ₆ H ₃ OH	184.11	6, 251	1.683		106-108			s alc, bz; 16 EtOAc; 36 acet; 5 chl; 20
d721	2,4-Dinitrophenyl- hydrazine	(O ₂ N) ₂ C ₆ H ₃ NHNH ₂	198.14	15, 489			ca. 200			sl s aq, alc; s acid
d722	3,5-Dinitrosalicylic acid	(O ₂ N) ₂ C ₆ H ₂ (OH)CO ₂ H	228.12	10, 122			169–172			s aq; v s alc, eth
d723	2,4-Dinitrotoluene	$CH_3C_6H_3(NO_2)_2$	182.14	5, 339	1.32171	1.442	67-70	300 sl d		1.2 alc; 9 eth
d724	2,6-Dinitrotoluene	$CH_3C_6H_3(NO_2)_2$	182.14	5, 341	1.2833111	1.479	64~66			s alc
d725	Dinonyl hexanedioate	C ₉ H ₁₉ O ₂ C(CH ₂) ₄ CO ₂ C ₉ H ₁₉	398.63		0.91725	-			218	
d726	Dioctadecyl phosphite	$(C_{18}H_{37}O)_2P(O)H$	586.97				57-59			
d727	Dioctadecyl 3,3'- thiopropionate	S[CH ₂ CH ₂ CO ₂ (CH ₂) ₁₇ CH ₃] ₂	683.18				65–67			
d728	Dioctylamine	$(C_8H_{17})_2NH$	241.46	4, 196	0.799	1.443220	14-16	298	>110	i aq; v s alc, eth
d729	Dioctyl ether	$(C_8H_{17})_2O$	242.45	1, 419	0.806	1.431820	-7.6	287	>110	
d730	Dioctyl sulfide	$(C_8H_{17})_2S$	258.51	1, 419	0.842	1.461020		180 ^{10mm}	>110	
d731	4,9-Dioxa-1,12- dodecanediamine	$H_2N(CH_2)_3O(CH_2)_4O-$ $(CH_2)_3NH_2$	204.32		0.962	1.460920		136 ^{4mm}	>110	
d732	1,3-Dioxane		88.11	19, 2	1.032	1.418020	45	106	15	
d733	1,4-Dioxane		88.11	19, 3	1.0329420	1.422420	11.8	101.2	12	misc aq, alc, bz, chl, eth, PE
d734	1,3-Dioxolane		74.08	19 ² , 2	1.06020	1.400020	95	78	2	misc aq; s alc, eth
d735	Dipentaerythritol	(HOCH ₂) ₃ CCH ₂ OCH ₂ -	254.28				215-218			
		C(CH ₂ OH) ₃								
d736	Dipentene		136.24	5, 137	0.840221	1.473920	-95.5	178	45	i aq; misc alc
d737	Dipentylamine	(C ₅ H ₁₁) ₂ NH	157.29	4 ¹ , 378	0.777	1.4272		195-202	52	v s alc, eth
d738	Dipentyl ether	$(C_5H_{11})_2O$	158.29	1 ¹ , 193	0.783320	1.412020	- 69.4	190	57	misc alc, eth; s acet
d739	N,N-Diphenylacet- amide	CH ₃ CON(C ₆ H ₅) ₂	211.26	12, 247			103	130 ^{0.02mm}		sl s aq; s alc, eth
d740	Diphenylacetic acid	(C ₆ H ₅) ₂ CHCO ₂ H	212.25	9, 673	1.25815		148	195 ^{5mm}		s hot aq, alc, chl, eth
d741	Diphenylacetonitrile	(C ₆ H ₅) ₂ CHCN	193.25	9, 674			71-73	181 ^{12mm}		-
d742	Diphenylacetylene	C ₆ H ₅ C==CC ₆ H ₅	178.23	5, 656	0.990		62.5	300		v s eth, hot alc
d743	Diphenylamine	(C ₆ H ₅) ₂ NH	169.23	12, 174	1.160		53	302	152	45 alc; v s bz, eth
d744	cis, trans-1,4-Diphenyl-	C ₆ H ₅ CH==CHCH==CHC ₆ H ₅	206.29	5, 676	0.997422	1.065322	149.7	350 ^{720mm}	1	s alc; sl s eth
	1,3-butadiene]						
d745	Diphenylcarbamoyl chloride	(C ₆ H ₅) ₂ NC(O)Cl	231.68				82-84			

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
d746	1,5-Diphenylcarbo-	(C ₆ H ₅ NHNH) ₂ C==O	242.28	15, 292			168-171			s hot alc, acet, HOAc
d747	Diphenyl carbonate	(C _c H _c O) ₂ C==O	214.22	6, 158			80-81	301-302		s hot alc, bz, eth
d748	Diphenyl chloro- phosphate	$(C_6H_5O)_2P(O)Cl$	268.64	6, 179	1.296	1.550020		316 ^{272mm}	>110	
d749	Diphenyl diselenide	C ₆ H ₅ SeSeC ₆ H ₅	312.13	6, 346	1.55740		61-63			s hot alc
d750	Diphenyl disulfide	C ₆ H ₅ SSC ₆ H ₅	218.34	6, 323	1.353420		58-60	310		s alc, bz, eth; i aq
d751	Diphenylenimine		167.21	20, 433	1.1048		246	355		0.8 bz; 3 eth; 16 pyr; 11 acet; i aq
d752	1,2-Diphenylethane	C ₆ H ₅ CH ₂ CH ₂ C ₆ H ₅	182.27	5, 598	0.995420	1.5338	52.5	284	>110	s alc; v s chl, eth
d753	Diphenyl ether	C ₆ H ₅ OC ₆ H ₅	170.21	6, 146	1.066130	1.5763 ³⁰	26.9	258	112	s alc, bz, eth, HOAc
ď754	N,N'-Diphenyl- formamidine	C ₆ H ₅ N=CHNHC ₆ H ₅	196.25	12, 236			138-141			s eth; v s chl
d755	1,3-Diphenylguanidine	C ₆ H ₅ NHC(=NH)NHC ₆ H ₅	211.27	12, 369	1.13		148-150	dec 170		s alc, hot bz, chl
d756	5.5-Diphenvlhvdantoin		252.27	24, 410			294-297			i aq; 1.7 alc; 3.3 acet
d757	1,2-Diphenylhydrazine	C ₆ H ₄ NHNHC ₆ H ₅	184.24	15, 123	1.15816		123-126			v s alc; sl s bz
d758	Diphenylmercury	$(C_6H_5)_2$ Hg	354.81	16, 946	2.3184		128-129	dec >306		s chl; sl s hot alc
d759	Diphenylmethane	C ₆ H ₅ CH ₂ C ₆ H ₅	168.24	5², 498	1.006	1.576820	25	265	>110	v s alc, bz, chl, eth
d760	Diphenylmethanol	C ₆ H ₅ CH(OH)C ₆ H ₅	184.24	6, 678			66.7	298		0.05 aq; v s alc, chl, eth
d761	1,1-Diphenylmethyl- amine	C ₆ H ₅ CH(NH ₂)C ₆ H ₅	183.25	12, 1323	1.0635422	1.595699	34	295	>112	sl s aq
d762	2,5-Diphenyloxazole		221.26	27, 78			7274	360		
d763	Diphenyl phosphite	(C ₆ H ₅ O) ₂ P(O)H	234.19	6 ¹ , 94	1.223	1.557520	12	219 ^{26mm}	176	
d764	Diphenylphosphoryl azide	$(C_6H_5O)_2P(O)N_3$	275.20		1.277	1.551820		157 ^{0.17mm}	>110	
d765	Diphenyl o-phthalate	C.H.(CO ₂ C.H.)	318.33	9, 801			74-76			
d766	2,2-Diphenyl-1-picryl-	-04(2-03)2	394.32	16 ² , 363			127 dec			
d767	1,3-Diphenyl-2-	C ₆ H ₅ CH ₂ (C=O)CH ₂ C ₆ H ₅	210.28	7, 445	1.2		32-34	330		i aq; v s alc, eth
d768	2,2-Diphenylpropionic acid	CH ₃ C(C ₆ H ₅) ₂ CO ₂ H	226.28	9², 474			175-177	300		s alc; v s bz, eth
d769	Diphenylsilanediol	(C ₆ H ₅) ₂ Si(OH) ₂	216.31	16, 909			140 dec		53	
d770	Diphenyl sulfide	$(C_{6}H_{5})_{2}S$	186.28	6, 299	1.11815	1.632720	40	296	>110	misc bz, eth, CS ₂
d771	Diphenyl sulfone	(C ₆ H ₅) ₂ SO ₂	218.27	6, 300			128-129	379		i aq; s hot alc, bz
d772	Diphenyl sulfoxide	$(C_6H_5)_2SO$	202.28	6, 300			6971	207 ^{13mm}		
d773	Diphenylthiocarbazone	C ₆ H ₅ N=NC(S)NHNHC ₆ H ₅	256.33	16, 26			168 dec			i aq; v s chl, CCl ₄

d774	1,3-Diphenyl-2-thio- urea	C ₆ H ₅ NHC(S)NHC ₆ H ₅	228.32	12, 394	1.32		154			i aq; v s alc, eth
d775	1,3-Diphenylurea	C ₆ H ₅ NHC(O)NHC ₆ H ₅	212.35	12, 352	1.239		238	260 dec		0.015 aq; s eth, HOAc
d776	Dipiperidinomethane		182.31		0.915	1.482020		123 ^{15mm}	91	-
d777	Dipropylamine	$(C_3H_7)_2NH$	101.19	4, 138	0.7375420	1.404320	- 63	109.2	17	4 aq; v s alc, eth, PE
d778	3-Dipropylamino-1,2- propanediol	(C ₃ H ₇) ₂ NCH ₂ CH(OH)- CH ₂ OH	175.27	4 ³ , 841	0.949	1.455420		143 ^{9mm}	>110	
d779	Dipropylene glycol	HO(CH ₂) ₃ O(CH ₂) ₃ OH	134.18	1², 537	1.023	1.4410 ²⁰			137	
d780	Dipropylene glycol butyl ether	CH ₃ CH(OH)CH ₂ OCH ₂ - CH(OC ₄ H ₉)CH ₃	190.29	1, <i>4</i> , 2474	0.91725	1.42525		229	96	
d781	Dipropylene glycol tert-butyl ether	(CH ₃) ₃ CO(CH ₂) ₃ O(CH ₂) ₃ OH	190.29		0.900	1.424020		220-222	87	
d782	Dipropylene glycol dibenzoate	[C ₆ H ₅ CO ₂ (CH ₂) ₃] ₂ O	342.40	9², 108	1.120	1.528020		232 ^{5mm}	>110	
d783	Dipropylene glycol isopropyl ether	CH ₃ CH(OH)CH ₂ OCH ₂ - CH[OCH(CH ₃) ₂]CH ₃	176.2		0.87825	1.42125		80.1	90	
d784	Dipropylene glycol methyl ether	CH ₃ CH(OH)CH ₂ OCH ₂ - CH(OCH ₃)CH ₃	148.2		0.95120	1.41920	- 117	188.3	74	
d785	Dipropylene glycol acetate	CH ₃ CO ₂ (CH ₂) ₃ O(CH ₂) ₃ - OCH ₃	190.24		0.970	1.418020		200	85	
d786	Dipropyl ether	$(C_3H_7)_2O$	102.18	1, 354	0.746620	1.380320	- 126.2	89.6	21	0.4 aq
d787	Dipropyl hexanedioate	C ₃ H ₇ O ₂ C(CH ₂) ₄ CO ₂ C ₃ H ₇	230.30	2², 574	0.97904	1.431420	- 20	144 ^{10mm}		i aq; s alc, eth
d788	Dipropyl sulfate	$(C_3H_7O)_2SO_2$	182.24	1, 354	1.10640		dec 140	120 ^{20mm}		v s PE
d789	Dipropyl sulfone	$(C_{3}H_{7})_{2}SO_{2}$	150.24	1, 359	1.028450		28-30	270	126	
d790	2,2'-Dipyridyl		156.19	23, 199			70–73	273		0.5 aq; v s alc, bz, chl, eth, PE
d791	Disilane	H ₃ SiSiH ₃	62.22	Merck: 12, 3419	0.686-25		- 132	- 14.3	ignites in air	s alc, bz, CS ₂
d792	1,3-Dithiane		120.24				53-55		90	
d793	4,4'-Dithiobutyric acid	HO ₂ C(CH ₂) ₃ SS(CH ₂) ₃ CO ₂ H	238.32	3, 312	1		110			
d794	3,3'-Dithiodipropionic acid	HO ₂ C(CH ₂) ₂ SS(CH ₂) ₂ CO ₂ H	210.27				157–159			
d795	Dithiooxamide	H ₂ NC(S)C(S)NH ₂	120.20	2, 565			245			sl s aq; s alc; i eth
d796	2,2'-Dithiosalicylic acid	S ₂ (C ₆ H ₄ CO ₂ H) ₂	306.36	10, 129			287290			
d797	1,3-Di-o-tolylguanidine	(CH ₃ C ₆ H ₄ NH) ₂ C==NH	239.32	12, 803	1.10420		176178			s hot alc, eth
d798	Divinyl ether	H ₂ C=CHOCH=CH ₂	70.09	Merck: 12, 10133	0.77340	1.398920	- 101	28.3	<-30	0.53 aq; misc alc, eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
1700	1.2 Disting laster		196.20	4 4 4090	0.91120	1.411020	00	120	24	I
u/99	1,5-DivinyRetra-	[CH2==CH31(CH3)2]20	180.39	4,4,4060	0.8114	1.4110-5	-99	159	24	
4800	3 Q-Divinvl-2 4 8 10-		212.25	103 5670	1 251		43_46	110 ^{2mm}	110	
4000	tetraoxaspiro[5 5]-		212.25	19,5079	1.251			110	110	
	undecane									
d801	Docasane	CH ₂ (CH ₂) ₂₂ CH ₂	310.61	1, 174	0.778245	1.435845	43-45	369	>110	i ag: sl s alc: v s eth
d802	1-Docosanol	CH ₂ (CH ₂) ₂₁ OH	326.61	1, 431			65-72	180 ^{22mm}		sl s eth; s alc, chl
d803	Dodecane	CH ₂ (CH ₂) ₁₀ CH ₃	170.34	1, 171	0.749020	1.421620	-10	216.2	74	
d804	1,12-Dodecanediamine	$H_2N(CH_2)_{12}NH_2$	200.37	4, 273			71		155	
d805	Dodecanedioic acid	HO ₂ C(CH ₂) ₁₀ CO ₂ H	230.30	2, 729			128-130	245 ^{10mm}		
d806	1,2-Dodecanediol	CH ₃ (CH ₂) ₉ CH(OH)CH ₂ OH	202.34	13, 2237			58-60			
d807	1,12-Dodecanediol	HOCH ₂ (CH ₂) ₁₀ CH ₂ OH	202.34	1², 562			8184	189 ^{12mm}		
d808	1-Dodecanethiol	CH ₃ (CH ₂) ₁₁ SH	202.40		0.84520	1.458720		266-283	87	i aq; s alc, eth
d809	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ CO ₂ H	200.32	2, 359	0.86914	1.418382	43	225 ^{100mm}	>110	i aq; 100 alc; v s bz, eth; 40 PrOH
d810	1-Dodecanol	CH ₃ (CH ₂) ₁₁ OH	186.34	1, 428	0.830845	1.441325	24	259	>110	i aq; s alc, eth
d811	δ -Dodecanolactone		198.31	17 ⁵ ,9,100	0.942	1.460220	-12	126 ^{1mm}	>110	-
d812	Dodecanoyl peroxide	[CH ₃ (CH ₂) ₁₀ CO] ₂ O ₂	398.63	2 ³ , 893			55-57			
d813	1-Dodecene	CH ₃ (CH ₂) ₉ CH=CH ₂	168.32	1, 225	0.7584420	1.429420	- 35.2	213.4	79	s alc, eth, PE
d814	2-Dodecen-1-ylsuccinic anhydride		266.38				41-43	180 ^{5mm}	177	
d815	Dodecyl acetate	CH ₃ CO ₂ (CH ₂) ₁₁ CH ₃	228.38	2, 136	0.865	1.431820		150 ^{15mm}	>110	
d816	Dodecyl acrylate	H ₂ C=CHCO ₂ (CH ₂) ₁₁ CH ₃	240.39	2 ³ , 1230	0.884	1.445020			>110	
d817	Dodecyl aldehyde	CH ₃ (CH ₂) ₁₀ CHO	184.32	1, 714	0.835	1.434420		185 ^{100mm}	101	
d818	Dodecylamine	$CH_3(CH_2)_{11}NH_2$	185.36	4, 200	0.808		30-32	247249	>110	misc alc, bz, chl, eth
d819	Dodecyl methacrylate	$H_2C = C(CH_3)CO_2(CH_2)_{11}CH_3$	254.42	2 ³ , 1290	0.868	1.446020	-7	142 ^{4mm}	>110	
d820	Dodecyl sulfate,	CH ₃ (CH ₂) ₁₁ SO ₃ ⁻ Na ⁺	288.38	13, 1786			204-207			10 aq
4821	Dodecyltrichlorosilane	CH (CH.) SICI	303.8	43 1907	1.020	1 45820		294	>110	
4822	Dodecyl vinyl ether	CH (CH) OCH = CH	212 38	4,1507	0.817	1 438220		117-120	>110	
d822	Dotriacontane	CH ₂ (CH ₂) ₁₁ CCH	450.88	1 177	0.812420	1 436470	68-70	467		sl s alc, hz, eth
d824	Dulcitol	0113(0112)300113	182.17	1. 544	1.4720	111001	188-191	280 ^{1mm}		3.3 ag: sl s alc
el	Eicosane	CH_(CH_),CH_	282.56	1, 174	0.7823		37	343	>110	
••				_,	(s)					
e2	1R, 2S - (-)-Ephedrine	CH ₃ NHCH(CH ₃)CH(OH)C ₄ H ₅	165.24	13, 636	1.124		39	255	85	s ag, alc, chl, eth
e3	1,2-Epoxybutane	H ₂ C-CHCH ₂ CH ₃	72.11	172, 17	0.829720	1.385020	- 150	63	-22	6 aq; misc alc, bz, chl, eth

e4	1,2-Epoxy-5,9-cyclo- dodecadiene		178.28		0.980	1.504520		83 ^{1mm}	>110	
e5	1,2-Epoxycyclo- dodecane		182.31		0.939	1.477320			>110	
e6	1,2-Epoxycyclopentane		84.12	17, 21	0.964	1.433620		102	10	
e7	1,2-Epoxydecane	H ₂ C—CHCH ₂ (CH ₂) ₆ CH ₃	156.27	17, 18	0.840	1.429020		94 ^{15mm}	78	
e8	1,2-Epoxydodecane	H ₂ C—CHCH ₂ (CH ₂) ₈ CH ₃	184.32	17 ³ , 136	0.844	1.435520		125 ^{15mm}	105	
e9	1,2-Epoxyethylbenzene	H ₂ C-CHC ₆ H ₅	120.15	17, 49	1.0523 ¹⁶	1.533820	-37	194	79	i aq; s alc, eth
e10	1,2-Epoxyhexadecane	H ₂ C—CHCH ₂ (CH ₂) ₁₂ CH ₃	240.43	17, 20	0.846	1.445220	21–22	180 ^{12mm}	93	
e11	1,2-Epoxyhexane	H ₂ C—CHCH ₂ CH ₂ CH ₂ CH ₃	100.16	174, 86	0.831	1.405620		118-120	15	
e12	1,2-Epoxy-5-hexene	H ₂ C—CHCH ₂ CH ₂ CH=CH ₂	98.15	17³, 163	0.870	1.425220		121	15	
e13	1,2-Epoxyoctadecane	H ₂ C-CHCH ₂ (CH ₂) ₁₄ CH ₃	268.49	17 ³ , 140			33-35	137 ^{0.5mm}	>110	
e14	1,2-Epoxy-3-phenoxy- propane	H ₂ C—CHCH ₂ OC ₆ H ₅	150.18	17, 105	1.109	1.53020	3.5	245	>110	
e15	1,2-Epoxypropane	H ₂ C—CHCH ₃	58.08	17, 6	0.8594	1.366020	-112	35	-37	41 aq; misc alc, eth
e16	2,3-Epoxy-1-propanol	н₂с—снсн₂он	74.08	17, 104	1.114345	1.431520		66 ^{2.5mm}	81	misc aq
e17	2,3-Epoxypropyl- methacrylate	H_2C - CHCH ₂ O ₂ C(CH ₃)- O CH=CH ₂	142.16		1.042	1.4494 ²⁰		189	76	
e18	1,2-Epoxy-3,3,3-tri- chloropropane		161.42	17², 14	1.495	1.477820		151 ^{745mm}	66	
e19	meso-Erythritol	HOCH ₂ [CH(OH)] ₂ CH ₂ OH	122.12	1, 525			120-123	329-331		
e20	Ethane	CH ₃ CH ₃	30.07	1, 80	1.3560		- 182.8	- 88	- 135	4.7 mL aq; 46 mL alc ⁴
					g/L					
e21	1,2-Ethanediamine	H ₂ NCH ₂ CH ₂ NH ₂	60.10	4, 230	0.89774	1.456820	11	117.3	33	misc aq, alc; i bz

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued)
-------------------	----------	--------------	---------	-----------	-------------

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
e21a	1,2-Ethanediol	HOCH,CH,OH	62.07	1, 465	1.11354	1.431820	- 12.6	197.3	110	misc aq, alc, glyc, pyr
e22	1,2-Ethanediol	CH ₃ CO ₂ CH ₂ CH ₂ O ₂ CCH ₃	146.14	2, 142	1.104320	1.415020	-31	190.2	82	misc alc, eth
	diacetate									
e23	1,2-Ethanediol dimethacrylate	$[H_2C = C(CH_3)CO_2CH_2^-]_2$	198.22	2 ³ , 1292	1.051	1.454920		100 ^{5mm}	>110	
e24	1,2-Ethanedithiol	HSCH ₂ CH ₂ SH	94.20	1, 471	1.12324	1.558020		146	50	v s alc, alk
e25	Ethanesulfonic acid	C ₂ H ₅ SO ₃ H	110.13	4, 5	1.350	1.434020	17	123 ^{0.01mm}	>110	
e26	Ethanesulfonyl	CH ₃ CH ₂ SO ₂ Cl	128.57	4, 6	1.35722	1.433020		177	83	dec aq, alc; v s eth
e76a	Ethanethiol	CH_CH_SH	62 13	1 340	0.831525	1 42025	- 147 9	35.0	-17	0.7 agr salc eth
020a	Ethanol		46.07	1, 340	0.780420	1 361 120		78 3	13	misc ag alc chl eth
o28	Ethanol d		47.08	13 1287	0.70544	1 359520	114	78.8	12	mise aq, ale, eth
e20	Ethanolamine	H NCH CH OH	61.08	Merck:	1 018020	1.5555	10.5	170.8	86	misc aq, alc, acet
629	Ethanolamilie	1121101120112011	01.03	12, 3712	1.0100	1.4337	10.5	170.0	00	mise aq, are, acer
e30	Ethoxyacetic acid	CH ₃ CH ₂ OCH ₂ CO ₂ H	104.11	3, 233	1.102140	1.419020		97 ^{11mm}	97	s aq, alc, eth
e31	3-Ethoxyacrylonitrile	C2H3OCH=CHCN	97.12	3 ³ , 681	0.944	1.454520		91 ^{19mm}	81	
e32	4-Ethoxyaniline	CH ₃ CH ₂ OC ₆ H ₅ NH ₂	137.18	13, 436	1.065246	1.560920	4	250	115	i aq; s alc
e33	2-Ethoxybenzaldehyde	CH ₃ CH ₂ OC ₆ H ₄ CHO	150.18	8, 43	1.074	1.5422	20	136 ^{24mm}	107	misc alc, eth
e34	4-Ethoxybenzaldehyde	CH ₃ CH ₂ OC ₆ H₄CHO	150.18	8, 73	1.08025	1.558420	13-14	255	>110	v s alc, bz, eth
e35	2-Ethoxybenzamide	CH ₃ CH ₂ OC ₆ H ₄ CONH ₂	165.19	10, 93			132134			sl s aq; s alc, eth
e36	Ethoxybenzene	CH ₃ CH ₂ OC ₆ H ₅	122.17	6, 140	0.96740	1.507420	-29.5	169.8	63	v s alc, eth
e37	2-Ethoxybenzoic acid	CH ₃ CH ₂ OC ₆ H ₄ CO ₂ H	166.18	10, 64	1.105	1.540020	19.4	174 ^{15mm}	>110	sl s aq
e38	4-Ethoxybenzoic acid	CH ₃ CH ₂ OC ₆ H ₄ CO ₂ H	166.18	10, 156			197199			sl s hot aq
e39	Ethoxycarbonyl	CH ₃ CH ₂ OC(==O)NCS	131.15	3 ³ , 279	1.112	1.500020		56 ^{18mm}	50	
	isothiocyanate									
e40	2-Ethoxyethanol	CH ₃ CH ₂ OCH ₂ CH ₂ OH	90.12	1, 467	0.929520	1.407520	-70	134.8	43	misc aq, alc, acet, eth
e41	2-(2-Ethoxyethoxy)- ethanol	C ₂ H ₅ OCH ₂ CH ₂ OCH ₂ CH ₂ OH	134.18	12, 520	0.9841_4^{25}	1.425425	- 76	196	96	misc aq, alc, bz, chl, acet, pyr
e41a	2-(2-Ethoxyethoxy)-	CH ₃ CO ₂ CH ₂ CH ₂ OCH ₂ CH ₂ -	176.21		1.009620	1.421320	-25	218.5	110	
40	ethanol acetate	OCH ₂ CH ₃	100.14	02.155	0.074030	1 400030	(17	1500		20 · 1 · 1
e42	2-Ethoxyethyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ OCH ₂ CH ₃	132.16	22, 155	0.97494	1.402320	-61.7	156.3	57	29 aq; misc alc, eth
e43	2-Ethoxyethyl acrylate	$H_2C = CHCO_2CH_2CH_2OC_2H_5$	144.17	23, 1232	0.982	1.427020		7823mm	65	
e44	2-Ethoxyethylamine	CH ₃ CH ₂ OCH ₂ CH ₂ NH ₂	89.14	42, 718	0.85124	1.410120		107	21	misc aq, alc, eth
e45	2-Ethoxyethyl methacrylate	$H_2C = C(CH_3)CO_2CH_2CH_2OC_2H_5$	158.20	22, 1291	0.964	1.428520		93 ^{55mm}	/1	
e46	3-Ethoxy-4-hydroxy- benzaldehyde	C ₂ H ₅ OC ₆ H ₃ (OH)CHO	166.18	8, 256			76–78			s eth, glycols; 50 alc

e47	3-Ethoxy-4-methoxy- benzaldehyde	C ₂ H ₅ OC ₆ H ₃ (OCH ₃)CHO	180.2	8, 256			51-53		>110	s alc, bz, chl, eth
e48	1-Ethoxy-2-methoxy- benzene	C ₂ H ₅ OC ₆ H ₄ OCH ₃	152.19	6, 771	1.044	1.524020		217–218	90	
e49	Ethoxymethylene- malononitrile	CH ₃ CH ₂ OCH=C(CN) ₂	122.13	3 ¹ , 162			64–66	160 ^{12mm}		
e50	1-Ethoxynaphthalene	C ₁₀ H ₇ OCH ₂ CH ₃	172.23	6,606	1.06040	1.604020	5.5	280	>110	i aq; v s alc, eth
e51	2-Ethoxyphenol	C₂H₅OC ₆ H₄OH	138.17	6, 771	1.090	1.528820	29	217	91	_
e52	trans-2-Ethoxy-5-(1- propenyl)phenyl	C ₂ H ₅ OC ₆ H ₃ (CH=CHCH ₃)OH	178.23	6², 918			86-88			
e53	3-Ethoxypropionitrile	C ₂ H ₅ OCH ₂ CH ₂ CN	99.14	3, 298	0.911	1.406520		171~172	63	
e54	3-Ethoxypropylamine	C,H,OCH,CH,CH,NH,	103.17	4 ³ , 739	0.861	1.417820		136-138	32	
e55	3-Ethoxysalicyl- aldehyde	C ₂ H ₅ OC ₆ H ₃ (OH)CHO	166.18	8², 267			66–68	264		
e56	Ethoxytrimethylsilane	(CH ₃) ₃ SiOC ₂ H ₅	118.3	4 ³ , 1856	0.7573420	1.374220		7576	-18	
e57	Ethyl acetate	CH ₃ CO ₂ C ₂ H ₅	88.11	2, 125	0.900640	1.372420	- 84	77	-4	9.7 aq; misc alc, acet, chl, eth
e58	Ethyl acetoacetate	CH ₃ COCH ₂ CO ₂ C ₂ H ₅	130.15	3, 632	1.021345	1.417420	- 45	180.8	57	2.9 aq; misc alc, chl
e59	p-Ethylacetophenone	C ₂ H ₅ C ₆ H ₄ COCH ₃	148.21	74, 1101	0.993	1.529320	-20.6	114 ^{11mm}	90	
e60	Ethyl acrylate	$H_2C = CHCO_2C_2H_5$	100.12	2, 399	0.923420	1.406020	- 71	99	10	1.5 aq; s alc, eth
e61	Ethylaluminum dichloride	C ₂ H ₅ AlCl ₂	126.95	4 ³ , 1973	1.20750		32	113 ^{50mm}	-18	
e62	Ethylaluminum sesquichloride	$C_2H_5AlCl_2 \cdot ClAl(C_2H_5)_2$	247.51		1.092		- 50	204	-18	
e63	Ethylamine	C ₂ H ₅ NH ₂	45.09	4, 87	0.68915	1.366320	- 81	16.6	< -18	misc aq, alc, eth
e64	Ethyl 2-aminobenzoate	$H_2NC_6H_4CO_2C_2H_5$	165.19	14, 319	1.08815	1.564020	13-15	266-268	>110	i aq; s alc, eth
e65	Ethyl 4-aminobenzoate	$H_2NC_6H_4CO_2C_2H_5$	165.19	14, 422			88-90	310		0.04 aq; 20 alc; 50 chl, 25 eth; s dil acid
e66	Ethyl 3-amino- crotonate	CH ₃ C(NH ₂)=-CHCO ₂ C ₂ H ₅	129.16	3, 654	1.021420		33-35	210-215	97	i aq; s alc, bz, eth
e67	2-(Ethylamino)ethanol	CH ₃ CH ₂ NHCH ₂ CH ₂ OH	89.14	4, 282	0.914420	1.440220	- 90	170	71	v s aq, alc, eth
e68	N-Ethylaniline	C ₆ H ₅ NHC ₂ H ₅	121.18	12, 159	0.95825	1.555920	-63.5	203	85	i aq; misc alc, eth
e69	2-Ethylaniline	CH ₃ CH ₂ C ₆ H ₄ NH ₂	121.18	12², 584	0.983	1.559020	- 44	210	91	sl s aq; v s alc, eth
e70	4-Ethylaniline	CH ₃ CH ₂ C ₆ H ₄ NH ₂	121.18	12, 1090	0.975	1.554220	-5	216	85	sì s aq; v s alc, eth
e71	2-Ethylanthraquinone		236.27	7 ¹ , 425			108-111			
e72	4-Ethylbenzaldehyde	C ₂ H ₅ C ₆ H ₄ CHO	134.18	7, 307	0.979	1.539020		221	92	
e73	Ethylbenzene-d ₁₀	C ₆ D ₅ CD ₂ CD ₃	116.25		0.949	1.492020		134.6	31	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
e74	Ethylbenzene	C ₆ H ₅ CH ₂ CH ₃	106.17	5², 274	0.8670420	1.495920	95.0	136.2	22	0.01 aq; misc alc, bz, chl. eth
e75	4-Ethylbenzene- sulfonic acid	C ₂ H ₅ C ₆ H ₄ SO ₃ H	186.23	11, 120	1.229	1.5331			>110	,
e76	Ethyl benzoate	C ₆ H ₅ CO ₂ C ₂ H ₅	150.18	9, 110	1.05115	1.500020	- 34.7	212.4	84	0.05 aq; misc alc, chl, bz, eth, PE
e77	Ethyl benzoylacetate	C4H4(C==O)CH2CO2C4H4	192.21	10, 674	1.110	1.533820		265-270	63	i aq; misc alc, eth
e78	Ethyl 3-benzoyl- acrylate	C ₆ H ₅ (C=O)CH=CHCO ₂ C ₂ H ₅	204.23	10 ² , 501	1.112	1.543520		185 ^{25mm}	>110	* ,
e79	Ethyl 2-benzylaceto- acetate	$CH_3C(==0)CH(CH_2C_6H_5)CO_2C_2H_5$	220.27	10, 710	1.036	1.499620		276	>110	
e80	N-Ethylbenzylamine	C_H_CH_NHC_H_	135.21	12, 1020	0.909	1.511720		194	66	
e 81	Ethyl (2-benzyl)- benzovlacetate	$C_6H_5C(=O)CH(CH_2C_6H_5)-CO_3C_3H_6$	282.34	10, 764	1.110	1.556720		270 ^{80mm}	>110	
e82	Ethyl N-benzyl-N- cyclopropylcarba- mate	C ₆ H ₅ CH ₂ N(C ₃ H ₅)CO ₂ C ₂ H ₅	219.28		0.997	1.510420			>110	
e83	Ethyl bromoacetate	BrCH.CO.CH.CH.	167.01	2.214	1.50629	1.451020	< -20	159	47	i ac: misc alc. eth
e84	Ethyl 4-bromo- benzoate	BrC ₆ H ₄ CO ₂ C ₂ H ₅	229.08	9, 352	1.403	1.544020	20	131 ^{14mm}	>110	· • • • • • • • • • • • • • • • • • • •
e85	Ethyl 2-bromobutyrate	CH ₂ CH ₂ CH(Br)CO ₂ C ₂ H ₅	195.06	2 ² , 255	1.329%	1.447020		177 dec	58	i aq; misc alc, eth
e86	Ethyl 4-bromobutyrate	BrCH,CH,CH,CO,C,H	195.06	2, 283	1.363	1.455920		82 ^{10mm}	90	
e87	Ethyl 2-bromo- heptanoate	CH ₃ (CH ₂) ₃ CH(Br)CO ₂ C ₂ H ₅	237.14	2, 341	1.211	1.452420		109 ^{10mm}	104	
e88	Ethyl 6-bromo- hexanoate	Br(CH ₂) ₅ CO ₂ C ₂ H ₅	223.12	2 ³ , 737	1.254	1.459020		130 ^{16mm}	>110	
e89	Ethyl 2-bromoiso- butyrate	(CH ₃) ₂ C(Br)CO ₂ C ₂ H ₅	195.06	2, 296	1.329420	1.444620		67 ^{11mm}	60	i aq; misc alc, eth
e90	Ethyl 2-bromo- octanoate	CH ₃ (CH ₂) ₅ CH(Br)CO ₂ C ₂ H ₅	251.17	2, 349	1.167	1.452020			106	
e91	Ethyl 3-bromo-2-oxo- propionate	BrCH ₂ C(==0)CO ₂ C ₂ H ₅	195.02	3², 409	1.554	1.469520		100 ^{10mm}	98	
e92	Ethyl 2-bromo-	CH ₃ (CH ₂) ₂ CH(Br)CO ₂ C ₂ H ₅	209.09	2, 302	1.116	1.448620		190–192	77	i aq; misc alc, eth
e93	Ethyl 2-bromo-	CH ₃ CH(Br)CO ₂ C ₂ H ₅	181.03	2, 255	1.394	1.446020		156–160	51	i aq; misc alc, eth
e94	Ethyl 3-bromo- propionate	BrCH ₂ CH ₂ CO ₂ C ₂ H ₅	181.03	2, 256	1.4123 ¹⁸	1.456918		136 ^{50mm}	79	i aq; misc alc, eth

e95	2-Ethyl-1-butanol	(C ₂ H ₅) ₂ CHCH ₂ OH	102.18	1, 412	0.833020	1.422420	< -15	146	58	0.63 aq
e95a	2-Ethyl-1-butene	$(C_2H_5)_2C = CH_2$	84.16	1², 95	0.689	1.396020	- 131	65	-26	
e96	2-Ethylbutyl acetate	CH ₃ CO ₂ CH ₂ CH(C ₂ H ₅) ₂	144.21	2 ³ , 257	0.876	1.410020		160 ^{740mm}	52	
e97	N-Ethylbutylamine	CH ₃ (CH ₂) ₃ NHC ₂ H ₅	101.19	4, 157	0.740420	1.4050 ²⁰		108	18	
e98	2-Ethylbutyraldehyde	(C ₂ H ₅) ₂ CHCHO	100.16	1, 693	0.816220	1.401820	- 89	116.7	21	0.31 aq
e99	Ethyl butyrate	CH ₃ CH ₂ CH ₂ CO ₂ C ₂ H ₅	116.16	2, 270	0.879420	1.399820	- 98	121	24	0.49 aq; misc alc, eth
e100	2-Ethylbutyric acid	(C ₂ H ₅) ₂ CHCO ₂ H	116.16	2, 333	0.922520	1.413320	- 14	194	87	
e101	Ethyl butyrylacetate	CH ₃ (CH ₂) ₂ C(==O)CH ₂ -	158.20	3, 684	1.001	1.427020		104 ^{22mm}	78	
		CO ₂ C ₂ H ₅								
e102	Ethyl carbamate	H ₂ NCO ₂ C ₂ H ₅	89.09	3, 22	1.056		49-50	182-184	92	200 aq; 125 alc; 111 chl; 67 eth
e103	Ethyl carbazate	H ₂ NNHCO ₂ C ₂ H ₅	104.11	3, 98			44-47	110 ^{22mm}	86	
e104	N-Ethylcarbazole		195.27	20, 436			68-70			
e105	Ethyl chloroacetate	CICH ₂ CO ₂ C ₂ H ₅	122.55	2, 197	1.1498420	1.422720	-21	144	65	i aq; misc alc, eth
e106	Ethyl 2-chloro-	$CH_3C(=O)CH(Cl)CO_2C_2H_5$	164.59	3, 662	1.190	1.443020		107 ^{14mm}	50	i aq; s alc, eth
	acetoacetate									
e107	Ethyl 4-chloro-	CICH ₂ C(=O)CH ₂ CO ₂ C ₂ H ₅	164.59	3, 663	1.21847	1.452020		115 ^{14mm}	96	i aq; misc alc, eth
	acetoacetate									
e108	Ethyl 4-chlorobutyrate	ClCH ₂ CH ₂ CH ₂ CO ₂ C ₂ H ₅	150.61	2, 278	1.0754420	1.430620		186	51	s alc, acet, eth
e109	Ethyl chloroformate	ClCO ₂ C ₂ H ₅	108.52	3, 10	1.140340	1.394120	- 81	93	13	misc alc, bz, chl, eth
e110	Ethyl 2-chloro-	CH ₃ CH(Cl)CO ₂ C ₂ H ₅	136.58	2, 248	1.087420	1.418520	146-149	38		
	propionate									
e111	Ethyl 3-chloro-	ClCH ₂ CH ₂ CO ₂ C ₂ H ₅	136.58	2, 250	1.1086420	1.424920		162-163	54	misc alc, eth
	propionate	-								
e112	Ethyl		196.29	9², 45	0.906	1.460020		112 ^{10mm}	84	
	chrysanthemumate									
e113	Ethyl trans-cinnamate	C ₆ H ₅ CH=CHCO ₂ C ₂ H ₅	176.22	9², 385	1.049540	1.559820	10	271	>110	misc alc, eth; i aq
e114	Ethyl crotonate	CH ₃ CH=CHCO ₂ C ₂ H ₅	114.14	2, 411	0.91754	1.424020		138	28	i aq; s alc, eth
e115	Ethyl cyanoacetate	NCCH ₂ CO ₂ C ₂ H ₅	113.12	2, 585	1.056445	1.417620	- 22	206	110	i aq; misc alc, eth
e116	Ethyl 2-cyano-3,3- diphenylacrylate	$(C_6H_5)_2C = C(CN)CO_2C_2H_5$	277.33	9 ³ , 4601			9799	174 ^{0.2mm}		
e117	Ethylcyclohexane	C ₆ H ₁₁ CH ₂ CH ₃	112.22	5, 35	0.787920	1.433020	111	131.8	35	
e118	4-Ethylcyclohexanol	CH ₃ CH ₂ C ₆ H ₁₀ OH	128.22	6², 26	0.889	1.462520		84 ^{10mm}	77	
e118a	Ethylcyclopentane	$C_2H_5(C_5H_9)$	98.19	5 ² , 19	0.763	1.419020	- 138	103	15	
e119	Ethyl cyclopropane-	C ₃ H ₅ CO ₂ CH ₂ CH ₃	114.14	9,4	0.960	1.419720		129-133	18	
	carboxylate									
e120	Ethyl decanoate	CH ₃ (CH ₂) ₈ CO ₂ C ₂ H ₅	200.32	2, 356	0.86220	1.424820		245	102	misc alc, chl, eth
e121	Ethyl diazoacetate	N ₂ CH ₂ CO ₂ C ₂ H ₅	114.10	31, 211	1.085248	1.458818	- 22	141 ^{710mm}	26	misc alc, bz, eth

TABLE 2.20	Physical Constants of Organic Compounds (Continued)

					1	1				
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
e122	Ethyl 2,3-dibromo- propionate	BrCH ₂ CH(Br)CO ₂ C ₂ H ₅	259.94	2, 259	1.78846	1.498620		214	91	s alc, eth
e123	Ethyl dichloro- phosphate	CH ₃ CH ₂ OP(O)Cl ₂	162.94	1, 332	1.373	1.433820		65 ^{10mm}	>110	
e124	Ethyl dichlorothio- phosphate	CH ₃ CH ₂ OP(S)Cl ₂	179.01	1, 353	1.353	1.504020		68 ^{10mm}	>110	
e125	N-Ethyldiethanolamine	CH-CH-N(CH-CH-OH)	133.19	4 284	1 014	1 466520	- 50	246-252	123	
e126	Ethyl 3,3-dimethyl- acrylate	$(CH_3)_2C = CHCO_2C_2H_5$	128.17	2, 433	0.9247 ²⁰	1.435020	50	155	33	
e127	Ethyl 4-dimethyl- aminobenzoate	(CH ₃) ₂ NC ₆ H ₄ CO ₂ C ₂ H ₅	193.25	14 ¹ , 571			64–66			
e128	Ethyl 2,2-dimethyl- propionate	(CH ₃) ₃ CCO ₂ C ₂ H ₅	130.19	2, 320	0.858448	1.392218		118.2	16	s alc, eth
e129	Ethyl 3,5-dinitro- benzoate	$(O_2N)_2C_6H_3CO_2C_2H_5$	240.17	9, 414			94–95			
e130	5-Ethyl-1,3-dioxane- 5-methanol		146.19	195,2,382	1.090	1.463020		105 ^{5mm}	>110	
e131	Ethylene	H ₂ C=CH ₂	28.05	1, 180	1.147 g/L		- 169.4	- 104		11 mL aq ²⁵ ; 200 alc ²⁵ ; v s eth; s acet, bz
e132	Ethylene carbonate		88.06	19, 100	1.321439	1.419940	36.4	248	143	misc aq
e133	Ethylenediamine	H-NCH-CH-NH-	60.10	4, 230	0.87920	1.456620	11	117	40	
e134	Ethylenediamine- N,N,N',N'-tetra- acetic acid	$\begin{array}{c} (HO_2CCH_2)_2NCH_2CH_2-\\ N(CH_2CO_2H)_2 \end{array}$	292.24	4 ³ , 1187	0.077	11000	250 dec			0.05 aq
e135	Ethylene glycol	HOCH CH OH	62.07	1 465	1 1 1 3	1 431020		106-108	>110	
e136	Ethylene glycol bis- (mercaptoacetate)	$(\text{HSCH}_2\text{CO}_2\text{CH}_2-)_2$	210.27	1, 405	1.313	1.521120		139 ^{2mm}	>110	
e137	Ethylene glycol diacetate	CH ₃ CO ₂ CH ₂ CH ₂ O ₂ CCH ₃	146.14	2, 142	1.104320	1.415920	-31	190	88	
e138	Ethylene glycol diethyl ether	C ₂ H ₅ OCH ₂ CH ₂ OC ₂ H ₅	118.18	1, 468	0.848420	1.386020	- 74	119	35	
e139	Ethylene glycol diglycidyl ether	(H ₂ C-CHCH ₂ OCH ₂ -) ₂	174.20	1, 468	0.842	1.392320	- 74	121	20	
e140	Ethylene glycol dimethacrylate	[H ₂ C=C(CH ₃)CO ₂ CH ₂ -] ₂	198.22	23, 1292	1.051	1.454920		100 ^{5mm}	>110	

e141	Ethylene glycol dimethyl ether	CH ₃ OCH ₂ CH ₂ OCH ₃	90.12	1, 467	0.869120	1.379620	- 58	85	-2	
e142	Ethylene glycol divinyl ether	H ₂ C==CHOCH ₂ CH ₂ OCH==CH ₂	114.14	13, 2807	0.914	1.435020		125-127	27	
e143	Ethylene glycol methyl ether acrylate	H ₂ C=CHCO ₂ CH ₂ CH ₂ OCH ₃	130.14	2 ³ , 1232	1.012	1.427020		56 ^{12mm}	60	
e144	Ethylene glycol methyl ether methacrylate	H ₂ C==C(CH ₃)CO ₂ CH ₂ CH ₂ OCH ₃	144.17	2 ³ , 1291	0.993	1.431020		65 ^{12mm}	60	
e145	Ethylene glycol phenyl ether acrylate	H ₂ C=CHCO ₂ CH ₂ CH ₂ OC ₆ H ₅	192.21	6 ³ , 572	1.104	1.518020		84 ^{0.2mm}	>110	
e146	Ethyleneimine	H ₂ C—CH ₂ N	43.07		0.8321 ²⁵	1.412325	-78	56	-11	misc aq; s alc
e147	Ethylene oxide	H H ₂ C—CH ₂	44.05	17, 4	0.891 ⁰	1.35977	- 111	10.6	18	misc aq; s alc, eth
e148	Ethylene sulfide	H ₂ C-CH ₂	60.12	17², 12	1.010	1.493520		55–56	10	sl s alc, eth
e149	Ethyl 2-ethoxy-2- hydroxyacetate	HOCH(OC ₂ H ₅)CO ₂ C ₂ H ₅	148.16	3, 601	1.079	1.420020		137	49	
e150	Ethyl (ethoxy- methylene)cyano- acetate	C ₂ H ₅ OCH==C(CN)CO ₂ C ₂ H ₅	169.18	3, 470			51–53	190 ^{30mm}	>110	
e151	Ethyl 3-ethoxy- propionate	C ₂ H ₅ OCH ₂ CH ₂ CO ₂ C ₂ H ₅	146.19	3, 298	0.949	1.405020		166	52	
e152	Ethyl 4-{[(ethyl- phenylamino)- methylene]amino}- benzoate	C ₆ H ₅ N(C ₂ H ₅)CH==N-C ₆ H ₄ - CO ₂ C ₂ H ₅	296.37				62–65	215 ^{2mm}		
e153	Ethyl fluoroacetate	FCH ₂ CO ₂ C ₂ H ₅	106.10	2, 193	1.092621	1.375520		119	30	s aq
e154	Ethyl formate	HCO ₂ C ₂ H ₅	74.08	2, 19	0.917 ²⁰	1.359020	80	54	20	10 aq; misc alc, eth
e155	Ethyl 2-furoate		140.14	18, 275	1.11740		3537	196	70	i aq; s alc, eth
e156	Ethyl heptanoate	CH ₃ (CH ₂) ₅ CO ₂ C ₂ H ₅	158.24	2², 295	0.8685420	1.414415	66	189	66	s alc, eth
e157	Ethyl hexadecanoate	CH ₃ (CH ₂) ₁₄ CO ₂ C ₂ H ₅	284.48	22, 336	0.857745	1.434734	22	191 ^{10mm}		s alc, eth
e158	2-Ethylhexanaldehyde	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CHO	128.22	1,707	0.822	1.4155		5513.5mm	42	
e158a	3-Ethylhexane	$(C_2H_5)CHCH_2CH_2CH_3$	114.23	1 ⁴ , 431	0.713620	1.401820		118.0	107	s aic, eth 0.6% (w/w) ago a sign
e139	2-Einyl-1,3-nexanediol	$CH_3(CH_2)_2CH(OH)^{-1}$ $CH(C_2H_5)CH_2OH$	140.23	3790	0.93234	1.4330***	-40	2 44	127	propylene glycol

No	Nama	Formula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Name	Formula	weight	reference	g/mL	index	point, 'C	point, 'C	point, 'C	parts solvent
e160	Ethyl hexanoate	CH ₃ (CH ₂) ₄ CO ₂ C ₂ H ₅	144.21	2, 323	0.871 ²⁰	1.407520	-67	166-168	49	i aq; misc alc, eth
e161	2-Ethylhexanoic acid	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CO ₂ H	144.21	2, 349	0.9077	1.424120	- 118.4	228	127	0.25 aq
e162	2-Ethyl-1-hexanol	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CH ₂ OH	130.23	Merck: 12, 3854	0.831925	1.430020	-70	184.6	73	0.07 aq; s alc, bz, chl
e163	2-Ethylhexanoyl chloride	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)COCl	162.66	2², 304	0.939	1.433520		68 ^{11mm}	69	
e164	2-Ethylhexyl acetate	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)- CH ₂ O ₂ CCH ₃	172.27	Merck: 12, 6860	0.8718	1.420420	- 80	199	71	0.03 aq; misc alc, oils, org liquids
e165	2-Ethylhexyl acrylate	H ₂ C=CCO ₂ CH(C ₂ H ₅)(CH ₂) ₃ CH ₃	184.28	2 ³ , 1229	0.885	1.4358		214-219	79	
e166	2-Ethylhexylamine	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CH ₂ NH ₂	129.31	4 ³ , 388	0.789	1.430020	-76	169	60	i aq; s alc, acet, eth
e167	2-Ethylhexyl chloro- formate	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CH ₂ O ₂ CCl	192.69	34, 28	0.981	1.431220		107 ^{30mm}	81	
e168	2-Ethylhexyl cyano- acetate	NCCH ₂ CO ₂ CH ₂ CH(C ₂ H ₅)- (CH ₂) ₂ CH ₂	197.28		0.975	1.438020		150 ^{11mm}	>110	
e169	2-Ethylhexyl 2-cyano-	$(C_6H_5)_2C = C(CN)CO_2CH_2$ -	361.49		1.051	1.567020	- 10	218 ^{1.5mm}	>110	
e170	2-Ethylhexyl 4-(di- methylamino)-	$(CH_2)_{3}(CH_2)_{3}(CH_2)_{3}(CH_2)_{3}(CH_3)_{2}NC_6H_4CO_2CH_2-CH(C_2H_5)(CH_2)_3CH_3$	277.41		0.995	1.542020		325	>110	
e171	2-Ethylhexyl glycidyl ether	CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)CH ₂ - OCH ₂ CH—CH ₂	186.30		0.891	1.434020		61 ^{0.3mm}	96	
e172	2-Ethylhexyl methacrylate	$H_2C = C(CH_3)CO_2CH_2$ - CH(C_H_3)CO_2CH_2	198.31	2 ³ , 1289	0.885	1.438120		120 ^{18mm}	92	
e173	2-Ethylhexyl nitrate	CH ₂ (CH ₂) ₂ CH(C ₂ H ₂)CH ₂ ONO ₂	175.23		0.963	1.432020			75	explodes when heated
e174	2-Ethylhexyl salicylate	2-(HO)C ₆ H ₄ CO ₂ CH ₂ - CH(C ₂ H ₄)(CH ₂) ₂ CH ₂	250.34	10³, 124	1.014	1.502020		190 ^{21mm}	>110	
e175	2-Ethylhexyl vinyl ether	$CH_3(CH_2)_3CH(C_2H_3)$ - CH_3OCH==CH_2	156.26		0.8102	1.427320	85	177178	52	0.01 aq
e176	Ethyl hydrocinnamate	C,H,CH,CH,CO,C,H,	178.23	9, 511	1.010	1.494020		247248	107	
e177	Ethyl hydrogen hexanedioate	$HO_2C(CH_2)_4CO_2C_2H_5$	174.20	2 ¹ , 277		1.438720	28-29	180 ^{18mm}	>110	
e178	Ethyl 4-hydroxy- benzoate	HOC ₆ H ₄ CO ₂ C ₂ H ₅	166.18	10, 159			116-118	297–298		0.07 aq; v s alc, eth
e179	Ethyl 3-hydroxy- butyrate	CH ₃ CH(OH)CH ₂ CO ₂ C ₂ H ₅	132.16	3, 309	1.01740	1.420520		170	64	s aq, alc
e180	Ethyl 2-hydroxyethyl sulfide	HOCH ₂ CH ₂ SCH ₂ CH ₃	106.19	1², 525	1.020	1.486920		180184	>110	s eth

e181	Ethyl 6-hydroxy- hexanoate	HO(CH ₂) ₅ CO ₂ C ₂ H ₅	160.22	3,3,628	0.985	1.437020		128 ^{12mm}	>110	
e182	Ethyl 2-hydroxyiso- butyrate	(CH ₃) ₂ C(OH)CO ₂ C ₂ H ₅	132.16	3, 315	0.965	1.407820		150	44	dec by hot aq
e183	2-Ethyl-2-(hydroxy- methyl)-1,3- propanediol	C ₂ H ₅ C(CH ₂ OH) ₃	134.18	1³, 2349			60-62	161 ^{2mm}		
e184	2-Ethyl-2-(hydroxy- methyl)-1,3- propanedioltri-	(H ₂ C=CHCO ₂ CH ₂) ₃ CC ₂ H ₅	296.32		1.100	1.473620		157	>110	
e185	2-Ethyl-2-(hydroxy- methyl)-1,3- propanedioltri- methacrylate	[H ₂ C=C(CH ₃)CO ₂ CH ₂] ₃ CC ₂ H ₅	338.40		1.060	1.4724 ²⁰			>110	
e186	N-Ethyl-3-hydroxy-		129.20	Merck: 12,	0.970	1.475420		95 ^{15mm}	47	
e187	2,2'-Ethylidenebis- (4,6-di- <i>tert</i> -butyl-	$\mathrm{CH}_3\mathrm{CH}\{\mathrm{C}_6\mathrm{H}_2[\mathrm{C}(\mathrm{CH}_3)_3]_2\mathrm{OH}\}_2$	438.70	5070			162-164			
e188	2,2'-Ethylidenebis- (4,6-di- <i>tert</i> -butyl- phenyl) fluoro-		486.66				201–203			
e189	phosphite 4,4'-Ethylidenebis- phenol	CH ₃ CH ₂ CH(C ₆ H ₄ OH) ₂	214.26	6, 1006			123-127			
e190	5-Ethylidene-2- porborene		120.20		0.893	1.4895			38	
e191	2-Ethylimidazole		96.13	23, 78			86	268		
e192	Ethyl isobutyrate	(CH ₃) ₂ CHCO ₂ C ₂ H ₅	116.16	2, 291	0.87020	1.390320	- 88	110	13	misc alc, eth; sl s aq
e193	Ethyl isothiocyanate	CH ₃ CH ₂ NCS	87.14	4, 123	1.00348	1.514218	-6	130-132	32	i aq; misc alc, eth
e194	Ethyl (–)-lactate	CH ₃ CH(OH)CO ₂ C ₂ H ₅	118.13	3, 264	1.032820	1.4124 ²⁰	- 26	154-155	46	misc aq, alc, eth, es- ters, PE
e195	Ethyl (±)-mandelate	C ₆ H ₅ CH(OH)CO ₂ C ₂ H ₅	180.21	10, 202	1.115	1.512020	33-34	253-255	>110	
e196	Ethyl 2-mercapto- acetate	HSCH ₂ CO ₂ C ₂ H ₅	120.17	3, 255	1.0964	1.457120		54 ^{12mm}	47	s alc, eth
e197	Ethyl 3-mercapto- propionate	HSCH ₂ CH ₂ CO ₂ C ₂ H ₅	134.20	3³, 555	1.039	1.457020		76 ^{10mm}	72	

No	Name	Formula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
100.			weight	Telefence	g/IIIL	muex	point, C	point, C	point, C	
e198	Ethylmercury chloride	CH_3CH_2HgCl	165.13	0 400	3.5	1 411625	192	sublimes	15	0.78 eth; 2.6 chl
e199	Ethyl methacrylate	$H_2C = C(CH_3)CO_2C_2H_5$	114.14	2, 423	0.917	1.411023		118 1297mm	15	i aq; s aic, eth
e200	phenylacetate	$CH_3OC_6H_4CO_2C_2H_5$	194.23	10, 85	1.097	1.5075**		138	40	
e201	Ethyl 2-methylaceto- acetate	$CH_3C(=O)CH(CH_3)CO_2C_2H_5$	144.17	3, 679	1.019	1.428020		187	62	i aq; s alc, eth
e202	N-Ethyl-2-methyl- allylamine	H ₂ C=C(CH ₃)CH ₂ NHC ₂ H ₅	99.18	44, 1104	0.753	1.422120		105	7	
e203	N-Ethyl-N-methyl- aniline	C ₆ H ₅ N(CH ₃)C ₂ H ₅	135.21	12, 162	0.947	1.5470 ²⁰		203-205	74	i aq; misc alc, eth
e204	Ethyl 2-methyl- benzoate	$\rm CH_3C_6H_4CO_2C_2H_5$	164.21	9, 463	1.032	1.507020		221 ^{731mm}	91	
e205	Ethyl 3-methyl- benzoate	CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₅	164.21	9, 476	1.030	1.505420		110 ^{20mm}	101	
e206	Ethyl 4-methyl- benzoate	CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₅	164.21	9, 484	1.025	1.5085 ²⁰		235	99	
e207	Ethyl 2-methylbutyrate	CH ₃ CH ₂ CH(CH ₃)CO ₂ C ₂ H ₅	130.19	2, 305	0.869	1.396920		133	26	
e208	Ethyl 3-methylbutyrate	(CH ₃) ₂ CHCH ₂ CO ₂ C ₂ H ₅	130.19	2², 275	0.865620	1.396220	99	135	26	0.2 aq; misc alc, bz
e209	2-Ethyl-2-methyl-1,3- dioxolane		116.16	19², 11	0.929	1.409020		116–117	12	
e210	Ethyl methyl ether	C ₂ H ₅ OCH ₃	60.10	1, 314	2.456 g/L		-113	7.4		s aq; misc alc, eth
e210a	3-Ethyl-4-methyl- hexane	(C ₂ H ₅) ₂ CHCH(CH ₃)C ₂ H ₅	128.26		0.742020	1.413420		140	24	
e211	2-Ethyl-4-methyl- imidazole		110.16	23², 72	0.975	1.500020	47–54	292–295	137	
e212	Ethyl 4-methyl-5- imidazolecarboxy- late		154.17	25 ¹ , 534			204–206			
e213	4-Ethyl-2-methyl-2- (3-methylbutyl)- oxazolidine		185.3		0.877	1.442020		194	82	
e214	3-Ethyl-2-methyl-	(C ₂ H ₅) ₂ CHCH(CH ₃) ₂	114.24	1 ³ , 489	0.7193420	1.404020	- 115.0	115.7	<21	i aq; sl s alc; s eth
e215	3-Ethyl-3-methyl- pentane	(C ₂ H ₅) ₃ CCH ₃	114.24		0.727420	1.407820	- 90.9	118.3		i aq; s eth
e216	Ethyl 1-methyl-2- piperidinecarboxy- late		171.24	22 ¹ , 485	0.975	1.4519 ²⁰		96 ^{11mm}	73	

e217	Ethyl 1-methyl-3- piperidinecarboxy- late		171.24		0.954	1.451020		89 ^{11mm}	68	
e218	Ethyl 3-methyl-1- piperidine propio- nate		199.30	2², 59	0.945	1.453020		112 ^{13mm}	99	
e219	2-Ethyl-2-methyl-1,3- propanediol	HOCH ₂ C(C ₂ H ₅)(CH ₃)CH ₂ OH	118.18	1, 487			41-44	226	>110	
e220	5-Ethyl-2-methyl- pyridine	C ₂ H ₅ (CH ₃)C ₅ H ₃ N	121.18	20, 248	0.919	1.497020		178	66	s alc, bz, eth, acid
e221	Ethyl methyl sulfide	CH ₃ CH ₂ SCH ₃	76.15	1, 343	0.842	1.439220	- 106	66.7	-15	i aq; misc alc, eth
e222	Ethyl (methylthio)- acetate	CH ₃ SCH ₂ CO ₂ C ₂ H ₅	134.20		1.043	1.458720		72 ^{25mm}	59	
e223	N-Ethylmorpholine		115.18	27 ¹ , 203	0.905	1.441020	- 63	139	27	misc aq, alc, eth
e224	Ethyl nitrate	CH ₃ CH ₂ ONO ₂	91.13	1, 329	1.10045	1.384922	- 94.6	87.7	10 (CC)	1 aq; misc alc, eth
e225	Ethyl nitrite	CH ₃ CH ₂ ONO	75.07	1, 329	0.9015			17	- 35	misc alc, eth
e226	4-Ethylnitrobenzene	C ₂ H ₂ C ₄ H ₄ NO ₂	151.17	5, 358	1.118	1.544520	- 32	245-246	>110	v s alc, eth
e227	Ethyl 4-nitrobenzoate	O ₂ NC ₆ H ₄ CO ₂ C ₂ H ₅	195.17	9, 390			55-59			
e228	Ethyl nonanoate	CH ₃ (CH ₂) ₇ CO ₂ C ₂ H ₅	186.30	2, 353	0.866	1.421920	- 37	227	94	i aq; misc alc, eth
e229	Ethyl cis, cis-9, 12-octa-	H(CH ₂) ₅ CH==CHCH ₂ -	308.51	2², 461	0.8846	1.467520		1936mm	>110	misc DMF, oils
	decadienoic acid	$CH = CH(CH_2)_7 CO_2 C_2 H_5$								
e230	Ethyl cis-9-octa-	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ -	310.53	2, 467	0.869	1.450020	- 32	216 ^{15mm}	>110	i aq; misc alc, eth
0221	Ethyl optenosta	$CU_2C_2n_5$	172.27	2 249	0 979	1 4166	_ 13	208	75	i agu misa ala ath
e231	Ethyl oxalul chloride	$CH_3(CH_2)_7CO_2C_2H_5$	136.53	2, 540	1 2223	1.416420	-43	135	41	d ag ale: s bz ath
e232	Ethyl oxamate	$CH_3CH_2OC(O)C(O)NH$	117.10	2, 541	1.2223	1.4104	114-116	155	41	u aq, alc, s oz, cui
e234	2-Ethyl-2-oxazoline	$CH_3 CH_2 OC (-0) C ($	00.13	2, 944	0.082	1 437020	-62	128	20	s aq, cui, i bz
0235	Ethyl 2-oxocyclo		156.18	10 597	1.054	1.4370	02	1021imm	29	
0255	nentanecarboxylate	$(0-)(c_5n_7)c_2c_2n_5$	150.18	10, 397	1.054	1.4405		102	,,,	
e736	Ethyl 4-oxopentapoate	CHC (= 0)CHCHCHCOCH	144.17	3 675	1.012	1 422220		205, 206		v s ag: mise ale
e237	Ethyl 2-oxopropionate	$CH_2C(=0)CO_1CH_2CO_2C_2H_5$	116.12	3,616	1.06016	1 40816		144	45	s s aq, mise ale eth
e238	3-Ethvinentane	(C-H-)-CH	100.20	13 441	0.698220	1 393420	-118.6	93.5	15	i ag's alc eth
e239	Ethyl pentanoate	CH ₂ (CH ₂) ₂ CO ₂ C ₂ H.	130.19	2 301	0.87720	1 373220	-91.3	145.5		0.2 ag: misc alc eth
e240	2-Ethylphenol	C.H.C.H.OH	122 17	5 470	1.037	1 537220	- 18	204	78	oliziadi, mise ale, ear
e241	3-Ethylphenol	C-H-C-H-OH	122.17	6. 471	1.001	1.533020	-4	110 ^{15mm}	94	
e242	4-Ethylphenol	C-H-C-H-OH	122.17	6. 472	1.011	1.5239	45	218	100	i ag; misc alc, eth
e243	Ethyl phenylacetate	C ₆ H ₅ CH ₂ CO ₂ C ₂ H ₅	164.20	9, 434	1.031	1.498020		229	77	i aq; misc alc, eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
0244	Ethul 2 nhonvil		102.01		1 102	1 519020	F, -	060 5mm	>110	F
6244	alvoidate		192.21		1.102	1.3100-		90	/110	
e245	1-Ethylpiperazine		114 19	232 5	0.899	1 469020		157	43	
e246	Ethyl N-piperazino-		158.20	23 ² .9	1.080	1.476520		273	>110	
	carboxvlate		100.20	,	11000					
e247	1-Ethylpiperidine		113.20	20, 17	0.834	1.444020		131	18	
e248	2-Ethylpiperidine		113.20	20, 104	0.858	1.451020		143	31	saq
e249	Ethyl 3-piperidine-		157.21		1.012	1.460120		104 ^{7mm}	90	1
	carboxylate									
e250	Ethyl 4-piperidine-		157.21		1.010	1.459120		204	80	s aq, alc, bz, eth
	carboxylate									-
e251	Ethyl N-piperidine-		185.27	20, 62	0.927	1.454520		217-219	87	
	propionate									
e252	Ethyl 1-propenyl ether	CH ₃ CH==CHOC ₂ H ₅	86.13	1, 435	0.778	1.398020		67–76	- 18	
e253	Ethyl propionate	CH ₃ CH ₂ CO ₂ C ₂ H ₅	102.13	2, 240	0.891720	1.383920	- 73.9	99	12	1.7 aq; misc alc, eth
e254	Ethyl propyl ether	CH ₃ CH ₂ OCH ₂ CH ₂ CH ₃	88.15	1, 354	0.739	1.369520	- 79	62-63	32	sl s aq; misc alc, eth
e255	Ethyl propyl sulfide	CH ₃ CH ₂ SCH ₂ CH ₂ CH ₃	104.21	1 ³ , 1432	0.8270	1.446220	- 117.0	118.5		s alc
e256	2-Ethylpyridine	$CH_3CH_2(C_5H_4N)$	107.16	20, 241	0.937	1.496420		149	29	si s aq; s alc, eth
e257	3-Ethylpyridine	$CH_3CH_2(C_5H_4N)$	107.16	20, 242	0.954	1.501520		162165	48	v s alc, eth; sl s aq
e258	4-Ethylpyridine	$CH_3CH_2(C_5H_4N)$	107.16	20, 243	0.942	1.500920		168	47	sl s aq; s alc, eth
e259	Ethyl 2-pyridine-		151.17	22, 35	1.1194	1.508820	2	240-241	107	misc aq, alc, eth
	carboxylate									
e260	1-Ethyl-2-		113.16		0.992	1.465220		97 ^{20mm}	76	
	pyrrolidinone									
e261	Ethyl salicylate	C ₆ H ₄ (OH)CO ₂ C ₂ H ₅	166.18	10, 73	1.131	1.521920	2-3	232-234	107	misc alc, eth; sl s aq
e262	Ethyl sorbate	CH ₃ CH==CHCH==CHCO ₂ C ₂ H ₅	140.18	2, 484	0.956	1.494220		195.5	69	
e262a	2-Ethyltoluene	$CH_3C_6H_4C_2H_5$	120.19	5 ¹ , 192	0.865	1.504020	- 81	165	39	
e262b	3-Ethyltoluene	$CH_3C_6H_4C_2H_5$	120.19	5, 398	0.865	1.496020	-95	161	38	
e262c	4-Ethyltoluene	$CH_3C_6H_4C_2H_5$	120.19	5, 397	0.861	1.495020	- 62	162	36	
e263	Ethyl 4-toluene-	$CH_3C_6H_4SO_2OC_2H_5$	200.26	11, 99	1.16645	1.511020	33	173 ^{15mm}	157	i aq; s alc, eth
244	sulfonate		125.01	10.057	0.057	1 5 4 5 1 20				
e264	N-Ethyl-m-toluidine	$CH_3C_6H_4NHC_2H_5$	135.21	12, 857	0.957	1.545120		221	89	
e265	N-Ethyl-o-toluidine	$CH_3C_6H_4NHC_2H_5$	135.21		0.938	1.547020	22	218	88	
e200	o-Ethyl-o-toluidine	$C_2H_5C_6H_3(CH_3)NH_2$	135.21		0.968	1.552520	- 33	231 1151mm	89	
6207	2-(/v-Eullyl-m-	$Cn_3C_6n_4N(C_2n_5)Cn_2Cn_2OH$	1/9.20		1.019	1.3,340~"		11.5*****	2110	
a768	Ethyl trichloroacetete	CI CCO C H	101 //	2 200	1 38320	1 1 1 1 1 1 7 20		168	65	i ag: s alc eth
o200	Ethyltrichlorosilare		163.51	4 630	1 238	1 425220	- 106	00	13	ו מע, א מוני, כנוו
0209	Buryintemorosnalle	C211501C13	105.51	, 050	1.2.50	1.42.52			1.2	

e270	Ethyltriethoxysilane	$C_2H_5Si(OC_2H_5)_3$	192.33	44, 4223	0.895	1.392020		158-166	38	
e271	Ethyltriphenyl-	$C_2H_5P(C_6H_5)_3I$	418.26	16, 760			169171			
	phosphonium iodide									
e272	Ethyl undecanoate	CH ₃ (CH ₂) ₁₀ CO ₂ C ₂ H ₅	214.35	2, 358	0.859	1.428020		105 ^{4mm}	>110	i aq; s org solvents
e273	Ethyl 10-undecenoate	$H_2C = CH(CH_2)_8CO_2C_2H_5$	212.34	2, 459	0.879	1.439020		258-259	>110	
e274	Ethylurea	CH ₃ CH ₂ NHC(=O)NH ₂	88.11	4, 115	1.21318		93-96			v s aq; 80 alc; i eth
e275	N-Ethylurethane	CH ₃ CH ₂ NHCO ₂ C ₂ H ₅	117.15	4, 114	0.981 ²⁰	1.421120		85 ^{20mm}	75	63 aq
e276	Ethyl vinyl ether	CH ₃ CH ₂ OCH=CH ₂	72.11	1, 433	0.758920	1.376720	-116	35	< -45	0.9 aq; s alc, eth
e277	N-Ethyl-2,3-xylidine	(CH ₃) ₂ C ₆ H ₃ NHC ₂ H ₅	149.24	12, 1101	0.917	1.546820		228	71	
e278	1-Ethynyl-1-	HOC ₆ H ₁₀ C≡CH	124.18	6 ² , 100	0.967		31-33	180	62	2.4 aq; misc alc, bz,
	cyclohexanol									acet, ketones, PE
e279	Eugenol	4-(H ₂ C==CHCH ₂)C ₆ H ₃ -	164.20	6, 961	1.066	1.541020	-12/-10	254	>110	
		2-(OCH₃)OH								
f1	Fluoranthene		202.26	5, 685	1.2524		108	384		sl s alc; s bz, eth
f2	Fluorene		166.22	5, 625	1.2034		115	295		v s HOAc; s bz, eth
f3	Fluorenone		180.21	7, 465	1.130049	1.636999	82-85	342		s alc, bz; v s eth
f4	Fluorescein		332.31	19, 222			320			s hot alc, hot HOAc
f5	Fluoroacetic acid	FCH ₂ CO ₂ H	78.04	2, 193			33	165		sl s aq, alc
f6	4-Fluoroacetophenone	FC ₆ H ₄ COCH ₃	138.14		1.138	1.511020		196	71	
f7	2-Fluoroaniline	FC ₆ H ₄ NH ₂	111.12	12 ¹ , 296	1.151	1.542020	- 29	183	60	
f8	4-Fluoroaniline	FC ₆ H ₄ NH ₂	111.12	12, 597	1.1725	1.539520	-2	187	73	sl s aq; s alc, eth
f9	2-Fluorobenzaldehyde	FC ₆ H₄CHO	124.11	7 ¹ , 132	1.178	1.522020	- 44.5	91 ^{46mm}	55	
f10	4-Fluorobenzaldehyde	FC ₆ H₄CHO	124.11	7 ¹ , 132	1.157	1.520020	- 10	181	56	
f11	Fluorobenzene	C ₆ H ₅ F	96.11	5, 198	1.024040	1.465720	- 42.2	84.7	- 15	0.15 aq; misc alc
f12	2-Fluorobenzoic acid	FC ₆ H ₅ CO ₂ H	140.11	9, 333	1.46045		123-125			sl s aq; s alc, eth
f13	4-Fluorobenzoic acid	FC ₆ H ₅ CO ₂ H	140.11	9, 333	1.479 ²⁵		184187			0.1 aq; s alc, eth
f14	2-Fluorobenzoyl	FC ₆ H ₅ COCl	158.56	9 ¹ , 136	1.328	1.536520	4	92 ^{15mm}	82	
f15	4-Fluorobenzoyl	FC ₆ H ₅ COCl	158.56	9 ¹ , 137	1.342	1.529620	9	82 ^{20mm}	82	
f16	4-Fluorobenzyl chloride	FC ₆ H ₅ CH ₂ Cl	144.58		1.207	1.513020		82 ^{26mm}	60	
f17	Fluoroethane	CH_CH_F	48.06	1.82			- 143.2	-37.7		198 mL ag: v s alc, eth
f18	Fluoromethane	CH ₂ F	34.04	1, 59	1.195 g/L		-141.8	-78.4		166 mL aq; v s alc, eth
f19	3-Fluoro-1-methoxy-	FC ₆ H ₄ OCH ₃	126.13		1.104	1.488020		158 ^{743mm}	43]
	benzene	0 4								
f20	4-Fluoro-1-methoxy- benzene	FC ₆ H ₄ OCH ₃	126.13	6 ¹ , 98	1.114	1.487720	-45	157	43	s eth
	l	1	1	1	1	1	1	1	1	L

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
f21	2-Fluoro-2-methyl-	(CH ₂) ₂ CF	76.11	14, 286			-77	12	- 12	
	propane	(-,						
f22	4-Fluoro-3-nitroaniline	FC ₆ H ₃ (NO ₂)NH ₂	156.12	12, 729			9698		91	
f23	1-Fluoro-4-nitro-	FC ₆ H ₄ NO ₂	141.10	5, 241	1.330040	1.531220	21	205	83	i aq; s alc, eth
	benzene									-
f24	4-Fluoro-3-nitro-	CH ₃ C ₆ H ₃ (NO ₂)F	155.13		1.262	1.524020	28-30	241	>110	
	toluene									
f25	4-Fluorophenol	FC ₆ H ₄ OH	112.10	6, 183			46-48	185	68	
f26	2-Fluoropyridine	$F(C_5H_4N)$	97.09	20 ¹ , 80	1.128	1.468020		126	28	
f27	2-Fluorotoluene	FC ₆ H ₄ CH ₃	110.13	5, 290	1.001417	1.4716 ¹⁷	-62	115	12	v s alc, eth
f28	3-Fluorotoluene	FC ₆ H ₄ CH ₃	110.13	5, 290	0.9974 ²⁰	1.469120	-87	115	9	s alc, eth
f29	4-Fluorotoluene	FC ₆ H ₄ CH ₃	110.13	5, 290	0.9975 ²⁰	1.4698 ²⁰	- 56	117	17	s alc, eth
f30	Fluorotrichloro-	FCCl ₃	137.37	1, 64	1.494	1.382120	-110	24	none	
	methane									
f31	Formaldehyde	H ₂ C==O	30.03	1, 558	0.815_{-4}^{-20}	0.8153-20	- 92	- 19.5	56	122 aq; s alc, eth
f32	Formamide	$HC(=O)NH_2$	45.04	2, 26	1.1334 ²⁰	1.447520	2.6	220	154	misc aq, alc, acet
f33	Formamidine acetate	$HC(=NH)NH_2 \cdot HO_2CCH_3$	104.11				158 dec			
f34	Formamidinesulfinic acid	H ₂ NC(=NH)S(O)OH	108.12	3 ¹ , 36			126 dec			
f35	Formanilide	C ₄ H ₄ NHCHO	121.14	12, 230	1.144		47	271	>110	2.5 ag
f36	Formic acid	HCO ⁴ H	46.03	2.8	1.22020	1.370420	8.3	100.8	68	misc ag, alc, eth
f37	2-Formylbenzoic acid	HO₂CC₅H₄HCO	150.13	10, 666	1.404		9698			s aq; v s alc, eth
f38	Formylhydrazine	HC(=O)NHNH ₂	60.06	2, 93			54-56		>110	v s alc, chl, eth; s bz
f39	4-Formylmorpholine		115.13	27 ³ , 274	1.145	1.484820		236-237	>110	
f40	N-Formylpiperidine		113.16	20, 45	1.019	1.478020		222	91	
f41	D-(-)-Fructose		180.16	31, 321				122 dec		v s aq; 6.7 alc; s pyr
f42	Fumaric acid	HO ₂ CCH=CHCO ₂ H	116.07	2, 737	1.635_{4}^{20}		287	subl 300		0.6 aq; 9 alc; 0.7 eth
f43	Fumaroyl dichloride	CIC(=0)CH=CHC(=0)CI	152.96	2, 743	1.40820	1.498820		161-164	73	dec aq, alc
f44	2-Furaldehyde		96.09	17², 305	1.1598_{4}^{20}	1.526220	- 36.5	161.8	60	8 aq; misc alc, eth
f45	Furan		68.07	17, 27	0.951420	1.421420	- 85.6	31.4	-35	1 aq; misc alc, eth
f46	2-Furanacrylic acid		138.12	18, 300			142-144	286		0.2 aq; 1.1 bz; s alc,
										eth, HOAc
f47	2,5-Furandimethanol		128.13	17 ¹ , 90			74-76			
f48	2-Furanmethanethiol		114.17	17 ² , 116	1.132	1.530420		155	45	
f49	Furfuryl acetate		140.14	17 ² , 115	1.11754	1.461820		175-177	65	i aq; s alc, eth
f50	Furfuryl alcohol		98.10	17, 112	1.1295_{4}^{20}	1.486820	-31	171	75	misc aq(dec); v s alc,
	•			-						eth
f51	Furfurylamine		97.12	18, 584	1.0995420	1.490020	- 70	145-146	46	misc aq; s alc, eth

f52	Furfuryl methacrylate		166.18	17 ³ , 1248	1.078	1.482020		82 ^{5mm}	90	
f53	α -Furildioxime		220.18	19, 166			166-168			v s alc, eth; sl s bz
f54	2-Furoic acid		112.08	18, 272			133-134	230-232		4 aq; s alc; v s eth
f55	2-Furoyl chloride		130.53	18, 276	1.324	1.531020	-2	170	85	dec aq, alc; s eth
g1	D-(+)-Galactose		180.16	31, 295			167			200 aq; s pyr; sl s alc
g2	Geraniol	$(CH_3)_2C = CHCH_2CH_2 - C(CH_3) = CHCH_2OH$	154.25	1, 457	0.8894420	1.4766 ²⁰		230	76	i aq; misc alc, eth
g3	Geranyl acetate	$(CH_3)_2C = CHCH_2CH_2-C(CH_3) = CHCH_2O_2CCH_3$	196.29	2, 140	0.917415	1.462815		138 ^{25mm}	104	v s alc; misc eth
g4	Gerard reagent P	$[(C_5H_5N)CH_2C(=O)NHNH_2]^+ Cl^-$	187.63	Merck: 12, 4436			dec 200			less soluble in polar solvents than T
g5	Gerard reagent T	[(CH ₃) ₃ NCH ₂ C(=O)NHNH ₂] ⁺ Cl ⁻	167.64	Merck: 12, 4436			192			v s aq, HOAc, glyc, ethylene glycol
g6	D-Gluconic acid		196.16	3, 542			131			v s aq; sl s alc; i eth
g7	δ -Gluconolactone		178.14	18 ¹ , 405			153			50 aq; 1 alc; i eth
g8	α -D-(+)-Glucose		180.16	31, 83	1.5620418		153-156			91 aq; 0.83 MeOH; s pyr
g9	α -D-Glucose penta- acetate		390.34	31, 119			109–111			0.15 aq; 1.3 alc; 3 eth
g11	D-Glucurono-3,6- lactone		176.12	Merck: 11, 4362			176–178			27 aq; 2.8 MeOH
g12	(S)-(+)-Glutamic acid	HO ₂ CCH ₂ CH ₂ CH(NH ₂)CO ₂ H	147.13	4, 488	1.538420		d 247	subl 200		0.8 aq; i alc, eth
g13	(S)-(+)-Glutamine	$H_2NC(=O)CH_2CH_2-CH(NH_2)CO_2H$	146.15	4, 491			185 dec			5 aq; 0.0035 MeOH; i bz, chl, eth, acet
g14	Glutaric acid	HO ₂ CCH ₂ CH ₂ CH ₂ CO ₂ H	132.12	2, 631	1.42940	1.4188106	98	303		43 aq ²⁰ ; v s alc, eth; s bz, chl; sl s PE
g15	Glutaric anhydride		114.10	17, 411			55-57	150 ^{10mm}	>110	
g16	Glutaric dialdehyde	OCHCH ₂ CH ₂ CH ₂ CHO	100.12	1, 776		1.433825		187-189	none	s aq, alc
g17	Glutaronitrile	NCCH ₂ CH ₂ CH ₂ CN	94.12	2, 635	0.988823	1.434520	- 29	286	>110	s aq, alc, chl; i eth
g18	Glutaryl dichloride	$ClC(=0)(CH_2)_3C(=0)Cl$	169.01	2,634	1.324	1.472020		216-218	106	dec aq, alc; s eth
g19	Glycerol	HOCH ₂ CH(OH)CH ₂ OH	92.09	1, 502	1.261320	1.474620	18	290	199	misc aq, alc; 0.2 eth
g20	Glyceryl tris(butyrate)	(CH ₃ CH ₂ CH ₂ CO ₂ CH ₂) ₂ CH- O ₂ CCH ₂ CH ₂ CH ₃	302.37	2, 273	1.03240	1.435920	-75	287-288	173	i aq; v s alc, eth
g21	Glyceryl tris- (dodecanoate)	[CH ₃ (CH ₂) ₁₀ CO ₂ CH ₂] ₂ CH- O ₂ C(CH ₂) ₁₀ CH ₃	639.02	2, 362	0.8944	1.440460	46			v s bz, eth; sl s alc
g22	Glyceryl tris(nitrate)	O ₂ NOCH ₂ CH(ONO ₂)CH ₂ ONO ₂	227.09	1, 516	1.5944	1.478612	13.3	160 ^{5mm}	explodes 270	0.18 aq; 54 alc; misc eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
g23	Glyceryl tris(oleate)	$[CH_{3}(CH_{2})_{7}CH=CH(CH_{2})_{7}^{-}$ $CO_{2}CH_{2}]_{2}CHO_{2}C(CH_{2})_{7}^{-}$ $CH=CH(CH_{2})_{7}CH_{2}$	885.46	4, 468	0.91545	1.462140	-4/-5	235 ^{15mm}		s chl, eth, CCl ₄
g24	Glyceryl tris(palmitate)	[CH ₃ (CH ₂) ₁₄ CO ₂ CH ₂] ₂ CH- O ₂ C(CH ₂) ₁₄ CH ₃	807.35	2, 373	0.8663480	1.438180	65–66	310-320		v s bz, chl, eth
g25	Glyceryl tris- (tridecanoate)	[CH ₃ (CH ₂) ₁₁ CO ₂ CH ₂] ₂ CH- O ₂ C(CH ₂) ₁₁ CH ₃	723.18	2, 367	0.885460	1.442860	57			v s alc, bz, chl
g26	Glycine	H ₂ NCH ₂ CO ₂ H	75.07	4, 333	1.1607		dec 240			25 aq; 0.6 pyr; i eth
g27	N-Glycylglycine	H ₂ NCH ₂ C(=O)NHCH ₂ CO ₂ H	132.12	4, 371			260 dec			s hot aq; sl s alc
g28	Glyoxal	HC(=O)CHO	58.04	1, 759	1.14	1.382620	15	50.4		viol rxn aq; s anhyd solvents; mixtures with air may ex- plode
g29	Glyoxylic acid	$HC(=O)CO_2H$	74.04	3, 594			98			v s aq; sl s alc, eth
g30	Guanidine	$H_2NC(=NH)NH_2$	59.07	3, 82			ca. 50	dec 160		v s aq, alc
g31	Guanine		151.13	26, 449			>300			s alk soln, dil acids; sl s alc, eth
h1	Heptadecane	$CH_3(CH_2)_{15}CH_3$	140.41	1, 173	0.776722	1.436025	22.0	302.2	148	s eth; sl s alc
hla	1-Heptadecanol	CH ₃ (CH ₂) ₁₆ OH	256.48	1 ¹ , 220			53.8	333	>110	
h2	Heptafluorobutyric acid	CF ₃ CF ₂ CF ₂ CO ₂ H	214.04		1.625	< 1.300 ²⁰		120	none	
h3	Heptaldehyde	CH ₃ (CH ₂) ₅ CHO	114.19	1², 750	0.821645	1.428520	-43	153	35	misc alc, eth; sl s aq
h4	2,2,4,4,6,8,8-Hepta- methylnonane	(CH ₃) ₃ CCH ₂ C(CH ₃) ₂ CH ₂ - CH(CH ₃)CH ₂ C(CH ₃) ₃	226.45		0.793	1.439120		240	95	
h5	1,1,1,3,5,5,5-Hepta- methyltrisiloxane	[(CH ₃) ₃ SiO] ₂ SiHCH ₃	222.51	4 ³ , 1874	0.819	1.382020		142	27	
h6	Heptane	CH ₃ (CH ₂) ₅ CH ₃	100.21	1, 154	0.683840	1.387720	- 90.6	98.4	-4 (CC)	s alc, chl, eth
h7	Heptanedioic acid	HO ₂ C(CH ₂) ₅ CO ₂ H	160.17	2, 670	1.32915		105.8	212 ^{10mm}		5 aq; v s alc, eth
h8	1-Heptanethiol	CH ₃ (CH ₂) ₆ SH	132.27	1, 415			-43.2	176.9	46	i aq
h9	Heptanoic acid	CH ₃ (CH ₂) ₅ CO ₂ H	130.19	2, 338	0.9181 ²⁰	1.422120	-8	222	>110	0.25 aq; s alc, eth
h10	Heptanoic anhydride	[CH ₃ (CH ₂) ₅ CO] ₂ O	242.36	2, 340	0.923	1.433220	- 12.4	268	>110	i aq; s alc, eth
h11	1-Heptanol	CH ₃ (CH ₂) ₆ OH	116.20	1, 414	0.8219420	1.424220	- 34	176.4	73	misc alc, eth
h12	2-Heptanol	CH ₃ (CH ₂) ₅ CH(OH)CH ₃	116.20	1, 415	0.816720	1.421010		159	71	0.35 aq; s alc, bz, eth
h13	3-Heptanol	CH ₃ (CH ₂) ₃ CH(OH)CH ₂ CH ₃	116.20	1 ¹ , 205	0.822720	1.421420	-70	157	60	sl s aq
h14	2-Heptanone	$HC_3(CH_2)_4C(=O)CH_3$	114.19	1, 699	0.8197 ¹⁵	1.411615	-35	151	39	s alc, eth
h15	3-Heptanone	$CH_3(CH_2)_3C(=O)CH_2CH_3$	114.19	1, 699	0.8197^{20}_{20}	1.405520	- 39	147	46	0.43 aq; s alc, eth
h16	4-Heptanone	$CH_3(CH_2)_2C(=O)(CH_2)_2CH_3$	114.19	1, 699	0.817	1.406820	- 32.1	143.7	48 (CC)	0.53 aq; misc alc, eth
h17	Heptanoyl chloride	$CH_3(CH_2)_5C(=O)Cl$	148.63	2, 340	0.960	1.430020		173	58	dec aq, alc; s eth

h18	1-Heptene	$CH_3(CH_2)_4CH = CH_2$	98.90	1, 219	0.697020	1.399920	- 120	93.6	-8	0.1 aq; s alc, eth
h18a	cis-2-Heptene	CH ₃ (CH ₂) ₃ CH=CHCH ₃	98.19	1 ³ , 825	0.70820	1.40620		98.4	-6	-
h18b	trans-2-Heptene	CH ₃ (CH ₂) ₃ CH=CHCH ₃	98.19	1, 219	0.701220	1.404520	- 109.5	98	-1	
h19	1-Heptylamine	CH ₃ (CH ₂) ₆ NH ₂	115.22	4, 193	0.777	1.424320	-23	154-56	35	s alc, acet, eth, PE
h20	1-Heptyne	CH ₃ (CH ₂) ₄ C≡CH	96.17	1, 256	0.733	1.407520	- 81	99-100	-2	
h21	Hexachloroacetone	$Cl_3CC(=0)CCl_3$	264.75	1, 657	1.743	1.511220	- 30	66 ^{6mm}	none	sl s aq; s acet
h22	Hexachlorobenzene	CCI6	284.78	5, 205	2.04424		232	325	242	s bz, chl, eth
h23	Hexachloro-1,3-	CL ₂ C=CClCCl=CCl ₂	260.76	1, 250	1.655	1.555020	-21	215	none	s alc, eth
	butadiene									
h24	1,2,3,4,5,6-Hexachloro-	C ₆ H ₆ Cl ₆	290.83	5 ¹ , 8	1.8720		113–115			s bz, chl
	cyclohexane, γ-									
	isomer									
h25	Hexachlorocyclo-1,3-		272.77		1.70145	1.564420	- 10	239	none	
	pentadiene									
h27	Hexachloroethane	Cl ₃ CCCl ₃	236.74	1, 87	2.091		187	sublimes	none	s alc, bz, chl, eth
h28	1,4,5,6,7,7-Hexachloro-		370.83	9 ³ , 4049			239-242			
	5-norbornene-2,3-di-									
	carboxylic anhydride									
h29	Hexachlorophene	$CH_3[C_6H(CI)_3OH]_2$	406.91	6 ³ , 5407		1 7 10000	163-165		none	
h30	Hexachloropropene	$Cl_3CC(Cl) = CCl_2$	248.75	1, 200	1.765	1.548020		210	none	
h31	Hexadecane	$CH_3(CH_2)_{14}CH_3$	226.45	1, 172	0.77334	1.434520	18.2	286.8	135	misc eth
h32	1,2-Hexadecanediol	CH ₃ (CH ₂) ₁₃ CH(OH)CH ₂ OH	258.45	13, 2244		1 150.000	72-74	10.17		
h33	1-Hexadecanethiol	$CH_3(CH_2)_{15}SH$	258.51	1, 430	0.840	1.472020	18-20	184 ^{7mm}	101	sl s alc, s eth
h34	Hexadecanoic acid	$CH_3(CH_2)_{14}CO_2H$	256.43	2, 370	0.8524	1.427380	62	351		s hot: chl, eth
h35	1-Hexadecanol	CH ₃ (CH ₂) ₁₅ OH	242.45	1, 429	0.811660	1.435560	49.3	334	135	s alc, chl, eth
h36	1-Hexadecene	$CH_3(CH_2)_{14}CH=CH_2$	224.43	1, 226	0.783420	1.4401	4.1	284	132	s alc, eth, PE
h37	1-Hexadecylamine	$CH_3(CH_2)_{15}NH_2$	241.46	4, 202			45-48	330	140	v s alc, eth; s bz, chl
h38	2,4-Hexadienal	CH ₃ CH=CHCH=CHCHO	96.13	12, 809	0.871	1.538620		76 ^{30mm}	67	
h39	1,5-Hexadiene	$H_2C = CHCH_2CH_2CH = CH_2$	82.15	1, 253	0.6923420	1.404220	- 140.7	59.5	-27	s alc, eth
h40	2,4-Hexadienoic acid	CH ₃ CH=CHCH=CO ₂ H	112.13	2, 483			134.5	119 ^{10mm}	127	0.2 aq; 13 alc; 9 acet;
										2.3 bz; 11 diox; 1
										CCI ₄
h41	Hexafluorobenzene	C ₆ F ₆	186.05	53, 523	1.618220	1.378120	5.1	80.3	10	
h42	Hexafluoroethane	F ₃ CCF ₃	138.01	1 ³ , 132	1.590-78		- 100.7	-78.3		sl s alc, eth
h43	1,1,1,3,3,3-Hexafluoro-	(CF ₃) ₂ CHOH	168.04		1.59625	1.275020	-3	58.2	none	s aq, bz, CCl_4
	2-propanol						1.50			
h44	Hexafluoropropene	$CF_3CF = CF_2$	150.02	13, 697			-153	-28		

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
h45	Hexamethylcyclotri-	[-Si(CH ₃) ₂ O-] ₃	222.48	4 ³ , 1884			64-66	133-135	35	
	siloxane									
h46	1,1,1,3,3,3-Hexamethyl-	(CH ₃) ₃ SiNHSi(CH ₃) ₃	161.40	4, <i>3</i> , 1861	0.774420	1.407120		126	8	
h47	Usilazane		162.29	43 1950	0 76420	1 277520	-67	101		
h48	Hexamethyleneimine	(CH ₃) ₃ SIOSI(CH ₃) ₃	99.18	20 94	0.7044	1.463120	-07	138 ^{749mm}	18	
h/0	Hexamethylene		140.10	1 583	1 331-5	111001	280 subl		250	67 ag: 8 ale: 10 chl
1172	tetramine		140.17	1, 565	1.551		200 8001		2.50	07 aq, 8 ale, 10 em
h50	Hexamethyl-	[(CH ₃) ₂ N] ₃ P(=O)	179.20		1.02720	1.458820	7	232 ^{740mm}	105	misc aq
	phosphoramide									•
h51	Hexanaldehyde	CH ₃ (CH ₂)₄CHO	100.16	1², 745	0.833540	1.403520	- 56	131	32	v s alc, eth; sl s aq
h52	Hexane	CH ₃ (CH ₂) ₄ CH ₃	86.18	1, 142	0.6594420	1.374920	-95.4	68.7	-22	misc alc, chl, eth
h53	1,6-Hexanediamine	H ₂ N(CH ₂) ₆ NH ₂	116.21	4, 269			42	205	81	v s aq; sl s alc, bz
h54	1,6-Hexanedioic acid	HO ₂ C(CH ₂) ₄ CO ₂ H	146.14	2, 649	1.36045		152-154	337.5	196	1.4 aq; v s alc; s acet
h55	DL-1,2-Hexanediol	CH ₃ (CH ₂) ₃ CH(OH)CH ₂ OH	118.18	1 ¹ , 251	0.951	1.442520		223–224	>110	-
h56	1,6-Hexanediol	HO(CH ₂) ₆ OH	118.18	1, 484	0.958	1.457925	42.8	208	101	v s aq, alc
h57	2,5-Hexanediol	CH ₃ CH(OH)CH ₂ CH ₂ CH(OH)CH ₃	118.18	1, 485	0.961715	1.446520	- 50	220.8	101	s aq, alc, eth
h58	1,6-Hexanediol	$[H_2C = CHCO_2(CH_2)_{3-}]_2$	226.28		1.010	1.456220			>110	
	diacrylate									
h59	1,6-Hexanediol	[H ₂ C=C(CH ₃)CO ₂ (CH ₂) ₃ -] ₂	254.33		0.995	1.458020		> 350	>110	
	dimethacrylate									
h60	2,5-Hexanedione	$CH_3C(=O)CH_2CH_2C(=O)CH_3$	114.14	1, 788	0.973 ²⁰	1.426020	-9	188	78	misc aq, alc, eth
h61	Hexanenitrile	CH ₃ (CH ₂) ₄ CN	97.16	2, 324	0.805220	1.406920	- 80.3	163.6	43	i aq; s alc, eth
h62	1-Hexanethiol	CH₃(CH₂)₅SH	118.24	1³, 1659	0.8424 ²⁰	1.449620	- 80.5	152.7	20	i aq; v s alc, eth
h63	1,2,6-Hexanetriol	HOCH ₂ CH(OH)(CH ₂) ₃ CH ₂ OH	134.17	l⁴ , 2784	1.106320	1.5820	-32.8	178 ^{5mm}	191	misc alc, acet; i bz
h64	Hexanoic acid	CH ₃ (CH ₂) ₄ CO ₂ H	116.16	2, 321	0.9265 ²⁰	1.416820	-3	205	102	1.1 aq; v s alc, eth
h65	Hexanoic anhydride	$[CH_{3}(CH_{2})_{4}C(=O)]_{2}O$	214.31	2, 324	0.926	1.428020	-41	246-248	>110	s alc
h66	1-Hexanol	CH ₃ (CH ₂) ₅ OH	102.18	1, 407	0.813620	1.418220	- 44.6	157.5	63	8 aq; misc bz, eth; s alc
h67	2-Hexanol	CH ₃ (CH ₂) ₃ CH(OH)CH ₃	102.18	1, 408	0.810845	1.412825	- 47	139.9	41	sl s aq; s alc, eth
h68	3-Hexanol	CH ₃ CH ₂ CH ₂ CH(OH)CH ₂ CH ₃	102.18	1, 408	0.819340	1.416020		135	41	-
h69	6-Hexanolactone		114.14	17², 290	1.030	1.463020	- 18	215	109	
h70	2-Hexanone	$CH_3(CH_2)_3C(=O)CH_3$	100.16	1, 689	0.8113 ²⁰	1.400720	- 55.5	127.6	25	v s alc, eth
h71	3-Hexanone	$CH_3CH_2CH_2C(=O)CH_2CH_3$	100.16	1, 690	0.815	1.400220		123	35	
h72	Hexanoyl chloride	$CH_3(CH_2)_4C(=O)Cl$	134.61	2, 324	0.9754420	1.426320	- 87	153	50	dec aq, alc; s eth
h73	1-Hexene	CH ₃ (CH ₂) ₃ CH=CH ₂	84.16	1, 215	0.673220	1.387920	- 139.8	63.5	-9	0.005 aq
h74	trans-2-Hexenoic acid	CH ₃ (CH ₂) ₂ CH=CHCO ₂ H	114.14	2⁴, 1563	0.965	1.488520	33-35	217	>110	-
h75	trans-3-Hexenoic acid	CH ₃ CH ₂ CH=CHCH ₂ CO ₂ H	114.14	2, 435	0.963	1.439820	11-12	119 ^{22mm}	>110	

h76	trans-2-Hexen-1-ol	CH ₃ CH ₂ CH ₂ CH=CHCH ₂ OH	100.16	1 ² , 486	0.849	1.434320		158-160	54	
h77	5-Hexen-2-one	$H_2C = CHCH_2CH_2C(=O)CH_3$	98.15	1, 734	0.847	1.419720		128-129	23	
h78	trans-2-Hexenyl	CH ₃ C(=O)CH ₂ CH=CHCH ₂ -	142.20	2 ² , 151	0.898	1.427520		166	58	
	acetate	CH ₂ CH ₃								
h79	Hexyl acetate	CH ₃ (CH ₂) ₅ O ₂ CCH ₃	144.21	2, 132	0.86020	1.409020	- 81	171	45	0.13 aq; v s alc, eth
h80	Hexyl acrylate	H ₂ C=CHCO ₂ (CH ₂) ₅ CH ₃	156.23	2 ³ , 1228	0.888	1.428020		90 ^{24mm}	68	-
h81	Hexylamine	CH ₃ (CH ₂) ₅ NH ₂	101.19	4, 188	0.76345	1.418020	-23	133	8	sl s aq; misc alc, eth
h82	1-Hexyne	CH ₃ (CH ₂) ₃ C≡CH	82.14	1, 253	0.715220	1.398920	- 131.9	71.3	-21	i aq; s alc, eth
h83	L-Histidine		155.16	25, 513			282 dec			41 aq; v sl s alc
h84	Hydantoin		100.08	24, 242			221-223			s alc, alk; sl s eth
h85	Hydrazine	H ₂ NNH ₂	32.05	Merck:	1.003645	1.470020	1.4	113.5	52	misc aq, alc
				12, 4809						
h86	1,4-Hydroquinone	C ₆ H ₄ -1,4-(OH) ₂	110.11	6, 836	1.33215		172	286		7 aq; v s alc, eth; sl s bz
h87	Hydroxyacetaldehyde	HOCH ₂ CHO	60.05	1, 817	1.366100		93-94	110 ^{12mm}		v s aq, alc; sl s eth
h88	Hydroxyacetic acid	HOCH ₂ CO ₂ H	76.05	3, 228			80	100		s aq, alc, acet, eth
h89	1'-Hydroxy-2'-aceto- naphthone	$C_{10}H_6(OH)C(=O)CH_3$	186.21	8, 149			98-100	325 sl d		i aq; v s bz; s HOAc
h90	Hydroxyacetone	HOCH ₂ C(=O)CH ₃	74.08	1 ¹ , 84	1.082	1.431520	- 17	146	56	misc aq, alc, eth
h91	2'-Hydroxyaceto- phenone	$HOC_6H_4C(=O)CH_3$	136.15	8, 85	1.13141	1.558420	4-6	213 ^{717mm}	>110	misc alc, eth; sl s aq
h92	3'-Hydroxyaceto- phenone	HOC ₆ H ₄ C(=O)CH ₃	136.15	8, 86	1.100100	1.535100	87-89	296		s aq; v s alc, bz, eth
h93	4'-Hydroxyaceto- phenone	HOC ₆ H ₄ C(=O)CH ₃	136.15	8, 87	1.109100		109–111	148 ^{3mm}		v s alc, eth; sl s aq
h94	2-Hydroxybenz- aldehyde	C ₆ H ₄ (OH)CHO	122.12	8, 31	1.167420	1.574020	-7	196.7	78	1.7 aq ⁸⁶ ; s alc, eth
h95	3-Hydroxybenz- aldehyde	C ₆ H ₄ (OH)CHO	122.12	8, 58			103-105	191 ^{50mm}		s alc, bz, eth; sl s aq
h96	4-Hydroxybenz- aldehyde	C ₆ H ₄ (OH)CHO	122.12	8, 64	1.129 ¹³⁰		117–119			1 aq; 70 acet; 4 bz ⁶⁵ ; w s alc, eth
h97	2-Hydroxybenz- aldehyde oxime	C ₆ H ₄ (OH)CH=NOH	137.14	8, 49			57	dec		v s alc, bz, eth, acids
h98	2-Hydroxybenzamide	$C_6H_4(OH)C(=O)NH_2$	137.14	10, 87			140	dec 270		0.2 aq; s alc, chl, eth
h99	2-Hydroxybenzoic acid	C ₆ H₄(OH)CO ₂ H	138.12	10, 43	1.44340		157–159	211 ^{20mm}		0.2 aq; 37 alc; 33 eth; 33 acet; 2 chl; 0.7 bz
										0Z

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
h100	3-Hydroxybenzoic	C ₆ H ₄ (OH)CO ₂ H	138.12	10, 134	1.473		201-203	-		0.8 aq; 10 eth
	acid									·
h101	4-Hydroxybenzoic acid	C ₆ H ₄ (OH)CO ₂ H	138.12	10, 149	1.4684		215–217			0.2 aq; v s alc; 23 eth
h102	4-Hydroxybenzoic hydrazide	$HOC_6H_4C(=O)NHNH_2$	152.15	10, 174			266 dec			
h103	4-Hydroxybenzo- phenone	$HOC_6H_4C(=O)C_6H_5$	198.22	8², 184			132-135			v s alc, eth; sl s aq
h104	1-Hydroxybenzo- triazole		135.13	26, 41			155-158			
h105	6-Hydroxy-1,3-benz- oxathiol-2-one		168.17	194, 2508			158-160			
h106	2-Hydroxybenzyl alcohol	HOC ₆ H ₄ CH ₂ OH	124.13	6, 891	1.16125		83-85	subl 100		6.6 aq; v s alc, chl, eth; s bz
h107	1-Hydroxy-2-butanone	CH ₃ CH ₂ C(=O)CH ₂ OH	88.11	1, 826	1.026	1.428220		78 ^{60mm}	60	
h108	3-Hydroxy-2-butanone	$CH_3C(=O)CH(OH)CH_3$	88.11	1, 827	0.9972417	1.4171 ²⁰	15	148	50	misc aq, alc; sl s eth
h109	4-Hydroxycinnamic acid	HOC ₆ H ₄ CH=CHCO ₂ H	164.16	10, 297			210-213			s alc, eth; sl s aq
h111	7-Hydroxycoumarin		162.14	18, 27			226-228			v s alc, chl, alk, HOAc
h112	1-Hydroxy-1-cyclo- hexanecarbonitrile	C ₆ H ₁₀ (OH)CN	125.17	10, 5	1.031	1.457620	29		60	
h113	2-Hydroxy-3,5-diiodo- benzoic acid	I ₂ C ₆ H ₂ (OH)CO ₂ H	389.91	10, 113			232–235			v s alc, eth; i bz, chl
h114	4-Hydroxy-3,5-dinitro- benzoic acid	HOC ₆ H ₂ (NO ₂)CO ₂ H	228.12	1, 183			245 dec			
h115	3-Hydroxydiphenyl- amine	HOC ₆ H₄NHC ₆ H₅	185.23	13, 410			80-82	340		
h116	(2-Hydroxydiphenyl)- methane	HOC ₆ H ₄ CH ₂ C ₆ H ₅	184.24	6, 675		1.599420	54	312	>110	s organic solvents, alk
h117	(4-Hydroxydiphenyl)- methane	HOC ₆ H ₄ CH ₂ C ₆ H ₅	184.24	6, 675			84	322		s hot aq, org solvents, HOAc, alkalis
h118	2-(2-Hydroxyethoxy)- phenol	HOCH ₂ CH ₂ C ₆ H ₄ OH	154.17	6², 782			99–100	128 ^{0.7mm}		
h119	N-(2-Hydroxyethyl)- acetamide	HOCH ₂ CH ₂ NHC(=O)CH ₃	103.12	4 ¹ , 430	1.123320	1.457520	63-65	155 ^{5mm}	176	misc aq; sl s bz
h120	2-Hydroxyethyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ OH	104.11	2, 141	1.10815	1.420120		188	88	misc aq, alc, chl, eth
h121	2-Hydroxyethyl acrylate	H ₂ C=CHCO ₂ CH ₂ CH ₂ OH	116.12	24, 1469	1.011	1.450020		92 ^{12mm}	98	

h122	3-(1-Hydroxyethyl)- aniline	CH ₃ CH(OH)C ₆ H ₄ NH ₂	137.18	133, 1654			66-69			
h123	2-Hydroxyethyl disulfide	HOCH ₂ CH ₂ SSCH ₂ CH ₂ OH	154.25	1, 471	1.261	1.565520	25-27	158 ^{3.5mm}	>110	
h124	N-(2-Hydroxyethyl)- ethylenediamine- N,N,N'-triacetic acid	HO ₂ CCH ₂ N(CH ₂ CH ₂ OH)- CH ₂ CH ₂ N(CH ₂ CO ₂ H) ₂	278.26				212 dec			
h125	2-Hydroxyethyl- hydrazine	HOCH ₂ CH ₂ NHNH ₂	76.10	4 ¹ , 562	1.123	1.496120	- 70	220	73	misc aq; s alc
h126	2-Hydroxyethyl methacrylate	HOCH ₂ CH ₂ O ₂ CC(CH ₃)=CH ₂	130.14		1.073	1.452020		67 ^{3.5mm}	97	
h127	N-(2-Hydroxyethyl)- morpholine		131.18	27, 7	1.083	1.4760 ²⁰		227	99	misc aq
h128	N-(2-Hydroxyethyl)- phthalimide		191.19	21, 469			126-128			
h129	1-(2-Hydroxyethyl)- piperazine		130.19	23², 6	1.061	1.506520		246	>110	
h130	N-(2-Hydroxyethyl)- piperazine-N'- ethane-sulfonic acid		238.31	Merck: 12, 4687			234 dec			sat'd aq: 2.25M°
h131	N-(2-Hydroxyethyl)-		129.20	20, 25	1.005945	1.480420		199202	68	
h132	N-(2-Hydroxyethyl)- pyridine	HOCH ₂ CH ₂ NC ₅ H ₄	123.16	21, 50	1.093	1.536820		116 ^{9mm}	92	v s aq, alc, chl
h133	N-(2-Hydroxyethyl)- pyrrolidine	HOCH ₂ CH ₂ NC ₄ H ₈	115.8	20², 5	0.985	1.471320		81 ^{13mm}	56	
h134	N-(2-Hydroxyethyl)- 2-pyrrolidinone		129.16	214, 3142	1.143	1.496020		142 ^{2mm}	>110	
h135	2-Hydroxyethyl salicylate	(HO)C ₆ H ₄ CO ₂ CH ₂ CH ₂ OH	182.18	10, 81	1.224	1.548020		166 ^{13mm}	>110	
h136	(2-Hydroxyethyl)tri- phenylphosphonium bromide	HOCH ₂ CH ₂ P(C ₆ H ₅) ₃ Br	387.26	16, 761			217-219			
h137	8-Hydroxy-7-iodo-5- quinolinesulfonic acid		351.12	22, 408			269–270 dec			
	I		1	1	<u> </u>		1	1		(Continued)
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
----------------------	---	---	---------------------------	------------------------	----------------------	----------------------	-------------------------------	---------------------	--------------------	---
h138	2-Hydroxyisobutyric	(CH ₃) ₂ C(OH)CO ₂ H	104.11	3, 313			82	84 ^{1.5mm}	1 /	v s aq, alc, eth
h138a	2-Hydroxyisobutyro-	(CH ₃) ₂ C(OH)CN	85.11	3, 316	0.932	1.3990 ²⁰	- 19	82 ^{23mm}	63	
h139 h140 h141	Hydroxylamine HCl 4-Hydroxy-2-mercapto- 6-methylpyrimidine 4-Hydroxy-2-mercapto-	H ₂ NOH · HCl	69.49 142.18 170.23	24, 351	1.670		159 dec 330 dec 219–221			v s aq NH ₃ , alkalis; sl s alc, acet 0.1 aq: 1.7 alc: 1.7
h142	6-propylpyrimidine 4-Hydroxy-3-methoxy-	CH ₃ OC ₆ H ₃ (OH)CHO	152.15	8, 247	1.056		80-81	285		acet; v s alkalis 1 aq; s alc, chl, pyr
h143	benzaldehyde 4-Hydroxy-3-methoxy- benzoic acid	CH ₃ OC ₆ H ₃ (OH)CO ₂ H	168.15	10, 392			210-213			0.12 aq; v s alc
h144	2-Hydroxy-4-methoxy- benzophenone	CH ₃ OC ₆ H ₃ (OH)C(=O)C ₆ H ₅	228.25	8, 312			63–66	160 ^{5mm}		v s alc, chl, eth
h145	4-Hydroxy-3-methoxy- benzyl alcohol	CH ₃ OC ₆ H ₃ (OH)CH ₂ OH	154.17	6, 1113			113-115			
h146	N-(Hydroxymethyl)- acrylamide	H ₂ C=CHC(=O)NHCH ₂ OH	101.11	24, 1472	1.074	1.43020			none	
h147	4-Hydroxy-3-methyl- 2-butanone	HOCH ₂ CH(CH ₃)C(==0)CH ₃	102.13	1 ¹ , 422	0.993	1.434020		92 ^{15mm}	81	
h148	7-Hydroxy-4-methyl- coumarin		176.17	18, 31			190192			s alc, HOAc; sl s eth
h149	N-(Hydroxymethyl)- nicotinamide	$(C_5H_4N)C(=O)NHCH_2OH$	152.15	10, 4750			152154			
h150	4-Hydroxy-4-methyl- 2-pentanone	$(CH_3)_2C(OH)CH_2C(=O)CH_3$	116.16	Merck: 12, 3008	0.930645	1.423520	44	167.91	58	misc aq
h151	N-(Hydroxymethyl)- phthalimide		177.16	21, 475			147149			sl s aq, alc, bz
h152	4-Hydroxy-N-methyl-		115.18	21 ¹ , 188		1.477520	29-31	200		
h153	2-Hydroxy-2-methyl- propionitrile	(CH ₃) ₂ C(OH)CN	85.10	3, 316	0.9267 ²⁵	1.399220	- 19	95	63	s aq, alc, chl, eth
h154	2-Hydroxy-2-methyl- propiophenone	$C_6H_5C(=O)C(CH_3)_2OH$	164.20	81, 553	1.077	1.533020		103 ^{4mm}	>110	
h155	5-Hydroxy-2-methyl- pyridine	HO(C ₅ H ₂ N)CH ₃	109.13	21³, 480			168-170			

h156	3-Hydroxy-2-methyl- 4-pyrone		126.11				161-162			1.2 aq; v s hot aq; s alc, alk; sl s bz, eth
h157	2-Hydroxy-1-naphth- aldehyde	C ₁₀ H ₆ (OH)CHO	172.18	8, 143			8285	192 ^{27mm}	i	
h158	1-Hydroxy-2-naphthoic acid	C ₁₀ H ₆ (OH)CO ₂ H	188.18	10, 331			191–192			v s alc, bz, eth, alk
h159	2-Hydroxy-1-naphthoic acid	C ₁₀ H ₆ (OH)CO ₂ H	188.18	10, 328			167 dec			
h160	3-Hydroxy-2-naphthoic acid	C ₁₀ H ₆ (OH)CO ₂ H	188.18	10, 333			222-223			v s alc, eth; s bz, chl
h161	2-Hydroxy-1,4- naphthoguinone		174.16	8, 300			dec >191			s HOAc
h162	4-Hydroxy-3-nitro- benzenearsonic acid	HOC ₆ H ₃ (NO ₂)AsO(OH) ₂	263.04	16 ¹ , 456			>300			v s alc, acet, HOAc, alk; sl s aq; i eth
h163	4-Hydroxy-3-nitro- benzoic acid	HOC ₆ H ₃ (NO ₂)CO ₂ H	183.12	10, 181			184-185			
h164	5-Hydroxy-2- pentanone	$CH_3C(=O)CH_2CH_2CH_2OH$	102.13	1, 831	1.00740	1.437220		144 ^{100mm}	93	misc aq; s alc, eth
h165	4-Hydroxyphenylacetic acid	HOC ₆ H ₄ CH ₂ CO ₂ H	152.15	10, 190			149151			v s alc, eth; sl s aq
h166	4-(4-Hydroxyphenyl)- 2-butanone	HOC ₆ H ₄ CH ₂ CH ₂ C(=O)CH ₃	164.20	8², 117			82-83			
h167	4-Hydroxyphenyl- glycine	HOC ₆ H ₄ CH(NH ₂)CO ₂ H	167.16	14 ¹ , 659			240 dec			sl s aq, alc, bz, acet
h168	N-(4-Hydroxyphenyl)- glycine	HOC ₆ H ₄ NHCH ₂ CO ₂ H	167.16	13, 488			244 dec			s alk, acid; v sl s aq, alc. acet. bz. eth
h169	2'-Hydroxy-3-phenyl- propiophenone	HOC ₆ H ₄ C(=O)CH ₂ CH ₂ C ₆ H ₅	226.28	8², 202		1.596820	3637		>110	
h170	1-(3-Hydroxyphenyl)- urea	HOC ₆ H ₄ NHC(=O)NH ₂	152.15	13, 417			182–184			
h171	N-Hydroxyphthalimide		163.13	21, 500			233 dec			
h172	2-Hydroxypropionitrile	CH3CH(OH)CN	71.08	3 ² , 209	0.983425	1.402725	-40	103 ^{50mm}	76	misc aq, alc; s eth
h173	3-Hydroxypropionitrile	HOCH ₂ CH ₂ CN	71.08	3, 298	1.040445	1.424820	46	221	129	misc aq, alc, acet; 2,3 eth; i bz, PE
h174	2'-Hydroxypropio- phenone	HOC ₆ H ₄ C(==O)CH ₂ CH ₃	150.18	8, 102	1.094	1.548020		115 ^{15mm}	>110	v s alc, eth; sl s aq
h175	4'-Hydroxypropio- phenone	HOC ₆ H ₄ C(==O)CH ₂ CH ₃	150.18	8, 102			148			v s alc, eth; sl s aq

			Formula	Beilstein	Density.	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
h176	1-(2-Hydroxy-1- propoxy)-2-pro- panol	CH ₃ CH(OH)CH ₂ OCH ₂ - CH(OH)CH ₃	134.18		1.025220	1.444020		231.8	138	misc aq, alc
h177	Hydroxypropyl acrylate	H ₂ C=CHCO ₂ (CH ₂) ₃ OH	130.14	24, 1469	1.044	1.445020		77 ^{5mm}	89	
h178	Hydroxypropyl methacrylate	$H_2C = C(CH_3)CO_2(CH_2)_3OH$	144.17	24, 1532	1.066	1.447020		57 ^{0.5mm}	96	
h179	2-Hydroxypyridine	HOC₅H₄N	95.10	21, 43			105-107	280-281		aq, alc, bz, sl s eth
h180	3-Hydroxypyridine	HOC₅H₄N	95.10			126-129		151 ^{3mm}		v s aq, alc; sl s eth
h181	4-Hydroxypyridine	HOC₅H₄N	95.18					230 ^{12mm}		v s aq; i alc, bz, eth
h182	2-Hydroxypyridine-5- carboxylic acid	HO(C ₅ H ₃ N)CO ₂ H	139.11	22, 215			>300			sl s aq, alc, eth
h183	3-Hydroxypyridine-N- oxide	(HO)C₅H₄N==O	111.10				190–192			
h184	8-Hydroxyquinoline		145.16	21, 91			72-74	267 ^{742mm}		v s alc, acet, bz, chl
h185	8-Hydroxyquinoline-5- sulfonic acid		225.22	22, 407			>300			v s aq; sl s alc, eth
h186	DL-Hydroxysuccinic acid	HO ₂ CCH(OH)CH ₂ CO ₂ H	134.09	3, 435			131-133			56 aq; 45 EtOH; 18 acet; 0.8 eth; 23 diox
h187	(-)-Hydroxysuccinic acid	HO ₂ CCH(OH)CH ₂ CO ₂ H	134.09	3, 419			100			36 aq; 87 EtOH; 61 acet; 2.7 eth; 75 diox
h188	N-Hydroxysuccinimide		115.09	21, 380			9598			vsaq
i1	Icosane	CH ₂ (CH ₂), CH ₂	282.56	1, 174	0.777737	1.434640	36.4	343.8	>112	
i2	1-Icosene	CH ₃ (CH ₂) ₁₇ CH=CH ₂	280.54	13, 881			28.7	342.4		
i3	1H-Imidazole		68.08	23, 45			90-91	257	145	v s aq, alc, chl, eth
i4	2-Imidazolidinethione		102.16	24,4			203-204			2 aq; s alc, pyr; i bz, acet, chl, eth
i5	2-Imidazolidone		86.09	24, 16			133-135			v s aq, hot alc
i6	3,3'-Iminobis(<i>N</i> , <i>N</i> -di- methyl)propylamine	HN[(CH ₂) ₃ N(CH ₃) ₂] ₂	187.33	4 ³ , 565	0.841	1.449020	- 78	131 ^{20mm}	98	
i7	Iminodiacetic acid	HO ₂ CCH ₂ NHCH ₂ CO ₂ H	133.10	4, 365			243 dec			2 aq; v sl s bz, eth
i8	Iminodiacetonitrile	NCCH2NHCH2CN	95.11	4, 367			77			s aq, alc; sl s eth
i9	Iminodibenzyl		195.27				105-108			
i10	Indane		118.18	Merck: 12, 4966	0.9639420	1.538320	- 51.4	178	50	s alc, chl, eth; i aq
i11	5-Indanol		134.18	6, 575			51-53	255	>110	v s alc, eth; sl s aq
i12	1-Indanone		132.16	7, 360	1.109045	1.56145	40-42	243-245	111	s alc, eth; sl s aq

i13	1,2,3-Indantrione		178.14	Merck:			dec 241			v s aq; s alc
	hydrate			12, 6645						
i14	Indene		116.16	5, 515	0.9968420	1.576220	- 1.8	181.6	58	misc alc, bz, chl, eth
i15	Indole		117.15	20, 304	1.0643	1.60960	52.54	253-254	>110	s hot aq, bz, eth
i16	Indole-3-acetic acid		175.19	22, 66			168-170			v s alc; s acet, eth
i17	Indole-2,3-dione		147.13	21, 432	1		203.5 dec			s hot aq, hot alc, alk
i18	Indoline		119.17	20, 257	1.063	1.590620		221	92	sl s aq
i19	Inositol		180.16	6 ² , 1157	1.752		225			14 aq; sl s alc; i eth
i20	Iodoacetamide	ICH ₂ CONH ₂	184.96	2, 223			93-96			s hot aq
i21	Iodoacetic acid	ICH ₂ CO ₂ H	185.95	2, 222			79-82			s aq, alc; v sl s eth
i22	3-Iodoaniline	IC ₆ H₄NH ₂	219.03	12, 670	1.821	1.682020	25	146 ^{15mm}	>110	i aq; s alc, eth
i23	Iodobenzene	C₅H₅I	204.01	5, 215	1.830820	1.620020	-31	188	74	misc alc, chl, eth
i24	Iodobenzene diacetate	C ₆ H ₅ I(O ₂ CCH ₃) ₂	322.10	5, 218			163-165			
i25	2-Iodobenzoic acid	IC ₆ H ₄ CO ₂ H	248.02	9, 363	2.249 ²⁵		162-164			s alc, eth; sl s aq
i26	1-Iodobutane	HC ₃ CH ₂ CH ₂ CH ₂ I	184.02	1, 123	1.615420	1.4999 ²⁰	- 103.5	130-131	33	i aq; s alc, eth
i27	2-Iodobutane	CH ₃ CH ₂ CH(I)CH ₃	184.02	1, 123	1.592020	1.4991 ²⁰	104.0	120	23	i aq; s alc, eth
i28	Iodocyclohexane	C ₆ H ₁₁ I	210.06	5², 13	1.62615	1.547220		180		i aq; s eth
i29	1-Iododecane	CH ₃ (CH ₂) ₉ I	268.19	1, 168	1.257420	1.485020		132 ^{15mm}	>110	i aq; s alc, eth
i30	2-Iodododecane	$CH_3(CH_2)_{11}I$	296.24	1 ¹ , 67	1.201	1.4844	-3	160 ^{15mm}	>110	
i31	Iodoethane	CH ₃ CH ₂ I	155.97	1, 96	1.9358 ²⁰	1.513020	-111	72.4	none	0.4 aq; misc alc, bz, chl, eth
i32	2-Iodoethanol	ICH ₂ CH ₂ OH	171.97	1, 339	2.21974	1.569420		75 ^{5mm}	65	s aq; v s alc, eth
i33	Iodoform	CHI ₃	393.73	1, 73	4.008		120-123		none	1.4 alc; 10 chl; 13 eth;
										v s bz, acet
i34	1-Iodoheptane	CH ₃ (CH ₂) ₆ I	226.10	1, 155	1.373420	1.490020	- 48	204	78	i aq; s alc, eth
i35	1-Iodohexadecane	CH ₃ (CH ₂) ₁₅ I	352.35	1, 172	1.121	1.480620	23	207 ^{10mm}	>110	
i36	1-Iodohexane	CH ₃ (CH ₂) ₅ I	212.08	1, 146	1.437420	1.492020		179180	61	i aq
i37	1-Iodomethane	CH₃I	141.94	1, 69	2.2789 ²⁰	1.530820	- 66.5	42.5	none	1.4 aq; misc alc, eth
i38	1-Iodo-2-methyl-	(CH ₃) ₂ CHCH ₂ I	184.02	1, 128	1.603520	1.496020	- 93.5	121	12	i aq; misc alc, eth
	propane									
i39	2-Iodo-2-methyl-	(CH ₃) ₃ CI	184.02	1 ³ , 326	1.5718	1.4918 ²⁰	- 38	100	7	dec aq; misc alc, eth
	propane									
i40	1-Iodo-3-nitrobenzene	IC ₆ H₄NO ₂	249.01	5, 253	1.94774		36-38	280	71	i aq; s alc, eth
i41	1-Iodo-4-nitrobenzene	IC ₆ H₄NO ₂	249.01	5, 252			175-177	289 ^{772mm}	>110	
i42	1-Iodononane	CH ₃ (CH ₂) ₈ I	254.18	1, 166	1.288	1.487020		108 ^{8mm}	85	
i43	1-Iodooctadecane	CH ₃ (CH ₂) ₁₇ I	380.40	1, 173			33-35	197 ^{2mm}	>110	
i44	1-Iodooctane	CH ₃ (CH ₂) ₇ I	240.13	1, 160	1.330420	1.488920	46	226	95	s alc, eth
i47	1-Iodopentane	CH₃(CH₂)₄I	198.06	1, 133	1.512420	1.495420	- 85	155	51	sl s aq; s alc, eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
j48	1-Iodopropane	CH-CH-CH-I	169,99	1, 113	1.748920	1.505820	- 101	102	44	0.1 ag: misc alc. eth
i49	2-Jodopropane	(CH ₂) ₂ CHI	169.99	1, 114	1.704220	1.499220	-90	89.5	42	0.14 aq: misc alc. eth
i50	3-Jodo-1-propene	ICH ₂ CH=CH ₂	167.97	1, 202	1.84522	1.554021	99	103	18	misc alc, chl, eth
i51	5-Iodosalicylic acid	IC ₄ H ₂ (OH)CO ₂ H	264.02	10, 112	-		189-191			v s alc: i bz. chl
i52	2-Iodothiophene		210.04	17, 34	1.902	1.652020	-40	73 ^{15mm}	71	v s eth
i53	2-Iodotoluene	IC _c H ₄ CH ₃	218.04	5, 310	1.713	1.6079 ²⁰		211	90	i aq; s alc, eth
i54	3-Iodotoluene	IC,H,CH,	218.04	5, 311	1.698	1.604020		82 ^{10mm}	82	i aq; misc alc, eth
i55	4-Iodotoluene	IC,H,CH	218.04	5, 312			3436	211	90	· ·
i56	Iodotrimethylsilane	(CH ₁) ₃ SiI	200.10	,	1.40640	1.471020		106	-31	
i57	1-Iodoundecane	CH ₃ (CH ₂) ₁₀ I	282.21	1 ¹ , 66	1.220	1.484920		130 ^{5mm}	>110	
i58	α-Ionone		192.30	7, 168	0.93220	1.4980 ²⁰		124 ^{11mm}	104	s alc, bz, chl, eth
i59	β -Ionone		192.30	7, 167	0.946 ¹⁷	1.52117		128 ^{12mm}	>110	s alc, bz, chl, eth
i60	Isatoic anhydride		163.13	27, 264			233 dec			sl s aq, hot alc, acet
i61	D-(-)-Isoascorbic acid		176.12				169 dec			s aq, alc, acet, pyr
i62	DL-Isoborneol		154.25	6 ² , 80			214 subl			v s alc, chl, eth
i63	Isobutyl acetate	(CH ₃) ₂ CHCH ₂ O ₂ CCH ₃	116.16	2, 131	0.8712 ²⁰	1.390220	- 99	116.5	18	0.7 aq; v s alc
i64	Isobutyl acetoacetate	CH ₃ COCH ₂ CO ₂ CH ₂ CH(CH ₃) ₂	158.20		0.980	1.424020		100 ^{22mm}	78	
i65	Isobutyl acrylate	H ₂ C=CHCO ₂ CH ₂ CH(CH ₃) ₂	128.19	2 ³ , 1227	0.890	1.4140		132	32	
i66	Isobutylamine	(CH ₃) ₂ CHCH ₂ NH ₂	73.14	4, 163	0.724 ²⁰	1.397220	- 86.6	68	-9	misc aq, alc, acet, eth
i67	Isobutylbenzene	C ₆ H ₅ CH ₂ CH(CH ₃) ₂	134.22	5, 414	0.853220	1.486620	-51.5	172.8	55	misc alc, eth
i68	Isobutyl chloroformate	ClCO ₂ CH ₂ CH(CH ₃) ₂	136.58	3, 12	1.053	1.4070 ²⁰		128.8	27	misc bz, chl, eth
i69	Isobutyl formate	HCO ₂ CH ₂ CH(CH ₃) ₂	102.13	2, 21	0.8776 ²⁰	1.385520	-95.5	98.4	10	1 aq; misc alc, eth
i70	Isobutyl isobutyrate	(CH ₃) ₂ CHCH ₂ O ₂ CH(CH ₃) ₂	144.22	2, 291	0.854220	1.3999 ²⁰	80.7	148.5	38	0.5 aq; misc alc
i71	Isobutyl methacrylate	$H_2C = C(CH_3)CO_2CH_2CH(CH_3)_2$	142.19	2 ³ , 1287	0.882 ²⁵	1.4170 ²⁵		155	41	misc alc, eth
i72	Isobutyl nitrate	(CH ₃) ₂ CHCH ₂ ONO ₂	119.12	1, 377	1.01540	1.402820		123	21	i aq; misc alc, eth
i73	Isobutyl nitrite	(CH ₃) ₂ CHCH ₂ ONO	103.12	1, 377	0.870 ²²	1.3715 ²²		67	-21	misc alc; sl s aq (dec)
i74	Isobutyl propionate	C ₂ H ₅ CO ₂ CH ₂ CH(CH ₃) ₂	130.19	2, 241	0.888 ⁰	1.3974 ²⁰	-71	137	26	i aq; misc alc
i75	Isobutyl stearate	CH ₃ (CH ₂) ₁₆ CO ₂ CH ₂ CH(CH ₃) ₂	340.57				ca. 20			
i76	Isobutyltriethoxy-	(CH ₃) ₂ CHCH ₂ Si(OC ₂ H ₅) ₃	220.39		0.880	1.40020		190–191	60	
i77	Isobutyltrimethoxy- silane	(CH ₃) ₂ CHCH ₂ Si(OCH ₃) ₃	178.30		0.930	1.396020		137	39	
i78	Isobutyl vinyl ether	(CH ₃) ₂ CHCH ₂ OCH==CH ₂	100.16	1 ³ , 1862	0.7702^{20}_{20}	1.395020	112	83.4	-13	0.2 aq
i79	Isobutyraldehyde	(CH ₃) ₂ CHCHO	72.11	1, 671	0.7988420	1.372320	-65.9	64.5	-18 (CC)	11 aq; misc alc, bz, acet, chl, eth
i80	Isobutyramide	(CH ₃) ₂ CHCONH ₂	87.12	2, 293	1.013		127-129	216-220		
i81	Isobutyric acid	(CH ₃) ₂ CHCO ₂ H	88.11	2, 288	0.968120	1.3925 ²⁰	- 46	154	56	17 aq; misc alc, chl, eth

i82	Isobutyric anhydride	[(CH ₃) ₂ CHCO] ₂ O	158.20	2, 292	0.954	1.406220	- 56	182	59	
i83	Isobutyronitrile	(CH ₃) ₂ CHCN	69.11	2, 294	0.770420	1.372020	71.5	104	8	v s alc, eth; sl s aq
i84	Isobutyrophenone	C ₆ H ₅ COCH(CH ₃) ₂	148.21	7, 316	0.98820	1.5172		217	84	
i85	Isobutyryl chloride	(CH ₃) ₂ CHCOCl	106.55	2, 293	1.017	1.4073 ²⁰	- 90	9193	1	dec aq, dec alc; s eth
i86	Isodecyl acrylate	$H_2C = CHCO_2C_{10}H_{21}$	212.34		0.875	1.442020		121 ^{10mm}	106	
i87	Isodecyl methacrylate	$H_2C = C(CH_3)CO_2C_{10}H_{21}$	226.36		0.878	1.443020		126 ^{10mm}	>110	
i88	L-Isoleucine	C ₂ H ₅ CH(CH ₃)CH(NH ₂)CO ₂ H	131.18	4, 454			288 dec	subl 168		4 aq; sl s hot alc
i89	Isooctyl acrylate	$H_2C = CHCO_2C_8H_{17}$	184.25		0.880	1.437020		125 ^{20mm}	80	
i90	Isooctyl diphenyl phosphite	(C ₆ H ₅ O) ₂ POC ₈ H ₁₇	346.41		1.045	1.522020		188		
i91	Isopentyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ CH(CH ₃) ₂	130.19	2, 132	0.87645	1.400720	-78.5	142	25	0.25 aq; misc alc, eth
i92	Isopentyl nitrite	ONOCH ₂ CH ₂ CH(CH ₃) ₂	117.15	1, 402	0.872	1.386020		99	10	misc alc, eth; sl s aq
i93	Isophorone		138.21	7,65	0.95520	1.475920	8.1	215.2	84	1.2 aq
i94	Isophorone diiso- cyanate		222.29		1.049	1.484120		159 ^{15mm}	>110	
i95	Isopropenyl acetate	CH ₂ CO ₂ C(CH ₂)=CH ₂	100.12	2 ² , 278	0.909	1.400520		94	18	
i96	3-Isopropenyl- α , α -di-	$H_2C = C(CH_3)C_4H_4C(CH_3)_3NCO$	201.27		1.108	1.530020		268271	>110	
	methylbenzyl iso- cyanate									
i97	2-Isopropoxyethanol	(CH ₃) ₂ CHOCH ₂ CH ₂ OH	104.15	1 ² , 519	0.903	1.410420		44 ^{13mm}	45	
i98	3-Isopropoxypropyl- amine	(CH ₃) ₂ CHO(CH ₂) ₃ NH ₂	117.19	4³, 739	0.845	1.419520		79 ^{85mm}	39	
i99	Isopropyl acetate	(CH ₃),CHO,CCH ₃	102.13	2, 130	0.871820	1.377020	-73	89	2	3 aq; misc alc, eth
i100	Isopropylamine	(CH ₃) ₂ CHNH ₂	59.11	4, 152	0.68645	1.3711 ²⁵	95	31.7	-37	misc aq, alc, eth
i101	2-Isopropylaniline	(CH ₃) ₂ CHC ₆ H ₄ NH ₂	135.2	12, 1147	0.955	1.547720		222	95	
i102	4-Isopropyl- benzaldehyde	(CH ₃) ₂ CHC ₆ H ₄ CHO	148.21	7, 318	0.977	1.529820		236	93	
i103	Isopropylbenzene	(CH ₃) ₂ CHC ₆ H ₅	120.20	5, 393	0.86440	1.491520	- 96	152-154	36	s alc, bz, eth
i104	4-Isopropylbenzyl alcohol	(CH ₃) ₂ CHC ₆ H ₄ CH ₂ OH	150.22	6, 543	0.98215	1.520620	28	248.4	>110	misc alc, eth; i aq
i105	N-Isopropylbenzyl-	C ₆ H ₅ CH ₂ NHCH(CH ₃) ₂	149.24		0.892	1.502520		200	87	
i106	Isopronyl hutyrate	CH.CH.CH.CO.CH(CH.).	130.19	2 271	0.859	1 393220		131	30	
i107	Isopropyl chloro-	CICH_CO_CH(CH_)	136.58	2, 198	1.096	1.419020		149-150	70	
	acetate		100.00	_,					. •	
i108	Isopropylcyclohexane	C ₆ H ₁₁ CH(CH ₃) ₂	126.24	5, 41	0.8023420	1.439920	-90	155	35	v s alc, eth

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
i109	Isopropyl	CH ₃ (CH ₂) ₁₄ CO ₂ CH(CH ₃) ₂	298.51	2², 336	0.862	1.438520			>110	
i110	4,4'-Isopropylidene- bis(2,6-dibromo-	(CH ₃) ₂ C[C ₆ H ₂ (Br) ₂ OCH ₂ CH ₂ OH] ₂	632.01				107			
i111	4,4'-Isopropylidene- bis(diisodecyl	$[(C_{10}H_{21}O)_2POC_6H_4]_2C(CH_3)_2$	917.34		0.964	1.498020		336	>110	
i112	4,4'-Isopropylidene- dicyclohexanol	$(CH_3)_2C(C_6H_{10}OH)_2$	240.39	6², 761				234 ^{14mm}	>110	
i113	4,4'-Isopropylidene- diphenol	(CH ₃) ₂ C(C ₆ H ₄ OH) ₂	228.29	6, 1011			137-140	220 ^{4mm}		
i114	2-Isopropylimidazole		110.16	23, 83			129-131	256-260		
i115	Isopropyl isocyanate	(CH ₃) ₂ CHCNO	85.11	4, 155	0.866	1.382520		74–75	-2	
i116	Isopropyl S-(-)-lactate	(CH ₃) ₂ CHO ₂ CCH(OH)CH ₃	132.16	3, 282	0.99820	1.408225		166-168	57	s aq, alc, eth
i117	2-Isopropyl-6-methyl- aniline	(CH ₃) ₂ CHC ₆ H ₃ (CH ₃)NH ₂	149.24		0.957	1.544020			41	
i118	2-Isopropyl-1-methyl- benzene	(CH ₃) ₂ CHC ₆ H ₄ CH ₃	134.21	5, 419	0.8766420	1.500620	-71.5	178.2		misc alc, eth
i119	3-Isopropyl-1-methyl- benzene	(CH ₃) ₂ CHC ₆ H ₄ CH ₃	134.21	5, 419	0.8610420	1.493020	-63.8	175.1		misc alc, eth
i120	4-Isopropyl-1-methyl- benzene	(CH ₃) ₂ CHC ₆ H ₄ CH ₃	134.21	5, 420	0.8573420	1.490920	- 68.9	177.1	47	misc alc, eth
i121	2-Isopropyl-5-methyl- phenol	(CH ₃) ₂ CHC ₆ H ₃ (CH ₃)OH	150.22	6, 532	0.92540		51.5	232.5		i aq; v s alc, chl, eth
i122	4-Isopropyl-3-methyl- phenol	(CH ₃) ₂ CHC ₆ H ₃ (CH ₃)OH	150.22	6², 491			111–114			
i123	5-Isopropyl-3-methyl- phenol	(CH ₃) ₂ CHC ₆ H ₃ (CH ₃)OH	150.22	6, 526			51		>110	
i124	Isopropyl nitrate	(CH ₃) ₂ CHONO ₂	105.09	1, 363	1.03618	1.39120		102	12	
i125	Isopropyl nitrite	(CH ₃) ₂ CHONO	89.09	Merck: 12, 5235	0.8444	1.352020		39 ^{752mm}		
i126	1-Isopropyl-4-nitro- benzene	(CH ₃) ₂ CHC ₆ H ₄ NO ₂	165.19	5 ² , 308	1.090	1.538020		107 ^{11mm}	>110	
i127	2-Isopropylphenol	(CH ₃)₂CHC ₆ H₄OH	136.19	6, 504	1.01220	1.525920	15-16	212-213	88	misc alc, eth
i128	3-Isopropylphenol	(CH ₃) ₂ CHC ₆ H ₄ OH	136.19	6, 505	0.994	1.525020	25	228	104	
i 129	4-Isopropylphenol	(CH ₃) ₂ CHC ₆ H ₄ OH	136.19	6, 505	0.99020		59-61	212		316 alc; 350 eth

i130	4-Isopropylpyridine	$(CH_3)_2CH(C_5H_4N)$	121.18	20, 248	0.938	1.498020		173	66	
i131	Isopropyl tetra-	(CH ₃) ₂ CHO ₂ C(CH ₂) ₁₂ CH ₃	270.46	2 ³ , 923	0.850	1.435020	ca. 3	193 ^{20mm}	>110	s caster oil, cottonseed
	decanoate									oil, acet, EtOAc,
										EtOH, toluene, min-
										eral oil
i132	Isopulegol		154.25	6, 65	0.912	1.472520		91 ^{12mm}	78	v sl s aq
i133	Isoquinoline		129.16	20, 380	1.0910 ³⁰	1.620830	26.5	243.5	107	sl s aq; s acid
k 1	Ketene	$H_2C = C = O$	42.04	1, 724			-151	- 49.8		s acet, eth; dec aq
k2	8-Ketotricyclo-	_	150.22	7², 133	1.063	1.502020		132 ^{30mm}	101	
	[5.2.1.0 ^{2.6}]decane									
L1	DL-Lactic acid	CH ₃ CH(OH)CO ₂ H	90.08	3, 268	1.24945		16.8	122 ^{14mm}	>110	s aq, alc; i chl, PE
L2	L-(+)-Lactic acid	CH ₃ CH(OH)CO ₂ H	90.08	3, 261	1.2060425	1.427020	53	119 ^{12mm}	>110	v s aq, alc, eth
L3	α -Lactose		342.32	31, 408			202			20 aq; v sl s alc
L4	β-Lactose		342.32	31, 408	1.52520		202			45 aq; i alc, eth
L5	DL-Leucine	(CH ₃) ₂ CHCH ₂ CH(NH ₂)CO ₂ H	131.18	4, 447			dec 332	subl 293		1 aq; 0.13 alc; i eth
L6	L-Leucine	(CH ₃) ₂ CHCH ₂ CH(NH ₂)CO ₂ H	131.18	4, 437	1.29318		293 dec	subl 145		2.4 aq ²⁵ ; 0.07 alc; 1
										HOAc; i eth
L7	R-(+)-Limonene		136.24	5, 133	0.841120	1.4730	- 96.5	178	49	misc alc, eth
L8	S-(-)-Limonene		136.24	5, 136	0.841_4^{20}	1.474620	- 96.5	178	48	misc alc, eth
L9	(+)-Limonene oxide		152.24	17, 44	0.929	1.466120		114 ^{50mm}	65	
L10	Linalool		154.25	1, 462	0.86515	1.461520		197 ^{720mm}	76	misc alc, eth
L11	Linalyl acetate		196.29	2, 141	0.895420	1.446020		220	90	misc alc, eth
L12	S-(+)-Lysine	H ₂ N(CH ₂) ₄ CH(NH ₂)CO ₂ H	146.19	4, 435			212 dec			v s aq; sl s alc; i eth
m1	Maleic acid	HO ₂ CH=CHCO ₂ H	116.07	2, 748	1.590		130.5			70 aq; 70 alc; s acet,
										HOAc; sl s eth
m2	Maleic anhydride		98.06	17, 432	1.48		52.8	202	103	s aq (to acid), alc (to
										ester); 227 acet; 53
										chl; 50 bz; 112
										EtOAc
m3	Malonic acid	HO ₂ CCH ₂ CO ₂ H	104.06	2, 566	1.63		135-137			154 aq; 42 alc; 8 eth;
										14 pyr
m4	Malonodiamide	H ₂ NCOCH ₂ CONH ₂	102.09	2, 582			172-175			9 aq; i alc, eth
m5	Malononitrile	NCCH ₂ CN	66.06	2, 589	1.1910 ²⁰	1.414634	32-34	220	112	13 aq, 40 alc; 20 eth
m6	Malonyl dichloride	ClCOCH ₂ COCl	140.95	2 ¹ , 252	1.448649	1.462020		55 ^{19mm}	47	dec hot aq; s eth
m7	D-(+)-Maltose hydrate		360.32	31, 386	1.54017		119-121	dec 130		v s aq; sl s alc; i eth
m8	DL-Mandelic acid	C ₆ H ₅ CH(OH)CO ₂ H	152.15	10, 192	1.3004		120-122			16 aq; 100 alc; s eth
m9	Mandelonitrile	C ₆ H ₅ CH(OH)CN	133.15	10, 193	1.117	1.531520	- 10	170	97	v s alc, cho, eth; i aq
m10	Mannitol		182.17	1, 534	1.5220		166168	290 ^{3.5mm}		18 aq; 1.2 alc; i eth
	1		1	1	1	1	1	1	L	l

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
m11	D-(+)-Mannose		180.16	31, 284	1.5420		128-130			250 aq; 28 pyr; 0.8 alc
m12	(-)-Menthol		156.27	6, 28	0.89015	1.45825	41-43	212	93	v s alc, chl, eth, PE
m13	()-Menthone		154.25	7, 38	0.89540	1.4510 ²⁰	-6	207	72	misc alc, eth; sl s aq
m14	S-(+)-Menthyl acetate		198.31	6, 32	1.448020			229-230	77	
m15	Menthyl anthranilate		275.40	14 ³ , 885	1.040	1.542020		179 ^{3mm}	>110	
m16	Mercaptoacetic acid	HSCH ₂ CO ₂ H	92.12	3, 245	1.325	1.503020	16.5	96 ^{5mm}	>110	misc aq, alc, bz, eth
m17	2-Mercaptobenz-		150.20	24, 119			301-305			sl s aq; s alc
	imidazole									
m18	2-Mercaptobenzoic acid	HSC ₆ H₄CO ₂ H	154.19	10, 125			165-168			v s alc, HOAc
m19	2-Mercaptobenzo- thiazole		167.25	27, 185	1.4240		180-181	dec		2 alc; 1 eth; 10 acet; 1 bz; s alk; i aq
m20	2-Mercaptoethanol	HSCH ₂ CH ₂ OH	78.13	1, 470	1.1143 ²⁰	1.500620		156.9	73	misc aq, alc, bz, eth
m21	3-Mercapto-1,2- propanediol	HSCH ₂ CH(OH)CH ₂ OH	108.16	1, 519	1.29514	1.524320		118 ^{5mm}	>110	misc alc; v s acet
m22	2-Mercaptopropionic acid	CH ₃ CH(SH)CO ₂ H	106.14	3, 289	1.22045	1.480920	10-14	102 ^{16mm}	87	misc aq, alc, eth, acet
m23	3-Mercaptopropionic acid	HSCH ₂ CH ₂ CO ₂ H	106.14	3, 299	1.218	1.4911 ²⁰	17–19	111 ^{15mm}	93	
m24	(3-Mercaptopropyl)- trimethoxysilane	HS(CH ₂) ₃ Si(OCH ₃) ₃	196.34		1.03940	1.444020		198	48	
m25	Mercaptosuccinic acid	HO ₂ CCH ₂ CH(SH)CO ₂ H	150.15	3, 439			5-7			50 ag; 50 alc; s eth
m26	2-Mercaptothiazoline		119.21	27, 140			105-107			•
m27	Methacrylaldehyde	H ₂ C=C(CH ₃)CHO	70.09	1, 731	0.847	1.416020	- 81	69	-15	6 aq; misc alc, eth
m28	Methacrylamide	$H_2C = C(CH_3)CONH_2$	85.11	2 ² , 399			109-111			s alc; sl s eth
m29	Methacrylic acid	$H_2C = C(CH_3)CO_2H$	86.09	2, 421	1.015340	1.431420	16	163	77	9 aq; misc alc, eth
m30	Methacrylic anhydride	$[H_2C=C(CH_3)CO]_2O$	154.17	2 ³ , 1293	1.035	1.453020		87 ^{13mm}	84	
m30a	Methacrylonitrile	$H_2C = C(CH_3)CN$	67.91	2, 423	0.800140	1.400720	- 35.8	90.3	1.1	2.6 aq; misc acet, bz
m31	Methacryloyl chloride	$H_2C = C(CH_3)COCl$	104.54	2², 394	1.070	1.442020		9596	2	
m32	Methallylidene diacetate	(CH ₃ CO ₂) ₂ CHC(CH ₃)=CH ₂	172.18	24, 292	1.039	1.424520	-15	191	83	
m33	Methane	CH₄	16.04	1, 56	0.7168		- 182.5	- 161.5		3.3 mL aq; 47 mL alc
					g/L 0.4240 ^{bp}					
m34	Methanesulfonic acid	CH ₃ SO ₃ H	96.10	4, 4	1.4812 ¹⁸	1.430320	20	167 ^{10mm}	>110	1.5 bz; misc aq
m35	Methanesulfonic anhydride	(CH ₃ SO ₂) ₂ O	174.19	4, 5			71	138 ^{10mm}		v s aq (dec)
m36	Methanesulfonyl chloride	CH ₃ SO ₂ Cl	114.55	4, 5	1.480548	1.451820	-32	161	>110	s alc, eth

m37	Methanethiol	CH ₃ SH	48.11	1, 288	1.966		- 123	6.0		2.3 aq; v s alc, eth
m38	Methanol	СН₃ОН	32.04	1, 273	0.7913 ²⁰	1.328420	97.7	64.7	11	misc aq, alc, bz, chl, eth
m39	Methanol-d	CH ₄ OD	33.05	1 ³ , 1186	0.8127420	1.327020	-110	65.5	11	misc aq, alc, eth
m40	Methanol- d_1	CD ₃ OD ₁	36.07	13, 1187	0.888	1.325620		65.4	11	misc aq, alc, eth
m41	Methanol-13C	¹³ CH ₃ OH	33.03	1 ³ , 1187	0.815	1.329020	- 97.8	64	12	
m42	DL-Methionine	CH ₃ SCH ₂ CH ₂ CH(NH ₂)CO ₂ H	149.21	4², 938	1.340		281 dec			3 aq; i eth; v sl s alc
m43	Methoxyacetic acid	CH ₃ OCH ₂ CO ₂ H	90.08	3, 232	1.174	1.415820		202-204	>110	misc aq, alc, eth
m44	2'-Methoxyacet- ophenone	CH ₃ OC ₆ H ₄ COCH ₃	150.18	8, 85	1.0904	1.539320		131 ^{18mm}	108	
m45	3'-Methoxyacet- ophenone	CH ₃ OC ₆ H ₄ COCH ₃	150.18	8, 86	1.094	1.541020		239–241	>110	s aq
m46	4'-Methoxyacet-	CH ₃ OC ₆ H ₄ COCH ₃	150.18	8, 87	1.08241	1.5335	36-38	154 ^{26mm}	>110	v s alc, eth
m47	3-Methoxyacrylonitrile	CH ₃ OCH=CHCN	83.09		0.990	1.455020			76	
m48	2-Methoxyaniline	CH ₃ OC ₆ H ₄ NH ₂	123.16	13, 358	1.09815	1.573020	5-6	225	98	i aq; misc alc, eth
m49	3-Methoxyaniline	CH ₃ OC ₆ H ₄ NH ₂	123.16	13, 404	1.096	1.579420	- 10	251	>110	s alc, acid; sl s aq
m50	4-Methoxyaniline	CH ₃ OC ₆ H ₄ NH ₂	123.16	13, 435	1.087		57-60	240-243		v s alc; sl s aq
m51	2-Methoxybenz- aldehyde	CH₃OC ₆ H₄CHO	136.15	8, 43	1.127	1.56020	37–39	238	117	sl s alc, bz; i eth
m52	3-Methoxybenz- aldehyde	CH₃OC ₆ H₄CHO	136.15	8, 59	1.119	1.553320		143 ^{50mm}	>110	
m53	4-Methoxybenz- aldehyde	CH₃OC ₆ H₄CHO	136.15	8, 67	1.119	1.571320	-1	248	108	misc alc
m54	4-Methoxybenzamide	CH ₃ OC ₆ H ₄ CONH ₂	151.17	10², 100			164-167	295	108	s aq; v s alc; sl s eth
m55	Methoxybenzene	CH ₃ OC ₆ H ₅	108.14	6, 138	0.994220	1.517020	- 37.5	153.8	51	1 aq; misc alc, eth
m56	4-Methoxybenzene- sulfonyl chloride	CH ₃ OC ₆ H ₄ SO ₂ Cl	206.65	11, 243			40-43		>110	dec aq; s alc, eth
m57	2-Methoxybenzoic acid	CH ₃ OC ₆ H ₄ CO ₂ H	152.15	10, 64	1.180		100	200		0.5 aq; v s alc, eth
m58	3-Methoxybenzoic acid	CH ₃ OC ₆ H ₄ CO ₂ H	152.15	10, 137			104	172 ^{10mm}		s hot aq, alc, eth
m59	4-Methoxybenzoic acid	CH ₃ OC ₆ H ₄ CO ₂ H	152.15	10, 154	1.3854		185	275-280		0.04 aq; v s alc, chl
m60	4-Methoxybenzoyl chloride	CH₃OC₀H₄COCI	170.60	10, 163		1.581020	22	145 ^{14mm}	87	i aq (dec); s alc (dec); s acet, bz

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
m61	4 Methovybenzyl	CH OC H CH OH	129.17	6 807	1 10025	1 544720	12 25	250	>110	i ogu e ele, eth
mor	alcohol	CH ₃ OC ₆ H ₄ CH ₂ OH	156.17	0, 097	1.1097	1.5442-	23-23	239	/110	1 aq; s aic, ein
m62	4-Methoxybenzylamine	CH ₃ OC ₆ H₄CH ₂ NH ₂	137.18	13, 606	1.05015	1.546220		236-237	>110	v s aq, alc, eth
m63	2-Methoxybiphenyl	CH₃OC6H₄C6H₂	184.24	6, 672	1.023	1.610520	30-33	274	>110	
m64	3-Methoxy-1-butanol	CH ₃ OCH(CH ₃)CH ₂ CH ₂ OH	104.15		0.922920	1.414520	- 85	161.1	46	misc aq
m65	4-Methoxy-3-buten-2- one	CH ₃ OCH=CHCOCH ₃	100.12		0.982	1.468020		200	63	
m66	2-Methoxycinnam-	CH ₃ OC ₆ H₄CH=CHCHO	162.19				44-48	130 ^{0.6mm}	>110	
m67	1-Methoxy-1,4-cyclo-		110.16	6 ³ , 367	0.940	1.481920		148-150	36	
m68	2-Methoxydibenzo-		198.22	17³, 1590			42-45		>110	
m69	7-Methoxy-3,7-	(CH ₃) ₂ C(OCH ₃)(CH ₂) ₃ -	186.30		0.877	1.437420		60 ^{0.45mm}	98	
m70	2-Methoxy-1,3- dioxolane	CH(CH ₃)CH ₂ CHO	104.11	194, 617	1.092	1.409120		129–130	31	
m71	2-Methoxyethanol	CH-OCH-CH-OH	76.10	1.467	0.964620	1.402120	- 85.1	124	39	misc aq
m72	2-(2-Methoxyethoxy)-	CH ₃ OCH ₂ CH ₂ OCH ₂ CO ₂ H	134.13	3 ³ , 374	1.180	1.438020		245-250	>110	
m73	2-(2-Methoxyethoxy)- ethanol	CH ₃ OCH ₂ CH ₂ OCH ₂ CH ₂ OH	120.15		1.03540	1.426420	- 50	1 94	96	misc aq, alc, bz, eth, ketones
m74	2-Methoxyethoxy- methyl chloride	CH ₃ OCH ₂ CH ₂ OCH ₂ Cl	124.57		1.091	1.427020		50 ^{13mm}	>110	
m75	2-Methoxyethyl acetate	CH ₂ CO ₂ CH ₂ CH ₂ OCH ₃	118.13	2, 141	1.004920	1.400220	- 70	144	49	misc aq
m76	2-Methoxyethyl acetoacetate	CH ₃ COCH ₂ CO ₂ CH ₂ CH ₂ OCH ₃	160.17		1.090	1.433920		120 ^{20mm}	103	-
m77	2-Methoxyethylamine	CH ₂ OCH ₂ CH ₂ NH ₂	75.11	4 ² , 718	0.864	1.405420		95	9	v s aq, alc
m78	2-Methoxyethyl	CH ₃ OCH ₂ CH ₂ O ₂ CCH ₂ CN	143.14	24, 1891	1.127	1.434020		100 ^{1mm}	>110	
m79	1-Methoxy-2-indanol		164.20	6.970	1.128	1.548220		146 ^{11mm}	>110	
m80	2-Methoxy-5-methyl-	CH ₃ OC ₆ H ₃ (CH ₃)NH ₂	137.18	13 ² , 388	11120		52-54	235	>110	s aq; v s alc, bz, eth
m81	4-Methoxy-2-methyl-	CH ₃ OC ₆ H ₃ (CH ₃)NH ₂	137.18	13², 330	1.065	1.564720	13-14	248-249	>110	s alc
m82	3-Methoxy-3-methyl- 1-butanol	CH ₃ OC(CH ₃) ₂ CH ₂ CH ₂ OH	118.18	13, 2198	0.926	1.428020		173–175	71	

m83	2-Methoxy-1-methyl- ethyl cyanoacetate	NCCH ₂ CO ₂ CH(CH ₃)CH ₂ OCH ₃	157.17		1.030	1.431020		105 ^{2mm}	62	
m84	2-Methoxy-4-methyl- phenol	CH ₃ OC ₆ H ₃ (CH ₃)OH	138.17	6, 878	1.092	1.537220	5	222	99	
m85	5-Methoxy-2-methyl- 4-nitroaniline	CH ₃ OC ₆ H ₃ (CH ₃)(NO ₂)NH ₂	182.18	13 ³ , 1575			168-170			
m86	1-Methoxy-2-methyl- propylene oxide	(CH ₃) ₂ C—CH(OCH ₃)	102.13	17 ³ , 1035	0.904	1.392920		94	6	
m87	1-Methoxynaphthalene	C ₁₀ H ₇ OCH ₃	158.20	6, 606	1.090	1.622020		135 ^{12mm}	>110	
m88	2-Methoxynaphthalene	C ₁₀ H ₇ OCH ₃	158.20	6, 640			7375	274		s bz, eth, CS ₂
m89	2-Methoxy-4-nitro- aniline	CH ₃ OC ₆ H ₃ (NO ₂)NH ₂	168.15	13, 390			140-142			
m90	2-Methoxy-5-nitro- aniline	CH ₃ OC ₆ H ₃ (NO ₂)NH ₂	168.15	13, 389			117-119			s alc, hot bz, HOAc
m91	4-Methoxy-2-nitro- aniline	CH ₃ OC ₆ H ₃ (NO ₂)NH ₂	168.15	13, 521			123-126			sl s aq; s alc, eth
m92	2-Methoxynitro- benzene	CH ₃ OC ₆ H ₄ NO ₂	153.14	6, 217	1.2527420	1.516120	10.5	277	>110	0.17 aq; s alc, eth
m93	4-Methoxy-3-nitro- benzoic acid	CH ₃ OC ₆ H ₃ (NO ₂)CO ₂ H	197.15	10, 181			192–194			
m94	2-Methoxy-5-nitro- pyridine	CH ₃ O(C ₅ H ₃ N)NO ₂	154.13	21³, 33			108-109			
m95	4-Methoxy-2-nitro- toluene	CH ₃ OC ₆ H ₃ (NO ₂)CH ₃	167.16	6, 411	1.207	1.552520	17	267	>110	
m96	4-Methoxyphenethyl- amine	CH ₃ OC ₆ H ₃ CH ₂ CH ₂ NH ₂	151.21	13, 626	1.033	1.537920		140 ^{20mm}	>110	
m97	2-Methoxyphenol	CH₃OC ₆ H₄OH	124.14	6, 768	1.112(lg)	1.5429	28	205	82	1.5 aq; misc alc, eth
m98	3-Methoxyphenol	CH₃OC₀H₄OH	124.14	6, 813	1.131	1.551020	< -17.5	115 ^{5mm}	>110	misc alc, eth; sl s aq
m99	4-Methoxyphenol	CH₃OC ₆ H₄OH	124.14	6, 843			5557	243	>110	v s bz; s alk
m100	3-(4-Methoxy- phenoxy)-1,2- propanediol	CH ₃ OC ₆ H ₄ OCH ₂ CH(OH)CH ₂ OH	198.22	6 ³ , 4411			76–80			
m101	4-Methoxyphenyl- acetic acid	CH ₃ OC ₆ H ₄ CH ₂ CO ₂ H	166.18	10, 190			86-88	140 ^{3mm}		1 aq; v s alc; s eth
m102	2-Methoxyphenyl- acetone	CH ₃ OC ₆ H ₄ CH ₂ OCH ₃	164.20	8³, 397	1.054	1.525020		130 ^{10mm}	>110	s alc, eth
m103	2-(Methoxyphenyl)- acetonitrile	CH ₃ OC ₆ H ₄ CH ₂ CN	147.18	10, 188			65-68	143 ^{15mm}		s hot bz

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
m104	4-(Methoxyphenyl)- acetonitrile	CH ₃ OC ₆ H ₄ CH ₂ CN	147.18	10, 191	1.085	1.530020		286287	>110	
m105	1-Methoxy-2-propanol	CH ₃ OCH ₂ CH(OH)CH ₃	90.12	1², 536	0.91920	1.402121	-97	120.1	33	misc aq, acet, bz, eth
m106	2-Methoxypropene	$CH_3C(OCH_3) = CH_2$	72.11	1, 435	0.735	1.382020		34-36	- 29	
m107	trans-1-Methoxy-4- (1-propenyl)benzene	CH₃OC ₆ H₄CH==CHCH₃	148.21	6, 566	0.988340	1.561520	21.4	237	90	misc chl, eth; 50 alc; s bz, EtOAc
m108	2-Methoxy-4-propenyl- phenol	CH ₃ OC ₆ H ₃ (OH)CH=CHCH ₃	164.20	6, 955	1.087420	1.574820	- 10	266	>112	misc alc, eth; sl s aq
m109	2-Methoxy-4-(2- propenyl)phenol	CH ₃ OC ₆ H ₃ (OH)CH ₂ CH==CH ₂	164.20	6, 961	1.0664420	1.540820	-9.2	255	>112	misc alc, chl, eth; s HOAc, alk; i aq
m110	3-Methoxypropionitrile	CH ₃ OCH ₂ CH ₂ CN	85.11	3 ¹ , 113	0.937	1.403020		165	61	
m111	4-Methoxypropio- phenone	CH ₃ OC ₆ H₄COCH ₂ CH ₃	164.20	8, 103	1.071	1.546520	27–29	274	61	
m112	3-Methoxypropylamine	CH ₃ O(CH ₂) ₃ NH ₂	89.14	4³, 739	0.874	1.417520		118 ^{733mm}	22	
m113	2-Methoxypyridine	$CH_3O(C_5H_4N)$	109.13	21, 44	1.038	1.502929		142	32	misc aq
m114	6-Methoxy-1,2,3,4-		162.23	6², 537	1.033	1.540220		90 ^{1mm}	>110	_
	tetrahydro- naphthalene									
m115	6-Methoxy-1-tetralone		176.22	9², 889			77–79	171 ^{11mm}		
m116	2-Methoxytoluene	CH ₃ OC ₆ H ₄ CH ₃	122.17	6, 352	0.985115	1.516120		170-172	51	i aq; v s alc, eth
m117	3-Methoxytoluene	CH ₃ OC ₆ H ₄ CH ₃	122.17	6, 376	0.969725	1.513120		175-176	54	s alc, bz, eth; i aq
m118	4-Methoxytoluene	CH ₃ OC ₆ H ₄ CH ₃	122.17	6, 392	0.96925	1.511220		174	53	s alc, eth; i aq
m119	Methoxytrimethyl- silane	CH ₃ OSi(CH ₃) ₃	104.23	4 ³ , 1856	0.7560420	1.367820		5758	-30	
m120	N-Methylacetamide	CH ₃ CONHCH ₃	73.10	4, 58	0.946035	1.425335	30.6	206	108	s aq
m121	4'-Methylacetanilide	CH3OCONHC6H4CH3	149.19	12, 920			150	307		
m122	Methyl acetate	CH ₃ CO ₂ CH ₃	74.08	2, 224	0.934242	1.361920	- 98	57	- 10 (CC)	24 aq; misc alc, eth
m123	Methyl acetoacetate	CH ₃ COCH ₂ CO ₂ CH ₃	116.12	3, 632	1.075720	1.418620	27.5	171.7	77	50 aq; misc alc
m124	4'-Methylaceto- phenone	CH ₃ C ₆ H ₄ COCH ₃	134.18	7, 307	1.0051	1.532820	22–24	226	92	i aq; v s alc, eth
m125	Methyl 4-acetoxy- benzoate	CH ₃ CO ₂ C ₆ H ₄ CO ₂ CH ₃	194.19	10, 159			82-84			
m126	Methyl acrylate	H ₂ C=CHCO ₂ CH ₃	86.09	2, 399	0.954140	1.404020	- 76.5	80.2	-3 (CC)	6 aq; s alc, eth
m127	Methylamine	CH ₃ NH ₂	31.06	4, 32	0.6994		-93.5	-6.3	0	959 mL aq; 10.5 bz
m128	1-(Methylamino)-		237.26	14, 179			170-172			-
	anthraquinone									

m129	Methyl 2-amino-	H ₂ NC ₆ H ₄ CO ₂ CH ₃	151.17	14, 317	1.16849	1.582020	24	256	104	sl s aq; v s alc, eth
m130	Methyl 3-amino- crotonate	CH ₃ C(NH ₂)=CHCO ₂ CH ₃	115.13	3, 632			8183			
m131	2-(Methylamino)- ethanol	CH ₃ NHCH ₂ CH ₂ OH	75.11	4, 276	0.93720	1.438720		159	72	misc aq, alc, eth
m132	4-Methylaminophenol sulfate	$(CH_3NC_6H_4OH)_2 \cdot H_2SO_4$	344.39	13, 441			260 dec			4 aq; sl s alc; i eth
m133	Methyl 2-(amino- sulfonyl)benzoate	H ₂ HSO ₂ C ₆ H ₄ CO ₂ CH ₃	215.23	11, 377			126-128			
m134	N-Methylaniline	C ₆ H₅NHCH ₃	107.16	12, 135	0.989420	1.568420	- 57	196	78	sl s aq; s alc, eth
m135	N-Methylanilinium trifluoroacetate	C ₆ H ₅ NHCH ₃ · HO ₂ CCF ₃	221.18				65–66			
m136	2-Methyl- anthraquinone		222.24	7, 809			170-173			v s bz; s alc, eth
m137	Methylarsonic acid	CH ₃ AsO(OH) ₂	139.96	4, 613			161			v s aq; s alc
m138	4-Methylbenzaldehyde	CH ₃ C ₆ H ₄ CHO	120.15	7, 297	1.019447	1.544720		205	80	misc alc, eth; sl s aq
m139	Methyl benzene- sulfonate	C ₆ H ₅ SO ₂ OCH ₃	172.20	11², 20	1.28894	1.515120	-4	154 ^{20mm}		v s alc, chl, eth
m140	2-Methylbenzimida- zole		132.17	23, 145			176177			s alk, hot aq; sl s alc
m141	Methyl benzoate	C ₆ H ₅ CO ₂ CH ₃	136.15	9, 109	1.093345	1.520515	- 15	199.5	83	0.2 aq; misc alc, eth
m142	2-Methylbenzoic acid	CH ₃ C ₆ H₄CO ₂ H	136.15	9, 462	1.062		103.7	258259		sł s aq; v s alc
m143	3-Methylbenzoic acid	CH ₃ C ₆ H ₄ CO ₂ H	136.15	9, 475	1.054		111-113	263		0.09 aq; v s alc
m144	4-Methylbenzoic acid	CH ₃ C ₆ H ₄ CO ₂ H	136.15	9, 483			180	274-275		v s alc, eth
m145	4-Methylbenzo- phenone	CH₃C ₆ H₄COC ₆ H₅	196.25	7, 440			57	326		v s bz, eth
m146	2-Methylbenzothiazole		149.22	27, 46	1.173	1.617020	12-14	238	102	s alc, HOAc; i aq
m147	2-Methylbenzoxazole		133.15	27, 46	1.121	1.549720	8-10	178	75	_
m148	α-Methylbenzyl acetate	CH ₃ CO ₂ CH(CH ₃)C ₆ H ₅	164.20	6, 476	1.028	1.494520		95 ^{12mm}	91	
m149	α-Methylbenzyl alcohol	C ₆ H ₅ CH(CH ₃)OH	122.17	6, 475	1.019143	1.526520	20	204 ^{745mm}	85	v s alc; s bz, chl
m150	2-Methylbenzyl alcohol	CH₃C ₆ H₄CH₂OH	122.17	6, 484		1.540820	33-36	110 ^{14mm}	104	5 aq; 5 alc; s eth
m151	(±)-α-Methylbenzyl- amine	C ₆ H ₅ CH(CH ₃)NH ₂	121.18	12, 1094	0.940	1.526020		185	79	4.2 aq; misc alc, eth
m152	4-Methylbenzylamine	CH ₃ C ₆ H₄CH ₂ NH ₂	121.18	12, 1141	0.952	1.534020	12-13	195	75	

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
m153	Methylbis(trimethyl- silyloxy)vinyl ether	CH ₃ Si[OSi(CH ₃) ₂]CH==CH ₂	148.55	4 ^₄ , 4184	0.864	1.397020		48 ^{8.8mm}	51	
m154	Methyl bromoacetate	BrCH ₂ CO ₂ CH ₃	152.98	2, 213	1.616	1.458620		52 ^{15mm}	62	s alc
m155	(±)-Methyl 2-bromo- butyrate	CH ₃ CH ₂ CH(Br)CO ₂ CH ₃	181.04	2, 282	1.573	1.45220		138 ^{50mm}	68	
m156	Methyl 2-bromo- propionate	CH ₃ CH(Br)CO ₂ CH ₃	167.01	2, 253	1.497	1.542020		51 ^{19mm}	51	s alc
m157	2-Methyl-1,3- butadiene	$H_2C = C(CH_3)CH = CH_2$	68.12	1, 252	0.6814	1.421620	- 146.0	34.1	-53	misc alc, eth
m158	2-Methylbutane	CH ₃ CH ₂ CH(CH ₃) ₂	72.15	1, 134	0.619720	1.353720	- 159.9	27.8	- 56	0.005 aq; misc alc
m159	2-Methyl-1-butenethiol	CH ₃ CH ₂ CH(CH ₃)CH ₂ SH	104.22	1², 421	0.848	1.446520		117	19	s alc, eth; i aq
m160	2-Methyl-2-butanethiol	CH ₃ CH ₂ C(CH ₃) ₂ SH	104.22	1 ¹ , 196	0.842	1.438520	~ 103.9	99.1	-1	s alc, eth; i aq
m161	2-Methyl-1-butanol	CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	88.15	1, 388	0.816420	1.410020	<-70	128	43	3 aq; misc alc, eth
m162	2-Methyl-2-butanol	CH ₃ CH ₂ C(CH ₃) ₂ OH	88.15	1, 388	0.809620	1.405020	-9.0	102.0	21	11 aq; misc alc, bz, chl, eth
m163	3-Methyl-1-butanol	(CH ₃) ₂ CHCH ₂ CH ₂ OH	88.15	1, 392	0.812945	1.408515	- 117	131	45	2 aq; misc alc, bz, chl, eth, PE, HOAc
m164	3-Methyl-2-butanol	(CH ₃) ₂ CHCH(OH)CH ₃	88.15	1, 391	0.817920	1.409120		112.9	38	2.8 aq; misc alc, eth
m165	3-Methyl-2-butanone	(CH ₃) ₂ CHCOCH ₃	86.13	1, 682	0.80240	1.388020	- 92	94.3	6	misc alc, eth
m165a	2-Methyl-1-butene	$C_2H_5C(CH_3) = CH_2$	70.14	1, 211	0.650	1.378020	- 137.6	31	< - 34	
m166	2-Methyl-2-butene	$CH_3CH = C(CH_3)_2$	70.14	1, 211	0.6620420	1.387820	-133.8	38.6	-45	misc alc, eth; i aq
m167	3-Methyl-1-butene	(CH ₃) ₂ CHCH=CH ₂	70.14	1, 213	0.6272420	1.363820	- 168	20	- 56	misc alc, eth
m168	cis-2-Methyl-2- butenoic acid	CH ₃ CH=C(CH ₃)CO ₂ H	100.12	2, 428	0.98347	1.443747	45	185		s alc, eth; v s hot aq
m169	trans-2-Methyl-2- butenoic acid	CH ₃ CH=C(CH ₃)CO ₂ H	100.12	2, 430	0.969	1.434281	64	198		s alc, eth; v s hot aq
m170	3-Methyl-2-butenoic acid	(CH ₃) ₂ C==CHCO ₂ H	100.12	2, 432	1.00624		69	194195		s aq, alc, eth
m1 71	2-Methyl-3-buten-2-ol	(CH ₃) ₂ C(OH)CH==CH ₂	86.13	1, 444	0.824	1.417020	2.6	9899	13	
m172	3-Methyl-2-buten-1-ol	(CH ₃) ₂ C=CHCH ₂ OH	86.13	1, 444	0.848	1.444020		140	43	
m173	3-Methyl-3-buten-1-ol	$H_2C = C(CH_3)CH_2CH_2OH$	86.13		0.853	1.433720			36	
m174	2-Methyl-1-buten-3-	$H_2C = C(CH_3)C \equiv CH$	66.10	1 ¹ , 126	0.695	1.414020	- 113	32	-6	
	yne									
m175	N-Methylbutylamine	CH ₃ CH ₂ CH ₂ CH ₂ NCH ₃	87.17	4, 157	0.736	1.399520	- 75	91	1	
m176	1-Methylbutylamine	CH ₃ CH ₂ CH ₂ CH(CH ₃)NH ₂	87.17	4, 177	0.7384420	1.402920		91	35	misc aq, alc, eth
m177	3-Methylbutyl 3- methylbutyrate	(CH ₃) ₂ CHCH ₂ CH ₂ O ₂ CCH ₂ - CH(CH ₃) ₂	172.27	2, 312	0.854125	1.410025		190.4	84	misc alc, eth
m178	3-Methyl-1-butyne	(CH ₃) ₂ CHC≡CH	68.12	1, 251	0.666420	1.374020	- 89.8	26.4		misc alc, eth
m179	2-Methyl-3-butyne-2-ol	(CH ₃) ₂ C(OH)C≡CH	84.12	11, 235	0.867220	1.420920	2.6	104	25	misc aq, acet, bz

m180	2-Methylbutyraldehyde	CH ₃ CH ₂ CH(CH ₃)CHO	86.13	1 ¹ , 352	0.804	1.391920		90-92	4	
m181	3-Methylbutyraldehyde	(CH ₃) ₂ CHCH ₂ CHO	86.13	1, 684	0.78520	1.388220	-51	92-93	19	misc alc, eth; sl s aq
m182	Methyl butyrate	CH ₃ CH ₂ CH ₂ CO ₂ CH ₃	102.13	2, 270	0.898420	1.386020	- 85.8	103	11	1.4 aq; misc alc, eth
m183	2-Methylbutyric acid	CH ₃ CH ₂ CH(CH ₃)CO ₂ H	102.13	2, 305	1.405520			176.5	73	
m184	3-Methylbutyric acid	(CH ₃) ₂ CHCH ₂ CO ₂ H	102.13	2, 309	0.930820	1.403320	- 29.3	176.5	70	4 aq; s alc, chl, eth
m185	3-Methylbutyronitrile	(CH ₃) ₂ CHCH ₂ CN	83.13	2², 278	0.792549	1.392720	- 101	129		misc alc, eth
m186	3-Methylbutyryl chloride	(CH ₃) ₂ CHCH ₂ COCl	120.58	2, 315	0.985420	1.416120		115–117	18	dec aq, alc; s eth
m187	Methyl carbamate	H ₂ NCO ₂ CH ₃	75.07	3, 21	1.136456		5658	177		220 aq; 73 alc; s eth
m188	Methyl chloroacetate	CICH ₂ CO ₂ CH ₃	108.52	2, 197	1.23820	1.422020	- 32	130	51	i aq; misc alc, eth
m189	Methyl 2-chloroaceto- acetate	CH ₃ COCH(Cl)CO ₂ CH ₃	150.56		1.236	1.446520	- 32.7	137	71	
m190	Methyl 4-chloroaceto- acetate	CICH ₂ COCH ₂ CO ₂ CH ₃	150.56	3², 426	1.305	1.456420		85 ^{4mm}	102	
m191	Methyl 3-chloro- benzoate	ClC ₆ H ₄ CO ₂ CH ₃	170.60	9, 338	1.227	1.492320	21	101 ^{12mm}	104	
m192	Methyl-4-chloro- benzoate	ClC ₆ H ₄ CO ₂ CH ₃	170.60	9, 340	1.38220		42-44		106	s alc
m193	Methyl 4-chloro- butyrate	ClCH ₂ CH ₂ CH ₂ CO ₂ CH ₃	136.58	2, 278	1.126814	1.432120		175-176	59	v s eth; s alc, acet
m194	Methyl chloroformate	CICO ₂ CH ₃	94.50	3, 9	1.223420	1.386520		70-72	17	misc alc, bz, chl, eth
m195	Methyl 3-(chloro- formyl)propionate	CH ₃ O ₂ CCH ₂ CH ₂ COCl	150.56	2², 553	1.223	1.440220		65 ^{3mm}	73	
m196	Methyl 2-chloro- propionate	CH ₃ CH(Cl)CO ₂ CH ₃	122.55	2, 248	1.075	1.419320		132-133	38	s alc
m197	2-Methylcinnam- aldehyde	C ₆ H ₅ CH=C(CH ₃)CHO	146.19	7, 369	1.040747	1.604520		149 ^{27mm}	79	
m198	Methyl <i>trans</i> - cinnamate	C ₆ H ₅ CH=CHCO ₂ CH ₃	162.19	9, 581			36-38	262	>110	
m199	6-Methylcoumarin		160.17	17, 337			75-76	303 ^{725mm}		
m200	Methyl crotonate	CH ₃ CH==CHCO ₂ CH ₃	100.12	2,410	0.94444	1.424220		121	4	v s alc, eth; i aq
m201	Methyl cyanoacetate	NCCH ₂ CO ₂ CH ₃	99.09	2, 584	1.122525	1.416625	- 22.5	201	>110	misc alc, eth
m202	Methylcyclohexane	$C_6H_{11}CH_3$	98.19	5, 29	0.769420	1.422120	- 126.6	100.9	-4	
m203	Methyl cyclohexane-	C ₆ H ₁₁ CO ₂ CH ₃	142.20	9, 8	0.995446	1.443020		183	60	i aq; s alc, eth
m204	carboxylate 4-Methyl-1,2-cyclo- hexanedicarboxylic		168.19		1.162	1.477420			>110	
	anhydride									

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

			i					i	1	
No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
m205	1-Methylcyclohexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 11 6 ² 17	0.925125	1.4587 ²⁵	25 7	155	67 58	i aq; b bz, chl misc alc. eth
111200	hexanol	$CH_{3}C_{6}H_{10}OH$	114.17	0,17	0.95004	1.4040	,	105	50	mise ale, cui
m207	trans-2-Methylcyclo- hexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 11	0.9247_4^{20}	1.461620	- 2	167.5	65	misc alc; s eth
m208	cis-3-Methylcyclo- hexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 12	0.9155 ²⁰	1.457220	-6	168	62	misc alc, eth
m209	trans-3-Methylcyclo- hexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 12	0.921420	1.458020	- 0.5	167	62	
m210	cis-4-Methylcyclo- hexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 14	0.917020	1.461420	- 9.2	173	70	misc alc, eth
m211	trans-4-Methylcyclo- hexanol	CH ₃ C ₆ H ₁₀ OH	114.19	6, 14	0.911841	1.455920		174	70	misc alc; s eth
m212	2-Methylcyclo- hexanone	CH ₃ C ₆ H ₉ (==O)	112.17	7, 14	0.925420	1.447820		162	46 (CC)	i aq; s alc, eth
m213	3-Methylcyclo- hexanone	CH ₃ C ₆ H ₉ (==O)	112.17	7, 15	0.91554	1.446020		169	51	i aq; s alc, eth
m214	4-Methylcyclo- hexanone	CH ₃ C ₆ H ₉ (==0)	112.17	7, 18	0.916420	1.445520		171	40	i aq; s alc, eth
m215	1-Methyl-1-cyclo- hexene		96.17	5, 66	0.80940	1.450220	- 121	111	- 3	i aq; s alc, eth
m216	4-Methyl-1-cyclo- hexene		96.17	5, 67	0.799	1.441220	- 115.5	102	-1	i aq; s alc, eth
m217	6-Methyl-3-cyclo- hexene-1-methanol		126.20		0.954	1.483020				
m218	N-Methylcyclohexyl- amine	C ₆ H ₁₁ NHCH ₃	113.20	12, 6	0.868	1.4560 ²⁰		149	??	
m219	3-Methylcyclohexyl- amine	CH ₃ C ₆ H ₁₀ NH ₂	113.20	12, 10	0.855	1.4525 ²⁰		150 ^{730mm}	22	
m220	4-Methylcyclohexyl- amine	CH ₃ C ₆ H ₁₀ NH ₂	113.20	12, 12	0.955	1.453120		151154	26	
m221	Methylcyclopentadiene dimer		160.26	5⁴ , 1435	0.941	1.497620	51	200	26	
m222	Methylcyclopentane	C₅H₀CH₃	84.16	5, 27	0.748720	1.409720	142.4	71.8	-23	0.013 aq
m223	3-Methyl-1,2-cyclo- pentanedione		112.13	7 ¹ , 310			105-107			-
m224	2-Methylcyclo- pentanone		98.15	7², 13	0.9200420	1.434720	-76	139	26	s aq; v s alc, eth

m225	Methyl cyclopropane- carboxylate	C ₃ H ₃ CO ₂ CH ₃	100.12	9 ¹ , 3	0.985	1.4181 ²⁰		119	17	
m226	Methyl decanoate	CH ₃ (CH ₂) ₈ CO ₂ CH ₃	186.30	2, 356	0.873	1.425520	-18	223	94	i aq; misc alc, eth
m227	Methyl dichloroacetate	Cl ₂ CHCO ₂ CH ₃	142.97	2, 203	1.380819	1.442120	- 52	143	80	i aq; s alc
m228	Methyl 2,2-dichloro-1-		183.03		1.245	1.463920		74 ^{8mm}	74	
	methylcyclopro-									
	panecarboxylate									
m229	Methyl 2,3-dichloro-	ClCH ₂ CH(Cl)CO ₂ CH ₃	157.00	2 ¹ , 111	1.3282420	1.444720		92 ^{50mm}	42	s alc
	propionate									
m230	N-Methyldiethanol-	CH ₃ N(CH ₂ CH ₂ OH) ₂	119.16	4, 284	1.037720	1.468520		248	126	misc aq, alc
	amine									
m231	Methyl 3,4-dimethoxy-	(CH ₃ O) ₂ C ₆ H ₃ CO ₂ CH ₃	196.20	10, 396			59-62	283		
	benzoate									
m232	Methyl 3,5-dimethoxy-	$(CH_3O)_2C_6H_3CO_2CH_3$	196.20	10, 405			43	298	>110	
	benzoate									
m233	Methyl 3-(dimethyl-	(CH ₃) ₂ NCH ₂ CH ₂ CO ₂ CH ₃	131.18	4, 403	0.917	1.418420		154	51	
	amino)propionate									
m234	Methyl 2,5-dimethyl-		154.17	18, 398	1.037	1.475020		198	80	
	3-furoate									
m235	Methyl 2,2-dimethyl-	(CH ₃) ₃ CCO ₂ CH ₃	116.16	2 ¹ , 139	0.873	1.388020		101-103	-1	misc alc, eth; sl s aq
	propionate									
m236	N-Methyldioctylamine	$(C_8H_{17})_2NCH_3$	255.49	4 ³ , 381	1.066	1.442420	- 30.1	165 ^{15mm}	>110	
m237	4-Methyl-1,3-dioxane		102.13	19⁴, 49	0.976	1.415020	-45	114	22	
m238	N-Methyldiphenyl-	$(C_6H_5)_2NCH_3$	183.26	12, 180	1.04840	1.619320	-7.6	135 ^{6mm}		i aq; s alc, eth
	amine									
m239	Methyl diphenyl-	(C ₆ H ₅) ₂ C(OH)CO ₂ CH ₃	242.27	10, 344			74–76	187 ^{13mm}		
	glycolate									
m240	3-Methyl-1,1-diphenyl-	(C ₆ H ₅) ₂ NCONHCH ₃	226.28	12,2, 852			172–174			
	urea									
m241	Methyleneaminoaceto-	$CH_2 = NCH_2CN$	68.08	Merck:			129			s hot aq, alc; sl s bz
	nitrile			11, 5976						
m242	N,N'-Methylenebis-	H ₂ C==CHC(==O)NHCH ₂ -	154.17				>300			
	acrylamide	NHC(==O)CH==CH ₂								
m243	2,2'-Methylenebis-	$CH_2[C_6H_3(Cl)OH]_2$	269.13	6,3, 5408			168-172			100 EtOH; 100 eth; s
	(4-chlorophenol)									PE
m244	4,4'-Methylenebis-	$CH_{2}\{C_{6}H_{2}[C(CH_{3})_{3}]_{2}OH\}_{2}$	424.67	64, 6811			156-158	289 ^{40mm}		
	(2,6-di-tert-butyl-									
	phenol									
				1		1	1			1

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
m245	4,4'-Methylenebis- (<i>N</i> , <i>N</i> -dimethyl- aniline)	$CH_2[C_6H_4N(CH_3)_2]_2$	254.38	13, 239			88-89			
m246	1,1'-Methylenebis(3- methylpiperidine)	CH ₂ [CH ₃ C ₅ H ₉ N] ₂	210.37		0.887	1.473420		160 ^{50mm}	>110	
m247	4,4'-Methylenebis- (phenylisocyanate)	$CH_2(C_6H_4NCO)_2$	250.26	13,3, 461	1.180		42-44	200 ^{5mm}	>110	
m248	Methylene blue		373.90	27, 393			190 dec			4 ag; 1.3 alc; s chl
m249	4,4'-Methylenedi- aniline	$CH_2(C_6H_4NH_2)_2$	198.26	13, 238			89–91	399	221	v s alc, bz, eth; sl s aq
m250	3,4-Methylenedioxy- benzaldehyde		150.13	19, 115			37	264	>110	0.2 aq; v s alc, eth
m251	1,2-Methylenedioxy- benzene		122.12	19, 20	1.064	1.5398		173	55	
m252	3,4-Methylenedioxy-6- propylbenzyldi- ethyleneglycol butyl ether		338.45	19³, 779	1.059	1.498		180 ^{1mm}	171	misc alc, bz, geons
m253	Methylenesuccinic acid	H ₂ C=C(CO ₂ H)CH ₂ CO ₂ H	130.10	2, 760	1.573		167			8.2 aq; 20 alc; v sl s bz. chl. eth. PE
m254	N-Methylethylene- diamine	CH ₃ NHCH ₂ CH ₂ NH ₂	74.13	4 ¹ , 415	0.841	1.439520		114-116	42	
m255	N-Methylformamide	HC(=O)NHCH ₃	59.07	4, 58	0.998825	1.430025	-4	199.5	98	misc aq
m256	N-Methylformanilide	C ₆ H ₅ N(CH ₃)CHO	135.17	12, 234	1.095	1.5610 ²⁰	8-13	244	126	
m257	Methyl formate	HCO ₂ CH ₃	60.05	2, 18	0.981515	1.346515	99	31.7	- 19	30 aq; misc alc
m258	5-Methylfuraldehyde		110.11	17, 289	1.1072 ¹⁸	1.526320		187	72	s aq; v s alc; misc eth
m259	2-Methylfuran		82.10	17, 36	0.91540	1.433220	-88	63-66	-22	0.3 aq
m259a	Methyl 2-furoate		126.11	18, 274	1.17920	1.487920		181	73	s alc, eth; sl s aq
m260	Methylgermanium tribromide	CH ₃ GeBr ₃	327.35		2.6337420	1.577020		168		
m261	N-Methylglucamine		195.22	Merck: 12, 6154			128-129			100 aq ²⁵ ; 1.2 alc ⁷⁰
m262	Methyl-α-D-gluco- pyranoside		194.18	31, 179	1.4640		168	200 ^{0.2mm}		63 aq; 1.6 alc; i eth
m263	(±)-2-Methylglutaro- nitrile	NCCH ₂ CH ₂ CH(CH ₃)CN	108.14	2, 656	0.950	1.434020	-45	269-271	126	
m264	N-Methylglycine	CH ₃ NHCH ₂ CO ₂ H	89.09	4, 345			208 dec			42 aq; sl s alc
m265	Methyl glycolate	HOCH ₂ CO ₂ CH ₃	90.08	3, 236	1.16848	1.417020	74	151	67	s aq; misc alc, eth

m266	Methyl heptanoate	CH ₃ (CH ₂) ₅ CO ₂ CH ₃	144.22	2, 339	0.8815420	1.411520	- 55.8	173.5	52	s alc, eth; sl s aq
m267	5-Methyl-2-heptanol	(CH ₃) ₂ CH(CH ₂) ₃ CH(OH)CH ₃	130.23	1, 421	0.803	1.424020		172	67	_
m268	5-Methyl-3-heptanone	C ₂ H ₅ CH(CH ₃)CH ₂ COC ₂ H ₅	128.22	1 ¹ , 363	0.823	1.414220		157-162	43	
m269	6-Methyl-5-hepten-2-	(CH ₃) ₂ C=CHCH ₂ CH ₂ COCH ₃	126.20	1 ³ , 3010	0.85546	1.439220	-67	73 ^{18mm}	50	misc alc, eth
	one									
m269a	Methyl hexadecanoate	$CH_3(CH_2)_{14}CO_2CH_3$	270.46	2, 372	0.852	1.451220	32-34	196 ^{15mm}	>110	s alc, chl, eth
m270	Methyl hexanoate	CH ₃ (CH ₂) ₄ CO ₂ CH ₃	130.19	2, 323	0.90384	1.403823	-71	151	45	v s alc, eth
m271	5-Methyl-2-hexanone	(CH ₃) ₂ CHCH ₂ CH ₂ COCH ₃	114.19	1², 756	0.888420	1.406220	-73.9	144	3641	0.5 aq; misc alc, eth
m272	1-Methylhexylamine	CH ₃ (CH ₂) ₄ CH(NH ₂)CH ₃	115.22	4, 194	0.766518	1.417520		144	54	sl s aq; s alc, eth
m273	1-Methylhydantoin		114.10	24, 244			157	subl		s aq, alc; 3 eth
m274	Methylhydrazine	CH ₃ NHNH ₂	46.07	4², 957	0.866	1.422520	- 52.4	87.5	21	misc aq, alc; s PE
m275	Methyl hydrazino-	H ₂ NNHCO ₂ CH ₃	90.08	31, 46			70-73	108 ^{12mm}		
	carboxylate									
m276	Methyl hydrogen	HO ₂ CCH ₂ CH ₂ CH ₂ CO ₂ CH ₃	146.14	2², 565	1.169	1.438120		151 ^{10mm}	>110	
	glutarate									
m277	Methyl hydrogen	HO ₂ C(CH ₂) ₄ CO ₂ H	160.17	2, 652	1.081	1.440120	8-9	162 ^{10mm}	>110	s alc
	hexanedioate									
m278	Methyl hydrogen	HO ₂ CCH ₂ CH ₂ CO ₂ H	132.12	2,608			56-59	151 ^{20mm}		v s aq, alc, eth
	succinate				1					
m279	Methyl hydroperoxide	CH₃OOH	48.04	1², 270	1.99745	1.364215		38 ^{65mm}		misc aq, alc, eth; s bz
m280	Methylhydroquinone	$CH_{3}C_{6}H_{3}$ —1,4-(OH) ₂	124.14	6, 874			128-130			
m281	Methyl 4-hydroxy-	HOC ₆ H ₄ CO ₂ CH ₃	152.15	10, 158			126-128	270 dec		v s alc, eth, acet; 0.25
	benzoate									aq
m282	Methyl 2-hydroxy-	(CH ₃) ₂ C(OH)CO ₂ CH ₃	118.13	3², 223	1.023	1.411220		127	42	v s aq, alc
	isobutyrate									
m283	Methyl 4-hydroxy-	HOC ₆ H ₄ CH ₂ CO ₂ CH ₃	166.18	10, 191			57-60	163 ^{5mm}		
	phenylacetate									
m284	2-Methylimidazole		82.11	23, 46	1.030	1.496020	- 60	198	92	misc aq
m285	2-Methylimidazole		82.11	23, 65			142-143	268		
m286	4-Methylimidazole		82.11	23, 69			53-56	263	>110	
m287	2-Methyl-1H-indole		131.18	20, 311	1.0740		58-60	273		v s alc, eth; s hot aq
m288	2-Methylindoline		133.19	20, 279	1.023	1.568120		229	93	
m289	N-Methylisatoic		177.16	27, 265			165 dec			
	anhydride									
m290	Methyl isobutyrate	(CH ₃) ₂ CHCO ₂ CH ₃	102.13	2, 290	0.89120	1.384020	- 84.7	92.5	3	misc alc, eth; sl s aq
m291	Methyl isocyanate	CH ₃ NCO	57.05	4, 77	0.967	1.369520	-45	39	-6	s aq
m292	Methyl isodehydr-		182.18	18, 410			68-70	167 ^{14mm}		
	acetate									

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued))
-------------------	----------	--------------	---------	-----------	-------------	---

			Formula	Beilstein	Density	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
m293	N-Methylisopropyl- amine	(CH ₃) ₂ CHNHCH ₃	73.14	4 ¹ , 153	0.702	1.384020	50-53		-31	
m294 m295	Methyl isothiocyanate 5-Methylisoxazole	CH ₃ NCS	73.12 83.09	4, 77 27, 16	1.069 1.018	1.5258 ³⁷ 1.4386 ²⁰	35	118 122	32 30	v s alc, eth; sl s aq
m296	Methyl lactate	CH ₃ CH(OH)CO ₂ CH ₃	104.10	3, 280	1.08840	1.4131 ²⁰		144-145	49	s aq (dec), alc, eth
m297	Methyl mandelate	C ₆ H ₅ CH(OH)CO ₂ CH ₃	166.18	10, 202	1.175620		54-56	135 ^{12mm}	>110	s aq, alc, bz, chl
m298	Methyl mercapto- acetate	HSCH ₂ CO ₂ CH ₃	106.14		1.187	1.465720		43 ^{10mm}	30	s alc, eth
m299	Methyl 3-mercapto- propionate	HSCH ₂ CH ₂ CO ₂ CH ₃	120.17	3², 214	1.085	1.466020		55 ^{14mm}	60	
m300	Methyl methacrylate	$H_2C = C(CH_3)CO_2CH_3$	100.12	2², 398	0.943320	1.414020	-48	100	10	1,6 aq; s ketones, esters, CCl ₄
m301	Methyl methane- sulfonate	CH ₃ SO ₂ OCH ₃	110.13	4, 4	1.294340	1.413820		202-203	104	20 aq; 100 DMF
m302	Methyl methoxyacetate	CH ₃ OCH ₂ CO ₂ CH ₃	104.11	3, 236	1.051120	1.396420		130	35	v s alc, eth; sl s aq
m303	Methyl 4-methoxy- acetoacetate	CH ₃ OCH ₂ COCH ₂ CO ₂ CH ₃	146.14	34, 1939	1.129	1.431620		89 ^{8.5mm}	89	
m304	Methyl 2-methoxy- benzoate	CH ₃ OC ₆ H ₄ CO ₂ CH ₃	166.18	10, 71	1.157	1.533520		248	>110	
m305	Methyl 4-methoxy- benzoate	CH ₃ OC ₆ H ₄ CO ₂ CH ₃	166.18	10, 159			51	245	>110	
m306	Methyl 4-methoxy- phenylacetate	CH ₃ OC ₆ H ₄ CH ₂ CO ₂ CH ₃	180.20	10, 191	1.135	1.516520		158 ^{19mm}	36	
m307	Methyl 4-methoxy- propionate	CH ₃ OCH ₂ CH ₂ CO ₂ CH ₃	118.13	3, 297	1.009	1.4020		142-143	47	
m308	1-Methyl-4-(methyl- amino)piperidine		128.22		0.882	1.467220			55	
m309	Methyl 2-methyl- benzoate	CH ₃ C ₆ H ₄ CO ₂ CH ₃	150.18	9, 463	1.073	1.519020		207-208	82	
m310	Methyl 3-methyl- benzoate	CH ₃ C ₆ H ₄ CO ₂ CH ₃	150.18	9, 475	1.063	1.516020		113 ^{27mm}	95	
m311	Methyl 4-methyl- benzoate	CH ₃ C ₆ H ₄ CO ₂ CH ₃	150.18	9, 484			33-36	104 ^{15mm}	90	
m312	Methyl 2-methyl- butyrate	C ₂ H ₅ CH(CH ₃)CO ₂ CH ₃	116.16	2, 304	0.885	1.393120		115	32	sl s aq; misc alc, eth
m313	2-Methyl-6-methylene- 2-octanol	$C_2H_3C(=CH_2)(CH_2)_3C(CH_3)_2OH$	156.27		0.784	1.443120		84 ^{10mm}	76	

m314	Methyl 2-methyl-3- furancarboxylate		140.14		1.116	1.4730 ²⁰		75 ^{20mm}	63	
m315	Methyl S-methylthio- methyl sulfoxide	CH ₃ S(==O)CH ₂ SCH ₃	124.22		1.191	1.5487 ²⁰		95 ^{2.5mm}	>110	
m316	Methyl 3-(methyl- thio)propionate	CH ₃ SCH ₂ CH ₂ CO ₂ CH ₃	134.20		1.077	1.465020		75 ^{13mm}	72	
m317	4-Methylmorpholine		101.15	27,6	0.920	1.434920	- 66	116	23	s aq, alc, eth
m318	1-Methylnaphthalene	$C_{10}H_7CH_3$	142.20	5, 566	1.020220	1.6170 ²⁰	- 30.4	245	82	v s alc, eth
m319	2-Methylnaphthalene	$C_{10}H_7CH_3$	142.20	5, 567	1.0294	1.602640	34.4	241	97	v s alc, eth
m320	Methyl 1-naphthalene- acetate	C ₁₀ H ₇ CH ₂ CO ₂ CH ₃	200.24	9 ³ , 3206	1.142	1.596120		162 ^{5mm}	>110	
m321	2-Methyl-1,4-naphtho- quinone		172.18	7², 656			105-107			1.4 alc; 10 bz; s chl
m322	Methyl 1-naphthyl ketone	C ₁₀ H ₇ COCH ₃	170.21	7, 401	1.13364	1.628420	11	302	>110	s alc, eth; i aq
m323	Methyl 2-naphthyl ketone	C ₁₀ H ₇ COCH ₃	170.21	7, 402			53-55	301	>110	sl s alc; s CS ₂
m324	Methyl nitrate	CH ₃ ONO ₂	77.04	1, 284	1.20754	1.374820	- 83	64 expl		sl s aq; s alc, eth
m325	Methyl nitrite	CH ₃ ONO	61.04	1, 284	0.991(lq)			-17.3		s alc, eth
m326	N-Methyl-4-nitro- aniline	O ₂ NC ₆ H ₄ NHCH ₃	152.15	12, 714			152-154			
m327	2-Methyl-3-nitro- aniline	CH ₃ C ₆ H ₃ (NO ₂)NH ₂	152.15	12, 848			88-90	305		
m328	2-Methyl-4-nitro- aniline	CH ₃ C ₆ H ₃ (NO ₂)NH ₂	152.15	12, 846	1.1586140		131-133			v s alc; s bz
m329	2-Methyl-5-nitro- aniline	CH ₃ C ₆ H ₃ (NO ₂)NH ₂	152.15	12, 844			104-107			s alc, acet, eth
m330	4-Methyl-2-nitro- aniline	CH ₃ C ₆ H ₃ (NO ₂)NH ₂	152.15	12, 1000			115-116			v s alc; s eth
m331	Methyl 2-nitro- benzoate	O ₂ NC ₆ H ₄ CO ₂ CH ₃	181.15	9, 372	1.280	1.5340 ²⁰	- 13	106 ^{0.1mm}	>110	s alc, eth
m332	Methyl 3-nitro- benzoate	O ₂ NC ₆ H ₄ CO ₂ CH ₃	181.15	9, 378			78-80	279		
m333	Methyl 4-nitro- benzoate	O ₂ NC ₆ H ₄ CO ₂ CH ₃	181.15	9, 390			94–96			

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued))
-------------------	----------	--------------	---------	-----------	-------------	---

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
m334	2-Methyl-3-nitro-	CH ₃ C ₆ H ₃ (NO ₂)CO ₂ H	181.15	9, 471			182-184			
m335	3-Methyl-4-nitro- benzoic acid	CH ₃ C ₆ H ₃ (NO ₂)CO ₂ H	181.15	9, 481			216-218			
m336	4-Methyl-3-nitro- benzoic acid	CH ₃ C ₆ H ₃ (NO ₂)CO ₂ H	181.15	9, 502			187-190			
m337	5-Methyl-2-nitro- benzoic acid	CH ₃ C ₆ H ₃ (NO ₂)CO ₂ H	181.15	9, 482			134-136			
m338	2-Methyl-5-nitro- imidazole		127.10	231, 23			252-254			
m339	3-Methyl-4-nitro- phenol	CH ₃ C ₆ H ₃ (NO ₂)OH	153.14	6, 386			127-129			
m340	4-Methyl-2-nitro- phenol	CH ₃ C ₆ H ₃ (NO ₂)OH	153.14	6, 412	1.24040	1.57440	32-35	125 ^{22mm}	108	v s alc, eth
m341	2-Methyl-2-nitro-1- propanol	O ₂ NC(CH ₃) ₂ CH ₂ OH	119.12	1, 378			86–89	95 ^{10mm}		350 aq
m342	2-Methyl-2-nitropropyl methacrylate	$H_2C = C(CH_3)CO_2CH_2 - C(CH_3)_2NO_2$	187.20	2 ³ , 1288	1.087	1.450020		102 ^{4mm}	>110	
m343	N-Methyl-N-nitroso-4- toluenesulfonamide	CH ₃ C ₆ H ₄ SO ₂ N(CH ₃)NO	214.24	11 ¹ , 29			62			
m344 m345	Methyl 2-nonynoate Methyl-5-norbornene- 2,3-dicarboxylic anhydride	CH ₃ (CH ₂) ₅ C≡CCO ₂ CH ₃	168.24 178.19	2, 490 17², 461	0.915 1.232	1.4484 ²⁰ 1.5060 ²⁰		121 ^{20mm}	100 >110	
m346	Methyl octadecanoate	CH ₃ (CH ₂) ₁₆ CO ₂ CH ₃	298.51	2, 379			38	215 ^{15mm}	>110	s alc, eth
m347	Methyl <i>cis</i> -9-octa- decenoate	$CH_{3}(CH_{2})_{7}CH = CH - (CH_{2})_{7}CO_{2}CH_{3}$	296.50	2, 467	0.83920	1.452120	- 19.9	168 ^{2mm}	>110	misc abs alc, eth
m348	7-Methyl-1,6-octadiene	$(CH_3)_2C = CH(CH_2)_3CH = CH_2$	124.23	14, 1049	0.753	1.436020		143-144	26	
m349	Methyl octanoate	CH ₃ (CH ₂) ₆ CO ₂ CH ₃	158.24	2, 348	0.87754	1.416025	-40	192.9	72	v s alc, eth; i aq
m350 m351	Methyl 2-octynoate 3-Methyl-2- oxazolidinone	CH ₃ (CH ₂)₄C≡CCO ₂ CH ₃	154.21 101.11	2, 487	0.920	1.4460 ²⁰ 1.4541 ²⁰	15	217–220 90 ^{1mm}	88	
m352	2-Methyl-2-oxazoline		85.11	27, 13	1.005	1.434020		110	20	
m353	3-Methyl-3-oxetane- methanol		102.13	17 ³ , 1128	1.024	1.446020		80 ^{40mm}	98	
m354	Methyl 2-oxocyclo- pentanecarboxylate	$(O=)C_{5}H_{7}CO_{2}CH_{3}$	142.16	10, 597	1.145	1.456020		105 ^{19mm}	>110	

m355	Methyl 2-oxo- propionate	CH ₃ C(=O)CO ₂ CH ₃	102.09	3, 616	1.130	1.406520		134–137	39	misc alc, eth; sl s aq
m356	trans-2-Methyl-1,3- pentadiene	CH ₃ CH=CHC(CH ₃)=CH ₂	82.15	1, 255	0.718	1.446920		75–76	-12	
m357	2-Methylpentane	CH ₃ CH ₂ CH ₂ CH(CH ₃) ₂	86.18	1, 148	0.653220	1.372520	- 154	60.3	<-29	
m358	3-Methylpentane	(CH ₃ CH ₂) ₂ CHCH ₃	86.18	1, 149	0.664320	1.376520	- 163	63	<-7	
m359	2-Methyl-1,5-pentane- diamine	H ₂ N(CH ₂) ₃ CH(CH ₃)CH ₂ NH ₂	116.21	4, 270	0.860	1.459020	80			
m360	2-Methyl-2,4- pentanediol	(CH ₃) ₂ C(OH)CH ₂ CH(OH)CH ₃	118.18	1,486	0.9216420	1.427020	-50	198	102	misc aq
m361	4-Methylpentanenitrile	(CH ₃) ₂ CHCH ₂ CH ₂ CN	97.16	2, 329	0.803540	1.406120	- 51.1	156.5	45	s alc; misc eth
m362	Methyl pentanoate	CH ₃ (CH ₂) ₃ CO ₂ CH ₃	116.16	2, 301	0.875	1.396220		128	22	sl s aq; misc alc, eth
m363	2-Methylpentanoic acid	CH ₃ CH ₂ CH ₂ CH(CH ₃)CO ₂ H	116.16	2², 288	0.924220	1.413520	- 85	196.4	107	1.3 aq
m364	2-Methyl-1-pentanol	CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ OH	102.18	1,409	0.826220	1.418020		148	54	s alc, eth
m365	3-Methyl-3-pentanol	(CH ₃ CH ₂) ₂ C(CH ₃)OH	102.18	1,411	0.828120	1.418620	-23.6	123	46	misc alc, eth; sl s aq
m366	4-Methyl-2-pentanol	(CH ₃) ₂ CHCH ₂ CH(OH)CH ₃	102.18	1,410	0.808020	1.411220	-90	132	41	1.6 aq
m367	4-Methyl-2-pentanone	(CH ₃) ₂ CHCH ₂ COCH ₃	100.16	1, 691	0.797820	1.395820	- 84	116.5	18	1.7 aq; misc alc, bz, eth
m368	2-Methyl-2-pentenal	CH ₃ CH ₂ CH=C(CH ₃)CHO	98.15	14, 3471	0.861	1.450320		138	31	s alc
m369	4-Methyl-2-pentenoic acid	(CH ₃) ₂ CHCH=CHCO ₂ H	114.14	2², 406	0.9529	1.4489	35	115 ^{20mm}	46	i aq; v s alc
m370	4-Methyl-3-penten-2- one	(CH ₃) ₂ C=CHCOCH ₃	98.15	1, 736	0.865320	1.444020	- 59	129.5	31	3.1 aq
m370a	4-Methyl-2-pentyl acetate	(CH ₃) ₂ CHCH ₂ CH(CH ₃)O ₂ CCH ₃	144.21		0.880525	1.398020		147.5	45	
m371	1-Methylpentylamine	CH ₃ (CH ₂) ₃ CH(NH ₂)CH ₃	101.19	4, 190	0.76740		- 19	116118	13	s aq, alc, PE
m372	3-Methyl-1-pentyn-3-ol	CH ₃ CH ₂ C(CH ₃)(OH)C≡CH	98.15	1², 506	0.8688420	1.431820	- 30.6	122	26	13 aq, misc bz, acet PE, EtOAc; s eth
m373	4-Methylphenetole	CH ₃ C ₆ H ₄ OCH ₂ CH ₃	136.19	6, 393	0.945	1.504420		189-191	70	
m374	N-(4-Methylphenyl)- acetamide	CH ₃ C ₆ H₄NHCOCH ₃	149.19	12, 920	1.21215		150-153	307		s alc, EtOAc, HOAc
m375	Methyl phenylacetate	C ₆ H ₅ CH ₂ CO ₂ CH ₃	150.18	9, 434	1.044	1.507520		218	90	i aq; misc alc, eth
m376	2-Methyl-1-phenyl-2- propanol	CH ₆ H ₅ CH ₂ C(CH ₃) ₂ OH	150.22	6, 523	0.974	1.514020	25-26	96 ^{18mm}	81	
m377	1-Methyl-3-phenyl- propylamine	C ₆ H ₅ CH ₂ CH ₂ CH(CH ₃)NH ₂	149.24	12, 1165	0.922	1.512320		222	97	

No	Nama	Formula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Ivanie	Formula	weight	Telefence	g/IIIL	muex	point, C	point, C	point, C	parts sorvent
m378	3-Methyl-1-phenyl-2- pyrazolin-5-one		174.20	24, 20			129–130	287 ^{265mm}		
m379	Methyl phenyl sulfide	C ₆ H ₅ SCH ₃	124.21	6, 297	1.058	1.588220	- 15	188	57	i aq; s alc
m380	N-Methyl-N-phenyl- urethane	C ₆ H ₅ N(CH ₃)CO ₂ CH ₂ CH ₃	179.22	12, 417	1.074	1.514920		243–244	>110	
m381	N-Methylpiperazine		100.17		0.903	1.465520		138	42	v s aq, alc, eth
m382	2-Methylpiperazine		100.17	23, 17			65-67	155.6	65	78 aq; 37 acet; 32 bz
m383	N-Methylpiperidine	C ₅ H ₁₀ NCH ₃	99.19	20, 19	0.816	1.437820		106-107	3	v s aq; misc alc, eth
m384	2-Methylpiperidine	CH ₃ C ₅ H ₉ N	99.19	20, 95	0.844	1.445920	-5	119	8	v s aq; misc alc, eth
m385	3-Methylpiperidine	CH ₃ C ₅ H ₉ N	99.19	20, 100	0.845	1.447020		126	17	v s aq
m386	4-Methylpiperidine	CH ₃ C ₅ H ₉ N	99.19	20, 101	0.838	1.445820		124	7	v s aq
m387	1-Methyl-3-piperdine- methanol		129.20	212, 8	1.013	1.477220		140-145	94	
m388	1-Methyl-4-piperidone		113.16	21², 215	0.920	1.461420			60	
m389	2-Methylpropan- aldehyde	(CH ₃) ₂ CHCHO	72.11	1, 671	0.789120	1.372720	- 65	64.1	-40	9 aq; misc alc, bz, chl, eth
m390	2-Methylpropane	(CH ₃) ₃ CH	58.12	1, 124		1.3810-25	- 138	- 11.7	- 87	13 mL aq; 1320 mL alc; 2890 mL eth
m391	N-Methyl-1,3-propane- diamine	H ₂ NCH ₂ CH ₂ CH ₂ NHCH ₃	88.15	4 ¹ , 419	0.844	1.446820		139–141	35	
m392	2-Methyl-1,2-propane- diamine	(CH ₃) ₂ C(NH ₂)CH ₂ NH ₂	88.15	4, 266	0.841	1.441020			23	
m393	2-Methyl-1,3-propane- diol	HOCH ₂ CH(CH ₃)CH ₂ OH	90.12	1, 480	1.015	1.445020	91	125 ^{20mm}	>110	
m394	1-Methyl-1-propane- thiol	CH ₃ CH ₂ CH(SH)CH ₃	90.19	1, 373	0.824645	1.433825	- 165	84-85	21	sl s aq; v s alc, eth
m395	2-Methyl-1-propane- thiol	(CH ₃) ₂ CHCH ₂ SH	90.19	1, 378	0.835720	1.439620	- 79	88.5	-9	v s alc, eth
m396	2-Methyl-2-propane- thiol	(CH ₃) ₃ CSH	90.19	1, 383	0.7943 ²⁵	1.419825	1.1	64.1	-4	i aq
m397	2-Methyl-1-propanol	(CH ₃) ₂ CHCH ₂ OH	74.12	1, 373	0.801620	1.395820	- 108	108	28	10 aq; misc alc, eth
m398	2-Methyl-2-propanol	(CH ₃) ₃ COH	74.12	1, 379	0.788820	1.387720	25.8	82.4	11	misc aq, alc, eth
m399	2-Methylpropene	$(CH_3)_2C = CH_2$	56.11	1, 207	0.6266 ^{mp}		- 140	-6.9		v s alc, eth
m400	2-Methyl-2-propen- 1-ol	H ₂ C=C(CH ₃)CH ₂ OH	72.11	1, 443	0.857	1.426020		113–115	33	
m401	Methyl propionate	CH ₃ CH ₂ CO ₂ CH ₃	85.11	2, 239	0.915420	1.377020	- 88	79.7	6	6 aq; misc alc, eth

m402	Methyl propionyl- acetate	C ₂ H ₅ COCH ₂ CO ₂ CH ₃	130.15	3 ³ , 1212	1.037	1.422020		74 ^{5mm}	71	
m403	4'-Methylpropio- phenone	CH ₃ C ₆ H ₄ COCH ₂ CH ₃	148.21	7, 317	0.993	1.528020	7.2	238-239	96	
m404	Methyl propyl ether	CH ₃ CH ₂ CH ₂ OCH ₃	74.12	1, 354	0.73820			39.1		sl s aq; misc alc, eth
m405	2-Methyl-2-propyl- 1,3-propanediol	CH ₃ CH ₂ CH ₂ C(CH ₃)(CH ₂ OH) ₂	132.20	1 ¹ , 254		58-60	232	>110		
m406	Methyl propyl sulfide	CH ₃ SCH ₂ CH ₂ CH ₃	90.18	1 ³ , 1432	0.842420	1.444220	-113.0	95.5		s aq
m407	Methyl 2-ргорулуl ether	CH₃OCH₂C≡CH	70.09	1, 4541	0.830	1.396120		62	- 18	
m408	2-Methylpyrazine		94.12	23, 94	1.030	1.504220	29	135	50	v s aq, alc, eth
m409	2-Methylpyridine	CH₃C₅H₄N	93.13	20, 234	0.944320	1.495720	-66.7	129	39	misc aq; s alc, eth
m410	3-Methylpyridine	CH₃C₅H₄N	93.13	20, 239	0.956620	1.504020	18.3	144	36	misc aq, alc, eth
m411	4-Methylpyridine	CH₃C₅H₄N	93.13	20, 240	0.954820	1.503720	3.8	145	57	misc aq, alc, eth
m412	Methyl 3-pyridine- carboxylate	$(C_5H_4N)CO_2CH_3$	137.14	22, 39			39	209		s aq, alc, bz
m413	Methyl 4-pyridine-	(C ₅ H₄N)CO ₂ CH ₃	137.14	22, 46	1.001	1.512220	8.5	207-209	82	
	carboxylate									
m414	1-Methyl-2-pyridone		109.13	21, 268	1.112	1.569020	30-32	250 ^{740mm}	>110	
m415	Methyl 3-pyridyl-		152.15	22 ³ , 4076			121-123			
	carbamate									
m416	2-[3-(6-Methyl-2-		195.26		1.052	1.515020			>110	
	pyridyl)propoxy]- ethanol									
m417	N-Methylpyrrole		81.12	20, 163	0.914	1.487520	- 57	112-113	15	i aq; misc alc, eth
m418	N-Methylpyrrolidine		85.15	20, 4	0.81940	1.424720		80-81	-21	misc aq, eth
m419	N-Methyl-2- pyrrolidinone		99.13	21, 237	1.027925	1.468025	-24.4	202	96	misc aq, alc, bz, eth
m420	2-Methylquinoline		143.19	20, 387	1.058	1.610820	-2	248	79	i aq; s chl, eth
m421	4-Methylquinoline		143.19	20, 395	1.0826420	1.620020	9-10	263	>110	misc alc, bz, eth
m422	6-Methylquinoline		143.19	20, 397	1.063	1.614020		259	>110	
m423	2-Methylquinozaline		144.18	23 ¹ , 44	1.118	1.615620	180	245-247	107	misc aq
m424	Methyl salicylate	HOC ₆ H ₄ CO ₂ CH ₃	152.15	10, 70	1.183120	1.536020	- 8	223	96	0.7 aq; misc alc, HOAc; s chl, eth
m425	α -Methylstyrene	$C_6H_5C(CH_3)=CH_2$	118.18	5, 484	0.909	1.537520	- 24	165.5	45	
m426	4-Methylstyrene	CH ₃ C ₆ H ₄ CH=CH ₂	118.18	5, 485	0.897	1.541220		170-175	45	
m427	mono-Methyl succinate	HO ₂ CCH ₂ CH ₁₆₂ CO ₂ CH ₃	132.12	2, 608			5659	151 ^{20mm}		
m428	Methyl tetradecanoate	CH ₃ (CH ₂) ₁₂ CO ₂ CH ₃	242.40	2², 326	0.855	1.436220	18.4	323	>110	misc alc, bz, eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No	Name	Formula	Formula weight	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
420		Tornum	ac 10	17.10	6, mil	1 405 (20	point, c	70	point, C	puits solvent
m429	2-Methyltetrahydro-		86.13	17, 12	0.855220	1.405620		/8	- 11	
120	Turan		100.16	173 77	0.073	1 420 420		100733mm		
m430	3-Mietnyitetranydro-		100.16	1/, //	0.803	1.420420		109/3310	0	
421	pyran		124.00		1 101	1 477020		276	> 110	
m431	3-Metnyitetranydro-		134.20		1.191	1.477220		270	>110	
	4 Mothulthiozolo		00.16	27.16	1.000	1 525720		124	27	
m432	4-Methylimazole		142.21	27.10	1.090	1.5257-		134 1257mm	52	
111455	4-ivicityi-5-unazoic-		143.21	27,5, 1754	1.150	1.5508		155	/ 110	
m121	2 Mothul 2 thiogoline		101.17	27 13	1.067	1 520020	- 101	145	37	
m434	(Methylthio)aceto	CH SCH CN	87 14	27, 15	1.039	1 482620	101	6315mm	67	
11435	nitrile	CH35CH2CIV	07.14		1.057	1.4020		05		
m436	3-(Methylthio)aniline	CH-SC-H-NH-	139.22	13 ¹ , 141	1.130	1.642320		165 ^{16mm}	>110	
m437	4 (Methylthio)benz-	CH SC H CHO	152.22	81 533	1 144	1 645220		QOImm	>110	
III-437	aldebyde	CH35C6H4CH0	152.22	0,555	1.144	1.0452			- 110	
m438	2-(Methylthio)benzo-		181 28	27 109			43-46		>110	
11450	thiazole		101.20	27, 105						
m439	3-(Methylthio)-2-	CH-CH(SCH-)COCH-	118.20	14, 3993	0.975	1.471020		50-54 ^{20mm}	44	
III (5)	butanone			.,						
m440	Methyl thiocyanate	CH-SCN	73.12	3, 175	1.06820	1.468020	-5	133	38	i ag; misc alc, eth
m441	2-Methylthiophene	5	98.17	17, 37	1.019320	1.519920	- 63	113	7	
m442	3-Methylthiophene		98.17	17, 38	1.021820	1.518020	- 69	115.4	11	i aq; misc alc, eth
m443	5-Methyl-2-thiophene-		126.18	171, 151	1.170	1.586020		114 ^{25mm}	82	-
	carboxaldehyde									
m444	N-Methyl-2-thiourea	CH ₃ NHC(=S)NH ₂	90.15	4, 70			119-121			v s aq, alc
m445	N-Methyl-o-toluamide	CH ₃ C ₆ H ₄ CONHCH ₃	149.19	9,465	1.15815		6971			
m446	N-Methyl-p-toluene-	CH ₃ C ₆ H ₄ SO ₂ NHCH ₃	185.25	11, 105			76–79			
	sulfonamide									
m447	Methyl p-toluene-	CH ₃ C ₆ H ₄ SO ₂ OCH ₃	186.23	11, 99	1.234		27.5	145 ^{5mm}	>110	
	sulfonate									
m448	Methyltriacetoxysilane	CH ₃ Si(O ₂ CCH ₃) ₃	220.26	4 ³ , 1896	1.17540	1.40820	4045	88 ^{3mm}	85	
m449	Methyl trichloro-	Cl ₃ CCO ₂ CH ₃	177.42	2, 208	1.488	1.4558 ²⁰		153	72	
	acetate									
m450	Methyltrichlorosilane	CH ₃ SiCl ₃	149.48	4 ³ , 1896	1.273	1.411020		66	-15	
m451	Methyltriethoxysilane	CH ₃ Si(OCH ₃) ₃	178.30	4, 629	0.895	1.384020		141-143	23	
m452	Methyl trifluoro-	F ₃ CCO ₂ CH ₃	128.05	2 ³ , 427	1.273	1.290720		43	-7	
	acetate									

m453	Methyl trifluoro-	F ₃ CSO ₂ OCH ₃	164.10	34, 34	1.450	1.324420		94–99	38	
m454	Methyl 3,4,5-tri- hydroxybenzoate	(HO) ₃ C ₆ H ₂ CO ₂ CH ₃	184.15	10, 483			201-203			
m455	Methyltrimethoxy- silane	CH ₃ Si(OCH ₃) ₃	136.22	44, 4203	0.955	1.370320		102	11	
m456	Methyl trimethyl- acetate	(CH ₃) ₃ CCO ₂ CH ₃	116.16	2, 320	0.873	1.390020		101	6	
m457	N-Methyl-N-(tri- methylsilyl)tri- fluoroacetamide	F ₃ CC(==O)N(CH ₃)Si(CH ₃) ₃	199.25		1.075	1.380220		132	25	
m458	(Methyl)triphenyl- phosphonium bromide	$[CH_3P(C_6H_5)_3]^+ Br^-$	357.24	16, 760			230234			
m459	2-Methylundecanal	CH ₃ (CH ₂) ₈ CH(CH ₃)CHO	184.32		0.830415	1.432120		171	93	s alc, eth
m460	Methyl urea	CH ₃ NHCONH ₂	74.08	4, 64	1.204		101-102			v s aq, alc; i eth
m461	N-Methyl–N-vinyl- acetamide	CH ₃ CON(CH ₃)CH=CH ₂	99.13	4 ³ , 442	0.959	1.482920		70 ^{25mm}	58	
m462	Methyl vinyl ether	CH ₃ OCH=CH ₂	58.08	1 ³ , 1857	0.7511 ²⁰	1.3947	- 123	5.5	- 56	0.8 aq; v s alc
m463	Morpholine		87.12	27, 5	1.000520	1.4548 ²⁰	- 4.9	128	375	misc aq, alc, bz, eth
m464	4-Morpholinepropio- nitrile		140.19	27³, 337	1.037	1.4715 ²⁰	21	121 ^{2mm}		
m465	N-Morpholino-1-cyclo- hexene		167.25		0.995	1.512820		120 ^{10mm}	68	
m466	3-(N-Morpholino)-1,2- propanediol		161.20		1.157		37–38	191 ^{30mm}	>110	
m467	Myrcene	$(CH_3)_2C = CHCH_2CH_2^-$ $C(=CH_2)CH = CH_2$	136.24	1, 264	0.801320	1.470920		167	39	s alc, chl, eth, HOAc
n1	1-Naphthaldehyde	C ₁₀ H ₇ CHO	156.18	7,400	1.1504	1.652020	1-2	161 ^{15mm}	>110	s alc, eth
n2	Naphthalene	$C_{10}H_{8}$	128.17	5, 531	1.16240	1.5821100	80	217.7	79	0.3 aq; 7 alc; 33 bz; 50 cbl
n3	1-Naphthalene- carboxylic acid	$C_{10}H_7CO_2H$	172.18	9, 647			160-162	300		sl s aq; v s hot alc, eth
n4	1,5-Naphthalene- diamine	$C_{10}H_6(NH_2)_2$	158.20	13, 203			185-187			s hot aq, hot alc
n5	1,8-Naphthalene- diamine	$C_{10}H_6(NH_2)_2$	158.20	13, 204	1.1265%	1.682899	66.5	205 ^{12mm}		sl s aq; s alc, eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
n6	1-Naphthalenesulfonic	C ₁₀ H ₇ SO ₃ H	208.24	11, 155			90 de-			v s aq, alc; sl s eth
n7	2-Naphthalenesulfonic acid	C ₁₀ H ₇ SO ₃ H	208.24	11, 171			124 de- hydrates			v s aq, alc
n8	1,8-Naphthalic anhydride		198.18	17, 521			268			sl s HOAc
n9	1-Naphthol	C.,H-OH	144.17	6, 596	1.0954%	1.620699	96	288		v s alc, bz, chl, eth
n10	2-Naphthol	C ₁₀ H ₇ OH	144.17	6, 627	1.2174		123	285	161	0.1 aq; 125 alc; 6 chl; 77 eth; s alk
n11	1.4-Naphthoquinone		158.16	7.724	1.422		126			s bz. chl. eth. hot alc
n12	(2-Naphthoxy)acetic acid	C ₁₀ H ₇ OCH ₂ CO ₂ H	202.21	6, 645			155–157			
n13	2-(1-Naphthyl)- acetamide	C ₁₀ H ₇ CH ₂ ONH ₂	185.23	9, 666			182			i aq; s bz, CS ₂
n14	1-Naphthyl acetate	C ₁₀ H ₇ O ₂ CCH ₃	186.21	6, 608			43-46		>110	s alc, eth
n15	1-Naphthylacetic acid	C ₁₀ H ₇ CH ₇ CO ₂ H	186.21	9, 666			135	dec		3.3 alc; v s chl, eth
n16	1-Naphthylacetonitrile	C ₁₀ H ₇ CH ₂ CN	167.21	9, 667		1.619220	33-35	194 ^{18mm}	>110	s alc
n17	1-Naphthylamine	$C_{10}H_7NH_2$	143.18	12, 1212	1.12325	1.6703	50	301	157	0.2 aq; v s alc, eth
n18	1-Naphthyl isocyanate	C ₁₀ H ₇ NCO	169.19	12, 1244	1.177	1.634420	4	267	>110	-
n19	Nicotine		162.24	23, 117	1.009740	1.588220	- 79	123 ^{17mm}	101	misc aq; v s alc, eth, PE
n20	Nitrilotriacetic acid	N(CH ₂ CO ₂ H) ₃	191.14	4, 369			242 dec			0.1 aq; s hot alc
n21	3'-Nitroacetophenone	O ₂ NC ₆ H ₄ COCH ₃	165.15	7, 288			76–78	202		s alc, eth
n22	4'-Nitroacetophenone	O ₂ NC ₆ H ₄ COCH ₃	165.15	7, 288			78-80	202		s alc
n23	2-Nitroaniline	$O_2NC_6H_4CH_2$	138.13	12, 687	1.44215		71	284		s hot aq, alc, chl
n24	3-Nitroaniline	O ₂ NC ₆ H ₄ CH ₂	138.13	12, 698	1.43		114	306		0.1 aq; 5 alc; 6 eth
n25	4-Nitroaniline	O ₂ NC ₆ H ₄ CH ₂	138.13	12, 711	1.43714		147	332	165	4 alc; 3.3 eth; s bz
n26	3-Nitrobenzaldehyde	O₂NC ₆ H₄CHO	151.12	7, 250	1.279240		58	164 ^{23mm}		s alc, chl, eth
n27	4-Nitrobenzaldehyde	O₂NC ₆ H₄CHO	151.12	7, 256	1.496		106107			s alc, bz, HOAc
n28	2-Nitrobenzamide	O ₂ NC ₆ H ₄ CONH ₂	166.12	9, 373	1.46232		174–178	317		s hot aq, hot alc, eth
n29	3-Nitrobenzamide	O ₂ NC ₆ H₄CONH ₂	166.12	9, 381			140-143			
n30	Nitrobenzene	C ₆ H ₅ NO ₂	123.11	5, 233	1.20545	1.554615	5.8	210.8	88	v s alc, bz, eth
n31	3-Nitrobenzene-1,2-	$O_2NC_6H_3(CO_2H)_2$	211.13	9, 823			216 dec			2 aq; v s hot alc
	dicarboxylic acid									
n32	5-Nitrobenzene-1,3- dicarboxylic acid	$O_2NC_6H_3(CO_2H)_2$	211.13	9, 840			260			0.15 aq; v s alc, eth

n33	2-Nitrobenzenesulfonyl	O ₂ NC ₆ H ₄ SO ₂ Cl	221.62	11, 67			65-67			s eth; d hot aq, alc
n34	5-Nitrobenzimidazole		163.14	23, 135			207-209			s alc, acid
n35	2-Nitrobenzoic acid	O-NC-H_CO-H	167.12	9.370	1.58		146-148			0.7 ag: 33 alc: 22 eth
n36	3-Nitrobenzoic acid	O-NC-H.CO-H	167 12	9.376	1.494		140-142			0.3 ao: 33 alc: 40 acet
n37	4-Nitrobenzoic acid	O-NC-HCO-H	167.12	9, 389	1.58		242.8			9 alc: 2 eth: 5 acet
n38	4-Nitrobenzonitrile	O-NCHCN	148.12	9, 397			146149			s HOAC; sl s aq. alc
n39	3-Nitrobenzovl	O-NC-LCOCI	185.57	9, 381			32-35	275-278	>110	dec aq, alc: v s eth
	chloride	-24-+		-,						
n40	4-Nitrobenzovl	O'NC'H'COCI	185.57	9, 394			75	205 ^{105mm}		dec aq, alc; s eth
	chloride	-24		-,						
n41	2-Nitrobenzyl alcohol	O2NC4H4CH2OH	153.14	6. 447			70-72	270		
n42	3-Nitrobenzyl alcohol	ONCH CHOH	153.14	6, 449			30-32	180 ^{3mm}	>110	s aq, alc, eth
n43	4-Nitrobenzyl alcohol	O ₂ NC ₆ H ₄ CH ₂ OH	153.14	6,450			92-94	185 ^{12mm}		v s alc, eth; sl s aq
n44	4-Nitrobenzyl bromide	O2NC+H4CH2Br	216.04	5, 334			98-100			2 alc; v s eth
n45	4-Nitrobenzyl chloride	O2NC6H4CH2CI	171.58	5, 329			7073			8 alc; s eth
n46	2-Nitrobiphenyl	O ₂ NC ₆ H ₄ C ₆ H ₅	199.21	5, 582	1.4425	1.61325	36.7	325	179	s alc, acet, CCl ₄
п47	4-Nitrobiphenyl	O ₂ NC ₆ H ₄ C ₆ H ₅	199.21	5, 583			112-114	340		sl s alc; s chl, eth
n48	1-Nitrobutane	CH ₃ CH ₂ CH ₂ CH ₂ NO ₂	103.18	1, 123	0.975%	1.4112	- 81.3	152.8	47	sl s aq; misc alc, eth
п49	3-Nitro-2-butanol	CH ₃ CH(NO ₂)CH(OH)CH ₃	119.12	1, 373	1.12964	1.441420		92 ^{10mm}	91	•
n50	3-Nitrocinnamic acid	O2NC6H4CH=CHCO2H	193.16	Merck:			200-201			1 alc
				12, 6692						
n51	2-Nitrodiphenylamine	O2NC6H4NHC6H2	214.22	12, 690			76			i aq; s alc
п52	Nitroethane	CH ₃ CH ₂ NO ₂	75.07	1, 99	1.052820	1.392020	-90	114	28	4.5 aq; misc alc, eth; s
										alk, chl
n53	5-Nitro-2-furaldehyde		198.14	17³, 4467			242-244			s alk, chl, alk; 0.2 alc
	semicarbazone									
n54	1-nitroguanidine	O ₂ NNHC(=NH)NH ₂	104.07	3, 126			dec >225			0.4 aq; sl s MeOH
n55	5-Nitro-1H-indazole		163.14	23, 129			207-209			s alc, bz, eth, acet
n56	Nitromethane	CH ₃ NO ₂	61.04	1, 74	1.132245	1.379525	- 28.4	101.2	35	11 aq; s alc, eth
n57	1-Nitronaphthalene	C ₁₀ H ₇ NO ₂	173.17	5, 553	1.223		59-60	304		s alc; v s chl, eth
n58	3-Nitro-2-pentanol	CH ₃ CH ₂ CH(NO ₂)CH(OH)CH ₃	133.15	1, 385	1.081845	1.443020		100 ^{10mm}	90	
n59	2-Nitrophenol	O ₂ NC ₆ H ₄ OH	139.11	6, 213	1.495		45	216		s alc, bz, eth, alk
n60	4-Nitrophenol	O₂NC ₆ H₄OH	139.11	6, 226	1.270120		113-114	279		s aq; v s alc, chl, eth
n61	4-Nitrophenyl acetate	O ₂ NC ₆ H ₄ O ₂ CCH ₃	181.15	6, 233			77–79			s aq; v s alc, bz, eth
n62	2-Nitrophenylacetic	O ₂ NC ₆ H ₄ CH ₂ CO ₂ H	181.15	9, 454			139-142			s hot aq, alc
	acid									
n63	4-Nitrophenylacetic	O ₂ NC ₆ H ₄ CH ₂ CO ₂ H	181.15	9, 455			153-155			s alc, bz, eth; sl s aq
	acid									

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
n64	4-Nitrophenylaceto- nitrile	O2NC6H4CH2CN	162.15	9, 456			115-117			s alc, eth; i aq
n65	2-Nitro-1,4-phenylene- diamine	$O_2NC_6H_3(NH_2)_2$	153.14	13, 120			137–140			
n66	4-Nitro-1,2-phenylene- diamine	$O_2NC_6H_3(NH_2)_2$	153.14	13, 29			199–201			sl s aq; s HCl
n67	4-Nitrophenyl- hydrazine	O ₂ NC ₆ H ₄ NHNH ₂	153.14	15, 468			156 dec			s alc, chl, eth, hot bz
n68	2-Nitrophenyl phenyl ether	$O_2NC_6H_4OC_6H_5$	215.21	6², 222	1.253920	1.57520	< -20	184 ^{8mm}		s alc, eth
n69	4-Nitrophenyl phenyl ether	$O_2NC_6H_4OC_6H_5$	215.21	6, 232			53-56	320	>110	s bz, eth
n70	3-Nitro-1,2-phthalic acid	O ₂ NC ₆ H ₃ (CO ₂ H) ₂	211.13	9, 823			213-216 dec			
n71	4-Nitro-1,2-phthalic acid	O ₂ NC ₆ H ₃ (CO ₂ H) ₂	211.13	9, 828			170-172			
n72	3-Nitrophthalic anhydride		193.11	17, 486			163-165			sl s aq, bz
n73	1-Nitropropane	CH ₃ CH ₂ CH ₂ NO ₂	89.09	1, 115	1.000920	1.401620	- 108	131.1	36	1.4 aq; misc org solv
n74	2-Nitropropane	(CH ₃) ₂ CHNO ₂	89.09	1, 116	0.982120	1.394920	-91.3	120.3	24	1.7 aq; misc org solv
n75	2-Nitro-1-propanol	CH ₃ CH(NO ₂)CH ₂ OH	105.09	1, 358	1.1841 ²⁵	1,437920		99 ^{10mm}	100	s aq, alc, eth
n76	4-Nitropyridine-N- oxide	O ₂ NC₅H₄N(→O)	140.10	203, 2528			159-162			
n77	Nitrosobenzene	C ₆ H ₅ NO	107.11	6, 230			67–69	59 ^{18mm}		
n78	N-Nitrosodimethyl- amine	(CH ₃) ₂ NNO	74.08	8, 84	1.0048420	1.436820		151	61	v s aq, alc, eth
n79	4-Nitrosodiphenyl- amine	C ₆ H ₅ NC ₆ H ₄ NO	198.22	Merck: 12, 6737			144-145			v s alc, bz, chl, eth
n80	1-Nitroso-2-naphthol	C ₁₀ H ₆ (NO)OH	173.16	7, 712			109-110			3 alc; s bz, eth, alk; 0.1 aq
n81	1-Nitroso-2-naphthol- 3,6-disulfonic acid disodium salt hydrate		377.26	11², 190			>300			2.5 aq; sl s alc

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n84 3-Nitrotoluene CH ₃ C ₆ H ₄ NO ₂ 137.14 5, 321 1.1581 ²⁰ 1.5459 ²⁰ 15.5 231.9 n85 4-Nitrotoluene CH ₃ C ₆ H ₄ NO ₂ 137.14 5, 323 1.392 52 238 n86 2-Nitrotoluene CF ₃ C ₆ H ₄ NO ₂ 191.11 5 ² , 251 31-32 105 ^{20mm}	106 s alc, bz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101 misc alc. eth: s bz
n86 2-Nitro- α, α, α -tri- fluorotoluene CF ₃ C ₆ H ₄ NO ₂ 191.11 5 ² , 251 31-32 105 ^{20mm}	106 s alc, bz, chl, eth
fluorotoluene	95 v s alc, bz
n87 3-Nitro- α, α, α -tri- CF ₃ C ₆ H ₄ NO ₂ 191.11 5, 327 1.436 ⁴⁶ 1.4715 ²⁰ -2.4 200-205	87 s alc, eth
fluorotoluene	
n88 5-Nitrouracil 157.09 24, 320 >300	
n89 Nonadecane $CH_3(CH_2)_{17}CH_3$ 268.51 1, 174 0.7776 $\frac{3}{2}$ 1.4335 ³⁸ 32 330	168 s eth; sl s alc
n90 Nonane $CH_3(CH_2)_7CH_3$ 128.26 1, 165 0.7176 ⁴⁰ 1.4054 ²⁰ -53.5 150.8	31 s abs alc, eth
n91 1,9-Nonanediamine H ₂ N(CH ₂) ₂ NH ₂ 158.29 4, 272 37-38 258	>110
n92 Nonanedinitrile NC(CH ₂) ₇ CN 150.23 2, 709 0.929 1.4460 ²⁰ 176 ^{11mm}	>110 v s alc, bz, eth
n93 1,9-Nonanedioic acid HO ₂ C(CH ₂) ₇ CO ₂ H 188.22 2, 707 1.029 ²⁰ 106.5 286 ^{100mm}	0.24 aq; v s alc; 3 et
n94 1,9-Nonanediol HO(CH ₂),OH 160.26 1, 493 47-49 177 ^{15mm}	>110
n95 Nonanenitrile CH ₃ (CH ₂) ₇ CN 139.24 2, 354 0.851 ¹⁵ 1.4260 ²⁰ -34.2 224.0	81 s alc, eth
n96 Nonanoic acid CH ₃ (CH ₂) ₇ CO ₂ H 158.24 2, 352 0.906 ²⁰ 1.4330 ²⁰ 12.5 254.5	100 s alc, chl, eth
n97 γ-Nonanoic lactone 156.23 17, 245 0.976 1.4475 ²⁰ 122 ^{6mm}	>110
n98 1-Nonanol CH ₃ (CH ₂) ₈ OH 144.26 1, 423 0.8279 ²⁰ 1.4338 ²⁰ -5.5 215	75 0.6 aq; misc alc, eth
n99 2-Nonanone $CH_3(CH_2)_6COCH_3$ 142.24 1,709 0.832 1.4210 ²⁰ -21 192 ^{743mm}	64
n100 3-Nonanone CH ₃ (CH ₂) ₅ COCH ₂ CH ₃ 142.24 1, 709 0.821 1.4204 ²⁰ 187-188	67
n101 5-Nonanone $(CH_3CH_2CH_2CH_2CG)$ 142.24 1,710 0.806_{20}^{20} 1.4190 ²⁰ - 50 186-187	60 misc alc, eth
n102 Nonanoyl chloride $CH_3(CH_2)_7COCl$ 176.69 2, 353 0.946 $^{15}_4$ 1.4377 ²⁰ -60.5 215.4	95 dec aq, alc; s eth
n103 3-Nonen-2-one $CH_3(CH_2)_4CH=CHCOCH_3$ 140.23 1 ³ , 3017 0.848 1.4484 ²⁰ 85 ^{12mm}	81
n104 Nonyl aldehyde CH ₃ (CH ₂) ₇ CHO 142.24 1, 708 0.827 ¹ / ₉ 1.4240 ²⁰ 185	63
n105 Nonylamine CH ₃ (CH ₂₎₈ NH ₂ 143.27 4, 198 0.782 1.4330 ²⁰ 201	62 sl s aq; s alc, eth
n106 Nopol 166.26 6 ³ , 396 0.973 1.4930 ²⁰ 230-240	98
n107 Norbornane 96.17 5 ¹ , 45 82-84	s alc
n108 2-Norbornanone 110.16 7, 57 94–96 168–172	33
n109 <i>exo-</i> 2-Norbornyl 140.18 6,3, 219 1.048 1.4622 ²⁰ 67 ^{16mm}	53
formate	
n110 (+)-Norephedrine C ₆ H ₃ CH(OH)CH(CH ₃)NH ₂ 151.21 13 ² , 371 51-54 51-54	>110
ol $ cis, cis-9, 12$ -Octadeca- $ CH_3(CH_2)_4CH = CHCH_2 - 280.44 2, 496 0.9025_4^{20} 1.4699^{20} -5 230^{16mm} 2.4699^{20} -5 230^{16mm} 2.4699^{20} -5 2.469^{20} -5 -5 2.469^{20} -5 -5 2.469^{20} -5 -5 2.469^{20} -5 -5 2.469^{20} -5 -5 -5 -5 -5 -5 -5 -$	v s eth; 10 PE; s abs
dienoic acid CH==CH(CH ₂) ₇ CO ₂ H	alc

TABLE 2.20	Physical Constants of Organic Compounds (Continued)	
-------------------	---	--

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
o2	Octadecanamide	CH ₃ (CH ₂) ₁₆ CONH ₂	283.50	2, 383			102-104	251 ^{12mm}		s hot alc, hot eth
o3	Octadecane	CH ₃ (CH ₂) ₁₆ CH ₃	254.50	1, 173	0.776748	1.436728	28.2	316.3	165	s acet, eth; sl s alc
o4	1-Octadecanethiol	CH ₃ (CH ₂) ₁₇ SH	286.57	1, <i>3</i> , 1838		1.4648	31-35	360	185	s eth; sl s alc
o5	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ CO ₂ H	284.48	2, 377	0.84770	1.429980	69	383		4.9 alc; 20 bz; 50 chl;
										3.9 acet; 16.6 CCl ₄ ;
										s toluene, pentyl
										acetate
06	1-Octadecanol	CH ₃ (CH ₂) ₁₇ OH	270.50	1, 431	0.8123458	1.438820	59.6	203 ^{10mm}		s alc, eth
о7	9,12,15-Octadecatri-	CH ₃ (CH ₂ CH==CH ₂) ₃ CH ₂ -	278.44	2, 499	0.914 ¹⁸	1.480020		230 ^{17mm}	>110	s alc, bz, eth
	enoic acid	(CH ₂) ₆ CO ₂ H								
08	1-Octadecene	CH ₃ (CH ₂) ₁₅ CH==CH ₂	252.49	1, 226	0.791 ¹⁸	1.443920	17.7	314.9	148	s hot acet
09	9-Octadecen-1-amine	CH ₃ (CH ₂) ₇ CH==CH(CH ₂) ₈ NH ₂	267.50		0.813	1.459620			154	
o10	cis-9-Octadecenoic acid	CH ₃ (CH ₂) ₇ CH==CH(CH ₂) ₇ CO ₂ H	282.47	2, 463	0.893640	1.458120	13.4	360	189	s alc, bz, chl, eth
o11	trans-9-Octadecenoic	CH ₃ (CH ₂) ₇ CH==CH(CH ₂) ₇ CO ₂ H	282.47	2², 441	0.85179	1.430899	44-45	288 ^{100mm}		s bz, chl, eth
	acid									
o12	cis-9-Octadecen-1-ol	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₈ OH	268.49	1, 453	0.85040	1.4610 ²⁰	13-19	195 ^{8mm}	>110	s alc, eth; i aq
o13	9-Octadecenoyl	$CH_3(CH_2)_7CH = CH - (CH_2)_7COCI$	300.92	2, 469	0.912	1.4630 ²⁰		180 ^{3mm}	>110	
	chloride									
o14	Octadecyl acrylate	H ₂ C=CHCO ₂ (CH ₂) ₁₇ CH ₃	324.55	24, 1468	0.800		3234		>110	
o15	Octadecylamine	CH ₃ (CH ₂) ₁₇ NH ₂	269.52	4, 196	0.777 ²⁷		55-57	232 ^{32mm}	>110	s alc, bz, eth
016	Octadecyl isocyanate	CH ₃ (CH ₂) ₁₇ NCO	299.51	4 ³ , 439	0.847	1.450120	15-16	173 ^{5mm}	148	
o17	Octadecyltrichloro-	CH ₃ (CH ₂) ₁₇ SiCl ₃	387.94		0.984	1.460220		223 ^{10mm}	89	
	silane									
o18	Octadecyl vinyl ether	CH ₃ (CH ₂) ₁₇ OCH=CH ₂	296.54		0.821430	1.444030	28	187 ^{5mm}	177	
o19	1,7-Octadiene	$H_2C = CH(CH_2)_4CH = CH_2$	110.20		0.746	1.422020		114–121	9	
o20	1H,1H,5H-Octafluoro-	HCF ₂ CF ₂ CF ₂ CF ₂ CH ₂ OH	232.07	1⁴, 1648	1.664720	1.317820		140-141	75	
	1-pentanol									
o21	Octamethylcyclotetra- siloxane	[-(CH ₃) ₂ SiO-] ₄	296.62	4 ³ , 1885	0.956	1.395820	17-18	176	60	
o22	Octamethyltrisiloxane	[(CH ₃) ₃ SiO] ₂ Si(CH ₃) ₂	236.54	4 ³ , 1879	0.820020	1.384820	<i>ca.</i> - 80	153	29	s bz, PE; sl s alc
o23	Octane	CH ₃ (CH ₂) ₆ CH ₃	114.23	1, 159	0.7028420	1.397420	- 56.8	125.7	22	s eth; sl s alc

o24	1,8-Octanediamine	H ₂ N(CH ₂) ₈ NH ₂	144.26	4, 271		1	50-52	225-226	165	
o25	1,8-Octanedioic acid	HO ₂ C(CH ₂) ₆ CO ₂ H	174.20	2, 691			140-144	230 ^{15mm}		0.16 aq; 0.6 eth; s alc
o26	1,2-Octanediol	CH ₃ (CH ₂) ₅ CH(OH)CH ₂ OH	146.23	1 ³ , 2217			36-38	132 ^{10mm}	>110	
o27	1,8-Octanediol	HO(CH ₂) ₈ OH	146.23	1, 490			59-61	172 ^{20mm}		v s alc; sl s aq, eth
o28	Octanenitrile	CH ₃ (CH ₂) ₆ CN	125.22	2, 349	0.813520	1.420220	-45.6	198	73	s eth; sl s alc
o29	1-Octanethiol	CH ₃ (CH ₂) ₇ SH	146.30	1 ³ , 1710	0.843	1.452520	- 49.2	199.0	68	s alc
o30	Octanoic acid	CH ₃ (CH ₂) ₆ CO ₂ H	144.21	2, 347	0.9088420	1.427920	16.6	239	>110	0.07 aq; v s alc, chl, eth, PE
o31	γ-Octanoic lactone		142.20	17, 244	0.981	1.444020		234	>110	
o32	1-Octanol	CH ₃ (CH ₂) ₇ OH	130.23	1, 418	0.8258420	1.429020	- 15.5	195	81	0.06 aq; misc alc, chl, eth
o33	(±)-2-Octanol	CH ₃ (CH ₂) ₅ CH(OH)CH ₃	130.23	1, 419	0.819340	1.420220	-31.6	175	71	0.1 aq; misc, alc, eth
o34	3-Octanol	CH ₃ (CH ₂) ₄ CH(OH)CH ₂ CH ₃	130.23	1 ¹ , 208	0.819	1.426020		174–176	65	
o35	4-Octanol	CH ₃ (CH ₂) ₃ CH(OH)CH ₂ CH ₂ CH ₃	130.23		0.819220	1.42520		176.6	71	
o36	2-Octanone	CH ₃ (CH ₂) ₅ COCH ₃	128.22	1, 704	0.819420	1.415020	- 16	173	52	i aq; misc alc, eth
o37	3-Octanone	CH ₃ (CH ₂) ₄ COCH ₂ CH ₃	128.22	1, 706	0.8220420	1.415020		167-168	46	i aq; misc alc, eth
o38	4-Octanone	CH ₃ (CH ₂) ₃ COCH ₂ CH ₂ CH ₃	128.22	1, 706	0.809	1.413920		164	45	
o39	Octanoyl chloride	CH ₃ (CH ₂) ₆ COCl	162.66	2, 348	0.955	1.435020	< -70	195	80	dec aq, alc; s eth
o40	1-Octene	CH ₃ (CH ₂) ₅ CH=CH ₂	112.22	1, 221	0.714940	1.408720	- 102	121	21	i aq; misc alc, eth
041	2-Octen-1-ylsuccinic anhydride		210.27		1.000	1.469420	8-12	168 ^{10mm}	>110	
o42	Octyl acetate	CH ₃ CO ₂ (CH ₂) ₇ CH ₃	172.27	2, 134	0.868	1.418520		211	88	sl s aq; misc alc
o43	Octyl aldehyde	CH ₃ (CH ₂) ₆ CHO	128.22	1, 704	0.82140	1.418320	12-15	171	51	sl s aq; misc alc
o44	Octylamine	CH ₃ (CH ₂) ₇ NH ₂	129.25	4, 196	0.782	1.429020	-5/-1	175–177	62	i aq; s alc, eth
045	Octyl cyanoacetate	NCCH ₂ CO ₂ (CH ₂) ₇ CH ₃	197.28		0.934	1.449020		95 ^{0.11mm}	>110	
046	Octyl gallate	3,4,5-(HO) ₃ C ₆ H ₂ CO ₂ (CH ₂) ₇ CH ₃	282.34	10 ³ , 2079			101-104			
o47	1-Octyl-2-pyrrolidine		197.32		0.920	1.465020	- 25	172 ^{15mm}	>110	
048	Octyltrichlorosilane	CH ₃ (CH ₂) ₇ SiCl ₃	247.67	4 ³ , 1907	1.07020	1.447320		226 ^{730mm}	96	
049	1-Octyne	CH ₃ (CH ₂) ₅ C≡CH	110.19	1, 258	0.745720	1.415920	- 79.3	126.2	17	i aq; s alc, eth
o50	1-Octyn-3-ol	$CH_3(CH_2)_4CH(OH)C \equiv CH$	126.20	1 ³ , 1996	0.864	1.441020		83 ^{19mm}	63	
o51	L-(+)-Ornithine	H ₂ N(CH ₂) ₃ CH(NH ₂)CO ₂ H	132.16	4, 420			140			v s aq, alc; sl s eth
o52	Oxalic acid	HO ₂ CCO ₂ H	90.04	2, 502	1.9047		190 dec			14 aq ²⁰ ; 40 alc; 1.3 eth
053	Oxalic acid dihydrate	$HO_2CCO_2H \cdot 2H_2O$	126.07	2, 502	1.65349		2H ₂ O, 102			14 aq; 40 alc; 1 eth

TABLE 2.20	Physical Constants of Organic Compounds (Continued)
------------	---

,			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
o54	Oxalyl bromide	BrC(==O)C(==O)Br	215.84	2 ¹ , 236		1.522020	- 19	103 ^{720mm}	none	
o55	Oxalyl chloride	ClC(=0)C(=0)Cl	126.93	2, 542	1.455	1.429020	-10	64	none	s eth; viol dec aq, alc
o56	Oxalyl dihydrazide	$H_2NNHC(=O)C(=O)NHNH_2$	118.10	2, 559			240 dec			s hot aq; sl s alc, eth
o57	Oxamic hydrazide	$H_2NC(=O)C(=O)NHNH_2$	103.08	2, 559			218 dec			s alk; sI s aq; i eth
o58	Oxamide	$H_2NC(=O)C(=O)NH_2$	88.07	2, 545	1.66740		dec 350			sl s hot aq, alc
o59	2-Oxazolidone		87.08	27, 135			86-89	220 ^{48mm}		
060	2-Oxobutyric acid	$CH_3CH_2C(=O)CO_2H$	102.09	3, 629	1.20047	1.397220	32-34	82 ^{16mm}	81	v s aq, alc; v sl s eth
061	2-Oxohexamethylene- imine		113.16	21², 216	1.024		69.2	270	125	84 aq; v s alc, eth, chlorinated HC's
062	5-Oxohexanonitrile	CH ₃ CO(CH ₂) ₃ CN	111.14	3 ³ , 1234	0.975	1.432820		240	107	
063	4-Oxopentanoic acid	CH ₃ COCH ₂ CH ₂ CO ₂ H	116.12	3, 671	1.1447_4^{25}	1.439620	33-35	246	137	v s aq, alc, bz, eth
o64	2-Oxopropionaldehyde	CH ₃ C(==O)CHO	72.06	1, 762	1.045524	1.420920		72	none	s aq, alc
065	2-Oxopropionic acid	$CH_3C(=0)CO_2H$	88.06	3, 608	1.26745	1.431520	11.8	165 dec	82	misc aq, alc, eth
066	2-Oxo-1-pyrrolidine- propionitrile		138.17		1.120	1.488020		140 ^{0.3mm}	>110	
066a	2,2'-Oxybis[2-methyl]- propane	(CH ₃) ₃ COC(CH ₃) ₃	130.23		0.7658	1.394920		107		dec acids
o67	2,2'-Oxydiacetic acid	HO ₂ CCH ₂ OCH ₂ CO ₂ H	134.09	3, 234			142-145	dec		v s aq, alc; sl s eth
068	4,4'-Oxydianiline	$H_2NC_6H_4OC_6H_4NH_2$	200.24	13, 441			190-192		218	
069	3,3'-Oxydipropio- nitrile	NCCH ₂ CH ₂ OCH ₂ CH ₂ CN	124.14		1.043	1.440520		112 ^{0.5mm}	>110	
p1	Paraformaldehyde	(CH ₂ O) _x		1, 566			165 dec		71	s(slow) aq; s alk; i alc, eth
p2	Paraldehyde	[-HC(CH ₃)O-] ₃	132.16	19, 385	0.998415	1.404920	12.6	124		11 aq; misc alc, chl
p3	Parathion	$(C_2H_5O)_2P(=S)C_6H_4NO_2$	291.27		1.2645	1.537025	6	375		v s alc, bz, eth
p4	Pentabromophenol	C ₆ Br ₅ OH	488.62	6, 206			223-226			sl s alc, eth
p5	Pentachloroacetone	$Cl_2CHC(=O)CCl_3$	230.31	1, 690	1, 656	1.496720	21 (anhyd)	192	none	i aq; v s acet
p6	Pentachlorobenzene	C ₆ HCl ₅	250.34	5, 205	1.834216		8285	275-277	none	v s bz, chl, eth
p7	Pentachloroethane	Cl ₂ CHCCl ₃	202.30	1, 87	1.6712_4^{25}	1.503020	-29.0	160	none	0.05 aq; misc alc, eth
p8	Pentachloronitro- benzene	$C_6Cl_5(NO_2)$	295.34	5, 247	1.71845		140-143			s bz, chl
р9	Pentachlorophenol	C ₆ Cl ₅ OH	266.34	6, 194	1.978 ²²		190-191	310		v s alc; s bz; 148 eth
p10	Pentachloropyridine	C₅Cl₅N	251.33	20, 232			124-126			
p11	Pentadecane	$CH_3(CH_2)_{13}CH_3$	212.42	1, 172	0.7684420	1.431920	9.9	270	132	v s alc, eth
p12	Pentadecanenitrile	$CH_3(CH_2)_{13}CN$	223.40	2 ¹ , 163	0.825	1.442020	20-23	322	>110	
p13	8-Pentadecanone	$[CH_{3}(CH_{2})_{7}]_{2}C=0$	226.40	1, 717			41-43	178	>110	s alc

2.218

p14	3-Pentadecylphenol	CH ₃ (CH ₂) ₁₄ C ₆ H ₄ OH	304.52				50-53	195 ^{1mm}	>110	
p15	1,2-Pentadiene	CH ₃ CH ₂ CH=C=CH ₂	68.12	1, 251	0.6926420	1.420920	- 137.3	44.9		
p16	cis-1,3-Pentadiene	CH ₃ CH=CHCH=CH ₂	68.12	1, 251	0.691010	1.436320	- 140.8	44.1	- 28	
p17	trans-1,3-Pentadiene	CH ₃ CH=CHCH=CH ₂	68.12	1, 251	0.676020	1.430120	- 87.5	42.0	-28	
p18	1,4-Pentadiene	H ₂ C=CHCH ₂ CH=CH ₂	68.12	1, 251	0.6608422	1.388820	- 148.3	26.0	4	
p19	Pentaerythritol	C(CH ₂ OH) ₄	136.15	1, 528	1.3845	1.548	260			6 aq; v sl s alc; i eth
p20	Pentaerythritol diacrylate monostrearate	CH ₃ (CH ₂) ₁₆ CO ₂ CH ₂ - C(CH ₂ O ₂ CCH=CH ₂) ₂ - CH ₂ OH	510.72		1.018		29-31		>110	
p21	Pentaerythritol triacrylate	(H ₂ C=CHCO ₂ CH ₂) ₃ CCH ₂ OH	298.30		1.180	1.486420			>110	
p22	Pentaerythrityl tetranitrate	C(CH ₂ ONO ₂) ₄	316.15	1², 602	1.177340		140	explodes on shock		s acet; sl s eth, alc
p23	Pentaethylenehex- amine	H ₂ N(CH ₂ CH ₂ NH) ₄ CH ₂ CH ₂ NH ₂	232.38	44, 1245	0.950	1.509620			>110	
p24 p25	Pentamethylbenzene 1,2,3,4,5-Pentamethyl- cyclopentadiene	C ₆ H(CH ₃) ₅	148.25 136.24	5, 443	0.917 ²⁰ 0.870	1.527 ²⁰ 1.4733 ²⁰	54.4	231 58 ^{13mm}	91 44	v s alc, bz
p26	N,N,N',N',N"-Penta- methyldiethylene- triamine	[(CH ₃) ₂ NCH ₂ CH ₂] ₂ NCH ₃	173.30	4,4, 1245	0.830	1.442020	-20	198	53	
p27	1,5-Pentamethylene- tetrazole		138.17	26², 213			59-61	194 ^{12mm}		
p28	Pentanal	CH ₃ CH ₂ CH ₂ CH ₂ CHO	86.13	1, 676	0.809540	1.394220	- 92	103	12	1.4 aq; misc alc, eth
p29	Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	72.15	1, 130	0.626220	1.357520	- 129.7	36.0	-49	misc alc, eth
p30	1,5-Pentanediamine	H ₂ N(CH ₂) ₅ NH ₂	102.18	4, 266	0.873425	1.459120	- 129.7	178180	62	s aq, alc; sl s eth
p31	1,2-Pentanediol	CH ₃ CH ₂ CH ₂ CH(OH)CH ₂ OH	104.15	1², 548	0.971	1.439720		206	104	
p32	1,5-Pentanediol	HO(CH ₂) ₅ OH	104.15	1, 481	0.994120	1.449420	- 18	239	129	s aq, alc; sl s eth
p33	2,3-Pentanedione	$CH_3CH_2C(=0)C(=0)CH_3$	100.11	1, 776	0.957	1.406820	- 52	110112	19	
p34	2,4-Pentanedione	CH ₃ COCH ₂ COCH ₃	100.11	1, 777	0.972125	1.451020	-23.1	138	34	17 aq; misc alc, eth
p35	Pentanenitrile	CH ₃ CH ₂ CH ₂ CH ₂ CN	83.13	2, 301	0.803545	1.399115	-92	141.3	40	i aq; s alc, eth
p36	1-Pentanesulfonic acid, sodium salt	CH ₃ (CH ₂) ₄ SO ₃ ⁻ Na ⁺	174.19	4 ³ , 23			>300			4 aq
TABLE 2.20 Physical Constants of Organic Compounds (Continued)

Na	Nama	Formula	Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
NO.	Name	Formula	weight	reference	g/mL	mdex	point, C	point, C	point, C	parts solvent
p37	1-Pentanethiol	CH ₃ (CH ₂)₄SH	104.22	1, 384	0.840	1.446020	-75.7	126.6	18	i aq; misc alc, eth
p38	Pentanoic acid	CH ₃ (CH ₂) ₃ CO ₂ H	102.13	2, 299	0.939040	1.408020	-33.7	186	96	2.4 aq; v s alc, eth
p39	1-Pentanol	CH ₃ (CH ₂)₄OH	88.15	1, 383	0.814640	1.410020	- 79	137.5	33	2.7 aq ²² ; misc alc, eth
p40	2-Pentanol	CH ₃ CH ₂ CH ₂ CH(OH)CH ₃	88.15	1, 384	0.809840	1.405420	-73	119.3	34	16.6 aq ²⁰ ; misc alc, eth
p41	3-Pentanol	CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	88.15	1, 385	0.815045	1.407725	- 69	116	41	5.5 aq ²⁰ ; s alc, eth
p42	2-Pentanone	CH ₃ CH ₂ CH ₂ COCH ₃	86.13	1, 676	0.809520	1.390020	-76.8	102	7	misc acet, bz, eth, PE
p43	3-Pentanone	CH ₃ CH ₂ COCH ₂ CH ₃	86.13	1, 679	0.814320	1.392020	- 39.0	102.0	13	3.4 aq
p44	Pentanophenone	C ₆ H ₅ CO(CH ₂) ₃ CH ₃	162.23	7, 327	0.988	1.514320		107 ^{5mm}	102	s alc, eth
p45	Pentanoyl chloride	CH ₃ (CH ₂) ₃ COCl	120.58	2, 301	1.016	1.421620		125-127	32	
p46	1,4,7,10,13-Pentaoxa- cyclopentadecane	[-CH ₂ CH ₂ O-] ₅	220.27		1.109	1.465020		135 ^{0.2mm}	>110	
p47	2,5,8,11,14-Pentaoxa- pentadecane	CH ₃ (OCH ₂ CH ₃) ₄ OCH ₃	222.28	1 ³ , 2107	1.0087420	1.433020	-27	275–276	140	s aq; misc hydrocarbon solvents
p48	1-Pentene	CH ₃ CH ₂ CH ₂ CH=CH ₂	70.14	1, 210	0.642940	1.371420	-165	30.1	- 18	misc alc, bz, eth
p49	cis-2-Pentene	CH ₃ CH ₂ CH=CHCH ₃	70.14	1, 210	0.650340	1.381320	-151	37.0	-20	misc alc, eth
p50	trans-2-Pentene	CH ₃ CH ₂ CH=CHCH ₃	70.14	1, 210	0.648240	1.379220		36.3	-45	misc alc, eth
p51	cis-2-Pentenenitrile	CH ₃ CH ₂ CH=CHCN	81.12	2 ² , 400	0.820	1.426920		128	23	
p52	trans-3-Pentenenitrile	CH ₃ CH=CHCH ₂ CN	81.12	2, 427	0.837	1.422120		144-147	40	
p53	Pentyl acetate	CH ₃ (CH ₂) ₄ O ₂ CCH ₃	130.19	2, 131	0.875320	1.402020	- 70.8	149.2	16	0.17 aq; misc alc, eth
p54	Pentylamine	CH ₃ (CH ₂) ₄ NH ₂	87.16	4, 175	0.754420	1.44820	-55	104	1	v s aq; misc eth; s alc
p55	Pentylbenzene	CH ₃ (CH ₂) ₄ C ₆ H ₅	148.25	5,434	0.85944	1.488520	-78.3	202.2	65	s alc, misc bz, eth
p56	2-Pentylcinnam- aldehyde	C ₆ H ₅ CH=C[(CH ₂) ₄ CH ₃]CHO	202.30	72, 310	0.970	1.557120		290	>110	
p57	4-tert-Pentylphenol	CH ₃ CH ₂ C(CH ₃) ₂ C ₆ H ₄ OH	164.25	6, 548	0.96240		93	262		s alc, eth
p58	1-Pentyne	CH ₃ CH ₂ CH ₂ C≡CH	68.11	1,250	0.690120	1.385220	- 106	40.2	- 34	v s alc; misc eth
p59	Perfluoro-1-octane- sulfonyl fluoride	$CF_3(CF_2)_7SO_2F$	502.12	24, 996	1.824	1.301020		154-155	none	
p60	Peroxyacetic acid	$CH_3C(=0)CO_2H$	76.05	2, 169	1.22645	1.387620	-0.2	110	41	v s aq, alc, eth
p61	Petroleum ether	Principally pentanes and hexanes		Merck: 12, 7329	0.640	1.363020		35-60	- 49	misc bz, chl, eth, CCl ₄ ; s glacial HOAc
p62	Phenanthrene		178.23	5, 667	1.063		100	340		1.6 alc; 50 bz; 30 eth
p63	1,10-Phenanthroline		180.21	23, 227			114-117			0.3 aq; 1.4 bz; s alc, acet
p64	Phenethylisobutyrate	(CH ₃) ₂ CHCO ₂ CH ₂ CH ₂ C ₆ H ₅	192.26	6², 451	0.988	1.488020		250	108	
p65	Phenol	C ₆ H ₅ OH	94.11	6, 110	1.057641	1.541841	41	182	79	6.7 aq; 8.2 bz; v s alc, chl, eth, alk

p66 p67 p68	Phenolphthalein Phenothiazine Phenoxyacetic acid	C ₆ H ₅ OCH ₂ CO ₂ H	318.33 199.28 152.15	18, 143 27, 63 6, 161	1. 299		261–263 185.1 98–100	371 285 sl dec		8.2 alc; 1 eth v s bz; s eth; sl s alc 1.3 aq; v s alc, bz, HOAc, CS ₂ , eth
p69	Phenoxyacetyl chloride	C ₆ H ₅ OCH ₂ COCl	170.60	6, 162	1.235	1.5340 ²⁰		225-226	108	dec aq, alc; s eth
p70	4-Phenoxyaniline	C ₆ H ₅ OC ₆ H ₄ NH ₂	185.23	13, 438			84	189 ^{14mm}		s hot aq; v s alc, eth
p71	2-Phenoxybutyric acid	CH ₃ CH ₂ CH(OC ₆ H ₅)CO ₂ H	180.20	6, 163			79-83	258		sl s aq
p72	2-Phenoxyethanol	C ₆ H ₅ OCH ₂ CH ₂ OH	138.17	6, 146	1.10242	1.5370 ²⁰	14	245.2	>110	s aq; v s alc, eth
p73	1-Phenoxy-2-propanol	C ₆ H ₅ OCH ₂ CH(OH)CH ₃	152.19	6 ¹ , 85	1.06345	1.52320	13-18	240	135	
p74	2-Phenoxypropionic acid	CH ₃ CH(OC ₆ H ₅)CO ₂ H	166.18	6, 163			116119	265		s alc; sl s aq
p75	3-Phenoxypropyl bromide	C ₆ H ₅ O(CH ₂) ₃ Br	215.10	6, 142	1.365	1.546020		134 ^{14mm}	96	
p76	3-Phenoxytoluene	C ₆ H ₅ OC ₆ H ₄ CH ₃	184.24	6, 377	1.051	1.572720		271-273	>110	
p77	Phenylacetaldehyde	C ₆ H ₅ CH ₂ CHO	120.15	7, 292	1.027^{25}_{25}	1.5290 ²⁰	33-34	195	86	sl s aq; s alc, eth
p78	Phenylacetaldehyde dimethyl acetal	C ₆ H ₅ CH ₂ CH(OCH ₃) ₂	166.22	7, 293	1.004	1.4930 ²⁰		221	83	
p79	Phenylacetaldehyde ethylene acetal		164.21	194, 220	1.100	1.522020		120 ^{12mm}	107	
p80	Phenyl acetate	C ₆ H ₅ O ₂ CCH ₃	136.15	6, 152	1.073	1.503020		196	76	misc alc, eth, chl
p81	Phenylacetic acid	C ₆ H ₅ CH ₂ CO ₂ H	136.15	9, 431	1.091477		76.5	265.5		s hot aq, alc, eth
p82	Phenylacetonitrile	C ₆ H ₃ CH ₂ CN	117.15	9, 441	1.0214	1.523320	-23.8	233.5	101	i aq; misc alc, eth
p83	Phenylacetyl chloride	C ₆ H ₅ CH ₂ COCl	154.60	9, 436	1.169	1.532520		95 ^{12mm}	102	dec aq, alc
p84	Phenylacetylene	C ₆ H ₅ C≡CH	102.14	5, 511	0.9300	1.5470 ²⁰	- 44.9	142.4	31	misc alc, eth
p85	Phenylacetylurea	C ₆ H ₅ CH ₂ CONHCONH ₂	178.19	Merck: 12, 7343			212–216			sl s alc, bz, chl, eth
p86	(±)-3-Phenylalanine	C ₆ H ₅ CH ₂ CH(NH ₂)CO ₂ H	165.19	14, 495			271-273			1.4 aq
p87	Phenyl 4-amino-	H ₂ NC ₆ H ₃ -2-(OH)CO ₂ C ₆ H ₅	229.24	Merck;			153			0.7 mg aq
	salicylate			12, 7426						
p88	4-Phenylazoaniline	$C_6H_5N=NC_6H_4NH_2$	197.24	16 ¹ , 310			123–126	>360		v s alc, bz, chl, eth
p89	Phenylazoformic acid 2-phenylhydrazide	C ₆ H ₅ N==NCONHNHC ₆ H ₅	240.27	16, 24			156-159 dec			
p90	4-Phenylazophenol	C_H_N=NC_H_OH	198.23	16, 96			150-152	230 ^{20mm}		v s alc, eth
p91	2-Phenylbenzimidazole	0 5 0 4	194.24	23, 230			293-296			s abs alc; sl s bz, chl
p92	Phenyl benzoate	C ₆ H ₅ CO ₂ C ₆ H ₅	198.22	9, 116	1.235		69-72	298-299		v s hot alc; sl s eth
p93	N-Phenylbenzylamine	C ₆ H ₅ CH ₂ NHC ₆ H ₅	183.25	12, 1023	1.061		35-38	306-307	>110	s alc, chl, eth
p94	trans-4-Phenyl-3-	C6H5CH=CHCOCH3	146.19	7, 364	1.009745	1.583645	41.5	260262	65	v s alc, bz, chl, eth
-	buten-2-one	-								

2.222

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
p95	2-Phenyl-3-butyn-2-ol	CH₃C(OH)(C ₆ H ₅)C≡=CH	146.19	6², 559			47-49	217-218	96	0.8 aq; s alc, bz, acet
p96	3-Phenylbutyraldehyde	CH ₃ CH(C ₆ H ₅)CH ₂ CHO	148.21	7 ¹ , 168	0.997	1.5179 ²⁰		94 ^{16mm}	96	
p97	2-Phenylbutyric acid	CH ₃ CH ₂ CH(C ₆ H ₅)CO ₂ H	164.20	9², 356	1.055	1.516020	42-44	270-2	>110	s bz, eth
p98	2-Phenylbutyronitrile	CH3CH2CH(C6H5)CN	145.21	9, 541	0.974	1.508620		114 ^{15mm}	105	
p99	Phenyl chloroformate	C ₆ H ₅ O ₂ CCl	156.57	6, 159	1.248	1.510720		71 ^{9mm}	75	
p100	Phenyl dichloro- phosphate	C ₆ H ₅ OP(O)Cl ₂	210.98	6, 179	1.412	1.523020		241243	>110	
p101	N-Phenyldiethanol- amine	C ₆ H ₅ N(CH ₂ CH ₂ OH) ₂	181.24	12, 183	1.120%		56-80	350 sl dec		5 aq; v s alc; 29 eth; 25 bz
p102	4-Phenyl-1,3-dioxane		164.21	19 ¹ , 616	1.111	1.530020		250-251	>110	
p103	2-Phenyl-1,3-dioxolane		150.18		1.106	1.526020		80 ^{0.3mm}	98	
p104	1,2-Phenylenediamine	C ₆ H ₄ -1,2-(NH ₂) ₂	108.14	13, 6			103	257		v s alc, chl, eth; sl s aq
p105	1,3-Phenylenediamine	C ₆ H ₄ -1,3-(NH ₂) ₂	108.14	13, 33	1.13915		63.5	285		s aq, alc, acet, chl
p106	1,4-Phenylenediamine	C ₆ H ₄ -1,4-(NH ₂) ₂	108.14	13, 61			146	267	156	1 aq; s alc, chl, eth
p107	1,4-Phenylene diiso- cyanate	C ₆ H ₄ -1,4-(NCO) ₂	160.13	13, 105			9798	260	>110	
p108	1-Phenyl-1,2- ethanediol	C ₆ H ₅ CH(OH)CH ₂ OH	138.17	6, 907			6668	272274		v s aq, alc, bz, eth, chl, HOAc
p109	1-Phenylethanol	CH ₃ CH(OH)(C ₆ H ₅)	122.17	6, 475	1.013020	1.527020	20	204	85	2.3 aq
p110	2-Phenylethanol	C,H,CH,CH,OH	122.17	6, 478	1.02335	1.531720	-27	221	102	2 aq; misc alc, eth
p111	2-Phenylethyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ C ₆ H ₅	164.20	9, 510	0.984	1.498520		238-239	101	2 aq; misc alc, eth
p112	2-Phenylethylamine	C ₆ H ₅ CH ₂ CH ₂ NH ₂	212.18	12, 1096	0.964045	1.529025	<0	197.5	90	80 aq15; s alc; i eth
p113	1-Phenylethyl propionate	C ₂ H ₅ CO ₂ CH(CH ₃)C ₆ H ₅	178.23	5 ³ , 1680	1.007	1.489520		92 ^{5mm}	94	_
p114	(±)-2-Phenylglycine	C ₆ H ₅ CH(NH ₂)CO ₂ H	151.17	14, 460			subl 255			s org solvents, alk
p115	1-Phenylheptane	C ₆ H ₅ (CH ₂) ₆ CH ₃	176.30	5, 451	0.860	1.485020		233	95	
p116	1-Phenylhexane	$C_6H_5(CH_2)_5CH_3$	162.28	5², 337	0.861	1.486020	-61	226	83	misc eth
p117	Phenylhydrazine	C ₆ H ₅ NHNH ₂	108.14	15², 44	1.0978 ²⁰	1.608020	19.5	243	88	misc alc, bz, chl, eth
p118	Phenyl 1-hydroxy-2- naphthoate	HOC ₁₀ H ₆ CO ₂ C ₆ H ₅	264.28	10, 332			94–96			
p119	Phenyl 3-hydroxy-2- naphthoate	C ₁₀ H ₆ (OH)CO ₂ C ₆ H ₅	264.28	10, 335			129–132	261 ^{160mm}		
p120	2-Phenylimidazole		144.18	23, 182			144-147			
p121	2-Phenyl-2-imidazoline		146.19	23, 154			94-99			
p122	2-Phenyl-1,3-		222.28	7, 808			148-150			
_	indandione									

p123	2-Phenylindole		193.25	20, 467]	188-190	250 ^{10mm}	1	[
p124	Phenyl isocyanate	C₄H₄NCO	119.12	12, 437	1.0956420	1.535020	- 30	162-163	55	dec aq, alc; s eth
p125	Phenyl isothiocyanate	C,H,NCS	135.19	12, 453	1.128845	1.649720	-21	221	87	i aq; s alc, eth
p126	N-Phenylmaleimide		173.17	21, 400			85-87	163 ^{12mm}		s alc, chl, eth
p127	Phenylmalonic acid	C ₆ H ₅ CH(CO ₂ H) ₂	180.16				153 dec			
p128	Phenylmercury(II)	C _c H ₄ HgO ₂ CCH ₃	336.74	Merck:			150-152			0.17 aq; s alc, bz, acet
•	acetate			12, 7453						
p129	Phenylmercury(II)	C ₆ H ₅ HgCl	313.15	Merck:			250-252			s bz, eth, pyr
-	chloride			12, 7454						
p130	Phenylmercury(II)	C₅H₅HgOH	294.70	16, 952			190 dec			
-	hydroxide									
p131	N-Phenylmorpholine		163.22	27, 6	1.058270		5154	268	>110	1.0 aq; v s hot alc
p132	N-Phenyl-1-	C ₁₀ H ₇ NHC ₆ H ₅	219.29	12, 1224			60-62	226 ^{15mm}		s alc, bz, chl, eth
	naphthylamine									
p133	N-Phenyl-2-	C ₁₀ H ₇ NHC ₆ H ₅	219.29	12, 1275			107-109	395		
	naphthylamine									
p134	2-Phenyl-2-oxazoline		147.18	27, 47	1.118	1.567020	12	75 ^{0.3mm}		
p135	2-Phenylphenol	C ₆ H ₅ C ₆ H₄OH	170.21	6², 623	1.213		57-59	282	123	s alc, chl, eth, alk
p136	4-Phenylphenol	C ₆ H₅C ₆ H₄OH	170.21	6, 674			165-167	321	165	s alc, chl, eth, alk
p137	N-Phenyl-1,4-	C ₆ H ₅ NHC ₆ H ₄ NH ₂	184.24	13, 76			73–75			
	phenylenediamine									
p138	Phenylphosphinic acid	C ₆ H ₅ PH(O)OH	142.09	16, 791			85-87			
p139	Phenylphosphonic acid	$C_6H_5P(O)(OH)_2$	158.09	16, 803			163-166			
p140	Phenylphosphonic	C ₆ H ₅ P(O)Cl ₂	194.99	16, 804	1.375	1.560020	3	258	>110	
	dichloride									
p141	N-Phenylpiperazine		162.24	23 ³ , 49	1.062140	1.587520		286	>110	i aq; misc alc
p142	1-Phenylpiperidine		161.25	20, 22	1.001	1.562020	3-4	257~258	106	
p143	2-Phenyl-1,2-	CH ₃ C(C ₆ H ₅)(OH)CH ₂ OH	152.19	6, 930			44-45	162 ^{26mm}	>110	
	propanediol									
p144	3-Phenyl-1-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ SH	152.26	6 ¹ , 253	1.010	1.549420		109 ^{10mm}	90	
	propanethiol									
p145	1-Phenyl-1-propanol	C ₆ H ₅ CH(OH)CH ₂ CH ₃	136.19	6, 502	0.99154	1.520020		219	90	misc alc, bz
p146	3-Phenyl-1-propanol	C ₆ H ₅ CH ₂ CH ₂ CH ₂ OH	136.19	6, 503	1.008	1.525720	-18	235	109	s aq; misc alc, eth
p147	1-Phenyl-2-propanone	C ₆ H ₅ CH ₂ COCH ₃	134.18	72, 233	1.01574	1.516020	27	100 ^{13mm}	84	v s alc, eth; misc bz
p148	2-Phenylpropion-	CH ₃ CH(C ₆ H ₅)CHO	134.18	7, 305	1.0094	1.517520		202-205	76	i aq; s alc
	aldehyde									

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
p149	3-Phenylpropion- aldehyde	C ₆ H ₅ CH ₂ CH ₂ CHO	134.18	7, 304	1.019	1.523020		98 ^{12mm}	95	
p150	3-Phenylpropionic acid	C ₆ H ₅ CH ₂ CH ₂ CO ₂ H	150.18	9, 508	1.047100		47-49	280	>110	0.6 aq; s bz, alc, chl, eth. HOAc. PE
p151	1-Phenyl-3- pyrazolidinone		162.19	24, 2			121-123			10 hot aq; s hot alc, alk, acid
p152	2-Phenylpyridine	C ₆ H₅C₅H₄N	155.20	20, 424	1.086	1.633220		268270	>110	s alc, eth
p153	2-Phenyl-4-quinoline- carboxylic acid		249.27	22, 103			214–215			0.8 alc; 1 eth; 0.3 chl
p154	Phenyl salicylate	C ₆ H ₅ (OH)CO ₂ C ₆ H ₅	214.22	10, 76	1.25		44-46	173 ^{12mm}	>110	17 alc; 66 bz; s acet, chl, eth; 0.015 aq
p155	Phenylsuccinic acid	HO ₂ CCH ₂ CH(C ₆ H ₅)CO ₂ H	194.19	9, 865			167–169	-H ₂ O, >168		s hot aq, alc, eth
p156	(Phenylthio)acetic acid	C ₆ H ₅ SCH ₂ CO ₂ H	168.21	6, 313			6466			
p157	S-Phenyl thio- isobutyrate	$(CH_3)_2CHC(=O)SC_6H_5$	152.22	6,4, 1524	1.056	1.546020		129 ^{10mm}	>110	
p158	1-Phenyl-2-thiourea	C ₆ H ₅ NHC(S)NH ₂	152.22	12, 388	1.3		154			0.25 aq; s alc, alk
p159	Phenyltrichlorosilane	C ₆ H ₅ SiCl ₃	211.55	16, 911	1.32920	1.523020		201	91	
p160	Phenyltriethoxysilane	$C_6H_5Si(OC_2H_5)_3$	240.38	16, 911	0.996	1.460420		113 ^{10mm}	42	
p161	Phenyltrimethoxy- silane	C ₆ H ₅ Si(OCH ₃) ₃	198.30	164, 1556	1.062	1.468020		233	99	
p162	Phenyltrimethyl- ammonium bromide	$[C_6H_5N(CH_3)_3]^+$ Br ⁻	216.13	12, 158			215 dec			v s aq; s hot alc
p163	Phenyltrimethyl- ammonium chloride	$[C_6H_5N(CH_3)_3]^+$ Cl ⁻	171.67	12, 158			237 subl			s aq; v s alc; sl s eth
p164	Phenyltrimethyl- ammonium iodide	$[C_6H_5N(CH_3)_3]^+$ I ⁻	263.12	12, 159			227 subl			s aq, alc; sl s acet
p165	Phenyltrimethyl- ammonium tribro- mide	$[C_6H_5N(CH_3)_3]^+$ Br ₃	375.95	12, 159			114–116			
p166	Phenyltrimethylsilane	C ₆ H ₅ Si(CH ₃) ₃	150.30	16 ¹ , 525	0.873	1.490720		168-170	44	
p167	Phenylurea	C ₆ H ₅ NHCONH ₂	136.15	12, 346	1.302		145-147	238		s hot aq, hot alc, eth

TABLE 2.20 Physical Constants of Organic Compounds (Continued)

p168	1,2-Phthalic acid	C ₆ H ₄ -1,2-(CO ₂ H) ₂	166.13	9, 791	1.593420		230 rapid heating			0.6 aq; ;10 alc; 0.5 eth; v sl s chl
p169	Phthalic anhydride		148.12	17, 469	1.53		131-134	295	151	0.6 aq(dec); s alc
p170	Phthalide		134.13	17, 310	1.164%		72-74	290		s alc
p171	Phthalimide		147.13	21, 458	-		234-236			v s alk; v sl s bz, PE
p172	1.2-Phthalovl	C ₄ H ₄ -1,2-(COCl) ₂	203.02	9,805	1.40920	1.568420	15-16	280-282	>110	dec by aq, alc; s eth
•	dichloride									
p173	Phthalylsulfathioazole		403.44	Merck:			272-277			s alk; sl s alc; i chl
•	,			12, 7533		1				, ,
p174	Picric acid	2,4,6-(O ₂ N) ₃ C ₆ H ₂ OH	229.11	6, 265	1.76340		122-123	explodes		1.3 aq; 8.2 alc; 10 bz;
•								>300		2.9 chl; 1.6 eth
p175	$(+)$ - α -Pinene		136.24	5, 146	0.859120	1.465020	-62	156	35	misc alc, eth
p176	(-)-β-Pinene		136.24	5, 154	0.859020	1.478020	61	166	38	
p177	α -Pinene oxide		152.24	5, 152	0.964	1.469020		103 ^{50mm}	65	
p178	Piperazine		86.14	23, 4		1.446113	108-110	145-146	109	v s aq; 50 alc; i eth
p179	1,4-Piperazinebis-		302.37	Merck:			>300			
-	(ethanesulfonic			12, 7633						
I	acid)									
p180	Piperidine		85.15	20, 6	0.862220	1.452520	-13	106	4	misc aq; s alc, bz, chl
p181	1-Piperidinecarbo-		110.16	20, 56	0.951	1.470520		102 ^{10mm}	97	
-	nitrile									
p182	N-Piperidineethanol		129.20	20, 25	0.873225	1.480420		199-202	68	misc aq; s alc
p183	2-Piperidineethanol		129.20	21, 2	1.01017		38-40	234	102	v s aq, alc, eth
p184	1-Piperidinepropionic		157.21	20 ³ , 1049			105110	108 ^{0.5mm}		
I	acid									
p185	Piperidinepropionitrile		138.21		0.933	1.469520		111 ^{16mm}	102	
p186	2-(2-Piperidineethyl)-		190.29		0.985	1.526020		150 ^{17mm}	>110	
ľ	pyridine									
p187	L-Proline		115.13	22, 2			228 dec			
p188	Propane	CH ₃ CH ₂ CH ₃	44.10	1, 103	0.584-42	1.340-42	188	- 42.1	-104	volumes per 100 vols
•	•					1				solvent: 6.5 aq; 790
I										alc; 926 eth; 1300
I										chl; 1450 bz
p189	1,2-Propanediamine	CH ₃ CH(NH ₂)CH ₂ NH ₂	74.13	4, 257	0.87815	1.446020		119-120	33	misc aq, bz; s alc, eth
p190	1,3-Propanediamine	H ₂ NCH ₂ CH ₂ CH ₂ NH ₂	74.13	4, 261	0.88445	1.457520	-12	140	48	misc alc, eth; s aq
p191	1,2-Propanediol	CH ₃ CH(OH)CH ₂ OH	76.10	1, 472	1.0364420	1.433120	- 60	188	107	misc aq, acet, chl; s
-	-									alc, eth
p192	1,3-Propanediol	HOCH ₂ CH ₂ CH ₂ OH	76.10	1, 475	1.053820	1.439620	-27	214	79	misc aq, alc

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
p193	1,3-Propanediol bis-	CH ₂ (CH ₂ CO ₂ CC ₆ H ₄ NH ₂) ₂	314.34	14 ³ , 1034	1.140		124-127			
-	(4-aminobenzoate)									
p194	1,2-Propanediol dibenzoate	C ₆ H ₅ CO ₂ CH ₂ CH(CH ₃)- O ₂ CC ₆ H ₅	284.31	9, 129	1.160	1.545020	-3	232 ^{12mm}	>110	
p195 p196	1,3-Propanedithiol 1-Propanesulfonyl chloride	HSCH ₂ CH ₂ CH ₂ SH CH ₃ CH ₂ CH ₂ SO ₂ Cl	108.23 142.60	1, 476 4, 8	$\frac{1.0772_4^{20}}{1.2864_4^{15}}$	1.5405 ²⁰ 1.4542 ²⁰	-79	172.9 66 ^{8mm}	58 80	misc alc, bz, eth, chl dec hot aq, hot alc
p197	1,3-Propane sultone		122.14	19 ³ , 4	1.392		31-33	180 ^{30mm}	>110	
p198	1-Propanethiol	CH ₄ CH ₂ CH ₂ SH	76.16	1, 359	0.836 ²⁵	1.438020	-113	6768	- 20	s alc, eth
p199	2-Propanethiol	CH ₃ CH(SH)CH ₃	76.16	1, 367	0.80945	1.425520	-131	52.6	- 34	misc alc, eth; sl s aq
p200	1,2,3-Propanetriol tris(acetate)	H ₃ CCO ₂ CH(CH ₂ O ₂ CCH ₃) ₃	218.21	2, 147	1.158020	1.430220	-78	259	138	7.2 aq; misc alc, bz, chl, eth
p201	1-Propanol	CH ₃ CH ₂ CH ₂ OH	60.10	1, 350	0.803720	1.384020	-127	97.2	23	misc aq, alc, eth
p202	2-Propanol	(CH ₃) ₂ CHOH	60.10	1, 360	0.7855420	1.377220	- 89.5	82.4	12	misc aq, alc, chl, eth
p203	2-Propenal	H ₂ C=CHCHO	56.07	1, 725	0.84140	1.401720	- 88	52.6	- 18	21 aq; s alc, eth
p204	Propene	H ₂ C=CHCH ₃	42.08	1, 196	0.610 ⁻⁴⁸	1.3567 ⁻⁴⁰	- 185.2	- 47.7	- 108	vols in 100 vols solvent: 45 aq; 1200 alc; 500 acet
p205	2-Propene-1-thiol	H ₂ C=CHCH ₂ SH	74.15	1, 440	0.925423	1.476520		67-68	21	misc alc, eth
p206	trans-1,2,3-Propene- tricarboxylic acid		174.11	2, 849			190 dec			50 aq ²⁵ ; 50 88% alc ¹² ; sl s eth
p207	1-Propen-2-yl acetate	$H_2C = C(O_2CCH_3)CH_3$	100.12		0.909	1.400020		97	18	
p208	4-(1-Propenyloxy- methyl)-1,3-dioxo- lan-2-one		158.16		1.100	1.461020		251-252	>110	
p209	2-Propenylphenol	CH ₃ CH=CHC ₆ H ₄ OH	134.18	6 ¹ , 279	1.044	1.578020		230-231	90	
p210	β -Propiolactone		72.06	17 ¹ , 130	1.1460420	1.413120	-33.4	162	70	37 aq(hyd); misc alc (reacts); bz, eth, acet
p211	Propionaldehvde	CH ₄ CH ₂ CHO	58.08	1, 629	0.807140	1.363620	-81	48	- 30	30 aq; misc alc, eth
p212	Propionamide	CH ₄ CH ₅ CONH ₅	73.10	2, 243	0.9597	1.4160110	79	222.2		v s aq, alc, chl, eth
p213	Propionic acid	CH ₄ CH ₄ CO ₂ H	74.09	2,234	0.993440	1.380920	- 20.5	141.1	52	misc aq; s alc, chl, eth
p214	Propionic anhydride	$[CH_3CH_2C(=0)]_2O$	130.14	2, 242	1.011020	1.403720	-45	170	63	dec aq; s alc, chl, eth
p215	Propionitrile	CH ₃ CH ₂ CN	55.08	2, 245	0.781840	1.365820	-92.8	97.2	2	10 aq; misc alc, eth
p216	Propionyl chloride	CH ₃ CH ₂ COCl	92.53	2, 243	1.06540	1.405120	-94	80	11	dec by aq, alc
p217	Propiophenone	C ₆ H ₅ COCH ₂ CH ₃	134.18	72, 231	1.010540	1.525820	21	218.0	87	misc bz, eth, abs alc
p218	2-Propoxyethanol	CH ₃ CH ₂ CH ₂ OCH ₂ CH ₂ OH	104.15	1, 468	0.913	1.413020	-75	150-153	48	
p219	2-(2-Propoxyethyl)- pyridine	C ₅ H ₄ NCH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	165.24		0.954	1.488020			95	

p220	1-Propoxy-2-propanol	C ₅ H ₄ NCH ₂ CH ₂ OCH ₂ CH(OH)CH ₃	118.18	1², 536	0.885	1.411020		140-160	48	
p221	Propoxytrimethylsilane	CH ₃ CH ₂ CH ₂ OSi(CH ₃) ₃	132.28	4,4, 3994	0.768420	1.384020		100 ^{735mm}	-2	
p222	Propyl acetate	CH ₃ CH ₂ CH ₂ O ₂ CCH ₃	102.13	2, 129	0.8878	1.384420	-93	101.6	13	2.3 aq; misc alc, eth
p223	Propylamine	CH ₃ CH ₂ CH ₂ NH ₂	59.11	4, 136	0.717320	1.387220	- 83	42.2	- 37	misc aq, alc, eth
p224	2-(Propylamino)-	C ₃ H ₇ NHCH ₂ CH ₂ OH	103.17	4, 282	0.900	1.441520		182 ^{746mm}	78	
	ethanol								1	
p225	Propylbenzene	CH ₃ CH ₂ CH ₂ C ₆ H ₅	120.20	5, 390	0.862120	1.491220	- 99.2	159.2	47	s alc, eth
p226	Propyl benzoate	C ₆ H ₅ CO ₂ CH ₂ CH ₂ CH ₃	164.20	9, 112	1.03220	1.501020	-51.6	230	98	i aq; s alc, eth
p227	Propyl butyrate	CH ₃ CH ₂ CH ₂ CO ₂ CH ₂ CH ₂ CH ₃	130.19	2, 271	0.879415	1.400020	- 95	143	38	sl s aq; misc alc, eth
p228	Propyl chloroformate	ClCO ₂ CH ₂ CH ₂ CH ₃	122.55	3, 11	1.090	1.403420		105-106	28	misc bz, chl, eth
p229	Propylcyclohexane	CH ₃ CH ₂ CH ₂ C ₆ H ₁₁	126.24	5 ² , 23	0.79294	1.437020	- 94.9	156.7	35	s bz, eth
p230	Propylene carbonate		102.09	19 ³ , 1564	1.204120	1.421020	- 48.8	242	135	v s aq, alc, bz, eth
p231	Propyleneimine	CH₃CH−CH₂	57.09	20, 3	0.801725	1.408425		66.0	-15	misc aq, alc, PE
		NH								
p232	1.2-Propylene oxide	СН.СН—СН.	58.08	17.6	0.828720	1.366020	-112	34	-35	41 ag: misc alc, eth
r									(CC)	
	N 1 161			152.15	0.046	1 (7(0))			10	
p233	Propylene sulfide	CH ₃ CH-CH ₂	74.15	172, 15	0.946	1.476020		/2-/5	10	
) S								
p234	Propyl formate	CH ₃ CH ₂ CH ₂ O ₂ CH	88.10	2, 21	0.905820	1.377920	- 92.9	80.9	-3	2 aq; misc alc, eth
p235	Propyl 4-hydroxy-	HOC ₆ H ₄ CO ₂ CH ₂ CH ₂ CH ₃	180.20	10, 160			9598			0.05 aq; v s alc, eth
	benzoate									
p236	Propyl isocyanate	CH ₃ CH ₂ CH ₂ NCO	85.11	41, 366	0.908	1.394020		83-84	0	
p237	Propyl lactate	CH ₃ CH(OH)CO ₂ CH ₂ CH ₂ CH ₃	132.16	3, 265	0.99620	1.416725		86 ^{40mm}		s aq, alc, eth
p238	Propyl nitrate	CH ₃ CH ₂ CH ₂ ONO ₂	105.09	1, 355	1.0538420	1.397620	- 100	110.1	23 (may	s alc, eth
									ex-	
									plode	
									on	
									heat-	
									ing)	
p239	2-Propylpentanoic acid	(CH ₃ CH ₂ CH ₂) ₂ CHCO ₂ H	144.21	2, 350	0.921	1.425020		220	111	
p240	2-Propylphenol	CH ₃ CH ₂ CH ₂ C ₆ H ₄ OH	136.19	6, 499	1.01520	1.527920		224-226	93	s alc, eth
p241	Propylphosphonic dichloride	CH ₃ CH ₂ CH ₂ P(O)Cl ₂	160.97	4, 596	1.290	1.464320		90 ^{50mm}	>110	
p242	Propyltrichlorosilane	CH ₂ CH ₂ CH ₂ SiCl ₂	177.53	4, 630	1.185120	1.42920		123-124	2	
p243	1-Propyl-4-piperidone	- 3 - 2 2	141.22	,	0.936	1.460020		56 ^{1mm}	75	
p244	Propyl propionate	CH ₂ CH ₂ CO ₂ CH ₂ CH ₂ CH ₂ CH ₂	116.16	2. 240	0.88320	1.393520	- 76	122.5	19	0.5 aq; 103 alc; 83 eth
<u> </u>		5 2225]	,						,

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
p245	Propyl 3,4,5-tri-	(HO) ₃ C ₆ H ₂ CO ₂ CH ₂ CH ₂ CH ₃	212.20	Merck: 12, 8044			150			0.35 aq; 1 alc; 83 eth
n246	Propyne	CH-C≡=CH	40.06	1. 246	0.691-20	1.3725-20	- 102.8	-23.2		v s alc: 3000 mL eth
p247	2-Propynyl benzene- sulfonate	C ₆ H ₅ SO ₃ CH ₂ C≡CH	196.23	11 ³ , 37	1.243	1.525020	- 30	142 ^{2mm}	100	,
p248	2-Propynoic acid	HC≡CCO₂H	70.05	2, 477	1.138420	1.432020	9	102 ^{200mm}	58	s aq, alc, eth
p249	2-Propyn-1-ol	HC≡CH ₂ OH	56.06	1, 454	0.947820	1.432020	51.8	114	36	misc aq, alc, bz, chl
p250	(+)-Pulegone	-	152.24	7, 87	0.934645	1.487020		224	85	misc alc, chl, eth
p251	Pyrazine		80.09	23, 91	1.03141	1.495361	55	115	55	v s aq, alc, eth
p252	Pyrazinecarbonitrile		105.10	25 ³ , 777	1.174	1.534020		87 ^{6mm}	96	
p253	Pyrazinecarboxylic acid		124.10	25, 125			225 dec			sl s hot aq; 0.008 abs alc; i bz, chl, eth
p254	Pyrazole		68.08	23, 39		1.4203	68	187		s aq, alc, bz, eth
p255	Pyrene		202.26	5, 693	1.27123		151	404		s org solvents
p256	Pyridazine		80.09	23, 89	1.103545	1.523023	-8	208	85	misc aq, bz; v s alc, eth
p257	Pyridine	C,H,N	79.10	20, 181	0.982745	1.506725	-41.6	115.2	20	misc aq, alc, eth
p258	Pyridine-d ₅	C ₅ D ₅ N	84.14	20 ³ , 2305	1.050	1.509220		114.4	20	-
p259	2-Pyridinealdoxime	(C ₅ H ₄ N)-2-CH==NOH	122.13	21 ¹ , 288			110-112			
p260	4-Pyridinealdoxime	(C ₅ H₄N)-4-CH==NOH	122.13				130-133			
p261	2-Pyridinecarbox- aldehyde	(C ₅ H ₄ N)-2-CHO	107.11	21 ¹ , 287	1.126	1.537020		181	54	
p262	3-Pyridinecarbox- aldehyde	(C₅H₄N)-3-CHO	107.11	21 ¹ , 288	1.135	1.549320		97 ^{15mm}	60	
p263	4-Pyridinecarbox- aldehyde	(C ₅ H ₄ N)-4-CHO	107.11	21, 287	1.122	1.544020		78 ^{12mm}	54	s aq, eth
p264	3-Pyridinecarboxamide	(C₄H₄N)-3-CONH₂	122.13	22, 40	1.400	1.466	130-133			100 aq; 66 alc
p265	2-Pyridinecarboxylic acid	(C ₅ H ₄ N)-2-CO ₂ H	123.11	22, 33			134-136	sublimes		s aq, alc, bz; v s HOAc
p266	3-Pyridinecarboxylic acid	(C ₅ H ₄ N)-3-CO ₂ H	123.11	22, 38	1.473		236.6	sublimes		1.4 aq; s alk; v s hot aq. hot alc
p267	4-Pyridinecarboxylic acid	(C ₅ H ₄ N)-4-CO ₂ H	123.11	22, 45			319	260 ^{15mm}		0.52 aq; i alc, bz, eth
p268	2,3-Pyridinedi- carboxylic acid	(C ₅ H ₄ N)-2,3-(CO ₂ H) ₂	167.12	22, 150			188190 dec			0.56 aq; s alk
p269	2,5-Pyridinedi-	(C ₅ H ₄ N)-2,5-(CO ₂ H) ₂	167.12	22, 153			256 dec			s hot acid
p270	2,6-Pyridinedi- carboxylic acid	(C ₅ H ₄ N)-2,6-(CO ₂ H) ₂	167.12	22, 154			248-250 dec			sl s aq; v sl s alc

p271	Pyridine-N-oxide	C ₅ H ₅ NO	95.10	20 ² , 131			61-65	270		
p272	Pyridinium p-toluene-	C ₅ H ₅ NH ⁺ ⁻ O ₃ SC ₆ H ₄ CH ₃	251.31	20², 129			117-119			
	sulfonate									
p273	2-Pyridylcarbinol	(C ₅ H ₄ N)-2-CH ₂ OH	109.13	21 ¹ , 203	1.131	1.542020		113 ^{16mm}	>110	v s aq, alc, eth
p274	3-Pyridylcarbinol	(C ₅ H ₄ N)-3-CH ₂ OH	109.13	21, 50	1.124	1.544520		154 ^{28mm}	>110	v s aq, eth
p275	3-(3-Pyridyl)-1-	(C₅H₄N)-3-CH₂CH₂CH₂OH	137.18	21 ³ , 549	1.063	1.530020		133 ^{3mm}	>110	
	propanol									
p276	3-(4-Pyridyl)-1-	(C ₅ H ₄ N)-4-CH ₂ CH ₂ CH ₂ OH	137.18	214, 550	1.061		35-39	289	>110	
	propanol									
p277	Pyrimidine		80.09	23, 89	1.016	1.504020	22	124	31	misc aq; s alc, eth
p278	2,4(1 <i>H</i> ,3 <i>H</i>)-		112.09	24, 312			335			0.3 aq; s alk
	Pyrimidinedione		(7.00		0.0404					4.57
p279	Pyrrole		67.09	20, 159	0.96914	1.508520	-23.4	130	39	4.5 aq; v s alc, eth
p280	Pyrrolidine		71.12	20, 4	0.858620	1.443120	- 58	86.5	3	misc aq; s alc, chl, eth
p281	1-Pyrrolidinebutyro-		138.21		0.926	1.460520		115 ^{18mm}	99	
	nitrile									
p282	1-Pyrrolidinecarbo-		164.29				153-155			
	dithioic acid, am-									
	monium salt				0.054	1.460.000			107	
p283	1-Pyrrolidinecarbo-		96.13		0.954	1.469020		//1.0000	107	
204	nitrile		151.05		0.040	1 500520		11515mm	20	
p284	1-Pyrrolidino-1-		151.25		0.940	1.522525		115.000	39	
-205	2 Demalidiana		05 11	21.226	1 11625	1 490625	25	251	120	mission also by abl
p285	2-Pyrrollainone		65.11	21, 250	1.1104	1.4800	23	231	129	ath EtOAc
-206	2 (N Drevalidina)		145 20	201.4			16 19	15930mm	>110	elli, ElOAc
p280	3-(N-Fyrronumo)-		145.20	20', 4			40-40	138-	////	
a1	1,2-propaneuror		218 20	7 617	1 40120	1	171 173			s hot ag alg eth
41 a2	Quinityutone		324 44	23 511	1.4014	1 625	173_175			125 ale: 1 2 hz: 83 chl
42 a3	Quinnic		120.16	20, 330	1 00520	1.627320	-15	237	101	0.6 ag: misc alc eth
45 04	Quinomic		130.15	23, 176	1 33448	1.623148	29_32	220_223	98	v s ag alc bz eth
47 a5	2-Quinoxalinol		146.15	24 147	1.5544	1.0251	271-272	220 225		v s aq, ac, oz, ca
45 r1	D-Raffinose nenta-		594 52	31 462			80-82	dec 118		14 ag: 10 MeOH
••	hydrate		551.52							
г2	Resorcinol	C ₄ H ₄ -1.3-(OH) ₂	110.11	6, 796	1.272		110-112	280		111 ag: 111 alc; y s
-		0 4 7- (72		,						eth
r3	Resorcinol 1,3-	$C_{6}H_{4}-1,3-(O_{2}CCH_{3})_{2}$	194.19	6, 816	1.178	1.503020		146 ^{12mm}	>110	
	diacetate					-				

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
r4	Resorcinol monoacetate	CH ₃ CO ₂ C ₆ H ₄ -3-(OH)	152.15	6, 816	1.223	1.537020	-	ca 283	>110	i aq; misc alc, bz, chl, acet; s alk OH's
r5	Resorcinol monobenzoate	C ₆ H ₅ CO ₂ C ₆ H ₄ -3-(OH)	214.20					133–135		
rб	Rhodamine B		479.02	19, 345			210-211 dec			v s aq, alc
r7	Rhodanine		133.19	27, 242	0.868		167–170 may ex- plode on rapid heating			v s hot aq, alc, eth
r8	Riboflavin		376.37	Merck: 12, 8367			dec 278– 282			v s alk(dec); i acet, bz, eth; sl s pentyl ace- tate, cyclohexanol
r9	D-Ribose		150.13	1, 859			88-92			s aq; sl s alc
s1	Saccharin		183.19	27, 168	0.828		228-230			0.34 aq; 3 alc; 8 acet
s2 s3	Safrole Semicarbazide hydrochloride	H ₂ NNHCONH ₂ · HCl	162.19 111.53	19, 39 3, 98	1.09520	1.537020	11.2 175-177 dec	232–234	97	v s alc; misc chl, eth v s aq, alc; i eth
s4 s5	L-Serine D-Sorbitol	HOCH ₂ CH(NH ₂)CO ₂ H	105.09 182.17	4, 505 1, 533	1.472-5		222 dec 98-100 if hy- drated; 111 an- hyd			s aq; v sl s alc, eth 83 aq; s hot alc, acet
s6	L-Sorbose		180.16	1, 927	1.6515		163-165			55 aq: y si s alc
s7	Squalane	[(CH ₃) ₂ CH(CH ₃) ₂ CH(CH ₃)- (CH ₂) ₃ CH(CH ₃)CH ₂ CH ₂ -] ₂	422.83	11, 72	0.811515	1.453015	- 38	350	218	s bz, chl, eth, PE
s8	Squalene	$CH_{3}[C(CH_{3})=CHCH_{2}CH_{2}]_{5}$ $C(CH_{3})=C(CH_{3})_{2}$	470.73	1 ¹ , 130	0.8584420	1.4965 ²⁰	- 75	285 ^{25mm}	200	v s eth, acet, PE
s9	trans-Stilbene	C ₆ H ₅ CH=CHC ₆ H ₅	180.25	5, 630	0.970		122-124	307		v s bz, eth
s10	(-)-Strychnine		334.42	27², 723	1.36420		284-286	270 ^{5mm}		0.66 alc; 20 chl; 0.55 bz; 0.15 mg aq
s11	Styrene	C ₆ H ₅ CH=CH ₂	104.15	5, 474	0.906020	1.546320	-31	145	31	s alc, acet, eth, CS ₂
s12	Styrene oxide	H ₂ C—CHC ₆ H ₅	120.15	17, 49	1.054	1.533820	-37	194	79	
s13	Succinamic acid	H ₂ NCOCH ₂ CH ₂ CO ₂ H	117.10	2, 614			153-156			s aq; sì s alc; i eth

s14	Succinamide	H ₂ NCOCH ₂ CH ₂ CONH ₂	116.12	2, 614		1	265 dec			0.45 aq; i alc, eth
s15	Succinic acid	HO ₂ CCH ₂ CH ₂ CO ₂ H	118.09	2, 601	1.552		188	235 dec		7.7 aq; 5.4 alc; 2.8
										acet; 0.88 eth; i bz
s16	Succinic anhydride		100.07	17, 407			119.6	261		s alc, chl; v sl s eth
s17	Succinimide		99.09	21, 369	1.41		123-125	285-290		33 aq; 4 alc; i eth
s18	Succinonitrile	NCCH ₂ CH ₂ CN	80.09	2, 615	0.986460	1.417360	54.5	266	132	see b456
s19	Succinyl chloride	ClCOCH ₂ CH ₂ COCl	154.98	2, 613	1.39545	1.47315	16-17	190	76	dec by aq, alc; s bz
s20	Sucrose		342.30	31, 424	1.58745		185187			200 aq; 0.59 alc
s21	Sulfadiazine		250.28	Merck: 12, 9071			252-256			sl s aq, alc, acet; v s dil mineral acids, alk
s22	Sulfamethazine		278.34	Merck:			198-201			0.15 aq; s alk
				12, 9083						
s23	Sulfamic acid	HSO ₃ NH ₂	97.09	Merck:	2.15		205 dec			15 aq; si s alc, acet; s
			172.01	12, 9090			101.100			bases
s24	Sulfanilamide	$H_2NC_6H_4SO_2NH_2$	172.21	14, 698			164-166			0.76 aq; 2.7 alc; 20
-25	Culture in said		172.10	14 605			4 288			1 45 set s hot
\$25	Suffanic acid	$4 - (\Pi_2 I_3) - C_6 \Pi_4 3 O_3 \Pi_5$	175.19	14, 095			u 288			MeOH
\$26	Sulfoacetic acid	HCO.CH.SO.H	140.11	4 21			84-86	245 dec		s ag, alc; i eth, chl
s20	2-Sulfobenzoic acid	11002011200311	184.17	19, 110			0.00	186 ^{18mm}		s bz, chl, eth; i aq
027	cvclic anhydride		101111							
s28	4 4'-Sulfonvlbis(2.6-	[2.6-(Br),-C,H,OH],SO,	565.88	6.865			303-306			
520	dibromophenol)		D GDIOG	0,000			200 200			
s29	4,4'-Sulfonylbis(methyl	(CH ₃ O ₂ CC ₆ H ₄) ₂ SO ₂	334.35	10 ² , 109			195-196			
	benzoate)									
s30	4,4'-Sulfonyldiphenol	(HOC ₆ H ₄) ₂ SO ₂	250.27	6, 861	1.366315		245-247			s alc, eth, acet; i aq
s31	5-Sulfosalicylic acid	HO ₃ SC ₆ H ₃ (OH)CO ₂ H	254.21	11, 411			120 anhyd			v s aq, alc; s eth
t1	D-(-)-Tartaric acid		150.09	3, 520	1.7598420		172-174			139 aq ²⁰ ; 59 MeOH;
										33 EtOH; s glyc;
										0.4 eth
t2	L-(+)-Tartaric acid		150.09	3, 481	1.7598420		168-170			139 aq ²⁰ ; 59 MeOH;
										33 EtOH; s glyc;
										0.4 eth
t3	meso-Tartaric acid	HO2CCH(OH)CH(OH)-	168.11	3, 528	1.666420;		140; also			125 aq ²⁰
	monohydrate	$CO_2H \cdot H_2O$			1.737		159-160			
					also					

TABLE 2.20	Physical	Constants of	Organic	Compounds (Continued)
-------------------	----------	--------------	---------	-------------	-----------	---

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t4	DL-Tartaric acid	HO ₂ CCH(OH)CH(OH)-	168.11	3, 522	1.697420		210-212			20.6 aq ²⁰ ; 5 alc ²⁵ ; 1 eth
t5	Tartrazine		534 37	25 252						V S 90
t6	Terephthaldicarbox- aldehyde	C ₆ H ₄ -1,4-(CHO) ₂	134.13	7, 675			115-116	245-248		v o uy
t7	m-Terphenyl	C ₆ H ₅ -C ₆ H ₄ -C ₆ H ₅	230.31	5, 695	1.195		87	363		
t8	o-Terphenyl	$C_6H_5 - C_6H_4 - C_6H_5$	230.31	5 ² , 611	1.16		56.2	332	>110	
t9	p-Terphenyl	$C_6H_5 - C_6H_4 - C_6H_5$	230.31	5, 695	1.213		210	376	>110	
t10	α -Terpinene		136.24	5, 126	0.837540	1.477520		174	46	misc alc, eth
t11	y-Terpinene		136.24	5, 128	0.85345	1.475416		183	51	
t12	Terpinen-4-ol		154.25	6, 55	0.93384	1.482020	36.4	90 ^{6mm}	79	v s alc, eth
t13	a-Terpineol		154.25	6, 57	0.933720	1.481320	40.5	220	90	
t14	1,2,4,5-Tetrabromo- benzene	C ₆ H ₂ Br ₄	393.72	5, 214			180-182			
t15	3,4,5,6-Tetrabromo- cresol	CH ₃ C ₆ Br ₄ (OH)	423.75	6, 362			205-208			s alc, eth, alk
t16	1,1.2,2,-Tetrabromo-	Br ₂ CHCHBr ₂	345.67	1, 94	2.9655 ²⁰	1.635820	0	243.5	none	misc alc. chl. eth.
	ethane	<u> </u>								HOAc
t17	Tetrabromophthalic anhydride		463.72	17, 485			274276			sl s bz; i aq, alc
t18	$\alpha, \alpha, \alpha', \alpha'$ -Tetrabromo- o-xylene	C ₆ H ₄ -1,2-(CHBr ₂) ₂	421.77	5, 367			114–116			v s chl
t19	$\alpha, \alpha, \alpha', \alpha'$ -Tetrabromo- <i>m</i> -xylene	C ₆ H ₄ -1,3-(CHBr ₂) ₂	421.77	5, 375			105-108			
t20	$\alpha, \alpha, \alpha', \alpha'$ -Tetrabromo- <i>p</i> -xylene	C ₆ H ₄ -1,4-(CHBr ₂) ₂	421.77	5, 386			254-256			
t21	Tetrabutylammonium bromide	(C ₄ H ₉) ₄ N ⁺ Br ⁻	322.38	4², 634			102-104			
t22	Tetrabutylammonium chloride	(C₄H ₉)₄N ⁺ Cl ⁻	277.92	4 ³ , 292			73–75			
t23	Tetrabutylammonium	$(C_4H_9)_4N^+$ HSO ₄	339.54				171-173			
t24	Tetrabutylammonium iodide	(C₄H ₉)₄N ⁺ I ⁻	369.38	4, 157			145–147			sl s aq; s alc, eth
t25	Tetrabutylammonium tetrafluoroborate	$(C_4H_9)_4N^+$ BF ₄	329.28	4 ³ , 293			160-162			
t26	Tetrabutylammonium tribromide	(C ₄ H ₉) ₄ N ⁺ Br ₃ ⁻	482.20	4 ⁴ , 557			7476			
		-		•		•	•	•		

128Tetrabutyl ortho- silicateSi[O(CH_2)_3CH_3]_4320.55 1^2 , 398 0.899_4^{20} 1.4131^{20} 2.275 78 129Tetrabutyl phos- phonium bromide[CH_3(CH_2)_3]_4PBr339.351 1.057 1.4742^{20} -97 1451^{0num} 107 130Tetrabutyl fin(C_4H_9)_4Sn 347.15 1.057 1.4742^{20} -97 1451^{0num} 107 131 $1,1,3,3,-Tetrachloro-$ Cl_2CHC(=O)CHCl_2 195.86 $1,656$ 1.624_1^{45} 1.497^{18} 107 132 $1,2,3,4$ -Tetrachloro-C_6H_2Cl_4 215.89 $5,204$ $46-47$ 254 >110 133 $1,2,4,5$ -Tetrachloro-C_6Cl_4-1,2-(=O)_2 245.88 $7,602$ 1.858^{22} $139-142$ $240-246$ >110 134Tetrachloro-1,2-C_6Cl_4-1,2-(=O)_2 245.88 $7,602$ 1.6447^{25} 1.4130^{25} 26.0 92.8 135Tetrachloro-1,2-C_6Cl_4-1,4-(=O)_2 245.88 $7,636$ -70.2 130.5 47 136Tetrachloro-1,2-C_6Cl_4-1,4-(=O)_2 245.88 $7,636$ -70.2 130.5 47	
129Tetrabulyl phos- phonium bromide $[CH_3(CH_2)_3]_4PBr$ 339.351.0571.4742201.00-103130Tetrabulyltin $(C_4H_9)_4Sn$ 347.151.0571.0571.4742201071311,1,3,3,-Tetrachloro- acetone $C_2CHC(=O)CHCl_2$ 195.861,6561.624 $\frac{1}{45}$ 1.497181071321,2,3,4-Tetrachloro- benzene $C_6H_2Cl_4$ 215.895,20446-47254>1101331,2,4,5-Tetrachloro- benzene $C_6H_2Cl_4$ 215.895,2051.858 ²² 139-142240-246>110134Tetrachloro-1,2- benzoquinone $C_6Cl_4-1,4-(=O)_2$ 245.887,636290 dec135Tetrachloro-1,2- diffuorethane $C_1CH_2CPCl_2$ 203.831.6447251.41302526.092.8136Tetrachloro-1,2- diffuorethane $C_1CH_2CPcl_2$ 203.831.6447251.41302526.092.8136a1.11.2-Tetrachloro-1,2- diffuorethane $C_1CH_2CPcl_2$ 203.831.6447251.41302526.092.8136a1.11.2-Tetrachloro-1,2- diffuorethane $C_1CH_2CPcl_2$ 1.67.851.861.5406201.482120136a1.11.2-Tetrachloro-1,2- diffuorethane $C_1CH_2CPcl_4$ 1.67.851.861.5406201.482120<	
130 Tetrabutylin $(C_4H_3)_4$ Sn 347.15 1.057 1.4742 ²⁰ -97 145 ^{10mm} 107 131 1,1,3,3,-Tetrachloro- acetone Cl_2CHC(=O)CHCl_2 195.86 1,656 1.624 ¹⁵ 1.497 ¹⁸ 182 ¹⁴⁵ mm none 132 1,2,3,4-Tetrachloro- benzene C _q H ₂ Cl ₄ 215.89 5,204 46-47 254 >110 133 1,2,4,5-Tetrachloro- benzene C _q H ₂ Cl ₄ 215.89 5,205 1.858 ²² 139-142 240-246 >110 134 Tetrachloro-1,2- benzoquinone C _q Cl ₄ -1,2-(=O) ₂ 245.88 7,602 127-129 127-129 240 >110 135 Tetrachloro-1,4-benzo- quinone C _q Cl ₄ -1,4-(=O) ₂ 245.88 7,636 290 dec 290 dec 1482 ¹²⁰ -70.2 130.5 47 136 Tetrachloro-1,2- difuoroethane Cl_2CFCFCl ₂ 203.83 1.6447 ¹²⁵ 1.4130 ²⁵ 26.0 92.8 47	
131 $1,1,3,3,-\text{Tetrachloro-} acctone Cl_2CHC(=O)CHCl_2 195.86 1,656 1.624_4^{15} 1.497^{18} Image: Marcine Marci$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v s acet, chl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v s eth; sl s alc
134 Tetrachloro-1,2- $C_6Cl_4-1,2-(=O)_2$ 245.88 7, 602 127-129 127-129 135 Tetrachloro-1,4-benzo- $C_6Cl_4-1,4-(=O)_2$ 245.88 7, 636 290 dec 290 dec 136 Tetrachloro-1,2- $Cl_2CFCFCl_2$ 203.83 1.6447 ²⁵ 1.4130 ²⁵ 26.0 92.8 136a 1.1 2-Tetrachloro- CICH_CCL 167.85 1.86 1.5406 ²⁰ 1.4821 ²⁰ -70.2 130.5 47	s bz, chl, eth
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s eth; sl s chl; i aq
136a 1 1 1 2-Tetrachloro- CICH-CCL 167 85 1 86 1 5406 ²⁰ 1 4821 ²⁰ - 70.2 130.5 47	0.012 aq
t37 $1,1,2,2$ -Tetrachloro- ethane $Cl_2CHCHCl_2$ 167.85 $1,86$ 1.5866_4^{25} 1.4910^{25} -44 147 62	0.3 aq; misc alc, chl, eth, PE
t38 Tetrachloroethylene $Cl_2C=CCl_2$ 165.83 1,187 1.6230 ₄ ²⁰ 1.5057 ²⁰ -22 121 45	misc alc, chl, eth
t39 2,3,5,6-Tetrachloro- nitrobenzene $HC_6Cl_4NO_2$ 260.89 5,247 1.744 $\frac{3}{4}$ 98-101 304	s alc, bz, chl
t40 Tetrachlorophthalic 285.90 17, 484 254–258 371	dec hot aq; sl s eth
t41 Tetracosane $CH_3(CH_2)_{22}CH_3$ 338.66 1, 175 0.7786 ⁵¹ 1.4283 ⁷⁰ 51 391 >110	9.4 chl; s eth
t42 Tetradecafluorohexane $CF_3(CF_2)_4CF_3$ 338.05 1 ³ , 388 1.669 1.2515 ²⁰ -4 58-60 none	
t43 Tetradecane $CH_3(CH_2)_{12}CH_3$ 198.40 1, 171 0.7627 ²⁰ 1.4290 ²⁰ 5.5 253.6 99	v s alc, eth
t44 Tetradecanoic acid $CH_3(CH_2)_{12}CO_2H$ 228.38 2, 365 0.8525 $_{10}^{20}$ 1.4273 70 54 250 100mm	v s bz, chl, eth; s alc
t45 1-Tetradecanol $CH_3(CH_2)_{13}OH$ 214.39 1, 428 0.8151 ⁵⁰ 1.4358 ⁵⁰ 39.5 289 >110	s eth; sl s alc
t46 Tetradecanoyl chloride $CH_3(CH_2)_{12}COCl$ 246.82 2, 368 0.908 1.4490 ²⁰ -1 168 ^{15mm} >110	dec aq, alc; s eth
t47 1-Tetradecene $CH_3(CH_2)_{11}CH=CH_2$ 196.38 1, 226 0.775 $\frac{1}{4}$ 5 1.4360 ²⁰ -12.9 251.2 115	v s alc, eth
t48 Tetraethoxysilane $(CH_3CH_2O)_4Si$ 208.33 1, 334 0.934_4^{20} 1.383 ²⁰ -77 168 46	dec aq; s alc
t49 Tetraethylammonium bromide $(CH_3CH_2)_4N^+Br^-$ 210.16 4, 104 1.397 $_4^{00}$ 285 dec 285 dec	v s aq, alc, acet, chl

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t50	Tetraethylammonium	(CH ₃ CH ₂) ₄ N ⁺ Cl [−]	165.71	4, 104	1.080141		*	-	-	141 aq; s alc; 8.2 chl
t51 t52	chloride Tetra(ethylene glycol) Tetra(ethylene glycol) diacrulate	(HOCH ₂ CH ₂ OCH ₂ CH ₂) ₂ O (H ₂ C=CHCO ₂ CH ₂ CH ₂ O- CH CH) O	194.23 302.33	1, 468	1.125 ²⁰ 1.110	1.4577 ²⁰ 1.4650 ²⁰	-6	328	182 >110	misc aq, alc, bz, eth
t53	Tetra(ethylene glycol)	$C_2H_5(OCH_2CH_2)_4OC_2H_5$	250.34	1³, 2107	0.970	1.432420		159 ^{11mm}	>110	s aq
t54	Tetra(ethylene glycol) dimethacrylate	[H ₂ C=C(CH ₃)CO ₂ CH ₂ CH ₂ - OCH ₂ CH ₂] ₂ O	330.37	24, 1531	1.080	1.463020		220	>110	
t55	Tetra(ethylene glycol) dimethyl ether	CH ₃ (OCH ₂ CH ₂) ₄ OCH ₃	222.28	1³, 2107	1.0087420	1.433020	- 30	275–276	140	s aq
t56	Tetraethylene- pentamine	(H ₂ NCH ₂ CH ₂ NHCH ₂ CH ₂) ₂ NH	189.31	4,3, 543	0.99920	1.505520	40	340	185	misc aq, alc, eth
t57	N, N, N', N'-Tetraethyl- ethylenediamine	$(C_2H_5)_2NCH_2CH_2N(C_2H_5)_2$	172.32	4, 251	0.808	1.434320		189–192	58	
t58 t59 t60	Tetraethylgermanium Tetraethyllead Tetraethylsilane	(C ₂ H ₅)₄Ge (C ₂ H ₅)₄Pb (C ₂ H ₅)₄Si	188.84 323.45 144.34	4, 631 4, 639 4, 625	0.998 1.653^{20}_4 0.7658^{20}	1.4420 ²⁰ 1.5190 ²⁰ 1.4268 ²⁰	-90 -136 -82	165.5 85 ^{15mm} 154.7	35 72 26	s alc, eth; i aq s bz; misc eth i aq
t61	N,N,N',N'-Tetraethyl- sulfamide	$(C_2H_5)_2NSO_2N(C_2H_5)_2$	208.33	4, 129	1.030	1.448020		249–251	>110	~ ~~ 1
t62	Tetraethylthiuram disulfide	$[(C_2H_5)_2NC(=S)S^-]_2$	296.54	4, 122	1.30		71–72			3.8 alc; 7.1 eth; s bz, acet, chl; 0.02 ag
t63 t64	Tetraethyltin 1,1,1,2-Tetrafluoro- ethane	(C ₂ H ₅) ₄ Sn FCH ₂ CF ₃	234.94 102.03	4, 632 1,4, 123	1.19920	1.4730 ²⁰	- 112 - 26.5	181	53	i aq; s eth
t65 t66	Tetrafluoroethylene 2,2,3,3-Tetrafluoro-1-	F ₂ C==CF ₂ HCF ₂ CF ₂ CH ₂ OH	100.02 132.06	1 ³ , 638 1 ⁴ , 1438	1.151 ⁻⁴⁰ 1.4853 ²⁰	1.319720	- 142.5 - 15	- 76 109-110	43	i aq
t67	1,2,3,6-Tetrahydro- benzaldehyde	C ₆ H ₉ CHO	110.16	7 ¹ , 48	0.940	1.4745 ²⁰		163–164	57	
t68	1,2,3,4-Tetrahydro- carbazole		171.24	20, 416			118-120	325-330		
t69 t70	Tetrahydrofuran 2,5-Tetrahydrofuran- dimethanol		72.11 132.16	17, 10	$\begin{array}{c} 0.8892_4^{20} \\ 1.1542_4^{25} \end{array}$	1.4052 ²⁰ 1.4766 ²⁵	-108.5 <-50	65 265	-14	misc aq, alc, eth, PE misc aq, alc, bz, chl; s eth
t71	Tetrahydro-2-furan- methanol		102.13	17², 106	1.052420	1.452020	<-80	178	75	misc aq, alc, bz, chl, eth. acet
t72	Tetrahydro-2-furan- methylamine		101.15	18², 415	0.980	1.456020		154 ^{744mm}	45	,

t73	Tetrahydrofurfuryl acetate		144.17	172, 107	1.061	1.437020		196	84	
t74	Tetrahydrofurfuryl acrylate		156.18	17 ³ , 1104	1.064	1.460020		87 ^{9mm}	>110	
t75	Tetrahydrofurfuryl chloride		120.58	17³, 61	1.110	1.455020		150-151	47	
t76	Tetrahydrofurfuryl methacrylate		170.21	17 ³ , 1105	1.044	1.458020		52 ^{0.4mm}	90	
t77	2(3)-(Tetrahydrofuryl- oxy)tetrahydropyran		186.25		1.030	1.461020			97	
t78	1,2,3,4-Tetrahydro- isoquinoline		133.19	20, 275	1.064	1.566820	- 30	232-233	98	
t79	Tetrahydrolinalool	(CH ₃) ₂ CHCH ₂ CH ₂ CH ₂ - C(CH ₃)(OH)CH ₂ CH ₃	158.29	1, 426	0.826	1.434020	76	73 ^{6mm}	76	
t8 0	1,2,3,4-Tetrahydro- naphthalene	C ₁₀ H ₁₂	132.21	5, 491	0.970240	1.541420	- 35.8	207.6	77	misc alc, bz, chl, eth, acet, PE
t81	<i>cis</i> -1,2,3,6-Tetrahydro- phthalic anhydride		152.15	17, 462			97–103		157	
t82	cis-1,2,3,6-Tetrahydro- phthalimide		151.17				129–133			
t83	Tetrahydropyran		86.14	17, 12	0.881440	1.420020	-45	88	- 155	misc aq, alc, eth
t84	Tetrahydropyran-2- methanol		116.16		1.025420	1.458020	-70	187	93	misc aq, alc, bz, eth
t85	3,4,5,6-Tetrahydro- pyrimidinethiol		116.19	24, 5			210–212			
t86	1,2,3,4-Tetrahydro- quinoline		133.19	20, 262	1.061	1.594020	15–16	249	100	s aq; misc alc, eth
t87	Tetrahydrothiophene		88.17	17 ¹ , 5	0.998720	1.504020	96	121	12	misc alc, eth; i aq
t88	2,2',4,4'-Tetrahydroxy- benzophenone	[(HO) ₂ C ₆ H ₃] ₂ C==O	246.22	8, 496			200–203			-
t89	Tetrakis(dimethyl- amino)ethylene	$[(CH_3)_2N]_2C = C[N(CH_3)_2]_2$	200.23	4ª, 167	0.861	1.480020		59 ^{0.9mm}	53	
t90	N,N,N',N'-Tetrakis(2- hydroxypropyl)- ethylenediamine	[CH ₃ CH(OH)CH ₂] ₂ NCH ₂ - CH ₂ N[CH ₂ CH(OH)CH ₃] ₂	292.40	44, 1685	1.013	1.481220		181 ^{0.8mm}	>110	
t91	1,1,8,8-Tetramethoxy- octane	(CH ₃ O) ₂ CH(CH ₂) ₆ CH(OCH ₃) ₂	234.34		0.949	1.430020		130 ^{5mm}	52	
t92	1,1,3,3-Tetramethoxy- propane	[(CH ₃ O) ₂ CH] ₂ CH ₂	164.20		0.997	1.408120		183	54	

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t93	Tetramethyl-	(CH ₃) ₄ N ⁺ Br ⁻	154.06	4, 51	1.56		>300	-	-	55 aq
t94	Tetramethyl-	(CH ₃) ₄ N ⁺ Cl ⁻	109.60	4, 51	1.169420		>300			s aq, hot alc
t95	Tetramethyl- ammonium iodide	(CH ₃) ₄ N+ I ⁻	201.06	4, 51	1.829		>300			sl s aq; v s abs alc
t96	N,N-3,5-Tetramethyl- aniline	(CH ₃) ₂ C ₆ H ₃ N(CH ₃) ₂	149.24	12, 1131	0.913	1.544320		226–228	90	
t97	1,2,3,4-Tetramethyl- benzene	C ₆ H ₂ -1,2,3,4-(CH ₃) ₄	134.22	5, 430	0.90540	1.518720	-6.2	205.0	68	misc alc, eth
t98	1,2,3,5-Tetromethyl- benzene	C ₆ H ₂ -1,2,3,5-(CH ₃) ₄	134.22	5, 430	0.890640	1.513420	-23.7	198.0	63	s alc; v s eth
t99	1,2,4,5-Tetramethyl- benzene	C ₆ H ₂ -1,2,4,5-(CH ₃) ₄	134.22	5, 431	0.83841		79.3	196.8	73	v s alc, bz, eth
t100	2,2,3,3-Tetramethyl- butane	(CH ₃) ₃ CC(CH ₃) ₃	114.23	1, 165	0.824220		- 100.7	106.5	4	
t101	N,N,N',N'-Tetra- methyl-1,3-butane- diamine	(CH ₃) ₂ NCH(CH ₃)CH ₂ - CH ₂ N(CH ₃) ₂	144.26	4 ³ , 570	0.787	1.431820		165	40	
t102	N,N,N',N'-Tetra- methyl-1,4-butane- diamine	(CH ₃) ₂ N(CH ₂) ₄ N(CH ₃) ₂	144.26	4, 265	0.78620	1.428020		169	46	s aq, alc, eth
t103	1,1,3,3-Tetramethyl- butylamine	(CH ₃) ₃ CCH ₂ C(CH ₃) ₂ NH ₂	129.25	4, 198	0.805	1.424020		137–143	32	s alc, eth, PE; i aq
t104	1,3,5,7-Tetramethyl-	[-SiH(CH ₃)O-] ₄	240.51	4ª, 4099	0.9912 ²⁰	1.387020	- 69	134-135		
t105	N,N,N',N'-Tetra- methyldiamino- methane	(CH ₃) ₂ NCH ₂ N(CH ₃) ₂	102.18	4, 54	0.749	1.4005 ²⁰		85	-12	
t106	1,1,3,3-Tetramethyl-	[(CH ₃) ₂ CH] ₂ O	134.33	4⁴, 3991	0.757420	1.370020		70–71	-10	
t107	Tetramethylene sulfone		120.17	17 ¹ , 5	1.260640	1.482030	27.6	285	177	misc aq, acet, toluene; s octanes, olifines,
t108	N,N,N',N'-Tetra- methylethylene- diamine	(CH ₃) ₂ NCH ₂ CH ₂ N(CH ₃) ₂	116.21	4, 250	0.770	1.4179 ²⁰	- 55	120-122	10	naphurenes

t109	Tetramethyl- germanium	(CH ₃) ₄ Ge	132.73	4,2, 1008	0.978	1.389020	- 88	43.4	-37	
t110	1,1,3,3-Tetramethyl- guanadine	[(CH ₃) ₂ N] ₂ C==NH	115.18	4 ¹ , 335	0.918	1.469220		163	60	
t111	N,N,N',N'-Tetra- methyl-1,6-hexane- diamine	[(CH ₃) ₂ N(CH ₂) ₃ -] ₂	172.32	4 ¹ , 423	0.806	1.4359 ²⁰	1	209–210	73	
t112 t113	Tetramethyl lead N,N,N',N'-Tetra- methylmethane- diamine	(CH ₃) ₄ Pb (CH ₃) ₂ NCH ₂ N(CH ₃) ₂	267.33 102.18	4, 639 4, 54	1.995 ²⁰ 0.749	1.400520	-27.5	110 85	38 - 12	misc alc, eth
t114	2,6,10,14-Tetra- methylpentadecane	[(CH ₃) ₂ CH(CH ₃) ₃ - CH(CH ₃)CH ₂] ₂ CH ₂	268.53	Merck: 12, 7932	0.782740	1.438520	- 100	296	>110	s bz, chl, eth, PE
t115	2,2,6,6-Tetramethyl- piperidinyl-1-oxy (free radical)		156.25				3640		67	
t116	<i>N,N,N',N'</i> -Tetra- methyl-1,3-propane- diamine	(CH ₃) ₂ N(CH ₂) ₃ N(CH ₃) ₂	130.24	4, 262	0.779	1.423420		145146	31	
t117	Tetramethylpyrazine		136.20	23, 99			8486	190		
t118	Tetramethylsilane	(CH ₃)₄Si	88.23	4, 625	0.64114	1.358020	- 99.5	26.5	- 27	v s alc, eth
t119	1,1,3,3-Tetramethyl- 2-thiourea	$(CH_3)_2NC(=S)N(CH_3)_2$	132.23	4 ¹ , 336			75–77	245		0.002 alc, 0.002 eth; 0.012 acet; 0.025 bz: s chl
t120	Tetramethylthiuram disulfide	[(CH ₃) ₂ NCS ₂ -] ₂	240.43	4, 76	1.29		155-156			
t121	Tetramethyltin	(CH ₃) ₄ Sn	178.83	4, 631	1.314925	1.5201	- 54	74–75	12	
t122	1,1,3,3-Tetramethyl- urea	$(CH_3)_2NC(=O)N(CH_3)_2$	116.16	4, 74	0.968740	1.449325	-0.6	176–177	77	misc aq, common org solvents
t123	Tetranitromethane	$C(NO_2)_4$	196.03	1, 80	1.622945	1.435825	13.8	126	>110	v s alc, eth, alk
t124	1,4,7,10-Tetraoxa- cyclododecane (12-Crown-4)		176.21		1.089	1.463020	16	70 ^{0.5mm}	>110	
t125	2,4,8,10-Tetraoxa- spiro[5,5]undecane		160.17	19, 436			52-55	83 ^{1.5mm}	108	
t126	Tetraphenylboron sodium	(C ₆ H ₅)₄B ⁻ Na ⁺	342.23	Merck: 12, 8839			>300			v s aq, acet; s chl

TABLE 2.20	Physical	Constants of	Organic	Compounds (Continued)
-------------------	----------	--------------	---------	-------------	-----------	---

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t127	1,1,4,4-Tetraphenyl- 1,3-butadiene	$(C_6H_5)_2C = CHCH = C(C_6H_5)_2$	358.49	5, 750			207-209			
t128	Tetraphenyltin	(C ₆ H ₅) ₄ Sn	427.11		1.490°		224-227	>420	110	
t129	Tetrapropoxysilane	(C ₃ H ₇ O) ₄ Si	264.4	1, 355	0.916 ²	1.40120		94 ^{5mm}	95	
t130	Tetrapropylammonium bromide	(CH ₃ CH ₂ CH ₂) ₄ N ⁺ Br [−]	266.27	4 ¹ , 364			270 dec			s aq
t131	1H-Tetrazole		70.06	26, 346			157-158			s aq, alc, acet
t132	2-Thenoyltrifluoro- acetone		222.18				40-44	98 ^{8mm}		
t133	Theobromine		180.17	26, 457			357	sublimes 290– 295		100 aq; 0.045 alc; s alk; i bz, chl, eth
t134	Theophylline		180.17	26, 455			274–275			0.83 aq; 1.25 alc; 0.9 chl; s hot aq, alk, dil acids
t135	Thiamine HCl		337.27	Merck: 12, 9430			dec 260			100 aq; 1 alc; 5.5 glyc
t136 t137	Thiazole N ² -(2-Thiazolyl)- sulfanilamide		85.13 255.32	27, 15 27 ³ , 4623	1.200	1.539020	202	117–118	22	s alc, eth; sl s aq 0.06 aq; 0.52 alc; s acet, dil mineral
±138	Thioacetamide	CH C(=S)NH	75.13	2 232			112_114			16 age 16 alce sl s eth
t139	Thiobenzoic acid	$C_{H_2}C(=0)SH$	138.19	9,419	1.174	1.605020	15-18	122 ^{30mm}	>110	misc eth: v s alc: i aq
t140	4,4'-Thiobis(2- <i>tert</i> - butyl-6-methyl-	0,	358.54	6 ⁴ , 6043		1.0000	163–165	316 ^{40mm}	240	
t141	Thiocarbanilide	C.H.NHC(=S)NHC.H.	228.32	12, 394	1.3224		152-155			v s alc, eth
t142	p-Thiocresol	HSC ₄ H ₄ CH ₃	124.21	6, 416			42-44	195	68	s alc, eth; i aq
t143	2,2'-Thiodiacetic acid	(HO ₂ CCH ₂) ₂ S	150.15	3, 253			128-131			s aq, alc
t144	2,2'-Thiodiethanol	(HOCH ₂ CH ₂) ₂ S	122.19	1, 470	1.18244	1.520320	- 10.2	282	160	misc aq, alc; sl s eth
t145	4,4'-Thiodiphenol	(HOC ₆ H ₄) ₂ S	218.27	6, 860			154-156			
t146	3,3'-Thiodipropionic acid	(HO ₂ CCH ₂ CH ₂) ₂ S	178.21				131–134			3.7 aq; v s hot aq, alc, acet
t147	Thiolacetic acid	CH₃C(==O)SH	76.12	2, 230	1.065	1.4630	< -17	88-91	11	s aq; v s alc
t148	N-Thionylaniline	C ₆ H ₅ N=SO	139.18	12, 578	1.236	1.627020		200	84	
t149	Thionyl bromide	SOBr ₂	207.88	Merck: 12, 9484	2.683	1.675020	-52	138		misc bz, chl, CCl ₄ ; hyd by aq

t150	Thionyl chloride	SOCl ₂	118.97	Merck: 12, 9485	1.635	1.51720	- 101	76	none	misc bz, chl, CCl_4 ; hyd by ag
t151	Thiophene	C ₄ H ₄ S	84.14	17, 29	1.057345	1.525725	- 39.4	84	-1	misc alc, eth; i aq
t152	2-Thiopheneacetic acid	(C ₄ H ₃ S)CH ₂ CO ₂ H	142.18	18, 293			63-67	160 ^{22mm}		
t153	2-Thiophenecarbonyl	(C ₄ H ₃ S)COCl	146.60	18, 290	1.371	1.590020		206-208	90	
	chloride									
t154	2-Thiophenecarbox-	(C₄H ₃ S)CHO	112.15	17, 285	1.200	1.590020		198	77	s eth
	aldehyde									
t155	2-Thiophenecarboxylic	(C ₄ H ₃ S)CO ₂ H	128.15	18, 289			127-130	260		s aq, chl; v s alc, eth
	acid									
t156	Thiophenol	C₅H₅SH	110.18	6, 294	1.073	1.588020	- 14.9	169	50	v s alc; misc bz, eth
t157	Thiophenoxyacetic	C ₆ H ₅ SCH ₂ CO ₂ H	168.21	6, 313			64-66			
	acid									
t158	Thiophosphoryl	PSCl ₃	169.40		1.668	1.555020	$-36 (\beta)$	125	none	s bz, chl, CCl ₄ , CS ₂
	chloride						-40 (α)			
t159	Thiopropionic acid	CH ₃ CH ₂ C(==O)SH	90.14	2, 264	1.014	1.464020		108-110	11	
t160	3-Thiosemicarbazide	$H_2NC(=S)NHNH_2$	91.14	3, 195			182-184			s aq, alc
t161	Thiourea	$H_2NC(=S)NH_2$	76.12	3, 180	1.405		176-178			9 aq; s alc; sl s eth
t162	Thioxanthen-9-one		212.27	17, 357			212-213	373 ^{715mm}		v s bz, chl, hot HOAc
t162a	Thymol		150.22	6, 532	0.96994	1.522720	51.5	233	102	0.1 aq; 100 alc; 140
										eth; s HOAc, alk
										OH
t163	Titanium(IV) ethoxide	$Ti(OC_2H_5)_4$	228.15	1, 335	1.088	1.504320		152 ^{10mm}	28	
t164	Titanium(IV) iso-	Ti[OCH(CH ₃) ₂] ₄	284.26	1², 382	0.963	1.466020	18-20	220	22	s bz, chl, eth
	propoxide									
t165	Titanium(IV) propox-	Ti(OCH ₂ CH ₂ CH ₃) ₄	284.26	13, 1423	1.033	1.498620		170 ^{3mm}	42	
	ide									
t166	Toluene	C ₆ H ₅ CH ₃	92.14	5, 280	0.86604	1.496020	-94.9	110.6	4	misc alc, chl, eth, acet,
									1	HOAc; 0.067 aq
t167	2,4-Toluenediamine	$CH_{3}C_{6}H_{3}-2,4-(NH_{2})_{2}$	122.17	13, 124			99	292		s hot aq, alc, eth
t168	2,5-Toluenediamine	$CH_{3}C_{6}H_{3}-2,5-(NH_{2})_{2}$	122.17	13, 144			64	273-274		v s aq, alc, eth
t169	2,6-Toluenediamine	$CH_{3}C_{6}H_{3}$ -2,6-(NH_{2}) ₂	122.17	13, 148			104-106	1.5.518		s aq, aic
t170	3,4-Toluenediamine	$CH_{3}C_{6}H_{3}$ -3,4-(NH_{2}) ₂	122.17	13, 148	1.001(20	1.500000	91-93	156 ^{18mm}		vsaq
t171	Toluene-2,4-diiso-	$CH_{3}C_{6}H_{3}-2,4-(NCO)_{2}$	174.16	13, 138	1.22444	1.568920	20-21	251	132	dec aq, alc; misc acet,
.150	cyanate	CU C U SO U	156.01	11.0			05			bz, eth
t172	<i>p</i> -1 oluenesulfinic acid	$CH_3C_6H_4SU_2H$	130.21	11,9			80			v s aic, etn; si s aq
1174	o-ioluenesulfonamide	$CH_3C_6H_4SU_2NH_2$	171.22	11,80			120-128			0.0 2 (-1-
ti /4	p-10luenesulion-	$CH_3C_6H_4SU_2NH_2$	1/1.22	11, 104			138-140			0.2 aq; 3.6 aic
	amide									

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t175	<i>n</i> -Toluenesulfonyl-	CH ₂ C ₄ H ₂ SO ₂ NHNH ₂	186.23	112, 66			110 dec			
	hydrazide			,						
t176	p-Toluenesulfonic acid	CH ₃ C ₄ H ₄ SO ₃ H	172.20	11, 97			107 anhyd	140 ^{20mm}		67 ag; s alc, eth
t177	p-Toluenesulfonyl	CH ₄ C ₆ H ₄ SO ₇ Cl	190.65	11, 103			6769	134 ^{10mm}		v s alc, bz, eth; i aq
	chloride									· · · · •
t178	p-Toluenesulfonyl	CH ₃ C ₆ H₄SO ₂ F	174.19	11², 54			41-42	112 ^{16mm}	105	
	fluoride									
t179	p-Toluenesulfonyl	CH ₃ C ₆ H ₄ SO ₂ NCO	197.21			1.435520		144 ^{10mm}	>110	
	isocyanate									
t180	m-Toluidine	CH ₃ C ₆ H ₄ NH ₂	107.16	12, 853	0.9894	1.568020	-31	203	85 (CC)	misc alc, eth
t181	o-Toluidine	$CH_3C_6H_4NH_2$	107.16	12, 772	0.99820	1.572020	- 16.3	200	85	1.7 aq; s alc, eth
t182	p-Toluidine	CH ₃ C ₆ H ₄ NH ₂	107.16	12, 880	0.961920	1.553259	43.8	200	87	7.4 aq; v s alc, eth
t183	<i>m</i> -Tolunitrile	CH ₃ C ₆ H ₄ CN	117.15	9, 477	0.97615	1.525620	-23	210	86	0.09 aq; v s alc, eth
t184	o-Tolunitrile	CH ₃ C ₆ H ₄ CN	117.15	9, 466	0.989	1.527920	-13	205	84	i aq; misc alc, eth
t185	<i>p</i> -Tolunitrile	CH ₃ C ₆ H ₄ CN	117.15	9, 489	0.9785430		29.5	217	85	i aq; v s alc, eth
t186	2-(p-Toluoyl)benzoic acid	CH ₃ C ₆ H ₄ COC ₆ H ₄ CO ₂ H	240.26	10, 759			137–139			v s alc, bz, eth, acet
t187	m-Toluoyl chloride	CH ₃ C ₆ H ₄ COCl	154.60	9, 477	1.173	1.548520		86 ^{5mm}	76	
t188	o-Toluoyl chloride	CH ₃ C ₆ H ₄ COCl	154.60	9, 464	1.185	1.5549 ²⁰		90 ^{12mm}	76	
t189	p-Toluoyl chloride	CH ₃ C ₆ H ₄ COCl	154.60	9, 484	1.169	1.553020	-2	225-227	82	
t190	p-Tolyl acetate	CH ₃ CO ₂ C ₆ H ₄ CH ₃	150.18	6, 397	1.048	1.501020		210-211	90	
t191	1-(o-Tolyl)biguanide	$CH_3C_6H_4NHC(=NH)NH-$ $C(=NH)NH_2$	191.24	12³, 1873			143–145		>110	
t192	m-Tolyl isocyanate	CH ₃ C ₆ H₄NCO	133.15	12, 864	1.033	1.530520		76 ^{12mm}	65	s alc, eth; i aq
t193	1,2,4-Triacetoxy- benzene	$C_6H_3(O_2CCH_3)_3$	252.22	6, 1089			98-100			
t194	Triacetoxyvinylsilane	(CH ₂ CO ₂) ₂ SiCH=CH ₂	232.26		1.167	1.422020		128 ^{25mm}	76	
t195	Triallylamine	(H ₂ C=CHCH ₂) ₂ N	137.23	4, 208	0.790	1.451020	150-151		30	
t196	Triallyl-1.3.5-triazine-	× 2 2/5	249.27		1.159	1.512920		152 ^{4mm}	>110	
	2.4.6(1H.3H.5H)-									
	trione									
t197	1H-1.2.4-Triazole		69.07	26.13			119-121	260		s ao, alc
t198	Tribenzylamine	(C.H.CH.).N	287.41	12, 1038	0.99125		9194		65	s hot alc. eth
t199	Tribromoacetaldehyde	Br-CCHO	280.76	1.626	2.665	1.585020		174	65	s ag, alc, chl, eth
t200	Tribromoacetic acid	Br ₂ CCO ₂ H	296.76	2, 220			130-133	245		s ag, alc, eth
t201	2.4.6-Tribromoaniline	Br ₂ C ₂ H ₂ NH ₂	329.83	12.663	2.35		120-122	300		s hot alc. chl. eth
t202	2.2.2-Tribromoethanol	Br-CCH-OH	282.77	12, 338			73-79	9310mm		2 aq: s alc, bz, eth
t203	1.1.2-Tribromo-	BrCH=CBr	264.74	1. 191	1.70821	1.624725		162.5		,,,,
	ethylene	2		,						
	I *	I		I	I	1	1	I	1	I

t204	Tribromomethane	CHBr ₃	252.77	1, 68	2.900015	1.600515	8.1	149.6	83	0.3 aq; misc eth, MeOH
t205	2,4,6-Tribromophenol	Br ₃ C ₆ H ₂ OH	330.82	6, 203	2.55		87-89	290 ^{746mm}		s alc, chl, eth; i aq
t206	1,2,3-Tribromopropane	BrCH ₂ CH(Br)CH ₂ Br	280.78	1, 112	2.390	1.58418	16.5	220	93	s alc, eth
t207	Tributoxyborane	(C₄H₀O)₃B	230.16	1 ² , 398	0.856720	1.409220	<-70	234	93	hyd ag
t208	Tributylamine	$(C_4H_9)_3N$	185.36	4, 157	0.7784	1.428020	- 70	216	86	v s alc, eth; s acet
t209	Tributylborane	$(C_4H_9)_3B$	182.16	4 ² , 1022	0.747			109 ^{20mm}	- 36	i aq; s most org solv
t210	2,4,6-Tri-tert-butyl-	[(CH ₃) ₃ C] ₃ C ₆ H ₂ OH	262,44	,	0.86427		129-132	277		
	phenol	2. 5.5 15 6 2								
t211	Tributyl phosphate	$(C_4H_9O)_3P(O)$	266.32	12, 397	0.972725	1.422625	- 79	289	146	0.04 aq; misc org solv
t212	Tributyl phosphite	(C₄H₀O)₃P	250.32	11, 187	0.92540	1.432620		125 ^{7mm}	91	misc alc, bz, eth, PE
t213	Tributyltin chloride	(C₄H ₉) ₃ SnCl	325.49	4 ³ , 1926	1.200	1.490520		173 ^{25mm}	>110	
t214	Tributyltin ethoxide	(C ₄ H ₉) ₃ SnOC ₂ H ₅	335.10		1.098	1.467220		92 ^{0.1mm}	40	
t215	Tributyltin hydride	(C₄H ₉) ₃ SnH	291.05	4⁴, 4312	1.082	1.473020		80 ^{0.4mm}	40	
t216	Tributyltin methoxide	(C ₄ H ₉) ₃ SnOCH ₃	321.07	4⁴, 4331	1.115	1.472020		97 ^{0.06mm}	98	
t217	Trichloroacetamide	Cl ₃ CCONH ₂	162.40	2, 211			141-143	238-240		
t218	Trichloroacetaldehyde	Cl ₃ CCHO	147.40	Merck:	1.510420	1.455720	- 57.5	97.8		dec aq, alc; s eth
		-		12, 9755						
t219	Trichloroacetic acid	Cl ₃ CCO ₂ H	163.39	2, 206	1.6294	1.620020	57.5	196.5	>110	120 aq; v s alc, eth
t220	Trichloroacetic anhydride	(Cl ₃ CCO) ₂ O	308.75	2, 210	1.690	1.483820		141 ^{60mm}	none	
t221	1,1,3-Trichloroacetone	CICH ₂ COCHCl ₂	161.42	1, 655	1.508	1.489220	13-15	172	79	
t222	Trichloroacetonitrile	Cl ₃ CCN	144.39	2, 212	1.440345	1.440920	-42	86	none	
t223	2,2',4'-Trichloro-	Cl ₂ C ₄ H ₄ COCH ₂ Cl	223.49	7, 283			52-55	1354mm	>110	
	acetophenone									
t224	Trichloroacetyl	Cl ₃ CCOCI	181.83	2, 210	1.629	1.468920	- 146	118		
	chloride	-								
t225	2,4,5-Trichloroaniline	Cl ₃ C ₆ H ₂ NH ₂	196.46	12, 627			93-95	270		s alc
t226	2,4,6-Trichloroaniline	$Cl_3C_6H_2NH_2$	196.46	12, 627			73-75	262		s alc, eth
t227	1,2,3-Trichlorobenzene	C ₆ H ₃ Cl ₃	181.45	5, 203	1.69	1.577620	5355	218-220	126	v s bz, CS ₂ ; sl s alc
t228	1,2,4-Trichlorobenzene	C ₆ H ₃ Cl ₃	181.45	5, 204	1.45420	1.570720	17	213-214	110	misc bz, eth, PE
t229	1,3,5-Trichlorobenzene	C ₆ H ₃ Cl ₃	181.45	5, 204	1.66	1.566219	63.5	208	107	v s bz, eth, PE
t230	Trichloro-3-chloro-	Cl(CH ₂) ₃ SiCl ₃	211.98		1.350	1.466620		181-183		
	propylsilane									
t231	1,1,1-Trichloroethane	CH ₃ CCl ₃	133.41	1, 85	1.339020	1.437920	- 30.4	74	-1	s acet, bz, eth
t232	1,1,2-Trichloroethane	CICH ₂ CHCl ₂	133.41	1, 85	1.439720	1.471420	- 37	114	32	misc alc, eth
t233	2,2,2-Trichloroethanol	Cl ₃ CCH ₂ OH	149.40	1, 338	1.557	1.490020	18	151-153		8 aq; misc alc, eth
t234	2,2,2-Trichloroethyl	ClCO ₂ CH ₂ CCl ₃	211.86		1.539	1.470320	× .	171-172		
	chloroformate									

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t235	Trichloroethylene	CICH=CCl ₂	131.39	1, 187	1.464220	1.477320	- 84.8	87	32	0.1 aq; misc alc, chl, eth
t236 t237	Trichloroethylsilane Trichlorofluoro- methane	C₂H₅SiCl₃ Cl₃CF	163.51 137.37	4, 630 Merck: 12, 9770	1.2373 ²⁰ 1.485 ²¹	1.4256 ²⁰ 1.384 ²⁰	- 105.6 - 111	100.5 23.8	22	0.14 aq; s alc, eth
t238	$\alpha, \alpha, 2$ -Trichloro-6- fluorotoluene	ClC ₆ H ₃ (F)CHCl ₂	213.47	5 ³ , 701	1. 446	1.550620		228-230	>110	
t239	Trichloroisocyanuric acid		232.41	25, 256			249-251			
t240	Trichloromethane- sulfenyl chloride	Cl ₃ CSCl	185.89	3, 135	1.700420	1.543620		146–148.		
t241	1,1,1-Trichloro-2- methyl-2-propanol	(CH ₃) ₂ C(OH)CCl ₃	177.46	1, 382			99 anhyd	167		s alc, bz, chl, eth
t242 t243	Trichloromethylsilane 1,2,4-Trichloro-5- nitrobenzene	CH ₃ SiCl ₃ Cl ₃ C ₆ H ₂ NO ₂	149.48 226.45	4 ³ , 1896 5, 246	1.273 ²⁰ 1.790 ²⁰	1.410820	90 4955	66 288	9 >110	v s bz, eth
t244	2,4,5-Trichlorophenol	Cl ₃ C ₆ H ₂ OH	197.45	6², 180			6769	253		615 acet; 163 bz; 525 eth; 615 MeOH; i
t245	2,4,6-Trichlorophenol	Cl ₃ C ₆ H ₂ OH	197.45	6, 190	1.490145		69	246	none	525 acet; 113 bz; 354 eth; 525 MeOH; i
t246	(2,4,5-Trichloro- phenoxy)acetic acid	Cl ₃ C ₆ H ₂ OCH ₂ CO ₂ H	255.49	6 ³ , 702			154–158			s alc; v sl s aq
t247 t248	1,2,3-Trichloropropane 2,4,6-Trichloro- pyrimidine	CICH ₂ CH(CI)CH ₂ CI	147.43 183.43	1, 106 23, 90	1.3889 ²⁰	1.4854 ²⁰ 1.5700 ²⁰	14.7 23–25	157 >110	71	misc alc, eth; i aq
t249	Trichlorosilane	HSiCl ₃	135.45	Merck: 12, 9776	1.342	1.400020	- 127	31-32	-13	dec aq; s bz, chl
t250	4-(Trichlorosilyl)- butyronitrile	Cl ₃ Si(CH ₂) ₃ CN	202.54	4,4, 4272	1.300	1.463020		237-238	92	
t251 t252 t253 t254	α, α, α -Trichlorotoluene $\alpha, 2, 4$ -Trichlorotoluene $\alpha, 2, 6$ -Trichlorotoluene $\alpha, 3, 4$ Trichlorotoluene	C ₆ H ₅ CCl ₃ Cl ₂ C ₆ H ₃ CH ₂ Cl Cl ₂ C ₆ H ₅ CH ₂ Cl Cl ₂ C ₆ H ₅ CH ₂ Cl	195.48 195.48 195.48	5, 300 5 ⁴ , 819	1.3723 ²⁰ 1.407	1.5580 ²⁰ 1.5760 ²⁰ 1.5761 ²⁰ 1.5766 ²⁰	5 2.6 36-39	219223 248 119 ^{14mm} 124 ^{14mm}	127 >110 >110 >110	s alc, bz, eth v s alc, eth
t254	2,4,6-Trichloro-1,3,5- triazine	C12C6113C112C1	184.41	26, 35	1.411	1.5700	146148	190	- 110	i aq; s alc
1256	1,1,1-Trichlorotri- fluoroethane	Cl ₃ CCF ₃	187.38		1.579	1.369920	13–14	46		

t257	1,1,2-Trichlorotri- fluoroethane	Cl ₂ CFCClF ₂	187.38	1 ³ , 157	1.563525	1.355725	-35	47.7		0.017 aq
t258	Trichlorovinylsilane	H ₂ C=CHSiCl ₃	161.49		1.270	1.436020	-95	90	10	
t259	Tricyclo[5.2.1.0 ^{2,6}]-	1	136.24	5, 164	1	1	7779	193	40	
	decane									
t260	Tricyclo[5.2.1.0 ^{2,6}]-		150.22	7², 133	1.063	1.502520		132 ^{30mm}		
	decan-8-one									
t261	Tridecane	CH ₃ (CH ₂) ₁₁ CH ₃	184.37	1, 171	0.7563420	1.425620	-5 to -4	235	70	v s alc, eth
t262	Tridecanoic acid	CH ₃ (CH ₂) ₁₁ CO ₂ H	214.35	2, 364			41-42	236 ^{100mm}	>110	v s alc, eth; i aq
t263	2-Tridecanone	CH ₃ (CH ₂) ₁₀ COCH ₃	198.35	1, 715	0.822	1.435020	29-31	134 ^{10mm}	>110	
t264	7-Tridecanone	[CH ₃ (CH ₂) ₅] ₂ CO	198.35	1, 715	0.825		30-32	264	>110	
t265	1-Tridecene	$CH_3(CH_2)_{10}CH = CH_2$	182.35	1, 225	0.765820	1.434020	-13	232.8	79	s alc; v s eth
t266	Triethanolamine	(HOCH ₂ CH ₂) ₃ N	149.19	4, 285	1.124240	1.485320	20.5	335.4	179	misc aq, alc, acet; 4.5
										bz; 1.6 eth; s chl
t267	3,4,5-Triethoxybenzoic	$(C_2H_5O)_3C_6H_2CO_2H$	254.29	10, 481			110-112			
	acid							_		
t268	Triethoxyborane	(C ₂ H ₅ O) ₃ B	145.99	1, 335	0.864	1.374020		117-118	11	dec aq
t269	Triethoxysilane	(C ₂ H ₅ O) ₃ SiH	164.28	1, 334	0.890	1.377020		134-135	26	
t270	3-(Triethoxysilyl)-	(C ₂ H ₅ O) ₃ SiCH ₂ CH ₂ CN	217.34	4⁴, 4271	0.979	1.414020		224	100	
	propionitrile					1.100000				
t271	3-(TriethoxysilyI)-	$(C_2H_5O)_3SI(CH_2)_3NCO$	247.37		0.999	1.420020		283	177	
	propyl isocyanate		100.00		0.000220	1.007030		100.100		
t272	TriethoxyvinyIsilane	$(C_2H_5O)_3$ SICH=CH ₂	190.32		0.9034	1.397820	50	160-161	34	
t273	Triethylaluminum	$(C_2H_5)_3AI$	114.17	4, 643	0.83225	1 (01020	- 50	194	-18	dec aq, air
1274	Ineinylamine	$(C_2H_5)_3N$	101.19	4,99	0.727520	1.401020		88.8		5.5 aq; misc alc, eth; s
+275	Tristhulantimony		208.04	1 619	1 22416	1.42	_ 20	150.5		acel, ElOAC
+276	Triethylantinony	$(C_2 \Pi_5)_3 S D$	162 11	4,018	1.524-	1.42	- 29	1.J9.J 1.40736mm		i ag: miss als eth
+277	Triethylborane	$(C_2\Pi_5)_3AS$	98.00	4,002	0.606123	1 307020	-02.9	05		i aq; misc alc, cm
+278	Triethyl citrate		276.00	2 569	1 127	1.3970	02.5	1271mm	>110	I aq, uee by an
+270	Triathylenediamine	$1100(00_20_211_5)(01_200_20_211_5)_2$	112.19	223 494	1.157	1.4420	158 160	127	62	45 age 13 aget: 77 alor
12/9	metryreneurannie		112.10	25, 404			156100		02	45 aq, 15 acet, 77 ale, 51 bz
t280	Tri(ethylene glycol)	(HOCH ₂ CH ₂ OCH ₂ -) ₂	150.17	1, 468	1.127415	1.455020	-7	285	177	misc aq, alc, bz
t281	Tri(ethylene glycol)	[H ₂ C==C(CH ₃)CO ₂ CH ₂ -	286.33	24, 1531	1.092	1.460520		172 ^{5mm}	>110	
	dimethacrylate	CH ₂ OCH ₂ -] ₂								
t282	Tri(ethylene glycol)	(CH ₃ OCH ₂ CH ₂ OCH ₂ -) ₂	178.23	Merck:	0.9904	1.422420	-45	216	111	misc aq, hydrocarbon
	dimethyl ether			12, 9820						solvents

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
+283	Tri(ethylene glycol)		202.25	13 2106	0.000	1 452020		12618mm	N110	
1205	divinvl ether	$n_2 c - c n_1 (0 c n_2 n_2)_3 0 c n - c n_2$	202.25	1,2100	0.990	1.4550		120	-110	
t284	Tri(ethylene glycol) monomethyl ether	CH ₃ (OCH ₂ CH ₂) ₃ OH	164.20	1 ³ , 2105	1.026	1.439920		122 ^{10mm}	>110	
t285	Triethylenetetramine	(H ₂ NCH ₂ CH ₂ NHCH ₂ -) ₂	146.24	4, 255	0.982	1.4971	12	266	143	
t286	Triethylgallium	(C2H5)3Ga	156.91		1.057630		82.3	142.6		
t287	1,3,5-Triethylhexa- hydro-1,3,5-triazine		171.20	26, 2	0.894	1.459520		207-208	80	
t288	Triethylindium	(C ₂ H ₅) ₃ In	202.01		1.26020	1.53820	32	144		
t289	Triethyl orthoacetate	$CH_3C(OC_2H_5)_3$	162.23	2, 129	0.884745	1.395025		142	36	misc alc, chl, eth
t290	Triethyl orthoformate	$HC(OC_2H_5)_3$	148.20	2, 20	0.89140	1.391020	- 76	146	30	dec aq; s alc, eth
t291	Triethyl ortho- propionate	CH ₃ CH ₂ C(OC ₂ H ₅) ₃	176.26	2, 240	0.876	1.399520		155-160	60	v s alc, eth
t292	Triethyl phosphate	$(C_2H_3O)_3P(O)$	182.16	1, 332	1.069520	1.405820	- 56	215	115	s aq(dec), alc, eth
t293	Triethylphosphine	$(C_2H_3)_3P$	118.16	4, 582	0.80045	1.456320	- 88	128-129	-17	i aq; misc alc, eth; py-
		. 2								rophoric
t294	Triethyl phosphite	(C ₂ H ₅ O) ₃ P	166.16	1, 330	0.96940	1.413020		156	54	i aq(hyd); misc alc, acet, bz, eth, PE
t295	Triethyl phosphono- acetate	(CH ₃ CH ₂ O) ₂ P(O)CH ₂ CO ₂ C ₂ H ₅	224.19	4 ¹ , 573	1.130	1.431020		145 ^{9mm}	>110	
t296	Triethyl phosphono-	(CH ₃ CH ₂ O) ₂ P(O)CO ₂ C ₂ H ₅	212.17	3², 103	1.110	1.432020		135 ^{12mm}	>110	
t297	Triethylsilane	(C.H.).SiH	116.28	4 625	0.73120	1.41220		107108	-3	i ag misc alc, eth
t298	Triethyl thiophosphate	$(C_2H_2O)_2P(S)$	198.22	1 333	1.082	1.448020		100 ^{16mm}	107	· uq,
t299	2,2,2-Trifluoro- acetamide	CF ₃ CONH ₂	113.04	2 ² , 186	1.002		70–75	162.5		
t300	Trifluoroacetic acid	CF-CO-H	114.02	2², 186	1.489020	1.285020	15.3	73		misc aq
t301	Trifluoroacetic	[CF ₄ C(O)] ₂ O	210.03	2 ² , 186	1.487	<1.300	-65	39-40		
	anhydride			, ,						
t302	1,1,1-Trifluoroacetone	CF ₃ C(O)CH ₃	112.05	1², 717	1.252	<1.30		22	- 30	
t303	1,3,5-Trifluorobenzene	C ₆ H ₃ F ₃	132.09		1.277	1.415020	- 5.5	75-76	-7	
t304	α,α,α-Trifluoro-m- cresol	CF ₃ C ₆ H ₄ OH	162.11	6 ¹ , 187	1.333	1.458820	-1.8	178–179	73	
t305	2,2,2-Trifluoroethanol	CF ₃ CH ₂ OH	100.04	1 ³ , 1342	1.384240	1.290720	-43.5	74	29	
t306	2,2,2-Trifluoroethyl	CF ₃ CH ₂ O ₂ CCF ₃	196.05	2³, 427	1.4725418	1.281218	-65.5	55	0	
	trifluoroacetate									
t307	Trifluoromethane	HCF ₃	70.01	1, 59	1.52-100		- 160	84		75 mL aq; 500 mL alc
t308	Trifluoromethane- sulfonic acid	CF ₃ SO ₃ H	150.07	34, 34	1.69525	1.325025	34	162	none	v s aq; misc eth

t309	Trifluoromethane- sulfonic anhydride	(CF ₃ SO ₂) ₂ O	282.13	34, 35	1.677	1.321220		84	none	dec aq, alc
t310	3-(Trifluoromethyl)- aniline	CF ₃ C ₆ H ₄ NH ₂	161.13	12, 870	1.290	1.480020	5-6	187	85	
t311	α, α, α -Trifluorotoluene	C ₆ H ₅ CF ₃	146.11	5, 290	1.188620	1.414520	29	102	12	
t312	Trihexyl O-acetyl- citrate	CH ₃ CO ₂ C[CO ₂ (CH ₂) ₅ CH ₃]- [CH ₂ CO ₂ (CH ₂) ₅ CH ₃] ₂	486.65		1.005	1.447020			>110	
t313	Trihexylamine	[CH ₃ (CH ₂) ₅] ₃ N	269.52	4, 188	0.794	1.441520		163-265	>110	v s alc, eth; i aq
t314	Trihexyl O-butyl- citrate	C ₃ H ₇ CO ₂ C[CO ₂ (CH ₂) ₅ CH ₃]- [CH ₂ CO ₂ (CH ₂) ₅ CH ₃] ₂	514.71		0.993	1.448020	- 55		>110	
t315	Trihexylchlorosilane	[CH ₃ (CH ₂) ₅] ₃ SiCl	319.12		0.871420	1.45620		155 ^{5mm}		
t316	Trihexvlsilane	[CH ₄ (CH ₂) ₄] ₄ SiH	284.60	44. 3915	0.799	1,44820		161	>110	
t317	1,2,3-Trihydroxy- benzene	C ₆ H ₃ (OH) ₃	126.11	6, 1071	1.45		133	309		59 aq; 77 alc; 62 eth
t318	1,3,5-Trihydroxy- benzene	C ₆ H ₃ (OH) ₃	126.11	6, 1092			218-221			1 aq; 10 alc; s eth
t319	3,4,5-Trihydroxy- benzoic acid	(HO) ₃ C ₆ H ₂ CO ₂ H	170.12	10, 470			258-265			1.1 aq; 17 alc; 1 eth; 20 acet; i bz, chl, PE
t320	2,3,4-Trihydroxy- benzophenone	(HO) ₃ C ₆ H ₂ COC ₆ H ₅	230.22	8, 417			140-142			
t321	1,2,6-Trihydroxy- hexane	HO(CH ₂) ₄ CH(OH)CH ₂ OH	134.18	1,4, 2784	1.109	1.476020		178 ^{5mm}	79	
t322	Triisobutylaluminum	[(CH ₃) ₂ CHCH ₂] ₃ Al	198.33	4, 643	0.786	1.449420	46	86 ^{10mm}	18	pyrophoric
t323	Triisobutylamine	[(CH ₃) ₂ CHCH ₂] ₃ N	185.36	4, 166	0.766	1.423020		192-193	57	
t324	Triisodecyl phosphite	[(CH ₃) ₂ CH(CH ₂) ₇ O] ₃ P	502.80		0.884	1.460020	<0	166	235	
t325	Triisopropanolamine	[CH ₃ CH(OH)CH ₂] ₃ N	191.27	4 ³ , 762	0.999658		48-52	305.4	152	vsaq
t326	Triisopropoxyborane	[(CH ₃) ₂ CHO] ₃ B	188.08	1, 363	0.815	1.376420		139-141	10	
t327	1,3,5-Triisopropyl-	$C_6H_3[CH(CH_3)_2]_3$	204.36	5, 458	0.845	1.488020		232236	86	
	benzene									
t328	Triisopropyl ortho-	CH[OCH(CH ₃) ₂] ₃	190.29	2 ³ , 39	0.854	1.397020		66 ^{18mm}	42	
	formate									
t329	Triisopropyl phosphite	[(CH ₃) ₂ CHO] ₃ P	208.24	1, 363	0.914420	1.411020		64 ^{11mm}	67	i aq(sl hyd)
t330	Triisopropylsilane	[(CH ₃) ₂ CH] ₃ SiH	158.36	4 ³ , 1851	0.773	1.434420		86 ^{35mm}	37	
t331	3,4,5-Trimethoxy-	(CH ₃ O) ₃ C ₆ H ₂ CHO	196.20	8, 391			73-75	165 ^{10mm}		
	benzaldehyde									
t332	1,2,3-Trimethoxy-	C ₆ H ₃ (OCH ₃) ₃	168.19	6, 1081	1.112		4345	241	>110	
	benzene									

N	
Ň	
4	
σ	

TABLE 2.20	Physical	Constants of	Organic	Compounds	(Continued))
-------------------	----------	--------------	---------	-----------	-------------	---

			Formula	Beilstein	Density,	Refractive	Melting	Boiling	Flash	Solubility in 100
No.	Name	Formula	weight	reference	g/mL	index	point, °C	point, °C	point, °C	parts solvent
t333	1,2,4-Trimethoxy- benzene	C ₆ H ₃ (OCH ₃) ₃	168.19	6, 1088	1.126	1.533020		247	>110	
t334	1,3,5-Trimethoxy- benzene	C ₆ H ₃ (OCH ₃) ₃	168.19	6, 1101			5153	255	85	
t335	3,4,5-Trimethoxy- benzoic acid	(CH ₃ O) ₃ C ₆ H ₂ CO ₂ H	212.20	10, 481			168-171	227 ^{10mm}		v s alc, eth; s chl
t336	3,4,5-Trimethoxy- benzoyl chloride	(CH ₃ O) ₃ C ₆ H ₂ COCl	230.65	10, 487			8184	185 ^{18mm}		
t337	3,4,5-Trimethoxy- benzyl alcohol	(CH ₃ O) ₃ C ₆ H ₂ CH ₂ OH	198.22	6, 1159	1.233	1.543920		228 ^{25mm}	>110	
t338	Trimethoxyborane	(CH ₃ O) ₃ B	103.91	1, 287	0.920423	1.356820	- 34	67-68	-13	hyd aq; misc alc, eth
t339	Trimethoxyboroxine	[-OB(OCH ₃)-] ₃	173.53		1.195	1.399620	10	130	10	
t340	1,1,2-Trimethoxy- ethane	CH ₃ OCH ₂ CH(OCH ₃) ₂	120.15	1 ³ , 3183	0.932	1.392120		59 ^{56mm}	23	
t341	1,1,3-Trimethoxy- propane	CH ₃ OCH ₂ CH ₂ CH(OCH ₃) ₂	134.18	1, 820	0.942	1.400420		46 ^{17mm}	40	
t342	1,1,3-Trimethoxy- propylsilane	CH ₃ OCH ₂ CH ₂ CH ₂ Si(OCH ₃) ₃	164.28		0.932	1.390020		142	40	
t343	Trimethoxysilane	(CH ₃ O) ₃ SiH	122.20	1², 274	0.960	1.357920	-115	81	-4	
t344	3-(Trimethoxysilyl)- propylamine	H ₂ N(CH ₂) ₃ Si(OCH ₃) ₃	179.29		1.027	1.424020		92 ^{15mm}	83	
t345	N-[3-(Trimethylsilyl)- propyl]aniline	C ₆ H ₅ NH(CH ₂) ₃ Si(OCH ₃) ₃	255.39		1.070	1.555020		310	>110	
t346	N ¹ -[3-(Trimethoxysilyl)- propyl]ethylene- diamine	(CH ₃ O) ₃ Si(CH ₂) ₃ NHCH ₂ CH ₂ NH ₂	224.36		1.019	1.445020		146 ^{15mm}	>110	
t347	3-(Trimethoxysilyl)- propyl methacrylate	$(CH_3O)_3Si(CH_2)_3O_2CC(CH_3)=CH_2$	248.35		1.04540	1.431020		190	92	
t348	[3-(Trimethoxysilyl)- propyl]urea	(CH ₃ O) ₃ Si(CH ₂) ₃ NHCONH ₂	222.32		1.150	1.460020		217-250	98	
t349	Trimethylacetic acid	(CH ₃) ₃ CCO ₂ H	102.13	2, 319	0.889		33-35	163-164	63	
t350	Trimethylacetic- anhydride	[(CH ₃) ₃ CCO] ₂ O	186.25	2, 320	0.918	1.409020		193	57	
t351	Trimethylacetyl chloride	(CH ₃) ₃ CCOCl	120.58	2, 320	0.979	1.412020		105-106	8	

t352	Trimethylaluminum	(CH ₃) ₃ Al	72.09	4, 643	0.75220	1.43212	15	125126	-18	s alk; v sl s alc
t354	Trimethylamine	(CH ₃) ₃ N	59.11	4, 43	0.656	1.3631º	-117	2.9	-7	41 aq; misc alc; s bz, chl, eth
t355 t356	2,4,6-Trimethylaniline 1,3,3-Trimethyl-6-aza- bicyclo[3,2,1]octane	$(CH_3)_3C_6H_2NH_2$	135.21 153.27	12, 1160	0.963 0.902	1.5510 ²⁰ 1.4716 ²⁰		233 194	96 75	
t357	1,2,3-Trimethyl- benzene	C ₆ H ₃ (CH ₃) ₃	120.20	5, 399	0.89444	1.513920	-25.4	176.1	48	i aq; s alc, eth
t358	1,2,4-Trimethyl- benzene	$C_6H_3(CH_3)_3$	120.20	5, 400	0.8756420	1.504820	-43.9	169	48	s alc, bz, eth
t359	1,3,5-Trimethyl- benzene	$C_{6}H_{3}(CH_{3})_{3}$	120.20	5, 406	0.863740	1.499420	- 44.7	165	44	misc alc, bz, eth
t360	Trimethyl 1,2,4- benzenetri-carbox- vlate	C ₆ H ₃ (CO ₂ CH ₃) ₃	252.22	9 ¹ , 429	1.261	1.521420	38-40	194 ^{12mm}	>110	
t361	2.2.3-Trimethylbutane	(CH ₂) ₂ CHC(CH ₂) ₂	100.20	1 ² , 121	0.690120	1.389020	-24.9	80.9	-6	s alc, eth
t362	2,3,3-Trimethyl-2- butanol	(CH ₃) ₃ CC(CH ₃) ₂ OH	116.20	12, 447	0.8380425	1.423322	15–17	130.5		misc alc, eth
t363	1,2,4-Trimethylcyclo- hexane	C ₆ H ₉ (CH ₃) ₃	126.24	5, 42	0.786	1.433020		141-143	18	
t364	3,5,5-Trimethylcyclo-		138.2	7,65	0.918	1.472020	-8.1	215	80	1.2 aq
	hex-2-ene-1-one									<u>^</u>
t365	2,6,6-Trimethyl-2- cyclohexene-1,4- dione		152.19	74, 2032		1.491020	26-28	94 ^{11mm}	96	
t366	Trimethyl-1,6-diiso-	OCNCH ₂ CH ₂ C(CH ₃)CH ₂ - C(CH ₃)CH ₂ CNO	210.28		1.012	1.462020		149	>110	
t367	2,2,6-Trimethyl-4 <i>H</i> - 1.3-dioxin-4-one	-()/2+	142.16	19 ³ , 1604	1.088	1.462020	12-13	67 ^{2mm}	86	
t368	4,4'-Trimethylenebis- (1-methylpiperidine)		238.42		0.896	1.482020	13	215 ^{50mm}	>110	
t369	4,4'-Trimethylene-		210.37				65-58			
t370	3.5.5-Trimethylhexanal	(CH ₃) ₃ CCH ₂ CH(CH ₃)CH ₂ CHO	142.24	1 ³ , 2894	0.817	1.421520		68 ^{2,4mm}	46	
t370a	3,5,5-Trimethylhexane	(CH ₄) ₂ CHCH ₂ CH(CH ₄)CH(CH ₄) ₂	128.26		0.721820	1.405120	- 128	131		
t371	3,5,5-Trimethyl-1- hexanol	(CH ₃) ₃ CCH ₂ CH(CH ₃)- CH ₂ CH ₂ OH	144.25	13, 1755	0.8236420	1.430025	< -70	193–194	80	s alc, eth
t372	3,5,5-Trimethyl- hexanoyl chloride	(CH ₃) ₃ CCH ₂ CH(CH ₃)- CH ₂ COCl	176.89	2 ³ , 834	0.930	1.436020		188-190	140	

TABLE 2.20	Physical Constants of Organic Compounds (Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t374	Trimethylhydro- quinone	(CH ₃) ₃ C ₆ H(OH) ₂	152.19	6, 931			172–174			s aq; v s alc, bz, eth
t375	1,3,3-Trimethyl-2- norbornanol		154.25	6, 70	0.9641 ²⁰		39-45	201	73	s alc, eth
t376	1,3,3-Trimethyl-2- norbornanone		152.24	7, 96	0.94818	1.463518	5	192–194	52	v s alc, eth
t377	Trimethyl orthoacetate	CH-C(OCH-)-	120.15	2 ² , 128	0 942825	1 385925		107-109	16	v s alc. eth
t378	Trimethyl	HC(OCH ₂)	106.12	2.19	0.967620	1.379020		100.6	15	
	orthoformate	(_, _,						
t379	2.4.4-Trimethyl-2-		113.16		0.887	1.421320		112-113	12	
	oxazoline									
t380	2,2,3-Trimethylpentane	(CH ₃) ₃ CCH(CH ₃)CH ₂ CH ₃	114.23	1 ¹ , 62	0.71604	1.403020	-112.3	110	<21	s eth; sl s alc
t381	2,2,4-Trimethylpentane	(CH ₃) ₂ CHCH ₂ C(CH ₃) ₃	114.23	12, 127	0.6919420	1.391520	- 107.4	99.2	-12	s bz, chl, eth
t382	2,3,4-Trimethylpentane	(CH ₃) ₂ CH[CH(CH ₃)] ₂ CHCH ₃	114.23	1 ³ , 500	0.7190420	1.404220	- 109.2	113-114	5	s alc, org solv
t383	2,2,4-Trimethyl-1,3-	(CH ₃) ₂ CHCH(OH)C(CH ₃) ₂ CH ₂ OH	146.22	13, 2225	0.92855	1.451315	52-56	232	113	1.8 aq; 75 alc; 22 bz;
	pentanediol									25 acet
t384	2,4,4-Trimethyl-1-	(CH ₃) ₃ CCH ₂ C(CH ₃)=CH ₂	112.22	13, 849	0.7150420	1.411220	93	101-102	-6	
	pentene									
t385	2,3,5-Trimethylphenol	(CH ₃) ₃ C ₆ H ₂ OH	136.19	6, 518			92-95	230-231		
t386	2,3,6-Trimethylphenol	(CH ₃) ₃ C ₆ H ₂ OH	136.19				62–64			
t387	2,4,6-Trimethylphenol	(CH ₃) ₃ C ₆ H ₂ OH	136.19	6, 518			71–74	220		
t388	2,4,6-Trimethyl-1,3-	$(CH_3)_3C_6H(NH_2)_2$	152.23	13 ¹ , 190			88-91			
	phenylenediamine									
t389	Trimethyl phosphate	(CH ₃ O) ₃ P(O)	140.08	1, 286	1.19720	1.396720	- 46	197	107	100 aq; s alc
t390	Trimethyl phosphite	(CH ₃ O) ₃ P	124.08	1, 285	1.04640	1.408020	- 78	111-112	27	dec aq; misc alc, acet,
										bz, PE
t391	Trimethyl phosphono- acetate	(CH ₃ O) ₂ P(O)CH ₂ CO ₂ CH ₃	182.11		1.125	1.437020		118 ^{0.85mm}	>110	
t392	1,2,4-Trimethyl-		128.22		0.85125	1.448025	- 50	151 ^{746mm}		s aq, alc, acet, bz
t393	2,4,6-Trimethylpyridine	C ₅ H ₂ N(CH ₃) ₃	121.18	20, 250	0.9166422	1.495925	- 46	171	57	3.5 aq; misc eth; s alc,
t394	N-(Trimethylsilyl)-	CH ₃ CONHSi(CH ₃) ₃	131.25				46–49	186	57	52, UII

t395 t396	Trimethylsilyl acetate N-(Trimethylsilyl)- imidazole	CH ₃ CO ₂ Si(CH ₃) ₃	132.24 140.26	43, 1857	0.882 0.956	1.3880 ²⁰ 1.4751 ²⁰	-32	108 94 ¹⁴ mm	4 5	
t397	Trimethylsilyl methacrylate	$H_2C = C(CH_3)CO_2Si(CH_3)_3$	158.28		0.890	1.415020		51 ^{20mm}	32	
t398	Trimethylsilyl tri- fluoromethane sul- fonate	CF ₃ SO ₃ Si(CH ₃) ₃	222.26		1.228	1.360020		77 ^{80mm}	25	
t399	Trimethylsulfonium iodide	[(CH ₃) ₃ S]I	204.07					215–220 sublime		
t400	Trimethylsulfoxonium iodide	[(CH ₃) ₃ S(O)]I	220.07				169 dec			
t400a	1,7,7-Trimethyltri- cyclo[2.2.1.O ^{2,6}]- heptane		136.24	5, 164	0.866880	1.4296 ⁸⁰	67.5	152.5		
t401	Trimethylvinylsilane	(CH ₃) ₃ SiCH==CH ₂	100.24		0.649	1.392020		55	< - 34	
t402	2,4,6-Trinitroaniline	$(O_2N)_3C_6H_2NH_2$	228.12	12, 763	1.76214		188-190	explodes		s hot acet; sl s alc
t403	1,2,4-Trinitrobenzene	$C_6H_3(NO_2)_3$	213.11	5, 271	1.7316		6162	explodes		5.5 alc; 7.1 eth; i aq
.t404	1,3,5-Trinitrobenzene	$C_6H_3(NO_2)_3$	213.11	5, 271	1.688420		122.5	explodes		0.035 aq; 1.9 alc; 1.5 eth; 6.2 bz
t405	2,4,6-Trinitrotoluene	(O ₂ N) ₃ C ₆ H ₂ CH ₃	227.13	5, 347	1.65440		80.1	explodes		1.5 alc; 4 eth; s bz, acet; 0.01 aq
t406	Trioctylamine	[(CH ₃ (CH ₂) ₇] ₃ N	353.68	4, 196	0.809	1.448520		365-367	>110	_
t407	1,3,5-Trioxane		90.08	19, 381	1.17065		60.2	115	45	17.2 aq ¹⁸ ; v s alc, bz, eth, EtOAc
t408	4,7,10-Trioxa-1,13- tridecanediamine	O[CH ₂ CH ₂ O(CH ₂) ₃ NH ₂] ₂	220.31	4,4, 1625	1.005	1.464020		148 ^{4mm}	>110	
t409	Tripentaerythritol	(HOCH ₂) ₃ CCH ₂ OCH ₂ - C(CH ₂ OH) ₂ CH ₂ OCH ₂ -	372.41				225 dec			
t410	Triphenylamine	(C ₆ H ₅) ₃ N	245.33	12, 181	0.7748		125-127	347-348		
t411	Triphenylantimony	(C ₆ H ₅) ₃ Sb	353.07	16, 891	1.434325		5254	377	>110	v s bz, eth; sl s alc
t412	Triphenylarsine	(C ₆ H ₅) ₃ As	306.24	16, 828	1.222548	1.613948	60-62	233 ^{14mm}		v s bz, eth; s alc
t413	1,3,5-Triphenylbenzene	$(C_6H_5)_3C_6H_3$	306.41	5,737	1.205		172-174	460		v s bz; s abs alc, eth
t414	Triphenylborane	(C ₆ H ₅) ₃ B	242.13	16², 636			145	203 ^{15mm}		
t415	Triphenylmethane	(C ₆ H ₅) ₃ CH	244.34	5, 698	1.0134499		92–94	360		v s hot alc, eth; 49 chl; 7 bz; s PE

TABLE 2.20	Physical C	onstants of	Organic	Compounds	(Continued)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
t416	Triphenylmethanol	(C4H4)-COH	260.34	6. 713	1,1999		160-163	360	1 /	v s alc. bz. eth: i ag
t417	Triphenylmethyl bromide	$(C_6H_5)_3$ CBr	323.24	5, 704	4		152154	230 ^{15mm}		· _ · _ , , , , ,
t418	Triphenylmethyl chloride	(C ₆ H ₅) ₃ CCl	278.78	5, 700			110-112	235 ^{20mm}		
t419	Triphenyl phosphate	$(C_6H_5O)_3P(O)$	326.29	6, 179			50-52	244 ^{10mm}	223	misc alc; s bz, acet, chl, eth; i aq
t420	Triphenylphosphine	(C ₆ H ₅) ₃ P	262.29	16, 759	1.07541		79–81	377	181	v s eth; s bz, chl, HOAc; sl s alc; i aq
t421	Triphenylphosphine oxide	(C ₆ H ₅) ₃ P(O)	278.29	16, 783			156158			-
t422	Triphenyl phosphite	(C ₆ H ₅ O) ₃ P	310.29	6, 177	1.184	1.590320	22-24	360	218	s alc, bz, chl, eth
t423	Triphenylsilane	(C ₆ H ₅) ₃ SiH	260.41	16 ² , 605			4244	152 ^{2mm}	76	
t424	Triphenyltin acetate	$CH_3CO_2Sn(C_6H_5)_3$	409.06	164, 1606			124-126			s eth; sl s alc, bz
t425	Triphenyltin chloride	(C ₆ H ₅) ₃ SnCl	385.46	16, 914			108 dec	240 ^{13.5mm}		
t426	Triphenyltin hydroxide	(C ₆ H ₅) ₃ SnOH	367.02	16, 914			124-126			
t427	Tripropoxyborane	(CH ₃ CH ₂ CH ₂ O) ₃ B	188.08	1², 369	0.857640	1.394820		175177	32	v s alc; misc eth
t428	Tripropylaluminum	(CH ₃ CH ₂ CH ₂) ₃ Al	156.25	4, 643	0.823		107	84 ^{2mm}	-18	
t429	Tripropylamine	(CH ₃ CH ₂ CH ₂) ₃ N	143.27	4, 139	0.753	1.416020	-93.5	155-158	36	s aq, alc, eth
t430	Tripropylene glycol	H(OCH ₂ CH ₂ CH ₂) ₃ OH	192.26		1.021	1.44225		273	141	s aq
t431	Tripropylene glycol butyl ether	HO(CH ₂ CH ₂ CH ₂ O) ₃ (CH ₂) ₃ CH ₃	248.4		0.932	1.43020		276	135	
t432	Tripropylene glycol monomethyl ether	HO(CH ₂ CH ₂ CH ₂ O) ₃ CH ₃	206.29	1⁴, 2475	0.967	1.42825	-42	242.4	127	misc aq, alc, eth
t433	Tripropyl orthoformate	HC(OCH ₂ CH ₂ CH ₃) ₃	190.28	2, 21	0.880540	1.407220		108 ^{40mm}	72	
t434	Tris(2-aminoethyl)- amine	$(H_2NCH_2CH_2)_3N$	146.24	4, 256	0.977	1.497020		114 ^{15mm}	>110	
t435	Tris(2-butoxyethyl) phosphate	(C ₄ H ₉ OCH ₂ CH ₂ O) ₃ P(O)	398.48		1.006	1.435920		228 ^{4mm}	110	
t436	Tris(2-chloroethyl)	(CICH ₂ CH ₂ O) ₃ P(O)	285.49	1², 337	1.390	1.4721 ²⁰		330	232	
t437	Tris(2-chloroethyl)	(ClCH ₂ CH ₂ O) ₃ P	269.49		1.35340	1.486320		115 ^{2mm}	190	misc alc, bz, eth
t438	Tris(2-ethylhexyl) phosphate	[C ₄ H ₉ CH(C ₂ H ₅)CH ₂ O] ₃ P(O)	434.65	1 ³ , 1734	0.924	1.4437 ²⁰		215 ^{4mm}	>110	i aq

t439	Tris(hydroxymethyl)- aminomethane	(HOCH ₂) ₃ CNH ₂	121.14	4, 303			171-172	220 ^{10mm}		
t440	1,1,1-Tris(hydroxy-	CH ₃ C(CH ₂ OH) ₃	120.15	1, 520			200-203			
t441	N-[Tris(hydroxy- methyl)methyl]-	(HOCH ₂) ₃ CNHCH ₂ CO ₂ H	179.17	Merck: 12, 9783			187			satd aq ⁰ is 0.8 <i>M</i>
t442	Tris(hydroxymethyl)- nitromethane	(HOCH ₂) ₃ CNO ₂	151.12	1, 520			214 pure 175 tech			220 aq; v s alc; sl s bz
t443	Tris[2-(2-methoxy- ethoxy)ethyl]amine	(CH ₃ OCH ₂ CH ₂ OCH ₂ CH ₂) ₃ N	323.43		1.011	1.448620			>110	
t444	Tris(2-methoxy- ethoxy)- vinylsilane	H ₂ C=CHSi(OCH ₂ CH ₂ -OCH ₃) ₃	280.39	4 ⁴ , 4257	1.03445	1.42725		284–286	>110	
t445	Tris(2-methoxyethyl)	(CH ₃ OCH ₂ CH ₂ O) ₃ B	236.08	1³, 2118	1.010	1.4150 ²⁰		135 ^{15mm}	87	
t446	Tris(2-methylallyl)- amine	[H ₂ C=C(CH ₃)CH ₂] ₃ N	179.31	4³, 462	0.794	1.457520		85 ^{15mm}	53	
t447	Tris(2,2,2-trifluoro- ethyl) phosphite	(CF ₃ CH ₂ O) ₃ P	328.07	14, 1371	1.487	1.324520		131 ^{743mm}	>110	
t448	Tris[3-(trimethoxy- silyl)propyl] isocyanurate		615.86		1.170	1.461020		250	102	
t449	Tris(trimethylsilyl) borate	[(CH ₃) ₃ SiO] ₃ B	278.38	4 ³ , 1861	0.831	1.386120		186	42	
t450	1,3,5-Trithiane		138.27	19, 382			216-218			s bz; sl s alc, eth
t451	Trithiocarbonic acid	(HS) ₂ CS	110.21	3, 221	1.483420	1.822520	- 26.9	57.8		dec aq, alc; sl s eth
t452	Tri-o-tolyl phosphate	$(CH_3C_6H_4O)_3P(O)$	368.37	Merck: 12, 9893	1.195520	1.557520	11	410	225	sl s aq, alc; s eth
t453	1,2,4-Trivinylcyclo- hexane	$(\mathrm{H}_{2}\mathrm{C}=\mathrm{C}\mathrm{H})_{3}\mathrm{C}_{6}\mathrm{H}_{9}$	162.28		0.836	1.478020		88 ^{20mm}	68	
t454	L-(-)-Tryptophan		204.23	22, 546			280-285 dec			1.14 aq ²⁵ ; s hot alc, alk: i eth. chl
t455	L-Tyrosine	(HO)C ₆ H ₄ CH ₂ CH(NH ₂)CO ₂ H	181.19	14, 605	1.456		342-344			0.045 aq; 0.01 alc; s alk; i eth
u1	Undecanal	CH ₃ (CH ₂) ₉ CHO	170.30	1, 712	0.825	1.432220	-4	115 ^{5mm}	96	i aq; s alc, eth
u2	Undecane	CH ₃ (CH ₂) ₉ CH ₃	156.31	1, 170	0.740240	1.417320	- 25.6	196	60	i aq; misc alc, eth

TARI E 2 20	Physical Constants of Organic Compounds (Continued)
IADLE 2.20	Filysical Constants of Organic Compounds (Commuea)

No.	Name	Formula	Formula weight	Beilstein reference	Density, g/mL	Refractive index	Melting point, °C	Boiling point, °C	Flash point, °C	Solubility in 100 parts solvent
u3	Undecanenitrile	CH ₂ (CH ₂) ₂ CN	167.30	2, 358	0.823	1.433020		253	>110	-
u4	Undecanoic acid	CH ₂ (CH ₂) ₀ CO ₂ H	186.30	2, 358	0.8907	1.429445	28.5	228 ^{160mm}	>110	s alc, chl. eth: i ag
u5	Undecanoic y-lactone		184.28	17, 247	0,949	1.450020		166 ^{13mm}	>110	, , ,
u6	Undecanoic δ-lactone		184.28	17 ³ , 4257	0.969	1.459020		155 ^{10.5mm}	>110	
u7	1-Undecanol	CH ₂ (CH ₂) ₁₀ OH	172.31	1, 427	0.8324	1.440220	11	242.8	>110	
u8	2-Undecanol	CH ₄ (CH ₂),CH(OH)CH ₃	172.31	1, 427	0.828	1.437020	2-3	131 ^{28mm}	88	
u9	2-Undecanone	CH ₃ (CH ₂) ₈ COCH ₃	170.30	1, 173	0.829	1.430020	11-13	231-232	88 (CC)	s alc, bz, chl, eth, acet;
										i aq
u10	3-Undecanone	CH ₃ (CH ₂) ₇ COCH ₂ CH ₃	170.30	1, 713	0.827	1.4291 ²⁰	12-13	225-229	89	
u11	6-Undecanone	CH ₃ (CH ₂) ₄ CO(CH ₂) ₄ CH ₃	170.30	1, 174	0.831	1.428020	14.6	228	88	i aq; v s alc, eth
u12	10-Undecenal	H ₂ C==CH(CH ₂) ₈ CHO	168.28	1, <i>3</i> , 3029	0.810	1.442720			92	
u12a	1-Undecene	H ₂ C==CH(CH ₂) ₈ CH ₃	154.30	1, 225	0.750320	1.426120	- 49	193	71	
u13	10-Undecenoic acid	$H_2C = CH(CH_2)_8CO_2H$	184.28	2, 458	0.90744	1.449320	24.5	137 ^{2mm}	148	s alc, chl, eth; i aq
u14	10-Undecen-1-ol	H ₂ C==CH(CH ₂) ₉ OH	170.30	1, 452	0.85015	1.450020	-2	245	93	
u15	10-Undecenoyl	H ₂ C==CH(CH ₂) ₈ COCl	202.73	2, 459	0.944	1.454020		122 ^{10mm}	93	
	chloride									
u16	Urea	(H ₂ N) ₂ CO	60.06	3, 42	1.335		133-135	dec >mp		100 aq; 20 alc
u17	Uric acid		168.11	26, 513	1.893 ²⁰		>300 dec			s alk; i aq, alc, eth
u18	Uridine		244.20	31, 23			166-167			s aq; hot alc, pyr
v1	Valeric anhydride	[CH ₃ (CH ₂) ₃ CO] ₂ O	186.25	2, 301	0.942	1.421020	- 57	112 ^{16mm}	101	
v2	y-Valerolactone		100.12	17, 235	1.057	1.433020	-31	207-208	81	
v3	δ-Valerolactone		100.12	17, 235	1.079	1.458020		60 ^{0.5mm}	100	
v4	L-Valine	(CH ₃) ₂ CHCH(NH)CO ₂ H	117.15	4, 427	1.230		>315 subl			8.8 aq; v sl s alc, eth
v5	Vinyl acetate	$H_2C = CHO_2CCH_3$	86.09	2 ¹ , 63	0.93240	1.395420	- 93	72-73	-8	2 aq; misc alc, eth
v6	Vinyl benzoate	C ₆ H ₅ CO ₂ CH==CH ₂	148.16	9 ¹ , 65	1.070	1.529020		96 ^{20mm}	82	
v 7	4-Vinylbenzyl chloride	H ₂ C=CHC ₆ H ₄ CH ₂ Cl	152.62		1.083	1.574020		229	104	
v8	Vinylcyclohexane	C ₆ H ₁₁ CH==CH ₂	110.20	51, 35	0.805	1.446320		126-127	20	
v9	4-Vinyl-1-cyclohexene		108.18	51, 63	0.80340	1.464020	101	127	20	
v10	2-Vinyl-1,3-dioxolane		100.12		1.001	1.430020		115-116	14	
v11	N-Vinylformamide	HCONHCH=CH ₂	71.08		1.014	1.494020	16	210	102	
v12	1-Vinylimidazole		94.12	234, 569	1.039	1.530820		79 ^{13mm}	81	
v13	5-Vinyl-2-norbornene		120.20		0.841	1.480220	- 80	141	27	
v14	Vinyl propionate	CH ₃ CH ₂ CO ₂ CH==CH ₂	100.12	2 ³ , 532	0.919	1.403020	- 80	94-95	6	
v15	2-Vinylpyridine	(C ₅ H ₄ N)CH==CH ₂	105.14	20, 256	0.975	1.549020		158-159	46	v s alc, chl, eth
v16	4-Vinylpyridine	(C ₅ H ₄ N)CH=CH ₂	105.14	20², 170	0.975	1.550020		65 ^{15mm}	51	sl s hot aq, hot alc

v17	N-Vinyl-2-		111.14		1.040	1.512020		93 ^{13mm}	93	
v18	Vinyltrimethoxysilane	H ₂ C=CHSi(OCH ₃) ₃	148.24		0.968	1.3920 ²⁰		123	22	
x1	Xanthene		182.22	17, 73			101	310-312		s bz, eth; sl s alc, aq
x2	Xanthen-9-carboxylic		226.23	18², 279			217 dec			s hot alc, eth
	acid									
x3	9-Xanthenone		196.21	17, 354			174-176	350 ^{730mm}		0.5 alc; v s chl
x4	m-Xylene	$C_6H_4(CH_3)_2$	106.17	5, 370	0.864220	1.497220	- 47.9	139	27	misc alc, eth; 0.02 aq
x5	o-Xylene	$C_6H_4(CH_3)_2$	106.17	5, 362	0.8808420	1.5054 ²⁰	- 25.2	144-145	32	misc alc, eth; 0.017 aq
x6	p-Xylene	$C_6H_4(CH_3)_2$	106.17	5, 382	0.861140	1.4958 ²⁰	13	138	27	v s eth; s alc; 0.02 aq
x7	Xylitol	HOCH ₂ (CHOH) ₃ CH ₂ OH	152.15	1, 531	1.52		95–97			64 aq; 1.2 EtOH; 6.0 MeOH
x8	D-(+)-Xylose		150.13	31, 47	1.5350		156-158			117 aq; s hot alc, pyr
x9	m-Xylylenediamine	$C_6H_4(CH_2NH_2)_2$	136.20	13, 186	1.032	1.570920	>110			

		(a) Derivatives	of Alcohols			
	3,5-D	initro-benzoate		3	3,5-Dinitro-benzoate	
		$\theta_{\mathrm{C,m}}/^{\circ}\mathrm{C}$			$\theta_{\rm C,m}/^{\circ}{\rm C}$	
Methanol		109	2-Methylpropan	142		
Ethanol		94	Pentan-1-ol		46	
Propan-1-ol		75	Hexan-1-ol		61	
Propan-2-ol		122	Phenylmethanol		113	
Butan-1-ol		64	Cyclohexanol		113	
2-Methylpropan-1-ol		88	Ethane-1,2-diol	(glycol)	169*	
Butan-2-ol		76				
		(b) Derivative	s of Phenols			
		4-Methyl-			4-Methyl-	
	3,5-Dinitro	benzene-		3,5-Dinitro-	- benzene	
	benzoate	sulphonate		benzoate	sulphonate	
	$\theta_{\rm C,m}/^{\circ}{\rm C}$	$\theta_{\rm C,m}/^{\circ}{\rm C}$		$\theta_{\rm C,m}/^{\circ}\rm C$	$\theta_{\rm C,m}/^{\circ}{\rm C}$	
Phenol	146	96	Benzene-1.2-diol	152*		
2-Methylphenol	138	55	Benzene-1.3-diol	201*	81*	
3-Methylphenol	165	51	Benzene-1 4-diol	317*	159*	
4-Methylphenol	189	70	2-Nitrophenol	155	83	
Naphthalen_1_ol	217	88	3-Nitrophenol	159	113	
Naphthalen-2-ol	217	125	4-Nitrophenol	188	07	
Naphthalen-2-01	(a) D	125	abydas and Katanas	100)1	
			enydes and Ketones			
	2,4-Dinitro-I	Phenyl-		2,4-Di	nitro-Phenyl-	
	hydrazo	ne		hy	/drazone	
	$\theta_{\rm C,m}/^{\circ}$	3			$\theta_{C,m}/^{\circ}C$	
Methanal	166		Propanone	Propanone		
Ethanal	168		Butanone		116	
Propanal	155		Pentan-3-one		156	
Butanal	126		Pentan-2-one		144	
Benzaldehyde	237		Heptan-4-one		75	
2-Hydroxybenzaldehyde	252	dec.	Phenylethanone		250	
Ethanedial	327		Diphenylmethanone		239	
Trichloroethanal	131		Cyclohexanone	162		
		(d) Derivative	s of Amines			
				4-1	Methyl-benzene	
	Ethanc	yl derivative	Benzoyl derivative	sulp	phonyl derivative	
	e	o _{C,m} /°C	$\theta_{C,m}/^{\circ}C$	-	$\theta_{C,m}/^{\circ}C$	
Methylamine		28	80		75	
Ethylamine		205*	69		62	
Propylamine		47	85		52	
Butylamine	229‡		70		65	
(Phenylmethyl) amine	e 60		105		116	
Phenylamine		114	163		103	
Cyclohexylamine		104	147		87	
2-Methylphenylamine		112	143		110	
3-Methylphenylamine		66	125		114	
4-Methylphenylamine		152	158		118	
Dimethylamine		116±	42		87	
Diethylamine		186±	42		60	
Diphenylamine		103	180		142	
1			100			

TABLE 2.21 Melting Points of Derivatives of Organic Compounds

* Disubstituted derivative.

‡ Boiling temperature.

	Melting point			
Number of carbon atoms	°C	°F		
1	-182	-296		
2	-183	-297		
3	-188	-306		
4	-138	-216		
5	-130	-202		
6	-95	-139		
7	-91	-132		
8	-57	-71		
9	-54	-65		
10	-30	-22		
11	-26	-15		
12	-10	14		
13	-5	23		
14	6	43		
15	10	50		
16	18	64		
17	22	72		
18	28	82		
19	32	90		
20	36	97		
30	66	151		
40	82	180		
50	92	198		
60	99	210		

TABLE 2.22 Melting Points of n-Paraffins

TABLE 2.23 Boiling Point and Density of Alkyl Halides

	Cł	nloride	B	romide	Iodide		
Name	B.p., °C	Density at 20°C	B.p., °C	Density at. 20°C	B.p., °C	Density at 20°C	
Methyl	-24		5		43	2.279	
Ethyl	12.5		38	1.440	72	1.933	
n-Propyl	47	.890	71	1.335	102	1.747	
n-Butyl	78.5	.884	102	1.276	130	1.617	
n-Pentyl	108	.883	130	1.223	157	1.517	
n-Hexyl	134	.882	156	1.173	180	1.441	
<i>n</i> -Heptyl	160	.880	180		204	1.401	
n-Octyl	185	.879	202		225.5		
Isopropyl	36.5	.859	60	1.310	89.5	1.705	
Isobutyl	69	.875	91	1.261	120	1.605	
see-Butyl	68	.871	91	1.258	119	1.595	
tert-Butyl	51	.840	73	1.222	100 <i>d</i>		
Cyclohexyl	142.5	1.000	165				
Vinyl(Haloethene)	-14		16		56		
Allyl (3-Halopropene)	45	.938	71	1.398	103		
Crotyl (1-Halo-2-butene)	84				132		
	Chl	oride	Bro	mide	Iod	lide	
--	-------------------	--------------------	------------------	--------------------	-------------------	--------------------	
Name	B.p., °C	Density at 20°C	B.p., °C	Density at 20°C	B.p., °C	Density at 20°C	
Methylvinylcarbinyl (3-Halo-1-butene)	64						
Propargyl (3-Halopropyne)	65		90	1.520	115		
Benzyl α -Phenylethyl	$179 \\ 92^{15}$	1.102	$201 \\ 85^{10}$		93 ¹⁰		
β -Phenylethyl	92^{20}		9211		127 ¹⁹		
Diphenylmethyl	173 ¹⁹		184^{20}				
Triphenylmethyl	310		230^{15}				
Dihalomethane	40	1.336	99	2.49	180 <i>d</i>	3.325	
Trihalomethane	61	1.489	151	2.89	subl.	4.008	
Tetrahalomethane	77	1.595	189.5	3.42	subl.	4.32	
1,1-Dihaloethane	57	1.174	110	2.056	179	2.84	
1,2-Dihaloethane	84	1.257	132	2.180	d	2.13	
Trihaloethylene	87		164	2.708			
Tetrahaloethylene	121				subl.		
Benzal halide	205		140^{20}				
Benzotrihalide	221	1.38					

TABLE 2.23	Boiling Point and Density of Alkyl Halides (Continued)

TABLE 2.24 Properties of Carboxylic Acids

Name	Formula	M.p., °C	B.p., °C	Solub., g/100 g H ₂ O
Formic	НСООН	8	100.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Acetic	CH ₃ COOH	16.6	118	~
Propionic	CH ₃ CH ₂ COOH	-22	141	~
Butyric	CH ₃ (CH ₂) ₂ COOH	-6	164	~
Valeric	CH ₃ (CH ₂) ₃ COOH	-34	187	3.7
Caproic	CH ₃ (CH ₂) ₄ COOH	-3	205	1.0
Caprylic	CH ₃ (CH ₂) ₆ COOH	16	239	0.7
Capric	CH ₃ (CH ₂) ₈ COOH	31	269	0.2
Lauric	CH ₃ (CH ₂) ₁₀ COOH	44	225^{100}	i.
Myristic	CH ₃ (CH ₂) ₁₂ COOH	54	251^{100}	i.
Palmitic	CH ₃ (CH ₂) ₁₄ COOH	63	269^{100}	i.
Stearic	CH ₃ (CH ₂) ₁₆ COOH	70	287^{100}	i.
Oleic	cis-9-Octadecenoic	16	223 ¹⁰	i.
Linoleic	cis,cis-9,12-Octadecadienoic	-5	230^{16}	i.
Linolenic	cis, cis, cis-9, 12, 15-Octade catrienoic	-11	23217	i.
Cyclohexanecarboxylic	<i>cyclo</i> -C ₆ H ₁₁ COOH	31	233	0.20
Phenylacetic	C ₆ H ₅ CH ₂ COOH	77	266	1.66
Benzoic	C ₆ H ₅ COOH	122	250	0.34
o-Toluic	o-CH ₃ C ₆ H ₄ COOH	106	359	0.12
<i>m</i> -Toluic	<i>m</i> -CH ₃ C ₆ H ₄ COOH	112	263	0.10
<i>p</i> -Toluic	<i>p</i> -CH ₃ C ₆ H ₄ COOH	180	275	0.03
o-Chlorobenzoic	o-ClC ₆ H ₄ COOH	141		0.22
<i>m</i> -Chlorobenzoic	m-ClC ₆ H ₄ COOH	154		0.04
p-Chlorobenzoic	<i>p</i> -ClC ₆ H ₄ COOH	242		0.009
o-Bromobenzoic	o-BrC ₆ H ₄ COOH	148		0.18
<i>m</i> -Bromobenzoic	<i>m</i> -BrC ₆ H ₄ COOH	156		0.04

Name	Formula	M.p., °C	B.p., °C	Solub., g/100 g H ₂ O
<i>p</i> -Bromobenzoic	<i>p</i> -BrC ₆ H ₄ COOH	254		0.006
o-Nitrobenzoic	o-O ₂ NC ₆ H ₄ COOH	147		0.75
<i>m</i> -Nitrobenzoic	<i>m</i> -O ₂ NC ₆ H ₄ COOH	141		0.34
p-Nitrobenzoic	<i>p</i> -O ₂ NC ₆ H ₄ COOH	242		0.03
Phthalic	$o-C_6H_4(COOH)_2$	231		0.70
Isophthalic	$m-C_6H_4(COOH)_2$	348		0.01
Terephthalic	$p-C_6H_4(COOH)_2$	300 subl.		0.002
Salicylic	o-HOC ₆ H ₄ COOH	159		0.22
p-Hydroxybenzoic	<i>p</i> -HOC ₆ H ₄ COOH	213		0.65
Anthranilic	o-H ₂ NC ₆ H ₄ COOH	146		0.52
<i>m</i> -Aminobenzoic	<i>m</i> -H ₂ NC ₆ H ₄ COOH	179		0.77
p-Aminobenzoic	<i>p</i> -H ₂ NC ₆ H ₄ COOH	187		0.3
o-Methoxybenzoic	o-CH ₃ OC ₆ H ₄ COOH	101		0.5
<i>m</i> -Methoxybenzoic	m-CH ₃ OC ₆ H ₄ COOH	110		
p-Methoxybenzoic (Anisic)	<i>p</i> -CH ₃ OC ₆ H ₄ COOH	184		0.04

TABLE 2.24 Properties of Carboxylic Acids (Continued)

TABLE 2.25 The Structure, Melting Point, and Boiling Points of Polycyclic Aromatic Hydrocarbons

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	Indan Hydrindene 2,3-Dihydroindene	118.18	-51	178
	Indene Indonaphthene	116.16	-2	183
	Naphthalene Tar Camphor White Tar Moth Flakes	128.19	81	218
	2-Methylnaphthalene β -Methylnaphthalene	142.20	35	241
	l-Methylnaphthalene α-Methylnaphthalene	142.20	-22	245
	Biphenyl Diphenyl Phenylbenzene Bibenzene	154.21	71	255
	2-Ethylnaphthalene β -Ethylnaphthalene	156.23	-7	258

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	1-Ethylnaphthalene	156.23	-14	259
	2,6-Dimethylnaphthalene	156.23	110	262
	2,7-Dimethylnaphthalene	156.23	97	262
	1,7-Dimethylnaphthalene	156.23		263
	1,3-Dimethylnaphthalene	156.23		265
	1,6-Dimethylnaphthalene	156.23		266
	2,3-Dimethylnaphthalene Guaiene	156.23	105	268
	1,4-Dimethylnaphthalene α-Dimethylnaphthalene	156.23	8	268
	4-Methylbiphenyl	168.24	50	268
	1,5-Dimethylnaphthalene	156.23	80	269

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	Azulene	128.19	100	270 d
	1,2-Dimethylnaphthalene	156.23	-4	271
	Acenaphthylene	152.21	93	-270 d
	3-Methylbiphenyl	168.24	5	273
	3,5-Dimethylbiphenyl	182.27		275
	Acenaphthene Naphthyleneethylene	154.21	96	279
	1,3,7-Trimethylnaphthalene	170.25	14	280
	2,3,5-Trimethylnaphthalene	170.25	25	285
	2,3,6-Trimethylnaphthalene	170.25	101	286
	Fluorene 2,3-Benzindene Diphenylenemethane	166.23	117	294
	9-Methylfluorene	180.25	47	

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	4-Methylfluorene	180.25		
	3-Methylfluorene	180.25	85	316
	2-Methylfluorene	180.25	104	318
	1-Methylfluorene	180.25		-318
	1-Phenylnaphthalene α-Phenylnaphthalene	204.28	-45	334
	Phenanthrene o-Diphenyleneethylene	178.24	101	338
	Anthracene	178.24	216	340
	3-Methylphenanthrene	192.26	65	352
	2-Methylphenanthrene	192.26		355

TABLE 2.25	The Structure, Melting Point, and Boiling Points of Polycyclic Aromatic Hydrocarbons
(Continued)	

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	9-Methylphenanthrene	192.26	92	355
	2-Methylanthracene	192.26	209	359 sub
	4,5-Methylenephenanthrene 4H-Cyclopenteno[def]phenanthrene 4H-Cyclopenta[def]phenanthrene 4,5-Phenanthrylenemethane	190.24	116	359
	4-Methylphenanthrene	192.26		
	1-Methylphenanthrene	192.26	123	359
	2-Phenylnaphthalene β-Phenylnaphthalene	204.28	104	360
	1-Methylanthracene	192.26	86	363
	3,6-Dimethylphenanthrene	206.29		363
	2,7-Dimethylanthracene	206.29	241	-370

Structure	IUPAC nomeclature	Molecular	Melting point	Boiling point
	(synonyms)	weight	(C)	(C)
	2,6-Dimethylanthracene	206.29	250	-370
	2,3-Dimethylanthracene	206.29	252	
	Fluoranthene Idryl 1,2-Benzacenaphthene Benzo[jk]fluorine Benz[a]acenaphthylene	202.26	111	383
	9,10-Dimethylanthracene	206.29	183	
	Pyrene Benzo[def]phenanthrene	202.26	156	393
	2,7-Dimethylpyrene	230.32		396
	Benzo[b]fluorene 11 H-Benzo[b]fluorene 2,3-Benzofluorene Isonaphthofluorene	216.29	209	402
	Benzo[c]fluorene 7H-Benzo[c]fluorene 3,4-Benzofluorene	216.29		406
	Benzo[a]fluorene 11 H-Benzo[a]fluorene 1,2-Benzofluorene Chrysofluorene	216.29	190	407
	2-Methylpyrene 4-Methylpyren	216.29		410

TABLE 2.25	The Structure, Melting Point, and Boiling Points of Polycyclic Aromatic Hydrocarbons
(Continued)	

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	1-Methylpyrene 3-Methylpyren	216.29		410
	4-Methylpyrene 1-Methylpyren	216.29		410
	Benzo[ghi]fluoranthene	226.28		432
	Benzo[c]phenanthrene 3,4-Benzophenanthrene	238.30	68	
	Benz[a]anthracene 1,2-Benzanthracene Tetraphene 2,3-Benzophenanthrene Naphthanthracene	228.30	162	435 sub
	Triphenylene 9,10-Benzophenanthrene Isochrysene	228.30	199	439
	Chrysene 1,2-Benzophenanthrene Benzo[a]phenanthrene	228.30	256	441
	6-Methylchrysene	242.32		

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	1-Methylchrysene	242.32	257	
	Naphthacene Benz[b]anthracene 2,3-Benzanthracene Tetracene	228.30	257	450 sub
	2,2'-Dinaphthyl 2,2'-Binaphthyl β , β' -Binaphthyl β , β' -Dinaphthyl	254.34	188	452 ⁷⁵³ sub
	Benzo[b]fluoranthene 2,3-Benzofluoranthene 3,4-Benzofluoranthene Benz[e]acephenanthrylene	252.32	168	481
	Benzo[j]fluoranthene 7,8-Benzofluoranthene 10,11-Benzofluoranthene	252.32	166	~480
	Benzo[k]fluoranthene 8,9-benzofluoranthene 11,12-Benzofluoranthene	252.32	217	481
	Benzo[e]pyrene 4,5-Benzpyrene 1,2-Benzopyrene	252.32	179	493
	Benzo[a]pyrene 1,2-Benzpyrene 3,4-Benzopyrene Benzo[def]chrysene	252.32	177	496

TABLE 2.25 (Continued)	The Structure, Melting Point, and Boiling Points of Polycyclic Aromatic Hydrocarbons
-------------------------------	--

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	Perylene peri-Dinaphthalene	252.32	278	
	3-Methylcholanthrene 20-Methylcholanthrene	268.38	180	
	Indeno[1,2,3-cd]pyrene o-Phenylenepyrene	276.34		
	Dibenz[a,c]anthracene 1,2:3,4-Dibenzanthracene Naphtho-2',3',:9,10-phenanthren	278.36 ne	205	
	Dibenz[a,h]anthracene 1,2:5,6-Dibenzanthracene	278.36	270	
	Dibenz[a,i]anthracene 1,2:6,7-Dibenzanthracene 1,2-Benzonaphthacene Isopentaphene	278.36	264	
	Dibenz[a,j]anthracene 1,2:7,8-Dibenzanthracene α, α' -Dibenzanthracene Dinaphthanthracene	278.36	198	

Structure	IUPAC nomeclature (synonyms)	Molecular weight	Melting point (°C)	Boiling point (°C) ⁷⁶⁰
	Benzo[b]chrysene 1,2:6,7-Dibenzophenanthrene 3,4-Benzotetraphene Naphtho-2',1':1,2-anthracene	278.36	294	
	Picene Dibenzo[<i>a</i> ; <i>i</i>]phenanthrene 3,4-Benzochrysene 1,2:7,8-Dibenzophenanthrene	278.36	368	519
	Benzo[ghi]perylene 1,12-Benzoperylene	276.34	278	
	Anthanthrene Dibenzo[def, mno]chrysene	276.34		
	Coronene Hexabenzobenzene	300.36	439 cor	525?
	Dibenzo[a,e]pyrene	302.38	234	

*Key: d = decomposes;

sub = sublimes.

Name	Three- letter code	One- letter code	Side chains (– <i>R</i>) <i>R</i> -CH(NH ₂)COOH	Mol weight	pK _a	$\Delta H_{\rm ion}$ kJ \cdot mol ⁻¹	Volume Å ³	$\underset{\AA^2}{\text{ASA}_{mc}}$	$\overset{ASA^{npl}_{sc}}{\mathring{A}^2}$	$\underset{\AA^2}{ASA_{sc}^{pol}}$
Alanine	Ala	А	-CH ₃	71.08			88.6	46	67	
Arginine	Arg	R	$-(CH_2)_3$ -CNH(=NH)NH ₃	156.20	12	44.9	173.4	45	89	107
Asparagine	Asn	Ν	-CH ₂ -CONH ₂	114.11			117.7	45	44	69
Aspartic acid	Asp	D	-CH ₂ -COOH	115.09	4.5	4.6	111.1	45	48	58
Cystein	Cys	С	-CH ₂ -SH	103.14	9.1–9.5	36.0	108.5	36	35	69
Glutamine	Gln	Q	-(CH ₂) ₂ -CONH ₂	128.14			143.9	45	53	91
Glutamic acid	Glu	Е	-(CH ₂) ₂ -COOH	129.12	4.6	1.6	138.4	45	61	77
Glycine	Gly	G	-H N	57.06			60.1	85		
Histidine	His	Н	$-CH_2 - \underbrace{\bigwedge_{N}}_{N}$	137.15	6.2	43.6	153.2	43	102	49
Isoleucine	Ile	Ι	-CH(CH ₃)-C ₂ H ₅	113.17			166.7	42	140	
Leucine	Leu	L	-CH(CH ₃) ₂ -CH ₂	113.17			166.7	43	137	
Lysine	Lys	Κ	-(CH ₂) ₄ -NH ₂	128.18	10.4	53.6	168.6	44	119	48
Methionine	Met	М	-(CH ₂) ₂ -S-CH ₃	131.21			162.9	44	117	43
Phenylalanine	Phe	F	-CH2-	147.18			189.9	43	175	
Proline	Pro	Р	*	97.12			122.7	38	105	
Serine	Ser	S	-CH ₂ -OH	87.08			89.0	42	44	36
Threonine	Thr	Т	-CH ₂ -(CH ₃)-OH	101.11			116.1	44	74	28
Tryptophane	Trp	W	-CH ₂	186.21			277.8	42	190	27
Tyrosine	Tyr	Y	-СН2-ОН	163.18	9.7	25.1	193.6	42	144	43
Valine	Val	V	-CH-(CH ₃) ₂ α-amino α-carboxyl	99.14	6.8–7.9 3.5–4.3);	140	43	117	

TABLE 2.26 Properties of Naturally Occurring Amino Acids

^{*a*}Enthalpies of ionization of side chains at 25°C, ΔH_{ion} , are from [20]; van der Waals volume from [21]; ASA_{mc}, surface area of the backbone, ASA^{pol}_{sc}, nonpolar surface area of the side chains, and ASA^{pol}_{sc}, polar surface area of the side chains are taken [17].

 δ (Mpa^{1/2}) δ (Mpa^{1/2}) H-bonding tendency^b H-bonding tendency^b Solvent Solvent Acetaldehvde 21.1 Ethvl chloride 18.8 m m Acetic acid 20.7 Ethylenediamine 25.2 s s Ethylene dichloride 20.0 Acetone 20.2 m р Acetonitrile 24.3 Ethylene glycol 29.9 р s Acetyl chloride 19.4 m Ethylene glycol 17.6 m N-Acetylpiperidine 22.9 dimethylether s 22.7 Acrylic acid 24.5 Ethylene oxide m s Allyl acetate 18.8 Ethyl formate 19.2 m m Allyl alcohol 24.1 Ethyl methacrylate 17.0 s m Formic acid 24.7 Ammonia 33.3 s s Benzene 18.8 р Furan 19.2 m 15.1 Bromobenzene 20.2 Heptane р р 14.5 Hexane 14.9 1,3-Butadiene р р 13.9 1-Hexene 15.1 Butane р р 1,3-Butanediol 23.7 s Hydrazine 37.0 s 1-Butanol 23.3 Hydrogen 6.1 s р 2-Butanol 22.1 Isobutanol 21.5 s s tert-Butanol 21.7 Isobutyl acetate 17.0 s m Butyl acetate 17.4m Isobutylene 13.7 р Butyl amine 17.8 Isoprene 15.1 s р Butyl ether Isopropanol 23.5 16.0 m s Butyl lactate 19.2 m Isopropyl acetate 17.2 m Carbon disulfide 20.4Methane 11.0р р 29.6 Chloroacetonitrile 25.8 Methanol р s Methyl acetate Chlorobenzene 19.4 19.6 р m Chloroethane 18.8 Methyl acrylate 18.2 m m Chloromethane 19.8 Methyl butyl ketone 17.0 m m Methyl ethyl ketone 19.0 Cyclohexane 16.8 р m Cyclohexanol 23.3 s Methyl formate 20.9 m Methyl isopropyl ketone Cyclopentane 17.8 17.4р m Decalin Methyl methacrylate 18.0 18.0 р m Decane 13.5 Nitrobenzene 20.5 р р Diamyl ether 14.9 Nitroethane 22.7 m р Dibenzyl ether 19.2 m Octane 15.6 р Dibutyl amine Pentane 14.3 16.6 s р Dibutyl fumarate 18.4 Propane 13.1 m р Dibutyl phenyl phosphate 17.8 1-Propanol 24.3 m s Dibutyl phthalate 19.0 2-Propanol 23.5 s m Diethylamine Pyridine 21.9 16.4 s s Diethlene glycol 24.8 s Quinoline 22.1 s 15.1 Diethyl ether 15.1 Silicon tetrachloride m р 19.0 Diisopropyl ether 14.1 m Styrene р 31.5 Diisopropyl ketone 16.4 m Succinic anhydride s N,N-Dimethylformamide Tetra chloromethane 17.6 24.8 m р Dimethyl sulfone 29.7 Tetrahydrofuran 18.6 m m Dimethylsulfoxide 24.5 Toluene 18.2 m р 1,4-Dioxane 20.5 m 1,1,2-Trichloroethane 19.6 р Ethane 12.3 Trichloromethane 19.0 р р Ethanol 26.0Water 47.9 s s Ethyl acetate Xylene 18.0 18.6 m р Ethylamine 20.5 s

TABLE 2.27 Hildebrand Solubility Parameters of Organic Liquids

^b p denotes poor; m, moderate; s, strong.

18.0

р

Ethylbenzene

	V.	Solubility parameter (MPa ^{1/2})					
Solvent	(cm ³ /mol)	δ_{d}	δ_p	δ_h	δ_t		
Acetic acid	57.1	14.5	8.0	13.5	21.3		
Acetone	74.0	15.5	10.4	7.0	20.1		
Acetonitrile	52.6	15.3	18.0	6.1	24.6		
Acetyl chloride	71.0	15.8	10.6	3.9	19.4		
Benzene	29.4	18.4	0.0	2.0	18.6		
Benzaldehyde	101.5	19.4	7.4	5.3	21.5		
Benzyl chloride	115.0	18.8	7.2	2.7	20.3		
Bromoform	87.5	21.5	4.1	6.1	22.7		
N-Butane	101.4	14.1	0.0	0.0	14.1		
Butyronitrile	27.0	15.3	12.5	5.1	20.5		
Carbon tetrachloride	97.1	17.8	0.0	0.6	17.8		
Carbon disulfide	60.0	20.5	0.0	0.6	20.5		
Chlorobenzene	102.1	19.0	4.3	2.0	19.6		
Chloroform	80.7	17.8	3.1	5.7	19.0		
Cyclohexanol	106.0	17.4	4.1	13.5	22.5		
Cyclohexylamine	115.2	17.4	3.1	6.5	18.8		
N-Decane	195.9	15.8	0.0	0.0	15.8		
Diacetone alcohol	124.2	15.8	8.2	4.8	20.9		
o-Dichlorobenzene	112.8	19.2	6.3	3.3	20.5		
Diethyl carbonate	121.0	16.6	3.1	6.1	18.0		
Diethyl ketone	106.4	15.8	7.6	4.7	18.2		
Dimethyl phthalate	163.0	18.6	4.8	4.9	22.1		
Dimethyl sulfoxide	71.3	18.4	16.4	10.2	26.6		
Ethanol	58.5	15.8	8.8	19.4	26.6		
Ethyl acetate	98.5	15.8	5.3	7.2	18.2		
Ethyl bromide	76.9	16.6	8.0	5.1	19.0		
Ethyl formate	80.2	15.5	8.4	8.4	19.6		
Ethylene carbonate	66.0	19.4	21.7	5.1	29.5		
Ethylene dichloride	79.4	19.0	7.4	4.1	20.9		
Formic acid	37.8	14.3	11.9	16.6	25.0		
Furan	72.5	17.8	1.8	5.3	18.6		
Methanol	40.7	15.1	12.3	22.3	29.7		
Methyl acetate	79.7	15.5	7.2	7.6	18.8		
Methyl chloride	55.4	15.3	6.1	3.9	17.0		
Methylene dichloride	63.9	18.2	6.3	6.1	20.3		
Nitrobenzene	102.7	20.1	8.6	4.1	22.1		
Nitroethane	71.5	16.0	15.5	4.5	22.7		
Nitromethane	54.3	15.8	18.8	5.1	25.0		
1-Octanol	157.7	17.0	3.3	11.9	20.9		
2-Octanol	159.1	16.2	4.9	11.0	20.3		
Phenol	87.5	18.0	5.9	14.9	24.1		
1-Propanol	75.2	16.0	6.8	17.4	24.6		
2-Propanol	76.8	15.8	6.1	16.4	23.5		
Quinoline	118.0	19.4	7.0	7.6	22.1		
Styrene	115.6	18.6	1.0	4.1	19.0		
Tetrahydrofuran	81.7	16.8	5.7	8.0	19.4		
Toluene	106.8	18.0	1.4	2.0	18.2		
Trimethyl phosphate	99.9	16.8	16.0	10.2	25.4		
Water	18.0	15.5	16.0	42.4	47.9		

TABLE 2.28 Hansen Solubility Parameters of Organic Liquids

		F_i				F_i	
Group	(1)	(2)	(3)	Group	(1)	(2)	(3)
— Br	340	258	300	$-C \equiv N$	410	355	480
-Cl	250-270	205	230	0			
— F		41	80	$-C - NH_2$			600
				0			
—Н	80-100						
—I	425			$NH_2 - C - O - O$			725
$-NO_2$	440			CO	275	263	335
$-ONO_2$	440			COO	310	327	250
-0-	70	115	125	-COOH			319
-OH		226	369	CO ₃			375
$-PO_4$	500			—C≡C—	222		
— S—	225	209	225	CH≡C—	285		
- SH	315			0 0			
\setminus /							
С	-93	32	0	-c - 0 - c -		567	375
/							
-CH =	19	84	40	-C = C - C = C	-20 - 30	23	
				1			
$-CF_2-$	150	115					
$-CF_3$	274	156			105-115	21	
/							
— CH	28	86	68	$-C_6H_4$	658	705	673
Λ							
-CH =	111	122	109	$-C_{6}H_{5}$	735	683	741
$-CH_2-$	133	131	137	Ļ			
				$\langle \rangle$			
				[]			
~ /	100			\checkmark	05 105		
CH ₂	190	127		ļ	95–105	-23	
<i></i>			205	<i>a</i>			
$-CH_3$	214	148	205	$-C_{10}H_7$	1146		

TABLE 2.29 Group Contributions to the Solubility Parameter

^{*a*} Adapted from D. W. Van Krevelen, *Properties of Polymers*, 2nd ed. (Elsevier, Amsterdam, 1976), p. 134. The references referred to for the *F_i* values are (1) P.A. Small, J. Appl. Chem. **3**, 71 (1953); (2) K. L. Hoy, J. Paint Technol. **42**, 76 (1970); (3) D. W. Van Krevelen, *Properties of Polymers*, 2nd ed. (Elsevier, Amsterdam, 1976), p. 134.

2.3 VISCOSITY AND SURFACE TENSION

The *dynamic viscosity*, or coefficient of viscosity, η of a Newtonian fluid is defined as the force per unit area necessary to maintain a unit velocity gradient at right angles to the direction of flow between two parallel planes a unit distance apart. The SI unit is pascal-second or netwon-second per meter squared $[N \cdot s \cdot m^{-2}]$. The c.g.s. unit of viscosity is the poise [P]; $1 \text{ cP} \equiv 1 \text{ mN} \cdot s \cdot m^{-2}$.

Kinematic viscosity v is the ratio of the dynamic viscosity to the density of a fluid. The SI unit is meter squared per second $[m^2 \cdot s^{-1}]$. The c.g.s. units are called stokes $[cm^2 \cdot s^{-1}]$; poises = stokes × density.

Fluidity ϕ is the reciprocal of the dynamic viscosity.

The primary reference liquid for viscosity measurements is water. The absolute viscosity of water at 20°C is 1.0019 (±0.0003) mN · s · m⁻² (or centipoise), as determined by Swindells, Coe, and Godfrey, *J. Research Natl. Bur. Standards* **48**:1 (1952). The relative viscosity of water, η/η_{20° , is 0.8885 at 25°C, 0.7960 at 30°C, and 0.6518 at 40°C. Values at temperatures between 15 and 60°C are best represented by Cragoe's equation:

$$\log \frac{\eta}{\eta_{20^{\circ}}} = \frac{1.2348(20-t) - 0.001467(t-20)^2}{t+96}$$

The *Reynolds number* for flow in a tube is defined by $d\overline{\nu}\rho/\eta$, where *d* is the diameter of the tube, $\overline{\nu}$ is the average velocity of the fluid along the tube, ρ is the density of the fluid, and η is its dynamic viscosity. At flow velocities corresponding with values of the Reynolds number of greater than 2000, turbulence is encountered.

The surface tension of a liquid, γ is the force per unit length on the surface that opposes the expansion of the surface area. In the literature the surface tensions are expressed in dyn \cdot cm⁻¹; 1 dyn \cdot cm⁻¹ = 1 mN \cdot m⁻¹ in the SI system. For the large majority of compounds the dependence of the surface tension on the temperature can be given as

$$\gamma = a - bt$$

where *a* and *b* are constants and *t* is the temperature in degrees Celsius. The values of *a* and *b* given in Tables 2.30 can be used to calculate the values of surface tension for the particular compound within its liquid range. For example, the least-squares constants for acetic anhydride (liquid from -73 to 140° C) are 35.52 and 0.1436, respectively. At 20° C, $\gamma = 35.52 - 0.1436(20) = 32.64 \text{ dyn} \cdot \text{cm}^{-1}$.

TABLE 2.30 Viscosity and Surface Tension of Organic Compounds

For the majority of substances the dependence of the surface tension γ on the temperature can be given as:

$$\gamma = a - bt$$

where *a* and *b* are constants and *t* is the temperature in degrees Celsius. In the SI system the surface tensions are expressed in mN \cdot m⁻¹ (= dyn \cdot cm⁻¹).

A compilation of some 2200 liquid compounds has been prepared by J. J. Jasper, J. Phys. Chem. Reference Data 1:841 (1972).

The SI unit of viscosity is pascal-second (Pa \cdot s) or Newton-second per meter squared (N \cdot s \cdot m⁻²). Values tabulated are mN \cdot s \cdot m⁻² (= centipoise, cP). The temperature in degrees Celsius at which the viscosity of a substance was measured is shown in parentheses after the value.

	Surface tension, mN · m ⁻¹			
Substance	а	b	Liquid range, °C	Viscosity, $mN \cdot s \cdot m^{-2}$
Acetaldehyde	23.90	0.1360	- 123 to 21	0.2797(0), 0.2557(10), 0.22(20)
Acetaldoxime	34.23	0.1134	12(β) or 46.5(α) to	
			114.5	
Acetamide	47.66	0.1021	81 to 222	1.63(94), 1.32(105), 1.06(120)
Acetanilide	46.21	0.0912	114 to 304	2.22(120), 1.90(130)
Acetic acid	29.58	0.0994	16.7 to 118	1.056(25), 0.786(50), 0.424(110)
Acetic anhydride	35.52	0.1436	-73 to 139	1.241(0), 0.907(20), 0.699(40)
Acetone	26.26	0.112	-94 to 56	0.395(0), 0.306(25), 0.256(50)
Acetonitrile	29.58	0.1178	44 to 81.6	0.397(10), 0.329(30), 0.2753(50)
Acetophenone	41.92	0.1154	20 to 202	1.511(30), 1.192(45), 0.634(100)
Acetyl chloride	26.7(15)		-113 to 51	0.368(25), 0.294(50)
Acrylic acid	28.1(30)		14 to 141	
Acrylonitrile	29.58	0.1178	-83.5 to 77.3	
Allyl acetate	28.73	0.1186	up to 104	
Allyl alcohol	27.53	0.0902	- 129 to 97	1.218(25), 0.759(50), 0.553(70)
Allylamine	27.49	0.1287	-88 to 55	
Allyl isothiocyanate	36.76	0.1074	80 to 152	
2-Aminoethanol	51.11	0.1117	10.3 to 171	
Aniline	44.83	0.1085	-6 to 186	3.847(25), 2.029(50), 1.247(75)
Benzaldehyde	40.72	0.1090	-26 to 179	
Benzamide	47.26	0.0705	129 to 290	
Benzene	28.88(20)	27.56(30)	5.5 to 80	0.649(20), 0.566(30), 0.395(60)
Benzenesulfonyl chloride	45.48	0.1117	14.5 to 251	
Benzenethiol	41.41	0.1202	-14.9 to 169	
Benzonitrile	41.69	0.1159	-12.7 to 191	1.447(15), 1.111(30), 0.883(50)
Benzophenone	46.31	0.1128	48 to 305	
Benzoyl bromide	45.85	0.1397	-24 to 219	
Benzoyl chloride	41.34	0.1084	-1 to 197	
Benzyl alcohol	38.25	0.1381	-15.2 to 205	5.474(25), 2.760(50), 1.618(75)
Benzylamine	42.33	0.1213	10 to 180	1.624(25), 1.080(50), 0.769(75)
Benzyl benzoate	48.07	0.1065	21 to 323	8.454(25)
Benzyl chloride	39.92	0.1227	43 to 179	

	Surface mN ·	tension, m ⁻¹		
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
Benzyl ethyl ether	32.82(20)	29.97(40)	up to 186	
Biphenyl	41.52	0.0931	69 to 256	
Bis(2-ethoxyethyl) ether	29.74	0.1176	-45 to 188	
Bis(2-hydroxyethyl) ether	46.97	0.0880	-10.4 to 246	
Bis(2-methoxyethyl) ether	32.47	0.1164	-68 to 162	
Bromobenzene	38.14	0.1160	-30.6 to 156	1.196(15), 0.985(30), 0.385(1423)
1-Bromobutane	28.71	0.1126	-112.4 to 101.6	0.633(20), 0.606(25), 0.471(50)
(\pm) -2-Bromobutane	27.48	0.1107	-112.7 to 91.4	
Bromochloromethane	33.32(20)		-88 to 68	
Bromocyclohexane	36.13	0.1117	up to 165.8	
1-Bromodecane	31.26	0.0856	-30 to 240	
Bromodichloromethane	35.11	0.1294	- 55 to 87	
1-Bromododecane	32.58	0.0882	-11 to bp	
Bromoethane	26.52	0.1159	-119 to 38.2	0.477(10), 0.374(25)
Bromoform	48.14	0.1308	8 to 149	
1-Bromoheptane	30.74	0.0982	-58 to 180	
1-Bromohexadecane	33.37	0.0861	17.8 to 336	
1-Bromohexane	29.81	0.0967	-85 to 158	
Bromomethane	26.52	0.1159	-94 to 3.56	
1-Bromo-3-methylbutane	28.10	0.0996	-112 to 119.7	
1-Bromo-2-methylpropane	26.96	0.1059	-119 to 91.5	
1-Bromonaphthalene	46.44	0.1018	-1.8 to 281	
1-Bromononane	31.36	0.0894	ca. -55 to 201	
1-Bromooctane	31.00	0.0928	- 55 to 201	
1-Bromopentane	29.51	0.1049	88 to 129.6	
<i>p</i> -Bromophenol	48.88	0.1070	64 to 238	
1-Bromopropane	28.30	0.1218	-110.1 to 71	0.539(15), 0.459(30), 0.338(70)
2-Bromopropane	26.21	0.1183	- 89 to 59.5	0.536(15), 0.437(30), 0.359(50)
3-Bromopropene	29.45	0.1257	-119 to 70	0.620(0), 0.471(25), 0.373(50)
1-Bromotetradecane	32.93	0.0878	6 to > 178	
o-Bromotoluene	36.62	0.0998	-26 to 181	
<i>p</i> -Bromotoluene	36.40	0.0997	28.5 to 184	
1-Bromoundecane	31.94	0.0861	-9 to > 138	
Butanal	26.67	0.0925	- 99 to 74.8	
Butane	14.87	0.1206	-138.3 to -0.5	
1,3-Butanediol	37.8(25)		< 50 to 207.5	
2,3-Butanedioi	30(23)		25 to 182	0.552(35) 0.418(50) 0.220(75)
Butaneaulfanul ablarida	27.22	0.0077		0.333(23), 0.418(30), 0.330(73)
1 Butanesulfoliyi chiofide	27.33	0.0977	116 to 08 5	
Butanoic acid	28.07	0.0020	-6 to 163.5	1 540(20) 0 980(40) 0 323(60)
Butanoic anhydride	28.33	28 44(25)	-66 to 109.5	1.340(20), 0.380(40), 0.323(00)
1-Butanol	20.23(20)	0.0898		5 185(0) 2 948(20) 1 782(40)
$(\pm)_2$ -Butanol	27.10	22 62(30)	-114.7 to 99.5	3.907(20) 1.332(50) 0.698(75)
2-Butanone	26 77	0 1122	-867 to 796	0.428(20), 0.349(40), 0.249(75)
1-Butene	15 19	0.1323	-185 to -65	
2-Butene	16 11	0.1289	- 106 to 0.9	
3-Butenenitrile	31.40	0 1085		
2-Butoxyethanol	28.18	0.0816	-75 to 168	
			7.5 60 100	

TABLE 2.30	Viscosity and Surface Tension of Organic Compounds (<i>Continued</i>)

TABLE 2.30	Viscosity and	Surface	Tension of	Organic	Compounds ((Continued))
------------	---------------	---------	------------	---------	-------------	-------------	---

	Surface mN	tension, m ⁻¹		
Substance	а	ь	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2-(2-Butoxyethoxy)ethanol	30.0(25)		-68.1 to 230.4	
Butyl acetate	27.55	0.1068	-77 to 126	0.734(20), 0.688(25), 0.500(50)
(±)-sec-Butyl acetate	23.33(22)	21.24(42)	-99 to 112	0.676(25), 0.493(50), 0.370(75)
tert-Butyl acetate	24.69	0.1102	up to 98	
Butylamine	26.24	0.1122	- 50 to 77	0.830(0), 0.574(25), 0.409(50)
sec-Butylamine	23.75	0.1057	- 104 to 63	0.770(0), 0.571(25), 0.367(50)
tert-Butylamine	19.44	0.1028	-66 to 44	
Butylbenzene	31.28	0.1025	88 to 183	1.035(20), 0.683(50), 0.515(75)
sec-Butylbenzene	30.48	0.0979	-82.7 to 173	
tert-Butylbenzene	30.10	0.0985	-58.1 to 168.5	
Butyl butanoate	27.65	0.0965	-91.5 to 166	
Butyl ethyl ether	22.75	0.1049	-124 to 92	
Butyl formate	27.08	0.1026	-91.5 to 106	0.940(0), 0.691(20), 0.472(50)
Butyl methyl ether	22.17	0.1057	-115.5 to 70	
Butyl nitrate	30.35	0.1126	up to 133	
Butyl propanoate	27.37	0.0993	-89 to 146.8	
4-tert-Butylovridine	35.48	0.0951	$c_{a} = -44$ to 197	
Butyl stearate	33.0(25)	32,7(30)	26 to 343	
Butyl vinyl ether	21 99(20)	5211(20)	-92 to 94 2	
Carbon disulfide	35.29	0 1484	-1116 to 465	0.429(0) 0.363(20) 0.352(25)
Carbon tetrachloride	29.49	0.1724	-23 to 76.7	1.321(0), 0.908(25), 0.656(50)
$D_{-}(+)$ -Carvone	36 54	0.0920	< 15 to 730	1.521(0), 0.500(25), 0.050(50)
Chloroacetic acid	13 27	0.0920	<15 to 250	3 15(50) 1 92(75)
a Chloroaniline	43.41	0.0004	-14 to 208.8	3.15(50), 1.92(75) 3.316(25), 1.913(50), 1.248(75)
n Chloroaniline	49.41	0.0904	72 5 to 232	5.510(25), 1.515(50), 1.246(75)
Chlorobangene	35.07	0.1099	-45 3 to 131 7	0.709(20) 0.631(40) 0.512(60)
1 Chlorobutane	25.97	0.1191	-1231 to 78.4	0.799(20), 0.031(40), 0.312(00)
2 Chlorobutane	23.97	0.1117		0.330(0), 0.422(23), 0.329(30)
Chloroqualabayana	24.40	0.1101	= 131.3 to 008.2	0.459(15)
1 Chlorododoona	33.90	0.1101	-0 to 116	
1 Chlore 2.2 anouversense	20.76	0.0904	- 9 to 110	1.02(25)
Chloronthone	39.70	0.1300	- J7.2 to 110.1	1.05(25)
2 Chloroothanol	21.16(3)	20.38(10)		0.410(-2.5), 0.519(0), 0.279(10)
Chloroform	38.9(20)	0.1205	-67.5 to 128.0	5.913(13) 0.705(0) 0.505(15) 0.514(20)
1 Chlorobertone	29.91	0.1293	-05.0 to 01.1	0.700(0), 0.390(13), 0.314(30)
1-Chlorobenene	28.94	0.0901	- 09 10 101	
1 Chlang 2 mathulbutons	26.52	0.1038	104 to 00	
1 Chloro 2 methyloutane	23.31	0.10/0	120.2 +- 69.0	0.462(20) 0.272(40)
1-Cilloro-2-methylpropane	24.40	10.1099	- 130.5 to 68.9	0.402(20), 0.573(40)
2-Chloro-2-methylpropane	20.06(15)	18.33(30)	- 20 10 50.8	0.343(13)
1-Unioronaphtnalene	44.12	0.1035	- 2.3 to 259	2.940(25)
o-Unioronitrobenzene	48.10	0.11/1	33 to 246	
<i>m</i> -Unioronitrobenzene	49.71	0.1417	44 to 236	
<i>p</i> -Unioronitrobenzene	45.84	0.1046	84 to 242	
I-Chlorooctane	29.64	0.0961	-58 to 182	0.500/200
I-Chloropentane	27.09	0.1076	- 99 to 108	0.580(20)
o-Chlorophenol	42.5	0.1122	9.8 to 175	3.589(25), 1.835(50), 1.131(75)
m-Chlorophenol	43.7	0.1009	33 to 214	11.55(25), 4.725(45), 4.041(50)
p-Chlorophenol	46.0	0.1049	43 to 220	4.99(50)
1-Chloropropane	24.41	0.1246	- 122.8 to 47	0.436(0), 0.372(15), 0.318(30)

	Surface mN	tension, • m ⁻¹		
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2-Chloropropane	21.37	0.0883	-117 to 36	0.401(0), 0.335(15), 0.299(30)
3-Chloro-1-propene	25.50	0.0946	-134.5 to 45	0.347(15)
o-Chlorotoluene			-35.6 to 159	1.267(25), 0.883(50), 0.662(75)
<i>m</i> -Chlorotoluene			-47.8 to 161.8	0.964(25), 0.710(50), 0.547(75)
p-Chlorotoluene	34.93	0.1082	7.5 to 162.4	0.837(25), 0.621(50), 0.483(75)
Chlorotrimethylsilane	19.51	0.0875	-40 to 57	
o-Cresol	39.43	0.1011	30 to 191	3.035(50), 1.562(75), 0.961(100)
<i>m</i> -Cresol	38.00	0.0924	12 to 202	12.9(25), 4.417(50), 2.093(75)
p-Cresol	38.58	0.0962	34.8 to 202	5.607(45)
Cycloheptanol	35.02	0.0923	2 to 185	
Cyclohexane	27.62	0.1188	6.6 to 80.7	0.980(20), 0.912(25), 0.650(50)
Cyclohexanol	35.33	0.0966	25.4 to 161	57.5(25), 41.07(30), 12.3(50)
Cyclohexanone	37.67	0.1242	-31 to 155.7	2.453(15), 1.803(30), 1.321(50)
Cyclohexene	29.23	0.1223	- 103.5 to 83	0.882(0), 0.625(25), 0.467(50)
Cyclohexylamine	34.19	0.1188	-18 to 134	1.079(25), 0.692(50), 0.485(75)
Cyclooctane	32.02	0.1090	14.8 to 151.1	
Cyclopentane	25.53	0.1462	-94 to 50	0.555(0), 0.413(25), 0.321(50)
Cyclopentanol	35.04	0.1011	-19 to 140	0.439(20)
Cyclopentanone	35.55	0.1100	-51 to 130.6	
Cyclopentene	25.94	0.1495	-135.1 to 44.2	
cis-Decahydronaphthalene	32.18(20)	31.01(30)	-43 to 195.8	3.042(25), 1.875(50), 1.271(75)
trans-Decahydronaphthalene	29.89(20)	28.87(30)	-30.4 to 187.3	1.948(25), 1.289(50), 0.917(75)
Decamethylcyclopentasiloxane	19.56	0.0565	-38 to >101	
Decamethyltetrasiloxane	86.20(25)		-68 to 194	1.28(20)
Decane	25.67	0.0920	-29.7 to 174.1	1.277(0), 0.838(25), 0.598(50)
1-Decanol	30.34	0.0732	6.9 to 232	10.9(25), 4.590(50)
1-Decene	25.84	0.0919	-66 to 170.6	0.805(20)
Dibenzylamine	43.27	0.1086	-26 to 300	
Dibenzyl ether	38.2(35)		2 to 298	3.711(25)
p-Dibromobenzene	41.84	0.1007	87.3 to 220	
1,4-Dibromobutane	48.24	0.1190	-20 to 198	
1,2-Dibromoethane	42.85	0.1320	10 to 131.7	1.721(20), 1.286(40), 0.648(100)
1,2-Dibromopropane	36.81	0.1155	-55.5 to 142	1.5(25)
Dibromotetrafluoroethane	18.9(20)	18.1(25)	-110.5 to 47	0.72(25)
Dibutylamine	26.50	0.0952	-62 to 159.6	0.918(25), 0.619(50), 0.449(75)
Dibutyl decanedioate			-10 to 345	9.03(25)
Dibutyl ether	24.78	0.0934	-95 to 140	0.637(25), 0.466(50), 0.356(75)
Dibutyl maleate	32.46	0.0865	< -80 to 281	5.62(20), 4.76(25)
Dibutyl o-phthalate	33.40(20)		-35 to 340	19.91(20), 11.17(35), 7.85(45)
Dichloroacetic acid	37.8	0.0927	9 to 194	3.23(50), 1.92(75)
o-Dichlorobenzene	35.55(30)		-17 to 180.4	1.324(25), 0.962(50), 0.739(75)
<i>m</i> -Dichlorobenzene	38.30	0.1147	-24.8 to 173.1	1.044(25), 0.783(50), 0.628(75)
<i>p</i> -Dichlorobenzene	34.66	0.0879	53 to 174.1	0.839(55), 0.668(79)
1,4-Dichlorobutane	37.79	0.1174	-38 to 163	
1,1-Dichloroethane	27.03	0.1186	-97 to 57.3	0.505(15), 0.464(25), 0.362(50)
1,2-Dichloroethane	35.43	0.1428	- 35.7 to 83.5	1.125(0), 0.779(25), 0.576(50)
1,1-Dichloroethylene			- 122.6 to 31.6	0.442(0), 0.358(20)
cis-1,2-Dichloroethylene	28(20)		- 80.1 to 60	0.785(-25), 0.575(0), 0.444(25)
trans-1,2-Dichloroethylene	25(20)		-49.8 to 48.7	0.522(-25), 0.398(0), 0.317(25)
2,2'-Dichloroethyl ether	40.57	0.1306	up to 178.5	2.41(20), 2.065(25)

TABLE 2.30	Viscosity and Surface Tension of Organic Compounds (<i>Continued</i>)

Previous Page

2.276 SECTION TWO

TABLE 2.30	Viscosity and	Surface Tension	of Organic Con	npounds (Continued	l)
-------------------	---------------	-----------------	----------------	--------------------	----

	Surface tension, $mN \cdot m^{-1}$			
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
Dichloromethane	30.41	0.1284	- 95 to 40	0.533(0), 0.449(15), 0.393(30)
2,4-Dichlorophenol	46.59	0.1221	42 to 210	
1,2-Dichloropropane	31.42	0.1240	-100 to 96	0.865(20), 0.700(25)
1,3-Dichloropropane	36.40	0.1233	-99.5 to 122	
2,2-Dichloropropane	23.60(20)	22.53(30)	- 35 to 69	0.769(15), 0.619(30)
α, α -Dichlorotoluene	41.26	0.1035	- 16 to 205	
Diethanolamine			28 to 269	368(30), 109.5(50), 28.7(75)
1,1-Diethoxyethane	23.46	0.1030	-100 to 102.2	
1,2-Diethoxyethane			- 74 to 121.4	0.65(20)
Dimethoxymethane	23.87	0.1291	up to 88	
Diethylamine	22.71	0.1143	- 50 to 55.5	
N,N-Diethylaniline	36.59	0.1040	- 38 to 217	3.838(0), 1.15(50), 0.750(75)
Diethyl carbonate	28.62	0.1100	-43 to 126	0.868(15), 0.748(25)
Diethyl decanedioate	34.68	0.0959		
Diethyl ether	18.92	0.0908	-116 to 34.6	0.283(0), 0.224(25)
Diethyl ethyl phosphonate	30.63	0.0975	up to 198	1.627(15), 0.969(45), 0.743(65)
Di(2-ethylhexyl) o-phthalate			- 50 to 384	33.67(35), 21.40(45)
Diethyl maleate	34.67	0.1039	-8.8 to 225.3	3.57(20), 3.14(25)
Diethyl 1,3-propanedioate	33.91	0.1042	- 49.9 to 199.3	2.15(20), 1.94(25)
(malonate)				
Diethyl oxalate	34.32	0.1119	-40.6 to 185.4	2.311(15), 1.618(30)
Diethyl o-phthalate	38.47	0.0963	-40 to 295	9.18(35), 6.41(45)
Diethyl succinate	33.97	0.1041	-21 to 217.7	
Diethyl sulfate	35.47	0.0976	-25 to 208	
Diethyl sulfide	27.33	0.1106	- 104 to 92.1	0.558(0), 0.422(25)
1,2-Dihydroxybenzene	47.6	0.0849	104 to 245.5	
1,3-Dihydroxybenzene	54.8	0.0717	110 to 276	
Diiodomethane	70.21	0.1613	6 to 181	
Diisobutylamine	24.00	0.0912	-77 to 139	
Diisopentyl ether	24.76	0.0871	up to 172.5	1.40(11), 1.012(20)
Diisopropylamine	21.03	0.1077	-61 to 83.5	0.393(25), 0.300(50), 0.237(75)
Diisopropyl ether	19.89	0.1048	-87 to 68	0.379(25)
1,2-Dimethoxybenzene	34.4	0.0642	22.5 to 206	3.281(25), 2.184(40)
1,1-Dimethoxyethane	23.90	0.1159	-113 to 64.5	
1,2-Dimethoxyethane	48.0(25)		-68 to 85	0.670(-10), 0.530(10), 0.455(25)
Dimethoxymethane	23.59	0.1199	- 104.8 to 42	0.340(15), 0.325(20)
N,N-Dimethylacetamide	32.40(30)	29.50(50)	-20 to 165.5	1.956(25), 1.279(50), 0.896(75)
Dimethylamine	29.50	0.1265	-92 to 6.9	0.300(-25), 0.232(0)
N,N-Dimethylaniline	38.14	0.1049	2.5 to 194	1.300(25), 0.911(50), 0.675(75)
2,4-Dimethylaniline	39.34	0.0996	- 14 to 214	
2,2-Dimethylbutane	18.29	0.0990	- 100 to 49.7	0.351(25), 0.330(30)
2,3-Dimethylbutane	19.38	0.1000	-128 to 58	0.361(25), 0.342(30)
2,3-Dimethyl-1-butanol	26.22	0.0992	-14 to 118	
Dimethyl carbonate	31.94	0.1343	0.5 to 91	
1,1-Dimethylcyclopentane	23.78	0.1016	- 70 to 87.5	
Dimethyl ether	14.97	0.1478	-141 to -24.9	
N,N-Dimethylformamide	36.76(20)	34.40(40)	- 60 to 153	1.176(0), 0.794(25), 0.624(50)
2,4-Dimethylheptane	23.21	0.0929	< -100 to 133	
2,5-Dimethylheptane	23.21	0.0929	< -100 to 136	

	Surface tension, mN · m ⁻¹			
Substance	а	Ь	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2,6-Dimethylheptane	22.17	0.0887	- 103 to 135	
Dimethyl hexanedioate	38.26	0.1138	8 to > 112	14(20)
Dimethyl maleate	40.73	0.1220	-19 to 202	3.54(20), 3.21(25)
Dimethyl malonate	39.72	0.1208	- 62 to 181	
2,2-Dimethylpentane	19.94	0.0957	- 124 to 79	
2,3-Dimethylpentane	21.96	0.0995	up to 90	0.406(20)
2,4-Dimethylpentane	20.09	0.0972	- 120 to 80.4	0.361(20)
3,3-Dimethylpentane	21.59	0.0996	-135 to 86	
2,4-Dimethylphenol	34.57	0.0869	24.5 to 211	
2,5-Dimethylphenol	36.72	0.0850	74.5 to 211.5	1.55(80)
3,4-Dimethylphenol	35.75	0.0910	61 to 227	3.00(80)
3,5-Dimethylphenol	34.09	0.0807	64 to 222	2.42(80)
Dimethyl o-phthalate			5.5 to 284	14.4(25), 5.309(50), 2.824(75)
2,2-Dimethylpropane	12.05(20)	10.98(30)	-16.6 to 9.5	0.328(0), 0.303(5)
Dimethyl succinate	39.00	0.1191	19 to 196.4	
Dimethyl sulfate	41.26	0.1163	-31.8 to 188	
Dimethyl sulfide	26.07	0.0805	- 98 to 37	0.356(0), 0.289(20), 0.265(36)
Dimethyl sulfite	36.48	0.1253	up to 127	0.715(30), 0.436(80)
Dimethyl sulfoxide	43.54(20)	42.41(30)	18.5 to 189	2.47(20), 1.192(55), 0.849(80)
1,4-Dioxane	36.23	0.1391	11.8 to 101.2	1.439(15), 1.087(30), 0.787(50)
Dipentyl ether	26.66	0.0925	- 69 to 190	1.188(15), 0.922(30)
Dipentyl o-phthalate	32.56	0.0739		17.03(35), 11.51(45)
Dipentyl sulfide	29.55	0.0876		
Dipentylamine	45.36	0.1017	53 to 302	4.66 (55), 1.04(130)
Diphenyl ether	28.70	0.0780	27 to 258	2.130(50), 1.407(75), 1.023(100)
1,2-Dipropoxyethane	25.03	0.0972		
Dipropoxymethane	25.17	0.0953		
Dipropylamine	24.86	0.1022	-63 to 109	0.517(25), 0.377(50), 0.288(75)
Dipropyl carbonate	28.94	0.1015	up to 168	
Dipropylene glycol butyl ether	28.2(25)		up to >103	4.23(25)
Dipropylene glycol ethyl ether	27.7(25)			3.11(25)
Dipropylene glycol isopropyl ether	25.9(25)		up to 80	386(25)
Dipropylene glycol methyl ether	28.8(25)		- 117 to 188	3.1(25)
Dipropyl ether	22.60	0.1047	-126 to 89.6	0.542(0), 0.396(25), 0.304(50)
Dodecane	27.12	0.0884	-10 to 216	2.277(0), 1.378(25), 0.930(50)
1-Dodecanol	31.25	0.0748	24 to 259	-
Epichlorohydrin	39.76	0.1360	-26 to 117	1.20(25)
1,2-Epoxybutane	23.9(20)		-150 to 63	0.419(15), 0.358(30)
1,2-Ethanediamine	44.77	0.1398	11 to 117.3	1.54(20), 1.226(30)
1,2-Ethanediol	50.21	0.0890	- 12.6 to 197.3	26.09(15), 13.55(30)
Ethanesulfonic acid	45.74	0.0824	-17 to >123	
Ethanesulfonyl chloride	43.43	0.1177	up to 177	
Ethanethiol	25.06	0.0793	- 148 to 35	0.364(0), 0.287(25)
Ethanol	24.05	0.0832	- 114 to 78	1.786(0), 1.074(25), 0.694(50)
Ethanolamine	51.11	0.1117	10.5 to 171	21.1(25), 8.560(50), 3.935(75)
Ethoxybenzene (phenetol)	35.17	0.1104	-29.5 to 170	1.364(15), 1.197(25), 0.817(50)
2-Ethoxyethanol	30.59	0.0897	- 70 to 135	2.04(20), 1.85(25)
Ethyl acetate	26.29	0.1161	- 84 to 77	0.578(0), 0.423(25), 0.325(50)

TABLE 2.30 Viscosity and Surface Tension of Organic Compounds (Continued)

	Surface mN	tension, m ⁻¹		
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
Ethyl acetoacetate	34.42	0.1015	-45 to 181	1.419(20), 1.508(25)
Ethylamine	22.63	0.1372	-81 to 16.6	
N-Ethylaniline	39.00	0.1070	-63.5 to 203	2.047(25), 1.231(50), 0.825(75)
Ethylbenzene	31.48	0.1094	-95 to 136	1360.631(25), 0.482(50), 0.380(75)
Ethyl benzoate	37.16	0.1059	-35 to 212	2.407(15), 1.751(30)
Ethyl butanoate	26.55	0.1045	-98 to 121	0.771(15), 0.613(25)
2-Ethylbutanoic acid	26.3(20)		-14 to 194	3.3(20)
2-Ethyl-1-butanol	25.06(15)	24.32(25)	< -15 to 146	8.021(15), 5.892(25)
Ethyl carbamate			50 to 184	0.916(105), 0.715(120)
Ethyl chloroacetate	34.18	0.1177	-21 to 144	
Ethyl chloroformate	28.90	0.1084	81 to 93	
Ethyl trans-cinnamate	39.99	0.1045	10 to 271	8.7(20)
Ethyl crotonate	29.31	0.1066	up to 138	
Ethyl cyanoacetate	38.80	0.1092	-22 to 206	3.256(15), 2.148(30)
Ethylcyclohexane	27.78	0.1054	-111 to 132	1.139(0), 0.784(25), 0.579(50)
Ethyl dichloroacetate	34.89	0.1158	up to 155	
Ethyl dodecanoate	30.05	0.0863	-10 to 271	
Ethylene carbonate			36 to 248	1.85(40)
Ethylenediamine	44.77	0.1398	11 to 117	1.540(18)
Ethylene glycol	50.21	0.0890	up to 198	26.09(15), 13.35(30), 6.554(50)
Ethyleneimine	7.9(20)		- 78 to 56	0.418(25)
Ethylene oxide	27.66	0.1664	-111 to 10.6	0.3(0)
Ethyl formate	26.47	0.1315	- 80 to 54	0.419(15), 0.358(30), 0.300(50)
Ethyl fumarate	33.90	0.1056	68 to >148	
Ethylhexadecanoate	32.86	0.0859	22 to >191	
Ethyl hexanoate	27.73	0.0960	up to 168	
2-Ethyl-1-hexanol	30.0(22)		- 70 to 185	6.271(25), 2.631(50), 1.360(75)
Ethyl isobutanoate	25.33	0.1046	- 88 to 110	
Ethyl isothiocyanate	38.69	0.1326	-6 to 132	
Ethyl lactate	30.72	0.0983	-26 to 155	2.44(25)
Ethyl 3-methylbutanoate	25.79	0.1006	-99 to 135	
Ethyl methyl ether	18.56	0.1317	-113 to 7.4	
Ethyl methyl sulfide	27.63	0.1286	-106 to 67	0.373(20), 0.354(25)
Ethyl nitrate	30.81	0.1345	-95 to 88	
3-Ethylpentane	22.52	0.1032	-119 to 93.5	
Ethyl pentanoate	27.15	0.0999	91 to 145	0.847(20)
Ethyl propanoate	26.72	0.1168	- 74 to 99	0.564(15), 0.473(30), 0.380(50)
Ethyl propyl ether	21.92	0.1054	- 79 to 63	0.401(0), 0.323(20), 0.225(60)
Ethyl salicylate	31.00	0.1091	2 to 234	1.772(45)
Ethyl thiocyanate	37.28	0.1226	up to 145	
o-Ethyltoluene	32.33	0.1060	- 81 to 165	
p-Ethyltoluene	30.98	0.1075	-62 to 162	
Ethyl trichloroacetate	32.97	0.1073	up to 168	
Fluorobenzene	29.67	0.1204	-42 to 85	0.620(15), 0.517(30), 0.423(50)
1-Fluorohexane	23.41	0.1001	- 103 to 93	
1-Fluoropentane	22.81	0.1315	- 120 to 63	
o-Fluorotoluene			-62 to 115	0.680(20), 0.601(30)
m-Fluorotoluene	32.31	0.1257	-87 to 115	0.608(20), 0.534(30)
p-Fluorotoluene	30.44	0.1109	56 to 117	0.622(20), 0.522(30)

TABLE 2.30 Viscosity and Surface Tension of Organic Compounds (Continued)

	Surface mN	tension, m ⁻¹		
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
Formamide	59.13	0.0842	2.6 to 220	4.320(15), 2.296(30), 1.833(50)
Formanilide	44.30	0.0875	47 to 271	1.65(120)
Formic acid	39.87	0.1098	8 to 101	1.966(15), 1.607(25), 1.030(50)
Furan	24.10(20)	23.38(25)	- 86 to 31	0.380(20), 0.361(25)
2-Furancarboxaldehyde	46.41	0.1327	-36.5 to 162	2.501(0), 1.587(25), 1.143(50)
2-Furanmethanol	ca. 38(20)		-31 to 171	4.62(25)
Glycerol	63.14(17)	62.5(25)	18 to 290	934(25), 152(50), 39.8(75)
Glycerol tris(acetate)	37.88	0.081		
Glycerol tris(nitrate)	55.74	0.2504	13 to > 160	36.0(20), 13.6(40)
Glycerol tris(oleate)	36.03	0.0699	-5 to >233	
Glycerol tris(palmitate)	32.26	0.0672	65 to 320	
Glycerol tris(sterate)	32.73	0.0685		
Heptanal	28.64	0.0920	-43 to 153	0.977(15)
Heptane	22.10	0.0980	-91 to 98	0.523(0), 0.416(20), 0.341(40)
Heptanoic acid	29.88	0.0848	-8 to 222	3.84(25), 2.282(50), 1.488(75)
1-Heptanol			- 34 to 176	8.53(15), 5.810(25), 2.603(50)
2-Heptanol			up to 159	3.955(25), 1.799(50), 0.987(75)
3-Heptanol			-70 to 157	1.957(50), 0.976(75), 0.584(100)
4-Heptanol				4.207(25), 1.695(50), 0.882(75)
2-Heptanone	28.76	0.1056	- 35 to 151	0.854(15), 0.686(30), 0.407(50)
4-Heptanone	28.11	0.1060	- 32 to 143.7	0.736(20)
1-Heptene	22.28	0.0991	- 120 to 93.6	0.441(0), 0.340(25), 0.273(50)
Heptylamine	25.96	0.0783	-23 to 156	1.314(25), 0.865(50), 0.600(75)
Hexadecane	29.18	0.0854	18.2 to 286.8	3.032(25), 1.879(50), 1.260(75)
1,5-Hexadiene	20.93	0.1028	- 140.7 to 59.5	0.275(20), 0.244(36)
Hexafluorobenzene	22.6(20)		5.1 to 80.3	2.789(25), 1.730(50), 1.151(75)
Hexamethyldisiloxane	17.01	0.0763	-67 to 101	
Hexamethylphosphoramide	33.8(20)		7 to 232	3.47(20)
Hexane	20.44	0.1022	-95.4 to 68.7	0.405(0), 0.313(20), 0.271(40)
Hexanenitrile	29.64	0.0907	80 to 163.6	1.041(15), 0.830(30), 0.650(50)
Hexanoic acid	28.05(20)	27.55(25)	-3 to 205	3.525(15), 2.511(30)
1-Hexanol	27.81	0.0801	-44.6 to 157.5	6.203(15), 3.872(30), 2.271(50)
2-Hexanone	28.18	0.1092	- 55.5 to 127.6	0.584(25), 0.429(50), 0.329(75)
1-Hexene	20.47	0.1027	-140 to 63.5	0.326(0), 0.252(25), 0.202(50)
Hexyl acetate	28.44	0.0970	-81 to 171	
4-Hydroxy-4-methyl-2-	31.0(20)		44 to 168	6.621(0), 2.798(25), 1.829(50)
pentanone	41.50	0.1102	21 / 100	1 554(05) 1 117(50) 0 954(75)
lodobenzene	41.52	0.1123	31 to 188	1.554(25), 1.117(50), 0.854(75)
1-lodobutane	30.82	0.1031	- 103.5 to 131	
2-10dobutane	30.32	0.1050	- 104 to 120	0 (17(15) 0 540(20) 0 444(50)
1 Jadahantana	31.07	0.1280		0.617(13), 0.340(30), 0.444(30)
1-Iodoheradoana	34.10	0.0867	-46 10 204	
1-Iodohexadecane	34.49	0.0860	2510 > 207	
I-IOUUIICAIIC	31.03	0.0043	up to 180	0.504(0) 0.500(20) 0.424(40)
1 Jodo 2 mothylarcanon	20.26	0.1234		0.374(0), 0.300(20), 0.424(40)
1 Iodooctane	30.20	0.10/2	95.5 10 121	0.075(20), 0.097(40)
1-Iodopentane	31 /1	0.0715		
1-Iodopropane	31.64	0.1136	- 101 to 102.6	0.837(15), 0.670(30), 0.541(50)

TABLE 2.30	Viscosity and Surface Tension	of Organic Compound	s (Continued)

	Surface mN	tension, · m ⁻¹		
Substance	a	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2-Iodopropane	29.35	0.1107	-90 to 89.5	0.732(15), 0.620(30), 0.506(50)
p-Iodotoluene	39.23	0.0965	up to 211	
α-Ionone	34.10	0.0949	>124	
β -Ionone	35.36	0.0950	>128	
Isobutanenitrile	24.93(20)	23.84(30)	-71.5 to 104	0.551(15), 0.456(30)
Isobutyl acetate	25.59	0.1013	-99 to 116.5	0.676(25), 0.493(50), 0.370(75)
Isobutylamine	24.48	0.1092	- 86.6 to 68	0.770(0), 0.571(25), 0.367(50)
Isobutylbenzene	29.39	0.0961	- 51.5 to 172.8	
Isobutyl formate	26.14	0.1122	-95.5 to 98.4	0.680(20)
Isobutyl propanoate	30.92	0.1270	-71 to 137	
Isopentyl acetate	26.75	0.0989	-78.5 to 142	0.872(20), 0.790(25)
Isophorone			-8.1 to 215.2	4.201(0), 2.329(25), 1.415(50)
Isopropyl acetate	24.44	0.1072	-73 to 89	0.559(20)
Isopropylamine	19.91	0.0972	-95 to 31.7	0.454(0), 0.325(25)
Isopropylbenzene	30.32	0.1054	-96 to 154	1.075(0), 0.737(25), 0.547(50)
Isopropyl formate	24.56	0.1147		0.512(20)
Lactonitrile	38.31	0.0960	-40 to >103	2.01(30)
D-Limonene	29.50	0.0929	-96.5 to 178	
(\pm) -Mandelonitrile	45.90	0.0988	-10 to 170	
Methacrylic acid	26.5(25)		16 to 163	1.32(20)
Methacrylonitrile	24.4(20)		-35.8 to 90.3	0.392(20)
Methanesulfonic acid	52.28	0.0893	20 to > 167	0.000
Methanethiol	28.09	0.1696	-123 to 6.0	
Methanol	24.00	0.0773	-97.7 to 64.7	0.793(0) $0.676(10)$ $0.544(25)$
<i>a</i> -Methoxybenzaldehyde	45.34	0.1105	37 to 238	
<i>n</i> -Methoxybenzaldehyde	44 69	0 1047	-1 to 248	
Methoxybenzene	38.11	0.1204	-375 to 1538	1 152(15) 1 056(25) 0 747(50)
2-Methoxyethanol	33.30	0.0984	-85.1 to 124	1.71(20) 1.60(25)
2-(2-Methoxyethoxy)ethanol	34.8(25)	29.9(75)	-50 to 194	3 48(25) 1 61(60)
1-Methoxy-2-nitrobenzene	48.62	0 1185	10.5 to 277	5.10(25), 1.01(00)
<i>a</i> -Methoxyphenol	41.2	0.0943	28 to 205	
<i>n</i> -Methoxytoluene	36.20	0.1071	up to 174	
<i>N</i> -Methylacetamide	33 67(30)	30.62(50)	30.6 to 206	3 88(30) 2 54(45)
Methyl acetate	27.95	0.1289	98 to 57	0.477(0) 0.364(25) 0.284(50)
Methyl acetoacetate	34.98	0.0944	27.5 to 171.7	0.177(0), 0.504(25), 0.204(50)
Methyl acrylate	54.90	0.0211	-765 to 802	1 398(20)
Methylamine	22.87	0 1488	-935 to -63	0.319(-25)
<i>N</i> -Methylaniline	30.32	0.0970	- 57 to 196	2.042(25) 1.222(50) 0.825(75)
a Methylaniline	59.52	0.0970	57 10 190	2.042(25), 1.222(50), 0.025(75)
m Methylaniline				3.823(23), 1.930(30), 1.198(73)
Mathul happanta	40.10	0.1171	- 15 to 100 5	3.300(23), 1.079(30), 1.014(73)
2 Methyl 1.2 butadiana	40.10	0.1171	- 15 10 199.5	2.298(13), 0.200(20), 1.073(30)
2 Mothylbutono	17.20	0 1102	un to 20	0.200(0.3), 0.233(20) 0.276(-25), 0.277(0), 0.214(25)
2-ivicuiyibutane Mathul hutanosta	27.49	0.1105	up to 50	0.570(-25), 0.277(0), 0.214(25)
2 Mothylbutancia acid	27.40	0.1143	- 03.0 10 103	0.360(20), 0.439(40), 0.406(50)
2 Mothyl 1 bytenel	21.28	0.0880	-29.5 to 1/0.5	2.731(13), 2.411(20) 5.50(20) 4.452(25) 1.0(2(50))
2-ivieuryi-1-butanoi	21.5(25)	0.0749	< -70 to 128	5.50(20), 4.453(25), 1.963(50)
2-ivietnyi-2-butanoi	24.18	0.0748	-9.0 to 102.0	5.48(15), 2.81(30)
3-Methyl-1-butanol	25.76	0.0820	-117 to 131	4.81(15), 2.96(30), 1.842(50)
3-Methyl-2-butanol	$\pm 23.0(25)$	1	up to 112.9	3.51(25)

TABLE 2.30 Viscosity and Surface Tension of Organic Compounds (Continued)

	Surface tension, mN · m ⁻¹			
Substance	а	Ь	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2-Methyl-1-butene	18.81	0.1148	-137.6 to 31	
2-Methyl-2-butene	19.70	0.1271	-133.8 to 38.6	
3-Methyl-1-butene	16.42	0.1031	- 168 to 20	
2-Methylbutyl acetate	26.75	0.0989	-99 to 117	0.872(20)
3-Methylbutyronitrile	27.58	0.0827	-101 to 129	
Methyl chloroacetate	37.90	0.1304	-32 to 130	
Methyl cyanoacetate	41.32	0.1074	-22.5 to 201	3.824(50), 3.398(55), 2.687(65)
Methylcyclohexane	26.11	0.1130	- 126.6 to 100.9	0.679(25), 0.501(50), 0.390(75)
cis-2-Methylcyclohexanol	32.45	0.0770	7 to 165	18.08(25), 13.60(30)
		(mixed		
		isomers)		
trans-2-Methylcyclohexanol			-2 to 167.5	37.13(25), 25.14(30)
cis-3-Methylcyclohexanol	29.08	0.0629	-6 to 168	19.7(25), 17.23(30)
		(mixed		
		isomers)		
trans-3-Methylcyclohexanol	28.80(30)		-0.5 to 167	25.62(16), 15.60(30)
cis-4-Methylcyclohexanol	29.07	0.0690	-9.2 to 173	
		(mixed		
		isomers)		
2-Methylcyclohexanone	34.06	0.1027	up to 162	
3-Methylcyclohexanone	33.06	0.0925	up to 169	
4-Methylcyclohexanone	32.83	0.0935	up to 171	
Methylcyclopentane	24.63	0.1163	- 142.2 to 71.8	0.653(0), 0.478(25), 0.364(50)
Methyl decanoate	30.33	0.0912	-18 to 223	
Methyl dichloroacetate	37.00	0.1219	- 52 to 143	
Methyl dodecanoate	31.37	0.0893	4.8 to 262	
N-Methylformamide	37.96(30)	35.02(50)	-4 to 199.5	1.678(25), 1.155(50), 0.824(75)
Methyl formate	28.29	0.1572	-99 to 31.7	0.424(0), 0.360(15), 0.325(25)
Methyl heptanoate	28.95	0.0987	-55.8 to 173.5	
4-Methyl-3-heptanol			-123 to 170	1.085(25), 0.702(50), 0.497(75)
5-Methyl-3-heptanol			-91 to 172	1.178(25), 0.762(50), 0.536(75)
Methyl hexadecanoate	31.50	0.0775	32 to >196	
(palmitate)				
2-Methylhexane	21.22	0.0966	-118 to 90	0.378(20)
3-Methylhexane	21.73	0.0970	-119 to 92	0.372(20), 0.350(25)
Methyl hexanoate	28.47	0.1045	-71 to 151	
Methyl isobutanoate	25.99	0.1131	-84.7 to 92.5	0.672(0), 0.523(20), 0.419(40)
1-Methyl-4-isopropylbenzene	28.83	0.0877		3.402(20)
(p-cymene)				
Methyl methacrylate	28-		-48 to 100	0.632(20)
	29(30)			
1-Methylnaphthalene	39.96	0.0934	- 30.4 to 245	
Methyl octadecanoate	32.20	0.0775	38 to >215	
2-Methyloctane	23.76	0.0940	- 80.3 to 143.2	
4-Methyloctane	24.22	0.0940	-113 to 142	
Methyl octanoate	29.93	0.1002	- 40 to 192.9	
Methyl oleate	31.3(25)	25.4(100)	-19.9 to >218	4.88(20)
2-Methylpentane	19.37	0.0997	- 154 to 60.3	0.372(0), 0.286(25), 0.226(50)
3-Methylpentane	20.26	0.1060	- 163 to 63	0.395(0), 0.307(25), 0.292(30)

TARI E 2 20	Viscosity and Surface Tension of Organic Compounds (Continued)
IADLE 2.30	viscosity and Surface Tension of Organic Compounds (Continuea)

TABLE 2.30	Viscosity and	Surface Tension	of Organic C	Compounds	(Continued))
-------------------	---------------	-----------------	--------------	-----------	-------------	---

	Surface mN ·	tension, m ⁻¹		
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
4-Methylpentanenitrile	28.89	0.0917	-51.1 to 156.5	0.980(20), 0.843(30)
Methyl pentanoate	27.85	0.1044	up to 128	0.713(20)
2-Methyl-1-pentanol	26.98	0.0819	up to 148	
3-Methyl-1-pentanol	26.92	0.0789	up to 153	
4-Methyl-1-pentanol	25.93	0.0743	up to 152	
2-Methyl-2-pentanol	25.07	0.0861	-103 to 121	
3-Methyl-2-pentanol	27.14	0.0919	up to 134	
4-Methyl-2-pentanol	24.67	0.0821	-90 to 122	4.074(25)
2-Methyl-3-pentanol	26.43	0.0914	up to 126	
3-Methyl-3-pentanol	25.48	0.0888	-23.6 to 123	
4-Methyl-2-pentanone	23.64(20)	19.62(60)	84 to 116.5	0.585(20), 0.522(30), 0.406(50)
Methyl phenyl sulfide	42.81	0.1238	-15 to 188	
N-Methyl propanamide	31.29(20)	29.12(50)	-43 to >146	6.06(20), 4.58(30), 3.56(40)
2-Methylpropanenitrile			-72 to 108	0.551(15), 0.456(30)
Methyl propanoate	27.58	0.1258	- 88 to 80	0.581(0), 0.431(25), 0.333(50)
2-Methylpropanoic acid	25.55(20)	25.13(25)	-47 to 154	1.857(0), 1.226(25), 0.863(50)
2-Methyl-1-propanol	24.53	0.0795	-108 to 108	4.70(15), 2.876(30)
2-Methyl-2-propanol	20.02(15)	19.10(30)	25.8 to 82.4	1.421(50), 0.678(75)
2-Methylpropene	14.84	0.1319	-140 to -6.9	
1-Methylpropyl acetate	25.72	0.1054		
2-Methyl-1-propylamine	24.48	0.1092	- 87 to 68	21.7(25)
2-Methylpropyl formate	26.14	0.1122	-96 to 98	0.680(20)
2-Methylpyridine	36.11	0.1243	-66.7 to 129	0.805(20), 0.710(30)
3-Methylpyridine	37.35	0.1153	-18.3 to 144	
4-Methylpyridine	37.71	0.1141	3.8 to 145	
N-Methyl-2-pyrrolidinone			-24.4 to 202	1.666(25)
Methyl salicylate	42.15	0.1174	-8 to 223	1.102(75), 0.815(100)
Methyl tetradecanoate	31.00	0.0800	18.4 to 323	
2-Methyltetrahydrofuran			< -75 to 78	0.777(-20), 0.601(0), 0.536(10)
Methyl thiocyanate	40.66	0.1305	-5 to 133	64.3(0)
Morpholine	37.63(20)	36.24(30)	-4.9 to 128	2.53(15), 1.79(30), 1.247(50)
Naphthalene			80 to 217.7	0.967(80), 0.780(100)
<i>p</i> -Nitroaniline	60.62	0.0923	147 to 332	
Nitrobenzene	48.62	0.1185	5.8 to 210.8	2.165(15), 1.863(25), 1.262(50)
Nitroethane	35.27	0.1255	-90 to 114	0.940(0), 0.688(25), 0.526(50)
Nitromethane	40.72	0.1678	-28.4 to 101.2	0.692(15), 0.596(30), 0.481(50)
1-Nitro-2-methoxybenzene	48.62	0.1185	95 to 273	
o-Nitrophenol	47.35	0.1174	45 to 216	2.343(45)
1-Nitropropane	32.62	0.1009	-108 to 131.1	0.798(25), 0.589(50), 0.460(75)
2-Nitropropane	32.18	0.1158	-91.3 to 120.3	0.750(25)
o-Nitrotoluene	44.10	0.1174	-10 to 222	2.37(20), 1.63(40)
<i>m</i> -Nitrotoluene	43.54	0.1118	15.5 to 231.9	0.233(20), 1.60(40)
<i>p</i> -Nitrotoluene	42.26	0.0974	52 to 238	1.20(60)
Nonane	24.72	0.0935	-53.5 to 150.8	0.964(0), 0.666(25), 0.488(50)
Nonanoic acid			12.5 to 254.5	7.011(25), 3.712(50), 2.234(75)
1-Nonanol	29.79	0.0789	-5.5 to 215	14.3(20), 9.123(25), 4.032(50)
5-Nonanone	28.72	0.0975	- 50 to 187	1.199(25), 0.834(50), 0.619(75)
1-Nonene	24.90	0.0938	-81 to 146	0.620(20), 0.586(25)
Octadecane	29.98	0.0843	28.1 to 316.3	2.487(50), 1.609(75), 1.132(100)

	Surface tension, mN · m ⁻¹			
Substance	а	Ь	Liquid range, °C	Viscosity, $mN \cdot s \cdot m^{-2}$
Octamethylcyclotetrasiloxane	20.19	0.0811	17 to 176	2.20(20)
Octane	23.52	0.0951	-56.8 to 125.7	0.546(20), 0.433(40), 0.355(60)
Octanenitrile	29.61	0.0802	-45.6 to 205	1.811(15), 1.356(30)
Octanoic acid	29.21(20)	28.7(25)	16.6 to 239	5.020(25), 2.656(50), 1.654(75)
1-Octanol	29.09	0.0795	- 15.5 to 195	10.64(15), 6.125(30), 3.232(50)
2-Octanol	27.96	0.0820	-31.6 to 180	
1-Octene	23.68	0.0958	-102 to 121	0.470(20), 0.447(25)
Oleic acid	32.80(20)	27.94(90)	13.4 to 360	38.80(20), 27.64(25)
4-Oxopentanoic acid	41.69	0.0763	33 to 246	
Paraldehyde	28.28	0.1062	12.6 to 124	1.079(25), 0.692(50), 0.485(75)
Parathion	39.2(25)		6 to 375	15.30(25)
Pentachloroethane	37.09	0.1178	-29.9 to 160	2.741(15), 2.070(30), 1.491(50)
Pentadecane	28.78	0.0857	9.9 to 270	2.814(22)
Pentanal	27.96	0.1010	-92 to 103	
Pentane	18.25	0.1121	-129.7 to 36.0	0.351(-25), 0.274(0), 0.224(25)
1,5-Pentanediol	43.2(20)		- 18 to 239	128(20)
2,4-Pentanedione	33.28	0.1144	-23.1 to 138	0.6(20)
Pentanenitrile	27.44(20)	26.33(30)	-92 to 141.3	0.779(15), 0.637(30)
Pentanoic acid	28.90	0.0887	-33.7 to 186	2.359(15), 1.774(30), 0.979(70)
1-Pentanol	27.54	0.0874	-79 to 137.5	4.650(15), 3.619(25), 1.820(50)
2-Pentanol	25.96	0.1004	-73 to 119.3	5.130(15), 2.780(30), 1.447(50)
3-Pentanol	24.60(20)	23.76(30)	- 69 to 116	7.337(15), 3.306(30), 1.473(50)
2-Pentanone	24.89	0.0655	-76.8 to 102	0.641(0), 0.473(25), 0.362(50)
3-Pentanone	27.36	0.1047	- 39.0 to 102	0.592(0), 0.444(25), 0.345(50)
1-Pentene	18.20	0.1099	- 165 to 30.1	0.313(-25), 0.241(0), 0.195(25)
cis-2-Pentene	19.71	0.1172	-151 to 37.0	
trans-2-Pentene	18.90	0.0997	- 140 to 36.3	
Pentyl acetate	27.66	0.0994	-70.8 to 149.2	0.924(20), 0.862(25)
Pentylamine	24.4(13)		- 55 to 104	1.030(0), 0.702(25), 0.493(50)
Phenol	43.54	0.1069	41 to 182	3.437(50), 1.784(75), 1.099(100)
2-Phenylacetamide	46.26	0.0788	157 to bp	
Phenyl acetate			<45 to 196	1.799(45)
Phenylacetonitrile	44.57	0.1155	-23.8 to 233.5	1.93(25)
1-Phenylethanol	42.88	0.1038	20 to 204	
Phenylhydrazine	48.14	0.1292	19.5 to 243	13.0(25), 4.553(50), 1.850(75)
Phenyl isothiocyanate	42.73	0.1086	30 to 163	
Phenyl salicylate	45.20	0.0976	44 to >173	
(\pm) - α -Pinene	28.35	0.0944	64 to 156	1.61(25)
L- β -Pinene	28.26	0.0934	-61 to 166	1.70(20), 1.41(25)
Piperidine	31.79	0.1153	-11 to 106	1.573(25), 0.958(50), 0.649(75)
1,2-Propanediol (see propylene				
giycol)	17 10	0.0002	07 - 014	56 0(20) 18 0(40)
1,5-Propanediol	47.45	0.0903	-2/ to 214	0.00(20), 18.0(40)
Propanenitrile (propionitrile)	29.03	0.1153	-92.8 to 97.2	0.294(25), 0.240(50), 0.202(75)
1-Propanetnioi	21.38	0.12/2	- 113 to 68	0.505(0), 0.585(25)
2-Propanethiol	24.26	0.1174	- 131 to 52.6	0.477(0), 0.357(25), 0.280(50)
Propanoic acid	28.68	0.0993	-20.5 to 141.1	1.030(25), 0.749(50), 0.569(75)
Propanoic anhydride	30.30(20)	29.70(25)	-45 to 170	1.144(20), 1.061(25)
1-Propanol	25.26	0.0777	-127 to 97.2	2.522(15), 1.722(30), 1.107(50)

TABLE 2.30	Viscosity and Surface	Tension of Organic	Compounds	(Continued)
			r - r	()

TABLE 2.30	Viscosity and Surface Tension of Organic Compounds	(Continued)	ļ
	5 6 1	` '	

	Surface tension, $mN \cdot m^{-1}$			
Substance	а	Ь	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
2-Propanol	22.90	0.0789	- 89.5 to 82.4	2.859(15), 1.765(30), 1.028(50)
2-Propen-1-ol (allyl alcohol)	27.53	0.0902	-129 to 98	1.363(20), 0.914(40)
Propionaldehyde (propanal)			-81 to 48	0.357(15), 0.321(25)
Propionamide	39.05	0.0909	79 to 222.2	
Propyl acetate	26.60	0.1120	-93 to 101.6	0.768(0), 0.544(25), 0.406(50)
Propylamine	24.86	0.1243	-83 to 42.2	0.376(25)
Propylbenzene	31.13	0.1075	-99.2 to 159.2	
Propyl benzoate	36.55	0.1069	-51.6 to 98	
Propyl butanoate	27.06	0.1000	-95 to 143	0.831(20)
1,2-Propylene glycol			-60 to 188	40.4(0), 11.3(25), 4.770(50)
Propyleneimine			up to 66	0.491(25)
1,2-Propylene oxide			-112 to 34	0.327(20), 0.28(25)
Propyl formate	26.77	0.1119	-92.9 to 80.9	0.669(0), 0.574(20), 0.417(40)
Propyl isobutanoate	25.83	0.1015	up to 135	0.831(20)
Propyl nitrate	29.67	0.1237	-100 to 110.1	
Propyl pentanoate	27.72	0.0984	-75.9 to 122.5	1.053(20)
Propyl propanoate	26.85	0.1059	-76 to 122.5	0.673(20)
Propyne	14.51	0.1482	-102.8 to -23.2	
2-Propyn-1-ol	38.59	0.1270	-51.8 to 114	1.68(20)
Pyridazine	50.55	0.1036	-8 to 208	
Pyridine	39.82	0.1306	-41.6 to 115.2	1.361(0), 0.879(25), 0.637(50)
Pyrimidine	32.85	0.1010	22 to 124	
Pyrrole	39.81	0.1100	-23.4 to 130	2.085(0), 1.225(25), 0.828(50)
Pyrrolidine	31.48	0.0900	- 58 to 86.5	1.071(0), 0.704(25), 0.512(50)
2-Pyrrolidone			25 to 251	13.3(25)
Quinoline	45.25	0.1063	-15 to 237	3.337(25), 1.892(50), 1.201(75)
Salicylaldehyde	45.38	0.1242	-7 to 197	2.90(20), 1.71(30), 1.669(45)
Squalane			-38 to 350	6.08(20)
Squalene			-75 to >285	12(25)
Stearic acid			67 to >184	11.6(70)
Styrene	32.0(20)	30.98(30)	-31 to 145	1.050(0), 0.696(25), 0.507(50)
Succinonitrile	53.26	0.1079	54.5 to 266	2.591(60), 2.008(75)
1,1,2,2-Tetrabromoethane	52.37	0.1463	0 to 243.5	13.50(11), 9.797(20)
1,1,2,2-Tetrachlorodifluoro-	26.13	0.1133	26.0 to 92.8	1.21(25), 1.208(30)
ethane				
1,1,2,2-Tetrachloroethane	38.75	0.1268	- 70.2 to 130.5	1.844(15), 1.456(30)
Tetrachloroethylene	32.86(15)	31.27(30)	-22 to 121	1.932(15), 0.798(30), 0.654(53)
Tetradecane	28.30	0.0869	5.5 to 253.6	2.128(25), 1.376(50), 0.953(75)
Tetradecanoic acid	33.90	0.0932	54 to >250	
1-Tetradecanol	32.72	0.0703	39.5 to 289	
Tetraethylene glycol	45(25)		-6 to 328	44.9(25)
Tetraethyl lead	30.50	0.0969	-136 to > 85	
Tetraethylsilane	25.22	0.1079	-82 to 154.7	
Tetraethyl silicate	23.63	0.0979	-82.5 to 169	
Tetrahydrofuran	26.5(25)		- 108.5 to 65	0.605(0), 0.460(25), 0.359(50)
2,5-Tetrahydrofurandimethanol			< -50 to 265	225(25)
Tetrahydro-2-furanmethanol	39.96	0.1008	< -80 to 178	6.24(20)
1,2,3,4-Tetrahydronaphthalene	35.55	0.0954	- 35.8 to 207.6	2.202(20), 2.003(25)
Tetrahydropyran			-45 to 88	0.826(20), 0.764(25)

	Surface tension, $mN \cdot m^{-1}$			
Substance	a	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
Tetrahydropyran-2-methanol	34.1(25)		- 70 to 187	11.0(20)
Tetrahydrothiophene-1,1-diox- ide (sulfolane)	35.5(30)		27.6 to 287.3	9.87(30), 6.280(50), 3.818(75)
Tetrahydrothiophene oxide				52(30), 19(80)
Thiacyclohexane	36.06(20)	33.74(40)		
Thiacyclopentane	38.44	0.1342		1.042(20), 0.971(25)
2,2'-Thiodiethanol	53.8(20)		-10.2 to 282	65.2(20)
Thiophene	34.00	0.1328	- 39.4 to 84	0.871(0), 0.662(20), 0.353(82)
Thymol	33.95	0.0821	49 to 232	
Toluene	30.90	0.1189	-94.9 to 110.6	0.623(15), 0.523(30), 0.424(50)
p-Toluenesulfonyl chloride	42.41	0.0903	67 to >134	
<i>o</i> -Toluidine	42.87	0.1094	-16.5 to 200	5.195(15), 4.39(20)
<i>m</i> -Toluidine	40.33	0.0979	-31 to 203	4.418(15), 2.741(30)
<i>p</i> -Toluidine	39.58	0.0957	43.8 to 200	1.945(45), 1.557(60)
<i>m</i> -Tolunitrile	38.85	0.1013	-23 to 210	
<i>p</i> -Tolunitrile	39.79	0.1100	29.5 to 85	
Tribenzylamine	42.41	0.0953	91-94 to bp	
Tribromomethane	48.14	0.1308	8.1 to 149.6	2.152(15), 1.741(30), 1.367(50)
1.2.3-Tribromopropane	47.99	0.1267	16.5 to 220	
Tributylamine	26.47	0.0831	-70 to 216	1.35(25)
Tributyl borate	26.2(20)	25.8(25)	< -70 to 234	1.776(20), 1.601(25)
Tributyl phosphite	27.57	0.0865	up to > 125	1.9(25)
Tributyl phosphate	28.71	0.0666	-79 to 289	11.1(15), 3.39(25)
Trichloroacetaldehyde	27.66	0.1197	-57.5 to 97.8	
Trichloroacetic acid	35.4	0.0895	57.5 to 196.5	
1.1.1-Trichloroethane	28.28	0.1242	-30.4 to 74	0.903(15), 0.725(30), 0.578(50)
1.1.2-Trichloroethane	37.40	0.1351	-37 to 114	0.119(20), 0.110(25)
Trichloroethylene	29.5(20)	28.8(25)	- 84.8 to 87	0.703(0), 0.545(25), 0.444(50)
Trichlorofluoromethane	18(25)	2010(20)	-111 to 23.8	0.740(-25), 0.539(0)
2 4 6-Trichlorophenol	43 13	0.0955	69 to 246	
1.2.3-Trichloropropane	37.8(20)	37 05(25)	-14.7 to 157	
Trichlorosilane	20.43	0.1076	-127 to 32	0.332(20) 0.316(25)
$\alpha \alpha \alpha$ -Trichlorotoluene	20.15	0.1070	-5 to 223	3.07(10) 2.55(17)
1.1.2-Trichloro-1.2.2-triffuoro-	17 75(20)	16.56(30)	-35 to 47.7	0.711(20) 0.627(30)
ethane	11110(20)	10120(20)		
Tridecane	27.73	0.0872	- 5 to 235	2 909(0) 1 724(25) 1 129(50)
1-Tridecene	28.01	0.0884	-13 to 232.8	
Triethanolamine	20.01	5.000-	20 5 to 335 4	609(25) 114(50) 31 5(75)
Triethylamine	22 70	0.0992	-114.7 to 88.8	0.455(0) $0.347(25)$ $0.273(50)$
Triethylene glycol	47.33	0.0880	-7 to 285	49.0(20), 8.5(60)
Triethyl phosphate	31.81	0.0928	- 56 to 215	1.684(40), 1.376(55)
Triethyl phosphite	25 73	0.0878	un to 156	0.72(25)
Trifluoroacetic acid	15 64	0 1844	-153 to 73	0.926(20) 0.808(25) 0.571(50)
2.2.2.Trifluoroethanol	20.6(33)	0.1044	-43 5 to 74	1 996(20)
Trimethylamine	16.24	0 1122	- 117 to 2.0	0.321(-33.5)
1.2.3 Trimethylbongone	30.01	0.1135	-117 ± 2.9 -25 4 to 176 1	0.521(-55.5)
1.2.4 Trimethylbenzone	21.76	0.1040	$= 23.4 \pm 0.170.1$ = 43.0 to 160	0.894(15) 0.730(30)
1 2 5 Trimethylbonzono	20.70	0.1025	-43.9 10 109	1 154(20)
2.2.2 Trimethylbuters	27.19	0.009/	-24.0 to 103	0.570(20)
2,2,3-1 rimetnyibutane	20.70	0.0973	- 24.9 to 80.9	0.379(20)

TABLE 2.30 Vi	iscosity and Surface	Tension of Organic	Compounds	(Continued)	

	Surface tension, $mN \cdot m^{-1}$			
Substance	а	b	Liquid range, °C	Viscosity, mN \cdot s \cdot m ⁻²
cis, cis-1,3,5-Trimethylcyclo- hexane				0.632(20), 0.558(30)
trans-1,3,5-Trimethylcyclo- hexane			- 107.4 to 140.5	0.714(20), 0.624(30)
Trimethylene sulfide	36.3(20)	35.0(30)	-73.2 to 95	0.638(20), 0.607(25)
3,5,5-Trimethyl-1-hexanol		. ,	< -70 to 194	11.06(25)
2,2,3-Trimethylpentane	22.46	0.0895	-112.3 to 110	0.598(20)
2,2,4-Trimethylpentane	20.55	0.0888	-107.4 to 99.2	0.502(20)
Trimethyl phosphite	27.18(20)	24.88(40)	-78 to 112	0.61(20)
2,4,6-Trimethylpyridine			-46 to 171	1.498(20)
Triphenylamine	46.2	0.0955	125 to 348	
Triphenyl phosphite			22 to 360	6.95(45)
Tripropylamine	24.58	0.0878	-93.5 to 158	
Tripropylene glycol	34(25)		up to 273	56.1(25)
Tripropylene glycol butyl ether	28.8(25)		up to 276	6.58(25)
Tripropylene glycol ethyl ether	28.2(25)			5.17(25)
Tripropylene glycol isopropyl ether	27.4(25)			7.7(25)
Tripropylene glycol methyl ether	30.0(25)		-42 to 242.4	5.96(25)
Tris(<i>m</i> -tolyl) phosphite				37.55(15), 9.132(45), 5.075(65)
Tris(<i>p</i> -tolyl) phosphite				35.52(15), 8.794(45), 5.017(65)
Tri-o-tolyl phosphate	40.9(20)		11 to 410	38.8(35), 16.8(55)
Undecane	26.26	0.0901	-25.6 to 196	1.707(0), 1.098(25), 0.761(50)
Vinyl acetate	23.95(20)	22.54(30)	-93 to 73	0.421(20)
o-Xylene	32.51	0.1101	-25.2 to 145	1.084(0), 0.760(25), 0.561(50)
<i>m</i> -Xylene	31.23	0.1104	-47.9 to 139	0.795(0), 0.581(25), 0.445(50)
p-Xylene	30.69	0.1074	13 to 138	0.603(25), 0.457(50), 0.359(75)

TABLE 2.30 Viscosity and Surface Tension of Organic Compounds (Continued)

Rela % Weight Grams dens glycerol per liter 25°/2	Grams	Relative	Viscosity, mN \cdot s \cdot m ⁻²		
	25°/25°C	20°C	25°C	30°C	
100	1261	1.262 01	1 495	942	622
99	1246	1.259 45	1 194	772	509
98	1231	1.256 85	971	627	423
97	1216	1.254 25	802	521	353
96	1201	1.251 65	659	434	296
95	1186	1.249 10	543.5	365	248
80	966.8	1.209 25	61.8	45.72	34.81
50	563.2	1.127 20	6.032	5.024	4.233
25	265.0	1.061 15	2.089	1.805	1.586
10	102.2	1.023 70	1.307	1.149	1.021

TABLE 2.31 Viscosity of Aqueous Glycerol Solutions

TABLE 2.32 Viscosity of Aqueous Sucrose Solutions

% Weight	Grams	Relative		Viscosity, mN · s ·	m ⁻²
sucrose	per liter	20°/4°C	15°C	20°C	25°C
75	1034	1.379 0	4 039	2 328	1 405
70	943.0	1.347 2	746.9	481.6	321.6
65	855.6	1.316 3	211.3	147.2	105.4
60	771.9	1.286 5	79.49	58.49	40.03
50	614.8	1.299 6	19.53	15.43	12.40
40	470.6	1.176 4	7.463	6.617	5.164
30	338.1	1.127 0	3.757	3.187	2.735

2.4 REFRACTION AND REFRACTIVE INDEX

The refractive index *n* is the ratio of the velocity of light in a particular substance to the velocity of light in vacuum. Values reported refer to the ratio of the velocity in air to that in the substance saturated with air. Usually the yellow sodium doublet lines are used; they have a weighted mean of 589.26 nm and are symbolized by D. When only a single refractive index is available, approximate values over a small temperature range may be calculated using a mean value of 0.000 45 per degree for *dn/dt*, and remembering that n_D decreases with an increase in temperature. If a transition point lies within the temperature range, extrapolation is not reliable.

The specific refraction $r_{\rm D}$ is given by the Lorentz and Lorenz equation,

$$R_{\rm D} = \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \cdot \frac{1}{\rho}$$

where ρ is the density at the same temperature as the refractive index, and is independent of temperature and pressure. The molar refraction is equal to the specific refraction multiplied by the molecular weight. It is a more or less additive property of the groups or elements comprising the compound. A set of atomic refractions is given in Table 1.12; an extensive discussion will be found in Bauer, Fajans, and Lewin, in *Physical Methods of Organic Chemistry*, 3d ed., A. Weissberger (ed.), vol. 1, part II, chap. 28, Wiley-Interscience, New York, 1960.

The empirical Eykman equation

$$\frac{n_{\rm D}^2 - 1}{n_{\rm D} + 0.4} \cdot \frac{1}{\rho} = \text{constant}$$

offers a more accurate means for checking the accuracy of experimental densities and refractive indices, and for calculating one from the other, than does the Lorentz and Lorenz equation.

The refractive index of moist air can be calculated from the expression

$$(n-1) \times 10^6 = \frac{103.49}{T} p_1 + \frac{177.4}{T} p_2 + \frac{86.26}{T} \left(1 + \frac{5748}{T}\right) p_3$$

where p_1 is the partial pressure of dry air (in mmHg), p_2 is the partial pressure of carbon dioxide (in mmHg), p_3 is the partial pressure of water vapor (in mmHg), and *T* is the temperature (in kelvins).

Example: 1-Propynyl acetate has $n_D = 1.4187$ and density = 0.9982 at 20°C; the molecular weight is 98.102. From the Lorentz and Lorenz equation,

$$r_{\rm D} = \frac{(1.4187)^2 + 1}{(1.4187)^2 + 2} \cdot \frac{1}{0.9982} = 0.2528$$

The molar refraction is

$$Mr_{\rm D} = (98.102)(0.2528) = 24.80$$

From the atomic and group refractions in Table 5.19, the molar refraction is computed as follows:

6 H	6.600
5 C	12.090
1 C≡C	2.398
1 O(ether)	1.643
1 O(carbonyl)	2.211
	$Mr_{\rm D} = 24.942$

Group	Mr _D	Group	Mr _D
H	1.100	N (primary aliphatic amine)	2.322
С	2.418	N (sec-aliphatic amine)	2.499
Double bond (C=C)	1.733	N (tert-aliphatic amine)	2.840
Triple bond (C=C)	2.398	N (primary aromatic amine)	3.21
Phenyl (C_6H_5)	25.463	N (sec-aromatic amine)	3.59
Naphthyl $(C_{10}H_7)$	43.00	N (tert-aromatic amine)	4.36
O (carbonyl) (C=O)	2.211	N (primary amide)	2.65
O (hydroxyl) (O-H)	1.525	N (sec amide)	2.27
O (ether, ester) (C—O—)	1.643	N (tert amide)	2.71
F (one fluoride)	0.95	N (imidine)	3.776
(polyfluorides)	1.1	N (oximido)	3.901
Cl	5.967	N (carbimido)	4.10
Br	8.865	N (hydrazone)	3.46
I	13.900	N (hydroxylamine)	2.48
S (thiocarbonyl) (C=S)	7.97	N (hydrazine)	2.47
S (thiol) (S—H)	7.69	N (aliphatic cyanide) (C=N)	3.05
S (dithia) (—S—S—)	8.11	N (aromatic cyanide)	3.79
Se (alkyl selenides)	11.17	N (aliphatic oxime)	3.93
3-membered ring	0.71	NO (nitroso)	5.91
4-membered ring	0.48	NO (nitrosoamine)	5.37
		NO_2 (alkyl nitrate)	7.59
		(alkyl nitrite)	7.44
		(aliphatic nitro)	6.72
		(aromatic nitro)	7.30
		(nitramine)	7.51

TABLE 2.33	Atomic and	Group	Refractions
------------	------------	-------	-------------

Substance	Formula	Density, g/ml	Refractive index	
Acenaphthene	C ₁₂ H ₁₀	1.220	1.6048/98.8°	
Acetaldehvde	$C_2 H_4 O$	0.788/16°	1.3316	
Acetamide	C ₂ H ₅ ON	1.159	1.4274/78°	
Acetanilide	C _e H _o ON	1.21/4°		
Acetic acid	$C_2H_4O_2$	1.0492	1.3718	
Acetic anhydride	$C_4H_4O_2$	1.0850/15°	1.3904	
Acetone	C ₂ H ₂ O	0.787/25°	1.3620/15°	
Acetonitrile	C ₂ H ₂ N	0.7828	1.3460	
Acetophenone	CoHoO	1.0329/15°	1.5342/19°	
Acetyl chloride	C ₂ H ₂ OCl	1.1051	1.3898	
Acetylene	C ₂ H ₂	0.61/-80°	110090	
Adipic acid	$C_2 H_2$	1 366		
Alloyan \pm H O	C H O N	1.500		
Allyl alcohol	C H O	0.8573/150	1 /135	
n Aminohenzoic acid	C H O N	0.8375/15	1.4155	
2 Aminopyridine	C H N			
-Amulalashal	C H O	0.8154	1 /1//120	
<i>n</i> -Amyl alcohol	$C_5 \Pi_{12} O$	0.8154	1.414/15	
	$C_5 \Pi_{12} O$	0.810	1 4052	
sec-Amyraiconor	$C_5 \Pi_{12} O$	0.8105	1.4035	
tert-Amyl alconol	$C_5H_{12}O$	0.809	1.4045	
Aniline	C_6H_7N	1.026/15	1.5863	
Aniline hydrochloride	C_6H_8NCI	1.222/4°	1.5150/000	
Anisole	C_7H_8O	0.9925/25°	1.5150/22°	
Anthracene	$C_{14}H_{10}$	1.243		
Anthraquinone	$C_{14}H_8O$	1.419/4°		
Azobenzene	$C_{12}H_{10}N_2$			
Benzaldehyde	C_7H_6O	1.0504/15°	1.5463/17.6°	
Benzene	C_6H_6	0.8790	1.5011	
Benzoic acid	$C_7H_6O_2$	1.2656/15°	1.5397/15°	
Benzoic anhydride	$C_{14}H_{10}O_3$	1.1989/15°	1.5767/15°	
Benzoin	$C_{14}H_{12}O_2$			
Benzonitrile	C_7H_5N	1.0093/15°	1.5289	
Benzophenone (a)	$C_{13}H_{10}O$	1.085/50°		
Benzoquinone	$C_6H_4O_2$			
Benzoyl chloride	C ₇ H ₅ OCl	1.212	1.5537	
Benzoyl peroxide	$C_{14}H_{10}O_4$			
Benzyl alcohol	C ₇ H ₈ O	1.049/15°	1.5396	
Benzyl benzoate	$C_{14}H_{12}O_2$	1.114/18°	1.5681/21°	
Benzyl chloride	C ₇ H ₇ Cl	1.0983	1.5415/15°	
Benzyl cinnamate	$C_{16}H_{14}O_2$			
Borneol (DL)	$C_{10}H_{18}O$	1.01		
a-Bromonaphthalene	$C_{10}H_7Br$	1.4888/16.5°	1.6601/16.5°	
Bromobenzene	C_6H_5Br	1.4978/15°	1.5625/15°	
Bromoform	CHBr ₃	2.900/15°	1.6005/15°	
<i>n</i> -Butane	C_4H_{10}	0.5788 (at sat. pressure)		
<i>n</i> -Butyl alcohol	$C_4H_{10}O$	0.8098	1.3993	
iso-Butyl alcohol	$C_4H_{10}O$	0.8169	1.3968/17.5°	
sec-Butyl alcohol	$C_4H_{10}O$	0.808	1.3949/25°	
tert-Butyl alcohol	C4H100	0.7887	1.3878	
<i>n</i> -Butyl chloride	C_{4}	0 9074/0	1 4015	
<i>n</i> -Butyric acid	C.H.O.	0.9587	1 3001	
		0.050	1.3771	

TABLE 2.34	Refractive	Indices	of Organic	Compounds
-------------------	------------	---------	------------	-----------

TABLE 2.34 Refractive Indices of Organic Compounds (Continued)

Substance	Formula	Density, g/ml	Refractive index
Camphene (DL)	$C_{10}H_{16}$	0.879	1.4402/80°
Camphor(D)	$C_{10}H_{16}O$	0.992/10°	
Carbitol	$C_6H_{14}O_3$	0.9902	
(Diethyleneglycol- monomethylether)			
Carbon disulphide	CS ₂	1.2927/0°	1.6276
Carbon tetrabromide	CBr	2.9109/99.5°	
Carbon tetrachloride	CCL	1.6320/0°	1.4607
Cellosolve	$C_4H_{10}O_2$	0.9311	
(Glycolmonoethylether)	-410-2		
Chloral hydrate	C ₂ H ₂ O ₂ Cl ₂	1.9081	
Chloroacetic acid	C ₂ H ₂ O ₂ Cl	1.39/75°	1.4297/65°
Chlorobenzene	C _c H _c Cl	1.066	1.5248
Chloroform	CHCl	1 4985/15°	1.4467
Cholesterol	CorH46O	1.067	
Cineol (Eucalyptol)	$C_{10}H_{10}O$	0.9267	1.4584/18°
Cinnamic acid (trans)	$C_0H_0O_2$	1.247	
Cinnamyl alcohol	CoHioO	1 0440	1.5819
Citric acid	$C_{c}H_{0}O_{7}$	1.542/18°	1001)
o-Cresol	C ₂ H ₂ O	1.051	1.5372/40°
<i>m</i> -Cresol	C ₇ H ₈ O	1 035	1.5406
<i>p</i> -Cresol	C ₇ H ₈ O	1.035	1.5316
Cumene	CoHio	0.8615	1,4909
Cyclohexane	C(H12	0.7786	1.4262
Cyclohexanol	$C_{c}H_{12}O$	0.9624	1.4656/22°
Cyclohexanone	$C_6 H_{10}O$	0.9478	1.4507
Cyclohexene	C ₄ H ₁₀	0.8108	1.4467
<i>p</i> -Cymene	CioHia	0.8766	1.5006
<i>cis</i> -Decalin	$C_{10}H_{18}$	0.8963	1.4811
trans-Decalin	C10H18	0.8703/18°	1.4697/18°
Dibenzyl	CuHu	0.995	
<i>n</i> -Dibutyl phthalate	$C_{14}H_{22}O_{4}$	1.0465	
Diethylamine	$C_{4}H_{11}N$	0.7108/18°	1.3873/18°
Difluorodichloro-	$CC_{12}F_2$		
methane (Freon 12)	12 2		
Difluoromonochloro-	CHCIE ₂		
methane (Freon 22)	2		
Dimethylamine	C ₂ H ₇ N	0.6804/0°	1.350/17°
Dimethylaniline	C ₈ H ₁₁ N	0.9557	1.5582
Dioxane	$C_4 H_8 O_2$	1.0338	1.4224
Diphenvl	$C_{12}H_{10}^{2}$	1.180/0°	1.5852/79°
Diphenylamine	$C_{12}H_{11}N$	1.159	
Epichlorhydrin	C ₃ H ₅ OCl	1.180	1.4420/11.6°
Ethane	C_2H_6		
Ethanolamine	$\tilde{C_2H_7ON}$	1.022	1.4539
di-Ethanolamine	$C_4 H_{11} O_2 N$	1.0966	1.4776
tri-Ethanolamine	$C_6H_{15}O_3N$	1.1242	1.4852
Ether (diethyl)	$C_4H_{10}O$	0.714/20°	1.3538
Ethyl acetate	$C_4H_8O_2$	0.9245	1.3701/25°
Ethyl acetoacetate	$C_{6}H_{10}O_{3}$	1.0282	1.4209/16°
Ethyl alcohol	C_2H_6O	0.7893	1.3610/20.5°
Ethylamine	C_2H_7N	0.7057/0°	

Substance	Formula	Density, g/ml	Refractive index
Ethylbenzene	C ₈ H ₁₀	0.8669	1.4959
Ethyl benzoate	$C_9H_{10}O_2$	1.0509/15°	1.5068/17.3°
Ethyl bromide	C_2H_5Br	1.4555	1.4239
Ethyl chloride	C ₂ H ₅ Cl	0.9214/0°	
Ethylene	C_2H_4		
Ethylenediamine	$C_2H_8N_2$	0.902/15°	1.4540/26.1°
Ethylene dibromide	$C_2H_4Br_2$	2.1785	1.5379
Ethylene dichloride	$C_2H_4Cl_2$	1.2521	1.4443
Ethylene glycol	$C_2H_6O_2$	1.1155	1.4274
Ethylene oxide	C_2H_4O	0.877/7°	1.3597/7°
Ethyl formate	$C_3H_6O_2$	0.9168	1.3598
Ethyl iodide	C ₂ H ₅ I	1.9133/30°	1.5168/15°
Ethyl mercaptan	C_2H_6S	0.8315/25°	1.4351
Ethyl nitrate	$C_2H_5O_3N$	1.109	1.3853
Ethyl nitrite	$C_2H_5O_2N$	0.900/15°	
Ethyl oxalate	$C_6H_{10}O_4$	1.0785	1.4101
Ethyl salicylate	$C_{9}H_{10}O_{3}$	1.131	1.5226
Ethyl sulphate	$C_4H_{10}O_4S$	1.180/18°	1.4010/18°
Eugenol	$C_{10}H_{12}O_{2}$	1.0620/25°	1.5439/19°
Fluorescein	$C_{20}H_{12}O_5$		
Fluorobenzene	C ₆ H ₅ F	1.0236	1.4677
Formaldehyde	CH ₂ O	0.815/–20°	
Formamide	CH ₂ ON	1.1334	1.4472
Formic acid	CH ₂ O ₂	1.220	1.3714
Fructose	$C_6 H_{12} O_6$	1.598	
Fumaric acid	$C_4H_4O_4$	1.635	
Furfural	$C_5H_4O_2$	1.1594	1.5261
Furfuryl alcohol	$C_5H_6O_2$	1.1282/23°	1.4852
Furan	$C_4H_4O^2$	0.9644/0°	1.4216
Glucose	$C_6H_{12}O_6$	1.544/25°	
Glycerol	$C_{2}H_{8}O_{2}$	1.2604/17.5°	1.4730
Glyceryl trioleate	$C_{57}H_{104}O_{6}$	0.8992/50°	1.4561/60°
Glyceryl tripalmitate	$C_{51}H_{98}O_6$	0.8752/70°	1.4381/80°
Glyceryl tristearate	$C_{57}H_{110}O_{6}$	0.8559/90°	1.4385/80°
Glycine	$C_2H_5O_2N$		
Guaiacol	$C_7H_8O_2$	1.1287/21.4°	
<i>n</i> -Heptane	$C_{7}H_{16}^{0}$	0.6838	1.3877
Hexachlorotethane	C_2Cl_6	2.091	
Hexamine	$C_6H_{12}N_4$		
<i>n</i> -Hexane	$C_{6}H_{14}$	0.6594	1.3749
Hippuric acid	$C_0H_0O_3N$	1.371	
Hydroquinone	$C_6H_6O_2$	1.358	
Indene	C ₉ H ₈	0.996	1.5766
Iodoform	CHI ₃	4.008	
Isobutane	C_4H_{10}	0.5572 (at sat. press.)	
Isopentane	C_5H_{12}	0.6192	1.3538
isoprene	C_5H_8	0.6806	1.4194
Isooctane	C_8H_{18}	0.6919	1.3915
Isoquinoline	C ₀ H ₇ N	1.099	1.6223/25°
Lactic acid	$C_3H_6O_3$	1.2485	1.4414
Lactose + H ₂ O	$C_{12}H_{24}O_{1}$	1.525	
Maleic acid	$C_4H_4O_4$	1.5920	

TABLE 2.34 Refractive Indices of Organic Compounds (Continued)
Substance	Formula	Density, g/ml	Refractive index
Maleic anhydride	C ₄ H ₂ O ₃	0.934	
Malonic acid	$C_3H_4O_4$	1.631/15°	
Maltose + H_2O	$C_{12}H_{24}O_1$	1.540	
Menthol (L)	$C_{10}H_{20}O$	0.903/15°	
Mesitylene	C_0H_{12}	0.8652	1.4994
Metaldehyde	$(C_2H_4O)_n$		
Methane	CH_4		
Methyl acetate	$C_3H_6O_2$	0.9280	1.3593/20°
Methyl alcohol	CH4O	0.7910	1.3276/25°
Methylamine	CH _s N	0.699/–10.8°	
Methylaniline	C ₇ H ₀ N	0.9891	1.5702/21.2°
Methyl anthranilate	C _e H _o O ₂ N	1.1682/18.6°	
Methyl benzoate	C ₀ H ₀ O ₂	1.0937/15°	1.5205/15°
Methyl bromide	CH ₂ Br	1.732/0°	
Methyl carbonate	C ₂ H ₂ O ₂	1 0694	1 3687
Methyl chloride	CH.Cl	0.991/_25°	1.5007
Methylene bromide	CH.Br.	2 8098/15°	
Methylene chloride	CH_2DI_2 CH_CL	1 33/8/15°	1 4237
Methyl ethyl ketone		0.8054	1.4257
Mathyl formata	$C_4\Pi_8O$	0.0867/15°	1.3614/13
Methyl iodide	$C_2 \Pi_4 O_2$	0.9607/15 2.251/20°	1.544
Methyl methoemylete		2.231/30	1.3293/21
Method solubete	$C_5 \Pi_8 O_2$	0.930	1.415
Methyl sulphate	$C_2H_6O_4S$	1.5348/15	1.58/4
Methyl sancylate	$C_8H_8O_3$	1.1/8//25	1.558/18.1*
Monofluorotrichio-	CCI ₃ F	1.494/17°	
romethane (Freon 11)	C II ON	0.0004	1 45 45
Morpholine	C_4H_9ON	0.9994	1.4545
Naphthalene	$C_{10}H_8$	1.14	1.5822/100°
α-Naphthol	$C_{10}H_8O$	1.099/99	1.6206/98.7°
β -Naphthol	$C_{10}H_8O$	1.272	
α -Naphthylamine	$C_{10}H_9N$	1.1196/25°	1.6703/51°
β -Naphthylamine	$C_{10}H_9N$	1.0614/98°	1.6493/98°
Nicotine (L)	$C_{10}H_{14}N_2$	1.0097	1.5280
Nitrobenzene	$C_6H_5O_2N$	1.1732/25°	1.5530
Nitroethane	$C_2H_5O_2N$	1.050	1.3916
Nitromethane	CH ₃ O ₂ N	1.137	1.3818
1-Nitropropane	$C_3H_7O_2N$	1.001	1.4015
2-Nitropropane	$C_3H_7O_2N$	0.990	1.3941
<i>n</i> -Octane	C_8H_{18}	0.7025	1.3974
n-Octyl alcohol	$C_8H_{18}O$	0.8270	1.4292
Oleic acid	$C_{18}H_{34}O_2$	0.898	1.4582
Oxalic acid	$C_2H_2O_4$		
Palmitic acid	$C_{16}H_{32}O_{2}$	0.8527/62°	1.4339/60°
Paraformaldehyde	(CH ₂ O)n		
Paraldehyde	$C_6H_{12}O_3$	0.9943	1.4049
<i>n</i> -Pentane	C5H12	0.6262	1.3575
Phosgene	COCI		
Phenanthrene	$C_{14}H_{10}$	1.17	1.6567/129°
Phenol	C ₄ H ₂ O	1.073	1.5245/40.6°
Phthalic acid	C.H.O.	1.593	
Phthalic anhydride	$C_8H_6O_4$	1.527/4°	
Phthalimide	$C_8H_5O_2N$	102/1	

TABLE 2.34 Refractive Indices of Organic Compounds (Continued)

Substance	Formula	Density, g/ml	Refractive index
<i>α</i> -Picoline	СНМ	0.9443	1 5010
B-Picoline	C_6H_7N	0.9566	1.5068
*Picoline	C ₆ H ₇ N	0.9548	1.5058
Pierie acid	C H O N	1 763	1.5050
Picryl chloride	C H O N C	1.705	
Pinene (Turpentine)	$C_6 H_2 O_6 N_3 C_1$	0.861	1 4685/150
Piperidine	C H N	0.8606	1.4085/15
Propaga	$C_{5}\Pi_{11}$	0.8000	1.4550
r Dropul agotato		0.887	1 29//
<i>n</i> -ropyracetate	$C_{5}\Pi_{10}O_{2}$	0.8035	1.3850
ise Propul alashal	CHO	0.8055	1.3050
Propulana		0.7033	1.3770
Puriding	$C_3\Pi_6$	0.0221	1 5102
Pyroaetaabal		1 244	1.5102
Pyrogallol	$C_6 H_6 O_2$	1.344	
Quinhudrono	$C_6 \Pi_6 O_3$	1 401	
Quinitydrone	$C_{12}\Pi_{10}O_4$	1.401	1 6260
Quinoine	C_9H_7N	1.095	1.0209
Resorcinoi	$C_6H_6O_2$	1.285/15	
Sancyne acid	$C_7 \Pi_6 O_3$	1.445	1 4225/709
Stearic acid	$C_{18}H_{36}O_2$	0.9408	1.4333/70-
Styrene		0.9060	1.5469
	$C_4 H_6 O_4$	1.304/13	
Succinic annydride	$C_4H_4O_3$	1.234	
Sucrose	$C_{12}H_{22}O_{11}$	1.588/15°	
Sylvan (2-Methylfuran)	C_5H_6O	0.916	
Tartaric acid (meso-)	$C_4H_6O_6$	1.666	
Tartaric acid	$C_4H_8O_7$	1.697	
$(racemic) + H_2O$	C U O	1 7500	
Tartaric acid (D)	$C_4H_6O_6$	1.7598	
Tartaric acid (L)	$C_4H_6O_6$	1.7598	1 5 4 5 2 (1 5 0
Tetralin	$C_{10}H_{12}$		1.5453/17°
Thiophen	C_4H_4S	1.0644	1.5287
Thiourea	CH_4N_2S	1.405	
Thymol	$C_{10}H_{14}O$	0.969	
Toluene	C_7H_8	0.8670	1.4969
o-Toluidine	C_7H_9N	1.0035	1.5688
<i>m</i> -Toluidine	C_7H_9N	0.987/25°	1.5686
<i>p</i> -Toluidine	C_7H_9N	0.961/50°	1.5532/59.1°
Trichloroethylene	C_2HCl_3	1.4597/15°	1.4782
Tri-o-cresyl phosphate	$C_{21}H_{21}O_4P$		
Tri-p-cresyl phosphate	$C_{21}H_{21}O_4P$		
Triethylamine	$C_6H_{15}N$	0.7495/0°	1.4003
Trimethylamine	C_3H_9N	0.6709/0°	
Trinitrotoluene	$C_7H_5O_6N_3$	1.654	
Triphenylmethane	$C_{19}H_{16}$		
Urea	CH_4ON_2	1.335	
Uric acid	$C_5H_4O_3N_4$	1.893	
<i>n</i> -Valeric acid	$C_5H_{10}O_2$	0.942	1.4086
iso-Valeric acid	$C_5H_{10}O_2$	0.937/15°	1.4018/22.4°
Vanillin	$C_8H_8O_3$		
o-Xylene	$C_{8}H_{10}$	0.8802	1.5054
<i>m</i> -Xylene	$C_{8}H_{10}$	0.8642	1.4972
<i>p</i> -Xylene	$C_{8}H_{10}$	0.8611	1.4958

TABLE 2.34 Refractive Indices of Organic Compounds (Continued)

		Refra	active lex	Density	/, g/mL
Solvent 1	Solvent 2	1	2	1	2
Acetone	Ethanol	1.357	1.359	0.788	0.786
Ethyl formate	Methyl acetate	1.358	1.360	0.916	0.935
Ethanol	Propionitrile	1.359	1.363	0.786	0.777
2,2-Dimethylbutane	2-Methylpentane	1.366	1.369	0.644	0.649
2-Methylpentane	Hexane	1.369	1.372	0.649	0.655
Isopropyl acetate	2-Chloropropane	1.375	1.376	0.868	0.865
3-Butanone	Butyraldehyde	1.377	1.378	0.801	0.799
Butyraldehyde	Butyronitrile	1.378	1.382	0.799	0.786
Dipropyl ether	Butyl ethyl ether	1.379	1.380	0.753	0.746
Propyl acetate	Ethyl propionate	1.382	1.382	0.883	0.888
Propyl acetate	1-Chloropropane	1.382	1.386	0.883	0.890
Butyronitrile	2-Methyl-2-propanol	1.382	1.385	0.786	0.781
Ethyl propionate	1-Chloropropane	1.382	1.386	0.888	0.890
1-Propanol	2-Pentanone	1.383	1.387	0.806	0.804
Isobutyl formate	1-Chloropropane	1.383	1.386	0.881	0.890
1-Chloropropane	Butyl formate	1.386	1.387	0.890	0.888
Butyl formate	Methyl butyrate	1.387	1.391	0.888	0.875
Methyl butyrate	2-Chlorobutane	1.392	1.395	0.875	0.868
Butyl acetate	2-Chlorobutane	1.392	1.395	0.877	0.868
4-Methyl-2-pentanone	Pentanonitrile	1.394	1.395	0.797	0.795
4-Methyl-2-pentanone	1-Butanol	1.394	1.397	0.797	0.812
2-Methyl-1-propanol	Pentanonitrile	1.394	1.395	0.798	0.795
2-Methyl-1-propanol	2-Hexanone	1.394	1.395	0.798	0.810
2-Butanol	2.4-Dimethyl-3-pentanone	1.395	1.399	0.803	0.805
2-Hexanone	1-Butanol	1.395	1.397	0.810	0.812
Pentanonitrile	2.4-Dimethyl-3-pentanone	1.395	1.399	0.795	0.805
2-Chlorobutane	Isobutyl butyrate	1.395	1.399	0.868	0.860
Butyric acid	2-Methoxyethanol	1.396	1.400	0.955	0.960
1-Butanol	3-Methyl-2-pentanone	1.397	1.398	0.812	0.808
1-Chloro-2-methylpropane	Isobutyl butyrate	1.397	1.399	0.872	0.860
1-Chloro-2-methylpropane	Pentyl acetate	1.397	1.400	0.872	0.871
Methyl methacrylate	3-Methyl-2-pentanone	1.398	1.398	0.795	0.808
Triethylamine	2.2.3-Trimethylpentane	1.399	1.401	0.723	0.712
Butylamine	Dodecane	1.399	1.400	0.736	0.746
Isobutyl butyrate	1-Chlorobutane	1.399	1.401	0.860	0.875
1-Nitropropane	Propionic anhydride	1.399	1.400	0.995	1.007
Pentyl acetate	1-Chlorobutane	1.400	1.400	0.871	0.881
Pentyl acetate	Tetrahydrofuran	1.400	1.404	0.871	0.885
Dodecane	Dipropylamine	1.400	1.400	0.746	0.736
1-Chlorobutane	Tetrahydrofuran	1.401	1.404	0.871	0.885
Isopentanoic acid	2-Ethoxyethanol	1.402	1.405	0.923	0.926
Dipropylamine	Cyclopentane	1.403	1.404	0.736	0.740
2-Pentanol	4-Heptanone	1.404	1.405	0.804	0.813
3-Methyl-1-butanol	Hexanonitrile	1.404	1.405	0.805	0.801
3-Methyl-1-butanol	4-Heptanone	1.404	1.405	0.805	0.813
Hexanonitrile	4-Heptanone	1.405	1.405	0.801	0.813
Hexanonitrile	1-Pentanol	1.405	1.408	0.801	0.810
Hexanonitrile	2-Methyl-1-butanol	1.405	1.409	0.801	0.815
4-Heptanone	1-Pentanol	1.405	1.408	0.813	0.810

 $\label{eq:table_$

		Refra	ictive lex	Density	, g/mL
Solvent 1	Solvent 2	1	2	1	2
2-Ethoxyethanol	Pentanoic acid	1.405	1.406	0.926	0.936
2-Heptanone	1-Pentanol	1.406	1.408	0.811	0.810
2-Heptanone	2-Methyl-1-butanol	1.406	1.409	0.811	0.815
2-Heptanone	Dipentyl ether	1.406	1.410	0.811	0.799
2-Pentanol	3-Isopropyl-2-pentanone	1.407	1.409	0.804	0.808
1-Pentanol	Dipentyl ether	1.408	1.410	0.810	0.799
2-Methyl-1-butanol	Dipentyl ether	1.409	1.410	0.815	0.799
Isopentyl isopentanoate	Allyl alcohol	1.410	1.411	0.853	0.847
Dipentyl ether	2-Octanone	1.410	1.414	0.799	0.814
2,4-Dimethyldioxane	3-Chloropentene	1.412	1.413	0.935	0.932
2,4-Dimethyldioxane	Hexanoic acid	1.412	1.415	0.935	0.923
Diethyl malonate	Ethyl cyanoacetate	1.412	1.415	1.051	1.056
3-Chloropentene	Octanoic acid	1.413	1.415	0.932	0.923
2-Octanone	1-Hexanol	1.414	1.416	0.814	0.814
2-Octanone	Octanonitrile	1.414	1.418	0.814	0.810
3-Octanone	3-Methyl-2-heptanone	1.414	1.416	0.830	0.818
3-Methyl-2-heptanone	1-Hexanol	1.415	1.416	0.818	0.814
3-Methyl-2-heptanone	Octanonitrile	1.415	1.418	0.818	0.810
1-Hexanol	Octanonitrile	1.416	1.418	0.814	0.810
Dibutylamine	Allylamine	1.416	1.419	0.756	0.758
Allylamine	Methylcyclohexane	1.419	1.421	0.758	0.765
Butyrolactone	1,3-Propanediol	1.434	1.438	1.051	1.049
Butyrolactone	Diethyl maleate	1.434	1.438	1.051	1.064
2-Chloromethyl-2-	Diethyl maleate	1.436	1.438	1.059	1.064
propanol	5				
<i>N</i> -Methylmorpholine	Dibutyl decanedioate	1.436	1.440	0.924	0.932
1,3-Propanediol	Diethyl maleate	1.438	1.438	1.049	1.064
Methyl salicylate	Diethyl sulfide	1.438	1.442	0.836	0.831
Methyl salicylate	1-Butanethiol	1.438	1.442	0.836	0.837
1-Chlorodecane	Mesityl oxide	1.441	1.442	0.862	0.850
Diethylene glycol	Formamide	1.445	1.446	1.128	1.129
Diethylene glycol	Ethylene glycol diglycidyl	1.445	1.447	1.128	1.134
, .,	ether				
Formamide	Ethylene glycol diglycidyl ether	1.446	1.447	1.129	1.134
2-Methylmorpholine	Cyclohexanone	1.446	1.448	0.951	0.943
2-Methylmorpholine	1-Amino-2-propanol	1.446	1.448	0.951	0.961
Dipropylene glycol mono- ethyl ether	Tetrahydrofurfuryl alcohol	1.446	1.450	1.043	1.050
1-Amino-2-methyl-2- pentanol	2-Butylcyclohexanone	1.449	1.453	0.904	0.901
2-Propylcyclohexanone	4-Methylcyclohexanol	1.452	1.454	0.923	0.908
Carbon tetrachloride	4,5-Dichloro-1,3-	1.459	1.461	1.584	1.591
	dioxolane-2-one				
N-Butyldiethanolamine	Cyclohexanol	1.461	1.465	0.965	0.968
$D-\alpha$ -Pinene	trans-Decahydro- naphthalene	1.464	1.468	0.855	0.867
Propylbenzene	<i>p</i> -Xylene	1.490	1.493	0.858	0.857
Propylbenzene	Toluene	1.490	1.494	0.858	0.860

TABLE 2.35 Solvents Having the Same Refractive Index and the Same Density at 25°C (Continued)

		Refr	active dex	Density, g/mL	
Solvent 1	Solvent 2	1	2	1	2
Phenyl 1-hydroxyphenyl ether	1,3-Dimorpholyl-2- propanol	1.491	1.493	1.081	1.094
Phenetole	Pyridine	1.505	1.507	0.961	0.978
2-Furanmethanol	Thiophene	1.524	1.526	1.057	1.059
<i>m</i> -Cresol	Benzaldehyde	1.542	1.544	1.037	1.041
	1		1	1	1

TABLE 2.35 Solvents Having the Same Refractive Index and the Same Density at 25°C (*Continued*)

2.5 VAPOR PRESSURE AND BOILING POINT

The *vapor pressure* is the pressure exerted by a pure component at equilibrium at any temperature when both liquid and vapor phases exist and thus extends from a minimum at the triple point temperature to a maximum at the critical temperature, the critical pressure the and is the most important of the basic thermodynamic properties affecting liquids and vapors.

Except at very high total pressures (above about 10 MPa), there is no effect of total pressure on vapor pressure. If such an effect is present, a correction can be applied. The pressure exerted above a solid-vapor mixture may also be called vapor pressure but is normally only available as experimental data for common compounds that sublime.

Numerous mathematical formulas relating the temperature and pressure of the gas phase in equilibrium with the condensed phase have been proposed. The Antoine equation (Eq. 1) gives good correlation with experimental values. Equation 2 is simpler and is often suitable over restricted temperature ranges. In these equations, and the derived differential coefficients for use in the Haggenmacher and Clausius-Clapeyron equations, the *p* term is the vapor pressure of the compound in pounds per square inch (psi), the *t* term is the temperature in degrees Celsius, and the *T* term is the absolute temperature in kelvins ($t^{\circ}C + 273.15$).

Eq.	Vapor-pressure equation	dp/dT	$-[d(\ln p)/d(1/T)]$
1	$\log p = A - \frac{B}{t+C}$	$\frac{2.303pB}{\left(t+C\right)^2}$	$\frac{2.303BT^2}{\left(t+C\right)^2}$
2	$\log p = A - \frac{B}{T}$	$\frac{2.303 pB}{T^2}$	2.303 <i>B</i>
3	$\log p = A - \frac{B}{T} - C \log T$	$p\left(\frac{2.303B}{T^2} - \frac{C}{T}\right)$	2.303 <i>B</i> – <i>CT</i>

Equations 1 and 2 are easily rearranged to calculate the temperature of the normal boiling point:

$$t = \frac{B}{A - \log p} - C$$
$$T = \frac{B}{A - \log P}$$

The constants in the Antoine equation may be estimated by selecting three widely spaced data points and substituting in the following equations in sequence:

$$\left(\frac{y_3 - y_2}{y_2 - y_1}\right) \left(\frac{t_2 - t_1}{t_3 - t_2}\right) = 1 - \left(\frac{t_3 - t_1}{t_3 + C}\right)$$
$$B = \left(\frac{y_3 - y_1}{t_3 - t_1}\right) (t_1 + C)(t_3 + C)$$
$$A = y_2 + \left(\frac{B}{t_2 + C}\right)$$

In these equations, $y_i = \log p_i$.

Substance	Eq.	Range, °C	Α	В	С
Acenaphthene	1	147-187	7.728 19	2 534.234	245.576
-	2	147-288	8.033	2834.99	
Acetaldehyde	1	liq	8.005 52	1 600.017	291.809
Acetic acid	1	liq	7.387 82	1 533.313	222.309
Acetic anhydride	1	liq	7.149 48	1 444.718	199.817
Acetone	1	liq	7.117 14	1 210.595	229.664
Acetonitrile	1	liq	7.119 88	1 314.4	230
Acetophenone	2	30-100	9.135 2	2878.8	
Acetyl bromide	1	liq	5.197 02	545.784	150.396
Acetyl chloride	1	liq	6.948 87	1 115.954	223.554
Acetylene	1	-130 to -83	9.140 2	1 232.6	280.9
	1	-82 to -72	7.099 9	711.0	253.4
Acetyl iodide	1	liq	4.181 44	355.452	108.160
Acrylic acid	1	20-70	8.538 67	2305.843	266.547
Acrylonitrile	1	-20 to 140	7.038 55	1 232.53	222.47
Allyl isothiocyanate	1	10-50	5.126 58	791.434	154.019
<i>m</i> -Aminobenzotrifluoride	1	0–96	7.651 86	1 940.6	218.0
		96-300	7.170 30	1 650.21	193.58
<i>p</i> -Aminophenol	1	130-185	-3.357 50	699.157	-331.343
Aniline	1	102-185	7.320 10	1 731.515	206.049
Anthracene	2	100-160	8.91	3 761	
	1	176-380	7.674 01	2 819.63	247.02
9,10-Anthracenedione	2	224-286	12.305	5 747.9	
	2	285-370	8.002	3 341.94	
Benzene	1	-12 to 3	9.106 4	1 885.9	244.2
	1	8-103	6.905 65	1 211.033	220.790
Benzenethiol	1	52-198	6.990 19	1 529.454	203.048
Benzoic acid	2	60-110	9.033	3 333.3	
Benzonitrile	1	liq	6.746 31	1 436.72	181.0
Benzophenone	1	48-202	7.349 66	2 331.4	195.0
*	1	200-306	7.162 94	2 051.855	173.074
Benzotrifluoride	1	-20 to 180	7.007 08	1 331.30	220.58
Benzoyl chloride	2	140-200	7.924 5	2 372.1	
Benzyl acetate	1	46-156	8.457 05	2 623.206	259.067
Benzyl alcohol	1	122-205	7.198 17	1 632.593	172.790

TABLE 2.36 Vapor Pressures of Various Organic Compounds

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
Biphenyl	1	69-271	7.245 41	1 998.725	202.733
2-(2-Biphenylyloxy)ethanol	1	240-300	8.005 87	2 776.761	206.914
Bromobenzene	1	56-154	6.860 64	1 438.817	205.441
2-Bromobenzyl cyanide	1	85-152	5.044 59	734.821	59.273
1-Bromobutane	1	-78 to 23	5.281 38	685.001	160.880
Bromochloromethane	1	16-68	6.496 06	942.267	192.587
Bromochlorodifluoromethane	1	-95 to 10	6.839 98	935.632	240.330
2-Bromo-2-chloro-1,1,1-trifluoro- ethane	1	-51 to 55	6.945 02	1 127.856	227.341
Bromocyclohexane	1	68-260	6.979 80	1 572.19	217.38
<i>p</i> -Bromodiphenyl ether	1	25-190	7.009 3	1 902.7	153.3
	1	190-400	6.681 43	1 683.84	132.90
Bromoethane	1	28-75	6.988 6	1 121.9	234.7
Bromoethene	1	-88 to 16	6.997 4	1 009.9	251.6
2-Bromoethylbenzene	1	127-217	7.800	2 235.4	238.7
4-Bromoethylbenzene	1	lia	6.982 09	1 632.60	193
2-Bromo-2-methylpropane	1	0-72.8	7.395 9	1 512.7	262.2
1-Bromonaphthalene	1	lia	7.003 50	1 927.05	186.0
<i>a</i> -Bromostyrene	1	lia	6 910 38	1 631 2	195
<i>p</i> -Bromostyrene	1	mq	7 228 38	1 743 67	218.0
4-Bromotoluene	1	85-280	7.007.62	1 612 35	206.36
2-Bromovinvlbenzene	1	110-129	0 564 97	82.913	-191.71
4-Bromovinylbenzene	1	$110 12^{2}$ 119 - 147	12 504 2	7 349 00	559.02
1 2-Butadiene	1	-69 to -34	7 398 22	1 219 877	259.02
1,2 Butuerene	1	-26 to 30	6 993 83	1 041 117	232.770
1 3-Butadiene	1	-80 to -62	7.035.55	998 106	242.274
1,5-Butdelene	1	-58 to 15	6 849 99	930 546	238 854
n-Butane	1	-77 to 19	6 808 96	035.86	238.034
1-Butanethiol	1	-2 to 123	6 927 54	1 281 018	218 100
2-Butanethiol	1	-13 to 110	6 886 98	1 229 904	210.100
1-Butanol	1	15_131	7 476 80	1 362 30	178 77
2-Butanol	1	25120	7 474 31	1 314 10	186.55
2-Butanone	1	43_88	7.063.56	1 261 34	221.97
1-Butene	1	-82 to 13	6702 00	008.80	221.97
2-Butene cis	1	-73 to 23	6 884 68	908.80	230.34
z-Butche eis	1	-76 to 20	6 883 37	967.52	237.87
Butyl acetate	1	60 126	7 127 12	1 430 418	240.84
n Butylamina trimathylboron	1	0 00	8 465 21	1 980 98	103.60
n Butylannic uniterryitoron	1	62 213	6 983 17	1 577 965	201.378
sec Butylbenzene	1	87-174	6 942 19	1 533 05	201.378
t Butylbenzene	1	84 170	6 072 55	1 505 087	204.39
<i>n</i> Butyl borate	1	117 218	7 406 87	1 005 035	186 134
n Butyl t butyl other	1	83 124	6.055.56	1 348 702	206 202
Rutyl carbitol	1	50 153	7 741 14	2 056 004	105 655
Butyl callosolya	1	02 170	6.056 50	2 030.904	172.154
see Putul chloroscetete	1	30 172	7 022 29	2 102 20	240.20
n Butylovolohevano	1	50-172	6010 20	2 103.30 1 539 519	249.29 700 877
n-Duryleyelohexane	1	01 190	6 200 04	1 530,310	200.833
t Rutyleyelohexere	1	91-10U 94 172	0.090 90	1 501 704	202.3/3
<i>i</i> -Dutyleyelonexaile	1	04-1/3	0.000 00	1 JUL./24	200.108
<i>n</i> -Dutylcyclopentane	1	41-183	0.899 33	1 437.08	205.99
<i>n</i> -Dulyi formate	1	29-112	1.093 0 6.402	1 098.7	247.4
Betel a baden in http://	1	50-100 112 195	0.493	972.9	1/0.0
<i>n</i> -Buty1- α -nydroxy1sobutyrate	1	112-185	8.421 /	2 017.52	287.09

Substance	Eq.	Range, °C	Α	В	С
1-n-Butylnaphthalene	1	25-170	7.434 47	2 227.7	202.2
	1	170-345	7.081 4	1 971.5	180
2-n-Butylnaphthalene	1	25 - 170	7.438 08	2 242.2	202.3
	1	170-345	7.084 8	1 984.3	180
<i>n</i> -Butyl nitrate	1	0-70	8.054 27	1 992.83	254.30
1-Butyl pentafluoropropionate	1	82-116	6.651 00	1 108.02	177.04
2-sec-Butylphenol	1	179-240	6.951 93	1 593.74	163.79
2- <i>t</i> -Butylphenol	1	135-225	7.217 56	1 822.81	196.23
4-t-Butylphenol	1	198 - 252	7.000 38	1 627.51	155.24
Butyl phenyl ether	1	119-210	7.299 7	1 882.70	215.82
n-Butyl propionate	1	32-93	9.484 89	2 852.58	296.98
n-Butyl trifluoroacetate	1	71-104	8.567 94	2 305.22	301.06
1-Butyl trimethylsilyl ether	1	71-124	7.763 00	1 884.68	261.31
1-Butyne	1	-68 to 27	6.981 98	988.75	233.01
2-Butyne	1	-51 to -34	7.037 91	896.91	199.06
	1	-31 to 47	7.073 38	1 101.71	235.81
n-Butyraldehyde	1	31-74	6.385 44	913.59	185.48
Butyric acid	1	90-163	7.739 9	1 764.7	199.9
Camphor	2	0 - 180	8.799	2 797.39	
	1	178 - 232	6.106	1 043.6	116.4
Capric acid	1	153-187	6.255 3	1 106.3	57.96
Caproic acid	1	98-179	6.924 9	1 340.8	126.6
Capronitrile	1	92-164	7.123 1	1 597.2	212.8
Caprylic acid	1	130-206	7.770 64	1 933.05	159.36
Carbazole	1	253-358	7.086 3	2 179.4	163.5
Carbitol	1	40-151	7.640 81	1 801.31	183.97
Chloroacetic acid	1	104-190	7.550 16	1 723.365	179.98
4-Chloroacetophenone	1	122 - 212	7.084 57	1 693.63	190.95
Chloroacetyl chloride	1	28-107	7.149 77	1 340.79	208.70
N-Chloroaniline	1	61-125	3.037 67	171.35	- 14.99
2-Chloroaniline	1	20-108	7.562 65	1 998.6	220.0
	1	108 - 300	7.192 40	1 762.74	200.0
3-Chloroaniline	1	15-125	7.559 39	2 073.75	215
	1	125-310	7.236 03	1 857.75	196.64
o-Chloroanisole	1	115-186	7.121 36	1 655.80	188.77
Chlorobenzene	1	62-131.7	6.978 08	1 431.05	217.55
o-Chlorobenzotrichloride	1	30-150	7.504 30	2 228.07	220.0
1 Oblass Albertable	1	150-350	/.11/ 94	1 951.37	196.27
1-Chloro-4-bromobenzene	2	23-03	11.629	3 643.30	019 10
1-Chlorobutane	1	-1/t0/8.0	6.836 94	1 1/3./9	218.13
2-Chlorobutane	1	0-40	6.799 23	1 149.12	224.08
1 Chlorodecane	1	80-223.9	0.939 80	1 039.00	1//.94
Chlorododecane	1	110 - 240	0.834 08	1 034.82	155.09
Chloroethane	1	- 56 to 12.2	0.980 47	1 030.01	238.01
2-Chloroethylbenzene	1		0.981 09	1 530.0	201.0
4 Chloresthalbergene	1		6.990 82	1 577.5	200
Chloroothylono	1	65 to 12	6 201 17	005.01	200
Chloroform	1	-03 to -13	6 402 4	903.01	209.40
1 Chlorohantana	1	24 160	0.493 4	727.44 1 152.04	100.03
1 Chlorobevadegang	1	166 207	0.210 /U 7 202 D2	1 4JJ.90 2 152 61	160 TT
1 Chlorohevane	1	100-327	7.202 03	2 152.01 1 461 72	215 57
Chlorobevulisocupate	1	10-100	7.031.30	2 340 50	213.37
Chloronexynsocyanate	1	90-100	1.140 93	2 340.30	241.90

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
Chloromethane	1	-75 to -5	7.093 49	948.58	249.34
Chloromethoxytrichlorosilane	1	0-50	7.312 92	1 545.71	226.10
2-Chloro-2-methylpropane	1	22-47	4.896	334.99	114.0
1-Chlorononane	1	69-205	7.046 54	1 655.57	192.26
1-Chlorooctane	1	54-184	7.051 52	1 600.24	200.28
Chloropentafluorobenzene	1	36-140	7.068 83	1 389.19	213.75
<i>p</i> -Chlorophenetole	1	122-212	7.084 57	1 693.63	190.95
2-Chlorophenol	1	80-200	6.877 31	1 471.61	193.17
β -Chloro- β -phenylethyl alcohol	1	166-259	6.917 33	1 635.63	145.87
1-Chlorophenylisocyanate	1	50160	12.265 9	6 532.55	499.59
<i>m</i> -Chlorophenylisocyanate	1	71-158	6.797 29	1 512.43	180.90
Chloroprene	1	20-60	6.161 50	783.45	179.7
1-Chloropropane	1	-25 to 47	6.926 48	1 110.19	227.94
2-Chloropropane	1	0-30	7.771	1 582	288
3-Chloro-1-propene	1	13-44	5.297 16	418.375	128.168
2-Chloropropionitrile	1	0-84	7.329 73	1 732.55	211.79
	1	84-240	7.200 85	1 657.25	205.3
γ -Chloropropyltrichlorosilane	1	87-179	7.156 4	1 679.07	210.38
1-Chlorotetradecane	1	142-296.8	7.200 7	2 018.9	170.6
o-Chlorotoluene	1	0-65	7.367 97	1 735.8	230.0
	1	65-220	6.947 63	1 497.2	209.0
1-Chloro-2,4,6-trinitrobenzene	1	200-270	3.080 9	184.93	
1-Chloroundecane	1	101-245	6.967 6	1 709.4	172.9
o-Chlorovinylbenzene	1	98-155	6.956 6	1 602.2	204.5
p-Chlorovinylbenzene	1	100-127	9.969 1	4 093.5	392.4
2-Chlorovinyldichloroarsine cis	1	68-109	5.487 9	785.09	115.61
trans	1	50-150	6.814 0	1 465.07	178.53
3-Chlorovinyldichloroarsine	1	66-110	2.810 5	97.17	- 27.51
o-Cresol	1	120-191	6.911 7	1 435.50	165.16
m-Cresol	1	150-201	7.508 0	1 856.36	199.07
p-Cresol	1	128 - 202	7.035 08	1 511.08	161.85
Cyanic acid	1	-76 to -6	7.568 59	1 251.86	243.79
Cyclobutane	1	-60 to 12	6.916 31	1 054.54	241.37
Cyclobutanone	1	-24 to 25	6.116 68	933.95	183.19
Cyclobutene	1	-77 to 2	7.305 7	1 166.0	261.06
Cycloheptane	1	68-159	6.853 95	1 331.57	216.35
1,3,5-Cycloheptatriene	1	0-65	6.974 33	1 376.84	220.75
Cyclohexane	1	20-81	6.841 30	1 201.53	222.65
Cyclohexanethiol	1	84-203	6.886 73	1 476.70	209.83
Cyclohexanol	1	94161	6.255 3	912.87	109.13
Cyclohexene	1		6.886 17	1 229.973	224.10
Cyclohexyl acetate	1	95-172	7.975 86	2 167.99	252.30
Cyclohexylamine	1	61-128	6.689 54	1 229.42	188.80
1-Cyclohexylamino-2-propanol	1	150 - 238	7.011 56	1 655.02	162.59
Cyclohexylpentafluoropropionate	1	82-155	7.725 5	1 844.73	224.89
Cyclohexyltrifluoroacetate	1	72147	7.802 35	1 954.66	249.33
Cyclohexyltrimethylsilyl ether	1	91-168	8.090 52	2 276.62	267.94
Cyclooctane	1	97-194	6.861 87	1 437.79	210.02
1,3,5,7-Cyclooctatetraene	1	0-75	7.006 69	1 472.11	215.84
Cyclopentane	1	-40 to 72	6.886 76	1 124.162	231.36
Cyclopentanethiol	1	81-173	6.914 97	1 388.63	212.05
Cyclopentanone	1	0-26	2.902 47	162.90	63.22
Cyclopentene	1		6.920 66	1 121.818	223.45

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Substance	Eq.	Range, °C	Α	В	С
$\begin{array}{c} Cyclopropane & 1 & -90 \ {\rm to} & -32 & 6.887 \ 88 & 856.01 & 246.50 \\ o-Cymene & 1 & 81-180 & 7.266 \ 10 & 1 \ 768.45 & 224.95 \\ m-Cymene & 1 & 79-176 & 7.123 \ 74 & 1 \ 644.95 & 212.76 \\ p-Cymene & 1 & 79-176 & 7.050 \ 74 & 1 \ 664.95 & 206.37 \\ p-Cymene & 1 & 68-28 & 6.875 \ 29 & 1 \ 594.460 & 203.39 \\ trans & 1 & 61-219 & 6.856 \ 81 & 1 \ 564.683 & 206.26 \\ 1-Decanethiol & 1 & 109-271 & 6.998 \ 1 & 1 \ 713.6 & 177.0 \\ 1-Decanol & 1 & 25-52 & 11.560 & 4 \ 055 & 273.2 \\ 1-Decene & 1 & 54-199 & 6.934 \ 77 & 1 \ 484.98 & 195.77 \\ 1-Decanol & 1 & 23-208 & 7.035 \ 96 & 1 \ 903.98 & 160.33 \\ 1-Decene & 1 & 54-199 & 6.934 \ 77 & 1 \ 484.98 & 163.35 \\ Decylcyclohexane & 1 & 197-298 & 7.019 \ 37 & 1 \ 899.33 & 161.35 \\ Decylcyclohexane & 1 & 197-298 & 7.019 \ 37 & 1 \ 899.33 & 161.35 \\ Decylcyclohexane & 1 & 197-298 & 7.019 \ 37 & 1 \ 899.33 & 161.35 \\ Decylcyclohexane & 1 & 10-145 & 0.056 \ 24 & 40.188 & -196.97 \\ 1.4-Diacetylbenzene & 1 & 50-145 & 0.056 \ 24 & 64.188 & -196.97 \\ 1.4-Diacetylbenzene & 1 & 10-40 & 4.89 \ 30 & 643.18 & 142.34 \\ 4.4'-Diaminodiphenymethane & 1 & 198-272 & 3.172 \ 31 & 210.49 & -137.41 \\ 1.3-Diacetylbenzene & 1 & 00-40 & 4.890 \ 39 & 56.36 & 143.22 \\ 1.2-Dibromodenzene & 1 & 108-272 & 3.172 \ 31 & 210.49 & -137.41 \\ 1.2-Diaromodenzene & 1 & 20-117 & 7.501 \ 28 & 2 \ 093.7 & 230 \\ 1.2-Dibromodenzene & 1 & 20-117 & 7.501 \ 28 & 2 \ 093.7 & 230 \\ 1.2-Dibromodenzene & 1 & 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 & 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 & 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 & 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 & 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 \ 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 \ 25-131 & 6.721 \ 48 & 1 \ 280.82 & 201.75 \\ 1.2-Dibromodendane & 1 \ 25-130 & 5.97 \ 3 \ 1.442.34 & 240.26 \\ 1.3-Dichorobenzene & 1 \ 0-71 & 7.549 \ 84 & 1 \ 80.65 & 240.0 \\ 1.4-Dia1.50 & 7.80 \ 81 & 1.16.72 & $	Cyclopentyl-1-thiaethane	1	83-199	6.940 83	1 480.70	208.47
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cyclopropane	1	-90 to -32	6.887 88	856.01	246.50
$ \begin{split} & n \ Cymene & 1 & 79-176 & 7.123 74 & 1 & 644.95 & 212.76 \\ p \ Cymene & 1 & 107-178 & 7.050 74 & 1 & 608.91 & 208.72 \\ Decahydronaphthalene \ cis & 1 & 68-228 & 6.875 29 & 1 & 594.460 & 203.39 \\ \ trans & 1 & 61-219 & 6.856 81 & 1 & 564.683 & 200.26 \\ 1 \ Decanet & 1 & 58-203 & 6.943 65 & 1 & 495.17 & 193.86 \\ 1 \ -Decanethiol & 1 & 109-271 & 6.998 & 1 & 1 & 713.6 & 177.0 \\ 1 \ -Decanethiol & 1 & 25-52 & 11.560 & 4 & 055 & 273.2 \\ 1 \ 103-230 & 6.922 44 & 1 & 472.01 & 133.98 \\ 1 \ -Decene & 1 & 54-199 & 6.934 77 & 1 & 484.98 & 195.70 \\ Decylpenzene & 1 & 203-298 & 7.019 37 & 1 & 899.33 & 160.33 \\ Decylcyclohexane & 1 & 197-298 & 7.019 37 & 1 & 899.33 & 1663.35 \\ Decylcyclohexane & 1 & 182-279 & 6.999 12 & 1 & 822.05 & 1663.05 \\ Deuterodiborane & 1 & -155 to -94 & 6.480 & 83 & 545.20 & 244.73 \\ Diacetylbenzene & 1 & 50-145 & 0.056 24 & 64.188 & -196.97 \\ 1.4 \ Diacetylbenzene & 1 & 10-45 & 0.056 24 & 64.188 & -196.97 \\ 1.4 \ Diacetylbenzene & 1 & 10-157 & 2.803 71 & 177.25 & -46.43 \\ Diacetylene & 1 & -78 to 0 & 4990 79 & 356.36 & 143.22 \\ Diallyl sulfide & 1 & 10-40 & 4.829 30 & 643.18 & 142.34 \\ 4.4 & Diaminodiphenylmethane & 1 & 198-272 & 3.172 31 & 210.49 & -137.41 \\ 0.1amyl cther & 1 & 105-17 & 7.01 & 8 & 2 & 03.7 & 230 \\ Dibromodichoroethane & 1 & 225-130 & 5.197 53 & 763.44 & 108.51 \\ Dibromodifuoromethane & 1 & 225-130 & 5.197 53 & 763.44 & 103.56 \\ 1.2 \ Dibromodichoroethane & 1 & 25-131 & 6.721 48 & 1 & 280.82 & 201.75 \\ 1.2 \ Dibromodethare & 1 & 0-50 & 7.303 94 & 1 & 494.8 & 200.26 \\ trans & 1 & 4-71 & 4.581 & 11 & 393.641 & 103.66 \\ 1.2 \ Dibromotehane & 1 & 0-50 & 7.303 74 & 1 & 349.84 & 200.26 \\ trans & 1 & 4-71 & 4.581 & 11 & 394.644 & 232.0 \\ Di-butyl ether & 1 & 40-19 & 6.792 9 & 1 & 348.53 & 233.79 \\ 1.2 \ Dibromotehane & 1 & 25-131 & 6.721 48 & 1 & 280.82 & 217.51 \\ 1.2 \ Dibromotehane & 1 & 26-167 & 7.439 54 & 2 & 190.0 & 210.2 \\ Di-butyl ether & 1 & 4-109 & 6.792 9 & 1 & 348.53 & 233.79 \\ 1.4 \ Dichorobenzene & 1 & 91-173 & 7.040 & 1 & 607.65 & 3 & 1297.9 & 110.3 \\ Di-h-butyl ether &$	o-Cymene	1	81-180	7.266 10	1 768.45	224.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>m</i> -Cymene	1	79-176	7.123 74	1 644.95	212.76
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<i>p</i> -Cymene	1	107 - 178	7.050 74	1 608.91	208.72
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Decahydronaphthalene cis	1	68-228	6.875 29	1 594.460	203.39
$\begin{array}{llllllllllllllllllllllllllllllllllll$	trans	1	61-219	6.856 81	1 564.683	206.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Decane	1	58-203	6.943 65	1 495.17	193.86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-Decanethiol	1	109-271	6.998 1	1 713.6	177.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-Decanol	1	25-52	11.560	4 055	273.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	103-230	6.922 44	1 472.01	133.98
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	1-Decene	1	54-199	6.934 77	1 484.98	195.707
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Decylbenzene	1	203-298	7.035 96	1 903.98	160.33
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Decylcyclohexane	1	197-298	7.019 37	1 899.33	161.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Decylcyclopentane	1	182-279	6.999 12	1 822.05	163.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Deuterodiborane	1	-155 to -94	6.480 83	545.20	244.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diacetone alcohol	1	28-115	8.502 42	2 400.56	263.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,3-Diacetylbenzene	1	50-145	0.056 24	64.188	- 196.97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Diacetylbenzene	1	116-157	2.803 71	177.25	-46.43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diacetylene	1	-78 to 0	4.990 79	356.36	143.22
4.4'-Diaminodiphenylmethane1 $198-272$ 3.172 31 210.49 -137.41 Diamyl ether1 $105-187$ 7.067 101 604.77 196.58 Dibenzyl ketone2 $285-325$ 8.257 3 244.42 12017 7.501 28 $2.093.7$ 230 1 $120-117$ 7.501 28 $2.093.7$ 230 $1177-300$ 7.102 65 1825.77 207.0 Dibromodichloroethane1 $225-130$ 5.197 53 763.44 110.81 Dibromodthuoromethane1 $52-131$ 6.721 48 1280.82 201.75 1,2-Dibromoethane1 $26-78$ 7.038 74 1349.84 209.26 trans1 $4-71$ 4.581 11 393.641 103.56 1,2-Dibromoptopane1 $0-71$ 7.549 84 1890.56 240.0 1,3-Dibromopropane1 $0-71$ 7.549 84 1890.56 240.0 1,3-Dibromopropane1 $0-71$ 7.549 84 1890.56 240.0 $0i-n-butyl$ ether1 $89-140$ 6.796 3 1297.29 91.03 $0i-n-butyl$ ether1 $126-202$ 6.639 80 1744.20 113.69 $0i-n-butyl$ sulfide1 $10-40$ 6.796 3 1298.80 217.51 $1,2-Dichlorobenzene131-1817.143781704.49219.421,3-Dichlorobenzene$	Diallyl sulfide	1	10-40	4.829 30	643.18	142.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4,4'-Diaminodiphenylmethane	1	198-272	3.172 31	210.49	- 137.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diamyl ether	1	105-187	7.067 10	1 604.77	196.58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibenzyl ketone	2	285-325	8.257	3 244.42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dibromobenzene	1	20-117	7.501 28	2 093.7	230
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	117-300	7.102 65	1 825.77	207.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dibromodichloroethane	1	25-130	5.197 53	763.44	110.81
1,2-Dibromoethane1 $52-131$ 6.721 48 1 280.82 201.75 1,2-Dibromoethylene cis 1 $26-78$ 7.038 74 1 349.84 209.26 $trans$ 1 $4-71$ 4.581 11 393.641 103.56 1,2-Dibromopropane1 $0-50$ 7.303 98 1 644.4 232.0 1,3-Dibromopropane1 $0-71$ 7.549 84 1 890.56 240.0 1,3-Dibromopropane1 $0-71$ 7.549 84 1 678.26 222.0 Di-n-butyl ether1 $89-140$ 6.796 31 297.29 191.03 Di-t-butyl ether1 $4-109$ 6.932 91 348.53 233.79 Di-n-butyl subfate1 $126-202$ 6.639 80 1 744.20 113.69 Di-n-butyl sulfide1 $10-40$ 6.766 31 208.80 217.51 1,2-Dichlorobenzene1 $91-173$ 7.040 11 607.05 213.38 1,4-Dichlorobenzene1 $91-173$ 7.040 11 607.05 213.38 1,4-Dichlorobenzene1 $20-167$ 7.439 54 2 190.0 200 Dichlorobenzene1 $20-167$ 7.439 54 2 190.0 200 Dichlorobenzene1 $20-167$ 7.439 54 2 190.0 200 Dichlorobenzene1 -39 to	Dibromodifluoromethane	1	-26 to 23	7.152 22	1 181.612	253.85
1,2-Dibromoethylenecis126–787.038741349.84209.26trans14–714.58111393.641103.561,2-Dibromopropane10–507.303981644.4232.01,3-Dibromopropane10–717.549841890.56240.01,3-Dibromopropane10–717.549841890.56222.0Di-n-butyl ether189–1406.79631297.29191.03Di-r-butyl ether14–1096.93291348.53233.79Di-n-butyl subfide1126–2026.639801744.20113.69Di-n-butyl subfide110–406.76931208.80217.511,2-Dichlorobenzene1131–1817.143781704.49219.421,3-Dichlorobenzene195–1747.0208150.9210.2Dichlorobenzene120–1677.439542190.0200Dichlorobenzene120–1387.504572125.9213.881,1-Dichlorobenzene1-39 to 186.97701174.02229.061,2-Dichlorobethane1-39 to 186.97701174.02229.021,2-Dichlorobethane1-39 to 186.97701174.02229.061,2-Dichlorobethane1-38 to 3	1,2-Dibromoethane	1	52-131	6.721 48	1 280.82	201.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dibromoethylene cis	1	26-78	7.038 74	1 349.84	209.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	trans	1	4-71	4.581 11	393.641	103.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2-Dibromopropane	1	0-50	7.303 98	1 644.4	232.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	50-250	6.891 05	1 419.60	212.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3-Dibromopropane	1	0-71	7.549 84	1 890.56	240.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	71-275	7.198 74	1 678.26	222.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di- <i>n</i> -butyl ether	1	89-140	6.796 3	1 297.29	191.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di-t-butyl ether	1	4-109	6.932 9	1 348.53	233.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di-n-butyl phthalate	1	126-202	6.639 80	1 744.20	113.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di-n-butyl sebacate	1	128 - 208	7.587 66	2 364.89	147.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di-n-butyl sulfide	1	10-40	6.769 3	1 208.80	217.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2-Dichlorobenzene	1	131-181	7.143 78	1 704.49	219.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	1	91-173	7.040 1	1 607.05	213.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4-Dichlorobenzene	1	95-174	7.020 8	1 590.9	210.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dichlorobenzotrichloride	1	20-167	7.439 54	2 190.0	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	167-340	6.985 24	1 868.91	172.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dichlorobenzyl chloride	1	20-138	7.504 57	2 125.9	213.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	138-350	7.147 35	1 881.38	192.93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1-Dichloroethane	1	-39 to 18	6.977 0	1 174.02	229.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dichloroethane	1	-31 to 99	7.025 3	1 271.3	222.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1-Dichloroethylene	1	-28 to 32	6.972 2	1 099.4	237.2
trans1-38 to 856.965 11141.9231.92,2'-Dichloroethyl sulfide115-768.587 412588.23246.06	1,2-Dichloroethylene cis	1	0-84	7.022 3	1 205.4	230.6
2,2'-Dichloroethyl sulfide 1 15-76 8.587 41 2 588.23 246.06	trans	1	-38 to 85	6.965 1	1 141.9	231.9
	2,2'-Dichloroethyl sulfide	1	15-76	8.587 41	2 588.23	246.06

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
1,2-Dichloroethyltrichlorosilane	1	102-181	7.826	2 144.9	253.1
Dichloromethane	1	-40 to 40	7.409 2	1 325.9	252.6
2-(2,4-Dichlorophenoxy)-ethanol	1	212 - 286	7.240 09	2 004.31	157.25
3,4-Dichlorophenylisocyanate	1	60-190	8.679 3	3 312.3	333.9
1,2-Dichloropropane	1	45-96	6.980 7	1 308.1	222.8
3,4-Dichlorotoluene	1	0-105	7.343 94	1 882.5	215.0
	1	105-330	6.979 25	1 655.44	195.0
Diethanolamine	1	194-241	8.138 8	2 327.9	174.4
1.1-Diethoxyethane	1	0 - 70	6.757 63	1 191.60	203.12
Diethoxymethane	1	0-75	6.908 41	1 229.52	217.01
Diethylaluminum chloride	1	44-125	8.229 70	2 484 53	255.45
Diethylamine	1	31-61	5.801 6	583.30	144.1
<i>N N</i> -Diethylaniline	1	50 - 218	7 466 0	1 993 57	218.5
1.2-Diethylbenzene	1	lia	6 987 80	1 576 940	200.51
1.3-Diethylbenzene	1	lia	7.003.60	1 575 310	200.01
1,5-Diethylbenzene	1	liq	6 008 20	1 588 310	200.90
Diethyldichlorosilane	1	48 128	6 862 0	1 346 3	201.77
Diethyldisulfide	1	46-126	7 3 40 90	1 605 00	207.7
Dietilyi distillite	1	61 220	6 075 07	1 495.00	227.29
Disthulana alwaal	1	120 242	0.975 07	1 465.970	208.90
Diethylene glycol	1	130-243	7.030 7	1 939.4	102.7
Dieth 1 ath 1 ab and 4 at	1	-61 10 20	0.920 32	1 064.07	228.80
Dietnyi etnyipnosphate	1	76-134	4.101 6	315.17	15.50
N,N-Dietnylformamide	1	30-90	6.395 4	1 203.8	165.6
Diethyl ketone	1	(a. 1.15	6.857 91	1 216.3	204
3,3-Diethylpentane	1	63-147	6.896 03	1 453.48	215.83
3,5-Diethylphenol	1	114-248	7.651 3	2 228	218.5
Diethylpropylphosphonate	1	87-134	4.558 1	446.50	26.17
Diethyl sulfide	1	0-150	6.928 36	1 257.83	218.66
1,2-bis-Difluoroamino-4-methyl-	1	-20 to 20	8.009 11	1 944.92	245.44
pentane					
Difluoromethane	1	-82 to -32	7.138 9	821.7	244.7
1,2-Dihydroxybenzene	1	118-246	7.577	2 054	187
1,3-Dihydroxybenzene	1	151 - 276	7.889	2 231	169
1,2-Diiodoethylene cis	1	29-152	5.522	797.8	106.4
trans	1	77-130	6.093 1	1 197.0	172.3
Diisoamyl sulfide	1	10 - 80	-1.959 8	390.61	-219.33
<i>p</i> -Diisopropylbenzene	1	120-211	6.993 3	1 663.88	194.41
Diisopropyl ether	1	23-67	6.849 5	1 139.34	218.7
2,4-Diisopropylphenol	1	122-255	6.714	1 506	138
1,2-Dimethoxyethane	1	0-60	6.718 9	1 050.5	209.2
N,N-Dimethylacetamide	1	30-90	9.720 9	3 273.8	334.5
Dimethylamine	1	-72 to 6.9	7.082 12	960.242	221.67
bis-Dimethylaminoborane	1	-25 to 62.5	5.584 52	774.371	170.64
N-Dimethylaminodiborane	1	-38 to 14	8.340 1	1 917.35	302.73
<i>bis</i> -Dimethylaminodifluorosilane	1	24-88	5.952	748.7	146.9
N.N-Dimethylaniline	1	71-197	7.367 7	1 857.08	220.36
Dimethyl beryllium	1	100-180	19.089 9	11 535.45	496.64
1.4-Dimethyl-bicyclo(2.2.1)-	1	56 - 119	6.761.96	1 342 66	213 53
heptane		55 117	0.701 20	1 5 12:00	<i>w10.00</i>
2 3-Dimethyl-hicyclo(2 2 1)-	1	72-138	6 868 15	1 420 32	212.04
heptane trans	1	12-150	0.000 15	1 720,02	212,74
2 3-Dimethyl-1 3-butadiana	1	0- 68 5	7 1 10 7	1 200 60	238.00
2.2 Dimethylbutane	1	-42 to 72	6 754 82	1 081 176	200.09
2,2-Dimentyroutable	1	- 42 10 75	0.734 83	1 001.170	229.34

Substance	Eq.	Range, °C	Α	В	С
2,3-Dimethylbutane	1	-35 to 81	6.809 83	1 127.187	228.90
2,3-Dimethyl-2-butanethiol	1	56-167	6.839 56	1 354.24	215.96
2,3-Dimethyl-1-butene	1	-36 to 78	6.862 36	1 134.675	229.37
2,3-Dimethyl-2-butene	1	-21 to 97	6.950 58	1 215.428	225.44
3,3-Dimethyl-1-butene	1	-47 to 64	6.677 51	1 010.516	224.91
Dimethyl cadmium	1	-2 to 23	6.490 55	1 126.36	201.07
1,1-Dimethylcyclohexane	1	10-147	6.798 21	1 321.705	217.85
1,2-Dimethylcyclohexane cis	1	18 - 158	6.837 46	1 367.311	215.84
trans	1	13 - 151	6.833 08	1 353.881	219.13
1,3-Dimethylcyclohexane cis	1	11 - 147	6.838 83	1 338.473	218.07
trans	1	15 - 152	6.834 55	1 343.687	215.39
1,4-Dimethylcyclohexane cis	1	15 - 152	6.832 87	1 345.613	216.15
trans	1	10-147	6.817 73	1 330.437	218.58
1,1-Dimethylcyclopentane	1	-12 to 113	6.817 24	1 219.474	221.95
1,2-Dimethylcyclopentane cis	1	-3 to 125	6.850 08	1 269.140	220.21
trans	1	-9 to 117	6.844 22	1 242.748	221.69
1,3-Dimethylcyclopentane cis	1	-10 - 116	6.837 15	1 237.456	222.01
trans	1	-9 to 117	6.838 17	1 240.023	221.62
Dimethyldichlorosilane	1	28 - 72	7.062 1	1 280.29	235.65
1,2-Dimethyldisilane	1	-46 to 0	4.024 3	255.4	129.2
Dimethyl ether	1	-71 to -25	6.976 03	889.264	241.96
N,N-Dimethylformamide	1	30-90	6.928 0	1 400.87	196.43
2,2-Dimethylhexane	1		6.837 15	1 273.59	215.07
2,3-Dimethylhexane	1		6.870 04	1 315.50	214.16
2,4-Dimethylhexane	1		6.853 05	1 287.88	214.79
2,5-Dimethylhexane	1		6.859 84	1 287.27	214.41
3,3-Dimethylhexane	1		6.851 21	1 307.88	217.44
3,4-Dimethylhexane	1		6.879 86	1 330.04	214.86
1,1-Dimethylhydrazine	1	-35 to 20	7.408 13	1 305.91	225.53
1,2-Dimethylhydrazine	1	1 - 25	5.611 9	633.59	143.17
N,N-Dimethylhydroxylamine	1	17 - 90	7.565 8	1 415.96	201.93
O,N-Dimethylhydroxylamine	1	-45 to 42.2	7.405 4	1 245.58	233.06
Dimethylmalononitrile	1	49-140	7.035 5	1 546.99	202.00
1,3-Dimethylnaphthalene	1	20-148	7.634 7	2 295.4	232.4
	1	148-310	7.269 8	2 076.0	210
1,4-Dimethylnaphthalene	1	20 - 148	7.634 7	2 345.8	232.6
(same for 1,6- and 1,7-)	1	148-310	7.269 8	2 076.0	210
1,8-Dimethylnaphthalene	1	25 - 150	7.407 89	2 123.2	201.2
	1	150 - 320	7.056 4	1 879	180
2,3-Dimethylnaphthalene	1	20-155	7.403 96	2 111.9	201.1
	1	155-315	7.052 7	1 869	180
2,6-Dimethylnaphthalene	1	20 - 150	7.396 8	2 080.3	200.8
	1	150-310	7.046 0	1 841	180
2,7-Dimethylnaphthalene	1	25-150	7.398 75	2 085.9	200.9
	1	150-310	7.047 8	1 846	180
2,2-Dimethylpentane	1	-19 to 103	6.814 80	1 190.033	223.30
2,3-Dimethylpentane	1	-10 to 115	6.853 82	1 238.017	221.82
2,4-Dimethylpentane	1	- 17 to 105	6.826 21	1 192.04	225.32
3,3-Dimethylpentane	1	-14 to 112	6.826 67	1 228.663	225.32
2,4-Dimethyl-3-pentanone	1	48-125	6.968 53	1 382.84	213.06
Dimethyl-o-phthalate	1	82-151	4.522 32	700.31	51.42
2,2-Dimethylpropane	1	- 14 to 29	6.604 27	883.42	227.78
2,2-Dimethyl-I-propanol	1	55-115	7.875 3	1 604.7	208.2

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
2.5-Dimethylpyrrole	1	100-199	7 203 .06	1 509 60	181 76
2 4-Dimethylquinoline	1	185_269	7.205 00	1 830 29	174 44
2.6-Dimethylquinoline	1	188267	6.931 12	1 748 73	166 37
Dimethyl sulfide	1	-22 to 20	7 150 9	1 195 58	242.68
3 3-Dimethyl-2-thiabutane	1	lia	6 847 09	1 259 648	212.00
2.2-Dimethyl-3-thiapentane	1	lia	6.850 86	1 323.24	212.89
2.4-Dimethyl-3-thiapentane	1	lia	6.871 18	1 327.12	212.55
2.3-Dimethylthiophene	1	50-205	6.924 9	1 430.0	212
2.4-Dimethylthiophene	1	50-205	6.993 9	1 450.7	212.0
2.5-Dimethylthiophene	1	47-200	6.961 1	1 427.7	213.2
3,4-Dimethylthiophene	1	54205	6.996 1	1 467.1	211.5
1,3-Dinitrobenzene	1	252-292	4.337	229.2	- 137
2,4-Dinitrotoluene	1	200299	5.798	1 118	61.8
2,6-Dinitrotoluene	1	150 - 260	4.372	380	43.6
3,5-Dinitrotoluene	1	220-270	1.556	30.59	-302
1,4-Dioxane	1	20-105	7.431 55	1 554.68	240.34
Dipentene	1	21-170	7.111 6	1 613.42	207.8
2,2'-Diphenol	1	171-325	8.193 5	3 067.6	253.1
Diphenyldichlorosilane	1	192-281	6.999 03	1 918.20	161.41
Diphenyl ether	1	204-271	7.011 04	1 799.71	177.74
Diphenylmethane	1	217-282	6.291	1 261	105
Di- <i>n</i> -propyl ether	1	26-89	6.947 6	1 256.5	219.0
Disilanyl chloride	1	-46 to 18	7.104 8	1 211.8	245.2
2,3-Dithiabutane	1	6-135	6.977 92	1 346.342	218.86
5,6-Dithiadecane	1	101-263	6.963 8	1 684.1	181.3
3,4-Dithiahexane	1	40-182	6.975 07	1 485.970	208.96
4,5-Dithiaoctane	1	72-226	6.975 29	1 603.793	195.85
Dodecane	1	91-247	6.997 95	1 639.27	181.84
1-Dodecanethiol	1	106 176	7.024 4	1 817.8	164.1
Dodecanoic acid	1	106-176	7.860 8	2 159.1	143.2
1-Dodecanol	1	138-214	/.539 80	2 003.29	108.13
I-Dodecene	1	89-244	0.9/0 0/	1 021.11	182.45
Durenoi	1	108-249	7.738	2 432	230
1 Eigenenethiol	1	190-379	7.132 2	2 032.7	132.1
1-Eicosane	1	lia	7.135 1	2 043 0	137.0
Ethane	1	-142 to -75	6 829 15	2 043.0	256.68
Ethanethiol	1	49 to 56	6.952.06	1 084 531	231.39
Ethanol	1	-2 to 100	8 321 09	1 718 10	237.52
Ethanolamine	1	65-171	7 456 8	1 577 67	173 37
Ethyl acetate	1	15-76	7.101 79	1 244.95	217.88
<i>m</i> -Ethylacetophenone	Î	19-143	3.767 2	708.05	182.6
<i>p</i> -Ethylacetophenone	1	21-94	4.274 6	629.34	120.9
Ethylamine	1	-20 to 90	7.054 13	987.31	220.0
N-Ethylaniline	1	50-207	7.422 8	1 903.4	214.3
Ethylbenzene	1	26-164	6.957 19	1 424.255	213.21
2-Ethyl-1-butene	1	-28 to 88	6.997 12	1 218.352	231.30
Ethyl butyl ether	1	38-92	6.944 4	1 256.4	216.9
Ethyl chloroacetate	1	25-146	6.967	1 355.9	188.2
p-Ethylchlorobenzene	1	109-184	6.951 1	1 557.1	198.1
Ethylcyclohexane	1	20-160	6.867 28	1 382.466	214.99
Ethylcyclopentane	1	-0.1 to 129	6.887 09	1 298.599	220.68
Ethylene	1	-153 to -91	6.744 19	594.99	256.16

Substance	Eq.	Range, °C	Α	В	С
Ethylene glycol	1	50-200	8.090 8	2 088.9	203.5
Ethylene glycol monoethyl ether	1	63-134	7.874 6	1 843.5	234.2
Ethylene glycol monomethyl ether	1	56-124	7.849 8	1 793.9	236.9
Ethylene oxide	1	-49 to 12	7.128 43	1 054.54	237.76
Ethyl formate	1	4-54	7.009 0	1 123.94	218.2
3-Ethylhexane	1		6.890 98	1 327.88	212.60
2-Ethyl-1-hexanol	1	74-184	6.914 7	1 339.7	147.8
2-Ethyl-2-hexenal	1	54-175	6.861 3	1 457.4	190.6
Ethyl iodoacetate	1	29-89	4.073 7	374.64	54.8
Ethyl isothiocyanate	1	10-50	7.106 0	1 567.5	234.2
Ethyl methyl ether	1	5-7.7	5.518	434.5	158
Ethyl methyl ketone	1		6.974 21	1 209.6	216
3-Ethyl-5-methylphenol	1	195-247	7.040 83	1 615.44	152.6
2-Ethyl-4-methyl-1-pentanol	1	70-176	6.582 6	1 134.6	129.2
Ethyl nitrate	1	0-60	7.163 7	1 338.8	224.9
3-Ethylpentane	1	-7 to 119	6.875 64	1 251.827	219.89
2-Ethylphenol	1	86-208	7.800 3	2 140.4	227
3-Ethylphenol	1	97-218	7.468	1 856	187
4-Ethylphenol	1	101 - 218	8.291	2 423	229
Ethyl phenyl ether	1	117-181	7.021 38	1 508.39	194.49
Ethyl <i>n</i> -propanoate	1	34-98	6.994 9	1 260.6	207.4
Ethyl <i>n</i> -propyl ether	1	20-63	6.985 1	1 188.5	226.4
Ethyl <i>n</i> -propyl ketone	1	75-133	7.000 82	1 365.79	208.01
<i>m</i> -Ethylstyrene	1		7.039 28	1 614.0	198
<i>p</i> -Ethylstyrene	1		6.900 71	1 570.9	198
Ethyl trichloroacetate	1	44-95	7.725 4	1 927.0	233.7
Ethyl trichlorosilane	1	28-96	6.606	1 118	201
Ethyl triexthoxysilane	1	64-153	6.886 8	1 377.9	183.0
Ethyl vinyldichlorosilane	1	45-122	6.859	1 331	210.8
Fenchyl alcohol	1	59 - 200	5.693	797.6	84.6
Fluoranthene	1	197-384	6.373	1 756	118
Fluorene	1	161-300	7.761 8	2 637.1	243.2
Fluorobenzene	1	-18 to 84	7.187 0	1 381.8	235.6
m-Fluorobenzotrifluoride	1	40-137	7.006 59	1 304.35	215.67
bis-(Fluorocarbonyl)-peroxide	1	-47 to -7	9.608 4	2 247.64	319.83
<i>p</i> -Fluorotoluene	1	68-155	6.994 26	1 374.055	217.40
Formaldehyde	1	-109 to -22	7.195 8	970.6	244.1
Formic acid	1	37-101	7.581 8	1 699.2	260.7
Formyl fluoride	1	-95 to -61	5.270	362	175
Furan	1	2-61	6.975 27	1 060.87	227.74
2-Furfuraldehyde	1	56-161	6.575 9	1 198.7	162.8
Glycerol	1	183-260	6.165	1 036	28
Glyceryl-1,3-diacetate	1	100 - 190	6.407 3	1 092.0	119.3
Guaiacol	1	82-205	6.161	1 051	116
Hemellitenol	1	123 - 248	6.972	1 563	134
Heptadecane	1	161-337	7.014 3	1 865.1	149.20
1-Heptadecene	1		7.008 67	1 868.9	152.50
Heptane	1	-2 to 124	6.896 77	1 264.90	216.54
1-Heptanethiol	1	58-206	6.952 49	1 525.311	197.70
Heptanoic acid	1	112-150	5.287 4	665.54	42.07
1-Heptanol	1	60-176	6.647 67	1 140.64	126.56
1-Heptene	1	-6 to 118	6.901 87	1 258.345	219.30
Hexadecane	1	149-321	7.028 67	1 830.51	154.45

TABLE 2.36	Vapor Pressures of Various Organic Compounds (<i>Continued</i>)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
1-Hexadecanethiol	1		7.075	1 990	140
1-Hexadecanol	1	50103	7.281 7	1 909.7	128.1
	1	145 - 190	6.158 6	1 380.0	91
1-Hexadecene	1		7.040 11	1 840.52	157.57
1.5-Hexadiene	1	0-59	6.574 1	1 013.5	214.8
Hexafluoroacetone	1	-79 to -27	6.650 2	725.90	219.9
Hexafluorobenzene	1	5-114	7.032 95	1 227.98	215.49
Hexafluorodisiloxane	1	-39 to -23	7.471 2	1 169.3	278.1
Hexafluoroethane	1	-93 to -78	6.793 35	657.06	246.2
Hexahydroindane cis	1	77168	6.868 22	1 497.33	207.67
trans	1	71-161	6.861 19	1 475.70	209.66
Hexamethyldisiloxane	1	36-138	6.773 79	1 202.03	208.25
Hexane	1	-25 to 92	6.876 01	1 171.17	224.41
1-Hexanethiol	1	40-181	6.946 64	1 454.004	204.95
1-Hexanol	1	35-157	7.860 45	1 761.26	196.66
2-Hexanol	1	25-142	7.261 0	1 371.7	173.2
3-Hexanol	1	25-138	7.689	1 670.0	211.8
1-Hexene	1	16-64	6.857 70	1 148.62	225.35
3-Hexyne	1	-20 to 24	5.895	863.3	194
Hydroquinone	1	159-286	8.137	2 461	183
3-Hydroxy-3-methyl-2-butanone	1	45-146	7.340 9	1 653.6	227.5
Iodobenzene	1	20 - 188	7.011 9	1 640.1	208.8
Iodoethane	1	30-60	6.959	1 232	229
Isoamyl acetate	1	41-95	7.436	1 606.6	216
Isobutylbenzene	1	86-174	6.935 56	1 530.05	204.59
Isobutyl borate	1	99-200	7.197	1 745.8	193
Isobutyl cellosolve	1	71-159	7.694 8	1 825.9	219.6
Isobutylcyclohexane	1	85-172	6.867 97	1 493.10	203.16
Isobutyl nitrate	1	0-70	8.164 3	2 022.7	262.4
Isobutyraldehyde	1	13-63	6.735 1	1 053.2	209.1
Isobutyric acid	1	58-152	4.894	382.6	38
Isocaproic acid	1	96-133	6.258	1 038.6	130
Isopropylbenzene	1	39-181	6.936 66	1 460.793	207.78
Isopropyl borate	1	65-139	8.070	2 120	269
o-Isopropylbromobenzene	1	132-210	6.717 8	1 462.7	170.9
Isopropyl caprate	1	90-178	9.959	4 013.9	326.5
Isopropyl caprylate	1	65 - 146	8.032 2	2 213.6	220.9
Isopropyl cellosolve	1	67-140	7.500 0	1 639.2	213.3
Isopropyl chloroacetate	1	35-153	8.382	2 328	275
Isopropylcyclohexane	1	71-155	6.873 14	1 453.20	209.44
Isopropylcyclopentane	1	47-127	6.887 36	1 380.12	218.05
Isopropyl laurate	1	117-196	8.532 6	2 951.6	240.7
Isopropyl myristate	1	140-193	10.418 0	4 866.48	314.17
Isopropyl nitrate	1	0-70	7.266 6	1 434.4	255.2
Isopropyl palmitate	1	160-197	10.916 4	5 572.0	364.8
o-Isopropylphenol	1	97-215	8.167	2 343	229
<i>p</i> -Isopropylphenol	1	108-228	8.666	2 810	258
Isopropyl phenyl ether	1	72-175	6.517 6	1 238.0	163.0
Isopropyl stearate	1	182-207	0.079-3	10.41	- 221
Isopseudocumenol	1	106-233	5.602	/08	49
Isoquinoline	1	167-244	6.912 2	1 /23.4	184.5
Isovaleric acia	1	80-104	3.946 55	255.41	11.5
Ketene	1	- 88 to -49	1.015	1 030	209

Substance	Eq.	Range, °C	Α	В	С
Lauric acid	1	106-176	7.860 8	2 159.1	143.2
Lepidine	1	199-266	7.271 2	1 946.14	177.64
2,3-Lutidine	1	155-162	7.447 8	1 832.6	240.1
2,4-Lutidine	1	150-160	7.339 0	1 733.4	230.4
2,5-Lutidine	1	85-157	7.081 0	1 539.6	209.6
2,6-Lutidine	1	79-144	7.056 7	1 470.2	208.0
3,4-Lutidine	1	172-180	7.362 0	1 840.1	231.5
3,5-Lutidine	1	163-173	7.333 1	1 783.6	228.7
Mesitol	1	94-221	6.659	1 392	148
Mesityl oxide	1	14-130	6.635 8	1 186.1	186.0
Methacrylonitrile	1		6.980 2	1 274.96	220.7
Methane c	1	-195 to -183	7.193 09	451.64	268.49
lia	1	-181 to -152	6.695 61	405.42	267.78
Methanol	1	-14 to 65	7.897 50	1 474.08	229.13
	1	64-110	7.973 28	1 515.14	232.85
Methoxybenzene	1	110-164	7.052 69	1 489.99	203.57
N-Methylacetamide	1	40-90	2.631.1	121 7	-93
Methyl acetate	1	1-56	7 065 2	1 157 63	219.73
Methylal	1	0-35	6 872 2	1 049 2	220.6
Methylamine	1	-83 to -6	7 336 9	1 011 5	233.3
N-Methylaniline	î	50-200	7.081 9	1 631 3	192.4
Methyl benzoate	1	111-199	7 273	1 847	221
Methyl borate	1	31-68	7.646 0	1 491 5	245 5
Methyl boric anhydride	1	0_55	8 004 1	1 726 1	257.0
2-Methyl-1 3-butadiene	1	-52 to -24	7 011 87	1 126 159	238.88
2-weary-1,5-butadiene	1	-10 to 55	6 885 64	1 071 578	233.51
3-Methyl-1 2-butadiene	1	-45 to -20	7 151 95	1 194 537	239.51
5-Weingi-1,2-Buladiene	1	-20 to 62	6 943 50	1 103 901	230.80
2. Methylbutane	1	-57 to 49	6 833 15	1 040 73	235.45
2-Methyl-1-butanethiol	1	lia	6 913 85	1 347 317	235.45
3-Methyl-1-butanethiol	1	lia	6 914 91	1 342 500	213.07
2-Methyl-2-butanethiol	1	liq	6 828 37	1 254 885	214.45
2-Methyl-1-butanol	1	34-120	7 067 30	1 195 26	156.83
3 Methyl 1 butanol	1	25 153	7 258 21	1 31/ 36	160.36
2 Methyl 2 butenol	1	25-102	6 510 3	863 /	135.3
2 Methyl 2 butanol	1	25-102	6 9 4 2 1	1 000 0	155.5
2 Methyl 1 butene	1	-53 ± 52	6846 27	1 030.60	137.4
3-Methyl-1-butene	1	-63 to 41	6 824 55	1 012 37	236.65
2 Methyl 2 butene	1		6.066 50	1 124 33	236.63
Z-Methyl-z-butche Methyl butyl ather	1	23 60	6 887 1	1 124.55	230.03
3. Methyl 1, butyne	1	-55 to 47	6 884 80	1 014 81	217.7
2 Methyl 3 butyn 2 ol	1	- 55 10 47	6 657 5	076 5	15/1
2-Mcthyl-5-00tyl-2-01 Mothyl a butyrata	1	21-100	6.077 11	370.3	208.5
Methyl conrete	1	107 199	7 100 0	1 2/2.75	200.J
Methyl caprate	1	107-100	7.190 0	1 105.0	210 00
Methyl caprolete	1	44-105	7.409 3	1 072.74	210.90 176.5
Methyl capitale	1	100-140	0.910 J 7 101	1 490.3	1/0.3
Methyl callocalus asstate	1	70 144	7.424	1 751	192
Mathyl chloroacetete	1	10-144	7.123 1	1 306 2	190.1
Methylevelehevene	1	43 - 130 - 2 to 107	1.004 4 6 872 00	1 300.3	107.3
Methylevelopenter	1	-5 10 127	0.023 00	1 2/0./03	221.42
Mathyldichlangeile	1	24 10 90	0.802 83	1 160.009	220.04
Nethod 2 sthells	1	1-41	7.027 8	1 10/.8	240.7
1-Metnyl-2-etnylbenzene	1	48-194	7.003 14	1 333.374	207.30

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
1-Methyl-3-ethylbenzene	1	46-190	7.015 82	1 529.184	208.51
1-Methyl-4-ethylbenzene	1	46-191	6.998 02	1 527.113	208.92
1-Methyl-1-ethylcyclopentane	1	43-122	6.859 20	1 347.602	217.21
1-Methyl-2-ethylcyclopentane	cis 1	49-129	6.905 88	1 388.412	216.89
2-Methyl-3-ethylpentane	1		6.867 31	1 318.12	215.31
3-Methyl-3-ethylpentane	1		6.867 31	1 347	219.68
3-Methyl-5-ethylphenol	1	111-233	7.958	2 236	208
2-Methyl-5-ethylpyridine	1	52-177	5.050	517	59
N-Methylformamide	1	96-200	7.497 4	1 849.4	201.1
Methyl formate	1	21 - 32	3.027	3.02	-11.9
2-Methylheptane	1	42-119	6.917 35	1 337.47	213.69
3-Methylheptane	1	43-120	6.899 44	1 331.53	212.41
4-Methylheptane	1		6.900 65	1 327.66	212.57
2-Methylhexane	1	-9 to 115	6.873 18	1 236.026	219.55
3-Methylhexane	1	-8 to 117	6.867 64	1 240.196	219.22
Methylhydrazine	1	2-25	6.576 2	1 007.5	181.4
N-Methylhydroxylamine	1	40-65	7.045 6	1 223.3	172.1
O-Methylhydroxylamine	1	-63 to 48	7.363 9	1 225.3	225.2
Methyl isobutyl ketone	1	22-116	6.672 7	1 168.4	191.9
1-Methyl-2-isopropylbenzene	1	liq	6.940 4	1 548.05	203.15
1-Methyl-3-isopropylbenzene	1	liq	6.940 5	1 539.05	203.93
1-Methyl-4-isopropylbenzene	1	liq	6.923 7	1 537.06	203.05
3-Methylisoquinoline	1	176-225	6.969 2	1 717.3	166.9
Methyl isothiocyanate	1	10-50	2.896 8	103.6	45.4
Methyl laurate	1	158 - 212	6.767 1	1 589.72	140.5
Methyl linolate	1	166 - 206	6.111 1	1 660.1	118.8
Methyl methacrylate	1	39-89	8.409 2	2 050.5	274.4
Methyl myristate	1	166 - 238	7.622 3	2 283.93	184.8
1-Methylnaphthalene	1	108 - 278	7.035 92	1 826.948	195.00
2-Methylnaphthalene	1	105 - 274	7.068 50	1 840.268	198.40
Methyl oleate	1	166-205	7.544 1	2 656.9	200.7
Methyl palmitate	1	148 - 202	9.594 4	4 146.43	297.76
2-Methylpentane	1	-32 to 83	6.839 10	1 135.410	226.57
3-Methylpentane	1	-30 to 87	6.848 87	1 152.368	227.13
2-Methyl-2-pentanethiol	1	56-165	6.858 5	1 343.79	212.8
2-Methyl-1-pentanol	1	25 - 150	7.520 1	1 564.7	189.2
2-Methyl-4-pentanol	1	25-133	8.467 1	2 174.9	257.8
2-Methyl-1-pentene	1	-30 to 85	6.850 30	1 138.516	224.70
3-Methyl-1-pentene	1	-38 to 77	6.755 23	1 086.316	226.20
4-Methyl-1-pentene	1	-38 to 77	6.835 29	1 121.302	229.68
2-Methyl-2-pentene	1	-26 to 90	6.923 67	1 183.837	225.51
3-Methyl-2-pentene cis	1	-26 to 91	6.910 73	1 186.402	226.70
trans	1	-23 to 94	6.926 34	1 194.527	224.83
4-Methyl-2-pentene cis	1	-35 to 79	6.841 29	1 120.707	226.59
trans	1	-33 to 81	6.880 30	1 142.874	227.14
Methyl phenyl ether	1	110-164	7.052 69	1 489.99	203.57
2-Methylpiperidine	1	51-158	6.818 59	1 274.61	205.40
2-Methylpropane	1	-87 to 7	6.910 48	946.35	246.68
2-Methyl-1-propanethiol	1	-10 to 113	6.887 46	1 237.282	220.31
2-Methyl-2-propanethiol	1	1-88	6.787 81	1 115.565	221.31
2-Methyl-1-propanol	1	20 - 115	7.327 05	1 248.48	172.92
2-Methyl-2-propanol	1	26-83	9.170 6	2 206.4	267.9
2 Mathylpropaga	1		6 684 66	866.25	224 64

Substance	Eq.	Range, °C	Α	В	С
N-Methylpropionamide	1	30-90	-0.9103	119.4	- 148.0
Methyl propionate	1	21-79	6.942 4	1 170.2	208.8
2-Methyl-2-propylamine	1	19-75	6.783 2	993.33	210.50
Methyl propyl ether	1	0-39	6.118 6	708.69	179.9
2-Methylpyridine	1	80-168	7.032 4	1 415.73	211.63
3-Methylpyridine	1	74-185	7.050 21	1 481.78	211.25
4-Methylpyridine	1	75-186	7.041 77	1 480.68	210.50
1-Methylpyrrole	1	49-149	7.085 0	1 368.66	212.80
6-Methylquinoline	1	187-266	6.927 2	1 746.08	166.46
7-Methylquinoline	1	238-258	7.597 7	2 229.4	214.9
Methyl salicylate	1	79-220	7.083 3	1 712.8	187.1
Methyl stearate	1	204-240	2.357 0	68.92	-156.5
o-Methylstyrene	1	32-112	7.212 9	1 664.08	214.59
	1	75-255	6.884 61	1 485.41	200.0
<i>m</i> -Methylstyrene	1	10-72	7.275 34	1 695.4	220.0
··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ··· - ···	1	72-250	6.879 28	1 471.44	200.0
<i>p</i> -Methylstyrene	1	68-170	7.011 2	1 535.1	200.7
α -Methylstyrene	1		6.923 66	1 486.88	202.4
B-Methylstyrene	î		6 923 39	1 499 80	201.0
Methyl sulfoxide	1	20-50	7 763 7	2 048 7	231.6
3-Methyl-2-thiabutane	1	-13 to 109	6 901 96	1 232 170	221.67
2-Methylthiacyclopentane	1	lia	6 944 12	1 409 503	214.41
3-Methylthiacyclopentane	1	67-179	6 9 4 9 1	1 431 8	213.6
2-Methyl-3-thiapentane	1	lia	6.891 30	1 293.05	215.04
Methyl-2-thiazole	1	80-128	7 042 1	1 407 05	209.33
2-Methylthionhene	1	9-138	6 938 97	1 326.48	214 31
3-Methylthiophene	1	11141	6.986 11	1 363 83	214.51
Methyl trichlorosilane	1	13_64	7 088 2	1 289 2	230.0
2-Methyl-5-vinylpyridine	1	69-183	6 156	1 023	129
Morpholine	1	0-44	7 718 13	1 745 8	235.0
worphonne	1	44-170	7 160 30	1 447 70	210.0
Nanhthalene	1	86-250	7.010 65	1 733 71	201.86
lia	1	125_218	6 818 1	1 585 86	184.82
1-Nanhthol	1	141	7 284 21	2 077 56	184.0
2-Naphthol	1	144	7.204 21	2 135.00	183.0
Nicotine	1	134-246	6 789	1 650	176
a-Nitroaniline	2	150-260	8 868 4	3 336 50	170
m-Nitroaniline	2	170260	8 818 8	3 440 9	
n-Nitroaniline	2	190-260	0.550 5	4 039 73	
Nitrobenzene	1	134211	7 115 6	1 7466	201.8
m-Nitrobenzotrifluoride	1	10-105	7.653 15	2 006 1	201.8
<i>m</i> -Mitobelizou muonde	1	104 280	7.055 15	2 000.1	105.12
Nitromethane	1	56 136	7 281 66	1 446 94	227.60
1 Nitropropaga	1	50 121	7.201 00	1 440.94	227.00
a Nitrotaluana	1	120 222	5 951	046	215.25
n Nitrotoluene	1	149-222	6 004 8	1 720 20	184.0
<i>p</i> -Nillololuene	1	140-255	0.994 0	1 022 8	1276
1-Nonadecene	1	104-300	7,015 5	1 752.0	137.0
1-monauccene Nonafluorocuelenentene	1	17 75	1.11J I 6045 2	1 77/.4	142.7 220.1
Nonana	1	20 170	0.943 3	1 001.7	220.1
1 Nonenethial	1	39-179	0.938 93	1 431.82	202.01
I-INORALICITIOI	1	93-231 127 177	0.983 9	1 000.0	183./
Nonanoic acid	1	13/-1//	3.233 9	143.97	- /3.6
1-INONANOI	1	94-214	1.821 8	1 953.8	181.9

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
1-Nonene	1	35-175	6.954 30	1 436.20	205.69
Octadecane	1	172-352	7.002 2	1 894.3	143.30
1-Octadecanethiol	1	liq	7.096	2 061	129
1-Octadecanol	1	120-218	6.461 6	1 599	90
1-Octadecene	1		7.060 65	1 997.4	147.50
Octane	1	19-152	6.918 68	1 351.99	209.15
1-Octanethiol	1	76-229	6.969 09	1 593.0	190.61
1-Octanol	1	0 - 80	12.070 1	4 506.8	319.9
	1	70-195	6.837 90	1 310.62	136.05
2-Octanol	1	72-180	6.388 8	1 060.4	122.5
3-Octanol	1	76-176	5.221 5	560.3	64.7
4-Octanol	1	71-176	5.739 6	760.5	89.5
1-Octene	1	15 - 147	6.934 95	1 355.46	213.05
5-Oxyhydrindene	1	120-251	9.213 7	3 665.8	326.4
Pentachloroethane	1	25 - 162	6.740	1 378	197
Pentadecane	1	136-304	7.023 59	1 789.95	161.38
1-Pentadecene	1		7.022 91	1 788.58	163.347
1,2-Pentadiene	1	-42 to -26	7.259 90	1 250.293	241.96
	1	-21 to 67	6.918 20	1 104.991	228.85
1,3-Pentadiene cis	1	-43 to -22	7.193 87	1 223.602	240.62
	1	-18 to 66	6.910 89	1 101.923	229.37
trans	1	-45 to -20	7.102 12	1 185.389	239.41
	1	-18 to 64	6.913 17	1 103.840	231.72
1,4-Pentadiene	1	-57 to -37	7.174 01	1 155.378	244.30
	1	-33 to 47	6.835 43	1 017.995	231.46
2,3-Pentadiene	1	-39 to -18	7.202 53	1 231.768	237.56
	1	-14 to 70	6.962 16	1 126.837	227.84
Pentafluorobenzene	1	49-94	7.036 65	1 254.07	216.02
Pentafluorochloroacetone	1	-40 to 32	6.848 4	925.3	225.4
Pentafluorochlorethane	1	-95 to -39	6.833 34	802.97	242.27
Pentafluorophenol	1	105-155	7.066 0	1 379.15	183.91
2,2,3,3,3-Pentafluoropropanol	1	0-23	6.308 7	830.56	153.8
Pentafluorotoluene	1	39-138	7.084 78	1 392.20	213.67
bis-Pentamethyldisilanoxydisilane	1	169-201	8.556 64	3 051.316	258.85
bis-Pentamethyldisilanyl ether	1	88-183	8.161 44	2 575.250	273.32
Pentane	1	-50 to 58	6.852 96	1 064.84	233.01
Pentanenitrile	1	69-141	7.104 9	1 519.4	218.4
1-Pentanethiol	1	19-153	6.933 11	1 369.479	211.31
Pentanoic acid	1	72-174	5.412	591	60
1-Pentanol	1	37-138	7.177 58	1 314.56	168.11
2-Pentanol	1	25-120	7.275 75	1 2/1.92	1/0.37
3-Pentanol	1	21-116	7.414 93	1 354.42	183.41
2-Pentanone	1	56-111	7.021 93	1 313.85	215.01
3-Pentanone	1	56-111	7.025 29	1 310.28	214.19
2 Dentene	1	-55 to 51	0.844 24	1 044.01	233.50
2-Pentene Cis	1	-49 10 38	6 800 83	1 032.44	228.09
1 Pontuno	1	-49 10 58 -44 to 61	6.699 83	1 080.76	232.37
1-rentyne 2 Dentyne	1	-44 10 01 -22 to 79	0.90/ 34 7 016 11	1 192.32	227.18
2-rentyne Dordouterebenzene	1	- 35 10 /8	7.040 14 6 802 25	1 109.87	229.00
Pardauteroovalohavero	1	10-82	0.072 33	1 190.39	219.43
Perfluorobutane	1	-30 to -4	0.03/ 80	1 190.38	222.40
Perfluorobutene	1	-39 to -4 - 28 to 20	9,000 1	2 401 6	240.4
I emiliorobutene	T	201020	7.444	2 401.0	502

Substance	Eq.	Range, °C	Α	В	С
Perfluorocyclobutane	1	- 32 to 0	6.815 29	862.49	225.19
Perfluorocyclohexane	1	19-65	6.04	597	136
Perfluorocyclopentane	1	1756	7.039 6	1 069.3	234.6
Perfluoroheptane	1	-2 to 106	6.937 72	1 181.14	208.66
Perfluorohexane	1	30-57	6.875 2	1 080.8	213.4
Perfluoromethylcyclohexane	1	33-111	6.824 06	1 133.76	211.22
Perfluorooctane	1	37-105	5.902 5	1 225.93	198.99
Perfluoropentane	1	9-65	7.017 9	1 072.9	230.0
Perfluoropiperidine	1	29-81	6.853 4	1 059.95	217.2
Perfluoropropane	1	-79 to -36	6.919 4	825.8	241.2
Perfluoropropene	1	-41 to 20	7.355	1 012.1	257
Phenanthrene	1	176-379	7.260 82	2 379.04	203.76
Phenol	1	107-182	7.133 0	1 516.79	174.95
β -Phenylethyl acetate	1	149-233	6.834 3	1 555.2	160.8
α -Phenylethyl alcohol	1	82-190	1.508	91	-263
o-Phenylethylphenol	1	169-250	4.506 0	516.8	-32.1
p-Phenylethylphenol	1	174-251	4.304 1	459.3	- 52.4
Phenylisocyanate	1	10-80	-0.708 0	106.4	146.6
4-Phenylphenol	ĩ	177-308	8.657 5	3 022.8	216.1
Phoseene	1	-68 to 68	6.842.97	941.25	230
Phthalic anhydride	$\hat{2}$	160-285	8.022	2.868.5	200
α -Pinene	1	19-156	6.852.5	1 446.4	208.0
β-Pinene	1	19-166	6 898 4	1 511 7	210.2
Piperidine	î	42 - 144	6 855 69	1 238 80	205.43
Propadiene	1	-99 to -16	5713 7	458.06	196.07
Propane	1	-108 to -25	6 803 38	804.00	247.04
1-Propanethiol	1	-25 to 91	6 928 46	1 183 307	274.62
2-Propagethiol	1	-37 to 75	6 877 34	1 113 895	226.16
1-Propanol	1	2-120	7 847 67	1 499 21	204 64
2-Propanol	1	0 - 101	8 117 78	1 580 92	219.61
2-Propen-1-ol	1	21-97	11 187 0	4 068 5	392.7
Propionic acid	1	56-139 5	6 403	950.2	130.3
Propionic anhydride	1	67-167	5 819 5	810.3	108.7
Propionitrile	1	84 to 22	5 278 2	665.52	159.10
Propiophenone	1	132 - 201	7 370	1 894	205
Propyl acetate	1	39-101	7.016 15	1 282 28	205
1-Propylamine	1	23-77	6 926 51	1 044 05	210.84
2-Propylamine	î	4-61	6 890 25	985.69	210.01
n-Propylamine n-Propylbenzene	1	43-188	6 951 42	1 491 297	207.14
<i>n</i> -Propyl borate	1	85-179	7 399 8	1 741	207.14
n-Propyl caprate	1	97-186	8 701 22	2 945 99	253 63
n-Propyl caproate	1	43 - 120	8 667 1	2 556.0	262.9
n-Propyl caprolate	1	70-153	8 516 7	2 599 5	246.2
n-Propyl cellosolve	1	70 133	7 146 4	1 440 6	187.7
n-Propyl conosolve	1	40-186	6 886 46	1 460 800	207.94
n-Propyleyclopentane	1	21158	6 903 92	1 384 386	213.16
Propylegeopentalie	1	-112 to -32	6778 11	770 85	215.10
1.2-Propylene ovide	1	-35 to 130	7 064 92	1 113 6	245.51
n-Propylene Oxide	1	26-82	6848	1 127	202
n-Propyl Journate	1	124-205	8 068 0	2 692 4	205
n-Propyl laulaw	1	147200	Q 716 Q	2 092.4	222.3
n-riopyr mynsiaic	1	0.70	5.210 0 6.054 0	1 204 4	212.01
<i>n</i> -1 topy1 initiate	1	166 204	14 170 7	0 750 7	200.7 530 7
	1	100-204	14.127 2	1 139.4	555.1

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	A	В	С
o-(n-Propyl)phenol	1	104-222	9.215	3 254	292
p-(n-Propyl)phenol	1	0-234	8.329 6	2 661	254
<i>n</i> -Propyl phenyl ether	1	101-190	7.734 3	2 146.2	252.3
Propyne	1	-90 to -6	6.784 85	803.73	229.08
Pseudocumenol	1	107-232	6.915	1 547	152
Pyrene	1	200-395	5.618 4	1 122.0	15.2
Pyridine	1	67-153	7.041 15	1 373.80	214.98
Pyrogallol	1	177-309	6.092	1 031	12
Pyrrole	1	66-166	7.294 70	1 501.56	210.42
Quinaldine	1	178 - 248	7.179 00	1 857.84	184.50
Quinoline	1	164-238	6.817 59	1 668.73	186.26
Spiropentane	1	3-71	6.917 00	1 090.08	231.10
Styrene	1	32-82	7.140 16	1 574.51	224.09
Terpenyl acetate	1	37-150	6.443 46	1 377.27	143.85
α -Terpineol	1	84-217	8.141 2	2 479.4	253.7
Terpinolene	1	40-179	7.169	1 706	211
Tetrabutyl tin	1	100-300	6.545	1 649	148
1,1,2,2-Tetrachloro-1,2-difluoro-	1	10-91.5	10.995	4 437.1	455.2
ethane					
1,1,1,2-Tetrachloroethane	1	59-130	6.898 75	1 365.88	209.74
1,1,2,2-Tetrachloroethane	1	25-130	6.631 7	1 228.1	179.9
Tetrachloroethylene	1	37-120	6.976 83	1 386.92	217.53
Tetrachloromethane	1		6.879 26	1 212.021	226.41
Tetradecane	1	122-286	7.013 00	1 740.88	167.72
1-Tetradecanethiol	1		7.048 5	1 909.2	151.9
1-Tetradecanol	1	130-264	6.674 1	1 204.5	54.0
1-Tetradecene	1	119-283	7.030 65	1 754.09	171.52
1,2,3,4-Tetrafluorobenzene	1	6-50	7.084 6	1 339.23	223.49
1,2,3,5-Tetrafluorobenzene	1	6-50	6.986 17	1 245.20	218.35
Tetrafluoroethylene	1	-131 to -65	6.896 59	683.84	245.93
Tetrafluoromethane	1		6.972 31	540.50	260.10
Tetrahydrofuran	1	23-100	6.995 15	1 202.29	226.25
Tetraiodothiophene	1	-65 to 24	5.585 44	871.25	175.59
Tetralin	1	94-206	7.070 55	1 741.30	208.26
1,2,3,4-Tetramethylbenzene	1	80-217	7.059 4	1 690.54	199.48
1,2,3,5-Tetramethylbenzene	1	75228	7.077 9	1 675.43	201.14
1,2,4,5-Tetramethylbenzene	1	74-227	7.080 0	1 672.43	201.43
2,2,3,3-Tetramethylbutane	1	0-65	6.876 65	1 329.93	226.36
Tetramethyl lead	1	060	6.937 7	1 335.3	219.1
2,2,3,3-Tetramethylpentane	1	57-141	6.830 60	1 398.67	213.84
2,2,3,4-Tetramethylpentane	1	52-134	6.834 18	1 375.59	214.94
2,2,4,4-Tetramethylpentane	1	43-123	6.796 20	1 324.59	216.02
Tetramethylsilane	1	-64 to 21	6.822 39	1 033.72	235.62
2-Thiabutane	1	-26 to 90	6.938 49	1 182.562	224.78
Thiacyclobutane	1	-5 to 120	7.016 67	1 321.331	224.51
Thiacyclohexane	1	29-170	6.905 18	1 422.47	211.72
Thiacyclopentane	1	14-148	6.995 40	1 401.939	219.61
Thiacyclopropane	1	-35 to 77	7.037 25	1 194.37	232.42
3-Thiaheptane	1	33-172	6.941 02	1 421.32	205.81
4-Thiaheptane	1	32-170	6.935 77	1 413.44	205.73
2-Thiahexane	1	17-150	6.945 83	1 363.808	212.07
3-Thiahexane	1	14-144	6.933 80	1 341.57	212.51

Substance	Ea.	Range, °C	А	B	С
2-Thianentane	1	-4 to 120	6 955 15	1 28/ 32	210.66
2-Thiapentane	1	-13 to 100	6 9 28 36	1 257 833	219.00
2-Thiapropane	1	-47 to 58	6 9/18 79	1 000 755	230.80
Thiazole	1	63-118	7 142 01	1 425 35	216.26
Thiophene	1	-12 to 108	6 050 26	1 246.02	210.20
Toluene	1	6 137	6 954 64	1 240.02	221.33
a.Toluidine	1	118 200	7 082 03	1 627 72	187 13
m Toluidine	1	122 203	7.082 03	1 631 43	182.01
n Toluidine	1	122-205	7.093 07	1 758 55	201.0
<i>m</i> Tolul pentafluoropropionate	1	08 174	7.200 22	1 707 50	201.0
n Tolvi pentafluoropropionate	1	90-174 00-176	1.427 20 8.078 6	1 707.33	201.70
<i>p</i> -roryr pentanuoropropropronate m Tolul trifuoropostata	1	99-170	7 691 0	2 223.0	232.1
m-Tolyl triffuoroacetete	1	91-100	7.001 0	2 055 41	223.40
<i>p</i> -Toryi unindoloacetate	1	92-109 20 101	6911 0	2 033.41	201.0
1.2.2 Tribromononon	1	102 205	0.021 0	1 370.7	201.0
Trichlorocostic coid	1	120-205	7.037 2	1 755.52	195.42
Trichleresseteritrile	1	112-190	7.273 0	1 394.3	105.4
Trichless stude blaside	1	17-83	/.183 5	1 308.3	232.5
1 1 1 Tricklassethese	1	32~119	0.990 /5	1 390.47	220.11
1,1,1-1 richloroethane	1	-6 to 1/	8.643 4	2 130.0	302.8
1,1,2-1 richloroethane	1	50-114	6.951 85	1 314.41	209.20
Trichloroethylene	1	18-80	0.518 3	1 018.6	192.7
Trichloronuoromethane	1	0.00	6.884 28	1 043.004	236.88
Trichlorosilane	1	2-32	6.773 9	1 009.0	227.2
bis-Trichlorosilylethane	1	91-160	7.835 11	2 241.769	249.84
1,1,1-Trichloro-2,2,2-trifluoro-	1	14-36	4.437 3	204.1	83.9
ethane			6 0 0 0 0		
1,1,2-Trichloro-1,2,2-trifluoro-	1	-25 to 83	6.880 3	1 099.9	227.5
ethane					
Tridecane	1	107-267	7.007 56	1 690.67	174.22
1-Tridecene	I	105-264	6.981 02	1 672.00	174.95
Triethanolamine	1	252-305	10.067 5	4 542.78	297.76
Triethyl aluminum	1	57-126	11.646 1	4 466.59	322.87
Triethylamine	1	50-95	5.858 8	695.7	144.8
Triethyl borate	1	29-109	7.511 1	1 641.7	236.3
Triethylsilanol	1	24-140	7.793 7	1 756.1	202.4
Trifluoroacetic acid	1	12-72	8.389	1 895	273
Trifluoroacetic anhydride	1	-2 to 39	6.135 8	1 026.1	202.0
Trifluoroacetonitrile	1	-132 to -68	7.127 6	773.82	249.9
1,3,5-Trifluorobenzene	1	6-50	6.919 8	1 197.13	219.12
Trifluorochloroethylene	1	-67 to -11	6.896 16	848.33	293.64
1,1,1-Trifluoroethane	1	-110 to -48	6.903 78	788.20	243.23
2,2,2-Trifluoroethanol	1	-0.5 to 25	6.788 2	978.13	173.06
Trifluoromethane	1	-128 to -82	7.088 6	705.33	249.78
bis-(Trifluoromethyl)-acetoxyphos-	1	0-40	7.391 31	1 426.254	220.37
phine					
2,2,2-Trifluoro-1-methylbenzene	1	55-139	6.970 45	1 306.35	217.38
bis-(Trifluoromethyl)-chlorophos-	1	-80 to 0	7.661 06	1 386.652	267.14
phine					
Trifluoromethylhypofluorite	1	145-189	6.950 6	650.1	-18.4
bis-(Trifluoromethyl)-iodophos-	1	0-47	6.901 39	1 180.723	222.95
phine					
Triisobutylene	1	56-179	7.002 1	1 613.47	212.5

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

TABLE 2.36 Vapor Pressures of Various Organic Compounds (Continued)

Substance	Eq.	Range, °C	Α	В	С
Trimethyl aluminum	1	64-127	7.570 29	1 734.72	242.78
Trimethylamine	1	-80 to 3	6.857 55	955.94	237.52
1,2,3-Trimethylbenzene	1	57 - 205	7.040 82	1 593.958	207.08
1,2,4-Trimethylbenzene	1	52-198	7.043 83	1 573.257	208.56
1,3,5-Trimethylbenzene	1	49-193	7.074 36	1 569.622	209.58
2,2,3-Trimethylbutane	1	- 19 to 106	6.792 30	1 200.563	226.05
Trimethylchlorosilane	1	2-55	7.055 8	1 245.5	240.7
1,1,3-Trimethylcyclohexane	1	55-137	6.839 51	1 394.88	215.73
1,1,2-Trimethylcyclopentane	1	36-115	6.822 38	1 309.81	218.58
1,1,3-Trimethylcyclopentane	1	29-106	6.809 31	1 275.92	219.89
1,2,4-Trimethylcyclopentane					
cis, cis, trans	1	39-118	6.857 38	1 335.69	219.16
cis, trans, cis	1	33-110	6.851 3	1 307.10	219.92
1,3,5-Trimethyl-2-ethylbenzene	1	88-210	6.790 8	1 505.8	174.7
1,4,5-Trimethyl-2-ethylbenzene	1	87-132	3.029 3	116.4	-34.6
2,2,5-Trimethylhexane	1	46-125	6.837 75	1 325.54	210.91
2,4,4-Trimethylhexane	1	51-131	6.856 54	1 371.81	214.40
Trimethylhydrazine	1	- 16 to 14	7.106 80	1 189.88	222.06
O,N,N-Trimethylhydroxylamine	1	-79 to 23	6.765 8	979.55	222.2
2,2,3-Trimethylpentane	1		6.825 46	1 294.88	218.42
2,2,4-Trimethylpentane	1	24 - 100	6.811 89	1 257.84	220.74
2,3,3-Trimethylpentane	1		6.843 53	1 328.05	220.38
2,3,4-Trimethylpentane	1	36-114	6.853 96	1 315.08	217.53
2,4,4-Trimethyl-1-pentene	1	-3 to 128	6.834 57	1 273.416	220.62
2,4,4-Trimethyl-2-pentene	1	2-131	6.859 22	1 272.717	214.99
2,3,5-Trimethylphenol	1	186 - 247	7.080 12	1 685.90	166.14
Trimethylsilanol	1	18 - 85	8.126 6	1 657.6	219.2
2,4,5-Trimethylstyrene	1	79-216	7.331 5	1 880.7	205.7
2,4,6-Trimethylstyrene	1	90-208	7.089 1	1 702.61	195.93
1,2,4-Trinitrobenzene	1	250 - 300	3.194	87	
1,3,5-Trinitrobenzene	1	202-312	5.534 5	993.6	11.2
2,4,6-Trinitrobenzene	1	249-342	9.621 1	4 987.9	329.9
2,4,6-Trinitrotoluene	1	230 - 250	7.671 52	2 669.4	205.6
α -Trioxane	1	56-114	7.818 6	1 783.3	247.1
Trivinylarsine	1	22 - 66	7.894 1	2 115.6	293.9
Trivinyl bismuth	1	20-74	7.237 2	1 667.0	215.1
Trivinylphosphine	1	16-61	7.928 4	2 102.0	301.3
Trivinylstibine	1	20-70	8.322 1	2 446.3	303.8
Undecane	1	75-226	6.972 20	1 569.57	187.70
1-Undecanethiol	1		7.012 2	1 767.4	170.4
1-Undecene	1	72–222	6.966 77	1 563.21	189.87
Urethane	1		7.421 64	1 758.21	205.0
Vinyl acetate	1	22-72	7.210 1	1 296.13	226.66
o-Xylene	1	32-172	6.998 91	1 474.679	213.69
<i>m</i> -Xylene	1	28-166	7.009 08	1 462.266	215.11
<i>p</i> -Xylene	1	27-166	6.990 52	1 453.430	215.31
2,3-Xylenol	1	149-218	7.053 97	1 617.57	170.74
2,4-Xylenol	1	144-212	7.055 39	1 587.46	169.34
2,5-Xylenol	1	144-212	7.051 56	1 592.70	170.74
2,6-Xylenol	1	145-204	7.070 70	1 628.32	187.60
3,4-Xylenol	1	172-229	7.079 19	1 621.45	159.26
3,3-Xylenol	1	155-223	7.130 76	1 639.86	164.16

		Pressure, mm Hg											
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point.	
Name	Formula					Temperatu	re, °C					°C	
Acenaphthalene	C12H10		114.8	131.2	148.7	168.2	181.2	197.5	222.1	250.0	277.5	95	
Acetal	$C_{6}H_{14}O_{2}$	-23.0	-2.3	+8.0	19.6	31.9	39.8	50.1	66.3	84.0	102.2		
Acetaldehyde	C_2H_4O	-81.5	-65.1	-56.8	-47.8	-37.8	-31.4	-22.6	-10.0	+4.9	20.2	-123.5	
Acetamide	C ₂ H ₅ NO	65.0	92.0	105.0	120.0	135.8	145.8	158.0	178.3	200.0	222.0	81	
Acetanilide	C ₈ H ₉ NO	114.0	146.6	162.0	180.0	199.6	211.8	227.2	250.5	227.0	303.8	113.5	
Acetic acid	$C_2H_4O_2$	-17.2	+6.3	17.5	29.9	43.0	51.7	63.0	80.0	99.0	118.1	16.7	
anhydride	$C_4H_6O_3$	1.7	24.8	36.0	48.3	62.1	70.8	82.2	100.0	119.8	139.6	-73	
Acetone	C ₃ H ₆ O	-59.4	-40.5	-31.1	-20.8	-9.4	-2.0	+7.7	22.7	39.5	56.5	-94.6	
Acetonitrile	C_2H_3N	-47.0	-26.6	-16.3	-5.0	+7.7	15.9	27.0	43.7	62.5	81.8	-41	
Acetophenone	C ₈ H ₈ O	37.1	64.0	78.0	92.4	109.4	119.8	133.6	154.2	178.0	202.4	20.5	
Acetyl chloride	C ₂ H ₃ OCl	-50.0	-35.0	-27.6	-19.6	-10.4	-4.5	+3.2	16.1	32.0	50.8	-112.0	
Acetylene	C ₂ H ₂	-142.9	-133.0	-128.2	-122.8	-116.7	-112.8	-107.9	-100.3	-92.0	-84.0	-81.5	
Acridine	C ₁₃ H ₉ N	129.4	165.8	184.0	203.5	224.2	238.7	256.0	284.0	314.3	346.0	110.5	
Acrolein (2-propenal)	C ₃ H ₄ O	-64.5	-46.0	-36.7	-26.3	-15.0	-7.5	+2.5	17.5	34.5	52.5	-87.7	
Acrylic acid	$C_3H_4O_2$	+3.5	27.3	39.0	52.0	66.2	75.0	86.1	103.3	122.0	141.0	14	
Adipic acid	$C_6H_{10}O_4$	159.5	191.0	205.5	222.0	240.5	251.0	265.0	287.8	312.5	337.5	152	
Allene (propadiene)	C_3H_4	-120.6	-108.0	-101.0	-93.4	-85.2	-78.8	-72.5	-61.3	-48.5	-35.0	-136	
Allyl alcohol (propen-1-ol-3)	C ₃ H ₆ O	-20.0	+0.2	10.5	21.7	33.4	40.3	50.0	64.5	80.2	96.6	-129	
chloride (3-chloropropene)	C ₃ H ₅ Cl	-70.0	-52.0	-42.9	-32.8	-21.2	-14.1	-4.5	10.4	27.5	44.6	-136.4	
isopropyl ether	$C_6H_{12}O$	-43.7	-23.1	-12.9	-1.8	+10.9	18.7	29.0	44.3	61.7	79.5		
isothiocyanate	C ₄ H ₅ NS	-2.0	+25.3	38.3	52.1	67.4	76.2	89.5	108.0	129.8	150.7	-80	
<i>n</i> -propyl ether	$C_6H_{12}O$	-39.0	-18.2	-7.9	+3.7	16.4	25.0	35.8	52.6	71.4	90.5		
4-Allylveratrole	$C_{11}H_{14}O_2$	85.0	113.9	127.0	142.8	158.3	169.6	183.7	204.0	226.2	248.0		
iso-Amyl acetate	$C_7 H_{14} O_2$	0.0	+23.7	35.2	47.8	62.1	71.0	83.2	101.3	121.5	142.0		
<i>n</i> -Amyl alcohol	C ₅ H ₁₂ O	+13.6	34.7	44.9	55.8	68.0	75.5	85.8	102.0	119.8	137.8		
<i>iso</i> -Amyl alcohol	$C_5H_{12}O$	+10.0	30.9	40.8	51.7	63.4	71.0	80.7	95.8	113.7	130.6	-117.2	
sec-Amyl alcohol (2-pentanol)	C ₅ H ₁₂ O	+1.5	22.1	32.2	42.6	54.1	61.5	70.7	85.7	102.3	119.7		
<i>tert</i> -Amyl alcohol	$C_5H_{12}O$	-12.9	+7.2	17.2	27.9	38.8	46.0	55.3	69.7	85.7	101.7	-11.9	
sec-Amylbenzene	$C_{11}H_{16}$	29.0	55.8	69.2	83.8	100.0	110.4	124.1	145.2	168.0	193.0		
iso-Amyl benzoate	$C_{12}H_{16}O_{2}$	72.0	104.5	121.6	139.7	158.3	171.4	186.8	210.2	235.8	262.0		
bromide (1-bromo-3-methylbutane)	$C_5 H_{11} Br$	-20.4	+2.1	13.6	26.1	39.8	48.7	60.4	78.7	99.4	120.4		

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

						Pressu	ıre, mm H	g				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Temperat	ure, °C					°C
<i>n</i> -butyrate	$C_9H_{18}O_2$	21.2	47.1	59.9	74.0	90.0	99.8	113.1	133.2	155.3	178.6	
formate	$C_6H_{12}O_2$	-17.5	+5.4	17.1	30.0	44.0	53.3	65.4	83.2	102.7	123.3	
iodide (1-iodo-3-methylbutane)	$C_5H_{11}I$	-2.5	+21.9	34.1	47.6	62.3	71.9	84.4	103.8	125.8	148.2	
isobutyrate	$C_9H_{18}O_2$	14.8	40.1	52.8	66.6	81.8	91.7	104.4	124.2	146.0	168.8	
Amyl isopropionate	$C_8H_{16}O_2$	+8.5	33.7	46.3	60.0	75.5	85.2	97.6	117.3	138.4	160.2	
iso-Amyl isovalerate	$C_{10}H_{20}O_2$	27.0	54.4	68.6	83.8	100.6	110.3	125.1	146.1	169.5	194.0	
<i>n</i> -Amyl levulinate	$C_{10}H_{18}O_3$	81.3	110.0	124.0	139.7	155.8	165.2	180.5	203.1	227.4	253.2	
iso-Amyl levulinate	$C_{10}H_{18}O_3$	75.6	104.0	118.8	134.4	151.7	162.6	177.0	198.1	222.7	247.9	
nitrate	$C_5H_{11}NO_3$	+5.2	28.8	40.3	53.5	67.6	76.3	88.6	106.7	126.5	147.5	
4-tert-Amylphenol	$C_{11}H_{16}O$		109.8	125.5	142.3	160.3	172.6	189.0	213.0	239.5	266.0	93
Anethole	$C_{10}H_{12}O$	62.6	91.6	106.0	121.8	139.3	149.8	164.2	186.1	210.5	235.3	22.5
Angelonitrile	C ₅ H ₇ N	-8.0	+15.0	28.0	41.0	55.8	65.2	77.5	96.3	117.7	140.0	
Aniline	C ₆ H ₇ N	34.8	57.9	69.4	82.0	96.7	106.0	119.9	140.1	161.9	184.4	-6.2
2-Anilinoethanol	C ₈ H ₁₁ NO	104.0	134.3	149.6	165.7	183.7	194.0	209.5	230.6	254.5	279.6	
Anisaldehyde	$C_8H_8O_2$	73.2	102.6	117.8	133.5	150.5	161.7	176.7	199.0	223.0	248.0	2.5
o-Anisidine (2-methoxyaniline)	C ₇ H ₉ NO	61.0	88.0	101.7	116.1	132.0	142.1	155.2	175.3	197.3	218.5	5.2
Anthracene	$C_{14}H_{10}$	145.0	173.5	187.2	201.9	217.5	231.8	250.0	279.0	310.2	342.0	217.5
Anthraquinone	$C_{14}H_8O_2$	190.0	219.4	234.2	248.3	264.3	273.3	285.0	314.6	346.2	379.9	286
Azelaic acid	$C_9H_{16}O_4$	178.3	210.4	225.5	242.4	260.0	271.8	286.5	309.6	332.8	356.5	106.5
Azelaldehyde	$C_9H_{18}O$	33.3	58.4	71.6	85.0	100.2	110.0	123.0	142.1	163.4	185.0	
Azobenzene	$C_{12}H_{10}N_2$	103.5	135.7	151.5	168.3	187.9	199.8	216.0	240.0	266.1	293.0	68
Benzal chloride (α , α -Dichlorotoluene)	$C_7H_6Cl_2$	35.5	64.0	78.7	94.3	112.1	123.4	138.3	160.7	187.0	214.0	-16.1
Benzaldehyde	C ₇ H ₆ O	26.2	50.1	62.0	75.0	90.1	99.6	112.5	131.7	154.1	179.0	-26
Benzanthrone	$C_{17}H_{10}O$	225.0	274.5	297.2	322.5	350.0	368.8	390.0	426.5			174
Benzene	C ₆ H ₆	-36.7	-19.6	-11.5	-2.6	+7.6	15.4	26.1	42.2	60.6	80.1	+5.5
Benzenesulfonylchloride	C ₆ H ₅ ClO ₂ S	65.9	96.5	112.0	129.0	147.7	158.2	174.5	198.0	224.0	251.5	14.5
Benzil	$C_{14}H_{10}O_2$	128.4	165.2	183.0	202.8	224.5	238.2	255.8	283.5	314.3	347.0	95
Benzoic acid	$C_7H_6O_2$	96.0	119.5	132.1	146.7	162.6	172.8	186.2	205.8	227.0	249.2	121.7
anhydride	$C_{14}H_{10}O_3$	143.8	180.0	198.0	218.0	239.8	252.7	270.4	299.1	328.8	360.0	42
Benzoin	$C_{14}H_{12}O_2$	135.6	170.2	188.1	207.0	227.9	241.7	258.0	284.4	313.5	343.0	132
Benzonitrile	C_7H_5N	28.2	55.3	69.2	83.4	99.6	109.8	123.5	144.1	166.7	190.6	-12.9

Benzophenone	$C_{13}H_{10}O$	108.2	141.7	157.6	175.8	195.7	208.2	224.4	249.8	276.8	305.4	48.5
Benzotrichloride (α, α, α -Trichlorotoluene)	C7H5Cl3	45.8	73.7	87.6	102.7	119.8	130.0	144.3	165.6	189.2	213.5	-21.2
Benzotrifluoride (α, α, α -Trifluorotoluene)	$C_7H_5F_3$	-32.0	-10.3	-0.4	12.2	25.7	34.0	45.3	62.5	82.0	102.2	-29.3
Benzoyl bromide	C7H5BrO	47.0	75.4	89.8	105.4	122.6	133.4	147.7	169.2	193.7	218.5	0
chloride	C ₇ H ₅ ClO	32.1	59.1	73.0	87.6	103.8	114.7	128.0	149.5	172.8	197.2	-0.5
nitrile	C ₈ H ₅ NO	44.5	71.7	85.5	100.2	116.6	127.0	141.0	161.3	185.0	208.0	33.5
Benzyl acetate	$C_9H_{10}O_2$	45.0	73.4	87.6	102.3	119.6	129.8	144.0	165.5	189.0	213.5	-51.5
alcohol	C ₇ H ₈ O	58.0	80.8	92.6	105.8	119.8	129.3	141.7	160.0	183.0	204.7	-15.3
Benzylamine	C ₇ H ₉ N	29.0	54.8	67.7	81.8	97.3	107.3	120.0	140.0	161.3	184.5	
Benzyl bromide (α -bromotoluene)	C ₇ H ₇ Br	32.2	59.6	73.4	88.3	104.8	115.6	129.8	150.8	175.2	198.5	-4
chloride (α -chlorotoluene)	C ₇ H ₇ Cl	22.0	47.8	60.8	75.0	90.7	100.5	114.2	134.0	155.8	179.4	-39
cinnamate	$C_{16}H_{14}O_2$	173.8	206.3	221.5	239.3	255.8	267.0	281.5	303.8	326.7	350.0	39
Benzyldichlorosilane	C7H8Cl2Si	45.3	70.2	83.2	96.7	111.8	121.3	133.5	152.0	173.0	194.3	
Benzyl ethyl ether	$C_9H_{12}O$	26.0	52.0	65.0	79.6	95.4	105.5	118.9	139.6	161.5	185.0	
phenyl ether	$C_{13}H_{12}O$	95.4	127.7	144.0	160.7	180.1	192.6	209.2	233.2	259.8	287.0	
isothiocyanate	C ₈ H ₇ NS	79.5	107.8	121.8	137.0	153.0	163.8	177.7	198.0	220.4	243.0	
Biphenyl	$C_{12}H_{10}$	70.6	101.8	117.0	134.2	152.5	165.2	180.7	204.2	229.4	254.9	69.5
1-Biphenyloxy-2,3-epoxypropane	$C_{15}H_{14}O_2$	135.5	169.9	187.2	205.8	226.3	239.7	255.0	280.4	309.8	340.0	
d-Bornyl acetate	$C_{12}H_{20}O_2$	46.9	75.7	90.2	106.0	123.7	135.7	149.8	172.0	197.5	223.0	29
Bornyl <i>n</i> -butyrate	$C_{14}H_{24}O_2$	74.0	103.4	118.0	133.8	150.7	161.8	176.4	198.0	222.2	247.0	
formate	$C_{11}H_{18}O_2$	47.0	74.8	89.3	104.0	121.2	131.7	145.8	166.4	190.2	214.0	
isobutyrate	$C_{14}H_{24}O_2$	70.0	99.8	114.0	130.0	147.2	157.6	172.2	194.2	218.2	243.0	
propionate	$C_{13}H_{22}O_2$	64.6	93.7	108.0	123.7	140.4	151.2	165.7	187.5	211.2	235.0	
Brassidic acid	$C_{22}H_{42}O_2$	209.6	241.7	256.0	272.9	290.0	301.5	316.2	336.8	359.6	382.5	61.5
Bromoacetic acid	$C_2H_3BrO_2$	54.7	81.6	94.1	108.2	124.0	133.8	146.3	165.8	186.7	208.0	49.5
4-Bromoanisole	C ₇ H ₇ BrO	48.8	77.8	91.9	107.8	125.0	136.0	150.1	172.7	197.5	223.0	12.5
Bromobenzene	C ₆ H ₅ Br	+2.9	27.8	40.0	53.8	68.6	78.1	90.8	110.1	132.3	156.2	-30.7
4-Bromobiphenyl	C12H9Br	98.0	133.7	150.6	169.8	190.8	204.5	221.8	248.2	277.7	310.0	90.5
1-Bromo-2-butanol	C ₄ H ₉ BrO	23.7	45.4	55.8	67.2	79.5	87.0	97.6	112.1	128.3	145.0	
1-Bromo-2-butanone	C ₄ H ₇ BrO	+6.2	30.0	41.8	54.2	68.2	77.3	89.2	107.0	126.3	147.0	
cis-1-Bromo-1-butene	C_4H_7Br	-44.0	-23.2	-12.8	-1.4	+11.5	19.8	30.8	47.8	66.8	86.2	
trans-1-Bromo-butene	C_4H_7Br	-38.4	-17.0	-6.4	+5.4	18.4	27.2	38.1	55.7	75.0	94.7	-100.3
2-Bromo-1-butene	C ₄ H ₇ Br	-47.3	-27.0	-16.8	-5.3	+7.2	15.4	26.3	42.8	61.9	81.0	-133.4
cis-2-Bromo-2-butene	C_4H_7Br	-39.0	-17.9	-7.2	+4.6	17.7	26.2	37.5	54.5	74.0	93.9	-111.2
trans-2-Bromo-2-butene	C_4H_7Br	-45.0	-24.1	-13.8	-2.4	+10.5	18.7	29.9	46.5	66.0	85.5	-114.6
1,4-Bromochlorobenzene	C_6H_4BrCl	32.0	59.5	72.7	87.8	103.8	114.8	128.0	149.5	172.6	196.9	
1-Bromo-1-chloroethane	C_2H_4BrCl	-36.0	-18.0	-9.4	0.0	+10.4	17.0	28.0	44.7	63.4	82.7	16.6

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

						Press	ure, mm H	lg				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
1-Bromo-2-chloroethane	C ₂ H ₄ BrCl	-28.8	-7.0	+4.1	16.0	29.7	38.0	49.5	66.8	86.0	106.7	-16.6
2-Bromo-4,6-dichlorophenol	C ₆ H ₃ BrCl ₂ O	84.0	115.6	130.8	147.7	165.8	177.6	193.2	216.5	242.0	268.0	68
1-Bromo-4-ethyl benzene	C ₈ H ₉ Br	30.4	42.5	74.0	90.2	108.5	121.0	135.5	156.5	182.0	206.0	-45.0
(2-Bromoethyl)-benzene	C ₈ H ₉ Br	48.0	76.2	90.5	105.8	123.2	133.8	148.2	169.8	194.0	219.0	
2-Bromoethyl 2-chloroethyl ether	C ₄ H ₈ BrClO	36.5	63.2	76.3	90.8	106.6	116.4	129.8	150.0	172.3	195.8	
(2-Bromoethyl)-cyclohexane	$C_8H_{15}Br$	38.7	66.6	80.5	95.8	113.0	123.7	138.0	160.0	186.2	213.0	
1-Bromoethylene	C_2H_3Br	-95.4	-77.8	-68.8	-58.8	-48.1	-41.2	-31.9	-17.2	-1.1	+15.8	-138
Bromoform (tribromomethane)	CHBr ₃		22.0	34.0	48.0	63.6	73.4	85.9	106.1	127.9	150.5	8.5
1-Bromonaphthalene	$C_{10}H_7Br$	84.2	117.5	133.6	150.2	170.2	183.5	198.8	224.2	252.0	281.1	5.5
2-Bromo-4-phenylphenol	C ₁₂ H ₉ BrO	100.0	135.4	152.3	171.8	193.8	207.0	224.5	251.0	280.2	311.0	95
3-Bromopyridine	C ₅ H ₄ BrN	16.8	42.0	55.2	69.1	84.1	94.1	107.8	127.7	150.0	173.4	
2-Bromotoluene	C ₇ H ₇ Br	24.4	49.7	62.3	76.0	91.0	100.0	112.0	133.6	157.3	181.8	-28
3-Bromotuluene	C ₇ H ₇ Br	14.8	50.8	64.0	78.1	93.9	104.1	117.8	138.0	160.0	183.7	39.8
4-Bromotoluene	C ₇ H ₇ Br	10.3	47.5	61.1	75.2	91.8	102.3	116.4	137.4	160.2	184.5	28.5
3-Bromo-2,4,6-trichlorophenol	C ₆ H ₂ BrCl ₃ O	112.4	146.2	163.2	181.8	200.5	213.0	229.3	253.0	278.0	305.8	
2-Bromo-1,4-xylene	C ₈ H ₉ Br	37.5	65.0	78.8	94.0	110.6	121.6	135.7	156.4	181.0	206.7	+9.5
1,2-Butadiene (methyl allene)	C_4H_6	-89.5	-72.7	-64.2	-54.9	-44.3	-37.5	-28.3	-14.2	+1.8	18.5	
1,3-Butadiene	C_4H_6	-102.8	-87.6	-79.7	-71.0	-61.3	-55.1	-46.8	-33.9	-19.3	-4.5	-108.9
<i>n</i> -Butane	$C_4 H_{10}$	-101.5	-85.7	-77.8	-68.9	-59.1	-52.8	-44.2	-31.2	-16.3	-0.5	-135
<i>iso</i> -Butane (2-methylpropane)	$C_4 H_{10}$	-109.2	-94.1	-86.4	-77.9	-68.4	-62.4	-54.1	-41.5	-27.1	-11.7	-145
1,3-Butanediol	$C_4 H_{10} O_2$	22.2	67.5	85.3	100.0	117.4	127.5	141.2	161.0	183.8	206.5	77
1,2,3-Butanetriol	$C_4 H_{10} O_3$	102.0	132.0	146.0	161.0	178.0	188.0	202.5	222.0	243.5	264.0	
1-Butene	C_4H_8	-104.8	-89.4	-81.6	-73.0	-63.4	-57.2	-48.9	-36.2	-21.7	-6.3	-130
cis-2-Butene	C_4H_8	-96.4	-81.1	-73.4	-64.6	-54.7	-48.4	-39.8	-26.8	-12.0	+3.7	-138.9
trans-2-Butene	C_4H_8	-99.4	-84.0	-76.3	-67.5	-57.6	-51.3	-42.7	-29.7	-14.8	+0.9	-105.4
3-Butenenitrile	C_4H_5N	-19.6	+2.9	14.1	26.6	40.0	48.8	60.2	78.0	98.0	119.0	
iso-Butyl acetate	$C_6H_{12}O_2$	-21.2	+1.4	12.8	25.5	39.2	48.0	59.7	77.6	97.5	118.0	-98.9
<i>n</i> -Butyl acrylate	$C_7 H_{12} O_2$	-0.5	+23.5	35.5	48.6	63.4	72.6	85.1	104.0	125.2	147.2	-64.6
alcohol	$C_4H_{10}O$	-1.2	+20.0	30.2	41.5	53.4	60.3	70.1	84.3	100.8	117.5	-79.9
iso-Butyl alcohol	$C_4H_{10}O$	-9.0	+11.6	21.7	32.4	44.1	51.7	61.5	75.9	91.4	108.0	-108
sec-Butyl alcohol	$C_4H_{10}O$	-12.2	+7.2	16.9	27.3	38.1	45.2	54.1	67.9	83.9	99.5	-114.7

tert-Butyl alcohol	$C_4H_{10}O$	-20.4	-3.0	+5.5	14.3	24.5	31.0	39.8	52.7	68.0	82.9	25.3
iso-Butyl amine	$C_4H_{11}N$	-50.0	-31.0	-21.0	-10.3	+1.3	8.8	18.8	32.0	50.7	68.6	-85.0
<i>n</i> -Butylbenzene	$C_{10}H_{14}$	22.7	48.8	62.0	76.3	92.4	102.6	116.2	136.9	159.2	183.1	-88.0
iso-Butylbenzene	$C_{10}H_{14}$	14.1	40.5	53.7	67.8	83.3	93.3	107.0	127.2	149.6	172.8	-51.5
sec-Butylbenzene	$C_{10}H_{14}$	18.6	44.2	57.0	70.6	86.2	96.0	109.5	128.8	150.3	173.5	-75.5
tert-Butylbenzene	$C_{10}H_{14}$	13.0	39.0	51.7	65.6	80.8	90.6	103.8	123.7	145.8	168.5	-58
iso-Butyl benzoate	$C_{11}H_{14}O_2$	64.0	93.6	108.6	124.2	141.8	152.0	166.4	188.2	212.8	237.0	
<i>n</i> -Butyl bromide (1-bromobutane)	C ₄ H ₉ Br	-33.0	-11.2	-0.3	+11.6	24.8	33.4	44.7	62.0	81.7	101.6	-112.4
iso-Butyl n-butyrate	$C_8H_{16}O_2$	+4.6	30.0	42.2	56.1	71.7	81.3	94.0	113.9	135.7	156.9	
carbamate	$C_5H_{11}NO_2$		83.7	96.4	110.1	125.3	134.6	147.2	165.7	186.0	206.5	65
Butyl carbitol (diethylene glycol	$C_8H_{18}O_3$	70.0	95.7	107.8	120.5	135.5	146.0	159.8	181.2	205.0	231.2	
butyl ether)												
<i>n</i> -Butyl chloride (1-chlorobutane)	C ₄ H ₉ Cl	-49.0	-28.9	-18.6	-7.4	+5.0	13.0	24.0	40.0	58.8	77.8	-123.1
iso-Butyl chloride	C ₄ H ₉ Cl	-53.8	-34.3	-24.5	-13.8	-1.9	+5.9	16.0	32.0	50.0	68.9	-131.2
sec-Butyl chloride (2-Chlorobutane)	C ₄ H ₉ Cl	-60.2	-39.8	-29.2	-17.7	-5.0	+3.4	14.2	31.5	50.0	68.0	-131.3
tert-Butyl chloride	C ₄ H ₉ Cl					-19.0	-11.4	-1.0	+14.6	32.6	51.0	-26.5
sec-Butyl chloroacetate	C ₆ H ₁₁ ClO ₂	17.0	41.8	54.6	68.2	83.6	93.0	105.5	124.1	146.0	167.8	
2-tert-Butyl-4-cresol	$C_{11}H_{16}O$	70.0	98.0	112.0	127.2	143.9	153.7	167.0	187.8	210.0	232.6	
4-tert-Butyl-2-cresol	$C_{11}H_{16}O$	74.3	103.7	118.0	134.0	150.8	161.7	176.2	197.8	221.8	247.0	
iso-Butyl dichloroacetate	$C_6H_{10}Cl_2O_2$	28.6	54.3	67.5	81.4	96.7	106.6	119.8	139.2	160.0	183.0	
2,3-Butylene glycol (2,3-butanediol)	$C_4H_{10}O_2$	44.0	68.4	80.3	93.4	107.8	116.3	127.8	145.6	164.0	182.0	22.5
2-Butyl-2-ethylbutane-1,3-diol	$C_{10}H_{12}O_2$	94.1	122.6	136.8	151.2	167.8	178.0	191.9	212.0	233.5	255.0	
2-tert-Butyl-4-ethylphenol	C ₁₂ H ₁₅ O	76.3	106.2	121.0	137.0	154.0	165.4	179.0	200.3	223.8	247.8	
<i>n</i> -Butyl formate	$C_5H_{10}O_2$	-26.4	-4.7	+6.1	18.0	31.6	39.8	51.0	67.9	86.2	106.0	
iso-Butyl formate	$C_5H_{10}O_2$	-32.7	-11.4	-0.8	+11.0	24.1	32.4	43.4	60.0	79.0	98.2	-95.3
sec-Butyl formate	$C_{5}H_{10}O_{2}$	-34.4	-13.3	-3.1	+8.4	21.3	29.6	40.2	56.8	75.2	93.6	
sec-Butyl glycolate	$C_{6}H_{12}O_{3}$	28.3	53.6	66.0	79.8	94.2	104.0	116.4	135.5	155.6	177.5	
iso-Butyl iodide (1-iodo-2-	C ₄ H ₉ I	-17.0	+5.0	17.0	29.8	42.8	51.8	63.5	81.0	100.3	120.4	-90.7
methylpropane)												
isobutyrate	$C_8H_{16}O_2$	+4.1	28.0	39.9	52.4	67.2	75.9	88.0	106.3	126.3	147.5	-80.7
isovalerate	$C_9H_{18}O_2$	16.0	41.2	53.8	67.7	82.7	92.4	105.2	124.8	146.4	168.7	
levulinate	$C_9H_{16}O_3$	65.0	92.1	105.9	120.2	136.2	147.0	160.2	181.8	205.5	229.9	
naphthylketone (1-isovaleronaphthone)	C15H16O	136.0	167.9	184.0	201.6	219.7	231.5	246.7	269.7	294.0	320.0	
2-sec-Butylphenol	$C_{10}H_{14}O$	57.4	86.0	100.8	116.1	133.4	143.9	157.3	179.7	203.8	228.0	
2-tert-Butylphenol	$C_{10}H_{14}O$	56.6	84.2	98.1	113.0	129.2	140.0	153.5	173.8	196.3	219.5	
4-iso-Butylphenol	$C_{10}H_{14}O$	72.1	100.9	115.5	130.3	147.2	157.0	171.2	192.1	214.7	237.0	
4-sec-Butylphenol	C ₁₀ H ₁₄ O	71.4	100.5	114.8	130.3	147.8	157.9	172.4	194.3	217.6	242.1	

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

		Pressure, mm Hg										
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
4- <i>tert</i> -Butylphenol	C ₁₀ H ₁₄ O	70.0	99.2	114.0	129.5	146.0	156.0	170.2	191.5	214.0	238.0	99
2-(4-tert-Butylphenoxy)ethyl acetate	$C_{14}H_{20}O_3$	118.0	150.0	165.8	183.3	201.5	212.8	228.0	250.3	277.6	304.4	
4-tert-Butylphenyl dichlorophosphate	$\begin{array}{c} C_{10}H_{13}Cl_2\\ O_2P \end{array}$	96.0	129.6	146.0	164.0	184.3	197.2	214.3	240.0	268.2	299.0	
<i>tert</i> -Butyl phenyl ketone (pivalophenone)	$C_{11}H_{14}O$	57.8	85.7	99.0	114.3	130.4	140.8	154.0	175.0	197.7	220.0	
iso-Butyl propionate	$C_7H_{14}O_2$	-2.3	+20.9	32.3	44.8	58.5	67.6	79.5	97.0	116.4	136.8	-71
4-tert-Butyl-2,5-xylenol	$C_{12}H_{18}O$	88.2	119.8	135.0	151.0	169.8	180.3	195.0	217.5	241.3	265.3	
4-tert-Butyl-2,6-xylenol	$C_{12}H_{18}O$	74.0	103.9	119.0	135.0	152.2	163.6	176.0	196.0	217.8	239.8	
6-tert-Butyl-2,4-xylenol	$C_{12}H_{18}O$	70.3	100.2	115.0	131.0	148.5	158.2	172.0	192.3	214.2	236.5	
6-tert-Butyl-3,4-xylenol	$C_{12}H_{18}O$	83.9	113.6	127.0	143.0	159.7	170.0	184.0	204.5	226.7	249.5	
Butyric acid	$C_4H_8O_2$	25.5	49.8	61.5	74.0	88.0	96.5	108.0	125.5	144.5	163.5	-74
iso-Butyric acid	$C_4H_8O_2$	14.7	39.3	51.2	64.0	77.8	86.3	98.0	115.8	134.5	154.5	-47
Butyronitrile	C_4H_7N	-20.0	+2.1	13.4	25.7	38.4	47.3	59.0	76.7	96.8	117.5	
<i>iso</i> -Valerophenone	$C_{11}H_{14}O$	58.3	87.0	101.4	116.8	133.8	144.6	158.0	180.1	204.2	228.0	
Camphene	$C_{10}H_{16}$			47.2	60.4	75.7	85.0	97.9	117.5	138.7	160.5	50
Campholenic acid	$C_{10}H_{16}O_2$	97.6	125.7	139.8	153.9	170.0	180.0	193.7	212.7	234.0	256.0	
d-Camphor	$C_{10}H_{16}O$	41.5	68.6	82.3	97.5	114.0	124.0	138.0	157.9	182.0	209.2	178.5
Camphylamine	$C_{10}H_{19}N$	45.3	74.0	83.7	97.6	112.5	122.0	134.6	153.0	173.8	195.0	
Capraldehyde	$C_{10}H_{20}O$	51.9	78.8	92.0	106.3	122.2	132.0	145.3	164.8	186.3	208.5	
Capric acid	$C_{10}H_{20}O_2$	125.0	142.0	152.2	165.0	179.9	189.8	200.0	217.1	240.3	268.4	31.5
<i>n</i> -Caproic acid	$C_{6}H_{12}O_{2}$	71.4	89.5	99.5	111.8	125.0	133.3	144.0	160.8	181.0	202.0	-1.5
iso-Caproic acid	$C_{6}H_{12}O_{2}$	66.2	83.0	94.0	107.0	120.4	129.6	141.4	158.3	181.0	207.7	-35
iso-Caprolactone	$C_6H_{10}O_2$	38.3	66.4	80.3	95.7	112.3	123.2	137.2	157.8	182.1	207.0	
Capronitrile	$C_6H_{11}N$	9.2	34.6	47.5	61.7	76.9	86.8	99.8	119.7	141.0	163.7	
Capryl alcohol (2-octanol)	$C_8H_{18}O$	32.8	57.6	70.0	83.3	98.0	107.4	119.8	138.0	157.5	178.5	-38.6
Caprylaldehyde	$C_8H_{16}O$	73.4	92.0	101.2	110.2	120.0	126.0	133.9	145.4	156.5	168.5	
Caprylic acid (octanoic acid)	$C_8H_{16}O_2$	92.3	114.1	124.0	136.4	150.6	160.0	172.2	190.3	213.9	237.5	16
Caprylonitrile	$C_8H_{15}N$	43.0	67.6	80.4	94.6	110.6	121.2	134.8	155.2	179.5	204.5	
Carbazole	$C_{12}H_9N$						248.2	265.0	292.5	323.0	354.8	244.8
Carbon dioxide	CO_2	-134.3	-124.4	-119.5	-114.4	-108.6	-104.8	-100.2	-93.0	-85.7	-78.2	-57.5
disulfide	CS_2	-73.8	-54.3	-44.7	-34.3	-22.5	-15.3	-5.1	+10.4	28.0	46.5	-110.8
monoxide	CO	-222.0	-217.2	-215.0	-212.8	-210.0	-208.1	-205.7	-201.3	-196.3	-191.3	-205.0

oxyselenide (carbonyl selenide)	COSe	-117.1	-102.3	-95.0	-86.3	-76.4	-70.2	-61.7	-49.8	-35.6	-21.9	
oxysulfide (carbonyl sulfide)	COS	-132.4	-119.8	-113.3	-106.0	-98.3	-93.0	-85.9	-75.0	-62.7	-49.9	-138.8
tetrabromide	CBr ₄					96.3	106.3	119.7	139.7	163.5	189.5	90.1
tetrachloride	CCl ₄	-50.0	-30.0	-19.6	-8.2	+4.3	12.3	23.0	38.3	57.8	76.7	-22.6
tetrafluoride	CF_4	-184.6	-174.1	-169.3	-164.3	-158.8	-155.4	-150.7	-143.6	-135.5	-127.7	-183.7
Carvacrol	$C_{10}H_{14}O$	70.0	98.4	113.2	127.9	145.2	155.3	169.7	191.2	213.8	237.0	+0.5
Carvone	$C_{10}H_{14}O$	57.4	86.1	100.4	116.1	133.0	143.8	157.3	179.6	203.5	227.5	
Chavibetol	$C_{10}H_{12}O_2$	83.6	113.3	127.0	143.2	159.8	170.7	185.5	206.8	229.8	254.0	
Chloral (trichloroacetaldehyde)	C ₂ HCl ₃ O	-37.8	-16.0	-5.0	+7.2	20.2	29.1	40.2	57.8	77.5	97.7	-57
hydrate (trichloroacetaldehyde hydrate)	$C_2H_3Cl_3O_2$	-9.8	+10.0	19.5	29.2	39.7	46.2	55.0	68.0	82.1	96.2	51.7
Chloranil	$C_6Cl_4O_2$	70.7	89.3	97.8	106.4	116.1	122.0	129.5	140.3	151.3	162.6	290
Chloroacetic acid	$C_2H_3ClO_2$	43.0	68.3	81.0	94.2	109.2	118.3	130.7	149.0	169.0	189.5	61.2
anhydride	$C_4H_4Cl_2O_3$	67.2	94.1	108.0	122.4	138.2	148.0	159.8	177.8	197.0	217.0	46
2-Chloroaniline	C ₆ H ₆ ClN	46.3	72.3	84.8	99.2	115.6	125.7	139.5	160.0	183.7	208.8	0
3-Chloroaniline	C ₆ H ₆ ClN	63.5	89.8	102.0	116.7	133.6	144.1	158.0	179.5	203.5	228.5	-10.4
4-Chloroaniline	C ₆ H ₅ Cl	59.3	87.9	102.1	117.8	135.0	145.8	159.9	182.3	206.6	230.5	70.5
Chlorobenzene	C ₆ H ₅ Cl	-13.0	+10.6	22.2	35.3	49.7	58.3	70.7	89.4	10.0	132.2	-45.2
2-Chlorobenzotrichloride												
$(2-\alpha,\alpha,\alpha$ -tetrachlorotoluene)	$C_7H_4Cl_4$	69.0	101.8	117.9	135.8	155.0	167.8	185.0	208.0	233.0	262.1	28.7
2-Chlorobenzotrifluoride												
(2-chloro- α, α, α -trifluorotoluene)	$C_7H_4ClF_3$	0.0	24.7	37.1	50.6	65.9	75.4	88.3	108.3	130.0	152.2	-6.0
2-Chlorobiphenyl	C12H9Cl	89.3	109.8	134.7	151.2	169.9	182.1	197.0	219.6	243.8	267.5	34
4-Chlorobiphenyl	C ₁₂ H ₉ Cl	96.4	129.8	146.0	164.0	183.8	196.0	212.5	237.8	264.5	292.9	75.5
α -Chlorocrotonic acid	$C_4H_5ClO_2$	70.0	95.6	108.0	121.2	135.6	144.4	155.9	173.8	193.2	212.0	
Chlorodifluoromethane	CHClF ₂	-122.8	-110.2	-103.7	-96.5	-88.6	-83.4	-76.4	-65.8	-53.6	-40.8	-160
Chlorodimethylphenylsilane	C ₈ H ₁₁ ClSi	29.8	56.7	70.0	84.7	101.2	111.5	124.7	145.5	168.6	193.5	
1-Chloro-2-ethoxybenzene	C ₈ H ₉ ClO	45.8	72.8	86.5	101.5	117.8	127.8	141.8	162.0	185.0	208.0	
2-(2-Chloroethoxy) ethanol	$C_4H_9ClO_2$	53.0	78.3	90.7	104.1	118.4	127.5	139.5	157.2	176.5	196.0	
bis-2-Chloroethyl acetacetal	$C_6H_{12}Cl_2O_2$	56.2	83.7	97.6	112.2	127.8	138.0	150.7	169.8	190.5	212.6	
1-Chloro-2-ethylbenzene	C ₈ H ₉ Cl	17.2	43.0	56.1	70.3	86.2	96.4	110.0	130.2	152.2	177.6	-80.2
1-Chloro-3-ethylbenzene	C ₈ H ₉ Cl	18.6	45.2	58.1	73.0	89.2	99.6	113.6	133.8	156.7	181.1	-53.3
1-Chloro-4-ethylbenzene	C ₈ H ₉ Cl	19.2	46.4	60.0	75.5	91.8	102.0	116.0	137.0	159.8	184.3	-62.6
2-Chloroethyl chloroacetate	$C_4H_6Cl_2O_2$	46.0	72.1	86.0	100.0	116.0	126.2	140.0	159.8	182.2	205	
2-Chloroethyl 2-chloroisopropyl ether	$C_5H_{10}Cl_2O$	24.7	50.1	63.0	77.2	92.4	102.2	115.8	135.7	156.5	180.0	
2-Chloroethyl 2-chloropropyl ether	$C_5H_{10}Cl_2O$	29.8	56.5	70.0	84.8	101.5	111.8	125.6	146.3	169.8	194.1	
2-Chloroethyl α -methylbenzyl ether	C ₁₀ H ₁₃ ClO	62.3	91.4	106.0	121.8	139.6	150.0	164.8	186.3	210.8	235.0	
Chloroform (trichloromethane)	CHCl ₃	-58.0	-39.1	-29.7	-19.0	-7.1	+0.5	10.4	25.9	42.7	61.3	-63.5

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

-		Pressure, mm Hg										
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula					Tempera	ture, °C					°C
1-Chloronaphthalene	C ₁₀ H ₇ Cl	80.6	104.8	118.6	134.4	153.2	165.6	180.4	204.2	230.8	259.3	-20
4-Chlorophenethyl alcohol	C ₈ H ₉ ClO	84.0	114.3	129.0	145.0	162.0	173.5	188.1	210.0	234.5	259.3	
2-Chlorophenol	C ₆ H ₅ ClO	12.1	38.2	51.2	65.9	82.0	92.0	106.0	126.4	149.8	174.5	7
3-Chlorophenol	C ₆ H ₅ ClO	44.2	72.0	86.1	101.7	118.0	129.4	143.0	164.8	188.7	214.0	32.5
4-Chlorophenol	C ₆ H ₅ ClO	49.8	78.2	92.2	108.1	125.0	136.1	150.0	172.0	196.0	220.0	42
2-Chloro-3-phenylphenol	C ₁₂ H ₉ ClO	118.0	152.2	169.7	186.7	207.4	219.6	237.0	261.3	289.4	317.5	+6
2-Chloro-6-phenylphenol	C ₁₂ H ₉ ClO	119.8	153.7	170.7	189.8	208.2	220.0	237.1	261.6	289.5	317.0	
Chloropicrin (trichloronitromethane)	CCl ₃ NO ₂	-25.5	-3.3	+7.8	20.0	33.8	42.3	53.8	71.8	91.8	111.9	-64
1-Chloropropene	C ₃ H ₅ Cl	-81.3	-63.4	-54.1	-44.0	-32.7	-25.1	-15.1	+1.3	18.0	37.0	-99.0
2-Chloropyridine	C ₅ H ₄ ClN	13.3	38.8	51.7	65.8	81.7	91.6	104.6	125.0	147.7	170.2	
3-Chlorostyrene	C ₈ H ₇ Cl	25.3	51.3	65.2	80.0	96.5	107.2	121.2	142.2	165.7	190.0	
4-Chlorostyrene	C ₈ H ₇ Cl	28.0	54.5	67.5	82.0	98.0	108.5	122.0	143.5	166.0	191.0	-15.0
1-Chlorotetradecane	$C_{14}H_{20}Cl$	98.5	131.8	148.2	166.2	187.0	199.8	215.5	240.3	267.5	296.0	+0.9
2-Chlorotoluene	C ₇ H ₇ Cl	+5.4	30.6	43.2	56.9	72.0	81.8	94.7	115.0	137.1	159.3	
3-Chlorotoluene	C ₇ H ₇ Cl	+4.8	30.3	43.2	57.4	73.0	83.2	96.3	116.6	139.7	162.3	
4-Chlorotoluene	C ₇ H ₇ Cl	+5.5	31.0	43.8	57.8	73.5	83.3	96.6	117.1	139.8	162.3	+7.3
Chlorotriethylsilane	C ₆ H ₁₅ ClSi	-4.9	+19.8	32.0	45.5	60.2	69.5	82.3	101.6	123.6	146.3	
1-Chloro-1,2,2-trifluoroethylene	$C_2 ClF_3$	-116.0	-102.5	-95.9	-88.2	-79.7	-74.1	-66.7	-55.0	-41.7	-27.9	-157.5
Chlorotrifluoromethane	CCIF ₃	-149.5	-139.2	-134.1	-128.5	-121.9	-117.3	-111.7	-102.5	-92.7	-81.2	
Chlorotrimethylsilane	C ₃ H ₉ ClSi	-62.8	-43.6	-34.0	-23.2	-11.4	-4.0	+6.0	21.9	39.4	57.9	
trans-Cinnamic acid	$C_9H_8O_2$	127.5	157.8	173.0	189.5	207.1	217.8	232.4	253.3	276.7	300.0	133
Cinnamyl alcohol	$C_9H_{10}O$	72.6	102.5	117.8	133.7	151.0	162.0	177.8	199.8	224.6	250.0	33
Cinnamylaldehyde	C ₉ H ₈ O	76.1	105.8	120.0	135.7	152.2	163.7	177.7	199.3	222.4	246.0	-7.5
Citraconic anhydride	$C_5H_4O_3$	47.1	74.8	88.9	103.8	120.3	131.3	145.4	165.8	189.8	213.5	
<i>cis-α</i> -Citral	$C_{10}H_{16}O$	61.7	90.0	103.9	119.4	135.9	146.3	160.0	181.8	205.0	228.0	
d-Citronellal	$C_{10}H_{18}O$	44.0	71.4	84.8	99.8	116.1	126.2	140.1	160.0	183.8	206.5	
Citronellic acid	$C_{10}H_{18}O_2$	99.5	127.3	141.4	155.6	171.9	182.1	195.4	214.5	236.6	257.0	
Citronellol	$C_{10}H_{20}O$	66.4	93.6	107.0	121.5	137.2	147.2	159.8	179.8	201.0	221.5	
Citronellyl acetate	$C_{12}H_{22}O_2$	74.7	100.2	113.0	126.0	140.5	149.7	161.0	178.8	197.8	217.0	
Coumarin	$C_9H_6O_2$	106.0	137.8	153.4	170.0	189.0	200.5	216.5	240.0	264.7	291.0	70
o-Cresol (2-cresol; 3-methylphenol)	C ₇ H ₈ O	38.2	64.0	76.7	90.5	105.8	115.5	127.4	146.7	168.4	190.8	30.8

<i>m</i> -Cresol (3-cresol; 3-methylphenol)	C ₇ H ₈ O	52.0	76.0	87.8	101.4	116.0	125.8	138.0	157.3	179.0	202.8	10.9
<i>p</i> -Cresol (4-cresol; 4-methylphenol)	C ₇ H ₈ O	53.0	76.5	88.6	102.3	117.7	127.0	140.0	157.3	179.4	201.8	35.5
cis-Crotonic acid	$C_4H_6O_2$	33.5	57.4	69.0	82.0	96.0	104.5	116.3	133.9	152.2	171.9	15.5
trans-Crotonic acid	$C_4H_6O_2$			80.0	93.0	107.8	116.7	128.0	146.0	165.5	185.0	72
cis-Crotononitrile	C_4H_5N	-29.0	-7.1	+4.0	16.4	30.0	38.5	50.1	68.0	88.0	108.0	
trans-Crotononitrile	C_4H_5N	-19.5	+3.5	15.0	27.8	41.8	50.9	62.8	81.1	101.5	122.8	
Cumene	C_9H_{12}	+2.9	26.8	38.3	51.5	66.1	75.4	88.1	107.3	129.2	152.4	-96.0
4-Cumidene	$C_9H_{13}N$	60.0	88.2	102.2	117.8	134.2	145.0	158.0	180.0	203.2	227.0	
Cuminal	$C_{10}H_{12}O$	58.0	87.3	102.0	117.9	135.2	146.0	160.0	182.8	206.7	232.0	
Cuminyl alcohol	$C_{10}H_{14}O$	74.2	103.7	118.0	133.8	150.3	161.7	176.2	197.9	221.7	246.6	
2-Cyano-2-n-butyl acetate	$C_7H_{11}NO_2$	42.0	68.7	82.0	96.2	111.8	121.5	133.8	152.2	173.4	195.2	
Cyanogen	C_2N_2	-95.8	-83.2	-76.8	-70.1	-62.7	-57.9	-51.8	-42.6	-33.0	-21.0	-34.4
bromide	CBrN	-35.7	-13.3	-10.0	-1.0	+8.6	14.7	22.6	33.8	46.0	61.5	58
chloride	CCIN	-76.7	-61.4	-53.8	-46.1	-37.5	-32.1	-24.9	-14.1	-2.3	+13.1	-6.5
iodide	CIN	25.2	47.2	57.7	68.6	80.3	88.0	97.6	111.5	126.1	141.1	
Cyclobutane	C_4H_8	-92.0	-76.0	-67.9	-58.7	-48.4	-41.8	-32.8	-18.9	-3.4	+12.9	-50
Cyclobutene	C_4H_6	-99.1	-83.4	-75.4	-66.6	-56.4	-50.0	-41.2	-27.8	-12.2	+2.4	
Cyclohexane	C_6H_{12}	-45.3	-25.4	-15.9	-5.0	+6.7	14.7	25.5	42.0	60.8	80.7	+6.6
Cyclohexaneethanol	$C_8H_{16}O$	50.4	77.2	90.0	104.0	119.8	129.8	142.7	161.7	183.5	205.4	
Cyclohexanol	$C_6H_{12}O$	21.0	44.0	56.0	68.8	83.0	91.8	103.7	121.7	141.4	161.0	23.9
Cyclohexanone	$C_6H_{10}O$	+1.4	26.4	38.7	52.5	67.8	77.5	90.4	110.3	132.5	155.6	-45.0
2-Cyclohexyl-4,6-dinitrophenol	$C_{12}H_{14}N_2O_5$	132.8	161.8	175.9	191.2	206.7	216.0	229.0	248.7	269.8	291.5	
Cyclopentane	$C_{5}H_{10}$	-68.0	-49.6	-40.4	-30.1	-18.6	-11.3	-1.3	+13.8	31.0	49.3	-93.7
Cyclopropane	C_3H_6	-116.8	-104.2	-97.5	-90.3	-82.3	-77.0	-70.0	-59.1	-46.9	-33.5	-126.6
Cymene	$C_{10}H_{14}$	17.3	43.9	57.0	71.1	87.0	97.2	110.8	131.4	153.5	177.2	-68.2
cis-Decalin	$C_{10}H_{18}$	22.5	50.1	64.2	79.8	97.2	108.0	123.2	145.4	169.9	194.6	-43.3
trans-Decalin	$C_{10}H_{18}$	-0.8	+30.6	47.2	65.3	85.7	98.4	114.6	136.2	160.1	186.7	-30.7
Decane	$C_{10}H_{22}$	16.5	42.3	55.7	69.8	85.5	95.5	108.6	128.4	150.6	174.1	-29.7
Decan-2-one	$C_{10}H_{20}O$	44.2	71.9	85.8	100.7	117.1	127.8	142.0	163.2	186.7	211.0	+3.5
1-Decene	$C_{10}H_{20}$	14.7	40.3	53.7	67.8	83.3	93.5	106.5	126.7	149.2	172.0	
Decyl alcohol	$C_{10}H_{22}O$	69.5	97.3	111.3	125.8	142.1	152.0	165.8	186.2	208.8	231.0	+7
Decyltrimethylsilane	C13H30Si	67.4	96.4	111.0	126.5	144.0	154.3	169.5	191.0	215.5	240.0	
Dehydroacetic acid	$C_8H_8O_4$	91.7	122.0	137.3	153.0	171.0	181.5	197.5	219.5	244.5	269.0	
Desoxybenzoin	$C_{14}H_{12}O$	123.3	156.2	173.5	192.0	212.0	224.5	241.3	265.2	293.0	321.0	60
Diacetamide	$C_4H_7NO_2$	70.0	95.0	108.0	122.6	138.2	148.0	160.6	180.8	202.0	223.0	78.5
Diacetylene (1,3-butadiyne)	C_4H_2	-82.5	-68.0	-61.2	-53.8	-45.9	-41.0	-34.0	-20.9	-6.1	+9.7	-34.9
Diallyldichlorosilane	$C_6H_{10}Cl_2Si$	+9.5	34.8	47.4	61.3	76.4	86.3	99.7	119.4	142.0	165.3	

						Press	ure, mm H	lg				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
Dialyl sulfide	$C_6H_{10}S$	-9.5	14.4	26.6	39.7	54.2	63.7	75.8	94.8	116.1	138.6	-83
Diisoamyl ether	$C_{10}H_{22}O$	18.6	44.3	57.0	70.7	86.3	96.0	109.6	129.0	150.3	173.4	
oxalate	$C_{12}H_{22}O_4$	85.4	116.0	131.4	147.7	165.7	177.0	192.2	215.0	240.0	265.0	
sulfide	$C_{10}H_{22}S$	43.0	73.0	87.6	102.7	120.0	130.6	145.3	166.4	191.0	216.0	
Dibenzylamine	$C_{14}H_{15}N$	118.3	149.8	165.6	182.2	200.2	212.2	227.3	249.8	274.3	300.0	-26
Dibenzyl ketone (1,3-diphenyl- 2-propanone)	C ₁₅ H ₁₄ O	125.5	159.8	177.6	195.7	216.6	229.4	246.6	272.3	301.7	330.5	34.5
1,4-Dibromobenzene	$C_6H_4Br_2$	61.0	79.3	87.7	103.6	120.8	131.6	146.5	168.5	192.5	218.6	87.5
1,2-Dibromobutane	$C_4H_8Br_2$	7.5	33.2	46.1	60.0	76.0	86.0	99.8	120.2	143.5	166.3	-64.5
dl-2,3-Dibromobutane	$C_4H_8Br_2$	+5.0	30.0	41.6	56.4	72.0	82.0	95.3	115.7	138.0	160.5	
meso-2,3-Dibromobutane	$C_4H_8Br_2$	+1.5	26.6	39.3	53.2	68.0	78.0	91.7	111.8	134.2	157.3	-34.5
1,2-Dibromodecane	$C_{10}H_{20}Br_2$	95.7	123.6	137.3	151.0	167.4	177.5	190.2	209.6	229.8	250.4	
Di(2-bromoethyl) ether	$C_4H_8Br_2O$	47.7	75.3	88.5	103.6	119.8	130.0	144.0	165.0	188.0	212.5	
α,β -Dibromomaleie Anhydride	$C_4H_2Br_2O_3$	50.0	78.0	92.0	106.7	123.5	133.8	147.7	168.0	192.0	215.0	
1,2-Dibromo-2-methylpropane	$C_4H_8Br_2$	-28.8	-3.0	+10.5	25.7	42.3	53.7	68.8	92.1	119.8	149.0	-70.3
1,3-Dibromo-2-methylpropane	$C_4H_8Br_2$	14.0	40.0	53.0	67.5	83.5	93.7	107.4	117.8	150.6	174.6	
1,2-Dibromopentane	$C_5H_{10}Br_2$	19.8	45.4	58.0	72.0	87.4	97.4	110.1	130.2	151.8	175.0	
1,2-Dibromopropane	$C_3H_6Br_2$	-7.0	+17.3	29.4	42.3	57.2	66.4	78.7	97.8	118.5	141.6	-5.5
1,3-Dibromopropane	$C_3H_6Br_2$	+9.7	35.4	48.0	62.1	77.8	87.8	101.3	121.7	144.1	167.5	-34.4
2,3-Dibromopropene	$C_3H_4Br_2$	-6.0	+17.9	30.0	43.2	57.8	67.0	79.5	98.0	119.5	141.2	
2,3-Dibromo-1-propanol	$C_3H_6Br_2O$	57.0	84.5	98.2	113.5	129.8	140.0	153.0	173.8	196.0	219.0	
Diisobutylamine	$C_8H_{19}N$	-5.1	+18.4	30.6	43.7	57.8	67.0	79.2	97.6	118.0	139.5	-70
2,6-Ditert-butyl-4-cresol	C ₁₅ H ₂₄ O	85.8	116.2	131.0	147.0	164.1	175.2	190.0	212.8	237.6	262.5	
4,6-Ditert-butyl-2-cresol	$C_{15}H_{24}O$	86.2	117.3	132.4	149.0	167.4	179.0	194.0	217.5	243.4	269.3	
4,6-Ditert-butyl-3-cresol	$C_{15}H_{24}O$	103.7	135.2	150.0	167.0	185.3	196.1	211.0	233.0	257.1	282.0	
2,6-Ditert-butyl-4-ethylphenol	C ₁₆ H ₂₆ O	89.1	121.4	137.0	154.0	172.1	183.9	198.0	220.0	244.0	268.6	
4,6-Ditert-butyl-3-ethylphenol	$C_{16}H_{26}O$	111.5	142.6	157.4	174.0	192.3	204.4	218.0	241.7	264.6	290.0	
Diisobutyl oxalate	$C_{10}H_{18}O_4$	63.2	91.2	105.3	120.3	137.5	147.8	161.8	183.5	205.8	229.5	
2,4-Ditert-butylphenol	C ₁₄ H ₂₂ O	84.5	115.4	130.0	146.0	164.3	175.8	190.0	212.5	237.0	260.8	
Dibutyl phthalate	$C_{16}H_{22}O_4$	148.2	182.1	198.2	216.2	235.8	247.8	263.7	287.0	313.5	340.0	
sulfide	$C_8H_{18}S$	+21.7	51.8	66.4	80.5	96.0	105.8	118.6	138.0	159.0	182.0	-79.7

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

Diisobutyl d-tartrate	$C_{12}H_{22}O_{6}$	117.8	151.8	169.0	188.0	208.5	221.6	239.5	264.7	294.0	324.0	73.5
Dicarvaryl-mono-(6-chloro-2-xenyl) phosphate	$C_{32}H_{34}ClO_4P$	204.2	234.5	249.3	264.5	280.5	290.7	304.9	323.8	342.0	361.0	
Dicarvacryl-2-tolyl phosphate	C ₂₇ H ₃₃ O ₄ P	180.2	209.3	221.8	237.0	251.5	260.3	272.5	290.0	309.8	330.0	
Dichloroacetic acid	$C_2H_2Cl_2O_2$	44.0	69.8	82.6	96.3	111.8	121.5	134.0	152.3	173.7	194.4	9.7
1,2-Dichlorobenzene	$C_6H_4Cl_2$	20.0	46.0	59.1	73.4	89.4	99.5	112.9	133.4	155.8	179.0	-17.6
1,3-Dichlorobenzene	$C_6H_4Cl_2$	12.1	39.0	52.0	66.2	82.0	92.2	105.0	125.9	149.0	173.0	-24.2
1,4-Dichlorobenzene	$C_6H_4Cl_2$			54.8	69.2	84.8	95.2	108.4	128.3	150.2	173.9	53.0
1,2-Dichlorobutane	$C_4H_8Cl_2$	-23.6	-0.3	+11.5	24.5	37.7	47.8	60.2	79.7	100.8	123.5	
2,3-Dichlorobutane	$C_4H_8Cl_2$	-25.2	-3.0	+8.5	21.2	35.0	43.9	56.0	74.0	94.2	116.0	-80.4
1,2-Dichloro-1,2-difluoroethylene	$C_2Cl_2F_2$	-82.0	-65.6	-57.3	-48.3	-38.2	-31.8	-23.0	-10.0	+5.0	20.9	-112
Dichlorodifluoromethane	CCl ₂ F ₂	-118.5	-104.6	-97.8	-90.1	-81.6	-76.1	-68.6	-57.0	-43.9	-29.8	
Dichlorodiphenyl silane	C ₁₂ H ₁₀ Cl ₂ Si	109.6	142.4	158.0	176.0	195.5	207.5	223.8	248.0	275.5	304.0	
Dichlorodiisopropyl ether	$C_6H_{12}Cl_2O$	29.6	55.2	68.2	82.2	97.3	106.9	119.7	139.0	159.8	182.7	
Di(2-chloroethoxy) methane	$C_{5}H_{10}Cl_{2}O_{2}$	53.0	80.4	94.0	109.5	125.5	135.8	149.6	170.0	192.0	215.0	
Dichloroethoxymethylsilane	C ₈ H ₈ Cl ₂ OSi	-33.8	-12.1	-1.3	+11.3	24.4	32.6	44.1	61.0	80.3	100.6	
1,2-Dichloro-3-ethylbenzene	$C_8H_8Cl_2$	46.0	75.0	90.0	105.9	123.8	135.0	149.8	172.0	197.0	222.1	-40.8
1,2-Dichloro-4-ethylbenzene	$C_8H_8Cl_2$	47.0	77.2	92.3	109.6	127.5	139.0	153.3	176.0	201.7	226.6	-76.4
1,4-Dichloro-2-ethylbenzene	$C_8H_8Cl_2$	38.5	68.0	83.2	99.8	118.0	129.0	144.0	166.2	191.5	216.3	-61.2
cis-1,2-Dichloroethylene	$C_2H_2Cl_2$	-58.4	-39.2	-29.9	-19.4	-7.9	-0.5	+9.5	24.6	41.0	59.0	-80.5
trans-1,2-Dichloro ethylene	$C_2H_2Cl_2$	-65.4	-47.2	-38.0	-28.0	-17.0	-10.0	-0.2	+14.3	30.8	47.8	-50.0
Di(2-chloroethyl) ether	$C_4H_8Cl_2O$	23.5	49.3	62.0	76.0	91.5	101.5	114.5	134.0	155.4	178.5	
Dichlorofluoromethane	CHCl ₂ F	-91.3	-75.5	-67.5	-58.6	-48.8	-42.6	-33.9	-20.9	-6.2	+8.9	-135
1,5-Dichlorohexamethyltrisiloxane	C ₆ H ₁₈ Cl ₂ O ₂ Si ₃	26.0	52.0	65.1	79.0	94.8	105.0	118.2	138.3	160.2	184.0	-53.0
Dichloromethylphenylsilane	C7H8Cl2Si	35.7	63.5	77.4	92.4	109.5	120.0	134.2	155.5	180.2	205.5	
1,1-Dichloro-2-methylpropane	$C_4H_8Cl_2$	-31.0	-8.4	+2.6	14.6	28.2	37.0	48.2	65.8	85.4	106.0	
1,2-Dichloro-2-methylpropane	$C_4H_8Cl_2$	-25.8	-4.2	+6.7	18.7	32.0	40.2	51.7	68.9	87.8	108.0	
1,3-Dichloro-2-methylpropane	$C_4H_8Cl_2$	-3.0	+20.6	32.0	44.8	58.6	67.5	78.8	96.1	115.4	135.0	
2,4-Dichlorophenol	$C_6H_4Cl_2O$	53.0	80.0	92.8	107.7	123.4	133.5	146.0	165.2	187.5	210.0	45.0
2,6-Dichlorophenol	C ₆ H ₄ Cl ₂ O	59.5	87.6	101.0	115.5	131.6	141.8	154.6	175.5	197.7	220.0	
α, α -Dichlorophenylacetonitrile	C ₈ H ₅ Cl ₂ N	56.0	84.0	98.1	113.8	130.0	141.0	154.5	176.2	199.5	223.5	
Dichlorophenylarsine	C ₆ H ₅ AsCl ₂	61.8	100.0	116.0	133.1	151.0	163.2	178.9	202.8	228.8	256.5	
1,2-Dichloropropane	C ₃ H ₆ Cl ₂	-38.5	-17.0	-6.1	+6.0	19.4	28.0	39.4	57.0	76.0	96.8	
2,3-Dichlorostyrene	$C_8H_6Cl_2$	61.0	90.1	104.6	120.5	137.8	149.0	163.5	185.7	210.0	235.0	
2,4-Dichlorostyrene	$C_8H_6Cl_2$	53.5	82.2	97.4	111.8	129.2	140.0	153.8	176.0	200.0	225.0	
2,5-Dichlorostyrene	$C_8H_6Cl_2$	55.5	83.9	98.2	114.0	131.0	142.0	155.8	178.0	202.5	227.0	
2,6-Dichlorostyrene	C ₈ H ₆ Cl ₂	47.8	75.7	90.0	105.5	122.4	133.3	147.6	169.0	193.5	217.0	

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

		Pressure, mm Hg										
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula	Temperature, °C									_ 101110, ℃	
3,4-Dichlorostyrene	C ₈ H ₆ Cl ₂	57.2	86.0	100.4	116.2	133.7	144.6	158.2	181.5	205.7	230.0	
3,5-Dichlorostyrene	$C_8H_6Cl_2$	53.5	82.2	97.4	111.8	129.2	140.0	153.8	176.0	200.0	225.0	
1,2-Dichlorotetraethylbenzene	$C_{14}H_{20}Cl_2$	105.6	138.7	155.0	172.5	192.2	204.8	220.7	245.6	272.8	302.0	
1,4-Dichlorotetraethylbenzene	$C_{14}H_{20}Cl_2$	91.7	126.1	143.8	162.0	183.2	195.8	212.0	238.5	265.8	296.5	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	$C_2Cl_2F_4$	-95.4	-80.0	-72.3	-63.5	-53.7	-47.5	-39.1	-26.3	-12.0	+3.5	-94
Dichloro-4-tolysilane	C7H8Cl2Si	46.2	71.7	84.2	97.8	113.2	122.6	135.5	153.5	175.2	196.3	
3,4-Dichloro- α, α, α -trifluorotoluene	C ₇ H ₃ Cl ₂ F ₃	11.0	38.3	52.2	67.3	84.0	95.0	109.2	129.0	150.5	172.8	-12.1
Dicyclopentadiene	$C_{10}H_{8}$		34.1	47.6	62.0	77.9	88.0	101.7	121.8	144.2	166.6	32.9
Diethoxydimethylsilane	C ₆ H ₁₆ O ₂ Si	-19.1	+2.4	13.3	25.3	38.0	46.3	57.6	74.2	93.2	113.5	
Diethoxydiphenylsilane	C ₁₆ H ₂₀ O ₂ Si	111.5	142.8	157.6	174.3	193.2	205.0	220.0	243.8	259.7	296.0	
Diethyl adipate	$C_{10}H_{18}O_4$	74.0	106.6	123.0	138.3	154.6	165.8	179.0	198.2	219.1	240.0	-21
Diethylamine	$C_4H_{11}N$			-33.0	-22.6	-11.3	-40.	+6.0	21.0	38.0	55.5	38.9
<i>N</i> -Diethylaniline	$C_{10}H_{15}N$	49.7	78.0	91.9	107.2	123.6	133.8	147.3	168.2	192.4	215.5	-34.4
Diethyl arsanilate	$C_{10}H_{16}AsNO_3$	38.0	62.6	74.8	88.0	102.6	111.8	123.8	141.9	161.0	181.0	
1,2-Diethylbenzene	$C_{10}H_{14}$	22.3	48.7	62.0	76.4	92.5	102.6	116.2	136.7	159.0	183.5	-31.4
1,3-Diethylbenzene	$C_{10}H_{14}$	20.7	46.8	59.9	74.5	90.4	100.7	114.4	134.8	156.9	181.1	-83.9
1,4-Diethylbenzene	$C_{10}H_{14}$	20.7	47.1	60.3	74.7	91.1	101.3	115.3	136.1	159.0	183.8	-43.2
Diethyl carbonate	$C_{5}H_{10}O_{3}$	-10.1	+12.3	23.8	36.0	49.5	57.9	69.7	86.5	105.8	125.8	-43
cis-Diethyl citraconate	$C_0H_{14}O_4$	59.8	88.3	103.0	118.2	135.7	146.2	160.0	182.3	206.5	230.3	
Diethyl dioxosuccinate	$C_8H_{10}O_5$	70.0	98.0	112.0	126.8	143.8	153.7	167.7	188.0	210.8	233.5	
Diethylene glycol	$C_4 H_{10} O_3$	91.8	120.0	133.8	148.0	164.3	174.0	187.5	207.0	226.5	244.8	
Diethyleneglycol-bis-chloroacetate	$C_8H_{12}Cl_2O_5$	148.3	180.0	195.8	212.0	229.0	239.5	252.0	271.5	291.8	313.0	
Diethylene glycol dimethyl ether	0 12 2 5											
Di(2-methoxyethyl) ether	$C_{6}H_{14}O_{3}$	13.0	37.6	50.0	63.0	77.5	86.8	99.5	118.0	138.5	159.8	
glycol ethyl ether	$C_6 H_{14} O_3$	45.3	72.0	85.8	100.3	116.7	126.8	140.3	159.0	180.3	201.9	
Diethyl ether	$C_4 H_{10} O$	-74.3	-56.9	-48.1	-38.5	27.7	-21.8	-11.5	+2.2	17.9	34.6	-116.3
ethylmalonate	$C_0H_{16}O_4$	50.8	77.8	91.6	106.0	122.4	132.4	146.0	166.0	188.7	211.5	
fumarate	$C_{0}H_{12}O_{4}$	53.2	81.2	95.3	110.2	126.7	137.7	151.1	172.2	195.8	218.5	+0.6
glutarate	$C_0H_{16}O_4$	65.6	94.7	109.7	125.4	142.8	153.2	167.8	189.5	212.8	237.0	
Diethylhexadecylamine	$C_{20}H_{43}N$	139.8	175.8	194.0	213.5	235.0	248.5	265.5	292.8	324.6	355.0	

Diethyl itaconate	$C_{9}H_{14}O_{4}$	51.3	80.2	95.2	111.0	128.2	139.3	154.3	177.5	203.1	227.9	
ketone (3-pentanone)	$C_5H_{10}O$	-12.7	+7.5	17.2	27.9	39.4	46.7	56.2	70.6	86.3	102.7	-42
malate	$C_8H_{14}O_5$	80.7	110.4	125.3	141.2	157.8	169.0	183.9	205.3	229.5	253.4	
maleate	$C_8H_{12}O_4$	57.3	85.6	100.0	115.3	131.8	142.4	156.0	177.8	201.7	225.0	
malonate	$C_7 H_{12} O_4$	40.0	67.5	81.3	95.9	113.3	123.0	136.2	155.5	176.8	198.9	-49.8
mesaconate	$C_9H_{14}O_4$	62.8	91.0	105.3	120.3	137.3	147.9	161.6	183.2	205.8	229.0	
oxalate	$C_{6}H_{10}O_{4}$	47.4	71.8	83.8	96.8	110.6	119.7	130.8	147.9	166.2	185.7	-40.6
phthalate	$C_{12}H_{14}O_4$	108.8	140.7	156.0	173.6	192.1	204.1	219.5	243.0	267.5	294.0	
sebacate	$C_{14}H_{26}O_4$	125.3	156.2	172.1	189.8	207.5	218.4	234.4	255.8	280.3	305.5	1.3
2,5-Diethylstyrene	$C_{12}H_{16}$	49.7	78.4	92.6	108.5	125.8	136.8	151.0	173.2	198.0	223.0	
Diethyl succinate	$C_8H_{14}O_4$	54.6	83.0	96.6	111.7	127.8	138.2	151.1	171.7	193.8	216.5	-20.8
isosuccinate	$C_8H_{14}O_4$	39.8	66.7	80.0	94.7	111.0	121.4	134.8	155.1	177.7	201.3	
sulfate	$C_4H_{10}O_4S$	47.0	74.0	87.7	102.1	118.0	128.6	142.5	162.5	185.5	209.5	-25.0
sulfide	$C_4H_{10}S$	-39.6	-18.6	-8.0	+3.5	16.1	24.2	35.0	51.3	69.7	88.0	-99.5
sulfite	$C_4H_{10}O_3S$	10.0	34.2	46.4	59.7	74.2	83.8	96.3	115.8	137.0	159.0	
<i>d</i> -Diethyl tartrate	$C_8H_{14}O_6$	102.0	133.0	148.0	164.2	182.3	194.0	208.5	230.4	254.8	280.0	17
<i>dl</i> -Diethyl tartrate	$C_8H_{14}O_6$	100.0	131.7	147.2	163.8	181.7	193.2	208.0	230.0	254.3	280.0	
3,5-Diethyltoluene	$C_{11}H_{16}$	34.0	61.5	75.3	90.2	107.0	117.7	131.7	152.4	176.5	200.7	
Diethylzinc	$C_4H_{10}Zn$	-22.4	0.0	+11.7	24.2	38.0	47.2	59.1	77.0	97.3	118.0	-28
1-Dihydrocarvone	$C_{10}H_{16}O$	46.6	75.5	90.0	106.0	123.7	134.7	149.7	171.8	197.0	223.0	
Dihydrocitronellol	$C_{10}H_{22}O$	68.0	91.7	103.0	115.0	127.6	136.7	145.9	160.2	176.8	193.5	
1,4-Dihydroxyanthraquinone	$C_{14}H_8O_4$	196.7	239.8	259.8	282.0	307.4	323.3	344.5	377.8	413.0	450.0	194
Dimethylacetylene (2-butyne)	C_4H_6	-73.0	-57.9	-50.5	-42.5	-33.9	-27.8	-18.8	-5.0	+10.6	27.2	-32.5
Dimethylamine	C_2H_7N	-87.7	-72.2	-64.6	-56.0	-46.7	-40.7	-32.6	-20.4	-7.1	+7.4	-96
N,N-Dimethylaniline	$C_8H_{11}N$	29.5	56.3	70.0	84.8	101.6	111.9	125.8	146.5	169.2	193.1	+2.5
Dimethyl arsanilate	C ₈ H ₁₂ AsNO ₃	15.0	39.6	51.8	65.0	79.7	88.6	101.0	119.8	140.3	160.5	
$Di(\alpha$ -methylbenzyl) ether	$C_{16}H_{18}O$	96.7	128.3	144.0	160.3	179.6	191.5	206.8	229.7	254.8	281.9	
2,2-Dimethylbutane	$C_{6}H_{14}$	-69.3	-50.7	-41.5	-31.1	-19.5	-12.1	-2.0	+13.4	31.0	49.7	-99.8
2,3-Dimethylbutane	$C_{6}H_{14}$	-63.6	-44.5	-34.9	-24.1	-12.4	-4.9	+5.4	21.1	39.0	58.0	-128.2
Dimethyl citraconate	$C_7 H_{10} O_4$	50.8	78.2	91.8	106.5	122.6	132.7	145.8	165.8	188.0	210.5	
1,1-Dimethylcyclohexane	C_8H_{16}	-24.4	-1.4	+10.3	23.0	37.3	45.7	57.9	76.2	97.2	119.5	-34
cis-1,2-Dimethylcyclohexane	C_8H_{16}	-15.9	+7.3	18.4	31.1	45.3	54.4	66.8	85.6	107.0	129.7	-50.0
trans-1,2-Dimethylcyclohexane	$C_{8}H_{16}$	-21.1	+1.7	13.0	25.6	39.7	48.7	61.0	79.6	100.9	123.4	-80.0
trans-1,3-Dimethylcyclohexane	C_8H_{16}	-19.4	+3.4	14.9	27.4	41.4	50.4	62.5	81.0	102.1	124.4	-92.0
cis-1,3-Dimethylcyclohexane	C_8H_{16}	-22.7	0.0	+11.2	23.6	37.5	46.4	58.5	76.9	97.8	120.1	-76.2
cis-1,4-Dimethylcyclohexane	$C_{8}H_{16}$	-20.0	+3.2	14.5	27.1	41.1	50.1	62.3	80.8	101.9	124.3	-87.4
trans-1,4-Dimethylcyclohexane	C ₈ H ₁₆	-24.3	-1.7	+10.1	22.6	36.5	45.4	57.6	76.0	97.0	119.3	-36.9
Dimethyl ether	C_2H_6O	-115.7	-101.1	-93.3	-85.2	-76.2	-70.4	-62.7	-50.9	-37.8	-23.7	-138.5
TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

						Press	ure, mm H	lg				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
2,2-Dimethylhexane	C ₈ H ₁₈	-29.7	-7.9	+3.1	15.0	28.2	36.7	48.2	65.7	85.6	106.8	
2,3-Dimethylhexane	$C_{8}H_{18}$	-23.0	-1.1	+9.9	22.1	35.6	44.2	56.0	73.8	94.1	115.6	
2,4-Dimethylhexane	C_8H_{18}	-26.9	-5.3	+5.2	17.2	30.5	39.0	50.6	68.1	88.2	109.4	
2,5-Dimethylhexane	$C_8 H_{18}$	-26.7	-5.5	+5.3	17.2	30.4	38.9	50.5	68.0	87.9	109.1	-90.7
3,3-Dimethylhexane	$C_{8}H_{18}$	-25.8	-4.4	+6.1	18.2	31.7	40.4	52.5	70.0	90.4	112.0	
3,4-Dimethylhexane	$C_{8}H_{18}$	-22.1	+0.2	11.3	23.5	37.1	45.8	57.7	75.6	96.0	117.7	
Dimethyl itaconate	$C_7 H_{10} O_4$	69.3	94.0	106.6	119.7	133.7	142.6	153.7	171.0	189.8	208.0	38
1-Dimethyl malate	$C_{6}H_{10}O_{5}$	75.4	104.0	118.3	133.8	150.1	160.4	175.1	196.3	219.5	242.6	
Dimethyl maleate	$C_6H_8O_4$	45.7	73.0	86.4	101.3	117.2	127.1	140.4	160.0	182.2	205.0	
malonate	$C_5H_8O_4$	35.0	59.8	72.0	85.0	100.0	109.7	121.9	140.0	159.8	180.7	-62
trans-Dimethyl mesaconate	$C_7 H_{10} O_4$	46.8	74.0	87.8	102.1	118.0	127.8	141.5	161.0	183.5	206.0	
2,7-Dimethyloctane	$C_{10}H_{22}$	+6.3	30.5	42.3	55.8	71.2	80.8	93.9	114.0	136.0	159.7	-52.8
Dimethyl oxalate	$C_4H_6O_4$	20.0	44.0	56.0	69.4	83.6	92.8	104.8	123.3	143.3	163.3	
2,2-Dimethylpentane	C_7H_{16}	-49.0	-28.7	-18.7	-7.5	+5.0	13.0	23.9	40.3	59.2	79.2	-123.7
2,3-Dimethylpentane	$C_{7}H_{16}$	-42.0	-20.8	-10.3	+1.1	13.9	22.1	33.3	50.1	69.4	89.8	-135
2,4-Dimethylpentane	$C_{7}H_{16}$	-48.0	-27.4	-17.1	-5.9	+6.5	14.5	25.4	41.8	60.6	80.5	-119.5
3,3-Dimethylpentane	$C_{7}H_{16}$	-45.9	-25.0	-14.4	-2.9	+9.9	18.1	29.3	46.2	65.5	86.1	-135.0
2,3-Dimethylphenol (2,3-xylenol)	$C_8H_{10}O$	56.0	83.8	97.6	112.0	129.2	139.5	152.2	173.0	196.0	218.0	75
2,4-Dimethylphenol (2,4-xylenol)	$C_8H_{10}O$	51.8	78.0	91.3	105.0	121.5	131.0	143.0	161.5	184.2	211.5	25.5
2,5-Dimethylphenol (2,5-xylenol)	$C_8H_{10}O$	51.8	78.0	91.3	105.0	121.5	131.0	143.0	161.5	184.2	211.5	74.5
3,4-Dimethylphenol (3,4-xylenol)	$C_8H_{10}O$	66.2	93.8	107.7	122.0	138.0	148.0	161.0	181.5	203.6	225.2	62.5
3,5-Dimethylphenol (3,5-xylenol)	$C_8H_{10}O$	62.0	89.2	102.4	117.0	133.3	143.5	156.0	176.2	197.8	219.5	68
Dimethylphenylsilane	C ₈ H ₁₂ Si	+5.3	30.3	42.6	56.2	71.4	81.3	94.2	114.2	136.4	159.3	
Dimethyl phthalate	$C_{10}H_{10}O_4$	100.3	131.8	147.6	164.0	182.8	194.0	210.0	232.7	257.8	283.7	
3,5-Dimethyl-1,2-pyrone	$C_7H_8O_2$	78.6	107.6	122.0	136.4	152.7	163.8	177.5	198.0	221.0	245.0	51.5
4,6-Dimethylresorcinol	$C_8H_{10}O_2$	49.0	76.8	90.7	105.8	122.5	133.2	147.3	167.8	192.0	215.0	
Dimethyl sebacate	$C_{12}H_{22}O_4$	104.0	139.8	156.2	175.8	196.0	208.0	222.6	245.0	269.6	293.5	38
2,4-Dimethylstyrene	$C_{10}H_{12}$	34.2	61.9	75.8	90.8	107.7	118.0	132.3	153.2	177.5	202.0	
2,5-Dimethylstyrene	$C_{10}H_{12}$	29.0	55.9	69.0	84.0	100.2	110.7	124.7	145.6	168.7	193.0	
α, α -Dimethylsuccinic anhydride	$C_6H_8O_3$	61.4	88.1	102.0	116.3	132.6	142.4	155.3	175.8	197.5	219.5	
Dimethyl sulfide	C_2H_6S	-75.6	-58.0	-49.2	-39.4	-28.4	-21.9	-12.0	+2.6	18.7	36.0	-83.2

<i>d</i> -Dimethyl tartrate	$C_{6}H_{10}O_{6}$	102.1	133.2	148.2	164.3	182.4	193.8	208.8	230.5	255.0	280.0	61.5
<i>dl</i> -Dimethyl tartrate	$C_{6}H_{10}O_{6}$	100.4	131.8	147.5	164.0	182.4	193.8	209.5	232.3	257.4	282.0	89
N,N-Dimethyl-2-toluidine	$C_9H_{13}N$	28.8	54.1	66.2	80.2	95.0	105.2	118.1	138.3	161.5	184.8	-61
N,N-Dimethyl-4-toluidine	C ₉ H ₁₃ N	50.1	74.3	86.7	100.0	116.3	126.4	140.3	161.6	185.4	209.5	
Di(nitrosomethyl) amine	$C_2H_5N_3O_2$	+3.2	27.8	40.0	53.7	68.2	77.7	90.3	110.0	131.3	153.0	
Diosphenol	$C_{10}H_{16}O_2$	66.7	95.4	109.0	124.0	141.2	151.3	165.6	186.2	209.5	232.0	
1,4-Dioxane	$C_4H_8O_2$	-35.8	-12.8	-1.2	+12.0	25.2	33.8	45.1	62.3	81.8	101.1	10
Dipentene	$C_{10}H_{16}$	14.0	40.4	53.8	68.2	84.3	94.6	108.3	128.2	150.5	174.6	
Diphenylamine	$C_{12}H_{11}N$	108.3	141.7	157.0	175.2	194.3	206.9	222.8	247.5	274.1	302.0	52.9
Diphenyl carbinol (benzhydrol)	$C_{13}H_{12}O$	110.0	145.0	162.0	180.9	200.0	212.0	227.5	250.0	275.6	301.0	68.5
chlorophosphate	$C_{12}H_{10}ClPO_3$	121.5	160.5	182.0	203.8	227.9	244.2	265.0	299.5	337.2	378.0	
disulfide	$C_{12}H_{10}S_2$	131.6	164.0	180.0	197.0	214.8	226.2	241.3	262.6	285.8	310.0	61
1,2-Diphenylethane (dibenzyl)	C ₁₄ H ₁₄	86.8	119.8	136.0	153.7	173.7	186.0	202.8	227.8	255.0	284.0	51.5
Diphenyl ether	$C_{12}H_{10}O$	66.1	97.8	114.0	130.8	150.0	162.0	178.8	203.3	230.7	258.5	27
1,1-Diphenylethylene	C ₁₄ H ₁₂	87.4	119.6	135.0	151.8	170.8	183.4	198.6	222.8	249.8	277.0	
trans-Diphenylethylene	C14H12	113.2	145.8	161.0	179.8	199.0	211.5	227.4	251.7	278.3	306.5	124
1,1-Diphenylhydrazine	$C_{12}H_{12}N_2$	126.0	159.3	176.1	194.0	213.5	225.9	242.5	267.2	294.0	322.2	44
Diphenylmethane	C ₁₃ H ₁₂	76.0	107.4	122.8	139.8	157.8	170.2	186.3	210.7	237.5	264.5	26.5
Diphenyl sulfide	$C_{12}H_{10}S$	96.1	129.0	145.0	162.0	182.8	194.8	211.8	236.8	263.9	292.5	
Diphenyl-2-tolyl thiophosphate	C ₁₈ H ₁₇ O ₃ PS	159.7	179.6	201.6	215.5	230.6	240.4	252.5	270.3	290.0	310.0	
1,2-Dipropoxyethane	$C_8H_{18}O_2$	-38.8	-10.3	+5.0	22.3	42.3	55.8	74.2	103.8	140.0	180.0	
1,2-Diisopropylbenzene	C12H18	40.0	67.8	81.8	96.8	114.0	124.3	138.7	159.8	184.3	209.0	
1,3-Diisopropylbenzene	C12H18	34.7	62.3	76.0	91.2	107.9	118.2	132.3	153.7	177.6	202.0	-105
Dipropylene glycol	$C_{6}H_{14}O_{3}$	73.8	102.1	116.2	131.3	147.4	156.5	169.9	189.9	210.5	231.8	
Dipropyleneglycol monobutyl ether	$C_{10}H_{22}O_3$	64.7	92.0	106.0	120.4	136.3	146.3	159.8	180.0	203.8	227.0	
isopropyl ether	$C_9H_{20}O_3$	46.0	72.8	86.2	100.8	117.0	126.8	140.3	160.0	183.1	205.6	
Di- <i>n</i> -propyl ether	$C_6H_{14}O$	-43.3	-22.3	-11.8	0.0	+13.2	21.6	33.0	50.3	69.5	89.5	-122
Diisopropyl ether	$C_6H_{14}O$	-57.0	-37.4	-27.4	-16.7	-4.5	+3.4	13.7	30.0	48.2	67.5	-60
Di- <i>n</i> -propyl ketone (4-heptanone)	$C_7H_{14}O$	23.0	44.4	55.0	66.2	78.1	85.8	96.0	111.2	127.3	143.7	-32.6
Di- <i>n</i> -propyl oxalate	$C_8H_{14}O_4$	53.4	80.2	93.9	108.6	124.6	134.8	148.1	168.0	190.3	213.5	
Diisopropyl oxalate	$C_8H_{14}O_4$	43.2	69.0	81.9	95.6	110.5	120.0	132.6	151.2	171.8	193.5	
Di- <i>n</i> -propyl succinate	$C_{10}H_{18}O_4$	77.5	107.6	122.2	138.0	154.8	166.0	180.3	202.5	226.5	250.8	
Di-n-propyl d-tartrate	$C_{10}H_{18}O_6$	115.6	147.7	163.5	180.4	199.7	211.7	227.0	250.1	275.6	303.0	
Diisopropyl d-tartrate	$C_{10}H_{18}O_6$	103.7	133.7	148.2	164.0	181.8	192.6	207.3	228.2	251.8	275.0	
Divinyl acetylene (1,5-hexadiene-3-yne)	C ₆ H ₆	-45.1	-24.4	-14.0	-2.8	+10.0	18.1	29.5	46.0	64.4	84.0	
1,3-Divinylbenzene	$C_{10}H_{10}$	32.7	60.0	73.8	88.7	105.5	116.0	130.0	151.4	175.2	199.5	-66.9
Docosanae	$C_{22}H_{46}$	157.8	195.4	213.0	233.5	254.5	268.3	286.0	314.2	343.5	376.0	44.5

bromide

Pressure, mm Hg Melting 1 5 20 40 60 200 400 760 Compound 10 100 Point. Name Formula Temperature, °C °C C12H26 47.8 75.8 90.0 121.7 146.2 167.2 191.0 216.2 -9.6 n-Dodeccane 104.6 132.1 102.4 118.6 185.5 208.0 -31.51-Dodecene C12H24 47.2 74.0 87.8 128.5 142.3 162.2 n-Dodecyl alcohol C12H26O 91.0 120.2 134.7 150.0 167.2 177.8 192.0 213.0 235.7 259.0 24 C₁₂H₂₇N Dodecylamine 82.8 111.8 127.8 141.6 157.4 168.0 182.1 203.0 225.0 248.0 Dodecyltrimethylsilane C15H34Si 91.2 122.1 137.7 153.8 172.1 184.2 199.5 222.0 248.0 273.0 C18H34O2 Elaidic acid 171.3 206.7 223.5 242.3 260.8 273.0 288.0 312.4 337.0 362.0 51.5 Epichlorohydrin C₃H₅ClO -25.6 -16.5+5.629.0 42.0 50.6 62.0 79.3 98.0 117.9 16.6 1,2-Epoxy-2-methylpropane C_4H_8O -69.0-50.0-40.3-29.5-17.3-9.7+1.217.5 36.0 55.5 Erucic acid C22H42O2 206.7 239.7 254.5 270.6 289.1 300.2 314.4 336.5 358.8 381.5 33.5 Estragole (*p*-methoxy allyl benzene) $C_{10}H_{12}O$ 52.6 80.0 93.7 108.4 124.6 135.2 148.5 168.7 192.0 215.0 Ethane C_2H_6 -159.5-148.5-142.9-136.7-129.8-125.4-119.3 -110.2-99.7-88.6-183.2Ethoxydimethylphenylsilane C10H16OSi 36.3 63.1 76.2 91.0 107.2 127.5 131.4 151.5 175.0 199.5 Ethoxytrimethylsilane C5H14OSi -50.9-31.0-20.7-9.8+3.711.5 22.1 38.1 56.3 75.7 Ethoxytriphenylsilane C20H20OSi 167.0 198.2 213.5 230.0 247.0 258.3 273.5 295.0 319.5 344.0 Ethyl acetate $C_4H_8O_7$ -43.4-23.5-13.5+9.127.0 42.0 59.3 77.1 -82.4-3.016.6 acetoacetate $C_6H_{10}O_3$ 28.5 54.0 67.3 81.1 96.2 106.0 118.5 138.0 158.2 180.8 -45 Ethylacetylene (1-butyne) C_4H_6 -92.5-76.7-68.7-59.9-50.5-43.4-34.9-21.6-6.9+8.7-130Ethyl acrylate C₅H₈O₂ -29.5-8.7+2.013.0 26.0 33.5 44.5 61.5 80.0 99.5 -71.2 α -Ethylacrylic acid $C_5H_8O_2$ 47.0 70.7 82.0 94.4 108.1 116.7 127.5 144.0 160.7 179.2 17.7 α -Ethylacrylonitrile C₅H₇N -29.0-6.4+5.031.8 40.6 53.0 71.6 92.2 114.0 Ethyl alcohol (ethanol) C₂H₆O -31.3-12.0-2.3+8.019.0 26.0 34.9 48.4 63.5 78.4 -112Ethylamine C₂H₇N -82.3-66.4 -58.3-39.8 -33.4 -25.1-12.3+2.0-80.6-48.616.6 4-Ethvlaniline C₈H₁₁N 52.0 80.0 93.8 109.0 125.7 136.0 149.8 170.6 194.2 217.4 -4 N-Ethylaniline C₈H₁₁N 38.5 80.6 96.0 113.2 123.6 137.3 156.9 180.8 204.0 -63.566.4 2-Ethylanisole C₀H₁₂O 29.7 55.9 69.0 83.1 98.9 109.0 122.3 142.1 164.2 187.1 129.2 3-Ethylanisole C₉H₁₂O 33.7 60.3 73.9 88.5 104.8 115.5 149.7 172.8 196.5 4-Ethylanisole C₉H₁₂O 73.9 88.5 104.7 128.4 149.2 172.3 196.5 33.5 60.2 115.4 Ethylbenzene C_8H_{10} -9.8 +13.925.9 38.6 52.8 61.8 74.1 92.7 113.8 136.2 -94.9 $C_9H_{10}O_2$ Ethvl benzoate 44.0 72.0 86.0 101.4 118.2 129.0 143.2 164.8 188.4 213.4 -34.6191.9 benzoylacetate C11H12O3 107.6 136.4 150.3 166.8 181.8 205.0 223.8 244.7 265.0

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

C₂H₅Br

-74.3

-56.4

-47.5

-37.8

-26.7

-19.5

-10.0

+4.5

21.0

38.4

-117.8

α -bromoisobutyrate	$C_6H_{11}BrO_2$	10.6	35.8	48.0	61.8	77.0	86.7	99.8	119.7	141.2	163.6	
<i>n</i> -butyrate	$C_{6}H_{12}O_{2}$	-18.4	+4.0	15.3	27.8	41.5	50.1	62.0	79.8	100.0	121.0	-93.3
isobutyrate	$C_{6}H_{12}O_{2}$	-24.3	-2.4	+8.4	20.6	33.8	42.3	53.5	71.0	90.0	110.0	-88.2
Ethylcamphoronic anhydride	$C_{11}H_{16}O_5$	118.2	149.8	165.0	181.8	199.8	211.5	226.6	248.5	272.8	298.0	
Ethyl isocaproate	$C_8H_{16}O_2$	11.0	35.8	48.0	61.7	76.3	85.8	98.4	117.8	139.2	160.4	
carbamate	C ₃ H ₇ NO ₂		65.8	77.8	91.0	105.6	114.8	126.2	144.2	164.0	184.0	49
carbanilate	$C_9H_{11}NO_2$	107.8	131.8	143.7	155.5	168.8	177.3	187.9	203.8	220.0	237.0	52.5
Ethylcetylamine	$C_{18}H_{39}N$	133.2	168.2	186.0	205.5	226.5	239.8	256.8	283.3	313.0	342.0	
Ethyl chloride	C_2H_5Cl	-89.8	-73.9	-65.8	-56.8	-47.0	-40.6	-32.0	-18.6	-3.9	+12.3	-139
chloroacetate	$C_4H_7ClO_2$	+1.0	25.4	37.5	50.4	65.2	74.0	86.0	103.8	123.8	144.2	-26
chloroglyoxylate	C ₄ H ₅ ClO ₃	-5.1	+18.0	29.9	42.0	56.0	65.2	76.6	94.5	114.7	135.0	
α -chloropropionate	$C_5H_9ClO_2$	+6.6	30.2	41.9	54.3	68.2	77.3	89.3	107.2	126.2	146.5	
trans-cinnamate	$C_{11}H_{12}O_2$	87.6	108.5	134.0	150.3	169.2	181.2	196.0	219.3	245.0	271.0	12
3-Ethylcumene	C ₁₁ H ₁₆	28.3	55.5	68.8	83.6	99.9	110.2	124.3	145.4	168.2	193.0	
4-Ethylcumene	$C_{11}H_{16}$	31.5	58.4	72.0	86.7	103.3	113.8	127.2	148.3	171.8	195.8	
Ethyl cyanoacetate	C ₅ H ₇ NO ₂	67.8	93.5	106.0	119.8	133.8	142.1	152.8	169.8	187.8	206.0	
Ethylcyclohexane	C_8H_{16}	-14.5	+9.2	20.6	33.4	47.6	56.7	69.0	87.8	109.1	131.8	-111.3
Ethylcyclopentane	$C_7 H_{14}$	-32.2	-10.8	-0.1	+11.7	25.0	33.4	45.0	62.4	82.3	103.4	-138.6
Ethyl dichloroacetate	$C_4H_6Cl_2O_2$	9.6	34.0	46.3	59.5	74.0	83.6	96.1	115.2	135.9	156.5	
N,N-diethyloxamate	$C_8H_{15}NO_3$	76.0	106.3	121.7	137.7	154.4	166.0	180.3	202.8	226.5	252.0	
N-Ethyldiphenylamine	C ₁₄ H ₁₅ N	98.3	130.2	146.0	162.8	182.0	193.7	209.8	233.0	258.8	286.0	
Ethylene	C_2H_4	-168.3	-158.3	-153.2	-147.6	-141.3	-137.3	-131.8	-123.4	-113.9	-103.7	-169
Ethylene-bis-(chloroacetate)	$C_6H_8Cl_2O_4$	112.0	142.4	158.0	173.5	191.0	201.8	215.0	237.3	259.5	283.5	
Ethylene chlorohydrin (2-chloroethanol)	C ₂ H ₅ ClO	-4.0	+19.0	30.3	42.5	56.0	64.1	75.0	91.8	110.0	128.8	-69
diamine (1,2-ethanediamine)	$C_2H_8N_2$	-11.0	+10.5	21.5	33.0	45.8	53.8	62.5	81.0	99.0	117.2	8.5
dibromide (1,2-dibromethane)	$C_2H_4Br_2$	-27.0	+4.7	18.6	32.7	48.0	57.9	70.4	89.8	110.1	131.5	10
dichloride (1,2-dichloroethane)	$C_2H_4Cl_2$	-44.5	-24.0	-13.6	-2.4	+10.0	18.1	29.4	45.7	64.0	82.4	-35.3
glycol (1,2-ethanediol)	$C_2H_6O_2$	53.0	79.7	92.1	105.8	120.0	129.5	141.8	158.5	178.5	197.3	-15.6
glycol diethyl ether	$C_6H_{14}O_2$	-33.5	-10.2	+1.6	14.7	29.7	39.0	51.8	71.8	94.1	119.5	
(1,2-diethoxyethane)												
glycol dimethyl ether	$C_4H_{10}O_2$	-48.0	-26.2	-15.3	-3.0	+10.7	19.7	31.8	50.0	70.8	93.0	
(1,2-dimethoxyethane)												
glycol monomethyl ether	$C_3H_8O_2$	-13.5	+10.2	22.0	34.3	47.8	56.4	68.0	85.3	104.3	124.4	
(2-methoxyethanol)												
oxide	C_2H_4O	-89.7	-73.8	-65.7	-56.6	-46.9	-40.7	-32.1	-19.5	-4.9	+10.7	-111.3
Ethyl α -ethylacetoacetate	$C_8H_{14}O_3$	40.5	67.3	80.2	94.6	110.3	120.6	133.8	153.2	175.6	198.0	
fluoride	C_2H_5F	-117.0	-103.8	-97.7	-90.0	-81.8	-76.4	-69.3	-58.0	-45.5	-32.0	
formate	$C_3H_6O_2$	-60.5	-42.2	-33.0	-22.7	-11.5	-4.3	-5.4	20.2	37.1	54.3	-79

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

					Press	ure, mm H	lg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
2-furoate	C ₇ H ₈ O ₃	37.6	63.8	77.1	91.5	107.5	117.5	130.4	150.1	172.5	195.0	34
glycolate	$C_4H_8O_3$	14.3	38.8	50.5	63.9	78.1	87.6	99.8	117.8	138.0	158.2	
3-Ethylhexane	$C_{8}H_{18}$	-20.0	+2.1	12.8	25.0	38.5	47.1	58.9	76.7	97.0	118.5	
2-Ethylhexyl acrylate	$C_{11}H_{20}O_2$	50.0	77.7	91.8	106.3	123.7	134.0	147.9	168.2	192.2	216.0	
Ethylidene chloride (1,1-dichloroethane)	$C_2H_4Cl_2$	-60.7	-41.9	-32.3	-21.9	-10.2	-2.9	+7.2	22.4	39.8	57.4	-96.7
fluoride (1,1-difluoroethane)	$C_2H_4F_2$	-112.5	-98.4	-91.7	-84.1	-75.8	-70.4	-63.2	-52.0	-39.5	-26.5	-117
Ethyl iodide	C ₂ H ₅ I	-54.4	-34.3	-24.3	-13.1	-0.9	+7.2	18.0	34.1	52.3	72.4	-105
Ethyl <i>l</i> -leucinate	$C_8H_{17}NO_2$	27.8	57.3	72.1	88.0	106.0	117.8	131.8	149.8	167.3	184.0	
Ethyl levulinate	$C_7H_{12}O_3$	47.3	74.0	87.3	101.8	117.7	127.6	141.3	160.2	183.0	206.2	
Ethyl mercaptan (ethanethiol)	C ₂ H ₆ S	-76.7	-59.1	-50.2	-40.7	-29.8	-22.4	-13.0	+1.5	17.7	35.0	-121
Ethyl methylcarbamate	$C_4 H_0 NO_2$	26.5	51.0	63.2	76.1	91.0	100.0	112.0	130.0	149.8	170.0	
Ethyl methyl ether	C ₃ H ₈ O	-91.0	-75.6	-67.8	-59.1	-49.4	-43.3	-34.8	-22.0	-7.8	+7.5	
1-Ethylnaphthalene	$C_{12}H_{12}$	70.0	101.4	116.8	133.8	152.0	164.1	180.0	204.6	230.8	258.1	-27
Ethyl α -naphthyl ketone	12 12											
(1-propionaphthone)	$C_{13}H_{12}O$	124.0	155.5	171.0	188.1	206.9	218.2	233.5	255.5	280.2	306.0	
Ethyl 3-nitrobenzoate	C ₀ H ₀ NO ₄	108.1	140.2	155.0	173.6	192.6	205.0	220.3	244.6	270.6	298.0	47
3-Ethylpentane	C_7H_{16}	-37.8	-17.0	-6.8	+4.7	17.5	25.7	36.9	53.8	73.0	93.5	-118.6
4-Ethylphenetole	$C_{10}H_{14}O$	48.5	75.7	89.5	103.8	119.8	129.8	143.5	163.2	185.7	208.0	
2-Ethylphenol	$C_{e}H_{10}O$	46.2	73.4	87.0	101.5	117.9	127.9	141.8	161.6	184.5	207.5	-45
3-Ethylphenol	$C_{e}H_{10}O$	60.0	86.8	100.2	114.5	130.0	139.8	152.0	171.8	193.3	214.0	-4
4-Ethylphenol	$C_{s}H_{10}O$	59.3	86.5	100.2	115.0	131.3	141.7	154.2	175.0	197.4	219.0	46.5
Ethyl phenyl ether (phenetole)		18.1	43.7	56.4	70.3	86.6	95.4	108.4	127.9	149.8	172.0	-30.2
Ethyl propionate	$C_{5}H_{10}O_{2}$	-28.0	-7.2	+3.4	14.3	27.2	35.1	45.2	61.7	79.8	99.1	-72.6
Ethyl propyl ether	$C_{5}H_{12}O$	-64.3	-45.0	-35.0	-24.0	-12.0	-4.0	+6.8	23.3	41.6	61.7	
Ethyl salicylate	$C_0 H_{10} O_3$	61.2	90.0	104.2	119.3	136.7	147.6	161.5	183.7	207.0	231.5	1.3
3-Ethylstyrene	$C_{10}H_{12}$	28.3	55.0	68.3	82.8	99.2	109.6	123.2	144.0	167.2	191.5	
4-Ethylstyrene	$C_{10}H_{12}$	26.0	52.7	66.3	80.8	97.3	107.6	121.5	142.0	165.0	189.0	
Ethylisothiocyanate	C ₂ H ₅ NS	13.2	+10.6	22.8	36.1	50.8	59.8	71.9	90.0	110.1	131.0	-5.9
2-Ethyltoluene	C_0H_{12}	9.4	34.8	47.6	61.2	76.4	86.0	99.0	119.0	141.4	165.1	
3-Ethyltoluene	$\dot{C_0H_{12}}$	7.2	32.3	44.7	58.2	73.3	82.9	95.9	115.5	137.8	161.3	-95.5
4-Ethyltoluene	$C_{9}H_{12}^{12}$	7.6	32.7	44.9	58.5	73.6	83.2	96.3	116.1	136.4	162.0	

Ethyl trichloroacetate	$C_4H_5Cl_3O_2$	20.7	45.5	57.7	70.6	85.5	94.4	107.4	125.8	146.0	167.0	
Ethyltrimethylsilane	C5H14Si	-60.6	-41.4	-31.8	-21.0	-9.0	-1.2	+9.2	25.0	42.8	62.0	
Ethyltrimethyltin	C ₅ H ₁₄ Sn	-30.0	-7.6	+3.8	16.1	30.0	38.4	50.0	67.3	87.6	108.8	
Ethyl isovalerate	$C_7H_{14}O_2$	-6.1	+17.0	28.7	41.3	55.2	64.0	75.9	93.8	114.0	134.3	-99.3
2-Ethyl-1,4-xylene	$C_{10}H_{14}$	25.7	52.0	65.6	79.8	96.0	106.2	120.0	140.2	163.1	186.9	
4-Ethyl-1,3-xylene	$C_{10}H_{14}$	26.3	53.0	66.4	80.6	97.2	107.4	121.2	141.8	164.4	188.4	
5-Ethyl-1,3-xylene	$C_{10}H_{14}$	22.1	48.8	62.1	76.5	92.6	103.0	116.5	137.4	159.6	183.7	
Eugenol	$C_{10}H_{12}O_2$	78.4	108.1	123.0	138.7	155.8	167.3	182.2	204.7	228.3	253.5	
iso-Eugenol	$C_{10}H_{12}O_2$	86.3	117.0	132.4	149.0	167.0	178.2	194.0	217.2	242.3	267.5	-10
Eugenyl acetate	$C_{12}H_{14}O_3$	101.6	132.3	148.0	164.2	183.0	194.0	209.7	232.5	257.4	282.0	295
Fencholic acid	$C_{10}H_{16}O_2$	101.7	128.7	142.3	155.8	171.8	181.5	194.0	215.0	237.8	264.1	19
<i>d</i> -Fenchone	$C_{10}H_{16}O$	28.0	54.7	68.3	83.0	99.5	109.8	123.6	144.0	166.8	191.0	5
dl-Fenchyl alcohol	$C_{10}H_{18}O$	45.8	70.3	82.1	95.6	110.8	120.2	132.3	150.0	173.2	201.0	35
Fluorene	$C_{13}H_{10}$		129.3	146.0	164.2	185.2	197.8	214.7	240.3	268.6	295.0	113
Fluorobenzene	C_6H_5F	-43.4	-22.8	-12.4	-1.2	+11.5	19.6	30.4	47.2	65.7	84.7	-42.1
2-Fluorotoluene	C_7H_7F	-24.2	-2.2	+8.9	21.4	34.7	43.7	55.3	73.0	92.8	114.0	-80
3-Fluorotoluene	C_7H_7F	-22.4	-0.3	+11.0	23.4	37.0	45.8	57.5	75.4	95.4	116.0	-110.8
4-Fluorotoluene	C_7H_7F	-21.8	+0.3	11.8	24.0	37.8	46.5	58.1	76.0	96.1	117.0	
Formaldehyde	CH_2O			-88.0	-79.6	-70.6	-65.0	-57.3	-46.0	-33.0	-19.5	-92
Formamide	CH ₃ NO	70.5	96.3	109.5	122.5	137.5	147.0	157.5	175.5	193.5	210.5	
Formic acid	CH_2O_2	-20.0	-5.0	+2.1	10.3	24.0	32.4	43.8	61.4	80.3	100.6	8.2
trans-Fumaryl chloride	$C_4H_2Cl_2O_2$	+15.0	38.5	51.8	65.0	79.5	89.0	101.0	120.0	140.0	160.0	
Furfural (2-furaldehyde)	$C_5H_4O_2$	18.5	42.6	54.8	67.8	82.1	91.5	103.4	121.8	141.8	161.8	
Furfuryl alcohol	$C_5H_6O_2$	31.8	56.0	68.0	81.0	95.7	104.0	115.9	133.1	151.8	170.0	
Geraniol	$C_{10}H_{18}O$	69.2	96.8	110.0	125.6	141.8	151.5	165.3	185.6	207.8	230.0	
Geranyl acetate	$C_{12}H_{20}O_2$	73.5	102.7	117.9	133.0	150.0	160.3	175.2	196.3	219.8	243.3	
Geranyl <i>n</i> -butyrate	$C_{14}H_{24}O_2$	96.8	125.2	139.0	153.8	170.1	180.2	193.8	214.0	235.0	257.4	
Geranyl isobutyrate	$C_{14}H_{24}O_2$	90.9	119.6	133.0	147.9	164.0	174.0	187.7	207.6	228.5	251.0	
Geranyl formate	$C_{11}H_{18}O_2$	61.8	90.3	104.3	119.8	136.2	147.2	160.7	182.6	205.8	230.0	
Glutaric acid	$C_5H_8O_4$	155.5	183.8	196.0	210.5	226.3	235.5	247.0	265.0	283.5	303.0	97.5
Glutaric anhydride	$C_5H_6O_3$	100.8	133.3	149.5	166.0	185.5	196.2	212.5	236.5	261.0	287.0	
Glutaronitrile	$C_5H_6N_2$	91.3	123.7	140.0	156.5	174.6	189.5	205.5	230.0	257.3	286.2	
Glutaryl chloride	$C_5H_6Cl_2O_2$	56.1	84.0	97.8	112.3	128.3	139.1	151.8	172.4	195.3	217.0	
Glycerol	$C_3H_8O_3$	125.5	153.8	167.2	182.2	198.0	208.0	220.1	240.0	263.0	290.0	17.9
Glycerol dichlorohydrin	$C_3H_6Cl_2O$	28.0	52.2	64.7	78.0	93.0	102.0	114.8	133.3	153.5	174.3	
(1,3-dichloro-2-propanol)												
Glycol diacetate	$C_6H_{10}O_4$	38.3	64.1	77.1	90.8	106.1	115.8	128.0	147.8	168.3	190.5	-31

						Press	ure, mm H	lg				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
Glycolide (1,4-dioxane-2,6-dione)	$C_4H_4O_4$		103.0	116.6	132.0	148.6	158.2	173.2	194.0	217.0	240.0	97
Guaicol (2-methoxyphenol)	$C_7H_8O_2$	52.4	79.1	92.0	106.0	121.6	131.0	144.0	162.7	184.1	205.0	28.3
Heneicosane	$C_{21}H_{44}$	152.6	188.0	205.4	223.2	243.4	255.3	272.0	296.5	323.8	350.5	40.4
Heptacosane	C27H56	211.7	248.6	266.8	284.6	305.7	318.3	333.5	359.4	385.0	410.6	59.5
Heptadecane	C ₁₇ H ₃₆	115.0	145.2	160.0	177.7	195.8	207.3	223.0	247.8	274.5	303.0	22.5
Heptaldehyde (enanthaldehyde)	$C_7H_{14}O$	12.0	32.7	43.0	54.0	66.3	74.0	84.0	102.0	125.5	155.0	-42
<i>n</i> -Heptane	$C_{7}H_{16}$	-34.0	-12.7	-2.1	+9.5	22.3	30.6	41.8	58.7	78.0	98.4	-90.6
Heptanoic acid (enanthic acid)	$C_7H_{14}O_2$	78.0	101.3	113.2	125.6	139.5	148.5	160.0	179.5	199.6	221.5	-10
1-Heptanol	$C_7H_{16}O$	42.4	64.3	74.7	85.8	99.8	108.0	119.5	136.6	155.6	175.8	34.6
Heptanoyl chloride (enanthyl chloride)	C ₇ H ₁₃ ClO	34.2	54.6	64.6	75.0	86.4	93.5	102.7	116.3	130.7	145.0	
2-Heptene	$C_{7}H_{14}$	-35.8	-14.1	-3.5	+8.3	21.5	30.0	41.3	58.6	78.1	98.5	
Heptylbenzene	$C_{13}H_{20}$	64.0	94.6	110.0	126.0	144.0	154.8	170.2	193.3	217.8	244.0	
Heptyl cyanide (enanthonitrile)	$C_7H_{13}N$	21.0	47.8	61.6	76.3	92.6	103.0	116.8	137.7	160.0	184.6	
Hexachlorobenzene	C_6Cl_6	114.4	149.3	166.4	185.7	206.0	219.0	235.5	258.5	283.5	309.4	230
Hexachloroethane	C_2Cl_6	32.7	49.8	73.5	87.6	102.3	112.0	124.2	143.1	163.8	185.6	186.6
Hexacosane	$C_{26}H_{54}$	204.0	240.0	257.4	275.8	295.2	307.8	323.2	348.4	374.6	399.8	56.6
Hexadecane	C ₁₆ H ₃₄	105.3	135.2	149.8	164.7	181.3	193.2	208.5	231.7	258.3	287.5	18.5
1-Hexadecene	C ₁₆ H ₃₂	101.6	131.7	146.2	162.0	178.8	190.8	205.3	226.8	250.0	274.0	4
<i>n</i> -Hexadecyl alcohol (cetyl alcohol)	C ₁₆ H ₃₄ O	122.7	158.3	177.8	197.8	219.8	234.3	251.7	280.2	312.7	344.0	49.3
<i>n</i> -Hexadecylamine (cetylamine)	C ₁₆ H ₃₅ N	123.6	157.8	176.0	195.7	215.7	228.8	245.8	272.2	300.4	330.0	
Hexaethylbenzene	$C_{18}H_{30}$		134.3	150.3	168.0	187.7	199.7	216.0	241.7	268.5	298.3	130
<i>n</i> -Hexane	C_6H_{14}	-53.9	-34.5	-25.0	-14.1	-2.3	+5.4	15.8	31.6	49.6	68.7	-95.3
1-Hexanol	$C_6H_{14}O$	24.4	47.2	58.2	70.3	83.7	92.0	102.8	119.6	138.0	157.0	-51.6
2-Hexanol	$C_6H_{14}O$	14.6	34.8	45.0	55.9	67.9	76.0	87.3	103.7	121.8	139.9	
3-Hexanol	$C_6H_{14}O$	+2.5	25.7	36.7	49.0	62.2	70.7	81.8	98.3	117.0	135.5	
1-Hexene	$C_{6}H_{12}$	-57.5	-38.0	-28.1	-17.2	-5.0	+2.8	13.0	29.0	46.8	66.0	-98.5
<i>n</i> -Hexyl levulinate	$C_{11}H_{20}O_3$	90.0	120.0	134.7	150.2	167.8	179.0	193.6	215.7	241.0	266.8	
<i>n</i> -Hexyl phenyl ketone (enanthophenone)	$C_{13}H_{18}O$	100.0	130.3	145.5	161.0	178.9	189.8	204.2	225.0	248.3	271.3	
Hydrocinnamic acid	$C_9H_{10}O_2$	102.2	133.5	148.7	165.0	183.3	194.0	209.0	230.8	255.0	279.8	48.5
Hydrogen cyanide (hydrocyanic acid)	CHN	-71.0	-55.3	-47.7	-39.7	-30.9	-25.1	-17.8	-5.3	+10.2	25.9	-13.2

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

Hydroquinone	$C_6H_6O_2$	132.4	153.3	163.5	174.6	192.0	203.0	216.5	238.0	262.5	286.2	170.3
4-Hydroxybenzaldehyde	$C_7H_6O_2$	121.2	153.2	169.7	186.8	206.0	217.5	233.5	256.8	282.6	310.0	115.5
α-Hydroxyisobutyric acid	$C_4H_8O_3$	73.5	98.5	110.5	123.8	138.0	146.4	157.7	175.2	193.8	212.0	79
α-Hydroxybutyronitrile	C ₅ H ₉ NO	41.0	65.8	77.8	90.7	104.8	113.9	125.0	142.0	159.8	178.8	
4-Hydroxy-3-methyl-2-butanone	$C_5H_{10}O_2$	44.6	69.3	81.0	94.0	108.2	117.4	129.0	146.5	165.5	185.0	
4-Hydroxy-4-methyl-2-pentanone	$C_{6}H_{12}O_{2}$	22.0	46.7	58.8	72.0	86.7	96.0	108.2	126.8	147.5	167.9	-47
3-Hydroxypropionitrile	C ₃ H ₅ NO	58.7	87.8	102.0	117.9	134.1	144.7	157.7	178.0	200.0	221.0	
Indene	C_9H_8	16.4	44.3	58.5	73.9	90.7	100.8	114.7	135.6	157.8	181.6	-2
Iodobenzene	C ₆ H ₅ I	24.1	50.6	64.0	78.3	94.4	105.0	118.3	139.8	163.9	188.6	-28.5
Iodononane	C ₉ H ₁₉ I	70.0	96.2	109.0	123.0	138.1	147.7	159.8	179.0	199.3	219.5	
2-Iodotoluene	C ₇ H ₇ I	37.2	65.9	79.8	95.6	112.4	123.8	138.1	160.0	185.7	211.0	
α-Ionone	$C_{13}H_{20}O$	79.5	108.8	123.0	139.0	155.6	166.3	181.2	202.5	225.2	250.0	
Isoprene	C ₅ H ₈	-79.8	-62.3	-53.3	-43.5	-32.6	-25.4	-16.0	-1.2	+15.4	32.6	-146.7
Lauraldehyde	$C_{12}H_{24}O$	77.7	108.4	123.7	140.2	157.8	168.7	184.5	207.8	231.8	257.0	44.5
Lauric acid	$C_{12}H_{24}O_2$	121.0	150.6	166.0	183.6	201.4	212.7	227.5	249.8	273.8	299.2	48
Levulinaldehyde	$C_5H_8O_2$	28.1	54.9	68.0	82.7	98.3	108.4	121.8	142.0	164.0	187.0	
Levulinic acid	$C_5H_8O_3$	102.0	128.1	141.8	154.1	169.5	178.0	190.2	208.3	227.4	245.8	33.5
d-Limonene	$C_{10}H_{16}$	14.0	40.4	53.8	68.2	84.3	94.6	108.3	128.5	151.4	175.0	-96.9
Linalyl acetate	$C_{12}H_{20}O_2$	55.4	82.5	96.0	111.4	127.7	138.1	151.8	173.3	196.2	220.0	
Maleic anhydride	$C_4H_2O_3$	44.0	63.4	78.7	95.0	111.8	122.0	135.8	155.9	179.5	202.0	58
Menthane	$C_{10}H_{20}$	+9.7	35.7	48.3	62.7	78.3	88.6	102.1	122.7	146.0	169.5	
1-Menthol	$C_{10}H_{20}O$	56.0	83.2	96.0	110.3	126.1	136.1	149.4	168.3	190.2	212.0	42.5
Menthyl acetate	$C_{12}H_{22}O_2$	57.4	85.8	100.0	115.4	132.1	143.2	156.7	178.8	202.8	227.0	
benzoate	$C_{17}H_{24}O_2$	123.2	154.2	170.0	186.3	204.3	215.8	230.4	253.2	277.1	301.0	54.5
formate	$C_{11}H_{20}O_2$	47.3	75.8	90.0	105.8	123.0	133.8	148.0	169.8	194.2	219.0	
Mesityl oxide	$C_6H_{10}O$	-8.7	+14.1	26.0	37.9	51.7	60.4	72.1	90.0	109.8	130.0	-59
Methacrylic acid	$C_4H_6O_2$	25.5	48.5	60.0	72.7	86.4	95.3	106.6	123.9	142.5	161.0	15
Methacrylonitrile	C_4H_5N	-44.5	-23.3	-12.5	-0.6	+12.8	21.5	32.8	50.0	70.3	90.3	
Methane	CH_4	-205.9	-119.0	-195.5	-191.8	-187.7	-185.1	-181.4	-175.5	-168.8	-161.5	-182.5
Methanethiol	CH_4S	-90.7	-75.3	-67.5	-58.8	-49.2	-43.1	-34.8	-22.1	-7.9	+6.8	-121
Methoxyacetic acid	$C_3H_6O_3$	52.5	79.3	92.0	106.5	122.0	131.8	144.5	163.5	184.2	204.0	
N-Methylacetanilide	$C_9H_{11}NO$		103.8	118.6	135.1	152.2	164.2	179.8	202.3	227.4	253.0	102
Methyl acetate	$C_3H_6O_2$	-57.2	-38.6	-29.3	-19.1	-7.9	-0.5	+9.4	24.0	40.0	57.8	-98.7
acetylene (propyne)	C_3H_4	-111.0	-97.5	-90.5	-82.9	-74.3	-68.8	-61.3	-49.8	-37.2	-23.3	-102.7
acrylate	$C_4H_6O_2$	-43.7	-23.6	-13.5	-2.7	+9.2	17.3	28.0	43.9	61.8	80.2	
alcohol (methanol)	CH_4O	-44.0	-25.3	-16.2	-6.0	+5.0	12.1	21.2	34.8	49.9	64.7	-97.8
Methylamine	CH ₅ N	-95.8	-81.3	-73.8	-65.9	-56.9	-51.3	-43.7	-32.4	-19.7	-6.3	-93.5

					Press	ure, mm H	g					
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
<i>N</i> -Methylaniline	C ₇ H ₉ N	36.0	62.8	76.2	90.5	106.0	115.8	129.8	149.3	172.0	195.5	-57
Methyl anthranilate	C ₈ H ₉ NO ₂	77.6	109.0	124.2	141.5	159.7	172.0	187.8	212.4	238.5	266.5	24
benzoate	$C_8H_8O_2$	39.0	64.4	77.3	91.8	107.8	117.4	130.8	151.4	174.7	199.5	-12.5
2-Methylbenzothiazole	C ₈ H ₇ NS	70.0	97.5	111.2	125.5	141.2	150.4	163.9	183.2	204.5	225.5	15.4
α-Methylbenzyl alcohol	$C_8H_{10}O$	49.0	75.2	88.0	102.1	117.8	127.4	140.3	159.0	180.7	204.0	
Methyl bromide	CH ₃ Br	-96.3	-80.6	-72.8	-64.0	-54.2	-48.0	-39.4	-26.5	-11.9	+3.6	-93
2-Methyl-l-butene	$C_{5}H_{10}$	-89.1	-72.8	-64.3	-54.8	-44.1	-37.3	-28.0	-13.8	+2.5	20.2	-135
2-Methyl-2-butene	$C_{5}H_{10}$	-75.4	-57.0	-47.9	-37.9	-26.7	-19.4	-9.9	+4.9	21.6	38.5	-133
Methyl isobutyl carbinol (2-methyl-												
4-pentanol)	$C_6H_{14}O$	-0.3	+22.1	33.3	45.4	58.2	67.0	78.0	94.9	113.5	131.7	
<i>n</i> -butyl ketone (2-hexanone)	$C_6H_{12}O$	+7.7	28.8	38.8	50.0	62.0	69.8	79.8	94.3	111.0	127.5	-56.9
isobutyl ketone (4-methyl-2-pentanone)	$C_6H_{12}O$	-1.4	+19.7	30.0	40.8	52.8	60.4	70.4	85.6	102.0	119.0	-84.7
<i>n</i> -butyrate	$C_5H_{10}O_2$	-26.8	-5.5	+5.0	16.7	29.6	37.4	48.0	64.3	83.1	102.3	
isobutyrate	$C_5H_{10}O_2$	-34.1	-13.0	-2.9	+8.4	21.0	28.9	39.6	55.7	73.6	92.6	-84.7
caprate	$C_{11}H_{22}O_2$	63.7	93.5	108.0	123.0	139.0	148.6	161.5	181.6	202.9	224.0	-18
caproate	$C_7 H_{14} O_2$	+5.0	30.0	42.0	55.4	70.0	79.7	91.4	109.8	129.8	150	
caprylate	$C_9H_{18}O_2$	34.2	61.7	74.9	89.0	105.3	115.3	128.0	148.1	170.0	193.0	-40
chloride	CH ₃ Cl		-99.5	-92.4	-84.8	-76.0	-70.4	-63.0	-51.2	-38.0	-24.0	-97.7
chloroacetate	$C_3H_5ClO_2$	-2.9	19.0	30.0	41.5	54.5	63.0	73.5	90.5	109.5	130.3	-31.9
cinnamate	$C_{10}H_{10}O_2$	77.4	108.1	123.0	140.0	157.9	170.0	185.8	209.6	235.0	263.0	33.4
α-Methylcinnamic acid	$C_{10}H_{10}O_2$	125.7	155.0	169.8	185.2	201.8	212.0	224.8	245.0	266.8	288.0	
Methylcyclohexane	$C_7 H_{14}$	-35.9	-14.0	-3.2	+8.7	22.0	30.5	42.1	59.6	79.6	100.9	-126.4
Methylcyclopentane	C_8H_{12}	-53.7	-33.8	-23.7	-12.8	-0.6	+7.2	17.9	34.0	52.3	71.8	-142.4
Methylcyclopropane	C_4H_8	-96.0	-80.6	-72.8	-64.0	-54.2	-48.0	-39.3	-26.0	-11.3	+4.5	
Methyl <i>n</i> -decyl ketone (<i>n</i> -dodecan-2-one)	$C_{12}H_{24}O$	77.1	106.0	120.4	136.0	152.4	163.8	177.5	199.0	222.5	246.5	
dichloroacetate	$C_3H_4Cl_2O_2$	3.2	26.7	38.1	50.7	64.7	73.6	85.4	103.2	122.6	143.0	
N-Methyldiphenylamine	$C_{13}H_{13}N$	103.5	134.0	149.7	165.8	184.0	195.4	210.1	232.8	257.0	282.0	-7.6
Methyl <i>n</i> -dodecyl ketone (2-tetradecanone)	$C_{14}H_{28}O$	99.3	130.0	145.5	161.3	179.8	191.4	206.0	228.2	253.3	278.0	
Methylene bromide (dibromomethane)	CH_2Br_2	-35.1	-13.2	-2.4	+9.7	23.3	31.6	42.3	58.5	79.0	98.6	-52.8
chloride (dichloromethane)	CH_2Cl_2	-70.0	-52.1	-43.3	-33.4	-22.3	-15.7	-6.3	+8.0	24.1	40.7	-96.7

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

Methyl ethyl ketone (2-butanone)	C_4H_8O	-48.3	-28.0	-17.7	-6.5	+6.0	14.0	25.0	41.6	60.0	79.6	-85.9
2-Methyl-3-ethylpentane	$C_{8}H_{18}$	-24.0	-1.8	+9.5	21.7	35.2	43.9	55.7	73.6	94.0	115.6	-114.5
3-Methyl-3-ethylpentane	$C_{8}H_{18}$	-23.9	-1.4	+9.9	22.3	36.2	45.0	57.1	75.3	96.2	118.3	-90
Methyl fluoride	CH ₃ F	-147.3	-137.0	-131.6	-125.9	-119.1	-115.0	-109.0	-99.9	-89.5	-78.2	
formate	$C_2H_4O_2$	-74.2	-57.0	-48.6	-39.2	-28.7	-21.9	-12.9	+0.8	16.0	32.0	-99.8
α -Methylglutaric anhydride	$C_6H_8O_3$	93.8	125.4	141.8	157.7	177.5	189.9	205.0	229.1	255.5	282.5	
Methyl glycolate	$C_3H_6O_3$	+9.6	33.7	45.3	58.1	72.3	81.8	93.7	111.8	131.7	151.5	
2-Methylheptadecane	$C_{18}H_{38}$	119.8	152.0	168.7	186.0	204.8	216.3	231.5	254.5	279.8	306.5	
2-Methylheptane	$C_{8}H_{18}$	-21.0	+1.3	12.3	24.4	37.9	46.6	58.3	76.0	96.2	117.6	-109.5
3-Methylheptane	$C_{8}H_{18}$	-19.8	+2.6	13.3	25.4	38.9	47.6	59.4	77.1	97.4	118.9	-120.8
4-Methylheptane	C_8H_{18}	-20.4	+1.5	12.4	24.5	38.0	46.6	58.3	76.1	96.3	117.7	-121.1
2-Methyl-2-heptene	$C_{8}H_{16}$	-16.1	+6.7	17.8	30.4	44.0	52.8	64.6	82.3	102.2	122.5	
6-Methyl-3-hepten-2-ol	$C_8H_{16}O$	41.6	65.0	76.7	89.3	102.7	111.5	122.6	139.5	156.6	175.5	
6-Methyl-5-hepten-2-ol	$C_8H_{16}O$	41.9	66.0	77.8	90.4	104.0	112.8	123.8	140.0	156.6	174.3	
2-Methylhexane	$C_{7}H_{16}$	-40.4	-19.5	-9.1	+2.3	14.9	23.0	34.1	50.8	69.8	90.0	-118.2
3-Methylhexane	$C_7 H_{16}$	-39.0	-18.1	-7.8	+3.6	16.4	24.5	35.6	52.4	71.6	91.9	
Methyl iodide	CH_3I		-55.0	-45.8	-35.6	-24.2	-16.9	-7.0	+8.0	25.3	42.4	-64.4
laurate	$C_{13}H_{26}O_2$	87.8	117.9	133.2	149.0	166.0	176.8	190.8				5
levulinate	$C_6H_{10}O_3$	39.8	66.4	79.7	93.7	109.5	119.3	133.0	153.4	175.8	197.7	
methacrylate	$C_5H_8O_2$	-30.5	-10.0	+1.0	11.0	25.5	34.5	47.0	63.0	82.0	101.0	
myristate	$C_{15}H_{30}O_2$	115.0	145.7	160.8	177.8	195.8	207.5	222.6	245.3	269.8	295.8	18.5
α -naphthyl ketone (1-acetonaphthone)	$C_{12}H_{10}O$	115.6	146.3	161.5	178.4	196.8	208.6	223.8	246.7	270.5	295.5	
β -naphthyl ketone (2-acetonaphthone)	$C_{12}H_{10}O$	120.2	152.3	168.5	185.7	203.8	214.7	229.8	251.6	275.8	301.0	55.5
<i>n</i> -nonyl ketone (undecan-2-one)	$C_{11}H_{22}O$	68.2	95.5	108.9	123.1	139.0	148.6	161.0	181.2	202.3	224.0	15
palmitate	$C_{17}H_{34}O_2$	134.3	166.8	184.3	202.0							30
<i>n</i> -pentadecyl ketone (2-heptdecanone)	$C_{17}H_{34}O$	129.6	161.6	178.0	196.4	214.3	226.7	242.0	265.8	291.7	319.5	
2-Methylpentane	$C_{6}H_{14}$	-60.9	-41.7	-32.1	-21.4	-9.7	-1.9	+8.1	24.1	41.6	60.3	-154
3-Methylpentane	$C_{6}H_{14}$	-59.0	-39.8	-30.1	-19.4	-7.3	+0.1	10.5	26.5	44.2	63.3	-118
2-Methyl-1-pentanol	$C_6H_{14}O$	15.4	38.0	49.6	61.6	74.7	83.4	94.2	111.3	129.8	147.9	
2-Methyl-2-pentanol	$C_6H_{14}O$	-4.5	+16.8	27.6	38.8	51.3	58.8	69.2	85.0	102.6	121.2	-103
Methyl <i>n</i> -pentyl ketone (2-heptanone)	$C_7H_{14}O$	19.3	43.6	55.5	67.7	81.2	89.8	100.0	116.1	133.2	150.2	
phenyl ether (anisole)	C_7H_8O	+5.4	30.0	42.2	55.8	70.7	80.1	93.0	112.3	133.8	155.5	-37.3
2-Methylpropene	C_4H_8	-105.1	-96.5	-81.9	-73.4	-63.8	-57.7	-49.3	-36.7	-22.2	-6.9	-140.3
Methyl propionate	$C_4H_8O_2$	-42.0	-21.5	-11.8	-1.0	+11.0	18.7	29.0	44.2	61.8	79.8	-87.5
4-Methylpropiophenone	$C_{10}H_{12}O$	59.6	89.3	103.8	120.2	138.0	149.3	164.2	187.4	212.7	238.5	
2-Methylpropionyl bromide	C_4H_7BrO	13.5	38.4	50.6	64.1	79.4	88.8	101.6	120.5	141.7	163.0	
Methyl propyl ether	$C_4H_{10}O$	-72.2	-54.3	-45.4	-35.4	-24.3	-17.4	-8.1	+6.0	22.5	39.1	

2.338

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

						Press	ure, mm H	g				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Tempera	ture, °C					°C
<i>n</i> -propyl ketone (2-pentanone)	C5H10O	-12.0	+8.0	17.9	28.5	39.8	47.3	56.8	71.0	86.8	103.3	-77.8
isopropyl ketone (3-methyl-2-butanone)	$C_5H_{10}O$	-19.9	-1.0	+8.3	18.3	29.6	36.2	45.5	59.0	73.8	88.9	-92
2-Methylquinoline	$C_{10}H_9N$	75.3	104.0	119.0	134.0	150.8	161.7	176.2	197.8	211.7	246.5	-1
Methyl salicylate	$C_8H_8O_3$	54.0	81.6	95.3	110.0	126.2	136.7	150.0	172.6	197.5	223.2	-8.3
α -Methyl styrene	$C_{9}H_{10}$	7.4	34.0	47.1	61.8	77.8	88.3	102.2	121.8	143.0	165.4	-23.2
4-Methyl styrene	C_9H_{10}	16.0	42.0	55.1	69.2	85.0	95.0	108.6	128.7	151.2	175.0	
Methyl <i>n</i> -tetradecyl ketone												
(2-hexadecanone)	$C_{16}H_{32}O$	109.8	151.5	167.3	184.6	203.7	215.0	230.5	254.4	279.8	307.0	
thiocyanate	C ₂ H ₃ NS	-14.0	+9.8	21.6	34.5	49.0	58.1	70.4	89.8	110.8	132.9	-51
isothiocyanate	C ₂ H ₃ NS	-34.7	-8.3	+5.4	20.4	38.2	47.5	59.3	77.5	97.8	119.0	35.5
undecyl ketone (2-tridecanone)	$C_{13}H_{26}O$	86.8	117.0	131.8	147.8	165.7	176.6	191.5	214.0	238.3	262.5	28.5
isovalerate	$C_{6}H_{12}O_{2}$	-19.2	+2.9	14.0	26.4	39.8	48.2	59.8	77.3	96.7	116.7	
Monovinylacetylene (butenyne)	C_4H_4	-93.2	-77.7	-70.0	-61.3	-51.7	-45.3	-37.1	-24.1	-10.1	+5.3	
Myrcene	$C_{10}H_{16}$	14.5	40.0	53.2	67.0	82.6	92.6	106.0	126.0	148.3	171.5	
Myristaldehyde	$C_{14}H_{28}O$	99.0	132.0	148.3	166.2	186.0	198.3	214.5	240.4	267.9	297.8	23.5
Myristic acid (tetradecanoic acid)	$C_{14}H_{28}O_2$	142.0	174.1	190.8	207.6	223.5	237.2	250.5	272.3	294.6	318.0	57.5
Napthalene	$C_{10}H_{8}$	52.6	74.2	85.8	101.7	119.3	130.2	145.5	167.7	193.2	217.9	80.2
1-Naphthoic acid	$C_{11}H_8O_2$	156.0	184.0	196.8	211.2	225.0	234.5	245.8	263.5	281.4	300.0	160.5
2-Naphthoic acid	$C_{11}H_8O_2$	160.8	189.7	202.8	216.9	231.5	241.3	252.7	270.3	289.5	308.5	184
1-Naphthol	$C_{10}H_8O$	94.0	125.5	142.0	158.0	177.8	190.0	206.0	229.6	255.8	282.5	96
2-Naphthol	$C_{10}H_8O$		128.6	145.5	161.8	181.7	193.7	209.8	234.0	260.6	288.0	122.5
1-Naphthylamine	$C_{10}H_9N$	104.3	137.7	153.8	171.6	191.5	203.8	220.0	244.9	272.2	300.8	50
2-Naphthylamine	$C_{10}H_9N$	108.0	141.6	157.6	175.8	195.7	208.1	224.3	249.7	277.4	306.1	111.5
Nicotine	$C_{10}H_{14}N_2$	61.8	91.8	107.2	123.7	142.1	154.7	169.5	193.8	219.8	247.3	
2-Nitroaniline	$C_6H_6N_2O_2$	104.0	135.7	150.4	167.7	186.0	197.8	213.0	236.3	260.0	284.5	71.5
3-Nitroaniline	$C_6H_6N_2O_2$	119.3	151.5	167.8	185.5	204.2	216.5	232.1	255.3	280.2	305.7	114
4-Nitroaniline	$C_6H_6N_2O_2$	142.4	177.6	194.4	213.2	234.2	245.9	261.8	284.5	310.2	336.0	146.5
2-Nitrobenzaldehyde	C ₇ H ₅ NO ₃	85.8	117.7	133.4	150.0	168.8	180.7	196.2	220.0	246.8	273.5	40.9
3-Nitrobenzaldehyde	C ₇ H ₅ NO ₃	96.2	127.4	142.8	159.0	177.7	189.5	204.3	227.4	252.1	278.3	58
Nitrobenzene	C ₆ H ₅ NO ₂	44.4	71.6	84.9	99.3	115.4	125.8	139.9	161.2	185.8	210.6	+5.7
Nitroethane	$C_2H_5NO_2$	-21.0	+1.5	12.5	24.8	38.0	46.5	57.8	74.8	94.0	114.0	-90

Nitroglycerin	$C_3H_5N_3O_9$	127	167	188	210	235	251					11
Nitromethane	CH ₃ NO ₂	-29.0	-7.9	+2.8	14.1	27.5	35.5	46.6	63.5	82.0	101.2	-29
2-Nitrophenol	C ₆ H ₅ NO ₃	49.3	76.8	90.4	105.8	122.1	132.6	146.4	167.6	191.0	214.5	45
2-Nitrophenyl acetate	C ₈ H ₇ NO ₄	100.0	128.0	142.0	155.8	172.8	181.7	194.1	213.0	233.5	253.0	
1-Nitropropane	C ₃ H ₇ NO ₂	-9.6	+13.5	25.3	37.9	51.8	60.5	72.3	90.2	110.6	131.6	-108
2-Nitropropane	$C_3H_7NO_2$	-18.8	4.1	15.8	28.2	41.8	50.3	62.0	80.0	99.8	120.3	-93
2-Nitrotoluene	C ₇ H ₇ NO ₂	50.0	79.1	93.8	109.6	126.3	137.6	151.5	173.7	197.7	222.3	-4.1
3-Nitrotoluene	$C_7H_7NO_2$	50.2	1.0	96.0	112.8	130.7	142.5	156.9	180.3	206.8	231.9	15.5
4-Nitrotoluene	C ₇ H ₇ NO ₂	53.7	85.0	100.5	117.7	136.0	147.9	163.0	186.7	212.5	238.3	51.9
4-Nitro-1,3-xylene (4-nitro- <i>m</i> -xylene)	C ₈ H ₉ NO ₂	65.6	95.0	109.8	125.8	143.3	153.8	168.5	191.7	217.5	244.0	+2
Nonacosane	$C_{29}H_{60}$	234.2	260.8	286.4	303.6	323.2	334.8	350.0	373.2	397.2	421.8	63.8
Nona lecane	$C_{19}H_{40}$	133.3	166.3	183.5	200.8	220.0	232.8	248.0	271.8	299.8	330.0	32
<i>n</i> -Nonane	C_9H_{20}	+1.4	25.8	38.0	51.2	66.0	75.5	88.1	107.5	128.2	150.8	-53.7
1-Nonanol	$C_9H_{20}O$	59.5	86.1	99.7	113.8	129.0	139.0	151.3	170.5	192.1	213.5	-5
2-Nonanone	$C_9H_{18}O$	32.1	59.0	72.3	87.2	103.4	113.8	127.4	148.2	171.2	195.0	-19
Octacosane	C28H58	226.5	260.3	277.4	295.4	314.2	326.8	341.8	364.8	388.9	412.5	61.6
Octadecane	C18H38	119.6	152.1	169.6	187.5	207.4	219.7	236.0	260.6	288.0	317.0	28
<i>n</i> -Octane	$C_{8}H_{18}$	-14.0	+8.3	19.2	31.5	45.1	53.8	65.7	83.6	104.0	125.6	-56.8
<i>n</i> -Octanol (1-octanol)	$C_8H_{18}O$	54.0	76.5	88.3	101.0	115.2	123.8	135.2	152.0	173.8	195.2	-15.4
2-Octanone	$C_8H_{18}O$	23.6	48.4	60.9	74.3	89.8	90.0	111.7	130.4	151.0	172.9	-16
<i>n</i> -Octyl acrylate	$C_{11}H_{20}O_2$	58.5	87.7	102.0	117.8	135.6	145.6	159.1	180.2	204.0	227.0	
iodide (1-Iodooctane)	$C_8H_{17}I$	45.8	74.8	90.0	105.9	123.8	135.4	150.0	173.3	199.3	225.5	-45.9
Oleic acid	$C_{18}H_{34}O_2$	176.5	208.5	223.0	240.0	257.2	269.8	286.0	309.8	334.7	360.0	14
Palmitaldehyde	$C_{16}H_{32}O$	121.6	154.6	171.8	190.0	210.0	222.6	239.5	264.1	292.3	321.0	34
Palmitic acid	$C_{16}H_{32}O_2$	153.6	188.1	205.8	223.8	244.4	256.0	271.5	298.7	326.0	353.8	64.0
Palmitonitrile	$C_{16}H_{31}N$	134.3	168.3	185.8	204.2	223.8	236.6	251.5	277.1	304.5	332.0	31
Pelargonic acid	$C_9H_{18}O_2$	108.2	126.0	137.4	149.8	163.7	172.3	184.4	203.1	227.5	253.5	12.5
Pentachlorobenzene	C ₆ HCl ₅	98.6	129.7	144.3	160.0	178.5	190.1	205.5	227.0	251.6	276.0	85.5
Pentachloroethane	C_2HCl_5	+1.0	27.2	39.8	53.9	69.9	80.0	93.5	114.0	137.2	160.5	-22
Pentachloroethylbenzene	C ₆ H ₅ Cl ₅	96.2	130.0	148.0	166.0	186.2	199.0	216.0	241.8	269.3	299.0	
Pentachlorophenol	C ₆ HCl ₅ O				192.2	211.2	223.4	239.6	261.8	285.0	309.3	188.5
Pentacosane	C25H52	194.2	230.0	248.2	266.1	285.6	298.4	314.0	339.0	365.4	390.3	53.3
Pentadecane	$C_{15}H_{32}$	91.6	121.0	135.4	150.2	167.7	178.4	194.0	216.1	242.8	270.5	10
1,3-Pentadiene	C_5H_8	-71.8	-53.8	-45.0	-34.8	-23.4	-16.5	-6.7	+8.0	24.7	42.1	
1,4-Pentadiene	C_5H_8	-83.5	-66.2	-57.1	-47.7	-37.0	-30.0	-20.6	-6.7	+8.3	26.1	
Pentaethylbenzene	$C_{16}H_{26}$	86.0	120.0	135.8	152.4	171.9	184.2	200.0	224.1	250.2	277.0	
Pentaethylchlorobenzene	C ₁₆ H ₂₅ Cl	90.0	183.8	140.7	158.1	178.2	191.0	208.0	230.3	257.2	285.0	

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

					Press	ure, mm H	g					
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Temperat	ture, °C					°C
<i>n</i> -Pentane	C ₅ H ₁₂	-76.6	-62.5	-50.1	-40.2	-29.2	-22.2	-12.6	+1.9	18.5	36.1	-129.7
iso-Pentane (2-methylbutane)	$C_{5}H_{12}$	-82.9	-65.8	-57.0	-47.3	-36.5	-29.6	-20.2	-5.9	+10.5	27.8	-159.7
neo-Pentane (2,2-dimethylpropane)	$C_{5}H_{12}$	-102.0	-85.4	-76.7	-67.2	-56.1	-49.0	-39.1	-23.7	-7.1	+9.5	-16.6
2,3,4-Pentanetriol	$C_{5}H_{12}O_{3}$	155.0	159.3	204.5	220.5	239.6	249.8	263.5	284.5	307.0	327.2	
1-Pentene	$C_{5}H_{10}$	-80.4	-63.3	-54.5	-46.0	-34.1	-27.1	-17.7	-3.4	+12.8	30.1	
α-Phellandrene	$C_{10}H_{16}$	20.0	45.7	58.0	72.1	87.8	97.6	110.6	130.6	152.0	175.0	
Phenanthrene	$C_{14}H_{10}$	118.2	154.3	173.0	193.7	215.8	229.9	249.0	277.1	308.0	340.2	99.5
Phenethyl alcohol (phenyl cellosolve)	$C_8H_{10}O_2$	58.2	85.9	100.0	114.8	130.5	141.2	154.0	175.0	197.5	219.5	
2-Phenetidine	C ₈ H ₁₁ NO	67.0	94.7	108.6	123.7	139.9	149.8	163.5	184.0	207.0	228.0	
Phenol	C ₆ H ₆ O	40.1	62.5	73.8	86.0	100.1	108.4	121.4	139.0	160.0	181.9	40.6
2-Phenoxyethanol	$C_8H_{10}O_2$	78.0	196.6	121.2	136.0	152.2	163.2	176.5	197.6	221.0	245.3	11.6
2-Phenoxyethyl acetate	$C_{10}H_{12}O_3$	82.6	143.5	128.0	144.5	162.3	174.0	189.2	211.3	235.0	259.7	-6.7
Phenyl acetate	$C_8H_8O_2$	38.2	64.8	78.0	92.3	108.1	118.1	131.6	151.2	173.5	195.9	
Phenylacetic acid	$C_8H_8O_2$	97.0	127.0	141.3	156.0	173.6	184.5	198.2	219.5	243.0	265.5	76.5
Phenylacetonitrile	C ₈ H ₇ N	60.0	89.0	103.5	119.4	136.3	147.7	161.8	184.2	208.5	233.5	-23.8
Phenylacetyl chloride	C ₈ H ₇ ClO	48.0	75.3	89.0	103.6	119.8	129.8	143.5	163.8	186.0	210.0	
Phenyl benzoate	$C_{13}H_{10}O_2$	106.8	141.5	157.8	177.0	197.6	210.8	277.8	254.0	283.5	314.0	70.5
4-Phenyl-3-buten-2-one	$C_{10}H_{10}O$	81.7	112.2	127.4	143.8	161.3	172.6	187.8	211.0	235.4	261.0	41.5
Phenyl isocyanate	C ₇ H ₅ NO	10.6	36.0	48.5	62.5	77.7	87.7	100.6	120.8	142.7	165.6	
isocyanide	C ₇ H ₅ N	12.0	37.0	49.7	63.4	78.3	88.0	101.0	120.8	142.3	165.0	
Phenylcyclohexane	$C_{12}H_{16}$	67.5	96.5	111.3	126.4	144.0	154.2	169.3	191.3	214.6	240.0	+75
Phenyl dichlorophosphate	C ₆ H ₅ Cl ₂ O ₂ P	66.7	95.9	110.0	125.9	143.4	153.6	168.0	189.8	213.0	239.5	
<i>m</i> -Phenylene diamine												
(1,3-phenylenediamine)	$C_6H_8N_2$	99.8	131.2	147.0	163.8	182.5	194.0	209.9	233.0	259.0	285.5	62.8
Phenylglyoxal	$C_8H_6O_2$		75.0	87.8	100.7	115.5	124.2	136.2	153.8	173.5	193.5	73
Phenylhydrazine	$C_6H_8N_2$	75.8	101.6	115.8	131.5	148.2	158.7	173.5	195.4	218.2	243.5	19.5
N-Phenyliminodiethanol	$C_{10}H_{15}NO_2$	145.0	170.2	195.8	213.4	233.0	245.3	260.6	284.5	311.3	337.8	
1-Phenyl-1,3-pentanedione	C ₁₁ H ₁₂ O ₂	98.0	128.5	144.0	159.9	178.0	189.8	204.5	226.7	251.2	276.5	
2-Phenylphenol	$C_{12}H_{10}O$	100.0	131.6	146.2	163.3	180.3	192.2	205.9	227.9	251.8	275.0	56.5
4-Phenylphenol	$C_{12}H_{10}O$			176.2	193.8	213.0	225.3	240.9	263.2	285.5	308.0	164.5
3-Phenyl-1-propanol	$C_9H_{12}O$	74.7	102.4	116.0	131.2	147.4	156.8	170.3	191.2	212.8	235.0	

Phenyl isothiocyanate	C ₇ H ₅ NS	47.2	75.6	89.8	115.5	122.5	133.3	147.7	169.6	194.0	218.5	-21.0
Phorone	$C_9H_{14}O$	42.0	63.3	81.5	95.6	111.3	121.4	134.0	153.5	175.3	197.2	28
iso-Phorone	$C_9H_{14}O$	38.0	66.7	81.2	96.8	114.5	125.6	140.6	163.3	188.7	215.2	
Phosgene (carbonyl chloride)	CCl ₂ O	-92.9	-77.0	-69.3	-60.3	-50.3	-44.0	-35.6	-22.3	-7.6	+8.3	-104
Phthalic anhydride	$C_8H_4O_3$	96.5	124.3	134.0	151.7	172.0	185.3	202.3	228.0	256.8	284.5	130.8
Phthalide	$C_8H_6O_2$	95.5	127.7	144.0	161.3	181.0	193.5	210.0	234.5	261.8	290.0	73
Phthaloyl chloride	$C_8H_4Cl_2O_2$	86.3	118.3	134.2	151.0	170.0	182.2	197.8	222.0	248.3	275.8	88.5
2-Picoline	C ₆ H ₇ N	-11.1	+12.6	24.4	37.4	51.2	59.9	71.4	89.0	108.4	128.8	-70
Pimelic acid	$C_7 H_{12} O_4$	163.4	196.2	212.0	229.3	247.0	258.2	272.0	294.5	318.5	342.1	103
α-Pinene	$C_{10}H_{16}$	-1.0	+24.6	37.3	51.4	66.8	76.8	90.1	110.2	132.3	155.0	-55
β -Pinene	$C_{10}H_{16}$	+4.2	30.0	42.3	58.1	71.5	81.2	94.0	114.1	136.1	158.3	
Piperidine	$C_5H_{11}N$		-7.0	+3.9	15.8	29.2	37.7	49.0	66.2	85.7	106.0	-9
Piperonal	$C_8H_6O_3$	87.0	117.4	132.0	148.0	165.7	177.0	191.7	214.3	238.5	263.0	37
Propane	C_3H_8	-128.9	-115.4	-108.5	-100.9	-92.4	-87.0	-79.6	-68.4	-55.6	-42.1	-187.1
Propenylbenzene	C_9H_{10}	17.5	43.8	57.0	71.5	87.7	97.8	111.7	132.0	154.7	179.0	-30.1
Propionamide	C ₃ H ₇ NO	65.0	91.0	105.0	119.0	134.8	144.3	156.0	174.2	194.0	213.0	79
Propionic acid	$C_3H_6O_2$	4.6	28.0	39.7	52.0	65.8	74.1	85.8	102.5	122.0	141.1	-22
anhydride	$C_6H_{10}O_3$	20.6	45.3	57.7	70.4	85.6	94.5	107.2	127.8	146.0	167.0	-45
Propionitrile	C_3H_5N	-35.0	-13.6	-3.0	+8.8	22.0	30.1	41.4	58.2	77.7	97.1	-91.9
Propiophenone	$C_9H_{10}O$	50.0	77.9	92.2	107.6	124.3	135.0	149.3	170.2	194.2	218.0	21
<i>n</i> -Propyl acetate	$C_5H_{10}O_2$	-26.7	-5.4	+5.0	16.0	28.8	37.0	47.8	64.0	82.0	101.8	-92.5
iso-Propyl acetate	$C_5H_{10}O_2$	-38.3	-17.4	-7.2	+4.2	17.0	25.1	35.7	51.7	69.8	89.0	
<i>n</i> -Propyl alcohol (1-propanol)	C_3H_8O	-15.0	+5.0	14.7	25.3	36.4	43.5	52.8	66.8	82.0	97.8	-127
iso-Propyl alcohol (2-propanol)	C_3H_8O	-26.1	-7.0	+2.4	12.7	23.8	30.5	39.5	53.0	67.8	82.5	-85.8
<i>n</i> -Propylamine	C ₃ H ₉ N	-64.4	-46.3	-37.2	-27.1	-16.0	-9.0	+0.5	15.0	31.5	48.5	-83
Propylbenzene	C_9H_{12}	6.3	31.3	43.4	56.8	71.6	81.1	94.0	113.5	135.7	159.2	-99.5
Propyl benzoate	$C_{10}H_{12}O_2$	54.6	83.8	98.0	114.3	131.8	143.3	157.4	180.1	205.2	231.0	-51.6
<i>n</i> -Propyl bromide (1-bromopropane)	C ₃ H ₇ Br	-53.0	-33.4	-23.3	-12.4	-0.3	+7.5	18.0	34.0	52.0	71.0	-109.9
iso-Propyl bromide (2-bromopropane)	C_3H_7Br	-61.8	-42.5	-32.8	-22.0	-10.1	-2.5	+8.0	23.8	41.5	60.0	-89.0
<i>n</i> -Propyl n-butyrate	$C_7 H_{14} O_2$	-1.6	+22.1	34.0	47.0	61.5	70.3	82.6	101.0	121.7	142.7	-95.2
isobutyrate	$C_7 H_{14} O_2$	-6.2	+16.8	28.3	40.6	54.3	63.0	73.9	91.8	112.0	133.9	
iso-Propyl isobutyrate	$C_7 H_{14} O_2$	-16.3	+5.8	17.0	29.0	42.4	51.4	62.3	80.2	100.0	120.5	
Propyl carbamate	$C_4H_9NO_2$	52.4	77.6	90.0	103.2	117.7	126.5	138.3	155.8	175.8	195.0	
<i>n</i> -Propyl chloride (1-chloropropane)	C ₃ H ₇ Cl	-68.3	-50.0	-41.0	-31.0	-19.5	-12.1	-2.5	+12.2	29.4	46.4	-112.8
iso-Propyl chloride (2-chloropropane)	C ₃ H ₇ Cl	-78.8	-61.1	-52.0	-42.0	-31.0	-23.5	-13.7	+1.3	18.1	36.5	-117
iso-Propyl chloroacetate	C ₅ H ₉ ClO ₂	+3.8	28.1	40.2	53.9	68.7	78.0	90.3	108.8	128.0	148.6	
Propyl chloroglyoxylate	C ₅ H ₇ ClO ₃	9.7	32.3	43.5	55.6	68.8	77.2	88.0	104.7	123.0	150.0	

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

		Pressure, mm Hg							M-14:-			
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Temperat	ure, °C					°C
Propylene	C ₃ H ₆	-131.9	-120.7	-112.1	-104.7	-96.5	-91.3	-84.1	-73.3	-60.9	-47.7	-185
Propylene glycol (1,2-Propanediol)	$C_3H_8O_2$	45.5	70.8	83.2	96.4	111.2	119.9	132.0	149.7	168.1	188.2	
Propylene oxide	C_3H_6O	-75.0	-57.8	-49.0	-39.3	-28.4	-21.3	-12.0	+2.1	17.8	34.5	-112.1
<i>n</i> -Propyl formate	$C_4H_8O_2$	-43.0	-22.7	-12.6	-1.7	+10.8	18.8	29.5	45.3	62.6	81.3	-92.9
iso-Propyl formate	$C_4H_8O_2$	-52.0	-32.7	-22.7	-12.1	-0.2	+7.5	17.8	33.6	50.5	68.3	
4,4'-iso-Propylidenebisphenol	$C_{15}H_{16}O_2$	193.0	224.2	240.8	255.5	273.0	282.9	297.0	317.5	339.0	360.5	
<i>n</i> -Propyl iodide (1-iodopropane)	C ₃ H ₇ I	-36.0	-13.5	-2.4	+10.0	23.6	32.1	43.8	61.8	81.8	102.5	-98.8
iso-Propyl iodide (2-iodopropane)	C ₃ H ₇ I	-43.3	-22.1	-11.7	0.0	+13.2	21.6	32.8	50.0	69.5	89.5	-90
<i>n</i> -Propyl levulinate	$C_8H_{14}O_3$	59.7	86.3	99.9	114.0	130.1	140.6	154.0	175.6	198.0	221.2	
iso-Propyl levulinate	$C_8H_{14}O_3$	48.0	74.5	88.0	102.4	118.1	127.8	141.8	161.6	185.2	208.2	
Propyl mercaptan (1-propanethiol)	C ₃ H ₈ S	-56.0	-36.3	-26.3	-15.4	-3.2	+4.6	15.3	31.5	49.2	67.4	-112
2-iso-Propylnaphthalene	$C_{13}H_{14}$	76.0	107.9	123.4	140.3	159.0	171.4	187.6	211.8	238.5	266.0	
iso-Propyl β -naphthyl ketone	C ₁₄ H ₁₄ O	133.2	165.4	181.0	197.7	215.6	227.0	242.3	264.0	288.2	313.0	
(2-isobutyronaphthone)												
2-iso-Propylphenol	$C_9H_{12}O$	56.6	83.8	97.0	111.7	127.5	137.7	150.3	170.1	192.6	214.5	15.5
3-iso-Propylphenol	$C_9H_{12}O$	62.0	90.3	104.1	119.8	136.2	146.6	160.2	182.0	205.0	228.0	26
4-iso-Propylphenol	$C_9H_{12}O$	67.0	94.7	108.0	123.4	139.8	149.7	163.3	184.0	206.1	228.2	61
Propyl propionate	$C_6H_{12}O_2$	-14.2	+8.0	19.4	31.6	45.0	53.8	65.2	82.7	102.0	122.4	-76
4-iso-Propylstyrene	$C_{11}H_{14}$	34.7	62.3	76.0	91.2	108.0	118.4	132.8	153.9	178.0	202.5	
Propyl isovalerate	$C_8H_{16}O_2$	+8.0	32.8	45.1	58.0	72.8	82.3	95.0	113.9	135.0	155.9	
Pulegone	$C_{10}H_{16}O$	58.3	82.5	94.0	106.8	121.7	130.2	143.1	162.5	189.8	221.0	
Pyridine	C ₅ H ₅ N	-18.9	+2.5	13.2	24.8	38.0	46.8	57.8	75.0	95.6	115.4	-42
Pyrocatechol	$C_6H_6O_2$		104.0	118.3	134.0	150.6	161.7	176.0	197.7	221.5	245.5	105
Pyrocaltechol diacetate	$C_{10}H_{10}O_4$	98.0	129.8	145.7	161.8	179.8	191.6	206.5	228.7	253.3	278.0	
(1,2-phenylene diacetate)												
Pyrogallol	$C_6H_6O_3$		151.7	167.7	185.3	204.2	216.3	232.0	255.3	281.5	309.0	133
Pyrotartaric anhydride	$C_5H_6O_3$	69.7	99.7	114.2	130.0	147.8	158.6	173.8	196.1	221.0	247.4	
Pyruvic acid	$C_3H_4O_3$	21.4	45.8	57.9	70.8	85.3	94.1	106.5	124.7	144.7	165.0	13.
Quinoline	C ₉ H ₇ N	59.7	89.6	103.8	119.8	136.7	148.1	163.2	186.2	212.3	237.7	-15.
iso-Quinoline	C ₉ H ₇ N	63.5	92.7	107.8	123.7	141.6	152.0	167.6	190.0	214.5	240.5	24.
Resorcinol	$C_6H_6O_2$	108.4	138.0	152.1	168.0	185.3	195.8	209.8	230.8	253.4	276.5	110.

Safrole	$C_{10}H_{10}O_2$	63.8	93.0	107.6	123.0	140.1	150.3	165.1	186.2	210.0	233.0	11
Salicylaldehyde	$C_7H_6O_2$	33.0	60.1	73.8	88.7	105.2	115.7	129.4	150.0	173.7	196.5	-7
Salicylic acid	$C_7H_6O_3$	113.7	136.0	146.2	156.8	172.2	182.0	193.4	210.0	230.5	256.0	159
Sebacic acid	$C_{10}H_{18}O_4$	183.0	215.7	232.0	250.0	268.2	279.8	294.5	313.2	332.8	352.3	134.
Selenophene	C ₄ H ₄ Se	-39.0	-16.0	-4.0	+9.1	24.1	33.8	47.0	66.7	89.8	114.3	
Skatole	C ₉ H ₉ N	95.0	124.2	139.6	154.3	171.9	183.6	197.4	218.8	242.5	266.2	95
Stearaldehyde	C ₁₈ H ₃₆ O	140.0	174.6	192.1	210.6	230.8	244.2	260.0	285.0	313.8	342.5	63.5
Stearic acid	$C_{18}H_{36}O_2$	173.7	209.0	225.0	243.4	263.3	275.5	291.0	316.5	343.0	370.0	69.3
Stearyl alcohol (1-octadecanol)	$C_{18}H_{36}O$	150.3	185.6	202.0	220.0	240.4	252.7	269.4	293.5	320.3	349.5	58.5
Styrene	C_8H_8	-7.0	+18.0	30.8	44.6	59.8	69.5	82.0	101.3	122.5	145.2	-30.6
Styrene dibromide [(1,2-dibromoethyl) benzene]	$C_8H_8Br_2$	86.0	115.6	129.8	145.2	161.8	172.2	186.3	207.8	230.0	245.0	
Suberic acid	$C_8H_{14}O_4$	172.8	205.5	219.5	238.2	254.6	265.4	279.8	300.5	322.8	345.5	142
Succinic anhydride	$C_4H_4O_3$	92.0	115.0	128.2	145.3	163.0	174.0	189.0	212.0	237.0	261.0	119.6
Succinimide	$C_4H_5NO_2$	115.0	143.2	157.0	174.0	192.0	203.0	217.4	240.0	263.5	287.5	125.5
Succinyl chloride	$C_4H_4Cl_2O_2$	39.0	65.0	78.0	91.8	107.5	117.2	130.0	149.3	170.0	192.5	17
α-Terpineol	$C_{10}H_{18}O$	52.8	80.4	94.3	109.8	126.0	136.3	150.1	171.2	194.3	217.5	35
Terpenoline	$C_{10}H_{16}$	32.3	58.0	70.6	84.8	100.0	109.8	122.7	142.0	163.5	185.0	
1,1,1,2-Tetrabromoethane	$C_2H_2Br_4$	58.0	83.3	95.7	108.5	123.2	132.0	144.0	161.5	181.0	200.0	
1,1,2,2-Tetrabromoethane	$C_2H_2Br_4$	65.0	95.5	110.0	126.0	144.0	155.1	170.0	192.5	217.5	243.5	
Tetraisobutylene	$C_{16}H_{32}$	63.8	93.7	108.5	124.5	142.2	152.6	167.5	190.0	214.6	240.0	
Tetracosane	$C_{24}H_{50}$	183.8	219.6	237.6	255.3	276.3	288.4	305.2	330.5	358.0	386.4	51.1
1,2,3,4-Tetrachlorobenzene	$C_6H_2Cl_4$	68.5	99.6	114.7	131.2	149.2	160.0	175.7	198.0	225.5	254.0	46.5
1,2,3,5-Tetrachlorobenzene	$C_6H_2Cl_4$	58.2	89.0	104.1	121.6	140.0	152.0	168.0	193.7	220.0	246.0	54.5
1,2,4,5-Tetrachlorobenzene	$C_6H_2Cl_4$					146.0	157.7	173.5	196.0	220.5	245.0	139
1,1,2,2-Tetrachloro-1,2-difluoroethane	$C_2Cl_4F_2$	-37.5	-16.0	-5.0	+6.7	19.8	28.1	33.6	55.0	73.1	92.0	2
1,1,1,2-Tetrachloroethane	$C_2H_2Cl_4$	-16.3	+7.4	19.3	32.1	46.7	56.0	68.0	87.2	108.2	130.5	-6
1,1,2,2-Tetrachloroethane	$C_2H_2Cl_4$	-3.8	+20.7	33.0	46.2	60.8	70.0	83.2	102.2	124.0	145.9	
1,2,3,5-Tetrachloro-4-ethylbenzene	$C_8H_6Cl_4$	77.0	110.0	126.0	143.7	162.1	175.0	191.6	215.3	243.0	270.0	-3
Tetrachloroethylene	C_2Cl_4	-20.6	+2.4	13.8	26.3	40.1	49.2	61.3	79.8	100.0	120.8	-1
2,3,4,6-Tetrachlorophenol	C ₆ H ₂ Cl ₄ O	100.0	130.3	145.5	161.0	179.1	190.0	205.2	227.2	250.4	275.0	69
3,4,5,6-Tetrachloro-1,2-xylene	$C_8H_6Cl_4$	94.4	125.0	140.3	156.0	174.2	185.8	200.5	223.0	248.3	273.5	
Tetradecane	$C_{14}H_{30}$	76.4	106.0	120.7	135.6	152.7	164.0	178.5	201.8	226.8	252.5	5
Tetradecylamine	$C_{14}H_{31}N$	102.6	135.8	152.0	170.0	189.0	200.2	215.7	239.8	264.6	291.2	
Tetradecyltrimethylsilane	C17H38Si	120.0	150.7	166.2	183.5	201.5	213.3	227.8	250.0	275.0	300.0	
Tetraethoxysilane	C ₈ H ₂₀ O ₄ Si	16.0	40.3	52.6	65.8	81.1	90.7	103.6	123.5	146.2	168.5	
1,2,3,4-Tetraethylbenzene	$C_{14}H_{22}$	65.7	96.2	111.6	127.7	145.8	156.7	172.4	196.0	221.4	248.0	11

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

						Pressu	ıre, mm H	g				
Compound		1	5	10	20	40	60	100	200	400	760	Melting Point
Name	Formula					Temperat	ure, °C					°C
Tetraethylene glycol	C ₈ H ₁₈ O ₅	153.9	183.7	197.1	212.3	228.0	237.8	250.0	268.4	288.0	307.8	
Tetraethylene glycol chlorohydrin	$C_8H_{17}ClO_4$	110.1	141.8	156.1	172.6	190.0	200.5	214.7	236.5	258.2	281.5	
Tetraethyllead	C ₈ H ₂₀ Pb	38.4	63.6	74.8	88.0	102.4	111.7	123.8	142.0	161.8	183.0	-136
Tetraethylsilane	C ₈ H ₂₀ Si	-1.0	+23.9	36.3	50.0	65.3	74.8	88.0	108.0	130.2	153.0	
Tetralin	$C_{10}H_{12}$	38.0	65.3	79.0	93.8	110.4	121.3	135.3	157.2	181.8	207.2	-31
1,2,3,4-Tetramethylbenzene	$C_{10}H_{14}$	42.6	68.7	81.8	95.8	111.5	121.8	135.7	155.7	180.0	204.4	-6
1,2,3,5-Tetramethylbenzene	$C_{10}H_{14}$	40.6	65.8	77.8	91.0	105.8	115.4	128.3	149.9	173.7	197.9	-24
1,2,4,5-Tetramethylbenzene	$C_{10}H_{14}$	45.0	65.0	74.6	88.0	104.2	114.8	128.1	149.5	172.1	195.9	79
2,2,3,3-Tetramethylbutane	C_8H_{18}	-17.4	+3.2	13.5	24.6	36.8	44.5	54.8	70.2	87.4	106.3	-102
Tetramethylene dibromide (1 4-dibromobutane)	$C_4H_8Br_2$	32.0	58.8	72.4	87.6	104.0	115.1	128.7	149.8	173.8	197.5	-20
Tetramethyllead	C ₄ H ₁₂ Pb	-29.0	-6.8	+4 4	16.6	30.3	39.2	50.8	68.8	89.0	110.0	-27
Tetramethyltin	$C_4H_{12}r_0$	-51.3	-31.0	-20.6	-9.3	+3.5	11.7	22.8	39.8	58.5	78.0	27
Tetrapropylene glycol monoisopropyl ether	C ₄ H ₁₂ Sh	116.6	147.8	163.0	179.8	197.7	209.0	223.3	245.0	268.3	292.7	
Thioacetic acid (mercantoacetic acid)	C2H4O2S	60.0	87.7	101.5	115.8	131.8	142.0	154.0	2.010	20010	22211	-16.5
Thiodiglycol (2.2'-thiodiethanol)	$C_4H_4O_2S$	42.0	96.0	128.0	165.0	210.0	240.5	285				1010
Thiophene	C ₄ H ₄ S	-40.7	-20.8	-10.9	0.0	+12.5	20.1	30.5	46.5	64.7	84.4	-38.3
Thiophenol (benzenethiol)	C ₄ H ₄ S	18.6	43.7	56.0	69.7	84.2	93.9	106.6	125.8	146.7	168.0	2012
α-Thuione	CudlyO	38.3	65.7	79.3	93.7	110.0	120.2	134.0	154.2	177.8	201.0	
Thymol	CioHido	64.3	92.8	107.4	122.6	139.8	149.8	164.1	185.5	209.6	231.8	
Tiglaldehvde	C _c H _o O	-25.0	-1.6	+10.0	23.2	37.0	45.8	57.7	75.4	95.5	116.8	51
Tiglic acid	C-H ₀ O ₂	52.0	77.8	90.2	103.8	119.0	127.8	140.5	158.0	179.2	198.5	64
Tiglonitrile	C ₅ H ₇ N	-25.5	-2.4	+9.2	22.1	36.7	46.0	58.2	77.8	99.7	122.0	
Toluene	C ₇ H _o	-26.7	-4.4	+6.4	18.4	31.8	40.3	51.9	69.5	89.5	110.6	-95
Toluene-2,4-diamine	$C_7 H_{10} N_2$	106.5	137.2	151.7	167.9	185.7	196.2	211.5	232.8	256.0	280.0	99
2-Toluic nitrile (2-tolunitrile)	$C_8H_7N^2$	36.7	64.0	77.9	93.0	110.0	120.8	135.0	156.0	180.0	205.2	-13
4-Toluic nitrile (4-tolunitrile)	C ₈ H ₇ N	42.5	71.3	85.8	101.7	109.5	130.0	145.2	167.3	193.0	217.6	29
2-Toluidine	C ₇ H _o N	44.0	69.3	81.4	95.1	110.0	119.8	133.0	153.0	176.2	199.7	-16
3-Toluidine	C ₇ H ₉ N	41.0	68.0	82.0	96.7	113.5	123.8	136.7	157.6	180.6	203.3	-31
4-Toluidine	C ₇ H ₉ N	42.0	68.2	81.8	95.8	111.5	121.5	133.7	154.0	176.9	200.4	44
2-Tolyl isocyanide	C ₈ H ₇ N	25.2	51.0	64.0	78.2	94.0	104.0	117.7	137.8	159.9	183.5	

4-Tolylhydrazine	$C_7 H_{10} N_2$	82.4	110.0	123.8	138.6	154.1	165.0	178.0	198.0	219.5	242.0	65.5
Tribromoacetaldehyde	C ₂ HBr ₃ O	18.5	45.0	58.0	72.1	87.8	97.5	110.2	130.0	151.6	174.0	
1,1,2-Tribromobutane	$C_4H_7Br_3$	45.0	73.5	87.8	103.2	120.2	131.6	146.0	167.8	192.0	216.2	
1,2,2-Tribromobutane	$C_4H_7Br_3$	41.0	69.0	83.2	98.6	116.0	127.0	141.8	163.5	188.0	213.8	
2,2,3-Tribromobutane	$C_4H_7Br_3$	38.2	66.0	79.8	94.6	111.8	122.2	136.3	157.8	182.2	206.5	
1,1,2-Tribromoethane	$C_2H_3Br_3$	32.6	58.0	70.6	84.2	100.0	110.0	123.5	143.5	165.4	188.4	-26
1,2,3-Tribromopropane	C ₃ H ₅ Br ₃	47.5	75.8	90.0	105.8	122.8	134.0	148.0	170.0	195.0	220.0	16.5
Triisobutylamine	$C_{12}H_{27}N$	32.3	57.4	69.8	83.0	97.8	107.3	119.7	138.0	157.8	179.0	-22
Triisobutylene	$C_{12}H_{24}$	18.0	44.0	56.5	70.0	86.7	96.7	110.0	130.2	153.0	179.0	
2,4,6-Tritertbutylphenol	$C_{18}H_{30}O$	95.2	126.1	142.0	158.0	177.4	188.0	203.0	226.2	250.6	276.3	
Trichloroacetic acid	$C_2HCl_3O_2$	51.0	76.0	88.2	101.8	116.3	125.9	137.8	155.4	175.2	195.6	57
Trichloroacetic anhydride	$C_4Cl_6O_3$	56.2	85.3	99.6	114.3	131.2	141.8	155.2	176.2	199.8	223.0	
Trichloroacetyl bromide	C ₂ BrCl ₃ O	-7.4	+16.7	29.3	42.1	57.2	66.7	79.5	98.4	120.2	143.0	
2,4,6-Trichloroaniline	C ₆ H ₄ Cl ₃ N	134.0	157.8	170.0	182.6	195.8	204.5	214.6	229.8	246.4	262.0	78
1,2,3-Trichlorobenzene	C ₆ H ₃ Cl ₃	40.0	70.0	85.6	101.8	119.8	131.5	146.0	168.2	193.5	218.5	52.5
1,2,4-Trichlorobenzene	C ₆ H ₃ Cl ₃	38.4	67.3	81.7	97.2	114.8	125.7	140.0	162.0	187.7	213.0	17
1,3,5-Trichlorobenzene	C ₆ H ₃ Cl ₃		63.8	78.0	93.7	110.8	121.8	136.0	157.7	183.0	208.4	63.5
1,2,3-Trichlorobutane	$C_4H_7Cl_3$	+0.5	27.2	40.0	55.0	71.5	82.0	96.2	118.0	143.0	169.0	
1,1,1-Trichloroethane	$C_2H_3Cl_3$	-52.0	-32.0	-21.9	-10.8	+1.6	9.5	20.0	36.2	54.6	74.1	-30.6
1,1,2-Trichloroethane	$C_2H_3Cl_3$	-24.0	-2.0	+8.3	21.6	35.2	44.0	55.7	73.3	93.0	113.9	-36.7
Trichloroethylene	C ₂ HCl ₃	-43.8	-22.8	-12.4	-1.0	+11.9	20.0	31.4	48.0	67.0	86.7	-73
Trichlorofluoromethane	CCl ₃ F	-84.3	-67.6	-59.0	-49.7	-39.0	-32.3	-23.0	-9.1	+6.8	23.7	
2,4,5-Trichlorophenol	C ₆ H ₃ Cl ₃ O	72.0	102.1	117.3	134.0	151.5	162.5	178.0	201.5	226.5	251.8	62
2,4,6-Trichlorophenol	C ₆ H ₃ Cl ₃ O	76.5	105.9	120.2	135.8	152.2	163.5	177.8	199.0	222.5	246.0	68.
Tri-2-chlorophenylthiophosphate	$C_{18}H_{12}Cl_3O_3$	188.2	217.2	231.2	246.7	261.7	271.5	283.8	302.8	322.0	341.3	
1.1.1-Trichloropropane	C.H.Cl.	-28.8	-7.0	+4.2	16.2	29.9	38.3	50.0	67.7	87.5	108.2	-77
1 2 3-Trichloropropane	C ₂ H ₂ Cl ₂	+9.0	33.7	46.0	59.3	74.0	83.6	96.1	115.6	137.0	158.0	-14
1 1 2-Trichloro-1 2 2-trifluoroethane	C ₂ Cl ₂ E ₂	-68.0	-49.4	-40.3	-30.0	-18.5	-11.2	-1.7	+13.5	30.2	47.6	-35
Tricosane	CarHa	170.0	206.3	223.0	242.0	261.3	273.8	289.8	313.5	339.8	366.5	47.
Tridecane	C12H28	59.4	98.3	104.0	120.2	137.7	148.2	162.5	185.0	209.4	234.0	-6.2
Tridecanoic acid	$C_{13} - C_{28}$ $C_{12} H_{24} O_{2}$	137.8	166.3	181.0	195.8	212.4	222.0	236.0	255.2	276.5	299.0	41
Triethoxymethylsilane	C ₇ H ₁₀ O ₂ Si	-1.5	+22.8	34.6	47.2	61.7	70.4	82.7	101.0	121.8	143.5	
Triethoxyphenylsilane	C U O C:	71.0	98.8	112.6	127.2	143 5	153.2	167.5	188.0	210.5	233.5	
1 2 4-Triethylbenzene	$U_{12}H_{20}U_{2}S1$	/1.0	20.0	114.0		1 1 2 1 2						
	$C_{12}H_{20}O_3S1$ $C_{12}H_{18}$	46.0	74.2	88.5	104.0	121.7	132.2	146.8	168.3	193.7	218.0	

Pressure, mm Hg Melting Compound 1 5 10 20 40 60 100 200 400 760 Point, Name Formula Temperature, °C °C Triethylborine $C_6H_{15}B$ -148.0-140.6-131.4 -125.2-116.0-101.0-81.0-56.2Triethyl camphoronate $C_{15}H_{26}O_{6}$ 150.2 166.0 183.6 201.8 213.5 228.6 250.8 276.0 301.0 135 C12H20O7 294.0 citrate 107.0 138.7 144.0 171.1 190.4 202.5 217.8 242.2 267.5 Triethyleneglycol $C_6H_{14}O_4$ 114.0 144.0 158.1 174.0 191.3 201.5 214.6 235.2 256.6 278.3 Triethylheptylsilane C13H30Si 70.0 99.8 114.6 130.3 148.0 158.2 174.0 196.0 221.0 247.0 Triethyloctylsilane C14H32Si 73.7 104.8 120.6 137.7 155.7 168.0 184.3 208.0 235.0 262.0 Triethyl orthoformate C7H16O3 +5.529.2 40.5 53.4 67.5 76.0 88.0 106.0 125.7 146.0 phosphate $C_6H_{15}O_4P$ 39.6 97.8 187.0 211.0 67.8 82.1 115.7 126.3 141.6 163.7 Triethvlthallium $C_6H_{15}Tl$ +9.337.6 51.7 67.7 85.4 95.7 112.1 136.0 163.5 192.1 -63.0Trifluorophenylsilane C₆H₅F₂Si -31.0-9.7+0.812.3 25.4 33.2 44.2 60.1 78.7 98.3 Trimethallyl phosphate $C_{12}H_{21}PO_4$ 93.7 131.0 149.8 169.8 192.0 207.0 225.7 255.0 288.5 324.0 2,3,5-Trimethylacetophenone C11H14O 79.0 108.0 122.3 137.5 154.2 165.7 179.7 201.3 224.3 247.5 Trimethylamine C_3H_9N -97.1-81.7-73.8-65.0-55.2-48.8-40.3-27.0-12.5+2.9 -1172,4,5-Trimethylaniline $C_9H_{13}N$ 68.4 95.9 109.0 123.7 139.8 149.5 162.0 182.3 203.7 234.5 67 1.2.3-Trimethylbenzene $C_{9}H_{12}$ 16.8 42.9 55.9 69.9 85.4 95.3 108.8 129.0 152.0 176.1 -251,2,4-Trimethylbenzene $C_{9}H_{12}$ 50.7 79.8 89.5 102.8 -44 13.6 38.3 64.5 122.7 145.4 169.2 1,3,5-Trimethylbenzene 9.6 34.7 47.4 98.9 -44 C_0H_{12} 61.0 76.1 85.8 118.6 141.0 164.7 2,2,3-Trimethylbutane -7.541.2 80.9 $C_7 H_{16}$ -18.8+5.213.3 24.4 60.4 -25.Trimethyl citrate 106.2 146.2 160.4 177.2 194.2 205.5 219.6 241.3 264.2 287.0 78. $C_{9}H_{14}O_{7}$ Trimethyleneglycol (1,3-propandiol) $C_3H_8O_2$ 59.4 87.2 100.6 115.5 131.0 141.1 153.4 172.8 193.8 214.2 1,2,4-Trimethyl-5-ethylbenzene C11H16 43.7 71.2 84.6 99.7 106.0 126.3 140.3 160.3 184.5 208.1 1,3,5-Trimethyl-2-ethylbenzene C11H16 38.8 67.0 80.5 96.0 113.2 123.8 137.9 158.4 183.5 208.0 2,2,3-Trimethylpentane -29.0-7.1+3.929.5 38.1 49.9 67.8 88.2 109.8 -112. $C_{8}H_{18}$ 16.0 2,2,4-Trimethylpentane C_8H_{18} -36.5-15.0-4.3+7.520.7 29.1 40.7 58.1 78.0 99.2 -107.2,3,3-Trimethylpentane C_8H_{18} -25.8-3.9+6.919.2 33.0 41.8 53.8 72.0 92.7 114.8 -101.2,3,4-Trimethylpentane C_8H_{18} -26.3-4.1+7.119.3 32.9 41.6 53.4 71.3 91.8 113.5 -109.2,2,4-Trimethyl-3-pentanone C₈H₁₆O 14.7 36.0 46.4 57.6 69.8 77.3 87.6 102.2 118.4 135.0 Trimethyl phosphate $C_3H_9O_4P$ 26.0 53.7 83.0 100.0 145.0 192.7 67.8 110.0 124.0 167.8 2,4,5-Trimethylstryene C₁₁H₁₄ 48.1 77.0 107.1 124.2 135.5 149.8 171.8 221.2 91.6 196.1 2,4,6-Trimethylsytrene C11H14 37.5 65.7 79.7 94.8 111.8 122.3 136.8 157.8 182.3 207.0 Trimethylsuccinic anhydride 82.6 142.2 156.5 179.8 231.0 C7H10O3 53.5 97.4 113.8 131.0 205.5

TABLE 2.37 Boiling Points of Common Organic Compounds at Selected Pressures (Continued)

Triphenylmethane	C19H16	169.7	188.4	197.0	206.8	215.5	221.2	228.4	239.7	249.8	259.2	93.4
Triphenylphosphate	$C_{18}H_{15}O_4P$	193.5	230.4	249.8	269.7	290.3	305.2	322.5	349.8	379.2	413.5	49.4
Tripropyleneglycol	$C_9H_{20}O_4$	96.0	125.7	140.5	155.8	173.7	184.6	199.0	220.2	244.3	267.2	
Tripropyleneglycol monobutyl ether	$C_{13}H_{28}O_4$	101.5	131.6	147.0	161.8	179.8	190.2	204.4	224.4	247.0	269.5	
Tripropyleneglycol monoisopropyl ether	$C_{12}H_{26}O_4$	82.4	112.4	127.3	143.7	161.4	173.2	187.8	209.7	232.8	256.6	
Tritolyl phosphate	$C_{21}H_{21}O_4P$	154.6	184.2	198.0	213.2	229.7	239.8	252.2	271.8	292.7	313.0	
Undecane	$C_{11}H_{24}$	32.7	59.7	73.9	85.6	104.4	115.2	128.1	149.3	171.9	195.8	-25.6
Undecanoic acid	$C_{11}H_{22}O_2$	101.4	133.1	149.0	166.0	185.6	197.2	212.5	237.8	262.8	290.0	29.5
10-Undecenoic acid	$C_{11}H_{20}O_2$	114.0	142.8	156.3	172.0	188.7	199.5	213.5	232.8	254.0	275.0	24.5
Undecan-2-ol	$C_{11}H_{24}O$	71.1	99.0	112.8	127.5	143.7	153.7	167.2	187.7	209.8	232.0	
<i>n</i> -Valeric acid	$C_5H_{10}O_2$	42.2	67.7	79.8	93.1	107.8	116.6	128.3	146.0	165.0	184.4	-34.5
iso-Valeric acid	$C_5H_{10}O_2$	34.5	59.6	71.3	84.0	98.0	107.3	118.9	136.2	155.2	175.1	-37.6
γ-Valerolactone	$C_5H_8O_2$	37.5	65.8	79.8	95.2	101.9	122.4	136.5	157.7	182.3	207.5	
Valeronitrile	C ₅ H ₉ N	-6.0	+18.1	30.0	43.3	57.8	66.9	78.6	97.7	118.7	140.8	
Vanillin	$C_8H_8O_3$	107.0	138.4	154.0	170.5	188.7	199.8	214.5	237.3	260.0	285.0	81.5
Vinyl acetate	$C_4H_6O_2$	-48.0	-28.0	-18.0	-7.0	+5.3	13.0	23.3	38.4	55.5	72.5	
2-Vinylanisole	$C_9H_{10}O$	41.9	68.0	81.0	94.7	110.0	119.8	132.3	151.0	172.1	194.0	
3-Vinylanisole	$C_9H_{10}O$	43.4	69.9	83.0	97.2	112.5	122.3	135.3	154.0	175.8	197.5	
4-Vinylanisole	$C_9H_{10}O$	45.2	72.0	85.7	100.0	116.0	126.1	139.7	159.0	182.0	204.5	
Vinyl chloride (1-chloroethylene)	C_2H_3Cl	-105.6	-90.8	-83.7	-75.7	-66.8	-61.1	-53.2	-41.3	-28.0	-13.8	-153.7
cyanide (acrylonitrile)	C_3H_3N	-51.0	-30.7	-20.3	-9.0	+3.8	11.8	22.8	38.7	58.3	78.5	-82
fluoride (1-fluoroethylene)	C_2H_3F	-149.3	-138.0	-132.2	-125.4	-118.0	-113.0	-106.2	-95.4	-84.0	-72.2	-160.5
Vinylidene chloride (1,1-dichloroethene)	$C_2H_2Cl_2$	-77.2	-60.0	-51.2	-41.7	-31.1	-24.0	-15.0	-1.0	+14.8	31.7	-122.5
4-Vinylphenetole	$C_{10}H_{12}O$	64.0	91.7	105.6	120.3	136.3	146.4	159.8	180.0	202.8	225.0	
2-Xenyl dichlorophosphate	C12H9Cl2PO	138.2	171.1	187.0	205.0	223.8	236.0	251.5	275.3	301.5	328.5	
2,4-Xyaldehyde	$C_9H_{10}O$	59.0	85.9	99.0	114.0	129.7	139.8	152.2	172.3	194.1	215.5	75
2-Xylene (2-xylene)	C_8H_{10}	-3.8	+20.2	32.1	45.1	59.5	68.8	81.3	100.2	121.7	144.4	-25.2
3-Xylene (3-xylene)	C_8H_{10}	-6.9	+16.8	28.3	41.1	55.3	64.4	76.8	95.5	116.7	139.1	-47.9
4-Xylene (4-xylene)	C_8H_{10}	-8.1	+15.5	27.3	40.1	54.4	63.5	75.9	94.6	115.9	138.3	+13.3
2,4-Xylidine	$C_8H_{11}N$	52.6	79.8	93.0	107.6	123.8	133.7	146.8	166.4	188.3	211.5	
2,6-Xylidine	$C_8H_{11}N$	44.0	72.6	87.0	102.7	120.2	131.5	146.0	168.0	193.7	217.9	

TABLE 2.38 Organic Solvents Arranged by Boiling Points

Name	BP, °C	Name	BP, ℃
Ethylene oxide	10.6	1-Propanol	97.2
Chloroethane	12.3	Heptane	98.4
Furan	31.4	1-Chloro-3-methylbutane	99
Methyl formate	31.5	Ethyl propionate	99.1
Diethyl ether	34.6	2-Butanol	99.6
Propylene oxide	34.5	Formic acid	100.8
Pentane	36.1	Methylcyclohexane	100.9
Bromoethane	38.4	1,4-Dioxane	101.2
Dichloromethane	39.8	Nitromethane	101.2
Dimethoxymethane	42.3	Propyl acetate	101.5
Carbon disulfide	46.3	2-Pentanone	101.7
1-Isopropoxy-2-propanol	47.9	3-Pentanone	102.0
Ethyl formate	54.2	2-Methyl-2-butanol	102.0
Acetone	56.2	1,1-Diethoxyethane	102.7
Methyl acetate	56.3	Butyl formate	106.6
1,1-Dichloroethane	57.3	2-Methyl-1-propanol	107.9
Dichloroethylene	60.6	Toluene	110.6
Chloroform	61.2	sec-Butyl acetate	112.3
Methanol	64.7	1.1.2-Trichloroethane	113.5
Tetrahydrofuran	66.0	Nitroethane	114.1
Diisopropyl ether	68.0	Pvridine	115.2
Hexane	68.7	3-Pentanol	115.6
1-Chloro-2-methylpropane	68.9	4-Methyl-2-pentanone	115.7
1.1.1-Trichloroethane	74.0	1-Chloro-2.3-epoxypro-	116.1
1.3-Dioxolane	74-75	pane	
Carbon tetrachloride	76.7	1-Butanol	117.7
Ethyl acetate	77.1	Acetic acid	117.9
1-Chlorobutane	77.9	Isobutyl acetate	118.0
Ethanol	78.3	2-Pentanol	119.3
2-Butanone	79.6	1-Bromo-3-methylbutane	119.7
2-Methyltetrahydrofuran	80.0	1-Methoxy-2-propanol	120.1
Benzene	80.1	2-Nitropropane	120.3
Cyclohexane	80.7	Tetrachloroethylene	121.1
Propyl formate	80.9	Ethyl butyrate	121.6
Acetonitrile	81.6	3-Hexanone	123
2-Propanol	82.4	2,4-Dimethyl-3-pentanone	124
1.1Dimethylethanol	82.4	2-Methoxyethanol	124.6
Cyclohexene	83.0	Octane	125.7
Diisopropylamine	83.5	Butyl acetate	126.1
1.2-Dichloroethane	83.7	Diethyl carbonate	126.8
Thiophene	84.2	2-Hexanone	127.2
Trichloroethylene	87.2	1-Chloro-2-propanol	127.4
Isopropyl acetate	88.2	2-Chloroethanol	128.6
1-Bromo-2-methylpropane	91.5	3-Methyl-1-penten-2-one	129.5
2.5-Dimethylfuran	93-94	1-Nitropropane	131.2
Ethyl chloroformate	94	Chlorobenzene	131.7
Allyl alcohol	96.6	1,2-Dibromoethane	131.7
1,2-Dichloropropane	96.8	4-Methyl-2-pentanol	131.7
		J 1 · · · ·	

Name	BP, ℃	Name	BP, ℃
3-Methyl-1-butanol	132.0	Phenol	181.8
Cyclohexylamine	134.8	2-Ethyl-1-hexanol	184.3
2-Ethoxyethanol	134.8	Aniline	184.4
Ethylbenzene	136.2	Benzyl ethyl ether	185.0
1-Pentanol	138	Diethyl oxalate	185.4
<i>p</i> -Xylene	ene 138.4 1,2-Propa		188
<i>m</i> -Xylene	139.1	Bis(2-ethoxyethyl) ether	188.4
Acetic anhydride	140.0	Dimethyl sulfoxide	189.0
2.4-Pentanedione	140.6	1,2-Ethanediol diacetate	190.2
Isopentyl acetate	142	Benzonitrile	191.0
Dibutyl ether	142.4	2,5-Hexanedione	191.4
4-Heptanone	143.7	2-(2-Methoxyethoxy)-	194.1
o-Xvlene	144.4	ethanol	
2-Methoxyethyl acetate	144.5	N,N-Dimethylaniline	194.2
1.1.2.2-Tetrachloroethane	146.3	1-Octanol	195.2
3-Heptanone	147.8	1,2-Ethanediol	197.3
Tribromomethane	149.6	Diethyl malonate	199.3
Nonane	150.8	Methyl benzoate	199.5
2-Hentanone	151	o-Toluidine	200.4
Isopronylbenzene	152.4	<i>p</i> -Toluidine	200.6
N N-Dimethylformamide	153.0	2-(2-Ethoxyethoxy)-	202
Methoxybenzene	153.8	ethanol	
Ethyl lactate	154.5	Acetophenone	202.1
Cyclohexanone	155.7	1.2-Dibutoxyethane	203.6
Bromobenzene	156.2	1-Phenylethanol	203.9
1.2.3-Trichloropropage	156.9	<i>m</i> -Toluidine	203.4
1-Hexanol	157.5	Benzyl alcohol	205.5
Propylbenzene	159.2	Camphor	207
Cyclohexanol	161.1	1.3-Butanediol	207.5
Bis(2-methoxyethyl)ether	160	1.2.3.4-Tetrahydro-	207.6
Isopentyl propionate	160 2	nanhthalene	=0710
2-Hentanol	160.2	v-Valerolactone	207 - 208
Pentachloroethane	160.5	<i>a</i> -Chloroaniline	208.8
2-Euraldehyde	161.8	Nitrobenzene	210.8
2.6-Dimethyl-4-heptanone	168 1	Ethyl benzoate	212.4
4-Hydroxy-A-methyl-	160.1	3.5.5-Trimethylevelo-	215.2
2-pentanone	109.2	hex-2-en-1-one	N 101W
2-Euranmethanol	170.0	Naphthalene	2177
Ethoyybenzene	170.0	2-(2-Ethoxyethoxy)ethyl	218.5
2 Butoxyethenol	170 2	acetate	210.5
Diisopentyl ether	170.2	Acetamide	221.2
Decane	174.2	Methyl salicylate	223.0
1.3-Dichloro-2-propagal	174.2	Diethyl maleate	225.3
Cucleberul sectors	174.5	1 4-Butanediol	220.5
1 Hontonol	174-175	Pronyl benzoate	231.2
Furfuryl acetate	175.0	1-Decanol	230.2
1.2.2 Trimethyl	177 4	Phenylacetonitrile	233.5
2 orabiquelo	177.4	Ouinoline	233.5
2-0xabicyclo-		Tributyl borate	238.5
L.2.2 Joctane	177 1	Propylene carbonate	230.5
1 mothylbonzono	177.1	2 Dhanoxyathanal	240
Isopoptul buturete	178 4	Bis(2 hydrogyothyl) other	240
Big(2 ablareathrd) athan	170.0	Dibutul oxolato	245
2-Octanol	170.0	Butyl benzoste	245.5
1 2-Dichlorobenzene	180 /	1 2 3-Propagetrial	∠JU 258_250
Fthyl acetoacetate	180.4	triacetate	200-209
Luiyi accidacciate	100.0	macciac	

TABLE 2.38 Organic Solvents Arranged by Boiling Points (Continued)

Name	BP, °C	Name	BP, ℃
1-Chloronaphthalene	259.3	2,2'-(Ethylenedioxy)-	285
Isopentyl benzoate	262	bisethanol	
Bis[2-(methoxyethoxy)-	275.3	Glycerol	290
ethyl]ether		Diethyl o-phthalate	295
1-Methoxy-2-nitrobenzene	277	Benzyl benzoate	323.5
Isopentyl salicylate	277-278	Dibutyl o-phthalate	340.0
1-Bromonaphthalene	281.1	Dibutyl decanedioate	344345
Dimethyl o-phthalate	283.7		

TABLE 2.38 Organic Solvents Arranged by Boiling Points (Continued)

Carbon number	Boiling point, °C	Boiling point, °F
5	36	97
6	69	156
7	98	209
8	126	258
9	151	303
10	174	345
11	196	385
12	216	421
13	235	456
14	253	488
15	271	519
16	287	548
17	302	576
18	317	602
19	331	627
20	344	651
21	356	674
22	369	696
23	380	716
24	391	736
25	402	755
26	412	774
27	422	792
28	432	809
29	441	825
30	450	841
31	459	858
32	468	874
33	476	889
34	483	901
35	491	916
36	498	928
37	505	941
38	512	958
39	518	964
40	525	977
41	531	988
42	537	999
43	543	1009
44	548	1018

TABLE 2.39Boiling Points of n-Paraffins

The *flash point* of a substance is the lowest temperature at which the substance gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The *fire point* is the temperature at which the flame becomes self-sustained and the burning continues. At the flash point, the flame does not need to be sustained. The fire point is usually a few degrees above the flash point. ASTM test methods include procedures using a closed cup (ASTM D-56, ASTM D-93, and ASTM D-3828), which is preferred, and an open cup (ASTM D-92, ASTM D-I310). When several values are available, the lowest temperature is usually taken in order to assure safe operation of the process.

The *ignition temperature* (or *ignition point*) is the minimum temperature required to initiate selfsustained combustion of a substance (solid, liquid, or gaseous) and independent of external ignition sources or heat.

Flash points, lower and upper flammability limits, and auto-ignition temperatures are the three properties that are used to indicate safe operating limits of temperature when processing organic materials. Prediction methods are somewhat erratic, but, together with comparisons with reliable experimental values for families or similar compounds, they are valuable in setting a conservative value for each of the properties.

The upper and lower flammability limits are the boundary-line mixtures of vapor or gas with air, which, if ignited, will just propagate flame and are given in terms of percent by volume of gas or vapor in the air. Each of these limits also has a temperature at which the flammability limits are reached. The temperature corresponding to the lower-limit partial vapor pressure should equal the flash point. The temperature corresponding to the upper-limit partial vapor pressure is somewhat above the lower limit and is usually considerably below the auto-ignition temperature. Flammability limits are calculated at one atmosphere total pressure and are normally considered synonymous with explosive limits. Limits in oxygen rather than air are sometimes measured and available. Limits are generally reported at 298°K and 1 atmosphere. If the temperature or the pressure is increased, the lower limit will decrease while the upper limit will increase, giving a wider range of compositions over which flame will propagate.

The auto-ignition temperature is the minimum temperature for a substance to initiate selfcombustion in air in the absence of a spark or flame. The temperature is no lower than and is generally considerably higher than the temperature corresponding to the upper flammability limit. Large differences can occur in reported values determined by different procedures. The lowest reasonable value should be accepted in order to assure safety. Values are also sometimes given in oxygen rather than in air.

One simple method of estimating auto-ignition temperatures is to compare values for a compound with other members of its homologous series on a plot vs. carbon number as the temperature decreases and carbon number increases.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Acetal	215	-5	446
$CH_3CH(OC_2H_5)_2$	(102)	(-21)	(230)
(Acetaldehydediethylacetal)	. ,		· · · ·
Acetaldehyde	70	-38	347
CH ₃ CHO	(21)	(-39)	(175)
(Acetic aldehyde)			
(Ethanal)			
Acetaldehydediethylacetal		See	Acetal.
Acetaldel		See	Aldol.
Acetanilide	582	337	985 ± 10
CH ₃ CONHC ₆ H ₅	(306)	(169)	(530)
5 0 5		(oc)	
Acetic Acid, Glacial	245	103	867
CH ₂ COOH	(118)	(39)	(463)
Acetic Acid, Isopropyl Ester		See Isopro	opvl Acetate.
Acetic Acid, Methyl Ester		See Met	hyl Acetate.
Acetic Acid. n-Propyl Ester		See Prot	ovl Acetate.
Acetic Aldehvde		See Ace	etaldehvde
Acetic Anhydride	284	120	600
(CH ₂ CO) ₂ O	(140)	(49)	(316)
(Ethanoic anhydride)	()	()	(***)
Acetic Ester		See Eth	vl Acetate.
Acetic Ether		See Eth	vl Acetate.
Acetoacetanilide		365	<i>,</i>
CH ₂ COCH ₂ CONHC ₂ H ₅		(185)	
o-Acetoacet Anisidide		325	
CH ₂ COCH ₂ CONHC ₄ H ₄ OCH ₂		(168)	
Acetoacetic Acid. Ethyl Ester		See Ethyl	acetoacetate.
Acetoethylamide		See N-Eth	vlacetamide.
Acetone	133	-4	869
CH ₂ COCH ₂	(56)	(-20)	(465)
(Dimethyl Ketone)		(-)	
(2-Propanone)			
Acetone Cvanohvdrin	248	165	1270
$(CH_2)_2C(OH)CN$	(120)	(74)	(688)
(2-Hydroxy2-Methyl	Decomposes	()	(000)
Propionitrile)	···· 1····		
Acetonitrile	179	42	975
CH ₂ CN	(82)	(6)	(524)
(Methyl Cyanide)	()	(*)	()
Acetonyl Acetone	378	174	920
$(CH_2COCH_2)_2$	(192)	(79)	(499)
(2.5-Hexanedione)	()	()	()
Acetophenone	396	170	1058
C ₂ H ₂ COCH ₂	(202)	(77)	(570)
(Phenyl Methyl Ketone)	(-*-)	()	(2.3)
p-Acetotoluidide	583	334	
CH ₂ CONHC ₄ H ₄ CH ₂	(306)	(168)	
Acetyl Acetone	(200)	See 2 4-P	entanedione
Acetyl Chloride	124	40	734
CH ₂ COCl	(51)	(4)	(390)
(Ethanoyl Chloride)	(51)	(*)	(550)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Acetylene	-118	Gas	581
CH:CH	(-83)		(305)
(Ethine)			
(Ethyne)			
N-Acetyl Ethanolamine	304-308	355	860
CH ₃ C:ONHCH ₂ CH ₂ OH	(151–153)	(179)	(460)
(N-(2-Hydroxyethyl)	@10 mm	(oc)	
acetamide)	Decomposes		
N-Acetyl Morpholine	Decomposes	235	
CH ₃ CONCH ₂ CH ₂ OCH ₂ CH:	-	(113)	
Acetyl Oxide		See Acetic	Anhydride.
Acetylphenol		See Phen	yl Acetate.
Acrolein	125	-15	428
CH ₂ :CHCHO	(52)	(-26)	(220)
(Acrylic Aldehyde)			Unstable
Acrylic Acid (Glacial)	287	122	820
CH ₂ CHCOOH	(142)	(50)	(438)
Acrylic Aldehyde		See A	crolein.
Acrylonitrile	171	32	898
CH ₂ :CHCN	(77)	(0)	(481)
(Vinyl Cyanide)			
(Propenenitrile)			
Adipic Acid	509	385	788
HOOC(CH ₂) ₄ COOH	(265)	(196)	(420)
	@100 mm		. ,
Adipic Ketone		See Cyclo	pentanone.
Adiponitrile	563	200	1
$NC(CH_2)_4CN$	(295)	(93)	
Alcohol		See Ethy	l Alcohol.
		Methyl	Alcohol.
Aldol	174–176	150	482
CH ₃ CH(OH)CH ₂ CHO	(79-80)	(66)	(250)
(3-Hydroxybutanal)	@12 mm		
$(\beta$ -Hydroxybuteraldehyde)	Decomposes		
	@176		
	(80)		
Allvl Acetate	219	72	705
CH ₂ COCH ₂ CH:CH ₂	(104)	(22)	(374)
Allvl Alcohol	206	70	713
CH ₂ :CHCH ₂ OH	(97)	(21)	(378)
Allylamine	128	-20	705
CH ₂ :CHCH ₂ NH ₂	(53)	(-29)	(374)
(2-Propenylamine)	()	()	(0.1)
Allyl Bromide	160	30	563
CH ₂ ;CHCH ₂ Br	(71)	(-1)	(295)
(3-Bromopropene)	()	(-)	()
Allyl Caproate	367-370	150	
CH ₂ (CH ₂) ₄ COOCH ₂ CH:Cl	(186 - 188)	(66)	
(Allyl Hexanoate)	(100)	()	
(2-Propenyl Hexanoate)			
(= 110pony) Hoxanouto)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Allyl Chloride	113	-25	737
CH ₂ :CHCH ₂ Cl	(45)	(-32)	(485)
(3-Chloropropene)			()
Allyl Chlorocarbonate		See Allyl C	Chloroformate.
Allyl Chloroformate	223-237	88	
CH ₂ :CHCH ₂ OCOCl	(106 - 114)	(31)	
(Allyl Chlorocarbonate)	· · · ·		
Allylene		See I	Propyne.
Allyl Ether	203	20	1.
(CH ₂ :CHCH ₂) ₂ O	(95)	(-7)	
(Diallyl Ether)		. ,	
Allylidene Diacetate	225	180	
CH ₂ :CHCH(OCOCH ₂) ₂	(107)	(82)	
2	@50 mm		
Allvl Isothiocvanate		See M	ustard Oil.
Allylpropenyl		See 1.4-	Hexadiene.
Allyl Trichloride		See 1 2 3-Tr	ichloropropane
Allyl Vinyl Ether		See Vinv	l Allyl Ether
Alpha Methyl Pyridine		2-P	icoline
Aminobenzene		See	Aniline
2-Aminobinhenvl		See 2-Bit	henvlamine
1-Aminobutane		See Bi	itvlamine.
2. Amino. 1. Butanol	352	165	it y fairing.
CH_CH_CHNH_CH_OH	(178)	(74)	
1-Amino-4-Ethoxybenzene	(170)	See n-P	henetidine
B-A minoethyl Alcohol		See Fth	anolamine.
Amyl A cetate	300	60	680
	(140)	(16)	(360)
(1 Pentanol Acetate)	(14))	(10)	(500)
(1-Felitation Acetate)		(21)	
comm.	240	(21)	
	(121)	(32)	
(2 Pentanol A solution)	(121)	(32)	
(2-Fentanoi Acetate)	280	01	570
	(129)	91	(200)
(1 Pertend)	(158)	(55)	(300)
(1-Pentanoi)	245	04	650
	(119)	94	(242)
(Diathyl Carbinal)	(118)	(34)	(343)
(Diethyl Carbinol)	210	20	2.2 22
	210	50	2.2 22
$C_5 \Pi_{11} N \Pi_2$	(99)	(-1)	
(Pentylamine)	109	20	
	198	20	
$CH_3(CH_2)_2CH(CH_3)NH_2$	(92)	(-/)	
(wietnyipropyicarbinyiamine)	400 504	015	
p-tert-Amylaniline	498-504	215	
$(U_2H_5)(UH_2)_2UU_6H_4NH_2$	(259-262)	(102)	
Amyidenzene	505	150	
$C_6H_5C_5H_{11}$	(185)	(66)	
(Phenylpentane)		(oc)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Amyl Bromide	128-9	90	
CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br	(53-54)	(32)	
(1-Bromopentane)	@746 mm	(52)	
Amyl Butyrate	365	135	
C ₅ H ₁₁ OOCC ₂ H ₇	(185)	(57)	
Amyl Carbinol	(100)	See Hexy	/I Alcohol.
Amyl Chloride	223	55	500
CH ₃ (CH ₂) ₃ CH ₂ Cl	(106)	(13)	(260)
(1-Chloropentane)	()	()	()
tert-Amyl Chloride	187		653
CH ₂ CH ₂ CCl(CH ₂)CH ₂	(86)		(345)
Amyl Chlorides (Mixed)	185-228	38	(/
$C_{s}H_{11}Cl$	(85–109)	(3)	
Amvlcvclohexane	395		462
C ₅ H ₁₁ C ₆ H ₁₁	(202)		(239)
Amylene		See 1-I	Pentene.
β-Amvlene-cis	99	<-4	
C ₂ H ₅ CH:CHCH ₃	(37)	(<-20)	
(2-Pentene-cis)			
β-Amylene-trans	97	<-4	
C ₂ H ₅ CH:CHCH ₂	(36)	(<-20)	
(2-Pentene-trans)	(22)	(• = •)	
Amylene Chloride		See 1.5-Dic	hloropentane
Amyl Ether	374	135	338
C _e H ₁₁ OC _e H ₁₁	(190)	(57)	(170)
(Diamyl Ether)	(()
(Pentyloxypentane)			
Amvl Formate	267	79	
HCOCC ₄ H ₁₁	(131)	(26)	
Amvl Lactate	237–239	175	
C ₂ H ₅ OCOOCH ₂ -	(114 - 115)	(79)	
CH(CH ₂)C ₂ H ₅	@36 mm		
Amvl Laurate	554-626	300	
$C_{11}H_{22}COOC_{4}H_{11}$	(290-330)	(149)	
Amyl Maleate	518–599	270	
$(CHCOOC_{5}H_{11})_{2}$	(270-315)	(132)	
Amyl Mercaptan	260	65	
C ₅ H ₁₁ SH	(127)	(18)	
(1-Pentanethiol)	× ,		
Amyl Mercaptans (Mixed)	176-257	65	
CH ₃ (CH ₂) ₄ SH	(80-125)	(18)	
Amyl Naphthalene	550	255	
$C_{10}H_7C_5H_{11}$	(288)	(124)	
Amyl Nitrate	306-315	118	
CH ₃ (CH ₂) ₄ NO ₂	(153–157)	(48)	
Amyl Nitrite	220	410	
CH ₃ (CH ₂) ₄ NO ₂	(104)	(210)	
Amyl Oleate	392-464	366	
C ₁₇ H ₃₃ COOC ₅ H ₁₁	(200-240)	(186)	
17 55 5 11	@20 mm		
Amyl Oxalate	464-523	245	
$(COOC_5H_{11})_2$	(240-273)	(118)	
(Diamyl Oxalate)	× · · · /	× -/	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point	Flash point,	Ignition point,
Compound	$^{1}F(^{1}C)$	⁻ F(-C)	F(C)
o-Amyl Phenol	455-482	219	
$C_5H_{11}C_6H_4OH$	(235–250)	(104)	
p-tert-Amyl Phenol		See Pe	ntaphen.
p-sec-Amylphenol	482–516	270	
$C_5H_{11}C_6H_4OH$	(250–269)	(132)	
2-(p-tert-Amylphenoxy) Ethanol	567-590	280	
$C_5H_{11}C_6H_4OCH_2CH_2OH$	(297–310)	(138)	
2-(p-tert-Amylphenoxy) Ethyl	464-500	410	
Laurate	(240 - 260)	(210)	
$C_{11}H_{23}COO(CH_2)_2OC_6H_4C_5H_{11}$	@6 mm		
p-tert-Amylphenyl	507-511	240	
Acetate	(264–266)	(116)	
$CH_3COOC_6H_4C_5H_{11}$			
p-tert-Amylphenyl Butyl	540-550	275	
Ether	(282–288)	(135)	
$C_5H_{11}C_6H_4OC_4H_9$			
Amyl Phenyl Ether	421-444	185	
$CH_3(CH_2)_4OC_6H_5$	(216–229)	(85)	
(Amoxybenzene)			
p-tert-Amylphenyl Methyl	462-469	210	
Ether	(239–243)	(99)	
$C_5H_{11}C_6H_4OCH_3$		~	
Amyl Phthalate		See Diamy	yl Phthalate.
Amyl Propionate	275–347	106	712
$C_2H_5COO(CH_2)_4CH_3$	(135 - 175)	(41)	(378)
(Pentyl Propionate)	510	270	
Amyl Salicylate	512	270	
$HOC_6H_4COOC_5H_{11}$	(267)	(132)	
Amyl Stearate	680	365	
$CH_3(CH_2)_{16}COOC_5H_{11}$	(360)	(185)	
Amyl Sulfides, (Mixed)	338-356	185	
$C_5H_{11}S$	(170–180)	(85)	
Amyl Tolene	400-415	180	
$C_5H_{11}C_6H_4CH_3$	(204–213)	(82)	
Amyl Xylyl Ether	480-500	205	
$C_5H_{11}OC_6H_3(CH_3)_2$	(249–260)	(96)	1120
Aniine	364	158	1139
$C_6H_5NH_2$	(184)	(70)	(615)
(Aminobenzene)			
(Phenylamine)	470	200	
Aniline Hydrochloride	4/3	380	
$C_6H_5NH_2HCI$	(245)	(193)	
	547	305	
$C_6H_5NHCH_2CH_2OH$	(286)	(152)	
(<i>p</i> -Aniinoethanoi Ethoxyaniine)			
(p-Hydroxyetnylaniine)		с <u>о</u> , ,	1 1 1
<i>p</i> -Aminoemanoi Ethowyoniling		See 2-Ani	inioetnanoi.
Euroxyaniine A pisaldabyda		C M-4	Dongoldok
o-Anisidina	125	See o-Methox	y benzaluenyde.
	455	244	
$\Pi_2 \Pi_6 \Pi_4 O \Box \Pi_3$	(224)	(118)	
(2-memoxyamme)			

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Anisole	309	125	887
C ₄ H ₅ OCH ₃	(154)	(52)	(475)
(Methoxybenzene)		(-)	
(Methyl Phenyl Ether)			
Anol		See Cvc	lohexanol
Anthracene	644	250	1004
(C.H.CH).	(340)	(121)	(540)
Anthraquinone	716	365	(510)
C.H.(CO).C.H.	(380)	(185)	
Asnhalt	(300) >700	(105)	905
(Detroloum Ditch)	(>371)	(204+)	(485)
(retroleum ritem)	(>3/1)	(204+) Saa Ethu	(40 <i>J</i>)
	Decement	147	lenemme.
	Decomposes	14/	
$N:CC(CH_3)_2N:NC(CH_3)_2C:N$	255	(64)	277
Benzaldehyde	355	145	3//
C ₆ H ₅ CHO	(179)	(63)	(192)
(Benzenecarbonal)			
Benzedrine	392	<212	
C ₆ H ₅ CH ₂ CH(CH ₃)NH ₂	(200)	(<100)	
(1-Phenyl Isopropyl Amine)			
Benzene	176	12	928
C ₆ H ₆	(80)	(-11)	(498)
(Benzol)			
Benzine		See Petro	leum Ether.
Benzocyclobutene	306	95	477
	(152)	(35)	(247)
Benzoic Acid	482	250	1058
C ₆ H ₅ COOH	(250)	(121)	(570)
Benzol		See B	enzene.
p-Benzoquinone	Sublimes	100-200	1040
$C_{\ell}H_{1}O_{2}$		(38–93)	(560)
(Quinone)			
Benzotrichloride	429	260	412
C H-CCl	(221)	(127)	(211)
(Toluene $\alpha \alpha \alpha$ Trichloro)	(221)	(127)	(211)
(Phenyl Chloroform)			
Bonzotrifluorido	216	54	
	(102)	(12)	
C ₆ f ₅ Cl ³ Rengevi Chlowide	(102)	(12)	
	307 (107)	(72)	
C_6H_5COCI	(197)	(72)	
(Benzene Carbonyl Chloride)	417	105	0.00
Benzyl Acetate	41/	195	860
$CH_3COOCH_2C_6H_5$	(214)	(90)	(460)
Benzyl Alcohol	403	200	817
C ₆ H ₅ CH ₂ OH	(206)	(93)	(436)
(Phenyl Carbinol)			
Benzyl Benzoate	614	298	896
C ₆ H ₅ COOCH ₂ C ₆ H ₅	(323)	(148)	(480)
Benzyl Butyl Phthalate	698	390	
C ₄ H ₉ COOC ₆ H ₄ COOCH ₂ C ₆ H ₅ (Butyl Benzyl Phthalate)	(370)	(199)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound ${}^{\circ} F(^{\circ}C)$ ${}^{\circ} F(^{\circ}C)$ ${}^{\circ} F(^{\circ}C)$ Benzyl Carbinol See Phenethyl Alcohol. Benzyl Chylich 354 153 1085 CµH, CH, Cl (179) (67) (585) (ac Chlorotoluene) Benzyl Cayanite 452 235 C,H, CH, CN (233.5) (113) (Phenyl Accohnitrile) (ac Tolunitrile) Nenzyl Identifylamine 405–420 170 C,H, CH, N(C, H, J) (207–216) (77) See Dibenzyl Ether. Benzyl Mercaptan 383 158 C,H, C,H, SH (195) (70) (ac Toluenchitol) Benzyl Mercaptan 383 158 C,H, C,H, SH (208) (>1000) (Salycilic Acid Benzyl Ester) Biophonyl (239) (74) (245) Biphenyl 489 235 1004 C,H, C,H, C,H_k (299) (450) (2-A, Minobiphenyl) Bromobenzene 313 124 1049 C,H, C,H, Br (311) (144) Eee Buyl Bromide. See Anyl Bromide		Boiling point	Flash point,	Ignition point,
Brazyl Carbinol See Phenethyl Alcohol. Benzyl Chloride 354 153 1085 C,H,CH,Cl (179) (67) (585) (a-Chlorotoluene) Benzyl Cyanide 452 235 C,H,CH,QCN (233.5) (113) (Phenyl Acetonitrile) (a-Calunitrile) (a-Calunitrile) (a-Calunitrile) (a-Calunitrile) N-Benzyl Lithylamine 405-420 170 C, C, H, C, H, S, H (195) (70) Benzyl Lither See Dibenzyl Ether. See Dibenzyl Ether. Benzyl Ether. Biplenyl Acetonitrile) (a-Calunenthino) Benzyl Ether. Biplenyl Aceton Aceto	Compound	°F (°C)	°F (°C)	°F (°C)
Benzyl Chloride 354 153 1005 C,H,C,H,Cl (179) (67) (585) Garchlorotoluene) Benzyl Cyanide 452 235 C,H,G,H,CN (233.5) (113) (Phenyl Acetonitrile) (ar-Tolumitrile) (207–216) (77) See Dibenzyl Ether Benzyl Chef,NGC,H,J,2 (207–216) (77) Benzyl Ether See Dibenzyl Ether. Benzyl Salicitate 406 >212 OHC,dH,COCH,C,dH, (208) (>100) Garloutenethiol) Enzyl Mercaptan 383 158 (245,CH,SH (208) (>100) (245,CH,SH (245) (Dicyclohexyl Eter) 462 165 473 (Dicyclohexyl Eter) (239) (74) (245) Biphenyl 489 235 1004 (245,GH) (Diphenyl) (Diphenyl) (Diphenyl) (Diphenyl) (Diphenyl) (Diphenyl) (Diphenyl) (Diphenyl) (EA,CH,GH,GH) (Diphenyl) (EA,CH,GH) (Diphenyl) (EA,CH,GH) (Diphenyl) (EA,CH,GH) (Diphenyl)	Benzyl Carbinol		See Phen	ethyl Alcohol
C.H.CH.2C1 (179) (67) (585) (a-Chiorotoleane) (a-Chiorotoleane) (67) (585) Benzyl Cyanide 452 235 (113) (Phenyl Accionitrile) (233.5) (113) (Phenyl Accionitrile) (a-Tolunitrile) (207–216) (77) See Dibenzyl Ether. Benzyl Chercaptan 383 158 (24,CH,SH) (207–216) (70) (a-Toluenchiol) (207–216) (77) See Dibenzyl Ether. Benzyl Mercaptan 383 158 C.H.J.CH,NCH,LSH (205) (70) (245) (245) (245) OHC,H,COOCH,C,H ₂ (208) (>100) (540) (245) (Galvelik Acid Benzyl Ester) Bibensyl 462 165 473 Biphenyl 489 235 1004 (245) (Dicyclobexyl) (113) (540) (240) (240) (245) (Diphenyl) (254) (113) (540) (240) (241) (241) (241) (241) (241) (241) (241) (241) (241) (241) (241)	Benzyl Chloride	354	153	1085
(a-Chlorotoluene) 452 235 Barzyl Cyanide 452 235 (a-Tolumitrile) (a-Tolumitrile) (a-Tolumitrile) (a-Tolumitrile) (a-Tolumitrile) (77) Renzyl Ether See Dibenzyl Ether. See Dibenzyl Ether. Benzyl Mercaptan 383 158 (a-Tolumitrile) (a-Tolumitrile) (a-Tolumenthio) (a-Tolumenthio) (a-Tolumenthio) Benzyl Sallcitate 406 >212 OHC,H_COCH_C,H_K (208) (>100) (Salycilic Acid Benzyl Ester) Bitycohoxyl (462) 165 473 Bitycohoxyl (CH_(CH_3)_CH1_2 (239) (74) (245) (Dicyclohexyl) Biphenyl 489 235 1004 C_4H_GC_H_5 (254) (113) (540) (2-Aminobiphenyl) (Depenylbenzene) 2 2 1049 (2-Aminobiphenyl) (2-Aminobiphenyl) (2-Aminobiphenyl) 1049 (2-Aminobiphenyl) (2-Aminobiphenyl) (2-Aminobiphenyl) 592 291 (2,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	C ₄ H ₅ CH ₂ Cl	(179)	(67)	(585)
Benzyl Cyanide 452 235 C,H,CH,CN (233.5) (113) (Phenyl Acctonitrile) (207-216) (77) See Dibenzyl Ether See Dibenzyl Ether. Benzyl Mercaptan Benzyl Mercaptan 383 158 C,H,CH,NNC,H,J.2 (207-216) (77) Benzyl Mercaptan 383 158 C,H,CH,SH (195) (70) (ar-Toluenchiol) Benzyl Mercaptan 383 Enzyl Marcaptan 383 158 C,H,CH,SH (195) (70) (ar-Toluenchiol) Benzyl Salchate 406 >212 OHC,H,COOCH,C,H, (208) (>100) (Salycilic Acid Benzyl Ester) Bibley Salchate 406 >212 Biphenyl 489 235 1004 C,H,C,G,H, (245) Dibycolohexyl 429 (450) (2-45) (245) C,H,C,H,S, (299) (450) (2-45) (245) Biphenyl 570 842 See Butyl Bromide. See See Sutyl Bromide.	(α -Chlorotoluene)			()
$\begin{array}{cccc} C_{4} I_{2} C I_{2} (N & (233.5) & (113) \\ (Phenyl Acctonitrile) \\ (ca^{-Tolunitrile)} \\ N-Benzyl Gitchylamine & 405-420 & 170 \\ C_{4} I_{3} C I_{4} N (C_{2} H_{3})_{2} & (207-216) & (77) \\ Benzyl Ether & See Dibenzyl Ether. \\ Benzyl Mercaptan & 38.3 & 158 \\ C_{4} I_{4} C I_{5} S H & (195) & (70) \\ (a^{-Tolunenthiol}) \\ Benzyl Sallcilate & 406 & >212 \\ OHC_{4} L_{5} COH_{4} C_{4} H_{5} & (208) & (>100) \\ (Salycilia Acid Benzyl Ester) \\ Bicyclohezyl & 462 & 165 & 473 \\ [Evyclohezyl] & 462 & 165 & 473 \\ [CH_{4} C I_{4} C I_{4} C I_{2} C I_{4} C$	Benzvl Cvanide	452	235	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₆ H ₅ CH ₂ CN	(233.5)	(113)	
(α -Tolunitrile) 405-420 170 N-Benzyl Ether See Dibenzyl Ether. Benzyl Bether See Dibenzyl Ether. Benzyl Mercaptan 383 158 C,H,C,H,S,H (195) (70) (α -Toluenethiol) (70) (70) Benzyl Sallcilate 406 >212 OHC,H,COCH,C,H,S (208) (>100) (Salycilia Acid Benzyl Ester) Bisycohoexyl (74) (245) Bisycoloexyl 462 165 473 [CH,CH,COCH,C,H,2, CDH,2, CDH,2, CH,3 (239) (74) (245) (Dicyclohexyl) Bisphenyl 489 235 1004 C,H,C,H,3, C,H,3 (254) (113) (540) (245) (Diphenyl) (PhenylBenzene) 2 2 (2-Aminobiphenyl (540) (2-Aminobiphenyl (252) (21) (245) (25) (245	(Phenyl Acetonitrile)		. ,	
N-Benzyldiethylamine 405-420 170 $C_qH_qCH_qN(C_2H_q)_2$ (207-216) (77) Benzyl Ether See Dibenzyl Ether. Benzyl Mercaptan 383 158 C_qH_qCH_qSH (195) (70) (ar-Toluenethic) Enzyl Sallcilate 406 >212 OHC_qH_COCCH_{L_q}H_q (208) (>100) (Z45) (Salycilic Acid Benzyl Ester) Biptenyl 462 165 473 [CH_4(CH_q)_4(CH]_2 (239) (74) (245) (Dicyclohexyl) Biptenyl 489 235 1004 (C_pH_qC,H_q) (254) (113) (540) (Dicyclohexyl) Enzyl Extension Extension Extension (Phenylbenzene) 235 1004 (245) ZBiphenylamine 570 842 842 NH_2C_qH_qCH_q (259) (450) (51) (555) (Phenyl Bromide) Extension See Butyl Bromide. See Butyl Bromide. I-Bromo Butane See Ethyl Bromide. See Al	(<i>a</i> -Tolunitrile)			
$\begin{array}{cccc} C_{0} + \zeta \dot{\Gamma}_{1} N(C_{2} \dot{H}_{3})_{2} & (207-216) & (77) \\ See Dibenzyl Ether & See Dibenzyl Ether. \\ Benzyl Mercaptan 383 158 \\ C_{0} H_{\zeta} CH_{2} SH (195) & (70) & \\ (a^{-} Toluenethiol) & & \\ Benzyl Sallcilate & 406 & >212 & \\ OHC_{1} H_{\zeta} COOCH_{\zeta} H_{3} & (208) & (>100) & \\ (Salycilic Acid Benzyl Ester) & & \\ Bicyclohexyl & 462 & 165 & 473 \\ [CH_{\zeta} CH_{2} , CH_{2} & (239) & (74) & (245) & \\ (Dicyclohexyl) & 489 & 235 & 1004 & \\ C_{4} H_{\zeta} CH_{2} , CH_{2} & (254) & (113) & (540) & \\ (Diphenyl) & & & \\ (Diphenyl) & & & \\ (Phenyl Benzene) & & & \\ 2-Biphenyl & 489 & 235 & 1004 & \\ C_{4} H_{\zeta} CH_{4} & (254) & (113) & (540) & \\ (Diphenyl) & & & \\ (Phenyl Benzene) & & & \\ 2-Biphenyl & 131 & 124 & 1049 & \\ C_{4} H_{2} CH_{4} & (299) & (450) & \\ (2-Aminobiphenyl) & & & \\ Bromoberszene & 313 & 124 & 1049 & \\ C_{4} H_{2} CH_{4} & (156) & (51) & (555) & \\ (Phenyl Bromide) & & \\ 1-Bromo Butane & & \\ See Butyl Bromide. & \\ 4-Bromodiphenyl & 592 & 291 & \\ C_{6} H_{5} C_{4} H_{3} F & (311) & (144) & \\ Bromoethane & & \\ See Amyl Bromide. & \\ 5ee Methyl Bromide. & \\ 5ee Amyl Bromide. & \\ 5ee Chyl CH_{2} CH_$	N-Benzyldiethylamine	405-420	170	
Benzyl Ether See Dibenzyl Ether. Benzyl Mercaptan 383 158 C,H,CH,SH (195) (70) (α -Toluenethiol) (200) (2100) Benzyl Sallcilate 406 >212 OHC,H,COCH,C,H, (208) (>100) (Salycilic Acid Benzyl Ester) Biptenyl 462 Biptenyl 489 235 1004 C,H,C,H,S,CH,A, (254) (113) (540) (Diphenyl) (Biptenyl (489) 235 1004 C,H,C,H,A, (254) (113) (540) (245) (Diphenyl) (Biptenyl Branice) 570 842 842 842 NH,C,G,H,C,G,H,S (299) (450) (2-Aminobiphenyl) 96 Bromobenzene 313 124 1049 96 C,G,H,G,H,Br (156) (51) (565) (76) Bromobenzene 313 124 1049 104 104 104 104 104 104 104 104 104 104 104 104 104 114	$C_6H_5CH_2N(C_2H_5)_2$	(207-216)	(77)	
Benzyl Mercaptan 383 158 $C_qH_2CH_2SH$ (195) (70) (ar-Toluenethiol) (ar-Toluenethiol) Benzyl Sallcilate 406 >212 OHC_qH_2COCH_2C_qH_2 (208) (>100) Salycilic Acid Benzyl Ester) Bicyclohexyl 462 Bicyclohexyl 462 165 473 [CH_2(CH)_2(CH)_2 (239) (74) (245) (Dicyclohexyl) Biphenyl 489 235 1004 $C_qH_3C_qH_2$ (254) (113) (540) (Dicyclohexyl) (254) (133) (540) (Phenylbenzene) 1004 (2-Aminobiphenyl) (2-Aminobiphenyl) (2-Aminobiphenyl) 124 1049 (2-GH_3E (2-Admodiphenyl) 592 291 (450) (2-Aminobiphenyl) 592 291 (440) C_qH_2GH_2 (311) (144) Bromodia. Bromodiphenyl 592 291 (2-Aminobiphenyl) See Ethyl Bromide. Bromonethane	Benzyl Ether		See Dit	enzyl Ether.
$\begin{array}{cccc} C_{0} H_{3} {\rm CH}_{2} {\rm SH} & (195) & (70) \\ (\alpha \ {\rm Toluenethiol}) & & & & & & & & & & & & & & & & & & &$	Benzyl Mercaptan	383	158	-
(a. Toluenethiol) 9212 Benzyl Sallcilate 406 >212 OHC, H, COOCH, C, H ₅ (208) (>100) (Salycilic Acid Benzyl Ester) 8 1004 Bicyclohexyl 462 165 473 [CH ₂ (CH ₂) ₂ (CH ₂) (239) (74) (245) (Dicyclohexyl) 8 235 1004 $C_{q}H_{s}C_{q}H_{s}$ (254) (113) (540) (Diphenyl) (Phenylbenzene) 2 1004 (540) 2-Biphenylamine 570 842 1049 (2-Aminobiphenyl) (2-Aminobiphenyl) 1049 (2-Aminobiphenyl) (2-Aminobiphenyl) 1049 (2-Aminobiphenyl) (551) (565) (Phenyl Bromide) 1049 (2-Ag, G, H _a Br (156) (51) (565) (Phenyl Bromide) 1049 (2-Ag, G, H _a Br (311) (144) 1049 (2-Ag, G, H _a Br See Ethyl Bromide. <	C ₆ H ₅ CH ₂ SH	(195)	(70)	
Benzyl Salleilate 406 >212 OHC_H_{L}COOCH_{L}C_H_5 (208) (>100) Salycilic Acid Benzyl Ester) 462 165 473 Bicyclohexyl 462 165 473 [CH_{L}(CH_{2})_{L}CH]_{2} (239) (74) (245) Dicyclohexyl 849 235 1004 C_gH_C,G,H_5 (254) (113) (540) (Diphenyl) (PhenylBenzene) 489 245 (450) 2-Biphenylamine 570 842 (2-Aminobiphenyl) (2-Aminobiphenyl) (2-Aminobiphenyl) (550) Bromobenzene 313 124 1049 (565) (565) (Phenyl Bromide) 1-Bromobutane See Butyl Bromide. (565) (565) 1-Bromodiphenyl 592 291 (450) (565) (565) C_gH_C,H_gBr (311) (144) See Kethyl Bromide. See Kethyl Bromide. See Kethyl Bromide. See Allyl Bromid	$(\alpha$ -Toluenethiol)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzyl Sallcilate	406	>212	
	OHC ₆ H ₄ COOCH ₂ C ₆ H ₅	(208)	(>100)	
Bicyclohexyl 462 165 473 [CH ₂ (CH ₂) ₂ (CH] ₂ (239) (74) (245) Dicyclohexyl) 489 235 1004 $C_{q}H_{2}C_{q}H_{5}$ (254) (113) (540) (Diphenyl) (PhenylBenzene) 570 842 2-Biphenylamine 570 842	(Salycilic Acid Benzyl Ester)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bicyclohexyl	462	165	473
	$[CH_2(CH_2)_4CH]_2$	(239)	(74)	(245)
Biphenyl 489 235 1004 C_q,H_z,C_q,H_z,C_q,H_z (254) (113) (540) (Diphenyl) (Phenylbenzene) (254) (113) (540) 2-Biphenylamine 570 842 (450) (2-Aminobiphenyl) Bromobenzene 313 124 1049 (2-Aminobiphenyl) (51) (565) Bromobenzene 313 124 1049 (2-Aminobiphenyl) (51) (565) Bromobenzene 313 124 1049 (2-Aminobiphenyl) (51) (565) (Phenyl Bromide) 592 291 (565) (Phenyl Bromide. (113) (144) Bromoothane See Ethyl Bromide. See Ethyl Bromide. See Menyl Bromide. (113) (144) Bromopentane See Amily Bromide. See Amily Bromide. See Amily Bromide. See Amily Bromide. (113) (144) (113) (144) (113) (113) (114) (113) (114) (113) (113) (114) (113) (114) (113) (113) (114) (113) (113) (114) (113)	(Dicyclohexyl)			
$\begin{array}{cccc} C_{0}H_{3}C_{0}H_{5} \\ (Diphenyl) \\ (Phenylbenzene) \\ \hline \\ \textbf{(Phenylbenzene)} \\ \hline \\ \textbf{(Phenylbenzene)} \\ \hline \\ \textbf{Selphenylamine} \\ \textbf{570} \\ \textbf{842} \\ \textbf{NH}_{2}C_{0}H_{4}C_{0}H_{5} \\ (2-Aminobiphenyl) \\ \hline \\ \textbf{Bromobenzene} \\ \textbf{313} \\ \textbf{124} \\ \textbf{1049} \\ (55) \\ (565) \\ (7-Aminobiphenyl) \\ \hline \\ \textbf{Bromobenzene} \\ \textbf{313} \\ \textbf{124} \\ \textbf{1049} \\ (565) \\ (565) \\ (7-Aminobiphenyl) \\ \hline \\ \textbf{Bromobulane} \\ \hline \\ \textbf{1-Bromo Butane} \\ \textbf{See Butyl Bromide.} \\ \hline \\ \textbf{4-Bromodiphenyl} \\ \textbf{592} \\ \textbf{291} \\ C_{0}H_{5}C_{0}H_{4}Br \\ \textbf{Gromothane} \\ \hline \\ \textbf{Bromothane} \\ \hline \\ \textbf{Bromopentane} \\ \textbf{See Ethyl Bromide.} \\ \textbf{See Ethyl Bromide.} \\ \hline \\ \textbf{See Amyl Bromide.} \\ \textbf{See Amyl Bromide.} \\ \hline \\ \textbf{Bromopentane} \\ \hline \\ \textbf{Bromopentane} \\ \textbf{See Amyl Bromide.} \\ \hline \\ \textbf{See Allyl Bromide.} \\ \hline \\ \textbf{Bromotoluene} \\ \textbf{359} \\ \textbf{174} \\ \textbf{Brc}_{0}H_{4}CH_{3} \\ \textbf{(182)} \\ \textbf{(79)} \\ \textbf{p-Bromotoluene} \\ \textbf{363} \\ \textbf{185} \\ \textbf{BrC}_{0}H_{4}CH_{3} \\ \textbf{(184)} \\ \textbf{(85)} \\ \textbf{I,3-Butadiene} \\ \textbf{24} \\ \hline \\ \textbf{C}_{2}:CHCH:CH_{2} \\ \textbf{(-4)} \\ \textbf{Gas} \\ \textbf{(420)} \\ \textbf{Butanal emonoxide} \\ \textbf{151} \\ \textbf{See Butyraldehyde.} \\ \hline \\ \textbf{See Butyraldehyde.} \\ \hline \\ \textbf{Set Butyraldehyde.} \\ \hline \\ \textbf{Set Butyraldehyde.} \\ \hline \\ \textbf{Set Butanal Oxime} \\ \hline \\ \textbf{Butane} \\ \textbf{31} \\ \textbf{-76} \\ \textbf{550} \\ \textbf{CH}_{1}:CH_{2}CH_{3} \\ \textbf{(-1)} \\ \textbf{(-60)} \\ \textbf{(287)} \\ \textbf{1,3-Butanediamine} \\ \textbf{289-302} \\ \textbf{125} \\ \hline \\ \textbf{M+CH}.CH_{2}CHNH_{2}CH_{3} \\ \textbf{(143-150)} \\ \textbf{(52)} \\ \hline \end{array}$	Biphenyl	489	235	1004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_6H_5C_6H_5$	(254)	(113)	(540)
$\begin{array}{c c c c c c c } (Phenylbenzene) & & & & & & & & & & & & & & & & & & &$	(Diphenyl)			
2-Biphenylamine 570 842 NH ₂ C ₆ H ₄ C ₆ H ₅ (299) (450) (2-Aminobiphenyl) 50 510 Bromobenzene 313 124 1049 C ₆ H ₃ Br (156) (51) (565) (Phenyl Bromide) 592 291 (565) 1-Bromo Butane See Butyl Bromide. 592 291 C ₆ H ₃ C ₆ H ₄ Br (311) (144) 592 291 C ₆ H ₃ C ₆ H ₄ Br (311) (144) 592 291 Bromoethane See Ethyl Bromide. 586 586 586 Bromoethane See Amyl Bromide. 586 586 586 586 586 586 586 586 596 597 598 597 598 598 598 598 597 598 598 <	(Phenylbenzene)			
NH ₂ C ₆ H ₄ C ₆ H ₅ (299) (450) (2-Aminobiphenyl) (156) (150) Bromobenzene 313 124 1049 G ₆ H ₅ Br (156) (51) (565) (Phenyl Bromide) 1-Bromo Butane See Butyl Bromide. 1-Bromo Butane See Butyl Bromide. 4-Bromodiphenyl 592 291 C ₆ H ₅ C ₆ H ₄ Br (311) (144) See Ethyl Bromide. Bromoethane See Ethyl Bromide. Bromopentane See Methyl Bromide. See Amyl Bromide. See Amyl Bromide. See Amyl Bromide. 1-Bromopentane See Amyl Bromide. See Amyl Bromide. See Amyl Bromide. See Amyl Bromide. 3-Bromopopene See Amyl Bromide. See Amyl Bromide. See Amyl Bromide. See Amyl Bromide. 3-Bromotoluene 359 174 BrC ₆ H ₄ CH ₃ (182) (79) p-Bromotoluene 363 185 See Augl Bromide. See Augl Bromide. See Augl Bromide. 1,3-Butadiene 24 788 CH ₂ :CHCH:CH ₂ (-4) Gas (420) Butanel 151 <-58	2-Biphenylamine	570	842	
(2-Aminobiphenyl) 313 124 1049 $C_{g}H_{3}Br$ (156) (51) (565) (Phenyl Bromide) . . . 1-Bromo Butane See Butyl Bromide. . . 4-Bromodiphenyl 592 291 . . $C_{g}H_{5}C_{g}H_{4}Br$ (311) (144) . . Bromoethane See Ethyl Bromide. . . . Bromopentane See Methyl Bromide. . . . 3-Bromopropene See Amyl Bromide. o-Bromotoluene 359 174 .<	$NH_2C_6H_4C_6H_5$	(299)	(450)	
Bromobenzene 313 124 1049 $C_{a}H_{3}B^{r}$ (156) (51) (565) (Phenyl Bromide)	(2-Aminobiphenyl)			
C_6H_3Br (156) (51) (565) (Phenyl Bromide) 1-Bromo Butane See Butyl Bromide. 4-Bromodiphenyl 592 291 $C_6H_3C_6H_4Br$ (311) (144) Bromoethane See Ethyl Bromide. Bromomethane See Methyl Bromide. 1-Bromopentane See Methyl Bromide. 3-Bromopropene See Allyl Bromide. o-Bromotoluene 359 174 BrC_6H_4CH_3 (182) (79) p-Bromotoluene 363 185 BrC_6H_4CH_3 (184) (85) L1,3-Butadiene 24 788 CH_2:CHCH:CH_2 (-4) Gas (420) Butadiene Monoxide 151 <-58	Bromobenzene	313	124	1049
(Phenyl Bromide)See Butyl Bromide.1-Bromo ButaneSee Butyl Bromide.4-Bromodiphenyl592291 $C_6H_3C_6H_4Br$ (311)(144)BromoethaneSee Ethyl Bromide.BromomethaneSee Methyl Bromide.1-BromopentaneSee Amyl Bromide.3-BromopropeneSee Allyl Bromide.o-Bromotoluene359174BrC_6H_4CH_3(182)(79)p-Bromotoluene363185BrC_6H_4CH_3(184)(85)CH_2CHCH:CH_2(-4)Gas(420)Butadiene Monoxide151<-58CH_2:CHCHOCH_2(66)(<-50)See Butyraldehyde.ButanalSee Butyraldehyde.See Butyraldehyde.Butanal31-76550CH_3CH_2CH_2CH_3(-1)(-60)(287)J.3-Butaneinanine289-302125NH_2CH,CHNH_2CH_3NH_2CH,CH,CH,CHNH,CH_3(143-150)(52)	C ₆ H ₅ Br	(156)	(51)	(565)
1-Bromo Butane See Butyl Bromide. 4-Bromodiphenyl 592291 $C_{c}H_{3}C_{c}H_{4}Br$ (311)(144) Bromoethane See Ethyl Bromide. Bromomethane See Methyl Bromide. 3-Bromopentane See Amyl Bromide. 3-Bromopopene See Allyl Bromide. 0-Bromotoluene 359174 $BrC_{6}H_{4}CH_{3}$ (182)(79) p-Bromotoluene 363185 $BrC_{6}H_{4}CH_{3}$ (184)(85) 1,3-Butadiene 24788 $CH_{2}:CHCH:CH_{2}$ (-4)Gas $Ch_{2}:CHCHOCH_{2}$ (66)(<-50)	(Phenyl Bromide)			
4-Bromodiphenyl 592 291 $C_{c}H_{3}C_{c}H_{4}Br$ (311) (144) Bromoethane See Ethyl Bromide. Bromomethane See Methyl Bromide. Bromopentane See Amyl Bromide. 3-Bromopropene See Allyl Bromide. o-Bromotoluene 359 174 BrC ₆ H ₄ CH ₃ (182) (79) p-Bromotoluene 363 185 BrC ₆ H ₄ CH ₃ (184) (85) 1,3-Butadiene 24 788 CH ₂ :CHCH:CH ₂ (-4) Gas (420) Butadiene Monoxide 151 <-58	1-Bromo Butane		See Bu	tyl Bromide.
$C_6H_5C_6H_4Br$ (311) (144) Bromoethane See Ethyl Bromide. Bromomethane See Methyl Bromide. 1-Bromopentane See Amyl Bromide. 3-Bromopropene See Amyl Bromide. o-Bromotoluene 359 174 BrC_6H_4CH_3 (182) (79) p-Bromotoluene 363 185 BrC_6H_4CH_3 (184) (85) 1,3-Butadiene 24 788 CH_2:CHCH:CH_2 (-4) Gas (420) Butadiene Monoxide 151 <-58	4-Bromodiphenyl	592	291	
BromoethaneSee Ethyl Bromide.BromomethaneSee Methyl Bromide.1-BromopentaneSee Amyl Bromide.3-BromopropeneSee Allyl Bromide. σ -Bromotoluene359174 $BrC_6H_4CH_3$ (182)(79) p -Bromotoluene363185 $BrC_6H_4CH_3$ (184)(85) $1,3$ -Butadiene24788 $CH_2:CHCH:CH_2$ (-4)Gas(420)Butadiene Monoxide151<-58 $CH_2:CHCHOCH_2$ (66)(<-50)(Vinylethylene Oxide)See Butyraldehyde.ButanalSee Butyraldehyde.ButanalSee Butyraldehyde.Butane31-76 $S50$ (-1)(-60)(287) $1,3$ -Butanediamine289-302125NH ₂ CH ₂ CH ₃ (143-150)(52)	$C_6H_5C_6H_4Br$	(311)	(144)	
BromomethaneSee Methyl Bromide.1-BromopentaneSee Amyl Bromide.3-BromopropeneSee Allyl Bromide.o-Bromotoluene359 $BrC_6H_4CH_3$ (182) $Promotoluene$ 363 $BrC_6H_4CH_3$ (184) $BrC_6H_4CH_3$ (184) $BrC_6H_4CH_2$ (-4) $BrC_4CH:CH_2$ (-4) $Butadiene$ 24 $CH_2:CHCH:CH_2$ (-4) $Butadiene$ Monoxide151 $CH_2:CHCHOCH_2$ (66) $(Vinylethylene Oxide)$ See Butyraldehyde. See Butyraldehyde. See Butyraldoxime.Butane31 -76 550 $CH_3:CH_2CH_2CH_3$ (-1) (-60) (287) 1_3 -Butanediamine289-302 $NH_2CH_2CH_3CH_3$ (143-150) (52) (52)	Bromoethane		See Eth	iyl Bromide.
I-Bromopentane See Amyl Bromide. 3-Bromopropene See Allyl Bromide. o-Bromotoluene 359 174 $BrC_6H_4CH_3$ (182) (79) p-Bromotoluene 363 185 $BrC_6H_4CH_3$ (184) (85) 1,3-Butadiene 24 788 $CH_2:CHCH:CH_2$ (-4) Gas (420) Butadiene Monoxide 151 <-58	Bromomethane		See Met	hyl Bromide.
3-Bromopropene See Allyl Bromide. o-Bromotoluene 359 174 BrC ₆ H ₄ CH ₃ (182) (79) p-Bromotoluene 363 185 BrC ₆ H ₄ CH ₃ (184) (85) J.3-Butadiene 24 788 CH ₂ :CHCH:CH ₂ (-4) Gas (420) Butadiene Monoxide 151 <-58 CH ₂ :CHCHOCH ₂ (66) (<-50)	1-Bromopentane		See Am	iyl Bromide.
o-Bromotoluene 539 $1/4$ BrC ₆ H ₄ CH ₃ (182) (79) p-Bromotoluene 363 185 BrC ₆ H ₄ CH ₃ (184) (85) 1,3-Butadiene 24 788 CH ₂ :CHCH:CH ₂ (-4) Gas (420) Butadiene Monoxide 151 <-58	3-Bromopropene	250	See All	yl Bromide.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-Bromotoluene	359	1/4	
p-Fromotonence 303 183 BrC ₆ H ₄ CH ₃ (184) (85) 1,3-Butadiene 24 788 CH ₂ :CHCH:CH ₂ (-4) Gas (420) Butadiene Monoxide 151 <-58 $(C+20)$ CH ₂ :CHCHOCH ₂ (66) (<-50) $(Vinylethylene Oxide)$ Butanal See Butyraldehyde. See Butyraldoxime. Butanal Oxime 31 -76 550 CH ₃ :CH ₂ CH ₂ CH ₃ (-1) (-60) (287) 1,3-Butanediamine $289-302$ 125 NH_2 CH ₃ CH ₃ CH ₃ CH ₃ (143-150) (52)	$DIC_6\Pi_4C\Pi_3$	(162)	(79)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		505	165	
1,5-bitalience 24 768 CH2:CHCH:CH2 (-4) Gas (420) Butadiene Monoxide 151 <-58 CH2:CHCHOCH2 (66) (<-50)	$DIC_6\Pi_4C\Pi_3$	(184)	(83)	700
CH2.CHCH.CH2 (-4) Gas (420) Butadiene Monoxide 151 <-58		24	Cas	(420)
Butanelie Wolkstee 151 CH2:CHCHOCH2 (66) (<-50)	Putadiono Monovido	(-4)	- 58	(420)
CH2-CH2-CH2-CH2 (00) (C=50) (Vinylethylene Oxide) See Butyraldehyde. Butanal See Butyraldoxime. Butane 31 -76 CH3-CH2-CH2-CH3 (-1) (-60) (1,3-Butanediamine 289-302 125 NH2-CH3-CHNH2-CH3 (143-150) (52)		(66)	(< 50)	
See Butyraldehyde. See Butyraldehyde. Butanal Oxime See Butyraldoxime. Butane 31 -76 550 CH ₃ CH ₂ CH ₂ CH ₃ (-1) (-60) (287) 1,3-Butanediamine 289–302 125 NH ₂ CH ₃ CHNH ₂ CH ₃ (143–150) (52)	(Vinylethylene Oxide)	(00)	(<-50)	
Butanal Oxime See Butyralderyde. Butanal Oxime See Butyraldoxime. Butane 31 -76 550 CH ₃ CH ₂ CH ₂ CH ₂ CH3 (-1) (-60) (287) 1,3-Butanediamine 289–302 125 (143–150) (52)	(Villyletilyletic Oxide)		See Bu	tvroldebyde
Butane 31 -76 550 CH ₃ CH ₂ CH ₂ CH ₃ (-1) (-60) (287) 1,3-Butanediamine 289–302 125 NH ₂ CH ₃ CHNH ₂ CH ₃ (143–150) (52)	Butanal Oxime		See Bu	tyraldoxime
CH ₃ CH ₂ CH ₂ CH ₂ CH (-1) (-60) (287) 1,3-Butanediamine 289–302 125 NH ₂ CH ₂ CHNH ₂ CH (143–150) (52)	Butane	31	-76	550
1,3-Butanediamine 289–302 125 NH ₂ CH ₂ CHNH ₂ CH ₃ (143–150) (52)	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	(-1)	(-60)	(287)
$NH_2CH_2CH_2CHNH_2CH_3$ (143–150) (52)	1.3-Butanediamine	289-302	125	(207)
	NH ₂ CH ₂ CH ₂ CHNH ₂ CH ₃	(143–150)	(52)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
1,2-Butanediol	381	104	
CH ₃ CH ₂ CHOHCH ₂ OH	(194)	(40)	
(1,2-Dihydroxybutane)			
(Ethylethylene Glycol)			
1,3-Butanediol		See β -But	ylene Glycol.
1,4-Butanediol	442	250	
HOCH ₂ CH ₂ CH ₂ CH ₂ OH	(228)	(121)	
2,3-Butanediol	363	756	
CH ₃ CHOHCHOHCH ₃	(184)	(402)	
2,3-Butanedione	190	80	
CH ₃ COCOCH ₃	(88)	(27)	
(Diocetyl)			
1-Butanethiol	208	35	
CH ₃ CH ₂ CH ₂ CH ₂ SH	(98)	(2)	
(Butyl Mercaptan)			
2-Butanethiol	185	-10	
C4HoSH	(85)	(-23)	
(sec-Butyl Mercaptan)		× /	
1-Butanol		See But	yl Alcohol.
2-Butanol		See sec-B	utyl Alcohol.
2-Butanone		See Methyl	Ethyl Ketone.
2-Butenal		See Crot	onaldehyde.
1-Butene	21		725
CH ₂ CH ₂ CH:CH ₂	(-6)		(385)
$(\alpha$ -Butylene)			(202)
2-Butene-cis	38.7		617
CH ₂ CH ² CHCH ₂	(4)		(325)
2-Butene-trans	-34		615
CH ₂ CH ₂ CHCH ₂	(1)		(324)
(<i>B</i> -Butylene)	(1)		(321)
Butenediol	286-300	263	
HOCH,CHCHCH,OH	(141 - 149)	(128)	
(2-Butene-1 4-Diol)	(111 11))	(120)	
(2 Dutelle 1,4 Diol)	@20 mm		
2-Butene-1 4-Diol	e 20 mm	See B	utenedial
2-Butono Nitrilo		See Cro	tononitrile
Butoxybenzene		See Butyl	Phenyl Ether
1-Butovybutano		See Dit	utyl Ether
2 B-Butoxyethoyyethyl Chloride	302_137	100	utyi Luici.
	(200-225)	(88)	
1-(Rutovyothovy)2Propagal	(200=223)	(88)	500
1-(Butoxyethoxy)21 Topanor	(220)	(121)	(265)
СН СН(ОН)СН ОС Н ОС Н С Н	(22))	(121)	(205)
β Butowyothyl Splicylato	367 378	315	
	(186, 102)	(157)	
N-Butyl A cotomido	155_161	240	
CH.CONHC.H.	(235_240)	(116)	
N-Butylacotonilide	(233-240)	296	
	(277_281)	(1/1)	
Putul A solution	(2/7-201)	(141)	707
CH COOC H	(127)	(22)	(12)
(Butylethanoate)	(127)	(22)	(423)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
sec-Butyl Acetate	234	88	
	(112)	(31)	
Butyl A cotopootato	(112)	185	
	(214)	(85)	
Putyl A cotyl Dicipolosto	(214)	(85)	725
	(220)	(110)	(385)
$(COOC_4H_9)$	(220)	(110)	(385)
Butyl Acrylate	260	84	559
CH ₂ :CHCOOC ₄ H ₉	(127)	(29)	(292)
	Polymerizes		
Butyl Alcohol	243	98	650
CH ₃ (CH ₂) ₂ CH ₂ OH	(117)	(37)	(343)
(1-Butanol)			
(Propylcarbinol)			
(Propyl Methanol)			
sec-Butyl Alcohol	201	75	761
CH ₃ CH ₂ CHOHCH ₃	(94)	(24)	(405)
(2-Butanol)			
(Methyl Ethyl Carbinol)			
tert-Butyl Alcohol	181	52	892
(CH ₃) ₂ COHCH ₃	(83)	(11)	(478)
(2-Methyl-2-Propanol)			
(Trimethyl Carbinol)			
Butylamine	172	10	594
$C_4H_9NH_2$	(78)	(-12)	(312)
(1-Amino Butane)			
sec-Butylamine	145	16	
CH ₃ CH ₂ CH(NH ₂)CH ₃	(63)	(-9)	
tert-Butylamine	113		716
$(CH_3)_3C:NH_2$	(45)		(380)
Butylamine Oleate		150	
C ₁₇ H ₃₃ COONH ₃ C ₄ H ₉		(66)	
tert-Butylaminoethyl	200-221	205	
Methacrylate	(93-105)	(96)	
(CH ₃) ₃ CNHC ₂ H ₄ OOCC(CH ₃):CH ₂			
N-Butylaniline	465	225	
C ₆ H ₅ NHC ₄ H ₉	(241)	(107)	
Butylbenzene	356	160	770
$C_6H_5C_4H_9$	(180)	(71)	(410)
sec-Butylbenzene	344	126	784
$C_6H_5CH(CH_3)C_2H_5$	(173)	(52)	(418)
tert-Butylbenzene	336	140	842
$C_6H_5C(CH_3)_3$	(169)	(60)	(450)
Butyl Benzoate	482	225	
$C_6H_5COOC_4H_9$	(250)	(107)	
2-Butylbiphenyl	-554	>212	806
$C_6H_5C_6H_4C_4H_9$	(-290)	(>100)	(430)
Butyl Bromide	215	65	509
CH ₃ (CH ₂) ₂ CH ₂ Br	(102)	(18)	(265)
(1-Bromo Butane)			
Butyl Butyrate	305	128	
CH ₃ (CH ₂) ₂ COOC ₄ H ₉	(152)	(53)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Inter-Butylerability Inter-Butylerability See N-Butylurethane. Icthylerability See N-Butylurethane. Icto Icthylerability See N-Butylurethane. Icto Icthylerability See Diethylene Glycol Monobutyl Ether. Icthylerability See Diethylene Glycol Monobutyl Ether. Icthylerability See Diethylene Glycol Monobutyl Ether. Icthorida 170 15 464 C,H,ClCCH,J (285) (130) See Diethylene Glycol Inchronobutane) see Settyl Chloride 155 <32 Icthylerability CH,CHCCH,J (68) (cd) (2-Chlorobutane) tert-Butyl Chloride 124 <32 Icthylerability-2 453-484 225 Chlorobutane) Ietr-Butyl-Dropane) Ietr-Butyl-1 451-469 116 Icthylerabilityl-12- 453-484 225 Chlorobutane) Ietr-Butyl-14 (23-243) (47) See Diethylene Glycol Ietr-Butyl-14 (23-243) (47) See Diethylene Glycol	Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Day Carbonic Acta, Luyr Ester See P-buly Internane. ictr-Butyl Carbinol 237 98 (CH ₂),CCH ₂ OH (114) (37) (2,2-Dimethyl-1-Propanol) See Dicthylene Glycol Monobutyl Ether. 4-tert-Butyl Carbinol See Dicthylene Glycol Monobutyl Ether. 4-tert-Butyl Catechol 545 266 (OH) ₂ ,C,H ₂ (CH ₃) (285) (130) Butyl Choride 15 464 C,H ₂ ,Cl (77) (-9) (240) (1-Chlorobutane) see-Butyl Choride 15 <32	Prefederation And Ethed Erter	1 (0)	C N D.	
$\begin{array}{c c} \operatorname{lert-Butyl} \operatorname{Catronion} & 2.57 & 98 \\ (CH_3), CCH_3) (CH_4) (CH_4) (I14) & (37) \\ (2.2) Dimethyl-1-Propanol) \\ \\ \textbf{Butyl} (2arbitol & See Diethylene Glycol \\ Monobutyl Ether. \\ \\ 4 tert-Butyl Catechol & 545 & 266 \\ (OH), C, H, C(CH_3), & (285) & (130) \\ \\ \textbf{Butyl} (Chloride & 170 & 15 & 464 \\ C, H, Cl & (77) & (-9) & (240) \\ (1-Chlorobutane) & & & & \\ \hline \\ \textbf{see-Butyl} (Chloride & 155 & <32 & \\ CH, CHCC, H, & (68) & (c0) & \\ (2-Chlorobutane) & & & & \\ \hline \\ \textbf{tert-Butyl} (Chloride & 124 & <32 & \\ (CH_3), CCl & (51) & (c0) & \\ (2-Chloro2-2Methyl-Propane) & & & \\ \hline \\ \textbf{tert-Butyl-Chloride & 124 & <32 & \\ Chlorophenol & (234-251) & (107) & \\ (2CH, 0(H), CH_3), & & \\ \hline \\ \textbf{tert-Butyl-b-Cresol & 451-469 & 116 & \\ C_{dH_3}(C, H_3)(CH_3)OH & (233-243) & (47) & \\ \hline \\ \textbf{tert-Butyl-m-Cresol & 451-469 & 116 & \\ C_{dH_3}(C, H_3)(CH_3)OH & (233-243) & (47) & \\ \hline \\ \textbf{tert-Butyl-m-Cresol & 278-280 & 244 & \\ (OH)C, C, H, C(H_3)OH & (233-243) & (118) & \\ \textbf{Butyley clohexane & 352-356 & & 475 & \\ C_{4H_3}C_{4H_1} & (177-188) & (128) & \\ \textbf{Butyley clohexane & 351 & & 531 & \\ CH_3C, CH_4, CH_4, (177) & & & (277) & \\ (2-Cyclohexylbutane) & & \\ \textbf{see-Butyley clohexane & 333-336 & & 648 & \\ (CH_3), CC, H_1 & (167-169) & & \\ \textbf{See 2Dibutyl Ether. & \\ \textbf{See 2-Butyley clohexane & 313-336 & & \\ \text{See 1} & & \\ \textbf{See 2-Ethylexanal. & \\ See 1, Hexene. & \\ \textbf{See 1}, Hexene. & \\ See 2-Ethylexanal. & \\ See 1, Hexene. & \\ \textbf{See 2-Ethylexanal. & \\ \\ \textbf{See 1, Hexene. & \\ $	Butylcarbamic Acid, Etnyi Ester	227	See N-BU	ityluretnane.
$\begin{array}{cccc} (11) & (37) \\ (22-Dimethylen-Relycon) \\ Butyl Carbitol \\ \\ $	(CH) CCH OH	(114)	98 (27)	
$\begin{tabular}{ c $	$(C\Pi_3)_3CC\Pi_2O\Pi$	(114)	(57)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2,2-Dimetry)-1-1 (opanor)		See Dieth	vlana Glycol
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Butyl Carbitol		Monoh	utvl Ether
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-tert-Butyl Catechol	545	266	atyr Euler.
Butyl Chloride 170 15 464 C_qH_qCl (77) (-9) (240) (1-Chlorobutane)	$(OH)_{2}C_{2}H_{2}C(CH_{2})_{2}$	(285)	(130)	
$\begin{array}{cccc} C_{4} H_{C} C_{4} C_$	Butyl Chloride	170	15	464
$\begin{array}{ccccc} (1-Chlorobutane) & CO & C$	C ₄ H ₀ Cl	(77)	(-9)	(240)
sec-Butyl Chloride 155 <32	(1-Chlorobutane)			
$\begin{array}{cccc} CH_1 CH_1 C_2 H_5 & (68) & (<0) & (2-Chlorobutane) & & & & & & & & & & & & & & & & & & &$	sec-Butyl Chloride	155	<32	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₃ CHClC ₂ H ₅	(68)	(<0)	
tert-Butyl Chloride 124 <32	(2-Chlorobutane)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-Butyl Chloride	124	<32	
$\begin{array}{cccc} (2-Chioro-2-Methyl-Propane) & & & & & & & & & & & & & & & & & & &$	(CH ₃) ₃ CCl	(51)	(<0)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2-Chloro-2-Methyl-Propane)			
$\begin{array}{c c c c c c c } \mbox{Chlorophenol} & (234-251) & (107) \\ \mbox{ClC}_{Ll_3}(OH)(C(H_3)), \\ \mbox{terl-Butyl-m-Cresol} & 451-469 & 116 \\ \mbox{C}_{Q}H_3(C_{H_3})(CH_3)OH & (233-243) & (47) \\ \mbox{p-terl-Butyl-o-Cresol} & 278-280 & 244 \\ \mbox{(OH)}C_{Q}H_3(CH_3)OH & (137-138) & (118) \\ \mbox{Butyleyclohexane} & 352-356 & 475 \\ \mbox{C}_{4}H_0C_{4}H_{11} & (178-180) & (246) \\ \mbox{(1-Cyclohexylbutane)} & & & & & & & & & & & & & & & & & & &$	4-tert-Butyl-2-	453-484	225	
$\begin{array}{c c} {\rm Clc}_{q}{\rm H}_{3}^{-}({\rm OH}){\rm C(CH}_{3})_{3} \\ \\ {\rm tert-Butyl-m-Cresol} & 451-469 & 116 \\ \\ {\rm c}_{q}{\rm H}_{3}({\rm C}_{4}{\rm H}_{9})({\rm CH}_{3}){\rm OH} & (233-243) & (47) \\ \\ {\rm p-tert-Butyl-o-Cresol} & 278-280 & 244 \\ \\ ({\rm OH}){\rm C}_{q}{\rm H}_{3}{\rm Ch}_{3}{\rm C}_{3}({\rm CH}_{3})_{3} & (137-138) & (118) \\ \\ {\rm Butylcyclohexane} & 352-356 & 475 \\ \\ {\rm C}_{4}{\rm H}_{0}{\rm C}_{4}{\rm H}_{1} & (178-180) & (246) \\ \\ (1-{\rm Cyclohexylbutane}) \\ \\ {\rm sec-Butylcyclohexane} & 351 & 531 \\ \\ {\rm CH}_{3}{\rm CH}_{2}{\rm CH}_{({\rm H}_{3})}{\rm C}_{6}{\rm H}_{11} & (177) & (277) \\ \\ (2-{\rm Cyclohexylbutane}) \\ \\ {\rm tert-Butylcyclohexane} & 333-336 & 648 \\ \\ ({\rm CH}_{3})_{3}{\rm C}_{4}{\rm H}_{1} & (167-169) & (342) \\ \\ {\rm N-Butylcyclohexylamine} & 409 & 200 \\ \\ {\rm C}_{4}{\rm H}_{1}{\rm NH}{\rm C}_{4}{\rm H}_{9} & (209) & (93) \\ \\ {\rm Butylcyclohexylamine} & 314 & 480 \\ \\ {\rm C}_{4}{\rm H}_{6}{\rm CH}_{9} & (157) & (250) \\ \\ {\rm Butylcyclohextane} & 314 & 480 \\ \\ {\rm C}_{4}{\rm H}_{6}{\rm CH}_{4}{\rm G}_{4} & (157) & (250) \\ \\ {\rm Butylether} & See Dibutyl Ether. \\ \\ {\rm See 1-Hexene.} \\ \\ {\rm Sutylethylacetaldehyde} & See 1-Hexene. \\ \\ {\rm Butylethylacetaldehyde} & See 1-Hexene. \\ \\ {\rm Butylethyloncate} & (107) & (18) & (322) \\ \\ ({\rm H}{\rm COOC}_{4}{\rm H}_{9} & (-180) & (61) \\ \\ {\rm tert-Butyl Hydroperoxide} & -356 & 142 \\ \\ {\rm CH}_{2}{\rm OHCOOC}_{4}{\rm H}_{9} & (-180) & (61) \\ \\ {\rm tert-Butyl Hydroperoxide} & <35 & 66 \\ \\ {\rm CH}_{3}({\rm COH} & (<27) \\ \\ -{\rm Butyl Isocyanate} & 235 & 66 \\ \\ {\rm CH}_{3}({\rm COH}_{3}){\rm COO} & (113) & (19) \\ \\ ({\rm Butyl Isocyanate} & 302 & 127 \\ \\ {\rm C}_{4}{\rm HoOCC}_{4}{\rm CH}_{5}{\rm L}_{150} & (150) \\ \end{array} \right)$	Chlorophenol	(234–251)	(107)	
tert-Butyl-m-Cresol 451-469 116 $C_{i}H_{i}(C_{i}H_{y})(CH_{i})OH$ (233-243) (47) p-tert-Butyl-o-Cresol 278-280 244 (OH)C_{i}H_{i}C(H_{i})G(H_	ClC ₆ H ₃ (OH)C(CH ₃) ₃			
$\begin{array}{cccc} C_{0}H_{3}(C_{4}H_{9})(CH_{3})OH & (233-243) & (47) \\ p+tri-Butyl-o-Cresol & 278-280 & 244 \\ (OH)C_{0}H_{3}CH_{3}C(CH_{3})_{3} & (118) \\ \hline Butylecyclohexane & 352-356 & 475 \\ C_{4}H_{0}C_{0}H_{1} & (178-180) & (246) \\ (1-Cyclohexylbutane) & & & & & & & & & & & & & & & & & & &$	tert-Butyl-m-Cresol	451-469	116	
p-tert-Butyl-o-Cresol 278–280 244 (OH)C _q H ₂ CH ₃ C(CH ₃) ₃ (137–138) (118) Butylcyclohexane 352–356 475 C ₁ H ₂ C ₄ L ₁ (178–180) (246) (1-Cyclohexylbutane) (247) (247) sec-Butylcyclohexane 351 531 CH ₃ C ₄ C ₄ C ₁ (CH ₃) _{C₆H₁₁ (177) (277) (2-Cyclohexylbutane) (240) (242) tert-Butylcyclohexane 333–336 648 (CH₃)₃CC₆H₁₁ (167–169) (342) N-Butylcyclohexylamine 409 200 C₆H₁, NH(C₄H₉) (209) (93) Butylcyclopentane 314 480 C₄H₉C₅H₉ (157) (250) Butyl Ether See Dibutyl Ether. See 2-Ethylbexanal. Butyl Ethylene See Ethyl Butyl Ether. See Ethyl Ether. Butyl Ethylene See Ethyl Butyl Ether. See Ethyl Ether. Butyl Ethylene See Ethyl Butyl Ether. See Ethyl Butyl Ether. Butyl Glycolate ~356 142}	$C_6H_3(C_4H_9)(CH_3)OH$	(233–243)	(47)	
$\begin{array}{ccccccc} (0H)C_{0}H_{3}CH_{3}C(CH_{3})_{3} & (137-138) & (118) \\ \\ \textbf{Butylcyclohexane} & 352-356 & 475 \\ C_{4}H_{9}C_{6}H_{11} & (178-180) & (246) \\ (1-Cyclohexylbutane) & & & & & & & & & & & & & & & & & & &$	p-tert-Butyl-o-Cresol	278-280	244	
Butylcyclohexane 352–356 475 $C_{LH_0}C_{cH_{11}}$ (178–180) (246) $(1-Cyclohexylbutane)$ sec-Butylcyclohexane 351 Sec-Butylcyclohexane 351 (277) $(2-Cyclohexylbutane)$ (277) tert-Butylcyclohexane 333–336 648 $(CH_3)C_6H_{11}$ (167–169) (342) N-Butylcyclohexylamine 409 200 C_gH_1 , NH(C_4H_9) (209) (93) Butylcyclopentane 314 480 $C_gH_9C_3H_9$ (157) (250) Butyl Ether See Dibutyl Ether. See 1-Hexene. Butyle Ethylacetaldehyde See 1-Hexene. See 1-Hexene. Butyl Ethyle See 1-Hexene. See 1-Hexene. Butyl Ethyle Ether See 25 64 612 HCOOC4H_9 (107) (18) (322) (Butyl Methanoate) (-180) (61) (-180) (Formic Acid, Butyl Ester) (27) - - Butyl Glycolate ~355 66 (-	$(OH)C_6H_3CH_3C(CH_3)_3$	(137–138)	(118)	
$\begin{array}{cccc} C_4 H_9 C_6 H_{11} & (178-180) & (246) \\ (1-Cyclohexylbutane) & & & & & & & & & & & & & & & & & & &$	Butylcyclohexane	352-356		475
	$C_4H_9C_6H_{11}$	(178–180)		(246)
sec-Butylcyclohexane 351 531 $CH_3CH_2CH(CH_3)C_9H_{11}$ (177) (277) (2-Cyclohexylbutane) (277) tert-Butylcyclohexane 333–336 648 (CH_3)_3CC_9H_{11} (167–169) (342) N-Butylcyclohexylamine 409 200 $C_6H_{11}NH(C_4H_9)$ (209) (93) Butylcyclopentane 314 480 $C_4H_9C_8H_9$ (157) (250) Butyl Ether See Dibutyl Ether. See Dibutyl Ether. Butyl Ethylacetaldehyde See 1-Hexene. See 1-Hexene. Butyl Ethylene See 1-Hexene. See 1-Hexene. Butyl Ethylene See 1-Hexene. See 1-Hexene. Butyl Formate 225 64 612 HCOOC_4H_9 (107) (18) (322) (Butyl Methanoate) ((1-Cyclohexylbutane)			
$\begin{array}{cccc} \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_3)\mathrm{C}_6\mathrm{H}_{11} & (177) & (277) \\ (2-\mathrm{Cyclohexylbutane}) & & & & & & & & & & & & & & & & & & &$	sec-Butylcyclohexane	351		531
(2-Cyclohexylbutane) 333–336 648 tert-Butylcyclohexane 333–336 (648 (CH ₃) ₃ CC ₆ H ₁₁ (167–169) (342) N-Butylcyclohexylamine 409 200 C ₆ H ₁₁ NH(C ₄ H ₉) (209) (93) Butylcyclopentane 314 480 C ₄ H ₉ C ₅ H ₉ (157) (250) Butyl Ether See Dibutyl Ether. See 2-Ethylhexanal. Butyl Ethylene See 2-Ethylhexanal. See 1-Hexene. Butyl Ethyle Ether See 2.5 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (107) (18) (322) (Butyl Glycolate ~356 142 (27) (CH ₂) ₂ OCOH (~180) (61) (27) n-Butyl Isocyanate 235 66 (27) n-Butyl Isocyanate 302 127 127 C ₄ H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53) (53)	$CH_3CH_2CH(CH_3)C_6H_{11}$	(177)		(277)
tert-Butylcyclohexane $333-336$ 648 (CH ₃) ₃ CC ₆ H ₁₁ (167-169) (342) N-Butylcyclohexylamine 409 200 C ₆ H ₁₁ NH(C ₄ H ₉) (209) (93) Butylcyclopentane 314 480 C ₄ H ₂ C ₅ H ₉ (157) (250) Butyl Ether See Dibutyl Ether. Butyl Ethylene See 1-Hexene. Butyl Ethylene See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (~180) (61) (~180) (CH ₂ OHCOOC ₄ H ₉ (~180) (61) (~27) n-Butyl Isocyanate 235 66 (~27) n-Butyl Isocyanate 235 66 (~13) (Butyl Isocyanate) U13) (19) (Butyl Isocyanate) Butyl Isocyanate) 302 127 (~24,0OCCH ₂ CH(CH ₃₎₂ (150) (53)	(2-Cyclohexylbutane)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-Butylcyclohexane	333–336		648
N-Butylcyclohexylamine 409 200 $C_6H_{11}NH(C_4H_9)$ (209) (93) Butylcyclopentane 314 480 $C_4H_9C_5H_9$ (157) (250) Butyl Ether See Dibutyl Ether. See Dibutyl Ether. Butylethylacetaldehyde See 1-Hexene. See 1-Hexene. Butyl Ethyl Ether See Ethyl Butyl Ether. See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC_4H_9 (107) (18) (322) (Butyl Glycolate ~356 142 (Formic Acid, Butyl Ester) (-180) (61) Butyl I Glycolate ~356 142 (CH_3)_3COOH (<27) (<27) n-Butyl I socyanate 235 66 (CH_3)_3COOH (113) (19) Butyl I socyanate) Utyl I socyanate 302 127 Butyl I socyanate 302 127 27 C_4H_9OOCCH_2CH(CH_3)_2 (150) (53)	$(CH_3)_3CC_6H_{11}$	(167–169)		(342)
$C_6H_{11}NH(C_4H_9)$ (209) (93) Butylcyclopentane 314 480 $C_4H_3C_5H_9$ (157) (250) Butyl Ether See Dibutyl Ether. Butylethylacetaldehyde See 2-Ethylhexanal. Butyl Ethylene See 1-Hexene. Butyl Ethyl Ether See 1-Hexene. Butyl Formate 225 64 612 HCOOC_4H_9 (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (61) Butyl Glycolate ~356 142 CH_2OHCOOC_4H_9 (-180) (61) tert-Butyl Hydroperoxide <80	N-Butylcyclohexylamine	409	200	
Butylcyclopentane 314 480 $C_4H_9C_5H_9$ (157) (250) Butyl Ether See Dibutyl Ether. See Dibutyl Ether. Butyl Ethylacetaldehyde See 1-Hexene. See 1-Hexene. Butyl Ethyl Ether See 1-Hexene. See 1-Hexene. Butyl Formate 225 64 612 HCOOC_4H_9 (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (61) Butyl Glycolate ~356 142 CH_2OHCOOC_4H_9 (-180) (61) tert-Butyl Hydroperoxide <80	$C_6H_{11}NH(C_4H_9)$	(209)	(93)	
$C_4H_3C_5H_9$ (157) (250) Butyl Ether See Dibutyl Ether. Butyl Ethylacetaldehyde See 2-Ethylhexanal. Butyl Ethylene See 1-Hexene. Butyl Ethyl Ether See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC_4H_9 (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (61) Butyl Glycolate ~356 142 CH_2OHCOOC_4H_9 (-180) (61) tert-Butyl Hydroperoxide <80	Butylcyclopentane	314	480	
Butyl Ether See Dioutyl Ether. Butyl ethylacetaldehyde See 2-Ethylhexanal. Butyl Ethylene See 1-Hexene. Butyl Ethyl Ether See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (Formic Acid, Butyl Ester) (61) Butyl Glycolate ~356 142 (CH ₂ OHCOOC ₄ H ₉ (~180) (61) tert-Butyl Hydroperoxide <80 ((<27) ((<27) ((<27) ($C_4H_9C_5H_9$	(157)	(250)	(1 P.1
Butylethylactaldehyde See 2-Enlylnexanal. Butyl Ethylene See 1-Hexene. Butyl Ether See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) Easter 142 See Ethyl Butyl Ester) Butyl Glycolate ~356 142 See Ethyl Butyl Ester) Butyl Glycolate ~356 142 See Ethyl Butyl Ester) Butyl Glycolate ~356 142 See Ethyl Butyl Ester) Butyl Isocyanate 235 66 See Ethyl Butyl Ester) Butyl Isocyanate 235 66 See Ethyl Butyl Ester) Butyl Isocyanate 235 66 See Ethyl Ester) Butyl Isocyanate) See Esthyl Ester) See Esthyl Ester) See Esthyl Ester) Butyl Isocyanate 235 66 See Esthyl Ester) Butyl Isocyanate) See Esthyl Ester) See Esthyl Ester) Butyl Isocyanate 302 127 C4H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53)	Bulyi Einer		See Dit	Julyi Elner.
Butyl Ethyl Ether See Ethyl Butyl Ether. Butyl Formate 225 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (107) (18) (322) Butyl Glycolate ~356 142 (2000) (2000) (61) tert-Butyl Hydroperoxide (2000) <th< td=""><td>Butyletnylacetaidenyde</td><td></td><td>See 2-El</td><td>Hoveno</td></th<>	Butyletnylacetaidenyde		See 2-El	Hoveno
Butyl Formate 225 64 612 HCOOC ₄ H ₉ (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (107) (18) (322) Butyl Glycolate ~356 142 (107) (18) (107) Butyl Glycolate ~356 142 (107) (107) (110) (110) (110) (110) (110) (110) (110) (110) (110) (110) (111)	Butyl Ethyl Ethor		See Ethyl	Butyl Ether
July Formate 22.3 64 612 $HCOOC_4H_9$ (107) (18) (322) (Butyl Methanoate) (Formic Acid, Butyl Ester) (Butyl Glycolate ~356 142 $Butyl Glycolate$ ~356 142 (Gl) (Gl) $tert-Butyl Hydroperoxide$ <80	Butyl Formato	225	64	612
Incode(419) (107) (137) (132) (Butyl Methanoate) (Formic Acid, Butyl Ester) (137) (132) Butyl Glycolate \sim 356 142 (147) (147) CH2OHCOOC4H9 (-180) (61) (147) (147) (147) tert-Butyl Hydroperoxide \sim 356 142 (147) (147) (147) (147) tert-Butyl Hydroperoxide (-180) (61) (147) (147) (147) (147) n-Butyl Isocyanate 235 66 (113) (19) (150) (153) Butyl Isocyanate) Butyl Isocyanate) 127 (150) (53) (53)	HCOOC H.	(107)	(18)	(322)
(Formic Acid, Butyl Ester) Butyl Glycolate ~356 142 CH ₂ OHCOOC ₄ H ₉ (~180) (61) tert-Butyl Hydroperoxide <80	(Butyl Methanoate)	(107)	(10)	(322)
Butyl Glycolate ~356 142 CH_2OHCOOC4H9 (~180) (61) tert-Butyl Hydroperoxide <80	(Formic Acid Butyl Ester)			
Butyl Foryconte 550 112 CH_OHCOOC4H9 (~180) (61) tert-Butyl Hydroperoxide <80	Butyl Glycolate	~356	142	
tert-Butyl Hydroperoxide <80	CH-OHCOOC H	(~180)	(61)	
(CH ₃) ₃ COOH (<27)	tert-Butyl Hydroperoxide	(100)	<80	
In-Butyl Isocyanate 235 66 CH ₃ (CH ₂) ₃ NCO (113) (19) (Butyl Isocyanate) 127 Butyl Isovalerate 302 127 C ₄ H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53)	(CH ₂) ₂ COOH		(<27)	
CH ₃ (CH ₂) ₃ NCO (113) (19) (Butyl Isocyanate) 127 Butyl Isovalerate 302 127 C ₄ H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53)	n-Butyl Isocyanate	235	66	
(Butyl Isocyanate) 302 127 Butyl Isovalerate 302 127 C ₄ H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53)	CH ₃ (CH ₂) ₃ NCO	(113)	(19)	
Butyl Isovalerate 302 127 C ₄ H ₉ OOCCH ₂ CH(CH ₃) ₂ (150) (53)	(Butyl Isocyanate)	(-)		
$C_4H_9OOCCH_2CH(CH_3)_2$ (150) (53)	Butyl Isovalerate	302	127	
	$C_4H_9OOCCH_2CH(CH_3)_2$	(150)	(53)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound ${}^{\circ}F({}^{\circ}C)$ ${}^{\circ}F({}^{\circ}C)$ ${}^{\circ}F({}^{\circ}C)$ Butyl Lactate 320 160 720 CH,CHORHCOC,H ₂ (160) (71) (382) Butyl Mercaptan See 1-Butanethiol. See 1-Butanethiol. Butyl Mercaptan See 2-Methyl-2-Propanethiol. Butyl Mercaptan See 2-Methyl-2-Propanethiol. Butyl Mercaptan See 2-Methyl-2-Propanethiol. See 2-Methyl-2-Propanethiol. See 2-Methyl-2-Propanethiol. Butyl Monoethanoate See Butyl Formate. See Butyl Formate. See Butyl Formate. N-Butyl Monoethanoate 680 General Methyle Propanethiol. General Methyle Propanethiol. Butyl Nitrate 277 97 General Methyle Propanethiol. General Methyle Propanethiol. C,H_H,CH,L_H,ORD (135) (36) General Methyle Propanethiol. General Methyle Propanethiol. Butyl Netrate 277 97 General Methyle Propanethiol. General Methyle Propanethiol. GUOOC,H ₀ (27-228) (27-228) General Methyle Propanethiol. General Methyle Propanethiol. Butyl Okalate 472		Boiling point	Flash point,	Ignition point,
Butyl Lactate 320 160 720 CH;CH(OHCOCQL,H, (160) (71) (382) Butyl Mercaptan See 1-Butanethiol. (382) tert-Butyl Mercaptan See 2-Methyl-2-Propanethiol. (382) Butyl Mercaptan See 2-Methyl-2-Propanethiol. (362) Butyl Mercaptan See Butyl Formate. (362) CH_3(CH_1,OCO)(CH_2),CH_3 (163) (52) Butyl Monoethanolamine 378 (70) Statyl Monoethanolamine 378 (77) Butyl Naphthalene 680 (360) CH_3(CH_2),ONO_2 (136) (36) CH_3(CH_4),ORO_4 (252) (110) Butyl Oleate 440.6-442.4 356 C1,H_3,CH (CH_4),CH,OH (252) (110) Butyl Oleate 472 265 C(COC,CH_3) (241) (129) (Butyl Ethanedicate) (oc) (cettan) (Butyl Ethanedicate) (oc) (cettan) C(COC,CH_3) heating. (<88) Ethathyl Phenoxy	Compound	°F (°C)	°F (°C)	°F (°C)
$\begin{array}{cccc} \hat{\mathrm{CH}}_{z} \mathrm{CH}(\mathrm{OH}) \mathrm{COOC}_{z} \mathrm{H}_{y} & (160) & (71) & (382) \\ & & & & & & & & & & & & & & & & & & $	Butyl Lactate	320	160	720
Butyl Mercaptan See 1-Butanethiol. tert-Butyl Mercaptan See 2-Methyl-2-Propanethiol. Butyl Metrozylate 325 CH ₂ :C(CH ₃)COO(CH ₃)CH ₃ (163) Butyl Monoethanolamine 378 N-Butyl Monoethanolamine 378 N-Butyl Monoethanolamine 378 Utyl Nethinanoate See Butyl Formate. N-Butyl Monoethanolamine 378 Utyl Nethinanoate See Dityl Nethinanoate C,H ₄ CH ₂ ,ONO ₂ (136) C,H ₄ CH ₂ ,ONO ₂ (136) C,H ₄ CH ₄ ,D,CH ₂ OH (252) Butyl Oleate 440.6-442.4 See COCQ ₄ H ₉ (129) (B15 mm Butyl Okalate (27-228) @15 mm Butyl Okalate 472 265 (COOC ₄ H ₉) (B10td with 25% of benzene heating. (CH ₂ OCH ₂) (244) (D200 C(CH ₃) Hert-Butyl Perbenzoate Explodes on >190 C,H ₂ COCOC(H ₃) (CH ₂ OCOOC(CH ₃) (CH ₂ OCCH ₂) (248)	CH ₃ CH(OH)COOC ₄ H ₉	(160)	(71)	(382)
teri-Butyl Mercaptan See 2-Methyl-2-Propanethiol. Butyl Methacrylate 325 126 CH ₂ :C(H ₂)(COO(CH ₂) ₂)(CH ₃ (163) (52) Butyl Methanoate See Butyl Formate. N-Butyl Monoethanolamine 378 170 CH ₂ :C(H ₂)(COO(CH ₂) ₂)(CH ₄) (192) (77) Butyl Naphthalene 680 C. (H ₂ , GH ₄) (360) Butyl Naphthalene (360) (36)	Butyl Mercaptan		See 1-Bu	itanethiol.
Butyl Methacrylate 325 126 CH ₂ :C(CH ₃)COO(CH ₃) ₂ CH ₃ (163) (52) See Butyl Formate. N-Butyl Monoethanolamine 378 170 C ₄ H ₃ N(C ₄ H ₄ OH (192) (77) Butyl Naphthalene 680 C ₄ H ₄ C(H ₄)O(NO ₂ (136) (36) 2-Butyl Nitrate 277 97 CH ₄ (CH ₃)O(NO ₂ (136) (36) 2-Butyl Oitrate 440.6-442.4 (356 C ₁ H ₄ CH ₄)CH ₂ OH (252) (110) Butyl Oleate 440.6-442.4 (356 C ₁ H ₄ CH ₄)CH ₄ OH (252) (10) Butyl Oleate 472 265 (COOC ₄ H ₉) (227-228) (Butyl Okalate 472 265 (COOC ₄ H ₉) (244) (129) (Butyl Peracetate Explodes on <80 diluted with 25% of benzene heating. (<27) CH ₅ (CH ₃)COC(CH ₃) ₃ heating. (<88) tert-Butyl Peroxpitalate Explodes on >190 C ₄ H ₅ CH(-2H ₃)CH ₅ OH (145-156) (120) (CH ₃)COOC(CH ₃) ₃ heating. (<88) tert-Butyl Perhemotate Explodes on >190 C ₄ H ₅ COOOC(CH ₃) ₃ heating. (<88) tert-Butyl Perhemotate (145-156) (120) (CH ₃)COOC(CH ₃) ₃ heating. (<88) tert-Butyl Perhemotate (30-4307) (120) (CH ₃)COOC(CH ₃) ₃ heating. (<88) tert-Butyl Perhemotate (30-4307) (120) (CH ₃)COOC(CH ₃) β (p-tert-Butyl Phenoxy) 293-313 248 Ethanol (145-156) (120) (CH ₃)COCC(H ₃) ₄ (210) (82) (Butyl Phenyl Ether 410 180 C(H ₃)CC ₄ H ₂ CH ₂ CH ₂ OCOCH ₃ Butyl Phenyl Ether 410 180 C(H ₃)CC ₄ H ₃ (2H ₂) (160) Butyl Phenyl Ether 410 180 C ₄ H ₂ COOC(CH ₃) (105-198) (160) Butyl Phenyl Ether 410 180 C ₄ H ₂ COC ₄ H ₃ (210) (32) (426) Butyl Phenyl Ether 410 180 C ₄ H ₂ COC ₄ H ₃ (210) (32) (426) Butyl Phenyl Ether 410 180 C ₄ H ₂ COC ₄ H ₃ (210) (32) (426) Butyl Phenyl Ether 410 180 C ₄ H ₄ COC ₄ H ₃ (210) (35) (426) Butyl Phenyl Ether 410 180 C ₄ H ₄ COC ₄ H ₄ (414) 180 C ₄ H ₄ COC ₄ H ₄ (416) (32) (426) Butyl Stearate 653 333 (CH ₃) ₄ O ₄ C ₄ H ₃ (421) (110) Butyl Stearate 650 320 671 C ₄ H ₄ COC ₄ H ₃ (421) (110) Butyl Stearate 650 320 671 C ₄ H ₄ COC ₄ H ₃ (421) (110) Butyl Stearate 650 320 671 C ₄ H ₄ COC ₄ H ₃ (421) (110) Butyl Stearate 650 320 671 C ₄ H ₄ COC ₄ H ₄ (421) (110) Butyl Stearate 650 320 671 C ₄ H ₄ COC ₄ H ₃ (425) (7	tert-Butyl Mercaptan		See 2-Methyl-	2-Propanethiol.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Butyl Methacrylate	325	126	1
Butyl Methanoate See Butyl Formate. N-Butyl Monoethanolamine 378 170 Cyll-MiCH_Q.H (192) (77) Butyl Naphthalene 680 $C_{4}H_{N}(E_{4}H_{0}H)$ (192) (77) Butyl Nitrate 277 97 CH ₃ (KL) ₄ (H) (252) (110) Butyl Oleate 440.6-442.4 356 C ₁ /H ₃ (C)CO2 ₄ H ₉ (227-228) (110) Butyl Okalate 472 265 (COOC ₄ H ₉) (244) (129) (Butyl Ethanedioate) (oc) tetr-Butyl Peracetate Explodes on <80	CH ₂ :C(CH ₃)COO(CH ₂) ₃ CH ₃	(163)	(52)	
N-Butyl Monoethanolamine 378 170 $C_{4}H_{3}NHC_{3}H_{4}OH$ (192) (77) Butyl Naphthalene 680 $C_{4}H_{2}C_{4}H_{3}$ (360) Butyl Nitrate 277 97 $C_{4}(C_{1}H_{3})ONO_{2}$ (136) (36) 2-Butyloctanol 486 230 $C_{4}H_{2}CH(C_{4}H_{3})CHO_{4}OH$ (252) (110) Butyl Oleate 440.6-442.4 356 $C_{1}H_{3}COOC_{4}H_{9}$ (227)-228) (227-228) (227-228) (217-228) (229-27-28) (290-	Butyl Methanoate		See Buty	l Formate.
$\begin{array}{cccc} C_4 H_0 \dot{\lambda} HC_2 H_4 OH & (192) & (77) \\ \mbox{Butyl Naphthalene} & 680 \\ C_4 H_2 C_4 H_7 \\ & (360) \\ \mbox{Butyl Nitrate} & 277 & 97 \\ C H_3 (C H_2)_3 ONO_2 & (136) & (36) \\ \mbox{C}_4 H_3 C H (C_1 H_3) CNO_2 & (136) & (36) \\ \mbox{C}_4 H_3 C H (C_1 H_3) CH (C_1 H_2) CH (C_1 H_2) CH (C_1 H_3) CH (C_1 H_2) CH (C_1 H_2) CH (C_1 H_3) CO (C_4 H_2) CH (C_2 C_2 C_2 R) & (110) \\ \mbox{Butyl Oleate} & 440.6-442.4 & 356 \\ \mbox{C}_{17} H_{31} CO OC_4 H_9 & (227-228) & (110) \\ \mbox{Butyl Okalate} & 472 & 265 \\ (C OC C_4 H_3)_2 & (244) & (129) & (241) & (129) \\ \mbox{Butyl Oxalate} & 472 & 265 & (C OC (C_1 H_3)_2 & (244) & (129) & (27-228) & (27-28) & (27-$	N-Butyl Monoethanolamine	378	170	
Butyl Naphthalene 680 C ₁ H ₂ (C ₁ ,H ₂) (360) Butyl Nitrate 277 97 CH ₄ (CH ₂) ₂ ONO ₂ (136) (36) 2-Butyl Nitrate 277 97 CH ₄ (CH ₂) ₂ ONO ₂ (136) (36) 2-Butyl Oteanol 486 230 C ₄ H ₂ CH(C,H ₂)CH ₂ OH (252) (110) Butyl Oleate 440.6-442.4 356 C ₁₇ H ₃₃ COOC ₄ H ₉ (227-228) (217-228) (COOC,H ₉) ₂ (244) (129) (Butyl Ethanedioate) (oc) (coc) (COOC,H ₉) ₂ (244) (129) (Butyl Ethanedioate) (oc) (coc) (COOC,H ₉) ₂ (244) (129) (Butyl Peracetate Explodes on >190 C ₄ L ₄ COOC/C(H ₃) ₃ + (coc) tert-Butyl Peroxypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (c68) (CH ₂)CCOC/CH ₃) (145-156) (120) (CH ₂)CCOC/CH ₃)	C ₄ H ₉ NHC ₂ H ₄ OH	(192)	(77)	
$\begin{array}{cccc} \dot{H}_{3} \mathcal{L}_{4} \dot{H}_{2} \dot{H}_{7} & (360) \\ \textbf{Butyl Nitrate} & 277 & 97 \\ (CH_{3}(CH_{2})ON_{2} & (136) & (36) \\ 2\textbf{-Butyl Octanol} & 486 & 230 \\ C_{9} (H_{1}, CH(C_{2}H_{0})CH_{2}OH & (252) & (110) \\ \textbf{Butyl Oleate} & 440.6-442.4 & 356 \\ C_{17} H_{32}COOC_{4} H_{9} & (180) \\ & (227-228) \\ & (180) \\ \hline \\ (COOC_{4} H_{9})_{2} & (244) & (129) \\ (Butyl Ehanedicate) & (oc) \\ \textbf{tert-Butyl Peracetate} & Explodes on & <80 \\ diluted with 25\% of benzene heating. & (<27) \\ CH_{2}O(O_{2})C(CH_{3})_{3} & heating. & (>88) \\ \textbf{tert-Butyl Peropenate} & Explodes on & >190 \\ C_{9} (-3COOC_{4} (CH_{3})_{3} & heating. & (>88) \\ (CH_{3})_{2}COOC(CH_{3})_{3} & heating. & (>68) \\ (CH_{3})_{3}COOC(C(H_{3})_{3} & heating. & (>68) \\ \textbf{tert-Butyl Peroxpluate} & Explodes on & >155 \\ diluted with 25\% of mineral spirits heating. & (>68) \\ (CH_{3})_{3}COOC(C(H_{3})_{3} & heating. & (>68) \\ (CH_{3})_{3}COOC(C(H_{3})_{3} & heating. & (>68) \\ \textbf{tert-Butyl Peroxpluate} & Explodes on & >155 \\ diluted with 25\% of mineral spirits heating. & (>68) \\ (CH_{3})_{3}CCO_{4}H_{0} & (145-156) & (120) \\ (CH_{3})_{3}CC_{6}H_{0}OC(CH_{3} & H_{1} & H_{2} & H_{2} & H_{2} \\ \textbf{fuptort-Butyl Phenoxy} & 293-313 & 248 \\ \textbf{Ethanol} & (145-156) & (120) \\ (CH_{3})_{3}CC_{6}H_{0}OC(CH_{3} & H_{2} & H_{2} & H_{2} \\ \textbf{fuptort-Butyl Phenoxy} & 579-585 & 324 \\ \textbf{Ethyl Acetate} & (304-307) & (162) \\ (CH_{3})_{3}CC_{6}H_{0}OC(CH_{3} & H_{2} & H_{2} & H_{2} \\ \textbf{fuptort-Butyl Phenox} & 180 \\ CH_{4}(CH_{3})CC_{4}H_{5} & (210) & (82) \\ (Butoxybenzene & - \\ \textbf{tert-Butyl-2-Phenylphenol} & 385-388 & 320 \\ C_{4}H_{4}C_{4}H_{2}(H_{4}(H_{2}) & (110) \\ \textbf{Butyl Schacte} & 790 & 230 \\ C_{4}H_{5}OC_{4}H_{5} & (146) & (32) & (426) \\ \textbf{Butyl Ricinoleate} & 790 & 230 \\ (CH_{3})_{3}CC_{4}H_{5} & (146) & (32) & (426) \\ \textbf{Butyl Ricinoleate} & 790 & 230 \\ (C_{4}H_{5}OC_{4}H_{5} & (421) & (110) \\ \textbf{Butyl Schactate} & 650 & 320 & 671 \\ C_{17}H_{3}COOC_{4}H_{5} & (343) & (160) & (355) \\ \textbf{tert-Butylstyren} & 219 & (81) \\ \end{array}$	Butyl Naphthalene		680	
Butyl Nirrate 277 97 $CH_3(CH_2)_3(DNQ_2$ (136) (36) $C_{H_13}CH(C_1H_3)CH_2OH$ (252) (110) Butyl Oleate 440.6–442.4 356 $C_{1+1_3_3}COOC_4H_9$ (180) (227–228) $(217-228)$ (180) (227–228) $(217-228)$ (0c) (0c) tert-Butyl Paracetate Explodes on <80	$C_4H_9C_{10}H_7$		(360)	
$\begin{array}{cccc} \mathrm{CH}_3(\mathrm{CH}_2)_3\mathrm{ONO}_2 & (136) & (36) \\ 2\text{-Butyloctanol} & 486 & 230 \\ \mathrm{C}_4\mathrm{H}_3\mathrm{CH}(\mathrm{C}_4\mathrm{H}_9\mathrm{CH}_2\mathrm{OH} & (252) & (110) \\ \text{Butyl Oleat} & 440.6-442.4 & 356 \\ \mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COOC}_4\mathrm{H}_9 & (180) \\ & & & & & & & & & & & & & & & & & & $	Butyl Nitrate	277	97	
2-Butyloctanol 486 230 $C_{q}H_{1,q}CH(C,H_{2})CH_{2}OH$ (252) (110) Butyl Oleate 440.6-442.4 356 $C_{17}H_{33}COOC_{q}H_{9}$ (180) (227-228) (@15 mm Butyl Oxalate 472 265 (COOC,H_{9,2} (244) (129) (Butyl Ethanedioate) (oc) tert-Butyl Peracetate Explodes on <80 diluted with 25% of benzene heating. (<27) $CH_{3}COOC_{2}(CH_{3})_{3}$ tert-Butyl Perbenzoate Explodes on >190 $C_{q}H_{3}COOC_{2}(CH_{3})_{3}$ heating. (>88) tert-Butyl Perbenzoate Explodes on >190 $C_{q}H_{3}COOCO(C(H_{3})_{3}$ heating. (>88) tert-Butyl Perbenzoate Explodes on >155 diluted with 25% of hineral spirits heating. (>68) (CH_{3})_{3}COOCO(C(H_{3})_{3} 248 Ethanol (145-156) (120) (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{2}OH (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{2}OH (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{3}OCH_{3} 324 Ethyl Acetate (304-307) (162) (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{2}OCH_{3} 248 Ethyl Acetate (304-307) (162) (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{2}OCH_{3} 24 Ethyl Acetate (304-307) (162) (CH_{3})_{3}C_{q}H_{4}OCH_{2}CH_{2}OCCH_{3} 24 Ethyl Acetate (304-307) (162) (CH_{3})_{3}C_{q}H_{6}OCH_{2}CH_{2}OCCH_{3} 320 $C_{q}H_{3}C_{q}H_{9}OHC(CH_{3})_{3} (196-198) (160) Butyl Propionate 295 90 799 C_{q}H_{5}COOC_{q}H_{9} (146) (32) (426)Butyl Sebacate 653 353(CH_{3}COOC_{q}H_{9} (421) (110)Butyl Sebacate 650 320 671C_{17}H_{3}COOC_{q}H_{9} (343) (160) (355)tert-Butylstyrene 426 177(219) (81)$	CH ₂ (CH ₂) ₂ ONO ₂	(136)	(36)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Butyloctanol	486	230	
Butyl Oleate 440.6-442.4 356 $C_{17}H_{33}COOC_4H_9$ (180) (227-228) (@15 mm Butyl Oxalate 472 265 (COOC_4H_9)_2 (244) (129) (Butyl Ethanedioate) (oc) (ce) tert-Butyl Peracetate Explodes on <80 diluted with 25% of benzene heating. (<27)	C ₆ H ₁₃ CH(C ₄ H ₀)CH ₂ OH	(252)	(110)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Butyl Oleate	440.6-442.4	356	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₇ H ₂₂ COOC ₄ H ₀		(180)	
(@ 15 mm) Butyl Oxalate 472 265 $(COOC_4H_9)_2$ (244) (129) $(Butyl Ethanedioate)$ (oc) tert-Butyl Peracetate Explodes on <80 diluted with 25% of benzene heating. (<27) $CH_3CO(O_2)C(CH_3)_3$ tert-Butyl Perbenzoate Explodes on >190 $C_{q}H_2COOOC(CH_3)_3$ heating. (>688) tert-Butyl Peroxypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (>668) $(CH_3)_3COOCOC(CH_3)_3$ 248 Ethanol (145-156) (120) $(CH_3)_3CO_4H_2CH_2CH$ β β -(p-tert-Butyl Phenoxy) 293-313 248 Ethyl Acetate (304-307) (162) $(CH_3)_3CO_4H_2CH_2CH_2CH$ β β β β β β -(p-tert-Butyl Phenoxy) 579-585 324 Ethyl Acetate (304-307) (162) $(CH_3)_3CO_4H_5$ (210) (82) $(Butoxybenzene)$ A A 4-tert-Butyl Phenyl Ether 410	-1755	(227 - 228)	()	
Butyl Oxalate 472 265 $(COC_4H_9)_2$ (244) (129) $(Butyl Ethanedioate)$ (oc) tert-Butyl Peracetate Explodes on <80 diluted with 25% of benzene heating. (<27) $CH_3CO(O_2)C(CH_3)_3$ tert-Butyl Perbenzoate Explodes on >190 $C_{cH_5COOOC(CH_3)_3}$ heating. (>88) tert-Butyl Percypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (>68) (CH_3)_3COOC(CH_3)_3 B_{c} $F(-ptert-Butyl Pencoxy)$ 293-313 248 $Ethanol$ (145-156) (120) $(CH_3)_3COCH_4CH_2OH$ $B_{c}(-ptert-Butyl Phenoxy)$ 579-585 324 $Ethyl Acetate$ (304-307) (162) $(CH_3)_3CC_{s}H_5OCH_2CH_2OCOCH_3$ $Butyl Phenyl Ether$ 410 180 $CH_4(CH_3)_3OCO_4H_5$ (210) (82) $(Butoxybenzene)$ $Utert-Butyl-2$ -Phenylphenol 385-388 320 $C_{c}H_5C_6H_5OCL_{H_3}$ (146) (32) (426) Butyl Ricinoleate 790 230		@15 mm		
COOC_4H_9/2 (244) (129) (Butyl Ethanedioate) (oc) tert-Butyl Peracetate Explodes on <80	Butyl Oxalate	472	265	
(Buryl Ethanedioate) (oc) tert-Butyl Peracetate Explodes on <80	$(COOC_4H_0)_2$	(244)	(129)	
tert-Butyl Peracetate Explodes on <80	(Butyl Ethanedioate)		(oc)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tert-Butyl Peracetate	Explodes on	<80	
CH ₃ CO(0 ₂)C(CH ₃) ₃ Initially for the second sec	diluted with 25% of benzene	heating.	(<27)	
http:///iterbenzoate Explodes on >190 $C_{\theta}H_{3}COOOC(CH_{3})_{3}$ heating. (>88) tert-Butyl Peroxypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (>68) $(CH_{3})_{3}COOCOC(CH_{3})_{3}$ 248 β -(p-tert-Butyl Phenoxy) 293-313 248 Ethanol (145-156) (120) $(CH_{3})_{3}CC_{6}H_{4}OCH_{2}CH_{2}OH$ β -(p-tert-Butyl Phenoxy) 579–585 β -(p-tert-Butyl Phenoxy) 579–585 324 Ethyl Acetate (304–307) (162) $(CH_{3})_{3}CC_{6}H_{6}OCH_{2}CH_{2}OCOCH_{3}$ B B Butyl Phenyl Ether 410 180 $CH_{3}(CH_{2})_{3}OC_{6}H_{5}$ (210) (82) (Butoxybenzene) 4 -tert-Butyl-2-Phenylphenol 385–388 320 $C_{6}H_{5}C_{6}H_{3}OHC(CH_{3})_{3}$ (196–198) (160) 799 $C_{3}H_{3}OG_{2}C_{4}H_{9}$ (146) (32) (426) Butyl Ricinoleate 790 230 $C_{18}H_{3}O_{3}C_{4}H_{9}$ (421) (110) Butyl Sebacate 653 353 3	$CH_2CO(O_2)C(CH_2)_2$		()	
$C_{e}H_{5}COOOC(CH_{3})_{3}$ heating. (>88) tert-Butyl Peroxypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (>68) $(CH_{3})_{3}COOCOC(CH_{3})_{3}$ β -(p-tert-Butyl Phenoxy) 293-313 248 Ethanol (145-156) (120) $(CH_{3})_{3}CC_{e}H_{4}OCH_{2}CH_{2}OH$ β -(p-tert-Butyl phenoxy) 579–585 324 Ethyl Acetate (304–307) (162) $(CH_{3})_{3}CC_{e}H_{6}OCH_{2}CH_{2}OCOCH_{3}$ Butyl Phenyl Ether 410 180 $C_{4}H_{5}C_{6}H_{3}OH_{2}CH_{2}OCOCH_{3}$ 4-tert-Butyl-2-Phenylphenol 385–388 320 $C_{4}H_{5}C_{6}H_{3}OHC(CH_{3})_{3}$ (196–198) (160) Butyl Propionate 295 90 799 $C_{3}H_{3}O_{3}C_{4}H_{9}$ (146) (32) (426) Butyl Ricinoleate 790 230 $C_{18}H_{3}O_{3}C_{4}H_{9}$ (421) (110) <	tert-Butyl Perbenzoate	Explodes on	>190	
Tert-Butyl Peroxypivalate Explodes on >155 diluted with 25% of mineral spirits heating. (>68) $(CH_3)_3COOCOC(CH_3)_3$ 248 β -(p-tert-Butyl Phenoxy) 293-313 248 Ethanol (145-156) (120) $(CH_3)_3CC_6H_4OCH_2CH_2OH$ β -(p-tert-Butyl phenoxy) 579-585 324 Ethyl Acetate (304-307) (162) $(CH_3)_3CC_6H_6OCH_2CH_2OCOCH_3$ $Butyl Phenyl Ether$ 410 180 CH_3(CL_2)_3OC_6H_5 (210) (82) $Butyl Phenyl Ether$ 410 180 CH_3(CH_2)_3OC_6H_5 (210) (82) $Butyl Phenyl Ether$ 410 180 CH_3(CH_2)_3OC_6H_5 (210) (82) $Butyl Phenyl Ether$ 410 180 CH_3(CH_2)_3OC_6H_5 (210) (82) $Butyl Phenyl Phenol$ 385-388 320 C_6H_5C_6H_3OHC(CH_3)_3 (196-198) (160) $Butyl Phenyl Phenol$ 385-388 320 C_2H_5COOC_4H_9 (146) (32) (426) $Butyl Ricinoleate$ 790 230 $C_{18}H_{33}O_3C_4H_9$ (421) (110) $Butyl Sebacate$ <	C ₆ H ₅ COOOC(CH ₂) ₂	heating.	(>88)	
CH11CU_VICTORY of mineral spirits heating. (>68) (CH3)_3COOCOC(CH3)_3 β -(p-tert-Butyl Phenoxy) 293-313 248 Ethanol (145-156) (120) (CH3)_3CC_6H_4OCH_2CH_2OH β -(p-tert-Butyl Phenoxy) 579-585 324 Ethyl Acetate (304-307) (162) (CH3)_3CC_6H_6OCH_2CH_2OCOCH_3 B B Butyl Phenyl Ether 410 180 CH_3(CH_2)_3OC_6H_5 (210) (82) (Butoxybenzene) 4 4 4-tert-Butyl-2-Phenylphenol 385-388 320 C_6H_5C_6H_3OHC(CH_3)_3 (196-198) (160) Butyl Propionate 295 90 799 C_2H_5COOC_4H_9 (146) (32) (426) Butyl Ricinoleate 790 230 (426) Butyl Sebacate 653 353 (178) Butyl Stearate 650 320 671 C_{17H_35}COOC_4H_9 (343) (160) (355) (219) (81) (219) (81)	tert-Butyl Peroxypivalate	Explodes on	>155	
$\begin{array}{c c} (CH_{3})_{3}COOCOC(CH_{3})_{3} \\ \beta (\mathbf{p}\text{-tert-Butyl Phenoxy}) & 293-313 & 248 \\ \hline \textbf{Ethanol} & (145-156) & (120) \\ (CH_{3})_{3}CC_{6}H_{4}OCH_{2}CH_{2}OH \\ \beta (\mathbf{p}\text{-tert-Butylphenoxy}) & 579-585 & 324 \\ \hline \textbf{Ethyl Acctate} & (304-307) & (162) \\ (CH_{3})_{3}CC_{6}H_{6}OCH_{2}CH_{2}OCOCH_{3} \\ \hline \textbf{Butyl Phenyl Ether} & 410 & 180 \\ CH_{3}(CH_{2})_{3}OC_{6}H_{5} & (210) & (82) \\ (Butoxybenzene) & & & & \\ \hline \textbf{4-tert-Butyl-2-Phenylphenol} & 385-388 & 320 \\ C_{6}H_{5}CeH_{3}OHC(CH_{3})_{3} & (196-198) & (160) \\ \hline \textbf{Butyl Propionate} & 295 & 90 & 799 \\ C_{2}H_{5}COOC_{4}H_{9} & (146) & (32) & (426) \\ \hline \textbf{Butyl Ricinoleate} & 790 & 230 \\ C_{18}H_{33}O_{3}C_{4}H_{9} & (421) & (110) \\ \hline \textbf{Butyl Sebacate} & 653 & 353 \\ [(CH_{2})_{4}COOC_{4}H_{9}]_{2} & (345) & (178) \\ \hline \textbf{Butyl Stearate} & 650 & 320 & 671 \\ C_{17}H_{35}COOC_{4}H_{9} & (343) & (160) & (355) \\ \hline \textbf{tert-Butylstyrene} & 426 & 177 \\ \hline \end{array}$	diluted with 25% of mineral spirits	heating.	(>68)	
Action293-313248Ethanol(145-156)(120)(CH_3)_3CC_6H_4OCH_2CH_2OH β -(p-tert-Butylphenoxy)579-585324Butyl Acetate(304-307)(162)(CH_3)_3CC_6H_6OCH_2CH_2OCOCH_3 $Butyl Phenyl Ether$ 410180CH_3(CH_2)_3OC_6H_5(210)(82)(Butoxybenzene) 4 -tert-Butyl-2-Phenylphenol385-388320C_6H_5C_6H_3OHC(CH_3)_3(196-198)(160)Butyl Propionate29590799C_2H_5COC_4H_9(146)(32)(426)Butyl Ricinoleate790230C_{18}H_{33}O_3C_4H_9(421)(110)Butyl Sebacate653353[(CH_2)_4COOC_4H_9]_2(345)(178)Butyl Stearate650320671(219)(81)	$(CH_2)_2COOCOC(CH_2)_2$		(,)	
Ethanol(145-156)(120) $(CH_3)_3CC_6H_4OCH_2CH_2OH$ β -(p-tert-Butylphenoxy)579–585324 β -(p-tert-Butylphenoxy)579–585324Ethyl Acetate(304–307)(162) $(CH_3)_3CC_6H_6OCH_2CH_2OCOCH_3$ $Butyl Phenyl Ether$ 410180 $CH_3(CH_2)_3OC_6H_5$ (210)(82)(Butoxybenzene) 4 -tert-Butyl-2-Phenylphenol385–388320 $C_6H_5C_6H_3OHC(CH_3)_3$ (196–198)(160)Butyl Propionate29590799 $C_2H_5COC_4H_9$ (146)(32)(426)Butyl Ricinoleate790230C_{18}H_{33}O_3C_4H_9(421) $(CH_2)_4COOC_4H_9]_2$ (345)(178)Butyl Sebacate653 $(CH_2)_4COOC_4H_9]_2$ (343)(160)(355)tert-Butyl Stearate650320671 $C_17H_{35}COOC_4H_9$ (343)(160)(355)tert-Butylstyrene426177(219)(81)(81)	β -(p-tert-Butyl Phenoxy)	293-313	248	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ethanol	(145-156)	(120)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₂) ₂ CC ₆ H ₄ OCH ₂ CH ₂ OH	(1.0.000)	()	
Ethyl Acetate $(304-307)$ (162) $(CH_3)_3CC_6H_6OCH_2CH_2OCOCH_3$ 180 Butyl Phenyl Ether410 $(CH_3)_3CC_6H_5$ (210) $(Butoxybenzene)$ (82) 4-tert-Butyl-2-Phenylphenol $385-388$ 320 $C_6H_5C_6H_3OHC(CH_3)_3$ $(196-198)$ (160) Butyl Propionate295 295 90 $C_2H_5COC_4H_9$ (146) (32) (426) Butyl Ricinoleate790 230 $C_{18}H_{33}O_3C_4H_9$ $(CE_2)_4COOC_4H_9]_2$ (345) (178) $(CC_2)_4COOC_4H_9]_2$ Butyl Stearate 650 320 671 $C_{17}H_{35}COOC_4H_9$ (343) (160) (355) tert-Butylstyrene 426 (219) (81)	β -(p-tert-Butylphenoxy)	579-585	324	
$\begin{array}{c c} (CH_3)_3CC_6H_6OCH_2CH_2OCOCH_3 \\ \hline \textbf{Butyl Phenyl Ether} & 410 & 180 \\ CH_3(CH_2)_3OC_6H_5 & (210) & (82) \\ (Butoxybenzene) \\ \hline \textbf{4-tert-Butyl-2-Phenylphenol} & 385-388 & 320 \\ C_6H_5C_6H_3OHC(CH_3)_3 & (196-198) & (160) \\ \hline \textbf{Butyl Propionate} & 295 & 90 & 799 \\ C_2H_5COOC_4H_9 & (146) & (32) & (426) \\ \hline \textbf{Butyl Ricinoleate} & 790 & 230 \\ C_{18}H_{33}O_3C_4H_9 & (421) & (110) \\ \hline \textbf{Butyl Sebacate} & 653 & 353 \\ [(CH_2)_4COOC_4H_9]_2 & (345) & (178) \\ \hline \textbf{Butyl Stearate} & 650 & 320 & 671 \\ C_{17}H_{35}COOC_4H_9 & (343) & (160) & (355) \\ \hline \textbf{tert-Butylstyrene} & 426 & 177 \\ \hline \end{array}$	Ethyl Acetate	(304-307)	(162)	
Butyl Phenyl Ether410180 $CH_3(CH_{2})_3OC_6H_5$ (210)(82)(Butoxybenzene) (120) (82)4-tert-Butyl-2-Phenylphenol $385-388$ 320 $C_6H_5C_6H_3OHC(CH_3)_3$ (196-198)(160)Butyl Propionate29590799 $C_2H_5COC_4H_9$ (146)(32)(426)Butyl Ricinoleate790230(110)Butyl Sebacate653353(160)Butyl Sebacate653353(178)Butyl Stearate650320671 $C_{17}H_{35}COOC_4H_9$ (343)(160)(355)tert-Butylstyrene426177(219)(219)(81)(81)(81)	(CH ₃) ₃ CC ₆ H ₆ OCH ₂ CH ₂ OCOCH ₃			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Butyl Phenyl Ether	410	180	
Butoxybenzene) (10) (10) 4-tert-Butyl-2-Phenylphenol 385–388 320 $C_6H_5C_6H_3OHC(CH_3)_3$ (196–198) (160) Butyl Propionate 295 90 799 $C_2H_5COOC_4H_9$ (146) (32) (426) Butyl Ricinoleate 790 230 (18H_330_3C_4H_9) (421) (110) Butyl Sebacate 653 353 (178) (178) (174) (146) (355) (174) Butyl Stearate 650 320 671 (174)_{35}COOC_4H_9 (343) (160) (355) tert-Butylstyrene 426 177 (219) (81) (81)	$CH_{2}(CH_{2})_{2}OC_{4}H_{5}$	(210)	(82)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(Butoxybenzene)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-tert-Butyl-2-Phenylphenol	385-388	320	
Butyl Propionate 295 90 799 $C_2H_5COOC_4H_9$ (146) (32) (426) Butyl Ricinoleate 790 230 (2000) $C_{18}H_{33}O_3C_4H_9$ (421) (110) (420) Butyl Sebacate 653 353 (178) [(CH_2)_4COOC_4H_9]_2 (345) (178) (160) (355) tert-Butylstyrene 426 177 (219) (81)	$C_6H_5C_6H_3OHC(CH_3)_3$	(196 - 198)	(160)	
$\begin{array}{cccccccc} C_2H_5 COOC_4H_9 & (146) & (32) & (426) \\ \hline \textbf{Butyl Ricinoleate} & 790 & 230 & \\ C_{18}H_{33}O_3C_4H_9 & (421) & (110) & \\ \hline \textbf{Butyl Sebacate} & 653 & 353 & \\ [(CH_2)_4 COOC_4H_9]_2 & (345) & (178) & \\ \hline \textbf{Butyl Stearate} & 650 & 320 & 671 & \\ C_{17}H_{35}COOC_4H_9 & (343) & (160) & (355) & \\ \hline \textbf{tert-Butylstyrene} & 426 & 177 & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \hline \textbf{k} & & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & & & & & \\ \hline \textbf{k} & & $	Butyl Propionate	295	90	799
Butyl Ricinoleate 790 230 $C_{18}H_{33}O_3C_4H_9$ (421) (110) Butyl Sebacate 653 353 $[(CH_2)_4COOC_4H_9]_2$ (345) (178) Butyl Stearate 650 320 671 $C_{17}H_{35}COOC_4H_9$ (343) (160) (355) tert-Butylstyrene 426 177 (219) (81) (81)	$C_2H_5COOC_4H_0$	(146)	(32)	(426)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Butyl Ricinoleate	790	230	· · · · ·
Butyl Sebacate 653 353 $[(CH_2)_4COOC_4H_9]_2$ (345) (178) Butyl Stearate 650 320 671 $C_{17}H_{35}COOC_4H_9$ (343) (160) (355) tert-Butylstyrene 426 177 (219) (81)	$C_{18}H_{33}O_{3}C_{4}H_{9}$	(421)	(110)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Butyl Sebacate	653	353	
Butyl Stearate 650 320 671 $C_{17}H_{35}COOC_4H_9$ (343) (160) (355) tert-Butylstyrene 426 177 (219) (81)	[(CH ₂) ₄ COOC ₄ H ₉] ₂	(345)	(178)	
$\begin{array}{cccc} C_{17}H_{35}COOC_4H_9 & (343) & (160) & (355) \\ \hline tert-Butylstyrene & 426 & 177 \\ & (219) & (81) \end{array}$	Butyl Stearate	650	320	671
tert-Butylstyrene 426 177 (219) (81)	C ₁₇ H ₂₅ COOC ₄ H ₀	(343)	(160)	(355)
(219) (81)	tert-Butylstyrene	426	177	× /
(/		(219)	(81)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
tert-Butyl Tetralin		680	
C4H0C10H11		(360)	
Butyl Trichlorosilane	300	130	
CH ₂ (CH ₂) ₂ SiCl ₂	(149)	(54)	
N-Butylurethane	396-397	197	
CH ₂ (CH ₂) ₂ NHCOOC ₂ H ₅	(202 - 203)	(92)	
(Butylcarbamic Acid. Ethyl Ester)	(202 200)	(2)	
(Ethyl Butylcarbamate)			
Butyl Vinyl Ether		See Vinvl I	Butyl Ether.
2-Butyne	81	-4	j
$CH_2C:CCH_2$ (Crotonylene)	(27)	(<-20)	
Butvraldehvde	169	-8	425
CH ₂ (CH ₂) ₂ CHO	(76)	(-22)	(218)
(Butanal)	()	(,	()
(Butyric Aldehyde)			
Butyraldol	280	165	
CoHielo	(138)	(74)	
0811602	@ 50 mm	(, ,)	
Butyraldoxime	306	136	
C H ₀ NOH	(152)	(58)	
(Butanal Oxime)	(152)	(30)	
Butvric Acid	327	161	830
CH ₂ (CH ₂) ₂ COOH	(164)	(72)	(443)
Butvric Acid Ethyl Ester	(104)	(72) See Ethyl	Butvrate
Butyric Aldehyde		See Buty	raldehvde.
Butyric Anhydride	388	180	535
$[CH_2(CH_2)_2CO]_2O$	(196)	(54)	(279)
Butvric Ester	(-, -)	See Ethyl	Butyrate.
Butyrolactone	399	209	,
CH ₂ CH ₂ CH ₂ COO	(204)	(98)	
	()		
Butyrone		See 4-Heptanone.	
Butyronitrile	243	76	935
CH ₃ CH ₂ CH ₂ CN	(117)	(24)	(501)
Caproic Acid	400	215	716
(CH ₃)(CH ₂) ₄ COOH	(204)	(102)	(380)
(Hexanoic Acid)			
Carbolic Acid		See P	henol.
Carbon Bisulfide		See Carbo	n Disulfide.
Carbon Disulfide	115	-22	194
CS_2	(46)	(-30)	(90)
(Carbon Bisulfide)			
Cetane		See Hex	adecane.
Chloroacetic Acid	372	259	>932
CH ₂ ClCOOH	(189)	(126)	(>500)
Chloroacetophenone	477	244	
C ₆ H ₅ COCH ₂ Cl	(247)	(118)	
(Phenacyl Chloride)			
2-Chloro-4,6-di-tert-Amylphenol	320-354	250	
	(160–179)	(121)	
$(C_5H_{11})_2C_6H_2CIOH$	@ 22 mm		
Chloro-4-tert-Amylphenol	487-509	225	
$C_5H_{11}C_6H_3CIOH$	(253–265)	(107)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)
TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
2-Chloro-4-tert-Amvl-Phenvl	518-529	230	
Methyl Ether	(270-276)	(110)	
C _s H ₁₁ C _s H ₂ ClOCH ₂	(210 210)	(110)	
p-Chlorobenzaldehyde	417	190	
CIC ₆ H ₄ CHO	(214)	(88)	
Chlorobenzene	270	82	1099
C ₆ H ₅ Cl	(132)	(28)	(593)
(Chlorobenzol)			
(Monochlorobenzene)			
(Phenyl Chloride)			
Chlorobenzol		See Chlor	robenzene.
o-Chlorobenzotrifluoride	306	138	
ClC ₆ H ₄ CF ₃	(152)	(59)	
(o-Chloro- α, α, α -trifluorotoluene)			
Chlorobutadiene		See 2-Chloro-	1,3-Butadiene.
2-Chloro-1,3-Butadiene	138	-4	
CH ₂ :CCl:CH:CH ₂	(59)	(-20)	
(Chlorobutadiene)			
(Chloroprene)			
1-Chlorobutane		See Buty	l Chloride.
2-Chlorobutene-2	143–159	-3	
CH ₃ CCI:CHCH ₃	(62–71)	(-19)	
Chlorodinitrobenzene		See Dinitroc	hlorobenzene.
Chloroethane	264.266	See Ethy	l Chloride.
2-Chloroethanol	264-266	140	797
CH_2CICH_2OH	(129–130)	(60)	(425)
(2-Chloroethyl Alconol)			
	201	151	
2-Chioroethyl Acetate	291	151	
Chloroothyl Alashal	(144)	(00) See 2 Chi	oroothanol
Chloro 4 Ethylhonzono	264	147	oroeulalioi.
	(184)	(64)	
Chloroothylone	(104)	(04) See Vinv	l Chloride
2-Chloroethyl Vinyl Ether		See Vinyl 2-Ch	loroethyl Ether
2-Chloroethyl-2-Xenyl Ether	613	320	noroeuryr Euler.
C.H.C.H.OCH.CH.Cl	(323)	(160)	
1-Chlorobevane	270	95	
CH ₂ (CH ₂) ₄ CH ₂ Cl	(132)	(35)	
(Hexyl Chloride)	(102)	(50)	
Chloroisopropyl Alcohol		See 1-Chlore	o-2-Propanol.
Chloromethane		See Methy	vl Chloride.
1-Chloro-2-Methyl Propane		See Isobut	vl Chloride.
1-Chloronaphthalene	505	250	>1036
$C_{10}H_7Cl$	(263)	(121)	(>558)
2-Chloro-5-	446	275	
Nitrobenzotrifluoride	(230)	(135)	
C ₆ H ₃ CF ₃ (2-Cl, 5-NO ₂)			
(2-Chloro-α,α,α-Trifluoro-5-			
Nitrotoluene)			
1-Chloro-1-Nitroethane	344	133	
$C_2H_4NO_2Cl$	(173)	(56)	

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
1-Chloro-1-Nitropropane	285	144	
CHNO ₂ ClC ₂ H ₅	(141)	(62)	
2-Chloro-2-Nitropropane	273	135	
CH ₂ CNO ₂ ClCH ₂	(134)	(57)	
1-Chloropentane	(151)	See Ams	l Chloride
β -Chlorophenetole	306-311	225	i chioride.
C.H.OCH.CH.Cl	(152-155)	(107)	
(<i>B</i> -Phenoxyethyl Chloride)	(152 155)	(107)	
o-Chlorophenol	347	147	
	(175)	(64)	
n Chlorophonol	(175)	250	
	428	(121)	
2 Chlore 4 Phonylphonol	(220)	(121)	
2-Chloro-4-Phenyiphenoi	(222)	545	
C ₆ H ₅ C ₆ H ₃ ClOH	(323)	(1/4)	120 4 1
Chloroprene		See 2-Chloro	-1,3-Butadiene.
1-Chloropropane		See Prop	yl Chloride.
2-Chloropropane		See Isopro	pyl Chloride.
2-Chloro-1-Propanol	271–273	125	
CH ₃ CHClCH ₂ OH	(133–134)	(52)	
(β -Chloropropyl Alcohol)			
(Propylene Chlorohydrin			
1-Chloro-2-Propanol	261	125	
CH ₂ ClCHOHCH ₃	(127)	(52)	
(Chloroisopropyl Alcohol) (sec-Propylene Chlorohydrin)			
1-Chloro-1-Propene		See 1-Chlo	propropylene.
3-Chloropropene		See Ally	l Chloride.
α-Chloropropionic Acid	352-374	225	932
CH ₃ CHClCOOH	(178 - 190)	(107)	(500)
3-Chloropropionitrile	348.8	168	
CICH ₂ CH ₂ CN	(176)	(76)	
2 2 2	Decomposes		
2-Chloropropionyl Chloride	230	88	
	(110)	(31)	
β -Chloropropyl Alcohol	(110)	See 2-Chlor	ro-1-Propanol
1-Chloropropylene	95_97	<21	o i i iopunoi.
CH_CH·CHCl	(35-36)	(<-6)	
(1-Chloro-1-Propene)	(33-30)	((()))	
2-Chloropropylene	73	<u> </u>	
сн ссі сн	(23)	(< 20)	
$(\beta Chloropropulano)$	(23)	(<=20)	
(2 Chloropropono)			
(2-Chlorophopene)		See Ericl	alanaharduin
2-Chloropropylene Oxide		See Epici	1101011yur111.
7-Chioropropylene Oxide	220		noronyarın.
	320	120	
$C_6\Pi_4 \cup [C\Pi_3]$	(100)	(52)	
(Totyl Chloride)		0.5	
α-Chlorotoluene		See Benz	yl Chloride.
Chlorotrifluoroethylene		See Trifluoro	chloroethylene.
2-Chloro-α,α,α-Trifluoro-5- Nitrotoluene		See 2-Chloro-5-N	itrobenzotrifluoride.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
o-Chloro-α,α,α-Trifluorotoluene		See o-Chlorob	enzotrifluoride.
Coal Oil		See Fuel	Oil No. 1.
Coal Tar Light Oil		<80	
		(<27)	
Coal Tar Pitch		405	
	202 752	(207)	(27
Creosote Oli	382-752	165	637
- Crearl	(194–400)	(74)	(336)
	3/0	1/8	(500)
$Cn_3C_6n_4On$	(191)	(61)	(399)
(Cresylic Acid) (a Hydroxytalyana)			
(o-Hydroxytolucile)			
(0-Methyl Flichol)		105	
CH C H OCOCH		(01)	
$(\mathbf{P} \operatorname{Tolyl} A \operatorname{cetate})$		(91)	
(1-101y1 Acctate) Crosyl Dinhonyl Phoenhata	734 450		
(C H O) (CH) C H O) PO	(300) (232)		
$(C_{6}\Pi_{5}O)_{2}[(C\Pi_{3})_{2}C_{6}\Pi_{4}O]^{-1}O_{4}$	(390) (232)	See o-	Cresol
Crotonaldebyde	216 55	450	C10301.
CH.CH.CHCHCHO	(102) (13)	(232)	
(2-Butenal)	(102) (13)	(232)	
(Crotonic Aldehyde)			
(Propylene Aldebyde)			
Crotonic Acid	372	190	745
CH ₂ CH ² CHCOOH	(189)	(88)	(396)
Crotononitrile	230-240.8	<212	(570)
CH ₂ CH ² CHCN	(110-116)	(<100)	
(2-Butenenitrile)	(110 110)	((100))	
Crotonyl Alcohol	250	81	660
CH ₂ CH:CHCH ₂ OH	(121)	(27)	(349)
(2-Buten-1-ol)	()	(= .)	(2.17)
(Crotyl Alcohol)			
1-Crotyl Bromide			
CH ₂ CH:CHCH ₂ Br			
(1-Bromo-2-Butene)			
1-Crotyl Chloride			
CH ₂ CH:CHCH ₂ Cl			
(1-Chloro-2-Butene)			
Cumene	306	96	795
$C_6H_5CH(CH_3)_2$	(152)	(36)	(424)
(Cumol)			· · · ·
(2-Phenyl Propane)			
(Isopropyl Benzene)			
Cumene Hydroperoxide	Explodes on	175	
$C_6H_5C(CH_3)_2OOH$	heating.	(79)	
Cyanamide	500	286	
NH ₂ CN	(260)	(141)	
	Decomposes		
2-Cyanoethyl Acrylate	Polymerizes	255	
CH ₂ CHCOOCH ₂ CH ₂ CN	-	(124)	
N-(2-Cyanoethyl)		255	
Cyclohexylamine		(124)	
C ₆ H ₁₁ NHC ₂ H ₄ CN			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Cyclamen Aldehyde		190	
(CH ₃) ₂ CHC ₆ H ₄ CH(CH ₃)CH ₂ CHO		(88)	
(Methyl Para-Isopropyl			
Phenyl Propyl Aldehyde)			
Cyclobutane	55		
C_4H_8	(13)		
(Tetramethylene)			
1,5,9-Cyclododecatriene	448	160	
$C_{12}H_{18}$	(231)	(71)	
Cycloheptane	246	<70	
$CH_2(CH_2)_5CH_2$	(119)	(<21)	
Cyclohexane	179	-4	473
CeHip	(82)	(-20)	(245)
(Hexahvdrobenzene)			(-)
(Hexamethylene)			
1.4-Cyclohexane	525	332	600
Dimethanol	(274)	(167)	(316)
$C_8H_{16}O_2$. ,		
Cyclohexanethiol	315-319	110	
C ₆ H ₁₁ SH	(157–159)	(43)	
(Cyclohexylmercaptan)			
Cyclohexanol	322	154	572
C ₆ H ₁₁ OH	(161)	(68)	(300)
(Anol)			
(Hexolin)			
(Hydralin)			
Cyclohexanone	313	111	788
$C_6H_{10}O$	(156)	(44)	(420)
(Pimelic Ketone)			
Cyclohexene	181	<20	471
CH ₂ CH ₂ CH ₂ CH ₂ CH:CH	(83)	(<-7)	(244)
3-Cvclohexene-1-		See 1	.2.3.6-
Carboxaldehvde		Tetrahydrob	enzaldehvde
Cyclohexenone	313	93	enzaideniyaei
C _c H _o O	(156)	(34)	
Cvclohexvl Acetate	350	136	635
CH ₂ CO ₂ C ₆ H ₁₁	(177)	(58)	(335)
(Hexolin Acetate)			
Cyclohexylamine	274	88	560
$\tilde{C}_6H_{11}NH_2$	(134)	(31)	(293)
(Aminocyclohexane)			
(Hexahydroaniline)			
Cyclohexylbenzene	459	210	
$C_6H_5C_6H_{11}$	(237)	(99)	
(Phenylcyclohexone)			
Cyclohexyl Chloride	288	90	
CH ₂ (CH ₂) ₄ CHCl	(142)	(32)	
(Chlorocyclohexane)			
Cyclohexylcyclohexanol	304-313	270	
C ₂ H ₂ C ₂ H ₂ OH	(151-156)	(132)	
Cyclohevyl Formate	324	124	
CH ₂ (CH ₂),HCOOCH	(162)	(51)	
	(102)	(01)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Cyclohexylmethane		See Methyle	cyclohexane.
o-Cyclohexylphenol	298	273	
$C_6H_{11}C_6H_4OH$	(148)	(134)	
	@10 mm		
Cyclohexyltrichlorosilane	406	196	
C ₆ H ₁₁ SiCl ₃	(208)	(91)	
1,5-Cyclooctadiene	304	95	
C_8H_{10}	(151)	(35)	
Cyclopentane	121	<20	682
$C_{5}H_{10}$	(49)	(<-7)	(361)
Cyclopentene	111	-20	743
CH:CHCH ₂ CH ₂ CH ₂	(44)	(-29)	(395)
Cyclopentanol	286	124	
CH ₂ (CH ₂) ₂ CHOH	(141)	(51)	
	(111)	(51)	
Cyclopentanone	267	79	
OCCH ₂ CH ₂ CH ₂ CH ₂	(131)	(26)	
(Adipic Ketone)			
Cyclopropane	-29		928
$(CH_2)_2$	(-34)		(498)
(Trimethylene)	()		(1) ()
p-Cymene	349	117	817
$CH_2C_2H_4CH(CH_2)_2$ Tech.	(176)	(47)	(436)
(4-Isopropyl-1-Methyl		127	833
Benzene)		(53)	(445)
Decahydronaphthalene	382	136	482
$C_{10}H_{18}$	(194)	(58)	(250)
(Decalin)			
Decahydronaphthalene-trans	369	129	491
$C_{10}H_{18}$	(187)	(54)	(255)
Decalin		See Decahydi	ronaphthalene.
Decane	345	115	410
CH ₃ (CH ₂) ₈ CH ₃	(174)	(46)	(210)
Decanol	444.2	180	550
CH ₃ (CH ₂) ₈ CH ₂ OH	(229)	(82)	(288)
(Decyl Alcohol)			
1-Decene	342	<131	455
CH ₃ (CH ₂) ₇ CH:CH ₂	(172)	(<55)	(235)
Decyl Acrylate	316	441	
CH ₃ (CN ₂) ₉ OCOCH:CH ₂	(158)	(227)	
	@ 50 mm		
Decyl Alcohol	120	See D	ecanol.
Decylamine	429	210	
$CH_3(CH_2)_9NH_2$	(221)	(99)	
(1-Aminodecane)	401 526	225	
	491-330	225 (107)	
$C_{10}n_{21}C_6n_5$	(233-280)	(107)	
C II SI	410-424	190	
$C_{10}\Pi_{21}$ on D ecylpophthelens	(210-218)	(00)	
	(225 260)	(177)	
$C_{10}\Pi_{21}C_{10}\Pi_7$	(333-300)	(1//) 225	
CH (CH) ONO	(127)	(112)	
$C_{13}(C_{12})_{9}O_{13}O_{2}$	(127) @11.mm	(113)	

TABLE 2.40	Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Diacetone Alcohol	328	148	1118
CH ₂ COCH ₂ C(CH ₂) ₂ OH	(164)	140	1110
Diacetyl	(101)	See 2.3-Butan	edione
Diallyl Ether		See Allyl Et	her.
Diallyl Phthalate	554	330	
$C_{6}H_{4}(CO_{2}C_{3}H_{5})_{2}$	(290)	(166)	
1,3-Diaminobutane		See 1,3-Butan	ediamine.
1,3-Diamino-2-Propanol	266	270	
NH ₂ CH ₂ CHOHCH ₂ NH ₂	(130)	(132)	
1,3-Diaminopropane		See 1,3-Propa	nediamine.
Diamylamine	356	124	
$(C_5H_{11})_2NH$	(180)	(51)	
Diamylbenzene	491-536	225	
$(C_5H_{11})_2C_6H_4$	(255 - 280)	(107)	
Diamylbiphenyl	687–759	340	
$C_5H_{11}(C_6H_4)_2C_5H_{11}$	(364-404)	(171)	
(Diaminodiphenyl)			
Di-tert-Amylcyclohexanol	554-572	270	
$(C_5H_{11})_2C_6H_9OH$	(290-300)	(132)	
Diamyidlphenyl		See Diamylbig	bhenyl.
Diamylene	302	118	•
$C_{10}H_{20}$	(150)	(48)	
Diamyl Ether		See Amyl Ethe	er.
Diamyl Maleate	505-572	270	
$(CHCOOC_5H_{11})_2$	(263-300)	(132)	
Diamyl Naphthalene	624	315	
$C_{10}H_6(C_5H_{11})_2$	(329)	(159)	
2,4-Diamylphenol	527	260	
$(C_5H_{11})_2C_6H_3OH$	(275)	(127)	
Di-tert-Amylphenoxy Ethanol	615	300	
$C_6H_3(C_5H_{11})_2OC_2H_4OH$	(324)	(149)	
Diamyl Phthalate	475-490	245	
$C_6H_4(COOC_5H_{11})_2$	(246–254)	(118)	
(Amyl Phthalate)	@ 50 mm		
Diamyl Sulfide	338-356	185	
$(C_5H_{11})_2S$	(170–180)	(85)	
o-Dianisldine		403	
$[\mathrm{NH}_2(\mathrm{OCH}_3)\mathrm{C}_6\mathrm{H}_3)_2$		(206)	
(o-Dimethoxybenzidine			
Dibenzyl Ether	568	275	
$(C_6H_5CH_2)_2O$	(298)	(135)	
(Benzyl Ether)			
Dibutoxy Ethyl Phthalate	437	407	
$C_6H_4(COOC_2H_4OC_4H_9)_2$	(225)	(208)	
	220.250	(oc)	
Dibutoxymethane	330-370	140	
$CH_2(OC_4H_9)_2$	(166–188)	(60)	
C H OC H OC H OC	035	305	
$(C_4H_9OC_2H_4OC_2H_4)_2O$	(335)	(152)	
(Tetraethylene Glycol Dibutyl			
Euler) N.N. Dibutula actomida	160 192	225	
	409-482	223 (107)	
$CH_3CON(C_4H_9)_2$	(243-250)	(107)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Dibutylamine	322	117	
$(C_4H_9)_2NH$	(161)	(47)	
Di-sec-Butylamine	270-275	75	
[C ₂ H ₅ (CH ₂)CH] ₂ NH	(132–135)	(24)	
Dibutylaminoethanol	432	200	
(C_4H_0) NC ₂ H ₄ OH	(222)	(93)	
1-Dibutylamino-2-Propanol	()	See Dibutyliso	propanolamine.
N.N-Dibutylanlline	505-527	230	propunoiannio
C ₂ H ₂ N(CH ₂ CH ₂ CH ₂ CH ₂) ₂	(263-275)	(110)	
Di-tert-Butyl-n-Cresol	495-511	261	
	(257 266)	(127)	
Dibutyl Ethor	(257-200)	(127)	387
(CH) O	(141)	(25)	(104)
$(C_4 H_9)_2 O$	(141)	(23)	(194)
(I-Duloxybulane)			
(Dutyl Ether) 2.5 Di tout Butulkdi		420	700
2,5-DI-tert-Butyinyaroquinone		420	/90
$[U(UH_3)_3]_2U_6H_2(UH)_2$		(216)	(421)
(DIRHŐ)		222	
Dibutyl Isophthalate		322	
$C_6H_4(CO_2C_4H_9)_2$		(161)	
N,N ⁺ -Di-sec-Butyl-p-		270	625
Phenylenediamine		(132)	(329)
$C_6H_4[-NHCH(CH_3)-CH_2CH_3]_2$			
Dibutylisopropanolamine	444	205	
$CH_3CHOHCH_2N(C_4H_9)_2$	(229)	(96)	
Dibutyl Maleate	Decomposes	285	
$(-CHCO_2C_4H_0)_2$	1	(141)	
Dibutyl Oxalate	472	220	
C ₄ H ₀ OOCCOOC ₄ H ₀	(244)	(104)	
Di-tert-Butyl Peroxide	231	65	
(CH ₂) ₂ COOC(CH ₂) ₂	(111)	(18)	
Dibutyl Phthalate	644	315	757
C H (CO C H)	(340)	(157)	(402)
(Dibutyl o Phthatata)	(340)	(157)	(402)
n-Dibutyl-0-1 Initiatace)	650	105	544
(COOC H) (CHOH)	(343)	(01)	(284)
$(COOC_4\Pi_9)_2(CHO\Pi)_2$	(343)	(91)	(204)
(Dibutyi-u-2,5-			
N N Dibutyltaluana	202	220	
IN, IN-DIDULYILOIUEIIE-	(200)	550	
	(200)	(100)	
$CH_{3}C_{6}H_{4}SO_{3}N(C_{4}H_{9})_{2}$	@10 mm		1 (1 1
Dicaproate	441 450	See Triethy	iene Giycol.
Dicapryl Phthalate	441-453	395	
$C_6H_4[COOCH(CH_3)C_6H_{13}]_2$	(227–234)	(202)	
	@4.5 mm		
Dichloroacetyl Chloride	225-226	151	
CHCl ₂ COCl	(107–108)	(66)	
(Dichloroethanoyl Chloride)			
3,4-Dichloroaniline	522	331	
$NH_2C_6H_3Cl_2$	(272)	(166)	
o-Dichlorobenzene	356	151	1198
$C_6H_4Cl_2$	(180)	(66)	(648)
(o-Dichlorobenzol)		- *	· · ·

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
n Dichlorobonzono	245	150	. ,
C H Cl	(174)	(66)	
2 3 Dichlorobutadiono 1 3	(1/4)	(00)	604
CH ·C(C))C(C))·CH	(100)	(10)	(368)
1 2-Dichlorobutano	(100)	(10)	(508)
CH.CH.CHClCH.Cl		(275)	
1 4-Dichlorobutane	311	(275)	
CH CICH CH CH CI	(155)	(52)	
2 3 Dichlorobutano	241 253	(52)	
	(116, 123)	(90)	
1 3-Dichloro-2-Butono	(110-125)	(90)	
CH CICH-CCICH	(128)	(27)	
3 4-Dichlorobutene-1	316	(27)	
	(158)	(45)	
1 3 Dichlorobutono 2	258	80	
CH CICH-CCICH	(126)	(27)	
Dichlorodimethylsilano	(120)	(27) See Dimethyld	ichlorosilane
1 1 Dichloroothono		See Ethylidene	Dichloride
1,1-Dichloroothane		See Ethylana [Dichloride
Dichloroothonovl Chlorido		See Ethylene E	vetul Chlorida
1 1-Dichloroothylono		See Vinvlidene	Chloride
Dichloroisonronyl Ether	360	185	Chionae.
	(187)	(85)	
[Bis (<i>B</i> Chloroisopropyl) Ether]	(107)	(85)	
2 2-Dichloro Isopropyl Ether	360	185	
	(187)	(85)	
[Bis(2-Chloro-1-Mothylethyl) Ether]	(107)	(65)	
Dichloromethane		See Methylene	Chloride
1 1-Dichloro-1-Nitro Ethono	255	168	cilionae.
CH.CCLNO.	(124)	(76)	
1 1-Dichloro-1-Nitro Propane	289	151	
C.H.CCLNO.	(1/3)	(66)	
1 5-Dichloropentane	352_358	(00)	
CH.Cl(CH.).CH.Cl	(178 - 181)	(>27)	
(Amylene Chloride)	(170 101)	(221)	
(Pentamethylene Dichloride)			
2.4-Dichlorophenol	410	237	
CLC.H.OH	(210)	(114)	
1.2-Dichloropropage	(210)	See Propylene	Dichloride
1.3-Dichloro-2-Propanol	346	165	Diemoniae.
CH-CICHOHCH-CI	(174)	(74)	
1 3-Dichloropropene	219	95	
CHCl·CHCH_Cl	(104)	(35)	
2 3-Dichloropropene	201	59	
CH-CCICH-CI	(94)	(15)	
α <i>B</i> -Dichlorostyrene	()-1)	225	
C.H.CCI·CHCI		(107)	
Dievelohevyl		See Bicyclobey	vl
Dicycloheyylamine	496		y 1.
(C.H.,)-NH	(258)	(>99)	
	(230)	(~>>)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Dicyclopentadiene	342	90	937
$C_{10}H_{12}$	(172)	(32)	(503)
Didecyl Ether		419	
$(C_{10}H_{21})_{2}O$		(215)	
(Decyl Ether)			
Diesel Fuel Oil		100	
No. 1-D		Min.	
		(38)	
Diesel Fuel Oil		125	
No. 2-D		Min.	
		(52)	
Diesel Fuel Oil		130	
No. 4-D		Min.	
		(54)	
Diethanolomine	514	342	1224
(HOCH ₂ CH ₂) ₂ NH	(268)	(172)	(662)
1,2-Diethoxyethane		See Diethyl Gly	/col.
Diethylacetaldehyde		See 2-Ethylbutyral	dehyde.
Diethylacetic Acid		See 2-Ethylbutyrid	e Acid.
N,N-Diethyl-acetoacetamide	Decomposes	250	
CH ₃ COCH ₂ CON(C ₂ H ₅) ₂	-	(121)	
Diethyl Acetoacetate	412-424	170	
CH ₃ COC(C ₂ H ₅) ₂ COOC ₂ H ₅	(211-218)	(77)	
	Decomposes		
Diethylamine	134	-9	594
$(C_2H_5)_2NH$	(57)	(-23)	(312)
2-Diethyl (Amino) Ethanol		See N,N-Diethyletha	nolamine.
2-(Diethylamino) Ethyl	Decomposes	195	
Acrylate		(91)	
CH ₂ :CHCOOCH ₂ CH ₂ -			
$HN(CH_3CH_2)_2$			
3-(Diethylamino)-Propylamine	337	138	
$(C_2H_5)_2NCH_2CH_2CH_2NH_2$	(169)	(59)	
(N,N-Diethyl-1,3-Propanediamine)			
N,N-Diethylaniline	421	185	1166
$C_6H_5N(C_2H_5)_2$	(216)	(85)	(630)
(Phenyldiethylamine)			
o-Diethyl Benzene	362	135	743
$C_6H_4(C_2H_5)_2$	(183)	(57)	(395)
m-Diethyl Benzene	358	133	842
$C_6H_4(C_2H_5)_2$	(181)	(56)	(450)
p-Diethyl Benzene	358	132	806
$C_6H_4(C_2H_5)_2$	(181)	(55)	(430)
N,N-Diethyl-1,3-Butanediamine	354-365	115	
C ₂ H ₅ NHCH ₂ CH ₂ CHN(C ₂ H ₅)CH ₃	(179–185)	(46)	
[1,3-Bis(ethylamino) Buiane]			
D1-2-Ethylbutyl Phthalate	662	381	
$C_6H_4[COOCH_2CH(C_2H_5)_2]_2$	350	(194)	
Diethyl Carbamyl Chloride	369-374	325–342	
$(C_2H_5)_2NCOCl$	(187–190)	(163–172)	
Diethyl Carbinol		See sec-Amyl Alcohe	ol.
Diethyl Carbonate	259	77	
$(C_2H_5)_2CO_3$	(126)	(25)	
(Ethyl Carbonate)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Diethylcyclohexane	344	120	464
$C_{10}H_{20}$	(173)	(49)	(240)
1,3-Diethyl-1,3-Diphenyl Urea	620	302	
$[(C_{2}H_{5})(C_{6}H_{5})N]_{2}CO$	(327)	(150)	
Diethylene Diamine	299	144	
	(150)	(62)	
Diethylene Dioxide		See p-	Dioxane.
Diethylene Glycol	472	255	435
$O(CH_2CH_2OH)_2$	(244)	(124)	(224)
(2,2-Dihydroxyethyl Ether)			
Diethylene Glycol Methyl Ether	379	205	465
CH ₃ OC ₂ H ₄ OC ₂ H ₄ OH	(193)	(96)	(240)
(2-(2-Methoxyethoxy) Ethanol)			
Diethylene Glycol Methyl	410	180	
Ether Acetate	(210)	(82)	
CH ₃ COOC ₂ H ₄ OC ₂ H ₄ OCH ₃			
Diethylene Glycol Monobutyl	448	172	400
Ether	(231)	(78)	(204)
C4H0OCH2CH2OCH2CH2OH			
Diethylene Glycol Monoethyl	476	240	570
Ether Acetate	(247)	(116)	(298.9)
$C_4H_0O(CH_2)_2O(CH_2)_2OOCCH_3$			
Diethylene Glycol Monoethyl	396	201	400
Ether	(202)	(94)	(204)
CH ₂ OHCH ₂ OCH ₂ -CH ₂ OC ₂ H ₅			
Diethylene Glycol Monoethyl	424	225	680
Ether Acetate	(218)	(107)	(360)
C ₂ H ₅ O(CH ₂) ₂ O(CH ₂) ₂ OOCCH ₃			()
Diethylene Glycol	422-437	222	452-485
Monoisobutyl Ether	(217 - 225)	(106)	(233 - 252)
(CH ₂) ₂ CHCH ₂ O(CH ₂) ₂ O(CH ₂) ₂ OH			()
Diethylene Glycol	381	205	
Monomethyl Ether	(194)	(96)	
CH ₂ O(CH ₂)O(CH ₂) ₂ OH	(-, -)		
Diethylene Glycol Mono-	581	310	
Methyl Ether Formal	(305)	(154)	
CH ₂ (CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ O) ₂	()		
Diethylene Glycol Phthalate		343	
$C_{\epsilon}H_{4}[COO(CH_{2})_{2}OC_{2}H_{5}]_{2}$		(173)	
Diethylene Oxide		See Tetra	hydrofuran.
Diethylene Triamine	404	208	676
NH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂	(207)	(98)	(358)
N.N-Diethylethanolamine	324	140	608
$(C_2H_2)_2NC_2H_4OH$	(162)	(60)	(320)
(2-(Diethylamino) Ethanol)	(102)	(88)	(0=0)
Diethyl Ether		See Etl	nyl Ether.
N.N-Diethylethylene-diamine	293	115	, <u> </u>
$(C_{2}H_{s})_{2}NC_{2}H_{4}NH_{2}$	(145)	(46)	
Diethyl Fumarate	442	220	
C ₂ H ₂ OCOCH ² CHCOOC ₂ H ₂	(217)	(104)	
Diethyl Glycol	252	95	401
(C-H-OCH-)	(122)	(35)	(205)
(1,2-Diethoxyethane)	(122)	(55)	(200)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Diethyl Ketone	217	55	842
C ₂ H ₅ COC ₂ H ₅	(103)	(13)	(450)
(3-Pentanone)	(100)	(10)	(100)
N.N-Diethyllauramide	331-351	>150	
$C_{11}H_{22}CON(C_{2}H_{5})_{2}$	(166 - 177)	(>66)	
11 25 - (2 5/2	@2 mm		
Diethyl Maleate	438	250	662
$(-CHCO_2C_2H_3)_2$	(226)	(121)	(350)
Diethyl Malonate	390	200	
$CH_2(COOC_2H_3)_2$	(199)	(93)	
(Ethyl Malonate)			
Diethyl Oxide		See Ethyl Ether	r.
3,3-Diethylpentane	295	554	
CH ₃ CH ₂ C(C ₂ H ₅) ₂ CH ₂ CH ₃	(146)	(290)	
Diethyl Phthalate	565	322	855
$C_6H_4(COOC_2H_5)_2$	(296)	(161)	(457)
p-Diethyl Phthalate		See Diethyl Ter	rephthalate.
N,N-Diethylstearamide	246-401	375	•
$C_{17}H_{35}CON(C_2H_5)_2$	(119–205)	(191)	
	@1 mm		
Diethyl Succinate	421	195	
(CH ₂ COOCH ₂ CH ₃) ₂	(216)	(90)	
Diethyl Sulfate	Decomposes,	220	817
$(C_2H_5)_2SO_4$	giving	(104)	(436)
(Ethyl Sulfate)	Ethyl Ether		
Diethyl Tartrate	536	200	
CHOHCOO(C ₂ H ₅) ₂	(280)	(93)	
Diethyl Terephthalate	576	243	
$C_6H_4(COOC_2H_5)_2$	(302)	(117)	
(p-Diethyl Phthalate)			
3,9-Diethyl-6-tridecanol		See Heptadecar	nol.
Diglycol Chlortormate	256-261	295	
O:(CH ₂ CH ₂ OCOCl) ₂	(124–127)	(146)	
	@5 mm		
Diglycol Chlorohydrin	387	225	
HOCH ₂ CH ₂ OCH ₂ CH ₂ Cl	(197)	(107)	
Diglycol Diacetate	482	255	
(CH ₃ COOCH ₂ CH ₂) ₂ O	(250)	(124)	
Diglycol Dilevulleate		340	
(CH ₂ CH ₂ OOC-		(171)	
$(CH_2)_2COCH_3)_2:O$			
Diglycol Laurate	559-617	290	
$C_{16}H_{32}O_4$	(293–325)	(143)	
Dihexyl		See Dodecane.	
Dihexylamine	451-469	220	
$[CH_3(CH_2)_5]_2NH$	(233–243)	(104)	
Dihexyl Ether	107	See Hexyl Ethe	er.
Dinydropyran	186	0	
CH ₂ CH ₂ CH ₂ :CHCHO	(86)	(-18)	
o-Dihydroxybenione	473	260	
$C_6H_4(OH)_2$	(245)	(127)	
(Pyrocalechol)	× -/		

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
p-Dihydroxybenione	547	329	959
$C_{\epsilon}H_{4}(OH)_{2}$	(286)	(165)	(515)
(Hydroquinone)	()	()	(0.00)
1.2-Dihydroxybenione		See 1.2-I	Butanediol.
2.2-Dihydroxyethyl Ether		See Diethy	lene Glycol
2.5-Dihydroxybexane		See 2 5-F	Jexanediol
Diisobutylamine	273-286	85	ioxuneuron.
[(CH ₂)-CHCH ₂]-NH	(134-141)	(29)	
[Bis(B-Methylpropyl) Amine]	(154 141)	(2))	
Diisobutyl Carbinol	353	165	
	(178)	(74)	
(Norvi Alashal)	(176)	(74)	
(Nollyl Alcohol)		Sac 2.4.4 Trim	athul 1 Dantana
	214	366 2,4,4-1111	726
	214	23	/30
$(CH_3)_3CCH_2C(CH_3):CH_2$ (2,4,4-Trimethy-H ₂ -Pentane)	(101)	(-5)	(391)
Diisobutyl Ketone	335	120	745
[(CH ₃) ₂ CHCH ₂] ₂ CO	(168)	(49)	(396)
(2,6-Dimethyl-4 Heptanone)			
Diisobutyl Phthalate	321	365	810
	(327)	(185)	(132)
$C_{6}\Pi_{4}[COUCH_{2}OII(CII_{3})_{2}]_{2}$	(527)	(185)	(432)
	(240)	(107)	
$C_{10}\Pi_{21}O_2C(C\Pi_2)_2CO_2-C_{10}\Pi_{21}$	(349)	(107)	755
	162	430	(102)
$C_6H_4(COOC_{10}H_{21})_2$	(250)	(232)	(402)
Disooctyl Phthalate	398	450	
$(C_8H_{17}COO)_2C_2H_4$	(370)	(232)	
Diisopropanolamine	480	260	705
[CH ₃ CH(OH)-CH ₂] ₂ NH	(249)	(127)	(374)
Diisopropyl		See 2,3-Dir	nethylbutane.
Diisopropylamine	183	30	600
$[(CH_3)_2CH]_2NH$	(84)	(-1)	(316)
Diisopropyl Benzene	401	170	840
$[(CH_3)_2CH]_2C_6H_4$	(205)	(77)	(449)
N,N-Diisopropyl-ethanolamine	376	175	
$[(CH_3)_2CH]_2NC_2H_4OH$	(191)	(79)	
Diisopropyl Ether		See Isopr	opyl Ether.
Diisopropyl Maleate	444	220	
(CH ₃) ₂ CHOCOCH:	(229)	(104)	
CHCOOCH(CH ₃) ₂			
Diisopropylmethanol		See 2,4-Dime	thyl-3-Pentanol.
Diisopropyl Peroxydicarbonate	Explodes		, , , , , , , , , , , , , , , , , , ,
(CH ₂) ₂ CHOCOOCOOCH(CH ₂) ₂	on heating		
Diketene	261	93	
CH ₂ :CCH ₂ C(O)O	(127)	(34)	
(Vinylaceto- β -Lactone)			
2,5-Dimethoxyaniline	518	302	735
$NH_2C_6H_3(OCH_3)_2$	(270)	(150)	(391)
2,5-Dimethoxy Chlorobenzene	460-467	243	
$C_8H_9ClO_2$	(238–242)	(117)	
1,2-Dimethoxyethane	. ,	See Ethy Dimeth	lene Glycol nyl Ether.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Dimethoxyethyl Phthalate	644	410	750
C ₆ H ₄ (COOCH ₂ CH ₂ OCH ₃) ₂	(340)	(210)	(399)
(Bis(2-methoxyethyl) Phthalate)		· · /	
Dimethoxymethane		See M	lethylal.
Dimethoxy Tetraglycol	528	285	·
CH ₃ OCH ₂ (CH ₂ OCH ₂) ₃ CH ₂ OCH ₃	(276)	(141)	
(Tetraethylene Glycol			
Dimethyl Ether)			
Dimethylacetamide	330	158	914
(CH ₃) ₂ NC:OCH ₃	(165)	(70)	(490)
(DMAC)			
Dimethylamine	45	Gos	752
$(CH_3)_2NH$	(7)		(400)
1,2-Dimethylbenzene		See o-	-Xylene.
1,3-Dimethylbenzene		See m	-Xylene.
1,4-Dimethylbenzene		See p-	Xylene.
Dimethylbenzylcarbinyl Acetate		205	
$C_6H_5CH_2C(CH_3)_2OOCCH_3$		(96)	
(alpha, alpha-Dimethyl-			
phenethyl Acelate)			
2,2-Dimethylbutane	122	-54	761
$(CH_3)_3CCH_2CH_3$	(50)	(-48)	(405)
(Neohexane)			
2,3-Dimethylbutane	136	-20	761
$(CH_3)_2CHCH(CH_3)_2$	(58)	(-29)	(405)
(Diisopropyl)			
1,3-Dimethylbutanol		See Methyl Is	obutyl Carbinol.
2,3-Dimethyl-1-Butene	133	<-4	680
$CH_3CH(CH_3)C(CH_3):CH_2$	(56)	(<-20)	(360)
2,3-Dimethyl-2-Butene	163	<-4	753
$CH_3C(CH_3):C(CH_3)_2$	(73)	(<-20)	(401)
1,3-Dimethylbutyl Acetate	284-297	113	
$CH_3COOCH(CH_3)CH_2CH(CH_3)_2$	(140–147)	(45)	
1,3-Dimethylbutylamine	223-228	55	
$CH_3CHNH_2(CH_2)CH(CH_3)_2$	(106–109)	(13)	
(2-Amino-4-Methylpeniane)		C	
Dimethyl Carbinol		See Isopro	pyi Alconol.
Dimethyl Chlorocotol	250, 270	See Meiny	1 Cardonate.
	(126, 132)	(44)	(232)
Dimethylevanamida	320	(44)	(232)
(CH) NCN	(160)	(71)	
1 2-Dimethylcyclohevane	260	(71)	570
(CH.).C.H.	(127)		(304)
1 3-Dimethylcyclohevane	~256	~50	583
(CH ₂) ₂ C ₂ H ₂	(124)	(10)	(306)
(Hexabydroxylene)	(12-7)	(10)	(500)
1.4-Dimethylcyclohevane	248	52	579
(CH ₂) ₂ C ₂ H ₂	(120)	(11)	(304)
(Hexabydroxylol)	(120)	(11)	(505)
1.4-Dimethylcyclohexane-cis	255	61	
C-H ₁₀ (CH ₂)	(124)	(16)	
-010(3/2	((-0)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
1.4-Dimethylcyclohexane-trans	246	51	
C _c H ₁₀ (CH ₂) ₂	(119)	(11)	
Dimethyl Decalin	455	184	455
CueHue(CHa)a	(235)	(84)	(235)
Dimethyldichlorosilane	158	<70	(200)
(CH ₂)-SiCl ₂	(70)	(<21)	
(Dichlorodimethylsilane)	(70)	((21)	
Dimethyldiovane	243	75	
CH ₃ CHCH ₂ OCH ₂ (CH ₃)CHO	(117)	(24)	
1,3-Dimethyl-1-3-	585-588	289	
Diphenylcyclobutane	(307 - 309)	(143)	
$(C_6H_5CCH_3)_2(CH_2)_2$			
Dimethylene Oxide		See Ethvl	ene Oxide.
Dimethyl Ether		See Met	hvl Ether.
Dimethyl Ethyl Carbinol		See 2-Meth	vl-2-Butanol
2.4-Dimethyl-3-Ethylpentane	279	734	
CH ₂ CH(CH ₂)CH(CH ₂ H ₂)	(137)	(390)	
$CH(CH_2)_2$ (3-Ethyl-2.4-	(157)	(550)	
Dimethylpentane)			
N N-Dimethylformamide	307	136	833
HCON(CH.)	(153)	(58)	(445)
2 5-Dimethylfuran	200	(56)	(++5)
OC(CH ₃):CHCH:C(CH ₃)	(93)	(7)	
Dimethyl Glycol Phthalate	446	369	
$C_{4}H_{4}[COO(CH_{2})_{2}OCH_{2}]_{2}$	(230)	(187)	
3.3-Dimethylheptane	279	617	
CH ₂ (CH ₂) ₂ C(CH ₂) ₂ CH ₂ CH ₂ CH ₂	(137)	(325)	
2.6-Dimethyl-4-Heptanone	(107)	See Diisob	utvl Ketone
2.3-Dimethylhexane	237	45	820
CH ₂ CH(CH ₂)CH(CH ₂)C ₂ H ₂ CH ₂ CH ₂	(114)	(7)	(438)
2 4-Dimethylhevane	229	50	(450)
CH CH(CH)CH(CH)C H CH	(100)	(10)	
Dimothyl Hoyynol	302	135	
	(150)	(57)	
(3.5 Dimethyl 1 Heyven 3 ol)	(150)	(57)	
(3,5-Dimethyl-1-ficxyli-5-01)	145	5	480
(CH) NNH	(62)	(15)	(240)
$(C\Pi_3)_2$ ININ ₂ (Dimethylhydrazina, Unsymmetrical)	(03)	(-13)	(249)
(Dimethylinyurazine, Onsymmetricar)		280	
		200	
$CH_3OOCC_6H_4COOCH_3$	257	(138)	
IN,IN-Dimethyliso-	(125)	93	
propanolamine	(125)	(35)	
(CH ₃) ₂ NCH ₂ CH(OH)CH ₃			
Dimethyl Ketone	202	See A	cetone.
Dimethyl Maleate	393	235	
$(-CHCOOCH_3)_2$	(201)	(113)	
2,0-Dimethylmorpholine	296	112	
CH(CH ₃)CH ₂ OCH ₂ CH(CH ₃)NH	(147)	(44)	
2,3-Dimethyloctane	327	<131	437
CH ₃ (CH ₂) ₄ CH(CH ₃)CH(CH ₃)CH ₃	(164)	(<55)	(225)
3,4-Dimethyloctane	324	<131	
C ₃ H ₇ CH(CH ₃)CH(CH ₃)C ₃ H ₇	(162)	(<55)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point	Flash point,	Ignition point,
Compound	r (c)	I ⁽ (C)	r(c)
2,3-Dimethylpentaldehyde	293	94	
CH ₃ CH ₂ CH(CH ₃)CH(CH ₃)CHO	(145)	(34)	(25
2,3-Dimethylpentane	194	<20	635
$CH_3CH(CH_3)CH(CH_3)CH_2CH_3$	(90)	(<-7)	(335)
2,4-Dimethylpentane	177	10	
$(CH_3)_2CHCH_2CH(CH_3)_2$	(81)	(-12)	
2,4-Dimethyl-3-Pentanol	284	120	
$(CH_3)_2$ CHCHOHCH $(CH_3)_2$	(140)	(49)	
(Diisopropylmethanol)			
Dimethyl Phthalate	540	295	915
$C_6H_4(COOCH_3)_2$	(282)	(146)	(490)
Dimethylpiperazine-cis	329	155	
$C_6H_{14}N_2$	(165)	(68)	
2,2-Dimethylpropane	49		842
$(CH_3)_4C$	(9)		(450)
(Neopentane)			
2,2-Dimethyl-1-Propanol		See tert-But	tyl Carbinol.
2,5-Dimethylpyrazine	311	147	
CH ₃ C:CHN:C(CH ₃)CH:N	(155)	(64)	
Dimethyl Sebacate	565	293	
$[-(CH_2)_4COOCH_3]_2$	(296)	(145)	
(Methyl Sebacate)			
Dimethyl Sulfate	370	182	370
$(CH_3)_2SO_4$	(188)	(83)	(188)
(Methyl Sulfate)			
Dimethyl Sulfide	99	<0	403
$(CH_3)_2S$	(37)	(<-18)	(206)
Dimethyl Sulfoxide	372	203	419
$(CH_3)_2SO$	(189)	(95)	(215)
		(oc)	
Dimethyl Terephthalate	543	308	965
$C_6H_4(COOCH_3)_2$	(284)	(153)	(518)
(Dimethyl-1,4-Benzene Dicarboxylate	;)		
(DMT)			
2,4-Dinitroaniline		435	
$(NO_2)_2C_6H_3NH_2$		(224)	
1,2-Dinitro Benzol	604	302	
$C_6H_4(NO_2)_2$	(318)	(150)	
(o-Dinitrobenzene)			
Dinitrochlorobenzene	599	382	
$C_6H_3Cl(NO_2)_2$	(315)	(194)	
(Chlorodinitrobenzene)			
2,4-Dinitrotoluene	572	404	
$(NO_2)_2C_6H_3CH_3$	(300)	(207)	
Dioctyl Adipate	680	402	710
[-(CH ₂) ₂ COOCH ₂ -	(360)	(206)	(377)
$CH(C_2H_5)C_4-H_9]_2$			
[Bis(2-Ethylhexyl) Adipate]			
[Di(2-Ethylhexyl) Adipate]			
Dioctyl Azelate	709	440	705
$(CH_2)_7 [COOCH_2 CH (C_2H_5)C_4H_9]_2$	(376)	(227)	(374)
(Bis(2-Ethylhexyl) Azelate)			
(Di(2-Ethylhexyl) Azelate)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Dioctyl Ether	558	>212	401
$(C_{\circ}H_{17})_{2}O$	(292)	(>100)	(205)
(Octvl Ether)	()	(* - • • •)	()
Dioctyl Phthalate		420	735
C ₄ H ₄ [CO ₂ CH ₂ -		(215)	(390)
$CH(C_2H_5)C_4H_0]_2$			()
[Di(2-Ethylhexyl) Phthalate]			
[Bis(2-Ethylhexyl) Phthalate]			
p-Dioxane	214	54	356
OCH ₂ CH ₂ OCH ₂ CH ₂	(101)	(12)	(180)
(Diethylene Dioxide)			
Dioxolane	165	35	
OCH ₂ CH ₂ OCH ₂	(74)	(2)	
Dipe ntene	339	113	458
CioHi	(170)	(45)	(237)
(Cinene)	(170)	(10)	(207)
(Limonene)			
Dinhenvl		See B	inhenvl
Diphenylamine	575	307	1173
(C _c H _e) ₂ NH	(302)	(153)	(634)
(Phenylaniline)	(2)	()	(00.1)
1.1-Diphenylbutane	561	>212	851
$(C_{\ell}H_{\epsilon})_{2}CHC_{2}H_{7}$	(294)	(>100)	(455)
1.3-Diphenvl-2-buten-1-one		See D	vpnone.
Diphenvldichlorosllane	581	288) F
$(C_{\epsilon}H_{\epsilon})_{3}SiCl_{3}$	(305)	(142)	
Diphenyldodecyl Phosphite	()	425	
$(C_{\epsilon}H_{\epsilon}O)_{2}POC_{10}H_{21}$		(218)	
1.1-Diphenvlethane (uns)	546	>212	824
(C ₄ H ₅) ₂ CHCH ₂	(286)	(>100)	(440)
1.2-Diphenvlethane (svm)	544	264	896
C ₂ H ₂ CH ₂ CH ₂ C ₂ H ₂	(284)	(129)	(480)
Diphenvl Ether		See Diph	envl Oxide.
Diphenylmethane	508	266	905
$(C_6H_5)_2CH_2$	(264)	(130)	(485)
(Ditane)			
Diphenyl Oxide	496	239	1144
$(C_6H_5)_2O$	(258)	(115)	(618)
(Diphenyl Ether)			
1,1-Diphenylpentane	586	>212	824
$(C_6H_5)_2CHC_4H_9$	(308)	(>100)	(440)
1,1-Diphenylpropane	541	>212	860
$CH_3CH_2CH(C_6H_5)_2$	(283)	(>100)	(460)
Diphenyl Phthalate	761	435	
$C_6H_4(COOC_6H_5)_2$	(405)	(224)	
Dipropylamine	229	63	570
$(C_{3}H_{7})_{2}NH$	(109)	(17)	(299)
Dipropylene Glycol	449	250	
(CH ₃ CHOHCH ₂) ₂ O	(232)	(121)	
Dipropylene Glycol Methyl	408	186	
Ether	(209)	(86)	
CH ₃ OC ₃ H ₆ OC ₃ H ₆ OH			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Dipropyl Ether		See n-Pr	opyl Ether.
Dipropyl Ketone	See 4-Heptanone.		leptanone.
Ditane		See Diphe	enylmethane.
Ditridecyl Phthalate	547	470	
$C_6H_4(COOC_{13}H_{27})_2$	@5 mm (286)	(243)	
Divinyl Acetylene	183	<-4	
([:] CCH:CH ₂) ₂	(84)	(<-20)	
(1,5-Hexadien-3-yne)			
Divinylbenzene	392	169	
$C_6H_4(CH:CH_2)_2$	(200)	(76)	
Divinyl Ether	83	<-22	680
(CH ₂ :CH) ₂ O	(28)	(<-30)	(360)
(Ethenylaxyethene)			
(Vinyl Ether)			
Dodecane	421	165	397
$CH_{3}(CH_{2})_{10}CH_{3}$	(216)	(74)	(203)
(Dihexyl)			
1-Dodecanethiol	289	262	
CH ₂ (CH ₂) ₁₁ SH	(143)	(128)	
(Dodecyl Mercaptan)	@15 mm	()	
(Lauryl Mercaptan)			
1-Dodecanol	491	260	527
CH ₂ (CH ₂) ₁ OH	(255)	(127)	(275)
(Louryl Alcohol)	(200)	(1=7)	(270)
Dodecyl Bromide		See Laur	vl Bromide
Dodecylene (α)	406	<212	491
C ₁ /H ₂ /CH ² /CH ₂	(208)	(<100)	(255)
(1-Dodecane)	(200)	((100)	(255)
Dodecyl Mercantan		See 1-Do	decanethiol
tert-Dodecyl Mercantan	128-151	205	decaleunoi.
C.H.SH	(220-233)	(96)	
4-Dodecylovy-2-Hydrovy-	(220-255)	(90)	715
Renzonhenone		(254)	(379)
C.H.O.		(254)	(377)
Dodecyl Phenol	597_633	325	
C.H.C.H.OH	(314-334)	(163)	
012112506114011	(514 554)	(103)	
Dyphone	175	350	
C.H.COCH·C(CH.)C.H.	(246)	(177)	
(1.2 Diphanyl 2 Putan 1 ana)	(240) @50 mm	(177)	
(1,3-Diplicity1-2-Butch-1-Olic)	651	>212	450
	(244)	>212	(222)
C ₂₀ n ₄₂	(344)	(>100)	(232)
	(115)	00	(411)
	(113)	(51)	(411)
(2-Chloropropylene Oxide)			
(γ -Chloropropylene Oxide)			
1.2-Epoxyethane		See Ethv	lene Oxide.
Ervthrene		See 1.3-	Butadiene.
Ethanal		See Ace	taldehvde.
Ethane	-128	5001100	882
CH ₃ CH ₃	(-89)		(472)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
1.2-Ethanediol		See Ethyl	ene Glycol
1.2-Ethanediol Diformate	345	200	ene orgeon
HCOOCH ₂ CH ₂ OOCH	(174)	(93)	
(Ethylene Formate)		()	
(Ethylene Glycol Diformate)			
(Glycol Diformate)			
Ethanethiol		See Ethyl	Mercaptan.
Ethanoic Acid		See Ace	etic Acid.
Ethanoic Anhydride		See Acetic	Anhydride.
Ethanol		See Ethy	l Alcohol.
Ethanolamine	342	186	770
NH ₂ CH ₂ CH ₂ OH	(172)	(86)	(410)
(2-Amino Ethanol)			
$(\beta$ -Aminoethyl Alcohol)			
Ethanoyl Chloride		See Acety	l Chloride.
Ethene		See E	thylene.
Ethenyl Ethanoate		See Viny	Acetate.
Ethenyloxyethene		See Divi	inyl Ether.
Ether		See Etr	iyl Ether.
Ethine	104	See Ac	cetylene.
Ethoxyacetylene	124	<20	
C ₂ H ₅ OC:CH	(51)	(<-/)	
	342 (172)	(62)	
$C_6 n_5 O C_2 n_5$ (Ethyl Dhanyl Ethar) (Dhanatola)	(172)	(03)	
2-Ethoyy-3 4-Dihydro-2-Pyron	280	111	
C-H.:O	(143)	(44)	
2-Ethoxy Ethanol	(145)	See Ethylene Glyc	ol Monoethyl Ether
2-Ethoxy Ethanol 2-Ethoxyethyl Acetate	313	117	716
CH ₂ COOCH ₂ CH ₂ OC ₂ H ₅	(156)	(47)	(380)
(Ethyl Glycol Acetate)	(100)	()	(200)
3-Ethoxypropanal	275	100	
C ₂ H ₅ OC ₂ H ₄ CHO	(135)	(38)	
(3-Ethoxypropionaldehyde)			
1-Ethoxypropane		See Ethyl I	Propyl Ether.
3-Ethoxypropionaldehyde	275	100	1.
C ₂ H ₅ OCH ₂ CH ₂ CHO	(135)	(38)	
3-Ethoxypropionic Acid	426	225	
C ₂ H ₅ OCH ₂ CH ₂ COOH	(219)	(107)	
Ethoxytriglycol	492	275	
$C_2H_5O(C_2H_4O)_3H$	(256)	(135)	
(Triethylene Glycol, Ethyl Ether)			
Ethyl Abietale	662	352	
$C_{19}H_{29}COOC_2H_5$	(350)	(178)	
N-Ethylacetamide	401	230	
CH ₃ CONHC ₂ H ₅	(205)	(110)	
(Acetoethylamide)	100	10(
N-Etnyi Acetaniide	400	120	
$C\Pi_3 CON(C_2\Pi_5)(C_6\Pi_5)$	(204)	(32)	800
CH.COOC.H.	(77)	24 (_4)	000 (426)
(Acetic Ester)	(D)	(-4)	(420)
(Acetic Ether)			
(Ethyl Ethanoate)			
() Dululouto)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Ethyl Acetoacetate	356	135	563
C ₂ H ₅ CO ₂ CH ₂ COCH ₃	(180)	(57)	(295)
(Acetoacetic Acid, Ethyl Ester)			
(Ethyl 3-Oxobutanoate)			
Ethyl Acetyl Glycolate	-365	180	
CH ₃ COOCH ₂ COOC ₂ H ₅	(-185)	(82)	
(Ethyl Glycolate Acetate)			
Ethyl Acrylate	211	50	702
CH ₂ :CHCOOC ₂ H ₅	(99)	(10)	(372)
Ethyl Alcohol	173	55	685
C ₂ H ₅ OH	(78)	(13)	(363)
(Grain Alcohol, Ethanol)			
Ethylamine	62	<0	725
$C_2H_5NH_2$	(17)	(<-18)	(385)
70% aqueous solution			
(Aminoethane)			
Ethyl Amino Ethanol	322	160	
C ₂ H ₅ NHC ₂ H ₄ OH	(161)	(71)	
[2-(Ethylamino)ethanol]			
Ethylaniline	401	185	
$C_2H_5NH(C_6H_5)$	(205)	(85)	
Ethylbenzene	277	70	810
$C_2H_5C_6H_5$	(136)	(21)	(432)
(Ethylbenzol)			
(Phenylethane)			
Ethyl Benzoate	414	190	914
C ₆ H ₅ COOC ₂ H ₅	(212)	(88)	(490)
Ethylbenzol		See Ethylt	enzene.
Ethyl Bromide	100	None	952
C ₂ H ₅ Br	(38)		(511)
(Bromoethane)			
Ethyl Bromoacetate	318	118	
BrCH ₂ COOC ₂ H ₅	(159)	(48)	
2-Ethylbutanol		See 2-Ethylbut	tyraldehyde.
Ethyl Butanoate		See Ethyl I	Butyrate.
2-Ethyl-1-Butanol		See 2-Ethylbu	tyl Alcohol.
2-Ethyl-1-Butene	144	<-4	599
$(C_2H_5)_2C:CH_2$	(62)	(<-20)	(315)
3-(2-Ethylbutoxy) Propionic	392	280	
Acid	(200)	(138)	
CH ₃ CH ₂ CH(C ₂ H ₅)CH ₂ -OCH ₂ CH ₂ COOH	@100 mm		
2-Ethylbutyl Acetate	324	130	
$CH_3COOCH_2CH(C_2H_5)_2$	(162)	(54)	
2-Ethylbutyl Acrylate	180	125	
CH ₂ :CHCOOCH ₂ CH—	(82)	(52)	
$(C_2H_5)C_2H_5$	@10 mm		
2-Ethylbutyl Alcohol	301	135	
$(C_2H_5)_2$ CHCH ₂ OH	(149)	(57)	
(2-Ethyl-1-Butanol)		(oc)	
Ethylbutylamine	232	64	
CH ₃ CH ₂ CH ₂ CH ₂ —NHCH ₃ CH ₂	(111)	(18)	
Ethyl Butylcarbamate	275	See N-Butylur	ethane.
Ethyl Butyl Carbonate	275	122	
$(C_2H_5)(C_4H_9)CO_3$	(135)	(50)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Ethyl Dutyl Ethon	109	40	. ,
	198	40	
$C_2 \Pi_5 O C_4 \Pi_9$ (Dutul Ethul Ethur)	(92)	(4)	
(Butyl Euryl Eurol)	206	190	
	(107)	180	
$(C_2\Pi_5)_2C\Pi C\Pi_2OC_2\Pi_4O\Pi$	(197)	(82)	
[2-(2-Eurylbutoxy)chianol]	200	115	
	(149)	(46)	
(3 Hentanone)	(140)	(40)	
2-Fthyl-2-Butyl-1 3-Propanodiol	357	280	
HOCH-C(C-H-)(C-H_)-	(178)	(138)	
CH-OH	@50 mm	(150)	
2-Ethylbutyraldehyde	242	70	
(C-H-)-CHCHO	(117)	(21)	
(Diethyl Acetaldehyde)	(117)	(21)	
(2-Ethylbutanal)			
Ethyl Butyrate	248	75	865
CH ₂ CH ₂ CH ₂ COOC ₂ H ₅	(120)	(24)	(463)
(Butvric Acid, Ethyl Ester)	(1=0)	(= .)	(100)
(Butyric Ester)			
(Ethyl Butanoate)			
2-Ethylbutyric Acid	380	210	752
(C ₂ H ₅) ₂ CHCOOH	(193)	(99)	(400)
(Diethyl Acetic Acid)	(272)	()	()
2-Ethylcaproaldehyde		See 2-Eth	vlhexanal.
Ethyl Caproate	333	120	-,
C ₅ H ₁₁ COOC ₂ H ₅	(167)	(49)	
(Ethyl Hexoate)			
(Ethyl Hexanoate)			
Ethyl Caprylate	405-408	175	
CH ₃ (CH ₂) ₆ COOC ₂ H ₅	(207 - 209)	(79)	
(Ethyl Octoate)			
Ethyl Octanoate		See Diethy	l Carbonate.
Ethyl Chloride	54	-58	966
C ₂ H ₅ Cl	(12)	(-50)	(519)
(Chloroethane)			
(Hydrochloric Ether)			
(Muriatic Ether)			
Ethyl Chloroacetate	295	147	
CICH ₂ COOC ₂ H ₅	(146)	(64)	
Ethyl Chlorocarbonate		See Ethyl C	hloroformate.
Ethyl Chloroformate	201	61	932
ClCOOC ₂ H ₅	(94)	(16)	(500)
(Ethyl Chlorocarbonate)			
(Ethyl Chloromethanoate)			
Ethyl Chloromethanoate		See Ethyl C	hloroformate.
Ethyl Crotonate	282	36	
CH ₃ CH:CHCOOC ₂ H ₅	(139)	(2)	
Ethyl Cyanoacetate	401-408	230	
CH ₂ CNCOOC ₂ H ₅	(205–209)	(110)	
Ethylcyclobutane	160	<4	410
$C_2H_5C_4H_7$	(71)	(<-16)	(210)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Ethylcyclohexane	269	95	460
$C_2H_5C_6H_{11}$	(132)	(35)	(238)
N-Ethylcyclohexylamine		86	
$C_6H_{11}NHC_2H_5$		(30)	
Ethylcyclopentane	218	<70	500
$C_{2}H_{5}C_{5}H_{0}$	(103)	(<21)	(260)
Ethyl Decanoate	469	>212	~ /
$C_0H_{10}COOC_2H_5$	(243)	(>100)	
(Ethyl Caprate)			
N-Ethyldiethanolamine	487	280	
$C_{2}H_{2}N(C_{2}H_{2}OH)_{2}$	(253)	(138)	
Ethyl Dimethyl Methane	(200)	See Isopentar	ne
Fthylene	-155	See Isopeniui	842
H.C.CH.	(-104)		(450)
(Ethana)	(-10+)		(450)
(Ethelene)		See Chuel D	inantata
Ethylene Corbonate	251		lacetate.
CU CU CCO	351	290	
	(1//)	(143)	
Ethylene Chlorohydrin	@100 mm	See 2-Chloro	ethanol
Ethylene Cyanobydrin	445	265	culuiol.
CH ₂ (OH)CH ₂ CN	(229)	(129)	
(Hydracrylonitrile)	Decomposes	(12))	
Fthylonodiamine	241	104	725
	(116)	(40)	(285)
A pudrous 76%	(110)	(40)	(383)
Allydious 70%	(115, 122)	150	(66)
F4hadama Diablamida	(113-122)	57	(00)
	185	50 (12)	(112)
(1.2 Diablement and)	(84)	(13)	(415)
(1,2-Dichloroethone)			
2,2-Ethylenedioxydiethanol		See Triethyle	ne Glycol.
Ethylene Formate	207	See 1,2-Ethane	diol Diformate.
Ethylene Glycol	387	232	/48
HOC ₂ H ₄ OH	(197)	(111)	(398)
(1,2-Ethanediol)			
(Glycol)			
Ethylene Glycol n-Butyl Ether	340	150	
HOCH ₂ CH ₂ OC ₄ H ₉	(171)	(66)	
Ethylene Glycol Diacetate		See Glycol D	Diacetate.
Ethylene Glycol Dibutyl Ether	399	185	
$C_4H_9OC_2H_4OC_4H_9$	(204)	(85)	
Ethylene Glycol Diethyl Ether	251	95	406
C ₂ H ₅ OCH ₂ CH ₂ OC ₂ H ₅	(122)	(35)	
Ethylene Glycol Diformate		See 1,2-Ethai	nediol Diformate.
Ethylene Glycol Dimethyl	174	29	395
Ether	(79)	(-2)	(202)
CH ₃ O(CH ₂) ₂ OCH ₃	@630 mm		
(1,2-Dimethoxyethane)			
Ethylene Glycol Ethylbutyl	386	180	
Ether	(197)	(85)	
(C ₂ H ₅) ₂ CHCH ₂ OCH ₂ CH ₂ OH	. ,	. /	

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Ethelers Clearl Ethelberry	1(0)	220	1 (C)
Ethor	442	(110)	
	(228)	(110)	
Ethylong Clycol Isopropyl	280	02	
Ethyrene Grycol Isopropyi	(143)	(33)	
(CH.), CHOCH, CH.OH	(143)	(55)	
Ethylene Glycol Monoacetate	357	215	
CH.OHCH.OOCCH.	(181)	(102)	
(Glycol Monoacetate)	(101)	(102)	
Ethylene Glycol Monoacrylate	410	220	
CH. CHCOOC. H CH	(210)	(104)	
(2-Hydroxyethylacrylate)	(210)	(104)	
Ethylene Glycol	493	265	665
Monobenzyl Ether	(256)	(129)	(352)
C.H.CH.OCH.CH.OH	(250)	(12))	(332)
Ethylene Clycol Monobutyl	340	1/13	460
Ethyrche Olycol Wohobutyl	(171)	(62)	(238)
$C_{\rm H}O(CH_{\rm O})$	(1/1)	(02)	(238)
(2-Butoxyethanol)			
Ethylong Clycol Monobutyl	377	160	645
Ethor A cotato	(102)	(71)	(340)
	(192)	(71)	(540)
Ethylong Clycol Monoethyl	275	110	455
Ethylene Glycol Monoethyl Ethor	(135)	(43)	(235)
	(155)	(43)	(255)
(2 Ethewyothernal)			
(2-Euroxycthanol) Ethylong Clycol Monoethyl	313	124	715
Ethor A cotato	(156)	(52)	(370)
	(150)	(32)	(379)
(Cellosolve Acetate)			
Ethylene Clycol Monoisobutyl	316_323	136	540
Ethor	(158, 162)	(58)	(282)
(CH.), CHCH.OCH.CH.OH	(156-162)	(58)	(202)
Ethylene Clycol Monomethyl	255	102	545
Ethor	(124)	(30)	(285)
CHOCHICHIOH	(124)	(37)	(203)
(2-Methowyethanol)			
Ethylene Clycol Monomethyl	405	200	
Ether Acetal	(207)	(93)	
	(207)	(55)	
Ethylong Clycol Monomethyl	203	120	740
Ethylene Giycol Monomethyl Fther Acetate	(145)	(49)	(392)
	(143)	(49)	(392)
Ethylene Clycol Monomethyl	30/	155	
Ether Formal	(201)	(68)	
CH.(OCH.CH.OCH.)	(201)	(00)	
Ethylene Clycol Phenyl	173	260	
Ether	(245)	(127)	
C.H.OC.H.OH	(273)	(127)	
(2-Phenoxyethanol)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Ethylene Oxide 51 -20 1058 CH_OCH2 (11) with No Air (Dimethylene Oxide) (1.2-Epoyxethane) (0.1.2-Epoyxethane) (Oxirane) Ethyleninine 132 12 608 INICH2,CH2 (56) (-11) (320) (Azirane) Ethyleninine 322 160 CH,JOCH4 (161) (71) EthyleEthanote Sce Ethyl Acctate Sce Ethyl Acctate. 1800 (Diethyl Ether) 95 -49 356 C,H,OC,H4, (35) (-45) (180) (Diethyl Ether) (25) (180) (25) (Ethyl Oxide) EthyleThorde (-45) (180) C,H,F -36 (-1-Fluorodhane) (-38) Ethyl Formate 130 -4 851 HCO,C,H3 (54) (-20) (455) (Ethyl Hermate (ortho) 291 86 (C-H,O),CH (144) (30) (Triethyl Orthoformate) 122 375 CHJCA	Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
$ \begin{array}{c c c c c c c } \mbox{(11)} & \mbox{with No Air} \\ \hline \begin{tabular}{ c c c c c } \mbox{(12)} & \begin{tabular}{ c c c c } \mbox{with No Air} \\ \hline \begin{tabular}{ c c c c c } \mbox{with No Air} \\ \hline \begin{tabular}{ c c c c c c } \mbox{with No Air} \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ethylene Oxide	51	-20	1058
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CH ₂ OCH ₂	(11)		with No Air
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(Dimethylene Oxide)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(1 2-Epoxyethane)			
Ethyleminine 132 12 608 NHCH2GH2 (56) (-11) (320) (Azirdine) See Ethyl Acetate. (Azirdine) Ethyl Ethanoate See Ethyl Acetate. (Azirdine) N-Ethylethanolomine 322 160 C,H,3MC2H,OH (161) (71) Ethyl Ether 95 -49 356 C,H,4OC,H3 (35) (-45) (180) (Diethyl Oxide) (Ether) (Ethyl Ether) (Ethyl Ether) (Ethyl Toxide) (Ethyl Toxide) (Ethyl Formate) (-45) (IFUoroethane) (-38) Ethyl Formate 130 -4 851 HCO,C,H, (54) (-20) (455) (Ethyl Formate) (Ethyl Formate) (Ethyl Formate) (-54) (-21) (25) (Ethyl Formate (ortho) 291 86 (C,1+,0,CH) (44) (190) (14) (190) (14) (190) (2-EthylAcetate) See 2-EthylAcetate. 2-EthylAcetate. 2-EthylAcetate. 2-EthylAcetate. 2-EthylAcetata	(Oxirane)			
NHCH_CT12 (56) (-11) (320) (Aziridine) See Ethyl Acetate. Nethylethanolomine 322 160 CyH_NCH_QOH (161) (71) Ethyl Ether 95 -49 356 CyH_NCH_QOH (161) (71) (180) (180) (Diethyl Ether) (Diethyl Oxide) Ethyl Ether (Ether) (Ether) (Ether) (Ethyl Fluoride See 1,2-Butanediol. Ethyl Ether CJAJF -36 (1-Fluoroethane) (-45) (455) (I-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO_C,H, (30) (455) (Ethyl Gyloci Acetate. See 2-Ethoxyethyl Acetate. Ethyl Formate 130 -4 851 (C,H,J_O),CH (144) (30) (71) (455) (Ethyl Orthoformate) Ethyl Formate forthop) 291 86 See 2-Ethoxyethyl Acetate. 262 264,CH,C,H_O,CH (24,CH,C,H_O,CH,C,H_O,CH,C,H_O,CH,C,H_O,CH,C,H_O,CH,C,H_O,CH,C,H,C,CH,CH,C,H,C,CH,CH,CH,CH,CH,CH,	Ethylenimine	132	12	608
Image: Sec Ethyl Ethanoate Sec Ethyl Acetate. N-Ethylethanolomine 322 160 C.H,NRC,H_QOH (161) (71) Ethyl Ether 95 -49 356 C.H,NRC,H_QOH (161) (71) (180) (Diethyl Ether) (180) (180) (180) (Diethyl Ether) (Ethyl Functor) (180) (180) (Ethyl Oxide) Ethyl Florende Sec 1.2-Butanediol. Ethyl Florende C.H,SPC,Z.H, (54) (-20) (455) (Ethyl Formate 130 -4 851 HCO ₂ C,H, (54) (-20) (455) (Ethyl Formate (ortho) 291 86 (C ₂ H ₂ O ₃ C) (171) (Formic Acid, Ethyl Ester) Ethyl Formate (ortho) 291 86 (C ₂ H ₂ O ₃ C) (144) (30) C/Triebuly Orthoformate) Ethyl Formate (ortho) 291 86 Sec 2-Ethylxeanol. 2 Ethyl Formate (ortho) 291 86 Sec 2-Ethylxeanol. 375 C,H ₄ C,H ₁ C,H ₄ C,H ₄ C)	NHCH ₂ CH ₂	(56)	(-11)	(320)
(Azardane) See Ethyl Acetate. N-Ethylethanoate See Ethyl Acetate. N-Ethylethanoate 322 160 (71) Ethyl Ether 95 -49 356 $C_3H_0C_2H_5$ (35) (-45) (180) (Diethyl Ether) (180) (180) (180) (Ether) (Ether) See 1,2-Butanediol. Ethyl Ethylethylene Glycol See 1,2-Butanediol. Ethyl Ethylethene Glycol See 1,2-Butanediol. Ethylethylene Glycol See 1,2-Butanediol. Ethyl Formate 130 -4 851 HCO ₂ C, H ₅ (54) (-20) (455) (Ethyl Formate (ortho) 291 86 See 2-Ethylethyl Acetate. Ethyl Formate (ortho) 291 86 See 2-Ethylethyl Acetate. 2-Ethylexaldehyde See 2-Ethylexanal. 215 2-Ethylexanal 325 112 375 2-Ethylexanal 325 112 375 2-Ethylexanol 472 260 680 C_4H_4CH(C,H_4)CH (140) (190) (190) (Butylethylacelaldehyde)			()	(/
Entyl Enthanolomine 322 160 C_H,NHC_H,QOH (161) (71) Ethyl Ether 95 -49 356 C_H,NHC_H,QOH (161) (71) Ethyl Ether 95 -49 356 C_H,QCH,S (180) (Diethyl Oxide) (Ether) (Ethyl Oxide) Ethyl Fluoride C_H,J,F -36 (1-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO,C,H,S (54) (-20) (455) (Ethyl Methanoate) (Formic Acid, Ethyl Ester) Ethyl Formate 0 291 86 (C ₂ H,Q),COH (144) (30) (Triethyl Orthoformate) Ethyl Formate 325 112 375 Ethyl Formate 325 112 375 C_H,CHC,H,QCHO (163) (44) (190) (Burylethylacelaldehyde) (2-Ethylhexanal 359 164 444 245 700 C_H,CHC(H,QCHO) (182) (73) (231) (2-Ethylhexanoic Acid) 2-Ethylhexanoic Acid 440 245 700 C_H,CHC(H,QCH,OH (182) (73) (231) (2-Ethylhexanoic Acid) 2-Ethylhexanoic Acid 440 245 700 C_H,CHC(H,QCH,OH (182) (73) (231) (2-Ethylhexanoic Acid) 2-Ethylhexanoic Acid 440 245 700 C_H,CHC(H,QCH,OH (182) (73) (231) (2-Ethylhexanoic Acid) 2-Ethylhexanoic Acid 359 164 448 C_H,CHC(H,Q,CH,OH (182) (73) (231) (2-Ethylhexanoic Acid 55 CH,CHOCH,CHC,H,CH,Q,H, (199) (71) (268) (Oxtyl Acetate) 2-Ethylhexanoic Acid 515 CH,COOCH,CHC,H,C,H,Q,CH, (199) (71) (268) (Oxtyl Acetate) 2-Ethylhexanoic Acid 515 CH,CHOCH,CHC,H,-C,H,Q,CH, (227) (180) 485 CH:CHOCOCH,CHC,H,-C,H,Q,CH, (252) (252) (C,H,Q,CH, (24, (24, (252))) (C,H,Q,CH, (254)) (C,H,Q,CH, (254)) (C,H,Q,CH, (254)) (C,H,Q,CH, (254)) (C,H,Q,CH, (254)) (C,H,Q,CH, (2	(Aziridine)		0 54 14	
N-EuryNethanoonnine 522 100 CH4,NHC,HQ,DH (161) (71) Ethyl Ether 95 -49 356 C,H,QC,H_5 (35) (-45) (180) (Diethyl Dxide) (Ethyl Oxide) (Ethyl Cycle (Ethyl Cycle (Ethyl Fuoride See 1,2-Butanediol. (Ethyl Fuoride) (24,5) C,H,SP,C,H_5 -36 (1-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO,C,H_5 (54) (-20) (455) (Ethyl Methanoate) (Formic Acid, Ethyl Ester) Ethyl Formate (ortho) 291 86 (C,H,O),CH (144) (30) (Triethyl Oxthoformate) Ethyl Gycol Acetate See 2-Ethylylexanal. 2-Ethyl Ioxandehyde See 2-Ethylexanal. 375 (24,CH(C,H_3),CHO (163) (44) (190) (Butylethylacelaldehyde) (22F) (27) (118) (371) (24) (2-Ethyl Hexanotic Acid) 440 245 700 (24,5) 700 (24,5) 700	Etnyi Etnanoate	222	See Etnyl Acet	ate.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		322	100	
Ehly Funct 9, 3 -49 5, 50 (Diethyl Ether) (Diethyl Oxide) (Ether) (Ethyl Oxide) Ethylethylene Glycol See 1,2-Butanediol. Ethyl Fornate C ₂ H ₃ F -36 (1-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO ₃ C ₂ H ₃ (54) (-20) (455) (Ethyl Methanoate) (Formic Acid, Ethyl Ester) Ethyl Formate (ortho) 291 86 (C ₃ H ₃ O ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Formate (ortho) 291 86 (C ₃ H ₃ O ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Formate (ortho) 291 86 (C ₃ H ₃ O ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Formate (ortho) 291 86 (C ₃ H ₃ O ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Formate (ortho) 291 86 (C ₃ H ₃ O ₃ CH (144) (30) (Triethyl Porthadehyde See 2-Ethylhexanal. 2-Ethylhexaldehyde See 2-Ethylhexanal. 2-Ethylhexandl 325 112 375 C ₄ H ₃ CH(C ₂ H ₃)CHO (163) (44) (190) (Butylethylacelaldehyde) (2-Ethylhexandiol 472 260 680 C ₄ H ₃ CH(OH)CH(C ₁ H ₃)CH ₂ OH (244) (127) (360) 2-Ethylhexanoid 440 245 700 C ₄ H ₃ CH(O ₂ H ₃)CCOH (227) (118) (371) (2-Ethylhexanoid 359 164 448 C ₄ H ₂ CH(C ₃ H ₃)COOH (182) (73) (231) (2-Ethylhexanoid 359 164 448 C ₄ H ₂ CH(C ₃ H ₃)CH ₂ OH (182) (73) (231) (2-Ethylhexanoi Acid 359 164 448 C ₄ H ₂ CH(C ₃ H ₃)CH ₂ OH (182) (73) (231) (2-Ethylhexanoi Acid See 2-Ethyl-3-Propylacrolein. 2-Ethylhexanoi Acid See 2-Ethyl-3-Propylacrolein. 2-Ethylhexanoi Acid See 2-Ethyl-3-Propylacrolein. 2-Ethylhexanoi Acid See 2-Ethylhexanoic Acid. 2-Ethylhexanoi Acid See 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₄ COOCH ₂ CH(2-H ₄) (199) (71) (268) C(2-H ₄)(H ₄) (950 mm)	$C_2 n_5 N n C_2 n_4 O n_5$	(101)	(71)	256
Carts OC-2rts (35) (-4-3) (160) (Diethyl Ether) (160) (160) (Diethyl Oxide) (Ethyl Oxide) (Ethyl Oxide) Ethyl Fluoride Sce 1,2-Butanediol. (160) CyH ₂ F -36 (1-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO ₂ CyH ₅ (54) (-20) (455) (Ethyl Methanoate) (-20) (455) (Ethyl Formate (ortho) 291 86 (CyH ₂ G)CH (144) (30) (Triethyl Acetate. Sce 2-Ethylexanal. Sce 2-Ethylexanal. 2-Ethyl Example Sce 2-Ethylexanal. Sce 2-Ethylexanal. Sce 2-Ethylexanal. 246(14) (Butylethylacelaldehyde) (2-Ethylexanal. Sce 2-Ethylexanal. 246(14) (190) (2-Ethylexanoid Acid 472 260 680 26(14) (190) (2-Ethylexanoid Acid 440 245 700 24(14) (127) (360) 2-Ethylexanoid Acid 440 245 700 24(14) 231) 224(14) 231) 224(14) 231) 224(14)		95	-49	330
	$C_2\Pi_5 O C_2\Pi_5$ (Diothyd Ethor)	(55)	(-43)	(180)
	(Diethyl Oxida)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Ether)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(Ethel) (Ethyl Oxide)			
Lity Function de -36 C_2H_3F -36 $(1-Fluoroethane)$ (-38) Ethyl Formate 130 -4 851 HCO ₂ C ₂ H ₃ (54) (-20) (455) (Ethyl Methanoate) (Formic Acid, Ethyl Ester) (455) (455) Ethyl Formate (ortho) 291 86 (C ₂ H ₃ O ₃ CH) (144) (30) (Tricthyl Orthoformate) Ethyl Gycol Acetate See 2-Ethylhexanal. 2 2 2-Ethylhexaldehyde See 2-Ethylhexanal. 375 (44) (190) (Butylethylacelaldehyde) (2-Ethyl-Hylcaproaldehyde) (2-Ethylhexandiol 472 260 680 C ₃ H ₂ CH(C ₂ H ₃)CH ₂ OH (244) (127) (360) 2 375 2-Ethylhexandiol 472 260 680 680 6 64 448 6 371) (2= 371) (2= 371) (2= 371) (2= (118) (371) (2= 371) (2= 371) (2= 371) (2= 371) (2= 371) (2= (118) (371)	Ethylethylene Glycol		See 1.2-Butane	diol
Cylk,F -36 (1-Fluoroethane) (-38) Ethyl Formate 130 -4 851 HCO ₂ C ₂ H ₅ (54) (-20) (455) (Ehyl Methanoate) (Formic Acid, Ethyl Ester) Ethyl Formate (ortho) 291 86 (C ₂ H ₅ O) ₅ CH (144) (30) (Triethyl Orthoformate) Ethyl Glycol Acetate See 2-Ethoxyethyl Acetate. 2-Ethylhexanal. 2-Ethylhexaldehyde See 2-Ethylhexanal. 2-Ethylhexanal. 2-Ethylhexaldehyde) (163) (44) (190) (Butylethylacelaldehyde) 2-Ethylhexanediol 472 260 680 C ₃ H ₇ CH(O ₁ H ₃)CH ₂ OH (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 C ₄ H ₂ CH(C ₂ H ₃)CH ₂ OH (227) (118) (371) (2-Ethylhexanoi 359 164 448 C ₄ H ₂ CH(C ₂ H ₃)CH ₂ OH (182) (73) (231) (2-Ethylhexanoi 2(31) (2-Ethylhexoic Acid) 2-Ethylhexio Acid 359 164 448 (2,4,C)(C,H ₃)CH ₂ OH (182) (73) (231) (24) (25	Ethyl Fluoride		See 1,2 Dutain	
1-Fluoreethane) (-38) Ethyl Formate 130 -4 851 HCO ₂ C ₂ H ₅ (54) (-20) (455) (Ethyl Methanoate) (Formic Acid, Ethyl Ester) (730) (455) Ethyl Formate (ortho) 291 86 (C ₂ H ₃ O ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Glycol Acetate See 2-Ethoxyethyl Acetate. See 2-Ethylkexanal. 2-Ethylhexandehyde See 2-Ethylkexanal. 21 375 C ₄ H ₂ CH(C ₂ H ₃)CHO (163) (44) (190) (Butylethylacelaldehyde) 2-Ethylhexandehyde 2-Ethylhexandehyde) (2-Ethylhexandehyde) 2-Ethyl-13-Hexanediol 472 260 680 C ₃ H ₂ CH(OH)CH(C ₂ H ₃)CH ₂ OH (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 C ₄ H ₂ CH(C ₂ H ₃)CH ₂ OH (227) (118) (371) (2-Ethylhexoic Acid) 371 (2-Ethylhexoic Acid) 371 (2-Ethylhexoic Acid) 359 164 448 C ₄ H ₂ CH(C ₂ H ₃)CH ₂ OH (182) (73) (231) (231) (241) (241) (241) (241) <td>C₂H_cF</td> <td>-36</td> <td></td> <td></td>	C ₂ H _c F	-36		
Ethyl Formate 130 -4 851 HCO ₂ C ₂ H ₃ (54) (-20) (455) (Ehyl Methanoate) (Formic Acid, Ethyl Ester) (455) (455) Ethyl Formate (ortho) 291 86 (C ₂ H ₃ O) ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Formate (ortho) 291 86 See 2-Ethylhexate. See 2-Ethylhexate. 2-Ethylhexaldehyde See 2-Ethylhexanal. See 2-Ethylhexanal. See 2-Ethylhexanal. 24 2-Ethylacproaldehyde) (2-Ethylacproaldehyde) (44) (190) (190) (Buylethylacelaldehyde) (2-Ethylhexanoic Acid 440 245 700 (2-Ethylhexanoic Acid 440 245 700 24 24 700 24 24 701 236 231) 24 231) 24 24 231) 24 24 700 24 24 700 24 24 700 24 24 700 24 24 21 21 21 21 21 21 21 21 21 21 21 21 21 </td <td>(1-Fluoroethane)</td> <td>(-38)</td> <td></td> <td></td>	(1-Fluoroethane)	(-38)		
$\begin{array}{ccccc} HCO_2C_2H_5 & (54) & (-20) & (455) \\ (Ethyl Methanoate) & (Formic Acid, Ethyl Ester) & & & & & & \\ \hline \end{tabular}$	Ethyl Formate	130	-4	851
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HCO ₂ C ₂ H ₅	(54)	(-20)	(455)
(Formic Acid, Ethyl Ester) 291 86 Ethyl Formate (ortho) 291 86 (C,H ₄ O) ₃ CH (144) (30) (Triethyl Orthoformate) Ethyl Gycol Acetate See 2-Ethylyhexanal. 2-Ethylhexaldehyde See 2-Ethylhexanal. 375 2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (163) (44) (190) (Butylethylacelaldehyde) (2-Ethylcaproaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) 2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) 2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (360) 2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (2-Ethylhexaldehyde) (371) (2-Ethylhexanol 359 164 448 C_4H_9CH(C_2H_5)CH_2OH (182) (73) (231) (2-Ethylhexanol 359 164 448 C_4H_9CH(C_2H_5)CH_2OH (182) (7	(Ethyl Methanoate)			
Ethyl Formate (ortho) 291 86 $(C_2H_5O)_3CH$ (144) (30) (Triethyl Orthoformate) Ethyl Glycol Acetate See 2-Ethoxyethyl Acetate. 2-Ethylhexaldehyde See 2-Ethylhexanal. 325 2-Ethylhexanal 325 112 375 C_4H_9CH(C_2H_3)CHO (163) (44) (190) (Butylethylacelaldehyde) (2-Ethylhexandehyde) 2 2 (2-Ethylhexadehyde) 2 2 680 680 C_3H_7CH(OH)CH(C_2H_3)CH_2OH (244) (127) (360) 2-Ethylhexandeiol 472 260 680 C_3H_7CH(OH)CH(C_2H_3)CH_2OH (227) (118) (371) (2-Ethylhexanoic Acid 440 245 700 C_4H_9CH(C_3H_3)COH (227) (118) (371) (2-Ethylhexanoi 359 164 448 C_4H_9CH(C_3H_3)CH_2OH (182) (73) (231) (2-Ethylhexanoi See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid 2-Ethylhexanol 359 164 448 C_4H_9CH(C_3H_3)CH_2OH (182)	(Formic Acid, Ethyl Ester)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ethyl Formate (ortho)	291	86	
(Triethyl Orthoformate) See 2-Ethoxyethyl Acetate. Ethyl Glycol Acetate See 2-Ethoxyethyl Acetate. 2-Ethylhexanal 325 2-Ethylhexanal 325 112 375 C ₄ H ₉ CH(C ₂ H ₃)CHO (163) (44) (Butylethylacelaldehyde) (2-Ethyl-1,3-Hexanediol 472 260 680 C ₃ H ₇ CH(OH)CH(C ₂ H ₃)CH ₂ OH (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 C ₄ H ₉ CH(C ₂ H ₃)COH (227) (118) (371) (2-Ethyl hexoic Acid) 2 2 (73) (231) (2-Ethylhexanol 359 164 448 C ₄ H ₉ CH(C ₂ H ₃)CH ₂ OH (182) (73) (231) (2-Ethylhexanol 359 164 448 C ₄ H ₉ CH(C ₂ H ₃)CH ₂ OH (182) (73) (231) (2-Ethylhexenyl See 2-Ethyl-1-3-Propylacrolein. See 2-Ethyl-1-3-Propylacrolein. 2-Ethylhexenyl See 2-Ethyl-1-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexeit Acetate 390 160 515 CH ₃ COOCH ₂	$(C_2H_5O)_3CH$	(144)	(30)	
Ethyl Glycol Acetate See 2-Ethoxyethyl Acetate. 2-Ethylhexaldehyde See 2-Ethylhexanal. 2-Ethylhexanal 325 112 375 $C_4H_9CH(C_2H_3)CHO$ (163) (Butylethylacelaldehyde) (2-Ethyl-aproaldehyde) (2-Ethyl-aproaldehyde) (2-Ethyl-aproaldehyde) (2-Ethyl-1,3-Hexanediol 472 260 680 $C_3H_7CH(OH)CH(C_2H_5)CH_2OH$ (244) (127) (360) 2-Ethyl-1,3-Hexanediol 440 245 700 $C_4H_9CH(C_2H_5)COH$ (227) (118) (371) (2-Ethyl-Hexoic Acid) 2-Ethyl-approalebyle 2-Ethyl-approalebyle 2-Ethyl-approalebyle 2-Ethyl-Bexanol 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexyl Alcohol) (0ctyl Alcohol) See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexenyl Acetate 390 160 515 515 CH_3COOCH_2CH(C_2H_5)CA_4H_9 (199) (71) (26	(Triethyl Orthoformate)			
2-Ethylhexaldehyde See 2-Ethylhexanal. 2-Ethylhexanal 325 112 375 $C_4H_9CH(C_2H_5)CHO$ (163) (44) (190) (Butylethylacelaldehyde) (2-Ethyl-1,3-Hexanediol 472 260 680 $C_3H_7CH(OH)CH(C_2H_5)CH_2OH$ (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 $C_4H_9CH(C_2H_5)COH$ (227) (118) (371) (2-Ethylhexanoi 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexanol 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexanol 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexyl Alcohol) See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoi Acid. 2-Ethylhexyl Acetate 390 160 515 CH_3COOCH_2CH(C_2H_5)C_4H_9 (199) (71) (268) (Octyl Acetate) 2 2 2 2-Ethylhexyl Acrylate <td>Ethyl Glycol Acetate</td> <td></td> <td>See 2-Ethoxye</td> <td>thyl Acetate.</td>	Ethyl Glycol Acetate		See 2-Ethoxye	thyl Acetate.
2-Ethylhexanal 325 112 375 $C_4H_9CH(C_2H_3)CHO$ (163) (44) (190) (Butylethylacelaldehyde) (2-Ethylcaproaldehyde) (2-Ethyl-1,3-Hexanediol 472 260 680 $C_3H_7CH(OH)CH(C_2H_3)CH_2OH$ (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 $C_4H_9CH(C_2H_5)COPH$ (227) (118) (371) (2-Ethyl Hexoic Acid) 2-Ethylhexanoic Acid 245 700 $2+Ethylhexanoi$ 359 164 448 (24, - Q, -	2-Ethylhexaldehyde		See 2-Ethy	lhexanal.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Ethylhexanal	325	112	375
$\begin{array}{c c c c c c } (Butylethylacelaldehyde) \\ (2-Ethylcaproaldehyde) \\ (2-Ethyl-1,3-Hexanediol 472 260 680 \\ C_3H_7CH(OH)CH(C_2H_3)CH_2OH (244) (127) (360) \\ 2-Ethylhexanoic Acid 440 245 700 \\ C_4H_9CH(C_2H_3)COOH (227) (118) (371) \\ (2-Ethyl Hexoic Acid) \\ 2-Ethyl Hexoic Acid \\ 2-Ethylhexanol 359 164 448 \\ C_4H_9CH(C_2H_5)CH_2OH (182) (73) (231) \\ (2-Ethylhexyl Alcohol) \\ (Octyl Alcohol) \\ (Octyl Alcohol) \\ 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. \\ 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. \\ 2-Ethylhexoic Acid See 2-Ethylhexanoic Acid \\ 2-Ethylhexoic Acid See 2-Ethylhexanoic Acid \\ 2-Ethylhexyl Alcohol \\ (Octyl Alcohol) \\ 2-Ethylhexyl Acetate 390 160 515 \\ CH_3COOCH_2CH(C_2H_5)C_4H_9 (199) (71) (268) \\ (Octyl Acetate) \\ 2-Ethylhexyl Acrylate 266 180 485 \\ CH:CHCOOCH_2CH- (130) (82) (252) \\ (C_2H_5)C_4H_9 @50 mm \\ \end{array}$	$C_4H_9CH(C_2H_5)CHO$	(163)	(44)	(190)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(Butylethylacelaldehyde)			
$\begin{array}{c c c c c c } (2-Ethylhexaldehyde) & 472 & 260 & 680 \\ C_3H_7CH(OH)CH(C_2H_5)CH_2OH & (244) & (127) & (360) \\ \textbf{2-Ethylhexanoic Acid} & 440 & 245 & 700 \\ C_4H_9CH(C_2H_5)COOH & (227) & (118) & (371) \\ (2-Ethyl Hexoic Acid) & & & & & \\ \hline & & & & & & \\ \textbf{2-Ethylhexanol} & 359 & 164 & 448 \\ C_4H_9CH(C_2H_5)CH_2OH & (182) & (73) & (231) \\ (2-Ethylhexyl Alcohol) & & & & \\ (Octyl Alcohol) & & & & \\ \textbf{2-Ethylhexenyl} & & & & \\ \textbf{2-Ethylhexenyl} & & & & \\ \textbf{2-Ethylhexyl Acctate} & & 390 & 160 & 515 \\ CH_3COOCH_2CH(C_2H_5)C_4H_9 & (199) & (71) & (268) \\ (Octyl Acctate) & & & \\ \textbf{2-Ethylhexyl Acctate} & & \\ \textbf{2-Ethylhexyl Acctate} & & & \\ \textbf{300} & & & & \\ \textbf{300} & & & \\ \textbf{300} & & \\ 3$	(2-Ethylcaproaldehyde)			
2-Ethyl-1,3-Hexanediol 472 260 680 $C_3H_7CH(OH)CH(C_2H_5)CH_2OH$ (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 $C_4H_9CH(C_2H_5)COOH$ (227) (118) (371) (2-Ethyl Hexoic Acid) 2-Ethylhexanol 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexanol) (227) (231) (231) (2-Ethylhexyl Alcohol) (0ctyl Alcohol) 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexenyl 2-Ethylhexenyl See 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH_3COOCH_2CH(C_2H_5)C_4H_9 (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH_2CH— (130) (82) (252) (252) (C_2H_5)C_4H_9 @50 mm 250 mm 250 mm 250 mm	(2-Ethylhexaldehyde)			
$C_3H_7CH(OH)CH(C_2H_5)CH_2OH$ (244) (127) (360) 2-Ethylhexanoic Acid 440 245 700 $C_4H_9CH(C_2H_5)COOH$ (227) (118) (371) (2-Ethyl Hexoic Acid) 2-Ethylhexanol 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexanol) (227) (231) (231) (2-Ethylhexyl Alcohol) (0ctyl Alcohol) 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexenyl See 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (252) (C ₂ H ₃)C ₄ H ₉ @50 mm 90 mm 100 100 100 100 100 100 100 100 100 100 100 100 100 1	2-Ethyl-1,3-Hexanediol	472	260	680
2-Ethylhexanoic Acid 440 245 700 $C_4H_9CH(C_2H_5)COOH$ (227) (118) (371) (2-Ethyl Hexoic Acid) 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexyl Alcohol) (0ctyl Alcohol) (252) (73) (231) (2-Ethylhexyl Alcohol) 5ee 2-Ethyl-3-Propylacrolein. 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (252) (C ₂ H ₃)C ₄ H ₉ @50 mm 90 mm 100	$C_3H_7CH(OH)CH(C_2H_5)CH_2OH$	(244)	(127)	(360)
$C_4H_9CH(C_2H_5)COOH$ (227) (118) (371) (2-Ethyl Hexoic Acid) 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexanol) (73) (231) (2-Ethylhexyl Alcohol) (0ctyl Alcohol) 2 (Octyl Alcohol) 2 5ee 2-Ethyl-3-Propylacrolein. 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2 2 2 2 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (C ₂ H ₃)C ₄ H ₉ $@$ 50 mm 50 mm 50 mm	2-Ethylhexanoic Acid	440	245	700
(2-Ethyl Hexoic Acid) 359 164 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexyl Alcohol) (73) (231) (Octyl Alcohol) 2-Ethylhexyl Alcohol) (Octyl Alcohol) See 2-Ethyl-3-Propylacrolein. 2-Ethylhexenyl See 2-Ethylh-3-Propylacrolein. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (252) (C ₂ H ₃)C ₄ H ₉ @50 mm 160 160 160	$C_4H_9CH(C_2H_5)COOH$	(227)	(118)	(371)
2-Ethylnexanol 359 104 448 $C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (231) (2-Ethylhexyl Alcohol) (Octyl Alcohol) 2 (Octyl Alcohol) See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2 2 2 2-Ethylhexyl Acetate 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (C ₂ H ₃)C ₄ H ₉ $@$ 50 mm 50 mm 50 mm	(2-Ethyl Hexoic Acid)	250	164	449
$C_4H_9CH(C_2H_5)CH_2OH$ (182) (73) (251) (2-Ethylhexyl Alcohol) (Octyl Alcohol) 2-Ethylhexenyl See 2-Ethyl-3-Propylacrolein. 2-Ethylhexoic Acid See 2-Ethyl-3-Propylacrolein. See 2-Ethylhexanoic Acid. 2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (C ₂ H ₅)C ₄ H ₉ $@$ 50 mm 50 mm 50 mm	2-Etnyinexanoi	359	164	448
$\begin{array}{c c} (2-Entylnexyl Alcohol) \\ (Octyl Alcohol) \\ \textbf{2-Ethylhexenyl} & See 2-Ethyl-3-Propylacrolein. \\ \textbf{2-Ethylhexoic Acid} & See 2-Ethylhexanoic Acid. \\ \textbf{2-Ethylhexyl Acetate} & 390 & 160 & 515 \\ CH_3COOCH_2CH(C_2H_5)C_4H_9 & (199) & (71) & (268) \\ (Octyl Acetate) & & & \\ \textbf{2-Ethylhexyl Acrylate} & 266 & 180 & 485 \\ CH:CHCOOCH_2CH- & (130) & (82) & (252) \\ (C_2H_5)C_4H_9 & @50 \text{ mm} \end{array}$	$C_4H_9CH(C_2H_5)CH_2OH$	(182)	(73)	(231)
$\begin{array}{cccc} (Ceyl Arcolor) & See 2-Ethyl-3-Propylacrolein. \\ \textbf{2-Ethylhexoic Acid} & See 2-Ethyl-3-Propylacrolein. \\ \textbf{2-Ethylhexoic Acid} & See 2-Ethylhexanoic Acid. \\ \textbf{2-Ethylhexyl Acetate} & 390 & 160 & 515 \\ CH_3COOCH_2CH(C_2H_5)C_4H_9 & (199) & (71) & (268) \\ (Octyl Acetate) & & & & \\ \textbf{2-Ethylhexyl Acrylate} & 266 & 180 & 485 \\ CH:CHCOOCH_2CH- & (130) & (82) & (252) \\ (C_2H_5)C_4H_9 & @50 \text{ mm} \end{array}$	(2-Ethylnexyl Alcohol)			
2-Ethylhexold Acid See 2-Ethylhexold Acid. 2-Ethylhexold Acid See 2-Ethylhexold Acid. 2-Ethylhexold Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (C ₂ H ₃)C ₄ H ₉ $@$ 50 mm $@$ 50 mm	(Octyl Alcohol)		See 2 Ethyl 2	Dronvlaaralain
2-Ethylhexyl Acetate 390 160 515 CH ₃ COOCH ₂ CH(C ₂ H ₃)C ₄ H ₉ (199) (71) (268) (Octyl Acetate) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH— (130) (82) (252) (C ₂ H ₃)C ₄ H ₉ @50 mm 160 160	2-Ethylhoxoic Acid		See 2-Euryr-3-	Propylaciolem.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Ethylhevyl Acetata	390	160	515
(Octyl Acetate) (17) (200) 2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH_2CH— (130) (82) (252) $(C_2H_5)C_4H_9$ @50 mm (252) (252)	CH_COOCH_CH(C_H_)C_H_	(199)	(71)	(268)
2-Ethylhexyl Acrylate 266 180 485 CH:CHCOOCH ₂ CH- (130) (82) (252) (C ₂ H ₅)C ₄ H ₉ @50 mm (252)	(Octvl Acetate)	(177)	(71)	(200)
CH:CHCOOCH ₂ CH- (130) (82) (252) $(C_2H_5)C_4H_9$ @50 mm	2-Ethylhexyl Acrylate	266	180	485
$(C_2H_5)C_4H_9$ (62) (232)	CH:CHCOOCH ₂ CH—	(130)	(82)	(2.52)
	$(C_2H_5)C_4H_9$	@50 mm	()	()

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
2-Ethylheyylamine	337	140	
C ₁ H ₂ CH(C ₂ H ₂)CH ₂ NH ₂	(169)	(60)	
N-2-(Ethylhexyl) Anlline	379	325	
C.H.NHCH.CH(C.H.)C.H.	(193)	(163)	
egns (nenzen (ezns)eang	@50 mm	(103)	
2-Ethylhexyl Chloride	343	140	
C.H.CH(C.H.)CH_Cl	(173)	(60)	
N-(2-Ethylhexyl)cyclohexylamine	342	265	
C ₂ H ₁ NHICH ₂ CH—	(172)	(129)	
$(C_2H_5)C_4H_0$	@50 mm	(12))	
2-Ethylhexyl Ether	517	235	
$[C_4H_0CH(C_2H_2)CH_2]_2O$	(269)	(113)	
1.1-Ethylidene Dichloride	135-138	2	
CH ₂ CHCl ₂	(57-59)	(-17)	
(1.1-Dichloroethane)	(0. 07)	()	
1.2-Ethylidene Dichloride	183	55	824
CICH ₂ CH ₂ Cl	(84)	(13)	(440)
Ethyl Isobutyrate	230	<70	()
(CH ₂) ₂ CHCOOC ₂ H ₅	(110)	(<21)	
2-Ethylisohexanol	343-358	158	600
(CH ₂) ₂ CHCH ₂ CH(C ₂ H ₅)CH ₂ OH	(173 - 181)	(70)	(316)
(2-Ethyl Isohexyl Alcohol)	(110 101)	()	(***)
(2-Ethyl-4-Methyl Pentanol)			
Ethyl Lactate	309	115	752
CH ₂ CHOHCOOC ₂ H ₅	(154)	(46)	(400)
Tech.	(10.1)	131	()
		(55)	
Ethyl Malonate		See Diethyl M	alonate.
Ethyl Mercaptan	9	<0	572
C ₂ H ₅ SH	(35)	(<-18)	(300)
(Ethanethiol)	()	(• •••)	(••••)
(Ethyl Sulfhydrate)			
Ethyl Methacrylate	239-248	68	
CH ₂ :C(CH ₂)COOC ₂ H ₅	(115-120)	(20)	
(Ethyl Methyl Acrylate)	((==)	
Ethyl Methanoate		See Ethyl Forr	nate.
Ethyl Methyl Acrylate		See Ethyl Met	hacrylate.
Ethyl Methyl Ether		See Methyl Et	hvl Ether.
7-Ethyl-2-Methyl-4-	507	285	
Hendecanol	(264)	(141)	
$C_4H_0CH(C_2H_5)C_2H_4$ -	()	()	
$CHOHCH_2CH(CH_3)_2$			
Ethyl Methyl Ketone		See Methyl Et	hvl Ketone
4-Ethylmorpholine	280	90	
CH ₂ CH ₂ OC ₂ H ₄ NCH ₂ CH ₃	(138)	(32)	
1-Ethylnaphthalene	496		896
C10H2C2H5	(258)		(480)
Ethyl Nitrate	190	50	(100)
CH ₂ CH ₂ ONO ₂	(88)	(10)	
(Nitric Ether)	(00)	(10)	
Ethyl Nitrite	63	_31	10/
C _o H _c ONO	(17)	(-35)	(90)
(Nitrous Ether)	(**)	(55)	(50)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40	Boiling Points, Fla	ash Points, and Ignition	Temperatures of Organic	Compounds (Continued)
		,		

Compound ${}^{\circ}F({}^{\circ}C)$ ${}^{\circ}F({}^{\circ}C)$	Ignition point, °F (°C)
3. Ethylactona 333	116
$C_{\rm cH_{2}}C_{\rm eH_{2}}C_{\rm eH_{2}}$	(230)
4.Fthyloctane 328	(230)
$C_{\rm H}C_{\rm H}C_{\rm H}C_{\rm H} = (164)$	(229)
Ethyl Oxalate 367 168	(22))
(COOC.H.), (186) (76)	
(Oxalic Ether) (100) (100)	
(Diethyl Oxalate)	
Fthyl Oxide See Ethyl Ether	
n-Ethylphenol 426 219	
HOC.H.C.H. (219) (104)	
Fibel Phenylacetate 520 210	
C.H.CH.COOC.H. (276) (99)	
Fthyl Phenyl Ether (270)	
FilmSee Euloxyoenzele.FilmPhenyl Ketone425210	
C.H.COC.H. (218) (99)	
(Pronionhenone)	
Fthyl Phthalyl Fthyl Clycolate 608 365	
C.H.OCOC.H.OCO- (320) (185)	
CH-OCOC-H-	
Ethyl Propenyl Ether 158 >19	
$CH_{CH}CH_{OCH_{a}}CH_{a} (70) (>-7)$	
Ethyl Proplonate 210 54	824
$C_2H_2COOC_2H_2$ (99) (12)	(440)
2-Ethyl-3-Propylacrolein 347 155	(110)
$C_2H_2CH_2CH_2CHO$ (175) (68)	
(2-Ethylhexenal)	
2-Ethyl-3-Propylacrylic Acid 450 330	
$C_2H_2CH_2C(C_2H_2)COOH$ (232) (166)	
Ethyl Propyl Ether 147 <-4	
$C_{2}H_{2}OC_{2}H_{2}$ (64) (<-20)	
(1-Ethoxypropane)	
m-Ethyltoluene 322	896
$CH_{2}C_{2}H_{3}C_{2}H_{5}$ (161)	(480)
(1-Methyl-3-Ethylbenzene)	
o-Ethyltoluene 329	824
$CH_4C_6H_4C_2H_5 \tag{165}$	(440)
(1-Methyl-2-Ethylbenzene)	. ,
p-Ethyltoluene 324	887
$CH_3C_6H_4C_2H_5 \tag{162}$	(475)
(1-Methyl-4-Ethylbenzene)	
Ethyl p-Toluene Sulfonamide 208 260	
$C_7H_7SO_2NHC_2H_5$ (98) (127)	
@745 mm	
Ethyl p-Toluene Sulfonate 345 316	
$C_7H_7SO_3C_2H_5$ (174) (158)	
Ethyl Vinyl Ether See Vinyl Ethyl Ether	
Ethyne See Acetylene.	
Fluorobenzene 185 5	
C_6H_5F (85) (-15)	
Formal See Methylal.	
Formalin See Formaldehyd	le.

Compound	Boiling point	Flash point, $\stackrel{\circ}{=} F \stackrel{\circ}{=} C$	Ignition point,
Compound	F (C)	$\Gamma(\mathbf{C})$	r(C)
Formaldehyde	-3	Gas	795
НСНО	(-19)	185	(424)
37% Methanol-free	214	(85)	
	(101)	100	
37%, 15% Methanol		122	
(Formalin)		(50)	
(Methylene Oxide)	410	210	
Formamide	410	310	
HCONH ₂	(210)	(154)	
F	Decomposes	150	1004
Formic Acid	213	156	1004
HCOOH	(101)	(69)	(539)
90% Solution		122	813
		(50)	(434)
Formic Acid, Butyl Ester		See Buty	/I Formate.
Formic Acid, Ethyl Ester		See Ethy	I Formate.
Formic Acid, Methyl Ester	204 574	See Meth	yl Formate.
Fuel OII No. 1	304-574	100-162	410
(Kerosene)	(151–301)	(38–72)	(210)
(Range Oil)		126, 201	10.1
Fuel Oil No. 2		126-204	494
		(52–96)	(257)
Fuel Oil No. 4		142-240	505
		(61–116)	(263)
Fuel Oil No. 5			
Light		156–336	
Heavy		(69–169)	
		160–250	
-		(71–121)	
Fuel Oil No. 6		150-270	765
		(66–132)	(407)
2-Furaldehyde		See F	urfural.
Furan	88	<32	
СН:СНСН:СНО	(31)	(<0)	
(Furfuran)			
Furfural	322	140	600
ОСН:СНСН:СНСНО	(161)	(60)	(316)
	(101)	(00)	(510)
(2-Furaldehyde)			
(Eurfuraldehyde)			
(Furol)			
Furfuraldehvde		See F	urfural
Furfuran		See	Furan
Furfuryl Acetate	356-367	185	i ululi.
OCH·CHCH·CCH ₂ OOCCH ₂	(180–186)	(85)	
	(100 100)	(05)	
Furfuryl Alcohol	340	167	915
OCH:CHCH:CCH ₂ OH	(171)	(75)	(491)
L		(oc)	
Furfurylamine	295	99	
C ₄ H ₃ OCH ₂ NH ₂	(146)	(37)	
Furol		See F	urfural.
Fusel Oil		See Isoan	nyl Alcohol.
Gas Oil	500-700	150+	640
	(260-371)	(66+)	(338)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Gasoline	100-400	-45	
C_5H_{12} to C_9H_{20}	(38–204)	(-43)	
56–60 Octane		-45	536
73 Octane		(-43)	(280)
92 Octane		-36	853
100 Octane		(-38)	(456)
Gasoline			
100–130 (Aviation Grade)		-50 (-46)	824 (440)
Gasoline		()	(110)
115–145 (Aviation Grade)		-50	880
		(-46)	(471)
Gasoline (Casinghead)		0	()
		(-18)	
Glycerine	340	390	698
HOCH,CHOHCH,OH	(171)	(199)	(370)
(Glycerol)		()	
α . β -Glycerine Dichiorohydrin	360	200	
CH,CICHCICH,OH	(182)	(93)	
Glycerol		See G	lycerine.
Glyceryl Triacetate	496	280	812
$(C_3H_5)(OOCCH_3)_3$	(258)	(138)	(433)
(Triacelin)			
Glyceryl Tributyrate	597	356	765
$C_3H_5(OOCC_3H_7)_3$	(314)	(180)	(407)
(Tributyrin)			
(Butyrin)			
(Glycerol Tributyrate)			
Glyceryl Trinitrate		See Nitro	oglycerine.
Glyceryl Tripropionate	540	332	790
$(C_2H_5COO)_3C_3H_5$	(282)	(167)	(421)
(Tripropionin)			
Glycidyl Acrylate	135	141	779
CH2:CHCOOCH2CHCH2O	(57)	(61)	(415)
	@2 mm	0 - E (1 - 1	C1 1
Glycol	275	See Ethyl	ene Glycol.
Glycol Diacetate	3/5	191	900
$(CH_2OOCCH_3)_2$	(191)	(88)	(482)
(Ethylene Acetate)			
(Ethylene Grycol Diaceate)		See Ethyler	a Diablarida
Clycol Difermate		See Eulylei Soo 1.2 Ethon	adial Diformata
Clycol Dimorcantoacotata	280	306	euloi Diloimate.
(HSCH C·OOCH —)	(138)	(202)	
$(\text{IISCH}_2\text{C.OOCH}_2)_2$	(150) 1.2 mm	(202)	
Clycol Monoacetate	1.2 11111	See Ethvi	lene Glycol
Giycol Wolloacetate		Mono	
Grain Alcohol		See Ethy	acctate.
Hendecane	38/	149	A Alcohol.
CH ₂ (CH ₂) ₂ CH ₂	(106)	(65)	
(Undecane)	(1)0)	(05)	
Hentadecanol	588	310	
C.H.CH(C.H.)C.H -	(300)	(154)	
$CH(OH)C_{2}H_{2}CH(C_{2}H_{2})$	(307)	(1.57)	
(3,9-Diethyl-6-Tridecanol)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Heptane	209	25	399
CH ₂ (CH ₂) ₅ CH ₂	(98)	(-4)	(204)
2-Heptanol	320	160	(201)
CH ₂ (CH ₂) ₄ CH(OH)CH ₂	(160)	(71)	
3-Hentanol	313	140	
CH ₂ CH ₂ CH(OH)C ₂ H ₂	(156)	(60)	
3-Hentanone	(150)	See Ethyl Butyl	Ketone
4-Hentanone	290	120	netone.
(C-H-)-CO	(143)	(49)	
(Butyrone)	(145)	(47)	
(Dipropyl Ketone)			
1-Hentene		See Hen	tylene
3-Hentene (mixed cis and trans)	203	21	tylene.
	(05)	(-6)	
(2 Hontulano)	(93)	(-0)	
(3-Heptylelle)	211	120	
	511	150	
$CH_3(CH_2)_6NH_2$	(155)	(34)	
(1-Aminonepiane)	201	-22	500
Heptylene	201	<32	500
$C_5H_{11}CH:CH_2$	(94)	(<0)	(260)
(1-Heptene)	200	22	
Heptylene-2-trans	208	<32	
$C_4H_9CH:CHCH_3$	(98)	(<0)	
(2-Heptene-trans)			
Hexachlorobutadiene			1130
CCl ₂ :CClCCl:CCl ₂			(610)
Hexachloro Diphenyl Oxide			1148
$(C_6H_2Cl_3)_2O$			(620)
[Bis(Trichlorophenyl) Ether]			
Hexadecane	549	>212	396
$CH_3(CH_2)_{14}CH_3$	(287)	(>100)	(202)
(Cetane)			
tert-Hexadecanethiol	298-307	(265)	
C ₁₆ H ₃₃ SH	(148–153)	(129)	
(Hexadecyl-tert-Mercaptan)	@11 mm		
Hexadecylene-1	525	>212	464
CH ₃ (CH ₂) ₁₃ CH:CH ₂	(274)	(>100)	(240)
(1-Hexadecene)			
Hexadecyltrichiorosilane	516	295	
C ₁₆ H ₃₃ SiCl ₃	(269)	(146)	
2,4-Hexadienal	339	154	
CH ₃ CH:CHCH:CHC(O)H	(171)	(68)	
1,4-Hexadiene	151	-6	
CH ₃ CH:CHCH ₂ CH:CH ₂	(66)	(-21)	
(Allylpropenyl)			
Hexanal	268	90	
CH ₃ (CH ₂) ₄ CHO	(131)	(32)	
(Caproaldehyde)	< /	<u> </u>	
(Hexaldehvde)			
Hexane	156	-7	437
CH ₂ (CH ₂) ₄ CH ₂	(69)	(-22)	(225)
(Hexyl Hydride)		()	(223)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
1,2-Hexanediol		See Hexylene	Glycol.
2,5-Hexanediol	429	230	•
CH ₃ CH(OH)CH ₂ —CH ₂ CH(OH)CH ₃	(221)	(110)	
(2,5-Dihydroxyhexane)			
2,5-Hexanedione		See Acetonyl.	Acetone.
1,2,6-Hexanetriol	352	375	
HOCH ₂ CH(OH)-(CH ₂) ₃ CH ₂ OH	(178)	(191)	
	@5 mm		
Hexanoic Acid		See Capro	pic Acid.
1-Hexanol		See Hexyl	Alcohol.
2-Hexanone		See Methyl B	utyl Ketone.
3-Hexanone	253	95	•
C ₂ H ₅ COC ₃ H ₇	(123)	(35)	
(Ethyl n-Propyl Ketone)			
1-Hexene	146	<20	487
CH ₂ :CH(CH ₂) ₃ CH ₃	(63)	(<-7)	(253)
(Butyl Ethylene)			
2-Hexene-cis	156	<-4	
C ₂ H ₇ CH:CHCH ₂	(69)	(<-20)	
3-Hexenol-cis	313	130	
CH ₂ CH ₂ CH:CHCH ₂ CH ₂ OH	(156)	(54)	
(3-Hexen-l-ol)			
(Leaf Alcohol)			
Hexyl Acetate	285	113	
(CH ₂) ₂ CH(CH ₂) ₂ OOCCH ₂	(141)	(45)	
(Methylamyl Acetate)	(111)	(10)	
Hexvl Alcohol	311	145	
CH.(CH.).CH.OH	(155)	(63)	
(Amyl Carbinol)	(155)	(05)	
(1-Hevanol)			
sec-Hexvl Alcohol	284	136	
C.H.CH(OH)CH.	(140)	(58)	
(2-Hevanol)	(140)	(56)	
Hevylemine	260	85	
CH (CH) NH	(132)	(29)	
Hevyl Chloride	(152)	See 1-Chlorot	levane
Hexyl Cinnamic Aldehyde	486	>212	iexane.
	(252)	(>100)	
(Hexyl Cinnamaldehyde)	(232)	(2100)	
Hevylene Clycol	385	215	
	(106)	(102)	
(1.2 Heyapedial)	(190)	(102)	
Hovyl Ethor	440	170	365
	(227)	(77)	(185)
$C_6 \Pi_{13} O C_6 \Pi_{13}$	(227)	(11)	(185)
(Diffexy) Effet)	288 161	180	
	(108, 240)	(82)	
$U_6\Pi_{13}UUUU(U\Pi_3):U\Pi_2$	(196–240)	(02) See Ethylerer (wanahudrin
Hydrolin		See Eurylene	yanonyurin. Javanol
IIyulann Uydagayingag	517	220 See Cyclo	060
	J4/ (286)	529 (165)	900
$C_6 \pi_4 (O \pi)_2$	(200)	(103)	(310)
(Quilloi) (Hudroquin al)			
(nyuroquinoi)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Boiling point Compound°F (°C) °F (°C)	Flash point, °F (°C)	Ignition point,	
Hydroquinone Di-(β-Hydroxyethyl) Ether	r 365–392	435	875
$C_6H_4(-OCH_2CH_2OH)_2$	@ 0.3 mm (185–200)	(224)	(468)
Hydroquinone Monomethyl Ether CH ₃ OC ₆ H ₄ OH (4 Methoury Phenel)	475 (246)	270 (132)	790 (421)
(4-Methoxy Phenol) (Para Hydroxyanisola)			
o-Hydroxybenzaldehyde		See Salicyla	ldehvde
3-Hydroxybutanal		See A	ldol.
β -Hydroxybutyraldehyde		See A	ldol.
Hydroxycitronellal	201-205	>212	
(CH ₃) ₂ C(OH)(CH ₂) ₃ —	(94–96)	(>100)	
CH(CH ₃)CH ₂ CHO	@1 mm		
(Citronellal Hydrate)			
(3,7-Dimethyl-7-Hydroxyoctanal)			
N-(2-Hydroxyethyl)-acetamide		See N-Acetyl Ethan	nolamine.
2-Hydroxyethyl Acrylate	410	214	1.8
(HEA)	(210)	(101)	@100°C
β-Hydroxyethylaniline		See 2-Anilinoeth	nanol.
N-(2-Hydroxyethyl)		249	
Cyclonexylamine		(121)	
$C_6 H_{11} N H_2$			
$L_2 \cup L_2 $	137	210	
C H OC H NC H OH	(225)	(00)	
	(223)	()))	
1-(2-Hydroxyethyl) Piperazine	475	255	
HOCH ₂ CH ₂ —NCH ₂ CH ₂ NHCH ₂ CH ₂	(246)	(124)	
n-(2-Hydroxyethyl) Propylenediamine	465	260	
CH ₃ CH(NHC ₂ H ₄ OH)CH ₂ NH ₂	(241)	(127)	
4-Hydroxy-4-Methyl-2-Pentanone		See Diacetone	e Alcohol.
2-Hydroxy-2-methylpropionitrile		See Acetone Cy	/anohydrin.
Hydroxypropyl Acrylate		See Propylene Glyco	ol Monoacrylate.
o-Hydroxytoluene		See o-Cr	resol.
Ionone Alpha (α-Ionone)	259-262	>212	
C(CH ₃) ₂ CH ₂ CH ₂ CH:C(CH ₃)	(126–128)	(>100)	
CHCH:CHC(CH ₃):O	@12 mm		
(α -Cyclocitrylideneacetone)			
[4-(2,6,6-Trimethyl-			
2-Cyclohexen-1-yl)-3-Buten-2-one]			
Ionone Beta (β-Ionone)	284	>212	
C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ -	(140)	(>100)	
C(CH ₃):CCHCHC(CH ₃):O	@18 mm		
$(\beta$ -Cyclocitrylidene-acetone)			
[4-(2,6,6-Trimethyl-1-			
Cyclohexen-1-yl)-3-Buten-2-one]			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

		ъ
TABLE 2.40	Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued	d)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Isoamvl Acetate	290	77	680
CH ₂ COOCH ₂ CH ₂ CH(CH ₂) ₂	(143)	(25)	(360)
(Banana Oil)	(115)	(23)	(500)
(3-Methyl-1-Butanol Acetate)			
(2-Methyl Butyl Ethanoate)			
Isoamyl Alcohol	270	109	662
(CH ₂) ₂ CHCH ₂ CH ₂ OH	(132)	(43)	(350)
(Isobutyl Carbinol)	()	(10)	(223)
(Fusel Oil)			
(3-Methyl-1-Butanol)			
tert-Isoamvl Alcohol		See 2-Methyl-2	2-Butanol.
Isoamyl Butyrate	352	138	
$C_{1}H_{7}CO_{7}(CH_{2})_{7}CH(CH_{3})_{7}$	(178)	(59)	
(Isopentyl Butyrate)			
Isoamyl Chloride	212	<70	
(CH ₃) ₂ CHCH ₂ CH ₂ Cl	(100)	(<21)	
(1-Chloro-3-Methylbutane)			
Isobornyl Acetate	428-435	190	
C ₁₀ H ₁₇ OOCCH ₃	(220-224)	(88)	
Isobutane	11		860
(CH ₃) ₃ CH	(-12)		(460)
(2-Methylpropane)			
Isobutyl Acetate	244	64	790
CH ₃ COOCH ₂ CH(CH ₃) ₂	(118)	(18)	(421)
(β -Methyl Propyl Ethanoate)			
Isobutyl Acrylate	142-145	86	800
(CH ₃) ₂ CHCH ₂ OOCCH:CH ₂	(61–63)	(30)	(427)
	@15 mm		
Isobutyl Alcohol	225	82	780
(CH ₃) ₂ CHCH ₂ OH	(107)	(28)	(415)
(Isopropyl Carbinol)			
(2-Methyl-1-Propanol)			
Isobutylamine	150	15	712
$(CH_3)_2CHCH_2NH_2$	(66)	(-9)	(378)
Isobutylbenzene	343	131	802
$(CH_3)_2CHCH_2C_6H_5$	(173)	(55)	(427)
Isobutyl Butyrate	315	122	
$C_3H_7CO_2CH_2(CH_3)_2$	(157)	(50)	
Isobutyl Carbinol		See Isoamyl Al	cohol.
Isobutyl Chloride	156	<70	
(CH ₃) ₂ CHCH ₂ Cl	(69)	(<21)	
(1-Chloro-3-Methyl-propane)			
Isobutylcyclohexane	336		525
$(CH_3)_2CHCH_2C_6H_{11}$	(169)		(274)
Isobutylene	•••	See 2-Methylp	ropene.
Isobutyl Formate	208	0</td <td>608</td>	608
$HCOOCH_2CH(CH_3)_2$	(98)	(<21)	(320)
Isobutyi Heptyi Ketone	412-426	195	770
$(CH_3)_2$ CHCH ₂ COCH ₂ —	(211-219)	(91)	(410)
$CH(CH_3)CH_2CH(CH_3)_2$			
(2,6,8-1rimethyl-4-Non-anone)	201 204	101	010
	291-304	101	810
$(CH_3)_2$ CHCOUCH ₂ —CH(CH ₃) ₂	(144–151)	(38)	(452)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Isobutyl Phenylacetate	477	>212	
(CH ₃) ₂ CHCH ₂ OOCCH ₂ C ₆ H ₅	(247)	(>100)	
Isobutyl Phosphate	302	275	
$PO_4(CH_2CH(CH_2)_2)_2$	(150)	(135)	
(Trijsobutyl Phosphate)	@20 mm		
Isobutyl Vinyl Ether		See Vinvl Isob	utvl Ether.
Isobutvraldehvde	142	-1	385
(CH ₂) ₂ CHCHO	(61)	(-18)	(196)
(2-Methylpropanal)	()	()	(-> 0)
Isobutyric Acid	306	132	900
(CH ₂) ₂ CHCOOH	(152)	(56)	(481)
Isobutyric Anhydride	360	139	625
[(CH ₂) ₂ CHCO] ₂ O	(182)	(59)	(329)
Isobutyronitrile	214_216	47	900
(CH ₂)-CHCN	(101-102)	(8)	(482)
(2-Methylpropanenitrile)	(101 102)		(402)
(Isopropyleyapide)			
(Isopropyleyande)	387	185	
C H CO	(197)	(85)	
Isodocano	333	(65)	410
	(167)		(210)
(2 Methylnonane)	(107)		(210)
(2-Methymonale)	480	200	
	(254)	(140)	
Lagarganal	(234)	(149)	
	314	>212	
(1-Hydroxy-2 Methoxy-	(208)	(>100)	
Isohontano	104	<0	
(CH) CHC H	(00)	(-18)	
(2-Methylhexane) (Ethylisobutylmelhane)	(50)	(10)	
tert-Isohexvl Alcohol	252	115	
C-H-(CH-)C(OH)C-H-	(122)	(46)	
(3-Methyl-3-Pentanol)	(122)	(10)	
Isooctane	210	40	784
(CH ₂) ₂ CHCH ₂ C(CH ₂) ₂	(99)	(4 5)	(418)
(2.2.4 + Trimethylpentane)	(22)	(110)	(110)
Isooctyl Alcohol	83-91	180	
C-HCH.OH	(182-195)	(82)	
(Isooctanol)	(102 1)3)	(02)	
Isooctyl Nitrate	106-109	205	
C.HNO.	(41_43)	(96)	
C ₈ I1 ₁₇ IC ₃	(41-45) @1 mm	(50)	
Isoactyl Vinyl Ether	u ا ا ا ا ا	See Vinul Ia	sooctyl Ether
Isonentaldebyde	250	48	soociyi Luici.
(CH.) CHCH CHO	(121)		
Isonantana	82	(9)	788
(CH) CHCH CH	(28)	(<-51)	(420)
(2-Methylbutane) (Ethyl Dimethyl Methane)	(20)	(~-31)	(420)
(Ethyl Dimethyl Methane)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Isopentanoic Acid	361		781
(CH ₃) ₂ CHCH ₂ COOH	(183)		(416)
(Isovaleric Acid)			
Isophorone	419	184	860
COCHC(CH ₃)CH ₂ C(CH ₃) ₂ CH ₂	(215)	(84)	(460)
Isophthaloyl Chloride	529	356	
$C_6H_4(COCl)_2$	(276)	(180)	
(m-Phthalyl Dichloride)			
Isoprene	93	-65	743
CH ₂ :C(CH ₃)CH:CH ₂	(34)	(-54)	(395)
(2-Methyl-1,3-Butadiene)			
Isopropanol		See Isopropy	d Alcohol.
Isopropenyl Acetate	207	60	808
CH ₃ COOC(CH ₃):CH ₂	(97)	(16)	(431)
(1-Methylvinyl Acetate)			
Isopropenyl Acetylene	92	<19	
CH ₂ :C(CH ₃)C:CH	(33)	(<-7)	
2-Isopropoxypropane		See Isopropy	l Ether.
3-Isopropoxyproplonitrile	149	155	
(CH ₃) ₂ CHOCH ₂ CH ₂ CN	(65)	(68)	
	@10 mm		
Isopropyl Acetate	194	35	860
(CH ₃) ₂ CHOOCCH ₃	(90)	(2)	(460)
Isopropyl Alcohol	181	53	750
(CH ₃) ₂ CHOH	(83)	(12)	(399)
(Isopropanol)			
(Dimethyl Carbinol)		57	
(2-Propanol)			
87.9% iso		(14)	
Isopropylamine	89	-35	756
$(CH_3)_2 CHNH_2$	(32)	(-37)	(402)
Isopropylbenzene		See Cumene	
Isopropyl Benzoate	426	210	
$C_6H_5COOCH(CH_3)_2$	(219)	(99)	
Isopropyl Bicyclohexyl	530-541	255	446
$C_{15}H_{28}$	(277–283)	(124)	(230)
2-Isopropylbiphenyl	518	285	815
C ₁₅ H ₁₆	(270)	(141)	(435)
Isopropyl Carbinol		See Isobutyl	Alcohol.
Isopropyl Chloride	95	-26	1100
(CH ₃) ₂ CHCl	(35)	(-32)	(593)
(2-Chloropropane)	• • •		
Isopropylcyclohexane	310		541
$(CH_3)_2CHC_6H_{11}$	(154.5)		(283)
(Hexahydrocumene)			
(Normanthane)		0.2	
Isopropylcyclohexylamine		93	
$C_6H_{11}NHCHC_2H_6$	1.5.1	(34)	
Isopropyl Ether	156	-18	830
$(CH_3)_2$ CHOCH $(CH_3)_2$	(69)	(-28)	(443)
(2-isopropoxypropane)			
(Diisopropyl Ether)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, Ig °F (°C)	nition point, °F (°C)	
Isopropylethylene		See 3-Methyl-1-Butene.		
Isopropyl Formate	153	22	905	
HCOOCH(CH ₃) ₂	(67)	(-6)	(485)	
(Isopropyl Methanoate)	· · ·			
4-Isopropylheptane	155		491	
$C_{2}H_{7}CH(C_{2}H_{7})C_{2}H_{7}$	(68)		(255)	
(m-Dihydroxybenzene)		See Isopropyl Lactate.		
Isopropyl-2-Hydroxypropanoate				
Isopropyl Lactate	331-334	130		
CH ₂ CHOHCCOCH(CH ₂) ₂	(166 - 168)	(54)		
(Isopropyl-2-Hydroxypropionate)	()			
Isopropyl Methanoate		See Isopropyl Formate.		
4-Isopropyl-1-Methyl Benzene		See p-Cymene.		
Isopropyl Vinyl Ether		See Vinyl Isopropyl Ether		
Isovalerone		See Diisobutyl Ketone		
Jet Fuel	400-550	110–150		
Iet A and Iet A-1	(204 - 288)	(43-66)		
Jet Fuel	(201 200)	$-10 \text{ to } \pm 30$		
Jet B		(-23 to -1)		
let Fuel		(25 to 1) -10 to +30	464	
IP-4		(-23 to -1)	(240)	
Ji 4 Jet Fuel		95-145	475	
IP_5		(35-63)	(246)	
Ji - 5 Jot Fuel	250	100	(240)	
IP_6	(121)	(38)	(230)	
Kerosene	(121)	See Fuel Oil No. 1	(230)	
L actonitrila	361	171		
CH CH(OH)CN	(183)	(77)		
I anolin	(105)	460	833	
(Wool Grease)		(238)	(445)	
I ard Oil (Commercial or		305	833	
Animal)		(202)	(445)	
No. 1		(202)	(443)	
NO. 1		(227)		
Land Oil (Puno)		500		
Lard OII (Pure)		(260)		
No. 2		(200)		
INU. 2		(215)		
Minaral		(213)		
wineral		404		
Louwy Alashal		(207) See 1 Dedeemel		
Lauryi Alconol	256	See 1-Dodecanol.		
CLUCIE CLER	550	(144)		
$(D_{3}(CH_{2})_{10}(CH_{2}Df))$	(100)	(144)		
(Douecyl Bromide)	@45 mm	Saa 1 Dadaas- thi-1		
Lauryi Mercaptan	282 200	See 1-Dodecanethiol.		
	383-390 (105-100)	100 (71)		
$OHCA:CH_2$ (3.7 Dimethyl 1.6 Octodians 2.01)	(195-199)	(71)		
(5,7-Diffethyl-1,0-Octauleffe-5-01)	600 -	122	650	
	(216)	452	(242)	
	(+010)	(222)	(343)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Lubricating Oil	680	300-450	500-700
(Paraffin Oil, includes Motor Oil)	(360)	(149–232)	(260–371)
Lubricating Oil, Spindle		169	478
(Spindle Oil)		(76)	(248)
Lubricating Oil, Turbine		400	700
(Turbine Oil)		(204)	(371)
Lynalyl Acetate	226-230	185	× /
(CH ₃) ₂ C:CHCH ₂ CH ₂ — C(—OOCCH ₃)CH:CH ₂	(108–110)	(85)	
(Bergamol)			
Maleic Anhydride	396	215	890
(COCH) ₂ O	(202)	(102)	(477)
Marsh Gas	21.7	See Methane.	
2-Mercaptoethanol	315	165	
HSCH ₂ CH ₂ OH	(157)	(74)	
Mesitylene	2//	See 1,3,5-Trimet	hylbenzene.
	266	8/	652
(CH ₃) ₂ CCHCOCH ₃	(130)	(31)	(344)
Wietaldenyde	SUDI.	97	
$(C_2H_4O)_4$	(112–116)	(36)	
α -Methacrolein		See 2-Methyl	propenal.
Methacrylic Acid	316	171	154
CH ₂ :C(CH ₃)COOH	(158)	(77)	(68)
Methacrylonitrile	194	34	
C ₄ H ₅ N	(90)	(1.1)	
Methallyl Alcohol	237	92	
$CH_2C(CH_3)CH_2OH$	(114)	(33)	
Methallyl Chloride	162	11	
$CH_2C(CH_3)CH_2Cl$	(72)	(-12)	000
Methane	-259		999
CH ₄	(-162)		(537)
(Marsh Gas)		See Methed Ales	h - 1
Methanothial		See Methyl Alco	non.
o Mothovybonzoldobydo	275	104	captan.
	(135)	(40)	
(o-Anisaldehyde)	(155)	(40)	
Methoxybenzene		See Anisole	
3-Methoxybutanol	322	165	
CH ₂ CH(OCH ₂)CH ₂ CH ₂ OH	(161)	(74)	
3-Methoxybutyl Acetate	275-343	170	
CH ₂ OCH(CH ₂)CH ₂ CH ₂ OOCCH ₂	(135 - 173)	(77)	
(Butoxyl)	(1.0)	()	
3-Methoxybutyraldehyde	262	140	
CH ₃ CH(OCH ₃)CH ₂ CHO	(128)	(60)	
(Aldol Ether)	× -/	× - /	
2-Methoxyethanol		See Ethylene Gl Monomethyl Et	ycol her.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
2-Methoxyethyl Acrylate	142	180	
C ₂ H ₂ COOC ₂ H ₂ OCH ₂	(61)	(82)	
021130000211400113	@17 mm	(02)	
Methoxy Ethyl Phthalate	376-412	275	
(Methox)	(191 - 211)	(135)	
3-Methoxypropionitrile	320	149	
CH ₂ OC ₂ H ₄ CN	(160)	(65)	
3-Methoxypropylamine	241	90	
CH ₂ OC ₂ H ₄ NH ₂	(116)	(32)	
Methoxy Triglycol	480	245	
CH ₂ O(C ₂ H ₄ O) ₂ H	(249)	(118)	
(Triethylene Glycol, Methyl Ether)			
Methoxytriglycol Acetate	266	260	
CH ₂ COO(C ₂ H ₄ O) ₃ CH ₃	(130)	(127)	
Methyl Abietate	680–689	356	
C ₁₀ H ₂₀ COOCH ₂	(360-365)	(180)	
(Abalyn)	Decomposes		
Methyl Acetate	140	14	850
CH ₂ COOCH ₂	(60)	(-10)	3.1
(Acetic Acid Methyl Ester)	(00)	(454)	16
(Methyl Acetic Ester)			
Methyl Acetic Ester		See Methyl A	cetate.
Methyl Acetoacetate	338	170	536
CH ₂ CO ₂ CH ₂ COCH ₂	(170)	(77)	(280)
P-Methyl Acetophenone	439	205	()
CH ₂ C ₂ H ₂ COCH ₂	(226)	(96)	
(Methyl-n-Tolyl Ketone)	(220)	(50)	
(p-Acetotoluene)			
Methylacetylene		See Propyne	
Methyl Acrylate	176	27	875
CH ₂ ·CHCOOCH ₂	(80)	(-3)	(468)
Methylal	111	-26	459
CH ₂ OCH ₂ OCH ₂	(44)	(-32)	(237)
(Dimethoxymethane)	()	()=)	(201)
(Formal)			
Methyl Alcohol	147	52	867
CH ₂ OH	(64)	(11)	(464)
(Methanol)	(0.1)	(11)	(101)
(Wood Alcohol)			
Methylamine	21	806	4
CH ₂ NH ₂	(-6)	(430)	
2-(Methylamino) Ethanol	(0)	See N-Methy	lethanolamine
Methylamyl Acetate		See Hexy	vl Acetate
Methylamyl Alcohol		See Methyl Iso	obutyl Carbinol
Methyl Amyl Ketone	302	102	740
CH ₂ CO(CH ₂),CH ₂	(150)	(39)	(393)
2-Heptanone	(150)	(57)	(575)
2-Methylaniline		See o-T	oluidine.
4-Methylaniline		See n-T	oluidine.
Methyl Anthranilate	275	>212	oraranno.
H ₂ NC ₂ H ₂ CO ₂ CH ₂	@15 mm	(>100)	
(Methyl-ortho-Amino Benzoate)	(135)	(* 100)	
(Nevoli Oil, Artificial)	(155)		

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)
Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Methylbenzene		See T	oluene
Methyl Benzoate	302	181	
C _c H ₅ COOCH ₂	(150)	(83)	
(Niobe Oil)	(100)	(00)	
α -Methylbenzyl Alcohol		See Phenyl M	ethyl Carbinol
α -Methylbenzylamine	371	175	euryr curonnon
C ₂ H ₂ CH(CH ₂)NH ₂	(188)	(79)	
α -Methylbenzyl Dimethyl	384	175	
A mine	(196)	(79)	
C ₄ H ₂ CH(CH ₂)N(CH ₂).	(1)0)	(1))	
α-Methylbenzyl Ether	5/18	275	
C.H.CH(CH.)OCH(CH.)C.H.	(287)	(135)	
2-Methylbinbenyl	(207)	280	036
	(255)	(137)	(502)
Mothyl Boroto	(255)	(157)	(302)
B(OCH)	(60)	(<27)	
(Trimathyl Borata)	(09)	(<27)	
(IIIIIculyi Dolaic) Mathyl Promide	29.4	000	
	30.4 (4)	(527)	
(Bromomothono)	(4)	(337)	
(Diomomethane)		See In	
2-Methylbutana		See Iso	oprene.
2-Methyl 2 Dutanethial	220	27	pentane.
S-Methyl-2-Butanethiol	230	37	
$C_5H_{11}SH$	(110)	(3)	
(Sec-Isoamyi Mercaptan)	2(2	100	705
2-Methyl-1-Butanol	262	122	(225)
CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	(128)	(50)	(385)
2-Methyl-2-Butanol	215	67	819
$CH_3CH_2(CH_3)_2COH$	(102)	(19)	(437)
(tert-Isoamyl Alcohol)			
(Dimethyl Ethyl Carbinol)			
3-Methyl-1-Butanol		See Isoamyl Alcohol.	
3-Methyl-1-Butanol Acetate	22	See Isoam	yl Acetate.
2-Methyl-1-Butene	88	<20	
$CH_2:C(CH_3)CH_2CH_3$	(31)	(<-7)	
2-Methyl-2-Butene	101	<20	
$(CH_3)_2C:CCHCH_3$	(38)	(<-7)	
(Trimethylethylene)			
3-Methyl-1-Butene	68	<20	689
(CH ₃) ₂ CHCH:CH ₂	(20)	(<-7)	(365)
(Isopropylethylene)			
N-Methylbutylamine	196	55	
CH ₃ CH ₂ CH ₂ CH ₂ NHCH ₃	(91)	(13)	
2-Methyl Butyl Ethanoate		See Isoam	yl Acetate.
Methyl Butyl Ketone	262	77	795
$CH_3CO(CH_2)_3CH_3$	(128)	(25)	(423)
(2-Hexanone)			
3-Methyl Butynol	218	77	
(CH ₃) ₂ C(OH)C:CH	(103)	(25)	
2-Methylbutyraldehyde	198-199	49	
CH ₃ CH ₂ CH(CH ₃)CHO	(92–93)	(9)	
Methyl Butyrate	215	57	
CH ₃ OOCCH ₂ CH ₂ CH ₃	(102)	(14)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Methyl Carbonate	192	66	
$CO(OCH_2)_2$	(89)	(19)	
(Dimethyl Carbonate)	(0))	(0c)	
Methyl Cellosolye Acetate	292	~111	
CH ₂ COOC ₂ H ₂ OCH ₂	(144)	(~44)	
(2-Methoxyethyl Acetate)	(111)	(11)	
Methyl Chloride	-11	-50	1170
CH.Cl	(-24)	50	(632)
(Chloromethane)	(24)		(052)
Methyl Chloroacetate	266	135	
CH-CICOOCH.	(130)	(57)	
(Methyl Chloroethanoate)	(150)	(37)	
Methyl Chloroethanoate		See Methyl ([~] hloroacetate
Mothyl_n_Crosol		140	emoroacetate.
СНСНОСН		(60)	
$(\mathbf{p} \text{ Methylapisole})$		(00)	
(p-Methylanisole)		See	tonitrilo
Methyl Cyannue	214	25 See Act	192
CH ₂ (CH ₂) ₄ CHCH ₃	(101)	(-4)	(250)
(Cyclohexylmethane)			
(Hexahydrotoluene)			
2-Methylcyclohexanol	329	149	565
C ₇ H ₁₃ OH	(165)	(65)	(296)
3-Methylcyclohexonol		158	563
$CH_3C_6H_{10}OH$		(70)	(295)
4-Methylcyclohexanol	343	158	563
C ₇ H ₁₃ OH	(173)	(70)	(295)
Methylcyclohexanone	325	118	
$C_7H_{12}O$	(163)	(48)	
4-Methylcyclohexene	217	30	
CH:CHCH ₂ CH(CH ₃)CH ₂ CH ₂	(103)	(-1)	
Methylcyclohexyl Acetate	351-381	147	
$C_9H_{16}O_2$	(177–194)	(64)	
Methyl Cyclopentadiene	163	120	833
C ₆ H ₈	(73)	(49)	(445)
Methylcyclopentane	161	<20	496
$C_{6}H_{12}$	(72)	(<-7)	(258)
2-Methyldecane	374		437
$CH_3(CH_2)_7CH(CH_3)_2$	(190)		(225)
Methyldichlorosilane	106	15	>600
CH ₃ HsiCl ₂	(41)	(-9)	(316)
N-Methyldiethanolamine	464	260	
$CH_3N(C_2H_4OH)_2$	(240)	(127)	
1-Methyl-3.5-Diethyl-benzene	394		851
$(CH_3)C_6H_3(C_2H_5)_2$	(201)		(455)
(3,3-Dieinyitoiuene)	600 600	261	
Methyl Dinydroadletate	089-098	301	
$C_{19}H_{31}COOCH_3$	(365-370)	(183)	1000
Methylene Chloride	104		1033
CH ₂ Cl ₂	(40)	None	(556)
(Dichloromethane)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Methylenedianiline	748–750	428	
H ₂ NC ₄ H ₄ CH ₂ C ₄ H ₄ NH ₂	(398-399)		
(MDA)	@78 mm		
(p.p'-DiaminodiPhenvlmethane)	e / o min	(220)	
Methylene Dlisocyanate		185	
CH ₂ (NCO) ₂		(85)	
Methylene Oxide		See Formaldehyde	
N-Methylethanolamine		See Formateniyae.	
CH-NHCH-CH-OH	319	165	
(2-(Methylamino) Ethanol)	(159)	(74)	
Methyl Ether	-11	Gas	662
(CH) O	(-24)	Gas	(350)
(Dimethyl Ether)	(-24)		(330)
(Mathyl Ovida)			
(Methyl Oxide) Methyl Ethyl Carbinal		Saa aaa Dutul Alaaha	1
2 Mothyl 2 Ethyl	244		1.
2-ivietityi-2-Etityi-	244 (119)	/4	
1,3-Dioxolane	(118)	(23)	
$(CH_3)(C_2H_5)COCH_2CH_2O$			
Methyl Ethylene Glycol		See Propylene Glycol	
Methyl Ethyl Ether	51	-35	374
CH ₃ OC ₂ H ₅	(11)	(-37)	(190)
(Ethyl Methyl Ether)			
2-Methyl-4-Ethylhexane	273	<70	536
$(CH_3)_2CHCH_2CH(C_2H_5)_2$	(134)	(<21)	(280)
(4-Ethyl-2-Methylhexane)			
3-Methyl-4-Ethylhexane	284	75	
C ₂ H ₂ CH(CH ₂)CH(C ₂ H ₂) ₂	(140)	(24)	
(3-Ethyl-4-Methylhexane)			
Methyl Ethyl Ketone	176	16	759
C ₂ H ₂ COCH ₂	(80)	(-9)	(404)
(2-Butanone)	(00)		(101)
(Ethyl Methyl Ketone)			
Methyl Ethyl Ketovime	306-307	156-170	
CH-C(C-H-)·HOH	(152 - 153)	(69-77)	
2-Mothyl-3-Ethylpontono	241	<70	860
(CH) CHCH(CH)	(116)	(<21)	(460)
$(CH_3)_2$ CHCH $(C_2H_5)_2$ (2 Ethyl 2 Mothylpontona)	(110)	(<21)	(400)
2-Mothyl-5-Ethyl-piperiding	326	126	
	(162)	(52)	
	(103)	(32)	
2-Methyl-5-Ethylpyridine	353	155	
N:C(CH ₃)CH:CHC(C ₂ H ₅):CH	(178)	(68)	
Methyl Formate	90	-2	840
CH ₃ OOCH	(32)	(-19)	(449)
(Formic Acid, Methyl Ether)	()	(()
2-Methylfuran	144-147	-22	
C.H.OCH.	(62–64)	(-30)	
(Svlvan)	(02 07)	(50)	
Methyl Glycol Acetate		111	
СН.ОНСНОНСН СО СН		(44)	
(Propylene Glycol Acetate)		(++)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Methyl Heptolocyl Ketone	329	255	
C ₁₇ H ₃₅ COCH ₃	(165)	(124)	
17 55 5	@3 mm		
Methylheptenone	343-345	135	
(CH ₃) ₂ C:CH(CH ₂) ₂ COCH ₃	(173–174)	(57)	
(6-Methyl-5-Hepten-2-one)			
Methyl Heptine Carbonate		190	
CH ₃ (CH ₂) ₄ C:CCOOCH ₃		(88)	
(Methyl 2-Octynoate)			
Methyl Heptyl Ketone	361-383	140	680
C ₇ H ₁₅ COCH ₄	(183–195)	(60)	(360)
(5-Methyl-2-Octanone)			
2-Methylhexane	194	<0	536
$(CH_3)_2CH(CH_2)_3CH_3$	(90)	(<-18)	(280)
3-Methylhexane	198	25	536
CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃	(92)	(-4)	(280)
Methyl Hexyl Ketone	344	125	
CH ₃ COC ₆ H ₁₃	(173.5)	(52)	
(2-Octanone)			
(Octanone)			
Methyl-3-Hydroxybutyrate	347	180	
CH ₃ CHOHCH ₂ COOCH ₃	(175)	(82)	
Methyl Ionone	291	>212	
$C_{14}H_{22}O$	(144)	(>100)	
(Irone)	@16 mm		
Methyl Isoamyl Ketone	294	96	375
CH ₃ COCH ₂ CH ₂ CH(CH ₃) ₂	(146)	(36)	(191)
Methyl Isobutyl Carbinol	266-271	106	
CH ₃ CHOHCH ₂ CHCH ₃ CH ₃	(130–133)	(41)	
(1,3-Dimethylbutanol)			
(4-Methyl-2-Pentanol)			
(Methylamyl Alcohol)			
Methylisobutylcarbinol Acetate		See 4-M	fethyl-2-
		Pentanol	Acetate.
Methyl Isobutyl Ketone	244	64	840
CH ₃ COCH ₂ CH(CH ₃) ₂	(118)	(18)	(448)
(Hexone)			
(4-Methyl-2-Pentanone)			
Methyl Isopropenyl Ketone	208		
$CH_2COC:CH_2(CH_3)$	(98)		
Methyl Isocyanate	102	19	994
CH ₃ NCO	(39)	(-7)	(534)
(Methyl Carbonimide)			
Methyl Iso Eugenol	504-507	>212	
CH ₃ CH:CHC ₆ H ₃ (OCH ₃) ₂	(262–264)	(>100)	
(Propenyl Guaiacol)			
Methyl Lactate	293	121 725	@2.2 mm
CH ₃ CHOHCOOCH ₃	(145)	(49) (385)	
	@2.2 mm		212
			(100)
Methyl Mercaptan	42.4		
CH ₃ SH	(6)		
(Methanethiol)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
β -Methyl Mercapto-	~329	142	491
propionaldehyde	(~165)	(61)	(255)
CH ₃ SC ₂ H ₄ CHO			
(3-(Methylthio)			
Propionalde-hyde)			
Methyl Methacrylate	212	50	
CH ₂ :C(CH ₃)COOCH ₃	(100)	(10)	
Methyl Methanoate		See Methyl Fo	rmate.
4-Methylmorpholine	239	75	
$C_2H_4OC_2H_4NCH_3$	(115)	(24)	
1-Methylnaphthalene	472		984
$C_{10}H_7CH_3$	(244)		(529)
Methyl Nonyl Ketone	433	192	
C ₉ H ₁₉ COCH ₃	(223)	(89)	
Methyl Oxide		See Methyl E	ther.
Methyl Pentadecyl Ketone	313	248	
C ₁₅ H ₃₁ COCH ₃	(156)	(120)	
	@3 mm		
2-Methyl-1,3-Pentadiene	169	<-4	
CH ₂ :C(CH ₃)CH:CHCH ₃	(76)	(<-20)	
4-Methyl-1,3-Pentadiene	168	-30	
CH ₂ :CHCH ₂ :C(CH ₃) ₂	(76)	(-34)	
Methylpentaldehyde	243	68	
CH ₃ CH ₂ CH ₂ C(CH ₃)HCHO	(117)	(20)	
(Methyl Pentanal)			
Methyl Pentanal		See Methylp	entaldehyde.
2-Methylpentane	140	<20	583
$(CH_3)_2CH(CH_2)_2CH_3$	(60)	(<-7)	(306)
3-Methylnentane	146	<20	532
CH ₂ CH ₂ CH(CH ₂)CH ₂ CH ₂ CH ₂	(63)	(<-7)	(278)
2-Methyl-1.3-Pentanediol	419	230	(270)
CH ₂ CH ₂ CH(OH)CH(CH ₂)CH ₂ OH	(215)	(110)	
2-Methyl-2.4-Pentanediol	385	205	
(CH ₂) ₂ C(OH)CH ₂ CH(OH)CH ₂	(196)	(96)	
2-Methylpentanoic Acid	381	225	712
C ₂ H ₇ CH(CH ₂)COOH	(194)	(107)	(378)
2-Methyl-1-Pentanol	298	129	590
CH ₃ (CH ₂) ₂ CH(CH ₃)CH ₂ OH	(148)	(54)	(310)
4-Methyl-2-Pentanol		See Methyl Iso	butyl Carbinol.
4-Methyl-2-Pentanol Acetate	295	110	660
CH ₃ COOCH(CH ₃)CH ₂ CH(CH ₃) ₂	(146)	(43)	(349)
(Methylisobutylcarbinol Acetate)			· · /
4-Methyl-2-Pentanone		See Methyl Iso	obutyl Ketone.
2-Methyl-1-Pentene	143	<20	572
CH ₂ :C(CH ₃)CH ₂ CH ₂ CH ₃	(62)	(<-7)	(300)
4-Methyl-1-Pentene	129	<20	572
CH ₂ :CHCH ₂ CH(CH ₃) ₂	(54)	(<-7)	(300)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
2-Methyl-2-Pentene	153	<20	
(CH ₂) ₂ C:CHCH ₂ CH ₃	(67)	(<-7)	
4-Methyl-2-Pentene	133–137	<20	
CH ₂ CH:CHCH(CH ₂) ₂	(56–58)	(<-7)	
3-Methyl-1-Pentynol	250	101	
$(C_2H_2)(CH_2)C(OH)C:CH$	(121)	(38)	
o-Methyl Phenol	()	See o-Cres	sol.
Methyl Phenylacetate	424	195	
C ₄ H ₅ CH ₂ COOCH ₂	(218)	(91)	
Methylphenyl Carbinol	399	200	
C/H-CH(CH_)OH	(204)	(93)	
$(\alpha$ -Methylbenzyl Alcohol)	(201)	(20)	
(Styralyl Alcohol)			
(sec-Phenethyl Alcohol)			
Methyl Phenyl Carbinyl Acetate		195	
C.H.CH(CH.)OOCH.		(91)	
$(\alpha$ -Methyl-Benzyl Acetate)		(>1)	
(Styrolyl Acetate)			
(sec-Phenylethyl Acetate)			
(Phenyl Methylcarbinyl			
Acetate)			
Mothyl Phonyl Ethor		See Aniso	le
Mothyl Dhthalyl Ethyl	500	380	nc.
Clycolato	(310)	(103)	
	(510)	(193)	
CH COOC H			
1 Mothyl Binoragino	280	108	
	(128)	(42)	
	(156)	(42)	
2-Methylpropanal		See Isobutyral	dehyde.
2-Methylpropane		See Isobuta	ane.
2-Methyl-2-Propanethiol	149-153	<-20	
(CH ₃) ₃ CSH	(65–67)	(<-29)	
(tert-Butyl Mercaptan)			
2-Methyl Propanol-1		See Isobuty	yl Alcohol.
2-Methyl-2-Propanol		See tert-But	tyl Alcohol.
2-Methylpropenal	154	35	•
CH ₂ :C(CH ₃)CHO	(68)	(2)	
(Methacrolein)			
(α -Methyl Acrolein)			
2-Methylpropene	20		869
CH ₂ :C(CH ₃)CH ₃	(-7)		(465)
(γ -Butylene)	. ,		
(Isobutylene)			
Methyl Propionate	176	28	876
CH ₃ COOCH ₂ CH ₂	(80)	(-2)	(469)
Methyl Propyl Acetylene	185	<14	· /
CH ₃ C ₂ H ₄ ClCCH ₃	(85)	(<-10)	
(2-Hexyne)	× /	× -/	
Methyl Propyl Carbinol	247	105	
CH ₃ CHOHC ₃ H ₇	(119)	(41)	
(2-Pentanol)	× - /	× /	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Methylpropylcarbinylumine		See sec-Amylamine.	
Methyl n-Propyl Ether	102	<-4	
CH ₂ OC ₂ H ₇	(39)	(<-20)	
Methyl Propyl Ketone	216	45	846
CH ₂ COC ₂ H ₇	(102)	(7)	(452)
(2-Pentanone)			
2-Methylpyrazine		122	
N:C(CH ₃)CH:NCH;CH		(50)	
2-Methyl Pyridine		See 2-Picoline.	
Methylpyrrole	234	61	
N(CH ₃)CH:CHCH:CH	(112)	(16)	
Methylpyrrolidine	180	7	
CH ₃ NC ₄ H ₅	(82)	(-14)	
1-Methyl-2-Pyrrolidone	396	204	655
CH ₃ NCOCH ₂ CH ₂ CH ₂	(202)	(96)	(346)
(N-Methyl-2-Pyrrolidone)			
Methyl Salicylate	432	205	850
HOC ₆ H ₄ COOCH ₃	(222)	(96)	(454)
(Oil of Wintergreen)			
(Gaultheria Oil)			
(Betula Oil)			
(Sweet-Birch Oil)			
Methyl Stearate	421	307	
C ₁₇ H ₃₅ COOCH ₃	(216)	(153)	
α -Methylstyrene	329–331	129	1066
1-Methylethenyl Benzene	(165–166)	(54)	(574)
1-Methyl-1-phenylethene			
Methyl Sulfate	174	See Dimethyl Sulfate	2.
2-Methyltetrahydrofuran	176	12	
$C_4H_7OCH_3$	(80)	(-11)	
Methyl Toluene Sulfonate	315	306	
$CH_3C_6H_4SO_3CH_3$	(157)	(152)	
M-4h-14-1 - h] i]	@8 mm	15	. 7(0
CH Sici	151	15	>/60
(M_3SICI_3)	(00)	(-9)	(>404)
(Methyl Sinco Chiofolofiii) (Trichloromethyloilone)			
(IncluoroniculyIshanc) Mothyl Undeeyl Kotone	248	225	
	(120)	(107)	
(2-Tridecanone)	(120)	(107)	
1-Methylvinyl Acetate		See Isopropenvl Aceta	te.
Methyl Vinyl Ether		See Vinvl Methyl Eth	er.
Methyl Vinyl Ketone	177	20	915
CH ₃ COCH:CH ₂	(81)	(-7)	(491)
Mineral Wax		See Wax, Ozocerite.	
Morpholine	262	98	555
OC ₂ H ₄ NHCH ₂ CH ₂	(128)	(37)	(290)
Mustard Oil	304	115	
C ₃ H ₅ N:C:S	(151)	(46)	
(Allyl Isothiocyanate)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Naphtha, Coal		107	531
		(42)	(277)
Naphtha, Petroleum		See Petroleu	ım Ether.
Naphtha V.M. & P., 50° Flash	240-290	50	450
(10)	(116–143)	(10)	(232)
Naphtha V.M. & P., High Flash	280-350	85	450
	(138–177)	(29)	(232)
Naphtha V.M. & P., Regular	212-320	28	450
	(100–160)	(-2)	(232)
Naphthalene	424	174	979
$C_{10}H_8$	(218)	(79)	(526)
<i>p</i> -Naphthol	545	307	
$C_{10}H_7OH$	(285)	(153)	
(<i>p</i> -Hydroxy Naphthalene)			
(2-Naphinol)	570	215	
	572	515	
$C_{10}H_7INH_2$	(300)	(157) Saa 2.2 Dima	thulloutons
Neonentone		See 2,2-Dille	hylpropana
Neopentole Neopentyl Chycol	410	265	750 right
	(210)	(120)	(300)
(2.2 Dimethyl 1.3)	(210)	(129)	(399)
Propagedial)			
Nicoline	475		471
C.H.N.	(246)		(244)
	(240)	See Methyl Be	nzoate
Nitric Ether		See Ethyl N	itrate
n-Nitroaniline	637	390	
NO ₂ C ₂ H ₂ NH ₂	(336)	(199)	
Nitrobenzene	412	190	900
C ₆ H ₅ NO ₂	(211)	(88)	(482)
(Nitrobenzol)	· · ·		
(Oil of Mirbane)			
1,3-Nitrobenzotrifluoride	397	217	
$C_6H_4NO_2CF_3$	(203)	(103)	
α, μ, α -Trifluoronitrotoluene			
Nitrobenzol		See Nitrobe	nzene.
Nitrobiphenyl	626	290	
$C_6H_5C_6H_4NO_2$	(330)	(143)	
p-Nitrochlorobenzene	468	261	
C ₆ H ₄ ClNO ₂	(242)	(127)	
(1-Chloro-4-Nitrobenzene)			
Nitrocyclohexane	403	190	
$CH_2(CH_2)_4CHNO_2$	(206)	(88)	
	Decomposes		
Nitroethane	237	82	778
$C_2H_5NO_2$	(114)	(28)	(414)
Nitroglycerine	502	Explodes	518
$C_3H_5(NO_3)_3$	(261)		(270)
(Glyceryl Trinitrate)	Explodes	0-	
Nitromethane	214	95	785
CH ₃ NO ₂	(101)	(35)	(418)
1-Nitronaphthalene	579	327	
$C_{10}H_7NO_2$	(304)	(164)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
1-Nitropropane	268	96	789
CH ₃ CH ₂ CH ₂ NO ₂	(131)	(36)	(421)
2-Nitropropane	248	75	802
CH ₃ CH(NO ₂)CH ₃	(120)	(24)	(428)
(sec-Nitropropane)			
sec-Nitropropane		See 2-Nitrop	ropane.
m-Nitrotoluene	450	223	
C ₆ H ₄ CH ₃ NO ₂	(232)	(106)	
o-Nitrotoluene	432	223	
C ₆ H ₄ CH ₃ NO ₂	(222)	(106)	
p-Nitrotoluene	461	223	
$HO_2C_6H_4CH_3$	(238)	(106)	
2-Nitro-p-toludine		315	
CH ₃ C ₆ H ₃ (NH ₂)NO ₂		(157)	
Nitrous Ether		See Ethyl Ni	trite.
Nonadecane	628	>212	446
CH ₃ (CH ₂) ₁₇ CH ₃	(331)	(>100)	(230)
Nonane	303	88	401
C_9H_{20}	(151)	(31)	(205)
Nonane (iso)	290		428
$C_6H_{13}CH(CH_3)_2$	(143)		(220)
(2-Methyloctane)			
Nonane	291		428
$C_{5}H_{11}CH(CH_{3})C_{2}H_{5}$ (3-Methyloctane)	(144)		(220)
Nonane	288		437
$C_4H_9CH(CH_3)C_3H_7$ (4-Methyloctane)	(142)		(225)
Nonene	270-290	78	
CoHia	(132-143)	(26)	
(Nonvlene)	(152 115)	(20)	
Nonvi Acetate	378	155	
CH ₂ COOC ₆ H ₁₀	(192)	(68)	
Nonvi Alcohol	(1)_)	See Diisobut	vl Carbinol.
Nonvibenzene	468-486	210)
$C_0H_{10}C_6H_5$	(242–252)	(99)	
tert-Nonyl Mercaptan	370–385	154	
C _o H ₁₀ SH	(188–196)	(68)	
Nonylnaphthalene	626–653	<200	
$C_{9}H_{19}C_{10}H_{7}$	(330–345)	(<93)	
Nonylphenol	559–567	285	
$C_{6}H_{4}(C_{9}H_{19})OH$	(293–297)	(141)	
2,5-Norbornadiene	193	-6	
C ₇ H ₈	(89)	(-21)	
(NBD)	(02	212	
Octadecane	603	>212	441
$C_{18}H_{38}$	(317)	(>100)	(227)
Octadecylene α	599	>212	482
$(H_3(CH_2)_{15}CH:CH_2)$	(315)	(>100)	(250)
(1-Octadecene)	717	102	
	(10)	193	
(Trichlorocatedcoviciloro)	(380)	(69)	
(Inchiorooctadeevisitane)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Octadecyl Vinyl Ether		See Vinyl Octodecyl Eth	ier.
Octane	258	56	403
CH ₃ (CH ₂) ₆ CH ₃	(126)	(13)	(206)
1-Octanethiol	390	156	
$C_8H_{17}SH$	(199)	(69)	
(n-Octyl Mercapian)			
1-Octanol		See Octyl Alcoho	1.
2-Octanol	363	190	
CH ₃ CHOH(CH ₂) ₅ CH ₃	(184)	(88)	
1-Octene	250	70	446
$CH_2:C_7H_{14}$	(121)	(21)	(230)
Octyl Acetate		See 2-Ethylhexyl Acetat	e.
Octyl Alcohol	381	178	
$CH_3(CH_2)_6CH_2OH$ (1-Octanol)	(194)	(81)	
Octylamine	338	140	
CH ₃ (CH ₂) ₆ CH ₂ NH ₂	(170)	(60)	
(1-Aminooctane)			
tert-Octylamine	284	91	
(CH ₃) ₃ CCH ₂ C(CH ₃) ₂ NH ₂ (1,1,3,3-Tetramethyl- butylamine)	(140)	(33)	
Octvl Chloride	359	158	
CH ₂ (CH ₂) ₇ Cl	(182)	(70)	
Octvlene Glycol	475	230	635
$(CH_2(CH_2)_2CHOH)_2$	(246)	(110)	(335)
tert-Octyl Mercaptan	318-329	115	(000)
C _e H ₁₇ SH	(159–165)	(46)	
- 81/	(10) 100)	(0c)	
p-Octylphenyl Salicylate		420	780
$C_{21}H_{26}O_3$		(216)	(416)
Oil of Mirbane		See Nitrobenzene.	
Oil of Wintergreen		See Methyl Salicylate.	
Oleic Acid	547	372	685
C ₈ H ₁₇ CH:CH(CH ₂) ₇ COOH (Red Oil)	(286)	(189)	(363)
Distilled		364	
Distilica		(184)	
Ovalic Ether		See Ethyl Oxalate	
Oxirane		See Ethylene Oxide	
Paraffin Oil		444	
(See also Lubricating Oil)		(229)	
Paraformaldehvde		158	572
HO(CH ₂ O) ₂ H		(70)	(300)
Paraldehyde	255	96	460
(CH ₂ CHO) ₂	(124)	(36)	(238)
1.2.3.4.5-Pentamethyl	449	200	800 est
Benzene	(232)	(93)	(427)
C ₆ H(CH ₃) ₅ (Pentamethylbenzene)	()	()	()

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Pentamethylene Dichloride		See 1,5-Dicl	hloropentane.
Pentamethylene Glycol	See 1,5-Pentanediol.		
Pentamethylene Oxide	178	-4	
O(CH ₂) ₄ CH ₂	(81)	(-20)	
(Tetrahydropyran)			
Pentanal		See Valeralde	ehyde.
Pentane	97	<-40	500
CH ₃ (CH ₂) ₃ CH ₃	(36)	(<-40)	(260)
1,5-Pentanediol	468	265	635
HO(CH ₂) ₅ OH	(242)	(129)	(335)
(Pentamethylene Glycol)			
2,4-Pentanedione	284	93	644
CH ₃ COCH ₂ COCH ₃	(140)	(34)	(340)
(Acetyl Acetone)			
Pentanoic Acid	366	205	752
C ₄ H ₉ COOH	(186)	(96)	(400)
(Valeric Acid)			
1-Pentanol		See Amy	l Alcohol.
2-Pentanol		See Methyl Pr	ropyl Carbinol.
3-Pentanol	241	105	815
CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	(116)	(41)	(435)
(tert-n-Amyl Alcohol)			
1-Pentanol Acetate		See Amy	l Acetate.
2-Pentanol Acetate		See sec-Ar	nyl Acetate.
2-Pentanone		See Methyl F	Propyl Ketone.
3-Pentanone		See Dieth	yl Ketone.
Pentaphen	482	232	
$C_5H_{11}C_6H_4OH$	(250)	(111)	
(p-tert-Amyl Phenol)			
1-Pentene	86	0	527
CH ₃ (CH ₂) ₂ CH:CH ₂	(30)	(-18)	(275)
(Amylene)		G 0.4	· ·
1-Pentene-cis		See β -An	nylene-cis.
2-Pentene-trans		See β -Am	ylene-trans.
Pentylamine		See Am	ylamine.
Pentyloxypentane		See Am	lyi Ether.
Pentyl Propionate	104	See Amyl	Propionate.
1-Pentyne	104	<-4	
$HC_1CC_3H_7$	(40)	(<-20)	
(n-Propyl Acetylene)	250	N	N
Perchloroethylene	250	None	None
$Cl_2 C = CCl_2$	(121)		
(leurachioroeunylene)	197 100		175
C II	18/-192		4/5
$C_{14}\Pi_{24}$	(80–89)		(240)
(Tetradecanydro Dhananthrana)			
Patroloum Crude Oil		20,00	
renoieum, crude On		20-90	
		(-/ 10 32)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Petroleum Ether	95-140	<0	550
(Benzine)	(35-60)	(<-18)	(288)
(Petroleum Naphtha)	· · · ·		. ,
Petroleum Pitch		See A	sphalt.
β -Pheliandrene	340	120	1
CH ₂ :CCH:CHCH[CH(CH ₃) ₂]CH ₂ CH ₂	(171)	(49)	
(p-Mentha-1(7), 2-Diene)			
Phenanthrene	644	340	
$(C_{\ell}H_{\ell}CH)_{2}$	(340)	(171)	
(Phenanthrin)	(2.10)	()	
Phenethyl Alcohol	430	205	
C ₄ H ₅ CH ₂ CH ₂ OH	(221)	(96)	
(Benzyl Carbinol)			
(Phenylethyl Alcohol)			
o-Phenetidine	442-446	239	
$H_2NC_6H_4OC_2H_5$	(228-230)	(115)	
(2-Ethoxyaniline)			
(o-Amino-Phenetole)			
p-Phenetidine	378-484	241	
$C_2H_5OC_0H_4NH_2$	(192-251)	(116)	
(1-Amino-4-Ethoxy-benzene)			
(p-Aminophenetole)			
Phenetole		See Etho:	xybenzene.
Phenol	358	175	1319
C ₆ H ₅ OH	(181)	(79)	(715)
(Carbolic Acid)			
2-Phenoxyethanol		See Ethylene Glycol, Phenyl Ether.	
Phenoxy Ethyl Alcohol	468	250	2
C ₆ H ₅ O(CH ₂) ₂ OH	(242)	(121)	
(2-Phenoxyethanol)			
(Phenyl Cellosolve)			
N-(2-Phenoxyethyl) Anlline	396	338	
C ₆ H ₅ O(CH ₂) ₃ NHC ₆ H ₅	(202)	(170)	
β -Phenoxyethyl Chloride		See β -Chlorop	ohenetole.
Phenylacetaldehyde	383	160	
C ₆ H ₅ CH ₂ CHO	(195)	(71)	
(α -Toluic Aldehyde)			
Phenyl Acetate	384	176	
CH ₃ COOC ₆ H ₅	(196)	(80)	
(Acetylphenol)			
Phenylocetic Acid	504	>212	
C ₆ H ₅ CH ₂ COOH	(262)	(>100)	
(α -Toluic Acid)			
Phenylamine		See A	niline.
N-Phenylaniline		See Diph	enylamine.
Phenylbenzene		See B	iphenyl.
Phenyl Bromide		See Bron	nobenzene.
Phenyl Carbinol		See Benz	yl Alcohol.
Phenyl Chloride		See Chlo	robenzene.
Phenyicyclohexane		See Cycloh	exylbenzene.
Phenyl Didecyl Phosphite		425	
$(C_6H_5O)P(OC_{10}H_{21})_2$		(218)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.40	Boiling Points, Fl	lash Points, an	d Ignition	Temperatures of	Organic	Compounds	(Continued)
-------------------	--------------------	-----------------	------------	-----------------	---------	-----------	-------------

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
N-Phenyldiethanolamine	376	385	730
$C_6H_5N(C_2H_4OH)_2$	(191)	(196)	(387)
Phenyidiethylamine		See N,N-Diethylaniline	
o-Phenylenediamine	513	313	
$NH_2C_6H_4NH_2$	(267)	(156)	
(1,2-Diaminobenzene)			
Phenylethane		See Ethylbenzene.	
N-Phenylethanolamine	545	305	
C ₆ H ₅ NHC ₂ H ₄ OH	(285)	(152)	
Phenylethyl Acetate (β)	435	230	
C ₆ H ₅ CH ₂ CH ₂ OOCCH ₃	(224)	(110)	
Phenylethyl Alcohol		See Phenethyl Alcohol.	
Phenylethylene		See Styrene.	
N-Phenyl-N-Ethyl-	514	270	685
ethanolamine	(268)	(132)	(362)
$C_6H_5N(C_2H_5)C_2H_4OH$	@740 mm	(oc)	
Phenylhydrazine	Decomposes	190	
C ₆ H ₅ NHNH ₂		(88)	
Phenylmethane		See Toluene.	
Phenylmethyl Ethanol Amine	378	280	
$C_6H_5N(CH_3)C_2H_4OH$	(192)	(138)	
(2-(N-Methylaniline)-	@100 mm		
Ethanol)			
Phenyl Methyl Ketone		See Acetophenone.	
4-Phenylmorpheline	518	220	
$C_6H_5NC_2H_4OCH_2CH_2$	(270)	(104) (oc)	
Phenylpentane		See Amylbenzene.	
o-Phenylphenol	547	255	986
C ₆ H ₅ C ₆ H ₄ OH	(286)	(124)	(530)
Phenylpropane		See Propylbenzene.	
2-Phenylpropane		See Cumene.	
Phenylpropyl Alcohol	426	212	
$C_6H_5(CH_2)_3OH$	(219)	(100)	
(Hydrocinnamic Alcohol)			
(3-Phenyl-l-propanol)			
(Phenylethyl Carbinol)			
Phenyl Propyl Aldehyde		205	
C ₆ H ₅ CH ₂ CH ₂ CHO		(96)	
(3-Phenylpropionaldehyde)			
(Hydrocinnamic Aldehyde)			
Phenyl Toluene o	500	>212	923
$C_6H_5C_6H_4CH_3$	(260)	(>100)	(495)
(2-Methylbiphenyl)			
Phorone	388	185	
(CH ₃) ₂ CCHCOCHC(CH ₃) ₂	(198)	(85)	
Phosphine	-126		212
PH ₃	(-88)	224	(100)
Phthalic Acid	552	334	
$C_6H_4(COOH)_2$	(289)	(168)	1050
Phthalic Anhydride	543	305	1058
$C_6H_4(CO)_2O$	(284)	(152)	(570)

	1 (0)
m-Phthalyl Dichloride See Isophthaloyl Chlorid	e.
2-Picoline 202 102	(538)
$(126) \tag{59}$	(338)
(2-Methylpyhane) (00) 4 Dicolino 202 134	
$CH_{C,H,N}$ (144) (57)	
(4-Methylnyridine)	
Pinane 336	523
$C_{10}H_{18}$ (151)	(273)
α -Pinene 312 91	491
$C_{10}H_{16}$ (156) (33)	(255)
Pine Oil 367–439 172	
Steam Distilled (186–226) (78)	
138	
(59)	
Pine Pitch 490 285	
(254) (141)	
Pine Tar 208 130	671
(98) (54)	(355)
Pine Tar Oil 144	
(Wood Tar Oil) (62)	
Piperazine 294 178	
$\operatorname{HNCH}_{2}\operatorname{CH}_{2}\operatorname{NHCH}_{2}\operatorname{CH}_{2} $ (146) (81)	
Piperidine 223 (00)	
$(CH_2)_{\rm S}NH$ (106) (16)	
(Hexahydropyridine)	
Polyamyl Naphthalene 667–747 360	
Mixture of Polymers (353–397) (182)	
Polyethylene Glycols 360–550	
$OH(C_2H_5O)_nC_2H_4OH$ (182–287)	
Polyoxyethylene Lauryl Ether >200	
$C_{12}H_{25}O(OCH_2CH_2)_nOH$ (>93)	
Polypropylene Glycols Decomposes 365	
$OH(C_3H_6O)_nC_3H_4OH $ (185)	
Polyvinyl Alcohol Mixture of 175	
Polymers (79)	
Potassium Xanthate 392 205	
$KS_2C-OC_2H_5$ (200) (96)	
Decomposes	405
$\begin{array}{c} \mathbf{rropanar} \\ \mathbf{CH} \ \mathbf{CH} \ \mathbf{CH} \\ \mathbf{CH} \ \mathbf{CH} \\ \mathbf{CH} \ \mathbf{CH} \\ \mathbf{CH} \ \mathbf{CH} \\ \mathbf$	403
$(\mathbf{Propionaldehyde})$ (49) (-50)	(207)
Propage	842
CH_CH_CH_ (-42)	(450)
1.3-Pronanediamine 276 75	(450)
$NH_2CH_2CH_2NH_2$ (136) (24)	
(1.3-Diaminopropane)	
(Trimethylenediamine)	
1,2-Propanediol See Propylene Glyce	ol.
1,3-Propanediol See Trimethylene Gly	col.
1-Propanol See Propyl Alcoho	l.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point	Flash point,	Ignition point,
	1 (C)	1(0)	1 (C)
2-Propanol		See Isoproj	pyl Alcohol.
2-Propanone		See A	cetone.
Propanoyl Chloride	220	See Propior	iyl Chloride.
Propargyl Alcohol	239	97	
HC ₁ CCH ₂ OH	(115)	(36)	
(2-Propyn-1-ol)	102	-	<i></i>
Propargyl Bromide	192	50	615
HC_1CCH_2Br	(89)	(10)	(324)
(3-Bromopropyne)			
Propene		See Pro	opylene.
2-Propenylamine		See All	ylamine.
Propenyl Ethyl Ether	158	<20	
CH ₃ CH:CHOCH ₂ CH ₃	(70)	(<-7)	
eta-Propiolactone	311	165	
$C_3H_4O_2$	(155)	(74)	
Propionaldehyde		See Pr	opanal.
Propionic Acid	297	126	870
CH ₃ CH ₂ COOH	(147)	(52)	(465)
Propionic Anhydride	336	145	545
$(CH_3CH_2CO)_2O$	(169)	(63)	(285)
Propionic Nitrile	207	36	
CH ₃ CH ₂ CN	(97)	(2)	
(Propionitrile)			
Propionic Chloride	176	54	
CH ₃ CH ₂ COCl	(80)	(12)	
(Propanoyl Chloride)			
Propyl Acetate	215	55	842
C ₃ H ₇ OOCCH ₃	(102)	(13)	(450)
(Acetic Acid, n-Propyl Ester)			
Propyl Alcohol	207	74	775
CH ₃ CH ₂ CH ₂ OH	(97)	(23)	(412)
(1-Propanol)			
Propylamine	120	-35	604
CH ₃ (CH ₂) ₂ NH ₂	(49)	(-37)	(318)
Propylbenzene	319	86	842
$C_{2}H_{7}C_{4}H_{5}$	(159)	(30)	(450)
(Phenylpropane)			
2-Propylbiphenyl	~536	>212	833
$C_{\epsilon}H_{\epsilon}C_{\epsilon}H_{4}C_{2}H_{7}$	(~280)	(>100)	(445)
n-Propyl Bromide	160		914
C ₂ H ₇ Br	(71)		(490)
(1-Bromopropane)	()		(
n-Propyl Butyrate	290	99	
C ₂ H ₂ COOC ₂ H ₂	(143)	(37)	
Pronyl Carbinol	(113)	See Butyl Al	cohol
Propyl Chloride	115	<0	968
C-H-Cl	(46)	(<-18)	(520)
Pronyl Chlorothiolformate	311	145	(520)
C.H.SCOCI	(155)	(63)	
Pronylevelohovano	313_315	(03)	178
H.C.C.H.	(156, 157)		(2/8)
Pronylevelopentane	260		(240)
снсн	(121)		(260)
(1 Cyclopontylpronone)	(131)		(209)
(1-Cyclopentylpropane)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Propylene CH ₂ :CHCH ₃ (Propene)	-53 (-47)	Gas	851 (455)
Pronylene Aldehyde		See Croton	aldehvde
Pronylene Carbonate	468	275	aldenyde.
OCH ₂ CH ₂ CH ₂ OCO	(242)	(135)	
Propylene Chlorohydrin	()	See 2-Chlor	ro-1-Propanol.
sec-Propylene Chlorohydrin		See 1-Chlor	ro-2-Propanol.
Propylenedlamine	246	92	780
CH ₃ CH(NH ₂)CH ₂ NH ₂	(119)	(33) (oc)	(416)
Propylene Dichloride	205	60	1035
CH ₃ CHCICH ₂ Cl	(96)	(16)	(557)
(1,2-Dichloropropane)			
Propylene Glycol	370	210	700
CH ₃ CHOHCH ₂ OH	(188)	(99)	(371)
(Methyl Ethylene Glycol)			
(1,2-Propanediol)		Cas Matheal C	I1 A
Propylene Glycol Acetate	202	See Methyl G	lycol Acetate.
Ethor	285	(42)	
Euler Pronylong Clysol Mothyl Ethor	(140)	(45)	
CH.OCH.CHOHCH.	(120)	90 (32)	
(1-Methoxy-2-propagol)	(120)	(32)	
Pronylene Glycol Methyl Ether	295	108	
Acetate	(146)	(42)	
(99% Pure)	(110)	(12)	
Pronvlene Glycol Monoacylate	410	207	
CH ₂ :CHCOO(C ₂ H ₆)OH	(210)	(97)	
(Hydroxypropyl Acrylate)			
Propylene Oxide	94	-35	840
OCH ₂ CHCH ₃	(35)	(-37)	(449)
n-Propyl Ether	194	70	370
$(C_3H_7)_2O$	(90)	(21)	(188)
(Dipropyl Ether)	()		()
Propyl Formate	178	27	851
HCOOC ₃ H ₇	(81)	(-3)	(455)
Propyl Methanol		See But	yl Alcohol.
Propyl Nitrate	231	68	347
CH ₃ CH ₂ CH ₂ NO ₃	(111)	(20)	(175)
Propyl Proplonate	245	175	
CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃	(118)	(79)	
Propyltrichlorosilane	254	98	
$(C_3H_7)SiCl_3$	(123.5)	(37)	
Propyne	-10		
CH ₃ C ₁ CH	(-23)		
(Allylene)			
(Methylacetylene)			
Pseudocumene		See 1,2,4-Tri	methylbenzene.
Pyridine	239	68	900
$CH < (CHCH)_2 > N$	(115)	(20)	(482)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Pyrrole	268	102	
(CHCH) ₂ NH	(131)	(39)	
(Azole)			
Pyrrolidine	186–189	37	
NHCH ₂ CH ₂ CH ₂ CH ₂	(86–87)	(3)	
(Tetrahydropyrrole)			
2-Pyrrolidine	473	265	
NHCOCH ₂ CH ₂ CH ₂	(245)	(129)	
Ouinoline	460		896
C ₆ H ₄ N:CHCH:CH	(238)		(480)
Range Oil	See Fuel Oil	I No. 1	
Range On Rane Seed Oil	See I dei Oli	325	836
(Colza Oil)		(163)	(447)
Resorcinol	531	261	1126
C ₂ H ₄ (OH) ₂	(277)	(127)	(608)
(Dihydroxybenzol)	(217)	(1=7)	(000)
Rhodinol	237-239	>212	
CH ₂ :C(CH ₂)(CH ₂) ₂ CH—	(114 - 115)	(>100)	
$(CH_3)(CH_2)_2OH$	@12 mm		
Rosin Oil	>680	266	648
	(>360)	(130)	(342)
Salicylaldehyde	384	172	
HOC ₆ H ₄ CHO	(196)	(78)	
(o-Hydroxybenzaldehyde)			
Salicylic Acid	Sublimes	315	1004
HOC ₆ H ₄ COOH	@169	(157)	(540)
	(76)		
Safrole	451	212	
$C_3H_5C_6H_3O_2CH_2$	(233)	(100)	
(4-allyl-1,2-Mathylenedioxy-			
benzene)			
Santatol	~575	>212	
C ₁₅ H ₂₄ O	(~300)	(>100)	
(Arheol)			
Sesame Oil		491	
		(255)	
Soy Bean Oil		540	833
		(282)	(445)
Sperm Oil No. 1		428	586
No. 2		(220)	(308)
		460	
		(238)	
Stearic Acid	726	385	743
$CH_3(CH_2)_{16}COOH$	(386)	(196)	(395)
Steryl Alcohol	410		842
$CH_3(CH_2)_{17}OH$	(210)		(450)
(1-Ocladecanol)	@15 mm	00	014
Styrene	295	88	914
$C_6H_5CH:CH_2$	(146)	(31)	(490)
(Unnamene)			
(FileHyleHyleHe) (Vinyl Benzene)			
(vinyi Delizene)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Styrene Oxide		165	929
C ₆ H ₅ CHOCH ₂		(74)	(498)
Succinonitrile	509-513	270	
NCCH ₂ CH ₂ CN	(265-267)	(132)	
(Ethylene Dicyanide)			
Sulfolane	545	350	
$CH_2(CH_2)_3SO_2$	(285)	(177)	
(Tetrahydrothiophene-1,1-Dioxide)			
(Tetramethylune Sulfone)			
Tartaric Acid (d, 1)		410	797
(CHOHCO ₂ H) ₂		(210)	(425)
		(oc)	
Terephthalle Acid	Sublimes	500	925
$C_6H_4(COOH)_2$	above	(260)	(496)
(para-Phthalic Acid)	572		
(Benzene-para-Dicarboxylic Acid)	(300)		
Terephthaloyl Chloride	498	356	
$C_6H_4(COCI)_2$	(259)	(180)	
(Terephthalyl Dichloride)			
(p-Phthalyl Dichloride)			
(1,4-Benzenedicarbonyl Chloride)			
o-Terphenyl	630	325	
$(C_6H_5)_2C_6H_4$	(332)	(163)	
m-Terphenyl	685	375	
$(C_6H_5)_2C_6H_4$	(363)	(191)	
Terpineol	417-435	195	
$C_{10}H_{17}OH$	(214-224)	(91)	
(Terpilenol)			
Terpinyl Acetate	428	200	
$C_{10}H_{17}OOCCH_3$	(220)	(93)	
Tetraamylbenzene	608-662	295	
$(C_5H_{11})_4C_6H_2$	(320-350)	(146)	
1,1,2,2-Tetrabromoethane	275		635
CHBr ₂ CHBr ₂	(135)		(335)
(Acetylene Tetrabromide)			· · ·
1,2,4,5-Tetrachlorobenzene	472	311	
$C_6H_{12}Cl_4$	(245)	(155)	
Tetradecane	487	212	392
$CH_3(CH_2)_{12}CH_3$	(253)	(100)	(200)
Tetradecanol	507	285	· · ·
$C_{14}H_{20}OH$	(264)	(141)	
		(oc)	
1-Tetradecene	493	230	455
$CH_2:CH(CH_2)_{11}CH_3$	(256)	(110)	(235)
tert-Tetradecyl Mercaptan	496-532	250	
C ₁₄ H ₂₀ SH	(258 - 278)	(121)	
Tetraethoxypropane	621	190	
$(C_2H_5O)_4C_2H_4$	(327)	(88)	
Tetra (2-Ethylbutyl) Silicate	460	335	
$[C_2H_5CH(C_2H_5)CH_2O]_4Si$	(238)	(168)	
L=2-30000(02003)0002003400	@50 mm	(190)	
Tetraethylene Glycol	Decomposes	360	
HOCH ₂ (CH ₂ OCH ₂) ₂ CH ₂ OH	2 ccomposes	(182)	
		(102)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Tetraethylene Glycol, Dimethyl		See Dimethoxy	Tetraglycol.
Ether			
Tetraethylene Pentamine	631	325	610
$H_2N(C_2H_4NH)_3C_2H_4NH_2$	(333)	(163)	(321)
Tetra (2-Ethylhexyl) Silicate		390	
$[C_4H_9CH(C_2H_5)CH_2O]_4Si$		(199)	
Tetrafluoroethylene	-105		392
$F_2C:CF_2$	(-76)		(200)
(TFE)			
(Perfluoroethylene)			
1,2,3,6-Tetrahydrobenzaldehyde	328	135	
CH ₂ CH:CHCH ₂ CH ₂ CHCHO	(164)	(57)	
(3-Cyclohexene-1-Carboxaldehyde)			
endo-Tetrahydrodicyclopentadiene	379		523
$C_{10}H_{16}$	(193)		(273)
(Tricyclodecane)			
Tetrahydrofuran	151	6	610
OCH ₂ CH ₂ CH ₂ CH ₂ CH ₂	(66)	(-14)	(321)
(Diethylene Oxide)			
(Tetramethylene Oxide)			
Tetrahydrofurfuryl Alcohol	352	167	540
C ₄ H ₇ OCH ₂ OH	(178)	(75)	(282)
	@743 mm		
Tetrahydrofurfuryl Oleale	392-545	390	
C ₄ H ₇ OCH ₂ OOCC ₁₇ H ₃₃	(200-285)	(199)	
	@16 mm		
Tetrahydronaphthalene	405	160	725
$C_6H_2(CH_3)_2C_2H_4$	(207)	(71)	(385)
(Tetralin)			
Tetrahydropyran		See Pentamethyle	ne Oxide.
Tetrahydropyran-2-Methanol	368	200	
OCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHCH ₂ OH	(187)	(93)	
Tetrahydropyrrole		See Pyrrolic	line.
Tetralin		See Tetrahydrono	phthalene.
1.1.3.3-Tetramethoxy-propane	361	170	L
[(CH ₂ O) ₂ CH] ₂ CH ₂	(183)	(77)	
1.2.3.4-Tetramethylbenzene 95%	399-401	166	800
$C_6H_2(CH_2)_4$	(204 - 205)	(74)	est.
(Prohnitene)			(427)
1,2,3,5-Tetramethylbenzene 85.5%	387-389	160	800
$C_6H_2(CH_2)_4$	(197 - 198)	(71)	est.
(Isodurene)			(427)
1,2,4,5-Tetramethylbenzene 95%	385	130	
$C_6H_2(CH_3)_4$	(196)	(54)	
(Durene)	×/	x- /	
Tetramethylene		See Cyclobuta	ine
Tetramethyleneglycol	230	734	
CH ₂ OH(CH ₂) ₂ CH ₂ OH	(110)	(390)	
Tetramethylene Oxide	× -7	See Tetrahvdro	furan.
Tetramethyl Lead, Compounds		100	
Pb(CH ₃) ₄		(38)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
2,2,3,3-Tetramethyl Pentane	273	<70	806
(CH ₃) ₃ CC(CH ₃) ₂ CH ₂ CH ₃	(134)	(<21)	(430)
2,2,3,4-Tetramethyl-pentane	270	<70	
(CH ₃) ₃ CCH(CH ₃)CH(CH ₃) ₂	(132)	(<21)	
	172	<70	
Thialdine	Decomposes	200	
SCH(CH ₃)SCH(CH ₃)NHCHCH ₃		(93)	
2,2-Thiodiethanol	540	320	
(HOCH ₂ CH ₂) ₂ S	(282)	(160)	
(Thiodiethylene Glycol)			
Thiodiethylene Glycol		See 2,2-Thio	diethanol.
Thiodiglycol	541	320	568
(CH ₂ CH ₂ OH) ₂ S	(283)	(160)	(298)
(Thiodiethylene Glycol)			
(Beta-bis-Hydroxyethyl Sulfide)			
(Dihydroxyethyl Sulfide)			
Thiophene	184	30	
SCH:CHCH:CH	(84)	(-1)	
1,4-Thioxane	300	108	
$O(CH_2CH_2)_2S$	(149)	(42)	
(1,4-Oxathiane)			
Toluene	231	40	896
C ₆ H ₅ CH ₃	(111)	(4)	(480)
(Methylbenzene)			
(Phenylmethane)			
	49.4	2(0	
CUCUCUCO	484	200	
$CH_3C_6H_3(NCO)_2$	(231)	(127)	
$C_{\rm H}$ (SO ₂ H)(CH ₂)	(140)	(184)	
C ₆ H ₄ (3O ₃ H)(CH ₃)	@ 20 mm	(104)	
Toluhydroquinone	545	342	875
$C_{4}H_{2}(OH)_{2}CH_{2}$	(285)	(172)	(468)
(Methylhydroquinone)	()		
o-Toluidine	392	185	900
$CH_3C_6H_4NH_2$	(200)	(85)	(482)
(2-Methylaniline)			
p-Toluidine	392	188	900
$CH_3C_6H_4NH_2$	(200)	(87)	(482)
(4-Mothylaniline)			
Toluol		See T	oluene.
m-Tolydiethanolamine	400	740	0.6
$(HOC_2H_4)_2NC_6H_4CH_3$	(204)	(393)	
(MTDEA)			
2,4-Tolylene Diisocyanate		See Toluene-2	4-Diisocyanate.
o- Ioiyi Phosphate		See Tri-o-Cre	esyi Phosphate.
o- Ioiyi p- Ioiuene Sulfonate		363	
$U_{14}H_{14}U_3S$		(184)	
(Tropoil Oil)		293	
(11011SILOII) Triacotin		(140) Soo Chuson	vl Triacetate
		See Giycer	yi illacetate.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
Tri	1(0)	215	1 (0)
Iriamylamine	453	215	
$(C_5\Pi_{11})_{3}N$	(234)	(102)	
(C H) C H	(302)	(132)	
$(C_5\Pi_{11})_3C_6\Pi_3$	(302)	(132)	
(C H) N	(214)	(86)	
Tri-n-Butyl Borate	(214)	200	
B(OC,H ₂),	(230)	(93)	
Tributyl Citrate	450	315	695
C ₂ H ₂ (OH)(COOC ₂ H ₂) ₂	(232)	(157)	(368)
Tributyl Phosphate	560	295	(200)
$(C_4H_0)_2PO_4$	(293)	(146)	
Tributylphosphine	473	(110)	392
(C ₄ H ₂) ₂ P	(245)		(200)
Tributyl Phosphite	244-250	248	(200)
$(C_4H_0)_2PO_2$	(118–121)	(120)	
(-49/33	@7 mm	(-=*)	
1,2,4-Trichlorobenzene	415	222	1060
C ₆ H ₂ CI ₂	(213)	(105)	(571)
1,1,1-Trichloroethane	165		
CH ₃ CCI ₃	(74)		
(Methyl Chloroform)			
Trichloroethylene	188		788
CIHC:CCI ₂	(87)		(420)
1,2,3-Trichloropropane	313	160	
CH2CICHCICH2CI	(156)	(71)	
(Allyl Trichloride)			
(Glyceryl Trichlorohydrin)			
Trichlorosllane	89	7	
HSiCI ₃	(32)	(-14)	
Tri-o-Cresyl Phosphate	770	437	725
$(CH_3C_6H_4)_3PO_4$	(410)	(225)	(385)
(o-Tolyl Phosphate)	Decomposes		
Tridecanol	525	250	
$CH_3(CH_2)_{12}OH$	(274)	(121)	
2-Tridecanone		See Methyl U	ndecyl Ketone.
Tridecyl Acrylate	302	270	
CH ₂ :CHCOOC ₁₃ H ₂₇	(150)	(132)	
	@10 mm		
Tridecyl Alcohol	485–503	180	
$C_{12}H_{25}CH_2OH$	(252–262)	(82)	
(Tridecanol)			
Tridecyl Phosphite	356	455	
$(C_{10}H_{21}O)_{3}P$	(180)	(235)	
	@0.1 mm		
Triethanolamine	650	354	
$(CH_2OHCH_2)_3N$	(343)	(179)	
(2,2',2"-Nitrilotriethanol)	271	210	
1,1,3-Triethoxyhexane	271	210	
$CH(OC_2H_5)_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH$	(133)	(99)	
$(UC_2H_5)C_8H_7$	@50 mm		
	Decomposes		
T	@ /60 mm	16	400
	193	10	480
$(C_2 \Pi_5)_3 N$	(89)	(-/)	(249)

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
1.2.4-Triethylbenzene	423	181	
$(C_2H_2)_2C_4H_2$	(217)	(83)	
Triethyl Cltrate	561	303	
HOC(CH ₂ CO ₂ C ₂ H ₂)CO ₂ H ₂ H ₂	(294)	(151)	
Triethylene Glycol	546	350	700
HOCH ₂ (CH ₂ OCH ₂) ₂ CH ₂ OH	(286)	(177)	(371)
(Dicaproate)	()	()	(0.0)
Triethylene Glycol Diacetate	572	345	
CH ₂ COO(CH ₂ CH ₂ O) ₂ COCH ₃	(300)	(174)	
(TDAC)	()		
Triethylene Glycol, Dimethyl Ether	421	232	
CH ₃ (OCH ₂) ₃ OCH ₃	(216)	(111)	
Triethylene Glycol, Ethyl Ether		See Ethoxytr	iglycol.
Triethylene Glycol, Methyl Ether		See Methoxy	Friglycol.
Triethyleneglycol Monobutyl Ether	270	290	0,
$C_4H_9O(C_2H_4O)_3H$	(132)	(143)	
Triethylenetetramine	532	275	640
N ₂ NCH ₂ (CH ₂ NHCH ₂) ₂ CH ₂ NH ₂	(278)	(135)	(338)
Triethyl Phosphate	408-424	240	850
$(C_2H_5)_3PO_4$	(209 - 218)	(115)	(454)
(Ethyl Phosphate)	· · · · ·		. ,
Trifluorochloroethylene	-18		
CF ₂ :CFCI (R-1113)	(-28)		
(Chlorotrifluoroethylene)			
Triglycol Dichloride	466	250	
ClCH ₂ (CH ₃ OCH ₂) ₂ CH ₂ Cl	(241)	(121)	
Trihexyl Phosphite	275-286	320	
$(C_6H_{13})_3PO_3$	(135–141)	(160)	
	@2 mm		
Triisopropanolamine	584	320	608
[(CH ₃) ₂ COH] ₃ N	(307)	(160)	(320)
(1,1',1"-Nitrolotri-2-propanol)			
Triisopropylbenzene	495	207	
$C_6H_3(CH_3CHCH_3)_3$	(237)	(97)	
Triisopropyl Borate	288	82	
$(C_3H_7O)_3B$	(142)	(28)	
Triiauryl Trithiophosphite		398	
$[CH_{3}(CH_{2})_{11}S]_{3}P$		(203)	
Trimethylamine	38		374
$(CH_3)_3N$	(3)		(190)
1,2,3-Trimethylbenzene	349	111	878
$C_6H_3(CH_3)_3$	(176)	(44)	(470)
(Hemellitol)			
1,2,4-Trimethylbenzene	329	112	932
$C_6H_3(CH_3)_3$	(165)	(44)	(500)
(Pseudocumene)			
1,3,5-Trimethylbenzene	328	122	1039
$C_6H_3(CH_3)_3$	(164)	(50)	(559)
(Mesitylene)			
Trimethyl Borate		See Methyl E	Borate.
2,2,3-Trimethylbutane	178	<32	774
(CH ₃) ₃ C(CH ₃)CHCH ₃	(81)	(<0)	(412)
(Triptane—an isomer of Heptane)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, Ig °F (°C)	gnition point, °F (°C)
2 3 3-Trimethyl-1-Butene	172	<32	707
$(CH_3)_3CC(CH_3):CH_2$ (Henlylene)	(78)	(<0)	(375)
Trimethyl Carbinol		See tert-Butyl Alcoh	ol
Trimethylchlorosijane	135	_18	01.
(CH ₂) ₂ SiCI	(57)	(-28)	
1.3.5-Trimethylcyclohexane	283	(20)	597
(CH ₂) ₂ C ₂ H ₂	(139)		(314)
(Hexahydromesitylene)	(155)		(311)
Trimethylcyclohexanol	388	165	
CH(OH)CH ₂ C(CH ₂) ₂ CH ₂ CH(CH ₂)CH ₂	(198)	(74)	
	(1)0)	(, ,)	
3,3,5-Trimethyl-1-Cyclohexanol	388	190	
CH ₂ CH(CH ₃)CH ₂ C(CH ₃) ₂ CH ₂ CHOH	(198)	(88)	
Trimethylene		See Cyclopropane.	
Trimethylenediamine	417	See 1,3-Propanediamine	750
	41/		(100)
$HO(CH_2)_3OH$	(214)		(400)
(1,5-Propanedioi)		See 2 methyl 2 Dutene	
2 5 5 Trimothylbontono	304	See 2-memyi-2-Butene.	527
C = C(CH) (CH) CH(CH)	(151)	(<55)	(275)
2 2 5-Trimethylhevene	255	55	(275)
(CH ₂),C(CH ₂),CH(CH ₂),	(124)	(13)	
(eng)3e(eng)2en(eng)2	(124)	(00)	
3.5.5-Trimethylhexanol	381	200	
CH ₃ C(CH ₃) ₂ CH ₂ CH(CH ₃)CH ₂ -	(194)	(93)	
248-Trimothyl-6-Nonanol	401	100	
C H CH(OH)C H	(255)	(03)	
(2.6.8-Trimethyl-4-nonanol)	(255)	(55)	
2.6.8-Trimethyl-4-Nonanol	438	200	
(CH ₂)-CHCH ₂ CH(OH)CH ₂ -	(226)	(93)	
CH(CH ₂)CH ₂ CH(CH ₂) ₂	(220)	(30)	
2.6.8-Trimethyl-4-Nonanone	425	195	
(CH ₂) ₂ CHCH ₂ CH(CH ₂)CH ₂ -	(218)	(91)	
COCH ₂ CH(CH ₃) ₂			
2,2,4-Trimethylpentane	211	10	779
(CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	(99)	(-12)	(415)
2,3,3-Trimethylpentane	239	<70	797
$CH_3CH_2C(CH_3)_2CH(CH_3)_2$	(115)	(<21)	(425)
2,2,4-Trimethyl-1,3-Pentanediol	419-455	235	655
(CH ₃) ₂ CHCH(OH)C(CH ₃) ₂ - CH ₂ OH	(215–235)	(113)	(346)
2,2,4-Trimethyl pentanediol	536	250	795
Diisobutyrate	(280)	(121)	(424)
$C_{16}H_{30}O_4$. ,
2,2,4-Trimethyl 1,3-Pentanediol	356-360	248	740
Isobutyrate	125 mm	(120)	(393)
(CH ₃) ₂ CHCH(OH)C(CH ₃) ₂ -	(180–182)		
$C_{\Pi_2}OUCCH(C_{\Pi_3})_2$	1(7	225	
2,2,4- 1Filletilyipentanedioi	(75)	525	
$C_{19}H_{28}O_4$	@10 mm	(103)	

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point	Ignition point
Compound	°F (°C)	°F (°C)	°F (°C)
	214	70	1 (0)
2,3,4-Trimethyl-1-Pentene	214	0</td <td>495</td>	495
$H_2C:C(CH_3)CH(CH_3)CH(CH_3)_2$	(101)	(<21)	(257)
2,4,4- Irinethyl-1-Pentene	(101)	23	(201)
$(D_2:C(C\Pi_3)C\Pi_2C(C\Pi_3)_3)$	(101)	(-3)	(391)
2 4 4 Trimothyl-2 Pontono	221	35	581
CH CH:C(CH)C(CH)	(105)	(2)	(305)
CH3CH.C(CH3)C(CH3)3	(105)	(2)	(303)
3 4 4-Trimethyl-2-Pentene	234	<70	617
(CH ₂) ₂ CC(CH ₂) ² CHCH ₂	(112)	(<21)	(325)
Trimethyl Phosphite	232-234	130	(323)
(CH ₂ O) ₂ P	(111-112)	(54)	
Trioctyl Phosphite	212	340	
$(C_8H_{17}O)_2P$	(100)	(171)	
[Tris (2-Ethylhexyl)	@0.01 mm		
Phosphite]			
Trioxane	239	113	777
OCH ₂ OCH ₂ OCH ₂	(115)	(45)	(414)
	Sublimes		
Triphenylmethane	678	>212	
$(C_6H_5)_3CH$	(359)	(>100)	
Triphenyl Phosphate	750	428	
$(C_6H_5)_3PO_4$	(399)	(220)	
Triphenylphosphine	211 220	See Triphenyl	phosphorus.
(C II O) PO	311-320	425	
$(C_6H_5O)_3PO_3$	(155–160)	(218)	
Trink malak saak saar	@0.1 mm	256	
(C II) P	(277)	330	
$(C_6\Pi_5)_3P$	(377)	(180)	
(Implenyiphosphile)	212	105	
(CH.CH.CH.).N	(156)	(41)	
Trinronylene	271_288	(41)	
CoHee	(133-142)	(24)	
(Propylene Trimer)	(155 112)	(21)	
Tripropylene Glycol	514	285	
H(OC ₂ H ₄) ₂ OH	(268)	(141)	
Tripropylene Glycol	470	250	
Methyl Ether	(243)	(121)	
HO(C ₃ H ₆ O) ₂ C ₃ H ₆ OCH ₃			
Tris (2-Ethylhexyl) Phosphite		See Trioctyl	Phosphite.
Tung Oil		552	855
(China Wood Oil)		(289)	(457)
Turkey Red Oil		476	833
		(247)	(445)
Turpentine	300	95	488
	(149)	(35)	(253)
Undecane		See Hendeca	ne.
2-Undecanol	437	235	
$C_4H_9CH(C_2H_5)C_2H_4$ -	(225)	(113)	
CH(OH)CH ₃	. . –		
Valeraldehyde	217	54	432
$CH_3(CH_2)_3CHO$	(103)	(12)	(222)
(Pentanal)			

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

	Boiling point	Flash point,	Ignition point,
Compound	°F (°C)	°F (°C)	°F (°C)
Valeric Acid		See Pentanoic Acid.	
Vinyl Acetate	161	18	756
CH ₂ :CHOOCCH ₃	(72)	(-8)	(402)
(Ethenyl Ethanoate)			
Vinylaceto-β-Lactone		See Diketene.	
Vinyl Acetylene	41		
CH ₂ :CHC:CH	(5)		
(1-Buten-3-yne)			
Vinyl Allyl Ether	153	<68	
CH ₂ :CHOCH ₂ CH ₂ O(CH ₂) ₃ CH ₃	(67)	(<20)	
(Allyl Vinyl Ether)			
Vinylbenzene		See Styrene.	
Vinylbenzylchloride	444	220	
CICH ₂ H ₆ H ₄ CH:CH ₂	(229)	(104)	
Vinyl Bromide	60	None	986
	(15.8)		(530)
Vinyl Butyl Ether	202	15	437
CH ₂ :CHOCH ₄ H ₉	(94)	(-9)	(255)
(Butyl Vinyl Ether)			
Vinyl Butyrate	242	68	
CH ₂ :CHOCOC ₃ H ₇	(117)	(20)	
Vinyl 2-Chloroethyl Ether	228	80	
CH ₂ :CHOCH ₂ CH ₂ CI	(109)	(27)	
(2-Chloroethyl Vinyl Ether)			
Vinyl Chloride	7	-108.4	882
CH ₂ CHCI	(-14)	(-78)	(472)
(Chloroethylene)			
Vinyl Crotonate	273	78	
CH ₂ :CHOCOCH:CHCH ₃	(134)	(26)	
Vinyl Cyanide		See Acrylonitrile.	
4-Vinyl Cyclohexene	266	61	517
C_8H_{12}	(130)	(16)	(269)
Vinyl Ether		See Divinyl Ether.	
Vinyl Ethyl Alcohol	233	100	
CH ₂ :CH(CH ₂) ₂ OH	(112)	(38)	
(3-Buten-1-ol)			
Vinyl Ethyl Ether	96	<-50	395
CH ₂ :CHOC ₂ H ₅	(36)	(<-46)	(202)
(Ethyl Vinyl Ether)			
Vinyl 2-Ethylhexoate	365	165	
$CH_2:CHOCOCH(C_2H_5)C_4H_9$	(185)	(74)	205
Vinyl 2-Ethylhexyl Ether	352	135	395
$C_{10}H_{20}O$	(178)	(57)	(202)
(2-Ethylhexyl Vinyl Ether)	240	•••	
2-Vinyl-5-Ethylpyridine	248	200	
$N:C(CH:CH_2)CH:CHC(C_2H_5):CH$	(120)	(93)	
	@50 mm		
Vinyl Fluoride	-97.5		
CH ₂ :CHF	(-72)		
Vinvlidene Chloride	89	-19	1058
CH ₂ :CCI ₂	(32)	(-28)	(570)
(1.1-Dichloroethylene)	(==)	(/	(= / 0)
Vinvlidene Fluoride	-122.3		
CH ₂ :CF ₂	(-86)		

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

Compound	Boiling point °F (°C)	Flash point, °F (°C)	Ignition point, °F (°C)
	100	1(0)	1 (0)
Vinyl Isobutyl Ether	182	15	
$CH_2:CHOCH_2CH(CH_3)CH_3$	(83)	(-9)	
(Isobulyi vinyi Ether)	247	140	
	547 (175)	(60)	
(Isooctyl Vinyl Ether)	(175)	(00)	
Vinyl Isonronyl Ether	133	-26	522
CH ₂ ·CHOCH(CH ₂)	(56)	(-32)	(272)
(Isopropyl Vinyl Ether)	(50)	(52)	(272)
Vinyl 2-Methoxyethyl Ether	228	64	
CH ₂ ·CHOC ₂ H ₂ OCH ₂	(109)	(18)	
(1-Methoxy-2-Vinyloxyethane)	(10))	(10)	
Vinvl Methyl Ether	43		549
CH ₂ :CHOCH ₂	(6)		(287)
(Methyl Vinyl Ether)			()
Vinyl Octadecyl Ether	297-369	350	
CH ₂ :CHO(CH ₂) ₁₇ CH ₃	(147–187)	(177)	
(Octadecyl Vinyl Ether)	@5 mm		
Vinyl Propionate	203	34	
CH ₂ :CHOCOC ₂ H ₅	(95)	(1)	
1-Vinylpyrrolidone	205	209	
CH ₂ :CHNCOCH ₂ CH ₂ CH ₂	(96)	(98)	
(Vinyl-2-Pyrrolidone)	@14 mm		
Vinyl-2-Pyrrolidone		See 1-Vinylpy	rrolidone.
Vinyl Trichlorosilane	195	70	
CH ₂ :CHSiCI ₃	(91)	(21)	
Wax, Microcrystalline		>400	
		(>204)	
Wax, Ozocerite (Mineral Wax)		236	
		(113)	
Wax, Paraffin	>700	390	473
	(>371)	(199)	(245)
White Tar		See Napht	halene.
Wood Alcohol		See Methyl	Alcohol.
Wood Iar Oll		See Pine I	lar Oil.
wool Grease	292	See Lan	011 n .
	(120)	81	962
$C_6 n_4 (C n_3)_2$ (1.2 Dimethylbonzona)	(139)	(27)	(327)
(1,3-Dimetriyidenzene)	202	00	867
C.H.(CH.)	(144)	(32)	(463)
(1.2 Dimethylbenzene)	(144)	(32)	(403)
(0-Xylol)			
n-Xvlene	281	81	984
$C_{\rm c}H_{\rm c}(\rm CH_{2})_{2}$	(138)	(27)	(528)
(1.4-Dimethylbenzene)	(150)	(27)	(520)
o-Xvlidine			
$C_{\epsilon}H_{2}(CH_{3})_{2}NH_{2}$	435	206	
(o-Dimethylaniline)	(224)	(97)	
o-Xylol	· /	See o-Xy	lene.

TABLE 2.40 Boiling Points, Flash Points, and Ignition Temperatures of Organic Compounds (Continued)

TABLE 2.41 Properties of Combustible Mixtures in Air

The *autoignition temperature* is the minimum temperature required for self-sustained combustion in the absence of an external ignition source. The value depends on specified test conditions. The *flammable (explosive) limits* specify the range of concentration of the vapor in air (in percent by volume) for which a flame can propagate. Below the lower flammable limit, the gas mixture is too lean to burn; above the flammable limit, the mixture is too rich.

Substance	Autoignition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
	temperature, °C	Lower	Upper
Acetaldehyde	175	4.0	60
Acetanilide	540		
Acetic acid, glacial	463	4.0	19.9
Acetic anhydride	316	2.7	10.3
Acetone	465	2.5	12.8
Acetonitrile	524	3.0	16.0
Acetophenone	570		
Acetylacetone	340		
Acetylene	305	3.0	65
Acetyl chloride	390		
Acrolein	220	2.8	31.0
Acrylic acid (2-propenoic acid)	438	2.4	8.0
Acrylonitrile	481	3.0	17.0
Adiponitrile	550	2	5
Allyl acetate	374		
Allyl alcohol	378	2.5	18.0
Allylamine	374	2.2	22
Ammonia, anhydrous	651	16	25
Aniline	615	1.3	11
Asphalt	485		
Benzaldehyde	192		
Benzene	498	1.2	7.8
Benzoyl peroxide	80		
Benzyl acetate	460		
Benzyl alcohol	436		
Benzyl benzoate	480		
Benzyl chloride	585	1.1	
Bis(2-aminoethyl)amine	399		
Bis(2-chloroethyl) ether	369	2.7	
Biscyclohexyl	245	0.7	5.1
Bis(2-hydroethyl) ether	229		
Bromobenzene	565		
1-Bromobutane	265	2.6	6.6
Bromoethane	511	6.8	8.0
Bromomethane	537	10	16.0
1-Bromopropane	490		
3-Bromopropene	295	4.4	7.3
1,3-Butadiene	420	2.0	11.5
Butanal (butyraldehyde)	218	1.9	12.5
Butane	287	1.9	8.5
1,3-Butanediol	395		
2,3-Butanediol	402		
Butanenitrile	501	1.65	
Butanoic acid (butyric acid)	443	2.0	10.0
Butanoic anhydride (butyric anhydride)	279	0.9	5.8

	Antoionition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
1-Butanol	343	1.4	11.2
2-Butanol	415	1.7	11
2-Butanone	404	1.4	11.4
trans-2-Butenal (crotonaldehyde)	232	2.1	15.9
1-Butene	384	1.6	9.3
cis-2-Butene	324	1.7	
trans-2-Butene	324	1.8	9.7
1-Butene oxide		1.5	18.3
3-Buten-1-ol		4.7	34
2-Butoxyethanol	238	4	13
2-(2-Butoxyethoxy)ethyl acetate	299		
Butyl acetate	425	1.7	7.6
sec-Butyl acetate		1.7	9.8
Butylamine	312	1.7	9.8
tert-Butylamine	380	1.7	8.9
Butylbenzene	410	0.8	5.8
sec-Butylbenzene	418	0.8	6.9
tert-Butylbenzene	450	0.7	5.7
Butyl formate	322	1.7	8.2
Butyl methyl ketone	423	1	8
Butyl 2-methyl-2-propenoate	294	2	8
Butyl propanoate	427		
Butyl stearate	355		
Butyl vinyl ether	255		
2-Butyne	166	1.4	25
Campnor Carban dissiled	400	0.0	3.5
Carbon disulide	90	1.3	50.0
Carbonyl culfide	609	12.5	74.2
Chlorohonzono	502	12	28.5
L Chloro 1.3 butadiene	793	1.5	20.0
1-Chlorobutane	240	4.0	20.0
2-Chloro-2-butene	240	23	93
1-Chloro-2 3-epoxypropane	411	4	21
1-Chloro-1.1-difluoroethane	• • • •	6.2	17.9
1-Chloro-2.4-dinitrobenzene		2.0	22
1-Chloro-2.3-epoxypropane	411	3.8	21
Chloroethane	519	3.8	15.4
2-Chloroethanol	425	4.9	15.9
Chloromethane	632	8.1	17.4
1-Chloro-3-methylbutane		1.5	7.4
1-Chloro-2-methylpropane		2.0	8.8
3-Chloro-2-methyl-1-propene		2.3	9.3
1-Chloronaphthalene	>588		0.5
1-Chloropentane	260	1.6	8.6
I-Chloropropane	520	2.6	11.1
2-Chloropropane	593	2.8	10.7
I-Chloro-I-propene		4.5	16
2-Chloro-I-propene	105	4.5	16
5-Unioro-1-propene	485	2.9	11.1
Chlorotrinuoroetnylene	<i>EE</i> 0	24	40.3
m-Cresol	558	1.1	

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoionition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
<i>o</i> -Cresol	599	1.4	
<i>p</i> -Cresol	558	1.1	
Cumene	424	0.9	6.5
Cyanogen		6.6	32
Cyclobutane		1.8	
Cyclohexane	245	1.3	8
Cyclohexanol	300	1	9
Cyclohexanone	420	1.1	9.4
Cyclohexene	244	1.2	
Cyclohexyl acetate	334		
Cyclohexylamine	293	1	9
Cyclopentane	361	1.5	
Cyclopentene	395		
Cyclopropane	500	2.4	10.4
<i>p</i> -Cymene	436	0.7	5.6
trans-Decahydronaphthalene	255	0.7	5.4
Decane	210	0.8	5.4
Decene	235		
Diborane(6)	38 to 52	0.8	88
Dibutylamine		1.1	6
Dibutyl decanedioate (dibutyl sebacate)	365	0.44	
Dibutyl ether	194	1.5	7.6
Dibutyl <i>o</i> -phthalate	402	0.5	
1.2-Dichlorobenzene	648	2.2	9.2
1.1-Dichloroethane	458	5.4	11.4
1.2-Dichloroethane	413	6.2	16
1.1-Dichloroethylene	570	6.5	15.5
cis-1.2-Dichloroethylene	460	3	15
trans-1.2-Dichloroethylene	460	6	13
Dichloromethane	556	13	23
1.2-Dichloropropane	557	3.4	14.5
Diethanolamine [2,2'-iminobis(ethanol)]	662	2	13
1.1-Diethoxyethane (acetal)	230	1.6	10.4
Diethylamine	312	1.8	10.1
Diethylene glycol [bis(2-hydroxyethyl) ether]	224	2	17
Diethylene glycol dibutyl ether	310		
Diethylene glycol monoethyl ether acetate	425		
Diethylene glycol monomethyl ether	240	1.4	22.7
Diethylenetriamine	358	2	6.7
Diethyl ether	180	1.9	36.0
3,3-Diethylpentane	290	0.7	5.7
Diethyl peroxide		2.3	15.9
Diethyl sulfate	436		
1,1-Difluoroethylene		5.5	21.3
1,3-Dihydroxybenzene (resorcinol)	664		
1,4-Dihydroxybenzene	516		
Diisopropylamine	316	1.1	7.1
Diisopropyl ether	443	1.4	7.9
Dimethoxymethane	237	2.2	13.8
N,N-Dimethylacetamide	490	2.0	11.5
Dimethylamine (anhydrous)	400	2.8	14.4
N,N-Dimethylaniline	371		

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoignition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
2,3-Dimethylaniline		1.0	
2,2-Dimethylbutane	405	1.2	7.0
2,3-Dimethylbutane	405	1.2	7.0
3,3-Dimethyl-2-butanone	423	1	8
cis-1,2-Dimethylcyclohexane	304		
trans-1,2-Dimethylcyclohexane	304		
Dimethyl ether	350	3.4	27.0
N,N-Dimethylformamide	445	2.2	15.2
2,6-Dimethyl-4-heptanol		0.8	6.1
2,6-Dimethyl-4-heptanone	396	0.8	6.2
2,3-Dimethylhexane	438		
1,1-Dimethylhydrazine	249	2	95
2,3-Dimethylpentane	335	1.1	6.7
Dimethyl 1,2-phthalate	490	0.9	
2,2-Dimethylpropane	450	1.4	7.5
Dimethyl sulfate	188		
Dimethyl sulfide	206	2.2	19.7
Dimethyl sulfoxide	215	2.6	42
1,4-Dioxane	180	2.0	22
Dipentene	237		
Dipentyl ether	170		
Diphenylamine	634		
Diphenyl ether	618	0.8	1.5
Dipropylamine	299		
Dipropyl ether	188	1.3	7.0
Divinyl ether	360	1.7	27.0
	203	0.6	
1-Dodecanol	215	1 7	10
1,2-Epoxybutane	439	1./	19
Ethane 1.2 Ethanadiamina	J1J 295	3.0	12.5
1.2 Ethanadial	202	2.3	12.0
Ethenethicl	200	3.2	100
Ethanol	299	2.0	10.2
Ethanolamine	410	3.0	23.5
2-Ethoxyethanol	235	3.0	18
2-Ethoxyethyl acetate	379	2	8
1-Ethoxycinyi accuac	517	17	90
Fthyl acetate	426	2	11.5
Ethyl acetoacetate	295	14	95
Ethyl acrulate	372	1.1	14
Ethylamine	385	35	14 0
Ethylbenzene	432	0.8	67
Ethyl benzoate	490	0.0	0.7
Ethyl butanoate	463		
2-Ethylbutanoic acid	463		
Ethyl chloroformate	500		
Ethylcyclobutane	210	1.2	7.7
Ethylcyclohexane	238	0.9	6.6
Ethylene	490	2.7	36.0
Ethylene glycol diacetate	482	1.6	8.4

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	A	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
Ethylene glycol dimethyl ether	202		
Ethylene glycol ethyl ether acetate	379	2	8
Ethylene glycol monobutyl ether	238	4	13
Ethylene glycol methyl ether acetate	392	2	12
Ethylene glycol monoethyl ether	235	3	18
Ethyleneimine	320	3.3	54.8
Ethylene oxide	429	3.0	100
Ethyl formate	455	2.8	16.0
2-Ethylhexanal	197		
2-Ethyl-1.3-hexanediol	360		
2-Ethyl-1-hexanol	231	0.88	9.7
2-Ethylhexyl acetate	268	0.76	8.14
Ethyl lactate	400	1.5	
Ethyl methyl ether		2.0	10.0
3-Ethyl-2-methylpentane	460		
Ethyl nitrate	85 explodes	3.8	
Ethyl nitrite	90 explodes	3.0	50.0
Ethyl propanoate	440	1.9	11
Ethyl vinyl ether	202	1.7	28
Formaldehyde	430	7.0	73.0
Formic acid, 90%	434	18	57
2-Furaldehyde (furfural)	316	2.1	19.3
Furan		2.3	14.3
Furfuryl alcohol	491	1.8	16.3
Gasoline, 50-100 octane	280 to 456	1.4	7.6
Glycerol	370	3	19
Heptane	204	1.05	6.7
2-Heptanone (methyl pentyl ketone)	393	1.1	7.9
4-Heptanone (diisobutyl ketone)	396	0.8	7.1
1-Heptene	260		
1,1,2,3,4,4-Hexachlorobutadiene	610		
Hexane	225	1.1	7.5
1,6-Hexanedioic acid	420		
Hexanoic acid	380		
2-Hexanone	423	1	8
1-Hexene	253		
Hydrazine	23 to 270	4.7	100
Hydrogen	400	4.1	74.2
Hydrogen cyanide, 96%	538	5.6	40.0
Hydrogen sulfide	260	4	46
N-Hydroxyethyl-1,2-ethanediamine	368		
1-Hydroxy-2-methylbenzene	599	1.4	
1-Hydroxy-3-methylbenzene	559	1.1	
1-Hydroxy-4-methylbenzene (see <i>p</i> -cresol)			
4-Hydroxy-4-methyl-2-pentanone	643	1.8	6.9
Isobutanal	196	1.6	10.6
Isobutyl acetate	421	1	10.5
Isobutylamine	378	2	12
Isobutylbenzene	427	0.8	6.0
Isobutyl isobutyrate	432	0.96	7.59
Isopentane	420	1.4	7.6
Isopentyl acetate	360	1.0	7.5

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoignition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
Isoprene	220	2	9
Isopronyl acetate	460	18	8
Isopropyl alcohol	399	2.5	127
Isopropylation	402	2.3	10.4
Isopropylamine Isopropylbenzene (cumene)	424	0.8	6.5
Isopropyl formate	485	0.0	0.5
4-Isopropyl-1-methylbenzene	436		
Kerosene	210	0.7	5.0
Maleic anhydride	477	14	71
Matere annyariae	68	1.4	8.8
Methacrylonitrile	00	2	6.8
Methane	650	53	15.0
Methanethiol	050	3.9	21.8
Methanol	464	60	36
Methoxybenzene (anisole)	475	0.0	50
2-Methoxyethanol	285	1.8	14
2-Methoxyethul acetate	200	1.8	12.3
Methyl acetate	454	3.1	16
Methyl acetoacetate	280	5.1	10
Methyl acetulacetate	280		
Methyl acetylacelate	260	28	25
Methylamine	400	2.0	20 7
2 Mathulautana	450	4.9	20.7
2 Methyl 1 bytenel	295	1.4	7.0
2 Methyl 2 bytenel	36J 127	1.4	9.0
2 Methyl 1 bytenel	437	1.2	9.0
2 Mathylhytyl apotato	350	1.2	9.0
2 Mathul 2 hutana	275	1.0	1.5
2 Mathyl 1 bytone	213	1.0	0.7
3-Methyl-1-butene	505	1.5	9.1
2-Methyl-1-Duten-3-one	504	1.0	9.0
Methyl chloroformate	504	1.0	67
Methylcyclonexane	250	1.2	0.7
<i>cis-2</i> -ivietnyicycionexanol	290		
trans-2-Metnyicycionexanol	290		
cis-4-Methylcyclonexanol	295		
trans-4-Methylcyclonexanol	295	1.0	0.25
Methylcyclopentane	238	1.0	8.35
Methyl formate	449	4.5	23
2-Methylnexane	280	1.0	0.0
3-Methylhexane	280	1.0	0.0
5-Methyl-2-hexanone	191	1.0	8.2
Methylhydrazine	196	2.5	97.±2
Methyl isobutyl ketone (MIBK)	448	1	8
2-Methyllactonitrile	688		
Methyl methacrylate		1.7	8.2
1-Methyl-4-(1-methylethenyl)-cyclohexene (dipentene)	237		
1-Methylnaphthalene	529		
2-Methylpentane	264	1.0	7.0
3-Methylpentane	278	1.2	7.0
2-Methyl-2,4-pentanediol	306	1	9
2-Methyl-1-pentanol	310	1.1	9.65
4-Methyl-2-pentanol		1.0	5.5

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoionition	Flammable limits, pe volume of f 760 r	(explosive) rcent by fuel (25°C, nm)
Substance	temperature, °C	Lower	Upper
4-Methyl-2-pentanone	452	2	8.0
4-Methyl-3-penten-2-one	344	1.4	7.2
2-Methylpropanal	223	1.6	10.6
2-Methyl-1-propanamine	378	2	12
2-Methylpropane	460	1.8	8.4
2-Methylpropanenitrile	482		
Methyl propanoate	469	2.5	13
2-Methylpropanoic acid	481	2.0	9.2
2-Methyl-1-propanol	415	1.7	10.6
2-Methyl-2-propanol (t-butyl alcohol)	478	2.4	8.0
2-Methyl-1-propene	465	1.8	9.6
2-Methylpropyl acetate	421	1.3	10.5
2-Methylpropyl formate	320	1.7	8
2-Methylpyridine	238	1	10
N-Methyl solicylate	540	1	10
w Methylsturene	434 574	1.0	61
Methyl vinyl ether	574	1.9	30
Morpholine	290	2.0	11
Naphtha coal tar	270	1	11
Naphthalene	526	0.9	59
Neoprene	520	4.0	20
Nicotine	244	0.75	4.0
Nitrobenzene	482	1.8	9
2-Nitrobiphenyl	179		-
Nitroethane	414	3.4	17
Nitroglycerine	270		
Nitromethane	418	7.3	22
1-Nitropropane	421	2.2	
2-Nitropropane	428	2.6	11
Nonane	205	0.8	2.9
Octadecanoic acid (stearic acid)	395		
cis-9-Octadecenoic acid (oleic acid)	362		
Octane	206	1.0	6.5
1-Octene	230		
Paraldehyde	238	1.3	
Pentaborane(9)		0.42	
Pentanamine	2(0)	2.2	22
Pentane	260	1.5	7.8
1,5-Pentanediol	335		
Pentanoic acid	400		10.0
1-Pentanol	300	1.2	10.0
2-Pentanol	343		
3-Pentanol	435	1.2	9.0
2-Pentanone (methyl propyl ketone)	452	1.5	8.2
3-Pentanone (diethyl ketone)	450	1.6	
1-Pentene	275	1.5	8.7
Pentyl acetate	360	1.1	7.5
Pentylamine		2.2	22
Petroleum ether (solvent naphtha)	288	1.1	5.9
Phenol	715	1.8	8.6

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoignition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
Phosphorus, red	260		
Phosphorus, white	30		
Phosphorus pentasulfide	142		
o-Phthalic anhydride	570	1.7	10.4
Picric acid	300 (explodes)		
α-Pinene	275		
β-Pinene	275		
Piperidine		1	10
1-Propanal	207	2.6	17
1-Propanamine (propylamine)	318	2.0	10.4
Propane	450	2.1	9.5
1,2-Propanediol	371	2.6	12.5
1,3-Propanediol	400		
Propanenitrile	512	3.1	14
1,2,3-Propanetriol (glycerol)	370	3	19
1,2,3-Propanetriol triacetate (triacetin)	433	1.0	
Propanoic acid	465	2.9	12.1
Propanoic anhydride	285	1.3	9.5
1-Propanol	412	2.2	13.7
2-Propanol	399	2.0	12.7
Propene	460	2.4	10.1
Propyl acetate	450	1.7	8
Propylbenzene	450	0.8	6.0
Propyl formate	455		
Propyl nitrate	175	2	100
Propyne		1.7	
Pyridine	482	1.8	12.4
Ouinoline	480		
Sodium	115 (dry air)		
Styrene	490	0.9	6.8
Sulfur (di-) dichloride	233		
1.1.2.2-Tetrabromoethane	335		
Tetrabromoethylene	335		
1.1.1.2-Tetrachloroethane		5	12
1,1,2,2-Tetrachloroethane		20	54
Tetrahydrofuran	321	2	11.8
Tetrahydrofurfuryl alcohol	282	1.5	9.7
1,2,3,4-Tetrahydronaphthalene	385	0.8	5.0
2,2,3,3-Tetramethylpentane	430	0.8	4.9
2,2-Thiodiethanol	298		
Titanium, powder	250		
Toluene	480	1.1	7.1
Toluene diisocyanate		0.9	9.5
o-Toluidine (also p-)	482		
Tributylamine		1	5
1,1,1-Trichloroethane	537	7.5	12.5
1,1,2-Trichloroethane	460	6	28
Trichloroethylene	420	8	10.5
(Trichloromethyl)benzene	211		

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

	Autoignition	Flammable (explosive) limits, percent by volume of fuel (25°C, 760 mm)	
Substance	temperature, °C	Lower	Upper
Trichloromethylsilane	>404	7.6	>20
1,2,3-Trichloropropane		3.2	12.6
Trichlorosilane	104		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	680		
Tri-o-cresyl phosphate	385		
Triethanolamine		1	10
Triethylamine	249	1.2	8.0
Triethylene glycol	371	0.9	9.2
Triethyl phosphate	454		
Trimethylamine	190	2.0	11.6
1,2,3-Trimethylbenzene (hemimellitene)	470	0.8	6.6
1,2,4-Trimethylbenzene (pseudocumene)	500	0.9	6.4
1,3,5-Trimethylbenzene	559	1	5
2,2,3-Trimethylbutane	412		
1,1,3-Trimethyl-3-cyclohexen-5-one	462	0.8	3.8
3,5,5-Trimethylcyclohex-2-ene-1-one	460	0.8	3.8
2,2,3-Trimethylpentane	346		
2,2,4-Trimethylpentane	418	1.1	6.0
2,3,3-Trimethylpentane	425		
Trioxane	414	3.6	28.7
Tri-o-tolyl phosphate	385		
Turpentine		0.8	
Vinyl acetate	402	2.6	13.4
Vinyl bromide	530	9	15
Vinyl butanoate		1.4	8.8
Vinyl chloride	472	3.6	33.0
4-Vinyl-1-cyclohexene	269		
Vinyl fluoride		2.6	21.7
Vinylidene	573	5.6	16.0
<i>m</i> -Xylene	527	1,1	7.0
o-Xylene	463	0.9	6.7
<i>p</i> -Xylene	528	1.1	7.0

TABLE 2.41 Properties of Combustible Mixtures in Air (Continued)

2.7 AZEOTROPIC MIXTURES

An azeotrope is liquid mixture of two or more components that boils at a temperature either higher or lower than the boiling point of any of the individual components. In industrial situation, if the components of a solution are very close in boiling point and cannot be separated by conventional distillation, a substance can be added that forms an azeotrope with one component, modifying its boiling point and making it separable by distillation.

A. Binary azeotropes containing water			
	BP of azeotrope, °C	Composition, wt %	
System		Water	Other component
	Inorganic acids		
Hydrogen bromide Hydrogen chloride Hydrogen fluoride Hydrogen iodide Hydrogen peroxide Nitric acid Perchloric acid	126 108.58 111.35 127 zeotrope 120.7 203	52.5 79.78 64.4 43 32.6 28.4	47.5 20.22 35.6 57 67.4 71.6
	Organic acids	-l	L
Formic acid Acetic acid Propionic acid Isobutyric acid Butyric acid Pentanoic acid Isopentanoic acid Perfluorobutyric acid Crotonic acid	107.2 zeotrope 99.9 99.3 99.4 99.8 99.5 97 99.9	22.6 82.3 79 81.6 89 81.6 71 97.8	77.4 17.7 21 18.4 11 18.4 29 2.2
	Alcohols		<u> </u>
Ethanol Allyl alcohol 1-Propanol 2-Propanol 1-Butanol 2-Butanol 2-Butanol 2-Methyl-2-propanol 1-Pentanol 2-Pentanol 3-Pentanol 3-Pentanol 2,2-Dimethyl-2-propanol 1-Hexanol 1-Octanol Cyclopentanol 1-Heptanol Phenol 2-Methoxyphenol 1-Phenylphenol Benzyl alcohol 2 3-Dimethyl-2 3-butanediol	78.17 88.9 71.7 80.3 92.7 87.0 79.9 95.8 91.7 91.7 87.35 97.8 99.4 96.25 98.7 99.52 99.52 99.95 99.95 99.9 200000	$\begin{array}{c} 4\\ 27.7\\ 71.7\\ 12.6\\ 42.5\\ 26.8\\ 11.7\\ 54.4\\ 36.5\\ 36.0\\ 27.5\\ 67.2\\ 90\\ 58\\ 83\\ 90.8\\ 87.5\\ 98.75\\ 91\\ \end{array}$	96 72.3 28.3 87.4 57.5 73.2 88.3 45.6 63.5 64.0 72.5 32.8 10 42 17 9.2 12.5 1.25 9
2,3-Dimethyl-2,3-butanediol Furfuryl alcohol	2eotrope 98.5	80	20

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures
		Composi	tion, wt %
System	BP of azeotrope, °C	Water	Other component
	Aldehydes		
Propionaldehyde	47.5	2	98
Butyraldehyde	68	6	94
Pentanal	83	19	81
Paraldehyde	90	28.5	71.5
Furaldehyde	97.5	65	35
	Amines		
N-Methylbutylamine	82.7	15	85
Furfurylamine	99	74	26
Piperidine	92.8	35	65
Pyridine	93.6	41.3	58.7
2-Methylpyridine	93.5	48	52
3-Methylpyridine	97	60	40
4-Methylpyridine	97.35	62.8	37.2
2,6-Dimethylpyridine	96.02	51.8	48.2
Dibutylamine	97	50.5	49.5
Dihexylamine	99.8	92.8	7.2
Triallylamine	95	38	62
Tributylamine	99.65	79.7	20.3
Aniline	98.6	80.8	19.2
N-Ethylaniline	99.2	83.9	16.1
1-Methyl-2-(2-pyridyl)pyrrolidine	99.85	97.5	2.5
Halo	ogenated hydrocarbons		
Chloroform	56.1	2.8	97.2
Carbon tetrachloride	42.6	2.8	97.2
Trichloroethylene	73.4	17	83
Tetrachloroethylene	88.5	17.2	82.8
1,2-Dichloroethane	72	8.3	91.7
1-Chloropropane	44	2.2	97.8
1,2-Dichloropropane	78	12	88
Chlorobenzene	90.2	28.4	71.6
	Esters		
Ethyl formate	52.6	5	95
Isopropyl formate	65.0	3	97
Propyl formate	71.6	2.3	97.7
Isobutyl formate	80.4	7.8	92.2
Butyl formate	83.8	14.5	85.5
Isopentyl formate	90.2	21	79
Pentyl formate	91.6	28.4	71.6
Benzyl formate	99.2	80	20
Ethyl acetate	70.38	8.47	91.53
Allyl acetate	83	14.7	85.3
			l

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compos	sition, wt %
System	BP of azeotrope, °C	Water	Other component
	Esters (continued)	1	1
Isopropyl acetate	76.6	10.6	89.4
Propyl acetate	82.4	14	86
Isobutyl acetate	87.4	16.5	83.5
Butyl acetate	90.2	28.7	71.3
Isopentyl acetate	93.8	36.3	63.7
Pentyl acetate	95.2	41	59
Hexyl acetate	97.4	61	39
Phenyl acetate	98.9	75.1	24.9
Benzyl acetate	99.6	87.5	12.5
Methyl propionate	71.4	3.9	96.1
Ethyl propionate	81.2	10	90
Isopropyl propionate	85.2	19.9	80.1
Propyl propionate	88.9	23	77
Isobutyl propionate	92.75	52.2	47.8
Isopentyl propionate	96.55	48.5	51.5
Methyl butyrate	82.7	11.5	88.5
Ethyl butyrate	87.9	21.5	78.5
Propyl butyrate	94.1	36.4	63.6
Isobutyl butyrate	96.3	46	54
Butyl butyrate	97.2	53	47
Isopentyl butyrate	98.05	63.5	36.5
Methyl isobutyrate	77.7	68	93.2
Fthyl isobutyrate	85.2	15.2	84.8
Propul isobutyrate	03.2	30.8	60.2
Isobutyl isobutyrate	92.2	30.0	60.6
Isopentyl isobutyrate	95.5	56.0	44.0
Methyl isopontonosto	97.4	10.2	90.9
Ethyl isopentanoate	07.2	19.2	60.8
Propul isopentanoate	92.2	30.2	54.8
Isobutul isopontonosto	90.2	43.2	J4.0
Isobutyi Isopentanoate	97.4	55.8	44.2
Tsopentyl Isopentanoate	90.0	/4.1	23.9
Ethyl hangaasta	94.3	40	00
Einyi nexanoate	97.2	54	40
Metnyl benzoate	99.08	19.2	20.8
Etnyl benzoate	99.4	84.0	16.0
Propyl benzoate	99.7	90.9	9.1
Butyl benzoate	99.9	94	6
Isopentyl benzoate	99.9	95.6	4.4
Ethyl phenylacetate	99.7	91.3	8.7
Methyl cinnamate	99.9	95.5	4.5
Methyl phthalate	99.95	97.5	2.5
Diethyl <i>o</i> -phthalate	99.98	98.0	2.0
Ethyl chloroacetate	95.2	45.1	54.9
Butyl chloroacetate	98.12	75.5	24.5
Methyl acrylate	71	7.2	92.8
Isobutyl carbonate	98.6	74	26
Ethyl crotonate	93.5	38	62
Methyl lactate	99	80	20

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compos	ition, wt %
System	BP of azeotrope, °C	Water	Other component
1,2-Ethanediol diacetate	99.7	84.6	15.4
Ethyl nitrate	74.35	22	78
Propyl nitrate	84.8	20	80
Isobutyl nitrate	89.0	25	75
Methyl sulfate	98.6	73	27
	Ethers		
Ethyl vinyl ether	34.6	1.5	98.5
Diethyl ether	34.2	1.3	98.7
Ethyl propyl ether	59.5	4	96
Diisopropyl ether	62.2	4.5	95.5
Butyl ethyl ether	76.6	11.9	88.1
Diisobutyl ether	88.6	23	77
Dibutyl ether	92.9	33	67
Diisopentyl ether	97.4	54	46
1,1-Diethoxyethane	82.6	14.5	85.5
Diphenyl ether	99.33	96.75	3.25
Methoxybenzene	95.5	40.5	59.5
	Hydrocarbons		
Pentane	34.6	1.4	98.6
Hexane	61.6	5.6	94.4
Heptane	79.2	12.9	87.1
2,2,4-Trimethylpentane	78.8	11.1	88.9
Nonane	94.8	82	18
Undecane	98.85	96.0	4.0
Dodecane	99.45	98	2
Acrolein	52.4	2.6	97.4
Cyclohexene	70.8	8.93	91.07
Cyclohexane	69.5	8.4	91.6
1-Octene	88.0	28.7	71.3
Benzene	69.25	8.83	91.17
Toluene	84.1	13.5	86.5
Ethylbenzene	92.0	33.0	67.0
<i>m</i> -Xylene	92	35.8	64.2
Isopropylbenzene	95	43.8	56.2
Naphthalene	98.8	84	16
	Ketones		
Acetone	zeotrope		
2-Butanone	73.5	11	89
2-Pentanone	83.3	19.5	80.5
Cyclopentanone	94.6	42.4	57.6
4-Methyl-2-pentanone	87.9	24.3	75.7

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Composition, wt %	
System	BP of azeotrope, °C	Water	Other component
	Ketones (continued)		
2-Heptanone	95	48	52
3-Heptanone	94.6	42.2	57.8
4-Heptanone	94.3	40.5	59.5
4-Hydroxy-4-methyl-2-pentanone	98.8	87.3	12.7
4-Methyl-3-penten-2-one	91.8	34.8	65.2
	Nitriles		
Acetonitrile	76.5	16.3	83.7
Isobutyronitrile	82.5	23	177
Butyronitrile	88.7	32.5	67.5
Acrylonitrile	70.6	14.3	85.7
	Miscellaneous		
Hydrazine	120	32.3	67.7
Acetamide	zeotrope		
Nitromethane	83.59	23.6	76.4
Nitroethane	87.22	28.5	71.5
2,5-Dimethylfuran	77.0	11.7	88.3
Trioxane	91.4	30	70
Carbon disulfide	42.6	2.8	97.2

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

B. Binary azeotropes containing organic acids

		Compo	sition, wt %
System	BP of azeotrope, °C	Acid	Other componen
	Formic acid		
2-Methylbutane	27.2	4	96
Pentane	34.2	20	80
Hexane	60.6	28	72
Methylcyclopentane	63.3	29	71
Cyclohexane	70.7	70	30
Methylcyclohexane	80.2	46.5	53.5
Heptane	78.2	56.5	43.5
Octane	90.5	63	37
Benzene	71.05	31	69
Toluene	85.8	50	50
o-Xylene	95.5	74	26
m-Xylene	92.8	71.8	28.2
Styrene	97.8	73	27

		Composi	tion, wt %
System	BP of azeotrope, °C	Acid	Other component
Fo	rmic acid (continued)		
Iodomethane	42.1	6	94
Chloroform	59.15	15	85
Carbon tetrachloride	66.65	18.5	81.5
Trichloroethylene	74.1	25	75
Tetrachloroethylene	88.2	50	50
Bromoethane	38.2	3	97
1,2-Dibromoethane	94.7	51.5	48.5
1,2-Dichloroethane	77.4	14	86
1-Bromopropane	64.7	27	73
2-Bromopropane	56.0	14	86
1-Chloropropane	45.6	8	92
2-Chloropropane	34.7	1.5	98.5
1-Chloro-2-methylpropane	63.0	19	81
Bromobenzene	98.1	68	32
Chlorobenzene	93.7	59	41
Eluorobenzene	73.0	27	73
<i>a</i> -Chlorotoluene	100.2	83	13
Pyridine	127.43	61.4	38.6
2-Methylpyridine	158.0	25	75
2-Pentanone	105.3	32	68
3 Deptembre	105.5	32	67
Nitromethana	07.07	45.5	54.5
Diethyl sulfide	82.2	45.5	5
Disconversal sulfide	02.2	55	20
Disopropyi suilide	93.3	02	38 17
Carbon divide	98.0	83	17
	42.55	1/	83
	Acetic acid		
Hexane	68.3	6.0	94.0
Heptane	91.7	23	67
Octane	105.7	53.7	46.3
Nonane	112.9	69	31
Decane	116.75	79.5	20.5
Undecane	117.9	95	5
Cyclohexane	78.8	9.6	90.4
Methylcyclohexane	96.3	31	69
Benzene	80.05	20	98.0
Toluene	100.6	28.1	71.9
a-Xylene	116.6	78	22
m-Xulene	115.35	72.5	27.5
n-Xvlene	115.55	72.5	27.5
Fthulbenzene	117.25	66	20
Sturene	114.05	857	14 2
Jeonronylhanzana	116.0	94	14.5
Triathylamina	162	67	10
Nitromethene	103	07	25
	101.2	90	4

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

BP of azeotrope, °C Acid Acetic acid (continued) Acid Nitroethane 112.4 30 Pyridine 138.1 51.1 2-Methylpyridine 144.1 40.4 3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	
Acetic acid (continued) Nitroethane 112.4 30 Pyridine 138.1 51.1 2-Methylpyridine 144.1 40.4 3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	Other component
Nitroethane 112.4 30 Pyridine 138.1 51.1 2-Methylpyridine 144.1 40.4 3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	
Pyridine 138.1 51.1 2-Methylpyridine 144.1 40.4 3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	70
2-Methylpyridine 144.1 40.4 3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	48.9
3-Methylpyridine 152.5 30.4 4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	59.6
4-Methylpyridine 154.3 30.3 2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	69.6
2,6-Dimethylpyridine 148.1 22.9 Carbon tetrachloride 76 98.46 Trichloroethylene 86.5 96.2	69.7
Carbon tetrachloride7698.46Trichloroethylene86.596.2	77.1
Trichloroethylene 86.5 96.2	1.54
	3.8
Tetrachloroethylene 107.4 61.5	38.5
1,2-Dibromoethane 114.4 55	45
2-Iodopropane 88.3 9	91
1-Bromobutane 97.6 18	82
1-Bromo-2-methylpropane 90.2 12	88
Chlorobenzene 114.7 58.5	41.5
Trichloronitromethane 107.65 80.5	19.5
1,4-Dioxane 119.5 77	23
Diisopropyl sulfide 111.5 48	52
Propionic acid	
Heptane 97.8 2	98
Octane 120.9 21.5	78.5
Nonane 134.3 54.0	46.0
Decane 139.8 80.5	19.5
<i>o</i> -Xylene 135.4 43	57
<i>p</i> -Xylene 132.5 34	66
1,3,5-Trimethylbenzene 139.3 77	23
Isopropylbenzene 139.0 65	35
Propylbenzene 139.5 75	25
Camphene 138.0 65	35
α-Pinene 136.4 58.5	41.5
Methoxybenzene 140.8 96	4
Pyridine 148.6 67.2	32.8
2-Methylpyridine 154.5 55.0	45.0
1,2-Dibromoethane 127.8 17.5	82.5
1-Iodo-2-methylpropane 119.5 9	91
Chlorobenzene 128.9 18	82
Dipropyl sulfide 136.5 45	55
Butyric acid	
Undecane 162.4 84.4	15.5
<i>o</i> -Xylene 143.0 10	90
<i>m</i> -Xylene 138.5 6	94
<i>p</i> -Xylene 137.8 5.5	94.5
Ethylbenzene 135.8 4	96

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compos	ition, wt %
System	BP of azeotrope, °C	Acid	Other component
Bu	ityric acid (continued)	l .	
Styrene	143.5	15	85
1,2,4-Trimethylbenzene	159.5	45	55
1,3,5-Trimethylbenzene	158.0	38	62
Isopropylbenzene	149.5	20	80
Propylbenzene	154.5	28	72
Butylbenzene	162.5	75	25
Naphthalene	zeotrope		
Indene	163.7	84	16
Camphene	152.3	2.8	97.2
Methoxybenzene	152.9	12	88
Pyridine	163.2	92.0	8.0
2-Furaldehyde	159.4	42.5	57.5
1,2-Dibromoethane	131.1	3.5	96.5
1-Iodobutane	129.8	2.5	97.5
Chlorobenzene	131.75	2.8	97.2
1,4-Dichlorobenzene	162.0	57	43
o-Bromotoluene	163.0	72	28
<i>m</i> -Bromotoluene	163.6	79.5	20.5
<i>p</i> -Bromotoluene	161.5	75	25
α-Chlorotoluene	160.8	65	35
Ethyl bromoacetate	157.4	84	16
Propyl chloroacetate	160.5	40	60
	Isobutyric acid		
2.7-Dimethyloctane	148.6	48	52
o-Xylene	141.0	22	78
<i>m</i> -Xylene	139.9	15	85
<i>p</i> -Xylene	136.4	13	87
Styrene	142.0	27	73
1.2.4-Trimethylbenzene	152.3	63	37
Isopropylbenzene	146.8	35	65
Propylbenzene	149.3	49	51
Camphene	148.1	45	55
D-Limonene	152.5	78	22
Methoxybenzene	149.0	42	58
Ethyl bromoacetate	153.0	40	60
Ethyl 2-oxopropionate	153.0	60	40
1,2-Dibromoethane	130.5	6.5	93.5
1-Iodobutane	128.8	7	93
1-Bromohexane	148.0	35	65
Bromobenzene	148.6	35	65
Chlorobenzene	131.5	8	92
o-Bromotoluene	153.9	85	15
α-Chlorotoluene	153.5	80	20
Diisopentyl ether	154.2	93	7
Ethyl bromoacetate	153.0	40	60

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compo	sition, wt %
System	BP of azeotrope, °C	Alcohol	Other component
	Methanol		
Pentane	30.9	7	93
Cyclopentane	38.8	14	86
Cyclohexane	53.9	36.4	63.6
Methylcyclohexane	59.2	54	46
Heptane	59.1	51.5	48.5
Octane	62.8	67.5	32.5
Nonane	64.1	83.4	16.6
Benzene	57.5	39.1	60.9
Fluorobenzene	59.7	32	68
Toluene	63.5	72.5	27.5
Bromomethane	3.55	99.55	0.45
Iodomethane	37.8	95.5	4.5
Bromodichloromethane	63.8	60	40
Chloroform	53.4	87.4	12.6
Carbon tetrachloride	55.7	79.44	20.56
Bromoethane	34.9	5.3	94.7
1,2-Dichloroethane	61.0	32	68
Trichloroethylene	59.3	38	62
1-Bromopropane	54.5	21	79
2-Bromopropane	48.6	15.0	85.0
1-Chloropropane	40.5	9.5	90.5
2-Chloropropane	33.4	6	94
2-Iodopropane	61.0	38	62
1-Chlorobutane	57.0	27	73
Isobutyl formate	64.6	95	5
Methyl acetate	53.5	19	81
Methyl acrylate	62.5	54	46
Methyl nitrate	52.5	73	27
Acetone	55.5	12.1	87.9
1,4-Dioxane	zeotrope		
Dipropyl ether	63.8	72	28
Methyl tert-butyl ether	51.3	14.3	85.7
Diethyl sulfide	61.2	62	38
Carbon disulfide	39.8	71	29
Thiophene	59.7	16.4	83.6
Nitromethane	64.4	9.1	90.9
	Ethanol		
Pentane	34.3	5	95
Cyclopentane	44.7	7.5	92.5
Hexane	58.7	21	79
Cyclohexane	64.8	29.2	70.8
Heptane	70.9	49	51

C. Binary azeotropes containing alchohols

		Compos	ition, wt %
System	BP of azeotrope, °C	Alcohol	Other component
E	Ethanol (continued)	·	
Octane	77.0	78	22
Benzene	67.9	31.7	68.3
Fluorobenzene	70.0	75	25
Toluene	76.7	68	32
Bromodichloromethane	75.5	72	28
Iodomethane	41.2	96.8	3.2
Chloroform	59.3	93	7
Trichloronitromethane	77.5	34	66
Carbon tetrachloride	65.0	84.2	15.8
1,2-Dichloroethane	70.5	37	63
3-Chloro-1-propene	44	5	95
1-Bromopropane	62.8	20.5	79.5
2-Bromopropane	55.6	10.5	89.5
1-Chloropropane	45.0	6	94
2-Chloropropane	35.6	2.8	97.2
1-Iodopropane	75.4	44	56
2-Iodopropane	71.5	27	73
1-Bromobutane	75.0	43	57
1-Chlorobutane	65.7	20.3	79.7
2-Butanone	74.8	40	60
1.1-Diethoxyethane	78.0	76	24
Dipropyl ether	74.5	44	56
Acetronitrile	72.5	44	56
Acrylonitrile	70.8	41	59
Nitromethane	76.1	29	71
Carbon disulfide	42.6	91	9
Diethyl sulfide	72.6	56	44
	1-Propanol		
Hexane	65.7	4	96
Cyclohexane	74.7	18.5	815
Methylcyclohexape	87.0	34.7	65.3
Heptane	84.6	34.7	65.3
Octane	93.9	70	30
Benzene	77.1	16.9	83.1
Toluene	92.5	51.2	48.8
o-Xylene	zeotrope		
<i>m</i> -Xylene	97.1	94	6
<i>n</i> -Xylene	96.9	92.2	7.8
Styrene	97.0	8	92
Propyl formate	80.7	3	97
Butyl formate	95.5	64	36
Propyl acetate	94.7	51	49
Ethyl propionate	93.4	48	52
Methyl butyrate	94.4	49	51
Dipropyl ether	85.7	30	70

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

			Composition, wt %	
System	BP of azeotrope, °C	Alcohol	Other component	
1-1	Propanol (continued)			
1,1-Diethoxyethane	92.4	37	63	
1,4-Dioxane	95.3	55	45	
Chloroform	zeotrope			
Carbon tetrachloride	73.4	92.1	7.9	
Trichloronitromethane	94.1	58.5	41.5	
Iodethane	70	93	7	
1,2-Dichloroethane	80.7	19	81	
Tetrachloroethylene	94.0	52	48	
1-Bromopropane	69.7	9	91	
1-Chlorobutane	74.8	18	82	
Chlorobenzene	96.5	80	20	
Fluorobenzene	80.2	18	82	
Nitromethane	89.1	48.4	51.6	
1-Nitropropane	97.0	8.8	91.2	
Carbon disulfide	45.7	94.5	5.5	
	2-Propanol		<u> </u>	
Pentane	35.5	6	94	
Hexane	62.7	23	77	
Cyclohexane	69.4	32	68	
Heptane	76.4	50.5	49.5	
Octane	81.6	84	16	
Benzene	71.7	33.7	66.3	
Fluorobenzene	74.5	30	70	
Toluene	80.6	69	31	
Chloroform	60.8	4.2	95.8	
Trichloronitromethane	81.9	35	65	
Carbon tetrachloride	69.0	18	82	
1,2-Dichloroethane	74.7	43.5	56.5	
Iodoethane	67.1	15	85	
3-Bromo-1-propene	66.5	20	80	
1-Chloropropane	46.4	2.8	97.2	
1-Bromopropane	66.8	20.5	79.5	
2-Bromopropane	57.8	12	88	
1-Iodopropane	79.8	42	58	
2-Iodopropane	76.0	32	68	
1-Chlorobutane	70.8	23	77	
Ethyl acetate	75.3	25	75	
Isopropyl acetate	81.3	60	40	
Methyl propionate	76.4	37	63	
Acrylonitrile	71.7	56	44	
Butylamine	74.7	60	40	
2-Butanone	77.5	32	68	
1,1-Diethoxyethane	81.3	63	37	
Ethyl propyl ether	62.0	10	90	
Diisopropyl ether	66.2	14.1	85.9	

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Composi	tion, wt %
System	BP of azeotrope, °C	Alcohol	Other component
	1-Butanol	L	
Cyclohexane	79.8	9.5	90.5
Cyclohexene	82.0	5	95
Hexane	68.2	3.2	96.8
Methylcyclohexane	95.3	20	80
Heptane	93.9	18	82
Octane	108.5	45.2	54.8
Nonane	115.9	/1.5	28.5
1 oluene	105.5	27.8	12.2
o-Aylene	110.8	/5	23
m-Ayicht	115.5	69	20.3
<i>p</i> -Aylenc Ethylbenzene	115.7	65 1	34.0
Butyl formate	105.8	23.6	76.4
Isopentyl formate	115.9	69	31
Butyl acetate	117.2	47	53
Isobutyl acetate	114.5	50	50
Ethyl butyrate	115.7	64	36
Ethyl isobutyrate	109.2	17	83
Methyl isopentanoate	113.5	40	60
Ethyl borate	113.0	52	48
Ethyl carbonate	116.5	63	37
Isobutyl nitrate	112.8	45	55
Dibutyl ether	117.8	82.5	17.5
Diisobutyl ether	113.5	48	52
1.1-Diethoxyethane	101.0	13	87
Carbon tetrachloride	76.6	97.6	2.4
Tetrachloroethylene	110.0	68	32
2-Bromo-2-methylpropane	90.2	7	93
2-Iodo-2-methylpropane	110.5	30	70
Chlorobenzene	115.3	56	44
Paraldehyde	115.8	52	48
Hexaldehyde	116.8	77.1	22.9
Ethylenediamine	124.7	35.7	64.3
Pyridine	118.6	69	31
1-Nitropropane	115.3	32.2	67.8
Butyronitrile	113.0	50	50
Diisopropyl sulfide	112.0	45	55
2-M	lethyl-2-propanol		
Cyclohexene	80.5	14.2	85.8
Cyclohexane	78.3	14	86
Methylcyclopentane	71.0	5	95
Hexane	68.3	2.5	97.5
Methylcyclohexane	92.6	32	68
Heptane	90.8	27	73
2,5-Dimethylhexane	98.7	42	58
1,3-Dimethylcyclohexane	102.2	56	44
2,2,4-Trimethylpentane	92.0	27	73
Benzene	79.3	7.4	92.6
Chlorobenzene	107.1	63	37
Fluorobenzene	84.0	9	91

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compos	ition, wt %
System	BP of azeotrope, °C	Alcohol	Other component
2-	Methyl-2-propanol (continued)		
Toluene	101.2	45	55
Ethylbenzene	107.2	80	20
<i>p</i> -Xylene	107.1	88.6	11.4
Butyl formate	103.0	40	60
Isobutyl formate	97.4	12	88
Propyl acetate	101.0	17	83
Isobutyl acetate	107.6	92	8
Methyl butyrate	101.3	25	75
Ethyl isobutyrate	105.5	52	48
Methyl chloroacetate	107.6	12	88
Dipropyl ether	89.5	10	90
Isobutyl vinyl ether	82.7	6.2	93.8
1,1-Diethoxyethane	98.2	20	80
2-Pentanone	101.8	19	81
3-Pentanone	101.7	20	80
1,2-Dichloroethane	83.5	6.5	93.5
1-Bromobutane	95.0	21	79
1-Chlorobutane	77.7	4	96
2-Bromo-2-methylpropane	88.8	12	88
2-lodo-2-methylpropane	104.0	36	64
1-Nitropropane	105.3	15.2	84.8
Isobutyl nitrate	105.6	36	64
	105.8	13	27
	3-Methyl-1-butanol		
Heptane	97.7	7	93
Octane	117.0	30	70
Toluene	109.7	10	90
Ethylbenzene	125.7	49	51
Isopropylbenzene	131.6	94	6
Camphene	130.9	24	76
Bromobenzene	131.7	85	15
o-Fluorotoluene	112.1	14.0	86.0
Butyl acetate	125.9	16.5	83.5
Paraldehyde	123.5	22.0	78.0
Dibutyl ether	129.8	65	35
	Cyclohexanol		
o-Xvlene	143.0	14	86
<i>m</i> -Xylene	138.9	5	95
Propylbenzene	153.8	40	60
Indene	160.0	75	25
Camphene	151.9	41	59
Cineole	160.6	92	8
			1

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Composition, wt %	
System	BP of azeotrope, °C	Alcohol	Other component
	Allyl alcohol	1	
Methylcyclohexane	85.0	42	58
Hexane	65.5	4.5	95.5
Cyclohexane	74.0	58	42
2,5-Dimethylhexane	89.3	50	50
Octane	93.4	68	32
Benzene	76.75	17.36	82.64
Toluene	92.4	50	50
Propyl acetate	94.2	53	47
Methyl butyrate	93.8	55	45
1.2-Dichloroethane	79.9	18	82
3-Jodo-1-propene	89.4	28	72
Chlorobenzene	96.2	85	15
Diethyl sulfide	85.1	45	55
	Phenol	-	
2,7-Dimethyloctane	159.5	6	94
Decane	168.0	35	65
Tridecane	180.6	83.1	16.9
Butylbenzene	175.0	46	54
1,2,4-Trimethylbenzene	166.0	25	75
1,3,5-Trimethylbenzene	163.5	21	79
Indene	177.8	47	53
Camphene	156.1	22	78
Benzaldehyde	175.6	51.0	49.0
1-Octanol	195.4	13	87
2-Octanol	184.5	50	50
Dipentyl ether	180.2	78	22
Diisopentyl ether	172.2	15	85
2-Methylpyridine	185.5	75.4	24.6
3-Methylpyridine	188.9	71.2	29.8
4-Methylpyridine	190.0	67.5	32.5
2,4-Dimethylpyridine	193.4	57.0	43.0
2,6-Dimethylpyridine	185.5	72.5	27.5
2,4,6-Trimethylpyridine	195.2	52.3	47.7
Aniline	185.8	41.9	58.1
Ethylene diacetate	195.5	39.2	60.8
Iodobenzene	177.7	53	47
	Benzyl alcohol	*	
Naphthalene	204.1	60	40
D-Limonene	176.4	11	89
1,3,5-Triethylbenzene	203.2	57	43
o-Cresol	zeotrope		
m-Cresol	207.1	61	39

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compos	ition, wt %
System	BP of azeotrope, °C	Alcohol	Other component
Ber	zyl alcohol (continued)	1	
p-Cresol N-Methylaniline N,N-Dimethylaniline N-Ethylaniline N,N-Diethylaniline Iodobenzene Nitrobenzene	206.8 195.8 193.9 202.8 204.2 187.8 204.0	62 30 6.5 50 72 12 58	38 70 93.5 50 28 88 42
o-Bromotoluene Borneol	181.3 205.1	7 85.8	93 14.2
	2-Ethoxyethanol		
Methylcyclohexane Heptane Octane Toluene Ethylbenzene <i>p</i> -Xylene Styrene Propylbenzene Camphene Propyl butyrate Dipentene 1,3,5-Trimethylbenzene Butylbenzene Camphene <i>o</i> -Cresol Phenetole Cineole Benzaldehyde Dijsobutyl sulfde	98.6 96.5 116.0 110.2 127.8 128.6 130.0 134.6 133.2 131.0 133.5 2-Butoxyethanol 164.0 162.0 169.6 154.5 191.6 167.1 168.9 171.0 163.8	$ \begin{array}{c} 15\\ 14\\ 38\\ 10.8\\ 48\\ 50\\ 55\\ 80\\ 67\\ 65\\ 72\\ \hline 53\\ 32\\ 73.4\\ 30\\ 15\\ 52\\ 58.5\\ 91\\ 42\\ \hline \end{array} $	85 86 62 89.2 52 50 45 20 33 35 28 45 20 33 35 28 45 20 33 35 28 45 20 33 35 28 45 20 33 35 28 47 68 26.6 70 85 48 41.5 9 58
	1.2-Ethanediol		
Heptane Decane Tridecane Toluene Styrene Stilbene <i>m</i> -Xylene <i>p</i> -Xylene 1,3,5-Trimethylbenzene Propylbenzene	97.9 161.0 188.0 110.1 139.5 196.8 135.1 134.5 156 152	3 23 55 2.3 16.5 87 6.55 6.4 13 19	97 77 45 97.7 83.5 13 93.45 93.6 87 81

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Compo	sition, wt %
System	BP of azeotrope, °C	Alcohol	Other component
1,2-1	Ethanediol (continued)		·
Isopropylbenzene	147.0	18	82
Naphthalene	183.9	51	49
1-Methylnaphthalene	190.3	60.0	40.0
2-Methylnaphthalene	189.1	57.2	42.8
Anthracene	197	98.3	1.7
Indene	168.4	26	74
Acenaphthene	194.65	74.2	25.8
Fluorene	196.0	82	18
Camphene	152.5	20	80
Camphor	186.2	40	60
Biphenyl	192.3	66.5	33.5
Diphenylmethane	193.3	68.5	31.5
Benzyl alcohol	193.1	56	44
2-Phenylethanol	194.4	69	31
o-Cresol	189.6	27	73
<i>m</i> -Cresol	195.2	60	40
3,4-Dimethylphenol	197.2	89	11
Menthol Ethyl hannasta	188.0	51.5	48.5
Etnyl benzoate	186.1	46.5	53.5
D-Dromotoluene	120.5	23	13
Methowshangana	159.5	0.4	95.0
Diphonyl ether	102.1	10.5	40
Benzyl phenyl ether	195.1	87	13
Acetophenone	195.5	52	13
2 4-Dimethylaniline	188.6	47	53
N N-Dimethylaniline	175.9	33.5	66.5
<i>m</i> -Toluidine	188.6	42	58
2.4.6-Trimethylpyridine	170.5	97	90.3
Ouinoline	196.4	79.5	20.5
Tetrachloroethylene	119.1	94	6
1.2-Dibromoethane	129.8	4	96
Chlorobenzene	130.1	94.4	5.6
α-Chlorotoluene	167.0	30	70
Nitrobenzene	185.9	59	41
<i>o</i> -Nitrotoluene	188.5	48.5	51.5
1,2-1	Ethanediol monoacetate		
Indene	180.0	20	80
1-Octanol	189.5	71	29
Phenol	197.5	65	35
o-Cresol	199.5	51	49
m-Cresol	206.5	31	69
<i>p</i> -Cresol	206.0	33	67
Dipentyl ether	180.8	42	58
Diisopentyl ether	170.2	28	72
<i>m</i> -Bromotoluene	182.0	32	68

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Composition, wt %		
System	BP of azeotrope, °C	Ketone	Other componen	
	Acetone			
Cyclopentane	41.0	36	64	
Pentane	32.5	20	80	
Cyclohexane	53.0	67.5	32.5	
Hexane	49.8	59	41	
Heptane	55.9	89.5	10.5	
Diethylamine	51.4	38.2	61.8	
Methyl acetate	55.8	48.3	51.7	
Diisopropyl ether	54.2	61	39	
Chloroform	64.4	78.1	21.9	
Carbon tetrachloride	56.1	11.5	88.5	
Carbon disulfide	39.3	67	33	
Ethylene sulfide	51.5	57	43	
	2-Butanone			
Cyclohexane	71.8	40	60	
Hexane	64.2	28.6	71.4	
Heptane	77.0	70	30	
2,5-Dimethylhexane	79.0	95	5	
Benzene	78.33	44	56	
2-Methyl-2-propanol	78.7	69	31	
Butylamine	74.0	35	65	
Ethyl acetate	77.1	11.8	88.2	
Methyl propionate	79.0	60	40	
Butyl nitrite	76.7	30	70	
1-Chlorobutane	77.0	38	62	
Fluorobenzene	79.3	75	25	

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

D. Binary azeotropes containing ketone

E. Miscellaneous binary azeotropes

		Compos	ition, wt %
System	BP of azeotrope, °C	Solvent	Other componen
	Solvent: acetamide		
Dipentene	169.2	18	82
Biphenyl	213.0	50.5	49.5
Diphenylmethane	215.2	56.5	43.5
1,2-Diphenylethane	218.2	68	32
a Vulana	142.6	11	80

		Composi	tion, wt %
System	BP of azeotrope, °C	Solvent	Other component
Solven	t: acetamide (<i>continued</i>)		
<i>m</i> -Xylene	138.4	10	90
<i>p</i> -Xylene	137.8	8	92
Styrene	144	12	88
4-Isopropyl-1-methylbenzene	170.5	19	81
Naphthalene	199.6	27	73
1-Methylnaphthalene	209.8	43.8	56.2
2-Methylnaphthalene	208.3	40	60
Indene	177.2	17.5	82.5
Acenaphthene	217.1	64.2	35.8
Camphene	155.5	12	88
Camphor	199.8	23	77
Benzaldehyde	178.6	6.5	93.5
3,4-Dimethylphenol	221.1	96	4
2-Methoxy-4-(2-propenyl)phenol	220.8	88	12
N-Methylaniline	193.8	14	86
N-Ethylaniline	199.0	18	82
N,N-Diethylaniline	198.1	24	76
Diphenyl ether	214.6	52	48
Safrole	208.8	32	68
Tetrachloroethylene	120.5	97.4	2.6
	Solvent: aniline		
Nonane	149.2	13.5	86.5
Decane	167.3	36	64
Undecane	175.3	57.5	42.5
Dodecane	180.4	71.5	28.5
Tridecane	182.9	86.2	13.8
Tetradecane	183.9	95.2	4.8
Butylbenzene	177.8	46	54
1,2,4-Trimethylbenzene	168.6	13.5	86.5
1,3,5-Trimethylbenzene	164.3	12.0	88.0
Indene	179.8	41.5	58.5
1-Octanol	183.9	83	17
o-Cresol	191.3	8	92
Dipentyl ether	177.5	55	45
Diisopentyl ether	169.3	28	72
Hexachloroethane	176.8	66	34
	Solvent: pyridine		<u> </u>
Heptane	95.6	25.3	74.7
Octane	109.5	56.1	43.9
Nonane	115.1	89.9	10.1
Toluene	110.1	22.2	77.8
Phenol	183.1	13.1	86.9
Pineridine	106.1	8	92
F		v	12

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

		Composition, wt %	
System	BP of azeotrope, °C	Solvent	Other component
	Solvent: thiophene		
Methylcyclopentane	71.5	14	86
Cyclohexane	77.9	41.2	58.8
Hexane	68.5	11.2	88.8
Heptane	83.1	83.2	16.8
2,3-Dimethylpentane	80.9	64	36
2,4-Dimethylpentane	76.6	42.7	57.3
	Solvent: benzene		
Methylcyclopentane	71.7	16	84
Cyclohexene	78.9	64.7	35.3
Cyclohexane	77.6	51.9	48.1
Hexane	68.5	4.7	95.3
Heptane	80.1	99.3	0.7
2.2-Dimethylpentane	75.9	46.3	53.7
2,3-Dimethylpentane	79.4	78.8	21.2
2.4-Dimethylpentane	75.2	48.3	51.7
2,2,4-Trimethylpentane	80.1	97.7	2.3
Solvent:	bis(2-hydroxyethyl) ether	L	1
Biphenvl	232.7	48	52
Diphenylmethane	236.0	52	48
1.3.5-Trimethylbenzene	210.0	22	78
Naphthalene	212.6	22	78
1-Methylnaphthalene	277.0	45	55
2-Methylnaphthalene	225.5	39	61
Acenaphthene	239.6	62	38
Fluorene	243.0	80	20
Benzyl acetate	214.9	7	93
Bornyl acetate	223.0	18	82
Ethyl fumarate	217.1	10	90
Dimethyl o-phthalate	245.4	96.3	3.7
Methyl salicylate	220.6	15	85
2-Hydroxy-1-isopropyl-4-methylbenzene	232.3	13	87
1,2-Dihydroxybenzene	259.5	46	54
Safrole	225.5	33	67
Isosafrole	233.5	46	54
Benzyl phenyl ether	241.5	80	20
Nitrobenzene	210.0	10	90
<i>m</i> -Nitrotoluene	224.2	25	75
o-Nitrophenol	216.0	10.5	89.5
Quinoline	233.6	29	71
p-Dibromobenzene	212.9	13	87

TABLE 2.42 Binary Azeotropic (Constant-Boiling) Mixtures (Continued)

TABLE 2.43 Ternary Azeotropic Mixtures

		Composition, wt %		
System	BP of azeotrope, °C	Water	Alcohol	Other component
	M	ethanol		
Chloroform	52.3	1.3	8.2	90.5
2-Methyl-1,3-butadiene	30.2	0.6	5.4	94.0
Methyl chloroacetate	67.9	6.3	81.2	13.5
	E	thanol		
Acetonitrile	72.9	1	55	44
Acrylonitrile	69.5	8.7	20.3	71.0
Benzene	64.9	7.4	18.5	74.1
Butylamine	81.8	7.5	42.5	50.0
Butyl methyl ether	62	6.3	8.6	85.1
Carbon disulfide	41.3	1.6	5.0	93.4
Carbon tetrachloride	62	4.5	10.0	85.5
Chloroform	55.3	2.3	3.5	94.2
Crotonaldehyde	78.0	4.8	87.9	7.3
Cyclohexane	62.6	4.8	197	75.5
1.2-Dichloroethane	66.7	5	17	78
1.1-Diethoxyethane	77.8	11.4	27.6	61.0
Diethoxymethane	73.2	12.1	18.4	69.5
Ethyl acetate	70.2	90	84	82.6
Hentane	68.8	61	33.0	60.9
Hexane	56.0	3	12	85
Toluene	74.4	12	37	51
Trichloroethylene	67.0	55	16.1	78.4
Triethylamine	74.7	9	13	78
	1-H	Propanol	I	
Benzene	67	7.6	10.1	82.3
Carbon tetrachloride	65.4	5	11	84
Cyclohexane	66.6	85	10.0	81.5
1 1-Dipropoxyethane	87.6	27.4	51.6	21.0
Dipropoxymethane	86.4	80	44.8	47.2
Dipropyl ether	74.8	11.7	20.2	68.1
3-Pentanone	81.2	20	20	60
Propyl acetate	82.5	17.0	10.0	730
Propyl formate	70.8	13	5	82
Tetrachloroethylene	81.2	12.5	20.7	66.8
	2-H	Propanol		k
Benzene	66.5	7.5	18.7	73.8
Butylamine	83	12.5	40.5	47.0

A. Ternary azeotropes containing water and alcohols

TABLE 2.43 Ternary Azeotropic Mixtures (Continued)

			Composition, wt	%
	BP of			Other
System	azeotrope, °C	Water	Alcohol	component
	2-Propance	ol (continued)		
Cyclohexane	64.3	7.5	18.5	74.0
Toluene	76.3	13.1	38.2	48.7
Trichloroethylene	69.4	7	20	73
	1-E	Butanol		
Butyl acetate	89.4	37.3	27.4	35.3
Butyl formate	83.6	21.3	10.0	68.7
Dibutyl ether	90.6	29.9	34.6	35.5
Heptane	78.1	41.4	7.6	51.0
Hexane	61.5	19.2	2.9	77.9
Nonane	90.0	69.9	18.3	11.8
Octane	86.1	60.0	14.6	25.4
	2-E	Butanol		
Carbon tetrachloride	65	4.05	4.95	91.00
Cyclohexane	69.7	8.9	10.8	80.3
Isooctane	76.3	9	19	72
	2-Methy	l-1-propanol	•	
Isobutyl acetate	86.8	30.4	23.1	46.5
Isobutyl formate	80.2	17.3	6.7	76.0
Toluene	81.3	17.9	16.4	65.7
	2-Methy	1-2-propanol		
Benzene	67.3	8.1	21.4	70.5
Carbon tetrachloride	64.7	3.1	11.9	85.0
Cyclohexane	65.0	8	21	71
	3-Methy	yl-1-butanol		
Isopentyl acetate	93.6	44.8	31.2	24.0
Isopentyl formate	89.8	32.4	19.6	48.0
	Ally	l alcohol		
Benzene	68.2	8.6	9.2	82.2
Carbon tetrachloride	65.2	5	11	84
Cyclohexane	66.2	8	11	81
Hexane	59.7	8.5	5.1	86.4

A. Ternary azeotropes containing water and alcohols

TABLE 2.43 Ternary Azeotropic Mixtures (Continued)

		B. Other ter	rnary azeotropes		
System	BP of azeotrope, °C	Composition, wt%	System	BP of azeotrope, °C	Composition, wt%
Water Acetone 2-Methyl-1,3-butadiene	32.5	0.4 7.6 92.0	Water Nitromethane Nonane	80.7	17.4 58.3 24.3
Water Acetonitrile Benzene	66	8.2 23.3 68.5	Water Nitromethane Octane	77.4	12.4 44.3 43.3
Water Acetonitrile Trichloroethylene	67	6.4 20.5 73.1	Water Nitromethane Pentane	33.1	2.1 6.5 91.4
Water Acetonitrile Triethylamine	68.6	3.5 9.6 86.9	Water Nitromethane Undecane	82.8	20.6 73.3 6.1
Water 2-Butanone Cyclohexane	63.6	5 35 60	Water Pyridine Dodecane	93.5	40.5 54.5 5.0
Water Butyraldehyde Hexane	55.0	4 21 75	Water Pyridine Undecane	93.1	38.5 51.0 10.5
Water Formic acid Isopentanoic acid	107.6	21.3 76.3 2.4	Water Pyridine Decane	92.3	35.5 45.5 19.0
Water Formic acid Isobutyric acid	107.0	15.5 66.8 17.7	Water Formic acid Butyric acid	107.6	19.5 75.9 4.6
Water Nitromethane Heptane	71.4	7.9 29.7 62.4	Water Formic acid Propionic acid	107.2	18.6 71.9 9.5

Water Hydrogen bromide	105	11.0 10.4	Pyridine Decane		38.2 30.4
Chlorobenzene		78.6	Acetic acid	129.1	13.5
Water	96.9	20.2	Pyridine		25.2
Hydrogen chloride		5.3	Ethylbenzene		61.3
Chlorobenzene		74.5	Acetic acid	98.5	3.4
Water	107.3	64.8	Pyridine		10.6
Hydrogen chloride		15.8	Heptane		86.0
Phenol		19.4	Acetic acid	128.0	20.7
Water	116.1	54	Pyridine		29.4
Hydrogen fluoride		10	Nonane		49.9
Fluorosilic acid		36	Acetic acid	115.7	10.4
Water	75.1	11.5	Pyridine		20.1
Nitroethane		75.1	Octane		69.5
Heptane		64.0	Water	83.1	21.5
Water	59.5	8.4	Nitromethane		75.3
Nitroethane		9.3	Dodecane		3.2
Hexane		82.3	Acetic acid	129.2	10.2
Water	82.4	19.1	Pyridine		22.5
Nitromethane		68.1	<i>p</i> -Xylene		07.5
Decane		12.8	Acetic acid	163.0	75.0
Water	90.5	30.5	2,6-Dimethylpyridine		13.8
Pyridine		37.0	Undecane	145.0	11.2
Nonane		32.5	Acetic acid	147.0	12.0
Water	86.7	22.4	2,0-Dimethylpyridine		13.1
Pyridine		25.5	Decane	141.2	10.0
Octane	70.6	52.0	Acetic acid	141.3	19.9
Water	/8.6	14.0	Decane		33 3
Hentane		13.3	Austine	125.0	12.9
Teptane	124.4	70.5	Acetic acid	155.0	12.0
Acetic acid	134.4	23	Nonane		48.8
r yndine Acetic aphydride		22	A satis said	101.2	26
A setie seid	124 1	21 4	2-Methylpyridine	121.5	5.0 24.8
Acetic acid	134.1	51.4	2-wieurypyridine		24.0

TABLE 2.43 Ternary Azeotropic Mixtures (Continued)

		B. Other terr	ary azeotropes		
System	BP of azeotrope, °C	Composition, wt%	System	BP of azeotrope, °C	Composition, wt%
Octane		71.6	Hexane		34.4
Acetic acid Benzene Cyclohexane	77.2	7.6 34.4 58.0	1-Propanol Benzene Cyclohexane	73.8	15.5 30.4 54.2
Acetic acid 2-Methyl-1-butanol Isopentyl acetate	132	15 54 31	2-Propanol Benzene Cyclohexane	69.1	31.1 15.0 53.9
Propionic acid 2-Methylpyridine Decane	149.3	29.5 32.0 38.5	1-Butanol Benzene Cyclohexane	77.4	4 48 48
Acetic acid Pyridine o-Xylene	132.2	17.7 30.5 51.8	1-Butanol Pyridine Toluene	108.7	11.9 20.7 76.4
Methanol Methyl acetate Hexane	47.4	14.6 36.8 48.6	Propionic acid 2-Methylpyridine	140.1	16.5 21.5 42.0
Ethanol Acetone Chloroform	63.2	10.4 24.3 65.3	Propionic acid 2-Methylpyridine Octane	123.7	4.5 10.5 85.0
Ethanol Acetonitrile Triethylamine	70.1	8 34 58	Propionic acid 2-Methylpyridine Undecane	153.4	43.0 40.0 17.0
Ethanol Benzene Cyclohexane	64.7	29.6 12.8 57.6	Propionic acid Pyridine Undecane	147.1	55.5 26.4 18.1
Ethanol Chloroform	57.3	9.5 56.1	Methanol	57.5	23

Acetone Chloroform Methanol Acetone Hexane	47	30 47 14.6 30.8 59.6	3-Methylpyridine 1,2-Ethanediol Phenol 2,4,6-Trimethylpyridine	188.6	16.4 29.5 54.8 15.7
Methanol Acetone Methyl acetate	53.7	17.4 5.8 76.8	Acetone Chloroform Hexane	60.8	3.6 68.8 27.6
Methanol Methyl acetate Cyclobexane	50.8	17.8 48.6 33.6	Acetone Methyl acetate Hexane	49.7	51.1 5.6 43.3
1,2-Ethanediol Phenol 2,6-Dimethylpyridine	185.0	8.7 74.6 16.7	Chloroform Ethyl formate 2-Bromopropane	62.0	79.7 5.3 15.7
1,2-Ethanediol Phenol 2-Methylpyridine	185.1	5.9 79.1 15.0	1,4-Dioxane 2-Methyl-1-propanol Toluene	101.8	44.3 26.7 29.0
1,2,-Ethanediol Phenol	186.4	15.9 67.7			

2.8 FREEZING MIXTURES

A freezing mixture a mixture of substances (such as salt and ice) to obtain a temperature below the freezing point of the solvent (such as water).

			Freezin	g point
Specific gravity 20°/4°C. (68°F.)	% alcohol by weight	% alcohol by volume	°C.	°F.
0.99363	2.5	3.13	-1.0	30.2
0.98971	4.8	6.00	-2.0	28.4
0.98658	6.8	8.47	- 3.0	26.6
0.98006	11.3	14.0	-5.0	23.0
0.97670	13.8	17.0	-6.1	21.0
0.97336	16.4	20.2	-7.5	18.5
0.97194	17.5	21.5	-8.7	16.3
0.97024	18.8	23.1	-9.4	15.1
0.96823	20.3	24.8	- 10.6	12.9
0.96578	22.1	27.0	-12.2	10.0
0.96283	24.2	29.5	-14.0	6.8
0.95914	26.7	32.4	-16.0	3.2
0.95400	29.9	36.1	- 18.9	-2.0
0.94715	33.8	40.5	-23.6	- 10.5
0.93720	39.0	46.3	-28.7	- 19.7
0.92193	46.3	53.8	-33.9	-29.0
0.90008	56.1	63.6	-41.0	-41.8
0.86311	71.9	78.2	-51.3	-60.3

TABLE 2.44 Compositions of Aqueous Antifreeze Solutions

Freezing point of methyl (wood) alcohol-water mixtures*

			Freezing	g point
Specific gravity 15.6°C. (60°F.)	% alcohol by weight	% alcohol by volume	°C.	°F.
0.993	3.9	5	-2.2	28
0.986	8.1	10	-5.0	23
0.980	12.2	15	-8.3	17
0.974	16.4	20	-11.7	11
0.968	20.6	25	-15.6	4
0.963	24.9	30	- 20.0	-4
0.956	29.2	35	-25.0	- 13
0.949	33.6	40	- 30.0	-22
0.942	38.0	45	-35.6	- 32

*Values are for pure alcohol. Since some commercial antifreezes contain small amounts of water, slightly higher volume concentrations than those given in the table may be required. Antifreezes also contain corrosion inhibitors and other additives to make them function properly as cooling liquids. These affect freezing point slightly and specific gravity to a greater degree.

Freezing point of Prestone-water mixtures [†]							
% Prestone		Specific gravity	Freezir	ng point			
By weight	By volume	15°/15C. (59°F.)	°C.	°F.			
10 15 20 25	9.2 13.8 18.3 23.0	1.013 1.019 1.026 1.033	-3.6 -5.6 -7.9 -10.7	25.6 22.0 17.8 12.8			
30 40 50 60	28.0 37.8 47.8 58.1	1.040 1.053 1.067 1.079		6.8 - 8.2 - 28.8 - 56.7			

Freezing point of ethyl alcohol-water mixtures

a 1a 1	~	Freezing	point	
Specific gravity 15.6°C. (60°F.)	% alcohol by volume	°C.	°F.	
0.990	5	-1.7	29	
0.984	10	-3.3	20	
0.978	15	-6.1	2	
0.972	20	-8.3	17	
0.964	25	- 11.1	12	
0.955	30	- 14.4		
0.945	35	-17.8	(
0.933	40	- 18.3		
0.922	45	-18.9		
0.910	50	-20.0		
0.899	55	-21.7		
0.887	60	-23.3	-1	
0.875	65	- 24.4	1	
0.864	70	-26.7	- 1	
0.852	75	-32.2	-2	
0.840	80	-41.7	-4	

†Eveready Prestone marketed for antifreeze purposes, is 97% ethylene glycol containing fractional percentages of soluble and insoluble ingredients to prevent foaming, creepage and water corrosion in automobile cooling systems.

a 1a 1	~	Freezing	, point
Specific gravity 15.6°C. (60°F.)	% glycol by volume	°C.	°F.
1.004	5	-1.1	30
1.006	10	-2.2	28
1.012	15	-3.9	25
1.017	20	-6.7	20
1.020	25	-8.9	16
1.024	30	-12.8	ç
1.028	35	-16.1	2
1.032	40	-20.6	- :
1.037	45	-26.7	-16
1.040	50	-33.3	-2°

TABLE 2.44 (Compositions of Ac	queous Antifreeze Solutions	(Continued))
--------------	--------------------	-----------------------------	-------------	---

Freezing point of propylene glycol-water mixtures*

Freezing point of glycerol-water mixtures†

			Freezin	ig point
% Glycerol by weight	Specific gravity 15°/15°C. (59°F.)	Specific gravity 20°/20°C. (68°F.)	°C.	°F.
10	1.02415	1.02395	- 1.6	29.1
20	1.04935	1.04880	-4.8	23,4
30	1.07560	1.07470	-9.5	14.9
40	1.10255	1.10135	-15.5	4.3
50	1.12985	1.12845	-22.0	-7.4
60	1.15770	1.15605	-33.6	-28.5
70	1.18540	1.18355	-37.8	- 36.0
80	1.21290	1.21090	- 19.2	-2.3
90	1.23950	1.23755	-1.6	29.1
100	1.26557	1.26362	17.0	62.6

*Values are for pure alcohol. Since some commercial antifreezes contain small amounts of water, slightly higher volume concentrations than those given in the table may be required. Antifreezes also contain corrosion inhibitors and other additives to make them function properly as cooling liquids. These affect freezing point slightly and specific gravity to a greater degree. †The values are those reported by Bosart and Snoddy (*Jour. Ind. Eng. Chem.*, **19**, 506 (1927), and Lane (*Jour. Ind. Eng.*

⁺The values are those reported by Bosart and Snoddy (*Jour. Ind. Eng. Chem.*, **19**, 506 (1927), and Lane (*Jour. Ind. Eng. Chem.*, **17**, 924 (1925)) but modified by adding 2°F to all temperatures below 0°F.

		Freezing po	oint of ma	gne	sium chloride	brines		
(/ M-Cl	C	Freezing	, point		(TALCI		Freezin	g point
% MgCl ₂ by weight	Spec. grav. 15.6°C. (60°F.)	°C.	°F.		% MgCl ₂ by weight	Spec. grav. 15.6°C. (60°F.)	°C.	°F.
5	1.043	-3.11	26.4		18	1.161	-22.1	-7.7
6	1.051	- 3.89	25.0		19	1.170	-25.6	-12.2
7	1.060	-4.72	23.5		20	1.180	-27.4	-17.3
8	1.069	-5.67	21.8		21	1.190	-30.6	-23.0
9	1.078	-6.67	20.0		22	1.200	-32.8	-27.0
10	1.086	-7.83	17.9		23	1.210	-28.9	-20.0
11	1.096	-9.05	15.7		24	1.220	-25.6	- 14.0
12	1.105	-10.5	13.1		25	1.230	-23.3	- 10.0
13	1.114	-12.1	10.3		26	1.241	-21.1	-6.0
14	1.123	-13.7	7.3		27	1.251	-19.4	-3.0
15	1.132	-15.6	4.0		28	1.262	-18.3	-1.0
16	1.142	- 17.6	0.4		29	1.273	-17.2	+1.0
17	1.151	- 19.7	-3.5		30	1.283	- 16.7	2.0

TABLE 2.44 Compositions of Aqueous Antifreeze Solutions (Continued)

Freezing point of sodium chloride brines

	6	Freezing	point		a	Freezing	g point
% NaCl by weight	Spec. grav. 15°C. (59°F.)	°C.	°F.	% NaCl by weight	Spec. grav. 15°C. (59°F.)	°C.	°F.
0	1.000	0.00	32.0	15	1.112	- 10.88	12.4
1	1.007	-0.58	31.0	16	1.119	-11.90	10.6
2	1.014	-1.13	30.0	17	1.127	-12.93	8.7
3	1.021	-1.72	28.9	18	1.135	-14.03	6.7
4	1.028	-2.35	27.8	19	1.143	-15.21	4.6
5	1.036	-2.97	26.7	20	1.152	- 16.46	2.4
6	1.043	-3.63	25.5	21	1.159	-17.78	+0.0
7	1.051	-4.32	24.2	22	1.168	- 19.19	-2.5
8	1.059	-5.03	22.9	23	1.176	-20.69	-5.2
9	1.067	-5.77	21.6	23.3 (E)	1.179	-21.13	-6.0
10	1.074	-6.54	20.2	24	1.184	-17.0*	+1.4*
11	1.082	-7.34	18.8	25	1.193	-10.4*	13.3*
12	1.089	-8.17	17.3	26	1.201	-2.3*	27.9*
13	1.097	-9.03	15.7	26.3	1.203	0.0*	32.0*
14	1.104	-9.94	14.1				

*Saturation temperatures of sodium chloride dihydrate; at these temperatures NaCl · 2H2O separates leaving the brine of the eutectic composition (E).

Propylene glycol, a satisfactory antifreeze with the advantage of being nontoxic, can be combined with glycerol, also an efficient nontoxic antifreeze, to give a mixture that can be tested for freezing point with an ethylene glycol (Prestone) hydrometer. A mixture of 70% propylene glycol and 30% glycerol (% by weight of water-free materials), when diluted, can be tested on the standard instrument used for ethylene glycol solutions.

2.9 BOND LENGTHS AND STRENGTHS

Distances between centers of bonded atoms are called *bond lengths*, or *bond distances*. Bond lengths vary depending on many factors, but in general, they are very consistent. Of course the bond orders affect bond length, but bond lengths of the same order for the same pair of atoms in various molecules are very consistent.

The *bond order* is the number of electron pairs shared between two atoms in the formation of the bond. Bond order for C=C and O=O is 2. The amount of energy required to break a bond is called *bond dissociation energy* or simply *bond energy*. Since bond lengths are consistent, bond energies of similar bonds are also consistent.

Bonds between the same type of atom are *covalent bonds*, and bonds between atoms when their electronegativity differs slightly are also predominant covalent in character. Theoretically, even ionic bonds have some covalent character. Thus, the boundary between ionic and covalent bonds is not a clear line of demarcation.

For covalent bonds, bond energies and bond lengths depend on many factors: electron afinities, sizes of atoms involved in the bond, differences in their electronegativity, and the overall structure of the molecule. There is a general trend in that *the shorter the bond length, the higher the bond energy* but there is no formula to show this relationship, because of the widespread variation in bond character.

	Bond Length, µm		
Single bond			
Paraffinic: —C—C—		154.1(3)	
In presence of —C=C	or of aromatic ring	153(1)	
In presence of —C=O bo	nd	151.6(5)	
In presence of two carbon-	oxygen bonds	149(1)	
In presence of two carbon-	carbon double bonds	142.6(5)	
Aryl-C=O		147(2)	
In presence of one carbon-	carbon triple bond: —C—C==C—	146.0(3)	
In presence of one carbon-	nitrogen triple bond: —C—C=N	146.6(5)	
In compounds with tenden	144(1)		
In aromatic compounds	139.5(5)		
In presence of carbon-carb	142.6(5)		
In presence of two carbon-	137.3(4)		
Double bond			
Single: —C==C—	133.7(6)		
Conjugated with a carbon-	carbon double bond: —C=C—C=C—	133.6(5)	
Conjugated with a carbon-	Conjugated with a carbon-oxygen double bond:C=-C=C		
Cumulative: —C=CCC	130.9(5)		
Triple bond			
Simple: —C==C—	120.4(2)		
Conjugated: $-C \equiv C - C = C$, $-C \equiv C - C \equiv O$, or $-C \equiv C - ary1$		120.6(4)	
Bond type	Pond length r		

TABLE 2.45 Bond Lengths between Carbon and Other Elements

Bond type	Bond length, pm				
Carbon-halogen					
	Fluorine	Chlorine	Bromine	Iodine	
Paraffinic: R—X Olenfinic: —C=C—X	137.9(5) 133.3(5)	176.7(2) 171.9(5)	193.8(5) 189(1)	213.9(1) 209.2(5)	
Aromatic: Ar-X Acetylenic: —C=C—X	132.8(5) (127)	170(1) 163.5(5)	185(1) 179.5(10)	205(1) 199(2)	

Bond type	Bond Length, µm	
Carbon-carbon		
Paraffinic		
In methane (in CD_4 , 109.2)	109.4	
In monosubstituted carbon: H-C-Y	109.6(5)	
In disubstituted carbon: $H \stackrel{X}{-} C \stackrel{H}{-} Y$	107.3(5)	
In trisubstituted carbon: $H - C - Y$	107.0(7)	
Simple: H-C-C-	108 3(5)	
Simple: $M^{-1}C = C^{-1}$	108.5(5)	
Cumulative carbon-carbon double bonds: $H = C = C$	107(1)	
Aromatic	108 4(5)	
Acetylenic (in C ₂ H ₂ , 105.9)	105.5(5)	
In small rings	108.1(5)	
In presence of a carbon triple bond: $H-C\equiv C-$	111.5(4)	

TABLE 2.45 Bond Lengths between Carbon and Other Elements (Continued)

Carbon-nitrogen

Single bond Paratfinic:	
3-covalent nitrogen RNH, R, NH R, N	147 2(5)
4-covalent nitrogen: RNH_2^+ , R_2N -BX ₂	147.9(5)
$\ln -C - N =$	147.5(10)
In aromatic compounds	143(1)
In conjugated heterocyclic systems (partial double bond)	135.3(5)
In $-N-C=0$ (partial double bond)	132.2(5)
Double bond: —C=N—	132
Triple bond (in CN radical, 117.74): —C≡=N	115.7(5)

Carbon-oxygen

Single bond Paraffinic and saturated heterocyclic: $-C-O-$ Strained, as in epoxides: $-C-C-O-$ O	142.6(5) 143.5(5)
In aromatic compounds, as Ar-OH	136(1)
Longer bond in carboxylic acids and esters (HCOOH, 131.2)	135.8(5)
In conjugated heterocyclics, as furan	137.1(16)
Double bond	
In CO ⁺	111.5
In CO	112.8
In CO_2^+	117.7
In HCO	119.8(8)
In carbonyls	114.5(10)
In aldehydes and ketones	121.5(5)
In acyl halides: R—CO—X	117.1(4)
Shorter bond in carboxylic acids and esters	123.3(5)
In zwitterion forms	126(1)

	Bond Length, µm		
	Carb	on-oxygen	
In O==C== In isocyanates: RN==C In conjugated systems, In 1,4-quinones In metal acetylacetonatu In calcite: CaCO ₃	116.0(1) 117(1) 121.5(5) 115(2) 128(2) 129(1)		
	Carbo	on-selenium	
Single bond Paraffinic: —C—Se— In presence of fluorine, Double bond In Se=C=, as SeCS = In CSe radical	198(2) 195(2) 170.9(3) 167		
	Carb	oon-silicon	
Alkyl substituent: H ₃ C— Aryl substituent: aryl—S Electronegative substituer	187.0(5) 184.3(5) 185.4(5)		
	Carl	bon-sulfur	
Single bond Paraffinic: $-C-S-$ In presence of fluorine, as in perfluoro compounds: $-CF-S-$ In heterocyclic systems: partial double bonds Double bonds In S=C; thiophene, S=CR ₂ In sulfoxides and sulfones In presence of second carbon-carbon double bond: S=C-C=C- In SC radical [in CS ₂ ⁺ , 155.4(5)]			181.7(5) 183.5(1) 171.8(5) 171(1) 180(1) 155.5(1) 153.49(2)
Bond type	Bond Bond type length, pm Bond type		
	Other elen	nents and carbon	
C-Al C-As C-B C-Be C-Bi C-Co C-Hg in Hg(CN) ₂ C-In C-In C-Mo C-Ni	224(4) $198(1)$ $156(1)$ 193 230 $183(2)$ $207(1)$ $199(2)$ $216(4)$ $208(4)$ $210.7(5)$	C-Cr C-Fe C-Ge Alkyl Aryl C-Sn Alkyl Electronegative substituent C-Te	192(4) 184(2) 193(3) 194.5(5) 214.3(5) 218(2) 190.4
C-Pb (alkyl) C-Pd C-Sb (paraffinic)	270.5(5) 206		

TABLE 2.45 Bond Lengths between Carbon and Other Elements (Continued)

Bond	$\Delta H f_{298},$ kJ/mol	Bond	$\Delta H f_{298},$ kJ/mol		
Carbon (continued)		Carbon (continued)			
$(CH_3)_2C - CH_3$ $(CH_2)_2C - C(CH_3)_2$	335 282.4	$C_6H_5CH_2 - N(CH_3)_2$ CH_2 - (N=NCH_2)	255(4) 219.7		
CH ₂ —C _c H _c	389	$C_2H_3 - (N = NC_2H_3)$	209.2		
CH ₂ CH ₂ C ₄ H ₅	301	$(CH_3)_3C - N = NC(CH_3)_3$	182.0		
$(CH_2)_2 C - C(C_4H_4)_2$	63	Aryl—CH ₂ N=NCH ₂ —aryl	157		
CH ₃ —allyl	301	$CF_3 - (N = NCF_3)$	231.0		
CH ₃ —vinvl	121	H ₂ C=NH	644(21)		
CH ₄ −C≡CH	490	HČ≡N	937		
CH ₂ =CH-CH=CH ₂	418	CH ₃ —NO	174.9(38)		
HC≡C−C≡CH	628	C_2H_5 —NO	175.7(54)		
$H_2C = CH_2$	682	C_3H_7 —NO	167.8(75)		
HC=CH	962	(CH ₃) ₂ CH—NO	171.5(54)		
CH ₂ —CN	506(21)	$n-C_4H_9$ —NO	215.5(42)		
CH ₃ —CH ₂ CN	305(8)	C ₆ H ₅ —NO	215.5(42)		
CH ₃ -CH(CH ₃)CN	331(8)	Cl ₃ C—NO	134		
$CH_3 - C(C_6H_5)CN(CH_3)$	251	F ₃ C—NO	130		
CH ₃ CH ₂ —CH ₂ CN	321.8(71)	C_6F_5 —NO	211.3(42)		
NC-CN	603(21)	NC-NO	121(13)		
$C_6H_5-C_6H_5$	418	CH ₃ —NO ₂	247(13)		
CH ₃ —CF ₃	423.4(46)	$C_2H_5 - NO_2$	259		
CH ₂ FCH ₂ F	368(8)	C—0	1076.5(4)		
CF ₃ —CF ₃	406(13)	CH ₃ —OCH ₃	335		
$CF_2 = CF_2$	318(13)	CH ₃ -OC ₆ H ₅	381		
CF ₃ —CN	501	CH ₃ -OCH ₂ C ₆ H ₅	280		
CH ₃ —CHO	314	$C_2H_5 - OC_6H_5$	213		
CH ₃ —CO	342.7	C ₆ H ₅ CH ₂ —OCOCH ₃	285		
CH ₃ CO-CF ₃	308.8	C ₆ H ₅ CH ₂ -OCOC ₆ H ₅	289		
CH ₃ CO-COCH ₃	280(8)	CH ₃ CO—OCH ₃	406		
C ₆ H ₅ CO-COC ₆ H ₅	277.8	CH ₃ —OSOCH ₃	280		
Aryl—CH ₂ COCH ₂ —aryl	273.6	$CH_2 = CHCH_2 - OSOCH_3$	209		
C ₆ H ₅ CH ₂ —COOH	284.9	C ₆ H ₅ CH ₂ —OSOCH ₃	222		
(C ₆ H ₅ CH ₂) ₂ CH—COOH	248.5	C=0	749		
C-Cl	397(29)	$H_2C=0$	732		
C—F	536(21)	0C=0	532.2(4)		
С—Н	337.2(8)	SC=0	628		
C—I	209(21)	C≡O	1075		
C—N	770(4)	C—P	513(8)		
CF ₃ —NF ₂	272(13)	C—S	699(8)		
CH ₃ —NH ₂	331(13)	CH ₃ —SH	305(13)		
$C_6H_5CH_2$ — NH_2	301(4)	CH ₃ —SC ₆ H ₅	285(8)		
CH ₃ —NHC ₆ H ₅	285	CH ₃ —SCH ₂ C ₆ H ₅	247(8)		
CH ₃ —N(CH ₃)C ₆ H ₅	272	OC—S	310.4		
C ₆ H ₅ CH ₂ —NHCH ₃	289(4)	C—Se	582(96)		

TABLE 2.46 Bond Dissociation Energies

2.10 DIPOLE MOMENTS AND DIELECTRIC CONSTANTS

The permanent dipole moment of an isolated molecule depends on the magnitude of the charge and on the distance separating the positive and negative charges. It is defined as

$$\mu = \left(\sum_{i} q_{i} r_{i}\right)$$

where the summation extends over all charges (electrons and nuclei) in the molecule. The numerical values of the dipole moment, expressed in the c.g.s. system of units, are in debye units, D, where $1 D = 10^{-18}$ esu of charge × centimeters. The conversion factor to SI units is

$$1 \text{ D} = 3.335 \text{ 64} \times 10^{-30} \text{ C} \cdot \text{m} \text{ [coulomb-meter]}$$

Tables 2.49 contain a selected group of compounds for which the dipole moment is given. An extensive collection of dipole moments (approximately 7000 entries) is contained in A. L. McClellan, *Tables of Experimental Dipole Moments*, W. H. Freeman, San Francisco, 1963. A critical survey of 500 compounds in the gas phase is given by Nelson, Lide, and Maryott, NSRDS-NBS 10, Washington, D.C., 1967.

If two oppositely charged plates exist in a vacuum, there is a certain force of attraction between them, as stated by Coulomb's law:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{\varepsilon r^2}$$

where F is the force, in newtons, acting on each of the charges q_1 and q_2 , r is the distance between the charges, ε is the dielectric constant of the medium between the plates, and ε_0 is the permittivity of free space. q_1, q_2 are expressed in coulombs and r in meters. If another substance, such as a solvent, is in the space separating these charges (or ions in a solution), their attraction for each other is less. The dielectric constant is a measure of the relative effect a solvent has on the force with which two oppositely charged plates attract each other. The dielectric constant is a unitless number.

Dielectric constants for a selected group of inorganic and organic compounds are included in Tables 2.49 and 1.52. An extensive list has been compiled by Maryott and Smith, *National Bureau Standards Circular 514*, Washington, D.C., 1951.

For gases the values of the dielectric constant can be adjusted to somewhat different conditions of temperature and pressure by means of the equation

$$\frac{(\varepsilon - 1)_{t,p}}{(\varepsilon - 1)_{20^\circ 1 \text{ atm}}} = \frac{p}{760[1 + 0.003 \ 411(t - 20)]}$$

where *p* is the pressure (in mmHg) and *t* is the temperature (in °C). The errors associated with this equation probably do not exceed 0.02% for gases between 10 and 30°C and for pressures between 700 and 800 mm. The dielectric constants of selected gases will be found in Table 1.52.

ente

	Moment, D*			
Group	Aromatic C—X	Aliphatic C—X		
C—CH ₃	0.37	0.0		
$C - C_2 H_5$	0.37	0.0		
$C - C(CH_3)_3$	0.5	0.0		
C—CH=CH ₂	<0.4	0.6		
C—C≡CH	0.7	0.9		
C—F	1.47	1.79		

	Moment, D*					
Group	Aromatic C—X	Aliphatic C—X				
C-Cl	1.59	1.87				
C—Br	1.57	1.82				
C—I	1.40	1.65				
C-CH ₂ F	1.77					
$C - CF_2$	2.54	2.32				
C-CH ₂ Cl	1.85	1.95				
C = CHCL	2.04	1 94				
C = CCL	2.01	1.57				
C-CH.Br	1.86	1.96				
C - C = N	4.05	3.4				
C = NC	3.5	3.5				
C-CH CN	1.86	2.0				
C = C = 0	2.65	2.0				
ССНО	2.05	2.49				
	1.64	1.63				
C-CO-CH	2.04	2.40				
C = CO = OCH	1.83	1.75				
C = CO = OC H	1.05	1.75				
$C = OU = OU_2 II_5$	1.5	1.8				
	1.0	1.7				
C = OCF	2.26	1.20				
$C = OCF_3$	2.50					
	1.09	1 16				
C = CU OU	1.10	1.10				
C = C = C = C = C	1.30	1.00				
C = NHCH	1.55	1.40				
C = N(CH)	1./1	0.96				
C = NUCOCU	1.58	0.80				
C = N(C H)	(0.2)	-0.2				
$C = N(C_6 \Pi_5)_2$	(0.3)	-0.3				
C N	2.32	2.0				
$C = N_3$	1.44					
C-NO	5.09	2 70				
$C = NO_2$	4.01	2.70				
$C = CH_2NO_2$	5.5 1.00	5.4 1.55				
C—SH	1.22	1.55				
$C = SCH_3$	1.54	1.40				
$C = SCF_3$	2.50	26				
C-SCN	3.39	3.0				
C-NCS	2.9	3.3				
$C - SC_6H_5$	1.51	1.5				
C-SF ₅	3.4					
$C \rightarrow SOCF_3$	3.88	4.50				
$(C-)_2 SO_2$	5.05	4.53				
$(C-)_2 SO_2 CH_3$	4.73					
$(C-)_2SO_2CF_3$	4.32					
C-SeH	1.08	1.00				
C—SeCH ₃	1.31	1.32				
$C - Si(CH_3)_3$	0.44	0.4				

TABLE 2.48 Group Dipole Moments

*To convert debye units D into coulomb-meters, multiply by $3.33564 \times 10^{-30}.$

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds

The temperature in degrees Celsius at which the dielectric constant and dipole moment were measured is shown in this table in parentheses after the value. In some cases, the dipole moment was determined with the substance dissolved in a solvent, and the solvent used is also shown in parentheses after the temperature.

The dielectric constant (permittivity) tabulated is the relative dielectric constant, which is the ratio of the actual electric displacement to the electric field strength when an external field is applied to the substance, which is the ratio of the actual dielectric constant to the dielectric constant of a vacuum. The table gives the static dielectric constant ϵ , measured in static fields or at relatively low frequencies where no relaxation effects occur.

The dipole moment is given in debye units D. The conversion factor to SI units is I D = 3.33564×10^{-30} C · m. Alternative names for entries are listed in Table 2.20 at the bottom of each double page.

T • .					•		
1 101	nt.	- 11	hhı	1011	1/1	110	110
LISI	UI.	714	וטע	εv	ш	uv	us
	· · · ·						

B, benzene	g, gas
C, CCl_4	Hx, hexane
cHex, cyclohexane	lq, liquid
D, 1,4-dioxane	

Substance	Dielectric constant, ϵ	Dipole moment, D
Acetaldehyde	21.8 (10), 21.0 (18)	2.75
Acetaldehyde oxime	4.70 (25)	0.830 (20, lq), 0.90 (25, B)
Acetamide	67.6 (91)	3.76
Acetanilide		3.65 (25, B)
Acetic acid	6.20 (20)	1.70
Acetic anhydride	23.3 (0), 22.45 (20)	2.8
Acetone	21.0 (20), 20.7 (25), 17.6 (56)	2.88
Acetonitrile	36.64 (20), 26.6 (82)	3.924
Acetophenone	17.44 (25), 8.64 (202)	3.02
(±)- <i>erythro</i> -2-Acetoxy-2-bromo- butane	7.268 (25)	
(\pm) -threo-2-Acetoxy-2-bromobutane	7.414 (25)	
Acetyl bromide	16.2 (20)	2.43 (20, B)
Acetyl chloride	16.9 (2), 15.8 (22)	2.72
Acetylene	2.484 (-77)	
Acrylonitrile	33.0 (20)	3.87
Allene	2.025 (-4)	
Allylamine		1.2
Allyl alcohol	19.7 (20)	1.61
Allyl isocyanate	15.15 (15)	
Allyl isothiocyanate	17.2 (18)	3.2 (20, B)
Allyl nitrite	9.12 (25)	
2-Aminoethanol	31.94 (20), 37.72 (25)	2.59 (25, D)
2-(2-Aminoethylamino)ethanol	21.81 (20)	
N-(2-Aminoethyl)-1,2-ethane-	12.62 (20)	1.9
diamine		
Aniline	7.06 (20), 5.93 (70)	1.13
Benzaldehyde	19.7 (0), 17.85 (20)	3.0
Benzaldehyde oxime (mp 30) (mp 128)	3.8 (20)	1.2 (25, B) 1.5 (25, B)
Benzamide		3.42 (25, B)
Benzene	2.292(15), 2.283 (20), 2.274 (25)	0
Benzeneacetonitrile	17.87 (26)	3.5
Benzenesulfonyl chloride	28.90 (50)	4.50 (20, B)
Benzenethiol	4.38 (25), 4.26 (30)	1.13 (25, Iq), 1.19 (20, B)
Benzonitrile	25.9 (20), 24.0 (40)	4.18
Benzophenone	14.60 (18), 11.4 (50)	3.09 (50, lq), 2.98 (25, B)

Substance	Dielectric constant, ϵ	Dipole moment, D
Benzoyl bromide	21.33 (20), 20.74 (25)	3.40 (20, B)
Benzoyl chloride	29.0 (0), 23 (23)	3.16 (25, B)
Benzoyl fluoride	22.7 (20)	
Benzyl acetate	5.1 (21), 5.34 (930)	1.80 (25, B)
Benzyl alcohol	13.0 (20), 11.92 (30), 9.5 (70)	1.71
Benzylamine	5.5 (1), 5.18 (20)	1.15 (20, lq), 1.38 (25, B)
Benzyl benzoate	5.26 (30)	2.06 (30, B)
Benzyl chloride	7.0 (13), 6.85 (25)	1.83 (20, B)
Benzylethylamine	4.3 (20)	
Benzyl ethyl ether	3.90 (25)	
Benzyl formate	6.34 (30)	
N-Benzylmethylamine	4.4 (19)	
Biphenyl	2.53 (75)	0
Bis(2-aminoethyl)amine	12.62 (20)	
Bis(2-chloroethyl) ether	21.20 (20)	2.6
Bis(3-chloropropyl) ether	10.10 (20)	
Bis(2-ethoxyethyl) ether		1.92 (25, B)
Bis(2-hydroxyethyl) ether	31.69 (20)	2.31 (20, B)
Bis(2-hydroxyethyl)sulfide	28.61 (20)	
Bis(2-hydroxypropyl) ether	20.38 (20)	
Bis(2-methoxyethyl) ether	7.23 (25)	
(\pm) -Bornyl acetate	4.6 (21)	1.89 (22)
3-Bromoaniline	13.0 (20)	2.67 (20, B)
4-Bromoaniline	7.06 (30)	2.88 (25, B)
2-Bromoanisole	8.96 (30)	
4-Bromoanisole	7.40 (30)	
Bromobenzene	5.45 (20), 5.40 (25)	1.70
1-Bromobutane	7.88 (-10), 7.32 (10), 7.07 (20)	2.08
(\pm) -2-Bromobutane	8.64 (25)	2.23
2-Bromobutanoic acid	7.2 (20)	
cis-2-Bromo-2-butene	5.38 (20)	
trans-2-Bromo-2-butene	6.76 (20)	
1-Bromo-2-chlorobenzene	6.80 (20)	2.15 (20, B)
1-Bromo-3-chlorobenzene	4.58 (20)	1.52 (22, B)
1-Bromo-4-chlorobenzene		0.1 (25, B)
1-Bromo-2-chloroethane	7.41 (10)	1.09
cis-1-Bromo-2-chloroethene	7.31 (17)	
trans-1-Bromo-2-chloroethene	2.50 (17)	
Bromochlorodifluoromethane	3.92 (-150)	
Bromochloromethane	7.79	1.66 (25, B)
3-Bromo-1-chloro-2-methylpropane	8.90 (30)	
Bromocyclohexane	11 (-65), 8.003(30)	1.08 (25, lq), 2.3 (25, B)
1-Bromodecane	4.75 (1), 4.44 (25)	2.08 (20, lq), 1.90 (25, lq)
Bromodichloromethane		1.31 (25, B)
1-Bromododecane	4.07 (25)	2.01 (25, lq), 1.89 (25, B)
Bromoethane	13.6 (-60), 9.39 (20), 9.01 (25)	2.03 (g), 2.04 (20, lq)
1-Bromo-2-ethoxypentane	6.45 (25)	2.32 (25, B)
2-Bromo-3-ethoxypentane	6.40 (25)	2.07 (25, B)
3-Bromo-2-ethoxypentane	8.24 (25)	2.15 (25, B)
1-Bromo-2-ethylbenzene	5.55 (25)	
1-Bromo-3-ethylbenzene	5.56 (25)	
1-Bromo-4-ethylbenzene	5.42 (25)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)
Substance	Dielectric constant, ϵ	Dipole moment, D
Bromoethylene	5.63 (5), 4.78 (25)	1.42
1-Bromo-2-fluorobenzene	4.72 (25)	
1-Bromo-3-fluorobenzene	4.85 (25)	
1-Bromo-4-fluorobenzene	2.60 (25)	
Bromoform	4.39 (20)	1.00, 0.92 (25, lq)
1-Bromoheptane	5.33 (25), 4.48 (90)	2.17, 2.02 (20, lq)
2-Bromoheptane	6.46 (22)	2.08 (20, B)
3-Bromoheptane	6.93 (22)	2.06 (20, B)
4-Bromoheptane	6.81 (22)	2.06 (20, B)
1-Bromohexadecane	3.71 (25)	1.98 (20, lq), 1.96 (25, C)
1-Bromohexane	6.30 (1), 5.82 (25)	2.06 (20, lq)
Bromomethane	9.82 (0), 9.71 (3), 1.0068 (100, g)	1.82
(Bromomethyl)benzene	6.658 (20)	
1-Bromo-3-methylbutane	8.04 (-56), 6.33 (18)	1.95 (20, B)
2-Bromo-2-methylbutane	9.21 (25)	
2-Bromo-3-methylbutanoic acid	6.5 (20)	
1-Bromo-2-methylpropane	10.98 (20), 7.2 (25)	1.92 (25, lq), 1.99 (20, B)
2-Bromo-2-methylpropane	10.98 (20)	
1-Bromonaphthalene	5.83 (25), 5.12 (20)	1.29 (25, lq)
3-Bromonitrobenzene	20.2 (55)	
1-Bromononane	5.42 (-20), 4.74 (25)	1.95 (25, lq)
1-Bromooctane	6.35 (-50)	1.99 (20, lq), 1.88 (25, lq)
1-Bromopentadecane	3.9 (20)	
1-Bromopentane	9.9 (-90), 6.32 (25)	2.20
3-Bromopentane	8.37 (25)	
1-Bromopropane	8.09 (20)	2.18
2-Bromopropane	9.46 (20)	2.21
2-Bromopropanoic acid	11.0 (21)	
3-Bromopropene	7.0 (20)	1.9
2-Bromopyridine	23.18 (25)	
1-Bromotetradecane	3.84 (25)	1.92 (20, lq), 1.83 (25, lq)
o-Bromotoluene	4.64 (20), 4.28 (58)	1.45 (20, B)
<i>m</i> -Bromotoluene	5.566 (20), 5.36 (58)	1.77 (20, B)
<i>p</i> -Bromotoluene	5.503 (20), 5.49 (58)	1.95 (20, B)
Bromotrichloromethane	2.40 (20)	
Bromotrifluoromethane	3.73 (-150)	0.65
1-Bromoundecane	4.73 (-9)	
1,3-Butadiene	2.050 (-8)	0.403
Butanal	13.45 (25)	2.72
Butane	1.7697 (22)	0
1,2-Butanediol	22.4 (25)	
1,3-Butanediol	28.8 (25)	
1,4-Butanediol	33 (15), 31.9 (25), 30 (38)	4.07
1,3-Butanediol dinitrate	18.85 (20)	
2,3-Butanediol dinitrate	28.85 (20)	
1,3-Butanedione	4.04 (25)	
Butanenitrile	24.83 (20)	4.07
Butanesultonyl chloride	29.2 (120)	3.94 (25, D)
1,2,3,4-Butanetetrol	28.2 (120)	
I-Butanethiol	5.20 (15), 5.07 (25), 4.59 (50)	1.54 (25, lq or B)
2-Butanethiol	5.645 (15)	1.65 (20. D)
Butanoic acid	2.97 (20)	1.65 (30, B)

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Butanoic anhydride	12.8 (20)	
1-Butanol	17.84 (20), 8.2 (118)	1.66
(\pm) -2-Butanol	17.26 (20), 16.6 (25)	1.66 (30, B)
2-Butanone	18.56 (20), 15.3 (60)	2.78
2-Butanone oxime	3.4 (20)	
trans-2-Butenal	、 <i>`</i>	3.67
1-Butene	2.2195 (-53), 1.0032 (20, g)	0.438
cis-2-Butene	1.960 (23)	0.253
trans-2-Butene		0
3-Butenenitrile	28.1 (20)	4.53
2-Butoxyethanol	9.43 (25)	2.08 (25, B)
Butoxyethyne	6.62 (25)	2.05 (25, lg)
N-Butylacetamide	104.0 (20)	
N-sec-Butylacetamide	100.0 (100)	
Butyl acetate	6.85 (-73), 5.07 (20)	1.86 (22, B)
sec-Butyl acetate	5.135 (20)	1.9
tert-Butyl acetate	5.672 (20)	1.91 (25, B)
tert-Butylacetic acid	2.85 (23)	
Butyl acrylate	5.25 (28)	
Butylamine	4.71 (20)	1.00
sec-Butylamine	4.4 (21)	1.28 (25, B)
tert-Butylamine		1.29 (25, B)
Butylbenzene	2.36 (20)	0
sec-Butylbenzene	2.36 (20)	0
<i>tert</i> -Butylbenzene	2.36 (20)	0.83
Butyl butanoate	4.39 (25)	
Butyl ethyl ether		1.24
Butyl formate	6.10 (30), 2.43 (80)	2.08 (26. Ja). 2.03 (25. B)
Butyl isocvanate	12.29 (20)	(, -4), (, -)
Butyl methyl ether	()	1.25 (25, B)
2- <i>tert</i> -Butyl-4-methylphenol		1.31 (20, B)
Butyl nitrate	13.10 (20)	2.99(20, B)
tert-Butyl nitrite	11.47 (25)	
Butyl oleate	4.00 (25)	
N-Butylpropanamide	100.6 (25)	
Butyl propanoate	4.838 (20)	1.79 (23, B)
4- <i>tert</i> -Butylpyridine		2.87 (25. C)
Butylsilane	2.537 (20)	
Butyl stearate	3.11 (30)	1.88 (24, B)
Butyl trichloroacetate	7,480 (20)	
Butyl vinyl ether		1.25 (25, Hx)
4-Butyrolactone	39.0 (20)	4 27
Camphor	11 35 (20)	2 91 (20 B) 3 10 (25 B)
Carbon disulfide	30(-112) 2.64(20)	0
Carbon tetrachloride	2.24 (20), 2.228 (25)	0
Carbon tetrafluoride	1,0006 (25, g)	0
D-(+)-Carvone	11 (22)	2.8 (15. B)
Chloroacetic acid	20 (20) 12 35 (65)	2.31(30 B)
a-Chloroaniline	13 40 (20)	1 78 (20 B)
<i>m</i> -Chloroaniline	13.3 (20)	2 68 (20, B)
<i>n</i> -Chloroaniline	10.0 (00)	2.00 (20, B) 2.99 (25 B)
Chlorobenzene	5 69 (20) 4 2 (120)	1 69
	5.07 (20), T.2 (120)	1.07

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2-Chloro-1,3-butadiene	4.914 (20)	
1-Chlorobutane	9.07 (-30), 7.276 (20)	2.05 (g), 2.0 (20, B)
2-Chlorobutane	8.564 (20), 7.09 (30)	2.04 (g), 2.1 (20, B)
Chlorocyclohexane	10.9 (-47), 7.951 (30)	2.2 (25, B)
Chlorodifluoromethane	6.11 (24)	1.42 (g)
2-Chloro-N,N-dimethylacetamide	39.2 (25)	-
1-Chlorododecane	4.2 (20)	2.11 (25, lq), 1.94 (20, B)
1-Chloro-2,3-epoxypropane	25.6 (1), 22.6 (22)	1.8 (25, C)
Chloroethane	1.013 (19, g), 9.45 (20)	2.05
2-Chloroethanol	25.80 (20), 13 (132)	1.78
(2-Chloro)ethylbenzene	4.36 (25)	
(3-Chloro)ethylbenzene	5.18 (25)	
(4-Chloro)ethylbenzene	5.16 (25)	
2-Chlorofluorobenzene	6.10 (25)	
3-Chlorofluorobenzene	4.96 (25)	
4-Chlorofluorobenzene	3.34 (25)	
Chloroform	4.807 (25), 4.31 (50)	1.04
1-Chloroheptane	5.52 (20)	1.86 (22, B)
2-Chloroheptane	6.52 (22)	2.05 (22, B)
3-Chloroheptane	6.70 (22)	2.06 (22, B)
4-Chloroheptane	6.54 (22)	2.06 (22, B)
1-Chlorohexane	6.104 (20)	1.94 (20, B)
6-Chloro-1-hexanol	21.6 (-31)	
1-Chloro-2-isocyanatoethane	29.1 (15)	
Chloromethane	1.0069 (g), 12.6 (-20), 10.0 (22)	1.892
1-Chloro-3-methylbutane	7.63 (-70), 6.05 (20)	1.94 (20, B)
2-Chloro-2-methylbutane	12.31 (-50)	
4-Chloromethyl-1,3-dioxolan-2-one	97.5 (40)	
Chloromethyl methyl ether		1.88 (C)
(Chloromethyl)oxirane	22.6 (20)	1.8
1-Chloro-2-methylpropane	7.87 (-38), 7.027 (20)	2.00
2-Chloro-2-methylpropane	10.95 (0), 9.66 (20)	2.13
1-Chloronaphthalene	5.04 (25)	1.33 (25, lq), 1.52 (25, B)
o-Chloronitrobenzene	37.7 (50), 32 (80)	4.64
m-Chloronitrobenzene	20.9 (50), 18 (80)	3.73
p-Chloronitrobenzene	8.09 (120)	2.83
2-Chloro-2-nitropropane	31.9 (-23)	
4-Chloro-3-nitrotoluene	28.07 (28)	
1-Chlorooctane	5.05 (25)	2.14 (25, lq)
Chloropentafluoroethane		0.52
1-Chloropentane	6.654 (20)	2.16
o-Chlorophenol	7.40 (21), 6.31 (25)	2.19
<i>m</i> -Chlorophenol	6.255 (20)	2.19 (25, B)
p-Chlorophenol	11.18 (41)	2.11
1-Chloropropane	8.59 (20)	2.05
2-Chloropropane	9.82 (20)	2.17
3-Chloro-1,2-propanediol	31.0 (20)	
3-Chloro-1,2-propanediol dinitrate	17.50 (20)	
3-Chloro-1-propanol	36.0 (-58)	
1-Chloro-2-propanol	59.0 (-120)	
1-Chloro-2-propanone	30 (19)	2.22 (g), 2.37 (20, Hx)
2-Chloro-1-propene	8.92 (26)	1.647

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
3-Chloro-1-propene	8.2 (20)	1.94
2-Chloropyridine	27.32 (20)	
4-Chlorothiophenol	3,59 (65)	
o-Chlorotoluene	4.72 (20), 4.2 (55)	1.56
<i>m</i> -Chlorotoluene	5.76 (20), 5.0 (60)	1.77 (20, la), 1.8 (22, B)
<i>p</i> -Chlorotoluene	6.25 (20), 5.6 (55)	2.21
Chlorotrifluoromethane	1.0013 (29, g), 3.01 (-150)	0.50
2-Chloro-1-trifluoromethyl-5-	9.8 (30)	
4-Chloro-1-trifluoromethyl-3-	12.8 (30)	
nitrobenzene	7 22 (22)	
3-Chloro-1,1,1-trinuoropropane	1.32 (22)	2.00 (20 D)
Chlorotrimethylsilane	4.57 (05)	2.09 (20, B)
Cineole	4.57 (25)	2.74
Cinnamaldenyde	17 (20), 16.9 (24)	3.74
o-Cresol	6.76 (25)	1.45 (25, B)
m-Cresol	12.44 (25)	1.61 (25, B)
p-Cresol	13.05 (25)	1.54 (20, B)
Crotonic acid	22 1 (1)	2.13 (30, B)
Cyanoacetic acid	33.4 (4)	
Cyanoacetylene	72.3 (19)	3.724
2-Cyanopyridine	93.77 (30)	
3-Cyanopyridine	20.54 (50)	
4-Cyanopyridine	5.23 (80)	1
Cyclobutanone	14.27 (25)	2.89
Cycloheptane	2.078 (30)	
Cycloheptanone	13.16 (25)	
1,3-Cyclohexadiene	2.68 (-89)	0.38 (20, B)
1,4-Cyclohexadiene	2.211 (23)	
Cyclohexane	2.05 (15), 2.02 (25)	0
Cyclohexanecarboxylic acid	2.6 (31)	
1,4-Cyclohexanedione	15.0 (25), 4.40 (78)	1.41
Cyclohexanethiol	5.420 (25)	
Cyclohexanol	16.40 (20), 15.0 (25), 7.24 (100)	1.86 (25, C)
Cyclohexanone	20 (-40), 16.1 (20)	2.87
Cyclohexanone oxime	3.04 (89)	0.83 (25, B)
Cyclohexene	2.6 (-105), 2.218 (20)	0.332
Cyclohexylamine	4.55 (20)	1.22 (20, lq), 1.26 (20, B)
Cyclohexylbenzene		0
Cyclohexylmethanol	9.7 (60), 8.1 (80)	1.68 (20, B)
Cyclohexyl nitrite	9.33 (25)	
o-Cyclohexylphenol	3.97 (55)	
p-Cyclohexylphenol	4.42 (131)	
Cyclooctane	2.116 (22)	0
cis-Cyclooctene	2.306 (23)	
Cyclopentane	1.9687 (20)	0
Cyclopentanecarbonitrile	22.68 (20)	
Cyclopentanol	25 (-20), 18.5 (10)	1.72 (25, C)
Cyclopentanone	16 (51), 13.58 (25)	3.30
Cyclopentene	2.083 (22)	0.20
<i>p</i> -Cymene	2.243 (20), 2.23 (25)	0
cis-Decahydronaphthalene	2.22 (20)	0

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
trans-Decahydronaphthalene	2.18 (20)	0
Decamethylcyclopentasiloxane	2.5 (20)	
Decamethyltetrasiloxane	2.4 (20)	0.79 (25, lq)
Decane	1.991 (20), 1.844 (130)	0
1-Decanol	8.1 (20)	1.71 (20, B), 1.62 (25, B)
1-Decene	2.14 (20)	0
meso-2,3-Diacetoxybutane	6.644 (25)	
Diallyl sulfide	4.9 (20)	1.33 (25, B)
Dibenzofuran	3.0 (100)	0.88 (25, B)
Dibenzylamine	3.6 (20)	0.97 (20, lq), 1.02 (20, B)
Dibenzyl decanedioate	4.6 (25)	
Dibenzyl ether	3.82 (20)	1.39 (21, B)
o-Dibromobenzene	7.86 (20)	2.13 (20, B)
<i>m</i> -Dibromobenzene	4.21 (20)	1.5 (20, B)
<i>p</i> -Dibromobenzene	2.57 (95)	0
1,2-Dibromobutane	4.74 (20)	
1.3-Dibromobutane	9.14 (20)	
1.4-Dibromobutane	8.68 (30)	2.16 (20, lq), 2.06 (20, B)
2.3-Dibromobutane	6.36 (20), 5.75 (25)	2.20
meso-2,3-Dibromobutane	6.245 (25)	
(\pm) -2,3-Dibromobutane	5.758 (25)	
1,2-Dibromodichloromethane	2.54 (25)	
1,2-Dibromodifluoromethane	2.94 (0)	0.66
1,2-Dibromoethane	4.96 (20), 4.78 (25), 4.09 (131)	1.11
cis-1,2-Dibromoethylene	7.08 (25)	
trans-1,2-Dibromoethylene	2.88 (25)	
Dibromomethane	7.77 (10)	1.43
cis-1,2-Dibromoethylene	7.7 (0), 7.08 (25)	1.35 (B)
trans-1,2-Dibromoethylene	2.9 (0), 2.88 (25)	0
1,2-Dibromoheptane	3.8 (25)	1.78 (25, D)
2,3-Dibromoheptane	5.1 (25)	2.15 (25, B)
3,4-Dibromoheptane	4.7 (25)	2.15 (25, B)
meso-3,4-Dibromohexane	4.67 (25)	
(±)-3,4-Dibromohexane	6.732 (25)	
1,6-Dibromohexane	8.52 (25)	
Dibromomethane	7.77 (10), 6.7 (40)	1.43
1,2-Dibromo-2-methylpropane	4.1 (20)	
1,2-Dibromopentane	4.39 (25)	
(±)-erythro-2,3-Dibromopentane	5.43 (25)	
(±)-threo-2,3-Dibromopentane	6.507 (25)	
1,4-Dibromopentane	9.05 (20)	
1,5-Dibromopentane	9.14 (30)	
1,2-Dibromopropane	4.60 (10), 4.3 (20)	1.13
1,3-Dibromopropane	9.48 (20)	
Dibromotetrafluoroethane	2.34 (25)	
Dibutylamine	2.78 (20)	1.06 (20, lq), 1.05 (20, B)
Dibutyl decanedioate	4.54 (20)	2.64 (25, B)
Dibutyl ether	3.08 (20)	1.18
Dibutyl maleate		2.70 (25, B)
Dibutyl o-phthalate	6.58 (20), 6.436 (30), 5.99 (45)	2.97 (20, lq), 2.85 (30, B)
Dibutyl sulfide	4.29 (25)	1.6
Dichloroacetic acid	8.33 (20), 7.8 (61)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Dichloroacetic anhydride	15.8 (25)	
1,1,-Dichloroacetone	14.6 (20)	
o-Dichlorobenzene	10.12 (20), 9.93 (25), 7.10 (90)	2.50
<i>m</i> -Dichlorobenzene	5.02 (20), 5.04 (25), 4.22 (90)	1.72
<i>p</i> -Dichlorobenzene	2.394 (55)	0
1.2-Dichlorobutane	7.74 (25)	
1.4-Dichlorobutane	9.30 (35)	2.22
Dichlorodifluoromethane	3.50(-150), 2.13(29)	0.51
4-Chloro-1.3-dioxalan-2-one	62.0 (40)	
4.5-Dichloro-1.3-dioxalan-2-one	31.8 (40)	
1.1-Dichloroethane	10.10 (20)	2.06
1.2-Dichloroethane	12.7(-10), 10.42(20)	1.48
1.1-Dichloroethylene	4.60 (20), 4.60 (25)	1.34
<i>cis</i> -1.2-Dichloroethylene	9.20 (25)	1.90
trans-1.2-Dichloroethylene	2.14 (20)	0
2.2'-Dichloroethyl ether	21.2 (20)	2.61 (20, B)
Dichlorofluoromethane	5.34 (28)	1.29 (g)
1.6-Dichlorohexane	8.60 (35)	
Dichloromethane	9.14 (20), 8.93 (25), 1.0065 (100, g)	1.60
1.3-Dichloroisopropyl nitrate	13.28 (20)	
(Dichloromethyl)benzene	6.9 (20)	2.1
Dichloromethyl isocyanate	7.36 (15)	
1 2-Dichloro-2-methylpropane	7 15 (23)	
2 4-Dichloro-1-nitrobenzene	13.06 (28)	
1 1-Dichloro-1-nitroethane	16 3 (30)	
1.2-Dichloropentane	6 89 (20)	
1,5-Dichloropentane	9 92 (25)	
2 4-Dichlorophenol	<i>y.y</i> ² (23)	1.60 (25 B)
1 2-Dichloropropage	8 37 (20) 8 93 (26) 7 90 (35)	1.87(25 B)
1.3-Dichloropropane	10 27 (30)	2.08
2 2-Dichloropropane	11 37 (20)	2.62
1 1-Dichloro-2-propanone	14(20)	2.02
1.2-Dichlorotetrafluoroethane	248(0) 226(25)	0.53
2 4-Dichlorotoluene	5 68 (28)	17
2.6-Dichlorotoluene	3 36 (28)	1.7
3 4-Dichlorotoluene	9 39 (28)	3.0
Diethanolamine	25 75 (20)	2 84 (25 B)
1 1-Diethoxyethane	380(25)	1.08
1.2-Diethoxyethane	3 90 (20)	199 (20 B) 165 (25 B)
Diethoxymethane	2,527 (20)	(20, 2), 100 (20, 2)
N N-Diethylacetamide	32.1(20)	
N N-Diethylacetoacetamide	40.8 (25)	
Diethylamine	3 680 (20)	0.92
N N-Diethylaniline	5.000(20)	1.40(20 lg) + 80(20 B)
Diethyl carbonate	2 82 (24)	1 10
N N-Diethyl- $N' N'$ -dimethylurea	17.89 (25)	1.10
Diethyl decanedioate	5.0 (30)	2.38 (20.1a) 2.52 (20.B)
Diethylene glycol	3 182 (20)	2.3
Diethylene glycol diethyl ether	5 70	
Diethyl ether	4 267 (20) 3 97 (40)	1 15
Diethyl ethyl phosphonate	11.00(15), 9.86(45)	2.95 (32.16) 2.91 (20.0)
N N-Diethylformamide	29.6 (20)	2.55 (52, 14), 2.51 (20, C)
.,,., Sionynonnannao		

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Diethyl fumarate	6.56 (23)	2.40 (20, B)
Diethyl glutarate	6.7 (30)	2.46 (30, lq)
Diethyl glycol	31.82 (20)	
Di(2-ethylhexyl) o-phthalate	5.3 (20), 4.91 (35), 4.77 (45)	2.8
Diethyl maleate	8.58 (23), 7.56 (25)	2.56 (25, B)
Diethyl methanephosphate	13.405 (40)	
Diethyl 1,3-propanedioate (malonate)	8.03 (25), 7.55 (31)	2.49 (20, lq), 2.54 (25, B)
Diethyl nonanedioate	5.13 (30)	
Diethyl oxalate	8.266 (20)	2.49 (20, D)
Diethyl o-phthalate	7.34 (35), 7.13 (45)	2.8 (25, B)
Diethylsilane	2.544 (20)	
Diethyl succinate	6.098 (20)	2.3
Diethyl sulfate	29.2 (20)	4.46 (25, D)
Diethyl sulfide	5.72 (25), 5.24 (50)	1.54
Diethyl sulfite	15.6 (20), 14 (50)	
Diethylzinc	2.55 (20)	0.62 (25, B)
o-Difluorobenzene	13.38 (28)	2.46
<i>m</i> -Difluorobenzene	5.01 (28)	1.51
1,1-Difluoroethane		2.27
Difluoromethane	53.74 (-121)	1.978
2,3-Dihydropyran	5.136 (35)	
1,2-Dihydroxybenzene	17.57 (115)	2.60 (25, B)
1,3-Dihydroxybenzene	13.55 (120)	2.09 (44, B)
1,4-Dihydroxybenzene		1.4 (44, B)
1,2-Diiodobenzene	5.7 (20), 5.41 (50)	1.70 (20, B)
1,3-Diiodobenzene	4.3 (25), 4.11 (50)	1.22 (20, B)
1,4-Diodobenzene	2.88 (120)	0.19 (20, B)
cis-1,2-Diiodoethylene	4.46 (72)	0.71 (B)
trans-1,2-Diiodoethylene	3.19 (77)	0
Diiodomethane	5.316 (25)	1.08 (25, B)
Diisobutylamine	2.7 (22)	1.10 (25, B)
1,6-Diisocyanatohexane	14.41 (15)	
Diisopentylamine	2.5 (18)	1.48 (30, B)
Diisopentyl ether	2.82 (20)	0.98 (20, lq), 1.23 (25, B)
Diisopropylamine		1.26 (25, B)
Diisopropyl ether	3.88 (25), 3.805 (30)	1.13
1,2-Dimethoxybenzene	4.45 (20), 4.09 (25)	1.32 (25, B)
Dimethoxydimethylsilane	3.663 (25)	
1,2-Dimethoxyethane	7.60 (10), 7.30 (23.5)	1.71 (25, B)
Dimethoxymethane	2.644 (20)	0.74
N,N-Dimethylacetamide	38.85 (21), 37.78 (25)	3.80
2-Dimethylamino-2-methyl-1-	12.36 (25)	
propanol		1.01
Dimethylamine	0.32(0), 5.20(25)	1.01
2.4 Directly landing	4.90 (25), 4.4 (70)	1.08 1.40 (25 P)
2.3 Dimethyl 1.2 but diana	+.7(20)	1.40 (23, D)
N N Dimethylbutansmide	2.102 (20)	
2.2 Dimethylbutane	29.7 (20) 1 860 (20)	0
2.2 Dimethylbutone	1 880 (20)	0
3 3-Dimethyl-2-butanone	12 73 (20)	0
5,5-17 methyr-2-outanone	12.75 (20)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2,2-Dimethyl-1-butanol	10.5 (20)	
Dimethyl carbonate	3.087 (25)	0.90
cis-1,2-Dimethylcyclohexane	2.06 (25)	0
trans-1,2-Dimethylcyclohexane	2.04 (25)	0
1,1-Dimethylcyclopentane		0
Dimethyl disulfide	9.6 (25)	1.8
Dimethyl ether	6.18 (-15), 5.02 (25), 2.97 (110)	1.30
N,N-Dimethylformamide	38.25 (20), 36.71 (25)	3.82 (25, B)
2,4-Dimethylheptane	1.9 (20)	0
2,5-Dimethylheptane	1.9 (20)	0
2,6-Dimethylheptane	2 (20)	0
2,6-Dimethyl-4-heptanone	9.91 (20)	2.66 (25, C)
2.2-Dimethylhexane	1.95 (20)	0
2.5-Dimethylhexane	1.96 (21)	0
3.3-Dimethylhexane	1.96 (20)	0
3.4-Dimethylhexane	1.98 (19)	0
Dimethyl hexanedioate	6.84 (20)	2.28 (20, B)
1.3-Dimethylimidazolidin-2-one	37.60 (25)	2.20 (20, 2)
Dimethyl maleate	51100 (20)	2.48 (25. C)
Dimethyl malonate	9 82 (20)	2.41(20 B)
Dimethyl methanenhosphate	22.3(20)	2 (20, 2)
N N-Dimethyl methanesulfonamide	80.4 (50)	
1.2-Dimethylnaphthalene	2 61 (25)	0
1,2-Dimethylnaphthalene	2.01(2.5)	0
A A-Dimethyloxazolidine-2-one	39.2 (60)	0
N N-Dimethylpentanamide	264(20)	
2.2 Dimethylpentana	1,015,(20)	0
2.3 Dimethylpentane	1.915(20) 1.020(20)	0
2,4 Dimethylpentane	1.929(20) 1.002(20)	0
2.4-Dimethylpentane	1.902(20) 1.942(20)	0
Dimethyl pentanedioste	7.942(20)	0
2 4 Dimethyl 3 pentanone	1.87 (20)	27
2.3 Dimethylphenol	4.81 (70)	2.7
2.4 Dimethylphenol	4.81 (70) 5.06 (20)	1 48 (20 P) 1 08 (60 P)
2,5 Dimethylphonol	5.00 (50)	1.46(20, B), 1.98(00, B) 1.42(20, P), 1.52(60, P)
2,5-Dimethylphenol	3.30 (03) 4.00 (40)	1.45 (20, B), 1.52 (00, B)
2.0-Dimethylphenol	4.90 (40)	1.4 1.77 (20 P)
3.5 Dimethylphenol	9.02 (00)	1.77 (20, B)
Dimothyl a phthelata	9.00 (50) 8.66 (20) 8.25 (25) 8.11 (45)	28(25 P)
2.2 Dimethylpropagal	0.051(20)	2.6 (25, B)
N N Dimethylpropananida	34.6(20)	2.00
2.2 Dimethylpropanamide	34.0(20)	
2.2 Dimethylpropanal	20.15(23) 1 760(22) 1 679(08)	0
2.2 Dimethylpropane	1.709(23), 1.078(98)	2.05
2,2-Dimethylpropane mune	21.1 (20)	5.95
N,N-Dimethylpropanamide	33.1 9.25 ((D)	
2,2-Dimethyl-1-propanol	8.35 (60)	0
2,5-Dimethylpyrazine	2.436 (20)	0
2,0-Dimethylpyrazine	2.033 (33)	2.2
2,4-Dimethylpyridine	9.00 (20)	2.3
2,0-Dimethylpyridine	7.33 (20) AC 11 (25)	1./
2,0-Dimethylpyridine-1-oxide	40.11 (25)	
2,3-Dimethylquinoxaline	2.3 (25)	0

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Dimethyl succinate	7.19 (20)	2.09 (20, B)
Dimethyl sulfate	55.0 (25)	4.31 (25, D)
Dimethyl sulfide	6.70 (21)	1.554
Dimethyl sulfite	22.5 (23)	2.93 (20, B)
Dimethyl sulfone	47.39 (110)	
Dimethyl sulfoxide	47.24 (20), 41.9 (55)	3.96 (25, B)
cis-2,5-Dimethyltetrahydrofuran	5.03 (23)	
N,N-Dimethylthioformamide	47.5 (25)	
N,N-Dimethyl-o-toluidine	3.4 (20)	0.88 (25, B)
N.N-Dimethyl-p-toluidine	3.9(20)	1.29 (25, B)
<i>m</i> -Dinitrobenzene	22.9 (92)	
2,2-Dinitropropane	42.4 (52)	
Dinonyl hexanedioate		2.53 (25, B)
Dinonyl o-phthalate	4.65 (35), 4.52 (45)	
Dioctyl decanedioate	4.0 (27)	
Dioctyl o-phthalate	5.1 (25)	3.06 (25, C)
1,4-Dioxane	2.219 (20), 2.21 (25)	0
1.3-Dioxolane		1.19
1.3-Dioxolan-2-one	89.78 (40)	
Dipentene	2.38 (25)	
Dipentyl ether	2.80 (25)	0.98 (20, Ja), 1.24 (25, B)
Dipentyl <i>o</i> -phthalate	5.79 (35) 5.62 (45)	2.71 (20, lq)
Dipentyl sulfide	3.83 (25)	1.59(25 B)
Dipentylamine	33 (52)	131(20 C) 101(25 B)
1 2-Diphenylethane	24(110)	0(110 la) 0.45(25 B)
Diphenyl ether	3 73 (10) 3 63 (30)	13
Diphenylmethane	2.7 (18) 2.57 (26)	$0.26 (30 \ l_0) = 0.3 (25 \ B)$
Dipropylamine	2.923 (20)	1.01 (20 lg) + 1.03 (20 B)
Dipropyl ether	3 38 (24)	1 21
N N-Dipropylformamaide	23.5 (20)	L + 44-7 3
Dipropyl sulfone	32 62 (30)	
Dipropyl sulfoxide	30.37 (30)	
Divinyl ether	3.94 (15)	0.78
Dodecamethylcyclohexasiloxane	2.6 (20)	0.70
Dodecamethylpentasiloxane	2.5 (20)	
Dodecane	2.05(20) 2.05(10) 2.01(20)	0
1-Dodecanol	5 15 (20) 6 5 (25)	1.52 (20 B)
1-Dodecene	2 15 (20)	0
6-Dodecyne	2.17 (25)	0
1.2-Enoxybutane	2.17 (2.3)	2 01 (20 B)
Frythritol	28 (128)	2.01 (20, B)
Ethane	1.936(-178) 1.0015(0)	0
1.2-Ethanediamine	16.8 (18) 13.82 (20)	1.96
1,2-Ethanedial	A1 A (20) 37 7 (25)	2.28
1.2-Ethanediol diacetate	77(17)	2.20 2.34 (30 B)
1.2-Ethanediol dinitrate	28 26 (20)	2.34 (30, 1)
1.2-Ethanediol monoacetate	12 95 (30)	
1.2 Ethenedithial	7.26 (20)	
1,2-isilialicululloi Ethonosulfonul oblasida	1.20 (20)	2 80 (25 P)
Ethorethic	6.0 (15) 6.667 (25)	5.69 (23, B)
Ethonol	0.9(13), 0.007(23)	1.58
Emanol Etherologia	23.3 (20), 20.21 (33)	1.09
Euranolamine	51.94 (20)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Ethoxyacetylene	8.05 (25)	
4-Ethoxyaniline	7.43 (25)	
Ethoxybenzene (phenetol)	4.216 (20)	1.45
2-Ethoxyethanol	13.38 (25)	2.24 (30, B)
2-Ethoxyethyl acetate	7.567 (30)	2.25 (30, B)
1-Ethoxy-2-methylbutane	3.96 (20)	
1-Ethoxynaphthalene	3.3 (19)	
1-Ethoxypentane	3.6 (23)	
α -Ethoxytoluene	3.9 (20)	
Ethoxytrimethylsilane	3.013 (25)	
N-Ethylacetamide	135.0 (20)	
Ethyl acetate	6.081 (20), 5.30 (77)	1.78
Ethyl acetoacetate	14.0 (20)	3.22 (18, B, keto form)
Fithyl acrylate	6.05 (30)	$2.04 (-80, CS_2, CHOI TOTHI)$
Ethylamine	87(0) 694(10)	1.22
N Ethylaniline	5.87 (20)	1.22
A Ethylopiling	4.84 (25)	
4-Bulytannine Ethylhonzone	4.64(23)	0.50
Ethylbenzene Ethylbenzente	2.440 (20) 6 20 (20)	0.59
Ethyl 2 bromonostoto	8.75 (20)	2.00
Ethyl a bromobutonooto	8.75 (50)	2.40.(25 P)
Ethyl 2 hromo 2 methylproponeste	8 (20) 8 55 (20)	2.40 (23, B)
Ethyl 2 bromononanana	0.33 (30) 0.4 (30) 8.57 (30)	
N Ethelberten and de	9.4 (20), 8.57 (30)	
Ethel buten ante	107.0 (23) 5 19 (29)	174 (22 D)
Ethyl butanoate	5.18 (28)	1.74 (22, B)
2-Ethylbutanoic acid	2.72 (23)	
2-Etnyl-1-butanol	6.19 (90)	
Ethyl tert-butyl ether	7.07 (25)	2.50 (20. D)
Ethyl carbamate	14.2 (50), 14.14 (55)	2.59 (30, D)
Ethyl chloroacetate	11.4 (21)	2.65 (25, B)
Ethyl chlorocarbonate	9.736 (36)	
Ethyl cis-3-chlorocrotonate	7.67 (76)	
Ethyl trans-3-chlorocrotonate	4.70 (54)	
Ethyl chloroformate	11 (20)	2.56 (35, B)
Ethyl 2-chloropropanoate	11.95 (30)	
Ethyl 3-chloropropanoate	10.19 (30)	
Ethyl trans-cinnamate	6.1 (18), 5.83 (20)	1.86 (20, B)
Ethyl crotonate	5.4 (20)	1.95 (24, B)
Ethyl cyanoacetate	31.62 (-10), 26.9 (20)	2.2
Ethylcyclobutane	1.965 (20)	
Ethylcyclohexane	2.054 (20)	0
Ethylcyclopropane	1.933 (20)	
Ethyl dichloroacetate	12 (2), 10 (22)	2.63 (25, B)
Ethyl dodecanoate	3.4 (20), 2.7 (143)	1.3 (20, lq)
Ethylene	1.001 44 (0, g), 1.483 (-3)	0
Ethylene carbonate	89.78 (40), 69.4 (91)	4.87 (25, B)
Ethylenediamine	13.82 (20)	1.98
Ethylene dinitrate	28.3 (20)	3.58 (25, B)
2,2'-(Ethylenedioxy)diethanol	23.69 (20)	5.58 (lq)
Ethylene glycol	41.4 (20), 37.7 (25)	2.28
Ethylene glycol diacetate	7.7 (17)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Ethyleneimine	18.3 (25)	1.90
Ethylene oxide	14 (-1), 12.42 (20)	1.89
Ethylene sulfite	39.6 (25)	
N-Ethylformamide	102.7 (25)	
Ethyl formate	8.57 (15), 7.16 (25)	1.94
Ethyl fumarate	6.5 (23)	
Ethyl furan-2-carboxylate	9.02 (20)	
Ethylhexadecanoate	3.2 (20), 2.71 (104)	1.2 (lq)
3-Ethylhexane	1.96 (20)	0
2-Ethyl-1,2-hexanediol	18.73 (20)	
Ethyl hexanoate	4.45 (20)	1.80 (20, B)
2-Ethyl-1-hexanol	7.58 (25), 4.41 (90)	1.74 (25, B)
2-Ethylhexyl acetate		1.8
Ethyl 2-iodopropanoate	8.6 (20)	
Ethyl isocyanate	19.7 (20)	
Ethyl isopentyl ether	3.96 (20)	
Ethyl isothiocyanate	19.6 (20)	3.67 (20, B)
Ethyl lactate	15.4 (30)	2.4 (20, B)
Ethyl maleate	8.6 (23)	
Ethyl methacrylate	5.68 (30)	
Ethyl 3-methylbutanoate	4.71 (20)	
Ethyl-N-methyl carbamate	21.10 (25)	
Ethyl methyl carbonate	2.985 (20)	
Ethyl methyl ether		1.17
3-Ethyl-2-methylpentane	1.99 (18)	0
Ethyl nitrate	19.7 (20)	2.93 (20, B)
Ethyl 9-octadecanoate	3.2 (25)	1.83 (20, lq)
3-Ethyloxazolidine-2-one	66.8 (25)	
4-Ethyloxazolidine-2-one	42.6 (25)	
Ethyl 4-oxopentanoate	12 (21)	
3-Ethylpentane	1.942 (20)	0
Ethyl pentanoate	4.71 (18)	1.76 (28, B)
3-Ethyl-3-pentanol	3.158 (20)	
Ethyl pentyl ether	3.6 (23)	1.2 (20, B)
Ethyl phenylacetate	5.3 (21)	1.82 (30)
Ethyl phenyl sulfide		4.08 (25, B)
N-Ethyl propanamide	126.8 (25)	
Ethyl propanoate	5.76 (20)	1.75 (22, B)
Ethyl propyl ether		1.16 (25, B)
2-Ethylpyridine	8.33 (20)	
4-Ethylpyridine	10.98 (20)	
Ethyl salicylate	7.99 (30)	2.85 (25, B)
Ethyl stearate	2.98 (40), 2.69 (100)	1.65 (40, lq)
Ethyl thiocyanate	29.3 (21)	3.33 (20, B)
<i>p</i> -Ethyltoluene	2.24 (25)	0
Ethyl trichloroacetate	8.428 (20)	2.56 (25, B)
Ethyltrimethylsilazine	2.275 (30)	
Ethyl vinyl ether		1.26 (20, B)
Fluorobenzene	5.465 (20), 5.42 (25), 4.7 (60)	1.60
4-Fluorobenzene sulfonylchloride	12.65 (40)	
2-Fluoroiodobenzene	8.22 (25)	
3-Fluoroiodobenzene	4.62 (25)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
4-Fluoroiodobenzene	3.12 (25)	
Fluoromethane	51.0(-142)	1.858
2-Fluoro-2-methylbutane	5.89 (20)	1.92 (25, B)
1-Fluoropentane	3.93 (20)	1.85 (25, B)
o-Fluorotoluene	4.23 (25), 4.22 (30), 3.9 (60)	1.37
<i>m</i> -Fluorotoluene	5.41 (25), 4.9 (60)	1.82
<i>p</i> -Fluorotoluene	5.88 (25), 5.86 (30), 5.3 (60)	2.00
Formamide	111.0 (20), 103.5 (40)	3.73
Formanilide		3.37 (25, C)
Formic acid	58.5 (15), 57.0 (21), 51.1 (25)	1.41
2-Furaldehyde	42.1 (20), 34.9 (50)	3.63 (25, B)
Furan	2.88 (4)	0.66
2-Furfurvl acetate	5.85 (20)	
Furfuryl alcohol	16.85 (25)	1.92 (25. la)
Glycerol	46.5 (20), 42.5 (25)	2.68(25, D)
Glycerol tris(acetate)	7.2 (20)	2.73 (25, B)
Glycerol tris(nitrate)	19.25 (20)	3.38 (25, B)
Glycerol tris(cleate)	3.2 (26)	3.11 (23, B)
Glycerol tris(palmitate)	2.9 (65)	2.80(23 B)
Glycerol tris(sterate)	2.8 (70)	2.86 (23, B)
1.6-Hentadiene	2.161 (20)	2100 (20, 2)
Heptacosafluorotributylamine	2.15 (20)	
2 2 3 3 4 4 4-Heptafluoro-1-butanol	14 4 (25)	
Hentanal	91(20)	2.26 (40 la) 2.58 (22 B)
Heptane	1.921(20) 1.85(70)	0
1-Hentanethiol	4.194 (20)	Ū.
Heptanoic acid	3.04(15) 2.6(71)	
1-Hentanol	11.75 (20)	173 (20 B)
(\pm) -2-Heptanol	9.72 (21)	1.73 (20, B)
(\pm) - 3-Heptanol	7.07 (23)	1.73 (20, B)
4-Hentanol	6.18 (23)	1.72 (20 B)
2-Heptanone	11.95 (20), 8.27 (100)	2.61 (22, B)
3-Heptanone	12.7 (20)	2.81 (22, B)
4-Heptanone	12.60 (20), 9.46 (80)	2.74(20, B)
1-Heptene	2.09 (20)	0
Heptylamine	3.81 (20)	Ũ
Hexachloroacetone	3.93 (19)	
Hexachloro-1.3-butadiene	2.55 (20)	
Hexadecamethylcyclooctasiloxane	2.7 (20)	
Hexadecane	2.046 (30)	0
1-Hexadecanol	3.8 (50)	1.67 (25. B)
1.5-Hexadiene	2,125,(26)	1.07 (20, 2)
2.4-Hexadiene	2.207 (25)	0.31 (25. B)
cis.cis-2.4-Hexadiene	2.163 (24)	0.51 (25, 2)
trans trans-2.4-Hexadiene	2,123,(24)	
Hexafluoroacetone	2.104(-71)	
Hexafluorobenzene	2.029 (25)	0
1.1.1.3.3.3-Hexafluoro-2-propanol	16.70 (20)	~
Hexamethyldisiloxane	2.2 (20)	0.37 (25, 1a)
Hexamethylphosphorotriamide	31.3 (20)	5.5.4.31(25 la)
Hexane	1.904 (15), 1.890 (20)	0
Hexanedinitrile	32.45 (25)	3.8 (25, B)

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Hexanenitrile	17.26 (25)	
1-Hexanethiol	4.436 (20)	
1,2,6-Hexanetriol	31.5 (12)	
Hexanoic acid	2.600 (25)	1.13 (25, lq)
1-Hexanol	13.03 (20), 8.5 (75)	1.55 (20, B)
(\pm) -2-Hexanol	11.06 (25)	
3-Hexanol	9.66 (25)	
2-Hexanone	14.6 (15), 14.56 (20)	2.68 (22, B)
1-Hexene	2.051 (20)	0
cis-2-Hexene		0
trans-2-Hexene	1.978 (22)	0
cis-3-Hexene	2.069 (23)	0
trans-3-Hexene	1.954 (20)	0
Hexyl acetate	4.42 (20)	
Hexylamine	4.08 (20)	
1-Hexyne	2.621 (23)	0.83
2-Hydroxyacetophenone	21.33 (25)	
2-Hydroxybutanoic acid	37.7 (23)	
3-Hydroxybutanoic acid	31.5 (23)	
N-(2-Hydroxyethyl)acetamide	96.6 (25)	
4-Hydroxy-4-methyl-2-pentanone	18.2 (25)	3.24 (20, B)
3-Hydroxypropanoic acid	30.0 (23)	
Iodobenzene	4.59 (20)	1.70
1-Iodobutane	6.27 (20), 4.52 (130)	2.10
2-Iodobutane	7.873 (20)	2.12
1-Iodododecane	3.9 (20)	1.87 (20, C)
Iodoethane	10.2 (-50), 7.82 (20)	1.91
1-Iodoheptane	4.92 (22)	1.86 (22, B)
3-Iodoheptane	6.39 (22)	1.95 (22, B)
1-Iodohexadecane	3.5 (20)	
1-Iodohexane	5.37 (20)	1.94 (20, C)
Iodomethane	6.97 (20)	1.62
1-Iodo-3-methylbutane	5.6 (19)	1.85 (20, B)
2-Iodo-2-methylbutane	8.19 (20)	2.20 (20, B)
1-Iodo-2-methylpropane	6.47 (20)	1.89 (20, B)
2-Iodo-2-methylpropane	6.65 (10)	
1-Iodooctane	4.6 (25)	1.80 (25, lq), 1.90 (20, C)
2-Iodooctane	5.8 (20)	2.07 (20, C)
1-Iodopentane	5.78 (20)	1.90 (20, B)
3-Iodopentane	7.432 (20)	
1-Jodopropane	7.07 (20)	2.03
2-Iodopropane	8.19 (25)	2.01 (20, B)
3-Iodopropene	6.1 (19)	
<i>p</i> -Iodotoluene	4.4 (35)	1.72 (22, B)
α-Ionone	11 (18)	
β-Ionone	12 (20)	
Iron pentacarbonyl	2.602 (20)	
Isobutanenitrile	20.4 (24)	3.61 (25, B)
Isobutene	2.1225 (15)	0.503
N-Isobutylacetamide	111.0 (20)	
Isobutyl acetate	5.068 (20)	1.87 (22, B)
Isobutylamine	4.43 (21)	1.27 (25, B)

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Isobutylbenzene	2.319 (20), 2.298 (30)	0.31 (20, lq)
Isobutyl butanoate	4.1 (20)	1.9
Isobutyl chlorocarbonate	9.1 (20)	
Isobutyl formate	6.41 (20)	1.89 (20, B)
Isobutyl isocyanate	11.64 (20)	
Isobutyl nitrate	2.7 (20)	
Isobutyl pentanoate	3.8 (19)	
Isobutylsilane	2.497 (20)	
Isobutyl trichloroacetate	7.667 (20)	
Isobutyl vinyl ether	3.34 (20)	
Isobutyronitrile	20.4 (24)	3.61 (25, B)
Isopentyl acetate	4.72 (20), 4.63 (30)	1.84 (22, B), 1.76 (30, la)
Isopentyl butanoate	4.0 (20)	(, -), (, -p
Isopentyl pentanoate	3.6 (19)	1.8 (28, B)
Isopentyl propanoate	4.2 (20)	
Isopropyl acetate		1.86 (22, B)
Isopropylamine	5.627 (20)	1.19
Isopropylbenzene	2.38 (20)	0.79
Isopropyl carborane	45.0 (20)	
N-Isopropylformamide	65.7 (25)	
1-Isopropyl-4-methylbenzene	2.24 (20)	0
Isopropyl nitrite	13.92(-13)	
Isoquinoline	11.0 (25)	2.73
Lactic acid	22 (17)	
Lactonitrile	38 (20)	
D-Limonene	2.4(20), 2.37(25)	1.57 (25. B)
(+)-Limonene	23(20)	0.63(25 B)
Maleic anhydride	52.75 (53)	0.00 (20, 2)
(+)-Mandelonitrile	17.8 (23)	
D-Mannitol	24.6 (170)	
Menthol	2 (1)	1.55 (20, B)
Methacrylic acid		1.65
Methacrylonitrile		3.69
Methane	1.676 (182), 1.000 94 (0)	0
Methanesulfonyl chloride	34.0 (20)	5
Methanethiol	()	1.52 (g)
Methanol	41.8 (-20), 33.0 (20)	1.70
2-Methoxyaniline	5.230 (30)	
3-Methoxyaniline	8.76 (25)	
4-Methoxyaniline	7.85 (60)	
o-Methoxybenzaldehyde		4.34 (20, B)
<i>p</i> -Methoxybenzaldehyde	22.3 (22), 22.0 (30), 10.4 (248)	3.26 (35, B)
Methoxybenzene	4.30 (21), 3.9 (70)	1.38
2-Methoxyethanol	17.2 (25), 16.0 (30)	2.36
N-(2-Methoxyethyl)acetamide	80.7 (25)	
2-Methoxyethyl acetate	8.25 (20)	2.13 (30, B)
1-Methoxy-2-nitrobenzene	45.75 (20)	4.83
o-Methoxyphenol	11.95 (25)	· -
<i>m</i> -Methoxyphenol	11.59 (25)	
<i>p</i> -Methoxyphenol	11.05 (60)	
2-Methoxy-4-(2-propenvl)phenol		2.46 (25, B)
o-Methoxytoluene	3.5 (20)	
,,		

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
<i>m</i> -Methoxytoluene	3.5 (20)	
<i>p</i> -Methoxytoluene	4.0 (20)	
Methoxytrimethylsilane	3.248 (25)	
N-Methylacetamide	178.9 (30), 138.6 (60)	4.39 (20, D)
Methyl acetate	7.07 (15), 7.03 (20), 6.68 (25)	1.72
Methyl acrylate	7.03 (30)	1.77 (25, B)
Methylamine	16.7 (-58), 11.4 (-10), 10.0 (18)	1.31
Methyl 2-aminobenzoate	21.9 (25)	
<i>N</i> -Methylaniline	5.96 (20)	1.67 (25, B)
2-Methylaniline	6.138 (25)	
3-Methylaniline	5.816 (25)	
4-Methylaniline	5.058 (25)	
<i>N</i> -Methylbenzenesulfonamide	67.1 (30)	
Methyl benzoate	6.64 (30)	1.86 (25, B)
2-Methyl-1 2-butadiene	2.1 (25)	0.15
2-Methyl-1 3-butadiene	2.098 (20)	0.25
2-Methylbutane	1.871(0) 1.845(20)	0.13
2-Methyl-2-butanethiol	5 083 (20)	0.15
Methyl butancate	5.6(20) 5.48(29)	1.72 (22 B)
3-Methylbutanoic acid	2 64 (20)	0.63 (25)
2-Methyl-1-butanol	15 63 (25)	1.0
2-Methyl-2-butanol	5 78 (25)	1.72 (20 B)
3-Methyl-1-butanol	15.63(20) $14.7(25)$ $5.82(130)$	1.72(20, B) 1.82(25 B)
3 Methyl 2 butanol	12.05(20), 14.7(25), 5.02(150)	1.82 (23, B)
3 Methyl 2 butenone	10.37 (20)	
2 Methyl 1 butene	2 180 (20)	0.52 (20.1a)
2 Methyl 2 bytene	1 070 (23)	0.11 (25 la) 0.34 (25 P)
2 Methyl 1 bytene	1.979(23) 1.0028(100 a)	0.320
2 Methyl 1 butene 2 one	10 30 (30)	0.520
2 Methylbutyl acetate	10.39 (30) 4 63 (30)	1.82 (22)
2 Methylbutyl 2 methylbutanosta	4.05 (50)	1.82 (22)
3 Methylbutyr 5-methylbutanoate	18 (220)	3.62 (25. 0)
Mathyl corbornate	18 (220)	5.02 (25, C)
Methyl caloaniaic	12.0 (20)	
Methyl Chloropactamida	12.0 (20)	
Methyl 4 chlorobytenoste	92.3 (30)	
Methyl 4-cmorodulanoale	9.51 (50)	
Methyl croionale	0.004(20) 20.2 (20) 10.22 (50) 17.57 (65)	
Methyl cyanoacetate	29.5 (20), 19.25 (50), 17.57 (65)	
2 Mathyleyclonexane	2.024 (20)	0 1.05 (25 . D)
2-Methylcyclonexanol	16.05 (20)	1.95 (25, B)
cis-5-Methylcyclonexanol	8 05 (20)	1.91
A Mathedrandah ang al	8.05 (20)	1./J
4-Methylcyclonexanol	16 (15) 14 0 (20)	1.9 (25, B)
2-Methylcyclonexanone	10(-15), 14.0(20)	2.98 (25, B)
5-Methylcyclonexanone	10 (-00), 12.4 (20)	3.00 (23, B)
4-Metnylcyclonexanone	15 (-41), 12.35 (20)	3.07 (25, B)
	1.985 (20)	0
1-Methylcyclopentanol	/.11 (3/)	1 (5 (00 11-)
Meinyi decanoate		1.05 (20, HX)
Methyl dodecanoate	000 1 (15) 180 0 (00) 180 4 (05)	1.70 (20, HX)
/v-ivietnyiformamide	200.1 (15), 189.0 (20), 182.4 (25)	3.83
Neury Iormate	9.20 (15), 8.5 (20)	1.//

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2-Methylfuran	2.76 (20)	0.65
Methyl furan-2-carboxylate	11.01 (20)	
(mono)Methyl glutarate	8.37 (20)	
2-Methylheptane	1.95 (20)	0
2-Methyl-2-heptanol	3.38 (-7), 2.46 (25)	
2-Methyl-3-heptanol	3.37 (20), 3.75 (60)	1.63 (20, B)
2-Methyl-4-heptanol	3.30 (20), 3.65 (60)	
3-Methyl-3-heptanol	3.74 (20), 2.89 (60)	
3-Methyl-4-heptanol	9.1(-20), 7.4(20)	
4-Methyl-3-heptanol	5.25 (20), 4.62 (55)	
4-Methyl-4-heptanol	2.87 (20), 3.27 (60)	
2-Methylhexane	1.922 (20)	0
3-Methylhexane	1.920 (20)	0
Methyl hexanoate	4.615 (20)	1.70 (20. Hx)
2-Methyl-2-hexanol	3.257 (24)	
3-Methyl-2-hexanol	4.990 (24)	
3-Methyl-3-hexanol	3.248 (25)	
5-Methyl-2-hexanone	13.53 (20)	
Methyl isobutanoate	10,00 (20)	1.98 (20, B)
Methylisocyanate	21.75 (16)	2.8
Methyl methacrylate	6.32 (30)	1.68 (25, B)
<i>N</i> -Methyl methanesulfonamide	104.4(25)	1100 (20, 2)
Methyl <i>a</i> -methoxybenzene	77(21)	
Methyl <i>n</i> -methoxybenzoate	4 3 (33)	
<i>N</i> -Methyl-2-methylbutanamide	123.0 (34)	
N-Methyl-3-methylbutanamide	114.0 (26)	
Methyl 3-(methylthio)propapoate	8 66 (30)	
1-Methylnaphthalene	2 92 (20)	0
Methyl nitrate	23.92(20)	0
Methyl nitrite	20.77(-73)	
Methyl a-nitrobenzoate	28 (25)	3 67 (30 B)
2-Methyloctane	1 97 (20)	0
3-Methyloctane	1.97 (20)	ů
4-Methyloctane	1.97 (20)	0
Methyl oleate	3,211,(20)	0
2-Methyl-1 3-pentadiene	2422(25)	
3-Methyl-1,3-pentadiene	2.422(25)	
4-Methyl-1 3-pentadiene	2.599(20)	
N-Methylpentanamide	1310(13)	
2-Methylpentane	1 886 (20)	0
3-Methylpentane	1.886 (20)	0
2-Methyl-2 4-pentanediol	234(20)	29
4-Methylpentanenitrile	17.5 (22)	3.53 (25 B)
Methyl pentanoate	4 992 (20)	1.62 (22, B)
3-Methyl-1-pentanol	15.2 (25)	1.0. (22, 2)
3-Methyl-3-pentanol	4 322 (20)	
4-Methyl-2-pentanone	15.6(0) 15.1(20) 11.78(40)	
4-Methylpentenenitrile	17.5 (22)	35
4-Methyl_3-penten_2-one	15.6 (0)	2.5
1_Methyl_1_nhenylhydrozine	7 3 (10)	2.0 1.84 (15 B)
Methyl phenyl sulfide	1.5 (17)	1.39(20 B)
Methyl phenyl sulfone	37.9 (100)	1.50 (20, 0)
menyi phenyi sunone	57.5 (100)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2-Methylpropanal		2.6
N-Methylpropanamide	170.0 (20), 151 (40)	3.59
2-Methyl-1-propanamine	4.43 (21)	1.3
2-Methylpropane	1.752 (25)	0.132
2-Methylpropanenitrile	24.42 (20)	4.29
2-Methyl-1-propanethiol	4.961 (25)	
2-Methyl-2-propanethiol	5.475 (20)	1.66
Methyl propanoate	6.200 (20)	1.70 (22, B)
2-Methylpropanoic acid	2.58 (20)	1.08 (25, lq)
2-Methylpropanoic anhydride	13.6 (19)	· •
2-Methyl-1-propanol	26 (-34), 17.93 (20)	1.64
2-Methyl-2-propanol	12.47 (25), 10.9 (30), 8.49 (50)	1.67 (22, B)
2-Methylpropene		0.50
2-Methyl-2-propenenitrile		3.69
2-Methylpropenoic acid		1.6
2-Methylpropyl acetate	5.07 (20)	1.87 (22, B)
2-Methyl-1-propylamine	4.43 (21)	1.27 (27)
(2-Methylpropyl)benzene	2.32 (20)	0
2-Methylpropyl formate	6.41 (20)	1.88 (22)
2-Methylpyridine	10.18 (20)	1.85
3-Methylpyridine	11.10 (30)	2.41 (25, B)
4-Methylpyridine	12.2 (20)	2.70
2-Methylpyridine-1-oxide	36.4 (50)	
3-Methylpyridine-1-oxide	28.26 (45)	
N-Methylpyrrolidine	32.2 (25)	
N-Methyl-2-pyrrolidinone	32.55 (20), 32.2 (25)	4.09 (30, B)
Methyl salicylate	9.41 (30), 8.80 (41)	2.47 (25, B)
3-Methyl sulfolane	29.4 (25)	
Methyl tetradecanoate		1.62 (25, B)
2-Methyltetrahydrofuran	6.97 (25)	
Methyl tetrahydrothiophene-2-	7.30 (20)	
carboxylate		
Methyl thiocyanate	4.3 (19)	3.34 (20, B)
2-Methylthiophene		0.674
3-Methylthiophene		0.95
Methyl thiophene-2-carboxylate	8.81 (20)	
Methyl trifluoromethyl sulfone	32.0 (20)	
Morpholine	7.42 (25)	1.55
β -Myrcene	2.3 (25)	
Naphthalene	2.54 (90)	0
1-Naphthonitrile	16 (70)	
2-Naphthonitrile	17 (70)	
o-Nitroaniline	47.3 (80), 34.5 (90)	4.28 (20, B)
<i>m</i> -Nitroaniline	35.6 (125)	
<i>p</i> -Nitroaniline	78.5 (155), 56.3 (160)	6.3 (25, B)
o-Nitroanisole	45.75 (20)	4.83
<i>m</i> -Nitroanisole	25.7 (45)	
<i>p</i> -Nitroanisole	26.95 (65)	
Nitrobenzene	35.6 (20), 34.82 (25), 24.9 (90)	4.22
m-Nitrobenzyl alcohol	22 (20)	
2-Nitrobiphenyl		3.83 (20, B)
Nitroethane	29.11 (15), 28.06 (30), 27.4 (35)	3.23

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2-Nitro-ethylbenzene Nitromethane	21.9 (0) 37.27 (20), 35.87 (30), 35.1 (35)	3 46
1-Nitro-2-methoxybenzene	57.27 (20), 55.07 (50), 55.1 (55)	4 83
<i>o</i> -Nitrophenol	16.50 (50)	3.14 (25, B)
<i>m</i> -Nitrophenol	35.45 (100)	
<i>p</i> -Nitrophenol	42.20 (120)	
1-Nitropropane	24.70 (15), 23.24 (30), 22.7 (35)	3.66
2-Nitropropane	26.74 (15), 25.52 (30)	3.73
N-Nitrosodimethylamine	53 (20)	4.01 (20, B)
o-Nitrotoluene	26.36 (20), 22.0 (58)	3.72 (20, B)
<i>m</i> -Nitrotoluene	24.95 (30), 22 (58)	4.20 (20, B)
<i>p</i> -Nitrotoluene	22.2 (58)	4.47 (25, B)
Nonane	1.972 (20), 1.85 (110)	0
Nonanoic acid	2.48 (22)	0.8
1-Nonanol		1.72 (20, B)
1-Nonene	2.18 (20)	0
(trans, trans)-9,12-Octadecadienoic acid	2.70 (70), 2.60 (120)	1.40 (18, Hx)
Octamethylcyclotetrasiloxane	2.4 (20)	0.42 (25, lq), 0.67 (25, B)
Octamethyltrisiloxane	2.3 (20)	0.64 (25, lq)
Octane	1.948 (20), 1.83 (110)	0
Octanenitrile	13.90 (20)	
Octanoic acid	2.85 (15), 2.45 (20)	1.15 (25, lq)
1-Octanol	11.3 (10), 10.30 (20)	1.72 (20, B)
2-Octanol	8.13 (20), 6.52 (40)	1.65 (20, B)
2-Octanone	9.51 (20), 7.42 (100)	2.72 (15, B)
1-Octene	2.113 (20)	0
cis-2-Octene	2.06 (25)	0
trans-2-Octene	2.00 (25)	0
Oleic acid	2.34 (20)	1.2
Oxalyl chloride	3.470 (21)	0.93 (20, B)
Palmitic acid	2.3 (70)	
Paraldehyde	13.9 (25)	1.43
Parathion		4.98 (25, B)
Pentachloroethane	3.73 (20), 3.716 (25)	0.92
2,3,4,5,6-Pentachlorotoluene	4.8 (20)	
Pentadecane		0
cis-1,3-Pentadiene	2.32 (25)	0.50 (25, B)
1,4-Pentadiene	2.054 (24)	0.50 (00 D)
Pentanal	10.1(17), 10.00(20)	2.59 (20, B)
Pentane	2.011(-90), 1.837(20)	0
1,2-Pentanediol	17.31 (24)	
1,4-Pentanediol	26.74 (23)	2 45 (20 D)
1,5-Pentanediol	26.2 (20)	2.45 (20, D)
2,3-Pentanediol	17.37 (24)	
2,4-Pentanediol	24.69 (21)	2.02
2,4-Pentanedione	26.52 (30)	3.03 4.10, 2.57 (25, D)
Pentanenitrite	20.04 (20) 4 85 (20) 4 55 (25) 4 22 (50)	4.12, 3.37 (25, B)
I-rentanetmoi	4.03 (20), 4.33 (23), 4.23 (30) 2.66 (21)	1.34 (23, 1q) 1.61 (20, D)
1 Pentanol	2.00 (21) 16.0 (20) 15.12 (25)	1.01 (20, D) 1.71 (20, P)
2 Pontonol	10.7 (20), 13.13 (23)	1.71(20, D) 1.66(22, P)
2-rentation	13.71 (23)	1.00 (22, D)

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
3-Pentanol	13.35 (25)	1.64 (22, B)
2-Pentanone	15.45 (20), 11.73 (80)	2.72 (22, B)
3-Pentanone	19.4 (-20), 17.00 (20)	2.72 (20, B)
2-Pentanone oxime	3.3 (25)	
1-Pentene	2.011 (20)	0.5
cis-2-Pentene		0
trans-2-Pentene		0
Pentyl acetate	4.79 (20)	1.75
Pentylamine	4.27 (20)	1.55 (30, B)
Pentyl formate	5.7 (19)	1.90
Pentyl nitrate	9.0 (18)	
Pentyl nitrite	7.21 (25)	
<i>tert</i> -Pentyl nitrite	10.88 (25)	
Phenanthrene	2.8 (20)	0
Phenol	12.40 (30), 9.78 (60)	1.224
Phenoxyacetylene	4.76 (25)	1.42 (25, lg)
Phenyl acetate	5.40 (25)	1.54 (22, B)
Phenylacetic acid	3.47 (80)	
Phenylacetonitrile	17.87 (26), 8.5 (234)	3.47 (27, B)
Phenylacetylene	2.98 (20)	0.72 (20, B)
1-Phenylethanol	8.77 (20), 7.6 (90)	1.51 (20, B)
2-Phenylethanol	12.31 (20)	1.01 (20, 2)
Phenylhydrazine	7.15 (20)	1.67 (25, B)
Phenyl isocyanate	8.94 (20)	107 (20, 2)
Phenyl isothiocyanate	10 (20)	
1-Phenylpropene	2.7(20)	
2-Phenylpropene	23(20)	
3-Phenylpropene	2.6(20)	
Phenyl salicylate	6 3 (50)	
Phoseene	4.7(0), 4.3(22)	
Phthalide	36 (75)	
(\pm) - α -Pinene	2.64 (25), 2.26 (30)	0.60 (25, B)
$L-\beta$ -Pinene	2.76 (20)	0.00 (20, 2)
Piperidine	4.33 (20)	1.19 (25, B)
Propanal	18.5 (17)	2.52
Propané	1.668 (20)	0.084
1.2-Propanediamine	10.2	
1.3-Propanediamine	9.55	1.96 (25, B)
1.2-Propanediol	32.0 (20), 27.5 (30)	2.27 (25, D)
1.3-Propanediol	35.1 (20)	2.52 (25, D)
1.2-Propanediol dinitrate	26.80 (20)	
1.3-Propanediol dinitrate	18.97 (20)	
1.2-Propanedithiol	7.24 (20)	
1.3-Propanedithiol	8.11 (30)	
Propanenitrile	29.7 (20)	4.05
1-Propanethiol	5.94 (15), 1.55 (25)	1.68
2-Propanethiol	5.95 (25)	1.61
1,2,3-Propanetriol 1-acetate	38.57 (-31), 7.11 (20)	
Propanoic acid	3.30 (10), 3.44 (25)	1.76
Propanoic anhydride	18.30 (20)	
1-Propanol	20.8 (20), 20.33 (25)	1.55
2-Propanol	20.18 (20), 18.3 (25), 16.2 (40)	1.58

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2-Propenal		3.12
Propene	2.137 (-53), 1.88 (20), 1.44 (90)	0.366
Propenenitrile	33.0 (20)	3.87
2-Propen-1-ol	21.6 (15), 19.7 (20)	1.60
Propionaldehyde (propanal)	18.5 (17)	2.75
Propionamide		3.4 (30, B)
Propyl acetate	5.62 (20)	1.86 (25, B)
N-Propylacetamide	117.8 (25)	
Propylamine	5.31 (20), 5.08 (26)	1.17
Propylanine	2.37 (20), 2.351 (30)	0
Propyl benzoate	5.78 (30)	0
Propyl butanoate	4 3 (20)	
Propyl carbamate	12.06 (65)	
Propylene carbonate	66 14 (20)	49
Propylene carbonate	00.14 (20)	$\frac{1}{1}$ $\frac{1}{77}$ (cis) $\frac{1}{60}$ (trans)
1 2-Propylene oxide		2 00
Propyl formate	7 72 (19) 6 92 (30)	1.00 (22 B)
Propyl nitrate	1/12(19), 0.92(50)	3.01(20, B)
Propyl nitrite	17(10) 12 35 (-23)	5.01 (20, D)
Propyl mulic	A(10)	
N Propyl pentanoate	(19)	
Propul propagate	5 25 (20)	170 (22 B)
Propyl trichloroacetate	8 32 (25)	1.79 (22, B)
Propyne	3.32(23)	0.784
2 Propyne	20.8(20)	1 12
2-FlopyII-1-01 Pulagona	20.8(20)	1.15 2.00 (25 P)
Puridegine	9.5 (20)	2.00 (25, B)
Pyridazine	2.80 (50)	4.22
r ylazille Divridina	2.80(50) 12.26(20) 12.2(25) 0.4(116)	0
Pyridine 1 suide	15.20(20), 12.5(25), 9.4(110)	2.215
Pyriaine-1-oxide	55.94 (70)	2.22
	8.00 (20) 8.12 (25)	2.55
IH-Pymole	8.00 (20), 8.15 (23)	1.74 1.59 (20 D)
2 Demolidance	8.30 (20)	1.58 (20, B)
2-Pyffolidone	0.16 (20) 0.00 (25)	3.55 (25, B)
Quinoine	9.16 (20), 9.00 (25)	2.29
Sairole	5.1 (21) 18 25 (20)	2.8((20. D)
	18.35 (20)	2.80 (20, B)
D-Sorbitol	35.5 (80)	0
Squalane	1.911 (100)	0
Squalene	0.00 (70) 0.0((100)	0.68 (25, B)
Stearic acid	2.29 (70), 2.26 (100)	1.76 (25, D)
Styrene	2.47(20), 2.43(25), 2.32(75)	0.13(25, 1q)
Succinonitrile	62.6 (25), 56.5 (57), 54 (68)	3.68 (30, toluene)
α-Terpinene	2.45 (25)	
Terpinolene	2.29 (25)	
1,1,2,2-Tetrabromoethane	8.6 (3), 7.0 (22), 6.72 (30)	1.41
1,1,2,2-Tetrachlorodifluoroethane	2.52 (35)	
1,1,1,2-1etrachloroethane	9.22 (-66)	4.00
1,1,2,2-Tetrachloroethane	8.50 (20)	1.32
Tetrachloroethylene	2.30 (25), 2.268 (30)	0
1,1,3,4-Tetrachlorohexafluoro-	2.86 (20)	
butane		

TABLE 2.49 Dieled	ctric Constant (Permittiv	ty) and Dipole Moment c	of Organic Comp	oounds (<i>Continued</i>)
-------------------	---------------------------	-------------------------	-----------------	-----------------------------

Substance	Dielectric constant, ϵ	Dipole moment, D
Tetradecafluorohexane Tetradecamethylhexasiloxane	1.76 (25) 2.5 (20)	1.58 (20, lq)
Tetradecane	、 <i>`</i>	0
Tetradecanoic acid		0.76 (25, B)
1-Tetradecanol	4.72 (38), 4.40 (48)	1.69 (25, C)
Tetraethylene glycol	20.44 (20)	5.84 (20, lg)
Tetraethyl lead		0.3 (20, B)
Tetraethylsilane	2.09 (20)	0
Tetraethyl silicate	4.1 (20)	1.72 (32, B)
Tetrafluoromethane	1.685 (-147)	
2,2,3,3-Tetrafluoro-1-propanol	21.03 (25)	
Tetrahydrofuran	11.6 (-70), 7.52 (22)	1.75 (25, B)
Tetrahydro-2-furanmethanol	13.61 (23), 13.48 (30)	2.12 (35, lq)
2-Tetrahydrofurfuryl acetate	9.65 (20)	· · · ·
1,2,3,4-Tetrahydronaphthalene	2.77 (25)	0
1,2,3,4-Tetrahydro-2-naphthol	11.7 (20), 6.7 (90)	
Tetrahydropyran	5.66 (20), 5.61 (25)	1.74
Tetrahydrothiophene		1.9
Tetrahydrothiophene-1,1-dioxide (sulfolane)	43.26 (30)	4.81 (25, B)
Tetrahydrothiophene-S-oxide	42.96 (25), 42.5 (30)	
Tetrakis(methylthio)methane	2.818 (70)	
Tetramethoxymethane	2.40 (20)	
Tetramethyl germanium	1.817 (24)	
1,1,3,3-Tetramethylguanidine	11.5 (25)	
Tetramethylsilane	1.921 (20)	0
Tetramethyl silicate	6.0 (20)	
1,1,2,2-Tetramethylurea	23.10 (20)	3.47 (25, B)
Tetranitromethane	2.317 (25)	0
Tetrathiomethylmethane	2.82 (70)	
Thiacyclopentane		1.90 (25, B)
Thioacetic acid	14.30 (25)	
Thiophene	2.74 (20), 2.57 (25)	0.55
Thymol		1.55 (25, B)
Toluene	2.385 (20), 2.364 (30)	0.375
o-Toluidine	6.34 (18), 6.14 (25), 5.71 (58)	1.60 (25, B)
<i>m</i> -Toluidine	5.95 (18), 5.82 (25), 5.45 (58)	1.45 (25, B)
<i>p</i> -Toluidine	5.06 (60)	1.52 (25, B)
<i>m</i> -Tolunitrile		4.21 (22, B)
<i>p</i> -Tolunitrile		4.47 (20, B)
Tribenzylamine		0.65 (20, B)
2,2,2-1ribromoacetaldehyde	7.6 (20)	1.70 (20, C)
Tribromochloromethane	2.60 (60)	
Tribromofluoromethane	3.00 (20)	0.00
Tribromomethane	4.404 (10), 4.39 (20)	0.99
Tribromonitromethane	9.03 (25)	1.50 (05 D)
1,2,3-1 ribromopropane	0.45 (20), 0.00 (30)	1.59 (25, B)
I ributylamine	2.34 (20)	U.78 (25, B)
Tributyl borate	2.23 (20)	0.78(25, C)
Tributyl phosphate	8.34 (20), 7.96 (30)	3.U/ (23, B)
Tricklance estal deba		1.92 (20, C) 1.06 (25, P)
richioroacetaidenyde	7.0 (-40), 0.9 (20), 0.8 (25)	1.90 (25, B)

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
Trichloroacetic acid	4.34 (60)	1.1 (25, B, dimer)
Trichloroacetic anhydride	5.0 (25)	
Trichloroacetonitrile	7.85 (19)	1.93 (19, lq)
4,4,4-Trichlorobutanal	10.0 (18)	
1,2,2-Trichloro-1,1-difluoroethane	4.01 (30)	
1,1,1-Trichloroethane	7.1 (7), 7.24 (20)	1.755
1,1,2-Trichloroethane	7.19 (25)	1.45
Trichloroethylene	3.42 (16), 3.39 (28)	0.77 (30, lq), 0.95 (30, B)
Trichloroethylsilane		2.0
Trichlorofluoromethane	3.00 (25), 2.28 (29)	0.45
(Trichloromethyl)benzene	6.9 (21)	2.0
Trichloromethylsilane		1.87 (25, B)
Trichloronitromethane	7.32 (25)	• • •
2,4,6-Trichlorophenol		1.88 (25, D)
1,2,3-Trichloropropane	7.5 (20)	1.61
Trichlorosilane		0.86
α, α, α -Trichlorotoluene	6.9 (21)	2.17 (20, B)
1,1,2-Trichloro-1,2,2-trifluoroethane	2.41 (25)	
Tridecane	2.02 (20)	0
1-Tridecene	2.14 (20)	0
Triethanolamine	29.36 (25)	3.57 (25, B)
Triethoxymethane	4.779 (20)	
Triethylaluminum	2.9 (20)	
Triethylamine	2.418 (20)	0.66
Triethylborane	1.874 (20)	
Triethylene glycol	23.69 (20)	5.58 (20, lq)
Triethylenetetramine	10.76 (20)	_
Triethyl orthovanadate	3.333 (25)	
Triethyl phosphate	13.43 (15), 13.20 (25), 10.93 (65)	3.08 (25, B)
Triethylphosphine oxide	35.5 (50)	
Triethylphosphine sulfide	39.0 (98)	
Triethyl phosphite	5.0	1.82 (25, D)
Trifluoroacetic acid	8.42 (20), 5.76 (50)	2.28
Trifluoroacetic anhydride	2.7 (25)	
1,1,1-Trifluoroethane		2.347
2,2,2-Trifluoroethanol	27.68 (20)	2.03 (25, cHex)
Trifluoromethane	5.2 (26)	1.651
(Trifluoromethyl)benzene	9.22 (25)	2.86
1-Trifluoromethyl-3-nitrobenzene	17.0 (30)	
α, α, α -Trifluorotoluene	9.2 (30), 8.1 (60)	
Trimethoxymethylsilane	4.9 (25)	
Trimethylamine	2.44 (25)	0.612
1,2,3-Trimethylbenzene	2.66 (20), 2.609 (30)	0
1,2,4-Trimethylbenzene	2.38 (20), 2.36 (30)	0
1,3,5-1rimethylbenzene	2.28 (20)	
Trimethyl borate	2.276 (20)	0.82 (25, C)
2,2,3-Trimethylbutane	1.930 (20)	U
Trimethylchlorosilane	10.21 (0)	1.07
Trimethylene sulfide		1.85
2,2,5-Trimethylhexane		U
2,3,5-Trimethylhexane	1.0(2,(20))	0
2,2,3-1rimethylpentane	1.902 (20)	U

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

Substance	Dielectric constant, ϵ	Dipole moment, D
2,2,4-Trimethylpentane	1.940 (20)	0
2,3,3-Trimethylpentane	1.98 (20)	0
2,3,4-Trimethylpentane	1.97 (20)	0
Trimethyl phosphate	20.6 (20)	3.2
Trimethylphosphine sulfide		71.6 (20)
Trimethyl phosphite		1.83 (20, C)
2,4,6-Trimethylpyridine	7.807 (25)	1.95 (25, B)
2,4,6-Trinitrophenol	4.0 (21)	
1,3,5-Trioxane	15.55 (65)	2.08
Triphenyl phosphite	3.67 (45), 3.57 (65)	2.04 (25, B)
Tris(4-ethylphenyl) phosphite	3.74 (15), 3.61 (45)	2.08 (25, B)
Tris(2-methylphenyl) phosphate	6.7 (25)	2.9
Tris(3-methylphenyl) phosphate		3.0
Tris(4-methylphenyl) phosphate		3.2
Tris(<i>m</i> -tolyl) phosphite	3.67 (15), 3.53 (45)	1.62 (25, B)
Tris(<i>p</i> -tolyl) phosphite	3.88 (15), 3.74 (45)	1.77 (25, B)
Tri-o-tolyl phosphate	6.92 (40)	2.84 (40, C)
Undecane	2.00 (20), 1.84 (150)	0
2-Undecanone		2.71 (15, B)
1-Undecene	2.14 (20)	0
Urea		4.59 (25, D)
Vinyl acetate		1.79 (25, B)
Vinyl chloride	6.26 (17)	1.45
Vinyl isocyanate	10.62 (25)	
2-Vinylpyridine	9.126 (20)	
4-Vinylpyridine	10.50 (20)	
o-Xylene	2.562 (20), 2.54 (30)	0.62
<i>m</i> -Xylene	2.359 (20), 2.35 (30)	0.33 (20, lq), 0.37 (20, B)
<i>p</i> -Xylene	2.273 (20), 2.22 (50)	0
Xylitol	40.0 (20)	

TABLE 2.49 Dielectric Constant (Permittivity) and Dipole Moment of Organic Compounds (Continued)

2.11 IONIZATION ENERGY

The ionization energy or ionization potential is the energy necessary to remove an electron from the neutral atom. It is a minimum for the alkali metals that have a single electron outside a closed shell. It generally increases across a row on the periodic maximum for the noble gases that have closed shells. For example, sodium requires only 496 kJ/mol or 5.14 eV/atom to ionize it while neon, the noble gas immediately preceding it in the periodic table, requires 2081 kJ/mol or 21.56 eV/atom. The ionization energy is one of the primary energy considerations used in quantifying chemical bonds.

The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. For example, when a neutral chlorine atom in the gaseous form picks up an electron to form a Cl^- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol and this large number indicates that it forms a stable negative ion. Small numbers indicate that a less stable negative ion is formed. Group VIA and VIIA in the periodic table have the largest electron affinities.

Note: 1 kJ/mol = .010364 eV/atom

TABLE 2.50 Ionization Energy of Molecular and Radical Species

This table gives the first ionization potential in $\rm MJ\cdot mol^{-1}$ and in electron volts. Also listed is the enthalpy of formation of the ion at 25°C (298 K).

	Ionizatio	$\Lambda_{c}H(ion)$	
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\ln kJ \cdot mol^{-1}$
Acenaphthene	0.741	7.68	896
Acenaphthylene	0.793	8.22(4)	1053
Acetaldehyde	0.98696(7)	10.2290(7)	821
Acetamide	0.931(3)	9.65(3)	693
Acetic acid	1.029(2)	10.66(2)	596
Acetic anhydride	0.965	10.0	398
Acetone	0.9364	9.705	719
Acetonitrile	1.1766(5)	12.194(5)	1252
Acetophenone	0.896(3)	9.29(3)	810
Acetyl chloride	1.047(5)	10.85(5)	804
Acetyl fluoride	1.111(2)	11.51(2)	667
Acetylene	1.1000(2)	11.400(2)	1328
Allene	0.935(1)	9.69(1)	1126
Allyl alcohol	0.933(5)	9.67(5)	808
Allylamine	0.845	8.76	891
3-Amino-I-propanol	0.87	9.0	651
Aniline	0.7449(2)	7.720(2)	832
Anthracene	0.719(3)	7.45(3)	949
Azoxybenzene	0.78	8.1	1123
Azulene	0.715(2)	7.41(2)	1004
Benzaldehvde	0.916(2)	9.49(2)	878
Benzamide	0.912	9.45	811
Benzene	0.89212(2)	9.2459(2)	975
Benzenethiol	0.801(2)	8.30(2)	913
Benzoic acid	0.914	9.47	620
Benzonitrile	0.928	9.62	1146
Benzophenone	0.873(5)	9.05(5)	923
<i>p</i> -Benzoquinone	0.969(2)	10.04(18)	847
Benzovl chloride	0.920	9.54	816
Benzyl alcohol	0.82	8.5	720
Benzylamine	0.834(5)	8.64(5)	917
Biphenyl	0.767(2)	7.95(2)	950
Bromoacetylene	0.995(2)	10.31(2)	1242
Beomobenzene	0.866(2)	8.98(2)	971
Bromochlorodifluoromethane	1.141	11.83	702
Bromochloromethane	1.039(1)	10.77(1)	1085
Bromodichloromethane	1.02	10.6	973
Bromethane	0.992	10.28	930
Bromethylene	0.946(2)	9.80(2)	1025
Bromomethane	1.0171(3)	10.541(3)	979
1-Bromonaphthalene	0.781	8.09	956
Bromopentafluorobenzene	0.923(2)	9.57(2)	212
1-Bromopropane	0.982(1)	10.18(1)	898
2-Bromopropane	0.972(1)	10.07(1)	874
3-Bromopropene	0.972(1)	10.07(1)	1018
<i>p</i> -Bromotoluene	0.837(1)	8.67(1)	908
Bromotrichloromethane	1.02	10.6	980
Bromotrifluoromethane	1.10	11.4	451
1,2-Butadiene	0.871	9.03	1034

	$\Lambda_{\rm e} H$ (ion)		
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹
1,3-Butadiene	0.8750	9.069	985
Butanal	0.949(2)	9.84(2)	742
Butanenitrile	1.08	11.2	1110
2-Butanone	0.918(4)	9.51(4)	677
trans-2-Butenal	0.939(1)	9.73(1)	835
1-Butene	0.924(2)	9.58(2)	924
cis-2-Butene	0.8788(8)	9.108(8)	871
trans-2-Butene	0.8780(8)	9.100(8)	866
1-Buten-3-yne	0.924(2)	9.58(2)	1230
Butyl acetate	0.965	10.0	479
sec-Butyl acetate	0.955	9.90	453
Butyl ethyl ether	0.903	9.36	610
Butylbenzene	0.838(1)	8.69(1)	826
sec-Butylbenzene	0.837(1)	8.68(1)	820
tert-Butylbenzene	0.834(2)	8.64(2)	812
Butylcyclohexane	0.908	9.41	695
Butylcyclopentane	0.960(3)	9.95(3)	793
<i>p-tert</i> -Butylphenol	0.75	7.8	552
<i>p-tert</i> -Butyltoluene	0.799	8.28	745
1-Butyne	0.9821(5)	10.178(5)	1147
2-Butyne	0.9226(5)	9.562(5)	1068
Camphor	0.845(3)	8.76(3)	577
Caprolactam	0.875(2)	9.07(2)	629
Carbazole	0.730(3)	7.57(3)	961
Carbon	1.0865	11.260	1803
Carbon (C_2)	1.188	12.31	2000
Carbon dioxide	1.3289(2)	13.773(2)	935
Carbon monoxide	1.35217	14.0139	1242
Carbon oxyselenide	1.000(1)	10.36(1)	929
Carbon oxysuinde	1.07812(15)	11.1/36(15)	936
Carbon suinde	0.9/149(19)	10.0085(20)	1089
Carbon suinde (CS)	1.093(1)	11.33(1)	1308
Carbonyl Iluoride	1.257	13.05	017
Chloressetaldebude	1.073(2)	11.14(2) 10.49(2)	902
Chloropoetia poid	1.011(5)	10.46(5)	507
Chloropoetul oblorida	1.06	10.2	915
Chloroscetylene	1.00	10.58(2)	1276
m.Chloroaniline	0.781(10)	8 09(10)	835
a-Chloroaniline	0.781(10)	8.09(10)	883
n-Chloroaniline	0.320	8.18	844
Chlorobenzene	0.735	9.06(2)	979
Chlorodibromomethane	0.074(2) 0.1022(1)	10 59(1)	1030
1-Chloro-1 1-difluoroethane	1.156(1)	10.59(1) 11.98(1)	626
1-Chloro-2 2-diffuoroethylene	0.946(4)	9 80(4)	628
Chlorodifluoromethane	1.18	12.2	693
Chloroethane	1.058(2)	10.97(2)	946
2-Chloroethanol	1.015	10.52	756
Chloroethylene	0.964(2)	9,99(2)	985
Chlorofluoromethane	1.130(1)	11.71(1)	870
Chloromethane	1.083(1)	11.22(1)	1001
Chloromethylene	0.949	9.84	1247

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	A U(ion)		
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\Delta_{\rm f} H$ (1011) in kJ \cdot mol ⁻¹
Chloromethylidine (CCl)	0.86(2)	8.9(2)	1244
1-Chloronaphthalene	0.784	8.13	906
<i>m</i> -Chloronitrobenzene	0.957(10)	9.92(10)	995
<i>p</i> -Chloronitrobenzene	0.961(10)	9.96(10)	999
Chloropentafluorobenzene	0.938(2)	9.72(2)	126
Chloropentafluoroethane	1.22	12.6	99
<i>m</i> -Chlorophenol	0.835	8.65	680
<i>p</i> -Chlorophenol	0.834	8.69	692
1-Chloropropane	1.044(3)	10.82(3)	912
2-Chloropropane	1.040(2)	10.78(2)	895
3-Chloropropene	0.96	9.9	950
<i>m</i> -Chlorotoluene	0.852(2)	8 83(2)	869
<i>o</i> -Chlorotoluene	0.852(2)	8.83(2)	869
<i>p</i> -Chlorotoluene	0.838(2)	8.69(2)	855
Chlorotrifluoroethylene	0.947	9.81(3)	373
Chlorotrifluoromethane	1,195	12.39	485
Chrysene	0.732	7.59(2)	1016
Coronene	0.703	7.29	1026
m-Cresol	0.800	8.29	668
a-Cresol	0.785	8 14	660
<i>p</i> -Cresol	0.784	813	659
cis-Crotonic acid	0.973	10.08	625
trans-Crotonic acid	0.96	9.9	604
Cumene	0.842	8,73(1)	847
Cvanamide	1.00	10.4	1137
Cyanate (NCO)	1.135(1)	11.76(1)	1290
Cyanide (CN)	1.360	14.09	1795
Cyanoacetylene	1.123(1)	11.64(1)	1475
Cyanogen	1.290(1)	13.37(1)	1597
Cyanogen chloride	1.191(1)	12.34(1)	1329
Cyanogen fluoride	1.285(1)	13.32(1)	1323
Cyclobutane	0.957(5)	9.92(5)	986
Cyclobutanone	0.9025	9.354	815
Cyclobutene	0.910	9.43	1067
Cycloheptane	0.962	9.97	844
Cyclohexane	0.951(3)	9.86(3)	828
Cyclohexanol	0.941	9.75	651
Cyclohexanone	0.882(1)	9.14(1)	656
Cyclohexene	0.8631(10)	8.945(10)	859
Cyclohexylamine	0.832(23)	8.62(24)	727
Cyclohexylcyclohexane	0.908	9.41	690
Cyclooctane	0.942	9.76	817
Cyclopropane	0.951	9.86	1005
Cyclopropanecarbonitrile	0.989	10.25	1173
Cyclopropanone	0.88(1)	9.1(1)	895
Cyclopropene	0.930	9.67(1)	1209
Cyclopropylamine	0.84	8.7	916
Cvclopropylbenzene	0.806	8.35	956
<i>cis</i> -Decahydronaphthalene	0.893	9.26	724
trans-Decahydronaphthalene	0.892	9.24	710
Decane	0.931	9.65	682
1-Decene	0.909(1)	9.42(1)	786

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

Previous Page

2.498 SECTION TWO

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionization energy				
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹		
Diazomethane	0.8683(1)	8.999(1)	1098		
1,4-Dibromobutane	0.979	10.15	879		
1,2-Dibromoethane	1.001	10.37	963		
Dibromofluoromethane	1.069(3)	11.07(3)	687		
Dibromomethane	1.013(2)	10.50(2)	1013		
1,2-Dibromopropane	0.975	10.1	903		
1,3-Dibromopropane	0.990	10.26	919		
1.2-Dibromotetrafluoroethane	1.07	11.1	280		
Dibutyl ether	0.910	9.43	575		
Di-sec-butyl ether	0.879	9.11	511		
Di- <i>tert</i> -butyl ether	0.850	8.81	486		
Dibutyl sulfide	0.79	8.2	624		
Di-tert-butyl sulfide	0.77	8.0	583		
Dibutylamine	0.742(3)	7.69(3)	586		
Dichloroacetyl chloride	1.06	11.0	819		
Dichloroacetylene	0.974	10.09	1183		
<i>m</i> -Dichlorobenzene	0.879(1)	9.11(1)	907		
<i>o</i> -Dichlorobenzene	0.876(1)	9.08(1)	909		
<i>p</i> -Dichlorobenzene	0.856(1)	8.89(1)	882		
Dichlorodifluoromethane	1.134(4)	11.75(4)	656		
Dichlorodimethylsilane	1.03	10.7	576		
1,1-Dichloroethane	1.067	11.06	937		
1,2-Dichloroethane	1.065	11.04	931		
1,1-Dichloroethylene	0.945(4)	9.79(4)	947		
cis-1,2-Dichloroethylene	0.932(1)	9.66(1)	936		
trans-1,2-Dichloroethylene	0.931(2)	9.65(2)	935		
Dichlorofluoromethane	1.11	11.5	829		
Dichloromethane	1.092(1)	11.32(1)	996		
Dichloromethylene	1.000	10.36	1163		
1,2-Dichloropropane	1.049(5)	10.87(5)	886		
1,3-Dichloropropane	1.047(5)	10.85(5)	888		
1,2-Dichlorotetrafluoroethane	1.18	12.2	252		
Dicyclopropyl ketone	0.88	9.1	1041		
1,1-Diethoxyethane	0.944	9.78	490		
Diethyl oxalate	0.95	9.8	205		
<i>m</i> -Diethylbenzene	0.819(1)	8.49(1)	798		
o-Diethylbenzene	0.821	8.51	804		
<i>p</i> -Diethylbenzene	0.810	8.40	790		
Diethylene glycol dimethyl ether	0.96	9.8	448		
<i>m</i> -Difluorobenzene	0.900(1)	9.33(1)	591		
o-Difluorobenzene	0.895(1)	9.28(1)	602		
<i>p</i> -Difluorobenzene	0.882(1)	9.14(1)	575		
1,1-Difluoroethane	1.145(3)	11.87(3)	643		
1,1-Difluoroethylene	0.993(1)	10.29(1)	650		
cis-1,2-Difluoroethylene	0.987	10.23	690		
Difluoromethane	1.226	12.71	774		
Difluoromethylene	1.102(1)	11.42(1)	897		
2,5-Dihydrothiophene	0.81	8.4	898		
Diiodomethane	0.913(2)	9.46(2)	1030		
Diisobutyl sulfide	0.807(5)	8.36(5)	627		
Diisobutylamine	0.754	7.81	574		
Diisopropyl ether	0.888(5)	9.20(5)	569		
Diisopropyl sulfide	0.833(5)	8.63(5)	630		

	Ionizatio	$\Lambda_{2}H(ion)$	
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹
Diisopropylamine	0.746(3)	7.73(3)	602
Diketene	0.93(2)	9.6(2)	736
Dimethoxymethane	0.92	9.5	569
Dimethyl disulfide	0.71	7.4(3)	690
Dimethyl ether	0.9673(23)	10.025(25)	783
Dimethyl oxalate	0.965	10.0	287
o-Dimethyl phthalate	0.930(7)	9.64(7)	277
Dimethyl sulfide	0.838(1)	8.69(1)	801
Dimethyl sulfoxide	0.878	9.01	718
Dimethylamine	0.794(8)	8.23(8)	776
N,N-Dimethylaniline	0.687(2)	7.12(2)	787
2,2-Dimethylbutane	0.971	10.06	787
2,3-Dimethylbutane	0.967	10.02	791
3,3-Dimethyl-2-butanone	0.879(2)	9.11(2)	589
2,3-Dimethyl-1-butene	0.875(1)	9.07(1)	812
2,3-Dimethyl-2-butene	0.798(1)	8.27(1)	729
3,3-Dimethyl-1-butyne	0.946(5)	9.80(5)	1050
1,1-Dimethylcyclohexane	0.909	9.42	728
cis-1,2-Dimethylcyclohexane	< 0.944	<9.78	772
cis-1,3-Dimethylcyclohexane	< 0.963	< 9.98	778
cis-1,4-Dimethylcyclohexane	< 0.958	< 9.93	782
trans-1,2-Dimethylcyclohexane	0.908	9.41	728
trans-1,3-Dimethylcyclohexane	0.920	9.53	743
trans-1,4-Dimethylcyclohexane	0.922	9.56	738
cis-1,2-Dimethylcyclopentane	0.957(5)	9.92(5)	828
trans-1,2-Dimethylcyclopentane	0.960(5)	9.95(5)	823
N,N-Dimethylformamide	0.881(2)	9.13(2)	689
2,6-Dimethyl-4-heptanone	0.872(3)	9.04(3)	515
1,1-Dimethylhydrazine	0.702(4)	7.28(4)	786
2,4-Dimethyl-3-pentanone	0.864(1)	8.95(1)	552
2,3-Dimethylpyridine	0.854(2)	8.85(2)	922
2,4-Dimethylpyridine	0.854(3)	8.85(3)	918
2,5-Dimethylpyridine	0.849(5)	8.80(5)	916
2,6-Dimethylpyridine	0.847(3)	8.86(3)	913
3,4-Dimethylpyridine	0.883	9.15	953
3,5-Dimethylpyridine	0.893	9.25	965
N,N-Dimethyl-o-toluidine	0.714(2)	7.40(2)	814
1,3-Dioxane	0.95	9.8	607
1,4-Dioxane	0.887(1)	9.19(1)	571
1,3-Dioxolane	0.96	9.9	658
Diphenyl ether	0.781(3)	8.09(3)	766
Diphenylacetylene	0.762(2)	7.90(2)	1164
Diphenylamine	0.691(4)	7.16(4)	908
1,2-Diphenylethane	0.84(1)	8.7(1)	983
Diphenylmethane	0.825(3)	8.55(3)	963
Dipropyl ether	0.894(5)	9.27(5)	602
Dipropyl sulfide	0.801(2)	8.30(2)	676
Dipropylamine	0.746(3)	7.73(3)	641
Divinyl ether	0.84	8.7	827
5,7-Dodecadiyne	0.837	8.67	1079
Dodecafluorocyclohexane	1.27	13.2	- 1095
Epichlorohydrin	0.98	10.2	875

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionization energy				
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹		
Ethylene glycol	0.980	10.16	593		
Ethylene oxide	1.0195(10)	10.566(10)	967		
Ethyleneimine	0.89(1)	9.2(1)	1014		
<i>p</i> -Ethylphenol	0.756	7.84	613		
Ethynyl (HC=C)	1.13	11.7	1694		
Fluoranthene	0.768(4)	7.95(4)	1057		
Fluorene	0.761(3)	7.89(3)	950		
Fluoroacetylene	1.086	11.26	1195		
Fluorobenzene	0.8877(5)	9.200(5)	772		
Fluoroethane	1.12	11.6	856		
Fluoroethylene	1.0000(15)	10.363(15)	861		
Fluoromethane	1.203(2)	12.47(2)	956		
Fluoromethylene	1.012	10.49	1121		
Fluoromethylidene (CF)	0.879(1)	9.11(1)	1134		
<i>p</i> -Fluoronitrobenzene	0.955	9.90	826		
1-Fluoropropane	1.09	11.3	806		
2-Fluoropropane	1.069(2)	11.08(2)	776		
3-Fluoropropene	0.975	10.11	821		
<i>m</i> -Fluorotoluene	0.860(1)	8.91(1)	709		
o-Fluorotoluene	0.860(1)	8.91(1)	709		
<i>p</i> -Fluorotoluene	0.848(1)	8.79(1)	701		
Formaldehyde	1.0492(2)	10.874(2)	940		
Formamide	0.980(6)	10.16(6)	796		
Formic acid	1.093(1)	11.33(1)	715		
Fulminic acid (HCNO)	1.045	10.83	1263		
Fulvene	0.807	8.36	1031		
Fumaric acid	1.03	10.7	355		
Furan	0.8571(3)	8.883(3)	822		
Glyoxal	0.975	10.1	763		
1-Heptanal	0.931(2)	9.65(2)	668		
Heptane	0.957(5)	9.92(5)	770		
1-Heptanol	0.949(3)	9.84(3)	614		
2-Heptanol	0.936(3)	9.70(3)	580		
3-Heptanol	0.934(3)	9.68(3)	578		
4-Heptanol	0.927(3)	9.61(3)	572		
2-Heptanone	0.897(1)	9.30(1)	596		
1-Heptene	0.911	9.44	849		
2-Heptene	0.853(2)	8.84(2)	782		
3-Heptene	0.861	8.92	790		
Hexachlorobenzene	0.866	8.98	822		
Hexachloroethane	1.07	11.1	920		
1.5-Hexadiene	0.896(5)	9.29(5)	980		
Hexafluoroacetone	1.104	11.44	-294		
Hexafluorobenzene	0.9558	9.906	10		
Hexafluoroethane	1.29	13.4	-50		
Hexafluoropropene	1.023(3)	10.60(3)	- 103		
Hexamethylbenzene	0.757	7.85	670		
1-Hexanal	0.933(5)	9,67(5)	686		
Hexane	0.977	10.13	810		
Hexanoic acid	0.976	10.12	463		
1-Hexanol	0.954(3)	9.89(3)	639		

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	$\Lambda H(ion)$	
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹
2-Hexanol	0.946(3)	9.80(3)	611
3-Hexanol	0.929(3)	9.63(3)	599
2-Hexanone	0.902(2)	9.35(2)	626
3-Hexanone	0.880(2)	9.12(2)	600
1-Hexene	0.911(4)	9.44(4)	869
cis-2-Hexene	0.865(1)	8.97(1)	818
trans-2-Hexene	0.865(1)	8.97(1)	814
Hexylamine	0.833(5)	8.63(5)	699
1-Hexyne	0.960	9.95(5)	1081
Hydrogen cyanide (HCN)	1.312(1)	13.60(1)	1447
Hydrogen isocyanide (HNC)	1.21(1)	12.5(1)	1407
<i>p</i> -Hydroquinone	0.767(3)	7.95(3)	504
Imidazole	0.850(1)	8.81(1)	997
Indane	0.90	9.3	864
Indene	0.785(1)	8.14(1)	949
Iodobenzene	0.8380	8.685	1003
Iodoethane	0.9018	9.346	893
1-Iodohexane	0.8857	9.179	794
Iodomethane	0.9203	9.538	936
1-Iodopropane	0.8943	9.269	862
2-Iodopropane	0.8853	9.175	844
Isobutylbenzene	0.838(1)	8.68(1)	816
Isocvanic acid	1.120(3)	11.61(3)	1016
Isophthalic acid	0.963(20)	9.98(20)	268
Isopropylcyclohexane	0.900	9.33	704
Isoquinoline	0.8239(3)	8.539(3)	1032
Isoxazole	0.958(5)	9.93(5)	1038
Ketene	0.927(2)	9.61(2)	880
Maleic anhydride	1.04	10.8	645
Mesityl oxide	0.876(3)	9.08(3)	692
Methacrylic acid	0.979	10.15	611
Methane	1.207	12.51	1133
Methanethiol	9,108(5)	9.440(5)	888
Methanol	1.047(1)	10.85(1)	845
Methoxy	0.83	8.6	845
Methoxybenzene (Anisole)	0.792(2)	8.21(2)	724
2-Methoxyethanol	0.93	9.6	562
Methyl	0.949(1)	9.84(1)	1095
Methyl acetate	0.991(2)	10.27(2)	581
Methyl acrylate	0.96	9.9	611
Methyl azide	0.947(2)	9.81(2)	1227
Methyl benzoate	0.899(3)	9.32(3)	611
Methyl chloroacetate	0.99	10.3	575
Methyl 2.2-dimethylpropanoate	0.955(4)	9,90(4)	466
Methyl formate	1.0435(5)	10.815(5)	688
Methyl pentanoate	1.00(2)	10.4(2)	532
Methyl pentyl ether	0.933	9.67	657
Methyl vinyl ether	0.862(2)	8.93(2)	761
Methylacrylonitrile	0.998	10.34	1127
Methylamine	0.865(2)	8.97(2)	843
2-Methylaniline	0.718(2)	7.44(2)	772

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	A H(ion)		
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\ln kJ \cdot mol^{-1}$	
3-Methylaniline	0.724(2)	7.50(2)	778	
4-Methylaniline	0.698(2)	7.24(2)	753	
<i>N</i> -Methylaniline	0.707(2)	7.33(2)	791	
Methylcyclohexane	0.930	9.64	775	
1-Methylcyclohexanol	0.95(2)	9.8(2)	586	
Methylcyclopentane	0.950(3)	9.85(3)	845	
Methylcyclopropane	0.913	9.46	936	
2-Methyldecane	0.934	9.68	685	
Methylene	1.0031(3)	10,396(3)	1386	
<i>N</i> -Methylformamide	0.945	979	756	
2-Methylhentane	0.949	9.84	734	
5-Methyl-2-bexanone	0.895(1)	9.28(1)	586	
Methylhydrazine	0.740(2)	7 67(2)	835	
Methylidyne	1.027(1)	10.64(1)	1622	
Methylisocyanate	1.027(1)	10.67(2)	900	
1-Methyl-4-isopropylbenzene (n-Cymene)	0.800	8 20	771	
1-Methylnanhthalene	0.000	7.85	870	
2-Methylnaphthalene	0.75	7.05	866	
Methylovirane	0.986(2)	10 22(2)	802	
2-Methylopentane	0.936	10.22(2)	802	
3-Methylpentane	0.970	10.12	801	
2-Methyl_3-pentanone	0.975	0 10(1)	502	
3-Methyl-2-pentanone	0.870(1)	9.21(1)	600	
4-Methyl-2-pentanone	0.807(1)	9.20(1)	600	
2-Methyl-1-pentanone	0.876(1)	9.08(1)	817	
2-Methyl-2-pentene	0.878	8 58	761	
4-Methyl-1-pentene	0.020	9.45(1)	862	
4-Methyl-cis-2-pentene	0.912(1)	8 98(1)	802	
4-Methyl-trans_2-pentene	0.865(1)	8.97(1)	804	
2-Methylpropanal	0.005(1)	9.705(5)	721	
2-Methylpropanai	1.00	11.3	1115	
2-Methylpropenal	0.051	0.86	834	
2 Methylpropena (Isobutene)	0.951	9.00	875	
2 Methylpropene (Isobutche)	0.870(3)	9.239(3)	070	
3-Methylpyridine	0.872(3)	9.02(3)	070	
4-Methylpyridine	0.872(3)	9.04(3)	076	
Methylsilone	1.03	107	1003	
m Methylsturene	0.786(2)	8 15(2)	008	
a Methylstyrene	0.780(2)	0.15(2)	908	
n Methylstyrene	0.000(2)	9.20(2)	805	
<i>p</i> -Methylstylene Methyltrichlorosilone	1.006(2)	11 26(2)	548	
Nephthalana	0.785(1)	8 14(1)	026	
1 Norphthol	0.765(1)	7.76(2)	710	
2 Northol	0.749(3)	7.70(3)	719	
2-Naphthol Nickel corbonyl	0.737(3)	7.83(3) 8.27(4)	200	
m Nitroaniline	0.730(4)	0.2/(4) 8 31(3)	200	
a-Nitroaniline	0.002(2)	8 27(1)	00J 961	
n Nitroaniline	0.790(1)	0.27(1)	850	
<i>p</i> -muoannine Nitrobenzene	0.004(1)	0.34(1)	1010	
Nitroethane	1.050(5)	10.88(5)	948	

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	$\Lambda_{e}H$ (ion)	
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹
Nitromethane	1.063(4)	11.02(4)	988
<i>m</i> -Nitrophenol	0.86	9.0	755
o-Nitrophenol	0.88	9.1	782
<i>p</i> -Nitrophenol	0.88	9.1	761
1-Nitropropane	1.043(3)	10.81(3)	919
2-Nitropropane	1.033(5)	10.71(5)	894
<i>m</i> -Nitrotoluene	0.15(2)	9.48(2)	944
o-Nitrotoluene	0.912(4)	9.45(4)	966
<i>p</i> -Nitrotoluene	0.91	9.4	936
Nonane	0.938	9.72	710
2-Nonanone	0.884	9.16	545
5-Nonanone	0.875	9.07	530
Octafluoronaphthalene	0.854	8.85	-368
Octafluoropropane	1.291	13.38	-491
Octafluorotoluene	0.96	9.9	-233
Octane	0.948	9.82	739
1-Octene	0.910(1)	9.43(1)	829
1-Octvne	0.960(2)	9.95(2)	1040
2-Octyne	0.898(1)	9.31(1)	961
3-Octyne	0.890(1)	9.22(1)	952
4-Octyne	0.888(1)	9.20(1)	946
Oxazole	0.93	9.6	910
Oxetane	0.9328(5)	9.668(5)	853
2-Oxetanone	0.936(1)	9.70(1)	653
Oxomethyl (HCO)	0.782(5)	8.10(5)	826
Pentafluorobenzene	0.929	9.63	122
Pentafluorophenol	0.888(2)	9.20(2)	-71
2,3,4,5,6-Pentafluorotoluene	0.91	9.4	64
Pentanchloroethane	1.06	11.0	919
Pentylamine	0.837	8.67	728
Perylene	0.666(1)	6.90(1)	975
Phenanthrene	0.758(2)	7.86(2)	963
Phenetole	0.784(2)	8.13(2)	683
Phenol	0.817	8.47	721
Phenylacetic acid	0.797	8.26	479
<i>m</i> -Phenylenediamine	0.689	7.14	777
o-Phenylenediamine	0.69	7.2	787
p-Phenylenediamine	0.663(5)	6.87(5)	759
Phthalic anhydride	0.96	10.0	593
α-Pinene	0.779	8.07	808
Propanal	0.9603(5)	9.953(5)	773
Propanamide	0.92	9.5	720
Propane	1.057(5)	10.95(5)	952
Propanenitrile	1.142(2)	11.84(2)	1194
1-Propanethiol	0.8872(5)	9.195(5)	819
2-Propanethiol	0.882	9.14	806
Propanoic acid	1.0155(3)	10.525(3)	568
1-Propanol	0.986(3)	10.22(3)	731
2-Propanol	0.976(8)	10.12(8)	704

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	A H(ion)	
Species	In $MJ \cdot mol^{-1}$	In electron volts	$\Delta_{\rm f} II (1011)$ in kJ \cdot mol ⁻¹
Propenal	0.975(6)	10.103(6)	900
Propene	0.939(2)	9.73(2)	959
Propenenitrile	1.053(1)	10.91(1)	1237
Propenoic acid	1.023	10.60	701
1-Propylamine	0.847(2)	8.78(2)	777
2-Propylamine	0.841(3)	8.72(3)	758
Propylbenzene	0.841(1)	8.72(1)	849
Propylcyclohexane	0.913	9.46	720
Propylcyclopentane	0.965(4)	10.00(4)	817
Propyleneimine	0.87	9.0	960
Propynal	1.04	10.8	1155
Propyne	1.000(1)	10.36(1)	1186
2-Propyn-1-ol	1.014	10.51	1060
Pyrene	0.715	7.41	933
Pyridazine	0.834	8.64	1112
Pyrimidine	0.891	9.23	1087
Pyrrole	0.7920(5)	8.208(5)	900
2-Pyrrolidone	0.89	9.2	674
Quinoline	0.832(1)	8.62(1)	1041
cis-Stilbene	0.753(2)	7.80(2)	1005
trans-Stilbene	0.743(3)	7.70(3)	977
Styrene	0.813(6)	8.43(6)	961
Succinic anhydride	1.02	10.6	500
Succinonitrile	1.158(24)	12.10(25)	1377
Terephthalic acid	0.951(20)	9.86(20)	232
<i>m</i> -Terphenyl	0.773(1)	8.01(1)	1057
o-Terphenyl	0.77	8.0	1056
<i>p</i> -Terphenyl	0.751(1)	7.78(1)	1035
Tetrabromomethane	0.995(2)	10.31(2)	1079
Tetrachloro-1,2-difluoroethane	1.09	11.3	563
1,1,1,2-Tetrachloroethane	1.07	11.1	920
1,1,2,2-Tetrachloroethane	1.121	11.62	971
Tetrachloroethylene	0.899	9.32	887
Tetrachloromethane	1.107(1)	11.47(1)	1011
Tetraethylsilane	0.86	8.9	595
1,2,3,4-Tetrafluorobenzene	0.920(1)	9.53(1)	284
1,2,3,5-Tetrafluorobenzene	0.920(1)	9.53(1)	263
1,2,4,5-Tetrafluorobenzene	0.902(1)	9.35(1)	254
Tetrafluoroethylene	0.976(2)	10.12(2)	315
Tetrahydrofurane	0.908(2)	9.41(2)	724
1,2,3,4-Tetrahydronaphthalene	0.817	8.47	842
1,2,4,5-Tetramethylbenzene	0.776(1)	8.04(1)	730
2,2,3,3-Tetramethylbutane	0.95	9.8	720
Thiacyclobutane	0.838	8.69	899
Thiophene	0.856(4)	8.87(4)	971
<i>p</i> -Tolualdehyde	0.900(5)	9.33(5)	825
Toluene	0.851(1)	8.82(1)	901
<i>m</i> -Toluic acid	0.910(20)	9.43(20)	579
o-Toluic acid	0.88	9.1	558
<i>p</i> -Toluic acid	0.891(20)	9.23(20)	560

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

	Ionizatio	$\Lambda_{*}H(ion)$	
Species	In $MJ \cdot mol^{-1}$	In electron volts	in kJ \cdot mol ⁻¹
<i>m</i> -Tolunitrile	0.901	9.34	1085
o-Tolunitrile	0.905	9.38	1085
<i>p</i> -Tolunitrile	0.899	9.32	1083
Tribromomethane	1.011(2)	10.48(2)	1035
Tributylamine	0.71	7.4	492
Trichloroacetyl chloride	1.06	11.0	827
1.2.4-Trichlorobenzene	0.872	9.04	880
1.3.5-Trichlorobenzene	0.899(2)	9.32(2)	899
1.1.1-Trichloroethane	1.06	11.0	917
1.1.2-Trichloroethane	1.06	11.0	911
Trichloroethylene	0.914(1)	9.47(1)	895
Trichlorofluoromethane	1.136(2)	11.77(2)	868
Trichloromethane	1.097(2)	11.37(2)	992
Trichloromethylbenzene	0.926	9.60	914
1.1.2-Trichlorotrifluoroethane	1,157(2)	11,99(2)	429
Triethanolamine	0.76	79	206
Triethylamine	0.724	7.50	631
Trifluoroacetic acid	1 106	11.46	75
Trifluoroacetonitrile	1 337	13.86	838
1 1 1-Trifluoro-2-chloroethane	1.057	11.0	362
1.1.1.Trifluoroethane	1.00 1 24(1)	12 0(1)	496
Trifluoroethylene	0.078	10.14	490
Trifluoroiodomethane	0.978	10.14	307
Trifluoromethane	1 337	13.86	643
Trifluoromethyl (CE)	0.86	80	300
Trifuoromethylhonzono	0.0245(4)	0.9	225
2.2.2 Trifuoronronono	1.05	9.065(4)	333
5,5,5-Timuoropropene	1.05	0.25(2)	457
Trimethylomine	0.695(2)	9.23(2)	1010
1 2 2 Trimethylbongono	0.733402	7.82900	802
1,2,3-1 Third the second	0.812(2)	0.42(2)	803
1,2,4-11iiieuryibeiizeiie	0.796(1)	0.27(1)	704
1,3,3-1 rimethylbenzene	0.811(1)	8.41(1)	/90
Trimethyloblanesilane	0.90	10.0	604
1 rimetnyichiorosilane	0.979	10.15	624
3,5,5-1 rimethylcyclonex-2-en-1-one	0.875	9.07	0/0
2,2,4-1 Trimethylpentane	0.951	9.80	/13
2,2,4-1 rimethyl-3-pentanone	0.849(1)	8.80(1)	511
	0.88(1)	8.9(1)	580
Irioxane	0.99	10.3	528
Undecane	0.922	9.50	650
Urea	0.94	9.7	690
Vinyl acetate	0.887	9.19	572
<i>m</i> -Xylene	0.826(1)	8.56(1)	843
o-Xylene	0.826(1)	8.56(1)	844
<i>p</i> -Xylene	0.814(1)	8.44(1)	832
2,3-Xylenol	0.797	8.26	640
2,4-Xylenol	0.77	8.0	609
2,6-Xylenol	0.777(2)	8.05(2)	615
3,4-Xylenol	0.781	8.09	624

TABLE 2.50 Ionization Energy of Molecular and Radical Species (Continued)

TABLE 2.51 Thermal Conductivities of Gases as a Function of Temperature

The coefficient k, expressed in $J \cdot \sec^{-1} \cdot \operatorname{cm}^{-1} \cdot K^{-1}$, is the quantity of heat in joules, transmitted per second through a sample one centimeter in thickness and one square centimeter in area when the temperature difference between the two sides is one degree kelvin (or Celsius). The tabulated values are in microjoules.

	Temperature, °C										
Substance	-40	-20	0	20	40	60	80	100	120	140	160
Acetone		80	95	107	124	140	156	173	190	207	
Acetaldehyde				109	126	142	159	176	195		
Acetonitrile						112	124	137	151	166	
Acetylene	118^{-75}		184	205	224	248	269	290			
Air			242	256	270	284	299	311	324	336	342^{149}
Ammonia	164^{-60}		218	238	259	280	301	321			
Argon			166	176	186	196	206	211			
Benzene						126	146	165	184	205	266
Boron trifluoride				186						241	
Bromine			42	45	50	54	59				
Bromomethane					82	94	104	117			
1-Butanamine			1356.5					176^{110}			
Butane			135	154	174	193	213	233			
Carbon dioxide			144	160	176	192	207	215			
Carbon disulfide			67	76	85						
Carbon monoxide			228	245	262	278					
Carbon tetrachloride			59	64	70	75	80	86			109^{184}
Chlorine	64	72	79	85	93	100					
Chlorodifluorimethane		103	110	116	122						
Chloroethane			90	105	120	134	151	167	186	204	
Chloroform					75	84	91	99	107	116	
Chloromethane			84	105	117	130	142	155			
Cyclohexane			77	99	120	141	163				
Cyclopropane											
2-Methyl-2-propanol								225			
Neon	410	433	454	476	497	518	537	556			
Nitric oxide	205	221	238	254	269	285	301	317			
Nitrogen	211	226	241	256	270	282	295	307	320	333	385227
Nitromethane									139	155	

Nitrous oxide	121	137	152	168	184						
Octafluorocyclobutane				120					190		
Oxygen	211	228	245	261	278	294	311	328			
Pentane			130					218			
Propane	116	132	151	171	192	215	238	262	330	353	379
2-Propanol				151 ³¹						250^{127}	
Sulfur dioxide			83		163			106			
Sulfur hexafluoride				126					201	275^{227}	338327
Tetrafluoromethane				235					235		
Thiophene								152^{110}			
1,1,2-Trichlorotrifluoroethane				87					133		
Triethylamine								195	216	239	
Water		142	159	175	191	207	224	241	257		
Xenon	36-73			54					72	89 ²²⁷	104327
Deuterium	1150	1222	1297	1372	1448	1523					
Deuterium oxide									263		358220
Dibromomethane									74^{110}		
Dichlorodifluoromethane		81	84	92	100			138			194^{200}
1,1-Dichloroethane			69	81	93	105	117	129	144		
1,2-Dichloroethane								127	140		
Dichlorofluoromethane		91	94	97	100						
Dichloromethane			93					161			
1,2-Dichlorotetrafluoroethane				99					153		211227
Diethylamine			118			179	199	218	243	268	
Diethyl ether			113	135	157	178	200	222	244	269	351213
1,4-Dioxane								167	187	207	
Ethane	137	159	182	204	228	257	288	316	344		
Ethanol			126	141	155			209			
Ethene					230^{49}						
Ethyl acetate					115	133	151	170	191	211	234
Ethylamine			136	153	169	206					
Ethylene	137	158	178	220	241	262	282				
Ethylene oxide								193	256	279	
Ethyl formate			79	100	121	142	164	186	206	226	
Ethyl nitrate								159	178	197	
Fluorine	212	230	247	264	278	294	309	325			
Helium	1276	1343	1423	1481	1540	1598	1661	1720	1778		
Heptane			100	115	130			174			
	Temperature, °C										
-------------------	-----------------	------	------	------	------	-------	-----	-------------------	-----	-----	--------
Substance	-40	-20	0	20	40	60	80	100	120	140	160
Hexane			109				178	201	224	247	271
Hydrogen	1494	1607	1724	1828	1925	2025					
Hydrogen bromide	64	70	77	84	90	97	104				
Hydrogen chloride	107	117	128	138	148				191		240227
Hydrogen cyanide		99	110	121	132	143					
Hydrogen sulfide		116	129	143	156	169					
Iodomethane			46	53	60	68	75	82	89		
Krypton		79	85		95			110			
Methane	257	280	307	334	361	387	416	445			
Methanol						174	197	221	241	263	284
Methyl acetate			67			15070		177	195	215	237
2-Methylbutane			122					215			421
2-Methylpropane			141	156	176	196		233 ⁹³	271		

TABLE 2.51 Thermal Conductivities of Gases as a Function of Temperature (Continued)

TABLE 2.52 Thermal Conductivity of Various Substances

All values of thermal conductivity, k, are in millijoules $cm^{-1} \cdot s^{-1}$	$^{-1} \cdot K^{-1}$.
--	------------------------

	Thermal conductivity in $mJ \cdot cm^{-1} \cdot s^{-1} \cdot K^{-1}$						
Substance	-25°C	0°C	20°C	25°C	50°C	75°C	100°C
Acetaldehyde			1.900				
Acetic acid				1.58	1.53	1.49	1.44
Acetic anhydride			2.209				
Acetone	1.987-80	1.69	1.61		1.5140		
Acetonitrile	2.08	1.98		1.88	1.78	1.68	
Allyl alcohol				1.8030			
Aniline			1.7717				
Argon	1.259-189						
Benzaldehyde				1.51	1.41	1.31	1.21
Benzene				1.411	1.329	1.247	
Bromobenzene			1.113				
Bromoethane			1.029				
1-Bromo-2-methylpropane		1.16312					
1-Bromopentane			0.983				
Bromopropane		1.075^{12}					
Butanoic acid		1.50612					
1-Butanol		1.538		1.54	1.49		
2-Butanone	1.58	1.51		1.45	1.39	1.33	
Butyl acetate			1.368				
2-Butyne	1.37	1.29		1.21			
Carbon disulfide		1.54		1.49			
Carbon tetrachloride	1.100^{-20}	1.071	1.029		0.974		
Chlorobenzene	1.36	1.31		1.27	1.22	1.17	1.12
Chloroethane	1.45	1.32		1.19	1.06	0.93	
Chloroform	1.27	1.22		1.17	1.12	1.07	1.02
(Chloromethyl)oxirane	1.42	1.37		1.31	1.25	1.19	1.14
1-Chloro-2-methylpropane		1.16312					
1-Chloropentane		1.18412					
Chloropropane		1.184^{12}					
4-Chlorotoluene			1.297				
<i>m</i> -Cresol			1.498			1.45280	
Cyclohexane			1.243	1.23	1.17	1.11	
Cyclohexene	1.42	1.36		1.30	1.24	1.18	
Cyclohexanol				1.34	1.31		
Cyclopentane	1.40	1.33		1.26			
Cyclopentene	1.43	1.36		1.29			
Decane	1.44	1.38		1.32	1.26	1.19	1.13
1-Decanol				1.62	1.56	1.50	1.45
Dibromomethane	1.20	1.14		1.08	1.03	0.97	
Dibutyl phthalate	1.44	1.40		1.36	1.33	1.29	1.25
1.2-Dichloroethane		1.264					
Dichlorofluoromethane	0.134						
Dichloromethane	1.590-20	1.564	1.477				
Diethyl ether	1.50	1.40		1.30	1.20	1.10	1.00
Diisopropyl ether			1.096	2.20			2100
2.3-Dimethylbutane			1.070	1.03832	0.996		
<i>N.N</i> -Dimethylformamide				1.84	1.78	1.71	1.65
Dimethyl phthalate		1.501		1.473	1.443	1.409	1.373
2 mileary i philianaice		1.501		1	11-1-2	1.102	1.575

Thermal conductivity in $mJ \cdot cm^{-1} \cdot s^{-1} \cdot K^{-1}$							
Substance	-25°C	0°C	20°C	25°C	50°C	75℃	100°C
1,4-Dioxane	· · · · ·			1.59	1.47	1.35	1.23
Diphenyl ether					1.39	1.35	1.31
Dodecane		1.57		1.52	1.46	1.40	1.35
1-Dodecanol				1.46	1.42	1.39	1.35
Ethanol		1.76		1.69	1.62		
Ethanolamine				2.99	2.86	2.74	2.61
Ethoxybenzene			1.497				
Ethyl acetate	1.62	1.53		1.44	1.35	1.26	
Ethylbenzene				1.30	1.24	1.18	1.12
Ethylene glycol		2.56		2.56	2.56	2.56	2.56
Ethyl formate		1.58112					
Furan	1.42	1.34		1.26			
Glycerol				2.92	2.95	2.97	3.00
Heptane	1.378	1.303	1.259	1.228	1.152	1.077	
1-Heptanol		1.66		1.59	1.53	1.47	1.41
Hexadecane				1.40	1.35	1.30	1.25
Hexane	1.37	1.28	1.218	1.20	1.11	1.92	0.93
1-Hexanol	1.59	1.54		1.50	1.45	1.41	1.37
2-Hexanone	1.51	1.45		1.39	1.33	1.27	1.21
1-Hexene	1.37	1.29		1.21	1.13		
Hydrochloric acid. 38%			4.40232				
Hydrogen	1.180^{-253}						
Iodobenzene	1.063-20		1.276			0.93780	
Iodoethane	1.005		1.270	1 10030		0.957	
1-Iodo-2-methylpropane		0 87012		1.107			
1-Iodopentane		0.84912					
Iodopropane		0.042					
Isopentyl acetate		0.720	1 297				
Isopropylbenzene			1.277	1 28	1.20	1 12	1.07
Mercury	72.5	77 7		82.5	86.8	1.12 00.7	0/3
Methanol	2.5	2.07	2 021	2.00	1 03	<i>J</i> 0.7	74.5
Methovybenzene	1 70	1.63	2.021	1.56	1.55	1 /3	1 36
Methol acetate	1.70	1.05		1.50	1.50	1.45	1.50
Methyl butenoste	1.74	1.04	1 402	1.55	1.45	1.55	1.22
3 Methylbutanoia agid		1 205	1.402				
3 Mathyl 1 butenol		1.505		1 47730			
Mothyleyeleheyene				1.47/2			
Methylevelementeme				1.2/055	1 1 5 1 38		
M Matheulfarmanida				1.209	2.01	1.00	1.00
1 Mathal 4 is a second barrent	1.22	1.07		2.03	2.01	1.99	1.90
1-Methyl-4-isopropyibenzene	1.32	1.27		1.22	1.17	1.12	1.07
2-Methylpentane		1 0 1 0 1 2		1.08452	1.033		
Methyl pentanoate		1.31812					
4-Methylpentanoic acid	1 50	1.42/12		1.50	1.40	1.40	1.04
4-Methyl-3-pentene-2-one	1.70	1.03		1.56	1.49	1.42	1.34
2-Methyl-1-propanol		1.42312		1 1 5000		1.0/777	
2-Methyl-2-propanol				1.15938		1.067/7	
Nitrobenzene			1.510				
Nitromethane				2.15130			
Nonane	1.44	1.38		1.31	1.24	1.151^{80}	1.11

TABLE 2.52 Liquid Thermal Conductivity of Various Substances (Continued)

	Thermal conductivity in $mJ \cdot cm^{-1} \cdot s^{-1} \cdot K^{-1}$							
Substance	-25°C	0°C	20°C	25°C	50°C	75°C	100°C	
1-Nonanol		1.66		1.61	1.55	1.49	1.43	
Octadecane					1.46	1.42	1.37	
Octane	1.43	1.35		1.28	1.20	1.13	1.06	
1-Octanol		1.68	1.657	1.61	1.54	1.47	1.41	
Palmitic acid						1.598		
Pentachloroethane			1.251					
Pentane	1.32	1.22	1.138	1.13	1.03	0.95	0.87	
Pentanoic acid		1.36012						
1-Pentanol		1.57		1.53	1.49	1.45		
1-Pentene	1.31	1.24		1.16				
Pentyl acetate			1.289					
Phenol					1.56	1.53	1.51	
Phenylhydrazine				1.724				
1,2-Propanediol		2.02		2.00	1.99	1.98	1.97	
Propanoic acid		1.72812						
1-Propanol	1.62	1.58		1.54	1.49	1.45	1.41	
2-Propanol	1.46	1.41		1.35	1.29	1.24	1.18	
1.2-Propylene glycol		2.008						
Propyl formate		1.49412						
Pvridine		1.69		1.65	1.61	1.58		
Silicon tetrachloride		2107		0.99	0.96	1100		
Sodium				0.57	0.70		753.1300	
Sodium chloride (ag. satd)	5.732							
Stearic acid	001					1.598		
Styrene	1.48	1.42		1.37	1.31	1.26	1.20	
Sulfuric acid. 90%				3.54032				
1.1.2.2-Tetrachloroethane		1.138						
Tetrachloroethylene	1.17		1.10	1.04	0.97			
Tetrachloromethane	1.04		0.99	0.93	0.88			
Tetradecane	1101		0.77	1.36	1.31	1.26	1.21	
1-Tetradecanol				1.00	1.67	1.62	1 57	
Tetrahydrofuran	1 32	1.26		1 20	1 14	1.02	1.57	
Thiophene	1.52	1.20		1.99	1.95	1 91	1 86	
Toluene	1 590-80	1 386	1 347	1 311	1.236	1 161	1.00	
1 1 1-Trichloroethane	1.06	1.500	1.01	0.96	1.250	1.101		
Trichloroethylene	1 359-60	1 24	1.01	1 160	1.08	1.00		
Trichloromethane	1.335	1.21		1.100	1.00	1.00		
Tridecane	1.27	1.22		1.17	1.12	1.07	1 22	
Triethylamine	1 464-80		1 209	1.57	1 11344	1.27	1,22	
Trimethylamine	1.404	1 33	1.209		1.115			
1 3 5-Trimethylbenzene	1.45	1.55		1 36	1 30	1 24	1 1 8	
2.2.4.Trimethylpentane	1.47	1.71		0.96638	1.50	0.84177	1.10	
Undecane				1.40	1 35	1 20	1 23	
Water		5 610	5 983	6.071	6.435	6 668	6 701	
m_Xylene		5.010	5.905	1 30	1.24	1 1 2	1 12	
o-Xylene				1 31	1.24	1.10	1.1.5	
n-Xylene				1 30	1.20	1.20	1.14	
р-лующе				1.50	1.24	1.10	1.12	

TABLE 2.52 Liquid Thermal Conductivity of Various Substances (Continued)

2.13 ENTHALPIES AND GIBBS ENERGIES OF FORMATION, ENTROPIES, AND HEAT CAPACITIES (CHANGE OF STATE)

The tables in this section contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at 298.15 K (25° C). No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition.

The physical state of each substance is indicated in the column headed "State" as crystalline solid (c), liquid (lq), or gaseous (g). Solutions in water are listed as aqueous (aq).

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows: For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101, 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure.

The values of $\Delta_f H^\circ$ and $\Delta_f G^\circ$ that are given in the tables represent the change in the appropriate thermodynamic quantity when one mole of the substance in its standard state is formed, isothermally at the indicated temperature, from the elements, each in its appropriate standard reference state. The standard reference state at 25°C for each element has been chosen to be the standard state that is thermodynamically stable at 25°C and 1 atm pressure. The standard reference states are indicated in the tables by the fact that the values of $\Delta_r H^\circ$ and $\Delta_r G^\circ$ are exactly zero.

The values of S° represent the virtual or "thermal" entropy of the substance in the standard state at 298.15 K (25°C), omitting contributions from nuclear spins. Isotope mixing effects are also excluded except in the case of the ¹H—²H system.

Solutions in water are designated as aqueous, and the concentration of the solution is expressed in terms of the number of moles of solvent associated with 1 mol of the solute. If no concentration is indicated, the solution is assumed to be dilute. The standard state for a solute in aqueous solution is taken as the hypothetical ideal solution of unit molality (indicated as std. state or ss). In this state the partial molal enthalpy and the heat capacity of the solute are the same as in the infinitely dilute real solution.

For some tables the uncertainty of entries is indicated within parentheses immediately following the value; viz., an entry 34.5(4) implies 34.5 ± 0.4 and an entry 34.5(12) implies 34.5 ± 1.2 .

References: D. D. Wagman, et al., *The NBS Tables of Chemical Thermodynamic Properties*, in J. *Phys. Chem. Ref. Data*, **11: 2**, 1982; M. W. Chase, et al., *JANAF Thermochemical Tables*, 3rd ed., American Chemical Society and the American Institute of Physics, 1986 (supplements to JANAF appear in J. Phys. Chem. Ref. Data); Thermodynamic Research Center, *TRC Thermodynamic Tables*, Texas A&M University, College Station, Texas; I. Barin and O. Knacke, *Thermochemical Properties of Inorganic Substances*, Springer-Verlag, Berlin, 1973; J. B. Pedley, R. D. Naylor, and S. P. Kirby, *Thermochemical Data of Organic Compounds*, 2nd ed., Chapman and Hall, London, 1986; V. Majer and V. Svoboda, *Enthalpies of Vaporization of Organic Compounds*, International Union of Pure and Applied Chemistry, Chemical Data Series No. 32, Blackwell, Oxford, 1985.

2.13.1 THERMODYNAMIC RELATIONS

Enthalpy of Formation. Once standard enthalpies are assigned to the elements, it is possible to determine standard enthalpies for compounds. For the reaction:

$$C(\text{graphite}) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H^\circ = -393.51 \text{ kJ}$$
 (6.1)

Since the elements are in their standard states, the enthalpy change for the reaction is equal to the standard enthalpy of CO_2 less the standard enthalpies of C and O_2 , which are zero in each instance. Thus,

$$\Delta_f H^\circ = -393.51 - 0 - 0 = -393.51 \text{ kJ}$$
(6.2)

Tables of enthalpies, such as Tables 2.53 and 1.56, can be used to determine the enthalpy for any reaction at 1 atm and 298.15 K involving the elements and any of the compounds appearing in the tables.

The solution of 1 mole of HCl gas in a large amount of water (infinitely dilute real solution) is represented by:

$$HCl(g) + \inf H_2O \to H^+(aq) + Cl^-(aq)$$
(6.3)

The heat evolved in the reaction is $\Delta H^{\circ} = -74.84$ kJ. With the value of $\Delta_f H^{\circ}$ from Table 2.53, one has for the reaction:

$$\Delta_{f}H^{\circ} = \Delta_{f}H^{\circ}[\mathrm{H^{+}}(\mathrm{aq})] + \Delta_{f}H^{\circ}[\mathrm{Cl^{-}}(\mathrm{aq})] - \Delta_{f}H^{\circ}[\mathrm{HCl}(\mathrm{g})]$$

for the standard enthalpy of formation of the pair of ions H⁺ and Cl⁻ in aqueous solution (standard state, m = 1). To obtain the $\Delta_f H^\circ$ values for individual ions, the enthalpy of formation of H⁺(aq) is arbitrarily assigned the value zero at 298.15 K. Thus, from Eq. (6.4):

$$\Delta_{\rm f} H^{\circ}[{\rm Cl}^{-}({\rm aq})] = -74.84 + (-92.31) = -167.15 \text{ kJ}$$

With similar data from Tables 2.53 and 1.56, the enthalpies of formation of other ions can be determined. Thus, from the $\Delta_f H^{\circ}[\text{KCl}(\text{aq, std. state, } m = 1 \text{ or aq, ss})]$ of -419.53 kJ and the foregoing value for $\Delta_f H^{\circ}[\text{Cl}^{-}(\text{aq, ss})]$:

$$\Delta_f H^{\circ}[K^+(aq, ss)] = \Delta_f H^{\circ}[KCl(aq, ss)] - \Delta_f H^{\circ}[Cl^-(aq, ss)]$$

= -419.53 - (-167.15) = -252.38 kJ

Enthalpy of Vaporization (or Sublimation) When the pressure of the vapor in equilibrium with a liquid reaches 1 atm, the liquid boils and is completely converted to vapor on absorption of the enthalpy of vaporization ΔHv at the normal boiling point T_b . A rough empirical relationship between the normal boiling point and the enthalpy of vaporization (*Trouton's rule*) is:

$$\frac{\Delta H v}{T_b} = 88 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

It is best applied to nonpolar liquids which form unassociated vapors.

To a first approximation, the enthalpy of sublimation ΔHs at constant temperature is:

$$\Delta Hs = \Delta Hm + \Delta Hv$$

where ΔHm is the enthalpy of melting.

The *Clapeyron* equation expresses the dynamic equilibrium existing between the vapor and the condensed phase of a pure substance:

$$\frac{dP}{dT} = \frac{\Delta Hv}{T\Delta V}$$

where ΔV is the volume increment between the vapor phase and the condensed phase. If the condensed phase is solid, the enthalpy increment is that of sublimation.

Substitution of V = RT/P into the foregoing equation and rearranging gives the *Clausius-Clapeyron* equation,

$$\frac{dP}{p \ dT} = \frac{\Delta H v}{RT^2}$$

or

$$\Delta H v = -R \frac{d(\ln P)}{1/T}$$

which may be used for calculating the enthalpy of vaporization of any compound provided its boiling point at any pressure is known. If an Antoine equation is available, differentiation and insertion into the foregoing equation gives:

$$\Delta Hv = \frac{4.5757T^2B}{(T+C-273.15)^2}$$

Inclusion of a compressibility factor into the foregoing equation, as suggested by the *Haggenmacher* equation improves the estimate of ΔHv :

$$\Delta Hv = \frac{RT^2}{P} \left(\frac{dP}{dT}\right) \left(1 - \frac{T_c^3 P}{T^3 P_c}\right)^{1/2}$$

where T_c and P_c are critical constants (Table 2.55). Although critical constants may be unknown, the compressibility factor is very nearly constant for all compounds belonging to the same family, and an estimate can be deduced from a related compound whose critical constants are available.

Heat Capacity (or Specific Heat) The temperature dependence of the heat capacity is complex. If the temperature range is restricted, the heat capacity of any phase may be represented adequately by an expression such as:

$$C_p = a + bT + cT^2$$

in which *a*, *b*, and *c* are empirical constants. These constants may be evaluated by taking three pieces of data: $(T_1, C_{p,1}), (T_2, C_{p,2}), (T_3, C_{p,1}), (T_3, C_{p,1}), (T_4, C_{p,1}), (T_5, C_{p,2}), (T_5, C_{p,1}), (T_5, C$

$$\frac{C_{p,1}}{(T_1 - T_2)(T_1 - T_3)} + \frac{C_{p,2}}{(T_2 - T_1)(T_2 - T_3)} + \frac{C_{p,3}}{(T_3 - T_2)(T_3 - T_1)} = c$$

$$\frac{C_{p,1} - C_{p,2}}{T_1 - T_2} - [(T_1 + T_2)c] = b$$

$$(C_{p,1} - bT_1) - cT_1^2 = a$$

Smoothed data presented at rounded temperatures, such as are available in Tables 2.54 and 1.57, plus the C_p° values at 298 K listed in Table 2.53, are especially suitable for substitution in the foregoing parabolic equations. The use of such a parabolic fit is appropriate for interpolation, but data extrapolated outside the original temperature range should not be sought.

Enthalpy of a System The enthalpy increment of a system over the interval of temperature from T_1 to T_2 , under the constraint of constant pressure, is given by the expression:

$$H_2 - H_1 = \int_{T_1}^{T_2} C_p \, dT$$

The enthalpy over a temperature range that includes phase transitions, melting, and vaporization, is represented by:

$$\begin{split} H_2 - H_1 &= \int_{T_1}^{T_2} C_p(\mathbf{c}, \mathbf{II}) \ dT + \Delta H t + \int_{T_1}^{T_m} C_p(\mathbf{c}, \mathbf{I}) dT + \Delta H m \\ &+ \int_{T_m}^{T_b} C_p(\mathbf{lq}) dT + \Delta H v + \int_{T_b}^{T_2} C_p(g) \ dT \end{split}$$

Integration of heat capacities, as expressed by Eq. (6.13), leads to:

$$\Delta H = a(T_2 - T_1) + \frac{b(T_2^2 - T_1^2)}{2} + \frac{c(T_2^3 - T_1^3)}{3}$$

Entropy In the physical change of state,

$$\Delta Sm = \frac{\Delta Hm}{T_m}$$

is the entropy of melting (or fusion),

$$\Delta Sv = \frac{\Delta Hv}{T_h}$$

is the entropy of vaporization, and

$$\Delta Ss = \frac{\Delta Hs}{Ts}$$

is the entropy of sublimation

A general expression for the entropy of a system, involving any phase transitions, is

$$S_2 - S_1 = \int_{T_1}^{T_1} \frac{C_p(c, \Pi) dT}{T} + \frac{\Delta Ht}{T} + \int_{T_b}^{T_m} \frac{C_p(c, \Pi) dT}{T} + \frac{\Delta Hm}{T} + \int_{T_m}^{T_b} \frac{C_p(1q) dT}{T} + \frac{\Delta Hv}{T} + \int_{T_b}^{T_m} \frac{C_p(g) dT}{T}$$

If C_p is independent of temperature,

$$\Delta S = C_p (\ln T_2 - \ln T_1) = 2.303 \ C_p \log \frac{T_2}{T_1}$$

If the heat capacities change with temperature, an empirical equation may be inserted in before integration. Usually the integration is performed graphically from a plot of either C_p/T versus T or C_p versus ln T.

Cultatoria	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S° L dag=l mal=l	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg ·moi	J · deg · moi
Acenaphthene	с	70.34		188.9	190.4
Acenaphthylene	c	186.7			166.4
Acetaldehyde	lq	-192.2	-127.6	160.4	89.0
	g	-166.1	-133.0	263.8	55.3
Acetaldoxime	c	-77.9			
	lq	-81.6			
Acetamide	с	-317.0		115.0	91.3
Acetamidoguanidine nitrate	с	-494.0			
1-Acetamido-2-nitroguanidine	с	-193.6			
5-Acetamidotetrazole	с	-5.0			
Acetanilide	с	-210.6			
Acetic acid	lq	-484.4	-390.2	159.9	123.6
	g	-432.2	-374.2	283.5	63.4
ionized; std. state, $m = 1$	aq	-486.34	-369.65	86.7	-6.3
Acetic anhydride	lq	-624.4	-489.14	268.8	168.2^{30}
					(Continued)

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_f G^\circ$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Acetone	lq	-248.4	-152.7	198.8	126.3
	g	-217.1	-152.7	295.3	74.5
Acetonitrile	lq	31.4	86.5	149.7	91.5
	g	74.0	91.9	243.4	52.2
Acetophenone	lq	-142.5	-17.0	249.6	204.6
Acetyl bromide	lq	-223.5			
Acetyl chloride	lq	-272.9	-208.2	201.0	117.0
	g	-242.8	-205.8	295.1	67.8
Acetylene	g	227.4	209.0	201.0	44.1
Acetylene- d_2	g	221.5	205.9	208.9	49.3
Acetylenedicarboxylic acid	c	-578.2			
Acetyl fluoride	g	-442.1			
1-Acetylimidazole	c	-574.0			
Acetyl iodide	lq	-163.5			
Acridine	c	179.4			
Adamantane	с	-194.1			
Adenine	с	96.0	299.6	151.1	147.0
(+)-Alanine	с	-561.2	-369.4	132.3	
(-)-Alanine	с	-604.0	-370.5	129.3	
(±)-Alanine	с	- 563.6	-372.3	132.3	
β -Alanine	с	- 558.0			
(±)-N-Alanylglycine	с	-777.8	- 489.9	213.5	
(-)-Alanylglycine	с	-827.0	-533.0	195.2	
Allene	g	190.5			
Alloxan monohydrate	с	-1000.7	-762.3	186.7	
Allylamine	lq	-10.0			
Allyl tert-butyl sulfide	lq	-91.0			
Allyl ethyl sulfone	lq	-406.0			
Allyl methyl sulfone	lq	-385.1			
Allyl trichloroacetate	lq	- 395.3			
Allyl (see Propene)					
Aminetrimethylboron	с	-284.1	-79.3	218.0	
3-Aminoacetophenone	с	- 173.3			
4-Aminoacetophenone	с	-182.1			
2-Aminoacridine	с	166.4			
9-Aminoacridine	с	159.2			
2-Aminobenzoic acid	с	-400.9			
3-Aminobenzoic acid	с	-411.6			
4-Aminobenzoic acid	с	-412.9			
2-Aminobiphenyl	с	112.2			
4-Aminobiphenyl	с	81.2			
4-Aminobutanoic acid	с	-581.0			
2-Aminoethanesulfonic acid	с	- 785.9	-562.3	154.1	140.7
ionized; std. state, $m = 1$	aq	-719.8	- 509.8	200.1	
2-Aminoethanol	lq				195.5
2-Aminohexanoic acid	с	-639.1			
(norleucine)					
4-Aminohexanoic acid	с	-646.2			
5-Aminohexanoic acid	с	-643.3			
6-Aminohexanoic acid	с	-639.1			
(-)-2-Amino-3-hydroxy-	с	-759.5			
butanoic acid					

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_{\!f}G^\circ$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	1 J · deg ⁻¹ · mol ⁻¹
2-Amino-2-(hydroxymethyl)-	С	717.8			
3-Aminonitroguanidine	с	22.1			
5-Aminopentanoic acid	c	-604.1			
5-Aminotetrazole	c	-207.8			
3-Amino-1.2.4-triazole	c	76.8			
Aniline	la	31.3	149.2	191.4	191.9
	1 g	87.5	-7.0	317.9	107.9
Anthracene	c	129.2	286.0	207.6	210.5
9.10-Anthraquinone	c	-207.5			
$D_{-}(-)$ -Arabinose [also (+)-]	с	-1057.9			
(+)-Arginine	c	-623.5	-240.5	250.8	232.0
L-(+)-Ascorbic acid	c	-1164.6			
L-(+)-Asparagine	c	-789.4	- 530.6	174.6	
L-(+)-Aspartic acid	с	-973.3	-730.7	170.2	
cis-Azobenzene	с	310.2			
trans-Azobenzene	с	365.2			
Azoisopropane	g	35.8			
Azomethane	g	148.8	239.7	289.9	78.0
Azomethane-d ₆	g	119.3	218.3	305.7	90.6
Azopropane	g	51.5			
Azulene	g	289.1	353.4	338.1	128.5
Barbituric acid	с	-637.2			
Benzaldehyde	lq	-87.0	9.4		172.0
Benzamide	с	-202.6			
Benzanilide	с	-93.4			
1,2-Benzanthracene	с	170.9			
2,3-Benzanthracene	с	160.4	359.2	215.5	
1,2-Benzanthracene-	с	-231.9			
9,10-dione					
Benzene	lq	49.0	124.4	173.4	136.0
	g	82.6	129.7	269.2	82.4
Benzeneboronic acid	с	-720.1			
1,2-Benzenediamine	с	-0.3			
1,3-Benzenediamine	с	-7.8			
1,4-Benzenediamine	с	3.1			
1,3-Benzenedicarboxylic acid	с	803.0			
1,4-Benzenedicarboxylic acid	с	816.1			
1,2,4,5-Benzenetetra-	с	1571.0			
carboxylic acid					
Benzenethiol (thiophenol)	lq	63.7	134.0	222.8	173.2
	g	111.3	147.6	336.9	104.9
1,2,3-Benzenetricarboxylic acid	с	- 1160.0			
1,2,4-Benzenetricarboxylic acid	с	-1179.0			
1,3,5-Benzenetricarboxylic acid	с	- 1190.0			
1,2,3-Benzenetriol	с	-551.1			
1,2,4-Benzenetriol	с	- 563.8			
1,3,5-Benzenetriol	с	- 584.6			
<i>p</i> -Benzidine	с	70.7			
Benzil	с	- 153.9			
Benzoic acid	с	-385.2	-245.3	167.6	146.8
Benzoic anhydride	с	-415.4			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_f G^\circ$	S°	C_{p}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Benzonitrile	la	163.2		209.1	165.2
	g	215.8	260.8	321.0	109.1
Benzo[def]phenanthrene	c	125.5	269.5	224.8	236.0
Benzophenone	с	-34.5	140.2	245.2	224.8
Benzo[f]quinoline	с	150.6			
Benzo[h]quinoline	с	149.7			
1,4-Benzoquinone	с	- 185.7	-83.6	162.8	129.0
Benzo[b]thiophene	с	100.6			
1.2.3-Benzotriazole	с	250.0			
Benzotrifluoride	lq	-636.7			
Benzovl bromide	la	-107.3			
Benzovl chloride	la	-158.0			
Benzovlformic acid	c	-482.4			
<i>N</i> -Benzovlglycine	c	-609.8	- 369.57	239.3	
Benzoyl iodide	lq	-53.5			
3,4-Benzphenanthrene	c	184.9			
Benzylamine	lq	34.2			
Benzyl alcohol	lq	- 160.7	-27.5	216.7	218.0
Benzyl bromide	lq	16.0			
Benzyl chloride	lq	-32.6			182.4
N-Benzyldiphenylamine	c	184.7			
Benzyl ethyl sulfide	lq	-4.9			
Benzyl iodide	lq	57.3			
Benzyl methyl ketone	lq	- 151.9			
Benzyl methyl sulfide	la	26.2			
Bicyclo[1.1.0]butane	g	217.1			
Bicyclo[2.2.1]hepta-	la	213.0			
2.5-dione	1				
Bicyclo[2.2.1]heptane	с	-95.1			
Bicyclo[4.1.0]heptane	la	-36.7			
Bicyclo[2.2.1]heptene	la	90.0	203.9		130.0
Bicvclo[3.1.0]hexane	g	38.6			
Bicyclohexyl	la	-273.7			
Bicyclo[2.2.2]octane	c	- 146.9			
Bicyclo[4.2.0]octane	g	-26.2			
Bicvclo[5.1.0]octane	g	- 16.6			
Bicvclo[2.2.2]oct-2-ene	g	-23.3			
Bicyclopropyl	g	129.3			
Biphenyl	c	99.4	254.2	209.4	198.4
2-Biphenylcarboxylic acid	c	-349.0			
(1,1'-Biphenyl)-4,4'- diamine	с	70.7			
Biphenylene	с	334.0			
Bis(2-chloroethyl) ether	la				220.9
Bis(dimethylthiocarbonyl)	C	41.6			
disulfide					
Bis(2-hydroxyethyl) ether	lq	-1621.0		441.0	135.1
• ·	g	-571.1			
Bromoacetone	g	- 181.0			
Bromoacetylene	g			253.7	55.7
Bromobenzene	lq	60.9	126.0	219.2	154.3
4-Bromobenzoic acid	c	-378.3			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Lambda_c H^\circ$	$\Lambda_c G^\circ$	S°	C.°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
1-Bromobutane	la	- 143 8	- 12.9	369.8	109 3
2-Bromobutane	la	- 154.8	- 19 25	507.0	109.5
	<u>-</u>	-120.3	-25.8	370.3	110.8
Bromochlorodifluoromethane	ø	-471.5	-448.4	318.5	74.6
1-Bromo-2-chloroethane	la			01010	130.127
Bromochlorofluoromethane	g	-295.0	-278.6	304.3	63.2
Bromochloromethane	la				52.7
	g	-50.2	- 39.3	287.6	
1-Bromo-2-chloro-1,1,2-	g	-644.8			
trifluoroethane	e				
2-Bromo-2-chloro-1,1,1-	g	-690.4			
trifluoroethane	U				
1-Bromodecane	lq	- 344.7			
Bromodichlorofluoromethane	g	-269.5	-246.8	330.6	80.0
Bromodichloromethane	g	-58.6	-42.5	316.4	67.4
Bromodifluoromethane	g	- 424.9	- 447.3	295.1	58.7
Bromoethane	lq	-90.5	-25.8	198.7	100.8
	g	-61.9	-23.9	286.7	64.5
Bromoethylene (vinyl bromide)	lq				107.715
	g	79.2	81.7	275.8	55.4
Bromofluoromethane	g	-252.7	-241.5	276.3	49.2
1-Bromoheptane	lq	-218.4			
1-Bromohexane	lq	- 194.2		453.0	203.5
Bromoiodomethane	g	50.2	39.2	307.5	
Bromomethane	lq				78.77
	g	-35.4	-26.3	246.4	42.5
2-Bromo-2-methylpropane	lq	- 163.8	•••		151.0
	g	-132.4	- 28.2	332.0	116.5
1-Bromooctane	lq	-245.1			
Bromopentafluoroethane	g	- 1064.4			120.0
1-Bromopentane	lq	-170.2	57	409.9	132.2
1 Dromonono	g 1a	- 129.0	-5.7	408.8	96 1
1-Bromopropane	iq	- 121.8	22.5	220.0	80.4
2 Bromonronono	g	- 87.0	- 22.5	550.9	122.2
2-Biomopropane	ıq a	-130.3	- 27.2	216.2	152.2
cis 1 Bromonronana	g	- 99.4	-21.2	510.2	09.4
3 Bromonronana	g	40.8			
N Bromosuccinimide	g	-335.0			
a Bromotoluene	10	- 555.9			
Bromotrichloromethane	rq a	-41.1	-124	332.8	85 3
Bromotrifluoroethane	5 0	-6945	12.4	552.0	05.5
Bromotrifluoromethane	5 0	-648.3	-622.6	297 8(5)	69.3
Bromotrimethylsilane	la	-325.9	022.0	2571.0(5)	07.5
Bromotrinitromethane	~~1 o	80.3			
Brucine	c	-496.2			
1.2-Butadiene	g	162.3	199.5	293.0	80.1
1.3-Butadiene	la	88.5		199.0	123.6
	g	110.0	150.7	278.7	79.5
1,3-Butadiyne	g	472.8	444.0	250.0	73.6
Butanal	la	-239.2			163.7
	1				

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
	g	-204.9	-114.8	243.7	103.4
Butanamide	lq	- 346.9			
Butane	lq				104.5-0.5
	g	- 125.6	-17.2	310.1	97.5
1,2-Butanediamine	lq	-120.2			
(\pm) -1,2-Butanediol	lq	-523.6			
1,3-Butanediol	lq	- 501.0			227.230
1,4-Butanediol	lq	-503.3		223.4	200.1
2,3-Butanediol	lq	- 541.5			213.0
Butanedinitrile	c	139.7			
	lq				160.562
2,3-Butanedione	lq	-365.8			
1,4-Butanedithiol	lq	-105.7			
Butanenitrile	lq	-5.8			15967
	g	33.6	108.7	325.4	97.0
1-Butanethiol	la	- 124.7	4.1	276.0	171.2
2-Butanethiol	la	- 131.0	-0.17	271.4	
Butanoic acid	la	-533.8	-377.7	222.2	178.6
Butanoic anhydride	la				283.7
1-Butanol	la	-327.3	-162.5	225.8	177.0
	g	-275.0	-150.8	362.8	122.6
(\pm) -2-Butanol	la	-342.6	-177.0	214.9	196.9
() = = = = = = = = = = = = = = = = = =	<u>1</u>	-292.9	-167.6	359.5	113.3
2-Butanone	la	-273.3	-151.4	239.1	158.9
	<u>1</u> g	-238.5		339.9	101.7
Butanophenone	la	-188.9			
trans-2-Butenal	la	-138.7			95.4
<i>cis</i> -Butenedinitrile	-4 C	268.2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1-Butene	la	-20.8		227.0	118.0
	<u>1</u> g	0.1	71.3	305.6	85.7
cis-2-Butene	la	-29.8		219.9	127.0
	1 0	-7.1	65.9	300.8	78.9
trans-2-Butene	e g	-11.4	63.0	296.5	87.8
<i>cis</i> -2-Butenenitrile	la	95.1			
trans-2-Butenenitrile	la	95.1			
3-Butenenitrile	1 0	159.7	193.4	298.4	82.1
<i>cis</i> -2-Butenoic acid	la	-347.0			0211
trans-2-Butenoic acid	c	-430.5			
<i>cis</i> -2-Butenedioic acid	c	-788.7			
trans-2-Butenedioic acid	c	-811.1			
1-Buten-3-vne	g	304.6	306.0	279.4	73.2
2-Butoxyethanol	la				281.0
N-Butylacetamide	la	-380.8			
Butyl acetate	la	- 529.2			227.8
Butylamine	la	-127.7			179.2
,	1 g	-92.0	49.2	363.3	118.6
sec-Butylamine	la	-137.5			
	<u>1</u> g	- 104.6	40.7	351.3	117.2
tert-Butylamine	g	- 150.6			192.1
,	g	-121.0	28.9	337.9	120.0
Butylbenzene	la	63.2			243.4
· · · · · ·	g	-13.1	144.7	439.5	416.3

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	DI 1	4 770	1 60	G 0	<u> </u>
Sach atom an	Physical	$\Delta_f H^\circ$	$\Delta_f G^{\circ}$	S° 	C_p°
Substance	state	KJ · mol ·	KJ · MOI	J · deg · mol	J · deg · · mol ·
sec-Butylbenzene	lq	-66.4			
tert-Butylbenzene	lq	-70.7			238.0
sec-Butyl butanoate	lq	-492.6			
Butyl chloroacetate	lq	-538.4			
Butyl 2-chlorobutanoate	lq	-655.2			
Butyl 3-chlorobutanoate	lq	-610.9			
Butyl 4-chlorobutanoate	lq	-618.0			
Butyl 2-chloropropanoate	lq	-572.0			
Butyl 3-chloropropanoate	lq	-558.2			
Butyl crotonate	lq	-467.8			
Butylcyclohexane	lq	-263.1		345.0	271.0
	g	-213.4	56.4	458.5	207.1
Butylcyclopentane	g	-168.3	61.4	456.2	177.5
Butyl dichloroacetate	lq	-550.2			
Butyl ethyl ether	lq				159.0
Butyl ethyl sulfide	g	-125.2	32.0	453.0	162.0
(3-thiaheptane)					
tert-Butyl ethyl sulfide	lq	- 187.3			
Butyl formate	lq				200.2
tert-Butyl hydroperoxide	lq	-293.6			
Butyllithium	lq	-132.2			
Butyl methyl ether	lq	-290.6		295.3	192.7
tert-Butyl methyl ether	lq	-313.6		265.3	187.5
Butyl methyl sulfide	lq	-142.8	17.1	307.5	200.9
(2-thiahexane)	_				
tert-Butyl methyl sulfide	lq	- 156.9		276.1	199.9
Butyl methyl sulfone	lq	- 535.8			
tert-Butyl methyl sulfone	c	- 556.0			
cis-Butyl 9-octadecanoate	lq	-816.9			
tert-Butyl peroxide	lq	- 380.9			
Butyl trichloroacetate	lq	- 545.8			
Butylurea	c	-419.5			
Butyl vinyl ether	lq	-218.8			232.0
1-Butyne	g	165.2	202.1	290.8	81.4
2-Butyne	g	145.7	185.4	283.3	78.0
2-Butynedinitrile	g	529.2			
2-Butynedioic acid	c	- 577.4			
3-Butynoic acid	с	-241.8			
γ-Butyrolactone	lq	-420.9			141.4
(+)-Camphor	c	-319.4			271.2
ϵ -Caprolactam	с	-329.4			
9H-Carbazole	с	101.7			
Carbonyl bromide	g	-96.2	- 110.9	309.1	61.8
Carbonyl chloride	g	-219.1	- 204.9	283.5	57.7
Carbonyl chloride fluoride	g			276.7	52.4
Carbonyl fluoride	g	-639.8			46.8
Chloroacetamide	c	- 338.5			
Chloroacetic acid	с	-510.5			
Chloroacetyl chloride	lq	-283.7			
Chloroacetylene	g			242.0	54.3
2-Chlorobenzaldehyde	la	-118.4			
	-				

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\ell}G^{\circ}$	S°	C_{n}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
3-Chlorobenzaldehyde	la	- 126.0			
4-Chlorobenzaldehyde	C C	-146.4			
Chlorobenzene	la	11.0	89.2	209.2	150.2
2-Chlorobenzoic acid	c	-404.5			
3-Chlorobenzoic acid	c	-423.3			
4-Chlorobenzoic acid	c	-428.9			163.2
Chloro-1.4-benzoquinone	c	-220.6			
1-Chlorobutane	la	- 188.1			175.0
	σ	-154.6	- 38.8	358.1	107.6
(±)-2-Chlorobutane	la	- 192.8			
(_) _ c	~-1 0	-161.2	-53.5	359.6	108.5
2-Chlorobutanoic acid	la	- 575.5	0010	00010	20010
3-Chlorobutanoic acid	la	- 556.3			
4-Chlorobutanoic acid	la	- 566.3			
Chlorocyclohexane	la	-207.2			
1-Chloro-1 1-difluoroethane	la	207.2			130 521
	o 1			307.2	82.5
1-Chloro-2.2-difluoroethylene	ь o	-315.5	-289.1	303.0	72.1
2-Chloro-1, 1-difluoroethylene	ь o	- 331 4	-305.0	302.4	. 2.11
Chlorodifluoromethane	la	00111	00010	2021	93 0-41
Chiorodinacioniculario	o	- 482.6	-450.0	281.0	55.9
2-Chloro-1.4-dihydroxybenzene	c c	-382.81	10010	20110	0017
Chlorodimethylsilane	la	-79.8			
1-Chloro-2 3-epoxypropane	la	- 148 5			125.1
1-Chloroethane	la	-136.8	- 59.3	190.8	104.3
	o	-112.1	-60.5	275.8	62.6
2-Chloroethanol	la	-2954	0010	2/010	02.0
1-Chloro-2-ethylbenzene	la	- 54 1			
1-Chloro-4-ethylbenzene	19	-517			
Chloroethylene (vinyl chloride)	la	51.7			89.4
	σ	37 3	53.6	263.9	53.7
2-Chloroethyl ethyl ether	8 9	-301.3	0010		
2-Chloroethyl vinyl ether	ø	-170.1			
Chloroethyne	g	213.0	197.0	241.9	54.3
1-Chloro-1-fluoroethane	g	-313.4			
2-Chlorohexane	la	-246.1			
Chlorofluoromethane	1 g	-290.8	-265.5	264.3	47.0
Chlorohydroguinone	c	-382.8			
Chloroiodomethane	g	12.6	15.4	296.1	
Chloromethane	la				75.6-24
	g	-81.9	- 58.5	234.6	40.8
1-Chloro-3-methylbutane	la	-216.0			175.1
· · · · · · · · · · · · · · · · · · ·	g	- 179.7			
2-Chloro-2-methylbutane	g	-202.2			
2-Chloro-3-methylbutane	g	-185.1			
1-Chloro-2-methylpropane	la	- 191.1			158.6
	 g	- 159.4	- 49.7	355.0	108.5
2-Chloro-2-methylpropane	la	-211.2			172.8
· · · · · · · · · · · · · · · · · · ·	g	-182.2	-64.1	322.2	114.2
1-Chloronaphthalene	lq	54.6			212.6
2-Chloronaphthalene	c	55.2			
1-Chlorooctane	lq	-291.3			198.5

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Chloropentafluoroacetone	g	-1121.0			
Chloropentafluoroethane	lq				184.2
	g	-1188.8			
1-Chloropentane	lq	-213.2			
	g	-175.0	-37.4	397.0	130.5
3-Chlorophenol	с	-206.4			
4-Chlorophenol	c	- 197.9			
1-Chloropropane	lq	- 160.6			132.2
	g	- 131.9	-50.7	319.1	84.6
2-Chloropropane	Jq	- 172.1	<i></i>		
	g	- 144.9	-62.5	304.2	87.3
2-Chloro-1,3-propanediol	lq	-517.5			
3-Chloro-1,2-propanediol	lq 1-	- 525.3			121 6
2-Chloropropanoic acid	lq	- 522.5			131.6
3-Chloropropanoic acid	c	- 549.3			
2-Chloro-1-propene	g 1a	-21.0			105 1
chloride)	Iq				125.1
	g	-0.63	43.6	306.7	75.4
N-Chlorosuccinimide	с	-358.1			
α -Chlorotoluene	lq	- 32.6			
o-Chlorotoluene	lq				166.8
2-Chloro-1,1,1-trifluoro- ethane	g			326.4	154.6
Chlorotrifluoroethylene	g	- 505.5	- 523.8	322.1	83.9
Chlorotrifluoromethane	g	-707.8	-667.4	285.4	66.9
Chlorotrimethylsilane	lq	- 384.1			
Chlorotrinitromethane	lq	- 27:1			
	g	18.4			
Chrysene	с	145.3			
(-)-Cinchonidine	с	29.7			
Cinchonine	с	31.0			
cis-Cinnamic acid	с	-315.0			
trans-Cinnamic acid	с	- 338.5			
Cinnamic anhydride	с	- 347.7			
Citric acid	с	- 1543.9	- 1236.4	166.2	
Codeine monohydrate	с	-632.6			
Creatine	с	-537.2			
o-Cresol	с	-204.6		165.4	154.6
	lq				233.640
	g	- 128.6	37.1	357.6	130.3
<i>m</i> -Cresol	lq	- 194.0		212.6	224.9
	g	-132.3	-40.5	356.8	122.5
<i>p</i> -Cresol	с	- 199.3		167.3	150.2
	lq				221.0 ⁴⁰
~ .	g	- 125.4	-30.9	347.6	124.5
Cuban	с	541.3			
Cyanamide	с	58.8			a c -
Cyanide (CN)	g	437.6	407.5	202.6	29.2
Cyanogen	g	306.7	297.2	241.9	56.9
Cyanogen bromide	g	140.5	165.3	248.3	46.9
Cyanogen chloride	g	138.0	131.0	236.2	45.0

	Physical	$\Delta_f H^\circ$	$\Delta_{\ell}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	1 J · deg ⁻¹ · mol ⁻¹
Cvanogen fluoride	g	- 639.8		224.7	41.8
Cyanogen iodide	c	166.2	185.0	96.2	
, , , , , , , , , , , , , , , , , , , ,	g	205.5	196.6	256.8	48.3
Cyclobutane	g	27.7	110.0	265.4	72.2
Cyclobutanecarbonitrile	la	103.0			
Cyclobutene	g	156.7	174.7	263.5	67.1
Cyclobutylamine	g	41.2			
Cyclododecane	c	- 306.6			
1.3-Cvcloheptadiene	g	94.3			
Cycloheptane	lq	- 156.6	54.1	242.6	123.1
Cycloheptanone	lq	-299.4			
1,3,5-Cycloheptatriene	lq	142.2	243.1	214.6	162.8
Cycloheptene	g	-9.2			
Cyclohexane	la	- 156.4	26.7	204.4	154.9
5	g	-123.4	31.8	298.3	106.3
cis-Cyclohexane-1,2-	c	-961.1			
dicarboxylic acid					
trans-Cyclohexane-1,2-	с	-970.7			
dicarboxylic acid					
Cyclohexanethiol	lq	-140.7		255.6	192.6
•	g	-96.1			
Cyclohexanol	lq	-348.1	-133.3	199.6	208.2
Cyclohexanone	lq	-271.2		255.6	182.2
	g	-226.1	-90.8	322.2	109.7
Cyclohexene	lq	- 38.5	101.6	214.6	148.3
1-Cyclohexenylmethanol	lq	-382.4			
Cyclohexylamine	lq	- 147.7			
Cyclohexylbenzene	lq	-76.6			261.3
Cyclohexylcyclohexane	lq	- 329.3			
Cyclooctane	lq	- 167.7			
Cyclooctanone	lq	-326.0			
1,3,5,7-Cyclooctatetraene	lq	254.5	358.6	220.3	184.0
Cyclooctene	lq	-74.0			
1,3-Cyclopentadiene	g	134.3	179.3	267.8	
Cyclopentane	lq	-105.1	36.4	204.3	128.9
	g	- 76.4	38.6	292.9	83.0
cis-1,2-Cyclopentanediol	с	- 484.9			
trans-1,2-Cyclopentanediol	с	- 489.9			
Cyclopentanethiol	lq	- 89.5	46.8	256.9	165.2
Cyclopentanol	lq	-300.1	-127.8	206.3	184.1
Cyclopentanone	lq	-235.7			154.5
Cyclopentene	lq	4.4	108.5	201.3	122.4
	g	34.0	110.8	291.8	75.1
1-Cyclopentenylmethanol	lq	34.3			
Cyclopentylamine	lq	-95.1		241.0	181.2
Cyclopropane	g	53.3	104.4	237.4	55.6
Cyclopropanecarbonitrile	g	182.8			
Cyclopropene	g	277.1	286.3	223.3	
Cyclopropylamine	lq	45.8		187.7	147.1
	g	77.0			
Cyclopropylbenzene	lq	100.3			
(-)-Cysteine	с	- 534.1			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C_{n}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
(-)-Cystine	с	- 1032.7			
Cytosine	с	-221.3		132.6	
Decafluorobutane	lq				127.220
cis-Decahydronaphthalene	lq	-219.4	68.9	265.0	232.0
trans-Decahydronaphthalene	lq	-230.6	57.7	265.0	228.5
Decanal	g	- 330.9	-66.5	578.6	239.7
Decane	lq	-300.9	17.5	425.5	314.4
Decanedioic acid	c	-1082.8			
1,10-Decanediol	с	-693.5			
1-Decanenitrile	lq	-158.4			
1-Decanethiol	lq	-276.5		476.1	350.4
	g	-211.5	61.4	610.1	255.6
Decanoic acid	c	-713.7			
1-Decanol	lq	-478.1	-132.2	430.5	370.6
1-Decene	lq	-173.8	105.0	425.0	300.8
1-Decyne	g	41.2	252.2	524.5	219.7
Deoxybenzoin	c	-71.0			
Diacetamide	с	-489.0			
Diacetyl peroxide	lq	-535.3			
1,2-Diallyl phthalate	lq	-550.6			
2,2'-Diaminodiethylamine	lq				25440
2,6-Diaminopyridine	c	-6.5			
Diazomethane	g	192.5	217.8	242.8	52.5
Dibenz[de,kl]anthracene	c	182.8			
1,2-Dibenzoylethane	с	-255.6			
trans-1,2-Dibenzoylethylene	с	-114.7	109.8	319.2	
Dibenzoylmethane	с	-223.5			
Dibenzoyl peroxide	с	-369.6			
Dibenzyl	с	44.1	260.0	269.4	255.2
Dibenzyl sulfide	с	99.0			
Dibenzyl sulfone	с	-282.6			
1,2-Dibromobutane	g	-91.5	-13.1	408.8	127.1
1,3-Dibromobutane	lq	-148.0			
1,4-Dibromobutane	g	-87.8			
2,3-Dibromobutane	g	-102.0			
Dibromochlorofluoromethane	g	-231.8	-223.4	342.8	82.4
Dibromochloromethane	g	-20.9	-18.8	327.7	69.2
1,2-Dibromo-1-chloro-1,2,2-	lq	-691.7			
trifluoroethane					
	g	-656.6			
1,2-Dibromocycloheptane	lq	- 157.6			
1,2-Dibromocyclohexane	lq	-162.8			
1,2-Dibromocyclooctane	lq	- 173.3			
Dibromodifluoroethane	g	- 36.9		327.7	80.8
Dibromodichloromethane	g	-29.3	- 19.5	347.8	87.1
Dibromodifluoromethane	g	- 429.7	-419.1	325.3	77.0
1,1-Dibromoethane	lq	-66.2			
1,2-Dibromoethane	lq	-79.2	-20.9	223.3	136.0
	g	-37.5			
cis-1,2-Dibromoethylene	g			313.3	68.8
trans-1,2-Dibromoethylene	g			313.5	70.3
Dibromofluoromethane	g	-223.4	-221.1	316.8	65.1

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_{f}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot deg^{-1} \cdot mol^{-1}$
Dibromomethane	lq				105.3
	g	-14.8	- 16.2	293.2	54.7
1,3-Dibromo-2-methylpropane	g	-137.6			
1,3-Dibromotetrafluoroethane	lq	-817.7			
	g	- 789.1			
1,2-Dibromopropane	lq				160.0
	g	-71.5	- 17.7	376.1	102.8
1,2-Dibromotetrafluoroethane	lq				180.3
Dibutoxymethane	lq	- 549.4			
Dibutylamine	lq	-206.0			292.9
Dibutyl disulfide	g	- 160.6	53.9	572.8	231.1
Di-tert-butyl disulfide	lq	-255.2			
Dibutyl ether	lq	- 377.9			278.2
	g	-332.8	-88.5	500.4	204.0
Di-sec-butyl ether	lq	-401.5			
-	g	- 360.9			
Di-tert-butyl ether	lq	- 399.6			276.1
-	g	-362.0			
Dibutylmercury	lq	-97.9			
Dibutyl peroxide	lq	-380.7			
Dibutyl 1,2-phthalate	c	-842.6			498.0
Dibutyl sulfate	lq	-904.6			
Dibutyl sulfide	la	-220.7	32.2	405.1	284.3
Di- <i>tert</i> -butyl sulfide	la	-232.4			
Dibutyl sulfite	la	- 693.1			
Dibutyl sulfone	c	-610.2			
Dichloroacetic acid	10	- 496.3			
ionized	 ag	-507.1			
Dichloroacetyl chloride	la	-280.4			
1.2-Dichlorobenzene	la	- 17.5			162.4
-,	o s	30.2	82.7	341 5	113.5
1.3-Dichlorobenzene	1a	-20.7	02.1	01110	171
	o	25.7	78.6	343 5	113.8
1 4-Dichlorobenzene	ь С	-42.3	/0.0	0 10.0	115.0
i, i Diemorobonicene	la	12.5		175.4	147 8
	rq o	22.5	77.2	336.7	113.9
Dichlorodifluoromethane	la	2210	7712	00011	117.2
Diemoroumuoromounune	q	-477 4	- 439 4	300.8	72.3
1 3-Dichlorobutane	5 0	- 195.0	-557.4	500.0	72.5
1 4-Dichlorobutane	5 0	-183.0			
Dichlorodimethylsilane	5 0	-461.1		335 4	101.1
Dichlorodinbenylsilane	5 la	-278.2		555.4	101.1
1 1-Dichloroethane	la	-158.4			126.3
1,1-Diemoroeunane	rq a	-127.7	-73.8	305.1	76.2
1.2-Dichloroethane	8 la	-167.1	75.0	505.1	128 /
1,2-Diemoroeunane	IQ Q	-126.4	-73 0	308 /	78.7
1 1-Dichloroethylene	Б la	- 23.0	13.9	500.4	111 3
	ry a	23.7	25.4	280 1	67.0
cis-1.2-Dichloroethylene	Б q	2.0	23.4	209.1	65.1
trans_1.2-Dichloroethylene	Б la	-23.1	24.4	409.3	116.8
nans-1,2-Diemoioemyiene	IY a	- 23.1	28.6	280.0	66 7
Dichlorofluoromethene	e c	_ 282 0	_20.0 _252.0	207.7	61.0
Diemoronuoromeniane	g	-205.0	-255.0	493.1	01.0

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
1.1-Dichloro-1-fluoroethane	g			320.2	88.7
1,1-Dichlorofluoroethylene	g			313.9	76.5
1.1-Dichlorofluoromethane	la				112.6
Dichloromethane	10	- 124.2		177 8	101.2
	~9 0	-954	- 68 9	270.3	51.0
Dichloropentadienvliron	č	141.0	0017		0110
1 2-Dichloropropane	la	- 198.8			
1,2 Diemoropropule	g	-162.8	-83.1	354.8	98.2
1 3-Dichloropropane	ь o	- 159.2	-82.6	367.2	99.6
2.2-Dichloropropane	5 0	-173.2	- 84 6	326.0	105.9
1 3-Dichloro-2-propanol	la	- 385 4	0110	520.0	105.5
2 3-Dichloro-1-propanol	la	- 381 3			
2 3-Dichloropropene	la	-73.3			
1.2-Dichlorotetrafluoromethane	la	15.5			164.2
1,2-Diemorotetranuoromethane	rq a	-0163			104.2
2.2 Dichlorotatrafluoroothana	5 la	- 060 2			111 7
2.2 Dichloro 1.1.1 trifluoro	iq	- 900.2		252 8	102.5
ethane	g			332.8	102.5
Dicvanoacetylene	la	500.4			
Dicvanobenzene	c	275.4			
1.4-Dicvanobutane	la	85.1			128.7
1.4-Dicyano-2-butyne	-ч С	366.5			
Dicyanodiamide	c	22.6	179.5	129.3	118.8
Dicyclopentadiene	c	116.7	11,710	12,10	110.0
Diethanolamine	c	-493.8			
Diotinanolumino	la	19510			233 530
1 1-Diethoxyethane	la	-4914			238.0
1.2-Diethoxyethane	lq	-451.4			250.0
Diethoxymethane	lq	-450.4			237.4
1.3-Diethoxypropane	lq	-482.1			
2.2-Diethoxypropane	lq	-5385			
Diathylamine	lq	-103.7			160.2
Diethylannie	iq Q	-72.2	72.1	252.2	109.2
Disthulaming hydrophlarida	g	- 259 6	72.1	552.2	115.7
Diethylannie flydrochloride	C	- 747 7			
(veronal)	C	747.7			
1 2-Diethylbenzene	a	- 19.0	141 1	434 3	182.6
1.3-Diethylbenzene	5	-21.8	1367	430.3	176.0
1,5-Diethylbenzene	s a	-27.3	137.0	434.0	176.2
Diethyl cerbonete	5 la	-681.5	137.9	-1-1-10	212.4
ais 1.2 Diathylayalanranana	lq	- 70.0			212.4
trang 1.2 Districular	iq la	- 19.9			
Disthul disulf de	iq la	03.3 120.0	0.5	260.2	171 4
Diethyr disullide	Iq	- 120.0	9.5	209.5	1/1.4
Dist. I	g	- /9.4	22.3	414.5	141.5
Dietnylenediamine	c	-13.4	240.2	85.8	244.0
Diethylene glycol	lq	-628.5			244.8
	g	-5/1.1		441.0	135.1
Dietnylene glycol dibutyl ether	pl				45220
Diethylene glycol diethyl ether	lq				341.415
Diethylene glycol dimethyl ether	lq				274.1

	Physical	$\Lambda_c H^\circ$	$\Lambda_c G^\circ$	S°	C.°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Diethylene glycol monoethyl	lq				301.0
ether Distingtion along the second second	1				071.1
ether	lq				2/1.1
Diethyl ether	la	-279.5	-116.7	172.4	172.6
Biolity' outer	g	-252.1	-122.3	342.7	119.5
Di-2-ethylhexyl phthalate	lq				704.7
Diethyl malonate	lq	-805.5			260.7
Diethylmercury	lq	30.1			182.8
Diethyl oxalate	lq	-805.5			
3,3-Diethylpentane	lq	-275.4			278.2
Diethyl peroxide	lq	-223.3			
Diethyl 1,2-phthalate	lq	-776.6		425.1	366.1
Diethyl selenide	lq	-96.2			
Diethyl sulfate	lq	-813.2			
Diethyl sulfide	lq	-119.4		269.3	171.4
	g	-83.6	17.8	368.0	117.0
Diethyl sulfite	lq	- 600.7			
Diethyl sulfone	c	-515.5			
Diethyl sulfoxide	lq	-268.0			
N,N-Diethylurea	c	- 372.2			
1 2 Diffuence benzance	IQ 1-	10.7		222.6	150.0
1,2-Dilluorobenzene	iq	- 330.0	242.0	222.0	159.0
1.2 Diffuerahangana	g	- 293.8	-242.0	321.9	100.5
1,5-Dilluorobelizene	Iq õ	- 343.9	257.0	223.8	139.1
1.4 Diffuorobanzana	g	- 309.2	-237.0	520.4	100.5
1,4-Dilluorobelizelle	iq	- 342.3	- 252.8	315.6	106.0
2.2'-Difluorobiphenyl	в С	205 0	232.0	515.0	100.9
4 4'-Diffuorobiphenyl	c c	-296.5			
1 1-Diffuoroethane	la	270.5			118.4
	rq o	-497.0	-443.0	282.4	67.8
1.1-Difluoroethylene	5 0	- 335.0	- 321.5	266.2	60.1
Difluoromethane	Б g	-452.2	-425.4	246.6	42.9
9.10-Dihydroanthracene	c	66.4		21010	
1.2-Dihydronaphthalene	la	71.5			
1,4-Dihydronaphthalene	la	84.2			
Dihydro-2 <i>H</i> -pyran	lq	- 157.4			
5,12-Dihydrotetracene	c	106.4			
2,3-Dihydrothiophene	lq	52.9			
	g	90.7	133.5	303.5	79.8
2,5-Dihydrothiophene	g	86.9	131.6	297.1	83.3
2,5-Dihydrothiophene-1,1-	c	318.9			
2'.4-Dihydroxyacetophenone	c	- 573 6			
1.2-Dihydroxybenzene	c	- 354.1	-210.0	150.2	132.2
(pyrocatechol)	č	221.1	210.0	100.2	
1,3-Dihydroxybenzene	с	-368.0	-209.2	147.7	131.0
1,4-Dihydroxybenzene	с	- 364.5	-207.0	140.2	136.0
(p-hydroquinone)					
Dihydroxymalonic acid	с	- 1216.3			

	Physical	$\Lambda_c H^\circ$	$\Delta_{\epsilon}G^{\circ}$	S°	$C_{\pi^{\circ}}$
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
2,4-Dihydroxy-5-methyl-	с	-468.2			
2,4-Dihydroxy-6-methyl-	с	-456.9			
Dijodoacetylene	σ			313.1	70.3
1 2-Dijodobenzene	ь С	172.4		515.1	70.5
1.3-Diiodobenzene	c	187.0			
1.4-Dijodobenzene	la	-30.0			
-,	c	160.7			
1.2-Diiodoethane	g	75.0	78.5	348.5	82.3
Diiodomethane	la	66.9	90.4	174.1	134.0
	g	119.5	95.8	309.7	57.7
1.2-Dijodopropane	g	35.6			
1.3-Dijodopropane	la	-9.0			
Diisobutylamine	la	-218.5			
Diisopentyl ether	la				379100
Diisopropylamine	la	-178.5			017
Diisopropyl ether	la	-351.5			216.8
	ø	-3192	- 121 9	390.2	158 3
Diisopropylmercury	s la	-13.0		55012	10010
Disopropyl sulfide	la	- 181.6		313.0	232.0
Disopropyr samae	σ	-1421	27.1	415.5	169.2
Diketene	5 la	-2331	27.1	415.5	109.2
1.2-Dimethoxybenzene	la	-290.4			
1.1-Dimethoxybutane	la	-468.1			
2 2-Dimethoxybutane	la	-485.1			
1.1-Dimethoxyethane	la	-420.2			
1.2 Dimethoxyethane	lq				103 3
Dimethoxymethane	lq	377.8		244.0	161.3
1 1-Dimethoxymentane	la	- 494.6		244.0	101.5
2.2 Dimethoxypentane	lq	- 500 2			
1.1 Dimethoxypentalle	lq	_ 143.3			
2.2 Dimethoxypropane	lq	- 450.0			
1.1 Dimethoxy 2 methyl	lq	-476.2			
n,1-Dimenioxy-2-memyi-	ц	-470.2			
N N Dimethylacetemide	la	- 278 2			175.6
Dimethylamine	lq la	- 13.0	70.0	182.3	1277
Dimetrylamine	iq	- 18 5	70.0 68 5	272.0	70.7
4-(Dimethylamino)benz-	g C	-137.6	08.5	275.0	70.7
Dimethyleminemethanel	la	- 252 6			
<i>N N</i> Dimethylaminotri	lq la	233.0			
methylsilane	IQ	- 219.5			0.1.1.520
<i>N</i> , <i>N</i> -Dimethylaniline	lq	47.7			214.629
2,6-Dimethylaniline	lq				238.9
2,3-Dimethylbenzoic acid	с	-450.4			
2,4-Dimethylbenzoic acid	с	-458.5			
2,5-Dimethylbenzoic acid	с	- 456.1			
2,6-Dimethylbenzoic acid	с	-440.7			
3,4-Dimethylbenzoic acid	с	-468.8			
3,5-Dimethylbenzoic acid	с	-466.4			
3,3'-Dimethylbiphenyl	lq	20.0			

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_{\! f} G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
2,2-Dimethylbutane	lq	-213.8		272.5	191.9
	g	-186.1	-9.2	358.2	141.9
2,3-Dimethylbutane	lq	-207.4		287.8	189.7
, <u>,</u>	g	-178.3	-4.1	365.8	140.5
3,3-Dimethyl-2-butanone	lq	-328.6			
2,3-Dimethyl-1-butene		-62.6	79.0	365.6	143.5
2,3-Dimethyl-2-butene	la	-101.4		270.2	174.7
	g	-68.2	76.1	364.6	123.6
3.3-Dimethyl-1-butene	g	-60.5	98.2	343.8	126.5
2,3-Dimethyl-2-butenoic acid	c	-455.6			
Dimethylcadmium	lq	63.6	139.3	201.9	132.0
1.1-Dimethylcyclohexane	la	-218.7	26.5	267.2	209.2
_,	g	-180.9	35.2	365.0	154.4
cis-1.2-Dimethylcyclohexane	la	-211.8		274.1	210.2
	g	-172.1	41.2	374.5	165.5
trans-1.2-Dimethylcyclohexane	la	-218.2		273.2	209.4
	<u>1</u> g	-180.0	34.5	370.9	159.0
cis-1.3-Dimethylcyclohexane	la	-222.9		272.6	209.4
	g	-184.6	29.8	370.5	157.3
trans-1.3-Dimethylcyclohexane	la	-215.7	_,	276.3	212.8
	<u>1</u> g	- 176.5	36.3	376.2	157.3
cis-1.4-Dimethylcyclohexane	la	-215.6	0010	271.1	212.1
	g	-176.6	38.0	370.5	157.3
trans-1.4-Dimethylcyclohexane	la	-222.4		268.0	210.2
	<u>1</u>	- 184.5	31.7	364.8	157.7
1.1-Dimethylcyclopentane	g	- 138.2	39.0	359.3	133.3
cis-1.2-Dimethylcyclopentane	ľa	-165.3		269.2	
	1 g	- 129.5	45.7	366.1	134.14
trans-1.2-Dimethylcyclopentane	g	-136.6	38.4	366.8	134.5
cis-1.3-Dimethylcyclopentane	g	- 135.9	39.2	366.8	134.5
trans-1.3-Dimethylcyclopentane	g	-133.6	41.5	366.8	134.5
1.1-Dimethylcyclopropane	la	-33.3			
cis-1,2-Dimethylcyclopropane	la	-26.3			
trans-1,2-Dimethylcyclopropane	la	-30.7			
cis-2,4-Dimethyl-1,3-dioxane	lq	-465.2			
4,5-Dimethyl-1,3-dioxane	lq	-451.6			
5,5-Dimethyl-1,3-dioxane	la	-461.3			
4,4'-Dimethyldiphenylamine	c	-11.72			
Dimethyl disulfide	lq	-62.6	7.0	235.4	146.1
Dimethyl ether	g	- 184.1	-112.6	266.4	64.4
N,N-Dimethylformamide	lq	-239.3			150.6
Dimethyl fumarate	lq	-729.3			
Dimethylglyoxime	c	- 199.7			
2,2-Dimethylheptane	lq	-288.2			
2,6-Dimethyl-4-heptanone	lq	-408.5			297.3
2,2-Dimethylhexane	lq	-261.9	3.0	331.9	
2,3-Dimethylhexane	lq	-252.6	9.1	342.7	
2,4-Dimethylhexane	lq	-257.0	3.7	345.7	
2,5-Dimethylhexane	lq	-260.4	2.5	338.7	249.2
3,3-Dimethylhexane	lq	-257.5	5.2	339.4	246.6
3,4-Dimethylhexane	lq	-251.8	8.5	347.2	

TABLE 2.53	Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic
Compounds (Continued)

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_p°
Substance	State	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Dimethyl hexanedioate	lq	- 886.6			
cis-2,2-Dimethyl-3-hexene	lq	-126.4			
trans-2,2-Dimethyl-3-hexene	lq	- 144.9			
cis-2,5-Dimethyl-3-hexene	lq	-151.0			
trans-2,5-Dimethyl-3-hexene	lq	-159.2			
5,5-Dimethylhydantoin	c	-533.3			
1,1-Dimethylhydrazine	lq	48.9	206.7	198.0	164.1
1,2-Dimethylhydrazine	lq	52.7	212.6	199.2	171.0
3,5-Dimethylisoxazole	lq	-63.2			
Dimethyl maleate	lq	-703.8			263.2
Dimethylmaleic anhydride	с	-581.6			
Dimethyl malonate	lq	-795.8			
Dimethylmercury	lq	59.8	140.3	209.0	
	g	94.4	146.1	306.0	83.3
6,6-Dimethyl-2-methylene-	lq	-7.7			
bicyclo[3.1.1]heptane	-				
Dimethyl oxalate	lq	-756.3			
2,2-Dimethylpentane	lq	-238.3		300.3	221.1
	g	-205.9	0.1	392.9	166.0
2,3-Dimethylpentane	lq	-233.1			218.3
• •	g	- 198.9	0.7	414.0	166.0
2,4-Dimethylpentane	lq	-234.6		303.2	224.2
• •	g	-201.7	3.1	396.6	166.0
3,3-Dimethylpentane	lq	-234.2			
• •	g	-201.2	2.6	399.7	166.0
Dimethyl pentanedioate	lq	-205.9			
2,4-Dimethyl-3-pentanone	lq	-352.9		318.0	233.7
	g	-311.5			
2,4-Dimethyl-1-pentene	g	-83.8			
4,4-Dimethyl-1-pentene	g	-81.6			
2,4-Dimethyl-2-pentene	g	- 88.7			
cis-4,4-Dimethyl-2-pentene	g	-72.6			
trans-4,4-Dimethyl-2-pentene	g	-88.8			
2,7-Dimethylphenanthrene	с	36.4			
4,5-Dimethylphenanthrene	с	89.0			
9,10-Dimethylphenanthrene	с	47.7			
2,3-Dimethylphenol	с	-241.2			206.9
2,4-Dimethylphenol	lq	-228.7			
2,5-Dimethylphenol	с	-246.6			
2,6-Dimethylphenol	с	-237.4			
3,4-Dimethylphenol	с	-242.3			
3,5-Dimethylphenol	с	-244.4			
Dimethyl 1,2-phthalate	lq	-678			303.1
Dimethyl 1,3-phthalate	с	-730.0			
Dimethyl 1,4-phthalate	с	-732.6			261.1
2,2-Dimethylpropane	lq				163.96
_	g	-168.0	-1.5	306.4	121.6
2,2-Dimethylpropanenitrile	lq	- 39.8		232.0	179.4
2,2-Dimethyl-1,3-propanediol	с	-551.2			
2,2-Dimethylpropanoic acid	lq	-564.4			
2,2-Dimethylpropanoic	lq	- 779.9			
anhydride					

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Lambda_c H^\circ$	$\Delta_c G^\circ$	S°	C_{r}°
Substance	State	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
2.2-Dimethyl-1-propanol	la	- 399.4			
2.3-Dimethylpyridine	la	19.4		243.7	189.5
2.4-Dimethylpyridine	la	16.2		248.5	184.8
2.5-Dimethylpyridine	la	18.7		248.8	184 7
2 6-Dimethylpyridine	la	12.7		249.2	185.2
3 4-Dimethylpyridine	la	18.3		240.7	191.8
3.5-Dimethylpyridine	la	22.5		241.7	184.5
Dimethyl succinate	la	- 835.1		2	10 110
2.2-Dimethylsuccinic acid	с-ч С	-987.8			
meso-2,3-Dimethylsuccinic acid	c	-977.5			
Dimethyl sulfate	la	-735.5			
Dimethyl sulfide	la	-65.4			118.1
	 g	-37.5	7.0	285.9	74.1
Dimethyl sulfite	la	-523.6			
Dimethyl sulfone	C -1	-450.1	-302.5	142.0	
,	la	-373.1	-272		
	-4 g	0,011		310.6	100.0
Dimethyl sulfoxide	la	-204.2	-99.2	188.3	153.0
1.5-Dimethyltetrazole	c	188.7			
2.2-Dimethylthiacyclopropane	la	-24.2			
5,5-Dimethyl-4-thia-1-hexene	lq	-90.7			
N.N-Dimethylurea	c	-319.1			
N,N'-Dimethylurea	с	-312.1			
Dimethylzinc	lq	23.4		201.6	129.2
2,3-Dinitroaniline	c	-11.7			
2,4-Dinitroaniline	с	-67.8			
2,5-Dinitroaniline	с	-44.4			
2,6-Dinitroaniline	с	-50.6			
3,4-Dinitroaniline	с	-32.6			
3,5-Dinitroaniline	с	-38.9			
2,4-Dinitroanisole	с	-186.6			
2,6-Dinitroanisole	с	- 189.1			
1,2-Dinitrobenzene	с	-1.8	211.5	216.3	
1,3-Dinitrobenzene	с	-27.4	184.6	220.9	
1,4-Dinitrobenzene	с	-38.7			
1,1-Dinitroethane	lq	-148.2			
1,2-Dinitroethane	lq	-165.2			
Dinitromethane	lq	- 104.9			
	g	-58.9			
1,5-Dinitronaphthalene	с	30.5			
2,4-Dinitro-1-naphthol	с	-181.4			
2,4-Dinitrophenol	с	-232.6			
2,6-Dinitrophenol	с	-210.0			
1,1-Dinitropropane	lq	-163.2			
1,3-Dinitropropane	lq	-207.1			
2,2-Dinitropropane	lq	- 181.2			
2,4-Dinitroresorcinol	с	-415.5			
2,4-Dinitrotoluene	с	-71.6			
2,6-Dinitrotoluene	с	-51.0			1 4 9 9
1,3-Dioxane	lq	- 379.7	100 1		143.9
1,4-Dioxane	lq	- 353.9	- 188.1	270.2	153.6

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\!f} H^{\circ}$	$\Delta_{f}G^{\circ}$	S°	C_p°
Substance	State	kJ · mol ^{−1}	$kJ \cdot mol^{-1}$	J · deg ⁻¹ ·mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$
	g	-315.8	-180.8	299.8	94.1
1,3-Dioxolane	lq	-333.5			118.0
	g	-298.0			
1,3-Dioxolan-2-one	с	-581.6			133.950
1,3-Dioxol-2-one	lq	- 459.9			
Dipentene	lq	- 50.8			249.4
Dipentyl ether	lq				250
N,N-Diphenylacetamide	с	-43.1			
Diphenylacetylene	с	312.4			225.9
Diphenylamine	с	130.6			
Diphenylboron bromide	lq	- 16.1			
cis, cis-1,4-Diphenylbutadiene	с	198.8			
trans, trans-1,4-Diphenyl- butadiene	c	178.8			
Diphenylbutadiyne	с	518.4			
1,4-Diphenylbutane	с	-9.9			
1,4-Diphenyl-1,4-butanedione	с	-256.2	7.8	324.7	
1,4-Diphenyl-2-butene-1,4-dione	с	-114.7	111.5	319.2	
Diphenyl carbonate	с	-401.2	- 175.9	278.4	
Diphenyl disulfide	с	-148.5			
Diphenyl disulfone	с	-643.2			
Diphenyleneimine	с	126.8			
1,1-Diphenylethane	lq	48.7	245.1	335.9	
1,2-Diphenylethane	lq	51.5	67.2	270.3	
Diphenylethanedione	с	-154.0			
Diphenyl ether	с	-32.1		233.9	216.6
	lq	-14.9	144.2	291.3	268.6
1,1-Diphenylethylene	lq	172.4			
Diphenylethyne	с	312.4			
6,6-Diphenylfulvene	с	197.4			
1,2-Diphenylhydrazine	с	221.3			
Diphenylmercury	с	279.5			
Diphenylmethane	с	71.7		239.3	
	lq	89.7	276.9		233.1
1,3-Diphenyl-2-propanone	с	-84.0			
Diphenyl sulfide	lq	163.4			
Diphenyl sulfone	с	-225.0			
Diphenyl sulfoxide	с	9.7			
1,3-Diphenylurea	с	-122.6			
Dipropylamine	lq	- 156.1			253.075
Dipropyl disulfide	lq	-171.3	19.1	373.6	
Dipropyl ether	lq	-328.8		323.9	221.6
	g	-292.9	-105.6	422.5	158.3
Dipropylmercury	lq	-20.9			
Dipropyl sulfate	lq	-859.0			
Dipropyl sulfide	lq	- 171.5			
	g	-125.3	33.2	448.4	161.2
Dipropyl sulfite	lq	-646.8			
Dipropyl sulfone	lq	-548.2			
Dipropyl sulfoxide	lq	- 329.4			
2,2'-Dipyridyl ketone	с	- 19.7			
1,3-Dithiane	g	- 10.0	72.4	333.5	110.4

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_{\!f}G^\circ$	S°	C_p°
Substance	State	kJ · mol ^{−1}	kJ · mol ^{−1}	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
1,2-Dithiolane	g	0.0	47.7	313.5	86.5
1,3-Dithiolane	g	10.0	54.7	323.3	84.7
Divinyl ether	lq	- 39.8			
	g	-13.6			
Divinyl sulfone	lq	-207.4			
Docosanoic acid	с	-983.0			
cis-13-Docosenic acid	с	- 866.0			
trans-13-Docosenic acid	с	- 960.7			
Dodecane	lq	- 350.9	28.1	490.6	376.0
	g	-289.7	50.0	622.5	280.3
Dodecanedioic acid	с	-1130.0			
Dodecanoic acid	с	-774.6			
	lq	-737.9			404.3
1-Dodecanol	lq	-528.5			438.1
1-Dodecene	lq	-226.2		484.8	360.7
	g	-165.4	137.9	618.3	269.6
1-Dodecyne	g	-0.04	268.6	602.4	265.4
Dulcitol	с	-1346.8			
1,2-Epoxybutane	lq	- 168.9		230.9	147.0
Ergosterol	с	- 789.9			
Ethane	g	-84.0	-32.0	229.1	52.5
Ethane-d ₆	g	-107.4	-47.3	244.5	64.6
1,2-Ethanediamine	lq	-63.0		209.2	172.6
1,2-Ethanediol	lq	-455.3	-323.2	163.2	149.3
	g	- 392.2	-304.5	303.8	82.7
Ethanedithioamide	с	-20.8			
Ethanedioyl dichloride	lq	-367.6			
1,2-Ethanedithiol	lq	-54.4			
Ethanethiol	lq	-73.6	- 5.5	207.0	117.9
	g	-46.1	-4.8	296.1	72.7
Ethanol	lq	-277.6	-174.8	161.0	112.3
	g	-234.8	- 167.9	281.6	65.6
Ethene (see Ethylene)					
Ethoxybenzene	lq	-152.6			228.5
2-Ethoxyethyl acetate	lq				376.0
2-Ethoxyethanol	lq				210.8
Ethyl acetate	lq	-479.3	-332.7	257.7	170.7
	g	-443.6	-327.4	362.8	113.6
Ethylamine	lq				130.0
	g	-47.4	36.3	283.8	71.5
Ethyl 4-aminobenzoate	с	-418.0			
N-Ethylaniline	lq	4.0	188.7	239.3	
Ethylbenzene	lq	-12.3			183.2
	g	29.9	130.6	360.5	
Ethyl benzoate	lq				246.0
2-Ethylbenzoic acid	с	-441.3			
3-Ethylbenzoic acid	с	-445.8			
4-Ethylbenzoic acid	с	-460.7			
2-Ethyl-1-butene	g	- 56.0	80.0	376.6	133.6
Ethyl <i>trans</i> -2-butenoate (ethyl crotonate)	lq	-420.1			228.0
Ethyl carbamate	с	-520.5			
Ethyl 4-chlorobutanoate	lq	-566.5			
	1				

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Dhysical	A 110	A C ^o	CO	C °
Substance	State	$\Delta_f \Pi$ kL mol ⁻¹	$\Delta_f G$	J. deg ⁻¹ .mol ⁻¹	C_p
Substance	State	KJ · IIIOI	KJ · IIIOI	J ucg moi	J ueg moi
Ethyl chloroformate	lq	-505.1			
Ethylcyclobutane	g	-27.5			
Ethylcyclohexane	lq	-211.9	29.1	280.9	211.8
	g	- 171.7	39.3	382.6	158.8
1-Ethylcyclohexene	lq	- 106.7			
Ethylcyclopentane	lq	-163.4	37.3	279.9	185.8
1-Ethylcyclopentene	g	- 19.7			
Ethylcyclopropane	lq	-24.8			
Ethyl diethylcarbamate	lq	- 592.3			
Ethyl 2,2-dimethylpropanoate	lq	-577.2			
	g	- 536.0			
Ethylene	g	52.5	68.4	219.3	42.9
Ethylene- d_4	g	38.2	59.2	230.5	51.9
Ethylene carbonate	с	- 581.5			133.9
acetic acid	c	- 1759.4			
Ethylenediammonium chloride	с	-513.4			
2,2'-(Ethylenedioxy)bis- ethanol	lq	-804.2			
Ethylene glycol dibutyl ether	lq				35020
Ethylene glycol diethyl ether	lq	-451.4			259.4
Ethylene glycol dimethyl ether	lq	-376.6			193.3
Ethyleneimine	lq	91.9			
	g	126.5(9)	178.0	250.6	52.6
Ethylene oxide	lq	-78.0	-11.8	153.9	88.0
	g	- 52.6(6)	-13.1	242.4	47.9
Ethyl formate	lq				149.3
2-Ethylhexanal	lq	- 342.5			
3-Ethylhexane	lq	- 250.4			
	g	-210.7			
2-Ethyl-1-hexanol	lq	-432.8		347.0	317.5
Ethyl hydroperoxide	g	198.9			
Ethylidenecyclohexane	lq	-103.5			
Ethylidenecyclopentane	lq	-56.7			
Ethyl isocyanide	lq	108.4			
Ethyl isopropyl sulfide	lq	- 156.1			
Ethyl lactate	lq				254
Ethyllithium	с	-58.6			
Ethylmercury bromide	с	-107.5			
Ethylmercury chloride	с	-141.1			
Ethylmercury iodide	с	-65.7			
1-Ethyl-2-methylbenzene	g	1.3	131.1	399.2	157.9
2-Ethyl-3-methyl-1-butene	g	- 79.5			
Ethyl 2-methylbutanoate	lq	- 566.8			
Ethyl 3-methylbutanoate	lq	- 570.9			
Ethyl methyl ether	g	-216.4	-117.7	309.2	93.3
3-Ethyl-2-methylpentane	lq	-249.6			
	g	-211.0	21.3	441.1	
3-Ethyl-3-methylpentane	lq	-252.8	10.0	100.0	
2 Educt 2	g	-214.8	19.9	433.0	
5-Euryi-2-metnyi-1-pentene	g	- 100.3			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

Substance	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S° L daa ⁻¹ mal-	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg ·moi	J·ueg · mor
Ethyl methyl sulfide	lq	-91.6		239.1	144.6
	g	- 59.6	11.4	333.1	95.1
Ethyl nitrate	g	- 154.1	- 36.9	348.3	97.4
Ethyl nitrite	g	-104.2		103.5	99.2
1-Ethyl-2-nitrobenzene	lq	- 48.7			
1-Ethyl-4-nitrobenzene	lq	- 55.4			
Ethyl 3-oxobutanoate	lq				248.0
3-Ethylpentane	lq	- 224.9		314.5	219.6
	g	- 189.6	11.0	411.5	166.0
Ethyl pentanoate	lq	- 553.0			
2-Ethylphenol	lq		-208.8		
3-Ethylphenol	lq	-214.3			
4-Ethylphenol	с	-224.4			206.9
Ethylphosphonic acid	с	-1051.4			
Ethylphosphonic dichloride	lq	-613.4			
Ethyl propanoate	lq	- 502.7			196.1
	g	-463.3	-323.7		
Ethyl propyl ether	g	-272.2		295.0	197.2
Ethyl propyl sulfide	lq	-144.8		309.5	198.4
5 I I 5	g	-104.7	23.6	414.1	139.3
2-Ethylpyridine	la	7.4			
S-Ethyl thioacetate	la	-268.2			
2-Ethyltoluene	g	1.3	131.1	399.2	157.9
3-Ethyltoluene	g	-1.8	126.4	404.2	152.2
4-Ethyltoluene	g	-3.2	85.3	398.9	151.5
N-Ethylurea	c	-357.8			
Ethyl β -vinvlacrylate	la	- 338.1			
Ethyl vinyl ether	-4 1a	-167.4			
	g	-140.8			
Ethynylbenzene	g	327.3	361.8	321.7	114.9
Ethynylsilane	g			269.4	72.6
Fluoranthene	c	189.9	345.6	230.5	230.2
Fluoroacetamide	c	- 496.6			
Fluoroacetic acid	c	-688.3			
Fluoroacetylene	ø	00000		269.4	72.6
Fluorobenzene	la	-150.6		205.9	146.4
	σ	-116.0	-69.0	302.6	94.4
2-Fluorobenzoic acid	c c	- 567.6	0,10	002.0	2.00
3-Fluorobenzoic acid	c	- 582.0			
4-Fluorobenzoic acid	c	- 585 7			
Fluoroethane	a	- 263 2	-211.0	264 5	58.6
2-Fluoroethanol	la	-465.2	211.0	201.5	50.0
Fluoroethylene	rq o	- 138.8			
Fluoromethane	5	-237.8	-213.8	222.8	37 5
1-Fluoropropane	5 0	-285.9	-200.3	304.2	82.6
2-Eluoropropane	5	- 203.5	-200.3	207.1	82.0
Fluorosyltrifluoromethere	5 a	-766.0	- 707.0	322.1	70 4
4-Fluorotoluene	5 10	- 186 0	-70 8	237 1	171 0
Fluorotribromomethane	14 a	- 100.9	- 103 1	345 8	1/1.2
Fluorotrinitromethane	5 la	- 220.4	173.1	5-5.0	
Formaldehyde	.ч с	- 109 6	- 102 5	218.8	35 1
ronnaluenyue	g	100.0	102.5	210.0	55.4

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

			1 50	<i>a</i> û	
Cash atom an	Physical	$\Delta_f H^\circ$	$\Delta_f G^{\circ}$	S° I dia ==l	C_p°
Substance	state	KJ · mol	KJ · MOI	J · deg · mol	J · deg · · mol ·
Formamide	lq	-254.0			107.6
	g	- 193.9	-141.0	248.6	45.4
Formanilide	с	- 151.5			
Formic acid	lq	- 424.7	-361.4	129.0	99.5
	g	- 378.7	-351.0	248.7	45.2
Formyl fluoride	g	- 376.6	-368.1	246.5(8)	40.0
D-(-)-Fructose	с	- 1265.6			
D-(+)-Fucose	с	- 1099.1			
Fullerene-C ₆₀	с	2327.0	2302.0	426.0	520.0
Fumaric acid	с	-811.7	-655.6	168.0	142.0
Fumaronitrile	с	268.2			
Furan	lq	-62.3		177.0	114.8
	g	- 34.9	0.88	267.2	65.4
2-Furancarboxaldehyde	lq	-201.6			163.2
2-Furancarboxylic acid	с	- 498.4			
2-Furanmethanol	lq	-276.2	-154.2	215.5	204.0
Furfuryl alcohol	lq	-276.2			204.0
Furylacrylic acid	с	- 459.0			
Furylethylene	lq	-10.5			
D-(+)-Galactose	с	- 1286.3	-918.8	205.4	
D-Gluconic acid	с	-1587.0			
D-(+)-Glucose	с	-1273.3	-910.4	212.1	
D-(-)-Glutamic acid	с	-1009.7	-727.5	191.2	
L-(+)-Glutamic acid	с	-1005.2	-731.3	188.2	
L-Glutamine	с	- 826.4			
Glutaric acid	с	-960.0			
Glyceraldehyde	lq	- 598.0			
Glycerol	lq	-668.5	-477.0	206.3	218.9
Glyceryl 1-acetate	lq	-909.1			
Glyceryl 1-benzoate	с	-777.3			
Glyceryl 2-benzoate	с	-772.8			
Glyceryl 1,3-diacetate	lq	-1120.7			
Glyceryl 1-dodecanoate	с	-1160.9			
Glyceryl 2-dodecanoate	с	-1152.6			
Glyceryl 1-hexadecanoate	с	- 1281.5			
Glyceryl 1-hexanoate	с	- 1109.0			
Glyceryl 2-hexanoate	с	- 1095.8			
Glyceryl 1-octadecanoate	с	-1324.8			
Glyceryl 1-tetradecanoate	с	- 1222.6			
Glyceryl triacetate	lq	- 1330.8			
Glyceryl trinitrate	lq	-370.9			
Glyceryl tris(dodecanoate)	с	-2046.0			
Glyceryl tris(tetradecanoate)	с	-2176.0			
Glycine	с	-528.5	- 368.6	103.5	99.2
ionized; std. state	aq	- 469.8	-315.0	111.0	
⁺ H ₃ NCH ₂ COOH; std. state	aq	- 517.9	- 384.2	190.2	
Glycylglycine	с	-747.7	-490.6	190.0	
Glyoxal	g	-212.0			
Glyoxime	с	-90.5			
Glyoxylic acid	с	-835.5			
Guanidine	с	- 56.0			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\ell}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol$	$^{-1}$ J · deg ⁻¹ · mol ⁻¹
Guanidine carbonate	с	-971.9	- 557.4	295.4	258.9
Guanidine nitrate	с	-387.0			
Guanidine sulfate	с	-1205.0			
Guanine	с	- 183.9	47.4	160.3	
Guanylurea nitrate	с	-427.2			
L-Gulonic acid-y-lactone	с	- 1219.6			
Heptadecane	g	- 393.9	82.1	817.3	394.7
Heptadecanoic acid	c	-924.4			475.7
1-Heptadecene	g	-268.4	179.9	813.1	383.9
Heptanal	lq	-311.5	-100.6	335.4	230.1
*	g	-264.0	-86.7	461.7	
Heptane	lq	-224.2			224.9
1	g	-187.7	8.0	427.9	166.0
Heptanedioic acid	c	-1009.4			
Heptanenitrile	la	-82.8			
1-Heptanethiol	g	- 150.0	36.2	493.3	186.9
Heptanoic acid	lq	-610.2			265.4
1-Heptanol	lq	-403.3	-142.3	320.1	272.1
*	g	-336.4	-120.9	480.3	178.7
2-Heptanone	lq				232.6
1-Heptene	lq	-97.9		327.6	211.8
-	g	-62.3	95.8	423.6	155.2
cis-2-Heptene	lq	-105.1			
trans-2-Heptene	lq	- 109.5			
cis-3-Heptene	lq	-104.3			
trans-3-Heptene	lq	- 109.3			
1-Heptyne	g	103.0	226.7	407.7	151.1
Hexabromoethane	g			441.9	139.3
Hexachlorobenzene	c	-127.6	1.1	260.2	201.3
	g	-35.5	44.2	441.2	173.2
Hexachloroethane	c	-202.8		237.3	198.2
	g	- 143.6	- 54.9	398.7	136.7
Hexadecafluoroethylcyclo- hexane	lq	-3420.0			
Hexadecafluoroheptane	lq	-3420.8	-3093.0	561.8	419.0
Hexadecane	lq	-456.1			501.6
	g	-374.8	83.7	778.3	371.8
Hexadecanoic acid	с	- 891.5	-316.1	452.4	460.7
1-Hexadecanol	с	- 686.7	-98.7	451.9	422.0
	lq	-635.4	-96.6	606.7	
1-Hexadecene	lq	-328.7		587.9	488.9
	g	-248.5	171.5	774.1	361.0
1,5-Hexadiene	lq	54.1			
2,4-Hexadienoic acid	с	- 390.8			
1,5-Hexadiyne	lq	384.2			
Hexafluoroacetone	g	- 1249.3			
Hexafluoroacetylacetone	с	-2286.7			
Hexafluorobenzene	lq	-991.3		280.8	156.6
	g	-955.4	- 79.4	383.2	
Hexafluoroethane	g	-1344.2	-1255.8	332.3	106.7
cis-Hexahydroindane	g	-127.2			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\!f} H^{\circ}$	$\Delta_{\!f}G^\circ$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
trans-Hexahydroindane	g	-131.4			
Hexamethylbenzene	с	-162.4	117.4	306.3	245.6
1,1,1,3,3,3-Hexamethyldi-	lq	-518.0			
silazane					
Hexamethyldisiloxane	lq	-814.6	-541.8	433.8	311.4
	g	- 777.7	- 534.5	535.0	238.5
Hexamethylenetetramine	с	125.5	434.8	163.4	
Hexamethylphosphoric triamide	lq				321
Hexanal	g	-248.4	-100.1	422.9	148.2
Hexanamide	с	-423.0			
	lq	-397.0			
Hexane	lq	- 198.8	-3.8	296.1	195.6
	g	- 167.1(8)	-0.25	388.4	143.1
1,6-Hexanedioic acid	lq	-985.4	-207.3		232.2
1,2-Hexandediol	lq	-577.1			
1,6-Hexanediol	с	- 569.9			
Hexanedinitrile	lq	85.1			128.7
1-Hexanethiol	g	- 129.9	27.8	454.3	164.1
Hexanoic acid	lq	- 583.9			225.0
1-Hexanol	lq	-377.5	-152.3	287.4	240.4
	g	-317.6	- 135.6	441.4	155.6
2-Hexanol	lq	- 392.9			
3-Hexanol	lq	- 392.4			286.2
2-Hexanone	lq	-322.0			213.3
3-Hexanone	lq	-320.2		305.3	216.9
1-Hexene	lq	-74.1	83.6	295.1	183.3
	g	-43.5	84.45	384.6	132.3
cis-2-Hexene	lq	-83.9			
	g	-52.3	76.2	386.5	125.7
trans-2-Hexene	lq	-85.5			
	g	-53.9	76.4	380.6	132.4
cis-3-Hexene	lq	- 79.0			
	g	-47.6	83.0	379.6	123.6
trans-3-Hexene	lq	-86.1			
Hexyl acetate	lq				282.8
	g	-54.4	77.6	374.8	132.8
1-Hexyne	g	123.6	218.6	368.7	128.2
(-)-Histidine	с	-466.7			
Hydantoin	с	-448.5			
Hydrazine	lq	50.6	149.2	121.2	98.9
Hydrazinecarbothioamide	с	24.7			
Hydrazobenzene	с	221.3			
Hydroxyacetic acid	с	- 663.6			
2 -Hydroxyacetophenone	с	- 357.7			
3'-Hydroxyacetophenone	С	370.7			
4 -nyaroxyacetophenone	C 1	- 304.4			
2-Hydroxybenzaldenyde	Iq	-2/9.9			
2-Hydroxybenzaldoxime	С	- 183.7	401.2	170.0	150.1
2-Hydroxybenzoic acid	С	- 589.9	-421.3	1/8.2	159.1
5-Hydroxybenzoic acid	c	- 384.9	-41/.3	1//.0	157.5
4-riyuroxybenzoic acid	С	- 384.3	-410.3	1/3./	155.1

	D1 1	4 770	1 60	G 0	<i>a</i> ^
Substance	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S° I daa−l mat-l	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg ·moi	J · deg · moi
(±)-2-Hydroxybutanoic acid	lq	-679.1			
2-Hydroxy-2,4,6-cyclohepta- trienone	с	-239.2			
2-Hydroxyisobutanoic acid	с	-744.3			
2-Hydroxy-1-isopropyl-4- methylbenzene	с	- 309.6			
3-Hydroxy-4-methoxybenz- aldehyde	с	-453.6			
4-Hydroxy-4-methyl-2- pentanone	lq				221.3
2-Hydroxymethyl-1,3-propane- diol	с	-744.6			
3-Hydroxy-2-naphthalene- carboxylic acid	с	- 547.7			
5-Hydroxy-1-pentanal	la	-479.9			
trans-(-)-4-Hydroxyproline	c	-661.1			
(S)-2-Hydroxypropanoic acid	c	- 694.0			
2-Hydroxypropanonitrile	la	- 138.9	34.3		
2-Hydroxypyridine	 C	- 166.3			
3-Hydroxypyridine	c	-132.0			
4-Hydroxypyridine	c	- 144 6			
8-Hydroxyquinoline	c	- 81.2			
$(-)_2$ -Hydroxysuccinic acid	c	-1103.7	- 884 7		
(+)-2-Hydroxysuccinic acid	c	-1105.7	004.7		
Hypoxanthene	C C	-110.9	76.9	145.6	134 5
Icosane	c	- 455.8	117.3	03/ 1	154.5
Loosancia acid	g	- 1011 0	117.5	<i>y</i> , <i>y</i> +.1	545 1
	c	- 330.2	205.1	020.0	452.5
Imidazolo	g	40.8	205.1	929.9	452.5
Iminadiaactia agid	C	- 022.6			
Indepe	la la	- 932.0	150.9	56.0	100.2
1 H Inderele	lų	11.5	150.8	50.0	190.5
Indene	C	151.9	2176	015.0	196.0
	IQ -	110.0	217.0	215.5	160.9
Indele 2.2 diana	c	80.7			
Indole-2,3-dione	с	- 208.2			
Iodoacetone	g	- 130.5		005.4	150 7
lodobenzene	Iq	117.1	107.0	205.4	158.7
0.1.1.1	g	164.9	187.8	334.1	100.8
2-lodobenzoic acid	с	- 302.3			
3-lodobenzoic acid	с	-316.9			
4-lodobenzoic acid	c	-316.1			
lodocyclonexane	lq	-97.2	14.7	011.7	115 1
Iodoethane	lq	-40.0	14.7	211.7	115.1
	g	-8.1	19.2	306.0	66.9
Iodoethylene	g			285.0	57.9
Iodomethane	g	14.4	15.6	254.1	44.1
2-Iodo-2-methylpropane	lq	- 107.5		A 16 -	162.3
	g	-72.0	23.6	342.2	118.3
1-Iodonaphthalene	lq	161.5			
2-Iodonaphthalene	с	144.3			
2-Iodophenol	с	-95.8			
3-Iodophenol	с	-94.5			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

Collectory of	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S° 1 -111-1	C_p°
Substance	state	KJ · mol	KJ · mol	J · deg ··mol	J · deg · · mol ·
4-Iodophenol	с	-95.4			
1-Iodopropane	lq	-66.0			126.8
	g	-30.0			
2-Iodopropane	lq	-74.8			91.0
	g	-40.3	20.1	324.5	90.1
3-lodopropanoic acid	с	-460.0			
3-lodo-1-propene	g	91.5			
α-lodotoluene	lq	57.7			
3-lodotoluene	lq	79.1			
4-lodotoluene	lq	67.4	100 (212.2	06.4
Isobutanenitrile	g	25.4	103.6	313.3	96.4
Isobutylamine	lq	- 132.6			183.2
Isobutylbenzene	lq	- 69.8			
Isobutyl trichloroacetate	lq	- 553.4	165 5	246.0	50.0
Isocyanomethane	g	163.5	165.7	246.9	52.9
(-)-Isoleucine	с	-637.9	- 347.2	208.0	188.3
(\pm) -isoleucine	с	-635.3			
	g 1-	/8.0			
	IQ ta	- 380.4			100 4
	IQ Ia	- 518.9		010 0	199.4
isopropylamme	IQ Q	- 112.5	22.2	218.5	105.8
Iconronulhongono	g la	- 85.7	32.2	312.2	97.5
Isopropyidenzene	iq	-41.1	124.5	219.0	210.7
1 Icopropul 2 mathulhongana	g la	- 72.2	157.0	388.0	131.7
1 Isopropyl 3 methylbenzene	lq	- 73.3			
1 Isopropyl-3-methylbenzene	lq	- 78.0	110 1	306.6	
Isopropyl methyl ether	19	-278.8	119.1	253.8	161.9
isopropyr meuryr euler	nq a	-252.0	- 120.9	3323	111.1
2-Isopropyl-5-methylphenol	5	- 309 7	120.9	552.5	111.1
Isopropyl methyl sulfide	la	-1057		263.1	172.4
isopropyr meuryr sumue	σ	-90.5	13.4	359.3	117.2
Isopropyl nitrate	Б g	- 191.0	-40.7	373.2	120.7
2-Isopropylphenol	la	-233.7	1017	0,012	12017
3-Isopropylphenol	la	-252.5			
4-Isopropylphenol	la	-265.9			
Isopropyl thioacetate	la	-298.2			
Isopropyl trichloroacetate	la	-536.0			
Isoquinoline	c	144.5			
•	lq				196.8
Ketene	g	-47.5	-48.3	247.6	51.8
(+)-Lactic acid	c	-694.1	-522.9	142.3	
(±)-Lactic acid	lq	-674.5	-518.2	192.1	
β -Lactose	с	-2236.7	-1567.0	386.2	
(+)-Leucine	с	-637.3	-347.2	208.0	
(-)-Leucine	с	-637.4	- 346.3	211.8	201.0
(+)-Limonene	lq	-54.5			249.0
(±)-Lysine	с	-678.6			
Malic acid	с	- 789.4	-625.1	160.8	137.0
Maleic anhydride	с	-469.8			
(R)-Malic acid	с	-1105.7			
(S)-Malic acid	с	-1103.6			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

Previous Page

2.542 SECTION TWO

	DI ' 1	A 7.10	1 00	C 0	<i>C</i> 0
Substance	state	$\Delta_f H^2$ kL mol ⁻¹	$\Delta_f G^2$ kL mol ⁻¹	$J \cdot deg^{-1} \cdot mol^{-1}$	C_p^{-1}
	state		KJ IIIOI	J deg mor	J deg mor
Malonamide	с	- 546.0			
Malonic acid	c	- 891.0			
Malonodiamide	с	- 546.1			
Malononitrile	c	186.6	1726.0		
D-(+)-Maltose	c	- 2220.9	-1/26.3		
(\pm) -Mandelic acid	c	-579.4	0.40.0	000 5	
(+)-Mannitol	с	-1337.1	- 942.2	238.5	
D-(+)-Mannose	c	- 1263.0	242.0	000 0	
2-Mercaptopropanoic acid	lq	-468.2	- 343.9	228.9	25.5
Methane	g	- 74.6	- 50.5	186.3	35.7
Methane- d_4	g	- 88.2	- 59.5	198.9	40.3
Methanethiol	lq	-46.7	-7.7	169.2	90.5
	g	- 22.9	-9.9	255.1	50.3
Methanol	lq	-239.1	- 166.6	126.8	81.2
	g	-201.0	- 162.3	239.9	44.1
(-)-Methionine	с	-577.5	- 505.8	231.5	
2-Methoxybenzaldehyde	c	-266.5			
3-Methoxybenzaldehyde	lq	-276.1			
4-Methoxybenzaldehyde	lq	-267.2			
Methoxybenzene	lq	-114.8			199.0
	g	-67.9			
2-Methoxybenzoic acid	с	-538.5			
3-Methoxybenzoic acid	с	- 553.5			
4-Methoxybenzoic acid	с	-561.7			
2-Methoxyethanol	lq				171.1
2-Methyoxyethyl acetate	lq				310.0
2-Methoxytetrahydropyran	lq	-442.3			
5-Methoxytetrazole	с	69.1			
I-Methoxy-2,4,6-trinitro-	с	- 157.5			
benzene					
Methyl (CH ₃)	g	145.7	147.9	194.2	38.7
Methyl acetate	lq	-445.8			141.9
	g	-413.3		324.4	86.0
Methyl acrylate	lq	-362.2	-243.2	239.5	158.8
	g	- 333.0	-237.6	150.0	100.1
Methylamine	lq	-47.2	35.7	150.2	102.1
	g	-22.5	32.7	242.9	50.1
<i>N</i> -Methylaniline	lq	32.2			207.1
o-Methylaniline	lq	-6.3		0.51.0	209.6
	g	56.4	167.6	351.0	130.2
<i>m</i> -Methylaniline	lq	-8.1	165.4		227.0
	g	54.6	165.4	352.5	125.5
<i>p</i> -Methylaniline	lq	-23.5	1 (7 7	0.17.0	10/ 0
	g	55.3	167.7	347.0	126.2
Methyl benzoate	lq	- 343.5			221.3
2-Methylbenzoic acid	c	-416.5			174.0
	Iq	1011			174.9
3-Methylbenzoic acid	c	- 426.1			160.6
4	Iq	400.0			163.6
4-wiethylbenzoic acid	c ,	- 429.2			160.0
	Iq				169.0

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
2-Methylbenzoic anhydride	с	- 533.5			
4-Methylbenzoic anhydride	c	-520.9			
1-Methylbicyclo[4,1,0]heptane	la	- 59.9			
1-Methylbicyclo[3 1 0]bexane	la	-33.2			
2-Methylbiphenyl	la	108.0			
3-Methylbiphenyl	la	85.4			
4-Methylbiphenyl	rq C	55.2			
2-Methyl-1 3-butadiene	la	48.2		229.3	152.6
2 mouryr 1,5 outdefene	a	75.5	145.9	315.6	104.6
3-Methyl-1 2-butadiene	5 0	129.7	198.6	319.7	105.4
2-Methylbutane	5 1a	-178.4	170.0	260.4	164.8
2-ivieury/butane	rq a	-154.0	- 14 8	3/3 6	118.8
2 Mathul 2 hutanathial	5 la	- 162.8	14.0	200.1	108.1
2-Wenty1-2-butanethiof	IQ Q	102.8	0.2	296.0	1/2 5
2 Mathul 1 hutanathial	g	-127.1 -114.0	9.2	560.9	145.5
2 Mothyl 2 butenethiol	g la	- 114.9			
2 Mathulhutanaia aaid	iq la	- 138.8			
2-Methylbutanoic acid	iq la	- 554.4			107 1
2 Methyl 1 hytered	1q 1-	- 501.0			197.1
2 Methyl 1 byten 1	iq 1-	- 350.0			220.1
3-Methyl-1-butanol	lq	- 356.4	175.0	000.0	210.0
2-Methyl-2-butanol	lq	- 379.5	-1/5.3	229.3	247.1
(\pm) -3-Methyl-2-butanol	lq	- 366.6		2 (0, 5	232.2
3-Methyl-2-butanone	lq	- 299.5		268.5	179.9
	g	-262.5		254.0	1.55.0
2-Methyl-1-butene	lq	-61.1		254.0	157.2
	g	-35.3	65.6	339.5	110.0
3-Methyl-1-butene	lq	-51.5		253.3	156.1
	g	-27.6	74.8	333.5	118.6
2-Methyl-2-butene	lq	-68.6		251.0	152.8
	g	-41.8	59.7	338.6	105.0
<i>trans</i> -2-Methyl-2-butenedioic acid [also <i>cis</i>]	с	- 824.4			
cis-2-Methyl-2-butenoic acid	с	-455.6			
trans-2-Methyl-2-butenoic acid	c	-490.8			
3-Methylbutyl acetate	la				248.5
3-Methyl-1-butyne	g	136.4	205.5	319.0	104.7
Methyl <i>trans</i> -2-butenoate	la	-382.8			
Methylcyclobutane	la	-44.5			
Methylcyclobutanecarboxylic	lq	- 395.0			
aciu Mathylayalahayana	19	100.1	20.2	247.0	194.0
Methylcyclonexane	Iq	- 190.1	20.3	247.9	184.9
· · · · · · · · · · · · · · · · · · ·	g 1-	- 154.7	27.5	343.3	135.0
<i>cis</i> -2-Methylcyclonexanol	Iq 1-	- 390.2			20017
irans-2-Methylevelahoused	1q	-415.8			20017
cis-5-ivietnyicyclonexanol	1q 1	-416.1			29217
trans-3-Metnyicyclohexanol	lq	- 394.4			20217
cis-4-Methylcyclohexanol	lq	-413.2			20217
trans-4-Methylcyclohexanol	lq	-433.3			20217
2-Methylcyclohexene	lq	-81.2	<u> </u>	0.45 0	150 5
wietnylcyclopentane	Iq	- 138.0	31.5	247.9	158.7
	g	- 106.2	35.8	339.9	109.8

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)
Substance	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg ·moi	J · deg · mor
1-Methylcyclopentanol	lq	-343.3			
2-Methylcyclopentanone	lq	-265.3			
1-Methylcyclopentene	g	-3.8	102.1	326.4	100.8
3-Methylcyclopentene	g	7.4	115.0	330.5	100.0
4-Methylcyclopentene	g	14.6	121.6	328.9	100.0
1-Methylcyclopropene	lq	1.7			
	g	243.6			
Methylenecyclobutane	g	121.6			
Methylenebutanedioic acid	с	-841.1			
Methylenecyclohexane	lq	-61.3			
Methylenecyclohexene	lq	- 12.7			
Methylenecyclopropane	g	200.5			
Methyl decanoate	lq	-640.4			
Methyl 2,2-dimethylpropanoate	lq	-530.0			257.9
2-Methyl-1,3-dioxane	lq	-436.4			
4-Methyl-1,3-dioxane	с	416.1			
<i>N</i> -Methyldiphenylamine	lq	120.5			
4-Methyldiphenylamine	c	49.0			
Methyl dodecanoate	lq	- 693.0	272.0	104.0	22.0
Methylene (CH_2)	g	390.4	372.9	194.9	33.8
Methyleneouslaheurone	C 1 m	- 841.1			
2 Methylenecyclonexane	iq la	-01.5			
2 Methylenecyclohexanol	iq la	-277.0			
2 Methylenecyclonextene	lq la	- 12.7			
2-Methylenecyclopropapa	IQ Q	200.5			
Methylenesuccipic acid	g	- 841.2			
Methylene sulfate	c	-688.7			
N-Methylformamide	la	000.7			123.8
Methyl formate	la	- 386 1			119.1
incluy i formate	g	-357.4	-297.2	285.3	64.4
Methyl 2-furancarboxylate	la	-450.0		20010	0
2-Methyl-2.5-furandione	la	- 504.5			
α -Methyl-(+)-glucoside	c	-1233.4			
N-Methylglycine	с	- 513.3			
Methylglyoxal	g	-27.1			
Methylglyoxime	c	-126.8			
2-Methylheptane	lq	-255.0		356.4	252.0
	g	-215.4	12.8	452.5	
3-Methylheptane	lq	-252.3		362.6	250.2
	g	-212.5	13.7	461.6	
4-Methylheptane	lq	-251.6			251.1
	g	-212.0	16.7	453.3	
Methyl heptanoate	lq	-567.1			285.1
2-Methylhexane	lq	- 229.5		323.3	222.9
	g	- 194.6	3.2	420.0	166.0
3-Methylhexane	lq	-226.4			214.2
	g	- 192.3	4.6	424.1	166.0
Methyl hexanoate	lq	-540.2			
5-Methyl-1-hexene	g	-65.7			
cis-3-Methyl-3-hexene	g	-79.4			

TABLE 2.53	Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic
Compounds (C	Continued)

	Physical	$\Lambda_{\circ}H^{\circ}$	$\Lambda_{\circ}G^{\circ}$	So	C°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
trans-3-Methyl-3-hexene	g	-76.8			
Methylhydrazine	1a	54.2	179.9	165.9	134.9
	1 g	94.7	186.9	278.7	71.1
2-Methyl-1 <i>H</i> -indole	c	60.7			
3-Methyl-1 <i>H</i> -indole	с	68.2			
Methyl isocyanate	lq	-92.0			
Methyl isocyanide	g	163.5	165.7	246.8	52.9
1-Methyl-4-isopropylbenzene	lq	-78.0			236.4
Methyl isopropyl sulfide	g	-90.4	13.4	359.3	117.2
Methyl isothiocyanate	c	79.4			
5 5	g	131.0	144.4	252.3	65.5
5-Methylisoxazole	la	-5.6			
Methylmercury bromide	c	-86.2			
Methylmercury chloride	с	-116.3			
Methylmercury iodide	с	-43.5			
Methyl 2-methylbutanoate	lq	- 534.3			
Methyl 3-methylbutanoate	lq	- 538.9			
7-Methyl-3-methylene-1,6- octadiene	lq	14.5			
(<i>R</i>)-1-Methyl-4-(1-methyl- ethenyl)cyclohexene	lq	-54.5			249 ²⁰
1-Methylnaphthalene	la	56.3	189.4	254.8	224.4
2-Methylnaphthalene	c	44.9	192.6	220.0	196.0
5 1	g	106.7	216.2	380.0	159.8
Methyl nitrate	la	-156.3	-43.5	217.2	157.3
5	g	-124.4	- 39.3	318.5	76.5
Methyl nitrite	g	-66.1	1.0	284.3	63.2
Methyl nitroacetate	lq	-464.0			
2-Methyl-5-nitroaniline	c	-91.3			
4-Methyl-3-nitroaniline	с	-71.7			
1-Methyl-2-nitrobenzene	la	-9.7			
1-Methyl-3-nitrobenzene	lq	-31.5			
1-Methyl-4-nitrobenzene	c	-48.1			
2-Methyl-2-nitropropane	с	-229.8			
2-Methyl-2-nitro-1,3- propanediol	c	-575.3			
2-Methyl-2-nitro-1-propanol	с	-410.0			
2-Methylnonane	lq	- 309.8		420.1	313.3
5-Methylnonane	lq	- 307.9		423.8	314.4
Methyl phenylcarbamate	c	-186.7			
Methyl cis-9-octadecanoate	lq	-734.5			
Methyl octanoate	lq	- 590.3			
2-Methyl-2-oxazoline	g	-130.5			
2-Methylpentane	lq	-204.6		290.6	193.7
	g	- 174.8	-5.0	380.5	144.2
3-Methylpentane	lq	-202.4		292.5	190.7
	g	-172.1	2.1	379.8	143.1
2-Methyl-2,4-pentanediol	Īq				236.0
Methyl pentanoate	lq	-514.2			229.3
2-Methyl-1-pentanol	lq				248.0
2-Methyl-3-pentanol	lq	- 396.4			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Lambda_c H^\circ$	$\Lambda_c G^\circ$	S°	C.°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	¹ $\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
3 Methyl 2 pentanol	10				275.0
3-Methyl-2-pentanol	lq				203.4
4-Methyl-2-pentanol	la	- 394 7			273.0
2-Methyl-3-pentanone	la	- 325 9			275.0
4-Methyl-2-pentanone	la	525.7			213 3
2-Methyl-1-pentene	ø	- 59.4	77.6	382.2	135.6
2-Methyl-2-pentene	e e	-66.9	71.2	378.4	126.6
3-Methyl-1-pentene	р р	- 49.5	86.4	376.8	142.4
cis-3-Methyl-2-pentene	g	-62.3	73.2	378.4	126.6
trans-3-Methyl-2-pentene	g	-63.1	71.3	381.8	126.6
4-Methyl-1-pentene	g	-51.3	90.0	367.7	126.5
cis-4-Methyl-2-pentene	e g	-57.5	82.1	373.3	133.6
trans-4-Methyl-2-pentene	g	-61.5	79.6	368.3	141.4
Methyl 2-methylpropenoate	10 10	0.1.0		00000	191.2
4-Methyl-3-penten-2-one	10				212.5
Methyl pentyl sulfide	<u>1</u>	122.9	35.1	450.7	163.7
3-Methyl-1-phenyl-1-butanone	la	-220.2			
Methyl phenyl sulfide	la	43.0			
Methyl phenyl sulfone	c	-345.4			
Methylphosphonic acid	c	- 1054			
(\pm) -2-Methylpiperidine	lq	-124.9			
2-Methylpropanal	la	-247.4			
J I	g	-215.8			
N-Methylpropanamide	lq				179
2-Methylpropanamine	lq	-132.6			183.2
2-Methylpropane	g	-134.2	-20.9	294.6	130.5-12
2-Methyl-1,2-propanediamine	lq	- 133.9			
2-Methyl-1,2-propanediol	lq	- 539.7			
2-Methylpropanenitrile	lq	-13.8			
2-Methyl-1-propanethiol	g	-97.3	5.6	362.9	118.3
2-Methyl-2-propanethiol	g	- 109.6	0.7	338.0	121.0
2-Methylpropanoic acid	lq				173
2-Methyl-1-propanol	lq	-334.7		214.7	181.2
	g	-283.9	-167.35	359.0	111.3
2-Methyl-2-propanol	lq	-359.2		193.3	219.8
	g	-312.5	- 177.7	326.7	113.6
2-Methylpropene	g	- 16.9	58.1	293.6	89.1
2-Methylpropenoic acid	lq				161.1
1-Methyl-2-propylbenzene	lq	-72.5			
1-Methyl-3-propylbenzene	lq	-76.2			
1-Methyl-4-propylbenzene	lq	-75.1			
(2-Methylpropyl)benzene	lq	-69.8			240.6
Methyl propyl ether	lq	-266.0		262.9	165.4
	g	-238.2	- 109.9	349.5	112.5
Methyl propyl sulfide	g	-82.3	18.4	371.7	117.4
2-Methylpyridine	lq	56.7	166.5	217.9	158.4
	g	99.2	177.1	325.0	100.0
3-Methylpyridine	Īq	61.9	214.0	216.3	158.7
	g	106.4	184.3	325.0	99.6
4-Methylpyridine	Īq	59.2		209.1	159.0
1-Methyl-1 <i>H</i> -pyrrole	lq	62.4			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	DI 1	A 770	1.00	G 0	<i>C</i> 0
Substance	Physical	$\Delta_f H^\circ$	$\Delta_f G^{\circ}$	$\int_{-1}^{\infty} mol^{-1}$	C_p°
	state	KJ · IIIOI	KJ · IIIOI	J ucg mor	J · deg · mor
2-Methyl-1 <i>H</i> -pyrrole	lq	23.3			
3-Methyl-1 <i>H</i> -pyrrole	lq	20.5			
<i>N</i> -Methylpyrrolidone	lq	-262.2			307.8
2-Methylquinoline	с	164.4			• • • •
Methyl salicylate	lq	-531.8			249.0
Methylsilane	g			256.5	65.9
α -Methylstyrene	g	113.0	208.5	383.7	145.2
cis -(β)-Methylstyrene	g	121.3	216.9	383.7	145.2
trans-(β)-Methylstyrene	g	117.2	213.7	380.3	146.0
Methylsuccinic acid	с	-958.2			
Methylsuccinic anhydride	lq	-617.6			
Methyl tetradecanoate	lq	-743.9			
2-Methylthiacyclopentane	g	-63.3			
4-Methylthiazole	lq	68.0			
Methylthiirane	g	45.8			
2-Methylthiophene	lq	44.6			149.8
	g	83.5	122.9	320.6	95.4
3-Methylthiophene	lq	43.1			
	g	82.6	121.8	321.3	94.9
Methyl <i>p</i> -tolyl sulfone	с	-372.8			
5-Methyluracil	с	-462.8			
Methylurea	с	-332.8			
Morphine monohydrate	с	-711.7			
Morpholine	lq				164.8
Murexide	с	- 1212.1			
Naphthalene	с	77.9	201.6	167.4	165.7
	g	150.6	224.1	333.1	131.9
1-Naphthaleneacetic acid	с	-359.2			
2-Naphthaleneacetic acid	с	-371.9			
1-Naphthoic acid	с	333.5			
2-Naphthoic acid	с	-346.1			
I-Naphthol	c	- 121.0			166.9
2-Naphthol	lq	- 124.2			
1,4-Naphthoquinone	с	- 183.4			
I-Naphthyl acetate	c	-288.2			
2-Naphthyl acetate	с	- 304.3			
1-Naphthylamine	с	67.8			
2-Naphthylamine	c	59.7			
Nicotine	lq	39.3	1007.5		
Nitrilotriacetic acid	c	- 1311.9	-1307.5		
Nitroacetone	Iq	-278.6	170.0	176.0	166.0
2-Nitroaniline	с	-26.1	178.2	176.2	166.0
3-Initroaniline	с	- 38.3	1/4.1	176.2	158.8
4-Initroaniline	c l=	- 42.0	151.0	170.2	107.0
Nitrobenzene	Iq	12.5	140.2	224.5	185.8
2-INITODENZOIC ACIO	c	- 3/8.3	- 196.4	208.4	
5-INITODERZOIC ACID	с	- 394.7	- 220.5	205.0	101 0
4-INITODENZOIC ACIO	c	- 392.2	- 222.0	210.0	101.2
5-INITODIPRENYI	c	05.1			
4-INITODIPRENYI	с	40.5	10.1	204 5	124.0
1-microdutane	g	- 143.9	10.1	394.3	124.9

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C_{n}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	J · deg ⁻¹ ·mol ⁻	¹ $\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
2-Nitrobutane	9	- 163.6	-62	383.3	123.5
3-Nitro-2-butanol	la	- 390.0	0.2	00010	12010
N-Nitrodiethylamine	la	-106.2			
2-Nitrodiphenylamine	-4 C	64.4			
Nitroethane	la	- 143.9			134.4
	2	- 102.3	-4.9	315.4	78.2
2-Nitroethanol	la	- 350.7			
2-Nitrofuran	c	-104.1			
5-Nitrofurancarboxylic acid	c	-516.8			
1-Nitroguanidine	c	-92.4			
Nitromethane	lq	-113.1	- 14.4	171.8	106.6
	g	-74.3	-6.8	275.0	57.3
(Nitromethyl)benzene	lq	-22.8			
1-Nitronaphthalene	c	42.6			
1-Nitroso-2-naphthol	с	- 50.5			
2-Nitroso-1-naphthol	с	-61.8			
4-Nitroso-1-naphthol	с	- 107.8			
1-Nitropropane	lq	-167.2			175.3
	g	- 123.8			
2-Nitropropane	lq	- 180.3			170.3
	g	- 139.0			
1-Nitro-2-propanone	с	- 294.7			
4-Nitrosodiphenylamine	с	213.0			
β -Nitrostyrene	с	30.5			
4-Nitrotoluene	с	-48.1			172.3
Nonadecane	g	-435.1	108.9	895.2	440.4
1-Nonadecene	g	- 309.6	196.7	891.0	429.7
1-Nonanal	g	- 310.3	- 74.9	539.6	216.8
Nonane	lq	-274.7			284.4
	g	-228.2	24.8	505.7	211.7
1-Nonanethiol	g	- 190.8	53.0	571.2	232.7
Nonanoic acid	lq	-659.7			362.4
1-Nonanol	g	- 376.3	-110.5	558.6	224.3
2-Nonanone	lq	- 397.2			
5-Nonanone	lq	- 398.2		401.4	303.6
1-Nonene	g	-103.5	112.7	501.5	201.0
Norleucine	с	-639.1			
Octadecane	с	- 567.4		480.2	485.6
	g	-414.6	100.5	856.2	417.6
Octadecanoic acid	c	-947.7			501.5
1,8-Octadecanoic acid	с	- 1038.1	100.0	050 0	106.0
1-Octadecene	g	-289.0	188.3	852.0	406.8
cis-9-Octadecenoic acid	Iq	- 743.5			577.05
trans-9-Octadecenoic acid	c	-910.9			
1,7-Octadiyne	Iq 1-	554.4			200 8-5
Octanuorocyclobutane	Iq	1640 6	1200.0	400.4	209.8-0
Ontelling	g	- 1542.0	- 1398.8	400.4	156.2
Octafiuoropropane	g	- 1783.1		255 5	0(0.0
	Iq	- 1311.1	00.0	333.3	202.3
I-Octanal Ostenomide	g	- 289.0	- 83.3	500.7	194.0
Octanamide	c	-4/3.2			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{\epsilon} H^{\circ}$	$\Delta_{\epsilon}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$\mathbf{J} \cdot \mathbf{deg}^{-1} \cdot \mathbf{mol}^{-1}$
Octane	lq	-250.1			254.6
	g	-208.6	16.4	466.7	188.9
1-Octanenitrile	lq	- 107.3			
1-Octanethiol	g	-44.9	44.6	582.2	209.8
Octanoic acid	lq	-636.0			297.9
1-Octanol	lq	-426.5	-143.1	377.4	305.1
2-Octanol	lq				330.1
2-Octanone	lq	- 384.5	- 140.3	373.8	273.3
1-Octene	lq	- 121.8			241.0
	g	-81.4	104.2	462.5	178.1
cis-2-Octene	lq	- 135.7			239.0
trans-2-Octene	la	- 135.7			239.0
1-Octyne	g	82.4	235.4	496.6	174.0
(\pm) -Ornithine	c	-652.7			
Oxalic acid	с	-821.7	-697.9	109.8	91.0
Oxalic acid dihydrate	c	-1492.0			
Oxalovl dichloride	la	-367.6			
Oxalovl dihydrazide	c	-295.2			
Oxamic acid	c	-661.2			
Oxamide	c	-504.4	- 342.7	118.0	
Oxazole	g	-5.5	0.20		
2-Oxetanone	la	- 329.9		175.3	122.1
Oxindole	C C	-172.4		1,010	12211
2-Oxohexamethyleneimine	c	-3294	- 95 1	168.6	156.8
Oxomethyl (HCO)	σ	43.1	28.0	224.7	34.6
2-Oxo-1 5-pentanedioic acid	ь с	-10262	20.0	22117	5110
4-Oxopentanoic acid	c	- 697 1			
2-Oxopropanoic acid	la	- 584.5	-463.4	179.5	
8-Oxypurine	rq C	- 64 4	105.1	119.5	
Papaverine	c	- 502.3			
Paraformaldehyde	c	-177.6			
Paraldehyde	la	- 687.0			
Pentachloroethane	-4 la	- 187.6			173.8
	~4 0	-142.0	-703	381.5	118.1
Pentachlorofluoroethane	g	-317.2	-234.0	391.8	
Pentachlorophenol	c	-292.4	- 144.1	251.9	202.0
Pentacyclo[4 2 0 $0^{2,5}$ $0^{3,8}$ $0^{4,7}$]-	c	541.8		20119	20210
octane		• • • • • •			
Pentadecane	g	-352.8	75.2	739.4	349.0
Pentadecanoic acid	с	-861.7			443.3
1-Pentadecene	g	-227.2	163.1	735.2	338.2
1-Pentadecyne	g	-61.8	293.9	719.3	33.41
1,2-Pentadiene	g	140.7	210.4	333.5	105.4
cis-1,3-Pentadiene	g	81.5	145.8	324.3	94.6
trans-1,3-Pentadiene	g	76.5	146.73	319.7	103.3
1,4-Pentadiene	g	105.7	170.3	333.5	105.0
2,3-Pentadiene	g	133.1	205.9	324.7	101.3
Pentaerythritol	C	-920.6	-613.8	198.1	190.4
Pentaerythritol tetranitrate	с	-538.6			
Pentafluorobenzoic acid	с	- 1239.6			
Pentafluoroethane	g	-1104.6	-1029.3	333.7	95.7

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_{\!f}G^\circ$	S°	C_{p}°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Pentafluorophenol	с	-1024.1			
2,3,4,5,6-Pentafluorotoluene	lq	- 883.8		306.4	225.8
Pentamethylbenzene	c	- 133.6			
•	g	-74.5	123.3	443.9	216.5
Pentamethylbenzoic acid	c	- 536.1			
Pentanal	g	-228.5	-108.3	383.0	125.4
Pentanamide	с	- 379.5			
1-Pentanamine	lq				218.0
Pentane	lq	- 173.5	-9.3	262.7	167.2
	g	- 146.9	-8.4	349.0	120.2
1,5-Pentanediol	lq	- 531.5			321.3
2,4-Pentanedione	lq	-423.8			208.2
	g	- 380.6		397.9	120.1
1,5-Pentanedithiol	g	-71.0			100
Pentanenitrile	lq	-33.1			180
1-Pentanethiol	lq	- 151.3			
Pentanoic acid	lq	- 559.4		259.8	210.3
1 Denten el	g	- 491.9	-357.2	439.8	200.1
1-Pentanol	lq	- 351.0	146.0	402.5	208.1
2 Dentenal	g	- 294.7	- 146.0	402.5	155.1
2-Pentanoi	iq	-303.2			
3 Pontanol	g	-368.0			220.7
5-Feinanoi	iq	- 311 4	- 158 2	382.0	239.1
2-Pentanone	8 la	-207.3	150.2	562.0	184 1
2-1 entanone	rq o	-259.0	- 137 1	376.2	121.0
3-Pentanone	la	-2965	157.1	266.0	190.9
1-Pentene	la	-46.0		262.6	154.0
	g	-21.2	79.1	345.8	109.6
cis-2-Pentene	la	-53.7		258.6	151.7
	g	-27.6	71.8	346.3	101.8
trans-2-Pentene	lq	-58.2		256.5	157.0
	g	-31.9	69.9	340.4	108.5
cis-2-Pentenenitrile	lq	71.8			
trans-2-Pentenenitrile	lq	74.9			
trans-3-Pentenenitrile	lq	80.9			
2-Pentenoic acid	lq	- 446.4			
3-Pentenoic acid	lq	-434.8			
4-Pentenoic acid	lq	-430.6			
cis-3-Penten-1-yne	lq	226.5			
trans-3-Penten-1-yne	lq	228.2			
Pentyl acetate	lq				261.0
1-Pentyne	g	144.4	210.3	329.8	106.7
2-Pentyne	g	128.9	194.2	331.8	98.7
Perfluoropiperidine	lq	-2020.5	-1768.5	393.4	296.8
Perylene	c	182.8			
α -Phellandrene	Iq	41.3	0(0.2	015 1	200 (
Phenanthrene	с	116.2	268.3	215.1	220.6
9,10-Phenanthrenedione	c	- 154./			
Phonol	c	237.0 	- 50 4	144.0	107 4
Filehol	С	- 103.1	- 30.4	144.0	127.4

TABLE 2.53	Enthalpies and Gibl	s Energies of	f Formation,	Entropies,	and Heat	Capacities	of Organie
Compounds (C	Continued)						

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	J · deg ⁻¹ ·mol	$^{-1}$ J · deg $^{-1}$ · mol $^{-1}$
	la				199.841
	24 9	-96.4	-32.9	315.6	103.6
Phenoxyacetic acid	в с	-513.8	0217	0.010	10010
Phenyl acetate	la	-334.9			
Phenylacetic acid	rq C	- 398 7			
Phenylacetylene	g	327.3	363 5	321.7	114.9
(+)-3-Phenyl-2-alapine	5	-466.9	-2117	213.6	203.0
Phenyl benzoate	c C	-241.0	211.7	215.0	205.0
Phenylboron dichloride	la	-2994			
1-Phenylcyclohexene	la	- 16.8			
Phenylcyclopropane	la	100.3			
N-Phenyldiacetimide	rq C	-3625			
1 3-Phenylenediamine	c	-78		154 5	150.6
Phenyl formate	la	- 268 7		154.5	159.0
M. Phenyl glycine	Iq C	-402.5			
(+)-2. Phenylalycine	c	- 431.8			
Dhenylhydrozine	la	431.0			217.0
Phenyl 2 hydroxybenzoate	iq Q	- 436.6			217.0
Phenylmethanethiol		430.0			
Phenylmethal acetate	lq	45.5			148 5
N Phonyl 2 nonhthylomino	iq	150.9			140.5
1 Dhanyl 1 propanana	la la	- 167.2			
1 Phonyl 2 propanone	lq	- 107.2			
1 Dhanylnymala	iq	- 131.9			
2 Phonylpyrrole	C	134.3			
2-Filehypyffole	C	- 841.0			
S Dhanyl thiographic		- 041.0			
Deput vinul athor	lq la	- 122.0			
Phoneone	iq	- 20.2	206.9	202.0	577
Phosecie	g	-220.9	- 200.8	203.0	57.7
1.2 Phthalia agid	c	-433.1	- 501 6	207.0	100 2
1,2-Fillianc acid	C	- 782.0	- 391.0	207.9	100.5
1,3-Fillianc acid	C	- 805.0			
Phthalic aphydride	C	- 460 1	221.0	180.0	160.0
Phthalanitrila	C	- 400.1	- 331.0	180.0	100.0
Piorio acid	C	-214.4			
a Dinana		- 16 4			
<i>a</i> -rinene	lq la	-77			
Diperazine	iq	- 45.6	240.2	85.8	
2.5 Diperazinedione	C	- 446 5	240.2	05.0	
2,5-riperazinedione	la	- 440.5		210.0	170.0
2 Pinaridana	iq	- 206.6	_ 112 1	210.0	(1 - 207.8)
2-Fiperidone	C	- 500.0	-112.1	104.9	(14 307.8)
Dropadiono	c	100.5	202.4	242.0	50.0
Propagal	g	190.5	202.4	245.9	127.0
Piopanai	iq	- 213.5	120.5	204 5	137.2
Propanamida	g	- 105.0	- 150.5	304.3	00.7
Propanaliliue	C	- 338.2			09 2-43
riopane	ц	102.9	22.4	270.2	70.5 T
Propopadiamida	g	-103.8 -546.1	-23.4	270.2	/3.0
(+) 1.2 Propagadiamina	c la	- 07 9			
(±)-1,2-FIOpaneulannine	ц	-97.8			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
1,2-Propanediol	lq	-485.7			190.8
1,3-Propanediol	lq	- 464.9			
1,2-Propanedione	lq	- 309.1			
Propanedinitrile	lq	186.4			
1,2-Propanedithiol	lq	- 79.4			
1,3-Propanedithiol	lq	- 79.4			
Propanenitrile	lq	15.5	89.2	189.3	119.3
1-Propanethiol	lq	- 99.9		242.5	144.6
	g	-67.9	2.2	336.4	94.8
2-Propanethiol	lq	- 105.0		233.5	145.3
	g	-76.2	-2.6	324.3	96.0
1,2,3-Propanetriol tris(acetate)	lq	-1330.8		458.3	384.7
Propanoic acid	lq	- 510.7	- 383.5	191.0	152.8
Propanoic anhydride	lq	-679.1	-475.6		235.0
1-Propanol	lq	- 302.6	-170.6	193.6	143.7
	g	-255.1	-161.8	322.7	85.6
2-Propanol	lq	-318.1	-180.3	181.1	155.0
	g	-272.6	-173.4	309.2	89.3
2-Propenal	g	-85.8	-64.6		
Propene	g	20.0	62.8	266.6	64.3
trans-1-Propene-1,2-	с	-824.4			
dicarboxylic acid					
2-Propenenitrile	lq	147.1			108.8
	g	180.6	195.4	274.1	63.8
cis-1,2,3-Propenetri- carboxylic acid	с	- 1224.7			
trans-1,2,3-Propenetri-	с	-1233.0			
carboxylic acid					
2-Propenoic acid	lq	-383.8			145.7
-	g	-336.5	-286.3	315.2	77.8
2-Propen-1-ol	lq	-171.8			138.9
-	g	-124.5	-71.3	307.6	76.0
2-Propenyl acetate	lq	- 386.2			184.1
cis-1-Propenylbenzene	g	121.3	216.9	383.7	145.2
trans-1-Propenylbenzene	g	117.2	213.7	380.3	146.0
2-Propenylbenzene	lq	88.0			
Propyl acetate	lq				196.2
Propylamine	lq	- 101.5			162.5
	g	-70.2	39.8	325.1	91.2
Propylbenzene	lq	-38.3		287.8	214.7
	g	7.9	137.2	400.7	152.3
Propylcarbamate	c	- 552.6			
Propylchloroacetate	lq	- 515.6			
Propylchlorocarbonate	ĝ	-492.7			
Propylcyclohexane	lq	-237.4		311.9	242.0
	g	- 192.5	47.3	419.5	184.2
Propylcyclopentane	Ĭq	- 188.8		310.8	216.8
	g	- 147.1	52.6	417.3	154.6
Propylene carbonate	lq	-613.2			218.6
Propylene oxide	lq	- 123.0		196.5	120.4
	g	-94.7	-25.8	286.9	72.6

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_{\!f}G^{\circ}$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Propyl formate	la	-500.3			171.4
Propyl nitrate	<u>1</u> g	-173.9	-27.3	385.4	121.3
S-Propyl thioacetate	la	-294.1			
Propyl trichloroacetate	la	-513.0			
Propyl vinyl ether	la	- 190.9			
2-Propynyl-1-amine	la	205.7			
Propyne	ø	184.9	194 4	248 1	60.7
2-Propynoic acid	la	-193.2	121.1	210.1	00.7
1 <i>H</i> -Purine	rq C	169.4			
Pyrazine	c	130.8			
1 H-Durazole	c	116.0			
	la	105.4			
Purono	iq	105.4		224.0	220.7
Pyridagina	C la	123.3		224.9	229.1
Pylldazine	1q 1-	224.0	101.2	177.0	122.7
Pyridine	lq	100.2	181.3	177.9	132.7
	g	140.4	190.2	282.8	/8.1
3-Pyridinecarbonitrile	с	193.4			
3-Pyridinecarboxylic acid	c	- 344.9			
Pyrimidine	lq	145.9		154.4	107.7
IH-Pyrrole	lq	63.1		156.4	127.7
Pyrrole-2-carboxaldehyde	с	- 106.4			
Pyrrole-2-carboldoxime	с	12.1			
Pyrrolidine	lq	-41.0		204.1	156.6
	g	-3.6	114.7	309.5	81.1
(\pm) -2-Pyrrolidinecarboxylic	с	- 524.2			
acid					
2-Pyrrolidone	с	-286.2			164.4
Quinhydrone	с	-82.8	-323.0	325.9	277.0
Quinidine	с	- 160.3			
Quinine	с	- 155.2			
Quinoline	lq	141.2	275.7	217.2	194.9
Raffinose	с	-3184			
L-(+)-Rhamnose	с	- 1073.2			
D-(-)-Ribose	с	-1047.2			
Salicylaldehyde	lq	-279.9			22218
Salicylaldoxime	с	-183.7			
Salicylic acid	с	- 589.5	-418.1	178.2	
Semicarbazide std. state	aq	- 166.9	-40.6	297.9	
(-)-Serine	с	-732.7			
(±)-Serine	с	-739.0			
L-(-)-Sorbose	с	-1271.5	-908.4	220.9	
5,5'-Spirobis(1,3-dioxane)	с	-702.1			
Spiro[2.2]pentane	lq	157.5		193.7	134.5
	g	185.2	265.3	282.2	88.1
cis-Stilbene	la	183.3			
trans-Stilbene	c	136.9	317.6	251.0	
(-)-Strychnine	c	-171.5			
Styrene	la	103.8	202.4	237.6	182.0
	-4 0	147.9	213.8	345.1	122.1
Succinic acid	ь с	- 940 5	-747 4	167 3	153.1
Succinic acid monoamide	c	- 581 2	, , , , , ,	107.0	100.1
Second and monounder	v	201.2			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_{\!f}G^\circ$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Succinic anhydride	с	-608.6			
Succinimide	с	-459.0			
Succinonitrile	la	139.7		191.6	145.6
(+)-Sucrose	c	-2226.1	-1544.7	360.2	1.0.0
(\pm) -Tartaric acid	c	- 1290.8	20110	00012	
(-)-Tartaric acid	c	-1282.4			
meso-Tartaric acid	c	- 1279 9			
α -Terpinene	g	-205			
1 1 2 2 -Tetrabromoethane	la	20.5			165.7
Tetrabromoethylene	a			387 1	102.7
Tetrabromomethane	5	20.4	477	212.5	144.3
Tetrabromomethane	a	83.0	67.0	358 1	01.2
Tetrobutyltin	8 la	- 304.6	07.0	556.1	91.2
Tetrocope	IQ Q	158.8			
Tetrachloro 1.4 henzo	C	- 288 7			
retractiono-1,4-Delizo-	L	- 200.7			
quillone	la				179.6
diffuoroothono	Iq				178.0
uniuoroetnane	~	490.0	407 1	202.0	102.4
1 1 1 2 Tetra ablancetheres	g 1-	- 489.9	-407.1	382.8	123.4
1,1,1,2-Tetrachioroethane	Iq	140.4	20.2	255.0	155.8
1100 5 (11 4	g	- 149.4	- 80.3	355.9	102.7
1,1,2,2,-1 etrachloroethane	lq	- 195.0	-95.0	246.9	162.3
m	g	- 149.2	-85.6	362.7	100.8
Tetrachloroethylene	lq	- 50.6	• •		143.4
m	g	- 10.9	3.0	266.9	100 -
Tetrachloromethane	lq	-128.2	-62.6	216.2	130.7
	g	-95.7	-53.6	309.9	83.4
1,1,1,3-Tetrachloropropane	lq	-207.8			
1,2,2,3-Tetrachloropropane	lq	-251.8			
1,1,2,2-Tetracyanocyclo-	с	590			
propane					
Tetracyanoethylene	с	623.8			
Tetracyanomethane	с	611.6			
Tetradecane	g	-332.1	66.9	700.4	326.1
Tetradecanoic acid	с	-833.5			432.0
1-Tetradecanol	с	-629.6			388.0
1-Tetradecene	g	-206.5	154.8	696.2	315.3
Tetraethylene glycol	lq	-981.6			428.8
Tetraethylgermanium	lq	-210.5			
Tetraethyllead	lq	52.7	336.4	464.6	307.4
Tetraethylsilane	lq				298.1
Tetraethyltin	lq	-95.8			
1,1,1,2-Tetrafluoroethane	g	- 895.8	-826.2	316.2	86.3
Tetrafluoroethylene	g	-658.9	-623.7	300.0	80.5
Tetrafluoromethane	g	-933.6	-888.3	261.6	61.0
2,2,3,3-Tetrafluoro-1-propanol	g	- 1061.3			
Tetrahydrofuran	lq	-216.2		204.3	124.0
	g	-184.2		302.4	76.3
Tetrahydro-2-furanmethanol	lq	-435.6			181.2
1,2,3,4-Tetrahydronaphthalene	lq	-29.2			217
5,6,7,8-Tetrahydro-1-naphthol	с	-285.3			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_{\!f}G^\circ$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Tetrahydro-2 <i>H</i> -pyran	lq	-258.3			156.5
Tetrahydro-2H-pyran-2-one	lq	- 436.7			
1,2,3,6-Tetrahydropyridine	lq	33.5			
Tetrahydrothiophene	lq	-72.9			
	g	-34.1	-45.8	309.6	92.5
Tetrahydrothiophene-1,1- dioxide	lq				18020
Tetraiodoethylene	с	305.0			
Tetraiodomethane	g	474.0	217.1	391.9	95.9
Tetramethylammonium bromide	c	-251.0			
Tetramethylammonium chloride	с	-276.4			
Tetramethylammonium iodide	с	-203.4			
1,2,3,4-Tetramethylbenzene	lq	-90.2	106.7	290.6	
1,2,3,5-Tetramethylbenzene	lq	-96.4	98.7	416.5	240.7
1,2,4,5-Tetramethylbenzene	ດ	-119.9	101.3	245.6	215.1
2,3,5,6-Tetramethylbenzoic acid	с	- 506.1			
2.2.3.3-Tetramethylbutane	с	-269.0		273.7	239.2
, , , , , ,	g	-225.6	22.0	389.4	192.5
1.1.2.2-Tetramethylcyclo-	la	-119.7			
propane	-1				
Tetramethyllead	la	97.9	262.8	320.1	
	 g	135.9	270.7	420.5	144.0
2.2.3.3-Tetramethylpentane	la	-278.3			271.5
2.2.3.4-Tetramethylpentane	10	-277.7			
2.2.4.4-Tetramethylpentane	10	-280.0			266.3
2.3.3.4-Tetramethylpentane	la	-277.9			20010
Tetramethylsilane	-4 1a	-264.0			204.1
	g	-239.1	-100.0	359.1	143.9
Tetramethylsuccinic acid	c	-1012.5			
Tetramethylthiacyclopropane	c	- 83.0			
Tetramethyltin	g	- 18.8			
Tetranitromethane	la	38.4			
1,1,1,2-Tetraphenylethane	c	223.0			
1,1,2,2-Tetraphenylethane	с	216.0			
Tetraphenylethylene	с	311.5			
Tetraphenylhydrazine	с	457.9			
Tetraphenylmethane	с	247.1	574.0		
Tetraphenyltin	с	412.1			
Tetrapropylgermanium	g	- 229.7			
Tetrapropyltin	lq	-211.3			
1,2,3,4-(1H)-Tetrazole	c	237.0			
Theobromine	с	- 361.5			
2-Thiaadamantane	с	- 143.5			
Thiacyclobutane	g	60.6	107.1	285.0	68.3
Thiacycloheptane	g	-61.3	84.1	361.9	124.6
Thiacyclohexane	lq	- 106.3		218.2	163.3
-	g	-63.5	53.1	323.0	109.7
Thiacyclopentane	g	-33.8	46.0	309.4	90.9
Thiacyclopropane	g	82.2	96.9	255.3	53.7
Thianthrene	c	-182.5			
Thiirane	g	82.0	96.8	255.2	53.3
	-				

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	ΛH°	$\Lambda_{\circ}G^{\circ}$	So	C°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Thiirene	a	300.0	275.8	255.3	54.7
Thioacetamide	e C	- 71 7	275.0	255.5	54.7
Thioacetic acid	la	-216.9			
	g	-175.1	-154.0	313.2	80.9
1.2-Thiocresol	la	44.2			
Thiohydantoic acid	c	-554.8			
Thiohydantoin	с	-249.0			
2-Thiolactic acid	lq	-468.4			
Thiophene	lq	80.2	121.2	181.2	123.8
	g	115.0	126.8	278.9	72.9
Thiophenol	lq	64.1	134.0	222.8	173.2
	g	111.6	147.6	336.9	104.9
Thiosemicarbazide	с	25.1			
Thiourea	с	- 89.1	21.8	115.9	
	g	22.9			
(-)-Threonine	с	-807.2			
(\pm) -Threonine	с	-758.8			
Thymine	с	-462.8			150.8
Thymol	c	-309.7	110.0		
Toluene	lq	12.4	113.8	221.0	157.0
1111045	g	50.4	122.0	320.7	103.6
1 <i>H</i> -1,2,4-1riazol-3-amine	c	76.8	104.5	140.1	
2,4,6-1 riamino-1,3,5-triazine	c	- 72.4	184.5	149.1	
2-1 riazoethanol	lq	94.6			
Tribenzylamine	c l=	140.0			
Tribromoacetaidenyde	iq	- 130.5	0.1	257 0	<u>80 1</u>
Tribromofluoromethane	g	- 100.0	9.1	337.0	89.4 84 4
Tribromomethane	g la	- 190.0	- 193.1	220.0	04.4 130.7
Thoromomethane	rq a	23.5	-50	330.9	71.2
Tributoxyborane	5 la	- 1199.6	5.0	550.7	/1.2
Tributylamine	la	- 281.6			
Tributyl phosphate	la	- 1456			
Tributylphosphine oxide	c	-460			
Trichloroacetaldehyde	la	-234.5			151.0
2.2.2-Trichloroacetamide	c	-358.2			
Trichloroacetic acid	с	- 503.3			
ionized	aq	-517.6			
Trichloroacetonitrile	g			336.6	96.1
Trichloroacetyl chloride	lq	-280.8			
Trichlorobenzoquinone	c	-269.9			
1,1,1-Trichloroethane	lq	- 177.4		227.4	144.3
	g	- 144.6	-76.2	323.1	93.3
1,1,2-Trichloroethane	lq	- 191.5		232.6	150.9
	g	-151.2	-77.5	337.1	89.0
Trichloroethylene	lq	-43.6			124.4
	g	-9.0	19.9	324.8	80.3
Trichlorofluoromethane	lq	-301.3	-236.8	255.4	121.6
	g	-268.3	- 249.3	309.7	78.0
Trichloromethane	lq	- 134.5	73.7	201.7	114.2
	g	-102.7	- 76.0	295.7	65.7

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_{f}H^{\circ}$	$\Delta_{\ell}G^{\circ}$	S°	C_n°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
1,2,2-Trichloropropane	g	- 185.8	-97.8	382.9	112.2
1,2,3-Trichloropropane	lq	-230.6			183.6
	g	- 182.9			
1,2,3-Trichloropropene	lq	- 101.8			
1,1,2-Trichlorotrifluoroethane	lq	-805.8			170.1
1,1,1-Tricyanoethane	c	351.0			
Tricyanoethylene	с	439.3			
Tridecane	g	-311.5	58.5	661.5	303.2
Tridecanoic acid	c	- 806.6			
1-Tridecene	g	- 186.0	146.3	657.3	292.4
Triethanolamine	c	-664.2			389.0
Triethoxyborane	lq	- 1047.4			
Triethoxymethane	lq	-687.3			
Triethylaluminum	lq	-236.8			
Triethylamine	lq	- 127.7			219.9
	g	-92.8	110.3	405.4	160.9
Triethylaminoborane	lq	- 198.6			
Triethyl arsenite	lq	-706.7			
Triethylarsine	lq	13.0			
Triethylbismuthine	lq	169.9			
Triethylborane	lq	- 194.6	9.4	336.7	241.2
	g	- 157.7	16.1	437.8	
Triethylenediamine	с	-14.2	239.7	157.6	
Triethylene glycol	lq	-804.2			
Triethyl phosphate	lq	- 1243			
Triethylphosphine	lq	-89.1			
Triethyl phosphite	lq	- 861.5			
Triethylstibine	lq	5.0			
Triethylsuccinic acid	с	- 1066.5			
Triethyl thiophosphate	lq	-972.8			
Trifluoroacetic acid	lq	- 1069.9			
Trifluoroacetonitrile	g	- 497.9	- 461.9	298.1	77.9
1,1,1-Trifluoroethane	g	-744.6	-678.3	279.9	78.2
1,1,2-Trifluoroethane	g	-730.7			
2,2,2-Trifluoroethanol	lq	-932.4			
Trifluoroethylene	g	- 490.4	- 469.5	292.6	69.2
Trifluoroiodoethane	g	-644.5			
Trifluoroiodomethane	g	- 587.8	-572.0	307.5	70.9
Trifluoromethane	g	-695.4	-658.9	259.6	51.1
(Trifluoromethyl)benzene	g	- 599.1	-511.3	372.6	130.4
1,1,1-1rifluoro-2,4-pentane-	lq	- 1040.2			
dione		(14.0			
3,3,3-1 rinuoropropene	g	-614.2			
Trinexylamine	lq	-433.0			
(\pm) - I finydroxyglutaric acid	с	- 1490			
2,4,6-1 rinydroxypryimidine	с	-634.7	170.0	256.0	75 1
	g	251.0	1/8.0	330.2	/5.1
Trimethousehore	ıq	- 980.3			
Trimethorysthere	g 1-	- 699.1			
Trimethoxyethane	Iq 1a	- 612.0			
типешохупешале	ıq	- 370.0			

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Dhysical	A 110	A C ^o	CO	C °
Substance	state	$\Delta_f \mathbf{n}$ kL·mol ⁻¹	$\Delta_f G$ kL·mol ⁻¹	J · deg ⁻¹ ·mol ⁻¹	C_p I · deg ⁻¹ · mol ⁻¹
	1	E C A	KJ IIIOI	J deg mor	J deg mor
Trimethylacetic acid	lq la	- 564.4			
$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	IQ 1a	- 779.9			
2,4,5-Inmethylacetophenone	1q 1-	- 252.5			
2,4,0-Inmethylaceto-	Iq	-207.4			
Trim etholologia	1-	1264	0.0	200.4	155 (
	1q 1-	- 130.4	-9.9	209.4	155.0
Imethylamine	Iq	-45.7	08.0	208.5	137.9
.1	g	-23.7	98.9	287.1	91.8
std. state	aq	- 76.0	93.0	133.5	
I rimetnylamine-aluminum	с	-8/9.1			
chloride adduct		1 40 5		105 0	
Trimethylamine-borane	с	- 142.5	70.7	187.0	
Trimethylammonium ion,		110.0		106 5	
std. state	aq	- 112.9	37.2	196.7	
Trimethyl arsenite	lq	- 590.8			
Trimethylarsine	g	11.7			
1,2,3-Trimethylbenzene	lq	-58.5	107.5	267.8	216.4
1,2,4-Trimethylbenzene	lq	-61.8	102.3	284.2	215.0
1,3,5-Trimethylbenzene	lq	-63.4	103.9	273.6	209.3
2,3,4-Trimethylbenzoic acid	с	-486.6			
2,3,5-Trimethylbenzoic acid	с	-488.7			
2,3,6-Trimethylbenzoic acid	с	- 475.7			
2,4,5-Trimethylbenzoic acid	с	- 495.7			
2,4,6-Trimethylbenzoic acid	с	- 477.9			
3,4,5-Trimethylbenzoic acid	с	- 500.9			
2,6,6-Trimethylbicyclo-[3.1.1]- 2-heptene	lq	16.4			
Trimethylbismuthine	g	192.9			
Trimethylborane	g	- 124.3	-35.9	314.7	88.5
2,2,3-Trimethylbutane	g	-204.5	4.3	383.3	164.6
2,2,3-Trimethylbutane	lq	-236.5		292.2	213.5
2,3,3-Trimethyl-1-butene	lq	-117.7			
Trimethylchlorosilane	lq	-382.8	-246.4	278.2	
	g	-352.8	-243.5	369.1	
cis, cis-1,3,5-Trimethyl-	g	-215.4	33.9	390.4	179.6
cyclonexane	1.	06.0			
1,1,2-1 rimethylcyclopropane	lq	- 96.2			
Trimethylene oxide (Oxetane)	lq	-110.8	0.0	072.0	
	g	- 80.5	-9.8	273.9	
Trimethylgallium	g	- 46.9			
2,3,5-Trimethylhexane	lq	-284.0			
Trimethylindium	g	170.7			
2,2,3-Trimethylpentane	lq	-256.9	9.3	327.6	188.9
	g	-220.0	17.1	425.2	
2,2,4-Trimethylpentane	lq	-259.2	6.9	328.0	239.1
	g	-224.0	13.7	423.2	
2,3,3-Trimethylpentane	lq	-253.5	10.6	334.4	245.6
	g	-216.3	18.9	431.5	
2,3,4-Trimethylpentane	lq	-255.0	10.7	329.3	247.3
2,2,4-Trimethyl-3-pentanone	lq	-381.6			
2,4,4-Trimethyl-1-pentene	lq	- 145.9	86.4	306.3	

TABLE 2.53	Enthalpies and	Gibbs Energies of	f Formation,	Entropies,	and Heat	Capacities	of Organie
Compounds (C	Continued)						

			1 50	60	<i>a</i> ^
Substance	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S° I daa=l mat=l	C_p°
Substance	state	KJ · IIIOI	KJ · IIIOI	J · deg ·moi	J · deg · moi
2,4,4-Trimethyl-2-pentene	lq	-142.4	88.0	311.7	
Trimethylphosphine	lq	- 122.2			
Trimethylphosphine oxide	с	-477.8			
Trimethyl phosphite	lq	-741.0			
Trimethylsilane	g			331.0	117.9
Trimethylsilanol	lq	-545.0			
Trimethylstibine	g	32.2			
Trimethylsuccinic acid	с	-1000.8			
Trimethylsuccinic anhydride	с	-688.3			
Trimethylthiacyclopropane	lq	-60.5			
Trimethyltin bromide	lq	- 185.4			
Trimethyltin chloride	lq	-213.0			
Trimethylurea	с	- 330.5			
Trinitroacetonitrile	lq	183.7			
2,4,6-Trinitroanisole	с	-157.3			
1,3,5-Trinitrobenzene	с	-37.2			
1,1,1-Trinitroethane	lq	- 96.9			
Trinitroglycerol	lq	- 370.9			
Trinitromethane	lq	-32.8			
	g	-0.2			
2,4,6-Trinitrophenetole	с	-204.6			
2,4,6-Trinitrophenol	с	-214.3			
2,4,6-Trinitrophenylhydrazine	с	36.8			
2,4,6-Trinitrotoluene	с	-65.5			
2,4,6-Trinitro-1,3-xylene	с	-102.5			
Trioctylamine	lq	- 584.9			
1,3,6-Trioxacyclooctane	lq	-515.9			
1,3,5-Trioxane	с	-522.5		133.0	114.4
Triphenylamine	с	234.7	504.2		
Triphenylarsine	с	310.0			
Triphenylbismuthine	с	469.0			
Triphenylborane	с	48.5			
Triphenylene	с	151.8	329.2	254.7	
1,1,1-Triphenylethane	с	157.2			
1,1,2-Triphenylethane	с	130.2			
Triphenylethylene	с	233.5	514.6		
2,4,6-Triphenylimidazole	с	272			
Triphenylmethane	с	171.2	412.5	312.1	295.0
Triphenylmethanol	с	-3.4	272.8	329.3	
Triphenyl phosphate	с	-757			
Triphenylphosphine	с	232.2			
Triphenylphosphine oxide	с	-60.3			
Triphenylstibine	с	329.3			
Tripropoxyborane	lq	-1127.2			
Tripropylamine	lq	-207.2			
Tripropynylamine	lq	814.2			
Tris(acetylacetonato)-	с	-1533.0			
chromium					
Tris(diethylamino)phosphine	lq	-289.5			
1,1,1-Tris(hydroxymethyl)-	с	- 744.6			
ethane					

TABLE 2.53 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (*Continued*)

	Physical	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	C_p°
Substance	state	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$	$J \cdot deg^{-1} \cdot mol^{-1}$
Tris(hydroxymethyl)nitro- methane	с	-735.6			
Tris(isopropoxy)borane	lq	-293.3			
Tris(trimethylsilyl)amine	c	-725.1			
(-)-Tryptophane	с	-415.3	-119.4	251.0	238.2
(-)-Tyrosine	с	-685.1	- 385.7	214.0	216.4
Undecane	lq	-327.2	22.8	458.1	344.9
Undecanoic acid	c	-735.9			
1-Undecanol	lq	-504.8			
1-Undecene	g	-144.8	129.5	579.4	246.7
10-Undecenoic acid	c	- 577			
Uracil	с	-429.4			120.5
Urea	с	-333.1	- 196.8	104.6	93.1
	g	-245.8			
Urea nitrate	c	-564.0			
Urea oxalate	с	-1528.4			
5-Ureidohydantoin	с	-718.0	-434.0	195.1	
Uric acid	с	-618.8	-358.8	173.2	166.1
(±)-Valine	с	-628.9	- 359.0	178.9	168.8
Valylphenylalanine	с	-767.8			
Vinyl acetate	g	-314.4			
Vinylbenzene	lq	103.8			
Vinylcyclohexane	lq	-88.7			
4-Vinylcyclohexene	lq	26.8			
Vinylcyclopentane	lq	-34.8			
Vinylcyclopropane	lq	122.5			
2-Vinylpyridine	lq	157.1			
Xanthine	с	- 379.6	- 165.9	161.1	151.3
Xanthone	с	- 191.5			
1,2-Xylene	lq	-24.4	110.3	246.5	186.1
	g	19.1	122.1	352.8	133.3
1,3-Xylene	lq	-25.4	107.7	252.2	183.3
	g	17.3	118.9	357.7	127.6
1,4-Xylene	lq	-24.4	110.1	247.4	181.5
	g	18.0	121.1	352.4	126.9
Xylitol	с	-1118.5			
D-(+)-Xylose	с	-1057.8			

TABLE 2.53	Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic
Compounds (C	Continued)

TABLE 2.54Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds

Abbreviations Used in the Table

 ΔHm , enthalpy of melting (at the melting point) in $kJ \cdot mol^{-1}$

 ΔHv , enthalpy of vaporization (at the boiling point) in $kJ \cdot mol^{-1}$

 ΔHs , enthalpy of sublimation (or vaporization at 298 K) in $kJ \cdot mol^{-1}$

 C_p , specific heat (at temperature specified on the Kelvin scale) for the physical state in existence (or specified: c, lq, g) at that temperature in $J \cdot K^{-l} \cdot mol^{-l}$

 ΔHt , enthalpy of transition (at temperature specified, superscript, measured in degrees Celsius) in $kJ \cdot mol^{-1}$

					C_p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
Acenaphthene	21.54	54.73	86.2					
Acenaphthylene			73.0					
Acetaldehyde	3.24	25.8	25.5	66.3(g)	85.9	101.3	112.5	
Acetamide	15.71	56.1	78.7	-				
Acetanilide		64.7	80.8					
Acetic acid	11.54	23.7	23.4	79.7	106.2	125.5	139.3	
Acetic anhydride	10.5	38.2	48.3	129.1	174.1	204.6	226.4	
Acetone	5.69	29.1	31.0	92.1	122.8	144.9	162.0	
Acetonitrile, $\Delta Ht = 0.22^{-56}$	8.17	29.8	32.9	61.2	76.8	89.0	98.3	
Acetophenone		38.8	55.9					
Acetyl bromide			33.1					
Acetyl chloride			30.1	78.9	97.0	110.0	119.7	
Acetylene	3.8	17.0	21.3	50.1	58.1	63.5	68.0	
Acetylene- d_2				54.8	61.9	67.4	71.8	
Acetylenedicarbonitrile			28.8	94.8	106.2	114.1	119.8	
Acetyl fluoride			25.1					
Acetyl iodide			38.5					
Acrylic acid	11.16	44.1	54.3	96.0	123.4	142.0	155.3	
Acrylonitrile	6.23	32.6	33.5	76.8	96.7	110.6	120.8	
Adamantane			59.7					
Adenine			108.8					
α -Alanine			138.1					
Allyl tert-butyl sulfide			44.4					
Allyl ethyl sulfone			83.7					
Allyl ethyl sulfoxide			71.6					
Allyl methyl sulfone			79.5					
Allyl trichloroacetate			52.3					
3-Aminoacetophenone	12.1							
4-Aminoacetophenone	15.9							
2-Aminobenzoic acid	20.5		104.9					
3-Aminobenzoic acid	21.8		128.0					
4-Aminobenzoic acid	20.9		116.1					
2-Aminoethanol	20.5	50.9						
Aniline	10.56	42.4	55.8	143.0	192.8	225.1	230.9	
Anthracene	28.83	56.5	101.5					
9,10-Anthraquinone		88.5	112.1					
cis-Azobenzene	22.04		92.9					
trans-Azobenzene	22.6	93.8						
Azobutane			49.3					
Azomethane				93.9	123.1	145.7	162.6	
Azomethane-d ₆				110.7	142.8	165.2	180.6	

					C_p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
Azoisopropane			36.0					
Azopropane			39.9					
trans-Azoxybenzene	17.93							
Azulene	12.1	55.5	76.8	176.4	248.2	295.4	327.4	
Benzaldehyde	9.32	42.5	49.8					
Benzamide	18.49							
1,2-Benzanthracene			123.0					
2,3-Benzanthracene			126					
1,2-Benzanthracene-9,10-dione			82.8					
Benzene	9.95	30.7	33.8	113.5(g)	160.1	190.5	211.4	
Benzeneacetic acid	14.49							
1,3-Benzenedicarboxylic acid			106.7					
1,4-Benzenedicarboxylic acid			98.3					
Benzenethiol	11.48	39.9	47.6					
Benzil	23.54							
Benzoic acid	18.06	50.6	91.1	138.4	196.7	234.9	260.7	
Benzoic anhydride	17.2		96.4					
Benzonitrile	10.88	45.9	52.5	140.8	187.4	217.9	238.8	
Benzo[def]phenanthrene	17.1		100.2					
Benzophenone	18.19		94.1					
1,4-Benzoquinone	18.53		62.8					
Benzo[f]quinoline			83.1					
Benzo[h]quinoline			80.8					
Benzo[b]thiophene, $\Delta Ht = 3.0^{-11.6}$	11.8							
Benzotrifluoride			37.6					
Benzoyl bromide			58.6					
Benzoyl chloride			54.8					
Benzoyl iodide			61.9					
4-Benzphenanthrene			106.3					
Benzyl acetate		49.4						
Benzyl alcohol	8.97	50.5	60.3					
Benzylamine			60.2					
Benzyl benzoate		53.6	77.8					
Benzyl bromide			47.3					
Benzyl chloride			51.5					
Benzyl ethyl sulfide			56.9					
Benzyl iodide			47.3					
Benzyl mercaptan			56.6					
Benzyl methyl ketone			49.0					
Benzyl methyl sulfide			53.6					
Bicyclo[1.1.0]butane			23.4					
Bicyclo[2.2.1]hepta-2,5-dione		32.9						
Bicyclo[2.2.1]heptane			40.2					
Bicyclo[4.1.0]heptane			38.0					
Bicyclo[2.2.1]-2-heptene			38.8					
Bicyclo[3.1.0]hexane			32.8					
Bicyclohexyl			58.0					
Bicyclo[2.2.2]octane			48.0					
Bicyclo[4.2.0]octane			42.0					
Bicyclo[5.1.0]octane			43.5					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Cor	npounds (Continued)

					<i>C</i> _p					
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K			
Bicyclo[2.2.2]-2-octene			43.8							
Bicyclopropyl			33.5							
Biphenyl	18.6	45.6	81.8	221.0	307.7	363.7	401.7			
Biphenylene			84.3							
Bis(2-butoxyethyl) ether		55.9								
Bis(2-chloroethyl) ether	8.66	45.2								
Bis(2-ethoxyethyl) ether		49.0								
Bis(2-ethoxymethyl) ether		36.2	44.7							
Bis(2-hydroxyethyl) ether		52.3	57.3							
Bis(2-methoxyethyl) ether		43.1								
Bromobenzene	10.62	37.9	44.5	127.4	171.5	199.9	219.2			
4-Bromobenzoic acid			87.9							
1-Bromobutane	6.69	32.5	36.7	136.6	180.0	211.2	234.4			
(±)-2-Bromobutane	6.89	30.8	34.4	138.1	214.7	238.2				
1-Bromo-2-chloroethane		33.7	38.2							
Bromochloromethane		30.0	32.8							
1-Bromo-3-chloropropane		37.6	44.1							
1-Bromo-2-chloro-1,1,2-trifluoroethane		28.3	30.1							
Bromochloro-2,2,2-trifluoroethane		28.1	29.8							
1-Bromododecane		74.8								
Bromoethane	5.86	27.0	28.0	79.2	102.8	119.6	132.2			
Bromoethylene	5.12	23.4	18.2	66.6	83.0	94.1	102.3			
1-Bromoheptane			50.6			74.8				
1-Bromohexadecane			94.4							
1-Bromohexane			45.9							
Bromomethane, $\Delta Ht = 0.47^{-99.4}$	5.98	23.9	22.8	50.0	62.7	72.2	79.5			
1-Bromo-2-methylpropane		31.3	34.8							
2-Bromo-2-methylpropane $\Delta Ht = 5.7^{-64.5}$	1.97	29.2	31.8	146.1	190.7	220.3	241.6			
$\Delta Ht = 1.0^{-41.6}$										
1-Bromonaphthalene	15.16	39.3	52.5							
1-Bromooctane			55.8							
1-Bromopentane	11.46	35.0	41.3	165.6	219.0	257.5	286.0			
1-Bromopropane	6.53	29.8	32.0	107.5	140.8	164.9	182.8			
2-Bromopropane		28.3	30.2	110.2	144.0	167.7	185.2			
3-Bromopropene		30.2	32.7							
Bromotrichloromethane	2.54									
Bromotrifluoromethane				79.3	91.3	97.5	100.9			
Bromotrimethylsilane			32.6							
1,2-Butadiene	7.0	24.0	23.2	98.4	128.5	150.7	167.4			
1,3-Butadiene	7.98	22.5	20.9	101.2	154.1	169.5				
1,3-Butadiyne				84.4	96.8	105.1	111.3			
Butanal	11.09	31.5	34.5	126.4	165.7	195.0	216.3			
Butanamide	17.6		85.9							
Butane, $\Delta Ht = 2.1^{-165.6}$	4.66	22.4	21.0	123.9	168.6	201.8	226.9			
1,2-Butanediamine			46.3							
Butanedinitrile	3.7	48.5	70.0							
1,3-Butanediol		58.5	67.8							
1,4-Butanediol			76.6							
2,3-Butanediol			59.2							

						C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K			
2,3-Butanedione			38.7							
1,4-Butanedithiol			55.1							
Butanenitrile	5.02	33.7	39.3	118.8	155.1	181.9	201.8			
meso-1,2,3,4-Butanetetrol			135.1							
1,4-Butanedithiol			49.7							
1-Butanethiol	10.46	32.2	36.6	146.2	194.7	233.0	263.4			
2-Butanethiol	6.5	30.6	34.0	148.0	194.2	227.2	251.1			
1,2,4-Butanetriol		58.6								
Butanoic acid	11.08	41.8	40.5							
Butanoic anhydride		50.0								
1-Butanol	9.28	43.3	52.3	137.2	183.7	218.0	243.8			
2-Butanol		40.8	49.7	141.0	187.1	220.4	245.3			
2-Butanone	8.44	31.3	34.8	124.7	163.6	192.8	214.8			
trans-2-Butenal			34.5							
1-Butene	3.9	22.1	20.2	109.0	147.1	174.9	195.9			
cis-2-Butene	7.58	23.3	22.2	101.8	141.4	171.0	193.1			
trans-2-Butene	9.8	22.7	21.4	108.9	145.6	184.9	194.9			
cis-2-Butenedinitrile			72.0							
cis-2-Butenedioic acid			110.0							
trans-2-Butenedioic acid			136.3							
cis-2-Butene-1,4-diol		66.1								
trans-2-Butene-1,4-diol		69.0								
cis-2-Butenenitrile			38.9							
trans-2-Butenenitrile			40.0							
3-Butenenitrile			40.0							
cis-2-Butenoic acid	12.57									
trans-2-Butenoic acid	12.98									
cis-2-Buten-1-ol		46.4								
1-Buten-3-yne				89.0	111.6	127.2	138.7			
2-Butoxyethanol			56.6							
1-tert-Butoxy-2-ethoxyethane			50.9							
2-(2-Butoxyethoxy)ethanol		28.0								
2-Butoxyethyl acetate			59.5							
1-tert-Butoxy-2-methoxyethane		38.5	47.8							
N-Butylacetamide			76.1							
Butyl acetate		36.3	43.9							
tert-Butyl acetate		33.1	38.0							
Butylamine		31.8	35.7	148.3	197.9	234.4	261.7			
sec-Butylamine		29.9	32.8	148.1	199.0	236.1	261.7			
tert-Butylamine	0.88	28.3	29.6	152.6	204.5	240.5	266.9			
Butylbenzene	11.22	38.9	51.4	229.1	314.6	373.9	416.3			
sec-Butylbenzene	9.83	38.0	48.0							
tert-Butylbenzene	8.39	37.6	47.7							
sec-Butyl butanoate			47.3							
Butyl chloroacetate			51.0							
Butyl 2-chlorobutanoate			52.7							
Butyl 3-chlorobutanoate			53.1							
Butyl 4-chlorobutanoate			54.4							
Butyl 2-chloropropanoate			54.4							
Butyl 3-chlorobutanoate			55.4							

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Con	mpounds (Continued)

				<i>C</i> _p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
Butyl crotonate			51.9					
sec-Butyl crotonate			49.4					
Butylcyclohexane	14.16	38.5	49.4	276.1	289.5	469.9	525.9	
Butylcyclopentane	11.3	36.2	45.9	241.7	336.3	407.3	480.3	
N-Butyldiacetimide			64.4					
Butyl dichloroacetate			52.3					
Butylethylamine		34.0	40.2					
Butyl ethyl ether		31.6	36.3					
Butyl ethyl sulfide	12.4	37.0	44.5	202.4	271.8	325.3	367.2	
tert-Butyl ethyl sulfide	7.1	33.5	39.3					
Butyl formate		36.6	41.1					
tert-Butyl hydroperoxide			47.7					
Butylisopropylamine		34.5	42.1					
Butyllithium			107.1					
Butyl methyl ether		29.6	32.4					
sec-Butyl methyl ether		28.1	30.2					
tert-Butyl methyl ether		27.9	29.8					
Butyl methyl sulfide	12.5	34.5	40.5	174.6	233.0	278.4	314.1	
tert-Butyl methyl sulfide	8.4	31.5	35.8					
Butyl methyl sulfone			76.2					
tert-Butyl methyl sulfone			82.4					
Butyl octadecanoate	56.90							
tert-Butyl peroxide			31.8					
Butyl propyl ether		33.7	40.2					
Butyl thiolacetate			48.1					
Butyl trichloroacetate			53.6					
Butyl vinyl ether		31.6	36.2					
1-Butyne	6.0	24.5	23.3	99.9	129.0	150.4	166.7	
2-Butyne	9.23	26.5	26.6	94.6	124.2	147.0	164.4	
2-Butynedinitrile			28.8					
4-Butyrolactone	9.57	52.2						
Butyrophenone			60.7					
(+)-Camphor	6.84	59.5						
9H-Carbazole	26.9		84.5					
Chloroacetic acid	12.28		75.3					
Chloroacetyl chloride	11.00		38.9					
2-Chloroaniline	11.88	44.4	56.8					
2-Chlorobenzaldehyde	0.64		53.1				.	
Chlorobenzene	9.61	35.2	41.0	128.1	172.2	200.4	219.6	
2-Chlorobenzoic acid	25.73		79.5					
3-Chlorobenzoic acid			82.0					
4-Chlorobenzoic acid			87.9					
Chloro-1,4-benzoquinone		20.4	69.0	105 1	150.0	010 5	224.0	
1-Chlorobutane		30.4	33.5	135.1	1/9.0	210.5	234.0	
2-Chlorobutane		29.2	31.5	130.1	180.7	212.7	236.8	
Chlore 1.1 diffuses these	0.00	22.4	43.5					
1-Unioro-1,1-difluoroethane	2.69	22.4		(5.4	70.0	97.0	00.4	
Chloro 1.4 dibuderent and	4.12	20.2	<u> </u>	65.4	/8.9	81.2	92,4	
2-Chlorodimethylsilane		26.2	09.0					

				C_p					
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
Chlorodiphenylsilane			69.5						
1-Chloro-2,3-epoxypropane		33.1	40.6						
Chloroethane	4.45	24.7		77.6	101.6	118.8	131.7		
2-Chloroethanol		41.4							
1-Chloro-2-ethylbenzene			47.3						
1-Chloro-4-ethylbenzene			48.1						
Chloroethylene	4.75	20.8		65.0	82.1	93.5	101.9		
2-Chloroethyl vinyl ether		38.2							
Chloroethyne				60.2	66.8	71.0	74.3		
1-Chloroheptane			47.7						
1-Chlorohexane		35.7	42.8						
Chlorohydroquinone			69.0						
Chloromethane	6.43	21.4	18.9	48.2	61.3	71.3	78.9		
1-Chloro-2-methylbenzene	8.37	37.5							
1-Chloro-3-methylbenzene	10.46								
1-Chloro-4-methylbenzene		38.7							
1-Chloro-3-methylbutane		32.0	36.2						
1-Chloro-2-methylpropane		29.2	31.7	136.1	180.7	212.7	236.8		
2-Chloro-2-methylpropane	2.09	27.6	29.0	142.3	184.9	215.5	238.5		
$\Delta Ht = 1.7^{-90.1}$									
$\Delta Ht = 5.8^{-53.6}$									
1-Chloronaphthalene	12.90	52.1	65.3						
2-Chloronaphthalene			82.0						
1-Chloro-3-nitrobenzene	19.37								
1-Chloro-4-nitrobenzene	20.77								
1-Chlorooctane			52.4						
Chloropentafluoroacetone			25.3						
Chloropentafluorobenzene		34.8	41.1						
Chloropentafluoroethane	1.88	19.4							
1-Chloropentane		33.2	38.2	164.2	218.0	256.8	285.6		
2-Chloropentane		31.8	36.0						
2-Chlorophenol	12.52								
3-Chlorophenol	14.91		53.1						
4-Chlorophenol	14.07		51.9						
1-Chloropropane	5.54	27.2	28.4	106.1	139.9	164.2	182.4		
2-Chloropropane	7.39	26.3	26.9	108.7	143.1	167.1	184.8		
3-Chloro-1-propene		29.0	28.2	92.6	111.0	137.8	151.9		
Chlorotrifluoroethylene	5.6	20.8							
Chlorotrifluoromethane		15.8		77.5	90.3	96.9	100.5		
Chlorotrimethylsilane		27.6	30.1						
Chlorotrinitromethane			45.4						
Chrysene	26.15		124.5						
Coronene	19.2								
1,2-Cresol	13.94	45.2	76.0	166.3	220.8	257.5	287.9		
1,3-Cresol	9.41	47.4	61.7	162.1	218.7	256.4	286.6		
1,4-Cresol	11.89	47.5	73.9	161.7	218.0	255.7	286.5		
Cubane			80.3						
Cyanamide	8.76	68.6							
Cyanogen	8.1	23.3	19.7	61.9(g)	68.2	72.9	76.4		
Cyclobutane, $\Delta Ht = 5.8^{-126.8}$	1.1	24.2	23.5	100.0	145.4	177.5	200.7		

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Cyclobutanecarbonitrile		36.9	44.3				
Cyclobutanenitrile			40.0				
Cyclobutene				90.3	126.8	151.7	169.6
Cyclobutylamine			35.6				
Cyclododecane			76.4				
Cycloheptane	1.88	33.2	38.5	175.0	261.2	322.3	365.7
$\Delta Ht = 5.0^{-138.4}$							
$\Delta Ht = 0.3^{-75.0}$							
$\Delta Ht = 0.5^{-60.8}$							
Cycloheptanone			51.9				
1,3,5-Cycloheptatriene	1.2	38.7		155.4	209.5	245.1	270.2
$\Delta Ht = 2.4^{-119.2}$							
Cyclohexane	2.63	30.0	33.0	149.9	225.2	279.3	317.2
$\Delta Ht = 6.7^{-87}$							
Cyclohexanecarbonitrile			51.9				
Cyclohexanethiol		37.1	44.6				
Cyclohexanol	1.76	45.5	62.0	172.1	248.1	302.0	339.5
$\Delta Ht = 8.2^{-9.7}$							
Cyclohexanone		40.3	45.1	150.6	221.3	2/2.0	305.4
Cyclohexene	3.29	30.5	33.5	144.9	206.9	248.9	278.7
$\Delta Ht = 4.3^{-134.4}$			50 F				
I-Cyclohexenecarbonitrile		26.1	53.5				
Cyclonexylamine	15 20	36.1	43.7				
Cyclonexylbenzene	15.30	51.0	59.9				
Cyclonexylcyclonexane		51.9	58.0				
cis, cis-1,5-Cyclooctadiene	2.41	25.0	43.4	200.1	207.1	265.2	414.2
$\Delta H = 6.2^{-1067}$	2.41	55.9	43.5	200.1	297.1	303.5	414.3
$\Delta H t = 0.5^{-894}$							
$\Delta H = 0.3^{\circ}$			511				
1 2 5 7 Cyclocetatetereana	11.2	26 1	J4.4 42.1	160.0	110.0	260 1	100 1
Cueleostere	11.5	50.4	43.1	100.9	220.8	200.4	200.2
Cyclobetelle			47.0				
Cyclopentane	0.61	27.3	20.4	1187	178 1	220.1	250.4
$\Delta H t = 4 \ 8^{-150.8}$	0.01	27.5	20.5	110.7	170.1	220.1	250.4
$\Delta Ht = 0.3^{-135.1}$							
$\Delta m = 0.5$ Cyclopentanecarbonitrile			434				
1-Cyclopentenecarbonitrile			45.0				
Cyclopentanethiol	78	35 3	414	144 5	203.6	245.2	275 5
Cyclopentanol	7.0	55.5	57.6	144.5	200.0	4-10.44	210.0
Cyclopentanone		36.4	42.7				
Cyclopentene	3 36	2011	28.1	104 9	155.6	191 5	217.3
$\Delta Ht = 0.5^{-186.1}$	0.00		-0.1		10010		21/10
Cyclopentylamine	8.31		40.2				
Cyclopropane	5.44	20.1	16.9	76.6	109.4	140.5	148.1
Cyclopropanecarbonitrile		35.6	41.9				
Cyclopropylamine	13.18		31.3				
Cyclopropylbenzene			50.2				
Cyclopropyl methyl ketone		34.1	38.4				
Decafluorobutane		22.9					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

					'p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
cis-Decahydronaphthalene	9.49	41.0	50.2	237.0	352.0	432.5	489.5	
$\Delta Ht = 2.1^{-57.1}$								
trans-Decahydronaphthalene	14.41	40.2	43.5	237.6	352.3	432.6	489.2	
Decanal				300.4	400.4	472.8	525.9	
Decane	28.78	38.8	51.4	298.1	403.2	480.8	536.4	
Decanedioic acid	40.8		160.7					
Decanenitrile			66.8					
1-Decanethiol	31.0	46.4	65.5	320.6	429.4	510.9	573.1	
Decanoic acid	28.02		118.8					
1-Decanol	37.7	49.8	81.5	187.2	418.2	495.9	553.3	
1-Decene	21.10	38.7	50.4	283.6	381.9	453.0	505.9	
$\Delta Ht = 8.0^{-74.8}$								
1-Decyne				274.6	363.8	428.5	476.6	
Deoxybenzoin			93.3					
Dibenz[de,kl]anthracene			125.5					
Dibenzoyl peroxide	31.4		102.5					
Dibenzyl ether		20.2						
Dibenzyl sulfide			93.3					
Dibenzyl sulfone			125.5					
1,2-Dibromobutane			50.3	153.9	195.4	224.3	244.8	
1,4-Dibromobutane			53.1					
2,3-Dibromobutane			37.7					
1,2-Dibromo-1-chloro-1,1,2-trifluoroethane		31.2	35.0					
1,2-Dibromocycloheptane			52.0					
1,2-Dibromocyclohexane			50.5					
1,2-Dibromocyclooctane			54.6					
1,2-Dibromoethane	10.84	34.8	41.7	99.7	122.3	137.8	149.8	
1,2-Dibromoheptane			54.4					
Dibromomethane		32.9	37.0	63.0	74.8	82.5	88.0	
1,2-Dibromopropane	8.94	35.6	41.7	124.4	157.4	179.5	195.6	
1,3-Dibromopropane	13.6		47.5					
1,2-Dibromotetrafluoroethane	7.04	27.0	28.4					
1,2-Dibutoxyethane		47.8	58.8					
Dibutoxymethane			48.1					
Dibutylamine		38.4	49.5					
N,N-Dibutyl-1-butanamine		46.9						
Dibutyl decanedioate		92.9						
Dibutyl disulfide		46.9	64.5	286.1	376.5	442.8	493.1	
Di-tert-butyl disulfide			54.3					
Dibutyl ether		36.5	45.0	254.3	340.1	403.8	451.3	
Di-sec-butyl ether		34.1	40.8					
Di-tert-butyl ether		32.2	37.6					
Dibutylmercury			63.5					
Di-tert-butyl peroxide			31.8					
Dibutyl 1,2-phthalate		79.2	91.6					
Dibutyl sulfate			75.9					
Dibutyl sulfide	19.4	41.3	53.0	259.8	348.6	420.8	475.8	
Di-tert-butyl sulfide		33.3	43.8					
Dibutyl sulfite			67.8					
Dibutyl sulfone			100.4					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Dichloroacetyl chloride			39.3				
1,2-Dichlorobenzene	12.93	39.7	50.2	142.8	184.4	210.4	227.7
1,3-Dichlorobenzene	12.64	38.6	48.6	143.0	184.5	210.4	227.7
1,4-Dichlorobenzene	17.15	38.8	49.0	143.3	184.8	210.7	227.9
2,6-Dichlorobenzoquinone			69.9				
2,2'-Dichlorobiphenyl			96.2				
4,4'-Dichlorobiphenyl			103.8				
1,2-Dichlorobutane		33.9	39.6				
1,4-Dichlorobutane			46.4				
Dichlorodifluoromethane	4.14	20.1		82.4	93.6	99.1	100.0
Dichlorodimethylsilane			34.3				
Dichlorodiphenylsilane			69.5				
1,1-Dichloroethane	8.84	28.9	30.6	91.4	113.7	128.8	139.8
1,2-Dichloroethane	8.83	32.0	35.2	92.1	112.6	127.2	138.1
1,1-Dichloroethylene	6.51	26.1	26.5	78.7	93.9	103.4	110.0
cis-1,2-Dichloroethylene	7.20	30.2	31.0	77.0	93.0	102.9	109.8
trans-1,2-Dichloroethylene	11.98	28.9	29.3	77.7	93.2	102.9	109.8
2,2-Dichloroethyl ether		38.4					
Dichlorofluoromethane		25.2		70.2	82.4	89.6	94.2
1,2-Dichlorohexafluoropropane		26.3	26.9				
1,2-Dichlorohexane			48.2				
Dichloromethane	6.00	28.1	28.8	59.6	72.4	80.8	86.8
1,2-Dichloro-4-methylbenzene	10.68						
1,2-Dichloropentane		36.5	43.9				
1,5-Dichloropentane			50.7				
(\pm) -1,2-Dichloropropane	6.40	31.8	36.0	119.7	152.6	175.6	192.8
1,3-Dichloropropane		35.2	40.8	120.0	151.5	173.9	190.4
2,2-Dichloropropane		29.3	32.6	127.9	159.2	179.9	194.8
1,3-Dichloro-2-propanol			66.9				
1,2-Dichlorotetrafluoroethane	6.32	23.3					
Dicyanoacetylene			28.8				
Dicyclopentadienyliron			73.6				
Dicyclopropyl ketone			53.7				
Diethanolamine	25.10	65.2					
1,1-Diethoxyethane		36.3	43.2				
1,2-Diethoxyethane		36.3	43.2				
Diethoxymethane		31.3	35.7				
1,3-Diethoxypropane		37.2	45.9				
2,2-Diethoxypropane			31.8				
Diethylamine		29.1	31.3	143.9	197.2	235.0	263.2
1,2-Diethylbenzene	16.8	39.4	52.8	234.4	316.6	374.6	416.3
1,3-Diethylbenzene	11.0	39.4	52.5	230.2	314.6	379.7	415.8
1,4-Diethylbenzene	10.6	39.4	52.5	228.8	313.1	372.5	414.9
Diethyl carbonate		36.2	43.6				
Diethyl disulfide	9.4	37.6	45.2	171.1	218.6	251.8	276.0
Diethylene glycol diethyl ether	13.60	49.0	58.4				
Diethylene glycol dimethyl ether		36.2	44.7				
Diethylene glycol monoethyl ether		47.5					
Diethylene glycol monomethyl ether		46.6					
Diethyl ether	7.27	26.5	27.1	138.1	183.8	218.7	244.8

				$\overline{C_p}$				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
Diethyl malonate		54.8						
Diethyl oxalate		42.0	63.5					
Diethyl peroxide			30.5					
3,3-Diethylpentane	10.09	34.6	42.0					
Diethyl 1,2-phthalate			88.3					
Diethyl sulfide	11.90	31.8	35.8	145.0	192.9	229.7	258.5	
Diethyl sulfite			48.5					
Diethyl sulfone			86.2					
Diethyl sulfoxide			62.3					
Diethylzinc			40.2					
1,2-Difluorobenzene	11.1	32.2	36.2	137.1	181.3	209.7	229.0	
1,3-Difluorobenzene	8.58	31.1	34.6	137.0	180.5	207.8	225.6	
1,4-Difluorobenzene		31.8	35.5	137.4	180.1	207.8	225.7	
2,2'-Difluorobiphenyl			95.0					
4,4'-Difluorobiphenyl			91.2					
1,1-Difluoroethane		21.6	19.1	83.4	107.5	124.3	136.3	
1,1-Difluoroethylene				71.8	89.2	100.2	107.7	
Difluoromethane				51.1	65.8	76.2	83.7	
9,10-Dihydroanthracene			93.3					
Dihydro-2H-pyran			32.2					
5,12-Dihydrotetracene			115.9					
2,3-Dihydrothiophene		33.2	37.7					
2,5-Dihydrothiophene		34.8	40.0					
2,4-Dihydrothiophene-1,1-dioxide			62.8					
1,4-Dihydroxybenzene	27.11		99.2					
1,2-Diiodobenzene			64.9					
1,2-Diiodoethane			65.7	96.0	116.8	131.3	141.6	
Diiodomethane	44.80	42.5	51.0	65.9	76.9	83.9	89.1	
Diisobutylamine			39.3					
Diisobutyl ether		34.0	40.9					
Diisobutyl sulfide			48.7					
Diisopropylamine		30.4	34.6					
Diisopropyl ether	11.03	29.1	32.1	196.2	262.0	311.3	348.0	
Diisopropylmercury			53.6					
Diisopropyl sulfide	10.4	33.8	39.6	211.9	277.1	322.7	356.6	
Diketene		36.8	42.9					
1,2-Dimethoxybenzene	16.04	48.2	66.9					
1,1-Dimethoxyethane			30.5					
1.2-Dimethoxyethane	12.60	32.4	36.4					
Dimethoxymethane	8.33		35.1					
2,2-Dimethoxypropane			29.4					
N.N-Dimethylacetamide	10.42	43.4	50.2					
Dimethylamine	5.94	26.4	25.0	87.4	118.9	142.0	159.8	
Dimethylaminomethanol			50.2					
N,N-Dimethylaminotrimethylsilane			31.8					
N,N-Dimethylaniline			52.8					
1.4-Dimethylbicyclo[2.2.1]heptane		33.3	38.9					
2,3-Dimethylbicyclo[2.2.1]-2-heptene		34.9	42.2					
2.2. Dimethylbutane	0.58	26.3	777	182.8	251.0	208 7	333 5	

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
$\Delta Ht = 5.4^{-147.3}$							
$\Delta Ht = 0.3^{-132.3}$							
2,3-Dimethylbutane	0.80	27.4	29.1	181.2	247.7	314.6	331.0
$\Delta Ht = 6.5^{-137.1}$							
2,2-Dimethyl-1-butanol		42.6	56.1				
2,3-Dimethyl-1-butanol		47.3					
3,3-Dimethyl-1-butanol		46.4					
2,3-Dimethyl-2-butanol		40.4	51.0				
(\pm) -3,3-Dimethyl-2-butanol		43.9					
3,3-Dimethyl-2-butanone		33.4	37.9				
2,3-Dimethyl-1-butene		27.4	29.2	178.2	231.8	272.0	302.1
3.3-Dimethyl-1-butene	1.1	25.7	27.1	162.8	223.4	266.1	297.1
$\Delta Ht = 4.3^{-148.3}$							
2,3-Dimethyl-2-butene	5.46	29.6	32.5	156.8	216.7	262.7	297.7
$\Delta Ht = 3.5^{-76.3}$		25.0					
Di(3-methylbutyl) ether		35.2	20.0				
Dimethylcadmium	0.07	00 F	38.0		210.0	270 5	100 6
1,1-Dimethylcyclohexane $\Delta Ht = 6.0^{-120.0}$	2.06	32.5	37.9	212.1	310.0	379.5	427.6
cis-1,2-Dimethylcyclohexane	1.64	33.5	39.7	213.8	309.6	377.0	424.3
$\Delta Ht = 8.3^{-100.6}$							
trans-1,2-Dimethylcyclohexane	10.49	33.0	38.4	217.2	312.1	378.7	425.5
cis-1,3-Dimethylcyclohexane	10.82	32.9	38.3	214.2	310.5	378.7	426.8
trans-1,3-Dimethylcyclohexane	9.86	33.4	39.2	213.8	308.8	375.7	423.0
cis-1,4-Dimethylcyclohexane	9.31	33.3	39.0	213.8	308.8	375.7	423.0
trans-1,4-Dimethylcyclohexane	12.33	32.6	37.9	215.9	312.1	378.9	425.7
1,1-Dimethylcyclopentane	1.1	30.3	33.8	182.2	262.6	318.7	359.1
$\Delta Ht = 6.5^{-126.4}$							
cis-1,2-Dimethylcyclopentane	1.7	31.7	35.7	182.7	262.4	317.9	358.0
$\Delta H t = 0.7 \text{ Is m}$	2.0	20.0	246	192.0	262.2	217.2	257 4
trans-1,2-Dimethylcyclopentane	7.2	30.9	34.0	182.9	262.2	317.3	357.4
cis-1,3-Dimethylcyclopentane	7.4	20.4	34.Z	182.9	202.2	217.2	257.4
trans-1,3-Dimethylcyclopentane	7.5	30.8	34.5	182.9	202.2	517.5	337.4
4.5 Directional 1.2 diaman			39.9				
4,5-Dimethyl-1,5-dioxane			42.5				
5,5-Dimetryi-1,5-dioxane	0.10	120	41.5	110.2	127 4	1576	172.0
Dimethyl disulide	9.19	33.8	37.9	70.6	157.4	137.0	1/2.0
Dimetnyl etner	4.94	21.5	18.5	/9.0	105.5	125.7	141.4
N,N-Dimethylformamide	10.15	38.4	40.9				
Dimethylgiyoxime	0.00		97.1				
2,2-Dimethylneptane	8.90	20.0	50.0				
2,6-Dimethyl-4-neptanone	(79	39.9	20.9				
2,2-Dimethylnexane	0.78	32.1	37.3				
2,3-Dimethylnexane		33.Z	38.8				
2,4-Dimethylnexane	10.05	32.5	37.8				
2,3-Dimethylhexane	12.95	32.3	31.9				
2.4 Dimethylhesene	6.98	32.3	37.3				
3,4-Dimethylhexane		55.2	39.0				
cis-2,2-Dimethyl-3-hexene			57.2				

					<i>C_p</i>				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
trans-2,2-Dimethyl-3-hexene			37.3						
1,1-Dimethylhydrazine	10.1	32.6	35.0						
1,2-Dimethylhydrazine		35.2	39.3						
3,5-Dimethylisoxazole			45.2						
Dimethyl maleate	14.7		44.3						
Dimethylmercury			34.6						
6,6-Dimethyl-2-methylene-		40.2	46.4						
bicyclo[3.1.1]heptane									
2,4-Dimethyloctane		36.5	47.1						
Dimethyl oxalate	21.07		47.4						
3,3-Dimethyloxetane		30.9	33.9						
2,2-Dimethylpentane	5.86	29.2	32.4	211.0	285.9	340.7	381.6		
2,3-Dimethylpentane		30.5	34.3	211.0	285.9	340.7	381.6		
2,4-Dimethylpentane	6.69	29.6	32.9	211.0	285.9	340.7	381.6		
3,3-Dimethylpentane	7.07	29.6	33.0	211.0	285.9	340.7	381.6		
2,2-Dimethyl-3-pentanone		36.1	42.3						
2,4-Dimethyl-3-pentanone	11.18	34.6	41.5						
2,4-Dimethyl-1-pentene			33.2						
4,4-Dimethyl-1-pentene			29.0						
2,4-Dimethyl-2-pentene			34.4						
cis-4,4-Dimethyl-2-pentene			32.7						
trans-4,4-Dimethyl-2-pentene			32.7						
2,7-Dimethylphenanthrene			106.7						
4,5-Dimethylphenanthrene			104.6						
9,10-Dimethylphenanthrene			119.5						
2,3-Dimethylphenol	21.02		84.0						
2,4-Dimethylphenol		47.1	65.0						
2,5-Dimethylphenol	23.38	46.9	85.0						
2,6-Dimethylphenol	18.90	44.5	75.3						
3,4-Dimethylphenol	18.13	49.7	85.0						
3,5-Dimethylphenol	18.00	49.3	82.0						
Dimethyl 1,2-phthalate	162.7								
2,2-Dimethylpropane	3.10	22.7	21.8	157.1	218.5	254.3	283.7		
$\Delta Ht = 2.6^{-133.1}$									
2,2-Dimethylpropanenitrile		32.4	37.3						
2,2-Dimethyl-1-propanol		9.6							
2,3-Dimethylpyridine		39.1	47.7						
2,4-Dimethylpyridine		38.5	47.5						
2,5-Dimethylpyridine			47.8						
2,6-Dimethylpyridine	10.04	37.5	45.4						
3,4-Dimethylpyridine		40.0	50.5						
3,5-Dimethylpyridine		39.5	49.5						
Dimethyl sulfate			48.5						
Dimethyl sulfide	7.99	27.0	27.7	88.4	113.0	132.2	147.2		
Dimethyl sulfite			40.2						
Dimethyl sulfone			77.0						
Dimethyl sulfoxide	14.37	43.1	52.9						
2,2-Dimethylthiacyclopropane			35.8						
Dimethylzinc			29.5						
Dinitromethane			46.0						

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

					C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
2,4-Dinitrophenol			104.6						
2,6-Dinitrophenol			112.1						
1,1-Dinitropropane			62.5						
1,3-Dioxane		34.4	39.1						
1,4-Dioxane	12.85	34.2	38.6	126.5	181.8	218.2	243.3		
$\Delta Ht = 2.4^{-0.3}$									
1,3-Dioxolane	27.48		35.6						
Diphenylamine	17.86		89.1						
Diphenyl carbonate	23.4		90.0						
Diphenyl disulfide			95.0						
Diphenyl disulfone			161.9						
Diphenylenimine			84.5						
1,2-Diphenylethane		51.5	91.4						
1,1-Diphenylethylene			73.2						
Diphenyl ether	17.22	48.2	67.0						
6,6-Diphenylfulvene			104.6						
Diphenylmercury			112.8						
Diphenylmethane	18.2		67.5						
1,3-Diphenyl-2-propanone			89.1						
Diphenyl sulfide			67.8						
Diphenyl sulfone			106.3						
Diphenyl sulfoxide			97.1						
1,2-Dipropoxyethane			50.6						
Dipropylamine		33.5	40.0						
Dipropyl disulfide	13.8	41.9	54.1	186.2	298.3	350.2	390.0		
Dipropyl ether	8.83	31.3	35.7	196.2	262.0	311.3	348.0		
Dipropylmercury			55.2						
Dipropyl sulfate			66.9						
Dipropyl sulfide	12.1	36.6	44.2	201.7	272.5	328.2	372.6		
Dipropyl sulfite			58.6						
Dipropyl sulfone			79.9						
Dipropyl sulfoxide			74.5						
Divinyl ether			26.2						
Divinyl sulfone			56.5						
Dodecane	36.55	44.5	61.5	356.2	481.3	572.2	656.5		
Dodecanedioic acid			153.1						
Dodecanenitrile			76.1						
Dodecanoic acid	36.64		132.6						
Dodecanol	31.4	63.5	92.0						
1-Dodecene	17.42	44.0	60.8	341.8	460.0	545.6	608.8		
$\Delta Ht = 4.6^{-60.2}$									
1,2-Epoxybutane		30.3							
1,2-Epoxypropane		21.6							
Ergosterol			118.4						
Ethane	2.86	14.7	5.2	65.5	89.3	108.0	122.6		
Ethane-d ₆				81.7	108.5	127.4	140.5		
1,2-Ethanediamine	22.58	38.0	45.0						
1,2-Ethanediol	11.23	50.5	67.8	113.2	136.9	166.9			
1,2-Ethanediol diacetate		45.5	61.4						
1,2-Ethanedithiol		37.9	44.7						

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

					C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
Ethanethiol	4.98	26.8	27.3	88.2	113.9	133.2	148.0		
Ethanol	5.02	38.6	42.3	81.2	107.7	127.2	141.9		
Ethanolamine	20.50	49.8							
Ethoxybenzene		40.7	51.0						
2-Ethoxyethanol		39.2	48.2						
2-(2-Ethoxyethoxy)ethanol		47.5							
2-(2-Ethoxyethoxy)ethyl acetate		91.2							
2-Ethoxyethyl acetate			52.7						
1-Ethoxy-2-methoxyethane		34.3	39.8						
N-Ethylacetamide			64.9						
Ethyl acetate	10.48	31.9	35.6	137.4	182.6	213.4	234.5		
Ethyl acrylate		34.7							
Ethylamine		28.0	26.6	90.6	119.6	141.8	158.5		
N-Ethylaniline			52.3						
Ethylbenzene	9.18	35.6	42.2	170.5	236.1	281.0	312.8		
2-Ethylbenzoic acid			100.7						
3-Ethylbenzoic acid			99.1						
4-Ethylbenzoic acid			97.5						
2-Ethyl-1-butanol		43.2	63.2						
Ethyl butanoate		35.5	42.7						
2-Ethylbutanoic acid		51.2							
2-Ethyl-1-butene		28.8	31.1	170.3	228.0	269.5	300.8		
Ethyl trans-2-butenoate			44.4						
Ethyl chloroacetate		40.4	49.5						
Ethyl 4-chlorobutanoate			52.7						
Ethyl chloroformate			42.3						
Ethyl trans-cinnamate		58.6							
Ethyl crotonate			44.3						
Ethyl cyanoacetate		64.4							
Ethylcyclobutane		28.7	31.2						
Ethylcyclohexane	8.33	34.0	40.6	215.9	310.0	377.0	423.8		
1-Ethylcyclohexene			43.3						
Ethylcyclopentane	6.9	32.0	36.4	183.6	258.2	314.7	356.3		
1-Ethylcyclopentene		38.5							
Ethyl dichloroacetate			50.6						
Ethyl 2,2-dimethylpropanoate		34.5	41.2						
Ethylene	3.35	13.5		53.1	70.7	83.8	93.9		
Ethylene-d ₄				63.9	82.3	95.6	104.9		
Ethylene carbonate	13.19	50.1	73.2						
2,2'-(Ethylenedioxy)bis(ethanol)		71.4	79.1						
Ethylene glycol (see 1,2-Ethanediol)									
Ethylene glycol diacetate			61.4						
Ethylene oxide	5.2	25.5	24.8	62.6	86.3	102.9	114.9		
Ethylenimine		30.3	34.6	70.4	98.6	117.7	131.6		
N-Ethylformamide			58.4						
Ethyl formate	9.20	29.9	32.0						
2-Ethylhexanal			49.0						
2-Ethylhexane		33.6	39.6						
Ethyl hexanoate			51.7						
2-Ethylhexanoic acid		56.0	75.6						

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

					<i>C_p</i>				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
2-Ethyl-1-hexanol		45.2							
2-Ethylhexyl acetate		43.5	48.1						
2-Ethyl hydroperoxide			43.1						
Ethylidenecyclohexane			42.0						
Ethylidenecyclopentane		18.1							
Ethyl isocyanide			33.5						
Ethyl isopentanoate	8.7	43.9							
Ethyl isopentyl ether		33.0	39.0						
Ethylisopropylamine		29.9	33.1						
Ethyl isopropyl ether		28.2	30.1						
Ethyl isopropyl sulfide	8.7	32.7	37.8						
Ethyl lactate		46.4	49.4						
Ethyllithium			116.7						
Ethylmercury bromide			76.6						
Ethylmercury chloride			76.1						
Ethylmercury iodide			79.5						
1-Ethyl-2-methylbenzene	10.0	38.9	47.7	202.9	275.3	326.8	363.6		
1-Ethyl-3-methylbenzene	7.6	38.5	46.9	198.7	273.6	325.5	363.2		
1-Ethyl-4-methylbenzene	13.4	38.4	46.6	197.5	272.0	324.7	362.2		
Ethyl 2-methylbutanoate			44.4						
Ethyl 3-methylbutanoate		37.0	43.9						
2-Ethyl-3-methyl-1-butene		0.770	34.5						
1-Ethyl-1-methylcyclopentane		33.2	38.9						
Ethyl methyl ether		26.7	2017	109.1	144.7	172.3	193.2		
3-Ethyl-2-methylpentane	11 34	32.9	38 5	10711					
3-Ethyl-3-methylpentane	10.84	32.9	38.0						
3-Ethyl-2-methyl-1-pentene	10.01	52.0	37.5						
Ethyl 2-methylpropapoate		33.7	39.8						
Ethyl methyl sulfide	9.8	29.5	31.9	116.4	152.3	179.6	200.6		
Ethyl nitrate	8.5	33.1	36.3	120.2	155.1	178.7	195.4		
1-Ethyl-2-nitrobenzene	0.5	55.1	59.8	120.2	155.1	170.7	175.4		
1-Ethyl-4-nitrobenzene			62.8						
3.Ethylpentane	0.55	31.1	35 2	211.0	285 0	340.7	381.6		
Ethyl pentanoate	5.55	37.0	47.0	211.0	205.7	540.7	501.0		
Ethyl pentul ether		34.4	41.0						
2-Ethylphenol		57.7	63.6						
2-Ethylphenol			68.2						
4-Ethylphenol			80.3						
Fthylphosphonic acid			50.5						
Ethylphosphonic dichloride			12.7						
Ethylphospholic dichloride		33.0	30.2						
Ethyl propul ather		28.0	31.4						
Ethyl propyl culfde	10.6	20.9	40.0	172.2	222.7	270.0	315.6		
Ethyl trichloropastate	10.0	34.2	51.0	175.5	232.1	219.0	515.0		
S Ethyl thickectate	24.4	40.0	51.0						
S-Emplandacetate	54.4	40.0	10 =						
Euryi Z-Villylaci ylaic Ethyl yinyl othor		76.7	40.J 26 6						
Euryr villyr ether	10 07	20.2	20.0						
	10.0/		99.2						
9/1-Fluorene	19.38	21.0	210	105 5	171.0	200.1	220.0		
Fluorobenzene	11.31	51.2	34.6	125.5	1/1.0	200.1	220.0		

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

				C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
4-Fluorobenzoic acid			91.2					
Fluoroethane				74.1	98.6	116.4	129.7	
Fluoromethane		16.7		44.2	57.9	68.8	77.2	
1-Fluorooctane		40.4	49.7					
1-Fluoropropane				102.7	137.3	162.7	181.5	
2-Fluoropropane				103.5	138.7	163.8	182.2	
2-Fluorotoluene		35.4						
4-Fluorotoluene	9.4	34.1	39.4	152.4	207.9	245.2	271.3	
Fluorotrichloromethane		25.0						
Fluorotrinitromethane			34.7					
Formaldehyde		23.3		39.2(g)	48.2	55.9	62.0	
Formamide	6.69		60.2					
Formic acid	12.7	22.7	20.1	53.8	67.0	76.8	83.5	
Formyl fluoride		21.7		46.4	56.2	63.1	67.9	
Fumaric acid			136.0					
Fumaronitrile			72.0					
Furan, $\Delta Ht = 2.1^{-123.2}$	3.80	27.1	27.5	88.7	122.6	164.9	158.5	
2-Furancarboxaldehyde	14.35	43.2	50.6					
2-Furancarboxylic acid			108.5					
Furanmethanol	13.13	53.6	64.4					
Glutaric acid	20.9							
Glycerol	18.28	61.0	85.8					
Glyceryl triacetate			85.7					
Glyceryl tributanoate			107.1					
Glyceryl trinitrate	21.87		100.0					
Heptadecane, $\Delta Ht = 11.0^{11.1}$	40.5	52.9	86.0	501.4	676.8	803.7	897.9	
Heptadecanoic acid	58.8							
1-Heptadecene	31.4	51.8	85.0	486.9	655.5	777.1	866.9	
1-Heptanal	23.6		47.7	213.4	283.3	333.9	371.1	
Heptane	14.16	31.8	36.6	211.0	285.9	340.7	381.6	
1-Heptanenitrile			51.9					
1-Heptanethiol	25.4	39.8	50.6	233.5	312.1	372.0	418.4	
Heptanoic acid			74.0					
1-Heptanol	13.2	48.1	66.8	224.4	300.9	357.0	392.5	
2-Heptanol		49.8						
3-Heptanol		42.5						
2-Heptanone		38.3	47.2					
4-Heptanone		36.2						
1-Heptene, $\Delta Ht = 0.3^{-136}$	12.66	31.1	35.5	196.5	264.6	314.1	351.0	
trans-2-Heptene	11.72							
Heptylamine			50.0					
Heptyl methyl ether			46.9					
Hexachlorobenzene	23.85		92.6	201.2	233.4	250.9	260.8	
Hexachloroethane, $\Delta Ht = 8.0^{71.3}$	9.8	45.9	59.0	151.5	166.6	173.6	177.3	
Hexadecafluoroethylcyclohexane			38.5					
Hexadecafluoroheptane			36.4					
Hexadecane	51.8	51.2	81.4	472.3	687.7	757.4	846.0	
Hexadecanoic acid	42.04		154.4					
1-Hexadecanol, $\Delta Ht = 16.6^{34}$	34.29		169.5	485.7	652.7	773.6	863.2	
1-Hexadecene	30.2	50.4	80.3	457.9	616.4	731.82	815.0	

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusio	n, Vaporization	, Sublimation,	and Specific	Heat at	Various	Temperatures
of Organic Co	mpounds (Con	tinued)					

				C_p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Hexadienoic acid	13.6						
Hexafluoroacetone		19.8	21.3				
Hexafluoroacetylacetone		27.1	30.6				
Hexafluorobenzene	11.58	31.7	35.7	183.6	219.9	241.1	253.7
Hexafluoroethane, $\Delta Ht = 3.7^{-169.2}$	2.7	16.2		125.6	149.0	160.7	166.8
cis-Hexahydroindane			57.5				
trans-Hexahydroindane			56.1				
Hexamethylbenzene	20.6	48.2	74.7	310.4	406.4	474.9	525.3
$\Delta Ht = 1.1^{-156.7}$							
$\Delta Ht = 1.8^{110.7}$							
1,1,1,3,3,3-Hexamethyldisilazane			41.4				
Hexamethyldisiloxane			37.2				
Hexamethylphosphoric triamide	14.28						
Hexanal				184.2	243.9	287.4	319.7
Hexanamide	25.1		98.7				
Hexane	13.08	28.9	31.6	181.9	246.8	294.4	330.1
1,6-Hexanedioic acid	34.85		129.3				
1,6-Hexanediol	25.5		83.3				
Hexanenitrile		38.0	47.9				
1-Hexanethiol	18.0(1)	37.2	45.8	204.5	273.1	325.1	366.7
Hexanoic acid	15.40	71.1	72.2				
1-Hexanol	15.40	44.5	61.6	195.3	261.8	310.7	346.9
2-Hexanol		41.0	58.5				
3-Hexanol	44.3	46.0					
2-Hexanone	14.90	36.4	43.1				
3-Hexanone	13.49	35.4	42.5				
1-Hexene	9.35	28.3	30.6	167.5	225.5	267.9	299.3
cis-2-Hexene	8.86	29.1	32.2	161.5	221.8	165.3	297.9
trans-2-Hexene	8.26	28.9	31.6	166.1	223.4	266.1	297.9
cis-3-Hexene	8.25	28.7	31.4	161.1	222.6	265.7	297.9
trans-3-Hexene	11.08	28.9	31.7	168.2	225.5	267.4	298.7
Hexylamine		36.5	45.1				
Hexyl methyl ether		34.9	42.1				
1-Hexyne				158.5	207.5	243.3	270.1
Hydrazine	12.7	45.3					
2-Hydroxybenzaldehyde		38.2					
2-Hydroxybenzoic acid			95.1				
2-Hydroxy-2,4,6-cycloheptatrienone			83.7				
2-Hydroxy-1-isopropyl-4-methylbenzene			91.2				
4-Hydroxy-4-methyl-2-pentanone		28.5	47.7				
3-Hydroxypropanonitrile		56.1					
2-Hydroxypyridine			86.6				
3-Hydroxypyridine			88.3				
4-Hydroxypyridine			103.8				
8-Hydroxyquinoline			108.8				
Icosane	69.88	57.5	100.8	588.5	794.0	942.6	1052.7
Icosanoic acid	72.0		199.6				
1-Icosene	34.3	55.9	99.8	574.0	772.7	916.0	1021.7
Indane		39.6	48.8				
Indene			52.9				

					C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
Indole			69.9						
Iodobenzene	9.76	39.5	47.7	130.1	173.3	201.1	220.1		
Iodobenzoic acid			87.9						
1-Iodobutane		34.7	40.6						
2-Iodobutane		33.3	38.5						
Iodocyclohexane			47.3						
Iodoethane		29.4	31.9	80.3	103.1	119.9	132.4		
1-Iodohexane			49.8						
Iodomethane		27.3	28.0	51.6	63.9	73.1	80.2		
1-Iodo-2-methylpropane		33.5	38.8						
2-Iodo-2-methylpropane	14.5	31.4	35.4	148.8	191.7	221.1	242.3		
1-Iodonaphthalene			72.4						
2-Iodonaphthalene			90.8						
1-Iodopentane			45.3						
1-Iodopropane		32.1	36.2	109.9	142.7	166.5	184.2		
2-Iodopropane		30.7	34.1	111.2	144.7	168.2	185.5		
3-Iodo-1-propene			38.1						
2-Iodotoluene (also 3-, 4-)			54.4						
Isobutanonitrile		32.4	37.2	119.5	156.4	183.0	202.5		
Isobutyl acetate		35.9							
Isobutylamine		30.6	33.9						
Isobutylbenzene	12.51	37.8	47.9						
Isobutylcyclohexane			47.6						
Isobutyl dichloroacetate			52.3						
Isobutyl formate		33.6							
Isobutyl isobutanoate		38.2	46.4						
Isobutyl isopropyl ether		31.6	36.6						
Isobutyl methyl ether		28.0	30.1						
Isobutyl propyl ether		28.3	30.3						
Isobutyl trichloroacetate			53.1						
Isobutyl vinyl ether		30.7	34.6						
2-Isopropoxyethanol		40.4	50.1						
Isopropyl acetate		32.9	37.2						
Isopropylamine	7.33	27.8	28.4						
Isopropylbenzene	7.79	37.5	45.1	200.8	277.0	328.9	365.3		
Isopropylcyclohexane			44.0						
Isopropylcyclopentane		33.6	39.4						
Isopropylmethylamine		28.7	30.9						
1-Isopropyl-2-methylbenzene	10.0	38.4	50.6						
1-Isopropyl-3-methylbenzene	13.7	38.1	50.0						
1-Isopropyl-4-methylbenzene	9.7	38.2	50.2						
Isopropyl methyl ether		26.1	26.4	138.0	184.8	220.4	247.2		
2-Isopropyl-5-methylphenol			91.2						
Isopropyl methyl sulfide	9.4	30.7	34.2	145.1	192.5	229.9	260.6		
Isopropyl nitrate		34.9	38.8	150.5	195.9	226.5	247.9		
Isopropylpropylamine		32.1	37.2						
Isopropyl propyl sulfide		35.1	41.8						
Isopropyl trichloroacetate			51.9						
Isoquinoline	7.45	49.0	60.3						
Ketene			20.4	59.5	70.7	78.7	86.4		

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

				C_p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
(-)-Leucine			150.6					
(+)-Limonene			48.1					
Maleic acid			110.0					
Maleic anhydride			71.5					
Malononitrile			79.1					
D-Mannitol	22.6							
Methacrylonitrile		31.8						
Methane	0.94	8.2		40.5	52.2	62.9	71.8	
Methane-d ₄				48.6	63.4	74.8	83.0	
Methanethiol, $\Delta Ht = 0.22^{-135.6}$	5.91	24.6	23.8	58.7	73.5	85.0	94.1	
Methanol, $\Delta Ht = 0.6^{-115.8}$	3.18	35.2	37.4	51.4	67.0	79.7	89.5	
4-Methoxybenzaldehyde		56.8	64.5					
Methoxybenzene		39.0	46.9					
2-Methoxybenzoic acid			104.7					
3-Methoxybenzoic acid			107.4					
4-Methoxybenzoic acid			109.8					
3-Methoxy-1-butanol		50.8						
2-Methoxyethanol		37.5	45.2					
2-(2-Methoxyethoxy)ethanol		46.6						
2-Methoxyethyl acetate		43.9	50.3					
2-Methoxy-1-propoxyethane		36.3	43.7					
2-Methoxytetrahydropyran			42.7					
1-Methoxy-2,4,6-trinitrobenzene			133.1					
N-Methylacetamide	9.72	59.4						
Methyl acetate		30.3	32.3					
Methyl acetoacetate		36.0						
Methyl acrylate		33.1	29.2					
Methylamine	6.13	25.6	24.4	60.2	78.9	93.9	105.7	
4-Methylaniline	18.22							
Methyl benzoate	9.74	43.2	55.6					
2-Methylbenzoic acid	20.17							
3-Methylbenzoic acid	15.72							
4-Methylbenzoic acid	22.73							
1-Methylbicyclo[4.1.0]heptane			39.2					
1-Methylbicyclo[3.1.0]hexane		31.1	34.8					
2-Methyl-1,3-butadiene	4.79	25.9	26.8	133.1	173.2	200.8	221.3	
3-Methyl-1,3-butadiene		27.2	28.0	129.7	168.6	197.5	219.2	
2-Methylbutane	5.15	24.7	24.9	152.7	208.7	249.8	280.8	
3-Methylbutanenitrile		35.1	41.7					
2-Methylbutanethiol		33.8	39.5					
3-Methyl-1-butanethiol	7.5		39.4					
2-Methyl-2-butanethiol	0.6	31.4	35.7	179.0	236.7	279.4	308.8	
$\Delta Ht = 8.0^{-114.0}$								
Methyl butanoate		33.8	39.3					
2-Methylbutanoic acid			46.9					
3-Methylbutanoic acid	7.32	43.2	57.5					
2-Methyl-1-butanol		45.2	55.2					
3-Methyl-1-butanol		44.1	55.6					
2-Methyl-2-butanol, $\Delta Ht = 2.0^{-127.2}$	4.45	39.0	50.1					
3-Methyl-2-butanol		41.8	53.0					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)
				C _p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
3-Methyl-2-butanone		32.4	36.8					
2-Methyl-1-butene	7.9	25.5	25.9	138.9	187.1	222.4	248.7	
3-Methyl-1-butene	5.4	24.1	23.8	147.5	192.1	225.3	250.3	
2-Methyl-2-butene	7.6	26.3	27.1	133.6	181.7	217.8	245.0	
Methyl 2-butenoate			41.0					
3-Methyl-1-butyne		26.2	25.8	130.1	169.9	198.3	219.2	
2-Methylbutyl acetate		37.5						
Methyl chloroacetate		39.2	46.7					
Methyl cyanoacetate		48.2	61.7					
Methyl cyclobutanecarboxylate		37.1	44.7					
Methylcyclohexane	6.75	31.3	35.4	185.6	269.7	329.5	371.5	
1-Methylcyclohexanol		79.0	80					
cis-2-Methylcyclohexanol		48.5	63.2					
trans-2-Methylcyclohexanol		53.0	63.2					
cis-3-Methylcyclohexanol			65.3					
trans-3-Methylcyclohexanol			65.3					
cis-4-Methylcyclohexanol			65.7					
trans-4-Methylcyclohexanol			66.1					
1-Methylcyclohexene			37.9					
Methylcyclopentane	6.93	29.1	31.6	151.1	219.4	267.8	303.1	
1-Methyl-1-cyclopentene	0.50		32.6	136.0	195.8	238.5	269.0	
3-Methyl-1-cyclopentene			31.0	136.4	197.1	239.3	269.9	
4-Methyl-1-cyclopentene			32.2	136.4	196.7	238.4	269.5	
Methyl cyclopropanecarboxylate		35.3	41.3	10011	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2001	20710	
2-Methyldecane		40.3	54 3					
4-Methyldecane		40.7	53.8					
Methyl decanoate		1017	66.7					
Methyl dichloroacetate		393	47.7					
Methyldichlorosilane		57.5	28.0					
Methyl 2 2-dimethylpropanoate		33.4	38.8					
2-Methyl-1 3-dioxane		55.4	38.6					
A-Methyl-1 3-dioxane			30.0					
4-Methyl-1 3-dioxolan-2-one	9.62		57.2					
Methyl dodecanoate	9.02		77.2					
N Methylethanediamine		37.6	15.2					
1-Methylethyl acetate		32.0	37.3					
1-Methylethyl thiolocetate		35.7	123					
N-Methylformamide		55.7	56.2					
Methyl formate	7.45	27.0	28 /	81.6	105.4	121.8	133.0	
Methyl 2 furancerboxulate	7.45	21.9	20.4 15 0	81.0	105.4	121.0	155.9	
Methyl 2-furalical boxylate			40.2					
2 Mathylhantana	11.00	22.2	20.1					
2 Mathylheptane	11.00	33.5	30.8					
4 Mothylhontono	11.50	22 4	20.7					
4-Methyl hontonooto	10.64	55.4	59.7					
2 Mathulhayana	0 07	20 E	24.0	211.0	795 0	240 7	2014	
2 Mathylhoxona	0.0/	20.0	34.9	211.0	200.9	240.7	201.0	
S-Memymexane Mathyl havanaata		20.9 20 ∠	33.1	212.0	283.9	540.7	0.166	
Methyl 1 havena		38.0	48.0					
J-Ivietnyi-1-nexene			34.3					
cis-5-ivietnyi-5-nexene			50.5					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

				<i>C_p</i>				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
trans-3-Methyl-3-hexene			35.9					
Methylhydrazine	10.4	36.1	40.4					
Methyl isobutanoate		32.6	37.3					
Methyl isocyanide			30.8					
1-Methyl-4-isopropylbenzene	9.60	38.2						
3-Methylisoxazole			41.0					
5-Methylisoxazole			41.0					
Methylmercury bromide			67.8					
Methylmercury chloride			64.4					
Methylmercury iodide			65.3					
Methyl methacrylate		36.0	60.7					
Methyl 2-methylbutanoate			41.8					
Methyl-3-methylbutanoate			41.0					
1-Methylnanhthalene	6 94	45.5	11.0	212.3	292.0	345 1	381.6	
$\Delta Ht = 5.0^{-32.4}$	0.74	45.5		212.5	272.0	545,1	501.0	
2-Methylnaphthalene $\Delta Ht = 5.6^{15.4}$	11.97	46.0	61.7	211.2	290.0	343.2	381.2	
$\Delta m = 5.0$ Methyl nitrate	82	31.6	32.1	01.5	115.2	131.7	143 1	
Methyl nitrite	0.2	20.0	22.1	76.3	07.7	112.8	173.5	
1 Methyl 4 nitrobanzona		20.9	70.1	70.5	21.1	112.0	125.5	
2 Methylnonene		28.2	19.1					
2 Methylagana		20.2	49.0					
5-Methylnonane		20.2	49.7					
2 Methodostone	10.00	30.1	49.3					
2-Methyloctane	18.00		56 1					
Methyl octanoate		27.4	20.4					
Methyl oxirane	6.07	27.4	21.9	104.1	2117	206.2	221.4	
2-Methylpentane	6.27	27.8	29.9	184.1	211.7	296.2	331.4	
3-Methylpentane	5.30	28.1	30.3	181.9	246.9	294.6	330.1	
2-Methyl-2,4-pentanediol		57.5	41.6					
3-Methylpentanenitrile		35.1	41.6					
Methyl pentanoate		35.4	43.1					
2-Methylpentanoic acid		52.1	57.5					
2-Methyl-1-pentanol		50.2	55.7					
2-Methyl-2-pentanol		39.6	54.8					
2-Methyl-3-pentanol		41.8	54.4					
3-Methyl-1-pentanol		46.3	62.3					
3-Methyl-2-pentanol		43.4	56.9					
4-Methyl-1-pentanol		44.5	60.5					
4-Methyl-2-pentanol		44.2	50.6					
3-Methyl-3-pentanol		41.8						
2-Methyl-3-pentanone		33.8	39.8					
3-Methyl-2-pentanone		34.2	40.5					
4-Methyl-2-pentanone		34.5	40.6					
2-Methyl-1-pentene		28.1	30.5	170.7	227.6	269.5	300.4	
3-Methyl-1-pentene		26.9	28.7	177.8	232.6	272.8	302.5	
4-Methyl-1-pentene		27.1	28.7	162.8	221.3	264.0	296.2	
2-Methyl-2-pentene		29.0	31.6	163.2	222.6	245.2	297.5	
cis-3-Methyl-2-pentene		28.8	31.2	163.2	222.6	265.3	297.5	
trans-3-Methyl-2-pentene		29.3	31.5	163.2	222.6	265.3	297.5	
cis-4-Methyl-2-pentene		27.6	29.5	167.6	226.4	267.8	299.2	

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

					p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
trans-4-Methyl-2-pentene		28.0	30.0	171.1	229.3	269.9	300.4	
4-Methyl-3-penten-2-one		36.1		214.0				
Methyl pentyl ether		32.0	36.9					
Methyl pentyl sulfide		37.4	45.2	203.6	272.2	324.6	366.0	
3-Methyl-1-phenyl-1-butanone			59.5					
2-Methyl-1-phenylpropane	12.5	37.8	49.5					
Methyl phenyl sulfide			54.3					
Methyl phenyl sulfone			92.0					
Methylphosphonic acid			48.1					
2-Methylpiperidine			40.5					
2-Methylpropanal			31.5					
2-Methylpropane	4.66	21.3	19.3	124.6	169.5	202.9	227.6	
2-Methylpropanenitrile		32.4	37.1					
2-Methyl-1-propanethiol	5.0	31.0	34.6	147.7	193.6	225.0	247.6	
2-Methyl-2-propanethiol	2.5	28.5	30.8	151.2	199.2	232.3	256.2	
$\Delta Ht = 4.1^{-121.6}$								
$\Delta Ht = 0.7^{-116.2}$								
$\Delta Ht = 1.0^{-73.8}$								
Methyl propanoate		32.2	35.9					
2-Methylpropanoic acid	5.02		35.3					
2-Methyl-1-propanol	6.32	41.8	50.8					
2-Methyl-2-propanol	6.79	39.1	46.7	142.9	189.8	222.9	247.5	
$\Delta Ht = 0.8^{13}$								
2-Methylpropene	5.93	22.1	20.6	111.2	147.7	175.1	196.0	
Methyl propyl ether		26.8	27.6	138.1	183.8	218.7	244.8	
Methyl propyl sulfide	9.9	32.1	36.2	144.9	191.9	227.8	255.8	
2-Methylpyridine	9.72	36.2	42.5	133.6	186.4	222.6	243.3	
3-Methylpyridine	14.18	37.4	44.4	133.1	186.1	222.3	247.8	
4-Methylpyridine	11.57	37.5	44.6					
1-Methyl-1 <i>H</i> -pyrrole			40.8					
Methyl salicylate		46.7						
α -Methylstyrene				187.4	254.0	300.4	333.9	
<i>cis</i> -β-Methylstyrene				187.4	254.0	300.4	333.9	
trans-β-Methylstyrene				189.1	256.1	301.3	334.7	
Methyl tetradecanoate			37.0					
2-Methylthiacyclopentane		36.4	41.8					
4-Methylthiazole		37.6	43.8					
2-Methylthiophene	9.20	33.9	38.9	123.1	165.6	194.3	214.6	
3-Methylthiophene	10.53	34.2	39.4	122.9	164.6	192.3	211.7	
Methyl trichloroacetate			48.3					
Methyl tridecanoate			82.7					
Methyl undecanoate			71.4					
5-Methyluracil			134.1					
Morpholine		37.1	44.0					
Naphthalene	18.98	43.2	72.6	180.1(g)	251.5	297.3	329.2	
1-Naphthalenecarboxylic acid			110.4					
2-Naphthalenecarboxylic acid			113.6					
1-Naphthol	23.33		91.2					
2-Naphthol	17.51		94.2					
1,4-Naphthoquinone			72.4					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Cor	npounds (Continued)

					<i>C</i> _p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
1-Naphthylamine			90.0					
2-Naphthylamine			88.3					
2-Nitroaniline	16.11		90.0					
3-Nitroaniline	23.68		96.7					
4-Nitroaniline	21.1		109					
Nitrobenzene	11.59	40.8	55.0					
1-Nitrobutane		38.9	48.6	157.5	210.1	247.0	273.6	
2-Nitrobutane		36.8	43.8	157.4	211.1	248.7	276.0	
Nitroethane	9.85	38.0	41.6	99.0	131.6	154.0	170.2	
Nitromethane	9.70	34.0	38.3	70.3	91.7	106.9	117.9	
(Nitromethyl)benzene			53.6					
2-Nitrophenol	17.44							
3-Nitrophenol	19.2							
4-Nitrophenol	18.25							
1-Nitronaphthalene			107.1					
1-Nitropropane		38.5	43.4	128.5	171.0	200.7	222.0	
2-Nitropropane		36.8	41.3	129.2	172.3	201.8	222.8	
2-Nitroso-1-naphthol			56.5					
4-Nitroso-1-naphthol			87.4					
1-Nitroso-2-naphthol			86.6					
2-Nitrotoluene		16.5	47.2					
3-Nitrotoluene		15.0	49.9					
4-Nitrotoluene	16.81	15.5	50.2					
Nonadecane, $\Delta Ht = 13.8^{22.8}$	45.82	56.0	95.8	559.4	754.9	896.3	1000.8	
1-Nonadecene	33.5	54.6	94.9	545.0	733.7	869.7	969.9	
1-Nonal			72.3	271.1	361.5	426.4	474.5	
Nonane, $\Delta Ht = 6.3^{-56.0}$	15.47	36.9	46.4	269.0	364.1	433.3	484.9	
1-Nonanethiol	33.5	44.4		291.6	390.3	464.6	521.5	
Nonanoic acid	20.28		82.4					
1-Nonanol		54.4	76.9	282.4	379.1	449.6	501.7	
2-Nonanone			56.4					
5-Nonanone	24.93		53.3					
1-Nonene	18.08	36.3	45.5	254.6	342.8	406.8	454.0	
cis-Octadecafluorodecahydronaphthalene		35.6	45.2					
trans-Octadecafluorodecahydronaphthalene		35.8	45.4					
Octadecafluoropropylcyclohexane		24.5	43.1					
Octadecafluorooctane		33.4	41.1					
Octadecane	61.39	54.5	152.8	530.4	715.8	850.0	949.4	
Octadecanedioic acid	56.6							
Octadecanoic acid	56.59		166.5					
Octadecanol			113.4					
1-Octadecene	32.6	53.3	90.0	516.0	694.5	823.4	918.4	
cis-9-Octadecenoic acid		64.7						
Octafluorocyclobutane	2.77	23.2		186.1	225.3	245.4	257.3	
Octafluorotoluene	11.58							
Octamethylcyclotetrasiloxane		45.6						
Octanal				242.3	322.2	380.3	422.6	
Octanamide			110.5					
Octane	20.65	34.4	41.5	240.0	325.0	387.0	433.5	
1,8-Octanedioic acid			143.1					

					C	p	
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Octanenitrile		41.3	56.8				
1-Octanethiol	24.3	42.3		262.6	351.3	418.3	469.9
Octanoic acid	21.36	58.5	81.7				
1-Octanol	42.30	46.9	71.0	253.4	340.0	403.3	450.1
(±)-2-Octanol		44.4					
(±)-3-Octanol		36.5					
4-Octanol		40.5					
2-Octanone	24.42						
1-Octene	15.57	34.1	40.4	225.6	303.7	360.5	402.5
1-Octyne		35.8	42.3	216.5	285.7	336.0	410.9
2-Octyne		37.3	44.5				
3-Octyne		36.9	43.9				
4-Octyne		36.0	42.7				
Oxalic acid			98.0				
Oxaloyl chloride			31.8				
Oxamide			113.0				
Oxetane		28.7	29.9				
2-Oxetanone			47.0				
2-Oxohexamethyleneimine	16.2	54.8	83.3				
4-Oxopentanoic acid	9.22						
1,1'-Oxybis(2-ethoxy)ethane			58.4				
2,2'-Oxybis(ethanol)		52.3	57.3				
Paraldehyde			41.4				
Pentachloroethane	11.34	36.9	45.6	133.7	152.1	162.0	168.1
Pentachlorofluoroethane	1.9						
Pentachlorophenol			67.4				
Pentacyclo-							
[4.2.0.0 ^{2,5} .0 ^{3,8} .0 ^{4,7}]octane			80.3				
Pentadecane, $\Delta Ht = 9.2^{-2.25}$	34.8	49.5	76.1	443.3	598.6	711.1	794.5
Pentadecanoic acid	50.2		162.7				
1-Pentadecene	28.9	48.7	75.1	428.9	577.3	684.5	763.6
1,2-Pentadiene		27.6	28.7	131.4	170.7	199.6	220.9
cis-1,3-Pentadiene		27.6	28.3	123.4	166.9	196.7	218.4
trans-1,3-Pentadiene		27.0	27.8	130.5	171.1	199.6	220.1
1,4-Pentadiene	6.14	25.2	25.7	131.0	170.2	220.5	
2,3-Pentadiene		28.2	29.5	125.1	164.9	195.0	217.6
Pentaerythritol		92	143.9				
Pentaerythritol tetranitrate			151.9				
Pentafluorobenzene	10.85	32.2	36.3				
Pentafluorobenzoic acid			91.6				
Pentafluoroethane				113.8	137.8	151.1	158.9
Pentafluorophenol	12.85		67.4				
2,3,4,5,6-Pentafluorotoluene	12.99	34.8	41.1				
Pentamethylbenzene	12.3	45.1	60.8	272.0	360.2	423.8	470.0
$\Delta Ht = 2.0^{23.7}$							
2,2,4,6,6-Pentamethylheptane			49.0				
Pentanal			38.8	155.2	205.0	241.4	267.8
Pentanamide			89.3				
Pentane	8.42	25.8	26.4	152.8	207.7	248.1	278.5
1,5-Pentanediol		60.7					

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Cor	mpounds (Continued)
	C

					C_p		
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
1,5-Pentanedithiol			59.3				
2,4-Pentanedione		34.3	41.8				
Pentanenitrile	4.73	36.1	43.6				
1-Pentanethiol	17.5	34.9	41.2	175.4	234.0	279.4	315.1
Pentanoic acid	14.16	44.1	62.4				
1-Pentanol	9.83	44.4	57.0	166.3	222.8	264.4	295.4
2-Pentanol		41.4	54.2				
3-Pentanol		43.5	54.0				
2-Pentanone	10.63	33.4	38.4	152.4	202.2	239.0	266.1
3-Pentanone	11.59	33.5	38.5				
1-Pentene	5.81	25.2	25.5	138.5	186.4	221.5	247.7
cis-2-Pentene	7.12	26.1	26.9	132.1	182.5	218.8	245.9
trans-2-Pentene	8.36	26.1	26.8	136.7	184.2	219.5	246.1
cis-2-Pentenenitrile		36.4	43.2				
trans-2-Pentenenitrile		37.8	44.9				
trans-3-Pentenenitrile		37.1	44.8				
Pentyl acetate		41.0					
Pentylamine		34.0	40 1				
Pentylevelohexane		5110	53.9				
Pentyl propyl ether		35.0	42.8				
1-Pentyne		22.0	28.4	130.1	169.0	197.1	218.4
2-Pentyne		203	30.8	122.2	161.0	197.1	210.4
Persilene	31 75	41.5	50.0	122.2	101.9	174.1	213.1
a-Phellandrene	51.75		50.6				
Dhenonthrene	16.46	557	75.5				
0 10 Phenonthrangediona	10.40	55.7	01.6				
Depending			00.0				
Phenol	11.20	15 7	579	125.9	182.2	211.9	<u></u>
Phonyl acotata	11.29	4,3.7	549	155.6	162.2	211.0	232.2
Phenylacetanitrila		52.0	54.0				
Phenylacetonitrite		32.9	41.0	150.4	200.0	000 4	255.0
Phenylacetylene			41.8	150.4	200.9	255.4	255.9
(-)-3-Phenyl-1-alanine	21.07		155.2				
α -Phenylbenzeneacetic acid	31.27		00.0				
Phenyl benzoate			99.0				
Phenylboron dichloride			33.9				
Phenylcyclopropane			50.2				
N-Phenyldiacetimide			90.0				
Phenyl formate			52.9				
Phenylhydrazine	16.43		61.7				
1-Phenyl-1-propanone			58.5				
1-Phenyl-2-propanone			49.0				
Phenyl salicylate			92.1				
Phenyl vinyl ether			49.9				
Phthalamide			57.3				
1,3-Phthalic acid			106.7				
1,4-Phthalic acid			98.3				
Phthalic anhydride			88.7				
Phthalonitrile			86.9				
Piperidine	14 85	317	393				
-	11.00	51.1	57.5				

				C_p			
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Propanal		28.3	29.6	96.6	126.4	148.3	164.0
Propanamide	17.6		85.9				
Propane	3.53	19.0	14.8	94.0	128.7	154.8	174.6
1,2-Propanediamine			44.2				
1,3-Propanediamine		40.9	50.2				
Propanedinitrile			79.1				
1,2-Propanediol		54.1	58.0				
1,3-Propanediol		57.9	37.1				
1,2-Propanedione			38.1				
1,2-Propanedithiol			49.7				
Propanenitrile, $\Delta Ht = 1.7^{-96.2}$	5.05	31.8	36.0	88.6	114.7	134.5	149.4
1-Propanethiol. $\Delta Ht = 4.0^{-131.1}$	5.5	29.5	31.9	116.6	153.6	182.4	205.1
2-Propanethiol	5.7	27.9	29.5	118.6	154.9	181.0	200.5
1.2.3-Propanetriol triacetate		57.8	85.7				
1.2.3-Propanetriol trinitrate	21.9						
Propanoic acid	10.66	32.3	32.1				
Propanoic anhydride	10100	41.7	52.6				
1-Propanol	5.20	41.4	47.4	108.2	144.6	171.7	192.2
2-Propanol	5.37	39.9	45.4	112.0	149.6	176.3	195.9
Propanolactone	5151	0,000	47.0	11210	1.010	1.010	1,01,0
2-Propenal		28.3	31.3				
Propene	3.00	18.4	14.2	80.5	108.0	128.7	144 4
2-Propenenitrile	6 23	10.1	1	0010	10010	12017	
Propenoic acid	11.16						
2-Propen-1-ol	11.10	40.0	473	95.4	126.0	147.6	163.4
cis_1_Propenvlbenzene		40.0	ч <i>1</i> .5	187.4	254.0	300.4	222.0
2-Proposyethanol		414	52.1	107.1	20110	500.1	555.7
Propyl acetate		33.0	39.7				
1-Propylacetate	10.97	20.6	31.3	1103	150.0	188.0	210.1
Propyhannie	9.27	38.2	46.2	200.1	275.6	327.6	364.7
Propyl benzoate	7.27	49.8	51 0	200.1	215.0	527.0	504.7
Propyl carbamate		77.0	81.2				
Propyl chloroacetate			48.5				
Propylevelohevene	10.37	36.1	45.1	2473	350.6	123 1	171 5
Propyleyclonentane	10.0	34.7	41 1	2127	297.2	361.0	407.9
Propylege oxide	6.5	27.4	783	92.7	125.8	149.3	166.5
Propylene oxide	0.5	33.6	37.5	12.1	120.0	147.5	100.5
Propyl nitrate		35.0	40.6	140 8	104 5	225 4	247.2
Propyl propagate		35.5	40.0	149.0	174.5	223.4	247.2
Propyl trichloroacetate		55.5	53.1				
Propyl vinyl ether			20.3				
Propyre		22.1	29.5	725	01.2	105.2	115.0
2 Bronyn 1 ol		42.1		12.5	91.2	105.2	115.9
Durozine		42.1	563				
Pyrazilic Dyrana	17 11		50.5				
I yrone Dwridaeina	1/.11		52 5				
Duriding	0 70	25 1	40.2	106.4	140 5	177 0	107.4
r ynulle Dyrimidina	0.20	33.1 40.9	40.2	100.4	149.3	177.0	197.4
r ynniune 14 Durrole	7.01	47.0	JU.U				
$\frac{111-1}{2} \text{ yllole}$	/.71 0 = 0	22.0	43.1	114 4	160 7	206 5	222 E
$\Delta m = 0.3^{\circ}$	0.20	55.0	57.0	114.4	100.7	200.0	233.0

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Con	mpounds (Continued)

				<i>C_p</i>					
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K		
Quinoline	10.66	49.7	53.9						
Salicylic acid			95.1						
5,5'-Spirobis(1,3-dioxane)			72.8						
Spiro[2.2]pentane	5.8	26.8	27.5	119.5	167.8	200.5	223.9		
cis-Stilbene			69.0						
trans-Stilbene	27.4		99.2						
Styrene	11.0	38.7	43.9	160.3	218.2	256.9	284.2		
Succinic acid	32.95		117.5						
Succinic anhydride	20.41								
Succinonitrile	3.92								
<i>p</i> -Terphenyl	35.5								
1,1,2,2-Tetrabromoethane		48.7	70.0						
Tetrabromomethane		45.1	110	97.1	102.6	106.7	105.9		
Tetrabutyltin			19.8						
Tetracene			125.5						
Tetrachloro-1.4-benzoquinone			98.7						
1.1.2.2-Tetrachloro-1.2-difluoroethane	3.70	35.0							
1.1.1.2-Tetrachloro-2.2-fluorooctane	3.99								
1.1.1.2-Tetrachloroethane				118.7	139.2	151.6	159.7		
1.1.2.2-Tetrachloroethane		37.6	45.7	116.7	137.7	150.0	158.0		
Tetrachloroethylene	10.56	34.7	39.7	105.0	116.6	122.6	125.8		
Tetrachloromethane	3.28	29.8	32.4	91.7	99.7	103.1	104.8		
$\Delta Ht = 4.6^{-47.9}$	5120	27.0	02.1	2111	,,,,,	10011	10.110		
Tetracyanoethylene			81.2						
Tetracyanomethane			61.1						
Tetradecane	45.6	47.6	71.3	414 3	559 5	664.8	743 1		
Tetradecanenitrile	15.0	17.0	85.3	11 1.0	557.5	001.0	715.1		
Tetradecanoic acid	45 38		139.8						
1-Tetradecanol	49.0		102.2						
1-Tetradecene	27.6	46.9	70.2	300.8	538.2	638.2	7121		
Tetraethylene glycol	21.0	62.6	98.7	577.0	550.2	050.2	/12.1		
Tetraethylgermanium		02.0	44.8						
Tetraethyllead			56.0						
Tetraethyleilane	13.01		50.9						
Tetraethyltin	15.01		51.0						
1 1 1 2-Tetrafluoroethane			51.0	104.2	1287	1/3 1	152.1		
Tetrafluoroethylene	77	16.8		01.0	106.8	115.5	120.8		
Tetrafluoromethane	07	10.0		70 /	86.8	04.5	08.8		
$\Lambda H_t - 15-196.9$	0.7	12.0		12.4	00.0	94.5	20.0		
$\Delta m = 1.5$	8 54	20.8	32.0						
Tetrahydrofuran 2.5 dimethanol	0.04	29.0 63.6	52.0						
Tetrahydrofuran 2 mathanal		45.0	51.6						
1.2.2.4 Tetrahydronenhthalana	12.45	43.2	55.0						
Tetrahydropyran	12.45	45.9	34.6						
Tetrahydropyran Tetrahydropyran 2 mathanol		J1.2 44.4	54.0						
Tetrahydropyrail-2-illetilailoi		24.4	20.4						
Tetrahydrothionhana 1.1 diavida	1 42	54.7	57.4						
Tetraiodomothono	1.43			100.4	104.4	105.0	106 7		
Tetramethorysilono		1044		100.4	104.4	103.9	100.7		
1 2 2 4 Tetramethylhengene	11.0	194.0	57.0	2277	2167	27/ 1	1160		
	11.2	43.0	51.2	231.1	510.7	374.1	410.2		

				C _p				
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K	
1,2,3,5-Tetramethylbenzene	10.7	43.8	53.7	233.3	313.0	371.5	414.3	
1,2,4,5-Tetramethylbenzene	21.0	45.5	53.4	232.2	311.2	369.9	413.0	
2,2,3,3-Tetramethylbutane $\Delta Ht = 2.0^{-120.7}$	7.54	31.4	42.9					
Tetramethylene sulfone	1.4	61.5						
Tetramethyllead			38.1					
2,2,3,3-Tetramethylpentane	2.33							
2,2,3,4-Tetramethylpentane	0.50							
2,2,4,4-Tetramethylpentane	9.75	32.5	38.5					
2,3,3,4-Tetramethylpentane	9.00							
Tetramethylsilane	6.88							
Tetramethyltin			33.1					
1,1,3,3-Tetramethylurea	14.10	45.6						
Tetranitromethane		40.7	49.9					
Tetraphenylmethane			150.6					
Tetraphenyltin			66.3					
Tetrapropylgermanium			61.5					
Tetrapropyltin			66.9					
1,2,3,4-(1 <i>H</i>)-Tetrazole			97.5					
Thiacyclobutane		32.3	36.0					
Thiacycloheptane			47.3	175.7	272.0	330.5	368.2	
Thiacyclohexane	2.5	36.0	42.6	149.4	219.1	267.8	302.7	
$\Delta H t = 1.1^{-71.8}$								
$\Delta Ht = 7.8^{-33.1}$								
Thiacyclopentane	7.4	34.7	39.5	121.1	167.5	199.4	222.3	
Thiacyclopropane		29.2	30.3	69.2	92.0	107.2	118.0	
Thioacetamide			83.3					
Thioacetic acid			37.2	93.1	111.8	127.2	136.5	
1,2-Thiocresol			51.5					
2,2'-Thiodiethanol		66.8						
Thiophene, $\Delta Ht = 0.6^{-101.6}$	5.09	31.5	34.7	96.3	129.5	150.7	165.4	
Thiophenol	11.5	39.9	47.6	137.1	184.6	215.9	237.6	
Thymol	17.27							
Toluene	6.85	33.2	38.0	140.1	197.5	236.9	264.9	
o-Toluidine		44.6	56.7					
<i>m</i> -Toluidine	3.89	44.9	57.3					
<i>p</i> -Toluidine	18.22	44.3						
Triacetamide			60.4					
2,4,6-Triamino-1,3,5-triazine			124.3					
Tribromomethane		39.7	46.1	78.7	88.0	93.3	96.7	
Tributoxyborane		56.1	52.3					
Tributyl phosphate		61.4	72.0					
Trichloroacetic acid	5.88							
Trichloroacetonitrile		34.1						
Trichloroacetyl chloride			41.0					
1,3,5-Trichlorobenzene	18.2							
Trichlorobenzoquinone			88.7					
1,1,1-Trichloroethane $\Delta Ht = 7.5^{-49.0}$	2.73	29.9	32.5	107.6	128.4	141.1	149.8	
1,1,2-Trichloroethane	11.54	34.8	40.2	104.7	126.1	139.2	148.2	

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperaturesof Organic Compounds (*Continued*)

TABLE 2.54	Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures
of Organic Con	mpounds (Continued)

					C	'p	
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Trichloroethylene		31.4	34.5	91.2	104.9	112.7	117.8
Trichloromethane	8.8	29.2	31.3	74.3	85.3	91.5	95.5
Trichloromethylsilane	8.94						
1,2,3-Trichloropropane	8.9	37.1		31.7	38.9	43.8	47.3
1,1,1-Trichlorotrifluoroethane		26.9	28.1				
1,1,2-Trichlorotrifluoroethane	2.47	27.0	28.4				
1,1,1-Trichloro-3,3,3-trifluoropropane		32.2	36.8				
Tricyanoethylene			81.2				
Tridecane, $\Delta Ht = 7.7^{-18.2}$	28.50	45.7	66.4	385.2	520.4	618.5	691.2
Tridecanenitrile			85.3				
Tridecanoic acid	43.1		146.4				
1-Tridecene	22.83	45.0	65.3	370.8	499.1	592.0	660.2
Triethanolamine	27.2	67.5	0010	0,010	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	07210	
Triethoxyborane		0,10	43.9				
Triethoxymethane			46.0				
Triethylaluminum			73.2				
Triethylamine		31.0	34.8	203.8	276.6	328 7	367.4
Triethylaminoborane		51.0	60.7	200.0	270.0	520.7	507.1
Triethylarsine			43.1				
Triethyl arsenite			50.6				
Triethylbismuthine			46.0				
Triethylborane			36.8				
Triethylenediamine	61		61.0				
$\Lambda Ht = 0.679.8$	0.1		01.9				
Triethylene glycol		714	791				
Triethylphosphine		/1.1	39.8				
Triethyl phosphate			57.3				
Triethyl phosphite			41.8				
Triethylstibine			43.5				
Trifluoroacetic acid		33.3	38.5				
$AH(\text{dimer dissoc}) = 58.8^{100}$		55.5	50.5				
$\Delta m(\text{under ussue}) = 56.6$	5.0						
1.1.1-Triffuoro-2-bromo-2-chloroethane	5.0	28.1	20.6				
1,1,1-Triffuoroethane	6 10	10.2	29.0	05 2	1187	133.8	144-1
2.2.2. Triffuoroethanol	0.19	19.2		95.2	110.7	155.6	1-1-4-1
Trifluoroethylene		40.0		Q1 1	07 5	107.5	112.0
Trifluoromethana	4.1	167		61.1	76.0	85.1	01.0
(Trifuoromethyl)bonzone	12.46	22.6	276	160.9	226.0	262.5	286.4
Trijedomethane	15.40	52.0	57.0	82.0	220.0	202.0	200.4
Triicennerulhane	10.5		41.0	82.0	90.0	94.7	97.8
Thisopropyloorane			41.0				
Trimethowyhorene			40.0				
1 1 1 Trimethouse			34.7				
Trimethouse there			29.2 20.1				
1 mmetnoxymetnane			38.1				
$2^{\circ},4^{\circ},5^{\circ}-1$ nmethylacetophenone			03.2				
2,4,0-1 rimeinylacetophenone			02.3				
I rimeinylaiuminum		22.0	03.2	117.6	1(0.1	100.0	010.0
I rimeinyiamine	0.55	22.9	21.7	117.5	160.4	190.9	213.3
rimethyl arsenite			42.3				
Irimetnylarsine			28.9				

					C	p	
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
1,2,3-Trimethylbenzene	8.37	40.0	49.1	196.2	267.8	320.9	359.4
$\Delta Ht = 0.7^{-54.5}$							
$\Delta Ht = 1.3^{-42.9}$							
1,2,4-Trimethylbenzene		39.3	47.9	196.5	269.0	321.9	360.2
1,3,5-Trimethylbenzene	9.51	39.0	47.5	194.2	268.1	321.5	360.1
2,6,6-Trimethylbicyclo[3.1.1]-2-heptene			44.8				
Trimethylbismuthine			34.7				
Trimethylborane			20.2				
2,2,3-Trimethylbutane	2.20	28.9	32.0	212.7	291.3	346.1	386.3
$\Delta Ht = 2.5^{-151.8}$							
2,3,3-Trimethyl-1-butene			32.2				
cis, cis-1,3,5-Trimethylcyclohexane				242.9	351.2	427.6	482.0
Trimethylene oxide		28.7	29.9				
Trimethylene sulfide	8.3	32.3	36.0	91.6	127.4	152.3	170.2
$\Delta Ht = 0.7^{-96.5}$			20.1				
Trimethylgallium	6.0	22.7	38.1				
2,2,5-Trimethylhexane	6.2	33.7	40.2				
2,3,5-1rimethylnexane	10.00	34.4	41.4				
2.4.7 This state to a		20.2	48.5				
2,4,7-1 filmethyloctane	0.60	38.2	49.9				
2,2,3-1 filmethylpentane	8.02	20.9	25.1				
2,2,4-Thineuryipentane	9.04	20.0	27.2				
$\Delta H t = 7 \ 7^{-109.0}$	0.80	32.1	37.5				
2 3 4-Trimethylpentane	9 27	32.4	377				
2.2.4-Trimethyl-1.3-pentanediol	8.6	55.7	2				
2.2.4-Trimethyl-3-pentanone	0.0	35.6	43.3				
2.4.4-Trimethyl-1-pentene		31.4	35.8				
2.4.4-Trimethyl-2-pentene		32.6	37.5				
Trimethylphosphine			28.0				
Trimethylphosphine oxide			50.2				
Trimethyl phosphate			36.8				
2,3,6-Trimethylpyridine		40.0	50.6				
2,4,6-Trimethylpyridine	9.53	39.9	50.3				
Trimethylsilanol			45.6				
Trimethylstibine			31.4				
Trimethylsuccinic anhydride			74.1				
Trimethylthiacyclopropane			39.3				
Trimethyltin bromide			47.3				
2,4,6-Trinitroanisole			133.1				
1,3,5-Trinitrobenzene	16.7		99.6				
Trinitromethane		32.6	46.7				
2,4,6-Trinitrophenetole			120.5				
2,4,6-Trinitrotoluene			104.7				
1,3,6-Trioxacycloactane			48.8				
1,3,5-Trioxane	15.11		56.6				
Triphenylarsine			99.3				
Triphenylbismuthine			110.9				
Triphenylborane			81.6				
Triphenylene			118.0				

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

					C	p	
Substance	ΔHm	$\Delta H v$	ΔHs	400 K	600 K	800 K	1000 K
Triphenylmethane			100.0				
Triphenylphosphine			96				
Triphenylstibine			106.3				
Tripropoxyborane			49.4				
Tris(diethylamino)phosphine			60.7				
Tris(trimethylsilyl)amine			54.4				
Tropolone			83.7				
Undecane	22.32	41.5	56.4	327.1	442.7	525.9	588.3
$\Delta Ht = 6.9^{-36.6}$							
Undecanenitrile			71.1				
Undecanoic acid	25.9		121.3				
1-Undecene, $\Delta Ht = 9.2^{-55.8}$	16.99	40.9	55.4	312.7	421.1	499.3	557.3
Uracil			126.5				
Urea	15.1	87.9					
(-)-Valine			162.8				
Vinyl acetate		34.4	34.8				
Vinyl benzene			39.6				
Vinylcyclohexane			39.7				
4-Vinyl-1-cyclohexene		33.5	38.3				
1,2-Xylene	13.61	36.2	43.4	171.7	234.2	278.8	311.1
1,3-Xylene	11.55	35.7	42.7	167.5	232.2	277.9	310.6
1,4-Xylene	16.81	35.7	42.4	166.1	230.8	276.7	309.7

TABLE 2.54 Heat of Fusion, Vaporization, Sublimation, and Specific Heat at Various Temperatures of Organic Compounds (*Continued*)

2.14 CRITICAL PROPERTIES

Critical temperature (T_c), critical pressure(P_c), and critical volume (V_c) represent three widely used pure component constants. These critical constants are very important properties in chemical engineering field because almost all other thermo chemical properties are predictable from boiling point and critical constants with using corresponding state theory. Therefore, precise prediction of critical constants is very necessary.

2.14.1 Critical Temperature

The critical temperature of a compound is the temperature above which a liquid phase cannot be formed no matter what the pressure on the system. The critical temperature is important in determining the phase boundaries of any compound and is a required input parameter for most phase equilibrium thermal property or volumetric property calculations using analytic equations of state or the theorem of corresponding states. Critical temperatures are predicted by various empirical methods according to the type of compound or mixture being considered.

2.14.2 Critical Pressure

The critical pressure of a compound is the vapor pressure of that compound at the critical temperature. Below the critical temperature, any compound above its vapor pressure will be a liquid.

2.14.3 Critical Volume

The critical volume of a compound is the volume occupied by a specified mass of a compound at its critical temperature and critical pressure.

2.14.4 Critical Compressibility Factor

The critical compressibility factor of a compound is used as a characterization parameter in corresponding states methods to predict volumetric and thermal properties. The factor varies from approximately 0.23 for water to 0.26–0.28 for most hydrocarbons to above 0.30 for light gases.

TABLE 2.55	Critical	Properties
------------	----------	------------

Substance	$T_c, \circ C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, g \cdot cm^{-3}$
Acetaldehyde	193	55	5.57	154	0.286
Acetic acid	319.56	57.1	5.786	171.3	0.351
Acetic anhydride	333	39.5	4.0	290	0.352
Acetone	235.0	46.4	4.700	209	0.278
Acetonitrile	272.4	47.7	4.85	173	0.237
Acetophenone	436.4	38	3.85	386	0.311
Acetyl chloride	235	58	5.88	204	0.325
Acetylene	35.2	60.6	6.14	113	0.231
Acrylic acid	342	56	5.67	210	0.343
Acrylonitrile	263	45	4.56	210	0.253
Allene	120	54.0	5.47	162	0.247
Allyl alcohol	272.0	56.4	5.71	203	0.286
2-Aminoethanol	341	44	4.46	196	0.312
Aniline	426	49.5	4.89	287	0.324
Anthracene	610	28.6	2.90	554	0.333
Benzaldehyde	422	45.9	4.65	324	0.327
Benzene	288.90	48.31	4.895	255	0.306
Benzoic acid	479	41.55	4.21	341	0.358
Benzonitrile	426.3	41.55	4.21	339	0.304
Benzyl alcohol	422	42.4	4.3	334	0.324
Biphenyl	516	38.0	3.85	502	0.307
Bromobenzene	397	44.6	4.52	324	0.485
Bromochlorodifluoromethane	158.8	41.98	4.254	246	0.672
Bromoethane	230.8	61.5	6.23	215	0.507
Bromomethane	173.4	85	8.61	156	0.609
Bromopentafluorobenzene	397	44.6	4.52		
1-Bromopropane	-1.8				0.462
2-Bromopropane	-14.2				0.462
Bromotrifluoromethane	67.1	39.2	3.97	200	0.76
1,2-Butadiene	170.6	44.4	4.50	219	0.247
1,3-Butadiene	152	42.7	4.33	221	0.245
Butanal	264.1	42.6	4.32	258	0.279
Butane	151.97	37.34	3.784	255	0.228
Butanenitrile	312.3	38.3	3.88	285	0.242
Butanoic acid	351	39.8	4.03	290	0.304
1-Butanol	289.9	43.56	4.414	275	0.270
2-Butanol	263.1	41.47	4.202	269	0.276
2-Butanone	263.63	41.52	4.207	267	0.270
1-Butene	146.5	39.7	4.02	240	0.234
cis-2-Butene	147.5	40.5	4.10	238	0.240
trans-2-Butene	147.5	40.5	4.10	238	0.236
3-Butenenitrile	312.3	38.3	3.88	265	0.253
1-Buten-3-yne	182	49	4.96	202	0.258
Butyl acetate	306.7	31	3.14	400	0.290
1-Butylamine	258.8	41.9	4.25	277	0.264
sec-Butylamine	241.2	41.4	4.20	278	0.263
tert-Butylamine	210.8	37.9	3.84	292	0.250

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$ ho_c, { m g}$ ·
Butylbenzene	387.4	28.5	2.89	497	0.27
sec-Butylbenzene	391	29.1	2.94	510	0.26
tert-Butylbenzene	387	29.3	2.97	490	0.27
Butyl benzoate	450	26	2.63	561	0.31
Butyl butanoate	338				0.29
Butylcyclohexane	394	31.1	3.15	534	0.63
sec-Butylcyclohexane	396	26.4	2.67		
tert-Butylcyclohexane	385.9	26.3	2.66		
Butylcyclopentane	357.9				
Butyl ethyl ether	257.9	30	3.04	390	0.26
2-Butylhexadecafluoro- tetrahydrofuran	227.1	15.86	1.607	588	0.70
Butylisopropylamine	290.5				
tert-Butyl methyl sulfide	296.7				
1-Butyne	190.6	46.5	4.71	220	0.24
2-Butyne	215.5	50.2	5.09	221	0.24
4-Butyrolactone	436				
Carbon tetrachloride	283.3	45.0	4.56	276	0.55
Carbon tetrafluoride	-45.7	36.9	3.74	140	0.62
Chlorobenzene	359.3	44.6	4.52	308	0.36
1-Chlorobutane	268.9	36.4	3.69	312	0.29
2-Chlorobutane	247.5	39	3.95	305	0.30
1-Chloro-1,1-difluoroethane	137.1	40.7	4.12	231	0.43
2-Chloro-1,1-difluoroethylene	127.5	44.0	4.46	197	0.49
Chlorodifluoromethane	96.1	49.1	4.98	165	0.52
1-Chloro-2,3-epoxypropane	351				
Chloroethane	187.3	52.0	5.27	199	0.32
Chloroform	263.3	54.0	5.47	239	0.50
1-Chlorohexane	321.5				
Chloromethane	143.1	65.9	6.679	139	0.35
2-Chloro-2-methylpropane	234	39	3.95	295	0.31
Chloropentafluoroacetone	137.6	28.4	2.88		
Chloropentafluorobenzene	297.9	31.8	3.22		
Chloropentafluoroethane	80.1	31.9	3.229	252	0.61
1-Chloropentane	295.4				
1-Chloropropane	230	45.2	4.58	254	0.30
2-Chloropropane	212	46.6	4.72	230	0.34
3-Chloropropene	241	47	4.76	234	0.33
Chlorotrifluoromethane	29	38.98	3.946	180	0.57
Chlorotrifluorosilane	35.4	34.2	3.47		•
Chlorotrimethylsilane	224.7	31.6	3.20		
1,2-Cresol	424.5	49.4	5.01	282	0.38
1,3-Cresol	432.7	45.0	4.56	309	0.34
1,4-Cresol	431.5	50.8	5.15	277	0.39
Cyanogen	126.7	62.2	6.30	145	0.36
Cyclobutane	186.8	49.2	4.99	210	0.26
Cycloheptane	316	36.7	3.72	390	0.25
Cyclohexane	280.4	40.2	4.07	308	0.27
trans-Cyclohexanedimethanol	451	34.85	3.531	200	0.27
Cyclohexanethiol	390.9				
Cyclohexanol	376.9	42.0	4.26	327	0.30
Cyclohexanone	379.9	39.5	4.0	312	0.31
Cyclohexene	287.33	42.9	4.35	292	0.28

TABLE 2.55	Critical Propertie	s (Continued)
------------	--------------------	---------------

TABLE 2.55 Critical Properties (Continued)

Substance	$T_c, °C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$ ho_c$, g · cm ⁻³
Cyclohexylamine	341.5				
Cyclopentane	238.6	44.49	4.508	260	0.27
Cyclopentanethiol	360.4				
Cyclopentanone	353	53	5.37	268	0.314
Cyclopentene	232.9				
1-Cyclopentylheptane	406	19.2	1.94	649	0.260
1-Cyclopentylpentadecane	506.9	10.1	1.02	1096	0.256
Cyclopropane	124.7	54.2	5.49	170	0.248
<i>p</i> -Cymene	379	2.80	2.84	492	0.273
Decafluorobutane	113.3	22.93	2.323	378	0.629
cis-Decahydronaphthalene	429.2	31.6	3.20	480	0.288
trans-Decahydronaphthalene	414.0	31	3.14	480	0.288
Decane	344.6	20.8	2.11	624	0.228
Decanenitrile	348.8	32.1	3.25		
1-Decanol	413.9	22	2.23	600	0.264
1-Decene	343.3	21.89	2.218	585	0.240
Dibutyl sulfide	380				
Decylcyclohexane	477	13.4	1.36		
Decylcyclopentane	450	15.0	1.52		
Diallyl sulfide	380				
1,2-Dibromo-2-chlorotrifluoro- ethane	287.6				
Dibromodifluoromethane	198.3	40.8	4.13	249	0.843
1,2-Dibromoethane	309.9	71.1	7.2	242	0.776
Dibromomethane	310	71	7.19		
1,2-Dibromotetrafluoroethane	214.7	33.49	3.393	329	0.790
Dibutylamine	334.4	30.7	3.11	517	0.250
Dibutyl ether	311.0	29.7	3.01	500	0.260
Dibutyl sulfide	377	24.7	2.50	537	0.272
1,2-Dichlorobenzene	424.2	40.5	4.10	360	0.408
1,3-Dichlorobenzene	411	38	3.85	359	0.408
1,4-Dichlorobenzene	412	39	3.95	372	0.395
Dichlorodifluoromethane	111.80	40.82	4.136	217	0.558
1,1-Dichloroethane	250	50.0	5.07	236	0.419
Dichlorodifluorosilane	95.8	34.5	3.50		
1,2-Dichloroethane	288	53	5.4	225	0.440
1,1-Dichloroethylene	222	51.3	5.20	218	0.445
cis-1,2-Dichloroethylene	271.1			224	0.433
trans-1,2-Dichloroethylene	234.4	54.4	5.51	224	0.433
Dichlorofluoromethane	178.43	51.1	5.18	196	0.522
1,2-Dichlorohexafluoropropane	172.9				
Dichloromethane	237	60.2	6.10	193	0.440
1,2-Dichloropropane	304	44	4.49	226	0.500
Dichlorosilane	176	46.1	4.67		
1,1-Dichlorotetrafluoroethane	145.5	32.6	3.30	294	0.582
1,2-Dichlorotetrafluoroethane	145.63	32.1	3.252	297	0.582
Dideuterium oxide (D ₂ O)	371.0	215.7	21.86		0.363
Diethanolamine	442.0	32.3	3.27	349	0.301
1,1-Diethoxyethane (Acetal)	254				
Diethylamine	226.84	37.3	3.758	301	0.243
1,4-Diethylbenzene	384.8	27.7	2.81	480	0.280
Diethyl disulfide	368.9				
Diethylene glycol	408	46	4.66	316	0.336
Diethyl ether	193.59	35.9	3.638	280	0.265

3.3-Diethyl-2-methylpentane 366.8 25.0 2.53 501 0.284 3.3-Diethylspintane 337 26.4 2.67 2.64 Difthoroamine (HNF2) 130 93 9.42 300 0.381 cis-Diftuorodiazine -1 70 7.09 7.09 7.09 trans-Diftuorodiazine -13 55 5.57 7 1.1-Diftuoroethane 113.6 44.4 4.50 181 0.365 1.1-Diftuoroethane 123.6 44.4 4.50 181 0.365 Diisopropyl sulfde 391 .0265 1.2-Dimethylsectanide 364 38.7 3.71 0.333 Dimethylanine 263 38.2 3.87 271 0.333 Dimethylanine 164.07 52.7 5.340 187 0.241 N.N-Dimethylanine 164.07 52.7 5.340 187 0.240 2.3-Dimethylbutane 228 32.0 3.24 343 0.245 3.3-Dimethyl-1-butene 228 32.0 3.24 343 0.245 3.3-Dimethyl-2-butane	Substance	$T_c, \circ C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, g \cdot cm^{-3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3-Diethyl-2-methylpentane	366.8	25.0	2.53	501	0.284
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3,3-Diethylpentane	337	26.4	2.67		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diethyl sulfide	284	39.1	3.96	318	0.284
1,2-Diffuorobenzene 284.2 300 0.381 cis-Diffuorodiazine -1 70 7.09 ruas-Diffuorodiazine -13 55 5.57 1,1-Diffuoroethane 113.6 44.4 4.50 181 0.365 1,1-Diffuoroethylene 29.8 44.0 4.46 154 0.417 Diisopropyl sulfde 391 Diisopropyl ether 227.17 27.9 2.832 386 0.265 1,2-Dimethyspethane 242.1 44.2 4.48 N.N-Dimethylanine 164.07 52.7 5.400 187 0.241 N.N-Dimethylanine 144 35.8 3.63 2,3-Dimethylbanine 245.7 30.49 3.090 359 0.240 2,3-Dimethyl-butane 28.8 2,3-Dimethyl-butene 217 32.1 3.25 340 0.244 2,3-Dimethyl-butene 217 32.1 3.25 340 0.244	Difluoroamine (HNF ₂)	130	93	9.42		
cis-Diffuorodiazine -1 707.09trans-Diffuorodiazine -13 555.57trans-Diffuoroethyne13.644.44.501810.3651.1-Diffuoroethyne29.844.04.461540.417Diisopropyl sulfile391700.259Diisopropyl ether227.1727.92.8323860.2651.2-Dimethydactamide36438.73.92710.333Dimethylacetamide36438.73.9271Diisopropyl ether21.575.3401870.241N.N-Dimethylantine41435.83.633.63722.2-Dimethylbutane215.730.493.0903590.2402.3-Dimethyl-1-butene22832.03.243430.2453.3-Dimethyl-2-butanone2887274160.3782.3-Dimethyl-1-butene21732.13.253400.2482.3-Dimethyl-2-butene250.933.23.363510.2401.1-Dimethylcyclohexane31829.32.974600.244trans-1,3-Dimethylcyclohexane325.02.932.974600.244trans-1,3-Dimethylcyclohexane317.029.32.974600.244trans-1,3-Dimethylcyclohexane317.029.32.974600.244trans-1,3-Dimethylcyclohexane325.02.914500.249trans-1,3-Dimethylcyclohexane317.029.32.97<	1,2-Difluorobenzene	284.2			300	0.381
trans-Diffuorodiazine-13555.571,1-Diffuoroethalene113.644.44.501810.3651,1-Diffuoroethylene29.844.04.461540.417Diisopropyl sulfale3910.2590.259Diisopropyl ether227.1727.92.8323860.2651,2-Dimethoxyethane26338.23.872710.333Dimethoxymethane242.144.24.48	cis-Difluorodiazine	-1	70	7.09		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-Difluorodiazine	13	55	5.57		
1,1-Difluoroethylene 29.8 44.0 4.46 154 0.417 Diisoporpyl sulfide 391	1,1-Difluoroethane	113.6	44.4	4.50	181	0.365
Dikexyl ether 384 18 1.82 720 0.259 Diisopropyl sulfide 391	1,1-Difluoroethylene	29.8	44.0	4.46	154	0.417
Disopropyl sulfide391Disopropyl ether27.1727.92.8323860.2651,2-Dimethoxymethane242.144.24.48	Dihexyl ether	384	18	1.82	720	0.259
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Diisopropyl sulfide	391				
1,2-Dimethoxyethane 263 38.2 3.87 271 0.333 Dimethoxymethane 242.1 44.2 4.48	Diisopropyl ether	227.17	27.9	2.832	386	0.265
Dimethoxymethane242.144.24.48N.N-Dimethylacetamide 364 38.7 3.92 Dimethylamine 164.07 52.7 5.340 187 0.241 N.N-Dimethylamine 215.7 30.49 3.090 359 0.240 2,2-Dimethylbutane 215.7 30.49 3.090 359 0.240 3,3-Dimethyl-1-butene 289.8 23.50 3.24 343 0.245 2,3-Dimethyl-1-butene 228 32.0 3.24 343 0.248 2,3-Dimethyl-1-butene 250.9 33.2 3.36 351 0.240 1,1-Dimethylcyclohexane 318 29.3 2.97 416 0.378 $cis-1,2-Dimethylcyclohexane317.929.32.974600.244cis-1,3-Dimethylcyclohexane317.929.32.974600.244cis-1,4-Dimethylcyclohexane317.929.32.974600.244cis-1,4-Dimethylcyclohexane317.929.02.944600.244cis-1,4-Dimethylcyclohexane317.029.02.944590.2491,1-Dimethylcyclohexane317.029.02.944500.247cis-1,2-Dimethylcyclohexane317.029.02.944500.247cis-1,2-Dimethylcyclohexane317.029.02.944500.249cis-1,2-Dimethylcyclohexane37.55.222620.271$	1,2-Dimethoxyethane	263	38.2	3.87	271	0.333
N.N-Dimethylacitamide36438.73.92Dimethylamine164.0752.75.3401870.241N.N-Dimethylaniline41435.83.633.532,2-Dimethylbutane215.730.493.0903590.2402,3-Dimethyl-2-butanone289.82.3-Dimethyl-1-butene22832.03.243430.2452,3-Dimethyl-1-butene21732.13.253400.2482,3-Dimethyl-2-butene250.93.22.974160.378cis-1,2-Dimethylcyclohexane31829.32.974160.378cis-1,2-Dimethylcyclohexane323.029.32.974600.244cis-1,3-Dimethylcyclohexane32529.32.974600.244cis-1,3-Dimethylcyclohexane325.029.02.944600.244cis-1,4-Dimethylcyclohexane325.029.02.944600.244cis-1,4-Dimethylcyclohexane325.029.02.944500.249cis-1,4-Dimethylcyclohexane37.03.403.443600.273cis-1,2-Dimethylcyclopentane271.734.03.443620.271cis-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane271.734.03.443620.271cis-1,3-Dimethylcyclopentane277.02.505.371900.2422,2-Dimethylcyclopentane270.32.505.37190	Dimethoxymethane	242.1	44.2	4.48		
Dimethylamine164.0752.75.3401870.241 N,N -Dimethylaniline41435.83.63	N,N-Dimethylacetamide	364	38.7	3.92		
N,N-Dimethylaniline41435.8 3.63 2,2-Dimethylbutane215.7 30.49 3.090 359 0.240 2,3-Dimethyl-butane499.9 30.90 3.131 358 0.241 3,3-Dimethyl-2-butanone289.8 23.20 3.24 343 0.245 2,3-Dimethyl-1-butene217 32.1 3.25 340 0.248 2,3-Dimethyl-2-butene250.9 33.2 3.36 351 0.240 1,1-Dimethylcyclohexane 318 29.3 2.97 416 0.378 $cis-1,2-Dimethylcyclohexane323.029.32.974600.244trans-1,2-Dimethylcyclohexane325.029.32.974600.244cis-1,3-Dimethylcyclohexane325.029.02.944600.244cis-1,4-Dimethylcyclohexane325.029.02.944500.249trans-1,4-Dimethylcyclohexane325.029.02.944500.244cis-1,3-Dimethylcyclohexane37.029.02.944500.244cis-1,2-Dimethylcyclopentane277.234.03.443620.273cis-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane277.234.03.443620.271cis-1,2-Dimethylcyclopentane276.5$	Dimethylamine	164.07	52.7	5.340	187	0.241
2,2-Dimethylbutane 215.7 30.49 3.090 359 0.240 2,3-Dimethylbutane 499.9 30.90 3.131 358 0.241 2,3-Dimethyl-2-butanone 289.8 3.20 3.24 343 0.245 3,3-Dimethyl-1-butene 217 32.1 3.25 340 0.248 2,3-Dimethyl-2-butene 250.9 33.2 3.36 351 0.240 1,1-Dimethylcyclohexane 318 29.3 2.97 416 0.378 cis-1,2-Dimethylcyclohexane 323.0 29.3 2.97 460 0.244 trans-1,3-Dimethylcyclohexane 325 29.3 2.97 460 0.244 cis-1,3-Dimethylcyclohexane 325.0 29.0 2.94 460 0.244 trans-1,3-Dimethylcyclohexane 317.0 29.0 2.94 460 0.244 trans-1,4-Dimethylcyclopentane 271.7 34.0 3.44 368 0.267 trans-1,2-Dimethylcyclopentane 277.2 34.0 3.44 362 0.271 cis-1,2-Dimethylcyclopentane 376.5 51.5 5.22	N,N-Dimethylaniline	414	35.8	3.63		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2-Dimethylbutane	215.7	30.49	3.090	359	0.240
3,3-Dimethyl-2-butanone289.82,3-Dimethyl-1-butene22832.03.243430.2453,3-Dimethyl-1-butene21732.13.253400.2482,3-Dimethyl-2-butene250.933.23.363510.2401,1-Dimethylcyclohexane31829.32.974160.378 $cis-1,2-Dimethylcyclohexane323.029.32.974600.244trans-1,2-Dimethylcyclohexane317.929.32.974600.244trans-1,3-Dimethylcyclohexane325.029.32.974600.244trans-1,4-Dimethylcyclohexane325.029.02.944600.244trans-1,4-Dimethylcyclohexane325.029.02.944600.244trans-1,4-Dimethylcyclohexane325.029.02.944600.244trans-1,4-Dimethylcyclopentane27434.03.443600.273cis-1,3-Dimethylcyclopentane271.734.03.443620.271cis-1,3-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane276.551.55.222620.2792,2-Dimethylcyclopentane276.825.02.5294780.2392,3-Dimethylcyclopentane276.825.02.5294780.2392,3-Dimethylcyclopentane270.42.5.942.6284680.2442,4-Dimethylcyclopentane270.62.5.924660.244$	2,3-Dimethylbutane	499.9	30.90	3.131	358	0.241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3-Dimethyl-2-butanone	289.8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,3-Dimethyl-1-butene	228	32.0	3.24	343	0.245
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3-Dimethyl-1-butene	217	32.1	3.25	340	0.248
1,1-Dimethylcyclohexane31829.32.974160.378 cis -1,2-Dimethylcyclohexane333.029.02.944600.244 $trans$ -1,2-Dimethylcyclohexane323.029.32.974600.244 cis -1,3-Dimethylcyclohexane317.929.32.974500.244 cis -1,4-Dimethylcyclohexane32529.32.974600.244 $trans$ -1,3-Dimethylcyclohexane325.029.02.944600.244 $trans$ -1,4-Dimethylcyclohexane317.029.02.944590.2491,1-Dimethylcyclopentane27434.03.443600.273 cis -1,2-Dimethylcyclopentane291.734.03.443680.267 $trans$ -1,2-Dimethylcyclopentane277.234.03.443620.271 cis -1,3-Dimethylcyclopentane318.9 V V V V Dimethyl disulfide59.5 V V V V Dimethyl lether126.953.05.371900.242 N,N -Dimethylheptane303.723.192.3505190.2472,2-Dimethylheptane290.425.942.6284680.2442,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane280.525.922.5564720.2422,5-Dimethylhexane280.525.222.556472 <td>2,3-Dimethyl-2-butene</td> <td>250.9</td> <td>33.2</td> <td>3.36</td> <td>351</td> <td>0.240</td>	2,3-Dimethyl-2-butene	250.9	33.2	3.36	351	0.240
cis-1,2-Dimethylcyclohexane333.029.02.944600.244trans-1,2-Dimethylcyclohexane323.029.32.974600.244cis-1,3-Dimethylcyclohexane32529.32.974500.249trans-1,3-Dimethylcyclohexane32529.02.944600.244cis-1,4-Dimethylcyclohexane325.029.02.944590.2491,1-Dimethylcyclohexane317.029.02.944590.2491,1-Dimethylcyclohexane27434.03.443600.273cis-1,2-Dimethylcyclopentane271.734.03.443620.271cis-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane318.9	1,1-Dimethylcyclohexane	318	29.3	2.97	416	0.378
trans-1,2-Dimethylcyclohexane323.029.32.974600.244cis-1,3-Dimethylcyclohexane317.929.32.974500.249trans-1,3-Dimethylcyclohexane32529.32.974600.244cis-1,4-Dimethylcyclohexane325.029.02.944600.244trans-1,4-Dimethylcyclohexane317.029.02.944590.2491,1-Dimethylcyclopentane27434.03.443600.273cis-1,2-Dimethylcyclopentane291.734.03.443680.267trans-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane318.9	cis-1,2-Dimethylcyclohexane	333.0	29.0	2.94	460	0.244
cis-1,3-Dimethylcyclohexane 317.9 29.3 2.97 450 0.249 trans-1,3-Dimethylcyclohexane 325 29.3 2.97 460 0.244 cis-1,4-Dimethylcyclohexane 325.0 29.0 2.94 460 0.244 trans-1,4-Dimethylcyclohexane 317.0 29.0 2.94 459 0.249 1,1-Dimethylcyclopentane 271.4 34.0 3.44 360 0.273 cis-1,2-Dimethylcyclopentane 291.7 34.0 3.44 368 0.267 trans-1,2-Dimethylcyclopentane 277.2 34.0 3.44 362 0.271 cis-1,3-Dimethylcyclopentane 277.2 34.0 3.44 362 0.271 cis-1,3-Dimethylcyclopentane 318.9 V V Dimethyl disulfide 59.5 V V Dimethyl formamide 376.5 51.5 5.22 262 0.279 $2,2$ -Dimethylheptane 303.7 23.19 2.350 519 0.242 N,N -Dimethylheptane 290.4 25.94 2.628 468 0.244 $2,2$ -Dimethylhexane 290.4 25.94 2.628 468 0.244 $2,3$ -Dimethylhexane 290.4 25.94 2.628 468 0.244 $2,4$ -Dimethylhexane 290.4 25.94 2.628 468 0.244 $2,4$ -Dimethylhexane 290.5 25.94 2.628 466 0.242 $2,5$ -Dimethylhexane 295.8 26.57 2.692 466 <td>trans-1,2-Dimethylcyclohexane</td> <td>323.0</td> <td>29.3</td> <td>2.97</td> <td>460</td> <td>0.244</td>	trans-1,2-Dimethylcyclohexane	323.0	29.3	2.97	460	0.244
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	cis-1,3-Dimethylcyclohexane	317.9	29.3	2.97	450	0.249
cis-1,4-Dimethylcyclohexane 325.0 29.0 2.94 460 0.244 trans-1,4-Dimethylcyclohexane 317.0 29.0 2.94 459 0.249 1,1-Dimethylcyclopentane 274 34.0 3.44 360 0.273 cis-1,2-Dimethylcyclopentane 291.7 34.0 3.44 368 0.267 trans-1,2-Dimethylcyclopentane 277.2 34.0 3.44 362 0.271 cis-1,3-Dimethylcyclopentane 318.9 $$	trans-1,3-Dimethylcyclohexane	325	29.3	2.97	460	0.244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-1,4-Dimethylcyclohexane	325.0	29.0	2.94	460	0.244
1,1-Dimethylcyclopentane27434.03.443600.273 cis -1,2-Dimethylcyclopentane291.734.03.443680.267 $trans$ -1,2-Dimethylcyclopentane277.234.03.443620.271 cis -1,3-Dimethylcyclopentane318.9 $rans$ -1	trans-1,4-Dimethylcyclohexane	317.0	29.0	2.94	459	0.249
cis-1,2-Dimethylcyclopentane291.734.03.443680.267trans-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane318.9	1,1-Dimethylcyclopentane	274	34.0	3.44	360	0.273
trans-1,2-Dimethylcyclopentane277.234.03.443620.271cis-1,3-Dimethylcyclopentane318.9 59.5 59.5 59.5 59.5 Dimethyl disulfide59.5 51.5 5.22 262 0.279 2,2-Dimethylformamide376.5 51.5 5.22 262 0.279 2,2-Dimethylheptane303.7 23.19 2.350 519 0.247 2,2-Dimethylhexane276.8 25.04 2.529 478 0.239 2,3-Dimethylhexane280.5 25.22 2.556 472 0.242 2,5-Dimethylhexane280.5 25.22 2.556 472 0.242 2,5-Dimethylhexane280.0 26.19 2.654 443 0.258 3,3-Dimethylhexane289.0 26.19 2.654 443 0.258 3,4-Dimethylhexane295.8 26.57 2.692 466 0.245 1,1-Dimethylhydrazine250 53.6 5.43 230 0.261 2,4-Dimethyl-3-iso- 341.3 23.1 2.34 521 0.273 pentane $23-1$ 21.6 2.19 567 0.251 2,4-Dimethyloctane 340.1 21.6 2.19 567 0.251 2,4-Dimethyloctane 326.3 21.1 2.14 566 0.251	cis-1,2-Dimethylcyclopentane	291.7	34.0	3.44	368	0.267
cis-1,3-Dimethylcyclopentane318.9 59.5Dimethyl disulfide59.5Dimethyl ether126.9 53.0 5.37 Poimethylformamide376.5 51.5 5.22 $2,2$ -Dimethylformamide303.7 23.19 2.350 $2,2$ -Dimethylheptane203.7 $2,2$ -Dimethylhexane276.8 25.04 2.529 $2,3$ -Dimethylhexane290.4 25.94 2.628 468 0.244 $2,4$ -Dimethylhexane280.5 25.22 2.556 472 0.242 $2,5$ -Dimethylhexane280.5 25.22 2.556 472 0.242 $2,5$ -Dimethylhexane280.0 26.19 2.654 443 0.258 $3,4$ -Dimethylhexane295.8 26.57 2.692 466 0.245 $1,1$ -Dimethylhydrazine250 53.6 5.43 230 0.261 $2,4$ -Dimethyl-3-iso- 341.3 23.1 2.34 521 0.273 pentane2 $2,3$ -Dimethyloctane 340.1 21.6 2.19 567 0.251 $2,4$ -Dimethyloctane 326.3 21.1 2.14 566 0.251	trans-1,2-Dimethylcyclopentane	277.2	34.0	3.44	362	0.271
Dimethyl disulfide59.5Dimethyl ether126.9 53.0 5.37 190 0.242 N,N-Dimethylformamide376.5 51.5 5.22 262 0.279 2,2-Dimethylheptane303.7 23.19 2.350 519 0.247 2,2-Dimethylhexane276.8 25.0 2.529 478 0.239 2,3-Dimethylhexane290.4 25.94 2.628 468 0.244 2,4-Dimethylhexane280.5 25.22 2.556 472 0.242 2,5-Dimethylhexane287.0 24.54 2.487 482 0.237 3,3-Dimethylhexane289.0 26.19 2.654 443 0.258 3,4-Dimethylhexane295.8 26.57 2.692 466 0.245 1,1-Dimethylhydrazine250 53.6 5.43 230 0.261 2,4-Dimethyl-3-iso- 341.3 23.1 2.34 521 0.273 pentane2 21.6 2.19 567 0.251 2,3-Dimethyloctane 340.1 21.6 2.19 566 0.251	cis-1,3-Dimethylcyclopentane	318.9				
Dimethyl ether 126.9 53.0 5.37 190 0.242 N,N -Dimethylformamide 376.5 51.5 5.22 262 0.279 $2,2$ -Dimethylheptane 303.7 23.19 2.350 519 0.247 $2,2$ -Dimethylhexane 276.8 25.0 2.529 478 0.239 $2,3$ -Dimethylhexane 290.4 25.94 2.628 468 0.244 $2,4$ -Dimethylhexane 280.5 25.22 2.556 472 0.242 $2,5$ -Dimethylhexane 277.0 24.54 2.487 482 0.237 $3,3$ -Dimethylhexane 289.0 26.19 2.654 443 0.258 $3,4$ -Dimethylhexane 295.8 26.57 2.692 466 0.245 $1,1$ -Dimethylhydrazine 250 53.6 5.43 230 0.261 $2,4$ -Dimethyl-3-iso- 341.3 23.1 2.34 521 0.273 pentane 23.1 21.6 2.19 567 0.251 $2,3$ -Dimethyloctane 340.1 21.6 2.19 566 0.251	Dimethyl disulfide	59.5				
N,N-Dimethylformamide376.551.55.222620.2792,2-Dimethylheptane303.723.192.3505190.2472,2-Dimethylhexane276.825.02.5294780.2392,3-Dimethylhexane290.425.942.6284680.2442,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-iso-341.323.12.345210.273pentane221.62.195670.2512,3-Dimethyloctane326.321.12.145660.251	Dimethyl ether	126.9	53.0	5.37	190	0.242
2,2-Dimethylheptane303.723.192.3505190.2472,2-Dimethylhexane276.825.02.5294780.2392,3-Dimethylhexane290.425.942.6284680.2442,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	N,N-Dimethylformamide	376.5	51.5	5.22	262	0.279
2,2-Dimethylhexane276.825.02.5294780.2392,3-Dimethylhexane290.425.942.6284680.2442,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso-341.323.12.345210.273pentane221.62.195670.2512,3-Dimethyloctane340.121.62.195660.251	2,2-Dimethylheptane	303.7	23.19	2.350	519	0.247
2,3-Dimethylhexane290.425.942.6284680.2442,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	2,2-Dimethylhexane	276.8	25.0	2.529	478	0.239
2,4-Dimethylhexane280.525.222.5564720.2422,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	2,3-Dimethylhexane	290.4	25.94	2.628	468	0.244
2,5-Dimethylhexane277.024.542.4874820.2373,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	2,4-Dimethylhexane	280.5	25.22	2.556	472	0.242
3,3-Dimethylhexane289.026.192.6544430.2583,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	2,5-Dimethylhexane	277.0	24.54	2.487	482	0.237
3,4-Dimethylhexane295.826.572.6924660.2451,1-Dimethylhydrazine25053.65.432300.2612,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	3,3-Dimethylhexane	289.0	26.19	2.654	443	0.258
1,1-Dimethylhydrazine 250 53.6 5.43 230 0.261 2,4-Dimethyl-3-iso- 341.3 23.1 2.34 521 0.273 pentane 2,3-Dimethyloctane 340.1 21.6 2.19 567 0.251 2,4-Dimethyloctane 326.3 21.1 2.14 566 0.251	3,4-Dimethylhexane	295.8	26.57	2.692	466	0.245
2,4-Dimethyl-3-iso- pentane341.323.12.345210.2732,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	1,1-Dimethylhydrazine	250	53.6	5.43	230	0.261
pentane 2,3-Dimethyloctane 340.1 21.6 2.19 567 0.251 2,4-Dimethyloctane 326.3 21.1 2.14 566 0.251	2,4-Dimethyl-3-iso-	341.3	23.1	2.34	521	0.273
2,3-Dimethyloctane340.121.62.195670.2512,4-Dimethyloctane326.321.12.145660.251	pentane					
2,4-Dimethyloctane 326.3 21.1 2.14 566 0.251	2,3-Dimethyloctane	340.1	21.6	2.19	567	0.251
	2,4-Dimethyloctane	326.3	21.1	2.14	566	0.251

TABLE 2.55	Critical Properties (Continued)

TABLE 2.55	Critical Properties (Continued)

2.5-Dimethyloctane 330 21.2 2.15 569 0.250 2.6-Dimethyloctane 330 21.1 2.15 576 0.2471 2.7-Dimethyloctane 332 20.7 2.10 590 0.2411 3.3-Dimethyloctane 332 21.9 2.22 557 0.258 3.4-Dimethyloctane 335.2 21.6 2.19 555 0.253 3.6-Dimethyloctane 335.2 21.6 2.19 552 0.253 4.5-Dimethyloctane 333.8 21.8 2.21 548 0.260 3.6-Dimethylopentane 247.4 27.4 2.773 416 0.241 2.3-Dimethylopentane 246.7 27.01 2.737 418 0.240 2.3-Dimethylopentane 246.7 27.01 2.737 418 0.242 2.3-Dimethylopentane 246.7 27.01 2.737 418 0.242 2.3-Dimethylopeno1 434.5 43 4.36 470 0.26 2.4-Dimethylopeno1 435.7 49 4.96 509 0.24 2.5-Dimeth	Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, g \cdot cm^{-3}$
2.6-Dimethyloctane 330 21.1 2.15 576 0.247 2.7-Dimethyloctane 329.8 20.7 2.10 590 0.241 3.3-Dimethyloctane 331 21.9 2.22 557 0.255 3.4-Dimethyloctane 332.2 21.6 2.19 555 0.256 3.6-Dimethyloctane 333.2 21.6 2.19 552 0.260 4.5-Dimethyloctane 333.1 22.1 2.24 546 0.261 Dimethyloctane 247.4 2.74 2.773 416 0.241 2.3-Dimethylpentane 246.7 27.01 2.737 418 0.240 3.3-Dimethylpentane 246.7 27.01 2.737 418 0.240 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 446.7 27.01 2.737 418 0.240 2.3-Dimethylpentane 435.5 3.43 4.36 509 0.24 2.4-Dimethylpentane 426.7 7.01 2.737 418 0.265 2.4-Di	2,5-Dimethyloctane	330	21.2	2.15	569	0.250
2.7-Dimethyloctane 329.8 20.7 2.10 \$90 0.241 3.3-Dimethyloctane 339 21.9 2.22 \$57 0.255 3.4-Dimethyloctane 331 21.6 2.19 \$55 0.256 3.6-Dimethyloctane 333.2 21.6 2.19 \$562 0.253 3.6-Dimethyloctane 333.8 21.8 2.21 546 0.261 Dimethyloctane 339.1 22.1 2.24 560 0.253 3.5-Dimethyloctane 264.3 28.70 2.908 393 0.225 2.4-Dimethylpentane 246.7 27.01 2.737 418 0.240 2.3-Dimethylpentane 266.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 246.7 27.01 2.737 418 0.26 2.4-Dimethylphenol 434.5 43 436 509 0.24 2.4-Dimethylphenol 434.5 43 436 509 0.24 2.4-Dimethylphenol 432.5 36 3.65 611 0.25 2.4-Dimethylphenol <td>2,6-Dimethyloctane</td> <td>330</td> <td>21.1</td> <td>2.15</td> <td>576</td> <td>0.247</td>	2,6-Dimethyloctane	330	21.1	2.15	576	0.247
3.3-Dimethyloctane 339 21.9 2.22 557 0.255 3.4-Dimethyloctane 331.2 21.6 2.19 555 0.258 3.5-Dimethyloctane 333.2 21.6 2.19 552 0.256 3.6-Dimethyloctane 333.8 21.8 2.21 548 0.260 4.5-Dimethyloctane 333.8 21.8 2.21 548 0.260 Monthylpentane 247.4 2.74 2.773 416 0.241 2.3-Dimethylpentane 246.7 2.701 2.737 418 0.240 3.3-Dimethylpentane 263.3 2.907 2.946 414 0.242 2.3-Dimethylpentane 263.3 2.907 2.946 410 0.242 2.3-Dimethylphenol 434.5 43 4.36 509 0.24 2.4-Dimethylphenol 433.8 48 4.86 470 0.26 2.4-Dimethylphenol 435.7 3 3.96 319 2.2 2.5-Dimethylphenol 426.5 36 3.65 611 0.25 2.2-Dimethylphyrdine <td>2,7-Dimethyloctane</td> <td>329.8</td> <td>20.7</td> <td>2.10</td> <td>590</td> <td>0.241</td>	2,7-Dimethyloctane	329.8	20.7	2.10	590	0.241
3.4-Dimethyloctane 341 22.1 2.24 551 0.258 3.5-Dimethyloctane 333.2 21.6 2.19 552 0.253 3.6-Dimethyloctane 333.8 21.8 2.21 548 0.260 4.5-Dimethyloctane 333.8 21.8 2.21 546 0.261 Dimethyloctane 355 39.2 3.97	3,3-Dimethyloctane	339	21.9	2.22	557	0.255
3.5-Dimethyloctane 333.2 21.6 2.19 555 0.256 3.6-Dimethyloctane 333.8 21.8 2.21 548 0.260 4.5-Dimethyloctane 333.8 21.8 2.21 548 0.260 Monthylopentane 247.4 2.74 2.74 546 0.261 2.2-Dimethylpentane 246.7 27.01 2.737 416 0.240 3.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.4-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.4-Dimethylphenol 434.5 43 4.36 509 0.24 2.5-Dimethylphenol 434.5 48 4.86 470 0.26 2.4-Dimethylphenol 425.7 49 4.96 552 0.27 3.5-Dimethylphenol 425.7 49 4.96 552 0.27 3.5-Dimethylphonal 425.7 36 3.65 611 0.25 2.2-Dimethylphydine 371 2.5-Dimethylphydine 370 0.238 2.2-Dimethylphydine	3,4-Dimethyloctane	341	22.1	2.24	551	0.258
3.6-Dimethyloctane 335.2 21.6 2.19 562 0.253 4.5-Dimethyloctane 333.8 21.8 2.21 546 0.260 Joinnethyloctane 355 39.2 3.97	3,5-Dimethyloctane	333.2	21.6	2.19	555	0.256
4.5-Dimethyloctane 333.8 21.8 2.21 548 0.260 4.5-Dimethyloctane 339.1 22.1 2.24 546 0.261 2.2-Dimethylpentane 247.4 27.4 2.773 416 0.241 2.3-Dimethylpentane 246.7 27.01 2.737 418 0.240 3.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylphenol 434.5 43 4.36 509 0.24 2.5-Dimethylphenol 435.7 49 4.96 552 0.27 3.4-Dimethylpropane 160.7 31.5 3.197 007 0.238 2.2-Dimethylpropane 382.3 2.2-Dimethylpyrdine 382.3 2.2-Dimethylpyrdine 394.1 2.2-Dimethylpyrdine 394.1 0.370 2.5-Dimethylpyrdine 394.1 <td>3,6-Dimethyloctane</td> <td>335.2</td> <td>21.6</td> <td>2.19</td> <td>562</td> <td>0.253</td>	3,6-Dimethyloctane	335.2	21.6	2.19	562	0.253
4.5-Dimethyloctane 339,1 22,1 2,4 546 0,261 Dimethyloctane 247,4 27,4 2,773 416 0,241 2,3-Dimethylpentane 264,3 28,70 2,908 393 0,255 2,4-Dimethylpentane 264,7 27,01 2,737 416 0,240 3,3-Dimethylpentane 263,3 29,07 2,946 414 0,242 2,3-Dimethylpentol 434,5 43 4,36 509 0,24 2,5-Dimethylphenol 437,9 42 4,26 509 0,24 2,5-Dimethylphenol 437,9 42 4,26 509 0,24 3,5-Dimethylphenol 442,5 36 3,65 611 0,25 2,2-Dimethylphenol 442,5 36 3,65 611 0,238 2,2-Dimethylpropane 160,7 31,55 3,197 307 0,238 2,2-Dimethylpropine 350,7 316 0,339 3,4 3,4 3,4 3,6 3,4 0,309 3,4-Dimethylpridine 394.1 - - -	4,5-Dimethyloctane	333.8	21.8	2.21	548	0.260
Dimethyl oxalate355 39.2 3.97 2.2-Dimethylpentane 247.4 27.4 2.773 416 0.241 2.3-Dimethylpentane 246.7 27.01 2.737 418 0.240 3.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylphenol 434.5 43 4.86 470 0.26 2.4-Dimethylphenol 433.8 48 4.86 470 0.26 2.5-Dimethylphenol 427.9 42 4.26 509 0.24 3.4-Dimethylphenol 456.7 49 4.96 552 0.27 3.5-Dimethylphenol 456.7 49 4.96 552 0.27 3.5-Dimethylphenol 456.7 49 4.96 552 0.27 3.5-Dimethylphenol 456.7 49 4.96 552 0.27 3.5-Dimethylphroline 382.3 3.197 307 0.238 2.2-Dimethylproline 373.9 2.5 3.197 307 0.339 2.5-Dimethylpyridine 394.1 -1 -1 -1 Dimethylpyridine 394.1 -1 -1 -1 2.6 -Dimethylpyridine 395 30.8 3.12 -1 2.6 -Dimethylpyridine 394.1 -1 -1 -1 2.6 -Dimethylpyridine 395 30.8 3.12 -1 2.6 -Dimethylpyridine 395 3	4,5-Dimethyloctane	339.1	22.1	2.24	546	0.261
2.2-Dimethylpentane247.427.42.7734160.2412.3-Dimethylpentane264.328.702.9083930.2552.4-Dimethylpentane263.329.072.9464140.2422.3-Dimethylpentane263.329.072.9464140.2422.3-Dimethylpentol449.7484.864700.262.4-Dimethylphenol433.8484.864700.262.5-Dimethylphenol427.9424.265090.243.4-Dimethylphenol456.7494.965520.273.5-Dimethylphenol427.9424.265090.243.4-Dimethylphenol425.7363.656110.252.2-Dimethylphenol276393.9531923-Dimethylpyridine373.92.3-Dimethylpyridine373.923-Dimethylpyridine3713160.3393.4-Dimethylpyridine394.194.19429.42982082.5-Dimethylpyridine31451.55.212380.3703.5-Dimethylpyridine31451.55.212380.370Diphenyl ether493.7313.142424Diphenyl ether282.735.83.634070.249Diphenyl ether257.529.913.028226226Diphenyl ether285.735.83.634070.249Diphenyl ether285.735.83.63407 <td>Dimethyl oxalate</td> <td>355</td> <td>39.2</td> <td>3.97</td> <td></td> <td></td>	Dimethyl oxalate	355	39.2	3.97		
2.3-Dimethylpentane 264.3 28.70 2.908 393 0.255 2.4-Dimethylpentane 246.7 27.01 2.737 418 0.240 2.3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2.3-Dimethylpentol 434.5 43 4.36 509 0.24 2.5-Dimethylphenol 433.8 48 4.86 470 0.26 2.6-Dimethylphenol 456.7 49 4.96 552 0.27 3.5-Dimethylphenol 442.5 36 3.65 611 0.25 2.2-Dimethylphenol 476 39 3.95 319 23 3.5-Dimethylphenol 76 39 3.95 319 23 2.2-Dimethylpropane 160.7 31.55 3.197 307 0.238 2.2-Dimethylpyridine 371 23 24 24 26 507 016 0.339 3.4-Dimethylpyridine 391 3.14 51.5 5.21 238 0.370 2.6-Dimethylpyridine 395 30.8 3.12 24 <t< td=""><td>2,2-Dimethylpentane</td><td>247.4</td><td>27.4</td><td>2.773</td><td>416</td><td>0.241</td></t<>	2,2-Dimethylpentane	247.4	27.4	2.773	416	0.241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3-Dimethylpentane	264.3	28.70	2.908	393	0.255
3.3-Dimethylpentane263.329.072.9464140.2422.3-Dimethylphenol449.7484.864700.262.4-Dimethylphenol434.5434.365090.242.5-Dimethylphenol433.8484.864700.262.6-Dimethylphenol427.9424.265090.243.4-Dimethylphenol456.7494.965520.273.5-Dimethylphenol426.7494.965520.273.5-Dimethylphenol426.3393.95319222.2-Dimethylpropane160.731.553.1973070.2382.3-Dimethylpyridine37.122254.65.532010.3393.4-Dimethylpyridine350.73160.3393.4-Dimethylpyridine350.73160.3393.4-Dimethylpyridine39530.83.121112.5-Dimethylpyridine39530.83.12111.4-Dioxane31451.55.212380.3701Diphenyl ether493.7313.14111Diphenyl ether257.529.913.02812Dodecafluorocyclobexane184.1242.4322Dodecafluorocyclobexane184.1242.430.260Diproyl ether35.71.911.927180.226Dodecafluorocyclobexane184.518.31.	2.4-Dimethylpentane	246.7	27.01	2.737	418	0.240
2.3-Dimethylphenol 449.7 48 4.86 470 0.26 2.4-Dimethylphenol 434.5 43 4.36 509 0.24 2.5-Dimethylphenol 433.8 48 4.86 470 0.26 2.5-Dimethylphenol 433.8 48 4.86 470 0.26 3.4-Dimethylphenol 427.9 42 4.26 509 0.24 3.4-Dimethylphenol 442.5 36 3.65 611 0.25 2.2-Dimethylphonan 160.7 31.55 3.197 307 0.238 2.2-Dimethylpropane 160.7 31.55 3.197 307 0.238 2.2-Dimethylpropane 373.9 2.4-Dimethylpyridine 382.3 2.4-Dimethylpyridine 371. 2.5-Dimethylpyridine 370. 2.5-Dimethylpyridine 371. 2.6-Dimethylpyridine 370. 3.5-Dimethylpyridine 394.1 Dimethylpyridine 395 30.8 3.12 1.4-Dioxane 314 51.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 Diphenylnethane 494 29.4 2.98 Dipropylamine 282.7 35.8 3.63 407 0.249 Dipropylether 257.5 29.91 3.028 Doceafluorocyclohexane 184.1 24 2.43 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 184.7 Dodecafluorocyclohexane 477 12.8 1.30 	3.3-Dimethylpentane	263.3	29.07	2.946	414	0.242
2.4-Dimethylphenol 434.5 43 4.36 509 0.24 2.5-Dimethylphenol 433.8 48 4.86 470 0.26 2.6-Dimethylphenol 427.9 42 4.26 509 0.24 3.4-Dimethylphenol 427.9 42 4.26 509 0.24 3.4-Dimethylphenol 442.5 36 3.65 611 0.25 2.2-Dimethylpropane 160.7 31.55 3.197 307 0.238 2.2-Dimethylpropane 160.7 31.55 3.197 307 0.238 2.2-Dimethylpropane 371 - - - - 2.5-Dimethylpyridine 371 - - - - 2.6-Dimethylpyridine 391 - - - - - 3.5-Dimethylpyridine 394.1 - <td>2.3-Dimethylphenol</td> <td>449.7</td> <td>48</td> <td>4.86</td> <td>470</td> <td>0.26</td>	2.3-Dimethylphenol	449.7	48	4.86	470	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4-Dimethylphenol	434.5	43	4.36	509	0.24
2.6-Dimethylphenol427.9424.265090.243.4-Dimethylphenol456.7494.965520.273.5-Dimethylppropane160.731.553.1973070.2382.2-Dimethylpropane160.731.553.1973070.2382.2-Dimethylpyridine382.3 2.4 -Dimethylpyridine373.9 2.5 -Dimethylpyridine3712.6-Dimethylpyridine350.73160.339 3.4 -Dimethylpyridine394.12.6-Dimethylpyridine394.1 $$	2.5-Dimethylphenol	433.8	48	4.86	470	0.26
A-DimethylphenolHoHoHoHoHo3.4-Dimethylphenol442.5363.656110.252.2-Dimethylpropane160.731.553.1973070.2382.2-Dimethylpyridine382.32.4-Dimethylpyridine371 $($	2.6-Dimethylphenol	427.9	42	4.26	509	0.24
1.11	3.4-Dimethylphenol	456.7	49	4.96	552	0.27
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3.5-Dimethylphenol	442.5	36	3.65	611	0.25
Label on the hyperbolic100.1100.1100.1100.1100.12,2-Dimethylp-ridine382.32,4-Dimethylpyridine373.92,5-Dimethylpyridine3712,5-Dimethylpyridine3712,6-Dimethylpyridine350.73,6-Dimethylpyridine394.1Dimethyl Jufide229.954.65.532010.309N/N-Dimethyl-1,2-toluidine39531451.55.212380,N-Dimethyl-1,2-toluidine31451.55.212380.370Diphenyl ether493.71,4-Dioxane314257.529.913.028Dipropyl ether257.529.913.028Dodecafluorocyclohexane184.1242.43Dodecafluorocyclohexane184.1242.43Dodecafluorocyclohexane184.31.405.9191.927180.2601-Dodecanol405.91.931.827540.2261-Dodecanol405.91.927180.2601-Dodecane384.51.831.85Dodecylbenzene5011.5.61.5810000.246Dodecylopentane47712.81.30Chane32.348.254.91.9420.11.927180.2601.927181.94 </td <td>2 2-Dimethylpropane</td> <td>160.7</td> <td>31 55</td> <td>3 197</td> <td>307</td> <td>0.238</td>	2 2-Dimethylpropane	160.7	31 55	3 197	307	0.238
2_{12} -Dimethylpyridine 363 513 513 513 2_{3} -Dimethylpyridine 373.9 2_{5} -Dimethylpyridine 371 2_{6} -Dimethylpyridine 350.7 316 0.339 3_{4} -Dimethylpyridine 394.1 0.339 Dimethylpyridine 394.1 0.309 Dimethylpyridine 394.1 0.309 Dimethylpyridine 395 30.8 3.12 1_{4} -Dioxane 314 51.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 Diphenyl ether 493.7 31 3.14 0.249 Dipropyl ather 282.7 35.8 3.63 407 0.249 Dipropyl ether 257.5 29.91 3.028 0.249 Docosafluorodecane 269 14.3 1.45 0.266 Dodecafluorocyclohexane 184.1 24 2.43 0.226 Dodecafluorocyclohexane 184.1 24 2.43 0.226 1-Dodecane 385 18.0 1.82 754 0.226 1-Dodecane 385 18.0 1.82 754 0.226 1-Dodecane 385 18.3 1.85 0.260 0.292 1-Dodecane 32.3 48.2 4.90 148 0.203 1-Dodecane 319.8 62.1 6.29 206 0.292 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76	2.2.Dimethyl_1_propanol	276	30	3.95	319	0.250
2,4-Dimethylpyriane302.52,4-Dimethylpyriane3712,5-Dimethylpyriane350.73,4-Dimethylpyriane350.73,4-Dimethylpyriane410.73,5-Dimethylpyriane394.1Dimethylpyriane394.1Dimethylpyriane3953,5-Dimethylpyriane3953,5-Dimethylpyriane3953,6-Dimethylpyriane3953,6-Dimethylpyriane3953,6-Dimethylpyriane3953,6-Dimethylpyriane3953,713,141.5Diphenyl ether493.73,13,14Diphenyl methane4942,9.42.98Dipropylamine282.72,5.729.913,028Dodecafluorodecane26914,31.45Dodecafluorocyclohexane184.12,42.43Dodecafluorocyclohexane181.3Dodecafluorocyclohexane181.3Dodecane38518,01.827540.2261-Dodecane38518,01.8210000.246Dodecylbenzene50115.61.5810000.246Dodecylcyclopentane47712.81.30Ethane32.31,2-Ethanediamine31.9862.16.292,22060,2921,2-Ethanediol4452,55.4.25.4.92070,300<	2 3-Dimethylovridine	382 3	57	5.75	517	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5-Dimethylpyridine	373.9				
2,6-Dimethylpyrinine 35.7 316 0.339 3,4-Dimethylpyridine 394.1	2.5-Dimethylpyridine	371				
2.0-Differently Lipred Lipres 3.0.1 3.0.1 3.0.1 3.0.1 3.4-Dimethyl pyridine 394.1 394.1 3.1 3.1 3.1 Dimethyl sulfide 229.9 54.6 5.53 201 0.309 N/N-Dimethyl-1,2-toluidine 395 30.8 3.12 3.1 1,4-Dioxane 314 51.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 3.14 3.14 Diphenyl methane 494 29.4 2.98 2.98 3.028 3.14 Dipropyl ether 257.5 29.91 3.028 3.028 3.14 3.14 Dodecafluorocyclohexane 184.1 24 2.43 3.14 3.15 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 </td <td>2.5-Dimethylpyridine</td> <td>350.7</td> <td></td> <td></td> <td>316</td> <td>0 330</td>	2.5-Dimethylpyridine	350.7			316	0 330
3,5-Dimethylpyridine34.13,5-Dimethylpyridine394.1Dimethyl sulfide229.954.65.532010.309 N,N -Dimethyl-1,2-toluidine39530.83.1211,4-Dioxane31451.55.212380.370Diphenyl ether493.7313.141Diphenyl ether282.735.83.634070.249Dipropyl ather287.529.913.02811Docosafluorodecane26914.31.451Dodecafluorocyclohexane184.1242.431Dodecafluorocyclohexane188.71.827540.226Dodecafluorocyclohexane181.31.827540.2261-Dodecanol405.9191.927180.2601-Dodecanol405.9191.927180.2601-Dodecane38518.31.8511Dodecylbenzene50115.61.5810000.246Dodecylcyclopentane47712.81.301Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol245.554.25.492070.300Ethaneliol240.960.576.1371670.276Ethanolio240.960.576.1371670.276	3.4.Dimethylpyridine	410.7			510	0.557
Dimethyl sulfide 229.9 54.6 5.53 201 0.309 N/N-Dimethyl-1,2-toluidine 395 30.8 3.12 14 51.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 14 15.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 14	3.5-Dimethylpyridine	30/ 1				
Definition225.934.0 3.03 201 0.309 N,N-Dimethyl-1,2-toluidine395 30.8 3.12 314 51.5 5.21 238 0.370 Diphenyl ether493.7 31 3.14 29.4 2.98 0.249 Dipropylamine 282.7 35.8 3.63 407 0.249 Dipropyl ether 257.5 29.911 3.028 0.249 Docosafluorodecane 269 14.3 1.45 0.266 Dodecafluorocyclohexane 184.1 24 2.43 0.249 Dodecafluorocyclohexene 188.7 0.026 0.226 Dodecafluoropentane 149 20.1 2.03 0.260 Dodecane 385 18.0 1.82 754 0.226 1-Dodecane 385 18.3 1.85 0.260 0.246 Dodecylbenzene 384.5 18.3 1.85 0.260 1-Dodecane 384.5 18.3 1.85 0.260 1-Dodecane 384.5 18.3 1.85 0.260 1-Dodecylopentane 477 12.8 1.30 0.246 Dodecylopentane 319.8 62.1 6.29 206 $1,2$ -Ethanediamine 319.8 62.1 6.29 206 $1,2$ -Ethanediol 445 76 7.7 186 0.334 Ethanethiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276 <td>Dimethyl sulfide</td> <td>220.0</td> <td>54.6</td> <td>5 53</td> <td>201</td> <td>0.309</td>	Dimethyl sulfide	220.0	54.6	5 53	201	0.309
N/V-Differ39350.8 3.12 1,4-Dioxane314 51.5 5.21 238 0.370 Diphenyl ether493.7 31 3.14 3.14 Diphenyl methane494 29.4 2.98 2.98 Dipropylamine 282.7 35.8 3.63 407 0.249 Dipropyl ether 257.5 29.91 3.028 2.433 Dodecafluorocyclohexane 184.1 24 2.43 2.433 Dodecafluorocyclohexene 188.7 20.1 2.03 2.03 Dodecafluoropentane 149 20.1 2.03 2.026 1-Dodecane 385 18.0 1.82 754 0.226 1-Dodecane 385 18.3 1.85 2.60 2.60 1-Dodecane 384.5 18.3 1.85 2.60 2.26 1-Dodecane 32.3 48.2 4.90 148 0.203 1-Zethane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethanethiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276	N N Dimothyl 1.2 toluiding	229.9	20.8	3.53	201	0.309
1,4-Doxate31431.33.212.360.370Diphenylmethane493.7313.142142.98Dipropylamine282.735.83.634070.249Dipropyl ether257.529.913.028000000000000000000000000000000000	1 4 Diovene	393	51.5	5.12	228	0.270
Dipletly fetter495.751 5.14 Diphenylmethane49429.42.98Dipropylamine282.735.83.634070.249Dipropyl ether257.529.913.028 3.028 3.028 Docosafluorodecane26914.31.45 3.028 3.028 Dodecafluorocyclohexane188.7 3.028 3.028 3.028 Dodecafluoropentane181.3 3.028 3.028 3.028 Dodecane38518.01.827540.2261-Dodecanol405.9191.927180.2601-Dodecene384.518.31.85 3.04 3.026 Dodecylepentane50115.61.5810000.246Dodecylepentane47712.81.30 3.23 48.24.901480.2031,2-Ethanediamine319.862.16.292060.292 3.24 3.24 3.42 Ethanol240.960.576.1371670.276Ethoxybenzene 374.0 33.8 3.42	1,4-Dioxane Diphonyl other	314 402 7	21	3.21	258	0.370
Dipropylamine 294 2.94 2.96 Dipropylamine 282.7 35.8 3.63 407 0.249 Dipropyl ether 257.5 29.91 3.028 0.249 Docosafluorodecane 269 14.3 1.45 0.243 Dodecafluorocyclohexane 184.1 24 2.43 0.249 Dodecafluorocyclohexene 188.7 0.203 0.226 Dodecafluoropentane 149 20.1 2.03 0.226 Dodecane 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 0.246 Dodecylepentane 501 15.6 1.58 1000 0.246 Dodecylepentane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethaneltiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276	Diphenyl etter	493.7	20.4	2.14		
Dipropylamine 282.7 33.8 3.63 407 0.249 Dipropyl ether 257.5 29.91 3.028 0.249 Docosafluorodecane 269 14.3 1.45 0.249 Dodecafluorocyclohexene 184.1 24 2.43 0.249 Dodecafluorocyclohexene 188.7 0.226 0.226 Dodecafluoropentane 149 20.1 2.03 0.226 Dodecane 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 0.246 Dodecylepenzene 501 15.6 1.58 1000 0.246 Dodecylcyclopentane 477 12.8 1.30 0.203 Ethane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethaneltiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276 Ethanol 240.9 33.8 3.42 3.42	Dipropulamine	494	29.4	2.90	407	0.240
Dipport etter 257.3 25.91 3.028 Docosafluorodecane 269 14.3 1.45 Dodecafluorocyclohexane 184.1 24 2.43 Dodecafluorocyclohexene 188.7	Dipropylatilitie	262.7	20.01	3.03	407	0.249
Dodecafluorocyclohexane 184.1 24 2.43 Dodecafluorocyclohexane 184.1 24 2.43 Dodecafluorocyclohexane 188.7	Dipiopyi etter	257.5	29.91	1.45		
Dodecafiluorocyclonexane 184.1 24 2.43 Dodecafiluorocyclonexane 188.7 Dodecafiluoro-1-hexene 181.3 Dodecafiluoropentane 149 20.1 2.03 Dodecanol 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 Dodecylbenzene 501 15.6 1.58 1000 0.246 Dodecylcyclopentane 477 12.8 1.30 Ethane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethanethiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276 Ethanol 374.0 33.8 3.42 3.42 3.42	Docosanuorodecane	209	14.5	1.43		
Dodecafluoro-1-hexene 181.3 Dodecafluoro-1-hexene 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 Dodecylbenzene 501 15.6 1.58 1000 0.246 Dodecylcyclopentane 477 12.8 1.30 Ethane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethanethiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276 Ethanol 374.0 33.8 3.42 3.42 3.42	Dodecalluorocyclollexalle	104.1	24	2.45		
Dodecafluoro-1-nexche 181.5 Dodecafluoropentane 149 20.1 2.03 Dodecane 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 Dodecylephane 501 15.6 1.58 1000 0.246 Dodecylcyclopentane 477 12.8 1.30 Image: Constant Science S	Dodecalluorocyclonexene	100.7				
Dodecandoropentate14920.12.03Dodecane38518.01.827540.2261-Dodecanol405.9191.927180.2601-Dodecene384.518.31.850000.246Dodecylepnzene50115.61.5810000.246Dodecylcyclopentane47712.81.301480.203I,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.423.42	Douecaituoro-1-nexene	101.5	20.1	2.02		
Dodecane58.518.01.827.540.2261-Dodecanol405.9191.927180.2601-Dodecene384.518.31.85Dodecylepenene50115.61.5810000.246Dodecylcyclopentane47712.81.30Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.42	Dodecanuoropentane	149	20.1 19.0	2.03	751	0.224
1-Dodecanor405.9191.92/180.2601-Dodecene384.518.31.85Dodecylepentane50115.61.5810000.246Dodecyleyclopentane47712.81.30Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.42	1 Dedesenel	383 405 0	18.0	1.82	/34	0.220
1-Dodecene584.518.51.85Dodecylbenzene50115.61.5810000.246Dodecylcyclopentane47712.81.305Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethaneliol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.4253.42	1-Dodecanol	405.9	19	1.92	/18	0.260
Dodecyloenzene50115.61.5810000.246Dodecylcyclopentane47712.81.30Ethane32.348.24.901480.2031,2-Ethanedial319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	1-Douecene	384.3	18.3	1.85	1000	0.246
Dodecytcyctopentane47712.81.30Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	Dodecylbenzene	201	13.0	1.58	1000	0.246
Ethane32.348.24.901480.2031,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	Dodecylcyclopentane	4//	12.8	1.30	140	0.000
1,2-Ethanediamine319.862.16.292060.2921,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	Etnane	32.3	48.2	4.90	148	0.203
1,2-Ethanediol445767.71860.334Ethanethiol225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	1,2-Ethanediamine	319.8	62.1	6.29	206	0.292
Ethanethioi225.554.25.492070.300Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.423.42	1,2-Ethanediol	445	76	7.7	186	0.334
Ethanol240.960.576.1371670.276Ethoxybenzene374.033.83.42	Ethanethiol	225.5	54.2	5.49	207	0.300
Ethoxybenzene 374.0 33.8 3.42	Ethanol	240.9	60.57	6.137	167	0.276
	Ethoxybenzene	374.0	33.8	3.42		
Etnyi acetate 250.2 38.31 3.882 286 0.308	Ethyl acetate	250.2	38.31	3.882	286	0.308

Substance I_c , 'C P_c , Min P_c , Min V_c , cm ' - mol ρ_c , g - cm ' Ethyl acctate 400 37.0 3.75 320 0.313 Ethyl arrylate 279 37.0 3.75 320 0.313 Ethylamine 183 55.5 5.62 182 0.248 Ethyl benzoate 424 32 3.24 451 0.111 Ethyl crotonate 293 30.2 3.06 421 0.28 Ethyl-crotonate 326 29.9 3.03 450 0.249 Ethyl-cyclopentane 296.4 33.5 3.39 375 0.262 2-Ethyl-2.4-dimethylhexane 33.6 22.8 2.31 52.4 0.271 3-Ethyl-2.3-dimethylhexane 34.4 2.31 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 34.30 23.1 2.34 522 0.271 3-Ethyl-2.4-dimethylhexane 34.2 3.1 2.34 524 0.271 3-Ethyl-3.4-		T 00	D .	D 100	TZ 3 1-1	-3
Ethyl accioacetate 400 Ethyl accioacetate 799 37.0 3.75 320 0.313 Ethylamine 183 55.5 5.62 182 0.248 Ethylbenzene 344.00 35.61 3.609 374 0.284 Ethylbenzene 293 30.2 3.06 421 0.28 2.Ethyl-chotane 293 30.2 3.06 421 0.28 2.Ethyl-chotane 336 29.9 3.03 450 0.249 Ethylcyclobexane 336 29.9 3.03 450 0.249 Ethylcyclobexane 336 29.9 3.03 450 0.249 Ethylcyclobexane 338.6 22.8 2.31 526 0.271 4.Ethyl-2.4-dimethylhexane 338.6 22.8 2.31 526 0.271 4.Ethyl-2.4-dimethylhexane 331.7 23.9 2.42 516 0.276 3.Ethyl-2.4-dimethylhexane 344.2 23.1 2.34 522 0.273 4.Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 522 0.273 4.Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 522 0.273 4.Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 522 0.273 4.Ethyl-2.4-dimethylhexane 351.4 23.9 2.42 511 0.276 3.Ethyl-3.4-dimethylhexane 351.4 23.9 2.42 511 0.278 Ethylene 9(ycol dimethyl ether 263 38.2 3.87 271 0.333 Ethylene glycol dimethyl ether 217.2 Ethyl-1-methylbexane 395 Ethyl isopropyl ether 217.2 2.Ethyl-1-methylbexane 395 Ethyl isopropyl ether 217.2 2.Ethyl-3-methylbexane 396 2.Ethyl-3-methylbexane 396 2.Ethyl-3-methylbexane 397 2.Ethyl-3-methylbexane 397 2.Ethyl-3-methylbexane 397 2.Ethyl-3-methylbexane 397 2.Ethyl-3-methylbexane 397 2.Ethyl-3-methylbexane 398 2.Ethyl-3-methylbexane 398 2.Ethyl-3-methylbexane 398 2.Ethyl-3-methylbexane 398 2.Ethyl-3-methylbexane 398 2.Ethyl	Substance	$T_c, {}^{\circ}C$	P_c , atm	P_c , MPa	$V_c, \text{cm}^3 \cdot \text{mol}^4$	$\rho_c, g \cdot cm^{-3}$
Ethylarpiate 279 37.0 3.75 320 0.313 Ethylarpiate 183 55.5 5.6 182 0.248 Ethylhenzene 344.00 35.61 3.609 374 0.284 Ethylhenzene 242 32 3.24 451 0.111 Ethylbutanoate 293 30.2 3.06 421 0.28 2-Ethyl-1-butanol 145.7 Ethylcyclopentane 326 Ethylcyclopentane 336 29.9 3.03 450 0.249 Ethylcyclopentane 336 22.8 2.31 526 0.271 4-Ethyl-2.2-dimethylhexane 331.7 23.9 2.42 516 0.276 4-Ethyl-2.3-dimethylhexane 333.7 23.9 2.42 516 0.276 4-Ethyl-2.3-dimethylhexane 344.2 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.3-dimethylhexane 344.2 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.3-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.3-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.3-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-3.4-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-3.4-dimethylhexane 343.2 31.25 3.166 443 0.298 acetate 9.3 49.7 5.036 129 0.218 Ethylene glycol dmobutyl aber 263 38.2 3.87 271 0.333 Ethylene glycol ethyl ether 334.2 31.25 3.166 443 0.298 acetate 235.4 46.8 4.74 229 0.323 3-Ethylene cylcol ethyl ether 334.2 31.25 3.166 443 0.298 acetate 235.4 46.8 4.74 229 0.323 3-Ethylene xide 196 71.0 7.275 140 0.314 Ethylene xide 196 71.0 7.275 140 0.314 2.210 2.218 Ethylene xide 196 71.0 7.225 140 0.262 4.214 0.229 3.233 3-Ethyl-1-methyleptane 378 30.0 3.04 460 0.26 3-Ethyl-1-methyleptane 315 Ethyl isopropyl ether 121.72 2.244 25.74 2.608 455 0.251 2.244 21.9 2.22 3.245 2.28 5.30 0.266 3.2514 2.454 2.20 2.23 544 0.262 4.2149 2.22 2.28 530 0.266 3.25149 2.454 2.20 2.23 544 0.262 4.2149 2.22 2.28 530 0.266 3.25149 2.454 2.25 2.28 530 0.266 3.251	Ethyl acetoacetate	400				
Ethylamine 183 55.5 5,62 182 0.248 Ethylbenzone 34400 35.61 3.609 374 0.284 Ethyl benzoate 424 32 3.24 451 0.111 Ethylbutanoate 293 30.2 3.06 421 0.28 Ethyle-lobutanol 145.7 Ethyle-colonate 326 Ethyle-colonate 336 29.9 3.03 450 0.249 Ethyle-colonate 336 21.9 2.22 539 0.264 3-Ethyl-2.3-dimethylbexane 338.6 22.8 2.31 526 0.271 4-Ethyl-2.3-dimethylbexane 331.7 23.9 2.42 516 0.276 4-Ethyl-2.3-dimethylbexane 34.2 23.1 2.34 522 0.273 3-Ethyl-2.4-dimethylbexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2.4-dimethylbexane 341.0 23.1 2.34 522 0.273 4-Ethyl-2.4-dimethylbexane 341.4 23.9 2.42 511 0.278 Ethylene 30.4 22.1 2.24 537 0.265 3-Ethyl-3.4-dimethylbexane 351.4 23.9 2.42 511 0.278 Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol dimethyl ether 360.8 42.4 0.279 ether Ethylene 378 30.0 3.04 460 0.264 Ethylene 375 7.72 2.76 494 0.264 Ethyl isopentanoate 315 Ethylene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-2-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-2-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-3-methylbenzene 333.5 27.00 433 0.258 3-	Ethyl acrylate	279	37.0	3.75	320	0.313
Ethylbenzene 344.00 35.61 3.609 374 0.284 Ethyl benzene 424 32 3.24 451 0.111 Ethyl butanoate 293 30.2 3.06 421 0.28 Z-Ethyl-1-butanol 145.7 Ethylcyclohexane 326 Ethylcyclohexane 336 29.9 3.03 450 0.249 Ethylcyclohexane 338.6 22.8 2.31 526 0.271 4-Ethyl-2.2-dimethylhexane 353.7 23.9 2.42 516 0.276 4-Ethyl-2.2-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2.4-dimethylhexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2.4-dimethylhexane 351.4 2.3.9 2.42 511 0.276 4-Ethyl-2.4-dimethylhexane 351.4 2.3.9 2.42 511 0.278 Ethylene 300 dimethyl ether 334.2 31.2 3.4 522 0.273 3-Ethyl-2.4-dimethylhexane 351.4 2.3.9 2.42 511 0.278 Ethylene 300 dimethyl ether 334.2 31.25 3.166 443 0.228 Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene 351.4 2.57 420 0.271 Ethylene 3.125 3.166 443 0.298 acetate Ethylene 351.4 2.57 2.0 0.314 Ethylene 300 dimethyl ether 334.2 31.25 3.166 443 0.298 acetate 2.22.4 2.574 2.608 455 0.251 2.514 2.52.4 315 0.251 2.514 2.52.4 310 0.314 Ethylene 0.367.5 27.2 2.76 494 0.264 Ethyl formate 315 Ethyl isopropyl ether 217.2	Ethylamine	183	55.5	5.62	182	0.248
Ethyl berzoate 424 32 3.24 451 0.111 Ethylbutanoate 293 30.2 3.06 421 0.28 ZEhlyl-1-butanol 145.7 Ethyl crotonate 326 Ethyleyclopentane 2964 33.5 3.39 375 0.262 3-Ethyl-2-dimethylbexane 338.6 22.8 2.31 526 0.271 4-Ethyl-2,2-dimethylbexane 321.5 21.9 2.22 539 0.264 3-Ethyl-2,3-dimethylbexane 353.7 23.9 2.42 516 0.276 4-Ethyl-2,3-dimethylbexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2,4-dimethylbexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2,4-dimethylbexane 343.0 23.1 2.34 522 0.273 4-Ethyl-2,4-dimethylbexane 351.4 23.9 2.42 511 0.278 Bthyl-2,4-dimethylbexane 351.4 23.9 2.42 511 0.278 Ethylene 30.4 42.1 2.24 537 0.265 3-Ethyl-3,4-dimethylbexane 351.4 23.9 2.42 511 0.278 Ethylene glycol dimethyl ether 263 38.2 3.87 271 0.333 Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene solide 196 71.0 7.275 140 0.314 Ethylene solide 196 71.0 7.275 140 0.314 Ethylene solide 196 71.0 7.275 140 0.314 Ethylene 357.7 2.0 2.94 25.74 2.608 455 0.251 2.Ethyl-1-methylberane 378 30.0 3.04 460 0.26 3-Ethyl-1-methylberane 378 30.0 3.04 460 0.26 3-Ethyl-2-methylberane 378 30.0	Ethylbenzene	344.00	35.61	3.609	374	0.284
Ehylpitanoate 293 30.2 3.06 421 0.28 2-Eihyl-1-butanol 145.7 Ethylcyclohexane 326 Ethylcyclohexane 336 29.9 3.03 450 0.249 Ethylcyclohexane 296.4 33.5 3.39 37.5 0.262 3-Ethylc.2-dimethylhexane 321.5 21.9 2.22 539 0.264 3-Ethylc.2-dimethylhexane 353.7 2.3.9 2.42 516 0.271 4-Ethyl-2.4-dimethylhexane 344.0 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 344.0 2.3.1 2.34 522 0.273 3-Ethyl-2.4-dimethylhexane 344.0 2.3.1 2.34 522 0.273 3-Ethyl-2.4-dimethylhexane 351.4 23.9 2.42 511 0.278 Ethyleavelopentane 351.4 23.9 2.42 511 0.278 Ethylene 9.3 49.7 5.036 129 0.218 Ethylene glycol dimethyl ether 263 38.2 3.87 271 0.333 Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene diventifyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol dimothyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol dimothyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol dimothyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene side 196 71.0 7.275 140 0.314 Ethylene side 196 71.0 7.275 140 0.314 Ethylene side 196 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.264 Ethylene oxide 196 72.0 2.28 2.31 352 0.261 Ethyl	Ethyl benzoate	424	32	3.24	451	0.111
2-Ethyl-1-butanol 145.7 Ethyle crotonate 326 Ethyleyclopentane 296.4 33.5 3.39 375 0.262 3.Ethyle.2,-dimethylhexane 338.6 22.8 2.31 526 0.271 4-Ethyl-2,-dimethylhexane 321.5 21.9 2.22 539 0.264 3-Ethyl-2,-dimethylhexane 353.7 23.9 2.42 516 0.276 4-Ethyl-2,3-dimethylhexane 343.0 23.1 2.34 522 0.271 3-Ethyl-2,4-dimethylhexane 347.8 24.4 2.47 524 0.271 3-Ethyl-2,4-dimethylhexane 351.4 23.9 2.42 511 0.278 Ethylene 9.3 49.7 5.036 129 0.218 Ethylene glycol dimethyl ether 263 38.2 3.87 271 0.333 Ethylene glycol dimethyl ether 334.2 31.25 3.166 443 0.298 acetate Ethylene glycol monobutyl 360.8 424 0.279 ether 424 0.279 ether 424 Ethylene glycol monobutyl 360.8 424 0.264 Ethylene glycol monobutyl 360.8 424 0.279 ether 427 Ethylene 325.4 46.8 4.74 229 0.323 3-Ethylene 0.364 25.74 2.608 455 0.251 2-Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 315 Ethylene 318 20.2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 378 2.0 2.3 544 0.262 4-Ethyl-1-methylbenzene 378 2.0 2.3 544 0.262 Ethyl-1-methylbenzene 378 2.0 2.3 544 0.262 Ethyl-2-methylbenzene 378 2.0 2.3 544 0.262 Ethyl-2-methylbenzene 378 2.0 2.3 544 0.262 5-Ethyl-2-methylbenzene 378 2.0 2.3 544 0.262 5-Ethyl-2-methylbenzene 33.5 2.0 2.3 544 0.262 5-Ethyl-2-methylbenzene 33.5 2.0 2.3 544 0.263 5-Ethyl-2-methylbenzene 33.5 2.0 2.3 544 0.263 5-Ethyl-2-methylbenzene	Ethylbutanoate	293	30.2	3.06	421	0.28
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2-Ethyl-1-butanol	145.7				
Ethylcyclohexane 336 29.9 3.03 450 0.249 Ethylcyclopentane 296.4 33.5 3.39 375 0.262 3-Ethyl-2,2-dimethylhexane 321.5 21.9 2.22 539 0.264 3-Ethyl-2,2-dimethylhexane 353.7 23.9 2.42 516 0.276 4-Ethyl-2,3-dimethylhexane 344.2 23.1 2.34 522 0.273 4-Ethyl-2,4-dimethylhexane 343.0 23.1 2.34 522 0.271 3-Ethyl-2,4-dimethylhexane 330.4 22.1 2.24 537 0.265 3-Ethyl-2,4-dimethylhexane 30.4 22.1 2.24 511 0.278 Ethylene 9.3 49.7 50.66 443 0.298 acctate 334.2 31.25 3.166 443 0.298 acctate 196 71.0 7.275 140 0.314 Ethylene glycol monobutyl 360.8 46.8 4.74 229 0.323 3-Ethylene glycol monobutyl 367.5 2.72 2.66 4.254 0.271	Ethyl crotonate	326				
Ethyler, closentane 296,4 33,5 3,39 375 0,262 3-Ethyl-2,2-dimethylhexane 338,6 22,8 2,31 526 0,271 4-Ethyl-2,2-dimethylhexane 353,7 23,9 2,42 516 0,276 4-Ethyl-2,3-dimethylhexane 344,2 23,1 2,34 522 0,273 3-Ethyl-2,4-dimethylhexane 344,2 23,1 2,34 522 0,273 3-Ethyl-2,4-dimethylhexane 347,8 24,4 2,47 524 0,271 3-Ethyl-2,4-dimethylhexane 347,8 24,4 2,47 524 0,271 3-Ethyl-2,4-dimethylhexane 351,4 23,9 2,42 511 0,278 Ethylene glycol dimethyl ether 263 38,2 3,87 271 0,333 Ethylene glycol dimethyl ether 263 38,2 3,86 443 0,298 acetate Ethylene glycol dimethyl ether 263 38,2 3,166 443 0,298 acetate Ethylene glycol monobutyl 360.8 424 0,277 140 0,314 Ethylene glycol monobutyl 360.8 424 0,279 ether 225,4 46,8 4,74 229 0,223 3-Ethylhexane 39,5 7, 27,2 2,76 494 0,264 Ethylene xide 196 71.0 7,275 140 0,314 Ethylene xide 196 71.0 7,275 140 0,314 Ethylisopropyl ether 217.2 2-Ethyl-1-methylbenzene 378 30,0 3,04 460 0,26 3-Ethyl-1-methylbenzene 367 29,0 2,94 470 0,26 Ethylisopropyl ether 315 Ethyl isopropyl ether 317.2 2-Ethyl-1-methylbenzene 367 20,0 2,94 470 0,26 Ethyl isopropyl ether 319 29,5 2,99 Ethyl isopropyl ether 33,78 32,0 2,23 544 0,260 2-Ethyl-1-methylbenzene 364 28,0 2,84 490 0,24 4-Ethyl-1-methylbenzene 367 20,0 2,94 470 0,26 Ethyl 3-methylbenzene 37,8 30,0 3,04 460 0,26 3-Ethyl-1-methylbenzene 367 20,0 2,94 Ethyl 3-methylbenzene 36,2 2,99 Ethyl methyl ether 164,8 43,4 4,40 2,11 0,272 3-Ethyl-2-methylheptane 33,78 2,20 2,23 544 0,263 3-Ethyl-1-methylbenzene 33,6 2,16 2,19 55 0,256 3-Ethyl-3-methylheptane 33,78 2,20 2,23 544 0,263 3-Ethyl-3-methylheptane 34,24 22,5 2,28 533 0,269 5-Ethyl-3-methylheptane 34,24 22,5 2,28 533 0,269 5-Ethyl-3-methylheptane 34,24 22,5 2,28 533 0,269 5-Ethyl-3-methylheptane 342,4 22,5 2,28 533 0,267 4-Ethyl-3-methylheptane 342,4 22,5 2,28 533 0,267 4-Ethyl-3-methylheptane 340,2 6,65 2,700 4	Ethylcyclohexane	336	29.9	3.03	450	0.249
3-Edxyl-2.2-dimethylhexane 38.6 22.8 2.31 526 0.271 4-Ethyl-2.2-dimethylhexane 321.5 21.9 2.22 539 0.264 3-Ethyl-2.3-dimethylhexane 343.0 23.1 2.34 524 0.271 3-Ethyl-2.4-dimethylhexane 343.0 23.1 2.34 522 0.273 4-Ethyl-2.4-dimethylhexane 347.8 24.4 2.47 524 0.271 3-Ethyl-2.5-dimethylhexane 351.4 23.9 2.42 511 0.278 Ethylene 9.3 49.7 5.036 129 0.218 Ethylene 9.3 342. 31.25 3.166 443 0.298 acctate Ethylene 9.3 40.7 7.275 140 0.314 Ethylene 0.32 4.2 51.0 0.279 ether Ethylene 0.366.8 424 0.264 Ethylene 0.367.5 27.2 2.76 494 0.264 Ethyl isopentanoate 315 Ethyl isopentanoate 315 Ethyl isopentanoate 316 Ethyl isopentanoate 316 Ethyl isopentanoate 316 2.Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4.Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3.Ethyl-1-methylbenzene 378 22.0 2.23 544 0.262 4.Ethyl-1-methylbenzene 378 22.0 2.23 544 0.262 4.Ethyl-1-methylbenzene 378 22.0 2.23 544 0.262 4.Ethyl-1-methylbenzene 333.6 21.6 2.19 555 0.256 3.Ethyl-2-methylheptane 333.7 22.0 2.23 541 0.263 3.Ethyl-2-methylheptane 333.5 22.0 2.23 541 0.263 3.Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.263 3.Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4.Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4.Ethyl-3-met	Ethylcyclopentane	296.4	33.5	3.39	375	0.262
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3-Ethyl-2,2-dimethylhexane	338.6	22.8	2.31	526	0.271
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4-Ethyl-2,2-dimethylhexane	321.5	21.9	2.22	539	0.264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Ethyl-2,3-dimethylhexane	353.7	23.9	2.42	516	0.276
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Ethyl-2,3-dimethylhexane	344.2	23.1	2.34	524	0.271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Ethyl-2,4-dimethylhexane	343.0	23.1	2.34	522	0.273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Ethyl-2,4-dimethylhexane	347.8	24.4	2.47	524	0.271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Ethyl-2,5-dimethylhexane	330.4	22.1	2.24	537	0.265
Ethylene9.349.75.0361290.218Ethylene glycol dimethyl ether26338.23.872710.333Ethylene glycol ethyl ether31.253.1664430.298acetate26338.23.872710.333Ethylene glycol monobutyl360.84240.279ether2649671.07.2751400.314Ethylene oxide19671.07.2751400.314Ethylene oxide19671.07.2751400.314Ethylene oxide19671.07.2751400.314Ethylene oxide19671.07.2751400.314Ethyleneane292.425.742.6084550.2512-Ethyl-1-hexanol367.527.22.764940.264Ethyl isopropyl ether217.222222-Ethyl-1-methylbenzene36729.02.944700.263-Ethyl-1-methylbenzene31929.52.99222Ethyl-1-methylbenzene337.822.02.235440.2624-Ethyl-2-methylheptane333.621.62.195450.2615-Ethyl-3-methylheptane337.822.02.235440.2624-Ethyl-3-methylheptane337.522.02.235410.2635-Ethyl-3-methylheptane347.22.52.285330.2674-Ethyl-4-methylheptane	3-Ethyl-3,4-dimethylhexane	351.4	23.9	2.42	511	0.278
Ethylene glycol dimethyl ether263 38.2 3.87 271 0.333 Ethylene glycol ethyl ether 334.2 31.25 3.166 443 0.298 acetate 360.8 424 0.279 ether 2100 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.314 Ethylene oxide 196 71.0 7.275 140 0.314 Ethylene oxide 235.4 46.8 4.74 229 0.323 3 -Ethylhexane 22.4 25.74 2.608 455 0.251 2 -Ethyl-1-hexanol 367.5 27.2 2.76 494 0.264 Ethyl isopentanoate 315 -2 -2 -2 -2 2 -Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 2 -Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl amethylutanoate 314.9 -1 -2 -2 -2 1 -Ethyl-1-methylbeptane 317.8 22.0 2.23 544 0.262 4 -Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3 -Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.267 4 -Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-3-methylheptane 342.4 <t< td=""><td>Ethylene</td><td>9.3</td><td>49.7</td><td>5.036</td><td>129</td><td>0.218</td></t<>	Ethylene	9.3	49.7	5.036	129	0.218
Ethylene glycol ethyl ether acetate334.231.253.1664430.298Ethylene glycol monobutyl ether 360.8 4240.279Ethylene oxide196 71.0 7.275 1400.314Ethylene oxide196 71.0 7.275 1400.314Ethylene oxide292.4 25.74 2.608 4550.2512-Ethyl-1-hexanol 367.5 27.2 2.76 4940.264Ethyl isopentanoate315217.22-22.5142.6084602-Ethyl-1-methylbenzene378 30.0 3.04 4600.263-Ethyl-1-methylbenzene36729.0 2.94 4700.26Ethyl amethylbunzoate314.9111212.271-Ethyl-1-methylboratoate31929.52.992.944700.26Ethyl amethyl ether164.843.44.402210.2723-Ethyl-2-methylheptane337.822.02.235440.2624-Ethyl-2-methylheptane333.621.62.195550.2563-Ethyl-3-methylheptane333.522.02.235410.2633-Ethyl-3-methylheptane342.422.52.285300.2695-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.263 </td <td>Ethylene glycol dimethyl ether</td> <td>263</td> <td>38.2</td> <td>3.87</td> <td>271</td> <td>0.333</td>	Ethylene glycol dimethyl ether	263	38.2	3.87	271	0.333
Ethylene glycol monobutyl ether 360.8 424 0.279 Ethylene oxide 196 71.0 7.275 140 0.314 Ethyl formate 235.4 46.8 4.74 229 0.323 3-Ethylhexane 292.4 25.74 2.608 455 0.251 2-Ethyl-1-hexanol 367.5 27.2 2.76 494 0.264 Ethyl isopentanoate 315 112 2 2 2.514 46.8 4.74 200 0.26 3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl a-methylbutanoate 314.9 1 1 1 1 1 1.459 1 0.272 3-Ethyl-2-methylbeptane 317.8 22.0 2.99 21 0.272 3.54 0.261 5-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 5-Et	Ethylene glycol ethyl ether acetate	334.2	31.25	3.166	443	0.298
etherEthylene oxide19671.07.2751400.314Ethylene oxide235.446.84.742290.3233-Ethylhexane292.425.742.6084550.2512-Ethyl-1-hexanol367.527.22.764940.264Ethyl isopentanoate315217.22.764940.264Ethyl-1-methylbenzene37830.03.044600.263-Ethyl-1-methylbenzene36428.02.844900.244-Ethyl-1-methylbenzene36729.02.944700.26Ethyl a-methylburanoate314.911111-Ethyl-1-methylbenzene36729.02.944700.262Ethyl a-methylburanoate314.912110.27233-Ethyl-2-methylheptane337.822.02.235440.2624-Ethyl-3-methylheptane333.621.62.195550.2563-Ethyl-3-methylheptane333.521.62.195550.2674-Ethyl-3-methylheptane341.222.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-4-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.4	Ethylene glycol monobutyl	360.8			424	0.279
Ethylene oxide19671.07.2751400.314Ethyl formate235.446.84.742290.3233-Ethylhexane292.425.742.6084550.2512-Ethyl-1-hexanol367.527.22.764940.264Ethyl isopentanoate31555552-Ethyl-1-methylbenzene37830.03.044600.263-Ethyl-1-methylbenzene36729.02.944700.26Ethyl isopentyl ether314.911-Ethyl-1-methylbenzene36729.02.944700.26Ethyl a-methylbutanoate314.91-Ethyl-1-methylbeptane317.822.02.235440.2624-Ethyl-2-methylheptane337.822.02.235440.2624-Ethyl-3-methylheptane333.621.62.195550.2563-Ethyl-3-methylheptane347.022.82.315320.2674-Ethyl-3-methylheptane33.522.02.235410.2633-Ethyl-4-methylheptane342.422.52.285330.2674-Ethyl-3-methylheptane342.422.52.285330.2674-Ethyl-4-methylheptane342.422.52.285330.2675-Ethyl-4-methylheptane30.52.7712.8084550.351Ethyl a-methylheptane30.52.7712.808455	ether					
Ethyl formate235.446.84.742290.3233-Ethylhexane292.425.742.6084550.2512-Ethyl-1-hexanol367.527.22.764940.264Ethyl isopentanoate315117.2222-Ethyl-1-methylbenzene36428.02.844900.243-Ethyl-1-methylbenzene36729.02.944700.263-Ethyl-1-methylbenzene36729.02.944700.26Ethyl 3-methylbenzene36729.02.944700.26Ethyl 1-methylbenzene36729.02.944700.26Ethyl 1-methylbenzene36729.02.944700.26Ethyl 1-methylbenzene314.911210.2720.2723-Ethyl-1-methylbeptane317.822.02.235440.2624-Ethyl-2-methylheptane337.822.02.235440.2624-Ethyl-3-methylheptane347.022.82.315320.2674-Ethyl-3-methylheptane341.222.52.285300.2695-Ethyl-3-methylheptane341.222.52.285330.2674-Ethyl-4-methylheptane342.422.52.285330.2674-Ethyl-4-methylheptane342.422.52.285330.2675-Ethyl-3-methylheptane303.527.712.8084550.351Ethyl methyl ketone262.441.04.1542	Ethylene oxide	196	71.0	7.275	140	0.314
3-Ethylhexane292.425.742.6084550.2512-Ethyl-1-hexanol 367.5 27.2 2.76 494 0.264 Ethyl isopentanoate 315 217.2 2.76 494 0.264 Ethyl isopropyl ether 217.2 2 -Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3 -Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4 -Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl a-methylbenzene 314.9 -1 -1 0.272 3 -Ethyl-2-methylbeptane 319 29.5 2.99 -1 Ethyl a-methylbeptane 337.8 22.0 2.23 544 0.262 4 -Ethyl-2-methylheptane 337.8 22.0 2.19 555 0.256 3 -Ethyl-2-methylheptane 333.6 21.6 2.19 545 0.261 5 -Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.262 3 -Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.266 3 -Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 3 -Ethyl-4-methylheptane 342.4 <td< td=""><td>Ethyl formate</td><td>235.4</td><td>46.8</td><td>4.74</td><td>229</td><td>0.323</td></td<>	Ethyl formate	235.4	46.8	4.74	229	0.323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Ethylhexane	292.4	25.74	2.608	455	0.251
Ethyl isopentanoate315Ethyl isopropyl ether 217.2 2-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 1 1 1 1 1-Ethyl-1-methylcyclopentane 319 29.5 2.99 2.94 0.272 3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 336 21.6 2.19 555 0.256 3-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 533 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-4-methylheptane 303.5 27.71 2.808 455 0.351 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 303.5 27.71 2.808	2-Ethyl-1-hexanol	367.5	27.2	2.76	494	0.264
Ethyl isoropyl ether 217.2 2-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 1 1 1 1 1-Ethyl-1-methylcyclopentane 319 29.5 2.99 2.94 470 0.262 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 3-Ethyl-2-methylheptane 37.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 328.7 21.6 2.19 555 0.2266 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.2266 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-3-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-4-methylheptane 303.5 27.71 2.808 455 0.351 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 <	Ethyl isopentanoate	315				
2-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 1 1 1 29.5 2.99 Ethyl nethyl ether 164.8 43.4 4.40 221 0.272 3 -Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4 -Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5 -Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3 -Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4 -Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5 -Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-3-methylheptane 342.4 22.8 2.31 525 0.271 4 -Ethyl-3-methylheptane 342.4 22.8 2.31 525 0.271 4 -Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 4 -Ethyl-4-methylheptan	Ethyl isopropyl ether	217.2				
3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 1 1 1 1-Ethyl-1-methylcyclopentane 319 29.5 2.99 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-2-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl methyl sulfide 260 42 4.26 221 0.300 <td>2-Ethyl-1-methylbenzene</td> <td>378</td> <td>30.0</td> <td>3.04</td> <td>460</td> <td>0.26</td>	2-Ethyl-1-methylbenzene	378	30.0	3.04	460	0.26
4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 $1-$ Ethyl-1-methylcyclopentane 319 29.5 2.99 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 $3-$ Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 $4-$ Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 $5-$ Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 $3-$ Ethyl-2-methylheptane 347.0 22.8 2.31 532 0.267 $4-$ Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.269 $5-$ Ethyl-3-methylheptane 342.4 22.5 2.28 530 0.269 $5-$ Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 $4-$ Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 $4-$ Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 $4-$ Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 $3-$ Ethyl-2-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 22.1 0.300 Ethyl methyl a	3-Ethyl-1-methylbenzene	364	28.0	2.84	490	0.24
Ethyl 3-methylbutanoate 314.9 1-Ethyl-1-methylcyclopentane 319 29.5 2.99 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl -2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 22.1 0.300 Ethyl methyl sulfide	4-Ethyl-1-methylbenzene	367	29.0	2.94	470	0.26
1-Ethyl-1-methylcyclopentane 319 29.5 2.99 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 22.1 0.300 Ethyl methyl sulfide 260 42 4.26 22.1 0.300	Ethyl 3-methylbutanoate	314.9				
Ethyl methyl ether164.843.44.40221 0.272 3-Ethyl-2-methylheptane337.822.02.23544 0.262 4-Ethyl-2-methylheptane328.721.62.19545 0.261 5-Ethyl-2-methylheptane333.621.62.19555 0.256 3-Ethyl-3-methylheptane347.022.82.31532 0.267 4-Ethyl-3-methylheptane341.222.52.28530 0.269 5-Ethyl-3-methylheptane342.422.52.28533 0.267 4-Ethyl-4-methylheptane342.422.52.28533 0.267 4-Ethyl-4-methylheptane342.422.82.31525 0.271 Ethyl methyl ketone262.441.04.154267 0.270 3-Ethyl-2-methylpentane294.026.652.700443 0.258 3-Ethyl-3-methylpentane303.527.712.808455 0.351 Ethyl a-methylpentane303.527.712.808455 0.351 Ethyl 2-methylpropanoate28030 3.04 410 0.28 Ethyl methyl sulfide260424.262222-Ethylnaphthalene50231.03.14521 0.300	1-Ethyl-1-methylcyclopentane	319	29.5	2.99		
3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4 -Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5 -Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3 -Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4 -Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5 -Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4 -Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 4 -Ethyl-4-methylheptane 262.4 41.0 4.154 267 0.270 3 -Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3 -Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 410 280 30 3.04 410 0.28 2 -Ethyl nethyl sulfide 260 42 4.26 2.26 2.10 0.300 2 -Ethylnaphthalene 502 31.0 3.14 521 0.300	Ethyl methyl ether	164.8	43.4	4.40	221	0.272
4-Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2.21 0.300 Ethyl nonanoate 401 3.14 521 0.300	3-Ethyl-2-methylheptane	337.8	22.0	2.23	544	0.262
5-Ethyl-2-methylheptane333.621.62.195550.2563-Ethyl-3-methylheptane347.022.82.315320.2674-Ethyl-3-methylheptane341.222.52.285300.2695-Ethyl-3-methylheptane333.522.02.235410.2633-Ethyl-4-methylheptane342.422.52.285330.2674-Ethyl-4-methylheptane342.422.52.285330.2674-Ethyl-4-methylheptane342.422.82.315250.271Ethyl methyl ketone262.441.04.1542670.2703-Ethyl-2-methylpentane294.026.652.7004430.2583-Ethyl-3-methylpentane303.527.712.8084550.351Ethyl 2-methylpropanoate280303.044100.28Ethyl methyl sulfide260424.262-Ethylnaphthalene50231.03.145210.300	4-Ethyl-2-methylheptane	328.7	21.6	2.19	545	0.261
3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.263 3-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2 2 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	5-Ethyl-2-methylheptane	333.6	21.6	2.19	555	0.256
4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.263 3-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	3-Ethyl-3-methylheptane	347.0	22.8	2.31	532	0.267
5-Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.263 3-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 521 0.300	4-Ethyl-3-methylheptane	341.2	22.5	2.28	530	0.269
3-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	5-Ethyl-3-methylheptane	333.5	22.0	2.23	541	0.263
4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	3-Ethyl-4-methylheptane	342,4	22.5	2.28	533	0.267
Ethyl methyl ketone262.441.04.1542670.2703-Ethyl-2-methylpentane294.026.652.7004430.2583-Ethyl-3-methylpentane303.527.712.8084550.351Ethyl 2-methylpropanoate280303.044100.28Ethyl methyl sulfide260424.2622-Ethylnaphthalene50231.03.145210.300	4-Ethyl-4-methylheptane	342.4	22.8	2.31	525	0.271
3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	Ethyl methyl ketone	262.4	41.0	4.154	267	0.270
3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300	3-Ethyl-2-methylpentane	294.0	26.65	2.700	443	0.258
Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2 2 2 2 100 0.300 100 0.28 100 0.28 100 0.28 100 0.28 100 100 0.28 100 100 0.28 100 100 0.28 100 100 0.28 100 100 0.28 100	3-Ethyl-3-methylpentane	303.5	27.71	2.808	455	0.351
Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300 Ethyl nopanoste 401 </td <td>Ethyl 2-methylpropanoate</td> <td>280</td> <td>30</td> <td>3.04</td> <td>410</td> <td>0.28</td>	Ethyl 2-methylpropanoate	280	30	3.04	410	0.28
2-Ethylnaphthalene 502 31.0 3.14 521 0.300	Ethyl methyl sulfide	260	42	4.26		0.00
Thuy no anoate 401	2-Ethylnaphthalene	502	31.0	3.14	521	0.300
	Ethyl nonanoate	401		- /		

	Critical Proparties (Continued)
IABLE 2.55	Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, \mathrm{g} \cdot \mathrm{cm}^{-3}$
3-Ethyloctane	340	21.6	2.19	561	0.241
4-Ethyloctane	337	21.5	2.18	552	0.258
Ethyl octanoate	386				
3-Ethylpentane	267.6	28.53	2.891	416	0.241
1.2-Ethylphenol	429.9				
1.3-Ethylphenol	443.3				
1.4-Ethylphenol	443.3				
Ethyl propanoate	272.9	33.18	3.362	345	0.296
Ethyl propyl ether	227.1	32.1	3.25	244	0.361
<i>m</i> -Ethyltoluene	364.0	28.1	2.837	490	0.245
<i>a</i> -Ethyltoluene	378.0	30.1	3.04	460	0.261
<i>n</i> -Ethyltoluene	367	29.0	2.94	479	0.256
3-Ethyl-2 2 3-trimethyl-	372.9	25.4	2.57	503	0.283
pentane	512.9	20.4	2.57	505	0.205
3-Ethyl-2,2,4-trimethyl-	342.2	23.4	2.37	518	0.275
3-Ethyl-2,3,4-trimethyl-	369.2	25.1	2.54	506	0.281
Ethyl vinyl ether	202	40.17	4 07	260	0 277
Fluorobenzene	286 94	44.91	4 551	357	0.269
Fluoroethane	102.2	49.6	5.03	169	0.284
Fluoromethane	44 7	58.0	5.88	124	0.274
4-Fluorotoluene	316.4	50.0	5.00	124	0.274
Formaldehyde	135	65	6.6	105	0.286
Formic acid	315	05	0.0	105	0.200
2 Euroldebyde	307	58 1	5 80		
Furan	217 1	54.3	5.50	218	0.312
Glycerol	453	54.5 66	6.69	210	0.312
Hentadecane	460	13.0	1 32	1006	0.301
1.Hentadecanol	736	14.0	1.52	960	0.140
Hentone	267.1	27.0	274	128	0.237
1 Heptanol	250.5	27.0	3.058	420	0.252
2 Heptanol	335.2	20.10	3.021	433	0.260
3-Hentanol	332.3	29.01	5.021	752	0.209
2 Heptenone	338 /	22.01	3 136	421	0.271
1 Hentene	264.2	28.91	2.021	402	0.271
Hentylevelopentene	204.2	20.05	2.921	402	0.240
Havedagaffuarabantana	201 7	19.2	1.945	664	0.584
Hexadecanuoronepiane	201.7	10.0	1.02	004	0.364
	444	14	1.42	930	0.245
I-Hexadecene	444 510	15.2	1.54	955	0.241
Hexadecylcyclopentane	518	9.6	0.97	200	0.050
1,5-Hexadiene	234	34	3.44	328	0.250
Hexafluoroacetone	84.1	29.0	2.94	329	0.505
Hexafluorobenzene	243.6	32.30	3.273	335	0.505
Hexafluoroethane	19.7			224	0.617
Hexamethylbenzene	494			600	0.271
Hexane	234.5	29.85	3.025	368	0.233
Hexanenitrile	360.7	32.57	3.30		
Hexanoic acid	389	31.6	3.20		
1-Hexanol	337.2	33.72	3.417	381	0.268
2-Hexanol	312.8	32.67	3.310		

TABLE 2.55 Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	ρ_c , g · cm ⁻³
3-Hexanol	309.3	33.2	3.36		
2-Hexanone	313.9	32.8	3.32		
3-Hexanone	309.7	32.76	3.320		
1-Hexene	231.0	31.64	3.206	348	0.242
cis-2-Hexene	245	32.4	3.28	351	0.240
trans-2-Hexene	243	32.3	3.27	351	0.240
cis-3-Hexene	244	32.4	3.28	350	0.240
trans-3-Hexene	246.8	32.1	3.25	350	0.240
Hexylcyclopentane	387.0	21.1	2.14		
Icosafluorononane	251	15.4	1.56		
Icosane	494	10.3	1.04	1190	0.237
1-Icosanol	497	12.0	1.22		
Indane	411.8	39.0	3.95	381	0.310
Iodine	546	115	11.7	155	0.164
Iodobenzene	448	44.6	4.52	351	0.581
Iodoethane	281.0				
Iodomethane	255	65	6.59	190	0.75
1-Iodopropane	323				
Isobutyl acetate	288	31.2	3.16	414	0.281
Isobutylamine	246	40.2	4.07	284	0.258
Isobutylbenzene	377	30.1	3.05	480	0.280
Isobutyl bromide	294.1				
Isobutyl butanoate	338				
Isobutylcyclohexane	386	30.8	3.12		
Isobutyl formate	278	38.3	3.88	350	0.29
Isobutyl isobutanoate	329				
Isobutyl 3-methylbutanoate	348				
Isobutyl propanoate	319				
Isopentyl acetate	326				
Isopentyl butanoate	346				
Isopentyl propanoate	338				
Isopropyl acetate	258				
Isopropylamine	198.7	44.8	4.54	221	0.267
Isopropylbenzene	357.9	31.67	3.209	429	0.281
Isopropylcycloheptane	334.5				
Isopropylcyclohexane	367	28	2.84		
Isopropylcyclopentane	328	29.6	3.00		
4-Isopropylheptane	334.5	22.0	2.23	537	0.265
Isopropylmethylamine	217.6				
2-Isopropyl-1-methylbenzene	397	28.6	2.90		
3-Isopropyl-1-methylbenzene	393	29.0	2.94		
4-Isopropyl-1-methylbenzene	380	27.9	2.83		
3-Isopropyl-2-methylhexane	359.3	22.6	2.29	529	0.269
Isopropyl methyl sulfide	276.4				
Isoquinoline	530	50.3	5.10	374	0.345
Isoxazole	278.9				
Ketene	380	64	6.5	145	0.290
Methane	-82.60	45.44	4.604	99.0	0.162
Methanethiol	196.8	71.4	7.23	145	0.332
Methanol	239.4	79.78	8.084	118	0.272
Methoxybenzene	372.5	41.9	4.25		0.321
Methyl acetamide	417				
Methyl acetate	233.40	46.9	4.75	228	0.325

TABLE 2.55	Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, g \cdot cm^{-3}$
Methyl acrylate	263	42	4.26	265	0.325
Methylamine	157.6	75.14	7.614	140	0.222
N-Methylaniline	428	51.3	5.20	373	0.287
Methyl benzoate	438	36	3.65	396	0.344
2-Methyl-1,3-butadiene	211	38.0	3.85	276	0.247
3-Methyl-1,3-butadiene	223	40.6	4.11	267	0.255
2-Methylbutane	187.3	33.4	3.38	306	0.236
2-Methyl-1-butanethiol	318.8				
2-Methyl-2-butanethiol	297.0				
Methyl butanoate	281.3	34.3	3.475	340	0.300
3-Methylbutanoic acid	356	33.6	3.40		
2-Methyl-1-butanol	302.3	38.9	3.94	322	0.274
3-Methyl-1-butanol	304.1	38.8	3.93	329	0.268
2-Methyl-2-butanol	270.6	36.6	3.71	319	0.276
3-Methyl-2-butanol	283.0	38.2	3.87		
3-Methyl-2-butanone	280.3	38.0	3.85	310	0.278
2-Methyl-1-butene	196.9	34.0	3 445	294	0.239
3-Methyl-1-butene	191.6	34.7	3 52	300	0.234
2-Methyl-2-butene	207.9	34.0	3 445	318	0.234
Methylcyclobexane	299.1	34.26	3 471	368	0.267
Methylcyclopentane	259.58	37 35	3 784	319	0.264
Methyl dodecanoate	439	51.55	5.704	758	0.283
<i>N</i> -Methylethylamine	223 5	36.6	3 71	243	0.265
Methyl formate	214.1	59.20	5 998	172	0.349
2-Methylfuran	254	46.6	4 72	247	0.333
2-Methylhentane	286.6	24 52	2 484	488	0.234
3-Methylheptane	290.6	25.13	2.464	464	0.254
4-Methylhentane	290.0	25.09	2.540	476	0.240
2-Methylhexane	257.3	26.98	2.542	470	0.248
3-Methylhexane	267.5	20.90	2.754	404	0.238
Methylhydrazine	202.2	79.3	8 035	271	0.170
Methyl 2-hydroxybenzoate	436	12.5	0.055	271	0.170
Methyl isobutanoate	267.7	33.0	3 43	330	0.301
Methyl isocyanate	207.7	55	5 57	557	0.501
1-Methylpanbthalene	/00	35 5	3.60	115	0.320
2-Methylnaphthalene	488	34.6	3.51	462	0.308
2 Methyloctane	313.0	22.80	2 310	702	0.508
2-Methylpentane	224.6	22.80	3 031	367	0.235
3-Methylpentane	224.0	30.85	3 126	367	0.235
2-Methyl_2 A-pentanediol	405	33.0	3.43	507	0.255
Methyl pentanoste	204	55.7	5.45		
2 Methyl-2 pentanol	294				
2-Methyl-2-pentanol	302.0	3/1	3 46		
3 Methyl-3-pentanol	302.5	34.7	3.50		
4 Methyl 1 pentanol	330.4	54.7	5.52		
4 Methyl 2 pontenel	301.3	12.4	4 30	380	0.260
A Methyl 2 pentanon	208.8	72.7	4.50	560	0.209
4 Mothyl 2 pontenono	290.0	22.2	2 27	271	0.270
Methyl-2-pentene	220	32.5	3.21	351	0.270
cis-3-Methyl-2-pentene	245	32.4	3.20	351	0.240
trans 3 Methyl 2 pontono	245	32.4	3.20	351	0.240
ois 4 Methyl 2 pentono	∠40 217	32.3	3.27	350	0.240
trans 4 Methyl 2 pontono	217	30	3.04	260	0.234
ir uns-4-mennyi-2-pentene	220	50	5.04	500	0.234

TABLE 2.55 Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, \mathrm{g} \cdot \mathrm{cm}^{-3}$
2-Methylpropanal	240	41	4.15	274	0.263
2-Methyl-1-propanamine	246	40.2	4.07	278	0.263
N-Methylpropanamide	412				
2-Methylpropane	134.70	35.83	3.630	263	0.221
2-Methyl-1-propanethiol	286.4				
2-Methyl-2-propanethiol	257.0				
Methyl propanoate	257.5	39.5	4.00	282	0.312
2-Methylpropanoic acid	332	36.5	3.7	292	0.302
2-Methyl-1-propanol	274.6	42.39	4.295	273	0.272
2-Methyl-2-propanol	233.1	39.20	3.972	275	0.270
2-Methylpropene	144.73	39.48	4.000	239	0.235
2-Methylpropyl acetate	288	31.2	3.16	414	0.281
Methyl propyl ether	203.2				
Methyl propyl sulfide	301.0				
2-Methylpyridine	347.9	45.4	4.60	292	0.319
3-Methylpyridine	371.9	44.2	4.48	288	0.323
4-Methylpyridine	373	46.4	4.70	292	0.319
1-Methyl-2-pyrrolidinone	448.7			311	0.319
1-Methylstyrene	381	33.6	3.40	397	0.298
2-Methyltetrahydrofuran	264	37.1	3.76	267	0.322
2-Methylthiophene	333.1	47.9	4.85	275	0.356
3-Methylthiophene	337.7	48.9	4.95	275	0.356
Methyl vinyl ether	163	47	4.76	205	0.283
Morpholine	345	54	54.7	253	0.344
Naphthalene	475.3	39.98	4.051	407	0.31
Nitrobenzene	459				
Nitroethane	284	37	3.75		
Nitromethane	315	57.9	5.87	173	0.352
1-Nitropropane	402.0				
2-Nitropropane	344.8				
Nonadecane	483	11.0	1.12	1130	0.238
Nonane	321.5	22.6	2.29	555	0.231
Nonanoic acid	438	23.7	2.40		
1-Nonanol	404			546	0.264
1-Nonene	319	23.1	2.34	580	0.218
Nonylbenzene	468	18.7	1.89	790	0.259
Nonylcyclopentane	437.4	16.3	1.65		
Octadecafluorooctane	229	16.4	1.66		
Octadecane	472.3	12.73	1.29	1070	0.238
1-Octadecanol	474	14	1.42		
1-Octadecene	466	11.2	1.13		
Octafluorocyclobutane	115.31	27.48	2.784	325	0.616
Octafluoronaphthalene	399.9				
Octafluoropropane	72.7	26.5	2.69	299	0.628
Octamethylcyclotetrasiloxane	313	13.2	1.33	970	0.306
Octane	295.6	24.6	2.49	492	0.232
Octanenitrile	401.3	28.1	2.85		
Octanoic acid	422	26.1	2.64		
1-Octanol	379.4	27.41	2.777	490	0.266
2-Octanol	356.5	27.18	2.754	494	0.278
1-Octene	293.6	26.40	2.675	464	0.242
cis-2-Octene	307	27.3	2.77		
Octylcyclopentane	421	17.7	1.79		

TABLE 2.55	Critical Properties (Continued)
	enneu ropennes (communeu)

Substance	$T_c, \circ C$	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$ ho_c, \mathrm{g}\cdot\mathrm{cm}^{-3}$
Pentachloroethane	373.0				
Pentadecane	433.9	15	1.52	880	0.241
1-Pentadecene	431	14.4	1.46		
Pentadecylcyclopentane	507	10.1	1.02		
1,2-Pentadiene	230	40.2	4.07	276	0.248
cis-1,3-Pentadiene	223	39.4	3.99	275	0.248
1,4-Pentadiene	205	37.4	3.79	276	0.248
Pentafluorobenzene	258.9	34.7	3.52		
2,3,4,5,6-Pentafluorotoluene	275.5				
2,2,3,3,4-Pentamethyl-	370.7	25.5	2.58	508	0.280
pentane					
2,2,3,4,4-Pentamethyl-	354.2	23.7	2.40	521	0.273
pentane					
Nonadecane	483	11.0	1.12	1130	0.238
Nonane	321.5	22.6	2.29	555	0.231
Nonanoic acid	438	23.7	2.40		
1-Nonanol	404			546	0.264
1-Nonene	319	23.1	2.34	580	0.218
Nonylbenzene	468	18.7	1.89	790	0.259
Nonvlcyclopentane	437.4	16.3	1.65		
Octadecafluorooctane	229	16.4	1.66		
Octadecane	472.3	12.73	1.29	1070	0.238
1-Octadecanol	474	14	1.42		
1-Octadecene	466	11.2	1.13		
Octafluorocyclobutane	115 31	27.48	2.784	325	0.616
Octafluoronaphthalene	300.0	27110	2.701	020	01010
Octafluoropropane	72 7	26.5	2.69	299	0.628
Octamethylcyclotetrasiloxane	313	13.2	1 33	970	0.306
Octane	295.6	24.6	2 49	492	0.232
Octanenitrile	401.3	29.1	2.42	472	0.252
Octanoic acid	401.5	26.1	2.65		
	422	20.1	2.04	400	0.266
2 Octanol	379.4	27.41	2.777	490	0.200
	330.3	27.10	2.734	494	0.278
1-Octene	293.0	20.40	2.075	404	0.242
cis-2-Octene	307	27.3	2.77		
Octylcyclopentane	421	17.7	1.79		
Osmium tetroxide	132	1/0	17.2	5 2 <i>i</i>	0.497
Oxygen	-118.56	49.77	5.043	73.4	0.436
Oxygen difluoride	- 58.0	48.9	4.95	97.7	0.553
Ozone	-12.10	53.8	5.45	88.9	0.540
Pentachloroethane	373.0				
Pentadecane	433.9	15	1.52	880	0.241
1-Pentadecene	431	14.4	1.46		
Pentadecylcyclopentane	507	10.1	1.02		
1,2-Pentadiene	230	40.2	4.07	276	0.248
cis-1,3-Pentadiene	223	39.4	3.99	275	0.248
1,4-Pentadiene	205	37.4	3.79	276	0.248
Pentafluorobenzene	258.9	34.7	3.52		
2,3,4,5,6-Pentafluorotoluene	275.5				
2,2,3,3,4-Pentamethyl-	370.7	25.5	2.58	508	0.280
pentane					
2,2,3,4,4-Pentamethyl-	354.2	23.7	2.40	521	0.273
pentane					
-					

TABLE 2.55 Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	ρ_c , g · cm ⁻³
3-Pentanol	286.5				
2-Pentanone	287.93	36.46	3.694	301	0.286
3-Pentanone	288.31	36.9	3.729	336	0.256
1-Pentene	191.63	34.81	3.527	293	0.239
cis-2-Pentene	202	36.4	3.69		
trans-2-Pentene	198	34.7	3.52	304	0.231
Pentyl acetate	332				
Pentylbenzene	406.8	25.7	2.60	550	0.269
Pentyl formate	303				
1-Pentyne	220.3	40	4.05	278	0.245
Perchloryl fluoride	95.3	53.0	5.37	161	0.637
Phenanthrene	596			554	0.322
Phenol	421.1	60.5	6.13	229	0.41
1-Phenylhexadecane	535	12.7	1.29	1200	0.252
1-Phenylpentadecane	526.9	13.3	1.35	1140	0.253
1-Phenyltetradecane	519	14.0	1.42	1110	0.247
Phthalic anhydride	537	47	4.76	368	0.402
Piperidine	321.0	48.8	4.94	288	0.296
Propadiene	120	54.0	5.47	162	0.247
Propanal	231.3	52.0	5.27	204	0.285
Propane	96.68	41.92	4.248	200	0.217
1.2-Propanediol	352	60	6.08	237	0.321
1.3-Propanediol	385	59	5.98	241	0.316
Propanenitrile	288.2	42.0	4.26	230	0.240
1-Propanethiol	262.5				0.210
2-Propanethiol	244.2				
Pronanoic acid	331	44.7	4.53	222	0.32
1-Propanol	263.7	51.01	5.169	218.5	0.275
2-Propanol	235.2	47.02	4.764	220	0.273
2-Propenal	233	51	5.17	197	0.285
Propene	91.9	45.6	4.62	181	0.233
2-Propen-1-ol	272.0			208	0.279
Propyl acetate	276.6	33.2	3.36	345	0.296
Propylamine	223.9	46.6	4.72	233	0.254
Propylbenzene	365.20	31.58	3.200	440	0.273
Propyl butanoate	327				**=**
Propylevelopentane	358.7	29.6	3.00	425	0.264
Propylcyclohexane	336.7	27.7	2.81		0.201
Propylene oxide	209.1	48.6	4.92	186	0.312
Propyl formate	264.9	40.1	4.06	285	0.309
Propyl 2-methylpropanoate	316			-00	0.000
Propyl 3-methylpropanoate	336				
Propyl propanoate	305				
Pronyne	129.3	55.5	5.62	164	0.245
Pyridine	346.9	55.96	5.67	243	0.325
Pyrrole	366.6	62.6	6.34	200	0.335
Pyrrolidine	295 1	55.2	5.59	238	0.300
Quinoline	509	48.0	4 86	437	0.300
Spiro[2.2]pentane	233.3			.57	0.000
Styrene	363.8	36.3	3.68	347	0.300

TABLE 2.55 Critical Properties (Continued)

TABLE 2.55 Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$ ho_c$, g · cm ⁻³
1,2-Terphenyl	617.9	38.5	3.90	755	0.305
1,3-Terphenyl	651.7	34.6	3.51	768	0.300
1,4-Terphenyl	652.9	32.8	3.32	762	0.302
1,1,2,2-Tetrachlorodifluoro-	278	34	3.44	371	0.549
ethane					
1,1,2,2-Tetrachloroethane	388.00				
Tetrachloroethylene	347.1	44.3	4.49	290	0.572
Tetrachloromethane	283.5	44.57	4.516	276	0.557
Tetradecafluoro-1-heptene	205.1				
Tetradecafluorohexane	174.5	18.8	1.90		
Tetradecafluoromethylcyclohexane	213.7	23	2.33		
Tetradecane	420.9	16	1.62	830	0.239
1-Tetradecene	416	15.4	1.56		
Tetradecylcyclopentane	499	11.1	1.12		
Tetraethylsilane	330.6	25.68	2.602		
Tetrafluoroethylene	33.4	38.9	3.91	175	0.58
Tetrafluorohydrazine	33.3	37	3.75		
Tetrafluoromethane	-45.5	36.9	3.74	140	0.629
Tetrahydrofuran	267.0	51.22	5.19	224	0.322
1.2.3.4-Tetrahydronaphthalene	447	36.0	3.65	408	0.324
Tetrahydropyran	299.1	47.1	4.77	263	0.328
Tetrahydrothiophene	358.9				
1.2.4.5-Tetramethylbenzene	402	29	2.94	480	0.280
2.2.3.3-Tetramethylbutane	294.7	28.3	2.87	461	0.248
2.2.3.3-Tetramethylbexane	350.0	24.8	2.51	573	0.248
2.2.3.4-Tetramethylhexane	347.3	23.4	2.37	525	0.271
2,2,3,5-Tetramethylhexane	328.2	22.4	2.27	540	0.263
2,2,4,4-Tetramethylhexane	337.1	22.2	2.25	535	0.266
2,2,4,5-Tetramethylhexane	325.4	21.9	2.22	544	0.262
2,2,5,5-Tetramethylhexane	308.4	21.6	2.19	573	0.248
2.3.3.4-Tetramethylhexane	360.0	24.5	2.48	514	0.277
2,3,3,5-Tetramethylhexane	337.0	22.9	2.32	531	0.268
2.3.4.4-Tetramethylhexane	353.5	23.9	2.42	518	0.275
2.3.4.5-Tetramethylhexane	340.1	23.1	2.34	530	0.269
3.3.4.4-Tetramethylhexane	373.6	25.4	2.57	506	0.281
2.2.3.3-Tetramethylpentane	334.6	27.05	2.741		*****
2.2.3.4-Tetramethylpentane	319.6	25.68	2.602		
2.2.4.4-Tetramethylpentane	301.6	24.52	2.485		
2.3.3.4-Tetramethylpentane	334.6	26.80	2.716		
Tetramethylsilane	175.49	27.84	2.821	362	0.244
Thiacyclopentane	358.8				
2-Thiapropane	230.0	54.6	5.53	201	0.309
Thiophene	306.3	56.16	5.69	219	0.385
Thiophenol	416.4	00110	0103		01000
Thymol	42.5				
Toluene	318 60	40 54	4 108	316	0.292
1.2-Toluidine	434	43.1	4 37	343	0.312
1 3-Toluidine	434	42.2	4 28	343	0.312
1 4-Toluidine	433	45.2	4.58	215	0.014
Toluonitrile	450				
Tributoxyborane	472	19.6	1 99	863	0.267
			1.77	000	0.207

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$\rho_c, g \cdot cm^{-3}$
Tributylamine	365.3	18	1.82		
1,1,1-Trichloroethane	272	42.4	4.30		
1,1,2-Trichloroethane	329	41	4.15	294	0.454
Trichloroethylene	271.1	49.5	5.02	256	0.513
Trichlorofluoromethane	198.1	43.5	4.41	248	0.554
Trichlorofluorosilane	165.4	35.3	3.57		
Trichloromethane	263.3	54.0	5.47	239	0.500
Trichloromethylsilane	244	32.4	3.28	348	0.430
1,2,3-Trichloropropane	378	39	3.95	348	0.424
1,2,2-Trichlorotrifluoroethane	214.2	33.7	3.42	325	0.576
Tridecane	402	16.6	1.68	780	0.236
1-Tridecene	401	16.8	1.70		
Tridecylcyclopentane	488	11.9	1.21		
Triethanolamine	514.3	24.2	2.45		
Triethylamine	262.5	29.92	3.032	389	0.26
Trifluoroacetic acid	218.2	32.15	3.258	204	0.559
Trifluoroamine oxide (NOF ₂)	29.5			169	0.593
1.1.1-Trifluoroethane	73.2	37.1	3.76	194	0.434
Trifluoromethane	25.8	47.7	4.83	133	0.525
(Trifluoromethyl)benzene	286.8			100	010 40
Trimethylamine	159.64	40.34	4.087	254	0.233
1.2.3-Trimethylbenzene	391.4	34.09	3 4 5 4	430	0.280
1 2 4-Trimethylbenzene	376.0	31.90	3 232	430	0.280
1 3 5-Trimethylbenzene	364.2	30.86	3 127	433	0.278
2 2 3-Trimethylbutane	258.1	29.15	2 954	398	0.252
2 2 3-Trimethyl-1-butene	260	28.6	2.90	400	0.232
1 1 2-Trimethylcyclopentane	306.4	29.0	2.94	100	0.2 (5
1 1 3-Trimethylcyclopentane	296.4	27.9	2.83		
cis trans cis-1 2 4-Trimethyl-	298	27.7	2.81		
cyclopentane	2,0	2717	2.01		
cis cis trans-1 2 4-Trimethyl-	306	28.4	2.88		
cyclopentane	500	20.1	2.00		
2 2 3-Trimethylhentane	338.6	22.4	2 27	546	0.261
2.2.5-Trimethylheptane	321.4	21.4	2.27	552	0.251
2 2 5-Trimethylheptane	325.0	21.1	2.17	559	0.256
2.2.5 Trimethylheptane	320.3	21.0	2.17	573	0.238
2 3 3-Trimethylheptane	344.4	22.0	2.15	538	0.245
2,3,5 ² Trimethylheptane	340.6	22.5	2.52	538	0.265
2 3 5-Trimethylheptane	339.7	22.0	2.29	547	0.260
2,3,5-Trimethylheptane	331.0	21.6	2.24	560	0.254
2,3,5-Trimethylheptane	327.2	21.0	2.17	541	0.254
2,4,5-Trimethylheptane	333.8	21.9	2.22	544	0.203
2,4,5-Trimethylheptane	317.2	22.1	2.24	560	0.202
2, , , o ⁻ Trinethylhentane	370.8	21.2	2.13	550	0.254
2,3,5- Trimethylheptane	329.0	21.7	2.22	506	0.239
3.3.5 Trimethylhentene	247.4 226 5	23.4	2.37	520	0.271
2.4.4 Trimethylheptane	2178	22.9	2.32	574	0.240
2.4.5 Trimethylheptane	347.8	23.4	2.37	524	0.271
5,4,3- Infinetnyinepiane	339./ 215	22.1	2.24	347	0.201
2,2,3- inmethylnexane	313	24.0	2.49		
∠,∠,4-1rimetnyinexane	500.6	23.4	2.31		

TABLE 2.55	Critical Properties (Continued))

TABLE 2.55	Critical Properties (Continued)

Substance	T_c , °C	P_c , atm	P_c , MPa	V_c , cm ³ · mol ⁻¹	$ ho_c$, g · cm ⁻³
2,2,5-Trimethylhexane	295	23.0	2.33	519	0.247
2,4,7-Trimethyloctane	335.7				
2,2,3-Trimethylpentane	290.4	26.94	2.730	436	0.262
2,2,4-Trimethylpentane	270.9	25.34	2.568	468	0.244
2,3,3-Trimethylpentane	300.5	27.83	2.820	455	0.251
2,3,4-Trimethylpentane	293.4	26.94	2.730	461	0.248
2,2,4-Trimethyl-1,3-pentanediol	398	25.6	2.59	364.6	0.4010
2,3,6-Trimethylpyridine	381.4				
2,4,6-Trimethylpyridine	379.9				
2,4,6-Trimethyl-1,3,5-trioxane	290				
1H-Undecafluoropentane	170.8				
Undecane	365.7	19.4	1.97	657	0.238
1-Undecene	364	19.7	2.00		0.240
Vinyl acetate	228.4	22.4	2.27	265	0.325
Vinyl chloride	156.6	55.3	5.60	169	0.370
Vinyl fluoride	54.7	51.7	5.24	114	0.320
Vinyl formate	202	57	5.78	210	0.343
1,2-Xylene	357.2	36.83	3.732	370	0.288
1,3-Xylene	343.9	34.95	3.541	375	0.282
1,4-Xylene	343.1	34.65	3.511	379	0.280

	Δ_T	Δ_p	Δ_{v}
Nonring Increments			
CH ₃	0.020	0.227	55
-CH ₂	0.020	0.227	55
-CH	0.012	0.210	51
–Ç–	0.00	0.210	41
=CH ₂	0.018	0.198	45
=CH	0.018	0.198	45
=CH-	0.0	0.198	36
=C=	0.0	0.198	36
≡CH ≡C—	0.005	0.153 0.153	(36)
Ring Increments —CH ₂ —	0.013	0.184	44.5
-CH	0.012	0.192	46
	(-0.007)	(0.154)	(31)
=CH	0.011	0.154	37
=CH-	0.011	0.154	36
=C= Halogen Increments	0.011	0.154	36
—F	0.018	0.224	18
Cl	0.017	0.320	49
-Br	0.010	(0.50)	(70)
	0.012	(0.85)	(93)
-OH (alcohols)	0.082	0.06	(18)
-OH (phenols)	0.031	(-0.02)	(3)
—O— (nonring)	0.021	0.16	20
—O— (ring)	(0.014)	(0.12)	(8)
-C = O (nonring)	0.040	0.29	60
-C = O(ring)	(0.033)	(0.2)	(50)
HC=O (aldehvde)	0.048	0.33	73
—COOH (acid)	0.085	(0.4)	80
—COO— (ester)	0.047	0.47	80
=O (except for combinations above)	(0.02)	(0.12)	(11)
Nitrogen Increments			
NH ₂	0.031	0.095	28
–NH (nonring)	0.031	0.135	(37)

TABLE 2.56 Lydersen's Critical Property Increments

	Δ_T	Δ_p	Δ_{v}
Nitrogen Increments (continued)			
-NH (ring)	(0.024)	(0.09)	(27)
I			
-NH- (nonring)	0.014	0.17	(42)
I			
-N-(ring)	(0.007)	(0.13)	(32)
-CN	(0.060)	(0.36)	(80)
-NO ₂	(0.055)	(0.42)	(78)
Sulfur Increments			
—SH	0.015	0.27	55
—S— (nonring)	0.015	0.27	55
—S— (ring)	(0.008)	(0.24)	(45)
=S	(0.003)	(0.24)	(47)
Miscellaneous			
I			
—Si—	0.03	(0.54)	
—В—	(0.03)		
I			
Nonring:			

TABLE 2.56 Lydersen's Critical Property Increments (Continued)

†There are no increments for hydrogen. All bonds shown as free are connected with atoms other than hydrogen. Values in parentheses are based upon too few experimental values to be reliable. From vapor-pressure measurements and a calculational technique similar to Fishtine [6], it has been suggested that the ∇_{μ} -H ring increment common to two condensed saturated rings be given the value of $\Delta_r = 0.064$.

Group	ΔV_i	Group	ΔV_i
Nonring:			
In linear chain:		-C = O (nonring)	1.765
CH ₃ , CH ₂ , CH, C	3.360	1	
In side chain		-C = O(ring)	1.500
CH ₃ , CH ₂ , CH, C	2.888	1	
		-HC=O (aldehyde)	2.333
$=CH_2$, $=CH$, $=C-$	2.940		
=C=	2.908	-COOH	1.652
$\equiv CH, \equiv C-$	2.648	COO	1.607
Ring:			
CH ₂ , CH, C	2.813	$-NH_2$	2.184
		I	
=CH, =C-	2.538	—NH (nonring)	2.333
		I	
		—NH (ring)	1.736
F	0.770	1	
Cl	1.237	—N— (nonring)	1.793
Br	0.899	1	
I	0.702	-N (ring)	1.883
		—CN	2.784
-OH (alcohols)	0.704	$-NO_2$	1.559
-OH (phenols)	1.553	2	
—O— (nonring)	1.075	—SH	1.537
-O-(ring)	0.790	—S— (nonring)	0.591
-O-(epoxy)	-0.252	— <u>S</u> — (ring)	0.911

TABLE 2.57 Vetere Group Contribution to Estimate Critical Volume

TABLE 2.58 Van der Waalls' Constants for Gases

The van der Waals' equation of state for a real gas is:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$
 for *n* moles

where *P* is the pressure. *V* the volume (in liters per mole = 0.001 m^3 per mole in the SI system), *T* the temperature (in degrees Kelvin), *n* the amount of substance (in moles), and *R* the gas constant. To use the values of *a* and *b* in the table, *P* must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows:

1 atm = 101,325 N
$$\cdot$$
 m⁻² = 101,325 Pa = 1.01325 bar

The appropriate value for the gas constant is:

$$0.083\ 144\ 1\ L\cdot bar\cdot K^{-1}\cdot mol^{-1} \quad or \quad 0.082\ 056\ L\cdot atm\cdot K^{-1}\cdot mol^{-1}$$

The van der Waals' constants are related to the critical temperature and pressure, T_c and P_c , in Table 2.55 by:

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
Acetaldehyde	11.37	0.08695
Acetic acid	17.71	0.1065
Acetic anhydride	26.8	0.157
Acetone	16.02	0.1124
Acetonitrile	17.89	0.1169
Acetyl chloride	12.80	0.08979
Acetylene	4.516	0.05218
Acrylic acid	19.45	0.1127
Acrylonitrile	18.37	0.1222
Allene	8.235	0.07467
Allyl alcohol	15.17	0.1036
Aluminum trichloride	42.63	0.2450
2-Aminoethanol	7.616	0.0431
Ammonia	4.225	0.03713
Ammonium chloride	2.380	0.00734
Aniline	29.14	0.1486
Antimony tribromide	42.08	0.1658
Argon	1.355	0.03201
Arsenic trichloride	17.23	0.1039
Arsine	6.327	0.06048
Benzaldehyde	30.30	0.1553
Benzene	18.82	0.1193
Benzonitrile	33.89	0.1727
Benzyl alcohol	34.7	0.173
Biphenyl	47.16	0.2130
Bismuth trichloride	33.89	0.1025
Boron trichloride	15.60	0.1222
Boron trifluoride	3.98	0.05443
Bromine (Br ₂)	9.75	0.0591
Bromobenzene	28.96	0.1541
Bromochlorodifluoromethane	12.79	0.1055
Bromoethane	11.89	0.08406
Bromomethane	6.753	0.05390
Bromotrifluoromethane	8.502	0.0891

a –	$27 R^2 T_c^2$	and	$h = RT_c$
<i>u</i> –	$64 P_c$	anu	$\nu = \frac{1}{8 P_c}$

Substance	$a \mathbf{I}^2$ has $ma 1^{-2}$	h I m c ¹⁻¹
Substance	$u, L \cdot bar \cdot mol^{-1}$	$D, L \cdot mol^{-1}$
1,2-Butadiene	12.76	0.1025
1,3-Butadiene	12.17	0.1020
Butanal	19.48	0.1292
Butane	13.93	0.1168
Butanenitrile	25.76	0.1568
Butanoic acid	28.18	0.1609
1-Butanol	20.90	0.1323
2-Butanol	20.94	0.1326
2-Butanone	19.97	0.1326
1-Butene	12.76	0.1084
cis-2-Butene	12.58	0.1066
trans-2-Butene	12.58	0.1066
3-Butenenitrile	25.76	0.1568
Butyl acetate	31.22	0.1919
1-Butylamine	19.41	0.1301
sec-Butylamine	18.37	0.1273
tert-Butylamine	17.78	0.1310
Butylbenzene	44.071	0.2378
sec-Butylbenzene	43.74	0.2347
tert-Butylbenzene	42.77	0.2310
Butyl benzoate	57.97	0.2857
Butylcyclohexane	41.19	0.2201
sec-Butylcyclohexane	48.89	0.2604
<i>tert</i> -Butylcyclohexane	48.34	0.2614
Butyl ethyl ether	27.05	0.1815
2-Butylhexadecafluorotetrahydrofuran	45.41	0.3235
1-Butyne	13.31	0.1023
2-Butyne	13.68	0.0998
Carbon dioxide	3 658	0.04284
Carbon disulfide	11.25	0.07262
Carbon monoxide	1.472	0.03948
Carbon oxysulfide (COS)	6.975	0.06628
Carbon tetrachloride	20.01	0.1281
Carbon tetrafluoride	4 029	0.06319
Carbonyl chloride	10.65	0.08340
Carbonyl sulfide	3 933	0.05817
Chlorine	6 3 4 3	0.05422
Chlorine pentafluoride	9 581	0.03422
Chlorobenzene	25.80	0.1454
1-Chlorobutane	23.00	0.1527
2-Chlorobutane	20.01	0.1327
1-Chloro-1 1-diffuoroethane	11 01	0.1035
2-Chloro-1,1-diffuoroethylene	10.49	0.10335
Chloroethane	10.49	0.09333
Chloroform	15.24	0.090
Chloromethane	7 566	0.1019
2. Chloro. 2. methylpropape	18.08	0.1334
2-Chloropentafluoroacetore	10.70	0.1334
Chloropentafluorobenzene	17.00	0.1462
Chloropentafluoroothana	27.33 11 07	0.1043
Chloropentanuoroetnane	11.27	0.1137
2 Chloropropane	10.11	0.1141
2-Chlorotrifluoromothere	14.33	0.1008
Cinorourinuoroineunane	0.8/3	0.08110

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
Chlorotrifluorosilane	7.994	0.09240
Chlorotrimethylsilane	22.58	0.1617
<i>m</i> -Cresol	31.86	0.1609
o-Cresol	28.33	0.1447
p-Cresol	28.11	0.1422
Cyanogen	7.803	0.06952
Cyclobutane	12.39	0.0960
Cycloheptane	27.20	0.1645
Cyclohexane	21.95	0.1413
Cyclohexanol	28.93	0.1586
Cyclohexanone	31.1	0.170
Cyclohexene	75.04	0.1339
Cyclopentane	16.94	0.1180
Cyclopentanone	75.84	0.1211
Cyclopentene	15.61	0.1097
Cyclopropane	8.293	0.07420
<i>p</i> -Cymene	43.65	0.2386
Decane	52.88	0.3051
Decanenitrile	34.71	0.1988
1-Decanol	57.45	0.2971
1-Decene	49,96	0.2888
Deuterium (normal)	0.2583	0.02397
Deuterium oxide	5,584	0.03090
Diborane (B_2H_2)	6.048	0.07437
Dibromodifluoromethane	15.69	0.1186
1.2-Dibromoethane	13.98	0.08664
1.2-Dibromotetrafluoroethane	20.45	0.1494
Dibutylamine	34.61	0.2030
Dibutyl ether	33.06	0.2017
Dibutyl sulfide	49.3	0.2702
1.2-Dichlorobenzene	34.59	0.1767
1.3-Dichlorobenzene	35.44	0.1846
1,4-Dichlorobenzene	34.64	0.1802
Dichlorodifluoromethane	10.45	0.09672
Dichlorodifluorosilane	11.34	0.1095
1.1-Dichloroethane	15.73	0.1072
1.2-Dichloroethane	17.0	0.108
1,1-Dichloroethylene	13.74	0.09893
trans-1,2-Dichloroethylene	13.63	0.09573
Dichlorofluoromethane	11.48	0.09060
Dichloromethane	12.44	0.08689
1,2-Dichloropropane	21.62	0.1335
Dichlorosilane	12.59	0.09992
1,1-Dichlorotetrafluoroethane	15.49	0.1318
1.2-Dichlorotetrafluoroethane	15.72	0.1338
Dideuterium oxide	5.535	0.03062
Diethanolamine	45.61	0.2273
Diethylamine	19.40	0.1383
1,4-Diethylbenzene	45.03	0.2439
Diethylene glycol	29.02	0.1519
Diethyl ether	17.46	0.1333
3,3-Diethylhexane	47.69	0.2707
3.4-Diethylhexane	47.93	0.2760
-,,		0.2.00

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
3.3-Diethyl-2-methylpentane	47 20	0.2629
3 3-Diethylpentane	40.64	0.2374
Diethyl sulfide	22.85	0.1462
Difluoroamine	5 028	0.04446
cis-Diffuorodiazine	3.043	0.03987
trans-Difluorodiazine	3 539	0.04851
1 1-Difluoroethane	9 691	0.08931
1 1-Diffuoroethylene	6.000	0.07058
Difluoromethane	6 184	0.06268
Dihexyl ether	69.17	0.3752
Dihydrogen disulfide	16.15	0.1006
Diisopropyl ether	25.26	0.1836
Dimethoxyethane	21.65	0.1630
Dimethoxymethane	17.28	0.1455
N N-Dimethoxyacetamide	30.19	0.1195
Dimethylamine	10.44	0.1002
N N-Dimethylaniline	37.92	0.1967
2.2 Dimethylbutane	22.55	0.1507
2.3 Dimethylbutane	22.55	0.1660
2.3-Dimethyl-1-butene	23.29	0.1000
3 3-Dimethyl-1-butene	21.55	0.1567
2 3-Dimethyl-2-butene	21.55	0.1507
1.1. Dimethylcyclohevane	23.85	0.1021
cis 1.2 Dimethyleyclohexane	36.44	0.2008
trans 1.2 Dimethylevelohevane	34.80	0.2145
cis 1.3 Dimethylovelohevane	34.30	0.2068
trans-1,3-Dimethylevelohexane	35 11	0.2008
cis-1 4-Dimethylcyclohevane	35 47	0.2093
trans-1.4-Dimethylcyclohexane	34 54	0.2114
1 1-Dimethylcyclopentane	25 37	0.2000
cis-1 2-Dimethylcyclopentane	23.57	0.1055
trans. 1.2-Dimethylevelopentane	25.67	0.1700
Dimethyl ether	8 690	0.07742
N N-Dimethylformamide	23 57	0.07742
2.2-Dimethylhentane	41.29	0.1255
2.2-Dimethylbexane	34.87	0.2351
2.3-Dimethyllexane	35.24	0.2200
2.4-Dimethyliczane	34 97	0.2251
2.5-Dimethylhexane	35.49	0.2291
3 3-Dimethylhexane	34 72	0.2201
3 4-Dimethylhexane	35.06	0.2196
1 1-Dimethylhydrazine	14 69	0.1001
2 4-Dimethyl-3-isopentane	47.05	0.2729
Dimethyl oxalate	28.97	0.1644
2 2-Dimethylpentane	28.49	0.1951
2.3-Dimethylpentane	28.96	0.1921
2.4-Dimethylpentane	28 79	0.1974
3.3-Dimethylpentane	28.48	0.1892
2.3-Dimethylphenol	31.35	0.1545
2.4-Dimethylphenol	33.49	0.1687
2.5-Dimethylphenol	29.99	0.1512
2.6-Dimethylphenol	33 64	0.1710
3,4-Dimethylphenol	31.32	0.1529

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
3,5-Dimethylphenol	40.92	0.2037
2,2-Dimethylpropane	17.17	0.1410
2,3-Dimethylpropane	23.13	0.1669
2,2-Dimethyl-1-propanol	22.25	0.1444
Dimethyl sulfide	13.34	0.09453
N,N-Dimethyl-1,2-toluidine	41.71	0.2225
1,4-Dioxane	19.29	0.1171
Diphenyl ether	54.61	0.2538
Diphenylmethane	60.46	0.2798
Dipropylamine	24.82	0.1591
Dipropyl ether	27.12	0.1821
Dodecafluorocyclohexane	25.09	0.1955
Dodecafluoropentane	25.58	0.2161
Dodecane	69.14	0.3741
1-Dodecanol	72.69	0.3598
1-Dodecene	68.17	0.3694
Ethane	5.570	0.06499
1,2-Ethanediamine	16.30	0.09796
Ethanethiol	13.23	0.09447
Ethanol	12.56	0.08710
Ethoxybenzene	35.70	0.1996
Ethyl acetate	20.57	0.1401
Ethyl acrylate	23.70	0.1530
Ethylamine	10.79	0.08433
Ethylbenzene	30.86	0.1782
Ethyl benzoate	43.73	0.2236
Ethyl butanoate	30.53	0.1922
Ethylcyclohexane	35.70	0.2089
Ethylcyclopentane	27.90	0.1746
3-Ethyl-2,2-dimethylhexane	47.24	0.2752
4-Ethyl-2,2-dimethylhexane	46.45	0.2784
3-Ethyl-2,3-dimethylhexane	47.35	0.2692
4-Ethyl-2,3-dimethylhexane	47.49	0.2742
3-Ethyl-2,4-dimethylhexane	47.31	0.2736
4-Ethyl-2,4-dimethylhexane	45.52	0.2613
3-Ethyl-2,5-dimethylhexane	47.42	0.2800
3-Ethyl-3,4-dimethylhexane	47.00	0.2682
Ethylene	4.612	0.05821
Ethylene glycol dimethyl ether	21.65	0.1439
Ethylene glycol ethyl ether acetate	33.97	0.05594
Ethylene oxide	8.922	0.06779
Ethyl formate	15.91	0.1115
3-Ethylhexane	35.76	0.2253
Ethyl mercaptan	11.24	0.08098
2-Ethyl-1-methylbenzene	40.66	0.2226
3-Ethyl-1-methylbenzene	41.67	0.2331
4-Ethyl-1-methylbenzene	40.63	0.2262
1-Ethyl-1-methylcyclopentane	34.18	0.2058
Ethyl methyl ether	12.70	0.1034
3-Ethyl-2-methylheptane	48.81	0.2847
Ethyl methyl ketone	20.13	0.1340
3-Ethyl-2-methylpentane	34.74	0.2183
3-Ethyl-2-methylpentane	34.53	0.2134
· · · ·		

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
Ethyl 2-methylpropapoate	29.05	0.1872
Ethyl methyl sulfide	10.45	0.1372
3.Ethylpentene	20 40	0.1944
Ethyl phenyl ether	25.45	0.1944
Ethyl proponente	25.86	0.1903
Ethyl propul ather	23.00	0.1600
m-Ethyltoluene	41 73	0.1000
a Ethyltoluene	41.75	0.2334
n Ethyltohene	40.67	0.2220
Ethyl vinyl ether	16 17	0.2202
Eluorine	1 171	0.1215
Fluorobenzene	20.10	0.02890
Fluoroethane	8 170	0.1275
Fluoroethylene	5 084	0.07738
Fluoromethane	5,000	0.005617
Formaldebyde	7 356	0.05017
Furan	12 74	0.00425
ruran 2-Euraldehyde (furfural)	14.74	0.0920
Germanium tetrachloride	22.25	0.1182
Germanium tetrahudride	5 743	0.1409
Glugerol	22.08	0.00555
Hafnium totrachlarida	22.38	0.07037
Halium (equilibrium)	0.0346	0.1282
Hentana	30.80	0.02350
1 Heptenol	27.22	0.2038
2 Hentenel	37.22	0.2097
2 Heptenone	31.72	0.2093
1 Hentene	28.82	0.1850
Heradecoffuorobentone	40.58	0.09400
1 5 Heradiene	40.58	0.5040
Lavafluorponatopa	12.66	0.1352
Hexafluorobenzene	26.63	0.1204
Herane	20.05	0.1041
Hevenenitrile	24.57	0.1755
Hexanoic acid	30.04	0.1990
1 Heyonol	31.35	0.1820
2 Hexanol	30.25	0.1840
2-fickalioi	20.44	0.1840
2-Hevenone	30.27	0.1805
3-Hevenone	29.84	0.1837
1-Hevene	23.04	0.1634
cis-2-Hevene	23.86	0.1654
trans_7_Heyene	23.00	0.1640
cis-3-Hevene	23.75	0.1638
trans_3_Hevene	24.25	0.1653
Hexylcyclopentape	50 38	0.3206
Hydrazine	8 46	0.0462
Hydrogen (normal)	0.40	0.07651
Hydrogen bromide	4 500	0.04415
Hydrogen chloride	3 700	0.04461
Hydrogen cyanide	11 29	0.04001
Hydrogen deuteride	0.2527	0.00000
Hydrogen fluoride	9 565	0.0739
ing arouse in muoride	1.505	0.0155

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

	r ² i 1=2	<i>I</i> T 1-1
Substance	$a, L^2 \cdot bar \cdot mol^2$	$b, L \cdot mol^{-1}$
Hydrogen iodide	6.309	0.05303
Hydrogen selenide	5.523	0.0479
Hydrogen sulfide	4.544	0.04339
Indane	34.63	0.1802
Iodobenzene	33.54	0.1658
Iodomethane	12.34	0.08327
Isobutyl acetate	29.05	0.1845
Isobutylamine	19.30	0.1325
Isobutylbenzene	40.40	0.2215
Isobutylcyclohexane	40.39	0.2195
Isobutyl formate	22.82	0.1476
Isopropylamine	14.30	0.1080
Isopropylbenzene	36.20	0.2044
Isopropylcyclohexane	42.06	0.2342
Isopropylcyclopentane	35.11	0.2082
4-Isopropylheptane	48.28	0.2832
2-Isopropyl-1-methylbenzene	45.14	0.2401
3-Isopropyl-1-methylbenzene	44.00	0.2354
4-Isopropyl-1-methylbenzene	43.94	0.2398
3-Isopropyl-2-methylhexane	50.93	0.2870
Ketene	19.1	0.1044
Krypton	2.325	0.0396
Mercury	5.193	0.01057
Methane	2.300	0.04301
Methanethiol	8.911	0.06756
Methanol	9.472	0.06584
Methoxybenzoate	28.60	0.1579
Methyl acetate	15.75	0.1108
Methyl acrylate	19.67	0.1308
Methylamine	7.106	0.05879
2-Methyl-1,3-butadiene	17.74	0.1307
3-Methyl-1,3-butadiene	17.46	0.1245
2-Methylbutane	18.29	0.1415
Methyl butanoate	25.83	0.1001
3-Methylbutanoic acid	33.94	0.1923
2-Methyl-1-butanol	24.51	0.1518
2 Mathyl 2 bytanol	24.72	0.1520
2 Methyl 2 butenel	23.24	0.1323
2 Mathul 2 butanona	23.50	0.1495
2 Methyl 1 bytene	16.0	0.1494
2 Methyl 1 butene	18.09	0.129
2. Methyl. 2-butene	17.26	0.1405
Z-Methyl-z-butche	27.51	0.1279
Methylcyclopentane	21.51	0.1713
N-Methylethylamine	10 30	0.1301
Methyl formate	11 54	0.08406
2. Methylfuran	14.67	0.00400
2-Methylhentane	36.78	0.2342
3-Methylheptane	36.40	0.2301
4-Methylheptane	36.21	0.2297
2-Methylhexane	30.01	0.2016
3-Methylhexane	29.70	0.1977

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)
Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
Methylhydrazine	11.67	0.07334
Methyl isobutanoate	24.87	0.1639
Methyl isocyanate	12.6	0.09161
1-Methyl-2-isopropylbenzene	42.7	0.234
1-Methyl-4-isopropylbenzene	45.27	0.2478
Methyl 2-methylpropanoate	24.50	0.163 7
2-Methyloctane	43.50	0.2641
2-Methylpentane	23.83	0.1707
3-Methylpentane	23.75	0.1677
2-Methyl-2.4-pentanediol	39.05	0.2054
Methyl pentanoate	29.39	0.1847
2-Methyl-3-pentanol	27.96	0.1730
3-Methyl-3-pentanol	27.45	0.1699
4-Methyl-2-pentanol	22.38	0.1388
4-Methyl-2-pentanone	29.08	0.1815
2-Methyl-2-pentene	23.86	0.1641
cis-3-Methyl-2-pentene	23.86	0.1641
trans-3-Methyl-2-pentene	24.60	0.1656
cis-4-Methyl-2-pentene	23.03	0.1675
trans-4-Methyl-2-pentene	23.32	0.1685
2-Methylpropanal	18.49	0.1285
2-Methyl-1-propanamine	19.30	0.1325
2-Methylpropane (isobutane)	13.36	0.1168
Methyl propanoate	20.51	0.1377
2-Methylpropanoic acid	28.9	0.170
2-Methyl-1-propanol	20.35	0.1324
2-Methyl-2-propanol	18.81	0.1324
2-Methylpropene	12.73	0.1086
2-Methylpropyl acetate	29.05	0.1845
2-Methylpropyl formate	22.54	0.1476
2-Methylpyridine	24.45	0.1403
3-Methylpyridine	27.08	0.1496
4-Methylpyridine	25.89	0.1428
1-Methylstyrene	36.69	0.1999
2-Methyltetrahydrofuran	22.37	0.1484
2-Methylthiophene	22.10	0.1299
3-Methylthiophene	21.98	0.1282
Methyl vinyl ether	11.65	0.09520
Morpholine	20.36	0.1174
Naphthalene	40.32	0.1920
Neon	0.208	0.01709
Niobium pentafluoride	25.22	0.1220
Nitric oxide (NO)	1,46	0.0289
Nitroethane	24.13	0.1544
Nitrogen-14	15.18	0.1288
Nitrogen chloride difluoride	6.447	0.06089
Nitrogen dioxide (NO_2)	5.36	0.0443
Nitrogen trifluoride	3.58	0.05364
Nitrous oxide (N_2O)	3.852	0.04435
Nitromethane	17.18	0.1041
Nitrosyl chloride	6.191	0.05014
Nonane	45.11	0.2702
1-Nonanol	50.00	0.2634

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
1-Nonene	43.68	0.2629
Octadecafluorooctane	44.27	0.3143
Octafluorocyclobutane	15.81	0.1450
Octafluoropropane	12.96	0.1338
Octamethylcyclotetrasiloxane	75.30	0.4579
Octane	37,86	0.2370
1-Octanol	44.71	0.2371
2-Octanol	41.98	0.2376
1-Octene	35.01	0.2227
<i>cis</i> -2-Octene	35.42	0.2176
Osmium tetraoxide	2.79	0.2447
Oxygen	1.382	0.03186
Oxygen difluoride	2.726	0.04516
Ozone	3.570	0.04977
Pentadecane	95 91	0.4834
1-Pentadecene	99.00	0.5011
1 2-Pentadiene	18 13	0.1284
cis-1 3-Pentadiene	17.98	0.1204
1 A-Pentadiene	17.58	0.1292
Pentafluorobenzene	23.45	0.1571
2.2.3.3.4.Pentamethylpentane	46.85	0.1571
2,2,3,5,4-1 Chamethylpentane	40.85	0.2395
2,2,3,4,4-1 entamentyipentane	75.21	0.2710
Dentana	10.13	0.1022
Pontononitrilo	34.16	0.1449
Pentanoic acid	33.68	0.1772
1 Pentanol	25.81	0.1572
2 Pentanol	23.81	0.1572
2 Pentanone	24.85	0.1578
3 Pentanone	24.65	0.1578
1. Pentene	24.05	0.1300
cis_7_Pentene	17.83	0.1338
trans ? Pentene	18 30	0.1301
Pentulbenzene	51.85	0.2718
Pentyl formate	27.05	0.1730
1 Pentyne	17.53	0.1750
Perchloryl fluoride (ClO F)	7 371	0.07130
Phenol	22.03	0.1177
Phosene	10.65	0.083/0
Phosphine	1603	0.08340
Phosphonium chloride	4.095	0.03133
Phosphorus	53.6	0.157
Phosphorus chlorida difluorida	9 A7	0.137
Phosphorus diablorida fluorida	12.50	0.0833
Phosphorus trifluoride	12.50	0.0902
Phosphorul chloride diffuoride	11.00	0.00510
Phosphoryl trifluorida	8.26	0.1001
Dinaridina	0.20	0.0049
Dropadiene	20.04	0.1230
Propagal	0.23	0.0747
r iopanai Dronana	0.285	0.0995
1.2 Propanedial	7.303	0.09044
1,2-1 10panetion	10.74	0.1000
1,5-r10panedioi	21.11	0.1145

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
Propanenitrile	21.57	0.1369
Propanoic acid	23.49	0.1386
1-Propanol	16.26	0.1080
2-Propanol	15.82	0.1109
2-Propenal	14.44	0.1017
Propene	8.411	0.08211
Propyl acetate	26.23	0.1700
Propylamine	15.26	0.1095
Propylbenzene	37.14	0.2073
Propylcyclopentane	38.80	0.2189
Propylcyclohexane	38.59	0.2255
Propylene oxide	13.78	0.1019
Propyl formate	20.79	0.1377
Propyne	8.40	0.0744
Pyridine	19.77	0.1136
Pyrrole	18.82	0.1049
Pyrrolidine	16.84	0.1056
Ouinoline	36.70	0.1672
Radon	6 601	0.06239
Selenium	33.4	0.0675
Silicon chloride trifluoride	7 95	0.0921
Silicon tetrachloride	20.96	0.1470
Silicon tetrafluoride	5 259	0.072361
Silicon tetrahydride (silane)	4 30	0.072501
Sturone	32.15	0.0379
Sulfur (S)	24.3	0.1799
Sulfur dioxide	6714	0.0000
Sulfur bezefluoride (SE)	7 857	0.05050
Sulfur trioxide	9.57	0.06730
1 1 2 2 Tetrachlorodifluoroethane	25 74	0.1665
Tatrachloroethylene	23.74	0.1005
Tetrachloromethane	24.56	0.1455
Tatradacafluorohevana	20.01	0.1281
Tetradecafluoromethyloyolohexane	20.75	0.2440
1 Tetradecandol	29.00	0.2171
Tatraathulailana	40.85	0.4269
Tetrafuoroothulana	40.85	0.2411
Tetrafluorobudrozino (N.E.)	7 426	0.08065
Tetrafluoromydiazine $(N_2\Gamma_4)$	7.420	0.06304
Tetrahudrafuran	4.040	0.00323
Tetrahydronuran	20.02	0.1082
1.2.4.5 Tetremethylhengene	20.02	0.1247
2.2.2.2. Tetramethylbutane	43.0	0.2422
2,2,5,5-Tetramethylbacane	32.70	0.2050
2,2,3,3-1 etramethylhexane	45.11	0.2580
2,2,5,4-1 etramethylheven	47.30	0.2721
2,2,5,5-1 etraineury inexane	40.40	0.2755
2,2,4,4- 1 etramethylheses	48.20	0.2819
2,2,4,3-1 etramethylhexane	47.05	0.2802
2,2,5,5-1 etrametnyihexane	45.03	0.2760
2,3,3,4-1 etramethylhexane	47.13	0.2653
2,3,3,5-1 etramethylhexane	46.79	0.2733
2,3,4,4-1 etramethylhexane	47.32	0.2691
2,3,4,5-Tetramethylhexane	46.86	0.2723

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

Substance	$a \mathbf{L}^2$ has ma^{1-2}	h I ma ¹⁻¹
3,3,4,4-Tetramethylhexane	47.46	0.2615
2,2,3,3-Tetramethylpentane	39.29	0.2304
2,2,3,4-Tetramethylpentane	39.37	0.2367
2,2,4,4-Tetramethylpentane	38.76	0.2403
2,3,3,4-Tetramethylpentane	39.65	0.2325
Tetramethylsilane	20.81	0.1653
Thiophene	17.21	0.1058
Tin(IV) chloride	27.25	0.1641
Titanium(IV) chloride	25.47	0.1423
Toluene	24.89	0.1499
1,2-Toluidine	33.36	0.1681
1,3-Toluidine	34.06	0.1717
1,4-Toluidine	31.74	0.1602
Tributoxyborane	81.34	0.3891
Tributylamine	65.31	0.3645
1,1,1-Trichloroethane	20.14	0.1317
1,1,2-Trichloroethane	25.47	0.1508
Trichloroethylene	17.21	0.1127
Trichlorofluoromethane	14.68	0.1111
Trichlorofluorosilane	15.67	0.1277
Trichloromethane	15.34	0.1019
Trichloromethylsilane	23.77	0.1638
1,2,3-Trichloropropane	31.29	0.1713
1,1,2-Trichlorotrifluoroethane	20.25	0.1481
1,2,2-Trichlorotrifluoroethane	20.25	0.1481
Tridecane	79.09	0.4176
1-Tridecanol	81.20	0.3942
1-Tridecene	77.93	0.4121
Tridecylcyclopentane	139.6	0.6536
Triethanolamine	32.14	0.3340
Triethylamine	27.59	0.1836
Trifluoroacetic acid	21.61	0.1567
1,1,1-1rifluoroethane	9.302	0.09572
Trifluoromethane	5.378	0.06403
Trimethylamine	13.37	0.1101
1,2,3-Trimethylbenzene	37.28	0.1999
1,2,4-Trimethylbenzene	38.03	0.2088
1,3,5-Trimethylbenzene	37.87	0.2118
2,2,3-Trimethylbutane	27.86	0.1869
2,2,3-Trimethyl-1-butene	28.57	0.1910
1,1,2-1 rimethylcyclopentane	33.31	0.2048
1,1,3-Irimethylcyclopentane	33.42	0.2091
2,2,3-Trimethylheptane	48.07	0.2801
2,2,4-Trimethylheptane	47.49	0.2847
2,3,4-Trimethylheptane	47.96	0.2785
3,3,4-Trimethylheptane	47.68	0.2730
2,2,3- I rimethylhexane	40.5	0.2452
2,2,4-Trimethylhexane	40.50	0.2516
2,2,5-Trimethylhexane	40.38	0.2533
2,2,3- Trimethylpentane	33.92	0.2145
2,2,4-1 rimethylpentane	33.61	0.2202
2,3,3-Trimethylpentane	54.03	0.2114
2,3,4-Trimethylpentane	34.28	0.2157

TABLE 2.58 Van der Walls' Constants for Gases (Continued
--

Substance	$a, L^2 \cdot bar \cdot mol^{-2}$	$b, L \cdot mol^{-1}$
2,2,4-Trimethyl-1,3-pentanediol	19.96	0.2692
Tungsten(VI) fluoride (WF ₆)	13.25	0.1063
Undecane	60.88	0.3396
1-Undecene	59.17	0.3310
Uranium(VI) fluoride (UF ₆)	16.01	0.1128
Vinyl acetate	32.31	0.2296
Vinyl chloride	9.62	0.07975
Vinyl fluoride	5.98	0.06502
Vinyl formate	11.38	0.08541
Xenon	4,192	0.05156
Xenon difluoride	12.46	0.7037
Xenon tetrafluoride	15.52	0.09035
<i>m</i> -Xylene	31.41	0.1814
o-Xylene	31.06	0.1756
<i>p</i> -Xylene	31.54	0.1824
Water	5.537	0.03052
Zirconium(IV) chloride	30.59	0.1401

TABLE 2.58 Van der Waalls' Constants for Gases (Continued)

2.15 EQUILIBRIUM CONSTANTS

The equilibrium constant, K, relates to a chemical reaction at equilibrium. It can be calculated if the equilibrium concentration of each reactant and product in a reaction at equilibrium is known. There are several types of equilibrium constants. *Each is constant at a constant temperature*.

TABLE 2.59 *pK*, Values of Organic Materials in Water at 25°C

Ionic strength μ is zero unless otherwise indicated. Protonated cations are designated by (+ 1), (+ 2), etc., after the pK_a value; neutral species by (0), if not obvious; and negatively charged acids by (-1), (-2), etc.

Substance	$\mathbf{p}K_1$	p <i>K</i> ₂	p <i>K</i> ₃	p <i>K</i> ₄
Abietic acid	7.62			
Acetamide	-0.37(+1)			
Acetamidine	1.60(+1)			
N-(2-Acetamido)-2-aminoethane- sulfonic acid (20°C)	6.88			
2-Acetamidobenzoic acid	3.63			
3-Acetamidobenzoic acid	4.07			
4-Acetamidobenzoic acid	4.28			
2-(Acetamido)butanoic acid	3.716			
N-(2-Acetamido)iminodiacetic acid (20°C)	6.62			
3-Acetamidopyridine	4.37(+1)			
Acetanilide	0.4(+1)	13.39(0)40°C		
Acetic acid	4.756			
Acetic acid- d (in D_2O)	5.32			

Acetoacetic acid (18°C) 3.58 Acetohydrazine $3.24(+1)$ Acetone oxime 12.2 2-Acetoxybenzoic acid (acetylsali- cyclic acid) 3.48 -cyclic acid) 3.48 3-Acetoxybenzoic acid 4.00 4-Acetoxybenzoic acid 4.38 Acetylacetic acid (18°C) 3.58 N-Acetyl- α -alanine 3.715 N-Acetyl- β -alanine 4.455 2-Acetylaminobutanoic acid 3.72 3-Acetylbenzoic acid 4.445 2-Acetylbenzoic acid 4.13 3-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylendicarboxylic acid 1.75 4.40N-Acetylglycine 3.670	p <i>K</i> ₄
Acetohydrazine $3.24(+1)$ Acetone oxime 12.2 2-Acetoxybenzoic acid (acetylsali- cyclic acid) 3.48 3-Acetoxybenzoic acid 4.00 4-Acetoxybenzoic acid 4.38 Acetylacetic acid ($18^{\circ}C$) 3.58 N-Acetyl- α -alanine 3.715 N-Acetyl- β -alanine 4.455 2-Acetylaminobutanoic acid 3.72 3-Acetylbenzoic acid 4.445 2-Acetylbenzoic acid 3.72 3-Acetylbenzoic acid 3.72 3-Acetylbenzoic acid 3.72 3-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine ($30^{\circ}C$) 9.52 Acetylenedicarboxylic acid 1.75 4.40 N -Acetylglycine	
Acetone oxime12.22-Acetoxybenzoic acid (acetylsali- cyclic acid) 3.48 3-Acetoxybenzoic acid 4.00 4-Acetoxybenzoic acid 4.38 Acetylacetic acid (18°C) 3.58 N-Acetyl- α -alanine 3.715 N-Acetyl- β -alanine 4.455 2-Acetylaminobutanoic acid 3.72 3-Acetylabenzoic acid 4.445 2-Acetylbenzoic acid 4.13 3-Acetylbenzoic acid 3.70 2-Acetylbenzoic acid 3.70 2-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 4.40N-Acetylglycine 3.670	
2-Acetoxybenzoic acid (acetylsali- cyclic acid)3.483-Acetoxybenzoic acid4.004-Acetoxybenzoic acid4.38Acetylacetic acid (18°C)3.58N-Acetyl- α -alanine3.715N-Acetyl- β -alanine4.4552-Acetylaminobutanoic acid3.723-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylenedicarboxylic acid1.754.40N-Acetylglycine	
3-Acetoxybenzoic acid4.004-Acetoxybenzoic acid4.38Acetylacetic acid (18° C)3.58N-Acetyl- α -alanine3.715N-Acetyl- β -alanine4.4552-Acetylaminobutanoic acid3.723-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylenedicarboxylic acid1.754.40N-Acetylglycine	
S Acetylacetic acid4.804-Acetoxybenzoic acid4.38Acetylacetic acid (18°C)3.58N-Acetyl- α -alanine3.715N-Acetyl- β -alanine4.4552-Acetylaminobutanoic acid3.723-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylenedicarboxylic acid1.754.40N-Acetylglycine3.670	
Acetylacetic acid 1.50 Acetylacetic acid 18° C) 3.58 N-Acetyl- α -alanine 3.715 N-Acetyl- β -alanine 4.455 2-Acetylaminoputanoic acid 3.72 3-Acetylaminopropionic acid 4.445 2-Acetylbenzoic acid 4.13 3-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30° C) 9.52 Acetylenedicarboxylic acid 1.75 4.40 N -Acetylglycine	
N-Acetylac-alanine 3.715 N-Acetyl- β -alanine 3.715 N-Acetyl- β -alanine 4.455 2-Acetylaminobutanoic acid 3.72 3-Acetylaminopropionic acid 4.445 2-Acetylbenzoic acid 4.445 2-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 4.40 N -Acetylglycine	
N-Acetyl- β -alanine4.4552-Acetylaminobutanoic acid3.723-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylgenedicarboxylic acid1.754.40N-Acetylglycine3.670	
2-Acetylaminobutanoic acid3.722-Acetylaminobutanoic acid3.723-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylenedicarboxylic acid1.754.40N-Acetylglycine3.670	
2-Acetylaminopropionic acid4.4452-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylgenedicarboxylic acid1.754.40N-Acetylglycine3.670	
2-Acetylbenzoic acid4.133-Acetylbenzoic acid3.834-Acetylbenzoic acid3.702-Acetylcyclohexanone14.1N-Acetylcysteine (30°C)9.52Acetylenedicarboxylic acid1.754.40	
2-Acetylbenzoic acid 3.83 3-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 4.40 3.670	
3-Acetylbenzoic acid 3.85 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 4.40 3.670	
4-Acetylobenzoic acid 5.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 4.40	
Z-Acetylcyclonexanone 14.1 N-Acetylcysteine (30°C) 9.52 Acetylenedicarboxylic acid 1.75 V-Acetylglycine 3.670	
Acetyleviceire (30°C) 9.52 Acetylenedicarboxylic acid 1.75 V-Acetylglycine 3.670	
N-Acetyleglycine 3.670	
N-Acetylglycine 3.670	
N-Acetylguanidine $8.23(\pm 1)$	
$N-\alpha$ -Acetyl-L-histidine 7.08	
Acetylhydroxamic acid (20°C) 9.40	
N-Acetyl-2-mercaptoethylamine 9.92(SH)	
$\begin{array}{c c} \text{4-Acetyl-}\beta\text{-mercaptoisoleucine} & 10.30 \\ (30^{\circ}\text{C}) & & & \\ \end{array}$	
2-Acetyl-1-naphthol (30°C) 13.40	
N-Acetylpenicillamine (30°C) 9.90	
2-Acetylphenol 9.19	
4-Acetylphenol 8.05	
2-Acetylpyridine 2.643(+1)	
3-Acetylpyridine 3.256(+1)	
4-Acetylpyridine 3.505(+1)	
Aconitine 8.11(+1)	
Acridine 5.60(+1)	
Acrylic acid 4.26	
Adenine 4.17(+1) 9.75(0)	
Adeninedeoxyriboside-5'-phos- 4.4 6.4	
phoric acid	
Adenine- <i>N</i> -oxide 2.69(+1) 8.49(0)	
Adenosine 3.5(+1) 12.34(0)	
Adenosine-5'-diphosphoric acid $$ 4.2(-1) 7.20(-2)	
Adenosine-2'-phosphoric acid $3.81(+1)$ $6.17(0)$	
Adenosine-3'-phosphoric acid 3.65(0) 5.88(-1)	
Adenosine-5'-phosphoric acid 3.74(0) 6.05(-1) 13.06(-2)	
Adenosine-5'-triphosphoric acid $$ $4.00(-1)$ $6.48(-2)$	
Adipamic acid (adipic acid 4.629	
monoamide)	
Adipic acid 4.418 5.412	
α -Alanine 2.34(+1) 9.69(0)	
β -Alanine 3.55(+1) 10.238(0)	
α -Alanine, methyl ester ($\mu = 0.10$) 7.743(+1)	

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> 1	p <i>K</i> ₂	p <i>K</i> ₃	p <i>K</i> 4
β -Alanine, methyl ester ($\mu = 0.10$)	9.170(+1)			
<i>N</i> -D-Alanyl- α -D-alanine ($\mu = 0.1$)	3.32(+1)	8.13(0)		
<i>N</i> -L-Alanyl- α -L-alanine ($\mu = 0.1$)	3.32(+1)	8.13(0)		
N-L-Alanyl- α -D-alanine	3.12(+1)	8.30(0)		
$N-\alpha$ -Alanylglycine	3.11(+1)	8.11(0)		
Alanylglycylglycine	3.190(+1)	8.15(0)		
β -Alanylhistidine	2.64	6.86	9.40	
Albumin (bovine serum ($\mu = 0.15$)	10-10.3			
2-Aldoxime pyridine	3.42(+1)	10.22(0)		
Alizarin Black SN	5.79	12.8		
Alizarin-3-sulfonic acid	5.54	11.01		
Allantoin	8.96			
Allothreonine	2.108(+1)	9.096(0)		
Alloxanic acid	6.64			
Allylacetic acid	4.68			
Allylamine	9.69(+1)			
5-Allylbarbituric acid	4.78(+1)			
5-Allyl-5-(-methylbutyl)barbituric acid	8.08			
2-Allylphenol	10.28			
1-Allylpiperidine	9.65(+1)			
2-Allylpropionic acid	4.72			
3-Amidotetrazoline	3.95(+1)			
2-Aminoacetamide	7.95(+1)			
Aminoacetonitrile	5.34(+1)			
9-Aminoacridine (20°C)	9.95(+1)			
4-Aminoantipyrine	4.94(+1)			
2-Aminobenzenesulfonic acid	2.459(0)			
3-Aminobenzenesulfonic acid	3.738(0)			
4-Aminobenzenesulfonic acid	3.227(0)			
2-Aminobenzoic acid	2.09(+1)	4.79(0)		
3-Aminobenzoic acid	3.07(+1)	4.79(0)		
4-Aminobenzoic acid	2.41(+1)	4.85(0)		
2-Aminobenzoic acid, methyl ester	2.36(+1)			
3-Aminobenzoic acid, methyl ester	3.58(+1)			
4-Aminobenzoic acid, methyl ester	2.45(+1)			
3-Aminobenzonitrile	2.75(+1)			
4-Aminobenzonitrile	$1.74(\pm 1)$			
2 A min oberrathianala (20%C)	$2.13(\pm 1)$			
2 Aminobenzoulbydrazide	4.40(+1)	3 47	12.80	
2 Aminobinhanyl	$3.78(\pm 1)$	5.47	12.80	
3 Aminobiphenyl	$3.78(\pm 1)$ $4.18(\pm 1)$			
4. A minobiphenyl	4.10(+1) 4.27(+1)			
4-Amino-3-bromomethylpyridine	7.47(+1)			
4-Amino-3-bromopyridine (20°C)	7.04(+1)			
2-Aminobutanoic acid	2286(+1)	9.830(0)		
3-Aminobutanoic acid		10.14(0)		
4-Aminobutanoic acid	4.031(+1)	10.556(0)		
2-Aminobutanoic acid. methyl	7.640(+1)			
ester ($\mu = 0.1$)				

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (*Continued*)

Substance	pK ₁	pK ₂	p <i>K</i> ₃	р <i>К</i> 4
4-Aminobutanoic acid, methyl	9.838(+1)			
ester ($\mu = 0.1$)				
D-(+)-2-Amino-1-butanol	9.52(+1)			
3-Amino-N-butyl-3-methyl-2-	9.09(+1)			
butanone oxime				
4-Aminobutylphosphonic acid	2.55	7.55	10.9	
2-Amino-N-carbamoylbutanoic acid	3.886(+1)			
4-Amino-N-carbamoylbutanoic acid	4.683(+1)			
2-Amino-N-carbamoyl-2-methyl- propanoic acid	4.463			
1-Amino-1-cycloheptanecarboxylic acid	2.59(+1)	10.46(0)		
1-Amino-1-cyclohexanecarboxylic acid	2.65(+1)	10.03(0)		
2-Amino-1-cyclohexanecarboxylic acid	3.56(+1)	10.21(0)		
1-Aminocyclopentane	10.65(+1)			
1-Aminocyclopropane	9.10(+1)			
10-Aminodecylphosphonic acid		8.0	11.25	
10-Aminodecylsulfonic acid	2.65(+1)			
1-Amino-2-di(aminomethyl)butane	3.58(+3)	8.59(+2)	9.66(+1)	
2-Amino- <i>N</i> , <i>N</i> -dihydroxyethyl-2- hydroxyl-1,3-propanediol	6.484(+1)			
2-Amino-N,N-dimethylbenzoic acid	1.63(+1)	8.42(0)		
4-Amino-2,5-dimethylphenol	5.28(+1)	10.40(0)		
4-Amino-3,5-dimethylpyridine (20°C)	9.54(+1)			
12-Aminododecanoic acid	4.648(+1)			
2-Aminoethane-1-phosphoric acid	5.838	10.64		
1-Aminoethanesulfonic acid	-0.33	9.06		
2-Aminoethanesulfonic acid	1.5	9.061		
2-Aminoethanethiol (cysteamine) $(\mu = 0.01)$	8.23(+1)			
2-Aminoethanol (ethanolamine)	9.50(+1)			
2-[2-(2-Aminoethyl)amino- ethyl]pyridine	3.50	6.59	9.51	
2-Amino-2-ethyl-1-butanol	9.82(+1)			
3-(2-Aminoethyl)indole		10.2		
3-Amino- <i>N</i> -ethyl-3-methyl-2-buta- none oxime	9.23(+1)			
N-(2-Aminoethyl)morpholine	4.06(+2)	9.15(+1)		
p-(2-Aminoethyl)phenol	9.3	10.9		
2-Aminoethylphosphonic acid	2.45(+1)	7.0(0)	10.8(-1)	
<i>N</i> -(2-Aminoethyl)piperidine (30°C)	6.38	9.89		
2-(2-Aminoethyl)pyridine ($\mu = 0.5$)	4.24(+2)	9.78(+1)		
4-Amino-3-ethylpyridine (20°C)	9.51(+1)			
<i>N</i> -(2-Aminoethyl)pyrrolidine (30°C)	6.56(+2)	9.74(+1)		

TABLESEO	K Valance of Operation Metanials in Water at 250C (Continue d
IADLE 2.59	pK, values of Organic Materials in water at 25°C (Continued)

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)
	<i>I</i> , · · · · · · · · · · · · · · · · ·

Substance	p <i>K</i> ₁	p <i>K</i> ₂	р <i>К</i> 3	p <i>K</i> ₄
2-Aminofluorine 2-Amino-D- β -glucose ($\mu = 0.05$)	10.34(+1) 2.20(+1)	9.08(0)		
2-Amino-N-glycylbutanoic acid	3.155(+1)	8.331(0)		
7-Aminoheptanoic acid	4.502			
2-Aminohexanoic acid	2.335(+1)	9.834(0)		
6-Aminohexanoic acid	4.373(+1)	10.804(0)		
C-Amino-C-nydrazinocarbonyi-	2.38(+2)	7.09(+1)		
2-Amino-3-hydroxybenzoic acid	$25(\pm 1)$	5 192(0)	10 118(0H)	
I -2-Amino-3-hydroxybutanoic acid	2.3(+1) 2.088(+1)	9 100(0)	10.110(011)	
(threonine)	21000(11)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
DL-2-Amino-4-hydroxybutanoic	2.265(+1)	9.257(0)		
acid ($\mu = 0.1$)				
DL-4-Amino-3-hydroxybutanoic	3.834(+1)	9.487(0)		
acid ($\mu = 0.1$)				
2-Amino-2'-hydroxydiethyl sulfide	9.27(+1)	10.15(0)		
4-Amino-2-hydroxypyrimidine (cy-	4.58(+1)	12.15(0)		
tosine)	$9.09(\pm 1)$			
butanone ovime	9.09(11)			
4-Amino-3-isopropylpyridine	$9.54(\pm 1)$			
(20°C)	, , , , , , , , , , , , , , , , , , , ,			
1-Aminoisoquinoline (20°C,	7.62(+1)			
$\mu = 0.01)$				
3-Aminoisoquinoline (20°C,	5.05(+1)			
$\mu = 0.005)$				
4-Aminoisoxazolidine-3-one	7.4(+1)	0.00(0)		
Aminomalonic acid	3.32(+1)	9.83(0)	10.96(011)	
acid	2.22(+1)	8.87(0)	10.80(31)	
2-Amino-3-mercanto-	1.8(+1)	7.9(0)	10.5(SH)	
3-Methylbutanoic acid	1.0(1)			
2-Amino-6-methoxybenzothiazole	4.50(+1)			
3-Amino-4-methylbenzenesulfonic	3.633			
acid				
4-Amino-3-methylbenzenesulfonic	3.125			
acid				
2-Amino-4-methylbenzothiazole	4.7(+1)			
1-Amino-3-methylbutane	$10.64(\pm 1)$			
jme	9.09(+1)			
3-Amino-N-methyl-3-methyl-2-bu-	923(+1)			
tanone oxime				
2-Amino-3-methylpentanoic acid	2.320(+1)	9.758(0)		
3-Aminomethyl-6-methylpyridine	8.70(+1)			
(30°C)			10.0	
Aminomethylphosphonic acid	2.35	5.9	10.8	
2-Amino-2-methyl-1,3-propanediol	8.801			
2-Amino-2-methyl-1-propanol	9.094(+1)	10.205(0)		
2-Animo-2-memyipropanoic acid	$2.337(\pm 1)$ $2.31(\pm 2)$	10.203(0) 8 70(\pm 1)		
$(2-Animometry)(pyriame (\mu - 0.5))$	4.51(14)	0.73(11)		
0.07				

Substance	р <i>К</i> 1	p <i>K</i> ₂	p <i>K</i> 3	p <i>K</i> 4
2 Aming 2 mathedramiding	7.24(+1)			
4 Amino 3 methylpyridine	$7.24(\pm 1)$			
4-Amino 4 methylpyridine	$9.43(\pm 1)$			
2-Amino 5 methylpyridine	7.46(±1)			
2-Amino-5-methylpyridine	$7.22(\pm 1)$			
2 Amino 4 methylpyndine	$7.41(\pm 1)$			
(20°C)	4.11(+1)			
Aminomethylsulfonic acid	5.57(+1)			
N-Aminomorpholine	4.19(+1)			
4-Amino-1-naphthalenesulfonic acid	2.81			
1-Amino-2-naphthalenesulfonic acid	1.71			
1-Amino-3-naphthalenesulfonic acid	3.20			
1-Amino-5-naphthalenesulfonic acid	3.69			
1-Amino-6-naphthalenesulfonic acid	3.80			
1-Amino-7-naphthalenesulfonic acid	3.66			
1-Amino-8-naphthalenesulfonic acid	5.03			
2-Amino-1-naphthalenesulfonic acid	2.35			
2-Amino-4-naphthalenesulfonic acid	3.79			
2-Amino-6-naphthalenesulfonic acid	3.79	8.94		
2-Amino-8-naphthalenesulfonic acid	3.89			
3-Amino-1-naphthoic acid	2.61	4.39		
4-Amino-2-naphthoic acid	2.89	4.46		
8-Amino-2-naphthol	4.20(+1)			
DL-2-Aminopentanoic acid (DL-	2.318(+1)	9.808		
3-Aminopentanoic acid	4.02(+1)	10.399(0)		
4-Aminopentanoic acid	3.97(+1)	10.46(0)		
5-Aminopentanoic acid	4.20(+1)	9.758(0)		
5-Aminopentanoic acid, ethyl ester	10.151			
2-Aminophenol	9.28	9.72		
3-Aminophenol	9.83	9.87		
4-Aminophenol	8.50	10.30		
4-Aminophenylacetic acid (20°C)	3.60	5.26		
2-Aminophenylarsonic acid	ca 2	3.77	8.66	
3-Aminophenylarsonic acid	ca 2	4.02	8.92	
4-Aminophenylarsonic acid	ca 2	4.02	8.62	
3-Aminophenylboric acid	4.46	8.81		
4-Aminophenylboric acid	3.71	9.17		
4-Aminophenyl (4-chlorophenyl)	1.38			
sulfone				
2-Aminophenylphosphonic acid	— —	4.10	7.29	
3-Aminophenylphosphonic acid			7.16	

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	pK ₁	p <i>K</i> ₂	р <i>К</i> ₃	p <i>K</i> ₄
4-Aminophenylphosphonic acid			7.53	
1-Amino-1,2,3-propanetricarbox- vlic acid ($\mu = 2.2$)	2.10(+1)	3.60(0)	4.60(-1)	9.82(-2)
3-Aminopropanoic acid	3.551(+1)	10.235(0)		
1-Amino-1-propanol	9.96(+1)			
DL-2-Amino-1-propanol	9.469(+1)			
3-Amino-1-propanol	9.96(+1)			
3-Aminopropene	9.691(+1)			
3-Amino- <i>N</i> -propyl-3-methyl-2-bu- tanone oxime	9.09(+1)			
2-Aminopropylsulfonic acid		9.15		
2-Aminopyridine	6.71(+1)			
3-Aminopyridine	6.03(+1)			
4-Aminopyridine	9.114(+1)			
2-Aminopyridine-1-oxide	2.58(+1)			
3-Aminopyridine-1-oxide	1.47(+1)			
4-Aminopyridine-1-oxide	3.54(+1)			
8-Aminoquinaldine	4.86(+1)			
2-Aminoquinoline (20°C, $\mu = 0.01$)	7.34(+1)			
3-Aminoquinoline (20°C, $\mu = 0.01$)	4.95(+1)			
4-Aminoquinoline (20°C, $\mu = 0.01$)	9.17(+1)			
5-Aminoquinoline (20°C, $\mu = 0.01$)	5.46(+1)			
6-Aminoquinoline (20°C, $\mu = 0.01$)	5.63(+1)			
8-Aminoquinoline (20°C, $\mu = 0.01$)	3.99(+1)			
4-Aminosalicyclic acid	1.991(+1)	3.917(0)	13.74	
5-Aminosalicyclic acid	2.74(+1)	5.84(0)		
2-Amino-3-sulfopropanoic acid	1.89(+1)	8.70(0)		
4-Amino-2,3,5,6-tetramethylpyri- dine (20°C)	10.58(+1)			
5-Amino-1,2,3,4-tetrazole (20°C)	1.76	6.07		
2-Aminothiazole (20°C)	5.36(+1)			
1-Amino-3-thiobutane (30°C)	9.18(+1)			
5-Amino-3-thio-1-pentanol (30°C)	9.12(+1)			
2-Aminothiophenol	<2(+1)	7.90(0)		
2-Amino-4,4,4-trifluorobutanoic acid		8.171(0)		
3-Amino-4,4,4-trifluorobutanoic acid		5.831(0)		
3-Amino-2,4,6-trinitroluene		9.5(+1)		
Angiotensin II	10.37			
Anhydroplatynecine	9.40			
Aniline	4.60(+1)			
2-Anilinoethylsulfonic acid	3.80(+1)			
3-Anilinoethylsulfonic acid	4.85(+1)			
Anthracene-1-carboxylic acid	3.68			
Anthracene-2-carboxylic acid	4.18			
Anthracene-9-carboxylic acid	3.65			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	р <i>К</i> 4
Anthraquinone-1-carboxylic acid (20°C)	3.37			
Anthraquinone-2-carboxylic acid (20°C)	3.42			
9,10-Anthraquinone monoxime	9.78			
9,10-Anthraquinone-1-sulfonic acid	0.27			
9,10-Anthraquinone-2-sulfonic acid	0.38			
Antipyrine	1.45(+1)			
Apomorphine (15°C)		8.92		
D-(-)-Arabinose	12.34			
L-(+)-Arginine	2.17	9.04(+1)	12.47(-1)	
Arsenazo III $[pK_5 \ 10.5(-4); pK_6 \ 12.0(-5)]$		1.2	2.7	7.9(-3)
Arsenoacetic acid		4.67	7.68	
Arsenoacrylic acid		4.23	8.60	
Arsenobutanoic acid		4.92	7.64	
2-Arsenocrotonic acid		4.61	8.75	
3-Arsenocrotonic acid		4.03	8.81	
Arsenopentanoic acid		4.89	7.75	
L-(+)-Ascorbic acid (vitamin C)	4.17	11.57		
L-(+)-Asparagine	2.01(0)	8.80(+1)		
L-Asparaginylglycine		4.53	9.07	
D-Aspartic acid	1.89(0)	3.65	9.60	
Aspartic diamide ($\mu = 0.2$)	7.00			
Aspartylaspartic acid		3.40	4.70	8.26
α -Aspartylhistidine (38°C, $\mu = 0.1$)		3.02	6.82	7.98
β -Aspartylhistidine (38°C, $\mu = 0.1$)		2.95	6.93	8.72
<i>N</i> -Aspartyl- <i>p</i> -tyrosine ($\mu = 0.01$)		3.57	8.92	10.23(OH)
Aspidospermine	7.65			
Atropine (17°C)	4.35(+1)			
1-Azacycloheptane	11.11(+1)			
1-Azacyclooctane	11.1(+1)			
Azetidine	11.29(+1)			
Aziridine	8.04(+1)			
Barbituric acid		8.372(0)		
<i>m</i> -Benzbetaine	3.217(+1)			
<i>p</i> -Benzbetaine	3.245(+1)			
Benzenearsonic acid (22°C)		8.48(-1)		
Benzene-1-arsonic acid-4-carbox-		4.22	5.59	
ylic acid	10.7	(COOH)		
Benzeneboronic acid	13.7	2 70	0.17	
Benzene-1-carboxylic acid-2-phos-		3.78	9.17	
phoric acid		4.02	7.02	
benzene-1-carboxync acid-5-phos-		4.05	7.05	
Phone acid Renzene 1 corboxylic acid 4 phon	1.50	2.05	6 90	
phorie acid	1.50	2.75	0.09	
Phone actu Renzenediozine	$11.08(\pm 1)$			
1 3 Benzenedicarboxylic acid (iso	3.62(0)	4.60(-1)		
n, 5- DenzenculcarDOXyne actu (180-	5.02(0)	4.00(-1)		
philade actu)				

ΤΔΒΙ Ε 2 59	nK Values of Organic Materials in Water at 25°C (Continued)
TADLE 2.59	pK, values of Organic Waterials in water at 25 C (Commune)

Substance	p <i>K</i> ₁	р <i>К</i> 2	p <i>K</i> ₃	p <i>K</i>
1,4-Benzenedicarboxylic acid (tere-	3.54(0)	4.46(-1)		
phthalic acid)				
1,3-Benzenedicarboxylic acid mon-	3.60(0)			
onitrile	2.55(0)			
1,4-Benzenedicarboxylic acid mon-	3.33(0)			
Benzenebevacarboxylic acid (nK	0.68	2.21	3.57	5.00
6.32; pK ₆ 7.49)	0.00	2.21	5.52	5.09
Benzenepentacarboxylic acid (pK_5 6.46)	1.80	2.73	3.96	5.25
Benzenesulfinic acid	1.50			
Benzenesulfonic acid	2.554			
1,2,3,4-Benzenetetracarboxylic acid	2.05	3.25	4.73	6.21
1,2,3,5-Benzenetetracarboxylic acid	2.38	3.51	4.44	5.81
1,2,4,5-Benzenetetracarboxylic acid	1.92	2.87	4.49	5.63
1,2,3-Benzenetricarboxylic acid	2.88	4.75	7.13	
1,2,4-Benzenetricarboxylic acid	2.52	3.84	5.20	
1.3.5-Benzenetricarboxylic acid	2.12	4.10	5.18	
Benzil- α -dioxime	12.0			
Benzilic acid	3.09			
Benzimidazole	5.53(+1)	12.3(0)		
Benzohydroxamic acid (20°C)	8.89(0)	1210(0)		
Benzoic acid	4.204			
5.6-Benzoquinoline (20°C)	$5.00(\pm 1)$			
7.8-Benzoquinoline (20°C)	$4.15(\pm 1)$			
1.4-Benzoquinone monoxime	6.20			
Benzosulfonic acid	0.70			
1.2.3-Benzotriazole	8.38(+1)			
1-Benzovlacetone	8.23			
Benzovlamine	9.34(+1)			
2-Benzovlbenzoic acid	3.54			
Benzovlglutamic acid	3.49	4.99		
N-Benzoyglycine (hippuric acid)	3.65			
Benzovlhydrazine	3.03(+2)	12.45(+1)		
Benzoylpyruvic acid	6.40	12.10		
3-Benzoyl-1,1,1-trifluoroacetone	6.35			
Benzylamine	9.35(+1)			
Benzylamine-4-carboxylic acid	3.59	9.64		
2-Benzyl-2-phenylsuccinic acid (20°C)	3.69	6.47		
2-Benzylpyridine	5.13(+1)			
4-Benzylpyridine-1-oxide	$-1.01\hat{8}(+1)$			
1-Benzylpyrrolidine	9.51(+1)			
2-Benzylpyrrolidine	10.31(+1)			
Benzylsuccinic acid (20°C)	4.11	5.65		
3-(Benzylthio)propanoic acid	4.463			
Berberine (18°C)	11.73(+1)			
Betaine	1.832(+1)			
Biguanide	2.96(+2)	11.51(+1)		
$2,\bar{2'}$ -Biimidazolyl ($\mu = 0.3$)	5.01(+1)			
2-Biphenylcarboxylic acid	3.46			
(1,1'-Biphenyl)-4,4'-diamine	3.63(+2)	4.70(+1)		
Pis(2 aminoathul) athar (20°C)	8 62(+2)	9 59(+1)		

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)

Substance	pK ₁	pK ₂	р <i>К</i> 3	p <i>K</i> 4
<i>N,N'</i> -Bis(2-aminoethyl)-ethylenedi- amine (20°C)	3.32(+4)	6.67(+3)	9.20(+2)	9.92(+1)
<i>N</i> , <i>N</i> -Bis(2-hydroxyethyl)-2-ami- noethane sulfonic acid (BES)	7.15			
<i>N,N</i> -Bis(2-hydroxyethyl)glycine (bicine) (20°C)	8.35			
Bis(2-hydroxyethyl)iminotris (hy- droxymethyl)methane (bis-tris)	6.46(+1)			
1,3-Bis[tris(hydroxymethyl)methy- lamino]propane (20°C)	6.80(+1)			
Bromoacetic acid	2.902			
2-Bromoaniline	2.53(+1)			
3-Bromoaniline	3.53(+1)			
4-Bromoaniline	3.88(+1)			
2-Bromobenzoic acid	2.85			
3-Bromobenzoic acid	3.810			
4-Bromobenzoic acid	3.99			
2-Bromobutanoic acid (35°C)	2.939			
erythro-2-Bromo-3-chlorosuccinic	1.4	2.6		
acid (19°C, $\mu = 0.1$)				
threo-2-Bromo-chlorosuccinic acid $(10^{\circ}C, u = 0.1)$	1.5	2.8		
$(19 \text{ C}, \mu = 0.1)$	4.41			
3-Bromo-4-(dimethylam-	6.52(+1)			
ino)pyridine (20°C)				
2-Bromo-4,6-dinitroaniline	-6.94(+1)			
3-Bromo-2-hydroxymethylbenzoic acid (20°C)	3.28			
6-Bromo-2-hydroxymethylbenzoic acid (20°C)	2.25			
7-Bromo-8-hydroxyquinoline-5- sulfonic acid	2.51	6.70		
3-Bromomandelic acid	3.13			
3-Bromo-4-methylaminopyridine	7.49(+1)			
(20°C)				
(2-Bromomethyl)butanoic acid	3.92			
Bromomethylphosphonic acid	1.14	6.52		
2-Bromo-6-nitrobenzoic acid	1.37			
2-Bromophenol	8.452			
3-Bromophenol	9.031			
4-Bromophenol	9.34			
2-(2'-Bromophenoxy)acetic acid	3.12			
2-(3'-Bromophenoxy)acetic acid	3.09			
2-(4'-Bromophenoxy)acetic acid	3.13			
2-Bromo-2-phenylacetic acid	2.21			
2-(Bromophenyl) acetic acid	4.054			
4-(Bromophenyl)acetic acid	4.188			
4-Bromophenylarsonic acid	3.25	8.19		
4-Bromophenylphosphinic acid (17°C)	2.1			
2-Bromophenylphosphonic acid	1.64	7.00		

TABLE 2.59 <i>pK</i> , Values of Organic Materials in Water at 25°

Substance	p <i>K</i> ₁	p <i>K</i> ₂	р <i>К</i> 3	р <i>К</i> 4
3-Bromophenylphosphonic acid	1.45	6.69		
4-Bromophenylphosphonic acid	1.60	6.83		
3-Bromophenylselenic acid	4.43			
4-Bromophenylselenic acid	4.50			
2-Bromopropanoic acid	2.971			
3-Bromopropanoic acid	3.992			
Bromopropynoic acid	1.855			
2-Bromopyridine	0.71(+1)			
3-Bromopyridine	2.85(+1)			
4-Bromopyridine	3.71(+1)			
3-Bromoquinoline	2.69(+1)			
Bromosuccinic acid	2.55	4.41		
2-Bromo-p-tolylphosphonic acid	1.81	7.15		
Brucine (15°C)	2.50(+2)	8.16(+1)		
2-Butanamine (sec-butylamine)	10.56(+1)			
1,2-Butanediamine	6.399(+2)	9.388(+1)		
1,4-Butanediamine	9.35(+2)	10.82(+1)		
2,3-Butanediamine	6.91(+2)	10.00(+1)		
1,2,3,4-Butanetetracarboxylic acid	3.43	4.58	5.85	7.16
cis-2-Butenoic acid (isocrotonic acid)	4.44			
trans-2-Butenoic acid (trans-cro- tonic acid) (35°C)	4.676			
3-Butenoic acid (vinvlacetic acid)	4.68			
3-Butoxybenzoic acid (20°C)	4.25			
Butylamine	10.64(+1)			
tert-Butylamine	10.685(+1)			
4- <i>tert</i> -Butylaniline	3.78(+1)			
<i>N-tert</i> -Butylaniline	7.10(+1)			
Butylarsonic acid (18°C)	4.23	8.91		
2-tert-Butylbenzoic acid	3.57			
3-tert-Butylbenzoic acid	4.199			
4-tert-Butylbenzoic acid	4.389			
N-Butylethylenediamine	7.53(+2)	10.30(+1)		
N-Butylglycine	2.35(+1)	10.25(0)		
tert-Butylhydroperoxide	12.80			
1-(tert-Butyl)-2-hydroxybenzene	10.62			
1-(tert-Butyl)-3-hydroxybenzene	10.119			
1-(tert-Butyl)-4-hydroxybenzene	10.23			
Butylmethylamine	10.90(+1)			
2-Butyl-1-methyl-2-pyrroline	11.84(+1)			
4-tert-Butylphenylactic acid	4.417			
Butylphosphinic acid	3.41			
tert-Butylphosphinic acid	4.24			
tert-Butylphosphonic acid	2.79	8.88		
1-Butylpiperidine ($\mu = 0.02$)	10.43(+1)			
2-tert-Butylpyridine	5.76(+1)			
3-tert-Butylpyridine	5.82(+1)			
4-tert-Butylpyridine	5.99(+1)			
2- <i>tert</i> -Butylthiazole ($\mu = 0.1$)	3.00(+1)			
4- <i>tert</i> -Butylthiazole ($\mu = 0.1$)	3.04(+1)			
2-Butyn-1,4-dioic acid	1.75	4.40		
2-Butynoic acid (tetrolic acid)	2.620			

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	pK ₁	p <i>K</i> ₂	р <i>К</i> 3	pK₄
Butyric acid	4.817			
4-Butyrobetaine (20°C)	3.94(+1)			
Caffeine (40°C)	10.4			
Calcein $(pK_5 > 12)$	<4	5.4	9.0	10.5
Calmagite	8.14	12.35		
D-Camphoric acid	4.57	5.10		
Canaline	2.40	3.70	9.20	
Canavanine	2.50(+2)	6.60(+1)	9.25(0)	
N-Carbamoylacetic acid	3.64			
N-Carbamoyl- α -D-alanine	3.89(+1)			
N-Carbamoyl- β -alanine	4.99(+1)			
DL-N-Carbamoylalanine	3.892(+1)			
N-Carbamoylglycine	3.876			
2-Carbamoylpyridine (20°C)	2.10(+1)			
3-Carbamoylpyridine	3.328(+1)			
4-Carbamoylpyridine (20°C)	3.61(+1)			
β -Carboxymethylaminopropanoic	3.61(+1)	9.46(0)		
acid				
Chloroacetic acid	2.867			
N-(2'-Chloroacetyl)glycine	3.38(0)			
cis-3-Chloroacrylic acid (18°C,	3.32			
$\mu = 0.1)$				
trans-3-chloroacrylic acid (18°C,	3.65			
$\mu = 0.1)$				
2-Chloroaniline	2.64(+1)			
3-Chloroaniline	3.52(+1)			
4-Chloroaniline	3.99(+1)			
2-Chlorobenzoic acid	2.877			
3-Chlorobenzoic acid	3.83			
4-Chlorobenzoic acid	3.986			
2-Chlorobutanoic acid	2.86			
3-Chlorobutanoic acid	4.05			
4-Chlorobutanoic acid	4.50			
2-Chloro-3-butenoic acid	2.54			
3-Chlorobutylarsonic acid (18°C)	3.95	8.85		
trans-2'-Chlorocinnamic acid	4.234			
trans-3'-Chlorocinnamic acid	4.294			
trans-4'-Chlorocinnamic acid	4.413			
2-Chlorocrotonic acid	3.14			
3-Chlorocrotonic acid	3.84			
Chlorodifluoroacetic acid	0.46			
1-Chloro-1,2-dihydroxybenzene	8.522			
I-Chloro-2,6-dimethyl-4-hydroxy-	9.549			
benzene	2.07			
4-Chloro-2,6-dinitrophenol	2.97	0.07		
2-Chloroethylarsonic acid	3.68	8.37		
3-Unlorohexyl-1-arsonic acid	3.51	8.31		
$(18^{\circ}\mathrm{C})$	2.50			
2-Unioro-3-hydroxybutanoic acid	2.59			
mathyl)hangoia acid (20°C)	3.21			
mentyr)benzoic acid (20 C)				

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	р <i>К</i> 4
6-Chloro-2-(hydroxy-	2.26			
methyl)benzoic acid (20°C)				
7-Chloro-8-hydroxyquinoline-5-	2.92	6.80		
sulfonic acid				
2-Chloroisocrotonic acid	2.80			
3-Chloroisocrotonic acid	4.02			
3-Chlorolactic acid	3.12			
3-Chloromandelic acid	3.237			
3-Chloro-4-methoxyphenyl-phos-	2.25	6.7		
phonic acid				
3-Chloro-4-methylaniline	4.05(+1)			
4-Chloro-N-methylaniline	3.9(+1)			
4-Chloro-3-methylphenol	9.549			
Chloromethylphosphonic acid	1.40	6.30		
2-Chloro-2-methylpropanoic acid	2.975			
2-Chloro-6-nitroaniline	-2.41(+1)			
4-Chloro-2-nitroaniline	-1.10(+1)			
2-Chloro-3-nitrobenzoic acid	2.02			
2-Chloro-4-nitrobenzoic acid	1.96			
2-Chloro-5-nitrobenzoic acid	2.17			
2-Chloro-6-nitrobenzoic acid	1.342			
4-Chloro-2-nitrophenol	6.48			
2-Chlorophenol	8.55			
3-Chlorophenol	9.10			
4-Chlorophenol	9.43			
(4-Chloro-3-nitrophenoxy)acetic acid	2.959			
2-Chloro-4-nitrophenylphosphonic	1.12	6.14		
acid				
3-Chloropentyl-1-arsonic acid	3.71	8.77		
(18°C)				
2-Chlorophenoxyacetic acid	3.05			
3-Chlorophenoxyacetic acid	3.07			
4-Chlorophenoxyacetic acid	3.10			
4-Chlorophenoxy-2-methylacetic	3.26			
	1.000			
2-Chlorophenylacetic acid	4.066			
3-Chlorophenylacetic acid	4.140			
4-Chiorophenylacetic acid	4.190	8.04(0)		
2-Chiorophenylalanine	2.23(+1)	8.94(0)		
3-Chiorophenylaianine	2.17(+1)	8.91(0)		
1 Chlorophenylamonia acid	$2.08(\pm 1)$	8.90(0)		
2 Chlorophenylaisonic acid	5.55	6.23		
2 Chlorophenylphosphonic acid	1.05	6.55		
A.Chlorophenylphosphonic acid	1.55	6.75		
3-(2'-Chlorophenyl)propanoic acid	4 577	0.75		
3-(3' Chlorophenyl)propanoic acid	4.577			
3-(4' -Chlorophenyl)propanoie acid	4 607			
3-Chlorophenylselenic acid	4.007			
4-Chlorophenylselenic acid	4 48			
4-Chloro-1 2-phthalic acid	1.60			
· Chioro-1,2-phillane actu	1.00			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> 1	р <i>К</i> 2	pK ₃	р <i>К</i> 4
2-Chloropropanoic acid	2.84			
3-Chloropropanoic acid	3.992			
2-Chloropropylarsonic acid (18°C)	3.76	8.39		
3-Chloropropylarsonic acid (18°C)	3.63	8.53		
Chloropropynoic acid	1.854			
2-Chloropyridine	0.49(+1)			
3-Chloropyridine	2.84(+1)			
4-Chloropyridine	3.83(+1)			
7-Chlorotetracycline	3.30(+1)	7.44	9.27	
4-Chloro-2-(2'-thiazolylazo)phenol	7.09			
4-Chlorothiophenol	5.9			
N-Chloro-p-toluenesulfonamide	4.54(+1)			
3-Chloro-o-toluidine	2.49(+1)			
4-Chloro-o-toluidine	3.385(+1)			
5-Chloro-o-toluidine	3.85(+1)			
6-Chloro-o-toludine	3.62(+1)			
Chrome Azurol S	2.45	4.86	11.47	
Chrome Dark Blue	7.56	9.3	12.4	
Cinchonine	5.85(+2)	9.92(+1)		
cis-Cinnamic acid	3.879			
trans-Cinnamic acid	4.438			
Citraconic acid	2.29(0)	6.15(-1)		
Citric acid	3.128	4.761	6.396	
L-(+)-Citrulline	2.43(+1)	9.41(0)		
Cocaine	8.41(+1)			
Codeine	7.95(+1)			
Colchicine	1.65(+1)			
Contine ($\mu = 0.5$)	11.24(+1)			
Creatine (40°C)	3.28(+1)			
Creatinine	3.5/(+1)			
o-Cresol	10.20			
m-Cresol	10.00			
p-Cresol	10.26			
Curreire	7.62(-1)			
Cupremide	$10.03(\pm 1)$			
Cyanoscetic acid	2.460			
Cyanoacetobydrazide	2.400 $2.34(\pm 2)$	$11.17(\pm 1)$		
2 Cyanobenzoic acid	2.34(+2)	11.17(+1)		
3-Cyanobenzoic acid	3.60			
4-Cyanobenzoic acid	3 55			
4-Cyanobutanoic acid	4 44			
<i>trans</i> -1-Cyanocyclohexane-2-car- boxylic acid	3.865			
4-Cvano-2.6-dimethylphenol	8.27			
4-Cyano-3,5-dimethylphenol	8.21			
2-Cyanoethylamine	7.7(+1)			
N-(2-Cyano)ethylnorcodeine	5.68(+1)			
Cyanomethylamine	5.34(+1)			
2-Cyano-2-methyl-2-phenylacetic acid	2.290			
1-Cyanomethylpiperidine 2-Cyano-2-methylpropanoic acid	4.55(+1) 2.422			

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	pK ₂	р <i>К</i> 3	pK₄
3-Cyanophenol	8.61			
o-Cyanophenoxyacetic acid	2.98			
<i>m</i> -Cyanophenoxyacetic acid	3.03			
<i>p</i> -Cyanophenoxyacetic acid	2.93			
2-Cyanopropanoic acid	2.37			
3-Cyanopropanoic acid	3.99			
2-Cyanopyridine	-0.26(+1)			
3-Cyanopyridine	1.45(+1)			
4-Cyanopyridine	1.90(+1)			
Cyanuric acid	6.78			
Cyclobutanecarboxylic acid	4.785			
1,1-Cyclobutanedicarboxylic acid	3.13	5.88		
cis-1,2-Cyclobutanedicarboxylic acid	3.90	5.89		
trans-1,2-Cyclobutanedicarboxylic acid	3.79	5.61		
cis-1,3-Cyclobutanedicarboxylic acid	4.04	5.31		
trans-1,3-Cyclobutanedicarboxylic	3.81	5.28		
Cyclohexanecarboxylic acid	4.90			
1.1-Cyclohexanediacetic acid	3.49	6.96		
<i>cis</i> -1,2-Cyclohexanediacetic acid (20°C)	4.42	5.45		
<i>trans</i> -1,2-Cyclohexanediacetic acid (20°C)	4.38	5.42		
<i>cis</i> -1.2-Cyclohexanediamine	6.43(+2)	9.93(+1)		
trans-1.2-Cyclohexanediamine	634(+2)	9.74(+1)		
1.1-Cyclohexanedicarboxylic acid	3.45	4.11		
<i>cis</i> -1,2-Cyclohexanedicarboxylic acid (20°C)	4.34	6.76		
<i>trans</i> -1,2-Cyclohexanedicarboxylic acid (20°C)	4.18	5.93		
<i>cis</i> -1,3-Cyclohexanedicarboxylic acid (16°C)	4.10	5.46		
<i>trans</i> -1,3-Cyclohexanedicarboxylic acid (19°C)	4.31	5.73		
<i>trans</i> -1,4-Cyclohexanedicarboxylic acid (16°C)	4.18	5.42		
1,3-Cyclohexanedione	5,26			
cis.cis-1.3.5-Cyclohexanetriamine	6.9(+3)	8.7(+2)	10.4(+1)	
Cyclohexanonimine	9.15			
<i>cis</i> -4-Cyclohexene-1,2-dicarboxylic acid (20°C)	3.89	6.79		
trans-4-Cyclohexene-1,2-dicarbox- vlic acid (20°C)	3.95	5.81		
Cyclohexylacetic acid	4.51			
Cyclohexylamine	10.64(+1)			
2-(Cyclohexylamino)ethanesulfonic acid (CHES) (20°C)	9.55			
3-Cyclohexylamino-1-propanesul- fonic acid (CAPS) (20°C)	10.40			
4-Cyclohexylbutanoic acid	4.95			

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	pK ₂	р <i>К</i> 3	p <i>K</i> ₄
Cyclohexylcyanoacetic acid	2.367			
1,2-Cyclohexylenedinitriloacetic	2.4	3.5	6.16	12.35
acid ($\mu = 0.1$)				
3-Cyclohexylpropanoic acid	4.91			
2-Cyclonexylpyrrolidine	$10.76(\pm 1)$			
2-Cyclonexyl-2-pyrroline	7.91(+1)			
Cyclonexylinioacetic acid	3.400			
cis-Cyclopentane-1-carboxylic	4.905	5 70		
acid-2-acetic acid	1.40	5.19		
trans-Cyclopentane-1-carboxylic	4.39	5.67		
acid-2-acetic acid	1.57	5.07		
Cyclopentane-1.2-diamine-N.N'.N'-				10.20
tetraacetic acid ($\mu = 0.1$)				
Cyclopentane-1,1-dicarboxylic acid	3.23	4.08		
cis-Cyclopentane-1,2-dicarboxylic	4.43	6.67		
acid				
trans-Cyclopentane-1,2-dicarbox-	3.96	5.85		
ylic acid				
cis-Cyclopentane-1,3-dicarboxylic	4.26	5.51		
acid				
trans-Cyclopentane-1,3-dicarbox-	4.32	5.42		
ylic acid	10 (5() 1)			
Cyclopentylamine	10.65(+1)	(77		
I,I-Cyclopentyldiacetic acid	3.80	6.77		
trans Cyclopentyl-1,2-diacetic acid	4.42	5.42		
Cyclopropapacarboxylic acid	4.45	5.45		
Cyclopropane-1 1-dicarboxylic acid	1.82	5.43		
cis-Cyclopropane-1,2-dicarboxylic	3 33	647		
acid	5.55	0.17		
trans-Cyclopropane-1.2-dicarbox-	3.65	5.13		
ylic acid				
Cyclopropylamine	9.10(+1)			
5-Cyclopropyl-1,2,3,4-tetrazole	4.90(+1)			
L-Cysteic acid (3-sulfo-L-alanine)	1.89(+1)	8.7(0)		
L-(+)-Cysteine	1.96	8.18	10.29(SH)	
L-(+)-Cysteine, ethyl ester	6.69	9.17(SH)		
	(NH_{3}^{+})			
L-(+)-Cysteine, methyl ester	6.56	8.99(SH)		
	(NH_3^+)			
L-Cysteinyl-L-asparagine	2.97	7.09	8.47	0.71(1)
L-Cystine (35°C)	1.6(+2)	2.1(+1)	8.02(0)	8./1(-1)
Cystinyigiycyigiycine (35°C)	3.12	3.21	0.01	0.87
Cytidine 2' phosphoric acid	$4.08(\pm 1)$	12.24(0)	6.17(1)	
Cytidine-2 -phosphoric acid	0.0(+1)	4.30(0)	604(-1)	13.2(sugar)
Cytidine-5'-phosphoric acid	0.00(+1)	4 39(0)	6.62(-1)	15.2(Sugar)
Cytosine	4.58(+1)	12.15(0)	0.02(1)	
Decanedioic acid (sebacic acid)	4.59	5.59		
Dehydroascorbic acid (20°C)	3.21	7.92	10.3	
2'-Deoxyadenosine ($\mu = 0.1$)	3.8(+1)			

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)
-------------------	---

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)
------------	---

Substance	р <i>К</i> 1	p <i>K</i> ₂	p <i>K</i> ₃	р <i>К</i> 4
Deoxycholic acid	6.58			
2-Deoxyglucose	12.52			
2-Deoxyguanosine ($\mu = 0.1$)	2.5(+1)			
5-Desoxypyridoxal ($\mu = 0$)	4.17(+1)	8.14(OH)		
1,1-Diacetic acid semicarbazide	2.96	4.04		
$(30^{\circ}C, \mu = 0.1)$				
Diacetylacetone	7.42			
Diallylamine ($\mu = 0.02$)	9.29(+1)			
5,5-Diallybarbituric acid	7.78(0)			
1,3-Diamino-2-aminomethylpro-	6.44(+3)	8.56(+2)	10.38(+1)	
pane				
3,5-Diaminobenzoic acid	5.30			
1,3-Diamino-N,N'-bis-(2-amino-	6.01(+4)	7.26(+3)	9.49(+2)	10.23(+1)
ethyl)propane ($\mu = 0.5$)				
2,4-Diaminobutanoic acid (20°C)	1.85(+2)	8.24(+1)	10.40(0)	
2,2'-Diaminodiethyl sulfide (30°C)	8.84(+2)	9.64(+1)		
1,8-Diamino-3,6-dithiooctane	8.43(+2)	9.31(+1)		
(30°C)				
2,7-Diaminooctanedioic acid	1.84(+2)	2.64(+1)	9.23(0)	9.89(-1)
$(20^{\circ}C, \mu = 0.1)$				
1,8-Diamino-3,6-octanedione (30°C)	8.60(+2)	9.57(+1)		
1,8-Diamino-3-oxa-6-thiooctane	8.54(+2)	9.46(+1)		
2,3-Diaminopropanoic acid ($\mu =$	1.33(+2)	6.674(+1)	9.623(0)	
0.1)				
2,3-Diaminopropanoic acid, methyl	4.412(+1)	8.250(0)		
ester $(\mu = 0.1)$				
1,3-Diamino-2-propanol (20°C)	7.93(+2)	9.69(+1)		
2,5-Diaminopyridine (20°C)	2.13(+2)	6.48(+1)		
1,4-Diazabicyclo[2.2.2]octane	2.90(+2)	8.60(+1)		
Dibenzylamine	8.52(+1)			
Dibenzylsuccinic acid (20°C)	3.96	6.66		
Dibromoacetic acid	1.39			
3,5-Dibromoaniline	2.35(+1)			
3,5-Dibromophenol	8.056			
2,2-Dibromopropanoic acid	1.48			
2,3-Dibromopropanoic acid	2.33			
rac-2,3-Dibromosuccinic acid	1.43	2.24		
(20°C)				
meso-2,3-Dibromosuccinic acid	1.51	2.71		
(20°C)				
3,5-Dibromo-p-L-tyrosine	2.17(+1)	6.45(0)	7.60(-1)	
Dibutylamine	11.25(+1)			
Di-sec-butylamine	10.91(+1)			
2,6-Di-tert-butylpyridine	3.58(+1)			
<i>rac</i> -2,3-Di- <i>tert</i> -butylsuccinic acid $(\mu = 0.1)$	3.58	10.2		
1,12-Dicarboxydodecaborane	9.07	10.23		
Dichloroacetic acid	1.26			
Dichloroacetylacetic acid	2.11			
3,5-Dichloroaniline	2.37(+1)			
1,3-Dichloro-2,5-dihydroxybenzene	7.30	9.99		
$(\mu = 0.65)$				

Substance	р <i>К</i> 1	p <i>K</i> ₂	р <i>К</i> 3	p <i>K</i> ₄
2,5-Dichloro-3,6-dihydroxy- <i>p</i> -ben-	1.09	2.42		
Dichloromethylphosphonic acid	1.14	5.61		
2.4-Dichloro-6-nitroaniline	-3.00(+1)	5.01		
2.5-Dichloro-4-nitroaniline	$-1.74(\pm 1)$			
2.6-Dichloro-4-nitroaniline	-3.31(+1)			
2,3-Dichlorophenol	7.44			
2,4-Dichlorophenol	7.85			
2,6-Dichlorophenol	6.78			
3,4-Dichlorophenol	8.630			
3,5-Dichlorophenol	8.179			
2,4-Dichlorophenoxyacetic acid (2,4-D)	2.64			
4,6-Dichlorophenoxy-2-methyl-	3.13			
acetic acid				
3,6-Dichlorophthalic acid	1.46			
2,2-Dichloropropanoic acid	2.06			
2,3-Dichloropropanoic acid	2.85			
<i>rac</i> -2,3-Dichlorosuccinic acid (20°C)	1.43	2.81		
meso-2,3-Dichlorosuccinic acid	1.49	2.97		
3,5-Dichloro-p-tyrosine	2.12	6.47	7.62	
2-Dicyanoethylamine	5.14(+1)			
2,2-Dicyanopropanoic acid	-2.8			
Dicyclohexylamine	11.25(+1)			
Dicyclopentylamine	10.93(+1)			
Didodecylamine	10.99(+1)			
Diethanolamine	8.88(+1)			
Di(ethoxyethyl)amine	8.47(+1)			
3,5-Diethoxyphenol	9.370			
3-(Diethoxyphosphinyl)benzoic acid	3.65			
4-(Diethoxyphosphinyl)benzoic acid	3.60			
3-(Diethoxyphosphinyl)phenol	8.66			
4-(Diethoxyphosphinyl)phenol	8.28			
Diethylamine	10.8(+1)			
2-(Diethylamino)ethyl-4-aminoben- zoate	8.85(+1)			
α -(Diethylamino)toluene	9.44(+1)			
N,N-Diethylaniline	6.56(+1)			
5,5-Diethylbarbituric acid (veronal)	8.020(0)			
N,N-Diethylbenzylamine	9.48(+1)			
Diethylbiguanide (30°C)	2.53(+1)	11.68(0)		
Diethylenetriamine	4.42(+3)	9.21(+2)	10.02(+1)	
Diethylenetriaminepentaacetic acid $(pK_5, 10.58)$	1.80(0)	2.55(-1)	4.33(-2)	8.60(-3)
N,N-Diethylethylenediamine	7.70(+2)	10.46(+1)		
2,2-Diethylglutaric acid	3.62	7.12		
N,N-Diethylglycine	2.04(+1)	10.47(0)		
Diethylglycolic acid (18°C)	3.804			
Diethylmalonic acid	2.151	7.417		
Dietnylmethylamine	10.43(+1)	6.46		
rac-2,5-Dietnyisuccinic acid	3.03	0.40		

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)

Substance	pK ₁	р <i>К</i> 2	р <i>К</i> 3	p <i>K</i> ₄
meso-2,3-Diethylsuccinic acid	3.54	6.59		
N,N-Diethyl-o-toluidine	7.18(+1)			
Difluoroacetic acid	1.33			
3,3-Difluoroacrylic acid	3.17			
Diglycolic acid	2.96			
Diguanidine	12.8			
Dihexylamine	11.0(+1)			
Dihydroarecaidine	9.70			
Dihydroarecaidine, methyl ester	8.39			
Dihydrocodeine	8.75(+1)			
Dihydroergonovine	7.38(+1)			
α -Dihydrolysergic acid	3.57	8.45		
γ-Dihydrolysergic acid	3.60	8.71		
α -Dihydrolysergol	8.30			
β -Dihydrolysergol	8.23			
Dihydromorphine	9.35			
3,4-Dihydroxyalanine	2.32(+1)	8.68(0)	9.87(-1)	
1,2-Dihydroxyanthraquinone-3-sul-	<u> </u>	5.54(-1)	11.01(-2)	
fonic acid (alizarin-3-sulfonic acid)				
3,4-Dihydroxybenzaldehyde	7.55			
1,2-Dihydroxybenzene (pyrocate-	9.356(0)	12.98(-1)		
chol) ($\mu = 0.1$)				
1,3-Dihydroxybenzene (resorcinol)	9.44(0)	12.32(-1)		
1,4-Dihydroxybenzene (hydroqui- none)	9.91(0)	12.04(-1)		
4,5-Dihydroxybenzene-1,3-disul- fonic acid			7.66(-2)	12.6(-3)
2.3-Dihydroxybenzoic acid (30°C)	2.98	10.14		
2,4-Dihydroxybenzoic acid (β -re-	3.29	8.98		
Sorcyclic acid)	2.07	10.50		
2,5-Dinydroxybenzoic acid	2.97	10.50		
2.6-Dinydroxybenzoic acid	1.50	0 67	11.74	
3,4-Dihydroxybenzoic acid	4.48	8.07	11.74	
2.5 Dibydroxy p benzoguinone	4.04 2.71	5 18		
3.4 Dihydroxy 3 cyclobutene 1.2	2.71	3.18		
dione	0.541	5.400		
2,3-Dihydroxy-2-cyclopenten-1-	4.72			
1 4-Dihydroxy-2 6-dinitrobenzene	4 47	9.14		
Di(2.2'-bydroxyetbyl)amine	$88(\pm 1)$	2.14		
N N-Di(2-hydroxyethyl)glycine	8 333			
Dihydroxymaleic acid	1 10			
Dihydroxymalic acid	1.92			
1 3-Dihydroxy-2-methylbenzene	10.05	11.64		
$(\mu = 0.65)$	4 460			
propanoic acid	4.400			
2,4-Dihydroxy-5-methylpyrimidine	9.90			
2,4-Dihydroxy-6-methylpyrimidine	9.52			
1,4-Dihydroxynaphthalene (26°C, $\mu = 0.65$)	9.37	10.93		
1,2-Dihydroxy-3-nitrobenzene	6.68			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	p <i>K</i> ₃	р <i>К</i> 4
1,2-Dihydroxy-4-nitrobenzene	6.701			
$(\mu=0.1)$				
2,4-Dihydroxy-1-phenylazobenzene	11.98			
$(\mu = 0.1)$				
2,4-Dihydroxyoxazolidine	6.11(+1)			
2,4-Dihydroxypteridine	<1.3	7.92		
2,6-Dihydroxypurine	7.53(0)	11.84(-1)		
2,4-Dihydroxypyridine (20°C)	1.37(+1)	6.45(0)	13(-1)	
Dihydroxytartaric acid	1.95	4.00		
1,4-Dihydroxy-2,3,5,6-tetramethyl- benzene ($\mu = 0.65$)	11.25	12.70		
3,5-Diiodoaniline	2.37(+1)			
2,5-Diiodohistamine	2.31(+2)	8.20(+1)	10.11(0)	
2,5-Diiodohistidine ($\mu = 0.1$)	2.72	8.18	9.76	
3,5-Diiodophenol	8.103			
3,5-Diiodotyrosine	2.117(+1)	6.479(0)	7.821(-1)	
Diisopropylmalonic acid	2.124	8.848		
Dilactic acid	2.955			
threo-1,4-Dimercapto-2,3-butane- diol	8.9			
meso-2,3-Dimercaptosuccinic acid	2.71	3.48	8.89(SH)	10.79(SH)
3,5-Dimethoxyaniline	3.86(+1)			
2,6-Dimethoxybenzoic acid	3.44			
1,10-Dimethoxy-3,8-dimethyl-4,7- phenanthroline	7.21			
Di(2-methoxyethyl)amine	9.51(+1)			
3,5-Dimethoxyphenol	9.345			
(3,4-Dimethoxy)phenylacetic acid	4.333			
Dimethylamine	10.77(+1)			
4-Dimethylaminobenzaldehyde	1.647(+1)			
N,N-Dimethylaminocyclohexane	10.72(+1)			
4-Dimethylamino-2,3-dimethyl-1- phenyl-3-pyrazolin-5-one	4.18(+1)			
4-Dimethylamino-3,5-dimethylpyr- idine (20°C)	8.15(+1)			
2-(Dimethylamino)ethanol	9.26(+1)			
2-[2-(Dimethyl- amino)ethyl]pyridine	3.46(+2)	8.75(+1)		
3-(Dimethylaminoethyl)pyridine	4.30(+2)	8.86(+1)		
4-(Dimethylaminoethyl)pyridine	4.66(+2)	8.70(+1)		
4-(Dimethylamino)-3-ethylpyridine	8.66(+1)			
4-(Dimethylamino)-3-isopropylpyr- idine (20°C)	8.27(+1)			
2-(Dimethylaminomethyl)pyridine	2.58(+2)	8.12(+1)		
3-(Dimethylaminomethyl)pyridine	3.17(+2)	8.00(+1)		
4-(Dimethylaminomethyl)pyridine	3.39(+2)	$7.66(\pm 1)$		
4-(Dimethylamino)-3-methylpyri- dine (20°C)	8.68(+1)			
4-(Dimethylamino-	2.0(+1)	4.2	7.35	
3-(Dimethylamino)propanoic acid	9.85(+1)			
4-(Dimethylamino)pyridine (20°C)	6.09(+1)			

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)
-------------------	--

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> 3	p <i>K</i> ₄
N.N-Dimethylaniline	5.15(+1)			
2,3-Dimethylaniline	4.70(+1)			
2,4-Dimethylaniline	4.89(+1)			
2,5-Dimethylaniline	4.53(+1)			
2.6-Dimethylaniline	3.95(+1)			
3.4-Dimethylaniline	5.17(+1)			
3,5-Dimethylaniline	4.765(+1)			
N,N-Dimethylaniline-4-phosphonic acid (17°C)	2.0(+1)	4.2	7.39	
Dimethylarsinic acid (cacodylic acid)	1.67	6.273		
1 3-Dimethylbarbituric acid	$4.68(\pm 1)$			
2 3-Dimethylbenzoic acid	3 771			
2.4-Dimethylbenzoic acid	4 217			
2.5-Dimethylbenzoic acid	3 990			
2.6-Dimethylbenzoic acid	3 362			
3 4-Dimethylbenzoic	4 41			
3 5-Dimethylbenzoic acid	4 302			
<i>N</i> . <i>N</i> -Dimethylbenzylamine	$9.02(\pm 1)$			
Dimethylbiguanide	2.77(+1)	11.52		
2.2-Dimethylbutanoic acid (18°C)	5.03	11.52		
Dimethylchlorotetracycline ($\mu = 0.01$)	3.30(+1)			
2.6-Dimethyl-4-cyanophenol	8 27			
3 5-Dimethyl-4-cyanophenol	8.21			
5.5-Dimethyl-1.3-cyclohexanedione	5.15			
cis-3,3-Dimethyl-1,2-cyclopropane-	2.34	8.31		
trans 3.3 Dimethyl 1.2 evelopro	3.02	5 3 2		
papadiasrboxylia asid	5.92	5.52		
3,5-Dimethyl-4-(dimethylamino)-	8.12(+1)			
2.2-Dimethyl-1.3-dioxane-4.6-	51			
dione	5.1			
1.1-Dimethylethanethiol $(\mu = 0.1)$	11.22			
NN-Dimethylethylenediamine-	6.63	9 53		
N.N-diacetic acid	0100	5.00		
N,N'-Dimethylethylenediamine- N,N'-diacetic acid	7.40	10.16		
N,N-Dimethylethylenediamine-	5.99	9.97		
<i>N</i> , <i>N</i> -Dimethylglycine	2.146(+1)	9.940(0)		
Dimethylglycolic acid (18°C)	4.04	0.00(0)		
N,N-Dimethylgiycyigiycine	3.11(+1)	8.09(0)		
5.5 Dimethylglyoxime	10.00			
5.5 Dimethylbudartair	0.10			
3,3-Dimethyl 8 bud-received	9.19	10.60/0		
2,4-Dimethyl-8-hydroxyquinoline	0.20(+1)	10.00(0)		
2.4 Dimethyl 8 budroxyquinoline	5.80(+1) 2.20	10.05(0)		
2,4-Dimethyl-8-nydroxyquinoline-	3.20 (NILI+)	10.14(OH)		
/-sufformer actu	(INEL') 75	0.4		
2,4-Dimethylimidazole	7.3 8.38(+1)	9.4		

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	p <i>K</i> ₂	р <i>К</i> 3	p <i>K</i> ₄
Dimethylmalic acid	3.17	6.06		
2.2-Dimethylmalonic acid	3.17	6.06		
3,5-Dimethyl-4-(methylamino) pyr-	9.96(+1)			
idine (20°C)				
2,3-Dimethylnaphthalene-1-carbox-	3.33			
ylic acid				
2,6-Dimethyl-4-nitrophenol	7.190			
3,5-Dimethyl-4-nitrophenol	8.245			
α, α -Dimethyloxaloacetic acid	1.77	4.62		
3,3-Dimethylpentanedioic acid	3.70	6.34		
2,2-Dimethylpentanoic acid	4.969			
4,4-Dimethylpentanoic acid (18°C)	4.79			
2,3-Dimethylphenol	10.50			
2,4-Dimethylphenol	10.58			
2,5-Dimethylphenol	10.22			
2,6-Dimethylphenol	10.59			
3,4-Dimethylphenol	10.32			
3,5-Dimethylphenol	10.15			
2,6-Dimethylphenoxyacetic acid	3.356			
Dimethylphenylsilylacetic acid	5.27			
N,N'-Dimethylpiperazine	4.630(+2)	8.539(+1)		
1,2-Dimethylpiperidine	10.22			
cis-2,6-Dimethylpiperidine	11.07(+1)			
2,2-Dimethylpropanoic acid (pi-	5.031			
valic acid)				
2,2'-Dimethylpropylphosphonic	2.84	8.65		
acid	6.774 () 1)			
2,4-Dimethylpyridine (2,4-lutidine)	$6.74(\pm 1)$			
2,5-Dimethylpyriaine (2,5-iutiaine)	$6.43(\pm 1)$			
2,6-Dimethylpyridine (2,6-lutidine)	$0.71(\pm 1)$			
2.5 Dimethylpyridine (3.5 hutidine)	$6.4/(\pm 1)$			
2.4 Dimethylpyridine (5,5-iutume)	$1.627(\pm 1)$			
2,5 Dimethylpyridine 1 oxide	1.027(+1) 1.008(+1)			
2.6 Dimethylpyridine 1 oxide	1.200(+1)			
3 4-Dimethylpyridine-1-oxide	1.300(+1) 1.403(+1)			
3 5-Dimethylpyridine-1-oxide	1.493(+1) 1.181(+1)			
2 3-Dimethylavinoline	4.94(+1)			
2.6-Dimethylquinoline	546(+1)			
meso-2.2-Dimethylsuccinic acid	3.77	5 936		
rac-2.2-Dimethylsuccinic acid	3.93	6.20		
D-2.3-Dimethylsuccinic acid	3.82	5.93		
meso-2.3-Dimethylsuccinic acid	3.67	5.30		
rac-2.3-Dimethylsuccinic acid	3.94	6.20		
2,4-Dimethylthiazole ($\mu = 0.1$)	3.98			
2,5-Dimethylthiazole ($\mu = 0.1$)	3.91			
4,5-Dimethylthiazole ($\mu = 0.1$)	3.73			
N,N-Dimethyl-o-toluidine	5.86(+1)			
N,N-Dimethyl-p-toluidine	7.24(+1)			
2,4-Dinitroaniline	-4.25(+1)			
2,6-Dinitroaniline	-5.23(+1)			
3,5-Dinitroaniline	0.229(+1)			
2,3-Dinitrobenzoic acid	1.85			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	n <i>K</i> .	nK.	nK.	nK.
	P**1	P**2		····4
2,4-Dinitrobenzoic acid	1.43			
2,5-Dinitrobenzoic acid	1.62			
2,6-Dinitrobenzoic acid	1.14			
3,4-Dinitrobenzoic acid	2.82			
3,5-Dinitrobenzoic acid	2.85			
1,1-Dinitrobutane (20°C)	5.90			
1,1-Dinitrodecane	3.60			
1,1-Dinitroethane (20°C)	5.21			
Dinitromethane (20°C)	3.60			
1,1-Dinitropentane	5.337			
2,4-Dinitrophenol	4.08			
2,5-Dinitrophenol	5.216			
2,6-Dinitrophenol	3.713			
3,4-Dinitrophenol	5.424			
3,5-Dinitrophenol	6.732			
2,4-Dinitrophenylacetic acid	3.50			
1,1-Dinitropropane (20°C)	5.5	0.55(0)		
imidinecarboxylic acid (orotic acid)	1.8(+1)	9.55(0)		
Diphenylacetic acid	3 939			
Diphenylamine	$0.9(\pm 1)$			
2.2-Diphenylglutaric acid (20°C)	3.91	5.38		
1.3-Diphenylguanidine	10.12			
2,2-Diphenylheptanedioic acid (20°C)	4.28	5.39		
2,2-Diphenylhexanedioic acid (20°C)	4.17	5.40		
3,3-Diphenylhexanedioic acid	4.22	5.19		
Diphenylhydroxyacetic acid (35°C)	3.05			
Diphenylketimine	6.82			
2,2-Diphenylnonanedioic acid (20°C)	4.33	5.38		
meso-2,2-Diphenylsuccinic acid	3.48			
rac-2,2-Diphenylsuccinic acid	3.58			
2,2-Diphenylsuccinic acid, 1- methyl ester (20°C)	4.47			
2,2-Diphenylsuccinic acid, 4- methyl ester (20°C)	3.900			
Diphenylthiocarbazone	4.50	15		
Dipropylamine	10.91(+1)			
Dipropylenetriamine	7.72(+3)	9.56(+2)	10.65(+1)	
2,2-Dipropylglutaric acid	3.688	7.31		
Dipropylmalonic acid	2.04	7.51		
2,2'-Dipyridyl	-0.52(+2)	4.352(+1)		
2,3'-Dipyridyl (20°C)	1.52(+2)	4.42(+1)		
2,4'-Dipyridyl (20°C)	1.19(+2)	4.77(+1)		
3,3'-Dipyridyl (20°C, $\mu = 0.2$)	3.0(+2)	4.60(+1)		
3.4'-Dipyridyl (20°C, $\mu = 0.2$)	3.0(+2)	4.85(+1)		
4,4'-Dipyridyl	3.17(+2)	4.82(+1)		
Dithiodiacetic acid (18°C) 1,4-Dithioerythritol	3.075 9.5	4.201		

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> 1	р <i>К</i> 2	р <i>К</i> 3	p <i>K</i> 4
Dithiooxamide (rubeanic acid)	10.89			
Dulcitol	13.46			
Ecgonine	10.91			
Emetine	7.36(+1)	8.23(0)		
Epinephrine enantiomorph	9.39(+1)			
Epinephrine, pseudo	9.53(+1)			
Ergometrinine	7.32(+1)			
Ergonovine	6.73(+1)			
Eriochrome Black T	6.3	11.55		
1,2-Ethanediamine	6.85(+2)	9.92(+1)		
Ethane-1,2-diamino-N,N'-dimethyl-	6.047(0)	10.068(-1)		
N,N'-diacetic acid (20°C)				
1,2-Ethanedithiol	8.96	10.54		
Ethanethiol ($\mu = 0.015$)	10.61			
Ethoxyacetic acid (18°C)	3.65			
2-Ethoxyaniline (o-phenetidine)	4.47(+1)			
3-Ethoxyaniline	4.17(+1)			
4-Ethoxyaniline	5.25(+1)			
2-Ethoxybenzoic acid (20°C)	4.21			
3-Ethoxybenzoic acid (20°C)	4.17			
4-Ethoxybenzoic acid (20°C)	4.80			
Ethoxycarbonylethylamine	9.13(+1)			
2-Ethoxyethanethiol	9.38			
2-Ethoxyethylamine	6.26(+1)			
2-Ethoxyphenol	10.109			
3-Ethoxyphenol	9.655			
(4-Ethoxyphenyl)phosphonic acid	2.06	7.28		
4-Ethoxypyridine	6.67(+1)			
Ethyl acetoacetate	10.68			
3-Ethylacrylic acid	4.695			
N-Ethylalanine	2.22(+1)	10.22(0)		
Ethylamine	10.63(+1)			
(3-Ethylamino)phenylphosphonic acid	1.1(+1)	4.90(0)	7.24(-1)	
N-Ethylaniline	5.11(+1)			
2-Ethylaniline	4.42(+1)			
3-Ethylaniline	4.70(+1)			
4-Ethylaniline	5.00(+1)			
Ethylarsonic acid (18°C)	3.89	8.35		
Ethylbarbituric acid	3.69(+1)			
2-Ethylbenzimidazole ($\mu = 0.16$)	6.27(+1)			
2-Ethylbenzoic acid	3.79			
4-Ethylbenzoic acid	4.35			
Ethylbiguanide	2.09(+1)	11.47(0)		
2-Ethylbutanoic acid (20°C)	4.710			
S-Ethyl-L-cysteine ($\mu = 0.1$)	2.03(+1)	8.60(0)		
Ethylenebiguanide (30°C)	1.74	2.88	11.34	11.76
Ethylenebis(thioacetic acid) (18°C)	3.382(0)	4.352(-1)		
Ethylenediamine- N,N' -diacetic acid	6.42	9.46		
Ethylenediamine- N,N -dimethyl- N',N' -diacetic acid	6.047	10.068		

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)
	<i>I</i> , · · · · · · · · · · · · · · · · ·

Substance	р <i>К</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	p <i>K</i> ₄
Ethylenediamine- <i>N</i> , <i>N</i> -dipropanoic	6.87	9.60		
Ethylenediamine- N, N, N', N' -tetra- acetic acid ($\mu = 0.1$)	1.99	2.67	6.16	10.26
Ethylenediamine- N,N,N',N' -tetra- propanoio acid (30°C)	3.00	3.43	6.77	9.60
Ethylene glycol	14 22			
Ethyleneimine	$8.04(\pm 1)$			
<i>cis</i> -Ethylene oxide dicarboxylic acid	1.93	3.92		
trans-Ethylene oxide dicarboxylic acid	1.93	3.25		
N-Ethylethylenediamine	7.63(+2)	10.56(+1)		
<i>N</i> -Ethylglycine ($\mu = 0.1$)	2.34(+1)	10.23(0)		
3-Ethylglutaric acid	4.28	5.33		
Ethyl hydroperoxide	11.80			
Ethyl hydrogen malonate	3.55			
3-Ethyl-2-hydroxypyridine	5.00(+1)			
Ethylmalonic acid	2.90(0)	5.55(-1)		
N-Ethyl mercaptoacetamide	8.14(SH)			
Ethyl 2-mercaptoacetate	7.95(SH)			
Ethyl 3-mercaptopropanoate	9.48(SH)			
3-Ethyl-4-(methylamino)pyridine (20°C)	9.90(+1)			
5-Ethyl-5-(1-methylbutyl)barbituric acid	8.11(0)			
Ethyl methyl ketoxime	12.45			
Ethylmethylmalonic acid	2.86(0)	6.41(-1)		
1-Ethyl-2-methylpiperidine	10.66(+1)			
3-Ethyl-6-methylpyridine (20°C)	6.51(+1)			
3-Ethyl-4-methylpyridine-1-oxide	-1.534(+1)			
5-Ethyl-2-methylpyridine-1-oxide	-1.288(+1)			
1-Ethyl-2-methyl-2-pyrroline	11.84(+1)			
Ethylmorphine (15°C)	8.08			
Ethyl nitroacetate	5.85			
3-Ethylpentane-2,4-dione	11.34			
2-Ethylpentanoic acid (18°C)	4.71			
5-Ethyl-5-pentylbarbituric acid	7.960			
2-Ethylphenol	10.2			
3-Ethylphenol	10.07			
4-Ethylphenol	10.0			
4-Ethylphenylacetic acid	4.373			
S-Ethyl-S-phenylbarbituric acid	7.445			
Ethylphosphanic acid	5.29	9.05		
Euryphosphonic acid 1 Ethylpiporiding ($w = 0.01$)	2.43	8.05		
2.2 Ethylpropylalutaric acid	3 511			
Ethylpropylgiutatic acid	3.14	7 43		
2-Ethylpyridine	5.14 5 89(+1)	U. + J		
2-Ethylpyridine (20°C)	5.09(+1) 5.80(+1)			
4-Fthylpyridine	5.80(+1)			
Ethyl 3-pyridinecarboxylate	3.35(+1)			

Substance	p <i>K</i> ₁	p <i>K</i> ₂	p <i>K</i> ₃	p <i>K</i> 4
Ethyl 4-pyridinecarboxylate	3.45(+1)			
2-Ethylpyridine-1-oxide	-1.19(+1)			
3-Ethylpyridine-1-oxide	-0.965(+1)			
Ethylpyrrolidine	10.43(+1)			
2-Ethyl-2-pyrroline	7.87(+1)			
Ethylsuccinic acid	4.08(0)			
S-Ethylthioacetic acid	5.06			
<i>N</i> -Ethyl- <i>a</i> -toluidine	4.92(+1)			
<i>N</i> -Ethylveratramine	7.40(+1)			
<i>B</i> -Eucaine	$9.35(\pm 1)$			
Fluoroacetic acid	2.586			
2-Fluoroacrylic acid	2.55			
2-Fluoroaniline	320(+1)			
3-Fluoroaniline	3.58(+1)			
4-Fluoroaniline	$4.65(\pm 1)$			
2-Fluorobenzoic acid	3.27			
3-Fluorobenzoic acid	3.865			
4-Fluorobenzoic acid	4.14			
Fluoromandelic acid	4.244			
2-Eluorophenol	8.73			
3-Fluorophenol	9.29			
4-Fluorophenol	9.89			
2-Fluorophenoxyacetic acid	3.08			
3-Fluorophenoxyacetic acid	3.08			
4-Fluorophenoxyacetic acid	3.13			
4-Fluorophenylacetic acid	4.25			
2'-Fluorophenylalanine	2.14(+1)	9.01(0)		
3'-Fluorophenylalanine	2.10(+1)	8.98(0)		
4-Fluorophenylalanine	2.13(+1)	9.05(0)		
2-Fluorophenylphosphonic acid	1.64	6.80		
3-Fluorophenylselenic acid	4.34			
4-Fluorophenylselenic acid	4.50			
2-Fluoropyridine	-0.44(+1)			
3-Fluoropyridine	2.97(+1)			
5-Fluorouracil	8.00(0)	ca 13(-1)		
Folic acid (pteroylglutamic acid)	8.26			
Formic acid	3.751			
N-Formylglycine	3.43			
2-Formyl-3-hydroxypyridine (20°C)	3.40(+1)	6.95(OH)		
4-Formyl-3-hydroxypyridine	4.05(+1)	6.77(OH)		
2-Formyl-3-methoxypyridine	3.89(+1)	12.95		
Formyl-3-methoxypyridine (20°C)	4.45(+1)	11.7		
$D_{-}(-)$ -Fructose	12.03			
Fumaric acid	3.10	4.60		
2-Furancarboxylic acid (2-furoic	3.164			
acid)	10.25			
D-(T)-Galaciose	12.55	6.17		
Gluconscorbic acid	1.00	11 58		
D-Gluconic acid	3.86	11.30		

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> 1	р <i>К</i> 2	p <i>K</i> ₃	р <i>К</i> 4
α-D-Glucose-1-phosphate	1.11(0)	6.504(-1)		
trans-Glutaconic acid	3.77	5.08		
D-(-)-Glutamic acid	2.162(+1)	4.272(0)	9.358(-1)	
L-Glutamic acid	2.19(+1)	4.25(0)	9.67(-1)	
Glutamic acid, 1-ethyl ester	3.85(+1)	7.84(0)		
Glutamic acid, 5-ethyl ester	2.15(+1)	9.19(0)		
L-Glutamine ($\mu = 0.2$)	2.17(+1)	9.13(0)		
Glutaric acid	3.77	6.08		
Glutaric acid monoamide	4.600(0)			
Glutarimide	11.43			
Glutathione	2.12(+1)	3.53(0)	8.66	9.12
DL-Glyceric acid	3.64			
Glycerol	14.15			
Glyceryl-1-phosphoric acid		6.656(-1)		
Glyceryl-2-phosphoric acid	1.335(0)	6.650(-1)		
Glycine	2.341(+1)	9.60(0)		
Glycine amide	8.03(+1)			
Glycine, ethyl ester	$7.66(\pm 1)$			
Glycine hydroxamic acid	7.10	9.10		
Glycine, methyl ester	7.59(+1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Glycine- <i>O</i> -phenylphosphorylserine	2.96	8.07		
Glycolic acid	3.831	0.01		
N-Glycl- α -alanine	$3.15(\pm 1)$	8.33(0)		
Glycylalanylalanine	338(+1)	8.10(0)		
N-Glycylasparagine	2.942			
Glycyclaspartic acid	2.81(+1)	4.45(0)	8.60(-1)	
Glycyl-DL-glutamine (18°C)	$2.88(\pm 1)$	8.33(0)		
N-Glycylglycine	3.126(+1)	8.252(0)		
Glycylglycylcysteine (35°C)	2.71	2.71	7.94	7.94
Glycylglycylglycine	$3.225(\pm 1)$	8.090(0)		
Glycyl-L-histidine ($\mu = 0.16$)	6.79	8.20		
Glycylisoleucine	8.00			
N-Glycyl-L-leucine	3.180(+1)	8.327(0)		
Glycyl-O-phosphorylserine	2.90	6.02	8.43	
L-Glycylproline ($\mu = 0.1$)	2.81(+1)	8.65(0)		
<i>N</i> -Glycylsarcosine ($\mu = 0.1$)	2.98(+1)	8.55(0)		
N-Glycylserine	2.98(+1)	8.38(0)		
Glycylserylglycine	3.32	7.99		
Glycyltyrosine	2.93	8.45	10.49	
Glycylvaline	3.15	8.18		
Glyoxaline	7.03(+1)			
Glyoxylic acid	3.30(0)			
Guanidineacetic acid	2.82(+1)			
Guanine	3.3(+1)	9.2	12.3	
Guanine deoxyriboside-3'-phos-		2.9	6.4	9.7
phoric acid				
Guanosine	1.9(+1)	9.25(0)	12.33(OH)	
Guanosine-5'-diphosphoric acid			2.9	6.3
$(\mu = 0.1; pK_5 9.6)$				
Guanosine-3'-phosphoric acid	0.7	2.3	5.92	9.38
Guanosine-5'-phosphoric acid		2.4	6.1	9.4
$(\mu = 0.1)$				
Guanosine-5'-phosphoric acid ($\mu = 0.1$)		2.4	6.1	9.4

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> 1	pK ₂	р <i>К</i> 3	pK₄
Guanosine-5'-triphosphoric acid				3.0(-2)
$[\mu = 0.1; \text{ pK}_5 7.10(-3); \text{ pK}_6]$				
9.3(-4)]				
Guanylurea	1.80	8.20		
Harmine (20°C)	7.61(+1)			
Heptafluorobutanoic acid	0.17			
4,4,5,5,6,6,6-Heptafluorohexanoic	4.18			
aciu	2.72			
oic acid	3.23			
Heptanedioic acid (pimelic acid)	4.484	5.424		
2.4-Heptanedione	8.43(keto):			
_, <u>F</u>	9.15(enol)			
Heptanoic acid	4.893			
Heroin	7.6(+1)			
2,4-Hexadienoic acid (sorbic acid)	4.77			
1,1,1,3,3,3-Hexafluoro-2,2-pro-	8.801			
panediol				
1,1,1,3,3,3-Hexafluoro-2-propanol	9.42			
Hexahydroazepine	11.07			
Hexamethyldisilazine	7.55			
1,2,3,8,9,10-Hexamethyl-4,7-phen-	7.26			
anthroline (20°C)				
1,6-Hexanediamine	9.830(+2)	10.930(+1)		
1,6-Hexanedioic acid	4.418	5.412		
2,4-Hexanedione	8.49 (enol);			
2 2/ 4 4/ C C/ Hannaitan diahanan	9.32 (keto)			
2,2',4,4',6,6'-Hexanitrodipneny-	5.42(+1)			
Haranoia agid (20°C)	1 840			
trans 2 Hexenoic acid	4.049			
trans-2-Hexenoic acid	4.77			
3-Hexen-4-oic acid	4 58			
4-Hexen-5-oic acid	4 74			
Hexylamine	10.64(+1)			
Hexylarsonic acid	4.16	9.19		
Hexylphosphonic acid	2.6	7.9		
DL-Histidine	1.82(+2)	6.00(+1)	9.16(0)	
Histidine amide ($\mu = 0.2$)	5.78(+2)	7.64(+1)		
Histidine, methyl ester ($\mu = 0.1$)	5.01(+2)	7.23(+1)		
Histidylglycine	2.40(+2)	5.80(+1)	7.82(0)	
Histidylhistidine ($\mu = 0.16$)	5.40(+2)	6.80(+1)	7.95(0)	
DI-Homatropine	9.7(+1)			
DI-Homocysteine	2.222(+1)	8.87	10.86	
Homocysteine ($\mu = 0.1$)	1.593(+2)	2.523(+1)	8.676(0)	9.413(-1)
Hydantoin	9.12			
Hydrastine	6.23(+1)			
Hydrazine- <i>N</i> , <i>N</i> -diacetic acid	<0.1	2.8	3.8	
Hydrazine-N'-N'-diacetic acid	2.40	3.12	1.52	
4-mydrazinocarbonylpyridine	1.82	3.52	10.79	
(20 C) N-Hydroxyacetamide	940			
IN-ITYUIOX yacciaiiiiue	7.40			

TABLE 2.59 *pK*, Values of Organic Materials in Water at 25°C (Continued)

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)
-------------------	---

Substance	p <i>K</i> ₁	p <i>K</i> ₂	p <i>K</i> ₃	р <i>К</i> 4
2'-Hydroxyacetophenone	9.90			
3'-Hydroxyacetophenone	9.19			
4'-Hydroxyacetophenone	8.05			
1-Hydroxyacridine (15°C)	5.72			
2-Hydroxyacridine (15°C)	5.62			
3-Hydroxyacridine (15°C)	5.30			
α -Hydroxyasparagine	2.28(+1)	7.20(0)		
β -Hydroxyasparagine	2.09(+1)	8.29(0)		
Hydroxyaspartic acid	1.91(+1)	3.51(0)	9.11(-1)	
2-Hydroxybenzaldehyde (salicyl- aldehyde)	8.34			
3-Hydroxybenzaldehyde	9.00			
4-Hydroxybenzaldehyde	7.620			
2-Hydroxybenzaldehyde oxime	1.37(+1)	9.18	12.11	
2-Hydroxybenzamide	8.36			
2-Hydroxybenzenemethanol (2-hy-	9.92			
droxybenzyl alcohol)				
3-Hydroxybenzenemethanol	9.83			
4-Hydroxybenzenemethanol	9.82			
4-Hydroxybenzenesulfonic acid		9.055(-1)		
2-Hydroxybenzohydroxamic acid	5.19			
2-Hydroxybenzoic acid (salicyclic acid)	2.98	12.38		
3-Hydroxybenzoic acid	4.076	9.85		
4-Hydroxybenzoic acid	4.582	9.23		
4-Hydroxybenzonitrile	7.95			
2-Hydroxy-5-bromobenzoic acid	2.61			
2-Hydroxybutanoic acid (30°C)	3.65			
L-3-Hydroxybutanoic acid (30°C)	4.41			
4-Hydroxybutanoic acid (30°C)	4.71			
2-Hydroxy-5-chlorobenzoic acid	2.63			
trans-2'-Hydroxycinnamic acid	4.614			
trans-3'-Hydroxycinnamic acid	4.40			
10-Hydroxycodeine	7.12			
cis-2-Hydroxycyclohexane-1-car-	4.796			
boxylic acid				
trans-2-Hydroxycyclohexane-1-	4.682			
cis-3-Hydroxycyclohexane-1-car-	4.602			
trans-3-Hydroxycyclohexane-1-	4.815			
cis-4-Hydroxycyclohexane-1-car-	4.836			
trans-4-Hydroxycyclohexane-1-	4.687			
1-Hydroxy-2,4-dihydroxymethyl-	9.79			
N-(Hudrovuethul)biquanide	28(+2)	$1153(\pm 1)$		
N-(7-Hydroxy-	$\frac{2.0(+2)}{7.21(\pm 2)}$	$10.12(\pm 1)$		
athylathylanadiamina	1.21(+2)	10.12(+1)		
N'-(2-Hydroxyethyl)ethylenediam- ine- N , N , N' -triacetic acid	2.39	5.37	9.93	

Substance	p <i>K</i> ₁	р <i>К</i> 2	p <i>K</i> ₃	p <i>K</i> ₄
<i>N</i> -(2-Hydroxyethyl)iminodiacetic acid $(\mu = 0.1)$	2.2	8.65		
V-(2-Hydroxyethyl)piperazine-N'- ethansulfonic acid (20°C)	7.55			
4'-(2-Hydroxyethyl)-1'-piperazine- propanesulfonic acid (20°C)	8.00			
2-Hydroxyethyltrimethylamine	8.94(+1)			
L - β -Hydroxyglutamic acid	2.09	4.18	9.20	
l-Hydroxy-4-hydroxymethylben- zene	9.84			
5-Hydroxy-2-(hydroxymethyl)-4 <i>H</i> - pyran-4-one	7.90	8.03		
3-Hydroxy-2-hydroxymethylpyridine (20°C, $\mu = 0.2$)	5.00(+1)	9.07(OH)		
3-Hydroxy-4-hydroxymethylpyri- dine (20°C, $\mu = 0.2$)	5.00(+1)	8.95(OH)		
8-Hydroxy-7-iodoquinoline-5-sul- fonic acid	2.51(0)	7.417(-1)		
Hydroxylysine (38°C, $\mu = 0.1$)	2.13(+2)	8.62(+1)	9.67(0)	
2-Hydroxy-3-methoxybenzalde- hyde	7.912			
3-Hydroxy-4-methoxybenzalde- hyde (isovanillin)	8.889			
4-Hydroxy-3-methoxybenzalde- hyde (vanillin)	7.396			
4-Hydroxy-3-methoxybenzoic acid	4.355			
1-Hydroxy-2-methoxybenzylamine	8.70(+1)	10.52(0)		
2-Hydroxy-1-methoxybenzylamine	8.89(+1)	10.52(0)		
3-Hydroxy-2-methoxybenzylamine	8.94(+1)	10.42(0)		
2-Hydroxymethyl-2-benzeneacetic acid	4.12			
(2-Hydroxy-5-methylbenzene)- methanol	10.15			
2-Hydroxy-3-methylbenzoic acid	2.99			
2-Hydroxy-4-methylbenzoic acid	3.17			
2-Hydroxy-5-methylbenzoic acid	4.08			
2-Hydroxy-6-methylbenzoic acid	3.32			
2-Hydroxy-2-methylbutanoic acid (18°C)	3.991			
3-Hydroxy-2-methylbutanoic acid (18°C)	4.648			
4-Hydroxy-4-methylpentanoic acid (18°C)	4.873			
1-Hydroxymethylphenol	9.95			
Hydroxymethylphosphoric acid 2-Hydroxy-2-methylpropanoic acid $(\mu = 0.1)$	1.91 3.717	7.15		
2-Hydroxy-4-methylpyridine	4.529(+1)			
8-Hydroxy-2-methylauinoline	5.55(+1)	10.31(0)		
8-Hydroxy-4-methylauinoline	5.56(+1)	10.00(0)		
8-Hydroxy-2-methylquinoline-5-	4.80(0)	9.30(-1)		
sulfonic acid				

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (<i>Continued</i>)

Substance	p <i>K</i> ₁	pK ₂	p <i>K</i> ₃	р <i>К</i> 4
8-Hydroxy-4-methylquinoline-7-	4.78(0)	10.01(-1)		
sulfonic acid				
8-Hydroxy-6-methylquinoline-5-	4.20(0)	8.7(-1)		
sulfonic acid				
2-Hydroxy-1-naphthoic acid (20°C)	3.29	9.68		
2-Hydroxy-2-nitrobenzoic acid	2.23			
2-Hydroxy-3-nitrobenzoic acid	1.87			
2-Hydroxy-5-nitrobenzoic acid	2.12			
2-Hydroxy-6-nitrobenzoic acid	2.24			
2-Hydroxy-4-nitrophenylphos- phonic acid	1.22	5.39		
8-Hydroxy-7-nitroquinoline-5-sul-	1.94(0)	5.750(-1)		
3-Hydroxy-4-nitrotoluene ($\mu = 0.1$)	7.41			
4-Hydroxypentanoic acid (18°C)	4 686			
4-Hydroxy-3-pentenoic acid	4.30			
3-Hydroxyphenazine (15°C)	2.67			
4-Hydroxyphenylarsonic acid	3.89	8 37	10.05	
	5105	(phenol)	10.00	
3-Hydroxyphenylhoric acid	8 55	10.84		
2-Hydroxy-2-phenylpropanoic acid	3.532	10101		
2-(2-Hydroxyphenyl)pyridine (20°C)	4.19(+1)	10.64		
trans-4-Hydroxyproline	1.818(+1)	9.662(0)		
Hydroxypropanedioic acid (tar- tronic acid)	2.37	4.74		
2-Hydroxypropanoic acid	3.858			
1-Hydroxy-2-propylbenzene	10.50			
4-Hydroxypteridine	$1.3(\pm 1)$	7.89(0)		
2-Hydroxypyridine	$1.25(\pm 1)$	11.62(0)		
3-Hydroxypyridine	4.80(+1)	8.72(0)		
4-Hydroxypyridine	3.23(+1)	11.09(0)		
2-Hydroxypyridine-N-oxide	-0.62(+1)	5.97(0)		
2-Hydroxypyrimidine	2.24(+1)	9.17(0)		
4-Hydroxypyrimidine	1.85(+1)	8.59(0)		
8-Hydroxyquinazoline	3.41(+1)	8.65(0)		
2-Hydroxyquinoline (20°C)	-0.31(+1)	11.74		
3-Hydroxyquinoline (20°C)	4.30(+1)	8.06(0)		
4-Hydroxyquinoline (20°C)	2.27(+1)	11.25(0)		
5-Hydroxyquinoline (20°C)	5.20(+1)	8.54(0)		
6-Hydroxyquinoline (20°C)	5.17(+1)	8.88(0)		
7-Hydroxyquinoline (20°C)	5.48(+1)	8.85(0)		
8-Hydroxyquinoline (20°C)	4.91(+1)	9.81(0)		
8-Hydroxyquinoline-5-sulfonic acid	4.092(+1)	8.776(0)		
DL-Hydroxysuccinic acid (malic acid)	3.458	5.097		
L-Hydroxysuccinic acid	3.40	5.05		
Hydroxytetracycline	3.27(+1)	7.32(0)	9.11(-1)	
5-Hydroxy-1,2,3,4-tetrazole	3.32	· ·		
4-Hydroxy-3-(2'-thiazoly- azo)toluene	8.36			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	p <i>K</i> ₄
2-Hydroxytoluene 3-Hydroxytoluene 4-Hydroxytoluene 4-Hydroxy-α,α,α-trifluorotoluene 1-Hydroxy-2,4,6-trihydroxymethyl-	10.33 10.10 10.276 8.675 9.56			
Hydroxyuracil Hydroxyvaline Hyoscyamine	8.64 2.55(+1) 9.68(+1)	9.77(0)	10.05(1)	
Hypoxanthene Hypoxanthine	5.3	8.91(0)	12.07(-1)	
Imidazole Imidazolidinetrione (parabanic acid)	6.993(+1) 6.10	10.58(0)		
4-(4-Imidazolyl)butanoic acid ($\mu = 0.1$)	4.26(+1)	7.26(0)		
2-(4-Imidazolyl)ethylamine 3-(4-Imidazolyl)propanoic acid (u = 0.16)	5.784(+2) 3.96(+1)	9.756(+1) 7.57(0)		
3,3'-Iminobispropanoic acid 3,3'-Iminobispropylamine (30°C) 2,2'-Iminodiacetic acid (diglycine)	4.11(0) 8.02(+2) 2.54(0)	9.61(-1) 9.70(+1) 9.12(-1)	10.70(0)	
(30 C, $\mu = 0.1$) 4-Indanol Indole-3-acetic acid Inosine	10.32 4.75 ca 1.5(+1)	8.96(0)	12.36	
Inosine-5'-phosphoric acid Inosine-5'-triphosphoric acid [pK ₅ 7.68(-4)]	1.54(0)	6.66(-1)	2.2(-2)	6.92(-3)
Iodoacetic acid 2-Iodoaniline 3-Iodoaniline 4-Iodoaniline	3.175 2.54(+1) 3.58(+1) 3.82(+1) 2.86			
2-Iodobenzoic acid 3-Iodobenzoic acid 4-Iodobenzoic acid 5-Iodobistamine	2.86 3.86 4.00 $4.06(\pm 1)$	9.20(+1)	11.88(0)	
 7-Iodo-8-hydroxyquinoline-5-sul- fonic acid 	(imidazole) 2.514	(NH ₃) 7.417	(imino)	
Iodomandelic acid Iodomethylphosphoric acid 2-Iodophenol 2-Jodophenol	3.264 1.30 8.464 8.870	6.72		
3-Iodophenol 4-Iodophenol 2-Iodophenoxyacetic acid 3-Iodophenoxyacetic acid	8.879 9.200 3.17 3.13			
4-Iodophenoxyacetic acid 2-Iodophenylacetic acid 3-Iodophenylacetic acid 4-Iodophenylacetic acid	3.16 4.038 4.159 4.178			

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)
Substance	p <i>K</i> ₁	pK ₂	р <i>К</i> ₃	p <i>K</i> ₄
2-Iodophenylphosphoric acid	1.74	7.06		
2-Iodopropanoic acid	3.11			
3-Iodopropanoic acid	4.08			
2-Iodopyridine	1.82(+1)			
3-Iodopyridine	3.25(+1)			
4-Iodopyridine (20°C)	4.02(+1)			
Isoasparagine	2.97(+1)	8.02(0)		
Isobutylacetic acid (18°C)	4.79			
Isobutylamine	10.41(+1)			
Isochlorotetracycline	3.1(+1)	6.7(0)	8.3(-1)	
Isocreatine	2.84(+1)			
Isogluatamine	3.81(+1)	7.88(0)		
Isohistamine ($\mu = 0.1$)	6.036(+2)	9.274(+1)		
L-Isoleucine	2.35(+1)	9.68(0)		
Isolysergic acid	3.33(0)	8.46(NH)		
Isopilocarpine (15°C)	7.18(+1)			
2-(Isopropoxy)benzoic acid (20°C)	4.24			
3-(Isopropoxy)benzoic acid (20°C)	4.15			
4-(Isopropoxy)benzoic acid (20°C)	4.68			
Isopropylamine	10.64(+1)			
N-Isopropylaniline	5.50(+1)			
5-Isopropylbarbituric acid	4.907(+1)			
2-Isopropylbenzene acid	3.64			
4-Isopropylbenzene acid	4.36			
<i>N</i> -Isopropylglycine ($\mu = 0.1$)	2.36(+1)	10.06(0)		
Isopropylmalonic acid	2.94	5.88		
Isopropylmalonic acid mononitrile	2.401			
3-Isopropyl-4-(methylam-	9.96(+1)			
ino)pyridine (20°C)				
3-Isopropylpentanedioic acid	4.30	5.51		
4-Isopropylphenylacetic acid	4.391			
Isopropylphosphinic acid	3.56			
Isopropylphosphonic acid	2.66	8.44		
2-Isopropylpyridine	5.83(+1)			
3-Isopropylpyridine (20°C)	5.72(+1)			
4-Isopropylpyridine	6.02(+1)			
DL-Isoproterenol	8.64(+1)			
Isoquinoline	5.40(+1)			
Isoretronecanol	10.83			
L-Isoserine ($\mu = 0.16$)	2.72(+1)	9.25(0)		
Isothiocyanatoacetic acid	6.62			
L-(+)-Lactic acid	3.858			
L-Leucine	2.33(+1)	9.60(0)		
Leucine amide	7.80(+1)			
Leucine, ethyl ester ($\mu = 0.1$)	7.57(+1)			
L-Leucyl-L-asparagine	$3.00(\pm 1)$	8.12(0)		
L-Leucyl-L-glutamine	2.99(+1)	8.11(0)		
DL-Leucylglycine	3.25(+1)	8.28(0)		
Leucylisoserine (20°C)	3.188(+1)	8.207(0)		
D-Leucyl-L-tyrosine	3.12(+1)	8.38(0)	10.35(-1)	
L-Leucyl-L-tyrosine	3.46(+1)	7.84(0)	10.09(-1)	
Lysergic acid	3.44(+1)	7.68(0)		
-				

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> ₁	pK ₂	р <i>К</i> 3	р <i>К</i> 4
L-(+)-Lysine	2.18(+2)	8.94(+1)	10.53(0)	
Lysine, methyl ester ($\mu = 0.1$)	6.965(+1)	10.251(0)		
L-Lysyl-L-alanine	3.22(+1)	7.62(0)	10.70(-1)	
L-Lysyl-D-alanine	3.00(+1)	7.74(0)	10.63(-1)	
Lysylglutamic acid	2.93(+2)	4.47(+1)	7.75(0)	10.50(+1)
L-Lysyl-L-lysine ($\mu = 0.1$)	3.01(+2)	7.53(+1)	10.05(0)	10.01(-1)
L-Lysyl-D-lysine ($\mu = 0.1$)	2.85(+2)	7.53(+1)	9.92(0)	10.89(-1)
L-Lysyl-L-lysyl-L-lysine ($\mu = 0.1$)	3.08(+2)	7.34(+1)	9.80(0)	10.54(-1)
L-Lysyl-D-lysyl-L-lysine ($\mu = 0.1$)	2.91(+2)	7.29(+1)	9.79(0)	10.54(-1)
L-Lysyl-D-lysyl-lysine ($\mu = 0.1$)	2.94(+2)	7.15(+1)	9.60(0)	10.38(-1)
α-D-Lyxose	12.11			
Maleic acid	1.910	6.33		
Malonamic acid	3.641(0)			
Malonic acid	2.826	5.696		
Malonitrile (cyanoacetic acid)	2.460			
Mandelic acid	3.411			
D-(+)-Mannose	12.08			
Mercaptoacetic acid (thioglycolic acid)	3.60(0)	10.56(SH)		
2-Mercaptobenzoic acid (20°C)	4.05(0)			
2-Mercaptobutanoic acid	3.53(0)			
Mercaptodiacetic acid	3.32	4.29		
2-Mercaptoethanesulfonic acid (20°C)		9.5(-1)		
2-Mercaptoethanol	9.88			
2-Mercaptoethylamine	8.27(+1)	10.53(0)		
2-Mercaptohistidine	1.84(+1)	8.47(0)	11.4(SH)	
Mercapto-S-phenylacetic acid ($\mu = 0.1$)	3.9			
2-Mercaptopropane ($\mu = 0.1$)	10.86			
3-Mercapto-1,2-propanediol ($\mu = 0.5$)	9.43			
2-Mercaptopropanoic acid	4.32(0)	10.20(SH)		
3-Mercaptopropanoic acid		10.84(SH)		
2-Mercaptopyridine (20°C)	-1.07(+1)	10.00(0)		
3-Mercaptopyridine (20°C)	2.26(+1)	7.03(0)		
4-Mercaptopyridine (20°C)	1.43(+1)	8.86(0)		
2-Mercaptoquinoline (20°C)	-1.44(+1)	10.21(0)		
3-Mercaptoquinoline (20°C)	2.33(+1)	6.13(0)		
4-Mercaptoquinoline (20°C)	0.77(+1)	8.83(0)		
Mercaptosuccinic acid	3.30(0)	4.94(-1)	10.94(SH)	
Mesitylenic acid	4.32			
Mesoxaldialdehyde	3.60			
Methacrylic acid	4.66			
Methanethiol	10.70			
DL-Methionine	2.28(+1)	9.21(0)		
2-(N-Methoxyacetamido)pyridine	2.01(+1)			
3-(N-Methoxyacetamido)pyridine	3.52(+1)			
4-(N-Methoxyacetamido)pyridine	4.62(+1)			
Methoxyacetic acid	3.570			
3-Methoxy-D- α -alanine	2.037(+1)	9.176(0)		

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	$\mathbf{p}\mathbf{K}_1$	p <i>K</i> ₂	p <i>K</i> ₃	pK₄
2-Methoxyaniline	4.53(+1)			
3-Methoxyaniline	4.20(+1)			
4-Methoxyaniline	5.36(+1)			
2-Methoxybenzoic acid	4.09			
3-Methoxybenzoic acid	4.08			
4-Methoxybenzoic acid	4.49			
N.N-Methoxybenzylamine	9.68(+1)			
2-Methoxycarbonylaniline	2.23(+1)			
3-Methoxycarbonylaniline	3.64(+1)			
4-Methoxycarbonylaniline	2.38(+1)			
Methoxycarbonylmethylamine	7.66(+1)			
2-Methoxycarbonylpyridine	2.21(+1)			
3-Methoxycarbonylpyridine	3.13(+1)			
4-Methoxycarbonylpyridine	3.26(+1)			
trans-2-Methoxycinnamic acid	4.462			
trans-3-Methoxycinnamic acid	4.376			
trans-4-Methoxycinnamic acid	4.539			
2-Methoxyethylamine	9.45(+1)			
2-Methoxy-4-nitrophenylphos-	1.53	6.96		
phonic acid				
2-Methoxyphenol	9.99			
3-Methoxyphenol	9.652			
4-Methoxyphenol	10.20			
(2'-Methoxy)phenoxyacetic acid	3.231			
(3'-Methoxy)phenoxyacetic acid	3.141			
(4'-Methoxy)phenoxyacetic acid	3.213			
4'-Methoxyphenylacetic acid	4.358			
(4-Methoxyphenyl)phosphinic acid (17°C)	2.35			
(2-Methoxyphenyl)phosphonic acid	2.16	7.77		
(4-Methoxyphenyl)phosphonic acid (17°C)	2.4	7.15		
3-(2'-Methoxyphenyl)propanoic acid	4.804			
3-(3'-Methoxyphenyl)propanoic acid	4.654			
3-(4'-Methoxyphenyl)propanoic acid	4.689			
3-Methoxyphenylselenic acid	4.65			
4-Methoxyphenylselenic acid	5.05			
2-Methoxy-4-(2-propenyl)phenol	10.0			
2-Methoxypyridine	3.06(+1)			
3-Methoxypyridine	4.91(+1)			
4-Methoxypyridine	6.47(+1)			
4-Methoxy-2-(2'-thiazoy- lazo)phenol	7.83			
2-Methylacrylic acid (18°C)	4.66			
N-Methylalanine	2.22(+1)	10.19(0)		
<i>O</i> -Methylallothreonine ($\mu = 0.1$)	1.92(+1)	8.90(0)		
Methylamine	10.62(+1)			
2-(N-Methylamino)benzoic acid	1.93(+1)	5.34(0)		
3-(<i>N</i> -Methylamino)benzoic acid 4-(<i>N</i> -Methylamino)benzoic acid		5.10(0) 5.05		

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	$\mathbf{p}K_1$	pK ₂	р <i>К</i> 3	p <i>K</i> ₄
Methylaminodiacetic acid (20°C)	2.146	10.088		
2-(Methylamino)ethanol	9.88(+1)			
2-(2-Methylaminoethyl)pyridine	3.58(+2)	9.65(+1)		
(30°C)				
2-(Methylaminomethyl)6-methyl-	3.03(+2)	9.15(+1)		
pyridine ($\mu = 0.5$) 2 (Mathylamin amathyl) pyridina	2.02(1.2)	0.00(1.1)		
(30°C)	2.92(+2)	0.02(+1)		
4-Methylamino-3-methylpyridine	9.83(+1)			
(3-Methylamino)phenylphosphonic	1.1(+1)	4.72(+1)	7.30(-1)	
acid				
(4-Methylamino)phenylphosphonic acid			7.85(-1)	
3-(Methylamino)pyridine (30°C)	8.70(+1)			
4-(Methylamino)pyridine (20°C)	9.65(+1)			
4-(Methylamino)-2,3,5,6-tetra-	10.06(+1)			
methylpyridine (20°C)				
N-Methylaniline	4.85(+1)			
Methylarsonic acid (18°C)	3.41	8.18		
1-Methylbarbituric acid	4.35(+1)			
5-Methylbarbituric acid	3.386(+1)			
2-(N-Methylbenzamido)pyridine	1.44(+1)			
3-(N-Methylbenzamido)pyridine	3.66(+1)			
4-(N-Methylbenzamido)pyridine	4.68(+1)			
2-Methylbenzimidazole ($\mu = 0.16$)	6.29(+1)			
2-Methylbenzoic acid (o-toluic	3.90			
acid)				
3-Methylbenzoic acid	4.269			
4-Methylbenzoic acid	4.362			
N-Methyl-1-benzoylecgonine	8.65			
Methylbiguanidine	3.00(+2)	11.44(+1)		
2-Methyl-2-butanethiol	11.35			
2-Methylbutanoic acid	4.761			
3-Methylbutanoic acid (20°C)	4.767			
(E)-2-Methyl-2-butendioic acid	3.09	4.75		
(mesaconic acid)				
3-Methyl-2-butenoic acid	5.12			
(E)-2-Methyl-2-butenoic acid	4.96			
(tiglic acid)				
(Z)-2-Methyl-2-butenoic acid (an-	4.30			
gelic acid)				
4-Methylcarboxylphenol	8.47			
(E)-2-Methylcinnamic acid	4.500			
(E)-3-Methylcinnamic acid	4.442			
(E)-4-Methylcinnamic acid	4.564			
1-Methylcyclohexane-1-carboxylic acid	5.13			
cis-2-Methylcyclohexane-1-carbox-	5.03			
ylic acid trans-2-Methylcyclohexane-1-car-	5.73			
boxylic acid	4.00			
<i>cis-3</i> -Methylcyclohexane-1-carbox- ylic acid	4.88			

TABLE 2.59 <i>pK</i> ,	alues of Organic Materials in Water at 25°C (Continued)
-------------------------------	---

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	pK₄
trans-3-Methylcyclohexane-1-car- boxylic acid	5.02			
cis-4-Methylcyclohexane-1-carbox- vlic acid	5.04			
trans-4-Methylcyclohexane-1-car-	4.89			
2-Methylcyclohexyl-1,1-diacetic acid	3.53	6.89		
3-Methylcyclohexyl-1,1-diacetic acid	3.49	6.08		
4-Methylcyclohexyl-1,1,1-diacetic acid	3.49	6.10		
3-Methylcyclopentyl-1,1-diacetic acid	3.79	6.74		
S-Methyl-L-cysteine	8.97			
<i>N</i> -Methylcytidine	3.88			
5-Methylcytidine	4.21			
N-Methyl-2'-deoxycytidine	3.97			
5-Methyl-2'-deoxycytidine	4.33			
2-Methyl-3.5-dinitrobenzoic acid	2.97			
5-Methyldipropylenetriamine (30°C)	6.32(+3)	9.19(+2)	10.33(+1)	
2,2'-Methylenebis(4-chlorophenol)	7.6	11.5		
2,2'-Methylenebis(4,6-dichloro- phenol)	5.6	10.56		
Methylenebis(thioacetic acid (18°C)	3.310	4.345		
3.3'-(Methylenedithio)dialanine	2.200(+1)	8.16(0)		
Methylenesuccinic acid	3.85	5.45		
N-Methylethylamine	4.23(+1)			
N-Methylethylenediamine	6.86(+1)	10.15(+1)		
α -Methylglucoside	13.71			
3-Methylglutaric acid	4.24	5.41		
N-Methylglycine (sarcosine)	2.12(+1)	10.20(0)		
5-Methyl-2,4-heptanedione	8.52(enol);			
	9.10(keto)			
5-Methyl-2,4-hexanedione	8.66(enol); 9.31(keto)			
5-Methyl-4-hexenoic acid	4.80			
3-Methylhistamine	5.80(+1)	9.90(0)		
1-Methylhistidine	1.69	6.48	8.85	
2-Methylhistidine (18°C)	1.7	7.2	9.5	
2-Methyl-8-hydroxyquinoline $(\mu = 0.005)$	4.58(+1)	11.71(0)		
4-Methyl-8-hydroxyquinoline	4.67(+1)	11.62(0)		
1-Methylimidazole	7.06(+1)			
4-Methylimidazole	7.55(+1)			
N-Methyliminodiacetic acid	2.15	10.09		
S-Methylisothiourea	9.83(+1)			
O-Methylisourea	9.72(+1)			
Methylmalonic acid	3.07	5.87		
2-(N-Methylmethanesulfonam- ido)pyridine	1.73(+1)			

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> 3	p <i>K</i> ₄
3-(N-Methylmethanesulfonam-	3.94(+1)			
4-(<i>N</i> -Methylmethanesulfonam-	5.14(+1)			
ido)pyridine				
2-Methyl-6-methylaminopyridine	3.17(+1)	8.84(0)		
3-Methyl-4-methylaminopyridine (20°C)		9.84(0)		
4-Methyl-2,2'-(4-methylpyri- dyl)pyridine	5.32(+1)			
N-Methylmorpholine	7.13(+1)			
2-Methyl-1-naphthoic acid	3.11			
N-Methyl-1-naphthylamine	3.70(+1)			
2-Methyl-4-nitrobenzoic acid	1.86			
2-Methyl-6-nitrobenzoic acid	1.87			
1-Methyl-2-nitroterephthalic acid	3.11			
4-Methyl-2-nitroterephthalic acid	1.82			
3-Methylpentanedioic acid	4.25	5.41		
3-Methylpentane-2,4-dione	10.87			
2-Methylpentanoic acid	4.782			
3-Methylpentanoic acid	4.766			
4-Methylpentanoic acid	4.845			
cis-3-Methyl-2-pentenoic acid	5.15			
trans-3-Methyl-2-pentenoic acid	5.13			
4-Methyl-2-pentenoic acid	4.70			
4-Methyl-3-pentenoic acid	4.60			
6-Methyl-1,10-phenanthroline	5.11(+1)			
(2-Methylphenoxy)acetic acid	3.227			
(3-Methylphenoxy)acetic acid	3.203			
(4-Methylphenoxy)acetic acid	3.215			
(2-Methylphenyl)acetic acid (18°C)	4.35			
(4-Methylphenyl)acetic acid	4.370			
5-Methyl-5-phenylbarbituric acid	8.011(0)			
3-(2-Methylphenyl)propanoic acid	4.66			
3-(3-Methylphenyl)propanoic acid	4.677			
3-(4-Methylphenyl)propanoic acid	4.684			
1-Methyl-2-phenylpyrrolidine	8.80			
5-Methyl-1-phenyl-1,2,3-triazole-4- carboxylic acid	3.73			
Methylphosphinic acid	3.08			
Methylphosphonic acid	2.38	7.74		
3-Methyl-o-phthalic acid	3.18			
4-Methyl-o-phthalic acid	3.89			
<i>N</i> -Methylpiperazine ($\mu = 0.1$)	4.94(+2)	9.09(+1)		
2-Methylpiperazine	5.62(+2)	9.60(+1)		
N-Methylpiperidine	10.19(+1)			
2-Methylpiperidine	10.95(+1)			
3-Methylpiperidine	11.07(+1)			
4-Methylpiperidine ($\mu = 0.5$)	11.23(+1)			
2-Methyl-1,2-propanediamine	6.178(+2)	9.420(+1)		
2-Methyl-2-propanethiol	11.2			
2-Methylpropanoic acid	4.853			

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	р <i>К</i> 4
2-Methyl-2-propylamine	10.682(+1)			
2-Methyl-2-propylglutaric acid	3.626			
2-Methylpyridine	5.96(+1)			
3-Methylpyridine	5.68(+1)			
4-Methylpyridine	6.00(+1)			
Methyl 4-pyridinecarboxylate	3.26(+1)			
6-Methylpyridine-2-carboxylic acid	5.83			
2-Methylpyridine-1-oxide	1.029(+1)			
3-Methylpyridine-1-oxide	10.921(+1)			
4-Methylpyridine-1-oxide	1.258(+1)			
<i>O</i> -Methylpyridoxal ($\mu = 0.16$)	4.74			
Methyl-2-pyridyl ketoxime	9.97			
1-Methyl-2-(3-pyridyl)pyrrolidine	3.41	7.94		
1-Methylpyrrolidine	10.46(+1)			
1-Methyl-3-pyrroline	9.88(+1)			
5-Methylquinoline	4.62(+1)			
Methylsuccinic acid	4.13	5.64		
Methylsulfonylacetic acid	2.36			
3-Methylsulfonylaniline	2.68(+1)			
4-Methylsulfonylaniline	1.48(+1)			
3-Methylsulfonylbenzoic acid	3.52			
4-Methylsulfonylbenzoic acid	3.64			
4-Methylsulfonyl-3,5-dimethyl-	8.13			
phenol				
3-Methylsulfonylphenol	9.33			
4-Methylsulfonylphenol	7.83			
1-Methyl-1,2,3,4-tetrahydro-3-pyri-	9.07			
dinecarboxylic acid (arecaidine;				
isoguvacine)				
5-Methyl-1,2,3,4-tetrazole	3.32			
2-Methylthiazole ($\mu = 0.1$)	3.40(+1)			
4-Methylthiazole ($\mu = 0.1$)	3.16(+1)			
5-Methylthiazole ($\mu = 0.1$)	3.03(+1)			
Methylthioacetic acid	3.72			
4-Methylthioaniline	4.40(+1)			
2-Methylthioethylamine (30°C)	9.18(+1)			
Methylthioglycolic acid	7.68			
3-(S-Methylthio)phenol	9.53			
4-(S-Methylthio)phenol	9.53			
2-Methylthiopyridine (20°C)	3.59(+1)			
3-Methylthiopyridine (20°C)	$4.42(\pm 1)$			
4-Methylthiopyriaine (20°C)	$5.94(\pm 1)$			
O Methylthio-1,2,3,4-tetrazole	$4.00(\pm 1)$	0.00(0)		
O-Methylthreonine	$2.02(\pm 1)$	9.00(0)		
1 Methylyrosine	2.21(+1)	9.55(0)		
1-iviculyiXaliulille 3 Methylyanthine	7.70 8.10	12.0		
7 Methylyanthine	8 33	(a 13)		
0 Methylxenthine	6.33	Cars		
Morphine (20°C)	0.23 7.87(±1)	9.85(0)		
Morpholine	$8.402(\pm 1)$	7.05(0)		
2-(N-Mornholino)ethanesulfonic	6.15			
acid (MES) (20°C)	0.15			

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)
-------------------	--

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
panesulfonic acid $(37°C)$ 7.20 3-(N-Morpholino)propanesulfonic acid $(20°C)$ 7.20 Murexide 0.0 9.20 10.50 Myosmine 5.26 1. 1-Naphthalenecarboxylic acid 3.695 1. (1-naphthoic acid) - - 2-Naphthalenecarboxylic acid 4.161 - 1-Naphthol (20°C) 9.30 - 2-Naphthalenecarboxylic acid 4.236 - 2-Naphthylacetic acid 4.256 - 1-Naphthylacetic acid 3.92(+1) - 2-Naphthylanine 3.92(+1) - 2-Naphthylanine 4.11(+1) - 1-Naphthylacetic acid 0.57 Narceine (15°C) Narcotine 6.18(+1) - Nicotine 3.15(+1) 7.87(0) Nitroactic acid (NTA) (20°C) 1.65 2.94 10.33 Nitroactic acid 1.68 - - 2-Nitrobenzene-1,4-dicarboxylic 1.73 - - 3-Nitroaniline 2.46(+1) - - - 3-Nitrobenzene-1,2-dicarboxylic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
acid (20°C)Image: Constraint of the second sec
Mirrexide 0.0 9.20 10.50 Myosmine 5.26 3.695 1-Naphthalenecarboxylic acid 3.695 2-Naphthalenecarboxylic acid 4.161 1-Naphthol ($20^{\circ}C$) 9.30 2-Naphthol ($20^{\circ}C$) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylacetic acid $3.92(+1)$ 2-Naphthylacetic acid 3.666 1-Naphthylacetic acid 0.57 Narconic acid 0.57 Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ Nicotine $3.15(+1)$ Nitrilotriacetic acid (NTA) ($20^{\circ}C$) 1.65 2-Nitroaniline $-0.28(+1)$ 3-Nitroaniline $2.46(+1)$ 4-Nitroaniline $1.01(+1)$ 2-Nitrobenzene-1,2-dicarboxylic 1.73 acid 3.73
Myosmine 5.26 1-Naphthalenecarboxylic acid 3.695 $(1-naphthoic acid)$ 4.161 2 -Naphthalenecarboxylic acid 4.161 1 -Naphthol (20°C) 9.30 2 -Naphthol (20°C) 9.57 Naphthoquinone monoxime 8.01 1 -Naphthylacetic acid 4.236 2 -Naphthylacetic acid 4.236 2 -Naphthylacetic acid 4.256 1 -Naphthylacetic acid 4.256 1 -Naphthylamine $3.92(+1)$ 2 -Naphthylaronic acid 0.57 Narceine ($15^{\circ}C$) $3.5(+1)$ 9.3 $3.5(+1)$ Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ $7.87(0)$ Nicotire 1.68 2 -Nitrobenzene-1,4-dicarboxylic 1.73 acid 3 -Nitrobenzene-1,2-dicarboxylic 1.88
1-Naphthalenecarboxylic acid 3.695 (1-naphthoic acid)2-Naphthalenecarboxylic acid 4.161 1-Naphthol (20°C) 9.30 2-Naphthol (20°C) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylamine $3.92(+1)$ 2-Naphthylaronic acid 3.666 8.66 1 -Naphthylaronic acid1-Naphthylaronic acid 0.57 Narceine (15°C) $3.5(+1)$ 9.3 3.666 Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ 7.87(0)Nicotyrine $4.76(+1)$ Nitroacetic acid (NTA) (20°C) 1.65 2.94 10.33 Nitroaniline $2.46(+1)$ 4-Nitroaniline $1.01(+1)$ 2-Nitrobenzene-1,2-dicarboxylic 1.73 acid 3 -Nitrobenzene-1,2-dicarboxylicarid 3.68
$(1-naphthoic acid)$ 4.161 $2-Naphthalenecarboxylic acid 4.161 1-Naphthol (20^{\circ}C) 9.30 2-Naphthol (20^{\circ}C) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylacetic acid 4.256 1-Naphthylacetic acid 4.256 1-Naphthylacetic acid 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 4.11(+1) 1-Naphthylamine 4.11(+1) 1-Naphthylamine 3.66 1-Naphthylamine 4.16(+1) Narceine (15^{\circ}C) 3.5(+1) 9.3 Narcotine 6.18(+1) Nicotine 3.15(+1) 7.87(0) Nictoire acid (NTA) (20^{\circ}C) 1.65 2.94 10.33 Nitroacetic acid 1.68 2.94 10.33 2-Nitroaniline -0.28(+1) 3.16(+1) 1.01(+1) 2-Nitrobenzene-1,2-dicarboxylic 1.73 acid 3.173 acid 3.101(+1) 1.88 3.1101(+1) 3.1101(+1)$
2 -Naphthalenecarboxylic acid 4.161 1 -Naphthol (20°C) 9.30 2 -Naphthol (20°C) 9.57 Naphthoquinone monoxime 8.01 1 -Naphthylacetic acid 4.236 2 -Naphthylacetic acid 4.256 1 -Naphthylacetic acid 4.256 1 -Naphthylacetic acid 4.256 1 -Naphthylacetic acid $3.92(+1)$ 2 -Naphthylacetic acid 3.66 8.66 1 -Naphthylarsonic acid 1 -Naphthylarsonic acid 0.57 Narceine (15° C) $3.5(+1)$ 9.3 Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ $7.87(0)$ Nicotyrine $4.76(+1)$ Nitrioacetic acid (NTA) (20° C) 1.68 2 -Nitroaniline $2.Nitroaniline$ $2.Nitroaniline$ $2.Nitrobenzene-1,4-dicarboxylicacid3-Nitrobenzene-1,2-dicarboxylicacid$
1-Naphthol (20°C) 9.30 2-Naphthol (20°C) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 6.66 1-Naphthylarsonic acid 0.57 Narceine (15°C) 3.5(+1) 9.3 Narcotine 6.18(+1) Nicotine 3.15(+1) 7.87(0) Nicotyrine 4.76(+1) 10.33 Nitroacetic acid (NTA) (20°C) 1.65 2.94 10.33 Nitroacetic acid 1.68 2-Nitroaniline -0.28(+1) 3-Nitroaniline 1.01(+1) 2.46(+1) 4.81 4-Nitroaniline 1.01(+1) 2.73 acid 3-Nitrobenzene-1,2-dicarboxylic 1.73 acid acid
2-Naphthol (20°C) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 3.92(+1) 2-Naphthylamine 4.11(+1) 1-Naphthylamine 6.18(+1) Narcotine 6.18(+1) Nicotine 3.15(+1) Nicotine 3.15(+1) Nitrilotriacetic acid (NTA) (20°C) 1.65 1.68 2-Nitroaniline 2-Nitroaniline -0.28(+1) 3-Nitroaniline 1.01(+1) 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.88
Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylamine $3.92(+1)$ 2-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $6.18(+1)$ Narceine (15°C) $3.5(+1)$ Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ Nicotine $3.15(+1)$ Nitrilotriacetic acid (NTA) (20°C) 1.65 Nitroacetic acid 1.68 2-Nitroaniline $-0.28(+1)$ 3-Nitroaniline $1.01(+1)$ 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 3.81
1-Naphthylacetic acid 4.256 2-Naphthylacetic acid 4.256 1-Naphthylamine $3.92(+1)$ 2-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $4.11(+1)$ 1-Naphthylamine $6.18(+1)$ Narceine (15°C) $3.5(+1)$ 9.3 Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ $7.87(0)$ Nicotyrine $4.76(+1)$ 10.33 Nitroacetic acid (NTA) (20°C) 1.65 2.94 10.33 Nitroacetic acid 1.68 2 -Nitroaniline $-0.28(+1)$ 3-Nitroaniline $2.46(+1)$ 4.73 4.73 4.Nitroaniline $1.01(+1)$ 2.173 $acid$ 3-Nitrobenzene-1,2-dicarboxylic 1.88 $acid$ $acid$
2-Naphthylaetic acid 4.256 1-Naphthylamine $3.92(+1)$ 2-Naphthylamine $4.11(+1)$ 1-Naphthylarsonic acid 3.66 1-Naphthylarsonic acid 0.57 Narceine (15°C) $3.5(+1)$ Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ Nicotyrine $4.76(+1)$ Nitrilotriacetic acid (NTA) (20°C) 1.65 Nitroacetic acid 1.68 2-Nitroaniline $-0.28(+1)$ 3-Nitroaniline $1.01(+1)$ 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 3.88
1-Naphthylamine $3.92(+1)$ 2-Naphthylamine $4.11(+1)$ 1-Naphthylarsonic acid 3.66 1-Naphthylarsonic acid 0.57 Narceine (15°C) $3.5(+1)$ Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ Nicotyrine $4.76(+1)$ Nitrilotriacetic acid (NTA) (20°C) 1.65 Nitroacetic acid 1.68 2-Nitroaniline $-0.28(+1)$ 3-Nitroaniline $10.1(+1)$ 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 3 -Nitrobenzene-1,2-dicarboxylic
2-Naphilylamine $4.11(+1)$ 1-Naphthylarsonic acid 3.66 1-Naphthysulfonic acid 0.57 Narceine (15°C) $3.5(+1)$ Narcotine $6.18(+1)$ Nicotine $3.15(+1)$ Nicotyrine $4.76(+1)$ Nitrilotriacetic acid (NTA) (20°C) 1.65 2-Nitroaniline $-0.28(+1)$ 3-Nitroaniline $2.46(+1)$ 4-Nitroaniline $1.01(+1)$ 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 3 -Nitrobenzene-1,2-dicarboxylic
$1-Naphthysulfonic acid 3.50^\circ 8.00^\circ 1-Naphthysulfonic acid 0.57 9.3 Narcotine 6.18(+1) Nicotine Nicotine 3.15(+1) 7.87(0) Nicotyrine 4.76(+1) 10.33 Nitroacetic acid 1.65 2.94 10.33 Nitroacetic acid 1.68 2-Nitroaniline -0.28(+1) 3-Nitroaniline 2.46(+1) 4.73 acid 3-Nitrobenzene-1,4-dicarboxylic 1.73 acid acid $
$Narceine (15^{\circ}C)$ $3.5(+1)$ 9.3 Narcotine $6.18(+1)$ $Nicotine$ Nicotine $3.15(+1)$ $7.87(0)$ Nicotyrine $4.76(+1)$ 10.33 Nitroacetic acid 1.65 2.94 2-Nitroaniline $-0.28(+1)$ 10.33 3-Nitroaniline $1.01(+1)$ $2.46(+1)$ 4-Nitroaniline $1.01(+1)$ 2.81 2-Nitrobenzene-1,4-dicarboxylic 1.73 $acid$ 3-Nitrobenzene-1,2-dicarboxylic 1.88 $acid$
Narcotine $6.18(+1)$ $7.87(0)$ Nicotine $3.15(+1)$ $7.87(0)$ Nicotyrine $4.76(+1)$ 10.33 Nitrolotriacetic acid 1.65 2.94 2-Nitroaniline $-0.28(+1)$ 10.33 3-Nitroaniline $2.46(+1)$ $1.01(+1)$ 2-Nitrobenzene-1,4-dicarboxylic 1.73 $acid$ 3-Nitrobenzene-1,2-dicarboxylic 1.88 $acid$
Nicotine0.16(11)Nicotine3.15(+1)Nicotyrine4.76(+1)Nitrilotriacetic acid (NTA) (20°C)1.652.9410.33Nitroacetic acid1.682-Nitroaniline-0.28(+1)3-Nitroaniline1.01(+1)2-Nitrobenzene-1,4-dicarboxylic1.73acid3-Nitrobenzene-1,2-dicarboxylicacid1.88
Nicoluc3.15(11)7.87(0)Nicolyrine4.76(+1)Nitrilotriacetic acid (NTA) (20°C)1.652.Nitroacetic acid1.682-Nitroaniline-0.28(+1)3-Nitroaniline2.46(+1)4-Nitroaniline1.01(+1)2-Nitrobenzene-1,4-dicarboxylic1.73acid3-Nitrobenzene-1,2-dicarboxylicacid1.88
Nicolymic4.76(11)Nitrilotriacetic acid (NTA) (20°C)1.652.Nitroacetic acid1.682-Nitroaniline-0.28(+1)3-Nitroaniline2.46(+1)4-Nitroaniline1.01(+1)2-Nitrobenzene-1,4-dicarboxylic1.73acid3-Nitrobenzene-1,2-dicarboxylic1.88
Nitroacetic acid 1.68 2-Nitroaniline -0.28(+1) 3-Nitroaniline 2.46(+1) 4-Nitroaniline 1.01(+1) 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.88
2-Nitroaniline -0.28(+1) 3-Nitroaniline 2.46(+1) 4-Nitroaniline 1.01(+1) 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.88 acid 1.88
3-Nitroaniline 2.46(+1) 4-Nitroaniline 1.01(+1) 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.88
4-Nitroaniline 1.01(+1) 2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.88 acid 1.88
2-Nitrobenzene-1,4-dicarboxylic 1.73 acid 1.73 3-Nitrobenzene-1,2-dicarboxylic 1.88
acid 3-Nitrobenzene-1,2-dicarboxylic 1.88
3-Nitrobenzene-1,2-dicarboxylic 1.88
acid
aciu
4-Nitrobenzene-1,2-dicarboxylic 2.11
acid
2-Nitrobenzoic acid 2.18
3-Nitrobenzoic acid 3.46
4-Nitrobenzoic acid 3.441
trans-2-Nitrocinnamic acid 4.15
trans-5-Nitrocimamic acid 4.12
<i>Irans</i> -4-Nirocinnamic acid 4.05
Nitroetnane 8.3/ 2. Nitroetnane 7.62 10.06
2-Nitronyuroquinone 7.05 1000
2. Nitromanital 8.084
S-Nutoinestion 0.704
10.12
(1,2)
5-Nitro-1.10-phenanthroline $3.232(\pm 1)$
6-Nitro-1.10-phenanthroline $3.23(+1)$
2-Nitrophenol 7.222
3-Nitrophenol 8.360
4-Nitrophenol 7.150
(2-Nitrophenoxy)acetic acid 2.896

IABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at $25^{\circ}C$ ((Continued)

Substance	p <i>K</i> ₁	pK ₂	р <i>К</i> ₃	p <i>K</i> ₄
(3-Nitrophenoxy)acetic acid	2.951			
(4-Nitrophenoxy)acetic acid	2.893			
2-Nitrophenylacetic acid	4.00			
3-Nitrophenylacetic acid	3.97			
4-Nitrophenylacetic acid	3.85			
2-Nitrophenylarsonic acid	3.37	8.54		
3-Nitrophenylarsonic acid	3.41	7.80		
4-Nitrophenylarsonic acid	2.90	7.80		
7-(4-Nitrophenylazo)-8-hydroxy-5- quinolinesulfonic acid	3.14(0)	7.495(-1)		
3-Nitrophenylphosphonic acid	1.30	6.27		
4-Nitrophenylphosphonic acid	1.24	6.23		
3-(2'-Nitrophenyl)propanoic acid	4.504			
3-(4'-Nitrophenyl)propanoic acid	4.473			
3-Nitrophenylselenic acid	4.07			
4-Nitrophenylselenic acid	4.00			
1-Nitropropane	8.98			
2-Nitropropane	7.675			
2-Nitropropanoic acid	3.79			
2-Nitropyridine ($\mu = 0.02$)	-2.06(+1)			
3-Nitropyridine ($\mu = 0.02$)	0.79(+1)			
4-Nitropyridine ($\mu = 0.02$)	1.23(+1)			
N-Nitrosoiminodiacetic acid	2.28	3.38		
4-Nitrosophenol	6.48			
Nitrourea	4.15(+1)			
1,9-Nonanedioic acid (azelaic acid)	4.53	5.40		
Nonanoic acid (pelargonic acid)	4.95			
DL-Norleucine	2.335(+1)	9.834(0)		
Novocaine 2,2,3,3,4,4,5,5-Octafluoropentanoic acid	8.85(+1) 2.65			
1,8-Octanedioic acid (suberic acid)	4.512	5.404		
Octanoic acid (caprylic acid)	4.895			
Octopine-DD	1.35	2.30	8.68	11.25
Octopine-LD	1.40	2.30	8.72	11.34
Octylamine	10.65(+1)			
L-(+)-Ornithine	1.94(+2)	8.65(+1)	10.76(0)	
Oxalic acid	1.271	4.272		
3,6-Oxaoctanedioic acid ($\mu = 1.0$)	3.055	3.676		
Oxoacetic acid	3.46			
2-Oxabutanedioic acid (oxaloacetic acid)	2.56	4.37		
2-Oxobutanoic acid	2.50			
5-Oxohexanoic acid (5-ketohexan- oic acid) (18°C)	4.662			
3-Oxo-1,5-pentanedioic acid	3.10			
4-Oxopentanoic acid (levulinic acid)	4.59			
2-Oxopropanoic acid (pyruvic acid)	2.49			
Oxytetracycline	3.10(+1)	7.26	9.11	
Papaverine	5.90(+1)			

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)
	<i>I</i> , · · · · · · · · · · · · · · · · · ·

Substance	р <i>К</i> 1	pK ₂	р <i>К</i> 3	p <i>K</i> ₄
Pentamethylenebis(thioacetic acid) (18°C)	3.485	4.413		
3,3-Pentamethylenepentanedioic	3.49	6.96		
1 5 Pentanediamine	$10.05(\pm 2)$	$10.916(\pm 1)$		
2.4 Pentanedione	8 24(epol):	10.910(+1)		
2,4-r entaneurone	8.24(cn01), 8.05(kata)			
1 Pentonoia goid (valaria goid)	0.95(Kell)			
2 Pentengia acid	4.042			
2 Pentenoic acid	4.70			
4-Pentenoic acid	4.52			
Pentylarsonic acid	4.077	9.07		
N-Pentylveratramine	$7.28(\pm 1)$	2.07		
Perhydrodiphenic acid (20°C)	4.96	6.68		
Periolidine (18°C)	4.01	11 39		
Peroxyacetic acid	8 20	11.59		
1 7-Phenanthroline	$4.30(\pm 1)$			
1 10-Phenanthroline	4.857(+1)			
6 7-Phenanthroline	4.857(+1)			
Phenazine	1.007(11)			
Phenethylthioacetic acid	3.795			
Phenol	9.99			
Phenol-3-phosphoric acid	1.78	7.03	10.2	
Phenol-4-phosphoric acid	1.99	7.25	9.9	
Phenolphthalein	9.4			
3-Phenolsulfonic acid		9.05(-1)		
Phenosulsulfonephthalein	7.9			
Phenoxyactic acid	3.171			
2-Phenoxybenzoic acid	3.53			
3-Phenoxybenzoic acid	3.95			
4-Phenoxybenzoic acid	4.52			
5-Phenoxy-1,2,3,4-tetrazole	3.49(+1)			
Phenylacetic acid	4.312			
L-3-Phenyl- α -alanine	1.83(+1)	9.12(0)		
3-Phenyl- α -alanine, methyl ester	7.05(+1)			
Phenylalanylarginine ($\mu = 0.01$)	2.66(+1)	7.57(0)	12.40(-1)	
Phenylalanylglycine ($\mu = 0.01$)	3.10(+1)	7.71(0)		
7-Phenylazo-8-hydroxy-5-quino-	3.41(0)	7.850(-1)		
linesulfonic acid				
5-Phenylbarbituric acid	2.544(+1)			
2-Phenyl-2-benzylsuccinic acid	3.69	6.47		
1-Phenylbiguanide	2.13(+2)	10.76(+1)		
4-Phenylbutanoic acid	4.757			
Phenylbutazone	4.5(+1)			
2-Phenylenediamine	<2(+2)	4.47(+1)		
3-Phenylenediamine	2.65(+2)	4.88(+1)		
4-Phenylenediamine	3.29(+2)	6.08(+1)		
2-Phenylethylamine	9.83(+1)			
β -Phenylethylboronic acid	10.0			
DL- α -Phenylglycine	1.83(+1)	4.39(0)		
Phenylguanidine	10.77(+1)			

TABLE 2.59	pK, Values of Organic Materials in Water at 25°C (Continued)

Previous Page

Substance	р <i>К</i> ₁	p <i>K</i> ₂	pK ₃	p <i>K</i>
Phenylhydrazine	5.20(+1)			
2-Phenyl-3-hydroxypropanoic acid	3.53			
3-Phenyl-3-hydroxypropanoic acid	4.40			
Phenyliminodiacetic acid (20°C)	2.40	4.98		
Phenylmalonic acid	2.58	5.03		
Phenylmethanethiol	10.70	0.00		
2-Phenyl-2-phenethylsuccinic acid (20°C)	3.74	6.52		
2-Phenylphenol	9.55			
3-Phenylphenol	9.63			
4-Phenylphenol	9.55			
Phenylphosphinic acid (17°C)	21			
Phenylphosphonic acid	1.83	7 07		
<i>O</i> -Phenylphosphorylserine	2.13(+1)	8.79		
<i>O</i> -Phenylphosphorylserylglycine	3.18(+1)	6.95(0)		
O-Phenylphosphoryl-L-seryl-L-leu- cine	3.16(+1)	7.12(0)		
<i>N</i> -Phenylpiperazine ($\mu = 0.1$)	8.71(+1)			
2-Phenylpropanoic acid	4.38			
3-Phenylpropanoic acid (35°C)	4 664			
3-Phenyl-1-propylamine	10.39(+1)			
Phenylpropynoic acid (35°C)	2 269			
Phenylselenic acid	4 79			
Phenylselenoacetic acid $(\mu = 0.1)$	3.75			
<i>B</i> -Phenylserine $(\mu = 0.16)$	8 79(0)			
D hanylsuccinic acid (20°C)	3.79	5 55		
Phonyloulfonulooptic acid	3.76	5.55		
Phenylsulfenylacetic acid	2.00			
5 Dhamal 1.2.2.4 tatuanala	4.39(+1)			
1-Phenyl-1,2,3-triazole-4-carbox-	2.88			
1-Pheny1-1,2,3-triazole-4,5-dicar- boxylic acid	2.13	4.93		
Phosphoramidic acid	3.08	8.63		
<i>O</i> -Phosphorylethanolamine	5.838(+1)	10.638(0)		
<i>O</i> -Phosphorylserylglycine	3.13	5.41	8.01	
O-Phosphoryl-L-servl-L-leucine	3.11	5.47	8.26	
Phosphoserine	2.08	5.65	9.74	
Phthalamide	3.79(0)			
Phthalazine	3.47(+1)			
<i>o</i> -Phthalic acid	2.950	5.408		
Phthalimide	9.900	5.100		
Physostigmine	1.76(+1)	7 88(0)		
Picric acid (2,4,6-trinitrophenol) (18°C)	0.419	1.00(0)		
Pilocarpine	13(+1)	6.85(0)		
Piperazine	5.333(+2)	9.781(+1)		
1,4-Piperazinebis(ethanesulfonic acid) (20°C)	6.80	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Piperazine-2-carboxylic acid Piperdine	1.5 11.123(+1)	5.41	9.53	
2-Piperidinecarboxylic acid	2.12(+1)	10.75(0)		
3-Piperidinecarboxvlic acid	3.35(+1)	10.64(0)		

FABLE 2.59	<i>pK</i> , Values of	Organic Materials in	Water at 25°C	(Continued)
-------------------	-----------------------	----------------------	---------------	-------------

Substance	pK ₁	р <i>К</i> 2	р <i>К</i> ₃	р <i>К</i> 4
4-Piperidinecarboxylic acid	3.73(+1)	10.72(0)		
1-(2-Piperidinyl)-2-propanone	9.45			
(IJ C) Pinarina (15°C)	$1.08(\pm 1)$			
Proline (15 C)	$1.96(\pm 1)$ $1.00(\pm 1)$	10.06(0)		
1.2 Deservationing	$1.99(\pm 1)$	10.90(0)		
1.2 Propanediamine	$0.007(\pm 2)$	$9.702(\pm 1)$		
1,3-Propanediamine	8.49(+2)	10.47(+1)		
1-Propanetnioi	10.86	7.05(1.0)	0.50(1.1)	
1,2,3-Propanetriamine	3.72(+3)	7.95(+2)	9.59(+1)	
1,2,3-Propanetricarboxylic acid	3.07	4.87	6.38	
Propanoic acid	4.8/4			
Propenoic acid	4.247			
N-Propionyglycine	3./18(0)			
2-Propoxybenzoic acid (20°C)	4.24			
3-Propoxybenzoic acid (20°C)	4.20			
4-Propoxybenzoic acid (20°C)	4.78			
N-Propylalanine	2.21(+1)	10.19(0)		
Propylamine	10.568(+1)			
Propylarsonic acid (18°C)	4.21	9.09		
Propylenimine	8.18(+1)			
<i>N</i> -Propylglycine ($\mu = 0.1$)	2.38(+1)	10.03(0)		
L-Propylglycine	3.19(+1)	8.97(0)		
Propylmalonic acid	2.97	5.84		
Propylphosphinic acid	3.46			
Propylphosphonic acid	2.49	8.18		
2-Propylpyridine	6.30(+1)			
N-Propylveratramine	7.20(+1)			
2-Propynoic acid	1.887			
Pseudoecgonine	9.70			
Pseudoisocyanine ($\mu = 0.2$)	4.59(+2)			
Pseudotropine	9.86(+1)			
Pteroylglutamic acid	8.26			
Purine	2.52(+1)	8.92(0)		
Pyrazine	0.6(+1)			
Pyrazinecarboxamide	0.5(+1)			
Pyrazole	2.61(+1)			
Pyridazine	2.33(+1)			
Pyridine	5.17(+1)			
Pyridine-d ₅	5.83(+1)			
2-Pyridinealdoxime	3.56(+1)	10.17(0)		
3-Pyridinealdoxime	4.07(+1)	10.39(0)		
4-Pyridinealdoxime	4.73(+1)	10.03(0)		
2-Pyridinecarbaldehyde	3.84(+1)			
3-Pyridinecarbaldehyde	3.80(+1)			
4-Pyridinecarbaldehyde	4.74(+1)			
3-Pyridinecarbamide (nicotin- amide)	3.33(+1)			
3-Pyridinecarbonitrile	1.35(+1)			
Pyridine-2-carboxylic acid (picol- inic acid)	1.01(+1)	5.29(0)		
Pyridine-3-carboxylic acid (nico- tinic acid)	2.07(+1)	4.75(0)		

TABLE 2.59	pK, Values of Organic	e Materials in V	Water at 25°C (Continuea	l)
					_

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	p <i>K</i> ₄
Pyridine-4-carboxylic acid (isoni- cotinic acid)	1.84(+1)	4.86(0)		
Pyridine-2.3-dicarboxylic acid	2.36(+1)	7.08(0)		
Pyridine-2.4-dicarboxylic acid	2.23(+1)	7.02(0)		
Pyridine-2.6-dicarboxylic acid	2.16(+1)	6.92(0)		
Pyridine-1-oxide	0.688(+1)			
Pyridoxal	4.20(+1)	8.66(ring		
Puridoval 5 phosphate $(u = 0.15)$	<25	4.14	6.20	8 60
Puridoxanine $(\mu = 0.1)$	(-2.5) 3 37(+2)	$\frac{4.14}{8.01(\pm 1)}$	10.13(ring	0.07
Tyndoxannic ($\mu = 0.1$)	5.57(+2)	0.01(+1)	OH)	
Pyridoxamine-5-phosphate ($\mu = 0.15$; pK ₅ 10.92)	2.5	3.69	5.76	8.61
Pyridoxine (vitamin B_6) (18°C)	5.00(+1)	8.96(ring OH)		
3-(2'-Pyridyl)alanine	1.37(+2)	4.02(+1)	9.22(0)	
3-(3'-Pyridyl)alanine	1.77(+2)	4.64(+1)	9.10(0)	
2-(2'-Pyridyl)benzimidazole ($\mu = 0.16$)	5.58(+1)			
2-(2'-Pyridyl)imidazole ($\mu = 0.005$)	8.98(+1)			
4-(2'-Pyridyl)imidazole ($\mu = 0.1$)	5.49(+1)			
Pvrimidine	1.30(+1)			
2,4(1 <i>H</i> ,3 <i>H</i>)-Pyrimidinedione (ura- cil)	0.6(+1)	9.46(0)		
2,4,5,6(1 <i>H</i> ,3 <i>H</i>)-Pyrimidinetetrone- 5-oxime	4.57(0)			
Pyrocatecholsulfonephthaleine	7.82	9.76	11.73	
Pyroxilidine	11.11(+1)			
Pyrrole-1-carboxylic acid	4.45			
Pyrrole-2-carboxylic acid	4.45			
Pyrrole-3-carboxylic acid	4.453			
Pyrrolidine	$11.305(\pm 1)$			
Pyrrolidine-2-carboxylic acid (pro-	1.952(+1)	10.640(0)		
2-[2-(<i>N</i> -Pyrrolidinyl)ethyllpyridine	3.60(+2)	$9.39(\pm 1)$		
3-[2-(<i>N</i> -Pyrrolidinyl)ethyl]pyridine	428(+2)	$9.28(\pm 1)$		
4-[2-(<i>N</i> -Pyrrolidinyl)ethyl]pyridine	4.65(+2)	$9.27(\pm 1)$		
2-(1-Pyrrolidinylmethyl)pyridine	2.54(+1)	8.56(+1)		
3-(1-Pyrrolidinylmethyl)pyridine	3.14(+2)	$8.36(\pm 1)$		
4-(1-Pyrrolidinylmethyl)pyridine	3.38(+2)	8.16(+1)		
3-Pyrroline	-0.27(+1)	0.10(+1)		
Ouinidine	4.0(+1)	8.54(0)		
Ouinine	4.11(+1)	8.52(0)		
Ouinoline	$4.80(\pm 1)$	()		
Ouinoxaline	0.72(+1)			
D Paffinose	12.74			
Piboflevin (vitamin B) $(\mu = 0.01)$	12.74	0.60		
α -D-Ribofuranose	12.11	7.07		
D-Ribose-5'-phosphonic acid		6.70(-1)	13.05(-2)	

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	р <i>К</i> ₁	р <i>К</i> 2	p <i>K</i> ₃	p <i>K</i> ₄
D-Saccharic acid	5.00(0)			
Saccharin (o-benzoic sulfimide)	2.32			
Sarcosine	2.12(+1)	10.20(0)		
Sarcosine amide	8.35(+1)			
Sarcosine dimethylamide	8.86(+1)			
Sarcosine methylamide	8.28(+1)			
Sarcosylglycine ($\mu = 0.16$)	3.15(+1)	8.56(0)		
Sarcosylleucine	3.15(+1)	8.67(0)		
Sarcosylsarcosine	2.92(+1)	9.15(0)		
Sarcosylserine	3.17(+1)	8.63(0)		
3-Selenosemicarbazide ($\mu = 0.1$)	0.8(+1)			
Semicarbazide ($\mu = 0.1$)	3.53(+1)			
L-Serine	2.21(+1)	9.15(0)	13.6	
Serine, methyl ester ($\mu = 0.1$)	7.03(+1)			
Serylglycine ($\mu = 0.15$)	2.10(+1)	7.33(0)		
L-Seryl-L-leucine	3.08(+1)	7.45(0)		
Solanine	7.34(+1)			
D-Sorbitol (17.5°C)	13.60			
L-(-)-Sorbose (18°C)	11.55			
Sparteine	4.49(+1)	11.76(0)		
Spinaceamine ($\mu = 0.1$)	4.895(+2)	8.90(+1)		
Spinacine	1.649(+2)	4.936(+1)	8.663(0)	
L-Strychnine (15°C)	2.50	8.20		
Succinamic acid (succinic acid monoamide)	4.39(0)			
Succinic acid	4.207	5.635		
DL-Succinimide	9.623	2.000		
B-(4'-Sulfaminophenyl)alanine	$1.99(\pm 1)$	8.64(0)	10.26(-1)	
3-Sulfamylbenzoic acid	3.54			
4-Sulfamylbenzoic acid	3.47			
4-Sulfamylphenylphosphoric acid	1.42	6.38	10.0	
Sulfanilamide	10.43(+1)			
Sulfoacetic acid	´	4.0		
3-Sulfobenzoic acid		3.78		
4-Sulfobenzoic acid		3.72		
3-Sulfophenol	0.39	9.07		
4-Sulfophenol	0.58	8.70		
2-Sulfopropanoic acid	1.99			
5-Sulfosalicyclic acid	2.49	12.00		
Sylvic acid	7.62			
D-Tartaric acid	3.036	4.366		
meso-Tartaric acid	3.22	4.81		
Tetracycline ($\mu = 0.005$)	3.30(+1)	7.68	9.69	
Tetradehydroyohimbine	10.59(+1)			
Tetraethylenepentamine [$\mu = 0.1$;	2.98(+5)	4.72(+4)	8.08(+3)	9.10(+2)
$pK_5 9.67(+1)]$				
1,4,5,6-Tetrahydro-1,2-dimethyl-	11.38(+1)			
1 4 5 6-Tetrahydro-2-methylnyri-	9 53(+1)			
dine	2.55(+1)			
cis-Tetrahydronaphthalene-2.3-di-	3.98	6.47		
carboxylic acid (20°C)				

TABLE 2.59	pK. Values of Organic Materials in Water at 25°C (Continued)
	pri, values of ofganie materials in water at 25 C (Commuted)

Substance	pK ₁	pK ₂	pK ₃	р <i>К</i> 4
trans-Tetrahydronaphthalene-2,3-	4.00	5.70		
dicarboxylic acid (20°C)	10.39			
5,6,7,8-Tetrahydro-T-naphthol	10.28			
5,6,7,8-1 etranyaro-2-naphtnoi	10.48			
2.2.5 (Tetranydroserpentine	10.55(+1)			
2,3,5,6-1 etramethylbenzoic acid	3.415	4 402		
(18°C)	3.403	4.423		
Tetramethylenediamine	9.22(+2)	10.75(+1)		
N,N,N',N'-Tetramethylethylenedi-	2.20(+2)	6.35(+1)		
amine 2,3,5,6-Tetramethyl-4-methylami- nopyridine	0.07(+1)			
2,2,6,6-Tetramethylpiperidine ($\mu = 0.5$)	1.24(+1)			
2 3 5 6-Tetramethylpyridine (20°C)	7.90(+1)			
Tetramethylsuccinic acid	3 50	7.28		
1 2 3 <i>A</i> -Tetrazole	4 90	1.20		
Thebaine	$7.95(\pm 1)$			
2. Thenovitrifilitoroacetone	5 70(0)			
Theobromine	$0.68(\pm 1)$	7 89		
Theophylline	< 1(+1)	8.80		
Thiazoline	253(+1)	0.00		
Thioacetic acid	3 33			
a-Thiocresol	6 64			
m-Thiocresol	6.58			
<i>n</i> -Thiocresol	6.52			
Thiocyanatoacetic acid	2.58			
2 2'-Thiodiacetic acid	3 32	4 29		
4 4'-Thiodibutanoic acid (18°C)	4 351	5 275		
3 3'-Thiodipropanoic acid (18°C)	4 085	5.075		
3-Thio-S-methylcarbazide ($\mu = 0.1$)	7.563(+1)	5.075		
1-Thionylcarboxylic acid	3.53			
2-Thionylcarboxylic acid	4.10			
2-Thiophenecarboxylic acid (30°C)	3.529			
3-Thiophenecarboxylic acid (3- thenoic acid)	4.10			
Thiophenol	6.50			
3-Thiosemicarbazide ($\mu = 0.1$)	1.5(+1)			
3-Thiosemicarbazide-1,1-diacetic acid (30°C)	2.94	4.07		
Thiourea	2.03(+1)			
Thorin	3.7	8.3	11.8	
Thymidine	9.79	12.85		
p-Toluenesulfinic acid	1.7			
Toluhydroquinone	10.03	11.62		
o-Toluidine	4.45(+1)			
<i>m</i> -Toluidine	4.71(+1)			
<i>p</i> -Toluidine	5.08(+1)			
o-Tolylacetic acid (18°C)	4.36			
p-Tolylacetic acid (18°C)	4.36			
o-Tolylarsonic acid	3.82	8.85		

TABLE 2.59*pK*, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> ₃	pK₄
m-Tolylarsonic acid	3.82	8.60		
<i>p</i> -Tolylarsonic acid	3.70	8.68		
o-Tolylphosphonic acid	2.10	7.68		
<i>m</i> -Tolylphosphonic acid	1.88	7.44		
<i>p</i> -Tolylphosphonic acid	1.84	7.33		
3-Tolylselenic acid	4.80			
4-Tolylselenic acid	4.88			
Triacetylmethane	5.81			
Triallylamine	8.31(+1)			
1,3,5-Triazine-2,4,6-triol	7.20	11.10		
1H-1,2,3-Triazole		9.26		
1H-1,2,4-Triazole	2.386(+1)	9.972		
1,2,3-Triazole-4-carboxylic acid	3.22	8.73		
1,2,3-Triazole-4,5-dicarboxylic	1.86	5.90	9.30	
acid				
1,2,4-Triazolidine-3,5-dione (ura-	5.80			
zole)	0.147			
Tribomoacetic acid	-0.14/			
2,4,6-Tribromobenzoic acid	1.41			
Trichloroacetic acid	0.52			
Trichloroacrylic acid	1.15			
3,3,3-1 richlorolactic acid	2.34	4.01		
I richloromethylphosphonic acid	1.63	4.81		
2,4,5-Trichlorophenol	7.37			
3,4,5-1 HCHIOrophenol	7.839			
Tricine (20°C)	8.15			
Triethalonia	$7.70(\pm 1)$			
Triethylamine	$10.72(\pm 1)$	9.10(1.1)		
Triethylenediamine	4.18(+2)	$8.19(\pm 1)$	0.00(1.0)	0.02(+1)
Triethylenetietramine (20 C)	3.32(+4)	0.07(+3)	9.20(+2)	9.92(+1)
Triffuoroogetio acid	2.74			
Trifluoroacelle acid	1.70			
A 4 4 Triffuoro 2 aminohutonoio	1.79 1.600(±1)	8 160(0)		
acid	1.000(+1)	8.109(0)		
4,4,4-Trifluoro-3-aminobutanoic	2.756(+1)	5.822(0)		
acid				
4,4,4-Trifluorobutanoic acid	4.16			
α, α, α -Trifluoro- <i>m</i> -cresol	8.950			
4,4,4-Trifluorocrotonic acid	3.15			
5,5,5-Trifluoroleucine	2.045(+1)	8.942(0)		
3-(Trifluoromethyl)aniline	3.5(+1)			
4-(Trifluoromethyl)aniline	2.6(+1)			
3-Trifluoromethylphenol	8.950			
5-Trifluoromethyl-1,2,3,4-tetrazole	1.70			
6,6,6-Trifluoronorleucine	2.164(+1)	9.463(0)		
5,5,5-Trifluoronorvaline	2.042(+1)	8.916(0)		
5,5,5-Trifluoropentanoic acid	4.50			
3,3,3-Trifluoropropanoic acid	3.06			
4,4,4-Trifluorothreonine	1.554(+1)	7.822(0)		
4,4,4-Trifluorovaline	1.537(+1)	8.098(0)		

TABLE 2.59 pK, Values of Organic Materials in Water at 25°C (Continued)

Substance	p <i>K</i> ₁	р <i>К</i> 2	р <i>К</i> 3	pK₄
1,2,3-Trihydroxybenzene (pyrogal-	9.03(0)	11.63(-1)		
lol)				
1,3,5-Trihydroxybenzene (phloro-	8.45(0)	8.88(-1)		
glucinol)	1 (0/0)			
2,4,6-Trihydroxybenzoic acid	1.68(0)	0.05(1)		
3,4,5 Trihydroxybenzoic acid	4.19(0)	8.85(-1)		
carboxylic acid [D-(-)-shikimic	4.15			
2 4 6-Tri(hydroxymethyl)phenol	9.56			
Triisobutylamine	10.42(+1)			
Trimethylamine	9.80(+1)			
3-(Trimethylamino)phenol	8.06			
4-(Trimethylamino)phenol	8.35			
2.4.6-Trimethylaniline	4.38(+1)			
2.4.6-Trimethylbenzoic acid	3.448			
Trimethylenebis(thioacetic acid) (18°C)	3.435	5.383		
2.3.4-Trimethylphenol	10.59			
2,4,5-Trimethylphenol	10.57			
2,4,6-Trimethylphenol	10.88			
3,4,5-Trimethylphenol	10.25			
2,3,6-Trimethylpyridine ($\mu = 0.5$)	7.60(+1)			
2,4,6-Trimethylpyridine	7.43(+1)			
2,4,6-Trimethylpyridine-1-oxide	1.990(+1)			
3-(Trimethylsilyl)benzoic acid	4.089			
4-(Trimethylsilyl)benzoic acid	4.192			
2,4,5-Trimethylthiazole ($\mu = 0.1$)	4.55			
2,4,6-Trinitroaniline (picramide)	-10.23(+1)			
2,4,6-Trinitrobenzene acid	0.654			
2,2,2-Trinitroethanol	2.36			
Trinitromethane (20°C)	0.17			
Triphenylacetic acid	3.96			
Tripropylamine	10.66(+1)			
Tris(2-hydroxyethyl)amine	7.762(+1)			
(TRIS)	8.08(+1)			
2-[Tris(hydroxymethyl)methyl amino]-1-ethanesulfonic acid (TES)	7.50			
3-[Tris(hydroxymethyl)methyl amino]-1-propanesulfonic acid (TAPS) (20°C)	8.4			
<i>N</i> -[Tris(hydroxymethyl)methyl]-	2.023(+1)	8.135		
Tris(trimethylsilyl)amine	4.70(+1)			
Trithiocarbonic acid (20°C)	2.64			
Tropacocaine (15°C)	9.88(+1)			
3-Tropanol (tropine)	10.33(+1)			
Trypsin ($\mu = 0.1$)	6.25			
L-Tryptophan	2.38(+1)	9.39(0)		
DL-Tyrosine	2.18(+1)	9.11(0)	10.6(OH)	

TABLE 2.59 *pK*, Values of Organic Materials in Water at 25°C (*Continued*)

Substance	pK ₁	pK ₂	р <i>К</i> 3	pK₄
Tyrosine amide	7.48	9.89		
Tyrosine, ethyl ester	7.33	9.80		
Tyrosylarginine ($\mu = 0.01$)	2.65(+1)	7.39(0)	9.36(-1)	11.62(-2)
Tyrosyltyrosine	3.52(+1)	7.68(0)	9.80(-1)	10.26(-2)
α -Ureidobutanoic acid	3.886(0)			
γ-Ureidobutanoic acid	4.683(0)			
β -Ureidopropanoic acid	4.487(0)			
Uric acid	5.40	5.53		
Uridine	9.30			
Uridine-5'-diphosphoric acid	7.16			
Uridine-5'-phosphoric acid (5'-uri- dylic acid)	6.63			
Uridine-5'-triphosphoric acid	7.58			
DL-Valine	2.32(+1)	9.61(0)		
L-Valine	2.296(+1)	9.79(0)		
Valine amide ($\mu = 0.2$)	8.00			
L-Valine, methyl ester	7.49(+1)			
L-Valylglycine	3.23(+1)	8.00(0)		
Vetramine	7.49(+1)			
Veratrine	8.85(+1)			
Vinylmethylamine	9.69(+1)			
2-Vinylpyridine	4.98(+1)			
4-Vinylpyridine	5.62(+1)			
Vitamin B ₁₂	7.64(+1)			
Xanthine (40°C)	0.68(+1)			
Xanthosine	<2.5(+1)	5.67(0)	12.00(-1)	
Xylenol Orange [pK ₅ 10.46(-4); pK ₆ 12.28(-5)]		2.58(-1)	3.23(-2)	6.37(-3)
D-(+)-Xylose	12.15(0)			
Zincon		4	7.85	15

TABLE 2.59	<i>pK</i> , Values of Organic Materials in Water at 25°C (<i>Continued</i>)

			Abbreviatio	ons Used in th	e Table									
		(+ 1), prote (0), neutra (-1), singl	onated cation l molecule y ionized anion	(P P	–2), doubly io. K _{auto} , negative K _{sp} , negative l	nized anion 2 logarithm (logarithm (bl	base 10) of a ase 10) of so	uutoprotolysis co lubility product	onstant					
		Temperature, °C												
Substance	0	5	10	15	20	25	30	35	40	50				
Acetic acid (0) DL-N-Acetylalanine (+1) β -Acetylaminopropionic (+1) N-Acetylglycine (+1) α -Alanine	4.780	4.770 3.699 4.479 3.682	4.762 3.699 4.465 3.676	4.758 3.703 4.465 3.673	4.757 3.708 4.449 3.667	4.756 3.715 4.445 3.670	4.757 3.725 4.444 3.673	4.762 3.733 4.443 3.678	4.769 3.745 4.445 3.685	4.787 3.774 4.457 3.706				
(+1) (0) 2-Aminobenzenesulfonic acid (0),	2.42 10.59		2.39 10.29		2.35 10.01	2.34 9.87	2.33 9.74	2.33 9.62	2.33 9.49	2.33 9.26				
pK_2 3-Aminobenzenesulfonic acid (0), pK_2	2.633	2.591 4.002	2.556	2.521	2.448	2.459 3.738	2.431 3.679	2.404	2.380 3.567	2.338				
4-Aminobenzoic acid (0), pK_2 3-Aminobenzoic acid (0) 4-Aminobenzoic acid (0)	3.521	3.457	3.398	3.338	3.283 4.90 4.95	3.227 4.79 4.85	3.176 4.75 4.90	3.126	3.079 4.68 4.95	2.989 4.60 5.10				
2-Aminobutyric acid (+1) (0) 4-Aminobutyric acid			2.334 10.530			2.286 9.380		2.289 ^{37.5℃} 9.518 ^{37.5℃}		2.297 9.234				
(+ 1) (0) 2-Aminoethylsulfonic acid (0) 2 Aminoethylsulfonic acid (0)			4.057 11.026 9.452	4.046 10.867 9.316	4.038 10.706 9.186	4.031 10.556 9.061	4.027 10.409 8.940	4.025 10.269 8.824	4.027 10.114 8.712	4.032 9.874 9.499				
(+ 1) (0)	2.365 ^{1℃} 10.460 ^{1℃}		2.338 ^{12.5°C} 10.100 ^{12.5°C}			2.320 9.758		2.317 ^{37.5°C} 9.439 ^{37.5°C}		2.332 9.157				

TABLE 2.60 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures

2-Amino-2-methyl-										
1,3-propanediol	9.612	9.433	9.266	9.104	8.951	8.801	8.659	8.519	8.385	8.132
2-Amino-2-methylpropionic acid										
(+1)	2.419 ^{1°C}		2.380 ^{12.5°C}			2.357		2.351 ^{37.5°C}		2.356
(0)	10.960 ^{1°C}		10.580 ^{12.5°C}			10.205		9.872 ^{37.5°C}		9.561
2-Aminopentanoic acid										
(+1)	2.376 ^{1℃}		2.347			2.318			2.309	2.313
(0)	10.508 ^{1°C}			10.154 ^{12.5°C}		9.808		9.490 ^{37.5°C}		9.198
3-Aminopropionic acid										
(+1)	3.656	3.627		3.583		3.551		3.524	3.517	
(0)	11.000	10.830		10.526		10.235		9.963	9.842	
4-Aminopyridine (+1)	9.873	9.704	9.549	9.398	9.252	9.114	8.978	8.846	8.717	8.477
Ammonium ion $(+1)$	10.081	9.904	9.731	9.564	9.400	9.245	9.093	8.947	8.805	8.539
Arginine										
(+1)	1.914	1.885	1.870	1.849	1.837	1.823	1.814	1.801	1.800	1.787
(0)	9.718	9.563	9.407	9.270	9.123	8.994	8.859	8.739	8.614	8.385
Barbituric acid										
(+1)				3.969	3.980	4.02	4.00	4.008	4.017	4.032
(0)				8.493	8.435	8.372	8.302	8.227	8.147	7.974
Benzoic acid (0)		4.231	4.220	4.215	4.206	4.204	4.203	4.207	4.219	4.223
Boric acid (0)	9.508	9.439	9.380	9.327	9.280	9.236	9.197	9.161	9.132	9.080
Bromoacetic acid (0)				2.875	2.887	2.902	2.918	2.936		
3-Bromobenzoic acid (0)				3.818	3.813	3.810	3.808	3.810	3.813	
4-Bromobenzoic acid (0)				4.011	4.005	3.99	4.001	4.001	4.003	
Bromopropynoic acid (0)			1.786	1.814	1.839	1.855	1.879	1.900	1.919	
3-tert-Butylbenzoic acid (0)				4.266	4.231	4.199	4.170	4.143	4.119	
4-tert-Butylbenzoic acid (0)				4.463	4.425	4.389	4.354	4.320	4.287	
2-Butynoic acid (0)			2.618	2.626	2.611	2.620	2.618	2.621	2.631	
Butyric acid (0)	4.806	4.804	4.803	4.805	4.810	4.817	4.827	4.840	4.854	4.885
DL-N-Carbamoylalanine (+1)		3.898	3.894	3.891	3.890	3.892	3.896	3.902	3.908	3.931
N-Carbamoylglycine (+1)		3.911	3.900	3.889	3.879	3.876	3.874	3.873	3.875	3.888
Carbon dioxide + water										
(0)	6.577	6.517	6.465	6.429	6.382	6.352	6.327	6.309	6.296	6.285
(-1)	10.627	10.558	10.499	10.431	10.377	10.329	10.290	10.250	10.220	10.172
Chloroacetic acid (0)				2.845	2.856	2.867	2.883	2.900		
3-Chlorobenzoic acid (0)				3.838	3.831	3.83	3.825	3.826	3.829	

TABLE 2.60	Selected Equilibrium	Constants in Aqueous Solution at	Various Temperatures (Continued)	
-------------------	----------------------	----------------------------------	----------------------------------	--

	Temperature, °C										
Substance	0	5	10	15	20	25	30	35	40	50	
4-Chlorobenzoic acid (0)				4.000	3.991	3.986	3.981	3.980	3.981		
Chloropropynoic acid (0)			1.766	1.796	1.820	1.845	1.864	1.879	1.893		
Citric acid											
(0)	3.220	3.200	3.176	3.160	3.142	3.128	3.116	3.109	3.099	3.095	
(-1)	4.837	4.813	4.797	4.782	4.769	4.761	4.755	4.751	4.750	4.757	
(-2)	6.393	6.386	6.383	6.384	6.388	6.396	6.406	6.423	6.439	6.484	
Cyanoacetic acid (0)		2.445	2.447	2.452	2.460	2.460	2.482	2.496	2.511		
2-Cyano-2-methylpropionic acid											
(0)		2.342	2.360	2.379	2.400	2.422	2.446	2.471	2.498		
5,5-Diethylbarbituric acid (0)	8.40	8.30	8.22	8.169	8.094	8.020	7.948	7.877	7.808	7.673	
Diethylmalonic acid											
(0)			2.129	2.136	2.144	2.151	2.160	2.172	2.187		
(1)			7.400	7.401	7.408	7.417	7.428	7.441	7.457		
2,3-Dimethylbenzoic acid (0)				3.663	3.687	3.771	3.726	3.762	3.788		
2,4-Dimethylbenzoic acid (0)				4.154	4.187	4.217	4.244	4.268	4.290		
2,5-Dimethylbenzoic acid (0)				3.911	3.954	3.990	4.020	4.045	4.065		
2,6-Dimethylbenzoic acid (0)				3.234	3.304	3.362	3.409	3.445	3.472		
3,5-Dimethylbenzoic acid (0)				4.292	4.299	4.302	4.304	4.306	4.306		
N, N'-Dimethylethyleneamine-											
N,N'-diacetic acid											
(0)	6.294		6.169		6.047		5.926		5.803		
(-1)	10.446		10.268		10.068		9.882		9.684		
N,N-Dimethylglycine (0)		10.34		10.14		9.94		9.76			
3,5-Dinitrobenzoic acid (0)			2.60		2.73		2.85		2.96	3.07	
2-Ethylbutyric acid (0)	4.623		4.664		4.710	4.751	4.758		4.812	4.869	
5-Ethyl-5-phenylbarbituric acid (0)				7.592	7.517	7.445	7.377	7.311	7.248	7.130	
Fluoroacetic acid (0)				2.555	2.571	2.586	2.604	2.624			
Formic acid (0)	3.786	3.772	3.762	3.757	3.753	3.751	3.752	3.758	3.766	3.782	
2-Furancarboxylic acid (0)						3.164	3.200	3.216	3.239		
Glucose-1-phosphate (0)		6.506	6.500	6.499	6.500	6.504	6.510	6.519	6.531	6.561	
Glycerol-1-phosphoric acid (-1)		6.642	6.641	6.643	6.648	6.656	6.666	6.679	6.695	6.733	
Glycerol-2-phosphoric acid											
(0)		1.223	1.245	1.271	1.301	1.335	1.372	1.413	1.457	1.554	

2.672

(-1)		6.657	6.650	6.646	6.646	6.650	6.657	6.666	6.679	6.712
Glycine										
(+1)			2.397	2.380	2.36	2.351	2.34	2.33	2.327	2.32
(0)		10.34	10.193	10.044	9.91	9.780	9.65	9.53	9.412	9.19
Glycolic acid (0)	3.875		3.844 ^{12.5°C}			3.831		3.833 ^{37.5℃}		3.849
Glycylasparagine $(+1)$		2.968	2.958	2.952	2.943	2.942	2.942	2.944	2.947	2.959
N-Glycylglycine (+1)	3.201					3.126				3.159
			8.594 ^{12.5℃}			8.252		7.948 ^{37.5℃}		7.668
Hexanoic acid (0)	4.840		4.839		4.849		4.865		4.890	4.920
Hydrogen cyanide (0)			9.63	9.49	9.36	9.21	9.11	8.99	8.88	
Hydrogen peroxide (0)	12.23			11.86	11.75	11.65	11.55	11.45		11.21
Hydrogen sulfide										
(0)		7.33	7.24	7.13	7.05	6.97	6.90	6.82	6.79	6.69
(-1)		13.5		13.2		12.90	12.75	12.6		
4-Hydroxybenzoic acid (0)				4.596	4.586	4.582	4.577	4.576	4.578	
Hydroxylamine (0)				6.186	6.063	5.948		5.730		
2-Hydroxy-1-naphthoic acid					0.000	010 10				
(0)					3.29		3.24		3.19	3.26
(-1)					9.68		9.65		9.61	9.58
4-Hydroxyproline										
(+1)	1 900 ^{1°C}		1 850 ^{12.5°C}			1.818		1.798 ^{37.5℃}		1.796
() ())	10.274 ^{1°C}		9 95812.5°C			9.662		9.394 ^{37.5} °C		9.138
2-Hydroxypropionic acid (0)	3 880	3 873	3 868	3 861	3 857	3.858	3.861	3.867	3.873	3.895
DL-2-Hydroxysuccipic acid	5.000	5.075	5.000	5.001	51057	21000	21001			
(0)	3 537	3 520	3 494	3 482	3.472	3.458	3.452	3.446	3,444	3.445
(-1)	5 1 1 9	5.108	5.098	5.096	5.096	5.097	5.099	5.104	5.117	5.149
Hypobromous acid (0)	5.117	5.100	5.070	8 83	51070	8.60		8.47	8.37 ^{45℃}	
Hypothlorous acid (0)	7.82	7 75	7.69	7.63	7 58	7 54	7 50	7.46	0107	7.05
Imidazole (± 1)	7 581	7.467	7 334	7.216	7 103	6 993	6.887	6.784	6.685	6.497
Induzoic (+ 1)	7.501	1.101	7.551	3 143	3 1 58	3 175	3 193	3,213	0.000	
DL Isoleucine				5.115	5.150	5.175		0.210		
(+1)	2 365		2 33812.5°C			2 318		2 317 ^{37.5℃}		2 3 3 2
$(\uparrow 1)$	10.460		10 100 ^{12.5°C}			9 758		9 43937.5°C		9 1 5 7
Isopropylmalonic acid	10.400		10.100			2.750		2.1.55		2.107
monopitrile (0)		2 200	2 320	2 3/3	2 365	2 401	2 4 2 7	2 452	2 481	
Leatia agid (0)	2 990	2.272	2.520	3 862	3 857	3 858	3 861	3.867	3 873	3 895
Lactic actu (0)	9.01	5.675	5.000	7.87	5.057	7.80	5.001	7 73	5.075	7.63
DL Laucina	0.01			1.01		7.00		1.15		1.00
(± 1)	2 2821°C		2 3/1812.5°C			2 328		2 32737.5°C		2 333
(± 1)	2.303- ° 10.4591°C		10 0051.5°C			Q 711		0 <u>43</u> <u>4</u> 37.5℃		Q 147
(0)	10.4.30		10.095			7.744		7.7.7		7.142

TABLE 2.60 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (Continued)

	Temperature, °C										
Substance	0	5	10	15	20	25	30	35	40	50	
Malonic acid (-1)	5.670	5.665	5.667	5.673	5.683	5.696	5.710	5.730	5.753	5.803	
Mannose (0)			12.45			12.08			11.81		
Mercury(I) chloride, pK_{sp}			18.65	18.48	18.27	17.88		16.79			
Methanol (solvent), pK_{auto}		17.12		16.84		16.71	16.65	16.53			
Methylamine (+1)	11.496		11.130		10.787	10.62	10.466		10.161	9.876	
Methylaminodiacetic acid											
(0)	2.138		2.142		2.146		2.150		2.154		
(-1)	10.474		10.287		10.088		9.920		9.763		
3-Methylbenzoic acid (0)				4.303	4.285	4.269	4.256	4.244	4.235		
4-Methylbenzoic acid (0)				4.390	4.376	4.362	4.349	4.336	4.322		
3-Methylbutyric acid (0)	4.726		4.742		4.767		4.794		4.831	4.871	
4-Methylpentanoic acid (0)	4.827		4.827		4.837		4.853		4.879	4.908	
5-Methyl-5-phenylbarbituric acid											
(0)				8.104	8.057	8.011	7.966	7.922	7.879	7.797	
2-Methylpropionic acid (0)	4.825		4.827		4.840	4.853	4.886		4.918	4.955	
2-Methyl-2-propylamine (+1)		11.439	11.240	11.048	10.862	10.682	10.511	10.341			
Nitric acid (0)	- 1.65					-1.38				-1.20	
Nitrilotriacetic acid											
(0)	1.69		1.65		1.65		1.66		1.67		
(-1)	2.95		2.95		2.94		2.96		2.98		
(-2)	10.59		10.45		10.33		10.23				
4-Nitrobenzoic acid (0)				3.448	3.444	3.441	3.441	3.442	3.445		
Nitrous acid (0)				3.244	3.177	3.138		3.100			
DL-Norleucine											
(+1)	2.394		2.356 ^{12.5°C}			2.335		2.324 ^{37.5°C}		2.328	
(0)	10.564		10.190 ^{12.5°C}			9.834		9.513 ^{37.5℃}		9.224	
Oxalic acid (-1)	4.210	4.216	4.227	4.240	4.254	4.272	4.295	4.318	4.349	4.409	
2.4-Pentanedione (0)	9.07					8.95			8.90		
Pentanoic acid (0)	4.823		4.763		4.835	4.842	4.851		4.861	4.906	
Phenylalanine (0)			9.75			9.31			8.96		
Phosphoric acid (0)	2.056	2.073	2.088	2.107	2.127	2.148	2.171	2.196	2.224	2.277	
(-1)	7 313	7.282	7.254	7.231	7.213	7.198	7.189	7.185	7.181	7.183	
(')	1.515	1 ,,202	1.20	1 7.221	1						

o-Phthalic acid	1									
(0)	2.925	2.927	2.931	2.937	2.943	2.950	2.958	2.967	2.978	3.001
(-1)	5.432	5.418	5.410	5.405	5.405	5.408	5.416	5.427	5.442	5.485
Piperidine (+1)	11.963	11.786	11.613	11.443	11.280	11.123	10.974	10.818	10.670	10.384
Proline										
(+1)	2.011		1.964 ^{12.5℃}			1.952		1.950 ^{37.5℃}		1.958
(0)	11.296		10.972 ^{12.5℃}			10.640		10.342 ^{37.5℃}		10.064
Propenoic acid (0)				4.267	4.250	4.247	4.249	4.267	4.301	
N-Propionylglycine (+1)		3.728	3.723	3.718	3.716	3.718	3.721	3.725	3.731	3.750
Propynoic acid (0)			1.791	1.829	1.867	1.887	1.940	1.932	1.963	
Pyrrolidine (+1)	12.17	11.98	11.81	11.63	11.43	11.30	11.15	10.99	10.84	11.56
Serine										
(+1)	2.296 ^{1°C}		2.232 ^{12.5°C}			2,186		2.154 ^{37.5℃}		2,132
(0)	9.880 ^{1℃}		9.542 ^{12.5℃}			9.208		8.904 ^{37.5°C}		8.628
Silver bromide, pK.,		13.33		12.83	12.57	12.30	12.07	11.83	11.61	11.19
Silver chloride, pK_{ca}		10.595		10.152		9.749		9.381	9.21	8.88
Succinic acid										
(0)	4.285	4.263	4.245	4.232	4.218	4,207	4.198	4.191	4.188	4.186
(-1)	5.674	5.660	5.649	5.642	5.639	5.635	6.541	5.647	5.654	5.680
Sulfuric acid (-1)	1.778	1.812 ^{4.3℃}		1.894		1.987	2.05	2.095	2.17	2.246
Sulfurous acid (0)	1.63		1.74			1.89		1.98		2.12
D-Tartaric acid										
(0)	3.118	3.095	3.075	3.057	3.044	3.036	3.025	3.019	3.018	3.021
(-1)	4.426	4.407	4.391	4.381	4.372	4.366	4.365	4.367	4.372	4.391
2.3.5.6-Tetramethylbenzoic acid				3.310	3.367	3.415	3.453	3.483	3.505	
(0)										
Threonine										
(+1)	2.200 ^{1℃}		2.132 ^{12.5°C}			2.088		2.070 ^{37.5℃}		2.055
(0)	9.748 ^{1°C}		9.420 ^{12.5°C}			9.100		8.812 ^{37.5°C}		8.548
<i>o</i> -Toluidine (0)				4.58	4,495	4.45	4.345	4.28	4.20	
1.2.4-Triazole										
(+1)				2.451	2.418	2.386	2.327			
(0)				10.205	10.083	9.972	9.768			
3.4.5-Trihydroxybenzoic acid (0)					4.19		4.30		4.38	4.53
Tris(2-hvdroxyethyl)amine (+1)	8.290	8.173	8.067	7.963	7.861	7.762	7.666	7.570	7.477	7.299
2.4.6-Trimethylbenzoic (0)	0.250	0.170	0.000	3.325	3.391	3.448	3.498	3.541	3.577	
3-Trimethylsilylbenzoic acid (0)				4 142	4.116	4.089	4.060	4 029	3 996	
4-Trimethylsilylbenzoic acid (0)				4.270	4.230	4.192	4.155	4.119	4.084	
B-Ureidopropionic acid (0)		4 514	4 505	4 497	4 4 90	4 487	4 486	4 486	4 488	4 500
DL-Valine			1.505							1.500
(+1)	2.320		2.297 ^{12.5℃}			2.296		2.292 ^{37.5°C}		2.310
(0)	10.413		10.064 ^{12.5°C}			9.719		9.405 ^{37.5°C}		9.124
(*)										

Acid	Methanol	Ethanol	Other Solvents
Acetic acid	9.52	10.32	11.4 ^a , 9.75 ^d
p-Aminobenzoic acid	10.25		
Ammonium ion	10.7		6.40^{b}
Anilinium ion	6.0	5.70	
Benzoic acid		10.72	10.0 ^a
Bromocresol purple	11.3	11.5	
Bromocresol green	9.8	10.65	
Bromophenol blue	8.9	9.5	
Bromothymol blue	12.4	13.2	
Di- <i>n</i> -butylammonium ion			10.3 ^a
<i>a</i> -Chloroanilinium ion	3.4		
Cyanoacetic acid		7.49	
2.5-Dichloroanilinium ion			9.48^{b}
Dimethylaminoazobenzene		5.2	6.32 ^b
N N'-Dimethylanilinium ion		4 37	0.02
Formic acid		915	
Hydrobromic acid		2.15	5 50
Hydrochloric acid			8 55 ^b 8 9c
Methyl orange	3.8	3.4	0.00 ; 0.0
Methyl red (acid range)	4.1	3 55	
(alkaline range)	4.1	10.45	
Methyl yellow	3.4	3 55	
Neutral red	82	82	
Neutral Teu	0.2	0.2	
<i>o</i> -Nitrobenzoia acid	7.0		
m-Initiodenzoic acid	0.5		
<i>p</i> -Niliobelizoic acid	0.4		A 97h
Perchioric acid	14.0		4.87
Phenol	14.0	12.4	
Phenol red	12.8	13.4	$11 Ed \in 10d(-R)$
Phthalic acid, pK_2	11.65	2.0	$11.5^{a}, 0.10^{a}(pK_{1})$
Picric acid	3.8	3.8	8.9
Pyridinium ion	0.7	2.0	6.1"
Salicylic acid	8.7	7.9	
Stearic acid	10.0		
Succinic acid, pK_2	11.4		
Sulfuric acid, pK_1			7.24 ^{<i>b</i>,c}
Tartaric acid, pK_2	9.9		
Thymol blue (alkaline range)	14.0	15.2	
(acid range)	4.7	5.35	
Thymolbenzein (acid range)	3.5		
(alkaline range)	13.1		
<i>p</i> -Toluenesulfonic acid			8.44 ^b
p-Toluidinium ion		6.24	
Tribenzylammonium ion			5.40 ^b
Tropeoline 00	2.2		
Urea (protonated cation)			6.96 ^b
Veronal	12.6		

TABLE 2.61 pK, Values for Proton-Transfer Reactions in Non-aqueous Solvents

^{*a*} Dimethylsulfoxide. ^{*b*} Glacial acetic acid. ^{*c*} Acetonitrile. ^{*d*} Acetone + 10% water.

2.16 INDICATORS

An acid-base indicator is a conjugate acid-base pair of which the acid form and the base form are of different colors. These indicators are used to show the relative acidity or alkalinity of the test material.

Acid-base indicators are dyes that are themselves weak acids and bases. The conjugate acid-base forms of the dye are of different colors. An indicator does not change color from pure acid to pure alkaline at specific hydrogen ion concentration, but, rather, color change occurs over a range of hydrogen ion concentrations. This range is termed the *color change interval* and is expressed as a pH range. The chemical structures of the dyes are often complex but can be represented chemically by the symbol HIn. The acid-base indicator reaction is represented as:

$$HIn + H_2O \quad H_3O^+ + In \tag{1}$$

	pH range		Color	
Indicator	Minimum	Maximum	Acid	Alkaline
Brilliant cresyl blue	0.0	1.0	red-orange	blue
Methyl violet	0.0	1.6	yellow	blue
Crystal violet	0.0	1.8	yellow	blue
Ethyl violet	0.0	2.4	yellow	blue
Methyl Violet 6B	0.1	1.5	yellow	blue
Cresyl red	0.2	1.8	red	yellow
2-(p-Dimethylaminophenylazo) pyridine	0.2	1.8	yellow	blue
Malachite green	0.2	1.8	yellow	blue-green
Methyl green	0.2	1.8	yellow	blue
Cresol red (o-Cresolsulfonephthalein)	1.0	2.0	red	yellow
Quinaldine red	1.0	2.2	colorless	red
p-Methyl red	1.0	3.0	red	yellow
Metanil yellow	1.2	2.3	red	yellow
Pentamethoxy red	1.2	2.3	red-violet	colorless
Metanil yellow	1.2	2.4	red	yellow
p-Phenylazodiphenylamine	1.2	2.6	red	yellow
Thymol blue (Thymolsulfonephthalein)	1.2	2.8	red	yellow
m-Cresol purple	1.2	2.8	red	yellow
p-Xylenol blue	1.2	2.8	red	yellow
Benzopurpurin 4B	1.2	3.8	violet	red
Tropeolin OO	1.3	3.2	red	yellow
Orange IV	1.4	2.8	red	yellow
4-o-Tolylazo-o-toluidine	1.4	2.8	orange	yellow
Methyl violet 6B	1.5	3.2	blue	violet
Phloxine B	2.1	4.1	colorless	pink
Erythrosine, disodium salt	2.2	3.6	orange	red
Benzopupurine 4B	2.2	4.2	violet	red
N,N-dimethyl-p-(m-tolylazo) aniline	2.6	4.8	red	yellow
2,4-Dinitrophenol	2.8	4.0	colorless	yellow
N,N-Dimethyl-p-phenylazoaniline	2.8	4.4	red	yellow
Methyl yellow	2.9	4.0	red	yellow
Bromophenol blue	3.0	4.6	yellow	blue-violet
Tetrabromophenol blue	3.0	4.6	yellow	blue
Direct purple	3.0	4.6	blue-purple	red

TABLE 2.62 Acid-Base Indicators

pH range Color Indicator Minimum Maximum Acid Alkaline Congo red 3.1 4.9 red blue Methyl orange 3.1 4.4 red vellow Bromochlorophenol blue 3.2 4.8 blue yellow Ethyl orange 3.4 4.8 red yellow p-Ethoxychrysoidine 3.5 5.5 red vellow Alizarin sodium sulfonate 3.7 5.2 yellow violet α -Naphthyl red 3.7 5.7 red yellow 5.4 blue Bromocresol green 3.8 yellow Resazurin 3.8 6.4 orange violet Bromophenol green 4.0 5.6 yellow blue 2,5-Dinitrophenol 4.0 5.8 colorless vellow Methyl red 4.2 6.2 red vellow 2-(p-Dimethylaminophenylazo) 4.4 5.6 red yellow pyridine Lacmoid 4.4 6.2 red blue Azolitmin 4.5 8.3 red blue 8.3 Litmus 4.5 red blue Alizarin red S 4.6 6.0 vellow red Chlorophenol red 4.8 6.4 yellow red Cochineal 4.8 6.2 violet red Propyl red 4.8 6.6 yellow red Hematoxylin 5.0 6.0 red blue Bromocresol purple 5.2 6.8 vellow violet Bromophenol red 5.2 7.0 vellow red Chlorophenol red 5.4 6.8 yellow red p-Nitrophenol 5.6 6.6 colorless yellow Alizarin 5.6 7.2 yellow red Bromothymol blue 6.0 7.6 yellow blue Indo-oxine 6.0 8.0 red blue Bromophenol blue 6.2 7.6 vellow blue m-Dinitrobenzoylene urea 6.4 8.0 colorless yellow 8.0 Phenol red (Phenolsulfonephthalein) 6.4 yellow red vellow Rosolic acid 6.4 8.0 red Brilliant yellow 6.6 7.9 yellow orange Quinoline blue 8.6 colorless 6.6 blue Neutral red 8.0 6.8 red orange Phenol red 6.8 8.4 yellow yellow m-Nitrophenol 6.8 8.6 colorless vellow 7.0 Cresol red (o-Cresolsulfonephthalein) 8.8 yellow red α -Naphtholphthalein 7.3 8.8 yellow blue Curcumin 7.4 8.6 yellow red m-Cresol purple (m-Cresolsulfonephthalein) 7.4 9.0 yellow violet 7.6 8.9 yellow Tropeolin OOO rose-red 2,6-Divanillydenecyclohexanone 7.8 9.4 yellow red Thymol blue (Thymolsulfonephthalein) 8.0 9.6 yellow purple p-Xylenol blue 8.0 9.6 yellow blue Turmeric 8.0 10.0 vellow orange Phenolphthalein 8.0 10.0 colorless red o-Cresolphthalein 8.2 9.8 colorless red 10.0 p-Naphtholphthalein 8.2 colorless pink Ethyl bis(2,4-dimethylphenyl acetate) 8.4 9.6 colorless blue

TABLE 2.62 Acid-Base Indicators (Continued)

	pH range		Color	
Indicator	Minimum	Maximum	Acid	Alkaline
Ethyl bis(2,4-dinitrophenyl acetate)	8.4	9.6	colorless	blue
α-Naphtholbenzein	8.5	9.8	yellow	green
Thymolphthalein	9.4	10.6	colorless	blue
Nile blue A	10.0	11.0	blue	purple
Alizarin yllow CG	10.0	12.0	yellow	lilac
Alizarin yellow R	10.2	12.0	yellow	orange red
Salicyl yellow	10.0	12.0	yellow	orange- brown
Diazo violet	10.1	12.0	yellow	violet
Nile blue	10.1	11.1	blue	red
Curcumin	10.2	11.8	yellow	red
Malachite green hydrochloride	10.2	12.5	green-blue	colorless
Methyl blue	10.6	13.4	blue	pale violet
Brilliant cresyl blue	10.8	12.0	blue	yellow
Alizarin	11.0	12.4	red	purple
Nitramine	11.0	13.0	colorless	orange brown
Poirier's blue	11.0	13.0	blue	violet-pink
Tropeolin O	11.0	13.0	yellow	orange
Indigo carmine	11.4	13.0	blue	yellow
Sodium indigosulfonate	11.4	13.0	blue	yellow
Orange G	11.5	14.0	yellow	pink
2,4,6-Trinitrotoluene	11.7	12.8	colorless	orange
1,3,5-Trinitrobenzene	12.0	14.0	colorless	orange
2,4,6-Trinitrobenzoic acid	12.0	13.4	blue	violet-pink
Clayton yellow	12.2	13.2	yellow	amber

TABLE 2.62 Acid-Base Indicators (Continued)

TABLE 2.63 Mixed Indicators

Mixed indicators give sharp color changes and are especially useful in titrating to a given titration exponent (pI).

The information given in this table is from the two-volume work *Volumetric Analysis* by Kolthoff and Stenger, published by Interscience Publishers, Inc., New York, 1942 and 1947, and reproduced with their permission.

		Color		
Composition of Indicator Solution	p/	Acid	Alkaline	Notes
1 part 0.1% methyl yellow in alc. 1 part 0.1% methylene blue in alc.	* 3.25	Blue-violet	Green	Still green at pH 3.4, blue-violet at 3.2 [†]
1 part 0.14% xylene cyanol FF in alc. 1 part 0.1% methyl orange in aq.	* 3.8	Violet	Green	Color is gray at pH 3.8
1 part 0.1% methyl orange in aq. 1 part 0.25% indigo carmine in aq.	* 4.1	Violet	Green	Good indicator, especially in artificial light
1 part 0.1% methyl orange in aq. 1 part 0.1% aniline blue in aq.	4.3	Violet	Green	
1 part 0.1% bromcresol green sodium salt in aq. 1 part 0.02% methyl orange in aq.	4.3	Orange	Blue-green	Yellow at pH 3.5, greenish yellow at 4.0, weakly green at 4.3
3 parts 0.1% bromcresol green in alc. 1 part 0.2% methyl red in alc.	5.1	Wine-red	Green	Very sharp color change [†]
 part 0.2% methyl red in alc. part 0.1% methylene blue in alc. 	* 5.4	Red-violet	Green	Color is red-violet at pH 5.2, a dirty blue at 5.4, and a dirty green at 5.6
1 part 0.1% chlorphenol red sodium salt in aq.				
1 part 0.1% aniline blue in water 1 part 0.1% bromcresol green sodium salt in aq.	5.8	Green Yellow-green	Violet Blue-violet	Pale violet at pH 5.8 Blue-green at pH 5.4, blue at 5.8, blue with a touch of violet a^{t} 6.0,
1 part 0.1% chlorphenol red sodium salt in aq. 1 part 0.1% bromcresol purple sodium salt in aq.	6.1	Yellow	Violet-blue	blue-violet at 6.2 Yellow-violet at pH 6.2, violet at 6.6, blue-violet at 6.8
 1 part 0.1% bromthymol blue sodium salt in aq. 2 parts 0.1% bromthymol blue sodium salt in aq. 1 part 0.1% azolitmin in aq. 	6.7 6.9	Violet	Blue	

1 part 0.1% neutral red in alc. 1 part 0.1% methylene blue in alc.	*	7.0	Violet-blue	Green	Violet blue at pH 7.0†
1 part 0.1% neutral red in alc. 1 part 0.1% bromthymol blue in alc.		7.2	Rose	Green	Dirty green at pH 7.4, pale rose at 7.2, clear rose at 7.0
2 parts 0.1% cyanine in 50% alc. 1 part 0.1% phenol red in 50% alc.		7.3	Yellow	Violet	Orange at pH 7.2, beautiful violet at 7.4, color fades on standing
1 part 0.1% bromthymol blue sodium salt in aq. 1 part 0.1% phenol red sodium salt in aq.		7.5	Yellow	Violet	Dirty green at pH 7.2, pale violet at 7.4, strong violet at 7.6 ⁺
1 part 0.1% cresol red sodium salt in aq. 3 parts 0.1% thymol blue sodium salt in aq.		8.3	Yellow	Violet	Rose at pH 8.2, distinctly violet at 8.4 ⁺
2 parts 0.1% α -naphtholphthalein in alc. 1 part 0.1% cresol red in alc.		8.3	Pale rose	Violet	Pale violet at pH 8.2, strong violet at 8.4
1 part 0.1% α -naphtholphthalein in alc. 3 parts 0.1% phenolphthalein in alc.		8.9	Pale rose	Violet	Pale green at pH 8.6, violet at 9.0
l part 0.1% phenolphthalein in alc. 2 parts 0.1% methyl green in alc.	*	8.9	Green	Violet	Pale blue at pH 8.8, violet at 9.0
1 part 0.1% thymol blue in 50% alc. 3 parts 0.1% phenolphthalein in 50% alc.		9.0	Yellow	Violet	From yellow thru green to violet ⁺
1 part 0.1% phenolphthalein in alc. 1 part 0.1% thymolphthalein in alc.		9.9	Colorless	Violet	Rose at pH 9.6, violet at 10; sharp color change
1 part 0.1% phenolphthalein in alc. 2 parts 0.2% Nile blue in alc.		10.0	Blue	Red	Violet at pH 10 [†]
2 parts 0.1% thymolphthalein in alc. 1 part 0.1% alizarin yellow in alc.		10.2	Yellow	Violet	Sharp color change
2 parts 0.2% Nile blue in aq. 1 part 0.1% alizarin yellow in alc.		10.8	Green	Red-brown	

* Store in a dark bottle. † Excellent indicator.

TABLE 2.64 Fluorescent Indicators

Name	pH range	Color change acid to base	Indicator solution
Benzoflavine	-0.3 to 1.7	Yellow to green	1
3,6-Dihydroxyphthalimide	0 to 2.4	Blue to green	1
	6.0 to 8.0	Green to yellow/green	
Eosin (tetrabromofluorescein)	0 to 3.0	Non-fl to green	4,1%
4-Ethoxyacridone	1.2 to 3.2	Green to blue	1
3,6-Tetramethyldiaminoxanthone	1.2 to 3.4	Green to blue	1
Esculin	1.5 to 2.0	Weak blue to strong blue	
Anthranilic acid	1.5 to 3.0	Non-fl to light blue	2 (50% ethanol)
	4.5 to 6.0	Light blue to dark blue	
	12.5 to 14	Dark blue to non-fl	
3-Amino-1-naphthoic acid	1.5 to 3.0	Non-fl to green	2 (as sulfate
	4.0 to 6.0	Green to blue	in 50% ethanol)
	11.6 to 13.0	Blue to non-fl	
1-Naphthylamino-6-sulfonamide	1.9 to 3.9	Non-fl to green	3
(also the 1-, 7-)	9.6 to 13.0	Green to non-fl	
2-Naphthylamino-6-sulfonamide	1.9 to 3.9	Non-fl to dark blue	3
(also the 2-, 8-)	9.6 to 13.0	Dark blue to non-fl	
1-Naphthylamino-5-sulfonamide	2.0 to 4.0	Non-fl to yellow/orange	3
	9.5 to 13.0	Yellow/orange to non-fl	
1-Naphthoic acid	2.5 to 3.5	Non-fl to blue	4
Salicylic acid	2.5 to 4.0	Non-fl to dark blue	4 (0.5%)
Phloxin BA extra (tetrachlorotetrabromofluorescein)	2.5 to 4.0	Non-fl to dark blue	2
Erythrosin B (tetraiodofluorescein)	2.5 to 4.0	Non-fl to light green	4 (0.2%)
2-Naphthylamine	2.8 to 4.4	Non-fi to violet	1
Magdala red	3.0 to 4.0	Non-fl to purple	
p-Aminophenylbenzenesulfonamide	3.0 to 4.0	Non-fl to light blue	3
2-Hydroxy-3-naphthoic acid	3.0 to 6.8	Blue to green	4 (0.1%)
Chromotropic acid	3.1 to 4.4	Non-fl to light blue	4 (5%)
1-Naphthionic acid	3 to 4	Non-fl to blue	4
	10 to 12	Blue to yellow-green	
1-Naphthylamine	3.4 to 4.8	Non-fl to blue	1
5-Aminosalicylic acid	3.1 to 4.4	Non-fl to light green	1 (0.2% fresh)
Quinine	3.0 to 5.0	Blue to weak violet	1 (0.1%)
	9.5 to 10.0	Weak violet to non-fl	
o-Methoxybenzaldehyde	3.1 to 4.4	Non-fl to green	4 (0.2%)
o-Phenylenediamine	3.1 to 4.4	Green to non-fl	5
<i>p</i> -Phenylenediamine	3.1 to 4.4	Non-fl to orange/yellow	5
Morin (2',4',3,5,7-pentahydroxyflavone)	3.1 to 4.4	Non-fl to green	6 (0.2%)
	8 to 9.8	Green to yellow/green	
Thioflavine S	3.1 to 4.4	Dark blue to light blue	6 (0.2%)
Fluorescein	4.0 to 4.5	Pink/green to green	4 (1%)
Dichlorofluorescein	4.0 to 6.6	Blue green to green	1
β -Methylesculetin	4.0 to 6.2	Non-fl to blue	1
	9.0 to 10.0	Blue to light green	<i></i>
Quininic acid	4.0 to 5.0	Yellow to blue	6 (satd)
β-Naphthoquinoline	4.4 to 6.3	Blue to non-fl	3
Resorutin (7-oxyphenoxazone)	4.4 to 6.4	Yellow to orange	

Name	pH range	Color change acid to base	Indicator solution
Acridine	5.2 to 6.6	Green to violet	2
3 6-Dihydroxyxanthone	5.4 to 7.6	Non-fl to blue/violet	1
5.7-Dihydroxy-4-methylcoumarin	5.5 to 5.8	I ight blue to dark blue	1
3 6-Dihydroxyphthalic acid dinitrile	5.8 to 8.2	Blue to green	1
1.4-Dihydroxybenzenedisulfonic acid	6 to 7	Non-fl to light blue	$\frac{1}{4}(0.1\%)$
Luminol	6 to 7	Non-fl to blue	(0.270)
2-Naphthol-6-sulfonic acid	5-7 to $8-9$	Non-fl to blue	4
Ouinoline	6.2 to 7.2	Blue to non-fl	6 (satd)
1-Naphthol-5-sulfonic acid	6.5 to 7.5	Non-fl to green	6 (satd)
Umbelliferone	6.5 to 8.0	Non-fl to blue	- ()
Magnesium-8-hydroxyquinolinate	6.5 to 7.5	Non-fl to yellow	6 (0.1% in 0.01 <i>M</i> HCl)
Orcinaurine	6.5 to 8.0	Non-fl to green	6 (0.03%)
Diazo brilliant yellow	6.5 to 7.5	Non-fl to blue	
Coumaric acid	7.2 to 9.0	Non-fl to green	1
β -Methylumbelliferone	>7.0	Non-fl to blue	2 (0.3%)
Harmine	7.2 to 8.9	Blue to yellow	
2-Naphthol-6,8-disulfonic acid	7.5 to 9.1	Blue to light blue	4
Salicylaldehyde semicarbazone	7.6 to 8.0	Yellow to blue	2
1-Naphthol-2-sulfonic acid	8.0 to 9.0	Dark blue to light blue	4
Salicylaldehyde acetylhydrazone	8.3	Non-fl to green/blue	2
Salicylaldehyde thiosemicarbazone	8.4	Non-fl to blue/green	2
1-Naphthol-4-sulfonic acid	8.2	Dark blue to light blue	4
Naphthol AS	8.2 to 10.3	Non-fl to yellow/green	4
2-Naphthol	8.5 to 9.5	Non-fl to blue	2
Acridine orange	8.4 to 10.4	Non-fl to yellow/green	1
Orcinsulfonephthalein	8.6 to 10.0	Non-fl to yellow	
2-Naphthol-3,6-disulfonic acid	9.0 to 9.5	Dark blue to light blue	4
Ethoxyphenylnaphthostilbazonium chloride	9 to 11	Green to non-fl	1
o-Hydroxyphenylbenzothiazole	9.3	Non-fl to blue green	2
o-Hydroxyphenylbenzoxazole	9.3	Non-fl to blue/violet	2
o-Hydroxyphenylbenzimidazole	9.9	Non-fl to blue/violet	2
Coumarin	9.5 to 10.5	Non-fl to light green	
6,7-Dimethoxyisoquinoline-1-carboxylic acid	9.5 to 11.0	Yellow to blue	0.1% in glycerine, ethanol/water in 2:2:18 ratio
1-Naphthylamino-4-sulfonamide	9.5 to 13.0	Dark blue to white/blue	3

TABLE 2.64 Fluorescent Indicators (Continued)

Indicator solutions: 1, 1% solution in ethanol; 2, 0.1% solution in ethanol; 3, 0.05% solution in 90% ethanol; 4, sodium or potassium salt in distilled water, 5; 0.2% solution in 70% ethanol; 6, distilled water.

TABLE 2.65 Selected List of Oxidation-Reduction Indicators

Reduction Potential (30°C) in Volts at Suitable Color Change Name pH = 0pH = 7pH Range Upon Oxidation Bis(5-bromo-1,10-phenanthroline) 1.41* Red to faint blue ruthenium(II) dinitrate Tris(5-nitro-1,10-phenanthroline) 1.25* Red to faint blue iron(II) sulfate 1.25* Pink to faint blue Iron(II)-2,2',2"-tripyridine sulfate 1.13 (4.6 M H₂SO₄)* Red to faint blue Tris(4,7-diphenyl-1,10-phenanthroline) iron(II) disulfate 0.87 (1.0 M H₂SO₄)* o,m'-Diphenylaminedicarboxylic acid 1.12 Colorless to blue-violet 1.06 (trans)† Yellow to orange Setopaline *p*-Nitrodiphenylamine 1.06 Colorless to violet Tris(1,10-phenanthroline)-iron(II) sulfate 1.06 (1.00 M H₂SO₄)* Red to faint blue 1.00 (3.0 M H₂SO₄)* 0.89 (6.0 M H₂SO₄)* 1.01 (trans)† Yellow-green to yellow-red Setoglaucine O Xylene cyanole FF 1.00 (trans)† Yellow-green to pink Erioglaucine A Green-yellow to bluish red 1.00 (trans)† Eriogreen 0.99 (trans)† Green-yellow to orange Tris(2,2'-bipyridine)-iron(II) 0.97*Red to faint blue hydrochloride 2-Carboxydiphenylamine [N-phenyl-0.94 Colorless to pink anthranilic acid] 0.92 Colorless to blue Benzidine dihydrochloride o-Toluidine 0.87 Colorless to blue 0.859 (0.1 M H₂SO₄) Bis(1,10-phenanthroline)-osmium(II) Green to pink perchlorate Diphenylamine-4-sulfonate (Na salt) 0.85 Colorless to violet 3,3'-Dimethoxybenzidine dihydrochloride 0.85 Colorless to red [o-dianisidine] Ferrocyphen 0.81 Yellow to violet 4'-Ethoxy-2,4-diaminoazobenzene 0.76 Red to pale yellow N,N-Diphenylbenzidine Colorless to violet 0.76

Diphenylamine	0.76	1		Colorless to violet
N,N-Dimethyl-p-phenylenediamine	0.76			Colorless to red
Variamine blue B hydrochloride	0.712‡	0.310	1.5-6.3	Colorless to blue
N-Phenyl-1,2,4-benzenetriamine	0.70			Colorless to red
Bindschedler's green	0.680‡	0.224	2-9.5	
2,6-Dichloroindophenol (Na salt)	0.668‡	0.217	6.3-11.4	Colorless to blue
2,6-Dibromophenolindophenol	0.668‡	0.216	7.0-12.3	Colorless to blue
Brilliant cresyl blue [3-amino-9-dimethyl-	0.583	0.047	0-11	Colorless to blue
amino-10-methylphenoxyazine chloride]				
Iron(II)-tetrapyridine chloride	0.59			Red to faint blue
Thionine [Lauth's violet]	0.563‡	0.064	1-13	Colorless to violet
Starch (soluble potato, I_3^- present)	0.54			Colorless to blue
Gallocyanine (25°C)		0.021		Colorless to violet-blue
Methylene blue	0.532‡	0.011	1–13	Colorless to blue
Nile blue A [aminonaphthodiethylamino-	0.406‡	-0.119	1.4-12.3	Colorless to blue
phenoxazine sulfate]				
Indigo-5,5',7,7'-tetrasulfonic acid	0.365‡	-0.046	<9	Colorless to blue
(Na salt)				
Indigo-5,5',7-trisulfonic acid (Na salt)	0.332‡	-0.081	<9	Colorless to blue
Indigo-5,5'-disulfonic acid (Na salt)	0.291‡	-0.125	<9	Colorless to blue
Phenosafranine	0.280‡	-0.252	1-11	Colorless to violet-blue
Indigo-5-monosulfonic acid (Na salt)	0.262‡	0.157	<9	Colorless to blue
Safranine T	0.24‡	-0.289	1-12	Colorless to violet-blue
Bis(dimethylglyoximato)-iron(II) chloride	0.155		6-10	Red to colorless
Induline scarlet	0.047‡	-0.299	3-8.6	Colorless to red
Neutral red		0.323	2-11	Colorless to red-violet
	1			

* Transition point is at higher potential than the tabulated formal potential because the molar absorptivity of the reduced form is very much greater than that of the oxidized form.

 \dagger *Trans* = first noticeable color transition; often 60 mV less than E°

 \ddagger Values of E° are obtained by extrapolation from measurements in weakly acid or weakly alkaline systems.

TABLE 2.66 Indicators for Approximate pH Determination

No. 1. Dissolve 60 mg methyl yellow, 40 mg methyl red, 80 mg bromthymol blue, 100 mg thymol blue and 20 mg phenolphthalein in 100 ml of ethanol and add enough 0.1N NaOH to produce a yellow color.

No. 2. Dissolve 18.5 mg methyl red, 60 mg bromthymol blue and 64 mg phenolphthalein in 100 ml of 50% ethanol and add enough 0.1N NaOH to produce a green color.

Color				Color		
pН	No. 1	No. 2	pН	No. 1	No. 2	
1	cherry-red	red	7	yellowish-green	greenish-yellow	
2	rose	red	8	green	green	
3	red-orange	red	9	bluish-green	greenish-blue	
4	orange-red	deeper red	10	blue	violet	
5	orange	orange-red	11	_	reddish-violet	
6	yellow	orange-yellow				

TABLE 2.67 Oxidation-Reduction Indicators

	Pafaranaa	Transition potential,	Color		
Common name	Kelelelice	electrode = 0.000)	Reduced form	Oxidized form	
<i>p</i> -ethoxychrysoidine	1	0.76	red	yellow	
diphenylamine	2	0.776	colorless	purple	
diphenylbenzidine	3	0.776	colorless	purple	
diphenylamine-sulfonic acid or barium sal	lt 4	0.84	colorless	purple	
naphthidine	5	_	colorless	red	
dimethylferroin	6	0.97	red	yellowish-green	
eriogreen B	7	0.99	yellow	orange	
erioglaucin A	7	1.0	yellowish-green	red	
xylene cyanole FF	11	1.0			
2,2'-dipyridyl ferrous ion	6	1.03	red	colorless	
N-phenylanthranilic acid	8	1.08	colorless	pink	
methylferroin	6	1.08	red	pale-blue	
ferroin (o-phenanthrolineferrous ion)	9	1.12	red	pale-blue	
chloroferroin	6	1.17	red	pale-blue	
nitroferroin	6	1.31	red	pale greenish-blue	
α-naphtolflavone	10		pale straw	brownish-orange	

2.17 ELECTRODE POTENTIALS

The potential of a polarographic or voltammetric indicator electrode at the point, on the rising part of a polarographic or voltammetric wave, where the difference between the total current and the residual current is equal to one-half of the *limiting current*. The quarter-wave potential, the three-quarterwave potential, etc., may be similarly defined.

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C. The solvent system in this table are listed below:

A, acetonitrile and a perchlorate salt such as LiClO₄ or a tetraalkyl ammonium salt

- B, acetic acid and an alkali acetate, often plus a tetraalkyl ammonium iodide
- C, 0.05 to 0.175M tetraalkyl ammonium halide and 75% 1,4-dioxane

D, buffer plus 50% ethanol (EtOH)

Abbrevia	ations Used in the Table			
Bu, butyl Et, ethyl EtOH, ethan M, molar	Me, methyl MeOH, methanol ol PrOh, propanol			
Compound	Solvent system	$E_{1/2}$		
Unsatural	ed aliphatic hydrocarbons			
Acrylonitrile Allene	C but 30% EtOH C	- 1.94 - 2.29		
1,3-Butadiene	A C			
1,3-Butadiyne 1-Buten-2-yne	C C	1.89 2.40		
1,4-Cyclohexadiene Cyclohexene 1,3,5,7-Cyclooctatetraene	A A B C			
Diethyl fumarate Diethyl maleate 2,3-Dimethyl-1,3-butadiene Dimethylfulvene Diphenylacetylene 1,1-Diphenylethylene	B, pH 4.0 B, pH 4.0 A C C B C	$ \begin{array}{r} -0.84 \\ -0.95 \\ -1.83 \\ -1.89 \\ -2.20 \\ -1.52 \\ -2.19 \\ \end{array} $		
Ethyl methacrylate	0.1 N LiCl+25% EtOH	- 1.9		
2-Methyl-1,3-butadiene 2-Methyl-1-butene	A A	- 1.84 - 1.97		
1-Piperidino-4-cyano-4-phenyl-1,3-butadiene	LiClO₄ in dimethylformamide	-0.16		
trans-Stilbene	В	-1.51		
Tetrakis(dimethylamino)ethylene	A	-0.75		
Compound	Solvent system	E _{1/2}		
---	-----------------------------------	---	--	--
Aromatic hydrocarbons				
Acenaphthene	A B	-0.95 -1.36		
Anthracene	C A	-2.58 -0.84		
Azulene	B C A	-1.20 -1.94 -0.71		
	С	-1.66, -2.26, -2.56		
	Aromatic hydrocarbons (continued)			
1,2-Benzanthracene 2,3-Benzanthracene Benzene 1,2-Benzo[<i>a</i>]pyrene Biphenyl	C A A A B	$\begin{array}{r} -2.03, -2.54 \\ -0.54, -1.20 \\ -2.08 \\ -0.76 \\ -1.48 \\ -1.91 \end{array}$		
Chrusana	C	-2.70		
1,2,5,6-Dibenzanthracene 1,2-Dihydronaphthalene 9,10-Dimethylanthracene 2,3-Dimethylnaphthalene 9,10-Diphenylanthracene	A C A A A	$\begin{array}{c} -1.22 \\ -1.00, -1.26 \\ -2.57 \\ -0.65 \\ -1.08, -1.34 \\ -0.92 \end{array}$		
Fluorene	A B C	-1.25 -1.65 -2.65		
Hexamethylbenzene	A B	-1.16 -1.52		
Indan Indene	A A C	-1.59, -2.02 -1.23 -2.81		
1-Methylnaphthalene	A B C	-1.24 -1.53 -2.46		
2-Methylnaphthalene	A B C	-1.22 -1.55 -2.46		
Naphthalene	A B	-1.34 -1.72		
Pentamethylbenzene	A	-1.28		
Phenanthrene	В А В	-1.62 -1.23 -1.68		
Phenylacetylene Pyrene	C C A	$-2.46, -2.71 \\ -2.37 \\ -1.06, -1.24$		
trans-Stilbene	B C	-1.51 -2.26		

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

Compound	Solvent system	<i>E</i> _{1/2}
Aron	natic hydrocarbons (continued)	
Styrene	С	-2.35
1,2,3,5-Tetramethylbenzene	Α	-1.50, -1.99
1,2,4,5-Tetramethylbenzene	A	-1.29
Tetraphenylethylene	C	-2.05
1,4,5,8-Tetraphenylnaphthalene	A	-1.39
Toluene	A	-1.98
1,2,3-Trimethylbenzene	A	-1.58
1,2,4-Trimethylbenzene	A	-1.41
1,3,5-Trimetnyibenzene	A	- 1.50
Trinhanylana	B	-1.90
Triphenylmethane		-1.40, -1.55
	C .	1.01, 1.08, 1.90
o-Xylene	A	-1.58, -2.04
<i>m</i> -Xylene	A	- 1.58
<i>p</i> -xylene	A	-1.50
	Aldehydes	
Acetaldehyde	B, pH 6.8–13	-1.89
Benzaldehyde	McIlvaine buffer, pH 2.2	-0.96, -1.32
Bromoacetaldehyde	pH 8.5	-0.40
	pH 9.8	-1.58, -1.82
Chloroacetaldehyde	Ammonia buffer, pH 8.4	-1.06, -1.66
Cinnamaldehyde	Buffer + EtOH, pH 6.0	-0.9, -1.5, -1.7
Crotonaldehyde	B, pH 1.3–2.0	-0.92
	Ammonia buffer, pH 8.0	- 1.30
Dichloroacetaldehyde	Ammonia buffer, pH 8.4	-1.03, -1.67
3,7-Dimethyl-2,6-octadienal	$0.1 M \text{Et}_4 \text{NI}$	-1.56, -2.22
Formaldehyde	0.05 M KOH+0.1 M KCl. pH	-1.59
· · · · · · · · · · · · · · · · · · ·	12.7	
2-Furaldehyde	pH 1-8	-0.86-0.07 pH
-	pH 10	-1.43
Glucose	Phosphate buffer, pH 7	- 1.55
Glyceraldehyde	Britton-Robinson buffer, pH 5.0	-1.47
5	Britton-Robinson buffer, pH 8.0	- 1.55
Glycolaldehyde	0.1 M KOH, pH 13	-1.70
Glyoxal	B, pH 3.4	- 1.41
4-Hydroxybenzaldehyde	Britton-Robinson buffer, pH 1.8	-1.16
	Britton-Robinson buffer, pH 6.8	- 1.45
4-Hydroxy-2-methoxybenzaldehyde	McIlvaine buffer, pH 2.2	- 1.05
· · · · · ·	McIlvaine buffer, pH 5.0	-1.16, -1.36
	McIlvaine buffer, pH 8.0	- 1.47
o-Methoxybenzaldehyde	Britton-Robinson buffer, pH 1.8	- 1.02
	Britton-Robinson buffer, pH 6.8	- 1.49

Britton-Robinson buffer, pH 1.8

Britton-Robinson buffer, pH 6.8

Buffer+10% EtOH, pH 2.0

A, pH 4.5

p-Methoxybenzaldehyde

m-Nitrobenzaldehyde

Methyl glyoxal

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

(Continued)

-1.17

-1.48-0.83

-0.28, -1.20

Compound	Solvent system	E _{1/2}
	Aldehydes (continued)	
Phthalaldehyde 2-Propenal (acrolein)	Buffer, pH 3.1 Buffer, pH 7.3 pH 4.5	$-0.64, -1.07 \\ -0.89, -1.29 \\ -1.36$
Propionaldehyde Pyrrole-2-carbaldehyde Salicylaldehyde	pH 9.0 0.1 <i>M</i> LiOH, pH 13 0.1 <i>M</i> HCl+50% EtOH McIlvaine buffer, pH 2.2 McIlvaine buffer, pH 5.0 McIlvaine buffer, pH 8.0	$ \begin{array}{r} -1.1 \\ -1.93 \\ -1.25 \\ -0.99, -1.23 \\ -1.20, -1.30 \\ -1.32 \\ \end{array} $
Trichloroacetaldehyde	Ammonia buffer, pH 8.4 0.1 <i>M</i> KCl+50% EtOH	-1.35, -1.66 -1.55
	Ketones	
Acetone Acetophenone	B, pH 9.3 C D+McIlvaine buffer, pH 4.9 D+McIlvaine buffer, pH 7.2 D+McIlvaine buffer, pH 1.3	-1.52 -2.46 -1.33 -1.58 -1.08
7H-Benz[de]anthracen-7-one Benzil	0.1 N $H_2SO_4+75\%$ MeOH D+McIlvaine buffer, pH 1.3 D+McIlvaine buffer, pH 4.9	-0.96 -0.27 -0.50
Benzoin Benzophenone	D+McIlvaine buffer, pH 1.3 D+McIlvaine buffer, pH 8.6 D+McIlvaine buffer, pH 1.3	-0.90 -1.49 -0.94
Benzoylacetone	D+McIlvaine buffer, pH 8.6 Buffer, pH 2.6 Buffer, pH 5.3 and pH 7.6 Buffer, pH 9.7	-1.36 -1.60 -1.68 -1.72
Bromoacetone 2,3-Butanedione 3-Buten-2-one Butyrophenone	0.1 <i>M</i> LiCl 0.1 <i>M</i> HCl 0.1 <i>M</i> KCl 0.1 <i>M</i> NH ₄ Cl+50% EtOH	-0.29 -0.84 -1.42 -1.55
D-Carvone Chloroacetone Coumarin	0.1 M Et ₄ NI+80% EtOH 0.1 M LiCl McIlvaine buffer, pH 2.0 McIlvaine buffer, pH 5.0	-1.71 -1.18 -0.95 -1.11, -1.44 -2.45
<i>cis</i> -Dibenzovlethylene	D, pH 1	-0.30
trans-Dibenzoylethylene	D, pH 11 D, pH 1 D, pH 1 D, pH 11	$ \begin{array}{r} -0.62, -1.65 \\ -0.12 \\ -0.57, -1.52 \end{array} $
Dibenzoylmethane 9,10-Dihydro-9-oxoanthracene 1,5-Diphenyl-1,5-pentanedione 1,5-Diphenylthiocarbazone	D, pH 1.3 D, pH 11.3 D, pH 2.0 A D, pH 7.0	$ \begin{array}{r} -0.59 \\ -1.30, -1.62 \\ -0.93 \\ -2.10 \\ -0.6 \end{array} $
Flavanone	Acetate buffer+Me₄NOH+50% 2-PrOH, pH 6.1 Acetate buffer+Me₄NOH+50% 2-PrOH, pH 9.6	1.30 1.51

TABLE 2.68	Half-Wave Potentials (vs.	Saturated Calomel	Electrode) of	Organic Compounds
at 25°C (Conti	inued)			

Compound	Solvent system	$E_{1/2}$
	Ketones (continued)	
Fluorescein Fructose	Acetate buffer, pH 2.0 Phthalate buffer, pH 5.0 Borate buffer, pH 10.1 0.02 <i>M</i> LiCl	$ \begin{array}{r} -0.50 \\ -0.65 \\ -1.18, -1.44 \\ -1.76 \end{array} $
Girard derivatives of aliphatic ketones	рН 8.2	-1.52
o-Hydroxyacetophenone p-Hydroxyacetophenone	D, pH 5 D, pH 5	1.36 1.46
1,2,3-Indantrione (ninhydrin) α-Ionone Isatin	Britton-Robinson buffer, pH 2.5 Britton-Robinson buffer, pH 4.5 Britton-Robinson buffer, pH 6.8 Britton-Robinson buffer, pH 9.2 C Phosphate buffer+citrate buffer, pH 2.9 Phosphate buffer+citrate buffer, pH 4.3 Phosphate buffer+citrate buffer, pH 5.4	$\begin{array}{c} -0.67, -0.83\\ -0.73, -1.01\\ -0.10, -0.90, -1.20\\ -1.35\\ -1.59, -2.08\\ -0.3, -0.5\\ -0.3, -0.5\\ -0.8\end{array}$
4-Methyl-3,5-heptadien-2-one 4-Methyl-2,6-heptanedione 4-Methyl-3-penten-2-one	A A D+McIlvaine buffer, pH 1.3 D+McIlvaine buffer, pH 11.3	0.64 1.28 1.01 1.60
4-Phenyl-3-buten-2-one Phthalide Phthalimide	D, pH 1.3 D, pH 8.6 0.1 <i>M</i> Bu₄NI+50% dioxane pH 4.2	-0.72 -1.27 -0.20 -1.1, -1.5
Dhara	рН 9.7	-1.2, -1.4
Quinalizarin	Phosphate buffer+1% EtOH, pH 8.0	-0.56
Testosterone	D+Britton-Robinson buffer, pH 2.6	- 1.20
	D+Britton-Robinson buffer, pH 5.8 D+Britton-Robinson buffer, pH 8.8	- 1.40 - 1.53, - 1.79

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

Quinones

Anthraquinone	Acetate buffer +40% dioxane,	-0.51
	pH 5.6	
	Phosphate buffer+40% dioxane, pH 7.9	-0.71
o-Benzoquinone	Britton-Robinson buffer, pH 7.0	+0.20
	Britton-Robinson buffer, pH 9.0	+0.08
2,3-Dimethylnaphthoquinone	D, pH 5.4	-0.22
1,2-Naphthoquinone	Phosphate buffer, pH 5.0	-0.03
	Phosphate buffer, pH 7.0	-0.13
1,4-Naphthoquinone	Britton-Robinson buffer, pH 7.0	-0.07
	Britton-Robinson buffer, pH 9.0	-0.19

Compound	Solvent system	E _{1/2}		
Acids				
Acetic acid	А	-2.3		
Acrylic acid	pH 5.6	- 0.85		
Adenosine-5'-phosphoric acid	HClO ₄ +KClO ₄ , pH 2.2	-1.13		
4-Aminobenzenesulfonic acid	0.05 <i>M</i> Me₄NI	-1.58		
3-Aminobenzoic acid	pH 5.6	-0.67		
Anthranilic acid	pH 5.6	-0.67		
Ascorbic acid	Britton-Robinson buffer, pH 3.4 Britton-Robinson buffer, pH 7.0	+0.17 -0.06		
Barbituric acid	Borate buffer, pH 9.3	- 0.04		
Benzoic acid	Α	-2.1		
Benzoylformic acid	Britton-Robinson buffer, pH 2.2	-0.48		
	Britton-Robinson buffer, pH 5.5	-0.85, -1.26		
	Britton-Robinson buffer, pH 7.2	-0.98, -1.25		
	Britton-Robinson buffer, pH 9.2	- 1.25		
Bromoacetic acid	pH 1.1	-0.54		
2-Bromopropionic acid	pH 2.0	-0.39		
Crotonic acid	С	- 1.94		
Dibromoacetic acid	pH 1.1	-0.03, -0.59		
Dichloroacetic acid	pH 8.2	-1.57		
5,5-Diethylbarbituric acid	Borate buffer, pH 9.3	0.00		
Flavanol	D, pH 5.6 D, pH 7.7	- 1.25 - 1.40		
Folic acid	Britton-Robinson buffer, pH 4.6	-0.73		
Formic acid	0.1 <i>M</i> KCl	- 1.66		
Fumaric acid	HCl+KCl, pH 2.6	-0.83		
	Acetate buffer, pH 4.0	-0.93		
	Acetate buffer, pH 5.9	- 1.20		
2,4-Hexadienedioic acid	Acetate buffer, pH 4.5	-0.97		
Iodoacetic acid	pH 1	-0.16		
Maleic acid	Britton-Robinson buffer, pH 2.0	-0.70		
	Britton-Robinson buffer, pH 4.0	-0.97		
	Britton-Robinson buffer, pH 6.0	-1.11, -1.30		
	Britton-Robinson buffer, pH 10.0	-1.51		
Mercaptoacetic acid	B, pH 6.8	-0.38		
Methacrylic acid	D+0.1 <i>M</i> LiCl	- 1.69		
Nitrobenzoic acids	Buffer + 10% EtOH, pH 2.0	-0.2, -0.7		
Oxalic acid	B, pH 5.4–6.1	- 1.80		
2-Oxo-1,5-pentanedioic acid	HCI+KCI, pH 1.8	-0.59		
	Ammonia buffer, pH 8.2	-1.30		
2-Oxopropionic acid	Britton-Robinson buffer, pH 5.6			
	Britton Robinson buffer, pH 0.7	-1.22, -1.55		
	Billion-Kooliison bullet, pH 9.7	-1.51		
Phenolphthalein	Phthalate buffer, pH 2.5	-0.67		
	Phthalate butter, pH 4.7	-0.80		
Dioria agid	D, pH 9.0	-0.98, -1.35		
FICHC ACIO	pri 4.2			
	pri 11.7	-0.50, -0.50, -0.96		

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

Compound	Solvent system	E _{1/2}		
Acids (continued)				
1,2,3-Propenetricarboxylic acid	рН 7.0	-2.1		
Trichloroacetic acid	Ammonia buffer, pH 8.2	-0.84, -1.57		
	Phosphate buffer, pH 10.4	-0.9, -1.6		
3,4,5-Trihydroxybenzoic acid	Phosphate buffer, pH 2.9	+0.50		
	Phosphate buffer, pH 8.8	+0.1		
p-Aminophenol	Britton-Robinson buffer, pH 6.3	+0.14		
	Britton-Robinson buffer, pH 8.6	-0.04		
	Britton-Robinson buffer, pH 12.0	-0.16		
o-Chlorophenol	pH 5.6	-0.63		
<i>m</i> -Chlorophenol	pH 5.6	-0.73		
p-Chlorophenol	pH 5.6	-0.65		
o-Cresol	pH 5.6	-0.56		
m-Cresol	pH 5.6	-0.61		
p-Cresol	pH 5.6	-0.54		
1,2-Dihydroxybenzene	pH 5.6	-0.35		
1,3-Dihydroxybenzene	pH 5.6	-0.61		
1,4-Dihydroxybenzene	pH 5.6	-0.23		
o-Methoxyphenol	pH 5.6	-0.46		
<i>m</i> -Methoxyphenol	pH 5.6	-0.62		
p-Methoxyphenol	pH 5.6	-0.41		
1-Naphthol	Α	-0.74		
2-Naphthol	A	-0.82		
1,2,3-Trihydroxybenzene	Britton-Robinson buffer, pH 3.1	+0.35		
	Britton-Robinson buffer, pH 6.5	+0.10		
	Britton-Robinson buffer, pH 9.5	-0.10		

TABLE 2.68	Half-Wave Potentials (vs.	Saturated Calomel	Electrode) of Organic	Compounds
at 25°C (Conti	inued)			

Bromobenzene	Α	
	С	-2.32
1-Bromobutane	С	-2.27
Bromoethane	С	-2.08
Bromomethane	С	-1.63
1-Bromonaphthalene (also 2-bromonaphthal- ene)	A	-1.55, -1.60
3-Bromo-1-propene	С	-1.29
p-Bromotoluene	A	- 1.72
Carbon tetrachloride	С	-0.78, -1.71
Chlorobenzene	A	- 2.07
Chloroform	C	- 1.63
Chloromethane	C	- 2.23
3-Chloro-1-propene	C	- 1.91
α-Chlorotoluene	C	- 1.81
p-Chlorotoluene	A	- 1.76
N-Chloro-p-toluenesulfonamide	$0.5 M \text{ K}_2 \text{SO}_4$	-0.13
9,10-Dibromoanthracene	A	-1.15, -1.47
<i>p</i> -Dibromobenzene	C	-2.10
1,2-Dibromobutane	D+1% Na ₂ SO ₃	- 1.45

Compound	Solvent system	$E_{1/2}$
H	lalogen compounds (continued)	
Dibromoethane meso-2,3-Dibromosuccinic acid Dichlorobenzenes Dichloromethane Diodomethane	C Acetate buffer, pH 4.0 C C	$ \begin{array}{r} -1.48 \\ -0.23, -0.89 \\ -2.5 \\ -1.60 \\ -1.12, -1.53 \end{array} $
Hexabromobenzene Hexachlorobenzene	C C	-0.8, -1.5 -1.4, -1.7
Iodobenzene Iodoethane Iodomethane	A C A C	-1.72 -1.67 -2.12 -1.63
Tetrabromomethane Tetraidomethane Tribromomethane α, α, α -Trichlorotoluene	C C C C	$\begin{array}{c} -0.3, -0.75, -1.49\\ -0.45, -1.05, -1.46\\ -0.64, -1.47\\ -0.68, -1.65, -2.00\end{array}$

TABLE 2.68	Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds
at 25°C (Cont	inued)

Nitro and nitroso compounds

1,2-Dinitrobenzene	Phthalate buffer, pH 2.5	-0.12, -0.32, -1.26
1,3-Dinitrobenzene	Phthalate buffer, pH 9.2 Phthalate buffer, pH 2.5	-0.38, -0.74 -0.17, -0.29 -0.46, -0.68
1,4-Dinitrobenzene	Phthalate buffer, pH 2.5 Borate buffer, pH 9.2	-0.12, -0.33 -0.35, -0.80
Methyl nitrobenzoates	Buffer+10% EtOH, pH 2.0	-0.20 to $-0.25-0.68 to -0.74$
p-Nitroacetophenone	Britton-Robinson buffer, pH 2.2 Britton-Robinson buffer, pH 10.0	-0.16, -0.61, -1.09 -0.51, -1.40, -1.73
o-Nitroaniline	0.03 <i>M</i> LiCl+0.02 <i>M</i> benzoic acid in EtOH	-0.88
<i>m</i> -Nitroaniline	Britton-Robinson buffer, pH 4.3 Britton-Robinson buffer, pH 7.2 Britton-Robinson buffer, pH 9.2	-0.3, -0.8 -0.5 -0.7
<i>p</i> -Nitroaniline	pH 2.0	-0.36
o-Nitroanisole	Buffer + 10% FtOH pH 2.0	-0.29 - 0.58
<i>p</i> -Nitroanisole	Buffer $\pm 10\%$ EtOH, pH 2.0	-0.35, -0.64
1-Nitroanthraquinone	Britton-Robinson huffer, pH 7.0	-0.16
Nitrobenzene	HC1+KC1+8% EtOH, pH 0.5	-0.16, -0.76
	Phthalate buffer, pH 2.5	-0.30
	Borate buffer, pH 9.2	-0.70
Nitrocresols	Britton-Robinson buffer, pH 2.2	-0.2 to -0.3
	Britton-Robinson buffer, pH 4.5	-0.4 to -0.5
	Britton-Robinson buffer, pH 8.0	-0.6
Nitroethane	Britton-Robinson buffer+30% MeOH, pH 1.8	-0.7
	Britton-Robinson buffer+30% MeOH, pH 4.6	-0.8

Compound	Solvent system	E _{1/2}		
Nitro and nitroso compounds (continued)				
2-Nitrohydroquinone	Phosphate buffer+citrate buffer, pH 2.1	-0.2		
	Phosphate buffer+citrate buffer, pH 5.2	-0.4		
	Phosphate buffer+citrate buffer, pH 8.0	0.5		
Nitromethane	Britton-Robinson buffer+30% MeOH, pH 1.8	-0.8		
	Britton-Robinson buffer+30% MeOH, pH 4.6	-0.85		
o-Nitrophenol	Britton-Robinson buffer+10% EtOH, pH 2.0	-0.23		
	Britton-Robinson buffer + 10% EtOH, pH 4.0	- 0.4		
	Britton-Robinson buffer+10% EtOH, pH 8.0	- 0.65		
	Britton-Robinson buffer+10% EtOH, pH 10.0	-0.80		
<i>m</i> -Nitrophenol	Britton-Robinson buffer + 10% EtOH, pH 2.0	-0.37		
	EtOH, pH 4.0	-0.40		
	EtOH, pH 8.0	-0.64		
n Nitronkanol	EtOH, pH 10.0 Pritton Pohinson buffer + 10%	-0.76		
p-muophenoi	EtOH, pH 2.0 Britton Pohinson buffer + 10%	0.50		
	EtOH, pH 4.0 Britton-Robinson buffer + 10%	-0.82		
1-Nitropropane	EtOH, pH 8.0 Britton-Robinson buffer+30%	-0.73		
	MeOH, pH 1.8 Britton-Robinson buffer+30%	0.88		
	MeOH, pH 8.6 Britton-Robinson buffer+30%	0.95		
2-Nitropropane	MeOH, pH 8.0 McIlvaine buffer, pH 2.1	- 0.53		
Nitrosobenzene	McIlvaine buffer, pH 5.1 McIlvaine buffer, pH 6.0	-0.81 -0.03		
1-Nitroso-2-naphthol	McIlvaine buffer, pH 8.0 D+buffer, pH 4.0	-0.14 + 0.02		
	D+buffer, pH 7.0 D+buffer, pH 9.0	-0.20 -0.31		
N-Nitrosophenylhydroxylamine o-Nitrotoluene	pH 2.0 Phthalate buffer, pH 2.5 Phthalate buffer, pH 7.4	-0.84 -0.35, -0.66 -0.60, -1.06		

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

Compound	Solvent system	E _{1/2}
Nitro an		
<i>m</i> -Nitrotoluene (also <i>p</i> -nitrotoluene)	Phthalate buffer, pH 2.5 Phthalate buffer, pH 7.4	$-0.30, -0.53 \\ -0.58, -1.06$
Tetranitromethane 1,3,5-Trinitrobenzene	pH 12.0 Phthalate buffer, pH 4.1 Borate buffer, pH 9.2	$\begin{array}{c} -0.41 \\ -0.20, -0.29, -0.34 \\ -0.34, -0.48, -0.65 \end{array}$
Heterocyc	lic compounds containing nitrogen	
Acridine	D, pH 8.3	-0.80, -1.45
Cinchonine	B, pH 3	-0.90
2-Furanmethanol	Britton-Robinson buffer, pH 2.0 Britton-Robinson buffer, pH 5.8	-0.96 -1.38, -1.70
2-Hydroxyphenazine 8-Hydroxyquinoline	Britton-Robinson buffer, pH 4.0 B, pH 5.0 Phosphate buffer, pH 8.0	$-0.24 \\ -1.12 \\ -1.18, -1.71$
3-Methylpyridine 4-Methylpyridine	D+0.1 <i>M</i> LiCl D+0.1 <i>M</i> LiCl	- 1.76 - 1.87
Phenazine	Phosphate buffer+citrate buffer, pH 7.0	-0.36
Pyridine	Phosphate buffer+citrate buffer, pH 7.0	- 1.75
Pyridine-2-carboxylic acid	B, pH 4.1 B, pH 9.3	-1.10 -1.48, -1.94
Pyridine-3-carboxylic acid	0.1 M HCl	- 1.08
Pyridine-4-carboxylic acid	Britton-Robinson buffer, pH 6.1 pH 9.0	-1.14 -1.39, -1.68
Pyrimidine	Citrate buffer, pH 3.6 Ammonia buffer, pH 9.2	-0.92, -1.24 -1.54
Quinoline-8-carboxylic acid Quinoxaline	pH 9 Phosphate buffer+citrate buffer, pH 7.0	-1.11 -0.66, -1.52

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

Azo, hydrazine, hydroxylamine, and oxime compounds

D, pH 4.0	-0.20
D, pH 7.0	-0.50
Buffer+20% EtOH, pH 6.3	-0.30
Buffer, pH 2.0	-0.88
Buffer, pH 5.6	-1.08
Buffer, pH 8.2	-1.67
0.13 M NaOH, pH 13.0	-0.30
Ammonia buffer, pH 9.6	- 1.63
Britton-Robinson buffer, pH 9.3	- 0.09
Britton-Robinson buffer, pH 4.6	-1.42
Britton-Robinson buffer, pH 9.2	- 1.65
	D, pH 4.0 D, pH 7.0 Buffer+20% EtOH, pH 6.3 Buffer, pH 2.0 Buffer, pH 5.6 Buffer, pH 8.2 0.13 <i>M</i> NaOH, pH 13.0 Ammonia buffer, pH 9.6 Britton-Robinson buffer, pH 9.3 Britton-Robinson buffer, pH 9.3

Compound Solvent system		E _{1/2}			
Azo, hydrazine, hydroxylamine, and oxime compounds (continued)					
Oxamide	Acetate buffer	- 1.55			
Phenylhydrazine	McIlvaine buffer, pH 2	+0.19			
	0.13 M NaOH, pH 13.0	-0.36			
Phenylhydroxylamine	McIlvaine buffer+10% EtOH, pH 2	- 0.68			
	McIlvaine buffer+10 EtOH, pH 4-10	-0.33 0.061 pH			
Salicylaldoxime	Phosphate buffer, pH 5.4	- 1.02			
Thiosemicarbazide	Borate buffer, pH 9.3	-0.26			
Thiourea	0.1 M sulfuric acid	+0.02			
Inc	licators and dyestuffs				
Brilliant Green	HCl+KCl, pH 2.0	-0.2, -0.5			
Indigo carmine	pH 2.5	-0.24			
Indigo disulfonate	pH 7.0	-0.37			
Malachite Green G	HCl+KCl, pH 2.0	-0.2, -0.5			
Metanil yellow	Phosphate buffer+1% EtOH, pH 7.0	-0.51			
Methylene blue	Britton-Robinson buffer, pH 4.9	-0.15			
	Britton-Robinson buffer, pH 9.2	-0.30			
Methylene green	Phosphate buffer+1% EtOH, pH 7.0	-0.12			
Methyl orange	Phosphate buffer+1% EtOH, pH 7.0	-0.51			
Morin	D, pH 7.6	- 1.7			
Neutral red	Britton-Robinson buffer, pH 2.0	-0.21			
	Britton-Robinson buffer, pH 7.0	-0.57			
Peroxide					
Ethyl peroxide	0.02 M HCl	-0.2			

TABLE 2.68 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C (*Continued*)

2.18 ELECTRICAL CONDUCTIVITY

	Temp.	mhos/cm		Temp.	mhos/cm
Liquid	°C	or ohm ⁻¹ \cdot cm ⁻¹	Liquid	°CÎ	or ohm ⁻¹ · cm ⁻¹
Acetaldehvde	15	1.7×10^{-6}	Epichlorohydrin	25	3.4×10^{-8}
Acetamide	100	$< 4.3 \times 10^{-5}$	Ethyl acetate	25	$<1 \times 10^{-9}$
Acetic acid	0	5×10^{-9}	Ethyl acetoacetate	25	4×10^{-8}
	25	1.12×10^{-8}	Ethyl alcohol	25	1.35×10^{-9}
Acetic anhydride	0	1×10^{-6}	Ethylamine	0	4×10^{-7}
<i>j</i>	25	4.8×10^{-7}	Ethyl benzoate	25	$<1 \times 10^{-9}$
Acetone	18	2×10^{-8}	Ethyl bromide	25	$< 2 \times 10^{-8}$
	25	6×10^{-8}	Ethylene bromide	19	$< 2 \times 10^{-10}$
Acetonitrile	20	7×10^{-6}	Ethylene chloride	25	3×10^{-8}
Acetophenone	25	6×10^{-9}	Ethyl ether	25	$< 4 \times 10^{-13}$
Acetyl bromide	25	$2.4 imes 10^{-6}$	Ethylidene chloride	25	$< 1.7 \times 10^{-8}$
Acetyl chloride	25	4×10^{-7}	Ethyl iodide	25	$< 2 \times 10^{-8}$
Alizarin	233	1.45×10^{-6} (?)	Ethyl isothiocyanate	25	1.26×10^{-7}
Allyl alcohol	25	7×10^{-6}	Ethyl nitrate	25	5.3×10^{-7}
Ammonia	- 79	$1.3 imes 10^{-7}$	Ethyl thiocyanate	25	$1.2 imes 10^{-6}$
Aniline	25	$2.4 imes 10^{-8}$	Eugenol	25	$< 1.7 \times 10^{-8}$
Anthracene	230	$3 imes 10^{-10}$, C		
Arsenic tribromide	35	$1.5 imes 10^{-6}$	Formamide	25	$4 imes 10^{-6}$
Arsenic trichloride	25	1.2×10^{-6}	Formic acid	18	$5.6 imes 10^{-5}$
				25	$6.4 imes 10^{-5}$
Benzaldehyde	25	1.5×10^{-7}	Furfural	25	$1.5 imes 10^{-6}$
Benzene		$7.6 imes 10^{-8}$			
Benzoic acid	125	3×10^{-9}	Gallium	30	36,800
Benzonitrile	25	5×10^{-8}	Glycerol	25	6.4×10^{-8}
Benzyl alcohol	25	1.8×10^{-6}	Glycol	25	3×10^{-7}
Benzylamine	25	$< 1.7 \times 10^{-8}$	Guaiacol	25	2.8×10^{-7}
Benzyl benzoate	25	$< 1 \times 10^{-9}$	Uastona		<1 × 10-13
Bromine	17.2	1.3×10^{-13}	Heptane	10	$< 1 \times 10^{-18}$
Bromobenzene	25	$<2 \times 10^{-11}$	Uudrogen bromide	10	×1 × 10 ···
Bromoform	25	$< 2 imes 10^{-8}$	Hydrogen oblomide	- 80	0×10^{-8}
iso-Butyl alcohol	25	$8 imes 10^{-8}$	Hydrogen euonide		1×10^{-1}
			Hydrogen iodide	ט ממ	3.3×10^{-7}
Capronitrile	25	$3.7 imes 10^{-6}$	Hydrogen aulfde	D.F. DD	2×10^{-11}
Carbon disulfide	1	$7.8 imes 10^{-18}$	Trydrogen sunde	D.F.	1 × 10
Carbon tetrachloride	18	4×10^{-18}	Iodine	110	1.3×10^{-10}
Chlorine	-70	$< 1 \times 10^{-16}$	100000		10
Chloroacetic acid	60	$1.4 imes 10^{-6}$	Kerosene	25	$< 1.7 \times 10^{-8}$
m-Chloroaniline	25	5×10^{-8}			
Chloroform	25	$< 2 imes 10^{-8}$	Mercury	0	10,629.6
Chlorohydrin	25	5×10^{-7}	Methyl acetate	25	$3.4 imes 10^{-6}$
m-Cresol	25	$< 1.7 \times 10^{-8}$	Methyl alcohol	18	4.4×10^{-7}
Cyanogen		$< 7 \times 10^{-9}$	Methyl ethyl ketone	25	1×10^{-7}
Cymene	25	$< 2 imes 10^{-8}$	Methyl iodide	25	$<\!2 imes 10^{-8}$
			Methyl nitrate	25	$4.5 imes 10^{-6}$
Dichloroacetic acid	25	7×10^{-8}	Methyl thiocyanate	25	$1.5 imes 10^{-6}$
Dichlorohydrin	25	1.2×10^{-5}		~-	
Diethylamine	- 33.5	$2.2 imes 10^{-9}$	Naphthalene	82	4×10^{-10}
Diethyl carbonate	25	1.7×10^{-8}	Nitrobenzene	0	5×10^{-9}
Diethyl oxalate	25	$7.6 imes 10^{-7}$	Nitromethane	18	6×10^{-7}
Diethyl sulfate	25	2.6×10^{-7}	o- or m-Nitrotoluene	25	$<2 \times 10^{-7}$
Dimethyl sulfate	0	1.6×10^{-7}	Nonane	25	$< 1.7 \times 10^{-8}$

TABLE 2.69 Electrical Conductivity of Various Pure Liquids

Liquid	Temp. °C	mhos/cm or ohm ⁻¹ · cm ⁻¹	Liquid	Temp. °C	mhos/cm or ohm ⁻¹ \cdot cm ⁻¹
Oleic acid	15	$<2 \times 10^{-10}$	Salicylaldehyde	25	1.6×10^{7}
			Stearic acid	80	$< 4 \times 10^{-13}$
Pentane	19.5	$< 2 \times 10^{-10}$	Sulfonyl chloride,	25	$2 imes 10^{-6}$
Petroleum		3×10^{-13}	SOCl ₂		
Phenetole	25	$< 1.7 imes 10^{-8}$	Sulfur	115	1×10^{-12}
Phenol	25	$< 1.7 \times 10^{-8}$		130	5×10^{-12}
Phenyl isothiocyanate	25	1.4×10^{-6}		440	1.2×10^{-7}
Phosgene	25	7×10^{-9}	Sulfur dioxide	35	1.5×10^{-8}
Phosphorus	25	4×10^{-7}	Sulfuric acid	25	1×10^{-2}
Phosphorus oxychloride	25	2.2×10^{-6}	Sulfuryl chloride,	25	3×10^{-8}
Pinene	23	$< 2 \times 10^{-10}$	SO ₂ Cl ₂		
Piperidine	25	$< 2 imes 10^{-7}$	7D - 1		$< 1 \times 10^{-14}$
Propionaldehyde	25	$8.5 imes 10^{-7}$	Toluene		$< 1 \times 10^{-14}$
Propionic acid	25	$< 1 \times 10^{-9}$	<i>o</i> -foluidine	25	$< 2 \times 10^{-8}$
Propionitrile	25	$< 1 \times 10^{-7}$	<i>p</i> -1 oluidine	100	6.2×10^{-8}
n-Propyl alcohol	18	5×10^{-8}	Trichloroacetic acid	25	3 X 10 ⁹
	25	2×10^{-8}	Trimethylamine	- 33.5	2.2×10^{-10}
iso-Propyl alcohol	25	3.5×10^{-6}	Turpentine		2×10^{-13}
n-Propyl bromide	25	${<}2 imes10^{-8}$	iso-Valeric acid	80	$< 4 \times 10^{-13}$
Pyridine	18	$5.3 imes 10^{-8}$	Water	18	4×10^{-8}
Quinoline	25	2.2×10^{-8}	Xylene		$< 1 \times 10^{-15}$

TABLE 2.69 Electrical Conductivity of Various Pure Liquids (*Continued*)

TABLE 2.70	Limiting Equivalen	t Ionic Conductance	s in A	queous Solutions
-------------------	--------------------	---------------------	--------	------------------

		Temperature, °C	
Ion	0	18	25
Fluoroacetate ⁻			44.4
Fluorobenzoate ⁻			33
Formate		47	54.6
Fumarate(2–)			61.8
Glutarate(2-)			52.6
Hydrogenoxalate $(1-)$			40.2
Iodoacetate ⁻			40.6
Lactate(1-)			38.8
Malate(2-)			58.8
Malonate(1-)			63.5
3-Methylbutanoate			32.7
Methylsulfonate ⁻			48.8
Naphthylacetate			28.4
1,8-Octanedioate(2-)			36
Octylsulfonate ⁻			29
Oxalate(2-)			74.11
Phenylacetate ⁻			30.6
<i>m</i> -Phthalate(2-)			54.7
o-Phthalate(2-)			52.3
Picrate ⁻			30.37
Propanoate			35.8
Propylsulfonate			37.1
Salicylate ⁻			36
Succinate(2-)			58.8
Tartrate(2–)		55	59.6
Trichloroacetate ⁻			36.6
Trimethylacetate			31.9

			Band	l Gap
Substance	Formula	Resis- tivity, ohm-cm	Conduc- tivity, eV	Photo Conduct, eV
POLYACENES				
Anthracene		300	0.83	_
Tetracene		10	0.85	3.6
Pyrene		300	1.01	3.2
Perylene		10	0.98	_
Chrysene		100	1.10	3.2
Coronene		0.2	1.15	_
Pyranthrene		10 ⁷	0.54	0.85

TABLE 2.71 Properties of Organic Semiconductors

			Banc	l Gap
Substance	Formula	Resis- tivity, ohm-cm	Conduc- tivity, eV	Photo Conduct, eV
POLYACENES WITH QUINONOID ATTACHEMENTS	O II			
Violanthrone		1000	0.39	0.84
Pyranthrone		10 ⁶	0.54	1.14
AZO-AROMATIC COMPOUNDS				
Indanthrone black		300	0.28	_
1,9,4,10-Anthradipyrimidine		1000	1.61	_

TABLE 2.71 Properties of Organic Semiconductors (Continued)

TABLE 2.71 Properties of Organic Semiconductors (Continued)

2.19 LINEAR FREE ENERGY RELATIONSHIPS

Many equilibrium and rate processes can be systematized when the influence of each substituent on the reactivity of substrates is assigned a characteristic constant σ and the reaction parameter ρ is known or can be calculated. The Hammett equation

$$\log \frac{K}{K^{\circ}} = \sigma \rho$$

describes the behavior of many *meta-* and *para-*substituted aromatic species. In this equation K° is the acid dissociation constant of the reference in aqueous solution at 25°C and *K* is the corresponding constant for the substituted acid. Separate sigma values are defined by this reaction for *meta* and *para* substituents and provide a measure of the total electronic influence (polar, inductive, and resonance effects) in the absence of conjugation effects. Sigma constants are not valid of substituents *ortho* to the reaction center because of anomalous (mainly steric) effects. The inductive effect is transmitted about equally to the *meta* and *para* positions. Consequently, σ_m is an approximate measure of a substituent's resonance effect. Values of Hammett sigma constants are listed in Table 2.72.

Taft sigma values σ^* perform a similar function with respect to aliphatic and alicyclic systems. Values of σ^* are listed in Table 2.72.

The reaction parameter ρ depends upon the reaction series but not upon the substituents employed. Values of the reaction parameter for some aromatic and aliphatic system are given in Tables 2.73 and 2.74.

Since substituent effects in aliphatic systems and in *meta* positions in aromatic systems are essentially inductive in character, σ^* and σ_m values are often related by the expression.

 $\sigma_m = 0.217 \sigma^* - 0.106$. Substituent effects fall off with increasing distance from the reaction center; generally a factor of 0.36 corresponds to the interposition of a $-CH_2$ - group, which enables σ^* values to be estimated for R-CH₂- groups not otherwise available.

Two modified sigma constants have been formulated for situations in which the substituent enters into resonance with the reaction center in an electron-demanding transition state (σ^{+}) or for an electron-rich transition state (σ^{-}). σ^{-} constants give better correlations in reactions involving phenols, anilines, and pyridines and in nucleophilic substitutions. Values of some modified sigma constants are given in Table 2.75.

	Hammett	Hammett constants	
Substituent	σ_m	σ_{p}	σ^*
—AsO ₃ H ⁻	-0.09	-0.02	0.06
$-B(OH)_2$	0.01	0.45	
—Br	0.39	0.23	2.84
-CH ₂ Br			1.00
<i>m</i> -BrC ₆ H ₄ —		0.09	
p-BrC ₆ H ₄ —		0.08	
	-0.07	-0.17	0.0
-CH ₂ CH ₃	-0.07	-0.15	-0.10
-CH ₂ CH ₂ CH ₃	-0.05	-0.15	-0.12
$-CH(CH_3)_2$	-0.07	-0.15	-0.19
$-CH_2CH_2CH_2CH_3$	-0.07	-0.16	-0.13
$-CH_2CH(CH_3)_2$	-0.07	-0.12	-0.13
$CH(CH_3)CH_2CH_3$		-0.12	-0.19
$-C(CH_3)_3$	-0.10	-0.20	-0.30
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃			-0.25
$-CH_2CH_2CH(CH_3)_2$			-0.17
$-CH_2C(CH_3)_3$		- 0.23	-0.12
-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃			-0.37
Cyclopropyl—	-0.07	-0.21	
Cyclohexyl—			-0.15
$-3,4-(CH_2)_2$ (fused)		- 0.26	
$-3,4-(CH_2)_3$ (fused ring)		-0.48	
$-3,4-(CH)_4$ (fused ring)	0.06	0.04	
$-CH=CH_2$	0.02		0.56
$-CH=C(CH_3)_2$			0.19
$-CH = CHCH_3$, trans			0.36
$-CH_2-CH=CH_2$			0.0
CH==CHC ₆ H ₅	0.14	-0.05	0.41
—C≡CH	0.21	0.23	2.18
$-C \equiv CC_6H_5$	0.14	0.16	1.35
$-CH_2-C\equiv CH$			0.81
$-C_6H_5$	0.06	-0.01	0.60
$p-CH_3C_6H_4$ —		-0.5	
Naphthyl— (both 1- and 2-)			0.75
$-CH_2C_6H_5$		0.46	0.22
$-CH_2CH_2-C_6H_5$			-0.06
$-CH(CH_3)C_6H_5$			0.37
$-CH(C_6H_5)_2$			0.41
$-CH_2 - C_{10}H_7$			0.44
2-Furoyl—			0.25
3-Indolyl—			-0.06
2-Thienyl—			1.31

TABLE 2.72 Hammett and Taft Substituent Constants

	Hammett	Taft	
Substituent	σ_m	σ_p	σ^*
2-Thienylmethylene—			0.31
СНО	0.36	0.22	
-COCH ₃	0.38	0.50	1.65
COCH ₂ CH ₂		0.48	
$-COCH(CH_3)_2$		0.47	
$-COC(CH_3)_3$		0.32	
COCF ₃	0.65		3.7
-COC ₆ H ₅	0.34	0.46	2.2
$-CONH_2$	0.28	0.36	1.68
CONHC ₆ H ₅			1.56
-CH ₂ COCH ₃			0.00
$-CH_2CONH_2$			0.51
$-CH_2CH_2CONH_2$			0.19
CH CONHC H			0.12
	-0.1	0.0	-1.06
-COOH	0.36	0.43	2.08
-CO-OCH	0.32	0.39	2.00
-CO-OCH ₂ CH ₂	0.37	0.45	2.12
-CH ₂ CO-OCH ₃			1.06
-CH ₂ CO-OCH ₂ CH ₃			0.82
-CH ₂ COO			- 0.06
-CH ₂ CH ₂ COOH	-0.03	-0.07	
-Cl	0.37	0.23	2.96
CCl ₃	0.47		2.65
-CHCl ₂			1.94
-CH ₂ Cl	0.12	0.18	1.05
-CH ₂ CH ₂ Cl			0.38
CH ₂ CCl ₃			0.75
-CH ₂ CH ₂ CCl ₃			0.25
-CH=CCl ₂			1.00
$-CH_2CH=CCl_2$			0.19
p-ClC ₆ H ₄ —		0.08	
— F	0.34	0.06	3.21
CF ₃	0.43	0.54	2.61
			2.05
CH ₂ F			1.10
$-CH_2CF_3$			0.90
$-CH_2CF_2CF_2CF_3$	0.12	0.02	0.87
$-C_6\Gamma_5$	-0.12	-0.03	
$-Ge(CH_3)_3$		0.0	
	0.00	0.0	0.49
11 T	0.00	0.00	2.46
-CHJ	0.55	0.20	0.85
	0.70	0.76	0.05
$-\mathbf{N}_{1}^{+}$	1.76	1.91	
$-N_2$ (azide)	0.33	0.08	2.62
-NH ₂	-0.16	-0.66	0.62
NH ₃ +	1.13	1.70	3.76
-CH ₂ -NH ₂			0.50
$-CH_2^NH_3^+$			2.24
-NH-CH ₃	-0.30	-0.84	

TABLE 2.72 Hammett and Taft Substituent Constants (Continued)

	Hammett constants		Taft	
Substituent	σ_m	σ_p	σ^*	
$-NH-C_2H_5$	-0.24	-0.61		
$-NH-C_4H_9$	-0.34	-0.51		
$-NH(CH_3)_2^+$			4.36	
$-NH_2$ $-CH_3^{\dagger}$	0.96		3.74	
$-NH_{2} - C_{2}H_{2}^{\dagger}$	0.96		3.74	
$-N(CH_3)_3^+$	0.88	0.82	4.55	
$-N(CH_3)_2$	-0.2	-0.83	0.32	
$-CH_2 - N(CH_3)^{\dagger}$			1.90	
$-N(CF_3)_2$	0.45	0.53		
$p-H_2N-C_6H_5-$		-0.30		
-NH-CO-CH ₃	0.21	0.00	1.40	
-NH-CO-C ₂ H ₅			1.56	
-NH-CO-C ₆ H ₅	0.22	0.08	1.68	
	0.25		1.62	
-NH-CO-NH ₂	0.18		1.31	
	-0.04	-0.34		
-NH-CO-OC ₂ H ₅	0.33		1.99	
-CH ₂ -NH-CO-CH ₃			0.43	
-NH-SO ₂ -C ₆ H ₅			1.99	
-NH-NH ₂	-0.02	-0.55		
-CN	0.56	0.66	3.30	
	0.17	0.01	1.30	
-NO		0.12		
-NO ₂	0.71	0.78	4.0	
$-CH_2 - NO_2$			1.40	
-CH - CH - NO			0.50	
-CH - CHNO	0.33	0.26	0.50	
$m \cap N - C H$	0.55	0.20		
$n \cap N - C H$		0.18		
(NO) C H - (niervl)	0.43	0.24		
$-N(CO-CH_1)(CO-CH_2)$	0.45	0.41	1 37	
-N(CO - CH) (nonhthyl)			1.57	
-0^{-}	-0.71	-0.52	1.05	
-0H	0.12	-0.32	1 34	
	0.12	-0.27	1.54	
	0.12	-0.27	1.61	
-0 - C H	0.10	-0.24	1.00	
-0 $-CH(CH)$	0.00	-0.45	1.08	
-0 $-C$ H	-0.05	-0.32	1.02	
$-\Omega$ cyclopentyl	0.05	0.52	1.00	
-O-cyclobexyl	0.20		1.02	
-O-CH -cyclobayy	0.29		1.01	
-0 $-C$ H	0.18	_0.32	2.43	
	0.25	-0.42	2,43	
-OCE	0.40	0.42		
34-0-CH - 0-	0.40			
34-0-(CH - 0) 0-		-0.12		
-0-0-0	0.30	0.12		
	0.59	0.51	3.86	
-0-N=C(CH)			1.81	
$-ONH^+$			1.01	
			2.92 0.27	
			0.27	

TABLE 2.72 Hammett and Taft Substituent Constants (Continued)

	Hammett constants		Taft
Substituent	σ_m	σ_p	σ^*
—СН ₂ —ОН	0.08	0.08	0.31
-CH ₂ -O-CH ₃			0.52
$-CH(OH)-CH_3$			0.12
$-CH(OH)-C_6H_5$			0.50
$p-HO-C_6H_4-$		-0.24	
$p-CH_3O-C_6H_4-$		-0.10	
$-CH_2-CH(OH)-CH_3$			- 0.06
$-CH_2-C(OH)(CH_3)_2$			-0.25
$-P(CH_3)_2$	0.1	0.05	
$-P(CH_3)_3^+$	0.8	0.9	
$-P(CF_3)_2$	0.6	0.7	
	0.2	0.26	
$-PO(OC_2H_5)_2$	0.55	0.60	1.69
-SH	0.25	0.15	1.68
-SCH ₃	0.15	0.00	1.56
$-S(CH_3)_2$	1.0	0.9	1.50
-SCH ₂ CH ₃	0.23	0.03	1.50
-SCH ₂ CH ₂ CH ₃			1,49
$-SCH_2CH_2CH_2CH_3$			1.44
-S-cyclonexyl	0.20		1.93
$-SC_6H_5$	0.30		1.87
$-SC(C_6H_5)_3$			0.69
			1.30
$-3Cn_2Cn_2C_6n_5$	0.03		1.44
	0.05		0.02
$-CH_2SCH_2C_6H_5$	0.40	0.50	0.37
SCF ₃	0.40	0.50	2.42
SCN	0.63	0.52	3.43
-S-CO-CH ₃	0.39	0.44	2.07
SO CH	0.54	0.40	2.07
-50-CH	0.52	0.49	2.24
-50-0.60			1 22
$-Cn_2 - SO - Cn_3$	0.60	0.68	1.55
-50_2 - $-CH_3$	0.00	0.08	3.08
$-SO_2 - CH_2CH_3$			3.68
$-SO_{2} - CH_{2}CH_{2}CH_{3}$	0.67		3.55
$-SO_2 - CF_1$	0.07	0.93	5.55
$-SO_2 - NH$	0.75	0.55	
$-CH_2 - SO_2 - CH_2$	0.40	0.57	1 38
$-SO^{-}$	0.05	0.09	0.81
-SO ₂ H	0100	0.50	010 x
-SeCH ₂	0.1	0.0	
-Se-cyclohexyl			2.37
—SeCN	0.67	0.66	3.61
$-Si(CH_3)_3$	-0.04	-0.07	-0.81
-Si(CH ₂ CH ₃) ₃		0.0	
$-Si(CH_3)_2C_6H_5$			-0.87
$-Si(CH_3)_2$ $-O$ $-Si(CH_3)_3$			-0.81
-CH ₂ Si(CH ₃) ₃	-0.16	-0.22	-0.25
-CH ₂ CH ₂ Si(CH ₃) ₃			-0.25
$-Sn(CH_3)_3$		0.0	
$Sn(CH_2CH_3)_3$		0.0	
	L	l	

TABLE 2.72 Hammett and Taft Substituent Constants (Continued)

Acid	pK° _a	ρ
Arenearsonic acids		
pK_1	3.54	1.05
pK_2	8.49	0.87
Areneboronic acids (in aqueous 25% ethanol)	9.70	2.15
Arenephosphonic acids		
pK_1	1.84	0.76
pK_2	6.97	0.95
α-Aryladoximes	10.70	0.86
Benzeneseleninic acids	4.78	1.03
Benzenesulfonamides (20°C)	10.00	1.06
Benzenesulfonanilides (20°C)		
$X-C_6H_4-SO_2-NH-C_6H_5$	8.31	1.16
C_6H_5 — SO_2 — NH — C_6H_4 — X	8.31	1.74
Benzoic acids	4.21	1.00
Cinnamic acids	4.45	0.47
Phenols	9.92	2.23
Phenylacetic acids	4.30	0.49
Phenylpropiolic acids (in aqueous 35% dioxane)	3.24	0.81
Phenylpropionic acids	4.45	0.21
Phenyltrifluoromethylcarbinols	11.90	1.01
Pyridine-1-oxides	0.94	2.09
2-Pyridones	11.65	4.28
4-Pyridones	11.12	4.28
Pyrroles	17.00	4.28
5-Substituted pyrrole-2carboxylic acids	2.82	1.40
Thiobenzoic acids	2.61	1.0
Thiophenols	6.50	2.2
Trifluoroacetophenone hydrates	10.00	1.11
5-Substituted topolones	6.42	3.10
Protonated cations of		
Acetophenones	-6.0	2.6
Anilines	4.60	2.90
C-Aryl-N-dibutylamidines (in aqueous 50% ethanol)	11.14	1.41
N,N-Dimethylanilines	5.07	3.46
Isoquinolines	5.32	5.90
1-Naphthylamines	3.85	2.81
2-Naphthylamines	4.29	2.81
Pyridines	5.18	5.90
Quinolines	4.88	5.90

TABLE 2.73 pK_a° and Rho Values for Hammett Equation

Acid	$pK^{\circ}{}_{a}$	ρ
RCOOH	4.66	1.62
RCH ₂ COOH	4.76	0.67
RC=C-COOH	2.39	1.89
$H_2C = C(R) - COOH$	4.39	0.64
$(CH_3)_2C = C(R) - COOH$	4.65	0.47
cis-C ₆ H ₅ —CH=C(R)—COOH	3.77	0.63
trans-C ₆ H ₅ —CH=C(R)—COOH	4.61	0.47
R—CO—CH ₂ —COOH	4.12	0.43
HON=C(R)-COOH	4.84	0.34
RCH ₂ OH	15.9	1.42
RCH(OH) ₂	14.4	1.42
R ₁ CO—NHR ₂	22.0	3.1*
$CH_3CO-C(R)=C(OH)CH_3$	9.25	1.78
CH ₃ CO—CH(R)—CO—OC ₂ H ₅	12.59	3.44
R—CO—NHOH	9.48	0.98
R_1R_2C =NOH (R_1 , R_2 not acyl groups)	12.35	1.18
(R)(CH ₃ CO)C=NOH	9.00	0.94
$RC(NO_2)_2H$	5.24	3.60
RSH	10.22	3.50
RCH ₂ SH	10.54	1.47
R—CO—SH	3.52	1.62
Protonated cations of		
RNH ₂	10.15	3.14
R ₁ R ₂ NH	10.59	3.23
$R_1R_2R_3N$	9.61	3.30
R_1R_2PH	3.59	2.61
$R_1R_2R_3P$	7.85	2.67

TABLE 2.74 pK_a° and Rho Values for Taft Equation

 $*\sigma^*$ for R₁CO and R₂.

Substituent	σ_m^+	σ_p^*	σ_p^-
	-0.07	-0.31	-0.17
$-C(CH_3)_3$	-0.06	-0.26	
C ₆ H ₅	0.11	-0.18	
—CF ₃	0.52	0.61	0.74
—F	0.35	-0.07	0.02
—Cl	0.40	0.11	0.23
—Br	0.41	0.15	0.26
—I	0.36	0.14	
—CN	0.56	0.66	0.88
—CHO			1.13
-CONH ₂			0.63
-COCH ₃			0.85
—СООН	0.32	0.42	0.73
COOCH ₃	0.37	0.49	0.66
COOCH ₂ CH ₃	0.37	0.48	0.68
$-N_{2}^{+}$			3.2
NH_2	0.16	-1.3	-0.66
$-N(CH_3)_2$		-1.7	
$-N(CH_3)_3^+$	0.36	0.41	
NHCOCH ₃		-0.60	
$-NO_2$	0.67	0.79	1.25
—OH		-0.92	
0-			-0.81
-OCH ₃	0.05	-0.78	-0.27
—SF ₅			0.70
-SCF ₃			0.57
-SO ₂ CH ₃			1.05
$-SO_2CF_3$			1.36

TABLE 2.75 Special Hammett Sigma Constants

2.20 POLYMERS

Polymers are mixtures of macromolecules with similar structures and molecular weights that exhibit some average characteristic properties. In some polymers long segments of linear polymer chains are oriented in a regular manner with respect to one another. Such polymers have many of the physical characteristics of crystals and are said to be *crystalline*. Polymers that have polar functional groups show a considerable tendency to be crystalline. Orientation is aided by alignment of dipoles on different chains. Van der Waals' interactions between long hydrocarbon chains may provide sufficient total attractive energy to account for a high degree of regularity within the polymers.

Irregularities such as branch points, comonomer units, and cross-links lead to *amorphous* polymers. They do not have true melting points but instead have glass transition temperatures at which the rigid and glasslike material becomes a viscous liquid as the temperature is raised.

Elastomers. Elastomers is a generic name for polymers that exhibit rubberlike elasticity. Elastomers are soft yet sufficiently elastic that they can be stretched several hundred percent under tension. When the stretching force is removed, they retract rapidly and recover their original dimensions.

Polymers that soften or melt and then solidify and regain their original properties on cooling are called *thermoplastic*. A thermoplastic polymer is usually a single strand of linear polymer with few if any cross-links.

Thermosetting Polymers. Polymers that soften or melt on warming and then become infusible solids are called *thermosetting*. The term implies that thermal decomposition has not taken place.

Thermosetting plastics contain a cross-linked polymer network that extends through the finished article, making it stable to heat and insoluble in organic solvents. Many molded plastics are shaped while molten and are then heated further to become rigid solids of desired shapes.

Synthetic Rubbers. Synthetic rubbers are polymers with rubberlike characteristics that are prepared from dienes or olefins. Rubbers with special properties can also be prepared from other polymers, such as polyacrylates, fluorinated hydrocarbons, and polyurethanes.

Structural Differences. Polymers exhibit structural differences. A *linear* polymer consists of long segments of single strands that are oriented in a regular manner with respect to one another. *Branched* polymers have substituents attached to the repeating units that extend the polymer laterally. When these units participate in chain propagation and link together chains, a *cross-linked* polymer is formed. A *ladder* polymer results when repeating units have a tetravalent structure such that a polymer consists of two backbone chains regularly cross-linked at short intervals.

Generally polymers involve bonding of the most substituted carbon of one monomeric unit to the least substituted carbon atom of the adjacent unit in a *head-to-tail* arrangement. Substituents appear on alternate carbon atoms. *Tacticity* refers to the configuration of substituents relative to the backbone axis. In an *isotactic* arrangement, substituents are on the same plane of the backbone axis; that is, the configuration at each chiral center is identical.

In a *syndiotactic* arrangement, the substituents are in an ordered alternating sequence, appearing alternately on one side and then on the other side of the chain, thus

In an *atactic* arrangement, substituents are in an unordered sequence along the polymer chains.

Copolymerization. Copolymerization occurs when a mixture of two or more monomer types polymerizes so that each kind of monomer enters the polymer chain. The fundamental structure resulting from copolymerization depends on the nature of the monomers and the relative rates of monomer reactions with the growing polymer chain. A tendency toward alternation of monomer units is common.

$$-X-Y-X-Y-X-Y-$$

Random copolymerization is rather unusual. Sometimes a monomer which does not easily form a homopolymer will readily add to a reactive group at the end of a growing polymer chain. In turn, that monomer tends to make the other monomer much more reactive.

In *graft copolymers* the chain backbone is composed of one kind of monomer and the branches are made up of another kind of monomer.

The structure of a *block copolymer* consists of a homopolymer attached to chains of another homopolymer.

$$-XXXX - YYY - XXXX - YYY -$$

Configurations around any double bond give rise to cis and trans stereoisomerism.

2.20.1 Additives

Antioxidants

Antioxidants markedly retard the rate of autoxidation throughout the useful life of the polymer. Chain-terminating antioxidants have a reactive —NH or —OH functional group and include compounds such as secondary aryl amines or hindered phenols. They function by transfer of hydrogen to free radicals, principally to peroxy radicals. Butylated hydroxytoluene is a widely used example.

Peroxide-decomposing antioxidants destroy hydroperoxides, the sources of free radicals in polymers. Phosphites and thioesters such as tris(nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, and dialkyl thiodipropionates are examples of peroxide-decomposing antioxidants.

Antistatic Agents

External antistatic agents are usually quaternary ammonium salts of fatty acids and ethoxylated glycerol esters of fatty acids that are applied to the plastic surface. Internal antistatic agents are compounded into plastics during processing. Carbon blacks provide a conductive path through the bulk of the plastic. Other types of internal agents must bloom to the surface after compounding in order to be active. These latter materials are ethoxylated fatty amines and ethoxylated glycerol esters of fatty acids, which often must be individually selected to match chemically each plastic type.

Antistatic agents require ambient moisture to function. Consequently their effectiveness is dependent on the relative humidity. They provide a broad range of protection at 50% relative humidity. Much below 20% relative humidity, only materials which provide a conductive path through the bulk of the plastic to ground (such as carbon black) will reduce electrostatic charging.

Chain-Transfer Agents

Chain-transfer agents are used to regulate the molecular weight of polymers. These agents react with the developing polymer and interrupt the growth of a particular chain. The products, however, are free radicals that are capable of adding to monomers and initiating the formation of new chains. The overall effect is to reduce the average molecular weight of the polymer without reducing the rate of polymerization. Branching may occur as a result of chain transfer between a growing but rather short chain with another and longer polymer chain. Branching may also occur if the radical end of a growing chain abstracts a hydrogen from a carbon atom four or five carbons removed from the end. Thiols are commonly used as chain-transfer agents.

Coupling Agents

Coupling agents are molecular bridges between the interface of an inorganic surface (or filler) and an organic polymer matrix. Titanium-derived coupling agents interact with the free protons at the inorganic interface to form organic monomolecular layers on the inorganic surface. The titanate-coupling-agent molecule has six functions:

$$\frac{1}{(RO)_m} - Ti - (O - Y - R^2 - Z)_n$$

where

Туре	m	n
Monoalkoxy	1	3
Coordinate	4	2
Chelate	1	2

Function 1 is the attachment of the hydrolyzable portion of the molecule to the surface of the inorganic (or proton-bearing) species.

Function 2 is the ability of the titanate molecule to transesterify.

Function 3 affects performance as determined by the chemistry of alkylate, carboxyl, sulfonyl, phenolic, phosphate, pyrophosphate, and phosphite groups.

Function 4 provides van der Waals' entanglement via long carbon chains.

Function 5 provides thermoset reactivity via functional groups such as methacrylates and amines.

Function 6 permits the presence of two or three pendent organic groups. This allows all functionality to be controlled to the first-, second-, or third-degree levels.

Silane coupling agents are represented by the formula

 $Z-R-SiY_3$

where Y represents a hydrolyzable group (typically alkoxy); Z is a functional organic group, such as amino, methacryloxy, epoxy; and R typically is a small aliphatic linkage that serves to attach the functional organic group to silicon in a stable fashion. Bonding to surface hydroxy groups of inorganic compounds is accomplished by the $-SiY_3$ portion, either by direct bonding of this group or more commonly via its hydrolysis product $-Si(OH)_3$. Subsequent reaction of the functional organic group with the organic matrix completes the coupling reaction and establishes a covalent chemical bond from the organic phase through the silane coupling agent to the inorganic phase.

Flame Retardants

Flame retardants are thought to function via several mechanisms, dependent upon the class of flame retardant used. Halogenated flame retardants are thought to function principally in the vapor phase either as a diluent and heat sink or as a free-radical trap that stops or slows flame propagation. Phosphorus compounds are thought to function in the solid phase by forming a glaze or coating over the substrate that prevents the heat and mass transfer necessary for sustained combustion. With some additives, as the temperature is increased, the flame retardant acts as a solvent for the polymer, causing it to melt at lower temperatures and flow away from the ignition source.

Mineral hydrates, such as alumina trihydrate and magnesium sulfate heptahydrate, are used in highly filled thermoset resins.

Foaming Agents (Chemical Blowing Agents)

Foaming agents are added to polymers during processing to form minute gas cells throughout the product. Physical foaming agents include liquids and gases. Compressed nitrogen is often used in injection molding. Common liquid foaming agents are short-chain aliphatic hydrocarbons in the C_5 to C_7 range and their chlorinated or fluorinated analogs.

The chemical foaming agent used varies with the temperature employed during processing. At relatively low temperatures (15 to 200°C), the foaming agent is often 4,4'-oxybis-(benzenesul-fonylhydrazide) or *p*-toluenesulfonylhydrazide. In the midrange (160 to 232°C), either sodium hydrogen carbonate or 1,1' azobisformamide is used. For the high range (200 to 285°C), there are *p*-toluenesulfonyl semicarbazide, 5-phenyltetrazole and analogs, and trihydrazinotriazine.

Inhibitors

Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process.

Lubricants

Materials such as fatty acids are added to reduce the surface tension and improve the handling qualities of plastic films.

Plasticizers

Plasticizers are relatively nonvolatile liquids which are blended with polymers to alter their properties by intrusion between polymer chains. Diisooctyl phthalate is a common plasticizer. A plasticizer must be compatible with the polymer to avoid bleeding out over long periods of time. Products containing plasticizers tend to be more flexible and workable.

Ultraviolet Stabilizers

2-Hydroxybenzophenones represent the largest and most versatile class of ultraviolet stabilizers that are used to protect materials from the degradative effects of ultraviolet radiation. They function by absorbing ultraviolet radiation and by quenching electronically excited states.

Hindered amines, such as 4-(2,2,6,6-tetramethylpiperidinyl) decanedioate, serve as radical scavengers and will protect thin films under conditions in which ultraviolet absorbers are ineffective. Metal salts of nickel, such as dibutyldithiocarbamate, are used in polyolefins to quench singlet oxygen or electronically excited states of other species in the polymer. Zinc salts function as peroxide decomposers.

Vulcanization and Curing

Originally, vulcanization implied heating natural rubber with sulfur, but the term is now also employed for curing polymers. When sulfur is employed, sulfide and disulfide cross-links form between polymer chains. This provides sufficient rigidity to prevent *plastic flow*. Plastic flow is a process in which coiled polymers slip past each other under an external deforming force; when the force is released, the polymer chains do not completely return to their original positions.

Organic peroxides are used extensively for the curing of unsaturated polyester resins and the polymerization of monomers having vinyl unsaturation. The -O-O bond is split into free radicals which can initiate polymerization or cross-linking of various monomers or polymers.

Plastics

Homopolymer. Acetal homopolymers are prepared from formaldehyde and consist of high-molecular-weight linear polymers of formaldehyde.

The good mechanical properties of this homopolymer result from the ability of the oxymethylene chains to pack together into a highly ordered crystalline configuration as the polymers change from the molten to the solid state.

Key properties include high melt point, strength and rigidity, good frictional properties, and resistance to fatigue. Higher molecular weight increases toughness but reduces melt flow.

Copolymer. Acetal copolymers are prepared by copolymerization of 1,3,5-trioxane with small amounts of a comonomer. Carbon-carbon bonds are distributed randomly in the polymer chain. These carbon-carbon bonds help to stabilize the polymer against thermal, oxidative, and acidic attack.

Acrylics

Poly(methyl Methacrylate). The monomer used for poly(methyl methacrylate), 2-hydroxy-2-methylpropanenitrile, is prepared by the following reaction:

2-Hydroxy-2-methylpropanenitrile is then reacted with methanol (or other alcohol) to yield methacrylate ester. Free-radical polymerization is initiated by peroxide or azo catalysts and produce poly(methyl methacrylate) resins having the following formula:

Key properties are improved resistance to heat, light, and weathering. This polymer is unaffected by most detergents, cleaning agents, and solutions of inorganic acids, alkalies, and aliphatic hydrocarbons. Poly(methyl methacrylate) has light transmittance of 92% with a haze of 1 to 3% and its clarity is equal to glass.

Poly(methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula:

Resins vary from soft, elastic, film-forming materials to hard plastics.

Poly(acrylic Acid) and Poly(methacrylic Acid). Glacial acrylic acid and glacial methacrylic acid can be polymerized to produce water-soluble polymers having the following structures:

$$\begin{bmatrix} -CH_2 - CH_{-} \\ I \\ COOH \end{bmatrix}_n \begin{bmatrix} CH_3 \\ I \\ -CH_2 - C- \\ I \\ COOH \end{bmatrix}_n$$

These monomers provide a means for introducing carboxyl groups into copolymers. In copolymers these acids can improve adhesion properties, improve freeze-thaw and mechanical stability of polymer dispersions, provide stability in alkalies (including ammonia), increase resistance to attack by oils, and provide reactive centers for cross-linking by divalent metal ions, diamines, or epoxides.

Functional Group Methacrylate Monomers. Hydroxyethyl methacrylate and dimethylaminoethyl methacrylate produce polymers having the following formulas:

The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent crosslinking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamine-formaldehyde resin). Hydroxyl groups promote adhesion to polar substrates.

Use of dimethylaminoethyl (also *tert*-butylaminoethyl) methacrylate as a monomer permits the introduction of pendent amino groups which can serve as sites for secondary cross-linking, provide a way to make the copolymer acid-soluble, and provide anchoring sites for dyes and pigments.

Poly(acrylonitrile). Poly(acrylonitrile) polymers have the following formula:

Alkyds

Alkyds are formulated from polyester resins, cross-linking monomers, and fillers of mineral or glass. The unsaturated polyester resins used for thermosetting alkyds are the reaction products of poly-functional organic alcohols (glycols) and dibasic organic acids.

Key properties of alkyds are dimensional stability, colorability, and arc track resistance. Chemical resistance is generally poor.

Alloys

Polymer alloys are physical mixtures of structurally different homopolymers or copolymers. The mixture is held together by secondary intermolecular forces such as dipole interaction, hydrogen bonding, or van der Waals' forces.

Homogeneous alloys have a single glass transition temperature which is determined by the ratio of the components. The physical properties of these alloys are averages based on the composition of the alloy.

Heterogeneous alloys can be formed when graft or block copolymers are combined with a compatible polymer. Alloys of incompatible polymers can be formed if an interfacial agent can be found.

Allyls

Diallyl Phthalate (and Diallyl 1,3-Phthalate). These allyl polymers are prepared from

These resulting polymers are solid, linear, internally cyclized, thermoplastic structures containing unreacted allylic groups spaced at regular intervals along the polymer chain.

Molding compounds with mineral, glass, or synthetic fiber filling exhibit good electrical properties under high humidity and high temperature conditions, stable low-loss factors, high surface and volume resistivity, and high arc and track resistance.

Cellulosics

10.3.6.1 Cellulose Triacetate. Cellulose triacetate is prepared according to the following reaction:

Because cellulose triacetate has a high softening temperature, it must be processed in solution. A mixture of dichloromethane and methanol is a common solvent.

Cellulose triacetate sheeting and film have good gauge uniformity and good optical clarity. Cellulose triacetate products have good dimensional stability and resistance to water and have good folding endurance and burst strength. It is highly resistant to solvents such as acetone. Cellulose triacetate products have good heat resistance and a high dielectric constant.

Cellulose Acetate, Propionate, and Butyrate. Cellulose acetate is prepared by hydrolyzing the triester to remove some of the acetyl groups; the plastic-grade resin contains 38 to 40% acetyl. The propionate and butyrate esters are made by substituting propionic acid and its anhydride (or butyric acid and its anhydride) for some of the acetic acid and acetic anhydride. Plastic grades of celluloseacetate-propionate resin contain 39 to 47% propionyl and 2 to 9% acetyl; cellulose-acetate-butyrate resins contain 26 to 39% butyryl and 12 to 15% acetyl.

These cellulose esters form tough, strong, stiff, hard plastics with almost unlimited color possibilities. Articles made from these plastics have a high gloss and are suitable for use in contact with food.

Cellulose Nitrate. Cellulose nitrate is prepared according to the following reaction:

 $C_6H_{10}O_5 + HNO_3 \rightarrow [-C_6H_7O_2(OH)(ONO_2)_2-]_n$

The nitrogen content for plastics is usually about 11%, for lacquers and cement base it is 12%, and for explosives it is 13%. The standard plasticizer added is camphor.

Key properties of cellulose nitrate are good dimensional stability, low water absorption, and toughness. Its disadvantages are its flammability and lack of stability to heat and sunlight.

Ethyl Cellulose. Ethyl cellulose is prepared by reacting cellulose with caustic to form caustic cellulose, which is then reacted with chloroethane to form ethyl cellulose. Plastic-grade material contains 44 to 48% ethoxyl.

Although not as resistant as cellulose esters to acids, it is much more resistant to bases. An outstanding feature is its toughness at low temperatures.

Rayon. Viscose rayon is obtained by reacting the hydroxy groups of cellulose with carbon disulfide in the presence of alkali to give xanthates. When this solution is poured (spun) into an acid medium, the reaction is reserved and the cellulose is regenerated (coagulated).

Epoxy

Epoxy resin is prepared by the following condensation reaction:

The condensation leaves epoxy end groups that are then reacted in a separate step with nucleophilic compounds (alcohols, acids, or amines). For use as an adhesive, the epoxy resin and the curing resin (usually an aliphatic polyamine) are packaged separately and mixed together immediately before use.

Epoxy novolac resins are produced by glycidation of the low-molecular-weight reaction products of phenol (or cresol) with formaldehyde. Highly cross-linked systems are formed that have superior performance at elevated temperatures.

Fluorocarbon

10.3.8.1 *Poly(tetrafluoroethylene).* Poly(tetrafluoroethylene) is prepared from tetrafluoroethylene and consists of repeating units in a predominantly linear chain:

$$F_2C = CF_2 \rightarrow [-CF_2 - CF_2 -]_n$$

Tetrafluoroethylene polymer has the lowest coefficient of friction of any solid. It has remarkable chemical resistance and a very low brittleness temperature $(-100^{\circ}C)$. Its dielectric constant and loss factor are low and stable across a broad temperature and frequency range. Its impact strength is high.

Fluorinated Ethylene-Propylene Resin. Polymer molecules of fluorinated ethylene-propylene consist of predominantly linear chains with this structure:

$$\begin{bmatrix} -CF_2 - CF_2 - CF_2 - CF_- \\ I \\ CF_3 \end{bmatrix}_n$$

Key properties are its flexibility, translucency, and resistance to all known chemicals except molten alkali metals, elemental fluorine and fluorine precursors at elevated temperatures, and concentrated perchloric acid. It withstands temperatures from -270° to 250° C and may be sterilized repeatedly by all known chemical and thermal methods.

Perfluoroalkoxy Resin. Perfluoroalkoxy resin has the following formula:

It resembles polytetrafluoroethylene and fluorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150°C. *Poly(vinylidene Fluoride).* Poly(vinylidene fluoride) consists of linear chains in which the predominant repeating unit is

$$[-CH_2-CF_2-]_n$$

It has good weathering resistance and does not support combustion. It is resistant to most chemicals and solvents and has greater strength, wear resistance, and creep resistance than the preceding three fluorocarbon resins.

Poly(1-Chloro-1,2,2-Trifluoroethylene). Poly(1-chloro-1,2,2-trifluoroethylene consists of linear chains in which the predominant repeating unit is

It possesses outstanding barrier properties to gases, especially water vapor. It is surpassed only by the fully fluorinated polymers in chemical resistance. A few solvents dissolve it at temperatures above 100°C, and it is swollen by a number of solvents, especially chlorinated solvents. It is harder and stronger than perfluorinated polymers, and its impact strength is lower.

Ethylene-Chlorotrifluoroethylene Copolymer. Ethylene-chlorotrifluoroethylene copolymer consists of linear chains in which the predominant 1:1 alternating copolymer is

$$\begin{bmatrix} -CH_2 - CH_2 - CF_2 - CF_- \\ I \\ CI \end{bmatrix}_n$$

This copolymer has useful properties from cryogenic temperatures to 180°C. Its dielectric constant is low and stable over a broad temperature and frequency range .

Ethylene-Tetrafluoroethylene Copolymer. Ethylene-tetrafluoroethylene copolymer consists of linear chains in which the repeating unit is

$$[-CH_2-CH_2-CF_2-CF_2-]_n$$

Its properties resemble those of ethylene-chlorotrifluoroethylene copolymer.

Poly(vinyl Fluoride). Poly(vinyl fluoride) consists of linear chains in which the repeating unit is

$$[-CH_2-CHF-]_n$$

It is used only as a film, and it has good resistance to abrasion and resists staining. It also has outstanding weathering resistance and maintains useful properties from -100 to 150° C.

Nitrile Resins

The principal monomer of nitrile resins is acrylonitrile (see "Polyacrylonitrile"), which constitutes about 70% by weight of the polymer and provides the polymer with good gas barrier and chemical resistance properties. The remainder of the polymer is 20 to 30% methylacrylate (or styrene), with 0 to 10% butadiene to serve as an impact-modifying termonomer.

Melamine Formaldehyde

The monomer used for preparing melamine formaldehyde is formed as follows:

Hexamethylolmelamine can further condense in the presence of an acid catalyst; ether linkages can also form (see "Urea Formaldehyde"). A wide variety of resins can be obtained by careful selection of pH, reaction temperature, reactant ratio, amino monomer, and extent of condensation. Liquid coating resins are prepared by reacting methanol or butanol with the initial methylolated products. These can be used to produce hard, solvent-resistant coatings by heating with a variety of hydroxy, carboxyl, and amide functional polymers to produce a cross-linked film.

Phenolics

Phenol-Formaldehyde Resin. Phenol-formaldehyde resin is prepared as follows:

 $C_6H_5OH + H_2C = O \rightarrow [-C_6H_2(OH)CH_2 -]_n$

One-Stage Resins. The ratio of formaldehyde to phenol is high enough to allow the thermosetting process to take place without the addition of other sources of cross-links.

Two-Stage Resins. The ratio of formaldehyde to phenol is low enough to prevent the thermosetting reaction from occurring during manufacture of the resin. At this point the resin is termed *novolac* resin. Subsequently, hexamethylenetetramine is incorporated into the material to act as a source of chemical cross-links during the molding operation (and conversion to the thermoset or cured state).

Polyamides

Nylon 6, 11, and 12. This class of polymers is polymerized by addition reactions of ring compounds that contain both acid and amine groups on the monomer.

Nylon 6 is polymerized from 2-oxohexamethyleneimine (6 carbons); nylon 11 and 12 are made this way from 11- and 12-carbon rings, respectively.

10.3.12.2 Nylon 6/6, 6/9, and 6/12. As illustrated below, nylon 6/6 is polymerized from 1,6-hexanedioic acid (six carbons) and 1,6-hexanediamine (six carbons).

HOOC—(CH₂)₄—COOH + H₂N—CH₂—(CH₂)₄—CH₂—NH₂ →
1,6-Hexanedioic acid 1,6-Hexanediamine

$$\begin{bmatrix} -NH-(CH_2)_6 - NH - C - (CH_2)_4 - C - I \end{bmatrix}$$

L

Poly(hexamethylene 1,6-hexanediamide)

ő

Other nylons are made this way from direct combinations of monomers to produce types 6/9, 6/10, and 6/12.

Nylon 6 and 6/6 possess the maximum stiffness, strength, and heat resistance of all the types of nylon. Type 6/6 has a higher melt temperature, whereas type 6 has a higher impact resistance and better processibility. At a sacrifice in stiffness and heat resistance, the higher analogs of nylon are useful primarily for improved chemical resistance in certain environments (acids, bases, and zinc chloride solutions) and for lower moisture absorption.

Aromatic nylons, $[-NH-C_6H_4-CO-]_n$ (also called aramids), have specialty uses because of their improved clarity.

Poly(amide-imide)

Poly(amide-imide) is the condensation polymer of 1,2,4-benzenetricarboxylic anhydride and various aromatic diamines and has the general structure:

It is characterized by high strength and good impact resistance, and retains its physical properties at temperatures up to 260°C. Its radiation (gamma) resistance is good.

Polycarbonate

Polycarbonate is a polyester in which dihydric (or polyhydric) phenols are joined through carbonate linkages. The general-purpose type of polycarbonate is based on 2,2-bis(4'-hydroxybenzene)propane (bisphenol A) and has the general structure:

Polycarbonates are the toughest of all thermoplastics. They are window-clear, amazingly strong and rigid, autoclavable, and nontoxic. They have a brittleness temperature of -135° C.

Polyester

Poly(butylene Terephthalate). Poly(butylene terephthalate) is prepared in a condensation reaction between dimethyl terephthalate and 1,4-butanediol and its repeating unit has the general structure

This thermoplastic shows good tensile strength, toughness, low water absorption, and good frictional properties, plus good chemical resistance and electrical properties.

Poly(ethylene Terephthalate). Poly(ethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure.

The resin has the ability to be oriented by a drawing process and crystallized to yield a highstrength product.

Unsaturated Polyesters. Unsaturated polyesters are produced by reaction between two types of dibasic acids, one of which is unsaturated, and an alcohol to produce an ester. Double bonds in the body of the unsaturated dibasic acid are obtained by using maleic anhydride or fumaric acid.

PCTA Copolyester. Poly(1,4-cyclohexanedimethylene terephthalic acid) (PCTA) copolyester is a polymer of cyclohexanedimethanol and terephthalic acid, with another acid substituted for a portion of the terephthalic acid otherwise required. It has the following formula:

Polyimides. Polyimides have the following formula:

They are used as high-temperature structural adhesives since they become rubbery rather than melt at about 300°C.

Poly(methylpentene)

Poly(methylpentene) is obtained by a Ziegler-type catalytic polymerization of 4-methyl-1-pentene. Its key properties are its excellent transparency, rigidity, and chemical resistance, plus its resistance to impact and to high temperatures. It withstands repeated autoclaving, even at 150°C.

Polyolefins

10.3.17.1 Polyethylene. Polymerization of ethylene results in an essentially straight-chain high-molecular-weight hydrocarbon.

$$CH_2 = CH_2 \rightarrow [-CH_2 - CH_2 -]_n$$

Branching occurs to some extent and can be controlled. Minimum branching results in a "highdensity" polyethylene because of its closely packed molecular chains. More branching gives a less compact solid known as "low-density" polyethylene. A key property is its chemical inertness. Strong oxidizing agents eventually cause some oxidation, and some solvents cause softening or swelling, but there is no known solvent for polyethylene at room temperature. The brittleness temperature is -100° C for both types. Polyethylene has good low-temperature toughness, low water absorption, and good flexibility at subzero temperatures.

Polypropylene. The polymerization of propylene results in a polymer with the following structure:

$$CH_2 = CH - CH_3 \rightarrow \begin{bmatrix} -CH_2 - CH - \\ I \\ CH_3 \end{bmatrix}_{n}$$

The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer.

Polypropylene is translucent and autoclavable and has no known solvent at room temperature. It is slightly more susceptible to strong oxidizing agents than polyethylene.

Polybutylene. Polybutylene is composed of linear chains having an isotactic arrangement of ethyl side groups along the chain backbone.

It has a helical conformation in the stable crystalline form.

Polybutylene exhibits high tear, impact, and puncture resistance. It also has low creep, excellent chemical resistance, and abrasion resistance with coilability.

Ionomer. Ionomer is the generic name for polymers based on sodium or zinc salts of ethylenemethacrylic acid copolymers in which interchain ionic bonding, occurring randomly between the long-chain polymer molecules, produces solid-state properties.

The abrasion resistance of ionomers is outstanding, and ionomer films exhibit optical clarity. In composite structures ionomers serve as a heat-seal layer.

Poly(phenylene Sulfide)

Poly(phenylene sulfide) has the following formula:

The recurring *para*-substituted benzene rings and sulfur atoms form a symmetrical rigid backbone.

The high degree of crystallization and the thermal stability of the bond between the benzene ring and sulfur are the two properties responsible for the polymer's high melting point, thermal stability, inherent flame retardance, and good chemical resistance. There are no known solvents of poly (phenylene sulfide) that can function below 205°C.

Polyurethane

10.3.19.1 Foams. Polyurethane foams are prepared by the polymerization of polyols with isocyanates. $H + O - CH_2 - CH_2 + OH + excess$ O = C = N O = C = N CH_3 O = C = N CH_3 CH_3 O = C = N CH_3 CH_3 CH_3

Flexible foams are used in mattresses, cushions, and safety applications. Rigid and semiflexible foams are used in structural applications and to encapsulate sensitive components to protect them against shock, vibration, and moisture. Foam coatings are tough, hard, flexible, and chemically resistant.

Elastomeric Fiber. Elastomeric fibers are prepared by the polymerization of polymeric polyols with diisocyanates.

The structure of elastomeric fibers is similar to that illustrated for polyurethane foams.

Silicones

Silicones are formed in the following multistage reaction :

$$R_2SiCl_2 + 2H_2O \rightarrow R_2Si(OH)_2 + 2HCl \downarrow$$
$$\downarrow$$
$$[--Si(R)_2 - O-]_n$$

The silanols formed above are unstable and under dehydration. On polycondensation, they give polysiloxanes (or silicones) which are characterized by their three-dimensional branched-chain structure. Various organic groups introduced within the polysiloxane chain impart certain characteristics and properties to these resins.

Methyl groups impart water repellency, surface hardness, and noncombustibility.

Phenyl groups impart resistance to temperature variations, flexibility under heat, resistance to abrasion, and compatibility with organic products.
2.724 SECTION TWO

Vinyl groups strengthen the rigidity of the molecular structure by creating easier cross-linkage of molecules.

Methoxy and alkoxy groups facilitate cross-linking at low temperatures.

Oils and gums are nonhighly branched- or straight-chain polymers whose viscosity increases with the degree of polycondensation.

Styrenics

Polystyrene Polystyrene has the following formula:

Polystyrene is rigid with excellent dimensional stability, has good chemical resistance to aqueous solutions, and is an extremely clear material.

Impact polystyrene contains polybutadiene added to reduce brittleness. The polybutadiene is usually dispersed as a discrete phase in a continuous polystyrene matrix. Polystyrene can be grafted onto rubber particles, which assures good adhesion between the phases.

Acrylonitrile-Butadiene-Styrene (ABS) Copolymers. This basic three-monomer system can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resistance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene-acrylonitrile copolymer; these are dispersed in the continuous matrix of the copolymer.

Styrene-Acrylonitrile (SAN) Copolymers. SAN resins are random, amorphous copolymers whose properties vary with molecular weight and copolymer composition. An increase in molecular weight or in acrylonitrile content generally enhances the physical properties of the copolymer but at some loss in case of processing and with a slight increase in polymer color.

SAN resins are rigid, hard, transparent thermoplastics which process easily and have good dimensional stability—a combination of properties unique in transparent polymers.

Sulfones

Below are the formulas for three polysulfones.

The isopropylidene linkage imparts chemical resistance, the ether linkage imparts temperature resistance, and the sulfone linkage imparts impact strength. The brittleness temperature of polysulfones is -100° C. Polysulfones are clear, strong, nontoxic, and virtually unbreakable. They do not hydrolyze during autoclaving and are resistant to acids, bases, aqueous solutions, aliphatic hydrocarbons, and alcohols.

Thermoplastic Elastomers

Polyolefins. In these thermoplastic elastomers the hard component is a crystalline polyolefin, such as polyethylene or polypropylene, and the soft portion is composed of ethylene-propylene rubber. Attractive forces between the rubber and resin phases serve as labile cross-links. Some contain a chemically cross-linked rubber phase that imparts a higher degree of elasticity.

Styrene-Butadiene-Styrene Block Copolymers. Styrene blocks associate into domains that form hard regions. The midblock, which is normally butadiene, ethylene-butene, or isoprene blocks, forms the soft domains. Polystyrene domains serve as cross-links.

Polyurethanes. The hard portion of polyurethane consists of a chain extender and polyisocyanate. The soft component is composed of polyol segments.

Polyesters. The hard portion consists of copolyester, and the soft portion is composed of polyol segments.

Vinyl

Poly(vinyl Chloride) (PVC). Polymerization of vinyl chloride results in the formation of a polymer with the following formula:

When blended with phthalate ester plasticizers, PVC becomes soft and pliable. Its key properties are good resistance to oils and a very low permeability to most gases.

Poly(vinyl Acetate) Poly(vinyl acetate) has the following formula:

Poly(vinyl acetate) is used in latex water paints because of its weathering, quick-drying, recoatability, and self-priming properties. It is also used in hot-melt and solution adhesives.

Poly(vinyl Alcohol) Poly(vinyl alcohol) has the following formula:

$$\begin{bmatrix} -CH_2 - CH - \\ I \\ OH \end{bmatrix}_n$$

It is used in adhesives, paper coating and sizing, and textile warp size and finishing applications.

Poly(vinyl Butyral) Poly(vinyl butyral) is prepared according to the following reaction:

$$\begin{bmatrix} -CH_2 - CH_{-} \\ | \\ OH_{-} \end{bmatrix}_n + CH_3 CH_2 CH_2 CHO \rightarrow \begin{bmatrix} -CH_2 - CH_{-} - CH_{-} \\ | \\ O-CH_{-} - O \\ | \\ CH_2 - CH_2 - CH_3 \end{bmatrix}_n$$

Its key characteristics are its excellent optical and adhesive properties. It is used as the interlayer film for safety glass.

Poly(vinylidene Chloride) Poly(vinylidene chloride) is prepared according to the following reaction:

$$CH_2 = CCl_2 + CH_2 = CHCl \rightarrow [-CH_2 - CCl_2 - CH_2 - CHCl -]_n$$

Random copolymer

Urea Formaldehyde

The reaction of urea with formaldehyde yields the following products, which are used as monomers in the preparation of urea formaldehyde resin.

$$H_2N - CO - NH_2 + H_2CO \rightarrow H_2N - CO - NH - CH_2OH + HOCH_2 - NH - CO - NH - CH_2OH$$

The reaction conditions can be varied so that only one of those monomers is formed. 1-Hydroxymethylurea and 1,3-bis(hydroxymethyl)urea condense in the presence of an acid catalyst to produce urea formaldehyde resins. A wide variety of resins can be obtained by careful selection of the pH, reaction temperature, reactant ratio, amino monomer, and degree of polymerization. If the reaction is carried far enough, an infusible polymer network is produced.

Liquid coating resins are prepared by reacting methanol or butanol with the initial hydroxymethylureas. Ether exchange reactions between the amino resin and the reactive sites on the polymer produce a cross-linked film.

2.20.3 Rubber

Gutta Percha

Gutta percha is a natural polymer of isoprene (3-methyl-1,3-butadiene) in which the configuration around each double bond is *trans*. It is hard and horny and has the following formula:

Natural Rubber

Natural rubber is a polymer of isoprene in which the configuration around each double bond is *cis* (or Z):

Its principal advantages are high resilience and good abrasion resistance.

Chlorosulfonated Polyethylene

Chlorosulfonated polyethylene is prepared as follows:

$$\begin{bmatrix} -CH_2 - CH_2 -]_n + HSO_3CI \rightarrow \begin{bmatrix} -CH_2 - CH_1 \\ I \\ SO_3H \end{bmatrix}_n + HCI$$

Cross-linking, which can occur as a result of side reactions, causes an appreciable gel content in the final product.

The polymer can be vulcanized to give a rubber with very good chemical (solvent) resistance, excellent resistance to aging and weathering, and good color retention in sunlight.

Epichlorohydrin

Epichlorohydrin is a product of covulcanization of epichlorohydrin (epoxy) polymers with rubbers, especially *cis*-polybutadiene.

Its advantages include impermeability to air, excellent adhesion to metal, and good resistance to oils, weathering, and low temperature.

Nitrile Rubber (NBR, GRN, Buna N)

Nitrile rubber can be prepared as follows:

CH₂= CH−CH=CH₂ + CH₂=CH−CN →
2 parts 1 part

$$\begin{bmatrix} -CH_2-CH=CH-CH_2-CH_2-CH-CH_2-CH=CH-CH_2- \\ \\ CN \end{bmatrix}$$

Nitrile rubber is also known as nitrile-butadiene rubber (NBR), government rubber nitrile (GRN), and Buna N.

It possesses resistance to oils up to 120° C and excellent abrasion resistance and adhesion to metal.

Polyacrylate

Polyacrylate has the following formula:

$$\begin{bmatrix} -CH_2 - CH_1 \\ I \\ CN \end{bmatrix}_n$$

It possesses oil and heat resistance to 175°C and excellent resistance to ozone.

cis-Polybutadiene Rubber (BR)

cis-Polybutadiene is prepared by polymerization of butadiene by mostly, 1,4-addition.

$$CH_2 = CH - CH = CH_2 \rightarrow [-CH_2 - CH = CH - CH_2 -]_n$$

The polybutadiene produced is in the Z (or *cis*) configuration.

2.728 SECTION TWO

cis-Polybutadiene has good abrasion resistance, is useful at low temperature, and has excellent adhesion to metal.

Polychloroprene (Neoprene)

Polychloroprene is prepared as follows:

$$CH_2 = CH - C = CH_2 \rightarrow [-CH_2 - CH = C(Cl) - CH_2 -],$$

It has very good weathering characteristics, is resistant to ozne and to oil, and is heat-resistant to 100°C.

Ethylene-Propylene-Diene Rubber (EPDM)

Ethylene-propylene-diene rubber is polymerized from 60 parts ethylene, 40 parts propylene, and a small amount of nonconjugated diene. The nonconjugated diene permits sulfur vulcanization of the polymer instead of using peroxide.

It is a very lightweight rubber and has very good weathering and electrical properties, excellent adhesion, and excellent ozone resistance.

Polyisobutylene (Butyl Rubber)

Polyisobutylene is prepared as follows:

It possesses excellent ozone resistance, very good weathering and electrical properties, and good heat resistance.

(Z)-Polyisoprene (Synthetic Natural Rubber)

Polymerization of isoprene by 1,4-addition produces polyisoprene that has a *cis* (or Z) configuration.

Polysulfide Rubbers

Polysulfide rubbers are prepared as follows:

$$Cl - R - Cl + Na - S - S - S - S - Na \rightarrow HS[-R - S - S - S - S -]_nR - SH$$

where R can be

$$-CH_2CH_2-, -CH_2CH_2-O-CH_2CH_2-$$

or

$$-CH_2CH_2-O-CH_2-O-CH_2CH_2-.$$

Polysulfide rubbers posses excellent resistance to weathering and oils and have very good electrical properties.

Poly(vinyl Chloride) (PVC)

Poly(vinyl chloride) has the following structures:

C-CH	2	-7
L	CI	ц,

PVC polymer plus special plasticizers are used to produce flexible tubing which has good chemical resistance.

Silicone Rubbers

Silicone rubbers are prepared as follows:

Other groups may replace the methyl groups.

Silicone rubbers have excellent ozone and weathering resistance, good electrical properties, and good adhesion to metal.

Styrene-Butadiene Rubber (GRS, SBR, Buna S)

Styrene-butadiene rubber is prepared from the free-radical copolymerization of one part by weight of styrene and three parts by weight of 1,3-butadiene. The butadiene is incorporated by both 1,4-addition (80%) and 1,2-addition (20%). The configuration around the double bond of the 1,4-adduct is about 80% *trans*. The product is a random copolymer with these general features:

Styrene-butadiene rubber (SBR) is also known as government rubber styrene (GRS) and Buna S.

Urethane

See Table 2.79

2.730 SECTION TWO

TABLE 2.76 Names and Structures of Polymers

A	cronym, alternate		
Common name	name	Class	Structure of repeat unit
Amylose		Polysaccharide	HO HO HO HO HO HO HO HO
Cellulose	Rayon Cellophane Regenerated cellulose	Polysaccharide	$\begin{array}{c c} HO \\ \hline HO \\ CH_2 O \\ I \\ OH \end{array} \begin{array}{c} OH \\ OH \end{array} \begin{array}{c} CH_2OH \\ CH_2OH \\ OH \end{array} \begin{array}{c} OH \\ OH \end{array} \begin{array}{c} OH \\ OH \end{array} \begin{array}{c} OH \\ OH \end{array} $
Cellulose acetate	CA	Cellulose ester	$RO \rightarrow CH_{2}OR \rightarrow CH_{2}OR \rightarrow OR \rightarrow$
Cellulose nitrate	CN	Cellulose ester	$RO \rightarrow OR $
Hydroxypropylcellulose	HPC	Cellulose ester	$R = -(CH_2)_3 - OH$
Ladder polymer	Double-strand polymer		
Phenol-formaldehyde	Bakelite	Phenolic polymer	$\begin{array}{c} OH \\ \hline \\ $

	Acronym, alternate		
Common name	name	Class	Structure of repeat unit
Polyacetal		Polyacetal	$ \begin{array}{c} \begin{array}{c} H \\ I \\ C \\ R \end{array} \end{array} \right]_{n} $
Polyacetylene		Polyalkyne	+CH=CH
Polyacrylamide		Vinyl polymer	$ \begin{bmatrix} CH - CH_2 \\ I \\ C - NH_2 \end{bmatrix}_n $
Poly(acrylic acid)		Vinyl polymer	$ \begin{bmatrix} CH - CH_2 \\ I \\ C - O - H \end{bmatrix}_n^n $
Polyacrylonitrile	PAN	Vinyl polymer	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} CH - CH_2 \end{array} \\ I \\ CN \end{array} \end{array} \\ \begin{array}{c} \\ n \end{array} $
Poly(L-alanine)		Polypeptide	$ \underbrace{ \begin{bmatrix} \mathbf{NH} - \mathbf{CH} - \mathbf{CH} \\ \mathbf{H} \\ \mathbf{CH}_3 \end{bmatrix}^{\mathbf{O}} }_{\mathbf{CH}_3} \mathbf{CH}_{\mathbf{n}} $
Polyamide	Nylon	Polyamide	$\frac{O}{[NH-R-NH-C-R'-C]_n}$
Polyaniline		Polyamine	
Polybenzimidazole	PBI	Polyhetero- aromatic	$\left[\begin{array}{c} N \\ N \\ H \\ H \\ H \end{array} \right]_{n} \left[\begin{array}{c} N \\ N \\ H \\$
Polybenzobisoxazole	РВО	Polyhetero- aromatic	
Polybenzobisthiazole	РВТ	Polyhetero- aromatic	

(Continued)

Ā	cronym, alternate	~	
Common name	name	Class	Structure of repeat unit
Poly(µbenzyl-L- glutamate)	PBLG	Polypeptide	$ \begin{array}{c} & & & \\ & & & \\ - & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
1,2-Polybutadiene	PBD	Diene polymer	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} CH - CH_2 \\ I \\ CH = CH_2 \end{array} \end{array} \right]_n \end{array} $
cis-1,4-Polybutadiene	PBD	Diene polymer	
trans-1,4-Polybutadiene	PBD	Diene polymer	H
Poly(butene-1)	PB-1	Poly(<i>a</i> -olefin)	$ \begin{array}{c} \left(\begin{array}{c} CH - CH_2 \\ I \\ CH_2CH_3 \end{array} \right)_n \end{array} $
Polybutylene- terephthalate	PBT	Polyester	$ \begin{array}{c} O \\ H \\ (CH_2)_4 - O - C \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ H \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} O \\ H \\ \end{array}
Poly(ϵ -caprolactam)	Nylon-6	Polyamide	$ \underbrace{\stackrel{O}{\vdash} NH - \stackrel{\Pi}{C} - (CH_2)_5 \underbrace{]_n}_{n} $
Poly(ϵ -caprolactone)		Polyester	$\frac{O}{[]} NH - C - (CH_2)_5 \frac{1}{J_n}$
Polycarbonate	PC	Polyester	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_{3} \\ I \\ C \\ C \\ H_{3} \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ I \\ C \\ C \\ H_{3} \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ I \\ C \\ I \\ C \\ I \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ I \\ I \\ C \\ I \\ I \end{array} \begin{array}{c} \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \end{array} \begin{array}{c} \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \end{array} \begin{array}{c} \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \\ I \end{array} \begin{array}{c} O \\ I \\ I \\ I \\ I \\ I \end{array} \right) $
<i>cis, trans-</i> 1,4-Polychloro- prene	Neoprene	Diene polymer	$\begin{array}{c c} & & & \\ \hline \\ Cl & & \\ cis & \\ \hline \\ cis & \\ trans \end{array} $
Polychlorotrifluoro ethylene	PCTFE	Vinyl polymer	$ \begin{array}{ccc} Cl & F \\ I & I \\ -C - C \\ I & I \\ F & F \end{array} \right]_{n} $

Common name	name	Class	Structure of repeat unit
Polydiethylsiloxane	PDES	Polysiloxane	$ \begin{array}{c} CH_2CH_3\\ I\\Si-O\\I\\CH_2CH_3 \end{bmatrix}_n \end{array} $
Polydimethylsiloxane	PDMS	Polysiloxane	$ \begin{array}{c} \begin{array}{c} CH_3 \\ I \\ Si \\ -O \\ CH_3 \end{array} \end{array} \right]_n $
Polydiphenylsiloxane	PDPS	Polysiloxane	
Polyester		Polyester	$\frac{O}{[0]} O = R - O - C - R' - C \frac{O}{[1]}$
Polyetheretherketone	PEEK	Polyketone	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
Polyethylene	PE	Polyolefin	$- CH_2 - CH_2 - n$
Poly(ethylene imine)		Polyamine	$\frac{1}{2}$ CH ₂ - CH ₂ - NH $\frac{1}{2}$
Poly(ethylene oxide) [Poly(ethylene glycol)]	PEO (PEG)	Polyether	$-CH_2 - CH_2 - O - n$
Polyethylene- terephthalate	PET	Polyester	$ \begin{array}{c} O \\ (CH_2)_2 - O - C \end{array} \\ \begin{array}{c} O \\ \blacksquare \\ C \end{array} \\ \begin{array}{c} O \\ \blacksquare \\ C \end{array} \\ \begin{array}{c} O \\ \blacksquare \\ C \end{array} \\ \begin{array}{c} I \\ \blacksquare \\ C \end{array} \\ \begin{array}{c} I \\ \blacksquare \\ n \end{array} $
Polyglycine		Polypeptide	$-\frac{1}{1}$ NH - CH ₂ - C
Poly(hexamethylene adipamide)	Nylon-66	Polyamide	$\frac{O}{[NH-(CH_2)_6-NH-C-(CH_2)_4-C]_n}$
Polyhydroxybutyrate	РНВ	Polyester	$- \underbrace{\stackrel{CH_3}{\vdash} O - \stackrel{O}{CH} - CH_2 - \stackrel{U}{C} - \stackrel{U}{_n}}_{n}$

(C

2.734 SECTION TWO

Acr	onym, alternate		
Common name	name	Class	Structure of repeat unit
Polyimide	PI	Polyimide	$\left(\begin{array}{c} 0\\ \\ N\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Poly(imino-1,3-phenylene iminoisophthaloyl) (Nomex)		Polyaramide	$ \begin{array}{c} \begin{array}{c} 0 \\ HN \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ \end{array} \\ \begin{array}{c} 0 \\ \\ C \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \\ \end{array} \\ \begin{array}{c} 0 \\ \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$
Poly(imino-1,4-phenylene iminoterephthaloyl) (Kevlar)		Polyaramide	$ \begin{array}{c} \begin{array}{c} 0 \\ HN \end{array} \\ \hline \end{array} \\ - NH - C \end{array} \\ \begin{array}{c} 0 \\ H \\ C \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ C \end{array} \\ \hline \\ \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ C \end{array} \\ \hline \\ \\ \\ \end{array} \\ \begin{array}{c} 0 \\ H \\ C \end{array} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Polyisobutylene	Butyl rubber	Vinylidene polymer	$- \begin{bmatrix} CH_3 \\ I \\ C - CH_2 \\ I \\ CH_3 \end{bmatrix}_n$
Polyisocyanate	PIC	Polyamide	$ \begin{array}{c} & O \\ & \Pi \\ & \Pi \\ & \Pi \\ & \Pi \\ & R \end{array} \right)_{n} $
Polyisocyanide		Polyisocyanide	$ \begin{array}{c} N-R \\ \hline C \\ \end{array} \\ n \\ \end{array} $
cis-1,4-Polyisoprene	<i>cis</i> -PIP, Natural rubber	Diene polymer	H CH ₃
tran-1,4-Polyisoprene	<i>trans</i> -PIP, Gutta percha	Diene polymer	
Polylactam		Polyamide	$\frac{O}{\left(-\frac{1}{2} NH - (CH_2)_m - C \right)_n}$
Polylactone		Polyester	$\frac{\begin{array}{c} 0 \\ \parallel}{-} O - \begin{array}{c} C \\ - \end{array} - (CH_2)_m \end{array} \right]_n$
Poly(p-methyl styrene)		Vinyl polymer	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $

TABLE 2.76 Names and Structures of Polymers (Continued)

Common name	Acronym, alternate name	Class	Structure of repeat unit
Poly(methyl acrylate)	РМА	Vinyl polymer	$\begin{bmatrix} CH - CH_2 \\ I \\ C - O - CH_3 \end{bmatrix}_n$
Poly(methyl methacrylate)	РММА	Vinylidene polymer	$ \begin{array}{c} O \\ \hline \begin{array}{c} CH_3 \\ -C \\ C \\ -CH_2 \\ \hline \\ C \\ -O \\ -CH_3 \\ \end{array} \end{array} \right)_{n} $
Poly(α -methyl styrene)		Vinylidene polymer	$\begin{bmatrix} CH_3 \\ -C - CH_2 \end{bmatrix}_n$
Poly(methylene oxide)	РМО	Polyether	$- CH_2 - O - n$
Polymethylphenyl- siloxane	PMPS	Polysiloxane	$\begin{array}{c} CH_3 \\ \hline Si - O \\ \hline \end{array} \\ n \end{array}$
Polynitrile		Polyimine	$\frac{1}{C} = N \frac{1}{J_n}$
Polynucleotide		Polynucleotide	base f phosphate — sugar $-f_n$
Poly(<i>n</i> -pentene-2)		Poly(<i>a</i> -olefin)	$\begin{array}{c} - \begin{array}{c} - \begin{array}{c} CH - \begin{array}{c} CH - \begin{array}{c} H \end{array} \\ - \begin{array}{c} I \end{array} \\ - \begin{array}{c} I \end{array} \\ CH_3 \end{array} \end{array} \begin{array}{c} CH_2 CH_3 \end{array}$
Poly(<i>n</i> -pentene-1)		Poly(α -olefin)	$\begin{array}{c} - \left(\begin{array}{c} \text{CH} - \text{CH}_2 \end{array} \right)_n \\ \text{CH}_2 \text{CH}_2 \text{CH}_3 \end{array}$
Polypeptides [Poly(α-amino acid)]		Polypeptide	$\frac{\begin{array}{c} 0 \\ \parallel \\ - \\ R \\ R \end{array} = \frac{1}{n}$
Poly(<i>p</i> -phenylene oxide)	РРО	Polyether	

2.736 SECTION TWO

Ac	ronym, alternate	~	
Common name	name	Class	Structure of repeat unit
Poly(<i>p</i> -phenylene sulfide)	PPS	Polysulfide	
Poly(<i>p</i> -phenylene vinylene)		Polyaromatic	$ CH_2 - CH_$
Poly(<i>p</i> -phenylene)	PP	Polyaromatic	
Polyphosphate		Inorganic polymer	$ \underbrace{+}_{OR'}^{O} \xrightarrow{P-O-R-O}_{n} \xrightarrow{P}_{n} $
Polyphosphazene		Inorganic polymer	$-\left[\begin{array}{c} R\\ P\\ P\\ R' \end{array}\right]_{n}$
Polyphosphonate		Inorganic polymer	$ \begin{array}{c} O \\ P \\ P \\ R' \end{array} $
Polypropylene	PP	Poly(α -olefin)	$ \begin{array}{c} \begin{array}{c} CH - CH_2 \\ I \\ CH_3 \end{array} \end{array} \right]_n $
Poly(propylene oxide)	РРО	Polyether	$\frac{\left[\begin{array}{c} C - CH_2 - O \right]_n}{CH_3}$
Poly(pyromellitimide-1,4- diphenyl ether) (Kapton)		Polyimide O (N) (N) (N) (N) (N)	
Polypyrrole		Polyhetero- cyclic	
Polysilane		Inorganic polymer	$ \begin{array}{c} \begin{array}{c} R \\ I \\ Si \\ R' \end{array} \end{array} \right _{n} $

TABLE 2.76 Names and Structures of Polymers (Continued)

	Acronym, alternate		
Common name	name	Class	Structure of repeat unit
Polyailazane		Inorganic polymer	$ \begin{array}{c} \begin{array}{c} R \\ I \\ Si - N \\ I \\ R' \\ R'' \end{array} \right]_{n} \end{array} $
Polysiloxane	Silicones	Inorganic polymer	$\frac{\left[\begin{array}{c}R\\I\\Si-O\end{array}\right]_{n}}{\left[\begin{array}{c}K\\R'\end{array}\right]_{n}}$
Polystyrene	PS Styrofoam	Vinyl polymer	CH-CH ₂
Polysulfide	Thiokol	Polysulfide	$\frac{1}{\left[R - S_m \right]_n}$
Polysulfur		Polysulfur	$- s - s - s_n$
Polytetrafluoroethylene (Teflon)	PTFE	Poly(<i>a</i> -olefin)	$ \begin{array}{c} F & F \\ I & I \\ C - C \\ I \\ F & F \end{array} \right]_{n} $
Poly(tetramethylene oxide)	РТМО	Polyether	$\frac{1}{2} CH_2 - CH_2 - CH_2 - CH_2 - O \frac{1}{2n}$
Polythiophene		Polyhetero- cyclic	
Polyurea		Polyurea	$ \begin{array}{c} O & O \\ \parallel \\ - 1 $
Polyurethane	Adiprene	Polyurethane	$\begin{array}{c} O & O \\ \downarrow \\ O - R - O - C - NH - R' - NH - C \\ - \\ \end{matrix}$
Poly(L-valine)		Polypeptide	$ \underbrace{+}_{\substack{I \\ I \\ CH(CH_3)_2}} O \\ \underbrace{+}_{\substack{I \\ CH(CH_3)_2}} O \\ \underbrace{+}_{I$
Poly(vinyl acetate)	PVAc	Vinyl polymer	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} - CH - CH_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Common name	Acronym, alternate name	Class	Structure of repeat unit
Poly(vinyl alcohol)	PVA	Vinyl polymer	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH - CH_2 \end{array}\\ I\\ OH \end{array}$
Poly(vinyl chloride)	PVC	Vinyl polymer	$ \begin{array}{c} \begin{array}{c} - \begin{array}{c} CH - CH_2 \end{array} \\ I \\ Cl \end{array} \\ \end{array} \\ \begin{array}{c} \\ n \end{array} $
Poly(vinyl fluoride)	PVF	Vinyl polymer	$\frac{- CH - CH_2}{F}$
Poly(2-vinyl pyridine)	PVP	Vinyl polymer	$\begin{bmatrix} -CH - CH_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Poly(N-vinyl pyrrolidone)		Vinyl polymer	$ \begin{array}{c} \hline CH - CH_2 \\ \downarrow \\ N \\ O \end{array} \right]_n $
Poly(vinylidene chloride)	PVDC Saran	Vinylidene polymer	$ \begin{array}{c} \begin{array}{c} Cl \\ l \\ C \\ - CH_2 \end{array} \end{array}_{n} \end{array} $
Poly(vinylidiene fluoride)	PVDF	Vinylidiene polymer	$ \begin{array}{c} F \\ I \\ C \\ - CH_2 \\ H \\ F \end{array} \right]_n $
Vinyl polymer		Vinyl polymer	$ \begin{array}{c c} R & R'' \\ I & I \\ C & C \\ I \\ R' & R''' \end{array} \right]_{n} $

A gotals	Elucrocortons (continued)
Acrilice	Poly(vinylidene fluoride) (PVDE)
Activities Delv(methyl methoemilete) (DMMA)	Ethylana ahlaratriflyanaathylana aanalyman
Poly(methy) methaciyate) (FivitviA)	Ethylene total furger of her her and her her and her
	Einviene-tetraituoroeinviene copolymer
Alkyds	Poly(Vinyl fluoride) (PVF)
Alloys	Melamine formaldehyde
Acrylic-poly(vinyl chloride) alloy	Melamine phenolic
Acrylonitrile-butadiene-styrene-poly(vinyl chloride)	Nitrile resins
alloy (ABS-PVC)	Phenolics
Acrylonitrile-butadiene-styrene-polycarbonate alloy	Polyamides
(ABS-PC)	Nylon 6
Allyls	Nylon 6/6
Allyl-diglycol-carbonate polymer	Nylon 6/9
Diallyl phthalate (DAP) polymer	Nylon 6/12
Cellulosics	Nylon 11
Cellulose acetate resin	Nylon 12
Cellulose-acetate-propionate resin	Aromatic nylons
Cellulose-acetate-butyrate resin	Poly(amide-imide)
Cellulose nitrate resin	Poly(aryl ether)
Ethyl cellulose resin	Polycarbonate (PC)
Ravon	Polyesters
Chlorinated polyether	Poly(butylenes terephthalate) (PBT) [also called
Enoxy	polytetramethylene terephthalate (PTMT)]
Fluorocarbons	Poly(ethylene terephthalate) (PFT)
Poly(tetrafluoroethylene) (PTEE)	Unsaturated polyesters (SMC_BMC)
Poly(chlorotrifluoroethylene) (PCTEE)	Butadiana malaic acid conolymer (BMC)
Derfluereelkowy (DEA) resin	Sturana malaja asid aspolymer (SMC)
Elucrimeted ethyland granyland (EED) regin	Delvimide
Provinated ethylene-propytene (FEP) resin	Polyminde Selferrer (continue I)
Poly(methylpentene)	Suitones (continuea)
Polyolenns (PO)	Poly(ether suitone)
Low-density polyethylene (LDPE)	Poly(phenyl sulfone)
High-density polyethylene (HDPE)	Thermoplastic elastomers
Ultrahigh-molecular-weight polyethylene (UHMWPE)	Polyolefin
Polypropylene (PP)	Polyester
Polybutylene (PB)	Block copolymers
Polyallomers	Styrene-butadiene block copolymer
Poly(phenylene oxide)	Styrene-isoprene block copolymer
Poly(phenylene sulfide) (PPS)	Styrene-ethylene block copolymer
Polyurethanes	Styrene-butylene block copolymer
Silicones	Urea formaldehyde
Styrenics	Vinyls
Polystyrene (PS)	Poly(vinyl chloride) (PVC)
Acrylonitrile-butadiene-styrene (ABS) copolymer	Poly(vinyl acetate) (PVAC)
Styrene-acrylonitrile (SAN) copolymer	Poly(vinylidene chloride)
Styrene-butadiene copolymer	Poly(vinyl butyrate) (PVB)
Sulfones	Poly(vinyl formal)
Polysulfone (PSF)	Poly(vinyl alcohol) (PVAL)

TABLE 2.77Plastics

)	TABLE 2.78	Properties of Commercial Plastics

Acetal 21% poly(tetrafluoroethylene)-20% glass-25% glassreinforced reinforced filled homopolymer Properties Homopolymer Copolymer homopolymer copolymer Physical Melting temperature, °C Crystalline 175 175 181 175 181 Amorphous Specific gravity 1.42 1.41 1.56 1.61 1.54 Water absorption (24 h), % 0.25 - 0.400.22 0.25 0.29 0.20 Dielectric strength, $KV \cdot mm^{-1}$ 19.7 19.7 19.3 22.8 15.7 Electrical 1015 Volume (dc) resistivity, ohm-cm 1015 5×10^{14} 3×10^{16} Dielectric constant (60 Hz) 3.7 3.7 3.9 3.1 Dielectric constant (106 Hz) 3.7 3.7 3.9 3.1 Dissipation (power) factor (60 Hz) 0.005 0.005 Dissipation factor (106 Hz) 0.005 0.005 Mechanical Compressive modulus, 10^{3} lb · in⁻² 670 450 Compressive strength, rupture or 1% yield, 10^3 lb · in⁻² 5.29 16 (10% yield) 18 (10% yield) 17 (10% yield) 13 (10% yield) Elongation at break, % 7 3 25--75 40-75 15 - 22Flexural modulus at 23°C, 103 lb · in2 380-430 375 730 1100 340-350 Flexural strength, rupture or yield, 10³ lb · in⁻² 14 13 15 28 Hardness, Rockwell (or Shore) M94 M78 M90 M79 M78 Impact strength (Izod) at 23°C, $J \cdot m^{-1}$ 69-123 53 - 8043 96 37-64 Tensile modulus, 10^3 lb \cdot in⁻² 520 410 1000 1250

2.740

Tensile strength at break,					
10^{3} lb · in ⁻²	10	10	8.5	18.5	7.6
Tensile yield strength,					
10^{3} lb · in ⁻²	9.5-12	8.5			6.9-7.6
Thermal					
Burning rate, mm \cdot min ⁻¹	27.9				
Coefficient of linear thermal ex-					
pansion, 10 ^{-6°} C	100	85	3681		75
Deflection temperature under flex-					
ural load (264 lb · in ⁻²), °C	124	110	157	163	100
Maximum recommended service					
temperature, °C	84				
Specific heat, cal g^{-1}	0.35				
Thermal conductivity,					
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.23	0.23			

TABLE 2.78	Properties of Comm	nercial Plastics (Continued
-------------------	--------------------	-----------------------------

						Al	loy
		Acr	ylic	1	-		Acrylonitrile- butadiene- styrene- poly(vinyl chloride) alloy
Properties	Poly(methyl methacrylate)	Cast sheet	Impact- modified	Heat- resistant	Alkyd, molded	Acrylic poly(vinyl chloride) alloy	
Physical							
Melting temperature, °C Crystalline	90-105	90-105	80-100	100-125		105	
Specific gravity Water absorption (24 h), % Dielectric strength, KV · mm ⁻¹	1.17–1.20 0.1–0.4 15.7–19.9	1.18–1.20 0.2–0.4 17.7–21.7	1.11-1.18 0.2-0.8 15.0-19.9	1.16–1.19 0.2–0.3 15.7–19.9	2.22-2.24	0.06 >15.7	19.7
Electrical							
Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)	>10 ¹⁴ 3.3-4.5	$> 10^{14}$ 3.5-4.5 3.0-3.5 0.04-0.06 0.02-0.03			3.8-5.0 3.6-4.7 0.012-0.026 0.01-0.016		
Mechanical							
Compressive modulus, 10^4 lb \cdot in ⁻²	370-460	390-475	240-370	350-460		330-400	
Compressive strength, rupture or 1% yield, 10 ³ lb · in ⁻² Elongation at break, %	12-18 2-10	11–19 2–7	4–14 20–70	17 3-5	16-20	8.4 100	
Flexural modulus at 23°C, $10^3 \text{ lb} \cdot \text{in}^{-2}$	420-460	390-475	200-380	460-500		330-400	340
Flexural strength, rupture or yield, 10 ³ lb · in ⁻² Hardness, Rockwell (or Shore)	13-19 M85-M105	12–17 M80–M100	7–13 R105–R120	12–16 M95–M105	E76	10.7 R99–R105	9.6 R100
Impact strength (Izod) at 23°C, $I \cdot m^{-1}$	16_27	16-21	43-133	16-21	27_240	800	560

Tensile modulus, 10^3 lb \cdot in ⁻²	380-450	350-450	200-400	350-460		330-335	330
Tensile strength at break,							
10^{3} lb · in ⁻²	7-11	8-11	5-9	10	4.5-6.5	6.5	5.8
Tensile yield strength,					10-13		
10^{3} lb · in ⁻²							
Thermal							
Burning rate, mm \cdot min ⁻¹		0.5-2.2			Self-		
-					extinguishing		
Coefficient of linear thermal							
expansion, 10 ^{-6°} C	50-90	50-90	50-80	50-60	40-55		46
Deflection temperature under							
flexural load (264 lb · in ⁻²), °C	74–99	71-102	74–95	88-104	177-204	71	
Maximum recommended service							
temperature, °C		60-71			220		
Specific heat, cal $\cdot g^{-1}$	0.36	0.35					
Thermal conductivity,							
$W \cdot m^{-1}, K^{-1}$	0.17-0.25	0.17-0.25	0.17-0.21	0.19			
	1			1		1	(Continued)

TABLE 2.78	Properties of Commercial Plastics (Continued)
-------------------	---

	Alloy		Allyl			Cellulosic		
	Polycarbonate acrylonitrile-	Allyl-diglycol-	Diallyl phthalate molding		Cellulose acetate		Cellulose- acetate- butyrate resin	
Properties	styrene alloy	carbonate polymer	Glass-filled	Mineral-filled	Sheet	Molding	Sheet	
Physical								
Melting temperature, °C Crystalline	150	Thermoset	Thermoset	Thermoset	230	230	140	
Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm ⁻¹	1.12–1.20 0.21–0.24 17.7	1.3–1.4 0.2 15.0	1.7–2.0 0.12–0.35 15.7–17.7	1.65–1.85 0.2–0.5 15.7–17.7	1.27–1.34 2–7 11–24	1.291.34 1.7-6.5 9-24	1.15-1.22 0.9-2.2 9-18	
Electrical								
Volume (dc) resistivity, ohm- cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)					10 ¹⁰ 10 ¹³ 3.4-7.4 3.27.0 0.010.06 0.010.06	$ \begin{array}{c} 10^{10}-10^{13}\\ 3.5-7.5\\ 3.2-7.0\\ 0.01-0.06\\ 0.01-0.10\\ \end{array} $	$ \begin{array}{c} 10^{10}-10^{12} \\ 3.7-4.3 \\ 3.3-3.8 \\ 0.01-0.04 \\ 0.01-0.04 \end{array} $	
Mechanical								
Compressive modulus, $10^3 \text{ lb} \cdot \text{in}^{-2}$		300						
Compressive strength, rupture or 1% yield, 10 ³ lb · in ⁻² Elongation at break, % Elevural modulus at 23°C	11 10-15	21–23	25–35 3–5	20-32 3-5	22-33 17-40	25-36 6-40	50-100	
$10^3 \text{ lb} \cdot \text{in}^{-2}$	300-400	250-330	1200-1500	1000-1400			740-1300	

Flexural strength, rupture or							
yield, $10^3 \text{ lb} \cdot \text{in}^{-2}$	13.0-13.7	6-13	9-20	8.5-11	6-10	2-16	4-9
Hardness, Rockwell (or Shore)	R117	M95-M100	E80-E87	E61	R85-R120	R100-R123	R50-R95
Impact strength (Izod) at							
23°C, $J \cdot m^{-1}$	560	11-21	21-800	16-43	107-454	53-214	133 - 288
Tensile modulus, $10^3 \text{ lb} \cdot \text{in}^{-2}$	370-380	300	1400-2200	1200-2200			200-250
Tensile strength at break,							
10^{3} lb · in ⁻²	7.0-7.3	5-6	6-11	5-8	4.5-8.0	1.9-9.0	2.6-6.9
Tensile yield strength,							
10^3 lb \cdot in ⁻²	8.5				2.2-7.4	4.1–7.6	
Thermal							
Burning rate, mm \cdot min ⁻¹						1.3-3.8	1.3-3.8
Coefficient of linear thermal							
expansion, 10 ⁻⁶ °C	63-67	5.4-9.6	0.68-2.4	2.8	100-150	80-180	110-170
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),							
°C	104-116	60-88	165-288+	160-288	44-91	51-98	49-58
Maximum recommended							
service temperature, °C							
Specific heat, cal $\cdot g^{-1}$					0.3-0.4	0.3-0.42	0.3 - 0.4
Thermal conductivity,							
$W \cdot m^{-1} \cdot K^{-1}$	0.25-0.38	0.20-0.21	0.21-0.63	0.30-1.04	0.17-0.34	0.17-0.34	0.17-0.34
				•			

TABLE 2.78	Properties of Commercial Plastics (Continued)
-------------------	---

		Cellulos	ic		Ероху		
	Cellulose-	Cellulose-				Bispl	nenol
Properties	acetate butyrate resin, molding	acetate propionate resin, molding	Ethyl cellulose	Cellulose nitrate	Chlorinated polyether	Glass-fiber- reinforced	Mineral- filled
Physical							
Melting temperature, °C							
Crystalline	140	190	135		125	Thermoset	Thermoset
Amorphous							
Specific gravity	1.15-1.22	1.17-1.24	1.09-1.17	1.35-1.40	1.4	1.6-2.0	1.6-2.1
Water absorption (24 h), %	0.9-2.2	1.2-2.8	0.8-1.8			0.04-0.20	0.03-0.20
Dielectric strength, kV · mm ⁻¹	9-13	12-17.7	13.8-19.7			9.8-15.7	9.8-15.7
Electrical							
Volume (dc) resistivity,							
ohm-cm	1010-1012			1010			
Dielectric constant (60 Hz)	3.5-6.4			7.0-7.5			
Dielectric constant (106 Hz)	3.2-6.2		3.01	6.6			
Dissipation (power) factor							
(60 Hz)	0.01-0.04						
Dissipation factor (106 Hz)	0.01-0.04						
Mechanical							
Compressive modulus.							
$10^3 \text{ lb} \cdot \text{in}^{-2}$						3000	
Compressive strength, rupture				1	1		
or 1% yield, $10^3 \text{ lb} \cdot \text{in}^{-2}$	2.1-7.5	2.4-7.0		2.1-8.0		18,000-40,000	18,000-40,000
Elongation at break, %	4088	29-100	5-40	40-45	600-800	4	
Flexural modulus at 23°C,							
10^3 lb \cdot in ⁻²	90-300	120-350				2-4.5	

Flexural strength, rupture or yield, 10^3 lb \cdot in ⁻²	1.8-9.3	2.9-11.4	4-12	9-11	5	8-30	6-18
Hardness, Rockwell (or Shore)	R31-R116	R10-R122	R50-R115	R95-R115	R100	M100-M112	M100-M112
$23^{\circ}C, J \cdot m^{-1}$	53-582	27 to no break	21	267-374	21	16-533	16-22
Tensile modulus, 10^3 lb \cdot in ⁻²	50-200	60-215		190-220		3	
Tensile strength at break, $10^3 \text{ lb} \cdot \text{in}^{-2}$	2.6-6.9	2.0-7.8	2-8	7-8	1.5-1.8	5-20	4-10
Tensile yield strength, 10^3 lb · in ⁻²							
Thermal							
Burning rate, mm \cdot min ⁻¹	1.3-3.8				Self- extinguishing		
Coefficient of linear thermal							
expansion, 10 ⁻⁶ °C	110-170	110-170	100-200	80-120	6.6	11-50	20-60
flexural load (264 lb \cdot in ⁻²).							
°C	44-94	44-109	4588	6071	185	107-260	107-260
Maximum recommended service temperature. °C					255		
Specific heat, cal \cdot g ⁻¹	0.3-0.4			0.31-0.41	200		
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.170.30	0.17-0.30	0.16-0.30	0.23		0.17-0.42	0.17-1.48
							(Continued)

2.747

TABLE 2.78 Properties of Commercial Plastics (Continued)

		Ероху		Fluorocarbon			
	Castin	g resin	Novolac resin	Poly(tetraflu	uoroethylene)	Poly(chloro-	
Properties	Unfilled	Flexible	Mineral-filled	Granular	Glass-fiber- reinforced	trifluoro- ethylene)	Perfluoroalkoxy
Physical							
Melting temperature, °C Crystalline Amorphous	Thermoset	Thermoset	Thermoset	327	327	220	310
Specific gravity	1.11-1.40	1.05-1.35	1.7–2.1	2.14-2.20	2.2-2.3	2.1-2.2	2.12-2.17
Water absorption (24 h), %	0.08-0.15	0.27-0.50	0.05-0.2	0.01		0.03	
Dielectric strength, $kV \cdot mm^{-1}$	11.8–19.7	9.3-15.8	11.8-13.8	18.9	12.6	19.7–23	19.7
Electrical							
Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (nower) factor (60	10 ¹² -10 ¹⁷ 3.5-5.0 3.5-5.0			10 ¹⁸ 2.1 2.1		10 ¹⁸ 2.3–2.7 2.3–2.5	
Hz)				0.0002		0.001	
Dissipation factor (106 Hz)				0.0002		0.005	
Mechanical							
Compressive modulus, 10^3 lb \cdot in ⁻² Compressive strength runture				60			
or 1% yield $10^3 \text{ lb} \cdot \text{in}^{-2}$	15-25	1-14	30	1.7		4.6-7.4	
Elongation at break, % Flexural modulus at 23°C,	3-6	20-70	2-4	200-400	200-300	80-250	300
10 ³ lb · in ⁻²			2000	80	235	120	

2.748

Flexural strength, rupture or yield, 10^{-3} lb \cdot in ⁻² Hardness, Rockwell (or Shore)	13-21 M80-M110	1–13	16–20	(D50–D55)	2 (D60–D70)	7.4–9.3 R75–R95	(D64)
$23^{\circ}C, J \cdot m^{-1}$	10.7-53	187-267	21	160	144	133-160	No break
Tensile modulus, $10^3 \text{ lb} \cdot \text{in}^{-2}$	350	1-350		58-80		150-300	
Tensile strength at break, $10^3 \text{ lb}, \text{ in}^{-2}$	4-13	2-10	6-12	2_5	2_27	45-6	4-43
Tensile yield strength,	4-15	2-10	0-12	2-5		0	U.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L
10^3 lb · in ⁻²			30				
Thermal							
Burning rate, mm \cdot min ⁻¹				Self- extinguishing	Self- extinguishing	Self- extinguishing	
Coefficient of linear thermal		a a 100		100	55 100	70	
expansion, 10^{-6} C	45-65	20100	22-30	100	77-100	70	
flexural load (264 lb \cdot in ⁻²),							74 (66 lb ·
°C	46-288	23-121	149-260	121 (66 lb · in ⁻²)		126 (66 lb · in ⁻²)	in ⁻²)
Maximum recommended				260		200	
Specific heat cal $\cdot q^{-1}$				0.25		0.22	
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.17-0.21			0.25	0.34-0.40	0.19-0.22	0.25

TABLE 2.78	Properties of Commercial Plastics (Continued)
TADLE 2.70	Toperties of Commercial Trastics (Commune

		Melamine formaldehyde					
	Fluorinated		Ethylene-tetrafluoroethylene copolymer		Ethylene-		
Properties	ethylene- propylene resin	Poly(vinylidene fluoride)	Unfilled	Glass-fiber- reinforced	ethylene copolymer	Cellulose- filled	Glass-fiber- reinforced
Physical							
Melting temperature °C							
Crystalline Amorphous	275	156	270	270	245	Thermoset	Thermoset
Specific gravity	2.14-2.17	1.75-1.78	1.7	1.8	1.68	1.47-1.52	1.5-2.0
Water absorption (24 h), %	< 0.01	0.04-0.06	0.03	0.02	0.01	0.1-0.8	0.09-1.3
Dielectric strength, $kV \cdot mm^{-1}$	20-24	10	16	17	19	11-16	5-15
Electrical Volume (dc) resistivity,							
Dielectric constant (60 Hz)	21	8-9	2.6		2.6		
Dielectric constant (10 ⁶ Hz) Dissipation (nower) factor	2.1	8-9	2.6		2.6		
(60 Hz)		High					
Dissipation factor (10 ⁶ Hz)		High					
Mechanical Compressive modulus.							
10^3 lb \cdot in ⁻²		120	120	1200	240		
Compressive strength, rupture							
or 1% yield, 10^3 lb \cdot in ⁻²	2.2	8.7-10	7.1	10		33-45	20-35
Elongation at break, %	250-330	25-500	100-400	8	200-300	0.6-1.0	0.6
Flexural modulus at 23°C,							
10^3 lb \cdot in ⁻²	80-95	200	200	950	240	1100	
Flexural strength, rupture or							
yield, 10^3 lb \cdot in ⁻²		8.6-11	5.5	10.7	7	9–16	14-23

Hardness, Rockwell (or Shore)	(D60-D65)	(D80)	R50 (D75)	R74	R95	M115-M125	M115
23° C. J · m ⁻¹	No break	192-214	No break	480	No break	11-21	32-961
Tensile modulus, 10^3 lb \cdot in ⁻²	50	120	120	1200	240	1.1-1.4	1.6-2.4
Tensile strength at break,							
10^{3} lb · in ⁻²	2.7-3.1	5.5-7.4	6.5	12	7	5-13	5-10.5
Tensile yield strength,							
10^{3} lb · in ⁻²							
Thermal							
Burning rate, mm · min ⁻¹	Not	Not	Not	Not	Not	Self-	Self-
	combustible	combustible	combustible	combustible	combustible	extinguishing	extinguishing
Coefficient of linear thermal							
expansion, 10 ^{-6°} C	83-105	85	59	10-32	80	40-45	15-28
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),							
°C	70 (66 lb · in ⁻²)	80-90	71	210	77	177-199	190-204
Maximum recommended							
service temperature, °C	205	150				210	
Specific heat, cal $\cdot g^{-1}$	0.28						
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.25	0.19-0.24	0.24		0.16	0.27-0.41	0.41-0.49

TABLE 2.78 Properties of Commercial Plastics (Continued)

Mineral- filled
Thermoset
1 40 1 04
1.42-1.84
70 138
7.9-15.0
22.5-34.6
0.1-0.5
1000 2000
1000-2000
11-14

Hardness, Rockwell (or Shore)	E95-E100	M72M76	M93-M120	M100-M115	E54E101	M95-115	E88
Impact strength (Izod) at 23° C L · m ⁻¹	11-21	80-256	13-21	11-32	27960	21-59	14-19
Tensile modulus, 10^3 lb \cdot in ⁻²	800-1700	510-580	700-1500	800-1700	1900-3300	21 07	2400
Tensile strength at break,							
10^3 lb \cdot in ⁻²	68	9	6–9	5-9	7-18	3.5-6.5	6–9.7
Tensile yield strength,			10 15				
10, 10 · 11 -			1215				
Thermal							
Burning rate, mm \cdot min ⁻¹			Self- extinguishing				
Coefficient of linear thermal							
expansion, 10 ⁻⁶ °C	10-40	66	68	30-45	8-21	20-31	19-26
Deflection temperature							
under flexural load				1 10 100			
$(264 \text{ lb} \cdot \text{in}^{-2}), \text{°C}$	140-154	73	74-80	149-188	177-316	149–177	320-246
Maximum recommended							
Service temperature, "C							
Thermel conductivity							
$W \cdot m^{-1} \cdot K^{-1}$	0.17-0.30	0.26	0.15	0.17-0.34	0.34-0.59	0.25-0.38	0.42-0.57

TABLE 2.78	Properties of Commercial Plastics (Continued)
-------------------	---

	Polyamide							
		Ny	lon 6		Nyle	on 6/6		
Properties	Molding and extrusion	3035% glass-fiber- reinforced	High-impact copolymer	Molding	33% glass- fiber- reinforced	Molybdenum disulfide- filled	Nylon 6/6- nylon 6 copolymer	
Physical								
Melting temperature, °C								
Crystalline Amorphous	216	216	216	265	265	265	240	
Specific gravity	1.12-1.14	1.35-1.42	1.08-1.17	1.13-1.15	1.38	1.15-1.17	1.08-1.14	
Water absorption (24 h), %	2.9	1.2	1.3-1.5	1.0-1.3	1.0	0.8-1.1	1.5-2.0	
Dielectric strength, $kV \cdot mm^{-1}$	15.8	15.8	22	24		14	15.8	
Electrical								
Volume (dc) resistivity,								
ohm-cm	1012			1012-1015			1010	
Dielectric constant (60 Hz)	9.8			4.0			16	
Dielectric constant (10 ⁶ Hz)	3.7			3.6			4	
(60 Hz)	0.14			0.01_0.02			0.4	
Dissipation factor (10 ⁶ Hz)	0.12			0.02-0.03			0.1	
Mechanical								
Compressive modulus,								
10^3 lb \cdot in ⁻²	250							
Compressive strength, rupture							[
or 1% yield, 10^3 lb \cdot in ⁻²	13-16	19		15 (yield)	24.9	12.5		
Elongation at break, %	30-100	3-6	150-270	60	3	15	40	
Flexural modulus at 23°C,		1500	110,000	100	1000	450	100 410	
10° 1D \cdot 1n ⁻²	390	1500	110-320	420	1300	450	150-410	
Figure of $10^3 \text{ lb} \cdot \text{in}^{-2}$	14	23	5 12	17	41	17		
yiciu, 10- 10 · 111 -	144	22	J-12	1/	41	1 1/	l	

Hardness, Rockwell (or Shore) Impact strength (Izod) at	R119	M101	R81-R110	R120	M100	R119	R119
23°C, J · m ⁻¹	32-53	160	96 to no break	43-53	117	240	37
Tensile modulus, 10^3 lb \cdot in ⁻² Tensile strength at break.	380	1450				550	150-410
10^3 lb \cdot in ⁻²	11.8	25	7.5-11	12	28	13.7	7.4-12.4
Tensile yield strength,							
10^{3} lb · in ⁻²	8			8			
Thermal							
Burning rate, mm \cdot min ⁻¹	Self- extinguishing						
Coefficient of linear thermal	0 0	0 0					0 0
expansion, 10 ^{-6°} C	80-90	20-30	30-40	80	15-20	54	
Deflection temperature under flexural load (264 lb \cdot in ⁻²),							
°C	68-85	210	45-54	75	249	127	77
Maximum recommended							
service temperature, °C	107			135			
Specific heat, cal $\cdot g^{-1}$	0.4			0.4			
Thermal conductivity,							
$W \cdot m^{-1} \cdot K^{-1}$	0.24	0.24		0.24	0.22		

TABLE 2.78 Properties	of Commercial Plastics (Continued)
-----------------------	------------------------------------

	Polyamide						
		Nylc	Nylon 6/12				
Properties	Nylon 6/9, molding and extrusion	Molding	3035% glass-fiber- reinforced	Nylon 11, molding and extrusion	Nylon 12, molding and extrusion	Aromatic nylon (aramid), molded and unfilled	Poly(amide- imide), unfilled
Physical							
Melting temperature °C							
Crystalline	205	217	217	194	179	275	
Amorphous	200	211	21.			2.0	275
Specific gravity	1.08-1.10	1.06-1.08	1.31-1.38	1.03-1.05	1.01-1.02	1.30	1.40
Water absorption (24 h) %	0.5	0.4	02	03	0.25	0.6	0.28
Dielectric strength, $kV \cdot mm^{-1}$	24	16	21	17	18	31	24
Electrical							
Volume (dc) resistivity							
ohm-cm		1015			1014		
Dielectric constant (60 Hz)		40			3.8		
Dielectric constant (10 ⁶ Hz)		3.5			3.0		
Dissipation (power) factor							
(60 Hz)		0.02			0.07		
Dissipation factor (10 ⁶ Hz)		0.02			0.04		
Mechanical							
Compressive modulus.							
10^3 lb · in ⁻²				180		290	413
Compressive strength, rupture	1	1	Í				
or 1% yield, 10^3 lb \cdot in ⁻²		2.4			7.5	30	40
Elongation at break, %	1125	150	4	300	300	5	12-18
Flexural modulus at 23°C.							
10^{3} lb · in ⁻²	290	290	1120	150	165	640	664
Flexural strength, rupture or							
yield, 10^3 lb \cdot in ⁻²				1	1.5	25.8	30

2.756

Hardness, Rockwell (or Shore)	R111	R114	E40-E50	R108	R106-R109	E90	E78
23° C, J · m ⁻¹	59	53	139	96	107-300	75	133
Tensile modulus, 10^3 lb \cdot in ⁻²	275	290	1200	185	180		730
Tensile strength at break,	9.5	0.0				17.5	0(0
10 ³ ID · In ⁻² Tensile yield strength	8.5	8.8	24	8	8-9	17.5	26.9
$10^3 \text{ lb} \cdot \text{in}^{-2}$		8.8					
Thermal							
Burning rate, mm \cdot min ⁻¹				Self- extinguishing			
Coefficient of linear thermal							
expansion, 10 ^{-6°} C		90		55-100	67-100	40	36
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),	57 (0)		00.000			2.0	
	57-60	82	93-218	54	54	260	274
Maximum recommended				100 120			260
Specific heat cal, σ^{-1}		04		0.58			200
Thermal conductivity.		0.1		0.50			
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$		0.22		0.34	0.22	0.22	0.25

	TABLE 2.78	Properties of Commercial	Plastics (Continued)
--	-------------------	--------------------------	----------------------

Properties	Poly(aryl ether), unfilled	Polycarbonate		Thermoplastic polyester				
		Low viscosity	30% glass- fiber reinforced	Poly(butylene terephthalate)		Poly(ethylene terephthalate)		
				Unfilled	30% glass-fiber- reinforced	Unfilled	30% glass-fiber- reinforced	
Physical						** ==		
Melting temperature, °C								
Crystalline				232-267	232-267	245	245	
Amorphous	160	140	150					
Specific gravity	1.14	1.2	1.4	1.31-1.38	1.52	1.34-1.39	1.27	
Water absorption (24 h), %	0.25	0.15	0.14	0.08-0.09	0.06-0.08	0.1-0.2	0.05	
Dielectric strength, $kV \cdot mm^{-1}$	17	15	19	16-22	18-22		22	
Electrical								
Volume (dc) resistivity.								
ohm-cm		2×10^{16}	>1016		1016	1016		
Dielectric constant (60 Hz)		3.17	3.35					
Dielectric constant (10 ⁶ Hz)		2.96	3.31			3.25		
Dissipation (power) factor		-						
(60 Hz)		0.0009	0.011					
Dissipation factor (10 ⁶ Hz)		0.010	0.007					
Mechanical								
Compressive modulus,								
10^{3} lb · in ⁻²		350	1300					
Compressive strength, rupture	[[
or 1% yield, $10^3 \text{ lb} \cdot \text{in}^{-2}$		12.5	18	8.614.5	18-23.5	11-15	25	
Elongation at break, %	80	110	3-5	50-300	2-4	50-300	3	
Flexural modulus at 23°C,								
10^3 lb \cdot in ⁻²	300	340	1100	330-400	1100-1200	35-450	1440	
Flexural strength, rupture or								
yield, 10^3 lb \cdot in ⁻²	11	13.5	23	12-16.7	26-29	14-18	33.5	

Hardness, Rockwell (or Shore)	R117	M70	M92	M68-M78	M90	M94-M101	M100
Impact strength (Izod) at							
23°C, $J \cdot m^{-1}$	427	14	107	4353	69-85	13-32	101
Tensile modulus, 10^3 lb \cdot in ⁻²	320	345	1250	280	1300	400-600	1440
Tensile strength at break,							
10^{3} lb · in ⁻²	7.5	9.5	19	8.2	17-19	8.5-10.5	23
Tensile yield strength,							
10^{3} lb · in ⁻²		9.0					
Thermal							
Burning rate, mm · min ⁻¹		Self-	Self-				
		extinguishing	extinguishing				
Coefficient of linear thermal							
expansion, 10 ^{-6°} C	65	68	22	6095	25	65	29
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),							
°C	149	138-145	146	50-85	220	38-41	224
Maximum recommended							
service temperature, °C		143					
Specific heat, cal $\cdot g^{-1}$		0.3				0.27	
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.30	0.20	0.22	0.18-0.30	0.30	0.15	
TABLE 2.78 Properties of Commercial Plastics (Continued)

	Thermoplastic polyester						
	Aromatic	polyester	Unsaturate	d polyester	Alkyd molding compounds		-
Properties	Extrusion- transparent	Injection molding	Styrene-maleic acid copolymer, low-shrink	Butadiene- maleic acid copolymer	Putty, mineral-filled	Glass-fiber- reinforced	Polyimide, unfilled
Physical Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, $kV \cdot mm^{-1}$ Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)	81	1.39 0.01 14	Thermoset	Thermoset	Thermoset	Thermoset	310-365 1.36-1.43 0.24 22 $> 10^{16}$ 3-4
Mechanical							
Compressive modulus, $10^3 \text{ lb} \cdot \text{in}^{-2}$ Compressive strength, rupture					2000-3000		
or 1% yield, 10 ³ lb · in ⁻² Elongation at break, % Elevural modulus at 23°C	225	10 710	15–30 3–5	14-30	12-38	15-36	3040 810
10^3 lb · in ⁻²	290	700	1000-2500		2000	2000	450-500
yield, $10^3 \text{ lb} \cdot \text{in}^{-2}$ Hardness, Rockwell (or Shore)	10.6 R105	12	9-35 4070 (Barcol)	16-24 50-60 (Barcol)	6–17 E98	8.5–26 E95	19–28.8 E52–E99

Impact strength (Izod) at							
23°C, $J \cdot m^{-1}$	101		133-800	214-694	16-27	27-854	80
Tensile modulus, 10^3 lb \cdot in ⁻²		300	1000-2500	1500-2500	500-3000		300
Tensile strength at break,							
10^{3} lb · in ⁻²	6	11	4.5-20	5-10	3-9	4-9.5	10.5-17.1
Tensile yield strength,							
10^{3} lb · in ⁻²	7						12.5
Thermal							
Burning rate, mm · min ⁻¹							
Coefficient of linear thermal							
expansion, 10 ^{-6°} C		29	6-30		20-50	15-33	45-56
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),							
°C	63	282	190-260	160-177	177-260	204-260	277-360
Maximum recommended							
service temperature, °C							
Specific heat, cal $\cdot g^{-1}$							0.27
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$		0.29		0.76-0.93	0.51-0.89	0.6-0.89	0.10-0.11
	1	1		1			

)	TABLE 2.78	Properties of Commercial Plastics (Continued)
---	-------------------	---

		Polyolefin							
	-	Polyethylene							
Properties	Poly(methyl pentene), unfilled	Low-density	Medium-density	High-density	Ultra high- molecular- weight	Glass-fiber- reinforced, high-density	Ethylene- vinyl acetate copolymer		
Physical Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm ⁻¹ Electrical	230–240 0.84 0.01	95-130 0.910-0.925 <0.01 18-39	120-140 0.926-0.94 <0.01 18-39	120–140 0.941–0.965 <0.01 18–39	125-135 0.94 <0.01 28	120-140 1.28 0.02 20	65-90 0.92-0.95 0.05-0.13 24-30		
Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)		$> 10^{15}$ 2.3 2.3 < 0.0005 < 0.0005	$> 10^{15}$ 2.3 2.3 < 0.0005 < 0.0005						
<u>Mechanical</u> Compressive modulus, 10^3 lb \cdot in ⁻² Compressive strength, rupture or 1% yield, 10^3 lb \cdot in ⁻² Elongation at break, % Flexural modulus at 23°C, 10^3 lb \cdot in ⁻²	114–171 5–6.6 10–50	90-800	50-600	2.7-3.6 20-130	450-525	7 1.5	550-900		
Flexural strength, rupture or yield, 10^3 lb \cdot in ⁻²	4-6.5	8-00	00-115	100-260	130-140	11	1-20		

Hardness, Rockwell (or Shore)	L67–L74	(D40–D51)	(D50–D60)	R30-R50	R50	R75	
Impact strength (Izod) at							
23°C, J · m^{-1}	16-64	No break	27-854	27-1068	No break	59	No break
Tensile modulus, 10 ³ lb · in ⁻²	160280	1438	25-55	60-180			20-120
Tensile strength at break,							
$10^{3} \text{ lb} \cdot \text{in}^{-2}$	3.5-4	0.6-2.3	1.2-3.5	3.1-5.5	5.6	9	1.4-2.8
Tensile yield, strength,							
10^3 lb · in ⁻²		0.8-1.2	1.0-2.2	3-4	3.1-4.0		
Thermal							
Burning rate, mm \cdot min ⁻¹		1.0	1.0	1.0			
Coefficient of linear thermal							
expansion, 10 ^{-6°} C	117	100-200	140160	110-130	130	48	160-200
Deflection temperature under							
flexural load (264 lb \cdot in ⁻²),							
°C	41	32-41	41-49	43-54	43-49	121	34
Maximum recommended							
service temperature, °C	175	70	93	200			
Specific heat, cal \cdot g ⁻¹		0.55	0.55	0.46-0.55			
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.17	0.34	0.34-0.42	0.46-0.51		0.46	

		Poly(phenylene sulfide)					
				40.07			
Properties	Polybutylene extrusion	Homopolymer	Copolymer	Impact copolymer	Polyallomer	Injection molding	40% glass-fiber- reinforced
Physical							
Melting temperature, °C							
Crystalline Amorphous	126	168	160-168		120-135	290	290
Specific gravity	0.91-0.925	0.90-0.91	0.89-0.905	0.90	0.90	1.3	1.6
Water absorption (24 h),%	0.01-0.02	0.01-0.03	0.03	< 0.03	< 0.01	< 0.02	0.05
Dielectric strength, $kV \cdot mm^{-1}$	18	24	24	24	31	15	18
Electrical							
Volume (dc) resistivity.							
ohm-cm		1017	1017	1017			
Dielectric constant (60 Hz)		2.2-2.6	2.3				
Dielectric constant (106 Hz)		2.2-2.6	2.3	2.3			
Dissipation (power) factor							
(60 Hz)		< 0.0005	0.0001-0.0005				
Dissipation factor (10 ⁶ Hz)		0.0005-0.002	0.0001-0.0002	0.0003			
Mechanical							
Compressive modulus							
10^3 lb \cdot in ⁻²	31	150-300					
Compressive strength, rupture							}
or 1% yield, 10^3 lb \cdot in ⁻²		5.5-8.0	3.5-8.0			16	21
Elongation at break, %	300-380	100600	200-700	8-20	400-500	1–2	1
Flexural modulus at 23°C,							
10^{3} lb · in ⁻²	45-50	170-250	130-200	130-190	70-110	550	1700
Flexural strength, rupture or	1]
yield, 10^3 lb \cdot in ⁻²	2-2.3	6-8	5-7			14	29

2.764

Hardness, Rockwell (or Shore)	1	R80-R102	R50-R96	R40R90	R50-R85	R123	R123
Impact strength (Izod) at		01 50	52 10/0	00,000	01 000	-07	75
$23^{\circ}\text{C}, \text{J} \cdot \text{m}^{-1}$	No break	21-53	53-1068	80-900	91-203	<2/	15
Tensile modulus, 10^3 lb \cdot in ⁻²	30-40	165-225	100-170			480	1100
Tensile strength at break,							}
10^{3} lb · in ⁻²	3.8-4.4	4.5-6	4-5.5		3-3.8	9.5	19.5
Tensile yield strength,							}
10^{3} lb · in ⁻²	1.7-2.5	4.5-5.4	3.5-4.3	2.5-3.1	3-3.4		
Thermal							l
Burning rate, mm · min ⁻¹						1]
Coefficient of linear thermal							
expansion, 10 ^{-6°} C	128-150	81-100	68-95	60-90	83-100	49	22
Deflection temperature under							ļ
flexural load (264 lb \cdot in ⁻²).							}
°C	54-60	48-57	45-57	90-105	51-56	135	249
e	51 00	10 01	10 01	$(66 \text{ lb} \cdot \text{in}^{-2})$		100	
Maximum recommended							
service temperature °C		160	240	140-160			1
Specific heat cal $\cdot \sigma^{-1}$		0 44-0 46	0.45-0.50	0.45-0.50			
Thermal conductivity		0.10	0.00	0.00			1
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.22	0.12	0.15-0.17	0.12_0.17	0.09-0.17	0.29	0.29
W · III · K	0.22	0.12	0.13-0.17	0.12-0.17	0.09-0.17	0.29	0.29

		Polyurethane		Styrenic			
	Castin	ng resin	- Thermoplastic elastomer		Mineral-	Epoxy molding and	Polystyrene
Properties	Liquid	Unsaturated		flexible	glass-filled	compound	Crystal
Physical Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm ⁻¹ Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz)	Thermoset 1.1-1.5 0.02-1.5 12-20 $10^{11}-10^{15}$ 4.0-7.5	Thermoset 1.05 0.1–0.2	$120-160$ $1.05-1.25$ $0.7-0.9$ $13-25$ $10^{11}-10^{13}$ $5.4-7.6$	Thermoset 0.99–1.5 22 10 ¹⁴ –10 ¹⁵ 2.7–4.2	Thermoset 1.8–1.94 8–15	Thermoset 1.84 10	$85-1051.04-1.050.03-0.1024>10^{16}2.5$
Dissipation factor (10 ⁶ Hz) Mechanical							
Compressive modulus, 10 ³ lb · in ⁻² Compressive strength, rupture or 1% yield, 10 ³ lb · in ⁻²	10-100		4-9 20		1016	28	11.5-16
Elongation at break, % Flexural modulus at 23°C, 10 ³ lb · in ⁻²	100-1000	3-6 610	100-1100	100-700	1000-2500		1-2 380-450

Flexural strength, rupture or yield, 10 ³ lb · in ⁻² Hardness, Rockwell (or Shore)	0.7-4.5	19	0.7–9 (A65–D80)	(A15-A65)	9–14 M80–M90	17	8-14 M60-M75
23°C, $\mathbf{J} \cdot \mathbf{m}^{-1}$	1334 to flex- ible	21	No break		13-427	16	13–21
Tensile modulus, 10^3 lb \cdot in ⁻² Tensile strength at break.	10-100		10-350				350-485
10^3 lb \cdot in ⁻² Tensile yield strength, 10^3 lb \cdot in ⁻²	0.175-10	10-11	1.5-8.4	0.35-1.0	4-6.5	6-8	5.3-7.9
Thermal							
Burning rate, mm · min ⁻¹ Coefficient of linear thermal					0-78		
expansion, 10 ⁻⁶ °C Deflection temperature under	100-200		100-200	300-800	20-50	30	70-80
flexural load (264 lb · in ⁻²), °C Maximum recommended	Varies over wide range	87-93	Varies over wide range		260	74-100	
service temperature, °C					371		93
Specific heat, cal \cdot g ⁻¹ Thermal conductivity,	0.43		0.43				0.3
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.21		0.07-0.31	0.15-0.31	0.30	0.68	0.09-0.13

TABLE 2.78	Properties of Commercial Plastics (Continued)
-------------------	---

	Styrenic									
	Polystyrene Acrylonitrile-butadiene-styrene copolymer									
					Molding					
Properties	Heat- resistant	Extrusion	Heat- resistant	High-impact	Flame- retarded	Platable	20% glass- reinforced			
Physical										
Melting temperature, °C Crystalline										
Amorphous	110-125	88-120	110-125	100-110	110-125	100-110				
Specific gravity	1.05 - 1.09	1.02 - 1.06	1.05 - 1.08	1.01-1.04	1.16-1.21	1.06 - 1.07	1.22			
Water absorption (24 h), %	0.03-0.12	0.20-0.45	0.20-0.45	0.20-0.45	0.2-0.6					
Dielectric strength, $kV \cdot mm^{-1}$	20	14 - 20	14-20	14-20	14-20	16-22	18			
Electrical										
Volume (dc) resistivity,										
Dielectric constant (60 Hz)				24 - 50						
Dielectric constant (10^{6} Hz)				2.4-3.8						
Dissipation (power) factor				211 010						
(60 Hz)				0.003-0.008						
Dissipation factor (10 ⁶ Hz)				0.007-0.015						
Mechanical		-								
Compressive modulus										
10^3 lb \cdot in ⁻²		150-390	190-440	140-300	130-310					
Compressive strength, rupture				1.0 500						
or 1% yield, 10^3 lb in ⁻²	11.5-16	5.2-10	7.2-10	4.5-8	6.5-7.5		14			
Elongation at break, %	2-60	20-100	3-20	5-70	5-25					
Flexural modulus at 23°C,										
10^{3} lb · in ⁻²	340-470	130-420	300-400	250-350	300-400	340-390	710			
	1	1	1		1					

8.9-14	4-14	10-13	8-11	9-14	10.5-11.5	15.5
L80-L108	R75-R115	R100-R115	R85-R105	R100-R120	R103-R109	M85
21-181	133-640	107-347	347-400	160-640	267-283	64
320-460	130380	300-350	230-330	320-400	330-380	740
5-7.8	2.5-8.0	6-7.5	4.8-6.3	5-8	6-6.4	11
		5.5-7	4-5.5	4-6		
	1.3		1.3			
6070	60-130	60-93	95-110	65-95	47-53	21
93-120	77-104 annealed	104116 annealed	96–102 annealed	90-107 annealed	96102 annealed	99
	unicalca	unitedied	uniculd	ambaiba	unitedied	
			110			
			03-04			
			5.5 0.1			
		0.19-0.34				
	8.9-14 L80-L108 21-181 320-460 5-7.8 60-70 93-120	$\begin{array}{c} 8.9-14\\ L80-L108\\ \end{array} \begin{array}{c} 4-14\\ R75-R115\\ \end{array} \\ \begin{array}{c} 21-181\\ 320-460\\ \end{array} \begin{array}{c} 133-640\\ 130-380\\ \end{array} \\ 5-7.8\\ \end{array} \begin{array}{c} 2.5-8.0\\ \end{array} \\ \begin{array}{c} 1.3\\ 60-70\\ \end{array} \begin{array}{c} 60-130\\ \end{array} \\ \begin{array}{c} 93-120\\ \end{array} \begin{array}{c} 77-104\\ \text{annealed} \end{array}$	$\begin{array}{c ccccc} 8.9-14 \\ L80-L108 \\ \hline \\ 21-181 \\ 320-460 \\ \hline \\ 5-7.8 \\ \hline \\ 60-70 \\ 93-120 \\ \hline \\ 93-120 \\ \hline \\ \\ \end{array} \begin{array}{c} 4-14 \\ R75-R115 \\ 133-640 \\ 130-380 \\ \hline \\ 300-350 \\ \hline \\ 300-350 \\ \hline \\ 300-350 \\ \hline \\ 5-7.8 \\ \hline \\ 5.5-7 \\ \hline \\ 5.5-7 \\ \hline \\ 5.5-7 \\ \hline \\ 1.3 \\ \hline \\ 60-130 \\ \hline \\ 60-93 \\ \hline \\ 93-120 \\ \hline \\ 77-104 \\ annealed \\ \hline \\ 0.19-0.34 \\ \hline \end{array}$	$\begin{array}{c cccccc} 8.9-14 \\ L80-L108 \\ \hline \\ 121-181 \\ 320-460 \\ \hline \\ 130-380 \\ \hline \\ 130-380 \\ \hline \\ 300-350 \\ \hline \\ 300-350 \\ \hline \\ 300-350 \\ \hline \\ 230-330 \\ \hline \\ 230-30 \\ \hline \\ 230-$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 2.78 Properties of Commercial Plastics (*Continued*)

		Styrenic		Sulfone			
	Styrene-acrylonitrile copolymer			Polysulfone			
Properties	Unfilled	20% glass-fiber- reinforced	Styrene- butadiene copolymer, high-impact	Unfilled	20% glass-fiber- reinforced	Poly(ether sulfone)	Poly(phenyl sulfone)
Physical							
Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h), %	115–125 1.07–1.08 0.2–0.3	115-125 1.22 0.15-0.20	90-110 1.03-1.06 0.05-0.10	200 1.24 0.22	200 1.46 0.23	230 1.37 0.43	220 1.29 1.1-1.3 (saturated)
Dielectric strength, $kV \cdot mm^{-1}$	16-20	20	18	17	17	17	16
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)				10 ¹⁵ 3.14 3.26 0.004 0.008	3.7 3.7 0.002 0.009		
Mechanical							
Compressive modulus, $10^3 \text{ lb} \cdot \text{in}^{-2}$	530			370			
of 1% yield, 10 ³ lb · in ⁻² Elongation at break, % Flexural modulus at 23°C,	14-17 1-4	19 1-2	4–9 13–50	13.9 50-100	22 2	30-80	60
10^3 lb \cdot in ⁻²	550	100-1100	280-450	390	1000	375	330
Flexural strength, rupture or yield, 10^3 lb \cdot in ⁻²	14-17	20	5.3-9.4	15.4	23	18.7	12.4

Previous Page

Hardness, Rockwell (or Shore)	M80-M90	R122	M10-M68	M69, R120	M123	M88	
$23^{\circ}C_{\star}$ J · m ⁻¹	19-27	53	32-192	64	59	85	640
Tensile modulus, 10^3 lb \cdot in ⁻²	400-560	1150-1200	280-465	360	1200	350	310
Tensile strength at break,							
10^{3} lb · in ⁻²	9-12	15.8-18	3.2-4.9		17		
Tensile yield strength,				10.0			10.1
10^{3} lb · m ⁻²			2.9-4.9	10.2		12.2	10.4
Thermal							
Burning rate, mm \cdot min ⁻¹							
Coefficient of linear thermal							
expansion, 10 ⁻⁶ °C	36-38	38-40	70-101	52-56	25	55	31
Deflection temperature under							
$^{\circ}C$	88 104	00	74 03	174	182	203	204
Maximum recommended	00-104	, ,,,	74-33	174	102	205	204
service temperature, °C				149			
Specific heat, cal $\cdot g^{-1}$							
Thermal conductivity,							
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.12	0.26-0.28	0.12-0.21	0.12	0.38	0.14-0.19	

-	TABLE 2.78	Properties of Commercial Plastics (Continued)
---	------------	---

		Thermopla	stic elastomers			inyl	
			Block copolymers of styrene and	Block copolymers of styrene and	Urea	Poly(vinyl chloride) and poly(vinyl acetate)	
Properties	Polyolefin	Polyester	styrene and isoprene	ethylene or styrene and butylene	formaldehyde, alpha-cellulose filled	Rigid	Flexible and unfilled
Physical							
Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm ⁻¹	0.88-0.90 0.01 24-26	168–206 1.17–1.25	0.9-1.2 0.19-0.39 16-21	0.9-1.2	Thermoset 1.47–1.52 0.4–0.8 12–16	75-105 1.30-1.58 0.04-0.4 14-20	75-105 1.16-1.35 0.15-0.75 12-16
Electrical							
Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)					0.5-5.0 7.7-9.5 6.7-8.0 0.036-0.043 0.025-0.035	$ \begin{array}{r} 10^{12} - 10^{15} \\ 3.2 - 4.0 \\ 3.0 - 4.0 \\ 0.01 - 0.02 \\ 0.006 - 0.02 \\ \end{array} $	10 ¹¹ -10 ¹⁴ 5.0-9.0 3.0-4.0 0.03-0.05 0.06-0.1
Mechanical							
Compressive modulus, 10^3 lb \cdot in ⁻² Compressive strength, rupture or 1% yield 103 lb in ⁻²			3.6-120		25 45	Q 13	0.0 1.7
Elongation at break, % Flexural modulus at 23°C,	150-300	350-450	500-1350	600-800	<1	8-13 40-80	200-450
10^3 lb · in ⁻²	1.5-2.0	7-75	4-150	4-100	1300-1600	300-500	

Flexural strength, rupture or yield, 10 ³ lb · in ⁻² Hardness Bockwell (or Shore)	(465-492)	(D40-D72)	(440-490)	(450-490)	10-18 M110-M120	10–16 (D65–D95)	(A50 - A100)
Impact strength (Izod) at	(105-102)		(140-1190)	(100-100)	11110-11120	(1005-10)5)	(1150 11100)
23°C, $J \cdot m^{-1}$	No break	208 to no break	No break	No break	13-21	21-1068	Varies over wide range
Tensile modulus, 10^3 lb \cdot in ⁻² Tensile strength at break		1.1-2.5	0.8-50		1000-1500	350-600	while funge
10^3 lb · in ⁻² Tensile yield strength, 10^3 lb · in ⁻²	0.65-2.0	3.7–5.7	0.6-3.0	1-3	5.5-13	6-75	1.5-3.5
Thermal							
Burning rate, mm \cdot min ⁻¹					Self- extinguishing	Self- extinguishing	Slow to self- extinguishing
Coefficient of linear thermal	120 170		120 127		22.26	50 100	70, 250
Deflection temperature under $f(x) = f(x) + f(x)$	150-170		150-157		22-30	30100	70-230
nexural load (264 $16 \cdot 1n^{-2}$), °C		-	<0-49		127-143	60-77	
Maximum recommended service temperature, °C		- 			77	70–74	80-105
Specific heat, cal \cdot g ⁻¹ Thermal conductivity		-			0.6	0.2-0.28	0.36-0.5
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.19-0.21		0.15		0.30-0.42	0.15-0.21	0.13-0.17

TABLE 2.78 F	Properties of Commercial Plastics (Continued)
---------------------	---

				Vinyl			
	Poly(vinyl chloride) and poly(vinyl acetate)	Poly(vinyl			Chlorinated	Poly(vinv)	
Properties	Flexible and filled	glass-fiber- reinforced	Poly(vinylidene chloride)	Poly(vinyl formal)	poly(vinyl chloride)	butyral), flexible	
Physical							
Melting temperature, °C Crystalline Amorphous Specific gravity Water absorption (24 h),% Dielectric strength, kV · mm ⁻¹ <u>Electrical</u> Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (10 ⁶ Hz) Dissipation (power) factor (60 Hz) Dissipation factor (10 ⁶ Hz)	75–105 1.3–1.7 0.5–1.0 9.8–12	75–105 1.54 0.01 24–31	210 1.65-1.72 0.1 16-24 $10^{14}-10^{16}$ 4.5-6.0	105 1.2–1.4 0.5–3.0 19	110 1.49–1.56 0.02–0.15	49 1.05 1.0-2.0 14	
Mechanical							
Compressive modulus, 10 ³ lb · in ⁻² Compressive strength, rupture or 1% yield, 10 ³ lb · in ⁻² Elongation at break, % Flexural modulus at 23°C, 10 ³ lb · in ⁻²	1.01.8 200-400	9 2-3 750	2–2.7 50–250	5-20	335-600 9-22 4-65 380-450	150-450	

Flexural strength, rupture or yield, 10 ³ lb · in ⁻² Hardness, Rockwell (or Shore) Impact strength (Izod) at 23°C, J · m ⁻¹ Tensile modulus, 10 ³ lb · in ⁻² Tensile strength at break	(A50A100) Varies over wide range	13.5 R118 53 870	4.2-6.2 M50-M65 16-53 50-80	17–18 M85 43–75 350–600	14.5–17 R117–R122 53–299 360–475	A10–A100 Varies over wide range
10^3 lb \cdot in ⁻²	1-3.5	9.5	3-5	10-12	7.59	0.5-3.0
Tensile yield strength, $10^3 \text{ lb} \cdot \text{in}^{-2}$						
Thermal						
Burning rate, mm \cdot min ⁻¹			Self- extinguishing			Slow
Coefficient of linear thermal expansion, 10 ⁻⁶ °C			190	64	68-78	
Deflection temperature under flexural load (264 lb \cdot in ⁻²),						
°C		68	54-71	71–77	94-112	
Maximum recommended service temperature, °C			100			
Thermal conductivity.			0.52			
$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	0.13-0.17		0.13	0.16	0.14	

TABLE 2.79 Properties of Natural and Synthetic Rubbers

Service temperature, °C Durometer Ultimate Tensile elongation strength, Specific hardness $lb \cdot in^{-2} (23^{\circ}C)$ Rubber gravity (or Shore) % (23°C) Minimum Maximum Gutta percha (hard rubber) 1.2 - 1.95(65 - 95)3-8 4000-10.000 104 Natural rubber (NR) 0.93 20 - 100750-850 3000-4500 - 56 82 50-95 100-500 500-3000 - 54 121 Chlorosulfonated polyethylene 1.10 1.27 60-90 121 Epichlorohydrin 100 - 4001000 - 2500-46 -40232 Fluoroelastomers 1.4 - 1.9560-90 100-350 2000-3000 Isobutene-isoprene rubber (IIR) [also known as government rubber I(GR-I)] 0.91 (40 - 70)750-950 2300-3000 121 Nitrile rubber (butadiene-acrylonitrile rubber) (also known as Buna N and NBR) 30-100 100-600 500-4000 -54121 1.00 Polyacrylate 1.10 40 - 100100-400 1000 - 2200-18149 Polybutadiene rubber (BR) 0.93 30-100 100-700 2500-3000 -6279 - 100Polychloroprene (neoprene) 1.23 20 - 90800-1000 2000 - 3500- 54 121 149 Poly(ethylene-propylene-diene) (EPDM) 0.85 30 - 100100 - 3001000-3000 -40Polyisobutylene (butyl rubber) 0.92 30 - 100100-700 1000-3000 - 54 100 Polyisoprene 0.94 20 - 100100-750 2000 - 3000-5479 - 82Polysulfide (Thiokol ST) 1.34 20 - 80100-400 700-1250 --- 54 82 - 100Poly(vinyl chloride) (Koroseal) 2400 - 300071 1.32 (80 - 90)Silicone, high-temperature 700-800 316 0.98 50-800 500-1500 232 Silicone 20 - 95-84Styrene-butadiene rubber (SBR) (also known as Buna S) 0.94 40 - 100400--600 1600-3700 - 60 107 Urethane 0.85 62-95 100-700 1000-8000 -54100

Common or trade name	$ ho(g/cm^3)$
Acetate Rayon	1.32
Acrylic	1.16
Acrylonitrile-styrene copolymer	1.075–1.10
Acrylonitrile-styrene-butadiene copolymer (ABS)	1.04–1.07
Aniline-formaldehyde	1.22–1.25
Benzylcellulose	1.22
Bisphenol-A polycarbonate (BPAPC)	1.20
Butyl rubber	0.92
Cellulose I	1.582–1.630
Cellulose II	1.583-1.62
Cellulose III	1.61
Cellulose IV	1.61
Cellulose acetate	1.28–1.32
Cellulose acetate-butyrate	1.14–1.22
Cellulose formate fiber	1.45
Cellulose nitrate	1.35–1.40
Cellulose propionate	1.18–1.24
Cellulose triacetate	1.28–1.33
Cellulose tributyrate	1.16
Chlorinated polyether	1.40
Cotton	1.50-1.54
Cotton, acetylated	1.43
Ethylcellulose	1.09–1.17
Ethylene-propylene copolymer (EPM)	0.86
Glass	3.54
Glass and asbestos	2.5
Kevlar	1.44
Lignocellulose	1.45
Maleic anhydride-styrene copolymer	1.286
Melamine-formaldehyde	1.16
Methyl polyvinyl ketone	1.12
Metnylcellulose	1.362
Nomex	1.38
Nylon 6	1.12-1.24
Nyioli oo	1.13-1.13,
Nylon 610	1.22-1.23
Nylon 12	1.150
Rubber butyl	0.92
Rubber (unvulcanized)	0.92
Rubber (hard) (Fhonite)	1 11_1 17
Rubber chlorinated (Neoprene) (CR) unvulcanized	1 23
Rubber, chlorinated (Neoprene) (CR), unvalcanized	1 32–1 42
Rubber, fluorinated silicone	1.0
Rubber silicone	0.80
Rubber, silicone (vulcanized)	1.3-2.3
Rubber, styrene-butadiene (SBR), (unvulcanized)	0.93-0.94
Rubber, styrene-butadiene (SBR), (vulcanized)	0.961
Silk	1.25–1.35
Toluene-sulfonamide-formaldehyde	1.21-1.35
Urea-formaldehyde	1.16
Urea-thiourea-formaldehyde	1.477
Viscose Rayon	1.5
Wool	1.28–1.33

TABLE 2.80 Density of Polymers Listed by Trade Name

Chemical name	$\rho(g/cm^3)$
Poly-	
acetylaldehyde	1.07
acrolein	1.322
acrylic acid	1.22
acrylonitrile (PAN)	1.01–1.17,
	1.20
acrylonitrile-vinyl acetate	1.14
amide-6 (PA-6)	1.12–1.24
amide-66 (PA-66)	1.13–1.15,
	1.22–1.25
amide-610 (PA-610)	1.156
amide-12 (PA-12)	1.02-1.034
aryl ether ether ketone (PEEK)	1.20
arylate	1.21
bisphenol carbonate (BPAPC)	1.20
butadiene-1,2, isotactic	0.96
butadiene-1,2, syndiotactic	0.96
butadiene-1,4-cis	1.01
butadiene-1,4-trans	0.93–0.97,
	1.01
1-butene	0.85
butene	0.91-0.92
butyl acrylate	1.08
secbutyl acrylate	1.05
butylene	0.60
tertbutyl methacrylate	1.03
- <i>n</i> -butyl methacrylate	1.055
secbutyl methacrylate	1.04
tertbutylstyrene	0.957
caprolactam, nylon	0.985
carbonate (PC)	1.14–1.2
chlorobutadiene	1.25
chloroprene (Neoprene rubber)	1.23
(CR), unvulcanized	
chloroprene (Neoprene rubber)	1.32–1.42
(CR), vulcanized	
chlorotrifluoroethylene	2.03
dichlorostyrene	1.38
2,2-dimethylpropyl acrylate	1.04
dimethylsiloxane	0.970
dodecyl methacrylate	0.93
1-ethylpropyl acrylate	1.04
etheretherketone (PEEK)	1.27
ethyl acrylate	1.095, 1.12
ethyl methacrylate	1.11, 1.12
ethylbutadiene	0.891
ethylene	0.870,
-	0.910-0.965
ethylene (amorphous)	0.85
ethylene (crystalline)	0.99
ethylene (high density: HDPE)	0.941-0.965
ethylene (linear low density: LLDPE)	0.918-0.935
ethylene (low density: LDPE)	0.910-0.925
ethylene (medium density: MDPE)	0.926-0.940
ethylene glycol	1.0951
ethylene glycol fumarate	1.385
ethylene glycol isophthalate, cryst.	1.358

TABLE 2.81 Density of Polymers Listed by Chemical Name

Chemical name	$\rho(g/cm^3)$
ethylene glycol phthalate	1.352
ethylene glycol waxes	1.15-1.20
ethylene isophthalate	1.34
ethylene phthalate	1.34
ethylene terephthalate (PETP)	1.33–1.42
formaldehyde	1.425
<i>–n</i> -hexyl methacrylate	1.01
imide	1.43
isobutene	0.917
isobutyl methacrylate	1.02-1.04
isobutylene	0.87-0.93
isoprene (1.4–)	0.900-0.913
-N-isopropylacrylamide	1 070–1 118
isopropyl acrylate	1.08
isopropyl methacrylate	1.04
methacrylonitrile	1 10
methyl acrylate	1 07–1 223
methyl methacrylate (PMMA)	1.16-1.20
4-methyl-1-pentene	0.84
myrcene	0.895
oxymethylene (POM)	1 41-1 435
nhenvlene oxide	1.00-1.06
polysulfide (Thiokol A)	1.60
polysulfide (Thiokol R)	1.65
propyl methacrylate	1.05
propylene (PP)	0.85,0.02
propylene (11)	0.87
propylene, antorphous	0.87
propylene, nead-to-nead	0.878
propylene, isotactic	0.90-0.92
propylene, isotactic (crystalline)	0.92-0.939
propylene, syndiotactic (crystannie)	0.93
sturana (PS)	1.00
styrene (PS)	1.09
styrene, crystalline	1.06-1.111
alastamar	0.93-1.10
elastoniel	1.24
suitone	1.24
terranuoroetnyiene (PTFE)	2.28-2.344
unituorocinoroettiyiene	2.11-2.15
vinyl alachel (PVAC)	1.08-1.25
vinyl alconol (PVA)	1.21-1.51
	1.07-1.20
vinyi chioride	1.57-1.44
vinyl chloride-co-melnyl acrylate	1.54
	1.25-1.55
vinyl chloride, rigid	1.35-1.55
vinyl chloride acrylonitrile (60/40)	1.28
vinylethylene	0.889
vinyl formal	1.2–1.4
vinyi pyrrolidone (PVP)	1.25
vinyi-vinyiidene chioride	1.70
vinyicarbazole	1.20
vinylidene chloride (PVDC)	1.65-1.875
vinylidene fluoride (PVDF)	1.75–1.78
vinylisobutyl ether	0.91-0.92
<i>-m</i> -xylene adipamide	1.22

TABLE 2.81 Density of Polymers Listed by Chemical Name (Continued)

TABLE 2.82 Density of Polymers at Various Temperatures

Temperature (deg C)	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380
Natural rubber, unvulcanized Natural rubber, cured	0.9283 0.9211	0.9162																		
Polyamide, Nylon 6												1.176	1.165	1.154	1.143					
Polyamide, Nylon 6.6													0.963							
														1.100	1.086	1.071				
Poly(butene-1), isotactic								0.797	0.786	0.776	0.765	0.755	0.745							
Poly(<i>n</i> -butyl methacrylate)			1.045	1.032	1.018	1.004	0.990	0.975	0.961	0.947	0.933									
	g1.063 ^a	1.057	1.043	1.030	1.017	1.005	0.993													
Poly(e-caprolactone)	-					1.037	1.023	1.010												
Polycarbonate, (with Bisphenol <i>A</i>)			g1.192	g1.186	g1.180	g1.174	g1.167	g1.161	1.150	1.136	1.123	1.109	1.095	1.081	1.067	1.053	1.039	1.025		
Poly(cyclohexyl methacrylate)		g1.101	g1.095	g1.090	g1.084		1.066	1.054	1.041	1.028	1.015									
Poly (2,6-dimethylphenylene ether)			g1.061	g1.057	g1.052	g1.048	g1.043	g1.039	g1.035	g1.030	g1.026	1.012	0.997	0.983	0.968	0.953	0.939			
Poly(dimethyl siloxane)		0.9742	0.9566	0.9393	0.9222	0.9053	0.8887	0.8722	0.8560	0.8400	0.8242									
			0.9566	0.9389	1															
Polyetheretherketone																		1.113	1.098	1.084
Polyethylene, branched							0.801	0.790	0.780	0.769	0.759	0.749								
						0.785	0.774	0.763	0.752											
Polyethylene, linear						0.7847	0.7735	0.7624	0.7514											
						0.789	0.778	0.766	0.753											
Poly(ethylene terephthalate)															1.172	1.156	1.140	1.125		
Poly(ethyl methacrylate)	g1.131	g1.125	g1.119	g1.113	1.103															
Polyisobutylene	0.9297	0.9195	0.9093	0.8992	0.8891	0.8791	0.8691	0.8592												
Poly(methyl methacrylate)			g1.181	g1.177	g1.171	g1.166	1.153	1.139	1.126	1.112	1.097	1.082	1.067	1.052						
		g1.184	g1.179	g1.174	g1.168		1.148	1.136	1.123											
							1.153	1.141	1.129	1.117	1.106	1.094								
	g1.175	g1.170	g1.165	g1.160	g1.155	g1.150	1.140	1.128												
Poly(methyl methacrylate),		g1.220		1.204	1.189	1.174	1.160	1.146	1.132	1.119										
isotactic																				
Poly(o-methyl styrene)			g1.016	1.011	g1.006			0.9881	0.9777	0.9674	0.9571									
Polyoxyethylene				1.063	1.048	1.033	1.018	1.004	0.990	0.976										
Polyoxymethylene									1.167	1.151										
Polypropylene, atactic					0.827	0.816	0.802													

Polypropylene, isotactic										0.764	0.754	0.744	0.734	0.724	0.714	0.705			
										0.763	0.753	0.743							
Polystyrene				1.0260	1.0142	1.0025	0.9909	0.9795	0.9681	0.9569									
		g1.044	g1.040	g1.035			1.0125	1.0021	0.9919	0.9818	0.9717								
			g1.040	g1.034	1.026	1.016	1.005	0.994	0.984	0.973	0.961	0.950	0.939	0.928	0.916	0.905	0.893		
Polysulfone, (with Bisphenol A)			g1.232	g1.226	g1.221	g1.216	g1.211	g1.206	g1.201	g1.195	1.183	1.170	1.157	1.144	1.130	1.117	1.104	1.091	1.078
Polytetrafluoroethylene																		1.548	1.504
Polytetrahydrofuran			0.944	0.931	0.919	0.907	0.895												
Poly(vinyl acetate)	g1.196	g1.189	1.1783	1.1615	1.1449	1.1285													
Poly(vinyl chloride)				1.352	1.338	1.322													
Poly(vinyl methyl ether)		1.0580	1.0436	1.0294	1.0152	1.0011	0.9871												

 $^{a}g = glass.$

TABLE 2.83 Surface Tension (Liquid Phase) of Polymers

		γ_{LV} at 20°C	$-d\gamma/dT$
Polymer	MW	(mN/m)	[mN/(mK)]
Poly(oxyhexafluoropropylene)	∞	18.4 (25°C)	$0.059 (M_n \sim 7000)$
Poly[heptadecafluorodecyl)methylsiloxane]	$M_n \sim 19600$	18.5 (25°C)	
Poly(dimethylsiloxane)	~	21.3 (20°C)	$0.048 (10^6 \text{ cS})$
Poly[methyl(trifluoropropyl)siloxane]	~	24.4 (25°C)	
Poly(tetrafluoroethylene)	~	25.6	$0.053 (M_n = 1038)$
Poly(oxyisobutylene)	<i>M</i> ~ 30000	27.5	0.066
Poly(vinyl octanoate)		28.7	0.061
Polypropylene, atactic	Melt index ~ 1000	29.4	0.056
Paraffin wax		30.0 (20°C)	~0.06
Poly(1,2-butadiene)	$M_n \sim 1000$	30.4 (25°C)	
Poly(<i>t</i> -butyl methacrylate)	$M_{\nu} \sim 6000$	30.5	0.059
Poly(oxypropylene)	$M_n \sim 4100$	30.7 (25°C)	0.073
Poly(<i>i</i> -butyl methacrylate)	$M_{\nu} \sim 35000$	30.9	0.060
Poly(chlorotrifluoroethylene)	$M_n \sim 1280$	30.9	0.067
Poly(vinyl hexadecanoate)		30.9	0.066
Poly(<i>n</i> -butyl methacrylate)	$M_{\nu} \sim 37000$	31.2	0.059
Poly(oxytetramethylene)	$M_n \sim 32000$	31.8	0.060
Poly(methoxyethylene)	$M_n \sim 46500$	31.8	0.075
Poly(<i>n</i> -butyl acrylate)	$M \sim 32000$	33.7	0.070
Polyethylene, branched	$M_n \sim 7000$	34.3	0.060
Poly(isobutylene)	∞	35.6 (24°C)	$0.064 (M_n \sim 2700)$
Polyethylene, linear	$M_{w} \sim 67000$	35.7	0.057
Poly(oxydecamethylene)		36.1	0.068
Poly(vinyl acetate)	$M_{w} \sim 120000$	36.5	0.066
Poly(2-methylstyrene)	$M_n \sim 3000$	38.7	0.058
Poly(oxydodecamethyleneoxyisophthaloyl)		40.0	0.070
Polystyrene	$M_{\nu} \sim 44000$	40.7	0.072
Poly(methyl acrylate)	$M_n \sim 25000$	41.0	0.070
Poly(methyl methacrylate)	$M_{\nu} \sim 3000$	41.1	0.076
Poly(epichlorohydrin)	$M_n \sim 1500$	43.2 (25°C)	
Polychloroprene	$M_{\nu} \sim 30000$	43.6	0.086
Poly(oxyethyleneoxyterephthaloyl)	$M_n \sim 16000$	44.5	0.064
Poly(oxyethylene)	~	45.0 (24°C)	$0.076 (M_n \sim 6000)$
Poly(hexamethylene adipamide)	$M_n \sim 17000$	46.4	0.064
Poly(oxyisophthaloyloxypropylene)		49.3	0.083

Polymer pair	γ_{12} at 20°C (mN/m)	$-d\gamma/dT$ [mN/(mK)]
Polychloroprene/polystyrene	0.5 (140°C)	
Polychloroprene/poly(n-butyl methacrylate)	$1.6(140^{\circ}C)$	
Poly(methyl methacrylate)/poly (t-butyl methacrylate)	3.0	0.005
Poly(methyl methacrylate)/polystyrene	3.0	0.003
Poly(dimethylsilovane)/nolypronylene	3.2	0.002
Poly(methyl methacrylate)/poly(<i>n</i> -butyl methacrylate)	3.4	0.002
Poly(dimethylsiloxane)/poly(<i>t</i> -butyl methacrylate)	3.6	0.003
Polybutadiene/poly(dimethylsiloxane)	4.0	0.009
Poly(methyl acrylate)/poly(<i>n</i> -butyl acrylate)	4.0	0.008
Poly(dimethylsiloxane)/poly(isobutylene)	4.0	0.016
Poly(n-butyl methacrylate)/poly(vinyl acetate)	4.2	0.011
Poly(dimethylsiloxane)/poly(<i>n</i> -butyl methacrylate)	4.2	0.004
Polystyrene/poly(vinyl acetate)	4.2	0.004
Polyethylene/polystyrene	4.4 (200°C)	
Poly(oxyethylene)/poly(oxtetramethylene)	4.5	0.005
Polychloroprene/Polyethylene, branched	4.6	0.008
Polyethylene, linear/poly(<i>n</i> -butyl acrylate)	5.0	0.014
Polyethylene, branched/poly(oxytetramethylene)	5.0	0.007
Poly(dimethylsiloxane)/polyethylene, branched	5.3	0.002
Poly(oxytetramethylene)/poly(vinyl acetate)	5.5	0.008
Polyethylene, branched/poly(<i>i</i> -butyl methacrylate)	5.5	0.010
Polyethylene, branched/poly(oxydodecamethyleneoxyisophthaloyl)	5.9	0.011
Polyethylene, branched/poly(<i>t</i> -butyl methacrylate)	5.9	0.016
Poly(dimenthylsiloxane)/polystyrene	6.1	~0
Poly(dimethylsiloxane)/poly(oxytetramethylene)	6.4	0.001
Poly(dimethylsiloxane)/polychloroprene	7.1	0.005
Polyethylene, linear/poly(<i>n</i> -butyl methacrylate)	7.1	0.015
Polyethylene, linear/polystyrene	8.3	0.020
Poly(dimentylsiloxane)/poly(vinyl acetate)	8.4	0.008
Poly(isobutylene)/poly(vinyl acetate)	9.9	0.020
Polyethylene, linear/poly(methyl acrylate)	10.6	0.018
Polyethylene/poly(caprolactam)	10.7 (250°C)	
Poly(dimethylsiloxane)/poly(oxyethylene)	10.9	0.008
Polyethylene, branched/poly(oxyethylene)	11.6	0.016
Polyethylene, linear/poly(methyl methacrylate)	11.9	0.018
Polyethylene, linear/poly(vinyl acetate)	14.5	0.027
Polyethylene, linear/poly(hexamethylene adipamide)	14.9	0.018
Polyethylene, branched/poly(oxyisophthaloyloxpropylene)	15.4	0.030

TABLE 2.84 Interfacial Tension (Liquid Phase) of Polymers

Temperature (deg C)	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380
Natural Rubber, unvulcanized	6.6	6.6																		
Natural Rubber, cured	6.5	6.4																		
		6.7																		
Polyamide, Nylon 6													4.7	4.7	4.7					
Polyamide, Nylon 6,6														6.6	6.6					
Poly(butene-1), isotactic								6.7	6.7	6.7	6.7	6.7	6.7		0.8					
Poly(n-butyl			6.2	6.5	6.8	7.0	7.2	7.3	7.4	7.4	7.4									
methacrylate)																				
	$g3.8^a$	6.4	6.4	6.3	6.2	6.1	6.1													
Poly(e-caprolactone)							6.4	6.3												
Polycarbonate, (with Bisphenol A)			g2.6	g2.6	g2.6	g2.6	g2.6	g2.6	5.8	5.9	6.1	6.2	6.3	6.4	6.6	6.7	6.8	6.9		
Poly(cyclohexyl methacrylate)		g2.4	g2.5	g2.5	g2.5		5.9	6.0	6.2	6.3	6.4									
Poly(2,6-dimethylphenylene ether)			g2.1	7.1	7.3	7.4	7.6	7.7	7.8											
Poly(dimethyl siloxane)		9.06 9.0	9.11	9.17	9.23	9.29	9.35	9.41	9.47	9.53	9.59									
			9.4	9.2																
Polyetheretherketone																		6.7	6.7	6.7
Polyethylene, branched							6.7	6.7	6.7	6.7	6.7	6.7								
								7.5	7.2	6.9										
Polyethylene, linear								7.14	7.18	7.24	7.32									
										7.0	7.0									
									7.6	7.9										
Poly(ethylene terephthalate)															6.8	6.8	6.8	6.8		
Poly(ethyl methacrylate)	g2.7	g2.7	g2.7	g2.7	6.0															
Polyisobutylene	5.51	5.54	5.58	5.61	5.65	5.68	5.72	5.75												
Poly(methyl methacrylate)			g1.8	g2.1	g2.4	g2.7	5.5	5.8	6.1	6.4	6.7	7.0	7.2	7.5						
		g1.8	g2.2	g2.5	g2.9		5.4	5.7	6.0											
							5.2	5.2	5.2	5.2	5.2	5.2								
	g2.1	g2.1	g2.1	g2.1	g2.1	g2.1	5.2	5.2												

TABLE 2.85 Thermal Expansion Coefficients of Polymers

2.784

Poly(methyl methacrylate), isotactic	g	2.2		6.4	6.3	6.2	6.1	5.9	5.8	5.7									
Poly(o-methyl styrene)			g2.6	g2.6	g2.6			5.3	5.3	5.3									
Polyoxyethylene						7.1	7.1	7.1	7.1	7.1	7.1	7.1							
Polyoxymethylene										7.9									
											6.8	6.8							
Polypropylene, atactic					6.1	7.7	9.3												
Polypropylene, isotactic										6.6	6.6	6.6							
										6.7	6.7	6.7	6.7	6.7	6.7	6.7			
										6.7	6.7								
Polystyrene						5.78	5.79	5.81	5.82	5.84	5.85	5.87							
		g2.0	g2.3	g2.5			5.1	5.1	5.1	5.1	5.1								
			g2.9	g2.9	5.0	5.2	5.3	5.4	5.6	5.7	5.8	5.9	6.0	6.2	6.3	6.4	6.5		
Polysulfone, (with Bisphenol A)			g2.1	g2.1	g2.1	g2.1	g2.1	g2.1	g2.2	g2.2	5.5	5.6	5.7	5.8	5.8	5.9	6.0	6.1	6.1
Polytetrafluoroethylene																		14.4	14.7
Polytetrahydrofuran					6.7	6.7	6.7	6.7	6.7										
Poly(vinyl acetate)	g2.8	g2.8	7.13	7.17	7.20	7.23													
Poly(vinyl chloride)						4.7	5.5	6.2											
Poly(vinyl methyl ether)			6.87	6.92	6.96	7.01	7.06												

ag = glass

		Molecular ^a			C	p b	
	Abbre-	weight	T_{g}	Temp.			$\Delta C_p^{\ c}$
Polymer	viations	g/mol	(K)	(K)	kJ/kg∙K	J/mol·K	J/mol·K
		1. Ma	in-chain	carbon po	lymers		
			Poly(a	crylics)			
Poly(iso-butyl acrylate)	PiBA	128.17	249	220	1.2156	155.80	36.60
5. 5 5 7				240	1.3365	171.30	
				300	1.8108	232.09	
				500	2.3388	299.77	
Poly(<i>n</i> -butyl acrylate)	PnBA	128.17	218	80	0.5598	71.75	45.40
5 5 5 7				180	1.0632	136.27	
				300	1.8201	233.28	
				440	2.1803	279.45	
Poly(ethyl acrylate)	PEA	100.12	249	90	0.5792	57.99	45.60
				200	1.0301	103.13	
				300	1.7867	178.88	
				500	2.2189	222.16	
Polv(methyl acrylate)	PMA	86.09	279	100	0.6154	52.98	42.30
) ()))				200	0.9816	84.51	
				300	1.765	151.99	
				500	2.143	184.49	
		Р	olv(diene	s)			
14D1(141)	DDD	54.00		- /			
1,4-Poly(butadiene)	PBD	54.09	171	50	0.2604	10.09	20.10
cis-			1/1	50	0.3694	19.98	29.10
				150	0.8967	48.50	
				300	1.960	106.00	
			100	350	2.214	114.90	20.20
trans-			180	50	0.3465	18.74	28.20
				150	0.9057	48.99	
				300	NA	NA	
				500	2.616	141.50	
Poly(1-butene)	PB	56.11	249	100	0.6733	37.78	23.06
				200	1.2190	68.40	
				300	2.086	117.02	
	DDUT	55.10		600	3.071	172.31	
Poly(1-butenylene)	PBUT	55.10	171	20	0.01.40	11.70	20.01
CIS-			1/1	30	0.2140	11.79	28.91
				130	0.7775	42.838	
				300	1.924	106.03	
			100	450	2.409	132.73	26.40
trans-			190	30	0.1761	9.704	26.48
				130	0.7898	43.516	
				300	1.924	106.03	
		л	. 1. /	450	2.409	132.73	
		Pe	лу(акепе	(5)			
Poly(ethylene)	PE	14.03	252	100	0.674	9.45 (c)	10.1
				200	1.110	15.57	
				300	1.555	21.81 (s)	
					2.202	30.89 (m)	
				600	3.127	43.87	
Poly(1-hexene)	PHE	84.16	223	100	0.7020	59.08 (a)	25.1
				200	1.3319	112.09	
				250	1.903	160.18 (a)	
				290	2.079	174.98 (a)	
				-			

TABLE 2.86 Heat Capacities of Polymers

		Molecular ^a		-	C	p p	
Polymer	Abbre- viations	weight g/mol	T_g (K)	Temp. (K)	kJ/kg·K	J/mol·K	ΔC_p^c J/mol·K
Polv(isobutene)	PiB	56.11	200	50	0.2440	13.69 (a)	22.29
				150	0.8660	48.59	
				300	1.962	110.09 (a)	
				380	2.311	129.66	
Poly(2-methylbutadiene)	PMBD	68.12					
cis-			200	50	0.3573	24.34	30.87 (a)
				150	0.9025	61.48	e e e e e e e e e e e e e e e e e e e
				300	1.911	130.20	
				360	2.216	144.80	
Poly(4-methyl-1-pentene)	P4MPE	84.16	303	80	0.5610	47.21	33.7 (a)
				180	1.090	91.75	
				250	1.4449	121.60	
				300	1.728	145.40	
Poly(1-pentene)	PPE	70.14	233	200	1.253	87.90	27.03 (a)
				220	1.338	93.82	
				300	2.058	144.34	
				470	2.770	194.32	
Poly(propylene)	PP	42.08	260	100	0.6238	26.25 (c)	17.37
i oly(propylene)		12100	200	200	1.132	47.63 (c)	1/10/
				300	1.622	68.24 (s)	
				200	2 099	88.34 (m)	
				600	3 178	13373 (a)	
		Polv(methacr	vlics)	5.170	155.75 (u)	
Doly(" hytri motheomilete)	DeDMA	142.20	202	20	0 5 4 7 2	77 01	20.70
Fory(<i>n</i> -butyr methacrylate)	FIIDMA	142.20	293	200	1 1557	164.24	29.70
				200	1.1557	104.34	
				300	1.6524	205.41	
Doly(<i>i</i> bytyl mothoomylata)	DDMA	142.20	226	430	2.3073	330.03	20.00
Poly(<i>i</i> -butyl methacrylate)	PIBMA	142.20	320	230	1.2229	173.90	39.00
				300	2.0100	225.40	
				350	2.0190	287.10	
Doly(athy) matheomylate)	DEMA	114 15	220	400	2.1127	500.45	21.70
Poly(ethyl methacrylate)	PEMA	114.15	330	200	0.3133	30.04	51.70
				300	1.4000	107.42	
				350	1.9489	222.47	
	DUMA	170.25	269	380	2.0462	255.57	
Poly(nexyl methacrylate)	PHMA	170.25	208	270	1.8204	310.77	_
				300	1.9091	324.83	
		06.00		420	2.2396	381.06	
Poly(methacrylic acid)	PMAA	86.09	_	100	0.5248	45.18	_
				200	0.9456	81.41	
		05.11		300	1.307	112.50	
Poly(methacrylamide)	PMAM	85.11	_	100	0.5904	50.25	_
				200	1.032	87.81	
	5.07	100.10		300	1.395	118.70	
Poly(methyl methacrylate)	PMMA	100.12	378	100	0.5742	57.49	33.5
				300	1.3755	137.72	
				400	2.0766	207.91	
				550	2.4323	243.52	

		Molecular ^a	-	Ŧ	C	p p	
Dolumor	Abbre-	weight	T_g	Temp.	kI/ka K	I/mol K	ΔC_p^{c}
Folymer	viations	g/III0I	(K)	(K)	KJ/Kg·K	J/III0I·K	J/III0I·K
		Pe	oly(styren	es)			
Poly(styrene)	PS	104.15	373	100	0.4548	47.37 (g)	30.7 (a)
				300	1.2230	127.38	
					1.2730	132.58	
				400	1.9322	201.24	
				600	2.4417	254.30	
—,α-methyl	PαMS	118.18	441	100	0.4712	55.69	25.3
				300	1.2752	150.70 (g)	
				460	2.1868	258.44	
				490	2.3331	275.72	
—, <i>p</i> -bromo-	PBS	183.05	410	300	0.79650	145.800	31.9
*				350	0.92349	169.045	
				420	1.2651	231.582	
				550	1.4641	267.995	
—, p-chloro-	PCS	138.60	406	300	1.0229	141.780	31.1
				350	1.19848	166.110	
				410	1.6331	226.345	
				550	1.9134	265.195	
—, <i>p</i> -fluoro-	PFS	122.14	384	130	0.47611	58,152	33.3
, _F				200	0.62048	75.786	
				300	0.93079	113.687	
				380	1 2672	154 773	
— <i>n</i> -iodo-	PIS	230.05	424	300	0.67607	155 53	37.9
, p louo	115	230.05	727	400	0.89102	204 980	51.9
				430	1 1145	256.41	
				550	1.2570	280.17	
n	PMS	118 18	380	300	1.2370	150,600	34.6
—, p-memyi-	1 1015	110.10	500	350	1.2745	176 200	54.0
				300	1.4917	220.846	
				500	1.9449	229.840	
	Polv	(vinvl halid	es) and Po	olv(vinvl nit	2.2700	209.05	
Doly(complemituile)	DAN	52.06	270	100	0.5605	20.22	
Poly(acrylollurile)	PAIN	33.00	578	200	0.3093	30.22	_
				200	0.9280	49.27	
				300	1.297	68.83	
	DCOPE	116 47	205	370	1.624	80.10	
Poly(chlorotrifluoroethyle	ne)PC3FE	116.47	325	80	0.2787	32.46	_
				200	0.6257	72.87	
				300	0.85945	100.10	
				320	0.90667	105.60	
Poly(tetrafluoroethylene)	PTFE	50.01	240	100	0.3873	19.37	7.82
				200	0.6893	34.47	
				300	0.9016	45.09 (s)	
					1.028	51.42 (m)	
				700	1.454	72.69	
Poly(trifluoroethylene)	P3FE	82.02	304	100	0.4049	33.21	21.00
				200	0.7128	58.46	
				300	1.078	88.40	
Poly(vinyl chloride)	PVC	62.50	354	100	0.4291	26.82 (g)	19.37(a)
				300	0.9496	59.35 (g)	
				360	1.457	91.08	
				380	1.569	98.05	

		Molecular ^a			C	p b	
	Abbre-	weight	T_{g}	Temp.			$\Delta C_p^{\ c}$
Polymer	viations	g/mol	(K)	(K)	kJ/kg∙K	J/mol·K	J/mol·K
Poly(vinylidene chloride)	PVC2	96.95	255	100	0.3745	36.31	70.26
				200	0.5932	57.51	
				250	0.7115	68.98	
				300	NA	NA	
Poly(vinylidene fluoride)	PVF2	64.03	233	100	0.4435	28.40	22.80
				150	0.6185	39.60	
				230	0.8918	57.10	
				250	0.7856	50.30	
				300	NA	NA	
Poly(vinyl fluoride)	PVF	46.04	314	100	0.5204	23.96	17.80(a)
5. 5				200	0.8692	40.02	
				300	1.301	59.91	
				310	1.353	62.29	
			Others				
Poly(<i>n</i> -nhenylene)	PPP	76.10	_	80	0 3708	28.22 (s	- (c
r ory(p-prierryrenc)		70.10		150	0.58135	44 241 (3	() ()
				250	0.02026	70 717 (8	
				200	0.92920	70.717 (S	
Poly(viny) agotata)	DVA	86.00	204	300	0.2220	27.81	527
Poly(villy) acetate)	PVAC	80.09	304	200	0.5250	27.81	35.7
				300	1.165	101.60	
				320	1.8409	158.48	
	DVA	14.05	250	370	1.898	163.37	
Poly(vinyl alcohol)	PVA	44.05	338	60	0.2674	11.78	—
				150	0./18/	31.66	
				250	1.185	52.21	
				300	1.546	68.11	
Poly(vinyl benzoate)	PVBZ	148.16	347	190	0.71808	106.39	69.5
				300	1.1025	163.35	
				400	1.8390	272.47	
				500	2.0333	301.25	
Poly(<i>p</i> -xylylene)	PPX	104.15	286	220	0.91445	95.241 (s	sc) 37.6(a)
				250	1.0576	110.149 (s	sc)
				300	1.3022	135.622 (s	sc)
			_	410	1.8686	194.619 (s	sc)
	2.	Main-chair	1 heteroa	tom polyme	ers		
		10	siy(umut	-0) 	1.0000	201 = 2	
Poly(iminoadipoy-	Nylon 612	310.48	319	230	1.2296	381.78	214.8(a)
liminododecamethylene)				300	1.5926	494.48	
				400	2.4842	771.30	
				600	3.1596	980.986	
Poly(imioadipoy-	Nylon 66	226.32	323	230	1.1139	252.10	145.0(a)
liminohexamethylene)				300	1.4638	331.30	
				400	2.3794	538.50	
				600	2.793	632.1	
Poly(iminohexamethylene-	Nylon 69	268.40	331	230	1.1980	321.53	—
iminoazelaoyl)				300	1.5204	408.080	
				400	2.3840	639.874	
				600	3.0720	824.534	
Poly(iminohexamethylene-	Nylon 610	282.43	323	230	1.2069	340.870	_
iminosebacoyl)				300	1.5644	441.820	
-				400	2.3975	677.125	
				600	3.1041	876.685	

		Molecular ^a			C	p p	
Polymer	Abbre- viations	weight g/mol	T _g (K)	Temp. (K)	kJ/kg∙K	J/mol·K	$\Delta C_p^{\ c}$ J/mol·K
Poly(imino-	Nylon 6	113.16	313	70	0 4400	49.78	93.6(a)
(1-oxohexamethylene))	rtyron o	110110	010	300	1.5023	170.00)010(u)
(T entenentamenty fence))				400	2.5186	285.00	
				600	2 7881	315 50	
Poly(imino-	Nylon 12	197 32	314	230	1 2874	254 020	
1-oxododecamethylene)	rtylon 12	177.52	511	300	1.6952	334 49	
i enededeedineuryiene)				400	2 4709	487 565	
				600	3 2786	646 945	
Poly(imino-	Nylon 11	183 30	316	230	1 2996	238 21	
1-oxoundecamethylene)	rtylon 11	105.50	510	300	1.2550	320.91	
1-oxoundecamentylenc)				400	2 4567	450 314	
				600	3 2449	594 794	
Poly(methocrylomide)	DMAM	85 11		100	0.5004	50.25	
Fory(methacrytaniide)	FIVIAIVI	05.11	_	200	1.022	50.25 97.91	
				200	1.032	102.20	
				200	1.214	103.30	
		Dob		oida)	1.595	118.70	
		Foly	(amino a	cius)			
Poly(L-alanine)	PALA	71.08	_	230	1.102	78.33	_
				300	1.315	93.47	
				350	1.498	106.5	
				390	1.622	115.3	
Poly(L-asparagine)	PASN	114.10	_	230	0.958	109.3	
				300	1.218	139.0	
				350	1.397	159.4	
				390	1.537	175.4	
Polyglycine	PGLY	57.05	_	230	0.929	53.00	
				300	1.170	66.75	
				350	1.356	77.36	
				390	1.516	86.49	
Poly(<i>L</i> -methionine)	PMET	131.19	_	220	0.936	122.8	
				300	1.347	176.7	
				350	1.595	209.3	
				390	1.768	232.0	
Poly(<i>L</i> -phenylalanine)	PPHE	147 18		220	0.830	122.1	
r org (2 prioriginalization)	TTTL	11/.10		300	1 1 5 3	169.7	
				350	1 382	203.4	
				390	1.502	203.4	
$Poly(I_{-serine})$	PSER	87.08		220	0.050	83.50	
rory(<i>L</i> -serme)	ISLK	07.00		300	1 297	112.9	
				350	1.277	134.2	
				300	1.541	152.1	
Doly(Lyoline)	DVAT	00.12		220	1./4/	132.1	
i ory(L-valific)	FVAL	99.13	_	200	1.213	144.2	_
				250	1.433	144.2	
				330	1.047	105.5	
		r a construction a co	Dolu(out	390	1.602	1/8.0	
		1	oly(esters	9			
Poly(butylene adipate)	PBAD	200.24	199	80	0.54302	108.734	140.046
· · · · /				150	0.87449	175.107	
				300	1.9706	394.595	
				450	2 2147	443 470	

		Molecular ^a		$C_p^{\ b}$			
Polymer	Abbre- viations	weight g/mol	T_g (K)	Temp. (K)	kJ/kg·K	J/mol·K	$\Delta C_p^{\ c}$ J/mol·K
Poly(butylene terephthalate)	PRT	220.23	248	150	0.61075	134 505(sc)	106 77
Tory(butylene terephthalate)) 101	220.23	320	200	0.82262	181 166	77.812
			520	300	1.6134	355 311	77.012
				400	1 8187	400 532	
				570	2 1678	400.332	
Poly(ethylene terenhthalate)	PET	102.16	3/12	100	0.4393	84.42	77.8(a)
Tory(eurylene terephtnanate)	, ILI	172.10	572	300	1 172	225.2	77.0 (a)
				400	1.8203	3/9.80	
				600	2 1136	406.15	
Poly(tridecanolactone)	PTDI	212.34	237	185	0.95	202	
Tory(tridecationactoric)	TIDL	212.54	251	260	1.45	308	
				200	1.45	380	
				305	2.15	157	
Poly(trimethylene adjuste)	ρτω	186 21		300	2.15 NA	NA	
rory(uniteditytene adipate)	I I WIA	100.21		310	1 8710	3/8/01	_
				330	1.0137	356 341	
				360	1.9137	368 252	
Poly(trimethylene succingta	DTMS	158 15		300	1.9770 NA	NA	
Fory(unitedity)elle succinate) FIMS	136.15	_	210	1.9401	201.014	_
				220	1.0401	291.014	
				260	1.0721	290.074	
Poly(whytyrologiona)	DDI	86.00	214	100	0.6012	51 760	57 /
Poly(7-butyrolactolle)	PDL	80.09	214	210	1.024	S1.700 99.170	37.4
				210	1.024	00.170 155.959(m)	
				250	1.810	155.858(m) 161.021(m)	
Doly(s connoloctone)	DCI	114.15	200	100	1.870	101.031(m) 71.140	50.5
$Poly(\epsilon$ -caprolacione)	PCL	114.15	209	100	0.62322	/1.140	39.5
				200	1.0245	110.925	
				300	1.4229	102.42	
				250	1.8138	207.04 (s)	
\mathbf{D}	DOI	59.04	210	350	1.9415	221.62 (m)	44.4
Poly(glycolide)	PGL	58.04	318	100	0.5250	30.470	44.4
				300	1.127	65.42	
				400	1.999	116.039 (m)	
	DDI	72.07	240	550	2.098	121.75 (m)	50.4
$Poly(\beta$ -propiolactone)	PPL	72.07	249	100	0.5568	40.130	50.4
				240	1.044	75.220	
				300	1.878	135.354 (m)	
	BEAL	114.00	201	400	2.081	149.994 (m)	
Poly(ethylene oxalate)	PEOL	116.07	306	100	0.49910	57.930	56.23
				300	1.1175	129.705	
				320	1.6395	190.295 (m)	
				360	1.7012	197.456 (m)	
Poly(ethylene sebacate)	PES	228.29	245	120	0.66292	151.338 (s)	154.059
				200	0.95269	217.490 (sc))
				300	1.9245	439.34 (m)	
		_		410	2.1923	500.500 (m)	
		Pa	oly(oxide	s)			
Poly(oxy-2,6-dimethyl-	PPO	120.15	482	80	0.4418	53.08	31.9 (a)
1,4-phenylene)	-			300	1.2459	149.70	1 -7
· · · · · ·				500	2.1232	255.10	
				570	2.2555	271.00	

		Molecular ^a			C	$C_p^{\ b}$	
Polymer	Abbre- viations	weight g/mol	T_g (K)	Temp. (K)	kJ/kg·K	J/mol·K	ΔC_p^c J/mol·K
	DOF	44.05	200	100	0 (114	2(02 ()	20.07
Poly(oxyethylene)	POE	44.05	206	100	0.6114	26.93 (s)	38.96
				200	0.9507	41.88 (s)	
				300	1.257	55.36 (s)	
				450	1.995	87.89 (m)	
D-1	DOM	20.02	100	450	2.225	97.91	27 47
Polyoxymethylene	POM	30.03	190	100	0.5554	16.68 (s)	21.47
				150	0.7200	21.82 (s)	
				300	1.283	38.52 (S)	
				(00	1.920	57.67 (m)	
	DODI	02.10	250	600	2.292	68.83	21 4 ()
Poly(oxy-1,4-phenylene)	POPh	92.10	358	300	1.185	109.10 (s)	21.4 (a)
				350	1.367	125.90 (s)	
				400	1.694	156.00 (m)	
				600	2.003	184.50 (m)	
Poly(oxypropylene)	POPP	58.08	198	80	0.537	31.21 (s)	32.15
				180	1.014	58.89 (s)	
				300	1.915	111.23 (m)	
				370	2.105	122.27 (m)	
Poly(oxytetramethylene)	PO4M	72.11	189	80	0.5465	39.41 (s)	46.49
				180	1.033	74.52 (s)	
				300	1.985	143.15 (m)	
				340	2.081	150.04 (m)	
Poly(oxytrimethylene)	PO3M	58.08	195	80	0.5095	29.59 (s)	50.73
				180	0.9464	54.97 (s)	
				300	1.373	79.73 (s)	
					2.055	119.34 (m)	
				330	2.107	122.37	
			Others				
Poly(diethyl siloxane)	PDES	102.21	135	50	0.38820	39.678 (sc)	30.189
r org (aroung r ontonano)	1225	102121	100	100	0 73995	75 630 (sc)	001109
				300	1 6184	165417(m)	
				360	1.7525	179.125 (m)	
Poly(dimethyl itaconate)	PDMI	158 16	377	110	0.59700	94 419 (a)	54 23
r org (annearly rateonate)	1 Dim	150.10	511	300	1 3183	208507(a)	51.25
				400	1 9282	304.968 (m)	
				450	2 0009	316 463 (m)	
Poly(dimethyl siloyane)	PDMS	74 15	146		0.3672	27.23	27.7 (a)
r ory(unitetriy) shoxale)	I DINIS	74.15	140	100	0.7131	52.88	27.7 (u)
				300	1 501	118.0	
				340	1.591	122.0	
Poly(A hydroxybenzoic ac	d) DHBA	120.11	131	170	0.58014	70.762	3/
i ory(+-nyuroxybenzoic ac	u) I IIDA	120.11	434	300	1 0207	122.60	J +
				400	1.0207	122.00	
				400	1.3002	104.091	
Delv(1 1' iconnervitit-	DC	254 27	410	434	0.42142	1/0.399	10 5
dinhanylanaaanhar ta	PU	234.27	418	200	0.43143	109.70 (S)	46.3
uipiienyienecarbonate)				300	1.207	500.8 (S)	
				450	1.9570	497.00 (m)	
				200	2.207	561.3 (m)	

	411	Molecular ^a	Ŧ	т	$C_p^{\ b}$		
Polymer	Abbre- viations	g/mol	I_g (K)	(K)	kJ/kg·K	J/mol·K	ΔC_p^{-1} J/mol·K
Poly(oxy-1,4-phenylene-	PEEK	288.30	419	300	NA	NA	78.1
oxy-1,4-phenylene-				419	1.789	515.8	
carbonyl-1,4-phenylene)				500	1.928	555.9	
				750	2.358	679.8	
Poly(oxy-1,4-phenylene-	PBISP	442.54	458.5	200	0.75870	335.754	102.482
sulphonyl-1,4-phenylene-or	xy-			300	1.1161	493.934	
1,4-phenylene-(1-methylide	ene)-			500	1.9436	860.132	
1,4-phenylene)	<i>,</i>			540	2.0251	896.19	
Poly(1.4-phenylene sulphonyl)PAS		140.16	492.6	150	0.597	83.7	
	•			300	1.009	141.4	
				500	1.571	220.2	
				620	1.642	230.1	
Poly(1-propene sulphone)	P1PS	106.14		10	0.01580	1.677	
				30	1.165	123.7	
Trigonal selenium	SEt	78.96	303.4	100	0.2304	18.19 (s)	13.29
-				300	0.318	25.11	
				400	0.3338	26.36 (s)	
					0.4777	37.72 (m)	1
				600	0.4343	34.29	

^{*a*}This is the molecular weight of the repeat unit of the polymer. ^{*b*}Except the data for PTDL and P1PS, C_p data reported in the unit of kJ/kg·K were converted from the C_p data which were directly cited from the literature, using the molecular weight of the repeat unit.

^cSpecific heat increment at T_g .

Polyamides Polylauryllactam (nylon-12) 0.25 Polycaprolactam (nylon-6) 0.19 Moldings 293 0.24 Crystalline 303 0.35 Amorphous 303 0.36 Melt 523 0.210 Polychexamethylene adipamide) (nylon-6.6) 0 0 Moldings 293 0.24 Crystalline 303 0.36 Moldings 293 0.24 Crystalline 303 0.36 Moldings 293 0.23 Polychexamethylene sebacamide) (nylon-6, 12) 0.22 Polychylene sebacamide) (nylon-6, 10) 0.22 Polycharbonates, polyesters, polyethers, and polyketones Polycarbonates Polycarbonate (mylon-11) 0.23 0.29 Polycarbonate (Biphenol A) 293 0.20 Polycarbonate (Biphenol A) 293 0.20 Polycdially carbonate) 0.11 Chlorinated Polycdially carbonate) 0.21 0.21 Polycdidially carbonate)	Polymer	Temperature (K)	<i>k</i> (W/m K)
Polylauryllactam (nylon-12) 0.25 Polycaprolactam (nylon-6) 0.24 Moldings 293 0.24 Crystalline 303 0.36 Melt 523 0.210 Polythexamethylene adipamide) (nylon-6,6) 0.22 0.210 Moldings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.43 Amorphous 303 0.43 Molt 523 0.15 Polythexamethylene dodecanediamide) (nylon-6, 12) 0.22 Polythexamethylene ebacamide) (nylon-6, 12) 0.22 Polythexamethylene ebacamide) (nylon-6, 10) 0.23 Polytacetal 0.23 Polycarbonates, polyesters, polyethers, and polyketones 0.23 Polytacetal 0.23 Polycarbonate (Biphenol A) 293 Polycarbonate (Biphenol A) 293 Polycarbonate (Biphenol A) 0.23 Polycaster 0.12 Polycaster 0.12 Polycaster 0.25 Polycaster 0.25 Polychytheresteramide 303 Polychonate 293 Polychytheresteramide 293 Polychythore terepthalate) (PET) 293	Polyam	nides	
Polycaprolactam (nylon-6) 0.19 Polycaprolactam (nylon-6) 303 0.24 Crystalline 303 0.35 Amorphous 303 0.36 Melt 523 0.210 Poly(hexamethylene adipamide) (nylon-6,6) 0.21 0.22 Moldings 293 0.24 Crystalline 303 0.36 Amorphous 303 0.35 Moldings 293 0.24 Crystalline 303 0.36 Meth 523 0.15 Poly(hexamethylene dodecanediamide) (nylon-6, 12) 0.22 Poly(hexamethylene sebacamide) (nylon-6, 10) 0.22 Polycarbonates, polyesters, polyethers, and polyketones 0.23 Polycarbonates (Polycarbonates, polyesters, polyethers, and polytetones 0.23 Polycarbonate (Biphenol A) 293 0.29 Poly(dially carbonate) 0.12 0.12 Polycdially carbonate (Biphenol A) 293 0.20 Cast, rigid 0.17 0.12 Colycid-dimethyl-1,4-phenylene ether) 0.12 0.12 Polycid-dimethylene 293 <td>Polylauryllactam (nylon-12)</td> <td></td> <td>0.25</td>	Polylauryllactam (nylon-12)		0.25
Polycaprolactam (nylon-6) Moldings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.36 Melt 523 0.210 Polychexamethylene adipamide) (nylon-6,6) Moldings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.43 Amorphous 303 0.43 Amorphous 303 0.43 Amorphous 303 0.45 Melt 303 0.45 Polycharamethylene dodecanediamide) (nylon-6, 12) 0.22 Polychexamethylene dodecanediamide) (nylon-6, 10) 0.22 Polychylene scheamide) (nylon-6, 10) 0.22 Polychylene deceanediamide) (nylon-6, 10) 0.23 Polycarbonates, polyesters, polyethers, and polyketones Polycacatal 0.23 Polycarbonates, polyesters, polyethers, and polyketones Polycarbonate (Biphenol A) 293 0.30 Polycly(burylene terephthalate) (PBT) 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 Polycdially carbonate (Defence) 0.21 Poly(dially carbonate) 0.21 Polycdially carbonate (Defence) 0.21 Polycdially carbonate) 0.21 Polycdially carbonate (Defence) 0.23 Polycly(barbylene terephthalate) (PET) 293 0.15 Temperature dependence 200–350 Poly(diallg grade 0.23 Polycly(Defence) 0.23 Polychortrifluoroethylene) 0.21 Polychortrifluoroethylene 0.23 Polychortrifluoroethylene 0.23 Polychortrifluoroethylene 0.23 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.29 Polychortrifluoroethylene) 0.25 Polychortrifluoroethylene) 0.25 Polychortrifluoroethylene) 0.25 Polychortrifluoroethylene) 0.27 Polychortrifluoroethylene) 0.27 Polychortrifluoroethylene) 0.27 Polychortrifluoroethylene) 0.27 Polychortrifluoroethylene 0.27 Polychortrifluoroethylene 0.27 Polychorotriflu			0.19
Modings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.26 Melt 523 0.210 Poly(hexamethylene adipamide) (nylon-6.6)	Polycaprolactam (nylon-6)	202	
Crystalline 303 0.43 Amorphous 303 0.36 Mett 523 0.210 Poly(hexamethylene adipamide) (nylon-6,6)	Moldings	293	0.24
Amorphous 303 0.36 Melt 523 0.210 Poly(hexamethylene adipamide) (nylon-6, 6) 293 0.24 Crystalline 303 0.43 Amorphous 303 0.36 Melt 523 0.15 Poly(hexamethylene dodecanediamide) (nylon-6, 12) 0.22 0.22 Polytexamethylene sebacamide) (nylon-6, 12) 0.22 0.22 Polytexamethylene sebacamide) (nylon-6, 10) 0.23 0.22 Polytacetal 0.3 0.3 Polycacetal 0.3 0.3 Polycacetal 0.3 0.3 Polycatomate (Biphenol A) 293 0.20 Temperature dependence 150–400 0 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 Polyca-20 Polyca-350 0.20 0.21 Polyca-20 Polyca-40 203 0.25 0.25 Poly(dinly carbonate) 0.25 0.25 0.25 Polyca-11 293 0.25 0.25 Poly(chylene tereph	Crystalline	303	0.43
Mett 523 0.210 Moldings 293 0.24 Moldings 293 0.43 Amorphous 303 0.36 Mett 523 0.15 Poly(hexamethylene dolecanediamide) (nylon-6, 12) 0.22 Poly(hexamethylene sebacamide) (nylon-6, 10) 0.22 Polyundecanolactam (nylon-11) 0.23 Polycarbonates, polyesters, polyethers, and polyketones 0.23 Polycarbonate (Biphenol A) 0.29 Poly(butylene terephthalate) (PBT) 293 0.20 Poly(2.6-dimethyl-1.4-phenylene ether) 0.12 0.16 Poly(2.6-dimethyl-1.4-phenylene ether) 0.12 0.12 Poly(2.6-dimethyl-1.4-phenylene ether) 0.12 0.12 Poly(2.6-dimethyl-1.4-phenylene ether) 0.12 0.12 Poly(2.6-dimethyl-1.4-phenylene ether) 0.12 0.21 Poly(2.6-dimethylene Y 0.12 0.25 Poly(datly carbonate (PEEK) 0.25 0.25 Poly(datly carbonate (PEEK) 0.25 0.25 Poly(oxymethylene) 293 0.29 </td <td>Amorphous</td> <td>303</td> <td>0.36</td>	Amorphous	303	0.36
Polythexamethylene adapamide) (nylon-6,10) Moldings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.36 Mett 523 0.15 Polythexamethylene dodecanediamide) (nylon-6, 12) 0.22 Polythexamethylene sebacamide) (nylon-6, 10) 0.22 Polytacetal 0.23 Polycarbonates, polyesters, nolyethers, and polyketones Polyacetal 0.23 Polycarbonates, polyesters, polyethers, and polyketones Polycarbonates, polyesters, polyethers, and polyketones Polycarbonates, polyesters, polyethers, and polyketones Polycarbonates, polyesters, polyethers, and polyketones Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 Poly(dially carbonate) 0.21 Poly(dially carbonate) 0.20 Poly(dially carbonate) 0.21 Poly(dially carbonate) 0.22 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.23 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(dially carbonate) 0.25 Poly(chrymethylene) 0.293 0.29 Poly(chrymethylene) 0.293 0.29 Poly(chrymethylene) 0.29 Poly(c	Melt	523	0.210
Motings 293 0.24 Crystalline 303 0.43 Amorphous 303 0.36 Melt 523 0.15 Poly(hexamethylene dodecanediamide) (nylon-6, 12) 0.22 0.27 Polymdecanolactam (nylon-11) 0.23 0.23 Polycactal 0.3 0.30 Polyacetal 0.3 0.30 Polycarbonates, polyesters, polyethers, and polyketones 0.3 Polycarbonate (Biphenol A) 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300-573 0.16 Polyc2.6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyc2.6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyc4.6-dimethyl-1,4-phenylene ether) 0.15 0.25 Poly(childly carbonate) 0.23 0.24 Polycetheretheretone (PEEK) 0.25 0.25 Poly(chylene terephthalate) (PET) 293 0.29 Polychylene terephthalate) (PET) 293 0.24 Temperature dependence	Poly(hexamethylene adipamide) (nylon-6,6)	202	0.04
Crystalline 303 0.43 Amorphous 303 0.36 Mett 523 0.15 Poly(bexamethylene dodecanediamide) (nylon-6, 10) 0.22 Polyundecanolactam (nylon-11) 0.23 Polycarbonates, polyesters, polyethers, and polyketones Polyacetal 0.3 0.30 Polyacetal 0.23 Polyacetal 0.23 Polyacetal 0.23 Polyacetal 0.23 Polyacetal 0.23 Polyacypletherketone 293 0.30 Poly(butylene terephthalate) (PBT) 293 0.20 0.20 Temperature dependence 300-573 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 Poly(clailly carbonate) 0.21 0.21 Polyce-dimethyl-1,4-phenylene ether) 0.13 0.24-0.34 Polyce-dimethyl-1,4-phenylene ether) 0.23 0.24 Polyce-dimethylene corbol 2.25 0.25 Poly(ethylene terephthalate) (PET) 293 0.29 Poly (entylene terephthalate) (PET) 29	Moldings	293	0.24
Amorphous 303 0.36 Melt 523 0.15 Poly(hexamethylene dodecanediamide) (nylon-6, 10) 0.22 Poly(hexamethylene sebacamide) (nylon-6, 10) 0.23 Polyacetal 0.3 Polyacetal 0.3 Polyacetal 0.3 Polyacetal 0.3 Polycarbonates, polyesters, polyethers, and polyketones 0.3 Polyacetal 0.3 Polyacetal 0.3 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300-573 0.16 Poly(12,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyetheresteramide 303 0.24-0.34 Sold 0.20 0.17 Chlorinated 0.33 0.20-0.26 Poly(ethylene terephthalate) (PET) 293 0.24-0.34 Poly(oxymethylene) 293 0.292 Poly(oxymethylene) 293	Crystalline	303	0.43
Melt 5.2.3 0.15 Poly(hexamethylene dodecanediamide) (nylon-6, 12) 0.22 Poly(hexamethylene sebacamide) (nylon-6, 10) 0.22 Poly(acamethylene sebacamide) (nylon-6, 10) 0.22 Poly(hexamethylene sebacamide) (nylon-6, 10) 0.22 Poly(acetal 0.3 Polyacetal 0.3 Polyacyletherketone 293 0.30 Poly(butylene terephthalate) (PBT) 293 0.20 Temperature dependence 300–573 0.16 Poly(3cf-dimethyl-1,4-phenylene ether) 0.12 0.12 Poly(seter 0.12 0.12 0.12 Poly(seter 0.12 0.33 0.24–0.34 Polytehresteramide 303 0.24–0.34 0.33 Polytehresteramide 303 0.24–0.34 0.12 Polytester 0.12 0.25 0.293 0.25 Poly(ehreptherektore (PEEK) 0.25 0.25 0.25 0.25 Poly(stery resin 2.23 0.29 0.44 0.23 Poly(chortifluoroethylene	Amorphous	303	0.36
Poly(hexamethylene dodecanediamide) (nylon-6, 12) 0.22 Poly(action (nylon-6, 10) 0.23 Polycarbonates, polyesters, polyethers, and polyketones Polycarbonates, polyesters, polyethers, and polyketones 0.3 Polycarbonates, polyesters, polyethers, and polyketones 0.3 Polycarbonates, polyesters, polyethers, and polyketones 0.3 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 0.16 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polycacher and a cols	Melt	523	0.15
Poly(nexamethylene sebacamide) (nylon-6, 10) 0.22 Polyacetal 0.23 Polyacetal 0.3 Polyacetal 0.3 Polyacyletherketone 293 0.30 Polyacyletherketone 293 0.30 Polyacyletherketone 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 0.12 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polycarbonate 0.30 0.24–0.34 Polycate 303 0.24–0.34 Polycater 0.12 0.12 Polycater 0.12 0.12 Polycater 0.12 0.12 Polycater 0.13 0.24–0.34 Polycater 0.33 0.24–0.34 Polyteneteres 0.25 0.25 Polyteneteres 0.23 0.29 Polytehylene terephthalate) (PET) 293 0.29 Polytophylene oxide) 293 0.44 Temperature dependence 100–400 293 Polytophylene oxide) 300–500<	Poly(hexamethylene dodecanediamide) (nylon-6, 12)		0.22
Polyundecanolactam (nylon-11) 0.23 Polyacrbonates, polyesters, polyethers, and polyketones Polyacetal 0.23 Note that the polyesters of the polyesters of the polyesters of the polyesters of the polyester of	Poly(hexamethylene sebacamide) (nylon-6, 10)		0.22
Polyacetal 0.23 0.3 Polyaryletherketone 293 0.30 Polydynyletherketone 293 0.29 Polyderbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 150–400 Poly(dially carbonate) 0.21 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 Polyetheresteramide 303 0.20 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.292 Polyetheresteramide 203 0.15 Temperature dependence 200–350 Poly(chylene terephthalate) (PET) 293 0.44 Temperature dependence 203 Poly(chynentylene) 293 0.19 Polychorotrifluoroethylene 203 Polychorotrifluoroethylene 293 0.19 Temperature dependence 203 Polychlorotrifluoroethylene) copolymer 0.23 Polychlorotrifluoroethylene 293 0.29 Polychlorotrifluoroethylene) copolymer <	Polyundecanolactam (nylon-11)		0.23
Polyacetal 0.23 Polyaryletherketone 293 0.30 Polyaryletherketone 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 150–400 Polyca, Guinethyl-1,4-phenylene ether) 0.12 Polyca, Guinethyl-1,4-phenylene ether) Polyester 0.17 0.12 Cast, rigid 0.17 0.33 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Poly(thylene terephthalate) (PET) 293 0.25 Poly(thylene terephthalate) (PET) 293 0.29 Temperature dependence 200–350 292 Poly(xymethylene) 293 0.292 Temperature dependence 100–400 293 Poly(phylene toxide) 0.19 0.19 Molding grade 293 0.19 Temperature dependence 300–500 0.19–0.34 Polychlorotrifluoroethylene 293 0.29 Polychlorotrifluoroethylene) copolymer 0.23	Polycarbonates, polyesters, p	olyethers, and polyketones	
Polyaryletherketone 293 0.30 Poly(butylene terephthalate) (PBT) 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 0.20 Poly(dially carbonate) 0.16 0.21 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyester 0.17 0.16 Cast, rigid 0.17 0.13 Chlorinated 0.33 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Poly(chtylene terephthalate) (PET) 293 0.15 Temperature dependence 200–350 0.292 Poly(oxymethylene) 293 0.292 Poly(oxymethylene) 293 0.292 Molding grade 0.23 0.19 Temperature dependence 100–400 0.19–0.34 Poly(chylene vide) 300–500 0.19–0.34 Molding grade 293 0.29 Casting grade 293 0.29 Polychlorotrifluoroethylene 293 0.23	Polyacetal		0.23
Polyaryletherketone 293 0.30 Poly(butylene terephthalate) (PBT) 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 150–400 Poly(dially carbonate) 0.21 0.20 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyester 0.17 0.17 Chlorinated 0.33 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.20–0.26 Polyetheresteramide 293 0.29 Polyetheretherketone (PEEK) 0.25 0.15 Temperature dependence 200–350 0.292 Poly(chylene terephthalate) (PET) 293 0.292 Poly(chylene terephthalate) (PET) 293 0.292 Poly(phenylene) 293 0.292 Poly(phenylene oxide) 00–400 00–400 Poly(phenylene oxide) 0.19 0.19 Molding grade 293 0.19 Casting grade 293 0.29 Casting grade 293 0.29			0.3
Poly(butylene terephthalate) (PBT) 293 0.29 Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 150–400 Poly(dially carbonate) 0.21 Poly(2,6-dimethyl-1,4-phenylene ether) 0.21 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 Polyester 0.17 Cast, rigid 0.17 0.17 Chlorinated 0.33 Polyetheresteramide 303 0.24–0.34 0.34 Polyetheresteramide 303 0.24–0.34 0.15 Temperature dependence 200–350 0.15 15 Poly(xymethylene) 293 0.292 0.44 30 Poly(chylene terephthalate) (PET) 293 0.292 0.44 30 Poly(oxymethylene) 293 0.42 0.23 0.292 Temperature dependence 100–400 293 0.19 0.19 Poly(phenylene oxide) 300–500 0.19–0.34 0.19 0.19 0.19 Molding grade 293 0.29 0.29 0.23 0.29 0.23 0.29 0.23 0.29 0.23 <td>Polyaryletherketone</td> <td>293</td> <td>0.30</td>	Polyaryletherketone	293	0.30
Polycarbonate (Biphenol A) 293 0.20 Temperature dependence $300-573$ 150-400 Poly(dially carbonate) 0.21 Poly(2.6-dimethyl-1,4-phenylene ether) 0.12 Polyester 0.17 Chlorinated 0.33 Polyetheresteramide 303 0.24-0.34 0.33 Polyetheresteramide 303 0.24-0.34 Polyetheresteramide 0.25 Poly(ethylene terephthalate) (PET) 293 0.15 Temperature dependence $200-350$ Poly(cymethylene) 293 0.292 293 0.44 Temperature dependence $100-400$ Poly(phenylene oxide) Molding grade 0.23 Epoxides Epoxy resin Casting grade 293 0.19 Temperature dependence $300-500$ 0.19–0.34 Halogenated olefin polymers Poly(chylene-tetrafluoroethylene) copolymer 0.238 Poly(cthylene-tetrafluoroethylene) copolymer 0.238 Poly(cthylene-tetrafluoroethylene) copolymer 0.238 Poly(cthylene-tetrafluoroethylene) copolymer 0.238 Poly(cthylene-tetrafluoroethylene) copolymer 0.238 Poly(cthylene-tetrafluoroethylene) copolymer 0.238 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylene-tetrafluoroethylene) 0.25 Poly(ethylen	Poly(butylene terephthalate) (PBT)	293	0.29
Polycarbonate (Biphenol A) 293 0.20 Temperature dependence 300–573 150–400 Poly(dially carbonate) 0.21 0.12 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 0.12 Polyester 0.17 0.17 Cast, rigid 0.33 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 303 0.24–0.34 Polyetheresteramide 293 0.25 Poly(chylene terephthalate) (PET) 293 0.292 Temperature dependence 200–350 293 Poly(oxymethylene) 293 0.292 Variance 293 0.44 Poly(phenylene oxide) 300–500 0.19–0.34 Molding grade 293 0.19 Casting grade 293 0.29 Casting grade 293 0.29 Polychlorotrifluoroethylene 293 0.29 Polychlorotrifluoroethylene 293 0.29			0.16
Temperature dependence $300-573$ Poly(dially carbonate) 0.21 Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 Polyester 0.17 Cast, rigid 0.17 Chlorinated 0.33 Polyetheresteramide 303 0.24-0.34 Statistical distribution of the statistical distex distribution of the statistical distex di	Polycarbonate (Biphenol A)	293	0.20
$\begin{tabular}{ c c c c c c } & 150-400 & 0.21 \\ Poly(2,6-dimethyl-1,4-phenylene ether) & 0.12 \\ Cast, rigid & 0.17 \\ Chlorinated & 0.33 & 0.24-0.34 \\ 0.33 & 0.24-0.34 \\ 0.33 & 0.24-0.34 \\ 0.23 & 0.25 \\ Poly(etheresteramide & 303 & 0.20-0.26 \\ Poly(ethylene terephthalate) (PET) & 293 & 0.15 \\ Temperature dependence & 200-350 \\ Poly(oxymethylene) & 293 & 0.292 \\ 293 & 0.44 \\ Temperature dependence & 100-400 \\ Poly(phenylene oxide) & 00-400 \\ Poly(phenylene oxide) & 0.23 \\ \hline Epoxides & 0.23 \\ \hline Epoxides & 0.23 \\ \hline Epoxides & 0.23 \\ \hline Polychlorotrifluoroethylene & 293 & 0.29 \\ 311-460 & 0.146-0.248 \\ Poly(ethylene-tetrafluoroethylene) copolymer & 0.238 \\ Polytetrafluoroethylene) copolymer & 0.238 \\ Polytetrafluoroethylene & 293 & 0.25 \\ 298 & 0.25 \\ 345 & 0.34 \\ Low-temperature dependence & 5-20.8 \\ \hline \end{tabular}$	Temperature dependence	300-573	
Poly(dially carbonate)0.21Poly(2,6-dimethyl-1,4-phenylene ether)0.12Polyester0.17Cast, rigid0.17Chlorinated0.33Polyetheresteramide3030.24-0.343530.20-0.26Polyetheretherketone (PEEK)0.25Poly(dythylene terephthalate) (PET)2930.15Temperature dependence200-350Poly(oxymethylene)2930.292Poly(phenylene oxide)0.23Molding grade0.23EpoxidesEpoxy resin300-500Casting grade2930.19Temperature dependence300-5000.19-0.34Polychlorotrifluoroethylene2930.29Polychlorotrifluoroethylene2930.29Polytetrafluoroethylene2930.29Molting ether2930.29Low-temperature dependence2030.29Low-temperature dependence2030.29Interperature dependence301-4600.146-0.248Polychlorotrifluoroethylene) copolymer0.2380.252980.253450.34Low-temperature dependence5-20.80.25		150-400	
Poly(2,6-dimethyl-1,4-phenylene ether) 0.12 Polyester 0.17 Chorinated 0.33 Polyetheresteramide 303 $0.24-0.34$ 353 $0.20-0.26$ Polyetheresteramide 303 $0.24-0.34$ 353 $0.20-0.26$ Polyetheretherketone (PEEK) 0.25 Poly(ethylene terephthalate) (PET) 293 0.15 Temperature dependence $200-350$ 293 0.292 Poly(oxymethylene) 293 0.44 Temperature dependence $100-400$ 293 0.44 Poly(phenylene oxide) $Epoxides$ 0.23 Molding grade 0.23 0.19 $0.19-0.34$ Polychlorotrifluoroethylene 293 0.29 Polychlorotrifluoroethylene 293 0.29 Polytetrafluoroethylene 293 0.29 Polytetrafluoroethylene 293 0.29 Iow-temperature dependence 293 0.25 Polytetrafluoroethylene 293 0.25 Iow-temperature dependence $5-20.8$ 345	Poly(dially carbonate)		0.21
Polyester Cast, rigid 0.17 Chlorinated 0.33 Polyetheresteramide 303 $0.24-0.34$ 353 $0.20-0.26Polyetheretherketone (PEEK) 0.25Poly(ethylene terephthalate) (PET) 293 0.15Temperature dependence 200-350Poly(oxymethylene) 293 0.292293$ $0.44Temperature dependence 100-400Poly(phenylene oxide)Molding grade 0.23EpoxidesEpoxy resinCasting grade 293 0.19Temperature dependence 300-500 0.19-0.34Halogenated olefin polymersPolychlorotrifluoroethylene 0.293 0.292311-460$ $0.146-0.248Poly(ethylene-tetrafluoroethylene) copolymer 0.238Polytetrafluoroethylene 293 0.29311-460$ $0.146-0.248Poly(ethylene-tetrafluoroethylene) copolymer 0.238Polytetrafluoroethylene 293 0.25298$ 0.25345 0.34	Poly(2,6-dimethyl-1,4-phenylene ether)		0.12
Cast, rigid 0.17 Chlorinated 0.33 Polyetheresteramide 303 0.24–0.34 303 0.24–0.34 303 0.20–0.26 Polyetheretherketone (PEEK) 0.25 Poly(ethylene terephthalate) (PET) 293 0.15 Temperature dependence 200–350 0.292 Poly(oxymethylene) 293 0.292 Poly(oxymethylene) 293 0.292 Poly(phenylene oxide) 100–400 0.23 Molding grade 0.23 0.29 Epoxides 0.23 0.19 Temperature dependence 293 0.19 Poly(phenylene oxide) 0.19–0.34 0.19 Molding grade 293 0.19 Temperature dependence 300–500 0.19–0.34 Polychlorottrifluoroethylene 293 0.29 Verture dependence 293 0.29 Stating grade 293 0.29 Temperature dependence 293 0.29 Olychlorottrifluoroethylene) copolymer 0.238 0.23 Polycethylene-teterafluoroethyl	Polyester		
Chlorinated 0.33 Polyetheresteramide 303 $0.24-0.34$ 353 $0.20-0.26$ Polyetheretherketone (PEEK) 0.25 Poly(ethylene terephthalate) (PET) 293 0.15 Temperature dependence $200-350$ 293 0.292 Poly(oxymethylene) 293 0.44 Temperature dependence $100-400$ 0.23 Poly(phenylene oxide) 0.23 0.292 Molding grade 0.23 0.292 Epoxy resin $Casting grade$ 0.23 Casting grade 293 0.19 Temperature dependence $300-500$ $0.19-0.34$ Halogenated olefin polymers 0.23 0.29 Polychlorotrifluoroethylene 293 0.29 $0.19-0.34$ $0.146-0.248$ $0.146-0.248$ Poly(ethylene-tetrafluoroethylene) copolymer 0.238 0.25 298 0.25 345 0.34 Low-temperature dependence $5-20.8$ $5-20.8$	Cast, rigid		0.17
Polyetheresteramide 303 0.24–0.34 90 353 0.20–0.26 Poly(ethylene terephthalate) (PET) 293 0.15 Temperature dependence 200–350 0.292 Poly(oxymethylene) 293 0.292 Poly(oxymethylene) 293 0.44 Temperature dependence 100–400 0.44 Temperature dependence 100–400 0.23 Poly(phenylene oxide) 0.23 0.23 Molding grade 0.23 0.19 Casting grade 293 0.19 Temperature dependence 300–500 0.19–0.34 Halogenated olefin polymers 0.23 0.29 Poly(chylene-tetrafluoroethylene) copolymer 0.23 0.29 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 0.29 Polytetrafluoroethylene 293 0.29 Polytetrafluoroethylene 293 0.29 Low-temperature dependence 345 0.34	Chlorinated		0.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Polyetheresteramide	303	0.24-0.34
Polyetheretherketone (PEEK) 0.25 Poly(ethylene terephthalate) (PET)293 0.15 Temperature dependence $200-350$ 293 0.292 Poly(oxymethylene)293 0.292 293 0.44 293 0.44 Temperature dependence $100-400$ $Poly(phenylene oxide)$ 0.23 Molding grade 0.23 $Epoxides$ 0.23 Epoxy resinCasting grade 293 0.19 Temperature dependence $300-500$ $0.19-0.34$ Halogenated olefin polymersPolychlorotrifluoroethylene 293 0.29 311-460 $0.146-0.248$ Poly(ethylene-tetrafluoroethylene) copolymer 0.23 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence		353	0.20-0.26
Poly(ethylene terephthalate) (PET)293 0.15 Temperature dependence $200-350$ $200-350$ Poly(oxymethylene) 293 0.292 293 0.44 Temperature dependence $100-400$ Poly(phenylene oxide) 0.23 Molding grade 0.23 EpoxidesEpoxy resinCasting grade 293 0.19 $300-500$ O.19Temperature dependence 293 0.29 $11-460$ $0.146-0.248$ Polychlorotrifluoroethylene) copolymer 0.23 Poly(ethylene-tetrafluoroethylene) copolymer 293 0.25 298 0.25 345 0.34 Low-temperature dependence $5-20.8$	Polyetheretherketone (PEEK)		0.25
Temperature dependence $200-350$ Poly(oxymethylene) 293 0.292 293 0.44 Temperature dependence $100-400$ Poly(phenylene oxide) Molding grade 0.23 EpoxidesEpoxy resin Casting grade 293 0.19 Casting grade 293 0.19 Temperature dependence $300-500$ $0.19-0.34$ Halogenated olefin polymersPolychlorotrifluoroethylene 293 0.29 311-460 $0.146-0.248$ Poly(ethylene-tetrafluoroethylene) copolymer 293 0.25 298 0.25 298 0.25 345 0.34 345 0.34	Poly(ethylene terephthalate) (PET)	293	0.15
Poly(oxymethylene) 293 0.292 293 0.44 Temperature dependence $100-400$ Poly(phenylene oxide) Molding grade 0.23 EpoxidesEpoxy resin Casting grade 293 0.19 Casting grade 293 0.19 Temperature dependence $300-500$ $0.19-0.34$ Halogenated olefin polymersPolychlorotrifluoroethylene 293 0.29 $311-460$ $0.146-0.248$ Poly(ethylene-tetrafluoroethylene) copolymer 0.23 Polychtrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence	Temperature dependence	200–350	
$\begin{array}{cccc} & 293 & 0.44 \\ \hline \text{Temperature dependence} & 100-400 \\ \hline \text{Poly(phenylene oxide)} & 0.23 \\ \hline \text{Molding grade} & 0.23 \\ \hline \textbf{Epoxides} & & & & \\ \hline \text{Epoxy resin} & & & & \\ \hline \text{Casting grade} & 293 & 0.19 \\ \hline \text{Temperature dependence} & 300-500 & 0.19-0.34 \\ \hline \textbf{Halogenated olefin polymers} & & & \\ \hline \text{Polychlorotrifluoroethylene} & 293 & 0.29 \\ \hline \text{Solution} & & & & \\ \hline \text{Polychlorotrifluoroethylene} & 293 & 0.29 \\ \hline \text{Solution} & & & & \\ \hline \text{Polychlorotrifluoroethylene} & 293 & 0.29 \\ \hline \text{Solution} & & & & \\ \hline \text{Polychtrafluoroethylene} & & & & \\ \hline \text{Polycethylene-tetrafluoroethylene} & & & & \\ \hline \text{Solution} & & & & & \\ \hline \text{Solution} & & & & & \\ \hline \text{Low-temperature dependence} & & & & & \\ \hline \text{Low-temperature dependence} & & & & \\ \hline \text{Solution} & & & \\ \hline \text{Solution} & & & \\ \hline \text{Solution} & & \\ \hline Solutio$	Poly(oxymethylene)	293	0.292
Temperature dependence $100-400$ Poly(phenylene oxide) Molding grade0.23EpoxidesEpoxy resin Casting grade2930.19Temperature dependence300-5000.19-0.34Halogenated olefin polymersPolychlorotrifluoroethylene2930.29311-4600.146-0.248Poly(ethylene-tetrafluoroethylene) copolymer0.23Polytetrafluoroethylene2930.252980.253450.34Low-temperature dependence5-20.8		293	0.44
Poly(phenylene oxide) Molding grade 0.23 Epoxides Epoxy resin Casting grade 293 0.19 Temperature dependence 300–500 0.19–0.34 Halogenated olefin polymers Polychlorotrifluoroethylene 293 0.29 311–460 0.146–0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5–20.8	Temperature dependence	100-400	
Molding grade 0.23 Epoxides Epoxy resin 293 0.19 Casting grade 293 0.19-0.34 Temperature dependence 300-500 0.19-0.34 Halogenated olefin polymers Polychlorotrifluoroethylene 293 0.29 Statistic 311-460 0.146-0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 0.25 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5-20.8 5	Poly(phenylene oxide)		
EpoxidesEpoxy resin Casting grade2930.19Temperature dependence300–5000.19–0.34Halogenated olefin polymersPolychlorotrifluoroethylene2930.29311–4600.146–0.248Poly(ethylene-tetrafluoroethylene) copolymer0.238Polytetrafluoroethylene2930.252980.253450.34Low-temperature dependence5–20.8	Molding grade		0.23
Epoxy resin 293 0.19 Casting grade 293 0.19–0.34 Temperature dependence 300–500 0.19–0.34 Halogenated olefin polymers Polychlorotrifluoroethylene 293 0.29 Status 311–460 0.146–0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 0.25 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5–20.8 5	Epoxi	des	
Casting grade 293 0.19 Temperature dependence 300–500 0.19–0.34 Halogenated olefin polymers 0.19–0.34 Polychlorotrifluoroethylene 293 0.29 Solution 311–460 0.146–0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 0.25 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5–20.8 5	Epoxy resin		
Temperature dependence300–5000.19–0.34Halogenated olefin polymers2930.29Polychlorotrifluoroethylene2930.146–0.248Poly(ethylene-tetrafluoroethylene) copolymer0.2380.25Polytetrafluoroethylene2930.252980.253450.34Low-temperature dependence5–20.80.24	Casting grade	293	0.19
Halogenated olefin polymersPolychlorotrifluoroethylene2930.29311-4600.146-0.248Poly(ethylene-tetrafluoroethylene) copolymer0.238Polytetrafluoroethylene2930.252980.253450.34Low-temperature dependence5-20.8	Temperature dependence	300-500	0.19-0.34
Polychlorotrifluoroethylene 293 0.29 311-460 0.146-0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5-20.8	Halogenated old	efin polymers	
311-460 0.146-0.248 Poly(ethylene-tetrafluoroethylene) copolymer 0.238 Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 Low-temperature dependence 5-20.8	Polychlorotrifluoroethylene	293	0.29
Poly(ethylene-tetrafluoroethylene) copolymer Polytetrafluoroethylene Low-temperature dependence Low-temperature dependence 0.238 0.25 298 0.25 345 0.34	,,,,	311-460	0.146-0.248
Polytetrafluoroethylene 293 0.25 298 0.25 345 0.34 5-20.8	Poly(ethylene-tetrafluoroethylene) copolymer		0.238
298 0.25 345 0.34 5-20.8 5-20.8	Polytetrafluoroethylene	293	0.25
Low-temperature dependence 5–20.8		298	0.25
Low-temperature dependence 5–20.8		345	0.34
	Low-temperature dependence	5-20.8	

TABLE 2.87 Thermal Conductivity of Polymers

Polymer	Temperature (K)	<i>k</i> (W/m K)
Poly(tetrafluoroethylene-hexafluoropropylene)		0.202
copolymer (Teflon EEP)		
Poly(vinyl chloride)		
Rigid	293	0.21
Flexible	293	0.17
Chlorinated	293	0.14
Temperature dependence	103	0.129
	273	0.158
	373	0.165
Poly(vinylidene chloride)	293	0.13
Poly(vinylidene fluoride)	293	0.13
	298–433	0.17-0.19
Hydrocarbon po	olymers	
Polybutene		0.22
Polybutadiene		
Extrusion grade	293	0.22
Poly(butadiene-styrene) copolymer (SBR)		
23.5% styrene content		
Pure gum vulcanizate		0.190-0.250
Carbon black vulcanizate		0.300
Polychloroprene (neoprene)		
Unvulcanized	293	0.19
Pure gum vulcanizate		0.192
Carbon black vulcanizate		0.210
Poly(1,3-cyclopentylenevinylene) [poly(2-norbornene)]		0.29
Polyethylene		
Low density		0.33
Medium density		0.42
High density		0.52
Temperature dependence	20–573	
Molecular-weight dependence		
Poly(ethylene-propylene) copolymer		0.355
Polyisobutylene		0.13
Polyisoprene (natural rubber)		
Unvulcanized		0.13
Pure gum vulcanizate		0.15
Carbon black vulcanizate		0.28
Poly(4-methyl-1-pentene)		0.167
Polypropylene	293	0.12
		0.2
Temperature dependence	272	0.405
Polystyrene	273	0.105
	373	0.128
	473	0.13
	573	0.14
	673	0.160
Poly(<i>p</i> -xylylene) (PPX)		12
Polyimae	3	c ~=
Polyetherimide		0.07
Polyimide		
Thermoplastic	293	0.11
Thermoset		0.23-0.50
Temperature dependence	300-500	

TABLE 2.87 Thermal Conductivity of Polymers (Continued)
Polymer	Temperature (K)	<i>k</i> (W/m K)
Phenolic res	ins	
Poly(phenol-formaldehyde) resin		
Casting grade		0.15
Molding grade		0.25
Poly(phenol-furfural) resin		
Molding grade	293	0.25
Polysacchari	ides	
Cellulose		
Cotton		0.071
Rayon		0.054-0.07
Sulfite pulp, wet		0.8
Sulfite pulp, dry		0.067
Laminated Kraft paper		0.13
Alkali cellulose		0.046-0.067
Different papers	303–333	0.029-0.17
Cellulose acetate	293	0.20
Cellulose acetate butyrate	293	0.33
Cellulose nitriate		0.23
Cellulose propionate		0.20
Ethylcellulose		0.21
Polysiloxan	es	
Poly(dimethylsiloxane)	230	0.25
	290	0.22
	340	0.20
	410	0.17
Poly(methylphenylsiloxane)		
9.5% phenyl, $d = 1110 \text{ kg/m}^3$	273	0.158
	323	0.150
	373	0.144
48% phenyl, $d = 1070 \text{ kg/m}^3$	273	0.143
	323	0.136
	373	0.127
62% phenyl, $d = 1110 \text{ kg/m}^3$	273	0.141
	323	0.137
	373	0.132
Polysulfide and pol	lysulfones	
Polyarylsulfone		0.18
Polyethersulfone		0.18
Poly(phenylene sulfide)	293	0.29
	240-310	0.288
Poly(phenylene sulfone)		0.18
Udel polysulfone		0.26
Polyurethan	ies	
Polyurethane		
Casting resin	293	0.21
Elastomer	293	0.31
Vinyl Polym	ers	
Polyacrylonitrile	293	0.26
Poly(acrylonitrile-butadiene)copolymer (NBR)	275	5.20
35% acrylonitrile	333	0.251
	413	0.184

TABLE 2.87 Thermal Conductivity of Polymers (Continued)

Polymer	Temperature (K)	<i>k</i> (W/m K)
Poly(acrylonitrile-butadiene-styrene) copolymer (ABS)		
Injection molding grade		0.33
Poly(acrylonitrile-styrene) copolymer	293	0.18
Poly(<i>i</i> -butyl methacrylate)		
At 0.82 atm		0.13
Poly(<i>n</i> -butyl methacrylate)		
At 0.82 atm		0.45
Poly(butyl methacrylate-triethylene glycol		
dimethacrylate) copolymer		0.15
Poly(chloroethylene-vinyl acetate) copolymer	293	0.134
	325	0.146
	375	0.218
Poly(dially phthalate)		0.21
Poly(ethyl acrylate)	310.9	0.213
	422.1	0.230
	533.2	0.213
Poly(ethyl methacrylate)		
At 0.82 atm	273	0.175
Poly(ethylene vinyl acetate)		0.34
Poly(methyl methacrylate)	293	0.21
Poly(methyl methacrylate-acrylonitrile) copolymer		0.18
Poly(methyl methacrylate-styrene) copolymer		0.21-0.21
Poly(vinyl acetate)		0.159
Poly(vinyl acetate-vinyl chloride) copolymer		0.167
Poly(vinyl alcohol)		0.2
Poly(N-vinyl carbozole)	293	0.126
	443	0.168
Poly(vinyl fluoride)	243	0.14
	333	0.17
Poly(vinyl formal) Molding grade	293	0.27

TABLE 2.87 Thermal Conductivity of Polymers (Continued)

Name	<i>k</i> (W/m K)
Poly(acrylonitrile-butadiene) copolymer	
$d = 160-400 \text{ kg/m}^3$	0.036-0.043
Cellulose acetate	
$d = 96 - 128 \text{ kg/m}^3$	0.045-0.46
Polychloroprene (Neoprene)	
$d = 112 \text{ kg/m}^3$	0.040
$d = 192 \text{ kg/m}^3$	0.065
Poly(dimethylsiloxane)	
Sheet, $d = 160 \text{ kg/m}^3$	0.086
Epoxy	
$d = 32 - 48 \text{ kg/m}^3$	0.016-0.022
$d = 80 - 128 \text{ kg/m}^3$	0.035-0.040
Polythylene	
Extruded plank	
$d = 35 \text{ kg/m}^3$	0.053
$d = 64 \text{ kg/m}^3$	0.058
$d = 96 \text{ kg/m}^3$	0.058
$d = 144 \text{ kg/m}^3$	0.058
Sheet, extruded, $d = 43 \text{ kg/m}^3$	0.040-0.049
Sheet, crosslinked, $d = 26-38 \text{ kg/m}^3$	0.036-0.040
Polyisocyanurate	
$d = 24-56 \text{ kg/m}^3$	0.012-0.02
Polyisoprene (natural rubber)	
$d = 56 \text{ kg/m}^3$	0.036
$d = 320 \text{ kg/m}^3$	0.043
Phenolic resin	
$d = 32-64 \text{ kg/m}^3$	0.029-0.032
$d = 112 - 160 \text{ kg/m}^3$	0.035-0.040
Polypropylene	
$d = 64 - 96 \text{ kg/m}^3$	0.039
Polystyrene	
$d = 16 \text{ kg/m}^3$	0.040
$d = 32 \text{ kg/m}^3$	0.036
$d = 64 \text{ kg/m}^3$	0.033
$d = 96 \text{ kg/m}^3$	0.036
$d = 160 \text{ kg/m}^3$	0.039
Poly(styrene-butadiene) copolymer (SBR)	
$d = 72 \text{ kg/m}^3$	0.030
Poly(urea-formaldehyde) resin	
$d = 13 - 19 \text{ kg/m}^3$	0.026-0.030
Polyurethane	
Air blown, $d = 20-70 \text{ kg/m}^3$	
At 0°C	0.033
At 20°C	0.036
At 70°C	0.040
CO_2 blown, $d = 64$ kg/m ³ , at 20°C	0.016
20% closed cells, at 20°C	0.033
90% closed cells, at 20°C	0.016
500 μ m cell size, at 20°C	0.024
$100 \mu\text{m}$ cell size, at 20°C	0.016
Poly(vinyl chloride)	
$d = 56 \text{ kg/m}^3$	0.035
$d = 112 \text{ kg/m}^{\circ}$	0.040

TABLE 2.88 Thermal Conductivity of Foamed Polymers

Name	k (W/m K)	Name	k (W/m K)
Polyacetal		Polyisoprene (natural rubber)	
5–20% polytetrafluoroethylene (PTFE)	0.20	33% carbon black	0.28
Poly(acrylonitrile-butadiene-styrene) copolymer (A	ABS)	Poly(melamine-formaldehyde) resin	
20% glass fiber	0.20	Asbestor	0.544-0.73
Polyaryletherketone		Cellulose fiber	0.27-0.42
40% glass fiber	0.44	Glass fiber	0.42-0.48
Poly(butylene terephthalate) (PBT)		Macerated fabric	0.443
30% glass fiber	0.29	Wood flour/cellulose	0.17-0.48
0	0.21	Poly(melamine-phenolic) resin	
40–45% glass fiber	0.42	Cellulose fiber	0.17-0.29
Polycarbonate		Wood flour	0.17-0.29
10% glass fiber	0.22	Nylon-6 (polycaprolactam)	
30% glass fiber	0.32	30–35% glass fiber	0.24-0.28
Polychloroprene (Neoprene)		Nylon-6,6 [poly(hexamethylene adipamide)]	
33% carbon black	0.210	30–33% glass fiber	0.21-0.49
Poly(dially phthalate)		40% glass fiber and mineral	0.46
Glass fiber	0.21-0.62	30% graphite or polyacrylonitrile (PAN) carbon	fiber 1.0
Epoxy resin		Nylon-6,12 [poly(hexamethylenedodecanediamid	e)]
50% aluminum	1.7-3.4	30–35% glass fiber	0.427
25% Al ₂ O ₃	0.35-0.52	Poly(phenylene oxide)	
$50\% \text{ Al}_{2}^{2}\text{O}_{3}$	0.52-0.69	30% glass fiber	0.16
75% Al ₂ O ₃	1.4-1.7	Poly(phenylene sulfide)	
30% mica	0.24	40% glass fiber	0.288
50% mica	0.39	30% carbon fiber	0.28-0.75
Silica	0.42-0.84	Polypropylene	
Polyetheretherketone (PEEK)		40% talc	0.32
30% glass fiber	0.21	40% CaCO ₃	0.29
30% carbon fiber	0.21	40% glass fiber	0.37
Polyethylene		Polystyrene	
30% glass fiber	0.36-0.46	20% glass fiber	0.25
Poly(ethylene terephthalate) (PET)		Poly(styrene-acrylonitrile) copolymer	
30% glass fiber	0.29	20% glass fiber	0.28
45% glass fiber	0.31	Poly(styrene-butadiene) copolymer (SBR)	
30% graphite fiber	0.71	33% carbon black	0.300
40% polyacrylonitrile (PAN) carbon fiber	0.72	Polytetrafluoroethylene	
Polyimide		25% glass fiber	0.33-0.41
Thermoplastic, 15% graphite	0.87	Poly(urea-formaldehyde) resin	
Thermoplastic, 40% graphite	1.73	33% α -cellulose	0.423
Thermoset, 50% glass fiber	0.41		

TABLE 2.89 Thermal Conductivity of Polymers with Fillers

TABLE 2.90 Resistance of Selected Polymers and Rubber to Various Chemicals at 20°C

The information in this table is intended to be used only as a general guide. The chemical resistance classifications are E = excellent (30 days of exposure causes no damage), G = good (some damage after 30 days), F = fair (exposure may cause crazing, softening, swelling, or loss of strength), N = not recommended (immediate damage may occur).

							Chemica	l					
	Acids, dilute or weak	Acids, strong and concentrated	Alcohols, aliphatic	Aldehydes	Alkalies, concentrated	Esters	Ethers	Glycols	Hydrocarbons, aliphatic	Hydrocarbons, aromatic	Hydrocarbons, halogenated	Ketones	Oxidizing agents, strong
			Poly	mers									
Acetals Acrylics: poly(methyl methacrylate) Allyls: diallyl phthalate Cellulosics: cellulose-acetate-butyrate and cellulose- acetate-propionate polymers Fluorocarbons Polyamides Polycarbonates Polycarbonates Polycesters Poly(methyl pentene) Low-density polyethylene High-density polyethylene Polybutadiene Polypropylene and polyallomer Polystyrene Styrene-acrylonitrile copolymers Styrene-acrylonitrile-butadiene copolymers Sulfones: polysulfone Vinyls: poly(vinyl chloride)	F G G F E N G G E E G E N G E C G E	N N E N G E E E F E N N G	F E M E G G N G E E E E E N G F E	N E E F G G E E F G G F G	N N N E E N E E E N C E G	N N E G N G G G G N N N N N N	N E N F N N N F F F	G E G G G G E E E E F G G F	N G E F G G F F G N F F G N F F G	N N G N F S F G F G F N N N N N	N N G N F N F N N E N N N N N N N	N N N G G G G G G S N N N N N	N N
			Rub	bers									
Natural rubber Nitrile rubber Polychloroprene Polyisobutylene Polysulfide rubbers: Thiokol Styrene-butadiene rubber			E E E E E E			N N F E N	N G F E N	E E E E E	N E F N E N	N N N F N	N N N N N	N N N N N	

2.800

TABLE 2.91 Gas Permeability Constants $(10^{10} P)$ at 25°C for Polymers and Rubber

The gas permeability constant P is

 $P = \frac{\text{amount of permeant}}{(\text{area}) \times (\text{time}) \times (\text{driving forced across the film})}$

The gas permeability constant is the amount of gas expressed in cubic centimeters passed in 1 s through a $1-cm^2$ area of film when the pressure across a film thickness of 1 cm is 1 cmHg and the temperature is 25°C. All tabulated values are multiplied by 10^{10} and are in units of seconds⁻¹ (centimeters of Hg)⁻¹. Other temperatures are indicated by exponents and are expressed in degrees Celsius.

					Gas		
Polymer or rubber	Не	N ₂	H ₂	O ₂	CO ₂	H ₂ O	Other
Cellulose (cellophane) Cellulose acetate	0.005 ²⁰ 13.6 ²⁰	0.003 2 0.28 ³⁰	0.006 5 3.5 ²⁰	0.002 1 0.78 ³⁰	0.004 7 22.7 ³⁰	1900 5500	0.006 ⁴⁵ (H ₂ S); 0.001 7 (SO ₂) 3.5 ³⁰ (H ₂ S); 17 ⁰ (ethylene oxide); 6.8 ⁶⁰ (bromomethane)
Cellulose nitrate Ethyl cellulose	6.9 400 ³⁰	0.12 8.4 ³⁰	2.0^{20} 87^{20}	1.95 26.5 ³⁰	2.12 41.0 ³⁰	6290 12000 ²⁰	57.1 (NH ₃); 1.76 (SO ₂) 705 (NH ₃); 204 (SO ₂); 420 ^o (ethylene oxide)
Gutta percha		2.17	14.4	6.16	35.4	510	
Natural rubber		9.43	52.0	23.3	15.3	2290	15.7 (CO); 30.1 (CH ₄); 1.68 (C ₃ H ₈); 98.9 (C ₂ H ₂); 550 (CH ₃ C \equiv CH); 3.59 (SF ₆)
Nylon 6	0.5320	0.009 530		0.03830	0.1030	177	0.33^{30} (H ₂ S); 1.2^{20} (NH ₃); 0.84^{60} (CH ₃ Br)
Nylon 11	1.9530		1.7830		1.0040		0.344 ³⁰ (Ne); 0.189 ⁴⁰ (Ar); 13.6 ⁵⁰ (propyne)
Poly(acrylonitrile) Acrylonitrile-styrene copolymer				0.000 2	0.000 8	300	(FF))
(66:34)				0.048	0.21	2000	
Poly(1,3-butadiene)		6.42	41.9	19.0	138.0	5070	
Poly (<i>cis</i> -1,4-butadiene) Butadiene-acrylonitrile copolymer	32.6	19.2					19.2 (Ne); 41.0 (Ar)
(80:20)	12.2	1.06	15.9	3.85	30.8		24.8 (C ₂ H ₂); 7.7 (propyne)

TABLE 2.91 Gas Permeability Constants (10^{10} P) at 25°C for Polymers and Rubber (*Continued*)

		Gas					
Polymer or rubber	Не	N ₂	H ₂	O ₂	CO ₂	H ₂ O	Other
Butadiene-styrene copolymer (80:20) Butadiene-styrene copolymer (92:8) Polychloroprene Polyethylene, low-density	13.4 22.9 4.9	1.71 5.11 1.2 0.969	13.6 12.0 ³⁰	4.0 2.88	25.8 12.6	90	5.01 (Ne); 4.49 (Ar) 9.70 (Ne); 12.7 (Ar) 3.79 (Ar); 3.27 (CH ₄) 2.88 (CH ₄); 6.81 (C ₂ H ₆); 9.43 (C ₃ H ₈); 1.48 (CO); 49° (ethylene oxide); 14 4 (propene): 42.2 (propyne);
Polyethylene, high-density	1.14	0.143	3.020	0.403	0.36	12.0	0.170 (SF ₆); 472 ⁶⁰ (CH ₃ Br) 0.388 (CH ₄); 0.590 (C ₂ H ₆); 0.537 (C ₃ H ₃); 0.008 3 (SF ₆); 1.69 (Ar); 4.01 (propene)
Poly(ethylene terephthalate) Crystalline Amorphous Poly(ethyl methacrylate)	1.32 3.28 6.82	0.006 5 0.013 0.220	3.70 ²⁰	0.035 0.059 1.15	0.17 0.30 5.00	130 3200	0.003 2 (CH ₄); 0.08 ⁶⁰ (CH ₃ Br) 0.009 (CH ₄) 2.98 (Ne); 0.565 (Ar); 0.370 (Kr); 3.83 (H ₂ S); 0.000 001 65 (SF ₄)
Isobutene-isoprene copolymer (98:2) Isoprene-acrylonitrile copolymer (76:24) Isoprene-methacrylonitrile copolymer (76:24)	8.38 7.77	0.324 0.181 0.596	7.20 7.41 13.6	1.30 0.852 2.34	5.16 4.32 14.1	11038	13.6 ⁵⁰ (C ₃ H ₈)
Methacrylonitrile-styrene- butadiene copolymer (88:7:5) Poly(methylpentene) Polypropylene Silicone rubber, 10% filler	101 38 ²⁰ 233 ⁰	7.83 0.44 ³⁰ 227 ⁰	136 41 ²⁰ 464 ⁰	0.004 8 32.0 2.3 ³⁰ 489 ⁰	0.014 92.6 9.2 ³⁰ 3240	600 51 43,000 ³⁵	0.33 ²⁰ (H ₂ S); 9.2 ²⁰ (NH ₃) 191 ⁰ (Ne); 550 ⁰ (Ar); 1020 ⁰ (Kr); 2550 ⁰ (Xe);
Polystyrene Poly(tetrafluoroethylene) Poly(trifluoroethylene) Poly(vinyl acetate)	18.7 6.8 ²⁰ 12.6 ³⁰	0.788 1.4 0.003	23.3 9.8 0.94 ²⁰ 89 ³⁰	2.63 4.2 0.025 ⁴⁰ 0.50 ³⁰	10.5 11.7 0.048 ⁴⁰	1200 0.29	19000 ^o (butane) 15.7 (NO ₂); 37.5 (N ₂ O ₄) 1.2 ^o (ethylene oxide); 4.6 ⁶⁰ (CH ₃ Br) 2.64 ³⁰ (Ne); 0.19 ³⁰ (Ar);
Poly(vinyl alcohol) Poly(vinyl chloride)	0.001 ³⁰ 2.05	<0.001 ¹⁴ 0.011 8	0.009 1.70	0.008 9 0.045 3	0.001 ²³ 0.157	275	0.078 ³⁰ (Kr); 0.050 ³⁰ (CH ₄) 0.007 (H ₂ S); 0.002 ⁰ (ethylene oxide) 3.92 (Ne); 0.011 5 (Ar);
Poly(vinylidene chloride)	0.3134	0.000 9430		0.005 330	0.0330	0.5	$0.028 \text{ 6 (CH}_4)$ $0.03^{30} (\text{H}_2\text{S}); 0.008^{60} (\text{CH}_3\text{Br})$

	Vapor								
Polymer	Benzene	Hexane	Carbon tetrachloride	Ethanol	Ethyl acetate				
Cellulose	1.4	0.912	0.836	85.8	13.4				
Cellulose acetate	512	2.80	3.74	2980	3595				
Poly(acrylonitrile)	2.61	1.59	1.47	0	1.34				
Polyethylene, low-density	5300	2910	3810	55.9	513				
Polystyrene	10,600		6820	0	soluble				
Poly(vinyl alcohol)	3.58	2.34	1.61	32.7	2.53				

TABLE 2.92 Vapor Permeability Constants $(10^{10} P)$ at 35°C for Polymers

TABLE 2.93 Hildebrand Solubility Parameters of Polymers

Polymer	δ (MPa ^{1/2})	<i>T</i> (°C)	Method
Cellulose	32.02		
Cellulose diacetate	23.22		Calc.
Cellulose nitrate (11.83% N)	21.44		Calc.
Epoxy resin	22.3		
Natural rubber	16.2		
	17.09		
Poly(4-acetoxystyrene)	22.7	25	Visc.
Poly(acrylic acid)			
—, butyl ester	18.0	35	
, ,	18.52		Swelling
—, methyl ester	20.77		Swelling
, ,	20.7		Swelling
Poly(acrylonitrile)	26.09	25	Calc.
Poly(butadiene)	16.2	75	IPGC
(outation)	17.15	10	Calc
Poly(butadiene-co-acrylonitrile)	17.15		cure.
$\frac{1}{2} \frac{1}{2} \frac{1}$	18 93	25	Calc
(61/30)	20.5	25 75	IPGC
(01757) Poly(butadiana co styrana)	20.5	15	noc
$\frac{1}{2} \frac{1}{2} \frac{1}$	17 41		Calc
DOINA 5 (85/15)	17.41		Calc.
Daly(hytodiana an yinylnymidina)	17.39		Obs.
(75/05)	10.12		
(73/23)	19.15	25	
Poly(chloroprene)	18.42	25	C 1
	19.19		Calc.
	17.6	20	Swelling
Poly(dimethyl siloxane)	14.9	30	Calc.
Poly(ethylene)	16.6		Calc.
Poly(ethylene)	16.4		Calc.
	16.2		Obs.
Poly(ethylene-co-vinyl-acetate)	18.6	25	IPGC
	17.0	75	IPGC
Poly(<i>tetra</i> -fluoroethylene)	12.7		Calc.
Poly(heptamethylene <i>p</i> , <i>p</i> '-bibenzoate)	19.50	25	Visc.
Poly(4-hydroxystyrene)	23.9	25	Visc.
Poly(isobutene)	16.06	35	Av.
	16.47		Swelling
	16.06	25	
Poly(isobutene-co-isoprene) butyl rubber	16.47		
Poly(isoprene)			
1,4- <i>cis</i>	15.18	25	Calc.
	16.68	25	
	16.57	35	
	20.46	35	Swelling
	16.6		Swelling
	16.68	25	Calc.
Poly(methacrylic acid)			
—, isobutyl ester	14.7	140	IPGC
—, ethyl ester	18.31	-	Swelling
—. methyl ester	18.58	25	
Poly(methacrylonitrile)	21.9		Calc
Poly(methylene)	14 3	20	Extran
poly(α -methyl styrene)	18.75	30	Visc
pory(a-methyl styrene)	18.75	30	visc.

Polymer	δ (MPa ^{1/2})	<i>T</i> (°C)	Method
$Poly(\sigma-methylstyrene-co-acrylonitrile)$	16.4	180	IPGC
Poly(oxyethylene)	20.2	25	IPGC
Poly(propylene)	18.8	25	
Poly(styrene)	18.72	35	
Poly(styrene-co- <i>n</i> -butyl-methacrylate)	15.1	140	IPGC
Poly(thioethylene)	19.19		Swelling
Poly(vinyl acetate)	19.62	25	Calc.
Poly(vinyl alcohol)	25.78		
Poly(vinyl chloride)	19.28		Calc.
	19.8		Obs.
Poly(vinyl chloride), chlorinated	19.0	25	Visc.
Poly(vinyl propionate)	18.01	35	

TABLE 2.93	Hildebrand Solubility Parameters of Polymers (Continued)

TABLE 2.94 Hansen Solubility Par	ameters of Polymers
----------------------------------	---------------------

Polymer	Sc	lubility paran	neter (MPa ^{1/2})	
(trade name, supplier)	δ_{d}	δ_{p}	δ_h	δ_t
Acrylonitrile-butadiene elastomer				
(Hycar 1052, BF Goodrich)	18.6	8.8	4.2	21.0
Alcohol soluble resin				
(Pentalyn 255, Hercules)	17.5	9.3	14.3	24.4
Alcohol soluble resin				
(Pentalyn 830, Hercules)	20.5	5.8	10.9	23.5
Alkyd, long oil				
(66% oil length, Plexal P65, Polyplex)	20.42	3.44	4.56	21.20
Alkyd, short oil				
(Coconut oil 34% phthalic anhydride; Plexal C34)	18.50	9.21	4.91	21.24
Blocked isocyanate				
(Phenol, Suprasec F5100, ICI)	20.19	13.16	13.07	27.42
Cellulose acetate				
(Cellidore A, Bayer)	18.60	12.73	11.01	25.08
Cellulose nitrate				
(1/2 s; H-23, Hagedon)	15.41	14.73	8.84	23.08
Epoxy				
(Epikote 1001, Shell)	20.36	12.03	11.48	26.29
Ester gum				
(Ester gum BL, Hercules)	19.64	4.73	7.77	21.65
Furfuryl alcohol resin				
(Durez 14383, Hooker Chemical)	21.16	13.56	12.81	28.21
Hexamethoxymethyl melamine				
(Cymel 300 American Cyanimid)	20.36	8.53	10.64	24.51
Isoprene elastomer				
(Cariflex IR 305, Shell)	16.57	1.41	-0.82	16.65
Methacrylonitrile/methacrylic acid copolymer	17.39	14.32	12.28	25.78
Nylon 66	18.62	5.11	12.28	22.87
Nylon 66				
(Zytel, DuPont)	18.62	0.00	14.12	23.37
Petroleum hydrocarbon resin				
(Piceopale 110, Penn. Ind. Chem.)	17.55	11.19	3.60	17.96
(Piceopale 110, Penn. Ind. Chem.)	17.55	11.19	3.60	17.96

Polymer	Sc	olubility param	neter (MPa ^{1/2})	
(trade name, supplier)	δ_{d}	δ_p	δ_h	δ_t
Phenolic resin				
(Resole, Phenodur 373 U Chemische Werke Albert)	19.74	11.62	14.59	27.15
Phenolic resin, pure				
(Super Beckacite 1001, Reichhold)	23.26	6.55	8.35	25.57
Poly(4-acetoxy, α -acetoxy styrene)	17.80	10.23	7.37	21.89
Poly(4-acetoxystyrene)	17.80	9.00	8.39	21.69
Poly (acrylonitrile)	18.21	16.16	6.75	25.27
Polyamid, thermoplastic				
(Versamid 930, General Mills)	17.43	-1.92	14.89	23.02
Poly(<i>p</i> -benzamide)	18.0	11.9	7.9	23.0
cis-Poly(butadiene)elastomer				
(Bunahuls CB10, Chemische Werke Huels)	17.53	2.25	3.42	18.00
Poly(isobutylene)				
(Lutonal IC/123, BASF)	14.53	2.52	4.66	15.47
Poly(ethyl methacrylate)				
(Lucite 2042, DuPont)	17.60	9.66	3.97	20.46
Poly(ethylene terephthalate)	19.44	3.48	8.59	21.54
Poly(4-hydroxystyrene)	17.60	10.03	13.71	24.55
Poly(methacrylic acid)	17.39	12.48	15.96	26.80
Poly(methacrylonitrile)	18.00	15.96	7 98	25.37
Poly(methyl methacrylate)	10.00	15.70	1.90	20.07
Poly(sulfone) Bisphenol A				
(Polystyrene LG BASE)	21.28	5 75	4 30	22 47
Poly(sulfone) Bisphenol A	21.20	5.75	4.50	22.47
(Idel)	19.03	0.00	6.96	20.26
Poly(vinyl acetate)	19.05	0.00	0.90	20.20
(Mowilith 50 Hoechst)	20.93	11.27	9.66	25.66
Poly(vinyl butyral)	20.75	11.27	2.00	25.00
(Butvar B76, Shawinigan)	18.60	136	13.03	23 12
(Butvar D70, Shawingan) Poly(vinyl chlorida)	18.00	4.50	15.05	23.12
(Vinla KP K - 50 Montecatini)	18.23	7 53	8 35	21.42
(Vipia KK K = 50, Wonceatini)	18.23	10.03	3.07	21.42
Poly(viny) chlorida)	10.72	10.03	3.07	21.40
Seturated polyester	10.02	10.05	3.07	21.34
(December 250, Dever)	21.54	14.04	12.29	20.05
(Desmophen 850, Bayer)	21.54	14.94	12.28	28.95
(Delegen 5(20) Delegen Com	17 55	2.26	2 70	10.07
(Polysar 5630, Polymer Corp.)	17.55	3.30	2.70	18.07
(P) 1 (S 1000 P L 1 Cl	16 47	0.27	2.94	1(70
(Piccolyte S-1000, Penn. Ind. Chem.)	16.47	0.37	2.84	16.72
Urea-formaldenyde resin	20.01	0.00	10.71	25.74
(Plastopal H, BASF)	20.81	8.29	12.71	25.74
vinylidene cyanide/4-acetoxy, α -acetoxy styrene copolymer	21.48	11.25	/.16	21.89
vinylidene cyanide/4-chloro-styrene copolymer	16.98	12.07	8.18	22.38
(Rohm and Haas)	18.64	10.52	7.51	22.69
Poly(styrene)				

TABLE 2.94 Hansen Solubility Parameters of Polymers (Continued)

Polymer name	Refractive index (20°C, 68°F)	Polymer name	Refractive index (20°C, 68°F)
Acetal homopolymer	1.48	Polyethylene (medium Density)	1.52
Acrylics	1.49-1.52	Polyethylene (high density)	1.54
Ally diglycol carbonate	1.50	Polyethylene dimethacrylate	1.51
Cellulose acetate	1.46-1.50	Poly(ethylene terephthalate)	1.57-1.58
Cellulose acetate butyrate	1.46-1.49	Poly(methyl- α -chloroacrylate)	1.52
Cellulose ester	1.47-1.50	Poly(methyl methacrylate)	1.49
Cellulose nitrate	1.49-1.51	Polypropylene	1.49
Cellulose propionate	1.46-1.49	Poly(propyl methacrylate)	1.48
Chlorotrifluoroethylene (CTFE)	1.42	Polystyrene	1.57-1.60
Diallyl isophthalate	1.57	Polysulfone	1.63
Epoxies	1.55-1.65	Poly(tetrafluoroethylene) (PTFE)	1.35
Ethyl cellulose	1.47	Poly(trifluorochloroethylene)	1.43
Fluorinated ethylene-propylene	1.34	Poly(trifluoroethylene)	1.35-1.37
Methylpentene polymer	1.485	Poly(vinyl alcohol)	1.49-1.53
Nylon	1.52-1.53	Poly(vinyl acetal)	1.48
Phenol formaldehyde	1.50-1.70	Poly(vinyl acetate)	1.46-1.47
Phenoxy polymer	1.60	Poly(vinyl butyral)	1.49
Polyacetal	1.48	Poly(vinyl chloride)	1.52-1.55
Polyallomer	1.49	Poly(vinyl cyclohexene dioxide)	1.53
Polyallyl methacrylate	1.52	Poly(vinyl formal)	1.60
Polyamide nylon 6/6	1.53	Poly(vinyl naphthalene)	1.68
Polyamide nylon 11	1.52	Poly(vinylidene chloride)	1.60-1.63
Polybutylene	1.50	Poly(vinylidene fluoride)	1.42
Polycarbornate	1.57-1.59	Silicone polymer	1.43
Poly(cyclohexyl methacrylate)	1.51	Styrene acrylonitrile copolymer	1.56-1.57
Poly(diallyl phthalate)	1.57	Styrene butadiene thermoplastic	1.52-1.55
Polyester	1.53-1.58	Styrene methacrylate copolymer	1.53
Poly(ester-styrene)	1.54-1.57	Urea formaldehyde	1.54-1.58
Polyethylene (low density)	1.51	Urethane	1.50-1.60

TABLE 2.95	Refractive	Indices of	of Pol	lymers
------------	------------	------------	--------	--------

2.21 FATS, OILS, AND WAXES

Fats, oils, and waxes belong to the group of naturally occurring organic materials called lipids. Lipids are those constituents of plants or animals that are insoluble in water but soluble in other organic solvents.

The fats and oils of vegetable and animal origin belong to the class of triglycerides, i.e., fatty acid tri-esters of glycerol. The component fatty acid (acyl) radicals can be saturated or unsaturated. Their chain lengths, degrees of unsaturation, and relative positions in the molecule determine the character of the fat or fatty oil. Thus a triglyceride of the (saturated) plamitic or stearic acids (i.e., solid fatty acids with sixteen and eighteen carbon atoms respectively) will be a solid. Oleic acid is liquid at room temperature; it is an unsaturated fatty acid with eighteen carbon atoms and one double bond. It occurs in olive oil, also in peanut and sesame oils. Linseed oil contains linoleic and linolenic acids (in addition to oleic, plamitic, and stearic acids). These acids are still more unsaturated in character; there are two double bonds in the molecule of linoleic acid, and three in that of linolenic acid.

Waxes are usually the plastic substances deposited by insects or obtained from plants. Waxes are esters of various fatty acids with higher, usually monohydric alcohols. The wax of pharmacy is principally yellow wax (beeswax), the material of which honeycomb is made. It consists chiefly of cerotic acid and myricin and is used in making ointments, cerates, etc. Other waxes include petroleum wax that is a mixture of paraffin hydrocarbons that melts above room temperature.

TABLE 2.96	Physical Properties of Fats an	nd Oils
-------------------	--------------------------------	---------

Fat or oil	Solidification point, °C	Specific gravity (15°C/15°C)	Refractive index	Acid value	Saponification value	Iodine value	
	Animal origin						
Butterfat	20-23	0.91 ^{40°C}	1.45 ^{40°C}	0.5-35	210-230	26-38	
Chicken fat	21-27	0.924		1.2	193-205	66-72	
Cod-liver oil	- 3	0.92-0.93	1.481 ^{25℃}	5.6	171-189	137-166	
Deer fat Dolphin	-3 to +5	0.96-0.97 0.91-0.93		0.8-5.3 2-12	195–200 203 (body); 200 (iaw)	26-36 127 (body);	
Gost butter		0.01 0.0438°C			290 (Jaw)	25 (Jaw)	
Goose fat	22 24	0.91-0.94 _{38°C}		0.6	101 103	58 67	
Herring oil	22-24	0.92-0.94	1.461060°C	18-44	170-194	102_149	
Horse fat	20-45	0.92-0.94	1.4010	0-24	195-200	75-86	
Human fat	15	0.903	0.92~0.95		193-200	57-73	
Lard oil	-2 to +4	0.913-0.915	1 462	01-25	193-198	63-79	
Lard oil, fatty tissue	27-30	0.93-0.94	1.462	0.5-0.8	195-203	47-67	
Menhaden oil	-5	0.92-0.93	1 465 ^{60°C} 3–12		189-193	148-185	
Neat's-foot oil	-2 to +10	0.91-0.92	1.464 ^{25℃}	0.1-0.6	193-199	58-75	
Porpoise, body oil	-16	0.926		1.2	203	127	
Rabbit fat	17-23	0.93-0.94		1.4-7.2	199-203	70-100	
Sardine oil	20-22	0.92-0.93	1.466 ^{60°C}	4-25	188-196	130-152	
Seal	3	0.915-0.926		1.9-40	188196	130-152	
Shark		0.916-0.919			157-164	115-139	
Sperm oil	15.5	0.878-0.884		13	120-137	80-84	
Tallow, beef	31-38	0.895		0.25	196-200	35-42	
Tallow, mutton	32-41	0.937-0.953	1.457 ^{40℃}	2-14	195-196	48-61	
Whale oil	-2 to 0	0.917-0.924	1.460 ^{60°C}	1.9	160202	90-146	
	*******	Pla	int origin		*******	· · · · · · · · · · · · · · · · · · ·	
Acorn	-10	0.916			199	100	
Almond	-20 to -15	0.9140.921		0.5-3.5	183-208	93-103	
Babassu oil	22-26	0.893 ^{60°C}	1.443 ^{60°C}		247	16	
Beechnut oil	-17	0.922			191-196	97-111	

2.808

Castor oil	-18 to -17	0.9600.967	1.477	0.1-0.8	175-183	84
Chaulmoogra oil, USP	<-25	0.950 ^{25℃}			196-213	98-110
Chinese vegetable tallow	24-34	0.918-0.922		2.4	179-206	23-41
Cocoa butter	21.5-23	0.964-0.974	1.457 ^{40°C}	1.1-1.9	193-195	33-42
Coconut oil	14-22	0.926	1.449 ^{40°C}	2.5-10	153-262	6-10
Corn (maize) oil	-20 to -10	0.921-0.928	1.473 ^{40°C}	1.4-2.0	187-193	111-128
Cottonseed oil	-13 to $+12$	0.91825°C	1.474 ^{40°C}	0.6-0.9	194–196	103-111
Hazelnut oil	-18 to -17	0.917			191-197	87
Hemp-seed oil	-28 to -15	0.928-0.934		0.45	190-195	145-162
Linseed oil	-27 to -19	0.930-0.938	1.478 ^{25℃}	1-3.5	188-195	175-202
Mustard, black, oil	16	0.918-0.921	1.475 ^{40°C}	5.7-7.3	173-175	99-110
Neem oil	-3	0.917	1.462 ^{40°C}		195	71
Niger-seed oil		0.925	1.471 ^{40°C}		190	129
Oiticica oil		0.974 ^{25°C}				140-180
Olive oil	-6	0.914-0.918	1.468 ^{40°C}	0.3-1.0	185-196	79-88
Palm oil	35-42	0.915	1.458 ^{40°C}	10	200-205	49-59
Palm kernel oil	24	0.918-0.925	1.457 ^{40℃}	0.3-0.6	220-231	26-32
Peanut oil	3	0.917-0.926	1.469 ^{40°C}	0.8	186-194	88-98
Perilla oil		0.930-0.937	1.481 ^{25°C}		188-194	185-206
Pistachio-nut oil	-10 to -5	0.913-0.919			191	83-87
Poppy-seed oil	-18 to -16	0.924-0.926	1.469 ^{40°C}	2.5	193-195	128-141
Pumpkin-seed oil	- 15	0.923-0.925			188-193	121-130
Rapeseed oil	- 10	0.9130.917	1.471 ^{40℃}	0.36-1.0	168-179	94-105
Safflower oil	-18 to -13	0.925-0.928	1.462 ^{60°C}	0.6	188-203	122-141
Sesame oil	-6 to -4	0.91925°C	1.465 ^{40°C}	9.8	188-193	103-117
Soybean oil	-16 to -10	0.924-0.927	1.473 ^{40℃}	0.3-1.8	189-194	122-134
Sunflower-seed oil	-17	0.9240.926	1.469 ^{40℃}	11.2	188-193	129-136
Tung oil	-2.5	0.94-0.95	1.517 ^{25℃}	2	190–197	163171
White-mustard-seed oil	-16 to -8	0.912-0.916		5.4	171-174	94–98
Wheat-germ oil						125

TABLE 2.97	Physical Properties of Waxes

Wax	Melting point, °C	Specific gravity (15°C/15°C)	Refractive index	Acid value	Saponification value	Iodine value
Bamboo leaf	79-80	0.961 ^{25°C}		14-15	43-44	7.8
Bayberry (myrtle)	47-49	0.99	1.436 ^{80°C}	3-4	205-212	4-9.5
Beeswax, ordinary	62-66	0.95-0.97	1.44-1.48 ^{40°C}	17-21	88-100	8-11
Beeswax, East Indian	61-67	0.95-0.97	1.44 ^{40°C}	5-10.5	87-117	4-10.5
Beeswax, white, USP	61-69	0.95-0.98	1.45-1.47 ^{65°C}	17-24	90-96	7-11
Candelilla	73-77	0.98-0.99	1.45-1.46 ^{85°C}	19-24	55-64	14-20
Cape berry	40-45	1.01	1.45 ^{45℃}	2.5-4.0	211-215	0.5-2.5
Caranda	80-85	0.99-1.00		5.0-9.5	64-79	8-9
Carnauba, No. 1 yellow	86-88	0.99-1.00		1.5-2.5	75-86	
Carnauba, No. 3, crude	86-90	0.99-1.01		3.0-8.5	75-89	
Carnauba, No. 3, refined	86-89	0.96-0.97	1.47 ^{40℃}	3.0-5.0	76-85	7-13.5
Castor oil, hydrogenated	83-88	0.98-0.99 ^{20°C}		1.0-5.0	177-181	2.5-8.5
Chinese insect	80-85	0.95-0.97	1.46 ^{40°C}	2-9	78-93	1.0-2.5
Cotton	68-71	0.96		32	71	25
Cranberry	207-218	0.97-0.98		42-59	131-134	44-53
Esparto	75-79	0.985-0.995		22-27	58-73	7-15
Flax	61-70	0.91-0-0.99		17-48	37-102	22-29
Japan	49-56	0.97-1.00		4-15	210-235	4-15
Jojoba	11-12	0.86-0.90 ^{25°C}	1.465 ^{25℃}	0.2-0.6	92-95	82-88
Microcrystalline, amber	64-91	0.91-0.94	1.42-1.45 ^{80°C}	0	0	0
Microcrystalline, white	71-89	0.93-0.94	1.441 ^{80℃}	0	0	0
Montan, crude	7686	1.01-1.02 ^{25°C}		22-31	59-92	1418
Montan, refined	77-84	1.02-1.04		23-45	72-115	10-14
Ouricury	86-89	0.99-1.01		12-19	88-96	6.97.8
Ozokerite	56-82	0.90-1.00		0	0	4-8
Palm	74-86	0.99-1.05		5-11	64-104	9-17
Paraffin, American	49-63	0.896-0.925	1.44-1.48 ^{80°C}	0	0	0
Shellac	79-82	0.97-0.98		1224	64-83	6-9
Sisal hemp	74-81	1.007 - 1.010		16-19	56-58	2829
Spermaceti	41-49	0.905-0.960		0.5-3.0	121-135	2.5-8.5
Sugarcane, refined	76-82	0.96-0.98	1.51 ^{25°C}	8-23	55-70	13-29
Wool	38-40	0.97	1.48 ^{40°C}	6-22	82-130	15–47

2.22 PETROLEUM PRODUCTS

Petroleum is an extremely complex naturally occurring mixture of hydrocarbon compounds, usually with minor amounts of nitrogen-, oxygen-, and sulfur-containing compounds as well as trace amounts of metal-containing compounds. Petroleum products are, for example, fuels and lubricants that are manufactured from petroleum as well as other products of industrial interest. Petrochemicals are also manufactured from petroleum.

Boiling Ignition Flash Flammability limits in air, Molecular Specific point, temperature, point, °F °F °F % v/v weight gravity Benzene 78.1 0.879 176.2 1040 12 1.35-6.65 *n*-Butane 58.1 0.601 31.1 761 -76 1.86-8.41 iso-Butane 58.1 10.9 864 -1171.80-8.44 *n*-Butene 56.1 0.595 21.2 829 Gas 1.98-9.65 iso-Butene 56.1 19.6 869 Gas 1.8 - 9.0Diesel fuel 170-198 100-130 0.875 Ethane 30.1 -127.5959 Gas 3.0-12.5 0.572 Ethylene 28.0 -154.7914 Gas 2.8 - 28.6Fuel oil No. 1 0.875 304-574 410 100-162 0.7 - 5.0494 0.920 126-204 Fuel oil No. 2 198.0 Fuel oil No.4 0.959 505 142-240 Fuel oil No.5 0.960 156-336 Fuel oil No. 6 0.960 150 536 Gasoline 113.0 0.720 100-400 -45 1.4-7.6 *n*-Hexane 86.2 0.659 155.7 437 -7 1.25 - 7.0n-Heptane 100.2 0.668 419.0 419 25 1.00-6.00 0.7 - 5.00Kerosene 154.0 0.800 304-574 410 100-162 5.0-15.0 Methane 0.553 -258.7900-1170 0.90-5.90 16.0 Gas Naphthalene 128.2 424.4 959 174 121.5 797 -54 Neohexane 86.2 0.649 1.19-7.58 Neopentane 72.1 49.1 841 Gas 1.38-7.11 *n*-Octane 114.2 0.707 258.3 428 56 0.95-32 iso-Octane 114.2 0.702 243.9 837 10 0.79-5.94 500 -40*n*-Pentane 72.1 0.626 97.0 1.40-7.80 iso-Pentane 72.1 0.621 82.2 788 -601.31-9.16 70.1 0.641 86.0 569 1.65-7.70 *n*-pentene 44.1 842 Gas Propane -43.82.1 - 10.1Propylene 42.2 -53.9 856 Gas 2.00 - 11.1992 Toluene 92.1 0.867 321.1 40 1.27-6.75 Xylene 106.2 0.861 281.1 867 63 1.00-6.00

TABLE 2.98 Physical Properties of Petroleum Products

SECTION 3 SPECTROSCOPY

SECTION 3 SPECTROSCOPY

3.1 INFRARED A	ABSORPTION SPECTROSCOPY	3.3
Table 3.1	Absorption Frequencies of Single Bonds to Hydrogen	3.3
Table 3.2	Absorption Frequencies of Triple Bonds	3.9
Table 3.3	Absorption Frequencies of Cumulated Double Bonds	3.10
3.1.1 Intensities	of Carbonyl Bands	3.11
3.1.2 Position of	f Carbonyl Absorption	3.12
Table 3.4	Absorption Frequencies of Carbonyl Bands	3.12
Table 3.5	Absorption Frequencies of Other Double Bonds	3.16
Table 3.6	Absorption Frequencies of Aromatic Bands	3.19
Table 3.7	Absorption Frequencies of Miscellaneous Bands	3.20
Table 3.8	Absorption Frequencies in the Near Infrared	3.26
Table 3.9	Infrared Transmitting Materials	3.28
Table 3.10	Infrared Transmission Characteristics of Selected Solvents	3.29
Table 3.11	Values of Absorbance for Percent Absorption	3.31
Table 3.12	Transmittance-Absorbance Conversion Table	3.33
Table 3.13	Wave number/Wavelength Conversion Table	3.36
3.2 RAMAN SPI	ECTROSCOPY	3.37
Table 3.14	Raman Frequencies of Single Bonds to Hydrogen	
	and Carbon	3.38
Table 3.15	Raman Frequencies of Triple Bonds	3.42
Table 3.16	Raman Frequencies of Cumulated Double Bonds	3.43
Table 3.17	Raman Frequencies of Carbonyl Bands	3.44
Table 3.18	Raman Frequencies of Other Double Bonds	3.46
Table 3.19	Raman Frequencies of Aromatic Compounds	3.48
Table 3.20	Raman Frequencies of Sulfur Compounds	3.50
Table 3.21	Raman Frequencies of Ethers	3.51
Table 3.22	Raman Frequencies of Halogen Compounds	3.52
Table 3.23	Raman Frequencies of Miscellaneous Compounds	3.53
Table 3.24	Principal Argon-Ion Laser Plasma Lines	3.53
3.3 ULTRAVIOL	ET-VISIBLE SPECTROSCOPY	3.54
Table 3.25	Electronic Absorption Bands for Representative Chromophores	3.55
Table 3.26	Ultraviolet Cutoffs of Spectrograde Solvents	3.56
Table 3.27	Absorption Wavelength of Dienes	3.57
Table 3.28	Absorption Wavelength of Enones and Dienones	3.58
Table 3.29	Solvent Correction for Ultraviolet-Visible Spectroscopy	3.58
Table 3.30	Primary Bands of Substituted Benzene and Heteroaromatics	3.59
Table 3.31	Wavelength Calculation of the Principal Band of Substituted	3.59
	Benzene Derivatives	
3.4 FLUORESCE	ENCE SPECTROSCOPY	3.60
Table 3.32	Fluorescence Spectroscopy of Some Organic Compounds	3.61
Table 3.33	Fluorescence Quantum Yield Values	3.63
3.5 FLAME ATO	MIC EMISSION, FLAME ATOMIC ABSORPTION, ELECTROTHERMAL	
(FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA,	
AND PL	ASMA ATOMIC FLUORESCENCE	3.64
3.51 Common S	Spectroscopic Relationships	3.64
Table 3.34	Detection Limits in ng/mL	3.67
Table 3.35	Sensitive Lines of the Elements	3.72

3.6	NUCLEAR N	1AGNETIC RESONANCE	3.76
	Table 3.36	Nuclear Properties of the Elements	3.77
	Table 3.37	Proton Chemical Shifts	3.80
	Table 3.38	Estimation of Chemical Shift for Protons of CH ₂	3.83
		and Methine Groups	
	Table 3.39	Estimation of Chemical Shift of Proton Attached	
		to a Double Bond	3.83
	Table 3.40	Chemical Shifts in Mono-substituted Benzene	3.84
	Table 3.41	Proton Spin Coupling Constants	3.85
	Table 3.42	Proton Chemical Shifts of Reference Compounds	3.86
	Table 3.43	Solvent Positions of Residual Protons in Incompletely	3.86
		Deuterated Solvents	
	Table 3.44	Carbon-13 Chemical Shifts	3.87
	Table 3.45	Estimation of Chemical Shifts of Alkane Carbons	3.90
	Table 3.46	Effect of Substituent Groups on Alkyl Chemical Shifts	3.90
	Table 3.47	Estimation of Chemical Shifts of Carbon Attached	
		to a Double Bond	3.91
	Table 3.48	Carbon-13 Chemical Shifts in Substituted Benzenes	3.92
	Table 3.49	Carbon-13 Chemical Shifts in Substituted Pyridines	3.93
	Table 3.50	Carbon-13 Chemical Shifts of Carbonyl Group	3.94
	Table 3.51	One-Bond Carbon-Hydrogen Spin Coupling Constants	3.95
	Table 3.52	Two-Bond Carbon-Hydrogen Spin Coupling Constants	3.96
	Table 3.53	Carbon-Carbon Spin Coupling Constants	3.96
	Table 3.54	Carbon-Fluorine Spin Coupling Constants	3.97
	Table 3.55	Carbon-13 Chemical Shifts of Deuterated Solvents	3.98
	Table 3.56	Carbon-13 Coupling Constants with Various Nuclei	3.98
	Table 3.57	Boron-11 Chemical Shifts	3.99
	Table 3.58	Nitrogen-15 (or Nitrogen-14) Chemical Shifts	3.100
	Table 3.59	Nitrogen-15 Chemical Shifts in Mono-substituted Pyridine	3.103
	Table 3.60	Nitrogen-15 Chemical Shifts for Standards	3.103
	Table 3:61	Nitrogen-15 to Hydrogen-1 Spin Coupling Constants	3.104
	Table 3.62	Nitrogen-15 to Carbon-13 Spin Coupling Constants	3.104
	Table 3.63	Nitrogen-15 to Fluorine-19 Spin Coupling Constants	3.104
	Table 3 64	Fluorine-19 Chemical Shifts	3 105
	Table 3 65	Fluorine-19 Chemical Shifts for Standards	3 106
	Table 3 66	Fluorine-19 to Fluorine-19 Spin Coupling Constants	3 106
	Table 3 67	Silicon-29 Chemical Shifts	3 106
	Table 3 68	Phosphorus-31 Chemical Shifts	3 107
	Table 3.69	Phosphorus-31 Spin Coupling Constants	3 110
37	MASS SPEC	TROMETRY	3 111
371	Correlation	of Mass Spectra with Molecular Structure	3 111
3 7 2	Mass Sner	tra and Structure	3 113
0.7.2	Table 3 70	Isotopic Abundances and Masses of Selected Flements	3 115
	Table 3 71	Table of Mass Spectra	3 115
38	X-RAV METH		3 126
5.0	Table 3 72	Wavelengths of X-Bay Emission Spectra in Angstroms	3 128
	Table 3 73	Wavelengths of Absorption Edges in Angstroms	3 130
	Table 3.75	Critical X-Bay Absorption Energies in KeV	2 122
	Table 3.74	X-Ray Emission Energies in keV	2 125
	Table 2.75	B Filters for Common Target Flemente	2 120
	Table 3.70	p intervalues for common larger clements	J. 130 2 120
	Table 3.77	Analyzing Crystals for X-Ray Spectroscopy	J. 130 2 120
	Table 3.70	Mass Absorption Coefficients for K Lines and WL & Line	J. 139 2 140
	10016 3./3	λ_1 Lines and λ_2 Line	5.140

3.1 INFRARED ABSORPTION SPECTROSCOPY

Grou

Infrared (IR) absorption spectroscopy is a common technique that is used to identify the major functional groups in a compound. The identification of these groups depends upon the amount of infrared radiation absorbed and the particular frequency (measured in cm⁻¹, wave-numbers) at which these groups absorb. Thus, infrared absorption spectroscopy is the measurement of the wavelength and intensity of the absorption of mid-infrared light by a sample. Mid-infrared light (2.5 – 50 μ m, $4000 - 200 \text{ cm}^{-1}$) is energetic enough to excite molecular vibrations to higher energy levels. The wavelength of many infrared absorption bands are characteristic of specific types of chemical bonds, and infrared spectroscopy finds its greatest utility for qualitative analysis of organic and organometallic molecules. Infrared spectroscopy is used to confirm the identity of a particular compound and as a tool to help determine the structure of a molecule.

Significant for the identification of the source of an absorption band are *intensity* (weak, medium or strong), *shape* (broad or sharp), and *position* (cm^{-1}) in the spectrum. Characteristic examples are provided in the table below to assist the user in becoming familiar with the intensity and shape absorption bands for representative absorptions.

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen

	m, moderately strong m–s, moderate to strong s, strong		var, of variable strength w, weak w–m, weak to moderately strong		
р		Band, cm ⁻¹		Remarks	
	Saturated C—H				

m, moderately strong	var, of variable strength
m–s, moderate to strong	w, weak
s, strong	w–m, weak to moderately strong

Abbreviations Used in the Table

2975–2950 (s) 2885–2865 (w) 1450–1260 (m)	Two or three bands usually; asymmetrical and symmetrical CH stretching, respec- tively. In presence of double bond adja- cent to CH_3 group symmetrical band splits into two. Sensitive to adjacent negative substituents
ca 2930 (s) 2870–2840 (w) 1480–1440 (m) ca 720 (w)	Frequency increased in strained systems. Symmetrical band splits into two bands when double bond adjacent. Scissoring mode Rocking mode
Alkane residues attached	to carbon
ca 3050 (w) 540-500 470-460 (s)	CH stretching Aliphatic cyclopropages
470-400 (8)	
580-490 (s) 595-490 (s)	Alkyl derivatives: 550–530 cm ⁻¹ Alkyl derivatives: 585–530 cm ⁻¹
	2975-2950 (s) 2885-2865 (w) 1450-1260 (m) ca 2930 (s) 2870-2840 (w) 1480-1440 (m) ca 720 (w) Alkane residues attached ca 3050 (w) 540-500 470-460 (s) 580-490 (s) 595-490 (s)

Group	Band, cm ⁻¹	Remarks		
Alkane residues attached to carbon (<i>continued</i>)				
>C(CH ₃) ₂	ca 1380 (m) 1175-1165 (m) 1150-1130 (m)	A roughly symmetrical doublet If no H on central carbon, then one band at ca 1190 cm^{-1}		
$-C(CH_3)_3$	1395–1385 (m) 1365 (s)	Split into two bands		
Aryl-CH ₃ Aryl-C ₂ H ₅ Aryl-C ₃ H ₇ (or C ₄ H ₉)	$\begin{array}{ccc} 390{-}260 & (m) \\ 565{-}540 & (m{-}s) \\ 585{-}565 & (m) \end{array}$	Two bands		
$(CH_2)_n$ $n = 1$ $n = 2$ $n = 3$ $n \ge 4$	785–770 (w-m) 745–735 (w-m) 735–725 (w-m) 725–720 (w-m)	Rocking vibrations		
All	cane residues attached to misc	cellaneous atoms		
Epoxide C—H >C—CH ₂	ca 3050 (m-s) ca 3050 (m-s)			
	ca 3050 (m-s) 1435-1385 (m) 1300-1240 (s)	Halogens except fluorine		
—СНО	2900-2800 (w) 2775-2700 (w) 1420-1370 (m)			
—со—сн ₃	3100-2900 (w) 1450-1400 (s) 1360-1355 (s)			
—O—CH ₃ ethers	2835-2810 (s) 1470-1430 (m-s) ca 1030 (w-m)	Two bands		
	1200–1155 (s)			
 —O—CH ₂ —O—	2790-2770 (m)			
	1475-1460 (m-s) 1470-1435 (m-s)	Acyclic esters. Frequency increased ca 30 cm ⁻¹ for cyclic and small ring systems.		

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks		
Alkane residues attached to miscellaneous atoms (<i>continued</i>)				
—о—со—сн,	14501400 (s)	Acetate esters		
	1385–1365 (s)	The high intensity of these bands often		
	1360–1355 (s)	dominates this region of the spectrum.		
-CH ₂ -C=C<	1445–1430 (m)			
	ca 1250 (m)			
P-CH ₃	1320-1280 (s)			
Se-CH ₃	ca 1280 (m)			
B-CH ₃	14601405 (m)			
-	1320-1280 (m)			
Si-CH ₃	1265-1250 (m-s)			
Sn—CH ₃	1200–1180 (m)			
Pb-CH ₃	1170-1155 (m)			
As-CH ₃	1265-1240 (m)			
GeCH ₃	1240-1230 (m)			
Sb—CH ₃	1215-1195 (m)			
Bi-CH ₃	1165–1145 (m)			
$-CH_2$ -(Cd, Hg, Zn, Sn)	1430–1415 (m)			
N-CH ₃ and N-CH ₂ -	2820-2780 (s)			
	1440–1390 (m)	Ethylenediamine complexes		
N-CH ₂ -CH ₂ -N	1480–1450 (s)	Ethylenediamine complexes		
N-CH ₃				
Amine · HCl	1475–1395 (m)			
Amino acid · HCl	1490–1480 (m)			
Amides	1420–1405 (s)			
N-CH ₂ amides	ca 1440 (m)			
S-CH ₂	2990-2955 (m-s)			
5	2900-2865 (m-s)			
	1440–1415 (m)			
	1325-1290 (m)			
	1030–960 (m)			
	710-685 (w-m)			
S	2950-2930 (m)			
5 642	2880 - 2845 (m)			
	1440 - 1415 (m)			
	1270–1220 (s)			
—С≡СН	ca 3300 (s)	Sharp		
	700-600	Bending		
	3040 - 3010 (m)			
	5510 5010 (m)			
	1			

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks	
Alkane residues attached to miscellaneous atoms (continued)			
C=C H	3095–3075 (m) 2985–2970 (m)	CH stretching sometimes obscured by much stronger bands of saturated CH groups	
	995-980 (s) 940-900 (s) ca 635 (s) 485-445 (m-s)		
R $C = C$ H H	895-885 (s) 560-530 (s) 470-435 (m)		
R $C = C$ R R	980–955 (s) 455–370 (m–s)		
$\mathbf{R}^{H} \mathbf{C} = \mathbf{C}^{H} \mathbf{R}$	730–655 (m) 670–455 (s)		
R C = C R	850-790 (m) 570-515 (s) 525-470 (s)		
	965–960 (s) 945–940 (m) 820–810 (s)		
-S-CH=CH ₂	ca 965 (s) ca 860 (s)		
-CO-CH=CH ₂	995–980 (s) 965–955 (m)		
-CO-OCH=CH ₂	950–935 (s) 870–850 (s)		
$-CO-C=CH_2$	ca 930 (s)		
$-CO - OC = CH_2$	880-865		
-CO-CH=CH- trans	ca 990 (s)		
	Hydroxyl group O—H co	ompounds	
Primary aliphatic alcohols	3640-3630 (s) 1350-1260 (s) 1085-1030 (s)	Only in very dilute solutions in nonpolar solvents OH bending Also broad band at 700–600 cm ⁻¹	

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks
(Ну	droxyl group O — H compou	nds) (Continued)
Secondary aliphatic alcohols	3625-3620 (s)	See comments under primary aliphatic alcohols
	1350–1260 (s) 1125–1085 (s)	Also for α -unsaturated and cyclic tertiary aliphatic alcohols
Tertiary aliphatic alcohols	3620-3610 (s)	See comments under primary aliphatic alcohols
	1410-1310 (s) 1205-1125 (s)	
Aryl—OH	ca 3610 (s)	See comments under primary aliphatic alcohols
	$\begin{array}{c} 1410 - 1310 (s) \\ 1260 - 1180 (s) \\ 1085 - 1030 (s) \end{array}$	Also for unsaturated secondary aliphatic alcohols
Carboxylic acids	3300-2500 (w-m) 995-915 (s)	Broad Broad diffuse band
Enol form of β -diketones	2700-2500 (var)	Broad
Free oximes	3600-3570 (w-m)	Shoulder
Free hydroperoxides	35603530 (m)	
Peroxy acids	ca 3280 (m)	
Phosphorus acids	2700–2560 (m)	Broad
Water in solution	3710	When solution is damp
Intermolecular H bond Dimeric	3600-3500	Rather sharp. Absorptions arising from H bond with polar solvents also appear in this region
Polymeric	3400-3200 (s)	Broad
Intramolecular H bond Polyvalent alcohols Chelation	3600–3500 (s) 3200–2500	Sharper than dimeric band above Broad and occasionally weak; the lower the frequency, the stronger the intramo- lecular bond
Water of crystallation (solid state spectra)	3600-3100 (w)	Usually a weak band at 1640–1615 cm ⁻¹ also. Water in trace amounts in KBr disks shows a broad band at 3450 cm ⁻¹ .

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

nine, imine, ammonium, and 3550-3300 (m) 1650-1560 (m) 1090-1020 (w-m) 850-810 (w-m) 495-445 (m-s) ca 290 (s) 1350-1260 (s) 445-345 3100-3030 (m)	amide N — H Two bands in this range With α-carbon branching at 795 cm ⁻¹ and strong Broad Broad Also for secondary aryl amines
$\begin{array}{cccc} 3550-3300 & (m) \\ 1650-1560 & (m) \\ 1090-1020 & (w-m) \\ 850-810 & (w-m) \\ 495-445 & (m-s) \\ ca & 290 & (s) \\ 1350-1260 & (s) \\ 445-345 \\ 3100-3030 & (m) \end{array}$	Two bands in this range With α-carbon branching at 795 cm ⁻¹ and strong Broad Broad Also for secondary aryl amines
$\begin{array}{ccccc} 1650-1560 & (m) \\ 1090-1020 & (w-m) \\ 850-810 & (w-m) \\ 495-445 & (m-s) \\ ca & 290 & (s) \\ 1350-1260 & (s) \\ 445-345 \\ 3100-3030 & (m) \end{array}$	With α -carbon branching at 795 cm ⁻¹ and strong Broad Broad Also for secondary aryl amines
1090-1020 (w-m) 850-810 (w-m) 495-445 (m-s) ca 290 (s) 1350-1260 (s) 445-345 3100-3030 (m)	With α -carbon branching at 795 cm ⁻¹ and strong Broad Broad Also for secondary aryl amines
850-810 (w-m) 495-445 (m-s) ca 290 (s) 1350-1260 (s) 445-345 3100-3030 (m)	strong Broad Broad Also for secondary aryl amines
495-445 (m-s) ca 290 (s) 1350-1260 (s) 445-345 3100-3030 (m)	Broad Broad Also for secondary aryl amines
ca 290 (s) 1350-1260 (s) 445-345 3100-3030 (m)	Broad Also for secondary aryl amines
1350–1260 (s) 445–345 3100–3030 (m)	Also for secondary aryl amines
445-345 3100-3030 (m)	
3100-3030 (m)	
	Values for solid states; broad bands also (but not always) near 2500 and 200 cm ⁻¹
2800–2400 (m)	Number of sharp bands; dilute solution
1625–1560 (m)	
1550–1550 (m)	
3550-3100 (m)	Values for solid state
ca 3380	Dilute solutions
ca 3280	
3550-3400 (w)	Only one band, whereas primary amines show two bands
1580 - 1490 (w)	Often too weak to be noticed
1190 - 1170 (m)	
1145 - 1130 (m)	
455-405 (w-m)	
ca 2500	Sharp: broad values for solid state
ca 2400	Sharp: broad values for solid state
1620-1560 (m-s)	1
2700-2250	Group of relatively sharp hands: broad
2700 2250	bands in solid state
3300-3030 (s)	Group of bands
1430–1390 (s)	
3350-3310 (w)	Aliphatic
3490 (s)	Arvl
3490 (s)	Pyrroles indoles: band sharp
2700-2330 (m-s)	Dilute solutions
2200–1800 (m)	One or more bands; useful to distinguish
	from protonated tertiary amines
ca 3500 (m)	Lowered ca 150 cm^{-1} in the solid state
ca 3400 (m)	and on H bonding: often several bands
	$3200-3050 \text{ cm}^{-1}$
2460 2400 ()	
.54605400 (m)	I wo bands; lowered on H bonding and in solid state. Only one hand with lastance
3100 3070 ()	Extra band with bonded and solid state
5100-5070 (W)	samples
	sampies
	2800-2400 (m) 1625-1560 (m) 1550-1550 (m) 3550-3100 (m) ca 3380 ca 3280 3550-3400 (w) 1580-1490 (w) 1190-1170 (m) 1145-1130 (m) 455-405 (w-m) ca 2500 ca 2400 1620-1560 (m-s) 2700-2250 3300-3030 (s) 1430-1390 (s) 3350-3310 (w) 3490 (s) 2700-2330 (m-s) 2200-1800 (m) ca 3500 (m) ca 3400 (m) 3460-3400 (m) 3100-3070 (w)

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks
Amine, imine, ammonium, and Miscellaneous R – H		
—Ѕ—Н	2600-2550 (w)	Weaker than OH and less affected by H bonding
Р—Н	2440–2350 (m)	Sharp
P OH	2700–2560 (m)	Associated OH
R—D	100/137 times the corresponding RH frequency	Useful when assigning RH bands; deutera- tion leads to a known shift to lower fre- quency

TABLE 3.1 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

TABLE 3.2 Absorption Frequencies of Triple E	Bonds
---	-------

Abbreviations Used in the Table

m, moderately strong	var, of variable strength
m–s, moderate to strong	w–m, weak to moderately strong
s, strong	

Group	Band, cm^{-1}	Remarks
Alkynes		
Terminal	3300 (s)	CH stretching
	2140-2100 (w-m)*	C≡C stretching
	1375–1225 (w-m)	
	695-575 (m-s)	Two bands if molecule has axial symmetry
	ca 630 (s)	Alkyl monosubstituted
Nonterminal	2260–2150 (var)*	Symmetrical or nearly symmetrical sub- stitution makes the C≡C stretching frequency inactive. When more than one C≡C linkage is present, and sometimes when there is only one, there are frequently more absorption bands in this region than there are triple bonds to account for them.
$R_1 - C \equiv C - R_2$	540-465 (m)	The longer the chain, the lower the fre- quency
Aryl−C≡C−	ca 550 (m) ca 350 (var)	
—C≡C—halogen (Cl, Br, I)	185-160 (var)	

Group	Band, cm ⁻¹	Remarks
Nitriles —C≡=N Aliphatic Aromatic	2260-2200 (var) 580-555 (m-s) 560-525 (m-s) 390-350 (s) 580-540 (s) 430-380 (m)	Stronger and toward the lower end of the range when conjugated; occasionally very weak or absent
Isonitriles $R - \stackrel{*}{N} \equiv \bar{C}$ or $R - N = C$:	2175–2150 (s) 2150–2115 (s) 1595	Very sensitive to changes in substituents Not found for nitriles
Cyanamides $>N-C\equiv N \rightleftharpoons >N^+-C=N$	2225-2210 (s)	
Thiocyanates R—S—C≡=N	2175-2140 (s) 404-400 (s) ca 600 (m-s)	Aryl thiocyanates at the upper end of the range, alkyl at the lower end Aliphatic derivatives
Nitrile <i>N</i> -oxides —C≡N→O	2305–2285 (s) 1395–1365 (s)	Aryl derivatives
Diazonium salts R−N≣N	23002230 (m-s)	
Selenocyanates R—Se—C≡N	ca 2160 (m-s) 545-520 ca 390 ca 350	

TABLE 3.2 Absorption Frequencies of Triple Bonds (Continued)

*Conjugation with olefinic or acetylenic groups lowers the frequency and raises the intensity. Conjugation with carbonyl groups usually has little effect on the position of absorption.

TABLE 3.3	Absorption	Frequencies	of Cumul	ated Double H	3onds
-----------	------------	-------------	----------	---------------	-------

	Abbreviations Used a m–s, moderate to strong s, strong	n the Table vs, very strong w, weak
Group	Band, cm ⁻¹	Remarks
Carbon dioxide O=C=O	2349 (s)	Appears in many spectra as a result of inequalities in path length
Isocyanates —N=C=O	2275-2250 (vs)	Position unaffected by conjugation

1 L L Hand in the Table

Group	Band, cm ⁻¹	Remarks
Isoselenocyanates N==C==Se	2200-2000 (s) 675-605	Broad; usually two bands
Azides $-N_3 \text{ or } -N = N = \bar{N}$	2140-2030 (s) 1340-1180 (w)	Not observed for azides
—N=C=N—	2155–2130 (s)	Split into unsymmetrical doublet by conjugation with aryl groups: 21452125 (vs) and 2115-2105 (vs)
Isothiocyanates —N=C=S	2140–1990 (vs) 649–600 (m–s) 565–510 (m–s) 470–440 (m–s)	Broad; usually a doublet
Ketenes >C=C=0	ca 2150 (s)	
Ketenimines C=C=N	2050–2000 (s)	
Allenes >C=C=C<	2000–1915 (m-s)	Two bands when terminal allene or when bonded to electron-attracting groups
Thionylamines —N=S=O	1300–1230 (s) 1180–1110 (s)	
Diazoalkanes $R_2C \stackrel{+}{=} N \stackrel{-}{=} N$ $-CH \stackrel{+}{=} N \stackrel{-}{=} N$	2030–2000 (s) 2050–2035 (s)	
Diazoketones —CO—CH=N ⁺ =N	2100-2080 2075-2050	Monosubstituted Disubstituted

TABLE 3.3 Absorption Frequencies of Cumulated Double Bonds (Continued)

3.1.1 Intensities of Carbonyl Bands

Acids generally absorb more strongly than esters, and esters more strongly than ketones or aldehydes. Amide absorption is usually similar in intensity to that of ketones but is subject to much greaer variations.

3.1.2 Position of Carbonyl Absorption

The general trends of structural variation on the position of C=O stretching frequencies may be summarized as follows:

- 1. The more electronegative the group X in the system R CO X -, the higher is the frequency.
- 2. α , β Unsaturation causes a lowering of frequency of 15 to 40 cm⁻¹, except in amides, where little shift is observed and that usually to higher frequency.
- 3. Further conjugation has relatively little effect.
- 4. Ring strain in cyclic compounds causes a relatively large shift to higher frequency. This phenomenon provides a remarkably reliable test of ring size, distinguishing clearly between four-, five-, and larger-membered-ring ketones, lactones, and lactams. Six-ring and larger ketones, lactones, and lactams show the normal frequency found for the open-chain compounds.
- 5. Hydrogen bonding to a carbonyl group causes a shift to lower frequency of 40 to 60 cm⁻¹. Acids, amides, enolized β -keto carbonyl systems, and *o*-hydroxyphenol and *o*-aminophenyl carbonyl compounds show this effect. All carbonyl compounds tend to give slightly lower values for the carbonyl stretching frequency in the solid state compared with the value for dilute solutions.
- 6. Where more than one of the structural influences on a particular carbonyl group is operating, the net effect is usually close to additive.

Groups	Band, cm ⁻¹	Remarks
Acid anhydrides —CO—O—CO—		
Saturated	1850–1800 1790–1740	Two bands usually separated by about 60 cm ⁻¹ . The higher-frequency band is more intense in acyclic anhydrides, and the lower-frequency band is more intense in cyclic anhydrides.
Aryl and α,β -unsaturated	1830–1780 1790–1710	
Saturated five-ring	1870–1820 1800–1750	
All classes	1300-1050	One or two strong bands due to CO stretching
Acid chlorides —COCl		
Saturated	1815-1790	Acid fluorides higher, bromides and iodides lower
Aryl and α,β -unsaturated Acid peroxide	1790-1750	
с́о—о—со—		
Saturated	1820-1810	
	18001780	
Aryl and α,β -unsaturated	1805-1780	
	1785-1755	
Esters and lactones —CO—O—		

TABLE 3.4 Absorption Frequencies of Carbonyl Bands

All bands quoted are strong.

Groups	Band, cm ⁻¹	Remarks
Saturated Aryl and α,β -unsaturated Aryl and vinyl esters C = C - O - CO - alkyl	1750-1735 1730-1715 1800-1750	The C==C stretching band also shifts to
Esters with electronegative α substituents; e.g., \Rightarrow CC1CO	1770–1745 1755–1740 Similar values to the corresponding open-chain esters 1780–1760 1770–1740	 When α-CH is present, there are two bands.
 β, γ-Unsaturated five-ring lactone, vinyl ester type Four-ring lactone β-Keto ester in H bonding 	ca 1800 ca 1820	the relative intensity depending on the solvent.
enol form	ca 1650 1300–1050	 Keto from normal; chelate-type H bond causes shift to lower frequency than the normal ester. The C==C band is strong and is usually near 1630 cm⁻¹. Usually two strong bands due to CO stretching.
Aldehydes — CHO (See also Table 3.44 for C—H.) All values given below are lowered in liq- uid-film or solid-state spectra by about 10–20 cm ⁻¹ . Vapor-phase spec- tra have values raised about 20 cm ⁻¹ . Saturated Aryl	17401720 1715-1695	<i>o</i> -Hydroxy or amino groups shift this value to
α, β -Unsaturated $\alpha, \beta, \gamma, \delta$ -Unsaturated β -Ketoaldebyde in enol	1705–1680 1680–1660	H bonding.
form Ketones $>C=O$ All values given below are lowered in liquid-film or solid-state spectra by about 10–20 cm ⁻¹ . Va- por-phase spectra have values raised about 20 cm ⁻¹ .	1670 1645	Lowering caused by chelate-type H bonding.

TABLE 3.4	Absorption Frequencies	of Carbonyl Bands (Continued	()
-----------	------------------------	------------------------------	----

Groups	Band, cm ⁻¹	Remarks
Ketones >C=O (continued)		
Saturated	1725-1705	
Arvl	1700-1680	
α, β -Unsaturated	1685-1665	
$\alpha, \beta, \alpha', \beta'$ -Unsaturated and		
diaryl	1670-1660	
Cyclopropyl	1705-1685	
Six-ring ketones and larger	Similar values to the	
	corresponding open-chain ke-	
	tones	
Five-ring ketones	17501740	α,β Unsaturation, $\alpha,\beta,\alpha',\beta'$ unsaturation, etc., have a similar effect on these values as on those of open-chain ketones.
Four-ring ketones	ca 1780	
α -Halo ketones	1745-1725	Affected by conformation; highest values are obtained when both halogens are in the same plane as the C==O.
α, α' -Dihalo ketones 1.2-Diketones, syn-trans-	1765-1745	L L
open chains	1730–1710	Antisymmetrical stretching frequency of both C==O's. The symmetrical stretching is in- active in the infrared but active in the
		Raman.
syn-cis-1,2-Diketones, six-	17(0 1 1700	
ring	1760 and 1730	
syn-cis-1,2-Diketones, five	1775 and 1760	
a Amino and or a hydroxy	1773 and 1760	
aryl ketones	1655–1635	Low because of intramolecular H bonding. Other substituents and steric hindrance af- fect the position of the band
Quinones	16901660	C=C band is strong and is usually near 1600 cm ⁻¹ .
Extended quinones	1655-1635	
Tropone	1650	Near 1600 cm ⁻¹ when lowered by H bonding as in tropolones
Carboxylic acids -CO ₂ H		
All types	3000-2500	bands due to combination bands
Saturated	1725-1700	The monomer is near 1760 cm ⁻¹ , but is rarely observed. Occasionally both bands, the free monomer, and the H-bonded dimer can be seen in solution spectra. Ether solvents give one band near 1730 cm ⁻¹ .
α,β -Unsaturated	1715-1690	
Aryl	1700-1680	
α-Halo-	1740-1720	
Carboxylate ions $-CO_2^-$		
Most types	1610-1550 1420-1300	Antisymmetrical and symmetrical stretching, respectively
Amides — CO—N < (See also Table 7.49 for NH stretching and bend- ing.)		

TABLE 3.4 Absorption Frequencies of Carbonyl Bands (Continued)

Groups	Band, cm ⁻¹	Remarks
Amides — $CO-N \le (continued)$		
$Primary - CONH_2$		
In solution	ca 1690	Amide I; C=O stretching
Solid state	ca 1650	
In solution	ca 1600	Amide II: mostly NH bending
Solid state	ca 1640	Amide I is generally more intense than amide II. (In the solid state, amides I and II may overlap.)
Secondary — CONH—	1700 1670	
In solution	1/00-1670	Amide I
Solid state	1680-1630	
In solution	1550-1510	Amide II; found in open-chain amides only
Solid state	1570-1515	Amide I is generally more intense than amide
Tertiary	1670–1630	Since H bonding is absent, solid and solution spectra are much the same.
Lactams		
Six-ring and larger rings	ca 1670	
Five-ring	ca 1700	Shifted to higher frequency when the N atom
Four-ring	ca 1745	is in a bridged system
R-CO-N-C=C		Shifted $+15 \text{ cm}^{-1}$ by the additional double
		bond
		Sinited by up to +15 cm ⁻² by the additional double bond. This is an unusual effect by α,β unsaturation. It is said to be due to the inductive effect of the C==C on the well- conjugated CO—N system, the usual con- jugation effect being less important in such a system.
Custie size size	an 1710 and	Shift of 115 and 1 with a Queseturation
Cyclic six-ring	ca 1710 and	Smit of ± 15 cm ' with α,β unsaturation
Cualia fina rina	ca 1700	
Cyclic live-filig	ca 1770 anu	
Urong N-CO-N	ca 1700	
PNHCONHP	cn 1660	
Six ring	ca 1000	
	ca 1040	
Five-fing	ca 1720	
Urethanes R—O—CO—N	17401690	Also shows amide II band when nonsubsti- tuted on N
Thioesters and Acids RCOSR'		
RCOSH	ca 1720	α . B-Unsaturated or arvl acid or ester shifted
		about -25 cm^{-1}
RCOS-alkyl	ca 1690	
RCOS—arvl	ca 1710	

TABLE 3.4 Absorption Frequencies of Carbonyl Bands (*Continued*)

TABLE 3.5 Absorption Frequencies of Other Double Bonds

Abbreviations Used in the Table

m, moderately strong vs, very strong m–s, moderate to strong w, weak var, of variable strength

Group	Band, cm ⁻¹	Remarks
	Alkenes >C=C<	
Nonconjugated	1680–1620 (w-m)	May be very weak if symmetrically substituted
Conjugated with aromatic ring	1640–1610 (m)	More intense than with unconju- gated double bonds
Internal (ring) Carbons: $n = 3$ n = 4	3060-2995 (m) ca 1665 (w-m) ca 1565 (w-m)	Highest frequencies for smallest ring
$n = 5$ $n \ge 6$	ca 1610 (w-m) 1370-1340 (s) 1650-1645 (w-m)	Characteristic
Exocyclic C==C(CH ₂) _n $n = 2$ n = 3 $n \ge 4$	1780-1730 (m) ca 1680 (m) 1655-1650 (m)	
Fulvene	1645–1630 (m) 1370–1340 (s) 790–765 (s)	
Dienes, trienes, etc.	1650 (s) and 1600 (s)	Lower-frequency band usually more intense and may hide or overlap the higher-frequency band
α,β -Unsaturated carbonyl compounds	1640–1590 (m)	Usually much weaker than the C=O band
Enol esters, enol ethers, and enamines	1700–1650 (s)	
Imines,	oximes, and amidines >C	C=N-
Imines and oximes Aliphatic α,β -Unsaturated and aromatic Conjugated cyclic systems	1690–1640 (w) 1650–1620 (m) 1660–1480 (var) 960–930 (s)	NO stretching of oximes
Imino ethers —O—C=N—	1690-1640 (var)	Usually a strong doublet

Group	Band, cm ⁻¹	Remarks
Imines, oxim	les, and amidines $>$ C $=$ N $-$	(Continued)
Imino thioethers -S-C=N=	1640-1605 (var)	
Imine oxides $>C=N^+-\bar{O}$	1620–1550 (s)	
Amidines $>_N - C = N - $	1685–1580 (var)	
Benzamidines Aryl—C=N—N	16301590	
Guanidine $>N-C=N-$ N	1725–1625 (s)	
Azines >C=N-N=C<	1670–1600	
Hydrazoketones —CO—C==N—N	1600–1530 (vs)	
	Azo compounds —N=N	-
Azo —N=N— Aliphatic Aromatic cis trans	ca 1575 (var) ca 1510 (w) 1440–1410 (w)	Very weak or inactive
Azoxy $-\stackrel{+}{N} = N - $ O^{-} Aliphatic Aromatic	1590–1495 (m-s) 1345–1285 (m-s) 1480–1450 (m-s) 1340–1315 (m-s)	
Azothio —N=N ⁺ , S	14651445 (w) 10701055 (w)	
	Nitro compounds N=O	
Nitro C—NO ₂ Aliphatic	ca 1560 (s) 1385-1350 (s)	The two bands are due to asymmet- rical and symmetrical stretching of the N=O bond. Electron- withdrawing substituents adjacent to nitro group increase the fre- quency of the asymmetrical band and decrease that of the symmet- rical frequency.

TABLE 3.5 Absorption Frequencies of Other Double Bonds (Continued)

Group	Band, cm ⁻¹	Remark ^s
Nitr	o compounds N=O (Continu	ued)
Nitro C—NO ₂ (<i>continued</i>) Aromatic	1570–1485 (s) 1380–1320 (s)	See above remark; also bulky orthosubstituents shift band to higher frequencies. Strong H bonding shifts frequency to lower and of range
α,β-Unsaturated Nitroalkenes	865-835 (s) 580-520 (var) 1530-1510 (s) 1360-1335 (s)	Strong and sometimes at ca 750 cm ⁻¹
Nitrates —O—NO ₂	1650-1625 (vs) 1285-1275 (vs) 870-855 (vs) 760-755 (w-m) 710-695 (w-m)	
Nitramines >N-NO ₂	1630–1550 (s) 1300–1250 (s)	
Nitrates —O—N=O	1680-1610 (vs) 815-750 (s) 850-810 (s) 690-615 (s)	Two bands Trans form Cis form
Thionitrites —S—N=O	730-685 (m-s)	
Nitroso ≥C−N=0	1600-1500 (s)	
N—N=O Aliphatic Aromatic	1530-1495 (m-s) 1480-1450 (m-s) 1335-1315 (m-s)	
Nitrogen oxides N→O Pyridine Pyrazine	1320-1230 (m-s) 1190-1150 (m-s) 1380-1280 (m-s) 1040-990 (m-s) ca 850 (m)	Affected by ring substituents

TABLE 3.5 Absorption Frequencies of Other Double Bonds (Continued)

TABLE 3.6 Absorption Frequencies of Aromatic Bands

	m, moderately strong m–s, moderate to strong s, srong	var, of variable strength w–m, weak to moderately strong
Group	Band, cm ⁻¹	Remarks
Aromatic rings	ca 1600 (m) ca 1580 (m) ca 1470 (m) ca 1510 (m)	Stronger when ring is further conjugated When substituent on ring is electron acceptor When substituent on ring is electron donor
Five adjacent H	900-860 (w-m) 770-730 (s) 720-680 (s) 625-605 (w-m) ca 550 (w-m)	Substituents: C=C, C≡C, C≡N
1,2-Substitution	770-735 (s) 555-495 (w-m) 470-415 (m-s)	
1,3-Substitution	810-750 (s) 560-505 (m) 460-415 (m-s)	490–460 cm ⁻¹ when substituents are elec- tron-accepting groups
1,4-Substitution	860-800 (s) 650-615 (w-m) 520-440 (m-s)	520–490 cm ⁻¹ when substituents are elec- tron-donating groups
1,2,3-Trisubstitution	800-760 (s) 720-685 (s) 570-535 (s) ca 485	
1,2,4-Trisubstitution	900-885 (m) 780-760 (s) 475-425 (m-s)	
1,3,5-Trisubstitution	950-925 (var) 865-810 (s) 730-680 (m-s) 535-495 (s) 470-450 (w-m)	
Pentasubstitution	900-860 (m-s) 580-535 (s)	
Hexasubstitution	415-385 (m-s)	

Abbreviations Used in the Table
TABLE 3.7 Absorption Frequencies of Miscellaneous Bands

Abbreviations Used in the Table

m, moderately strong	
m–s, moderate to strong	
s, strong	
var, of variable strength	

vs, very strong w, weak w–m, weak to moderately strong

Group	Band, cm^{-1}	Remarks
	Ethers	
Saturated aliphatic	1150 1060 (vs)	Two panks may be observed for
	1150-1000 (vs)	branched chain, usually $1140-1110$ cm ⁻¹ .
	1140-900 (s)	Usually 930–900 cm ⁻¹ ; may be absent for symmetric ethers
Alkyl-aryl = $C-O-C \leqslant$		
I	1270–1230 (vs) 1120–1020 (s)	=CO stretching CO stretching
Vinyl	1225-1200 (s)	Usually about 1205 cm^{-1}
Diaryl		
=C-O-C=	1200–1120 (s) 1100–1050 (s)	
Cyclic	1270-1030 (s)	
Epoxides		
>cc<	1260–1240 (m–s)	
$\mathbf{\hat{v}}$	880-805 (m)	Monosubstituted
	950-860 (var)	Trans form
	805–785 (m) 770–750 (m)	Trisubstituted
Ketals and acetals	1190–1140 (s)	
	1195–1125 (s)	
	1100–1000 (s)	Strongest band
<u></u>	1060–1035 (s)	Sometimes obscured
Phthalanes	915-895 (s)	
Aromatic methylenedioxy	1265–1235 (s)	
	Peroxides	T
-0-0-	900-830 (w)	
	1150-1030 (m-s)	Alkyi
	ca 1000 (m)	Aryı

Group	Band, cm ⁻¹	Remarks
	Sulfur compounds	3
Thiols —S—H —CO—SH —CS—SH	2600-2450 (w) 840-830 (m) ca 860 (s)	Broad
Thiocarbonyl	1200–1050 (s)	Behaves generally in manner similar to carbonyl band
>N-C=S	1570–1395 1420–1260 1140–940	
-s-c=s	ca 580 (s)	
Sulfoxides >S=O	1075-1040 (vs)	Halogen or oxygen atom bonded to sul- fur increases the frequency.
	730–690 (var) 395–360 (var)	
Sulfones >SO ₂	1360–1290 (vs)	Halogen or oxygen atom bonded to sul- fur increases the frequency.
	1170–1120 (vs) 610–545 (m–s) 525–495 (m–s)	
Sulfonamides −SO ₂ −N←	1380-1330 (vs) 1170-1140 (vs) 950-860 (m) 715-700 (w-m)	
Sulfonates —SO ₂ —O—	1420–1330 (s) 1200–1145 (s)	May appear as doublet
Thiosulfonates $-SO_2-S-$	ca 1340 (vs)	
Sulfates -O-SO ₂ -O-	1415–1380 (s) 1200–1185 (s)	Electronegative substituents increase frequencies.
Primary alkyl salts	1315–1220 (s) 1140–1075 (m)	Strongly influenced by metal ion
Secondary alkyl salts	1270–1210 (vs) 1075–1050 (s)	Doublet; both bands strongly influenced by metal ion

TABLE 3.7 Absorption Frequencies of Miscellaneous Bands (Continued)

Group	Band, cm ⁻¹	Remarks
	Sulfur compounds (Conti	nued)
Stretching frequencies of CS and SS bonds -SCH ₃ -SCH \leq -SCH \leq -SC \in -Saryl RSSR Aryl-S-Saryl Polysulfides CH ₂ SCH ₂ (RS) ₂ C=0 -CO-S -CSS S	710-685 (w-m) 660-630 (w-m) 630-600 (w-m) 600-570 (w-m) 1110-1070 (m) 710-685 (w-m) 705-570 (w) 520-500 (w) 500-430 (w-m) 500-470 (w-m) 695-655 (w-m) 880-825 (s) 570-560 (var) 1035-935 (s) ca 580 (s) 1050-900 (m-s)	CSC stretching
=c	980–850 (m-s) 900–800 (m-s)	Ionic 1,1-dithiolates
	Phosphorus compour	ıds
Р—Н	2455–2265 (m) 1150–965 (w-m)	Sharp. Phosphines lie in the region $2285-2265 \text{ cm}^{-1}$.
PH ₂	1100-1085 (m) 1065-1040 (w-m) 940-910 (m)	
P—alkyl	795-650 (m-s)	
P—aryl	1130-1090 (s) 750-680 (s)	
POalkyl	1050–970 (s)	Broad
POaryl	1240–1190 (s)	
РР	970-910	Broad
P==0	1350–1150 (s)	May appear as doublet
Р	2725-2520 (w-m) 2350-2080 (w-m) 1740-1600 (w-m) 1335 (s) 1090-910 (s) 540-450 (w-m)	H-bonded; broad Broad; may be doublet for aryl acids P=O stretching

TABLE 3.7 Absorption Frequencies of Miscellaneous Bands (Continued)

Group	Band, cm ⁻¹	Remarks
	Phosphorus compounds (Co	ontinued)
P=S	865–655 (m–s) 595–530 (var)	
P OH	3100-3000 (w) 2360-2200 (w) 935-910 (s) 810-750 (m-s) 655585 (var)	PO stretching P=S stretching P=S stretching
	Silicon compound	s
Si—H	2250–2100 (s) 985–800	SiH ₃ has two bands.
Si—C	860-760	Accompanied by CH ₂ rocking
Si−C€	1280-1250 (s)	Sharp
Si-C ₂ H ₅	1250–1220 (m) 1020–1000 (m) 970–945 (m)	
Si—Aryl	1125–1090 (vs)	Splits into two bands when two aryl groups are attached to one silicon atom, but has only one band when three aryl groups attached
≥Si−OH	870-820	OH deformation band
≥Si−0−Si≤	1100-1000	
⇒si−n−si≪	940-870 (s)	
⇒Si—Cl	550-470 (s) 250-150	
>SiCl ₂	595–535 (s) 540–460 (m)	
—SiCl ₃	625–570 (s) 535–450 (m)	
	Boron compound	s
Boranes >BH or -BH ₂	2640-2450 (m-s) 2640-2570 (m-s) 2535-2485 (m-s) 2380-2315 (s)	Free H in BH Free H in BH_2 plus second band In complexes; second band for BH_2

2285-2265 (s)

2140-2080 (w-m) 2580-2450 (m)

TABLE 3.7	Absorption Frequencies of Miscellaneous Bands (Continued)
-----------	---

(Continued)

Bridged H Borazoles and borazines

Group	Band, cm ⁻¹	Remarks
	Boron compounds (Cont	inued)
BH ₄	2310-2195 (s)	Two bands
B—N	1550–1330 750–635	Borazines and borazoles
в—о	1390–1310 (s) 1280–1200	BO stretching Metal orthoborates
B-Cl B-Br	1090-890 (s)	Plus other bands at lower frequencies for BX_2 and BX_3
B—F	1500-840 (var)	Isotope splitting present
XBF ₂	1500–1410 (s) 1300–1200 (s)	
X ₂ BF	1360–1300 (s)	
BF ₃ complexes	1260–1125 (s)	Band splitting may be added to isotopic splittings.
	1030800 (s)	
BF_4^-	ca 1030 (vs)	
	Halogen compound	ls
C—F		
Aliphatic, mono-F	1110-1000 (vs)	
Alimbotic di E	780-680 (s)	Two hands
Aliphatic, ul-F	1250 - 1050 (VS) 1360 - 1090 (VS)	1 wo bands Number of bands
Anphatic, poly-r	1300 - 1090 (vs) 1270 - 1100 (m)	Number of bands
Aromane	1270 - 1100 (m)	
	420 - 375 (upp)	
	420-373 (var) 340-240 (s)	
	340-240 (8)	
-CF ₃		
Aliphatic	1350–1120 (vs)	
	780–680 (s)	
	680–590 (s)	
	600–540 (s)	
	555-505 (s)	
Aromatic	1330 - 1310 (m-s)	
	600–580 (s)	
C—Cl		
Primary alkanes	730-720 (s)	
	685–680 (s)	
	660–650 (s)	

TABLE 3.7 Absorption Frequencies of Miscellaneous Bands (Continued)

Group	Band, cm ⁻¹	Remarks
	Halogen compounds (Cor	ntinued)
C—Cl (continued)		
Secondary alkanes	ca 760 (m)	
·	675-655 (m-s)	
	615-605 (s)	
Tertiary alkanes	635-610 (m-s)	
· · · · · · · · · · · · · · · · · · ·	580-560 (m-s)	
Poly-Cl	800-700 (vs)	
Arvl	000 /00 (13)	
12-	1060 - 1035 (m)	
1.3-	1080 - 1075 (m)	
1,4-	1100–1090 (m)	
	(00 ()	1
Chloroformates	ca 690 (s)	
	485–470 (s)	
Axial Cl	730–580 (s)	
Equatorial Cl	780–740 (s)	
C-Br		
Primary alkanes	645-635 (s)	
5	565-555 (s)	
	440-430 (var)	
Secondary alkanes	620-605 (s)	
	590-575 (m-w)	
	540-530 (s)	
Tertiary alkanes	600-595 (m-s)	
	525-505(s)	
Axial	690-550 (s)	
Faustorial	750-685 (s)	
Arvl	150 005 (5)	
12	1045 - 1025 (m)	
$1,2^{-1}$ 1 3 - 1 4 -	1075 - 1065 (m)	
Other bands	400-260 (s)	
Other bands	$325 \ 175 \ (m \ c)$	
	200 - 225 (m - s)	
	290-223 (III-8)	
C—I	(00 F07 ())	
Primary alkanes	600-585 (s)	
	515-500 (s)	
Secondary alkanes	ca 575 (s)	
	550-520 (s)	
	490–480 (s)	
Tertiary alkanes	580-560 (s)	
	510-485 (m)	
	485-465 (s)	
Aromatic	1060-1055 (m-s)	
	310-160 (s)	
	265-185	
Axial	ca 640 (s)	
Equatorial	ca 655 (s)	

TABLE 3.7 Absorption Frequencies of Miscellaneous Bands (Continued)

Group	Band, cm ⁻¹	Remarks	
Inorganic ions (Continued)			
Ammonium	3300-3030	Several bands, all strong	
Cyanate	2220-2130 (s)		
Cyanide	2200-2000		
Carbonate	1450-1410		
Hydrogen sulfate	1190–1160 (s) 1180–1000 (s) 880–840 (m)		
Nitrate	14101350 (vs) 860800 (m)		
Nitrite	1275-1230 (s) 835-800 (m)	Shoulder	
Phosphate	1100-1000		
Sulfate	1130–1080 (s)		
Thiocyanate	ca 2050 (s)		

TABLE 3.7 Absorption Frequencies of Miscellaneous Bands (Continued)

TABLE 3.8 Absorption Frequencies in the Near Infrared

Values in parentheses are molar absorptivity.

Class	Band, cm ⁻¹	Remarks
Acetylenes	9800-9430 6580-6400 (1.0)	Overtone of \equiv CH stretching
Alcohols (nonhydrogen-bonded)	71407010 (2.0)	Overtone of OH stretching
Aldehydes Aliphatic	46404520 (0.5)	Combination of C=O and CH stretchings
Aromatic	ca 8000 ca 4525 ca 4445	g-
Formate	4775-4630 (1.0)	

Class	Band, cm ⁻¹	Remarks
Alkanes		
-CH ₃	9000-8350 (0.02)	
	5850-5660 (0.1)	
	4510-4280 (0.3)	
$-CH_2$	91708475 (0.02)	
	5830-6640 (0.1)	
	4420-4070 (0.25)	
≥CH	8550-8130	All bands very weak
	7000-6800	
Cuolonnono	5650-5560	
Cyclopropane	4500 4400	
	4500-4400	
Alkenes		
c=c'	6850 - 6370(1.0)	
	0050 0570 (1.0)	
	7580 7200 (0.02)	
$-C-CH_2$ and $-CH-CH_2$	7380-7300 (0.02) 6140-5080 (0.2)	
	4760 - 4700 (1.2)	
и и	4700-4700 (1.2)	
	4760 4660 (0.15)	Towns in some house on unions has do
$/^{c=c}$	4700-4000 (0.13)	<i>Trans</i> isomers have no unique bands.
$-0-CH=CH_{-}$	6250-6040 (0.3)	
$-CO-CH=CH_{2}$	7580-7410 (0.02)	
	6190-5990 (0.3)	
	4820-4750 (0.2-0.5)	
Amides		
Primary	7400-6540 (0.7)	Two bands: overtone of NH stretch
	5160-5060 (3.0)	Second overtone of $C=O$ stretch:
	5040-4990 (0.5)	second overtone of NH deforma-
	4960-4880 (0.5)	tion; combination of C=O and NH
Secondary	7330-7140 (0.5)	Overtone of NH stretch
-	5050-4960 (0.4)	Combination of NH stretch and NH
		bending
Amines, aliphatic		
Primary	9710-9350	Second overtone of NH stretch
5	6670-6450 (0.5)	Two bands; overtone of NH stretch
	5075-4900 (0.7)	Two bands; combination of NH
		stretch and NH bending
Secondary	9800-9350	Second overtone of NH stretch
	6580-6410 (0.5)	Overtone of NH stretch
Amines, aromatic		
Primary	9950-9520 (0.4)	
-	7040-6850 (0.2)	
	6760-6580 (1.4)	
	5140-5040 (1.5)	
Secondary	10 000-9710	
	6800-6580 (0.5)	

TABLE 3.8 Absorption Frequencies of the Near Infrared (*Continued*)

Class	Band, cm ⁻¹	Remarks
Aryl-H	7660–7330 (0.1) 6170–5880 (0.1)	Overtone of CH stretch
Carbonyl	5200-5100	
Carboxylic acids	7000-6800	
Epoxide (terminal)	6135–5960 (0.2) 4665–4520 (1.2)	Cyclopropane bands in same region
Glycols	71407040	
Hydroperoxides Aliphatic Aromatic	6940-6750 (2.0) 4960-4880 (0.8) 7040-6760 (1.0) 4950-4850 (1.3)	Two bands
Imides	9900–9620 6540–6370	
Nitriles	5350-5200 (0.1)	
Oximes	7140-7050	
Phosphines	5350-5260 (0.2)	
Phenols Nonbonded Intramolecularly bonded	7140-6800 (3.0) 5000-4950 7000-6700	
Thiols	5100-4950 (0.05)	

TABLE 3.8	Absorption Freq	uencies of the N	Jear Infrared (<i>Continued</i>)

TABLE 3.9 Infrared Transmitting Materials

Material	Wavelength range, µm	Wavenumber range, cm ⁻¹	Refractive index at 2 μm
NaCl, rock salt	0.25-17	40 000-590	1.52
KBr, potassium bromide	0.25-25	40 000-400	1.53
KCl, potassium chloride	0.30-20	33 000-500	1.5
AgCl, silver chloride*	0.40-23	25 000-435	2.0
AgBr, silver bromide*	0.50-35	20 000-286	2.2
CaF ₂ , calcium fluoride (Irtran-3)	0.15-9	66 700-1 110	1.40
BaF ₂ , barium fluoride	0.20-11.5	50 000-870	1.46
MgO, magnesium oxide (Irtran-5)	0.39-9.4	25 600-1 060	1.71

Material	Wavelength range, μm	Wavenumber range, cm ⁻¹	Refractive index at 2 μm
CsBr, cesium bromide	1-37	10 000-270	1.67
CsI, cesium iodide	1-50	10 000-200	1.74
TlBr-TlI, thallium bromide-iodide (KRS-5)*	0.50-35	20 000-286	2.37
ZnS, zinc sulfide (Irtran-2)	0.57-14.7	17 500-680	2.26
ZnSe, zinc selenide* (vacuum deposited) (Irtran-4)	1-18	10 000-556	2.45
CdTe, cadmium telluride (Irtran-6)	2-28	5 000-360	2.67
Al ₂ O ₃ , sapphire*	0.20-6.5	50 000-1538	1.76
SiO ₂ , fused quartz	0.16-3.7	62 500-2 700	
Ge, germanium*	0.50-16.7	20 000-600	4.0
Si, silicon*	0.20-6.2	50 000-1 613	3.5
Polyethylene	16-300	625-33	1.54

TABLE 3.9 Infrared Transmitting Materials (Continued)

* Usual for internal reflection work.

TABLE 3.10 Infrared Transmission Characteristics of Selected Solvents

Transmission below 80%, obtained with a 0.10-mm cell	path, is shown as shaded area
--	-------------------------------

						Wave	length, µ	m							
	2.5	3	3.5	4	4.5	5	5. 5	6	6.5	7	8	9	10	11 12	14
		1	Τ	T	T	T	1	T	T	T	1	Ι	I		I
Butyl acetate															
	L	3150	2800			1935								815	68
														78	0 755
1 · Butanol							· · · ·								
	3600)		2500				1600							
Dibutyl ether				8											
		3040	2	580				1	540					810	(
														77	5 740
Carbon disulfid	e														
				230	60 21	00		1625	1	410					690
Carbon tetra-						······		Ĩ							
Cinoriae								1570	1520					840	720 69
Chloroform															
		3060 2	960								1250 1	180	945	935 8	30
Cyclohexane				8											
		3040) 2	580				19	510	1410		106	0 102	0	680
										1	285 125	0	g	10 860)
Cyclopentane															
		3060	2730)				1!	520	1410			9	25 870	64
										1340	0 1310				
1,2-Dichloro- ethane															
		3150 2	2960					1	500	1435		1070	975	875	765
										137	0 1230	1	050		
Diethyl ether	L			<u> </u>											
		3060) 2	2600	20	00 1965			1525				1000	870	/90 (
				9											
I,4-Dioxane	L			1	2			·····	14				1075		
		3060	20	000	20	00 1905			14				1075	40 82	5 5
															-
Dodecane		2060		50					14		1200				
		3000	20	50					14	00	1290			7	55 695
				.							N			NI	
lexane	L			1					1625		330			8	
		3060	26	00					1525	1.	330		ç	/\ 900 885	50720 i A
Tetrachioro	r											N	· · · · ·		
ethylene	L										10	N 60.10	25		
											TU	60 IU	30	830	745
		1 1]	_1		1
	4000	300	0		2	2000	1800	1600		1400	120	0	1000	80	0

TABLE 3.10 Infrared Transmission Characteristics of Selected Solvents (Continued)

TABLE 3.10 Infrared Transmission Characteristics of Selected Solvents (Continued)

TABLE 3.11 Values of Absorbance for Percent Absorption

To convert percent absorption (% A) to absorbance, find the present absorption to the nearest whole digit in the left-hand column; read across to the column located under the tenth of a percent desired, and read the value of absorbance. The value of absorbance corresponding to 26.8% absorption is thus 0.1355.

% A	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0.0	.0000	.0004	.0009	.0013	.0017	.0022	.0026	.0031	.0035	.0039
1.0	.0044	.0048	.0052	.0057	.0061	.0066	.0070	.0074	.0079	.0083
2.0	.0088	.0092	.0097	.0101	.0106	.0110	.0114	.0119	.0123	.0128
3.0	.0132	.0137	.0141	.0146	.0150	.0155	.0159	.0164	.0168	.0173
4.0	.0177	.0182	.0186	.0191	.0195	.0200	.0205	.0209	.0214	.0218
5.0	.0223	.0227	.0232	.0236	.0241	.0246	.0250	.0255	.0259	.0264
6.0	.0269	.0273	.0278	.0283	.0287	.0292	.0297	.0301	.0306	.0311
7.0	.0315	.0320	.0325	.0329	.0334	.0339	.0343	.0348	.0353	.0357
8.0	.0362	.0367	.0372	.0376	.0381	.0386	.0391	.0395	.0400	.0405
9.0	.0410	.0414	.0419	.0424	.0429	.0434	.0438	.0443	.0448	.0453
10.0	.0458	.0462	.0467	.0472	.0477	.0482	.0487	.0491	.0496	.0501
11.0	.0506	.0511	.0516	.0521	.0526	.0531	.0535	.0540	.0545	.0550
12.0	.0555	.0560	.0565	.0570	.0575	.0580	.0585	.0590	.0595	.0600
13.0	.0605	.0610	.0615	.0620	.0625	.0630	.0635	.0640	.0645	.0650
14.0	.0655	.0660	.0665	.0670	.0675	.0680	.0685	.0691	.0696	.0701
15.0	.0706	.0711	.0716	.0721	.0726	.0731	.0737	.0742	.0747	.0752
16.0	.0757	.0762	.0768	.0773	.0778	.0783	.0788	.0794	.0799	.0804
17.0	.0809	.0814	.0820	.0825	.0830	.0835	.0841	.0846	.0851	.0857
18.0	.0862	.0867	.0872	.0878	.0883	.0888	.0894	.0899	.0904	.0910
19.0	.0915	.0921	.0926	.0931	.0937	.0942	.0947	.0953	.0958	.0964
20.0	.0969	.0975	.0980	.0985	.0991	.0996	.1002	.1007	.1013	.1018
21.0	.1024	.1029	.1035	.1040	.1046	.1051	.1057	.1062	.1068	.1073
22.0	.1079	.1085	.1090	.1096	.1101	.1107	.1113	.1118	.1124	.1129
23.0	.1135	.1141	.1146	.1152	.1158	.1163	.1169	.1175	.1180	.1186

%A	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
24.0	.1192	.1198	.1203	.1209	.1215	.1221	.1226	.1232	.1238	.1244
25.0	.1249	.1255	.1261	.1267	.1273	.1278	.1284	.1290	.1296	.1302
26.0	.1308	.1314	.1319	.1325	.1331	.1337	.1343	.1349	.1355	.1361
27.0	.1367	.1373	.1379	.1385	.1391	.1397	.1403	.1409	.1415	.1421
28.0	1427	1433	1439	1445	1451	1457	1463	1469	1475	.1481
29.0	1487	1494	1500	1506	1512	1518	1524	1530	1537	1543
27.0		11191	.1500	.1500	.1512	.1510	.1521	.1550	.1557	.1045
30.0	.1549	.1555	.1561	.1568	.1574	.1580	.1586	.1593	.1599	.1605
31.0	.1612	.1618	.1624	.1630	.1637	.1643	.1649	.1656	.1662	.1669
32.0	.1675	.1681	.1688	.1694	.1701	.1707	.1713	.1720	.1726	.1733
33.0	.1739	.1746	.1752	.1759	.1765	.1772	.1778	.1785	.1791	.1798
34.0	.1805	.1811	.1818	.1824	.1831	.1838	.1844	.1851	.1858	.1864
35.0	.1871	.1878	.1884	.1891	.1898	.1904	.1911	.1918	.1925	.1931
36.0	1938	1945	1952	1959	1965	1972	1979	1986	1993	2000
37.0	2007	2013	2020	2027	2034	2041	2048	2055	2062	2060
38.0	2007	2013	2020	2027	2104	2111	2118	2125	2132	2140
20.0	.2070	.2085	.2090	.2097	.2104	.2111	2100	2125	2152	.2140
39.0	.2147	.2134	.2101	.2108	.2173	.2162	.2190	.2197	.2204	.2211
40.0	.2218	.2220	.2233	.2240	.2248	.2255	.2202	.2209	.2211	.2284
41.0	.2291	.2299	.2306	.2314	.2321	.2328	.2336	.2343	.2351	.2358
42.0	.2366	.2373	.2381	.2388	.2396	.2403	.2411	.2418	.2426	.2434
43.0	.2441	.2449	.2457	.2464	.2472	.2480	.2487	.2495	.2503	.2510
44.0	.2518	.2526	.2534	.2541	.2549	.2557	.2565	.2573	.2581	.2588
45.0	.2596	.2604	.2612	.2620	.2628	.2636	.2644	.2652	.2660	.2668
46.0	.2676	.2684	.2692	.2700	.2708	.2716	.2725	.2733	.2741	.2749
47.0	.2757	.2765	.2774	.2782	.2790	.2798	.2807	.2815	.2823	.2832
48.0	.2840	.2848	.2857	.2865	.2874	.2882	.2890	.2899	.2907	.2916
49.0	.2924	.2933	.2941	.2950	.2958	.2967	.2976	.2984	.2993	.3002
50.0	.3010	.3019	.3028	.3036	.3045	.3054	.3063	.3072	.3080	.3089
51.0	.3098	.3107	.3116	.3125	.3134	.3143	.3152	.3161	.3170	.3179
52.0	.3188	.3197	.3206	.3215	.3224	.3233	.3242	.3251	.3261	.3270
53.0	.3279	.3288	.3298	.3307	.3316	.3325	.3335	.3344	.3354	.3363
54.0	3372	3382	3301	3401	3410	3420	3429	3439	3449	3458
55.0	3468	3478	3487	3497	3507	3516	3526	3536	3546	3556
56.0	3565	3575	3585	3595	3605	3615	3625	3635	3645	3655
57.0	3665	3675	3686	3696	3706	3716	3726	3737	3747	3757
58.0	3768	3778	3788	3799	3809	3820	3830	3840	3851	3862
59.0	.3872	.3883	.3893	.3904	.3915	.3925	.3936	.3947	.3958	.3969
60.0	2070	2000	4001	4012	4022	4024	4045	4056	4067	4079
60.0	.3979	.3990	.4001	.4012	.4023	.4034	.4045	.4056	.4067	.4078
01.0	.4089	.4101	.4112	.4123	.4134	.4145	.4157	.4168	.4179	.4191
02.0	.4202	.4214	.4225	.4237	.4248	.4260	.4271	.4283	.4295	.4306
63.0	.4318	.4330	.4342	.4353	.4365	.4377	.4389	.4401	.4413	.4425
64.U	.4437	.4449	.4461	.44/3	.4485	.4498	.4510	.4522	.4535	.4547
05.0	.4559	.4572	.4584	.4597	.4009	.4622	.4034	.4047	.4660	.4672
66.0	.4685	.4698	.4711	.4724	.4737	.4750	.4763	.4776	.4789	.4802
67.0	.4815	.4828	.4841	.4855	.4868	.4881	.4895	.4908	.4921	.4935
68.0	.4948	.4962	.4976	.4989	.5003	.5017	.5031	.5045	.5058	.5072
69.0	.5086	.5100	.5114	.5129	.5143	.5157	.5171	.5186	.5200	.5214
70.0	.5229	.5243	.5258	.5272	.5287	.5302	.5317	.5331	.5346	.5361
71.0	.5376	.5391	.5406	.5421	.5436	.5452	.5467	.5482	.5498	.5513

TABLE 3.11 Values of Absorbance for Percent Absorption (*Continued*)

%A	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
72.0	.5528	.5544	.5560	.5575	.5591	.5607	.5622	.5638	.5654	.5670
73.0	.5686	.5702	.5719	.5735	.5751	.5768	.5784	.5800	.5817	.5834
74.0	.5850	.5867	.5884	.5901	.5918	.5935	.5952	.5969	.5986	.6003
75.0	.6021	.6038	.6055	.6073	.6091	.6108	.6126	.6144	.6162	.6180
76.0	.6198	.6216	.6234	.6253	.6271	.6289	.6308	.6326	.6345	.6364
77.0	.6383	.6402	.6421	.6440	.6459	.6478	.6498	.6517	.6536	.6556
78.0	.6576	.6596	.6615	.6635	.6655	.6676	.6696	.6716	.6737	.6757
79.0	.6778	.6799	.6819	.6840	.6861	.6882	.6904	.6925	.6946	.6968
80.0	.6990	.7011	.7033	.7055	.7077	.7100	.7122	.7144	.7167	.7190
81.0	.7212	.7235	.7258	.7282	.7305	.7328	.7352	.7375	.7399	.7423
82.0	.7447	.7471	.7496	.7520	.7545	.7570	.7595	.7620	.7645	.7670
83.0	.7696	.7721	.7747	.7773	.7799	.7825	.7852	.7878	.7905	.7932
84.0	.7959	.7986	.8013	.8041	.8069	.8097	.8125	.8153	.8182	.8210
85.0	.8239	.8268	.8297	.8327	.8356	.8386	.8416	.8447	.8477	.8508
86.0	.8539	.8570	.8601	.8633	.8665	.8697	.8729	.8761	.8794	.8827
87.0	.8861	.8894	.8928	.8962	.8996	.9031	.9066	.9101	.9136	.9172
88.0	.9208	.9245	.9281	.9318	.9355	.9393	.9431	.9469	.9508	.9547
89.0	.9586	.9626	.9666	.9706	.9747	.9788	.9830	.9872	.9914	.9957

TABLE 3.11 Values of Absorbance for Percent Absorption (*Continued*)

TABLE 3.12 Transmittance-Absorbance Conversion Table

This table gives absorbance values to four significant figures corresponding to % transmittance values, which are given to three significant figures. The values of % transmittance are given in the left-hand column and in the top row. For example, 8.4% transmittance corresponds to an absorbance of 1.076.

Interpolation is facilitated and accuracy is maximized if the % transmittance is between 1 and 10, by multiplying its value by 10, finding the absorbance corresponding to the result, and adding 1. For example, to find the absorbance corresponding to 8.45% transmittance, note that 84.5% transmittance corresponds to an absorbance of 0.0731, so that 8.45% transmittance corresponds to an absorbance of 1.0731. For % transmittance values between 0.1 and 1, multiply by 100, find the absorbance corresponding to the result, and add 2.

Conversely, to find the % transmittance corresponding to an absorbance between 1 and 2, subtract 1 from the absorbance, find the % transmittance corresponding to the result, and divide by 10. For example, an absorbance of 1.219 can best be converted to % transmittance by noting that an absorbance of 0.219 would correspond to 60.4% transmittance; dividing this by 10 gives the desired value, 6.04% transmittance. For absorbance values between 2 and 3, subtract 2 from the absorbance, find the % transmittance corresponding to the result, and divide by 100.

% Trans- mittance	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5	2.000 1.699 1.523 1.398 1.301	3.000 1.959 1.678 1.509 1.387 1.292	2.699 1.921 1.658 1.495 1.377 1.284	2.523 1.886 1.638 1.481 1.367 1.276	2.398 1.854 1.620 1.469 1.357 1.268	2.301 1.824 1.602 1.456 1.347 1.260	2.222 1.796 1.585 1.444 1.337 1.252	2.155 1.770 1.569 1.432 1.328 1.244	2.097 1.745 1.553 1.420 1.319	2.046 1.721 1.538 1.409 1.310 1.229
6 7 8 9 10	1.222 1.155 1.097 1.046 1.000	1.292 1.215 1.149 1.092 1.041 0.9957	1.284 1.208 1.143 1.086 1.036 0.9914	1.276 1.201 1.137 1.081 1.032 0.9872	1.208 1.194 1.131 1.076 1.027 0.9830	1.187 1.125 1.071 1.022 0.9788	1.232 1.180 1.119 1.066 1.018 0.9747	1.244 1.174 1.114 1.060 1.013 0.9706	1.237 1.167 1.108 1.056 1.009 0.9666	1.229 1.161 1.102 1.051 1.004 0.9626

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9245
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8894
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8570
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8268
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7986
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7471
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7235
20 0.6990 0.6968 0.6946 0.6925 0.6904 0.6882 0.6861 0.6840 0.6819 0 21 0.6778 0.6757 0.6737 0.6716 0.6696 0.6676 0.6655 0.6635 0.6615 0 22 0.6576 0.6556 0.6536 0.6517 0.6448 0.6478 0.6459 0.6440 0.6421 0 23 0.6383 0.6364 0.6345 0.6326 0.6308 0.6289 0.6271 0.6253 0.6234 0 24 0.6198 0.6160 0.6162 0.6144 0.6126 0.6108 0.6091 0.6073 0.6055 0 25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5911 0.5884 0 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5677 0.5575 0.5560 0 27 0.5686 0.5670 0.5654 0.5638 0.5622	0.7011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6799
22 0.6576 0.6556 0.6536 0.6517 0.6498 0.6478 0.6459 0.6440 0.6421 0 23 0.6383 0.6364 0.6345 0.6326 0.6308 0.6289 0.6271 0.6253 0.6234 0 24 0.6198 0.6180 0.6162 0.6144 0.6126 0.6108 0.6091 0.6073 0.6055 0 25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5901 0.5884 0 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0 27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5575 0.5560 0 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317	0.6596
23 0.6383 0.6364 0.6345 0.6326 0.6308 0.6289 0.6271 0.6253 0.6234 0.6234 24 0.6198 0.6180 0.6162 0.6144 0.6126 0.6108 0.6091 0.6073 0.6055 0.6021 25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5901 0.5884 0. 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0. 27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5575 0.5560 0. 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5137 0.5129 0.5114 0 30 0.5229 0.5214 0.5008 0.5045 0.5031	0.6402
24 0.6198 0.6180 0.6162 0.6144 0.6126 0.6108 0.6091 0.6073 0.6073 0.6055 0 25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5901 0.5884 0 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0 27 0.5886 0.5670 0.5654 0.5638 0.5622 0.5607 0.5575 0.5560 0 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031	0.6216
25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5901 0.5884 0 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0 27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5591 0.5575 0.5560 0 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.6038
26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0 27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5591 0.5575 0.5560 0 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5117 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5867
27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5591 0.5575 0.5560 0 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5702
28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5544
29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5391
30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5243
31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0	0.5100
	0.4962
32 0.4949 0.4935 0.4921 0.4908 0.4895 0.4881 0.4868 0.4855 0.4841 0	0.4828
33 0.4815 0.4802 0.4789 0.4776 0.4763 0.4750 0.4737 0.4724 0.4711 0	0.4698
34 0.4685 0.4672 0.4660 0.4647 0.4634 0.4622 0.4609 0.4597 0.4584 0	0.4572
35 0.4559 0.4547 0.4535 0.4522 0.4510 0.4498 0.4486 0.4473 0.4461 0	0.4449
36 0.4437 0.4425 0.4413 0.4401 0.4389 0.4377 0.4365 0.4353 0.4342 0	0.4330
37 0.4318 0.4306 0.4295 0.4283 0.4271 0.4260 0.4248 0.4237 0.4225 0	0.4214
38 0.4202 0.4191 0.4179 0.4168 0.4157 0.4145 0.4134 0.4123 0.4112 0	0.4101
39 0.4089 0.4078 0.4067 0.4056 0.4045 0.4034 0.4023 0.4012 0.4001 0	0.3989
40 0.3979 0.3969 0.3958 0.3947 0.3936 0.3925 0.3915 0.3904 0.3893 0	0.3883
41 0.3872 0.3862 0.3851 0.3840 0.3830 0.3820 0.3809 0.3799 0.3788 0	0.3778
42 0.3768 0.3757 0.3747 0.3737 0.3726 0.3716 0.3706 0.3696 0.3686 0	0.3675
43 0.3665 0.3655 0.3645 0.3635 0.3625 0.3615 0.3605 0.3595 0.3585 0	0.3575
44 0.3565 0.3556 0.3546 0.3536 0.3526 0.3516 0.3507 0.3497 0.3487 0	0.3478
45 0.3468 0.3458 0.3449 0.3439 0.3429 0.3420 0.3410 0.3401 0.3391 0	0.3382
46 0.3372 0.3363 0.3354 0.3344 0.3335 0.3325 0.3316 0.3307 0.3298 0	0.3288
47 0.3279 0.3270 0.3261 0.3251 0.3242 0.3233 0.3224 0.3215 0.3206 0	0.3197
48 0.3188 0.3179 0.3170 0.3161 0.3152 0.3143 0.3134 0.3125 0.3116 0	0.3107
49 0.3098 0.3089 0.3080 0.3072 0.3063 0.3054 0.3045 0.3036 0.3028 0	0.3019
50 0.3010 0.3002 0.2993 0.2984 0.2976 0.2967 0.2958 0.2950 0.2941 0	0.2933
51 0.2924 0.2916 0.2907 0.2899 0.2890 0.2882 0.2874 0.2865 0.2857 0	0.2848
52 0.2840 0.2832 0.2823 0.2815 0.2807 0.2798 0.2790 0.2782 0.2774 0	0.2765
53 0.2757 0.2749 0.2741 0.2733 0.2725 0.2716 0.2708 0.2700 0.2692 0	0.2684
54 0.2676 0.2668 0.2660 0.2652 0.2644 0.2636 0.2628 0.2620 0.2612 0	0.2604
<u>55</u> 0.2596 0.2588 0.2581 0.2573 0.2565 0.2557 0.2549 0.2541 0.2534 0	0.2526

TABLE 3.12 Transmittance-Absorbance Conversion Table (Continued)

mittance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.9
56 0.2518 0.2510 0.2503 0.2495 0.2487 0.2480 0.2472 0.2464 0.2457	0.2449
57 0.2441 0.2434 0.2426 0.2418 0.2411 0.2403 0.2396 0.2388 0.2381	0.2373
58 0.2366 0.2358 0.2351 0.2343 0.2336 0.2328 0.2321 0.2314 0.2306	0.2299
59 0.2291 0.2284 0.2277 0.2269 0.2262 0.2255 0.2248 0.2240 0.2233	0.2226
60 0.2218 0.2211 0.2204 0.2197 0.2190 0.2182 0.2175 0.2168 0.2161	0.2154
61 0.2147 0.2140 0.2132 0.2125 0.2118 0.2111 0.2104 0.2097 0.2090	0.2083
62 0.2076 0.2069 0.2062 0.2055 0.2048 0.2041 0.2034 0.2027 0.2020	0.2013
63 0.2007 0.2000 0.1993 0.1986 0.1979 0.1972 0.1965 0.1959 0.1952	0.1945
64 0.1938 0.1931 0.1925 0.1918 0.1911 0.1904 0.1898 0.1891 0.1884	0.1878
65 0.1871 0.1864 0.1858 0.1851 0.1844 0.1838 0.1831 0.1824 0.1818	0.1811
66 0.1805 0.1798 0.1791 0.1785 0.1778 0.1772 0.1765 0.1759 0.1752	0.1746
67 0.1739 0.1733 0.1726 0.1720 0.1713 0.1707 0.1701 0.1694 0.1688	0.1681
68 0.1675 0.1669 0.1662 0.1656 0.1649 0.1643 0.1637 0.1630 0.1624	0.1618
69 0.1612 0.1605 0.1599 0.1593 0.1586 0.1580 0.1574 0.1568 0.1561	0.1555
70 0.1549 0.1543 0.1537 0.1530 0.1524 0.1518 0.1512 0.1506 0.1500	0.1494
71 0.1487 0.1481 0.1475 0.1469 0.1463 0.1457 0.1451 0.1445 0.1439	0.1433
72 0.1427 0.1421 0.1415 0.1409 0.1403 0.1397 0.1391 0.1385 0.1379	0.1373
73 0.1367 0.1361 0.1355 0.1349 0.1343 0.1337 0.1331 0.1325 0.1319	0.1314
74 0.1308 0.1302 0.1296 0.1290 0.1284 0.1278 0.1273 0.1267 0.1261	0.1255
75 0.1249 0.1244 0.1238 0.1232 0.1226 0.1221 0.1215 0.1209 0.1203	0.1198
76 0.1192 0.1186 0.1180 0.1175 0.1169 0.1163 0.1158 0.1152 0.1146	0.1141
77 0.1135 0.1129 0.1124 0.1118 0.1113 0.1107 0.1101 0.1096 0.1090	0.1085
78 0.1079 0.1073 0.1068 0.1062 0.1057 0.1051 0.1046 0.1040 0.1035	0.1029
79 0.1024 0.1018 0.1013 0.1007 0.1002 0.0996 0.0991 0.0985 0.0980	0.0975
80 0.0969 0.0964 0.0958 0.0953 0.0947 0.0942 0.0937 0.0931 0.0926	0.0921
81 0.0915 0.0910 0.0904 0.0899 0.0894 0.0888 0.0883 0.0878 0.0872	0.0867
82 0.0862 0.0857 0.0851 0.0846 0.0841 0.0835 0.0830 0.0825 0.0820	0.0814
83 0.0809 0.0804 0.0799 0.0794 0.0788 0.0783 0.0778 0.0773 0.0768	0.0762
84 0.0757 0.0752 0.0747 0.0742 0.0737 0.0731 0.0726 0.0721 0.0716	0.0711
85 0.0706 0.0701 0.0696 0.0691 0.0685 0.0680 0.0675 0.0670 0.0665	0.0660
86 0.0655 0.0650 0.0645 0.0640 0.0635 0.0630 0.0625 0.0620 0.0615	0.0610
87 0.0605 0.0600 0.0595 0.0590 0.0585 0.0580 0.0575 0.0570 0.0565	0.0560
88 0.0555 0.0550 0.0545 0.0540 0.0535 0.0531 0.0526 0.0521 0.0516	0.0511
89 0.0506 0.0501 0.0496 0.0491 0.0487 0.0482 0.0477 0.0472 0.0467	0.0462
90 0.0458 0.0453 0.0448 0.0443 0.0438 0.0434 0.0429 0.0424 0.0419	0.0414
91 0.0410 0.0405 0.0400 0.0395 0.0391 0.0386 0.0381 0.0376 0.0372	0.0367
92 0.0362 0.0357 0.0353 0.0348 0.0343 0.0339 0.0334 0.0329 0.0325	0.0320
93 0.0315 0.0311 0.0306 0.0301 0.0297 0.0292 0.0287 0.0283 0.0278	0.0273
94 0.0269 0.0264 0.0259 0.0255 0.0250 0.0246 0.0241 0.0237 0.0232	0.0227
95 0.0223 0.0218 0.0214 0.0209 0.0205 0.0200 0.0195 0.0191 0.0186	0.0182
96 0.0177 0.0173 0.0168 0.0164 0.0159 0.0155 0.0150 0.0146 0.0141	0.0137
97 0.0132 0.0128 0.0123 0.0119 0.0114 0.0110 0.0106 0.0101 0.0097	0.0092
98 0.0088 0.0083 0.0079 0.0074 0.0070 0.0066 0.0061 0.0057 0.0052	0.0048
99 0.0044 0.0039 0.0035 0.0031 0.0026 0.0022 0.0017 0.0013 0.0009	0.0004

TABLE 3.12 Transmittance-Absorbance Conversion Table (*Continued*)

TABLE 3.13 Wavenumber/Wavelength Conversion Table

This table is based on the conversion: wavenumber (in cm⁻¹) = 10,000/wavelength (in μ m). For example, 15.4 μ m is equal to 649 cm⁻¹.

Wavelength (µm)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 cm ⁻¹
1.0	10000	9091	8333	7692	7143	6667	6250	5882	5556	5263
2.0	5000	4762	4545	4348	4167	4000	3846	3704	3571	3448
3.0	3333	3226	3125	3030	2941	2857	2778	2703	2632	2564
4.0	2500	2439	2381	2326	2273	2222	2174	2128	2083	2041
5.0	2000	1961	1923	1887	1852	1818	1786	1754	1724	1695
6.0	1667	1639	1613	1587	1563	1538	1515	1493	1471	1449
7.0	1429	1408	1389	1370	1351	1333	1316	1299	1282	1266
8.0	1250	1235	1220	1205	1190	1176	1163	1149	1136	1124
9.0	1111	1099	1087	1075	1064	1053	1042	1031	1020	1010
10.0	1000	990	980	971	962	952	943	935	926	917
11.0	909	901	893	885	877	870	862	855	847	840
12.0	833	826	820	813	806	800	794	787	781	775
13.0	769	763	758	752	746	741	735	730	725	719
14.0	714	709	704	699	694	690	685	680	676	671
15.0	667	662	658	654	649	645	641	637	633	629
16.0	625	621	617	613	610	606	602	599	595	592
17.0	588	585	581	578	575	571	568	565	562	559
18.0	556	552	549	546	543	541	538	535	532	529
19.0	526	524	521	518	515	513	510	508	505	503
20.0	500	498	495	493	490	488	485	483	481	478
21.0	476	474	472	469	467	465	463	461	459	457
22.0	455	452	450	448	446	444	442	441	439	437
23.0	435	433	431	429	427	426	424	422	420	418
24.0	417	415	413	412	410	408	407	405	403	402
25.0	400	398	397	395	394	392	391	389	388	386
26.0	385	383	382	380	379	377	376	375	373	372
27.0	370	369	368	366	365	364	362	361	360	358
28.0	357	356	355	353	352	351	350	348	347	346
29.0	345	344	342	341	340	339	338	337	336	334
30.0	333	332	331	330	329	328	327	326	325	324
31.0	323	322	321	319	318	317	316	315	314	313
32.0	313	312	311	310	309	308	307	306	305	304
33.0	303	302	301	300	299	299	298	297	296	295
34.0	294	293	292	292	291	290	289	288	287	287
35.0	286	285	284	283	282	282	281	280	279	279
36.0	278	277	276	275	274	274	273	272	272	271
37.0	270	270	269	268	267	267	266	265	265	264
38.0	263	262	262	261	260	260	259	258	258	257
39.0	256	256	255	254	254	253	253	252	251	251
40.0	250									

3.2 RAMAN SPECTROSCOPY

Raman spectroscopy is the measurement of the wavelength and intensity of inelastically scattered light from molecules. The Raman scattered light occurs at wavelengths that are shifted from the incident light by the energies of molecular vibrations.

The mechanism of Raman scattering is different from that of infrared absorption but Raman and IR spectra provide complementary information for the identification of organic functionalities. Raman spectra arise from the absorption of monochromatic light by a sample before it is emitted as scattered light. As in infrared spectra, Raman spectra are recorded in wavenumbers. Frequently a Raman spectrum will reveal something that was missed in the infrared spectrum. This is because a bond that has no dipole moment (i.e., it is electrically symmetrical) will appear in the Raman spectrum but will not appear in the infrared spectrum. Typical applications for Raman spectroscopy are in structure determination, multicomponent qualitative analysis, and quantitative analysis.

The Raman scattering transition moment is:

$$\mathbf{R} = \langle \mathbf{X}_i | \mathbf{a} | \mathbf{X}_i \rangle$$

where X_i and X_j are the initial and final states, respectively, and *a* is the polarizability of the molecule:

$$a = a_0 + (r - r_e)(da/dr) + \cdots$$
 higher terms

where *r* is the distance between atoms and a_0 is the polarizability at the equilibrium bond length, r_e . Polarizability can be defined as the ease of which an electron cloud can be distorted by an external electric field. Since a_0 is a constant and $\langle X_i | X_i \rangle = 0$, *R* simplifies to:

$$R = \langle X_i | (r - r_e) (da/dr) | X_i \rangle$$

The result is that there must be a change in polarizability during the vibration for that vibration to inelastically scatter radiation.

The polarizability depends on how tightly the electrons are bound to the nuclei. In the symmetric stretch the strength of electron binding is different between the minimum and maximum internuclear distances. Therefore the polarizability changes during the vibration and this vibrational mode scatters Raman light (the vibration is Raman active). In the asymmetric stretch the electrons are more easily polarized in the bond that expands but are less easily polarized in the bond that compresses. There is no overall change in polarizability and the asymmetric stretch is Raman inactive.

Raman line intensities are proportional to:

$$v \cdot \sigma(v) \cdot I \cdot \exp(-E_i/kT) \cdot C$$

where v is the frequency of the incident radiation, $\sigma(v)$ is the Raman cross section (typically 10^{-29} cm²), I is the radiation intensity, $\exp(-E_i/kT)$ is the Boltzmann factor for state *i*, and *C* is the analyte concentration.

TABLE 3.14 Raman Frequencies of Single Bonds to Hydrogen and Carbon

m, moderately strong m-s, moderate to strong m-vs, moderate to very strong s, strong vs, very strong		vw, very weak w, weak w–m, weak to moderately strong w–vs, weak to very strong	
Group	Band, cm ⁻¹	Remarks	
	Saturated C—H and	с—с	
—СН3	2969–2967 (s) 2884–2883 (s) ca 1205 (s) 1150–1135 1060–1056 975–835 (s) 280–220	In aryl compounds In unbranched alkyls In unbranched alkyls Terminal rocking of methyl group CH ₂ CH ₃ torsion	
	2949–2912 (s) 2861–2849 (s) 1473–1443 (m–vs) 1305–1295 (s) 1140–1070 (m) 888–837 (w) 425–150 500–490	Intensity proportional to number of CH_2 groups Often two bands; see above Substituent on aromatic ring	
		If attached to C=C bond, 870– 800 cm ¹ . If attached to aryl ring, 740 cm ¹	
		Not seen in <i>tert</i> -butyl bromide Not seen in <i>tert</i> -butyl bromide If attached to C==C or aromatic ring, 760–720 cm ⁻¹	
Internal tertiary carbon atom	855–805 (w) 455–410		
Internal quaternary carbon atom	710–680 (vs) 490–470		
Two adjacent tertiary carbon atoms	730–920 770–725	Often a band at 530–524 cm ⁻¹ indicates presence of adjacent tertiary and quaternary carbon atoms.	

Abbreviations Used in the Table

Group	Band, cm ⁻¹	Remarks	
	Saturated C – H and C – C (Con	tinued)	
Dialkyl substitution at α -carbon atom	800-700 (m-s) 680-650 (vs) 605-550		
Cyclopropane	3101-3090 3038-3019 1210-1180 (s)	Shifts to 1200 cm ⁻¹ for mono- alkyl or 1,2-dialkyl substitution and to 1320 cm ⁻¹ for <i>gem</i> -1,1- dialkyl substitution	
Cyclobutane	1001–960 (vs)	Shifts to 933 cm ⁻¹ for monoalkyl, to 887 cm ⁻¹ for <i>cis</i> -1,3-dialkyl, and to 891 cm ⁻¹ plus 855 cm ⁻¹ (doublet) for <i>trans</i> -1,3,-dialkyl substitution	
Cyclopentane	900-800 (s)		
Cyclohexane	825-815 (vs) 810-795 (vs)	Boat configuration Chair configuration	
Cycloheptane	ca 733		
Cyclooctane	ca 703		
=C ^{CH₃} CH ₃	1392–1377 450–400 (vw) 270–250 (m)		
CH ₃ C=C ^H _{CH₃}	1380–1379 492–455 (vw) 220–200 (m)		
CH ₃ C=C CH ₃ H C=C H	1372–1368 970–952 (m) 592–545 (vw) 420–400 (m) 310–290 (m)		
$\begin{array}{c} \hline CH_3 \\ $	1385–1375 522–488 (w)		

TABLE 3.14 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)

Group	Band, cm ⁻¹	Remarks	
	Saturated $C - H$ and $C - C$ (Cont	tinued)	
CH ₃ C=CCH ₃ CH ₃ C=CCH ₃	1392–1386 690–678 (m–s) 510–485 (m) 424–388 (w)		
≥C−C−C≤ ∥ O	1170–1100 (w-m) 600–580 (m-s)		
≥CC ∥ 0	1120–1090 (m–vs) 600–510 (w–m)	Tertiary or quaternary carbon ad- jacent to carbonyl group low- ers the frequency 300 cm ⁻¹	
	1420–1410 (s)		
—СНО	2850–2810 (m) 2720–2695 (vs)	Often appears as a shoulder	
	Unsaturated CH	L	
−с≡с−н	3340-3270 (w-m)	Alkyl substituents at higher fre- quencies; unsaturated or aryl substituents at lower frequen- cies	
)c=c(^H	3040–2995 (m)		
$c = c \Big _{H}^{H}$	3095–3050 (m) 2990–2983 (s)	Asymmetric $=$ CH ₂ stretch Symmetric $=$ CH ₂ stretch	
H C = C H	1419–1415 (m) 1309–1288 (m)	Plus — CH and — CH stretching bands	
$\mathbf{H}_{\mathbf{H}} = \mathbf{C}_{\mathbf{R}_{2}}^{\mathbf{R}_{1}}$	1413–1399 (m) 909–885 (m) 711–684 (w)	Plus $=$ CH ₂ stretching bands	
R_1 $C = C H$	1270–1251 (m)	Plus —CH stretching band	

TABLE 3.14 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)

Group	Band, cm ⁻¹	Remarks	
	Saturated C – H (<i>Continued</i>)		
R_1 $C = C R_2$	1314–1290 (m)	Plus ==CH stretching band Plus ==CH stretching band	
$\begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{3} \\$	1360–1322 (w) 830–800 (vw)		
	Hydroxy O—H		
Free —OH Intermolecularly bonded Aromatic —OH	3650-3250 (w) 3400-3300 (w) ca 3160 (s)		
—он	1460–1320 (w) 1276–1205 (w–m) 1260 (w–m)	Common to all OH substituents Primary Secondary	
C—C—OH primary	10701050 (m-s) 1030-960 (m-s) 480-430 (w-m)	CCO stretching CCO deformation	
C—C—OH Secondary Tertiary	1135-1120 (m-s) 825-815 (vs) 500-490 (w-m) 1210-1200 (m-s) 755-730 (vs) 360-350 (w-m)		
—со—о—н	1305-1270	CO stretching	
	N—H and C—N bonds		
Amine >N-H Associated Nonbonded Salts NH ₂	3400-3250 (s) 3550-3250 (s) 2986-2974 1650-1590 (w-vs)	Primary amines show two bands Often obscured by intense CH stretching bands Bending	

TABLE 3.14 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)

Group	Band, cm^{-1}	Remarks
	N-H and $C-N$ Bonds (<i>Contin</i>	nued)
Amides		
Primary	3540-3500 (w)	Both bands lowered ca 150 cm ⁻¹
	3400-3380 (w)	in solid state and H bonding
	1310–1250 (s)	Interaction of NH bending and CN stretching; lowered 50 cm ¹ in nonbonded state
	1150-1095 (m)	Rocking of NH ₂
Secondary	3491-3404 (m-s)	Two bands; lowered in frequency on H bonding and in solid state
	1190–1130 (m)	
	931-865 (m-s)	
	430-395 (w-m)	
-co-n	607–555 (m)	O=CN bending
C—N—C	1070-1045 (m)	Stretching
Ċ		
≥C−N<		
Primary carbon	1090 - 1060 (m)	CN stretching
Secondary α carbon	1140 - 1035 (m)	Two hands but often obscured
= _		Strong band at 800 cm ⁻¹
Tertiary α carbon	1240-1020 (m)	Two bands; Strong band also at 745 cm ⁻¹

TABLE 3.14 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)

TABLE 3.15 Raman Frequencies of Triple Bonds

Abbreviations Used in the Table

m, moderately strong s–vs, strong to very strong m–s, moderate to strong vs, very strong s, strong		
Group	Band, cm ⁻¹	Remarks
R—C≡CH	2160-2100 (vs) 650-600 (m) 356-335 (s)	Monoalkyl substituted; C≡C stretch C≡CH deformation C≡C−C bending of monoalkyls
$R_1 - C \equiv C - R_2$	2300-2190 (vs)	C≡C stretching of disubstituted alkyls; sometimes two bands
$-C \equiv C - C \equiv C -$	2264-2251 (vs)	
C≡N	2260-2240 (vs) 2234-2200 (vs) 840-800 (s-vs) 385-350 (m-s) 200-160 (vs)	Unsaturated nonaryl substituents lower the frequency and enhance the intensity Lowered ca 30 cm ⁻¹ with aryl and conjugated aliphatics CCCN symmetrical stretching Aliphatic nitriles

Group	Band, cm ⁻¹	Remarks
H−C≡N	2094 (vs)	
Azides	2170–2080 (s)	Asymmetric NNN stretching
$-N - N \equiv N$	1258–1206 (s)	Symmetric NNN stretching; HN_3 at 1300 cm ⁻¹
Diazonium salts $R - N^+ \equiv N$	2300–2240 (s)	
Isonitriles	2146–2134	Stretching of aliphatics
−N≡C	2124–2109	Stretching of aromatics
Thiocyanates	2260–2240 (vs)	Stretching of C≡N
−S−C≡N	650–600 (s)	Stretching of SC

TABLE 3.15 Raman Frequencies of Triple Bonds (Continued)

TABLE 3.16 Raman Frequencies of Cumulated Double Bonds

Abbreviations Used in the Table

	s, strong vs, very strong	vw, very weak w, weak
Group	Band, cm ⁻¹	Remarks
Allenes C=C=C	2000–1960 (s) 1080–1060 (vs) 356	Pseudo-asymmetric stretching Symmetric stretching C=C=C bending
Carbodiimides (cyanamides) —N=C=N—	2140-2125 (s) 2150-2100 (vs) 1460 1150-1140 (vs)	Asymmetric stretching of aliphatics Asymmetric stretching of aromatics; two bands Symmetrical stretching of aliphatics Symmetric stretching of aryls
Cumulenes (trienes) C=C=CC	2080–2030 (vs) 878	
Isocyanates —N=C=O	2300–2250 (vw) 1450–1400 (s)	Asymmetric stretching Symmetric stretching
Isothiocyanates —N=C=S	2220-2100 690-650	Two bands Alkyl derivatives

Group	Band, cm ⁻¹	Remarks	
Ketenes C=C=0	2060–2040 (vs) 1130 (s) 1374 (s) 1120 (s)	Pseudo-asymmetric stretching Pseudo-symmetric stretching Alkyl derivatives Aryl derivatives	
Sulfinylamines R—N=S=O	1306–1214 (w) 1155–989 (s)	Asymmetric stretching Symmetric stretching	

TABLE 3.16 Raman Frequencies of Cumulated Double Bonds (Co.)	inued))
---	--------	---

ls
1

m, moderately strong m–s, moderate to strong s, strong		s–vs, strong to very strong vs, very strong w, weak	
Group	Band, cm ⁻¹	Remarks	
Acid anhydrides —CO—O—CO—			
Saturated	1850–1780 (m) 1771–1770 (m)		
Conjugated, noncyclic	1775 1720		
Acid fluorides —CO—F	1940 1925		
Aikyi Aryl	1840–1835 1812–1800		
Acid chlorides —CO—Cl	1010 1770 ()		
Aikyi Aryi	1774 1731		
Acid bromides —CO—Br			
Alkyl Aryl	1812–1788 1775–1754		
Acid iodides —CO—I			
Alkyl Aryl	ca 1806 ca 1752		
Lactones	1850–1730 (s)		

Abbreviations Used in the Table

Group	Band, cm ⁻¹	Remarks
Esters Saturated	1741-1725	Alkyl branching on carbon adjacent to C=O
Aryl and α,β -unsaturated	1727-1714	iowers nequency by 5–15 cm
Oxalates	1763-1761	
Phthalates	1738-1728	
C≡C−CO−O−	1716-1708	
Carbamates	1694-1688	
Aldehydes	1740–1720 (s-vs)	
Ketones		
Saturated	1725-1700 (vs)	
Aryl	1700–1650 (m)	
Alicyclic		
n = 4	1782 (m)	
n = 5	1744 (m)	
$n \ge 6$	1725-1699 (m)	-
Carboxylic acids		
Mono-	1686–1625 (s)	These α -substituents increase the frequency: F, Cl, Br, OH
Poly-	1782-1645	Solid state; often two bands
	1750-1710	In solution; very broad band
Amino acids	1743-1729	
Carboxylate ions	1690-1550 (w)	
	1440-1340 (vs)	
Amino acid anion	1743-1729	Often masked by water deformation band near
	1600–1570 (w)	1630 cm ⁻¹
Amides (see also Table 7.30) Primary		
Associated	1686–1576 (m–s)	
	1650-1620 (m)	
Nonbonded	1715-1675 (m)	
	1620-1585 (m)	
Secondary		
Associated	1680–1630 (w)	Both cis and trans forms
	1570–1510 (w)	Trans form
	14901440	Cis form
Nonbonded	1700-1650	Both <i>cis</i> and <i>trans</i> forms
	1550-1500	Trans form (no cis band)
Tertiary	1670–1630 (m)	
Lactams	1/50-1/00 (m)	

TABLE 3.17	Raman Frequencies of Carbonyl Bands (Continued)

TABLE 3.18Raman Frequencies of Other Double Bonds

Abbreviations Used in the Table

m, moderately strong vs, very strong *m*–*s*, *moderate to strong* w, weak s, strong s-vs, strong to very strong *w*–*m*, weak to moderately strong Group Band, cm⁻¹ Remarks Alkenes >C=C< >C=C<1680-1576 (m-s) General range 1648-1638 (vs) C=C stretching ca 1650 (vs) C=C stretching C=C-C skeletal deformation 270-252 (w) R_2 R ca 1660 (vs) C=C stretching 970-952 (w) Asymmetric CC stretching Н 1676-1665 (s) C-C stretching Н R., 1678-1664 (vs) C=C stretching 522-488 (w) C=C-C skeletal deformation Н 1680-1665 (s) C=C stretching Symmetrical CC stretching 690-678 (m-s) 510-485 (m) Skeletal deformation R. 424-388 (w) Skeletal deformation Haloalkene X =fluorine X = chlorineX = bromineX-iodine >C=C< stretch of haloalkanes H₂C=CHX 1654 1603-1601 1596-1593 1581 HXC=CHX cis 1712 1590-1587 1587-1583 1543 1694 1578-1576 1582-1581 1537 trans $H_2C = CX_2$ 1728 1616-1611 1593 $X_2C = CHX$ 1792 1589-1582 1552 $X_2C = CX_2$ 1872 1577-1571 1547 1465 (solid)

Group	Band, cm ⁻¹	Remarks
	>C=N-bonds	1
Aldimines (azomethines) H R_1 $C = N - R_2$	1673-1639 1405-1400 (s)	Dialkyl substituents at higher frequency; diaryl substituents at lower end of range
Aldoximines and ketoximes >C=N-OH	1680–1617 (vs) 1335–1330 (w)	
Azines >C=N-N=C<	1625-1608 (s)	
Hydrazones H R_1 C = N - N R_2 H R_2	1660–1610 (s–vs)	
Imido ethers OC=NH	1658–1648	NH stretching at $3360-3327$ cm ⁻¹
Semicarbazones and thio- semicarbazones $C=N-N$, NH_2 U O (or S)	1665–1642 (vs) 1620–1610 (vs)	Aliphatic. Thiosemicarbazones fall in lower end of range Aromatic derivatives
	Azo compounds —N==N	L
—N=N-	1580–1570 (vs) 1442–1380 (vs) 1060–1030 (vs)	Nonconjugated Conjugated to aromatic ring CN stretching in aryl com- pounds
	Nitro compounds N==0	kora
Alkyl nitrites	1660–1620 (s)	N=O stretching
Alkyl nitrates	1635–1622 (w-m) 1285–1260 (vs) 610–562 (m)	Asymmetric NO ₂ stretching Symmetric NO ₂ stretching NO ₂ deformation

TABLE 3.18 Raman Frequencies of Other Double Bonds (Continued)

Group	Band, cm ⁻¹	Remarks
Nitroalkanes Primary	1560–1548 (m–s) 1395–1370 (s) 915–898 (m–s) 894–873 (m–s) 618–609 (w)	Sensitive to substitutes attached to CNO ₂ group
	640–615 (w) 494–472 (w–m)	Shoulder Broad; useful to distinguish from secondary nitroalkanes
Secondary	1553–1547 (m) 1375–1360 (s) 908–868 (m) 863–847 (s) 625–613 (m) 560–516 (s)	Sharp band
Tertiary	1543–1533 (m) 1355–1345 (s)	
Nitrogen oxides		
$\gg \stackrel{+}{N} \rightarrow \stackrel{-}{O}$	1612–1602 (s) 1252 (m) 1049–1017 (s) 835 (s) 541 (w) 469 (w)	

TABLE 3.18 Raman Frequencies of Other Double Bonds (Continued)

TABLE 3.19 Raman Frequencies of Aromatic Compounds

	Abbreviations Used in	n the Table
	m, moderately strong m–s, moderate to strong m–vs, moderate to very strong s, strong s–vs, strong to very strong	var, of variable strength vs, very strong w, weak w–m, weak to moderately strong
Group	Band, cm ⁻¹	Remarks
	Common	features
Aromatic compounds 3070-3020 (s) 1630-1570 (m-s)		CH stretching C—C stretching
	Substitution patterns	of the benzene ring
Monosubstituted	11801170 (wm) 10351015 (s) 1010990 (vs) 630-605 (w)	Characteristic feature; found also with 1,3- and 1,3,5-substitutions

Group	Band, cm ⁻¹	Remarks
	Substitution patterns of the	benzene ring (Continued)
1,2-Disubstituted	1230-1215 (m) 1060-1020 (s) 740-715 (m) 1010-990 (vs)	Characteristic feature Lowered 60 cm ⁻¹ for halogen substituents Characteristic feature
	750–640 (s)	
1,4-Disubstituted	1230-1200 (s-vs) 1180-1150 (m) 830-750 (vs) 650-630 (m-w)	Lower frequency with Cl substituents
Isolated hydrogen	1379 (s-vs) 1290-1200 (s) 745-670 (m-vs) 580-480 (s)	Characteristic feature
1,2,3-Trisubstituted	1100-1050 (m) 670-500 (vs) 490-430 (w)	The lighter the mass of the substituent, the higher the frequency
1,2,4-Trisubstituted	750-650 (vs) 580-540 (var) 500-450 (var)	Lighter mass at higher frequencies
1,3,5-Trisubstituted	1010-990 (vs)	
Completely substituted	1296 (s) 550 (vs) 450 (m) 361 (m)	
	Other aromatic	compounds
Naphthalenes	1390-1370 1026-1012 767-762 535-512 519-512	Ring breathing α or β substituents β substituents α substituents β substituents β substituents
Disubstituted naphalenes	773-737 (s) 726-705 (s) 690-634 (s) 608 575-569 544-537	1,2-; 1,3-; 2,3-; 2,6-; 2,7- 1,3-; 1,4-(two bands); 1,6-; 1,7-(two bands) 1,2-; 1,4-(two bands); 1,5-; 1,8-(two bands) 1,3- 1,2-; 1,3-; 1,6- 1,2-; 1,7-; 1,8-
Anthracenes	1415-1385	Ring breathing

TABLE 3.19 Raman Frequencies of Aromatic Compounds (Continued)

	m, moderately strong s	s-vs, strong to very strong vs, very strong w-m, weak to moderately srong	
Group	Band, cm ⁻¹	Remarks	
—-S—-Н	2590-2560 (s)	SH stretching for both aliphatic and aromatic	
>c=s	1065–1050 (m) 735–690 (vs)	Solid state	
>S=O In (RO ₂) ₂ SO In (R ₂ N) ₂ SO In R ₂ SO SOF ₂ SOCl ₂ SOBr ₂	1209–1198 1108 1070–1010 (w-m) 1308 1233 1121	One or two bands Broad	
—SO ₂ —	1330-1260 (m-s) 1155-1110 (s) 610-540 (m) 512-485 (m)	Asymmetric SO_2 stretching Symmetric SO_2 stretching Scissoring mode of aryls Scissoring mode of alkyls	
-SO ₂ -N<	ca 1322 (m) 1163-1138 (s) 524-510 (s)	Asymmetric SO_2 stretching Symmetric SO_2 stretching Scissoring mode	
O	1363–1338 (w-m) 1192–1165 (vs) 589–517 (w-m)	 SO₂ stretching. Aryl substituents occur at higher range Scissoring (two bands). Aryl substituents occur at higher range of frequencies 	
—SO ₂ —S—	1334–1305 (m-s) 1128–1126 (s) 559–553 (m-s)		
X—SO ₂ —X	1412-1361 (w-m) (F) (Cl) 1263-1168 (s) (F) (Cl) 596-531 (s)		
OSO ₂	1388–1372 (s) 1196–1188 (vs)		
-0-C-S-	670-620 (vs) 480-450 (vs)	C=S stretching CS stretching	
≥C—SH	920 (m) 850-820 (m)	CSH deformation of aryls	

Abbreviations Used in the Table

TABLE 3.20 Raman Frequencies of Sulfur Compounds

Group	Band, cm ⁻¹	Remarks
≥CS	752 (vs), 731 (vs) 742-722 (m-s) 698 (w), 678 (s) 693-639 (s) 651-610 (s-vs) 589-585 (vs)	With vinyl group attached With CH ₃ attached With allyl group attached Ethyl or longer alkyl chain Isopropyl group attached <i>tert</i> -Butyl group attached
$(\widetilde{CH}_{2)n} S$ $n = 2$ $n = 4$ $n = 5$	1112 688 659	
⇒C(SS) _n C ≤ Didi-n-alkyl disulfides Di-tert-butyl disulfide Trisulfides	715-620 (vs) 525-510 (vs) 576 (s) 543 (m) 510-480 (s)	Two bands; CS stretching Two bands; SS stretching CS stretching SS stretching SS stretching SS stretching

TABLE 3.20 Raman Frequencies of Sulfur Compounds (Continued)

TABLE 3.21Raman Frequencies of Ethers

Abbreviations Used in the Table

m, moderately strong var, of variable strength s, strong vs, very strong

Group	Band, cm ⁻¹	Remarks	
≥C-0-C≤			
Aliphatic	1200-1070 (m)	Asymmetrical COC stretching. Symmetrical	
		substitution gives higher frequencies	
	930-830 (s)	Symmetrical COC stretching	
	800-700 (s)	Braching at α carbon gives higher frequencies.	
	550-400		
Aromatic	1310–1210 (m)		
	1050–1010 (m)		
 ≥C-0-C-0-C≤	1145–1129 (m)		
I			
	900-800 (vs)		
	537-370 (s)		
	396-295		
>CC<	1280-1240 (s)	Ring breathing	
0			
-0-0-	800–770 (var)		
(CH ₂) _n O			
n = 3	1040-1010 (s)		
n = 4	920-900 (s)		
n = 5	820-800 (s)		

TABLE 3.22 Raman Frequencies of Halogen Compounds

	m–s, moderate s s, strong	trong var, of variable strength vs, very strong
Group	Band, cm^{-1}	Remarks
C—F	1400-870	Correlations of limited applicability because of vibrational coupling with stretching
C—Cl Primary Secondary Tertiary	350-290 (s) 660-650 (vs) 760-605 (s) 620-540 (var)	CCCl bending; general May be one to four bands May be one to three bands
=C-Cl	844-564 438-396 381-170	
$=CCl_2$	601–441 300–235	
C—Br	690-490 (s) 305-258 (m-s)	Often several bands; primary at higher range of frequencies. Tertiary has very strong band at ca 520 cm ⁻¹
=C-Br	745–565 356–318 240–115	
=CBr ₂	467–265 185–145	
C—I	663-595 309 154-85	
=C $-$ l	ca 180	Solid state
=CI ₂	ca 265 ca 105	Solid state Solid state

Abbreviations Used in the Table

TABLE 3.23 Raman Frequencies of Miscellaneous Compounds

s, strong vvs, very very strong			
Group	Band, cm^{-1}	Remarks	
C—As	570–550 (vs)	CAs stretching	
	240-220 (vs)	CAsC deformation	
C—Pb	480-420 (s)	CPb stretching	
C—Hg	570-510 (vvs)	CHg stretching	
C—Si	1300–1200 (s)	CSi stretching	
C—Sn	600-450 (s)	CSn stretching	
Р—Н	2350-2240 (m)	PH stretching	
	Heterocyclic rings		
Trimethylene oxide	1029		
Trimethylene imine	1026		
Tetrahydrofuran	914		
Pyrrolidine	899		
1,3-Dioxolane	939		
1,4-Dioxane	834		
Piperidine	815		
Tetrahydropyran	818		
Morpholine	832		
Piperazine	836		
Furan	1515-1460	2-Substituted	
	1140		
Pyrazole	1040-990		
Pyrrole	1420-1360 (vs)		
	1144		
Thiophene	1410 (s)		
•	1365 (s)		
	1085 (vs)		
	1035 (s)		
	832 (vs)		
	610 (s)		
Pyridine	1030 (vs)		
	990 (vs)		

Abbreviations Used in the Table

TABLE 3.24	Principal Argon-Io	n Laser Plasma Lines
------------	--------------------	----------------------

Wavelength, nm	Wavenumber, cm ⁻¹	Relative intensity	Shift relative to 488.0 nm, cm ⁻¹	Shift relative to 514.5 nm, cm ⁻¹
487.9860	20 486.67	5000	0	
488.9033	20 448.23	200	38.4	
490.4753	20 382.70	130	104.0	
493.3206	20 265.13	970	221.5	
496.5073	20 135.07	960	351.6	
497.2157	20 106.39	330	380.3	
500.9334	19 957.16	1500	529.5	

Wavelength, nm	Wavenumber, cm ⁻¹	Relative intensity	Shift relative to 488.0 nm, cm ⁻¹	Shift relative to 514.5 nm, cm ⁻¹
501.7160	19 926.03	620	560.6	
506.2036	19 749.39	1400	737.3	
514.1790	19 443.06	360	1043.6	
514.5319	19 429.73	1000	1056.9	0
516.5774	19 352.79	38	1133.9	76.9
517.6233	19 313.69	41	1173.0	116.0
521.6816	19 163.44	20	1323.2	266.3
528.6895	18 909.43	150	1577.2	520.3
539.7522	18 521.87	18	1964.8	907.9
545.4307	18 329.04	19	2157.6	1100.7
555.8703	17 984.81	30	2501.9	1444.9
560.6734	17 830.75	48	2655.9	1599.0
565.0705	17 692.00	29	2794.7	1737.7
565.4450	17 680.28	27	2806.4	1749.4
569.1650	17 564.73	27	2921.9	1865.0
577.2326	17 319.24	69	3167.4	2110.5
581.2746	17 198.80	49	3287.9	2230.9
598.5920	16 701.24	23	3785.4	2728.5
610.3546	16 379.38	91	4107.3	3050.4
611.4929	16 348.90	1750	4137.8	3080.8
612.3368	16 326.36	100	4160.3	3103.4
613.8660	16 285.69	97	4201.0	3144.0
617.2290	16 196.96	1400	4289.7	3232.8
624.3125	16 013.19	590	4473.5	3416.5
639.9215	15 622.60	160	4864.1	3807.1
641.6308	15 580.98	50	4905.7	3848.8

TABLE 3.24 Principal Argon-Ion Laser Plasma Lines (Continued)

3.3 ULTRAVIOLET SPECTROSCOPY

Ultraviolet spectroscopy involves the excitation of an electron in its ground state level to a higher energy level. This is accomplished by irradiating a sample with ultraviolet light (electromagnetic radiation with wavelengths in the range of 200 nanometers (nm) to 400 nm). The wavelength of maximum absorption (λ_{max}) can be calculated by using Woodward's Rules.

 λ_{max} has a specific degree of absorbance associated with it. The absorbance at a particular wavelength is dependent upon the intensity or molar absorbtivity, ε , of the incident light. The molar absorbtivity is related to the absorbance:

$$\varepsilon = \log (I_0/I)/c.l$$

where I_0 is the initial light intensity, I is the final light intensity, c is the concentration of sample in moles per liter, l is the path length of sample tube in centimeters.

Beer's Law relates the absorbance A to I_0 and I ($A = \log [I_0/I]$). Hence the equation for molar absorbtivity is:

$$\varepsilon = A/c.l$$

where *A* is the absorbance at λ_{\max} .

Molecules with two or more isolated chromophores (absorbing groups) absorb light of nearly the same wavelength as does a molecule containing only a single chromophore of a particular type. The

intensity of the absorption is proportional to the number of that type of chromophore present in the molecule.

The solvent chosen must dissolve the sample, yet be relatively transparent in the spectral region of interest. In order to avoid poor resolution and difficulties in spectrum interpretation, a solvent should not be employed for measurements that are near the wavelength of or are shorter than the wavelength of its ultraviolet cutoff, that is, the wavelength at which absorbance for the solvent alone approaches one absorbance unit.

Appreciable interaction between chromophores does not occur unless they are linked directly to each other, or forced into close proximity as a result of molecular stereochemical configuration. Interposition of a single methylene group, or *meta* orientation about an aromatic ring, is sufficient to insulate chromophores almost completely from each other. Certain combinations of functional groups afford chromophoric systems that give rise to characteristic absorption bands.

Sets of empirical rules, often referred to as Woodward's Rules or the Woodward-Fieser Rules, enable the absorption maxima of dienes and enones and dienones to be predicted. To the respective base values (absorption wavelength of parent compound) are added the increments for the structural features or substituent groups present. When necessary, a solvent correction is also applied.

Ring substitution on the benzene ring affords shifts to longer wavelengths and intensification of the spectrum. With electron-withdrawing substituents, practically no change in the maximum position is observed. The spectra of heteroaromatics are related to their isocyclic analogs, but only in the crudest way. As with benzene, the magnitude of substituent shifts can be estimated, but tautomeric possibilities may invalidate the empirical method.

When electronically complementary groups are situated *para* to each other in disubstituted benzenes, there is a more pronounced shift to a longer wavelength than would be expected from the additive effect due to the extension of the chromophore from the electron-donating group through the ring to the electron-withdrawing group. When the *para* groups are not complementary, or when the groups are situated *ortho* or *meta* to each other, disubstituted benzenes show a more or less additive effect of the two substituents on the wavelength maximum.

Chromophore	System	λ_{max}	$\epsilon_{ m max}$
Acetvlide		175-180	6 000
Aldehvde	—СНО	210	strong
, .		280-300	11-18
Amine	-NH ₂	195	2 800
Azido	>C=N-	190	5 000
Azo	-N=N-	285-400	3-25
Bromide	—Br	208	300
Carbonyl	>C=0	195	1 000
		270-285	18-30
Carboxyl	—соон	200-210	50-70
Disulfide	—s—s—	194	5 500
		255	400
Ester	-COOR	205	50
Ether	-0-	185	1 000
Ethylene		190	8 000
Iodide	I—	260	400
Nitrate	$-ONO_2$	270 (shoulder)	12
Nitrile	—C≡N	160	
Nitrite	-ONO	220-230	1 000-2 000
		300-400	10
Nitro	$-NO_2$	210	strong
Nitroso	-NO	302	100

TABLE 3.25 Electronic Absorption Bands for Representative Chromophores
Chromophore	System	λ_{max}	$\epsilon_{ m max}$
Oxime	—NOH	190	5 000
Sulfone		180	
Sulfoxide	$\geq S \equiv 0$	210	1 500
Thiocarbonyl	=C=S	205	strong
Thioether	_s_	194	4 600
Informer	5	215	1 600
Thiol	—SH	195	1 400
	$-(C=C)_{a}$ (acyclic)	210-230	21 000
	$-(C=C)_{2}$	260	35 000
	$-(C=C)_{4}$	300	52 000
	$-(C=C)_{s}$	330	118 000
	$-(C=C)_{2}$ (alicyclic)	230-260	3 000-8 000
	$C = C - C \equiv C$	219	6 500
	C = C - C = N	220	23 000
	C = C - C = 0	210-250	10 000-20 000
		300-350	weak
	$C = C - NO_2$	229	9 500
Benzene		184	46 700
		204	6 900
		255	170
Diphenyl		246	20 000
Naphthalene		222	112 000
		275	5 600
		312	175
Anthracene		252	199 000
		375	7 900
Phenanthrene		251	66 000
		292	14 000
Naphthacene		272	180 000
Dantasaa		473	12 500
Pentacene		510	300 000
Duriding		383	12 000
Pyriaine		1/4	6 000
		257	1 700
Quinoline		237	37,000
Zamonne		270	3 600
		314	2 750
Isoquinoline		218	80,000
		266	4 000
		317	3 500

TABLE 3.25 Electronic Absorption Bands for Representative Chromophores (Continued)

	Wavelength,		Wavelength,
Solvent	nm	Solvent	nm
Acetic acid	260	Hexadecane	200
Acetone	330	Hexane	210
Acetonitrile	190	Isobutyl alcohol	230
Benzene	280	Methanol	210
1-Butanol	210	2-Methoxyethanol	210
2-Butanol	260	Methylcyclohexane	210
Butyl acetate	254	Methylene chloride	235
Carbon disulfide	380	Methyl ethyl ketone	330
Carbon tetrachloride	265	Methyl isobutyl ketone	335
1-Chlorobutane	220	2-Methyl-1-propanol	230
Chloroform (stabilized		N-Methylpyrrolidone	285
with ethanol)	245	Nitromethane	380
Cyclohexane	210	Pentane	210
1,2-Dichloroethane	226	Pentyl acetate	212
Diethyl ether	218	1-Propanol	210
1,2-Dimethoxyethane	240	2-Propanol	210
N,N-Dimethylacetamide	268	Pyridine	330
N,N-Dimethylformamide	270	Tetrachloroethylene	
Dimethylsulfoxide	265	(stabilized with thymol)	290
1,4-Dioxane	215	Tetrahydrofuran	220
Ethanol	210	Toluene	286
2-Ethoxyethanol	210	1,1,2-Trichloro-1,2,2-	
Ethyl acetate	255	trifluoroethane	231
Ethylene chloride	228	2,2,4-Trimethylpentane	215
Glycerol	207	o-Xylene	290
Heptane	197	Water	191

TABLE 3.26	Ultraviolet	Cutoffs of	Spectrograde	Solvents
-------------------	-------------	------------	--------------	----------

TABLE 3.27 Absorption Wavelength of Dienes

Heteroannular and acyclic dienes usually display molar absorptivities in the 8000 to 20,000 range, whereas homoannular dienes are in the 5000 to 8000 range.

Poor correlations are obtained for cross-conjugated polyene systems such as

The correlations presented here are sometimes referred to as Woodward's rules or the Woodward-Fieser rules.

Base value for heteroannular or open chain diene, nm	214
Base value for homoannular diene, nm	253
Increment (in nm) for	
Double bond extending conjugation	30
Alkyl substituent or ring residue	5
Exocyclic double bond	5
Polar groupings:	
-O-acyl	0
-O-alkyl	6
-S-alkyl	30
-Cl, -Br	5
-N(alkyl) ₂	60
Solvent correction (see Table 7.13)	
Calculated wavelength =	total

TABLE 3.28 Absorption Wavelength of Enones and Die	nones
---	-------

α β	α β, γ _, δ
o=c-c=c	o=c-c=c-c=c'
β	δ

Base values, nm		
Acyclic α,β -unsaturated ketones	215	
Acyclic α,β -unsaturated aldehyde	210	
Six-membered cyclic α,β -unsaturated ketones	215	
Five-membered cyclic α,β -unsaturated ketones	214	
α,β -Unsaturated carboxylic acids and esters	195	
Increments (in nm) for		
Double bond extending conjugation:		
Heteroannular	30	
Homoannular	69	
Alkyl group or ring residue:		
α	10	
β	12	
γ, δ	18	
Polar groups:		
-OH		
α	35	
β	30	
γ	50	
$-O-CO-CH_3$ and $-O-CO-C_6H_5$: $\alpha, \beta, \gamma, \delta$	6	
-OCH ₃		
α	35	
β	30	
γ	17	
δ	31	
$-S$ —alkyl, β	85	
—Cl		
α	15	
β	12	
—Br		
α	25	
β	30	
$-N(alkyl)_2, \beta$	95	
Exocyclic double bond	5	
Solvent correction (see Table 7.13)		
Calculated wavelength ==	total	

TABLE 3.29 Solvent Correction for Ultraviolet-Visible Spectroscopy

Solvent	Correction, nm
Chloroform	+1
Cyclohexane	
Diethyl ether	+11
1,4-Dioxane	+5
Ethanol	0
Hexane	+11
Methanol	0
Water	-8

TABLE 3.30 Primary Bands of Substituted Benzene and He	teroaromatics
--	---------------

In methanol.

Base value: 203.5 nm

Substituent	Wavelength shift, nm	Substituent	Wavelength shift, nm
	3.0	—соон	25.5
$-CH=CH_2$	44.5		20.5
−С≡СН	44	-CN	20.5
C ₆ H ₅	48	$-NH_2$	26.5
—-F	0	NH ⁺ ₃	-0.5
Cl	6.0	$-N(CH_3)_2$	47.0
Br	6.5	-NH-CO-CH ₃	38.5
—I	3.5	$-NO_2$	57
ОН	7.0	—SH	32
-0-	31.5	$-SO-C_6H_5$	28
-OCH ₃	13.5	-SO ₂ CH ₃	13
-OC ₆ H ₅	51.5	$-SO_2NH_2$	14.0
-СНО	46.0	$-CH = CH - C_6H_5$	
—CO—CH ₃	42.0	cis	79
$-CO-C_6H_5$	48	trans	92.0
		-CH=CH-COOH, trans	69.5
	Base value,	······································	Base value,
Heteroaromatic	nm	Heteroaromatic	nm
Furan	200	Pyridine	257
Pyrazine	257	Pyrimidine	ca 235
Pyrazole	214	Pyrrole	209
Pyridazine	ca 240	Thiophene	231

TABLE 3.31 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives

In ethanol.

Base value of parent chromophore, nm	
C ₆ H ₅ COOH or C ₆ H ₅ COO—alkyl	230
C_6H_5 —CO—alkyl (or aryl)	246
C ₆ H ₅ CHO	250
Increment (in nm) for each substituent on phenyl ring	
-Alkyl or ring residue	2
0-, m-	3
<i>p</i> -	10
OH andO alkyl	
0-, m-	7
<i>p</i> -	25
O~	
0-	11
<i>m</i> -	20
<i>p</i> -	78*

Cl	
<i>o-, m-</i>	0
<i>p</i> -	10
—Br	
0-, <i>m</i> -	2
<i>p</i> -	15
NH ₂	
0-, <i>m</i> -	13
<i>p</i> -	58
-NHCO-CH ₃	
0-, <i>m</i> -	20
<i>p</i>	45
-NHCH ₂	
<i>p</i> -	73
$-N(CH_3)_2$	
0-, <i>m</i> -	20
<i>p</i> -	85
4	

TABLE 3.31 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives (Continued)

*Value may be decreased markedly by steric hindrance to coplanarity.

3.4 FLUORESCENCE SPECTROSCOPY

Fluorescence spectroscopy is a measure of the optical emission from atoms that have been excited to higher energy levels by absorption of electromagnetic radiation. The main advantage of fluorescence detection compared to absorption measurements is the greater sensitivity achievable because the fluorescence signal has a very low background. The resonant excitation provides selective excitation of the analyte to avoid interferences. Fluorescence spectroscopy is useful to study the electronic structure of atoms and to make quantitative measurements. Analytical applications include flames and plasmas diagnostics, and enhanced sensitivity in atomic analysis. Because of the differences in the nature of the energy-level structure between atoms and molecules, discussion of laser-induced fluorescence from molecules is found in a separate document.

Analysis of solutions or solids requires that the analyte atoms be desolvated, vaporized, and atomized at a relatively low temperature in a heat pipe, flame, or graphite furnace. A hollow-cathode lamp or laser provides the resonant excitation to promote the atoms to higher energy levels. The atomic fluorescence is dispersed and detected by monochromators and photomultiplier tubes, similar to atomic-emission spectroscopy instrumentation.

Compound	Solvent	pH	Excitation wavelength, nm	Emission wavelength nm
Acenaphthene	Pentane		291	341
Acridine	CF ₃ COOH		358	475
Adenine	Water	1	280	375
Adenosine	Water	1	285	395
Adenosine triphosphate	Water	1	285	395
Adrenalin			295	335
p-Aminobenzoic acid	Water	8	295	345
Aminopterin	Water	7	280, 370	460

TABLE 3.32 Fluorescene Spectroscopy of Some Organic Compounds

CompoundSolventpHwavelength, nmwave wavelength, nm1-AminopyreneCF3COOH330, 34244p-Aminosalicyclic acidWater1130040AmobarbitalWater1426544	15 15 15 10 361 30
CompoundSolventpHInffIff1-AminopyreneCF3COOH330, 34241p-Aminosalicyclic acidWater1130040AmobarbitalWater1426541	15 05 10 361 30
1-Aminopyrene CF_3COOH 330, 3424p-Aminosalicyclic acidWater1130040AmobarbitalWater142654	15 05 10 361 30
p-Aminosalicyclic acidWater1130040AmobarbitalWater1426541	05 10 361 30
Amobarbital Water 14 265 41	10 361 30
	361 30
Anilines Water 7 280, 291 344,	30
Anthracene Pentane 420 43	15
Anthranilic acid Water 7 300 40	J.J
Azaindoles Water 10 290, 299 310,	347
Benz[<i>c</i>]acridine CF ₃ COOH 295, 380 48	30
Benz[a]anthracene Pentane 284 38	32
1,2-Benzanthracene 280, 340 390,	410
Benzanthrone CF ₃ COOH 370, 420 55	50
Benzo[b]chrysene Pentane 283 39	98
11-H-Benzo[a]fluorene Pentane 317 34	40
Benzoic acid 70% H ₂ SO ₄ 285 38	85
3,4-Benzopyrene Benzene 365 390,	480
Benzo[e]pyrene Pentane 329 38	39
Benzoquinoline CF ₃ COOH 280 42	25
Benzoxanthane Pentane 363 4	18
Bromolysergic acid diethyl	
amide Water 1 315 40	50
Brucine Water 7 305 50	00
Carbazole N,N-Dimethyl	
formamide 291 3:	59
Chlortetracycline 355 44	45
Chrysene Pentane 250, 300, 260,	380
310	
Cinchonine Water 1 320 42	20
Coumarin Ethanol 280 3:	52
Dibenzo[a,c]anthracene Pentane 280 33	81
Dibenzo[b,k]chrysene Pentane 308 42	28
Dibenzo[a,e]pyrene Pentane 370 44	01
3,4,8,9-Dibenzopyrene 370, 335, 480,	510
390, 410	
5,12-Dihydronaphthacene Pentane 282 34	40
1,4-Diphenylbutadiene Pentane 328 3'	70
Epinephrine Water 7 295 33	35
Ethacridine Water 2 370, 425 5	15
Fluoranthrene Pentane 354 44	54
Fluorene Pentane 300 32	21
Fluorescein Water 7–11 490 5	15
Folic acid Water 7 365 4:	50
Gentisic acid Water 7 315 44	40
Griseofulvin Water 7 295, 335 4:	50
Guanine Water 1 285 36	55
Harmine Water 1 300, 365 40	00
Hippuric acid 70% H ₂ SO ₄ 270 3'	70
Homovanilic acid Water 7 270 3	15
<i>m</i> -Hydroxybenzoic acid Water 12 314 42	30
<i>p</i> -Hydroxycinnamic acid Water 7 350 44	40
7-Hydroxycoumarin Ethanol 325 44	41
5-Hydroxyindole Water 1 290 3:	55
5-Hvdroxvindoleacetic acid Water 7 300 35	55

TABLE 3.32 Fluorescene Spectroscopy of Some Organic Compounds (Continued)

<i>.</i>	<u>.</u>		Excitation wavelength,	Emission wavelength
Compound	Solvent	pH	nm	nm
3-Hydroxykynurenine	Water	11	365	460
p-Hydroxymandelic acid	Water	7	300	380
p-Hydroxyphenylacetic acid	Water	7	280	310
p-Hydroxyphenylpyruvic acid	Water	7	290	345
p-Hydroxyphenylserine	Water	1	290	320
5-Hydroxytryptophan	Water	7	295	340
Imipramine	Water	14	295	415
Indoleacetic acid	Water	8	285	360
Indoles	Water	7	269, 315	355
Indomethacin	Water	13	300	410
Kynurenic acid	Water	7	325	405
2		11	325	440
Lysergic acid diethylamide	Water	1	325	445
Menadione	Ethanol		335	480
9-Methylanthracene	Pentane		382	410
3-Methylcholanthrene	Pentane		297	392
7-Methyldibenzopyrene	Pentane		460	467
2-Methylphenanthrene	Pentane		257	357
3-Methylphenanthrene	Pentane		292	368
1-Methylpyrene	Pentane		336	394
4-Methylpyrene	Pentane		338	386
Naphthacene	Tontano		290 310	480 515
1-Nanhthol	0.1 M NaOH		365	480
	20% ethanol		202	
2-Naphthol	0.1 <i>M</i> NaOH 20% ethanol		365	426
Oxytetracycline			390	520
Phenanthrene	Pentane		252	362
Phenylalanine	Water		215, 260	282
<i>o</i> -Phenyleneovrene	Pentane		360	506
Phenylephrine			270	305
Picene	Pentane		281	398
Procaine	Water	11	275	345
Pyrene	Pentane		330	382
Pyridoxal	Water	12	310	365
Ouinacrine	Water	11	285	420
Ouinidine	Water	1	350	450
Ouinine	Water	1	250 350	450
Reservine	Water	1	300	375
Resorcinol	Water		265	315
Riboflavin	Water	7	270, 370,	
			445	520
Rutin	Water	1	430	520
Salicyclic acid	Water		310	435
Scoparone	Water	10	350, 365	430
Scopoletin	Water	10	365, 390	460
Serotonin	3 M HCl		295	550
Skatole	Water		290	370
Streptomycin	Water	13	366	445
<i>p</i> -Terphenyl	Pentane		284	338
Thiopental			315	530
Thymol	Water	7	265	300

TABLE 3.32 Fluorescene Spectroscopy of Some Organic Compounds (Continued)

Compound	Solvent	pH	Excitation wavelength, nm	Emission wavelength nm
Tocopherol	Hexane-ethanol		295	340
Tribenzo[a,e,i]pyrene	Pentane		384	448
Triphenylene	Pentane		288	357
Tryptamine	Water	7	290	360
Tryptophan	Water	11	285	365
Tyramine	Water	1	275	310
Tyrosine	Water	7	275	310
Uric acid	Water	1	325	370
Vitamin A	1-Butanol		340	490
Vitamin B ₁₂	Water	7	275	305
Warfarin	Methanol		290, 342	385
Xanthine	Water	1	315	435
2,6-Xylenol			275	305
3,4-Xylenol			280	310
Yohimbine	Water	1	270	360
Zoxazolamine	Water	11	280	320

TABLE 3.32 Fluorescene Spectroscopy of Some Organic Compounds (Continued)

TABLE 3.33 Fluorescene Quantum Yield Values

Compound	Solvent	Q_F value vs. Q_F standard	
	Q_F standard		
9-Aminoacridine	Water	0.99	
Anthracene	Ethanol	0.30	
POPOP*	Toluene	0.85	
Quinine sulfate dihydrate	$1N H_2 SO_4$	0.55	
	Secondary standards		
Acridine orange hydrochloride	Ethanol	0.54 Quinine sulfate	
		0.58 Anthracene	
1,8-ANS [†] (free acid)	Ethanol	0.38 Anthracene	
		0.39 POPOP	
1,8-ANS (magnesium salt)	Ethanol	0.29 Anthracene	
		0.31 POPOP	
Fluorescein	0.1 <i>N</i> NaOH	0.91 Quinine sulfate	
		0.94 POPOP	
Fluorescein, ethyl ester	0.1N NaOH	0.99 Quinine sulfate	
		0.99 POPOP	
Rhodamine B	Ethanol	0.69 Quinine sulfate	
		0.70 Anthracene	
2,6-TNS [‡] (potassium salt)	Ethanol	0.48 Anthracene	
_		0.51 POPOP	

* POPOP, *p*-bis[2-(5-phenyloxazoyl)]benzene. † ANS, anilino-8-naphthalene sulfonic acid. ‡ TNS, 2-*p*-toluidinylnaphthalene-6-sulfonate.

3.5 FLAME ATOMIC EMISSION, FLAME ATOMIC ABSORPTION, ELECTROTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA, AND PLASMA ATOMIC FLUORESCENCE

The tables of atomic emission and atomic absorption lines are presented in two parts. In Table 3.34 the data are arranged in alphabetic order by name of the element, whereas in Table 3.35 the sensitive lines of the elements are arranged in order of decreasing wavelengths.

The detection limits in the table correspond generally to the concentration of an element required to give a net signal equal to three times the standard deviation of the noise (background) in accordance with IUPAC recommendations. Detection limits can be confusing when steady-state techniques such as flame atomic emission or absorption, and plasma atomic emission or fluorescence, are compared with the electrothermal or furnace technique which uses the entire sample and detects an absolute amount of the analyte element. To compare the several methods on the basis of concentration, the furnace detection limits assume a $20-\mu$ L sample.

Data for the several flame methods assume an acetylene–nitrous oxide flame residing on a 5- or 10-cm slot burner. The sample is nebulized into a spray chamber placed immediately ahead of the burner. Detection limits are quite dependent on instrument and operating variables, particularly the detector, the fuel and oxidant gases, the slit width, and the method used for background correction and data smoothing.

3.5.1 Common Spectroscopic Relationships

Electromagnetic Radiation. Electromagnetic radiation travels in straight lines in a uniform medium, has a velocity of 299,792,500 m \cdot s⁻¹ in a vacuum, and possesses properties of both a wave motion and a particle (photon). *Wavelength* λ is the distance from crest to crest; *frequency v* is the number of waves passing a fixed point in a unit length of time. Wavelength and frequency are related by the relation

 $c = \lambda v$

where c is the velocity of light (in a vacuum). In any material medium the speed of propagation is smaller than this and is given by the product nc, where n is the refractive index of the medium.

Radiation is absorbed or emitted only is discrete packets called photons and quanta:

E = hv

where *E* is the energy of the quantum and *h* is Planck's constant.

The relation between energy and mass is given by the *Einstein equation*:

$$\Delta E = \Delta mc^2$$

where ΔE is the energy release and Δm is the loss of mass. Strictly, the mass of a particle depends on its velocity, but here the masses are equated to their rest masses (at zero velocity).

The Wien displacement law states that the wavelength of maximum emission λ_m of a blackbody varies inversely with absolute temperature; the product $\lambda_m T$ remains constant. When λ_m is expressed in micrometers, the law becomes

$$\lambda_m T = 2898$$

In terms of σ_m , the wavenumber of maximum emission:

$$\sigma_m = 3.48T$$

Another useful version is $hv_m = 5kT$, where k is the Boltzmann constant.

Stefan's law states that the total energy *J* radiated by a blackbody per unit time and area (power per unit area) varies as the fourth power of the absolute temperature:

$$J = aT^{-4}$$

where a is a constant whose value is $5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$.

The relationship between the voltage of an X-ray tube (or other energy source), in volts, and the wavelength is given by the *Duane-Hunt equation*:

$$\lambda = \frac{hc}{eV} = \frac{12,398}{V}$$

where the wavelength is expressed in angstrom units.

Laws of Photometry. The time rate at which energy is transported in a beam of radiant energy is denoted by the symbol P_0 for the incident beam, and by P for the quantity remaining unabsorbed after passage through a sample or container. The ratio of radiant power transmitted by the sample to the radiant power incident on the sample is the *transmittance T*:

$$T = \frac{P}{P_0}$$

The logarithm (base 10) of the reciprocal of the transmittance is the *absorbance A*:

$$A = -\log T = \log\left(\frac{1}{T}\right)$$

When a beam of monochromatic light, previously rendered plane parallel, enters an absorbing medium at right angles to the plane-parallel surfaces of the medium, the rate of decrease in radiant power with the length of light path (cuvette interior) b, or with the concentration of absorbing material C (in grams per liter) will follow the exponential progression, often referred to as *Beer's law*:

$$T = 10^{-abC}$$
 or $A = abC$

where *a* is the absorptivity of the component of interest in the solution. When *C* is expressed in moles per liter,

$$T = 10^{-\epsilon bC}$$
 or $A = \epsilon bC$

where ε is the molar absorptivity.

The total fluorescence (or phosphorescence) intensity is proportional to the quanta of light absorbed, $P_0 - P$, and to the efficiency ϕ , which is the ratio of quanta absorbed to quanta emitted:

$$F = (P_0 - P)\phi = P_0\phi \left(1 - e^{-\epsilon bC}\right)$$

When the terms εbC is not greater than 0.05 (or 0.01 in phosphorescence),

$$F = k\phi P_0 \epsilon bC$$

where the term k has been introduced to handle instrumental artifacts and the geometry factor because fluorescence (and phosphorescence) is emitted in all directions but is viewed only through a limited aperture.

The thickness of a transparent film or the path length of infrared absorption cells b, in centimeters, is given by

$$b = \frac{1}{2n_{\rm D}} \left(\frac{n}{\overline{v}_1 - \overline{v}_2} \right)$$

where *n* is the number of fringes (peaks or troughs) between two wavenumbers \overline{v}_1 and \overline{v}_2 , and n_D is the refractive index of the sample material (unity for the air path of an empty cuvette). If measurements are made in wavelength, as micrometers, the expression is

$$b = \frac{1}{2n_{\rm D}} \left(\frac{n\lambda_1\lambda_2}{\lambda_2 - \lambda_1} \right)$$

Grating Equation. The light incident on each groove is diffracted or spread out over a range of angles, and in certain directions reinforcement or constructive interference occurs, as stated in the grating formula:

$$m\lambda = b(\sin i \pm \sin r)$$

where b is the distance between adjacent grooves, i is the angle of incidence, r is the angle of reflection (both angles relative to the grating normal), and m is the order number. A positive sign applies where incoming and emergent beams are on the same side of the grating normal.

The *blaze wavelength* is that wavelength for which the angle of reflectance from the groove face and the angle of reflection (usually the angle of incidence) from the grating are identical.

The Bragg equation

$$m\lambda = 2d\sin\theta$$

states the condition for reinforcement of reflection from a crystal lattice, where d is the distance between each set of atomic planes and θ is the angle of reflection.

Ionization of Metals in a Plasma. A loss in spectrochemical sensitivity results when a free metal atom is split into a positive ion and an electron:

$$\mathbf{M} = \mathbf{M}^+ + e^-$$

The degree of ionization α_i is defined as

$$\lambda = \frac{hc}{eV} = \frac{12,398}{V}$$

At equilibrium, when the ionization and recombination rates are balanced, the ionization constant K_i (in atm) is given by

$$K_i = \frac{[\mathbf{M}^+][e^-]}{[\mathbf{M}]} = \left(\frac{\alpha_i^2}{1 - \alpha_i^2}\right) P_{\Sigma \mathsf{M}}$$

where $P_{\Sigma M}$ (in atm) is the total atom concentration of metal in all forms in the plasma.

The ionization constant can be calculated from the Saha equation:

$$\log K_i = -5040 \frac{E_i}{T} + \frac{5}{2} \log T - 6.49 + \log \frac{g_{\mathsf{M}^+} g_{e^-}}{g_{\mathsf{M}}}$$

where E_i is the ionization potential of the metal in eV (Table 4.2), *T* is the absolute temperature of the plasma (in kelvins), and the *g* terms are the statistical weights of the ionized atom, the electron, and the neutral atom. For the alkali metals the final term is zero; for the alkaline earth metals, it is 0.6.

To suppress the ionization of a metal, another easily ionized metal (denoted a *deionizer* or *radiation buffer*) is added to the sample. To ensure that ionization is suppressed for the test element, the product $(K_i)_M P_M$ of the deionizer must exceed the similar product for the test element one hundredfold (for 1 percent residual ionization of the test element).

TABLE 3.34 Detection Limits in ng/mL

The detection limits in the table correspond generally to the concentration of analyte required to give a net signal equal to three times the standard deviation of the background in accordance with IUPAC recommendations.

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Aluminum	308.22		40		10	
	309.28		20	0.05	11	4
	394 40	3.6	45	0.02	36	•
	396.15	7.5	30	0.01	20	5
Antimony	206.83	,.5	50	0.01	50	2
	217 58		30		50	
	231.15	70	20		30	10
	259.81	200		0.08	50	0.1
Arsenic	189.04	200	160	0.00	35	0.1
Tribenie	193.76		120	1	50	
	197.20		240	ľ	50	
	228.81	455	210			
	234.90	250				10
Barium	455 36	3			0.9	10
Darium	493.41	4			1	
	553 55	15	0	0.04	,	2
Rerullium	234.86	1.5	1	0.05	0.4	2
Derymuni	313.04		2	0.003	1	
	313.11	100	2	0.005	1	0.2
Rismuth	223.06	100	18	0.35	30	0.2
Dismun	223.00		18	0.55	50	
	227.00	60		0.5	20	2
Doron	182.50	00		0.5	0.0	2
BOIOII	240 77		700	15	0	60
(α, \mathbf{PO})	249.77 518.00	50	700	15	5	00
$(as BO_2)$	547.60	50				
$(as DO_2)$	347.00	50			50	
Cadmium	134.07				.50	
Cadmium	214.44				1	
	220.30	6	1	0.009	0.0	
	228.80	0	1	0.008	228	0.001
Calaina	320.11	3	0.5	0.014	20	0.001
Calcium	315.89				20	
	393.37				0.0	
	390.85	1.5	1	0.2	1.2	0.00
0.1	422.67	1.5	I	0.3		0.08
Carbon	193.09				44	
a ·	247.86				1000	
Cerium	413.38				30	
	418.66	150			30	
<i>a</i> .	569.92	150	0	<u> </u>		
Cesium	852.11	0.02	8	0.04		
<i>.</i>	894.35	0.04	130			
Chlorine	134.72				50	
Chromium	267.72				3	
	283.58				20	
	284.98		-	a	30	
	357.87	6	2	0.05		0.4
	359.35	7				

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Chromium	360.53	13				
(cont.)	425.44	3	6		66	
	427.48	4				
	428.97	5				
Cobalt	228.62				3	
	238.89				28	
	240.73	5	8	0.01	7	0.4
	345.35	30				
Copper	324.75	1.5	1	0.01	2	0.2
	327.40	3	2	0.02	4	
Dysprosium	353.17				3	
	340.78				6	
	404.60	30	50			300
	418.68		60			
	421.17		60			
Erbium	323.06				15	
	349.81				10	
	400.80	30	40	0.3		500
	408.77		40			
Europium	381.97				2	
	412.97				3	
	459.40	0.45	20	0.5		20
Gadolinium	335.05				10	
	368.41		4000			
	440.19	72	1000	8		800
Gallium	287.42		70			
	294.36		20		30	
	404.30	5	50			
	417.21	3	30	1	40	0.9
Germanium	209.43				50	
	219.87				100	
	265.12	400	40	7.5		50
Gold	242.80		10	0.5	5	
	267.60	500	8	0.5	10	0.3
Hafnium	263.87				10	
	277.34				10	
	307.29		2000			
Holmium	339.90				3	
	345.60				8	
	405.39	15	40	0.7		100
	410.38		30			
Indium	230.61				40	
	303.94	100	7	0.01		
	325.61	22	8			
	410.18	14	20			
	451.13	0.7	22		2	0.2
Iodine	178.38				20	
	183.00			3		
Iridium	208.88	400	500	0.5		
	212.68				20	
	224.27				20	

TABLE 3.34 Detection Limits in ng/mL (Continued)

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Iron	238.20				4	
	248.33		3	0.01		
	259.94				3	
	302.06	18	5			
	371.99	15	10			0.3
	385.99	12	21			
Lanthanum	379.48				15	
	392.76		8000			
	408.67				2	
	550.13	20				
	579.13	5	2000	0.5		
(as LaO)	441.82	100				
(as LaO)	560.25	300				
Lead	217.10		20	0.4		
	220.35				20	
	283.31	60	10	1		5
	368.35	30				
	405.78	20				
Lithium	460.29	0.06	30		50	
	610.36	0.001				
	670.78	0.003	0.3	1.5	5	0.4
Lutetium	261.54				1	
	307.76				6	
Magnesium	279.08				30	
U	279.55				1.5	
	285.21	4.5	0.1	0.018	3.6	0.4
Manganese	256.37				2.7	
<i>0</i>	257.61				0.5	
	259.37		60		3	
	260.57				6	
	279.48	1	1	0.05		0.4
	293.30				24	
	294.92				24	
	403.08	1.5	30			
Mercurv	194.23				30	
	253.65	150	0.001	6	50	5
Molvbdenum	202.03				5	
,	203.84				8	
	281.62				1.2	
	313.26	220	30	0.06		12
	390.30	75	50	0100		
Neodymium	292.45	200				
	401.23	200			10	
	430.36				30	
	492.45	150	600		20	2000
Nickel	231.60		000		6	
	232.00	8	4	0.5	10	
	341 48	15	2	0.0	10	
	357 45	8	2			2
Niobium	316 34	0	2		20	4
1 1001ulli	405.89	250	1000		20	1000

TABLE 3.34 Detection Limits in ng/mL (Continued)

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Osmium	225.58				20	
	228.23				40	
	263.71	2000	80			
	290.91		110			
Palladium	244.80	20	20	0.5		40
	340.46	25	80		40	
	363.47	50			60	
Phosphorus	178.28				50	
	213.62				50	
(as HPO)	524.90	100				
Platinum	214.42				20	
	265.95	2000	100	0.2	40	300
Potassium	404.41	1.3	100			
	404.72	2.6				
	766.49	0.15	1	0.004	200	0.6
	769.90	0.3	2			
Praseodymium	390.84				20	
	414.31				30	
	493.97	300				1000
Rhenium	197.31				8	
	345.19	690				
	346.05	200	200	10		
	346.47	275				
Rhodium	343.49	10	2	0.1	20	100
	369.24	20			30	
Rubidium	780.02	0.0065	0.3		500	3
	794.76	0.013				
Ruthenium	240.27				50	
	349.89	80	70	10	150	500
Samarium	442.43				10	
	476.03	30	500		100	
Scandium	255.24				21	
	357.24				1	
	361.38				1.5	
	391.18	21	20	6	120	10
	402.04	30				
	402.34	30				
Selenium	196.03		90	2.5	6	10
Silicon	251.61		80	0.5	10	50
	283.16				15	
Silver	328.07	2	0.9	0.001	4.5	0.1
	338.29	4			3	
Sodium	330.23	125		0.7	15	
	330.30	250				
	589.00	0.01	0.2	0.004	20	0.2
	589.59	0.02				
Strontium	407.78				1	
	421.55				0.5	
	460.73	0.1	2	0.01		0.3
Sulfur	180.73		10		70	
$(as S_2)$	394.00	1600				

TABLE 3.34 Detection Limits in ng/mL (Continued)

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Tantalum	240.06				20	
	271.47		800			
Tellurium	214.27	150	15	0.5		2
	238.58				60	
Terbium	350.92				10	
	384.87				40	
	431.89	150	600			500
Thallium	190.86				50	
	276.78		9	0.15		
	351.92				150	
	377.57	3		0.5		4
	535.05	1.5				
Thorium	283.73				30	
	401.91				30	
Thulium	313.13				3	
	371.79	4	10			100
	384.80				7	
Tin	189.99				15	
	224.60		110	1	30	
	284.00	100	200			10
	286.33		160	1.5		
Titanium	334.19	400				
	334.94				6	
	337.28				8	
	364.27	210	60	2.5		30
	365.35	180				
	399.86	150				
Tungsten	207.91				30	
	209.48				50	
	400.87	450	1000			2000
Uranium	358.49	100		30		
	385.96				70	
	409.01				140	
Vanadium	292.40				7.8	
	310.23	4.0			10	
	318.34	18	50			20
	318.54	25	50	1		30
37	437.92	15				
Y tterbium	328.94				1	
	369.42	0.45	٣	0.1	2	10
Varia	398.80	0.45	5	0.1	2	10
Yttrium	360.07	40	50	10	3	50
	362.09	40	50	10	1	50
	3/1.03	20	50		I	
Tine	410.24	50	50		4	
Zhiu	202.33	1000	<u>^ 0</u>	0.005	4	0.0002
Ziroonium	213.80	1000	0.8	0.005	۲ ۲	0.0003
Zircomum	339.20 242.82				כ יי	
	242.02				1 15	
	349.02	1000	250		43	
	300.12	1000	550			

TABLE 3.34 Detection Limits in ng/mL (Continued)

TABLE 3.35 Sensitive Lines of the Elements

In this table the sensitive lines of the elements are arranged in order of decreasing wavelengths. A Roman numeral II following an element designation indicates a line classified as being emitted by the singly ionized atom. In the column headed Sensitivity, the most sensitive line of the nonionized atom is indicated by U1, and other lines by U2, U3, and so on, in order of decreasing sensitivity. For the singly ionized atom the corresponding designations are V1, V2, V3, and so on.

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
894.35	Cs	U2	492.45	Nd	U1
852.11	Cs	U 1	488.91	Re	U4
819.48	Na	U4	487.25	Sr	U3
818.33	Na	U3	483.21	Sr	U2
811.53	Ar	U2	482.59	Ra	U1
794.76	Rb	U2	481.95	Cl II	V4
780.02	Rb	U1	481.67	Br II	V3
769.90	K	U2	481.05	Zn	U3
766.49	K	U1	481.01	Cl II	V3
750.04	Ar	U4	479.45	Cl II	V2
706.72	Ar	U3	478.55	Br II	V2
696.53	Ar	U3	476.03	Sm	Ul
690.24	F	U3	470.09	Br II	V1
685.60	F	U2	467.12	Xe	U2
670.78	Li	U 1	462.43	Xe	U3
656.28	н	U2	460.73	Sr	U1
649.69	Ba II	V4	460.29	Li	U4
624.99	La	U3	459.40	Eu	U1
614.17	Ba II	V3	459.32	Cs	U4
610.36	Li	U2	455.54	Cs	U3
593.06	La	U4	455.40	Ba II	V1
589.59	Na	Ŭ2	451.13	In	UI
589.00	Na	U1	450.10	Xe	Ŭ4
587.76	He	U3	445.48	Ca	112
587.09	Kr	U2	442.43	Sm II	V4
579.13	La	U1	440.85	v	U4
569.92	Ce	U1	440.19	Ğd	UI
567.96	N II	V2	439.00	v	113
567.60	NI	V4	437.49	у п	V4
566.66	NI	V3	437.92	v	U1
557.02	Kr	113	435.84	Ho	113
553 55	Ba	U1	431.89	Th	U1
550.13	La	112	430.36	Nd II	V2
546 55	Δσ	114	430.21	w	U1
546.07	Ha	U2	429.67	Sm	111
545 52	La	113	429.07	Cr	113
535.84	Ha	13	428.97	Cr	112
535.05	TIE TI	U1	427.40	Cr	U1
521.82	Cu	113	422.43	C	
520.01	Δα	113	421.56	Ph	114
520.91	Cr.	118	421.50	Sr II	V1
520.60	Cr	117	421.55	Dy	112
515 32	Cu	114	420.19	Rh	113
J1J.J2 108 18	Cu Ti	U4 111	418 68	Dv	112
470.10	sr.	112	410.00		UZ V1
490.23	Dr	02 111	410.00	G	V I 1 1 1
473.71		V1 V2	417.21	Dr II	V2
493.41	ра н	v Z	414.51	PT II	v۷

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
414.29	Y	U4	386.41	Мо	U2
413.38	Ce II	V1	385.99	Fe	U2
413.07	Ba II	V5	385.96	UΠ	V1
412.97	Eu II	V2	384.87	Tb II	V2
412.83	Y	U3	384.80	Tm II	V2
412.38	Nb	U4	383.83	Mg	U2
412.32	La II	V4	383.82	Mo	U2
411.00	N	U2	382.23	Mg	U3
410.38	Ho	U1	382.94	Mg	U4
410.24	Y	U1	381.97	Eu II	V 1
410.18	In	U2	379.94	Ru	U3
410.09	Nb	U3	379.63	Мо	U 1
409.99	N	U3	379.48	La II	V2
409.01	UII	V2	379.08	La II	V3
408.77	Er	U 1	377.57	Tl	U3
408.67	La II	V 1	377.43	Y II	V3
407.97	Nb	U2	374.83	Fe	U4
407.77	Sr II	V2	373.49	Fe	U2
407.74	Y	U2	372.80	Ru	U1
407.74	La II	V2	371.99	Fe	U1
407.43	W	U2	371.79	Tm	U1
405.89	Nb	U 1	371.03	Y II	V 1
405.78	Pb	U 1	369.42	Yb II	V2
405.39	Ho	U2	369.24	Rh	U2
404.72	K	U4	368.41	Gd	U2
404.66	Hg	U5	368.35	Pb	U2
404.60	Dy	U1	365.48	Hg	U4
404.41	K	U3	365.35	Ti	U2
403.45	Mn	U3	365.01	Hg	U3
403.31	Mn	U2	364.28	Sc II	V3
403.30	Ga	U2	364.27	Sn	U3
403.08	Mn	U1	363.47	Pd	U2
402.37	Sc	U3	363.07	Sc II	V2
402.04	Sc	U3	362.09	Y	U2
401.91	Th II	V 1	361.38	Sc II	V1
401.23	Nd II	V 1	360.96	Pd	U2
400.87	W	U1	360.12	Zr	U1
400.80	Er	U1	360.07	Y II	V2
399.86	Cr	U1	360.05	Cr	U6
399.86	Ti	U1	359.62	Ru	U3
398.80	Yb	U 1	359.34	Cr	U5
396.85	Ca II	V2	359.26	Sm II	V 1
396.15	Al	U1	358.49	U	V1
394.91	La II	V2	357.87	Cr	U4
394.40	Al	U2	357.25	Zr II	V4
393.37	Ca II	V1	357.24	Sc II	V1
391.18	Sc	U1	356.83	Sn II	V1
390.84	Pr II	V1	355.31	Pd	U3
390.75	Sc	U2	354.77	Zr	U3
390.30	Mo	U1	353.17	Dy II	VI
389.18	Ba	V4	352.98	Co	U3
388.86	He	U2	352.94	Tl	U4
388.63	Fe	U5	352.69	Со	U4

TABLE 3.35 Sensitive Lines of the Elements (Continued)

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
352.45	Ni	U2	324.75	Cu	U1
351.96	Zr	U3	324.27	Pd	U4
351.92	Tl	U2	323.45	Cr	V3
351.69	Pd	U3	323.26	Li	U3
351.36	Ir	U2	323.06	Er II	V2
350.92	Tb II	V1	322.08	Ir	U1
350.63	Со	U3	318.54	v	U3
350.23	Co	U2	318.40	V	U2
349.89	Ru	U2	317.93	Ca II	V3
349.62	Zr II	V3	316.34	Nb II	V 1
349.41	Er II	V1	315.89	Ca II	V4
348.11	Pd	U5	313.26	Mo	U2
347.40	Ni	U3	313.13	Tm II	V1
346.47	Re	U2	313.11	Be	U1
346.05	Re	U1	313.04	Be	U2
345.60	Ho II	V2	311.84	V II	V4
345.58	Co	U5	311.07	V II	V3
345.19	Re	U3	310.23	V II	V2
345.14	B II	V2	309.42	Nb II	V1
344.36	Co	U2	309.31	V II	V1
344.06	Fe	U2	309.27	Al	U3
343.82	Zr II	V2	308.22	Al	U4
343.67	Ru	U2	307.76	Lu II	V2
343.49	Rh	U1	307.29	Hf	U 1
342.83	Ru	U4	306.77	Bi	U3
342.12	Pd	U3	306.47	Pt	U1
341.48	Ni	U3	303.94	In	U4
341.23	Со	U4	303.90	Ge	U2
340.78	Dy II	V2	303.41	Sn	U3
340.51	Co	U2	302.06	Fe	U3
340.46	Pd	U2	300.91	Sn	U4
339.90	Ho II	V1	294.91	Mn II	V4
339.20	Zr II	V 1	294.44	W	U5
338.29	Ag	U2	294.36	Ga	U3
337.28	Ti II	V3	294.02	Та	U3
336.12	Ti II	V2	293.30	Mn II	V4
335.05	Gd II	V1	292.98	Pt	U3
334.94	Ti II	V 1	292.45	Nd	U2
334.50	Zn	U2	292.40	V II	V 1
334.19	Ti	U4	290.91	Os	U2
332.11	Be	U3	289.80	Bi	U2
331.12	Та	U3	289.10	Mo II	V4
330.03	Na	U6	288.16	Si	U1
330.26	Zn	U3	287.42	Ga	U4
330.23	Na	U5	287.15	Mo II	V3
328.94	Yb II	V1	286.33	Sn	U2
328.23	Zn	U5	286.04	As	U2
328.07	Ag	U1	285.21	Mg	U1
327.40	Cũ	U2	284.82	Mo II	V2
326.95	Ge	U3	284.00	Sn	U1
206.02	Sn	113	283.73	Th II	VI
320.23	011	00			• •
326.23	Cd	UI	283.58	Cr II	V2

TABLE 3.35 Sensitive Lines of the Elements (Continued)

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
283.16	Si II	V1	239.56	Fe II	V2
283.03	Pt	U3	238.89	Co II	V2
281.62	Al II	V2	238.58	Te	U2
281.61	Mo II	V1	238.32	Te	U3
280.27	Mg II	V2	238.20	Fe II	V1
280.20	Pb	U4	234.90	As	U4
279.83	Mn	U3	234.86	Be	U1
279.55	Mg II	V 1	232.00	Ni	U2
279.48	Mn	U3	231.60	Ni II	V1
279.08	Mg II	V2	231.15	Sb	UI
278.02	As	U1	230.61	In II	V 1
277.34	Hf II	V1	228.81	As	U5
276.78	T 1	U4	228.80	Cd	U2
272.44	W	U4	228.71	Ni II	V 1
271.90	Fe	U5	228.62	Co II	V 1
271.47	Та	U1	228.23	Os II	V2
270.65	Sn	U4	227.66	Bi	U3
267.72	Cr II	V1	227.02	Ni II	V2
267.60	Au	U2	226.50	Cd II	V2
266.92	Al II	V1	226.45	Ni II	V3
265.95	Pt	U1	225.58	Os II	V1
265.12	Ge	U1	225.39	Ni II	V4
265.05	Ba	U2	224.70	Cu II	V3
264.75	Та	U2	224.64	Ag II	V3
263.87	Hf II	V1	224.60	Sn	Ul
263.71	Os	U1	224.27	Ir II	V1
260.57	Mn II	V3	223.06	Bi	01
259.94	Fe II	V1	220.35	Pb II	V1
259.81	Sb	U2	219.87	Ge II	V2
259.37	Mn	U2	219.23	Cu II	V2
257.61	Mn II	V1	217.58	Sb Di H	02
256.37	Mn II	V2	217.00		VI
255.33	P P	U3 1/2	214.44		VI
255.24	SC II	V 3	214.42	Pt II	VI
233.03	пg		214.27	1e 7.	
233.37	r c:		213.80		U1 U1
252.05	51 Fe	U2 112	213.02	r Cu II	U1 V1
252.29	ГС С:	112	213.00		V1 V1
251.01	51	U3 U4	212.08		V1 V2
250.09	31 7 11	04 V4	209.40	Go II	V2 V1
230.20		V4 111	209.43		V I 111
249.77	B	112	208.88	W II	V1
249.00	D Ee	U2 U3	207.91	Se Li	114
240.33	C	U2	207.48	Sh	111
247.00	4.0	114	200.03	Se	113
243.78	Ag II	V2	206.19	Zn II	V2
242.80		111	203.09	Se	111
241.05	Fe II	V4	203.84	Моп	V3
240.73	Co	UI	202.55	Zn II	vi
240 49	Fe	V3	202.03	Мо П	v2
240.27	Ru	vi	197 31	Re II	vī
240.06	Ta II	VI	197.20	As	U3
	14 11	* 1	177.20	1 80	

TABLE 3.35 Sensitive Lines of the Elements (Continued)

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
196.03	Se	U2	183.00	I	U2
194.23	Hg II	V 1	182.59	B II	V2
193.76	As	U1	180.73	S	U1
193.09	С	U1	178.38	Ι	U1
190.86	TI II	V 1	178.28	Р	U1
189.99	Sn II	V1	154.07	Br II	V4
189.04	As	U2	134.72	Cl II	V 1

TABLE 3.35 Sensitive Lines of the Elements (Continued)

3.6 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Nuclear magnetic resonance (NMR) spectroscopy is based on the principle that nuclei absorb radiation of slightly different frequency depending upon their local magnetic environments.

Certain atoms have a nuclear spin similar to the spin of an electron. The spinning of charged particles (the proton or protons in the nucleus bears a positive charge) generates a magnetic field. When an atom is placed in an external magnetic field, the magnetic field generated by the nucleus will be aligned with or against the external magnetic field. At some frequency of electromagnetic radiation, the nucleus will absorb energy and "flip" over so that it reverses its alignment with respect to the external magnetic field. This is known as the nuclear magnetic resonance (NMR) phenomenon. It is generally concerned with the nuclear magnetic resonance of hydrogen atoms and is therefore sometimes called proton magnetic resonance (PMR). It is also standard practice for the frequency of radiation to be kept constant while the strength of the external magnetic field is varied. At some value of the magnetic field strength, the energy required to flip the proton matches the energy of the radiation. Absorption will occur and a signal will be observed. The spectrum that results from all these absorptions is called an NMR spectrum. Absorptions that occur at relatively low field strengths are downfield relative to those that occur at higher field strengths. The field strength at which a proton will absorb energy is called the chemical shift (measured in parts per million, ppm or 6, relative to the absorbance of tetramethylsilane). The chemical shift of a proton depends upon the proton's electronic environment. Electron withdrawing atoms (or groups) that are nearby a proton will decrease the electron density about that proton; this is known as a deshielding effect. The proton's absorption will occur downfield from what is expected. Specifically, the proton will absorb at a smaller field strength than a proton experiencing no deshielding effects. Electron releasing atoms (or groups) that are nearby a proton will increase the proton's electron density; the proton is experiencing a shielding effect. The proton's absorbance will occur upfield (higher magnetic field strength) from what is expected.

The signal that arises from a proton's absorption may occur as a singlet, a doublet, a triplet, etc. The number of peaks in the signal depends upon the neighboring protons. Protons that are in identical electronic environments are equivalent protons; those that are in nonidentical electronic environments are nonequivalent protons. A proton that has *n* nonequivalent adjacent protons will have a signal with n + 1 peaks, called an n + 1 multiplet. This is the result of spin-spin splitting of the protons.

The differences in resonance frequencies are very small. For instance, the difference in resonance frequency for the protons in chloromethane and fluoromethane is 72 Hz. Since the incident radiation had a frequency of 60 MHz, this difference is about 1 part per million. This cannot be measured accurately; therefore, differences are measured as the difference between the resonant frequency of a reference compound and the substance to be analyzed. The most common reference is tetramethylsilane (CH_3)₄Si, TMS. Thus, when a compound is analyzed, the resonance of each individual proton is reported in terms of how far (in Hz) the proton is shifted from the protons of tetramethylsilane.

The shift from tetramethylsilane for a given proton depends upon the strength of the applied magnetic field. The protons in tetramethylsilane resonate at 0 ppm. Most protons in organic compounds will resonate at higher frequencies and the position of the absorbance gives valuable information about the molecular environment of a particular proton, leading to structural information about the compound under investigation.

The nucleus of carbon-13 is magnetic. This property enables detection of the nuclei of carbon-13 atoms by nuclear magnetic resonance. By detecting the location of carbon-13 atoms in carbon-based molecules, structural information about the molecules can also be produced. Other nuclei of different atoms can also be detected and structural information deduced.

TABLE 3.36 Nuclear Properties of the Elements

In the following table the magnetic moment μ is in multiples of the nuclear magneton $\mu_N(eh/4\pi Mc)$ with diamagnetic correction. The spin *I* is in multiples of $h/2\pi$, and the electric quadrupole moment *Q* is in multiples of 10^{-28} square meters. Nuclei with spin $\frac{1}{2}$ have no quadrupole moment. Sensitivity is for equal numbers of nuclei at constant field. NMR frequency at any magnetic field is the entry for column 5 multiplied by the value of the magnetic field in kilogauss. For example, in a magnetic field of 23.490 kG, protons will process at 4.2576 × 23.490 kG = 100.0 MHz. Radionuclides are denoted with an asterisk.

The data were extracted from M. Lederer and V. S. Shirley, *Table of Isotopes*, 7th ed., Wiley-Interscience, New York, 1978; A. H. Wapstra and G. Audi, "The 1983 Atomic Mass Evaluation," *Nucl. Phys.* A432:1–54 (1985); V. S. Shirley, ed., *Table of Radioactive Isotopes*, 8th ed., Wiley-Interscience, New York, 1986; and P. Raghavan, "Table of Nuclear Moments," *At. Data Nucl. Data Tables*, 42:189 (1989).

Nuclide	Natural abundance, %	Spin I	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment μ/μ_N , J · T ⁻¹	Electric quadrupole moment Q , 10^{-28} m ²
1n	*	1/2	0.321 39	2.916 39	- 1.913 043	
'Η	99.985	1/2	1.000 00	4.257 64	2.792 847	
^{2}H	0.015	1	0.009 65	0.653 57	0.857 438	0.002 860
³ H	*	1/2	1.213 54	4.541 37	2.978 963	
³ He	0.0001	1/2	0.442 12	3.243 52	-2.127 624	
6Li	7.5	1	0.008 50	0.626 60	0.822 047	0.000 82
7Li	92.5	3/2	0.293 55	1.654 78	3.256 427	-0.040 1
⁹ Be	100	3/2	0.013 89	0.598 6	-1.177 9	0.052 88
${}^{10}B$	19.9	3	0.019 85	0.457 51	1.800 645	0.084 59
11 B	80.1	3/2	0.165 22	1.366 26	2.688 649	0.040 59
¹³ C	1.10	1/2	0.015 91	1.070 81	0.702 412	
¹⁴ N	99.634	1	0.001 01	0.307 76	0.403 761	0.020 2
¹⁵ N	0.366	1/2	0.001 04	0.431 72	-0.283 189	
¹⁷ O	0.038	5/2	0.029 10	0.577 41	- 1.893 80	-0.025 58
¹⁹ F	100	1/2	0.834 00	4.007 65	2.628 867	
²¹ Ne	0.27	3/2	0.002 46	0.336 30	-0.661 797	0.101 55
²² Na	*	3	0.018 10	0.443 4	1.745	
²³ Na	100	3/2	0.092 70	1.126 86	2.217 522	0.108 9
²⁵ Mg	10.00	5/2	0.002 68	0.260 82	-0.855 46	0.199 4
²⁷ Al	100	5/2	0.206 89	1.110 28	3.641 504	0.140 3
²⁹ Si	4.67	1/2	0.007 86	0.846 53	-0.555 29	
³¹ P	100	1/2	0.066 52	1.725 10	1.131 60	
³³ S	0.75	3/2	0.002 27	0.327 16	0.643 821	-0.067 8
³⁵ S	*	3/2	0.008 50	0.508	1.00	0.045
35CI	75.77	3/2	0.004 72	0.417 64	0.821 874	-0.081 65
³⁶ Cl	*	2	0.012 10	0.489 3	1.283 8	-0.016 8
³⁷ Cl	24.23	3/2	0.002 72	0.347 64	0.684 124	- 0.064 35
³⁷ Ar	*	3/2	0.012 76	0.581 8	1.145	

			Sensitivity at	NMR	Magnetic	Electric
	Natural		constant field	frequency	moment	quadrupole
	abundance,		relative to	for a 1-kG	μ/μ_N	moment Q ,
Nuclide	%	Spin /	¹ H	field, MHz	$\mathbf{J} \cdot \mathbf{T}^{-1}$	10 ⁻²⁸ m ²
³⁹ K	93.258	3/2	0.000 51	0.198 93	0.391 466	0.060 1
⁴⁰ K	0.0117	4	0.005 23	0.247 37	- 1.298 099	-0.074 9
⁴¹ K	6.730	3/2	0.000 084	0.109 19	0.214 870	0.073 3
⁴³ Ca	0.135	7/2	0.006 42	0.286 88	-1.317 26	-0.040 8
⁴⁵ Sc	100	7/2	0.302 44	1.035 88	4.756 483	-0.22
47Ti	7.3	5/2	0.002 10	0.240 40	-0.788 48	0.29
⁴⁹ Ti	5.5	7/2	0.003 78	0.240 47	-1.104 17	0.24
⁵⁰ V	0.250	6	0.055 71	0.425 04	3.345 689	0.21
⁵¹ V	99.750	7/5	0.383.60	1.121.30	5,148 706	-0.052
⁵³ Cr	9 501	3/2	0.000.91	0.241.14	-0.474.54	-0.15
⁵⁵ Mn	100	5/2	0.178.81	1.057.60	3 468 72	0.33
57Fe	21	1/2	0.000.03	0.138.15	0.090.623	0.55
⁵⁹ Co	100	76	0.000 03	1 007 7	4 627	0.42
61Ni	1 140	3/2	0.003 59	0.381.13	-0.750.02	0.162
63Cu	60 17	3/2	0.003.42	1 129 79	2 223 29	-0.220
65Cu	30.83	36	0.075 42	1.129 79	2.225 25	-0.220
67 7 n	4.1	5/2	0.002.87	0.266.03	0.875.479	0.150
69Ga	60.108	36	0.069.71	1.024.75	2 016 59	0.130
71 G a	20,802	36	0.009 /1	1.024 7.5	2.010 39	0.170
73Ga	39.692	-72	0.143 00	0.149.07	- 0.870.468	-0.172
75 4 6	1.75	72	0.001 41	0.140.97		0.173
77 S o	7.62	-72	0.023 30	0.731 46	0.525.042	0.514
79D+	50.60	72	0.007 03	1.070.20	2 106 200	0.221
**D1 81D-	40.21	-/2	0.079 43	1.070.39	2.100 599	0.331
831Z-	49.31	9/2	0.099.51	0.164.42	2.270 302	0.270
85D1	11.5	72	0.001 90	0.104 42	-0.970 009	0.235
87DL	72.103	3/2	0.010 01	0.412 55	1.555 05	0.274
87 C -	27.835	3/2	0.177 03	1.398 07	2.751.24	0.132
⁸⁷ Sr	7.00	9/2	0.002 72	0.185 24	-1.093 603	0.335
91 T	11 22	1/2	0.000 12	0.209 49	-0.137 415	0.000
	11.22	·/2	0.009 49	0.397 47	-1.303 62	-0.206
²³ IND	100	⁹ /2	0.488 21	1.045 20	0.170 5	-0.32
⁹³ Mo	15.92	3/2	0.003 27	0.278 74	-0.914 2	-0.022
⁹⁷ Mo	9.55	-1/2	0.003 49	0.284 62	-0.933 5	-0.255
³³ 1C	107	9/2	0.381 /4	0.963	5.684 /	-0.129
³⁹ Ru	12.7	-3/2	0.001 13	0.195 53	-0.641 3	0.079
¹⁰¹ Ru	17.0	3/2	0.001 59	0.219 2	-0./18 8	0.457
¹⁰³ Rh	100	1/2	0.000 03	0.134 /6	-0.088 40	0.550
¹⁰⁵ Pd	22.33	5/2	0.001 13	0.195 7	-0.642	0.660
¹⁰⁷ Ag	51.839	1/2	0.000 066 9	0.173 30	-0.113 680	
¹⁰⁹ Ag	48.161	1/2	0.000 101	0.199 24	-0.130 691	
¹¹¹ Cd	12.80	1/2	0.009 66	0.906 89	-0.594 886	
¹¹³ Cd	12.22	1/2	0.011 06	0.948 68	-0.622 301	
¹¹³ In	4.3	9/2	0.351 21	0.936 52	5.528 9	0.799
¹¹⁵ In	95.7	<u> ⁹∕2</u>	0.353 48	0.938 54	5.540 8	0.81
¹¹⁵ Sn	0.34	1/2	0.035 61	1.400 74	-9.1 884	
¹¹⁷ Sn	7.68	1/2	0.046 05	1.526 06	- 1.001 05	
119Sn	8.59	1/2	0.052 73	1.596 56	- 1.047 28	
¹²¹ Sb	57.36	5/2	0.163 02	1.025 49	3.363 4	-0.36
¹²³ Sb	42.64	7/2	0.046 59	0.555 30	2.549 8	-0.49
¹²³ Te	0.908	1/2	0.018 37	1.123 46	-0.736 948	

TABLE 3.36 Nuclear Properties of the Elements (Continued)

Nuclide	Natural abundance, %	Spin /	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment μ/μ_N , J · T ⁻¹	Electric quadrupole moment Q , 10^{-28} m ²
¹²⁵ Te	7.139	1/2	0.032 20	1.354 51	-0.888505	
¹²⁷ I	100	5/2	0.095 40	0.857 76	2.813 327	-0.789
¹²⁹ Xe	26.4	1/2	0.021 62	1.186 01	-0.777976	
¹³¹ Xe	21.2	3/2	0.002 82	0.351 58	0.691 862	-0.12
¹³³ Cs	100	7/2	0.048 38	0.562 32	2.582 025	-0.003 7
¹³⁵ Ba	6.592	3/2	0.005 00	0.425 81	0.837 943	0.160
¹³⁷ Ba	11.23	3/2	0.006 97	0.476 33	0.937 365	0.245
¹³⁸ La	* 0.0902	5	0.094 04	0.566 14	3.713 646	0.45
¹³⁹ La	99.9098	7⁄2	0.060 58	0.606 10	2.783 045	0.20
¹³⁷ Ce	*	3/2	0.006 41	0.462	0.91	
¹³⁹ Ce	*	3/2	0.006 41	0.462	0.91	
¹⁴¹ Ce	*	7⁄2	0.003 64	0.237	1.09	
¹⁴¹ Pr	100	5/2	0.334 83	1.303 55	4.275 4	-0.059
¹⁴³ Nd	12.18	7/2	0.003 39	0.231 9	- 1.065	-0.63
¹⁴⁵ Nd	8.30	7/2	0.000 79	0.142 9	-0.656	-0.33
¹⁴³ Pm	*	³ /2	0.235 10	1.16	3.8	
¹⁴ /Pm	*	1/2	0.049 40	0.57	2.6	0.70
14/Sm	15.0	1/2	0.001 52	0.177 47	-0.814 9	-0.26
149Sm	13.8	/2	0.000 85	0.146 31	-0.671.8	0.094
¹⁵¹ Eu	47.8	³ /2	0.179 29	1.058 54	3.471.8	0.903
¹⁵⁵ Eu	52.2	3/2	0.015 44	0.467 44	1.533 1	2.41
155Gd	14.80	³ /2	0.000 15	0.1317	- 0.259 1	1.27
15/Gd	15.65	³ /2	0.000 33	0.1727	-0.339 9	1.35
159 Tb	100	3/2	0.069 45	1.023	2.014	1.432
¹⁰¹ Dy	18.9	³ /2	0.000 48	1.465 3	-0.480 6	2.47
165U	24.9	-/2	0.001 30	0.205 07	0.072 0	2.05
167E-	100	7/2	0.204 23	0.908 81	4.175	3.38
169Tm	22,95	1/2	0.000 507	0.122 01	-0.3039	5.57
171 V b	14.2	16	0.000 300	0.752.50	-0.251 0	
173 V h	14.5	⁷²	0.003 32	0.732 39	0.495 07	2.80
1751	07.41	72	0.001 33	0.207 501	-0.079 89	2.60
176I 11	* 2 50	7	0.031 28	0.480 24	3 169	J.49
177Hf	18 606	76	0.03975	0.172.81	0.793.5	3 36
179Hf	13 629	9/2	0.001 40	0.108.56	-0.640.9	3 79
180Ta	0.012	9	0.102 51	0.100.50	4 77	5.17
181Ta	99.988	7/2	0.037 44	0.516.25	2 3705	3.17
183W	14.3	1/2	0.000.08	0.179.56	0 117 785	5.17
185Re	37.40	5/2	0.138 70	0.971.7	3 1871	218
¹⁸⁷ Re	* 62.60	5/2	0.143.00	0.981.7	3 219 7	2.07
¹⁸⁷ Os	16	1/2	0.000.01	0.098.56	0.064.652	2107
189Os	16.1	3/2	0.002.44	0.335 35	0.659 933	0.856
¹⁹¹ Ir	37.3	3/2	0.000 03	0.076 6	0.150 7	0.816
¹⁹³ Ir	62.7	3/2	0.000 04	0.0832	0.163 7	0.751
¹⁹⁵ Pt	33.8	1/2	0.010 39	0.929 20	0.609 52	
¹⁹⁷ Au	100	3/2	0.000 03	0.074 06	0.145 746	0.547
¹⁹⁹ Hg	16.87	1/2	0.005 94	0.771 21	0.505 885	
²⁰¹ Hg	13.18	3/2	0.001 49	0.284 68	-0.560 226	0.386
²⁰³ Tl	29.524	1/2	0.195 981	2.473 10	1.622 258	
²⁰⁵ Tl	70.476	1/2	0.201 82	2.497 42	1.638 215	
	00.1	12	0.000 55	0 002 28	0.500.59	1

Nuclide	Natural abundance, %	Spin I	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment μ/μ_N , $J \cdot T^{-1}$	Electric quadrupole moment Q , 10^{-28} m ²
²⁰⁹ Bi	100	9/2	0.144 33	0.696 28	4.110 6	-0.50
²²⁹ Th	*	5/2	0.000 42	0.140	0.46	4.30
²³¹ Pa	*	3/2	0.069 03	1.02	2.01	-1.72
²³⁵ U	* 0.7200	7/2	0.000 15	0.083	-0.38	4.936
²³⁷ Np	*	5/2	0.132 64	0.957	3.14	3.886
²³⁹ Pu	*	1/2	0.000 38	0.309	0.203	
²⁴³ Am	*	5/2	0.017 88	0.491	1.61	4.21

TABLE 3.36 Nuclear Properties of the Elements (Continued)

TABLE 3.37 Proton Chemical Shifts

Values are given on the officially approved δ scale; $\tau = 10.00 - \delta$

Abbreviations Used in the Table

R, alkyl group Ar, aryl group					
Substituent group	Methyl protons	Methylene protons	Methine proton		
HC-C-CH ₂	0.95	1.20	1.55		
HC-C-NR ₂	1.05	1.45	1.70		
HC - C - C = C	1.00	1.35	1.70		
HC - C - C = 0	1.05	1.55	1.95		
HC—C—NRAr	1.10	1.50	1.80		
HC - C - H(C = O)R	1.10	1.50	1.90		
$HC-C-(C=O)NR_2$	1.10	1.50	1.80		
HC - C - (C = O)Ar	1.15	1.55	1.90		
HC - C - (C = O)OR	1.15	1.70	1.90		
HC-C-Ar	1.15	1.55	1.80		
НС—С—ОН	1.20	1.50	1.75		
HC-C-OR	1.20	1.50	1.75		
$HC - C - C \equiv CR$	1.20	1.50	1.80		
$HC - C - C \equiv N$	1.25	1.65	2.00		
HC-C-SR	1.25	1.60	1.90		
HC—C—OAr	1.30	1.55	2.00		
HC - C - O(C = O)R	1.30	1.60	1.80		
HC-C-SH	1.30	1.60	1.65		
HC - C - (S = O)R					
and $HC - C - SO_2R$	1.35	1.70			
$HC-C-NR_3^+$	1.40	1.75	2.05		
HC - C - O - N = O	1.40				
$HC - C - O(C = O)CF_3$	1.40	1.65			
HC-C-CL	1.55	1.80	1.95		
HC-C-F	1.55	1.85	2.15		
$HC - C - NO_2$	1.60	2.05	2.50		
$HC - C - O(\tilde{C} = O)Ar$	1.65	1.75	1.85		
HC-C-I	1.75	1.80	2.10		
HC—C—Br	1.80	1.85	1.90		
HCCH ₂	0.90	1.30	1.50		
HC-C=C	1.60	2.05			
HC−C≡C	1.70	2.20	2.80		

Substituent group	Methyl protons	Methylene protons	Methine proton
HC-(C=O)OR	2.00	2.25	2.50
$HC - (C = O)NR_2$	2.00	2.25	2.40
HC—SR	2.05	2.55	3.00
HC - O - O	2.10	2.30	2.55
HC - (C = O)R	2.10	2.35	2.65
HC-C=N	2.15	2.45	2.90
HC—I	2.15	3.15	4.25
НС-СНО	2.20	2.40	
HC—Ar	2.25	2.45	2.85
HC-NR ₂	2.25	2.40	2.80
HC—SSR	2.35	2.70	
HC - (C = O)Ar	2.40	2.70	3.40
HC—SAr	2,40		
HC—NRAr	2.60	3.10	3.60
$HC - SO_2R$ and $HC - (SO)R$	2.60	3.05	
HC—Br	2.70	3.40	4.10
HC—NR ₃ ⁺	2.95	3.10	3.60
HC - NH(C = O)R	2.95	3.35	3.85
HC-SO ₃ R	2.95		
HC-CI	3.05	3.45	4.05
HC—OH and HC—OR	3.20	3.40	3.60
HC-PAr ₃	3.20	3.40	
HC-NH ₂	3.50	3.75	4.05
HC - O(C = O)R	3.65	4.10	4.95
HC—OAr	3.80	4.00	4.60
HC - O(C = O)Ar	3.80	4.20	5.05
$HC - O(C = O)CF_1$	3.95	4.30	
HC—F	4.25	4.50	4.80
HC-NO ₂	4.30	4.35	4.60
Cyclopropane		0.20	0.40
Cyclobutane		2.45	
Cyclopentane		1.65	
Cyclohexane		1.50	1.80
Cycloheptane		1.25	
	Proton		Protor
Substituent group	rioton	Substituent group	riotofi
Substituent group	snit	Substituent group	snitt
HC≡CH	2.35	но-с=о	10-12
HC≡CAr	2.90	HO-SO ₂	11-12
$HC \equiv C - C = C$	2.75	HO—Ar	4.5-6.5
HAr	7.20	HO-R	0.5 - 4.5
HCO-O	8.1	HS—Ar	2.8-3.6
HCO-R	9.4-10.0	HS-R	1-2
HCO—Ar	9.7-10.5	HN—Ar	3-6
HO-N=C (oxime)	9-12	HN-R	0.5-5

TABLE 3.37 Proton Chemical Shifts (Continued)

TABLE 3.37 Proton Chemical Shifts (Continued)

$\delta_{\text{CH}_2} = 0.23 + C_1 + C_2$ $\delta_{\text{CH}} = 0.23 + C_1 + C_2 + C_3$						
X*	С	X*	С	X*	С	
$-CH_{3}$ $-CF_{3}$ $\geq C = C \leq$ $-C \equiv C - R$ $-COOR$ $-NR_{2}$ $-CONR_{3}$	0.5 1.1 1.3 1.4 1.5 1.6 1.6	$-SR$ $-C \equiv C - Ar$ $-CN$ $-CO - R$ $-I$ $-Ph$ $-Br$	1.6 1.7 1.7 1.7 1.8 1.8 2.3	OR Cl OH $N==C==S$ $OCOR$ OPh	2.4 2.5 2.6 2.9 3.1 3.2	
2						

TABLE 3.38 Estimation of Chemical Shift for Protons of CH₂ and Methine Groups

*R, alkyl group; Ar, aryl group; Ph, phenyl group.

TABLE 3.39 Estimation of Chemical Shift of Proton Attached to a Double Bond

Positive Z values indicate a downfield shift, and an arrow indicates the point of attachment of the substituent group to the double bond.

		R _{cis} H	t
δ _{C=C}	$= 5.25 - Z_{gem} + Z_{cis} + H$	Z_{trans} $C = C$ T	gem
R	$Z_{ m gcm}$, ppm	Z _{cis} , ppm	Z _{trans} , ppm
→H	0	0	0
→alkyl	0.45	-0.22	- 0.28
→alkyl—ring (5- or 6-member)	0.69	- 0.25	- 0.28
→CH ₂ O—	0.64	-0.01	- 0.02
$\rightarrow CH_2S$	0.71	-0.13	-0.22
\rightarrow CH ₂ X (X: F, Cl, Br)	0.70	0.11	- 0.04
$\rightarrow CH_2N \leq$	0.58	-0.10	- 0.08
C = C (isolated)	1.00	- 0.09	- 0.23
C = C (conjugated)	1.24	0.02	- 0.05
→C≡N	0.27	0.75	0.55
→C≡C−	0.47	0.38	0.12
C = O (isolated)	1.10	1.12	0.87
C = O (conjugated)	1.06	0.91	0.74
	0.97	1.41	0.71
→COOH (conjugated)	0.80	0.98	0.32
→COOR (isolated)	0.80	1.18	0.55
→COOR (conjugated)	0.78	1.01	0.46
H			
$\rightarrow C = 0$	1.02	0.95	1.17

R	Z _{gem} , ppm	Z _{cis} , ppm	Z _{trans} , ppm	
$\rightarrow C = 0$	1.37	0.98	0.46	
CI				
→Ċ=0	1.11	1.46	1.01	
\rightarrow OR (R: aliphatic)	1.22	- 1.07	- 1.21	
\rightarrow OR (R: conjugated)	1.21	- 0.60	- 1.00	
→OCOR	2.11	-0.35	- 0.64	
\rightarrow CH ₂ $-C=0; \rightarrow$ CH ₂ $-C=N$	0.69	- 0.08	- 0.06	
\rightarrow CH ₂ —aromatic ring	1.05	-0.29	-0.32	
→F	1.54	-0.40	-1.02	
→Cl	1.08	0.18	0.13	
→Br	1.07	0.45	0.55	
→I	1.14	0.81	0.88	
\rightarrow NR (R: aliphatic)	0.80	- 1.26	-1.21	
\rightarrow N – R (R: conjugated)	1.17	-0.53	- 0.99	
$\rightarrow N - C = 0$	2.08	-0.57	-0.72	
>aromatic	1.38	0.36	-0.07	
$\rightarrow CF_3$	0.66	0.61	0.32	
\rightarrow aromatic (<i>o</i> -substituted)	1.65	0.19	0.09	
→SR	1.11	- 0.29	-0.13	
$\rightarrow SO_2$	1.55	1.16	0.93	

TABLE 3.39 Estimation of Chemical Shift of Proton Attached to a Double Bond (Continued)

TABLE 3.40 Chemical Shifts in Monosubstituted Benzene

 $\delta = 7.27 + \Delta_i$

Substituent	Δ_{ortho}	$\Delta_{\rm meta}$	Δ_{para}
NO ₂	0.94	0.18	0.39
СНО	0.58	0.20	0.26
СООН	0.80	0.16	0.25
COOCH ₃	0.71	0.08	0.20
COCI	0.82	0.21	0.35
CCl ₃	0.80	0.20	0.20
COCH ₃	0.62	0.10	0.25
CN	0.26	0.18	0.30
CONH ₂	0.65	0.20	0.22
$\mathbf{N}\mathbf{H}_{3}$	0.40	0.20	0.20
CH ₂ X*	0.0-0.1	0.0 - 0.1	0.0 - 0.1
CH ₃	-0.16	-0.09	-0.17
CH ₂ CH ₃	-0.15	-0.06	-0.18
$CH(CH_3)_2$	-0.14	-0.09	-0.18
$C(CH_3)_2$	-0.09	0.05	-0.23
F	-0.30	-0.02	-0.23
Cl	0.01	-0.06	-0.08

Substituent	$\Delta_{\rm ortho}$	$\Delta_{\rm meta}$	Δ_{para}
Br	0.19	-0.12	-0.05
Ι	0.39	-0.25	-0.02
$\rm NH_2$	-0.76	-0.25	-0.63
OCH ₃	-0.46	-0.10	-0.41
OH	-0.49	-0.13	-0.20
OCOR	-0.20	0.10	-0.20
NHCH ₃	-0.80	-0.30	-0.60
$N(CH_3)_2$	-0.60	-0.10	-0.62

TABLE 3.40 Chemical Shifts in Monosubstituted Benzene (Continued)

*X = Cl, alkyl, OH, or NH₂.

Structure	J, Hz	Structure	J, Hz
C H	12-15	$\begin{array}{c} \begin{array}{c} 4 \\ 5 \\ 5 \\ 8 \end{array} \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\$	5-6 3.5-5.0 1.5 2.4
CH-CH (free rotation)	6-8		6-12
>CH-OH (no exchange)	5	H	1.5-2.5
>CH-NH	48		2.5
CH—SH	6-8	F^{CH_3m}	0
H CH-C=0 H	1-3	H H $a-a$ $a-e$ H $e-e$	8-10 2-3 2-3
-N=C	8-16	T H	
Н		Cyclopentane cis	4-6
H_{t} H_{g} gem	0-3	trans	4-6
C = C cis	6-14	trans	8
H _c H trans	11-18	Cyclopropane cis	911
H _c CH cis	0.5-3	trans	68
C = C trans	0.5-3		6-10
H, H _a gem	4-10	$\langle \langle \rangle - H m$	1-3
>C=CH-CH=C<	10-13	H p	0-1
=CH-C=O	6		
H .		$\begin{bmatrix} 2 & 1-2 \\ 2-3 \end{bmatrix}$	8-9
−CH ₂ −C≡C−CH	0-3		
	0.3	$\frac{1}{5} \frac{2-3}{3-4}$	5-6
H H 3-member	0-2	$\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}_2 2-4$	1-2
C = C 4-member	24	N 3-5	1-2
(ring) 5-member	57	2-5	0-1
(mg) 0-member	0-9	2-0	0-1

TABLE 3.41 Proton Spin Coupling Constants

	1		1
Structure	J, Hz	Structure	J, Hz
7-member	10-13	⁴ [1] ³ 1–2	2-3
cis	4-5	. 1-3	2-3
C trans	3	$\frac{3}{N^2} \frac{2}{2-3}$	2-3
2 gem	5-6	3-4	3-4
cis	0	Н 2-4	1-2
S trans	7	2-5	1-3
∠ gem	6	 u	
н cis	2		
N trans	6	C S	45-52
\bigtriangleup gem	4	F	
4	1.8	No. agusha	0.12
3-4	3.5	CH-CF gauche	10 45
5 2-4	0-1	H H gem	7290
2-5	1-2		2 20
			-3-20
		H_c F trans	12-40
		HC≡CF	21
C = C'	2.4	F.	
F CH	2-4	$ \int_{a}^{a} $	
		$/$ $/$ F_e $a-a$	34
ĊF			12
	0_6	$H_e = e $	<58
	0-0	$\parallel \qquad \qquad$	<j-0< td=""></j-0<>
Н		11 _a	
	1		

TABLE 3.41 Proton Spin Coupling Constants (Continued)

TABLE 3.42 Proton Chemical Shifts of Reference Compounds

Relative to tetramethylsilane.

.....

Compound	δ, ppm	Solvent(s)	
Sodium acetate	1.90	D ₂ O	
1,2-Dibromoethane	3.63	CDCl ₃	
1,1,2,2-Tetrachloroethane	5.95	$CDCl_3; CCl_4$	
1,4-Benzoquinone	6.78	$CDCl_3; CCl_4$	
1,4-Dichlorobenzene	7.23	CCl ₄	
1,3,5-Trinitrobenzene	9.21	$DMSO-d_6*$	
	9.55	CHCl ₃	

*DMSO, dimethyl sulfoxide.

TABLE 3.43 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents

Relative to tetramethylsila	ne.
-----------------------------	-----

Solvent	Group	δ , ppm	
Acetic- d_3 acid- d_1	Methyl	2.05	
	Hydroxyl	11.5*	
Acetone- d_6	Methyl	2.057	
Acetonitrile- d_3	Methyl	1.95	
Benzene- d_6	Methine	6.78	

Solvent	Group	δ , ppm
<i>tert</i> -Butanol- d_1 (CH ₃) ₃ COD	Methyl	1.28
Chloroform- d_1	Methine	7.25
Cyclohexane- d_{12}	Methylene	1.40
Deuterium oxide	Hydroxyl	4.7*
Dimethyl- d_6 -formamide- d_1	Methyl	2.75; 2.95
	Formyl	8.05
Dimethyl- d_6 sulfoxide	Methyl	2.51
•	Absorbed water	3.3*
1,4-Dioxane- d_8	Methylene	3.55
Hexamethyl-d ₁₈ -phosphoramide	Methyl	2.60
Methanol- d_4	Methyl	3.35
	Hydroxyl	4.8*
Dichloromethane- d_2	Methylene	5.35
Pyridine-d ₅	C-2 Methine	8.5
	C-3 Methine	7.0
	C-4 Methine	7.35
Toluene-d ₈	Methyl	2.3
-	Methine	7.2
Trifluoroacetic acid- d_1	Hydroxyl	11.3*

TABLE 3.43 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents (Continued)

*These values may vary greatly, depending upon the solute and its concentration.

TABLE 3.44 Carbon-13 Chemical Shifts

Values given in	ppm on the	δ scale, relative to	tetramethylsilane.
-----------------	------------	-----------------------------	--------------------

Substituent group	Primary carbon		Secondary carbon	Tertiary carbon	Quaternary carbon
Alkynes:					
C-C	5-30		25-45	23-58	28-50
с—о	45-60		42-71	62-78	73-86
C—N	13-45		44-58	50-70	60-75
C—S	10-30		22-42	55-67	53-62
C-halide (I to Cl)	3-25		3-40	34-58	35-75
Substituent group δ , j		ð, ppm	Substituent group		δ, ppm
Cyclopropane	ppane -5-5		Aromatics:		
Cycloalkane $C_4 - C_{10}$		5-25	Aryl-C		125-145
Mercaptanes		5 - 70	Aryl-P		119-128
Amines:			Aryl-N		128-138
R_2N-C		20 - 70	Aryl-O		133-152
Aryl—N	12	28-138	Azomethine	28	145-162
Sulfoxides, sulfones		35-55	Carbonates		159-162
Alcohols R-OH	4	15-87	Ureas		150-170
Ethers R—O—R		57-87	Anhydrides		150-175
Nitro $R - NO_2$		50-78	Amides		154-178
Alkynes:			Oximes		155-165
HC≡CR		53-73			
RC≡CR	-	72–95			

Substituent group	Primary carbon	Secondary carbon		Tertiary carbon	Quaternary carbon
Acetals, ketals	88-11	2 1	Esters:		
Thiocyanates R-SCN	96-11	8	Saturated		158-165
Alkenes:			α,β -Unsa	turated	165-176
$H_2C =$	10012	2 1	Isocyanides	R-NC	162-175
$R_2C =$	110-15	0 0	Carboxylic	acids:	
Heteroaromatics:			Nonconju	gated	162-165
C = N	100-15	2	Conjugate	ed	165-184
C_{α}	142-16	0	Salts (ani	on)	175-195
Cyanates R—OCN	105-12	0 1	Ketones:		
Isocyanates R-NCO	115-13	5	α -Halo		160-200
Isothiocyanates R-NCS	115-14	2	Nonconju	gated	192-202
Nitriles, cyanides	117-12	4	α,β -Unsa	turated	202-220
Thioureas	165-18	5 1	lmides		165180
Aldehydes:			Acyl chlorid	les R—CO—Cl	165-183
α-Halo	170-19	0 1	Thioketones	R-CS-R	190-202
Nonconjugated	182-19	2 (Carbonyl	$M(CO)_n$	190-218
Conjugated	192-20	8 .	Allenes =	=C==	197-205

TABLE 3.44 Carbon-13 Chemical Shifts (Continued)

Saturated heterocyclic ring systems

Unsaturated cyclic systems

TABLE 3.44 Carbon-13 Chemical Shifts (Continued)

Saturated alicyclic ring systems

3.90 SECTION THREE

TABLE 3.45 Estimation of Chemical Shifts of Alkane Carbons

Relative to tetramethylsilane.

Positive terms indicate a downfield shift.

$$\delta_c = -2.6 + 9.1n_a + 9.4n_b - 2.5n_v + 0.3n_b + 0.1n_e \qquad \text{(plus any correction factors)}$$

where n_{α} is the number of carbons bonded directly to the *i*th carbon atom and n_{β} , n_{γ} , n_{δ} , and n_{ϵ} are the number of carbon atoms two, three, four, and five bonds removed. The constant is the chemical shift for methane.

Chain branching*	Correction factor	Chain branching*	Correction factor	
1°(3°)	-1.1	4°(1°)	- 1.5	
1°(4°)	3.4	2°(4°)	-7.2	
2°(3°)	-2.5	3°(3°)	-9.5	
3°(2°)	-3.7	4°(2°)	8.4	

* 1° signifies a CH₃— group; 2°, a — CH₂— group; 3°, a \geq CH— group; and 4°, a \geq C \leq group. 1° (3°) signifies a methyl group bound to a \geq CH— group, and so on.

Examples: For 3-methylpentane, CH₃-CH₂-CH_{(CH₃)-CH₂-CH₃,}

$$\delta_{C-2} = -2.6 + 9.1(2) + 9.4(2) - 2.5 - 1(1)[2^{\circ}(3^{\circ})] = 29.4$$

$$\delta_{C+3} = -2.6 + 9.1(3) + 9.4(2) + (2)[3^{\circ}(2^{\circ})] = 36.2$$

TABLE 3.46 Effect of Substituent Groups on Alkyl Chemical Shifts

These increments are added to the shift value of the appropriate carbon atom as calculated from Table 3.45.

	α carbon		β carbon		
Substituent group Y*	Straight	Branched	Straight	Branched	γ carbon
—со—он	20.9	16	2.5	2	-2.2
COO- (anion)	24.4	20	4.1	3	- 1.6
-CO-OR	20.5	17	2.5	2	-2
-CO-Cl	33	28		2	
-CO-NH ₂	22	2.5			-0.5
-СНО	31		0		-2
-CO-R	30	24	1	1	- 2
-OH	48.3	40.8	10.2	7.7	5.8
—OR	58	51	8	5	-4
-O-CO-NH ₂	51		8		
-O-CO-R	51	45	6	5	-3
-C-CO-Ar	53				
F	68	63	9	6	
Cl	31.2	32	10.5	10	-4.6
—Br	20.0	25	10.6	10	-3.1

	α carbon		β carbon		
Substituent group Y*	Straight	Branched	Straight	Branched	γ carbon
	-8	4	11.3	12	-1.0
$-NH_2$	29.3	24	11.3	10	-4.6
$-NH_3^+$	26	24	8	6	-5
-NHR	36.9	31	8.3	6	-3.5
$-NR_2$	42		6		-3
$-NR_3^+$	31		5		-7
-NO2	63	57	4	4	
-CN	4	1	3	3	-3
-SH	11	11	12	11	-6
-SR	20		7		-3
-CH=CH2	20		6		-0.5
-C6H5	23	17	9	7	-2
−C≡CH	4.5		5.5		-3.5

TABLE 3.46 Effect of Substituent Groups on Alkyl Chemical Shifts (Continued)

*R, alkyl group; Ar, aryl group.

TABLE 3.47 Estimation of Chemical Shifts of Carbon Attached to a Double Bond

The olefinic carbon chemical shift is calculated from the equation

 $\delta_c = 123.3 + 10.6n_{\alpha} + 7.2n_{\beta} - 7.9n_{\alpha} - 1.8n_{\beta}$ (plus any steric correction terms)

where n is the number of carbon atoms at the particular position, namely,

$$\beta \alpha \alpha' \beta'$$

$$C - C = C - C$$

Substituents on both sides of the double bond are considered separately. Additional vinyl carbons are treated as if they were alkyl carbons. The method is applicable to alicyclic alkenes; in small rings carbons are counted twice, i.e., from both sides of the double bond where applicable. The constant in the equation is the chemical shift for ethylene. The effect of other substituent groups is tabulated below.

Substituent group	β	α	α'	β'
—OR	2	29	- 39	-1
-OH	6			- 1
—О—СО—СН ₃	-3	18	-27	4
-CO-CH ₃		15	6	
—СНО		13.6	13.2	
—со—он		5.2	9.1	
-CO-OR		6	7	
-CN		- 15.4	14.3	
—F		24.9	- 34.3	
-Cl	-1	3.3	-5.4	2
—Br	0	-7.2	-0.7	2
—I		- 37.4	7.7	
-C ₆ H ₅		12	-11	
Substituent pair		Steric correction term		
--------------------	-------	---------------------------		
α, α'	trans	0		
α, α'	cis	-1.1		
α,α	gem	4.8		
α', α'		+ 2.5		
β , β		+ 2.3		

TABLE 3.47 Estimation of Chemical Shifts of Carbon Attached to a Double Bond (*Continued*)

TABLE 3.48 Carbon-13 Chemical Shifts in Substituted Benzenes

$\delta_c = 128.5 + \Delta$					
Substituent group	Δ_{C-1}	Δ_{ortho}	Δ_{meta}	Δ_{para}	
— СН ₃	9.3	0.8	-0.1	-2.9	
-CH ₂ CH ₃	15.6	-0.4	0	-2.6	
$-CH(CH_3)_2$	20.2	- 2.5	0.1	-2.4	
$-C(CH_3)_3$	22.4	-3.1	-0.1	-2.9	
-CH ₂ O-CO-CH ₃	7.7	0	0	0	
$-C_6H_5$	13.1	-1.1	0.4	- 1.2	
$-CH = CH_2$	9.5	-2.0	0.2	-0.5	
−С≡СН	-6.1	3.8	0.4	-0.2	
-CH ₂ OH	12.3	- 1.4	-1.4	- 1.4	
-со-он	2.1	1.5	0	5.1	
-COO ⁻ (anion)	8	1	0	3	
-CO-OCH ₃	2.1	1.1	0.1	4.5	
-CO-CH ₃	9.1	0.1	0	4.2	
-СНО	8.6	1.3	0.6	5.5	
-CO-Cl	4.6	2.4	1	6.2	
-CO-CF ₃	- 5.6	1.8	0.7	6.7	
$-CO-C_6H_5$	9.4	1.7	-0.2	3.6	
-CN	- 15.4	3.6	0.6	3.9	
-ОН	26.9	- 12.7	1.4	-7.3	
-OCH ₃	31.4	- 14.0	1.0	-7.7	
-OC ₆ H ₅	29.2	-9.4	1.6	-5.1	
-0-C0-CH ₃	23.0	-6.4	1.3	-2.3	
-NH ₂	18.0	- 13.3	0.9	- 9.8	
$-N(CH_3)_2$	22.4	- 15.7	0.8	-11.5	
$-N(C_6H_5)_2$	19	-4	1	-6	
-NHC ₆ H ₅	14.6	- 10.7	0.7	-7.7	
-NH-CO-CH ₃	11.1	- 9.9	0.2	-5.6	
$-NO_2$	20.0	- 4.8	0.9	5.8	
-F	34.8	- 12.9	1.4	-4.5	
-Cl	6.2	0.4	1.3	- 1.9	
-Br	- 5.5	3.4	1.7	- 1.6	
-1	- 32.2	9.9	2.6	- 1.4	
-CF ₃	-9.0	-2.2	0.3	3.2	
-NCO	5.7	-3.6	1.2	-2.8	
-SH	2.3	1.1	1.1	-3.1	
-SCH ₃	10.2	-1.8	0.4	-3.6	
$-SO_2-NH_2$	15.3	-2.9	0.4	3.3	
$-Si(CH_3)_3$	13.4	4.4	- 1.1	-1.1	

		$\delta_C(k)$	$= C_k + \Delta_i$			
Substituent group	$C_{2} = C_{6} = 149.6$ $\Delta_{C-2} \text{ or } \Delta_{C-6}$		Δ_{23}	Δ_{24}	Δ_{25}	Δ_{26}
$-CH_{3} - CH_{2}CH_{3} - CO - CH_{3} - CHO - OH - OCH_{3} - OH_{2} - NO_{2} - CNO_{2} - CN - F - CI - CI - Br$	9.1 14.0 4.3 3.5 14.9 15.3 11.3 8.0 - 15.8 14.4 2.3 - 67		$\begin{array}{r} -1.0\\ -2.1\\ -2.8\\ -2.6\\ -17.2\\ -13.1\\ -14.7\\ -5.1\\ -5.0\\ -14.7\\ 0.7\\ 4.8\end{array}$	$ \begin{array}{r} -0.1 \\ 0.1 \\ 0.7 \\ 1.3 \\ 0.4 \\ 2.1 \\ 2.3 \\ 5.5 \\ -1.7 \\ 5.1 \\ 3.3 \\ 3.3 \\ 3.3 \\ \end{array} $	$ \begin{array}{c} -3.4 \\ -3.1 \\ 3.6 \\ 4.1 \\ -3.1 \\ -7.5 \\ 10.6 \\ 6.6 \\ 3.6 \\ -2.7 \\ -1.2 \\ -0.6 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Substituent group	Δ ₃₂	$C_{3} = C_{5} = 124.2$ $\Delta_{C-3} \text{ or } \Delta_{C-5}$		Δ ₃₄	Δ ₃₅	
$-CH_3$ $-CH_2CH_3$ $-CO-CH_3$ $-CHO$ $-OH$ $-NH_2$ $-CN$ $-Cl$ $-Br$ $-I$	$ \begin{array}{r} 1.3\\ 0.3\\ 0.5\\ 2.4\\ -10.7\\ -11.9\\ 3.6\\ -0.3\\ 2.1\\ 7.1 \end{array} $	$\frac{1}{2}$	9.0 5.0 0.3 7.9 1.4 1.5 3.7 8.2 2.6 8.4	$\begin{array}{c} 0.2 \\ -1.5 \\ -3.7 \\ 0 \\ -12.2 \\ -14.2 \\ 4.4 \\ -0.2 \\ 2.9 \\ 9.1 \end{array}$	-0.8 -0.3 -2.7 0.6 1.3 0.9 0.6 0.7 1.1 2.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Substituent group	$\Delta_{42} = \Delta_{46}$			$\Delta_{43} = \Delta_{45}$		$C_4 = 136.2$ Δ_{C-4}
$-CH_3$ $-CH_2CH_3$ $-CH=CH_2$ $-CO-CH_3$ $-CHO$ $-NH_2$ $-CN$ $-Br$	0.5 0 0.3 1.6 1.7 0.9 2.1 3.0	0.5 0 0.3 1.6 1.7 0.9 2.1 3.0		$0.8 \\ -0.3 \\ -2.9 \\ -2.6 \\ -0.6 \\ -13.8 \\ 2.2 \\ 3.4$		10.8 15.9 8.6 6.8 5.5 19.6 -15.7 -3.0

TABLE 3.49 Carbon-13 Chemical Shifts in Substituted Pyridines*

* May be used for disubstituted, polyheterocyclic, and polynuclear systems if deviations due to steric and mesomeric effects are allowed for.

TABLE 3.50	Carbon-13 Chemical Shifts Carbonyl Group

Y	$\delta_{\rm C}$	Х	Y	$\delta_{\rm C}$	
	199.7	СН ₃ —		196.9	
-CCl ₃	175.3	CH ₃ —	$-C_6H_5$	197.6	
-NH ₂	165.5	CH ₃	$-CH_2-CO-CH_3$	201.9	
				(keto)	
$-N(CH_3)_2$	162.4			191.4	
-				(enol)	
2-Furyl	153.3	CH ₃ —	-CH ₂ CHO	167.7	
2-Pyrrolyl	134.0	CH ₃ —	$-C_6H_5-CH_3$	196 (m, p)	
2-Thienyl	143.3			199 (<i>o</i>)	
-OH	184.8	CH ₃ —	$-2,6-(CH_3)_2C_6H_5$	206	
—ОН	172.6	CH ₃ —	—ОН	178	
—ОН	163.0	CH ₃ —	—O ⁻ (anion)	181.5	
OH	168.0	CH ₃	-OCH ₃	170.7	
—ОН	176.5	CH ₃ —	$-0-CH=CH_2$	167.7	
$-OCH_2CH_3$	158.1	CH ₃ —	$-O-CH(CH_3)_2$	170.3	
-OCH ₂ CH ₃	157.8	CH ₃ —	—О—СО—СН ₃	167.3	
-OCH ₃	159.1	CH ₃ —	$-NH_2$	172.7	
$-C_6H_5$	170.8	CH ₃ —	-NHCH ₃	172	
$-OCH_2CH=CH_2$	157.6	CH ₃ -	$-N(CH_3)_2$	169.5	
-CH ₂ CH ₃	211.4	CH ₃ —	-Cl	169.6	
$-0-C0-CH_2CH_3$	170.3	CH ₃ —	—Br	165.6	
-CH ₃	205.8	CH ₃ -	—I	158.9	
$-CH_2CH_3$	207				
	$\begin{array}{c} Y \\ \hline \\ -CH_3 \\ -CCl_3 \\ -NH_2 \\ \hline \\ -N(CH_3)_2 \\ \hline \\ 2-Furyl \\ 2-Pyrrolyl \\ 2-Thienyl \\ -OH \\ $	$\begin{array}{c c} Y & & & \\ \hline \\ \hline \\ \hline \\ -CH_3 & & 199.7 \\ -CCl_3 & & 175.3 \\ \hline \\ -NH_2 & & 165.5 \\ \hline \\ \hline \\ -N(CH_3)_2 & & 162.4 \\ \hline \\ 2-Furyl & & 153.3 \\ 2-Pyrrolyl & & 134.0 \\ 2-Thienyl & & 143.3 \\ \hline \\ 2-Thienyl & & 162.4 \\ \hline \\ 2-Furyl & & 153.3 \\ \hline \\ -OH & & & 162.6 \\ \hline \\ -OH & & & 163.0 \\ \hline \\ -OH & & & 172.6 \\ \hline \\ -OH & & & 157.6 \\ \hline \\ -CH_2CH_3 & & & 170.8 \\ \hline \\ -OCH_2CH_3 & & & 170.3 \\ \hline \\ -CH_2CH_3 & & & 207 \\ \hline \end{array}$	Y $\delta_{\rm C}$ X CH ₃ 199.7 CH ₃ CCl ₃ 175.3 CH ₃ NH ₂ 165.5 CH ₃ N(CH ₃) ₂ 162.4 2-Furyl 2-Furyl 153.3 CH ₃ 2-Pyrrolyl 134.0 CH ₃ 2-Thienyl 143.3 - -OH 168.0 CH ₃ -OH 165.5 CH ₃ -OH 158.1 CH ₃ -OH 168.0 CH ₃ -OH 165.5 CH ₃ -OH 158.1 CH ₃ -OCH ₂ CH ₃ 157.8 CH ₃ -OCH ₂ CH ₃ 159.1 CH ₃ -OCH ₂ CH ₃ 159.1 CH ₃ -OCH ₂ CH ₃ 159.1 CH ₃ -OCH ₂ CH ₃ 157.8 CH ₃ -OCH ₂ CH ₃ 157.6 CH ₃ -OCH ₂ CH ₃ 211.4 CH ₃ -OCH ₂ CH ₃ 207.8 CH ₃ <td>Y $\delta_{\rm C}$ X Y -CH₃ 199.7 CH₃ -CH=CH₂ -CCl₃ 175.3 CH₃ -C₆H₅ -NH₂ 165.5 CH₃ -CH₂-CO-CH₃ -N(CH₃)₂ 162.4 - - 2-Furyl 153.3 CH₃ -CH₂CHO 2-Pyrrolyl 134.0 CH₃ -CG₄H₅-CH₃ 2-Thienyl 143.3 - - -OH 184.8 CH₃ -C₆(CH₃)₂C₆H₅ -OH 163.0 CH₃ -OH -OH 163.0 CH₃ -OCH₃ -OH 168.0 CH₃ -OCH₃ -OH 168.0 CH₃ -OCH₄ -OH 168.1 CH₃ OCH₄ -OH 170.5 CH₃ OCH₄ -OCH₂CH₃ 157.8 CH₃ OCH(CH₃)₂ -OCH₂CH₃ 157.8 CH₃ NHC₄ -OCH₂CH₃ 157.6</td>	Y $\delta_{\rm C}$ X Y -CH ₃ 199.7 CH ₃ -CH=CH ₂ -CCl ₃ 175.3 CH ₃ -C ₆ H ₅ -NH ₂ 165.5 CH ₃ -CH ₂ -CO-CH ₃ -N(CH ₃) ₂ 162.4 - - 2-Furyl 153.3 CH ₃ -CH ₂ CHO 2-Pyrrolyl 134.0 CH ₃ -CG ₄ H ₅ -CH ₃ 2-Thienyl 143.3 - - -OH 184.8 CH ₃ -C ₆ (CH ₃) ₂ C ₆ H ₅ -OH 163.0 CH ₃ -OH -OH 163.0 CH ₃ -OCH ₃ -OH 168.0 CH ₃ -OCH ₃ -OH 168.0 CH ₃ -OCH ₄ -OH 168.1 CH ₃ OCH ₄ -OH 170.5 CH ₃ OCH ₄ -OCH ₂ CH ₃ 157.8 CH ₃ OCH(CH ₃) ₂ -OCH ₂ CH ₃ 157.8 CH ₃ NHC ₄ -OCH ₂ CH ₃ 157.6	

о х—С—у

Structure	$J_{\rm CH}$, Hz	Structure	J _{CH} , Hz
H-CH ₃	125.0	$H-CH=O; CH_3-CH=O$	172
H-CH ₂ CH ₃	124.9	H ₂ N-CH=O	188.3
CH ₃ -CH ₂ -CH ₃	119.2	$(CH_3)_2N-CH=O$	191
$H - C(\overline{CH}_3)_2$	114.2	нсоон	222
H-CH ₂ CH ₂ OH	126.9	H—COO ⁻ (anion)	195
$H-CH_2CH=CH_2$	122.4	H-CO-OCH ₃	226
H-CH ₂ C ₆ H ₅	129.4	H—CO—F	267
$H-CH_2C\equiv CH$	132.0	CH ₃ CH ₂ —O—CHO	225.6
H—CH ₂ CN	136.1	Cl ₃ —CHO	207
$H-CH(CN)_2$	145.2	H—C≡CH	249
H-CH ₂ -halogen	149-152	$H-C \equiv CCH_3$	248
H-CHF ₂	184.5	H−C≡CC ₆ H ₅	251
H-CHCl ₂	178.0	$H-C \equiv CCH_2OH$	241
H-CH ₂ NH ₂	133.0	H-CN	269
$H - CH_2 NH_3^+$	145.0	Cyclopropane	161
$H-CH_2OH$ (or $H-CH_2OR$)	140-141	Cyclobutane	136
$H - CH(OR)_2$	161-162	Cyclopentane	131
$H - C(OR)_3$	186	Cyclohexane	123
$H - C(OH)R_2$	143	Tetrahydrofuran 2,5	149
$H-CH_2NO_2$	146.0	3,4	133
$H - CH(NO_2)_2$	169.4	1,4-Dioxane	145
HCH ₂ COOH	130.0	Benzene	159
$H-CH(COOH)_2$	132.0	Fluorobenzene 2,6	155
$H-CH=CH_2$	156.2	3,5	163
$H - C(CH_3) = C(CH_3)_2$	148.4	4	161
$H-CH=C(tert-C_4H_9)_2$	152	Bromobenzene 2,6	171
$H - C(tert - C_4 H_9) =$	143	3,5	164
$C(tert-C_4H_9)_2$		4	161
Methylenecycloalkane $C_4 - C_7$	153-155	Benzonitrile 2,6	173
$H - CH = C = CH_2$	168	3,6	166
$H - C(C_6H_5) = CH(C_6H_5)$	155		163
CIS	155	Nitrobenzene 2,6	171
trans	151	3,5	167
Cyclopropene	220	4	163
H_{t} H_{g} gem	200		154
C = C cis	159	2,0	163
H F trans	162	5,5	105
Н Нает	105	N +	152
	195	2.4.6-Trimethylpyridine	158
H Cl trans	163		150
	161	2,5	183
n _t	162	N 3,4	170
C = C cis	157	H	
H_c CHO trans	162	2,5	201
H ₁ , H ₂ gem	177	3,4	175
C = C cis	163		
	105	2,5	185
n _c UN trans	COL	3,4	167
H OH cis	163		
C = N' trans	177	25	100
CH ₂			170
2			1/0

TABLE 3.51 One-Bond Carbon-Hydrogen Spin Coupling Constants

Structure	J _{CH} , Hz	Structure	J _{CH} , Hz
N 2 N 4	208 199	N N H	216
N N H	205		

TABLE 3.51 One-Bond Carbon-Hydrogen Spin Coupling Constants (Continued)

TABLE 3.52 Two-Bond Carbon-Hydrogen Spin Coupling Constants

Structure	$^{2}J_{\rm CH}$, Hz	Structure	$^{2}J_{\rm CH},{\rm Hz}$
$\begin{array}{c} CH_{3}CH_{2}H\\ \overline{C}Cl_{3}CH_{2}H\\ \overline{C}ICH_{2}CH_{2}CI\\ Cl_{2}CHCHCl_{2}\\ CH_{3}CHO\\ \overline{C}H_{2}=-CH_{2}\\ (CH_{3})_{2}C=-O\\ CH_{2}=-CHCH=-O\\ (C_{2}H_{3})CHCHO\\ H_{2}NCH=-CHCHO\\ H_{2}NCH=-CHCHO\\ H_{2}NCH=-CHCHO\\ C_{6}H_{6}\\ \end{array}$	$ \begin{array}{r} -4.5 \\ 5.9 \\ -3.4 \\ 1.2 \\ 26.7 \\ -2.4 \\ 5.5 \\ 26.9 \\ 26.9 \\ 6.0 \\ 20.0 \\ 1.0 \end{array} $	$ \begin{array}{c} n = 4 \\ n = 5 \\ n = 6 \end{array} $ $ \begin{array}{c} H \\ C = C \\ C \\ C \\ C \\ C \\ C \\ C $	4.2 5.2 5.5 16.0 0.8 49.3 61.0 33.2 32.5 35.3 46.3 10.8
			2010

TABLE 3.53 Carbon-Carbon Spin Coupling Constants

H_3C-CH_3 35 $C-CO-OR$ 59 H_4C-CHR_2 37 $C-CN$ 52-		
$H_3C - CH_2Ar$ 34 $C - C \equiv C^{-2}J_{cc} = 11.8$ 67 $H_3C - CH_2CN$ 33 $H_2C = CH_2$ 68 $H_3C - CH_2 - CH_2OH$ $S \subseteq = \underline{C} - CO - OH$ 70 $C - 1, C - 2$ 38 $S \subseteq = \underline{C} - CO - OH$ 70 $C - 1, C - 2$ 38 $S \subseteq = \underline{C} - CN$ 71 $C - C \equiv O$ 34 $S \subseteq = \underline{C} - CN$ 71 $C - C \equiv O$ 38 - 40 C_6H_6 57 $C - C = O$ 36 $1 - 2$ 55 $\overline{C} - \overline{C} - C - O^{-1}$ 43 $1 - 2$ $\overline{C} - \overline{C} - Ar$ 43 $1 - 2$ 55 $\overline{C} - \overline{C} - O^{-1}$ 52 $3J_{2.5}$ 77	$\begin{array}{c}CH_{3} \\CH_{2} \\CH_{2}Ar \\CH_{2}CN \\CH_{2}-CH_{2}OH \\ -1, C-2 \\ 2, C-3 \\CH_{2}NH_{2} \\ C=0 \\ C-C=0 \\ \overline{C}-Ar \\ \overline{C}O-O^{-} (anion) \\ CO-N \\ CO-OH \end{array}$	5952-57676870-717167-705755567.6

*R, alkyl group; Ar, aryl group.

Structure	J _{CC} , Hz	Structure	J _{CC} , Hz
C ₆ H ₅ I		Pyridine	
1-2	60	2-3	54
2-3	53	3-4	56
3-4	58	³ J ₂₋₅	14
${}^{3}J_{2-5}$	8.6	Furan	69
C ₆ H ₅ —OCH ₃		Pyrrole	69
2-3	58	Thiophene	64
3-4	56	$H_2C = C = C(CH_3)_2$	100
C ₆ H ₅ NH ₂		$-\overline{c}\equiv\overline{c}-$	170-176
1-2	61		
2-3	58	Structure	$^{2}J_{cc}$, Hz
3-4	57		,
${}^{3}J_{2-5}$	7.9	СнСн	16
C ₆ H ₅ CH ₃	44	$\overline{CH} - C = C\overline{H}$	11.8
			22

TABLE 3.53 Carbon-Carbon Spin Coupling Constants (Continued)

*R, alkyl group; Ar, aryl group.

TABLE 3.54 Carbon-Fluorine Spin Coupling Constants

Structure*	J _{CF} , Hz	Structure*	J _{CF} , Hz
F H H	158	$p-F-C_6H_4-CF_3$ $p-F-C_6H_4-CO-CH_3$ $p-F-C_6H_4-NO_2$ $F-C_6H_4-NO_2$	-252 -253 -257
F H F H	235	${}^{2}J_{CF} = 21.0$ ${}^{3}J_{CF} = 7.7$ ${}^{4}J_{CF} = 3.4$	- 244
F F H	- 274	F F C=CH ₂	- 287
F F F	- 259	F F F	308
F F CH.	- 271		- 353
F H C Ar	- 165	F H C=0	369
$F-CH_2CH_2 - \text{ or } F-CR_3$ $p-F-C_6H_4 - OR$ $p-F-C_6H_4 - R$	167 237 241	F F C C C H ₂ OH	- 241

Structure*	$J_{\rm CF}$, Hz	Structure*	J _{CF} , Hz	
F F C C C C C C C C C C C C C C C C C C	- 278	F F C C C C C C C C H ₃	- 289	

-265

TABLE 3.54 Carbon-Fluorine Spine Coupling Constants (Continued)

*Ar, aryl group; R, alkyl group.

OCF₃

TABLE 3.55 Carbon-13 Chemical Shifts of Deuterated Solvents

Rel	ative	to	tetrameti	hvi	lsil	lane.

Solvent	Group	δ, ppm
Acetic- d_3 acid- d_1	Methyl	20.0
	Carbonyl	205.8
Acetone-d ₆	Methyl	28.1
0	Carbonyl	178.4
Acetonitrile-d ₂	Methyl	1.3
	Carbonyl	117.7
Benzene- d_6		128.5
Carbon disulfide		193
Carbon tetrachloride		97
Chloroform-d		77
$Cyclohexane-d_{12}$		25.2
Dimethyl sulfoxide- d_{c}		39.5
1,4-Dioxane- d_6		67
Formic- d_1 acid- d_1	Carbonyl	165.5
Methanol- d_{4}	5	47-49
Methylene chloride- d_2		53.8
Nitromethane- d_3		57.3
Pyridine-d ₅	C_3, C_5	123.5
•	C ₄	135.5
	C ₂ , C ₆	149.9

TABLE 3.56	Carbon-13 (Coupling	Constants	with	Various	Nuclei
-------------------	-------------	----------	-----------	------	---------	--------

Nuclei	Structure	J, Hz	² <i>J</i> , Hz	³ <i>J</i> , Hz	4 <i>J</i> , Hz
² H	$CDCl_3$ $CD_3 - CO - CD_3$ $(CD_3)_2 SO$ $C_6 D_6$	32 20 22 26			
⁷ Li	CH₃Li	15			
¹¹ B	$(C_6H_5)_4B^-$	49		3	

Nuclei	Structure	¹ <i>J</i> , Hz	² <i>J</i> , Hz	³ <i>J</i> , Hz	^{4}J , Hz
¹⁴ N	$(CH_3)_4N^+$ CH_3NC	10 8			
²⁹ Si	(CH ₃) ₄ Si	52			
31 p	$\begin{array}{c} (CH_3)_3P \\ (C_4H_9)_3P \\ (C_6H_5)_3P \\ (CH_3)_4P^+ \\ (C_4H_9)_4P^+ \\ (C_6H_5)_4P^+ \\ R(RO)_2P = O \\ (C_4H_9O)_3P = O \end{array}$	14 11 12 56 48 88 142	12 20 4 11 5-7 6	5 7 15 13 7	0 3
⁷⁷ Se	$(CH_3)_2Se$ $(CH_3)_3Se^+$	62 50			
¹¹³ Cd	(CH ₃) ₂ Cd	513, 537			
¹¹⁹ Sn	$\begin{array}{c} (CH_3)_4 Sn \\ (CH_3)_3 SnC_6H_5 \end{array}$	340 474	37	47	11
¹²⁵ Te	(CH ₃) ₂ Te	162			
¹⁹⁹ Hg	$(CH_3)_2Hg$ $(C_6H_5)_2Hg$	687 1186	88	102	18
²⁰⁷ Pb	$(CH_3)_2 Pb$ $(C_6H_5)_4 Pb$	250 481	68	81	20

TABLE 3.56 Carbon-13 Coupling Constants with Various Nuclei (Continued)

TABLE 3.57 Boron-11 Chemical Shifts

Values given in ppm on the δ scale, relative to B(OCH₃)₃.

Structure	δ, ppm	Structure	δ, ppm
R ₃ B Ar ₃ B BF ₃ BC	-67 to -68 -43 24	HB NH-BH NH	- 12
BCl ₃ BBr ₃ Bl ₃ B(OH) ₃ B(OP)	-12 -6 41 36 0.1	H H H H H R ₂ H H	37
$B(OR)_{3}$ $B(OR)_{2})_{3}$ $C_{6}H_{5}BCl_{2}$ $C_{6}H_{5}B(OH)_{2}$ $C_{4}H_{5}B(OR)_{2}$	-13 -36 -14 -10	H NR ₂ H H NR ₂ H	15
$M(BH_4)$ $B(BF_4)$	55-61 19-20	$(CH_3)_2N - B(CH_3)_2$	62
Addition complexes $R_2O \cdot BH_3$ $R_3N \cdot BH_3$	18-19 25	Boranes B_2H_6 B_4H_{10}	1
$R_2 NH \cdot BH_3$	33	(BH ₂) (BH)	25 60
<u>«</u>	31		Base Apex

TABLE 3.57 Boron-11 Chemical Shifts (Continued)

Values given in ppm on the δ scale, relative to B(OCH ₃))3.
---	-----

Structure	δ, ppm	Structure	δ, ppm
$R_2O(or ROH) \cdot BF_3$ $R_2O(or ROH) \cdot BCl_3$ $R_2O(or ROH) \cdot BBr_3$ $R_2O(or ROH) \cdot BI_3$ $N \cdot BBr_3$	$ \begin{array}{r} 17-19 \\ -7 \text{ to } -8 \\ 23-24 \\ 74-82 \\ 24 \end{array} $	$B_{5}H_{9}$ $B_{5}H_{11}$ $B_{10}H_{14}$	31 70 - 16 50 7 54

TABLE 3.58 Nitrogen-15 (or Nitrogen-14) Chemical Shifts

Values given in ppm on the δ scale, relative to NH_3 liquid.

Substituent group	δ, ppm	Substituent group	δ, ppm
Aliphatic amines		Amides (continued)	
Primary	1-59	HCO-NH-Aryl	138-141
Secondary	7-81	RCO-NHR or RCO-NR ₂	103-130
Tertiary	14-44	RCO-NH-Aryl	131-136
Cyclo, primary	29-44	Aryl—CO—H—Aryl	ca 126
Aryl amines	40-100	Guanidines	
Aryl hydrazines	40-100	Amino	30-60
Piperidines, decahydroquino-	30-82	Imino	166-207
lines		Thioureas	85-111
Amine cations		Thioamides	135-154
Primary	19-59	Cyanamides	
Secondary	40-74	R ₂ N—	-12 to -38
Tertiary	30-67	—CN	175-200
Quaternary	43-70	Carbodiimides	95-120
Enamines, tertiary type		Isocyanates	
Alkyl	29-82	Alkyl, primary	14-32
Cycloalkyl	55-104	Alkyl, secondary and tertiary	54-57
Aminophosphines	59-100	Aryl	ca 46
Amine N-oxides	95-122	Isothiocyanates	90-107
Ureas		Azides	52-80
Aliphatic	63-84		108-122
Aryl	105-108		240-260
Sulfonamides	79-164	Lactams	113-122
Amides		Hydrazones	
HCO—NHR		Amino	141-167
$\mathbf{R} = \mathbf{primary}$	100-115	Imino	319-327
$\mathbf{R} = \mathbf{secondary}$	104-148	Cyanates	155-182
R = tertiary	96-133	Nitrile N-oxides, fulminates	195-225

Substituent group	δ, ppm	Substituent group	δ, ppm
Isonitriles		Oximes	340-380
Alkyl, primary	162-178	Nitramines	
Alkyl, secondary	191-199	Amine	252-280
Aryl	ca 180	NO ₂	328-355
Nitriles		Nitrates	310-353
Alkyl	235-241	gem-Polynitroalkanes	310-353
Aryl	258-268	Nitro	
Thiocyanates	265-280	Aryl	350-382
Diazonium		Alkyl	372-410
Internal	222-230	Hetero, unsaturated	354-367
Terminal	315-322	Azoxy	330-356
Diazo		Azo	504-570
Internal	226-303	Nitrosamines	222-250
Terminal	315-440		525-550
Nitrilium ions	123-150	Nitrites	555-582
Azinium ions	185-220	Thionitrites	720-790
Azine N-oxides	230-300	Nitroso	
Nitrones	270-285	Aliphatic amines, NO	535-560
Imides	170-178	Arvl	804-913
Imines	310-359		

TABLE 3.58 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued)

Saturated cyclic systems

Unsaturated cyclic systems

TABLE 3.58 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued)

Substituent	$\Delta_{ ext{C-2}}$	$\Delta_{ ext{C-3}}$	$\Delta_{ ext{C-4}}$
	-0.4	0.3	- 8.0
$-CH_2CH_3$	-1.8		-6.6
$-CH(CH_3)_2$	-5.1		-5.9
$-C(CH_3)_3$	-2.5		- 5.8
-CN	-0.9	-0.8	10.6
—СНО	10	11	29
-CO-CH ₃	-9	15	11
$-CO-OCH_2CH_3$	11.8		-5
-OCH ₃	- 49	0	-23
—ОН	- 126	-2	-118
$-NO_2$	-23	1	22
$-NH_2$	-45	10	-46
—F	-42	-18	
-Cl	-4	4	-6
—Br	2	8	7

TABLE 3.59 Nitrogen-15 Chemical Shifts in Mono-substituted Pyridine

~

TABLE 3.60 Nitrogen-15 Chemical Shifts for Standards

Values given in ppm, relative to NH_3 *liquid at* $23^{\circ}C$.

Substance	δ, ppm	Conditions
Nitromethane (neat)	380.2	For organic solvents and acidic aqueous solutions
Potassium (or sodium) nitrate (saturated aqueous solution)	376.5	For neutral and basic aqueous solutions
$C(NO_2)_4$	331	For nitro compounds
$(CH_3)_2$ —CHO (neat)	103.8	For organic solvents and aqueous solutions
$(C_{2}H_{5})_{4}N^{+}Cl^{-}$	64.4	Saturated aqueous solution
$(CH_3)_4 N^+ Cl^-$	43.5	Saturated aqueous solution
NH ₄ Cl	27.3	Saturated aqueous solution
NH ₄ NO ₃	20.7	Saturated aqueous solution
NH ₃	0.0	Liquid, 25°C
-	- 15.9	Vapor, 5 atm

Structure	J, Hz	Structure	J, Hz
$R - NH_2$ and R_2NH	61-67	Aryl-NHNH ₂	90
Aryl-NH ₂	78	$p-O_2N$ — aryl — NHNH ₂	99
p-CH ₃ O-aryl-NH ₂	79	Aryl-SO ₂ -NH ₂	81
$p-O_2N$ — aryl — NH ₂	90-93	Aryl-SO ₂ -NHR	86
Amine salts (alkyl and aryl) Aryl—NHOH Aryl—NHCH ₃ Aryl—NHCH ₂ F	73-76 79 87 90	$\begin{array}{c} O \\ H \\ H \\ H \\ H \\ H \\ H_{anti} \end{array} (to -CO -)$	88 92-93
$ \begin{array}{c} O \\ R \\ R \\ Pyrrole \\ HC \equiv NH^+ \\ \geq P - NH_2 \end{array} $	88–92 97 133–136 82–90	$(R_3Si)_2NH$ CF_3 — S — NH_2 $(CF_3$ — $S)_2NH$ Pyridinium ion Quinolinium ion	67 81 99 90 96

TABLE 3.61 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants

TABLE 3.62 Nitrogen-15 to Carbon-13 Spin Coupling Constants

Structure	J, Hz	Structure	J, Hz
Alkyl amines	4-4.5	Alkyl-NO ₂	11
Cyclic alkyl amines	2-2.5	R—CN	18
Alkyl amines protonated	4-5	$CH_3 - \vec{N} \equiv \bar{C}$	
Aryl amines	10-14	H ₃ C—N	10
Aryl amines protonated	9	–N≡C	9
CH ₃ CO—NH ₂	14-15	Diaryl azoxy	
$H_2N-CO-NH_2$	20	anti	18
Aryl—NO ₂	15	syn	13

TABLE 3.63 Nitrogen-15 to Fluorine-19 Spin Coupling Constants

Structure	J, Hz Structure		J, Hz
NF ₃	155	Pyridine	
F_4N_2	164	2-F	52
FNO ₂	158	3-F	4
F ₃ NO	190	2,6-di-F	37
$F_3C - O - NF_2$	164-176	Pyridinium ion	
FCO-NF ₂	221	2-F	23
$(NF_4)^+SbF_6^-$	323	3-F	3
$(NF_4)^+AsF_6^-$	328	Quinoline, 8-F	3
$(N_2F)^+AsF_6^-$	459	Aniline	
$F_3C - NO_2$	215	2-F	0
F		3-F	0
N = N (21 = 10)	190	4-F	1.5
		Anilinium ion	
F		2-F	1.4
F, F	202	3-F	0.2
N = N (² J = 52)	205	4-F	0

TABLE 3.64 Fluorine-19 Chemical Shifts

Values given in ppm on the δ scale, relative to CCl₃F.

Substituent group	δ, ppm	Substituent group	δ, ppm
	-67 to -42	Cyclohexane-F	210
	(aryl)(alkyl)		(axial)
	-29 to -20		to
-N-CO-F	-5		240
AryI-CF ₂ CI	49	Parfluaraqualaalkana	
$-CF P_{2}$	50		163 108
$-CF_{2}BT$	61 71	$\geq C\underline{\Gamma} + C\Gamma_3$	103-196
$R = CF_2CI$	56 73	$-=C\underline{F}(CF_3)_2$	180–191
$=C-CF_3$ and ary $-CF_3$	50=13	-CFH-	198-231
$-US-UF_3$	/0	-CFH ₂	235-244
-CF-CF ₃	/1-/3	$F_2C = CF_2$	133
-S-CF ₃	41	F _c CF ₂ —CF ₂ H	
$-s - CF_2 - s - CF_2 - CF_2 - S - CF_2 - C$	39	C = C	
P-CF ₃	46-66	\mathbf{F}_{t} \mathbf{F}_{s}	
$\geq N - CF_3$	40-58	cis	108
$>N-CF_2-C$	85-127	trans	92
$-O-CF_2-R$	70-91	gem	192
$-O-CF_2-CF_3$	70-91	F_2 F_3	
$-CH_2-CF_3$	76-77	H C=C	
HO-CO-CF ₃	77	C=C H	
$-CHF-C\underline{F}_{3}$	81		
$-CF_2-CF_3$	78-88		126
CSF	81	F-1 F-2	120
$CF_3 - C - N \leq$	84-96	F-3	155
$-CO-CF_2-CF_3$	83	CIFC = CH - CF	61
	86-126	Cycloalkenes	01
-CF ₂ Br	91	$=CF-CF_{a}-$	
$-C-CF_2-S-$	91-98	$C(CF_2 \text{ or } H)$	101-113
-CF=	180-192	$-CF_2-CF_2-$	
$-CF_2-CF_3$	111	$C(CF_3 \text{ or } CH_3) =$	110-114
$-CO-CF_2-$	116-131	$-CF_2-CF_2-CH=$	113-116
$-C(halide) - CF_2 - CF_2$	119-128	$-CF_2 - C\overline{F_2} - CF =$	119-122
$-CF_2$ $-CF_3$	121-125	Aryl—F	113
$-CF_2-CF_2-$	121-129	$C_{10}H_7 - F$	
$-CF_2 - CH_2 - CH_2$	122-133	F-1	127
$-C\overline{F}$.H	126 - 132 136 - 143	F-2	114
N -	150 115	$C_6H_5-C_6H_4-F$	
$>F_2$	151-156	F-2	117
\wedge		F-3	113
$\langle \rangle F_2$	147	F-4	109
\sim		C_6F_6	163
\square	96-133		
	20-155		
	159		
\checkmark			
		4	I

Substance	Formula	δ, ppm
 Trichlorofluoromethane	CFCl ₃	0.0
α, α, α -Trifluorotoluene	C ₆ H ₅ CF ₃	63.8
Trifluoroacetic acid	CF ₃ COOH	76.5
Carbon tetrafluoride	CF_4	76.7
Fluorobenzene	C ₆ H ₅ F	113.1
Perfluorocyclobutane	C_4F_8	138.0

TABLE 3.65 Fluorine-19 Chemical Shifts for Standards

TABLE 3.66 Fluorine-19 to Fluorine-19 Spin Coupling Constants

Structure	J _{FF} , Hz	
$F_2 C$ cycloalkane		
gem	212-260	
Unsaturated compounds $>C=C \le$		
gem	30-90	
trans	115-130	
cis	9-58	
Aromatic compounds, monocyclic		
ortho	18-22	
meta	0-7	
para	12-15	
Alkanes		
$CFCl_2 - CF_2 - CFCl_2$	6	
$C\overline{F}Cl_2 - C\overline{F}_2 - CCl_3$	5	
$C\overline{F}_2ClC\overline{F}_2CF_2Cl$	1	
$C\underline{F}_3$ — $C\underline{F}_2$ — CF_2Cl (or — CF_3)	<1	
$CF_3 - CF_2 - CF_2Cl$	2	
$C\underline{F}_3$ — CF_2 — $C\underline{F}_2Cl$	9	
$CF_3 - CF_2 - CF_3$	7	

TABLE 3.67 Silicon-29 Chemical Shifts

Values given in ppm on the δ scale relative to tetramethylsilane.

	n				
Substituent group X in $(CH_3)_{4-n}SiX_n$	1	2	3	4	
F	35	9	- 52	- 109	
-Cl	30	32	13	- 19	
— Br	26	20	-18	- 94	
—I	9	- 34	-18	- 346	
—н	- 19	-42	-65	-93	
-C ₂ H ₅	2	5	7	8	
$-C_6H_5$	- 5	-9	-12		
-CH=CH ₂	7	- 14	-21	- 23	
—Oalkyl	14-17	-3 to -6	-41 to -45	-79 to -83	
—Oaryl	17	-6	- 54	- 101	
-O-CO-alkyl	22	4	-43	- 75	
-N(CH ₃) ₂	6	-2	-18	- 28	

Structure	δ, ppm	Structure	δ, ppm
Hydrides H ₃ Si — $-H_2Si$ — HSi \leq Silicates Orthosilicate anions Silicon in end position Silicon in middle Branching silicons Cross-linked silicons Methyl siloxanes (CH ₃) ₂ Si — O— (end position) O— (CH ₃) ₂ Si — O— (middle) O— CH ₃ Si(H) O— O—	$\begin{array}{r} -39 \text{ to } -60 \\ -5 \text{ to } -37 \\ -2 \text{ to } -39 \\ \hline \\ -69 \text{ to } -72 \\ -77 \text{ to } -81 \\ -85 \text{ to } -89 \\ -93 \text{ to } -97 \\ -107 \text{ to } -120 \\ \hline \\ 6-8 \\ -18 \text{ to } -23 \\ \hline \\ -35 \text{ to } -36 \end{array}$	$\begin{array}{c} O-\\ \\ CH_{3}Si-O-\\ O-\\ O-\\ \\ O-Si-O-\\ (cross-linked)\\ \\ O-\\ Polysilanes\\ F_{3}Si-SiCl_{3}\\ Cl_{3}Si-SiCl_{3}\\ (CH_{3}O)_{3}Si-Si(OCH_{3})_{3}\\ (CH_{3})_{3}Si-Si(OCH_{3})_{3}\\ (CH_{3})_{2}Si-Si(CH_{3})_{3}\\ (CH_{3})_{2}Si-Si(CH_{3})_{3}\\ (CH_{3})_{2}Si-Si(CH_{3})_{3}]_{2}\\ HSi[Si(CH_{3})_{3}]_{4}\\ \hline\end{array}$	-65 to -66 -105 to -110 -74 -8 -53 -20 -48 -117 -135

TABLE 3.67	Silicon-29 Chemical Shifts (Continued)

TABLE 3.68 Phosphorus-31 Chemical Shifts

Values given in ppm on the δ scale, relative to 85% H₃PO₄.

	Identical atoms	Non-identically substituted pho		iosphorus	
Structure	to phosphorus	$\mathbf{R} = \mathbf{CH}_3$	$R=C_2H_5$	$R = C_6 H_5$	
P ₄	461				
PR ₃		62	20	6	
PHR ₂		99	56	41	
PH_2R		164	128	122	
PH ₃	241				
PF ₃	-97				
PRF ₂			- 168	-207	
PCl	-220				
PRCl ₂		- 192	- 196	- 162	
PR ₂ Cl		-94	-119	- 81	
PBr ₃	-227				
PRBr ₂		- 184	- 194	-152	
PR ₂ Br		-91	-116	-71	
PI ₃	-178				
P(CN) ₃	136				
$P(SiR_3)_3$		251			
$P(OR)_3$		- 141	- 139	- 127	
P(OR) ₂ Cl		- 169	- 165	- 157	
P(OR)Cl ₂		-114	- 177	- 173	
$P(SR)_3$		- 125	-115	-132	
P(SR) ₂ Cl		- 188	- 186	- 183	
P(SR)Cl ₂		-206	-211	-204	
P(SR) ₂ Br				- 184	

TABLE 3.68	Phosphorus-31 Chemical Shifts ((Continued)

	Identical atoms	s Non-identically substituted phosphor			
Structure	to phosphorus	$R = CH_3$	$R = C_2 H_5$	$R = C_6 H_5$	
$\begin{array}{c} P(SR)Br_{2} \\ P(NR_{2})_{3} \\ P(NR_{2})Cl_{2} \\ PR(NR_{2})_{2} \\ PR_{2}(NR_{2}) \\ F_{2}P - PF_{2} \\ Cl_{2}P - PCl_{2} \\ I_{2}P - PI_{2} \\ PH_{2}^{-}K^{+} \\ P(CF_{3})_{3} \\ P_{4}O_{6} \end{array}$	- 226 - 155 - 170 255 3 - 113	-204 -123 -166 -86 -39	-118 -162 -100 -62	- 151 - 100	
	Identical atoms	Non-ide	ntically substituted ph	osphorus	
Structure	to phosphorus	$\mathbf{X} = \mathbf{F}$	$\mathbf{X} = \mathbf{Cl}$	$\mathbf{X} = \mathbf{Br}$	
$P(NCO)_3$ $P(NCO)_2X$ $P(NCO)X_2$ $P(NCS)_2$	-97 -86	- 128 131	- 128 - 166	- 127	
$P(NCS)_2 X$ $P(NCS) X_2$			- 114 - 155	- 112 - 153	
	Identical atoms	Non-ide	ntically substituted ph	osphorus	
Structure	to phosphorus	$R = CH_3$	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R = C_6 H_5$	
$\begin{array}{c} O = PR_{3} \\ O = PHR_{2} \\ O = PF_{3} \\ O = PRF_{2} \\ O = PCl_{3} \\ O = PRcl_{2} \\ O = PRcl_{2} \\ O = PRcl_{2} \\ O = P(OR)_{2}Cl \\ O = P(OR)_{2}Cl \\ O = P(OR)_{2}Cl \\ O = P(OR)_{2}Cl \\ O = PR_{2}(OC_{2}H_{5}) \\ O = PR(OC_{2}H_{5}) \\ O = PR(OC_{2}H_{5}) \\ O = PR(OC_{2}H_{5}) \\ O = PR(OC_{2}H_{5}) \\ O = P(OR)_{2}NH_{2} \\ O = P(OR)_{2}NH_{2} \\ O = P(OR)_{2}NH_{2} \\ O = P(OR)_{2}(NCS) \\ O = PSr_{3} \\ O = P(NCO)_{3} \\ O = P(NCS)_{3} \\ O = P(NH_{2})_{3} \\ \end{array}$	36 2 103 41 62 22	$ \begin{array}{r} -36 \\ -63 \\ -27 \\ -45 \\ -65 \\ -1 \\ -6 \\ -6 \\ -19 \\ -50 \\ -30 \\ -23 \\ -44 \\ -15 \\ -66 \end{array} $	$ \begin{array}{r} -48 \\ -29 \\ -53 \\ -77 \\ 1 \\ -3 \\ -6 \\ -15 \\ -52 \\ -33 \\ -24 \\ -12 \\ 19 \\ -61 \\ \end{array} $	$ \begin{array}{r} -25 \\ -23 \\ -11 \\ -34 \\ -43 \\ 18 \\ 6 \\ -2 \\ -31 \\ -17 \\ -2 \\ -26 \\ -3 \\ 29 \\ -55 \end{array} $	

Structure	Identical atoms attached directly to phosphorus	Stru	cture	Identical atoms attached directly to phosphorus	
$\begin{array}{c} PF_{5} \\ PF_{6}^{-}H^{+} \\ PBr_{5} \\ P(OC_{2}H_{5})_{5} \\ PO_{4}^{3-} \\ O \Longrightarrow P[OSi(CH_{3})_{3}]_{3} \\ H_{4}P_{2}O_{7} \\ Phosphonates \\ Phosphonium cations \\ Alkyl \\ Aryl \\ (O_{3}P \longrightarrow PO_{3})^{4-} \\ Polyphosphates \\ O \Longrightarrow P \longrightarrow O \\ \downarrow \\ (OR)_{7} \end{array}$	$ \begin{array}{r} 35 \\ 144 \\ 101 \\ 71 \\ -6 \\ 33 \\ 11 \\ -24 \text{ to } -2 \\ -43 \text{ to } -32 \\ -35 \text{ to } -18 \\ -9 \\ \end{array} $	$\begin{array}{c} 0 \\ -0 - P - \\ 0 \\ 0 \\ 0 \\ -0 - P - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	O $-O - P - O 0$ OR (middle group) O $-O - P - O 0$ O P (branch group)		
(end grou	ip) ca 6				
	Identical atoms attached directly	Non-ide	entically substituted	l phosphorus	
Structure	to phosphorus	$R = CH_3$	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$\mathbf{R} = \mathbf{C}_6 \mathbf{H}_5$	
$S = PR_3$ $S = PCl_3$ $S = PRCl_2$ $S = PR_2Cl$	29	- 59 80 87	55 94 109	-43 -75 -80	
$S = PBr_3$ $S = PRBr_2$ $S = PR_2Br$	112	- 21 - 64	-42 -98	- 20	
$S = P(OR)_{3}$ $S = P(OR)_{Cl_{2}}$ $S = P(OR)_{2}Cl$ $S = PH(OR)_{2}$ $S = P(SR)_{3}$		73 59 73 74 98	68 56 68 69 92	53 54 59 59 92	
$S = P(NH_2)_3$ $S = P(NR_2)_3$ $Se = P(OR)_3$ $Se = P(SR)_3$	60	82 78 82	78 71 76	- 58	
P(OR) ₅ PRF ₄ PR ₂ F ₃		30 9	$71 \\ 30 \\ -6$	86 42	

TABLE 3.68 Phosphorus-31 Chemical Shifts (Continued)

Substituent group	$J_{\rm PH},{ m Hz}$	Substituent group	J _{pp} , Hz
>PH —PH ₂ - RPH ₂	180-225 134 160-210	>P-F RPF ₂	1320–1420 (1F) (3F) 1140–1290
$>P-CH_3$ $>P-CH_2-$ H H_2	16 14	R ₂ PF RP(N)F	1020–1110 920–985 (alkyl) (aryl)
$\sum_{\mu} C = C H_{\mu}$		PF -0	1225-1305
αβ	12-22 30-40 14-20	(OCN)PF	1310
$(Halogen)_2 P - CH$ >P-NH >P-O-CH.	16-20 10-28 11-15	$P \sim F$ $P \sim F$	1100–1200 60–90
$P - O - CH_2 - R$ $P - O - CHR_2$ P - SCH	6-10 3-7 5-20	P	0.60
>P-N-CH >P-C-CH	8-25 0-4	meta para	$1-7 \\ 0-3$
P-	7-10	Substituent group	J _{PF} , Hz
$meta O=PHR_2 O-PH(S)R O-PH(S)$	2-4 210-500 490-540	P axial F equatorial	600-860 800-1000
O ₂ PHK O ₂ PH(N) O ₂ PH(S or Se) O ₂ PH	500-575 560-630 630-655 630-760	O=P-CF	110-113
S(or Se) = P - H	490-650	O = P - F	9801190
S(or Se)=PHR ₂ $O=P-CH_2$	420-454	Substituent group	J _{PB} , Hz
0 = P - CH = C	15-30	H ₃ B-P-N	80
O = P - CH - Aryl(or C = O)	15-30	Substituent group	$J_{\rm PP},{ m Hz}$
(Halogen) ₂ P—N—CH	9-18	>PP<	220-400
S=P-CH	11-15	$ \begin{array}{c} \mathbf{O} = \mathbf{P} - \mathbf{P} = \mathbf{O} \\ \mathbf{I} \mathbf{I} \end{array} $	330-500
$\gg P - CH_3^+$ $\gg P - H^+$	12–17 490–600	S = P - P = S	15-500

TABLE 3.69 Phosphorus-31 Spin Coupling Constants

Substituent group	$J_{\rm PP},{\rm Hz}$	Substituent group	$J_{\rm PP},{ m Hz}$
	ca 70	$O = \begin{vmatrix} -N & -P \\ -N & P \\ H & P \end{vmatrix} = O$	8-30
>P-O-P< >P-S-P<	20-40 86-90	P-N N PN	5-66
$\mathbf{O} = \mathbf{P} - \mathbf{O} - \mathbf{P} = \mathbf{O}$	15-25	P=N-P=N-	5-65

TABLE 3.69 Phosphorus-31 Spin Coupling Constants (Continued)

3.7 MASS SPECTROMETRY

3.7.1 Correlation of Mass Spectra with Molecular Structure

Molecular Identification. In the identification of a compound, the most important information is the molecular weight. The mass spectrometer is able to provide this information, often to four decimal places. One assumes that no ions heavier than the molecular ion form when using electron-impact ionization. The chemical ionization spectrum will often show a cluster around the nominal molecular weight.

Several relationships aid in deducing the empirical formula of the parent ion (and also molecular fragments). From the empirical formula hypothetical molecular structures can be proposed, using the entries in the formula indices of Beilstein and *Chemical Abstracts*.

Natural Isotopic Abundances. The relative abundances of natural isotopes produce peaks one or more mass units larger than the parent ion (Table 3.70(a)). For a compound $C_wH_xO_zN_y$, a formula allows one to calculate the percent of the heavy isotope contributions from a monoisotopic peak, P_M , to the P_{M+1} peak:

$$100 \frac{P_{M+1}}{P_M} = 0.015x + 1.11w + 0.37y + 0.37z$$

Tables of abundance factors have been calculated for all combinations of C, H, N, and O up to mass 500 (J. H. Beynon and A. E. Williams, *Mass and Abundance Tables for Use in Mass Spectrometry*, Elsevier, Amsterdam, 1963).

Compounds that contain chlorine, bromine, sulfur, or silicon are usually apparent from prominent peaks at masses 2, 4, 6, and so on, units larger than the nominal mass of the parent of fragment ion. For example, when one chlorine atom is present, the P + 2 mass peak will be about one-third the intensity of the parent peak. When one bromine atom is present, the P + 2 mass peak will be about the same intensity as the parent peak. The abundance of heavy isotopes is treated in terms of the binominal expansion $(a + b)^m$, where a is the relative abundance of the light isotope, b is the relative abundance of the heavy isotope, and m is the number of atoms of the particular element present in the molecule. If two bromine atoms are present, the binominal expansion is

$$(a+b)^2 = a^2 + 2ab + b^2$$

Now substituting the percent abundance of each isotope (⁷⁹Br and ⁸¹Br) into the expansion,

 $(0.505)^2 + 2(0.505)(0.495) + (0.495)^2$ 0.255 + 0.500 + 0.250

gives

which are the proportions of P:(P+2):(P+4), a triplet that is slightly distorted from a 1:2:1 pattern. When two elements with heavy isotopes are present, the binomial expansion $(a + b)^m (c + d)^n$ is used.

Sulfur-34 enhances the P + 2 peak by 4.2%; silicon-29 enhances the P + 1 peak by 4.7% and the P + 2 peak by 3.1%.

Exact Mass Differences. If the exact mass of the parent or fragment ions are ascertained with a high-resolution mass spectrometer, this relationship is often useful for combinations of C, H, N, and O (Table 3.70(*b*):

Exact mass difference from nearest integral mass + 0.0051z - 0.0031y0.0078 = number of hydrogens

One substitutes integral numbers (guesses) for z (oxygen) and y (nitrogen) until the divisor becomes an integral multiple of the numerator within 0.0002 mass unit.

For example, if the exact mass is 177.0426 for a compound containing only C, H, O, and N (Note the odd mass which indicates an odd number of nitrogen atoms), then

$$\frac{0.0426 + 0.0051z - 0.0031y}{0.0078} = 7$$
 hydrigen atoms

when z = 3 and y = 1. The empirical formula is C₉H₇NO₃ since

$$\frac{177 - 7(1) - 1(14) - 3(16)}{12} = 9$$
 carbon atoms

Number of Rings and Double Bonds. The total number of rings and double bonds can be determined from the empirical formula $(C_wH_xO_vN_v)$ by the relationship

$$\frac{1}{2(2w-x+y+z)}$$

when covalent bonds comprise the molecular structure. Remember the total number for a benzene ring is four (one ring and three double bonds); a triple bond has two.

General Rules

- 1. If the nominal molecular weight of a compound containing only C, H, O, and N is even, so is the number of hydrogen atoms it contains.
- 2. If the nominal molecular weight is divisible by four, the number of hydrogen atoms is also divisible by four.
- 3. When the nominal molecular weight of a compound containing only C, H, O, and N is odd, the number of nitrogen atoms must be odd.

Metastable Peaks. If the mass spectrometer has a field-free region between the exit of the ion source and the entrance to the mass analyzer, metastable peaks m^* may appear as a weak, diffuse (often humped-shape) peak, usually at a nonintegral mass. The one-step decomposition process takes the general form:

Original ion \rightarrow daughter ion + neutral fragment

The relationship between the original ion and daughter ion is given by

$$m^* = \frac{(\text{mass of daughter ion})^2}{\text{mass of original ion}}$$

For example, a metastable peak appeared at 147.9 mass units in a mass spectrum with prominent peaks at 65, 91, 92, 107, 108, 155, 172, and 200 mass units. Try all possible combinations in the above expression. The fit is given by

$$147.9 = \frac{(172)^2}{200}$$

which provides this information:

$$200^1 \rightarrow 172^+ + 28$$

The probable neutral fragment lost is either $CH_2 = CH_2$ or CO.

3.7.2 Mass Spectra and Structure

The mass spectrum is a fingerprint for each compound because no two molecules are fragmented and ionized in exactly the same manner on electron-impact ionization. In reporting mass spectra the data are normalized by assigning the most intense peak (denoted as base peak) a value of 100. Other peaks are reported as percentages of the base peak.

A very good general survey for interpreting mass spectral data is given by R. M. Silverstein, G. C. Bassler, and T. C. Morrill, *Spectrometric Identification of Organic Compounds*, 4th ed., Wiley, New York, 1981.

Initial Steps in Elucidation of a Mass Spectrum

- 1. Tabulate the prominent ion peaks, starting with the highest mass.
- 2. Usually only one bond is cleaved. In succeeding fragmentations a new bond is formed for each additional bond that is broken.
- 3. When fragmentation is accompanied by the formation of a new bond as well as by the breaking of an existing bond, a rearrangement process is involved. These will be even mass peaks when only C, H, and O are involved. The migrating atom is almost exclusively hydrogen; six-membered cyclic transition states are most important.
- 4. Tabulate the probable groups that (*a*) give rise to the prominent charged ion peaks and (*b*) list the neutral fragments.

General Rules for Fragmentation Patterns

- 1. Bond cleavage is more probable at branched carbon atoms: tertiary > secondary > primary. The positive charge tends to remain with the branched carbon.
- 2. Double bonds favor cleavage beta to the carbon (but see rule 6).
- 3. A strong parent peak often indicates a ring.
- 4. Saturated ring systems lose side chains at the alpha carbon. Upon fragmentation, two ring atoms are usually lost.
- 5. A heteroatom induces cleavage at the bond beta to it.
- 6. Compounds that contain a carbonyl group tend to break at this group; the positive charge remains with the carbonyl portion.

- 7. For linear alkanes, the initial fragment lost is an ethyl group (never a methyl group), followed by propyl, butyl, and so on. An intense peak at mass 43 suggests a chain longer than butane.
- 8. The presence of Cl, Br, S, and Si can be deduced from the unusual isotopic abundance patterns of these elements. These elements can be traced through the positively charged fragments until the pattern disappears or changes due to the loss of one of these atoms to a neutral fragment.
- 9. When unusual mass differences occur between some fragments ions, the pressure of F (mass difference 19), I (mass difference 127), or P (mass difference 31) should be suspected.

Characteristic Low-Mass Fragment Ions

Mass 30 = Primary amines Masses 31, 45, 59 = Alcohol or ether Masses 19 and 31 = Alcohol Mass 66 = Monobasic carboxylic acid Masses 77 and 91 = Benzene ring

Characteristic Low-Mass Neutral Fragments from the Molecular Ion

 $\begin{array}{l} \mbox{Mass 18 (H_2O) = From alcohols, aldehydes, ketones} \\ \mbox{Mass 19 (F) and 20 (HF) = Fluorides} \\ \mbox{Mass 27 (HCN) = Aromatic nitriles or nitrogen heterocycles} \\ \mbox{Mass 29 = Indicates either CHO or C_2H_5} \\ \mbox{Mass 30 = Indicates either CH_2O or NO} \\ \mbox{Mass 33 (HS) and 34 (H_2S) = Thiols} \\ \mbox{Mass 42 = CH_2CO via rearrangement from a methyl ketone or an aromatic} \\ \mbox{acetate or an aryl-NHCOCH}_3 \mbox{ group} \\ \mbox{Mass 43 = C_3H_7 or CH_3CO} \\ \mbox{Mass 45 = COOH or OC_2H_5} \end{array}$

Table 3.71 is condensed, with permission, from the Catalog of Mass Spectral Data of the American Petroleum Institute Research Project 44. These, and other tables, should be consulted for further and more detailed information.

Included in the table are all compounds for which information was available through the C_7 compounds. The mass number for the five most important peaks for each compound are listed, followed in each case by the relative intensity in parentheses. The intensities in all cases are normalized to the *n*-butane 43 peak taken as 100. Another method for expressing relative intensities is to assign the base peak a value of 100 and express the relative intensities of the other peaks as a ratio to the base peak. Taking ethyl nitrate as an example, the tabulated values would be

Ethyl nitrate 91(0.01)(P) 46(100) 29(44.2) 30(30.5) 76(24.2)

The compounds are arranged in the table according to their molecular formulas. Each formula is arranged alphabetically, except that C is first if carbon occurs in the molecules, followed by H if it occurs. The formulas are then arranged alphabetically and according to increasing number of atoms of each kind, all C₄ compounds being listed before any C₅ compounds, and so on.

Nearly all these spectra have been recorded using 70-V electrons to bombard the sample molecules.

(a) Abundances of some polyisotopic elements, %								
Element	Abundance	Element	Abundance	Element	Abundance			
'Η	99.985	¹⁶ O	99.76	³³ S	0.76			
² H	0.015	¹⁷ O	0.037	³⁴ S	4.22			
^{12}C	98.892	¹⁸ O	0.204	³⁵ Cl	75.53			
¹³ C	1.108	²⁸ Si	92.18	³⁷ Cl	24.47			
¹⁴ N	99.63	²⁹ Si	4.71	⁷⁹ Br	50.52			
¹⁵ N	0.37	³⁰ Si	3.12	⁸¹ Br	49.48			
		(b) Selected	d isotope masses					
	Element	Mass	Element	Mass				
	¹ H	1.0078	31 p	30.9738				
	^{12}C	12.0000	³² S	31.9721				
	^{14}N	14.0031	³⁵ Cl	34.9689				
	¹⁶ O	15.9949	⁵⁶ Fe	55.9349				
	¹⁹ F	18.9984	⁷⁹ Br	78.9184				
	²⁸ Si	27.9769	¹²⁷ I	126.9047				

TABLE 3.70 Isotopic Abundances and Masses of Selecteded Elements

TABLE 3.71 Table of Mass Spectra

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three no	ext most inter	nse peaks	
B ₂ H ₆	Diborane	28(0.13)	26(54)	27(52)	24(48)	25(30)	
$B_3H_6N_3$	Triborine triamine	81(21)	80(58)	79(37)	53(29)	52(22)	
B_5H_9	Pentaborane	64(15)	59(30)	60(30)	62(24)	61(21)	
CBrClF ₂	Difluorochlorobromomethane	164(0.23)	85(86)	87(27)	129(17)	131(16)	
CBr ₂ F ₂	Difluorodibromomethane	208(1.7)	129(70)	131(68)	79(18)	31(18)	
CCl_2F_2	Difluorodichloromethane	120(0.07)	85(33)	87(11)	50(3.9)	101(2.8)	
CCl ₃ F	Fluorotrichloromethane	136(0.04)	101(54)	103(35)	66(7.0)	35(5.8)	
CCl ₄	Tetrachloromethane	152(0.0)	117(39)	119(37)	35(16)	47(16)	
CF ₃ I	Trifluoroiodomethane	196(51)	196(51)	127(49)	69(40)	177(16)	
CF_4	Tetrafluoromethane	88(0.0)	69(57)	50(6.8)	19(3.9)	31(2.8)	
CHBrClF	Fluorochlorobromomethane	148(5.5)	67(120)	69(38)	31(13)	111(11)	
CHBrF ₂	Difluorobromomethane	130(13)	51(83)	31(18)	132(13)	79(13)	
CHCl ₃	Trichloromethane	118(1.3)	83(69)	85(44)	47(24)	35(13)	
CHF ₃	Trifluoromethane	70(0.25)	69(20)	51(18)	31(9.9)	50(2.9)	
CHN	Hydrogen cyanide	27(92)	27(92)	26(15)	12(3.8)	28(1.6)	
CH ₂ ClF	Fluorochloromethane	68(48)	68(48)	33(25)	70(15)	49(11)	
CH_2Cl_2	Dichloromethane	84(41)	49(71)	86(26)	51(21)	47(13)	
CH_2F_2	Difluoromethane	52(2.7)	33(26)	51(25)	31(7.3)	32(2.9)	
CH ₂ O	Methanal (formaldehyde)	30(19)	29(21)	28(6.6)	14(0.94)	13(0.92)	
CH ₂ O ₂	Methanoic acid (formic)	46(72)	29(118)	45(56)	28(20)	17(20)	
CH ₃ Cl	Chloromethane	50(66)	50(66)	15(54)	52(21)	49(6.6)	

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three no	ext most inte	nse peaks	
CH ₃ F	Monofluoromethane	34(29)	15(31)	33(28)	14(5.3)	31(3.2)	
CH3I	Indomethane	142(78)	142(78)	127(29)	141(11)	15(10)	
CH ₃ NO ₂	Nitromethane	61(35)	30(65)	15(34)	46(23)	29(5.3)	
CH_4	Methane	16(67)	16(67)	15(58)	14(11)	13(5.5)	
CH₄O	Methanol	32(26)	31(38)	29(25)	28(2.4)	18(0.7)	
CH₄S	Methanethiol	48(49)	47(65)	45(40)	46(9.5)	15(8.9)	
CH₅N	Aminomethane (methylamine)	31(30)	30(53)	28(47)	29(8.7)	27(8.6)	
CO	Carbon monoxide	28(78)	28(78)	12(3.7)	16(1.3)	29(0.9)	
COS	Carbonyl sulfide	60(83)	60(83)	32(48)	28(6.9)	12(5.0)	
CO_2	Carbon dioxide	44(76)	44(76)	28(5.0)	16(4.7)	12(1.9)	
CS ₂	Carbon disulfide	76(184)	76(184)	32(40)	44(33)	78(16)	
C_2F_4	Tetrafluoroethene	100(20)	31(47)	81(34)	50(14)	12(3.6)	
C_2F_6	Hexafluoroethane	138(0.14)	69(95)	119(39)	31(17)	50(9.6)	
C ₂ F ₆ Hg	Hexafluorodimethylmercury	340(0.83)	69(111)	202(26)	271(22)	200(21)	
C_2H_2	Ethyne	26(102)	26(102)	25(20)	24(5.7)	13(5.7)	
C_2H_2CIN	Chloroethanenitrile	75(51)	75(51)	48(46)	40(23)	77(16)	
$C_2H_2Cl_2$	cis-1,2-Dichloroethene	96(53)	61(72)	98(34)	63(23)	26(22)	
$C_2H_2CI_2$	trans-1,2,-Dichloroethene	96(49)	61(73)	98(32)	26(25)	63(23)	
$C_2H_2Cl_4$	1,1,2,2-Tetrachloroethane	166(5.9)	83(95)	85(60)	95(11)	87(9.7)	
$C_2H_2F_2$	1,1-Difluoroethene	64(32)	64(32)	45(21)	31(16)	33(13)	
C ₂ H ₃ Cl ₃	1,1,1-Trichloroethane	132(0.0)	97(37)	99(24)	61(19)	117(7.1)	
C ₂ H ₃ Cl ₃	1,1,2-Trichloroethane	132(3.9)	97(43)	83(41)	99(27)	85(26)	
$C_2H_3F_3$	1,1,1-Trifluoroethane	84(0.94)	69(81)	65(31)	15(13)	45(10)	
C_2H_3N	Ethanenitrile	41(89)	41(89)	40(46)	39(17)	38(10)	
C_2H_4	Ethene (ethylene)	28(66)	28(66)	27(43)	26(41)	25(7.8)	
C ₂ H₄BrCl	1-Chloro-2-bromoethane	142(7.9)	63(93)	27(82)	65(30)	26(24)	
C ₂ H ₄ Br ₂	1,2-Dibromoethane	186(1.6)	27(93)	107(72)	109(67)	26(23)	
$C_2H_4Cl_2$	1,1-Dichloroethane	98(5.7)	63(89)	27(64)	65(28)	26(21)	
$C_2H_4Cl_2$	1,2-Dichloroethane	98(1.7)	62(12)	27(11)	49(4.9)	64(3.9)	
$C_2H_4N_2$	Diazoethane	56(16)	28(27)	27(25)	26(21)	41(5.2)	
C₂H₄O	Ethanal (acetaldehyde)	44(30)	29(66)	43(18)	42(6.1)	26(6.1)	
C₂H₄O	Ethylene oxide	44(30)	29(46)	15(30)	14(12)	43(7.1)	
$C_2H_4O_2$	Ethanoic acid (acetic)	60(19)	43(37)	45(33)	15(21)	14(8.0)	
$C_2H_4O_2$	Methyl formate	60(27)	31(96)	29(60)	32(33)	28(6.8)	
C ₂ H ₅ Br	Bromoethane	108(35)	29(54)	27(48)	110(33)	26(16)	
C ₂ H ₅ Cl	Chloroethane	64(36)	64(36)	28(32)	29(30)	27(27)	
C ₂ H ₅ F	Fluoroethane	48(2.4)	47(24)	27(8.9)	33(8.2)	26(3.0)	
C ₂ H ₅ N	Ethylenimine	43(31)	42(56)	28(44)	15(20)	41(11)	
$C_2H_5NO_2$	Nitroethane	75(0.0)	29(85)	27(74)	30(19)	26(11)	
$C_2H_5NO_3$	Ethyl nitrate	91(0.01)	46(95)	29(42)	30(29)	76(23)	
C ₂ H ₆	Ethane	30(26)	28(99)	27(33)	26(23)	29(21)	
C ₂ H ₆ O	Ethanol	46(9.7)	31(63)	45(22)	29(14)	27(14)	
C ₂ H ₆ O	Dimethyl ether	46(32)	45(71)	29(56)	15(41)	14(8.9)	
$C_2H_6O_2$	Dimethyl peroxide	62(28)	29(47)	31(45)	15(16)	30(12)	
C ₂ H ₆ S	2-Thiapropane	62(56)	47(69)	45(42)	46(29)	35(24)	
C ₂ H ₆ S	Ethanethiol	62(44)	62(44)	29(43)	47(36)	27(35)	
$C_2H_6S_2$	2,3-Dithiabutane	94(95)	94(95)	45(59)	79(56)	46(34)	
$C_2H_6S_3$	2,3,4-Trithiapentane	126(54)	126(54)	45(32)	79(27)	47(19)	
C_2H_7N	Aminoethane (ethylamine)	45(18)	30(96)	28(28)	44(19)	27(13)	
C_2H_7N	N-Methylaminomethane	45(36)	44(71)	28(48)	15(14)	42(13)	

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three no	ext most inter	nse peaks
$C_2H_8N_2$	1,2-Diaminoethane	60(2.7)	30(111)	18(14)	42(6.9)	43(5.9)
C_3F_6	Hexafluoropropene	150(16)	31(56)	69(44)	131(41)	100(20)
C_3F_8	Octafluoropropane	188(0.0)	69(171)	31(49)	169(42)	50(16)
C ₃ H ₃ N	Propenenitrile	53(55)	26(55)	52(41)	51(18)	27(10)
$C_{3}H_{4}$	Propadiene	40(72)	40(72)	39(69)	38(29)	37(23)
C_3H_4	Propyne (methylacetylene)	40(79)	40(79)	39(73)	38(29)	37(22)
C_3H_4CIN	3-Chloropropanenitrile	89(12)	49(68)	54(54)	51(29)	26(20)
C ₃ H₄O	Propenal (acrolein)	56(16)	27(25)	26(15)	28(13)	55(11)
C ₃ H ₅ Cl	1-Chloro-1-propene	76(30)	41(70)	39(43)	40(10)	78(9.6)
C ₃ H ₅ ClO	3-Chloro-1,2-epoxypropane	92(0.19)	57(55)	27(53)	29(40)	31(21)
C ₃ H ₅ ClO ₂	Methyl chloroacetate	109(0.23)	59(56)	49(44)	15(43)	29(37)
C ₃ H ₅ Cl ₃	1,2,3-Trichloropropane	146(0.71)	75(61)	110(22)	77(19)	61(18)
C ₃ H ₅ N	Propanenitrile	55(8.3)	28(83)	54(51)	26(17)	27(15)
C ₃ H ₆	Cyclopropane	42(64)	42(64)	41(58)	39(44)	27(23)
C ₃ H ₆	Propene	42(39)	41(58)	39(41)	27(22)	40(17)
$C_3H_6Cl_2$	1,1-Dichloropropane	112(0.0)	63(27)	41(25)	77(22)	62(19)
$C_3H_6Cl_2$	1,2-Dichloropropane	112(2.6)	63(51)	62(36)	27(29)	41(25)
C₃H ₆ O	1-Propen-3-ol (allyl alc.)	58(12)	57(43)	29(34)	31(26)	27(19)
C ₃ H ₆ O	Propanal	58(25)	29(66)	28(46)	27(38)	26(14)
C ₃ H ₆ O	Propanone (acetone)	58(24)	43(85)	15(26)	27(5.9)	42(5.9)
C ₃ H ₆ O	1,2-Epoxypropane	58(19)	28(44)	29(30)	27(28)	26(18)
$C_3H_6O_2$	1,3-Dioxolane	74(3.1)	73(52)	43(36)	44(30)	29(30)
$C_3H_6O_2$	Propanoic acid	74(27)	28(34)	29(28)	27(21)	45(19)
$C_3H_6O_2$	Ethyl formate	74(5.8)	31(82)	28(60)	29(54)	27(36)
$C_3H_6O_2$	Methyl acetate	74(22)	43(148)	29(16)	42(15)	59(8.4)
C ₃ H ₆ O ₃	Methyl carbonate	90(3.3)	15(93)	45(54)	29(43)	31(34)
C ₃ H ₇ Br	1-Bromopropane	122(14)	43(94)	27(55)	41(47)	39(22)
C ₃ H ₇ Br	2-Bromopropane	122(11)	43(100)	27(50)	41(47)	39(24)
C ₃ H ₇ Cl	1-Chloropropane	78(3.6)	42(60)	29(27)	27(22)	41(14)
C ₃ H ₇ Cl	2-Chloropropane	78(14)	43(58)	27(20)	63(15)	41(13)
C ₃ H ₇ F	2-Fluoropropane	62(1.0)	47(84)	46(24)	61(12)	27(7.6)
C ₃ H ₇ N	2-Methylethylenimine	57(22)	28(76)	56(34)	30(24)	29(19)
C ₃ H ₇ N	N-Methylethylenimine	57(31)	42(94)	15(46)	28(25)	27(17)
C ₃ H ₇ NO	N,N-Dimethylformamide	73(54)	44(63)	42(29)	28(25)	15(24)
$C_3H_7NO_2$	1-Nitropropane	89(0.0)	43(68)	27(67)	41(58)	39(24)
$C_3H_7NO_2$	2-Nitropropane	89(0.0)	43(75)	41(55)	27(53)	39(23)
C ₃ H ₈	Propane	44(25)	29(85)	28(50)	27(33)	43(19)
C ₃ H ₈ O	1-Propanol	60(7.2)	31(115)	27(18)	29(17)	59(10)
C ₃ H ₈ O	2-Propanol	60(0.45)	45(112)	43(19)	27(18)	29(11)
C ₃ H ₈ O	Methyl ethyl ether	60(24)	45(94)	29(46)	15(23)	27(19)
$C_3H_8O_2$	Dimethoxymethane	76(1.6)	45(117)	29(51)	75(51)	15(48)
$C_3H_8O_2$	2-Methoxy-1-ethanol	76(7.3)	45(122)	29(44)	15(38)	31(32)
C ₃ H ₈ S	2-Thiabutane	76(47)	61(73)	48(40)	47(30)	27(27)
C ₃ H ₈ S	1-Propanethiol	76(30)	47(43)	43(34)	27(34)	41(32)
C ₃ H ₈ S	2-Propanethiol	76(41)	43(65)	41(44)	27(41)	61(26)
C ₃ H ₉ N	1-Aminopropane	59(1.5)	30(20)	28(2.5)	27(1.3)	41(1.0)
C ₃ H ₉ N	Trimethylamine	59(37)	58(95)	42(44)	15(32)	30(17)
$C_{3}H_{12}B_{3}N_{3}$	B, B', B''-Trimethylborazole	123(30)	108(102)	107(77)	67(38)	66(34)
C_4F_6	Hexafluorocyclobutene	162(21)	93(80)	31(51)	143(15)	74(6.9)
C_4F_6	Hexafluoro-1,3-butadiene	162(27)	93(90)	31(45)	74(10)	112(10)

Mass numbers (and intensities) of:					ensities) of:	
Molecular formula	Name	Parent peak	Base peak	Three ne	xt most inter	ise peaks
C ₄ F ₆	Hexafluoro-2-butyne	162(18)	93(47)	143(38)	31(25)	69(20)
C_4F_8	Octafluorocyclobutane	200(0.12)	100(97)	131(84)	31(53)	69(24)
C₄F ₈	Octafluoromethylpropene	200(14)	69(74)	181(54)	31(44)	93(22)
C_4F_8	Octafluoro-1-butene	200(11)	131(122)	31(86)	69(44)	93(16)
$C_4 F_{10}$	Decafluorobutane	238(0.0)	69(178)	119(33)	31(22)	100(15)
C₄HF ₇ O ₂	Heptafluorobutanoic acid	214(0.0)	45(26)	69(24)	119(17)	100(14)
C₄H ₂	1,3-Butadiyne	50(133)	50(133)	49(57)	48(14)	25(12)
C₄H₄	1-Buten-3-yne	52(55)	52(55)	51(28)	50(23)	49(7.2)
C₄H₄O	Furan	68(36)	39(58)	38(9.7)	29(9.3)	40(6.7)
C ₄ H ₄ S	Thiophene	84(93)	84(93)	58(56)	45(49)	39(24)
C ₄ H ₄ S ₂	2-Thiophenethiol	116(68)	116(68)	71(64)	45(31)	39(11)
C ₄ H ₄ N	3-Butenenitrile	67(27)	41(80)	39(36)	27(30)	40(20)
C.H.N	Pyrrole	67(67)	67(67)	39(46)	41(42)	40(36)
C.H.	1.2-Butadiene	54(65)	54(65)	27(35)	53(29)	39(28)
C.H.	1 3-Butadiene	54(46)	39(53)	27(36)	53(31)	28(24)
C.H.	1-Butyne	54(64)	54(64)	39(49)	53(27)	27(26)
$C_{4}H_{6}$	2-Butyne	54(93)	54(93)	27(42)	53(41)	39(24)
C H C I O	Ethyl dichloroacetate	156(0.12)	29(192)	27(58)	83(23)	$\frac{39(24)}{28(19)}$
C H O	2 3-Butanedione	86(13)	43(118)	15(40)	14(12)	42(8.6)
$C_{4}\Pi_{6}O_{2}$	Mathyl 2 propanosta	86(7.0)	45(118) 55(08)	27(66)	14(12) 15(27)	76(22)
$C_{4}\Pi_{6}O_{2}$	2 Promosthyl sostate	166(0.02)	42(158)	27(00)	106(21)	108(20)
$C_4 \Pi_7 B I O_2$	2 Chlore 2 bytene	100(0.03)	43(138)	27(33)	20(21)	20(19)
$C_4 \Pi_7 C_1$	2 Chloroothyl costate	90(27)	43(162)	$\frac{27(21)}{72(42)}$	15(26)	29(10) 27(20)
$C_4\Pi_7CIO_2$	Z-Chlorocentyl actiate	122(0.0)	43(102)	73(43)	13(30)	40(20)
$C_4 \Pi_7 C IO_2$	2 Mathularonananitrila	122(0.90)	29(130)	27(41)	77(37)	49(29) 54(10)
$C_4 \Pi_7 N$	2-Methylpropanentine	69(1.7)	42(79)	20(30)	26(20)	34(19)
$C_4 \Pi_7 N$		09(0.13)	41(112)	29(70)	27(38)	26(11)
C_4H_8	Cyclobutane	56(41)	28(65)	41(58)	27(27)	20(15)
C_4H_8	2-Methylpropene	56(36)	41(85)	39(37)	28(18)	2/(1/)
C_4H_8	1-Butene	56(32)	41(87)	39(30)	27(26)	28(26)
C_4H_8	cis-2-Butene	56(36)	41(76)	39(27)	27(25)	28(24)
C_4H_8	trans-2-Butene	56(37)	41(80)	27(27)	39(26)	28(26)
$C_4H_8Cl_2$	1,2-Dichlorobutane	126(0.30)	41(39)	77(35)	27(20)	76(16)
$C_4H_8Cl_2$	1,4-Dichlorobutane	126(0.03)	55(87)	41(29)	27(24)	90(23)
$C_4H_8Cl_2$	dl-2, 3-Dichlorobutane	126(0.95)	63(63)	62(58)	27(57)	55(29)
$C_4H_8Cl_2$	meso-2,3-Dichlorobutane	126(0.95)	63(64)	27(57)	62(54)	55(31)
$C_4H_8N_2$	Acetaldazine	84(23)	42(92)	15(47)	28(46)	69(38)
C_4H_8O	Butanal	72(19)	27(41)	29(38)	44(34)	43(32)
C_4H_8O	2-Butanone	72(17)	43(97)	29(24)	27(15)	57(6.0)
C_4H_8O	Ethyl ethenyl ether	72(27)	44(64)	43(56)	29(49)	27(43)
C_4H_8O	cis-2,3-Epoxybutane	72(3.6)	43(67)	44(39)	27(35)	29(33)
C_4H_8O	trans-2,3-Epoxybutane	72(3.5)	43(69)	44(35)	29(32)	27(31)
C_4H_8O	Tetrahydrofuran	72(22)	42(76)	41(39)	27(25)	71(20)
$C_4H_8O_2$	2-Methyl-1,3-dioxacyclopentane	88(0.33)	73(67)	43(48)	45(44)	29(34)
$C_4H_8O_2$	1,4-Dioxane	88(42)	28(138)	29(51)	58(33)	31(24)
$C_4H_8O_2$	2-Methylpropanoic acid	88(8.1)	43(77)	41(33)	27(26)	73(19)
$C_4H_8O_2$	n-Butanoic acid	88(1.0)	60(40)	73(12)	27(9.6)	41(9.1)
$C_4H_8O_2$	<i>n</i> -Propyl formate	88(0.41)	31(123)	42(89)	29(38)	27(36)
$C_4H_8O_2$	Ethyl acetate	88(7.1)	43(181)	29(46)	45(24)	27(24)
$C_4H_8O_2$	Methyl propanoate	88(23)	29(110)	57(83)	27(40)	59(27)
C_4H_8S	3-Methylthiacyclobutane	88(42)	46(101)	45(31)	39(24)	47(21)

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three ne	xt most inter	ise peaks
C ₄ H ₈ S	Thiacyclopentane	88(44)	60(82)	45(29)	46(29)	47(22)
C₄H ₉ Br	1-Bromobutane	136(7.0)	57(86)	41(63)	29(50)	27(46)
C ₄ H ₉ Br	2-Bromobutane	136(0.72)	57(108)	41(65)	29(61)	27(36)
C_4H_9N	Pyrrolidine	71(24)	43(102)	28(38)	70(33)	42(20)
$C_4H_9NO_2$	<i>n</i> -Butyl nitrite	103(0.0)	27(55)	43(54)	41(50)	30(47)
C_4H_{10}	2-Methylpropane	58(3.2)	43(117)	41(45)	42(39)	27(33)
C_4H_{10}	<i>n</i> -Butane	58(12)	43(100)	29(44)	27(37)	28(33)
$C_4H_{10}Hg$	Diethylmercury	260(12)	29(188)	27(54)	28(21)	231(15)
$C_4H_{10}O$	2-Methyl-1-propanol	74(7.5)	43(84)	31(56)	42(48)	41(47)
$C_4H_{10}O$	2-Methyl-2-propanol	74(0.0)	59(92)	31(31)	41(19)	43(14)
$C_4H_{10}O$	1-Butanol	74(0.37)	31(52)	56(44)	41(31)	43(30)
$C_4H_{10}O$	2-Butanol	74(0.30)	45(116)	31(23)	59(22)	27(20)
$C_4H_{10}O$	Diethyl ether	74(22)	31(73)	59(34)	29(29)	45(28)
$C_4H_{10}O$	Methyl isopropyl ether	74(8.3)	59(126)	29(42)	43(37)	15(32)
$C_4H_{10}O_2$	1,1-Dimethoxyethane	90(0.06)	59(93)	29(52)	15(37)	31(37)
$C_4H_{10}O_2$	1,2-Dimethoxyethane	90(12)	45(177)	29(53)	15(50)	60(16)
$C_4H_{10}O_2$	2-Ethoxyethanol	90(0.49)	31(112)	29(57)	59(56)	27(31)
$C_4H_{10}O_2$	Diethyl peroxide	90(20)	29(116)	15(42)	45(34)	62(30)
$C_4H_{10}S$	3-Methyl-2-thiabutane	90(41)	41(49)	75(47)	43(41)	48(38)
$C_4H_{10}S$	2-Thiapentane	90(58)	61(126)	48(50)	41(43)	27(43)
$C_4H_{10}S$	3-Thiapentane	90(41)	75(59)	47(51)	27(39)	61(33)
$C_4H_{10}S$	2-Methyl-1-propanethiol	90(35)	41(60)	43(46)	56(34)	47(29)
$C_4H_{10}S$	2-Methyl-2-propanethiol	90(34)	41(68)	57(61)	29(44)	39(21)
$C_4H_{10}S$	1-Butanethiol	90(40)	56(74)	41(65)	27(42)	47(31)
$C_4H_{10}S$	2-Butanethiol	90(34)	41(56)	57(50)	61(46)	29(46)
$C_4H_{10}S_2$	2,3-Dithiahexane	122(37)	80(53)	43(36)	41(27)	27(25)
$C_4H_{10}S_2$	3,4-Dithiahexane	122(73)	29(82)	66(81)	27(57)	94(53)
$C_4H_{10}SO_3$	Ethyl sulfite	138(3.3)	29(131)	31(59)	45(42)	27(39)
$C_4H_{11}N$	N-Ethylaminoethane	73(17)	58(83)	30(81)	28(30)	27(24)
$C_4H_{11}N$	1-Amino-2-methylpropane	73(1.0)	30(22)	28(2.0)	41(1.2)	27(1.1)
$C_4H_{11}N$	2-Amino-2-methylpropane	73(0.25)	58(127)	41(26)	42(20)	15(18)
$C_4H_{11}N$	1-Aminobutane	73(12)	30(200)	28(23)	27(16)	18(12)
$C_4H_{11}N$	2-Aminobutane	73(1.2)	44(170)	18(25)	41(18)	58(18)
$C_4H_{12}Pb$	Tetramethyllead	268(0.14)	253(69)	223(59)	208(46)	251(36)
C_5F_{10}	Decafluorocyclopentane	250(0.62)	131(173)	100(41)	31(40)	69(28)
C_5F_{12}	Dodecafluoro-2-methylbutane	288(0.0)	69(277)	119(45)	131(23)	31(18)
$C_{5}F_{12}$	Dodecafluoropentane	288(0.08)	69(259)	119(76)	169(25)	31(24)
C5HF9	Nonafluorocyclopentane	232(0.07)	131(61)	113(49)	69(34)	31(19)
C5H5N	Pyridine	79(135)	79(135)	52(95)	51(48)	50(35)
C ₅ H ₆	Cyclopentadiene	66(95)	66(95)	65(40)	39(35)	40(30)
C ₅ H ₆	trans-2-Penten-4-yne	66(77)	66(77)	39(54)	65(38)	40(35)
$C_5H_6N_2$	2-Methylpyrazine	94(81)	94(81)	67(48)	26(33)	39(30)
$C_5H_6O_2$	Furfuryl alcohol	98(3.4)	98(3.4)	41(3.3)	39(3.3)	42(2.6)
C ₅ H ₆ S	2-Methylthiophene	98(68)	97(125)	45(26)	39(17)	53(11)
C₅H ₆ S	3-Methylthiophene	98(74)	97(138)	45(35)	39(14)	27(11)
C_5H_8	Methylenecyclobutane	68(38)	40(67)	67(48)	39(47)	53(21)
C_5H_8	Spiropentane	68(8.9)	67(58)	40(56)	39(52)	53(23)
C_5H_8	Cyclopentene	68(41)	67(99)	39(36)	53(23)	41(19)
C_5H_8	3-Methyl-1,2-butadiene	68(53)	68(53)	53(40)	39(28)	41(26)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three nex	t most inten	se peaks
C ₅ H ₈	2-Methyl-1,3-butadiene	68(40)	67(48)	53(41)	39(34)	27(23)
C ₅ H ₈	1,2-Pentadiene	68(39)	68(39)	53(38)	39(37)	27(31)
C_5H_8	cis-1,3-Pentadiene	68(40)	67(53)	39(43)	53(38)	41(25)
C ₅ H ₈	trans-1,3-Pentadiene	68(41)	67(52)	39(43)	53(39)	41(26)
C_5H_8	1,4-Pentadiene	68(40)	39(47)	67(35)	53(33)	41(30)
C ₅ H ₈	2,3-Pentadiene	68(62)	68(62)	53(42)	39(36)	41(31)
C ₅ H ₈	3-Methyl-1-butyne	68(8.5)	53(74)	67(45)	27(35)	39(21)
C_5H_8	1-Pentyne	68(8.7)	67(50)	40(44)	39(42)	27(34)
C_5H_8	2-Pentyne	68(67)	68(67)	53(61)	39(32)	27(27)
$C_5H_8N_2$	3,5-Dimethylpyrazole	96(47)	96(47)	95(37)	39(16)	54(12)
$C_5H_8O_2$	2,4-Pentanedione	100(22)	43(120)	85(33)	15(23)	27(11)
$C_5H_8O_2$	2-Propenyl acetate	100(0.16)	43(177)	41(30)	39(29)	15(28)
$C_5H_8O_2$	Methyl methacrylate	100(26)	41(78)	69(52)	39(31)	15(16)
C ₅ H ₉ ClO ₂	Ethyl 3-chloropropanoate	136(0.70)	27(65)	29(62)	91(42)	63(37)
$C_{5}H_{10}$	cis-1,2-Dimethylcyclopropane	70(39)	55(77)	42(35)	39(32)	41(32)
$C_{5}H_{10}$	trans-1,2-Dimethylcyclopropane	70(42)	55(79)	42(34)	41(33)	39(30)
$C_{5}H_{10}$	Ethylcyclopropane	70(26)	42(93)	55(47)	41(39)	39(35)
$C_{5}H_{10}$	Cyclopentane	70(44)	42(148)	55(43)	41(43)	39(31)
$C_{5}H_{10}$	2-Methyl-1-butene	70(30)	55(97)	42(36)	39(34)	41(28)
$C_{5}H_{10}$	3-Methyl-1-butene	70(26)	55(102)	27(31)	42(28)	29(27)
$C_{5}H_{10}$	2-Methyl-2-butene	70(31)	55(88)	41(31)	39(28)	42(27)
$C_{5}H_{10}$	1-Pentene	70(27)	42(89)	55(53)	41(39)	39(31)
$C_{5}H_{10}$	cis-2-Pentene	70(30)	55(89)	42(41)	39(30)	29(26)
$C_{5}H_{10}$	trans-2-Pentene	70(31)	55(93)	42(41)	39(30)	41(28)
$C_5H_{10}O$	3-Methyl-1-butanal	86(3.0)	41(30)	43(26)	58(20)	29(20)
$C_5H_{10}O$	2-Pentanone	86(16)	43(106)	29(23)	27(23)	57(20)
$C_{5}H_{10}O$	3-Pentanone	86(15)	57(87)	29(87)	27(32)	28(9.4)
$C_5H_{10}O$	Ethyl-2-propenyl ether	86(6.2)	41(52)	29(48)	58(44)	57(42)
$C_5H_{10}O$	Ethyl isopropyl ether	86(21)	43(87)	44(69)	41(46)	27(45)
$C_{5}H_{10}O$	2-Methyltetrahydrofuran	86(8.9)	71(57)	43(55)	41(40)	27(27)
$C_5H_{10}O_2$	Tetrahydrofurfuryl alcohol	102(0.02)	71(8.9)	43(6.8)	41(4.8)	27(3.8)
$C_{5}H_{10}O_{2}$	2-Methoxyethyl ethenyl ether	102(3.0)	29(69)	45(58)	15(48)	58(45)
$C_5H_{10}O_2$	2,2-Dimethylpropanoic acid	102(2.0)	57(83)	41(38)	29(27)	39(12)
$C_{5}H_{10}O_{2}$	2-Methylbutanoic acid	102(0.32)	74(54)	57(34)	29(33)	41(28)
$C_{5}H_{10}O_{2}$	<i>n</i> -Butyl formate	102(0.27)	56(80)	41(48)	31(47)	29(42)
$C_5H_{10}O_2$	Isobutyl formate	102(0.27)	43(58)	56(48)	41(46)	31(38)
$C_5H_{10}O_2$	sec-Butyl formate	102(0.17)	45(99)	29(49)	27(32)	41(31)
$C_5H_{10}O_2$	<i>n</i> -Propyl acetate	102(0.07)	43(176)	61(34)	31(31)	27(26)
$C_5H_{10}O_2$	Isopropyl acetate	102(0.17)	43(155)	45(50)	27(22)	61(18)
$C_5H_{10}O_2$	Ethyl propanoate	102(10)	29(151)	57(97)	27(52)	28(24)
$C_5H_{10}O_2$	Methyl 2-methylpropanoate	102(8.9)	43(69)	71(23)	41(19)	59(17)
$C_{5}H_{10}O_{2}$	Methyl butanoate	102(1.0)	43(53)	74(37)	71(29)	27(23)
$C_5H_{10}O_3$	Ethyl carbonate	118(0.30)	29(114)	45(80)	31(60)	27(46)
$C_5H_{10}S$	2-Methylthiacyclopentane	102(37)	87(88)	41(30)	45(29)	59(18)
$C_5H_{10}S$	3-Methylthiacyclopentane	102(40)	60(45)	41(31)	45(25)	74(23)
$C_5H_{10}S$	Thiacyclohexane	102(43)	87(44)	68(33)	61(32)	41(28)
$C_{5}H_{10}S$	Cyclopentanethiol	102(19)	41(48)	69(47)	39(26)	67(18)
$C_5H_{11}N$	Piperidine	85(22)	84(43)	57(22)	56(22)	44(17)
C ₅ H ₁₁ NO	N-Methylmorpholine	101(4.4)	43(18)	42(8.6)	15(3.4)	71(2.9)
$C_5H_{11}NO_2$	3-Methylbutyl nitrite	117(0.0)	29(75)	41(68)	57(43)	30(42)

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three ne	xt most inter	ise peaks
C ₅ H ₁₂	2,2-Dimethylpropane	72(0.01)	57(126)	41(52)	29(49)	27(20)
C ₅ H ₁₂	2-Methylbutane	72(4.7)	43(74)	42(64)	41(49)	57(40)
C ₅ H ₁₂	<i>n</i> -Pentane	72(10)	43(114)	42(66)	41(45)	27(39)
C ₅ H ₁₂ O	2-Methyl-1-butanol	88(0.18)	57(57)	29(55)	41(53)	56(50)
$C_5H_{12}O$	3-Methyl-1-butanol	88(0.02)	55(47)	42(42)	43(39)	41(38)
$C_5H_{12}O$	2-Methyl-2-butanol	88(0.0)	59(43)	55(37)	45(25)	73(22)
$C_5H_{12}O$	1-Pentanol	88(0.0)	42(41)	55(30)	41(25)	70(23)
$C_5H_{12}O$	Methyl <i>n</i> -butyl ether	88(3.1)	45(211)	56(36)	29(36)	27(28)
$C_5H_{12}O$	Methyl isobutyl ether	88(12)	45(186)	41(30)	29(30)	15(27)
$C_5H_{12}O$	Methyl sec-butyl ether	88(2.0)	52(142)	29(50)	27(27)	41(25)
$C_5H_{12}O$	Methyl tert-butyl ether	88(0.02)	73(119)	41(33)	43(32)	57(32)
$C_5H_{12}O$	Ethyl isopropyl ether	88(2.6)	45(143)	43(46)	73(40)	27(24)
$C_{5}H_{12}O_{2}$	Diethoxymethane	104(2.1)	31(104)	59(99)	29(62)	103(39)
C ₅ H ₁₂ O ₂	1,1-Dimethoxypropane	104(0.05)	75(84)	73(62)	29(43)	45(37)
C ₅ H ₁₂ S	3,3-Dimethyl-2-thiabutane	104(30)	57(83)	41(62)	29(42)	39(16)
C ₅ H ₁₂ S	4-Methyl-2-thiapentane	104(37)	41(46)	56(38)	27(29)	39(23)
C ₅ H ₁₂ S	2-Methyl-3-thiapentane	104(82)	89(119)	62(79)	43(63)	61(58)
C ₄ H ₁₂ S	2-Thiahexane	104(38)	61(77)	56(50)	41(39)	27(33)
C ₄ H ₁₂ S	3-Thiahexane	104(30)	75(72)	27(53)	47(50)	62(33)
C-H ₁ S	2.2-Dimethyl-1-propanethiol	104(31)	57(100)	41(55)	55(48)	29(42)
C _c H ₁₂ S	2-Methyl-1-butanethiol	104(28)	41(65)	29(44)	57(40)	70(40)
C _c H ₁₂ S	2-Methyl-2-butanethiol	104(18)	43(88)	71(54)	41(46)	55(34)
C _c H ₁₂ S	3-Methyl-2-butanethiol	104(23)	61(73)	43(55)	27(33)	55(28)
C ₂ H ₁₂ S	1-Pentanethiol	104(35)	42(91)	55(44)	41(39)	70(39)
C ₅ H ₁₂ S	2-Pentanethiol	104(28)	43(72)	61(52)	27(39)	55(38)
C _s H ₁ S	3-Pentanethiol	104(23)	43(56)	41(48)	75(29)	47(23)
C ₂ H ₁₂ S ₂	4.4-Dimethyl-2.3-dithiapentane	136(12)	57(74)	41(38)	29(36)	80(13)
C ₂ H ₁₂ S ₂	2-Methyl-3.4-dithiahexane	136(20)	94(49)	27(46)	43(39)	66(37)
C ₂ H ₁ ₁₂ D ₂	Trimethylethyllead	282(0.64)	223(61)	253(52)	208(51)	221(33)
C/E	Hexafluorobenzene	186(95)	186(95)	117(59)	31(58)	93(23)
C.E.	Dodecafluorocyclohexane	300(0.96)	131(138)	69(97)	100(40)	31(30)
$C_{6}F_{12}$	Tetradecafluoro-2-methylpentane	338(0.0)	69(317)	131(41)	119(36)	169(29)
$C_6 F_{14}$	Tetradecafluorohexane	338(0.13)	69(268)	119(74)	169(51)	131(37)
$C_{6}H_{14}$	Bromobenzene	156(75)	77(98)	158(74)	51(41)	50(36)
	Chlorobenzene	112(102)	112(102)	77(40)	114(33)	51(17)
C H NO	Nitrobenzene	12(102) 123(30)	77(03)	51(55)	50(23)	30(15)
$C_6 H_5 NO_2$	Renzene	78(113)	78(113)	52(22)	77(20)	51(18)
$C_{6}\Pi_{6}$	1.5 Havadiuna	78(58)	30(65)	52(22)	51(32)	50(26)
	2.4 Hovedivne	78(38)	78(108)	51(55)	52(32)	50(20)
	2,4-nexacities	110(68)	110(69)	51(35)	32(38) 100(17)	51(15)
$C_6 \Pi_6 S$	A minchangana (anilina)	110(08) 03(10)	110(08)	66(6.5)	109(17)	20(2.5)
$C_6 \Pi_7 N$	2 Mothulauriding	93(19)	93(19)	66(26)	20(28)	51(16)
$C_6 \Pi_7 N$	2-Methyl 2 puridene	93(80)	93(80)	81(40)	39(28)	S1(10) 80(20)
$C_6 \Pi_7 NO$	1-Methyl-2-pyridone	109(71)	109(71)	81(49)	39(34)	80(29) 51(11)
C_6H_8	Methylcyclopentadiene	80(53)	79(87)	77(29)	39(19)	DI(II)
C_6H_8	1,5-Cyclonexadiene	80(53)	19(92) 12((5)	17(33)	39(21) 52(27)	27(18)
C ₆ H ₈ U	2.5-Dimetnyiruran	90(57)	43(63)	95(48)	33(37)	81(24)
C_6H_8S	2,3-Dimethylthiophene	112(44)	97(53)	111(44)	45(16)	27(9.4)
C_6H_8S	2,4-Dimethylthiophene	112(27)	111(36)	97(18)	45(9.4)	39(7.0)
C ₆ H ₈ S	2,5-Dimethylthiophene	112(67)	111(95)	97(59)	59(23)	45(19)
C ₆ H ₈ S	2-Ethylthiophene	112(27)	97(68)	45(16)	39(8.9)	27(5.4)

Molecular formula Name Parent peak Base peak Three next most intense peaks $C_{a}H_{a}S$ 3-Ethylthoiphene 112(54) 97(147) 45(38) 39(20) 27(12) $C_{a}H_{a}S$ 2.5-Dimethylpyrrole 95(73) 94(127) 26(52) 80(22) 42(19) $C_{a}H_{10}$ 1.Sopropenylcyclopropane 82(26) 67(98) 39(21) 81(16) 27(12) $C_{a}H_{10}$ 2.3-Dimethyl-1.3-butadiene 82(13) 67(80) 39(30) 41(26) 27(13) $C_{a}H_{10}$ 2.5-Hexatiene 82(1.3) 67(84) 39(30) 41(26) 27(11) $C_{a}H_{10}$ 1.5-Hexatiene 82(1.0) 67(13) 41(88) 27(85) 43(61) 39(5) $C_{a}H_{10}$ 1-Hexyne 82(1.0) 67(13) 41(84) 34(64) 39(3) 27(13) 41(44) 34(46) 29(38) $C_{a}H_{10}O$ Yelobexane 82(55) 67(59) 41(55) 39(27) 53(20) $C_{a}H_{10}O$ Sychexanedine 98(32) <t< th=""><th></th><th></th><th colspan="7">Mass numbers (and intensities) of:</th></t<>			Mass numbers (and intensities) of:						
	Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ S	3-Ethylthiophene	112(54)	97(147)	45(38)	39(20)	27(12)		
	C ₆ H ₉ N	2,5-Dimethylpyrrole	95(73)	94(127)	26(52)	80(22)	42(19)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{6}H_{10}$	Isopropenylcyclopropane	82(20)	67(92)	41(47)	39(46)	27(22)		
	$C_{6}H_{10}$	1-Methylcyclopentene	82(26)	67(98)	39(21)	81(16)	41(16)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{6}H_{10}$	Cyclohexene	82(33)	67(83)	54(64)	41(31)	39(30)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	2,3-Dimethyl-1,3-butadiene	82(41)	67(60)	39(55)	41(44)	54(22)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	2-Methyl-1,3-pentadiene	82(23)	67(48)	39(30)	41(26)	27(13)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	1,5-Hexadiene	82(1.3)	41(98)	67(80)	39(60)	54(52)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	3,3-Dimethyl-1-butyne	82(0.57)	67(101)	41(57)	39(31)	27(11)		
	$C_{6}H_{10}$	4-Methyl-1-pentyne	82(2.3)	67(82)	41(74)	43(64)	39(55)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	1-Hexyne	82(1.0)	67(131)	41(88)	27(85)	43(67)		
	C ₆ H ₁₀	2-Hexyne	82(56)	67(58)	53(50)	27(39)	41(36)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	3-Hexyne	82(55)	67(59)	41(55)	39(37)	53(20)		
$ C_{q}H_{10}O = 4 \cdot Methyl-3 \cdot penten-2 \cdot one = 98(40) = 55(82) = 83(82) = 43(64) = 29(38) \\ C_{q}H_{10}O_2 = 2,5 \cdot Hexanedione = 114(4,0) = 43(148) = 15(25) = 99(22) = 14(14) \\ C_{q}H_{10}O_3 = Bihyl acetoacetate = 130(8.3) = 43(150) = 29(52) = 27(52) = 28(26) \\ C_{q}H_{10}N = 4 \cdot Methyl \cdot Pentanenitrile = 97(0.13) = 55(98) = 41(51) = 43(45) = 27(32) \\ C_{q}H_{11}N = 4 \cdot Methyl \cdot Pentanenitrile = 97(0.54) = 41(73) = 55(58) = 99(22) = 77(24) = 55(40) \\ C_{q}H_{12} = 1 \cdot Methyl \cdot 1 \cdot ethyl cyclopropane = 84(38) = 41(132) = 69(81) = 39(34) = 27(24) \\ C_{q}H_{12} = 1 \cdot Methyl \cdot 1 \cdot ethyl cyclopropane = 84(25) = 41(78) = 55(58) = 69(53) = 27(33) \\ C_{q}H_{12} = 1 \cdot Methyl \cdot 1 \cdot ethyl cyclopropane = 84(38) = 56(114) = 41(84) = 39(34) = 43(28) \\ C_{q}H_{12} = 1 \cdot Methyl \cdot 1 \cdot ethyl cyclopropane = 84(38) = 56(116) = 41(74) = 69(37) = 42(33) \\ C_{q}H_{12} = 1 \cdot Methyl \cdot 1 \cdot ethene = 84(27) = 41(117) = 69(66) = 55(52) = 42(21) \\ C_{q}H_{12} = 2, 3 \cdot Dimethyl - 1 \cdot butene = 84(32) = 41(112) = 69(107) = 39(36) = 27(24) \\ C_{q}H_{12} = 3, 3 \cdot Dimethyl - 1 \cdot butene = 84(32) = 41(112) = 69(107) = 39(28) = 27(26) \\ C_{q}H_{12} = 2, 3 \cdot Dimethyl - 1 \cdot butene = 84(32) = 41(112) = 69(107) = 39(28) = 27(26) \\ C_{q}H_{12} = 2, 3 \cdot Dimethyl - 1 \cdot butene = 84(32) = 41(108) = 69(88) = 39(35) = 27(26) \\ C_{q}H_{12} = 3 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(108) = 69(88) = 39(35) = 27(26) \\ C_{q}H_{12} = 3 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(104) = 69(66) = 55(56) = 27(38) \\ C_{q}H_{12} = 3 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(104) = 69(66) = 55(56) = 27(38) \\ C_{q}H_{12} = 3 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(104) = 69(81) = 55(47) = 27(37) \\ C_{q}H_{12} = 3 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(104) = 69(81) = 55(47) = 27(37) \\ C_{q}H_{12} = 4 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 41(104) = 69(81) = 55(47) = 27(35) \\ C_{q}H_{12} = 4 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 55(81) = 41(62) = 42(54) = 27(43) \\ C_{q}H_{12} = 4 \cdot Methyl \cdot 1 \cdot pentene = 84(32) = 55(9) = 15(31) = 90(34) = 27(26) \\ C_{q}H_{12} = 4 \cdot Methyl \cdot 1 \cdot pentene = 84(3$	C ₆ H ₁₀ O	Cyclohexanone	98(32)	55(102)	42(86)	41(35)	27(34)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀ O	4-Methyl-3-penten-2-one	98(40)	55(82)	83(82)	43(64)	29(38)		
	$C_{6}H_{10}O_{2}$	2,5-Hexanedione	114(4.0)	43(148)	15(25)	99(22)	14(14)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}O_{3}$	Propanoic anhydride	130(0.0)	57(190)	29(119)	27(62)	28(26)		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{6}H_{10}O_{3}$	Ethyl acetoacetate	130(8.3)	43(150)	29(52)	27(32)	15(27)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6H_{11}N$	4-Methylpentanenitrile	97(0.13)	55(98)	41(51)	43(45)	27(39)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6 H_{11} N$	Hexanenitrile	97(0.54)	41(73)	54(49)	27(43)	55(40)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_6H_{12}	1,1,2-Trimethylcyclopropane	84(38)	41(132)	69(81)	39(34)	27(24)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	1-Methyl-1-ethylcyclopropane	84(25)	41(78)	55(58)	69(53)	27(33)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{6}H_{12}$	Isopropylcyclopropane	84(2.0)	56(114)	41(84)	39(30)	43(28)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _c H ₁₂	Ethylcyclobutane	84(3.8)	56(138)	41(89)	27(35)	55(34)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	Methylcyclopentane	84(18)	56(116)	41(74)	69(37)	42(33)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	Cyclohexane	84(58)	56(75)	41(44)	55(25)	42(21)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_6H_{12}	2,3-Dimethyl-1-butene	84(27)	41(117)	69(96)	39(36)	27(24)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{12}$	3,3-Dimethyl-1-butene	84(23)	41(112)	69(107)	39(28)	27(26)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁ ,	2-Ethyl-1-butene	84(30)	41(74)	69(66)	55(56)	27(38)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	2,3-Dimethyl-2-butene	84(32)	41(108)	69(88)	39(35)	27(20)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	2-Methyl-1-pentene	84(29)	56(91)	41(73)	55(39)	39(36)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_6H_{12}	3-Methyl-1-pentene	84(25)	55(85)	41(67)	69(60)	27(43)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁	4-Methyl-1-pentene	84(12)	43(110)	41(80)	56(47)	27(37)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_6H_{12}	2-Methyl-2-pentene	84(36)	41(120)	69(111)	39(35)	27(28)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_6H_{12}	3-Methyl-cis-2-pentene	84(37)	41(104)	69(82)	55(46)	27(36)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tilde{C_6H_{12}}$	3-Methyl-trans-2-pentene	84(38)	41(102)	69(81)	55(47)	27(35)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	4-Methyl-cis-2-pentene	84(35)	41(122)	69(114)	39(35)	27(26)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	4-Methyl-trans-2-pentene	84(34)	41(123)	69(112)	39(34)	27(26)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	1-Hexene	84(20)	41(70)	56(60)	42(52)	27(48)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{12}$	cis-2-Hexene	84(27)	55(91)	42(51)	41(45)	27(45)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁	trans-2-Hexene	84(32)	55(112)	42(54)	41(46)	27(41)		
$ \begin{array}{cccc} C_6H_{12} & trans-3-Hexene & 84(32) & 55(89) & 41(72) & 42(62) & 27(35) \\ C_6H_{12}N_2 & Acetone azine (ketazine) & 112(31) & 56(99) & 15(31) & 97(31) & 39(26) \\ C_6H_{12}O & Cyclopentylmethanol & 100(0.02) & 41(35) & 68(32) & 69(31) & 67(24) \\ C_6H_{12}O & 4-Methyl-2-pentanone & 100(12) & 43(115) & 58(37) & 41(22) & 57(22) \\ C_6H_{12}O & Ethenyl n-butyl ether & 100(5.7) & 29(80) & 41(59) & 56(45) & 57(35) \\ C_6H_{12}O & Ethenyl isobutyl ether & 100(5.8) & 29(73) & 41(65) & 57(58) & 56(40) \\ C_6H_{12}O & 2H_{12}O_{2} & 4-Hydroxy-4-methyl-2-pentanone & 116(0.0) & 43(149) & 15(45) & 58(32) & 27(14) \\ \end{array} $	C ₆ H ₁₂	cis-3-Hexene	84(28)	55(81)	41(62)	42(54)	27(32)		
$\begin{array}{cccc} C_6H_{12}N_2 & \text{Acetone azine (ketazine)} & 112(31) & 56(99) & 15(31) & 97(31) & 39(26) \\ C_6H_{12}O & Cyclopentylmethanol & 100(0.02) & 41(35) & 68(32) & 69(31) & 67(24) \\ C_6H_{12}O & 4-Methyl-2-pentanone & 100(12) & 43(115) & 58(37) & 41(22) & 57(22) \\ C_6H_{12}O & Ethenyl n-butyl ether & 100(5.7) & 29(80) & 41(59) & 56(45) & 57(35) \\ C_6H_{12}O & Ethenyl isobutyl ether & 100(5.8) & 29(73) & 41(65) & 57(58) & 56(40) \\ C_6H_{12}O_2 & 4-Hydroxy-4-methyl-2-pentanone & 116(0.0) & 43(149) & 15(45) & 58(32) & 27(14) \\ \end{array}$	C ₆ H ₁₂	trans-3-Hexene	84(32)	55(89)	41(72)	42(62)	27(35)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂ N ₂	Acetone azine (ketazine)	112(31)	56(99)	15(31)	97(31)	39(26)		
$\begin{array}{cccc} C_6H_{12}O & 4-Methyl-2-pentanone & 100(12) & 43(115) & 58(37) & 41(22) & 57(22) \\ C_6H_{12}O & Ethenyl n-butyl ether & 100(5.7) & 29(80) & 41(59) & 56(45) & 57(35) \\ C_6H_{12}O & Ethenyl isobutyl ether & 100(5.8) & 29(73) & 41(65) & 57(58) & 56(40) \\ C_6H_{12}O_2 & 4-Hydroxy-4-methyl-2-pentanone & 116(0.0) & 43(149) & 15(45) & 58(32) & 27(14) \\ \end{array}$	C ₆ H ₁₂ O	Cyclopentylmethanol	100(0.02)	41(35)	68(32)	69(31)	67(24)		
$\begin{array}{cccc} C_6H_{12}O & \text{Ethenyl n-butyl ether} & 100(5.7) & 29(80) & 41(59) & 56(45) & 57(35) \\ C_6H_{12}O & \text{Ethenyl isobutyl ether} & 100(5.8) & 29(73) & 41(65) & 57(58) & 56(40) \\ C_6H_{12}O_2 & 4-\text{Hydroxy-4-methyl-2-pentanone} & 116(0.0) & 43(149) & 15(45) & 58(32) & 27(14) \\ \end{array}$	C ₆ H ₁₂ O	4-Methyl-2-pentanone	100(12)	43(115)	58(37)	41(22)	57(22)		
$C_6H_{12}O$ Ethenyl isobutyl ether 100(5.8) 29(73) 41(65) 57(58) 56(40) $C_6H_{12}O_2$ 4-Hydroxy-4-methyl-2-pentanone 116(0.0) 43(149) 15(45) 58(32) 27(14)	C ₆ H ₁₂ O	Ethenyl <i>n</i> -butyl ether	100(5.7)	29(80)	41(59)	56(45)	57(35)		
$C_{e}H_{12}O_{2}$ 4-Hydroxy-4-methyl-2-pentanone 116(0.0) 43(149) 15(45) 58(32) 27(14)	C ₆ H ₁₂ O	Ethenyl isobutyl ether	100(5.8)	29(73)	41(65)	57(58)	56(40)		
(12.2) $($	$C_6H_{12}O_2$	4-Hydroxy-4-methyl-2-pentanone	116(0.0)	43(149)	15(45)	58(32)	27(14)		

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks		
$C_{6}H_{12}O_{2}$	n-Butyl acetate	116(0.03)	43(172)	56(58)	41(30)	27(27)
$C_{6}H_{12}O_{2}$	n-Propyl propanoate	116(0.03)	57(147)	29(84)	27(57)	75(47)
$C_{6}H_{12}O_{2}$	Isopropyl proponoate	116(0.26)	57(116)	43(88)	29(54)	27(46)
$C_{6}H_{12}O_{2}$	Methyl 2,2-dimethylpropanoate	116(3.2)	57(85)	41(32)	29(24)	56(21)
$C_{6}H_{12}O_{2}$	Ethyl butanoate	116(2.2)	43(50)	71(45)	29(43)	27(31)
$C_{6}H_{12}O_{3}$	2,4,6-Trimethyl-1,3,5-trioxacyclo-					
	hexane	132(0.12)	45(196)	43(107)	29(35)	89(23)
$C_6H_{12}S$	1-Cyclopentyl-1-thiaethane	116(31)	68(72)	41(64)	39(37)	67(37)
$C_6H_{12}S$	cis-2,5-Dimethylthiacyclopentane	116(32)	101(85)	59(34)	41(26)	74(24)
$C_6H_{12}S$	trans-2.5-Dimethylthiacyclopentane	116(32)	101(85)	59(34)	74(25)	41(25)
$C_6H_{12}S$	2-Methylthiacyclohexane	116(42)	101(81)	41(37)	27(32)	67(30)
$C_6H_{12}S$	3-Methylthiacyclohexane	116(41)	101(55)	41(47)	39(33)	45(28)
$C_6H_{12}S$	4-Methylthiacyclohexane	116(46)	116(46)	101(44)	41(40)	27(39)
$C_6H_{12}S$	Thiacycloheptane	116(60)	87(75)	41(66)	67(48)	47(46)
$C_6H_{12}S$	1-Methylcyclopentanethiol	116(20)	83(76)	55(58)	41(39)	67(33)
$C_6H_{12}S$	cis-2-Methylcyclopentanethiol	116(32)	55(55)	83(54)	60(48)	41(47)
$C_6H_{12}S$	trans-2-Methylcyclopentanethiol	116(28)	67(48)	55(46)	41(42)	83(40)
$C_{6}H_{12}S$	Cyclohexanethiol	116(21)	55(56)	41(45)	67(35)	83(32)
$C_6H_{13}N$	Cyclohexylamine	99(8.9)	56(92)	43(25)	28(13)	30(13)
$C_6H_{13}N$	3-Methylpiperidine	99(23)	44(49)	30(34)	28(27)	57(26)
C ₆ H ₁₃ NO	N-Ethylmorpholine	115(2.0)	42(9.8)	57(7.0)	100(5.2)	28(4.3)
$C_{6}H_{14}$	2,2-Dimethylbutane	86(0.04)	43(85)	57(82)	71(61)	41(51)
$C_{6}H_{14}$	2,3-Dimethylbutane	86(5.3)	43(157)	42(136)	41(49)	27(40)
C_6H_{14}	2-Methylpentane	86(4.4)	43(147)	42(78)	41(47)	27(40)
$C_{6}H_{14}$	3-Methylpentane	86(3.2)	57(105)	56(80)	41(67)	29(64)
C_6H_{14}	<i>n</i> -Hexane	86(12)	57(87)	43(71)	41(64)	29(55)
$C_6H_{14}N_2$	cis-2,5-Dimethylpiperazine	114(0.38)	58(10)	28(7.7)	30(4.7)	44(4.2)
$C_6H_{14}O$	2-Ethyl-1-butanol	102(0.0)	43(114)	70(40)	29(39)	27(38)
$C_6H_{14}O$	2-Methyl-1-pentanol	102(0.0)	42(110)	41(40)	29(34)	27(33)
$C_6H_{14}O$	3-Methyl-1-pentanol	102(0.0)	56(26)	41(20)	29(19)	55(18) 07(14)
$C_6H_{14}O$	4-Methyl-2-pentanol	102(0.08)	45(111)	43(34)	41(17)	27(14)
$C_6H_{14}O$	I-Hexanoi	102(0.0)	50(03)	43(52)	41(37)	33(30) 07(40)
$C_6H_{14}O$	Ethyl <i>n</i> -butyl ether	102(3.8)	59(108)	31(87)	29(61)	27(42)
$C_6H_{14}O$	Ethyl sec-butyl ether	102(1.5)	45(150)	73(76)	29(51)	27(39)
$C_6H_{14}O$	Einyl isobutyl ether	102(8.7)	59(124)	31(95)	29(53)	27(38)
$C_6H_{14}O$	L 1 Disthermether	102(1.4)	45(125)	43(00)	87(23)	27(19)
$C_{6}H_{14}O_{2}$	1,1-Diethoxyethane	118(0.0)	45(152)	73(09)	29(30)	2I(2I)
$C_6H_{14}O_2$	1,2-Dietnoxyethane	118(1,2)	51(124)	59(88) 20(74)	29(72)	45(55)
$C_6H_{14}O_3$	2.2 Dimethod 2 this actors	134(0.0)	59(140)	29(74)	38(37)	13(30)
$C_6H_{14}S$	2.4 Dimethyl 2 thiopentage	118(33)	37(147)	41(70)	29(34)	27(40) 102(44)
$C_{6}\Pi_{14}S$	2,4-Dimetryi-5-tinapentite	118(33)	43(94)	41(217)	41(48)	103(44)
$C_6 \Pi_{14} S$	4 Methyl 3 thicheyane	118(200)	43(340)	41(317)	42(301)	41(270)
$C_{6}\Pi_{14}S$	4-Methyl-3-manexane	118(193)	09(303) 75(520)	29(343)	27(290)	41(279) 56(017)
$C_6 \Pi_{14} S$	2 Thishantana	110(171) 118(25)	75(520)	41(250)	47(224)	20(217) 62(28)
СЦS	J-1 maneplane	118(47)	13(33)	29(33) 80(74)	21(33) A1(57)	02(28)
С <u>4</u> 5 С 4 S		118((10)	43(00)	09(74) 41(51)	41(37) 56(32)	27(33)
СЦS	4 Mathyl 1 pentanathiol	118(20)	43(90) 56(140)	41(51)	JU(32) 13(57)	27(31)
СН8	4-Methyl-2-pentanethiol	118(6.3)	13(68)	41(37) 60(61)	41(56)	21(32) 84(47)
СН 5	7-Methyl-2-pentanethiol	118(20)	41(64)	43(63)	75(50)	27(28)
C611145	2-monyr-5-pentaneunor	110(20)	+1(0+)	+5(05)	75(50)	27(28)

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:						
Molecular formula	Name	Parent Base Name peak peak			Three next most intense peaks			
C ₆ H ₁₄ S	1-Hexanethiol	118(16)	56(66)	41(41)	27(40)	43(38)		
$C_{6}H_{14}S_{2}$	2,5-Dimethyl-3,4-dithiahexane	150(31)	43(152)	108(41)	41(36)	27(30)		
$C_{6}H_{14}S_{2}$	5-Methyl-3,4-dithiaheptane	150(14)	29(86)	94(66)	66(57)	27(41)		
$C_{6}H_{14}S_{2}$	6-Methyl-3,4-dithiaheptane	150(4.9)	29(42)	66(40)	122(30)	94(29)		
$C_{6}H_{14}S_{2}$	4,5-Dithiaoctane	150(44)	43(167)	27(65)	41(64)	108(35)		
C ₆ H ₁₅ N	Triethylamine	101(21)	86(134)	30(46)	27(36)	58(35)		
$C_6H_{15}N$	Di-n-propylamine	101(7.1)	30(89)	72(70)	44(36)	43(28)		
$C_6H_{15}N$	Diisopropylamine	101(5.0)	44(171)	86(52)	58(24)	42(22)		
C ₆ H ₁₆ Pb	Dimethyldiethyllead	296(0.98)	267(89)	223(83)	208(79)	221(44)		
$C_{7}F_{14}$	Tetradecafluoromethylcyclohexane	350(0.0)	69(244)	131(107)	181(48)	100(38)		
$C_{7}F_{16}$	Hexadecafluoroheptane	388(0.0)	69(330)	119(89)	169(68)	131(44)		
C ₇ H ₅ N	Benzonitrile	103(246)	103(246)	76(80)	50(42)	51(24)		
C ₇ H ₇ Br	1-Methyl-2-bromobenzene	170(48)	91(97)	172(46)	39(21)	63(20)		
C_7H_7Br	1-Methyl-4-bromobenzene	170(46)	91(97)	172(45)	39(20)	65(19)		
C ₇ H ₇ Cl	1-Methyl-2-chlorobenzene	126(44)	91(121)	63(20)	39(19)	89(18)		
C ₇ H ₇ Cl	1-Methyl-3-chlorobenzene	126(51)	91(120)	63(19)	39(18)	128(16)		
C_7H_7Cl	1-Methyl-4-chlorobenzene	126(44)	91(120)	125(19)	63(18)	39(17)		
C ₇ H ₇ F	1-Methyl-3-fluorobenzene	110(79)	109(129)	83(17)	57(12)	39(12)		
C_7H_7F	1-Methyl-4-fluorobenzene	110(73)	109(122)	83(16)	57(12)	39(9.3)		
C_7H_8	Methylbenzene (toluene)	92(82)	91(108)	39(20)	65(14)	51(10)		
C_7H_8S	1-Phenyl-1-thiaethane	124(76)	124(76)	109(34)	78(25)	91(19)		
C ₇ H ₉ N	2,4-Dimethylpyridine	107(76)	107(76)	106(29)	79(16)	92(13)		
$C_{7}H_{10}S$	2,3,4-Trimethylthiophene	126(50)	111(81)	125(47)	45(22)	39(18)		
C_7H_{12}	Ethenylcyclopentane	96(13)	67(118)	39(44)	68(38)	54(35)		
$C_{7}H_{12}$	Ethylidenecyclopentane	96(40)	67(180)	39(44)	41(30)	27(30)		
$C_{7}H_{12}$	Bicyclo[2.2.1]heptane	96(12)	67(64)	68(50)	81(44)	54(30)		
$C_{7}H_{12}$	3-Ethylcyclopentene	96(29)	67(193)	39(36)	41(35)	27(26)		
$C_{7}H_{12}$	1-Methylcyclohexene	96(32)	81(83)	68(38)	67(37)	39(33)		
$C_7 H_{12}$	4-Methylcyclohexene	96(28)	81(84)	54(50)	39(44)	55(34)		
$C_{7}H_{12}$	4-Methyl-2-hexyne	96(13)	81(71)	67(52)	41(48)	39(35)		
$C_{7}H_{12}$	5-Methyl-2-hexyne	96(42)	43(49)	81(43)	27(39)	39(38)		
$C_7 H_{12}$	I-Heptyne	96(0.44)	41(75)	81(70)	29(65)	27(47)		
C_7H_{14}	1,1,2,2,-1etramethylcyclopropane	98(21)	55(92)	83(90)	41(69)	39(41)		
$C_{7}H_{14}$	cis-1,2-Dimethylcyclopentane	98(19)	56(85)	70(77)	41(65)	55(65) 70(54)		
$C_{7}H_{14}$	trans-1,2-Dimethylcyclopentane	98(25)	56(93)	41(63)	55(61)	/0(54)		
$C_{7}H_{14}$	cis-1,3-Dimethylcyclopentane	98(12)	56(81)	70(78)	41(64)	33(39) 55(59)		
$C_{7}H_{14}$	trans-1,3-Dimethylcyclopentane	98(13)	56(81)	70(68)	41(63)	33(38) 41(55)		
$C_{7}H_{14}$	T,T-Dimethylcyclopentane	98(0.7)	50(81)	55(03) 41(79)	69(56)	41(55)		
$C_{7}H_{14}$	Mathalauralahaura	98(14)	09(83)	41(78)	08(00)	22(40) 42(24)		
$C_7 H_{14}$	Guelehertere	98(41)	83(94)	55(78)	41(55)	42(34)		
$C_{7}H_{14}$	2.2.2 Trimethal 1 hatens	98(37)	41(37)	55(54)	30(30)	42(49)		
$C_{7}H_{14}$	2,5,5-1 minethyl-1-butene	98(20)	63(101) 41(71)	33(83) (0(71)	41(61)	39(33) 07(29)		
$C_{7}H_{14}$	3-Methyl-2-ethyl-1-butene	98(22)	41(71)	69(71)	55(02) 55(40)	20(25)		
$C_{7}\Pi_{14}$	2,5-Dimethyl-1-pentene	96(15)	41(92)	42(68)	33(40)	20(20)		
$C_7 n_{14}$	2,4-Dimethyl-1-pentene	98(9.1) 98(9.1)	50(117) 60(104)	43(08)	41(01) 55(42)	37(37)		
$C_{7}\Pi_{14}$	2.4 Dimethyl 1 pentene	90(9.4) 00(0 41)	09(104) 56(75)	41(03) 55(60)	JJ(42) 12(55)	21(30) 11(51)		
$C_{7}n_{14}$	4.4 Dimethyl 1 pontono	90(U.01) 90(0.01)	JU(/J) 57(161)	JJ(02) 41(96)	43(33)	41(34) 55(40)		
$C_{7}\Pi_{14}$	-,Difficultyi-i-pefficite 2 Ethyl 1 pentenc	70(2.0) 08(10)	J7(101) 41(116)	41(00) 60(01)	29(32) 27(12)	30(27)		
$C_{7}\Pi_{14}$	2.2 Dimethyl 2 pontone	70(17) 08(21)	41(110) 93(90)	55(75)	27(43) 11(62)	39(37)		
$c_{7}n_{14}$	2,3-Dimenty1-2-pentene	90(31)	03(00)	55(75)	41(05)	39(34)		

TABLE 3.71 Table of Mass Spectra (Continued)

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks		
C ₇ H ₁₄	2,4-Dimethyl-2-pentene	98(26)	83(97)	55(71)	41(52)	39(34)
$C_{7}H_{14}$	3,4-Dimethyl-cis-2-pentene	98(30)	83(87)	55(82)	41(52)	27(32)
$C_{7}H_{14}$	3,4-Dimethyl-trans-2-pentene	98(31)	83(89)	55(83)	41(52)	27(34)
$C_{7}H_{14}$	4,4-Dimethyl-cis-2-pentene	98(27)	83(96)	55(92)	41(62)	39(35)
$C_{7}H_{14}$	4,4-Dimethyl-trans-2-pentene	98(28)	83(105)	55(89)	41(58)	39(31)
$C_{7}H_{14}$	3-Ethyl-2-pentene	98(33)	41(86)	69(80)	55(74)	27(33)
$C_{7}H_{14}$	2-Methyl-1-hexene	98(4.6)	56(105)	41(54)	27(30)	39(27)
$C_{7}H_{14}$	3-Methyl-1-hexene	98(7.7)	55(76)	41(60)	69(57)	56(48)
$C_{7}H_{14}$	4-Methyl-1-hexene	98(4.9)	41(98)	57(94)	56(80)	29(70)
$C_{7}H_{14}$	5-Methyl-1-hexene	98(1.6)	56(91)	41(75)	55(47)	27(42)
$C_{7}H_{14}$	2-Methyl-2-hexene	98(28)	69(113)	41(99)	27(36)	39(33)
$C_{7}H_{14}$	3-Methyl-cis-2-hexene	98(30)	41(95)	69(90)	55(42)	27(36)
$C_{7}H_{14}$	4-Methyl-trans-2-hexene	98(23)	69(118)	41(106)	55(40)	39(35)
$C_{7}H_{14}$	5-Methyl-2-hexene	98(13)	56(90)	55(74)	43(71)	41(57)
$C_{7}H_{14}$	2-Methyl-trans-3-hexene	98(24)	69(86)	41(74)	55(62)	56(37)
$C_{7}H_{14}$	3-Methyl-cis-3-hexene	98(28)	69(98)	41(82)	39(33)	27(33)
$C_{7}H_{14}$	3-Methyl-trans-3-hexene	98(28)	69(97)	41(86)	55(63)	39(35)
$C_{7}H_{14}$	1-Heptene	98(15)	41(91)	56(79)	29(64)	55(54)
$C_{7}H_{14}$	trans-2-Heptene	98(27)	55(64)	56(59)	41(50)	27(35)
C_7H_{14}	trans-3-Heptene	98(27)	41(98)	56(65)	69(55)	55(47)
$C_7H_{14}O$	2,4-Dimethyl-3-pentanone	114(13)	43(226)	71(62)	27(49)	41(42)
$C_7 H_{14} O_2$	n-Butyl propanoate	130(0.03)	57(152)	29(98)	56(54)	27(52)
$C_7H_{14}O_2$	Isobutyl propanoate	130(0.07)	57(187)	29(87)	56(27)	27(47)
$C_7 H_{14} O_2$	n-Propyl n-butanoate	130(0.05)	43(96)	71(90)	27(54)	89(48)
$C_{7}H_{14}O_{3}$	n-Propyl carbonate	146(0.02)	43(171)	27(61)	63(55)	41(49)
$C_7H_{14}S$	cis-2-Methylcyclohexanethiol	130(28)	55(138)	97(70)	81(44)	41(44)
$C_7H_{15}N$	2,6-Dimethylpiperidine	113(5.3)	98(73)	44(43) 42(34)		28(26)
$C_{7}H_{16}$	2,2,3-Trimethylbutane	100(0.03)	57(110)	43(84)	56(67)	41(64)
$C_{7}H_{16}$	2,2-Dimethylpentane	100(0.06)	57(130)	43(95)	41(59)	56(52)
$C_{7}H_{16}$	2,3-Dimethylpentane	100(2.1)	43(94)	56(93)	57(67)	41(64)
$C_{7}H_{16}$	2,4-Dimethylpentane	100(1.6)	43(139)	57(93)	41(59)	56(50)
$C_{7}H_{16}$	3,3-Dimethylpentane	100(0.03)	43(166)	71(103)	27(38)	41(36)
$C_{7}H_{16}$	3-Ethylpentane	100(3.1)	43(175)	70(77)	70(77)	29(45)
$C_{7}H_{16}$	2-Methylhexane	100(5.9)	43(154)	42(59)	41(57)	85(49)
$C_{7}H_{16}$	3-Methylhexane	100(4.0)	43(110)	57(52)	71(52)	41(50)
$C_{7}H_{16}$	<i>n</i> -Heptane	100(17)	43(126)	41(65) 57(60)		29(58)
$C_7H_{16}O$	2-Heptanol	116(0.01)	45(131)	43(29)	27(25)	29(23)
$C_7H_{16}O$	3-Heptanol	116(0.01)	59(61)	69(41)	41(29)	31(25)
$C_7H_{16}O$	4-Heptanol	116(0.02)	55(102)	73(72)	43(45)	27(32)
$C_7H_{16}O$	<i>n</i> -Propyl <i>n</i> -butyl ether	116(3.7)	43(120)	57(102)	41(51)	29(49)
$C_7 H_{16} O_2$	Di-n-propoxymethane	132(0.58)	43(194)	4) 73(114) 27(45		41(34)
$C_{7}H_{16}O_{2}$	Diisopropoxymethane	132(0.16)	43(133)	45(84) 73(71) 27		27(28)
$C_7H_{16}O_2$	1,1-Diethoxypropane	132(0.0)	59(138)	47(88)	87(84)	29(74)
$C_7H_{16}S$	2,2,4-Trimethyl-3-thiapentane	132(30)	57(149)	41(74)	29(35)	43(32)
C ₇ H ₁₆ S	2,4-Dimethyl-3-thiahexane	132(30)	61(94)	103(60)	41(51)	43(46)
C ₇ H ₁₆ S	2-Thiaoctane	132(34)	61(73)	56(53)	27(46)	41(44)
$C_7H_{16}S$	1-Heptanethiol	132(14)	41(48)	27(40)	56(39)	70(38)
C ₇ H ₁₈ Pb	Methyltriethyllead	310(0.84)	281(86)	208(76)	223(66)	237(60)
C ₇ H ₁₈ Pb	n-Butyltrimethyllead	310(0.14)	253(76)	223(75)	208(68)	295(52)
$C_7H_{18}Pb$	sec-Butyltrimethyllead	310(1.8)	253(94)	223(85)	208(74)	251(45)

			Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three nex	xt most inten	se peaks		
C ₇ H ₁₈ Pb	tert-Butyltrimethyllead	310(0.09)	252(95)	223(82)	208(65)	250(46)		
$C_{8}H_{10}$	1,2-Dimethylbenzene	106(52)	91(91)	105(22)	39(15)	51(14)		
C_8H_{10}	1,3-Dimethylbenzene	106(58)	91(93)	105(26)	39(17)	51(14)		
C ₈ H ₁₀	1,4-Dimethylbenzene	106(52)	91(85)	105(25)	51(13)	39(13)		
C ₈ H ₁₀	Ethylbenzene	106(45)	91(146)	51(19)	39(14)	65(12)		
F ₃ N	Nitrogen trifluoride	71(10)	52(33)	33(13)	14(3.0)	19(2.7)		
HCl	Hydrogen chloride	36(54)	36(54)	38(17)	35(9.2)	37(2.9)		
H ₂ S	Hydrogen sulfide	34(75)	34(75)	32(33)	33(32)	1(4.1)		
H ₃ P	Ammonia	17(32)	17(32)	16(26)	15(2.4)	14(0.7)		
H ₃ N	Phosphine	34(59)	34(59)	33(20)	31(19)	32(7.5)		
H_4N_2	Hydrazine	32(48)	32(48)	31(23)	29(19)	30(15)		
NO	Nitric oxide	30(76)	30(76)	14(5.7)	15(1.8)	16(1.1)		
NO ₂	Nitrogen dioxide	46(6.6)	30(18)	16(4.0)	14(1.7)	47(0.02		
N ₂	Nitrogen	28(65)	28(65)	14(3.3)	29(0.47)			
N ₂ O	Nitrous oxide	44(60)	44(60)	30(19)	14(7.8)	28(6.5)		
\mathbf{O}_2	Oxygen	32(54)	32(54)	16(2.7)	28(1.7)	34(0.22		
O ₂ S	Sulfur dioxide	64(47)	64(47)	48(23)	32(4.9)	16(2.4)		

TABLE 3.71 Table of Mass Spectra (Continued)

Source: L. Meites, ed., Handbook of Analytical Chemistry, McGraw-Hill, New York, 1963. J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.

3.8 X-RAY METHODS

An X-ray tube operating at a voltage V (in keV) emits a continuous X-ray spectrum, the minimum wavelength of which is given by $\lambda_{\min} = 12.398/V$ with the wavelength expressed in angstroms. For expressing the wavelength in kX units, divide by the factor 1.00202. Tables 3.72 and 3.73 are based on the K and L wavelength values as published by Y. Cauchois and H. Hulubei (*Tables de Constantes et Données Numériques*, I. Longueurs d'Onde des Émissions X et des Discontinuités d'Absorption X, Hermann, Paris, 1947) and by the International Union of Crystallography (International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1962). Wavelength accuracy is only to about 1 in 25 000 except for the lines employed in X-ray diffraction work.

Use of energy-proportional detectors for X-rays creates a need for energy values of K and L absorption edges (Table 3.74) and emission series (Table 3.75). These values were obtained by a conversion to keV of tabulated experimental wavelength values and smoothed by a fit to Moseley's law. Although values are listed to 1 eV, chemical form may shift absorption edges and emission lines as much as 10 to 20 eV. S. Fine and C. F. Hendee [*Nucelonics*, **13**(3):36 (1955)] also give values for $K\beta_2$, $L\gamma_1$, and $L\beta_2$ lines.

The relative intensities of X-ray emission lines from targets varies for different elements. However, one can assume a ratio of $K\alpha_1/K\alpha_2 = 2$ for the commonly used targets. The ratio of $K\alpha_2/K\alpha_1$ from these targets varies from 6 to 3.5. The intensities of $K\beta_2$ radiations amount to about 1 percent of that of the corresponding $K\alpha_1$ radiation. In practical applications these ratios have to be corrected for differential absorption in the window of the tube and air path, the ratio of scattering factors for and differential absorption in the crystal, and for sensitivity characteristics of the detector. Generalizing, the intensities of radiations from the *K* and *L* series are as follows:

Emission line	$K\alpha_1$	$K\alpha_2$	$K\beta_1$	$K\beta_2$	$L\alpha_1$	$L\alpha_2$	$L\beta_1$	$L\beta_2$	$L\gamma_1$
Relative intensity	500	250	80–150	5	100	10	30	60	40

For angles at which the $K\alpha_1$, $K\alpha_2$ doublet is not resolved, a mean wavelength $[K\overline{\alpha} = (2K\alpha_1 + K\alpha_2)/3]$ can be used.

Filters. The *K* spectra of the light metals, often used as target material in the production of X-rays for diffraction studies, contain three strong lines, α_1 , α_2 and β_1 , of which the α lines form a doublet with a narrow wavelength separation. The $K\beta$ radiation can be eliminated by using a thin foil filter, usually of the element of next lower atomic number to that of the target element: the $K\alpha$ lines are transmitted with a relatively small loss of intensity. Table 3.76, restricted to the *K* wavelengths of target elements in common use, lists the calculated thicknesses of β filters required to reduce the $K\beta_1/K\alpha_1$ integrated intensity ratio to $1/_{100}$.

Interplanar Spacings. Diffractometer alignment procedures require the use of a well-prepared polycrystalline specimen. Two standard samples found to be suitable are silicon amd α -quartz (including Novaculite). The 2θ values of several of the most intense reflections for these materials are listed in Table 3.77 (Tables of Interplanar Spacings d vs. Diffraction Angle 2θ for Selected Targets, Picker Nuclear, White Plains, N.Y., 1966). To convert to d for $K\alpha$ or to d for $K\alpha_2$, multiply the tabulated d value (Table 3.77) for $K\alpha_1$ by the factor given below:

Element	кα	$K\alpha_2$
W	1.007 69	1.023 07
Ag	1.002 63	1.007 89
Mo	1.002 02	1.006 04
Cu	1.000 82	1.002 48
Ni	1.000 77	1.002 32
Co	1.000 72	1.002 16
Fe	1.000 67	1.002 04
Cr	1.000 57	1.001 70

Analyzing Crystals. The range of wavelengths usable with various analyzing crystals are governed by the *d* spacings of the crystal planes and by the geometric limits to which the goniometer can be rotated. The *d* value should be small enough to make the angle 2θ greater than approximately 10 or 15 deg, even at the shortest wavelength used: otherwise excessively long analyzing crystals would be needed to prevent the direct fluorescent beam from entering the detector. A small *d* value is also favorable for producing a large dispersion of the spectrum to give good separation of adjacent lines. On the other hand, a small *d* value imposes an upper limit to the range of wavelengths that can be analyzed. Actually the goniometer is limited mechanically to about 150 deg for a 2θ value. A final requirement is the reflection efficiency and minimization of higher-order reflections. Table 3.78 gives a list of crystals commonly used for X-ray spectroscopy.

The long-wavelength analyzers are prepared by dipping an optical flat into the film of the metal fatty acid about 50 times to produce a layer 180 molecules in thickness.

Lithium fluoride is the optimum crystal for all wavelengths less than 3 Å. Pentaerythritol (PET) and potassium hydrogen phthalate (KAP) are usually the crystals of choice for wavelengths from 3 to 20 Å. Two crystals suppress even-ordered reflections: silicon (111) and calcium fluoride (111).

Mass Absorption Coefficients. Radiation traversing a layer of substance is diminished in intensity by a constant fraction per centimeter thickness x of material. The emergent radiant power P, in terms of incident radiant power P_0 , is given by

$$P = P_0 \exp\left(-\mu x\right)$$

which defines the total linear absorption coefficient μ . Since the reduction of intensity is determined by the quantity of matter traversed by the primary beam, the absorber thickness is best expressed on
a mass basis, in g/cm^2 . The mass absorption coefficient μ/ρ , expressed in units cm^2/g , where ρ is the density of the material, is approximately independent of the physical state of the material and, to a good approximation, is additive with respect to the elements composing a substance.

Table 3.79 contains values of μ/ρ for the common target elements employed in X-ray work. A more extensive set of mass absorption coefficients for *K*, *L*, and *M* emission lines within the wavelength range from 0.7 to 12 Å is contained in K. F. J. Heinrich's paper in T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), *The Electron Microprobe*, Wiley, New York, 1966, pp. 351-377. This article should be consulted to ascertain the probable accuracy of the values and for a compilation of coefficients and exponents employed in the computations.

Atomic No.	Element	Κα2	$K\alpha_1$	$K\beta_1$	$L\alpha_1$	$Leta_1$
3	Li	240				
4	Be	113				
5	В	67				
6	С	44				
7	Ν	31.6	50			
8	0	23.7	71			
9	F	18.3	31			
10	Ne	14.6	516	14.464		
11	Na	11.9	909	11.617	407.6	
12	Mg	9.8	389	9.558	251.0	
13	Al	8.3392	8.3367	7.981	169.8	
14	Si	7.1277	7.1253	6.7681	123	
15	Р	6.1	1549	5.8038		
16	S	5.3747	5.3720	5.0317		
17	Cl	4.7305	4.7276	4.4031		
18	Ar	4.1946	4.1916	3.8848		
19	К	3.7446	3.7412	3.4538	42.7	
20	Ca	3.3616	3.3583	3.0896	36.32	35.95
21	Sc	3.0345	3.0311	2.7795	31.33	31.01
22	Ti	2.75207	2.7484	2.5138	27.39	27.02
23	v	2.5073	2.5035	2.2843	24.26	23.85
24	Cr	2.29351	2.28962	2.08480	21.67	21.28
25	Mn	2.1057	2.1018	1.9102	19.45	19.12
26	Fe	1.93991	1.93597	1.75653	17.567	17.255
27	Co	1.79278	1.78892	1.62075	15.968	15.667
28	Ni	1.66169	1.65784	1.50010	14.566	14.279
29	Cu	1.54433	1.54051	1.39217	13.330	13.053
30	Zn	1.4389	1.4351	1.2952	12.257	11.985
31	Ga	1.3439	1.3400	1.20784	11.290	11.023
32	Ge	1.2580	1.2540	1.1289	10.435	10.174
33	As	1.1798	1.1758	1.0573	9.671	9.414
34	Se	1.1088	1.1047	0.9921	8.990	8.736
35	Br	1.0438	1.0397	0.9327	8.375	8.125

TABLE 3.72 Wavelengths of X-Ray Emission Spectra in Angstroms

Atomic				_		_
No.	Element	$K\alpha_2$	$K\alpha_1$	$K\beta_1$	$L\alpha_1$	$L\beta_1$
36	Kr	0.9841	0.9801	0.8785	7.822	7.574
37	Rb	0.9296	0.9255	0.8286	7.3181	7.076
38	Sr	0.8794	0.8752	0.7829	6.8625	6.6237
39	Y	0.8330	0.8279	0.7407	6.4485	6.2117
40	Zr	0.7901	0.7859	0.7017	6.0702	5.8358
41	Nb	0.7504	0.7462	0.6657	5.7240	5.4921
42	Mo	0.713543	0.70926	0.632253	5.4063	5.1768
43	Tc	0.6793	0.6749	0.6014	5,1126	4.8782
44	Ru	0.6474	0.6430	0.5725	4.8455	4.6204
45	Rh	0.6176	0.6132	0.5456	4.5973	4.3739
46	Pd	0.5898	0.5854	0.5205	4.3676	4.1460
47	Ag	0.563775	0.559363	0.49701	4,1541	3.9344
48	Cď	0.5394	0.5350	0.4751	3,9563	3.7381
49	In	0.5165	0 5121	0.4545	3 7719	3 5552
50	Sn	0.4950	0.4906	0.4352	3.5999	3.3848
51	Sb	0 4748	0.4703	0 4171	3 4 3 9 2	3 2256
52	Te	0.4558	0.4703	0.4000	3 2801	3.0767
52	IC T	0.4338	0.4313	0.4000	3.2091	2 0272
55	I Va	0.4378	0.4333	0.3639	2 016	2.9373
54		0.4204	0.4100	0.3063	5.010	2.807
55	Cs	0.4048	0.4003	0.3543	2.9016	2.8920
56	Ba	0.3896	0.3851	0.3408	2.7752	2.5674
57	La	0.3753	0.3707	0.3280	2.6651	2.4583
58	Ce	0.3617	0.3571	0.3158	2.5612	2.3558
59	Pr	0.3487	0.3441	0.3042	2.4627	2.2584
60	Nd	0.3565	0.3318	0.2933	2.3701	2.1666
61	Pm	0.3249	0.3207	0.2821	2.282	2.0796
62	Sm	0.3137	0.3190	0.2731	2.1994	1.9976
63	Eu	0.3133	0.2985	0.2636	2.1206	1.9202
64	Gd	0.2932	0.2884	0.2544	2.0460	1.8462
65	Tb	0.2834	0.2788	0.2460	1.9755	1.7763
66	Dy	0.2743	0.2696	0.2376	1.9088	1.7100
67	Ho	0.2655	0.2608	0.2302	1.8447	1.6468
68	Er	0.2572	0.2525	0.2226	1.7843	1.5873
69	Tm	0.2491	0.2444	0.2153	1.7263	1.5299
70	Yb	0.2415	0.2368	0.2088	1.6719	1.4756
71	Lu	0.2341	0.2293	0.2021	1.6194	1.4235
72	Hf	0.2270	0.2222	0.1955	1.5696	1.3740
73	Та	0.2203	0.2155	0.1901	1.5219	1.3270
74	w	0.213813	0.208992	0.184363	1.4764	1.2818
75	Re	0.2076	0.2028	0.1789	1.4329	1.2385
76	Os	0.2016	0.1968	0.1736	1.3911	1,1972
77	Ir	0.1959	0.1910	0,1685	1.3513	1.1578
78	Pt	0.1904	0.1855	0.1637	1 3130	1 1 1 9 8
79	A11	0 1851	0 1802	0 1590	1 2764	1 0836
80	Ho	0 1799	0 1750	0 1544	1 2/04	1 0486
	118	0.1777	0.1750	0.1344	1.2411	1.0400

TABLE 3.72 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
No.Element $K\alpha_2$ $K\alpha_1$ $K\beta_1$ $L\alpha_1$ $L\beta_1$ 81Tl0.17500.17010.15011.20741.0182Pb0.17030.16540.14601.17500.9883Bi0.16570.16080.14191.14390.9584Po0.16080.15590.13821.11380.9285At0.15700.15210.13431.08500.8986Rn0.15290.14790.13071.05720.8687Fr0.14890.14400.12721.03000.8488Ra0.14500.14010.12371.00470.8189Ac0.14140.13640.12050.97990.7890Th0.13100.12590.11140.90500.7793Np0.12780.12260.10850.88930.6994Pu0.12460.11950.10580.86820.6795Am0.12150.11650.10310.84810.6596Cm0.11860.11350.10050.82870.6697Bk0.11570.11070.09800.80980.67	Atomic						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Element	$K\alpha_2$	$K\alpha_1$	$K\beta_1$	$L\alpha_1$	$L\beta_1$
82Pb 0.1703 0.1654 0.1460 1.1750 0.98 83 Bi 0.1657 0.1608 0.1419 1.1439 0.95 84 Po 0.1608 0.1559 0.1382 1.1138 0.92 85 At 0.1570 0.1521 0.1343 1.0850 0.85 86 Rn 0.1529 0.1479 0.1307 1.0572 0.86 87 Fr 0.1489 0.1440 0.1272 1.0300 0.84 88 Ra 0.1450 0.1401 0.1237 1.0047 0.81 89 Ac 0.1414 0.1364 0.1205 0.9799 0.78 90 Th 0.1378 0.1328 0.1174 0.9560 0.76 91 Pa 0.1344 0.1294 0.1143 0.9328 0.77 92 U 0.1310 0.1259 0.1114 0.9105 0.77 93 Np 0.1278 0.1226 0.1085 0.8893 0.669 94 Pu 0.1246 0.1195 0.1031 0.8481 0.657 95 Am 0.1215 0.1165 0.1005 0.8287 0.667 97 Bk 0.1157 0.1107 0.0980 0.8098 0.672	81	Tl	0.1750	0.1701	0.1501	1.2074	1.0152
83Bi 0.1657 0.1608 0.1419 1.1439 0.95 84Po 0.1608 0.1559 0.1382 1.1138 0.92 85At 0.1570 0.1521 0.1343 1.0850 0.85 86Rn 0.1529 0.1479 0.1307 1.0572 0.86 87Fr 0.1489 0.1440 0.1272 1.0300 0.84 88Ra 0.1450 0.1401 0.1237 1.0047 0.81 89Ac 0.1414 0.1364 0.1205 0.9799 0.78 90Th 0.1378 0.1328 0.1174 0.9560 0.76 91Pa 0.1344 0.1294 0.1143 0.9328 0.77 92U 0.1310 0.1259 0.1114 0.9105 0.77 93Np 0.1278 0.1226 0.1085 0.8893 0.669 94Pu 0.1246 0.1195 0.1058 0.8682 0.67 95Am 0.1215 0.1165 0.1005 0.8287 0.67 96Cm 0.1186 0.1135 0.1005 0.8098 0.67	82	Pb	0.1703	0.1654	0.1460	1.1750	0.9822
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	83	Bi	0.1657	0.1608	0.1419	1.1439	0.9520
85At 0.1570 0.1521 0.1343 1.0850 0.89 86Rn 0.1529 0.1479 0.1307 1.0572 0.86 87Fr 0.1489 0.1440 0.1272 1.0300 0.84 88Ra 0.1450 0.1401 0.1237 1.0047 0.81 89Ac 0.1414 0.1364 0.1205 0.9799 0.78 90Th 0.1378 0.1328 0.1174 0.9560 0.76 91Pa 0.1344 0.1294 0.1143 0.9328 0.74 92U 0.1310 0.1259 0.1114 0.9105 0.77 93Np 0.1278 0.1226 0.1085 0.8893 0.669 94Pu 0.1246 0.1195 0.1058 0.8682 0.67 95Am 0.1215 0.1165 0.1005 0.8287 0.669 96Cm 0.1186 0.1135 0.1005 0.8287 0.67 97Bk 0.1157 0.1107 0.0980 0.8098 0.67	84	Ро	0.1608	0.1559	0.1382	1.1138	0.9222
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	85	At	0.1570	0.1521	0.1343	1.0850	0.8936
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86	Rn	0.1529	0.1479	0.1307	1.0572	0.8659
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	87	Fr	0.1489	0.1440	0.1272	1.0300	0.8400
89 Ac 0.1414 0.1364 0.1205 0.9799 0.78 90 Th 0.1378 0.1328 0.1174 0.9560 0.76 91 Pa 0.1344 0.1294 0.1143 0.9328 0.74 92 U 0.1310 0.1259 0.1114 0.9105 0.77 93 Np 0.1278 0.1226 0.1085 0.8893 0.69 94 Pu 0.1246 0.1195 0.1058 0.8682 0.67 95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.66 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	88	Ra	0.1450	0.1401	0.1237	1.0047	0.8137
90 Th 0.1378 0.1328 0.1174 0.9560 0.76 91 Pa 0.1344 0.1294 0.1143 0.9328 0.74 92 U 0.1310 0.1259 0.1114 0.9105 0.77 93 Np 0.1278 0.1226 0.1085 0.8893 0.69 94 Pu 0.1246 0.1195 0.1058 0.8682 0.67 95 Am 0.1275 0.1165 0.1085 0.8893 0.69 96 Cm 0.1186 0.1135 0.1005 0.8287 0.63 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	89	Ac	0.1414	0.1364	0.1205	0.9799	0.7890
91 Pa 0.1344 0.1294 0.1143 0.9328 0.74 92 U 0.1310 0.1259 0.1114 0.9105 0.77 93 Np 0.1278 0.1226 0.1085 0.8893 0.69 94 Pu 0.1246 0.1195 0.1058 0.8682 0.67 95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.66 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	90	Th	0.1378	0.1328	0.1174	0.9560	0.7652
91 14 0.1310 0.1259 0.1114 0.9105 0.77 93 Np 0.1278 0.1226 0.1085 0.8893 0.66 94 Pu 0.1246 0.1195 0.1058 0.8682 0.67 95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.66 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	91	Pa	0 1344	0 1294	0 1143	0.9328	0 7422
93 Np 0.1278 0.1226 0.1015 0.1265 0.893 0.69 94 Pu 0.1246 0.1195 0.1085 0.8893 0.69 95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.66 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	92	U U	0.1310	0.1259	0 1114	0.9105	0.7200
94 Pu 0.1246 0.1195 0.1058 0.8682 0.66 95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.66 97 Bk 0.1157 0.1107 0.0980 0.8098 0.67	93	Nn	0.1278	0.1226	0.1085	0.8893	0.6984
95 Am 0.1215 0.1165 0.1031 0.8481 0.65 96 Cm 0.1186 0.1135 0.1005 0.8287 0.63 97 Bk 0.1157 0.1107 0.0980 0.8098 0.65	94	Pu	0.1246	0.1195	0.1058	0.8682	0.6777
96 Cm 0.1186 0.1135 0.1005 0.8287 0.63 97 Bk 0.1157 0.1107 0.0980 0.8098 0.62	95	Am	0.1215	0.1165	0.1031	0.8481	0.6576
96 Cm 0.1186 0.1135 0.1005 0.8287 0.63 97 Bk 0.1157 0.1107 0.0980 0.8098 0.62							
97 Bk 0.1157 0.1107 0.0980 0.8098 0.62	96	Cm	0.1186	0.1135	0.1005	0.8287	0.6388
	97	Bk	0.1157	0.1107	0.0980	0.8098	0.6203
98 Cf 0.1130 0.1079 0.0956 0.7917 0.60	98	Cf	0.1130	0.1079	0.0956	0.7917	0.6023
99 Es 0.1103 0.1052 0.0933 0.7740 0.58	99	Es	0.1103	0.1052	0.0933	0.7740	0.5850
100 Fm 0.1077 0.1026 0.0910 0.7570 0.50	100	Fm	0.1077	0.1026	0.0910	0.7570	0.5682

TABLE 3.72 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued)

TABLE 3.73 Wavelengths of Absorption Edges in Angstroms

Atomic No.	Element	K	$L_{\rm I}$	L_{II}	$L_{ m III}$
3	Li	226.5			
4	Be	110.68			
5	В	66.289			
6	С	43.68			
7	N	30.99			
8	0	23.32			
9	F	17.913			
10	Ne	14.183			
11	Na	11 478		40	0
12	Ma	0.512	107 /	24	7 02
12		7.051	1/2.5	17	0
13	Si Si	6745	105.1	17	6 4 8
14	D 51	5 787	81.0	12	6 94
15	r	5.787	61.0	2	0.04
16	S	5.018	64.23	7	6.05
17	C1	4.397	52.08	61.37	62.93
18	Ar	3.871	43.19	50.39	50.60
19	K	3.436	36.35	42.02	42.17
20	Ca	3.070	31.07	35.20	35.49

Atomic No.	Element	K	L_{I}	$L_{ m II}$	$L_{ m III}$
21	Sc	2.757	26.83	30.16	30.53
22	Ti	2.497	23.39	26.83	27.37
23	V	2.269	20.52	23.70	24.26
24	Cr	2.07012	16.7	17.9	20.7
25	Mn	1.896	16.27	18.90	19.40
26	Fe	1.74334	14.60	17.17	17.53
27	Co	1.60811	13.34	15.53	15.93
28	Ni	1.48802	12.27	14.13	14.58
29	Cu	1.38043	11.27	13.01	13.29
30	Zn	1.283	10.33	11.86	12.13
31	Ga	1.195	9.54	10.61	11.15
32	Ge	1.116	8.73	9.97	10.23
33	As	1.044	8.108	9.124	9.367
34	Se	0.9800	7.505	8.417	8.646
35	Br	0.9199	6.925	7.752	7.989
36	Kr	0.8655	6.456	7.165	7.395
37	Rb	0.8155	5.997	6.643	6.863
38	Sr	0.7697	5.582	6.172	6.387
39	Y	0.7276	5.233	5.756	5.962
40	Zr	0.6888	4.867	5.378	5.583
41	Nb	0.6529	4.581	5.025	5.223
42	Mo	0.61977	4.299	4.719	4.912
43	Tc	0.5888	4.064	4.427	4.629
44	Ru	0.5605	3.841	4.179	4.369
45	Rh	0.5338	3.626	3.942	4.130
46	Pd	0.5092	3.428	3.724	3.908
47	Ag	0.48582	3.254	3.514	3.698
48	Cd	0.4641	3.084	3.326	3.504
49	In	0.4439	2.926	3.147	3.324
50	Sn	0.4247	2.778	2.982	3.156
51	Sb	0.4066	2.639	2.830	3.000
52	Te	0.3897	2.510	2.687	2.855
53	I	0.3738	2.390	2.553	2.719
54	Xe	0.3585	2.274	2.429	2.592
55	Cs	0.3447	2.167	2.314	2.474
56	Ba	0.3314	2.068	2.204	2.363
57	La	0.3184	1.973	2.103	2.258
58	Ce	0.3065	1.891	2.009	2.164
59	Pr	0.2952	1.811	1.924	2.077
60	Nd	0.2845	1.735	1.843	1.995
61	Pm	0.2743	1.668	1.766	1.918
62	Sm	0.2646	1.598	1.702	1.845
63	Eu	0.2555	1.536	1.626	1.775
64	Gd	0.2468	1.477	1.561	1.709
65	Tb	0.2384	1.421	1.501	1.649

TABLE 3.73 Wavelengths of Absorption Edges in Angstroms (Continued)

Atomic					
No.	Element	K	L_1	L_{11}	L_{111}
66	Dy	0.2305	1.365	1.438	1.579
67	Ho	0.2229	1.319	1.390	1.535
68	Er	0.2157	1.269	1.339	1.483
69	Tm	0.2089	1.222	1.288	1.433
70	Yb	0.2022	1.181	1.243	1.386
71	Lu	0.1958	1.140	1.198	1.341
72	Hf	0.1898	1.099	1.154	1.297
73	Та	0.1839	1.061	1.113	1.255
74	W	0.17837	1.025	1.074	1.215
75	Re	0.1731	0.9901	1.036	1.177
		0.1(70)	0.0555	1.001	1.1.40
76	Os	0.1678	0.9557	1.001	1.140
77	lr	0.1629	0.9243	0.9670	1.106
78	Pt	0.1582	0.8914	0.9348	1.072
79	Au	0.1534	0.8638	0.9028	1.040
80	Hg	0.1492	0.8353	0.8779	1.009
81	TI	0 1447	0 8079	0.8436	0 9793
82	Ph	0.1408	0.3075	0.0450	0.9793
82 83	Di Di	0.1371	0.7565	0.0155	0.000
84	DI Do	0.1371	0.7303	0.7639	0.9254
0 4 95	F0 A+	0.1352	0.7322	0.7038	0.8770
85	At	0.1295	0.7092	0.7587	0.8720
86	Rn	0.1260	0.6868	0.7153	0.8479
87	Fr	0.1225	0.6654	0.6929	0.8248
88	Ra	0.1192	0.6446	0.6711	0.8027
89	Ac	0.1161	0.6248	0.6500	0.7813
90	Th	0.1129	0.6061	0.6301	0.7606
91	Pa	0.1101	0.5875	0.6106	0.7411
92	U	0.1068	0.5697	0.5919	0.7233
93	Np	0.1045	0.5531	0.5742	0.7042
94	Pu	0.1018	0.5366	0.5571	0.6867
95	Am	0.0992	0.5208	0.5404	0.6700
06	Cm	0.0067	0 5060	0.5246	0.6522
90 07		0.0907	0.3000	0.5240	0.0332
31 09		0.0945	0.4913	0.3093	0.0373
70 00		0.0920	0.4771	0.4945	0.0223
99 100	ES	0.0897	0.4030	0.4801	0.6076
100	Fm	0.0875	0.4506	0.4665	0.5935

TABLE 3.73 Wavelengths of Absorption Edges in Angstroms (Continued)

Atomic					
No.	Element	Κ	L_1	L_{11}	
1	н	0.0136			
2	He	0.0246			
3	Li	0.0547			
4	Be	0.112			
5	B	0.112			
6	C	0.284			
7	N	0.400			
8	0	0.532			
9	F	0.692			
10	Ne	0.874	0.048	0.022	
11	Na	1.08	0.055	0.034	
12	Μσ	1.00	0.0628	0.050	2
12	Δ1	1.50	0.0020	0.030	ñ
13		1.339	0.0870	0.072	7
14		1.000	0.118	0.097	/
15	r	2.142	0.155	0.128	
16	S	2.469	0.193	0.163	
17	Cl	2.822	0.238	0.202	
18	Ar	3.200	0.287	0.246	
19	К	3.606	0.341	0.295	
20	Ca	4.038	0.399	0.350	
21	Sc	4.496	0.462	0.411	
22	Ti	4.966	0.530	0.462	
23	V	5.467	0.604	0.523	
24	Cr	5.988	0.679	0.584	
25	Mn	6.542	0.762	0.656	
26	Ea	7 1 1 2	0.840	0.722	
20	re C	7.115	0.049	0.722	
27		7.715	0.929	0.798	
28	N1	8.337	1.02	0.8//	
29	Cu	8.982	1.10	0.954	
30	Zn	9.662	1.20	1.05	
31	Ga	10.39	1.30	1.17	
32	Ge	11.10	1.42	1.24	
33	As	11.87	1.529	1.358	
34	Se	12.65	1.66	1 472	
35	Br	13.48	1.791	1.599	
36	Kr	14.32	1.92	1.729	
37	Rb	15.197	2.064	1.863	
38	Sr	16.101	2.212	2.004	
39	Y	17.053	2.387	2.171	
40	Zr	17.998	2.533	2.308	
41	Nb	18 986	2 700	2 467	
41	Mo	20.200	2.700	2.407	
42		20.005	2.009	2.030	
43	TC I	21.050	3.045	2.796	

TABLE 3.74	Critical X-Ray	Absorption	Energies in	KeV
------------	----------------	------------	-------------	-----

	1	1			
Atomic					
No.	Element	K	L_1	L_{11}	L_{111}
-			1	11	111
44	Ru	22,117	3.227	2.968	2.839
45	Rh	23 210	3 404	3 139	2 995
15	, in the second se	25.210	5.101	51105	2.550
16	Da	24 256	2 614	2 2 2 9	2 1 9 1
40	Fu	24.530	2.014	2.530	2.101
47	Ag	25.555	5.626	5.547	5.575
48	Ca	26./12	4.019	3.731	3.541
49	In	27.929	4.226	3.929	3.732
50	Sn	29.182	4.445	4.139	3.911
51	Sb	30.497	4.708	4.391	4.137
52	Te	31.817	4.953	4.621	4.347
53	I	33.164	5.187	4.855	4.559
54	Xe	34.551	5.448	5.103	4.783
55	Cs	35.974	5.706	5.360	5.014
56	Ba	37 432	5 995	5 629	5 250
57	La	38 023	6.264	5 002	5 490
50	La	10.42	6.556	5.902	5 7 2 9
50	D	40.45	0.330	0.109	5.728
59	Pf	41.99	0.837	0.440	5.908
60	Na	43.57	/.134	6.728	6.215
61	Pm	45.19	7.431	7.022	6.462
62	Sm	46.85	7.742	7.316	6.720
63	Eu	48.51	8.059	7.624	6.984
64	Gd	50.23	8.383	7.942	7.251
65	Tb	52.00	8.713	8.258	7.520
66	Dv	53 77	9.053	8 587	7 795
67	Но	55.61	0 305	8 018	8 074
68	Er	57 47	0.754	0.270	8 262
60	Tm	50.28	10.12	9.270	8.502
70	1 III Vh	61.21	10.12	9.022	8.030
70	10	01.51	10.49	9.965	6.949
71	Lu	63.32	10.87	10.35	9.248
72	Hf	65.37	11.28	10.75	9.567
73	Ta	67.46	11.68	11.14	9.883
74	W	69.51	12.09	11.54	10.20
75	Re	71.67	12.52	11.96	10.53
76	Os	73.87	12.97	12.38	10.86
77	Ir	76.11	13.41	12.82	11 21
78	Pt	78 35	13.865	13.26	11.55
70		80.67	14 351	13.731	11.02
80	Ho	83.08	14 838	14 205	10 079
00	ing ing	05.00	17.030	17.205	12.270
81	Tl	85.52	15.344	14.695	12.65
82	Pb	87.95	15.861	15.200	13.03
83	Bi	90.54	16.386	15.709	13.42
84	Po	93.16	16.925	16.233	13.81
85	At	95.73	17.481	16.777	14.21

TABLE 3.74 Critical X-Ray Absorption Energies in KeV (Continued)

Atomic					
No.	Element	K	L_1	L_{11}	L_{111}
86	Rn	98.45	18.054	17.331	14.61
87	Fa	101.1	18.628	17.893	15.02
88	Ra	103.9	19.228	18.473	15.44
89	Ac	107.7	19.829	19.071	15.86
90	Th	109.8	20.452	19.673	16.278
91	Pa	112.4	21.096	20.295	16.720
92	U	115.0	21.757	20.944	17.163
93	Np	118.2	22.411	21.585	17.606
94	Pu	121.2	23.117	22.250	18.062
95	Am	124.3	23.795	22.935	18.524
96	Cm	127.2	24.502	23.629	18.992
97	Bk	131.3	25.231	24.344	19.466
98	Cf	133.6	26.010	25.070	19.954
99	Es	138.1	26.729	25.824	20.422
100	Fm	141.5	27.503	26.584	20.912

TABLE 3.74 Critical X-Ray Absorption Energies in KeV (Continued)

TABLE 3.75X-Ray Emission Energies in KeV

Atomic No.	Element	Kβ ₁	Kα ₁	$Loldsymbol{eta}_1$	$L \alpha_1$
3	Li		0.052		
4	Be		0.110		
5	В		0.185		
6	С		0.282		
7	N		0.392		
8	0		0.523		
9	F		0.677		
10	Ne		0.851		
11	Na	1.067	1.041		
12	Mg	1.297	1.254		
13	Al	1.553	1.487		
14	Si	1.832	1.740		
15	Р	2.136	2.015		
16	s	2.464	2.308		
17	Cl	2.815	2.622		
18	Ar	3.192	2.957		
19	K	3.589	3.313		
20	Ca	4.012	3.691	0.344	0.341
21	Sc	4.460	4.090	0.399	0.395
22	Ti	4.931	4.510	0.458	0.452
23	v	5.427	4.952	0.519	0.512

	1	1			
Atomic					
No.	Element	$K\beta_1$	$K\alpha_1$	$L\beta_1$	$L\alpha_1$
	C-	5.046	5 414	0.591	0.571
24		5.940	5.414	0.581	0.571
25	IVIN	0.490	5.898	0.047	0.030
26	Fe	7.057	6 402	0.717	0.704
20	re Ca	7.037	6.403	0.717	0.704
21		7.049	0.930	0.790	0.773
28		8.204	7.477	0.800	0.849
29		8.904	8.047	0.948	0.928
50	Zn	9.571	8.038	1.052	1.009
31	Ga	10.263	0.251	1 122	1.096
32	Ga	10.205	9.251	1.122	1.090
32		11 725	10 543	1.210	1.100
33	AS So	12.405	11.221	1.317	1.202
25	Dr	12.493	11.221	1.419	1.579
55	DI	15.290	11.925	1.320	1.460
36	Kr	14 112	12 649	1 638	1 587
37	Rh	14.960	13 394	1.050	1.507
38	Sr	15 83/	14 164	1.752	1.004
30	v	16 736	14.104	1.072	1.000
40	7r	10.750	15 774	2 124	2 042
40		17.000	15.774	2.124	2.042
41	Nb	18 621	16 614	2 257	2.166
42	Mo	19 607	17 478	2 395	2 293
43	Tc	20.612	18 370	2.538	2.424
44	Ru	21.655	19 278	2.683	2 558
45	Rh	21.033	20 214	2.885	2.550
15			20.214	2.034	2.090
46	Pd	23.816	21.175	2.990	2.838
47	Ag	24.942	22.162	3.151	2.984
48	Cď	26.093	23.172	3.316	3.133
49	In	27.274	24.207	3.487	3.287
50	Sn	28.483	25.270	3.662	3.444
51	Sb	29.723	26.357	3.843	3.605
52	Te	30.993	27.471	4.029	3.769
53	I	32.292	28.610	4.220	3.937
54	Xe	33.644	29.779	4.422	4.111
55	Cs	34.984	30.970	4.620	4.286
56	Ba	36.376	32.191	4.828	4.467
57	La	37.799	33.440	5.043	4.651
58	Ce	39.255	34.717	5.262	4.840
59	Pr	40.746	36.023	5.489	5.034
60	Nd	42.269	37.359	5.722	5.230
61	Pm	43.811	38.726	5.956	5.431
62	Sm	45.400	40.124	6.206	5.636
63	Eu	47.027	41.529	6.456	5.846
64	Gd	48.718	42.983	6.714	6.059
65	Tb	50.391	44.470	6.979	6.275
	1				L

TABLE 3.75 X-Ray Emission Energies in KeV (Continued)

Atomic					
No.	Element	$K\beta_1$	$K\alpha_1$	$Leta_1$	$L\alpha_1$
66	Dy	52.178	45.985	7.249	6.495
67	Ho	53.934	47.528	7.528	6.720
68	Er	55.690	49.099	7.810	6.948
69	Tm	57.487	50.730	8.103	7.181
70	Yb	59.352	52.360	8.401	7.414
71	Lu	61.282	54.063	8.708	7.654
72	Hf	63.209	55.757	9.021	7.898
73	Та	65.210	57.524	9.341	8.145
74	W	67.233	59.310	9.670	8.396
75	Re	69.298	61.131	10.008	8.651
76	Os	71.404	62.991	10.354	8.910
77	Ir	73.549	64.886	10.706	9.173
78	Pt	75.736	66.820	11.069	9.441
79	Au	77.968	68.794	11.439	9.711
80	Hg	80.258	70.821	11.823	9.987
81	Tl	82.558	72.860	12.210	10.266
82	Pb	84.922	74.957	12.611	10.549
83	Bi	87.335	77.097	13.021	10.836
84	Ро	89.809	79.296	13.441	11.128
85	At	92.319	81.525	13.873	11.424
86	Rn	94.877	83.800	14.316	11.724
87	Fr	97.483	86.119	14.770	12.029
88	Ra	100.136	88.485	15.233	12.338
89	Ac	102.846	90.894	15.712	12.650
90	Th	105.592	93.334	16.200	12.966
91	Pa	108.408	95.851	16.700	13.291
92	U	111.289	98.428	17.218	13.613
93	Np	114.181	101.005	17.740	13.945
94	Pu	117.146	103.653	18.278	14.279
95	Am	120.163	106.351	18.829	14.618
96	Cm	123.235	109.098	19.393	14,961
97	Bk	126.362	111.896	19.971	15.309
98	Cf	129.544	114.745	20.562	15.661
99	Es	132.781	117.646	21.166	16.018
100	Fm	136.075	120.598	21.785	16.379

TABLE 3.75 X-Ray Emission Energies in KeV (Continued)

				$K\beta_1 K\alpha_1 = \frac{1}{100}$		
Target Element	Kā, Å	Excitation Voltage, keV	Absorber	Thickness, mm	g/cm ²	% Loss $K\alpha_1$
Ag	0.560834	25.52	Pd	0.062	0.074	60
Mo	0.71069	20.00	Zr	0.081	0.053	57
Cu	1.54178	8.981	Ni	0.015	0.013	45
Ni	1.65912	8.331	Co	0.013	0.011	42
Co	1.79021	7.709	Fe	0.012	0.009	39
Fe	1.93728	7.111	Mn	0.011	0.008	38
			MnO ₂	0.026	0.013	45
Cr	2.29092	5.989	v	0.011	0.007	37
			V ₂ O ₅	0.036	0.012	48
	$L lpha_1$			$L\beta_1 L\alpha_1 = \frac{1}{100}$		% Loss $L\alpha_1$
W	1.4763	10.200	Cu	0.035		77

TABLE 3.76 β Filters for Common Target Elements

TABLE 3.77 Interplanar Spacing for K_a , Radiation, *d* versus 20

	α -quartz (Including Novaculite)											
	hkl d(Å)		100 4.260	101 3.343	110 2.458	102 2.282	200 2.128	112 1.817	202 1.672	211 1.541	203 1.375	301 1.372
W Ag Mo Cu Ni Co Fe Cr	 Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: 	20 20 20 20 20 20 20 20 20	2.81 7.53 9.55 20.83 22.44 24.24 26.27 31.18	3.58 9.60 12.18 26.64 28.71 31.04 33.66 40.05	4.87 13.07 16.59 36.52 39.42 42.68 46.38 55.52	5.25 14.08 17.88 39.45 42.60 46.15 50.20 60.22	5.63 15.10 19.19 42.44 45.85 49.71 54.11 65.09	6.59 17.71 22.51 50.16 54.28 58.98 64.38 78.11	7.17 19.26 24.49 54.86 59.44 64.68 70.75 86.42	7.78 20.91 26.61 59.98 65.08 70.96 77.83 95.96	8.72 23.47 29.89 68.14 74.15 81.16 89.50 112.73	8.74 23.52 29.96 68.31 74.34 81.38 89.74 113.11
			L	1	1		Silicon	1		1	1	
	hkl d(Å)		111 3.1353	220 1.91997	311 1.63736	400 1.357630	331 1.24584	422 1.1085	511,333 1.0451	440 0.959986	531 0.917922	620 0.858637
W Ag Mo Cu Ni Co Fe Cr	 Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: Kα₁: 	20 20 20 20 20 20 20 20 20 20	3.82 10.24 12.99 28.44 30.66 33.15 35.97 42.83	6.24 16.75 21.29 47.30 51.16 55.53 60.55 73.21	7.32 19.67 25.02 56.12 60.83 66.22 72.48 88.72	8.83 23.78 30.28 69.13 75.26 82.42 90.96 114.97	9.62 25.95 33.08 76.38 83.42 91.77 101.97 133.53	10.82 29.23 37.32 88.03 96.80 107.59 121.67	11.48 31.04 39.67 94.96 104.96 117.71 135.70	12.50 33.88 43.36 106.71 119.42 137.42	13.07 35.48 45.45 114.10 129.12 154.04	13.98 38.02 48.79 127.55 149.76

Crystal	Reflecting Plane	2 <i>d</i> Spacing, Å	Reflectivity
Quartz	5052	1.624	Low
Aluminum	111	2.338	High
Topaz	303	2.712	Medium
Quartz	2023	2.750	Low
Lithium fluoride	220	2.848	High
Silicon	111	3.135	High
Quartz	112	3.636	Medium
Lithium fluoride	200	4.028	High
Sodium chloride	200	5.639	High
Calcium fluoride	111	6.32	High
Quartz	1011	6.686	High
Quartz	1010	8.50	Medium
Pentaerythritol (PET)	002	8.742	High
Ethylenediamine tartrate (EDT)	020	8.808	Medium
Ammonium dihydrogen phosphate (ADP)	110	10.648	Low
Gypsum	020	15.185	Medium
Mica	002	19.92	Low
Potassium hydrogen phthalate (KAP)	1011	26.4	Medium
Lead palmitate		45.6	
Strontium behenate		61.3	
Lead stearate		100.4	Medium

TABLE 3.78 Analyzing Crystals for X-Ray Spectroscopy

Emitter wavelength, Å								
Absorber	$\begin{array}{c} \text{Ag } K\alpha_1 \\ 0.559 \end{array}$	Mo <i>Kα</i> 1 0.709	Cu <i>Kα</i> ₁ 1.541	Ni <i>Kα</i> 1 1.658	Co <i>Kα</i> ₁ 1.789	Fe <i>Kα</i> ₁ 1.936	$\begin{array}{c} \operatorname{Cr} K\alpha_1 \\ 2.290 \end{array}$	W <i>Lα</i> ₁ 1.476
1 H	0.37	0.38	0.43	0.4	0.4	0.5	0.5	0.4
2 He	0.16	0.18	0.37	0.4	0.4	0.5	0.7	0.3
3 Li	0.18	0.22	0.50	0.6	0.7	0.9	1.5	0.4
4 Be	0.22	0.30	1.2	1.5	1.9	2.3	3.7	1.1
5 B	0.30	0.45	2.5	3.1	3.9	4.9	7.9	2.2
6 C	0.42	0.50	4.6	5.7	7.1	8.8	14.2	4.1
7 N	0.60	0.83	7.5	9.3	11.5	14.4	23.1	6.7
8 O	0.80	1.45	12.9	15.8	19.5	24.5	39.4	11.4
9 F	1.00	1.9	16.5	20.3	25.2	31.4	50.3	14.6
10 Ne	1.41	2.6	22.8	27.9	34.6	43.1	69.0	20.1
11 Na	1.75	3.5	30.3	37.2	45.9	57.2	91.4	26.8
12 Mg	2.27	4.6	39.5	48.4	59.8	74.6	119.1	34.9
13 Al	2.74	5.8	49.6	60.7	75.0	93.4	149.0	43.9
14 Si	3.44	7.3	61.4	75.2	92.8	115.5	183.8	54.4
15 P	4.20	8.8	74.7	91.4	112.9	140.5	223.6	66.2
16 S	5.15	10.6	89.2	109.2	134.7	167.4	266.1	79.1
17 Cl	5.86	12.4	104.8	128.2	158.1	196.6	312.4	92.8
18 Ar	6.40	14.5	121.4	148.5	183.0	227.3	360.7	107.6
19 K	8.0	16.7	139.8	171	211	262	415	124
20 Ca	9.7	18.9	158.6	194	239	296	469	141
21 Sc	10.5	21.8	180.5	221	272	337	534	160
22 Ti	11.8	25.3	203	247	304	378	597	180
23 V	13.3	27.7	228	278	342	424	77	202
24 Cr	15.7	31.0	254	311	382	474	88	226
25 Mn	17.4	34.5	282	344	423	63.5	101	250
26 Fe	19.9	38.1	311	380	57.6	71.4	113	276
27 Co	21.8	42.1	K341	52.8	64.9	80.6	127	303
28 Ni	25.0	46.4	48.3	58.9	72.5	90.0	142	333 K
29 Cu	26.4	50.7	53.7	65.5	80.6	100.0	158	47.6
30 Zn	28.2	55.4	59.5	72.7	89.4	110.9	175	52.8
31 Ga	30.8	60.1	65.9	80.5	99.0	122.8	194	58.5
32 Ge	33.5	65.2	72.3	88.2	108.6	134.7	213	64.1
33 As	36.5	70.5	79.1	96.6	118.9	147	233	70.2
34 Se	38.5	76.0	86.1	105.1	129.4	161	254	76.4
35 Br	42.3	82.5	93.9	114.7	141.2	175	277	83.4
36 Kr	45.0	88.3	101.9	124.5	153.2	190	300	90.5
37 Rb	48	95	84	103	127	158	252	98
38 Sr	52	102	90	110	137	170	271	106

TABLE 3.79 Mass Absorption Coefficients for $K\alpha_1$ Lines and $WL\alpha$, Line

Emitter wavelength, Å			<i>a v</i>		<i>a "</i>		<i>a v</i>	
Absorber	$\begin{array}{c} \text{Ag } K\alpha_1 \\ 0.559 \end{array}$	$\begin{array}{c} \text{Mo } K\alpha_1 \\ 0.709 \end{array}$	$\begin{array}{c} \operatorname{Cu} K\alpha_1 \\ 1.541 \end{array}$	Ni $K\alpha_1$ 1.658	$\begin{array}{c} \text{Co } K\alpha_1 \\ 1.789 \end{array}$	Fe $K\alpha_1$ 1.936	$\begin{array}{c} \operatorname{Cr} K\alpha_1 \\ 2.290 \end{array}$	W $L\alpha_1$ 1.476
39 Y	56	109	97	119	147	183	292	114
40 Zr	61	17	104	128	158	197	314	122
41 Nb	66	18	112	138	170	212	338	132
42 Mo	71	19	119	146	180	225	358	140
43 Tc	K	20	128	157	194	241	384	150
44 Ru	12	22	137	168	207	258	410	160
45 Rh	13	23	146	179	221	275	438	171
46 Pd	14	24	155	190	235	292	466	182
47 Ag	15	26	165	202	249	310	493	193
48 Cd	15	28	174	213	263	327	520	204
49 In	16	30	185	227	280	347	553	217
50 Sn	17	32	195	239	295	367	583	229
50 51	1,	52	1,5	239	2,5	507	505	22)
51 Sb	19	34	206	252	310	386	612	241
52 Te	19	36	216	265	326	405	644	253
53 I	21	37	230	281	346	431	684	269
54 Xe	22	39	239	293	361	448	710	280
55 Cs	24	42	332	404	495	612	822	295
56 Ba	25	44	349	425	522	645	622	311
57 La	26	46	365	444	545	673	647	325
58 Ce	28	48	383	466	571	603		341
59 Pr	29	51	401	487	597	453	229	356
60 Nd	31	54	420	510	534	473	241	373
61 Pm	32	56	440	535		164	254	392
62 Sm	33	59	- 456	473	417	173	268	406
63 Eu	35	61	$L_{\rm I} = \frac{100}{405}$	354	148	182	282	423
64 Gd	36	64	- 424	370	156	191	296	
65 Tb	38	67	L_{π} 316	135	164	201	311	$\overline{393}^{L_{I}}$
								I
66 Dy	39	70	1	141	172	211	327	293 ²⁴¹
67 Ho	41	72	² ¹¹ 123	148	181	222	343	304
68 Er	43	75	129	156	189	233	360	$\frac{316}{1}$
69 Tm	45	79	135	163	199	244	377	120 ^{2-m}
70 Yb	46	82	141	171	208	256	395	126
71 I.u	18	84	1/18	170	218	267	414	132
71 Lu 72 Hf	51	88	140	187	210	280	A32	132
72 III 72 To	52	01	162	107	228	200	453	136
75 Ta 74 W/	55	05	160	204	230	306	472	151
74 W 75 Do	57	08	176	204	249	310	475	157
15 KC	51	20	1/0	213	200	519	474	157
76 Os	59	102	184	223	271	333	515	164
77 Ir	61	106	192	232	283	347	538	171
78 Pt	64	109	200	242	295	362	560	179

TABLE 3.79	Mass Absorption	Coefficients for K	Lines and W $L\alpha_1$, Lir	ne (<i>Continued</i>)
------------	-----------------	--------------------	-------------------------------	-------------------------

Emitter vavelength, Å								
Absorber	Ag <i>Kα</i> 1 0.559	Mo <i>Kα</i> 1 0.709	Cu <i>Kα</i> 1 1.541	Ni <i>Kα</i> 1 1.658	Co <i>Kα</i> ₁ 1.789	Fe $K\alpha_1$ 1.936	$\begin{array}{c} \operatorname{Cr} K\alpha_1 \\ 2.290 \end{array}$	W La 1.476
79 Au	67	113	209	252	307	377	584	186
80 Hg	69	117	218	263	321	394	609	194
81 Tl	72	121	227	275	334	411	635	203
82 Pb	74	125	236	286	348	428	662	211
83 Bi	78	129	247	298	363	446	690	220
84 Po		131	258	311	380	466	721	230
85 At			269	325	397	487	753	240
86 Rn	85		281	340	414	509	787	251
87 Fr		89	294	356	433	532	823	262
88 Ra	91		307	372	453	556	861	274
89 Ac			322	389	474	582	900	287
90 Th	97		337	408	497	610	944	301
91 Pa			353	427	520	639	988	315
92 U	104		372	450	548	673	898	332
93 Np			392	474	578	709	945	350
94 Pu		54	418	505	615	755	835	373

TABLE 3.79 Mass Absorption Coefficients for K_1 Lines and W $L\alpha_1$, Line (*Continued*)

SECTION 4 GENERAL INFORMATION AND CONVERSION TABLES

SECTION 4 GENERAL INFORMATION AND CONVERSION TABLES

4.1	GENERAL IN	IFORMATION	4.3
	Table 4.1	SI Prefixes	4.3
	Table 4.2	Greek Alphabet	4.4
4.2	PHYSICAL C	ONSTANTS AND CONVERSION FACTORS	4.4
	Table 4.3	Physical Constants	4.4
	Table 4.4	Conversion Factors	4.8
4.3	CONVERSIO	N OF THERMOMETER SCALES	4.28
	Table 4.5	Temperature Conversion	4.29
4.4	DENSITY AN	D SPECIFIC GRAVITY	4.41
	Table 4.6	Hydrometer Conversion	4.45
4.5	BAROMETRY	AND BAROMETRIC CORRECTIONS	4.47
	Table 4.7	Barometer Temperature Correction—Metric Units	4.48
	Table 4.8	Barometric Latitude-Gravity—Metric Units	4.51
	Table 4.9	Barometric Correction for Gravity—Metric Units	4.53
	Table 4.10	Reduction of the Barometer to Sea Level-Metric Units	4.54
	Table 4.11	Pressure Conversion	4.58
	Table 4.12	Conversion of Weighings in Air to Weighings in Vacuo	4.59
	Table 4.13	Factors for Reducing Gas Volumes to Normal (Standard)	
		Temperature and Pressure (760 mmHg)	4.61
4.6	VISCOSITY		4.66
	Table 4.14	Viscosity Conversion	4.66
4.7	PHYSICAL C	HEMISTRY EQUATIONS EQUATIONS FOR GASES	4.67
4.7.1	Equations of	of State (PVT Relations for Real Cases)	4.68
4.7.2	Properties	of Gas Molecules	4.69
	Table 4.15	Molar Equivalent of One Liter of Gas at Various	
		Temperatures and Pressures	4.70
	Table 4.16	Corrections to Be Added to Molar Values to Convert to Molal	4.73
4.8	COOLING		4.73
	Table 4.17	Cooling Mixtures	4.73
	Table 4.18	Molecular Lowering of the Melting or Freezing Point	4.74
4.9	DRYING AND	D HUMIDIFICATION	4.75
	Table 4.19	Drying Agents	4.75
	Table 4.20	Solutions for Maintaining Constant Humidity	4.76
	Table 4.21	Concentration of Solutions of H ₂ SO ₄ , NaOH, and CaCl ₂	4.77
		Giving Specified Vapor Pressures and Percent Humidity at 25°C	
	Table 4.22	Relative Humidity from Wet and Dry Bulb Thermometer Readings	4.77
	Table 4.23	Relative Humidity from Dew Point Readings	4.79
	Table 4.24	Mass of Water Vapor in Saturated Air	4.80
4.10	MOLECULA	AR WEIGHT	4.81
	Table 4.25	Molecular Elevation of the Boiling Point	4.81
4.11	Heating Bat	ths	4.83
	Table 4.26	Substances that Can Be Used for Heating Baths	4.83
4.12	SEPARATIO	N METHODS	4.83
	Table 4.27	Solvents of Chromatographic Interest	4.84
	Table 4.28	McReynolds' Constants for Stationary Phases	
		in Gas Chromatography	4.86
4.12	.1 McReyno	lds' Constants	4.83
	Table 4.29	Characteristics of Selected Supercritical Fluids	4.94

4.12.	2 Chromat	ographic Behavior of Solutes	4.90
	Table 4.30	Typical Performances in HPLC for Various Conditions	4.95
4.12.	3 Ion-Exch	ange (Normal Pressure, Columnar)	4.95
	Table 4.31	Ion-Exchange Resins	4.97
	Table 4.32	Relative Selectivity of Various Counter Cations	4.101
	Table 4.33	Relative Selectivity of Various Counter Anions	4.102
4.13	GRAVIMET	TRIC ANALYSIS	4.104
	Table 4.34	Gravimetric Factors	4.104
	Table 4.35	Elements Precipitated by General Analytical Reagents	4.130
	Table 4.36	Cleaning Solutions for Fritted Glassware	4.132
	Table 4.37	Common Fluxes	4.133
	Table 4.38	Membrane Filters	4.133
	Table 4.39	Porosities of Fritted Glassware	4.134
	Table 4.40	Tolerances for Analytical Weights	4.134
	Table 4.41	Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors	4.135
4.14	VOLUMET	RIC ANALYSIS	4.137
	Table 4.42	Primary Standards for Aqueous Acid-Base Titrations	4.137
	Table 4.43	Titrimetric (Volumetric) Factors	4.138
	Table 4.44	Equations for the Redox Determinations of the	
		Elements with Equivalent Weights	4.145
	Table 4.45	Standard Solutions for Precipitation Titrations	4.149
	Table 4.46	Indicators for Precipitation Titrations	4.150
	Table 4.47	Properties and Applications of Selected Metal Ion Indicators	4.151
	Table 4.48	Variation of a_4 with pH	4.152
	Table 4.49	Formation Constants of EDTA Complexes at 25°C,	
		Ionic Strength Approaching Zero	4.152
	Table 4.50	Cumulative Formation Constants of Ammine Complexes at 20°C, lonic Strength 0.1	4.152
	Table 4.51	Masking Agents for Various Elements	4.153
	Table 4.52	Masking Agents for Anions and Neutral Molecules	4.155
	Table 4.53	Common Demasking Agents	4.156
	Table 4.54	Amino Acids pl and pKQ Values	4.157
	Table 4.55	Tolerances of Volumetric Flasks	4.158
	Table 4.56	Pipette Capacity Tolerances	4.158
	Table 4.57	Tolerances of Micropipets (Eppendorf)	4.158
	Table 4.58	Buret Accuracy Tolerances	4.159
	Table 4.59	Factors for Simplified Computation of Volume	4.159
	Table 4.60	Cubical Coefficients of Thermal Expansion	4.160
	Table 4.61	General Solubility Rules for Inorganic Compounds	4.161
	Table 4.62	Concentration of Commonly Used Acids and Bases	4.161
	Table 4.63	Standard Stock Solutions	4.162
	Table 4.64	TLV Concentration Limits for Gases and Vapors	4.165
	Table 4.65	Some Common Reactive and Incompatible Chemicals	4.173
	Table 4.66	Chemicals Recommended for Refrigerated Storage	4.179
	Table 4.67	Chemicals Which Polymerize or Decompose on	
		Extended Refrigeration	4.179
4.15	SIEVES AN	ID SCREENS	4.180
	Table 4.68	U.S. Standard Sieves	4.180
4.16	THERMON	IETRY	4.180
4.16.	1 Temperat	ture Measurement	4.180
	Table 4.69	Fixed Points in the ITS-90	4.180
	Table 4.70	Values of K for Stem Correction of Thermometers	4.182
4.17	THERMOC	OUPLES	4.182
	Table 4.71	Thermoelectric Values in Millivolts at Fixed Points	
		for Various Thermocouples	4.184

Table 4.72	Type B Thermocouples: Platinum-30% Rhodium	
	Alloy vs. Platinum-6% Rhodium Alloy	4.185
Table 4.73	Type E Thermocouples: Nickel-Chromium Alloy vs. Copper-Nickel Alloy	4.186
Table 4.74	Type J Thermocouples: Iron vs. Copper-Nickel Alloy	4.187
Table 4.75	Type K Thermocouples: Nickel-Chromium Alloy vs.	
	Nickel-Aluminum Alloy	4.188
Table 4.76	Type NThermocouples: Nickel-14.2% Chromium-1.4%	
	Silicon Alloy vs. Nickel-4.4% Silicon-0.1% Magnesium Alloy	4.188
Table 4.77	Type R Thermocouples: Platinum-13% Rhodium Alloy vs. Platinum	4.190
Table 4.78	Type S Thermocouples: Platinum-10% Rhodium Alloy vs. Platinum	4.191
Table 4.79	Type T Thermocouples: Copper vs. Copper-Nickel Alloy	4.192

4.1 GENERAL INFORMATION

TABLE 4.1SI Prefixes

Submultiple	Prefix	Symbol	Multiple	Prefix	Symbol
10-1	deci	d	10	deka	da
10-2	centi	с	10 ²	hecto	h
10-3	milli	m	10 ³	kilo	k
10-6	micro	μ	106	mega	М
10-9	nano	n	109	giga	G
10-12	pico	р	1012	tera	Т
10-15	femto	Î	1015	peta	Р
10-18	atto	а	1018	exa	Е
10-21	zepto	Z	1021	zetta	Z
10 ⁻²⁴	yocto	у	1024	yotta	Y

		,	1.2.0,1		
Number	Prefix	Number	Prefix	Number	Prefix
0.5	hemi	19	nonadeca	39	nonatriaconta
1	mono	20	icosa	40	tetraconta
1.5	sesqui	21	henicosa	41	hentetraconta
2	di (bis)*	22	docosa	42	dotetraconta
3	tri (tris)*	23	tricosa	43	tritetraconta
4	tetra (tetrakis)*	24	tetracosa	44	tetratetraconta
5	penta	25	pentacosa	45	pentatetraconta
6	hexa	26	hexacosa	46	hexatetraconta
7	hepta	27	heptacosa	47	heptatetraconta
8	octa	28	octacosa	48	octatetraconta
9	nona	29	nonacosa	49	nonatetraconta
10	deca	30	triaconta	50	pentaconta
11	undeca	31	hentriaconta	60	hexaconta
12	dodeca	32	dotriaconta	70	heptaconta
13	trideca	33	tritriaconta	80	octaconta
14	tetradeca	34	tetratriaconta	90	nonaconta
15	pentadeca	35	pentatriaconta	100	hecta
16	hexadeca	36	hexatriaconta	110	decahecta
17	heptadeca	37	heptatriaconta	120	icosahecta
18	octadeca	38	octatriaconta	130	triacontahecta
		I Contraction of the second se			

*In the case of complex entities such as organic ligands (particularly if they are substituted) the multiplying prefixes bis-, tris-, tetrakis-, pentakis-, ... are used, i.e., -kis is added starting from tetra-. The modified entity is often placed within parentheses to avoid ambiguity.

Numerical (multiplying) prefixes

	Lower			Lower	
Capital	case	Name	Capital	case	Name
А	α	Alpha	N	ν	Nu
В	β	Beta	Ξ	ξ	Xi
Г	γ	Gamma	0	0	Omicron
Δ	δ	Delta	П	π	Pi
E	e	Epsilon	Р	ρ	Rho
Z	ζ	Zeta	Σ	σ	Sigma
н	η	Eta	Т	au	Tau
θ	$\dot{\theta}$	Theta	Υ	υ	Upsilon
Ι	L	Iota	Φ	ϕ	Phi
К	к	Kappa	X	x	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
Μ	μ	Mu	Ω	ω	Omega

TABLE 4.2	Greek Alphabet
-----------	----------------

4.2 PHYSICAL CONSTANTS AND CONVERSION FACTORS

TABLE 4.3 Physical Constants

A. Defined values				
Physical quantity	Name of SI unit	Symbol for SI unit	Definition	
1. Base SI units Amount of substance	mole	mol	Amount of substance which contains as many specified entities as there are atoms of carbon- 12 in exactly 0.012 kg of that nuclide. The elementary entities must be specified and may be atoms, molecules, ions, elec- trons, other particles, or specified groups of such particles.	
Electric current	ampere	A	Magnitude of the current that, when flowing through each of two straight parallel conductors of infinite length, of negligible cross-section, separated by 1 meter in a vacuum, results in a force between the two wires of 2×10^{-7} newton per meter of length.	
Length	meter	m	Distance light travels in a vacuum during 1/299 792 458 of a second.	
Luminous intensity	candela	cd	Luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.	
Mass	kilogran 1	kg	Mass of a cylinder of platinum-iridium alloy kept at Paris.	
Temperature	kelvin	К	Defined as the fraction 1/273.16 of the ther- modynamic temperature of the triple point of water.	

		A. Defined val	ues	
Physical quantity	Name of SI unit	Symbol for SI unit	Definition	
Time	second	S	Duration of 9 192 631 770 periods of the ra- diation corresponding to the transition be- tween the two hyperfine levels of the ground state of the cesium-133 atom.	
2. Supplementary SI units Plane angle	radian	rad	The plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius.	
Solid angle	steradiar 1	sr	The solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the ra- dius of the sphere.	
		B. Derived SI	units	
Physical quantity	Name of SI unit	Symbol for SI unit	Expression in terms of SI base units	
Absorbed dose (of radiation)	gray	Gy	$J \cdot kg^{-1}$	
Activity (radioactive)	becquerel	Bq	$s^{-1} = m^2 \cdot s^{-2}$	
Capacitance (electric)	farad	F	$\mathbf{C} \cdot \mathbf{V}^{-1} = \mathbf{m}^{-2} \cdot \mathbf{k} \mathbf{g}^{-1} \cdot \mathbf{s}^4 \cdot \mathbf{A}^2$	
Charge (electric)	coulomb	С	$A \cdot s$	
Conductance (electric)	siemens	S	$\Omega^{-1} = \mathrm{m}^{-2} \cdot \mathrm{k} \mathrm{g}^{-1} \cdot \mathrm{s}^3 \cdot \mathrm{A}^2$	
Dose equivalent (radiation)	sievert	Sv	$\mathbf{J} \cdot \mathbf{k} \mathbf{g}^{-1} = \mathbf{m}^2 \cdot \mathbf{s}^{-2}$	
Energy, work, heat	joule	J	$\mathbf{N}\cdot\mathbf{m}=\mathbf{m}^{2}\cdot\mathbf{kg}\cdot\mathbf{s}^{-2}$	
Force	newton	Ν	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2}$	
Frequency	hertz	Hz	s^{-1}	
Illuminance	lux	lx	$cd \cdot sr \cdot m^{-2}$	
Inductance	henry	Н	$\mathbf{V} \cdot \mathbf{A}^{-1} \cdot \mathbf{s} = \mathbf{m}^2 \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-2}$	
Luminous flux	lumen	Lm	cd · sr	
Magnetic flux	weber	Wb	$\mathbf{v} \cdot \mathbf{s} = \mathbf{m}^2 \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-1}$	
Magnetic nux density	tesia	1	$\mathbf{v} \cdot \mathbf{s} \cdot \mathbf{m}^{-2} = \mathbf{k} \mathbf{g} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-1}$	
(electromotive force)	voit	v	$\mathbf{J}\cdot\mathbf{C}^{-1}=\mathbf{m}^{2}\cdot\mathbf{kg}\cdot\mathbf{s}^{-3}\cdot\mathbf{A}^{-1}$	
Power, radiant flux	watt	W	$\mathbf{J}\cdot\mathbf{s}^{-1}=\mathbf{m}^2\cdot\mathbf{k}\mathbf{g}\cdot\mathbf{s}^{-3}$	
Pressure, stress	pascal	Ра	$\mathbf{N} \cdot \mathbf{m}^{-2} = \mathbf{m}^{-1} \cdot \mathbf{k} \mathbf{g} \cdot \mathbf{s}^{-2}$	
Resistance, electric	ohm	Ω	$\mathbf{V}\cdot\mathbf{A}^{-1}=\mathbf{m}^{2}\cdot\mathbf{kg}\cdot\mathbf{s}^{-3}\cdot\mathbf{A}^{-2}$	
Temperature, Celsius	degree Celsius	°C	$^{\circ}\mathrm{C} = (\mathrm{K} - 273.15)$	

TABLE 4.3 Physical Constants (Continued)

C. Recommended consistent values of constants

Quantity	Symbol	Value*
Anomalous electron moment correction Atomic mass constant	$\mu_{\rm e} - 1$ $m_{\rm u} = 1 \ \rm u$ $L N$	0.001 159 615(15) 1.660 540 2(10) \times 10 ⁻²⁷ kg 6.022 136 7(36) \times 10 ²³ mol ⁻¹
Bohr magneton $(=eh/4\pi m_c)$	μ_B	$9.274\ 015\ 4(31) \times 10^{-24}\ J\cdot T^{-1}$

TABLE 4.3 Physical Constants (Continued)

Quantity	Symbol	Value*
Bohr radius	a_0	$5.291\ 772\ 49(24) \times 10^{-11}\ m$
Boltzmann constant	k	$1.380\ 658(12) \times 10^{-23}\ J \cdot K^{-1}$
Charge-to-mass ratio for electron	e/m _e	$1.758\ 805(5) imes10^{-11}{ m C}\cdot{ m kg}^{-1}$
Compton wavelength of electron	λ_c	$2.426\ 309(4) \times 10^{-12} \text{ m}$
Compton wavelength of neutron	$\lambda_{c,n}$	$1.319\ 591(2) \times 10^{-15}\ \mathrm{m}$
Compton wavelength of proton	$\lambda_{c,p}$	$1.321 \ 410(2) \times 10^{-15} \ \mathrm{m}$
Diamagnetic shielding factor, spherical water molecule	$1 + \sigma(H_2O)$	1.000 025 64(7)
Electron magnetic moment	$\mu_{ m e}$	9.284 770 1(31) × 10 ⁻²⁴ J · T ⁻¹
Electron radius (classical)	r _e	$2.817\ 938(7) \times 10^{-15}\ m$
Electron rest mass	m _e	9.109 389 7(54) \times 10 ⁻³¹ kg
Elementary charge	е	$1.602 \ 177 \ 33(49) \times 10^{-19} \ \mathrm{C}$
Energy equivalents:		
1 electron mass		0.511 003 4(14) MeV
1 electronvolt	1 eV/k	$1.160\ 450(36) \times 10^4\ { m K}$
	1 eV/hc	$8.065 479(21) \times 10^3 \text{ cm}^{-1}$
	1 eV/h	2.417 970(6) × 10 ¹⁴ Hz
1 neutron mass		939.573 1(27) MeV
1 proton mass		938.279 6(27) MeV
1 u		931.501 6(26) MeV
Faraday constant	F	96 485.309(29) C · mol ⁻¹
Fine structure constant	α	0.007 297 353 08(33)
	$lpha^{-1}$	137.035 989 5(61)
First radiation constant	c_1	$3.741\ 774\ 9(22) \times 10^{-16}\ W\cdot m^2$
Gas constant	R	8.314 510(70) J · K ⁻¹ · mol ⁻¹
g factor (Lande) for free electron	8e	2.002 319 304 386(20)
Gravitational constant	G	$6.672\ 59(85) \times 10^{-11}\ \mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$
Hartree energy	$E_{ m h}$	$4.359~748~2(26) \times 10^{-18}$ J
Josephson frequency-voltage ratio		$4.835 \ 939(13) \times 10^{14} \ \mathrm{Hz} \cdot \mathrm{V}^{-1}$
Magnetic flux quantum	Φ_0	$2.067 851(5) \times 10^{-15} \text{ Wb}$
Magnetic moment of protons in water	$\mu_{ m p}/\mu_{ m B}$	$1.520\ 993\ 129(17) \times 10^{-3}$
Molar volume, ideal gas, $p = 1$ bar, $\theta = 0^{\circ}C$		22.711 08(19) $L \cdot mol^{-1}$
Neutron rest mass	m _n	$1.674~928~6(10) imes 10^{-27}~{ m kg}$
Nuclear magneton	μ_N	5.050 786 6(17) \times 10 ⁻²⁷ J \cdot T ⁻¹
Permeability of vacuum	μ_0	$4\pi \times 10^{-7} \mathrm{H\cdot m^{-1}}$ exactly
Permittivity of vacuum	ϵ_0	8.854 187 816 $ imes$ 10 ⁻¹² F \cdot m ⁻¹
	$\hbar = h/2\pi$	$1.054~572~66(63) \times 10^{-34} \text{ J} \cdot \text{s}$
Planck constant	h	$6.626\ 0.75\ 5(40) imes10^{-34}\ { m J}\cdot{ m s}$
Proton magnetic moment	$\mu_{ m p}$	$1.410\ 607\ 61(47) imes10^{-26}\ { m J}\cdot{ m T}^{-1}$
Proton magnetogyric ratio	$\gamma_{ m p}$	$2.675\ 221\ 28(81) \times 10^8\ { m s}^{-1}\cdot { m T}^{-1}$
Proton resonance frequency per field in H ₂ O	$\gamma_{\rm p}'/2\pi$	42.576 375(13) MHz · T ⁻¹
Proton rest mass	m_{p}	$1.672~623~1(10) \times 10^{-27}$ kg
Quantum-charge ratio	hle	$4.135\ 701(11) \times 10^{-15}$
		$J \cdot Hz^{-1} \cdot C^{-1}$
Quantum of circulation	h/m _e	7.273 89(1) \times 10 ⁻⁴ J · s · kg ⁻¹
Ratio, electron-to-proton magnetic moments	μ_e/μ_p	$6.582\ 106\ 88(7) \times 10^2$

C. Recommended consistent values of constants

C. Recommended consistent values of constants			
Quantity	Symbol	Value*	
Rydberg constant	R_{∞} .	$1.097 \ 373 \ 153 \ 4(13) \times 10^7 \ m^{-1}$	
Second radiation constant	c_2	$1.438~769(12) \times 10^{-2} \text{ m} \cdot \text{K}$	
Speed of light in vacuum	c_0	299 792 458 m · s ⁻¹ exactly	
Standard acceleration of free fall	8n	9.806 65 m \cdot s ⁻² exactly	
Standard atmosphere	atm	101 325 Pa exactly	
Stefan-Boltzmann constant	σ	$5.670\ 51(19) \times 10^{-8}\ W \cdot m^{-2} \cdot K^{-4}$	
Thomson cross section	$\sigma_{\rm e}$	$6.652\ 448(33) \times 10^{-29}\ m^2$	
Wien displacement constant	b	0.289 78(4) cm · K	
Zeeman splitting constant	$\mu_{ m B}/hc$	4.668 58(4) \times 10 ⁻⁵ cm ⁻¹ · G ⁻¹	

TABLE 4.3 Physical Constants (Continued)

D. Units in use together with SI units

Physical quantity	Name of unit	Symbol for unit	Value in SI units
Area	barn	b	10 ⁻²⁸ m
Energy	electronvolt	$eV (e \times V)$	≈1.60218 × 10 ⁻¹⁹ J
	megaelectronvolt ¹	MeV	
Length	ångström ²	Å	10 ⁻¹⁰ m; 0.1 nm
Mass	tonne	t	10 ³ kg; Mg
	unified atomic mass unit	$u[=m_a(^{12}C)/12]$	$\approx 1.66054 \times 10^{-27} \text{ kg}$
	dalton ³	Da	
Plane angle	degree	o	$(\pi/180)$ rad
	minute	,	$(\pi/10\ 800)$ rad
	second	"	$(\pi/648\ 000)$ rad
Pressure	bar ²	bar	$10^5 \text{ Pa} = 10^5 \text{ N m}^{-2}$
Time	minute	min	60 s
	hour	h	3600 s
	day	d	86 400 s
Volume	liter (litre)	L, 1	$dm^3 = 10^{-3} m^3$
	milliliter	mL, ml	$cm^3 = 10^{-6} m^3$

*The digits in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digits. ¹ The term million electronvolts is frequently used in place of megaelectronvolts.

² The ångström and bar are approved for temporary use with SI units; however, they should not be introduced if not used at present.

TABLE 4.4 Conversion Factors

Relations which are exact are indicated by an asterisk (*). Factors in parentheses are also exact. Other factors
are within ± 5 in the last significant figure.

To convert	Into	Multiply by
Abampere	ampere*	10
Abcoulomb	coulomb*	10
	statcoulomb	2.998×10^{10}
Abfarad	farad*	109
Abhenry	henry*	10-9
Abmho	siemens*	109
Abvolt	volt	10-8
Acre	hectare or square hectometer	0.404 685 64
	square chain (Gunter's)*	10
	square kilometer*	0.004 046 873
	square meter*	4046.873
	square mile*	(1/640)
	square rod*	160
	square yard*	4840
Acre (U.S. survey)	square meter	4046.873
Acre-foot	cubic foot*	4.3560×10^{4}
	cubic meter	1233.482
	gallon (U.S.)	3.259×10^{5}
Acre-inch	cubic foot*	3630
	cubic meter	102.7902
Ampere per square centimeter	ampere per square inch*	6.4516
Ampere-hour	coulomb*	3600
	faraday	0.037 31
Ampere-turn	gilbert	1.256 637
Ampere-turn per centimeter	ampere-turn per inch	2.540
Ångström	meter*	10 ⁻¹⁰
	nanometer*	0.1
Apostilb	candela per square meter	0.318 309 9; (1/π)
	lambert*	10-4
Are	acre	0.024 710 54
	square meter*	100
Assay ton	gram	29.1667
Astronomical unit	meter	$1.496\ 00 \times 10^{-11}$
	light-year	$1.581\ 284 imes 10^{-5}$
Atmosphere	bar*	1.013 25.0
	foot of water (at 4°C)	33.898 54
	inch of mercury (at 0°C)	29.921 26
	kilogram per square centi- meter	1.033 227
	millimeter of mercury*	760
	millimeter of water (4°C)	$1.033\ 227 \times 10^4$
	newton per square meter*	$1.013\ 250 imes 10^5$
	pascal*	101 325.0
	pound per square inch	14.695 95
	ton per square inch	0.007 348
	torr*	760
Atomic mass unit	gram	1.6605×10^{-24}
Avogadro number	molecules per mole	$6.022\ 137 \times 10^{23}$

To convert	Into	Multiply by
Bar	atmosphere	0.986 923
	dyne per square centimeter*	106
	kilogram per square centimeter	1.019 716
	millimeter of mercury	750.062
	millimeter of water (4°C)	$1.019~716 imes 10^4$
	newton per square meter	105
	pascal*	105
	pound per square inch	14.503 77
Barn	square meter*	10 ⁻²⁸
Barrel (British)	gallon (British)*	36
	liter	163.659
Barrel (petroleum)	gallon (British)	34.9723
ч ,	gallon (U.S.)*	42
	liter	158.987
Barrel (U.S. dry)	bushel (U.S.)	3.281 22
× •,	cubic foot	4.083 33
	liter	115.6271
	quart (U.S. dry)	104,9990
Barrel (U.S. liquid)	gallon (U.S.)	31.5 (variable)
	liter	119.2405
Barve	dvne per square centimeter*	1
Becquerel	curie*	2.7×10^{-11}
Biot	ampere*	10
Board foot	cubic foot	(1/12)
	cubic meter	2.359737×10^{-3}
Bohr	meter	$5.291.77 \times 10^{-11}$
Bohr magneton	joule per tesla	$9.274~02 \times 10^{-24}$
Bolt (U.S. cloth)	foot*	120
	meter	36.576
Boltzmann constant	joule per degree	1.3806×10^{-23}
British thermal unit (Btu)	calorie	251,996
(,	cubic foot-atmosphere	0.367 717
	erg	1.0550×10^{10}
	foot-pound	778.169
	horsepower-hour (British)	$3.930\ 15 \times 10^{-4}$
	horsepower-hour (metric)	$3.984~66 \times 10^{-4}$
	joule (International table)	1055.056
	joule (thermochemical)	1054.350
	kilogram-calorie	0.2520
	kilogram-meter	107.5
	kilowatt-hour	$2.930\ 71\ imes\ 10^{-4}$
	liter-atmosphere	10.4126
Btu per foot ³	kilocalorie per cubic meter	8.899 15
Btu (International table)/ft ³	joule per meter ³	$3.725\ 895 \times 10^4$
Btu (thermochemical)/ft3	joule per meter ³	$3.723\ 402 \times 10^{4}$
Btu (International table)/hour	watt	0.293 071 1
Btu (thermochemical)/hour	watt	0.292 875 1
Btu (International table)/pound	joule per kilogram*	2.326×10^{3}
Btu (thermochemical)/pound	joule per kilogram	$2.324~444 \times 10^{3}$
Btu (thermochemical)/(ft ² · h)	watt per meter ²	3.154 591
Btu (thermochemical)/minute	watt	17.572 50
Btu (thermochemical)/pound	joule per kilogram	$2.324\ 444 \times 10^3$
Btu per square foot	joule per square meter	$1.135~65 \times 10^{4}$
Bucket (British, dry)	gallon (British)*	4
	- · ·	

To convert	Into	Multiply by
Bushel (British)	bushel (U.S.)	1.032 057
	cubic foot	1.284 35
	gallon (British)*	8
	gallon (U.S.)	9.607 60
	liter	36.3687
Bushel (U.S.)	barrel (U.S., dry)	0.304 765
	bushel (British)	0.968 939
	cubic foot	1.244 456
	cubic meter	0.035 239 07
	gallon (British)	7.751 51
	gallon (U.S.)	9.309 18
	liter	35.239 07
	peck (U.S.)*	4
	pint (U.S., dry)*	64
Cable length (international)	foot	607.611 55
	meter*	185.2
	mile (nautical)*	0.1
Cable length (U.S. or British)	foot*	720
	meter	219.456
	mile (nautical)	0.118 407
	mile (statute)	0.136 364
Caliber	inch*	0.01
	millimeter*	0.254
Calorie	Btu	0.003 968 320
	foot-pound	3.088 03
	foot-poundal	99.3543
	horsepower-hour (British)	$1.559\ 61 imes10^{-1}$
	joule*	4.184
	kilowatt-hour	$1.163 imes 10^{-6}$
	liter-atmosphere	0.041 320 5
Calorie (15°C)	joule	4.1858
Calorie (international)	joule	4.1868
Calorie per minute	foot-pound per second	0.051 467 1
	horsepower (British)	$9.357~65 \times 10^{-1}$
	watt*	0.069 78
Candela	Hefner unit	1.11
	lumen per steradian*	1
Candela per square centimeter	candela per square foot*	929.0304
	candela per square meter*	104
	lambert	3.141 593; (<i>m</i>)
Carat (metric)	gram*	0.2
Celsius temperature	Fahrenheit temperature	(9/5)°C + 32
	kelvin	°C – 273.15
Centigrade heat unit or chu	Btu*	1.8
	calorie	453.592
	joule	1899.10
Centimeter	foot	0.032 808 4
	inch	0.393 700 8
	mil	393.700 8
Centimeter of mercury (0°C)	pascal	1333.22
Centimeter of water (4°C)	pascal	98.063 8
Centimeter per second	foot per minute	1.986 50
	1.11 and a start in an Is a surf	0.026

Centimeter per second knot $0.019\ 438\ 4$ (continued) mile per hour $0.022\ 306\ 4$ Centimeter per second squared foot per second squared* $0.032\ 808\ 4$ Centimeter per second squared $0.032\ 808\ 4$ meter per second squared* 0.01 Centimeter-dyne erg* 1 $0.07\ 7$ meter per second squared* $0.01\ 7^{-7}$ Centimeter-dyne erg* $980\ 665\ 90^{-3}$ $0.01\ 7^{-7}$ meter-kilogram $1.020\ \times 10^{-8}$ Centimeter-gram erg* $980\ 665\ 90^{-3}$ $0.001\ 900\ 72\ 65\ 10^{-3}$ $0.001\ 900\ 72\ 70^{-8}$ Centipoise kilogram per (meter-second)* $0.001\ 900\ 72\ 70^{-8}$ $0.001\ 900\ 72\ 70^{-8}$ Chain (Ramsden's) foot* $100\ 900\ 72\ 70^{-8}$ $100\ 72\ 70^{-8}$ Circular inch circular mil* $100\ 72\ 70^{-8}$ $66\ 70\ 75\ 80\ 70^{-5}\ 70\ 70^{-5}\ 80\ 70^{-5}\ 80\ 70^{-5}\ 80\ 70^{-5}\ 80\ 70^{-5}\ 80\ 70^{-5}\ 70\ 70^{-5}\ 80\ 70^{-5}\ 70\ 70^{-5}\ 80\ 70^{-5}\ 70\ 70^{-5$	To convert	Into	Multiply by
$\begin{array}{cccc} (continued) & mile per hour & 0.022 308 4 \\ Centimeter per second squared & 0.032 808 4 \\ meter per second squared & 0.01 \\ centimeter-dyne & erg^* & 1 \\ joule^* & 10^{-7} \\ meter-kilogram & 1.020 \times 10^{-8} \\ pound-foot & 7.376 \times 10^{-3} \\ centimeter-gram & erg^* & 980.665 \\ joule^* & 980.665 \\ joule^* & 980.665 \\ joule^* & 980.665 \\ joule^* & 0.001 \\ pascal-second^* & 0.001 \\ pascal-second^* & 0.001 \\ pascal-second^* & 0.001 \\ pascal-second^* & 0.001 \\ meter^* & 30.48 \\ Chain (Ganter's) & foot^* & 100 \\ meter^* & 30.48 \\ Chain (Ganter's) & foot^* & 0.001 \\ meter^* & 30.48 \\ Chain (Ganter's) & foot^* & 0.001 \\ square centimeter & 30.48 \\ Chain (Ganter's) & foot^* & 0.001 \\ square centimeter & 30.48 \\ Circular milimeter & square millimeter & (\pi/4) \\ Circular milimeter & square millimeter & (\pi/4) \\ Circular milimeter & square millimeter & 360 \\ gon (grade) & 400 \\ radian & (2\pi) \\ Cord & cord foot^* & 8 \\ Coulomb per square centimeter \\ cubic foot & 128 \\ Coulomb per square centimeter \\ cubic foot & 128 \\ Coulomb per square centimeter \\ cubic foot & 128 \\ Coulomb per square centimeter \\ cubic foot & 128 \\ Coulomb per square centimeter \\ cubic foot & 128 \\ Coulomb per square centimeter \\ cubic foot & 0.012 \\ minim (U.S., fluid) & 0.270 512 2 \\ gallon ((D.S.) & 2.641 72 \times 10^{-4} \\ dram (U.S., fluid) & 0.033 814 02 \\ pint (U.S., fluid) & 0.033 814 02 \\ pint (U.S., fluid) & 0.001 816 17 \\ cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & 101 825 \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic centimeter per second & cubic foot per pound \\ Cubic c$	Centimeter per second	knot	0.019 438 4
Centimeter per second squared foot per second squared meter per second squared $0.032\ 808\ 4$ meter per second squared $0.031\ 808\ 4$ meter-dyne erg* 0.01 Centimeter-dyne erg* $0.01\ 7.376\ \times 10^{-8}\ 900.06\ 5\ \times 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 2\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 7\ 10^{-3}\ 900.00\ 10^{-3}\ 10$	(continued)	mile per hour	0.022 369 4
$\begin{tabular}{ c c c c } meter per second squared* 0.01 \\ reg" 1000 \\ reg"$	Centimeter per second squared	foot per second squared	0.032 808 4
Centimeter-dyne erg^* 1 joule* 10 ⁻⁷ meter-kilogram 1.020 × 10 ⁻⁸ pound-foot 7.376 × 10 ⁻⁸ Centimeter-gram erg* 980.65 × 10 ⁻³ Centipoise kilogram per (meter-second)* 0.001 pacal-second* 0.001 pound per (foot-second) 0.006 72 Chain (Ramsden's) foot* 66 meter* 30.48 Chain (Gunter's) foot* 60 meter* 20.1168 Circular nich circular mill* 10 ⁶ square centimeter 5.067 075 square inch ($\pi/4$) Circular millimeter quare millimeter ($\pi/4$) Circular millimeter couf foot* 8 Cord cord foot* 128 Coulomb ampere-second* 128 Coulomb per square centimeter coubic foot 3.531 47 × 10 ⁻⁵ cubic inch 0.061 023 744 dram (U.S., fluid) 0.27 512 2 gallon (U.S.) 16.230 73		meter per second squared*	0.01
	Centimeter-dyne	erg*	1
meter-kilogram 1.020 × 10 ⁻⁸ pound-foot 7.376 × 10 ⁻⁸ Centimeter-gram erg* 980.665 joule* 9.806 65 × 10 ⁻³ Centipoise kilogram per (meter-second)* 0.001 pound per (foot-second) 0.005 72 Chain (Ramsden's) foot* 100 meter* 30.48 Chain (Gunter's) foot* 66 circular inch circular mil* 10 ^o square centimeter 505 075 square inch ($\pi/4$) Circular millimeter ($\pi/4$) Circumference degree* 360 colic foot* 128 Coulomb ampere-second* 1 Coulomb per square centimeter coulor bp er square inch* 6.4516 Cubic centimeter coulor bp er square inch* 6.4516 Cubic centimeter coulor (U.S.) 2.641 72 × 10 ⁻⁴ gallon (U.S.) 2.641 72 × 10 ⁻⁴ 101 325 cubic inch 0.001 759 75 101 (U.S.) 16.230 73 ounce (U.S		joule*	10-7
pound-foot 7.376×10^{-8} Centimeter-gram erg* 980.665 Centipoise kilogram per (meter-second)* 0.001 pascal-second* 0.001 pascal-second* 0.001 pascal-second* 0.001 pascal-second* 0.006 Chain (Ramsden's) foot* 66 meter* 20.1168 Circular inch circular mil* 10° square centimeter 5.067 075 Square inch ($\pi/4$) Circular millimeter square inch ($\pi/4$) Circular millimeter square inch ($\pi/2$) Circular millimeter square inch ($\pi/2$) Circular millimeter square inch ($\pi/2$) Coulomb amper-second* 1 Coulomb amper-second* 1 Coulomb per square centimeter coubic foot 3531 47 × 10^- Cubic centimeter cubic foot 3531 47 × 10^- Cubic centimeter cubic foot 3531 47 × 10^- Cubic centimeter		meter-kilogram	1.020×10^{-8}
Centimeter-gram erg* 980.665 joule* 980.655 10^{-3} Centipoise kilogram per (meter-second)* 0.001 pascal-second* 0.001 pound per (foot-second) 0.006 72 Chain (Ramsden's) foot* 100 meter* 30.48 66 Chain (Gunter's) foot* 20.1168 Circular inch circular mil* 10 ⁶ square centimeter 5.067 075 square inch Circular millimeter square centimeter 5.061 075 circular millimeter circular millimeter (m4) Circunference degree* 360 gon (grade) 400 radian (2 π) Cord cord foot* 8 2 Coulomb per square centimeter coulor bp er square coulomb per square inch* 6.4516 Cubic centimeter coulor bp er square inch* 6.4516 Cubic centimeter coulor bp er square inch* 0.6112.2 gallon (U.S., fluid) 0.270 512.2 gallon (U.S., fluid)		pound-foot	7.376×10^{-8}
joule* 9.806 65×10^{-3} Centipoise kilogram per (meter-second)* 0.001 pound per (foot-second) 0.006 72 Chain (Ramsden's) foot* 100 meter* 30.48 Chain (Gunter's) foot* 66 meter* 20.1168 Circular inch circular mil* 10 ⁶ square centimeter 5.067 075 square cink (m4) Circular millimeter (m4) Circular millimeter (gauare millimeter (m4) Cord cord foot* 8 Coulomb ampere-second* 1 Coulomb per square centimeter coubic foot* 8 Cubic centimeter cubic foot* 128 Cubic centimeter cubic foot 3531 47 × 10^{-3} Cubic centimeter cubic fiot 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (U.S.) 2.641 72 × 10^{-4} gallon (U.S.) 2.641 72 × 10^{-4} gallon (U.S.) 16.230 73 ounce (British, fluid)	Centimeter-gram	erg*	980.665
Centipoise kilogram per (meter-second)* 0.001 pascal-second* 0.001 pound per (fot-second) 0.006 72 Chain (Ramsden's) foot* 100 meter* 100 meter* 20.1168 Circular inch circular mil* 10 ⁶ square centimeter 5.067 075 square inch (m/4) Circular millimeter (m/4) Circular millimeter gon (grade) 400 radian (2m) 260 Cord cord foot* 8 Coulomb ampere-second* 1 Coulomb per square centimeter coubic foot 3.531 47 × 10 ⁻³ Cubic centimeter coubic foot 3.531 47 × 10 ⁻³ gallon (British) 2.199 69 × 10 ⁻⁴ gallon (U.S.) 2.641 72 × 10 ⁻⁴ gallon (U.S.) 2.641 72 × 10 ⁻⁴ gallon (U.S.) 16.230 73 ounce (British, fuid) 0.003 814 02 pint (U.S., fuid) 0.001 13 376 Cubic centimeter per gram cubic foot	-	joule*	$9.806~65 \times 10^{-5}$
paccal-second* 0.001 pound per (foot-second) 0.006 72 Chain (Ramsden's) foot* 100 meter* 30.48 Chain (Gunter's) foot* 66 circular mil* 106 square contimeter 20.1168 Circular mil 106 square contimeter 5.067 075 square inch (m/4) Circular millimeter (m/4) Circumference degree* 360 gon (grade) 400 radian (2 π) Cord cord foot* 128 Coulomb ampere-second* 1 Coulomb per square centimeter coubic foot* 3531 47 × 10^{-3} Cubic centimeter coubic foot 3531 47 × 10^{-3} gallon (U.S., fluid) 0.270 512 2 gallon (U.S., fluid) 0.23744 dram (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.001 739 755 pint (U.S., fluid	Centipoise	kilogram per (meter-second)*	0.001
pound per (foot-second)0.006 72Chain (Ramsden's)foot*100meter*30.48Chain (Gunter's)foot*66circular inchcircular mil*106square centimeter5.067 075square inch($\pi/4$)Circular millimeterguare millimeter5.067 075circular millimetersquare millimeter($\pi/4$)Circunferencedegree*360gon (grade)400radian(2π)Cordcord foot*8cubic foot*128Coulombampere-second*1Coulomb per square centimetercubic foot3.531 47 × 10^{-3}Cubic centimetercubic foot3.531 47 × 10^{-3}fiter*0.001 023 7440.703 512 2gallon (U.S.)16.230 73ounce (U.S., fluid)0.035 195 1ounce (U.S., fluid)0.033 814 02pint (British)0.001 759 75pint (U.S., dry)0.001 816 17pint (U.S., liquid)0.002 113 25wat-hour2.814 58 × 10^{-3}Cubic centimeter per gramcubic foot per poundCubic centimeter per gram <td>*</td> <td>pascal-second*</td> <td>0.001</td>	*	pascal-second*	0.001
$\begin{array}{ccccc} {\rm Chain} ({\rm Ramsden's}) & {\rm foot}^* & 100 \\ & {\rm meter}^* & 30.48 \\ {\rm Chain} ({\rm Gunter's}) & {\rm foot}^* & 66 \\ & {\rm meter}^* & 20.1168 \\ {\rm Circular nich} & {\rm circular mil}^* & 10^6 \\ & {\rm square centimeter} & 5.067 075 \\ & {\rm square inch} & (\pi/4) \\ {\rm Circumference} & {\rm degree}^* & 360 \\ & {\rm gon} ({\rm grade}) & 400 \\ & {\rm radian} & (2\pi) \\ {\rm Cord} & {\rm cord foot}^* & 8 \\ & {\rm cubic foot}^* & 128 \\ {\rm Coulomb} & {\rm ampere-second}^* & 1 \\ {\rm Coulomb per square entimeter} & {\rm coulom ber square inch}^* & 6.4516 \\ {\rm Cubic centimeter} & {\rm cubic foot}^* & 128 \\ {\rm Cubic cont inch} & 0.061 023 744 \\ & {\rm dram} (U.S., {\rm fluid}) & 0.270 512 2 \\ & {\rm gallon} ({\rm British}) & 2.199 69 \times 10^{-4} \\ & {\rm gallon} (U.S.) & 16.230 73 \\ & {\rm ounce} (U.S., {\rm fluid}) & 0.001 759 75 \\ & {\rm pint} (U.S., {\rm fluid}) & 0.001 759 75 \\ & {\rm pint} (U.S., {\rm fluid}) & 0.001 816 17 \\ & {\rm pint} ({\rm British}) & 0.001 759 75 \\ & {\rm pint} (U.S., {\rm tiguid}) & 0.002 113 376 \\ \\ {\rm Cubic centimeter per second} & {\rm cubic foot per pound} & 0.016 101 325 \\ & {\rm watt-hour} & 2.814 58 \times 10^{-5} \\ \\ {\rm Cubic centimeter per second} & {\rm cubic foot per pound} & 0.016 101 325 \\ \\ {\rm cubic centimeter per second} & {\rm cubic foot per pound} & 0.016 101 85 \\ \\ {\rm Cubic centimeter per second} & {\rm cubic foot per pound} & 0.016 018 5 \\ \\ {\rm Cubic centimeter per second} & {\rm cubic foot per minute} & 0.002 118 88 \\ {\rm liter per hour^* } & 3.6 \\ \\ {\rm Cubic centimeter (dm^3)} & {\rm liter^* } & 1 \\ \\ {\rm Cubic cont foot^* } & {\rm (1/128)} \\ {\rm cord foot^* } & {\rm (2.295 68 \times 10^{-5} \\ {\rm cubic inch^* } & {\rm (728 205 816 846 55 \\ \end{array}} \end{array} \right)$		pound per (foot-second)	0.006 72
meter* 30.48 Chain (Gunter's) foot* 66 circular inch square centimeter 20.1168 Circular inch square centimeter 5.067 075 square centimeter $(\pi/4)$ Circular millimeter $(\pi/4)$ Circumference degree* gloon (grade) 400 radian (2π) Cord cord foot* coulomb per square centimeter coulom ber square inch* Cubic centimeter cubic foot Cubic centimeter cubic foot qallon (U.S., fluid) 0.2705 512 gallon (U.S., fluid) 0.033 814 02 pint (British) 0.001 minim (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.023 73 ounce (U.S., fluid) 0.033 814 02 pint (U.S., dry)<	Chain (Ramsden's)	foot*	100
$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · · ·	meter*	30.48
meter* 20.1168 Circular inch circular mil* 10 ⁶ square inch ($\pi/4$) Circular millimeter square inch ($\pi/4$) Circumference degree* 360 gon (grade) 400 radian (2π) Cord cord foot* 8 2 Colomb ampere-second* 1 2 Coulomb per square centimeter coulom bper square inch* 6.4516 6.4516 Cubic centimeter coulom bper square inch* 6.4516 0.023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) 2.199 69 × 10 ⁻⁴ gallon (British) 2.199 69 × 10 ⁻⁴ gallon (U.S.) 2.641 72 × 10 ⁻⁴ fiter* 0.001 minim (U.S.) 0.6230 73 ounce (U.S., fluid) 0.033 814 02 pint (British) 0.033 814 02 pint (British, fluid) 0.033 814 02 pint (British) 0.001 759 75 cubic centimeter-atmosphere joule* 0.101 325 watt-hour 2.814 58 × 10 ⁻⁵ Cubic centimeter per gram </td <td>Chain (Gunter's)</td> <td>foot*</td> <td>66</td>	Chain (Gunter's)	foot*	66
$\begin{array}{llllllllllllllllllllllllllllllllllll$		meter*	20.1168
	Circular inch	circular mil*	106
square inch $(\pi/4)$ Circular millimeter square millimeter $(\pi/4)$ Circumference degree* 360 gon (grade) 400 radian (2π) Cord cord foot* 8 cubic foot* 1 28 Coulomb amper-second* 1 Coulomb per square centimeter cubic foot 3.531 47 × 10 ⁻⁵ Cubic centimeter cubic foot 3.531 47 × 10 ⁻⁵ Cubic centimeter cubic foot 3.531 47 × 10 ⁻⁵ Cubic centimeter cubic foot 3.531 47 × 10 ⁻⁵ Cubic centimeter cubic foot 3.531 47 × 10 ⁻⁵ gallon (U.S., fluid) 0.270 512 2 gallon (U.S.) gallon (U.S.) 2.641 72 × 10 ⁻⁴ liter* gallon (U.S.) 16.230 73 001 ounce (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.033 814 02 pint (U.S., fluid) 0.001 759 75 pint (U.S., liquid) 0.001 816 17 pint (U.S., liquid) 0.002 113 376 Cubic centimeter per gram		square centimeter	5.067 075
Circular millimeter $(\pi/4)$ Circumference degree* 360 gon (grade) 400 radian (2π) Cord cord foot* 8 cubic foot* 128 Coulomb amper-second* 1 Coulomb per square centimeter coubic foot 3.531 47 × 10 ⁻⁵ Cubic centimeter coubic foot 3.531 47 × 10 ⁻⁵ cubic inch 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) 2.199 69 × 10 ⁻⁴ gallon (U.S.) 16.230 73 ounce (British, fluid) 0.033 814 02 pint (British) 0.001 minim (U.S., fluid) 0.002 113 376 ounce (U.S., fluid) 0.002 113 376 Oubic centimeter-atmosphere joule* 0.011 325 watt-hour 2.814 58 × 10 ⁻⁵ Cubic centimeter per gram cubic foot per pound 0.016 018 5 0.002 118 388 Cubic centimeter per gram cubic foot per minute 0.002 118 88 11 Cubic decimeter (dm ³) liter* 1 1 Cubic foot <td></td> <td>square inch</td> <td>$(\pi/4)$</td>		square inch	$(\pi/4)$
Circumference degree* gon (grade) 360 400 Cord cord foot* 8 Coulomb ampere-second* 1 Coulomb per square centimeter coulor foot* 6.4516 Cubic contimeter coulor foot 3.531 47 × 10 ⁻⁵ Cubic centimeter coulor foot 3.531 47 × 10 ⁻⁵ Cubic centimeter coulor foot 3.531 47 × 10 ⁻⁵ Cubic centimeter cubic foot 3.531 47 × 10 ⁻⁵ Cubic inch 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) 2.199 69 × 10 ⁻⁴ gallon (U.S.) 2.641 72 × 10 ⁻⁴ liter* 0.001 minim (U.S.) 16.230 73 ounce (British, fluid) 0.033 814 02 pint (British) 0.001 759 75 pint (U.S., fluid) 0.033 814 02 pint (U.S., dry) 0.001 816 17 pint (U.S., dry) 0.018 161 7 pint (U.S., dry) 0.002 113 376 Cubic centimeter-atmosphere joule* 0.101 325 watt-hour 2.814 58 × 10 ⁻⁵ Cubic centimeter per gram cubic foot per minute 0.002 118 88 </td <td>Circular millimeter</td> <td>square millimeter</td> <td>$(\pi/4)$</td>	Circular millimeter	square millimeter	$(\pi/4)$
contained is gon (grade) radian 400 (2 π) Cord cord foot* 8 cubic foot* 1 Coulomb ampere-second* 1 Coulomb per square centimeter coulomb per square inch* 6.4516 Cubic contimeter cubic foot $3.531 47 \times 10^{-5}$ cubic contimeter cubic foot $3.531 47 \times 10^{-5}$ cubic inch 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) 2.199 69 × 10^{-4} gallon (U.S.) 2.641 72 × 10^{-4} liter* 0.001 minim (U.S.) 16.230 73 ounce (British, fluid) 0.033 814 02 pint (British) 0.001 759 75 pint (U.S., fluid) 0.002 113 376 cubic centimeter-atmosphere joule* 0.101 325 watt-hour 2.814 58 × 10^{-5} Cubic centimeter per gram cubic foot per pound 0.016 018 5 Cubic centimeter per second cubic foot per minute 0.002 118 88 liter per hour* 3.6 1 Cubic decimeter (dm³) liter* 1 Cubi	Circumference	degree*	360
goin (gine)(a)radian (2π) Cordcord foot*coubic foot*128Coulombampere-second*Coulomb per square centimetercoubic footCubic centimetercubic footCubic centimetercubic footCubic centimetercubic footCubic centimetercubic footCubic centimetercubic footCubic centimeter0.061 023 744dram (U.S., fluid)0.270 512 2gallon (British)2.199 69 × 10^{-4}gallon (U.S.)2.641 72 × 10^{-4}liter*0.001minim (U.S.)16.230 73ounce (British, fluid)0.033 814 02pint (British)0.001 759 75pint (U.S., dry)0.001 816 17pint (U.S., liquid)0.002 113 376Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per poundCubic footacre-footCubic foot2.295 68 × 10^{-5}board foot*12cord*(1/128)cord*(1/128)cord*(1/128)cord*(1/16)cubic foot*1728cubic inch*1728cubic inche*0.028 316 846 55		gon (grade)	400
Cord cord foot* 8 Coulomb ampere-second* 128 Coulomb per square centimeter coulomb per square inch* 6.4516 Cubic centimeter cubic foot $3.531 47 \times 10^{-5}$ Cubic centimeter cubic foot $3.531 47 \times 10^{-5}$ Cubic centimeter cubic inch 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) gallon (British) 2.199 69 $\times 10^{-4}$ gallon (U.S.) liter* 0.001 minim (U.S.) 2.641 72 $\times 10^{-4}$ liter* 0.001 minim (U.S.) 16.230 73 ounce (U.S., fluid) 0.033 814 02 pint (British) 0.001 759 75 pint (U.S., dry) 0.001 816 17 pint (U.S., dry) 0.001 816 17 puint (U.S., liquid) 0.002 113 376 0.002 113 376 0.002 113 376 Cubic centimeter per gram cubic foot per pound 0.016 018 5 0.002 118 88 Cubic centimeter per gram cubic foot per minute 0.002 118 88 10^{-50} Cubic decimeter (dm ³) liter* 1 2.295 68 $\times 1$		radian	(2π)
cubic foot* 128 coulomb ampere-second* 1 Coulomb per square centimeter coulomb per square inch* 6.4516 Cubic centimeter cubic foot 3.53147×10^{-5} Cubic centimeter cubic foot 3.53147×10^{-5} Cubic centimeter cubic foot 3.53147×10^{-5} Cubic centimeter cubic inch 0.061023744 dram (U.S., fluid) 0.2705122 gallon (British) gallon (British) 2.19969×10^{-4} gallon (U.S.) gallon (U.S.) 2.64172×10^{-4} liter* nounce (U.S., fluid) 0.0351951 ounce (U.S., fluid) ounce (U.S., fluid) 0.0381402 pint (British) pint (British) 0.00175975 pint (U.S., dry) 0.00175975 pint (U.S., dry) 0.00181617 pint (U.S., liquid) 0.002113376 Cubic centimeter per gram cubic foot per minute 0.00211888 liter per hour* 3.6 Cubic centimeter per gram cubic foot per minute 0.00211888 liter per hour* 3.6 Cubic foot acre-foot 2.29568×10^{-5} board foot	Cord	cord foot*	8
Coulomb ampere-second* 1 Coulomb per square centimeter coulomb per square inch* 6.4516 Cubic centimeter cubic foot $3.531 47 \times 10^{-5}$ Cubic centimeter cubic foot $3.531 47 \times 10^{-5}$ Cubic centimeter cubic inch $0.061 023 744$ dram (U.S., fluid) $0.270 512 2$ gallon (British) gallon (British) $2.199 69 \times 10^{-4}$ gallon (U.S.) $2.641 72 \times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230 73$ ounce (British, fluid) $0.033 814 02$ pint (British) $0.001 759 75$ pint (U.S., fluid) $0.0021 13 376$ ounce (U.S., fluid) $0.0021 13 376$ cubic centimeter-atmosphere joule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gram cubic foot per pound $0.016 018 5$ Cubic centimeter for second cubic foot per minute $0.0021 118 88$ liter per hour* 3.6 $2.295 68 \times 10^{-5}$ Cubic foot acre-foot $2.295 68$		cubic foot*	128
Coulomb per square centimeter coulomb per square inch* 6.4516 Cubic centimeter cubic foot $3.531 47 \times 10^{-5}$ Cubic centimeter cubic inch $0.061 023 744$ dram (U.S., fluid) $0.270 512 2$ gallon (British) $2.199 69 \times 10^{-4}$ gallon (U.S.) $2.641 72 \times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230 73$ ounce (British, fluid) $0.033 814 02$ pint (British) $0.001 759 75$ pint (U.S., fluid) $0.001 759 75$ pint (U.S., dry) $0.001 816 17$ pint (U.S., liquid) $0.002 113 376$ Cubic centimeter atmosphere joule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gram cubic foot per pound $0.016 018 5$ Cubic centimeter per second cubic foot per minute $0.002 118 88$ liter per hour* 3.6 $2.295 68 \times 10^{-5}$ board foot* 12 cord* cubic foot acre-foot $2.295 68 \times 10^{-5}$ board foot* $1/16$ cubic inch* $1/16$ <	Coulomb	amnete-second*	1
Cubic centimeterCubic foot $3.531 47 \times 10^{-5}$ Cubic centimetercubic foot $3.531 47 \times 10^{-5}$ Cubic centimetercubic foot $0.61 023 744$ dram (U.S., fluid) $0.270 512 2$ gallon (British) $2.199 69 \times 10^{-4}$ gallon (U.S.) $2.641 72 \times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230 73$ ounce (British, fluid) $0.035 195 1$ ounce (U.S., fluid) $0.038 814 02$ pint (British) $0.001 759 75$ pint (U.S., dry) $0.001 816 17$ pint (U.S., liquid) $0.002 113 376$ Cubic centimeter-atmospherejoule*joule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gramcubic foot per poundCubic centimeter per secondcubic foot per minuteCubic foot $2.295 68 \times 10^{-5}$ Cubic foot $2.295 68 \times 10^{-5}$ board foot* 12 cord* $(1/128)$ cord foot* $(1/16)$ cubic inch* 1728 cubic inch* 1728 cubic meter* $0.028 316 846 59$	Coulomb per square centimeter	coulomb per square inch*	64516
Cubic continuentCubic fort $0.061\ 023\ 744$ dram (U.S., fluid) $0.270\ 512\ 2$ gallon (British) $2.199\ 69\times 10^{-4}$ gallon (U.S.) $2.641\ 72\times 10^{-4}$ liter* $0.001\ minim (U.S.)$ nume (British, fluid) $0.035\ 195\ 1$ ounce (British, fluid) $0.033\ 814\ 02$ pint (British) $0.001\ 759\ 75$ pint (British) $0.001\ 759\ 75$ pint (U.S., dry) $0.001\ 816\ 17$ pint (U.S., dry) $0.001\ 816\ 17$ pint (U.S., dry) $0.002\ 113\ 376$ Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per minuteCubic centimeter per secondcubic foot per minuteCubic decimeter (dm³)liter*liter *1Cubic footacre-footboard foot*12cord *(1/128)cord foot*(1/128)cord foot*(1/128)cubic inch*1728cubic inch*0.028\ 316\ 846\ 55	Cubic centimeter	cubic foot	353147×10^{-5}
dram (U.S., fluid) $0.270\ 512\ 2$ gallon (British) $2.199\ 69\times 10^{-4}$ gallon (U.S.) $2.641\ 72\times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230\ 73$ ounce (British, fluid) $0.035\ 195\ 1$ ounce (U.S., fluid) $0.033\ 814\ 02$ pint (British) $0.001\ 759\ 75$ pint (U.S., dry) $0.001\ 816\ 17$ pint (U.S., liquid) $0.002\ 113\ 376$ Cubic centimeter-atmospherejoule*joule* $0.101\ 325$ watt-hour $2.814\ 58\times 10^{-5}$ Cubic centimeter per gramcubic foot per minuteCubic decimeter (dm³)liter*Liter foot $2.295\ 68\times 10^{-5}$ board foot* 12 cubic foot $2.295\ 68\times 10^{-5}$ board foot* 1728 cubic inch* 1728 cubic meter* $0.028\ 316\ 846\ 59$		cubic inch	0.061.023.744
gallon (Bits) $2.199 69 \times 10^{-4}$ gallon (U.S.) $2.641 72 \times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230 73$ ounce (British, fluid) $0.035 195 1$ ounce (U.S., fluid) $0.033 814 02$ pint (British) $0.001 759 75$ pint (U.S., dry) $0.001 816 17$ pint (U.S., liquid) $0.002 113 376$ Cubic centimeter-atmospherejoule*joule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gramcubic foot per poundCubic decimeter (dm³)liter*Liter per hour* 3.6 Cubic footacre-footboard foot* 12 cubic foot $1/128$ cord* $(1/128)$ cord foot* $(1/16)$ cubic inch* 1728 cubic meter* $0.028 316 846 59$		dram (U.S. fluid)	0 270 512 2
gallon (U.S.) $2.641\ 72 \times 10^{-4}$ gallon (U.S.) $2.641\ 72 \times 10^{-4}$ liter* 0.001 minim (U.S.) $16.230\ 73$ ounce (British, fluid) $0.035\ 195\ 1$ ounce (U.S., fluid) $0.033\ 814\ 02$ pint (British) $0.001\ 759\ 75$ pint (U.S., dry) $0.001\ 816\ 17$ pint (U.S., liquid) $0.002\ 113\ 376$ Cubic centimeter-atmospherejoule*joule* $0.101\ 325$ watt-hour $2.814\ 58\times 10^{-5}$ Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per minuteCubic decimeter (dm³)liter*Liter*1Cubic footacre-footboard foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter*0.028\ 316\ 846\ 55		gallon (British)	219969×10^{-4}
iiter* 0.001 $iiter*$ 0.001 $minim$ (U.S.) 16.230 73 $ounce$ (British, fluid) 0.035 195 1 $ounce$ (U.S., fluid) 0.033 814 02 $pint$ (British) 0.001 759 75 $pint$ (U.S., dry) 0.001 816 17 $pint$ (U.S., liquid) 0.002 113 376Cubic centimeter-atmosphere $joule*$ $joule*$ 0.101 325watt-hour 2.814 58 × 10 ⁻⁵ Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per minute 0.002 118 88liter per hour* 3.6 Cubic decimeter (dm³)liter*Cubic foot $acre-foot$ $board$ foot* 12 $cord*$ $(1/128)$ $cord foot*$ $(1/16)$ $cubic inch*$ 1728 $cubic meter*$ 0.028 316 846 59		gallon (US)	$2.133 03 \times 10^{-4}$
IntermOtherminim (U.S.)16.230 73ounce (British, fluid)0.035 195 1ounce (U.S., fluid)0.033 814 02pint (British)0.001 759 75pint (U.S., dry)0.001 816 17pint (U.S., liquid)0.002 113 376Cubic centimeter-atmospherejoule*joule*0.101 325watt-hour2.814 58 \times 10 ⁻⁵ Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per minuteCubic decimeter (dm³)liter*Liter *1Cubic footacre-footboard foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter*0.028 316 846 55		liter*	0.001
Immu (0.0.7)10.25 1/3ounce (British, fuid)0.035 195 1ounce (U.S., fluid)0.033 814 02pint (British)0.001 759 75pint (U.S., dry)0.001 816 17pint (U.S., liquid)0.002 113 376Cubic centimeter-atmospherejoule*youte0.101 325watt-hour2.814 58 × 10^{-5}Cubic centimeter per gramcubic foot per poundCubic centimeter per gramcubic foot per minuteCubic centimeter per secondcubic foot per minuteLiter per hour*3.6Cubic footacre-footboard foot*12cord*(1/128)cord*(1/16)cubic inch*1728cubic meter*0.028 316 846 59		minim (ILS)	16 230 73
$ounce (U.S., fluid)$ $0.033 814 02$ $pint (British)$ $0.001 759 75$ $pint (U.S., dry)$ $0.001 816 17$ $pint (U.S., liquid)$ $0.002 113 376$ $Cubic centimeter-atmosphere$ $joule*$ $0.101 325$ $watt-hour$ $2.814 58 \times 10^{-5}$ $Cubic centimeter per gram$ $cubic foot per pound$ $0.016 018 5$ $Cubic centimeter per second$ $cubic foot per minute$ $0.002 118 88$ $liter per hour*$ 3.6 $Cubic foot$ $2.295 68 \times 10^{-5}$ $board foot*$ 12 $cord*$ $(1/128)$ $cord foot*$ $(1/16)$ $cubic inch^*$ 1728 $cubic meter*$ $0.028 316 846 59$		ounce (British fluid)	0.035 195 1
$\begin{array}{ccccc} \mbox{bill} (0.5.7, \mbox{hd}) & 0.001 \ \mbox{514} \ \mbox{614} \ \mbox$		ounce (U.S. fluid)	0.033 814 02
pint (USI, dry) $0.001\ 816\ 17$ pint (U.S., dry) $0.002\ 113\ 376$ pint (U.S., liquid) $0.002\ 113\ 376$ Cubic centimeter-atmospherejoule* $0.101\ 325$ watt-hour $2.814\ 58\ \times 10^{-5}$ Cubic centimeter per gramcubic foot per pound $0.016\ 018\ 5$ Cubic centimeter per secondcubic foot per minute $0.002\ 118\ 88$ liter per hour* 3.6 Cubic footacre-foot $2.295\ 68\ \times 10^{-5}$ board foot* 12 cord*(1/128)cord foot* 1728 cubic inch* 1728 cubic meter* $0.028\ 316\ 846\ 57$		pint (British)	0.001 759 75
pint (0.5., dry) $0.001 113 376$ pint (U.S., liquid) $0.002 113 376$ cubic centimeter-atmospherejoule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gramcubic foot per pound $0.016 018 5$ Cubic centimeter per secondcubic foot per minute $0.002 113 88$ Liter per hour* 3.6 Cubic decimeter (dm³)liter* 1 Cubic footacre-foot $2.295 68 \times 10^{-5}$ board foot* 12 cord*(1/128)cord foot*(1/16)cubic inch* 1728 cubic meter* $0.028 316 846 59$		pint (US dry)	0.001 816 17
pint (c.s., iquit) $0.002 115 370$ Cubic centimeter-atmosphere joule* $0.101 325$ watt-hour $2.814 58 \times 10^{-5}$ Cubic centimeter per gram cubic foot per pound $0.016 018 5$ Cubic centimeter per second cubic foot per minute $0.002 118 88$ Liter per hour* 3.6 Cubic decimeter (dm ³) liter* 1 Cubic foot acre-foot $2.295 68 \times 10^{-5}$ board foot* 12 cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 59		pint (U.S., dry)	0.002 113 376
Cubic centimeter atmosphereJone $0.101 \ 2.23$ watt-hour $2.814 \ 58 \times 10^{-5}$ Cubic centimeter per gramcubic foot per pound $0.016 \ 018 \ 5$ Cubic centimeter per secondcubic foot per minute $0.002 \ 118 \ 88$ liter per hour* 3.6 Cubic decimeter (dm³)liter*1Cubic footacre-foot $2.295 \ 68 \times 10^{-5}$ board foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter* $0.028 \ 316 \ 846 \ 59$	Cubic continuetor atmosphere	joule*	0.101 325
Cubic centimeter per gramcubic foot per pound $0.016\ 018\ 5$ Cubic centimeter per secondcubic foot per minute $0.002\ 118\ 88$ liter per hour* 3.6 Cubic decimeter (dm³)liter*1Cubic footacre-foot $2.295\ 68\times 10^{-5}$ board foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter*0.028\ 316\ 846\ 55	cubic centimeter-atmosphere	your watt hour	$2.814.58 \times 10^{-5}$
Cubic centimeter per secondcubic foot per point $0.002 \ 118 \ 88$ Cubic decimeter (dm³)liter per hour*3.6Cubic footacre-foot2.295 \ 68 \times 10^{-5}Cubic footboard foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter*0.028 316 846 55	Cubic centimeter per gram	cubic foot per pound	
Cubic centimeter per secondCubic foot per initiate $0.002 \ 118 \ 88$ liter per hour*3.6Cubic decimeter (dm³)liter*Liter*1Cubic footacre-footboard foot*12cord*(1/128)cord foot*(1/16)cubic inch*1728cubic meter*0.028 316 846 59	Cubic continueter per gran	cubic foot per pound	0.002 118 99
Cubic decimeter (dm³) liter* 1 Cubic foot acre-foot 2.295 68 × 10 ⁻⁵ board foot* 12 cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 55	Cubic centimeter per second	liter per hour*	0.002 118 88
Cubic decimiter (dn*) intervention 1 Cubic foot acre-foot 2.295 68 × 10 ⁻⁵ board foot* 12 cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 59	Cubia desimator (dm3)	liter*	5.0
Contract 2.295 68 × 10 ⁻³ board foot* 12 cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 55	Cubic decimient (diff ^o)	ner foot	1 205 60 10-5
cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 55		auto-1001	2.290 08 × 10 ⁻³
cord* (1/128) cord foot* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 55		oord*	12
cord 100t* (1/16) cubic inch* 1728 cubic meter* 0.028 316 846 55			(1/128)
cubic meter* 1728 0.028 316 846 5		COFCI IOOL*	(1/10)
cubic meter* 0.028 316 846 5		cubic incn [*]	1/28
		cubic meter*	0.028 316 846 59

To convert	Into	Multiply by
Cubic foot (continued)	gallon (British)	6.228 835
	gallon (U.S.)	7.480 519
	liter	28.316 847
Cubic foot per hour	liter per minute	0.471 947
Cubic foot per pound	cubic meter per kilogram	0.062 428 0
Cubic foot-atmosphere	Btu	2.719 48
1	calorie	685.298
	ioule	2869.205
	kilogram-meter	292.577
	liter-atmosphere	28.3168
	watt-hour	0 797 001
Cubic inch	cubic foot	(1/1728)
Cubic men	milliliter*	16 387 064
Cubic inch per minute	cubic centimeter per second	0.273 118
Cubic hiel per hillitate	cubic continuer per second	0.220 013
Cubic Midifields	cubic finite	16 0195
Cubic meter per knogram	bushel (British)	21 0222
Cubic yard	bushel (British)	21.0223
	busher (U.S.)	21.0902
	cubic foot*	27
	cubic meter	0.764 554 86
	liter	764.555
Cubic yard per minute	cubic foot per second*	0.45
	gallon (British) per second	2.802 98
	gallon (U.S.) per second	3.366 23
	liter per second	12.742 58
Cubit	inch*	18
Cup (U.S.)	milliliter; centimeter ³	236.6
Cup (metric)	cubic centimeter*	200
Curie	becquerel*	3.7×10^{10}
Cycle per second	hertz*	1
Dalton	kilogram	$1.660\ 54 \times 10^{-2}$
	unified atomic mass*	1
Day (mean solar)	hour*	24
• •	minute*	1440
	second*	86 400
Debve	coulomb-meter	$3.335~64 \times 10^{-3}$
Decibel	neper	0.115 129 255
Degree (plane angle)	circumference	(1/366)
8 (F8)	gon (grade)	1.111 11
	minute (angle)*	60
	quadrant	(1/90)
	radian	$(\pi/180)$
	revolution	(1/360)
	second (angle)*	3600
Degree (angle) per foot	radian per meter	0.057.261.5
Degree (angle) per root	radian per meter	0.037 201 3
Degree (angle) per second	daaraa Eabranhait*	0.017 433 3
Degree Cersius	degree Pankine*	1.0
		1.0
	kelvin*	1
Degree Fahrenheit	degree Celsius	(5/9)
Degree Rankine	kelvin	(5/9)
Denier	tex	(1/9)
Dipole length ($e \text{ cm}$)	coulomb-meter	$1.602\ 18 \times 10^{-2}$

To convert	Into	Multiply by
Drachm (British)	dram (apothecaries or troy)*	1
Drachm (British, fluid)	cubic centimeter	3.551 633
	dram (U.S., fluid)	0.960 760
	minim (British)	60
	ounce (British, fluid)	(1/8)
Dram (apothecaries or troy)	dram (weight)	2.194 285 7
	grain*	60
	gram*	3.887 934 6
	ounce (troy)*	(1/8)
	pennyweight*	2.5
	pound (troy)*	(1/96)
	scruple*	3
Dram (weight)	grain*	27.343 75
	gram	1.771 845 2
	ounce (weight)	(1/16)
	pound (weight)	(1/256)
Dram (U.S., fluid)	cubic centimeter	3.696 691 2
	gallon (U.S.)	(1/1024)
	gill (U.S.)	(1/32)
	milliliter	3.696 691 2
	minim (U.S.)*	60
	ounce (U.S., fluid)	(1/8)
	pint (U.S., fluid)	(1/128)
Dyne	kilogram (force)	1.019 716 × 10 ⁻⁶
-	newton*	10-5
	pound (force)	$2.248.09 \times 10^{-6}$
Dyne per centimeter	newton per meter*	0.001
Dyne per square centimeter	bar*	10-6
5 1 1	kilogram per square centimeter	$1.019~716 imes 10^{-6}$
	millimeter of mercury (0°C)	$7.500~617 \times 10^{-4}$
	millimeter of water (4°C)	0.010 197 16
	newton per square meter*	0.1
	pascal*	0.1
	pound per square inch (psi)	$1.450.38 \times 10^{-5}$
Dyne-centimeter	erg*	1
2 yne commeter	foot-pound (force)	$\frac{1}{7.375}$ 62 × 10 ⁻⁸
	foot-poundal	237304×10^{-6}
	ioule*	10-7
	kilogram-meter (force)	100 1019716 × 10 ⁻⁸
	newton-meter*	10-7
Dyne-second/centimeter ²	noise*	1
Dyne-second centilicier	poise nascal-second*	01
Electron charge	coulomb	$1.602 18 \times 10^{-19}$
Electron charge centimeter	coulomb meter	$1.002 18 \times 10^{-21}$
(a cm)	coulomo-meter	1.002 10 × 10
Electron charge centimeter ²	coulomb-meter squared	$1.602.18 \times 10^{-23}$
Electron mass	stomio mass unit	0.000 548 6
LICCUOII mass	aronne mass unit	9 1096 V 10-28
Flectronyolt	graili ara	$7.1070 \land 10^{-3}$ 1 602 10 \checkmark 10-12
LICCUOIIVOIL	ioule	$1.002 10 \times 10^{-10}$
	joure Isiloioulo por mole	1.002 10 × 10 *2
7711	knojoule per mole	90.4833
	Incn*	40
Em, pica		0.10/
	millimeter	4.217 52

To convert	Into	Into Multiply by	
EMU ¹ of capacitance	farad*	109	
EMU of current	ampere*	10	
EMU of electric potential	volt*	10-8	
EMU of inductance	henrv*	10-9	
EMU of quantity (charge)	coulomb	10	
EMU of resistance	ohm	10-9	
EMU of work	joule	10-7	
ESU ² of capacitance	farad	$1.112\ 650 imes10^{-12}$	
ESU of current	ampere	$3.335\ 641 \times 10^{-10}$	
ESU of electric potential	volt	299.792 5	
ESU of inductance	henry	$8.987.552 \times 10^{11}$	
ESU of quantity (charge)	coulomb	3.335556×10^{-1}	
ESU of resistance	ohm	$8.987.552 \times 10^{11}$	
ESU of work	ioule	10-7	
Ero	dyne-centimeter*	1	
2.8	ioule*	10-7	
	watt-bour	277778×10^{-11}	
Fra per second	Btu	5.60×10^{-6}	
Lig per second	Diu watt*	5:03 × 10 10-7	
$\mathbf{E}_{\mathbf{r}\mathbf{a}}$ nor $(am^2 \times accord)$	wall watt per square mater*	0.001	
Eng per ($\operatorname{chi}^{-} \times \operatorname{second}$)	ampere continueter coursed*	10	
Eig per gauss	ioule per tecle*	10	
Fahrenhait anala	joure per testa"	0.001	
Fahrenheit terresetere (%E)	Celling to reaction (%C)	(3/9)	
Fanrennen temperature (F)	Celsius temperature (°C)	$(^{2}F - 32)(3/9)$	
Faraday (based on carbon-12)	coulomb	96 487.0	
Faraday (chemical)	coulomb	96 495.7	
Faraday (physical)	coulomb	96 521.9	
Fathom	toot*	6	
	meter	1.828 8	
Fermi	meter*	10-15	
Foot	centimeter*	30.48	
	inch*	12	
	mile (nautical)	$1.645~788 imes 10^{-4}$	
	mile (statute)	$1.893~939 imes 10^{-4}$	
	yard	(1/3)	
Foot of water (4°C)	atmosphere	0.029 499 8	
	bar	0.029 499 8	
	gram per square centimeter	30.48	
	inch of mercury (0°C)	0.882 671	
	pascal	2989.067	
Foot per minute	centimeter per second*	0.508	
	knot	0.009 874 73	
	mile per hour	0.011 363 6	
Foot-candle	lumen per square foot*	1	
	lumen per square meter	10.7639	
	lux	10.76391	
Foot-lambert	candela per square centimeter	$3,426.26 \times 10^{-4}$	
	candela per square foot	$(1/\pi)$	
	lambert	0.001 076 39	
	matar lambart	10 7620	

 1 EMU, the electromagnetic system of electrical units based on dynamics. 2 ESU, the electrostatic system of electrical units based on static data.

To convert	Into	Multiply by
EMU ¹ of capacitance	farad*	109
EMU of current	ampere*	10
EMU of electric potential	volt*	10-8
EMU of inductance	henry*	10 ⁻⁹
EMU of quantity (charge)	coulomb	10
EMU of resistance	ohm	10 ⁻⁹
EMU of work	joule	10-7
ESU ² of capacitance	farad	$1.112\ 650 imes 10^{-12}$
ESU of current	ampere	$3.335~641 \times 10^{-10}$
ESU of electric potential	volt	299.792 5
ESU of inductance	henry	$8.987\ 552 \times 10^{11}$
ESU of quantity (charge)	coulomb	$3.335\ 556 imes 10^{-11}$
ESU of resistance	ohm	$8.987\ 552 imes 10^{11}$
ESU of work	joule	10-7
Erg	dvne-centimeter*	1
6	joule*	10-7
	watt-hour	$2.777\ 78 \times 10^{-11}$
Erg per second	Btu	5.69×10^{-6}
	watt*	10-7
Erg per (cm ² × second)	watt per square meter*	0.001
Erg per gauss	ampere-centimeter squared*	10
51 5	joule per tesla*	0.001
Fahrenheit scale	centigrade scale	(5/9)
Fahrenheit temperature (°F)	Celsius temperature (°C)	$(^{\circ}F - 32)(5/9)$
Faraday (based on carbon-12)	coulomb	96 487.0
Faraday (chemical)	coulomb	96 495.7
Faraday (physical)	coulomb	96 521.9
Fathom	foot*	6
	meter	1.828 8
Fermi	meter*	10 ⁻¹⁵
Foot	centimeter*	30.48
	inch*	12
	mile (nautical)	$1.645~788 \times 10^{-4}$
	mile (statute)	1.893939×10^{-4}
	vard	(1/3)
Foot of water (4°C)	atmosphere	0.029 499 8
	bar	0.029 499 8
	gram per square centimeter	30.48
	inch of mercury (0°C)	0.882 671
	pascal	2989.067
Foot per minute	centimeter per second*	0 508
r oot per minute	knot	0.009 874 73
	mile per hour	0.011 363 6
Foot-candle	lumen per square foot*	1
1 oot tuildit	lumen per square meter	10.7639
	hix	10.76391
Foot-lambert	candela per square centimeter	342626×10^{-4}
	candela per square foot	$(1/\pi)$
	lambert	0.001.076.39
	meter-lambert	10 7639
	motor-lumbort	10.1052

(Continued)

 1 EMU, the electromagnetic system of electrical units based on dynamics. 2 ESU, the electrostatic system of electrical units based on static data.

To convert	Into	Multiply by
Foot-pound	Btu	0.001 285 07
	calorie	0.323 832
	foot-poundal	32.1740
	horsepower (British)	$5.050~51 \times 10^{-1}$
	joule	1.355 818
	kilogram-meter	0.138 255
	liter-atmosphere	0.013 380 9
	newton-meter	1.355 818
	watt-hour	3.766 161 × 10
Foot-pound per minute	horsepower (British)	$3.030\ 30 imes 10^{-1}$
	horsepower (metric)	$3.072~33 \times 10^{-1}$
	watt	0.022 597 0
Foot-poundal	Btu	3.994 11 × 10⁻
-	calorie	0.010 064 99
	foot-pound	0.031 081 0
	joule	0.042 140 11
	kilogram-meter	0.004 297 10
	liter-atmosphere	$4.158\ 91 \times 10^{-1}$
	watt-hour	$1.170.56 \times 10^{-1}$
Franklin	coulomb	$3.335~64 \times 10^{-1}$
Franklin per cm ³	coulomb per cubic meter	$3.335~64 \times 10^{-1}$
Franklin per cm ²	coulomb per square meter	$3.335.64 \times 10^{-1}$
Furlong	chain (Gunter's)*	10
- uniong	foot*	600
	meter*	201 168
	mile	(1/8)
Gallon (British, imperial)	bushel (British)	(1/8)
Canon (2000), mpona)	cubic decimeter liter*	4.546.90
	cubic foot	0 160 544
	gallon (U.S. fluid)	1 200 95
	gill (British)*	32
	liter	4 546 09
	ounce (British)*	160
	quart (British)*	4
Gallon (U.S.)	harrel (netroleum)	(1/42)
Callon (C.S.)	cubic decimeter liter	3 785 41
	cubic foot	0 133 680 56
	cubic 1001 gallon (British)	0.135 080 50
	liter	3 785 41
	ounce (U.S. fluid)*	128
	quet (U.S., fluid)*	120
Gallon (U.S.) per minute	qual (0.5., hulu)	÷ 8 020 83
Ganon (0.5.) per innute	cubic noter per hour	0.020 00
	liter per minute	2 785 412
Commo	mer per minute	5.765 412 1
Ganifila Gas constant	anterogram.	1 1 007
Gas constant	calone per mole-degree	1.98/
	Jouie per mole-degree	8.3143
	inter-atmosphere per	0.082 057
	mole-degree	10.4
Gauss	tesia*	10-4
	weber per square meter*	10-4
Gilbert	ampere-turn	0.795 775

To convert	Into	Multiply by
Gill (British)	cubic centimeter, mL	142.065
, ,	cubic inch	8.669 36
	gallon (British)	(1/32)
	gill (U.S.)	1.200 95
	ounce (British, fluid)*	5
	pint (British)	(1/4)
Gill (U.S.)	cubic centimeter, mL	118.2941
	gallon (U.S.)	(1/32)
	liter	0.118 294 1
	ounce (U.S., fluid)*	4
	quart (U.S.)	(1/8)
Gon (grade)	circumference	(1/400)
	minute (angle)*	54
	radian	(2 <i>π</i> /400)
Grade	radian	$(2\pi/400)$
Grain	carat (metric)*	0.323 994 55
	milligram*	64.798 91
	ounce (weight)	0.002 285 714 3
	ounce (troy)	(1/480)
	pennyweight	(1/24)
	pound	(1/7000)
_	scruple	(1/20)
Gram	carat (metric)*	5
	dram	0.564 383 39
	grain	15.432 358
	ounce (weight)	0.035 273 962
	ounce (troy)	0.032 150 747
	pennyweight	0.043 014 93
	pound	0.002 204 622 6
Com and (continuator second)	ton (metric)*	10 0
Gram per (centimeter-second)	poise*	1
Gram per cubic centimeter	nound not only fact	1
	pound per cubic tool	9 345 40
Gram per square meter	ounce per square foot	0.345 40
Gram per square meter	gram per top (metric)	0.527 700
Grain per ton (tong)	gram per ton (short)	0.904 207
Gram (force)	dyne*	980 665
	newton*	0.009.806.65
Gram per square centimeter	pascal*	98.0665
Gram-centimeter	ioule*	$9.806.65 \times 10^{-5}$
Gram-square centimeter	pound-square foot	$2.373.04 \times 10^{-6}$
Gray	joule per kilogram*	1
Hartree	electron volt	27.211 40
	hertz	$6.579~683~90 \times 10^{15}$
	joule	$4.359~75 imes10^{-18}$
Hectare	acre	2.471 054
	are*	100
	meter squared	104
Hefner unit	candela	0.9
Hemisphere	sphere*	0.5
	spherical right angle*	4
	steradian	(2 <i>π</i>)

To convert	Into	Multiply by
Hertz	cycle per second*	1
Hogshead	gallon (U.S.)*	63
Horsepower (British)	Btu per hour	2544.43
-	foot pound per hour*	1.98×10^{6}
	horsepower (metric)	1.013 87
	joule per second	745.700
	kilocalorie per hour	641.186
	kilogram-meter per second	76.0402
	watt	745.70
Horsepower (electric)	watt*	746
Horsepower-hour (British)	Btu	2544.43
	foot-pound*	1.98×10^{6}
	joule	$2.684~52 imes 10^{6}$
	kilocalorie	641.186
	kilogram-meter	$2.737~45 imes 10^{5}$
	watt-hour	745.7
Hour (mean solar)	day	(1/24)
	minute*	60
	second*	3600
	week	(1/168)
Hundredweight (long)	kilogram*	50.802 345 44
	pound*	112
	ton (long)	(1/20)
	ton (metric)	0.050 802 345
	ton (short)*	0.056
Hundredweight (short)	hundredweight (long)	0.892 857
Inch	centimeter*	2.54
	foot	(1/12)
	mil*	1000
Inch of mercury (0°C)	atmosphere	0.033 421 05
	inch of water (4°C)	13.5951
	millibar	33.863 88
	millimeter of water (4°C)	345.316
	pascal	3386.388
	pound per square inch, psi	0.491 1541
Inch of water (4°C)	inch of mercury (0°C)	0.073 5559
	millibar	2.490 89
	millimeter of mercury (0°C)	1.868 32
	pascal	249.089
	pound per square inch, psi	0.036 1273
Inch per minute	foot per hour*	5
	meter per hour*	1.524
	millimeter per second	0.423 333
Joule	Btu	$9.478\ 170 imes 10^{-4}$
	calorie*	0.2390
	centigrade heat unit, chu	5.265 65
	centimeter-dyne*	107
	cubic foot-atmosphere	0.000 348 529
	cubic foot-(pound per in ²)	0.005 121 959
	erg*	107
	foot-pound	0.737 562
	foot-poundal	23.7304
	horsepower-hour (British)	$3.725\ 06 \times 10^{-7}$
	liter-atmosphere	0.009 869 233

To convert	Into	Multiply by
Joule (continued)	newton-meter*	1
	watt-second*	1
Joule per centimeter	kilogram (force)	10.197 16
	newton*	100
	pound (force)	22.4809
Joule per gram	Btu per pound	0.429 923
	kilocalorie per kilogram	0.238 846
	watt-hour per pound	0.125 998
Joule per second	watt*	1
Kilogram (force)	dyne*	$9.806~65 \times 10^{5}$
	newton*	9.806 65
	pound (force)	2.204 62
	poundal	70.9316
Kilometer	astronomical unit	$6.684~59 \times 10^{-9}$
	mile (nautical)	0.539 956 80
	mile (statute)	0.621 371 192
Kilowatt	Btu per minute	56.8690
	foot-pound per second	737.562
	horsepower (British)	1.341.02
	horsepower (metric)	1.359 62
	ioule per second*	1000
	kilocalorie per hour	859 845
Kilowatt-hour	Rtu	3412 14
inowatt noti	horsenower-hour (British)	1 341 02
	ioule*	3.6×10^{6}
	kilocalorie	859 845
Knot	foot per minute	101 2686
Kilot	kilometer per hour*	1 852
	mile (nautical) per hour*	1.052
	mile (statute) per hour	1 150 78
Lambda	decimeter cubed*	10-6
Cambda	microliter*	1
Lambert	candela per square meter	$(1/\pi) \times 10^{4} \cdot 3183.000$
Lambert	candela per square inch	2 053 61
	foot-lambert	929 030
Landley	ioule per square meter*	4.184×10^{4}
League (nautical)	mile (neutical)*	3
League (statute)	mile (statute)*	3
Light_year	estronomical unit	6 373 07 × 104
Eight-year	meter	$9.323 77 \times 10^{15}$ 9.460 73 × 10 ¹⁵
Link	chain*	0.01
Link	cubic decimeter (dm ³)*	1
Liter	cubic foot	0.035 314 67
	cubic foot	0.000 014 07
	gallon (LIS)	0.219 909
	guart (British)	0.204 172 1
	quart (US)	1 056 688
Liter per minute	quait (0.5.)	2 110 00
Liter per minute	cubic foot per flour	2,110 00
	gallon (US) per hour	15.170
Liter atmosphere	Rep	13.0303
Liter-autosphere		0.090 037 0
	calone	24.2011
	cubic root-armosphere	0.033 314 /
	cubic 100t-pound per in ²	0.318 983

ТАВ	LE	4.4	Conv	ersion	Factors	(C	ontinue	ď)
-----	----	-----	------	--------	---------	----	---------	---	---

To convert	Into	Multiply by
Liter-atmosphere (continued)	horsepower (British)	$3.774~42 \times 10^{-5}$
	horsepower (metric)	$3.826\ 77\ imes\ 10^{-5}$
	joule*	101.325
	kilogram-meter	10.332 27
	watt-hour	0.028 145 8
Lumen per square centimeter	lux*	104
	phot*	1
Lumen per square meter	lumen per square foot	0.092 903 0
Lux	lumen per square meter*	1
Maxwell	weber*	10-8
Meter	ångström*	1010
	fathom	0.546 807
	foot	3.280 839 895
	inch	39.370 078 740
	mile (nautical)	$5.399\ 568 \times 10^{-4}$
	mile (statute)	6.213712×10^{-4}
Meter per second	foot per minute	196.850
	kilometer per hour*	3.6
	knot	1.943 844
	mile per hour	2.236 936
Meter-candie	lux*	1
Meter-lambert	candela per square meter	$(1/\pi)$
	toot-lambert	0.092 903 0
	lambert*	10-4
Mho (ohm-1)	siemen*	I 10-6
Micron	meter	10-5
Mil	inch*	0.001
Mile (resting)	micrometer*	25.4
Mile (nauucai)		1 852
	kilometer"	1.652
Mile (statute)	ahain (Cuntor's)*	1.150 78
Mile (statute)	chain (Bumeden's)*	50 S
	foot*	5280
	furlong*	9280
	kilometer*	0
	light year	$1.009 \ 544$ 1 701 11 × 10 ⁻¹¹
	link (Gunter's)*	8000
	link (Bameden's)*	5280
	mile (nautical)	0.868.976
	rod*	320
Mile per gallon (British)	kilometer per liter	0 354 006
Mile per gallon (U.S.)	kilometer per liter	0.425 144
Mile per hour	foot per minute	88
hine per neur	kilometer per hour*	1 609 344
	knot	0.868.976
Milliliter	cubic centimeter*	1
Millimeter of mercury (0°C)	atmosphere	(1/760)
	dyne per square centimeter	1333.224
	millimeter of water (4°C)	13.5951
	pascal	133.322
	pound per square inch (nsi)	0.019.336.8
		0.017 550 0
To convert	Into	Multiply by
-------------------------------	--------------------------------	---------------------------
Millimeter of water (4°C)	atmosphere	0.009 678 41
	millibar*	0.098 066 5
	millimeter of mercury (0°C)	0.073 555 9
	pascal*	9.806 65
	pound per square inch	0.001 422 33
Minim (British)	milliliter	0.059 193 9
	minim (U.S.)	0.960 760
Minim (U.S.)	milliliter	0.061 611 5
Minute (plane angle)	circumference	$4.629~63 \times 10^{-5}$
	degree (angle)	(1/60)
	gon	(1/54)
	radian	(<i>π</i> /10,800)
Minute	hour	(1/60)
	second	60
Month (mean of 4-year period)	day	30.4375
	hour	730.5
	week	4.348 21
Nail (British)	inch*	2.25
Nanometer	ångström*	10
Neper	decibel	8.685 890
Nuclear magneton	joule per tesla	$5.050~79 imes 10^{-27}$
Neutron mass	atomic mass unit	1.008 66
	gram	1.6749×10^{-24}
Newton	dyne*	105
	kilogram (force)	0.101 971 6
	pound (force)	0.224 809
	poundal	7.233 01
Newton per square meter	See pascal	
Newton-meter	foot-pound	0.737 562
	joule*	1
	kilogram-meter	0.101 971 6
	watt-second*	1
Nit	candela per square meter*	1
Noggin (British)	gill (British)*	1
Nox	lux*	0.001
Oersted	ampere per meter (in practice)	$(1000/4\pi); 79.577 47$
Ohm (mean international)	ohm	1.000 49
Ohm (U.S. international)	ohm	1.000 495
Ohm per foot	ohm per meter	3.280 84
Ounce (avoirdupois)	dram*	16
	grain*	437.5
	gram*	28.349 5
	ounce (troy)	0.911 458 33
2 ()	pound	(1/16)
Ounce (troy)	grain*	480
	gram*	31.1035
	ounce (avoirdupois)	1.097 142 9
	pennyweignt*	20
	pound (avoirdupois)	0.008 371 429
Owner (British A: -)	scruple [*]	24
Ounce (British, huid)	cubic centimeter	28.413 U0
	ganon (British)	(1/100)
	mmmer	20.413 00

To convert	Into	Multiply by		
Ounce (British, fluid)	minim (British)	480		
(continued)	ounce (U.S., fluid)	0.960 760		
, ,	pint (British)	(1/20)		
	quart (British)	(1/40)		
Ounce (U.S., fluid)	cubic centimeter	29.573 530		
	gallon (U.S.)	(1/128)		
	milliliter	29.573 530		
	pint (U.S., fluid)	(1/16)		
	quart (U.S., fluid)	(1/32)		
Ounce (avoirdupois) per cubic foot	kilogram per cubic meter	1.001 154		
Ounce (avoirdupois) per gallon (U.S.)	gram per liter	7.489 15		
Ounce (avoirdupois) per ton	gram per ton (metric)	27.9018		
(long)				
~	milligram per kilogram	27.9018		
Ounce (avoirdupois) per ton (short)	gram per ton (metric)*	31.25		
	milligram per kilogram*	31.25		
Parsec	light-year	3.261 636		
Part per million	milligram per kilogram*	1		
	milliliter per cubic meter*	1		
Pascal	atmosphere	9.869 233 × 10 ⁻		
	bar*	10-5		
	dyne per square centimeter*	10		
	inch of mercury	$2.953\ 00 \times 10^{-4}$		
	millimeter of mercury	$7.500\ 62 \times 10^{-3}$		
	millimeter of water	0.101 972		
	newton per square meter*	1		
	pound per square inch	$1.450~377 imes 10^{-1}$		
	poundal per square foot	0.671 969		
Pascal-second	poise*	10		
Peck (British)	gallon (British)*	2		
Peck (U.S.)	bushel (U.S.)*	0.25		
Pennyweight	grain*	24		
	gram*	1.555 173 84		
	ounce (troy)	(1/20)		
	pound	0.003 428 571 4		
Phot	hix*	104		
Pica (printer's)	inch	0 167		
ried (printer 5)	point*	12		
Pint (British)	gallon (British)	(1/8)		
	liter	0 568 261		
	pint (U.S. fluid)	1 200 95		
	quart (British)	0.5		
Pint (U.S. dry)	hushel (U.S.)	(1/64)		
1 m. (0.0., ury)	liter	0 550 610 5		
	$\operatorname{peck}(1 \mathbf{S})$	(1/16)		
	pick (0.0.)	0 048 030		
	pun (Dinish) quart (U.S. dry)	0.500 555		
Pint (IIS fluid)	qualt (U.S., ury)	(1/8)		
1 m (0.3., m u)	ganon (U.S.)	(1/0)		

Pint (U.S., fluid) (continued)	pint (British)	
(continued)		0.832 674
Dianals's constant	quart (U.S., fluid)*	0.5
Flanck's constant	joule-second	$6.626~08 \times 10^{-34}$
Point (printer's, Didot)	millimeter	0.376 065 03
Point (printer's, U.S.)	millimeter*	0.351 459 8
Poise	dyne-second per square centimeter*	1
	pascal-second*	0.1
Polarizability volume ($4\pi\epsilon_0$ cm ³)	coulomb squared-(meter squared per joule)	$1.112~65 \times 10^{-16}$
Pole (British)	foot*	16.5
Pottle (British)	gallon (British)*	0.5
Pound	gram*	453.592 37
	ounce (weight)*	16
	ton (long)	44642857×10^{-4}
	ton (short)	(1/2000)
Pound (troy)	arain	5760
	gram*	373 241 721 6
	grani	12
	nonnuusiaht	240
	pennyweight	240
	pound (weight)	0.822 837 14
Dennel bie ferst	scrupie [*]	288
Pound per cubic foot	kilogram per cubic meter	16.018 46
Pound per cubic inch	gram per cubic centimeter	27.679 905
	pound per cubic foot*	1728
Pound per foot	kilogram per meter	1.488 16
Pound per (foot-second)	pascal-second	1.488 16
Pound per gallon (U.S.)	gram per liter	119.8264
Pound per hour	kilogram per day	10.886 22
Pound per inch	kilogram per meter	17.857 97
Pound per minute	kilogram per hour	27.215 54
Pound per square foot	kilogram per square meter	4.882 43
Pound (force)	kilogram (force)	0.453 592
	newton	4.448 222
	poundal	32.1740
Pound per square inch	atmosphere	0.068 046 0
	bar	0.068 948 0
	inch of mercury (0°C)	2.036 02
	millimeter of mercury (0°C)	51.7149
	millimeter of water (4°C)	703.070
	pascal	6894.757
	pound per square foot	144
Pound-second per square inch	pascal-second	6894.76
Poundal	gram (force)	14.0981
	newton	0.138 255
	pound (force)	0.031 081 0
Poundal per square foot	pascal	1.488 164
Poundal-foot	newton-meter	0.042 140 1
Poundal-second per square foot	nascal-second	1 488 164
Proof (U.S.)	percent alcohol by volume*	0.5
Proton mass	atomic mass unit	1.007.28
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	oram	1.6726×10^{-24}
	collon (Pritich)	70

To convert	Into	Multiply by	
Ouad	Btu	1015	
~	ioule	1.055×10^{18}	
Ouadrant	circumference*	0.25	
	degree (angle)*	90	
	gon (grade)*	100	
	minute (angle)*	5400	
	radian	$(\pi/2)$	
Ouadrupole area ($e \text{ cm}^2$)	coulomb meter squared	$1.602 \ 18 \times 10^{-2}$	
Quart (British)	gallon (British)*	0.25	
2	liter	1 136 523	
	ounce (British fluid)*	40	
	nint (British)*	2	
	quart (US fluid)	1 200 95	
Quart (U.S. dry)	hushel (US)	(1/32)	
Quart (0.5., ury)	cubic foot	0.038 880 25	
	liter	1 101 221	
		(1/8)	
	peck (U.S.)	(1/8)	
	pint (U.S., dry)*	2	
Quart (U.S., huid)	gation (U.S.)*	0.25	
		0.946 529	
	ounce $(U.S., fluid)^*$	32	
	pint (U.S., nuid)	2	
	quart (British)	0.832 674	
Quartern (British, fluid)	gill (British)*	0.5	
Quintal (metric)	kilogram*	100	
Rad (absorbed dose)	gray*	0.01	
	joule per kilogram*	0.01	
Radian	circumference	$(1/2\pi)$	
	degree (angle)	57.295 780	
	minute (angle)	3437.75	
	quadrant	$(2/\pi)$	
	revolution	$(1/2\pi)$	
Radian per centimeter	degree per millimeter	5.729 58	
	degree per inch	145.531	
Radian per second	revolution per minute	9.549 30	
Radian per second squared	revolution per minute squared	572.958	
Rankin (degree)	kelvin	(5/9)	
Ream	quire*	20	
	sheet	480 or 500	
Register ton	cubic foot*	100	
2	cubic meter	2.831 685	
Rem (dose equivalent)	sievert*	0.01	
Revolution	degree (angle)	360	
	20n*	400	
	guadrant*	4	
	radian	(2π)	
Revolution per minute	degree (angle) per second*	6	
Per minute	radian per second	0.104 720	
Revolution per minute squared	radian per second squared	0.001 745 33	
Revolution per second squared	radian per second squared	6.283 185	
recontrol per second squared	revolution per minute squared	3600	
	notorunon per minute squared	2000 C004 7C	
Revn	nascal-second	6894 /6	

To convert	Into	Multiply by
Rhe	per pascal-second*	10
Right angle	degree*	90
0 0	radian	$(\pi/2)$
Rod (British, volume)	cubic foot*	1000
Rod (surveyer's measure)	chain (Gunter's)*	0.25
	foot*	16.5
	link (Gunter's)*	25
	meter*	5.0292
Roentgen	coulomb per kilogram	2.58×10^{-4}
Rood (British)	acre*	0.25
	square meter	1011.714 1
Rydberg	joule	$2.179\ 87 \times 10^{-18}$
Scruple	dram (troy)	(1/3)
1	grain*	20
	gram*	1.295 978 2
	ounce (weight)	0.045 714 286
	ounce (trov)	(1/24)
	pennyweight	(10/12)
	pound	(1/350)
Second (plane angle)	degree	$2.777.78 \times 10^{-4}$
seeona (prano angro)	minute	(1/60)
	radian	$(\pi/6.48 \times 10^5)$
Section	square mile*	1
Siemens	mbo $(ohm^{-1})*$	1
Shore	geenound*	1
ong	kilogram	14 593 90
	pound	32 1740
Speed of light	centimeter per second	$2.997.924.58 \times 10^{10}$
Sphere.	steradian	(4π)
Square centimeter	circular mil	1.97353×10^{5}
Square commeter	circular millimeter	127 3240
	square inch	0 155 000 31
Square chain (Gunter's)	acre*	0.155 000 51
oquare chain (Sunter 3)	square foot*	4356
	square meter	404 686
Square chain (Ramsden's)	square foot*	104.000
Square degree (angle)	steradian	$3.046.17 \times 10^{-4}$
Square foot	acre	$2.040 17 \times 10^{-5}$
Square root	square centimeter	929 0304
	square meter	0.092.0004
	square rod	0.002 505 04
Square inch	square rou	$1.273.240 \times 10^{6}$
Square men	circular millimeter	821 4432
	square centimeter	6 4516
Square kilometer	acre	247 1054
Square knometer	heatare*	100
	square mile	0 386 102 16
Savare link (Gustar's)	squate finte	0.360 102 10
Square link (Oullier S)	square foot*	1
Square mater	square roor	1
square meter	aut -	0.01
	square root	
	square mile	5.001 UI × 10 ⁻⁷

To convert	Into	Multiply by
Square meter (continued)	square rod	0.039 536 9
	square yard	1.195 990
Square mile	acre*	640
-	square kilometer	2.589 988 110
	township	(1/36)
Square rod	acre	(1/160)
-	square foot	272.25
	square meter	25.292 853
Square yard	square foot*	9
* *	square inch*	1296
	square meter*	0.836 127 36
	square rod	0.033 057 85
Statampere	ampere	$3.335\ 641 \times 10^{-10}$
Stateoulomb	coulomb	3.335641×10^{-10}
Statfarad	farad	$1.112.650 \times 10^{-12}$
Stathenry	henry	8987552×10^{11}
Statmbo	siemens	1112650×10^{-12}
Statohm	ohm	8987552×10^{11}
Statvolt	volt	299 7925
Stativeher	weber	299.1925
Starwood	sphere	$(1/4\pi)$
Steraulan	sphere spherical right angle	(1/+1/)
	square degree	(2/7/)
Store	square degree	3202.01
04:1L	cubic ineter	1
Suid Stalvas (kinamatia viasasitu)		1
Stokes (kinematic viscosity)	square meter per second.	10 -
Stone (Brush)	pound*	14
Sveuderg	second"	10 10
Tablespoon (metric)	cubic centimeter"; milliter	14.79
Teaspoon (metric)	cubic centimeter*; millitter	4.929
	weber per square meter*	1
lex	denier [*]	9
	gram per kilometer*	1
Therm	Btu*	103
— • • •	joule*	$1.054\ 804 \times 10^{8}$
Ton (assay)	gram	29.166 67
Ton (long)	hundredweight (long)*	20
	hundredweight (short)*	22.4
	kilogram	1016.046 908 8
	pound*	2240
	ton (metric)	1.016 046 9
	ton (short)	1.12
Ton (metric)	hundredweight (long)	19.684 131
	hundredweight (short)	22.046 226
	kilogram*	1000
	pound	2204.6226
	ton (long)	0.984 206 53
	ton (short)*	1.102 311 3
Ton (short)	kilogram	907.184 74
. ,	pound*	2000
Ton (force, long)	newton	1186.553
······		

To convert	Into	Multiply by
Ton (force, short)	newton	8896.44
Ton (force, $long)/ft^2$	bar	1.072 518
(,8)	pascal	1.072518×10^{5}
Ton (force, metric)/m ²	bar	0.098 066 5
1011 (10100, 11100/210)	pascal	9806.65
Ton (force, short)/ft ²	bar	0 957 605
	pascal	$9.576.05 \times 10^4$
Tonne (metric)	kilogram*	1000
Torr	atmosphere	(1/760)
1011	millibar	1 333 224
	millimeter of mercury* (0°C)	1
	numinieter of mercury (0 C)	133 322: (101 325/760)
Township (US)	pascar square kilometer	02 2206
Township (0.3.)	square mile*	35.2390
Unified atomia mass unit	kilogram	166054×10^{-27}
Unit colo	Kitogram	$1.000 54 \times 10^{-1}$
Unit pole	weber	1.230 037 × 10 7
Volt (mean international)	volt	1.000.34
Volt (U.S. international)	volt	1.000 330
Volt-second	weber*	1
Watt	Btu per hour	3.412.14
	calorie per minute	14.3308
	erg per second*	10/
	foot-pound per minute	44.2537
	horsepower (British)	0.001 341 02
	horsepower (metric)	0.001 359 62
	joule per second*	1
	kilogram-meter per second	0.101 972
Watt per square inch	watt per square meter	1550.003
Watt-hour	Btu	3.412 14
	calorie	859.845
	foot-pound	2655.22
	horsepower-hour (British)	0.001 341 02
	horsepower-hour (metric)	0.001 359 62
	joule*	3600
	liter-atmosphere	35.5292
Watt-second	joule*	1
Weber	maxwell*	10 ⁸
Week	day*	7
	hour*	168
Wey (British, capacity)	bushel (British)	40 (variable)
Wey (British, mass)	pound	252 (variable)
X unit	meter	$1.002\ 02 \times 10^{-13}$
Yard	fathom*	0.5
	meter	0.9144
Year (mean of 4-years)	dav	365.25
(week	52.178.87
Year (sidereal)	day (mean solar)	365.256 36
(0.0000000)		200.20000

4.3 CONVERSION OF THERMOMETER SCALES

The following abbreviations are used: °F, degrees Fahrenheit; °C, degrees Celsius; K, degrees Kelvin; °Ré, degrees Reaumur; °R, degrees Rankine; °Z, degrees on any scale; (fp) "Z", the freezing point of water on the Z scale; and (bp) "Z", the boiling point of water on the Z scale. Reference: Dodds, *Chemical and Metallurigical Engineering* **38**:476 (1931).

$$\frac{{}^{\circ}\mathrm{F}-32}{180} = \frac{{}^{\circ}\mathrm{C}}{100} = \frac{{}^{\circ}\mathrm{R}\acute{e}}{80} = \frac{\mathrm{K}-273}{100} = \frac{{}^{\circ}\mathrm{R}-492}{180} = \frac{{}^{\circ}\mathrm{Z}-(\mathrm{fp}){}^{\circ}\mathrm{Z}{}^{\prime\prime}}{(\mathrm{bp}){}^{\circ}\mathrm{Z}{}^{\prime\prime}-(\mathrm{fp}){}^{\circ}\mathrm{Z}{}^{\prime\prime}}$$

Examples

(1) To find the Fahrenheit temperature corresponding to -20° C:

$$\frac{{}^{\circ}F - 32}{180} = \frac{{}^{\circ}C}{100} \text{ or } \frac{{}^{\circ}F - 32}{180} = \frac{-20}{100}$$
$${}^{\circ}F - 32 = \frac{(-20)(180)}{100} = -36$$
$${}^{\circ}F = -4$$

(2) To find the Reaumur temperature corresponding to 20°F:

$$\frac{{}^{\circ}F - 32}{180} = \frac{{}^{\circ}R\acute{e}}{80} = \frac{20 - 32}{180} = \frac{{}^{\circ}R\acute{e}}{80}$$
$$20^{\circ}F = -5.33^{\circ}R\acute{e}$$

(3) To find the correct tempeature on a thermometer reading 80°C and that shows a reading of -0.30°C in a melting ice/water mixture and 99.0°C in steam at 760 mm pressure of mercury:

$$\frac{^{\circ}C}{100} = \frac{Z - (fp)``Z''}{(bp)``Z'' - (fp)``Z''} = \frac{80 - (-0.30)}{99.0 - (-0.30)}$$

i.e.,

i.e.,

 $^{\circ}C = 80.87$ (corrected)

TABLE 4.5 Temperature Conversion

The column of figures in bold and which is headed "Reading in °F. or °C. to be converted" refers to the temperature either in degrees Fahrenheit or Celsius which it is desired to convert into the other scale. If converting from Fahrenheit degrees to Celsius degrees, the equivalent temperature will be found in the column headed "°C."; while if converting from degrees Celsius to degrees Fahrenheit, the equivalent temperature will be found in the column headed "°F." This arrangement is very similar to that of Sauveur and Boylston, copyrighted 1920, and is published with their permission.

°F.	Reading in °F. or °C. to be converted	°C.	°F.	Reading in °F. or °C. to be converted	°C.
	- 458 - 456	-272.22 -271.11		- 378 - 376	-227.78 -226.67
	-454	-270.00		-374	-225.56
	-452	-268.89		-372 -370	-224.44 -223.33
	-448	- 266 67		- 368	-222.22
	-446	-265.56		- 366	-221.11
	- 444	-264.44		-364	-220.00
• • • • • • • • •	- 442	-263.33		- 360	-218.89 -217.78
	-438	- 261 11		-358	-216.67
	-436	-260.00		- 356	- 215.56
	-434	-258.89		- 354	-214.44
• • • • • • • • •	-432	-257.78		- 352	-213.33 212.22
	-430	-256.67		348	-211.11
	-428	-255.56 -254.44		-346	-210.00
	- 424	-253.33		- 344	-208.89
	-422	-252.22		-342	-207.78
	-420	-251.11		- 340	- 206.67
	-418	-250.00		-338	- 205.56
	-416	- 248.89		- 334	-203.33
	-414 -412	-247.78 -246.67		-332	-202.22
	-410	-245.56		-330	-201.11
	-408	-244.44		-328	- 200.00
	- 406	-243.33		- 326	- 198.89 197.78
• • • • • • • • •	-404	-242.22		- 322	- 196.67
	-402	-240.00		- 320	- 195.56
	- 398	-238.89		-318	- 194.44
	- 396	-237.78		-316	- 193.33
	- 394	-236.67		-314 -312	192.22
• • • • • • • • •	-392	-235.56 -234.44		-310	- 190.00
•••••	- 299	- 234.44		- 308	- 188.89
	- 386 - 386	-233.33 -232.22		- 306	-187.78
	- 384	-231.11		- 304	- 186.67
	- 382	-230.00		-302	
	-380	- 228.89			

TABLE 4.5 Temperature Conversion (Continued)

	Reading in °F. or °C.			Reading in °F. or °C. to be	
°F.	to be converted	°C.	°F.	converted	°C.
	-298	- 183.33	- 342.4	-208	- 133.33
	- 296	- 182.22	- 338.8	-206	- 132.22
	- 294	- 181.11	-335.2	-204	- 131.11
	- 292	- 180.00	-331.6	-202	-130.00
	-290	- 178.89	- 328.0	-200	- 128.89
	-288	- 177.78	- 324.4	- 198	-127.78
	-286	- 176.67	-320.8	- 196	-126.67
	-284	- 175.56	-317.2	- 194	- 125.56
	- 282	- 174.44	-313.6	- 192	- 124.44
• • • • • • • • •	-280	- 173.33	- 310.0	- 190	- 123.33
	-278	-172.22	- 306.4	- 188	- 122.22
	-276	-171.11	- 302.8	-186	- 121.11
	-274	- 170.00	- 299.2	- 184	-120.00
-457.6	-272	- 168.89	295.6	-182	-118.89
-454.0	-270	- 167.78	-292.0	-180	-117.78
-450.4	-268	- 166.67	-288.4	-178	-116.67
- 446.8	-266	- 165.56	- 284.8	-176	-115.56
-443.2	-264	- 164.44	-281.2	- 174	- 114.44
-439.6	-262	- 163.33	- 277.6	-172	-113.33
-436.0	-260	- 162.22	- 274.0	- 170	-112.22
-432.4	-258	- 161.11	-270.4	- 168	-111.11
-428.8	- 256	- 160.00	- 266.8	- 166	-110.00
- 425.2	-254	- 158.89	-263.2	- 164	108.89
-421.6	-252	- 157.78	-259.6	- 162	- 107.78
-418.0	-250	- 156.67	-256.0	- 160	- 106.67
-414.4	-248	- 155.56		- 158	- 105.56
-410.8	-246	- 154.44	-248.8	- 156	- 104.44
-407.2	-244	- 153.33	-245.2	-154	-103.33
-403.6	-242	- 152.22	-241.6	-152	-102.22
-400.0	-240	- 151.11	-238.0	-150	- 101.11
- 396.4	-238	- 150.00	-234.4	- 148	100.00
- 392.8	-236	- 148.89	-230.8	- 146	- 98.89
- 389.2	-234	- 147.78	-227.2	-144	-97.78
-385.6	-232	- 146.67	-223.6	-142	96.67
-382.0	-230	- 145.56	- 220.0	-140	- 95.56
- 378.4	-228	- 144.44	-216.4	-138	-94.44
-374.8	-226	- 143.33	-212.8	-136	-93.33
-371.2	-224	- 142.22	-209.2	-134	-92.22
-367.6	-222	- 141.11	-205.6	-132	-91.11
-364.0	-220	-140.00	-202.0	-130	-90.00
-360.4	-218	- 138.89	- 198.4	- 128	- 88.89
-356.8	-216	- 137.78	- 194.8	- 126	- 87.78
-353.2	-214	- 136.67	- 191.2	-124	- 86.67
- 349.6	-212	- 135.56	- 187.6	-122	- 85.56
- 346.0	-210	- 134.44	- 184.0	-120	-84.44
			L		

°F.	Reading in °F. or °C. to be converted	°C.		°F.	Reading in °F. or °C. to be converted	°C.
- 180.4 - 176.8 - 173.2 - 169.6	- 118 - 116 - 114 - 112	83.33 82.22 81.11 80.00		-18.4 -14.8 -11.2 -7.6	- 28 - 26 - 24 - 22	- 33.33 - 32.22 - 31.11 - 30.00
- 166.0 - 162.4 - 158.8	-110 -108 -106	- 78.89 - 77.78 - 76.67		-4.0 -0.4 +3.2	- 20 - 18 - 16	- 28.89 - 27.78 - 26.67
-155.2 -151.6 -148.0	-104 -102 -100 -98	- 75.56 - 74.44 - 73.33 - 72.22		+6.8 +10.4 +14.0 +17.6	-14 -12 -10 -8	- 25.56 - 24.44 - 23.33 - 22.22
-140.8 -137.2 -133.6 -130.0	- 98 - 96 - 94 - 92 - 90	-71.12 -71.11 -70.00 -68.89 -67.78		+17.0 +19.4 +21.2 +23.0 +24.8	-7 -6 -5 -4	-21.67 -21.11 -20.56 -20.00
-126.4 -122.8 -119.2 -115.6	- 88 - 86 - 84 - 82	- 66.67 - 65.56 - 64.44 - 63.33		+26.6 +28.4 +30.2 +32.0	-3 -2 -1 +0	- 19.44 - 18.89 - 18.33 - 17.78
-112.0 -108.4 -104.8 -101.2	- 80 - 78 - 76 - 74	- 62.22 - 61.11 - 60.00 - 58.89		+ 33.8 + 35.6 + 37.4 + 39.2	+1 +2 +3 +4	- 17.22 - 16.67 - 16.11 - 15.56
-97.6 -94.0 -90.4	-72 -70 -68	- 57.78 - 56.67 - 55.56		+ 41.0 + 42.8 + 44.6	+5 +6 +7	- 15.00 - 14.44 - 13.89
- 80.8 - 83.2 - 79.6 - 76.0	-64 -62 -60	- 54.44 - 53.33 - 52.22 - 51.11		+40.4 +48.2 +50.0 +51.8	+ 8 + 9 + 10 + 11	- 13.33 - 12.78 - 12.22 - 11.67
$ \begin{array}{r} -72.4 \\ -68.8 \\ -65.2 \\ -61.6 \\ -58.0 \end{array} $	- 58 - 56 - 54 - 52 - 50	- 50.00 - 48.89 - 47.78 - 46.67 - 45.56		+ 53.6 + 55.4 + 57.2 + 59.0 + 60.8	+ 12 + 13 + 14 + 15 + 16	- 11.11 - 10.56 - 10.00 - 9.44 - 8.89
- 54.4 - 50.8 - 47.2 - 43.6	- 48 - 46 - 44 - 42	- 44.44 - 43.33 - 42.22 - 41.11		+62.6 +64.4 +66.2 +68.0	+ 17 + 18 + 19 + 20	-8.33 -7.78 -7.22 -6.67
- 36.4 - 32.8 - 29.2 - 25.6	- 36 - 36 - 34 - 32	- 38.89 - 37.78 - 36.67 - 35.56		+ 71.6 + 73.4 + 75.2 + 77.0	+21 +22 +23 +24 +25	-5.56 -5.00 -4.44 -3.89
- 22.0	- 30	- 34.44	J	+78.8	+26	- 3.33

TABLE 4.5 Temperature Conversion (Continued)

	Reading in °F. or °C.			Reading in °F. or °C.	
°F.	converted	°C.	°F.	converted	°C.
+ 80.6	+27	-2.78	+ 161.6	+72	+ 22.22
+ 82.4	+28	- 2.22	+ 163.4	+73	+22.78
+84.2	+29	- 1.67	+165.2	+74	+23.33
+ 86.0	+30	-1.11	+167.0	+75	+23.89
+87.8	+31	-0.56	+168.8	+76	+24.44
+ 89.6	+ 32	± 0.00	+ 170.6	+77	+25.00
+91.4	+33	+0.56	+172.4	+78	+25.56
+93.2	+34	+1.11	+174.2	+ 79	+26.11
+95.0	+35	+1.67	+176.0	+80	+26.67
+96.8	+36	+2.22	+ 177.8	+81	+ 27.22
+98.6	+37	+2.78	+ 179.6	+82	+27.78
+100.4	+38	+ 3.33	+181.4	+83	+28.33
+102.2	+39	+ 3.89	+183.2	+84	+28.89
+ 104.0	+40	+4.44	+185.0	+85	+ 29.44
+105.8	+41	+ 5.00	+186.8	+ 86	+30.00
+ 107.6	+42	+ 5.56	+188.6	+ 87	+30.56
+ 109.4	+43	+6.11	+190.4	+88	+31.11
+111.2	+44	+ 6.67	+192.2	+89	+31.67
+113.0	+45	+7.22	+194.0	+90	+32.22
+114.8	+46	+7.78	+ 195.8	+91	+32.78
+116.6	+47	+ 8.33	+197.6	+92	+33.33
+118.4	+48	+ 8.89	+199.4	+93	+33.89
+120.2	+ 49	+9.44	+201.2	+94	+34.44
+122.0	+ 50	+10.00	+203.0	+95	+35.00
+123.8	+51	+ 10.56	+204.8	+96	+35.56
+125.6	+ 52	+11.11	+206.6	+97	+36.11
+127.4	+53	+11.67	+208.4	+ 98	+36.67
+ 129.2	+ 54	+12.22	+210.2	+ 99	+37.22
+ 131.0	+55	+12.78	+212.0	+100	+37.78
+132.8	+56	+13.33	+213.8	+101	+38.33
+ 134.6	+ 57	+13.89	+215.6	+102	+38.89
+136.4	+58	+ 14.44	+217.4	+103	+39.44
+138.2	+ 59	+15.00	+219.2	+104	+40.00
+ 140.0	+60	+15.56	+221.0	+105	+40.56
+141.8	+61	+16.11	+222.8	+106	+41.11
+ 143.6	+62	+ 16.67	+224.6	+107	+41.67
+ 145.4	+63	+ 17.22	+226.4	+108	+42.22
+147.2	+64	+ 17.78	+228.2	+109	+42.78
+ 149.0	+65	+18.33	+230.0	+110	+43.33
+ 150.8	+66	+ 18.89	+231.8	+111	+43.89
+ 152.6	+67	+ 19.44	+233.6	+112	+44.44
+154.4	+68	+20.00	+235.4	+113	+45.00
+156.2	+ 69	+ 20.56	+237.2	+114	+45.56
+ 158.0	+70	+21.11	+239.0	+115	+46.11
+ 159.8	+71	+21.67	+240.8	+116	+46.67

TABLE 4.5 Temperature Conversion (Continued)

	Reading in °F. or °C.			Reading in °F. or °C.	
07	to be	2	05	to be	1 0
۳F.	converted	"С.	°F.	converted	"С.
+242.6	+117	+47.22	+ 323.6	+ 162	+72.22
+244.4	+118	+47.78	+ 325.4	+ 163	+72.78
+246.2	+119	+48.33	+ 327.2	+164	+73.33
+248.0	+120	+48.89	+ 329.0	+165	+73.89
+249.8	+121	+ 49.44	+ 330.8	+166	+ 74.44
+251.6	+122	+50.00	+ 332.6	+ 167	+75.00
+253.4	+123	+ 50.56	+ 334.4	+168	+75.56
+255.2	+124	+51.11	+ 336.2	+ 169	+76.11
+257.0	+125	+ 51.67	+ 338.0	+170	+76.67
+ 258.8	+126	+ 52.22	+ 339.8	+171	+77.22
+ 260.6	+ 127	+ 52.78	+ 341.6	+172	+77.78
+262.4	+ 128	+53.33	+ 343.4	+173	+78.33
+264.2	+ 129	+ 53.89	+ 345.2	+174	+78.89
+266.0	+130	+54.44	+ 347.0	+175	+ 79.44
+267.8	+131	+55.00	+ 348.8	+176	+80.00
+ 269.6	+132	+ 55.56	+ 350.6	+ 177	+80.56
+271.4	+ 133	+56.11	+352.4	+178	+81.11
+ 273.2	+134	+56.67	+354.2	+179	+81.67
+ 275.0	+ 135	+57.22	+356.0	+180	+82.22
+276.8	+136	+57.78	+ 357.8	+181	+82.78
+278.6	+ 137	+58.33	+ 359.6	+182	+83.33
+280.4	+138	+58.89	+361.4	+183	+83.89
+ 282.2	+ 139	+59.44	+ 363.2	+184	+84.44
+284.0	+ 140	+60.00	+365.0	+185	+85.00
+ 285.8	+141	+60.56	+366.8	+186	+ 85.56
+ 287.6	+142	+61.11	+ 368.6	+187	+86.11
+289.4	+ 143	+61.67	+ 370.4	+188	+86.67
+ 291.2	+144	+62.22	+ 372.2	+189	+87.22
+ 293.0	+145	+62.78	+ 374.0	+190	+87.78
+ 294.8	+ 146	+63.33	+ 375.8	+ 191	+88.33
+ 296.6	+ 147	+63.89	+377.6	+192	+88.89
+ 298.4	+ 148	+64.44	+ 379.4	+193	+ 89.44
+ 300.2	+ 149	+65.00	+ 381.2	+194	+90.00
+ 302.0	+150	+65.56	+383.0	+195	+90.56
+ 303.8	+ 151	+66.11	+ 384.8	+ 196	+91.11
+ 305.6	+152	+66.67	+386.6	+ 197	+91.67
+ 307.4	+153	+67.22	+ 388.4	+198	+92.22
+ 309.2	+154	+67.78	+ 390.2	+ 199	+92.78
+311.0	+ 155	+68.33	+ 392.0	+200	+93.33
+312.8	+156	+ 68.89	+ 393.8	+201	+ 93.89
+314.6	+157	+ 69.44	+ 395.6	+202	+94.44
+316.4	+158	+70.00	+ 397.4	+ 203	+95.00
+ 318.2	+159	+70.56	+ 399.2	+204	+95.56
+ 320.0	+160	+71.11	+401.0	+205	+96.11
+ 321.8	+ 161	+71.67	+402.8	+206	+96.67

TABLE 4.5 Temperature Conversion (Continued)

°F.	Reading in °F. or °C. to be converted	°C.		Reading i °F. or °C to be converted	n ∙ 1 ℃.
+ 404.6	+ 207	+97.22	+ 543.	$\begin{array}{cccc} 2 & +284 \\ 8 & +286 \\ 4 & +288 \\ 0 & +290 \\ \end{array}$	+ 140.00
+ 406.4	+ 208	+97.78	+ 546.		+ 141.11
+ 408.2	+ 209	+98.33	+ 550.		+ 142.22
+ 410.0	+ 210	+98.89	+ 554.		+ 143.33
+411.8	+211	+99.44	+ 557	6 + 292	+ 145.55 + 144.44
+413.6	+212	+ 100.00	+ 561.	$ \begin{array}{r} 2 \\ 2 \\ 4 \\ + 296 \\ 4 \\ + 298 \\ 0 \\ + 300 \\ \end{array} $	+ 145.56
+415.4	+213	+ 100.56	+ 564.		+ 146.67
+417.2	+214	+ 101.11	+ 568.		+ 147.78
+419.0	+215	+ 101.67	+ 572.		+ 148.89
+420.8	+216	+102.22	+ 575.	6 + 302	+ 150.00
+ 422.6	+217	+ 102.78	+ 579.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 151.11
+ 424.4	+218	+ 103.33	+ 582.		+ 152.22
+ 426.2	+219	+ 103.89	+ 586.		+ 153.33
+ 428.0	+220	+ 104.44	+ 590.		+ 154.44
+ 431.6	+222	+ 105.56	+ 593.		+ 155.56
+ 435.2	+ 224	+106.67	+ 507	2 ⊥21 <i>1</i>	+ 156 67
+ 433.2	+ 224	+100.07	+ 597.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 150.07
+ 438.8	+ 226	+107.78	+ 600.		+ 157.78
+ 442.4	+ 228	+108.89	+ 604.		+ 158.89
+ 446.0	+ 230	+110.00	+ 608.		+ 160.00
+ 449.0	+ 232	+111.11	+011.	0 + 322	+ 101.11
+ 453.2	+ 234	+ 112.22	+615.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 162.22
+ 456.8	+ 236	+ 113.33	+618.		+ 163.33
+ 460.4	+ 238	+ 114.44	+622.		+ 164.44
+ 464.0	+ 240	+ 115.56	+626.		+ 165.56
+ 467.6	+ 242	+ 116.67	+629.		+ 166.67
+471.2	+ 244	+ 117.78	+ 633.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+167.78
+474.8	+ 246	+ 118.89	+ 636.		+168.89
+478.4	+ 248	+ 120.00	+ 640.		+170.00
+482.0	+ 250	+ 121.11	+ 644.		+171.11
+485.6	+ 252	+ 122.22	+ 647.		+172.22
+489.2	+ 254	+ 123.33	+ 651.	$\begin{array}{cccc} 2 & + 344 \\ 8 & + 346 \\ 4 & + 348 \\ 0 & + 350 \\ 6 & + 352 \end{array}$	+ 173.33
+492.8	+ 256	+ 124.44	+ 654.		+ 174.44
+496.4	+ 258	+ 125.56	+ 658.		+ 175.56
+500.0	+ 260	+ 126.67	+ 662.		+ 176.67
+503.6	+ 262	+ 127.78	+ 665.		+ 177.78
+ 507.2	+ 264	+ 128.89	+ 669.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ 178.89
+ 510.8	+ 266	+ 130.00	+ 672.		+ 180.00
+ 514.4	+ 268	+ 131.11	+ 676.		+ 181.11
+ 518.0	+ 270	+ 132.22	+ 680.		+ 182.22
+ 521.6	+ 272	+ 133.33	+ 683.		+ 183.33
+ 525.2	+ 274	+ 134.44	+ 687.	$\begin{array}{ccccc} 2 & +364 \\ 8 & +366 \\ 4 & +368 \\ 0 & +370 \\ 6 & +372 \end{array}$	+184.44
+ 528.8	+ 276	+ 135.56	+ 690.		+185.56
+ 532.4	+ 278	+ 136.67	+ 694.		+186.67
+ 536.0	+ 280	+ 137.78	+ 698.		+187.78
+ 539.6	+ 282	+ 138.89	+ 701.		+188.89

TABLE 4.5 Temperature Conversion (Continued)

°F.	Reading in °F. or °C. to be converted	°C.	°F.	Reading in °F. or °C. to be converted	°C.
+ 705 2	+ 274	+ 100.00	+ 967.0	1 464	1 240 00
+ 709.2	+ 374	+190.00		+ 404	+240.00
+712.4	+ 370	± 191.11 ± 102.22	+ 070.0	+ 460	± 241.11
+712.4	+ 370	+ 192.22	+ 878.0	+408	+242.22
+710.0	+ 380	+195.55 +104.44	$\pm 0/0.0$	+470	+243.33 +244.44
+ 719.0	+ 382	T 194.44	+ 001.0	+4/2	⊤ 244.44
+ 723.2	+ 384	+ 195.56	+885.2	+ 474	+245.56
+726.8	+386	+ 196.67	+888.8	+ 476	+246.67
+730.4	+ 388	+ 197.78	+ 892.4	+478	+247.78
+734.0	+390	+ 198.89	+ 896.0	+480	+248.89
+737.6	+ 392	+200.00	+ 899.6	+482	+250.00
+741.2	+ 394	+ 201.11	+903.2	+ 484	+251.11
+ 744.8	+396	+202.22	+ 906.8	+486	+252.22
+748.4	+ 398	+203.33	+910.4	+488	+253.33
+752.0	+400	+ 204.44	+914.0	+ 490	+254.44
+755.6	+402	+205.56	+917.6	+ 492	+255.56
+759.2	+404	+ 206.67	+921.2	+494	+256.67
+762.8	+406	+207.78	+924.8	+496	+257.78
+ 766.4	+408	+208.89	+928.4	+498	+258.89
+770.0	+410	+210.00	+932.0	+500	+260.00
+773.6	+412	+211.11	+935.6	+502	+261.11
+777.2	+414	+212.22	+939.2	+504	+262.22
+780.8	+416	+213.33	+942.8	+506	+263.33
+784.4	+418	+214.44	+946.4	+508	+264.44
+788.0	+420	+215.56	+950.0	+510	+265.56
+ 791.6	+422	+216.67	+ 953.6	+512	+266.67
+795.2	+424	+217.78	+ 957.2	+514	+267.78
+798.8	+426	+218.89	+960.8	+516	+268.89
+802.4	+428	+220.00	+964.4	+518	+270.00
+806.0	+430	+221.11	+968.0	+520	+271.11
+809.6	+432	+222.22	+971.6	+522	+272.22
+8132	+434	+ 223 33	+ 975 2	+ 524	+ 273 33
+ 816.8	+436	+ 223.33	+ 978.8	+ 526	+ 273.33
+820.4	+438	+225.56	+982.4	+528	+275.56
+824.0	+440	+226.67	+986.0	+530	+276.67
+ 827.6	+442	+227.78	+ 989.6	+ 532	+277.78
+831.2	+ 444	+ 228 89	+ 003 2	+ 534	+ 278 80
+834.8	+ 446	+220.09	+ 996 8	+ 536	+270.09 +280.00
+8384	+ 448	+230.00 +231.11	+10004	+ 538	+280.00 +281.11
+842.0	+450	+232.22	+ 1004.0	+540	+282.22
+ 845.6	+452	+ 233.33	+ 1007.6	+542	+283.33
+ 840 2	+ 454	+ 234 44	+10112	+ 544	+ 284 44
+ 852 8	+ 456	+ 235 56	+1011.2	+ 546	+ 285 56
+ 856.4	+ 458	+ 236 67	+1018.0	+ 548	+286.67
+ 860.0	+ 460	+ 237 78	+10220	+ 550	+ 287 78
+ 863.6	+ 462	+238.89	+1025.6	+ 552	+288.89
1 005.0	1-102	1 200.00	1025.0	1 334	1 200.07

TABLE 4.5 Temperature Conversion (Continued)

TABLE 4.5 Temperature Conversion (Continued)

	Reading in				Reading in	
	^o F. or ^o C.				°F. or °C.	
	to be	-			to be	
°F.	converted	°C.		°F.	converted	°C.
+ 1029.2	+ 554	+ 290.00		+ 1191.2	+644	+ 340.00
+1032.8	+ 556	+291.11		+ 1194.8	+646	+341.11
+ 1036.4	+ 558	+ 292.22		+ 1198.4	+648	+342.22
+1040.0	+ 560	+ 293.33		+ 1202.0	+650	+343.33
+1043.6	+ 562	+ 294.44	· ·	+ 1205.6	+652	+ 344.44
+ 1047.2	+ 564	+295.56	· ·	+ 1209.2	+ 654	+ 345.56
+1050.8	+ 566	+ 296.67	· · ·	+ 1212.8	+656	+ 346.67
+1054.4	+ 568	+297.78	· · ·	+ 1216.4	+658	+ 347.78
+1058.0	+ 570	+ 298.89	·	+1220.0	+ 660	+ 348.89
+ 1061.6	+ 572	+300.00	· ·	+ 1223.6	+662	+350.00
+1065.2	+ 574	+301.11		+ 1227.2	+664	+351.11
+1068.8	+ 576	+ 302.22		+ 1230.8	+ 666	+ 352.22
+1072.4	+578	+303.33		+ 1234.4	+ 668	+ 353.33
+1076.0	+580	+ 304.44		+ 1238.0	+670	+ 354.44
+ 1079.6	+582	+ 305.56	· ·	+ 1241.6	+ 672	+ 355.56
+1083.2	+584	+ 306.67		+ 1245.2	+674	+ 356.67
+1086.8	+ 586	+307.78	·	+ 1248.8	+676	+357.78
+1090.4	+588	+308.89	.	+ 1252.4	+678	+358.89
+1094.0	+ 590	+ 310.00	.	+ 1256.0	+ 680	+360.00
+1097.6	+ 592	+311.11		+ 1259.6	+682	+ 361.11
+1101.2	+ 594	+ 312.22		+ 1263.2	+684	+ 362.22
+1104.8	+ 596	+313.33	- I -	+ 1266.8	+686	+ 363.33
+1108.4	+598	+ 314.44	- I -	+ 1270.4	+688	+ 364.44
+1112.0	+600	+315.56		+ 1274.0	+690	+365.56
+1115.6	+602	+316.67		+ 1277.6	+692	+ 366.67
+1119.2	+604	+ 317.78		+ 1281.2	+ 694	+367.78
+1122.8	+606	+ 318.89	.	+ 1284.8	+696	+368.89
+1126.4	+608	+320.00		+ 1288.4	+698	+370.00
+1130.0	+610	+321.11		+ 1292.0	+700	+371.11
+1133.6	+612	+ 322.22		+ 1295.6	+702	+372.22
+1137.2	+614	+323.33	.	+ 1299.2	+704	+ 373.33
+1140.8	+616	+324.44		+ 1302.8	+706	+ 374.44
+1144.4	+618	+325.56		+1306.4	+708	+375.56
+1148.0	+620	+ 326.67	· · ·	+ 1310.0	+710	+376.67
+1151.6	+ 622	+327.78	· ·	+ 1313.6	+712	+ 377.78
+1155.2	+624	+328.89		+ 1317.2	+714	+ 378.89
+1158.8	+626	+330.00	· · ·	+1320.8	+716	+380.00
+1162.4	+628	+331.11	· ·	+ 1324.4	+718	+381.11
+1166.0	+630	+332.22	.	+ 1328.0	+720	+382.22
+1169.6	+ 632	+ 333.33		+ 1331.6	+722	+ 383.33
+1173.2	+ 634	+ 334.44	- ·	+ 1335.2	+724	+ 384.44
+1176.8	+636	+ 335.56	·	+ 1338.8	+726	+385.56
+1180.4	+638	+ 336.67	· ·	+ 1342.4	+728	+ 386.67
+1184.0	+640	+337.78	· ·	+ 1346.0	+730	+387.78
+1187.6	+642	+ 338.89		+ 1349.6	+732	+388.89

°F.	Reading in °F. or °C. to be converted	°C.		°F.	Reading in °F. or °C. to be converted	°C.
+ 1252.2	± 731	+ 390.00	ŀ	+ 1515.2	+ 824	+ 440.00
± 1355.2	+ 734	+ 390.00		+ 1515.2	+ 826	± 440.00 ± 441.11
+1350.8 +1360.4	+ 730	+ 391.11		+ 1510.0	+ 820	± 441.11 ± 442.22
+1364.0	+738 +740	+ 392.22		+1522.4 +1526.0	+ 820	+442.22
± 1304.0 ± 1267.6	+ 740	+393.33 +204.44		+1520.0 +1520.6	+ 030	+443.33 +444.44
+ 1307.0	+ 742	+ 394.44		+ 1529.0	+ 652	T 444.44
+1371.2	+744	+ 395.56		+1533.2	+834	+445.56
+1374.8	+746	+ 396.67		+1536.8	+836	+ 446.67
+1378.4	+748	+ 397.78		+1540.4	+838	+ 447.78
+1382.0	+750	+ 398.89		+1544.0	+840	+448.89
+1385.6	+752	+ 400.00		+1547.6	+842	+450.00
+1389.2	+754	+ 401.11		+1551.2	+844	+451.11
+1392.8	+756	+ 402.22		+1554.8	+846	+452.22
+ 1396.4	+758	+ 403.33		+1558.4	+848	+453.33
+1400.0	+760	+ 404.44		+1562.0	+850	+454.44
+ 1403.6	+762	+ 405.56		+1565.6	+ 852	+455.56
+1407.2	+764	+ 406.67		+1569.2	+854	+456.67
+1410.8	+766	+407.78		+1572.8	+856	+457.78
+1414.4	+768	+408.89		+1576.4	+858	+458.89
+1418.0	+770	+410.00		+1580.0	+860	+460.00
+1421.6	+772	+411.11		+1583.6	+862	+461.11
+14252	+774	+412.22		+1587.2	+864	+462.22
+1428.8	+776	+413.33		+1590.8	+ 866	+463.33
+1432.4	+778	+41444		+1594.4	+868	+464.44
+1436.0	+780	+415.56		+1598.0	+870	+465.56
+ 1439.6	+782	+416.67		+1601.6	+872	+466.67
+1443.2	+784	+417.78		+ 1605 2	+874	+467.78
+ 1445.2 + 1446.8	+ 786	+ 418 80		+1603.2 +1608.8	+ 876	+ 468 80
+ 1450.0	+788	+420.00		+1612.4	+ 878	+400.09 +470.00
+1450.4	+ 790	+420.00 +421.11		+1612.4	+ 880	+471.00
+1457.6	+ 792	+422.22		+1619.6	+882	+472.22
1161.0	1 704	102.22		+ 1602.0	1 994	172.22
+1401.2	+ 794	+ 423.33		+1023.2	+ 884	+4/3.33
+ 1404.8	+ 790	+ 424.44		+1620.8	+ 880	+ 4 / 4.44
+ 1408.4	+ 798	+ 425.50		± 1630.4	+ 800	+4/3.30
+14/2.0	+ 800	+ 420.07		± 1034.0	+ 890	+4/0.07
+14/3.0	+ 802	+427.78		+ 1057.0	+ 892	+4/7.76
+ 1479.2	+ 804	+ 428.89		+1641.2	+ 894	+478.89
+1482.8	+ 806	+ 430.00		+ 1644.8	+ 896	+480.00
+1486.4	+808	+431.11		+1648.4	+ 898	+481.11
+ 1490.0	+810	+ 432.22		+1652.0	+900	+482.22
+ 1493.6	+812	+ 433.33		+1655.6	+902	+483.33
+ 1497.2	+814	+ 434.44		+1659.2	+904	+484.44
+1500.8	+816	+ 435.56		+1662.8	+906	+485.56
+1504.4	+818	+ 436.67		+1666.4	+908	+486.67
+1508.0	+820	+437.78		+1670.0	+910	+487.78
+ 1511.6	+ 822	+438.89		+1673.6	+912	+ 488.89

TABLE 4.5 Temperature Conversion (*Continued*)

TABLE 4.5 Temperature Conversion (Continued)

°F.	Reading in °F. or °C. to be converted	°C.	۳ .	Reading in °F. or °C. to be converted	°C.
+ 1677.2	+914	+490.00	+ 1868.0	+1020	+548.89
+ 1680.8	+916	+491.11	+ 1886.0	+1030	+554.44
+ 1684.4	+918	+492.22	+ 1904.0	+1040	+560.00
+ 1688.0	+920	+493.33	+ 1922.0	+1050	+565.56
+ 1691.6	+922	+494.44	+ 1940.0	+1060	+571.11
+ 1695.2	+ 924	+495.56	+ 1958.0	+1070	+ 576.67
+ 1698.8	+ 926	+496.67	+ 1976.0	+1080	+ 582.22
+ 1702.4	+ 928	+497.78	+ 1994.0	+1090	+ 587.78
+ 1706.0	+ 930	+498.89	+ 2012.0	+1100	+ 593.33
+ 1709.6	+ 932	+500.00	+ 2030.0	+1110	+ 598.89
+ 1713.2 + 1716.8 + 1720.4 + 1724.0 + 1727.6	+ 934 + 936 + 938 + 940 + 942	+501.11 +502.22 +503.33 +504.44 +505.56	+2048.0 +2066.0 +2084.0 +2102.0 +2120.0	+ 1120 + 1130 + 1140 + 1150 + 1160	+ 604.44 + 610.00 + 615.56 + 621.11 + 626.67
+ 1731.2	+ 944	+506.67	+2138.0	+ 1170	+ 632.22
+ 1734.8	+ 946	+507.78	+2156.0	+ 1180	+ 637.78
+ 1738.4	+ 948	+508.89	+2174.0	+ 1190	+ 643.33
+ 1742.0	+ 950	+510.00	+2192.0	+ 1200	+ 648.89
+ 1745.6	+ 952	+511.11	+2210.0	+ 1210	+ 654.44
+ 1749.2 + 1752.8 + 1756.4 + 1760.0 + 1763.6	+ 954 + 956 + 958 + 960 + 962	+ 512.22 + 513.33 + 514.44 + 515.56 + 516.67	+2228.0 +2246.0 +2264.0 +2282.0 +2300.0	+ 1220 + 1230 + 1240 + 1250 + 1260	+ 660.00 + 665.56 + 671.11 + 676.67 + 682.22
+ 1767.2	+ 964	+517.78	+2318.0	+1270	+687.78
+ 1770.8	+ 966	+518.89	+2336.0	+1280	+693.33
+ 1774.4	+ 968	+520.00	+2354.0	+1290	+698.89
+ 1778.0	+ 970	+521.11	+2372.0	+1300	+704.44
+ 1781.6	+ 972	+522.22	+2390.0	+1310	+710.00
+ 1785.2	+ 974	+ 523.33	+ 2408.0	+ 1320	+715.56
+ 1788.8	+ 976	+ 524.44	+ 2426.0	+ 1330	+721.11
+ 1792.4	+ 978	+ 525.56	+ 2444.0	+ 1340	+726.67
+ 1796.0	+ 980	+ 526.67	+ 2462.0	+ 1350	+732.22
+ 1799.6	+ 982	+ 527.78	+ 2480.0	+ 1360	+737.78
+ 1803.2	+ 984	+ 528.89	+2498.0	+ 1370	+743.33
+ 1806.8	+ 986	+ 530.00	+2516.0	+ 1380	+748.89
+ 1810.4	+ 988	+ 531.11	+2534.0	+ 1390	+754.44
+ 1814.0	+ 990	+ 532.22	+2552.0	+ 1400	+760.00
+ 1817.6	+ 992	+ 533.33	+2570.0	+ 1410	+765.56
+ 1821.2 + 1824.8 + 1828.4 + 1832.0 + 1850.0	+ 994 + 996 + 998 + 1000 + 1010	+ 534.44 + 535.56 + 536.67 + 537.78 + 543.33	+2588.0 +2606.0 +2624.0 +2642.0 +2660.0	+ 1420 + 1430 + 1440 + 1440 + 1450 + 1460	+771.11 +776.67 +782.22 +787.78 +793.33

°F.	Reading in °F. or °C. to be converted	°C.	°F.	Reading in °F. or °C. to be converted	°C.
+2678.0	+1470	+ 798.89	+ 3488 0	+1920	+1048.9
+2696.0	+1480	+804.44	+ 3506.0	+ 1920	+10544
+2714.0	+1490	+810.00	+3524.0	+1940	+1060.0
+2732.0	+1500	+815.56	+3542.0	+1950	+1065.6
+2750.0	+1510	+821.11	+3560.0	+1960	+100010
+2768.0	+1520	+ 826 67	+ 3578 0	+ 1970	+10767
+2786.0	+1520 +1530	+832.22	+3596.0	+1980	+1082.2
+2804.0	+1540	+837.78	+3614.0	+1990	+1082.12
+2822.0	+1550	+843.33	+3632.0	+2000	+10933
+2840.0	+ 1560	+848.89	+ 3650.0	+2010	+1098.9
+2858.0	+1570	+854.44	+ 3668 0	+2020	+11044
+2876.0	+1580	+860.00	+ 3686.0	+2020 +2030	+11000
+2894.0	+1590	+ 865 56	+3704.0	+ 2050	+1115.6
+2912.0	+1600	+871.11	+3722.0	+2050	+11211
+2930.0	+ 1610	+ 876.67	+3740.0	+ 2060	+1126.7
+2948.0	+1620	+882.22	+ 3758 0	+2070	+1132.2
+2966.0	+1620	+887.78	+3736.0	+ 2080	+1132.2 +1137.8
+2984.0	+1630	+ 893 33	+3794.0	+ 2000	+1137.0 +1143.3
+3002.0	+1650	+ 898 89	+3812.0	+2000	+ 1148.9
+3002.0 +3020.0	+1650 +1660	+ 904 44	+3830.0	+2100 +2110	+ 1154.9
1 2028.0	1670	010.00	1 2040.0	+ 2110	+ 1154.4
+ 3038.0	+ 1670	+910.00	+ 3848.0	+2120	+1160.0
+ 3030.0	+ 1080	+ 915.50	+ 3800.0	+2130	+ 1105.0
+ 3074.0	+ 1090	+ 921.11	+ 3884.0	+2140	+11/1.1
+3092.0 +3110.0	+1700 +1710	+ 920.07	+3902.0 +3020.0	+2150 +2160	+11/0.7 +1182.2
+ 3110.0	+ 1710	+ 932.22	+ 3920.0	+ 2100	+1162.2
+3128.0	+1720	+937.78	+ 3938.0	+2170	+118/.8
+ 3146.0	+1/30	+ 943.33	+ 3956.0	+2180	+ 1193.3
+ 3164.0	+1/40	+ 948.89	+ 3974.0	+2190	+ 1198.9
+ 3182.0	+1/50	+ 954.44	+3992.0	+ 2200	+1204.4
+ 3200.0	+1760	+ 900.00	+4010.0	+ 2210	+1210.0
+ 3218.0	+ 1770	+ 965.56	+4028.0	+ 2220	+1215.6
+3236.0	+ 1780	+9/1.11	+ 4046.0	+ 2230	+1221.1
+3254.0	+ 1790	+9/6.67	+4064.0	+ 2240	+1226.7
+3272.0	+1800	+ 982.22	+4082.0	+ 2250	+1232.2
+3290.0	+1810	+ 987.78	+4100.0	+2260	+1237.8
+3308.0	+1820	+993.33	+4118.0	+2270	+1243.3
+3326.0	+1830	+ 998.89	+4136.0	+2280	+1248.9
+ 3344.0	+ 1840	+ 1004.4	+4154.0	+ 2290	+1254.4
+3362.0	+1850	+ 1010.0	+4172.0	+2300	+1260.0
+3380.0	+ 1860	+ 1015.6	+4190.0	+2310	+ 1265.6
+3398.0	+1870	+1021.1	+ 4208.0	+2320	+1271.1
+3416.0	+1880	+ 1026.7	+ 4226.0	+2330	+ 1276.7
+3434.0	+1890	+ 1032.2	+ 4244.0	+2340	+1282.2
+3452.0	+1900	+ 1037.8	+ 4262.0	+2350	+1287.8
+ 3470.0	+ 1910	+ 1043.3	+4280.0	+2360	+1293.3

TABLE 4.5	Temperature Conversion	(Continued))
-----------	------------------------	-------------	---

	Reading in °F. or °C.			Reading in °F. or °C.	
°F.	converted	°C.	°F.	converted	°C.
+ 4298.0	+ 2370	+ 1298.9	+4964.0	+2740	+1504.4
+ 4316.0	+2380	+1304.4	+ 4982.0	+2750	+1510.0
+4334.0	+2390	+ 1310.0	+ 5000.0	+2760	+ 1515.6
+4352.0	+2400	+1315.6	+ 5018.0	± 2770	+ 1521.1
+4370.0	+2410	+1321.1	+ 5036.0	+2780	+ 1526.7
+4388.0	+2420	+1326.7	+ 5054.0	+2790	+ 1532.2
+ 4406.0	+2430	+1332.2	+ 5072.0	+2800	+ 1537.8
+4424.0	+2440	+ 1337.8	+ 5090.0	+2810	+ 1543.3
+4442.0	+2450	+ 1343.3	+ 5108.0	+2820	+ 1548.9
+ 4460.0	+2460	+ 1348.9	+ 5126.0	+2830	+ 1554.4
+4478.0	+2470	+ 1354.4	+ 5144.0	+2840	+ 1560.0
+4496.0	+2480	+ 1360.0	+ 5162.0	+2850	+1565.6
+4514.0	+2490	+ 1365.6	+ 5180.0	+2860	+1571.1
+4532.0	+2500	+ 1371.1	+ 5198.0	+2870	+ 1576.7
+4550.0	+2510	+ 1376.7	+ 5216.0	+2880	+ 1582.2
+4568.0	+2520	+1382.2	+ 5234.0	+2890	+1587.8
+4586.0	+2530	+1387.8	+5252.0	+2900	+ 1593.3
+4604.0	+2540	+1393.3	+ 5270.0	+2910	+1598.9
+4622.0	+2550	+1398.9	+5288.0	+2920	+ 1604.4
+4640.0	+2560	+1404.4	+ 5306.0	+2930	+1610.0
+4658.0	+2570	+1410.0	+ 5324 0	+2940	+ 1615.6
+4676.0	+2580	+1415.6	+5342.0	+ 2950	+16211
+46940	+2590	+1421.1	+5360.0	+2960	+1626.7
+4712.0	+2600	+1426.7	+5378.0	+2970	+1632.2
+4730.0	+2610	+1432.2	+5396.0	+2980	+1637.8
+4748.0	+2620	+1437.8	+5414.0	+ 2000	+ 1642.2
+4766.0	+2630	+ 1443.3	+5432.0	+ 3000	+1648.9
+ 4784 0	+ 2640	± 1448.0	+5450.0	+3010	+16544
+ 4802.0	+ 2650	+ 1440.9 + 1454.4	+5468.0	+3020	+1660.0
+4802.0 +4820.0	+ 2660	+ 1454.4 + 1460.0	+5486.0	+3030	+ 1665.6
+48380	+2670	+ 1465.6	5504.0	1 2040	1671.1
+4856.0	+2680	+1471.1	+ 5504.0	+ 3040	+10/1.1 +16767
+ 1030.0	+ 2600	+ 1476 7	+5522.0 +5540.0	+ 3050	+16822
+ 40/4.U + 4802.0	± 2090 + 2700	+ 14/0.7 + 1/22 2	+ 5558 0	+ 3070	+ 1687.8
+ 4072.0	+ 2710	+ 1492.2	+ 5576.0	+ 3080	+ 1693 3
+4910.0 +4028.0	+ 2720	+ 1403.3	+ 5594.0	+ 3090	+1698.9
+4926.0 +4946.0	+2720 +2730	+ 1498.0	+5612.0	+3100	+1704.4
F 4940.0	+ 2130	⊤ 1490.9	- 5012.0	1 5100	11/04.4

TABLE 4.5 Temperature Conversion (Continued)

Alcoholometer. This hydrometer is used in determining the density of aqueous ethyl alcohol solutions; the reading in degrees is numerically the same as the percentage of alcohol by volume. The scale known as Tralle gives the percentage by volume. Wine and Must hydrometer relations are given below.

Ammoniameter. This hydrometer, employed in finding the density of aqueous ammonia solutions, has a scale graduated in equal divisions from 0° to 40° . To convert the reading to specific gravity multiply by 3 and subtract the resulting number from 1000.

Balling Hydrometer. See under Saccharometers.

Barkometer or Barktrometer. This hydrometer, which is used in determining the density of tanning liquors, has a scale from 0° to 80° Bk; the number to the right of the decimal point of a specific gravity reading is the corresponding Bk degree; thus, a specific gravity of 1.015 is 15° Bk.

Baumé Hydrometers. For liquids heavier than water: This hydrometer was originally based on the density of a 10% sodium chloride solution, which was given the value of 10° , and the density of pure water, which was given the value of 0° ; the interval between these two values was divided into ten equal parts. Other reference points have been taken with the result that so much confusion exists that there are about 36 different scales in use, many of which are incorrect. In general a Baumé hydrometer should have inscribed on it the temperature at which it was calibrated and also the temperature of the water used in relating the density to a specific gravity. The following expression gives the relation between the specific gravity and several of the Baumé scales:

Specific gravity =
$$\frac{m}{m - \text{Baumé}}$$

m = 145 at 60°/60°F (15.56°C) for the American Scale = 144 for the old scale used in Holland

= 146.3 at 15° C for the Gerlach Scale

= 144.3 at 15°C for the Rational Scale generally used in Germany

For liquids lighter than water: Originally the density of a solution of 1 gram of sodium chloride in 9 grams of water at 12.5°C was given a value of 10°Bé. The scale between these points was divided into ten equal parts and these divisions were repeated throughout the scale giving a relation which could be expressed by the formula: Specific gravity = 145.88/(135.88 + Bé), which is approximately equal to 146/(136 + Bé). Other scales have since come into more general use such as that of the Bureau of Standards in which the specific gravity at $60^{\circ}/60^{\circ}F = 140/(130 + Bé)$ and that of the American Petroleum Institute (A.P.I. Scale) in which the specific gravity at $60^{\circ}/60^{\circ}F = 141.5/(131.5 + API^{\circ})$.

See also special table for conversion to density and Twaddell scale.

Beck's Hydrometer. This hydrometer is graduated to show a reading of 0° in pure water and a reading of 30° in a solution with a specific gravity of 0.850, with equal scale divisions above and below these two points.

Brix Hydrometer. See under Saccharometers.

Cartier's Hydrometer. This hydrometer shows a reading of 22° when immersed in a solution having a density of 22° Baumé but the scale divisions are smaller than on the Baumé hydrometer in the ratio of 16 Cartier to 15 Baumé.

Fatty Oil Hydrometer. The graduations on this hydrometer are in specific gravity within the range 0.908 to 0.938. The letters on the scale correspond to the specific gravity of the various common oils as follows: *R*, rape; *O*, olive; *A*, almond; *S*, sesame; *HL*, hoof oil; *HP*, hemp; *C*, cotton seed; *L*, linseed. See also Oleometer below.

Lactometers. These hydrometers are used in determining the density of milk. The various scales in common use are the following:

New York Board of Health has a scale graduated into 120 equal parts, 0° being equal to the specific gravity of water and 100° being equal to a specific gravity of 1.029.

Quevenne lactometer is graduated from 15° to 40° corresponding to specific gravities from 1.015 to 1.040.

Soxhlet lactometer has a scale from 25° to 35° corresponding to specific gravities from 1.025 to 1.035 respectively.

Oleometer. A hydrometer for determining the density of vegetable and sperm oils with a scale from 50° to 0° corresponding to specific gravities from 0.870 to 0.970. See also Fatty Oil Hydrometer above.

Saccharometers. These hydrometers are used in determining the density of sugar solutions. Solutions of the same concentration but of different carbohydrates have very nearly the same specific gravity and in general a concentration of 10 grams of carbohydrate per 100 mL of solution shows a specific gravity of 1.0386. Thus, the wt. of sugar in 1000 mL soln. is (a) for conc. <12g/100 mL: (wt. of 1000 mL soln. – 1000) \div 0.386; (b) for conc. >12g/100mL: (wt of 1000 mL soln. – 1000) \div 0.385.

Brix hydrometer is graduated so that the number of degrees is identical with the percentage by weight of cane sugar and is used at the temperature indicated on the hydrometer.

Balling's saccharometer is used in Europe and is practically identical with the Brix hydrometer.

Bates brewers' saccharometer which is used in determining the density of malt worts is graduated so that the divisions express pounds per barrel (32 gallons). The relation between degrees Bates (= b) and degrees Balling (= B) is shown by the following formula: B = 260b/(360 + b).

See also below under Wine and Must Hydrometer.

Salinometer. This hydrometer, which is used in the pickling and meat packing plants, is graduated to show percentage of saturation of a sodium chloride solution. An aqueous solution is completely saturated when it contains 26.4% pure sodium chloride. The range from 0% to 26.4% is divided into 100 parts, each division therefore representing 1% of saturation. In another type of salinometer, the degrees correspond to percentages of sodium chloride expressed in grams of sodium chloride per 100 mL of water.

Sprayometer (Parrot and Stewart). This hydrometer which is used in determining the density of *lime sulfur* solutions has two scales; one scale is graduated from 0° to 38° Baumé and the other scale is from 1.000 to 1.350 specific gravity.

Tralle Hydrometer. See Alcoholometer above.

Twaddell Hydrometer. This hydrometer, which is used only for liquids heavier than water, has a scale such that when the reading is multiplied by 5 and added to 1000 the resulting number is the specific gravity with reference to water as 1000. To convert specific gravity at $60^{\circ}/60^{\circ}$ F to Twaddell degrees, take the decimal portion of the specific gravity value and multiply it by 200; thus a specific gravity of $1.032 = 0.032 \times 200 = 6.4^{\circ}$ Tw. See also special table for conversion to density and Baumé scale.

Wine and Must Hydrometer. This instrument has three scales. One scale shows readings of 0° to 15° Brix for sugar (see Brix Hydrometer above); another scale from 0° to 15° Tralle is used for sweet wines to indicate the percentage of alcohol by volume; and a third scale from 0° to 20° Tralle is used for tart wines to indicate the percentage of alcohol by volume.

Conversion of Specific Gravity at $25^{\circ}/25^{\circ}C$ to Density at any Temperature from 0° to $40^{\circ}C.*$ Liquids change volume with change in temperature, but the amount of this change, β (coefficient of cubical expansion), varies widely with different liquids, and to some extent for the same liquid at different temperatures.

The table below, which is calculated from the relationship:

$$F_{\beta t} = \frac{\text{density of water at } 25^{\circ}\text{C} (= 0.99705)}{1 - \beta(25 - t)}$$

may be used to find d^t , the density (weight of 1 mL) of a liquid at any temperature (*t*) between 0° and 40°C if the specific gravity at 25°/25°C (*S*) and the coefficient of cubical expansion (β) are known. Substitutions are made in the equations:

$$d^t = SF_{\beta_t} \tag{4.2}$$

$$S = \frac{d'}{F_{\beta_l}} \tag{4.3}$$

Factors $(F\beta_t)$ Density $t^\circ C = sp. gr. 25^\circ/25^\circ \times F_{\beta_t}$

°C. * $\beta \times 10^3$	0	5	10	15	20	25	30	35	40
1.3	1.0306	1.0237	1.0169	1.0102	1.0036	0.99705	0.99065	0.9843	0.9780
1.2	1.0279	1.0216	1.0154	1.0092	1.0031	0.99705	0.9911	0.9853	0.9794
1.1	1.0253	1.0195	1.0138	1.0082	1.0026	0.99705	0.9916	0.9963	0.9809
1.0	1.0227	1.0174	1.0123	1.0072	1.0021	0.99705	0.9921	0.9872	0.98234
0.9	1.0200	1.0153	1.0107	1.0060	1.0016	0.99705	0.99262	0.9882	0.9838
0.8	1.0174	1.0133	1.0092	1.0051	1.0011	0.99705	0.9931	0.98918	0.9851
0.7	1.0148	1.0113	1.0077	1.0041	1.0006	0.99705	0.9935	0.99015	0.98672
0.6	1.0122	1.0092	1.0061	1.0031	1.0001	0.99705	0.9941	0.9911	0.9882
0.5	1.0097	1.0072	1.0046	1.0021	0.99958	0.99705	0.9944	0.9921	0.9897
0.	1.0071	1.0051	1.0031	1.0011	0.99908	0.99705	0.9951	0.9931	0.9911

 $^*\beta$ = coefficient of cubical expansion.

^{*}Cf. Dreisbach, Ind., Eng. Chem., Anal. Ed. 12:160 (1940).

Examples. All examples are based upon an assumed coefficient of cubical expansion, β , of 1.3×10^{-3} .

Example 1. To find the density of a liquid at 20°C, d^{20} , which has a specific gravity (S) of $1.2500\frac{25}{25}$:

From the table above F_{β_t} at 20°C = 1.0036.

$$d^{20} = d^t = SF_{\beta_t} = 1.2500 \times 1.0036 = 1.2545$$

Example 2. To find the density at 20°C (d^{20}) of a liquid which has a specific gravity of $1.2500\frac{17}{4}$. Since the density of water at 4°C is equal to 1, specific gravity at $17^{\circ}/4^{\circ} = d^{17} = 1.2500$. Substitution in Equation 3 with F_{β_t} at 17°C, by interpolation from the table, equal to 1.00756, gives

Sp. gr.
$$25^{\circ}/25^{\circ} = S = 1.2500 \div 1.00756$$

Substitution of this value for S in Equation 2 with F_{β_i} at 20°C, from the table, equal to 1.0036, gives

$$d^{20} = d^t = (1.2500 \div 1.00756) \times 1.0036 = 1.2451$$

Example 3. To find the specific gravity at $20^{\circ}/4^{\circ}$ C of a liquid which has a specific gravity of $1.2500\frac{25}{4}$:

Since the density of water at 4°C is equal to 1, specific gravity $25^{\circ}/4^{\circ} = d^{25} = 1.2500$; and, specific gravity $20^{\circ}/4^{\circ} = d^{20}$.

Substitution in Equation 3, with $d^t = 1.2500$; and, with F_{β_t} at 25°C, from the table, equal to 0.99705, gives

Sp. gr.
$$25^{\circ}/25^{\circ} = S = 1.2500 \div 0.99705$$

Substitution of this value for S in Equation 2, with $F_{\beta t}$ at 20°C, from the table, equal to 1.0036, gives

Sp. gr.
$$20^{\circ}/4^{\circ} = d^{20} = (1.2500 \div 0.99705) \times 1.0036 = 1.2582$$

Example 4. To find the density at 25°C of a liquid which has a specific gravity of $1.2500\frac{15}{15}$: Since the density of water at $15^{\circ}C = 0.99910$,

$$d^{15} = \text{sp. gr. } 15^{\circ}/15^{\circ} \times 0.99910 = 1.2500 \times 0.99910$$

Substitution in Equation 3, with F_{β_t} at 15°C, from the table, equal to 1.0102, gives

Sp. gr.
$$25^{\circ}/25^{\circ} = S = (1.2500 \times 0.99910) \div 1.0102$$

Substitution of this value for S in Equation 2, with F_{β_t} at 25°, from the table, equal to 0.99705, gives

$$d^{26} = d^{t} = (1.2500 \times 0.99910 \div 1.0102) \times 0.99705 = 1.2326$$

TABLE 4.6 Hydrometer Conversion

Density	Degrees Baumé (NIST* scale)	Degrees Baumé (A.P.I. †scale)		Density	Degrees Baumé (NIST* scale)	Degrees Baumé (A.P.I. †scale)
0.600	103 33	10/ 33		0.825	39.70	40.02
0.000	105.55	107.38		0.830	38.68	38.98
0.003	00.51	102.38		0.835	37.66	37.96
0.010	99.51	100.47		0.835	36.67	36.95
0.013	97.04	90.30		0.845	35.68	35.95
0.620	95.81	90.75		0.045	55.08	55.90
0.625	94.00	94.90		0.850	34.71	34.97
0.630	92.22	93.10		0.855	33.74	34.00
0.635	90.47	91.33		0.860	32.79	33.03
0.640	88.75	89.59		0.865	31.85	32.08
0.645	87.05	87.88		0.870	30.92	31.14
0.650	85.38	86.19		0.875	30.00	30.21
0.655	83.74	84.53		0.880	29.09	29.30
0.660	82.12	82.89		0.885	28.19	28.39
0.665	80.52	81.28		0.890	27.30	27.49
0.670	78.95	79.69		0 895	26.42	26.60
0.675	77 /1	78 13		0.900	25.56	25.00
0.075	77.41	76.13		0.905	25.50	24.85
0.685	73.88	70.39		0.910	23.85	23.99
0.085	74.38	73.07		0.915	23.05	23.14
0.090	72.90	73.37		0.010	23.01	23.14
0.095	71.45	72.10		0.920	22.17	22.30
0.700	70.00	70.64		0.925	21.35	21.47
0.705	68.57	69.21		0.930	20.54	20.65
0.710	67.18	67.80		0.935	19.73	19.84
0.715	65.80	66.40		0.940	18.94	19.03
0.720	64.44	65.03		0.945	18.15	18.24
0.725	63.10	63.67		0.950	17.37	17.45
0.730	61.78	62.34	1	0.955	16.60	16.67
0.735	60.48	61.02		0.960	15.83	15.90
0.740	59.19	59.72		0.965	15.08	15.13
0.745	57.92	58.43		0.970	14.33	14 38
0.750	56.67	57 17		0.975	13 59	13 63
0.755	55 43	55.92		0.980	12.86	12.89
0.760	54 21	54 68		0.985	12.13	12.15
0.765	53.01	53 47		0.990	11.41	11.43
0.705	51.82	52.77		0.005	10.70	10.71
0.770	51.62	52.27		0.995	10.70	10.71
0.775	50.65	51.08		1.000	10.00	10.00
0.780	49.49	49.91	[~	•••		
0.785	48.34	48.75		DENS	TIES GREATER 7	HAN UNITY
0.790	47.22	47.61				
0.795	46.10	46.49			Degrees Baumé	Degrees Baumé
0.800	45.00	45.38		Density	(NIST* scale)	(A.P.I. †scale)
0.805	43.91	44.28		1.00	0.00	
0.810	42.84	43.19		1.00	1 44	2
0.815	41.78	42.12		1.01	1.44 7 01	۲ ۲
0.820	40.73	41.06	L	1.02	2.04	4

This table gives the relation between density (c.g.s.) and degrees on the Baumé and Twaddell scales. The Twaddell scale is never used for densities less than unity. See also Sec. 2.1.2.1, Hydrometers.

* NIST, National Institute for Science and Technology (formerly the National Bureau of Standards, U.S.).

† A.P.I is the American Petroleum Institute.

	Dograda Doumá	Dagmaga Baumá	1		Dagraas Baumá	Deemaas Baum
Donaitre	(NIST* socia)	(A DL tasala)		Dansity	(NIST* socia)	(A DL #agala)
Density	(INIST* scale)	(A.P.I. (scale)		Density	(INIS I * scale)	(A.P.I. scale
1.03	4.22	6		1.52	49.60	104
1.04	5,58	8		1.53	50.23	106
1.05	6.91	10		1.54	50.84	108
1.06	8 21	12		1.55	51.45	110
1.00	9.49	14		1.55	52.05	112
1.07	10.79	14		1.50	52.65	114
1.08	10.78	10		1.57	52.04	114
1.09	11.97	18		1.58	53.23	110
1.10	13.18	20		1.59	53.80	118
1.11	14.37	22		1.60	54.38	120
1.12	15.54	24		1.61	54.94	122
1.13	16.68	26		1.62	55.49	124
1.14	17.81	28		1.63	56.04	126
1.15	18.91	30		1.64	56.58	128
1.16	20.00	32		1.65	57.12	130
1.17	21.07	34		1.66	57.65	132
1.18	22.12	36		1.67	58.17	134
1.19	23 15	38		1.68	58 69	136
1.20	23.13	40		1.60	59.20	138
1.20	25.16	40		1.09	59.20	130
1.21	25.10	42		1.70	59.71 60.20	140
1.22	20.15			1.71	60.20	1-+2
1.23	27.11	46		1.72	60.70	144
1.24	28.06	48		1.73	61.18	146
1.25	29.00	50		1.74	61.67	148
1.26	29.92	52		1.75	62.14	150
1.27	30.83	54		1.76	62.61	152
1.28	31.72	56		1.77	63.08	154
1.29	32.60	58		1.78	63.54	156
1.30	33.46	60		1.79	63.99	158
1.31	34.31	62		1.80	64.44	160
1.32	35.15	64		1.81	64.89	162
1 33	35.98	66		1.82	65 31	164
1.33	36.79	68		1.83	65.77	166
1 35	37 50	70		1.05	66.20	169
1.35	20 20	70		1.04	66 67	170
1.30	30.30	74		1.05	67.04	170
1.57	57.10	/**		1.00	07.04	172
1.38	39.93	76		1.87	67.46	174
1.39	40.68	78		1.88	67.87	176
1.40	41.43	80		1.89	68.28	178
1.41	42.16	82		1.90	68.68	180
1.42	42.89	84		1.91	69.08	182
1.43	43.60	86		1.92	69.48	184
1.44	44.31	88		1.93	69.87	186
1.45	45.00	90		1.94	70.26	188
1.46	45.68	92		1.95	70.64	190
1.47	46.36	94		1.96	71.02	192
1 /19	47.03	06		1.07	71.40	104
1.40	47.03	90		1.97	71.40	194
1.49	47.08	98		1.98	/1.//	190
1.50	48.55	100		1.99	12.14	198
1.51	48.97	102		2.00	72.50	200

TABLE 4.6 Hydrometer Conversion (*Continued*)

* NIST, National Institute for Science and Technology (formerly the National Bureau of Standards, U.S.).

4.5 BAROMETRY AND BAROMETRIC CORRECTIONS

In principle, the mercurial barometer balances a column of pure mercury against the weight of the atmosphere. The height of the column above the level of the mercury in the reservoir can be measured and serves as a direct index of atmospheric pressure. The space above the mercury in a barometer tube should be a Torricellian vacuum, perfect except for the practically negligible vapor pressure of mercury. The perfection of the vacuum is indicated by the sharpness of the click noted when the barometer tube is inclined. A barometer should be in a vertical position, suspended rather than fastened to a wall, and in a good light but not exposed to direct sunlight or too near a source of heat. The standard conditions for barometric measurements are 0°C and gravity as at 45° latitude and sea level. There are numerous sources of error, but corrections for most of these are readily applied. Some of the corrections are very small, and their application may be questionable in view of the probably larger errors. The degree of consistency to be expected in careful measurements is about 0.13 mm with a 6.4-mm tube, increasing to 0.04 mm with a tube 12.7 mm in diameter.

In reading a barometer of the Fortin type (the usual laboratory instrument for precision measurements), the procedure should be as follows: (1) Observe and record the temperature as indicated by the thermometer attached to the barometer. The temperature correction is very important and may be affected by heat from the observer's body. (2) Set the mercury in the reservoir at zero level, so that the point of the pin above the mercury just touches the surface, making a barely noticeable dimple therein. Tap the tube at the top and verify the zero setting. (3) Bring the vernier down until the view at the light background is cut off at the highest point of the meniscus. Record the reading.

The corrections to be made on the reading are as follows: (1) Temperature, to correct for the difference in thermal expansion of the mercury and the brass (or glass) to which the scale is attached. This correction converts the reading into the value of 0°C. The brass scale table is applicable to the Fortin barometer. See Tables 4.8 (latitude-gravity correction), and Tables 4.9 (altitude-gravity correction), to compensate for differences in gravity, which would affect the height of the mercury column by variation in mass. If local gravity is unknown, an approximate correction may be made from the tables. Local values of gravity are often subject to irregularities which lead to errors even when the corrections here provided are made. It is, therefore, advisable to determine the local value of gravity, from which the correction can be effected in the following manner:

$$Bt = Br + \left(\frac{g_1 - g_0}{g_0}\right) \times Br$$

in which *Bt* and *Br* are the true and the observed heights of the barometer, respectively. g_0 is standard gravity (980 665 cm \cdot s⁻²), and g_1 is the local gravity. It may be noted that for most localities, g_1 is smaller than g_0 , which makes the correction negative. These corrections compensate the reading to gravity at 45° latitude and sea level. (3) Correction for capillary depression of the level of the meniscus. This varies with the tube diameter and actual height of the meniscus in a particular case. Some barometers are calibrated to allow for an average value of the latter and approximating the correction. See table. (4) Correction for vapor pressure of mercury. This correction is usually negligible, being only 0.001 mm at 20°C and 0.006 mm at 40°C. This correction is added. See table of vapor pressure of mercury.

The corrections above do not apply to aneroid barometers. These instruments should be calibrated at regular intervals by checking them against a corrected mercurial barometer.

For records on weather maps, meteorologists customarily correct barometer readings to sea level, and some barometers may be calibrated accordingly. Such instruments are not suitable for laboratory use where true pressure under standard conditions is required. Scale corrections should be specified in the maker's instructions with the instrument, and are also indicated by the lack of correspondence between a gauge mark usually placed exactly 76.2 cm from the zero point and the 76.2-cm scale graduation.

TABLE 4.7 Barometer Temperature Correction—Metric Units

The values in the table below are to be subtracted from the observed readings to correct for the difference in the expansion of the mercury and the glass scale at different temperatures.

A. Glass scale									
			Observed bar	ometer height	in millimeters				
	700	730	740	750	760	770	800		
°C.	mm.	<u>mm.</u>	<u>mm.</u>	mm.	mm.	<u>mm.</u>	mm.		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
1	0.12	0.13	0.13	0.13	0.13	0.13	0.14		
2	0.24	0.25	0.26	0.26	0.26	0.27	0.27		
3	0.36	0.38	0.38	0.39	0.40	0.40	0.42		
4	0.49	0.51	0.51	0.52	0.53	0.53	0.55		
5	0.61	0.63	0.64	0.65	0.66	0.67	0.69		
6	0.73	0.76	0.77	0.78	0.79	0.80	0.83		
7	0.85	0.89	0.90	0.91	0.92	0.93	0.97		
8	0.97	1.01	1.03	1.04	1.05	1.07	1.11		
9	1.09	1.14	1.15	1.17	1.18	1.20	1.25		
10	1.21	1.26	1.28	1.30	1.32	1.33	1.39		
11	1.33	1.39	1.41	1.43	1.45	1.47	1.52		
12	1.45	1.52	1.54	1.56	1.58	1.60	1.66		
13	1.58	1.64	1.67	1.69	1.71	1.73	1.80		
14	1.70	1.77	1.79	1.82	1.84	1.87	1.94		
15	1.82	1.90	1.92	1.95	1.97	2.00	2.08		
16	1.94	2.02	2.05	2.08	2.10	2.13	2.21		
17	2.06	2.15	2.18	2.21	2.23	2.26	2.35		
18	2.18	2.27	2.30	2.33	2.37	2.40	2.49		
19	2.30	2.40	2.43	2.46	2.50	2.53	2.63		
20	2.42	2.52	2.56	2.59	2.63	2.66	2.77		
21	2.54	2.65	2.69	2.72	2.76	2.79	2.90		
22	2.66	2.78	2.81	2.85	2.89	2.93	3.04		
23	2.78	2.90	2.94	2.98	3.02	3.06	3.18		
24	2.90	3.03	3.07	3.11	3.15	3.19	3.32		
25	3.02	3.15	3.20	3.24	3.28	3.32	3.45		
26	3.14	3.28	3.32	3.37	3.41	3.46	3.59		
27	3.26	3.40	3.45	3.50	3.54	3.59	3.73		
28	3.38	3.53	3.58	3.63	3.67	3.72	3.87		
29	3.50	3.65	3.70	3.75	3.80	3.85	4.00		
30	3.62	3.78	3.83	3.88	3.93	3.99	4.14		
31	3.74	3.90	3.96	4.01	4.06	4.12	4.28		
32	3.86	4.03	4.08	4.14	4.20	4.25	4.42		
33	3.98	4.15	4.21	4.27	4.33	4.38	4.55		
34	4.10	4.28	4.34	4.40	4.46	4.51	4.69		
35	4.22	4.40	4.47	4.53	4.59	4.65	4.83		

TABLE 4.7 Barometer Temperature Correction—Metric Units (Continued)

B. Brass scale Observed barometer height in millimeters 640 650 690 700 660 670 680 Temp. °C. mm. mm. mm. mm. mm. mm. mm. 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.10 0.11 0.11 0.11 0.11 0.11 0.11 2 0.21 0.21 0.22 0.22 0.22 0.23 0.23 3 0.31 0.32 0.32 0.33 0.33 0.34 0.34 4 0.42 0.42 0.43 0.44 0.44 0.45 0.46 5 0.52 0.53 0.54 0.55 0.55 0.56 0.57 6 0.63 0.64 0.65 0.66 0.66 0.67 0.68 7 0.79 0.73 0.74 0.75 0.76 0.78 0.80 8 0.84 0.85 0.86 0.87 0.89 0.90 0.91 9 0.94 0.95 0.97 0.98 1.00 1.03 1.01 10 1.04 1.06 1.07 1.09 1.11 1.12 1.14 11 1.15 1.16 1.18 1.20 1.22 1.24 1.25 12 1.25 1.27 1.29 1.31 1.33 1.35 1.37 13 1.35 1.38 1.40 1.42 1.44 1.46 1.48 14 1.46 1.48 1.50 1.53 1.55 1.57 1.59 15 1.56 1.59 1.61 1.64 1.66 1.68 1.71 16 1.67 1.69 1.72 1.74 1.77 1.80 1.82 17 1.77 1.80 1.82 1.85 1.88 1.91 1.94 18 1.87 1.90 1.93 1.96 1.99 2.02 2.05 19 1.98 2.01 2.04 2.07 2.10 2.16 2.13 20 2.08 2.11 2.15 2.18 2.21 2.24 2.28 21 2.18 2.22 2.25 2.29 2.32 2.35 2.39 22 2.29 2.32 2.36 2.40 2.43 2.47 2.50 23 2.39 2.50 2.54 2.58 2.43 2.47 2.62 24 2.49 2.53 2.57 2.61 2.65 2.69 2.73 25 2.60 2.64 2.68 2.72 2.76 2.80 2.84 2.79 26 2.70 2.74 2.83 2.87 2.91 2.96 27 2.81 2.85 2.89 2.94 2.98 3.02 3.07 28 2.91 2.95 3.00 3.05 3.09 3.14 3.18 29 3.01 3.15 3.20 3.25 3.29 3.06 3.11 30 3.12 3.16 3.21 3.26 3.31 3.36 3.41 31 3.22 3.27 3.32 3.37 3.42 3.47 3.52 32 3.32 3.37 3.43 3.48 3.53 3.58 3.63 33 3.42 3.48 3.53 3.59 3.64 3.69 3.75 3.53 3.58 3.75 3.80 34 3.64 3.69 3.86 35 3.63 3.69 3.74 3.80 3.86 3.91 3.97

The values in the table below are to be subtracted from the observed readings to correct for the difference in the expansion of the mercury and the glass scale at different temperatures.

B. Brass scale (continued)										
		Observe	d barometer	height in mi	llimeters					
710	720	730	740	750	760	770	780	**		
mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	°C.		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0		
0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	1		
0.23	0.23	0.24	0.24	0.24	0.25	0.25	0.25	2		
0.35	0.35	0.36	0.36	0.37	0.37	0.38	0.38	3		
0.46	0.47	0.48	0.48	0.49	0.50	0.50	0.51	4		
0.58	0.59	0.59	0.60	0.61	0.62	0.63	0.64	5		
0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	6		
0.81	0.82	0.83	0.84	0.86	0.87	0.88	0.89	7		
0.93	0.94	0.95	0.96	0.98	0.99	1.00	1.02	8		
1.04	1.06	1.07	1.08	1.10	1.11	1.13	1.14	9		
1.16	1.17	1.19	1.21	1.22	1.24	1.25	1.27	10		
1.27	1.29	1.31	1.33	1.34	1.36	1.38	1.40	11		
1.39	1.41	1.43	1.45	1.47	1.48	1.50	1.52	12		
1.50	1.52	1.54	1.57	1.59	1.61	1.63	1.65	13		
1.62	1.64	1.66	1.69	1.71	1.73	1.75	1.78	14		
1.73	1.76	1.78	1.81	1.83	1.85	1.88	1.90	15		
1.85	1.87	1.90	1.93	1.95	1.98	2.00	2.03	16		
1.96	1.99	2.02	2.05	2.07	2.10	2.13	2.16	17		
2.08	2.11	2.14	2.17	2.20	2.22	2.25	2.28	18		
2.19	2.22	2.25	2.29	2.32	2.35	2.38	2.41	19		
2.31	2.34	2.37	2.41	2.44	2.47	2.50	2.54	20		
2.42	2.46	2.49	2.53	2.56	2.59	2.63	2.66	21		
2.54	2.57	2.61	2.65	2.68	2.72	2.75	2.79	22		
2.65	2.69	2.73	2.77	2.80	2.84	2.88	2.91	23		
2.77	2.81	2.85	2.88	2.92	2.96	3.00	3.04	24		
2.88	2.92	2.96	3.00	3.05	3.09	3.13	3.17	25		
3.00	3.04	3.08	3.12	3.17	3.21	3.25	3.29	26		
3.11	3.16	3.20	3.24	3.29	3.33	3.38	3.42	27		
3.23	3.27	3.32	3.36	3.41	3.45	3.50	3,54	28		
3.34	3.39	3.44	3.48	3.53	3.58	3.62	3.67	29		
3.46	3.50	3.55	3.60	3.65	3.70	3.75	3.80	30		
3.57	3.62	3.67	3.72	3.77	3.82	3.87	3.92	31		
3.68	3.74	3.79	3.84	3.89	3.94	4.00	4.05	32		
3.80	3.85	3.91	3.96	4.01	4.07	4.12	4.17	33		
3.91	3.97	4.02	4.08	4.13	4.19	4.24	4.30	34		
4 03	4.09	4.14	4.20	4.26	4.31	4.37	4.43	35		

TABLE 4.7 Barometer Temperature Correction—Metric Units (Continued)

	C. Cor	rection of a	barometer	for capilla	rity (Smith	sonian Tabl	es)				
Height of meniscus in millimeters											
Diameter	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
of tube, millimeters	Correction to be added in millimeters										
4	0.83	1.22	1.54	1.98	2.37						
5	0.47	0.65	0.86	1.19	1.45	1.80					
6	0.27	0.41	0.56	0.78	0.98	1.21	1.43				
7	0.18	0.28	0.40	0.53	0.67	0.82	0.97	1.13			
8		0.20	0.29	0.38	0.46	0.56	0.65	0.77			
9		0.15	0.21	0.28	0.33	0.40	0.46	0.52			
10			0.15	0.20	0.25	0.29	0.33	0.37			
11			0.10	0.14	0.18	0.21	0.24	0.27			
12			0.07	0.10	0.13	0.15	0.18	0.19			
13			0.04	0.07	0.10	0.12	0.13	0.14			

TABLE 4.7 Barometer Temperature Correction—Metric Units (Continued)

TABLE 4.8 Barometric Latitude-Gravity—Metric Units

The values in the table below are to be subtracted from the barometric reading for latitudes from 0 to 45° inclusive, and are to be added from 46 to 90° .

			Barometer readi	ngs, millimeters		
Dec	680	700	720	740	760	780
Lat.	mm.	mm.	mm.	mm.	mm.	mm.
0	1.82	1.87	1.93	1.98	2.04	2.09
5	1.79	1.85	1.90	1.95	2.00	2.06
10	1.71	1.76	1.81	1.86	1.92	1.97
15	1.58	1.63	1.67	1.72	1.77	1.81
20	1.40	1.44	1.49	1.53	1.57	1.61
21	1.36	1.40	1.44	1.48	1.52	1.56
22	1.32	1.36	1.40	1.44	1.48	1.51
23	1.28	1.31	1.35	1.39	1.43	1.46
24	1.23	1.27	1.30	1.34	1.37	1.41
25	1.18	1.22	1.25	1.29	1.32	1.36
26	1.13	1.17	1.20	1.23	1.27	1.30
27	1.08	1.12	1.15	1.18	1.21	1.24
28	1.03	1.06	1.09	1.12	1.15	1.18
29	0.98	1.01	1.04	1.07	1.10	1.12
30	0.93	0.95	0.98	1.01	1.04	1.06
31	0.87	0.90	0.92	0.95	0.98	1.00
32	0.82	0.84	0.86	0.89	0.91	0.94
33	0.76	0.78	0.80	0.83	0.85	0.87
34	0.70	0.72	0.74	0.76	0.79	0.81
35	0.64	0.66	0.68	0.70	0.72	0.74
36	0.58	0.60	0.62	0.64	0.65	0.67
37	0.52	0.54	0.56	0.57	0.59	0.60
38	0.46	0.48	0.49	0.51	0.52	0.53

		Barometer readings, millimeters										
D	680	700	720	740	760	780						
Deg. Lat.	mm.	mm.	mm.	mm.	mm.	mm.						
30	0.40	0.42	0.43	0.44	0.45	0.46						
40	0.34	0.35	0.36	0.37	0.38	0.39						
41	0.28	0.20	0.30	0.30	0.31	0.32						
41	0.28	0.23	0.30	0.30	0.31	0.52						
43	0.16	0.16	0.16	0.17	0.17	0.18						
44	0.09	0.10	0.10	0.10	0.10	0.11						
45	0.03	0.03	0.03	0.03	0.03	0.04						
46	0.03	0.03	0.03	0.03	0.04	0.04						
47	0.09	0.10	0.10	0.10	0.10	0.11						
48	0.16	0.16	0.17	0.17	0.18	0.18						
49	0.22	0.23	0.23	0.24	0.25	0.25						
50	0.28	0.29	0.30	0.31	0.31	0.32						
51	0.34	0.35	0.36	0.37	0.38	0.39						
52	0.40	0.42	0.43	0.44	0.45	0.46						
53	0.46	0.48	0.49	0.51	0.52	0.53						
54	0.52	0.54	0.56	0.57	0.59	0.60						
55	0.58	0.60	0.62	0.64	0.65	0.67						
56	0.64	0.66	0.68	0.70	0.72	0.74						
57	0.70	0.72	0.74	0.76	0.78	0.80						
58	0.76	0.78	0.80	0.82	0.85	0.87						
59	0.81	0.84	0.86	0.89	0.91	0.93						
60	0.87	0.89	0.92	0.94	0.97	1.00						
61	0.92	0.95	0.98	1.00	1.03	1.06						
62	0.97	1.00	1.02	1.05	1.08	1.11						
63	1.03	1.06	1.09	1.12	1.15	1.18						
64	1.08	1.11	1.14	1.17	1.20	1.23						
65	1.13	1.16	1.19	1.22	1.26	1.29						
66	1.17	1.21	1.24	1.28	1.31	1.35						
67	1.22	1.25	1.29	1.33	1.36	1.40						
68	1.26	1.30	1.34	1.37	1.41	1.45						
69	1.31	1.34	1.38	1.42	1.46	1.50						
70	1.35	1.39	1.43	1.47	1.51	1.55						
72	1.42	1.47	1.51	1.55	1.59	1.63						
75	1.53	1.57	1.62	1.66	1.71	1.75						
80	1.66	1.71	1.76	1.81	1.86	1.90						
85	1.74	1.79	1.84	1.90	1.95	2.00						
90	1.77	1.82	1.87	1.93	1.98	2.03						

TABLE 4.8 Barometric Latitude-Graviy—Metric Units (Continued)

TABLE 4.9 Barometric Correction for Gravity—Metric Units

The values in Table 4.9 are to be subtracted from the readings taken on a mercurial barometer to correct for the decrease in gravity with increase in altitude.

above 400	450		Observed barometer height in millimeters											
acatevel	-150	500	550	600	650	700	750	800						
meters mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.						
100						0.02	0.02	0.02						
200						0.04	0.05	0.05						
300						0.07	0.07	0.07						
400						0.09	0.10	0.10						
500						0.11	0.12	0.13						
600					0.12	0.13	0.14							
700					0.14	0.15	0.16							
800					0.16	0.18	0.19							
900					0.18	0.20	0.22							
1000			0.18	0.19	0.20	0.22	0.24							
1100			0.19	0.21	0.22	0.24								
1200			0.21	0.23	0.24	0.26								
1300			0.22	0.24	0.26	0.29								
1400			0.24	0.26	0.28	0.31								
1500		0.24	0.26	0.28	0.30	0.33								
1600		0.25	0.28	0.30	0.32									
1700		0.27	0.30	0.32	0.34									
1800		0.28	0.31	0.34	0.36									
1900		0.30	0.33	0.36	0.39									
2000	0.28	0.31	0.34	0.38	0.41									
2100	0.30	0.33	0.36	0.40										
2200	0.31	0.35	0.38	0.41										
2300	0.32	0.36	0.40	0.43										
2400	0.34	0.38	0.42	0.45										
2500 0.31	0.35	0.39	0.43	0.47										
2600 0.33	0.37	0.41												
2800 0.35	0.40	0.44												
3000 0.38	0.42	0.47												
3200 0.40	0.46													
3400 0.43	0.48													

TABLE 4.10 Reduction of the Barometer to Sea Level-Metric Units

A barometer located at an elevation above sea level will show a reading lower than a barometer at sea level by an amount approximately 2.5 mm (0.1 in) for each 30.5 m (100 ft) of elevation. A closer approximation can be made by reference to the following tables, which take into account (1) the effect of altitude of the station at which the barometer is read, (2) the mean temperature of the air column extending from the station down to sea level, (3) the latitude of the station at which the barometer is read, and (4) the reading of the barometer corrected for its temperature, a correction which is applied only to mercurial barometers since the aneroid barometers are compensated for temperature effects.

Example. A barometer which has been corrected for its temperature reads 650 mm at a station whose altitude is 1350 m above sea level and at a latitude of 30° . The mean temperature (outdoor temperature) at the station is 20° C.

Table A (metric units) gives for these conditions a temperature-altitude factor of	135.2
The Latitude Factor Table gives for 135.2 at 30° lat. a correction of	+0.17
Therefore, the corrected value of the temperature-altitude factor is	135.37

Entering Table B (metric units), with a temperature-altitude factor of 135.37 and a barometric reading of 650 mm (corrected for temperature), the correction is found to be

Latitude Factor–English or Metric Units. For latitudes $0^{\circ}-45^{\circ}$ add the latitude factor, for $45^{\circ}-90^{\circ}$ subtract the latitude factor, from the values obtained in Table A.

Temp.—Alt.	Latitude										
Factor From Table A	0°	10°	20°	30°	45°						
50	0.1	0.1	0.1	0.1	0.0						
100	0.3	0.3	0.2	0.1	0.0						
150	0.4	0.4	0.3	0.2	0.0						
200	0.5	0.5	0.4	0.3	0.0						
250	0.7	0.6	0.5	0.3	0.0						
300	0.8	0.8	0.6	0.4	0.0						
350	0.9	0.9	0.7	0.5	0.0						
	90°	80°	70°	60°	45°						

A. Values of the temperature-altitude factor for use in Table B.*

Altitude			Mean T	Temperat	ure of Ai	r Colum	n in Cent	igrade D	egrees		
Meters	-16°	-8°	-4°	0°	6°	10°	14°	18°	20°	22°	26°
10	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0
50	5.8	5.6	5.5	5.4	5.3	5.2	5.1	5.0	5.0	5.0	4.9
100	11.5	11.2	11.0	10.8	10.6	10.4	10.3	10.1	10.0	9.9	9.8
150	17.3	16.7	16.5	16.2	15.9	15.6	15.4	15.1	15.0	14.9	14.7
200	23.0	22.3	22.0	21.6	21.1	20.8	20.5	20.2	20.0	19.9	19.6
250	28.8	27.9	27.5	27.0	26.4	26.0	25.6	25.2	25.0	24.9	24.5
300	34.5	33.5	33.0	32.5	31.7	31.2	30.7	30.3	30.1	29.8	29.4
350	40.3	39.0	38.5	37.9	37.0	36.4	35.9	35.3	35.1	34.8	34.3
400	46.0	44.6	43.9	43.3	42.3	41.6	41.0	40.4	40.1	39.8	39.2
450	51.8	51.3	49.4	48.7	47.6	46.8	46.1	45.4	45.1	44.8	44.1
500	57.5	55.8	54.9	54.1	52.9	52.0	51.2	50.5	50.1	49.7	49.0
550	63.3	61.4	60.4	59.5	58.1	57.2	56.4	55.5	55.1	54.7	53.9
600	69.0	66.9	65.9	64.9	63.4	62.4	61.5	60.6	60.1	59.7	58.8
650	74.8	72.5	71.4	70.3	68.7	67.6	66.6	65.6	65.1	64.6	63.7

Altitude			Mean	Femperat	ture of A	ir Colum	in in Cen	tigrade I	Degrees		
In Meters	-16°	-8°	-4°	0°	6°	10°	14°	18°	20°	22°	26°
700	80.6	78.1	76.9	75.7	74.0	72.9	71.7	70.7	70.1	69.6	68.6
750	86.3	83.7	82.4	81.1	79.3	78.1	76.9	75.7	75.1	74.6	73.5
800	92.1	89.2	87.9	86.5	84.6	83.3	82.0	80.8	80.1	79.6	78.4
850	97.8	94.8	93.4	92.0	89.8	88.5	87.1	85.8	85.2	84.5	83.3
900	103.6	100.4	98.9	97.4	95.1	93.7	92.2	90.8	90.2	89.5	88.2
950	109.3	106.0	104.4	102.8	100.4	98.9	97.4	95.9	95.2	94.5	93.1
1000	115.1	111.5	109.8	108.2	105.7	104.1	102.5	100.9	100.2	99.4	98.0
1050	120.8	117.1	115.3	113.6	111.0	109.3	107.6	106.0	105.2	104.4	102.9
1100	126.6	122.7	120.8	119.0	116.3	114.5	112.7	111.0	110.2	109.4	107.8
1150	132.3	128.3	126.3	124.4	121.6	119.7	117.9	116.1	115.2	114.4	112.7
1200	138.1	133.8	131.8	129.8	126.8	124.9	123.0	121.1	120.2	119.3	117.6
1250	143.8	139.4	137.3	135.2	132.1	130.1	128.1	126.2	125.2	124.3	122.5
1300	149.6	145.0	142.8	140.6	137.4	135.3	133.2	131.2	130.2	129.3	127.4
1350	155.3	150.6	148.3	146.0	142.7	140.5	138.4	136.3	135.2	134.2	132.3
1400	161.1	156.2	153.8	151.4	148.0	145.7	143.5	141.3	140.2	139.2	137.2
1450	166.8	161.7	159.3	156.8	153.3	150.9	148.6	146.4	145.3	144.2	142.1
1500	172.6	167.3	164.8	162.3	158.5	156.1	153.7	151.4	150.3	149.1	147.0
1550	178.3	172.9	170.2	167.7	163.8	161.3	158.8	156.4	155.3	154.1	151.8
1600	184.1	178.5	175.7	173.1	169.1	166.5	164.0	161.5	160.3	159.1	156.7
1650	189.8	184.0	181.2	178.5	174.4	171.7	169.1	166.5	165.3	164.1	161.6
1700	105.6	180.6	1867	183.0	170 7	176.0	174 2	171.6	170.3	160.0	166.5
1750	201.4	105.0	102.2	189.3	185.0	182.1	179.3	176.6	175.3	174.0	171 4
1800	207.1	200.8	197.7	194 7	190.2	187.3	184.5	1817	180.3	179.0	176.3
1850	212.9	206.3	203.2	200.1	195.5	192.5	189.6	186.7	185.3	183.0	181 2
1900	218.6	211.9	208.7	205.5	200.8	197.7	194.7	191.8	190.3	188.9	186.1
1050	224.4	217.5	214.2	210.0	206.1	202.0	100.9	106.9	105.2	102.0	101.0
2000	224.4	217.5	214.2	210.9	200.1	202.9	204.0	201.0	200.3	193.9	191.0
2000	230.1	223.0	219.7	210.5	211.4	200.1	204.9	201.9	200.5	202.0	200.8
2030	233.9	220.0	225.1	221.7	210.7	213.5	210.1	200.9	205.5	203.8	200.8
2150	241.0	234.2	236.1	227.1	221.3	218.5	210.2	211.9	210.4 215 A	208.8	205.7
2150	2477.4 050.1	2.57.0	250.1	202.0	227.2	225.7	220.5	217.0	215.4	215.0	210.0
2200	253.1	245.4	241.6	237.9	232.5	228.9	225.4	222.0	220.4	218.7	215.5
2250	238.9	230.9	247.1	243.4	237.8	234.1	230.0	227.1	225.4	223.7	220.4
2300	204.0	230.3	252.0	248.8	243.1	239.3	233.7	232.1	230.4	228.1	223.3
2330	270.4	202.1	258.1	259.6	240.5	244.5	240.8	237.2	255.4	233.0	230.2
2400	270.1	207.7	205.0	2.59.0	255.0	249.1	24.5	242.2	240.4	238.0	255.1
2450	281.9	273.2	269.1	265.0	258.9	254.9	251.0	247.3	245.4	243.6	240.0
2500	287.6	278.8	274.5	270.4	264.2	260.1	256.2	252.3	250.4	248.5	244.9
2550	293.4	284.4	280.0	275.8	269.5	265.3	261.3	257.3	255.4	253.5	249.8
2600	299.1	290.0	285.5	281.2	2/4.8	270.5	200.4	202.4	200.4	258.5	254.7
2000	304.9	293.3	291.0	280.0	280.0	213.1	2/1.5	207.4	205.4	203.4	239.0
2700	310.6	301.1	296.5	292.0	285.3	280.9	276.6	272.5	270.4	268.4	264.5
2750	316.4	306.7	302.0	297.4	290.6	286.1	281.8	277.5	275.4	273.4	269.4
2800	322.1	312.3	307.5	302.8	295.9	291.3	286.9	282.6	280.4	278.3	274.3
2850	327.9	317.8	313.0	308.2	301.2	296.5	292.0	287.6	285.4	283.3	279.2
2900	333.6	323.4	318.4	313.6	306.4	301.7	297.1	292.6	290.4	288.3	284.1
2950	339.4	329.0	323.9	319.0	311.7	306.9	302.2	297.7	295.5	293.3	289.0
3000	345.1	334.5	329.4	324.4	317.0	312.1	307.4	302.7	300.5	298.2	293.8

TABLE 4.10 Reduction of the Barometer to Sea Level—Metric Units (Continued)

* From Smithsonian Meteorological Tables, 3d ed., 1907.

TABLE 4.10 Reduction of the Barometer to Sea Level—Metric Units (Continued)

B. Values in millimeters to be added.*

Temp.			Barometer	Reading in M	fillimeters		
-Alt. Factor	790	770	750	730	710	690	670
1	0.9	0.9	0.9	0.8	0.8	0.8	
5	4.6	4.4	4.3	4.2	4.1	4.0	
10	9.1	8.9	8.7	8.5	8.2	8.0	
15	13.8	13.4	13.1	12.7	12.4	12.0	
20	18.4	17.9	17.5	17.0	16.5	16.1	
25		22.5	21.9	21.3	20.7	20.1	
30		27.1	26.4	25.7	25.0	24.2	
35		31.7	30.8	30.0	29.2	28.4	
40		36.3	35.3	34.4	33.5	32.5	31.6
45		- •	39.9	38.8	37.8	36.7	35.6
	750	730	710	690	670	650	630
50	44.4	43.3	42.1	40.9	39.7		
55	49.0	47.7	46.4	45.1	43.8		
60	53.6	52.2	50.8	49.3	47.9		
65	58.3	56.7	55.2	53.6	52.1		
70		61.3	59.6	57.9	56.2		
75		65.8	64.0	62.2	60.4		
80		70.4	68.5	66.6	64.6	62.7	60.8
85		75.0	73.0	70.9	68.9	66.8	64.8
90			77.5	75.3	73.1	71.0	68.8
95			82.1	79.7	77.4	75.1	72.8
	710	690	670	650	630	610	
100	86.6	84.2	81.8	79.3	76.9		
105	91.2	88.7	86.1	83.5	81.0		
110	95.9	93.2	90.5	87.8	85.1		
115	100.5	97.7	94.8	92.0	89.2		
120		102.2	99.3	96.3	93.3		
125		106.8	103.7	100.6	97.5	94.4	
130		111.4	108.2	104.9	101.7	98.5	
135		116.0	112.7	109.3	105.9	102.6	
140		120.7	117.2	113.7	110.2	106.7	
145			121.7	118.1	114.5	110.8	
	670	650	630	610	590	570	
150	126.3	122.5	118.8	115.0			
155	130.9	127.0	123.1	119.2			
160	135.5	131.5	127.4	123.4			
165	140.2	136.0	131.8	127.6			
170		140.5	136.2	131.9	127.5	123.2	
175		145.1	140.6	136.2	131.7	127.2	
180		149.7	145.1	140.5	135.9	131.3	
185		154.3	149.5	144.8	140.0	135.3	
190		158.9	154.0	149.2	144.3	139.4	
195			158.6	153.5	148.5	143.5	
					-		

*From Smithsonian Meteorological Tables, 3d ed., 1907.
TABLE 4.10	Reduction of the Barometer to Sea Level—Metric Units (Continued)	ļ
------------	--	------------	---

B. V	alues	in	millimeter	s to	be	added.*
------	-------	----	------------	------	----	---------

Temp.		Η	Barometer Readi	ng in Millimeter	s	
Factor	630	610	590	570	550	530
200	163.1	157.9	152.8	147.6		
205	167.7	162.4	157.1	151.7		
210	172.3	166.8	161.4	155.9		
215	176.9	171.3	165.7	160.1	154.5	148.9
220		175.8	170.1	164.3	158.5	152.8
225		180.4	174.5	168.5	162.6	156.7
230		184.9	178.9	172.8	166.7	160.7
235		189.5	183.3	177.1	170.9	164.7
240		194.1	187.8	181.4	175.0	168.7
245		198.8	192.3	185.7	179.2	172.7
	590	570	550	530	510	
250	196.8	190.1	183.4	176.8		
255	201.3	194.5	187.7	180.8		
260	205.9	198.9	191.9	185.0	178.0	
265	210.5	203.3	196.2	189.1	181.9	
270	215.1	207.8	200.5	193.2	185.9	
275	219.8	212.3	204.9	197.4	190.0	
280		216.8	209.2	201.6	194.0	
285		221.4	213.6	205.8	198.1	
290		225.9	218.0	210.1	202.1	
295		230.5	222.4	214.3	206.3	
	570	550	530	510	490	
300	235.1	226.9	218.6	210.4		
305	239.8	231.4	223.0	214.6	206.1	
310		235.9	227.3	218.7	210.1	
315		240.4	231.7	222.9	214.2	
320		245.0	236.1	227.2	218.3	
325		249.6	240.5	231.4	222.4	
330		254.2	244.9	235.7	226.5	
335		258.8	249.4	240.0	230.6	
340		263.5	253.9	244.4	234.8	
345			258.4	248.7	238.9	

*From Smithsonian Meteorological Tables, 3d ed., 1907.

psi	Inches H ₂ O at 4°C	Inches Hg at 0°C	mmH ₂ O at 4°C	mmHg at 0°C	atm	Pascals (N · m ⁻²)
0.01	0.2768	0.0204	7.031	0.517	0.0007	68.95
0.02	0.5536	0.0407	14.06	1.034	0.0014	137.90
0.03	0.8304	0.0611	21.09	1.551	0.0020	206.8
0.04	1.107	0.0814	28.12	2.068	0.0027	275.8
0.05	1.384	0.1018	35.15	2.586	0.0034	344.7
0.06	1.661	0.1222	42.18	3.103	0.0041	413.7
0.07	1.938	0.1425	49.22	3.620	0.0048	482.6
0.08	2.214	0.1629	56.25	4.137	0.0054	551.6
0.09	2.491	0.1832	63.28	4.654	0.0061	620.5
0.10	2.768	0.2036	70.31	5.171	0.0068	689.5
0.20	5.536	0.4072	140.6	10.34	0.0136	1 379.9
0.30	8.304	0.6108	210.9	15.51	0.0204	2 068.5
0.40	11.07	0.8144	281.2	20.68	0.0272	2 758
0.50	13.84	1.018	351.5	25.86	0.0340	3 447
0.60	16.61	1.222	421.8	31.03	0.0408	4 137
0.70	19.38	1.425	492.2	36.20	0.0476	4 826
0.80	22.14	1.629	562.5	41.37	0.0544	5 516
0.90	24.91	1.832	632.8	46.54	0.0612	6 205
1.00	27.68	2.036	703.1	51.71	0.0689	6 895
2.00	55.36	4.072	1 072	103.4	0.1361	13 790
3.00	83.04	6.108	2 109	155.1	0.2041	20 684
4.00	110.7	8.144	2 812	206.8	0.2722	27 579
5.00	138.4	10.18	3 515	258.6	0.3402	34 474
6.00	166.1	12.22	4 218	310.3	0.4083	41 369
7.00	193.8	14.25	4 922	362.0	0.4763	48 263
8.00	221.4	16.29	5 625	413.7	0.5444	55 158
9.00	249.1	18.32	6 328	465.4	0.6124	62 053
10.0	276.8	20.36	/ 031	517.1	0.6805	68 948
14./	406.9	29.93	10 332	/00.0	1.000	101 325
15.0	415.2	30.54	10 550	1/5./	1.021	103 421
20.0	553.0	40.72	14 060	1 034	1.361	137 895
25.0	092.0	50.90	17 580	1 293	1.701	1/2 309
30.0	830.4	01.08	21 090	1 331	2.041	200 843
40.0 50.0	1 107	01.44	26 120	2 008	2.722	213 190
50.0	1 504	101.0	33 130 42 180	2 102	3.402	544 750 112 685
70.0	1 029	142.2	42 180	3 620	4.005	413 083
20.0 20.0	2 214	142.5	49 220	3 020 A 137	4.703 5.444	462 035
00.0	2 214	183.2	63 280	4 157	6 124	620 528
100.0	2 768	203.6	70 307	5 171	6 805	689 476
150.0	4 152	205.0	10 507	7 757	10.21	1 034 214
200.0	5 536	407.2		10 343	13.61	1 378 951
250.0	6 920	509.0		10 545	17.01	1 723 689
300.0	8 304	610.8			20.41	2 068 427
400.0	0.004	010.0			27.72	2 757 903
500.0					34.02	3 447 379
200.0					54.04	J TT I J I J

TABLE 4.11 Pressure Conversion

1 bar = 10^5 pascal.

.

TABLE 4.12 Conversion of Weighings in Air to Weighings in Vacuo

If the mass of a substance in air is m_f , its density ρ_m , the density of weights used in making the weighing ρ_w , and the density of air ρ_a , the true mass of the substance in vacuo, m_{vac} , is

$$m_{\rm vac} = m_f + \rho_a m_f \left(\frac{1}{\rho_m} - \frac{1}{\rho_w}\right)$$

For most purposes it is sufficient to assume a density of 8.4 for brass weights, and a density of 0.0012 for air under ordinary conditions. The equation then becomes

$$m_{\rm vac} = m_f + 0.0012 m_f \left(\frac{1}{\rho_m} - \frac{1}{8.4} \right)$$

The table which follows gives the values of k (buoyancy reduction factor), which is the correction necessary because of the buoyant effect of the air upon the object weighed; the table is computed for air with the density of 0.0012; m is the weight in grams of the object when weighted in air; weight of object reduced to "in vacuo" = m + km/1000.

		Buoyancy reduc	tion factor, k	
Density of object weighed	Brass weights, density = 8.4	Pt or Pt-Ir weights, density $= 21.5$	Al or quartz weights, density = 2.7	Gold weights, density = 17
0.2	5.89	5.98	5.58	5.97
0.3	3.87	3.96	3.56	3.95
0.4	2.87	2.95	2.55	2.94
0.5	2.26	2.35	1.95	2.34
0.6	1.86	1.95	1.55	1.93
0.7	1.57	1.66	1.26	1.65
0.75	1.46	1.55	1.15	1.53
0.80	1.36	1.45	1.05	1.43
0.82	1.32	1.41	1.01	1.39
0.84	1.29	1.37	0.98	1.36
0.86	1.25	1.34	0.94	1.33
0.88	1.22	1.31	0.91	1.29
0.90	1.19	1.28	0.88	1.26
0.92	1.16	1.25	0.85	1.24
0.94	1.13	1.22	0.82	1.21
0.96	1.11	1.20	0.80	1.18
0.98	1.08	1.17	0.77	1.16
1.00	1.06	1.15	0.75	1.13
1.02	1.03	1.12	0.72	1.11
1.04	1.01	1.10	0.70	1.08
1.06	0.99	1.08	0.68	1.06
1.08	0.97	1.06	0.66	1.04
1.10	0.95	1.04	0.64	1.02
1.12	0.93	1.02	0.62	1.00
1.14	0.91	1.00	0.60	0.98
1.16	0.89	0.98	0.58	0.96
1.18	0.87	0.96	0.56	0.95
1.20	0.86	0.95	0.55	0.93
1.25	0.82	0.91	0.51	0.89
1.30	0.78	0.87	0.47	0.85

		Buoyancy reduc	tion factor, k	
Density of object weighed	Brass weights, density $= 8.4$	Pt or Pt-Ir weights, density $= 21.5$	Al or quartz weights, density = 2.7	Gold weights, density = 17
1.35	0.75	0.83	0.44	0.82
1.40	0.71	0.80	0.40	0.79
1.50	0.66	0.74	0.35	0.73
1.6	0.61	0.69	0.30	0.68
1.7	0.56	0.65	0.25	0.64
1.8	0.52	0.61	0.21	0.60
1.9	0.49	0.58	0.18	0.56
2.0	0.46	0.54	0.15	0.53
2.2	0.40	0.49	0.09	0.48
2.4	0.36	0.44	0.05	0.43
2.6	0.32	0.41	0.01	0.39
2.8	0.29	0.37	-0.02	0.36
3.0	0.26	0.34	-0.05	0.33
3.5	0.20	0.29	-0.11	0.27
4	0.16	0.24	-0.15	0.23
5	0.10	0.18	-0.21	0.17
6	0.06	0.14	-0.25	0.13
7	0.03	0.12	-0.28	0.10
8	0.01	0.09	-0.30	0.08
9	-0.01	0.08	-0.32	0.06
10	-0.02	0.06	-0.33	0.05
12	-0.04	0.04	-0.35	0.03
14	-0.06	0.03	-0.37	0.02
16	-0.07	0.02	-0.38	0.00
18	-0.08	0.01	-0.39	0.00
20	-0.08	0.00	-0.39	-0.01
22	-0.09	0.00	-0.40	-0.02

TABLE 4.12 Conversion of Weighings in Air to Weighings in Vacuo (Continued)

TABLE 4.13 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (760 mmHg)

Examples: (*a*) 20 mL of dry gas at 22°C and 730 mm = $20 \times 0.8888 = 17.78$ mL at 0°C and 760 mm. (*b*) 20 mL of a gas over water at 22° and 730 mm = $20 \times$ (factor corrected for aqueous tension; i.e., 730 – 19.8 or 710.2 mm) = 20 mL of dry gas at 22° and 710.2 mm = $20 \times 0.86475 = 17.30$ mL at 0°C and 760 mm. Mass in milligrams of 1 mL of gas at S.T.P.: acetylene, 1.173; carbon dioxide, 1.9769; hydrogen, 0.0899; nitric oxide (NO), 1.3402; nitrogen, 1.25057; oxygen, 1.42904.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pressure				Temper	ature °C			
670 0.8504 0.8474 0.8445 0.8415 0.8386 0.8357 0.8328 0.8229 672 0.8530 0.8500 0.8470 0.8440 0.8411 0.8382 0.8353 0.8323 674 0.8555 0.8520 0.8495 0.8461 0.8407 0.8377 0.8373 678 0.8606 0.8576 0.8545 0.8516 0.8486 0.8451 0.8421 0.8431 0.8402 0.8373 678 0.8606 0.8576 0.8556 0.8536 0.8506 0.8471 0.8442 0.8442 682 0.8651 0.8621 0.8561 0.8531 0.8502 0.8472 688 0.8733 0.8702 0.8672 0.8661 0.8586 0.8556 0.8527 0.8447 688 0.8777 0.8697 0.8661 0.8631 0.8601 0.8572 690 0.8784 0.8773 0.8747 0.8717 0.8661 0.8631 0.8601 0.8671 692 <td>mercury</td> <td>10°</td> <td>11°</td> <td>12°</td> <td>13°</td> <td>14°</td> <td>15°</td> <td>16°</td> <td>17°</td>	mercury	10°	11°	12°	13°	14°	15°	16°	17°
672 0.8530 0.8490 0.8441 0.8312 0.8333 0.8324 674 0.8555 0.8525 0.8495 0.8445 0.8436 0.8497 0.8377 0.8349 676 0.8560 0.8550 0.8451 0.8461 0.8431 0.8427 0.8398 680 0.8631 0.8601 0.8571 0.8541 0.8451 0.8445 0.8442 0.8422 682 0.8651 0.8561 0.8536 0.8506 0.8471 0.8442 684 0.8682 0.8671 0.8646 0.8611 0.8511 0.8527 0.8497 688 0.8733 0.8727 0.8667 0.8666 0.8636 0.8651 0.8527 0.8497 690 0.8758 0.8772 0.8697 0.8666 0.8636 0.8631 0.8611 0.8511 0.8527 0.8497 694 0.8804 0.8772 0.8647 0.8711 0.8661 0.8631 0.8610 0.8576 0.8726 694 <td>670</td> <td>0.8504</td> <td>0.8474</td> <td>0.8445</td> <td>0.8415</td> <td>0.8386</td> <td>0.8357</td> <td>0.8328</td> <td>0.8299</td>	670	0.8504	0.8474	0.8445	0.8415	0.8386	0.8357	0.8328	0.8299
674 0.8555 0.8325 0.8495 0.8465 0.8461 0.8431 0.8377 0.8373 676 0.8580 0.8550 0.8520 0.8490 0.8461 0.8431 0.8402 0.8373 678 0.8606 0.8576 0.8524 0.8511 0.8486 0.8455 0.8427 0.8398 680 0.8651 0.8626 0.8596 0.8566 0.8531 0.8501 0.8531 0.8502 0.8472 684 0.8627 0.8677 0.8646 0.8616 0.8511 0.8551 0.8521 0.8521 0.8521 0.8521 0.8521 0.8522 0.8497 688 0.8733 0.8702 0.8677 0.8661 0.8631 0.8651 0.8521 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8601 0.8572 694 0.8809 0.8778 0.8717 0.8717 0.8646 0.8656 0.8626 0.8576 698 0.8865 0.	672	0.8530	0.8500	0.8470	0.8440	0.8411	0.8382	0.8353	0.8324
676 0.8580 0.8550 0.8520 0.8490 0.8461 0.8431 0.8402 0.8373 678 0.8606 0.8576 0.8545 0.8516 0.8486 0.8452 0.8427 0.8398 680 0.8651 0.8561 0.8571 0.8541 0.8481 0.8452 0.8423 682 0.8657 0.8662 0.8591 0.8536 0.8536 0.8522 0.8472 688 0.8733 0.8702 0.8672 0.8641 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8606 0.8576 0.8522 690 0.8758 0.8773 0.8772 0.8671 0.8661 0.8661 0.8651 0.8621 692 0.8784 0.8773 0.8747 0.8717 0.8746 0.8736 0.8766 0.8661 0.8661 0.8621 698 0.88854 0.8823 0.8792 0.8716 0.8716 0.8775 0.8675	674	0.8555	0.8525	0.8495	0.8465	0.8436	0.8407	0.8377	0.8349
678 0.8606 0.8576 0.8545 0.8516 0.8486 0.8425 0.8398 680 0.8631 0.8601 0.8571 0.8541 0.8511 0.8481 0.8422 0.8423 682 0.8657 0.8621 0.8596 0.8566 0.8536 0.8506 0.8527 0.8448 684 0.8682 0.8677 0.8646 0.8611 0.8581 0.8551 0.8522 686 0.8733 0.8702 0.8667 0.8661 0.8661 0.8606 0.8576 0.8547 690 0.8758 0.8773 0.8772 0.8691 0.8661 0.8606 0.8576 0.8547 692 0.8784 0.8753 0.8722 0.8711 0.8681 0.8651 0.8621 694 0.8809 0.8778 0.8747 0.8742 0.8711 0.8681 0.8661 0.8661 0.8661 0.8661 0.8661 0.8661 0.8661 0.8675 0.8720 704 0.8885 0.8824 0.	676	0.8580	0.8550	0.8520	0.8490	0.8461	0.8431	0.8402	0.8373
680 0.8631 0.8601 0.8571 0.8541 0.8511 0.8481 0.8452 0.8423 682 0.8657 0.8626 0.8596 0.8556 0.8536 0.8531 0.8502 0.8448 684 0.8677 0.8641 0.8511 0.8551 0.8527 0.8497 686 0.8707 0.8677 0.8641 0.8611 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8601 0.8576 0.8547 692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8631 0.8601 0.8572 694 0.8809 0.8778 0.8747 0.8711 0.8681 0.861 0.8621 0.8526 696 0.8843 0.8803 0.8772 0.8742 0.8711 0.8681 0.8671 0.8225 700 0.8854 0.8823 0.8792 0.8767 0.8736 0.8755 0.8725 0.8695 704	678	0.8606	0.8576	0.8545	0.8516	0.8486	0.8456	0.8427	0.8398
682 0.8657 0.8626 0.8596 0.8566 0.8536 0.8501 0.8502 0.8442 684 0.8682 0.8651 0.8621 0.8591 0.8561 0.8535 0.8527 0.8442 686 0.8733 0.8702 0.8646 0.8616 0.8586 0.8535 0.8527 0.8497 688 0.8733 0.8702 0.8647 0.8666 0.8636 0.8661 0.8531 0.8572 0.8547 692 0.8784 0.8753 0.8772 0.8747 0.8717 0.8661 0.8661 0.8621 0.8521 696 0.8880 0.8873 0.8747 0.8717 0.8736 0.8706 0.8676 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8671 0.8621 700 0.8885 0.8844 0.8817 0.8756 0.8725 0.8695 704 0.8961 0.8930 0.8842 0.8811 0.8756 0.8775 0.	680	0.8631	0.8601	0.8571	0.8541	0.8511	0.8481	0.8452	0.8423
684 0.8682 0.8651 0.8521 0.8561 0.8531 0.8502 0.8472 686 0.8707 0.8677 0.8644 0.8616 0.8586 0.8527 0.8497 688 0.8733 0.8702 0.8672 0.8661 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8631 0.8601 0.8576 692 0.8784 0.8773 0.8747 0.8717 0.86861 0.8651 0.8626 0.8526 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8621 0.8646 700 0.8885 0.8824 0.8817 0.8736 0.8756 0.8725 0.8647 702 0.8910 0.8879 0.8848 0.8817 0.8766 0.8756 0.8725 0.8695 704 0.8936 0.8873 0.8842 0.8811 0.8756 0.8875 0.8874 710 0.9012 0.8980 0.8949 <td>682</td> <td>0.8657</td> <td>0.8626</td> <td>0.8596</td> <td>0.8566</td> <td>0.8536</td> <td>0.8506</td> <td>0.8477</td> <td>0.8448</td>	682	0.8657	0.8626	0.8596	0.8566	0.8536	0.8506	0.8477	0.8448
686 0.8707 0.8677 0.8646 0.8616 0.8586 0.8556 0.8527 0.8497 688 0.8733 0.8702 0.8672 0.8641 0.8611 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8601 0.8576 0.8577 692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8611 0.8611 0.8626 0.8526 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8651 0.8621 698 0.8860 0.8828 0.8878 0.8772 0.8710 0.8713 0.8700 0.8671 702 0.8910 0.8879 0.8824 0.8817 0.8736 0.8725 0.8671 704 0.8936 0.8930 0.8887 0.8827 0.8831 0.8750 0.8745 708 0.8987 0.8949 0.8917 0.8886 0.8856 0.8825 0.8894	684	0.8682	0.8651	0.8621	0.8591	0.8561	0.8531	0.8502	0.8472
688 0.8733 0.8702 0.8672 0.8641 0.8611 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8606 0.8576 0.8547 692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8631 0.8601 0.8572 694 0.8809 0.8778 0.8747 0.8717 0.8686 0.8651 0.8621 0.8651 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8671 702 0.8910 0.8879 0.8843 0.8817 0.8786 0.8755 0.8725 0.8695 704 0.8936 0.8930 0.8887 0.8842 0.8811 0.8711 0.8750 0.8720 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8875 0.8842 710 0.9012 0.8980 0.8964 0.8930 0.8855 0.	686	0.8707	0.8677	0.8646	0.8616	0.8586	0.8556	0.8527	0.8497
690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8606 0.8576 0.8577 692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8631 0.8601 0.8572 694 0.8809 0.8778 0.8747 0.8742 0.8711 0.8661 0.8626 0.8526 0.8566 0.8626 0.8561 0.8621 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8656 0.8626 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8671 702 0.8910 0.8879 0.8848 0.8817 0.8736 0.8756 0.8725 0.8695 704 0.8936 0.8890 0.8842 0.8811 0.8711 0.8750 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 0.8725 <td>688</td> <td>0.8733</td> <td>0.8702</td> <td>0.8672</td> <td>0.8641</td> <td>0.8611</td> <td>0.8581</td> <td>0.8551</td> <td>0.8522</td>	688	0.8733	0.8702	0.8672	0.8641	0.8611	0.8581	0.8551	0.8522
692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8631 0.8671 0.8572 694 0.8809 0.8778 0.8777 0.8717 0.8686 0.8656 0.8626 0.8572 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8651 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8676 700 0.8885 0.8879 0.8848 0.8817 0.8786 0.8731 0.8676 0.8675 704 0.8936 0.8904 0.8873 0.8842 0.8811 0.8781 0.8750 0.8725 706 0.8961 0.8930 0.8887 0.8822 0.8811 0.8871 0.8775 0.8745 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.	690	0 8758	0.8727	0 8697	0.8666	0.8636	0.8606	0.8576	0.8547
694 0.8809 0.8778 0.8747 0.8717 0.8686 0.8656 0.8626 0.8596 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8621 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8676 700 0.8885 0.8854 0.8823 0.8792 0.8761 0.8736 0.8756 0.8725 0.8695 704 0.8936 0.8904 0.8873 0.8842 0.8811 0.8781 0.8750 0.8720 706 0.8961 0.8930 0.8893 0.8842 0.8811 0.8781 0.8750 0.8720 706 0.8961 0.8930 0.8894 0.8817 0.8836 0.8860 0.8775 0.8745 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8744 712 0.9037 0.9006 0.9024 0.8993 0.8961 0.8830 0.8875 0.8844 716 0.9088 0.9056 0.9024 0.8936 0.8936 0.8936 0.8893 0.8949 0.8849 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8943 724 0.9190 0.9157 0.9125 0.9024 0.90	692	0.8784	0.8753	0.8722	0.8691	0.8661	0.8631	0.8601	0.8572
696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8651 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8646 700 0.8885 0.8823 0.8792 0.8761 0.8731 0.8700 0.8671 702 0.8910 0.8879 0.8848 0.8817 0.8766 0.8756 0.8725 0.8695 704 0.8936 0.8904 0.8873 0.8842 0.8811 0.8711 0.8750 0.8720 706 0.8961 0.8930 0.8898 0.8821 0.8811 0.8870 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8850 0.88170 0.8844 712 0.9037 0.9006 0.8974 0.8993 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9024 0.8993 0.8961 0.8930 0.8894 0.8943 720 <td>694</td> <td>0.8809</td> <td>0.8778</td> <td>0.8747</td> <td>0.8717</td> <td>0.8686</td> <td>0.8656</td> <td>0.8626</td> <td>0.8596</td>	694	0.8809	0.8778	0.8747	0.8717	0.8686	0.8656	0.8626	0.8596
698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8646 700 0.8885 0.8854 0.8823 0.8792 0.8761 0.8731 0.8700 0.8671 702 0.8910 0.8879 0.8848 0.8817 0.8786 0.8756 0.8725 0.8695 704 0.8936 0.8904 0.8873 0.8842 0.8811 0.8781 0.8750 0.8720 706 0.8961 0.8930 0.8898 0.8867 0.8836 0.8831 0.8806 0.8775 0.8745 708 0.8987 0.8955 0.8924 0.892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8974 0.8943 0.8911 0.8880 0.8855 0.8819 712 0.9033 0.9024 0.8968 0.8936 0.8895 0.8844 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8875 0.8	696	0.8834	0.8803	0.8772	0.8742	0.8711	0.8681	0.8651	0.8621
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	698	0.8860	0.8828	0.8798	0.8767	0.8736	0.8706	0.8676	0.8646
700 0.8055 0.8052 0.872 0.8716 0.8756 0.8756 0.8756 0.8756 0.8755 0.8072 702 0.8910 0.8879 0.8848 0.8817 0.8786 0.8756 0.8755 0.8720 706 0.8961 0.8930 0.8898 0.8867 0.8836 0.8806 0.8775 0.8745 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9013 0.8987 0.8955 0.8924 0.8943 722 0.9164 0.9132 0.9100 0.9062 0.9030 0.8	700	0.8885	0.8854	0 8823	0 8792	0.8761	0.8731	0.8700	0.8671
702 0.8910 0.8817 0.8817 0.8811 0.8730 0.8720 0.8723 704 0.8936 0.8901 0.8873 0.8842 0.8811 0.8781 0.8750 0.8720 706 0.8961 0.8930 0.8893 0.8842 0.8811 0.8781 0.8750 0.8720 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9024 0.8993 0.8961 0.8930 0.8869 718 0.9114 0.9081 0.9050 0.9012 0.8980 0.8949 0.8913 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8943 724 0.9190 0.9157 <td>700</td> <td>0.0005</td> <td>0.8879</td> <td>0.8848</td> <td>0.8792</td> <td>0.8701</td> <td>0.8756</td> <td>0.8700</td> <td>0.8695</td>	700	0.0005	0.8879	0.8848	0.8792	0.8701	0.8756	0.8700	0.8695
704 0.8300 0.8301 0.8302 0.8811 0.8131 0.8131 0.8133 0.8135 706 0.8961 0.8930 0.8898 0.8867 0.8836 0.8806 0.8775 0.8775 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8850 0.8825 0.874 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9031 0.8999 0.8968 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9012 0.8980 0.8943 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8993 726 0.9215 0.9183	704	0.8910	0.8879	0.8873	0.8842	0.8780	0.8730	0.8720	0.8095
7000.89510.89530.89530.88570.88500.88500.88500.87707080.89870.89550.89240.88920.88610.88310.88000.87707100.90120.89800.89490.89170.888610.88560.88250.87947120.90370.90060.89740.89430.89110.88800.88550.88197140.90630.90310.89990.89680.89360.89050.88750.88447160.90880.90560.90240.89930.89610.89300.88990.88697180.91140.90810.90500.90180.89870.89550.89240.88947200.91390.91070.90750.90430.90120.89800.89490.89187220.91640.91320.91000.90680.90370.90050.89740.89437240.91900.91570.91250.90930.90620.90300.89990.89687260.92150.91830.91760.91440.91120.90800.90490.90177300.92660.92330.92260.91940.91620.91300.90980.90677340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.9302 <t< td=""><td>704</td><td>0.8950</td><td>0.8904</td><td>0.8808</td><td>0.8867</td><td>0.8836</td><td>0.8701</td><td>0.8775</td><td>0.8720</td></t<>	704	0.8950	0.8904	0.8808	0.8867	0.8836	0.8701	0.8775	0.8720
766 0.8367 0.8327 0.8322 0.8601 0.8351 0.8360 0.6176 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9031 0.8999 0.8968 0.8936 0.8930 0.8875 0.8844 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9003 0.9062 0.9030 0.8999	700	0.8901	0.8950	0.8898	0.8807	0.8850	0.8800	0.8775	0.8770
710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9031 0.8999 0.8968 0.8936 0.8905 0.8875 0.8844 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 726 0.9215 0.9183 0.9151 0.9118 0.9062 0.9030 0.8999 0.8968 726 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.91	708	0.0010	0.0000	0.0010	0.0017	0.0001	0.0051	0.0000	0.0770
712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9031 0.8999 0.8968 0.8936 0.8905 0.8875 0.8844 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9067 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 734 0.9317 0.9284 0.9259 0.92	710	0.9012	0.8980	0.8949	0.8917	0.8886	0.8856	0.8825	0.8794
714 0.9063 0.9031 0.8999 0.8968 0.8936 0.8936 0.8905 0.8875 0.8875 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 734 0.9317 0.9284 0.92	/12	0.9037	0.9006	0.89/4	0.8943	0.8911	0.8880	0.8850	0.8819
716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 734 0.9317 0.9284 0.9251 0.9219 0.9187 0.9155 0.	714	0.9063	0.9031	0.8999	0.8968	0.8936	0.8905	0.8875	0.8844
718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9073 0.9042 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 732 0.9291 0.9284 0.9251 0.9219 0.9187 0.9155 0.9123 0.9092 736 0.9342 0.9309 0.9277 0.9244 0.9213 0.9148 0.	/16	0.9088	0.9056	0.9024	0.8993	0.8961	0.8930	0.8899	0.8869
7200.91390.91070.90750.90430.90120.89800.89490.89187220.91640.91320.91000.90680.90370.90050.89740.89437240.91900.91570.91250.90930.90620.90300.89990.89687260.92150.91830.91510.91180.90870.90550.90240.89937280.92410.92080.91760.91440.91120.90800.90490.90177300.92660.92330.92010.91690.91370.91050.90730.90427320.92910.92590.92260.91940.91620.91300.90980.90677340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93770.92440.92620.92300.91980.91667420.94180.93850.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407460.94940.94610.94280.93950.93620.93290.92970.9265	/18	0.9114	0.9081	0.9050	0.9018	0.8987	0.8955	0.8924	0.8894
722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 732 0.9291 0.9259 0.9226 0.9194 0.9162 0.9130 0.9098 0.9067 734 0.9317 0.9284 0.9251 0.9219 0.9187 0.9155 0.9123 0.9092 736 0.9342 0.9309 0.9277 0.9244 0.9212 0.9180 0.9148 0.9117 738 0.9368 0.9334 0.9302 0.9269 0.9237 0.9205 0.9173 0.9141 740 0.9393 0.9360 0.9327 0.92	720	0.9139	0.9107	0.9075	0.9043	0.9012	0.8980	0.8949	0.8918
724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 732 0.9291 0.9259 0.9226 0.9194 0.9162 0.9130 0.9098 0.9067 734 0.9317 0.9284 0.9251 0.9219 0.9187 0.9155 0.9123 0.9092 736 0.9342 0.9309 0.9277 0.9244 0.9212 0.9180 0.9148 0.9117 738 0.9368 0.9334 0.9302 0.9269 0.9237 0.9205 0.9148 0.9141 740 0.9393 0.9360 0.9327 0.9244 0.9262 0.9230 0.9198 0.9166 742 0.9418 0.9385 0.9352 0.93	722	0.9164	0.9132	0.9100	0.9068	0.9037	0.9005	0.8974	0.8943
7260.92150.91830.91510.91180.90870.90550.90240.89937280.92410.92080.91760.91440.91120.90800.90490.90177300.92660.92330.92010.91690.91370.91050.90730.90427320.92910.92590.92260.91940.91620.91300.90980.90677340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	724	0.9190	0.9157	0.9125	0.9093	0.9062	0.9030	0.8999	0.8968
728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 732 0.9291 0.9259 0.9226 0.9194 0.9162 0.9130 0.9098 0.9067 734 0.9317 0.9284 0.9251 0.9219 0.9187 0.9155 0.9123 0.9092 736 0.9342 0.9309 0.9277 0.9244 0.9212 0.9180 0.9148 0.9117 738 0.9368 0.9334 0.9302 0.9269 0.9237 0.9205 0.9173 0.9141 740 0.9393 0.9360 0.9327 0.9294 0.9262 0.9230 0.9198 0.9166 742 0.9418 0.9385 0.9352 0.9319 0.9287 0.9255 0.9223 0.9191 744 0.9444 0.9410 0.9377 0.9345 0.9312 0.9280 0.9248 0.9216 746 0.9469 0.9436 0.9403 0.93	726	0.9215	0.9183	0.9151	0.9118	0.9087	0.9055	0.9024	0.8993
7300.92660.92330.92010.91690.91370.91050.90730.90427320.92910.92590.92260.91940.91620.91300.90980.90677340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	728	0.9241	0.9208	0.9176	0.9144	0.9112	0.9080	0.9049	0.9017
7320.92910.92590.92260.91940.91620.91300.90980.90677340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	730	0.9266	0.9233	0.9201	0.9169	0.9137	0.9105	0.9073	0.9042
7340.93170.92840.92510.92190.91870.91550.91230.90927360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	732	0.9291	0.9259	0.9226	0.9194	0.9162	0.9130	0.9098	0.9067
7360.93420.93090.92770.92440.92120.91800.91480.91177380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	734	0.9317	0.9284	0.9251	0.9219	0.9187	0.9155	0.9123	0.9092
7380.93680.93340.93020.92690.92370.92050.91730.91417400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	736	0.9342	0.9309	0.9277	0.9244	0.9212	0.9180	0.9148	0.9117
7400.93930.93600.93270.92940.92620.92300.91980.91667420.94180.93850.93520.93190.92870.92550.92230.91917440.94440.94100.93770.93450.93120.92800.92480.92167460.94690.94360.94030.93700.93370.93050.92720.92407480.94940.94610.94280.93950.93620.93290.92970.9265	738	0.9368	0.9334	0.9302	0.9269	0.9237	0.9205	0.9173	0.9141
742 0.9418 0.9385 0.9319 0.9217 0.9255 0.9223 0.9191 744 0.9444 0.9410 0.9377 0.9345 0.9312 0.9280 0.9248 0.9216 746 0.9469 0.9436 0.9403 0.9370 0.9337 0.9305 0.9272 0.9240 748 0.9494 0.9461 0.9428 0.9395 0.9362 0.9329 0.9297 0.9265	740	0.9393	0.9360	0.9327	0.9294	0.9262	0.9230	0.9198	0.9166
744 0.9444 0.9410 0.9377 0.9345 0.9312 0.9280 0.9248 0.9216 746 0.9469 0.9436 0.9403 0.9370 0.9337 0.9305 0.9272 0.9240 748 0.9494 0.9461 0.9428 0.9395 0.9362 0.9329 0.9297 0.9265	742	0.9418	0.9385	0.9352	0.9319	0.9287	0.9255	0.9223	0.9191
746 0.9469 0.9436 0.9403 0.9370 0.9337 0.9305 0.9272 0.9240 748 0.9494 0.9461 0.9428 0.9395 0.9362 0.9329 0.9297 0.9265	744	0.9444	0.9410	0.9377	0.9345	0.9312	0.9280	0.9248	0.9216
748 0.9494 0.9461 0.9428 0.9395 0.9362 0.9329 0.9297 0.9265	746	0.9469	0.9436	0.9403	0.9370	0.9337	0.9305	0.9272	0.9240
	748	0.9494	0.9461	0.9428	0.9395	0.9362	0.9329	0.9297	0.9265

Pressure				Temper	ature °C			
mercury	10°	11°	12°	13°	14°	15°	16°	17°
750	0.9520	0.9486	0.9453	0.9420	0.9387	0.9354	0.9322	0.9290
752	0.9545	0.9511	0.9478	0.9445	0.9412	0.9379	0.9347	0.9315
754	0.9571	0.9537	0.9504	0.9470	0.9437	0.9404	0.9372	0.9339
756	0.9596	0.9562	0.9529	0.9495	0.9462	0.9429	0.9397	0.9364
758	0.9621	0.9587	0.9554	0.9520	0.9487	0.9454	0.9422	0.9389
760	0.9647	0.9613	0.9579	0.9546	0.9512	0.9479	0.9446	0.9414
762	0.9672	0.9638	0.9604	0.9571	0.9537	0.9504	0.9471	0.9439
764	0.9698	0.9663	0.9630	0.9596	0.9562	0.9529	0.9496	0.9463
766	0.9723	0.9689	0.9655	0.9620	0.9587	0.9554	0.9521	0.9488
768	0.9748	0.9714	0.9680	0.9646	0.9612	0.9579	0.9546	0.9513
770	0.9774	0.9739	0.9705	0.9671	0.9637	0.9604	0.9571	0.9538
772	0.9799	0.9764	0.9730	0.9696	0.9662	0.9629	0.9596	0.9562
774	0.9825	0.9790	0.9756	0.9721	0.9687	0.9654	0.9620	0.9587
776	0.9850	0.9815	0.9781	0.9746	0.9712	0.9679	0.9645	0.9612
778	0.9875	0.9840	0.9806	0.9772	0.9737	0.9704	0.9670	0.9637
780	0.9901	0.9866	0.9831	0.9797	0.9763	0.9729	0.9695	0.9662
782	0.9926	0.9891	0.9856	0.9822	0.9788	0.9754	0.9720	0.9686
784	0.9952	0.9916	0.9882	0.9847	0.9813	0.9778	0.9745	0.9711
786	0.9977	0.9942	0.9907	0.9872	0.9838	0.9803	0.9770	0.9736
788	1.0002	0.9967	0.9932	0.9897	0.9863	0.9828	0.9794	0.9761
Pressure				Temper	ature °C			
Pressure mm of				Temper	ature °C			
Pressure mm of mercury		19°	20°	Temper 21°	ature °C 22°	23°	24°	25°
Pressure mm of mercury 670	18°	19°	20°	Temper 21° 0.8186	ature °C 22°	23°	24°	25°
Pressure mm of mercury 670 672	18° 0.8270 0.8295	19° 0.8242 0.8267	20° 0.8214 0.8239	Temper 21° 0.8186 0.8211	ature °C 22° 0.8158 0.8183	23° 0.8131 0.8155	24° 0.8103 0.8128	25°
Pressure mm of mercury 670 672 674	18° 0.8270 0.8295 0.8320	19° 0.8242 0.8267 0.8291	20° 0.8214 0.8239 0.8263	Temper 21° 0.8186 0.8211 0.8235	ature °C 22° 0.8158 0.8183 0.8207	23° 0.8131 0.8155 0.8179	24° 0.8103 0.8128 0.8152	25° 0.8076 0.8100 0.8124
Pressure mm of mercury 670 672 674 676	18° 0.8270 0.8295 0.8320 0.8345	19° 0.8242 0.8267 0.8291 0.8316	20° 0.8214 0.8239 0.8263 0.8288	Temper 21° 0.8186 0.8211 0.8235 0.8259	ature °C 22° 0.8158 0.8183 0.8207 0.8231	23° 0.8131 0.8155 0.8179 0.8204	24° 0.8103 0.8128 0.8152 0.8176	25° 0.8076 0.8100 0.8124 0.8149
Pressure mm of mercury 670 672 674 676 678	18° 0.8270 0.8295 0.8320 0.8345 0.8369	19° 0.8242 0.8267 0.8291 0.8316 0.8341	20° 0.8214 0.8239 0.8263 0.8288 0.8312	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8259 0.8284	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256	23° 0.8131 0.8155 0.8179 0.8204 0.8228	24° 0.8103 0.8128 0.8152 0.8152 0.8176 0.8200	25° 0.8076 0.8100 0.8124 0.8149 0.8173
Pressure mm of mercury 670 672 674 676 678 680	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8259 0.8284 0.8308	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197
Pressure mm of mercury 670 672 674 676 678 680 682	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8259 0.8284 0.8308 0.8333	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8252 0.8276	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221
Pressure mm of mercury 670 672 674 676 678 680 682 684	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419 0.8443	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8337 0.8361 0.8386	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8259 0.8284 0.8308 0.8333 0.8357	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8252 0.8276 0.8301	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8224 0.8249 0.8273	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245
Pressure mm of mercury 670 672 674 676 678 680 682 684 684 686	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419 0.8443 0.8468	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.83410	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8249 0.8273 0.8297	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419 0.8443 0.8468 0.8493	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8256 0.8301 0.8325 0.8349	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8224 0.8249 0.8273 0.8297 0.8321	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 688 690	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419 0.8443 0.8468 0.8493 0.8517	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 688 690 692	18° 0.8270 0.8295 0.8320 0.8345 0.8369 0.8394 0.8394 0.8419 0.8443 0.8468 0.8493 0.8517 0.8542	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8484	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402 0.8426	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 688 690 692 694	18° 0.8270 0.8295 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8419 0.8443 0.8443 0.8443 0.8443 0.84517 0.8542 0.8567	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8469 0.8464 0.8488 0.8513 0.8537	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8484 0.8508	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402 0.8402 0.8426 0.8451	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8422	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366
Pressure mm of mercury 670 672 674 676 678 680 682 684 682 684 686 688 688 690 692 694 696	18° 0.8270 0.8295 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8443 0.8443 0.8443 0.8443 0.8443 0.84517 0.8542 0.8567 0.8591	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513 0.8557 0.8562	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8533	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402 0.8426 0.8425	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8422 0.8446	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8418	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 688 690 692 694 696 698	18° 0.8270 0.8295 0.8320 0.8345 0.8345 0.8349 0.8419 0.8443 0.8468 0.8493 0.8517 0.8542 0.8567 0.8591 0.8616	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8463 0.8464 0.8488 0.8513 0.8537 0.8562 0.8587	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8553 0.8557	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504 0.8528	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8304 0.8329 0.8353 0.8378 0.8402 0.8402 0.8426 0.8451 0.8475 0.8499	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8422 0.8446 0.8471	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8442	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390 0.8414
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700	18° 0.8270 0.8295 0.8320 0.8345 0.8345 0.8349 0.8419 0.8443 0.8468 0.8493 0.8517 0.8542 0.8567 0.8591 0.8616	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513 0.8537 0.8562 0.8587 0.8611	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8557 0.8582	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504 0.8528 0.8553	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8304 0.8329 0.8353 0.8378 0.8402 0.8426 0.8426 0.8451 0.8475 0.8499 0.8524	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8422 0.8446 0.8471 0.8495	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8442 0.8466	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390 0.8414 0.8438
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702	18° 0.8270 0.8295 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8443 0.8443 0.8443 0.8443 0.8443 0.8493 0.8517 0.8542 0.8567 0.8591 0.8616 0.8641 0.8665	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513 0.8537 0.8562 0.8587 0.8611 0.8636	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8557 0.8582 0.8606	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504 0.8528 0.8553 0.8577	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8304 0.8329 0.8353 0.8378 0.8402 0.8426 0.8425 0.8425 0.8475 0.8499 0.8524 0.8547	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8422 0.8446 0.8471 0.8495 0.8519	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8345 0.8369 0.8394 0.8442 0.8466 0.8490	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390 0.8414 0.8438 0.8462
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702 704	18° 0.8270 0.8295 0.8320 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8345 0.8443 0.8443 0.8443 0.8443 0.8443 0.8443 0.84517 0.8542 0.8567 0.8567 0.85616 0.8641 0.8665 0.8690	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513 0.85537 0.8562 0.8587 0.8661 0.8660	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8557 0.8582 0.8566 0.8601	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504 0.8528 0.8553 0.8577 0.8602	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402 0.8451 0.8475 0.8499 0.8524 0.8547 0.8572	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8373 0.8398 0.8422 0.8446 0.8471 0.8495 0.8519 0.8543	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8345 0.8369 0.8394 0.8442 0.8466 0.8490 0.8515	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390 0.8414 0.8438 0.8462 0.8486
Pressure mm of mercury 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702 704 706	18° 0.8270 0.8295 0.8320 0.8345 0.8345 0.8345 0.8349 0.8443 0.8443 0.8443 0.84517 0.8542 0.8567 0.8567 0.8567 0.8616 0.8641 0.8665 0.8690 0.8715	19° 0.8242 0.8267 0.8291 0.8316 0.8341 0.8365 0.8390 0.8414 0.8439 0.8464 0.8488 0.8513 0.8551 0.8557 0.8562 0.8587 0.8661 0.8660 0.8685	20° 0.8214 0.8239 0.8263 0.8288 0.8312 0.8337 0.8361 0.8386 0.8410 0.8435 0.8459 0.8459 0.8484 0.8508 0.8557 0.8582 0.8606 0.8631 0.8655	Temper 21° 0.8186 0.8211 0.8235 0.8259 0.8284 0.8308 0.8333 0.8357 0.8382 0.8406 0.8430 0.8455 0.8479 0.8504 0.8553 0.8577 0.8602 0.8602 0.8626	ature °C 22° 0.8158 0.8183 0.8207 0.8231 0.8256 0.8280 0.8304 0.8329 0.8353 0.8378 0.8402 0.8426 0.8426 0.8451 0.8475 0.8499 0.8524 0.8547 0.8572 0.8597	23° 0.8131 0.8155 0.8179 0.8204 0.8228 0.8252 0.8276 0.8301 0.8325 0.8349 0.8373 0.8398 0.8373 0.8398 0.8446 0.8471 0.8495 0.8519 0.8543 0.8568	24° 0.8103 0.8128 0.8152 0.8176 0.8200 0.8224 0.8249 0.8273 0.8297 0.8321 0.8345 0.8369 0.8394 0.8345 0.8369 0.8394 0.8442 0.8466 0.8490 0.8515 0.8539	25° 0.8076 0.8100 0.8124 0.8149 0.8173 0.8197 0.8221 0.8245 0.8269 0.8293 0.8317 0.8341 0.8366 0.8390 0.8414 0.8438 0.8462 0.8486 0.8510

TABLE 4.13 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued)

mercury 18° 19° 20° 21° 22° 23° 24°	25°
710 0.8764 0.8734 0.8704 0.8675 0.8645 0.8616 0.858 712 0.8789 0.8759 0.8729 0.8699 0.8670 0.8640 0.86	37 0.8558
714 0.8814 0.8783 0.8753 0.8724 0.8694 0.8665 0.865	36 0.8607
716 0.8838 0.8808 0.8778 0.8748 0.8718 0.8689 0.866	60 0.8631
718 0.8863 0.8833 0.8802 0.8773 0.8743 0.8713 0.868	0.8655
720 0.8888 0.8857 0.8827 0.8797 0.8767 0.8738 0.870	0.8679
722 0.8912 0.8882 0.8852 0.8821 0.8792 0.8762 0.873	32 0.8703
724 0.8937 0.8906 0.8876 0.8846 0.8816 0.8786 0.875	57 0.8727
726 0.8962 0.8931 0.8901 0.8870 0.8840 0.8810 0.878	0.8751
728 0.8986 0.8956 0.8925 0.8895 0.8865 0.8835 0.880)5 0.8775
730 0.9011 0.8980 0.8950 0.8919 0.8889 0.8859 0.882	0.8799
732 0.9036 0.9005 0.8974 0.8944 0.8913 0.8883 0.885	53 0.8824
734 0.9060 0.9029 0.8999 0.8968 0.8938 0.8907 0.88	0.8848
736 0.9085 0.9054 0.9023 0.8992 0.8962 0.8932 0.89	0.8872
738 0.9110 0.9079 0.9048 0.9017 0.8986 0.8956 0.892	26 0.8896
740 0.9135 0.9103 0.9072 0.9041 0.9011 0.8980 0.895	50 0.8920
742 0.9159 0.9128 0.9097 0.9066 0.9035 0.9005 0.89	74 0.8944
744 0.9184 0.9153 0.9121 0.9090 0.9059 0.9029 0.899	98 0.8968
746 0.9209 0.9177 0.9146 0.9115 0.9084 0.9053 0.902	0.8992
748 0.9233 0.9202 0.9170 0.9139 0.9108 0.9077 0.904	17 0.9016
750 0.9258 0.9226 0.9195 0.9164 0.9132 0.9102 0.903	0.9041
752 0.9283 0.9251 0.9219 0.9188 0.9157 0.9126 0.909	0.9065
754 0.9307 0.9276 0.9244 0.9212 0.9181 0.9150 0.91	0.9089
756 0.9332 0.9300 0.9268 0.9237 0.9206 0.9174 0.914	14 0.9113
/58 0.9357 0.9325 0.9293 0.9261 0.9230 0.9199 0.910	0.9137
760 0.9381 0.9349 0.9317 0.9286 0.9254 0.9223 0.919	0.9161
762 0.9406 0.9374 0.9342 0.9310 0.9279 0.9247 0.92	6 0.9185
764 0.9431 0.9399 0.9366 0.9335 0.9303 0.9272 0.924	10 0.9209
766 0.9456 0.9423 0.9391 0.9559 0.9327 0.9296 0.920	0.9233
708 0.9480 0.9446 0.9413 0.9385 0.9552 0.9520 0.920	0.9238
770 0.9505 0.9472 0.9440 0.9408 0.9376 0.9344 0.93	0.9282
772 0.9530 0.9497 0.9464 0.9432 0.9400 0.9369 0.93	57 0.9306
774 0.9554 0.9522 0.9489 0.9457 0.9425 0.9393 0.930	0.9330
778 0.9604 0.9571 0.9538 0.9506 0.9473 0.9417 0.958	0.9334 10 0.9378
	0.2370
780 0.9628 0.9595 0.9563 0.9530 0.9498 0.9466 0.94	54 0.9402
784 0.645 0.645 0.6570 0.552 0.9490 0.943	00 0.9420
784 0.9070 0.9640 0.9012 0.9579 0.9540 0.9514 0.946	0.9430
788 0.9727 0.9694 0.9661 0.9628 0.9595 0.9563 0.95	31 0.9499

TABLE 4.13 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued)

Pressure				Temper	ature °C			
mercury	26°	27°	28°	29°	30°	31°	32°	33°
670	0.8049	0.8022	0.7996	0.7969	0.7943	0.7917	0.7891	0.7865
672	0.8073	0.8046	0.8020	0.7993	0.7967	0.7940	0.7914	0.7889
674	0.8097	0.8070	0.8043	0.8017	0.7990	0.7964	0.7938	0.7912
676	0.8121	0.8094	0.8067	0.8041	0.8014	0.7988	0.7962	0.7936
678	0.8145	0.8118	0.8091	0.8064	0.8038	0.8011	0.7985	0.7959
680	0.8169	0.8142	0.8115	0.8088	0.8061	0.8035	0.8009	0.7982
682	0.8193	0.8166	0.8139	0.8112	0.8085	0.8059	0.8032	0.8006
684	0.8217	0.8190	0.8163	0.8136	0.8109	0.8082	0.8056	0.8029
686	0.8241	0.8214	0.8187	0.8160	0.8133	0.8106	0.8079	0.8053
688	0.8265	0.8238	0.8211	0.8183	0.8156	0.8129	0.8103	0.8076
690	0.8289	0.8262	0.8234	0.8207	0.8180	0.8153	0.8126	0.8100
692	0.8313	0.8286	0.8258	0.8231	0.8204	0.8177	0.8150	0.8123
694	0.8338	0.8310	0.8282	0.8255	0.8227	0.8200	0.8174	0.8147
696	0.8362	0.8334	0.8306	0.8278	0.8251	0.8224	0.8197	0.8170
698	0.8386	0.8358	0.8330	0.8302	0.8275	0.8248	0.8221	0.8194
700	0.8410	0.8382	0.8354	0.8326	0.8299	0.8271	0.8244	0.8217
702	0.8434	0.8406	0.8378	0.8350	0.8322	0.8295	0.8268	0.8241
704	0.8458	0.8429	0.8401	0.8374	0.8346	0.8319	0.8291	0.8264
706	0.8482	0.8453	0.8425	0.8397	0.8370	0.8342	0.8315	0.8288
708	0.8506	0.8477	0.8449	0.8421	0.8393	0.8366	0.8338	0.8311
710	0.8530	0.8501	0.8473	0.8445	0.8417	0.8389	0.8362	0.8335
712	0.8554	0.8525	0.8497	0.8469	0.8441	0.8413	0.8386	0.8358
714	0.8578	0.8549	0.8521	0.8493	0.8465	0.8437	0.8409	0.8382
716	0.8602	0.8573	0.8545	0.8516	0.8488	0.8460	0.8433	0.8405
718	0.8626	0.8597	0.8569	0.8540	0.8512	0.8484	0.8456	0.8429
720	0.8650	0.8621	0.8592	0.8564	0.8536	0.8508	0.8480	0.8452
722	0.8674	0.8645	0.8616	0.8588	0.8559	0.8531	0.8503	0.8475
724	0.8698	0.8669	0.8640	0.8612	0.8583	0.8555	0.8527	0.8499
726	0.8722	0.8693	0.8664	0.8635	0.8607	0.8579	0.8550	0.8522
728	0.8746	0.8717	0.8688	0.8659	0.8631	0.8602	0.8574	0.8546
730	0.8770	0.8741	0.8712	0.8683	0.8654	0.8626	0.8598	0.8569
732	0.8794	0.8765	0.8736	0.8707	0.8678	0.8649	0.8621	0.8593
734	0.8818	0.8789	0.8759	0.8730	0.8702	0.8673	0.8645	0.8616
736	0.8842	0.8813	0.8783	0.8754	0.8725	0.8697	0.8668	0.8640
738	0.8866	0.8837	0.8807	0.8778	0.8749	0.8720	0.8692	0.8663
740	0.8890	0.8861	0.8831	0.8802	0.8773	0.8744	0.8715	0.8687
742	0.8914	0.8884	0.8855	0.8826	0.8796	0.8768	0.8739	0.8710
744	0.8938	0.8908	0.8879	0.8849	0.8820	0.8791	0.8762	0.8734
746	0.8962	0.8932	0.8903	0.8873	0.8844	0.8815	0.8786	0.8757
748	0.8986	0.8956	0.8927	0.8897	0.8868	0.8838	0.8809	0.8781
750	0.9010	0.8980	0.8950	0.8921	0.8891	0.8862	0.8833	0.8804
752	0.9034	0.9004	0.8974	0.8945	0.8915	0.8886	0.8857	0.8828
754	0.9058	0.9028	0.8998	0.8968	0.8939	0.8909	0.8880	0.8851
756	0.9082	0.9052	0.9022	0.8992	0.8962	0.8933	0.8904	0.8875
758	0.9106	0.9076	0.9046	0.9016	0.8986	0.8957	0.8927	0.8898

TABLE 4.13 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued)

Pressure				Temper	ature °C			
mm of mercury	26°	27°	28°	29°	30°	31°	32°	33°
760	0.9130	0.9100	0.9070	0.9040	0.9010	0.8980	0.8951	0.8922
762	0.9154	0.9124	0.9094	0.9064	0.9034	0.9004	0.8974	0.8945
764	0.9178	0.9148	0.9118	0.9087	0.9057	0.9028	0.8998	0.8969
766	0.9202	0.9172	0.9141	0.9111	0.9081	0.9051	0.9021	0.8992
768	0.9227	0.9196	0.9165	0.9135	0.9105	0.9075	0.9045	0.9015
770	0.9251	0.9220	0.9189	0.9159	0.9128	0.9098	0.9069	0.9039
772	0.9275	0.9244	0.9213	0.9182	0.9152	0.9122	0.9092	0.9062
774	0.9299	0.9268	0.9237	0.9206	0.9176	0.9146	0.9116	0.9086
776	0.9323	0.9292	0.9261	0.9230	0.9200	0.9169	0.9139	0.9109
778	0.9347	0.9316	0.9285	0.9254	0.9223	0.9193	0.9163	0.9133
780	0.9371	0.9340	0.9308	0.9278	0.9247	0.9217	0.9186	0.9156
782	0.9395	0.9363	0.9332	0.9301	0.9271	0.9240	0.9210	0.9180
784	0.9419	0.9387	0.9356	0.9325	0.9294	0.9264	0.9233	0.9203
786	0.9443	0.9411	0.9380	0.9349	0.9318	0.9287	0.9257	0.9227
788	0.9467	0.9435	0.9404	0.9373	0.9342	0.9311	0.9281	0.9250

Г

TABLE 4.13 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued)

Pressure	Т	emperature '	°C
mm of mercury	34°	35°	36°
670	0.7839	0.7814	0.7789
672	0.7863	0.7837	0.7812
674	0.7886	0.7861	0.7835
676	0.7910	0.7884	0.7858
678	0.7933	0.7907	0.7882
680	0.7956	0.7931	0.7905
682	0.7980	0.7954	0.7928
684	0.8003	0.7977	0.7951
686	0.8027	0.8001	0.7975
688	0.8050	0.8024	0.7998
690	0.8073	0.8047	0.8021
692	0.8097	0.8071	0.8044
694	0.8120	0.8094	0.8068
696	0.8144	0.8117	0.8091
698	0.8167	0.8141	0.8114
700	0.8190	0.8164	0.8137
702	0.8214	0.8187	0.8161
704	0.8237	0.8211	0.8184
706	0.8261	0.8234	0.8207
708	0.8284	0.8257	0.8230
710	0.8307	0.8281	0.8254
712	0.8331	0.8304	0.8277
714	0.8354	0.8327	0.8300
716	0.8378	0.8350	0.8323
718	0.8401	0.8374	0.8347
720	0.8424	0.8397	0.8370
722	0.8448	0.8420	0.8393
724	0.8471	0.8444	0.8416
726	0.8495	0.8467	0.8440
728	0.8518	0.8490	0.8463

4.6 VISCOSITY

Viscosity is the shear stress per unit area at any point in a confined fluid divided by the velocity gradient in the direction perpendicular to the direction of flow. If this ratio is constant with time at a given temperature and pressure for any species, the fluid is called a Newtonian fluid.

The *absolute viscosity* (μ) is the shear stress at a point divided by the velocity gradient at that point. The most common unit is the poise (1 kg/m sec) and the SI unit is the Pa.sec (1 kg/m sec). As many common fluids have viscosities in the hundredths of a poise the centipoise (cp) is often used. One centipoise is then equal to one mPa sec.

The *kinematic viscosity* (v) is ratio of the absolute viscosity to density at the same temperature and pressure. The most common unit corresponding to the poise is the stoke $(1 \text{ cm}^2/\text{sec})$ and the SI unit is m^2/sec .

TABLE 4.14 Viscosity Conversion

Centistokes to Saybolt, Redwood, and Engler units.

Poise = cgs unit of absolute viscosity	Centipoise = 0.01 poise
Stoke = cgs unit of kinematic viscosity	Centistoke = 0.01 stoke
Centipoises = centistokes \times density (at temp	erature under consideration)
Reyn (1 lb \cdot s per sq in) = 69 ×	10 ⁵ centipoises

Cf. Jour. Inst. Pet. Tech., Vol. 22, p. 21 (1936); Reports of A. S. T. M. Committee D-2, 1936 and 1937.

The values of Saybolt Universal Viscosity at 100°F and at 210°F are taken directly from the comprehensive *ASTM Viscosity Table, Special Technical Publication No. 43A* (1953) by permission of the publishers, American Society for Testing Materials, West Conshohocken, PA.

	Saybolt Universal Viscosity at			Red	ids at	Engler	
Centistokes	100°F.	130°F.	210°F.	70°F.	140°F.	200°F.	all Temps.
2.0	32.62	32.68	32.85	30.2	31.0	31.2	1.14
3.0	36.03	36.10	36.28	32.7	33.5	33.7	1.22
4.0	39.14	39.22	39.41	35.3	36.0	36.3	1.31
5.0	42.35	42.43	42.65	37.9	38.5	38.9	1.40
6.0	45.56	45.65	45.88	40.5	41.0	41.5	1.48
7.0	48.77	48.86	49.11	43.2	43.7	44.2	1.56
8.0	52.09	52.19	52.45	46.0	46.4	46.9	1.65
9.0	55.50	55.61	55.89	48.9	49.1	49.7	1.75
10.0	58.91	59.02	59.32	51.7	52.0	52.6	1.84
11.0	62.43	62.55	62.86	54.8	55.0	55.6	1.93
12.0	66.04	66.17	66.50	57.9	58.1	58.8	2.02
14.0	73.57	73.71	74.09	64.4	64.6	65.3	2.22
16.0	81.30	81.46	81.87	71.0	71.4	72.2	2.43
18.0	89.44	89.61	90.06	77.9	78.5	79.4	2.64
20.0	97.77	97.96	98.45	85.0	85.8	86.9	2.87
22.0	106.4	106.6	107.1	92.4	93.3	94.5	3.10
24.0	115.0	115.2	115.8	99.9	100.9	102.2	3.34
26.0	123.7	123.9	124.5	107.5	108.6	110.0	3.58
28.0	132.5	132.8	133.4	115.3	116.5	118.0	3.82
30.0	141.3	141.6	142.3	123.1	124.4	126.0	4.07

	Saybolt Universal Viscosity at		Red	Redwood Seconds at			
Centistokes	100°F.	130°F.	210°F.	70°F.	140°F.	200°F.	all Temps.
32.0	150.2	150.5	151.2	131.0	132.3	134.1	4.32
34.0	159.2	159.5	160.3	138.9	140.2	142.2	4.57
36.0	168.2	168.5	169.4	146.9	148.2	150.3	4.83
38.0	177.3	177.6	178.5	155.0	156.2	158.3	5.08
40.0	186.3	186.7	187.6	163.0	164.3	166.7	5.34
42.0	195.3	195.7	196.7	171.0	172.3	175.0	5.59
44.0	204.4	204.8	205.9	179.1	180.4	183.3	5.85
46.0	213.7	214.1	215.2	187.1	188.5	191.7	6.11
48.0	222.9	223.3	224.5	195.2	196.6	200.0	6.37
50.0	232.1	232.5	233.8	203.3	204.7	208.3	6.63
60.0	278.3	278.8	280.2	243.5	245.3	250.0	7.90
70.0	324.4	325.0	326.7	283.9	286.0	291.7	9.21
80.0	370.8	371.5	373.4	323.9	326.6	333.4	10.53
90.0	417.1	417.9	420.0	364.4	367.4	375.0	11.84
100.0*	463.5	464.4	466.7	404.9	408.2	416.7	13.16

TABLE 4.14 Viscosity Conversion (Continued)

*At higher values use the same ratio as above for 100 centistokes; *e.g.*, 102 centistokes = 102×4.635 Saybolt seconds at 100°F.

To obtain the Saybolt Universal viscosity equivalent to a kinematic viscosity determined at t° F, multiply the equivalent Saybolt Universal viscosity at 100°F. by 1 + (t – 100) 0.000064; *e.g.*, 10 centistokes at 210°F are equivalent to 58.91 × 1.0070, or 59.32 Saybolt Universal Viscosity at 210°F.

4.7 PHYSICAL CHEMISTRY EQUATIONS FOR GASES

A number of physical chemistry relationships, not enumerated in other sections (*see* Index), will be discussed in this section.

Boyle's law states that the volume of a given quantity of a gas varies inversely as the pressure, the temperature remaining constant. That is,

$$V = \frac{\text{constant}}{P}$$
 or $PV = \text{constant}$

A convenient form of the law, true strictly for ideal gases, is

$$P_1V_1 = P_2V_2$$

Charles' law, also known as *Gay-Lussac's law*, states that the volume of a given mass of gas varies directly as the absolute temperature if the pressure remains constant, that is,

$$\frac{V}{T}$$
 = constant

Combining the laws of Boyle and Charles into one expression gives

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

In terms of moles, *Avogadro's hypothesis* can be stated: The same volume is occupied by one mole of any gas at a given temperature and pressure. The number of molecules in one mole is known as the *Avogadro number constant* N_A .

The behavior of all gases that obey the laws of Boyle and Charles, and Avogadro's hypothesis, can be expressed by the ideal gas equation:

PV = nRT

where *R* is called the *gas constant* and *n* is the number of moles of gas. If pressure is written as force per unit area and the volume as area times length, then *R* has the dimensions of energy per degree per mole— $8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ or $1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is equal to the sum of the pressures which each component would exert if placed separately into the container:

$$P_{\text{total}} = p_1 + p_2 + p_3 + \cdots$$

There are two ways to express the fraction which one gaseous component contributes to the total mixture: (1) the pressure fraction, p_i/P_{total} , and (2) the mole fraction, n_i/n_{total} .

4.7.1 Equations of State (PVT Relations for Real Gases)

1. *Virial equation* represents the experimental compressibility of a gas by an empirical equation of state:

$$PV = A_p + B_p P + C_p P^2 + \cdots$$

or

$$PV = A_v + B_v V + \frac{C_v}{V^2} + \cdots$$

where A, B, C, \ldots are called the virial coefficients and are a function of the nature of the gas and the temperature.

2. Van der Waals' equation:

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

where the term an^2/V^2 is the correction for intermolecular attraction among the gas molecules and the *nb* term is the correction for the volume occupied by the gas molecules. The constants *a* and *b* must be fitted for each gas from experimental data; consequently the equation is semiempirical. The constants are related to the critical-point constants as follows:

0.0.7.7

$$a = 3P_c V^2$$
$$b = \frac{V_c}{3}$$
$$R = \frac{8P_c V_c}{3T_c}$$

Substitution into van der Waals' equation and rearrangement leads to only the terms P/P_c , V/V_c , and T/T_c , which are called the reduced variables P_R , V_R , and T_R . For 1 mole of gas,

$$\left(P_R + \frac{3}{V_R^2}\right)\left(V_R - \frac{1}{3}\right) = \frac{8}{3}T_R$$

3. Berthelot's equation of state, used by many thermodynamicists, is

$$PV = nRT \left[1 + \frac{9}{128} \frac{PT_c}{PT} \left(1 - 6\frac{T_c^2}{T^2} \right) \right]$$

This equation requires only knowledge of the critical temperature and pressure for its use and gives accurate results in the vicinity of room temperature for unassociated substances at moderate pressures.

4.7.2 Properties of Gas Molecules

Vapor Density. Substitution of the Antoine vapor-pressure equation for its equivalent $\log P$ in the ideal gas equation gives

$$\log \rho_{\rm vap} = \log M - \log R - \log(t + 273.15) + A - \frac{B}{t+C}$$

where ρ_{vap} is the vapor density in $g \cdot mL^{-1}$ at $t^{\circ}C$, *M* is the molecular weight, *R* is the gas constant, and *A*, *B*, and *C* are the constants of the Antoine equation for vapor pressure. Since this equation is based on the ideal gas law, it is accurate only at temperatures at which the vapor of any specific compound follows this law. This condition prevails at reduced temperatures (T_R) of about 0.5 K.

Velocities of Molecules. The mean square velocity of gas molecules is given by

$$\overline{u^2} = \frac{3kT}{m} = \frac{3RT}{M}$$

where k is Boltzmann's constant and m is the mass of the molecule.

The mean velocity is given by

$$\overline{u} = \left(\frac{8\overline{u^2}}{3\pi}\right)^{1/2}$$

Viscosity. On the assumption that molecules interact like hard spheres, the viscosity of a gas is

$$\eta = \left(\frac{5}{16\sigma^2}\right) \left(\frac{mkT}{\pi}\right)^{1/2}$$

where σ is the molecular diameter.

Mean Free Path. The mean free path of a gas molecule *l* and the mean time between collisions τ are given by

$$l = \frac{m}{\pi\rho\sigma^2\sqrt{2}}$$
$$\tau = \frac{1}{\overline{u}} = \frac{4\eta}{5P}$$

Graham's Law of Diffusion. The rates at which gases diffuse under the same conditions of temperature and pressure are inversely proportional to the square roots of their densities:

$$\frac{r_1}{r_2} = \left(\frac{\rho_2}{\rho_1}\right)^{1/2}$$

Since $\rho = MP/RT$ for an ideal gas, it follows that

$$\frac{r_1}{r_2} = \left(\frac{M_2}{M_1}\right)^{1/2}$$

Henry's Law. The solubility of a gas is directly proportional to the partial pressure exerted by the gas:

$$p_i = kx_i$$

to change in pressure at constant enthalpy:

Joule-Thompson Coefficient for Real Gases. This expresses the change in temperature with respect

$$\mu_{\pi} = \left(\frac{\partial T}{\partial P}\right)_{H}$$

TABLE 4.15 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures

The values in this table, which give the number of moles in 1 liter of gas, are based on the properties of an "ideal" gas and were calculated by use of the formula:

$$Moles/liter = \frac{P}{760} \times \frac{273}{T} \times \frac{1}{22.40}$$

where P is the pressure in millimeters of mercury and T is the temperature in kelvins (= $t^{\circ}C + 273$). To convert to moles per cubic foot multiply the values in the table by 28.316.

Pressure		Temperature °C								
mm of mercury	10°	12°	14°	16°	18°	20°				
655	0.03712	0.03686	0.03660	0.03634	0.03610	0.03585				
660	3731	3714	3688	3662	3637	3612				
665	3768	3742	3716	3690	3665	3640				
670	3796	3770	3744	3718	3692	3667				
675	3825	3798	3772	3745	3720	3695				
680	0.03853	0.03826	0.03800	0.03773	0.03747	0.03694				
685	3881	3854	3827	3801	3775	3749				
690	3910	3882	3855	3829	3802	3776				
695	3938	3910	3883	3856	3830	3804				
700	3967	3939	3911	3884	3858	3831				
702	0.03978	0.03950	0.03922	0.03895	0.03869	0.03842				
704	3989	3961	3934	3906	3880	3853				
706	4000	3972	3945	3917	3891	3864				
708	4012	3984	3956	3929	3902	3875				
710	4023	3995	3967	3940	3913	3886				

Pressure mm of			Temper	ature °C		
mercury	10°	12°	14°	16°	18°	20°
712	0.04035	0.04006	0.03978	0.03951	0.03924	0.03897
714	4046	4018	3989	3962	3935	3908
716	4057	4029	4001	3973	3946	3919
718	4068	4040	4012	3984	3957	3930
720	4080	4051	4023	3995	3968	3941
722	0.04091	0.04063	0.04034	0.04006	0.03979	0.03952
724	4103	4074	4045	4017	3990	3963
726	4114	4085	4057	4028	4001	3973
728	4125	4096	4068	4040	4012	3984
730	4136	4108	4079	4051	4023	3995
732	0.04148	0.04119	0.04090	0.04062	0.04034	0.04006
734	4159	4130	4101	4073	4045	4017
736	4171	4141	4112	4084	4056	4028
738	4182	4153	4124	4095	4067	4039
740	4193	4164	4135	4106	4078	4050
742	0.04204	0.04175	0.04146	0.04117	0.04089	0.04061
744	4216	4186	4157	4128	4100	4072
746	4227	4198	4168	4139	4111	4038
748	4239	4209	4179	4151	4122	4094
750	4250	4200	4101	4162	4122	4105
/50	4250	4220	4191	4102	4155	4105
752	0.04261	0.04231	0.04202	0.04173	0.04144	0.04116
754	4273	4243	4213	4184	4155	4127
756	4284	4254	4224	4195	4166	4138
758	4295	4265	4235	4206	4177	4149
760	4307	4276	4247	4217	4188	4160
540	0.04010	0.04005	0.04250	0.04220	0.04100	0.04171
762	0.04318	0.04287	0.04258	0.04228	0.04199	0.04171
764	4329	4299	4269	4239	4210	4181
766	4341	4310	4280	4250	4221	4192
768	4352	4321	4291	4262	4232	4203
770	4363	4333	4302	4273	4243	4214
772	0.04375	0.04344	0.04314	0.04284	0.04254	0.04225
774	4386	4355	4325	4295	4265	4236
776	4397	4366	4336	4306	4276	4247
778	4409	4378	4347	4317	4287	4258
780	4420	4389	4358	4328	4298	4269
Pressure mm of			Temper	ature °C		
mercury	22°	24°	26°	28°	30°	32°
655	0.03561	0.03537	0.03515	0.03490	0.03467	0 03444
660	3588	3564	3541	3516	3493	3470
665	3614	3501	3568	3543	3520	3406
670	36/2	3618	3505	3560	3546	2572
675	3660	36/5	3677	3506	2570	3540
015	5005	5045	5044	5550	5512	2242

TABLE 4.15 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures (Continued)

Pressure	Temperature °C						
mm of mercury	22°	24°	26°	28°	30°	32°	
680	0.03697	0.03672	0.03649	0.03623	0.03599	0.03575	
685	3724	3699	3676	3649	3625	3602	
690	3751	3726	3702	3676	3652	3628	
695	3778	3753	3729	3703	3678	3654	
700	3805	3780	3756	3729	3705	3680	
700	5005	5700	5750	5725	5705	5000	
702	0.03816	0.03790	0.03767	0.03740	0.03715	0.03691	
704	3827	3801	3777	3750	3726	3701	
706	3838	3812	3788	3761	3736	3712	
708	3849	3823	3799	3772	3747	3722	
710	3860	3834	3810	3783	3758	3733	
712	0.03870	0.03844	0.03820	0.03793	0.03768	0.03744	
714	3881	3855	3831	3804	3779	3754	
716	3892	3866	3842	3815	3789	3765	
718	3902	3877	3853	3825	3800	3775	
720	3914	3888	3863	3836	3811	3786	
722	0.03925	0.03898	0.03874	0.03847	0.03821	0.03796	
724	3936	3909	3885	3857	3832	3807	
726	3947	3920	3896	3868	3842	3817	
728	3957	3931	3906	3878	3853	3828	
730	3968	3941	3917	3889	3863	3838	
732	0.03979	0.03952	0.03928	0.03900	0.03874	0.03849	
734	3990	3963	3938	3910	3885	3859	
736	4001	3974	3949	3921	3895	3870	
738	4012	3985	3960	3932	3906	3880	
740	4023	3995	3971	3942	3916	3891	
742	0.04033	0.04006	0.03981	0.03953	0.03927	0.03901	
744	4044	4017	3992	3964	3938	3912	
746	4055	4028	4003	3974	3948	3922	
748	4066	4039	4014	3985	3959	3933	
750	4077	4049	4024	3996	3969	3943	
752	0.04088	0.04060	0.04035	0.04006	0.03980	0.03954	
754	4099	4071	4046	4017	3991	3964	
756	4110	4082	4056	4028	4001	3975	
758	4121	4093	4067	4038	4012	3985	
760	4131	4103	4078	4049	4022	3996	
760	0.04142		4000	1070	4022	1007	
762	0.04142	4114	4089	4060	4033	4006	
764	4153	4125	4099	4070	4043	4017	
/66	4164	4136	4110	4081	4054	4027	
/08	4175	4147	4121	4092	4065	4038	
770	4186	4158	41 <i>3</i> 2	4102	4075	4048	
772	0.04197	0.04168	0.04142	0.04113	0.04086	0.04059	
774	4207	4179	4153	4124	4096	4070	
776	4218	4190	4164	4134	4107	4080	
778	4229	4201	4175	4145	4117	4091	
780	4240	4211	4185	4155	4128	4101	

TABLE 4.15 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures (Continued)

		Aqueous solution				
Temperature, °C	ΔG° J·mol ⁻¹	ΔH° J·mol ⁻¹	ΔS° J·deg ⁻¹ ·mol ⁻¹	ΔC_{p}° J·deg ⁻¹ ·mol ⁻¹		
0	0.4	-42.7	-0.17	55.2		
10	0.8	58.1	0.21	45.6		
20	4.2	148.1	0.50	38.9		
30	10.9	230.5	0.79	35.1		
40	20.1	313.4	1.09	33.0		
50	32.2	397.9	1.34	32.6		
60	46.8	482.4	1.59	32.2		

TABLE 4.16 Corrections to Be Added to Molar Values to Convert to Molal

4.8 COOLING

TABLE 4.17 Cooling Mixtures

The table below gives the lowest temperature that can be obtained from a mixture of the inorganic salt with finely shaved dry ice. With the organic substances, dry ice $(-78^{\circ}C)$ in small lumps can be added to the solvent until a slight excess of dry ice remains or liquid nitrogen $(-196^{\circ}C)$ can be poured into the solvent until a slush is formed that consists of the solid-liquid mixture at its melting point.

Sub	tance	Quantity of substance, g	Quantity of water, mL	Temperature °C	,
Ammonium	nitrate	100	94	-4.0	
Sodium nitra	te	75	100	-5.3	
Sodium thios	ulfate 5-water	110	100	-8.0	
Sodium chlo	ride	36	100	-10.0	
Sodium nitra	te	50	100	-17.8	
Sodium bron	nide	66	100	-28	
Magnesium of	hloride	85	100	- 34	
Calcium chlo	ride 6-water	100	81	-40.3	
		100	70	- 55	
Substance	Temperat	ture, °C	Substance		Temperature, °C
Ethylene glycol	- 1	3	Acetone		- 77
1,2-Dichlorobenzene	-1^{\prime}	7	Ethyl acetate		- 84
Carbon tetrachloride	-2	2.9	2-Butanone		-87
Bromobenzene	-3	1	Hexane		- 95
Methoxybenzene	-3	7	Methanol		- 98
Bis(2-ethoxyethyl) ether	-4	4	Carbon disulfid	e	-112
Chlorobenzene	-4	5	Bromoethane		-119
N-Methylaniline	- 5	7	Pentane		-130
<i>p</i> -Cymene	-6	8	2-Methylbutane	e	-160

TABLE 4.18 Molecular Lowering of the Melting or Freezing Point

Cryoscopic constants.

The cryoscopic constant K_f gives the depression of the melting point ΔT (in degrees Celsius) produced when 1 mol of solute is dissolved in 1000 g of a solvent. It is applicable only to dilute solutions for which the number of moles of solute is negligible in comparison with the number of moles of solvent. It is often used for molecular weight determinations.

$$M_2 = \frac{1000w_2K_f}{w_1\Delta T}$$

where w_1 is the weight of the solvent and w_2 is the weight of the solute whose molecular weight is M_2 .

Compound	K_{f}	Compound	K_f
Acetamide	4.04	Diphenylamine	8.60
Acetic acid	3.90	Diphenyl ether	7.88
Acetone	2.40	1,2-Ethanediamine	2.43
Ammonia	0.957	Ethoxybenzene	7.15
Aniline	5.87	Formamide	3.85
Antimony(III) chloride	17.95	Formic acid	2.77
Benzene	5.12	Glycerol	3.3 to 3.7
Benzonitrile	5.34	Hexamethylphosphoramide	6.93
Benzophenone	9.8		
Bicyclohexane	14.52	N-Methylacetamide	6.65
Biphenyl	8.0	2-Methyl-2-butanol	10.4
Borneol	35.8	Methylcyclohexane	14.13
Bornylamine	40.6	Methyl cis-9-octadecenoate	3.4
Butanedinitrile	18.26	2-Methyl-2-propanol	8.37
Camphene	31.08	Naphthalene	6.94
Camphoquinone	45.7	Nitrobenzene	6.852
D-(+)-Camphor	39.7	Octadecanoic acid	4.50
Carbon tetrachloride	29.8	2-Oxohexamethyleneimine	7.30
o-Cresol	5.60	Phenol	7.40
p-Cresol	6.96	Pyridine	4.75
Cyclohexane	20.0	Quinoline	1.95
Cyclohexanol	39.3	Succinonitrile	18.26
Cyclohexylcyclohexane	14.52	Sulfuric acid	1.86
Cyclopentadecanone	21.3	1,1,2,2-Tetrabromoethane	21.7
cis-Decahydronaphthalene	19.47	1,1,2,2-Tetrachloro-	
trans-Decahydronaphthalene	20.81	1,2-difluoroethane	37.7
Dibenz[de,kl]anthracene	25.7	Tetramethylene sulfone	64.1
Dibenzyl ether	6.27	<i>p</i> -Toluidine	5.372
1,2-Dibromoethane	12.5	Tribromomethane	14.4
Diethyl ether	1.79	1,3,3-Trimethyl-2-oxabicyclo-	
1,2-Dimethoxybenzene	6.38	[2.2.2.]octane	6.7
N,N-Dimethylacetamide	4.46	Triphenylmethane	12.45
2,2-Dimethyl-1-propanol	11.0	Water	1.86
Dimethyl sulfoxide	4.07	<i>p</i> -Xylene	4.3
1,4-Dioxane	4.63		

4.9 DRYING HUMIDIFICATION

TABLE 4.19Drying Agents

Drying agent	Most useful for	Residual water, mg H ₂ O per liter of dry air (25°C)	Grams water removed per gram of desiccant	Regeneration, °C
Al ₂ O ₃	Hydrocarbons	0.0020.005	0.2	175 (24 h)
$Ba(ClO_4)_2^a$	Inert gas streams	0.6-0.8	0.17	140
BaO	Basic gases: hydrocarbons, aldehydes, alcohols	0.0007-0.003	0.12	1000
CaC_2^b	Ethers		0.56	Impossible
$CaCl_{2}^{c}$	Inert organics	0.1-0.2	$0.15 (1 H_2O)$ 0.30 (2 H O)	250
CaH_d	Hydrocarbons ethers amines esters higher alcohols	1×10^{-5}	0.85	Impossible
CaO	Ethers esters alcohols amines	0.01 - 0.003	0.31	Difficult 1000
CaSO.	Most organic substances	0.005-0.07	0.07	225
Dow Desiccant 812 ^e	Most materials	(5-200 ppm)		No
K ₂ CO ₂	Most materials except acids and phenols	(° FF)	0.16	158
KOH	Amines	0.01-0.9		Impossible
LiAlH.	Hydrocarbons		1.9	Impossible
$Mg(ClO_4)_{2^a}$	Gas streams	0.0005 - 0.002	0.24	250 (high vacuum)
MgO	All but acidic compounds	0.008	0.45	800
MgSO₄	Most organic compounds	1-12	0.15-0.75	Not feasible
Molecular sieves: 4X	Molecules with effective diameter > 4 Å	0.001	0.18	250
5X	Molecules with effective diameter >5 Å	0.001	0.18	250
9.5% Na-Pb alloy ^d	Hydrocarbons, ethers	(For solvents only)	0.08	Impossible
Na ₂ SO ₄	Ketones, acids, alkyl and aryl halides	12	1.25	150
P_2O_5	Gas streams; not suitable for alcohols, amines, ke- tones, or amines	$2 imes 10^{-5}$	0.5	Not feasible
Silica gel	Most organic amines	0.002-0.07	0.2	200-350
Sulfuric acid	Air and inert gas streams	0.003-0.008	Indefinite	Not feasible

^{*a*}May form explosive mixtures when contacting organic material. ^{*d*}H₂ formed. ^{*e*}Used as column drying of organic liquids. ^bExplosive C₂H₂ formed. ^fStrong reductant. ^cSlow in drying action.

4.76 SECTION FOUR

A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain constant humidity in an enclosed space. Table 4.20 gives a number of salts suitable for this purpose. The aqueous tension (vapor pressure, in millimeters of Hg) of a solution at a given temperature is found by multiplying the decimal fraction of the humidity by the aqueous tension at 100 percent humidity for the specific temperature. For example, the aqueous tension of a saturated solution of NaCl at 20°C is $0.757 \times 17.54 = 13.28$ mmHg and at 80°C it is $0.764 \times 355.1 =$ 271.3 mmHg.

		%	Humidity at	Specified To	emperatures	(°C)	
Solid Phase	10	20	25	30	40	60	80
K ₂ Cr ₂ O ₇			98.0				
K ₂ SO ₄	98	97	97	96	96	96	
KNO ₃	95	93	92.5	91	88	82	
KCI	88	85.0	84.3	84	81.7	80.7	79.5
KBr		84	80.7		79.6	79.0	79.3
NaCl	76	75.7	75.3	74.9	74.7	74.9	76.4
NaNO ₃			73.8	72.8	71.5	67.5	65.5
NaNO ₂		66	65	63.0	61.5	59.3	58.9
NaBr · 2H ₂ O		57.9	57.7		52.4	49.9	50.0
$Na_2Cr_2O_7 \cdot 2H_2O$	58	55	54		53.6	55.2	56.0
$Mg(NO_3)_2 \cdot 6H_2O$	57	55	52.9	52	49	43	
$K_2CO_3 \cdot 2H_2O$	47	44	42.8		42		
$MgCl_2 \cdot 6H_2O$	34	33	33.0	33	32	30	
KF · 2H,O				27.4	22.8	21.0	22.8
$KC_{2}H_{3}O_{2} \cdot 1.5H_{2}O_{3}$	24	23	22.5	22	20		
LiCl · H ₂ O	13	12	10.2	12	11	11	
КОН	13	9	8	7	6	5	
100% Humidity: Aqueous							
Tension (mm Hg)	9.21	17.54	23.76	31.82	55.32	149.4	355.1

TABLE 4.20 Solutions for Maintaining Constant Humidity

Demont	Aqueous H ₂ SO ₄		Na	aOH	$CaCl_2$		
humidity	mmHg	Molality	Weight %	Molality	Weight %	Molality	Weight %
100	23.76	0.00	0.00	0.00	0.00	0.00	0.00
95	22.57	1.263	11.02	1.465	5.54	0.927	9.33
90	21.38	2.224	17.91	2.726	9.83	1.584	14.95
85	20.19	3.025	22.88	3.840	13.32	2.118	19.03
80	19.00	3.730	26.79	4.798	16.10	2.579	22.25
75	17.82	4.398	30.14	5.710	18.60	2.995	24.95
70	16.63	5.042	33.09	6.565	20.80	3.400	27.40
65	15.44	5.686	35.80	7.384	22.80	3.796	29.64
60	14.25	6.341	38.35	8.183	24.66	4.188	31.73
55	13.07	7.013	40.75	8.974	26.42	4.581	33.71
50	11.88	7.722	43.10	9.792	28.15	4.990	35.64
45	10.69	8.482	45.41	10.64	29.86	5.431	37.61
40	9.50	9.304	47.71	11.54	31.58	5.912	39.62
35	8.31	10.21	50.04	12.53	33.38	6.478	41.83
30	7.13	11.25	52.45	13.63	35.29	7.183	44.36
25	5.94	12.47	55.01	14.96	37.45		
20	4.75	13.94	57.76	16.67	40.00		
15	3.56	15.81	60.80	19.10	43.32		
10	2.38	18.48	64.45	23.05	47.97		
5	1.19	23.17	69.44				

TABLE 4.21 Concentration of Solutions of H_2SO_4 , NaOH, and CaCl₂ Giving Specified Vapor Pressures and Percent Humidity at 25°C

Concentrations are expressed in percentage of anhydrous solute by weight.

					١	Wet bult	o depress	sion, °C				
Dry bulb	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
°C						Relativ	e humidi	ity, %				
- 10	83	67	51	35	19							
-5	88	76	64	52	41	29	18	7				
0	91	81	72	64	55	46	38	29	21	13	5	
2	91	84	76	68	60	52	44	37	29	22	14	7
4	92	85	78	71	63	57	49	43	36	29	22	16
6	93	86	79	73	66	60	54	48	41	35	29	24
8	93	87	81	75	69	63	57	51	46	40	35	29
10	94	88	82	77	71	66	60	55	50	44	39	34
12	94	89	83	78	73	68	63	58	53	48	43	39
14	95	90	85	79	75	70	65	60	56	51	47	42
16	95	90	85	81	76	71	67	63	58	54	50	46
18	95	91	86	82	77	73	69	65	61	57	53	49
20	96	91	87	83	78	74	70	66	63	59	55	51
22	96	92	87	83	80	76	72	68	64	61	57	54
24	96	92	88	84	80	77	73	69	66	62	59	56

TABLE 4.22 Relative Humidity from Wet and Dry Bulb Thermometer Readings

					V	Wet bull	o depress	ion, °C				
Dry bulb	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
°C						Relativ	e humidi	ty, %				
26	96	92	88	85	81	78	74	71	67	64	61	58
28	96	93	89	85	82	78	75	72	69	65	62	59
30	96	93	89	86	83	79	76	73	70	67	64	61
35	97	94	90	87	84	81	78	75	72	69	67	64
40	97	94	91	88	85	82	80	77	74	72	69	67
					V	Wet bull	o depress	ion, °C				
Dry bulb	6.5	7.0	7.5	8.0	8.5	9.0	10.0	11.0	12.0	13.0	14.0	15.0
°C		-				Relativ	e humidi	ity, %				
4	9											
6	17	11	5									
8	24	19	14	8								
10	29	24	20	15	10	6						
12	34	29	25	21	16	12	5					
14	38	34	30	26	22	18	10					
16	42	38	34	30	26	23	15	8				
18	45	41	38	34	30	27	20	14	7			
20	48	44	41	37	34	31	24	18	12	6		
22	50	47	44	40	37	34	28	22	17	11	6	
24	53	49	46	43	40	37	31	26	20	15	10	5
26	54	51	49	46	43	40	34	29	24	19	14	10
28	56	53	51	48	45	42	37	32	27	22	18	13
30	58	55	52	50	47	44	39	35	30	25	21	17
32	60	57	54	51	49	46	41	37	32	28	24	20
34	61	58	56	53	51	48	43	39	35	30	26	23
36	62	59	57	54	52	50	45	41	37	33	29	25
38	63	61	58	56	54	51	47	43	39	35	31	27
40	64	62	59	57	54	53	48	44	40	36	33	29

TABLE 4.22 Relative Humidity from Wet and Dry Bulb Thermometer Readings (Continued)

		De	ew point reading, °C		
Depression of dew point	- 10	0	10	20	30
°C		R	elative humidity, %		
0.5	96	96	96	96	97
1.0	92	93	94	94	94
1.5	89	89	90	91	92
2.0	86	87	88	88	89
3.0	79	81	82	83	84
4.0	73	75	77	78	80
5.0	68	70	72	74	75
6.0	63	66	68	70	71
7.0	59	61	63	66	68
8.0	54	57	60	62	64
9.0	51	53	56	58	61
10.0	47	50	53	55	57
11.0	44	47	49	52	
12.0	41	44	47	49	
13.0	38	41	44	46	
14.0	35	38	41	44	
15.0	33	36	39	42	
16.0	31	34	37	39	
18.0	27	30	33	35	
20.0	24	26	29	32	
22.0	21	23	26		
24.0	18	21	23		
26.0	16	18	21		
28.0	14	16	19		
30.0	12	14	17		

TABLE 4.23 Relative Humidity from Dew Point Readings

TABLE 4.24 Mass of Water Vapor in Saturated Air

The values in the table are grams of water contained in a cubic meter (m^3) of saturated air at a total pressure 101 325 Pa (1 atm).

°C	$g \cdot m^{-3}$	°C	g ⋅ m ⁻³	°C	$g \cdot m^{-3}$
- 30	0.341	12	10.65	53	95.56
- 29	0.375	13	11.35	54	100.0
-28	0.413	14	12.05	55	104.5
- 27	0.456	15	12.80	56	109.1
-26	0.504	16	13.60	57	114.1
-25	0.554	17	14.45	58	119.2
- 24	0.607	18	15.35	59	124.7
-23	0.667	19	16.30	60	130.2
-22	0.733	20	17.30	61	136.0
-21	0.804	21	18.35	62	142.1
-20	0.883	22	19.40	63	148.4
- 19	0.968	23	20.55	64	154.9
-18	1.063	24	21.75	65	161.3
-17	1.164	25	23.05	66	167.9
- 16	1.273	26	24.35	67	175.1
-15	1.375	27	25.75	68	182.6
-14	1.510	28	27.20	69	190.3
-13	1.650	29	28.75	70	198.2
-12	1.800	30	30.35	71	206.5
-11	1.965	31	32.05	72	215.1
-10	2.140	32	33.80	73	223.7
-9	2.331	33	35.60	74	233.0
-8	2.539	34	37.55	75	242.0
-7	2.761	35	39.55	76	251.2
-6	3.003	36	41.65	77	261.1
-5	3.250	37	43.90	78	271.6
-4	3.512	38	46.20	79	282.3
-3	3.810	39	48.60	80	293.4
-2	4.131	40	51.21	81	304.8
-1	4.473	41	53.86	82	316.6
0	4.849	42	56.61	83	328.7
1	5.199	43	59.51	84	341.2
2	5.569	44	62.53	85	353.6
3	5.947	45	65.52	86	366.2
4	6 35	46	68.61	87	379.9
5	6.80	47	72.00	88	394.1
6	7 25	48	75.56	89	408.6
7	7 75	49	79.24	90	423.5
8	8 25	50	83.05	91	430 0
9	8.80	51	87 04	02	454 8
10	9.40	52	91.72	03	471 2
11	10.00	52	11.22	,,	7/1,2
	10.00				

4.10 MOLECULAR WEIGHT

TABLE 4.25 Molecular Elevation of the Boiling Point

Ebullioscopic constants.

Molecular weights can be determined with the relation:

$$M = E_{\rm b} \frac{1000 w_2}{w_1 \Delta T_{\rm b}}$$

where ΔT_b is the elevation of the boiling point brought about by the addition of w_2 grams of solute to w_1 grams of solvent and E_b is the ebullioscopic constant. In the column headed "Barometric correction" is the number of degrees for each millimeter of difference between the barometric reading and 760 mmHg to be subtracted from E_b if the pressure is lower, or added if higher, than 760 mm. In general, the effect is within experimental error if the pressure is within 10 mm of 760 mm.

The ebullioscopic constant, a characteristic property of the solvent, may be calculated from the relation:

$$E_{\rm b} = \frac{RT_{\rm b}^2 M}{\Delta_{\rm vap} H}$$

where *R* is the molar gas constant, *M* is the molar mass of the solvent, and $\Delta_{vap}H$ the molar enthalpy (heat) of vaporization of the solvent.

	Barometric	$E_{\rm b},$	
Compound	correction	C Kg · mor ·	
Acetic acid	0.0008	3.22	
Acetic anhydride		3.79	
Acetone	0.0004	1.80	
Acetonitrile		1.44	
Acetophenone		5.81	
Aniline	0.0009	3.82	
Benzaldehyde		4.24	
Benzene	0.0007	2.64	
Benzonitrile		4.02	
Bromobenzene	0.0016	6.35	
Bromoethane		1.73	
1-Butanol		2.17	
2-Butanone		2.28	
cis-2-Butene-1,4-diol		2.73	
D-(+)-Camphor	0.0015	4.91	
Carbon disulfide	0.0006	2.42	
Carbon tetrachloride	0.0013	5.26	
Chlorobenzene	0.0011	4.36	
1-Chlorobutane		3.13	
Chloroethane		1.77	
Chloroform	0.0009	3.80	
Cyclohexane	0.0007	2.92	
Cyclohexanol		3.5	
Decane		6.10	
1,2-Dibromomethane	0.0016	6.01	
1,1-Dichloroethane		3.13	
1,2-Dichloroethane		3.27	

Compound	Barometric correction	$E_{\rm b},$ °C kg · mol ⁻¹
Dichloromethane		2.42
Diethyl ether	0.0005	2.20
Diethyl sulfide		3.14
Dimethoxymethane		2.12
N,N-Dimethylacetamide		3.22
Dimethyl sulfide		1.85
Dimethyl sulfoxide		3.22
1,4-Dioxane		3.00
Ethanol	0.0003	1.22
Ethoxybenzene		4.90
Ethyl acetate	0.0007	2.82
Ethylene glycol		2.26
Formic acid		2.36
Glycerol		6.52
Heptane	0.0008	3.62
Hexane		2.90
2-Hydroxybenzaldehyde		5.87
Iodoethane		5.27
Iodomethane		4.31
4-Isopropyl-1-methylbenzene		5.92
Methanol	0.0002	0.86
Methoxybenzene		4.20
Methyl acetate	0.0005	2.21
<i>N</i> -Methylaniline		4.3
2-Methyl-2-butanol		2.64
3-Methyl-1-butanol		2.88
3-Methylbutyl acetate		4.83
<i>N</i> -Methylformamide		2.2
Methyl formate		1.66
2-Methyl-1-propanol		2.14
2-Methyl-2-propanol		1 99
Nanhthalene	0.0014	5 94
Nitrobenzene	0.0014	5.24
Nitroethane		2 46
Nitromethane		2.40
Octane		4 39
1-Octanol		5.06
Pentyl acetate		4 71
Phenol	0.0009	3.54
Piperidine	0.0007	3.24
Propagoie acid		3.21
1-Propanol		1.66
2-Propanol		1.58
2-1 Topanoi Propionitrile		1.58
Dyridine		2.83
Pyrrole		2.05
Pyrrolidine		2.35
		2.34 5.62
Tatrachlaroothulano		J.UZ 6 19
Totrachloremethane		5.26
1 2 2 4 Tetrahardenentthalas		5.59
Tolyono	0.0008	J.JO 2.40
Ioiuene	0.0008	3.40

TABLE 4.25 Molecular Elevation of the Boiling Point (Continued)

Compound	Barometric correction	E _b , °C kg · mol⁻¹	
<i>p</i> -Toluidine	All 1 - C - C - C - C - C - C - C - C - C -	4.51	
Trichloroethylene		4.52	
Trichloromethane	0.0009	3.80	
1,1,2-Trichloro-1,2,2-trifluoroethane		5.93	
Triethylamine		3.57	
Water	0.0001	0.512	
o-Xylene		4.25	

TABLE 4.25 Molecular Elevation of the Boiling Point (*Continued*)

4.11 HEATING BATHS

Medium	Melting point, °C	Boiling point, °C	Useful range, °C	Flash point, °C	Comments
Water	0	100	0-100	None	Ideal
Silicone oil	- 50		30-250	315	Somewhat viscous at low temperature
Triethylene glycol	-7	285	0-250	165	Noncorrosive
Glycerol	18	290	-20 to 260	160	Water-soluble, nontoxic
Paraffin	50		60-300	199	Flammable
Dibutyl o-phthalate	-35	340	150-320	171	Generally used

TABLE 4.26 Substances That Can Be Used for Heating Baths

4.12 SEPARATION METHODS

4.12.1 McReynolds' Constants

The *Kovats Retention indices* (R.I.) indicate where compounds will appear on a chromatogram with respect to unbranched alkanes injected with the sample. By definition, the R.I. for pentane is 500, for hexane is 600, for heptane is 700, and so on, regardless of the column used or the operating conditions, although the exact conditions and column must be specified, such as liquid loading, particular support used, and any pretreatment. For example, suppose that on a 20% squalane column at 100°C, the retention times for hexane, benzene, and octane are found to be 15, 16, and 25 min, respectively. On a graph of ln t'_R (naperian logarithm of the adjusted retention time) of the alkanes versus their retention indices, a R.I. of 653 for benzene is read off the graph. The number 653 for benzene means that it elutes halfway between hexane and heptane on a logarithmic time scale. If the experiment is repeated with a dinonyl phthalate column, the R.I for benzene is found to be 736 (lying between heptane and octane), which implies that dinonyl phthalate will retard benzene slightly more than squalane will; that is, dinonyl phthalate is slightly more polar than squalane by $\Delta I = 83$ units. The difference gives a measure of solute-solvent interaction due to all intermolecular forces other than London dispersion forces. The latter are the principal solute-solvent effects with squalane.

4		
ò		
4		

TABLE 4.27	Solvents of	f Chromatographic Interest
------------	-------------	----------------------------

	Boiling	Solvent stre	ength parameter	Viscosity,	Refractive	
Solvent	point, °C	e° (SiO ₂)	e° (Al ₂ O ₃)	$- \frac{\text{mN} \cdot \text{s} \cdot \text{m}^{-2}}{(20^{\circ}\text{C})}$	index (20°C)	UV cutoff, nm
Fluoroalkanes			-0.25		1.25	
Pentane	36	0.0	0.0	0.24 ^{15℃}	1.358	210
Hexane	69	0.0	0.0	0.31	1.375	210
2,2,4-Trimethylpentane	99		0.01	0.50	1.392	215
Decane	174		0.04	0.93	1.412	210
Cyclohexane	81	-0.05	0.04	0.98	1.426	210
Cyclopentane	49		0.05	0.44	1.407	210
Diisobutylene	101		0.06		1.411	
1-Pentene	30		0.08	0.24 ^{0℃}	1.371	
Carbon disulfide	46	0.14	0.15	0.36	1.626	380
Carbon tetrachloride	77	0.14	0.18	0.97	1.466	265
1-Chlorobutane	78		0.26	0.43	1.402	220
1-Chloropentane	98		0.26	0.58	1.412	225
o-Xylene	144		0.26	0.81	1.505	290
Diisopropyl ether	68		0.28	0.38 ^{25°C}	1.369	220
2-Chloropropane	35		0.29	0.33	1.378	225
Toluene	111		0.29	0.59	1.497	286
1-Chloropropane	47		0.30	0.35	1.389	225
Chlorobenzene	132		0.40	0.80	1.525	
Benzene	80	0.25	0.32	0.65	1.501	280
Bromoethane	38		0.37	0.40	1.424	
Diethyl ether	35	0.38	0.38	0.25	1.353	218
Diethyl sulfide	92		0.38	0.45	1.443	290
Chloroform	62	0.26	0.40	0.57	1.443	245
Dichloromethane	41		0.42	0.44	1.425	235
4-Methyl-2-pentanone	116		0.43	0.42 ^{15℃}	1.396	335
Tetrahydrofuran	66		0.45	0.55	1.407	220
1,2-Dichloroethane	84		0.49	0.80	1.445	228
2-Butanone	80		0.51	0.42 ^{15℃}	1.379	330
1-Nitropropane	131		0.53	0.80 ^{25°C}	1.402	380
Acetone	56	0.47	0.56	0.32	1.359	330

1,4-Dioxane	101	0.49	0.56	1.44 ^{15℃}	1.420	215
Ethyl acetate	77	0.38	0.58	0.45	1.372	255
Methyl acetate	56		0.60	0.48 ^{15℃}	1.362	260
1-Pentanol	138		0.61	4.1	1.410	210
Dimethyl sulfoxide	189		0.62	2.47	1.478	265
Aniline	184		0.62	4.40	1.586	
Diethylamine	56		0.63	0.33	1.386	275
Nitromethane	101		0.64	0.67	1.394	380
Acetonitrile	82	0.50	0.65	0.37	1.344	190
Pyridine	115		0.71	0.97	1.510	330
2-Butoxyethanol	170		0.74	3.15 ^{25℃}	1.420	220
1-Propanol	97		0.82	2.25	1.386	210
2-Propanol	82		0.82	2.50	1.377	210
Ethanol	78		0.88	1.20	1.361	210
Methanol	65		0.95	0.59	1.328	210
Ethylene glycol	198		1.11	21.8	1.432	210
Acetic acid	118		large	1.23	1.372	260
Water	100		large	1.00	1.333	191

Stationary phase			Temp., °C		McReynolds' constants						
	Chemical type	Similar stationary phases	Min	Max	x'	y'	z'	u'	s'	Σ	USP code
	Boiling-po	oint separation of broad mole	cular weigh	t range of c	ompounds	; nonpola	phases				
Squalane	2,6,10,15,19,23-Hexa- methyltetracosane		20	150	0	0	0	0	0	0	
Paraffin oil					9	5	2	6	11	33	
Apiezon [®] L			50	300	32	22	15	32	42	143	
SPB-1	Poly(dimethylsiloxane)	SA-1, DB-1	-60	320	4	58	43	56	38	199	
SP [™] -2100	Poly(dimethylsiloxane)	DC-200, SE 30, UC W98, DC 200	0	350	17	57	45	67	43	229	G 9
OV-1	Methylsiloxane gum		100	350	16	55	44	65	42	227	G 2
OV-101	Methylsiloxane fluid		20	350	17	57	45	67	43	234	G 1
SPB-5	1% Vinyl, 5% phenyl methyl polysiloxane	SA-5, DB-5	-60	320	19	74	64	93	62	312	
SE-54	1% Vinyl, 5% phenyl methyl polysiloxane	PTE-5	50	300	19	74	64	93	62	312	G 36
SE-52	5% Phenyl methyl polysiloxane		50	300	32	72	65	98	67	334	G 27
OV-73	5.5% Phenyl methyl polysiloxane	SP-400	0	325	40	86	76	114	85	401	G 27
OV-3	Poly(dimethyldiphenyl- siloxane); 90%:10%		0	350	44	86	81	124	88	423	
Dexsil [®] 300	Carborane — methyl silicone		50	450	47	80	103	148	96	474	G 33
Dexsil [®] 400	Carborane — methyl- phenyl silicone		50	400	72	108	118	166	123	587	

TABLE 4.28 McReynolds' Constants for Stationary Phases in Gas Chromatography

OV-7	20% Phenyl methyl polysiloxane	DC 550	0	350	69	113	111	171	128	592	
SPB-20	20% Phenyl methyl polysiloxane	SPB-35, SPB-1701, DB-1301	<20	300	67	116	117	174	131	605	
Di-(2-ethylhexyl)- sebacate			-20	125	72	168	108	180	125	653	G 11
DC 550	25% Phenyl methyl polysiloxane		20	225	81	124	124	189	145	663	G 28
	Un	saturated hydrocarbons and	other comp	ounds of ir	ntermediate	e polarity					
Diisodecyl phthalate			20	150	84	173	137	218	155	767	G 24
OV-11	35% Phenyl methyl polysiloxane		0	350	102	142	145	219	178	786	
OV-1701	Vinyl methyl poly- siloxane	SPB-1701, SA-1701, DB-1701	0	250	67	170	152	228	171	789	
Poly-I 110				275	115	194	122	204	202	837	G 37
SP-2250	Poly(phenylmethyl- siloxane); 50% phenyl	OV-17, DB-17	0	375	119	158	162	243	202	884	G 3
Dexsil [®] 410	Carborane—methylcyano ethyl silicone		50	400	72	286	174	249	171	952	
UCON® LB-550-X	Polyalkylene glycol		20	200	118	271	158	243	206	996	
UCON LB-1880-X	Polyalkylene glycol			200	123	275	161	249	212	1020	G 18
Poly-A 103 OV-22	Poly(diphenyldimethyl- siloxane); 65%:35%		0	275 350	115 160	331 188	144 191	263 283	214 253	1072 1075	G 10
Di(2-ethylhexyl) phthalate				150	135	254	213	320	235	1157	G 22
OV-25	Poly(diphenyldimethyl- siloxane); 75%:25%		0	350	178	204	208	305	280	1175	G 17

Stationary phase	Chemical type		Tem	Temp., °C		McReynolds' constants						
		Similar stationary phases	Min	Max	<i>x</i> '	y'	z'	u'	s'	Σ	USP code	
		Moderat	tely polar co	mpounds								
DC QF-1			0	250	144	233	355	463	305	1500		
OV-210	50% Trifluoropropyl- methylpolysiloxane	SP-2401, DB-210	0	275	146	238	358	468	310	1520	G 6	
OV-215	Poly(trifluoropropyl- methylsiloxane)		0	275	149	240	363	478	315	1545		
UCON-50-HB- 2000	Polyalkylene glycol		0	200	202	394	253	392	341	1582		
Triton [®] X-100	Octylphenoxy poly- ethoxy ethanol		0	190	203	399	268	402	362	1634		
UCON 50-HB- 5100	Polyglycol		0	200	214	418	278	421	375	1706		
XE-60	Poly(cyanoethylphenyl- methylsiloxane)		0	250	204	381	340	493	367	1785	G 26	
OV-225	25% Cyanopropyl 25% phenyl methyl polysiloxane	DB-225, DB-23	0	265	228	369	338	492	386	1813	G 19	
Ipegal CO-880	Nonylphenoxypoly- (ethyleneoxy)ethanol		100	200	259	461	311	482	426	1939	G 31	
Triton® X-305	Octylphenoxy poly- ethoxy ethanol		200	250	262	467	314	488	430	1961		
		Рс	olar compou	nds								
Hi-EFF-3BP	Neopentylglycol succinate		50	230	272	469	366	539	474	2120	G 21	
Carbowax 20M- TPA	Polyethyleneglycol + terephthalic acid		60	250	321	367	368	573	520	2149	G 25	

TABLE 4.28 McReynolds' Constants for Stationary Phases in Gas Chromatography (Continued)

Supelcowax [™] 10	Polyethyleneglycol + terephthalic acid	DB-WAX, SA-WAX	50	280	305	551	360	562	484	2262	
SP-1000	Polyethyleneglycol + terephthalic acid		60	220	304	552	359	549	498	2262	
Carbowax 20M	Polyethyleneglycol	SP-2300	25	275	322	536	368	572	510	2308	G 16
Nukol™		SP-1000, FFAP, OV-351			311	572	374	572	520	2349	
Carbowax 3350		Formerly Carbowax 4000	60	200	325	551	375	582	520	2353	G 15
OV-351	Polyethyleneglycol + nitroterephthalic acid	SP-1000	50	270	335	552	382	583	540	2392	
SP-2300	36% Cyanopropyl		25	275	316	495	446	637	530	2424	
Silar 5 CP	50% Cyanopropyl phenyl silicone	SP-2300	0	250	319	495	446	637	531	2428	G 7
FFAP	Sincone		50	250	340	580	397	602	627	2546	G 35
Hi-EFF-10BP	Phenyldiethanolamine succinate		20	230	386	555	472	674	656	2 74 4	G 21
Carbowax 1450		Formerly 1540	50	175	371	639	453	666	641	2770	G 14
SP-2380					402	629	520	744	623	2918	
SP-2310	55% Cyanopropyl	Silar 7 CP	25	275	440	637	605	840	670	3192	
SP-2330	68% Cyanopropyl	SP-2331, SH-60	25	275	490	725	630	913	778	3536	
Silar 9 CP	90% Cyanopropyl phenyl		50	250	489	725	631	913	778	3536	G 8
Hi-EFF-1BP	Diethyleneglycol succinate		20	200	499	751	593	840	860	3543	G 4
SP-2340	75% Cyanopropyl phenyl	OV-275, SH-80	<25	275	520	757	659	942	800	3678	
Silar 10 CP	100% Cyanopropyl silicone	SP-2340	25	275	523	757	659	942	801	3682	G 5
THEED	Amino alcohol		0	125	463	942	626	801	893	3725	
OV-275	Dicyanoallylsilicone		25	250	629	872	763	110	849	4219	
Absolute index values on squalane for reference compounds:				653	590	627	652		699		

Note: USP code is the United States Pharmacopeia designation.

Now the overall effects due to hydrogen bonding, dipole moment, acid-base properties, and molecular configuration can be expressed as

$$\sum \Delta I = ax' + by' + cz' + du' + es'$$

where $x' = \Delta I$ for benzene, $y' = \Delta I$ for 1-butanol, $z' = \Delta I$ for 2-pentanone, $u' = \Delta I$ for 1-nitropropane, and $s' = \Delta I$ for pyridine (or dioxane).

4.12.2 Chromatographic Behavior of Solutes

Retention Behavior. On a chromatogram the distance on the time axis from the point of sample injection to the peak of an eluted component is called the *uncorrected retention time* t_R . The corresponding retention volume is the product of retention time and flow rate, expressed as volume of mobile phase per unit time:

$$V_R = t_R F_c$$

The *average linear velocity u* of the mobile phase in terms of the column length L and the average linear velocity of eluent t_M (which is measured by the transit time of a nonretained solute) is

$$u = \frac{L}{t_M}$$

The *adjusted retention time* t'_R is given by

$$t'_R = t_R - t_M$$

When the mobile phase is a gas, a *compressibility factor j* must be applied to the adjusted retention volume to give the *net retention volume*:

$$V_N = jV_R'$$

The compressibility factor is expressed by

$$j = \frac{3 \left[(P_i/P_o)^2 - 1 \right]}{2 \left[(P_i/P_o)^3 - 1 \right]}$$

where P_i is the carrier gas pressure at the column inlet and P_o that at the outlet.

Partition Ratio. The partition ratio is the additional time a solute band takes to elute, as compared with an unretained solute (for which k' = 0), divided by the elution time of an unretained band:

$$k' = \frac{t_R - t_M}{t_M} = \frac{V_R - V_M}{V_M}$$

Retention time may be expressed as

$$t_R = t_M(1+k') = \frac{L}{u}(1+k')$$

Relative Retention. The relative retention α of two solutes, where solute 1 elutes before solute 2, is given variously by

$$\alpha = \frac{k_2'}{k_1'} = \frac{V_{R,2}'}{V_{R,1}'} = \frac{t_{R,2}'}{t_{R,1}'}$$

The relative retention is dependent on (1) the nature of the stationary and mobile phases and (2) the column operating temperature.

Column Efficiency. Under ideal conditions the profile of a solute band resembles that given by a Gaussian distribution curve (Fig. 4.1). The efficiency of a chromatographic system is expressed by the effective plate number N_{eff} , defined from the chromatogram of a single band,

$$N_{\rm eff} = \frac{L}{H} = 16 \left(\frac{t_{R}'}{W_{b}}\right)^{2} = 5.54 \left(\frac{t_{R}'}{W_{1/2}}\right)^{2}$$

where *L* is the column length, *H* is the plate height, t'_R is the adjusted time for elution of the band center, W_b is the width at the base of the peak ($W_b = 4\sigma$) as determined from the intersections of tangents to the inflection points with the baseline, and $W_{1/2}$ is the width at half the peak height. Column efficiency, when expressed as the number of theoretical plates N_{theor} uses the uncorrected retention time in the foregoing expression. The two column efficiencies are related by

$$N_{\rm eff} = N_{\rm theor} \left(\frac{k'}{k'+1}\right)^2$$

Band Asymmetry. The peak asymmetry factor AF is often defined as the ratio of peak half-widths at 10% of peak height, that is, the ratio b/a, as shown in Fig. 4.2. When the asymmetry ratio lies outside the range 0.95–1.15 for a peak of k' = 2, the effective plate number should be calculated from the expression

$$N = \frac{41.7(t'_R/W_{0.1})}{(a/b) + 1.25}$$

Resolution. The degree of separation or resolution, Rs, of two adjacent peaks is defined as the distance between band peaks (or centers) divided by the average bandwidth using W_b , as shown in Fig. 4.3.

$$Rs = \frac{t_{R,2} - t_{R,1}}{0.5(W_2 + W_1)}$$

For reasonable quantitative accuracy, peak maxima must be at least 4σ apart. If so, then Rs = 1.0, which corresponds approximately to a 3% overlap of peak areas. A value of Rs = 1.5 (for 6σ) represents essentially complete resolution with only 0.2% overlap of peak areas. These criteria pertain to roughly equal solute concentrations.

FIGURE 4.2

The fundamental resolution equation incorporates the terms involving the thermodynamics and kinetics of the chromatographic system:

$$\operatorname{Rs} = \frac{1}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k'}{1 + k'} \right) \left(\frac{L}{H} \right)^{1/2}$$

Three separate factors affect resolution: (1) a column selectivity factor that varies with α , (2) a capacity factor that varies with k' (taken usually as k_2), and (3) an efficiency factor that depends on the theoretical plate number.

FIGURE 4.3

Fluid	Critical temperature, K (°C)	Critical pressure, atm (psi)
Ammonia	406 (133)	111.3 (1636)
Argon	151 (-122)	48.1 (707)
Benzene	562 (289)	48.3 (710)
Butane	425 (125)	37.5 (551)
Carbon dioxide	304 (31)	72.8 (1070)
Carbon disulfide	552 (279)	78.0 (1147)
Chlorotrifluoromethane	379 (106)	40 (588)
2,2-Dimethylpropane	434 (161)	31.6 (464)
Ethane	305 (32)	48.2 (706)
Fluoromethane	318 (45)	58.0 (853)
Heptane	540 (267)	27.0 (397)
Hexane	507 (234)	29.3 (431)
Hydrogen sulfide	373 (100)	88.2 (1296)
Krypton	209(-64)	54.3 (798)
Methane	191 (-82)	45.4 (667)
Methanol	513 (240)	79.9 (1175)
2-Methylpropane	408 (65)	36.0 (529)
Nitrogen	126 (-147)	33.5 (492)
Nitrogen(I) oxide	310 (37)	71.5 (1051)
Pentane	470 (197)	33.3 (490)
Propane	470 (197)	41.9 (616)
Sulfur dioxide	431 (158)	77.8 (1144)
Sulfur hexafluoride	319 (46)	37.1 (545)
Trichloromethane	536 (263)	54.9 (807)
Trifluoromethane	299 (26)	47.7 (701)
Water	647 (374)	217.6 (3199)
Xenon	290 (17)	57.6 (847)

TABLE 4.29 Characteristics of Selected Supercritical Fluids

Time of Analysis. The retention time required to perform a separation is given by

$$t_R = 16 \text{Rs}^2 \left(\frac{\alpha}{\alpha - 1}\right)^2 \left[\frac{(1 + k')^3}{(k')^2}\right] \left(\frac{H}{u}\right)$$

Now t_R is a minimum when k' = 2, that is, when $t_R = 3t_M$. There is little increase in analysis time when k' lies between 1 and 10. A twofold increase in the mobile-phase velocity roughly halves the analysis time (actually it is the ratio H/u which influences the analysis time). The ratio H/u can be obtained from the experimental plate height/velocity graph.

High-Performance Liquid Chromatography. Typical performances for various experimental conditions are given in Table 4.30. The data assume these reduced parameters: h = 3, v = 4.5. The *reduced plate height* is

$$h = \frac{H}{d_p} = \frac{L}{Nd_p}$$

The reduced velocity of the eluent is

$$v = \frac{ud_p}{D_M} = \frac{Ld_p}{t_M D_M}$$

Perform	nances	nces Column parameters		neters
N	<i>t_M</i> , s	L, cm	d_p , μ m	P, atm (psi)
 2 500	30	2.3	3	18.4 (270)
2 500	30	3.7	5	18.4 (270)
2 500	30	7.5	10	18.4 (270)
5 000	30	4.5	3	74 (1088)
5 000	30	7.5	5	74 (1088)
5 000	30	15.0	10	74 (1088)
10 000	30	9.0	3	300 (4410)
10 000	30	15.0	5	300 (4410)
10 000	30	30.0	10	300 (4410)
10 000	30	9.0	3	300 (4410)
10 000	60	9.0	3	150 (2200)
10 000	90	9.0	3	100 (1470)
15 000	90	2.3	3	223 (3275)
15 000	120	2.3	3	167 (2459)
11 100	30	10.0	3	369 (5420)
11 100	37	10.0	3	300 (4410)
11 100	101	10.0	3	100 (1470)
27 800	231	25.0	3	300 (4410)

TABLE 4.30 Typical Performances in HPLC for Various Conditions

Assumed reduced parameters: h = 3, v = 4.5. These are optimum values from a graph of reduced plate height versus reduced linear velocity of the mobile phase.

In these expressions, d_p is the particle diameter of the stationary phase that constitutes one plate height. D_M is the diffusion coefficient of the solute in the mobile phase.

4.12.3 Ion-Exchange (Normal Pressure, Columnar)

Ion-exchange methods are based essentially on a reversible exchange of ions between an external liquid phase and an ionic solid phase. the solid phase consists of a polymeric matrix, insoluble, but permeable, which contains fixed charge groups and mobile counter ions of opposite charge. These counter ions can be exchanged for other ions in the external liquid phase. Enrichment of one or several of the components is obtained if selective exchange forces are operative. The method is limited to substances at least partially in ionized form.

Chemical Structure of Ion-Exchange Resins. An ion-exchange resin usually consists of polystyrene copolymerized with divinylbenzene to build up an inert three-dimensional, cross-linked matrix of hydrocarbon chains. Protruding from the polymer chains are the ion-exchange sites distributed statistically throughout the entire resin particle. The ionic sites are balanced by an equivalent number of mobile counter ions. The type and strength of the exchanger is determined by these active groups. Ion-exchangers are designated anionic or cationic, according to whether they have an affinity for negative or positive counter ions. Each main group is further subdivided into strongly or weakly ionized groups. A selection of commercially available ion-exchange resins is given in Table 4.31. The cross-linking of a polystyrene resin is expressed as the proportion by weight percent of divinylbenzene in the reaction mixture; for example, " \times 8" for 8 percent cross-linking. As the percentage is increased, the ionic groups come into effectively closer proximity, resulting in increased selectivity. Intermediate cross-linking, in the range of 4 to 8 percent, is usually used. An increase in cross-linking decreases the diffusion rate in the resin particles; the diffusion rate is the rate-controlling step in column operations. Decreasing the particle size reduces the time required for attaining equilibrium, but at the same time decreases the flow rate until it is prohibitively slow unless pressure is applied.

In most inorganic chromatography, resins of 100 to 200 mesh size are suitable; difficult separations may require 200 to 400 mesh resins. A flow rate of 1 mL \cdot cm⁻² \cdot min⁻¹ is often satisfactory. With HPLC columns, the flow rate in long columns of fine adsorbent can be increased by applying pressure.

Macroreticular Resins. Macroreticular resins are an agglomerate of randomly packed microspheres which extend through the agglomerate in a continuous non-gel pore structure. The channels throughout the rigid pore structure render the bead centers accessible even in nonaqueous solvents, in which microreticular resins do not swell sufficiently. Because of their high porosity and large pore diameters, these resins can handle large organic molecules.

Microreticular Resins. Microreticular resins, by contrast, are elastic gels that, in the dry state, avidly absorb water and other polar solvents in which they are immersed. While taking up solvent, the gel structure expands until the retractile stresses of the distended polymer network balance the osmotic effect. In nonpolar solvents, little or no swelling occurs and diffusion is impaired.

Ion-Exchange Membranes. Ion-exchange membranes are extremely flexible, strong membranes, composed of analytical grade ion-exchange resin beads (90%) permanently enmeshed in a poly(tetrafluoroethylene) membrane (10%). The membranes offer an alternative to column and batch methods, and can be used in many of the same applications as traditional ion exchange resins. Three ion-exchange resin types have been incorporated into membranes: AG 1-X8, AG 50W-X8, and Chelex 100.

Functional Groups. Sulfonate exchangers contain the group SO_3^- , which is strongly acidic and completely dissociated whether in the H form or the cation form. These exchangers are used for cation exchange.

Carboxylate exchangers contain —COOH groups which have weak acidic properties and will only function as cation exchangers when the pH is sufficiently high (pH > 6) to permit complete dissociation of the —COOH site. Outside this range the ion exchanger can be used only at the cost of reduced capacity.

TABLE 4.31 Ion-Exchange Resins

Dowex is the trade name of Dow resins; X (followed by a numeral) is percent cross-linked. Mesh size (dry) are available in the range 50 to 100, 100 to 200, 200 to 400, and sometimes minus 400.

S-DVB is the acronym for styrene-divinylbenzene.

MP is the acronym for macroporous resin. Mesh size (dry) is available in the range 20 to 50, 100 to 200, and 200 to 400.

Bio-Rex is the trade name for certain resins sold by Bio-Rad Laboratories.

Amberlite and Duolite are trade names of Rohm & Haas resins.

Resin type and nominal percent cross-linkage	Minimum wet capacity, mequiv · mL ⁻¹	Density (nominal), $g \cdot mL^{-1}$	Comments
Anion excha	inge resins—gel type-		-quaternary ammonium functionality
Dowex 1-X2	0.6	0.65	Strongly basic anion exchanger with S-DVB matrix for separation of small peptides, nucleotides, and large metal complexes. Molecular weight exclusion is <2700.
Dowex 1-X4	1.0	0.70	Strongly basic anion exchanger with S-DVB matrix for separation of organic acids, nucleotides, phosphoinositides, and other anions. Molecular weight exclusion is <1400.
Dowex 1-X8	1.2	0.75	Strongly basic anion exchanger with S-DVB matrix for separation of inorganic and or- ganic anions with molecular weight ex- clusion <1000. 100-200 mesh is stan- dard for analytical separations.
Dowex 2-X8	1.2	0.75	Strongly basic (but less basic than Dowex 1 type) anion exchanger with S-DVB ma- trix for deionization of carbohydrates and separation of sugars, sugar alcohols, and glycosides.
Amberlite IRA-400	1.4	1.11	8% cross-linkage. Used for systems essen- tially free of organic materials.
Amberlite IRA-402	1.3	1.07	Lower cross-linkage than IRA-400; better diffusion rate with large organic mole- cules.
Amberlite IRA-410	1.4	1.12	Dimethylethanolamine functionality and slightly lower basicity than IRA-400.
Amberlite IRA-458	1.2	1.08	Has an acrylic structure rather than S-DVB; hence more hydrophilic and resistant to organic fouling.
	Anion exchange	resin-gel type—i	intermediate basicity
Bio-Rex 5	2.8	0.70	Intermediate basic anion exchanger with primarily tertiary amines on a polyalkyle- neamine matrix for separation of organic acids.
			(Continued)

Resin type and nominal percent cross-linkage	Minimum wet capacity, mequiv · mL ⁻¹	Density (nominal), $g \cdot mL^{-1}$	Comments
Anio	n exchange resins—gel ty	/pe—weakly	basic—polyamine functionality
Dowex 4-X4	1.6	0.70	Weakly basic anion exchanger with tertiary amines on an acrylic matrix for the deionization of carbohydrates. Use at pH <7.
Amberlite IRA-68	1.6	1.06	Acrylic-DVB with unusually high capacity for large organic molecules.
Cation	exchange resins—gel typ	e—strongly	acidic—sulfonic acid functionality
Dowex 50W-X2	0.6	0.70	Strongly acidic cation exchanger with S- DVB matrix for separation of peptides, nucleotides, and cations. Molecular weight exclusion <2700.
Dowex 50W-X4	1.1	0.80	Strongly acidic cation exchanger with S- DVB matrix for separation of amino ac- ids, nucleosides, and cations. Molecular weight exclusion is < 1400.
Dowex 50W-X8	1.7	0.80	Strongly acidic cation exchanger with S- DVB matrix for separation of amino ac- ids, metal cations, and cations. Molecular weight exclusion is <1000. 100–200 mesh is standard for analytical applica- tions.
Dowex 50W-X12	2.1	0.85	Strongly acidic cation exchanger with S- DVB matrix used primarily for metal separations.
Dowex 50W-X16	2.4	0.85	Strongly acidic cation exchanger with S- DVB matrix and high cross linkage.
Amberlite IR-120	1.9	1.26	8% styrene-DVB type; high physical stabil- ity.
Amberlite IR-122	2.1	1.32	10% styrene-DVB type; high physical sta- bility and high capacity.
Wea	akly acidic cation exchange	ers—gel typ	e—carboxylic acid functionality
Duolite C-433	4.5	1.19	Acrylic-DVB type; very high capacity. Used for metals removal and neutraliza- tion of alkaline solutions.
Bio-Rex 70	2.4	0.70	Weakly acidic cation exchanger with car- boxylate groups on a macroreticular acrylic matrix for separation and fraction- ation of proteins, peptides, enzymes, and amines, particularly high molecular weight solutes. Does not denature pro- teins as do styrene-based resins.

TABLE 4.31 Ion-Exchange Resins (Continued)

Resin type and nominal percent cross-linkage	Minimum wet capacity, mequiv · mL ⁻¹	Density (nominal), $g \cdot mL^{-1}$	Comments
	Sele	ective ion exchange	e resins
Duolite GT-73	1.3	1.30	Removal of Ag, Cd, Cu, Hg, and Pb.
Amberlite IRA- 743A	0.6	1.05	Boron specific ion exchange resin.
Amberlite IRC-718	1.0	1.14	Removal of transition metals.
Chelex [®] 100	0.4	0.65	Weakly acidic chelating resin with S-DVB matrix for heavy metal concentration.
Anion exchang	er—macroreticular ty	pe-strongly basi	ic-quaternary ammonium functionality
Amberlite IRA-910	1.1	1.09	Dimethylethanolamine styrene-DVB type which offers slightly less silica removal than Amberlite IRA resin, but offers im- proved regeneration efficiency.
Amberlite IRA-938	0.5	1.20	Pore size distribution between 2500 and 23000 nm; suitable for removal of high molecular weight organic materials.
Amberlite IRA-958	0.8		Acrylic-DVB; resistant to organic fouling.
AG MP-1	1.0	0.70	Strongly basic macroporous anion ex- changer with S-DVB matrix for separa- tion of some enzymes, radioactive anions, and other applications.
Cati	on exchange resin—1	macroreticular type	e-sulfonic acid functionality
Amberlite 200	1.7	1.26	Styrene-DVB with 20% DVB by weight; superior physical stability and greater re- sistance to oxidation by factor of three over comparable gel type resin.
AG MP-50	1.5	0.80	Strongly acidic macroporous cation ex- changer with S-DVB matrix for separa- tion of radioactive cations and other ap- plications.
Weak cation	n exchanger-macror	eticular type—car	boxylic acid or phenolic functionality
Amberlite DP-1	2.5	1.17	Methacrylic acid-DVB; high resin capacity. Use $pH > 5$.
Amberlite IRC-50	3.5	1.25	Methacrylic acid-DVB. Selectivity adsorbs organic gases such as antibiotics, alka- loids, peptides, and amino acids. Use pH > 5.
Duolite C-464	3.0	1.13	Polyacrylic resin with high capacity and outstanding resistance to osmotic shock.

TABLE 4.31 Ion-Exchange Resins (Continued)

Resin type and nominal percent cross-linkage	Minimum wet capacity, mequiv · mL ⁻¹	Density (nominal), $g \cdot mL^{-1}$	Comments
Weak cation exch	anger-macroreticular	r type—carboxyli	c acid or phenolic functionality (continued)
Duolite A-7	2.2	1.12	Phenolic type resin. High porosity and hy- drophilic matrix. pH range is 0 to 6.
Duolite A-368	1.7	1.04	Styrene-DVB; pH range is 0 to 9.
Amberlite IRA-35	1.1		Acrylic-DVB; pH range is 0 to 9.
Amberlite IRA-93	1.3	1.04	Styrene-DVB; pH range is 0 to 9. Excellent resistance to oxidation and organic fouling.
		Liquid amines	
Amberlite LA-1			A secondary amine containing two highly branched aliphatic chains of M.W. 351 to 393. Solubility is 15 to 20 mg/mL in wa- ter. Used as 5 to 40% solutions in hydro- carbons.
Amberlite LA-2			A secondary amine of M.W. 353 to 395. In- soluble in water.
	Mi	crocrystalline excl	hanger
AMP-I	4.0		Microcrystalline ammonium molybdo- phosphate with cation exchange capacity of 1.2 mequiv/g. Selectively adsorbs larger alkali metal ions from smaller alkali metal ions, particularly cesium.
		Ion retardation re	sin
AG 11 A8		0.70	Ion retardation resin containing paired anion (COO ⁻) and cation (CH ₃) ₃ N ⁺ sites. Selectively retards ionic substances.

TABLE 4.31 Ion-Exchange Resins (Continued)

Source: J.A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.

Quaternary ammonium exchangers contain $-R_4N^+$ groups which are strongly basic and completely dissociated in the OH form and the anion form.

Tertiary amine exchangers possess $-R_3NH_2$ groups which have exchanging properties only in an acidic medium when a proton is bound to the nitrogen atom.

Aminodiacetate exchangers have the $-N(CH_2COOH)_2$ group which has an unusually high preference for copper, iron, and other heavy metal cations and, to a lesser extent, for alkaline earth cations. The resin selectivity for divalent over monovalent ions is approximately 5000 to 1. The resin functions as a chelating resin at pH 4 and above. At very low pH, the resin acts as an anion exchanger. This exchanger is the column packing often used for ligand exchange.

Ion-Exchange Equilibrium. Retention differences among cations with an anion exchanger, or among anions with a cation exchanger, are governed by the physical properties of the solvated ions. The stationary phase will show these preferences:

- 1. The ion of higher charge.
- 2. The ion with the smaller solvated radius. Energy is needed to strip away the solvation shell surrounding ions with large hydrated radii, even though their crystallographic ionic radii may be less than the average pore opening in the resin matrix.
- 3. The ion that has the greater polarizability (which determines the Van der Waals' attraction).

To accomplish any separation of two cations (or two anions) of the same net charge, the stationary phase must show a preference for one more than the other. No variation in the eluant concentration will improve the separation. However, if the exchange involves ions of different net charges, the separation factor does depend on the eluant concentration. The more dilute the counterion concentration in the eluant, the more selective the exchange becomes for polyvalent ions.

In the case of an ionized resin, initially in the H-form and in contact with a solution containing K^+ ions, an equilibrium exists:

resin,
$$H^+ + K^+ \Leftrightarrow$$
 resin, $K^+ + H^+$

which is characterized by the selectivity coefficient, $k_{\text{K/H}}$:

$$k_{\rm K/H} = \frac{[\rm K^+]_r [\rm H^+]}{[\rm H^+]_r [\rm K^+]}$$

where the subscript *r* refers to the resin phase. Table 4.32 contains selectivity coefficients for cations and Table 4.33 for anions. Relative selectivities are of limited use for the prediction of the columnar exchange behavior of a cation because they do not take account of the influence of the aqueous phase. More specific information about the behavior to be expected from a cation in a column elution experiment is given by the equilibrium distribution coefficient K_d .

Counterion	Relative selectivity for AG 50W-X8 resin	Counterion	Relative selectivity for AG 50W-X8 resin
H^+	1.0	Zn ²⁺	2.7
Li+	0.86	Co ²⁺	2.8
Na ⁺	1.5	Cu ²⁺	2.9
NH_4^+	1.95	Cd ²⁺	2.95
K ⁺	2.5	Ni ²⁺	3.0
Rb ⁺	2.6	Ca ²⁺	3.9
Cs ⁺	2.7	Sr ²⁺	4.95
Cu⁺	5.3	Hg ²⁺	7.2
Ag+	7.6	Pb ²⁺	7.5
??	10.7	Ba ²⁺	8.7
Mn ²⁺	2.35	Ce ³⁺	22
Mg ²⁺	2.5	La ³⁺	22
Fe ²⁺	2.55		

TABLE 4.32 Relative Selectivity of Various Counter Cations

Co	unterion	Relative selectivity for Dowex 1-X8 resir	Relative selectivity for Dowex 2-X8 resin	
OH-		1.0	1.0	
Benze	nesulfonate ⁻	500	75	
Salicy	late	450	65	
Citrate	:	220	23	
I-		175	17	
Phenat	e-	110	27	
HSO ₄		85	15	
ClO ₃		74	12	
NO_3^-		65	8	
Br-		50	6	
CN-		28	3	
HSO ₃		27	3	
BrO ₃		27	3	
NO_2^-		24	3	
Cl-		22	2.3	
ClO ₄		20		
SCN-		8.0		
HCO ₃		6.0	1.2	
$IO_{\overline{3}}$		5.5	0.5	
H ₂ PO ₄		5.0	0.5	
Forma	te-	4.6	0.5	
Acetat	e-	3.2	0.5	
Ргора	ioate-	2.6	0.3	
F-		1.6	0.3	

TABLE 4.33 Relative Selectivity of Various Counter Anions

The partitioning of the potassium ion between the resin and solution phases is described by the concentration distribution ratio, D_c :

$$(D_c)_{\mathrm{K}} = \frac{[\mathrm{K}^+]_r}{[\mathrm{K}^+]}$$

Combining the equations for the selectivity coefficient and for D_c :

$$(D_c)_{\rm K} = k_{{\rm K}/{\rm H}} \frac{[{\rm H}^+]_r}{[{\rm H}^+]}$$

The foregoing equation reveals that essentially the concentration distribution ratio for trace concentrations of an exchanging ion is independent of the respective solution of that ion and that the uptake of each trace ion by the resin is directly proportional to its solution concentration. However, the concentration distribution ratios are inversely proportional to the solution concentration of the resin counterion.

To accomplish any separation of two cations (or two anions), one of these ions must be taken up by the resin in distinct preference to the other. This preference is expressed by the separation factor (or relative retention), $\alpha_{K/Na}$, using K⁺ and Na⁺ as the example:

$$\alpha_{\mathrm{K/Na}} = \frac{(D_c)_{\mathrm{K}}}{(D_c)_{\mathrm{Na}}} = \frac{k_{\mathrm{K/H}}}{k_{\mathrm{Na/H}}} = K_{\mathrm{K/Na}}$$

The more α deviates from unity for a given pair of ions, the easier it will be to separate them. If the selectivity coefficient is unfavorable for the separation of two ions of the same charge, no variation in the concentration of H⁺ (the eluant) will improve the separation.

The situation is entirely different if the exchange involves ions of different net charges. Now the separation factor does depend on the eluant concentration. For example, the more dilute the counterion concentration in the eluant, the more selective the exchange becomes for the ion of higher charge.

In practice, it is more convenient to predict the behavior of an ion, for any chosen set of conditions, by employing a much simpler distribution coefficient, D_g , which is defined as the concentration of a solute in the resin phase divided by its concentration in the liquid phase, or:

 $D_g = \frac{\text{concentration of solute, resin phase}}{\text{concentration of solute, liquid phase}}$ $D_g = \frac{\% \text{ solute within exchanger}}{\% \text{ solute within solution}} \times \frac{\text{volume of solution}}{\text{mass of exchanger}}$

 D_g remains constant over a wide range of resin to liquid ratios. In a relatively short time, by simple equilibration of small known amounts of resin and solution followed by analysis of the phases, the distribution of solutes may be followed under many different sets of experimental conditions. Variables requiring investigation include the capacity and percent cross-linkage of resin, the type of resin itself, the temperature, and the concentration and pH of electrolyte in the equilibrating solution.

By comparing the ratio of the distribution coefficients for a pair of ions, a separation factor (or relative retention) is obtained for a specific experimental condition.

Instead of using D_g , separation data may be expressed in terms of a volume distribution coefficient D_v , which is defined as the amount of solution in the exchanger per cubic centimeter of resin bed divided by the amount per cubic centimeter in the liquid phase. The relation between D_g and D_v is given by:

$$D_v = D_g \rho$$

where ρ is the bed density of a column expressed in the units of mass of dry resin per cubic centimeter of column. The bed density can be determined by adding a known weight of dry resin to a graduated cylinder containing the eluting solution. After the resin has swelled to its maximum, a direct reading of the settled volume of resin is recorded.

Intelligent inspection of the relevant distribution coefficients will show whether a separation is feasible and what the most favorable eluant concentration is likely to be. In the columnar mode, an ion, even if not eluted, may move down the column a considerable distance and with the next eluant may appear in the eluate much earlier than indicated by the coefficient in the first eluant alone. A distribution coefficient value of 12 or lower is required to elute an ion completely from a column containing about 10 g of dry resin using 250 to 300 mL of eluant. A larger volume of eluant is required only when exceptionally strong tailing occurs. Ions may be eluted completely by 300 to 400 mL of eluant from a column of 10 g of dry resin at D_g values of around 20. The first traces of an element will appear in the eluate at around 300 mL when its D_g value is about 50 to 60.

Example Shaking 50 mL of 0.001 *M* cesium salt solution with 1.0 g of a strong cation exchanger in the H-form (with a capacity of 3.0 mequiv \cdot g⁻¹) removes the following amount of cesium. The selectivity coefficient, $k_{Cs/H}$, is 2.56, thus:

$$\frac{[\text{Cs}^+]_r[\text{H}^+]}{[\text{Cs}^+][\text{H}^+]_r} = 2.56$$

The maximum amount of cesium which can enter the resin is 50 mL \times 0.001 M = 0.050 equiv. The minimum value of $[H^+]_r = 3.00 - 0.05 = 2.95$ mequiv, and the maximum value, assuming complete exchange of cesium ion for hydrogen ion, is 0.001 *M*. The minimum value of the distribution ratio is:

$$(D_c)_{Cs} = \frac{[Cs^+]_r}{[Cs^+]} = \frac{(2.56)(2.95)}{0.001} = 7550$$

Amount of Cs, resin phase
Amount of Cs, solution phase = $\frac{(7550)(1.0 \text{ g})}{50 \text{ mL}} = 151$

Thus, at equilibrium the 1.0 g of resin removed is:

$$\frac{100\% - x}{x} = 151$$

with all but 0.66% of cesium ions from solution. If the amount of resin were increased to 2.0 g, the amount of cesium remaining in solution would decrease to 0.33%, half the former value. However, if the depleted solution were decanted and placed in contact with 1 g of fresh resin, the amount of cesium remaining in solution would decrease to 0.004%. Two batch equilibrations would effectively remove the cesium from the solution.

4.13 GRAVIMETRIC ANALYSIS

TABLE 4.34 Gravimetric Factors

In the following table the elements are arranged in alphabetical order.

Example: To convert a given weight of Al_2O_3 to its equivalent of Al, multiply by the factor at the right, 0.52926; similarly to convert Al to Al_2O_3 , multiply by the factor at the left, 1.8894.

Factor		Factor
	ALUMINUM Al = 26.9815	
0.74971	$Al \leftrightarrow Al_4C_3$	1.3341
0.058728	$Al \leftrightarrow Al(C_9H_6ON)_3$ (oxinate)	17.027
0.65829	Al ↔ AlN	1.5191
1.8894	$Al_2O_3 \leftrightarrow Al$	0.52926
1.4165	$Al_2O_3 \leftrightarrow Al_4C_3$	0.70596
0.38233	$Al_2O_3 \leftrightarrow AlCl_3$	2.6155
0.41804	$Al_2O_3 \leftrightarrow AlPO_4$	2.3921
0.29800	$Al_2O_3 \leftrightarrow Al_2(SO_4)_3$	3.3557
0.15300	$Al_2O_3 \leftrightarrow Al_2(SO_4)_3 \cdot 18H_2O$	6.5361
0.10746	$Al_2O_3 \leftrightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	9.3055
0.11246	$Al_2O_3 \leftrightarrow (NH_4)_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	8.8922
4.5197	$AIPO_4 \leftrightarrow AI$	0.22125
1.3946	$CaF_2 \leftrightarrow AlF_3$	0.71704
0.58196	$P_2O_5 \leftrightarrow AlPO_4$	1.7183
	AMMONIUM	
	$NH_4 = 18.03858$	
1.1013	$Ag \leftrightarrow NH_4Br$	0.90802
2.0166	$Ag \leftrightarrow NH_4Cl$	0.49590
0.74424	$Ag \leftrightarrow NH_4I$	1.3437
1.9171	$AgBr \leftrightarrow NH_4Br$	0.52161
2.6792	AgCl ↔ NH₄Cl	0.37323

1.6198 $Agl \leftrightarrow NH_4I$ 1.7663 $BaSO_4 \leftrightarrow (NH_4)_SO_4$ 0.81583 $Br \leftrightarrow NH_4Br$ 1.9654 $Cl \leftrightarrow NH_4Cl$ 0.68162 $HCl \leftrightarrow NH_4Cl$ 0.68162 $HCl \leftrightarrow NH_4Cl$ 0.68162 $HCl \leftrightarrow NH_4Cl$ 0.87553 $I \leftrightarrow NH_4I$ 14.410 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow NH_3$ 13.604 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow NH_4$ 9.4249 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow (NH_4)_2O$ 0.82244 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4$ 0.2549 $N \leftrightarrow (NH_4)_2O$ 0.21200 $N \leftrightarrow (NH_4)_2O_4$ 0.212100 $N \leftrightarrow NH_4$ 0.25479 $NH_3 \leftrightarrow NH_4NO_3$ 0.21277 $NH_3 \leftrightarrow NH_4NO_3$ 0.21277 $NH_3 \leftrightarrow NH_4NO_3$ 0.65407 $NH_3 \leftrightarrow NH_4OH$ 0.25777 $NH_3 \leftrightarrow NH_4OH$ 0.25777 $NH_3 \leftrightarrow NH_4OH$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.9654 <th>Factor</th>	Factor
1.7663 BaSO ₄ ↔ (NH ₄) ₂ SO ₄ 0.81583 Br ↔ NH ₄ Br 1.9654 Cl ↔ NH ₄ Cl 0.68162 HCl ↔ NH ₄ Cl 0.87553 I ↔ NH ₄ I 14.410 MgNH ₄ PO ₄ · 6H ₂ O ↔ NH ₃ 13.604 MgNH ₄ PO ₄ · 6H ₂ O ↔ (NH ₄) ₂ O 0.82244 N ↔ NH ₃ 0.77648 N ↔ NH ₄ QL 0.26185 N ↔ NH ₄ QO 0.17499 N ↔ NH ₄ QO 0.21200 N ↔ (NH ₄) ₂ CO 0.21200 N ↔ (NH ₄) ₂ CO 0.21277 NH ₃ ↔ NH ₄ NO ₃ 0.253793 N H ₃ ↔ NH ₄ QC 0.21277 NH ₃ ↔ NH ₄ NO ₃ 0.2543 NH ₃ ↔ NH ₄ NO ₃ 0.25477 NH ₃ ↔ NH ₄ NO ₃ 0.25777 NH ₃ ↔ (NH ₄) ₂ CO 0.2533 NH ₄ Cl ↔ NH ₄ 2.0543 N	0.61737
0.81583 $Br \leftrightarrow NH_4 Br$ 1.9654 $Cl \leftrightarrow NH_4 Cl$ 0.66277 $Cl \leftrightarrow NH_4 Cl$ 0.87553 $I \leftrightarrow NH_4 Il$ 13.400 MgNH_4PQ, 6H_2Q \leftrightarrow NH_3 13.604 MgNH_4PQ, 6H_2Q \leftrightarrow (NH_4)_2O 0.82244 $N \leftrightarrow NH_4$ 0.77648 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4$ 0.77648 $N \leftrightarrow NH_4$ 0.21200 $N \leftrightarrow (NH_4)_2O_4$ 0.412 $NH_3 \leftrightarrow NH_4$ 0.35349 $NH_3 \leftrightarrow NH_4$ 0.35449 $NH_3 \leftrightarrow NH_4$ 0.55407 $NH_3 \leftrightarrow NH_4$ 0.25777 $NH_3 \leftrightarrow NH_4$ 0.25777 $NH_3 \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 2.0543	0.56615
19654 $Cl \leftrightarrow NH_4$ 0.66277 $Cl \leftrightarrow NH_4Cl$ 0.68162 $HCl \leftrightarrow NH_4Cl$ 1.4.10 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow NH_3$ 13.604 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow NH_4$ 9.4249 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow (NH_4)_2O$ 0.82244 $N \leftrightarrow NH_3$ 0.77648 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4NO_3$ 0.353793 $N \leftrightarrow (NH_4)_5O$ 0.21200 $N \leftrightarrow (NH_4)_5O$ 0.35449 $NH_3 \leftrightarrow (NH_4)_5CO_3$ 0.21277 $NH_3 \leftrightarrow (NH_4)_2O$ 0.4412 $NH_3 \leftrightarrow (NH_4)_2O$ 0.4412 $NH_3 \leftrightarrow (NH_4)_2O$ 0.45407 $NH_3 \leftrightarrow (NH_4)_2O$ 0.45470 $NH_3 \leftrightarrow (NH_4)_2O$ 0.48596 $NH_3 \leftrightarrow (NH_4)_2O$ 0.48596 $NH_3 \leftrightarrow (NH_4)_2O$ 0.48596 $NH_4Cl \leftrightarrow NH_4$ 2.0554 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 2.0533 $NH_4Cl \leftrightarrow NH_4$ 2.054 $NH_4(DH \leftrightarrow NH_4)$ 2.055 $(NH_4)_4)PICl_6 \leftrightarrow NH_4$ <	1.2257
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.50881
0.68162 HCl ↔ NH ₄ Cl 0.87553 I ↔ NH ₄ I 13.604 MgNH ₄ PO ₄ ·6H ₂ O ↔ NH ₃ 9.4249 MgNH ₄ PO ₄ ·6H ₂ O ↔ (NH ₄) ₂ O 0.82244 N ↔ NH ₃ 0.77648 N ↔ NH ₄ Cl 0.17499 N ↔ NH ₄ NO ₃ 0.53793 N ↔ (NH ₄) ₂ O 0.21200 N ↔ (NH ₄) ₂ O 0.94412 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21277 NH ₃ ↔ (NH ₄) ₂ O 0.21277 NH ₃ ↔ (NH ₄) ₂ O 0.65407 NH ₃ ↔ (NH ₄) ₂ O 0.85498 NH ₄ ↔ (NH ₄) ₂ O 0.25777 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₄ ← (NH ₄) ₂ O 0.25643 NH ₄ Cl ↔ NH ₄ 2.9654 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ 2.303 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 1.3.032 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 1.2.303 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 1.4490 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 1.4490 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 1.4490 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 3.3592 (NH ₄	1.5088
0.87533 $I \leftrightarrow NH_4I$ 14.410 MgNH ₄ PQ ₄ ·6H ₂ O $\leftrightarrow NH_3$ 3.604 MgNH ₄ PQ ₄ ·6H ₂ O $\leftrightarrow (NH_4)_2O$ 9.4249 MgNH ₄ PQ ₄ ·6H ₂ O $\leftrightarrow (NH_4)_2O$ 0.77648 N $\leftrightarrow NH_4$ 0.26185 N $\leftrightarrow NH_4CI$ 0.77648 N $\leftrightarrow NH_4CI$ 0.26185 N $\leftrightarrow NH_4CI$ 0.77648 N $\leftrightarrow NH_4CI$ 0.26185 N $\leftrightarrow NH_4CI$ 0.77648 N $\leftrightarrow NH_4CI$ 0.21200 N $\leftrightarrow (NH_4)_2SO_4$ 0.94412 NH ₃ $\leftrightarrow NH_4$ 0.353793 N $H_3 \leftrightarrow (NH_4)_2CO_3$ 0.21200 N $H_3 \leftrightarrow NH_4$ 0.35449 NH ₃ $\leftrightarrow NH_4CO_3$ 0.21200 N $H_3 \leftrightarrow NH_4CO_3$ 0.21277 NH ₃ $\leftrightarrow NH_4OH$ 0.25777 NH ₃ $\leftrightarrow (NH_4)_2SO_4$ 0.25777 NH ₄ CI $\leftrightarrow NH_4$ 2.0543 NH ₄ CI $\leftrightarrow NH_4$ 0.2564 NH ₄ CI $\leftrightarrow NH_4$ 0.2563 NH ₄ CI $\leftrightarrow NH_4$ 0.302 (NH ₄) ₂ PICl ₆ $\leftrightarrow NH_4$ 0.5634 NH ₄ CI $\leftrightarrow NH_4$ 0.5520 NH ₄ OH $\leftrightarrow N$ 0.5777	1.4671
14.410 MgNH ₄ PQ ₄ ·6H ₂ O ↔ NH ₃ 13.604 MgNH ₄ PQ ₄ ·6H ₂ O ↔ NH ₄ 9.4249 MgNH ₄ PQ ₄ ·6H ₂ O ↔ (NH ₄) ₂ O 0.82244 N ↔ NH ₃ 0.77648 N ↔ NH ₄ 0.77648 N ↔ NH ₄ Ol 0.17499 N ↔ NH ₄ Ol 0.26185 N ↔ NH ₄ NO ₃ 0.53793 N ↔ (NH ₄) ₂ Ol 0.21200 N ↔ (NH ₄) ₂ CO ₃ 0.94412 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.94412 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21277 NH ₃ ↔ (NH ₄) ₂ O 0.65407 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₃ ↔ (NH ₄) ₂ SO ₄ 0.25777 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₄ Cl ↔ (NH ₄) ₂ O 0.5543 NH ₄ Cl ↔ (NH ₄) ₂ O 1.5263 NH ₄ Cl ↔ (NH ₄) ₂ O 1.5263 NH ₄ Cl ↔ (NH ₄) ₂ O 1.5263 NH ₄ OH 1.3032 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 2.303 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 2.3255 (NH ₄) ₂ PCl ₆ ↔ (NH ₄) ₂ O 6.3328 (NH ₄) ₂ PCl ₆ ↔ (NH ₄) ₂ O 6.3328 (NH ₄) ₂ PCl ₆ ↔ (NH ₄) ₂ O	1.1422
13.604 MgNH ₄ PQ ₄ ·6H ₂ O ↔ (NH ₄) ₂ O 9.4249 MgNH ₄ PQ ₄ ·6H ₂ O ↔ (NH ₄) ₂ O 0.82244 N ↔ NH ₃ 0.77648 N ↔ NH ₄ Cl 0.17499 N ↔ NH ₄ NO ₃ 0.53793 N ↔ (NH ₄) ₂ O 0.21200 N ↔ (NH ₄) ₂ CO ₃ 0.35449 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21243 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21277 NH ₃ ↔ (NH ₄) ₂ O 0.65407 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₄ Cl ↔ NH ₄ 2.9554 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ OH 2.0520 NH ₄ Cl ↔ NH ₄ OH 2.303 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 13.032 (NH ₄) ₂ PCl ₆ ↔ NH ₄ 2.7728 (NH ₄) ₂ PCl ₆ ↔ NH ₄ Cl 2.7728 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PCl ₆ ↔ (NH ₄) ₂ O 5.4074 Pt ↔ NH ₄ OL	0.069398
9.4249 $MgNH_4PO_4 \cdot 6H_2O \leftrightarrow (NH_4)_2O$ 0.82244 $N \leftrightarrow NH_3$ 0.77648 $N \leftrightarrow NH_4$ 0.26185 $N \leftrightarrow NH_4Cl$ 0.17499 $N \leftrightarrow NH_4NO_3$ 0.53793 $N \leftrightarrow (NH_4)_2SO_4$ 0.21200 $N \leftrightarrow (NH_4)_2SO_4$ 0.94412 $NH_3 \leftrightarrow NH_4$ 0.35449 $NH_3 \leftrightarrow (NH_4)_2CO_3$ 0.21543 $NH_3 \leftrightarrow NH_4NO_3$ 0.21543 $NH_3 \leftrightarrow NH_4NO_3$ 0.21277 $NH_3 \leftrightarrow NH_4NO_3$ 0.65407 $NH_3 \leftrightarrow (NH_4)_2O$ 0.48596 $NH_3 \leftrightarrow NH_4OH$ 0.25777 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 3.1409 $NH_4Cl \leftrightarrow NH_3$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 1.5263 $(NH_4)_2PCl_6 \leftrightarrow NH_4$ 1.3032 $(NH_4)_2PCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PCh_4 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PCh_4 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PCh_4 \leftrightarrow NH_4OH$ 3.3746 $Pt \leftrightarrow NH_4OH$ 3.3746 $Pt \leftrightarrow NH_4OH$ 3.3746 $Pt \leftrightarrow NH$	0.073506
0.82244 N ↔ NH ₃ 0.77648 N ↔ NH ₄ 0.26185 N ↔ NH ₄ Cl 0.17499 N ↔ NH ₄ NO ₃ 0.53793 N ↔ (NH ₄) ₂ SO ₄ 0.94412 NH ₃ ↔ NH ₄ 0.35449 NH ₃ ↔ NH ₄ CO ₃ 0.21200 N ↔ (NH ₄) ₂ CO ₃ 0.21243 NH ₃ ↔ NH ₄ HCO ₃ 0.21277 NH ₃ ↔ NH ₄ OO 0.48596 NH ₃ ↔ (NH ₄) ₂ SO ₄ 0.48596 NH ₃ ↔ (NH ₄) ₂ SO ₄ 0.25777 NH ₃ ↔ (NH ₄) ₂ SO ₄ 2.9654 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ 1.5263 NH ₄ Cl ↔ NH ₄ 1.5263 NH ₄ Cl ↔ NH ₄ 1.3032 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 1.400 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 1.4490 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 4.1490 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 3.1710 N ₂ O ₃ ↔ NH ₄ NO ₃ 0.67470 N ₂ O ₃ ↔ NH ₄ NO ₃ 2.0740 N ₂ O ₃ ↔ NH	0.10610
0.77648 N ↔ NH4, 0.26185 N ↔ NH4,CI 0.17499 N ↔ NH4,NO3 0.53793 N ↔ (NH4,) ₂ O 0.21200 N ↔ (NH4,) ₂ CO3 0.35449 NH3 ↔ NH4 0.35449 NH3 ↔ NH4,NO3 0.21543 NH3 ↔ NH4,NO3 0.21277 NH3 ↔ NH4,QO 0.48596 NH3 ↔ NH4,QO 0.25777 NH3 ↔ (NH4,) ₂ SO4 0.48596 NH3 ↔ (NH4,) ₂ SO4 0.25777 NH3 ↔ (NH4,) ₂ SO4 3.1409 NH4CI ↔ NH3 2.9654 NH4CI ↔ NH4 2.9653 NH4CI ↔ NH4 1.5263 NH4CI ↔ NH4 1.5263 NH4CI ↔ NH4 1.3032 (NH4,) ₂ PCI ₆ ↔ NH4 1.3032 (NH4,) ₂ PCI ₆ ↔ NH4 1.4490 (NH4,) ₂ PCI ₆ ↔ NH4,OH 3.3592 (NH4,) ₂ PCI ₆ ↔ NH4,OH 3.3592 (NH4,) ₂ PCI ₆ ↔ NH4,OH 3.1710 N ₂ O ₅ ↔ NH4,OH <td>1.2159</td>	1.2159
0.20185 N ↔ NH ₄ Cl 0.17499 N ↔ NH ₄ NO ₃ 0.53793 N ↔ (NH ₄) ₂ O 0.21200 N ↔ (NH ₄) ₂ SO ₄ 0.94412 NH ₃ ↔ NH ₄ 0.35349 NH ₃ ↔ (NH ₄) ₂ CO 0.21543 NH ₃ ↔ NH ₄ NO ₃ 0.21277 NH ₃ ↔ NH ₄ NO 0.21277 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ (NH ₄) ₂ SO ₄ 3.1409 NH ₄ Cl ↔ NH ₃ 2.9654 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ (NH ₄) ₂ O 1.5263 NH ₄ OH ↔ N 1.9428 NH ₄ OH ↔ NH ₄ 13.032 (NH ₄) ₂ PtCl ₆ ↔ NH ₃ 12.303 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₃ O 3.1710 N ₂ O ₅ ↔ NH ₃ 0.67470 N ₂ O ₅ ↔ NH ₃	1.2879
0.17499 N ↔ NH_4NO ₃ 0.53793 N ↔ (NH_4) ₂ O 0.21200 N ↔ (NH_4) ₂ SO ₄ 0.94412 NH ₃ ↔ NH ₄ 0.35449 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21277 NH ₃ ↔ NH ₄ HCO ₃ 0.21277 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₄ CI ↔ NH ₃ 2.9654 NH ₄ CI ↔ NH ₄ 2.0543 NH ₄ CI ↔ NH ₄ 2.563 NH ₄ CI ↔ NH ₄ 1.5263 NH ₄ OH ↔ N 1.9428 NH ₄ OH ↔ NH ₄ 13.032 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 2.3053 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 2.3728 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₃ O ₃ 3.1710 N ₅ O ₅ ↔ NH ₃ 0.67470 N ₂ O ₅ ↔ NH ₃	3.8189
0.53793 N \leftrightarrow (NH ₄) ₂ SO ₄ 0.94412 NH ₃ \leftrightarrow NH ₄ 0.35449 NH ₃ \leftrightarrow (NH ₄) ₂ CO ₃ 0.21543 NH ₃ \leftrightarrow NH ₄ MO ₃ 0.21277 NH ₃ \leftrightarrow NH ₄ MO ₃ 0.65407 NH ₃ \leftrightarrow (NH ₄) ₂ O 0.48596 NH ₃ \leftrightarrow (NH ₄) ₂ O 0.48596 NH ₄ \leftrightarrow (NH ₄) ₂ O 0.25777 NH ₃ \leftrightarrow (NH ₄) ₂ O 3.1409 NH ₄ Cl \leftrightarrow NH ₃ 2.0554 NH ₄ Cl \leftrightarrow NH ₄ 2.0553 NH ₄ Cl \leftrightarrow NH ₄ OH 2.5020 NH ₄ OH \leftrightarrow N 1.9428 NH ₄ OH \leftrightarrow NH ₄ OH 2.303 (NH ₄) ₂ PtCl ₆ \leftrightarrow NH ₄ OH 2.303 (NH ₄) ₂ PtCl ₆ \leftrightarrow NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ \leftrightarrow NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ \leftrightarrow (NH ₄) ₂ O 3.370 NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ \leftrightarrow NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ \leftrightarrow (NH ₄) ₂ O 3.1710 N ₂ O ₅ \leftrightarrow NH ₃ 0.67470 N ₅ O ₅ \leftrightarrow NH ₄ OI 1.8235 Pt \leftrightarrow NH ₄ OI 1.8235 Pt \leftrightarrow NH ₄ OI 1.8235 Pt \leftrightarrow NH ₄ OI <	5.7145
0.21200 N ↔ (NH ₄) ₂ SO ₄ 0.94412 NH ₃ ↔ NH ₄ 0.35449 NH ₃ ↔ (NH ₄) ₂ CO ₃ 0.21543 NH ₃ ↔ NH ₄ NO ₃ 0.21277 NH ₃ ↔ NH ₄ NO ₃ 0.65407 NH ₃ ↔ (NH ₄) ₂ O 0.48596 NH ₃ ↔ (NH ₄) ₂ SO ₄ 3.1409 NH ₄ Cl ↔ NH ₃ 2.9654 NH ₄ Cl ↔ NH ₃ 2.9654 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ OH 2.5020 NH ₄ OH ↔ N 1.9428 NH ₄ OH ↔ NH ₄ 13.032 (NH ₄) ₂ PtCl ₆ ↔ NH ₃ 12.303 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ Cl 2.7728 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ (NH ₄) ₂ O 3.3592 (NH ₄) ₂ PtCl ₆ ↔ (NH ₄) ₂ O 3.3592 (NH ₄) ₂ PtCl ₆ ↔ (NH ₄) ₂ O 3.1710 N ₂ O ₅ ↔ (NH ₄) ₂ O 3.1710 N ₂ O ₅ ↔ (NH ₄) ₂ O 5.7275 Pt ↔ NH ₄ 1.8235 Pt ↔ NH ₄ 1.8235 Pt ↔ NH ₄ 1.8235 Pt ↔ NH ₄ O 1.2187 Pt ↔ NH ₄ OH 3.7462 Pt ↔ NH ₄ OH	1.8590
0.94412 NH ₃ ↔ NH ₄ 0.35449 NH ₃ ↔ NH ₄) ₂ CO ₃ 0.21543 NH ₃ ↔ NH ₄ NO ₃ 0.21277 NH ₃ ↔ NH ₄ NO ₃ 0.65407 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ (NH ₄) ₂ SO ₄ 3.1409 NH ₄ Cl ↔ NH ₃ 2.9654 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ 2.0543 NH ₄ Cl ↔ NH ₄ OH 2.0520 NH ₄ OH ↔ N 1.9428 NH ₄ OH ↔ NH ₄ 13.032 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 1.409 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 1.4190 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ (NH ₄) ₂ SO ₄ 3.1710 N ₂ O ₅ ↔ NH ₃ 0.67470 N ₂ O ₅ ↔ NH ₃ 0.67470 N ₂ O ₅ ↔ NH ₃ 0.67470 N ₂ O ₅ ↔ NH ₄ Cl 1.2187 Pt ↔ NH ₄ Cl 1.8235 Pt ↔ NH ₄ Ol	4./169
0.33449 NH3 \leftrightarrow (NH4) ₂ CO3 0.21543 NH3 \leftrightarrow (NH4) ₂ CO3 0.21277 NH3 \leftrightarrow (NH4) ₂ O 0.65407 NH3 \leftrightarrow (NH4) ₂ O 0.48596 NH3 \leftrightarrow (NH4) ₂ SO4 0.25777 NH3 \leftrightarrow (NH4) ₂ SO4 3.1409 NH4CI \leftrightarrow NH4 2.0543 NH4CI \leftrightarrow NH4 2.0543 NH4CI \leftrightarrow NH4OH 2.5020 NH4OH \leftrightarrow N 1.5263 NH4OH \leftrightarrow N 1.9428 NH4OH \leftrightarrow NH4 13.032 (NH4) ₂ PtCl ₆ \leftrightarrow NH4 1.3033 (NH4) ₂ PtCl ₆ \leftrightarrow NH4CI 2.7728 (NH4) ₂ PtCl ₆ \leftrightarrow NH4CI 2.7728 (NH4) ₂ PtCl ₆ \leftrightarrow (NH4) ₂ O 6.3328 (NH4) ₂ PtCl ₆ \leftrightarrow (NH4) ₂ O 3.3592 (NH4) ₂ PtCl ₆ \leftrightarrow (NH4) ₂ O 3.1710 N ₂ O ₅ \leftrightarrow NH3 0.67470 N ₂ O ₅ \leftrightarrow NH4 1.8235 Pt \leftrightarrow NH4 1.8235 <t< td=""><td>1.0592</td></t<>	1.0592
0.21243 NH ₃ ↔ NH ₄ HCO ₃ 0.21277 NH ₃ ↔ NH ₄ NO ₃ 0.65407 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ NH ₄ OH 0.25777 NH ₃ ↔ (NH ₄) ₂ SO ₄ 3.1409 NH ₄ Cl ↔ NH ₃ 2.9654 NH ₄ Cl ↔ NH ₄ OH 2.0533 NH ₄ Cl ↔ NH ₄ OH 2.5020 NH ₄ OH ↔ N 1.9428 NH ₄ OH ↔ NH ₄ 13.032 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 1.3032 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ 2.303 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.5225 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ PtCl ₆ ↔ NH ₄ OH 3.3592 (NH ₄) ₂ SO ₄ 1.3473 (NH ₄) ₂ SO ₄ ↔ H ₂ SO ₄ 3.1710 N ₂ O ₅ ↔ NH ₄ NO ₃ 2.0740 N ₂ O ₅ ↔ NH ₄ NO ₃ 2.0740 N ₂ O ₅ ↔ NH ₄ NO ₃ 2.0740 N ₂ O ₂ ↔ NH ₄ NO ₃ 2.1287 Pt ↔ NH ₄ Cl	2.8210
0.21217 $NH_3 \leftrightarrow NH_4NO_3$ 0.65407 $NH_3 \leftrightarrow NH_4OG_3$ 0.48596 $NH_3 \leftrightarrow NH_4OH$ 0.25777 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 3.1409 $NH_4CI \leftrightarrow NH_3$ 2.9654 $NH_4CI \leftrightarrow NH_4$ 2.0543 $NH_4CI \leftrightarrow NH_4OH$ 2.0543 $NH_4CI \leftrightarrow NH_4OH$ 2.0520 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 1.400 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 2.303 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.5235 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow NH_4OH$	4.6419
0.6540// $NH_3 \leftrightarrow (NH_4)_2O$ 0.48596 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 0.25777 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 3.1409 $NH_4CI \leftrightarrow NH_3$ 2.9654 $NH_4CI \leftrightarrow (NH_4)_2O$ 1.5263 $NH_4CI \leftrightarrow NH_4$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCI_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 3.5235 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.2187 $Pt \leftrightarrow NH_4$ 1.2187 $Pt \leftrightarrow NH_4OH$ 2.7783 $Pt \leftrightarrow NH_4OH$	4.6998
0.48596 $NH_3 \leftrightarrow NH_4OH$ 0.25777 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 3.1409 $NH_4Cl \leftrightarrow NH_3$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 1.5263 $NH_4Cl \leftrightarrow NH_4OH$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4Cl$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.7775 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 2.1277 $Pt \leftrightarrow NH_4$ 2.1277 $Pt \leftrightarrow NH_4$ 2.1275 $Pt \leftrightarrow NH_4$ 2.1287 $Pt \leftrightarrow NH_4$ 2.1287 $Pt \leftrightarrow NH_4$ 2.1275 $Pt \leftrightarrow NH_4$ 2.1287 $Pt \leftrightarrow NH_4$ 2.1287 $Pt \leftrightarrow NH_4$ 2.7833 $Pt \leftrightarrow OH$	1.5289
0.25777 $NH_3 \leftrightarrow (NH_4)_2SO_4$ 3.1409 $NH_4Cl \leftrightarrow NH_3$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow (NH_4)_2O$ 1.5263 $NH_4Cl \leftrightarrow NH_4OH$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCl_6 \leftrightarrow NH_4Cl$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4Cl$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.373 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2SO_4 \leftrightarrow H_2SO_4$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4NO_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow NH_4DH$	2.0578
3.1409 $NH_4Cl \leftrightarrow NH_3$ 2.9654 $NH_4Cl \leftrightarrow NH_4$ 2.0543 $NH_4Cl \leftrightarrow NH_4$ 2.5020 $NH_4Cl \leftrightarrow NH_4$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 5.5235 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.4773 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.20740 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4OH$ 1.8235 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4OI$ 1	3.8794
2.9654 $NH_4CI \leftrightarrow NH_4$ 2.0543 $NH_4CI \leftrightarrow (NH_4)_2O$ 1.5263 $NH_4CI \leftrightarrow NH_4OH$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCI_6 \leftrightarrow NH_4$ 2.7728 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.5235 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.473 $(NH_4)_2PtCI_6 \leftrightarrow NH_4OH$ 3.4710 $N_2O_5 \leftrightarrow NH_4$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.2187 $Pt \leftrightarrow NH_4NO_3$	0.31838
2.0543 $NH_4Cl \leftrightarrow (NH_4)_2O$ 1.5263 $NH_4Cl \leftrightarrow NH_4OH$ 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.5235 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow (NH_4)_2SO_4$ 1.3473 $(NH_4)_2SO_4 \leftrightarrow H_2SO_4$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow NH_4NO_4$	0.33723
1.3265 NH_4OH 2.5020 $NH_4OH \leftrightarrow N$ 1.9428 $NH_4OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4Cl$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.5235 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3593 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.4773 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.6074 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_4OH$ 1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4OI$ 1.2187 $Pt \leftrightarrow NH_4OH$	0.480//
2.3020 $NH_4 OH \leftrightarrow N$ 1.9428 $NH_4 OH \leftrightarrow NH_4$ 13.032 $(NH_4)_2 PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2 PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2 PtCl_6 \leftrightarrow NH_4 OLl$ 2.7728 $(NH_4)_2 PtCl_6 \leftrightarrow NH_4 NO_3$ 8.5235 $(NH_4)_2 PtCl_6 \leftrightarrow NH_4 OH$ 3.3592 $(NH_4)_2 PtCl_6 \leftrightarrow NH_4 OH$ 3.3592 $(NH_4)_2 PtCl_6 \leftrightarrow (NH_4)_2 SO_4$ 1.3473 $(NH_4)_2 SO_4 \leftrightarrow H_2 SO_4$ 3.1710 $N_2 O_5 \leftrightarrow NH_3$ 0.67470 $N_2 O_5 \leftrightarrow NH_4 NO_3$ 2.0740 $N_2 O_5 \leftrightarrow (NH_4)_2 O$ 5.7275 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4 Cl$ 1.2187 $Pt \leftrightarrow NH_4 NO_3$ 3.7462 $Pt \leftrightarrow NH_4 OH$	0.00010
13.032 $(NH_4)_2PtCl_6 \leftrightarrow NH_3$ 12.303 $(NH_4)_2PtCl_6 \leftrightarrow NH_4$ 4.1490 $(NH_4)_2PtCl_6 \leftrightarrow NH_4Cl$ 2.7728 $(NH_4)_2PtCl_6 \leftrightarrow NH_4NO_3$ 8.5235 $(NH_4)_2PtCl_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PtCl_6 \leftrightarrow (NH_4)_2O$ 6.3328 $(NH_4)_2PtCl_6 \leftrightarrow (NH_4)_2O$ 1.3473 $(NH_4)_2PtCl_6 \leftrightarrow (NH_4)_2SO_4$ 1.3473 $(NH_4)_2SO_4 \leftrightarrow H_2SO_4$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH_4OH$	0.59907
13.032 $(MI_{4})_{2}ICI_{6} \leftrightarrow NI_{3}$ 12.303 $(NI_{4})_{2}PtCI_{6} \leftrightarrow NI_{4}$ 4.1490 $(NI_{4})_{2}PtCI_{6} \leftrightarrow NI_{4}OI$ 2.7728 $(NI_{4})_{2}PtCI_{6} \leftrightarrow NI_{4}OO_{3}$ 8.5235 $(NI_{4})_{2}PtCI_{6} \leftrightarrow NI_{4}OO_{4}$ 3.3592 $(NI_{4})_{2}PtCI_{6} \leftrightarrow NI_{4}OO_{4}$ 1.3473 $(NI_{4})_{2}PtCI_{6} \leftrightarrow (NI_{4})_{2}SO_{4}$ 1.3473 $(NI_{4})_{2}PtCI_{6} \leftrightarrow (NI_{4})_{2}SO_{4}$ 3.1710 $N_{2}O_{5} \leftrightarrow NI_{3}$ 0.67470 $N_{2}O_{5} \leftrightarrow NI_{4}NO_{3}$ 2.0740 $N_{2}O_{5} \leftrightarrow (NI_{4})_{2}O$ 5.7275 $Pt \leftrightarrow NI_{4}$ 1.8235 $Pt \leftrightarrow NI_{4}O_{3}$ 3.7462 $Pt \leftrightarrow (NI_{4})_{2}O$ 2.7833 $Pt \leftrightarrow NI_{4}OI$	0.076737
12:303 $(MI_{4})_{2}ICL_{6} \leftrightarrow NII_{4}$ 4.1490 $(NII_{4})_{2}PtCl_{6} \leftrightarrow NII_{4}Cl$ 2.7728 $(NII_{4})_{2}PtCl_{6} \leftrightarrow NII_{4}NO_{3}$ 8.5235 $(NII_{4})_{2}PtCl_{6} \leftrightarrow NII_{4}OI$ 3.3592 $(NII_{4})_{2}PtCl_{6} \leftrightarrow (NII_{4})_{2}O_{4}$ 1.3473 $(NII_{4})_{2}PtCl_{6} \leftrightarrow (NII_{4})_{2}SO_{4}$ 1.3473 $(NII_{4})_{2}SO_{4} \leftrightarrow H_{2}SO_{4}$ 3.1710 $N_{2}O_{5} \leftrightarrow NII_{3}$ 0.67470 $N_{2}O_{5} \leftrightarrow NII_{4}NO_{3}$ 2.0740 $N_{2}O_{5} \leftrightarrow (NII_{4})_{2}O$ 5.7275 $Pt \leftrightarrow NII_{3}$ 5.4074 $Pt \leftrightarrow NII_{4}$ 1.8235 $Pt \leftrightarrow NII_{4}OI$ 3.7462 $Pt \leftrightarrow NII_{4}OI$ 2.7833 $Pt \leftrightarrow NII_{4}OI$	0.070737
$(M_{4})_2 ICl_6 \leftrightarrow M_4 VI 2.7728 (NH_4)_2 PICl_6 \leftrightarrow NH_4 NO_3 8.5235 (NH_4)_2 PICl_6 \leftrightarrow NH_4 OH 3.3592 (NH_4)_2 PICl_6 \leftrightarrow NH_4 OH 3.3592 (NH_4)_2 PICl_6 \leftrightarrow (NH_4)_2 SO_4 1.3473 (NH_4)_2 SO_4 \leftrightarrow H_2 SO_4 3.1710 N_2 O_5 \leftrightarrow NH_3 0.67470 N_2 O_5 \leftrightarrow NH_4 NO_3 2.0740 N_2 O_5 \leftrightarrow (NH_4)_2 O 5.7275 Pt \leftrightarrow NH_3 5.4074 Pt \leftrightarrow NH_4 CI 1.2187 Pt \leftrightarrow NH_4 NO_3 3.7462 Pt \leftrightarrow NH_4 OH $	0.081272
2.725 $(Mt_4)_2 PtCl_6 \leftrightarrow Mt_4 NO_3$ 8.5235 $(Nt_4)_2 PtCl_6 \leftrightarrow (Nt_4)_2 O$ 6.3328 $(Nt_4)_2 PtCl_6 \leftrightarrow (Nt_4)_2 SO_4$ 1.3473 $(Nt_4)_2 SO_4 \leftrightarrow H_2 SO_4$ 3.1710 $N_2 O_5 \leftrightarrow Nt_3$ 0.67470 $N_2 O_5 \leftrightarrow Nt_4 NO_3$ 2.0740 $N_2 O_5 \leftrightarrow (Nt_4)_2 O$ 5.7275 $Pt \leftrightarrow Nt_3$ 1.8235 $Pt \leftrightarrow Nt_4 Cl$ 1.2187 $Pt \leftrightarrow Nt_4 NO_3$ 3.7462 $Pt \leftrightarrow Nt_4 Ott$	0.24102
6.3328 $(NH_4)_2PCL_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PCL_6 \leftrightarrow NH_4OH$ 3.3592 $(NH_4)_2PCL_6 \leftrightarrow NH_4OH$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow NH_3$ 5.7275 $Pt \leftrightarrow NH_4$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow NH_4NO_3$ 2.7833 $Pt \leftrightarrow NH_4OH$	0.11732
$(M_{4_2})_2 KCI_6 \leftrightarrow (M_{4_2})_2 SO_4$ $(M_{4_2})_2 FCI_6 \leftrightarrow (M_{4_2})_2 SO_4$ 1.3473 $(M_{4_2})_2 SO_4 \leftrightarrow H_2 SO_4$ 3.1710 $N_2 O_5 \leftrightarrow NH_3$ 0.67470 $N_2 O_5 \leftrightarrow NH_4 NO_3$ 2.0740 $N_2 O_5 \leftrightarrow (NH_4)_2 O$ 5.7275 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4 Cl$ 1.2187 $Pt \leftrightarrow NH_4 NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2 O$ 2.7833 $Pt \leftrightarrow NH_4$	0.15791
1.3473 $(NH_4)_2SO_4 \leftrightarrow H_2SO_4$ 3.1710 $N_2O_5 \leftrightarrow NH_3$ 0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH$	0.29769
$N_1 N_2 N_2 N_3 N_4 N_2 N_2 N_4 N_3$ $N_2 N_2 N_5 \leftrightarrow NH_3$ 0.67470 $N_2 O_5 \leftrightarrow NH_4 NO_3$ 2.0740 $N_2 O_5 \leftrightarrow (NH_4)_2 O$ 5.7275 $Pt \leftrightarrow NH_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4 NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2 O$ 2.7833 $Pt \leftrightarrow NH$	0.74223
0.67470 $N_2O_5 \leftrightarrow NH_4NO_3$ 2.0740 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NDH$	0.31536
2.0740 $N_2O_5 \leftrightarrow (NH_4)_2O$ 5.7275 $Pt \leftrightarrow NH_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH$ OH	1.4821
5.7275 $Pt \leftrightarrow NH_3$ 5.4074 $Pt \leftrightarrow NH_4$ 1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NDH$	0.48215
5.4074 1.8235 1.2187 3.7462 2.7833 Pt \leftrightarrow NH ₄ Pt \leftrightarrow NH ₄ Cl Pt \leftrightarrow NH ₄ NO ₃ Pt \leftrightarrow (NH ₄) ₂ O Pt \leftrightarrow (NH ₄) ₂ O	0.17460
1.8235 $Pt \leftrightarrow NH_4Cl$ 1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH_4OH$	0.18493
1.2187 $Pt \leftrightarrow NH_4NO_3$ 3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH_4OH$	0.54838
3.7462 $Pt \leftrightarrow (NH_4)_2O$ 2.7833 $Pt \leftrightarrow NH_4OH$	0.82058
2.7833 $Pt \leftrightarrow NH.OH$	0.26694
=	0.35928
1.4764 $Pt \leftrightarrow (NH_4)_2 SO_4$	0.67733
2.3505 $SO_3 \leftrightarrow NH_3$	0.42545
$0.60589 \qquad \qquad SO_3 \leftrightarrow (NH_4)_2 SO_4$	1.6505
ANTIMONY Sb = 121.760	
$0.36460 \qquad Sb \leftrightarrow KSbO \cdot C_4H_4O_6 \cdot \frac{1}{2}H_2O$	2.7428

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
0.83535	$Sb \leftrightarrow Sb_2O_4$	1.1971
0.75271	$Sb \leftrightarrow Sb_2O_5$	1.3285
0.43646	$Sb_2O_2 \leftrightarrow KSbO \cdot C_4H_4O_4 \cdot \frac{1}{2}H_2O_4$	2.2912
0.90106	$Sb_2O_3 \leftrightarrow Sb_2O_5$	1.1098
0.72184	$Sb_2O_3 \leftrightarrow Sb_2S_5$	1.3853
0.46042	$Sb_2O_4 \leftrightarrow KSbO \cdot C_4H_4O_6 \cdot \frac{1}{2}H_2O$	2.1719
1.2628	$Sb_2O_4 \leftrightarrow Sb$	0.79188
1.0549	$Sb_2O_4 \leftrightarrow Sb_2O_3$	0.94796
0.95053	$Sb_2O_4 \leftrightarrow Sb_2O_5$	1.0520
0.90523	$Sb_2O_4 \leftrightarrow Sb_2S_3$	1.1047
0.76147	$Sb_2O_4 \leftrightarrow Sb_2S_5$	1.3133
0.80110	$Sb_2O_5 \leftrightarrow Sb_2S_5$	1.2483
0.50862	$Sb_2S_3 \leftrightarrow KSbO \cdot C_4H_4O_6 \cdot \frac{1}{2}H_2O$	1.9661
1.3950	$Sb_2S_3 \leftrightarrow Sb$	0.71683
1.1653	$Sb_2S_3 \leftrightarrow Sb_2O_3$	0.85812
1.0500	$Sb_2S_3 \leftrightarrow Sb_2O_5$	0.95234
1.6584	$Sb_2S_5 \leftrightarrow Sb$	0.60299
	ARSENIC	
	As = 74.9216	
1.3203	$As_2O_3 \leftrightarrow As$	0.75738
0.86079	$As_2O_3 \leftrightarrow As_2O_5$	1.1617
1.5339	$As_2O_5 \leftrightarrow As$	0.65195
1.6420	$As_2S_3 \leftrightarrow As$	0.60903
1.2436	$As_2S_3 \leftrightarrow As_2O_3$	0.80413
1.0705	$As_2S_3 \leftrightarrow As_2O_5$	0.93418
0.79324	$As_2S_3 \leftrightarrow As_2S_5$	1.2606
2.0699	$As_2S_5 \leftrightarrow As$	0.48311
1.5678	$As_2S_5 \leftrightarrow As_2O_3$	0.63787
1.3495	$As_2S_5 \leftrightarrow As_2O_5$	0.74103
4.6729	$BaSO_4 \leftrightarrow As$	0.21400
3.5392	$BaSO_4 \leftrightarrow As_2O_3$	0.28255
3.0465	$BaSO_4 \leftrightarrow As_2O_6$	0.32825
2.8482	$BaSO_4 \leftrightarrow AsO_3$	0.35110
2.5202	$BaSO_4 \leftrightarrow AsO_4$	0.39680
2.0719	$Mg_2As_2O_7 \leftrightarrow As$	0.48265
1.5692	$Mg_2As_2O_7 \leftrightarrow As_2O_3$	0.63726
1.3509	$Mg_2As_2O_7 \leftrightarrow As_2O_5$	0.74032
1.2629	$Mg_2As_2O_7 \leftrightarrow AsO_2$	0.79186
1.1174	$Mg_2As_2O_7 \leftrightarrow AsO_4$	0.89493
1.2619	$Mg_2As_2O_7 \leftrightarrow As_2S_3$	0.79249
2.5397	$MgNH_4AsO_4 \cdot \frac{1}{2}H_2O \leftrightarrow As$	0.39374
1.9235	$MgNH_4AsO_4 \cdot \frac{1}{2}H_2O \leftrightarrow As_2O_3$	0.51988
1.6558	$MgNH_4AsO_4 \cdot \frac{1}{2}H_2O \leftrightarrow As_2O_5$	0.60395
1.5480	$MgNH_4AsO_4 \cdot \frac{1}{2}H_2O \leftrightarrow AsO_3$	0.64600
1.3697	$MgNH_4AsO_4 \cdot \frac{1}{2}H_2O \leftrightarrow AsO_4$	0.73008
	BARIUM Ba = 137.34	
1 4369	BaCO. ↔ Ba	0 60502
0.94766	$BaCO_3 \leftrightarrow Ba$ BaCO_ $\leftrightarrow BaC1_2$	1 0552
0.76088	$B_{3}CO_{3} \leftrightarrow BaCl_{2}$ $B_{3}CO_{2} \leftrightarrow B_{3}(HCO_{1})$	1 31/2
1 2871	$B_{3}CO_{3} \leftrightarrow B_{3}CO_{3}/_{2}$	0.77600
1 8446	$BaCrO. \leftrightarrow Ba$	0.54214
1.0770	Dacio ₄ · · Da	0.04214

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
1.2165	$BaCrO_4 \leftrightarrow BaCl_2$	0.82205
1.2838	$BaCrO_4 \leftrightarrow BaCO_3$	0.77902
1.6521	$BaCrO_4 \leftrightarrow BaO$	0.60530
2.0345	$BaSiF_6 \leftrightarrow Ba$	0.49152
1.5936	$BaSiF_6 \leftrightarrow BaF_2$	0.62751
1.8222	$BaSiF_6 \leftrightarrow BaO$	0.54878
1.6994	BaSO₄ ↔ Ba	0.58843
1.1208	$BaSO_4 \leftrightarrow BaCl_2$	0.89224
0.95546	$BaSO_4 \leftrightarrow BaCl_2 2H_2O$	1.0466
1.1827	$BaSO_4 \leftrightarrow BaCO_3$	0.84554
0.89308	$BaSO_4 \leftrightarrow Ba(NO_3)_2$	1.1197
1.5221	BaSO₄ ↔ BaO	0.65698
1.3783	$BaSO_4 \leftrightarrow BaO_2$	0.72554
1.3778	$BaSO_4 \leftrightarrow BaS$	0.72579
0.28701	$CO_2 \leftrightarrow BaO$	3.4842
0.22300	$CO_2 \leftrightarrow BaCO_3$	4.4842
	$\begin{array}{l} \textbf{BERYLLIUM} \\ \textbf{Be} = 9.0122 \end{array}$	
8 8678	BeCl₂ ↔ Be	0 11277
2 7753	$BeO \leftrightarrow Be$	0.36033
0.31296	BeO ↔ BeCl.	3,1953
0.14119	$BeO \leftrightarrow BeSO_4 \cdot 4H_2O$	7.0825
	BISMUTH $Bi = 208.980$	
0 80600	$Bi \leftrightarrow Bi O$	1 11/18
1 6648	$B_1 \leftrightarrow B_2 \odot_3$ BiAsO \leftrightarrow Bi	0 60069
1 4933	$BiAsO \leftrightarrow BiO$	0.0009
0.48030	$Bi_1O_2 \leftrightarrow Bi_1O_2$, $5H_1O_2$	2 0820
0.81183	$B_{12}O_3 \leftrightarrow B_1(NO_3)_3 \cup H_2O$ Bi_O_ $\leftrightarrow B_1ONO_2$	1 2318
1 2462	BiOCl ↔ Bi	0.80244
0.53689	$BiOCI \leftrightarrow Bi$ BiOCI $\leftrightarrow Bi(NO_{2}) \rightarrow 5H_{2}O_{2}$	1 8626
1 1178	$BiOCI \leftrightarrow Bi_{1}O_{2}$	0.89460
0.90748	BiOCI ↔ BiONO.	1 1019
1 2301	$Bi_2S_2 \leftrightarrow Bi_2$	0.81291
1.1034	$Bi_2S_3 \leftrightarrow Bi_2O_3$	0.90627
	BORON	
	B = 10.81	
3.2199	$B_2O_3 \leftrightarrow B$	0.31057
0.81317	$B_2O_3 \leftrightarrow BO_2$	1.2298
0.59193	$B_2O_3 \leftrightarrow BO_3$	1.6894
0.89693	$B_2O_3 \leftrightarrow B_4O_7$	1.1149
0.56298	$B_2O_3 \leftrightarrow H_3BO_3$	1.7763
0.36510	$B_2O_3 \iff Na_2B_4O_7 \cdot 10H_2O$	2.7389
6.4005	$B_6C \leftrightarrow C$	0.15624
11.646	$KBF_4 \leftrightarrow B$	0.085863
3.6171	$KBF_4 \leftrightarrow B_2O_3$	0.27647
2.0363	$KBF_4 \leftrightarrow H_3BO_3$	0.49108
1.3206	$\text{KBF}_4 \leftrightarrow \text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$	0.75723

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	BROMINE	
4 8 4 9 9	Br = 79.90	0
1.3499	$Ag \leftrightarrow Br$	0.74079
0.84333	$Ag \leftrightarrow BrO_3$	1.1858
1.3331	$Ag \leftrightarrow HBr$	0.75013
2.3499	$AgBr \leftrightarrow Br$	0.42555
1.4081	$AgBr \leftrightarrow BrU_3$	0.08117
2.3200	$AgBr \leftrightarrow HBr$	0.43091
0.55750	$Br \leftrightarrow AgCI$	1.7935
9.9892 1.1858	$\operatorname{Br}_3 \leftrightarrow \operatorname{Ag}$	0.10010
	CADMIUM	
	Cd = 112.40	
0.61317	$Cd \leftrightarrow CdCl_2$	1.6309
0.47545	$Cd \leftrightarrow Cd(NO_3)_2$	2.1033
1.1423	CdO ↔ Cd	0.87539
0.70045	$CdO \leftrightarrow CdCl_2$	1.4276
0.54312	$CdO \leftrightarrow Cd(NO_3)_2$	1.8412
1.2852	$CdS \leftrightarrow Cd$	0.77807
0.78806	$CdS \leftrightarrow CdCl_2$	1.2689
0.61106	$CdS \leftrightarrow Cd(NO_3)_2$	1.6365
1.1251	CdS ↔ CdO	0.88883
0.69298	$CdS \leftrightarrow CdSO_4$	1.4430
1.8546	$CdSO_4 \leftrightarrow Cd$	0.53919
1.1372	$CdSO_4 \leftrightarrow CdCl_2$	0.87935
0.88177	$CdSO_4 \leftrightarrow Cd(NO_3)_2$ $CdSO_4 \leftrightarrow CdO$	1.1341
		0101070
	CALCIUM $Ca = 40.08$	
3.2352	BaSO₄⇔CaS	0.30910
1.7144	$BaSO_4 \leftrightarrow CaSO_4$	0.58329
1.3556	$BaSO_4 \leftrightarrow CaSO_4 \cdot 2H_2O$	0.73766
0.36111	$Ca \leftrightarrow CaCl_2$	2.7692
0.51334	$Ca \leftrightarrow CaF_2$	1.9480
0.71471	Ca⇔CaO	1.3992
2.4973	$CaCO_3 \leftrightarrow Ca$	0.40044
0.90179	$CaCO_3 \leftrightarrow CaCl_2$	1.1089
0.61742	$CaCO_3 \leftrightarrow Ca(HCO_3)_2$	1.6196
1.7848	CaCO ↔ CaO	0.56029
0.73520	$CaCO_3 \leftrightarrow CaSO_4$	1.3602
0.58134	$CaCO_3 \leftrightarrow CaSO_4 \cdot 2H_2O$	1.7202
1.3726	$CaCO_3 \leftrightarrow HCl$	0.72856
0.50526	$CaO \leftrightarrow CaCl_2$	1.9792
0.71825	$CaO \leftrightarrow CaF_2$	1.3923
0.34593	$CaO \leftrightarrow Ca(HCO_3)_2$	2.8907
0.75685	$CaO \leftrightarrow Ca(OH)_2$	1.3213
0.41192	$CaO \leftrightarrow CaSO_4$	2.4276
0.32572	$CaO \leftrightarrow CaSO_4 \cdot 2H_2O$	3.0701
2.5797	$Ca_3(PO_4)_2 \leftrightarrow Ca$	0.38765
1.8437	$Ca_3(PO_4)_2 \leftrightarrow CaO$	0.54239
0.75946	$Ca_3(PO_4)_2 \leftrightarrow CaSO_4$	1.3167

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
3.3967	CaSO₄ ↔ Ca	0.29440
1.2266	$CaSO_4 \leftrightarrow CaCl_2$	0.81526
1.3602	$CaSO_4 \leftrightarrow CaCO_3$	0.73520
1.7437	$CaSO_4 \leftrightarrow CaF_2$	0.57351
2.4276	$CaSO_4 \leftrightarrow CaO$	0.41192
1.7691	Cl⇔Ca	0.56526
0.63885	$Cl \leftrightarrow CaCl_2$	1.5653
1.2644	Cl ↔ CaO	0.79089
0.78479	$CO_2 \leftrightarrow CaO$	1.2742
0.43970	$CO_2 \leftrightarrow CaCO_3$	2.2743
0.77989	$Mg_2As_2O_7 \leftrightarrow Ca_3(AsO_4)_2$	1.2822
0.71883	MgO ↔ CaO	1.3912
0.71755	$Mg_2P_2O_7 \leftrightarrow Ca_3(PO_4)_2$	1.3936
12.098	$(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow Ca_3(PO_4)_2$	0.082657
0.65824	$N_2O_5 \leftrightarrow Ca(NO_3)_2$	1.5192
0.45761	$P_2O_3 \leftrightarrow Ca_3(PO_4)_2$	2.1853
1.4277	$SO_3 \leftrightarrow CaO$	0.70044
0.58809	$SO_3 \leftrightarrow CaSO_4$	1.7004
0.46502	$SO_3 \leftrightarrow CaSO_4 \cdot 2H_2O$	2.1505
0.80523	$WO_3 \leftrightarrow CaWO_4$	1.2419
	$\begin{array}{l} CARBON\\ C = 12.011 \end{array}$	
3.9913	$Ag \leftrightarrow HCN$	0.25054
1.6565	Ag ↔ KCN	0.60369
4.9541	AgCN ↔ HCN	0.20185
2.0561	$AgCN \leftrightarrow KCN$	0.48637
16.431	$BaCO_2 \leftrightarrow C$	0.060861
4,4842	$BaCO_3 \leftrightarrow CO_2$	0.22301
3.2887	$BaCO_{2} \leftrightarrow CO_{2}$	0.30407
3.4842	$BaO \leftrightarrow CO_{2}$	0.28701
1.7421	$BaO \leftrightarrow CO_2$, bicarbonate	0.57402
0.19432	$CN \leftrightarrow AgCN$	5.1461
0.24120	$CN \leftrightarrow Ag$	4.1460
0.35000	$SCN \leftrightarrow AgSCN$	2.8572
0.47757	SCN ↔ CuSCN	2.0939
0.24885	$SCN \leftrightarrow BaSO_{4}$	4.0185
1.2742	$CaO \leftrightarrow CO_2$	0.78479
0.63712	$CaO \leftrightarrow CO_2$, bicarbonate	1.5696
0.33936	$CO_2 \leftrightarrow Ba(HCO_2)_2$	2.9467
3.6641	$CO_2 \leftrightarrow C$	0.27291
0.43970	$CO_2 \leftrightarrow CaCO_2$	2.2743
0.54297	$CO_{2} \leftrightarrow Ca(HCO_{2})_{2}$	1.8417
0.73341	$CO_2 \leftrightarrow CO_2$	1.3635
0.13507	$CO_2 \leftrightarrow Cs_2CO_2$	7.4033
0.22695	$CO_2 \leftrightarrow CsHCO_3$	4.4063
0.37986	$CO_2 \leftrightarrow FeCO_3$	2.6326
0.49483	$CO_2 \leftrightarrow Fe(HCO_2)_2$	2.0209
0.31843	$CO_2 \leftrightarrow K_2CO_2$	3.1404
0.43957	$CO_2 \leftrightarrow KHCO_2$	2.2749
0.46718	$CO_2 \leftrightarrow K_2O$	2.1405
0.59564	$CO_2 \leftrightarrow Li_2 CO_2$	1.6789
0.64762	$CO_2 \leftrightarrow LiHCO_3$	1.5441
	2 J	

TABLE 4.34 Gravimetric Factors (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Factor		Factor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4730	$CO_2 \leftrightarrow Li_2O$	0.67887
0.60143 CO ₂ → Mg(HCO ₃) ₂ 1.6627 1.0918 CO ₂ → MnCO ₂ 2.6119 0.49737 CO ₂ → MnCO ₃ 2.6119 0.49737 CO ₂ → MnCO 1.6118 0.41523 CO ₂ → Ma,CO 2.4083 0.52288 CO ₂ → Na,O 1.4088 0.45802 CO ₂ ↔ Na,O 1.9088 0.71008 CO ₂ ↔ NA,CO ₃ 2.8133 0.45802 CO ₂ ↔ NA,CO ₃ 2.8133 0.45802 CO ₂ ↔ NH,H,CO ₃ 1.7966 0.16671 CO ₂ ↔ Rb,CO ₃ 5.2477 0.30043 CO ₂ ↔ Rb,CO 4.2477 0.23542 CO ₂ ↔ Rb,CO 2.3545 0.23542 CO ₂ ↔ Rb,CO 2.3545 0.23541 CO ₂ ↔ SrCO ₃ 2.3545 0.2474 CO ₂ ↔ SrCO ₃ 2.3545 0.24744 CO ₂ ↔ SrCO ₃ 2.3545 0.41984 Cc ← Ce(O ₃) _A 2.7701 0.42474 CO ₂ ↔ SrCO 2.3545 0.24746 Cc ← Ce(O ₃) _A 2.2840 0.5277 Ce(CO ₄) _A >3.49989 2.1251 0.5277	0.52193	$CO_2 \leftrightarrow MgCO_3$	1.9159
$\begin{array}{cccc} 1.0018 & CQ_{2} \leftrightarrow MgO & 0.91595 \\ 0.38286 & CQ_{2} \leftrightarrow MnCO_{3} & 2.6119 \\ 0.49737 & CQ_{2} \leftrightarrow MnCO_{3} & 2.4083 \\ 0.41523 & CQ_{2} \leftrightarrow Na_{2}CO_{3} & 2.4083 \\ 0.41523 & CQ_{2} \leftrightarrow Na_{3}CO_{3} & 2.4083 \\ 0.52388 & CQ_{2} \leftrightarrow Na_{1}CO_{3} & 1.9088 \\ 0.71008 & CQ_{2} \leftrightarrow Na_{1}CO_{3} & 1.9088 \\ 0.45802 & CQ_{2} \leftrightarrow NH_{4}CO_{3} & 2.1833 \\ 0.55669 & CQ_{2} \leftrightarrow NH_{4}CO_{3} & 6.0713 \\ 0.16471 & CQ_{2} \leftrightarrow Rb_{2}CO_{3} & 6.0713 \\ 0.19055 & CQ_{2} \leftrightarrow Rb_{2}CO_{3} & 3.3345 \\ 0.23542 & CO_{2} \leftrightarrow Rb_{2}CO_{3} & 3.3345 \\ 0.23542 & CQ_{2} \leftrightarrow SrCO_{4} & 3.3346 \\ 0.23542 & CQ_{2} \leftrightarrow SrCO_{4} & 3.3345 \\ 0.41984 & CQ_{2} \leftrightarrow SrCO_{4} & 2.3545 \\ \hline \\ \hline \\ \hline \\ CERIUM \\ Ce = 140.12 \\ 0.36100 & Ce \leftrightarrow Ce(NO_{3})_{4} - 2.7701 \\ 0.24746 & Ce \leftrightarrow Ce(NO_{3})_{4} - 2.753 \\ 0.43937 & Ce \leftrightarrow Ce(SO_{4})_{3} & 0.94998 \\ 2.1351 & Ce_{2}(C,Q_{4})_{5} \cdot 3H_{4}O \leftrightarrow Ce_{4}(SO_{4})_{3} & 0.49498 \\ 0.42284 & CeQ_{2} \leftrightarrow Ce(NO_{3})_{4} & 2.2551 \\ 0.30977 & CeQ_{3} \leftrightarrow Ce(NO_{3})_{4} & 2.2551 \\ 0.30930 & C_{3$	0.60143	$CO_2 \leftrightarrow Mg(HCO_3)_2$	1.6627
$\begin{array}{cccc} 0.38286 & CO_0 \leftrightarrow MnCO_0 & 2.6119 \\ 0.497737 & CO_0 \leftrightarrow MnHCO_0.2 & 2.0106 \\ 0.62041 & CO_2 \leftrightarrow MnO & 1.6118 \\ 0.41523 & CO_2 \leftrightarrow NaiCO_1 & 1.9088 \\ 0.71008 & CO_2 \leftrightarrow NaiCO_1 & 2.4083 \\ 0.52388 & CO_2 \leftrightarrow NaiCO_1 & 2.4083 \\ 0.71008 & CO_2 \leftrightarrow NaiCO_1 & 2.1833 \\ 0.55669 & CO_2 \leftrightarrow NH_1/CO_1 & 2.1833 \\ 0.55669 & CO_2 \leftrightarrow NH_1/CO_3 & 6.0713 \\ 0.19055 & CO_2 \leftrightarrow RbLO_0 & 5.2477 \\ 0.30043 & CO_2 \leftrightarrow RbLO_1 & 3.3286 \\ 0.23542 & CO_2 \leftrightarrow RbLO_1 & 3.3286 \\ 0.23542 & CO_2 \leftrightarrow RbLO_1 & 3.3286 \\ 0.42474 & CO_2 \leftrightarrow SrO_2 & 3.3545 \\ \hline \\ \hline \\ \hline \\ Ce = 140.12 \\ 0.36100 & Ce \leftrightarrow Ce(NO_3)_4 & 2.7701 \\ 0.34408 & Ce \leftrightarrow Ce(O_3)_4 & 2.7701 \\ 0.34408 & Ce \leftrightarrow Ce(O_3)_4 & 2.7701 \\ 0.34408 & Ce \leftrightarrow Ce(O_3)_4 & 2.7313 \\ 0.439302 & Ce \leftrightarrow Ce(O_3)_4 & 2.2731 \\ 0.339302 & Ce \leftrightarrow Ce(SO_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2O_4)_3 & 3.140 \leftrightarrow Ce(SO_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2O_4)_3 & 3.140 \leftrightarrow Ce(SO_4)_3 & 0.94998 \\ 0.30397 & CeO_2 \leftrightarrow Ce(NO_3)_4 & 2.2551 \\ 0.30393 & C_3,O \leftrightarrow CeO_3 & 1.1747 \\ 0.258704 & CeO_3 & 1.2841 \\ 2.0005 & C_3,O \leftrightarrow CeSO_3 & 1.2841 \\ 2.0005 & C_3,O \leftarrow CeSO_3 & 1.2841 \\ 2.0005 & C_3,O \leftarrow CeSO_3 & 0.48369 \\ 2.300$	1.0918	$CO_2 \leftrightarrow MgO$	0.91595
$\begin{array}{cccc} 0.49737 & CO_{2} \leftrightarrow Mn(HCO_{3})_{2} & 2.0106 \\ 0.62041 & CO_{2} \leftrightarrow Mn(HCO_{3})_{2} & 2.0106 \\ 0.62041 & CO_{2} \leftrightarrow Na_{2}CO_{3} & 2.4083 \\ 0.41523 & CO_{2} \leftrightarrow Na_{3}CO_{3} & 2.4083 \\ 0.5288 & CO_{2} \leftrightarrow Na_{1}CO_{3} & 1.9088 \\ 0.52669 & CO_{2} \leftrightarrow Na_{4}O_{3} & 1.9088 \\ 0.45802 & CO_{2} \leftrightarrow (NH_{4})_{2}CO_{3} & 2.1833 \\ 0.55669 & CO_{2} \leftrightarrow Nb_{1}HCO_{3} & 2.1833 \\ 0.16471 & CO_{2} \leftrightarrow PbCO_{3} & 6.0713 \\ 0.10055 & CO_{2} \leftrightarrow Rb_{2}CO_{3} & 5.2477 \\ 0.30043 & CO_{2} \leftrightarrow Rb_{1}CO_{3} & 3.3286 \\ 0.23542 & CO_{2} \leftrightarrow Rb_{2}O_{3} & 3.3545 \\ 0.41984 & CO_{2} \leftrightarrow SrO_{3} & 3.3545 \\ 0.41984 & CO_{2} \leftrightarrow SrO_{3} & 2.3818 \\ 0.42474 & CO_{2} \leftrightarrow SrO & 2.3848 \\ 0.24274 & CO_{2} \leftrightarrow SrO & 2.3848 \\ 0.24274 & CO_{2} \leftrightarrow SrO & 2.3545 \\ \hline \\ \hline \\ 0.36100 & Ce \leftrightarrow Ce(NO_{3})_{4} & 2.7701 \\ 0.24746 & Ce \leftrightarrow Ce(NO_{3})_{4} & 2.2701 \\ 0.24746 & Ce \leftrightarrow Ce(NO_{3})_{4} & 2.2701 \\ 0.24746 & Ce \leftrightarrow Ce(NO_{3})_{4} & 2.2781 \\ 0.35100 & Ce \leftrightarrow Ce(SO_{4})_{3} & 0.94998 \\ 2.1351 & Ce_{2}(C,Q_{4})_{3} : 3H_{3}O \leftrightarrow Ce_{3}CO_{3} & 0.94998 \\ 2.1351 & Ce_{2}(C,Q_{4})_{3} : 3H_{3}O \leftrightarrow Ce_{3}O_{4}O_{4} & 2.2551 \\ 0.30397 & CeO_{2} \leftrightarrow Ce(NO_{3})_{4} & 2.2551 \\ 0.30397 & CeO_{2} \leftrightarrow Ce(NO_{3})_{4} & 2.2560 \\ 0.22894 & Ce_{2}O_{3} \leftrightarrow Ce(NO_{3})_{4} & 2.3450 \\ 0.22894 & Ce_{2}O_{3} \leftrightarrow Ce(NO_{3})_{4} & 2.3560 \\ 0.23984 & Ce_{2}O_{3} \leftrightarrow Ce(NO_{3})_{4} & 2.3560 \\ 0.23984 & CeO_{3} \leftrightarrow Ce(NO_{3})_{4} & 2.3748 \\ 0.21058 & C1 \leftrightarrow Cs & 3.7489 \\ 0.21058 & C1 \leftrightarrow Cs & 3.7489 \\ 0.21058 & C1 \leftrightarrow Cs & 0.74787 \\ 0.77876 & CsO_{3} \leftrightarrow CsO_{3} & 0.39461 \\ 2.005 & CsPCL_{6} \leftrightarrow C$	0.38286	$CO_2 \leftrightarrow MnCO_3$	2.6119
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.49737	$CO_2 \leftrightarrow Mn(HCO_3)_2$	2.0106
0.41523 CO ₂ ↔ Na ₂ CO ₃ 2.4083 0.52388 CO ₂ ↔ Na ₂ O 1.4083 0.52384 CO ₂ ↔ Na ₂ O 2.1833 0.55669 CO ₂ ↔ NH ₄ ICO ₃ 2.1833 0.16057 CO ₂ ↔ NH ₄ ICO ₅ 6.0713 0.19055 CO ₂ ↔ Rb ₂ CO ₃ 6.0713 0.19055 CO ₂ ↔ Rb ₂ CO ₃ 3.3286 0.2381 CO ₂ ↔ Rb ₂ CO ₃ 3.3286 0.2381 CO ₂ ↔ Rb ₂ CO ₃ 3.3286 0.2381 CO ₂ ↔ SrCO ₃ 3.3345 0.41984 CO ₂ ↔ SrCO ₃ 2.3545 0.2381 CEERUM 2.7701 0.36100 Ce ↔ Ce(NO ₃) ₄ , 2NH ₄ NO ₃ , H ₂ O 4.0411 0.8100 Ce ↔ Ce ₂ O ₃ 1.1713 0.4302 Ce ← Ce(NO ₃) ₄ 2.251 0.30397 Ce (C ₂ O ₄) ₃ , 3H ₂ O ↔ Ce ₄ (SO ₄) ₃ 0.2083 1.0527 Ce ₂ O ₄ , O ₄ ↔ Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ 2.3560 0.28984 Ce ₂ O ₄ ↔ Ce(NO ₃) ₄ 2.3560 0.28984	0.62041	$CO_2 \leftrightarrow MnO$	1.6118
0.52388 CO ₂ ↔ NaHCO ₃ 1.9088 0.71008 CO ₂ ↔ Na ₂ O 1.4083 0.45802 CO ₂ ↔ NH ₄ HCO ₃ 1.7963 0.16471 CO ₂ ↔ Rb ₂ CO ₃ 5.2477 0.30043 CO ₂ ↔ Rb ₂ CO 3.3286 0.23542 CO ₂ ↔ Rb ₂ O 4.2477 0.29811 CO ₂ ↔ SrO 2.3545 CERIUM Ce = 140.12 0.36100 C ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce ₂ (SO ₄) ₃ 2.1284 0.439302 Ce ↔ Ce ₂ (SO ₄) ₃ 0.94998 2.1351 Cc ₂ (Co ₄) ₃ : 3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.94998 2.1351 Cc ₂ (Co ₄) ₃ : 3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 2.2581 0.30397 Ce ₂ O ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O 3.4502 0.35776 Ce ₂ O ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O 3.4502 0.30397 Ce ₂ O ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O 3.4502 0.30397 Ce ₂ O ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O 3.4502 0.3576 Cl ↔ Ce ₂ O ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O 3.4502 0.3577 Ce ₂ O	0.41523	$CO_2 \leftrightarrow Na_2CO_3$	2.4083
0.71008 $CO_2 \leftrightarrow Na_0O$ 1.4083 0.45802 $CO_2 \leftrightarrow NH_4 JCO_3$ 2.1833 0.55669 $CO_2 \leftrightarrow PbCO_3$ 6.0713 0.19055 $CO_2 \leftrightarrow Pb_CO_3$ 5.2477 0.30043 $CO_2 \leftrightarrow Rb_1CO_3$ 3.3286 0.23542 $CO_2 \leftrightarrow Rb_2O_3$ 3.3345 0.41984 $CO_2 \leftrightarrow SrCO_3$ 2.3545 CERIUM Ce = 140.12 CERIUM Ce = 140.12 CERIUM Ce + Ce (NO_3)_4 2.7701 0.36100 Ce + Ce (NO_3)_4 2.7701 0.449302 Ce + Ce (NO_3)_4 2.0283 0.36100 Ce + Ce (Co_3)_3 2.0283 0.449302 Ce + Ce (SO_4)_3 2.0283 0.449302 Ce + Ce (SO_4)_3 2.0283 0.44345 Ce (SO_4)_3 2.0283 0.42284 Ce (Co_3) + 2NH_4NO_3 \cdot H_2O 3.2898 0.42884 Ce 2(3 + Ce (NO_3)_4, 2NH_4NO_3 \cdot H_2O 3.2898 0.42884 Ce 2(3 + Ce (NO_3)_4, 2NH_4NO_3 \cdot H_2O 3.2898 0.42884 Ce 2(3 + Ce (NO_3)_4, 2NH_4NO_3 \cdot H_2O	0.52388	$CO_2 \leftrightarrow NaHCO_3$	1.9088
0.45802 CC ₀ ↔ (NH ₄) ₂ CO ₃ 2.1833 0.55669 CC ₀ ↔ NH ₄ HCO ₃ 1.7963 0.16471 CO ₂ ↔ PbCO ₃ 6.0713 0.19055 CO ₂ ↔ Rb ₂ CO ₃ 5.2477 0.30043 CO ₂ ↔ Rb ₂ CO ₃ 3.3286 0.23542 CO ₂ ↔ Rb ₂ O 3.3545 0.41984 CO ₂ ↔ Sr(1ICO ₃) ₂ 2.3818 0.42474 CO ₂ ↔ Sr(0 0.36100 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(NO ₃) ₄ 2.7301 0.381408 Ce ↔ Ce ₂ O ₃ 1.1713 0.49302 Ce ↔ Ce ₂ (SO ₄) ₃ 0.94998 2.1351 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce 0.04853 0.44345 Ce ₂ O ₂ ↔ Ce(NO ₃) ₄ 2.2551 0.43944 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.2551 0.43957 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce 0.03,22H ₄ NO ₃ ·H ₂ O 3.2898 0.42284 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.2551 0.30397 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce (NO ₃) ₄ 2.2551 0.23984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3560 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3560 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3560 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3560 0.28984 Ce ₂ O ₃ ↔ Ce(SO ₄) ₃ 1.7317 CESIUM Cs = 137.905 0.85127 AgCl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.12667 0.57746 Ce ₂ O ₃ ↔ Ce(SO ₄) ₃ 1.7317 CESIUM Cs = 137.905 0.85127 AgCl ↔ CsCl 1.12667 0.57740 Cs ₂ O ₃ ↔ CsCl 1.12647 0.21038 Cl ↔ CsCl 1.1748 0.78944 Cs ↔ CsCl 1.12667 0.57200 Cs ↔ CsCl 1.12667 0.57200 Cs ↔ CsCl 1.1267 0.4326 Cs ↔ CsCO 1.12847 0.21058 Cl ↔ CsCl 0.47488 0.78944 Cs ↔ CsCl 0.42841 2.3341 Cs ₃ PCl ₄ ← CsC 0.4284 0.5800 Cs ↔ CsCO 0.48369 2.9003 Cs ₃ PCl ₆ ↔ CsCO 0.48	0.71008	$CO_2 \leftrightarrow Na_2O$	1.4083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45802	$CO_2 \leftrightarrow (NH_4)_2 CO_3$	2.1833
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55669	$CO_2 \leftrightarrow NH_4HCO_3$	1.7963
0.9055 CO ₂ ↔ Rb ₂ CO ₃ 52477 0.30043 CO ₂ ↔ Rb ₂ CO ₃ 3.3286 0.23542 CO ₂ ↔ Rb ₂ CO ₃ 4.2477 0.29811 CO ₂ ↔ Sr(HCO ₃) ₂ 2.3818 0.42474 CO ₂ ↔ Sr(HCO ₃) ₂ 2.3818 0.42474 CO ₂ ↔ Sr(HCO ₃) ₂ 2.3515 CERIUM Ce = 140.12 0.36100 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24745 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(O ₃) ₃ 2.11713 0.49302 Ce ↔ Ce ₂ (SQ ₄) ₃ 3.14,O ↔ Ce 0.46835 0.44345 Ce ₂ (C ₂ Q ₄) ₃ 3.14,O ↔ Ce 0.46835 0.44345 Ce ₂ (Ce ₂ Q ₄) ₃ 3.14,O ↔ Ce 0.46835 0.44345 Ce ₂ (Ce ₂ Q ₃) ↔ Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ 2.3650 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3650 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3650 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3650 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3717 CESUM Cs = 137.905 0.85127 AcgCl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.17478 0.57746 CsCl 1.12667 0.57200 Cs ↔ CsCO ₃ 1.2257 0.43262 Cs ↔ CsCO ₃ 1.2257 0.43263 Cs ↔ CsCO 1.2267 0.43693 Cs ₂ O ↔ CsCO 0.43869 2.3903 Cs ₂ PCl ₆ ↔ CsC 0.048369 2.3903 Cs ₂ PCl ₆ ↔ CsCO 0.04	0.16471	$CO_2 \leftrightarrow PbCO_3$	6.0713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19055	$CO_2 \leftrightarrow Rb_2CO_3$	5.2477
0.23542 CO ₂ ↔ R ₅ O 4.2477 0.29811 CO ₂ ↔ SrCO ₃ 3.3545 0.41984 CO ₂ ↔ SrCO 2.35818 0.42474 CO ₂ ↔ SrO 2.3545 CERIUM Ce = 140.12 0.36100 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(NO ₃) ₄ 2.7701 0.24746 Ce ↔ Ce(O ₃) ₄ 2.0283 1.0527 Ce ₂ (C ₂ O ₄) ₅ 3H ₂ O ↔ Ce ₅ (SQ ₄) ₃ 2.0283 1.0527 Ce ₂ (C ₂ O ₄) ₅ 3H ₂ O ↔ Ce (Co ₃ O ₄) 2.2551 0.43345 Ce ₂ O ₂ ↔ Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ 2.3650 0.42844 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3559 0.42844 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3650 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3550 0.28984 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ 2.3717 CESIUM Cs = 137.905 0.85127 AgCl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.2667 0.7726 Cs ₂ O ← CsCl 1.2667 0.7720 Cs ↔ CsCl 1.2667 0.7726 Cs ₂ O ↔ CsCl 1.2667 0.7726 Cs ₂ O ↔ CsCl 0.40835 0.73451 Cs,97Cl ₆ ↔ Cs ₂ O 0.40835 0.73451 Cs,97Cl ₆ ↔ Cs ₂ O 0.40835 2.3003 Cs,97Cl ₆ ↔ CsCl 0.473457 1.0747 Cs ₂ SO ₄ ↔ Cs ₂ O 0.35199	0.30043	$CO_2 \leftrightarrow RbHCO_3$	3.3286
0.29811 $CO_2 \leftrightarrow SrCO_3$ 3.35450.41984 $CO_2 \leftrightarrow SrCO_3$ 2.38180.42474 $CO_2 \leftrightarrow SrCO$ 2.3545CERIUM $Ce = 140.12$ 0.36100 $Ce \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$ 4.04110.34100 $Ce \leftrightarrow Ce(O_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$ 4.04110.81408 $Ce \leftrightarrow Ce(O_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$ 4.04110.81408 $Ce \leftrightarrow Ce_2O_3$ 1.17130.49302 $Ce \leftrightarrow Ce_2(O_3)_3$ 0.949982.1351 $Ce_2(C_2O_4)_3 \cdot 3H_2O \leftrightarrow Ce_4$ 0.468350.43435 $CeO_2 \leftrightarrow Ce(NO_3)_4$ 2.25510.30397 $CeO_2 \leftrightarrow Ce(NO_3)_4$ 2.36500.42284 $Ce_2O_3 \leftrightarrow Ce(NO_3)_4$ 2.36500.28984 $Ce_2O_3 \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$ 3.45020.57746 $Ce_2O_3 \leftrightarrow CeO_3 \rightarrow Ce_3(SA_3)$ 1.7317CESUM Cs = 137.9050.85127AgCl \leftrightarrow CsCl1.17470.26675Cl \leftrightarrow Cs3.74890.21058Cl \leftrightarrow CsCl1.26670.57200Cs \leftrightarrow CsClO_41.22870.43693Cs ϕCs_2O_3 1.22570.94326Cs ϕCs_2O_3 1.22570.94326Cs ϕCs_2O_3 1.22470.94326Cs ϕCs_2O_3 1.24840.77876Cs_2O ϕCs_2O_3 1.28410.77876Cs_2O ϕCs_2O_3 0.483590.77876Cs_2O ϕCs_2O_3 0.483590.77876Cs_2O ϕCs_2O_3 0.483590.3613Cs_2SO $\phi CsCl$ 0.483551.3613Cs_2SO $\phi CsCl$ 0.483551.3613 </td <td>0.23542</td> <td>$CO_2 \leftrightarrow Rb_2O$</td> <td>4.2477</td>	0.23542	$CO_2 \leftrightarrow Rb_2O$	4.2477
0.41984 CO ₂ ↔ SrO 2.3818 0.42474 CO ₂ ↔ SrO 2.3545 CERIUM Ce = 140.12 0.36100 Ce ↔ Ce(NO ₃) ₄ - 2NH ₄ NO ₃ ·H ₂ O 4.0411 0.81408 Ce ↔ Ce(O ₃) ₄ - 2NH ₄ NO ₃ ·H ₂ O 4.0411 0.81408 Ce ↔ Ce ₂ O ₃ 1.1713 0.49302 Ce ↔ Ce ₂ (SO ₄) ₃ 2.0283 1.0527 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce 0.46835 0.439302 CeO ₂ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.2898 1.0527 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce 0.46835 0.43938 CeO ₂ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.2898 0.42284 CeO ₂ O ₃ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.4502 0.3937 Cee ₂ O ₃ ↔ CeO ₂ O ₃ 1.0487 0.57746 Ce ₂ O ₃ ↔ CeO ₂ O ₃ 1.0487 0.57746 Ce ₂ O ₃ ↔ CeCl 1.1747 0.26675 Cl ↔ Cs 3.7489 0.21058 Cl ↔ CsCl 1.2667 0.75200 Cs ↔ Cs ₂ O ₃ 1.2257 0.94326 Cs ↔ Cs ₂ O ₃ 1.2841	0.29811	$CO_2 \leftrightarrow SrCO_3$	3.3545
0.42474 CO ₂ ↔ SrO 2.3545 CERIUM Ce = 140.12 2.7701 0.36100 Ce ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 4.0411 0.81408 Ce ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 4.0411 0.81408 Ce ↔ Ce(O ₂) ₃ .2NH ₄ NO ₃ ·H ₂ O 4.0411 0.8177 Ce ↔ Ce ₂ O ₃ 1.1713 0.49302 Ce ↔ Ce ₂ (SO ₄) ₃ 2.0283 1.0527 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.94998 2.1351 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce 0.46835 0.43445 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ .22551 0.30397 CeO ₂ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.2898 0.42284 Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.4502 0.95352 Ce ₆ O ₃ ↔ Ce(NO ₃) ₄ .2NH ₄ NO ₃ ·H ₂ O 3.4502 0.95352 Ce ₂ O ₃ ↔ Ce ₂ (SO ₄) ₃ 1.7317 CESIUM 1.7487 0.26675 Cl ↔ CsCl 1.1747 0.26675 Cl ↔ CsCl 1.2667 0.21058 Cl ↔ Cs ₂ O ₃ Cl ↔ Cs ₂ O ₃ 1.2257 0.94326 Cs ↔ Cs ₂ O ₃ 1.2257 0.94326 Cs ↔ Cs ₂ O ₃	0.41984	$CO_2 \leftrightarrow Sr(HCO_3)_2$	2.3818
$\begin{array}{c c c c c c c } \hline CERIUM \\ Ce = 140.12 \\\hline 0.36100 & Ce \leftrightarrow Ce(NO_3)_4 & 2.7701 \\ 0.24746 & Ce \leftrightarrow Ce(O_3)_4 .2NH_4NO_3 \cdot H_2O & 4.0411 \\ 0.81408 & Ce \leftrightarrow CeO_2 & 1.2284 \\ 0.85377 & Ce \leftrightarrow Ce_0C_3 & 1.1713 \\ 0.49302 & Ce \leftrightarrow Ce_0(S_4)_3 & 2.0283 \\ 1.0527 & Ce_2(C_2O_4)_3 \cdot 3H_2O \leftrightarrow Ce_5(SO_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2O_4)_3 \cdot 3H_2O \leftrightarrow Ce & 0.46835 \\ 0.44345 & CeO_2 \leftrightarrow Ce(NO_3)_4 & 2.2551 \\ 0.30397 & CeO_2 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.30397 & CeO_2 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.28984 & Ce_0O_3 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.28984 & Ce_0O_3 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.28984 & Ce_0O_3 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.57746 & Ce_2O_3 \leftrightarrow Ce(NO_3)_4 & 1.7317 \\ \hline $	0.42474	$CO_2 \leftrightarrow SrO$	2.3545
Ce = 140.12 0.36100 Ce \leftrightarrow Ce(NO_3)_4 2.7701 0.24746 Ce \leftrightarrow Ce(NO_3)_4.2NH_4NO_3·H_2O 4.0411 0.81408 Ce \leftrightarrow Ce ₂ O ₂ 1.2284 0.85377 Ce \leftrightarrow Ce ₂ O ₂ 1.2284 0.85377 Ce \leftrightarrow Ce ₂ O ₃ 1.1713 0.49302 Ce \leftrightarrow Ce ₂ (SO ₄) ₃ 0.94998 2.1351 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O \leftrightarrow Ce 0.46835 0.44345 Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O \leftrightarrow Ce 0.46835 0.42284 Ce ₂ O ₂ \leftrightarrow Ce(NO ₃) ₄ 2.2551 0.30397 CeO ₂ \leftrightarrow Ce(NO ₃) ₄ 2.3650 0.42284 Ce ₂ O ₃ \leftrightarrow Ce(NO ₃) ₄ 2.3450 0.42284 Ce ₂ O ₃ \leftrightarrow Ce ₂ O ₃ \leftrightarrow Ce ₂ O ₃ 1.7317 CESIUM Cestum Ce 0.85127 AgCl \leftrightarrow CsCl 1.1747 0.26675 Cl \leftrightarrow CsCl 1.7488 0.78944 Cs \leftrightarrow CsCl 1.2667 0.57200 Cs \leftrightarrow Cs ₂ O ₃ 1.2257 0.94326 Cs \leftrightarrow Cs ₂ O ₃ <t< td=""><td></td><td>$\begin{array}{c} \textbf{CERIUM} \\ \textbf{C}_{2} = 140.12 \end{array}$</td><td></td></t<>		$\begin{array}{c} \textbf{CERIUM} \\ \textbf{C}_{2} = 140.12 \end{array}$	
0.36100Ce ↔ Ce(NO ₃) ₄ 2.77010.24746Ce ↔ Ce(NO ₃) ₄ . 2NH ₄ NO ₃ ·H ₂ O4.04110.81408Ce ↔ Ce ₀ O ₃ 1.22840.85377Ce ↔ Ce ₂ O ₃ 1.17130.49302Ce ↔ Ce ₂ (SO ₄) ₃ 2.02831.0527Ce ₃ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.949982.1351Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.4468350.44345Ce ₂ O ₂ ↔ Ce(NO ₃) ₄ 2.25510.30397Ceo ₂ ↔ Ce(NO ₃) ₄ . 2NH ₄ NO ₃ ·H ₂ O3.28980.42284Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ . 2NH ₄ NO ₃ ·H ₂ O3.45020.95352Ce ₂ O ₃ ↔ Ce ₂ (SO ₄) ₃ 1.7317CESUUM Cs = 137.905CESUUM Cs = 137.9050.85127AgCl ↔ CsCl1.17470.26675Cl ↔ CsCl1.26670.57200Cs ↔ CsClO ₄ 1.26670.57200Cs ↔ Cs ₂ CO ₃ 1.22570.94326Ce ₃ O ↔ CsCl1.19480.77876Cs ₂ O ↔ CsCl1.19480.77876Cs ₂ O ↔ CsCl1.19482.3541Cs ₂ PtCl ₆ ↔ Cs0.394612.3003Cs ₂ PtCl ₆ ↔ CsCO0.483692.3903Cs ₂ PtCl ₆ ↔ Cs0.494872.3903Cs ₂ PtCl ₆ ↔ Cs0.483692.3903Cs ₂ SO ₄ ↔ Cs ₂ O ₃ 0.483692.3903Cs ₂ PtCl ₆ ↔ Cs0.448361.3613Cs ₂ SO ₄ ↔ Cs ₂ O ₃ 0.483692.3903Cs ₂ PtCl ₆ ↔ Cs0.393061.1106Cs ₂ SO ₄ ↔ Cs ₂ O ₃ 0.990301.1106So ₃		Ce = 140.12	
$\begin{array}{cccc} Ce \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O & 4.0411 \\ 0.81408 & Ce \leftrightarrow CeO_2 & 1.2284 \\ 0.85377 & Ce \leftrightarrow Ce_2O_3 & 1.1713 \\ 0.49302 & Ce \leftrightarrow Ce_2(SO_4)_3 & 2.0283 \\ 1.0527 & Ce_2(C_2O_4)_3 \cdot H_2O \leftrightarrow Ce_3(SO_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2O_4)_3 \cdot H_2O \leftrightarrow Ce_3(SO_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2O_4)_3 \cdot H_2O \leftrightarrow Ce_3(SO_4)_4 & 2.2551 \\ 0.30397 & CeO_2 \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O & 3.2898 \\ 0.42284 & Ce_2O_3 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.28984 & Ce_2O_3 \leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3 \leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3 \leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3 \leftrightarrow CeO_3 & 1.7317 \\ \hline \hline \\ \hline \\ CessIUM \\ Cs = 137.905 \\ \hline \\ 0.85127 & AgCl \leftrightarrow CsCl & 1.1747 \\ 0.26675 & Cl \leftrightarrow Cs & 3.7489 \\ 0.21058 & Cl \leftrightarrow CsCl & 4.7488 \\ 0.78944 & Cs \leftrightarrow CsCl & 1.2667 \\ 0.57200 & Cs \leftrightarrow CsCl & 1.2481 \\ 2.5341 & Cs_2 \Theta \leftarrow CsCl & 1.1948 \\ 0.77876 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.49481 \\ 2.005 & Cs_2 \Theta \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 2.3903 & Cs_2 \Theta \leftarrow Cs_2 O_3 \leftarrow CsCl & 0.494836 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 0.35199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O_3 & 3.5199 \\ 0.28410 & SO_3$	0.36100	$Ce \leftrightarrow Ce(NO_3)_4$	2.7701
0.81408Ce ↔ CeO ₂ 1.22840.85377Ce ↔ Ce ₂ O ₃ 1.17130.49302Ce ↔ Ce ₂ (SO ₄) ₃ 2.02831.0527Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.949982.1351Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce0.468350.44345CeO ₂ ↔ Ce(NO ₃) ₄ 2.25510.30397CeO ₂ ↔ Ce(NO ₃) ₄ 2.36500.42284Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O3.28980.42284Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ : 2NH ₄ NO ₃ ·H ₂ O3.45020.95352Ce ₂ O ₃ ↔ CeO ₂ 1.04870.57746Ce ₂ O ₃ ↔ CeO ₂ 1.04870.57746Ce ₂ O ₃ ↔ CeSC1.17470.26675Cl ↔ CsC1.17470.26675Cl ↔ CsC1.26670.21058Cl ↔ CsCI1.26670.57200Cs ↔ CsCO ₃ 1.22570.93426Cs ↔ Cs ₂ O ₃ 1.22570.93426Cs ↔ Cs ₂ O ₃ 1.22570.93426Cs ↔ CsCI1.19480.77876Cs ₂ O ↔ CsCI1.19480.77876Cs ₂ O ↔ Cs ₂ O ₃ 1.22470.9303Cs ₂ O ← CsCI0.498772.005Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.483692.3903Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.4483692.3903Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.4483692.3903Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.4483692.3903Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.4483692.3903Cs ₂ PCl ₆ ↔ Cs ₂ O ₃ 0.940380.28410SO ₃ ↔ Cs ₂ O3.5199 <td>0.24746</td> <td>$Ce \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$</td> <td>4.0411</td>	0.24746	$Ce \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$	4.0411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.81408	$Ce \leftrightarrow CeO_2$	1.2284
$\begin{array}{cccc} Ce_2(SQ_4)_3 & Ce \leftrightarrow Ce_2(SQ_4)_3 & 2.0283 \\ 1.0527 & Ce_2(C_2Q_4)_3 \cdot 3H_2O \leftrightarrow Ce_2(SQ_4)_3 & 0.94998 \\ 2.1351 & Ce_2(C_2Q_4)_3 \cdot 3H_2O \leftrightarrow Ce & 0.46835 \\ 0.44345 & Ce_2(C_2Q_3)_3 \cdot 3H_2O \leftrightarrow Ce & 0.46835 \\ 0.44345 & Ce_2(C_2Q_3)_3 \leftrightarrow Ce(NO_3)_4 & 2.2551 \\ 0.30397 & CeO_2 \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O & 3.2898 \\ 0.42284 & Ce_2O_3 \leftrightarrow Ce(NO_3)_4 & 2.3650 \\ 0.28984 & Ce_2O_3 \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O & 3.4502 \\ 0.95352 & Ce_2O_3 \leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3 \leftrightarrow Ce_2(SO_4)_3 & 1.7317 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.85127 & AgCl \leftrightarrow CsCl & 1.1747 \\ 0.26675 & Cl \leftrightarrow Cs & 3.7489 \\ 0.21058 & Cl \leftrightarrow CsCl & 1.2667 \\ 0.57200 & Cs \leftrightarrow CsCl & 0.4987 \\ 0.57200 & Cs \leftrightarrow CsCl & 0.4987 \\ 0.57200 & Cs \leftrightarrow CsCl & 0.49987 \\ 0.57200 & Cs \leftrightarrow CsCl & 0.49987 \\ 0.57200 & Cs \leftrightarrow CsCl & 0.49987 \\ 0.57200 & Cs_2PtCl_6 \leftrightarrow Cs & 0.39461 \\ 2.0005 & Cs_2PtCl_6 \leftrightarrow Cs_2O_3 & 0.48369 \\ 2.3903 & Cs_2PtCl_6 \leftrightarrow Cs_2O_3 & 0.48369 \\ 2.3903 & Cs_2PtCl_6 \leftrightarrow Cs_2O_3 & 0.48369 \\ 2.3903 & Cs_2PtCl_6 \leftrightarrow Cs_2O_3 & 0.93050 \\ 0.1106 & Cs_2SQ \leftrightarrow CsCl & 0.93050 \\ 0.1106 & Cs_2SQ \leftrightarrow CsCl & 0.93050 \\ 0.28410 & SO_3 \leftrightarrow Cs_2O & 3.5199 \\ 0.28410 & SO_3 \leftrightarrow Cs_2O & 3.$	0.85377	$Ce \leftrightarrow Ce_2O_3$	1.1713
1.0527Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce ₂ (SO ₄) ₃ 0.949982.1351Ce ₂ (C ₂ O ₄) ₃ ·3H ₂ O ↔ Ce0.468350.44345CeO ₂ ↔ Ce(NO ₃) ₄ ·2NH ₄ NO ₃ ·H ₂ O3.28980.42284Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ ·2NH ₄ NO ₃ ·H ₂ O3.45020.28984Ce ₂ O ₃ ↔ Ce(NO ₃) ₄ ·2NH ₄ NO ₃ ·H ₂ O3.45020.95352Ce ₂ O ₃ ↔ Ce ₂ (SO ₄) ₃ 1.7317CESIUMCESIUMCESIUM0.26675Cl ↔ CsCl1.17470.26675Cl ↔ CsCl1.26670.77200Cs ← CsCl1.2670.57200Cs ↔ CsCl1.22670.94326Cs ↔ Cs ₂ O ₃ 1.22570.94326Cs ↔ Cs ₂ O ↔ Cs ₂ O ₃ 1.22570.94326Cs ₂ O ↔ Cs ₂ O ₃ 1.28410.77876Cs ₂ O ↔ CsCl0.394612.0005Cs ₂ PtCl ₆ ↔ CsCl0.394612.0005Cs ₂ PtCl ₆ ↔ CsCl0.483592.3033Cs ₂ SO ₄ ↔ Cs0.394511.161Cs ₂ SO ₄ ↔ Cs ₂ O0.483590.28410So ₃ ↔ Cs ₂ O0.483590.28410So ₃ ↔ Cs ₂ O0.48359	0.49302	$Ce \leftrightarrow Ce_2(SO_4)_3$	2.0283
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0527	$Ce_2(C_2O_4)_3 \cdot 3H_2O \leftrightarrow Ce_2(SO_4)_3$	0.94998
$\begin{array}{ccccc} 0.43435 & CeO_2\leftrightarrow Ce(NO_3)_4 & 2.2551 \\ 0.30397 & CeO_2\leftrightarrow Ce(NO_3)_4\cdot 2NH_4NO_3\cdot H_2O & 3.2898 \\ 0.42284 & Ce_2O_3\leftrightarrow Ce(NO_3)_4\cdot 2NH_4NO_3\cdot H_2O & 3.4502 \\ 0.28984 & Ce_2O_3\leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3\leftrightarrow CeO_2 & 1.0487 \\ 0.57746 & Ce_2O_3\leftrightarrow Ce_2(SO_4)_3 & 1.7317 \\ \hline \\ $	2.1351	$Ce_2(C_2O_4)_3 \cdot 3H_2O \leftrightarrow Ce$	0.46835
$\begin{array}{ccccccc} 0.3037 & CeO_2\leftrightarrow Ce(NO_3)_4 \cdot 2HA_1NO_3 \cdot H_2O & 3.2898 \\ 0.42284 & Ce_2O_3\leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O & 3.4502 \\ 0.28984 & Ce_2O_3\leftrightarrow Ce_{0}O_{3})_4 \cdot 2NH_4NO_3 \cdot H_2O & 3.4502 \\ 0.95352 & Ce_2O_3\leftrightarrow Ce_{2}O_{2} & 1.0487 \\ 0.57746 & Ce_2O_3\leftrightarrow Ce_{2}(SO_4)_3 & 1.7317 \\ \hline \\ $	0.44345	$CeO_2 \leftrightarrow Ce(NO_3)_4$	2.2551
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.30397	$CeO_2 \leftrightarrow Ce(NO_3)_4 \cdot 2NH_4NO_3 \cdot H_2O$	3.2898
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42264	$Ce_2O_3 \leftrightarrow Ce(NO_3)_4$	2.3030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.28984	$Ce_2 \cup_3 \Leftrightarrow Ce((N \cup_3)_4 \cdot 2N H_4 N \cup_3 \cdot H_2 \cup G_2 \cup$	3.4302
$\begin{array}{ccccc} CE2_{2}G_{3} \leftrightarrow CE_{2}(SG_{4})_{3} & 1.7517 \\ \hline \\ CESIUM \\ Cs = 137.905 \\ \hline \\ 0.85127 & AgCl \leftrightarrow CsCl & 1.1747 \\ 0.26675 & Cl \leftrightarrow Cs & 3.7489 \\ 0.21058 & Cl \leftrightarrow CsCl & 4.7488 \\ 0.78944 & Cs \leftrightarrow CsCl & 1.2667 \\ 0.57200 & Cs \leftrightarrow CsCl & 1.2667 \\ 0.57200 & Cs \leftrightarrow CsClO_{4} & 1.7483 \\ 0.81585 & Cs \leftrightarrow Cs_{2}O_{3} & 1.2257 \\ 0.94326 & Cs \leftrightarrow Cs_{2}O & 1.0602 \\ 0.83693 & Cs_{2}O \leftrightarrow Cscl & 1.1948 \\ 0.77876 & Cs_{2}O \leftrightarrow Cscl & 1.1948 \\ 0.77876 & Cs_{2}O \leftrightarrow Cscl & 0.39461 \\ 2.0005 & Cs_{2}PtCl_{6} \leftrightarrow Cscl & 0.49987 \\ 2.0675 & Cs_{2}PtCl_{6} \leftrightarrow Cscl & 0.48369 \\ 2.3903 & Cs_{2}PtCl_{6} \leftrightarrow Cs_{2}O & 0.41835 \\ 1.3613 & Cs_{2}SO_{4} \leftrightarrow Cscl & 0.73457 \\ 1.0747 & Cs_{2}SO_{4} \leftrightarrow Cscl & 0.93050 \\ 1.1106 & Cs_{2}SO_{4} \leftrightarrow Csc_{2}O & 0.41835 \\ 0.28410 & SO_{3} \leftrightarrow Cs_{2}O & 3.5199 \\ \end{array}$	0.95352	$Ce_2O_3 \Leftrightarrow CeO_2$	1.0487
CESIUM Cs = 137.905 0.85127 AgCl \leftrightarrow CsCl1.1747 0.26675 Cl \leftrightarrow Cs3.7489 0.21058 Cl \leftrightarrow CsCl4.7488 0.78944 Cs \leftrightarrow CsCl1.2667 0.57200 Cs \leftrightarrow CsClO41.7483 0.81585 Cs \leftrightarrow Cs2O31.2257 0.94326 Cs \leftrightarrow Cs2O1.0602 0.83693 Cs2O \leftrightarrow Cs2O1.0602 0.83693 Cs2O \leftrightarrow Cs2O1.2841 2.5341 Cs2PtCl_6 \leftrightarrow CsCl0.39461 2.0005 Cs2PtCl_6 \leftrightarrow Cs2O30.48369 2.3903 Cs2PtCl_6 \leftrightarrow Cs2O0.41835 1.3613 Cs2SO4 \leftrightarrow Cs2I0.93050 1.106 Cs2SO4 \leftrightarrow Cs2O30.90038 0.28410 SO3 \leftrightarrow Cs2O3.5199	0.57740	$Cc_2O_3 \hookrightarrow Cc_2(SO_4)_3$	1./31/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CESIUM $Cs = 137.905$	
0.26675 $Cl \leftrightarrow Cs$ 3.7489 0.21058 $Cl \leftrightarrow CsCl$ 4.7488 0.78944 $Cs \leftrightarrow CsCl$ 1.2667 0.57200 $Cs \leftrightarrow CsClo_4$ 1.7483 0.81585 $Cs \leftrightarrow Cs_2CO_3$ 1.2257 0.94326 $Cs \leftrightarrow Cs_2O$ 1.0602 0.83693 $Cs_2O \leftrightarrow Cs_2O$ 1.0602 0.83693 $Cs_2O \leftrightarrow Cs_2O_4$ 1.2841 2.5341 $Cs_2PtCl_6 \leftrightarrow Cs$ 0.39461 2.0005 $Cs_2PtCl_6 \leftrightarrow Cscl$ 0.48369 2.3903 $Cs_2PtCl_6 \leftrightarrow Cs_2CO_3$ 0.48369 2.3903 $Cs_2PtCl_6 \leftrightarrow Cs_2O$ 0.41835 1.3613 $Cs_2SO_4 \leftrightarrow Cscl$ 0.93050 1.106 $Cs_2SO_4 \leftrightarrow Cscl$ 0.93050 1.106 $Cs_2SO_4 \leftrightarrow Cs_2O_3$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	0.85127	AgC] ↔ CsCl	1 1747
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.26675	Cl⇔Cs	3 7480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.21058	Cl⇔CsCl	4 7488
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 78944	Cs ↔ CsCl	1.7100
0.81585 $C_S \leftrightarrow Cs_2CO_3$ 1.2257 0.94326 $C_S \leftrightarrow Cs_2O$ 1.0602 0.83693 $Cs_2O \leftrightarrow CsCl$ 1.1948 0.77876 $Cs_2O \leftrightarrow Cs_2SO_4$ 1.2841 2.5341 $Cs_2PtCl_6 \leftrightarrow Cs$ 0.39461 2.0005 $Cs_2PtCl_6 \leftrightarrow CsCl$ 0.49987 2.0675 $Cs_2PtCl_6 \leftrightarrow Cs_2O$ 0.48369 2.3903 $Cs_2PtCl_6 \leftrightarrow Cs_2O$ 0.41835 1.3613 $Cs_2SO_4 \leftrightarrow Cs$ 0.73457 1.0747 $Cs_2SO_4 \leftrightarrow CsCl$ 0.93050 1.1106 $Cs_2SO_4 \leftrightarrow Cs_2O$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	0.57200	Cs ↔ CsClQ.	1 7483
0.94326Cs \leftrightarrow Cs ₂ O1.06020.83693Cs ₂ O \leftrightarrow CsCl1.19480.77876Cs ₂ O \leftrightarrow CsCl1.28412.5341Cs ₂ PtCl ₆ \leftrightarrow Cs0.394612.0005Cs ₂ PtCl ₆ \leftrightarrow CsCl0.499872.0675Cs ₂ PtCl ₆ \leftrightarrow Cs ₂ O0.483692.3903Cs ₂ PtCl ₆ \leftrightarrow Cs0.734571.3613Cs ₂ SO ₄ \leftrightarrow Cs0.734571.0747Cs ₂ SO ₄ \leftrightarrow CsCl0.930501.1106Cs ₂ SO ₄ \leftrightarrow Cs ₂ O0.900380.28410SO ₃ \leftrightarrow Cs ₂ O3.5199	0.81585	$Cs \leftrightarrow Cs_{2}CO_{2}$	1.2257
0.83693 $C_{S_2}O \leftrightarrow C_SCl$ 1.19480.77876 $C_{S_2}O \leftrightarrow C_{S_2}SO_4$ 1.28412.5341 $C_{S_2}PtCl_6 \leftrightarrow C_S$ 0.394612.0005 $C_{S_2}PtCl_6 \leftrightarrow C_Scl$ 0.499872.0675 $C_{S_2}PtCl_6 \leftrightarrow C_S_2CO_3$ 0.483692.3903 $C_{S_2}PtCl_6 \leftrightarrow C_S_2O$ 0.418351.3613 $C_{S_2}SO_4 \leftrightarrow C_S$ 0.734571.0747 $C_{S_2}SO_4 \leftrightarrow C_Scl$ 0.930501.1106 $C_{S_2}SO_4 \leftrightarrow C_{S_2}O_3$ 0.900380.28410 $SO_3 \leftrightarrow C_{S_2}O$ 3.5199	0.94326	$C_{s} \leftrightarrow C_{s_{2}}O_{s_{3}}$	1.0602
0.77876 $Cs_2O \leftrightarrow Cs_2SO_4$ 1.2841 2.5341 $Cs_2PtCl_6 \leftrightarrow Cs$ 0.39461 2.0005 $Cs_2PtCl_6 \leftrightarrow CsCl$ 0.49987 2.0675 $Cs_2PtCl_6 \leftrightarrow Cs_2CO_3$ 0.48369 2.3903 $Cs_2PtCl_6 \leftrightarrow Cs_2O$ 0.41835 1.3613 $Cs_2SO_4 \leftrightarrow Cs$ 0.73457 1.0747 $Cs_2SO_4 \leftrightarrow CsCl$ 0.93050 1.106 $Cs_2SO_4 \leftrightarrow Cs_2O$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	0.83693	Cs ₂ O ↔ CsCl	1.1948
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.77876	$C_{s_2}O \leftrightarrow C_{s_2}SO_4$	1.2841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5341	$Cs_2PtCl_6 \leftrightarrow Cs$	0.39461
$\begin{array}{cccccccc} 2.0675 & Cs_2 PtCl_6 \leftrightarrow Cs_2 CO_3 & 0.48369 \\ 2.3903 & Cs_2 PtCl_6 \leftrightarrow Cs_2 O & 0.41835 \\ 1.3613 & Cs_2 SO_4 \leftrightarrow Cs & 0.73457 \\ 1.0747 & Cs_2 SO_4 \leftrightarrow CsCl & 0.93050 \\ 1.1106 & Cs_2 SO_4 \leftrightarrow Cs_2 CO_3 & 0.90038 \\ 0.28410 & SO_3 \leftrightarrow Cs_2 O & 3.5199 \end{array}$	2.0005	$Cs_2^{2}PtCl_{6}^{2} \leftrightarrow CsCl$	0.49987
$\begin{array}{cccccc} 2.3903 & C_{82}PiCl_{6} \leftrightarrow C_{82}O & 0.41835 \\ 1.3613 & C_{82}SO_{4} \leftrightarrow C_{8} & 0.73457 \\ 1.0747 & C_{82}SO_{4} \leftrightarrow C_{8}C & 0.93050 \\ 1.1106 & C_{82}SO_{4} \leftrightarrow C_{82}CO_{3} & 0.90038 \\ 0.28410 & SO_{3} \leftrightarrow C_{82}O & 3.5199 \end{array}$	2.0675	$Cs_2PtCl_c \leftrightarrow Cs_2CO_3$	0.48369
1.3613 $C_{s_2}SO_4 \leftrightarrow C_s$ 0.73457 1.0747 $C_{s_2}SO_4 \leftrightarrow CsCl$ 0.93050 1.1106 $C_{s_2}SO_4 \leftrightarrow Cs_2CO_3$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	2.3903	$Cs_2PtCl_6 \leftrightarrow Cs_2O$	0.41835
1.0747 $Cs_2SO_4 \leftrightarrow CsCl$ 0.93050 1.1106 $Cs_2SO_4 \leftrightarrow Cs_2CO_3$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	1.3613	$Cs_2SO_4 \leftrightarrow Cs$	0.73457
1.1106 $Cs_2SO_4 \leftrightarrow Cs_2CO_3$ 0.90038 0.28410 $SO_3 \leftrightarrow Cs_2O$ 3.5199	1.0747	$Cs_2SO_4 \leftrightarrow CsCl$	0.93050
$0.28410 \qquad \qquad SO_3 \leftrightarrow Cs_2O \qquad \qquad 3.5199$	1.1106	$Cs_2SO_4 \leftrightarrow Cs_2CO_3$	0.90038
	0.28410	$SO_3 \leftrightarrow Cs_2O$	3.5199

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	CHLORINE Cl = 35.453	
3.0426	Ag⇔Cl	0.32866
2.9585	$Ag \leftrightarrow HCl$	0.33801
4.0425	AgCl↔Cl	0.24737
3.9308	AgCl ↔ HCl	0.25440
3.5728	$BaCrO_4 \leftrightarrow Cl$	0.27990
0.56526	Ca⇔Cl	1.7691
0.97235	Cl ↔ HCl	1.0284
0.58227	$ClO_3 \leftrightarrow AgCl$	1.7174
1.1193	$ClO_3 \leftrightarrow KCl$	0.89340
1.4279	$ClO_3 \leftrightarrow NaCl$	0.70033
0.69391	$\text{ClO}_4 \leftrightarrow \text{AgCl}$	1.4411
1.3339	$\text{ClO}_4 \leftrightarrow \text{KCl}$	0.74967
1.7017	$ClO_4 \leftrightarrow NaCl$	0.58766
1.1029	$K \leftrightarrow Cl$	0.90668
2.1029	KCl ↔ Cl	0.47553
0.19572	Li↔Cl	5.1092
0.34288	$Mg \leftrightarrow Cl$	2.9165
1.3429	$MgCl_2 \leftrightarrow Cl$	0.74467
1.2261	$MnO_2 \leftrightarrow Cl$	0.81560
0.64846	Na ↔ Cl	1.5421
1.6485	NaCl↔Cl	0.60663
0.50881	$NH_4 \leftrightarrow Cl$	1.9654
1.4671	NH₄Cl ↔ HCl	0.68162
1.8121	$(NH_4)_2SO_4 \leftrightarrow HCl$	0.55185
4.5580	$PbCrO_4 \leftrightarrow Cl$	0.21939
	CHROMIUM $Cr = 51.996$	
4 8721	BaCrO. ←> Cr	0.20525
3 3335	$BaCrO_4 \leftrightarrow Cr-O_4$	0.20929
2 5335	$BaCrO_4 \leftrightarrow CrO_2$	0.39472
2.1841	$BaCrO_4 \leftrightarrow CrO_4$	0.45786
0.70718	$BaCrO_4 \leftrightarrow Cr_2(SO_4)_2 \cdot 18H_2O$	1.4141
7.4935	$Cr_2C_2 \leftrightarrow Cr$	0.13345
1.9231	$CrO_2 \leftrightarrow Cr$	0.51999
1.4616	$Cr_2O_3 \leftrightarrow Cr$	0.68420
0.76000	$Cr_2O_3 \leftrightarrow CrO_3$	1.3158
0.65519	$Cr_2O_3 \leftrightarrow CrO_4$	1.5263
3.7349	$K_2CrO_4 \leftrightarrow Cr$	0.26774
1.9421	$K_2CrO_4 \leftrightarrow CrO_3$	0.51490
1.4710	$K_2Cr_2O_7 \leftrightarrow CrO_3$	0.67979
6.2155	$PbCrO_4 \leftrightarrow Cr$	0.16089
4.2527	$PbCrO_4 \leftrightarrow Cr_2O_3$	0.23515
3.2320	$PbCrO_4 \leftrightarrow CrO_3$	0.30941
2.7863	$PbCrO_4 \leftrightarrow CrO_4$	0.35890
0.90217	$PbCrO_4 \leftrightarrow Cr_2(SO_4)_3 \cdot 18H_2O$	1.1084
1.6642	$PbCrO_4 \leftrightarrow K_2CrO_4$	0.60090
2.1971	$PbCrO_4 \leftrightarrow K_2Cr_2O_7$	0.45515
	COBALT Co = 58.9332	
0 20249	$C_{0} \leftrightarrow C_{0}(NO)$. 6H O	1 0285
0.20249	$C_0 \leftrightarrow C_0 \Omega$	4.2303
0.700-0	000	1.4/13

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	COBALT (continued) Co = 58.9332	H
0.20965	$Co \leftrightarrow CoSO_4 \cdot 7H_2O$	4.7698
7.6743	$K_{3}[C_{0}(NO_{2})_{6}] \leftrightarrow C_{0}$	0.13030
6.0357	$K_3[Co(NO_2)_6]$ ↔ CoO	0.16568
1.3620	$Co_3O_4 \leftrightarrow Co$	0.73422
1.0712	$Co_3O_4 \leftrightarrow CoO$	0.93355
2.4758	$C_{0_2}P_2O_7 \leftrightarrow C_0$	0.40391
1.9471	$Co_2P_2O_7 \leftrightarrow CoO$	0.51357
3.2233	$C_0NH_4PO_4 \cdot H_2O \leftrightarrow C_0$	0.31024
2.5351	$C_0NH_4PO_4 \cdot H_2O \leftrightarrow C_0O$	0.39447
2.6299	CoSO₄ ↔ Co	0.38024
2.0684	$CoSO_4 \leftrightarrow CoO$	0.48347
3.7514	$CoSO_4 \cdot 7H_2O \leftrightarrow CoO$	0.26657
7.0656	$(CoSO_4)_2 \cdot (K_2SO_4)_3 \leftrightarrow Co$	0.14153
5.5569	$(CoSO_4)_2 \cdot (K_2SO_4)_3 \leftrightarrow CoO$	0.17996
	COPPER	
	Cu = 63.544	
0.25071	$Cu \leftrightarrow Cu_2C_2H_3O_2 \cdot (AsO_2)_3$	3.9887
0.79885	Cu⇔CuO	1.2518
0.25449	$Cu \leftrightarrow CuSO_4 \cdot 5H_2O$	3.9295
1.9141	$CuSCN \leftrightarrow Cu$	0.52245
1.5291	$CuSCN \leftrightarrow CuO$	0.65400
0.31856	$CuO \leftrightarrow CuSO_4 \cdot 5H_2O$	3.1391
1.1259	$Cu_2O \leftrightarrow Cu$	0.88817
1.2523	$Cu_2S \leftrightarrow Cu$	0.79854
1.0004	$Cu_2S \leftrightarrow CuO$	0.99961
1.1122	$Cu_2S \leftrightarrow Cu_2O$	0.89908
0.31869	$Cu_2S \leftrightarrow CuSO_4 \cdot 5H_2O$	3.1379
0.91872	$Mg_2As_2O_7 \leftrightarrow Cu_2C_2H_3O_2(AsO_2)_3$	1.0885
	ERBIUM $\mathbf{E} = 167.26$	
	Er = 107.20	0.05450
1.1435	$\mathrm{Er}_{2}\mathrm{O}_{3} \leftrightarrow \mathrm{Er}$	0.87452
	FLUORINE $F = 18.9984$	
1.5936	$BaSiF_6 \leftrightarrow BaF_2$	0.62751
2.4513	$BaSiF_6 \leftrightarrow F$	0.40795
2.3277	BaSiF ₆ ↔ 6HF	0.42960
1.9392	$BaSiF_6 \leftrightarrow H_2SiF_6$	0.51568
2.6847	$BaSiF_6 \leftrightarrow SiF_4$	0.37249
1.9666	$BaSiF_6 \leftrightarrow SiF_6$	0.50848
1.6256	$CaF_2 \leftrightarrow H_2SiF_6$	0.61516
1.6486	$CaF_2 \leftrightarrow SiF_6$	0.60658
3.5829	$CaSO_4 \leftrightarrow F$	0.27910
2.4024	$CaSO_4 \leftrightarrow HF$	0.29391
0.48666	$F \leftrightarrow CaF_2$	2.0548
0.51248	$HF \leftrightarrow CaF_2$	1.9513
1.2641	$H_2SiF_6 \leftrightarrow F$	0.79109
3.6011	$H_2SiF_6 \leftrightarrow 2HF$	0.27769

TABLE 4.34 Gravimetric Factors (Continued)

$\begin{tabular}{ c c c c c } \hline FLUORINE (continued) \\ F = 18.9984 \\ \hline F = 15.9984 \\ \hline F = 15.9994 \\ \hline F = 15$	Factor		Factor
1.2004 $H_{2}SiF_{6} \leftrightarrow 6HF$ 0.4 1.3844 $H_{3}SiF_{7} \leftrightarrow SiF_{4}$ 0.5 2.0556 $KF \cdot HF \leftrightarrow 2FF$ 0.4 1.9520 $KF \cdot HF \leftrightarrow 2HF$ 0.4 0.67218 $KF \cdot HF \leftrightarrow 2KF$ 1.4 0.41449 $KF \cdot HF \leftrightarrow 2KF$ 1.4 0.41489 $KF \cdot HF \leftrightarrow 2KF$ 0.4 1.8331 $K_{2}SiF_{6} \leftrightarrow FF$ 0.4 1.8351 $K_{2}SiF_{6} \leftrightarrow 6HF$ 0.4 1.8351 $K_{2}SiF_{6} \leftrightarrow 5F_{6}$ 0.6 1.5288 $K_{2}SiF_{6} \leftrightarrow SiF_{6}$ 0.6 1.5903 $NH_{4}F \leftrightarrow F$ 0.4 1.5013 $NH_{4}F \leftrightarrow F$ 0.4 1.5256 $NH_{4}F \leftrightarrow F$ 0.6 1.4256 $NH_{4}F \leftrightarrow F \leftrightarrow 2KF$ 0.4 0.40900 $NH_{4}F \leftrightarrow F \leftrightarrow 2KF$ 0.4 0.4250 $NH_{4}F \leftrightarrow F \leftrightarrow 2KF$ 0.6 1.4841 $(NH_{4})_{5}SiF_{6} \leftrightarrow F$ 0.6 1.4841 $(NH_{4})_{5}F_{6} \leftrightarrow F$ 0.6 1.2539 $(NH_{4})_{5}F_{6} \leftrightarrow F$ 0.6 2.2101 $NaF \leftrightarrow F$ 0.4 1.2354 $(Na_{4}Si$	·····	FLUORINE (continued) $\mathbf{F} = 18.9984$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2004	H₂SiF ₆ ↔6HF	0.83308
1.0141 H ₃ Sir ₆ ↔ Sir ₆ 0.4 2.0556 KF·HF ↔ 2F 0.4 0.67218 KF·HF ↔ 2HF 0.2 0.67218 KF·HF ↔ 2KF 1.4 0.41489 KF·HF ↔ 2KF 0.4 1.9325 K ₂ Sir ₆ ↔ F 0.5 1.8351 K ₂ Sir ₆ ↔ H ₅ Sir ₆ 0.7 1.8357 K ₂ Sir ₆ ↔ 2KF 0.7 1.5013 NH ₄ F·HF ↔ 2F 0.7 1.4256 NH ₄ F·HF ↔ 2KF 0.7 0.40900 NH ₄ F·HF ↔ 2KF 0.7 0.430300 NH ₄ F·HF ↔ 2KF 0.7 0.430300 NH ₄ F·HF ↔ 2KF 0.7 0.4426 (NH ₄) ₂ Sir ₆ ↔ H ₅ Sir ₆ 0.7 1.5629 (NH ₄) ₂ Sir ₆ ↔ H ₅ Sir ₆ 0.7 1.4841 (NH ₄) ₂ Sir ₆ ↔ H ₅ Sir ₆ 0.7 2.4050 (NH ₄) ₂ Sir ₆ ↔ H ₅ Sir ₆ 0.7 2.2101 NaF ↔ F 0.4 1.566 Na ₈ Sir ₆ ↔ GHF 0.7 1.3052 Na ₈ Sir ₆ ↔ GHF 0.7 2.2101 NaF ↔ F 0.7 1.6498 Na ₂ Sir ₆ ↔ Sir ₆ <td< td=""><td>1.3844</td><td>$H_2SiF_6 \leftrightarrow SiF_4$</td><td>0.72233</td></td<>	1.3844	$H_2SiF_6 \leftrightarrow SiF_4$	0.72233
20556 KF HF ↔ 2F 0, 19520 KF HF ↔ 2HF 0, 0.7218 KF HF ↔ 2KF 1, 0.41489 KF HF ↔ 2KF 2H ₂ O) 2, 19325 K ₂ SiF ₆ ↔ F 0, 1.8351 K ₂ SiF ₆ ↔ 6HF 0, 1.5288 K ₂ SiF ₆ ↔ 2KF 0, 1.5504 K ₂ SiF ₆ ↔ 2KF 0, 1.5013 NH ₄ F +F \sim 0, 1.5013 NH ₄ F +F \sim 0, 1.4256 NH ₄ F +F \leftrightarrow 2, 0.30300 NH ₄ F ·HF ↔ 2KF 0, 0.49090 NH ₄ F ·HF ↔ 2KF 0, 0.30300 NH ₄ F ·HF ↔ 2KF 0, 0.49090 NH ₄ F ·HF ↔ 2KF 0, 0.409090 NH ₄ F ·HF ↔ 2KF 0, 0.409090 NH ₄ F ·HF ↔ 2KF 0, 0.409090 NH ₄ F ·HF ↔ 2KF 0, 0.40000 NH ₄ F ·HF ↔ 2KF 0, 0.4566 NH ₄ D ₂ SiF ₆ ↔ F 0, 0.4566 NH ₄ D ₂ SiF ₆ ↔ 1, 1.2539 (NH ₄ D ₂ SiF ₆ ↔ 1, 1.2539 (NH ₄ D ₂ SiF ₆ ↔ 2NH ₄ F 0, 1.2539 (NH ₄ D ₂ SiF ₆ ↔ 2NH ₄ F 0, 1.2539 (NH ₄ D ₂ SiF ₆ ↔ 2NH ₄ F 0, 1.4548 Na ₂ SiF ₆ ↔ 1, 1.6498 Na ₂ SiF ₆ ↔ 1, 1.6498 Na ₂ SiF ₆ ↔ 1, 1.3236 Na ₂ SiF ₆ ↔ 1, 0.7 GalLiUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0, 1.6898 Ga ₂ S ₃ ↔ Ga 0, 1.4408 GeO ₂ ↔ Ge 0, 3.6476 K ₂ GeF ₆ ↔ Ge 0, GOLD Au = 196.967 0.64936 Au ↔ AuCl, 0, 1, 1.408 GeO ₂ ↔ Ge 0, 3.6476 K ₂ GeF ₆ ↔ Ge 0, 3.6476 K ₂	1.0141	$H_2SiF_6 \leftrightarrow SiF_6$	0.98605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0556	$KF \cdot HF \leftrightarrow 2F$	0.48647
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9520	$KF \cdot HF \leftrightarrow 2HF$	0.51228
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.67218	KF · HF ↔ 2KF	1.4877
1.9325 K_2SiF_6 ↔ F 0.5 1.8351 K_3SiF_6 ↔ H_SiF_6 0.5 1.5288 K_SSiF_6 ↔ H_SSiF_6 0.6 1.8957 K_2SiF_6 ↔ 2KF 0.5 1.504 K_SSiF_6 ↔ SiF_6 0.6 1.9495 NH ₄ F ↔ F 0.5 1.5013 NH ₄ F ↔ F 0.6 1.4256 NH ₄ F ↔ F 0.6 0.30300 NH ₄ F ↔ F 0.6 0.49090 NH ₄ F ↔ F 0.6 0.30300 NH ₄ F ↔ GHF 0.6 1.4236 (NH ₄) ₂ SiF ₆ ↔ GHF 0.6 1.4841 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 1.2364 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.4050 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2101 Na ⁺ ↔ F 0.4 1.6498 Na ₂ SiF ₆ ↔ GHF 0.6 1.3052 Na ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ Ge 0.7 1.6498 GeO ₂ ↔ Ge 0.7 0.476 K ₂ GeF ₆ ↔ Ge 0.7	0.41489	$KF \cdot HF \leftrightarrow 2(KF \cdot 2H_2O)$	2.4103
1.8351 K_2SiF_6 ↔ 6HF 0.4 1.5288 K_2SiF_6 ↔ 1k_2SiF_6 0.6 1.8957 K_2SiF_6 ↔ 2KF 0.6 1.8957 K_2SiF_6 ↔ 2KF 0.6 1.5013 NH ₄ F ↔ F 0.7 1.5013 NH ₄ F ↔ F 0.6 1.4256 NH ₄ F ↔ HF ↔ 2HF 0.6 0.30300 NH ₄ F ↔ HF ↔ 2(KF · 2H ₂ O) 3.5 1.5629 (NH ₄) ₂ SiF ₆ ↔ F 0.6 1.2539 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.7 1.2539 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.7 2.4050 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.7 2.2101 NaF ↔ F 0.4 1.6498 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 3.236 Na ₂ SiF ₆ ↔ Ga 0.7 GOLD GOLD Au ↔ AuCl ₃ ↔ Ga 0.7 Au ↔ AuCl ₃ 1.5 GaLLUM Ga 0.7 GOLD	1.9325	$K_2SiF_6 \leftrightarrow F$	0.51748
1.5288 K_2SiF_6 ↔ H_2SiF_6 0.6 1.8957 K_2SiF_6 ↔ SiF_6 0.6 1.5504 K_2SiF_6 ↔ SiF_6 0.6 1.9495 NH ₄ F ↔ F 0.7 1.5013 NH ₄ F ↔ F 0.7 1.4256 NH ₄ F ↔ F 0.7 0.49090 NH ₄ F ↔ F 0.7 0.49090 NH ₄ F ↔ F 0.7 0.4841 (NH ₄)_2SiF_6 ↔ F 0.6 1.5629 (NH ₄)_2SiF_6 ↔ F 0.6 1.2364 (NH ₄)_2SiF_6 ↔ F 0.6 1.2359 (NH ₄)_2SiF_6 ↔ SiF_6 0.7 2.4050 (NH ₄)_2SiF_6 ↔ SiF_6 0.7 2.4050 (NH ₄)_2SiF_6 ↔ SiF_6 0.7 2.2101 NaF ↔ F 0.4 1.6498 Na_2SiF_6 ↔ SiF_6 0.7 1.3052 Na_3SiF_6 ↔ H_2SiF_6 0.7 1.3236 Na_2SiF_6 ↔ SiF_6 0.7 Ca = 69.72 0.4 1.3442 Ca Q_3 ↔ Ga 0.7 Ga = 69.72 0.4 1.4408 GeO_2 ↔ Ge 0.4 3.6476	1.8351	$K_2SiF_6 \leftrightarrow 6HF$	0.54494
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5288	$K_2SiF_6 \leftrightarrow H_2SiF_6$	0.65412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8957	$K_2SiF_6 \leftrightarrow 2KF$	0.52751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5504	$K_2 SiF_6 \leftrightarrow SiF_6$	0.64500
1.5013 NH,F·HF ↔ 2F 0.0 1.4256 NH,F·HF ↔ 2HF 0.0 0.49090 NH,F·HF ↔ 2KF 2.0 0.30300 NH,F·HF ↔ 2(KF·2H ₂ O) 3.3 1.5629 (NH ₄) ₂ SiF ₆ ↔ F 0.0 1.2364 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.1 2.4050 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.1 1.2539 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.1 2.2101 NaF ↔ F 0.4 1.5666 Na ₂ SiF ₆ ↔ GHF 0.0 1.3052 Na ₃ SiF ₆ ↔ SiF ₆ 0.7 2.2394 Na ₃ SiF ₆ ↔ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 GOLD Au = 196.967 OLA AU ↔ AUCl ₃ - 4H ₂ O 2.0 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.7	1.9495	$NH_{4}F \leftrightarrow F$	0.51295
1.4256 NH ₄ F·HF ↔ 2HF 0.1 0.490900 NH ₄ F·HF ↔ 2KF 2.0 0.303000 NH ₄ F·HF ↔ 2(KF·2H ₂ O) 3.1 1.5629 (NH ₄) ₅ SiF ₆ ↔ F 0.0 1.4841 (NH ₄) ₅ SiF ₆ ↔ F 0.0 1.2364 (NH ₄) ₅ SiF ₆ ↔ 2NH ₄ F 0.4 1.2539 (NH ₄) ₅ SiF ₆ ↔ 2NH ₄ F 0.4 1.2539 (NH ₄) ₅ SiF ₆ ↔ SiF ₆ 0.7 2.2101 NaF ↔ F 0.4 1.6498 Na ₂ SiF ₆ ↔ F 0.6 1.5666 Na ₈ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₈ SiF ₆ ↔ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ Ga 0.7 GALLIUM Ga = 69.72 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.4408 GeO ₂ ↔ Ge 0.4 3.6476 K ₂ GeF ₆ ↔ Ge 0.7 0.4 Au ↔ AuCl ₃ 1.3 0.47826 Au ↔ AuCl ₃ 1.4 0.4 0.47826 Au ↔ AuCl ₄ 4H ₂ O 2.4 0.54995 2.4	1.5013	$NH_4F \cdot HF \leftrightarrow 2F$	0.66611
0.49090 NH ₄ F·HF ↔ 2KF 2.0 0.30300 NH ₄ F·HF ↔ 2(KF·2H ₂ O) 3.3 1.5629 (NH ₄) ₂ SiF ₆ ↔ F 0.0 1.4841 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.4 1.2364 (NH ₄) ₂ SiF ₆ ↔ 2NH ₄ F 0.4 2.4050 (NH ₄) ₂ SiF ₆ ↔ 2NH ₄ F 0.4 1.2539 (NH ₄) ₃ SiF ₆ ↔ F 0.6 1.2501 NaF ↔ F 0.4 1.6498 Na ₅ SiF ₆ ↔ 6HF 0.6 1.5666 Na ₂ SiF ₆ ↔ 6HF 0.6 1.3052 Na ₃ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ Ga 0.7 GERMANIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 1.4408 GeO ₂ ↔ Ge 0.7 GOLD Au = 196.967 Au ↔ AuCl ₃ 1.3 HYDROGEN HYDROGEN HYDROGEN HYDROGEN HYDROGEN HYDROGEN Sist	1.4256	$NH_{4}F \cdot HF \leftrightarrow 2HF$	0.70145
0.30300 NH ₄ F·HF ↔ 2(KF·2H ₂ O) 3.3 1.5629 (NH ₄) ₂ SiF ₆ ↔ F 0.0 1.4841 (NH ₄) ₂ SiF ₆ ↔ GHF 0.0 1.2364 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.3 2.4050 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.5 1.2539 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.5 2.2101 NaF ↔ F 0.4 1.5666 Na ₂ SiF ₆ ↔ GHF 0.6 1.5666 Na ₂ SiF ₆ ↔ GHF 0.6 1.3052 Na ₃ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 1.6898 Ga ₂ O ₃ ↔ Ga 0.7 GERMANIUM Ge = 72.59 1.4408 GeC ₂ ↔ Ge 0.6 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ AuCl ₃ 1.5 0.54995 Au ↔ AuCl ₃ 1.5 0.54995 Au ↔ AuCl ₃ 1.5 HYD	0.49090	NH ₄ F · HF ↔ 2KF	2.0371
1.5629 (NH ₄) ₂ SiF ₆ ↔ F 0.6 1.4841 (NH ₄) ₂ SiF ₆ ↔ 6HF 0.6 1.2364 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.8 2.4050 (NH ₄) ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.4 1.2539 (NH ₄) ₂ SiF ₆ ↔ SiF ₆ 0.7 2.2101 NaF ↔ F 0.4 1.6498 Na ₂ SiF ₆ ↔ 6HF 0.6 1.3052 Na ₃ SiF ₆ ↔ 6HF 0.7 2.2394 Na ₂ SiF ₆ ↔ 2NaF 0.4 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 GBLD Mag SiF ₆ ↔ Ge 0.6 GOLD Au = 196.967 OLAT HAUCI ₃ H ₂ O 1.5 HYDROGEN H = 1.0079 HYDROGEN H = 1.0079	0.30300	$NH_4F \cdot HF \leftrightarrow 2(KF \cdot 2H_2O)$	3.3003
1.4841 (H44,);SiF ₆ ↔ 6HF 0.0 1.2364 (NH4,);SiF ₆ ↔ 2NH ₄ F 0.6 2.4050 (NH4,);SiF ₆ ↔ 2NH ₄ F 0.6 1.2539 (NH4,);SiF ₆ ↔ 2NH ₄ F 0.6 1.2539 (NH4,);SiF ₆ ↔ SiF ₆ 0.7 2.2101 NaF ↔ F 0.6 1.6498 Na ₂ SiF ₆ ↔ F 0.6 1.5666 Na ₂ SiF ₆ ↔ 6HF 0.7 1.3052 Na ₃ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM GALLIUM GERMANIUM GERMANIUM GERMANIUM GOLD Au ⇔ AuCl ₃ 1.5 Au ⇔ AuCl ₃ 1.5 Au ⇔ AuCl ₃ 1.5 GOLD HYDROGEN HYDROGEN HYDROGEN HYDROGEN HYDROGEN HYDROGEN HYDROGEN </td <td>1.5629</td> <td>(NH_4) SiF \leftrightarrow F</td> <td>0.63985</td>	1.5629	(NH_4) SiF \leftrightarrow F	0.63985
1.2364 (H4.)2SiF_6 ↔ H2SiF_6 0.5 2.4050 (NH_4)2SiF_6 ↔ H2SiF_6 0.5 1.2539 (NH_4)2SiF_6 ↔ SiF_6 0.7 1.2539 (NH_4)2SiF_6 ↔ SiF_6 0.7 2.2101 NaF ↔ F 0.4 1.6498 Na_2SiF_6 ↔ F 0.6 1.5666 Na_2SiF_6 ↔ H2SiF_6 0.7 1.3052 Na_3SiF_6 ↔ H2SiF_6 0.7 2.2394 Na_2SiF_6 ↔ 2NaF 0.4 1.3236 Na_2SiF_6 ↔ SiF_6 0.7 GALLIUM Ga = 69.72 1.3442 Ga_2O_3 ↔ Ga 0.7 1.3442 Ga_2O_3 ↔ Ga 0.7 0.5 GERMANIUM Ge = 72.59 1.4408 GeO_2 ↔ Ge 0.6 GOLD Au = 196.967 0.5 0.64936 Au ↔ AuCl_3 1.5 0.47826 Au ↔ AuCl_3 ↔ H2O 1.5 0.54995 Au ↔ KAu(CN)_4·H2O	1.4841	$(NH_4)_{2}SiF_4 \leftrightarrow 6HF$	0.67381
2.4050 $(M_{4})_{2}SiF_{6} \leftrightarrow 2NH_{4}F$ 0.4 1.2539 $(NH_{4})_{2}SiF_{6} \leftrightarrow 2NH_{4}F$ 0.4 1.2539 $(NH_{4})_{2}SiF_{6} \leftrightarrow SiF_{6}$ 0.7 2.2101 NaF \leftrightarrow F 0.4 1.6498 Na_{2}SiF_{6} \leftrightarrow F 0.6 1.5666 Na_{2}SiF_{6} \leftrightarrow H_{2}SiF_{6} 0.7 1.3052 Na_{3}SiF_{6} \leftrightarrow H_{2}SiF_{6} 0.7 2.2394 Na_{2}SiF_{6} \leftrightarrow 2NaF 0.4 1.3236 Na_{2}SiF_{6} \leftrightarrow SiF_{6} 0.7 GALLIUM Ga = 69.72 1.3442 Ga_{2}O_{3} \leftrightarrow Ga 0.7 GERMANIUM Ge = 72.59 1.4408 GeO_{2} \leftrightarrow Ge 0.6 GOLD Au = 196.967 0.64936 Au \leftrightarrow AuCl_{3} 1.5 HydROGEN H = 1.0079 HydROGEN H = 0.079	1.2364	$(\mathbf{NH}_4)_2 \mathbf{SiF}_6 \leftrightarrow \mathbf{H}_2 \mathbf{SiF}_6$	0.80881
1.2539 $(NH_4)_2SiF_6 \leftrightarrow SiF_6$ 0.7 2.2101 NaF \leftrightarrow F 0.4 1.6498 Na_2SiF_6 \leftrightarrow F 0.6 1.5566 Na_2SiF_6 \leftrightarrow HE 0.6 1.3052 Na_3SiF_6 \leftrightarrow H_2SiF_6 0.7 2.2394 Na_2SiF_6 \leftrightarrow SiF_6 0.7 1.3236 Na_2SiF_6 \leftrightarrow SiF_6 0.7 GALLIUM Ga = 69.72 1.3442 Ga_2O_3 \leftrightarrow Ga 0.7 I.3442 Ga_2O_3 \leftrightarrow Ga 0.7 I.4408 GeO_2 \leftrightarrow Ge 0.6 GOLD I.4408 GeO_2 \leftrightarrow Ge 0.7 J.6995 Au \leftrightarrow AuCl_3 1.5 I.4408 GeO_2 \leftrightarrow Ge 0.7 J.69067 O.64936 Au \leftrightarrow AuCl_3 1.5 J.4408 GeO_2 \leftrightarrow Ge 0.7 J.69067 O.64936 Au \leftrightarrow AuCl_4 \cdot 4H_2O </td <td>2.4050</td> <td>$(NH_{4})_{2}SiF_{4} \leftrightarrow 2NH_{4}F$</td> <td>0.41580</td>	2.4050	$(NH_{4})_{2}SiF_{4} \leftrightarrow 2NH_{4}F$	0.41580
1.6003 NaF ↔ F 0.4 1.6498 Na ₂ SiF ₆ ↔ F 0.6 1.5666 Na ₂ SiF ₆ ↔ 6HF 0.1 1.3052 Na ₃ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ 2NaF 0.4 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.4408 Ga ₂ O ₃ ↔ Ga 0.7 I.4408 GeO ₂ ↔ Ge 0.6 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 HYDROGEN H = 1.0079 8.9365 H ₃ O ↔ H 0.7	1 2539	$(NH_{4})_{2}SIF_{6} \leftrightarrow SiF_{6}$	0.79753
1.6498 Na ₂ SiF ₆ ↔ F 0.6 1.5666 Na ₂ SiF ₆ ↔ 6HF 0.6 1.3052 Na ₃ SiF ₆ ↔ H ₂ SiF ₆ 0.7 2.2394 Na ₂ SiF ₆ ↔ 2NaF 0.4 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.6898 Ga ₂ S ₃ ↔ Ga 0.7 GERMANIUM Ge = 72.59 I.4408 GeO ₂ ↔ Ge 0.6 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ KAu(CN) ₄ ·H ₂ O 1.8 HYDROGEN H = 1.0079 8.9365 H ₃ O ↔ H 0.7	2 2101	$N_{4}F \leftrightarrow F$	0.45246
1.566 $M_{2}SiF_{6} \leftrightarrow 6HF$ 0.0 1.3052 $N_{3}SiF_{6} \leftrightarrow H_{2}SiF_{6}$ 0.7 2.2394 $N_{3}SiF_{6} \leftrightarrow 2NaF$ 0.4 1.3236 $N_{3}SiF_{6} \leftrightarrow SiF_{6}$ 0.7 GALLIUM Ga = 69.72 1.3442 Ga_2O_3 \leftrightarrow Ga 0.7 I.3442 Ga_2O_3 \leftrightarrow Ga 0.7 I.4408 GeO_2 ↔ Ga 0.7 GOLD I.4408 GeO_2 ↔ Ge 0.6 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.3 HYDROGEN HYDROGEN HYDROGEN HYDROGEN HyDROGEN HyDROGEN HyDROGEN HyDROGEN	1 6498	Na ₂ SiF ₂ ↔ F	0.60614
1.3052 Na ₂ SiF ₆ ↔ H ₂ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ L ₂ SiF ₆ 0.7 1.3236 Na ₂ SiF ₆ ↔ SiF ₆ 0.7 GALLIUM Ga = 69.72 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.3442 Ga ₂ O ₃ ↔ Ga 0.7 I.4408 GeQ ₂ ↔ Ga 0.7 GERMANIUM Ge = 72.59 I.4408 GeO ₂ ↔ Ge 0.6 J.4408 GeO ₂ ↔ Ge 0.7	1 5666	$Na_{2}SiF_{4} \leftrightarrow 6HF$	0.63831
1.3236 $N_{12}SiF_6 \leftrightarrow 2NaF$ 0.4 1.3236 $Na_2SiF_6 \leftrightarrow SiF_6$ 0.7 GALLIUM Ga = 69.72 0.3 1.3442 Ga_2O_3 \leftrightarrow Ga 0.7 1.6898 Ga_2S_3 \leftrightarrow Ga 0.7 GERMANIUM Ge = 72.59 0.4 1.4408 GeO_2 \leftrightarrow Ge 0.6 3.6476 K_2GeF_6 \leftrightarrow Ge 0.7 GOLD Au = 196.967 0.6 0.64936 Au \leftrightarrow AuCl_3 1.5 0.47826 Au \leftrightarrow AuCl_4 · 4H_2O 2.6 0.54995 Au ↔ KAu(CN)_4 · H_2O 1.8 HYDROGEN H = 1.0079 8.9365 H_2O ↔ H	1 3052	$Na_sSiF_s \leftrightarrow H_sSiF_s$	0.05051
1.3236 $Na_2SiF_6 \leftrightarrow SiF_6$ 0.7 I.3236 $Na_2SiF_6 \leftrightarrow SiF_6$ 0.7 GALLIUM Ga = 69.72 0.1 1.3442 Ga_2O_3 \leftrightarrow Ga 0.7 1.6898 Ga_2S_3 \leftrightarrow Ga 0.7 GERMANIUM Ge = 72.59 0.6 1.4408 GeO_2 ↔ Ge 0.6 3.6476 K_2GeF_6 ↔ Ge 0.7 GOLD Au = 196.967 0.64936 0.47826 Au ↔ AuCl ₃ 1.5 0.54995 Au ↔ KAu(CN) ₄ ·H ₂ O 1.8 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.7	2 2394	$Na_{s}SiF_{c} \leftrightarrow 2NaF$	0.44654
GALLIUM Ga = 69.72 1.3442 Ga ₂ O ₃ ↔ Ga 0.7 1.6898 Ga ₂ O ₃ ↔ Ga 0.7 GERMANIUM Ge = 72.59 1.4408 GeO ₂ ↔ Ge 0.6 3.6476 K ₂ GeF ₆ ↔ Ge 0.7 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ HAuCl ₄ · 4H ₂ O 2.6 0.54995 Au ↔ KAu(CN) ₄ · H ₂ O 1.5 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.7	1.3236	$Na_2SiF_6 \leftrightarrow SiF_6$	0.75550
1.3442 $Ga_2O_3 \leftrightarrow Ga$ 0.7 1.6898 $Ga_2S_3 \leftrightarrow Ga$ 0.7 GERMANIUM Ge = 72.59 1.4408 $GeO_2 \leftrightarrow Ge$ 0.6 3.6476 $K_2GeF_6 \leftrightarrow Ge$ 0.7 GOLD Au = 196.967 0.64936 Au \leftrightarrow AuCl_3 1.5 0.47826 Au \leftrightarrow HAuCl_4 \cdot 4H_2O 2.6 0.54995 Au \leftrightarrow KAu(CN)_4 \cdot H_2O 1.5 HYDROGEN H = 1.0079 8.9365 H_2O \leftrightarrow H 0.7		$\begin{array}{l} \text{GALLIUM} \\ \text{Ga} = 69.72 \end{array}$	
1.3442 $Ga_2O_3 \leftrightarrow Ga$ 0. 1.6898 $Ga_2S_3 \leftrightarrow Ga$ 0. GERMANIUM Ge = 72.59 1.4408 GeO ₂ \leftrightarrow Ge 0.6 3.6476 K ₂ GeF ₆ \leftrightarrow Ge 0.6 GOLD Au = 196.967 0.64936 Au \leftrightarrow AuCl ₃ 1.5 0.47826 Au \leftrightarrow HAuCl ₄ ·4H ₂ O 2.6 0.54995 Au \leftrightarrow KAu(CN) ₄ ·H ₂ O 1.8 HYDROGEN H = 1.0079 8.9365 H ₂ O \leftrightarrow H 0.7	1 2 4 4 2		0.54202
1.6898 $Ga_2S_3 \leftrightarrow Ga$ 0.3 GERMANIUM Ge = 72.59 Ge = 72.59 1.4408 $GeO_2 \leftrightarrow Ge$ 0.6 3.6476 $K_2GeF_6 \leftrightarrow Ge$ 0.2 GOLD Au = 196.967 0.4 0.4 0.64936 Au \leftrightarrow AuCl_3 1.5 0.47826 Au \leftrightarrow HAuCl_4 \cdot 4H_2O 2.6 0.54995 Au \leftrightarrow KAu(CN)_4 \cdot H_2O 1.8 HYDROGEN H = 1.0079 H = 1.0079 8.9365	1.3442	$Ga_2O_3 \leftrightarrow Ga$	0.74392
GERMANIUM Ge = 72.59 1.4408 GeO ₂ ↔ Ge 0.0 3.6476 K ₂ GeF ₆ ↔ Ge 0.1 GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ HAuCl ₄ ⋅ H ₂ O 2.0 0.54995 Au ↔ KAu(CN) ₄ ⋅ H ₂ O 1.5 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.1	1.6898	$Ga_2S_3 \leftrightarrow Ga$	0.59178
1.4408 $GeO_2 \leftrightarrow Ge$ 0.0 3.6476 $K_2GeF_6 \leftrightarrow Ge$ 0.0 GOLD Au = 196.967 0.64936 Au \leftrightarrow AuCl ₃ 1.5 0.47826 Au \leftrightarrow HAuCl ₄ ·4H ₂ O 2.0 0.54995 Au \leftrightarrow KAu(CN) ₄ ·H ₂ O 1.8 HYDROGEN H = 1.0079 8.9365 H ₂ O \leftrightarrow H 0.7		GERMANIUM Ge = 72.59	
3.6476 $K_2GeF_6 \leftrightarrow Ge$ 0.3 GOLD GOLD 1.3 Au = 196.967 1.4 1.5 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ HAuCl ₄ ·4H ₂ O 2.6 0.54995 Au ↔ KAu(CN) ₄ ·H ₂ O 1.8 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.7	1.4408	GeQ₂↔Ge	0.69404
GOLD Au = 196.967 0.64936 Au ↔ AuCl ₃ 1.5 0.47826 Au ↔ HAuCl ₄ · 4H ₂ O 2.0 0.54995 Au ↔ KAu(CN) ₄ · H ₂ O 1.5 HYDROGEN H = 1.0079 8.9365 H ₂ O ↔ H 0.7	3.6476	$K_2GeF_6 \leftrightarrow Ge$	0.27415
$Au \leftrightarrow AuCl_3$ 1.: 0.64936 $Au \leftrightarrow AuCl_3$ 1.: 0.47826 $Au \leftrightarrow HAuCl_4 \cdot 4H_2O$ 2.0 0.54995 $Au \leftrightarrow KAu(CN)_4 \cdot H_2O$ 1.5 HYDROGEN H = 1.0079 8.9365 $H_2O \leftrightarrow H$ 0.7		$\begin{array}{c} \text{GOLD} \\ \text{Au} = 196967 \end{array}$	
0.64936 Au \leftrightarrow AuCl ₃ 1.: 0.47826 Au \leftrightarrow HAuCl ₄ ·4H ₂ O 2.0 0.54995 Au \leftrightarrow KAu(CN) ₄ ·H ₂ O 1.5 HYDROGEN H = 1.0079 8.9365 H ₂ O \leftrightarrow H 0.1	0 (100 (1.5400
$0.4/826$ Au \leftrightarrow HAuCl ₄ · 4H ₂ O2.0 0.54995 Au \leftrightarrow KAu(CN) ₄ · H ₂ O1.3HYDROGEN H = 1.0079 8.9365 H ₂ O \leftrightarrow H0.7	0.64936	$Au \leftrightarrow AuCl_3$	1.5400
$HYDROGEN$ $H = 1.0079$ 8.9365 $H_2O \leftrightarrow H \qquad 0.7$	0.47826	$Au \leftrightarrow HAuCl_4 \cdot 4H_2O$ $Au \leftrightarrow KAu(CN)_4 \cdot H_2O$	1.8183
8.9365 $H_2O \leftrightarrow H$ 0.1		HYDROGEN $H = 1.0079$	
	8 0365	HOAP	A 11100
	7 0364		0.11190
0.35607 USCN ↔ AgeCN 2.0	0 35607	USY II HSCN ↔ A «SCN	0.12000

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	HYDROGEN (continued) H = 1.0079	
0.48586	HSCN ↔ CuSCN	2.0582
0.25317	$HSCN \leftrightarrow BaSO_4$	3.9499
	TNIDITIM	
	In = 114.82	
1.2090	$In_2O_3 \leftrightarrow In$	0.82711
1.4189	$In_2S_3 \leftrightarrow In$	0.70476
	IODINE	
	I = 126.904	
0.84333	Ag ↔ HI	1.1858
0.85004	Ag ↔ I	1.1764
1.1294	AgCl↔I	0.88543
1.8354	AgI ↔ Hl	0.54483
1.8500	AgI⇔I	0.54053
1.3423	$AgI \leftrightarrow IO_3$	0.74498
1.2298	$Agl \leftrightarrow IO_4$	0.81314
1.4066	$AgI \leftrightarrow I_2O_5$	0.71091
1.2836	$AgI \leftrightarrow I_2O_7$	0.77904
0.41592	Pd ↔ HI	2.4043
0.41921	$Pd \leftrightarrow I$	2.3854
1.4081	$PdI_2 \leftrightarrow HI$	0.71020
1.4192	$PdI_2 \leftrightarrow I$	0.70462
1.0297	$PdI_2 \leftrightarrow IO_3$	0.97113
0.94343	$PdI_2 \leftrightarrow IO_4$	1.0600
1.0791	$PdI_2 \leftrightarrow I_2O_5$	0.92671
0.98472	$PdI_2 \leftrightarrow I_2O_7$	1.0155
2.5899	TII ↔ HI	0.38612
2.6105	TII↔I	0.38307
1.8941	TlI ↔ IO ₃	0.52797
1.7353	$T1I \leftrightarrow IO_4$	0.57627
1.9848	$TII \leftrightarrow I_2O_5$	0.50383
1.8112	$TII \leftrightarrow I_2O_7$	0.55211
	IRON	
	Fe = 55.845	
2.2598	$Ag \leftrightarrow Fe_7(CN)_{18}$ (Prussian blue)	0.44252
0.54503	$CN \leftrightarrow Fe_7(CN)_{18}$	1.8347
0.61256	$CO_2 \leftrightarrow FeO$	1.6325
0.37986	$CO_{2} \leftrightarrow FeCO_{3}$	2.6326
0.49483	$CO_{2} \leftrightarrow Fe(HCO_{3})_{2}$	2.0209
0.31396	$Fe \leftrightarrow Fe(HCO_3)_2$	3.1851
0.44061	$Fe \leftrightarrow FeCl_2$	2.2696
0.77730	Fe ↔ FeO	1.2865
0.69943	Fe ↔ Fe ₂ O ₂	1.4297
0.72359	$Fe \leftrightarrow Fe_3O_4$	1.3820
0.36763	Fe ↔ FeSO	2.7201
0.20087	Fe ↔ FeSO₄ · 7H ₄ O	4.9782
0.14242	$Fe \leftrightarrow FeSO_4 \cdot (NH_4)_3SO_4 \cdot 6H_2O_3$	7.0217
0.62011	$FeO \leftrightarrow FeCO_3$	1.6126
	د	

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	IRON (continued) $Fe = 55.845$	
0.40390	$FeO \leftrightarrow Fe(HCO_2)_2$	2.4759
0.89982	$FeO \leftrightarrow Fe_2O_3$	1.1113
0.49223	$Fe_2O_3 \leftrightarrow FeCl_2$	2.0316
0.68915	$Fe_2O_3 \leftrightarrow FeCO_3$	1.4511
0.44887	$Fe_2O_3 \leftrightarrow Fe(HCO_3)_2$	2.2278
0.33422	$Fe_2O_3 \leftrightarrow Fe(HCO_3)_3$	2.9920
1.1113	$Fe_2O_3 \leftrightarrow FeO$	0.89982
1.0345	$Fe_2O_3 \leftrightarrow Fe_3O_4$	0.96662
0.52941	$Fe_2O_3 \leftrightarrow FePO_4$	1.8889
0.52561	$Fe_2O_3 \leftrightarrow FeSO_4$	1.9026
0.28719	$Fe_2O_3 \leftrightarrow FeSO_4 \cdot 7H_2O$	3.4820
0.20361	$Fe_2O_3 \leftrightarrow FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$	4.9113
0.39934	$\operatorname{Fe}_2\operatorname{O}_3 \leftrightarrow \operatorname{Fe}_2(\operatorname{SO}_4)_3$	2.5041
2.7006	$FePO_4 \leftrightarrow Fe$	0.37029
2.0992	$FePO_4 \leftrightarrow FeO$	0.47637
1.5741	FeS ↔ Fe	0.63527
1.2236	FeS ↔ FeO	0.81726
1.1010	$FeS \leftrightarrow Fe_2O_3$	0.90825
0.79699	$Mg_2As_2O_7 \leftrightarrow FeAsO_4$	1.2547
1.1144	$SO_3 \leftrightarrow FeO$	0.89738
0.52704	$SO_3 \leftrightarrow FeSO_4$	1.8974
	LANTHANUM La = 138.91	
1.1728	$La_2O_3 \leftrightarrow La$	0.85268
	LEAD Pb = 207 2	
	$r_{0} = 207.2$	
0.77541	$Pb \leftrightarrow PbCO_3$	1.2896
0.80141	$Pb \leftrightarrow (PbCO_3)_2 \cdot Pb(OH)_2$	1.2478
0.85901	$Pb \leftrightarrow Pb(OH)_2$	1.1641
0.92831	$Pb \leftrightarrow PbO$	1.0772
1.3422	$PDCl_2 \leftrightarrow PD$ $PbCl_2 \leftrightarrow PbC$	0.74502
1.2400	$POCl_2 \leftrightarrow POO$	0.80233
1.3398	$PUCIO_4 \leftrightarrow PU$	0.04110
1.2501	$PbCrO_4 \leftrightarrow Pb(C_2n_3O_2)_2 \cdot 3n_2O$	0.70007
1.2301	$PbCrO_4 \leftrightarrow PbO$	0.79997
1.4460	$PbCrO_4 \leftrightarrow PbO$	0.09001
1.4142	$PbCrO_4 \leftrightarrow PbSO_4$	0.70711
0.83529	$PbO \leftrightarrow PbCO$	1 1972
0.67388	$PbO \leftrightarrow Pb(NO)$	1.1972
0.07308	$PbO \leftrightarrow PbO$.	1.4057
1.1544	$PbO_2 \leftrightarrow Pb$	0.86622
0.72219	$PbO_{2} \leftrightarrow Pb(NO_{2})_{2}$	1.3847
1.1547	$PbS \leftrightarrow Pb$	0.86600
1.0720	PbS ↔ PbO	0.93287
0.78895	$PhS \leftrightarrow PhSO_4$	1.2675
1.2993	$PbSO_4 \leftrightarrow BaSO_4$	0.76966
1.4636	$PbSO_4 \leftrightarrow Pb$	0.68323
	·	

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	$\begin{array}{c} \text{LEAD} \ (continued) \\ \text{Pb} = 207.2 \end{array}$	
0.79944	$PbSO_4 \leftrightarrow Pb(C_2H_3O_2)_2 \cdot 3H_2O$	1.2509
1.1349	$PbSO_4 \leftrightarrow PbCO_3$	0.88112
1.1730	$PbSO_4 \leftrightarrow (PbCO_3)_2 \cdot Pb(OH)_2$	0.85254
0.91561	$PbSO_4 \leftrightarrow Pb(NO_3)_2$	1.0922
1.3587	$PbSO_4 \leftrightarrow PbO$	0.73599
1.2678	$PbSO_4 \leftrightarrow PbO_2$	0.78875
1.3270	$PbSO_4 \leftrightarrow Pb_3O_4$	0.75358
	LITHIUM Li = 6.941	
0 50562		1 6790
0.59502	$CO_2 \leftrightarrow Li_2 CO_3$	1.0/69
0.04/39	$CO_2 \leftrightarrow LinCO_3$	1.5442
1.4/29	$CO_2 \leftrightarrow Li_2O$	0.67894
0.1080		0.16369
2.83/8	$LiCI \leftrightarrow Li_2O$	0.35239
5.3228	$\Box_1 CO_3 \leftrightarrow \Box_1$	0.18/8/
0.8/14/	$\Box_1 CO_3 \leftrightarrow \Box_1 CO$	1,14/5
0.54364	$L_{1_2}CO_3 \leftrightarrow L_{1}HCO_3$	1.8395
2.4730	$L_{12}CU_3 \leftrightarrow L_{12}U$	0.40436
4.5491	$LiHCO_3 \leftrightarrow Li_2O$	0.21983
3.7371	LıF⇔Lı	0.26759
2.1525	$L_{1_2} \cup \leftrightarrow L_1$	0.46457
0.27176	$L_{12}O \leftrightarrow L_{12}SO_4$	3.6798
5.5609	$L_{12}PO_4 \leftrightarrow L_1$	0.17983
0.91047	$Li_3PO_4 \leftrightarrow LiCi$	1.0983
1.0447	$L_{1_3}PO_4 \leftrightarrow L_{1_2}CO_3$	0.95717
0.56/9/	$Li_3PO_4 \leftrightarrow LiHCO_3$	1.7607
2.5837	$L_{1_3}PO_4 \leftrightarrow L_{1_2}O$	0.38704
0.70214	$L_{1_3}PO_4 \leftrightarrow L_{1_2}SO_4$	1.4242
0.60331	$L_{1_3}PO_4 \leftrightarrow L_{1_2}SO_4 \cdot H_2O$	1.6575
7.9153	$L_{12}SO_4 \leftrightarrow L_1$	0.12634
1.2967	$Li_2SO_4 \leftrightarrow LiCl$	0.77118
2.6797	$SO_3 \leftrightarrow Li_2O$	0.37317
0.72825		1.5752
	MaGNESIUM $Mg = 24.305$	
1.9390	$BaSO_4 \leftrightarrow MgSO_4$	0.51572
0.94693	$BaSO_4 \leftrightarrow MgSO_4 \cdot 7H_2O$	1.0560
6.5755	$\operatorname{Br} \leftrightarrow \operatorname{Mg}$	0.15208
0.86800	$Br \leftrightarrow MgBr_2$	1.1521
0.54691	$Br \leftrightarrow MgBr_2 \cdot 6H_2O$	1.8285
2.9173	$Cl \leftrightarrow Mg$	0.34278
0.74472	$Cl \leftrightarrow MgCl_2$	1.3429
0.25533	$Mg \leftrightarrow MgCl_2$	3.9165
0.28883	$Mg \leftrightarrow MgCO_3$	3.4683
10.4427	$I \leftrightarrow Mg$	0.095761
0.91261	I ↔ Møl	1 09576
0.34876	$CI \leftrightarrow MgCl_{2} \cdot 6H_{2}O$	2.8673
0.52193	$CO_2 \leftrightarrow MgCO_3$	1.9160

TABLE 4.34 Gravimetric Factors (Continued)

MAGNI 1.0918 CO2 0.57616 MgCO3 10.094 MgNH4PO4·6H2O 6.0879 MgNH4PO4·6H2O 1.6581 MgO 0.27544 MgO 0.33489 MgO 4.5784 Mg2P2O7 1.1687 Mg2P2O7 0.54737 Mg2P2O7 0.40049 Mg2P2O7	ESIUM (continued) Ag = 24.305 $\leftrightarrow MgO$ $\leftrightarrow Mg(HCO_3)_2$ $\leftrightarrow Mg$ $\leftrightarrow MgO$ $\leftrightarrow MgO$ $\leftrightarrow MgO$ $\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_3)_2$ $\leftrightarrow MgSO_4$ $\leftrightarrow MgCl_2$ $\leftrightarrow MgCl_2 \cdot KCl \cdot 6H_2O$ $\leftrightarrow MgCO_3$ $\leftrightarrow MgCO_3$ $\rightarrow MgCO_3$	0.91595 1.7356 0.099067 0.16426 0.60311 2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4069
$\begin{array}{ccccc} 1.0918 & CO_2 \\ 0.57616 & MgCO_3 \\ 10.094 & MgNH_4PO_4 \cdot 6H_2O \\ 6.0879 & MgNH_4PO_4 \cdot 6H_2O \\ 1.6581 & MgO \\ 0.47807 & MgO \\ 0.27544 & MgO \\ 0.33489 & MgO \\ 4.5784 & Mg_2P_2O_7 \\ 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \\ \end{array}$	$\leftrightarrow MgO$ $\leftrightarrow Mg(HCO_3)_2$ $\leftrightarrow Mg$ $\leftrightarrow MgO$ $\leftrightarrow Mg$ $\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_3)_2$ $\leftrightarrow MgSO_4$ $\leftrightarrow Mg$ $\leftrightarrow MgCl_2$ $\leftrightarrow MgCl_2 \cdot 6H_2O$ $\leftrightarrow MgCO_3$ $\leftrightarrow MgCO_3$ $\leftrightarrow MgCO_3$ $\rightarrow MgCO_3$ $\rightarrow MgCO_3$ $\rightarrow MgCO_3$ $\rightarrow MgCO_3$ $\rightarrow MgCO_3$ $\rightarrow MgCO_3$	0.91595 1.7356 0.099067 0.16426 0.60311 2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4069
$\begin{array}{cccc} 0.57616 & MgCO_3 \\ 10.094 & MgNH_4PO_4\cdot 6H_2O \\ 6.0879 & MgNH_4PO_4\cdot 6H_2O \\ 1.6581 & MgO \\ 0.47807 & MgO \\ 0.27544 & MgO \\ 0.33489 & MgO \\ 4.5784 & Mg2P_2O_7 \\ 1.1687 & Mg2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg2P_2O_7 \\ \end{array}$	$\leftrightarrow M_{g}^{g}(HCO_{3})_{2}$ $\leftrightarrow M_{g}$ $\leftrightarrow M_{g}O$ $\leftrightarrow M_{g}$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}Cl_{2}$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}CH(CO_{3})_{2}$	$\begin{array}{c} 1.7356\\ 0.099067\\ 0.16426\\ 0.60311\\ 2.0918\\ 3.6305\\ 2.9860\\ 0.21841\\ 0.85562\\ 1.8269\\ 2.4969\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\leftrightarrow Mg$ $\leftrightarrow MgO$ $\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_3)_2$ $\leftrightarrow MgSO_4$ $\leftrightarrow MgCl_2$ $\leftrightarrow MgCl_2 \cdot 6H_2O$ $\leftrightarrow MgCl_2 \cdot KCl \cdot 6H_2O$ $\leftrightarrow MgCO_3$ $\leftrightarrow MgCO_3$ $\leftrightarrow MgCO_2 \cdot KCl \cdot 6H_2O$	0.099067 0.16426 0.60311 2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4069
$\begin{array}{cccc} 6.0879 & MgNH_4PO_4 \cdot 6H_2O \\ 1.6581 & MgO \\ 0.47807 & MgO \\ 0.27544 & MgO \\ 0.33489 & MgO \\ 4.5784 & Mg_2P_2O_7 \\ 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_{g}O$ $\leftrightarrow M_{g}$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{3})_{2}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{3})_{3}$	0.16426 0.60311 2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4969
$\begin{array}{cccc} 1.6581 & MgO \\ 0.47807 & MgO \\ 0.27544 & MgO \\ 0.33489 & MgO \\ 4.5784 & Mg_2P_2O_7 \\ 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_{g}$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{3})_{2}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}$ $\leftrightarrow M_{g}Cl_{2}$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(H(CO_{3})_{2})$	0.60311 2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4069
$\begin{array}{cccc} 0.47807 & M_{g}O \\ 0.27544 & MgO \\ 0.33489 & MgO \\ 4.5784 & Mg_2P_2O_7 \\ 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_g CO_3$ $\leftrightarrow M_g (HCO_3)_2$ $\leftrightarrow M_g SO_4$ $\leftrightarrow M_g$ $\leftrightarrow M_g Cl_2 \cdot 6H_2O$ $\leftrightarrow M_g Cl_2 \cdot KC1 \cdot 6H_2O$ $\leftrightarrow M_g CO_3$ $\leftrightarrow M_g (HCO_3)_3$	2.0918 3.6305 2.9860 0.21841 0.85562 1.8269 2.4969
$\begin{array}{cccc} 0.27544 & M_gO \\ 0.33489 & MgO \\ 4.5784 & Mg_2P_2O_7 \\ 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_{g}^{c}(HCO_{3})_{2}$ $\leftrightarrow M_{g}SO_{4}$ $\leftrightarrow M_{g}$ $\leftrightarrow M_{g}Cl_{2}$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{3})_{2}$	3.6305 2.9860 0.21841 0.85562 1.8269 2.4069
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\leftrightarrow MgSO_4$ $\leftrightarrow Mg$ $\leftrightarrow MgCl_2$ $\leftrightarrow MgCl_2 \cdot 6H_2O$ $\leftrightarrow MgCl_2 \cdot KCl \cdot 6H_2O$ $\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_2)_2$	2.9860 0.21841 0.85562 1.8269 2.4969
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\leftrightarrow Mg$ $\leftrightarrow MgCl_{2}$ $\leftrightarrow MgCl_{2} \cdot 6H_{2}O$ $\leftrightarrow MgCl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow MgCO_{3}$ $\leftrightarrow Mg(HCO_{2})_{2}$	0.21841 0.85562 1.8269 2.4969
$\begin{array}{ccc} 1.1687 & Mg_2P_2O_7 \\ 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_{g}Cl_{2}$ $\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{3})_{2}$	0.85562 1.8269 2.4969
$\begin{array}{cccc} 0.54737 & Mg_2P_2O_7 \\ 0.40049 & Mg_2P_2O_7 \end{array}$	$\leftrightarrow M_{g}Cl_{2} \cdot 6H_{2}O$ $\leftrightarrow M_{g}Cl_{2} \cdot KCl \cdot 6H_{2}O$ $\leftrightarrow M_{g}CO_{3}$ $\leftrightarrow M_{g}(HCO_{2})_{2}$	1.8269 2.4969
0.40049 $Mg_2P_2O_7$	$\leftrightarrow MgCl_2 \cdot KCl \cdot 6H_2O$ $\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_2)_2$	2 4969
02 2 7	$\leftrightarrow MgCO_3$ $\leftrightarrow Mg(HCO_2)_2$	L
1.3198 Mg ₂ P ₂ O ₇	\leftrightarrow Mg(HCO ₂) ₂	0.75770
0.76040 Mg ₂ P ₂ O ₇		1.3151
2.7607 Mg ₂ P ₂ O ₇	↔ MgO	0.36223
0.92452 Mg ₂ P ₂ O ₂	↔ MgSQ.	1.0816
0.45150 Mg ₂ P ₂ O ₂	\leftrightarrow MgSO ₄ ·7H ₂ O	2.2149
4.9523 MgSQ.	$\leftrightarrow Mg$	0.20193
1 9864 SO ₂	$\leftrightarrow M_{0}O$	0 50343
0.6651 SO ₂	$\leftrightarrow M_{0}S\Omega$	1 5034
0.38482 SO ₂	$\leftrightarrow MgSO_4 \cdot 7H_aO$	3.0786
0.00102 503		510700
M	In = 54.9380	
1.5457 BaSO ₄	↔ MnSO₄	0.64696
0.38286 CO ₂	↔ MnCO ₃	2.6119
0.62041 CO ₂	↔MnO	1.6118
0.47793 Mn	↔ MnCO ₃	2.0924
0.77446 Mn	↔MnO	1.2912
0.63193 Mn	\leftrightarrow MnO ₂	1.5825
0.69599 Mn	$\leftrightarrow Mn_2O_3$	1.4368
0.76126 MnCO ₃	↔ MnSO ₄	1.3136
1.5395 Mn(HCO ₂) ₂	\leftrightarrow MnCO ₂	0.64955
0.61711 MnO	↔ MnCO ₃	1.6205
0.40084 MnO	$\leftrightarrow Mn(HCO_1)_2$	2,4947
0.89868 MnO	\leftrightarrow Mn ₂ O ₂	1.1127
0.46978 MnO	\leftrightarrow MnSO.	2.1286
1 3883 Mn ₂ O.	↔ Mn	0.72031
0.66351 Mn ₂ O ₄	↔ MnCO.	1 5071
0.43098 Mn ₃ O ₄	\leftrightarrow Mn(HCO ₂)	2 3203
1 0752 Mn ₃ O ₄	\leftrightarrow Mn($\Pi CO_3)_2$	0.93008
0.96625 Mn O	\leftrightarrow Mn O	1 0349
0.87731 Mn ₃ O ₄	\leftrightarrow MnO ₂	1 1 3 9 0
0 50510 Mn O	\leftrightarrow MnSO.	1 0708
2 5831 Mn D O	\leftrightarrow Mn	n 38713
1.3345 Mn P O	\leftrightarrow MnCO	0.30713
1.2575 $Mm_2r_2O_7$ 2 0005 Mm_2O_7	\leftrightarrow MnO	0.81002 0.40007
1.6324 $M_{\odot} P O$	\leftrightarrow MnO	U.4770/ 0.61961
1.0324 $Mn_2P_2O_7$	$\sim M_{\rm H} SO$	1.0441
1.5926 $Win_2 P_2 O_7$	$\sim \text{Mm}_4$	1.0041

TABLE 4.34 Gravimetric Factors (C)	Continued)
---	------------

Factor		Factor
	MANGANESE (continued) Mn = 54.9380	
0.75687	$MnS \leftrightarrow MnCO_3$	1.3212
1.2265	MnS↔MnO	0.81535
0.57617	MnS ↔ MnSO₄	1.7356
2.7486	$MnSO_4 \leftrightarrow Mn$	0.36383
1.1286	$SO_3 \leftrightarrow MnO$	0.88603
0.53021	$SO_3 \leftrightarrow MnSO_4$	1.8860
	MERCURY $Hg = 200.59$	
0 73882		1 3535
0.02613	$H_{\alpha} \leftrightarrow H_{\alpha}$	1.0798
0.92013	Hg + HgO	1.0798
1 1767		0.84081
0.86030		1 1502
0.00939	$H_{gC1} \leftrightarrow H_{gNO}$	1.1502
0.09009	$\operatorname{HgCl}(\mathcal{S})$ HgNO_3	1.1123
1.1510	$H_2 C \to H_2 C$	0.00371
1.0090	ngCl <> hgC	0.91700
1.0140		0.96304
0.98304	$H_{2} \leftrightarrow H_{2}$	1.0140
0.83091	$HgS \leftrightarrow HgCl_2$	1.10/0
0.92091	$HgS \leftrightarrow Hg(UN)_2$	1.0859
0.88598	$HgS \leftrightarrow HgNO_3$	1.1287
0./10/3	$HgS \leftrightarrow Hg(NO_3)_2$	1.5952
0.67903	$HgS \leftrightarrow Hg(NO_3)_2 \cdot H_2O$	1.4727
1.1153	$HgS \leftrightarrow Hg_2O$	0.89658
1.0741	HgS ↔ HgO HaS ↔ HaSO	0.9309/
0.76420		1.2751
	MOLYBDENUM $Mo = 95.94$	
8.9876	$MoC \leftrightarrow C$	0.11126
1.5003	$MoO_3 \leftrightarrow Mo$	0.66653
0.73436	$MoO_3 \leftrightarrow (NH_4)_2 MoO_4$	1.3617
2.0026	$MoS_3 \leftrightarrow Mo$	0.49935
1.3348	$MoS_4 \leftrightarrow MoO_3$	0.74918
0.98021	$MoS_3 \leftrightarrow (NH_4)_2 MoO_4$	1.0202
1.0863	$(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow MoO_3$	0.92058
0.79771	$(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow (NH_4)_2MoO_4$	1.2536
3.8267	$PbMoO_4 \leftrightarrow Mo$	0.26132
2.5506	$PbMoO_4 \leftrightarrow MoO_3$	0.39207
1.8730	$PbMoO_4 \leftrightarrow (NH_4)_2MoO_4$	0.53390
	NEODYMIUM $Nd = 144.24$	
1.1664	$Nd_2O_3 \leftrightarrow Nd$	0.85735
	NICKEL	
	Ni = 58.71	
0 20319	Ni ↔ Ni dimethylølvoxime	4 9215
0.20188	$Ni \leftrightarrow Ni(NO_{2})_{2} \cdot 6H_{2}O$	4.9533

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	NICKEL (continued) Ni = 58.71	
0.78585	Ni ↔ NiO	1.2725
0.20902	Ni ↔ NiSO ₄ · 7H ₂ O	4.7842
3.8675	Ni dimethylglyoxime ↔ NiO	0.25856
0.25690	$NiO \leftrightarrow Ni(NO_3)_2 \cdot 6H_2O$	3.8926
0.26598	$NiO \leftrightarrow NiSO_4 \cdot 7H_2O$	3.7597
2.6362	NiSO₄ ↔ Ni	0.37934
0.53220	$NiSO_4 \leftrightarrow Ni(NO_3)_2 \cdot 6H_2O$	1.8790
2.0716	NiSO₄ ↔ NiO	0.48271
0.55102	$NiSO_4 \leftrightarrow NiSO_4 \cdot 7H_2O$	1.8148
	NIOBIUM Nb = 92.906	
7.7351	$Nb \leftrightarrow C$	0.12928
8.7353	$NbC \leftrightarrow C$	0.11448
11.065	$Nb_2O_5 \leftrightarrow 2C$	0.090373
1.4305	$Nb_2O_5 \leftrightarrow Nb$	0.69904
	NITROGEN N = 14.0067	
3.2731	AgNO ₂ ↔ HNO ₂	0.30552
4.0488	$AgNO_2 \leftrightarrow N_2O_2$	0.24698
1.8722	$KNO_3 \leftrightarrow N_2O_5$	053412
0.22229	$N \leftrightarrow HNO_3$	4.4987
0.30446	$N \leftrightarrow NO_2$	3.2845
0.36855	$N \leftrightarrow N_2 O_3$	2.7134
0.22590	$N \leftrightarrow NO_3$	4.4268
0.25936	$N \leftrightarrow N_2O_5$	3.8556
6.0680	$NaNO_3 \leftrightarrow N$	0.16480
1.5738	$NaNO_3 \leftrightarrow N_2O_5$	0.63539
0.47619	$NO \leftrightarrow HNO_3$	2.1000
0.65222	$NO \leftrightarrow NO_2$	1.5332
0.78951	$NO \leftrightarrow N_2O_3$	1.2666
0.48393	$NO \leftrightarrow NO_3$	2.0664
0.55561	$NO \leftrightarrow N_2O_5$	1.7998
0.27028	$NH_3 \leftrightarrow HNO_3$	3.6999
1.2159	$NH_3 \leftrightarrow N$	0.82244
0.31536	$NH_3 \leftrightarrow N_2O_5$	3.1710
0.27467	$NH_3 \leftrightarrow NO_3$	3.6407
0.84890	$NH_4Cl \leftrightarrow HNO_3$	1.1780
0.86270	$NH_4Cl \leftrightarrow NO_3$	1.1591
0.99050	$NH_4Cl \leftrightarrow N_2O_5$	1.0096
3.8189	$NH_4Cl \leftrightarrow N$	0.26185
3.5221	$(NH_4)_2 PtCl_6 \leftrightarrow HNO_3$	0.28393
15.845	$(NH_4)_2 PtCl_6 \leftrightarrow N$	0.063112
4.1096	$(NH_4)_2$ PtCl ₆ \leftrightarrow N ₂ O ₆	0.24333
3.5794	$(NH_4)_2$ PtCl ₆ \leftrightarrow NO ₃	0.27938
4.7169	$(NH_4)_2SO_4 \leftrightarrow N$	0.21200
1.2234	$(\mathrm{NH}_4)_2\mathrm{SO}_4 \leftrightarrow \mathrm{N}_2\mathrm{O}_5$	0.81739
1.5480	$Pt \leftrightarrow HNO_3$	0.64599
0.9640	$Pt \leftrightarrow N$	0.14360

TABLE 4.34 Gravimetric Factors (Continued)

NITROGEN (continued) N = 14.0067 1.5732 Pt ↔ NO, 0.63566 1.8062 Pt ↔ NO, 0.53564 0.63528 SO, ↔ HNO, 1.5741 2.8579 SO, ↔ N 0.34900 0.74125 SO, ↔ N 0.34900 OSMIUM OSMIUM PALLADIUM Pd = 106.4 0.2673 0.46179 Pd ↔ Pd(N, 2H, O 2.0051 0.46179 Pd ↔ Pd(N, 0, 2 2.1655 3.384 PdI, Pd(N, 0, 2 2.1655 3.384 PdI, Pd(N, 0, 2 2.1655 3.7342 K, PdCI, ↔ Pd 0.26797 1.8624 K, 2PdCI, ↔ Pd 0.26895 P = 30.9738 P 3.0732 P = 30.9738 P 3.023445 1.514 Ag, PO, ↔ PO, 0.10232 3.1874 Ag, PO, ↔ PO, 0.10232 3.1874 Ag, PO, ↔ PO, 0.31374 4.2653 Ag, PO, ↔ PO, 0.31374 2.8980	Factor		Factor
1.5732 $Pt \leftrightarrow NO_3$ 0.63566 1.8062 $Pt \leftrightarrow NO_5$ 0.53564 0.63528 $SO_3 \leftrightarrow N$ 0.34990 0.74125 $SO_3 \leftrightarrow NO_5$ 1.3741 2.8579 $SO_5 \leftrightarrow NO_5$ 0.34990 0.74125 $SO_5 \leftrightarrow NO_5$ 0.74823 OSMIUM Os = 190.2 1.3365 $OSO_4 \leftrightarrow Os$ 0.74823 PALLADIUM Pd = 166.4 0.49873 $Pd \leftrightarrow Pd(NO_3)_2$ 2.1655 3.384 $Pdl_2 \leftrightarrow Pd$ 0.23958 3.7342 $K_2PdCl_6 \leftrightarrow PdCl_2 \cdot 2H_5O$ 0.05395 P 30.9738 13.514 $Ag_8PO_4 \leftrightarrow PO_4$ 0.22689 AgyPO_4 ↔ PO_4 0.073998 4.4075 $Ag_8PO_4 \leftrightarrow PO_4$ 0.073998 1.3514 $Ag_8PO_4 \leftrightarrow PO_4$ 0.27687 0.07398 1.3524 $Ag_8PO_4 \leftrightarrow PO_4$ 0.16955 9.0738 1.3514 $Ag_8PO_4 \leftrightarrow PO_4$ 0.17877 1.8624 $Ag_8PO_4 \leftrightarrow PO_4$ 0.77877 1.876		NITROGEN (continued) N = 14.0067	
1.8062 Pt ↔ NO, 0.55364 0.63528 SO, ↔ NO, 1.5741 2.8579 SO, ↔ N, 0.34990 0.74125 SO, ↔ N, 1.3491 OSMIUM OS = 190.2 1.3365 OSO, ↔ OS 0.74823 PALLADIUM Pd = 106.4 0.49873 Pd ↔ PdCl, 2H,O 2.0051 0.46179 Pd ↔ PdCl, 2H,O 0.25338 3.7342 K,PdCl, ↔ PdCl, 2H,O 0.25378 ISEC PHOSPHORUS P = 30.9738 13.514 Ag,PO, ↔ P 0.073998 4.4075 Ag,PO, ↔ PO, 0.22679 1.8524 K,PdCl, ↔ PD,O, 0.22689 5.8980 Ag,PO, ↔ PO, 0.0232 3.1874 Ag,PO, ↔ PO, 0.31374 4.2653 Ag,PO, ↔ PO, 0.31374 4.2653 Ag,PO, ↔ PO, 0.3174 4.2653 Ag,PO, ↔ PO, 0.3174 2.1854 AJPO, ↔ PO, 0.3174 4.2653 Ag,P,O, ↔ PO, 0.47056	1.5732	$Pt \leftrightarrow NO_3$	0.63566
0.63528 SO, $\leftrightarrow H\bar{N}O_3$ 1.5741 2.8579 SO, $\leftrightarrow N$, SO, $\leftrightarrow N_{PO}$ 0.34990 0.74125 SO, $\leftrightarrow N_{PO}$, 1.3491 0SMIUM Os = 190.2 1.3365 OsO, $\leftrightarrow Os$ 0.74823 PALLADIUM Pd = 106.4 0.49873 Pd \leftrightarrow PdCl ₂ .2H ₂ O 2.0051 0.46179 Pd \leftrightarrow PdCl ₂ .2H ₂ O 2.0051 0.46179 Pd \leftrightarrow PdCl ₂ .2H ₂ O 0.53695 3.7342 K ₂ PdCl ₆ \leftrightarrow Pd 0.225738 3.7342 K ₂ PdCl ₆ \leftrightarrow Pd 0.26779 1.8624 K ₂ PdCl ₆ \leftrightarrow Pd 0.0073998 13.514 Ag ₃ PO ₄ \leftrightarrow PO ₄ 0.22689 5.8980 Ag ₃ PO ₄ \leftrightarrow PO ₅ 0.16955 9.7730 Ag ₄ P,O ₅ \leftrightarrow PO ₄ 0.31374 4.2653 Ag ₄ PO ₅ \leftrightarrow PO ₅ 0.31374 1.2841 AlPO ₄ \leftrightarrow PO ₅ 0.31374 1.2841 AlPO ₄ \leftrightarrow PO ₅ 0.31374 1.2841 AlPO ₄ \leftrightarrow PO ₅ 0.43787 1.7183 AlPO ₄ \leftrightarrow PO ₅ 0.43787 1.7184 Mg ₂ P ₂ O ₇ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.31073 Mg ₂ P ₂ O ₇ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.31073 Mg ₂ P ₂ O ₇ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.31073 Mg ₂ P ₂ O ₇ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.31073 P ₂ O ₅ \leftrightarrow PA ₅ O ₅ 0.03733 0.1718 Mg ₂ P ₂ O ₇ \leftrightarrow PA ₅ O ₅ 0.03733 0.1718 Mg ₂ P ₂ O ₇ \leftrightarrow PA ₅ O ₅ 0.03733 0.1771 (NH ₄)PO ₄ 1.21Mo ₅ \leftrightarrow PO ₅ 0.03733 0.1773 (PO ₅ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.33946 P ₇ O ₅ \leftrightarrow Na ₄ HPO ₄ 1.2126 0.33946 P ₇ O ₅ \leftrightarrow AlPO ₄ \leftrightarrow O0 0.33946 P ₇ O ₅ \leftrightarrow AlPO ₄ \leftrightarrow O0 0.33946 P ₇ O ₅ \rightarrow P ₀ O ₅ \sim O0.33824 0.33946 P ₇ O ₅ \sim AmA ₁ HPO ₄ \rightarrow P ₀ \sim 0.037824 0.33946 P ₇ O ₅ \sim P ₀ O ₅ \sim 0.037824 0.33946 P ₇ O ₅ \sim P ₀ O ₅ \sim 0.037824 0.33946 P ₇ O ₅ \sim P ₀ O ₅ \sim 0.035816 2.5338 P ₇ O ₅ \sim 2.4Mo	1.8062	$Pt \leftrightarrow N_2O_5$	0.55364
2.8579 SO, ↔ N, 0.34990 0.74125 SO, ↔ N, SO, 1.3491 OSMIUM Os = 190.2 1.3365 OsO, ↔ Os 0.74823 PALLADIUM Pd = 106.4 0.49873 Pd ↔ PdCl, ·2H,O 2.0051 0.46179 Pd ↔ PdCl, ·2H,O 2.0051 0.46179 Pd ↔ PdCl, ·2H,O 0.23679 1.8624 K_2PdCl6, ↔ Pd 0.23679 ISO,9788 PHOSPHORUS P = 30,9738 PHOSPHORUS P = 30,9738 1.3514 Ag,PO, ↔ P 0.073998 4.4075 Ag,PO, ↔ P 0.10232 3.1874 Ag,PO, ↔ PO, 0.23445 0.71833 Al,P,O, ↔ PO, 0.31374 4.2653 Ag,PO, ↔ PO, 0.31374 4.2653 Ag,PO, ↔ PO, 0.58196 2.1853 Ca ₃ (PO,Q) ↔ PO ₂ 0.44705 0.71833 Al ₂ O, ↔ PO ₃ 0.45761 1.5881 FePO, ↔ PO, 0.45761 1.5881 FePO, ↔ PO, 0.45761	0.63528	$SO_3 \leftrightarrow HNO_3$	1.5741
0.74125 $SO_3 \leftrightarrow N_2O_5$ 1.3491 OSMIUM $O_8 = 190.2$ 1.3365 $OSO_4 \leftrightarrow OS$ 0.74823 PALLADIUM Pd = 106.4 0.49873 Pd ↔ PdCl ₂ ·2H ₂ O 2.0051 0.46179 Pd ↔ PdCl ₂ ·2H ₂ O 2.0553 3.7342 K_PdCl_6 ↔ Pd 0.26779 1.8624 K_PdCl_6 ↔ Pd 0.26779 1.8624 K_2PdCl_6 ↔ Pd 0.26779 1.8624 K_2PdCl_6 ↔ Pd 0.27988 P 30.9738 13.514 Ag_3PO_4 ↔ P 0.073998 4.4075 Ag_3PO_4 ↔ P 0.073998 4.4075 Ag_3PO_4 ↔ P 0.016955 9.7730 Ag_P,O_7 ↔ P,O_3 0.16955 9.7730 Ag_P,O_7 ↔ P,O_3 0.23445 0.71833 Al_O_3 ↔ PO_4 0.31374 4.2653 Ag_P,O_7 ↔ PO_4 0.31374 4.2653 Ag_P,O_7 ↔ PO_4 0.31374 1.2841 AIP(4 ↔ PO_4 0.77877 1.7183 AIP(4 ↔ PO_4 0.77877 1.7183 AIP(4 ↔ PO_4 0.45761 1.5881 FePO_4 ↔ PO_4 0.427877 3.5929 Mg_P,O_7 ↔ PO_4 0.435740 1.5881 MB_2,O_7 ↔ PO_4 0.455740 1.5881 MB_2,O_7 ↔ PO_4 0.455740 1.5881 MB_2,O_7 ↔ PO_4 0.45540 1.5881 MB_2,O_7 ↔ PO_4 0.45540 1.5681 MB_2,PO_7 ↔ PO_4 0.45540 0.435740 0.43540 MB_2,PO_7 ↔ PO_4 0.45540 0.43540 MB_2,PO_7 ↔ PO_4 0.45540 0.43540 MB_2,PO_7 ↔ PO_4 0.45540 0.43540 MB_2,PO_7 ↔ PO_4 0.43544 0.49993 P_0,0 ↔ PO_4 0.43544 0.49993 P_0,0 ↔ PO_4 0.43544 0.43946 P_0,0 ↔ PO_4 0.43544 0.43945 P_0,0 ↔ PD_4 0.43544 0.43945 P_0,0 ↔ PD_4 0	2.8579	$SO_3 \leftrightarrow N$	0.34990
OSMIUM Os = 190.21.3365OsO, \leftrightarrow Os0.74823PALLADIUM Pd = 106.40.49873Pd \leftrightarrow PdCl ₂ ·2H ₂ O2.00510.46179Pd \leftrightarrow PdCl ₂ ·2H ₂ O2.00513.854Pd1 \leftrightarrow Pd0.259383.7342K ₂ PdCl ₆ \leftrightarrow Pd0.26779I.8624CK_2PdCl ₆ \leftrightarrow PdCl ₂ ·2H ₂ O0.073998P 30973813.514Ag ₃ PO ₄ \leftrightarrow PO ₄ 0.22689P 30973813.514Ag ₃ PO ₄ \leftrightarrow PO ₄ 0.07399813.514Ag ₃ PO ₄ \leftrightarrow PO ₄ 0.16955P 30973813.514Ag ₃ PO ₄ \leftrightarrow PO ₄ 0.226892.7730Ag ₄ PO ₅ \leftrightarrow PO ₄ 0.102323.1874Ag ₄ P,O ₅ \leftrightarrow PO ₄ 0.313744.2653Ag ₄ P,O ₅ \leftrightarrow PO ₄ 0.234450.71833Al ₂ O ₅ \leftrightarrow PO ₄ 0.581962.1853Ca ₃ (PO ₄) \leftrightarrow PO ₄ 0.629702.1251FePO ₄ \leftrightarrow PO ₄ 0.629702.1251FePO ₄ \leftrightarrow PO ₄ 0.470560.31073Mg ₂ P,O ₅ \leftrightarrow PO ₄ 0.853400.53229Mg ₂ P,O ₅ \leftrightarrow PO ₄ 0.853401.5681Mg ₂ P,O ₅ \leftrightarrow PO ₄ 0.05061626.438(NH ₄) ₂ PO ₄ \rightarrow PO ₄ 0.05061626.438(NH ₄) ₂ PO ₄ \rightarrow PO ₄ 2.00030.577(NH ₄) ₂ PO ₄ \rightarrow PO ₄ 0.05061626.438(NH ₄) ₂ PO ₄ \rightarrow PO ₄ 0.05061626.438(NH ₄) ₂ PO ₄ \rightarrow PO ₄ 0.05061626.438(NH ₄) ₂ PO ₄ \rightarrow PO	0.74125	$SO_3 \leftrightarrow N_2O_5$	1.3491
1.3365 OsO ₄ ↔ Os 0.74823 PALLADIUM Pd = 106.4 0.49873 Pd ↔ Pd(D_2, 2H_0O 2.0051 0.46179 Pd ↔ Pd(D_0) ₂ 2.1655 3.3854 Pd ₃ ↔ Pd 0.29538 3.7342 K_PdCl ₆ ↔ Pd(1, 2H_0O 0.53695 PHOSPHORUS P = 30.9738 13.514 Ag ₃ PO ₄ ↔ P 0.073998 13.514 Ag ₄ P,O ₇ ↔ PO ₄ 0.22689 5.730 Ag ₄ P,O ₇ ↔ PO ₄ 0.22689 5.7730 Ag ₄ P,O ₇ ↔ PO ₄ 0.10232 0.10232 0.10232 1.2841 AlPO ₄ ↔ PO ₄ 0.77877 1.2841 AlPO ₄ ↔ PO ₅ 0.45761 0.5811 FePO ₄ ↔ PO ₅ 0.45761 0.53229 Mg ₂ P,O ₅ ↔ Na ₄ HPO ₄ 1.2756 <t< td=""><td></td><td>OSMIUM Os = 190.2</td><td></td></t<>		OSMIUM Os = 190.2	
PALLADIUM Pd = 106.40.49873Pd ↔ PdCl ₂ ·2H ₂ O2.00510.46179Pd ↔ PdCl ₂ ·2H ₂ O2.16553.3854Pd1, ↔ Pd0.295383.7342K ₂ PdCl ₆ ↔ PdCl ₂ ·2H ₂ O0.53695PHOSPIROUS P = 30.973813.514Ag ₂ PO ₄ ↔ Pd0.0739984.4075Ag ₂ PO ₄ ↔ PO ₄ 0.226895.8980Ag ₂ PO ₄ ↔ PQ0.169555.8980Ag ₂ PO ₄ ↔ PQ0.102323.1874Ag ₄ P ₂ O ₇ ↔ PQ0.133744.2653Ag ₄ PO ₄ ↔ PQO ₅ 0.234450.71833Al ₂ O ₇ ↔ PQO ₅ 0.234451.2841AIPO ₄ ↔ PQO ₅ 0.581961.2851FePO ₄ ↔ PQO ₅ 0.457611.5881FePO ₄ ↔ PQO ₅ 0.470560.78392Mg ₂ P ₂ O ₇ ↔ Na ₄ HPO ₄ 1.27560.53229Mg ₂ P ₂ O ₇ ↔ Na ₄ HPO ₄ 1.27560.53229Mg ₂ P ₂ O ₇ ↔ Na ₄ HPO ₄ 1.87873.5929Mg ₂ P ₂ O ₇ ↔ PA ₄ 0.853400.5677(NH ₄) ₃ PO ₄ · 12MOO ₅ ↔ P0.01650819.757(NH ₄) ₃ PO ₄ · 12MOO ₅ ↔ PO ₄ 0.857400.53773P ₂ O ₅ ↔ Na ₄ HPO ₄ 1.65610.4993P ₂ O ₅ ↔ Na ₄ HPO ₄ 2.00330.19816P ₂ O ₅ ↔ Na ₄ HPO ₄ · 4H ₂ O2.94592.2913P ₂ O ₅ ↔ Na ₄ HPO ₄ · 4H ₂ O2.94592.2913P ₂ O ₅ · 24MOO ₅ ↔ PO ₄ 0.0528132.5328P ₂ O ₅ · 24MOO ₅ ↔ PO ₄ 0.0528132.5338P ₂ O ₅ · 24MOO ₅ ↔ PO ₄ 0.052813 <td>1.3365</td> <td>$OsO_4 \leftrightarrow Os$</td> <td>0.74823</td>	1.3365	$OsO_4 \leftrightarrow Os$	0.74823
0.49873 Pd ↔ PdCl ₂ -2H ₂ O 2.0051 0.46179 Pd ↔ Pd(NO ₃) ₂ 2.1655 3.384 Pd1 ₂ ↔ Pd 0.29538 3.384 Pd1 ₂ ↔ Pd 0.26779 1.8624 K ₂ PdCl ₆ ↔ PdCl ₂ ·2H ₂ O 0.53695 PHOSPHORUS P = 30.9738 13.514 Ag ₃ PO ₄ ↔ PQ 0.22689 5.8980 Ag ₂ PQ ₄ ↔ PQ ₂ O 0.16955 9.7730 Ag ₄ PQ ₂ O ₇ ↔ PQ 0.31374 4.2653 Ag ₄ PQ ₄ ↔ PQ ₂ O 0.23445 0.71833 Al ₂ O ₇ ↔ PQ ₄ 0.77877 1.2841 AlPO ₄ ↔ PQ ₄ 0.77877 1.7183 AlPO ₄ ↔ PQ ₃ 0.58196 2.1853 Ca ₅ (PO ₄ ↔ PQ ₄ 0.62970 2.1251 FePO ₄ ↔ PQ ₄ 0.62970 2.1251 FePO ₄ ↔ PQ ₅ 0.43705 0.531073 Mg ₂ P ₂ O ₇ ↔ Na ₄ HPO ₄ 1.2756 0.51073 Mg ₂ P ₂ O ₇ ↔ PQ ₄ 0.27833 1.718 Mg ₂ P ₂ O ₇ ↔ PQ ₄ 0.62970 1.5681 Mg ₂ P ₂ O ₇ ↔ PQ ₄ 0.63		PALLADIUM Pd = 106.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 /0873	Pd ← PdCl · 2H O	2 0051
0.4017914 ↔ Pd(1×05)22.10333.3854Pd1 ↔ Pd0.267791.8624K2PdCl6 ↔ PdCl2·2H2O0.53695PHOSPHORUS P = 30.973813.514Ag3PO4 ↔ P0.0739984.4075Ag3PO4 ↔ PO40.226895.8980Ag3PO4 ↔ PO40.226895.8980Ag3PO4 ↔ PO40.313744.2653Ag3PO4 ↔ PO40.313744.2653Ag3PO, ↔ PO0.313741.2841AlPO4 ↔ PO40.778771.7183AlPO4 ↔ PO40.778771.7183Cas(PO4)2 ↔ PO40.629702.1251FePO4 ↔ PO40.629702.1853Cas(PO4)2 ↔ PO40.278830.7330Mg2PO, ↔ PO40.278731.7183AlPO4 ↔ PO40.629702.1251FePO4 ↔ PO40.629702.1251FePO4 ↔ PO40.278330.53229Mg2PO, ↔ Na3HPO4·12H2O3.21820.53229Mg2PO, ↔ PA0.853401.5681Mg2PO, ↔ PA0.01650819.77(NH4)3PO4·12M0O3 ↔ P0.0165080.577(NH4)3PO4·12M0O3 ↔ PA0.0576162.6438(NH4)3PO4·12M0O3 ↔ PO40.0378240.43993P_2O5 ↔ Na3HPO41.56810.49993P_2O5 ↔ Na3HPO42.00030.19816P_2O5 ↔ Na3HPO42.00330.19816P_2O5 ↔ Na3HPO4·12H2O2.94592.913P_2O5 ↔ Na3HPO4·4H2O2.94592.9213P_2O5 ↔ Na3HPO4·4H2O2.94592.935P_2O5·24M0O5 ↔ PO40.0528132.	0.45075	$\mathbf{Pd} \leftrightarrow \mathbf{Pd}(\mathbf{NO})$	2.0051
3.3.54 $Pu_{2} \leftrightarrow Pu$ 0.25033.7342K,PCQ, ↔ Pd0.2503PHOSPHORUS P = 30.973813.514Ag,PQ, ↔ P0.0739984.4075Ag,PQ, ↔ PQ,0.226895.8980Ag,PQ, ↔ PQ,0.169559.7730Ag,PQ, ↔ PQ,0.102323.1874Ag,PQ, ↔ PQ,0.313744.2653Ag,PQ, ↔ PQ,0.234450.71833Al,PQ, ↔ PQ,0.234450.71833Al,PQ, ↔ PQ,0.581961.2841AIPQ, ↔ PQ,0.581962.1853Ca,(PQ,J), ↔ PQ,0.470560.78392Mg,PQ, ↔ PQ,0.470560.78392Mg,PQ, ↔ PQ,0.470560.31073Mg,PQ, ↔ PQ,0.278331.1718Mg,PQ, ↔ PQ,0.853401.5681Mg,PQ, ↔ PQ,0.853401.5681Mg,PQ, ↔ PQ,0.637731.7183PQ, ↔ PQ,0.637731.718Mg,PQ, ↔ PQ,0.03506162.6438(NH4,),PQ, +12MoO, ↔ PQ,0.0376240.43993P,Q, ↔ Na,HPQ,1.27560.4993P,Q, ↔ Na,HPQ,1.26810.4993P,Q, ↔ Na,HPQ,2.00330.19816P,Q, ↔ Na,HPQ, +12H_QO2.94592.2913P,Q, ↔ AMO, ↔ P,Q,0.0378240.33946P,Q, ↔ AMO, ↔ P,Q,0.0528132.338P,Q, ∘24MoO, ↔ PQ,0.0328132.533P,Q, ∘24MoO, ↔ PQ,0.03284514.565UI P,O, ↔ P0.01722518.955P,Q, ∘24MoO, ↔ PQ,0.032845	2 2954	$\mathbf{Pd} \hookrightarrow \mathbf{Pd}$	0.20538
3.1342 $K_2P4Cl_6 \leftrightarrow PdCl_2 \cdot 2H_2O$ 0.53079 PHOSPHORUS P = 30.9738 13.514 $Ag_3PO_4 \leftrightarrow P$ 0.073998 4.4075 $Ag_3PO_4 \leftrightarrow P_0_4$ 0.22689 5.8980 $Ag_3PO_4 \leftrightarrow P_0_4$ 0.10232 9.7730 $Ag_4P_2O_7 \leftrightarrow P_0_4$ 0.10955 9.7730 $Ag_4P_2O_7 \leftrightarrow P_0_4$ 0.131374 4.2653 $Ag_4P_2O_7 \leftrightarrow P_0_4$ 0.131374 1.2841 $AlPO_4 \leftrightarrow P_2O_5$ 0.23445 0.71833 $Al_2O_3 \leftrightarrow P_2O_5$ 0.23445 1.5841 $AIPO_4 \leftrightarrow P_2O_5$ 0.45761 1.5853 $Ca_3(PO_4)_2 \leftrightarrow P_2O_5$ 0.45761 1.5881 FePO_4 \leftrightarrow P_2O_5 0.447056 0.718392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$ 1.2756 0.31073 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$ 1.2756 0.31073 $Mg_2P_2O_7 \leftrightarrow P_2O_5$ 0.63773 0.5229 $Mg_2P_2O_7 \leftrightarrow P_2O_5$ 0.63773 0.577 (NH_4)_3PO_4 : 12MO_3 \leftrightarrow P_4 0.050616 0.43993 $P_2O_5 \leftrightarrow Na_2HPO_4$ 2.0003 0.43993 $P_2O_5 \leftrightarrow Na_2HPO_4$ 0.03773	2 7217	$ru_2 \sim ru$ K PdCl \leftrightarrow Pd	0.29538
PHOSPHORUS P = 30.9738 13.514 Ag ₃ PO ₄ ↔ P 0.073998 4.4075 Ag ₃ PO ₄ ↔ PO ₄ 0.22689 5.8980 Ag ₂ PO ₄ ↔ PQ ₅ 0.10955 9.7730 Ag ₄ PO ₇ ↔ P 0.10232 3.1874 Ag ₄ PO ₇ ↔ PQ ₅ 0.231374 4.2653 Ag ₄ PO ₇ ↔ PQ ₅ 0.23445 0.71833 Al ₂ O ₃ ↔ P ₂ O ₅ 0.23445 0.71833 Al ₂ O ₃ ↔ P ₂ O ₅ 0.45761 1.2841 AlPO ₄ ↔ PO ₄ 0.62970 2.1251 FePO ₄ ↔ PO ₄ 0.62970 2.1251 FePO ₄ ↔ PO ₄ 0.47056 0.53229 Mg ₂ P ₂ O ₇ ↔ Na ₂ HPO ₄ 1.2756 0.31073 Mg ₂ P ₂ O ₇ ↔ Na ₂ HPO ₄ 1.8787 1.718 Mg ₂ P ₂ O ₇ ↔ PO ₄ 0.85340 1.5681 Mg ₂ P ₂ O ₇ ↔ PO ₄ 0.050616 0.577 (NH ₄) ₃ PO ₄ · 12MO ₃ ↔ PO ₄ 0.050616 0.577 (NH ₄) ₃ PO ₄ · 12MO ₃ ↔ PQ ₅ 0.037824 0.63773 P _{2O₅ ↔ Na₂HPO₄ 2.0003}	1.8624	$K_2 r dCl_6 \leftrightarrow P dCl_2 \cdot 2H_2O$	0.53695
IP = 30.973813.514Ag_3PO_4 \leftrightarrow P0.0739984.4075Ag_3PO_4 \leftrightarrow PO_40.226895.8980Ag_3PO_4 \leftrightarrow PO_50.169559.7730Ag_4P_2O_7 \leftrightarrow P0.102323.1874Ag_4P_2O_7 \leftrightarrow PO_40.313744.2653Ag_4P_2O_7 \leftrightarrow PO_50.234450.71833Al_2O_3 \leftrightarrow P_2O_50.234451.2841AIPO_4 \leftrightarrow PO_40.778771.7183AIPO_4 \leftrightarrow P_2O_50.457611.5881FePO_4 \leftrightarrow P_2O_50.470560.78392Mg_4P_2O_7 \leftrightarrow Na_2HPO_41.27560.31073Mg_2P_2O_7 \leftrightarrow Na_2HPO_41.27560.31073Mg_2P_2O_7 \leftrightarrow Na_2HPO_40.278331.1718Mg_2P_2O_7 \leftrightarrow PO_40.853401.5681Mg_2P_2O_7 \leftrightarrow PO_40.05061626.438(NH_4)_3PO_4 : 12MO_3 \leftrightarrow PO_40.05061626.438(NH_4)_3PO_4 : 12MO_3 \leftrightarrow PO_40.05061626.438(NH_4)_3PO_4 : 12MO_3 \leftrightarrow PO_40.05061626.438(NH_4)_3PO_4 : 12MO_3 \leftrightarrow PO_40.0506160.63773P_2O_5 \leftrightarrow Na_2HPO_4 : 12H_2O5.04640.33946P_2O_5 \leftrightarrow Na_2HPO_4 : 12H_2O5.04640.33946P_2O_5 \leftrightarrow Na_2HPO_4 : 12H_2O5.04640.33946P_2O_5 \leftrightarrow Na_2HPO_4 : 12H_2O5.04640.33946P_2O_5 \leftrightarrow NaNH_4HPO_4 : 4H_2O2.94592.2913P_2O_5 \leftrightarrow NaNH_4HPO_4 : 4H_2O2.94592.2913P_2O_5 \sim 24MO_3 \leftrightarrow PO_40.05281325.338P_2O_5 : 24MO_3 \leftrightarrow PO_40.05281325.338P_2O_5 : 24MO_3		PHOSPHORUS	
13.514 $Ag_3PO_4 \leftrightarrow P$ 0.07399 4.4075 $Ag_3PO_4 \leftrightarrow PO_4$ 0.22689 5.8980 $Ag_3PO_4 \leftrightarrow P_2O_5$ 0.16955 9.7730 $Ag_4P_2O_7 \leftrightarrow P_2O_5$ 0.10232 3.1874 $Ag_4P_2O_7 \leftrightarrow PO_4$ 0.31374 4.2653 $Ag_4P_2O_7 \leftrightarrow PO_5$ 0.23445 0.71833 $Al_2O_3 \leftrightarrow PO_4$ 0.77877 1.783 $Al_PO_4 \leftrightarrow PO_4$ 0.77877 1.7183 $AlPO_4 \leftrightarrow PO_4$ 0.77877 1.7183 $AlPO_4 \leftrightarrow PO_4$ 0.77877 1.5881 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow P_2O_5$ 0.447056 0.31073 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.33229 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow P_4O_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow P_4O_4$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 0.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P$ 0.032464 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_4$ 0.052813 <td>10 514</td> <td>P = 30.9738</td> <td>0.050000</td>	10 514	P = 30.9738	0.050000
4.40/5 $Ag_3PO_4 \leftrightarrow PO_4$ 0.22689 5.8980 $Ag_3PO_4 \leftrightarrow P_2O_5$ 0.16955 5.8980 $Ag_3PO_7 \leftrightarrow P$ 0.10232 3.1874 $Ag_4P_2O_7 \leftrightarrow PO_4$ 0.31374 4.2653 $Ag_4P_2O_7 \leftrightarrow P_2O_5$ 0.23445 0.71833 $Al_2O_3 \leftrightarrow P_2O_5$ 1.3921 1.2841 $AIPO_4 \leftrightarrow PO_4$ 0.77877 1.7183 $AIPO_4 \leftrightarrow PO_5$ 0.62970 2.1853 $Ca_3(PO_4) \simeq P_2O_5$ 0.45761 1.5881 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow P_2O_5$ 0.47056 0.53229 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow PA_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.05324 0.5777 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.050616 2.6438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.050616 2.6438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.05761 0.63773 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 2.9459 0.53229 $Mg_2P_2O_7 \leftrightarrow PA_4$ 0.050616 2.6438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.05761 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 2.3935 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 2.3946 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 2.5338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_5$ 0.039466 11.526II P O $\leftrightarrow P$ 0.0	13.514	$Ag_3PO_4 \leftrightarrow P$	0.073998
3.880Ag ₃ PO ₄ ↔ P ₂ O ₅ 0.109539.7730Ag ₄ P ₂ O ₇ ↔ P0.102323.1874Ag ₄ P ₂ O ₇ ↔ PO ₄ 0.313744.2653Ag ₄ P ₂ O ₇ ↔ PO ₄ 0.313744.2653Ag ₄ P ₂ O ₇ ↔ PO ₄ 0.7313744.2653Ag ₄ P ₂ O ₇ ↔ PO ₄ 0.778771.7183AlPO ₄ ↔ PO ₄ 0.778771.7183Ca ₃ (PO ₄) ↔ P ₂ O ₅ 0.457611.5881FePO ₄ ↔ PO ₄ 0.629702.1251FePO ₄ ↔ P ₂ O ₅ 0.470560.31073Mg ₂ P ₂ O ₇ ↔ Na ₂ HPO ₄ · 12H ₂ O3.21820.53229Mg ₂ P ₂ O ₇ ↔ P0.278331.1718Mg ₂ P ₂ O ₇ ↔ PQ ₄ 0.853401.5681Mg ₂ P ₂ O ₇ ↔ PQ ₄ 0.0506160.63773P ₂ O ₅ ↔ Mg ₂ P ₂ O ₇ 1.56810.49993P ₂ O ₅ ↔ Mg ₂ P ₂ O ₇ 1.56810.49993P ₂ O ₅ ↔ Ma ₂ HPO ₄ · 12H ₂ O2.00030.19816P ₂ O ₅ ↔ Na ₂ HPO ₄ · 12H ₂ O2.94590.23946P ₂ O ₅ ↔ P0.436445.338P ₂ O ₅ · 24MoO ₃ ↔ P0.436445.338P ₂ O ₅ · 24MoO ₃ ↔ P0.0528132.5338P ₂ O ₅ · 24MoO ₃ ↔ P ₂ O ₅ 0.0378241.150H ₂ O ₅ · 24MoO ₃ ↔ P ₂ O ₅ 0.037824	4.4075	$Ag_3PO_4 \leftrightarrow PO_4$	0.22689
9.7/30 $Ag_4P_2O_7 \leftrightarrow P$ 0.102323.1874 $Ag_4P_2O_7 \leftrightarrow PO_4$ 0.313744.2653 $Ag_4P_2O_7 \leftrightarrow P_2O_5$ 0.234450.71833 $Al_2O_3 \leftrightarrow P_2O_5$ 1.39211.2841 $AIPO_4 \leftrightarrow PO_4$ 0.778771.7183 $AIPO_4 \leftrightarrow P_2O_5$ 0.581962.1853 $Ca_3(PO_4)_2 \leftrightarrow P_2O_5$ 0.457611.5881FePO_4 \leftrightarrow PO_40.629702.1251FePO_4 \leftrightarrow P_2O_50.470560.78392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.21820.53229 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.21820.53229 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.853401.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.853401.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.01660819.757 $(NH_4)_3PO_4 \cdot 12MO_3 \leftrightarrow P$ 0.01660819.757 $(NH_4)_3PO_4 \cdot 12MO_3 \leftrightarrow PO_4$ 0.0378240.33946 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 5.04640.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.94592.2913 $P_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.01722518.935 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.0528132.5338 $P_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.01722518.935 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.03946615.638 $P_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.0378132.5338 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.0528132.5338 $P_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.03946614.50 $HP_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.03946615.50 $HP_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.03946615.50 $HP_2O_5 \cdot 24MO_3 \leftrightarrow PA$ 0.0394665.538 $P_2O_5 $	5.8980	$Ag_{3}PO_{4} \leftrightarrow P_{2}O_{5}$	0.16955
3.1874 $Ag_4P_2O_7 \leftrightarrow PO_4$ 0.31374 4.2653 $Ag_4P_2O_7 \leftrightarrow P_2O_5$ 0.23445 0.71833 $Al_2O_3 \leftrightarrow P_2O_5$ 1.3921 1.2841 $AIPO_4 \leftrightarrow PO_4$ 0.77877 1.7183 $AIPO_4 \leftrightarrow P_2O_5$ 0.58196 2.1853 $Ca_3(PO_4)_2 \leftrightarrow P_2O_5$ 0.45761 1.5881 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow P_2O_5$ 0.47056 0.78392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.016508 19.757 $(NH_4)_3PO_4 \cdot 12MO_3 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MO_3 \leftrightarrow PO_4$ 0.03773 0.49993 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.052813 2.5338 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.052813	9.7730	$Ag_4P_2O_7 \leftrightarrow P$	0.10232
4.255 $Ag_{4}P_{2}O_{7} \leftrightarrow P_{2}O_{5}$ 0.23445 0.71833 $Al_{2}O_{3} \leftrightarrow P_{2}O_{5}$ 1.39211.2841 $AlPO_{4} \leftrightarrow PO_{4}$ 0.77877 1.7183 $AIPO_{4} \leftrightarrow PO_{4}$ 0.77877 1.7183 $Ca_{3}(PO_{4})_{2} \leftrightarrow P_{2}O_{5}$ 0.45761 1.5881 $FePO_{4} \leftrightarrow PO_{4}$ 0.62970 2.1251 $FePO_{4} \leftrightarrow P_{2}O_{5}$ 0.47056 0.7392 $Mg_{2}P_{2}O_{7} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 3.2182 0.53229 $Mg_{2}P_{2}O_{7} \leftrightarrow NaH_{4}HPO_{4} \cdot 4H_{2}O$ 1.8787 3.5929 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.85340 1.5681 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.85340 1.5681 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.050616 26.438 $(NH_{4})_{3}PO_{4} \cdot 12MO_{3} \leftrightarrow PO_{4}$ 0.0307824 0.63773 $P_{2}O_{5} \leftrightarrow Ma_{2}HPO_{4} \cdot 12H_{2}O$ 0.037824 0.63773 $P_{2}O_{5} \leftrightarrow Ma_{2}P_{2}O_{7}$ 0.6464 0.49993 $P_{2}O_{5} \leftrightarrow Ma_{2}HPO_{4} \cdot 2Ha_{2}O$ 5.0464 0.33946 $P_{2}O_{5} \leftrightarrow NaNH_{4}HPO_{4} \cdot 4H_{2}O$ 2.9459 2.2913 $P_{2}O_{5} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 5.0464 58.057 $P_{2}O_{5} \cdot 24MoO_{3} \leftrightarrow P$ 0.017225 18.935 $P_{2}O_{5} \cdot 24MoO_{3} \leftrightarrow PO_{4}$ 0.052813 25.338 $P_{2}O_{5} \cdot 24MoO_{3} \leftrightarrow PO_{4}$ 0.052813 25.338 $P_{2}O_{5} \cdot 24MoO_{3} \leftrightarrow PO_{4}$ 0.039466	3.18/4	$Ag_4P_2O_7 \leftrightarrow PO_4$	0.31374
0.71833 $Al_20_3 \leftrightarrow P_20_5$ 1.39211.2841 $AlPO_4 \leftrightarrow PO_4$ 0.77877 1.7183 $AlPO_4 \leftrightarrow P_20_5$ 0.58196 2.1853 $Ca_3(PO_4)_2 \leftrightarrow P_20_5$ 0.45761 1.5881 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow P_20_5$ 0.47056 0.78392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow P$ 0.27833 1.1718 $Mg_3P_2O_7 \leftrightarrow PO_4$ 0.63773 60.577 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_4$ 0.050616 0.63773 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 0.37824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 0.37824 0.63773 $P_2O_5 \leftrightarrow Ma_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow PO_4$ 0.017225 2.2913 $P_2O_5 \leftrightarrow PO_4$ 0.017225 18.935 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.017225 18.935 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.039466 11.526 $HP_2O \leftrightarrow PO_4$ 0.039466 11.526 $HP_2O \leftrightarrow PO_4$ 0.0986763	4.2033	$Ag_4P_2O_7 \leftrightarrow P_2O_5$	0.23445
1.2841AIPO4 \leftrightarrow PO40.778771.7183AIPO4 \leftrightarrow PO40.778771.7183Ca ₃ (PO ₄) \leftrightarrow PO40.581962.1853Ca ₃ (PO ₄) \leftrightarrow PO40.629701.5881FePO4 \leftrightarrow PO40.629702.1251FePO4 \leftrightarrow PO50.470560.78392Mg ₂ P ₂ O ₇ \leftrightarrow Na ₂ HPO4 \cdot 12H ₂ O3.21820.53229Mg ₂ P ₂ O ₇ \leftrightarrow P0.278331.1718Mg ₂ P ₂ O ₇ \leftrightarrow PO40.853401.5681Mg ₂ P ₂ O ₇ \leftrightarrow PO40.66377360.577(NH ₄) ₃ PO ₄ \cdot 12MO3 \leftrightarrow PO40.05061626.438(NH ₄) ₃ PO ₄ \cdot 12MO3 \leftrightarrow PO40.05061626.438(NH ₄) ₃ PO ₄ \cdot 12MO3 \leftrightarrow PO40.0506160.49993P ₂ O ₅ \leftrightarrow Ma ₂ HPO4 \cdot 12H ₂ O5.04640.33946P ₂ O ₅ \leftrightarrow NaNH ₄ HPO4 \cdot 4H ₂ O2.94592.2913P ₂ O ₅ \cdot 24MoO3 \leftrightarrow P0.4364458.057P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.01722518.935P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.05281325.338P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.09861615.561P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.0986160.33946P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.01722518.935P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.01722518.935P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.05281325.338P ₂ O ₅ \cdot 24MoO3 \leftrightarrow PO40.09861611.526U PO \leftrightarrow P0.098616	0.71855	$AI_2O_3 \leftrightarrow P_2O_5$	1.3921
1.7183AIPO4 \leftrightarrow P2O50.581962.1853Ca ₃ (PO ₄) ₂ \leftrightarrow P ₂ O50.457611.5881FePO4 \leftrightarrow PQ0.629702.1251FePO4 \leftrightarrow P ₂ O50.470560.78392Mg2P ₂ O7 \leftrightarrow Na ₂ HPO41.27560.31073Mg2P ₂ O7 \leftrightarrow Na ₂ HPO4 · 12H ₂ O3.21820.53229Mg2P ₂ O7 \leftrightarrow PA0.278331.1718Mg2P ₂ O7 \leftrightarrow PQ0.278331.1718Mg2P ₂ O7 \leftrightarrow PQ0.278331.5681Mg2P ₂ O7 \leftrightarrow PQ0.01650819.757(NH ₄) ₃ PO ₄ · 12MoO ₃ \leftrightarrow PQ0.00378240.63773P ₂ O ₅ \leftrightarrow Ma ₂ HPO ₄ 0.05061626.438(NH ₄) ₃ PO ₄ · 12MoO ₃ \leftrightarrow PQ0.0378240.63773P ₂ O ₅ \leftrightarrow Ma ₂ HPO ₄ 2.00030.19816P ₂ O ₅ \leftrightarrow Na ₂ HPO ₄ · 12H ₂ O5.04640.33946P ₂ O ₅ \leftrightarrow PA0.4364458.057P ₂ O ₅ · 24MoO ₃ \leftrightarrow PQ0.4364458.057P ₂ O ₅ · 24MoO ₃ \leftrightarrow PQ0.05281325.338P ₂ O ₅ · 24MoO ₃ \leftrightarrow PQ0	1.2841	$AIPO_4 \leftrightarrow PO_4$	0.77877
2.1853 $Ca_{3}(PO_{4})_{2} \leftrightarrow P_{2}O_{5}$ 0.45761 1.5881FePO_{4} \leftrightarrow PO_{4} 0.62970 2.1251FePO_{4} \leftrightarrow P_{2}O_{5} 0.47056 0.78392 $Mg_{2}P_{2}O_{7} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 1.2756 0.31073 $Mg_{2}P_{2}O_{7} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 1.8787 0.53229 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.27833 1.1718 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.85340 1.5681 $Mg_{2}P_{2}O_{7} \leftrightarrow PO_{4}$ 0.63773 60.577 $(NH_{4})_{3}PO_{4} \cdot 12MO_{3} \leftrightarrow PO_{4}$ 0.016508 19.757 $(NH_{4})_{3}PO_{4} \cdot 12MO_{3} \leftrightarrow PO_{4}$ 0.037824 0.63773 $P_{2}O_{5} \leftrightarrow Mg_{2}P_{2}O_{7}$ 1.5681 0.49993 $P_{2}O_{5} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 5.0464 0.33946 $P_{2}O_{5} \leftrightarrow Na_{2}HPO_{4} \cdot 12H_{2}O$ 2.9459 2.2913 $P_{2}O_{5} \cdot 24MO_{3} \leftrightarrow P$ 0.43644 8.057 $P_{2}O_{5} \cdot 24MO_{3} \leftrightarrow PO_{4}$ 0.052813 2.5338 $P_{2}O_{5} \cdot 24MO_{3} \leftrightarrow PO_{4}$ 0.052813 2.5338 $P_{2}O_{5} \cdot 24MO_{3} \leftrightarrow PO_{4}$ 0.052813 2.5338 $P_{2}O_{5} \cdot 24MO_{3} \leftrightarrow PO_{5}$ 0.039466	1./183	$AIPO_4 \leftrightarrow P_2O_5$	0.58196
1.5881 $FePO_4 \leftrightarrow PO_4$ 0.62970 2.1251 $FePO_4 \leftrightarrow P_2O_5$ 0.47056 0.78392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$ 1.2756 0.31073 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.27833 1.1718 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.016508 19.757 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_4$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow PA$ 0.43644 58.057 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.017225 18.935 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.03946 2.5.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.03946 15.56 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.052813 25.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.052813 25.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.03946	2.1853	$Ca_3(PO_4)_2 \leftrightarrow P_2O_5$	0.45761
2.121 $PePO_4 \leftrightarrow P_2O_5$ 0.47056 0.78392 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$ 1.2756 0.31073 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow PA$ 0.27833 1.1718 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.63773 60.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.0016508 19.757 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.0016508 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 2.5.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.039466 11.526 $U P O \leftrightarrow PP$ 0.0986762	1.5881	$FePO_4 \leftrightarrow PO_4$	0.62970
0.7892 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$ 1.2736 0.31073 $Mg_2P_2O_7 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 3.2182 0.53229 $Mg_2P_2O_7 \leftrightarrow P$ 0.27833 3.5929 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.63773 60.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow P$ 0.016508 19.757 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaH_4HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow PA_4$ 0.017225 8.955 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.039466 15.295 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MO_3 \leftrightarrow P_2O_5$ 0.039466 15.295 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MO_3 \leftrightarrow P_2O_5$ 0.039466 15.20 $P_2O_5 \cdot 24MO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MO_3 \leftrightarrow P_2O_5$ 0.039466	2.1251	$FePO_4 \leftrightarrow P_2O_5$	0.47050
0.51075 $Mg_2P_2O_7 \leftrightarrow Na_2HPQ_4 \cdot 12h_2O$ 5.21820.53229 $Mg_2P_2O_7 \leftrightarrow P$ 0.278333.5929 $Mg_2P_2O_7 \leftrightarrow P$ 0.278331.1718 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.853401.5681 $Mg_2P_2O_7 \leftrightarrow PQ_5$ 0.6377360.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PQ_4$ 0.01650819.757 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PQ_5$ 0.0378240.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.56810.49993 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.56810.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.04640.33946 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.04640.33946 $P_2O_5 \leftrightarrow P$ 0.4364458.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.01722518.935 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03781325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946611.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.218 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_4$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.03946615.566 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.039466	0.78392	$Mg_2P_2O_7 \Leftrightarrow Na_2\Pi PO_4$	1.2730
0.55229 $Mg_2P_2O_7 \leftrightarrow NalNH_4HPO_4 \cdot 4H_2O$ 1.87673.5929 $Mg_2P_2O_7 \leftrightarrow P$ 0.278331.1718 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.853401.5681 $Mg_2P_2O_7 \leftrightarrow P_2O_5$ 0.6377360.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow P_2O_5$ 0.01650819.757 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.05061626.438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow P_2O_5$ 0.0378240.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.56810.49993 $P_2O_5 \leftrightarrow Na_2HPO_4$ 2.00030.19816 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.04640.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.94592.2913 $P_2O_5 \leftrightarrow P$ 0.4364458.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.03946615.56 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.05281325.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.03946615.56 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.05281325.338 $P_2O_5 \cdot 24MO_3 \leftrightarrow P_2O_5$ 0.039466	0.51075	$Mg_2P_2O_7 \leftrightarrow Na_2\Pi PO_4 \cdot 12\Pi_2O$	3.2102
5.3929 $Mg_2P_2O_7 \leftrightarrow P$ 0.27635 1.1718 $Mg_2P_2O_7 \leftrightarrow PQ_4$ 0.85340 1.5681 $Mg_2P_2O_7 \leftrightarrow P_2O_5$ 0.63773 60.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow P$ 0.016508 19.757 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PQ_4$ 0.050616 26.438 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow PQ_5$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PQ_5$ 0.039466 11.526 $UI PO \leftrightarrow PP$ 0.052813	2 5020	$Mg_2P_2O_7 \hookrightarrow NaNn_4nrO_4 \cdot 4n_2O$	1.0/0/
1.1718 $Mg_2P_2O_7 \leftrightarrow PO_4$ 0.835401.5681 $Mg_2P_2O_7 \leftrightarrow P_2O_5$ 0.6377360.577 $(NH_4)_3PO_4 \cdot 12MoO_3 \leftrightarrow P$ 0.01650819.757 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_4$ 0.05061626.438 $(NH_4)_3PO_4 \cdot 12MOO_3 \leftrightarrow PO_5$ 0.0378240.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.56810.49993 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.04640.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.94592.2913 $P_2O_5 \leftrightarrow P$ 0.4364458.057 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.05281325.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.05281325.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PQ_5$ 0.03946611.526 $U P O_1 \leftrightarrow P$ 0.052813	3.3929	$\operatorname{Mg}_2\mathbf{F}_2\mathbf{U}_7 \leftrightarrow \mathbf{F}$	0.27033
1.361 $M_{g2} P_2 O_7 \leftrightarrow P_2 O_5$ 0.03773 60.577 $(NH_4)_3 PO_4 \cdot 12MoO_3 \leftrightarrow P$ 0.016508 19.757 $(NH_4)_3 PO_4 \cdot 12MoO_3 \leftrightarrow PO_4$ 0.050616 26.438 $(NH_4)_3 PO_4 \cdot 12MoO_3 \leftrightarrow P_2O_5$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2 HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow Na H_4 HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 11.526 $U P O_4 \leftrightarrow P_2$ 0.039466	1.1/10	$\operatorname{Mg}_{2}\operatorname{P}_{2}\operatorname{O}_{7} \hookrightarrow \operatorname{PO}_{4}$	0.63340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3001	$(\mathbf{NH}) \mathbf{PO} \mathbf{12M_2O} \leftrightarrow \mathbf{P}$	0.03773
19.757 $(MH_4)_3, O_4, 12MO_3 \leftrightarrow P_0_4$ 0.030010 26.438 $(NH_4)_3PO_4 \cdot 12MO_3 \leftrightarrow P_2O_5$ 0.037824 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4$ 2.0003 0.19816 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MOO_3 \leftrightarrow P$ 0.017225 18.935 $P_2O_5 \cdot 24MOO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MOO_3 \leftrightarrow P_2O_5$ 0.039466 11.526 $U P O_1 \leftrightarrow P$ 0.098762	10 757	$(NH_4)_{31}O_4 \cdot 12M_0O_3 \leftrightarrow 10$	0.010508
20.436 $(141_4)_3 P_4 (12MO_3 \leftrightarrow P_2O_5)$ 0.057624 0.63773 $P_2O_5 \leftrightarrow Mg_2P_2O_7$ 1.5681 0.49993 $P_2O_5 \leftrightarrow Na_2HPO_4$ 2.0003 0.19816 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P$ 0.017225 18.935 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.039466 11.526 $U P O_1 \leftrightarrow P$ 0.0986762	19.737 26.438	$(NH_4)_3 r O_4 \cdot 12 M_0 O_3 \leftrightarrow P O_4$ (NH) PO 12 M_0 O_4 \leftrightarrow P O	0.037824
0.49993 $P_2O_5 \leftrightarrow M_{E_2T}^2 \cdot 2\sqrt{7}$ 1.5061 0.49993 $P_2O_5 \leftrightarrow M_{E_2T}^2 \cdot 2\sqrt{7}$ 2.0003 0.19816 $P_2O_5 \leftrightarrow Na_2 HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaNH_4 HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P$ 0.017225 18.935 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.039466	20.436	$(1(11_4)_3 + O_4 + 12(1)OO_3 + 1_2O_5)$	1 5681
0.19953 $P_2O_5 \leftrightarrow Na_2HO_4 \cdot 12H_2O$ 2.0003 0.19816 $P_2O_5 \leftrightarrow Na_2HPO_4 \cdot 12H_2O$ 5.0464 0.33946 $P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P$ 0.017225 18.935 $P_2O_5 \cdot 24MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24MoO_3 \leftrightarrow P_2O_5$ 0.039466	0.05775	$P_{2}O_{5} \leftrightarrow M_{2}HPO$	2 0003
0.13910 $P_{2O_5} \leftrightarrow Na_{21} H O_4 + 14 P_{12} O$ 3.0404 0.33946 $P_{2O_5} \leftrightarrow NaNH_4 HPO_4 \cdot 4H_2O$ 2.9459 2.2913 $P_{2O_5} \leftrightarrow P$ 0.43644 58.057 $P_{2O_5} \cdot 24 MoO_3 \leftrightarrow P$ 0.017225 18.935 $P_{2O_5} \cdot 24 MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_{2O_5} \cdot 24 MoO_3 \leftrightarrow P_{2O_5}$ 0.039466 11.526 $U P O_4 \leftrightarrow P$ 0.095762	0.499995	$\Gamma_2 O_5 \leftrightarrow Na_2 \Pi O_4$ P $O \leftrightarrow Na H D 12 H O$	2.0003
$1_{205} \leftrightarrow \text{Nature}^{441704, 44120}$ 2.9499 2.2913 $P_2O_5 \leftrightarrow P$ 0.43644 58.057 $P_2O_5 \cdot 24\text{MoO}_3 \leftrightarrow P$ 0.017225 18.935 $P_2O_5 \cdot 24\text{MoO}_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2O_5 \cdot 24\text{MoO}_3 \leftrightarrow P_2O_5$ 0.096762	0.19010	$P \cap \leftrightarrow N_0 NH HD \wedge AH \cap$	2 0/50
$1_2 \vee 5 \times 1$ 0.43044 58.057 $P_2 O_5 \cdot 24 MoO_3 \leftrightarrow P$ 0.017225 18.935 $P_2 O_5 \cdot 24 MoO_3 \leftrightarrow PO_4$ 0.052813 25.338 $P_2 O_5 \cdot 24 MoO_3 \leftrightarrow P_2 O_5$ 0.039466 11.526 $11 PO_6 \leftrightarrow P$ 0.095762	0.33740 2 2013	$P \cap \leftrightarrow P$	2.74J9 0.42644
$P_2 \vee_5 \cdot 24 \text{MOO}_3 \leftrightarrow P$ 0.017223 18.935 $P_2 O_5 \cdot 24 \text{MOO}_3 \leftrightarrow P_2 O_4$ 0.052813 25.338 $P_2 O_5 \cdot 24 \text{MOO}_3 \leftrightarrow P_2 O_5$ 0.039466 11.526 $U \downarrow P O_4 \leftrightarrow P_2$ 0.096762	58 057	$P \cap 24M_0 \cap \Theta P$	0.43044
10.755 $P_2 O_5 \cdot 24 M O O_3 \leftrightarrow P O_4$ 0.022815 25.338 $P_2 O_5 \cdot 24 M O O_3 \leftrightarrow P_2 O_5$ 0.039466 11526 $11P O_5 \leftrightarrow P_2$ 0.062762	18 035	$r_2 O_5 \cdot 24 M_0 O_3 \simeq r_1$	0.017223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.733	$\Gamma_2 O_5 \cdot 24 M_0 O_3 \Leftrightarrow \Gamma O_4$	0.032813
	11 526	$IIPO \leftrightarrow P$	0.039400

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	PHOSPHORUS (continued) P = 30.9738	
3.7590	$U_2P_2O_{11} \leftrightarrow PO_4$	0.26603
5.0303	$U_2P_2O_{11} \leftrightarrow P_2O_5$	0.19880
	PLATINUM Pt = 195.09	
0.93839	$K_2PtCl_6 \leftrightarrow H_2PtCl_6 \cdot 6H_2O$	1.0657
2.4912	$K_2PtCl_6 \leftrightarrow Pt$	0.40141
1.4426	$K_2PtCl_6 \leftrightarrow PtCl_4$	0.69320
1.1383	$K_2PtCl_6 \leftrightarrow PtCl_4 \cdot 5H_2O$	0.87854
2.2753	$(NH_4)_2 PtCl_6 \leftrightarrow Pt$	0.43950
1.3176	$(NH_4)_2 PtCl_6 \leftrightarrow PtCl_4$	0.75897
1.0885	$(NH_4)_2 PtCl_6 \leftrightarrow PtCl_6$	0.91872
0.37668	$Pt \leftrightarrow H_2PtCl_6 \cdot 6H_2O$	2.6548
0.57907	$Pt \leftrightarrow PtCl_4$	1.7269
0.45691	$Pt \leftrightarrow PtCl_4 \cdot 5H_2O$	2.1886
	POTASSIUM $K = 39.098$	
0.90639	Ag ↔ KBr	1.1033
1.4469	$Ag \leftrightarrow KCl$	0.69116
0.88021	$Ag \leftrightarrow KClO_3$	1.1361
0.77856	$Ag \leftrightarrow KClO_4$	1.2844
1.6565	$Ag \leftrightarrow KCN$	0.60369
0.64978	$Ag \leftrightarrow Kl$	1.5390
1.5779	AgBr ↔ KBr	0.63377
1.1244	$AgBr \leftrightarrow KBrO_3$	0.88939
1.9223	AgCl ↔ KCl	0.52020
1.1695	$AgCl \leftrightarrow KClO_3$	0.85508
1.0344	$AgCl \leftrightarrow KClO_4$	0.96672
2.0561	AgCN ↔ KCN	0.48637
1.4142	AgI ↔ Kl	0.70712
1.0971	$AgI \leftrightarrow KlO_3$	0.91153
1.3045	$BaCrO_4 \leftrightarrow K_2CrO_4$	0.76659
1.7222	$BaCrO_4 \leftrightarrow K_2Cr_2O_7$	0.58065
1.7140	$BaSO_4 \leftrightarrow KHSO_4$	0.58342
2.1166	$BaSO_4 \leftrightarrow K_2S$	0.47245
1.3393	$BaSO_4 \leftrightarrow K_2SO_4$	0.74666
2.0436	$Br \leftrightarrow K$	0.48933
0.67145	$BI \leftrightarrow KBI$	1.4893
0.41473	$Car_2 \leftrightarrow KF \cdot 2H_2O$	2.4112
0.72313	$Cl \leftrightarrow K$	1.3626
0.20000		2 1029
0.28929	CI↔KCIO	2.1029 3.4567
0.25589	CI↔ KClO	3 9080
0.75269	$C^{1} \leftrightarrow K_{2}O$	1 3286
0.46718	$CO_2 \leftrightarrow K_2O$	2 1405
0.31843	$CO_2 \leftrightarrow K_2 CO_2$	3 1404
0.76441	$I \leftrightarrow Kl$	1.3082
0.59299	$I \leftrightarrow KlO_3$	1.6864

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	POTASSIUM (continued) K = 39.098	
0.31907	K ↔ KClO ₂	3.1341
0.83016	$K \leftrightarrow K_2O$	1.2046
0.38673	K ↔ KNO ₂	2.5858
3.0436	KBr↔K	0.32856
2.5267	$KBr \leftrightarrow K_2O$	0.39578
1.9067	KCl ↔ K	0.52447
1.0789	$KC1 \leftrightarrow K_2CO_3$	0.92690
0.50685	$KCI \leftrightarrow K_2Cr_2O_7$	1.9730
0.74466	$KCI \leftrightarrow KHCO_3$	1.3429
0.73737	KCl ↔ KNO ₃	1.3562
1.5829	$KCI \leftrightarrow K_2O$	0.63177
0.85563	$KC1 \leftrightarrow K_2 SO_4$	1.1687
1.6437	$KClO_3 \leftrightarrow KCl$	0.60836
3.5433	$KClO_4 \leftrightarrow K$	0.28222
1.8584	$KClO_4 \leftrightarrow KCl$	0.53811
2.9415	$KClO_4 \leftrightarrow K_2O$	0.33996
4.2456	$KI \leftrightarrow K$	0.23554
3.5245	$Kl \leftrightarrow K_2O$	0.28373
0.38435	$K_2O \leftrightarrow \tilde{\text{KClO}_3}$	2.6018
0.68159	$K_2O \leftrightarrow K_2CO_3$	1.4672
0.32021	$K_2O \leftrightarrow K_2Cr_2O_7$	3.1229
0.47045	$K_2O \leftrightarrow KHCO_3$	2.1256
0.46584	$K_2O \leftrightarrow KNO_3$	2.1466
0.81194	$KOH \leftrightarrow K_2CO_3$	1.2316
1.1912	$KOH \leftrightarrow K_2O$	0.83946
6.2146	$K_2PtCl_6 \leftrightarrow K$	0.16091
3.5165	$K_2PtCl_6 \leftrightarrow K_2CO_3$	0.28438
3.2594	$K_2PtCl_6 \leftrightarrow KCl$	0.30680
2.4271	$K_2PtCl_6 \leftrightarrow KHCO_3$	0.41201
2.4034	$K_2PtCl_6 \leftrightarrow KNO_3$	0.41608
5.1592	$K_2PtCl_6 \leftrightarrow K_2O$	0.19383
2.7888	$K_2PtCl_6 \leftrightarrow K_2SO_4$	0.35857
0.51224	$K_2PtCl_6 \leftrightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	1.9522
0.48659	$K_2PtCl_6 \leftrightarrow K_2SO_4 \cdot Cr_2(SO_4)_3 \cdot 24H_2O$	2.0551
1.2609	$K_2SO_4 \leftrightarrow K_2CO_3$	0.79308
0.87031	$K_2SO_4 \leftrightarrow KHCO_3$	1.1490
0.63990	$K_2SO_4 \leftrightarrow KHSO_4$	1.5627
1.0238	$K_2SO_4 \leftrightarrow KNO_2$	0.97674
0.86179	$K_2SO_4 \leftrightarrow KNO_3$	1.1604
2.2285	$K_2SO_4 \leftrightarrow K$	0.44875
1.8499	$K_2SO_4 \leftrightarrow K_2O$	0.54056
1.5804	$K_2SO_4 \leftrightarrow K_2S$	0.63275
0.60582	$Mg_2As_2O_7 \leftrightarrow K_3AsO_4$	1.6506
0.71164	$Mg_2As_2O_7 \leftrightarrow K_2HAsO_4$	1.4052
0.40040	$Mn_2O_3 \leftrightarrow K_2MnO_4$	2.4975
0.49946	$Mn_2O_3 \leftrightarrow KMnO_4$	2.0022
0.44132	$MnS \leftrightarrow K_2MnO_4$	2.2659
0.55051	$MnS \leftrightarrow KMnO_4$	1.8165
0.13853	$N \leftrightarrow KNO_3$	7.2185
0.16844	$NH_3 \leftrightarrow KNO_3$	5.9368

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	POTASSIUM (continued) K = 39.098	
0.29677	NO ↔ KNO3	3.3697
0.44656	$N_2O_3 \leftrightarrow KNO_2$	2.2393
1.1466	$N_2O_5 \leftrightarrow K_2O$	0.87217
0.53412	$N_2O_5 \leftrightarrow KNO_3$	1.8722
2.4946	Pt ↔ K	0.40086
1.3084	$Pt \leftrightarrow KCl$	0.76431
2.0710	$Pt \leftrightarrow K_2O$	0.48287
0.38943	$SiO_2 \leftrightarrow K_2SiO_3$	2.5679
0.45941	$SO_3 \leftrightarrow K_2SO_4$	2.1767
	PRASEODYMIUM Pr = 140.908	
1.1703	$Pr_2O_3 \leftrightarrow Pr$	0.85449
	RHODIUM Rh = 102.905	
0.26758	$Rh \leftrightarrow Na RhC1$	3 7377
0.49178	$Rh \leftrightarrow RhCl_3$	2.0334
	RUBIDIUM	
	Rb = 85.468	
1.6768	AgCl ↔ Rb	0.59636
1.1852	$AgCl \leftrightarrow RbCl$	0.84371
0.41480	$Cl \leftrightarrow Rb$	2.4108
0.29319	$Cl \leftrightarrow RbCl$	3.4107
0.70683	$Rb \leftrightarrow RbCl$	1.4148
0.74016	$Rb \leftrightarrow Rb_2CO_3$	1.3511
0.91441	$Rb \leftrightarrow Rb_2O$	1.0936
0.64023	$Rb \leftrightarrow Rb_2SO_4$	1.5620
1.0472	$RbCl \leftrightarrow Rb_2CO_3$	0.95497
0.90577	$RbCl \leftrightarrow Rb_2SO_4$	1.1040
2.1636	RbClO₄ ↔ Rb	0.46220
0.78828	$Rb_2CO_3 \leftrightarrow RbHCO_3$	1.2686
0.77299	$\mathbf{R}\mathbf{b}_{2}\mathbf{O} \leftrightarrow \mathbf{R}\mathbf{b}\mathbf{C}\mathbf{I}$	1.2937
0.70015	$Rb_2O \leftrightarrow Rb_2SO_4$	1.4283
3.3857	$Rb_2PtCl_6 \leftrightarrow Rb$	0.29536
2,3931	$Rb_2PtCl_4 \leftrightarrow RbCl$	0.41787
2.5060	$Rb_2PtCL_4 \leftrightarrow Rb_2CO_2$	0.39905
1.9754	$Rb_{2}PtCl_{4} \leftrightarrow RbHCO_{2}$	0,50623
3.0959	$Rb_{2}PtCl_{\epsilon} \leftrightarrow Rb_{2}O$	0.32301
1.1561	$Rb_3SO_4 \leftrightarrow Rb_3CO_3$	0.86498
0.91133	$Rb_2SO_4 \leftrightarrow RbHCO_3$	1.0973
	SELENIUM	
	Se = 78.96	
0.61224	$Se \leftrightarrow H_2SeO_3$	1.6334
0.54466	$Se \leftrightarrow H_2SeO_4$	1.8360
0.71161	$Se \leftrightarrow SeO_2$	1.4053
0.62193	$Se \leftrightarrow SeO_3$	1.6079

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	SILICON Si = 28.086	
2.6847	$BaSiF_6 \leftrightarrow SiF_4$	0.37249
4.6504	$BaSiF_6 \leftrightarrow SiO_2$	0.21503
2.1163	$K_2 SiF_6 \leftrightarrow SiF_4$	0.47249
3.6661	$K_2SiF_6 \leftrightarrow SiO_2$	0.27277
3.3384	$SiC \leftrightarrow C$	0.29954
0.91111	$SiC \leftrightarrow CO_2$	1.0976
0.76933	$SiO_2 \leftrightarrow H_2SiO_3$	1.2998
2.1393	$SiO_2 \leftrightarrow Si$	0.46744
0.57730	$SiO_2 \leftrightarrow SiF_4$	1.7322
0.78972	$SiO_2 \leftrightarrow SiO_3$	1.2663
0.65250	$SiO_2 \leftrightarrow SiO_4$	1.5326
1.6651	$SiO_2 \leftrightarrow Si_2O$	0.60057
0.62514	$SiO_2 \leftrightarrow Si(OH)_4$	1.5997
	SILVER Ag = 107.868	
0 62501		1 5740
0.03501	$Ag \leftrightarrow Ag NO_3$	1.0740
1 7408	$Ag \leftrightarrow Ag_2 O$	0.57445
1.7406	$AgDI \leftrightarrow Ag$	0.37443
0.84371	$AgCl \leftrightarrow AgNO$	0.75205
1 2260	$AgCl \leftrightarrow Ag O$	0.80847
1.2309	$AgCl \leftrightarrow Br$	0.80847
1.7955	$AgCI \leftrightarrow Di$	0.55750
2 1764	$A a \rightarrow A a$	0.85500
1 2935	$Ag PO \leftrightarrow Ag$	0.77311
1.2933	$A_{g} P O \leftrightarrow A_{g}$	0.77511
0.74079	$\operatorname{Br} \leftrightarrow \operatorname{Ag}$	1 3499
0.42555	$Br \leftrightarrow Ag$	2 3499
0.32866	$Cl \leftrightarrow \Delta q$	3.0426
0.24737	$C1 \leftrightarrow Ag$	4 0425
1 1764	$I \leftrightarrow A\sigma$	0.85004
0.54053	I ↔ Agl	1.8500
	SODIUM	
	Na = 22.9898	
1.0483	Ag ↔ NaBr	0.95393
1.8457	$Ag \leftrightarrow NaCl$	0.54179
0.71966	$Ag \leftrightarrow Nal$	1.3895
1.8249	AgBr ↔ NaBr	0.54798
2.4523	$AgCl \leftrightarrow NaCl$	0.40778
1.5663	\widetilde{A} gl \leftrightarrow Nal	0.63845
1.9440	$BaSO_4 \leftrightarrow NaHSO_4$	0.51440
1.6905	$BaSO_4 \leftrightarrow NaHSO_4 H_2O$	0.59156
2.9906	$BaSO_4 \leftrightarrow Na_2S$	0.33438
1.8518	$BaSO_4 \leftrightarrow Na_2SO_3$	0.54002
0.92564	$BaSO_4 \leftrightarrow Na_2SO_3 \cdot 7H_2O$	1.0803
1.6432	$BaSO_4 \leftrightarrow Na_2SO_4$	0.60857
0.72442	$BaSO_4 \leftrightarrow Na_2SO_4 \cdot 10H_2O$	1.3804

Factors (Continued)

Factor		Factor
	SODIUM (continued) Na = 22.9898	
0.69198	$B_2O_3 \leftrightarrow Na_2B_4O_7$	1.4451
0.36510	$B_2O_3 \leftrightarrow Na_2B_4O_7 \cdot 10H_2O$	2.7389
3.4758	Br ↔ Na	0.28770
0.77657	Br ↔ NaBr	1.2877
2.5786	$Br \leftrightarrow Na_2O$	0.38781
0.94956	$CaCl_2 \leftrightarrow NaCl$	1.0531
0.94433	$CaCO_3 \leftrightarrow Na_2CO_3$	1.0590
0.92975	$CaF_2 \leftrightarrow NaF$	1.0756
0.52910	$CaO \leftrightarrow Na_2CO_3$	1.8900
1.2845	$CaSO_4 \leftrightarrow Na_2CO_3$	0.77854
1.5421	Cl ↔ Na	0.64846
0.60663	$Cl \leftrightarrow NaCl$	1.6485
1.1442	Cl ↔ Na ₂ O	0.87410
0.41520	$CO_2 \leftrightarrow Na_2CO_3$	2.4083
0.71008	$CO_2 \leftrightarrow Na_2O$	1.4083
1.2292	$H_3BO_3 \leftrightarrow Na_2B_4O_7$	0.81357
0.64853	$H_3BO_3 \leftrightarrow Na_2B_4O_7 \cdot 10H_2O_7$	1.5419
5.5198	I ↔ Na	0.18117
0.84662	I ↔ Nal	1.1812
4.0949	I ↔ Na ₂ O	0.24420
2.5029	$KBF_4 \leftrightarrow Na_2B_4O_7$	0.39954
1.3206	$KBF_4 \leftrightarrow Na_2B_4O_7 \cdot 10H_2O$	0.75724
0.91360	$Mg_2As_2O_7 \leftrightarrow Na_2HAsO_3$	1.0946
0.83497	$Mg_2As_2O_7 \leftrightarrow Na_2HAsO_4$	1.1976
0.81462	$MgCl_2 \leftrightarrow NaCl$	1.2276
0.67882	$Mg_2P_2O_7 \leftrightarrow Na_3PO_4$	1.4731
0.78392	$Mg_2P_2O_7 \leftrightarrow Na_2HPO_4$	1.2757
0.31073	$Mg_2P_2O_7 \leftrightarrow NaHPO_4 \cdot 12H_2O$	3.2182
0.53229	$Mg_2P_2O_7 \leftrightarrow NaNH_4 \cdot HPO_4 \cdot 4H_2O$	1.8787
0.49897	$Mg_2P_2O_7 \leftrightarrow Na_4P_2O_7 \cdot 10H_2O$	2.0041
4.4759	NaBr ↔ Na	0.22342
3.3205	NaBr ↔ Na₂O	0.30116
65.502	$NaOAc \cdot Mg(OAc)_2 \cdot UO_2(OAc)_2 \cdot 6\frac{1}{2}H_2O \leftrightarrow Na$	0.015267
14.635	Triple MgOAc ↔ NaBr	0.066331
28.416	Triple MgOAc \leftrightarrow Na ₂ CO ₃	0.035192
25.768	Triple MgOAc ↔ NaCl	0.038809
17.926	Triple MgOAc ↔ NaHCO ₃	0.055785
10.047	Triple MgOAc ↔ Nal	0.099535
37.650	Triple MgOAc ↔ NaOH	0.026560
48.594	Triple MgOAc ↔ Na ₂ O	0.020579
21.204	Triple MgOAc \leftrightarrow Na ₂ SO ₄	0.047161
66.894	$NaOAc \cdot Zn(OAc)_2 \cdot UO_2(OAc)_2 \cdot 6H_2O \leftrightarrow Na$	0.014949
14.946	Triple ZnOAc ↔ NaBr	0.066909
29.020	Triple ZnOAc \leftrightarrow Na ₂ CO ₃	0.034459
26.315	Triple ZnOAc ↔ NaCl	0.038002
18.307	Triple ZnOAc \leftrightarrow NaHCO ₃	0.054624
10.260	Triple ZnOAc ↔ Nal	0.097464
38.451	Triple ZnOAc ↔ NaOH	0.026008
49.626	Triple ZnOAc \leftrightarrow Na ₂ O	0.020151
21.654	Triple ZnOAc \leftrightarrow Na ₂ SO ₄	0.046180

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	SODIUM (continued) Na = 22.9898	
2.5421	NaCl ↔ Na	0.39337
1.1028	$NaCl \leftrightarrow Na_2CO_3$	0.90678
0.69569	$NaCl \leftrightarrow NaHCO_3$	1.4374
0.82337	NaCl ↔ Na ₂ HPO ₄	1.2145
1.8859	NaCl ↔ Na ₂ O	0.53025
0.82291	NaCl ↔ Na ₂ SO ₄	1.2152
0.74267	$NaClO_3 \leftrightarrow AgCl$	1.3465
1.8213	$NaClO_3 \leftrightarrow NaCl$	0.54907
0.85432	NaClO₄ ↔ AgCl	1.1705
2.0950	$NaClo_{4} \leftrightarrow NaCl$	0.47732
2.3051	$Na_2CO_3 \leftrightarrow Na$	0.43381
0.63084	$Na_{2}CO_{3} \leftrightarrow NaHCO_{3}$	1.5852
1.7101	$Na_2CO_3 \leftrightarrow Na_2O$	0.58476
1.3250	Na ₂ CO ₃ ↔ NaOH	0.75473
3.6541	NaHCO ₃ ↔ Na	0.27367
2.7108	$NaHCO_2 \leftrightarrow Na_2O$	0.36889
6.5198	Nal ↔ Na	0.15338
4.8368	Nal ↔ Na ₂ O	0.20675
1.3480	Na₀O⇔Na	0.74186
0.43659	$Na_2O \leftrightarrow Na_2HPO_4$	2.2905
0.36460	$Na_2 O \leftrightarrow Na NO_2$	2.7427
0.77480	$Na_2O \leftrightarrow NaOH$	1.2907
0.93653	$Na_{L}P_{a}O_{a} \leftrightarrow Na_{a}HPO_{a}$	1.0678
0.37122	$Na_4P_2O_7 \leftrightarrow Na_5HPO_4 \cdot 12H_2O_7$	2.6938
3.0892	$Na_{a}SO_{4} \leftrightarrow Na$	0.32371
1.3401	$Na_2SO_4 \leftrightarrow Na_2CO_2$	0.74620
0.49640	$Na_2SO_4 \leftrightarrow Na_2CO_3 \cdot 10H_2O_3$	2.0145
2.2917	$Na_2SO_4 \leftrightarrow Na_2O$	0.43635
0.16480	$N \leftrightarrow NaNO_2$	6.0680
0.20038	$NH_2 \leftrightarrow NaNO_2$	4.9906
0.081461	$NH_2 \leftrightarrow NaNH_2HPO_2 \cdot 4H_2O$	12.276
0.35303	$NO \leftrightarrow NaNO_2$	2.8326
0.63539	$N_2O_5 \leftrightarrow NaNO_2$	1.5738
1.7427	$N_2O_5 \leftrightarrow Na_2O$	0.57383
0.49993	$P_{a}O_{c} \leftrightarrow Na_{a}HPO_{c}$	2.0003
0 19816	$P_{a}O_{c} \leftrightarrow Na_{a}HPO_{c} \cdot 12H_{a}O$	5.0464
0.33946	$P_2O_5 \leftrightarrow NaNH_4HPO_4 \cdot H_2O_5$	2.9459
0.61564	$SO_2 \leftrightarrow NaHSO_2$	1.6243
0.50828	$SO_2 \leftrightarrow Na_2SO_2$	1.9674
0.25407	$SO_2 \leftrightarrow Na_2SO_2 \cdot 7H_2O_3$	3,9360
1 2918	$SO_2 \leftrightarrow Na_2O$	0.77414
0.56366	$SO_2 \leftrightarrow Na_2SO_4$	1.7741
	$\frac{\text{STRONTIUM}}{\text{Sr}} = 87.62$	
0.29811	$CO_2 \leftrightarrow SrCO_8$	3.3545
0.77265	SO₃↔SrO	1.2942
0.43588	SO₃ ↔ SrSO₄	2.2942
0.41402	$Sr \leftrightarrow Sr(NO_3)_2$	2,4153
1.6849	SrCO ₃ ↔ Sr	0.59351
	· · · · · · · · · · · · · · · · · · ·	

TABLE 4.34	Gravimetric Factors (Continued)

Factor		Factor
	STRONTIUM (continued) Sr = 87.62	
0.93124	$SrCO_2 \leftrightarrow SrCl_2$	1.0738
0.70424	$SrCO_2 \leftrightarrow Sr(HCO_2)_2$	1,4200
0.69759	$SrCO_3 \leftrightarrow Sr(NO_3)_2$	1.4335
1.1826	SrO ↔ Sr	0.84559
0.65363	$SrO \leftrightarrow SrCl_2$	1.5299
0.70189	SrO ↔ SrCO ₃	1.4247
0.49430	$SrO \leftrightarrow Sr(HCO_3)_2$	2.0231
0.48963	$SrO \leftrightarrow Sr(NO_3)_2$	2.0424
2.0963	SrSO₄ ↔ Sr	0.47703
1.1586	$SrSO_4 \leftrightarrow SrCl_2$	0.86308
1.2442	$SrSO_4 \leftrightarrow SrCO_3$	0.80373
0.86793	$SrSO_4 \leftrightarrow Sr(NO_3)_2$	1.1522
1.7726	SrSO₄ ↔ SrO	0.56413
	SULFUR S = 32.06	
2 4064	As.S. ↔ H.S	0.41556
2.5577	$As_2S_3 \leftrightarrow S$	0.39097
3.8906	$BaSO_{*} \leftrightarrow FeS_{*}$	0.25703
6.8486	$BaSO_4 \leftrightarrow H_0S$	0.14602
2.8436	$BaSO_4 \leftrightarrow H_2SO_2$	0.35166
2.3797	$BaSO_4 \leftrightarrow H_2SO_3$	0 42022
7.2792	$BaSO_4 \leftrightarrow S$	0.13738
3.6433	$BaSO_4 \leftrightarrow SO_2$	0.27448
2.9152	$BaSO_4 \leftrightarrow SO_2$	0.34302
2.4297	$BaSO_4 \leftrightarrow SO_4$	0.41158
4.2388	$CdS \leftrightarrow H_{2}S$	0.23591
4.5054	$CdS \leftrightarrow S$	0.22196
1.2250	H ₂ SO ₂ ↔ SO ₂	0.81631
1.6505	$(NH_4)_{2}SO_4 \leftrightarrow SO_2$	0.60589
1 3473	$(NH_4)_2 SO_4 \leftrightarrow H_2 SO_4$	0.74223
2.3492	$SO_3 \leftrightarrow H_2S$	0.42567
	TANTALUM	
	Ta = 180.948	
0.81898	$Ta \leftrightarrow Ta_2O_5$	1.2210
0.50515	$Ta \leftrightarrow TaCl_5$	1.9796
16.065	$TaC \leftrightarrow C$	0.062246
1.0664	TaC ↔ Ta	0.93776
0.61680	$Ta_2O_5 \leftrightarrow TaCl_5$	1.6213
1.0376	$Ta_2O_5 \leftrightarrow Ta_2O_4$	0.96379
	TELLURIUM $Te = 127.60$	
0.65906	Te ↔ H ₂ TeO₄	1.5173
0.55565	$Te \leftrightarrow H_2 TeO_4 \cdot 2H_2O$	1.7997
0.79950	$Te \leftrightarrow TeO_2$	1.2508
0.72665	$Te \leftrightarrow TeO_3$	1.3762
1.5645	$(TeO_2)_2SO_3 \leftrightarrow Te$	0.63918

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	THALLIUM T1 = 204.37	***************************************
0.87198	$TI \leftrightarrow Tl_2CO_3$	1.1468
0.85218	$Tl \leftrightarrow TlCl$	1.1735
0.61693	Tl ↔ Tll	1.6209
0.76724	$TI \leftrightarrow TINO_3$	1.3034
0.96232	$Tl \leftrightarrow Tl_2O$	1.0391
1.2838	$Tl_2CrO_4 \leftrightarrow Tl$	0.77895
1.4750	TlHSO₄ ↔ Tl	0.67798
1.9977	$Tl_2PtCl_6 \leftrightarrow Tl$	0.50057
1.7024	$Tl_2PtCl_6 \leftrightarrow TlCl$	0.58740
1.7420	$Tl_2PtCl_6 \leftrightarrow Tl_2CO_3$	0.57406
1.2325	$\text{Tl}_2\text{PtCl}_6 \leftrightarrow \text{TlI}$	0.81139
1.5327	$Tl_2PtCl_6 \leftrightarrow TlNO_3$	0.65243
1.9225	$Tl_2PtCl_6 \leftrightarrow Tl_2O$	0.52017
1.6176	$Tl_2PtCl_6 \leftrightarrow Tl_2SO_4$	0.61821
1.2350	$Tl_2SO_4 \leftrightarrow Tl$	0.80971
	THORIUM Th = 232.038	
1 1270		0.07001
1.1379	$1hO_2 \leftrightarrow 1h$	0.87881
0.70627	$InO_2 \leftrightarrow InCl_4$	1.4159
0.44893	$\operatorname{InO}_2 \leftrightarrow \operatorname{In}(\operatorname{NO}_3)_4 \cdot \operatorname{OH}_2 O$	2.2275
	TIN Sn = 118.69	
0.62600	$Sn \leftrightarrow SnCl_{2}$	1.5974
0.52604	$Sn \leftrightarrow SnCl_2 \cdot 2H_2O$	1.9010
0.45562	$Sn \leftrightarrow SnCL$	2,1948
0.32297	$Sn \leftrightarrow SnCl_{4} \cdot (NH_{4}Cl)_{2}$	3.0962
0.88121	Sn⇔SnO	1.1348
0.78764	$Sn \leftrightarrow SnO_2$	1.2696
0.79478	$\operatorname{SnO}_2 \leftrightarrow \operatorname{SnCl}_2$	1.2582
0.66786	$\operatorname{SnO}_2 \leftrightarrow \operatorname{SnCl}_2 \cdot 2H_2O$	1.4973
0.57846	$\operatorname{SnO}_2 \leftrightarrow \operatorname{SnCl}_4$	1.7287
0.41005	$\operatorname{SnO}_2 \leftrightarrow \operatorname{SnCl}_4 \cdot (\operatorname{NH}_4\operatorname{Cl})_2$	2.4387
1.1188	$\operatorname{SnO}_2 \leftrightarrow \operatorname{SnO}$	0.89382
	TITANIUM Ti = 47.867	
2 1050	$K TiE \leftrightarrow E$	0 17195
2.1039	$ \begin{array}{c} \mathbf{K}_{2} \prod_{G} \hookrightarrow \mathbf{F} \\ \mathbf{K}_{1} \prod_{G} \longleftrightarrow \mathbf{K} \end{array} $	0.47483
2 0660	$ \begin{array}{c} \mathbf{K}_{2}1\mathbf{\Gamma}_{6} \searrow \mathbf{K} \\ \mathbf{K} \mathbf{T}\mathbf{i}\mathbf{F} \leftrightarrow 2\mathbf{K}\mathbf{F} \end{array} $	0.52574
2.0000	$K_{2}^{1}\Pi_{6} \hookrightarrow 2K\Gamma$ $K \text{ TiF } \leftrightarrow 2(KF, 2\Pi \Omega)$	0.46403
5.0150	$\mathbf{K}_{2} \mathbf{\Pi}_{6} \hookrightarrow \mathcal{L}(\mathbf{M}^{-1} \mathcal{L} \mathbf{\Pi}_{2} \mathbf{U})$ $\mathbf{K}_{1} \mathbf{\Pi}_{6} \longleftrightarrow \mathbf{T}_{1}^{1}$	0.76421
3 0057	$K_2 \Pi K_6 \sim 7 \Pi$ K. TiF. \leftrightarrow TiO	0.19940
3 9853	$K_2 I I K_6 \sim I I O_2$ Ti $\leftrightarrow C$	0.55270
4 9853	TiC⇔C	0.25092
1 2500	TiC ↔ Ti	0.20039
1 6299	TiF.⇔F	0.73740
1.6685	TiO ₂ ↔ Ti	0.59934
		0.07704

TABLE 4.34 Gravimetric Factors (Continued)
Factor		Factor
· · · · ₁ ,	TUNGSTEN W = 183.85	
3.9348	FeWO4 ↔ Fe ₂ O4	0.25414
1.3099	$FeWO_4 \leftrightarrow WO_3$	0.76344
6.7515	MgWO₄ ↔ MgO	0.14812
1.1739	$MgWO_4 \leftrightarrow WO_3$	0.85189
4.2684	$MnWO_4 \leftrightarrow MnO$	0.23428
1.3060	$MnWO_4 \leftrightarrow WO_3$	0.76571
2.0387	PbWO ₄ ↔ PbO	0.49051
2.4751	PbWO₄ ↔ W	0.40403
1.9626	$PbWO_4 \leftrightarrow WO_3$	0.50952
15.307	$W \leftrightarrow C$	0.065330
0.96837	$W \leftrightarrow W_2C$	1.0327
0.93868	$W \leftrightarrow WC$	1.0653
31.614	$W_2C \leftrightarrow C$	0.031632
16.307	WC↔C	0.061324
1.1741	$WO_2 \leftrightarrow W$	0.85175
4.1515	$WO_3 \leftrightarrow Fe$	0.24088
1.2611	$WO_3 \leftrightarrow W$	0.79297
	URANIUM U = 238.03	
1 1344	UO ⇔U	0.88140
1.1344	$UO \Leftrightarrow U$	0.84800
1.0395	$U_3 O_8 \checkmark U_0$	0.04000
0 55901	$U_3O_8 \leftrightarrow UO_2$ $U_1O_2 \leftrightarrow UO_2(NO_2)_2 \circ 6H_2O_2$	1 7889
1 4998	$U_2 P_2 O_{11} \leftrightarrow U$	0.66675
1.3221	$U_2P_2O_{11} \leftrightarrow UO_2$	0.75639
	VANADIUM N = 50.941	
~ .	V = 50.941	0.40070
5.2413	VC ↔ C	0.19079
1.7852	$V_2O_5 \leftrightarrow V$	0.56017
0.79120	$V_2 O_5 \leftrightarrow V O_4$	1.2639
	YTTERBIUM Yb = 173.04	
1.1387	$Yb_2O_3 \leftrightarrow Yb$	0.87820
	ZINC $Zn = 65.38$	
2 2055	D-CO < 57-C	0 41745
2.3933	$BasO_4 \leftrightarrow Zns$	0.41745
0.811/1	$BaSO_4 \leftrightarrow ZnSO_4 \cdot /H_2O$	1.2320
0.80338	$Z_{n} \leftrightarrow Z_{n} \cup$	1.2447
2.7288	$Z_{\rm IIIN}\Pi_4 PO_4 \leftrightarrow Z_{\rm III}$	0.30040
2.1722 0 50707	$\frac{2 \operatorname{III} \operatorname{VII}_4 \operatorname{V}_4 \operatorname{V}_2 \operatorname{III} \operatorname{V}_1}{7 \operatorname{nO}} 2 \operatorname{nO}^1$	0.45010 1.6749
0.59707	$2nO \leftrightarrow 7nCO$	1.0740
0.04020	$7n \Theta \leftrightarrow 7n S \Omega$.74 Ω	1.3409
2 3304	$7n P \cap \leftrightarrow 7n$	0.42011
1 8722	$\frac{2\pi^2}{2\pi^2} \frac{2\pi^2}{2\pi^2} \xrightarrow{2\pi^2} \frac{2\pi^2}{2\pi^2}$	0.42911
1 4905	$7nS \leftrightarrow 7n$	0.55415
1 1974	ZnS ↔ ZnO	0.07091
0.33885	$ZnS \leftrightarrow ZnSO7H_O$	2.9511

TABLE 4.34 Gravimetric Factors (Continued)

Factor		Factor
	ZIRCONIUM Zr = 91.22	
2.4864	$K_2ZrF_6 \leftrightarrow F$	0.40219
2.4390	$K_{2}ZrF_{6} \leftrightarrow 2KF$	0.41001
1.5054	$K_2ZrF_6 \leftrightarrow 2(KF \cdot 2H_2O)$	0.66427
3.1069	$K_2ZrF_6 \leftrightarrow Zr$	0.32187
2.3000	$K_2ZrF_6 \leftrightarrow ZrO_2$	0.43478
8.5946	ZrC↔C	0.11635
2.2004	$ZrF_4 \leftrightarrow F$	0.45447
1.3508	$ZrO_2 \leftrightarrow Zr$	0.74030
0.46470	$ZrO_2 \leftrightarrow ZrP_2O_7$	2.1519

TABLE 4.34	Gravimetric Factors	(Continued)

TABLE 4.35 Elements Precipitated by General Analytical Reagents

This table includes the more common reagents used in gravimetric determinations. The lists of elements precipitated are not in all cases exhaustive. The usual solvent for a precipitating agent is indicated in parentheses after its name or formula. When the symbol of an element or radical is italicized, the element may be quantitatively determined by the use of the reagent in question.

Reagent	Conditions	Substances precipitated
Ammonia, NH ₃ (aqueous) /	After removal of acid sulfide group.	Al, Au, Be, Co, Cr, Cu, Fe, Ga, In, Ir, La, Nb, Ni, Os, P, Pb, rare earths, Sc, Si, Sn, Ta, Th, Ti, U, V, Y, Zn, Zr
Ammonium polysulfide, $(NH_4)_2S_x$ (aqueous)	After removal of acid sulfide and (NH ₄) ₂ S groups.	Co, Mn, Ni, Si, Tl, V, W, Zn
Anthranilic acid, NH ₂ C ₆ H ₄ COOH (aqueous)	1% aqueous solution (pH 6); Cu separated from others at pH 2.9.	Ag, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Zn
α -Benzoin oxime, C ₆ H ₅ CHOHC(=NOH)C ₆ H ₅	(a) Strongly acid medium.	(a) Cr(VI), <i>Mo(VI)</i> , Nb, Pd(II), Ta(V), V(V), <i>W</i> (<i>VI</i>)
(1-2% alcohol) Benzidine, H ₂ NC ₆ H ₄ C ₆ H ₄ NH ₂ (alcohol), 0.1 <i>M</i> HCl	(b) Ammoniacal tartrate medium.	(b) Above list Cd, Fe(III), IO ₃ , <i>PO</i> ³ ₄ , SO ² ₄ , <i>W(VI)</i>
<i>N</i> -Benzoylphenylhydroxylamine, $C_6H_5CO(C_6H_5)NOH$ (aqueous)	Similar to cupferron (q.v.). Cu, Fe(III), and Al complexes can be weighed as such; Ti com- pound must be ignited to the oxide.	See Cupferron
Cinchonine, C ₁₉ H ₂₁ N ₂ OH, 6M HCl		Ir, Mo, Pt, W
Cupferron, $C_6H_5N(NO)ONH_4$ (aqueous)	Group precipitant for several higher-charged metal ions from strongly acid solution. Precipitate ignited to metal ox- ide.	Al, Bi, Cu, Fe, Ga, La, Mo, Nb, Pd, rare earths, Sb, Sn, Ta, Th, Ti, Tl, U, V, W, Zr
1,2-Cyclohexanedionedioxime	More water soluble than di- methylglyoxime; less subject to coprecipitation with metal chelate.	See Dimethylglyoxime

Reagent	Conditions	Substances precipitated
Diammonium hydrogen phos- phate, $(NH_4)_2HPO_4$ (aqueous)	(a) Acid medium.(b) Ammoniacal medium con- taining citrate or tartrate.	 (a) <i>Bi</i>, <i>Co</i>, Hf, In, Ti, <i>Zn</i>, <i>Zr</i> (b) Au, Ba, <i>Be</i>, Ca, Hg, In, La, <i>Mg</i>, <i>Mn</i>, Pb, rare earths, Sr, Th, U, <i>Zr</i>
Dimethylglyoxime, [CH ₃ C(NOH)] ₂ (alcohol)	 (a) Dilute HCl or H₂SO₄ me- dium. (b) Ammoniacal tartrate medium 	 (a) Au, Pd, Se (b) Ni (and Co, Fe if present in large amounts)
Hydrazine, N ₂ H ₄ (aqueous)	about pH 8. weighed as such.	Ag, Au, Cu, Hg, Ir, Os, Pd, Pt,
Hydrogen sulfide, H ₂ S	(a) 0.2–0.5 <i>M</i> H ⁺ .	 <i>Rh</i>, Ru, <i>Se, 1e</i> (a) Ag, <i>As</i>, Au, Bi, Cd, <i>Cu, Ge,</i> <i>Hg</i>, In, <i>Ir</i>, <i>Mo</i>, Os, Pb, Pd, <i>Pt</i>, Re, <i>Rh</i>, Ru, Sb, Se, Sn, Te, Tl, V, W, Zn
4-Hydroxyphenylarsonic acid,	 (b) Ammoniacal solution after re- moval of acid sulfide group. Dilute acid solution. 	(b) Co, Fe, Ga, In, Mn, Ni, Tl, U, V, Zn Ce, <i>Fe, Sn, Th, Ti, Zr</i>
8-Hydroxyquinoline (oxine), C_9H_6NOH , (alcohol)	(a) HOAc–OAc [–] buffer.	(a) Ag, Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, Hg, In, La, Mn, Mo, Nb, Ni, Pb, Pd, rare earths, Sb, Ta, Th, Ti, V, W, Zn, Zr
	(b) Ammoniacal solution.	 (b) Same as in (a) except for Ag; in addition, Ba, Be, Ca, Mg, Sn. Sr
2-Mercaptobenzothiazole, C ₆ H ₄ (SCN)SH (acetic acid so- lution)	Ammoniacal solution, except for Cu, when a dilute acid solution is used.	Ag, Au, Bi, Cd, Cu, Hg, Ir, Pb, Pt, Rh, Tl
Nitron (diphenylenedianilohydro- triazole), $C_{20}H_{16}N_4$, (5% acetic acid)	Dilute H_2SO_4 medium.	$B, ClO_{3}^{-}, ClO_{4}^{-}, NO_{3}^{-}, ReO_{4}^{-}, W$
1-Nitroso-2-naphthol, $C_{10}H_6(NO)OH$ (very dilute al- kali)	Selective for Co; acid solution. Precipitate ignited to Co_3O_4 .	Ag, Au, B, <i>Co</i> , Cr, <i>Cu</i> , <i>Fe</i> , Mo, Pd, Ti, V, W, Zr
Oxalic acid, $H_2C_2O_4$, (aqueous)	Dilute acid solution.	Ag, Au, Cu, Hg, La, Ni, Pb, rare earths. Sc. Th. U(IV), W. Zr
Phenylarsonic acid, $C_6H_5AsO(OH)_2$, (aqueous)	Selective precipitants for quadri- valent metals in acid solution. Metals weighed as dioxides.	Bi, Ce(IV), Fe, Hf, Mg, Sn, Ta, Th, Ti, U(IV), W, Zr
Phenylthiohydantoic acid, $C_6H_5N = C(NH_2)SCH_2COOH$ (aqueous or alcohol)	L.	Bi, Cd, <i>Co</i> , Cu, Fe, Hg, Ni, Pb, Sb
Picrolonic acid, $C_{10}H_7O_5N_4H$ (aqueous)	Neutral solution.	Ca, Mg, Pb, Th
Propylarsonic acid, C ₃ H ₉ AsO(OH) ₂ (aqueous)	Preferred for W; see Phenylar- sonic acid.	
Pyridine plus thiocyanate	Dilute acid solution.	Ag, Cd, Cu, Mn, Ni
Quinaldic acid, C ₉ B ₆ NCOOH (aqueous)	Dilute acid solution.	Ag, Cd, Co, Cu, Fe, Hg, Mo, Ni, Pb, Pd, Pt(II), U, W, Zn
Salicylaldoxime, C ₇ H ₅ (OH)NOH (alcohol)	Dilute acid solution.	Ag, <i>Bi</i> , Cd, Co, <i>Cu</i> , Fe, Hg, Mg, Mn, Ni, <i>Pb</i> , <i>Pd</i> , V, Zn
Silver nitrate, AgNO ₃ (aqueous)	(a) Dilute HNO₃ solution.(b) Acetate buffer, pH 5–7.	(a) Br ⁻ , Cl ⁻ , I ⁻ , SCN ⁻ (b) $As(V)$, CN^- , OCN^- , IO_3^- , $Mo(VI)$ N_2^- , S^{2-} , $V(V)$

TABLE 4.35 Elements Precipitated by General Analytical Reagents (Continued)

Reagent	Conditions	Substances precipitated
Sodium tetraphenylborate, NaB(C_6H_5) ₄ (aqueous)	Specific for K group of alkali metals from dilute HNO_3 or HOAc solution (pH 2), or pH 6.5 in presence of EDTA.	Cs, K, NH ₄ ⁺ , Rb
Tannic acid (tannin), C ₁₄ H ₁₀ O ₉ (aqueous)	Acts as negative colloid that is a flocculent for positively charged hydrous oxide sols. Noteworthy for W in acid so- lution, and for Ta (from Nb in acidic oxalate medium).	Al, Be, Cr, Ga, Ge, Nb, Sb, Sn, Ta, Th, Ti, U, V, W, Zr
Tartaric acid, HOOC(CHOH) ₂ COOH (aque- ous)		Ca, K, Mg, Sc, Sr, Ta
Tetraphenylarsonium chloride, $(C_6H_5)_4$ AsCl (aqueous)	$(C_6H_5)_4AsTICl_4$ and $(C_6H_5)_4AsReO_4$ weighed as such.	Re, Tl
Thioglycolic- β -aminonaphthal- ide, thionalide,	(a) Acid solution.	(a) Ag, As, Au, Bi, Cu, Hg, Os, Pb, Pd, Rh, Ru, Sb, Sn, Tl
C ₁₀ H ₇ NHCOCH ₂ SH (alcohol)	(b) Carbonate medium containing tartrate.	(b) Au, Cd, Cu, Hg(II), Tl(I)
	(c) Carbonate medium containing tartrate and cvanide.	(c) Au, Bi, Pb, Sb, Sn, Tl
	(d) Strongly alkaline medium containing tartrate and cya- nide.	(d) <i>Tl</i>

TABLE 4.35 Elements Precipitated by General Analytical Reagents (Continued)

TABLE 4.36 Cleaning Solutions for Fritted Glassware

Material	Cleaning solution		
Fatty materials	Carbon tetrachloride.		
Organic matter	Hot concentrated sulfuric acid plus a few drops of sodium or potassium nitrate solution.		
Albumen	Hot aqueous ammonia or hot hydrochloric acid.		
Glucose	Hot mixed acid (sulfuric plus nitric acids).		
Copper or iron oxides	Hot hydrochloric acid plus potassium chlorate.		
Mercury residue	Not nitric acid.		
Silver chloride	Aqueous ammonia or sodium thiosulfate.		
Aluminous and siliceous residues	A 2% hydrofluoric acid solution followed by concentrated sulfuric acid; rinse immediately with distilled water followed by a few milliliters of acetone. Repeat rinsing until all trace of acid is removed.		

Melting point, °C	Types of crucible used for fusion	Type of substances decomposed
851	Pt	For silicates, and silica-containing samples; alumina-containing samples; insoluble phosphates and sulfates
	Pt (do not use with Na ₂ O ₂) or Ni	For samples needing an oxidizing agent
320-380	Au, Ag, Ni	For silicates, silicon carbide, certain minerals
Decomposes	Fe, Ni	For sulfides, acid-insoluble alloys of Fe, Ni, Cr, Mo, W, and Li; Pt alloys; Cr, Sn, Zn minerals
300	Pt or porce- lain	Acid flux for insoluble oxides and oxide- containing samples
577	Pt	For silicates and oxides when alkalis are to be determined
	Ni	For decomposing silicates in the determi- nation of alkali element
	Melting point, °C 851 320–380 Decomposes 300 577	Melting point, °CTypes of crucible used for fusion851Pt851Pt (do not use with Na2O2) or Ni320-380Au, Ag, NiDecomposesFe, Ni300Pt or porce- lain577PtNi

TABLE 4.37 Common Fluxes

nbrane Filters

Filter pore size, μm	Maximum rigid particle to penetrate, μm	Filter pore size, µm	Maximum rigid particle to penetrate, μm
14	17	0.65	0.68
10	12	0.60	0.65
8	9.4	0.45	0.47
7	9.0	0.30	0.32
5	6.2	0.22	0.24
3	3.9	0.20	0.25
2	2.5	0.10	0.108
1.2	1.5	0.05	0.053
1.0	1.1	0.025	0.028
0.8	0.95		

Porosity	Nominal maximum pore size, μ m	Principal uses
Extra coarse	170-220	Filtration of very coarse materials. Gas dispersion, gas washing, and extractor beds. Support of other filter materials.
Coarse	40-60	Filtration of coarse materials. Gas dispersion, gas washing, gas ab- sorption. Mercury filtration. For extraction apparatus.
Medium	10-15	Filtration of crystalline precipitates. Removal of "floaters" from distilled water.
Fine	4-5.5	Filtration of fine precipitates. As a mercury valve. In extraction apparatus.
Very fine	2-2.5	General bacteria filtrations.
Ultra fine	0.9-1.4	General bacteria filtrations.

TABLE 4.39	Porosities of Fritted	Glassware
------------	-----------------------	-----------

TABLE 4.40 Tolerances for Analytical Weights

This table gives the individual and group tolerances established by the National Bureau of Standards (Washington, D.C.) for classes M, S, S-1, and P weights. Individual tolerances are "acceptance tolerances" for new weights. Group tolerances are defined by the National Bureau of Standards as follows: "The corrections of individual weights shall be such that no combination of weights that is intended to be used in a weighing shall differ from the sum of the nominal values by more than the amount listed under the group tolerances."

For class S-1 weights, two-thirds of the weights in a set must be within one-half of the individual tolerances given below. No group tolerances have been specified for class P weights. See *Natl. Bur. Standards Circ.* 547, sec. 1 (1954).

	Clas	s M	Clas	ss S	<i>a</i> 1 <i>a</i> 1	<i>a b</i>
Denomination	Individual tolerance, mg	Group tolerance, mg	Individual tolerance, mg	Group tolerance, mg	Class S-1, individual tolerance, mg	Class P, individual tolerance, mg
100 g 50 g 30 g 20 g 10 g	0.50 0.25 0.15 0.10 0.050	None specified	0.25 0.12 0.074 0.074 0.074	None specified 0.154	1.0 0.60 0.45 0.35 0.25	2.0 1.2 0.90 0.70 0.50
5 g 3 g 2 g 1 g	0.034 0.034 0.034 0.034	0.065	0.054 0.054 0.054 0.054	0.105	0.18 0.15 0.13 0.10	0.36 0.14 0.26 0.20
500 mg 300 mg 200 mg 100 mg	0.0054 0.0054 0.0054 0.0054	0.0105	0.025 0.025 0.025 0.025	0.055	0.080 0.070 0.060 0.050	0.16 0.14 0.12 0.10
50 mg 30 mg 20 mg 10 mg 5 mg 3 mg 2 mg	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.0105	0.014 0.014 0.014 0.014 0.014 0.014	0.034 0.034	0.042 0.038 0.035 0.030 0.028 0.026 0.025	0.085 0.076 0.070 0.060 0.055 0.052 0.050
1 mg ½ mg	0.0054 0.0054		0.014 0.014		0.025 0.025	0.050

TABLE 4.41 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors

The minimum temperature required for heating a pure precipitate to constant weight is frequently lower than that commonly recommended in gravimetric procedures. However, the higher temperature is very often still to be preferred in order to ensure that contaminating substances are expelled. The thermal stability ranges of various precipitates as deduced from thermograms are also tabulated. Where a stronger ignition is advisable, the safe upper limit can be ascertained.

Gravimetric factors are based on the 1993 International Atomic Weights. The factor Ag: 0.7526 given in the first line of the table indicates that the weight of precipitate obtained (AgCl) is to be multiplied by 0.7526 to calculate the corresponding weight of silver.

Element	Thermal stability range, °C	Final heating temperature, °C	Composition of weighing form	Gravimetric factors
Ag	70-600	130-150	AgCl	Ag: 0.7526
AĪ	>475	1200	Al ₂ O ₃	Al: 0.5293
	>743	>743	AlPO ₄	Al: 0.2212; Al ₂ O ₃ : 0.4180
	102 - 220	110	$Al(C_9H_6NO)_3$	Al: 0.0587; Al ₂ O ₃ : 0.1110
As	200-275	105 - 110	Al_2S_3	As: 0.6090; As ₂ O ₃ : 0.8041
		850	Mg ₂ As ₂ O ₇	As: 0.4827; As ₂ O ₃ : 0.6373
		vacuum at 25	$MgNH_4AsO_4 \cdot 6H_2O$	As: 0.2589
Au	20-957	1060	Au	
Ва	780-1100	780	BaSO ₄	Ba: 0.5884; BaO: 0.6570
	<60	<60	BaCrO ₄	Ba: 0.5421; BaO: 0.6053
Be	>900	1000	BeO	Be: 0.3603
Bi		100	BiOCI	Bi: 0.8024; Bi ₂ O ₃ : 0.8946
		100	$Bi(C_{12}H_{10}NOS)_3$	Bi: 0.2387
	379-961	800	BiPO ₄	Bi: 0.6875; Bi ₂ O ₃ : 0.7665
Br	70-946	130-150	AgBr	Br: 0.4256
Ca	478-635	475-525	CaCO ₃	Ca: 0.4004; CaO: 0.5601
	838-1025	950-1000	CaO	Ca: 0.7147
		air-dried	$Ca(picrolonate)_2 \cdot 8H_2O$	Ca: 0.05642
Cd		>320	$CdSO_4$	Cd: 0.5392; CdO: 0.6159
		125	$Cd(C_{10}H_6NO_2)_2$	Cd: 0.2462
	218-420		CdS	Cd: 0.7781; CdO: 0.8888
Ce	>360	500-600	CeO ₂	Ce: 0.8141
Cl	70 - 600	130 - 150	AgCl	Cl: 0.2474
Co	285-946	750-850	Co ₃ O ₄	Co: 0.7342
		130	$Co(C_{10}H_6NO_2)_3 \cdot 2H_2O$	Co: 0.09639; CoO: 0.1226
		450 - 500	CoSO ₄	Co: 0.3802
Cr		120	PbCrO ₄	Cr: 0.1609
Cu		105 - 120	CuSCN	Cu: 0.5225; CuO: 0.6540
	<115	100-105	$Cu(C_7H_5NO_2)_2$	Cu: 0.1891
		105 - 115	$Cu(C_{13}H_{11}NO_2)$	Cu: 0.2201
		110-115	$Cu(C_{10}H_6NO_2) \cdot H_2O$	Cu: 0.1494
		105	$Cu(C_{12}H_{10}NOS)_2 \cdot H_2O$	Cu: 0.1237
F	66-538	130-140	PbClF	F: 0.07261
Fe	470-946	900	Fe_2O_3	Fe: 0.6994
Ga	408-946	900	Ga ₂ O ₃	Ga: 0.7439
Hg		105	$Hg(C_{12}H_{10}NOS)_2$	Hg: 0.3169
I	60-900	130-150	AgI	I: 0.5405
In	345 - 1200	1200	In_2O_3	In: 0.8271
lr			IrO ₂	Ir: 0.8573
К	73-653	<653	KCIO ₄	K: 0.2822; K ₂ O: 0.3399
		<270	K ₂ PtCl ₆	K: 0.1609; K ₂ O: 0.1938
			KIO ₄	K: 0.1700
		120	$KB(C_6H_5)_4$	K: 0.1091

Element	Thermal stability range, °C	Final heating temperature, °C	Composition of weighing form	Gravimetric factors
Li		200	Li ₂ SO ₄	Li: 0.1263; Li ₂ O: 0.2718
Mg		1050-1100	$Mg_2P_2O_7$	Mg: 0.2184; MgO: 0.3622
	88-300	155-160	$Mg(C_9H_6NO)_2$	Mg: 0.07775; MgO: 0.1289
Mn	>946	1000	Mn_3O_4	Mn: 0.7203
		1000	$Mn_2P_2O_7$	Mn: 0.3871; MnO: 0.4998
Мо		>505	PbMoO₄	Mo: 0.2613; MoO ₃ : 0.3291
		500 - 525	MoO ₃	Mo: 0.6666
N (as NO_3^-)	20-242	105	Nitron nitrate	N: 0.3732; NO ₃ : 0.1652
Na	360-674	125	NaMg(UO ₂) ₃ (C ₂ H ₃ O ₂) ₉ · 6.5 H ₂ O	Na: 0.01527; Na ₂ O: 0.02058
Nb	650-950	900	Nb ₂ O ₃	Nb: 0.6990
Ni	79-172	110-120	$Ni(C_4H_7N_2O_2)_2$	Ni: 0.2032; NiO: 0.2586
Os		800 (in H ₂)	Os metal	
Р		>477	$Mg_2P_2O_7$	P: 0.2783; PO ₄ : 0.8536
	160-415	110	$(NH_4)_3[P(Mo_3O_{10})_4]$	P: 0.0165; P ₂ O ₅ : 0.0378
Pb	271-959	500 - 600	PbSO ₄	Pb: 0.6832; PbO: 0.7359
		600	PbMoO ₄	Pb: 0.5643; PbO: 0.6078
		120	PbCrO ₄	Pb: 0.6411
	271-959	600 - 800	PbSO ₄	Pb: 0.6832; PbO: 0.7359
		105	$Pb(C_{12}H_{10}NOS)_2$	Pb: 0.3240
Pd	45-171	110	$Pd(C_4H_7N_2O_2)_2$	Pd: 0.3162
Rb	70-674	<674	Rb ₂ PtCl ₆	Rb: 0.2954; Rb ₂ O: 0.3230
Re		130	$(C_6H_5)_4$ AsReO ₄	Re: 0.2939
		110	Nitron perrhenate	Re: 0.3306
S		>780	$BaSO_4$	S: 0.1374; SO ₃ : 0.3430; SO ₄ : 0.4116
Sb		100	$Sb(C_{12}H_{10}NOS)_3$	Sb: 0.1581
SCN-		130	AgSCN	SCN: 0.3500
		110 - 120	CuSCN	SCN: 0.4775
Se		120-130	Se metal	SeO ₂ : 1.4052
Si	358-946	>358	SiO ₂	Si: 0.4675
Sn	>834	900	SnO ₂	Sn: 0.7877
Sr		130-140	$Sr(NO_3)_2$	Sr: 0.4140
	100-300	100-300	SrSO ₄	Sr: 0.4770; SrO: 0.5641
Te		105	Te metal	
Th	610-946	700 - 800	ThO ₂	Th: 0.8788
		900	ThP_2O_7	Th: 0.5863
Ti	350946	900	TiO ₂	Ti: 0.5992
Tl(III)		100	$Tl(C_{12}H_{10}NOS)$	Tl: 0.4860
U		1000	U_3O_8	U: 0.8480; UO_2 : 0.9620
V	581-946	700-800	V ₂ O ₅	V: 0.5602
W	>674	800-900	WO ₃	W: 0.7930
Zn	>1000	9501000	ZnO	Zn: 0.8034
		1000	$Zn_2P_2O_7$	Zn: 0.4292; ZnO: 0.5342
_		125	$Zn(C_{10}H_6NO_2)_2 \cdot H_2O$	Zn: 0.1529
Zr		>850	ZrP_2O_7	Zr: 0.3440; ZrO ₂ : 0.4647
		1200	ZrO_2	Zr: 0.7403

TABLE 4.41 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors (Continued)

Standard	Formula weight	Preparation
	Basic substa	ances for standardizing acidic solutions
(HOCH ₃) ₃ CNHH ₂	121.137	Tris(hydroxymethyl)aminomethane is available commercially as a primary standard. Dry at 100–103°C (<110°C). In titrations with a strong acid the equivalence point is at about pH 4.5–5. Equivalent weight is the formula weight. [J. H. Fossum, P. C. Markunas, and I. A. Biddick. Anal. Chem. 23:401 (1951).]
HgO	216.59	and 3. A. Riddick, And. Chem., 25.491 (1951).] Dissolve 100 g pure HgCl ₂ in 1 L H ₂ O, and add with stirring to 650 mL 1.5 <i>M</i> NaOH. Filter and wash with H ₂ O until washings are neutral to phenolphthalein. Dry to constant weight at or below 40°C, and store in a dark bottle. To 0.4 g HgO (\equiv 40 mL 0.1 <i>N</i> acid) add 10–15 g KBr plus 20–25 mL H ₂ O. Stir, excluding CO ₂ , until solution is complete. Titrate with acid to pH 5–8.
$Na_2B_4O_7\cdot 10H_2O$	381.372	Recrystallize reagent-grade salt twice from water at temperatures below 55°C. Wash the crystals with H ₂ O, twice with ethanol, and twice with diethyl ether. Let stand in a hygrostat oversaturated NaBr \cdot 2H ₂ O or saturated NaCl-sucrose solution. Use methyl red
Na ₂ CO ₃	105.989	indicator. Equivalent weight is one-half the formula weight. Heat reagent-grade material for 1 hr at 255–265°C. Cool in an effi- cient desiccator. Titrate sample with acid to pH 4–5 (first green tint of bromocresol green), boil the solution to eliminate the car- bon dioxide, cool, and again titrate to pH 4–5. Equivalent weight is one-half the formula weight.
NaCl	58.45	Accurately weigh about 6 g NaCl and dissolve in distilled water. Pass the solution through a well-rinsed cation exchange column (Dowex 50W) in the hydrogen form. The equivalent amount of HCl is washed from the column (in 10 column volumes) into a volumetric flask and made up to volume. Equivalent weight is the formula weight.
	Acidic subs	ances for standardizing basic solutions
C ₆ H₅COOH	122.125	Pure benzoic acid is available from NIST (National Institute for Science and Technology). Dissolve 0.5 g in 20 mL of neutral ethanol (run a blank), excluding CO_2 , add 20–50 mL, and titrate using phenolphthalein as indicator.
o-C ₆ H₄(COOK)(COOH)	204.22	Potassium hydrogen <i>o</i> -phthalate is available commercially as pri- mary standard, also from NIST. Dry at <135°C. Dissolve in wa- ter, excluding CO ₂ , and titrate with phenolphthalein as indicator. For Ba(OH) ₂ solution, perform the titration at an elevated temper- ature to prevent precipitation of Ba phthalate.
KH(IO ₃) ₂	389.915	Potassium hydrogen bis(iodate) is available commercially in a pri- mary standard grade. Dry at 110°C. Dissolve a weighed amount of the salt in water, excluding CO ₂ , and titrate to pH 5–8. [I. M. Kolthoff and L. H. van Berk, J. Am. Chem. Soc., 48:2800(1926)].
NH ₂ SO ₃ H	97.09	Hydrogen amidosulfate (sulfamic acid) acts as a strong acid. Pri- mary standard grade is available commercially. Since it does un- dergo slow hydrolysis, an acid end point (pH 4 to 6.5) should be chosen unless fresh reagent is available, then the end point can be in the range pH 4 to 9. [W. F. Wagner, J. A. Wuellner, and C. E. Feiler, <i>Anal. Chem.</i> , 24:1491 (1952). M. J. Butler, G. F. Smith, and L. F. Audrieth, <i>Ind. Eng. Chem., Anal. Ed.</i> , 10:690 (1938)].

TABLE 4.42 Primary Standards for Aqueous Acid-Base Titrations

TABLE 4.43 Titrimetric (Volumetric) Factors

Acids

The following factors are the equivalent of 1 mL of *normal acid*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed. The equivalents of the esters are based on the results of saponification.

The indicators methyl orange and phenolphthalein are indicated by the abbreviations MO and pH, respectively.

Substance	Formula	Grams
Ammonia	NH ₃	0.017031
Ammonium	NH_4	0.018039
Ammonium chloride	NH₄Cl	0.053492
Ammonium hydroxide	NH₄OH	0.035046
Ammonium oleate	$C_{17}H_{33}CO_2NH_4$	0.29950
Ammonium oxide	(NH ₄) ₂ O	0.026038
Amyl acetate	$CH_3CO_2C_5H_{11}$	0.13019
Barium carbonate (MO)	BaCO ₃	0.09867
Barium hydroxide	$Ba(OH)_2$	0.085677
Barium oxide	BaO	0.07667
Bornyl acetate	$CH_{3}CO_{2}C_{10}H_{17}$	0.19629
Calcium carbonate (MO)	CaCO ₃	0.05004
Calcium hydroxide	Ca(OH) ₂	0.037047
Calcium oleate	$(C_{17}H_{33}CO_{2})_{2}Ca$	0.30150
Calcium oxide	CaO	0.02804
Calcium stearate	$(C_{17}H_{35}CO_{2})_{2}Ca$	0.30352
Casein (N 6.38)	,	0.089371
Ethyl acetate	CH ₃ CO ₂ C ₂ H ₅	0.088107
Glue (N 5.60)	· · · · ·	0.078445
Hydrochloric acid	HCI	0.036461
Magnesium carbonate (MO)	MgCO ₃	0.04216
Magnesium oxide	MgO	0.02016
Menthyl acetate	$CH_3CO_2C_{10}H_{19}$	0.19831
Methyl acetate	CH ₃ CO ₂ CH ₃	0.074080
Nicotine	$C_{10}H_{14}N_2$	0.16224
Nitrogen	N	0.014007
Potassium carbonate (MO)	K ₂ CO ₃	0.06911
Potassium carbonate, acid (MO)	KHCO ₃	0.10012
Potassium nitrate	KNO ₃	0.10111
Potassium oleate	C ₁₇ H ₃₃ CO ₂ K	0.32057
Potassium oxide	K ₂ O	0.04710
Potassium stearate	$C_{17}K_{35}CO_2K$	0.32258
Protein (N 5.70)		0.079846
Protein (N 6.25)		0.087550
Sodium acetate	CH ₃ CO ₂ Na	0.082035
Sodium acetate	CH ₃ CO ₂ Na · 3H ₂ O	0.13608
Sodium borate, tetra- (MO)	$Na_2B_4O_7$	0.10061
Sodium borate, tetra- (MO)	$Na_{2}B_{4}O_{7} \cdot 10H_{2}O$	0.19069
Sodium carbonate (MO)	Na ₂ CO ₃	0.052994
Sodium carbonate (MO)	Na ₂ CO ₃ ·H ₂ O	0.062002
Sodium carbonate (MO)	Na ₂ CO ₃ ·10H ₂ O	0.14307
Sodium carbonate, acid (MO)	NaHCO ₃	0.084007
Sodium hydroxide	NaOH	0.39997
Sodium oleate	C ₁₇ H ₃₃ CO ₂ Na	0.30445

Acids (Continued)			
Substance	Formula	Grams	
Sodium oxalate	$Na_2C_2O_4$	0.067000	
Sodium oxide	Na ₂ O	0.030990	
Sodium phosphate (MO)	Na ₂ HPO ₄	0.14196	
Sodium phosphate (MO)	$Na_2PHO_4 \cdot 12H_2O$	0.35814	
Sodium phosphate (MO)	Na ₃ PO ₄	0.081970	
Sodium phosphate (PH)	Na ₃ PO ₄	0.16394	
Sodium silicate	$Na_2Si_4O_9$	0.15111	
Sodium stearate	C ₁₇ H ₃₅ CO ₂ Na	0.30647	
Sodium sulfide (MO)	Na ₂ S	0.039022	
Alk	ali	L	

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

The following factors are the equivalent of the milliliter of *normal alkali*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

The equivalents of the esters are based on the results of saponification.

The indicators methyl orange and phenolphthalein are indicated by the abbreviations MO and PH, respectively.

Substance	Formula	Grams
Abietic acid (PH)	HC ₂₀ H ₂₉ O ₂	0.30246
Acetic acid (PH)	CH ₃ CO ₂ H	0.06005
Acetic anhydride (PH)	(CH ₃ CO) ₂ O	0.051045
Aluminum sulfate	$Al_2(SO_4)_3$	0.05702
Amyl acetate	$CH_3CO_2C_5H_{11}$	0.13019
Benzoic acid (PH)	C ₆ H ₅ CO ₂ H	0.12212
Borate tetra- (PH)	B_4O_7	0.03881
Boric acid (PH)	H ₃ BO ₃	0.061833
Boric anhydride (PH)	B_2O_3	0.03486
Bornyl acetate	$CH_{3}CO_{2}C_{10}H_{17}$	0.19629
Butyric acid (PH)	C ₃ H ₇ CO ₂ H	0.088107
Calcium acetate	(CH ₃ CO ₂) ₂ Ca	0.079085
Calcium oleate	$(C_{17}H_{33}CO_2)_2Ca$	0.30150
Calcium stearate	$(C_{17}H_{35}CO_2)_2Ca$	0.30352
Carbon dioxide (PH)	CO ₂	0.022005
Chlorine	Cl	0.035453
Citric acid (PH)	$H_3C_6H_5O_7 \cdot H_2O$	0.070047
Ethyl acetate	CH ₃ CO ₂ C ₂ H ₅	0.088107
Formaldehyde	НСНО	0.030026
Formic acid (PH)	HCO ₂ H	0.046026
Glycerol (sap. of acetyl)	$C_3H_5(OH)_3$	0.030698
Hydriodic acid	HI	0.12791
Hydrobromic acid	HBr	0.080917
Hydrochloric acid	HC1	0.036461
Lactic acid (PH)	$HC_{3}H_{5}O_{3}$	0.090079
Lead acetate	$(CH_3CO_2)_2Pb\cdot 3H_2O$	0.18966
Maleic acid (PH)	$(CHCO_2H)_2$	0.058037
Malic acid (PH)	$H_2C_4H_4O_5$	0.067045
Menthol (sap. of acetyl)	$C_{10}H_{19}OH$	0.15627

Substance	Formula	Grams
Menthyl acetate	CH ₃ CO ₂ C ₁₀ H ₁₉	0.19831
Methyl acetate	CH ₃ CO ₂ CH ₃	0.074080
Nitrate	NO ₃	0.062005
Nitric acid	HNO ₃	0.063013
Nitrogen	Ν	0.014007
Nitrogen pentoxide	N ₂ O ₅	0.054005
Oleic acid (PH)	$C_{17}H_{33}CO_{2}H$	0.28247
Oxalic acid (PH)	$(CO_2H)_2$	0.045018
Oxalic acid (PH)	$(CO_2H)_2 \cdot 2H_2O$	0.063033
Phosphoric acid (MO)	H ₃ PO ₄	0.097995
Phosphoric acid (PH)	H ₃ PO ₄	0.048998
Potassium carbonate, acid (MO)	KHCO ₃	0.10012
Potassium oleate	$C_{17}K_{33}CO_{2}K$	0.32056
Potassium oxalate, acid (PH)	KHC ₂ O ₄	0.12813
Potassium phthalate, acid (PH)	HC ₈ H ₄ O ₄ K	0.20423
Potassium stearate	$C_{17}H_{35}CO_2K$	0.32258
Sodium benzoate	C ₆ H ₅ CO ₂ Na	0.14411
Sodium borate, tetra- (PH)	$Na_2B_4O_7$	0.050305
Sodium borate, tetra- (PH)	$Na_2B_4O_7 \cdot 10H_2O$	0.095343
Sodium carbonate, acid (MO)	NaHCO ₃	0.084007
Sodium oleate	C ₁₇ H ₃₃ CO ₂ Na	0.30445
Sodium salicylate	C ₆ H ₅ OCO ₂ Na	0.16011
Stearic acid (PH)	C ₁₇ H ₃₅ CO ₂ H	0.28449
Succinic acid (PH)	$(CH_2CO_2H)_2$	0.059045
Sulfate	SO_4	0.048031
Sulfur dioxide (PH)	SO_2	0.032031
Sulfur trioxide	SO_3	0.040031
Sulfuric acid	H_2SO_4	0.049039
Sulfurous acid (PH)	H_2SO_3	0.041039
Tartaric acid (PH)	$H_2C_4H_4O_6$	0.075044
Tartaric acid (PH)	$H_2C_4H_4O_6\cdot H_2O$	0.084052

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

Iodine

The following factors are the equivalent of 1 mL of *normal iodine*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

Formula	Grams
(CH ₃) ₂ CO	0.0096801
$(NH_4)_2 CrO_4$	0.050690
Sb	0.06088
Sb ₂ O ₃	0.07287
As	0.037461
As ₂ O ₅	0.057460
As ₂ O ₃	0.049460
AsO ₃	0.061460
CaOCl ₂	0.063493
Br	0.079909
Cl	0.035453
Cr ₂ O ₃	0.02533
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Iodine (Continued)			
Substance	Formula	Grams	
Chromium trioxide	CrO ₃	0.033331	
Copper	Cu	0.06354	
Copper oxide	CuO	0.07954	
Copper sulfate	CuSO ₄	0.15960	
Copper sulfate	CuSO ₄ · 5H ₂ O	0.24968	
Ferric iron	Fe ³⁺	0.05585	
Ferric oxide	Fe ₂ O ₃	0.07985	
Hydrogen sulfide	H ₂ S	0.017040	
Iodine	I	0.126904	
Lead chromate	PbCrO ₄	0.10773	
Lead dioxide	PbO ₂	0.11959	
Nitrous acid	HNO ₂	0.023507	
Oxygen	0	0.0079997	
Potassium chlorate	KClO ₃	0.020426	
Potassium chromate	K ₂ CrO ₄	0.064733	
Potassium dichromate	$K_2Cr_2O_7$	0.049032	
Potassium nitrite	KNO ₂	0.042554	
Potassium permanganate	KMnO ₄	0.031608	
Red lead	Pb ₃ O ₄	0.34278	
Sodium chromate	Na ₂ CrO ₄	0.053991	
Sodium dichromate	$Na_2Cr_2O_7$	0.043661	
Sodium dichromate	$Na_2Cr_2O_7 \cdot 2H_2O$	0.049666	
Sodium nitrite	NaNO ₂	0.034498	
Sodium sulfide	Na ₂ S	0.039022	
Sodium sulfide	$Na_2S \cdot 9H_2O$	0.12009	
Sodium sulfite	Na ₂ SO ₃	0.063021	
Sodium sulfite	$Na_2SO_3 \cdot 7H_2O$	0.12607	
Sodium thiosulfate	$Na_2S_2O_3$	0.15811	
Sulfur	S	0.016032	
Sulfur dioxide	SO ₂	0.032031	
Sulfurous acid	$H_2 SO_3$	0.041039	
Tin	Sn	0.059345	

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

Potassium dichromate

The following factors are the equivalent of 1 mL of *normal potassium dichromate*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

Substance	Formula	Grams
Chromic oxide	Cr ₂ O ₃	0.025332
Chromium trioxide	CrO ₃	0.033331
Ferrous iron	Fe ²⁺	0.055847
Ferrous oxide	FeO	0.071846
Ferroso-ferric oxide	Fe ₃ O ₄	0.077180
Ferrous sulfate	FeSO ₄	0.15191
Ferrous sulfate	FeSO ₄ ·7H ₂ O	0.27802
Glycerol	$C_3H_5(OH)_3$	0.0065782
Lead chromate	PbCrO ₄	0.10773
Zinc	Zn	0.032685

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

Potassium permanganate

The following factors are the equivalent of 1 mL of *normal potassium permanganate*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

Substance	Formula	Grams
Ammonium oxalate	$(NH_4)_2C_2O_4$	0.062049
Ammonium oxalate	$(NH_4)_2C_2O_4 \cdot H_2O$	0.071056
Ammonium peroxydisulfate	$(NH_4)_2S_2O_8$	0.11410
Antimony	Sb	0.060875
Barium peroxide	BaO ₂	0.084669
Barium peroxide	$BaO_2 \cdot 8H_2O$	0.15673
Calcium carbonate	CaCO ₃	0.050045
Calcium oxide	CaO	0.02804
Calcium peroxide	CaO ₂	0.036039
Calcium sulfate	CaSO ₄	0.068071
Calcium sulfate	CaSO ₄ 2H ₂ O	0.086086
Ferric oxide	Fe ₂ O ₃	0.079846
Ferroso-ferric oxide	Fe ₃ O ₄	0.077180
Ferrous ammonium sulfate	$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$	0.39214
Ferrous oxide	FeO	0.071846
Ferrous sulfate	FeSO₄	0.15191
Ferrous sulfate	FeSO ₄ ·7H ₂ O	0.27802
Formic acid	HCO ₂ H	0.023013
Hydrogen peroxide	H ₂ O ₂	0.017007
Iodine	I	0.126904
Iron	Fe	0.055847
Manganese	Mn	0.010988
Manganese dioxide	MnO ₂	0.043468
Manganous oxide (Volhard)	MnO	0.035469
Molybdenum trioxide titration from yellow ppt. after reduction	MoO ₃	0.047979
Oxalic acid	$(CO_2H)_2$	0.045018
Oxalic acid	$(CO_2H)_2 \cdot 2H_2O$	0.063033
Phosphorus titration from yellow ppt. after reduc- tion	Р	0.0008604
Phosphorus pentoxide to titration from yellow ppt. after reduction	P ₂ O ₅	0.0019715
Potassium dichromate	K ₂ Cr ₂ O ₇	0.049032
Potassium nitrite	KNO ₂	0.042552
Potassium persulfate	$K_2S_2O_8$	0.13516
Sodium nitrite	NaNO ₂	0.034498
Sodium oxalate	$Na_2C_2O_4$	0.067000
Sodium persulfate		0.11905
Tin	Sn	0.059345
	1	

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

Silver nitrate

The following factors are the equivalent of *normal silver nitrate*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

Substance	Formula	Grams
Ammonium bromide	NH ₄ Br	0.097948
Ammonium chloride	NH ₄ Cl	0.053492
Ammonium iodide	NH₄I	0.14494
Ammonium thiocyanate	NH₄SCN	0.076120
Barium chloride	BaCl ₂	0.10412
Barium chloride	$BaCl_2 \cdot 2H_2O$	0.12214
Bromine	Br	0.079909
Cadmium chloride	CdCl ₂	0.091653
Cadmium iodide	CdI2	0.18310
Calcium chloride	CaCl ₂	0.055493
Chlorine	CI	0.035453
Ferric chloride	FeCl ₃	0.054069
Ferrous chloride	FeCl ₂	0.063377
Hydriodic acid	н	0.12791
Hydrobromic acid	HBr	0.080917
Hydrochloric acid	HCl	0.036461
Iodine	I	0.126904
Lithium chloride	LiCl	0.042392
Lead chloride	PbCl ₂	0.13905
Magnesium chloride	MgCl ₂	0.047609
Magnesium chloride	MgCl ₂ ·6H ₂ O	0.10166
Potassium bromide	KBr	0.11901
Potassium chloride	KCl	0.074555
Potassium iodide	KI	0.16601
Potassium oxide	K ₂ O	0.047102
Potassium thiocyanate	KSCN	0.097184
Silver	Ag	0.10787
Silver iodide	AgI	0.23477
Silver nitrate	AgNO ₃	0.16987
Sodium bromide	NaBr	0.10290
Sodium bromide	NaBr · 2H ₂ O	0.13893
Sodium chloride	NaCl	0.058443
Sodium iodide	NaI	0.14989
Sodium iodide	NaI · 2H ₂ O	0.18592
Sodium oxide	Na ₂ O	0.030990
Strontium chloride	SrCl ₂	0.079263
Strontium chloride	SrCl ₂ ·6H ₂ O	0.13331
Zinc chloride	ZnCl ₂	0.068138

TABLE 4.43 Titrimetric (Volumetric) Factors (Continued)

Sodium thiosulfate

The following factors are the equivalent of I_{mL} of *normal sodium thiosulfate*. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.

Substance	Formula	Grams
Acetone	(CH ₃) ₂ CO	0.0096801
Ammonium chromate	$(NH_4)_2CrO_4$	0.050690
Antimony	Sb	0.06088
Antimony trioxide	Sb ₂ O ₃	0.07287
Bleaching powder	CaOCl ₂	0.063493
Bromine	Br	0.079909
Chlorine	Cl	0.035453
Chromic oxide	Cr ₂ O ₃	0.02533
Chromium trioxide	CrO ₃	0.033331
Copper	Cu	0.06354
Copper oxide	CuO	0.07954
Copper sulfate	CuSO ₄	0.15960
Copper sulfate	CuSO ₄ · 5H ₂ O	0.24968
Iodine	I	0.126904
Lead chromate	PbCrO ₄	0.10773
Lead dioxide	PbO ₂	0.11959
Nitrous acid	HNO ₂	0.023507
Potassium chromate	K ₂ CrO ₄	0.064733
Potassium dichromate	$K_2Cr_2O_7$	0.049032
Red lead	Pb_3O_4	0.34278
Sodium chromate	Na ₂ CrO ₄	0.053991
Sodium dichromate	Na ₂ Cr ₂ O ₇	0.043661
Sodium dichromate	$Na_2Cr_2O_7 \cdot 2H_2O$	0.049666
Sodium nitrite	NaNO ₂	0.034498
Sodium thiosulfate	$Na_2S_2O_3$	0.15811
Sodium thiosulfate	$Na_2S_2O_3 \cdot 5H_2O$	0.24818
Sulfur	S	0.016032
Sulfur dioxide	SO ₂	0.032031
Tin	Sn	0.059345

TABLE 4.44 Equations for the Redox Determinations of the Elements with Equivalent Weights

Al	$\begin{aligned} Al(C_9H_6NO)_3 &+ 3 \text{ HCl} = AlCl_3 + 3 C_9H_7NO (8-hydroxyquinoline) \\ 3 C_9H_7NO + 6 Br_2 = 3 C_9H_5Br_2NO + 6 \text{ HBr} \\ Al/12 &= 2.2485; Al_2O_3/24 = 4.2483 \end{aligned}$
As ^o	As + 5 Ce(IV) + 4 $H_2O = H_3AsO_4 + 5$ Ce(III) + 5 H^+ As/5 = 14.9843
As(III)	$\begin{array}{l} 5 \ H_3AsO_3 + 2 \ KMnO_4 + 6 \ HCl = 5 \ H_3AsO_4 + 2 \ MnCl_2 + 3 \ H_2O \\ H_3AsO_3 + 2 \ Ce(SO_4)_2 + H_2O = H_3AsO_4 + Ce_2(SO_4)_3 + H_2SO_4 \\ As/2 = 37.4608; \ As_2O_3/4 = 49.460 \end{array}$
	$\begin{array}{l} 3 \ H_3AsO_3 \ + \ KBrO_3 \ (+ \ HCl) \ = \ 3 \ H_3AsO_4 \ + \ KBr\\ H_3AsO_3 \ + \ I_2 \ + \ 2 \ H_2O \ = \ H_3AsO_4 \ + \ 2 \ I^- \ + \ 2 \ H^+\\ As/2 \ = \ 37.4608; \ As_2O_3/4 \ = \ 49.460 \end{array}$
As(V)	$ \begin{array}{l} H_{3}AsO_{4} + 2 \ KI \ (excess) + 2 \ HCl = H_{3}AsO_{3} + I_{2} + 2 \ KCl + H_{2}O \\ I_{2} + 2 \ Na_{2}S_{2}O_{3} = 2 \ NaI + Na_{2}S_{4}O_{6} \\ As/2 = 37.4608; \ As_{2}O_{3}/4 = 49.460 \end{array} $
Ba	$\begin{array}{l} BaCrO_4 + 6 \text{ KI (excess)} + 16 \text{ HCl} = 2 BaCl_2 + 3 I_2 + 6 \text{ KCl} + 2 \text{CrCl}_3 + 8 \text{H}_2\text{O} \\ I_2 + 2 \text{Na}_2\text{S}_2\text{O}_3 = 2 \text{NaI} + \text{Na}_2\text{S}_4\text{O}_6 \qquad \text{Ba/3} = 45.78 \end{array}$
	BaCrO ₄ + 3 Fe ²⁺ (excess) + 8 H ⁺ = Ba ²⁺ + Cr ³⁺ + 3 Fe ³⁺ + 4 H ₂ O Titrate excess Fe ²⁺ with permanganate or dichromate; Ba/3 = 45.78
Br ₂	$Br_{2} + 2 \text{ KI (excess)} = 2 \text{ KBr} + I_{2}$ $I_{2} + 2 \text{ Na}_{2}\text{S}_{2}\text{O}_{3} \rightarrow 2 \text{ NaI} = \text{Na}_{2}\text{S}_{4}\text{O}_{6} \qquad Br_{2}/2 = 79.904$
Br∸	$Br^- + 3 HCIO = BrO_3^- + 3 CI^- + 3 H^+$ Br/6 = 13.317
BrO ₃	$ \begin{array}{l} BrO_{3}^{-} + 6 \ I^{-} \ (excess) + 6 \ H^{+} = Br^{-} + 3 \ I_{2} + 3H_{2}O \\ I_{2} + 2 \ Na_{2}S_{2}O_{3} = 2 \ NaI + Na_{2}S_{4}O_{6} \\ KBrO_{3}/6 = 27.835 \end{array} $
СО	5 CO + $I_2O_5 = 5$ CO ₂ + I_2 (at 125°C; adsorbed and measured colorimetrically) 5/2 CO = 70.02
$C_2O_4^{2-}$	Titrate as for CaC ₂ O ₄
$C_2 O_6^{2-}$	Acidify and titrate as for H_2O_2 ; $C_2O_6^{2-} + 2 H^+ = H_2O_2 + CO_2$ $K_2C_2O_6/2 = 99.11$
Ca	$5 \text{ CaC}_2\text{O}_4 + 2 \text{ KMnO}_4 + 8 \text{ H}_2\text{SO}_4 = 5 \text{ CaSO}_4 + 10 \text{ CO}_2 + \text{K}_2\text{SO}_4 + 2 \text{ MnSO}_4 + 8 \text{ H}_2\text{O}_2\text{Ca}/2 = 20.039; \text{ CaO}/2 = 28.04$
Cd	$Cd(anthranilate)_2 + 4 Br_2 = 2 NH_2C_6H_2Br_2COOH + 4 Br^-$ Titrate with KBrO ₃ —KBr until color of indigo changes to yellow. Add KI and back-titrate iodine liberated with thiosulfate. Cd/8 = 14.05
Ce	Oxidize Ce(III) to Ce(IV) with $(NH_4)_2S_2O_8$ plus Ag ⁺ ; destroy excess by boiling. 2 Ce(SO ₄) ₂ + 2 FeSO ₄ = Ce ₂ (SO ₄) ₃ + Fe ₂ (SO ₄) ₃ Ce/1 = 140.12; Ce ₂ O ₃ /2 = 164.12
Cl ₂	Same as for Br_2 ; $Cl_2/2 = 35.453$
C10-	$ClO^- + 2 I^- + 2 H = Cl^- + I_2 + H_2O$ Titrate liberated I_2 with thiosulfate; HClO/2 = 26.230
$\text{ClO}_{\overline{2}}$	$ClO_2^- + 4 I^- + 4 H^+ = Cl^- + 2 I_2 + 2 H_2O$ Titrate liberated I ₂ with thiosulfate; HClO/2 = 26.230
ClO ₃	$ClO_3^- + 6 I^- + 6 H_2O = Cl^- + 3 I_2 + 3 H_2O$ Titrated liberated I_2 with thiosulfate; $HClO_2/4 = 17.115$
	$ClO_3^- + 3 H_3AsO_3$ (excess; boil with strong HCl) = $Cl^- + 3 H_3AsO_4$ Titrate excess H_3AsO_3 with bromate; $HClO_3/6 = 14.077$
Со	$Co(NH_3)_6^{+} + Fe(CN)_6^{+} - [Citrate-NH_3 buffer] = Co(NH_3)_6^{+} + Fe(CN)_6^{+} - Co/1 = 58.9332$

Precipitate Co anthranilate and treat as for cadmium; Co/8 = 7.3667 $Cr_2O_7^{2-}$ + 6 Fe²⁺ + 14 H⁺ = 2 Cr³⁺ + 6 Fe³⁺ + 7 H₂O Cr $Cr/3 = 17.332; Cr_2O_3/6 = 25.337$ $2 Cu^{2+} + 2 I^{-} + 2SCN^{-} = 2CuSCN + I_2$ Cu Titrate the liberated iodine with thiosulfate; Cu/1 = 63.546 $4 \text{ CuSCN} + 7 \text{ IO}_3^- + 14 \text{ H}^+ + 7 \text{ Cl}^- = 4 \text{ Cu}^{2+} + 4 \text{ SO}_4^{2-} + 7 \text{ ICl} + 4 \text{ HCN} + 5 \text{ H}_2\text{O}$ Precipitate and wash CuSCN. Titrate with standard KIO₃ solution with 5 mL CHCl₃ until a definite I_2 color appears in the organic layer. Back-titrate the excess I_2 with standard thiosulfate solution. Cu/7 = 9.078; KIO₃/4 = 53.505Fe(II) $5 \text{ Fe}^{2+} + \text{MnO}_{4-} + 8 \text{ H}^{+} = 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$ $Fe^{2+} + Ce(IV) = Fe^{3+} + Ce(III)$; use 1,10-phenanthroline iron(II) indicator. $6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{-} + 14 \text{ H}^+ = 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$; use diphenylamine sulfonate indicator. Fe/1 = 55.847; $Fe_2O_3/2 = 79.845$ Fe(III) $Fe^{3+} + 4 SCN^{-} = Fe(SCN)_{4}^{-}; Fe(SCN)_{4}^{-} + Ti(III) = Fe^{2+} + Ti(IV) + 4 SCN^{-}$ Fe/1 = 55.847; $Fe_2O_3/2 = 79.845$ $2 \operatorname{Fe}^{3+} + \operatorname{Zn} = 2 \operatorname{Fe}^{2+} + \operatorname{Zn}^{2+}$; then proceed by a method under Fe(II). $Fe^{3+} + Ag + Cl^{-} = Fe^{2+} + AgCl$; then proceed by a method under Fe(II). $2 \operatorname{Fe}^{3+} + \operatorname{SnCl}_2(\operatorname{slight\,excess}) + 4 \operatorname{Cl}^- = 2 \operatorname{Fe}^{2+} + \operatorname{SnCl}_6^{2-}$ $2 \text{ HgCl}_2 + \text{SnCl}_2 + 2 \text{ Cl}^- = \text{Hg}_2\text{Cl}_2 + \text{SnCl}_6^2$ Pour above mixture into an H₃PO₄ plus MnSO₄ solution and titrate with KMnO₄ as under Fe(II). Fe/1 = 55.847; $Fe_2O_2/2 = 79.845$ $2 \text{ Fe}^{3+} + 2 \text{ I}^- = \text{Fe}^{2+} + \text{ I}_2$ Titrate liberated iodine with thiosulfate; Fe/1 = 55.847; $Fe_2O_3/2 = 79.845$ $I_2 + 2 S_2 O_3^2 = 2 I^- + S_4 O_6^2$ [titrate solution (pH \circ 7.0) with thiosulfate until color is pale I_2 yellow. Add KI and starch and continue titration to disappearance of blue color. $I_2/2 =$ 126.9045 $I_2 + H_3AsO_3 + H_2O = 2 I^- + H_3AsO_4 + 2 H^+$; use starch and KI as indicator. $I_2/2 =$ 126.9045 I- $2 I^{-} + Br_2(excess) = I_2 + 2Br^{-}$ Remove excess Br_2 formic acid and titrate I_2 with thiosulfate. $I_2/2 = 126.9045$ IO₁ IO_3^- + 5 I⁻(excess) + 6 H⁺ = 3 I₂ + 3 H₂O; titrate I₂ with thiosulfate. KIO₃/6 = 35.67 $IO_4^ IO_4^- + 7 I^-$ (excess) + 8 H⁺ = 4 I₂ + 4 H₂O; use a neutral buffered solution. Titrate I₂ with thiosulfate. $KIO_4/2 = 115.00$ K $K_2Na[Co(NO_2)_6]$; dissolve in H_2SO_4 and titrate with either KMnO₄ or Ce(IV). ca. K/5.5 but use an empirical factor. Mg $Mg(oxine)_2$; dissolve precipitate and use procedure for Al(8-hydroxyquinoline)₃. Mg/8 =3.0381 $2 \text{ Mn}^{2+} + 5 \text{ BiO}_3^- + 14 \text{ H}^+ = 2 \text{ MnO}_4^- + 5 \text{ Bi}^{3+} + 7 \text{ H}_2\text{O}$ Mn(II) $2 \text{ MnO}_4^- + 5 \text{ AsO}_3^{3-} + 6 \text{ H}^+ = 2 \text{ Mn}^{2+} + 5 \text{ AsO}_4^{3-} + 3 \text{ H}_2\text{O}; \text{ Mn/5} = 10.9876$ $2 \text{ Mn}^{2+} + 5 \text{ S}_2 \text{O}_8^{2-} + 8 \text{ H}_2 \text{O} (\text{Ag}^+ \text{ catalyst}) = 2 \text{ Mn} \text{O}_4^- + 10 \text{ SO}_4^{2-} + 16 \text{ H}^+$ Titrate the permanganate formed with iron(II) as under iron(II); Mn/5 = 10.9876 $2 \text{ Mn}^{2+} + 5 \text{ IO}_{4-} + 3 \text{ H}_2\text{O} = 2 \text{ MnO}_{4-} + 5 \text{ IO}_{3-} + 6 \text{ H}^+$ Slowly precipitate excess KIO_4 with $Hg(NO_3)_2$. Filter, add excess Fe^{2+} and titrate excess with standard KMnO₄ solution; Mn/5 = 10.9876 $MnO_4^- + 4 Mn^{2+} + 15 H_2P_2O_7^{2-}$ [pH range 4 to 7] = 5 $Mn(H_2P_2O_7)_3^{3-} + 4 H_2O_7^{3-}$ Use Pt—SCE indicator system; Mn/1 = 54.9380

TABLE 4.44	Equations for the Redox	Determinations of the Ele	ments with Equivalent	Weights (Continued)
------------	-------------------------	---------------------------	-----------------------	---------------------

TABLE 4.44 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued)

Mn(IV)	$MnO_2 + 2 Fe^{2+}$ (excesss standard) + 4 H ⁺ = $Mn^{2+} + 2 Fe^{3+} + 2 H_2O$ (use CO ₂ atmosphere)
	$MnO_2 + H_2C_2O_4$ (excess standard) + 2 H ⁺ = Mn^{2+} + 2 CO ₂ + 2 H ₂ O (use CO ₂ atmosphere)
	In either of the above, titrate excess with $KMnO_4$. $Mn/2 = 27.469$; $MnO_2/2 = 43.47$
Mn(VI)	$MnO_4^{2-} + 2H_2C_2O_4 + 4 H^+ = Mn^{2+} + 4 CO_2 + 4 H_2O$ Add excess oxalate and back-titrate with permanganate. Mn/4 = 13.7345
Mn(VII)	$2 \text{ MnO}_4^- + 5 \text{H}_2 \text{C}_2 \text{O}_4 \text{ 6 } \text{H}^+ = 2 \text{ Mn}^{2+} + 10 \text{ CO}_2 + 3 \text{ H}_2 \text{O}; \text{ Mn/5} = 10.9876$
Мо	$ \begin{array}{l} Mo(VI) + Zn = Mo(III) + Zn^{2+}; \mbox{ catch eluate in excess } Fe_2(SO_4)_3 \mbox{ solution} \\ Mo(III) + 3 \mbox{ Fe}^{3+} + 4 \mbox{ H}_2O = MoO_4^{2+} + 3 \mbox{ Fe}^{2+} \mbox{ 8 } \mbox{ H}^+; \mbox{ titrate } Fe(II) \mbox{ with } KMnO_4 \\ Mo/3 = 31.98 \end{array} $
	$Mo(VI) + Ag + Cl^- = Mo(V) + AgCl$; pass through Ag reductor at 60-80°C. Mo(V) + Ce(IV) = Mo(VI) + Ce(III); $Mo/I = 95.94$
N_2H_4	3 N ₂ H ₄ + 2 BrO ₃ ⁻ (excess) = 3 N ₂ + 2 Br ⁻ + 6 H ₂ O; add excess KI and titrate I ₂ with thiosulfate. N ₂ H ₄ /4 = 8.01
NH ₂ OH	$NH_2OH + BrO_3^- = NO_3^- + Br^- + H^+ + H_2O;$ proceed as above for $N_2H_4.$ $NH_2OH/6 = 5.505$
HN_3	$2 \text{ HN}_3 + 2 \text{ Ce(IV)}(\text{excess}) = 3 \text{ N}_2 + 2 \text{ Ce(III)} + 2 \text{ H}^+; \text{ done under inert atmosphere.}$ Add excess KI and titrate with thiosulfate. HN ₃ /1 = 43.03
NO_2^-	5 NO ₂ ⁻ + 2 MnO ₄ ⁻ (excess) + 6 H ⁺ = 5 NO ₃ ⁻ + 2 Mn ²⁺ + 3 H ₂ O; determine excess KMnO ₄ standard Na ₂ C ₂ O ₄ solution. NaNO ₂ /1 = 69.00
	$NO_2^- + 2 Ce(IV)(excess) + H_2O = NO_3^- + 2 Ce(III) + 2 H^+$; warmed to 50°C. Add excess standard Fe(II) solution and back-titrate with standard Ce(IV) using erioglaucine indicator. NaNO ₂ /1 = 69.00
NO_3^-	NO_3^- + excess Fe^{2+} (Mo catalyst) + 4H ⁺ = NO + Fe^{3+} . Add H_3PO_4 and back-titrate excess $Fe(II)$ with $K_2Cr_2O_7$. NaNO ₃ /3 = 28.34
Nb(V)	$Nb(V) + Zn = Nb(III) + Zn^{2+}$; catch reduced solution under excess Fe(III). Nb(III) + 2 Fe ³⁺ = Nb(V) + 2 Fe ²⁺ ; titrate Fe(II) with MnO ₄ solution using 1,10-phenanthroline as indicator. Nb/2 = 46.453; Nb ₂ O ₅ = 66.455
Ni	Precipitate Ni(anthranilate) ₂ and proceed as under Cd. Ni/8 = 7.336
O ₂	$O_2 + 2 Mn^{2+} + 2 OH^- = 2 MnO_2 + 2 H^+$; stoppered flask plus KI MnO ₂ + 2 I ⁻ + 4 H ⁺ = Mn ²⁺ + I ₂ 2H ₂ O; titrate I ₂ released with thiosulfate. O ₂ /4 = 7.007
O ₃	$O_3 + 2 I^- + H_2O = O_2 + I_2 + 2 OH^-$; acidify and titrate with thiosulfate. $O_3/2 = 24.00$
H_2O_2	$5 \text{ H}_2\text{O}_2 + 2 \text{ MnO}_4^- + 6 \text{ H}^+ = 5 \text{ O}_2 + 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O}; \text{ H}_2\text{O}_2/2 = 17.01$
	$H_2O_2 + 2 \text{ Ce(IV)} + 2 \text{ H}^+ = 2 \text{ Ce(III)} + 2 \text{ H}_2O$; use 1,10-phenanthroline indicator $H_2O_2/1 = 34.02$
	$H_2O_2 + 2 I^- + 2 H^+ = I_2 + 2 H_2O$; titrate I_2 with thiosulfate. $H_2O_2/2 = 17.01$
	$H_2O_2 + 2 \text{ Ti}(\text{III}) + 2H^+ = 2 \text{ Ti}(\text{IV}) + 2H_2O$; end point is disappearance of the yellow color of peroxotitanic acid. $H_2O_2/2 = 17.01$
Р	The yellow precipitate of $(NH_4)_3[P(Mo_3O_{10})_4]$ is dissolved in NH_4OH , then solution is strongly acidified with H_2SO_4 . See molybdenum; 12 moles Mo per P. P/36 = 0.86038
HPH ₂ O ₂	$HPH_2O_2 + 2 I_2(excess) + 2 H_2O = H_3PO_4 + 4 I^- + 4 H^+$ (let stand 10 h) Make solution alkaline with NaHCO ₃ and titrate excess I_2 with standard arsenite solution. $HPH_2O_2/4 = 16.499$
H ₃ PO ₃	$H_3PO_3 + I_2(excess) + H_2O = H_3PO_4 + 2 I^- + 2 H^+$ (use CO ₂ /NaHCO ₃ buffer; let stand 40-60 min in stoppered flask). Titrate excess I_2 with standard arsenite solution. $H_3PO_3/2 = 41.00$

TABLE 4.44 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued)

Pb	Isolate Pb as PbSO ₄ , dissolve it in NaOAc and precipitate with $K_2Cr_2O_7$. Dissolve K_2CrO_4 in NaCl—HCl solution, add KI, and titrate I_2 with thiosulfate solution. 2 PbCrO ₄ + 6 I ⁻ + 16 H ⁺ = 2 Pb ²⁺ + 2 Cr ³⁺ + 3 I ₂ + 8 H ₂ O Pb/3 = 69.1; PbO/3 = 74.4
S ²	$H_2S+I_2(excess)=S+2I^-+2H^+$ Back-titrate excess I_2 with standard thiosulfate solution. S/2 = 16.03; $H_2S/2$ = 17.04
	$H_2S + 4 Br_2 + 4 H_2O = SO_4^2 + 8 Br^- + 10 H^+$ Use excess KBr and standard KBrO ₃ solution. Let stand until clear, add excess KI, and titrate with standard thiosulfate solution. $H_2S/8 = 4.260$; SO ₂ /2 = 32.03; SCN/6 = 9.681
SO ₂ , SO ₃ ²⁻	SO_2 + I_2 + 2 H_2O = SO_4^{2-} + 2 I^- + 4 H^+ (Titrate excess I_2 with standard thiosulfate) $SO_2/2$ = 32.03
	$SO_2 + 4 Br_2 + 2 H_2O = SO_4^2 + 2 Br^2 + 4 H^+$ (Titrate with standard KBrO ₃ —KBr solution until methyl orange is bleached.) $SO_2/2 = 32.03$
$S_2O_3^{2-}$	$2 S_2 O_3^{2-} + I_2 = S_4 O_6^{2-} + 2 I^-$ (Use starch indicator) $Na_2 S_2 O_3 / I = 158.11$
H ₂ SO ₅	$SO_5^{2-} + H_3AsO_3 = SO_4^{2-} + H_3AsO_4$ $H_2SO_5/2 = 57.04$
$S_2O_8^{2-}$	$S_2O_8^{2-} + H_3AsO_3 + H_2O = 2 SO_4^{2-} + H_3AsO_4 + 2 H^+ H_2S_2O_8/2 = 97.07$
	$S_2O_8^{2^-} + 2 Fe^{2^+} = 2 SO_4^{2^-} + 2 Fe^{3^+} H_2S_2O_8/2 = 97.07$
Sb	$5 \text{ Sb(III)} + 2 \text{ MnO}_4^- + 16 \text{ H}^+ = 5 \text{ Sb(V)} + 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O}$
	$3 \text{ Sb(III)} + \text{BrO}_3^- + 6 \text{ H}^+ = 3 \text{ Sb(V)} + \text{Br}^- + 3 \text{ H}_2\text{O}$
	Sb(III) + I_2 [tartrate buffer, pH >7] = Sb(V) + 2 I ⁻
	Sb(III) + 2 Ce(IV) = Sb(V) + 2 Ce(III) For all four methods: Sb/2 = 60.88 ; Sb ₂ O ₃ /4 = 72.88
SeO ₃ ²⁻	$5 H_2 SeO_3 + 2 MnO_4^- + 6 H^+ = 5 H_2 SeO_4 + 2 Mn^{2+} + 3 H_2 O$ Na ₂ SeO ₃ /2 = 86.47
	$H_2SeO_3+4\ I^-+4\ H^+=Se+2\ I_2+3\ H_2O$ (titrate I_2 with standard thiosulfate solution) $Na_2SeO_3/2=86.47$
	$ H_2 SeO_3 + 4 S_2 O_3^{2-} + 4 H^+ = SeS_4 O_6^{2-} + S_4 O_6^{2-} + 3 H_2 O (add small excess of thiosulfate and back-titrate with standard iodine solution) \\ Na_2 SeO_3 / 4 = 47.23 $
SeO ₄ ²⁻	$\begin{split} &\text{SeO}_4^{2-} + 2 \text{ H}^+ + 2 \text{ Cl}^- = \text{SeO}_3^{2-} + \text{Cl}_2 + \text{H}_2\text{O} \text{ (absorb } \text{Cl}_2 \text{ in KI solution)} \\ &\text{Cl}_2 + 2 \text{ I}^- = 2 \text{ Cl}^- + \text{I}_2 \text{ (titrate } \text{I}_2 \text{ with standard thiosulfate)} \qquad \text{Na}_2\text{SeO}_4/2 = 94.47 \end{split}$
Sn(IV)	$SnCl_{6}^{2-} + Pb = Sn^{2+} + Pb^{2+} + 6 Cl^{-}$ (in CO ₂ atmosphere boil 40 min) $Sn^{2+} + I_2 + 6 Cl^{-} = SnCl_{6}^{2-} + 2 I^{-}$ (at 0-3°C) $Sn/2 = 59.35$; $SnO_2/2 = 67.35$
Sn(II)	Sn(II) + 2 Ce(IV) = Sn(IV) + 2 Ce(III) $Sn/2 = 59.35$
Te(IV)	$3 H_2 TeO_3 + Cr_2 O_7^{2-} + 8 H^+ = 3 H_2 TeO_4 + 2 Cr^{3+} + 4 H_2 O Te/2 = 63.80$
Te(VI)	$H_2 TeO_4 + 2 Cl^- + 2 H^+ = H_2 TeO_3 + Cl_2 + H_2O$ (see SeO_4^{2-}) $Te/2 = 63.80$
Ti	2 Ti(IV) + Zn(reductor) = 2Ti(III) + Zn(II) Ti(III) + Fe ³⁺ = Ti(IV) + Fe ²⁺ (in CO ₂ atmosphere; use KSCN as indicator) Ti/1 = 47.88 or
	Ti(III) + Methylene blue = $Ti(IV)$ + colorless leuco base (in CO ₂ atmosphere) $Ti/1 = 47.88$
Tl	$2 Tl^{+} + MnO_{4}^{-} + 8 H^{+} = 2 Tl^{3+} + Mn^{2+} + 4 H_{2}O \qquad Tl/2 = 102.19$
	$TI^{+} + 2 Ce^{3+} = TI^{3+} + 2 Ce^{3+}$ (to a yellow color or use 1,10-phenanthroline) $TI/2 = 102.19$
U	$ \begin{array}{l} U(VI) + Zn = U(III) + U(IV) + Zn(II) \ [pass air through solution to oxidize U(III) to U(IV)] \\ 5 \ U^{4+} + 2 \ MnO_4^- + 2 \ H_2O = 5 \ UO_2^{2+} + 2 \ Mn^{2+} + 4 \ H^+ \qquad U/2 = 119.01; \ U_3O_8/6 = 140.35 \end{array} $

V	Oxidize V(IV) to V(V) with permanganate. Destroy excess with sodium azide and boiling. $VO_2^+ + Fe^{2+} + 2 H^+ = VO^{2+} + Fe^{3+} + H_2O$ (diphenyaminesulfonic acid indicator) V/1 = 50.94
	Reduce V(V) with SO ₂ and bubble CO ₂ through boiling solution to remove excess SO ₂ . $5 \text{ VO}^{2+} + \text{MnO}_4^- + \text{H}_2\text{O} = 5 \text{ VO}_2^+ + \text{Mn}^{2+} + 2 \text{ H}^+ \qquad \text{V/1} = 50.94$
	Reduce V(V) to V(II) with Zn; catch eluate in excess Fe ³⁻ . $V^{2+} + 2 Fe^{3+} + H_2O = VO^{2+} + 2 Fe^{2+} + 2 H^+$ Titrate VO^{2+} —Fe ²⁺ mixture with permanganate to VO_2^+ —Fe ³⁺ V/3 = 16.98; $V_2O_5/6 = 30.32$
Zn	Dissolve precipitate of $Zn[Hg(SCN)_4]$ in 4 <i>M</i> HCl in stoppered flask, add CHCl ₃ . 2 SCN ⁻ + 3 IO ₃ ⁻ + 2 H ⁺ + CN ⁻ = 2 SO ₄ ²⁻ + 3 ICN + H ₂ O Zn/24 = 2.725
	2 Fe(CN) ₆ ³⁻ + 2 I ⁻ + 3 Zn ²⁺ + 2 K ²⁺ = $K_2Zn_3[Fe(CN)_6]_2 + I_2$ Remove I_2 as formed by standard thiosulfate solution. 3Zn/2 = 98.07 but empirical value of 99.07 is recommended.
	Precipitate $Zn(anthranilate)_2$; proceed as with Cd. $Zn/8 = 8.174$

TABLE 4.44 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued)

Note: Additional procedural information plus interferences and general remarks will be found in J. A. Dean, ed., *Analytical Chemistry Handbook*, McGraw-Hill, New York, Second Edition, 2004.

TABLE 4.45 Standard Solutions for Precipitation Titrations

The list given below includes the substances that are most used and most useful for the standardization of solutions for precipitation titrations. Primary standard solutions are denoted by the letter (P) in Column 1.

Standard	Formula weight	Preparation
AgNO ₃ (P)	169.89	Weigh the desired amount of ACS reagent grade* AgNO ₃ , dried at 105°C for 2 hr, and dissolve in double distilled water. Store in amber container and away from light. Check against NaCl.
$BaCl_2\cdot 2H_2O$	244.28	Dissolve clear crystals of the salt in distilled water. Standardize against K_2SO_4 or Na_2SO_4 .
$Hg(NO_3)_2 \cdot H_2O$	342.62	Dissolve the reagent grade salt in distilled water and dilute to desired volume. Standardize against NaCl.
KBr	119.01	The commercial reagent (ACS) may contain 0.2% chloride. Prepare an aqueous solution of approximately the desired concentration and stan- dardize it against AgNO ₃ .
$K_4[Fe(CN)]_6 \cdot 3H_2O$	422.41	Dissolve the high-purity commercial salt in distilled water containing 0.2 g/L of Na ₂ CO ₃ . Kept in an amber container and away from direct sunlight, solutions are stable for a month or more. Standardize against zinc metal.
KSCN	97.18	Prepare aqueous solutions having the concentration desired. Standardize against AgNO ₃ solution. Protect from direct sunlight.
K_2SO_4 (P)	174.26	Dissolve about 17.43 g, previously dried at 150°C and accurately weighed, in distilled water and dilute exactly to 1 L.
NaCl (P)	58.44	Dry at 130–150°C and weigh accurately, from a closed container, 5.844 g, dissolve in water, and dilute exactly to 1 L.
NaF (P)	41.99	Dry at 110°C and weigh the appropriate amount of ACS reagent. Dis- solve in water and dilute exactly to 1 L.
$Na_2SO_4(P)$	142.04	Weigh accurately 14.204 g, dried at 150°C, and dissolve in distilled water. Dilute to exactly 1 L.
$Th(NO_3)_4 \cdot 4H_2O$	552.12	Weigh the appropriate amount of crystals and dissolve in water. Stan- dardize against NaF.

*Meets standards of purity (and impurity) set by the American Chemical Society.

Indicator	Preparation and use		
	Specific reagents		
$NH_4Fe(SO_4)_2 \cdot 12H_2O$	Use reagent (ACS)* grade salt, low in chloride. Dissolve 175 g in 100 mL 6 <i>M</i> HNO ₃ which has been gently boiled for 10 min to expel nitrogen oxides. Dilute with 500 mL water. Use 2 mL per 100 mL of end-point volume.		
K ₂ CrO ₄	Use reagent (ACS)* grade salt, low in chloride. Prepare 0.1M aqueous solution (19.421 g/L). Use 2.5 mL per 100 mL of end- point volume.		
Tetrahydroxy-1,4-benzoquinone (THQ)	Prepare fresh as required by dissolving 15 mg in 5 mL of water. Use 10 drops for each titration.		
	Adsorption indicators		
Bromophenol blue	Dissolve 0.1 g of the acid in 200 mL 95% ethanol.		
2',7'-Dichlorofluorescein	Dissolve 0.1 g of the acid in 100 mL 70% ethanol. Use 1 mL for 100 mL of initial solution.		
Eosin, tetrabromofluorescein	See Dichlorofluorescein.		
Fluorescein	Dissolve 0.4 g of the acid in 200 mL 70% ethanol. Use 10 drops.		
Potassium rhodizonate, C ₄ O ₄ (OK) ₂	Prepare fresh as required by dissolving 15 mg in 5 mL of water. Use 10 drops for each titration.		
Rhodamine 6G	Dissolve 0.1 g in 200 mL 70% ethanol.		
Sodium 3-alizarinsulfonate	Prepare a 0.2% aqueous solution. Use 5 drops per 120 mL end- point volume.		
Thorin	Prepare a 0.025% aqueous solution. Use 5 drops.		
	Protective colloids		
Dextrin	Use 5 mL of 2% aqueous solution of chloride-free dextrin per 25 mL of 0.1 <i>M</i> halide solution.		
Polyethylene glycol 400	Prepare a 50% (v/v) aqueous solution of the surfactant. Use 5 drops per 100 mL end-point volume.		

TABLE 4.46 Indicators for Precipitation Titrations

*Meets standards of purity (and impurity) set by the American Chemical Society.

Indicator	Chemical name	Dissociation constants and colors of free indicator species	Colors of metal-indicator complexes	Applications
Calmagite 0.05 g/100 mL water; stable 1 year	1-(6-Hydroxy- <i>m</i> -tolylazo)- 2-naphthol-4-sulfonic acid	H_2In^- (red); $pK_2 = 8.1$ HIn^{2-} (blue); $pK_3 = 12.4$ In^{3-} (orange)	Wine-red	Titrations performed with Eriochrome Black T as indicator may be carried out equally well with Calmagite
Eriochrome Black T 0.1 g/100 mL water; prepare fresh daily	1-(2-Hydroxy-1-naphthyl- azo)-6-nitro-2-naphthol- 4-sulfonic acid	H_2In^- (red); $pK_2 = 6.3$ HIn^{2-} (blue); $pK_3 = 11.5$ In^{3-} (yellow-orange)	Wine-red	Direct titration: Ba, Ca, Cd, In, Mg, Mn, Pb, Sc, Sr, Tl, Zn, and lantha- nides Back titration: Al, Ba, Bi, Ca, Co, Cr,
				Fe, Ga, Hg, Mn, Ni, Pb, Pd, Sc, Tl, V Substitution titration: Au, Ba, Ca, Cu,
Murexide Suspend 0.5 g in water; use fresh supernatent liquid each day	5-[(Hexahydro-2,4,6-trioxo- 5-pyrimidinyl)imino]- 2,4,6(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-pyrimidi- netrione monoammonium salt	H_4In^- (red-violet); $pK_2 = 9.2$ H_3In^{2-} (violet); $pK_3 = 10.9$ H_2In^{3-} (blue)	Red with Ca ²⁺ Yellow with Co ²⁺ , Ni ²⁺ , and Cu ²⁺	Hg, Pb, Pd, Sr Direct titration: Ca, Co, Cu, Ni Back titration: Ca, Cr, Ga Substitution titration: Ag, Au, Pd
PAN	1-(2-Pyridylazo)-2-naphthol	HIn (orange-red); $pK_1 = 12.3$ In $(pink)$	Red	Direct titration: Cd, Cu, In, Sc, Tl, Zn Back titration: Cu, Fe, Ga, Ni, Pb, Sc, Sn, Zn Substitution titration: Al, Ca, Co, Fe, Ga He In Me Mn Ni Pb V Zn
Pyrocatechol Violet 0.1 g/100 mL; stable several weeks	Pyrocatecholsulfonephthalein	H ₄ In (red); $pK_1 = 0.2$ H ₃ In ⁻ (yellow): $pK_2 = 7.8$ H ₂ In ²⁻ (violet); $pK_3 = 9.8$ HIn ³⁻ (red-purple); $pK_4 = 11.7$	Blue, except red with Th(IV)	Direct titration: Al, Bi, Cd, Co, Fe, Ga, Mg, Mn, Ni, Pb, Th, Zn Back titration: Al, Bi, Fe, Ga, In, Ni, Pd, Sn, Th, Ti
Salicylic acid	2-Hydroxybenzoic acid	H ₂ In; $pK_1 = 2.98$ HIn ⁻ ; $pK_2 = 12.38$	FeSCN ²⁺ at pH 3 is reddish- brown	Typical uses: Fe(III) titrated with EDTA to colorless iron-EDTA complex
Xylenol orange	3,3'-Bis[N,N-di(carboxy- ethyl)aminomethyl]-o- cresolsulfonephthalein	-COOH groups: $pK_3 = 0.76; pK_4 = 1.15;$ $pK_5 = 2.58; pK_6 = 3.23$		Typical uses: Bi, Pb, Th

TABLE 4.47 Properties and Applications of Selected Metal Ion Indicators

4.151

Source: J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, Second Edition, 2004.

Previous Page

4.152 SECTION FOUR

 pH	$-\log \alpha_4$	рН	$-\log \alpha_4$	
 2.0	13.44	7.0	3.33	
2.5	11.86	8.0	2.29	
3.0	10.60	9.0	1.29	
4.0	8.48	10.0	0.46	
5.0	6.45	11.0	0.07	
6.0	4.66	12.0	0.00	

TABLE 4.48	Variation of a4	with p	ы
IADLE 4.40	variation of a ₄	with	,11

TABLE 4.49 Formation Constants of EDTA Complexes at 25°C, Ionic Strength Approaching Zero

Metal ion	$\log K_{\rm MY}$	Metal ion	$\log K_{MY}$
Co(III)	36	V(IV)	18.0
V(III)	25.9	U(IV)	17.5
In	24.95	Ti(IV)	17.3
Fe(III)	24.23	Ce(III)	16.80
Th	23.2	Zn	16.4
Sc	23.1	Cd	16.4
Cr(III)	23	Co(II)	16.31
Bi	22.8	Al	16.13
Tl(III)	22.5	La	16.34
Sn(II)	22.1	Fe(II)	14.33
Ti(III)	21.3	Mn(II)	13.8
Hg(II)	21.80	Cr(II)	13.6
Ga	20.25	V(II)	12.7
Zr	19.40	Ca	11.0
Cu(II)	18.7	Be	9.3
Ni	18.56	Mg	8.64
Pd(II)	18.5	Sr	8.80
Pb(II)	18.3	Ba	7.78
V(V)	18.05	Ag	7.32

TABLE 4.50 Cumulative Formation Constants of Ammine Complexes at 20°C, Ionic Strength 0.1

Cation	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	$\log K_5$	$\log K_6$
Cadmium	2.65	4.75	6.19	7.12	6.80	5.14
Cobalt(II)	2.11	3.74	4.79	5.55	5.73	5.11
Cobalt(III)	6.7	14.0	20.1	25.7	30.8	35.2
Copper(I)	5.93	10.86				
Copper(II)	4.31	7.98	11.02	13.32	12.66	
Iron(II)	1.4	2.2				
Manganese(II)	0.8	1.3				
Mercury(II)	8.8	17.5	18.5	19.28		
Nickel	2.80	5.04	6.77	7.96	8.71	8.74
Platinum(II)						35.3
Silver(I)	3.24	7.05				
Zinc	2.37	4.81	7.31	9.46		

TABLE 4.51	Masking Agents for	Various Elements
------------	--------------------	------------------

Element	Masking agent
Ag	Br ⁻ , citrate, Cl ⁻ , CN ⁻ , I ⁻ , NH ₃ , SCN ⁻ , S ₂ O ₃ , thiourea, thioglycolic acid, diethyldithiocarba- mate, thiosemicarbazide, bis(2-hydroxyethyl)dithiocarbamate
Al	Acetate, acetylacetone, BF ₄ ⁻ , citrate, C ₂ O ₄ ²⁻ , EDTA, F ⁻ , formate, 8-hydroxyquinoline-5-sul- fonic acid, mannitol, 2,3-mercaptopropanol, OH ⁻ , salicylate, sulfosalicylate, tartrate, trieth- anolamine, tiron
As	Citrate, 2,3-dimercaptopropanol, NH ₂ OH · HCl, OH ⁻ , S_2^{2-} , $S_2O_3^{2-}$, tartrate
Au	Br , CN , NH ₃ , SCN , $S_2O_3^{2}$, thiourea
Ba	Citrate, cyclohexanediaminetetraacetic acid, <i>N</i> , <i>N</i> -dihydroxyethylglycine, EDTA, F ⁻ , SO ₄ ²⁻ , tar- trate
Be	Acetylacetone, citrate, EDTA, F ⁻ , sulfosalicylate, tartrate
Bi	Br ⁻ , citrate, Cl ⁻ , 2,3-dimercaptopropanol, dithizone, EDTA, I ⁻ , OH ⁻ , Na ₅ P ₃ O ₁₀ , SCN ⁻ , tar- trate, thiosulfate, thiourea, triethanolamine
Ca	BF ₄ , citrate, N,N-dihydroxyethylglycine, EDTA, F ⁻ , polyphosphates, tartrate
Cd	Citrate, CN ⁻ , 2,3-dimercaptopropanol, dimercaptosuccinic acid, dithizone, EDTA, glycine, I ⁻ , malonate, NH ₃ , 1,10-phenanthroline, SCN ⁻ , S ₂ O ₃ , tartrate
Ce	Citrate, <i>N</i> , <i>N</i> -dihydroxyethylglycine, EDTA, F ⁻ , PO ₄ ³⁻ , reducing agents (ascorbic acid), tartrate, tiron
Co	Citrate, CN^- , diethyldithiocarbamate, 2,3-dimercaptopropanol, dimethylglyoxime, ethylenedi- amine, EDTA, F ⁻ , glycine, H ₂ O ₂ , NH ₃ , NO ₂ ⁻ , 1,10-phenanthroline, Na ₅ P ₃ O ₁₀ , SCN ⁻ , S ₂ O ₃ ²⁻ , tartrate
Cr	Acetate, (reduction with) ascorbic acid + Kl, citrate, N_i -dihydroxyethylglycine, EDTA, F ⁻ , formate, NaOH + H ₂ O ₂ , oxidation to CrO ₄ ²⁻ , Na ₅ P ₃ O ₁₀ , sulfosalicylate, tartrate, triethylamine, tiron
Cu	 Ascorbic acid + KI, citrate, CN⁻, diethyldithiocarbamate, 2,3-dimercaptopropanol, ethyl- enediamine, EDTA, glycine, hexacyanocobalt(III)(3-), hydrazine, I⁻, NaH₂PO₂, NH₂OH · HCl, NH₃, NO₂, 1,10-phenanthroline, S²⁻, SCN⁻ + SO₃²⁻, S₂O₃²⁻, sulfosalicylate, tartrate, thioglycolic acid, thiosemicarbazide, thiocarbohydrazide, thiourea
Fe	Acetylacetone, (reduction with) ascorbic acid, $C_2O_4^{2-}$, citrate, CN^- , 2,3-dimercaptopropanol, EDTA, F ⁻ , NH ₃ , NH ₂ OH · HCl, OH ⁻ , oxine, 1,10-phenanthroline, 2,2'-bipyridyl, PO ₄ ³⁻ , P ₂ O ₇ ⁴⁻ , S ²⁻ , SCN ⁻ , SnCl ₂ , S ₂ O ₃ ²⁻ , sulfamic acid, sulfosalicylate, tartrate, thioglycolic acid, thiourea, tiron, triethanolamine, trithiocarbonate
Ga	Citrate, Cl ⁻ , EDTA, OH ⁻ , oxalate, sulfosalicylate, tartrate
Ge	F ⁻ , oxalate, tartrate
Hf	See Zr
Hg	Acetone, (reduction with) ascorbic acid, citrate, Cl ⁻ , CN ⁻ , 2,3-dimercaptopropan-1-ol, EDTA, formate, I ⁻ , SCN ⁻ , SO ₃ , tartrate, thiosemicarbazide, thiourea, triethanolamine
In	Cl ⁻ , EDTA, F ⁻ , SCN ⁻ , tartrate, thiourea, triethanolamine
Ir	Citrate, CN ⁻ , SCN ⁻ , tartrate, thiourea
La	Citrate, EDTA, F [−] , oxalate, tartrate, tiron
Mg	Citrate, $C_2O_4^{}$, cyclohexane-1,2-diaminetetraacetic acid, <i>N</i> , <i>N</i> -dihydroxyethylglycine, EDTA, F ⁻ , glycol, hexametaphosphate, OH ⁻ , P ₂ O ₇ , triethanolamine
Mn	Citrate, CN ⁻ , C ₂ O ₄ ²⁻ , 2,3-dimercaptopropanol, EDTA, F ⁻ , Na ₅ P ₃ O ₁₀ , oxidation to MnO ₄ ⁻ , P ₂ O ₇ , reduction to Mn(II) with NH ₂ OH · HCl or hydrazine, sulfosalicylate, tartrate, triethanolamine, triphosphate, tiron
Мо	Acetylacetone, ascorbic acid, citrate, $C_2O_4^{2-}$, EDTA, F^- , H_2O_2 , hydrazine, mannitol, $Na_5P_3O_{10}$, $NH_2OH \cdot HCl$, oxidation to molybdate, SCN^- , tartrate, tiron, triphosphate

Element	Masking agent
Nb	Citrate, $C_2O_4^{2-}$, F^- , H_2O_2 , OH^- , tartrate
Nd	EDTA
NH_4^+	НСНО
Ni	Citrate, CN ⁻ , <i>N</i> , <i>N</i> -dihydroxyethylglycine, dimethylglyoxime, EDTA, F ⁻ , glycine, malonate, Na ₅ P ₃ O ₁₀ , NH ₃ , 1,10-phenanthroline, SCN ⁻ , sulfosalicylate, thioglycolic acid, triethanol-amine, tartrate
Np	F [−]
Os	CN ⁻ , SCN ⁻ , thiourea
Ра	H ₂ O ₂
Pb	Acetate, $(C_6H_5)_4$ AsCl, citrate, 2,3-dimercaptopropanol, EDTA, I ⁻ , Na ₅ P ₃ O ₁₀ , SO ₄ ²⁻ , S ₂ O ₃ ²⁻ , tar- trate, tiron, tetraphenylarsonium chloride, triethanolamine, thioglycolic acid
Pd	Acetylacetone, citrate, CN ⁻ , EDTA, I ⁻ , NH ₃ , NO ₂ ⁻ , SCN ⁻ , S ₂ O ₃ ²⁻ , tartrate, triethanol amine
Pt	Citrate, CN ⁻ , EDTA, I ⁻ , NH ₃ , NO ₂ ⁻ , SCN ⁻ , $S_2O_3^{2-}$, tartrate, urea
Pu	Reduction to Pu(IV) with sulfamic acid
Rare earths	$C_2O_4^{2-}$, citrate, EDTA, F ⁻ , tartrate
Re	Oxidation to perrhenate
Rh	Citrate, tartrate, thiourea
Ru	CN ⁻ , thiourea
Sb	Citrate, 2,3-dimercaptopropanol, EDTA, F ⁻ , I ⁻ , OH ⁻ , oxalate, S ²⁻ , S ²⁻ ₂ , S ₂ O ³⁻ ₃ , tartrate, trieth- anolamine
Sc	Cyclohexane-1,2-diaminetetraacetic acid, F ⁻ , tartrate
Se	Citrate, F ⁻ , I ⁻ , reducing agents, S ²⁻ , SO ²⁻ , tartrate
Sn	Citrate, $C_2O_3^2$ -, 2,3-dimercaptopropanol, EDTA, F ⁻ , I ⁻ , OH ⁻ , oxidation with bromine water, phosphate(3–), tartrate, triethanolamine, thioglycolic acid
Sr	Citrate, N,N-dihydroxyethylglycine, EDTA, F ⁻ , SO ₄ ²⁻ , tartrate
Та	Citrate, F^- , H_2O_2 , OH^- , oxalate, tartrate
Те	Citrate, F ⁻ , I ⁻ , reducing agents, S ²⁻ , sulfite, tartrate
Th	Acetate, acetylacetone, citrate, EDTA, F ⁻ , SO ₄ ²⁻ , 4-sulfobenzenearsonic acid, sulfosalicylic acid, tartrate, triethanolamine
Ti	Ascorbic acid, citrate, F^- , gluconate, H_2O_2 , mannitol, $Na_5P_3O_{10}$, OH^- , SO_4^{2-} , sulfosalicylic acid, tartrate, triethanolamine, tiron
Tl	Citrate, Cl ⁻ , CN ⁻ , EDTA, HCHO, hydrazine, NH ₂ OH · HCl, oxalate, tartrate, triethanolamine
U	Citrate, $(NH_4)_2CO_3$, $C_2O_4^{2-}$, EDTA, F ⁻ , H_2O_2 , hydrazine + triethanolamine, phosphate(3-), tartrate
V	(Reduction with) ascorbic acid, hydrazine, or $NH_2OH \cdot HCl$, CN^- , EDTA, F^- , H_2O_2 , mannitol, oxidation to vanadate, triethanolamine, tiron
W	Citrate, F^{-} , H_2O_2 , hydrazine, Na ₅ P ₃ O ₁₀ , NH ₂ OH · HCl, oxalate, SCN ⁻ , tartrate, tiron, triphosphate, oxidation to tungstate(VI)
Y	Cyclohexane-1.2-diaminetetraacetic acid, F ⁻
Zn	Citrate, CN ⁻ , N,N-dihydroxyethylglycine, 2,3-dimercaptopropanol, dithizone, EDTA, F ⁻ ,
	glycerol, glycol, hexacyanoferrate(II)(4-), Na ₅ P ₃ O ₁₀ , NH ₃ , OH ⁻ , SCN ⁻ , tartrate, triethanol- amine
Zr	Arsenazo, carbonate, citrate, $C_2O_4^{2-}$, cyclohexane-1,2-diaminetetraacetic acid, EDTA, F ⁻ , H_2O_2 , PO_4^{3-} , $P_2O_7^{4-}$, pyrogallol, quinalizarinesulfonic acid, salicylate, SO_4^{2-} + H_2O_2 , sulfos-alicylate, tartrate, triethanolamine

TABLE 4.51 Masking Agents for Various Elements (Continued)

Anion or neutral molecule	Masking agent
Boric acid	F ⁻ , glycol, mannitol, tartrate, and other hydroxy acids
Br−	Hg(II)
Br ₂	Phenol, sulfosalicylic acid
BrO ₃	Reduction with arsenate(III), hydrazine, sulfite, or thiosulfate
Chromate(VI)	Reduction with arsenate(III), ascorbic acid, hydrazine, hydroxylamine, sulfite, or thiosul- fate
Citrate	Ca(II)
Cl-	Hg(II), Sb(III)
Cl ₂	Sulfite
ClO ₃	Thiosulfate
ClO ₄	Hydrazine, sulfite
CN-	HCHO, Hg(II), transition metal ions
EDTA	Cu(II)
F ⁻	Al(III), Be(II), boric acid, Fe(III), Th(IV), Ti(IV), Zr(IV)
Fe(CN) ₆ ³⁻	Arsenate(III), ascorbic acid, hydrazine, hydroxylamine, thiosulfate
Germanic acid	Glucose, glycerol, mannitol
I-	Hg(II)
I ₂	Thiosulfate
IO ₃	Hydrazine, sulfite, thiosulfate
IO_4^-	Arsenate(III), hydrazine, molybdate(VI), sulfite, thiosulfate
MnO_4^-	Reduction with arsenate(III), ascorbic acid, azide, hydrazine, hydroxylamine, oxalic acid, sulfite, or thiosulfate
MoO ₄ ²⁻	Citrate, F^- , H_2O_2 , oxalate, thiocyanate + Sn(II)
NO ₂	Co(II), sulfamic acid, sulfanilic acid, urea
Oxalate	Molybdate(VI), permanganate
Phosphate	Fe(III), tartrate
S	CN ⁻ , S ²⁻ , sulfite
S ²⁻	Permanganate + sulfuric acid, sulfur
Sulfate	Cr(III) + heat
Sulfite	HCHO, Hg(II), permanganate + sulfuric acid
SO ₅ ²⁻	Ascorbic acid, hydroxylamine, thiosulfate
Se and its anions Te	Diaminobenzidine, sulfide, sulfite I-
Tungstate	Citrate, tartrate
Vanadate	Tartrate

TABLE 4.52 Masking Agents for Anions and Neutral Molecules

TABLE 4.53 Common Demasking Agents

Complexing	Ion	Demasking	
agent	demasked	agent	Application
CN-	Ag ⁺	H^+	Precipitation of Ag
	Cd^{2+}	\mathbf{H}^+	Free Cd ²⁺
		HCHO + OH-	Detection of Cd (with DPC) in presence of Cu
	Cu+	\mathbf{H}^+	Precipitation of Cu
	Cu^{2+}	HgO	Determination of Cu
	Fe ²⁺	Hg^{2+}	Free Fe ²⁺
	Fe ³⁺	HgO	Determination of Fe
CN^{-} (continued)	HDMG	Pd ²⁺	Detection of CN^{-} (with Ni^{2+})
	Hg^{2+}	Pd ²⁺	Detection of Pd (with DPC)
	Ni ²⁺	HCHO	Detection of Ni (with HDMG)
		H^+	Free Ni ²⁺
		HgO	Determination of Ni
		Ag+	Detection and determination of Ni (with HDMG) in presence of Co
		Ag+, Hg ²⁺ , Pb ²⁺	Detection of Ag, Hg, Pb (with HDMG)
	Pd ²	H^+	Precipitation of Pd
		HgO	Determination of Pd
	Zn ²⁺	$Cl_3CCHO \cdot H_2O$	Titration of Zn with EDTA
		H^+	Free Zn
CO_{3}^{2-}	Cu ²⁺	H^+	Free Cu ²⁺
$C_2O_4^{2-}$	Al ³⁺	OH-	Precipitation of Al(OH) ₃
Cl ⁻ (concentrated)	Ag^+	H_2O	Precipitation of AgCl
Ethylenediamine	Ag ⁺	SiO ₂ (amorphous)	Differentiation of crystalline and amor- phous SiO_2 (with CrO_4^{2-})
EDTA	Al^{3+}	F	Titration of Al
	Ba^{2+}	H^+	Precipitation of $BaSO_4$ (with SO_4^{2-})
	Co ²⁺	Ca ²⁺	Detection of Co (with diethyldithiocar- bamate)
	Mg^{2+}	F-	Titration of Mg, Mn
	Th(IV)	SO_{4}^{2-}	Titration of Th
	Ti(IV)	Mg ²⁺	Precipitation of Ti (with NH ₃)
	Zn ²⁺	CN-	Titration of Mg, Mn, Zn
	Many ions	KMO_4^-	Free ions
F-	Al(III)	Be(II)	Precipitation of Al (with 8-hydroxyl- quinoline)
		OH-	Precipitation of Al(OH) ₃
	Fe(III)	OH-	Precipitation of Fe(OH) ₃
	Hf(IV)	Al(III) or Be(II)	Detection of Hg (with xylenol orange)
	Mo(VI)	H_3BO_3	Free molybdate
	Sn(IV)	H ₃ BO ₃	Precipitation of Sn (with H_2S)
	U(VI)	Al(III)	Detection of U (with dibenzoylme- thane)
	Zr(IV)	Al(III) or Be(II)	Detection of Zr (with xylenol orange)
		Ca(II)	Detection of Ca (with alizarin S)
		OH	Precipitation of Zr(OH) ₄
H_2O_2	Hf(IV), Ti(IV), or Zr	Fe(III)	Free ions
NH ₃	Ag+	Br-	Detection of Br ⁻
2	0	H^+	Detection of Ag
		I-	Detection of I and Br
		SiO ₂ (amorphous)	Differentiation of crystalline and amor- phous SiO ₂ (with CrO ₄ ²⁻)

Abbreviations: DPC, diphenylcarbazide; HDMG, dimethylglyoxime; PAN, 1-(2-pyridylazo)-2-naphthol.

Complexing agent	Ion demasked	Demasking agent	Application
NO ₂	Co(III)	H+	Free Co
PO ₄ ³⁻	Fe(III)	OH-	Precipitation of FePO ₄
	UO_{2}^{2-}	Al(III)	Detection of U (with dibenzoylme- thane)
SCN-	Fe(III)	OH-	Precipitation of Fe(OH) ₃
SO_4^{2-} (conc. H_2SO_4)	Ba ²⁺	H_2O	Precipitation of BaSO ₄
S ₂ O ₃ ²⁻	Ag+	H ⁺	Free Ag ⁺
	$\overline{Cu^{2+}}$	OH-	Detection of Cu (with PAN)
Tartrate	Al(III)	$H_2O_2 + Cu^{2+}$	Precipitation of Al(OH) ₃

TABLE 4.53 Common Demasking	Agents	(Continued)
------------------------------------	--------	------------	---

TABLE 4.54 Amino Acids pI and pKQ Values

This table lists the pK_a and pI (pH at the isoelectric point) values of α -amino acids commonly found in proteins along with their abbreviations. The dissociation constants refer to aqueous solutions at 25°C.

	Abbrev	viations	pK_a values			
Name	3 Letter	1 Letter	—соон	—NH ₃ +	Other groups	pI values
Alanine	Ala	Α	2.34	9.69		6.00
Arginine	Arg	R	2.17	9.04	12.48	10.76
Asparagine	Asn	N	2.01	8.80		5.41
Aspartic acid	Asp	D	1.89	9.60	3.65	2.77
Cysteine	Cys	C	1.96	10.28	8.18	5.07
Glutamine	Gln	Q	2.17	9.13		5.65
Glutamic acid	Glu	Е	2.19	9.67	4.25	3.22
Glycine	Gly	G	2.34	9.60		5.97
Histidine	His	н	1.82	9.17	6.00	7.59
Isoleucine	Ile	I	2.36	9.60		6.02
Leucine	Leu	L	2.36	9.60	5.98	
Lysine	Lys	К	2.18	8.98	10.53	9.74
Methionine	Met	М	2.28	9.21		5.74
Phenylalanine	Phe	F	1.83	9.13		5.48
Proline	Pro	Р	1.99	10.60		6.30
Serine	Ser	S	2,21	9.15		5.68
Threonine	Thr	Т	2.09	9.10		5.60
Tryptophan	Trp	w	2.83	9.39		5.89
Tyrosine	Tyr	Y	2.20	9.11	10.07	5.66
Valine	Val	v	2.32	9.62		5.96

Source: E. L. Smith, et al., Principles of Biochemistry, 7th ed., McGraw-Hill, New York, 1983; H. J. Hinz, ed., Thermodynamic Data for Biochemistry and Biotechnology, Springer-Verlag, Heidelberg, 1986.

	Tolerances,* ±mL			Tolerances,* ±mL	
Capacity, mL	Class A	Class B	Capacity, mL	Class A	Class B
5	0.02	0.04	200	0.10	0.20
10	0.02	0.04	250	0.12	0.24
25	0.03	0.06	500	0.20	0.40
50	0.05	0.10	1000	0.30	0.60
100	0.08	0.16	2000	0.50	1.00

TABLE 4.55	Tolerances of Volumetric Flasks
	Toterunees of volumetrie r lusks

*Accuracy tolerances for volumetric flasks at 20°C are given by ASTM standard E288.

Volume	Volumetric transfer pipets		Measuring and serological pipets		
	Tolerance	es,* ±mL		Tolerances,† ±mL	
Capacity, mL	Class A	Class B	Capacity, mL	Class B	
0.5	0.006	0.012	0.1	0.005	
1	0.006	0.012	0.2	0.008	
2	0.006	0.012	0.25	0.008	
3	0.01	0.02	0.5	0.01	
4	0.01	0.02	0.6	0.01	
5	0.01	0.02	1	0.02	
10	0.02	0.04	2	0.02	
15	0.03	0.06	5	0.04	
20	0.03	0.06	10	0.06	
25	0.03	0.06	25	0.10	
50	0.05	0.10			
100	0.08	0.16			

TABLE 4.56 Pipette Capacity Tolerances

*Accuracy tolerances for volumetric transfer pipets are given by ASTM standard E969 and Federal Specification NNN-P-395.

[†]Accuracy tolerances for measuring pipets are given by Federal Specification NNN-P-350 and for serological pipets by Federal Specification NNN-P-375.

Capacity, μL	Accuracy, %	Precision, %	Capacity, μL	Accuracy, %	Precision, %
10	1.2	0.4	100	0.5	0.2
40	0.6	0.2	250	0.5	0.15
50	0.5	0.2	500	0.5	0.15
60	0.5	0.2	600	0.5	0.15
70	0.5	0.2	900	0.5	0.15
80	0.5	0.2	1000	0.5	0.15

TABLE 4.57 Tolerances of Micropipets (Eppendorf)

		Accurac	y, ±mL
Capacity, mL	Subdivision, mL	Class A* and precision grade	Class B and standard grade
10	0.05	0.02	0.04
25	0.10	0.03	0.06
50	0.10	0.05	0.10
100	0.20	0.10	0.20

TABLE 4.58 Burette Accuracy Tolerances

*Class A conforms to specifications in ASTM E694 for standard taper stopcocks and to ASTM E287 for Teflon or polytetrafluoroethylene stopcock plugs. The 10-mL size meets the requirements for ASTM D664.

TABLE 4.59 Factors for Simplified Computation of Volume

The volume is determined by weighing the water, having a temperature of $t^{\circ}C$, contained or delivered by the apparatus at the same temperature. The weight of water, *w* grams, is obtained with brass weights in air having a density of 1.20 mg/mL.

For apparatus made of soft glass, the volume contained or delivered at 20°C is given by

$$v_{20} = w f_{20} \text{ mL}$$

where v_{20} is the volume at 20° and f_{20} is the factor (apparent specific volume) obtained from the table below for the temperature *t* at which the calibration is performed. The volume at any other temperature *t'* may then be obtained from

$$v' = v_{20}[1 + 0.00002(t' - 20)] \text{ mL}$$

For apparatus made of any other material, the volume contained or delivered at the temperature t is

$$v_t = wf_t \,\mathrm{mL}$$

where w is again the weight in air obtained with brass weights (in grams), and f_t is the factor given in the third column of the table for the temperature t. The volume at any temperature t' may then be obtained from

$$v'_t = v_t [1 + \beta(t' - t)] \mathrm{mL}$$

where β is the cubical coefficient of thermal expansion of the material from which the apparatus is made. Approximate values of β for some frequently encountered materials are given in Table 4.60.

t, ℃	f_{20}	f_{ι}	t, °C	${f}_{20}$	f_t
0	1.001 62	1.001 22	14	93	81
1	54	16	15	1.002 06	1.001 96
2	48	12	16	20	1.002 12
3	43	09	17	35	29
4	41	09	18	51	47
5	1.001 39	1.001 09	19	68	66
6	40	12	20	1.002 86	1.002 86
7	42	16	21	1.003 05	1.003 07
8	45	21	22	26	30
9	50	28	23	47	53
10	1.001 56	1.001 36	24	69	77
11	63	45	25	1.003 93	1.004 03
12	72	56	26	1.004 17	29
13	82	68	27	42	56

t, ℃	f_{20}	f_t	t, °C	f_{20}	f_t
28	68	84	35	1.006 77	1.007 07
29	95	1.005 13	36	1.007 10	1.007 42
30	1.005 23	1.005 43	37	1.007 44	1.007 78
31	1.005 52	1.005 74	38	1.007 79	1.008 15
32	1.005 82	1.006 06	39	1.008 15	1.008 53
33	1.006 13	1.006 39	40	1.008 52	1.008 91
34	1.006 44	1.006 72			

TABLE 4.59 Factors for Simplified Computation of Volume (Continued)

TABLE 4.60 Cubical Coefficients of Thermal Expansion

This table lists values of β , the cubical coefficient of thermal expansion, taken from "Essentials of Quantitative Analysis," by Benedetti-Pichler, and from various other sources. The values of β represents the relative increases in volume for a change in temperature of 1°C at temperatures in the vicinity of 25°C, and is equal to 3 α , where α is the linear coefficient of thermal expansion. Data are given for the types of glass from which volumetic apparatus is most commonly made, and also for some other materials which have been or may be used in the fabrication of apparatus employed in analytical work.

Material	β	
Glasses		
Alkali-resistant, Corning 728	1.90×10^{-5}	
Gerateglas, Schott G20	1.47	
Kimble KG-33 (borosilicate)	0.96	
N-51A ("Resistant")	1.47	
R-6 (soft)	2.79	
Pyrex, Corning 744	0.96	
Vitreous silica	0.15	
Vycor, Corning 790	0.24	
Metals		
Brass	ca. 5.5	
Copper	5.0	
Gold	4.3	
Monel metal	4.0	
Platinum	2.7	
Silver	5.7	
Stainless steel	ca. 5.3	
Tantalum	ca. 2.0	
Tungsten	1.3	
Plastics and other materials		
Hard rubber	24×10^{-5}	
Polyethylene	45-90	
Polystyrene	18-24	
Porcelain	<i>ca.</i> 1.2	
Teflon (polytetrafluoroethylene)	16.5	

Nitrates	All nitrates are soluble.
Acetates	All acetates are soluble; silver acetate is moderately soluble.
Chlorides	All chlorides are soluble except AgCl, PbCl ₂ , and Hg ₂ Cl ₂ . PbCl ₂ is soluble in hot water, slightly soluble in cold water.
Sulfates	All sulfates are soluble except barium and lead. Silver, mercury(I), and cal- cium are only slightly soluble.
Hydrogen sulfates	The hydrogen sulfates are more soluble than the sulfates.
Carbonates, phosphates, chromates, silicates	All carbonates, phosphates, chromates, and silicates are insoluble, except those of sodium, potassium, and ammonium. An exception is MgCrO ₄ which is soluble.
Hydroxides	All hydroxides (except lithium, sodium, potassium, cesium, rubidium, and ammonia) are insoluble; Ba(OH) ₂ is moderately soluble; Ca(OH) ₂ and Sr(OH) ₂ are slightly soluble.
Sulfides	All sulfides (except alkali metals, ammonium, magnesium, calcium, and bar- ium) are insoluble. Aluminum and chromium sulfides are hydrolyzed and precipitate as hydroxides.
Sodium, potassium, ammonium	All sodium, potassium, and ammonium salts are soluble. Exceptions: Na ₄ Sb ₂ O ₇ , K ₂ NaCo(NO ₂) ₆ , K ₂ PtCl ₆ , (NH ₄) ₂ PtCl ₆ , and (NH ₄) ₂ NaCo(NO ₂) ₆ .
Silver	All silver salts are insoluble. Exceptions: $AgNO_3$ and $AgClO_4$; $AgC_2H_3O_2$ and Ag_2SO_4 are moderately soluble.

TABLE 4.61 General Solubility Rules for Inorganic Compounds

TABLE 4.62 Concentration of Commonly Used Acids and Bases

Freshly opened bottles of these reagents are generally of the concentrations indicated in the table. This may not be true of bottles long opened and this is especially true of ammonium hydroxide, which rapidly loses its strength. In preparing volumetric solutions, it is well to be on the safe side and take a little more than the calculated volume of the concentrated reagent, since it is much easier to dilute a concentrated solution than to strengthen one that is too weak.

A concentrated C.P. reagent usually comes to the laboratory in a bottle having a label which states its molecular weight w, its density (or its specific gravity) d, and its percentage assay p. When such a reagent is used to prepare an aqueous solution of desired molarity M, a convenient formula to employ is

$$V = \frac{100 \ wM}{pd}$$

where V is the number of milliliters of concentrated reagent required for 1 liter of the dilute solution.

Example: Sulfuric acid has the molecular weight 98.08. If the concentrated acid assays 95.5% and has the specific gravity 1.84, the volume required for 1 liter of a 0.1 molar solution is

$$V = \frac{100 \times 95.08 \times 0.1}{95.5 \times 1.84} = 5.58 \text{ mL}$$

Reagent	Formula Weight	Density, $g \cdot mL^{-1}$ (20°C)	Weight % (approx)	Molarity	V, mL*
Acetic acid	60.05	1.05	99.8	17.45	57.3
Ammonium hydroxide	35.05	0.90	56.6	14.53	60.0
(as NH ₃)	17.03		28.0		
Ethylenediamine	60.10	0.899	100	15.0	66.7
Formic acid	46.03	1.20	90.5	23.6	42.5
Hydrazine	32.05	1.011	95	30.0	33.3
Hydriodic acid	127.91	1.70	57	7.6	132
Hydrobromic acid	80.92	1.49	48	8.84	113
Hydrochloric acid	36.46	1.19	37.2	12.1	82.5

Reagent	Formula Weight	Density, $g \cdot mL^{-1}$ (20°C)	Weight % (approx)	Molarity	V. mL*
		8 ())	······		,
Hydrofluoric acid	20.0	1.18	49.0	28.9	34.5
Nitric acid	63.01	1.42	70.4	15.9	63.0
Perchloric acid	100.47	1.67	70.5	11.7	85.5
Phosphoric acid	97.10	1.70	85.5	14.8	67.5
Pyridine	79.10	0.982	100	12.4	80.6
Potassium hydroxide (soln)	56.11	1.46	45	11.7	85.5
Sodium hydroxide (soln)	40.00	1.54	50.5	19.4	51.5
Sulfuric acid	98.08	1.84	96.0	18.0	55.8
Triethanolamine	149.19	1.124	100	7.53	132.7

IABLE 4.62 Concentration of Commonly Used Acids ar	d Bases	(Continued))
---	---------	-------------	---

*V, mL = volume in milliliters needed to prepare 1 liter of 1 molar solution.

TABLE 4.63	Standard	Stock Solutions
TABLE 4.63	Standard	Stock Solutions

Element	Procedure
Aluminum	Dissolve 1.000 g Al wire in minimum amount of 2 M HCl; dilute to volume.
Antimony	Dissolve 1.000 g Sb in (1) 10 ml HNO ₃ plus 5 ml HCl, and dilute to volume when dissolution is complete; or (2) 18 ml HBr plus 2 ml liquid Br_2 ; when dissolution is complete add 10 ml HClO ₄ , heat in a well-ventilated hood while swirling until white fumes appear and continue for several minutes to expel all HBr, then cool and dilute to volume.
Arsenic	Dissolve 1.3203 g of As_2O_3 in 3 ml 8 <i>M</i> HCl and dilute to volume; or treat the oxide with 2 g NaOH and 20 ml water; after dissolution dilute to 200 ml, neutralize with HCl (pH meter), and dilute to volume.
Barium	 (1) Dissolve 1.7787 g BaCl₂ · 2H₂O (fresh crystals) in water and dilute to volume. (2) Dissolve 1.516 g BaCl₂ (dried at 250°C for 2 hr) in water and dilute to volume. (3) Treat 1.4367 g BaCO₃ with 300 ml water, slowly add 10 ml of HCl and, after the CO₂ is released by swirling, dilute to volume.
Beryllium	(1) Dissolve 19.655 g BeSO ₄ · 4H ₂ O in water, add 5 ml HCl (or HNO ₃), and dilute to volume. (2) Dissolve 1.000 g Be in 25 ml 2 <i>M</i> HCl, then dilute to volume.
Bismuth	Dissolve 1.000 g Bi in 8 ml of 10 M HNO ₃ , boil gently to expel brown fumes, and dilute to volume.
Boron	Dissolve 5.720 g fresh crystals of H_3BO_3 and dilute to volume.
Bromine	Dissolve 1.489 g KBr (or 1.288 g NaBr) in water and dilute to volume.
Cadmium	(1) Dissolve 1.000 g Cd in 10 ml of 2 M HCl; dilute to volume. (2) Dissolve 2.282 g 3CdSO ₄ · 8H ₂ O in water; dilute to volume.
Calcium	Place 2.4973 g $CaCO_3$ in volumetric flask with 300 ml water, carefully add 10 ml HCl; after CO_2 is released by swirling, dilute to volume.
Cerium	 (1) Dissolve 4.515 g (NH₄)₄Ce(SO₄)₄ · 2H₂O in 500 ml water to which 30 ml H₂SO₄ had been added, cool, and dilute to volume. Advisable to standardize against As₂O₃. (2) Dissolve 3.913 g (NH₄)₂Ce(NO₃)₆ in 10 ml H₂SO₄, stir 2 min, cautiously introduce 15 ml water and again stir 2 min. Repeat addition of water and stirring until all the salt has dissolved, then dilute to volume.
Cesium	Dissolve 1.267 g CsCl and dilute to volume. Standardize: Pipette 25 ml of final solution to Pt dish, add 1 drop H ₂ SO ₄ , evaporate to dryness, and heat to constant weight at $\geq 800^{\circ}$ C. Cs (in μ g/ml) = (40)(0.734)(wt of residue)
Chlorine	Dissolve 1.648 g NaCl and dilute to volume.
Chromium	(1) Dissolve 2.829 g K ₂ Cr ₂ O ₇ in water and dilute to volume. (2) Dissolve 1.000 g Cr in 10 ml HCl, and dilute to volume.

*1000 $\mu\text{g/mL}$ as the element in a final volume of 1 liter unless stated otherwise.

Element	Procedure
Cobalt	Dissolve 1.000 g Co in 10 ml of 2 M HCl, and dilute to volume.
Copper	(1) Dissolve 3.929 g fresh crystals of $CuSO_4 \cdot 5H_2O$, and dilute to volume. (2) Dissolve
	1.000 g Cu in 10 ml HCl plus 5 ml water to which HNO_3 (or $30\%H_2O_2$) is added
	dropwise until dissolution is complete. Boil to expel oxides of nitrogen and chlorine,
	then dilute to volume.
Dysprosium	Dissolve 1.1477 g Dy_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Erbium	Dissolve 1.1436 g Er_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Europium	Dissolve 1.1579 g Eu ₂ O ₃ in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Fluorine	Dissolve 2.210 g NaF in water and dilute to volume.
Gadoimium	Dissolve 1.152 g Gd ₂ O ₃ in 50 mi of 2 <i>M</i> HCl; dilute to volume.
Gamun	Dissolve 1.000 g Ga in 50 mi of $2 M$ HCl; dilute to volume.
Gold	Dissolve 1.4408 g GeO ₂ with 50 g oxalc actual in 100 million water, unute to volume. Dissolve 1.000 g Au in 10 ml of hot HNO, by dropwise addition of HCl boil to expel
Gold	oxides of nitrog and chlorine, and dilute to volume. Store in amber container away from light.
Hafnium	Transfer 1.000 g Hf to Pt dish, add 10 ml of 9 M H ₂ SO ₄ , and then slowly add HF drop-
	wise until dissolution is complete. Dilute to volume with 10% H ₃ SO ₄ .
Holmium	Dissolve 1.1455 g Ho ₂ O ₃ in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Indium	Dissolve 1.000 g In in 50 ml of 2 M HCl; dilute to volume.
Iodine	Dissolve 1.308 g Kl in water and dilute to volume.
Iridium	(1) Dissolve 2.465 g Na ₃ IrCl ₆ in water and dilute to volume. (2) Transfer 1.000 g Ir
	sponge to a glass tube, add 20 ml of HCl and 1 ml of HClO ₄ . Seal the tube and place
	in an oven at 300°C for 24 hr. Cool, break open the tube, transfer the solution to a
	volumetric flask, and dilute to volume. Observe all safety precautions in opening the
	glass tube.
Iron	Dissolve 1.000 g Fe wire in 20 ml of 5 M HCl; dilute to volume.
Lanthanum	Dissolve 1.1717 g La_2O_3 (dried at 110°C) in 50 ml of 5 <i>M</i> HCl, and dilute to volume.
Lead	(1) Dissolve 1.5985 g Pb(NO ₃) ₂ in water plus 10 ml HNO ₃ , and dilute to volume. (2)
*	Dissolve 1.000 g Pb in 10 ml HNO ₃ , and dilute to volume.
Lithium	Dissolve a slurry of 5.3228 g $L_{12}CO_3$ in 300 ml of water by addition of 15 ml HCl; after release of CO_2 by swirling, dilute to volume.
Lutetium	Dissolve 1.6079 g LuCl ₃ in water and dilute to volume.
Magnesium	Dissolve 1.000 g Mg in 50 ml of 1 <i>M</i> HCl and dilute to volume.
Manganese	(1) Dissolve 1.000 g Mn in 10 ml HCl plus 1 ml HNO ₃ , and dilute to volume. (2) Dissolve 3.0764 g MnSO ₄ · H ₂ O (dried at 105°C for 4 hr) in water and dilute to volume. (3) Dissolve 1.5824 g MnO ₂ in 10 HCl in a good hood, evaporate to gentle dryness,
	dissolve residue in water and dilute to volume.
Mercury	Dissolve 1.000 g Hg in 10 ml of 5 M HNO ₃ and dilute to volume.
Molybdenum	(1) Dissolve 2.0425 g $(NH_4)_2MoO_4$ in water and dilute to volume. (2) Dissolve 1.5003 g MoO_3 in 100 ml of 2 <i>M</i> ammonia, and dilute to volume.
Neodymium	Dissolve 1.7373 g NdCl ₃ in 100 ml 1 M HCl and dilute to volume.
Nickel	Dissolve 1.000 g Ni in 10 ml hot HNO_3 , cool, and dilute to volume.
Niodium	ransfer 1.000 g Nb (or 1.4305 g Nb ₂ O ₅) to Pt dish, and 20 ml HF, and heat gently to complete dissolution. Cool, add 40 ml H_2SO_4 , and evaporate to fumes of SO ₃ . Cool and dilute to volume with 8 M H ₂ SO ₄ .
Osmium	Dissolve 1.3360 g OsO_4 in water and dilute to 100 ml. Prepare only as needed as solution loses strength on standing unless Os is reduced by SO_2 and water is replaced by 100 ml 0.1 <i>M</i> HCl.
Palladium	Dissolve 1.000 g Pd in 10 ml of HNO ₃ by dropwise addition of HCl to hot solution; dilute to volume.
Phosphorus	Dissolve 4.260 g (NH ₄) ₂ HPO ₄ in water and dilute to volume.
Platinum	Dissolve 1.000 g Pt in 40 ml of hot aqua regia, evaporate to incipient dryness, add 10 ml HCl and again evaporate to moist residue. Add 10 ml HCl and dilute to volume.

TABLE 4.63 Standard Stock Solutions (Continued)

Element	Procedure
Potassium	Dissolve 1.9067 g KCl (or 2.8415 g KNO ₃) in water and dilute to volume.
Praseodymium	Dissolve 1.1703 g Pr_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Rhenium	Dissolve 1.000 g Re in 10 ml of 8 M HNO ₃ in an ice bath until initial reaction subsides, then dilute to volume.
Rhodium	Dissolve 1.000 g Rh by the sealed-tube method described under iridium.
Rubidium	Dissolve 1.4148 g RbCl in water. Standardize as described under cesium. Rb (in μ g/ml) = (40)(0.320)(wt of residue).
Ruthenium	Dissolve 1.317 g RuO_2 in 15 ml of HCl; dilute to volume.
Samarium	Dissolve 1.1596 g Sm_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Scandium	Dissolve 1.5338 g Sc_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Selenium	Dissolve 1.4050 g SeO ₂ in water and dilute to volume or dissolve 1.000 g Se in 5 ml of HNO_3 , then dilute to volume.
Silicon	Fuse 2.1393 g SiO ₂ with 4.60 g Na ₂ CO ₃ , maintaining melt for 15 min in Pt crucible. Cool, dissolve in warm water, and dilute to volume. Solution contains also 2000 μ g/ml sodium.
Silver	(1) Dissolve 1.5748 g AgNO ₃ in water and dilute to volume. (2) Dissolve 1.000 g Ag in 10 ml of HNO_3 ; dilute to volume. Store in amber glass container away from light.
Sodium	Dissolve 2.5421 g NaCl in water and dilute to volume.
Strontium	Dissolve a slurry of 1.6849 g SrCO ₃ in 300 ml of water by careful addition of 10 ml of HCl; after release of CO ₂ by swirling, dilute to volume.
Sulfur	Dissolve 4.122 g $(NH_4)_2SO_4$ in water and dilute to volume.
Tantalum	Transfer 1.000 g Ta (or 1.2210 g Ta ₂ O ₅) to Pt dish, add 20 ml of HF, and heat gently to complete the dissolution. Cool, add 40 ml of H_2SO_4 and evaporate to heavy fumes of SO ₃ . Cool and dilute to volume with 50% H_2SO_4 .
Tellurium	(1) Dissolve 1.2508 g TeO ₂ in 10 ml of HCl; dilute to volume. (2) Dissolve 1.000 g Te in 10 ml of warm HCl with dropwise addition of HNO ₃ , then dilute to volume.
Terbium	Dissolve 1.6692 g of TbCl ₃ in water, add 1 ml of HCl, and dilute to volume.
Thallium	Dissolve 1.3034 g TlNO ₃ in water and dilute to volume.
Thorium	Dissolve 2.3794 g Th(NO ₃) ₄ \cdot 4H ₂ O in water, add 5 ml HNO ₃ , and dilute to volume.
Thulium	Dissolve 1.142 g Tm_2O_3 in 50 ml of 2 <i>M</i> HCl; dilute to volume.
Tin	Dissolve 1.000 g Sn in 15 ml of warm HCl; dilute to volume.
Titanium	Dissolve 1.000 g Ti in 10 ml of H_2SO_4 with dropwise addition of HNO_3 ; dilute to volume with 5% H_2SO_4 .
Tungsten	Dissolve 1.7941 g of $Na_2WO_4 \cdot 2H_2O$ in water and dilute to volume.
Uranium	Dissolve 2.1095 g $UO_2(NO_3)_2 \cdot 6H_2O$ (or 1.7734 g uranyl acetate dihydrate) in water and dilute to volume.
Vanadium	Dissolve 2.2963 g NH ₄ VO ₃ in 100 ml of water plus 10 ml of HNO ₃ ; dilute to volume.
Ytterbium	Dissolve 1.6147 g YbCl ₃ in water and dilute to volume.
Yttrium	Dissolve 1.2692 g Y_2O_3 in 50 ml of 2 <i>M</i> HCl and dilute to volume.
Zinc	Dissolve 1.000 g Zn in 10 ml of HCl; dilute to volume.
Zirconium	Dissolve 3.533 g $ZrOCl_2 \cdot 8H_2O$ in 50 ml of 2 <i>M</i> HCl, and dilute to volume. Solution should be standardized.

TABLE 4.63 Standard Stock Solutions (Continued)
TABLE 4.64 TLV Concentration Limits for Gases and Vapors

Exposure limits (threshold limit value or TLV) are those set by the Occupational Safety and Health Administration and represent conditions to which most workers can be exposed without adverse effects. The TLV value is expressed as a time weighted average airborne concentration over a normal 8-hour workday and 40-hour workweek.

	Maximum expo	Maximum allowable exposure		
Substance	ppm	$mg \cdot m^{-3}$	Toxicity	
Acetaldehyde	25	45	carcinogen	
Acetic acid	10	25	5	
Acetic anhydride	5	21		
Acetone	750	1780		
Acetonitrile	40	67		
Acetophenone	10	49		
Acetylene			slightly narcotic	
Acrolein	0.1	0.23	Ų.	
Acrylic acid	2	5.9		
Acrylonitrile	2	4.3		
Acrylonitrile	20	45		
Allyl alcohol	2	4.8		
Allyl chloride	1	3		
Allyl glycidyl ether	5	22		
Ammonia	25	18	toxic	
Aniline	2	7.6	carcinogen	
Arsine	0.05	0.2	highly toxic	
Benzene	10	32	carcinogen	
Benzenethiol	0.5	2.3	-	
p-Benzoquinone	0.1			
Benzoyl chloride	0.5			
Benzoyl peroxide		5		
Benzyl acetate	10			
Benzyl chloride	1		carcinogen	
Biphenyl	0.2		C C	
Bis(2-aminoethyl)amine	1			
Bis(2-chloroethyl) ether	5	29		
Bis(2-chloromethyl) ether	0.001		carcinogen	
Bis(2-ethylhexyl) phthalate		5	Ũ	
Boron tribromide	1			
Boron trichloride			toxic	
Boron trifluoride	1	3	highly toxic	
Bromine	0.1	0.7	0	
Bromine pentafluoride	0.1		highly toxic	
Bromine trifluoride			highly toxic	
Bromochloromethane (Halon 1011)	200	1060		
Bromoethane	5	22	carcinogen	
Bromoethylene	5	22	slightly toxic	
Bromoform	0.5	5	0,	
Bromomethane	5	19	highly toxic, carcinogen	
1,3-Butadiene	2		slightly anesthetic, carcinogen	
Butane	800	1900	slightly anesthetic	
1-Butanethiol	0.5	1.8		

	Maximum allowable exposure			
Substance	ppm	$mg \cdot m^{-3}$	Toxicity	
1-Butanol	50	152		
2-Butanol	100	303		
2-Butanone	200	590		
2-Butoxyethanol	25	121		
Butyl acetate	150	710		
sec-Butyl acetate	200	950		
tert-Butyl acetate	200	950		
Butyl acrylate	10			
tert-Butyl alcohol	100	300		
Butylamine	5	15		
tert-Butyl chromate (as CrO_{-})	5	01		
Butyl glycidyl ether	50	270		
Butyl mercantan	0.5	15		
<i>p_tert_</i> Butyltoluene	10	1.5		
(+)-Camphor	2	12		
Caprolactam	5	12		
Carbon dioxide	5000	9000		
Carbon disulfide	10	31		
Carbon monovide	25	28	toxic	
Carbon interachloride	10	20 65	IOAIC	
Carbonyl chloride	0.1	05		
Carbonyl fluoride	2		toxic	
Chlordane	2	0.5	IOAIC	
Chlorine	0.5	1.5	highly toxic	
Chlorine dioxide	0.5	1.5	inginy toxic	
Chlorine trifluoride	0.1	0.5	highly toxic	
Chloroscetaldebyde	0.1	0.4	inginy toxic	
	1 0.05	J 02		
Chlorosostul shlorida	0.05	0.5		
Chlorohongene	10	16		
Chlore 1.2 hutediane	10	40	annaina aan	
Chlorodiffuoromethene (CEC 22)	1000	2540	carcmogen	
Chloresthere	100	3340	low tovisity	
Chlorenthane	100	204	low toxicity	
2-Chioroethanoi	1	3.3		
Chloroethylene (vinyl chloride)	5	13	toxic, carcinogen	
Chloroform (trichloromethane)	10	49		
Chlorometnane	50	103	toxic, carcinogen	
I-Chloro-I-nitropropane	20	100		
Chloropentafluoroethane (CFC 115)	1000	6320		
3-Chloro-1-propene (allyl chloride)	1	3	carcinogen	
o-Chlorotoluene	50	259		
Chlorotrifluoroethylene			toxic	
Chromyl chloride (CrO_2Cl_2)	0.025		carcinogen	
o-Cresol (also m-, p-)	5	22		
trans-Crotonaldehyde	2	5.7		
Cyanogen	10	20	highly toxic	
Cyanogen chloride	0.3			
Cyclohexane	300	1030		
Cyclohexanol	50	206		
Cyclohexanone	25	100		

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

	Maximun exp	n allowable osure	
Substance	ppm	$mg \cdot m^{-3}$	Toxicity
Cyclohexene	300	1015	
Cyclohexylamine	10	41	
1.3-Cyclopentadiene	75		
Cyclopentane	600	1720	
Cyclopropane			anesthetic
2,4-D		10	
DDT		1	
Decaborane	0.05	0.3	
Diacetone alcohol	50	238	
2.2'-Diaminodiethylamine	1	4.2	
Diazomethane	0.2		carcinogen
Diborane	0.1	0.1	
Dibromodifluoromethane	100	860	
1,2-Dibromoethane			carcinogen
Dibutyl phthalate		5	8
Dichloroacetylene	0.1		
o-Dichlorobenzene	25	150	
<i>p</i> -Dichlorobenzene	10	60	carcinogen
Dichlorodifluoromethane (Freon 12)	1000	4950	
1.1-Dichloroethane	100	405	
1.2-Dichloroethane	10	40	carcinogen
1 1-Dichloroethylene	5	20	carcinogen
cis-1 2-Dichloroethylene	200	793	ouromogon
trans-1 2-Dichloroethylene	200	793	
Dichlorofluoromethane (Freon 21)	10	42	
Dichloromethane	50	174	carcinogen
1 1-Dichloro-1-nitroethane	10	60	caremogen
1.2-Dichloropropage	75	347	carcinogen
1.3-Dichloropropene	1	547	carcinogen
Dichlorosilane			highly toxic
1 2-Dichlorotetrafluoroethane (Freon 114)	1000	7000	inginy toxic
Dieldrin	1000	0.25	
Diethanolamine	0.46	0.25	
Diethylamine	5	15	
Diethyl ather	400	1210	
Dichyl cher	-00	28	
Disobutyl ketone	25	150	
Disopropulatine	5	20	
Disopropylatine Dijopropyl ether	250	1040	
Dimethoxymothono	1000	2110	
N N Dimethylacotomide	1000	25	
Dimethylamine	10	33	highly toxic
N N Dimethylaniline	5 5	9.2	inginy toxic
N, N-Dimetry lamine	5	2.5	
Dimethyl other		3	alightly torrig
			anesthetic
1-(1,1-Dimethylethyl)-4-methylbenzene	1	6.1	
N,N-Dimethylformamide	10	30	
2,6-Dimethyl-4-heptanone	25		
1,1-Dimethylhydrazine	0.5	1	carcinogen

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

	Maximum allowable exposure			
Substance	ppm	$mg \cdot m^{-3}$	Toxicity	
Dimethyl phthalate		5	<u> </u>	
2,2-Dimethylpropane			probably anesthetic	
Dimethyl sulfate	0.1	0.5	carcinogen	
Dinitrobenzene	0.15	1	U	
Dinitro-o-cresol		0.2		
Dinitrotoluene		1.5		
1,4-Dioxane	25	90	carcinogen	
Diphenyl	0.2	1	•	
Diphenyl ether	1	7		
Dipropylene glycol methyl ether-skin	100	600		
Endrin-skin		0.1		
Epichlorohydrin	2	7.6	carcinogen	
2,3-Epoxy-1-propanol (glycidol)	50	150	U	
1.2-Ethanediamine	10	25		
Ethanethiol	0.5			
Ethanol	1000	1880		
Ethanolamine	3	7.5		
2-Ethoxyethanol (Cellosolye)	5	18		
2-Ethoxyethyl acetate	5	27		
Ethyl acetate	400	1400		
Ethyl acrylate	5	20		
Ethylamine	5	<u>9</u> 2	highly toxic	
Fthylbenzene	100	435	inging toxic	
Ethylene	100	455	anesthetic	
Ethylene glycol	30		anestnette	
Ethylene glycol dinitrate	02			
Ethyleneimine	0.2		carcinogen	
Ethylene ovide	0.05		toxic caroinogen	
Ethylene oxide	100	200	toxic, careniogen	
Ethyl mercenten	0.1	500		
Ethyl nilioto	100	950		
Euryr sincate	100	0.00	highly topic	
Fluoratrichloromethene (Ereen 11)	1000	5400	nighty toxic	
Filoromethane (Freen 11)	1000	3000		
Formaldenyde	0.3	10	carcinogen	
Formanide Example and	10	18		
	3	9.4		
2-Furancarboxaldenyde (luriural)	2	7.9		
2-Furanmetnanoi	10	40		
Glycerol		10		
Heptachlor	100	0.5		
Heptane	400	1640		
2-Heptanone	50	233		
3-Heptanone	50	234		
Hexachloro-1,3-butadiene	0.02		carcinogen	
Hexachlorocyclohexane (lindane)		0.5		
Hexachloroethane	1		carcinogen	
Hexachloronaphthalene		0.2		
Hexamethylphosphoric triamide			carcinogen	
Hexane	50	176		
2-Hexanone	5	20		

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

	Maximum allowable exposure		
Substance	ppm	$mg \cdot m^{-3}$	Toxicity
sec-Hexyl acetate	50	300	
Hexylene glycol	25		
Hydrazine	0.01	0.1	carcinogen
Hydrogen bromide	3	10	highly toxic
Hydrogen chloride	5	7	highly toxic
Hydrogen cyanide	4.7		highly toxic
Hydrogen fluoride	3	2	highly toxic
Hydrogen iodide			highly toxic
Hydrogen peroxide (90%)	1	1.4	
Hydrogen selenide	0.05	0.2	highly toxic
Hydrogen sulfide	10	15	highly toxic
4-Hydroxy-4-methyl-2-pentanone	50	238	
Indene	10		
Iodine	0.1	1	
Iodine pentafluoride			highly toxic
Iodomethane	2	12	
Isobutyl acetate	150	700	
Isobutyl alcohol	50	150	
Isopentyl acetate	100	525	
Isopentyl alcohol	100	360	
Isophorone	5	28	
Isopropyl acetate	250	1040	
Isopropylamine	5	12	
Isopropylbenzene (cumene)	50	246	
Isopropyl glycidyl ether	50	240	
Ketene	0.5	0.9	
Lindane		0.5	
Liquified petroleum gas	1000	1800	
Malathion		10	
Maleic anhydride	0.25	1	
Malononitrile	0.05	0.4	
Mesityl oxide	15	60	
Methacrylic acid	20	70	
Methanethiol	0.5	-	
Methanol	200	262	
2-Methoxyaniline (also 4-)	0.1		carcinogen
2-Methoxyethanol	5	16	
2-Methoxyethyl acetate	5	24	
Methyl acetate	200	610	
Methyl acetylene-propadiene (MAPP)	1000	1800	
Methyl acrylate	10	35	
Methylacrylonitrile	1	20	
Methylamine	5	6.4	highly toxic
p-Methylaniline (also p -)	2	0.4	carcinogen
<i>m</i> -Methylaniline	2		curennogen
N-Methylaniline	0.5	22	
3-Methyl-1-butanol	100	361	
Methyl tert-butyl ether	40	501	
Methylevelohevane	400	1600	
	-00	1000	

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

	Maximum allowable exposure		
Substance	ppm	$mg \cdot m^{-3}$	Toxicity
cis-2-Methylcyclohexanol	50	234	
trans-2-Methylcyclohexanol	50	234	
cis-3-Methylcyclohexanol	50	234	
trans-3-Methylcyclohexanol	50	234	
cis-4-Methylcyclohexanol	50	234	
trans-4-Methylcyclohexanol	50	234	
Methyl formate	100	250	
5-Methyl-2-hexanone	50	234	
Methyl hydrazine	0.01		
Methyl isocyanate	0.02	0.05	
Methyl mercaptan	0.5	1	highly toxic
Methyl methacrylate	100	410	
Methyl oxirane	20		carcinogen
4-Methyl-2-pentanol	25	104	
4-Methyl-2-pentanone	50	205	
2-Methyl-2 4-pentanediol	25	121	
2-Methyl-1-propagol	50	152	
2-Methyl-2-propanol	100	303	
2-Methyl-2-propenenitrile	1	27	
a -Methylstyrene (also m_{-} n_{-})	50	2.7	
Morpholine	20	70	
Nanhthalene	10	50	
Nickel carbonyl [Ni(CO).]	0.05	0 35	carcinogen
Nicotine	0.05	0.55	caremogen
Nitric acid	2	5	
Nitric oxide	25	30	highly toxic
Nitrobenzene	1	5	inginy toxic
n-Nitrochlorobenzene	1	1	
Nitroethane	100	310	
Nitrogen dioxide	100	510	highly toxic
Nitrogen trifluoride	10		inginy toxic
Nitrogen trioxide	10	20	highly toxic
Nitroghaaring	10	23	inginy toxic
Nitromethane	100	250	
	100	230	
2 Nitropropane	25	90 26	
2-Mitopiopane Nitrocul chloride	10	50	highly topic
Nilosyi chionde	2		mgmy toxic
D-Muotoluene (also m-, p-)	200	1050	
Octachloronanhthalana	200	1050	
Octano	200	1450	
Ovalie acid	500	1450	
Oxatenono	0.05	1	anninger
2-Oxeranone Oxygon diffuorida	0.05	0.1	carcmogen
	0.05	0.1	
Ozone Deretkier	0.1	0.2	
Paratinon	0.005	0.1	
Pentadorane	0.005	0.01	
Pentachioronaphinalene		0.5	
Pentachiorophenoi	50	0.5	
Pentanal	50		

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

	Maximun exp	Maximum allowable exposure		
Substance	ppm	$mg \cdot m^{-3}$	Toxicity	
Pentane	600	1770		
2-Pentanone	200	700		
3-Pentanone	200	700		
Pentyl acetate	100	530		
Perchloroethylene	100	670		
Perchloromethyl mercaptan	0.1	0.8		
Perchloryl fluoride	3	14		
Perfluoroacetone	0.1			
Phenol	5	19		
p-Phenylenediamine		0.1		
Phenylhydrazine	0.1		carcinogen	
Phosgene	0.1	0.4	highly toxic	
Phosphine	0.3	0.4	highly toxic	
Phosphoric acid		1		
Phosphorus pentachloride		1		
Phosphorus pentafluoride			highly toxic	
Phosphorus pentasulfide		1	0,1	
Phosphorus trichloride	0.5	3		
Phosphoryl chloride	0.1			
Phthalic anhydride	1	6		
Picric acid—skin		0.1		
Propane	1000	1800	low toxicity	
Propanoic acid	10	30		
1-Propanol	200	500		
2-Propanol	400	980		
Propenal	01	200		
Propenenitrile	2		carcinogen	
Propenoic acid	2		Jaromogon	
Propyl acetate	200	835		
Propylacetate	200	5	carcinogen	
Propylene oxide	100	240	toxic	
Propyl nitrate	25	110	IOAIC	
Propyre	1000	1650		
2-Propyn-1-ol	1000	23		
Pyridine	5	15		
Ovinone	5	15		
Selenium compounds (as So)	0.1	0.4		
Selenium bevofluoride	0.05	0.2		
Silano	5	0.4	highly toxic	
Silicon tetrofluoride	2	/	highly toxic	
Stibing	0.1		inginy ioxic	
Studied column	100	575		
Stoddard solvent	100	373		
Sturono	50	0.15	anningen	
	00	213	carcinogen	
Sulfur dioxide	2	(000	nignly toxic	
Sulfur nexanuoride	1000	0000	low toxicity	
Sulfuric acid		1		
Sulfur monochloride	1	6		
Sultur pentatiuoride	0.01	~ .		
Sulfur tetrafluoride	0.1	0.4		

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (*Continued*)

	Maximum allowable exposure			
Substance	ppm	$mg \cdot m^{-3}$	Toxicity	
Sulfuryl fluoride	5	20	highly toxic	
Tellurium hexafluoride	0.02	0.2		
Terphenyls	1	9		
1,1,2,2-Tetrabromoethane	1	14		
Tetrabromomethane	0.1			
1,1,1,2-Tetrachloro-2,2-difluoroethane	500	4170		
1,1,2,2-Tetrachloro-1,2-difluoroethane	500	4170		
1,1,2,2-Tetrachloroethane	1	6.9	carcinogen	
Tetrachloroethylene	25	170	carcinogen	
Tetrachloromethane	5	31	carcinogen	
1,2,3,4-Tetrachloronaphthalene		2	-	
Tetraethyllead (as Pb)		0.100		
Tetrafluoromethane			low toxicity	
Tetrahydrofuran	200	590	-	
Tetramethyllead (as Pb)		0.150		
Tetramethylsuccinonitrile	0.5	3		
Tetranitromethane	1	8		
Thionyl chloride	1			
Thiram		5		
Toluene	50	188		
Toluene-2,4-diisocyanate	0.02	0.14		
o-Toluidine (also m-, p-)	2	8.8		
Tribromomethane	0.5	5.2		
Tributyl phosphate	0.2	2.2		
1.2.4-Trichlorobenzene	5			
1.1.1.Trichloroethane	350	1910		
1.1.2-Trichloroethane	10	55	carcinogen	
Trichloroethylene	50	270	carcinogen	
Trichlorofluoromethane	1000	5600	omonogon	
Trichloromethane	10	49	carcinogen	
1.2.3-Trichloropropage	10	60	ewennogen	
1 1 2-Trichlorotrifluoroethane	1000	00		
Tri-a-cresol phosphate (also m- p-)	1000	0.1		
Triethanolamine	0.5	0.1		
Triethylamine	1			
Trifluorobromomethane (Freon 13B1)	1000	6100		
1 1 2-Trifluorotrichloroethane	1000	7600		
Trijodomethane	0.6	7000		
Trimethylamine	5	12	highly toxic	
1 2 3-Trimethylbenzene	25	122	inginy toxic	
1.2.4 Trimethylbenzene (pseudocumene)	25	123		
1.3.5 Trimethylbenzene (mesitylene)	25	123		
Trinitrotoluono (TNT)	23	12.5		
Trinhanyl phosphete		1.5		
Turpontino	100	560		
Vinyl acetate	10	35	carcinogen	
vinyi acciaic Vinyi methyi ether	10	55	nrobably anasthatia	
Vinyi memyi emer		0.1	probably anesthetic	
	100	0.1		
0-Aylone (also m -, p -)	100	454		
2,3-Aynaine (also 2,4-, 2,3-, 2,0-, 3,4-, 3,3-)	0.5	2.5		

TABLE 4.64 TLV Concentration Limits for Gases and Vapors (Continued)

Chemical	Keep out of contact with
Acetic acid	Chromium(VI) oxide, chlorosulfonic acid, ethylene glycol, ethyleneimine, hy- droxyl compounds, nitric acid, oleum, perchloric acid, peroxides, permanga- nates, potasssium <i>tert</i> -butoxide, PCl-
Acetylene	Bromine, chlorine, brass, copper and copper salts, fluorine, mercury and mer- cury salts, nitric acid, silver and silver salts, alkali hydrides, potassium metal
Alkali metals	Moisture, acetylene, metal halides, ammonium salts, oxygen and oxidizing agents, halogens, carbon tetrachloride, carbon, carbon dioxide, carbon disul- fide, chloroform, chlorinated hydrocarbons, ethylene oxide, boric acid, sulfur, tellurium
Aluminum	Chlorinated hydrocarbons, halogens, steam
Ammonia, anhydrous	Mercury, halogens, hypochlorites, chlorites, chlorine(I) oxide, hydrofluoric acid (anhydrous), hydrogen peroxide, chromium(VI) oxide, nitrogen dioxide, chromyl(VI) chloride, sulfinyl chloride, magnesium perchlorate, peroxodisul- fates, phosphorus pentoxide, acetaldehyde, ethylene oxide, acrolein, gold(III) chloride
Ammonium nitrate	Acids, metal powders, flammable liquids, chlorates, nitrites, sulfur, finely di- vided organic or combustible materials, perchlorates, urea
Ammonium perchlorate	Hot copper tubing, sugar, finely divided organic or combustible materials, po- tassium periodate and permanganate, powdered metals, carbon, sulfur
Aniline	Nitric acid, peroxides, oxidizing materials, acetic anhydride, chlorosulfonic acid, oleum, ozone
Benzoyl peroxide	Direct sunlight, sparks and open flames, shock and friction, acids, alcohols, amines, ethers, reducing agents, polymerization catalysts, metallic naph- thenates
Bromine	Ammonia, carbides, dimethylformamide, fluorine, ozone, olefins, reducing ma- terials including many metals, phosphine, silver azide
Calcium carbide	Moisture, selenium, silver nitrate, sodium peroxide, tin(II) chloride, potassium hydroxide plus chlorine, HCl gas, magnesium
Carbon, activated	Calcium hypochlorite, all oxidizing agents, unsaturated oils
Chlorates	Ammonium salts, acids, metal powders, sulfur, finely divided organic or com- bustible materials, cyanides, metal sulfides, manganese dioxide, sulfur diox- ide, organic acids
Chlorine	Ammonia, acetylene, alcohols, alkanes, benzene, butadiene, carbon disulfide, dibutyl phthalate, ethers, fluorine, glycerol, hydrocarbons, hydrogen, sodium carbide, finely divided metals, metal acetylides and carbides, nitrogen com- pounds, nonmetals, nonmetal hydrides, phosphorus compounds, polychlorobi- phenyl, silicones, steel, sulfides, synthetic rubber, turpentine
Chlorine dioxide	Ammonia, carbon monoxide, hydrogen, hydrogen sulfide, methane, mercury, nonmetals, phosphine, phosphorus pentachloride
Chlorites	Ammonia, organic matter, metals
Chloroform	Aluminum, magnesium, potassium, sodium, aluminum chloride, ethylene, pow- erful oxidants
Chlorosulfonic acid	Saturated and unsaturated acids, acid anhydrides, nitriles, acrolein, alcohols, ammonia, esters, HCl, HF, ketones, hydrogen peroxide, metal powders, nitric acid, organic materials, water
Chromic(VI) acid	Acetic acid, acetic anhydride, acetone, alcohols, alkali metals, ammonia, dimeth- ylformamide, camphor, glycerol, hydrogen sulfide, phosphorus, pyridine, se- lenium, sulfur, turpentine, flammable liquids in general
Cobalt	Acetylene, hydrazinium nitrate, oxidants
Copper	Acetylene and alkynes, ammonium nitrate, azides, bromates, chlorates, iodates, chlorine, ethylene oxide, fluorine, peroxides, hydrogen sulfide, hydrazinium nitrate

TABLE 4.65 Some Common Reactive and Incompatible Chemicals

Chemical	Keep out of contact with
Conner(II) sulfate	Hudrovylamina magnasium
Cumene hydroperovide	Acids (inorganic or organic)
Cyanides	Acids water or steam fluorine magnesium nitric acid and nitrates nitrites
Cyclohexanol	Avidants
Cyclohexanore	Hydrogen peroxide nitric acid
Decaborane-14	Dimethyl sulfoxide, ethers, halocarbons
Diazomethane	Alkali metals, calcium sulfate
1 1-Dichloroethylene	Air, chlorotrifluoroethylene, ozone, perchloryl fluoride
Dimethylformamide	Halocarbons, inorganic and organic nitrates, bromine, chromium(VI) oxide, alu- minum trimethyl, phosphorus trioxide
1,1-Dimethylhydrazine	Air, hydrogen peroxide, nitric acid, nitrous oxide
Dimethylsulfoxide	Acyl and aryl halides, boron compounds, bromomethane, nitrogen dioxide, magnesium perchlorate, periodic acid, silver difluoride, sodium hydride, sul- fur trioxide
Dinitrobenzenes	Nitric acid
Dinitrotoluenes	Nitric acid
1,4-Dioxane	Silver perchlorate
Esters	Nitrates
Ethylamine	Cellulose, oxidizers
Ethers	Oxidizing materials, boron triiodide
Ethylene	Aluminum trichloride, carbon tetrachloride, chlorine, nitrogen oxides, tetrafluo- roethylene
Ethylene oxide	Acids and bases, alcohols, air, 1,3-nitroaniline, aluminum chloride, aluminum oxide, ammonia, copper, iron chlorides and oxides, magnesium perchlorate, mercaptans, potassium, tin chlorides, alkane thiols
Ethyl ether	Liquid air, chlorine, chromium(VI) oxide, lithium aluminum hydride, ozone, perchloric acid, peroxides
Ethyl sulfate	Oxidizing materials, water
Flammable liquids	Ammonium nitrate, chromic acid, the halogens, hydrogen peroxide, nitric acid
Fluorine	Isolate from everything; only lead and nickel resist prolonged attack
Formamide	Iodine, pyridine, sulfur trioxide
Freon 113	Aluminum, barium, lithium, samarium, NaK alloy, titanium
Glycerol	Acetic anhydride, hypochlorites, chromium(VI) oxide, perchlorates, alkali per- oxides, sodium hydride
Hydrazine	Alkali metals, ammonia, chlorine, chromates and dichromates, copper salts, flu- orine, hydrogen peroxide, metallic oxides, nickel, nitric acid, liquid oxygen, zinc diethyl
Hydrides	Powerful oxidizing agents, moisture
Hydrocarbons	Halogens, chromium(VI) oxide, peroxides
Hydrogen	Halogens, lithium, oxidants, lead trifluoride
Hydrogen bromide	Fluorine, iron(III) oxide, ammonia, ozone
Hydrogen chloride	Acetic anhydride, aluminum, 2-aminoethanol, ammonia, chlorosulfonic acid, ethylenediamine, fluorine, metal acetylides and carbides, oleum, perchloric acid, potassium permanganate, sodium, sulfuric acid
Hydrogen fluoride	Acetic anhydride, 2-aminoethanol, ammonia, arsenic trioxide, chlorosulfonic acid, ethylenediamine, ethyleneimine, fluorine, HgO, oleum, phosphorus tri- oxide, propylene oxide, sodium, sulfuric acid, vinyl acetate
Hydrogen iodide	Fluorine, nitric acid, ozone, metals
Hydrogen peroxide	Copper, chromium, iron, most metals or their salts, alcohols, acetone, organic materials, flammable liquids, combustible materials
Hydrogen selenide	Hydrogen peroxide, nitric acid
Hydrogen sulfide	Fuming nitric acid, oxidizing gases, peroxides

TABLE 4.65 Some Common Reactive and Incompatible Chemicals (Continued)

Chemical	Keep out of contact with
Hydroquinone	Sodium hydroxide
Hydroxylamine	Barium oxide and peroxide, carbonyls, chlorine, copper(II) sulfate, dichromates,
	lead dioxide, phosphorus trichloride and pentachloride, permanganates, pyri- dine, sodium, zinc
Hypochlorites, salts of	Urea, amines, anthracene, carbon, carbon tetrachloride, ethanol, glycerol, mer- captans, organic sulfides, sulfur, thiols
Indium	Acetonitrile, nitrogen dioxide, mercury(II) bromide, sulfur
Iodine	Acetaldehyde, acetylene, aluminum, ammonia (aqueous or anhydrous), anti- mony, bromine pentafluoride, carbides, cesium oxide, chlorine, ethanol, fluo- rine, formamide, lithium, magnesium, phosphorus, pyridine, silver azide, sul- fur trioxide
Iodine monochloride	Aluminum foil, organic matter, metal sulfides, phosphorus, potassium, rubber, sodium
Iodoform	Acetone, lithium, mercury(II) oxide, mercury(I) chloride, silver nitrate
Iodomethane	Silver chlorite, sodium
Iron disulfide	Water, powdered pyrites
Isothiourea	Acrylaldehyde, hydrogen peroxide, nitric acid
Ketones	Aldehydes, nitric acid, perchloric acid
Lactonitrile	Oxidizing materials
Lead	Ammonium nitrate, chlorine trifluoride, hydrogen peroxide, sodium azide and carbide, zirconium, oxidants
Lead(II) azide	Calcium stearate, copper, zinc, brass, carbon disulfide
Lead chromate	Iron hexacyanoferrate(4-)
Lead dioxide	Aluminum carbide, hydrogen peroxide, hydrogen sulfide, hydroxylamine, ni- troalkanes, nitrogen compounds, nonmetal halides, peroxoformic acid, phos- phorus, phosphorus trichloride, potassium, sulfur, sulfur dioxide, sulfides, tungsten, zirconium
Lead(II) oxide	Chlorinated rubber, chlorine, ethylene, fluorine, glycerol, metal acetylides, perchloric acid
Lead(II,IV) oxide	Same as for lead dioxide
Lithium hydride	Nitrous oxide, oxygen
Magnesium	Air, beryllium fluoride, ethylene oxide, halogens, halocarbons, HI, metal cya- nides, metal oxides, metal oxosalts, methanol, oxidants, peroxides, sulfur, tel- lurium
Maleic anhydride	Alkali metals, amines, KOH, NaOH, pyridine
Manganese dioxide	Aluminum, hydrogen sulfide, oxidants, potassium azide, hydrogen peroxide, peroxosulfuric acid, sodium peroxide
Mercaptans	Powerful oxidizers
Mercury	Acetylenic compounds, chlorine, fulminic acid, ammonia, ethylene oxide, met- als, methyl azide, oxidants, tetracarbonylnickel
Mercury(II) cyanide	Fluorine, hydrogen cyanide, magnesium, sodium nitrite
Mercury(I) nitrate	Phosphorus
Mercury(II) nitrate	Acetylene, aromatics, ethanol, hypophosphoric acid, phosphine, unsaturated or- ganic compounds
Mercury(II) oxide	Chlorine, hydrazine hydrate, hydrogen peroxide, hypophosphorous acid, magne- sium, phosphorus, sulfur, butadiene, hydrocarbons, methanethiol
Mesityl oxide	2-Aminoethanol, chlorosulfonic acid, nitric acid, ethylenediamine, sulfuric acid
Methanol	Beryllium dihydride, chloroform, oxidants, potassium tert-butoxide
Methylamine	Nitromethane
N-Methylformamide	Benzenesulfonyl chloride
Methyl isobutyl ketone	Potassium tert-butoxide

TABLE 4.65 Some Common Reactive and Incompatible Chemicals (Continued)

Chemical	Keep out of contact with
Methyl methacrylate	Air, benzoyl peroxide
4-Methylnitrobenzene	Sulfuric acid, tetranitromethane
2-Methylpyridine	Hydrogen peroxide, iron(II) sulfate, sulfuric acid
Methylsodium	4-Chloronitrobenzene
Molybdenum trioxide	Chlorine trifluoride, interhalogens, metals
Naphthalene	Chromium trioxide, dinitrogen pentaoxide
2-Naphthol	Antipyrine, camphor, phenol, iron(III) salts, menthol, oxidizing materials, per- manganates, urethane
Neodymium	Phosphorus
Nickel	Aluminum, aluminum(III) chloride, ethylene, 1,4-dioxan, hydrogen, methanol, nonmetals, oxidants, sulfur compounds
Nickel carbonyl	Air, bromine, oxidizing materials
Niobium	Bromine trifluoride, chlorine, fluorine
Nitrates	Aluminum, BP, cyanides, esters, phosphorus, tin(II) chloride, sodium hypophos phite, thiocyanates
Nitric acid, fuming	Organic matter, nonmetals, most metals, ammonia, chlorosulfonic acid, chro- mium trioxide, cyanides, dichromates, hydrazines, hydrides, HCN, HI, hydro gen sulfide, sulfur dioxide, sulfur halides, sulfuric acid, flammable liquids and gases
Nitric oxide	Aluminum, BaO, boron, carbon disulfide, chromium, many chlorinated hydro- carbons, fluorine, hydrocarbons, ozone, phosphine, phosphorus, hydrazine, acetic anhydride, ammonia, chloroform, Fe, K, Mg, Mn, Na, sulfur
Nitrites	Organic nitrites in contact with ammonium salts, cyanides
Nitrobenzene	Nitric acid, nitrous oxide, silver perchlorate
Nitroethane	Hydroxides, hydrocarbons, metal oxides
Nitrogen trichloride	Ammonia, As, hydrogen sulfide, nitrogen dioxide, organic matter, ozone, phos- phine, phosphorus, KCN, KOH, Se, dibutyl ether
Nitrogen dioxide	Cyclohexane, fluorine, formaldehyde, alcohols, nitrobenzene, petroleum, toluene
Nitrogen triiodide	Acids, bromine, chlorine, hydrogen sulfide, ozone
α -Nitroguanidine	Complex salts of mercury and silver
Nitromethane	Acids, alkylmetal halides, hydroxides, hydrocarbons, organic amines, formalde hyde, nitric acid, perchlorates
1-Nitropropane	See under Nitromethane; chlorosulfonic acid, oleum
Nitrosyl fluoride	Haloalkenes, metals, nonmetals
Nitrosyl perchlorate	Acetones, amines, diethyl ether, metal salts, organic materials
Nitrourea	Mercury(II) and silver salts
Nitrous acid	Phosphine, phosphorus trichloride, silver nitrate, semicarbazone
Nitryl chloride	Ammonia, sulfur trioxide, tin(IV) bromide and iodide
Oxalic acid	Furfuryl alcohol, silver, mercury, sodium chlorate, sodium chlorite, sodium hy- pochlorite
Oxygen	Acetaldehyde, acetone, alcohols, alkali metals, alkaline earth metals, Al-Ti al- loys, ether, carbon disulfide, halocarbons, hydrocarbons, metal hydrides, 1,3,5-trioxane
Ozone	Alkenes, aromatic compounds, bromine, diethyl ether, ethylene, HBr, HI, nitric oxide, nitrogen dioxide, rubber, stibine
Palladium	Arsenic, carbon, ozonides, sulfur, sodium tetrahydridoborate
Paraformaldehyde	Liquid oxygen
Paraldehyde	Alkalies, HCN, iodides, nitric acid, oxidizers
Pentaborane-9	Dimethylsulfoxide
Pentacarbonyliron	Acetic acid, nitric oxide, transition metal halides, water, zinc

TABLE 4.65 Some Common Reactive and Incompatible Chemicals (Continued)

Chemical	Keep out of contact with
2-Pentanone	Bromine trifluoride
3-Pentanone	Hydrogen peroxide, nitric acid
Perchlorates	Carbonaceous materials, finely divided metals particularly magnesium and alu- minum, sulfur, benzene, olefins, ethanol, sulfur, sulfuric acid
Perchloric acid	Acetic acid, acetic anhydride, alcohols, antimony compounds, azo pigments, bismuth and its alloys, methanol, carbonaceous materials, carbon tetrachlo- ride, cellulose, dehydrating agents, diethyl ether, glycols and glycolethers, HCl, HI, hypophosphites, ketones, nitric acid, pyridine, steel, sulfoxides, sul- furic acid
Permanganates	All reducing agents, organic materials
Peroxides	Reducing agents, organic materials, thiocyanates
Peroxoacetic acid	Acetic anhydride, olefins, organic matter
Peroxobenzoic acid	Olefins, reducing materials
Peroxoformic acid	Metals and nonmetals, organic materials
Peroxosulfuric acid	Acetone, alcohols, aromatic compounds, catalysts
Phenol	Butadiene, peroxodisulfuric acid, peroxosulfuric acid, aluminum chloride plus nitrobenzene
Phenylhydrazine	Lead dioxide, oxidizers
Phosgene	Aluminum, alkali metals, 2-propanol
Phosphine	Air, boron trichloride, bromine, chlorine, nitric acid, nitrogen oxides, nitrous acid, oxygen, silver nitrate
Phosphorus pentachloride	Aluminum, chlorine, chlorine dioxide, chlorine trioxide, fluorine, magnesium oxide, nitrobenzene, diphosphorus trioxide, potassium, sodium, urea, water
Phosphorus pentafluoride	Water or steam
Phosphorus pentasulfide	Air, alcohols, water
Phosphorus pentoxide	Formic acid, HF, inorganic bases, metals, oxidants, water
Phosphorus, red	Organic materials
Phosphorus tribromide	Potassium, ruthenium tetroxide, sodium, water
Phosphorus trichloride	Acetic acid, aluminum, chromyl dichloride, dimethylsulfoxide, hydroxylamine, lead dioxide, nitric acid, nitrous acid, organic matter, potassium, sodium, water
Phosphorus, white	Air, oxidants of all types, halogens, metals
Phosphoryl chloride	Carbon disulfide, <i>N</i> , <i>N</i> -dimethylformamide, 2,5-dimethylpyrrole, 2,6-dimethylpyridine 1-oxide, dimethylsulfoxide, water, zinc
Phthalic acid	Nitric acid, sodium nitrite
Piperazine	Oxidizers
Platinum	Acetone, arsenic, hydrazine, lithium, proxosulfuric acid, phosphorus, selenium, tellurium
Potassium	See under Alkali metals
Potassium tert-butoxide	Organic compounds, sulfuric acid
Potassium hydride	Air, chlorine, acetic acid, acrolein, acrylonitrile, maleic anhydride, nitroparaf- fins, <i>N</i> -nitrosomethylurea, tetrahydrofuran, water
Potassium perchlorate	Aluminum plus magnesium, carbon, nickel plus titanium, reducing agents, sul- fur, sulfuric acid
Potassium permanganate	Organic or readily oxidizable materials
Potassium sodium alloy	Air, carbon dioxide, carbon disulfide, halocarbons, metal oxides
2-Propyn-1-ol	Alkali metals, mercury(II) sulfate, oxidizing materials, phosphorus pentoxide, sulfuric acid
Pyridine	Chlorosulfonic acid, chromium trioxide, formamide, maleic anhydride, nitric acid, oleum, perchromates, silver perchlorate, sulfuric acid
Pyrrolidine	Oxidizing materials

TABLE 4.65 Some Common Reactive and Incompatible Chemicals (Continued)

Chemical	Keep out of contact with
Quinoline	Dinitrogen tetroxide, linseed oil, maleic anhydride, thionyl chloride
Salicylic acid	Iodine, iron salts, lead acetate
Silicon	Alkali carbonates, calcium, chlorine, cobalt(II) fluoride, manganese trifluoride, oxidants, silver fluoride, sodium-potassium alloy
Silver	Acetylene, ammonium compounds, ethyleneimine, hydrogen peroxide, oxalic acid, sulfuric acid, tartaric acid
Sodium	See under Alkali metals
Sodium peroxide	Glacial acetic acid, acetic anhydride, aniline, benzene, benzaldehyde, carbon di- sulfide, diethyl ether, ethanol or methanol, ethylene glycol, ethyl acetate, fur- fural, glycerol, metals, methyl acetate, organic matter
Sulfides	Acids, powerful oxidizers, moisture
Sulfur	Oxidizing materials, halogens
Sulfur dioxide	Halogens, metal oxides, polymeric tubing, potassium chlorate, sodium hydride
Sulfuric acid	Chlorates, metals, HCl, organic materials, perchlorates, permanganates, water
Sulfuryl dichloride	Alkalis, diethyl ether, dimethylsulfoxide, dinitrogen tetroxide, lead dioxide, phosphorus
Tellurium	Halogens, metals
Tetrahydrofuran	Tetrahydridoaluminates, KOH, NaOH
Tetranitroaniline	Reducing materials
Tetranitromethane	Aluminum, cotton, aromatic nitro compounds, hydrocarbons, cotton, toluene
Thiocyanates	Chlorates, nitric acid, peroxides
Thionyl chloride	Ammonia, dimethylsulfoxide, linseed oil, quinoline, sodium
Thiophene	Nitric acid
Thymol	Acetanilide, antipyrine, camphor, chlorohydrate, menthol, quinine sulfate, ure- thene
Tin(II) chloride	Boron trifluoride, ethylene oxide, hydrazine hydrate, nitrates, Na, K, hydrogen peroxide
Tin(IV) chloride	Alkyl nitrates, ethylene oxide, K, Na turpentine
Titanium	Aluminum, boron trifluoride, carbon dioxide, CuO, halocarbons, halogens, PbO, nitric acid, potassium chlorate, potassium nitrate, potassium permanganate, steam at high temperatures, water
Toluene	Sulfuric plus nitric acids, nitrogen dioxide, silver perchlorate, uranium hexa- fluoride
Toluidines	Nitric acid
2,4,6-Trinitrotoluene	Sodium dichromate, sulfuric acid
1,3,5-Trioxane	Oxidizing materials, acids
Urea	Sodium nitrite, phosphorus pentachloride
Vinylidene chloride	Chlorosulfonic acid, nitric acid, oleum

TABLE 4.65 Some Common Reactive and Incompatible Chemicals (Continued)

Acetaldehyde	Isoprene
Acrolein	Lecithin
Adenosinetriphosphoric acid	Mercaptoacetic acid
Bromacetaldehyde, diethyl acetal	Methyl acrylate
Bromosuccinimide	2-Methyl-1-butene
3-Buten-2-one	Methylenedi-1,4-phenylene diisocyanate
tert-Butyl hydroperoxide	4-Methyl-1-pentene
2-Chlorocyclohexanone	α -Methylstyrene
Cupferron	1-Naphthyl isocyanate
1,3-Cyclohexadiene	1-Pentene
1,3-Dihydroxy-2-propanone	Isopentyl acetate
Divinylbenzene	Pyruvic acid
Ethyl methacrylate, monomer	Styrene, stabilized
Glutathione	Tetramethylsilane
Glycidol	Thioacetamide
Histamine, base	Veratraldehyde
Hydrocinnamaldehyde	Vitamin E (and the acetate)

TABLE 4.66 Chemicals Recommended for Refrigerated Storage

B. Due to flammability and high volatility

Acetaldehyde	Iodomethane	
Bromoethane	Isoprene	
tert-Butylamine	Isopropylamine	
Carbon disulfide	Methylal	
1-Chloropropane	2-Methylbutane	
3-Chloropropane	2-Methyl-2-butene	
Cyclopentane	Methyl formate	
Diethyl ether	Pentane	
2,2-Dimethylbutane	Propylamine	
Dimethyl sulfide	Propylene oxide	
Furan	Trichlorosilane	
1-Chloropropane 3-Chloropropane Cyclopentane Diethyl ether 2,2-Dimethylbutane Dimethyl sulfide Furan	2-Methylbutane 2-Methyl-2-butene Methyl formate Pentane Propylamine Propylene oxide Trichlorosilane	

TABLE 4.67 Chemicals Which Polymerize or Decompose on Extended Refrigeration

Formaldehyde	Sodium methoxide
Hydrogen peroxide	Sodium nitrate
Sodium chlorite [sodium chlorate (IV)]	Sodium peroxide
Sodium chromate(VI)	Strontium nitrate
Sodium dithionite	Urea
Sodium ethoxide	

4.15 SIEVES AND SCREENS

	Sieve o	pening		Sieve opening	
Sieve no.	mm	inch	Sieve no.	mm	inch
	125	5.00	10	2.00	0.0787
	106	4.24	12	1.70	0.0661
	90	3.50	14	1.40	0.0555
	75	3.00	16	1.18	0.0469
	63	2.50	18	1.00	0.0394
	53	2.12	20	0.850	0.0331
	45	1.75	25	0.710	0.0278
	37.5	1.50	30	0.600	0.0234
	31.5	1.25	35	0.500	0.0197
	26.5	1.06	40	0.425	0.0165
	22.4	0.875	45	0.355	0.0139
	19.0	0.75	50	0.300	0.0117
	16.0	0.625	60	0.250	0.0098
	13.2	0.530	70	0.212	0.0083
	11.2	0.438	80	0.180	0.0070
	9.5	0.375	100	0.150	0.0059
	8.0	0.312	120	0.125	0.0049
	6.7	0.265	140	0.106	0.0041
3.5	5.60	0.223	170	0.090	0.0035
4	4.75	0.187	200	0.075	0.0029
5	4.00	0.157	230	0.063	0.0025
6	3.35	0.132	270	0.053	0.0021
7	2.80	0.111	325	0.045	0.0017
8	2.36	0.0937	400	0.038	0.0015

TABLE 4.68 U.S	S. Standard Sieves
----------------	--------------------

Specifications are from ASTM E.11-81/ISO 565. The sieve numbers are the approximate number of openings per linear inch.

4.16 THERMOMETRY

4.16.1 Temperature Measurement

The new international temperature scale, known as ITS-90, was adopted in September 1989. However, neither the definition of thermodynamic temperature nor the definition of the kelvin or the Celsius temperature scales has changed; it is the way in which we are to realize these definitions that has changed. The changes concern the recommended thermometers to be used in different regions of the temperature scale and the list of secondary standard fixed points. The changes in temperature determined using ITS-90 from the previous IPTS-68 are always less than 0.4 K, and almost always less than 0.2 K, over the range 0–300 K.

The ultimate definition of thermodynamic temperature is in terms of pV (pressure × volume) in a gas thermometer extrapolated to low pressure. The kelvin (K), the unit of thermodynamic temperature, is defined by specifying the temperature of one fixed point on the scale—the triple point of water which is defined to be 273.16 K. The Celsius temperature scale (°C) is defined by the equation

$$^{\circ}C = K - 273.15$$

where the freezing point of water at 1 atm is 273.15 K.

Fixed points	Т, К	t, °C
Triple point of hydrogen	13.8033	- 259.3467
Boiling point of hydrogen at 33 321.3 Pa	17.035	-256.115
Boiling point of hydrogen at 101 292 Pa	20.27	-252.88
Triple point of neon	24.5561	-248.5939
Triple point of oxygen	54.3584	-218.7916
Triple point of argon	83.8058	189.3442
Triple point of mercury	234.3156	- 38.8344
Triple point of water	273.16	0.01
Melting point of gallium	302.9146	29.7646
Freezing point of indium	429.7458	156.5985
Freezing point of tin	505.078	231.928
Freezing point of zinc	692.677	419.527
Freezing point of aluminum	933.473	660.323
Freezing point of silver	1234.93	961.78
Freezing point of gold	1337.33	1064.18
Freezing point of copper	1357.77	1084.62
Secondary reference points to extend the scale (IPTS-68):		
Freezing point of platinum	2042	1769
Freezing point of rhodium	2236	1963
Freezing point of iridium	2720	2447
Melting point of tungsten	3660	3387

|--|

The fixed points in the ITS-90 are given in Table 4.54. Platinum resistance thermometers are recommended for use between 14 K and 1235 K (the freezing point of silver), calibrated against the fixed points. Below 14 K either the vapor pressure of helium or a constant-volume gas thermometer is to be used. Above 1235 K radiometry is to be used in conjunction with the Planck radiation law,

$$L_{\lambda} = c_1 \lambda^{-5} (e^{c2/\lambda T} - 1)^{-1}$$

where L_{λ} is the spectral radiance at wavelength λ . The first radiation constant, c_1 , is 3.741 83 \times 10⁻¹⁶ W \cdot m² and the second radiation constant, c_2 , has a value of 0.014 388 m \cdot K.

When a thermometer which has been standardized for total immersion is used with a part of the liquid column at a temperature below that of the bulb, the reading is low and a correction must be applied. The stem correction, in degrees Celsius, is given by

$$KL(t_o - t_m) =$$
degrees Celsius

where K = constant, characteristic of the particular kind of glass and temperature (see Table 4.65)

- L = length of exposed thermometer, °C (that is, the length not in contact with vapor or liquid being measured)
- t_o = observed temperature on thermometer
- t_m = mean temperature of exposed column (obtained by placing an auxiliary thermometer alongside with its bulb midpoint)

For thermometers containing organic liquids, it is sufficient to use the approximate value, K = 0.001. In such thermometers the value of K is practically independent of the kind of glass.

Temperature, °C	Soft glass	Heat-resistant glass	
 0-150	0.000 158	0.000 165	
200	0.000 159	0.000 167	
250	0.000 161	0.000 170	
300	0.000 164	0.000 174	
350		0.000 178	
400		0.000 183	
450		0.000 188	

TABLE 4.70 Values of K for Stem Correction of Thermometers

4.17 THERMOCOUPLES

The thermocouple reference data in Tables 4.71 to 4.79 give the thermoelectric voltage in millivolts with the reference junction at 0°C. Note that the temperature for a given entry is obtained by adding the corresponding temperature in the top row to that in the left-hand column, regardless of whether the latter is positive or negative.

The noble metal thermocouples, Types B, R, and S, are all platinum or platinum-rhodium thermocouples and hence share many of the same characteristics. Metallic vapor diffusion at high temperatures can readily change the platinum wire calibration, hence platinum wires should only be used inside a nonmetallic sheath such as high-purity alumina.

Type B thermocouples (Table 4.72) offer distinct advantages of improved stability, increased mechanical strength, and higher possible operating temperatures. They have the unique advantage that the reference junction potential is almost immaterial, as long as it is between 0°C and 40°C. Type B is virtually useless below 50°C because it exhibits a double-value ambiguity from 0°C to 42°C.

Type E thermoelements (Table 4.73) are very useful down to about liquid hydrogen temperatures and may even be used down to liquid helium temperatures. They are the most useful of the commercially standardized thermocouple combinations for subzero temperature measurements because of their high Seebeck coefficient (58 μ V/°C), low thermal conductivity, and corrosion resistance. They also have the largest Seebeck coefficient (voltage response per degree Celsius) above 0°C of any of the standardized thermocouples which makes them useful for detecting small temperature changes. They are recommended for use in the temperature range from –250 to 871°C in oxidizing or inert atmospheres. They should not be used in sulfurous, reducing, or alternately reducing and oxidizing atmospheres unless suitably protected with tubes. They should not be used in vacuum at high temperatures for extended periods of time.

Type J thermocouples (Table 4.74) are one of the most common types of industrial thermocouples because of the relatively high Seebeck coefficient and low cost. They are recommended for use in the temperature range from 0 to 760°C (but never above 760°C due to an abrupt magnetic transformation that can cause decalibration even when returned to lower temperatures). Use is permitted in vacuum and in oxidizing, reducing, or inert atmospheres, with the exception of sulfurous atmospheres above 500°C. For extended use above 500°C, heavy-gauge wires are recommended. They are not recommended for subzero temperatures. These thermocouples are subject to poor conformance characteristics because of impurities in the iron.

The Type K thermocouple (Table 4.75) is more resistant to oxidation at elevated temperatures than the Type E, J, or T thermocouple, and consequently finds wide application at temperatures above 500° C. It is recommended for continuous use at temperatures within the range -250 to 1260° C in inert or oxidizing atmospheres. It should not be used in sulfurous or reducing atmospheres, or in vacuum at high temperatures for extended times.

The Type N thermocouple (Table 4.76) is similar to Type K but it has been designed to minimize some of the instabilities in the conventional Chromel-Alumel combination. Changes in the alloy content have improved the order/disorder transformations occurring at 500°C and a higher silicon content of the positive element improves the oxidation resistance at elevated temperatures.

The Type R thermocouple (Table 4.77) was developed primarily to match a previous platinum-10% rhodium British wire which was later found to have 0.34% iron impurity in the rhodium. Comments on Type S also apply to Type R.

The Type S thermocouple (Table 4.78) is so stable that it remains the standard for determining temperatures between the antimony point (630.74° C) and the gold point (1064.43° C). The other fixed point used is that of silver. The Type S thermocouple can be used from -50° C continuously up to about 1400°C, and intermittently at temperatures up to the freezing point of platinum (1769° C). The thermocouple is most reliable when used in a clean oxidizing atmosphere, but may also be used in inert gaseous atmospheres or in a vacuum for short periods of time. It should not be used in reducing atmospheres, nor in those containing metallic vapor (such as lead or zinc), nonmetallic vapors (such as arsenic, phosphorus, or sulfur), or easily reduced oxides, unless suitably protected with nonmetallic protecting tubes.

The Type T thermocouple (Table 4.79) is popular for the temperature region below 0° C (but see under Type E). It can be used in vacuum, or in oxidizing, reducing, or inert atmospheres.

			FP, freezin NBP, normal b	g point poiling point	BP, boiling point TP, triple point				
Fixed point	°C	Type B	Type E	Type J	Туре К	Type N	Type R	Type S	Туре Т
Helium NPB			- 9.8331		-6.4569	- 4.345			- 6.2563
Hydrogen TP	-259.347*		-9.7927		-6.4393	-4.334			-6.2292
Hydrogen NBP	252.88*		-9.7447		-6.4167	-4.321			-6.1977
Neon TP	-248.594*		-9.7046		- 6.3966	-4.271			-6.1714
Neon NBP	246.048		-9.6776		-6.3827	-4.300			-6.1536
Oxygen TP	-218.792*		- 9.2499		-6.1446	-4.153			-5.8730
Nitrogen TP	-210.001		-9.0629	-8.0957	-6.0346	-4.083			- 5.7533
Nitrogen NBP	-195.802		-8.7168	-7.7963	-5.8257	-3.947			- 5.5356
Oxygen NBP	-182.962		- 8.3608	-7.4807	-5.6051	-3.802			- 5.3147
Carbon dioxide SP	- 78.474		-4.2275	-3.7187	-2.8696	- 1.939			-2.7407
Mercury TP	38.834*		-2.1930	-1.4849		-0.985	-0.1830	-0.1895	- 1.4349
Ice point	0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Diphenyl ether TP	26.87	-0.0024	1.6091	1.3739	1.076	0.698	0.1517	0.1537	1.0679
Water BP	100.00	0.0332	6.3171	5.2677	4.0953	2.774	0.6472	0.6453	4.2773
Benzoic acid TP	122.37	0.0561	7.8468	6.4886	5.0160	3.446	0.8186	0.8129	5.3414
Indium FP	156.598*	0.1019	10.260	8.3743	6.0404	4.508	1.0956	1.0818	7.0364
Tin FP	231.928*	0.2474	15.809	12.552	9.4201	6.980	1.7561	1.7146	11.013
Bismuth FP	271.442	0.3477	18.821	14.743	11.029	8.336	2.1250	2.0640	13.219
Cadmium FP	321.108	0.4971	22.684	17.493	13.085	10.092	2.6072	2.5167	16.095
Lead FP	327.502	0.5182	23.186	17.846	13.351	10.322	2.6706	2.5759	16.473
Mercury BP	356.66	0.6197	25.489	19.456	14.571		2.9630	2.8483	18.218
Zinc FP	419.527*	0.8678	30.513	22.926	17.223		3.6113	3.4479	
Cu-Al eutectic FP	548.23	1.4951	40.901	30.109	22.696		5.0009	4.7140	
Antimony FP	630.74	1.9784	47.561	34.911	26.207		5.9331	5.5521	
Aluminum FP	660.37	2.1668	49.941	36.693	27.461		6.2759	5.8591	
Silver FP	961.93*	4.4908	73.495	55.669	39.779		10.003	9.1482	
Gold FP	1064.43*	5.4336		61.716	43.755		11.364	10.334	
Copper FP	1084.5	5.6263		62.880	44,520		11.635	10.570	
Nickel FP	1455	9.5766					16.811	15.034	
Cobalt FP	1494	10.025					17.360	15.504	
Palladium FP	1554	10.721					18.212	16.224	
Platinum FP	1772	13.262					21.103	18.694	

Abbreviations Used in the Table

*Defining fixed points of the International Temperature Scale of 1990 (ITS-90). Except for the triple points, the assigned values of temperature are for equilibrium states at a pressure of one standard atmosphere (101 325 Pa).

TABLE 4.72 Type B Thermocouples: Platinum-30% Rhodium Alloy vs. Platinum-6% Rhodium Alloy

Thermoelectric voltage in millivolts; reference junction at $0^{\circ}C$.

°C	0	10	20	30	40	50	60	70	80	90
0	0.00	-0.0019	-0.0026	-0.0021	-0.0005	0.0023	0.0062	0.0112	0.0174	0.0248
100	0.0332	0.0427	0.0534	0.0652	0.0780	0.0920	0.1071	0.1232	0.1405	0.1588
200	0.1782	0.1987	0.2202	0.2428	0.2665	0.2912	0.3170	0.3438	0.3717	0.4006
300	0.4305	0.4615	0.4935	0.5266	0.5607	0.5958	0.6319	0.6690	0.7071	0.7462
400	0.7864	0.8275	0.8696	0.9127	0.9567	1.0018	1.0478	1.0948	1.1427	1.1916
500	1.2415	1.2923	1.3440	1.3967	1.4503	1.5048	1.5603	1.6166	1.6739	1.7321
600	1.7912	1.8512	1.9120	1.9738	2.0365	2.1000	2.1644	2.2296	2.2957	2.3627
700	2.4305	2.4991	2.5686	2.6390	2.7101	2.7821	2.8548	2.9284	3.0028	3.0780
800	3.1540	3.2308	3.3084	3.3867	3.4658	3.5457	3.6264	3.7078	3.7899	3.8729
900	3.9565	4.0409	4.1260	4.2119	4.2984	4.3857	4.4737	4.5624	4.6518	4.7419
1000	4.8326	4.9241	5.0162	5.1090	5.2025	5.2966	5.3914	5.4868	5.5829	5.6796
1100	5.7769	5.8749	5.9734	6.0726	6.1724	6.2728	6.3737	6.4753	6.5774	6.6801
1200	6.7833	6.8871	6.9914	7.0963	7.2017	7.3076	7.4140	7.5210	7.6284	7.7363
1300	7.8446	7.9534	8.0627	8.1724	8.2826	8.3932	8.5041	8.6155	8.7273	8.8394
1400	8.9519	9.0648	9.1780	9.2915	9.4053	9.5194	9.6338	9.7485	9.8634	9.9786
1500	10.0940	10.2097	10.3255	10.4415	10.5577	10.6740	10.7905	10.9071	11.0237	11.1405
1600	11.2574	11.3743	11.4913	11.6082	11.7252	11.8422	11.9591	12.0761	12.1929	12.3100
1700	12.4263	12.5429	12.6594	12.7757	12.8918	13.0078	13.1236	13.2391	13.3545	13.4696
1800	13.5845	13.6991	13.8135							

TABLE 4.73 Type E Thermocouples: Nickel-Chromium Alloy vs. Copper-Nickel Alloy

Thermoelectric voltage in millivolts; reference junction at $0^{\circ}C$.

°C	0	10	20	30	40	50	60	70	80	90
-200	- 8.824	- 9.063	-9.274	- 9.455	-9.604	-9.719	-9.797	-9.835		
-100	-5.237	-5.680	-6.107	-6.516	-6.907	-7.279	-7.631	- 7.963	-8.273	- 8.561
-0	0.000	-0.581	-1.151	-1.709	-2.254	-2.787	-3.306	-3.811	-4.301	-4.777
0	0.000	0.591	1.192	1.801	2.419	3.047	3.683	4.394	4.983	5.646
100	6.317	6.996	7.683	8.377	9.078	9.787	10.501	11.222	11.949	12.681
200	13.419	14.161	14.909	15.661	16.417	17.178	17.942	18.710	19.481	20.256
300	21.033	21.814	22.597	23.383	24,171	24.961	25.754	26.549	27.345	28.143
400	28.943	29.744	30.546	31.350	32.155	32.960	33.767	34.574	35.382	36.190
500	36.999	37.808	38.617	39.426	40.236	41.045	41.853	42.662	43.470	44.278
600	45.085	45.891	46.697	47.502	48.306	49.109	49.911	50.713	51.513	52.312
700	53.110	53.907	54.703	55.498	56.291	57.083	57.873	58.663	59.451	60.237
800	61.022	61.806	62.588	63.368	64.147	64.924	65.700	66.473	67.245	68.015
900	68.783	69.549	70.313	71.075	71.835	72.593	73.350	74.104	74.857	75.608
1000	76.358									

TABLE 4.74 Type J Thermocouples: Iron vs. Copper-Nickel Alloy

°C	0	10	20	30	40	50	60	70	80	90
-200	-7.890	- 8.096								
-100	-4.632	-5.036	-5.426	-5.801	-6.159	- 6.499	-6.821	-7.122	-7.402	- 7.659
-0	0.000	-0.501	- 0.995	-1.481	-1.960	-2.431	-2.892	-3.344	-3.785	-4.215
0	0.000	0.507	1.019	1.536	2.058	2.585	3.115	3.649	4.186	4.725
100	5.268	5.812	6.359	6.907	7.457	8.008	8.560	9.113	9.667	10.222
200	10.777	11.332	11.887	12.442	12.998	13.553	14.108	14.663	15.217	15.771
300	16.325	16.879	17.432	17.984	18.537	19.089	19.640	20.192	20.743	21.295
400	21.846	22.397	22.949	23.501	24.054	24.607	25.161	25.716	26.272	26.829
500	27.388	27.949	28.511	29.075	29.642	30.210	30.782	31.356	31.933	32.513
600	33.096	33.683	34.273	34.867	35.464	36.066	36.671	37.280	37.893	38.510
700	39.130	39.754	40.482	41.013	41.647	42.283	42.922			

Thermoelectric voltage in millivolts; reference junction at $0^{\circ}C$.

TABLE 4.75 Type K Thermocouples: Nickel-Chromium Alloy vs. Nickel-Aluminum Alloy

Thermoelectric voltage in millivolts; reference junction at 0°C.

°C	0	10	20	30	40	50	60	70	80	90
-200	-5.891	-6.035	-6.158	-6.262	-6.344	-6.404	-6.441	-6.458		
-100	-3.553	-3.852	-4.138	-4.410	- 4.669	-4.912	-5.141	-5.354	-5.550	-5.730
-0	0.000	-0.392	-0.777	-1.156	-1.517	-1.889	-2.243	-2.586	-2.920	-3.242
0	0.000	0.397	0.798	1.203	1.611	2.022	2.436	2.850	3.266	3.681
100	4.095	4.508	4.919	5.327	5.733	6.137	6.539	6.939	7.338	7.737
200	8.137	8.537	8.938	9.341	9.745	10.151	10.560	10.969	11.381	11.793
300	12.207	12.623	13.039	13.456	13.874	14.292	14.712	15.132	15.552	15.974
400	16.395	16.818	17.241	17.664	18.088	18.513	18.839	19.363	19.788	20.214
500	20.640	21.066	21.493	21.919	22.346	22.772	23,198	23.624	24.050	24.476
600	24.902	25.327	25.751	26.176	26.599	27.022	27.445	27.867	28.288	28.709
700	29.128	29.547	29.965	30.383	30.799	31.214	31.629	32.042	32.455	32.866
800	33.277	33.686	34.095	34.502	34.909	35.314	35.718	36.121	36.524	36.925
900	37.325	37.724	38.122	38.519	38.915	39.310	39.703	40.096	40.488	40.879
1000	41.269	41.657	42.045	42.432	42.817	43.202	43.585	43.968	44.349	44.729
1100	45.108	45.486	45.863	46.238	46.612	46.985	47.356	47.726	48.095	48.462
1200	48.828	49.129	49.555	49.916	50.276	50.633	50.990	51.344	51.697	52.049
1300	52.398	52.747	53.093	53.439	53.782	54.125	54.466	54.807		

TABLE 4.76Type N Thermocouples: Nickel-14.2% Chromium-1.4% Silicon Alloy vs. Nickel-4.4% Silicon-0.1% Magnesium Alloy

Thermoelectric	voltage i	in millivolts;	reference	junction	at 0°C.

°C	0	10	20	30	40	50	60	70	80	90
-200	- 3.990	-4.083	-4.162	-4.227	-4.277	-4.313	-4.336	-4.345		
-100	-2.407	-2.612	-2.807	- 2.994	-3.170	-3.336	-3.491	-3.634	-3.766	- 3.884
-0	0.000	-0.260	-0.518	-0.772	-1.023	-1.268	-1.509	-1.744	-1.972	-2.193
0	0.000	0.261	0.525	0.793	1.064	1.339	1.619	1.902	2.188	2.479
100	2.774	3.072	3.374	3.679	3.988	4.301	4.617	4.936	5.258	5.584
200	5.912	6.243	6.577	6.914	7.254	7.596	7.940	8.287	8.636	8.987
300	9.340	9.695	10.053	10.412	10.772	11.135	11.499	11.865	12.233	12.602
400	12.972	13.344	13.717	14.091	14.467	14.844	15.222	15.601	15.981	16.362
500	16.744	17.127	17.511	17.896	18.282	18.668	19.055	19.443	19.831	20.220
600	20.609	20.999	21.390	21.781	22.172	22.564	22.956	23.348	23.740	24.133
700	24.526	24.919	25.312	25.705	26.098	26.491	26.885	27.278	27.671	28.063
800	28.456	28.849	29.241	29.633	30.025	30.417	30.808	31.199	31.590	31.980
900	32.370	32,760	33.149	33.538	33.926	34.315	34.702	35.089	35.476	35.862
1000	36.248	36.633	37.018	37.402	37.786	38.169	38.552	38.934	39.315	39.696
1100	40.076	40.456	40.835	41.213	41.590	41.966	42.342	42.717	43.091	43.464
1200	43.836	44.207	44.577	44.947	45.315	45.682	46.048	46.413	46.777	47.140
1300	47.502									

TABLE 4.77 Type R Thermocouples: Platinum-13% Rhodium Alloy vs. Platinum

Thermoelectric voltage in millivolts; reference junction at 0°C.

°C	0	10	20	30	40	50	60	70	80	90
(Below zero)		-0.0515	-0.100	-0.1455	-0.1877	-0.2264				
0	0.0000	0.0543	0.1112	0.1706	0.2324	0.2965	0.3627	0.4310	0.5012	0.5733
100	0.6472	0.7228	0.8000	0.8788	0.9591	1.0407	1.1237	1.2080	1.2936	1.3803
200	1.4681	1.5571	1.6471	1.7381	1.8300	1.9229	2.0167	2.1113	2.2068	2.3030
300	2.4000	2.4978	2.5963	2.6954	2.7953	2.8957	2.9968	3.0985	3.2009	3.3037
400	3.4072	3.5112	3.6157	3.7208	3.8264	3.9325	4.0391	4.1463	4.2539	4.3620
500	4.4706	4.5796	4.6892	4.7992	4.9097	5.0206	5.1320	5.2439	5.3562	5.4690
600	5.5823	5.6960	5.8101	5.9246	6.0398	6.1554	6.2716	6.3883	6.5054	6.6230
700	6.7412	6.8598	6.9789	7.0984	7.2185	7.3390	7.4600	7.5815	7.7035	7.8259
800	7.9488	8.0722	8.1960	8.3203	8.4451	8.5703	8.6960	8.8222	8.9488	9.0758
900	9.2034	9.3313	9.4597	9.5886	9.7179	9.8477	9.9779	10.1086	10.2397	10.3712
1000	10.5032	10.6356	10.7684	10.9017	11.0354	11.1695	11.3041	11.4391	11.5745	11.7102
1100	11.8463	11.9827	12.1194	12.2565	12.3939	12.5315	12.6695	12.8077	12.9462	13.0849
1200	13.2239	13.3631	13.5025	13.6421	13.7818	13.9218	14.0619	14.2022	14.3426	14.4832
1300	14.6239	14.7647	14.9056	15.0465	15.1876	15.3287	15.4699	15.6110	15.7522	15.8935
1400	16.0347	16.1759	16.3172	16.4583	16.5995	16.7405	16.8816	17.0225	17.1634	17.3041
1500	17.4447	17.5852	17.7256	17.8659	18.0059	18.1458	18.2855	18.4251	18.5644	18.7035
1600	18.8424	18.9810	19.1194	19.2575	19.3953	19.5329	19.6702	19.8071	19.9437	20.0797
1700	20.2151	20.3497	20.4834	20.6161	20.7475	20.8777	21.0064			

TABLE 4.78 Type S Thermocouples: Platinum-10% Rhodium Alloy vs. Platinum

Thermoelectric voltage in millivolts; reference junction at 0°C.

°C	0	10	20	30	40	50	60	70	80	90
(Below zero)		-0.0527	-0.1028	-0.1501	-0.1944	-0.2357				
0	0.0000	0.0552	0.1128	0.1727	0.2347	0.2986	0.3646	0.4323	0.5017	0.5728
100	0.6453	0.7194	0.7948	0.8714	0.9495	1.0287	1.1089	1.1902	1.2726	1.3558
200	1.4400	1.5250	1.6109	1.6975	1.7849	1.8729	1.9617	2.0510	2.1410	2.2316
300	2.3227	2.4143	2.5065	2.5991	2.6922	2.7858	2.8798	2.9742	3.0690	3.1642
400	3.2597	3.3557	3.4519	3.5485	3.6455	3.7427	3.8403	3.9382	4.0364	4.1348
500	4.2336	4.3327	4.4320	4.5316	4.6316	4.7318	4.8323	4.9331	5.0342	5.1356
600	5.2373	5.3394	5.4417	5.5445	5.6477	5.7513	5.8553	5.9595	6.0641	6.1690
700	6.2743	6.3799	6.4858	6.5920	6.6986	6.8055	6.9127	7.0202	7.1281	7.2363
800	7.3449	7.4537	7.5629	7.6724	7.7823	7.8925	8.0030	8.1138	8.2250	8.3365
900	8.4483	8.5605	8.6730	8.7858	8.8989	9.0124	9.1262	9.2403	9.3548	9.4696
1000	9.5847	9.7002	9.8159	9.9320	10.0485	10.1652	10.2823	10.3997	10.5174	10.6354
1100	10.7536	10.8720	10.9907	11.1095	11.2286	11.3479	11.4674	11.5871	11.7069	11.8269
1200	11.9471	12.0674	12.1878	12.3084	12.4290	12.5498	12.6707	12.7917	12.9127	13.0338
1300	13.1550	13.2762	13.3975	13.5188	13.6401	13.7614	13.8828	14.0041	14.1254	14.2467
1400	14.3680	14.4892	14.6103	14.7314	14.8524	14.9734	15.9042	15.2150	15.3356	15.4561
1500	15.5765	15.6967	15.8168	15.9368	16.0566	16.1762	16.2956	16.4148	16.5338	16.6526
1600	16.7712	16.8895	17.0076	17.1255	17.2431	17.3604	17.4474	17.5942	17.7105	17.8264
1700	17.9417	18.0562	18.1698	18.2823	18.3937	18.5038	18.6124			

TABLE 4.79 Type T Thermocouples: Copper vs. Copper-Nickel Alloy

°C	0	10	20	30	40	50	60	70	80	90
- 200	-5.603	-5.753	- 5.889	- 6.007	-6.105	-6.181	-6.232	-6.258		
-100	-3.378	- 3.656	- 3.923	-4.177	-4.419	-4.648	-4.865	-5.069	-5.261	- 5.439
-0	0.000	-0.383	-0.757	-1.121	- 1.475	-1.819	-2.152	-2.475	-2.788	- 3.089
0	0.000	0.391	0.789	1.196	1.611	2.035	2.467	2.908	3.357	3.813
100	4.277	4.749	5.227	5.712	6.204	6.702	7.207	7.718	8.235	8.757
200	9.286	9.820	10.360	10.905	11.456	12.011	12.572	13.137	13.707	14.281
300	14.860	15.443	16.030	16.621	17.217	17.816	18.420	19.027	19.638	20.252
400	20.869									

Thermoelectric voltage in millivolts; reference junction at $0^{\circ}C$.

<u>Links</u>

A

Absolute viscosity, definition	1.226
Absorbance, conversion to percent absorption	3.31
Absorption bands, ultraviolet spectroscopy	2.55
Absorption edges	3.130
Absorption energies, X-ray	3.133
Absorption frequencies:	
infrared	3.3
near infrared	3.26
Absorption spectroscopy, infrared (See Infrared	
absorption spectroscopy)	
Acetals, infrared absorption	3.20
Acid anhydrides, infrared absorption	3.3
Acid-base indicators	2.677
Acid-base titration, standards	4.137
Acidity, measurement of	1.306
Acids:	
concentrations for general use	4.161
inorganic, naming	1.9
inorganic, salts and functional derivatives	1.11
Acid value:	
fats and oils	2.808
waxes	2.810
Actinium series of the elements, radioactivity	1.137
Activity coefficients:	
definition	1.299

<u>Links</u>

Activity coefficients: (Cont.)		
ions in water at 25°C	1.300	1.301
ternary electrolytes	1.299	
quaternary electrolytes	1.299	
Addition compounds, inorganic compounds	1.13	
Air, specific gravity at various		
temperatures	1.92	
Alcohols:		
melting points of derivatives	2.254	
nomenclature	2.24	
Alcohol-water freezing mixtures	2.460	2.461
Aldehydes, infrared absorption	3.13	
Alkanes, straight chain:		
infrared absorption	2.4	
nomenclature	2.4	
Alkenes, infrared absorption	3.16	
Alkyl halides:		
density	2.255	
aldehydes	3.13	
Amides, infrared absorption	3.8	3.14
Amidines, infrared absorption	3.16	
Amines:		
infrared absorption	3.8	
melting points of derivatives	2.254	
Amino acids:		
acid-base properties	2.48	
definition	2.47	
formula	2.47	2.267
molecular weight	2.267	
nomenclature	2.47	
рКа	2.267	4.157

Index Terms	<u>Links</u>			
Amino acids: (Cont.)				
structure	2.267			
Amino sugars	2.51			
Ammine complexes, formation constants	4.152			
Ammonia, liquid, vapor pressure	1.223			
Ammonium ions, infrared absorption	3.8			
Amylopectin	2.53			
Amylose	2.52			
Analytical weights, tolerance	4.134			
Anions, nomenclature	1.8			
Antifreeze solutions, composition	2.461			
Approximate effective ionic radii in aqueous solution	1.151			
Approximate pH value of solutions, calculation	1.350			
Argon-ion laser plasma lines	3.53			
Aromatic compounds:				
infrared absorption	3.19			
Raman spectroscopy	3.48			
Asphalt, thermal conductivity	1.128	1.232		
Atomic absorption spectroscopy	3.64			
Atomic and group refractions	2.288			
Atomic emission spectroscopy	3.64			
Atomic fluorescence spectroscopy	3.64			
Atomic numbers of the elements	1.4	1.97	1.121	1.124
Atomic radii:				
elements	1.151			
inorganic compounds	1.151			
Atomic weights of the elements	1.121			
Atoms, covalent radii	1.158			
Auto-ignition temperature	2.351	2.426		
Azeotropic mixtures	2.434			
alcohols	2.435			

Azeotropic mixtures (*Cont.*)

aldehydes	2.436
amines	2.436
binary	2.439
binary azeotropes containing organic acids	2.439
binary azeotropes containing water	2.435
esters	2.436
ethers	2.438
halogenated hydrocarbons	2.436
hydrocarbons	2.438
inorganic acids	2.435
ketones	2.438
nitriles	2.439
organic acids	2.435
ternary azeotropic mixtures	2.454
Azo compounds, infrared absorption	3.17

B

Barometer-temperature correction	4.48
Barometric conversion	4.47
Barometric correction for gravity	4.53
Barometric correction to sea level	4.54
Barometric latitude-gravity	4.51
Barometry	4.47
Bases, concentrations for general use	4.161
Benzene and heteroaromatics, ultraviolet	
absorption	3.59
Benzene derivatives, ultraviolet absorption	3.59
Binary azeotropes containing:	
acetamido	2.451
acetic acid	2.440

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

Binary azeotropes containing: (*Cont.*)

	acetone	2.451
	allyl alcohol	2.448
	aniline	2.452
	benzene	2.453
	benzyl alcohol	2.448
	bis(2-hydroxyethyl) ether	2.453
	1-butanol	2.446
	2-butanone	2.451
	2-butoxyethanol	2.449
	butyric acid	2.441
	iso-butyric acid	2.442
	cyclohexanol	2.447
	1,2-ethanediol	2.449
	1,2-ethanediol monoacetate	2.450
	ethanol	2.443
	2-ethoxyethanol	2.449
	formic acid	2.439
	methanol	2.443
	3-methyl-1-butanol	2.447
	2-methyl-2-propanol	2.446
	phenol	2.448
	1-propanol	2.444
	2-propanol	2.445
	propionic acid	2.441
	pyridine	2.452
	thiophene	2.453
Boi	ling point	2.296
	alkyl halides	2.255
	carboxylic acids	2.256
	elements	1.18

This page has been reformatted by Knovel to provide easier navigation.

1.124

<u>Links</u>

<u>Index Terms</u>	<u>Links</u>		
Boiling point (Cont.)			
inorganic compounds	1.16	1.18	
organic compounds	2.65	2.297	2.352
organic compounds at selected pressures	2.315		
organic solvents	2.348		
petroleum products	2.811		
water at various pressures	1.93	1.94	
Bond dipole moments	1.171	2.468	
inorganic compounds	1.173		
Bond dissociation energies:			
elements and inorganic compounds	1.160		
organic compounds	2.467		
Bond lengths:			
between elements	1.159		
carbon and other elements	2.466		
carbon-carbon	2.464	2.465	
carbon halogen	2.464		
carbon-nitrogen	2.465		
carbon-oxygen	2.465		
carbon selenium	2.466		
carbon-silicon	2.466		
carbon sulfur	2.466		
inorganic compounds	1.150		
organic compounds	2.464		
Bond strengths, inorganic compounds	1.150		
Bonds, spatial orientation of common hybrid	1.175		
Boron-11 chemical shifts	3.99		
Boron compounds, infrared absorption	3.23		
Brines, freezing point	2.463		
Buffer solutions	1.301		
composition of standard solutions	1.304		

<u>Links</u>

Buffer solutions (Cont.)	
National Bureau of Standards reference pH	
solutions	1.303
non-standard	1.307
values of biological and other buffers for control	
purposes	1.308
Burettes, tolerances for	4.159

С

Calculation of concentrations of species present	it at a	
given pH	1.351	
Carbohydrates	2.48	
stereochemistry	2.51	
structures	2.49	
Carbon-13 chemical shifts	3.87	
Carbon-13 chemical shifts of deuterated		
solvents	3.98	
Carbon-carbon bond lengths	2.464	2.465
Carbon-carbon spin coupling constants	3.96	
Carbon-fluorine spin coupling constants	3.97	
Carbon halogen bond lengths	2.464	
Carbon-hydrogen spin coupling constants	3.95	
Carbon-nitrogen bond lengths	2.465	
Carbon-oxygen bond lengths	2.465	
Carbon selenium bond lengths	2.466	
Carbon-silicon bond lengths	2.466	
Carbon spin coupling constants with various		
nuclei	3.95	
Carbon sulfur bond lengths	2.466	
Carboxylate ions, infrared absorption	3.14	

Index Terms	<u>Links</u>	
Carbonyl compounds:		
infrared absorption	3.12	
raman spectroscopy	3.44	
Carboxylic acids (See also Fatty acids):		
boiling point	2.256	
formula	2.55	2.256
infrared absorption	3.14	
melting point	2.256	
nomenclature	2.30	
solubility in water	2.256	
Cations, nomenclature	1.8	
Cellulose	2.53	
Change of state (See Thermodynamic functions)		
Chemicals:		
reactive and incompatible	4.173	
refrigerated storage	4.179	
Chemical symbols of the elements	1.97	1.124
Chirality	2.43	
Chromatography:		
behavior of solutes	4.90	
ion exchange	4.95	
ion exchange resins	4.97	
solvents	4.84	
supercritical fluids	4.94	
Cleaning solutions for fritted glassware	4.132	
Coal, thermal conductivity	1.232	
Color, inorganic compounds	1.64	
Common hybrid bonds, spatial orientation	1.175	
Complex inorganic ions, stability constants	1.343	
Compressibility, water at various		
temperatures	1.95	
Compressibility factor, critical:

1 5 7	
elements	1.233
inorganic compounds	1.233
organic compounds	2.592
Computation of volume	4.159
Conductance:	
conductivity of very pure water	1.417
equivalent conductance of hydrogen and	
hydroxyl ions	1.418
equivalent conductivity of electrolytes	
in aqueous solution	1.412
limiting equivalent ionic conductance	
in aqueous solutions	1.408
limiting equivalent ionic conductance	
in aqueous solutions	2.699
properties of liquids	1.407
standard solutions for calibrating conductivity	
vessels	1.411
Conductivity:	
elements	1.128
organic compounds	2.698
water, very pure	1.417
Conductivity vessels, standard solutions	
for calibrating	1.411
Constant humidity, solutions for	4.76
Constants, Debye-Hückel equation	1.300
Conversion factors	4.8
Cooling mixtures	4.73
Coordination compounds, naming	1.11
Copper vs. copper nickel alloy thermocouple	4.192

<u>Links</u>

Index Terms Links Covalent radii 1.151 atoms 1.158 inorganic compounds 1.151 octahedral covalent radii for CN = 61.158 Critical compressibility factor, elements 1.233 1.233 inorganic compounds organic compounds 2.593 Critical density, organic compounds 2.593 Critical pressure: elements 1.233 1.233 inorganic compounds organic compounds 2.593 Critical properties: elements 1.233 1.233 inorganic compounds lydersen's increments 2.607 organic compounds 2.593 Critical temperature: 1.233 elements 1.233 inorganic compounds organic compounds 2.593 Critical volume: elements 1.233 1.233 inorganic compounds organic compounds 2.593 vetere group contributions 2.608 Cryoscopic constants 4.74 1.176 Crystal lattice, types 1.177 Crystal structure Crystals, X-ray spectroscopy 3.138 1.64 Crystal symmetry, inorganic compounds

<u>Index Terms</u>	Links		
Cubical coefficients of thermal expansion	4.160		
Cyclopropane, triple point	1.90		
D			
Dative (coordination) bonds	1.172		
Debye-Hückel equation, constants	1.300		
Demasking agents	4.156		
Density	4.41		
alkyl halides	2.255		
elements	1.124		
fats	2.808		
inorganic compounds	1.16		
mercury	1.91		
natural and synthetic rubber	2.776		
oils	2.808		
organic compounds	2.65	2.289	
petroleum products	2.811		
polymers	2.740	2.777	2.780
water	1.91		
waxes	2.810		
Deuterium oxide, vapor pressure	1.225		
Dielectric constant	1.173		
inorganic compounds	1.173		
organic compounds	2.470		
water at various temperatures	1.95		
Dielectric loss factor	1.172		
Dienes, ultraviolet absorption	3.57		
Dienones, ultraviolet absorption	3.58	3.57	
Dipole moments:			
bonds	1.171	2.468	
groups	1.172	2.468	

Index Terms	Links	
Dipole moments: (Cont.)		
molecules	1.173	2.470
Disaccharides	2.48	
components	2.52	
Dissociation constants, inorganic acids	1.330	
Dissociation energies, bonds	1.160	
DNA	2.56	
Double bonds, cumulated:		
infrared absorption	3.10	
Raman spectroscopy	3.43	
Double bonds, miscellaneous:		
infrared absorption	3.16	
Raman spectroscopy	3.46	
Drying agents	4.75	
Dynamic viscosity	2.270	

E

4.81
4.152
1.151
1.380
1.397
2.687
2.687
1.396
1.404
1.404
1.383
1.401

Index Terms	<u>Links</u>	
Electrode reactions, overpotentials	1.396	
Electron affinity:		
elements	1.146	
molecules	1.146	
radicals	1.148	
Electron arrangements of the elements	1.97	
Electronegativity values, elements	1.145	
Electrolytes, equivalent conductivity in aqueous		
solution	1.412	
Elements	1.96	
approximate effective ionic radii in aqueous		
solution	1.151	
atomic numbers	1.97	1.121
atomic weight	1.122	
atomic radii	1.151	
boiling point	1.18	1.124
bond lengths between	1.159	
chemical symbols	1.97	1.124
conductivity	1.128	
definition	1.96	
effective atomic radii	1.151	
electrode potentials	1.380	
electron affinity	1.146	
electron arrangements	1.97	
electronegativity	1.145	
energy levels	1.96	
enthalpy of formation	1.237	
entropy	1.237	
formula	1.18	
formula weight	1.18	
Gibbs energy of formation	1.237	

Index Terms	<u>Links</u>		
Elements (Cont.)			
groups	1.121		
heat capacity	1.237		
heat of fusion	1.280		
heat of sublimation	1.280		
heat of vaporization	1.280		
ionization energy	1.138		
main energy levels	1.96	1.99	
masking agents	4.153		
melting point	1.18	1.124	
nuclear properties	3.77		
oxidation states	1.124		
periodic table	1.121		
periods	1.121		
physical properties	1.18	1.124	
precipitation of	4.130		
radioactivity	1.135	1.136	1.137
resistivity	1.128		
solubility	1.18		
specific heat	1.280		
specific heat capacity	1.124		
sublimation points	1.124		
thermal conductivity	1.128	1.231	
vapor pressure	1.201		
work functions	1.132		
Element sequence, naming inorganic compounds	1.5		
Emission energies, X-ray	3.135		
Energy levels, elements	1.96		
Energy of formation:			
elements	1.237		
inorganic compounds	1.237		

Enones, ultraviolet absorption	3.58	
Enthalpy of formation (See Heat of formation)		
Enthalpy of fusion (See Heat of fusion)		
Enthalpy of sublimation (See Heat of sublimation)		
Enthalpy of vaporization (See Heat of vaporization)		
Entropies:		
elements	1.237	
inorganic compounds	1.237	
Epoxides, infrared absorption	3.20	
Equilibrium constant:		
definition	1.310	2.620
pK values for proton transfer reactions	2.676	
pKa values of organic materials in water	2.620	
organic material is aqueous solution at various		
temperatures	2.670	
Equivalent conductance of hydrogen and hydroxyl		
ions	1.418	
Equivalent conductivity of electrolytes in aqueous		
solution	1.412	
Esters:		
infrared absorption	3.12	
Raman spectroscopy	3.45	
Ethers:		
infrared spectroscopy	3.20	
Raman spectroscopy	3.51	
Eutectic mixtures	1.418	
Explosive limits, (See Flammability and		
flammability limits)		

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

<u>Links</u>

F

Fats, oils and waxes	2.807	
properties	2.808	
Fatty acids, (See also Carboxylic acids):		
formula	2.55	
nomenclature	2.30	
Filters, membrane	4.133	
Fixed points, thermocouples	4.182	
Fixed points, thermometry	4.182	
Flammability:		
auto-ignition temperature	2.351	2.426
flash point	2.351	
ignition temperature	2.351	
limits of inorganic compounds in air	1.96	
limits of petroleum products in air	2.811	
lower flammability limits	2.351	2.426
organic compounds	2.351	
upper flammability limits	2.351	2.426
Flammability limits	2.351	
organic compounds	2.426	
Flash point:		
organic compounds	2.65	2.352
petroleum products	2.811	
Fluidity, definition	2.271	
Fluorescence spectroscopy	3.60	
quantum yield values	3.63	
Fluorescent indicators	2.682	
Fluorine-19 chemical shifts	3.105	3.106
Fluorine-19 to fluorine-19 spin coupling		
constants	3.106	

Index Terms	<u>Links</u>		
Fluxes	4.133		
Formation constants:			
ammine complexes	4.152		
EDTA complexes, formation constants	4.152		
inorganic ligands	1.358		
metal complexes	1.357		
organic ligands	1.363		
Formula weight:			
elements	1.18		
inorganic compounds	1.18		
organic compounds	2.65		
Freezing point:			
lowering	4.74		
magnesium chloride brines	2.463		
sodium chloride brines	2.463		
Freezing mixtures	2.460	2.461	2.463
Freezing temperature (See Melting point)			
Fritted glassware:			
cleaning solutions	4.132		
porosity	4.134		
Functional compounds, organic, nomenclature	2.18		
Fused polycyclic aromatic hydrocarbons:			
boiling point	2.257		
formula	2.257		
molecular weight	2.257		
melting point	2.257		
nomenclature	2.10	2.257	
structure	2.257		
Eucion heat of (See Heat of fusion)			

Fusion, heat of (See Heat of fusion)

<u>Links</u>

G

Gases:			
conversion of volume to STP	4.61		
molar equivalent of various temperatures ar	nd		
pressures	4.70		
physical chemistry equations	4.67		
solubility in water	1.311		
thermal conductivity as a function of			
temperature	2.506		
TLV concentration limits	4.165		
Van der Waal's constants	2.609		
Gas permeability constants for polymers and			
rubber	2.801		
Gibbs energy of formation:			
elements	1.237		
inorganic compounds	1.237		
Glycerol:			
aqueous solutions, relative density	2.287		
aqueous solutions, surface tension	2.287		
Glycerol-water freezing mixtures	2.462		
Glycol-water freezing mixtures	2.462		
Gravimetric factors	4.104	4.135	
Group dipole moments	1.172		
Groups, organic:			
nomenclature	2.19	2.20	2.23
Н			
Halogen compounds, infrared absorption	3.24		
Hammett and Taft substituent constants	2.703		
Hammett equation, values for	2.707		
Hammett sigma constants	2.709		

Index Terms	<u>Links</u>	
Hansen solubility parameters:		
organic liquids	2.269	
polymers	2.805	
Heat capacity:		
elements	1.237	
inorganic compounds	1.237	
organic compounds	2.515	
polymers	2.785	
Heating baths, substances for	4.83	
Heating temperatures for precipitates	4.135	
Heat of formation, organic compounds	2.495	2.515
Heat of fusion:		
elements	1.280	
inorganic compounds	1.280	
organic compounds	2.561	
Heat of sublimation:		
elements	1.280	
inorganic compounds	1.280	
organic compounds	2.561	
Heat of vaporization:		
elements	1.280	
inorganic compounds	1.280	
organic compounds	2.561	
Heteroaromatics, ultraviolet absorption	3.59	
Heterocyclic systems:		
nomenclature	2.13	
suffixes	2.13	
trivial names	2.14	2.17
1-Hexene, triple point	1.90	
Hildebrand solubility parameters:		
organic liquids	2.268	

<u>Index Terms</u>	<u>Links</u>	
Hildebrand solubility parameters: (Cont.)		
polymers	2.804	
Humidity:		
constant, solutions for	4.76	
relative	4.77	4.79
Hybrid bonds, spatial orientation	1.175	
Hydrocarbons, fused polycyclic aromatic:		
boiling point	2.257	
formula	2.257	
molecular weight	2.257	
melting point	2.257	
nomenclature	2.10	2.257
structure	2.257	
Hydrocarbons, saturated:		
infrared absorption	3.3	
Raman spectroscopy	3.38	
Hydrogen, equivalent conductance	1.418	
Hydrometers	4.41	
conversion between	4.45	
Hydroxyl compounds:		
infrared absorption	3.6	
Raman spectroscopy	3.41	
Hydroxyl ions:		
equivalent conductance	1.418	
I		
Ice, vapor pressure	1.222	
ICP spectroscopy, (See Induction coupled plasma		
spectroscopy)		
Ignition temperature (ignition point):		

definition 2.351

Index Terms	<u>Links</u>	
Ignition temperature (ignition point): (Cont.)		
organic compounds	2.352	
petroleum products	2.811	
Imides, infrared absorption	3.15	
Imines, infrared absorption	3.8	3.16
Incompatible chemicals	4.173	
Indicators:		
acid-base	2.677	
fluorescent	2.682	
metal ion	4.151	
mixed	2.680	
oxidation-reduction	2.684	
pH determination	2.686	
Induction coupled plasma spectroscopy	3.64	
Infrared absorption spectroscopy	3.3	
acetals	3.20	
acid anhydrides	3.12	
aldehydes	3.13	
alkane residues attached to miscellaneous		
atoms	3.4	
alkenes	3.16	
amides	3.14	
aromatic compounds	3.19	
atoms bonded to hydrogen by a single bond	3.3	
azo compounds	3.17	
boron compounds	3.23	
carboxylate ions	3.14	
carbonyl bonds	3.12	
carboxylic acids	3.14	
double bonds, cumulated	3.10	
double bonds, miscellaneous	3.16	

<u>Links</u>

Infrared absorption sp	pectroscopy (Cont.)	
------------------------	---------------------	--

epoxies	3.20
esters and lactones	3.12
halogen compounds	3.24
inorganic ions	3.26
ketals	3.20
ketones	3.13
hydroxyl compounds	3.6
imides	3.15
inorganic ions	3.26
near infrared	3.26
N-H bonds (amines, imines, ammonium	
ions, amides)	3.8
nitro compounds, absorption	3.17
phosphorus compounds	3.21
phthalanes	3.20
sulfates	3.21
sulfonamides	3.21
sulfones	3.21
sulfoxides	3.21
sulfur compounds	3.21
thiocarbonyls	3.21
thioesters and acids	3.15
thiols	3.21
thiosulfonates	3.21
transmission characteristics of selected	
solvents	3.29
transmitting materials	3.28
transmittance-absorbance conversion	3.33
triple bonds	3.9
urea and derivatives	3.15

<u>Links</u>

Infrared absorption spectroscopy (Cont.)		
urethanes	3.15	
values of absorbance for percent absorption	3.31	
wave number—wavelength conversion	3.36	
Inorganic acids	1.9	
dissociation constants	1.330	
naming	1.9	
trivial names	1.9	1.10
salts and functional derivatives	1.10	1.11
Inorganic addition compounds	1.13	
Inorganic anions:		
limiting equivalent ionic conductance		
in aqueous solutions	1.409	
inorganic cations	1.408	
Inorganic cations	1.8	
limiting equivalent ionic conductance		
in aqueous solutions	1.408	
Inorganic compounds:		
boiling point	1.18	
color, crystal symmetry, and refractive index	1.64	
electrode potentials	1.380	
enthalpy of formation	1.237	
entropy	1.237	
flammability limits	1.96	
formula	1.4	1.18
formula weight	1.18	
Gibbs energy of formation	1.237	
half wave potentials	1.397	
heat capacity	1.237	
heat of fusion	1.280	
heat of sublimation	1.280	

Index Terms	<u>Links</u>	
Inorganic compounds: (Cont.)		
heat of vaporization	1.280	
melting point	1.18	
naming	1.5	
nomenclature	1.3	1.5
physical constants	1.18	
physical properties	1.16	
proton-transfer reactions	1.350	
saturated solutions	1.343	
solubility	1.18	1.310
solubility of inorganic compounds in water	1.311	
solubility of metal salts of organic acids in water	1.311	
solubility product constants	1.331	
solubility rules	4.161	
specific heat	1.280	
surface tension	1.226	
synonyms and mineral names	1.13	
thermodynamic functions	1.237	
vapor pressures	1.203	1.212
viscosity	1.226	
writing formulas	1.4	
Inorganic coordination compounds	1.11	
Inorganic ions, infrared absorption	3.23	
Inorganic ligands, formation constants with metal		
complexes	1.358	
Inorganic materials in water:		
half-wave potentials of inorganic materials	1.397	
proton transfer reactions of at 25°C	1.352	
Interplanar spacing, X-ray spectroscopy	3.138	
Iodine value:		
fats and oils	2.808	

T •		
1.1	nkc	
	1170	,

Iodine value: (Cont.)		
waxes	2.810	
Ion exchange chromatography	4.95	
Ion exchange resins	4.97	
Ionic charge	1.4	
Ionic conductance, limiting equivalent in aqueous		
solutions	1.408	
Ionic radii:		
approximate effective, in aqueous solution		
at 25°C	1.157	
inorganic compounds	1.151	
Ionization energy:		
elements	1.138	
molecular species	1.141	2.495
radical species	1.141	2.495
Ions, activity coefficients in water at 25°C	1.300	1.301
Interfacial tension of polymers in the liquid phase	2.783	
Iron vs. copper-nickel alloy thermocouple	4.187	
Isotopic abundances of the elements:		
mass spectrometry	3.115	
natural	1.132	
К		
Ketals, infrared absorption	3.20	
Ketones:		
infrared absorption	3.13	
melting points of derivatives	2.254	
Kinematic viscosity, definition	1.226	2.271
L		
Lactones, infrared absorption	3.12	
Lattice, crystal types	1.176	

<u>Index Terms</u>

Lengths between elements, bond	1.159
Limiting equivalent ionic conductance in aqueous	
solutions:	
inorganic anions	1.409
inorganic cations	1.408
organic anions	1.410
organic cations	1.410
Linear free energy relationships	2.702
Liquid ammonia, vapor pressure	1.223
Liquid semi-conductors:	
conductance and conductivity	1.407
properties	1.407
Loss tangent	1.172
Lydersen's critical property increments	2.607

\mathbf{M}

Magnesium chloride brines, freezing point	2.463	
Main energy levels of the elements	1.96	1.99
Masking agents for:		
anions	4.155	
elements	4.153	
neutral molecules	4.155	
Mass absorption coefficients, X-ray spectroscopy	3.140	
Mass number	1.4	
elements	1.132	
Mass spectrometry	3.111	
isotopic abundances of the elements	3.115	
McReynolds' constants	4.83	4.86
Mechanical properties:		
natural and synthetic rubber	2.776	
polymers	2.740	

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

Index Terms	<u>Links</u>		
Metal ion indicators	4.151		
Melting point:			
carboxylic acids	2.256		
derivatives of organic compounds	2.54		
elements	1.18	1.124	
inorganic compounds	1.16		
lowering	4.74		
organic compounds	2.65		
paraffins	2.255		
polymers	2.740		
waxes	2.810		
Melting points of derivatives of organic compounds	5:		
alcohols	2.254		
aldehydes	2.254		
amines	2.254		
ketones	2.254		
phenols	2.254		
Membrane filters	4.133		
Mercury:			
density	1.91		
vapor pressure	1.220		
Metal complexes, formation constants	1.357	1.358	1.363
Metal salts of organic acids, solubility in water	1.311		
Methane, triple point	1.90		
Micropipets, tolerances for	4.158		
Minerals:			
names	1.13		
refractive index	1.86		
Mixed indicators	2.680		
Molar refraction	2.288		
Molecular geometry, definition	1.174		

Index Terms Links Molecular weight, elevation of the boiling point 4.81 Molecular weight of petroleum products 2.811 Molecules, inorganic: dielectric constant 1.173 1.173 dipole moments electron affinity 1.146 ionization energy 1.141 Molten salts: 1.88 properties Monosaccharides 2.48 classification 2.49 Monosubstitued benzenes, nuclear magnetic

resonance spectroscopy	3.84

Ν

Naming, (See Nomenclature)	
Naphthalene:	
thermal conductivity	1.232
National Bureau of Standards reference pH buffer	
solutions	1.303
Naturally occurring isotopes:	
Mass spectrometry	3.115
Relative abundances	1.132
Neptunium series of the elements, radioactivity	1.135
Nickel-chromium alloy vs. nickel aluminum alloy	
thermocouple	4.188
Nickel-chromium silicon alloy vs. nickel silicon	
magnesium alloy thermocouple	4.189
Nitro compounds, infrared absorption	3.17
Nitrogen-15 and nitrogen-14 chemical shifts	3.100
Nitrogen-15 to proton spin coupling constants	3.104

This page has been reformatted by Knovel to provide easier navigation.

3.103

<u>Index Terms</u>	<u>Links</u>	
Nitrogen-15 to carbon-13 spin coupling constants	3.104	
Nitrogen-15 to fluorine-19 spin coupling constants	3.104	
Nitrogen ring systems:		
nomenclature	2.14	
Nitrogen-oxygen ring systems, nomenclature	2.14	
Nomenclature:		
anions	1.8	
cations	1.8	
coordination compounds	1.11	
element sequence	1.5	
inorganic compounds	1.4	
organic compounds	2.4	
organic radicals	2.57	
synonyms and mineral names	1.13	
Non-standard buffer solutions	1.307	
Nuclear magnetic resonance spectroscopy	3.76	
boron-11 chemical shifts	3.99	
carbon-13 chemical shifts	3.87	
carbon-13 chemical shifts of deuterated solvents	3.98	
carbon-carbon spin coupling constants	3.96	
carbon-fluorine spin coupling constants	3.97	
carbon-hydrogen spin coupling constants	3.95	
carbon spin coupling constants with various		
nuclei	3.95	
fluorine-19 chemical shifts	3.105	3.106
fluorine-19 to fluorine-19 spin coupling		
constants	3.106	
nitrogen-15 and nitrogen-14 chemical shifts	3.100	3.103
nitrogen-15 to carbon-13 spin coupling		

constants

This page has been reformatted by Knovel to provide easier navigation.

3.104

<u>Links</u>

Nuclear magnetic resonance spectroscopy (Cont.)			
nitrogen-15 to fluorine-19 spin coupling			
constants	3.104		
nitrogen-15 to proton spin coupling constants	3.104		
nuclear properties of the elements	3.77		
monosubstituted benzenes	3.84		
phosphorus-31 chemical shifts	3.107		
phosphorus-31 spin coupling constants	3.110		
proton chemical shifts	3.80		
protons attached to double bonds	3.83		
proto in deuterated solvents	3.86		
proton spin coupling constants	3.85		
reference compounds	3.86		
silicon-29 chemical shifts	3.106		
Nuclear properties of the elements			
Nuclides, natural abundance, cross-section, radiation			
Number of atoms			
Numerical, prefixes	4.3		

0

1-Octene, triple point	1.90		
Oils	2.807		
properties	2.808		
Oligosaccharides	2.48		
Optical activity	2.43		
Organic acids, solubility of metal salts in water	1.311		
Organic anions, limiting equivalent ionic conductance			
in aqueous solutions	1.410		
Organic cations, limiting equivalent ionic conductance			
in aqueous solutions	1.410		

<u>Index Terms</u>	<u>Links</u>		
Organic compounds:			
auto-ignition temperature	2.426		
boiling point	2.19	2.297	2.352
boiling points at selected pressures	2.315		
bond dissociation energies	2.467		
bond lengths	2.464		
characteristic groups	2.19	2.20	
chirality	2.43		
conductivity	2.698		
density	2.19	2.289	2.294
dielectric constants	2.470		
dipole moments	2.468	2.470	
electrode potentials	2.687		
energy of formation	2.515		
enthalpies	2.515		
entropies	2.515		
equilibrium constants	2.620	2.670	2.676
flammability properties	2.351		
flash point	2.19	2.352	
formula weight	2.19		
half-wave potentials of organic materials	2.687		
Hansen solubility parameters	2.269	2.805	
heat capacity	2.515		
heat of formation	2.495	2.515	
heat of fusion	2.561		
heat of sublimation	2.561		
heat of vaporization	2.561		
hildebrand solubility parameters	2.268	2.804	
ignition temperature (ignition point)	2.352		
ionization energy	2.495		
lower flammability limits	2.426		

<u>Index Terms</u>	<u>Links</u>			
Organic compounds: (Cont.)				
melting point	2.19			
nomenclature	2.4			
optical activity	2.43			
physical properties	2.64			
proton transfer reactions	2.676			
radicofunctional	2.23			
refractive index	2.19	2.289	2.294	2.807
saturated solutions	1.343			
solubility	2.19			
stereochemistry	2.38			
surface tension	2.272			
thermal conductivity	2.509			
upper flammability limits	2.426			
vapor pressure	2.297			
viscosity	2.272			
Organic groups, nomenclature	2.19	2.20	2.23	
Organic ions, limiting equivalent ionic conductance				
in aqueous solutions	2.699			
Organic ligands, formation constants with metal				
complexes	1.363			
Organic liquids:				
hansen solubility parameters	2.268			
hildebrand solubility parameters	2.268			
Organic radicals, nomenclature	2.57			
Organic semi-conductors	2.700			
Organic solvents, (See also Solvents):				
boiling points	2.348			
chromatographic use	4.84			
infrared transmission	3.29			
refractive index and density	2.294			

<u>Links</u>

Organic solvents, (See also Solvents): (Cont.)				
supercritical fluids	4.94			
ultraviolet absorption	3.57	3.58		
Overpotentials for common electrode reactions	1.396			
Oxidation-reduction indicators	2.684			
Oxidation states of the elements	1.124			
Oximes, infrared absorption	3.16			
Oxygen ring systems, nomenclature	2.14			

P

Paraffin wax, thermal conductivity	1.232
Paraffins:	
boiling points	2.350
melting points	2.255
Periodic table	1.121
Periods of the elements	1.121
Permittivity (See Dielectric constant)	
Petroleum products, physical properties	2.811
pH:	
Approximate pH value of solutions, calculation	1.350
calculation of concentrations of species present	
at a given pH	1.351
measurement, blood and biological media	1.301
reference values of acidity measurement	1.306
values for buffer solutions	1.307
pH determination indicators	2.686
Pipet capacity, tolerances for	4.158
pKa values of organic materials in water	2.620
pK values for proton transfer reactions	2.676
Phenols:	
melting points of derivatives	2.254

Phenols: (Cont.) nomenclature 2.24 Phosphorous acids, formula 2.35 Phosphorus-31 chemical shifts 3.107 Phosphorus-31 spin coupling constants 3.110 Phosphorus-containing compounds: infrared absorption 3.21 2.35 nomenclature 3.20 Phthalanes, infrared absorption 4.4 Physical constants elements 1.18 inorganic compounds 1.18 Physical properties: elements 1.18 1.124 1.16 1.18 inorganic compounds natural and synthetic rubber 2.776 organic compounds 2.64 2.740 polymers 2.810 waxes 2.739 Plastics 2.740 Properties Platinum rhodium alloy vs. platinum thermocouple 4.190 4.191 Polycyclic aromatic hydrocarbons: boiling point 2.257 formula 2.257 2.257 melting point molecular weight 2.257 nomenclature 2.10 2.257 2.257 structure 2.709 Polymers chemical name 2.778

Index Terms

This page has been reformatted by Knovel to provide easier navigation.

Links

<u>Links</u>

Polymers (Cont.)			
density	2.740	2.777	
density at various temperatures	2.780		
electrical properties	2.740		
gas permeability constants	2.801		
heat capacities	2.786		
hildebrand solubility parameters	2.804		
interfacial tension, liquid phase	2.783		
mechanical properties	2.740		
names and structures	2.730		
physical properties	2.740		
refractive indices	2.807		
resistance to chemicals	2.800		
surface tension	2.782		
thermal conductivity	2.794	2.798	2.799
thermal expansion coefficients	2.784		
trade names	2.777		
Polysaccharides	2.48	2.52	
Porosity of fritted glassware	4.134		
Precipitates, heating temperatures	4.135		
Precipitation of the elements, reagents for	4.130		
Precipitation, standard solutions	4.149		
Prefixes:			
numerical	4.3		
SI	4.3		
Pressure conversion	4.58		
Pressure, critical:			
elements	1.233		
inorganic compounds	1.233		
Propene, triple point	1.90		

<u>Links</u>

Properties, critical:			
elements	1.233		
inorganic compounds	1.233		
Proton chemical shifts	3.80		
Protons attached to double bonds	3.83		
Protons in deuterated solvents	3.86		
Proton spin coupling constants	3.85		
Proton-transfer reactions	1.350		
inorganic materials in water at 25°C	1.352		
Purines, in DNA	2.56		
Pyrimidines, in DNA	2.56		

Q

Quaternary electrolytes, activity	
coefficient	1.299
Quantum yield values, Fluorescence	
spectroscopy	3.60

R

Radicals:				
electron affinity	1.146			
ionization energy	1.141			
Radioactivity:				
actinium series	1.137			
neptunium series	1.135			
thorium series	1.136			
uranium series	1.137			
Raman spectroscopy	3.37			
aromatic compounds	3.48			
carbonyl compounds	3.44			
double bonds, cumulated	3.43			
double bonds, miscellaneous	3.46			

Raman spectroscopy (*Cont.*)

ethers	3.51		
halogen compounds	3.52		
heterocyclic rings	3.53		
N-H bonds	3.41		
saturated compounds	3.38		
single bonds	3.38		
sulfur compounds	3.50		
triple bonds	3.42		
Reactive chemicals	4.173		
Redox equations	4.145		
Reference electrodes as a function of temperature	1.404		
Reference buffer solutions	1.301		
Reference compounds, nuclear magnetic resonance			
spectroscopy	3.86		
Refractive index:			
atomic and group refractions	2.288		
definition	1.17	2.287	
fats and oils	2.808		
inorganic compounds	1.17	1.64	
minerals	1.86		
organic compounds	2.65	2.287	2.294
polymers	2.807		
water at various temperatures	1.95		
waxes	2.810		
Refrigerated storage chemicals	4.179		
Relative abundances:			
naturally occurring isotopes	1.132		
Relative density, glycerol, aqueous solutions,			
relative density	2.287		
sucrose, aqueous solutions	2.287		

<u>Links</u>

Index Terms	Links	
Relative humidity	4.77	4.79
Relative permittivity (See Dielectric constant)		
Resistivity, elements	1.128	
Reynolds number, definition	2.271	
RNA	2.56	
Rubber, natural and synthetic:		
gas permeability constants	2.801	
mechanical properties	2.776	
physical properties	2.776	
resistance to chemicals	2.800	

S

Salts and functional derivatives of inorganic acids,	
naming	1.11
Saponification value:	
fats and oils	2.808
waxes	2.810
Saturated solutions, inorganic and organic	
compounds	1.343
Screens, (See Sieves and screens)	
Selected half-reactions at 25°C, electrode	
potentials	1.383
Semi-conductors, organic	2.700
Separation methods	4.83
Sieves and screens	4.180
Silicon-29 chemical shifts	3.106
Single bonds, infrared absorption	3.3
SI prefixes	4.3
Sodium chloride brines, freezing point	2.463
Solidification point, fats and oils	2.808

Index Terms	Links	
Solubility:		
carboxylic acids in water	2.256	
elements	1.18	
inorganic compounds	1.18	
Solubility and equilibrium contacts	1.310	
Solubility of gases in water	1.311	
Solubility of inorganic compounds in water	1.311	
Solubility of metal salts of organic acids in water	1.311	
Solubility parameters:		
group contributions	2.270	
hansen	2.269	2.805
hildebrand	2.268	2.804
Solubility product constants:		
complex inorganic ions	1.342	
inorganic compounds	1.331	
Solubility rules for inorganic compounds	4.161	
Solutes, behavior in chromatography	4.90	
Solutions, standard stock	4.163	
Solvents, refractive index and density	2.294	
Spatial orientation of common hybrid bonds	1.175	
Specific gravity, (See Density):		
air at various temperatures	1.92	
Specific heat:		
elements	1.280	
inorganic compounds	1.280	
organic compounds	2.561	
Specific refraction:		
definition	2.287	
Spectroscopy, infrared absorption, (See Infrared		
absorption spectroscopy)		
Stability constants, complex inorganic ions	1.343	

L	.ir	ıks

Standard buffer solutions	1.303
Standard electrode potentials for aqueous solutions	1.401
Standard reference values of pH for the measurement	
of acidity	1.306
Standards, for acid-base titration	4.137
Standard solutions for calibrating conductivity	
vessels	1.411
Standard solutions for precipitation	4.149
Standard stock solutions	4.163
Starch	2.52
Steam correction for thermometers	4.182
Stereochemistry	2.38
Structure:	
crystal	177
Sublimation, heat of (See Heat of sublimation)	
Sublimation points, elements	1.124
Succinonitrile, triple point	1.90
Sucrose:	
aqueous solutions, relative density	2.287
aqueous solutions, surface tension	2.287
Suffixes for heterocyclic systems	2.13
Sulfates, infrared absorption	3.21
Sulfonamides, infrared absorption	3.21
Sulfonates, infrared absorption	3.21
Sulfones, infrared absorption	3.21
Sulfoxides, infrared absorption	3.21
Sulfur compounds, infrared absorption	3.21
Sulfur ring systems, nomenclature	2.14
Supercritical fluids	4.94
Surface tension:	
definition	2.271

Surface tension: (Cont.)	
inorganic compounds	1.226
organic compounds	2.272
polymers, liquid phase	2.782
water at various temperatures	1.95
Synonyms, inorganic compounds	1.13

Т

Target elements, X-ray spectroscopy	3.138
Temperature conversion	4.28
Temperature, critical:	
elements	1.233
inorganic compounds	1.233
Ternary electrolytes, activity coefficient	1.299
Ternary azeotropes containing:	
allyl alcohol	2.455
1-butanol	2.455
2-butanol	2.455
ethanol	2.454
methanol	2.454
3-methyl-1-butanol	2.455
2-methyl-1-propanol	2.455
2-methyl-2-propanol	2.455
1-propanol	2.454
2-propanol	2.454
Ternary azeotropes containing water	2.456
Terpenes, formula	2.54
Thermal conductivity:	
asphalt	1.232
coal	1.232
elements	1.231

Index Terms	<u>Links</u>		
Thermal conductivity: (Cont.)			
gases, as a function of temperature	2.506		
naphthalene	1.232		
organic compounds	2.509		
paraffin (wax)	1.232		
polymers	2.794	2.798	2.799
various solids	1.232		
Thermal expansion coefficients of polymers	2.784		
Thermal expansion, cubical coefficients	4.160		
Thermal properties	1.418		
Thermocouples	4.182		
copper vs. copper nickel alloy	4.192		
iron vs. copper-nickel alloy	4.187		
nickel-chromium alloy vs. nickel aluminum			
alloy	4.188		
nickel-chromium silicon alloy vs. nickel silicon			
magnesium alloy	4.189		
platinum rhodium alloy vs. platinum	4.190	4.191	
Thermocouples, fixed points	4.184		
Thermodynamic functions:			
inorganic compounds	1.237		
organic compounds	2.512		
Thermometers, stem correction	4.182		
Thermometry	4.180		
Thiocarbonyl compounds, infrared			
absorption	3.21		
Thioesters and acids, infrared absorption	3.15		
Thiols, infrared absorption	3.21		
Thiosulfonates, infrared absorption	3.21		
Thorium series of the elements:			
radioactivity	1.136		

Index Terms	<u>Links</u>
Titrimetric factors	4.138
TLV concentration limits for gases and vapors	4.165
Tolerances for:	
analytical weights	4.134
burettes	4.159
micropipets	4.158
pipet capacity	4.158
volumetric flasks	4.158
Transition temperatures	1.418
Transmission characteristics of selected	
solvents	3.29
Transmittance-absorbance conversion, infrared	
spectroscopy	3.33
Transmitting materials, infrared absorption	3.28
Triple bonds:	
infrared absorption	3.9
raman spectroscopy	3.42
Triple points:	
cyclopropane	1.90
1-hexene	1.90
inorganic compounds	1.90
methane	1.90
1-octene	1.90
propene	1.10

U

Ultraviolet spectroscopy	3.54
absorption bands for representative chromophores	3.55
benzene and heteroaromatics	3.59
benzene derivatives	3.59
cutoffs for spectrograde solvents	3.57

Ultraviolet spectroscopy (*Cont.*)

dienes	3.57
enones and dienones	3.58
solvent correction	3.58
Woodward-Fieser rules	3.57
Ununbium	1.120
Ununhexium	1.120
Ununoctium	1.120
Ununnilium	1.119
Ununquadium	1.120
Unununium	1.120
Uranium series of the elements, radioactivity	1.137
Urea and derivatives, infrared absorption	3.15
Urethanes, infrared absorption	3.15
Uronic acids	2.51

V

Values of absorbance for percent absorption	3.31	
Van der Waal's constants for gases	2.609	
Vaporization, heat of (See Heat of vaporization)		
Vapor pressure	1.199	2.296
ammonia, liquid	1.223	
definition	1.199	
deuterium oxide	1.225	
equations	1.199	
ice	1.222	
inorganic compounds	1.212	
inorganic compounds up to 1 atmosphere	1.203	
liquid ammonia	1.223	
mercury	1.220	
organic compounds	2.297	

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>
Index Terms

conversion of scales

<u>Index Terms</u>	Link
Vapor pressure (Cont.)	
selected elements at different temperatures	1.201
various inorganic compounds	1.212
water	1.224
Vapor pressure equations	1.199
Vapors, TLV concentration limits	4.165
Viscosity	4.66
absolute, definition	1.226

dynamic	2.270	
glycerol solutions, aqueous	2.287	
inorganic compounds	1.226	
kinematic, definition	1.226	
organic compounds	2.272	
sucrose solutions, aqueous solutions	2.287	
water	1.95	

Volume:

computation	4.159
conversion to STP	4.61

Volume, critical:	
elements	1.233
inorganic compounds	1.233
Volumetric factors	4.138
Volumetric flasks, tolerances for	4.158

W

Water:

boiling point at various pressures	1.93	1.94
compressibility at various temperatures	195	
critical properties	1.236	
density	1.91	

This page has been reformatted by Knovel to provide easier navigation.

ΧS

4.66

2.271

Index Terms

crystals

LIIKS	Т	:-	lza
		41.	IKS

2.461

Water: (Cont.)	
dielectric constant	1.95
refractive index at various temperatures	1.95
solubility of gases in	1.311
surface tension	1.95
vapor pressure	1.224
viscosity at various temperatures	1.95
Water-alcohol freezing mixtures	2.460
Water-glycerol freezing mixtures	2.462
Water-glycol freezing mixtures	2.462
Water-organic solvent mixtures, electrode	
potentials	404
Water vapor in saturated air	4.80
Wavelengths of absorption edges	3.130
Wave number, conversion to wavelength	3.36
Wax, thermal conductivity	1.232
Waxes	2.807
physical properties	2.810
Weight, conversion from air to vacuum	4.59
Work functions of the elements	1.132
Writing formulas:	
element sequence	1.5
inorganic compounds	1.4
placement of atoms in a formula	1.4
X	
X-ray absorption energies	3.133
X-ray emission energies, X-ray	3.135
X-ray emission spectra	3.128

This page has been reformatted by Knovel to provide easier navigation.

3.138

Index Terms

LIIIVO

X-ray spectroscopy (Cont.)	
filters for target elements	3.138
interplanar spacing	3.138
mass absorption coefficients	3.140

This page has been reformatted by Knovel to provide easier navigation.