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Preface

Mathematical linguistics is rooted both in Euclid’s (circa 325–265 BCE) axiomatic
method and in Pān. ini’s (circa 520–460 BCE) method of grammatical description.
To be sure, both Euclid and Pān. ini built upon a considerable body of knowledge
amassed by their precursors, but the systematicity, thoroughness, and sheer scope of
the Elements and the Asht.ādhyāyı̄ would place them among the greatest landmarks
of all intellectual history even if we disregarded the key methodological advance they
made.

As we shall see, the two methods are fundamentally very similar: the axiomatic
method starts with a set of statements assumed to be true and transfers truth from the
axioms to other statements by means of a fixed set of logical rules, while the method
of grammar is to start with a set of expressions assumed to be grammatical both in
form and meaning and to transfer grammaticality to other expressions by means of a
fixed set of grammatical rules.

Perhaps because our subject matter has attracted the efforts of some of the most
powerful minds (of whom we single out A. A. Markov here) from antiquity to the
present day, there is no single easily accessible introductory text in mathematical
linguistics. Indeed, to the mathematician the whole field of linguistics may appear
to be hopelessly mired in controversy, and neither the formidable body of empirical
knowledge about languages nor the standards of linguistic argumentation offer an
easy entry point.

Those with a more postmodern bent may even go as far as to doubt the existence
of a solid core of mathematical knowledge, often pointing at the false theorems and
incomplete or downright wrong proofs that slip through the peer review process at a
perhaps alarming rate. Rather than attempting to drown such doubts in rivers of philo-
sophical ink, the present volume will simply proceed more geometrico in exhibiting
this solid core of knowledge. In Chapters 3–6, a mathematical overview of the tradi-
tional main branches of linguistics, phonology, morphology, syntax, and semantics,
is presented.
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Who should read this book?

The book is accessible to anyone with sufficient general mathematical maturity
(graduate or advanced undergraduate). No prior knowledge of linguistics or lan-
guages is assumed on the part of the reader. The book offers a single entry point
to the central methods and concepts of linguistics that are made largely inaccessible
to the mathematician, computer scientist, or engineer by the surprisingly adversarial
style of argumentation (see Section 1.2), the apparent lack of adequate definitions
(see Section 1.3), and the proliferation of unmotivated notation and formalism (see
Section 1.4) all too often encountered in research papers and monographs in the
humanities. Those interested in linguistics can learn a great deal more about the sub-
ject here than what is covered in introductory courses just from reading through the
book and consulting the references cited. Those who plan to approach linguistics
through this book should be warned in advance that many branches of linguistics, in
particular psycholinguistics, child language acquisition, and the study of language
pathology, are largely ignored here – not because they are viewed as inferior to
other branches but simply because they do not offer enough grist for the mathe-
matician’s mill. Much of what the linguistically naive reader may find interesting
about language turns out to be more pertinent to cognitive science, the philosophy of
language, and sociolinguistics, than to linguistics proper, and the Introduction gives
these issues the shortest possible shrift, discussing them only to the extent necessary
for disentangling mathematical linguistics from other concerns.

Conversely, issues that linguists sometimes view as peripheral to their enter-
prise will get more discussion here simply because they offer such a rich variety
of mathematical techniques and problems that no book on mathematical linguistics
that ignored them could be considered complete. After a brief review of information
theory in Chapter 7, we will devote Chapters 8 and 9 to phonetics, speech recog-
nition, the recognition of handwriting and machine print, and in general to issues
of linguistic signal processing and pattern matching, including information extrac-
tion, information retrieval, and statistical natural language processing. Our treatment
assumes a bit more mathematical maturity than the excellent textbooks by Jelinek
(1997) and Manning and Schütze (1999) and intends to complement them. Kracht
(2003) conveniently summarizes and extends much of the discrete (algebraic and
combinatorial) work on mathematical linguistics. It is only because of the timely
appearance of this excellent reference work that the first six chapters could be kept
to a manageable size and we could devote more space to the continuous (analytic and
probabilistic) aspects of the subject. In particular, expository simplicity would often
dictate that we keep the underlying parameter space discrete, but in the later chapters
we will be concentrating more on the case of continuous parameters, and discuss the
issue of quantization losses explicitly.

In the early days of computers, there was a great deal of overlap between the
concerns of mathematical linguistics and computer science, and a surprising amount
of work that began in one field ended up in the other, sometimes explicitly as part
of computational linguistics, but often as general theory with its roots in linguistics
largely forgotten. In particular, the basic techniques of syntactic analysis are now
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firmly embedded in the computer science curriculum, and the student can already
choose from a large variety of textbooks that cover parsing, automata, and formal lan-
guage theory. Here we single out the classic monograph by Salomaa (1973), which
shows the connection to formal syntax in a way readily accessible to the mathe-
matically minded reader. We will selectively cover only those aspects of this field
that address specifically linguistic concerns, and again our guiding principle will be
mathematical content, as opposed to algorithmic detail. Readers interested in the
algorithms should consult the many excellent natural language processing textbooks
now available, of which we single out Jurafsky and Martin (2000, with a new edition
planned in 2008).

How is the book organized?

To the extent feasible we follow the structure of the standard introductory courses to
linguistics, but the emphasis will often be on points only covered in more advanced
courses. The book contains many exercises. These are, for the most part, rather hard
(over level 30 in the system of Knuth 1971) but extremely rewarding. Especially in
the later chapters, the exercises are often based on classical and still widely cited
theorems, so the solutions can usually be found on the web quite easily simply by
consulting the references cited in the text. However, readers are strongly advised
not to follow this route before spending at least a few days attacking the problem.
Unsolved problems presented as exercises are marked by an asterisk, a symbol that
we also use when presenting examples and counterexamples that native speakers
would generally consider wrong (ungrammatical): Scorsese is a great director is
a positive (grammatical) example while *Scorsese a great director is is a negative
(ungrammatical) example. Some exercises, marked by a dagger �, require the ability
to manipulate sizeable data sets, but no in-depth knowledge of programming, data
structures, or algorithms is presumed. Readers who write code effortlessly will find
these exercises easy, as they rarely require more than a few simple scripts. Those who
find such exercises problematic can omit them entirely. They may fail to gain direct
appreciation of some empirical properties of language that drive much of the research
in mathematical linguistics, but the research itself remains perfectly understandable
even if the motivation is taken on faith. A few exercises are marked by a raised M –
these are major research projects the reader is not expected to see to completion, but
spending a few days on them is still valuable.

Because from time to time it will be necessary to give examples from languages
that are unlikely to be familiar to the average undergraduate or graduate student of
mathematics, we decided, somewhat arbitrarily, to split languages into two groups.
Major languages are those that have a chapter in Comrie’s (1990) The World’s Major
Languages – these will be familiar to most people and are left unspecified in the text.
Minor languages usually require some documentation, both because language names
are subject to a great deal of spelling variation and because different groups of people
may use very different names for one and the same language. Minor languages are
therefore identified here by their three-letter Ethnologue code (15th edition, 2005)
given in square brackets [].
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Each chapter ends with a section on further reading. We have endeavored to
make the central ideas of linguistics accessible to those new to the field, but the
discussion offered in the book is often skeletal, and readers are urged to probe further.
Generally, we recommend those papers and books that presented the idea for the first
time, not just to give proper credit but also because these often provide perspective
and insight that later discussions take for granted. Readers who industriously follow
the recommendations made here should do so for the benefit of learning the basic
vocabulary of the field rather than in the belief that such reading will immediately
place them at the forefront of research.

The best way to read this book is to start at the beginning and to progress linearly
to the end, but the reader who is interested only in a particular area should not find it
too hard to jump in at the start of any chapter. To facilitate skimming and alternative
reading plans, a generous amount of forward and backward pointers are provided –
in a hypertext edition these would be replaced by clickable links. The material is
suitable for an aggressively paced one-semester course or a more leisurely paced
two-semester course.
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Introduction

1.1 The subject matter

What is mathematical linguistics? A classic book on the subject, (Jakobson 1961),
contains papers on a variety of subjects, including a categorial grammar (Lambek
1961), formal syntax (Chomsky 1961, Hiż 1961), logical semantics (Quine 1961,
Curry 1961), phonetics and phonology (Peterson and Harary 1961, Halle 1961),
Markov models (Mandelbrot 1961b), handwriting (Chao 1961, Eden 1961), parsing
(Oettinger 1961, Yngve 1961), glottochronology (Gleason 1961), and the philoso-
phy of language (Putnam 1961), as well as a number of papers that are harder to fit
into our current system of scientific subfields, perhaps because there is a void now
where once there was cybernetics and systems theory (see Heims 1991).

A good way to understand how these seemingly so disparate fields cohere is to
proceed by analogy to mathematical physics. Hamiltonians receive a great deal more
mathematical attention than, say, the study of generalized incomplete Gamma func-
tions, because of their relevance to mechanics, not because the subject is, from a
purely mathematical perspective, necessarily more interesting. Many parts of math-
ematical physics find a natural home in the study of differential equations, but other
parts fit much better in algebra, statistics, and elsewhere. As we shall see, the situa-
tion in mathematical linguistics is quite similar: many parts of the subject would fit
nicely in algebra and logic, but there are many others for which methods belonging
to other fields of mathematics are more appropriate. Ultimately the coherence of the
field, such as it is, depends on the coherence of linguistics.

Because of the enormous impact that the works of Noam Chomsky and Richard
Montague had on the postwar development of the discipline, there is a strong ten-
dency, observable both in introductory texts such as Partee et al. (1990) and in
research monographs such as Kracht (2003), to simply equate mathematical linguis-
tics with formal syntax and semantics. Here we take a broader view, assigning syntax
(Chapter 5) and semantics (Chapter 6) no greater scope than they would receive in
any book that covers linguistics as a whole, and devoting a considerable amount
of space to phonology (Chapter 2), morphology (Chapter 3), phonetics (Chapters 8
and 9), and other areas of traditional linguistics. In particular, we make sure that
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the reader will learn (in Chapter 7) the central mathematical ideas of information
theory and algorithmic complexity that provide the foundations of much of the
contemporary work in mathematical linguistics.

This does not mean, of course, that mathematical linguistics is a discipline
entirely without boundaries. Since almost all social activity ultimately rests on
linguistic communication, there is a great deal of temptation to reduce problems
from other fields of inquiry to purely linguistic problems. Instead of understanding
schizoid behavior, perhaps we should first ponder what the phrase multiple person-
ality means. Mathematics already provides a reasonable notion of ‘multiple’, but
what is ‘personality’, and how can there be more than one per person? Can a proper
understanding of the suffixes -al and -ity be the key? This line of inquiry, predating
the Schoolmen and going back at least to the cheng ming (rectification of names)
doctrine of Confucius, has a clear and convincing rationale (The Analects 13.3, D.C.
Lau transl.):

When names are not correct, what is said will not sound reasonable; when
what is said does not sound reasonable, affairs will not culminate in suc-
cess; when affairs do not culminate in success, rites and music will not
flourish; when rites and music do not flourish, punishments will not fit the
crimes; when punishments do not fit the crimes, the common people will not
know where to put hand and foot. Thus when the gentleman names some-
thing, the name is sure to be usable in speech, and when he says something
this is sure to be practicable. The thing about the gentleman is that he is
anything but casual where speech is concerned.

In reality, linguistics lacks the resolving power to serve as the ultimate arbiter of
truth in the social sciences, just as physics lacks the resolving power to explain
the accidents of biological evolution that made us human. By applying mathemat-
ical techniques we can at least gain some understanding of the limitations of the
enterprise, and this is what this book sets out to do.

1.2 Cumulative knowledge

It is hard to find any aspect of linguistics that is entirely uncontroversial, and to the
mathematician less steeped in the broad tradition of the humanities it may appear
that linguistic controversies are often settled on purely rhetorical grounds. Thus it
may seem advisable, and only fair, to give both sides the full opportunity to express
their views and let the reader be the judge. But such a book would run to thousands of
pages and would be of far more interest to historians of science than to those actually
intending to learn mathematical linguistics. Therefore we will not necessarily accord
equal space to both sides of such controversies; indeed often we will present a single
view and will proceed without even attempting to discuss alternative ways of looking
at the matter.

Since part of our goal is to orient the reader not familiar with linguistics, typi-
cally we will present the majority view in detail and describe the minority view only
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tersely. For example, Chapter 4 introduces the reader to morphology and will rely
heavily on the notion of the morpheme – the excellent book by Anderson (1992)
denying the utility, if not the very existence, of morphemes, will be relegated to foot-
notes. In some cases, when we feel that the minority view is the correct one, the
emphasis will be inverted: for example, Chapter 6, dealing with semantics, is more
informed by the ‘surface compositional’ than the ‘logical form’ view. In other cases,
particularly in Chapter 5, dealing with syntax, we felt that such a bewildering variety
of frameworks is available that the reader is better served by an impartial analysis that
tries to bring out the common core than by in-depth formalization of any particular
strand of research.

In general, our goal is to present linguistics as a cumulative body of knowledge.
In order to find a consistent set of definitions that offer a rational reconstruction
of the main ideas and techniques developed over the course of millennia, it will
often be necessary to take sides in various controversies. There is no pretense here
that mathematical formulation will necessarily endow a particular set of ideas with
greater verity, and often the opposing view could be formalized just as well. This
is particularly evident in those cases where theories diametrically opposed in their
means actually share a common goal such as describing all and only the well-formed
structures (e.g. syllables, words, or sentences) of languages. As a result, we will see
discussions of many ‘minority’ theories, such as case grammar or generative seman-
tics, which are generally believed to have less formal content than their ‘majority’
counterparts.

1.3 Definitions

For the mathematician, definitions are nearly synonymous with abbreviations: we
say ‘triangle’ instead of describing the peculiar arrangement of points and lines that
define it, ‘polynomial’ instead of going into a long discussion about terms, addition,
monomials, multiplication, or the underlying ring of coefficients, and so forth. The
only sanity check required is to exhibit an instance, typically an explicit set-theoretic
construction, to demonstrate that the defined object indeed exists. Quite often, coun-
terfactual objects such as the smallest group K not meeting some description, or
objects whose existence is not known, such as the smallest nontrivial root of � not
on the critical line, will play an important role in (indirect) proofs, and occasionally
we find cases, such as motivic cohomology, where the whole conceptual apparatus is
in doubt. In linguistics, there is rarely any serious doubt about the existence of the
objects of inquiry. When we strive to define ‘word’, we give a mathematical formu-
lation not so much to demonstrate that words exist, for we know perfectly well that
we use words both in spoken and written language, but rather to handle the odd and
unexpected cases. The reader is invited to construct a definition now and to write it
down for comparison with the eventual definition that will emerge only after a rather
complex discussion in Chapter 4.

In this respect, mathematical linguistics is very much like the empirical sciences,
where formulating a definition involves at least three distinct steps: an ostensive
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definition based on positive and sometimes negative examples (vitriol is an acid,
lye is not), followed by an extensive definition delineating the intended scope of
the notion (every chemical that forms a salt with a base is an acid), and the inten-
sive definition that exposes the underlying mechanism (in this case, covalent bonds)
emerging rather late as a result of a long process of abstraction and analysis.

Throughout the book, the first significant instance of key notions will appear
in italics, usually followed by ostensive examples and counterexamples in the next
few paragraphs. (Italics will also be used for emphasis and for typesetting linguis-
tic examples.) The empirical observables associated with these notions are always
discussed, but textbook definitions of an extensive sort are rarely given. Rather, a
mathematical notion that serves as a stand-in will be defined in a rigorous fashion:
in the defining phrase, the same notion is given in boldface. Where an adequate
mathematical formulation is lacking and we proceed by sheer analogy, the key terms
will be slanted – such cases are best thought of as open problems in mathematical
linguistics.

1.4 Formalization

In mathematical linguistics, as in any branch of applied mathematics, the issue of for-
malizing semiformally or informally stated theories comes up quite often. A prime
example is the study of phrase structure, where Chomsky (1956) took the critical
step of replacing the informally developed system of immediate constituent analysis
(ICA, see Section 5.1) by the rigorously defined context-free grammar (CFG, see
Section 2.3) formalism. Besides improving our understanding of natural language, a
worthy goal in itself, the formalization opened the door to the modern theory of com-
puter languages and their compilers. This is not to say that every advance in formal-
izing linguistic theory is likely to have a similarly spectacular payoff, but clearly the
informal theory remains a treasure-house inasmuch as it captures important insights
about natural language. While not entirely comparable to biological systems in age
and depth, natural language embodies a significant amount of evolutionary optimiza-
tion, and artificial communication systems can benefit from these developments only
to the extent that the informal insights are captured by formal methods.

The quality of formalization depends both on the degree of faithfulness to the
original ideas and on the mathematical elegance of the resulting system. Because the
proper choice of formal apparatus is often a complex matter, linguists, even those as
evidently mathematical-minded as Chomsky, rarely describe their models with full
formal rigor, preferring to leave the job to the mathematicians, computer scientists,
and engineers who wish to work with their theories. Choosing the right formal-
ism for linguistic rules is often very hard. There is hardly any doubt that linguistic
behavior is governed by rather abstract rules or constraints that go well beyond
what systems limited to memorizing previously encountered examples could explain.
Whether these rules have a stochastic aspect is far from settled: engineering applica-
tions are dominated by models that crucially rely on probabilities, while theoretical
models, with the notable exception of the variable rules used in sociolinguistics
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(see Section 5.4.3), rarely include considerations relating to the frequency of vari-
ous phenomena. The only way to shed light on such issues is to develop alternative
formalizations and compare their mathematical properties.

The tension between faithfulness to the empirical details and the elegance of the
formal system has long been familiar to linguists: Sapir (1921) already noted that
“all grammars leak”. One significant advantage that probabilistic methods have over
purely symbolic techniques is that they come with their own built-in measure of
leakiness (see Section 5.4). It is never a trivial matter to find the appropriate degree
of idealization in pursuit of theoretical elegance, and all we can do here is to offer a
couple of convenient stand-ins for the very real but still somewhat elusive notion of
elegance.

The first stand-in, held in particularly high regard in linguistics, is brevity. The
contemporary slogan of algorithmic complexity (see Section 7.2), that the best theory
is the shortest theory, could have been invented by Pān. ini. The only concession most
linguists are willing to make is that some of the complexity should be ascribed to
principles of universal grammar (UG) rather than to the parochial rules specific to a
given language, and since the universal component can be amortized over many lan-
guages, we should maximize its explanatory burden at the expense of the parochial
component.

The second stand-in is stability in the sense that minor perturbations of the defi-
nition lead to essentially the same system. Stability has always been highly regarded
in mathematics: for example, Birkhoff (1940) spent significant effort on establishing
the value of lattices as legitimate objects of algebraic inquiry by investigating alter-
native definitions that ultimately lead to the same class of structures. There are many
ways to formalize an idea, and when small changes in emphasis have a very signifi-
cant impact on the formal properties of the resulting system, its mathematical value
is in doubt. Conversely, when variants of formalisms as different as indexed gram-
mars (Aho 1968), combinatory categorial grammar (Steedman 2001), head grammar
(Pollard 1984), and tree adjoining grammar (Joshi 2003) define the same class of
languages, the value of each is significantly enhanced.

One word of caution is in order: the fact that some idea is hard to formalize,
or even seems so contradictory that a coherent mathematical formulation appears
impossible, can be a reflection on the state of the art just as well as on the idea
itself. Starting with Berkeley (1734), the intuitive notion of infinitesimals was sub-
jected to all kinds of criticism, and it took over two centuries for mathematics to
catch up and provide an adequate foundation in Robinson (1966). It is quite conceiv-
able that equally intuitive notions, such as a semantic theory of information, which
currently elude our mathematical grasp, will be put on firm foundations by later gen-
erations. In such cases, we content ourselves with explaining the idea informally,
describing the main intuitions and pointing at possible avenues of formalization only
programmatically.
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1.5 Foundations

For the purposes of mathematical linguistics, the classical foundations of mathemat-
ics are quite satisfactory: all objects of interest are sets, typically finite or, rarely,
denumerably infinite. This is not to say that nonclassical metamathematical tools
such as Heyting algebras find no use in mathematical linguistics but simply to assert
that the fundamental issues of this field are not foundational but definitional.

Given the finitistic nature of the subject matter, we will in general use the terms
set, class, and collection interchangeably, drawing explicit cardinality distinctions
only in the rare cases where we step out of the finite domain. Much of the classical
linguistic literature of course predates Cantor, and even the modern literature typi-
cally conceives of infinity in the Gaussian manner of a potential, as opposed to actual,
Cantorian infinity. Because of immediate empirical concerns, denumerable general-
izations of finite objects such as !-words and Büchi automata are rarely used,1 and
in fact even the trivial step of generalizing from a fixed constant to arbitrary n is
often viewed with great suspicion.

Aside from the tradition of Indian logic, the study of languages had very little
impact on the foundations of mathematics. Rather, mathematicians realized early
on that natural language is a complex and in many ways unreliable construct and
created their own simplified language of formulas and the mathematical techniques
to investigate it. As we shall see, some of these techniques are general enough to
cover essential facets of natural languages, while others scale much more poorly.

There is an interesting residue of foundational work in the Berry, Richard, Liar,
and other paradoxes, which are often viewed as diagnostic of the vagueness, ambi-
guity, or even ‘paradoxical nature’ of natural language. Since the goal is to develop
a mathematical theory of language, sooner or later we must define English in a for-
mal system. Once this is done, the buck stops there, and questions like “what is the
smallest integer not nameable in ten words?” need to be addressed anew.

We shall begin with the seemingly simpler issue of the first number not name-
able in one word. Since it appears to be one hundred and one, a number already
requiring four words to name, we should systematically investigate the number of
words in number names. There are two main issues to consider: what is a word? (see
Chapter 4); and what is a name? (see Chapter 6). Another formulation of the Berry
paradox invokes the notion of syllables; these are also discussed in Chapter 4. Even-
tually we will deal with the paradoxes in Chapter 6, but our treatment concentrates
on the linguistic, rather than the foundational, issues.

1.6 Mesoscopy

Physicists speak of mesoscopic systems when these contain, say, fifty atoms, too
large to be given a microscopic quantum-mechanical description but too small for the
classical macroscopic properties to dominate the behavior of the system. Linguistic

1 For a contrary view, see Langendoen and Postal (1984).
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systems are mesoscopic in the same broad sense: they have thousands of rules and
axioms compared with the handful of axioms used in most branches of mathematics.
Group theory explores the implications of five axioms, arithmetic and set theory get
along with five and twelve axioms respectively (not counting members of axiom
schemes separately), and the most complex axiom system in common use, that of
geometry, has less than thirty axioms.

It comes as no surprise that with such a large number of axioms, linguistic sys-
tems are never pursued microscopically to yield implications in the same depth as
group theory or even less well-developed branches of mathematics. What is perhaps
more surprising is that we can get reasonable approximations of the behavior at the
macroscopic level using the statistical techniques pioneered by A. A. Markov (see
Chapters 7 and 8).

Statistical mechanics owes its success largely to the fact that in thermodynamics
only a handful of phenomenological parameters are of interest, and these are rela-
tively easy to link to averages of mechanical quantities. In mathematical linguistics
the averages that matter (e.g. the percentage of words correctly recognized or cor-
rectly translated) are linked only very indirectly to the measurable parameters, of
which there is such a bewildering variety that it requires special techniques to decide
which ones to employ and which ones to leave unmodeled.

Macroscopic techniques, by their very nature, can yield only approximations for
mesoscopic systems. Microscopic techniques, though in principle easy to extend to
the mesoscopic domain, are in practice also prone to all kinds of bugs, ranging from
plain errors of fact (which are hard to avoid once we deal with thousands of axioms)
to more subtle, and often systematic, errors and omissions. Readers may at this point
feel very uncomfortable with the idea that a given system is only 70%, 95%, or even
99.99% correct. After all, isn’t a single contradiction or empirically false prediction
enough to render a theory invalid? Since we need a whole book to develop the tools
needed to address this question, the full answer will have to wait until Chapter 10.

What is clear from the outset is that natural languages offer an unparalleled vari-
ety of complex algebraic structures. The closest examples we can think of are in
crystallographic topology, but the internal complexity of the groups studied there
is a product of pure mathematics, while the internal complexity of the syntactic
semigroups associated to natural languages is more attractive to the applied math-
ematician, as it is something found in vivo. Perhaps the most captivating aspect
of mathematical linguistics is not just the existence of discrete mesoscopic struc-
tures but the fact that these come embedded, in ways we do not fully understand, in
continuous signals (see Chapter 9).

1.7 Further reading

The first works that can, from a modern standpoint, be called mathematical linguis-
tics are Markov’s (1912) extension of the weak law of large numbers (see Theorem
8.2.2) and Thue’s (1914) introduction of string manipulation (see Chapter 2), but
pride of place must go to Pān. ini, whose inventions include not just grammatical
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rules but also a formal metalanguage to describe the rules and a set of principles
governing their interaction. Although the Asht.ādhyāyı̄ is available on the web in its
entirety, the reader will be at a loss without the modern commentary literature starting
with Böhtlingk (1887, reprinted 1964). For modern accounts of various aspects of
the system see Staal (1962, 1967) Cardona (1965, 1969, 1970, 1976, 1988), and
Kiparsky (1979, 1982a, 2002). Needless to say, Pān. ini did not work in isolation.
Much like Euclid, he built on the inventions of his predecessors, but his work was so
comprehensive that it effectively drove the earlier material out of circulation. While
much of linguistics has aspired to formal rigor throughout the ages (for the Masoretic
tradition, see Aronoff 1985, for medieval syntax see Covington 1984), the continuous
line of development that culminates in contemporary formal grammar begins with
Bloomfield’s (1926) Postulates (see Section 3.1), with the most important milestones
being Harris (1951) and Chomsky (1956, 1959).

Another important line of research, only briefly alluded to above, could be called
mathematical antilinguistics, its goal being the elimination, rather than the explana-
tion, of the peculiarities of natural language from the system. The early history of
the subject is discussed in depth in Eco (1995); the modern mathematical devel-
opments begin with Frege’s (1879) system of Concept Writing (Begriffsschrift),
generally considered the founding paper of mathematical logic. There is no doubt
that many great mathematicians from Leibniz to Russell were extremely critical of
natural language, using it more for counterexamples and cautionary tales than as
a part of objective reality worthy of formal study, but this critical attitude has all
but disappeared with the work of Montague (1970a, 1970b, 1973). Contemporary
developments in model-theoretic semantics or ‘Montague grammar’ are discussed in
Chapter 6.

Major summaries of the state of the art in mathematical linguistics include Jakob-
son (1961), Levelt (1974), Manaster-Ramer (1987), and the subsequent Mathematics
of Language (MOL) conference volumes. We will have many occasions to cite
Kracht’s (2003) indispensable monograph The Mathematics of Language.

The volumes above are generally more suitable for the researcher or advanced
graduate student than for those approaching the subject as undergraduates. To some
extent, the mathematical prerequisites can be learned from the ground up from clas-
sic introductory textbooks such as Gross (1972) or Salomaa (1973). Gruska (1997)
offers a more modern and, from the theoretical computer science perspective, far
more comprehensive introduction. The best elementary introduction to the logical
prerequisites is Gamut (1991). The discrete side of the standard “mathematics for
linguists” curriculum is conveniently summarized by Partee et al. (1990), and the
statistical approach is clearly introduced by Manning and Schütze (1999). The stan-
dard introduction to pattern recognition is Duda et al. (2000). Variable rules were
introduced in Cedergren and Sankoff (1974) and soon became the standard modeling
method in sociolinguistics – we shall discuss them in Chapter 5.
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The elements

A primary concern of mathematical linguistics is to effectively enumerate those sets
of words, sentences, etc., that play some important linguistic role. Typically, this
is done by means of generating the set in question, a definitional method that we
introduce in Section 2.1 by means of examples and counterexamples that show the
similarities and the differences between the standard mathematical use of the term
‘generate’ and the way it is employed in linguistics.

Because the techniques used in defining sets, functions, relations, etc., are not
always directly useful for evaluating them at a given point, an equally important
concern is to solve the membership problem for the sets, functions, relations, and
other structures of interest. In Section 2.2 we therefore introduce a variety of gram-
mars that can be used to, among other things, create certificates that a particular
element is indeed a member of the set, gets mapped to a particular value, stands in a
prescribed relation to other elements and so on, and compare generative systems to
logical calculi.

Since generative grammar is most familiar to mathematicians and computer sci-
entists as a set of rather loosely collected string-rewriting techniques, in Section 2.3
we give a brief overview of this domain. We put the emphasis on context-sensitive
grammars both because they play an important role in phonology (see Chapter 3) and
morphology (see Chapter 4) and because they provide an essential line of defense
against undecidability in syntax (see Chapter 5).

2.1 Generation

To define a collection of objects, it is often expedient to begin with a fixed set of
primitive elementsE and a fixed collection of rules (we use this term in a broad sense
that does not imply strict procedurality) R that describe permissible arrangements of
the primitive elements as well as of more complex objects. If x; y; z are objects
satisfying a (binary) rule z D r.x; y/, we say that z directly generates x and y (in
this order) and use the notation z !r xy. The smallest collection of objects closed
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under direct generation by any r 2 R and containing all elements of E is called the
set generated from E by R.

Very often the simplest or most natural definition yields a superset of the real
objects of interest, which is therefore supplemented by some additional conditions
to narrow it down. In textbooks on algebra, the symmetric group is invariably intro-
duced before the alternating group, and the latter is presented simply as a subgroup
of the former. In logic, closed formulas are typically introduced as a special class of
well-formed formulas. In context-free grammars, the sentential forms produced by
the grammar are kept only if they contain no nonterminals (see Section 2.3), and we
will see many similar examples (e.g. in the handling of agreement; see Section 5.2.3).

Generative definitions need to be supported by some notion of equality among
the defined objects. Typically, the notion of equality we wish to employ will abstract
away from the derivational history of the object, but in some cases we will need a
stronger definition of identity that defines two objects to be the same only if they
were generated the same way. Of particular interest in this regard are derivational
strata. A specific intermediary stage of a derivation (e.g. when a group or rules have
been exhausted or when some well-formedness criterion is met) is often called a
stratum and is endowed with theoretically significant properties, such as availabil-
ity for interfacing with other modules of grammar. Theories that recognize strata
are called multistratal, and those that do not are called monostratal – we shall see
examples of both in Chapter 5.

In mathematical linguistics, the objects of interest are the collection of words
in a language, the collection of sentences, the collection of meanings, etc. Even the
most tame and obviously finite collections of this kind present great definitional dif-
ficulties. Consider, for example, the set of characters (graphemes) used in written
English. Are uppercase and lowercase forms to be kept distinct? How about punctu-
ation, digits, or Zapf dingbats? If there is a new character for the euro currency unit,
as there is a special character for dollar and pound sterling, shall it be included on
account of Ireland having already joined the euro zone or shall we wait until England
follows suit? Before proceeding to words, meanings, and other more subtle objects
of inquiry, we will therefore first refine the notion of a generative definition on some
familiar mathematical objects.
Example 2.1.1 Wang tilings. Let C be a finite set of colors and S be a finite set of
square tiles, each colored on the edges according to some function e W S ! C 4.
We assume that for each coloring type we have an infinite supply of tokens colored
with that pattern: these make up the set of primitive elements E. The goal is to tile
the whole plane (or just the first quadrant) laying down the tiles so that their colors
match at the edges. To express this restriction more precisely, we use a rule system
R with four rules n; s; e; w as follows. Let Z be the set of integers, 0 be the successor
function “add one” and ‘ be its inverse “subtract one”. For any i; j 2 Z, we say that
the tile uwhose bottom left corner is at .i; j / has a correct neighbor to the north if the
third component of e.u/ is the same as the first component of e.v/ where v is the tile
at .i; j 0/. Denoting the i th projection by �i , we can write �3.e.u// D �1.e.v// for
v at .i; j 0/. Similarly, the west rule requires �4.e.u// D �2.e.v// for v at .i 0; j /, the
east rule requires �2.e.u// D �4.e.v// for v at .i 0; j /, and the south rule requires
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�1.e.u// D �3.e.v// for v at .i; j 0/. We define first-quadrant (plane) tilings as
functions from N � N .Z � Z) to E that satisfy all four rules.
Discussion While the above may look very much like a generative definition, there
are some crucial differences. First, the definition relies on a number of externally
given objects, such as the natural numbers, the integers, the successor function, and
Cartesian products. In contrast, the definitions we will encounter later, though they
may require some minimal set-theoretical scaffolding, are almost always noncount-
ing, both in the broad sense of being free of arithmetic aspects and in the narrower
semigroup-theoretic sense (see Chapter 5.2.3).

Second, these rules are well-formedness conditions (WFCs, see Section 2.3)
rather than procedural rules of production. In many cases, this is a distinction without
a difference, since production rules can often be used to enforce WFCs. To turn the
four WFCs n; s; e; w into rules of production requires some auxiliary definitions: we
say that a new tile .i; j / is north-adjacent to a preexisting set of tiles T if .i; j / 62 T
but .i; j 0/ 2 T , and similarly for east-, west-, and south-adjacency (any combination
of these relations may simultaneously obtain between a new tile and some suitably
shaped T ). A (north, south, east, west)-addition of a tile at .i; j / is an operation
that is permitted between a set of tiles T and a (south, north, west, east)-adjacent tile
.i; j / to form T [.i; j / iff the n; s; w; e rules are satisfied, so there are 24 production
rules.

It is a somewhat tedious but entirely trivial exercise to prove that these sixteen
rules of production can be used to successively build all and only well-formed first
quadrant (plane) tilings starting from a single tile placed at the origin. Obviously,
for some tile inventories, the production rules can also yield partial tilings that can
never be completed as well-formed first-quadrant (or plane) tilings, and in general
we will often see reason to consider broader production processes, where ill-formed
intermediate structures are integral to the final outcome.

This becomes particularly interesting in cases where the final result shows some
regularity that is not shared by the intermediate structures. For example, in languages
that avoid two adjacent vowels (a configuration known as hiatus), if a vowel-initial
word would come after a vowel-final one, there may be several distinct processes that
enforce this constraint; e.g., by deleting the last vowel of the first word or by inserting
a consonant between them (as in the very ideaR of it). It has long been observed (see
in particular Kisseberth 1970) that such processes can conspire to enforce WFCs,
and an important generative model, optimality theory (see Section 4.3), takes this
observation to be fundamental in the sense that surface regularities appear as the
cause, rather than the effect, of production rules that conspire to maintain them. On
the whole, there is great interest in constraint-based theories of grammar where the
principal mechanism of capturing regularities is by stating them as WFCs.

Third, the four WFCs (as opposed to the 16 production rules) have no recur-
sive aspect whatsoever. There is no notion of larger structures built via intermediate
structures: we go from the atomic units (tiles) to the global structure (tiling of the first
quadrant) in one leap. Linguistic objects, as we shall see, are generally organized in
intermediate layers that are of interest in themselves: a typical example is provided
by phonemes (sounds), which are organized in syllables, which in turn are organized
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in metrical feet, which may be organized in cola (superfeet) before reaching the word
level (see Section 4.1). In contrast, Example 2.1.1 will lack recursive structure not
only in the presentation chosen above but in any other presentation.
Theorem 2.1.1 (Berger 1966) It is recursively undecidable whether a given inventory
of tiles E can yield a Wang tiling.
Example 2.1.2 Presentation of groups in terms of generators and relations. Let E be
a set of generators g1; � � � ; gk and their inverses g�1

1 ; � � � ; g�1
k

, and letR contain both
the formal product rule that forms a string of these from two such strings by means
of concatenation and the usual rules of cancellation g�1

i gi D gig
�1
i D � as context-

free string-rewriting rules. Formal products composed from the gi and g�1
i define

the free group (or, if we omit inverses and cancellation, the free monoid) over k
generators, with the usual conventions that the empty word is the multiplicative unit
of the group (monoid) and that formal products containing canceling terms are equiv-
alent to those with the canceling terms omitted. If a broader set of formal products
is defined as canceling, representatives of this set are called defining relations for
the group being presented, which is the factor of the free group by the cancellation
kernel.
Discussion As is well-known, it is in general undecidable whether a formal product
of generators and inverses is included in the kernel or not (Sims 1994) – we will
discuss the relationship between combinatorial group theory and formal languages
in Chapter 5. Note that it is a somewhat arbitrary technical decision whether we
list the defining relations as part of our production rules or as part of the equality
relation: we can keep one or the other (but not both) quite trivial without any loss of
expressive power. In general, the equality clause of generative definitions can lead to
just the same complications as the rules clause.
Example 2.1.3 Herbrand universes. As the reader will recall, a first order language
(FOL) consists of logical symbols (variables, connectives, quantifiers, equal sign)
plus some constants (e.g., distinguished elements of algebras), as well as function
and relation symbols (each with finite arity). The primitive elements of the Herbrand
universe are the object constants of the FOL under study (or an arbitrary constant if
no object constant was available initially), and there are as many rules to describe per-
missible arrangements of elements as there are function/relation constants in the FOL
under study: if f was such a constant of arity n, f .x1; : : : ; xn/ is in the Herbrand
universe provided the xi were.
Discussion Herbrand universes are used in building purely formula-based models
which are in some sense canonical among the many models that first order theories
have. It should come as no surprise that logic offers many par excellence examples of
generative definition – after all, the techniques developed for formalizing mathemat-
ical statements grew out of the larger effort to render statements of all sorts formally.
However, the definition of an FOL abstracts away from several important properties
of natural language. In FOLs, functions and relations of arbitrary arity are permitted,
while in natural language the largest number of arguments one needs to consider is
five (see Section 5.2). Also, in many important cases (see Chapter 3), the freedom to
utilize an infinite set of constants or variables is not required.
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As a matter of fact, it is often tempting to replace natural languages, the true
object of inquiry, by some well-regimented semiformal or fully formal construct used
in mathematics. Certainly, there is nothing wrong with a bit of idealization, especially
with ignoring factors best classified as noise. But a discussion about the English
word triangle cannot rely too much on the geometrical object by this name since this
would create problems where there aren’t any; for example, it is evident that a hunter
circling around a clearing does not require that her path keep the exact same distance
from the center at all times. To say that this amounts to fuzzy definitions or sloppy
language use is to put the cart before the horse: the fact to be explained is not how
a cleaned-up language could be used for communication but how real language is
used.
Exercise 2.1 The Fibonacci numbers are defined by f0 D 0; f1 D 1; fnC1 D fn C
fn�1. Is this a generative definition? Why?

2.2 Axioms, rules, and constraints

There is an unbroken tradition of argumentation running from the Greek sophists
to the Oxford Union, and the axiomatic method has its historic roots in the efforts
to regulate the permissible methods of debate. As in many other fields of human
activity, ranging from ritual to game playing, regulation will lay bare some essential
features of the activity and thereby make it more enjoyable for those who choose to
participate. Since it is the general experience that almost all statements are debat-
able, to manage argumentation one first needs to postulate a small set of primitive
statements on which the parties agree – those who will not agree are simply excluded
from the debate. As there is remarkable agreement about the validity of certain kinds
of inference, the stage is set for a fully formal, even automatic, method of verifying
whether a given argument indeed leads to the desired conclusion from the agreed
upon premises.

There is an equally venerable tradition of protecting the full meaning and exact
form of sacred texts, both to make sure that mispronunciations and other errors that
may creep in over the centuries do not render them ineffectual and that misinterpre-
tations do not confuse those whose task is to utter them on the right occasion. Even if
we ignore the phonetic issues related to ‘proper’ pronunciation (see Chapter 8), writ-
ing down the texts is far from sufficient for the broader goals of preservation. With
any material of great antiquity, we rarely have a single fully preserved and widely
accepted version – rather, we have several imperfect variants and fragments. What
is needed is not just a frozen description of some texts, say the Vedas, but also a
grammar that defines what constitutes a proper Vedic text. The philological ability
to determine the age of a section and undo subsequent modifications is especially
important because the words of earlier sages are typically accorded greater weight.

In defining the language of a text, a period, or a speech community, we can
propagate grammaticality the same way we propagate truth in an axiomatic system,
by choosing an initial set of grammatical expressions and defining some permissi-
ble combinatorical operations that are guaranteed to preserve grammaticality. Quite
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often, such operations are conceptualized as being composed of a purely combina-
torical step (typically concatenation) followed by some tidying up; e.g., adding a
third-person suffix to the verb when it follows a third-person subject: compare I see
to He sees. In logic, we mark the operators overtly by affixing them to the sequence of
the operands – prefix (Polish), interfix (standard), and postfix (reverse Polish) nota-
tions are all in wide use – and tend not to put a great deal of emphasis on tidying up
(omission of parentheses is typical). In linguistics, there is generally only one oper-
ation considered, concatenation, so no overt marking is necessary, but the tidying up
is viewed as central to the enterprise of obtaining all and only the attested forms.

The same goal of characterizing all and only the grammatical forms can be
accomplished by more indirect means. Rather than starting from a set of fully gram-
matical forms, we can begin with some more abstract inventory, such as the set of
words W , elements of which need not in and of themselves be grammatical, and
rather than propagating grammaticality from the parts to the whole, we perform some
computation along the way to keep score.
Example 2.2.1 Balanced parentheses. We have two atomic expressions, the left and
the right paren, and we assign the values C1 to ‘(’ and �1 to ‘)’. We can successively
add new paren symbols on the right as long as the score (overall sum of C1 and �1
values) does not dip below zero: the well-formed (balanced) expressions are simply
those where this WFC is met and the overall score is zero.
Discussion The example is atypical for two reasons: first because linguistic theo-
ries are noncounting (they do not rely on the full power of arithmetic) and second
because it is generally not necessary for a WFC to be met at every stage of the
derivation. Instead of computing the score in Z, a better choice is some finite struc-
ture G with well-understood rules of combination, and instead of assigning a single
value to each atomic expression, it gives us much-needed flexibility to make the
assignment disjunctive (taking any one of a set of values). Thus we have a mapping
c W W ! 2G and consider grammatical only those sequences of words for which
the rules of combination yield a desirable result. Demonstrating that the assigned
elements of G indeed combine in the desired manner constitutes a certificate of
membership according to the grammar defined by c.
Example 2.2.2 Categorial grammar. IfG behaves like a free group except that formal
inverses of generators do not cancel from both sides (g � g�1 D e is assumed but
g�1 � g D e is not) and we consider only those word sequences w1:w2 : : : wn for
which there is at least one hi in each c.wi / such that h1 � : : : � hn D g0 (i.e. the
group-theoretical product of the hi yields a distinguished generator g0), we obtain
a version of bidirectional categorial grammar (Bar-Hillel 1953, Lambek 1958). If
we take G as the free Abelian group, we obtain unidirectional categorial grammar
(Ajdukiewitz 1935). These notions will be developed further in Chapter 5.2.
Example 2.2.3 Unification grammar. By choosing G to be the set of rooted directed
acyclic node-labeled graphs, where the labels are first order variables and constants,
and considering only those word sequences for which the assigned graphs will unify,
we obtain a class of unification grammars.
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Example 2.2.4 Link grammar. By choosing G to satisfy a generalized version of
the (horizontal) tiling rules of Example 2.1.1, we obtain the link grammars of Sleator
and Temperley (1993).

We will investigate a variety of such systems in detail in Chapters 5 and 6, but
here we concentrate on the major differences between truth and grammaticality. First,
note that systems such as those above are naturally set up to define not only one dis-
tinguished set of strings but its cosets as well. For example, in a categorial grammar,
we may inquire not only about those strings of words for which multiplication of
the associated categories yields the distinguished generator but also about those for
which the yield contains another generator or any specific word of G. This corre-
sponds to the fact that e.g. the house of the seven gables is grammatical but only as
a noun phrase and not as a sentence, while the house had seven gables is a gram-
matical sentence but not a grammatical noun phrase. It could be tempting to treat the
cosets in analogy with n-valued logics, but this does not work well since the various
stringsets defined by a grammar may overlap (and will in fact irreducibly overlap in
every case where a primitive element is assigned more than one disjunct by c), while
truth values are always uniquely assigned in n-valued logic.

Second, the various calculi for propagating truth values by specific rules of infer-
ence can be supported by an appropriately constructed theory of model structures.
In logic, a model will be unique only in degenerate cases: as soon as there is an
infinite model, by the Löwenheim-Skolem theorems we have at least as many non-
isomorphic models as there are cardinalities. In grammar, the opposite holds: as
soon as we fix the period, dialect, style, and possibly other parameters determining
grammaticality, the model is essentially unique.

The fact that up to isomorphism there is only one model structure M gives rise
to two notions peculiar to mathematical linguistics: overgeneration and undergener-
ation. If there is some stringw1:w2 : : : wn 62 M that appears in the yield of c, we say
that c overgenerates (with respect to M ), and if there is a w1:w2 : : : wn 2 M that
does not appear in the yield of c, we say that c undergenerates. It is quite possible,
indeed typical, for working grammars to have both kinds of errors at the same time.
We will develop quantitative methods to compare the errors of different grammars
in Section 5.4, and note here that neither undergeneration nor overgeneration is a
definitive diagnostic of some fatal problem with the system. In many cases, over-
generation is benign in the sense that the usefulness of a system that e.g. translates
English sentences to French is not at all impaired by the fact that it is also capable
of translating an input that lies outside the confines of fully grammatical English.
In other cases, the aim of the system may be to shed light only on a particular range
of phenomena, say on the system of intransitive verbs, to the exclusion of transi-
tive, ditransitive, etc., verbs. In the tradition of Montague grammar (see Section 6.2),
such systems are explicitly called fragments. Constraint-based theories, which view
the task of characterizing all and only the well-formed structures as one of (rank-
prioritized) intersection of WFCs (see Section 4.2) can have the same under- and
overgeneration problems as rule-based systems, as long as they have too many (too
few) constraints.
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In spite of these major differences, the practice of logic and that of grammar have
a great deal in common. First, both require a systematic ability to analyze sentences
in component parts so that generalizations involving only some part can be stated and
the ability to construct new sentences from ones already seen. Chapter 5 will discuss
such syntactic abilities in detail. We note here that the practice of logic is largely
normative in the sense that constructions outside those explicitly permitted by its
syntax are declared ill-formed, while the practice of linguistics is largely descriptive
in the sense that it takes the range of existing constructions as given and strives to
adjust the grammar so as to match this range.

Second, both logic and grammar are largely driven by an overall consideration
of economy. As the reader will have no doubt noticed, having a separate WFC for
the northern, southern, eastern, and western edges of a tile in Example 2.1.1 is quite
unnecessary: any two orthogonal directions would suffice to narrow down the range
of well-formed tilings. Similarly, in context-free grammars, we often find it sufficient
to deal only with rules that yield only two elements on the right-hand side (Chomsky
normal form), and there has to be some strong reason for departing from the simplest
binary branching structure (see Chapter 5).

From the perspective of linguistics, logical calculi are generation devices, with
the important caveat that in logic the rules of deduction are typically viewed as pos-
sibly having more than one premiss, while in linguistics such rules would generally
be viewed as having only one premiss, namely the conjunction of the logically dis-
tinct premisses, and axiom systems would be viewed as containing a single starting
point (the conjunction of the axioms). The deduction of theorems from the axiom by
brute force enumeration of all proofs is what linguists would call free generation.
The use of a single conjunct premiss instead of multiple premisses may look like a
distinction without a difference, but it has the effect of making generative systems
invertible: for each such system with rules r1; : : : ; rk we can construct an inverted
system with rules r�1

1 ; : : : ; r�1
k

that is now an accepting, rather than generating,
device. This is very useful in all those cases where we are interested in characterizing
both production (synthesis, generation) and perception (analysis, parsing) processes
because the simplest hypothesis is that these are governed by the same set of abstract
rules.

Clearly, definition by generation differs from deduction by a strict algorithmic
procedure only in that the choice of the next algorithmic step is generally viewed as
being completely determined by the current step, while in generation the next step
is freely drawn from the set of generative rules. The all-important boundary between
recursive and recursively enumerable (r.e.) is drawn the same way by certificates
(derivation structures), but the systems of interest congregate on different sides of
this boundary. In logic, proving the negation of a statement requires the same kind
of certificate (a proof object rooted in the axioms and terminating in the desired
conclusion) as proving the statement itself – the difficulty is that most calculi are r.e.
but not recursive (decidable). In grammar, proving the ungrammaticality of a form
requires an apparatus very different from proving its grammaticality: for the latter
purpose an ordinary derivation suffices, while for the former we typically need to
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exhaustively survey all forms of similar and lesser complexity, which can be difficult,
even though most grammars are not only r.e. but in fact recursive.

2.3 String rewriting

Given a set of atomic symbols † called the alphabet, the simplest imaginable oper-
ation is that of concatenation, whereby a complex symbol xy is formed from x

and y by writing them in succession. Applying this operation recursively, we obtain
strings of arbitrary length. Whenever such a distinction is necessary, the operation
will be denoted by . (dot). The result of the dot operation is viewed as having no inter-
nal punctuation: u:v D uv both for atomic symbols and for more complex strings,
corresponding to the fact that concatenation is by definition associative. To forestall
confusion, we mention here that in later chapters the . will also be used in glosses
to connect a word stem to the complex of morphosyntactic (inflectional) features the
word form carries: for example geese D goose.PL (the plural form of goose is geese)
or Hungarian házammal D house.POSS1SG.INS ‘with my house’, where POSS1SG
refers to the suffix that signifies possession by a first-person singular entity and INS
refers to the instrumental case ending roughly analogous to English with. (The reader
should be forewarned that translation across languages rarely proceeds as smoothly
on a morpheme by morpheme basis as the example may suggest: in many cases mor-
phologically expressed concepts of the source language have no exact equivalent in
the language used for glossing.)

Of special interest is the empty string �, which serves as a two-sided multiplica-
tive unit of concatenation: �:u D u:� D u. The whole set of strings generated from
† by concatenation is denoted by†C (�-free Kleene closure) or, if the empty string
is included, by †� (Kleene closure). If u:v D w, we say that u (v) is a left (right)
factor of w. If we define the length l.x/ of a string x as the number of symbols in x,
counted with multiplicity (the empty word has length 0), l is a homomorphism from
†� to the additive semigroup of nonnegative integers. In particular, the semigroup
of nonnegative integers (with ordinary addition) is isomorphic to the Kleene closure
of a one-symbol alphabet (with concatenation): the latter may be called integers in
base one notation.

Subsets of †� are called stringsets, formal languages, or just languages. In
addition to the standard Boolean operations, we can define the concatenation of
strings and languages U and V as UV D fuvju 2 U; v 2 V g, suppressing the dis-
tinction between a string and a one-member language, writing xU instead of fxgU ,
etc. The (�-free) Kleene closure of strings and languages is defined analogously to
the closure of alphabets. For a string w and a language U , we say u 2 L is a prefix
of w if u is a left factor of w and no smaller left factor of w is in U .

Finite languages have the same distinguished status among all stringsets that
the natural numbers N have among all numbers: they are, after all, all that can
be directly listed without relying on any additional interpretative mechanism. And
as in arithmetic, where the simplest natural superset of the integers includes not
only finite decimal fractions but some infinite ones as well, the simplest natural
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superset of the finite languages is best defined by closure under operations (both
Boolean and string operations) and will contain some infinite languages as well. We
call regular all finite languages, and all languages that can be obtained from these
by repeated application of union, intersection, complementation, concatenation, and
Kleene closure. The classic Kleene theorem guarantees that regular languages have
the same distinguished status among languages that the rationals in Q have among
numbers in R.
Exercise 2.2 Let F be the language of Fibonacci numbers written in base one. Is
F finitely generated?

The generative grammars defining stringsets typically use an alphabet V that is a
proper superset of † that contains the symbols of interest. Elements of N D V n†
are called nonterminal symbols or just nonterminals to distinguish them from
elements of † (called terminal symbols or terminals). Nonterminals play only a
transient role in generating the objects of real interest, inasmuch as the yield of a
grammar is explicitly restricted to terminal strings – the name nonterminal comes
from the notion that a string containing them corresponds to a stage of the deriva-
tion that has not (yet) terminated. In context-free grammars (CFGs), we use a start
symbol S 2 N and productions or rewrite rules of the form A ! v, where A 2 N
and v 2 V �.
Example 2.3.1 A CFG for base ten integers. We use nonterminals SIGN and DIGIT
and posit the rules S ! SIGN DIGIT; S ! DIGIT; DIGIT ! DIGIT DIGIT;
DIGIT ! 0; DIGIT ! 1; ... DIGIT ! 9; SIGN ! +; SIGN ! -. (The nonter-
minals are treated here as atomic symbols rather than strings of Latin letters. We use
whitespace to indicate token boundaries rather than the Algol convention of enclos-
ing each token in hi.) At the first step of the derivation, we can only choose the first
or the second rule (since no other rule rewrites S ) and we obtain the string SIGN
DIGIT or DIGIT. Taking the first option and using the last rule to rewrite SIGN,
we obtain -DIGIT, and using the third rule n times, we get -DIGITnC1. By elim-
inating the nonterminals, we obtain a sequence of nC 1 decimal digits preceded by
the minus sign.
Discussion Needless to say, base ten integers are easy to define by simpler methods
(see Section 6.1), and the CFG used above is overkill also in the sense that strings
with three or more digits will have more than one derivation. Context-free lan-
guages (languages generated by a CFG) are a proper superset of regular languages.
For example, consider the CFG with nonterminal S , terminals a; b, and rewrite rules
S ! aSa; S ! bSb; S ! a; S ! b; S ! �. It is easily seen that this grammar
defines the language of palindromes over fa; bg, which contains exactly those strings
that are their own reversal (mirror image).
Exercise 2.3 Given a CFG G generating some CFL L not containing the empty
string, create another CFG G0 generating the same language such that every produc-
tion has the form A ! bC , where A and C are nonterminals (members of N ) and b
is a terminal (member of †).

Continuing with the comparison to numbers, CFLs play the same role among
languages that algebraic numbers play among the reals. To appreciate this, one needs
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to generalize from the view of languages as stringsets to a view of languages as
mappings (from strings to weights in a semiring or similar structure). We take up
this matter in Chapter 5.4.
Exercise 2.4 Prove that the language of palindromes is not regular.
If a context-free rewrite rule A ! v is applied to a string iAj and l is a right factor
of i (r is a left factor of j ), we say that the rule is applied in the left context l (in
the right context r). Context-sensitive rewrite rules are defined as triples .p; l; r/,
where p is a context-free production as above, and l and r are (possibly empty)
strings defining the left and the right contexts of the rule in question. In keeping with
the structuralist morphology and phonology of the 1950s, the # symbol is often used
as an edge marker signifying the beginning or end of a string.

Traditionally, p is called the structural change, the context, written l r , is called
the structural description, and the triple is written as the structural change separated
from the structural description by = (assumed to be outside the alphabet P ). For
example, a rule that deletes a leading zero from an unsigned decimal could be written
0 ! �=# , and the more general rule that deletes it irrespective of the presence of
a sign could be written 0 ! �=f#;C;�g . Note that the right context of these rules
is empty (it does not matter what digit, if any, follows the leading 0), while the left
context ‘edge of string’ needs to be explicitly marked by the # symbol for the rules
to operate correctly.

When interpreted as WFCs, the context statements simply act as filters on
derivations: an otherwise legitimate rewriting step iAj ! ivj is blocked (deemed
ill-formed) unless l is a right factor of i and r is a left factor of j . This notion
of context-sensitivity adds nothing to the generative power of CFGs: the resulting
system is still capable only of generating CFLs.
Theorem 2.3.1 (McCawley 1968) Context-free grammars with context checking
generate only context-free languages.
However, if context-sensitivity is part of the generation process, we can obtain
context-sensitive languages (CSLs) that are not CFLs. If �-rules (rewriting nonter-
minals as the empty string in some context) are permitted, every r.e. language can be
generated. If such rules are disallowed, we obtain the CSL family proper (the case
when CSLs contain the empty string has to be treated separately).
Theorem 2.3.2 (Jones 1966) The context-sensitive (CS) family of languages that
can be generated by �-free context-sensitive productions is the same as the family
of languages that can be generated by using only length-increasing productions (i.e.
productions of the form u ! v, where l.v/ � l.u/ holds) and the same as the family
of languages computable by linear bounded automata (LBAs).
LBA are one-tape Turing machines (TMs) that accept on the empty tape, with the
additional restriction that at all stages of the computation, the reading head must
remain on the portion of the tape that was used to store the string whose membership
is to be decided.

These results are traditionally summarized in the Chomsky hierarchy: assigning
regular languages to Type 3, CFLs to Type 2, CSLs to Type 1, and r.e. languages
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to Type 0, Chomsky (1956) demonstrated that each type is properly contained in
the next lower one. These proofs, together with examples of context-free but not
regular, context-sensitive but not context-free, and recursive but not context-sensitive
languages, are omitted here, as they are discussed in many excellent textbooks of
formal language theory such as Salomaa (1973) or Harrison (1978). To get a better
feel for CSLs, we note the following results:
Theorem 2.3.3 (Karp 1972) The membership problem for CSLs is PSPACE-
complete.
Theorem 2.3.4 (Szelepcsényi 1987, Immerman 1988) The complement of a CSL is
a CSL.
Exercise 2.5 Construct three CSGs that generate the language F of Fibonacci num-
bers in base one, the language F2 of Fibonacci numbers in base two, and the language
F10 of Fibonacci numbers in base ten. Solve the membership problem for 117467.
Exercise 2.6 Call a set of natural numbers k-regular if their base k representations
are a regular language over the alphabet of k digits. It is easy to see that a 1-regular
language is 2-regular (3-regular) and that the converse is not true. Prove that a set
that is both 2-regular and 3-regular is also 1-regular.

2.4 Further reading

Given that induction is as old as mathematics itself (the key idea going back at least
to Euclid’s proof that there are infinitely many primes) and that recursion can be
traced back at least to Fibonacci’s (1202) Liber Abaci, it is somewhat surprising that
the closely related notion of generation is far more recent: the first systematic use
is in von Dyck (1882) for free groups. See Chandler and Magnus (1982 Ch. I.7)
for some fascinating speculation why the notion did not arise earlier within group
theory. The kernel membership problem is known as the word problem in this setting
(Dehn 1912). The use of freely generated pure formula models in logic was pioneered
by Herbrand (1930); Wang tilings were introduced by Wang (1960). Theorem 2.1.1
was proven by Berger (1966), who demonstrated the undecidability by encoding the
halting problem in tiles. For a discussion, see Gruska (1997 Sec. 6.4.3). The notion
that linguistic structures are noncounting goes back at least to Chomsky (1965:55).

From Pān. ini to the neogrammarians of the 19th century, linguists were generally
eager to set up the system so as to cover related styles, dialects, and historical stages
of the same language by minor variants of the same theory. In our terms this would
mean that e.g. British English and American English or Old English and Modern
English would come out as models of a single ‘abstract English’. This is one point
where current practice (starting with de Saussure) differs markedly from the tra-
ditional approach. Since grammars are intended as abstract theories of the native
speaker’s competence, they cannot rely on data that are not observable by the ordi-
nary language learner. In particular, they are restricted to a single temporal slice,
called the synchronic view by de Saussure, as opposed to a view encompassing dif-
ferent historical stages (called the diachronic view). Since the lack of cross-dialectal



2.4 Further reading 21

or historical data is never an impediment in the process of children acquiring their
native language (children are capable of constructing their internal grammar with-
out access to such data), by today’s standards it would raise serious methodological
problems for the grammarian to rely on facts outside the normal range of input avail-
able to children. (De Saussure actually arrived at the synchrony/diachrony distinction
based on somewhat different considerations.) The neogrammarians amassed a great
deal of knowledge about sound change, the historical process whereby words change
their pronunciation over the centuries, but some of their main tenets, in particular the
exceptionlessness of sound change laws, have been found not to hold universally (see
in particular Wang 1969, Wang and Cheng 1977, Labov 1981, 1994).

Abstract string manipulation begins with Thue (1914, reprinted in Nagell 1977),
who came to the notion from combinatorial group theory. For Thue, rewriting is
symmetrical: if AXB can be rewritten as AYB the latter can also be rewritten as
the former. This is how Harris (1957) defined transformations. The direct precursors
of the modern generative grammars and transformations that were introduced by
Chomsky (1956, 1959) are semi-Thue systems, where rewriting need not necessarily
work in both directions. The basic facts about regular languages, finite automata, and
Kleene’s theorem are covered in most textbooks about formal language theory or the
foundations of computer science, see e.g. Salomaa (1973) or Gruska (1997). We will
develop the connection between these notions and semigroup theory along the lines
of Eilenberg (1974) in Chapter 5. Context-free grammars and languages are also well
covered in computer science textbooks such as Gruska (1997), for more details on
context-sensitivity, see Section 10 of Salomaa (1973). Theorem 2.3.1 was discovered
in (McCawley 1968), for a rigorous proof see Peters and Ritchie (1973), and for a
modern discussion, see Oehrle (2000).

Some generalizations of the basic finite state notions that are of particular interest
to phonologists, namely regular relations, and finite k-automata, will be discussed in
Chapter 3. Other generalizations, which are also relevant to syntax, involve weighted
(probabilistic) languages, automata, and transducers – these are covered in Sec-
tions 5.4 and 5.5. Conspiracies were first pointed out by Kisseberth (1970) – we
return to this matter in Section 4.3. The founding papers on categorial grammars
are Ajdukiewicz (1935) and Lambek (1958). Unification grammars are discussed in
Shieber (1986, 1992).



3

Phonology

The fundamental unit of linguistics is the sign, which, as a first approximation, can be
defined as a conventional pairing of sound and meaning. By conventional we mean
both that signs are handed down from generation to generation with little modifica-
tion and that the pairings are almost entirely arbitrary, just as in bridge, where there
is no particular reason for a bid of two clubs in response to one no trump to be con-
strued as an inquiry about the partner’s major suits. One of the earliest debates in
linguistics, dramatized in Plato’s Cratylus, concerns the arbitrariness of signs. One
school maintained that for every idea there is a true sound that expresses it best,
something that makes a great deal of sense for onomatopoeic words (describing e.g.
the calls of various animals) but is hard to generalize outside this limited domain.
Ultimately the other school prevailed (see Lyons 1968 Sec. 1.2 for a discussion) at
least as far as the word-level pairing of sound and meaning is concerned.

It is desirable to build up the theory of sounds without reference to the theory of
meanings both because the set of atomic units of sound promises to be considerably
simpler than the set of atomic units of meanings and because sounds as linguistic
units appear to possess clear physical correlates (acoustic waveforms; see Chapter 8),
while meanings, for the most part, appear to lack any direct physical embodiment.
There is at least one standard system of communication, Morse code, that gets by
with only two units, dot (short beep) and dash (long beep) or possibly three, (if we
count pause/silence as a separate unit; see Ex. 7.7). To be sure, Morse code is para-
sitic on written language, which has a considerably larger alphabet, but the enormous
success of the alphabetic mode of writing itself indicates clearly that it is possible to
analyze speech sounds into a few dozen atomic units, while efforts to do the same
with meaning (such as Wilkins 1668) could never claim similar success.

There is no need to postulate the existence of some alphabetic system for
transcribing sounds, let alone a meaning decomposition of some given kind. In Sec-
tion 3.1 we will start with easily observable entities called utterances, which are
defined as maximal pause-free stretches of speech, and describe the concatenative
building blocks of sound structure called phonemes. For each natural language L
these will act as a convenient set of atomic symbols PL that can be manipulated by
context-sensitive string-rewriting techniques, giving us what is called the segmental
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phonology of the language. This is not to say that the set of words WL, viewed as a
formal language over PL, will be context-sensitive (Type 1) in the sense of formal
language theory. On the contrary, we have good reasons to believe that W is in fact
regular (Type 3).

To go beyond segments, in Section 3.2 we introduce some subatomic compo-
nents called distinctive features and the formal linguistic mechanisms required to
handle them. To a limited extent, distinctive features pertaining to tone and stress are
already useful in describing the suprasegmental phonology of languages. To get a full
understanding of suprasegmentals in Section 3.3 we introduce multitiered data struc-
tures more complex than strings, composed of autosegments. Two generalizations of
regular languages motivated by phonological considerations, regular transducers and
regular k-languages, are introduced in Section 3.4. The notions of prosodic hierarchy
and optimality, being equally relevant for phonology and morphology, are deferred
to Chapter 4.

3.1 Phonemes

We are investigating the very complex interpretation relation that obtains between
certain structured kinds of sounds and certain structured kinds of meanings; our
eventual goal is to define it in a generative fashion. At the very least, we must
have some notion of identity that tells us whether two signs sound the same and/or
mean the same. The key idea is that we actually have access to more information,
namely, whether two utterances are partially similar in form and/or meaning. To use
Bloomfield’s original examples:

A needy stranger at the door says I’m hungry. A child who has eaten and
merely wants to put off going to bed says I’m hungry. Linguistics considers
only those vocal features which are alike in the two utterances : : : Similarly,
Put the book away and The book is interesting are partly alike (the book).

That the same utterance can carry different meanings at different times is a fact
we shall not explore until we introduce disambiguation in Chapter 6 – the only bur-
den we now place on the theory of meanings is that it be capable of (i) distinguishing
meaningful from meaningless and (ii) determining whether the meanings of two
utterances share some aspect. Our expectations of the observational theory of sound
are similarly modest: we assume we are capable of (i0) distinguishing pauses from
speech and (ii0) determining whether the sounds of two utterances share some aspect.

We should emphasize at the outset that the theory developed on this basis does not
rely on our ability to exercise these capabilities to the extreme. We have not formally
defined what constitutes a pause or silence, though it is evident that observationally
such phenomena correspond to very low acoustic energy when integrated over a
period of noticeable duration, say 20 milliseconds. But it is not necessary to be able
to decide whether a 19.2 millisecond stretch that contains exactly 1.001 times the
physiological minimum of audible sound energy constitutes a pause or not. If this
stretch is indeed a pause we can always produce another instance, one that will have a
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significantly larger duration, say 2000 milliseconds, and containing only one-tenth of
the previous energy. This will show quite unambiguously that we had two utterances
in the first place. If it was not a pause, but rather a functional part of sound formation
such as a stop closure, the new ‘utterances’ with the artificially interposed pause will
be deemed ill-formed by native speakers of the language. Similarly, we need not
worry a great deal whether Colorless green ideas sleep furiously is meaningful, or
what it exactly means. The techniques described here are robust enough to perform
well on the basis of ordinary data without requiring us to make ad hoc decisions in
the edge cases. The reason for this robustness comes from the fact that when viewed
as a probabilistic ensemble, the edge cases have very little weight (see Chapter 8 for
further discussion).

The domain of the interpretation relation I is the set of forms F , and the
codomain is the set of meaningsM , so we have I � F �M . In addition, we have two
overlap relations,OF � F �F andOM � M �M , that determine partial similarity
of form and meaning respectively. OF is traditionally divided into segmental and
suprasegmental overlaps. We will discuss mostly segmental overlap here and defer
suprasegmentals such as tone and stress to Section 3.3 and Section 4.1, respectively.
Since speech happens in time, we can define two forms ˛ and ˇ as segmentally
overlapping if their temporal supports as intervals on the real line can be made to
overlap, as in the the book example above. In the segmental domain at least, we
therefore have a better notion than mere overlap: we have a partial ordering defined
by the usual notion of interval containment. In addition to OF , we will therefore use
sub- and superset relations (denoted by �F ;�F ) as well as intersection, union, and
complementation operations in the expected fashion, and we have

˛ \F ˇ ¤ ; ) ˛OF ˇ (3.1)

In the domain of I , we find obviously complex forms such as a full epic poem
and some that are atomic in the sense that

8x �F ˛ W x 62 dom.I / (3.2)

These are called minimum forms. A form that can stand alone as an utterance is a
free form; the rest (e.g. forms like ity or al as in electricity, electrical), which cannot
normally appear between pauses, are called bound forms.

Typically, utterances are full phrases or sentences, but when circumstances are
right, e.g. because a preceding question sets up the appropriate context, forms much
smaller than sentences can stand alone as complete utterances. Bloomfield (1926)
defines a word as a minimum free form. For example, electrical is a word because it
is a free form (can appear e.g. as answer to the question What kind of engine is in this
car?) and it cannot be decomposed further into free forms (electric would be free but
al is bound). We will have reason to revise this definition in Chapter 4, but for now
we can provisionally adopt it here because in defining phonemes it is sufficient to
restrict ourselves to free forms.

For the rest of this section, we will only consider the set of words W � F , and
we are in the happy position of being able to ignore the meanings of words entirely.
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We may know that forms such as city and velocity have nothing in common as far
as their meanings are concerned and that we cannot reasonably analyze the latter as
containing the former, but we also know that the two rhyme, and as far as their forms
are concerned velocity D velo.city. Similarly, velo and kilo share the form lo so we
can isolate ve, ki, and lo as more elementary forms.

In general, if pOq, we have a nonempty u such that p D aub, q D cud .
a; b; c; d; u will be called word fragments obtained from comparing p and q, and
we say p is a subword of q, denoted p � q, if a D b D �. We denote by QW the
smallest set containing W and closed under the operation of taking fragments – QW
contains all and only those fragments that can be obtained from W in finitely many
steps.

By successively comparing forms and fragments, we can rapidly extract a set
of short fragments P that is sufficiently large for each w 2 QW to be a con-
catenation of elements of P and sufficiently small that no two elements of it
overlap. A phonemic alphabet P is therefore defined by (i) QW � P � and
(ii) 8p; q 2 P W pOF q ) p D q. To forestall confusion, we emphasize here that P
consists of mental rather than physical units, as should be evident from the fact that
the method of obtaining them relies on human oracles rather than on some physical
definition of (partial) similarity. The issue of relating these mental units to physical
observables will be taken up in Chapters 8 and 9.

We emphasize here that the procedure for finding P does not depend on the exis-
tence of an alphabetic writing system. All it requires is an informant (oracle) who can
render judgments about partial similarity, and in practice this person can just as well
be illiterate. Although the number of unmapped languages is shrinking, to this day
the procedure is routinely carried out whenever a new language is encountered. In
some sense (to be made more precise in Section 7.3), informant judgments provide
more information than is available to the language learner: the linguist’s discovery
procedure is driven both by the positive (grammatical) and negative (ungrammatical)
data, while it is generally assumed that infants learning the language only have pos-
itive data at their disposal, an assumption made all the more plausible by the wealth
of language acquisition research indicating that children ignore explicit corrections
offered by adults.

For an arbitrary setW endowed with an arbitrary overlap relationOF , there is no
guarantee that a phonemic alphabet exists; for example, if W is the set of intervals
Œ0; 2�n� with overlap defined in the standard manner, P D fŒ2�.iC1/; 2�i �ji � 0g
will enjoy (ii) but not (i). In actual word inventories W and their extensions QW ,
we never see the phenomenon of an infinite descending chain of words or fragments
w1; w2; : : : such that eachwiC1 is a proper part ofwi , nor can we find a large number
(say > 28) words or fragments such that no two of them overlap. We call such
statements of contingent facts about the real world postulates to distinguish them
from ordinary axioms, which are not generally viewed as subject to falsification.
Postulate 3.1.1 Foundation. Any sequence of words and word fragments w1; w2; : : :

such that each wiC1 � wi ; wiC1 ¤ wi , terminates after a finite number of steps.



3.1 Phonemes 27

Postulate 3.1.2 Dependence. Any set of words or word fragments w1; w2; : : : wm

contains two different but overlapping words or fragments for any m > 28.
From these two postulates both the existence and uniqueness of phonetic alpha-

bets follow. Foundation guarantees that every w 2 W contains at least one atom
under �, and dependence guarantees that the set P of atoms is finite. Since different
atoms cannot overlap, all that remains to be seen is that every word of QW is indeed
expressible as a concatenation of atoms. Suppose indirectly that q is a word or frag-
ment that could not be expressed this way: either q itself is atomic or we can find
a fragment q1 in it that is not expressible. Repeating the same procedure for q1, we
obtain q2; : : : ; qn. Because of Postulate 3.2.1, the procedure terminates in an atomic
qn. But by the definition of P , qn is a member of it, a contradiction that proves the
indirect hypothesis false.
Discussion Nearly every communication system that we know of is built on a finite
inventory of discrete symbols. There is no law of nature that would forbid a language
to use measure predicates such as tall that take different vowel lengths in proportion
to the tallness of the object described. In such a hypothetical language, we could say
It was taaaaaaall to express the fact that something was seven times as tall as some
standard of comparison, and It was taaall to express that it was only three times as
tall. The closest thing we find to this is in Arabic/Persian calligraphy, where joining
elements are sometimes sized in accordance with the importance of a word, or in
Web2.0-style tag clouds, where font size grows with frequency. Yet even though
analog signals like these are always available, we find that in actual languages they
are used only to convey a discrete set of possible values (see Chapter 9), and no
communication system (including calligraphic text and tag clouds) makes their use
obligatory.

Postulates 3.1.1 and 3.1.2 go some way toward explaining why discretization
of continuous signals must take place. We can speculate that foundation is necessi-
tated by limitations of perception (it is hard to see how a chain could descend below
every perceptual threshold), and dependence is caused by limitations of memory
(it is hard to see how an infinite number of totally disjoint atomic units could be
kept in mind). No matter how valid these explanations turn out to be, the postulates
have a clear value in helping us to distinguish linguistic systems from nonlinguis-
tic ones. For example, the dance of bees, where the direction and size of figure-8
movements is directly related to the direction and distance from the hive to where
food can be collected (von Frisch 1967), must be deemed nonlinguistic, while the
genetic code, where information about the composition of proteins is conveyed by
DNA/RNA strings, can at least provisionally be accepted as linguistic.

Following the tradition of Chomsky (1965), memory limitations are often grouped
together with mispronunciations, lapses, hesitations, coughing, and other minor
errors as performance factors, while more abstract and structural properties are
treated as competence factors. Although few doubt that some form of the competence
vs. performance distinction is valuable, at least as a means of keeping the noise out of
the data, there has been a great deal of debate about where the line between the two
should be drawn. Given the orthodox view that limitations of memory and perception
are matters of performance, it is surprising that such a deeply structural property as
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the existence of phonetic alphabets can be derived from postulates rooted in these
limitations.

3.2 Natural classes and distinctive features

Isolating the atomic segmental units is a significant step toward characterizing the
phonological system of a language. Using the phonemic alphabet P , we can write
every word as a string w 2 P �, and by adding just one extra symbol # to denote
the pause between words, we can write all utterances as strings over P [ f#g. Since
in actual connected speech pauses between words need not be manifest, we need an
interpretative convention that # can be phonetically realized either as silence or as
the empty string (zero realization). Silence, of course, is distinctly audible and has
positive duration (usually 20 milliseconds or longer), while � cannot be heard and
has zero duration.

In fact, similar interpretative conventions are required throughout the alphabet,
e.g. to take care of the fact that in English word-initial t is aspirated (released with a
puff of air similar in effect to h but much shorter), while in many other positions t is
unaspirated (released without an audible puff of air): compare ton to stun. The task of
relating the abstract units of the alphabet to their audible manifestations is a complex
one, and we defer the details to Chapter 9. We note here that the interpretation process
is by no means trivial, and there are many unassailable cases, such as aspirated vs.
unaspirated t and silenceful vs. empty #, where we permit two or more alternative
realizations for the same segment. (Here and in what follows we reserve the term
segment for alphabetic units; i.e. strings of length one.)

Since � can be one of the alternatives, an interesting technical possibility is to
permit cases where it is the only choice: i.e. to declare elements of a phonemic
alphabet that never get realized. The use of such abstract or diacritic elements
(anubandha) is already pivotal in Pān. ini’s system and remains characteristic of
phonology to this day. This is our first example of the linguistic distinction between
underlying (abstract) and surface (concrete) forms – we will see many others later.

Because in most cases alternative realizations of a symbol are governed by the
symbols in its immediate neighborhood, the mathematical tool of choice for dealing
with most of segmental phonology is string rewriting by means of context-sensitive
rules. Here a word of caution is in order: from the fact that context-sensitive rules
are used it does not follow that the generated stringset over P , or over a larger alpha-
bet Q that includes abstract elements as well, will be context-sensitive. We defer
this issue to Section 3.4, and for now emphasize only the convenience of context-
sensitive rules, which offer an easy and well-understood mechanism to express the
phonological regularities or sound laws that have been discovered over the centuries.

Example 3.2.1 Final devoicing in Russian. The nominative form of Russian nouns
can be predicted from their dative forms by removing the dative suffix u and inspect-
ing the final consonant: if it is b or p, the final consonant of the nominative form will
be p. This could be expressed in a phonological rule of final b devoicing: b ! p= #.
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When it is evident that the change is caused by some piece of the environment where
the rule applies, we speak of the piece triggering the change; here the trigger is the
final #.

Remarkably, we find that a similar rule links d to t , g to k, and in fact any voiced
obstruent to its voiceless counterpart. The phenomenon that the structural descrip-
tion and/or the structural change in rules extends to some disjunction of segments
is extremely pervasive. Those sets of segments that frequently appear together in
rules (either as triggers or as undergoers) are called natural classes; for example, the
class fp; t; kg of unvoiced stops and the class fb; d; gg of voiced stops are both nat-
ural, while the class fp; t; dg is not. Phonologists would be truly astonished to find a
language where some rule or regularity affects p, t, and d but no other segment.

The linguist has no control over the phonemic alphabet of a language: P is com-
puted as the result of a specific (oracle-based, but otherwise deterministic) algorithm.
Since the set N � 2P of natural classes is also externally given by the phonological
patterning of the language, over the millennia a great deal of effort has been devoted
to the problem of properly characterizing it, both in order to shed some light on the
structure of P and to help simplify the statement of rules.

So far, we have treatedP as an unordered set of alphabetic symbols. In the Asht.ā-
dhyāyı̄, Pān. ini arranges elements of P in a linear sequence (the śivasūtras) with
some abstract (phonetically unrealized) symbols (anubandha) interspersed. Simpli-
fying his treatment somewhat (for a fuller discussion, see Staal 1962), natural classes
(pratyāhāra) are defined in his 1.1.71 as those subintervals of the śivasūtras that
end in some anubandha. If there are k symbols in P , in principle there could be
as many as 2k natural classes. However, the Pān. inian method will generate at most
k.kC 1/=2 subintervals (or even fewer, if diacritics are used more sparingly), which
is in accordance with the following postulate.
Postulate 3.2.1 In any language, the number of natural classes is small.
We do not exactly spell out what ‘small’ means here. Certainly it has to be polyno-
mial, rather than exponential, in the size ofP . The European tradition reserves names
for many important natural classes such as the apicals, aspirates, bilabials, conso-
nants, continuants, dentals, fricatives, glides, labiodentals, linguals, liquids, nasals,
obstruents, sibilants, stops, spirants, unaspirates, velars, vowels, etc. – all told, there
could be a few hundred, but certainly not a few thousand, such classes. As these
names suggest, the reason why a certain class of sounds is natural can often be found
in sharing some aspects of production (e.g. all sounds crucially involving a constric-
tion at the lips are labials, and all sounds involving turbulent airflow are fricatives),
but often the justification is far more complex and indirect. In some cases, the mat-
ter of whether a particular class is natural is heavily debated. For a particularly hard
chestnut, the ruki class; see Section 9.2, Collinge’s (1985) discussion of Pedersen’s
law I, and the references cited therein.

For the mathematician, the first question to ask about the set of natural classes N
is neither its size nor its exact membership but rather its algebraic structure: under
what operations is N closed? To the extent that Pān. ini is right, the structure is not
fully Boolean: the complement of an interval typically will not be expressible as a
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single interval, but the intersection of two intervals (pratyāhāra) will again be an
interval. We state this as the following postulate.
Postulate 3.2.2 In any language, the set of natural classes is closed under intersection.
This postulate makes N a meet semilattice, and it is clear that the structure is not
closed under complementation since single segments are natural classes but their
complements are not. The standard way of weakening the Boolean structure is to
consider meet semilattices of linear subspaces. We embed P in a hypercube so that
natural classes correspond to hyperplanes parallel to the axes. The basis vectors that
give rise to the hypercube are called distinctive features and are generally assumed
to be binary; a typical example is the voiced/unvoiced distinction that is defined by
the presence/absence of periodic vocal fold movements. It is debatable whether the
field underlying this vector space construct should be R or GF(2). We take the second
option and use GF(2), but we will have reason to return to the notion of real-valued
features in Chapters 8 and 9. Thus, we define a feature assignment as an injective
mapping C from the set Q of segments into the linear space GF(2,n).

This is a special case of a general situation familiar from universal algebra: if Ai

are algebras of the same signature and A D Q
Ai is their direct product, we say that

a subalgebraB ofA is a subdirect product of theAi if all its projections on the com-
ponents Ai are surjective. A classic theorem of Birkhoff asserts that every algebra
can be represented as a subdirect product of subdirectly irreducible algebras. Here the
algebras are simply finite sets, and as the only subdirectly irreducible sets have one
or two members (and one-member sets obviously cannot contribute to a product),
we obtain distinctive feature representations (also called feature decompositions)
for any set for free.

Since any set, not just phonological segments, could be defined as vectors (also
called bundles) of features, to give feature decomposition some content that is
specific to phonology we must go a step further and link natural classes to this
decomposition. This is achieved by defining as natural classes those sets of seg-
ments that can be expressed by fewer features than their individual members (see
Halle 1964:328). To further simplify the use of natural classes, we assume a theory
of markedness (Chomsky and Halle 1968 Ch. IX) that supplies those features that
are predictable from the values already given (see Section 7.3). For example, high

vowels will be written as
� Csyll

Chigh

�
, requiring only two features, because the other

features that define this class, such as Œ�low� or ŒCvoice�, are predictable values
already given.

In addition to using pratyāhāra, Pān. ini employs a variety of other devices, most
notably the concept of ‘homogeneity’ (sāvarn. ya), as a means of cross-classification
(see Cardona 1965). This device enables him to treat quality distinctions in vowels
separately from length, nasality, and tone distinctions, as well as to treat place of
articulation distinctions in consonants separately from nasality, voicing, and aspira-
tion contrasts. Another subsidiary concept, that of antara ‘nearness’, is required to
handle the details of mappings between natural classes. Since Pān. inian rules always
map classes onto classes, the image of a segment under a rule is decided by P1.1.50
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sthāne ’ntaratamah. ‘in replacement, the nearest’. The modern equivalent of P1.1.50
is the convention that features unchanged by a rule need not be explicitly mentioned,
so that the Russian final devoicing rule that we began with may simply be stated as
[Cobstruent] ! [�voice] / #.

For very much the same empirical reasons that forced Pān. ini to introduce addi-
tional devices like sāvarn. ya, the contemporary theory of features also relaxes the
requirement of full orthogonality. One place where the standard (Chomsky and Halle
1968) theory of distinctive features shows some signs of strain is the treatment of
vowel height. Phonologists and phoneticians are in broad agreement that vowels
come in three varieties, high, mid, and low, which form an interval structure: we
often have reason to group high and mid vowels together or to group mid and low
vowels together, but we never see a reason to group high and low vowels together to
the exclusion of mid vowels. The solution adopted in the standard theory is to use
two binary features, [˙ high] and [˙ low], and to declare the conjunction [Chigh,
Clow] ill-formed.

Similar issues arise in many other corners of the system; e.g. in the treatment of
place of articulation features. Depending on where the major constriction that deter-
mines the type of a consonant occurs, we distinguish several places of articulation,
such as bilabial, labiodental, dental, alveolar, postalveolar, retroflex, palatar, velar,
pharyngeal, epiglottal, and glottal, moving back from the lips to the glottis inside
the vocal tract. No single language has phonemes at every point of articulation, but
many show five-, or six-way contrasts. For example, Korean distinguishes bilabial,
dental, alveolar, velar, and glottal, and the difference is noted in the basic letter shape
(�;_;(;+, and �, respectively). Generally, there is more than one consonant per
point of articulation; for example, English has alveolars n; t; d; s; z; l . Consonants
sharing the same place of articulation are said to be homorganic and they form a nat-
ural class (as can be seen e.g. from rules of nasal assimilation that replace e.g. input
by imput).

Since the major classes (labial, coronal, dorsal, radical, laryngeal) show a five-
way contrast, the natural way to deal with the situation would be the use of one
GF(5)-valued feature rather than three (or more) underutilized GF(2) values, but for
reasons to be discussed presently this is not a very attractive solution. What the sys-
tem really needs to express is the fact that some features tend to occur together in
rules to the exclusion of others, a situation somewhat akin to that observed among
the segments. The first idea that leaps to mind would be to utilize the same solu-
tion, using features of features (metafeatures) to express natural classes of features.
The Cartesian product operation that is used in the feature decomposition (subdi-
rect product form) of P is associative, and therefore it makes no difference whether
we perform the feature decomposition twice in a metafeature setup, or just once at
the segment level. Also, the inherent ordering of places of articulation (for conso-
nants) or height (for vowels) is very hard to cenvey by features, be they 2-valued
or n-valued, without recourse to arithmetic notions, something we would very much
like to avoid as it would make the system overly expressive.

The solution now widely accepted in phonology (Clements 1985, McCarthy
1988) is to arrange the features in a tree structure, using intermediate class nodes
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Fig. 3.1. Feature geometry tree. Rules that required the special principle of sāvarn. ya can be
stated using the supralaryngeal class node

to express the grouping together of some features to the exclusion of others (see
Fig. 3.1). This solution, now permanently (mis)named feature geometry, is in
fact a generalization of both the pratyāhāra and the standard feature decomposi-
tion methods. The linear intervals of the Pān. inian model are replaced by generalized
(lattice-theoretic) intervals in the subsumption lattice of the tree, and the Cartesian
product appearing in the feature decomposition corresponds to the special case where
the feature geometry tree is a star (one distinguished root node, all other nodes being
leaves).
Discussion The segmental inventories P developed in Section 3.1 are clearly differ-
ent from language to language. As far as natural classes and feature decomposition
are concerned, many phonologists look for a single universal inventory of features
arranged in a universally fixed geometry such as the one depicted in Fig. 3.1. Since
the cross-linguistic identity of features such as [nasal] is anchored in their phonetic
(acoustic and articulatory) properties rather than in some combinatorial subtleties of
their intralanguage phonological patterning, this search can lead to a single object,
unique up to isomorphism, that will, much like Mendeleyev’s periodic table, encode
a large number of regularities in a compact format.

Among other useful distinctions, Chomsky and Halle (1968) introduce the notion
of formal vs. substantive universals. Using this terminology, meet semilattices are a
formal, and a unique feature geometry tree such as the one in Fig. 3.1 would be a sub-
stantive, universal. To the extent that phonological research succeeds in identifying a
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unique feature geometry, every framework, such as semilattices, that permits a vari-
ety of geometries overgenerates. That said, any theory is interesting to people other
than its immediate developers only to the extent that it can be generalized to prob-
lems other than the one it was originally intended to solve. Phonology, construed
broadly as an abstract theory of linguistic form, applies not only to speech but to
other forms of communication (handwritten, printed, signed, etc.) as well. In fact,
phonemes, distinctive features, and feature geometry are widely used in the study
of sign language (see e.g. Sandler 1989, Liddell and Johnson 1989); where substan-
tive notions like nasality may lose their grip, the formal theory remains valuable.
(However, as the abstract theory is rooted in the study of sound, we will keep on
talking about ‘utterances’, ‘phonemes’, ‘syllables’, etc., rather than using ‘gestures’,
‘graphemes’, or other narrow terms.)
Exercise 3.2 What are the phonemes in the genetic code? How would you define
feature decomposition and feature geometry there?

3.3 Suprasegmentals and autosegments

In Section 3.1 we noted that words can be partially alike even when they do not
share any segments. For example, blackbird and whitefish share the property that
they have a single stressed syllable, a property that was used by Bloomfield (1926)
to distinguish them from multiword phrases such as black bird or white fish, which
will often be pronounced without an intervening pause but never without both syl-
lables stressed. In addition to stress, there are other suprasegmentals, such as tone,
that appear to be capable of holding constant over multisegment stretches of speech,
typically over syllables.

Traditionally, the theory of suprasegmentals has been considered harder than that
of segmental phenomena for the following reasons. First, their physical correlates are
more elusive: stress is related to amplitude, and tone to frequency, but the relationship
is quite indirect (see Lehiste 1970). Second, informant judgments are harder to elicit:
native speakers of a language often find it much harder to judge e.g. whether two
syllables carry the same degree of stress than to judge whether they contain the same
vowel. Finally, until recently, a notation as transparent as the alphabetic notation for
phonemes was lacking. In this section, we will deal mainly with tone and tone-like
features of speech, leaving the discussion of stress and prosody to Section 4.1.

Starting in the 1970s, phonological theory abandoned the standard string-based
theory and notation in favor of a generalization called autosegmental theory. Autoseg-
mental theory (so named because it encompasses not only suprasegmental but also
subsegmental aspects of sound structure) generalizes the method of using a string
over some alphabet P to k-tuples of strings connected by association relations
that spell out which segments in the two strings are overlapping in time. We will
begin with the simplest case, that of bistrings composed of two strings and an asso-
ciation relation. First, the strings are placed on tiers, which are very much like
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Turing-machine tapes, except the number of blank squares between nonblank ones
cannot be counted.
Definition 3.3.1 A tier is an ordered pair (Z, N) where Z is the set of integers
equipped with the standard identity and ordering relations ‘D’ and ‘<’ and N is
the name of the tier.
The original example motivating the use of separate tiers was tone, which is phono-
logically distinctive in many languages. Perhaps the best-known example of this is
Mandarin Chinese, where the same syllable ma means ‘mother’, ‘hemp’, ‘horse’,
‘admonish’, and ‘wh (question particle)’, depending on whether it is uttered with the
first, second, third, fourth, or fifth tone. As the tonology of Chinese is rather complex
(see e.g. Yip 2002), we begin with examples from lesser-known but simpler tonal
systems, primarily from the Niger-Congo family, where two contrastive level tones
called high and low (abbreviated H and L, and displayed over vowels as acute or
grave accent; e.g. má, mà) are typical, three level tones (high, mid, low, H, M, L) are
frequent, four levels (1, 2, 3, 4) are infrequent, and five levels are so rare that their
analysis in terms of five distinct levels is generally questionable.

In the study of such systems, several salient (not entirely exceptionless, but nev-
ertheless widespread) generalizations emerge. First, a single syllable may carry not
just a single tone but also sequences of multiple tones, with HL realized as falling
and LH as rising tones. Such sequences, known as contour tones, are easily marked
by combining the acute (high) and grave (low) accent marks over the tone-bearing
vowel (e.g. mâ for falling, mǎ for rising tone), but as the sequences get more com-
plex, this notation becomes cumbersome (and the typographical difficulty greatly
increases in cases where accent marks such as umlaut are also used to distinguish
vowels such as u and ü, o and ö).

Second, sequences of multiple tones show a remarkable degree of stability in
that deletion of the tone-bearing vowel need not be accompanied by deletion of the
accompanying tone(s) – this ‘autonomy’ of tones motivates the name autosegmental.
Third, processes like assimilation do not treat contour tones as units but rather the
last level tone of a contour sequence continues, e.g. mǎ+ta does not become mǎtǎ but
rather mǎtá. As an example of stability, consider the following example in Lomongo
[LOL], where phrase-level rules turn bàlóngó bǎkáé ‘his book’ into bàlóngãkáé:
the H on the deleted o survives and attaches to the beginning of the LH contour
of the first a of (b)ǎkáé. In the following autosegmental diagram, we segregate the
segmental content from the tonal content by placing them on separate tiers:

ba long (o) (b) a

� � � � � � � �

��
��

��
��

ka e

L H H L H H H
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Each tier N has its own tier alphabet TN , and we can assume without loss of gener-
ality that the alphabets of different tiers are disjoint except for a distinguished blank
symbolG (purposely kept distinct from the pause symbol #) that is adjoined to every
tier alphabet. Two tiers bearing identical names can only be distinguished by inspect-
ing their contents. We define a tier containing a string t0t1 : : : tn starting at position
k by a mapping that maps k on t0, k C 1 on t1; : : : ; k C n on tn, and everything else
on G: Abstracting away from the starting position, we have the following definition.
Definition 3.3.2 A tier N containing a string t0t1 : : : tn over the alphabet TN [�G is
defined as the class of mappings Fk that take k C i into ti for 0 	 i 	 n and to G if
i is outside this range. Unless noted otherwise, this class will be represented by the
mapping F0. Strings containing any number of successive G symbols are treated as
equivalent to those strings that contain only a single G at the same position. G-free
strings on a given tier are called melodies.

Between strings on the same tier and within the individual strings, temporal
ordering is encoded by their usual left-to-right ordering. The temporal ordering of
strings on different tiers is encoded by association relations.
Definition 3.3.3 An association relation between two tiers N and M containing
the strings n D n0n1 : : : nk and m D m0m1 : : : ml is a subset of f0; 1; : : : ; kg �
f0; 1; : : : ; lg. An element that is not in the domain or range of the association relation
is called floating.

Note that the association relation, being an abstract pattern of synchrony between
the tiers, is one step removed from the content of the tiers: association is defined on
the domain of the representative mappings, while content also involves their range.
By Definition 3.3.3, there are 2kl association relations possible between two strings
of length k and l . Of these relations, the no crossing constraint (NCC; see Goldsmith
1976) rules out as ill-formed all relations that contain pairs (i; v) and (j; u) such that
0 	 i < j 	 k and 0 	 u < v 	 l are both true. We define the span of an element
x with respect to some association relation A as those elements y for which (x, y) is
in A. Rolling the definitions above into one, we have the following definition.
Definition 3.3.4 A bistring is an ordered triple .f; g; A/, where f and g are
strings not containing G, and A is a well-formed association relation over two tiers
containing f and g.

In the general case, we have several tiers arranged in a tree structure called the
geometry of the representation (see Section 3.2). Association relations are permitted
only among those tiers that are connected by an edge of this tree, so if there are k
tiers there will be k � 1 relations. Thus, in the general case, we define a k-string as
a .2k � 1/-tuple .s1; : : : ; sk ; A1; : : : ; Ak�1/, where the si are strings and the Ai are
association relations.
Theorem 3.3.1 The number of well-formed association relations over two tiers, each
containing a string of length n; is asymptotically .6C 4

p
2/n.

Proof Let us denote the number of well-formed association relations with n symbols
on the top tier and k symbols on the bottom tier by f .n; k/. By symmetry, f .n; k/ D
f .k; n/, and obviously f .n; 1/ D f .1; n/ D 2n. By enumerating relations according
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to the pair (i; j ) such that no i 0 < i is in the span of any j 0 and no j 00 > j is in the
span of i , we get

f .nC 1; k C 1/ D
kC1X
iD1

f .n; i/2kC1�i C f .n; k C 1/ (3.3)

From (3.3) we can derive the following recursion:

f .nC 1; k C 1/ D 2f .nC 1; k/C 2f .n; k C 1/ � 2f .n; k/ (3.4)

For the first few values of an D f .n; n/, we can use (3.4) to calculate forward:
a1 D 2, a2 D 12, a3 D 104, a4 D 1008, a5 D 10272, a6 D 107712, and so on.
Using (3.4) we can also calculate backward and define f .0; n/ D f .n; 0/ to be 1 so
as to preserve the recursion. The generating function

F.z;w/ D
1X

i;j D0

f .i; j /ziwj (3.5)

will therefore satisfy the equation

F.z;w/ D 1 � z
1�z

� w
1�w

1 � 2z � 2w C 2zw
(3.6)

If we substitute w D t=z and consider the integral

1

2�i

Z
C

F.z; t=z/

z
dz (3.7)

this will yield the constant term
P1

nD0 f .n; n/t
n by Cauchy’s formula. Therefore,

in order to get the generating function

d.t/ D
1X

iD0

ant
n (3.8)

we have to evaluate

1

2�i

Z
C

1 � z
1�z

� t=z
1�t=z

z.1 � 2z � 2t=z C 2t/
dz (3.9)

which yields

d.t/ D 1C 2tp
1 � 12t C 4t2

(3.10)

d.t/ will thus have its first singularity when
p
1 � 12t C 4t2 vanishes at t0 D .3 �p

8/=2, yielding

an 
 .6C 4
p
2/n (3.11)

the desired asymptotics. �
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The base 2 logarithm of this number, n � 3:543, measures how many bits we
need to encode a bistring of length n. Note that this number grows linearly in the
length of the bistring, while the number of (possibly ill-formed) association relations
was 2n2

, with the base 2 log growing quadratically. Association relations in general
are depicted as bipartite graphs (pairs in the relation are called association lines) and
encoded as two-dimensional arrays (the incidence matrix of the graph). However, the
linear growth of information content suggests that well-formed association relations
should be encoded as one-dimensional arrays or strings. Before turning to this matter
in Section 3.4, let us first consider two particularly well-behaved classes of bistrings.
A bistring is fully associated if there are no floating elements and proper if the span
of any element on one tier will form a single substring on the other tier (Levin 1985).
Proper relations are well-formed but not necessarily fully associated.

Let us define g.i; j / as the number of association relations containing no unas-
sociated (floating) elements and define bn as g.n; n/. By counting arguments similar
to those used above, we get the recursion

g.nC 1; k C 1/ D g.nC 1; k/C g.n; k C 1/C g.n; k/ (3.12)

Using this recursion, the first few values of bn can be computed as 1, 3, 13, 63, 321,
1683, 8989, and so on. Using (3.12) we can calculate backward and define g.0; 0/
to be 1 and g.i; 0/ D g.0; i/ to be 0 (for i > 0) so as to preserve the recursion. The
generating function

G.z;w/ D
1X

i;j D0

g.i; j /ziwj (3.13)

will therefore satisfy the equation

G.z;w/ D 1 � z � w
1 � z � w � zw D 1C zw

1 � z � w � zw (3.14)

Again we substitute w D t=z and consider the integral

1

2�i

Z
C

G.z; t=z/

z
dz (3.15)

which will yield the constant term
P1

nD0 g.n; n/t
n by Cauchy’s formula. Therefore,

in order to get the generating function

e.t/ D
1X

iD0

bnt
n (3.16)

we have to evaluate

1

2�i

Z
C

1

z
C t

z.1 � z � t=z � t /dz D 1 � t

2�i

Z
C

dz

.z � p/.z � q/ (3.17)
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which yields

e.t/ D 1C tp
1 � 6t C t2

(3.18)

Notice that
e.2t/ D 1C 2tp

1 � 6 � 2t C .2t/2
D d.t/ (3.19)

and thus 1X
iD0

bn.2t/
n D

1X
iD0

ant
n (3.20)

Since the functions d.t/ and e.t/ are analytic in a disk of radius 1/10, the coefficients
of their Taylor series are uniquely determined, and we can conclude that

bn2
n D an (3.21)

meaning that fully associated bistrings over n points are only an exponentially van-
ishing fraction of all well-formed bistrings. In terms of information content, the result
means that fully associated bistrings of length n can be encoded using exactly one
bit less per unit length than arbitrary well-formed bistrings.
Exercise 3.3� Find a ‘bijective’ proof establishing (3.21) by direct combinatorial
methods.

Now, for proper representations, denoting their number by h.n; k/, the generating
function H D H.z;w/ will satisfy a functional equation

H � zH � wH � 2zwH C zw2H C z2wH � z2w2H D r.z; w/ (3.22)

where r.z; w/ is rational. Using the same diagonalizing substitution w D t=z, we
have to evaluate

1

2�i

Z
C

s.z; t/

z.1 � z � t=z � 2t C t2=z C tz � t2/dz (3.23)

Again, the denominator is quadratic in z, and the radius of convergence is determined
by the roots of the discriminant

.t2 C 2t � 1/2 � 4.t � 1/.t2 � t / D t4 C 10t2 � 8t C 1 (3.24)

The reciprocal of the smallest root of this equation, approximately 6.445, gives the
base for the asymptotics for cn, the number of proper bistrings over n points. By
taking the base 2 logarithm, we have the following theorem.
Theorem 3.3.2 The information content of a fully associated (proper) well-formed
bistring is 2.543 (2.688) bits per unit length.
Exercise 3.4 Count the number of well-formed (fully associated, proper) k-strings
of length n assuming each tier alphabet has only one element besides G.
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Sets of well-formed (fully associated, proper) bistrings will be called well-
formed (fully associated, proper) bilanguages. These can undergo the usual set-
theoretic operations of intersection, union, and complementation (relative to the
‘universal set’ of well-formed, fully associated, resp. proper bistrings). Reversal
(mirror image) is defined by reversing the constituent strings together with the asso-
ciation relation. The concatenation of bistrings is defined by concatenating both the
strings and the relations:
Definition 3.3.5 Given two bistrings .f; h; A/ and .k; l; B/ on tiers N and M,
their concatenation .f k; hl; AB/ is constructed via the tier-alphabet functions
F0;H0; Kjf j; and Ljgj as follows. FK0.i/ D F.i/ for 0 	 i < jf j, Kjf j.i/ for
jf j 	 i < jf j C jkj; G otherwise. HL0.j / D H.j / for 0 	 j < jkj, Ljkj.j / for
jkj 	 j < jf jCjkj; G otherwise. Finally,AB D A[f.iCjf j; jCjkj/j.i; j / 2 Bg.

Notice that the concatenation of two connected bistrings will not be connected
(as a bipartite graph). This is remedied by the following definition.
Definition 3.3.6 Given two bistrings as in 3.3.5, their t -catenation (b-catenation)
is defined as .f k; hl; AtB/ .f k; hl; AbB/, where AtB D AB [ f.jf j � 1; jkj/g
.AbB D AB [ f.jf j; jkj � 1/g).

Using phonological terminology, in t -catenation the last element of the top tier
of the first bistring is spread on the first element of the bottom tier of the second
bistring, and in b-catenation the last element of the bottom tier of the first string is
spread on the first element of the top tier of the second bistring.

The only autosegmental operation that is not the straightforward generalization
of some well-known string operation is that of alignment. Given two bistrings x D
.f; g; A/ and y D .g; h; B/, their alignment z D x k y is defined to be .f; h; C /,
where C is the relation composition of A and B . In other words, the pair .i; k/ will
be in C iff there is some j such that .i; j / is in A and .j; k/ is in B . Now we are in
a position to define projections. These involve some subset S of the tier alphabet T .
A projector PS .h/ of a string g D h0h1 : : : hm with respect to a set S is the bistring
.h; h; IdS /, where .i; j / is in IdS iff i D j and hi is in S . The normal bistring
I.h/ corresponding to a string h is simply its projector with respect to the full alpha-
bet: I.h/ D PT .h/. A projection of a string with respect to some subalphabet S
can now be defined as the alignment of the corresponding normal bistring with the
projector.

The alignment of well-formed bistrings is not necessarily well-formed, as the
following example shows. Let f D ab, g D c, h D de, and suppose that the follow-
ing associations hold: .0; 0/ and .1; 0/ in x; .0; 0/ and .0; 1/ in y. By definition, C
should contain .0; 0/; .0; 1/; .1; 0/; and .1; 1/ and will thus violate the No Crossing
Constraint. Note also that a projector, as defined here, will not necessarily be proper.
In order to capture the phonologically relevant sense of properness, it is useful to rel-
ativize the definition above to ‘P-bearing units’ (Clements and Ford 1979). We will
say that a bistring .f; h; A/ is proper with respect to a subset S of the tier alphabet
T underlying the string h, iff .f; h; A/ k PS .h/ is proper.
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3.4 Phonological computation

The standard theory of phonology (Chomsky and Halle 1968) enumerates the well-
formed strings in a generative fashion (see Section 2.1) by selecting a set E of
underlying forms and some context-sensitive rules R that manipulate the underly-
ing forms to yield the permissible surface forms. Because features are an effective
(though imperfect, see Section 3.2) means of expressing natural classes, rules that
typically arise in the phonology of natural languages can be stated more eco-
nomically directly on features, and in fact phonologists rarely have any reason to
manipulate strings of phonemes (as opposed to strings of feature bundles). Neverthe-
less, in what follows we can assume without loss of generality that the rules operate
on segments because a rule system employing features can always be replaced by a
less economical but equivalent rule system that uses only segments.
Exercise 3.5 Poststress destressing. In our example language there are five
unstressed vowels a e i o u and five stressed vowels A E I O U. Whenever two
stressed vowels would come into contact, the second one loses its stress: [Cstress]
! [�stress]/[Cstress] . How many string-rewriting rules are needed to express this
regularity without using feature decomposition?

In many problems, such as speech recognition, we are more interested in the con-
verse task of computing the underlying form(s) given some surface form(s). Because
of the context-sensitive character of the rules, the standard theory gave rise to very
inefficient implementations: although in principle generative grammars are neutral
between parsing and generation, the membership problem of CSGs is PSPACE-
complete (see Theorem 2.3.2), and in practice no efficient parsing algorithm was
found. Context-sensitive phonological rule systems, though widely used for genera-
tion tasks (Hunnicutt 1976, Hertz 1982), were too inefficient to be taken seriously as
parsers.

The key step in identifying the source of the parsing difficulty was Johnson’s
(1970) finding that, as long as phonological rules do not reapply within their output,
it is possible to replace the context-sensitive rules by finite state transducers (FSTs).
That such a condition is necessary can be seen from the following example: S ! ab;
� ! ab=a b. Starting from S , these rules would generate fanbnjn 2 Ng, a language
known not to be regular (see Theorem 3.4.1 below). To show that once the condition
is met, context-sensitive rules can be replaced by FSTs, we first need to establish
some facts.

We define regular relations analogously to the case of regular languages: given
two alphabets P;Q, a relation R � P � � Q� is regular iff it is finitely generated
from finite sets by the operations of union, concatenation, and Kleene closure. (These
operations are defined componentwise on relations.) Regular relations are in the same
relationship to FSTs as regular languages are to FSAs. In fact, it is convenient to
think of languages as unary relations. Similarly, finite state automata will be defined
as n-tape automata (transducers) with n D 1. In such automata, all tapes are read-
only, and the automaton can change internal state when no tape is advanced (�-move)
or when one or more of the tapes is advanced by one square.
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Definition 3.4.1 A finite state transducer (FST) is a quadruple (S; s; F; T ), where
S is a finite set of states, s 2 S is the starting state, F � S is the set of final (accept-
ing) states, and T is a set of transitions of the form .b; a; l1; : : : ; ln/, where b and a
are the states before and after the move, and the lj are letters scanned on the j th tape
during the move or �. When for every b and l1; : : : ; ln there is at most one a 2 S

such that .b; a; l1; : : : ; ln/ 2 T , the transducer is deterministic, and when � never
appears in any transition it is called length preserving. Taking n D 1, we obtain
the important special case of finite state automata (FSAs), which are here viewed
as inherently nondeterministic since �-moves (change of state without consuming
input) are permitted. For the sake of completeness, we define here deterministic
finite state automata (DFSAs) as deterministic length-preserving FSTs with n D 1,
but we leave it to the reader to prove the classic result that FSAs and DFSAs accept
the same set of languages and that other minor alterations, such as consuming inputs
on states rather than on transitions (Mealy machine rather than Moore machine),
have no impact on the class of languages characterized by FSAs.

An n-tuple of words is accepted by an FST iff, starting with n tapes containing the
n words, the reading heads positioned to the left of the first letter in each word, and
the FST in the initial state, the automaton has a sequence of legal moves (transitions
in T ) that will advance each reading head to the right of the word on that tape, with
the automaton ending in a final (accepting) state. When two words (or two n-tuples
of words) land an FST in the same state (or in the case of nondeterministic FSTs,
the same set of states) starting from the initial state, we call them right congruent.
Significantly, this notion can be defined without reference to the automaton, based
solely on the language it accepts.
Definition 3.4.2 Let L be a language (of n-tuples), x; y are right congruent iff
for all z either both xz and yz are in L or both of them are outside L. We define
left congruence analogously by requiring for all z both zx and zy to be (or both
not to be) in L. Finally, the syntactic congruence (also known as Myhill-Nerode
equivalence) is defined as the smallest equivalence that is finer than both left and
right congruences. The syntactic congruence, as the name suggests, is a primary tool
of analysis for syntax (when the alphabet is taken to contain words and the strings
are sentences) – we return to its use in Section 5.1.1.

Exercise 3.6 Prove that right congruence, as defined by FST landing sites, is the
same relation as defined through the accepted language L. Prove that left and right
congruences are equivalence relations. What can we say about the paths through an
FST and left congruent elements?
The key property of regular languages (and relations) is that the (right) congruence
they define has finitely many equivalence classes (this is also called having finite
index). If a language (of n-tuples) has finite index, we can use the equivalence
classes as states of the accepting FST, with transitions defined in the obvious manner.
Conversely, languages accepted by some FST obviously have finite index. Finite lan-
guages have finite index, and if two languages have finite index, so will their union,
concatenation, and Kleene closure. Thus we have the following theorem.
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Theorem 3.4.1 Kleene’s theorem. An n-place relation is regular iff it is accepted by
an n-tape FST.

Other properties also studied in formal language theory, such as closure under inter-
section or complementation, will not necessarily generalize from unary to n-ary
relations. For example, the binary relations f.an; bnc�/jn 2 Ng and f.an; b�cn/jn 2
Ng intersect to yield f.an; bncn/jn 2 Ng, which is not regular. However, the
length-preserving relations are a special case where closure under intersection and
set-theoretic difference holds. The method of expressing context-sensitive rules by
regular binary relations exploits this fact by adding a new symbol, �, to the alphabet,
and using it as padding to maintain length wherever needed.

Although the method of serially composed FSTs and the related method of
parallel FSTs (Koskenniemi 1983) play a central role in modern computational
phonology, we will not pursue their development here, as it is covered in most newer
textbooks on computational linguistics and there are volumes such as Roche and Sch-
abes (1997) and Kornai (1999) devoted entirely to this subject. Rather, we turn our
attention to the formalization of the autosegmental theory described in Section 3.3,
where regular languages are generalized so as to include the association relation.
Because of the central role of the finitely generated case, our first task is to identify
the family of regular or finite state bilanguages. We do this based on the finite index
property:

Definition 3.4.3 The syntactic congruence �L generated by a bilanguage L con-
tains those pairs of bistrings .˛; ˇ/ that are freely substitutable for one another; i.e.
for which �˛ı 2 L , �ˇı 2 L. When � (ı) is fixed as the empty string, we will
talk of right (left) congruence. A k-language is regular iff it gives rise to a (right)
congruence with finitely many classes.

Example 3.4.1 One-member tier alphabets fag D TN ; fbg D TM , and empty asso-
ciation relations. Let us denote the bistring .ai ; bj ;;/ by hi; j i. The bilanguage
B D fhi; iiji > 0g is not regular because the bistrings h1; ki all belong in differ-
ent (right)congruence classes for k D 1; 2; : : :, as can be seen using ı D hl; 1i: if
k ¤ l , then h1; kihl; 1i 62 B but h1; lihl; 1i 2 B .

Discussion B can be expressed as the Kleene closure C of the one-member bilan-
guage fh1; 1ig. However, the appropriate closure operation for bilanguages involves
not only concatenation but t -catenation and b-catenation as well.

Example 3.4.2 CV-skeleta. Assume that the upper tier alphabet has only two symbols
C and V, while the lower has several, and assume further that association relations are
limited to binary branching. Symbols on the lower tier linked to a single V (two adja-
cent Vs) are called short (long) vowels, and those linked to a single C (two adjacent
Cs) are called short (long) consonants. When two adjacent symbols from the lower
tier link to a single V, these are called diphthongs, when they link to a single C, they
are called affricates. There are other configurations possible, such as triphthongs, but
they are rarely attested.
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Discussion CV-skeletal representations formalize a large number of observations
that traditional grammars state in somewhat hazy terms, e.g. that diphthongs are the
sequence of two vowels ‘behaving as a single unit’.

Definition 3.4.4 A biautomaton is defined as a 6-tuple .S; U; V; i; F; T /, where S
is a set of states, U and V are the alphabets of the two tapes, i is the initial state,
F is the set of final (accepting) states, and T is the transition function. If we denote
the square under scan on the upper tape by x and the square under scan on the lower
tape by y, the transition function from a given state will depend on the following
factors:

(i) Is there a symbol on square x, and if so, what symbol? (If not, we use the special
symbol G introduced in 3.3.)

(ii) Is there a symbol on square y, and if so, what symbol?
(iii) Are the squares associated?
(iv) Are there further association lines from x to some symbol after y?
(v) Are there further association lines from y to some symbol after x?

The transition function T , depending on the present state, the letters under scan,
and the presence of association between these letters, will assign a new state and
advance the tapes in accordance with the following rule:

If there are no further association lines from x and y, both tapes can
move one step to the right, if there are further association lines from
x, only the bottom tape can move, and if there are further association
lines from y, only the top tape can move.

(3.25)

In other words, the current position of the reading heads can always be added to the
association relation without violating the No Crossing Constraint. We will shortly
define coders as automata in which (3.25) is augmented by the requirement of mov-
ing the tapes as fast as possible, but for the moment we will leave the advancement
pattern of the tapes nondeterministic. To specify which tape will move, it is best to
separate out the transition function into three separate components: one that gives
the new state provided a top move t was taken, one that gives the new state provided
a bottom move b was taken, and one that gives the new state provided a full move f
was taken. Here and in what follows xŒy; t � denotes the result state of making a top
move from state x upon input y and similarly for xŒy; b� (bottom move) and xŒy; f �
(full move). In general there can be more than one such state, and we do not require
that only a top, bottom, or full move be available at any given point – it might still be
the case that only one of these moves is available because that is what the association
pattern dictates, but there is no general requirement enforcing uniqueness of the next
move.

The transition function at state u 2 S is scanning independent iff for every
possible scanning of a string ˛ takes the machine from u to the same state x D u[˛].
In particular, the machine must be able to perform a full move as a top move followed
by a bottom move or as a bottom move followed by a top move. Two full moves
should be replaceable by t tbb; bbt t; tbtb; bt tb; tbbt; btbt and similarly for fff
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and longer sequences of moves. A biautomaton will be called a finite autosegmental
automaton iff its transition function is scanning independent at every state. It will be
called a coder automaton if advancement is by the following deterministic variant
of the rule given above:

If there are no further symbols on either tape, the machine stops. If
there are no further symbols on one tape, the other tape is advanced
by one. If there are no further association lines from x and y, both
tapes move one step to the right; if there are further association lines
from x, only the bottom tape moves; and if there are further associ-
ation lines from y, only the top tape moves, provided the move does
not result in scanning G. (The case where there are further lines both
from x and y cannot arise since such lines would cross.)

(3.26)

Coders can be used to assign a unique linear string, called the scanning code in Kor-
nai (1995 Sec. 1.4), to every association relation. Let us denote a top move by t , a
bottom move by b, the presence of an association line by 1 and its absence by 0.
To assign a unique linear string over the alphabet ft; b; 0; 1g to every association
relation, it is sufficient to record the top and bottom moves of the coder, leaving
full moves unmarked, together with the association lines or lack thereof encountered
during the scan. Since scanning a bistring of length n requires at most 2n t and
b moves, which requires 2n bits, and at each step we need to mark 0 or 1, which
requires another 2n bits, we have a constructive proof that the information content
of well-formed bistrings is at most 4 bits per unit length. While this is quite inef-
ficient compared with the optimum 3.543 bits established by Theorem 3.3.1, the
constructive nature of the encoding lends further support to the claim in Section 3.3
that multilinear representations are linear (rather than quadratic or other polynomial)
data types.

So far we have four families of bilanguages: those accepted by finite autoseg-
mental automata (deterministic or nondeterministic) will be collected in the families
RD and RN, those accepted by biautomata will be collected in the family BA,
and those accepted by coders will be collected in the family CA. Clearly we have
RN � BA; RD � BA, CA � BA since both scanning independent and coder
automata are special cases of the general class of biautomata. Let us first estab-
lish that nondeterminism adds no power – for further “geographic” results, see
Theorem 3.4.4.
Theorem 3.4.2 RD D RN.
Proof Same as for the 1-string case. Instead of the state set S of the nondeterministic
automaton, consider its power set 2S and lift the nondeterministic transition function
T to a deterministic transition function D as follows: for i 2 S, define D(fig) as
fT(i )g, and for X � S; D.X/ D S

i2X D.fig/.
Note that the proof will not generalize to coders because different nondeterministic
options can lead to different positionings of the heads. However, if the transition
function is scanning independent, different positionings of the heads can always be
exchanged without altering the eventual state of the machine. Now we can prove
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Kleene’s theorem that the family of languages R characterized by the finite index
property is the same as RN and RD.
Theorem 3.4.3 A bilanguageL is regular iff it is accepted by a regular autosegmental
automaton.
Proof (() If L is accepted by a regular autosegmental automaton, it is also accepted
by a deterministic regular autosegmental automaton (which can be constructed by
the method outlined above), and further it can be accepted by a reduced automaton
in which no two states have exactly the same transition function (for such states can
always be collapsed into a single state). We claim that there will be as many right
congruence classes in �L as there are states in a minimal (reduced, deterministic,
regular) autosegmental automaton A D .S; U; V; i; F; T /.

To see this, define ˛ �A ˇ iff for every scanning of ˛ starting in the initial state
i and ending in some state j there is a scanning of ˇ starting in i and also ending in
j and vice versa. Clearly, �A is an equivalence relation, and ˛ �A ˇ ) ˛ �L ˇ.
If ˛ 6�A ˇ, there must exist a state j such that at least one scanning of one of the
bistrings, say ˛, will lead from i to j, but no scanning of ˇ will ever lead from i to j.
Since A is deterministic, scanning ˇ will lead to some state k¤j. We will show that
there exists a string ı such that from j we get to an accepting state by scanning ı
and from k we get to a nonaccepting state (or conversely), meaning that ˛ı 2 L but
ˇı … L (or conversely), so in either case ˛ 6�L ˇ.

Call two states p and q distinguishable iff there exists a string ı such that starting
from p, scanning ı leads to an accepting state, but starting from q, scanning ı leads
to a rejecting state or vice versa. Indistinguishability, denoted by I, is an equivalence
relation: clearly pIp for every state p, and if pIq, also qIp. For transitivity, suppose
indirectly that pIq and qIr, but p and r are distinguishable; i.e. there is a string ı for
which p[ı] is accepting but r[ı] is not. Now, q[ı] is either accepting or rejecting: in
the former case, qIr was false, and in the latter, pIq was false, a contradiction. Fur-
ther, in a minimal automaton there can be no two (or more) indistinguishable states,
for such states could be collapsed into a single state without altering the accepted
bilanguage. Since j and k above are not equal, they are distinguishable by some ı. �

()) To prove the ‘only if’ part of the theorem, we have to show that if a
bilanguage L gives rise to a finite right congruence, it is accepted by some regu-
lar autosegmental automaton. We will construct the states of the automaton from the
congruence classes of the equivalence relation. Let us denote the congruence class of
a bistring ˛ under �L by (˛). The initial state of the machine is the congruence class
of the empty bistring, ( ), and the transition function from state (˛) is defined for
top transitions from (˛) as the congruence class (˛tT) (t -catenation), and similarly
the result state of a bottom transition from (˛) will be the congruence class (˛bB)
(b-catenation). Thus top (bottom) transitions are nondeterministic: there are as many
result states as there are congruence classes for each member of the top (bottom) tier
alphabet. For ordinary concatenation of a bistring ˇ, the result is defined by the class
(˛ˇ) in order to guarantee scanning independence.

Finally, the accepting states of the automaton are defined as those congruence
classes that contain the members of L – this is well-defined because if ˛ �L ˇ,
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both must be members of L or both must be outside L; meaning that L is a union of
congruence classes. What remains to be seen is that the bilanguage M accepted by
the automaton defined here is the same as the bilanguage L we started with. First let
us take a bistring ˛ included in L – since .˛/ is an accepting state, it follows that ˛
is also in M . Next let us take a bistring ˇ not in L – since (ˇ) is not an accepting
state it would follow that ˇ is not in M if we can show that no scanning path would
lead to any state other than (ˇ). This can be done by induction on the length (defined
as the maximum of the length of the top and bottom strings) of ˇ (see Kornai 1995,
ch 1.6).
Discussion The class R of regular k-languages is closed under all Boolean opera-
tions, while the class of regular k-relations is not. This is due to the fact that finite
autosegmental automata can always be determinized (Theorem 3.4.2), while FSTs
in general cannot. Determinization creates a machine where complementing the set
of accepting states leads to accepting the complement language – if a language
is only accepted by a nondeterministic acceptor, this simple method fails, and the
complement language may not have an equally simple characterization. Since both
families are closed under union, (non)closure under complementation will guarantee,
by De Morgan’s law, (non)closure under intersection. In this respect, the bilanguage
families BA and CA are closer to regular relations than the family R.
Example 3.4.3 Consider the bilanguage T D fhi; j iji > j gf.a; b; f.0; 0/g/g – it
contains those bistrings that have i floating features on the top tier, and j floating
features on the bottom tier, followed by an end marker, which is simply a feature a
on the top tier associated to a feature b on the bottom tier. Clearly, if i � j ¤ i 0 � j 0,
we have hi; j i 6�T hi 0; j 0i so T is not in R. However, it is in CA since the following
automaton will accept it:

in from x from x from y automaton
state to y to z>y to w>x will

0 absent absent absent stay in 0
0 absent absent present go to 1
1 absent absent present stay in 1
1 present absent absent go to 2
2 any any any go to 3

(3.27)

With 2 as the only accepting state, the machine will accept only those strings whose
scan puts the machine in 2 but not further. To get into 2, the last thing the machine
must encounter is a single association line (the end marker) in state 1. To get into
state 1, the machine can make a number of top moves over floating elements (this
is the loop over state 1), preceded by a number of full moves over floating elements
(this is the loop over state 0). Note that this is not scanning independent: no provision
was made for top and bottom moves to replace full moves out of state 0.

What Example 3.4.3 shows is that CA is not contained in R. It is, of course, con-
tained in BA, and the bilanguage B of Example 3.4.1 introduced above shows that
the containment is proper. The biautomaton that accepts this bilanguage is trivial: it
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contains only one state and only full advance is permitted (and that only when
no association lines are present). To see that no coder can accept this bilanguage,
suppose indirectly that an n-state coder A accepts B . The bistrings hk; ki are all
accepted .k D 1; 2; 3; : : : ; nC1/, so there is at least one accepting state f that accepts
both hi; ii and hj; j i, 1 	 i < j 	 nC1; by the pigeonhole principle. Let j�i D p,
and consider the bistring hj; ii. In the first i steps, we arrive in f, and in the next p
steps we make legal top moves (since we are at the end of the bottom string) that are
indistinguishable from legal full moves. But p full moves would take us back to f,
which is an accepting state, so p top moves also take us back to f, meaning that hj; ii
is accepted by A, a contradiction. To complete our ‘geographic survey’, note that R
is not contained in CA. This can be seen e.g. by considering the regular bilanguage
D D fh1; j ijj > 0g. Collecting these results gives us the following theorem.

Theorem 3.4.4 Both R and CA are properly contained in BA, and neither is
contained in the other.

To summarize, R is closed under union and intersection, as the standard direct
product construction shows, and also under complementation, as can be trivially
established from the characterization by automata. Boolean operations thus offer
no surprises, but string operations need to be revised. If we use concatenation as
the only k-string composition operation, there will be an infinite number of further
undecomposable structures, such as the bistrings resulting from the spreading of a
single element on the bottom (top) tier. These structures, and many others, have no
structural break in them if indeed concatenation was the only possibility: that is why
we introduced t -catenation and b-catenation above. Regular expressions also work:
Theorem 3.4.5 Every bilanguage accepted by an autosegmental automaton can
be built up from the elementary bistrings .x; y;;/ and .x; y; f.0; 0/g/ by union,
t -catenation, b-catenation, concatenation, and Kleene closure.
The proof is left as an exercise for the reader. Once these operations are available for
creating larger bistrings from two successive bistrings, Kleene closure will include
them as well. This way the oddness of the bilanguage B introduced in Example
3.4.1 above disappears: B D fhi; iijii0g is not the Kleene C of h1; 1i because the
closure means arbitrary many catenation operations including t -catenations and b-
catenations. The Kleene C of h1; 1i is really the set of all well-formed bistrings (over
one-letter tier alphabets), which is of course regular. From the characterization by
automata, it easily follows that the concatenation, t -catenation, b-catenation, and
Kleene closure of regular bilanguages is again regular. Standard proofs will also
generalize for closure under (inverse) homomorphisms and (inverse) transductions.

As we discussed earlier, transductions play a particularly important role in replac-
ing context-sensitive phonological rules by finite state devices. For this reason, we
combine the notions of k-strings and n-place regular relations and state this last result
(for the proof, modeled after Salomaa 1973 Ch. IV, see Kornai 1995 Sec. 2.5.2), as a
separate theorem.
Theorem 3.4.6 If L is a regular bilanguage and B D .S; I;O; i; F; T / a generalized
bisequential mapping, the image .L/B of L under B is also a regular bilanguage.
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Autosegmental rules can be grouped into two categories: rules affecting the strings
stored on the various tiers and rules affecting the association relations. The two
categories are not independent: rules governing the insertion and deletion of symbols
on the various tiers are often conditioned on the association patterns of the affected
elements or their neighbors, while rules governing the association and delinking of
elements of different tiers will often depend on the contents of the tiers.

Repeated insertion is sufficient to build any string symbol by symbol – deletion
rules are used only because they make the statement of the grammar more compact.
Similarly, repeated association would be sufficient for building any association rela-
tion line by line, and delinking rules are only used to the extent that they simplify the
statement of phonological regularities. A typical example would be a degemination
rule that will delink one of the two timing slots (a notion that we will develop further
in Section 4.1) associated to a segment k, if it was preceded by another segment s,
and also deletes the freed slot. In pre-autosegmental theory the rule would be some-
thing like kŒClong� ! kŒ�long�=s (the features defining k and s are replaced by
k and s to simplify matters), and in autosegmental notation we have
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s k
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X X X X X

(3.28)

The regular bitransducer corresponding to this rule will have an input bistring, an
output bistring, and a finite state control. The heads scanning the bistrings and the
association relations are read-only. If we denote the bistring on the left-hand side of
the arrow by ˇ and that on the right-hand side by ˇ0, the bitransducer accepts those
pairs of bistrings that have the form .˛ˇ�; ˛ˇ0�/ and those pairs .ı; ı/ that meet the
rule vacuously (ˇ is not part of ı).
Exercise 3.7 Verify that the regular bitransducer defined with the finite state control
in (3.26) accepts those and only those pairs of bistrings .�; �/ in which � is formed
from � by applying (3.29).

in input output heads result
state bistring bistring move state

0 s1X s1X f/f 1
0 q!Ds1X q m/m 0
0 q!Ds1X r!Dq m/m -
1 k1X k1X b/0 2
1 q!Dk1X q m/m 0
1 q!Dk1X r!Dq m/m -
2 k1X k1X m/m 0
2 q!Dk1X r!Dq m/m -

(3.29)
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What makes the theory of regular autosegmental languages, relations, automata, and
transducers presented here central to the study of phonology is the view shared by
many, though by no means all, phonologists that in spite of a superficial context-
sensitivity, there is actually no need to go beyond the regular domain. For segmental
rules, this was already established by Johnson (1970), but suprasegmentals, in par-
ticular tone and stress, remained a potential threat to this view. To the extent that
autosegmental theory provides our current best understanding of tone, the forego-
ing imply that counterexamples will not be found among tonal phenomena since the
basic regularities of tone, in particular the handling of floating elements and spread-
ing, are clearly expressible by regular means. This still leaves stress phenomena as
a potential source of counterexamples to the regularity thesis, particularly as hierar-
chical bracketing of the sort familiar from context-free grammars is at the heart of
the so-called cyclic mode of rule application, a matter we shall turn to in Section 4.2.

3.5 Further reading

The issue of whether signs are truly arbitrary still raises its head time and again in
various debates concerning sound symbolism, natural word order, and the Sapir-
Whorf hypothesis (SWH). That there is some degree of sound symbolism present in
language is hard to deny (Allott 1995), but from a frequency standpoint it is evident
that the ‘conventional’ and ‘arbitrary’ in language vastly outweigh the ‘motivated’ or
‘natural’. We will return to natural word order and the SWH in Chapters 5 and 6. We
note here that the SWH itself is clearly conventionally named since neither Sapir’s
nor Whorf’s published work shows much evidence that either of them ever posed it
in the strong form ‘language determines thought’ that came to be associated with the
name SWH.

We owe the program of eliminating references to meaning from operational def-
initions of linguistic phenomena to the structuralist school, conventionally dated to
begin with de Saussure (1879). The first detailed axiom system is that of Bloom-
field (1926). The version we present here relies heavily on later developments, in
particular Harris (1951).

Distinctive features provide a vector decomposition of phonemes: whether the
field underlying the vector space is taken to be continuous or discrete is a matter
strongly linked to whether we take an empiricist or a mentalist view of phonemes.
The first position is explicitly taken by Cherry (1956) and Stevens and Blumstein
(1981), who assume the coordinates in feature space to be directly measurable prop-
erties of the sounds. The second is implicit in the more abstract outlook of Trubetzkoi
(1939) and Jakobson et al. (1952) and explicit in the single most influential work on
the subject, Chomsky and Halle (1968).

The issue of characterizing the set of well-formed phoneme strings in P � is
impacted more severely by the appropriate notion of ‘well-formed’ than by the
choice of generative tools (context-sensitive, context-free, or finite state): as we shall
see in Chapter 4, the key question is how we treat forms that have not been attested
but sound good to native speakers. To get a taste of the debate at the time, the reader
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may wish to consult Chomsky and Halle (1965a), Householder (1965, 1966), and
Kortlandt (1973) – in hindsight it is clear that the mentalist view propounded by
Chomsky and Halle took the field (see Anderson (2000) for a nuanced overview of
the debate). Anderson (1985) describes the history of modern phonological theory
from a linguistic perspective.

Readers who wish to get some hands-on experience with the kinds of problems
phonologists routinely consider should consult Nida (1949) or Halle and Clements
(1983) – the latter includes several problems like that of Kikuyu [KIK] tone shift
(Clements and Ford 1979) that served to motivate autosegments. Autosegmental
theory initially grew out of research on African tone languages (Welmers 1959,
Leben 1973, Goldsmith 1976, Williams 1976) and prosody (Firth 1948) – the stan-
dard monographic treatment is Goldsmith (1990). The basic insight that tones and
segments need not be fully aligned with one another but rather must be placed on
separate tiers was soon generalized from tone to vowel harmony (Clements 1977),
aspiration (Thráinsson 1978) nasality (Hyman 1982), and eventually, by placing all
distinctive features on separate tiers, to the theory of feature geometry (for a review,
see McCarthy 1988; for a current proposal, see Padgett 2002).

For further discussion of the Pān. inian system of describing natural classes, see
Petersen (2004). The modern treatment of natural classes begins with Trubetzkoi
(1939) and Jakobson et al. (1952), who assumed that the defining properties of nat-
ural classes are all orthogonal (see also Cherry 1956). Distinguishing the marked
member of an opposition has its roots in morphology, where it is often the case that
only one member of an opposition (such as singular vs. plural) is marked explic-
itly, the other member being known from the absence of marking (e.g. we know boy
is singular because it does not have the plural suffix -s). Extending this notion to
phonological oppositions begins with Trubetzkoi, but the full theory of markedness
developed only gradually with the work of Jakobson, Halle, and Chomsky – for an
overview, see Hyman (1975).

The key ideas of decomposing context-sensitive rules into simple regular (and,
when needed, length-preserving) steps such as the introduction and eventual deletion
of temporary brackets that keep track of the locus of rule application were discovered
independently by Johnson (1970) and Kaplan and Kay (an influential unpublished
manuscript eventually published in 1994). Kiraz (2001) presents a full system based
on n-way relations (n-tape automata) in the context of Semitic morphology. A
different intersective approach is introduced in Bird and Ellison (1994).

The cyclic mode of rule application was first introduced in Chomsky and Halle
(1968 Sec. 2.3–2.5). The formalism proposed there relied heavily on the use of
explicit boundary markers, a device that is no longer viewed as appropriate by
most phonologists, but the central idea is well-preserved in lexical phonology and
morphology (LPM, see Kiparsky 1982), which no longer uses boundary markers.
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Morphology

Morphology, the study of the shape and structure of words, is a field that brings into
sharp relief what are perhaps the most vexing aspects of linguistics from a mathemat-
ical perspective: radical typological differences, flexible boundaries, and near-truths.
Mild typological differences are common to most fields of study. For example, the
internal organs of different primates are easily distinguished by experts yet differ
only mildly, so that a person who knows something about gorillas and knows human
anatomy well can make a reasonable guess about the position, shape, size, and func-
tioning of gorilla livers without ever having seen one. Radical typological differences
are much less common. Continuing with the analogy, one knowledgeable about the
internal sex organs of males but not of females would have a hard time guessing their
position, shape, size, or functioning. In morphology, radical typological differences
abound: no amount of expert knowledge about Modern English is sufficient to make
a reasonable guess e.g. about the case system of Modern Russian, in spite of the fact
that the two languages descended from the same Indoeuropean origins. Mathematics,
on the whole, is much better suited for studying mild (parametric) typological differ-
ences than radical ones. We exemplify the problem and discuss a possible solution in
Section 4.1, which deals with prosody in general and the typology of stress systems
in particular.

In mathematics, flexible boundaries are practically unheard of: if in one case
some matter depends on arithmetic notions, we are unlikely to find other cases where
the exact same matter depends on topological notions. It is easier to find examples
in computer science, where the same functionality (e.g. version control of files) may
be provided as part of the operating system in one case or as part of the text editor in
another. In morphology, flexible boundaries are remarkably common: the exact same
function, forming the past tense, may be provided by regular suffixation (walk !
walked ), by ablaut (sing ! sang), or by suppletion (go ! went). We exemplify the
problem in Section 4.2, where we introduce the notions of derivation and inflection.

Finally, we call near-truths those regularities that come tantalizingly close to
being actually true yet are detectably false with the available measurement tech-
niques. A well-known example is Prout’s law that atomic weights are integer mul-
tiples of that of hydrogen. For example, the helium/hydrogen atomic weight ratio
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is 3.971 and that of nitrogen/hydrogen 13.897. Near-truths are so powerful that one is
inclined to disregard the discrepancies: from a chemistry-internal perspective, every-
thing would be so much simpler if atomic weights were truly subject to the law.
In fact, we have to transcend the traditional boundaries of chemistry and gain a good
understanding of isotopes and nuclear physics to see why the law is only nearly
true. Unfortunately, there is no good candidate for a deeper theory that can clean up
linguistic near-truths. As we shall see repeatedly, all forms of ‘cognitive’ and ‘func-
tional’ explanations systematically fall short. Therefore, in Section 4.3 we look at
a solution, optimality theory, which builds near-truths into the very architecture of
linguistics.

A central task that is shared between phonology and morphology is characteriz-
ing the set of words. The operational definition, maximal pause-free stretch between
potential pauses, has a number of drawbacks. First, it is restricted to the subset of
words that are attested, while it is clear that new words are added to the language
all the time. A list of attested forms fails to characterize either the individual abil-
ity to serve as an oracle capable of rendering well-formedness judgments on word
candidates or the collective ability of the speakers to introduce new words in their
language. Second, it fails to assign structure to the words, substituting a simple
accept/reject decision for detailed analysis. This failure is especially frustrating in
light of the fact that every attempt at capturing the theoretically more interesting
notion of potential words inevitably proceeds from structural considerations. Third,
it offers no help in assigning meaning to words, except perhaps for the rare subclass
of onomatopoeic words whose meaning can be inferred from their sound.

Finally, the operational definition leaves open the issue of word frequency. Part
of the task of characterizing the set of words is to describe their frequency either in
corpora or, more interestingly, in the populations of which the corpora are samples.
Typical populations of interest include the set of utterances a person in a given lan-
guage community is likely to encounter or the set of texts some natural language
software (spellchecker, machine translator, information retrieval system, etc.) should
be prepared for. Especially for software, it is desirable to make the system less likely
to fail on the frequently encountered cases than on some rare or marginal cases. We
defer introducing the mathematical machinery of weighted languages and automata
required for dealing with frequencies to Chapter 5, but introduce the basic empirical
regularity, Zipf’s law, in Section 4.4.

As far as the acoustic content of potential word forms is concerned, the task
of characterizing this (weighted) set can be subdivided into two parts: first, char-
acterizing the segmental content as a set of well-formed phonemic strings, and
second, characterizing the suprasegmental content (tone and stress) associated to the
segments. The former task is called phonotactics, and it has been traditionally recog-
nized that the central object of inquiry is not the full word but considerably smaller
syllabic units that show very strong combinatorical restrictions internally, and only
much weaker restrictions externally. As we shall see in Section 4.1, such units play
a central role in characterizing the suprasegmental patterns of words as well. As far
as the meaning of words is concerned, the pivotal units, called morphemes, are again
smaller than the word and show much less predictability than the words composed
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of them. There are some languages, most notably Chinese, where the correlation
between syllables and morphemes is quite strong, but most languages show evident
mismatches in the form of both polysyllabic morphemes such as country and poly-
morphemic syllables such as knives. As we shall see in Section 4.2, the description
of morpheme combinations, called morphotactics, has practically no commonalities
with phonotactics, a fact often referred to as the double articulation or duality of
patterning of language (Martinet 1957, Hockett 1960).

4.1 The prosodic hierarchy

The marking of certain substructures as belonging to a certain prosodic domain such
as the mora, syllable, foot, or prosodic word is an essential part of phonological
representations for three interrelated reasons. First, a great number of phonologi-
cal processes or constraints make reference to such domains; for the syllable (in
English), see Kahn (1976), and for the foot (in Japanese), see Poser (1990). Sec-
ond, the domains themselves can carry feature information that cannot properly
be attributed to any smaller constituent inside the domain; stress and boundary
tones provide widely attested examples, though some readers may also be familiar
with emphasis (pharyngealization) in Arabic, Aramaic [CLD], and Berber [TZM]
(Jakobson 1957, Hoberman 1987, Dell and Elmedlaoui 1985, 1988). Finally, the
shape of words is largely determined by the prosodic inventory of the language; for
example, if a name ends in a vowel, we can be virtually certain it does not belong in
the Anglo-Saxon layer of English.

It should be said at the outset that our understanding of the prosodic hierarchy
is not yet sufficient. For example, it is not clear that moras are constituents of the
syllables in the same way syllables are constituents of feet, whether notions such as
extrametricality or ambisyllabicity are primitive or derived, whether abstract units
of stress can be additively combined (as in the grid-based theories starting with
Liberman 1975), and so on. Even so, there is no doubt that the prosodic hierarchy
plays an absolutely pivotal role in phonology and morphology as the guardian of
well-formedness in a manner broadly analogous to the use of checksums in digi-
tal signal transmission. Arguably, the main function of phonology is to repair the
damage that morphological rules, in particular concatenation, would cause.

4.1.1 Syllables

Syllables are at the middle of the prosodic hierarchy: there are higher units (feet,
and possibly superfeet, the latter also called cola), and there are lower units (onset,
nucleus, rhyme, mora), but we begin the discussion with the syllable since the other
prosodic units are less likely to be familiar to the reader. There are three different
approaches one may wish to consider for a more precise definition of the sylla-
ble. First, we can introduce a syllabic alphabet or syllabary that is analogous to the
phonemic alphabet introduced in Section 3.1, but without the requirement that dis-
tinct syllables show no similarity (segmental overlap). This approach is historically
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the oldest, going back at least a thousand years to the syllabic writing systems such
as found in Japanese Hiragana and arguably much earlier with Brahmi (5th century
BCE) and the Cypriot syllabary (15th century BCE), though in fact many of the early
scripts are closer to being mora-based than syllable-based.

Second, we can introduce explicit boundary markers such as the - or � used in dic-
tionaries to indicate syllable boundaries, a notation that goes back at least to the 19th
century. An interesting twist on the use of boundary markers is to permit improper
parentheses, e.g. to denote by Œa.b�c/ the case where b is said to be ambisyllabic
(belonging to both syllables ab and bc). The notion of ambisyllabicity receives a
slightly different formulation in autosegmental theory (see Section 3.3). Note that
improper parentheses could describe cases like Œa.bc�d/, where more than one ele-
ment is ambiguously affiliated, while the autosegmental well-formedness conditions
would rule this out.

Finally, we can use tree structure notation, which is more recent than the other
two and has the advantage of being immediately familiar to contemporary math-
ematicians and computer scientists, but is incapable of expressing some of the
subtleties, such as ambisyllabicity, that the earlier notations are better equipped to
handle. One such subtlety, easily expressible with autosegmental notation or with
improper parentheses, is the notion of extrametricality, meaning that the parse tree
simply fails to extend to some leaves.

The unsettled notation is much more a reflection of the conceptual difficulties
keenly felt by the linguist (for an overview, see Blevins 1995) than of practical dif-
ficulties on the part of the native speaker. In fact, most speakers of most languages
have clear intuitions about the syllables in their language, know exactly where one
ends and the next one begins, and can, with little or no formal training, draw up an
inventory of syllables. It is precisely the confluence of these practical properties that
makes the syllable such a natural building block for a script, and when new scripts
are invented, such as Chief Sequoyah of the Cherokee [CER] did in 1819, these are
often syllabaries. The ease with which native speakers manipulate syllables is all
the more remarkable given the near impossibility of detecting syllable boundaries
algorithmically in the acoustic data.

For our purposes it will be sufficient to group phonemes into two broad classes,
called vowels (V) and consonants (C), based on whether they can appear in isolation
(i.e. flanked by pauses on both sides) or not. We mention here that in phonology con-
sonants are generally subdivided into other major classes like stops such as p t k b d
g, nasals such as n m, liquids such as l r, and glides such as y (see Chomsky and Halle
1968 Sec. 7.3). We will assume a separate CV tier where autosegments correspond
to elementary timing units: a consonant or short vowel will take a single timing unit,
and a long vowel will take two. To build a syllable, we start with a nucleus, which
can be a short vowel V or a long vowel VV, and optionally add consonants at the
beginning (these will be called the onset) and/or at the end (these will be called the
coda). This way, no syllable composed of Cs alone will ever get built.

Different languages put different constraints on the number and type of conso-
nants that can appear in the onset and the coda. On the whole, codas tend to be more
restricted: it is easy to find languages with CCC onsets but only CC codas, or CC
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onsets but only C (or no) codas, but it is hard to find languages with more complex
codas than onsets. Combinatorical restrictions within the onset are common. For
example, in English, if the onset is CCC, the first C must be s and the second must
be a voiceless stop. Similarly, the sr onset is common and *rs is impossible, while in
the coda it is the other way around. Generally, the nucleus serves as a barrier through
which combinatorical restrictions do not propagate.

The inventory of V sounds that can serve as syllabic nuclei is not constant across
languages: vowels always can, but many languages, such as Czech, treat liquids as
syllable-forming; and some, like Sanskrit, also permit nasals. At the extreme, we
find Berber, where arguably every sound, including stops, can form a syllable, so no
sound is truly C-like (incapable of serving as a syllabic nucleus).

It is not evident whether the onset and the coda are truly symmetrical or whether
it makes sense to group the nucleus and the coda together in a constituent called the
rhyme. Many observations concerning the combinatorical restrictions can be summa-
rized in terms of sonority, a linear scale based somewhat loosely on the vocal energy
(see Section 8.1) contained in the sound – those sounds that can be heard farther away
are considered more sonorous. Formally, the sonority hierarchy groups the sounds
in discrete, ranked sonority classes, with low vowels and voiceless stops being the
most and least sonorous, respectively. The overall generalization is that syllables are
constructed so that sonority rises from the margins toward the nucleus. In English
and many other languages, sibilants such as s are a known exception since they are
more sonorous than stops yet can appear farther from the nucleus. There are many
mechanisms available to the phonologist to save the overall law from the exception
that ‘proves’ it (Lat. provare, to test). One is to declare sibilants extrametrical, and
another one is to treat sibilant+stop clusters as a single consonant. We return to this
question in Section 4.3.
Exercise 4.1� English graphemotactics. Take a large list of written (lowercase)
words, and define vowels V as aeiouy and consonants as the rest. Define as onsets
(codas) those consonantal strings that begin (end) words, including the empty string
in both sets. How much of the word list is matched by the regular expression syll�,
where syll is defined by on V co [ on VV co? Does the grammar overgenerate?
How? Why?

4.1.2 Moras

Syllables often come in two, and sometimes in three, sizes (weights): light syllables
are said to contain one mora, heavy syllables contain two moras, and superheavy
syllables contain three moras. It is surprisingly hard to define moras, which are some
kind of abstract syllable weight unit, any better than by this simple listing since the
containment of moras in syllables is like a dime containing two nickels: true for
the purposes of exchanging equal value but not in the sense that the nickels could
be found inside the dime. To see this, compare the typical light syllable, CV, to
the typical heavy syllable, CVV or CVC. If the second mora were contributed by
the vowel length or by the coda consonant, we would expect CVVC syllables to be
superheavy, but in fact only CVVCC syllables generally end up trimoraic.
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The exchange of equal value is best seen in the operation of various rules of
stress and tone assignment. A familiar example involving stress is classical Latin,
where the last syllable is extrametrical (ignored by the rule of stress placement) and
stress always falls on the penultimate mora before it. For tone, consider the Kikuria
[KUJ] example discussed in Odden (1995). In Bantu languages, tense/aspect is often
marked by assigning high tone to a given position in the verb stem: in Kikuria, the
high tone’s falling on the first, second, third, or fourth mora signifies remote past,
recent past, subjunctive, and perfective, respectively. To quote Odden,

Regardless of how one counts, what is counted are vowel moras, not seg-
ments or syllables. Stated in terms of mora count, high tone is simply
assigned to the fourth mora in the perfective, but there is no consistent locus
of tone assignment if one counts either syllables or segments.

An entirely remarkable aspect of the situation is that in some other languages, such as
Lardil [LBZ] (see Wilkinson 1988), the whole phenomenon of rules being sensitive
to the number of moras is absent: it is the number of syllables, as opposed to the
number of moras, that matters. The distinction is known in linguistics as quantity-
sensitive vs. quantity-insensitive languages, and for the most part it neatly divides
languages into two typological bins. But there are nagging problems, chief among
them the existence of typologically split languages such as Spanish, where the verbal
system is quantity insensitive but the nominal system is quantity sensitive.

4.1.3 Feet and cola

One step up from syllables we find metrical feet, groupings that contain one strong
and one weak syllable. Such feet account nicely for the long observed phenomenon
that syllable stress generally appears as a pulse train, with stressed and unstressed
syllables alternating quite predictably. When two stressed syllables meet, one of
them generally gets destressed: compare Italian cittA ‘city’ (stress is indicated by
capitalized vowels here), and vEcchia ‘old’ to the combination citta vEcchia ‘old
city’ (stress retraction, see Nespor and Vogel 1989 – for a symmetrical rule see Exer-
cise 3.5). Another way of resolving such clashes is by the insertion of unstressed
material such as a pause (Selkirk 1984).

Other feet constructions include unbounded feet, a flat structure incorporating
an arbitrary number of syllables, degenerate feet, containing just one syllable, and
even ternary feet. There is no doubt that in the vast majority of cases, feet are binary
(they contain exactly two syllables), Kiribati [GLB] being the best, perhaps the only,
counterexample that resists reanalysis in terms of binary feet (Blevins and Harrison
1999). In some cases, especially for the study of secondary, tertiary, and weaker
levels of stress, it may make sense to join feet in a higher structure called a colon
(see Hammond 1987).

4.1.4 Words and stress typology

Segmentally, utterances can be parsed into words, and the words can be parsed into
syllables (barring extrametrical material). The suprasegmental shape of the resulting
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syllable stream gives strong cues to where the word boundaries are located: in any
given word, there is exactly one primary stress. Some complications arise because
certain particles, called clitics, are adjoined to an adjacent word prosodically even
though the relation between the elements is morphologically undefined. The exis-
tence of such particles requires some dissociation between the phonological and the
syntactic definitions of ‘word’ – the former are called prosodic words, the latter just
words. For example, in Arabic, where conjunctions and prepositions are proclitic
(attach to the following word), the written word unit (delimited by whitespace) is the
prosodic, rather than the syntactic, word. In Latin-based orthography, the apostrophe
is often used to separate clitics from their hosts (but this is not a reliable criterion,
especially as the apostrophe is used for many other purposes as well). Ignoring this
complication for the moment (we take up this matter in Section 4.2), there are as
many words in an utterance as there are primary stresses, and to find out where the
word boundaries fall, all that is required is an understanding of where the stress falls
within the words.

At the top of the prosodic hierarchy we find the prosodic word, composed of
cola or feet and carrying exactly one primary stress. Locating the syllable with the
main stress as well as those syllables that carry lesser (secondary, tertiary, etc.) stress
is a primary concern of the metrical theory of phonology. (Although in many ways
related to the generative theory of metrics, metrical theory is an endeavor with a com-
pletely different focus: metrics is a branch of poetics, concerned with poetic meter
(see e.g. Halle and Keyser 1971), while metrical theory is a branch of linguistics
proper.) When the problem is solvable in the sense that the location of the primary
stress is rule-governed, linguists speak of fixed stress. When the location of stress
cannot be predicted either on the basis of the phonological composition of the word
(e.g. number and weight of syllables) or on the basis of morphological composition,
linguists speak of free stress, and make recourse to the purely descriptive method of
marking in the lexicon where the stress should fall.

While this last recourse may strike the mathematician as pathetically inept, bor-
dering on the ridiculous, it is nothing to be sneered at. First, languages provide many
examples of genuinely unpredictable features: as any foreign learner of German will
know from bitter experience, the gender of German nouns must be memorized, as
any heuristic appeal to ‘natural gender’ will leave a large number of exceptions in
its wake. Second, the procedure is completely legitimate even in cases where rules
are available: tabulating a finite function can define it more compactly than a very
complex formula would. The goal is to minimize the information that needs to be
tabulated: we will begin to develop the tools to address this issue in Chapter 7. The
reader who feels invincible should try to tackle the following exercise.
Exercise 4.2M Develop rules describing the placement of accents in Sanskrit. For
general information, see Whitney (1887) 	80–97, 128 130, 135a; for nouns 	314–
320; for numerals 	482g, 483a–c, 488a; for verbs 	591–598; for adverbs 	1111g,
1112e, 1114d; for personal suffixes 	552–554; with other parts of the system dis-
cussed in 	556, 945, 1073e, 1082–1085, 1144, 1205, 1251, 1295, and elsewhere. An
overview of Pān. ini’s system, which also treats accents by rules scattered throughout
the grammar, is presented in Cardona (1988 Sec. 2.8).
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For the purposes of the typology, the interesting cases are the ones where stress is
fixed. For example, in Hungarian, primary stress is always on the first syllable; in
French, it is on the last syllable; in Araucanian [ARU], it is on the second syllable;
in Warao [WBA], it is on the next to last (penultimate) syllable; and in Macedo-
nian [MKJ], it is on the antepenultimate syllable. Interestingly, no example is known
where stress would always fall on the third syllable from the left or the fourth from
the right.

Quantity-sensitive languages offer a much larger variety. For example, in East-
ern Cheremis [MAL], stress falls on the rightmost heavy syllable, but if all syllables
are light, stress is on the leftmost syllable (Sebeok and Ingemann 1961). In Cairene
Arabic [ARZ], stress is on the final syllable if it is superheavy or on the penultimate
syllable if heavy; otherwise it is on the rightmost nonfinal odd-numbered light syl-
lable counting from the nearest preceding heavy syllable or from the beginning of
the word (McCarthy 1979). The reader interested in the full variety of possible stress
rules should consult the StressTyp database (Goedemans et al. 1996), which employs
the following overall categorization scheme:

1 Unbounded systems
1.1 Quantity-sensitive
1.2 Quantity-insensitive
1.3 Count systems

2 Binary Bounded systems
2.1 Quantity-insensitive
2.2 Quantity-sensitive

3 Special systems
3.1 Broken-window systems
3.2 n-ary weight distinctions
3.2.1 Superheavy syllables
3.2.2 Prominence systems

4 Bounded ternary systems

Although from the outside it is somewhat haphazard, the system above is typical in
many respects; indeed, it is among the very best that linguistic typology is currently
capable of producing. First, the categories are rather sharply separated: a system that
fits in one will not, as a rule, fit into any other. There are very few split cases, and
these tend to involve major subsystems (such as the verbal and nominal systems)
rather than obscure corner cases. Given that stress rules are generally riddled with
exceptions, this is a remarkable achievement. Second, the system is based on several
hundred languages analyzed in great depth, giving perhaps a 10% sample of known
languages and dialects. That certain categories are still instantiated by only a handful
of examples is a cause for concern, but again, the depth of the research is such that
these examples are fairly solid, rarely open to major reanalysis. Third, the empiri-
cal correlates of the categories are rather clear, and it requires only a few examples
and counterexamples to walk down the decision tree, making the problem of clas-
sification much less formidable than in those cases of typology where the operative
categories are far more elusive.
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The modern theory of stress typology begins with Hayes (1980), who tried to
account for the observed variety of stress patterns in terms of a few simple opera-
tions, such as building binary trees over the string of syllables left to right or right
to left – for a current proposal along the same lines, see Hayes (1995). Here we will
discuss another theory (Goldsmith and Larson 1990), which, in spite of its narrower
scope (it applies to quantity-insensitive systems only), has taken the important step
of divesting stress typology from much of its post hoc character.

Suppose we have n syllables arranged as a sequence of nodes, each characterized
at time T by two real parameters, its current activation level ak.T / and the bias bk

that is applied to it independent of time T . The two parameters of the network are
the leftward and rightward feeding factors ˛ and ˇ. The model is updated in discrete
time: for 1 < k < n, we have ak.T C 1/ D ˛akC1.T / C ˇak�1.T / C bk . At the
edges, we have a1.T C 1/ D ˛a2.T / C b1 and an.T C 1/ D ˇan�1.T / C bn.
Denoting the matrix that has ones directly above (below) the diagonal and zeros
elsewhere by U (L) and collecting the activation levels in a vector a, and the biases
in b, we thus have

a.T C 1/ D .˛U C ˇL/a.T /C b (4.1)

The iteration will converge iff all eigenvalues of W D ˛U C ˇL lie within the unit
disk. Gershgorin’s Circle Theorem provides a simple sufficient condition for this: if
j˛j C jˇj < 1;Wn will tend to zero and (4.1) yields a stable vector a D .I � W/�1b
no matter where we start it. Here we will not analyze the solutions in detail (see
Prince 1993), but just provide a sample of the qualitatively different cases considered
by Goldsmith and Larson.

If we set ˛ D �0:8; ˇ D 0; and a bias of 1 on the last node, we obtain an
alternating pulse train proceeding from the right to left, corresponding to the stress
pattern observed in Weri [WER], with primary stress falling on the last syllable and
secondary stresses on the third, fifth, etc., syllables counting backward from the right
edge. With the bias set at �1, we obtain the stress pattern of Warao [WBA], with
primary stress on the penultimate syllable and secondary on the fourth, sixth, etc.,
counting backward. The mirror image of the Weri pattern, obtained by setting the
bias to 1 on the first syllable, is observed in Maranungku [ZMR].

What is remarkable about this situation is that the bewildering typological vari-
ation appears as a consequence of the model, different regions of the parameter
space show typologically different patterns, without any particular effort to reverse-
engineer rules that would provide the attested patterns. Chomsky (1981) called this
the explanatory depth of the theory, and on the whole there is little to recommend
models lacking in it.

Exercise 4.3 Provide a better bound on the convergence of W than what follows
from the Gershgorin Circle Theorem. Investigate which qualitative properties of the
solutions are independent of the number of syllables n.
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4.2 Word formation

The basic morphological unit is the morpheme, defined as a minimal (atomic) sign.
Unlike phonemes, which were defined as minimum concatenative units of sound, for
morphemes there is no provision of temporal continuity because in many languages
morphemes can be discontinuous and words and larger units are built from them by
processes other than concatenation. Perhaps the best known examples are the tricon-
sonantal roots found in Arabic, e.g. kataba ‘he wrote’, kutiba ‘it was written’, where
only the three consonants k-t-b stay constant in the various forms. The consonants
and the vowels are put together in a single abstract template, such as the perfect pas-
sive CaCCiC (consider kattib ‘written’, darris, ‘studied’ etc.), even if this requires a
certain amount of stretching (here the second of the three consonants gets lengthened
so that a total of four C slots can be filled by three consonants) or removal of material
that does not fit the template. The phenomenon of discontinuous morphemes extends
far beyond the Semitic languages, e.g. to Penutian languages such as Yokuts [YOK],
Afroasiatic languages such as Saho [SSY], and even some Papuan languages.

In phonotactics, matters were greatly simplified by distinguishing those ele-
ments that do not appear in isolation (consonants) from those that do (vowels). In
morphotactics, the situation is more complex, requiring us to distinguish at least
six categories of morphemes: roots, stems, inflectional affixes, derivational affixes,
simple clitics, and special clitics; as these differ from one another significantly in
their combinatorical possibilities. When analyzing the prosodic word from the out-
side in, the outermost layer is provided by the clitics, elements that generally lack
independent stress and thus must be prosodically subordinated to adjacent words:
those attaching at the left are called proclitic, and those at the right are enclitic. A
particularly striking example is provided by Kwakiutl [KWK] determiners, which
are prosodically enclitic (attach to the preceding word) but syntactically proclitic
(modify the following noun phrase).

Once the clitics are stripped away, prosodic and morphological words will largely
coincide, and the standard Bloomfieldian definition becomes applicable as our first
criterion for wordhood (1): words are minimal free forms, i.e. forms that can stand in
isolation (as a full utterance delimited by pauses) while none of their constituent parts
can. We need to revise (1) to take into account not just clitics but also compounding,
whereby words are formed from constituent parts that themselves are words: Bloom-
field’s example was blackbird, composed of black and bird. To save the minimality
criterion (1), Bloomfield noted that there is more to blackbird than blackCbird inas-
much as the process of compounding also requires a rule of compound destressing,
which reduces (or entirely removes) the second of the two word-level stresses that
were present in the input. Since bird in isolation has full word-level stress (i.e. the
stress-reduced version cannot appear in isolation), criterion (1) remains intact.

Besides compounding, the two most important word-formation processes are
affixation, the addition of a bound form to a free form, and incorporation, which
will generally involve more than two operands, of which at least two are free and
one is bound. We will see many examples of affixation. An English example of
incorporation would be synthetic compounds such as moviegoer (note the lack of
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the intermediate forms *moviego, *goer and *movier). If affixation is concatenative
(which is the typical case, often seen even in languages that have significant noncon-
catenative morphology), affixes that precede (follow) the stem are called prefixes
(suffixes). If the bound morpheme is added in a nonconcatenative fashion (as e.g. in
English sing, sang, sung), traditional grammar spoke of infixation, umlaut, or ablaut,
but as these processes are better described using the autosegmental theory presented
in Section 3.3, the traditional terminology has been largely abandoned except as
descriptive shorthand for the actual multitiered processes. Compounded, incorpo-
rated, and affixed stems are still single prosodic words, and linguists use (2): words
have a single main stress as one of many confluent criteria for deciding wordhood.

An equally important criterion is (3): compounds are not built compositionally
(semantically additively) from their constituent parts. It is evident that blackbird is
not merely some black bird but a definite species, Turdus merula. Salient character-
istics of blackbirds, such as the fact that the females are actually brown, cannot be
inferred from black or bird. To the extent the mental lexicon uses words and phrases
as access keys to such encyclopedic knowledge, it is desirable to have a separate
entry or lexeme for each compound. We emphasize here that such considerations
are viewed in morphology as heuristic shortcuts: the full theory of lexemes in the
mental lexicon can (and, many would argue, must) be built without reference to
encyclopedic knowledge. What is required instead is some highly abstract grammat-
ical knowledge about word forms belonging in the same lexeme, where lexemes are
defined as a maximal set of paradigmatically related word forms.

But what is a paradigm? Before elaborating this notion, let us briefly survey
the remaining criteria of wordhood: (4) words are impervious to reordering by the
kinds of processes that often act freely on parts of phrases (cf. the bird is black vs.
*this is a birdblack). (5) words are opaque to anaphora (cf. Mary used to dare the
devil but now she is afraid of him vs. *Mary used to be a daredevil but now she
is afraid of him). Finally, (6) orthographical separation also provides evidence of
wordhood, though this is a weak criterion – orthography has its own conventions
(which include hyphens that can be used to punt on the hard cases), and there are
many languages such as Chinese and Hindi, where the traditional orthography does
not include whitespace.

Given a finite inventory M of morphemes, criteria (1–6) delineate a formal lan-
guage of words W as the subset of w 2 M � for which either (i) w is free and no
w D w1w2 concatenation exists with both w1 and w2 free or (ii) such a concate-
nation exists but the meaning of w is not predictable from the meanings of w1 and
w2. By ignoring the nonconcatenative cases as well as the often considerable phono-
logical effects of concatenation (such as stress shift, assimilation of phonemes at the
concatenation boundary, etc.), this simple model lets us concentrate on the internal
syntax of words, known as morphotactics. Words in W \ M (M 2; : : :) are called
monomorphemic (bimorphemic, . . . ). Morphemes in M nW are called bound, and
the rest are free.

The single most important morphotactic distinction is between content mor-
phemes such as eat or food and function morphemes such as the, of, -ing, -ity, the
former being viewed as truly essential for expressing any kind of meaning, while
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the latter only serve to put expressions in a grammatically nicer format. In numeri-
cal expressions, the digits would be content, and the commas used to group digits in
threes would be function morphemes. Between free or bound, content or function, all
four combinations are widely attested, though not all four are simultaneously present
in every language. Bound content morphemes are known as roots, and free content
morphemes are called stems. Bound function morphemes are known as affixes, and
free function morphemes are called function words or particles. On occasion, one
and the same morpheme may appear in multiple classes. Take for example Hungarian
case endings such as nAk ‘dative’ or vAl ‘instrumental’. (Here A is used to denote an
archiphoneme or partially specified phoneme whose full specification for the back-
ness feature (i.e. whether it becomes a or e) depends on the stem. This phenomenon,
called vowel harmony, is a typical example of autosegmental spreading, discussed
in Section 3.3.) These morphemes generally function as affixes, but with personal
pronouns they function as roots, as in nekem ‘1SG.DAT’ and velem ‘1SG.INS’.

Affixes (function morphemes) are further classified as inflectional and
derivational – for example, compare the English plural -s and the noun-forming
adjectival -ity. As we analyze words from the outside in, in the outermost layer
we find the inflectional prefixes and suffixes. After stripping these away, we find
the derivational prefixes and suffixes surrounding the stem. To continue with the
example, we often find forms such as polarities in which first a derivational and sub-
sequently an inflectional suffix is added, but examples of the reverse order are rarely
attested, if at all.

Finally, and at the very core of the system, we may find roots, which require
some derivational process (typically templatic rather than concatenative) before they
can serve as stems. By the time the analysis reaches the root level, the semantic
relationship between stems derived from the same root is often hazy: one can easily
see how in Arabic writing, to write, written, book, and dictate are derived from the
same root k-t-b, but it is less obvious that meat, butcher is similarly related to battle,
massacre and to welding, soldering, sticking (as in the root l-h-m). In Sanskrit, it is
easy to understand that desire and seek could come from the same root iSh, but it is
something of a stretch to see the relationship between narrow and distressing (aNh)
or between shine and praise (arch).

The categorization of the morphemes as roots, stems, affixes, and particles
gives rise to a similar categorization of the processes that operate on them, and
the relative prevalence of these processes is used to classify languages typologi-
cally. Languages such as Inuktitut [ESB], which form extremely complex words
with multiple content morphemes, are called incorporating. At the opposite end,
languages such as Vietnamese, where words typically have just one morpheme, are
called isolating. When the majority of words are built recursively by affixation, as
in Turkish or Swahili, we speak of agglutinating languages. Because of the cen-
tral position that Latin and ancient Greek occupied in European scholarship until
the 19th century, a separate typological category is reserved for inflecting languages
where the agglutination is accompanied by a high degree of morphological supple-
tion (replacement of affix combination by a single affix). Again we emphasize that
the typological differences expressed in these labels are radical: the complexities of
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a strongly incorporating language cannot even be imagined from the perspective of
agglutinating or isolating languages.

The central organizational method of morphology, familiar to any user of a
(monolingual or bilingual) dictionary, is to collect all compositionally related words
in a single class called the lexeme. On many occasions, we can find a single distin-
guished form, such as the nominative singular of a noun or the third-person singular
form of a verb, that can serve as a representative of the whole collection in the sense
that all other members of the lexeme are predictable from this one citation form. On
other occasions, this is not quite feasible, and we make recourse to a theoretical con-
struct called the underlying form from which all forms in the lexeme are generated.
The citation form, when it exists, is just a special case where a particular surface
form (usually, but not always, the one obtained by affixing zero morphemes) retains
all the information present in the underlying form.

Within a single lexeme, the forms are related paradigmatically. Across lexemes
in the same class, the abstract structure of the lexeme, the paradigm, stays con-
stant, meaning that we can abstract away from the stem and consider the shared
paradigm of the whole class (e.g. the nominal paradigm, the verbal paradigm, etc.)
as structures worth investigating in their own right. A paradigmatic contrast along
a given morphological dimension such as number, gender, person, tense, aspect,
mood, voice, case, topic, degree, etc., can take a finite (usually rather small) number
of values, one of which is generally unmarked (i.e. expressed by a zero morpheme).
A typical example would be the number of nouns in English, contrasting the singular
(unmarked) to plural -s, or in classical Arabic, contrasting singular, dual, and plural.
We code the contrasts themselves by abstract markers (diacritics, see Section 3.2)
called morphosyntactic features, and the specific morphemes that realize the distinc-
tions are called their exponents. The abstract markers are necessary both because
the same distinction (e.g. plurality) can be expressed by different overt forms (as in
English boy/boys, child/children, man/men) and because the exponent need not be a
concatenative affix – it can be a templatic one such as reduplication.

The full paradigm is best thought of as a direct sum of direct products of mor-
phological contrasts obtaining in that category. For example, if in a language verbs
can be inflected for person (three options) and number (two options), there are a
total of six forms to consider. This differs from the feature decomposition used in
phonology (see Section 3.2) in three main respects. First, there is no requirement
for a single paradigmatic dimension to have exactly two values, and indeed, larger
sets of values are quite common – even person can distinguish as many as four (sin-
gular, dual, trial, and plural) in languages such as Gunwinggu [GUP]. Second, it is
common for paradigms to be composed of direct sums; e.g. a whole subparadigm of
infinitivals plus a subparadigm of finite forms as in Hungarian. Third, instead of the
subdirect construction, best characterized by a subset (embedding) in a direct prod-
uct, we generally have a fully filled direct product, possibly at the price of repeating
entries. For example, German adjectives have a maximum of six different forms (e.g.
gross, grosses, grosse, grossem, grossen, and grosser), but these are encoded by four
different features, case (four values), gender (three values), number (two values),
and determiner type (three values), which could in principle give rise to 72 different
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paradigmatic slots. Repetition of the same form in different paradigmatic slots is
quite common, while missing entries (a combination of paradigmatic dimensions
with no actual exponent), known as paradigm gaps, are quite rare, but not unheard of.

For each stem in a class, the words that result from expressing the morphosyn-
tactic contrasts in the paradigm are called the paradigmatic forms of the stem: a
lexeme is thus a stem and all its paradigmatic forms. This all may look somewhat
contrived, but the notion that stems should be viewed not in isolation but in conjunc-
tion with their paradigmatic forms is so central to morphology that the whole field of
study (morphology, ‘the study of forms’) takes its name from this idea. The central
notational device in the linguistic presentation of foreign language data, morpholog-
ical glosses, also has the idea of paradigmatic forms built in: for example, librum is
glossed as book. ACC, thereby explicitly translating not only the stem liber, which
has a trivial equivalent in English, but also the fact that the form is accusative, an
idea that has no English equivalent.

The processes that generate the paradigmatic forms are called inflectional, while
processes whose output is outside the lexeme of the input are called derivational –
a key issue in understanding the morphotactics of a language is to distinguish the
two. The most salient difference is in their degree of automaticity: inflectional pro-
cesses are highly automatic, virtually exceptionless both in the way they are carried
through and in the set of stems to which they apply, while derivational processes
are often subject to alternations and/or are limited in their applicability to a sub-
class of stems. For example, if X is an adjective, X-ity will be a noun meaning
something like ‘the property of being X’, but there are different affixes that per-
form this function and there is no clear way to delineate their scope without listing
(compare absurdity, redness, teenhood, *redity, *teenity, *redhood, *absurdhood,
*absurdness, *teenness). When we see an affix with limited combining ability, such
as -itis ‘swelling/inflammation of’ (as in tendinitis, laryngitis, sinusitis), we can be
certain that it is not inflectional.

Being automatic comes hand in hand with being compositional. It is a hallmark
of derivational processes that the output will not necessarily be predictable from the
input (the derived stems for laHm ‘meat’, malHama ‘battle’, and laHam ‘welding’
from the same root l-h-m are a good example). The distinction is clearly observable
in the frequency of forms that contain a given affix. For example, the proportion
of plural forms ending in -s is largely constant across various sets of nouns, while
the proportion of nouns ending in -ity, -ness, and hood depends greatly on the set
of inputs chosen; e.g. whether they are Latinate or Germanic in origin. The same
distinction in productivity is also observable in whether people are ready to apply the
generative rule to stems they have not encountered before.

By definition, inflection never changes category, but derivation can, so when-
ever we have independent (e.g. syntactic or semantic) evidence of category change,
as in English quick (adjective) but quickly (adverb), we can be certain that the suf-
fix causing the change is derivational. Inflectional features tend to play a role in
rules of syntactic agreement (concord) and government, while derivational features
do not (Anderson 1982). Finally, inflection generally takes place in the outermost
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layers (last stages, close to the edges of the word, away from the stem or root), while
derivation is in the inner layers (early stages, close to the stem or root).

Although in most natural languages M is rather large, 104–105 entries (as
opposed to the list of phonemes, which has only 101–102 entries), the set of attested
morphemes is clearly finite, and thus does not require any special technical device
to enumerate. This is not to say that the individual list entries are without technical
complexity. Since these refer to (sound, meaning) pairs, at the very least we need
some representational scheme for sounds that extends to the discontinuous case (see
Section 3.3), and some representational scheme for meanings that will lend itself to
addition-like operations as more complex words are built from the morphemes. We
will also see the need for marking morphemes diacritically i.e. in a way that is neither
phonological nor semantic. Since such diacritic marking has no directly perceptible
(sound or meaning) correlate, it is obviously very hard for the language learner to
acquire and thus has the greatest chance for faulty transmission across generations.

The language W can be infinite, so we need to bring some variant of the gener-
ative apparatus described in Chapter 2 to bear on the task of enumerating all words
starting from a finite base M . The standard method of generative morphology is to
specify a base inventory of morphemes as (sound, diacritic, meaning) triples and
a base inventory of rules that form new triples from the already defined ones. It
should be said at the outset that this picture is something of an idealization of the
actual linguistic practice, inasmuch as no truly satisfactory formal representation of
(word-level) meanings exists, and that linguistic argumentation generally falls back
on natural language paraphrase (see Section 5.3) rather than employing a formal
theory of semantics the same way it uses formal theories of syntax and phonology.
While this lack of lexical semantics is keenly felt in many areas of knowledge repre-
sentation, in morphology we can make remarkable progress by relying only on some
essential notions about whether two words mean, or do not mean, the same thing.
Here we illustrate this on the notion of blocking, which says that if s1s2 is a derived
(generated) form with meaning m and s is a primitive (atomic) form with the same
meaning m, the atomic form takes precedence over the derived one:

.s;m/ 2 W ) .s1s2; m/ 62 W (4.2)

To see blocking in action, consider the general rule of past tense formation in
English, which (keeping both the sound and the meaning sides of the morphemes
loosely formulated, and ignoring the issue of diacritics entirely) says

(Verb, m) C (-ed, PAST) D (Verb.ed, m.PAST)

i.e. the past tense of a verb Verb is formed by concatenation with the morpheme ed.
Clearly, this is a general rule of English, even though it fails in certain cases: when
the verb is go, the past tense form is went rather than *goed. It would be awkward to
reformulate the rule of English past tense formation to say “add the morpheme -ed
except when the verb is go, eat, . . . ”. By assuming a higher principle of blocking, we
are freed of the need to list the exceptions to each rule; the mere existence of (went,
go.PAST) in the lexicon of English will guarantee that no other form with semantics
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go.PAST need be considered. For a more subtle example, not immediately evident
from (4.2), consider the rule of agentive noun formation: for (Verb, m), Verb.er is
the agent of m (e.g., eat/eater, kill/killer). Much to the chagrin of children learning
English, there is no *bicycler – such a person is called a bicyclist. Here the mere
existence of the -ist form is sufficient to block the -er form, though there is no general
rule of -ist taking precedence over -er (cf. violinist/*violiner, *fiddlist/fiddler).

Kiparsky (1982b) treats blocking as a special case of the more general Else-
where Principle going back to Pān. ini: rules with narrower scope (affecting fewer
items) take precedence over rules with broader scope. By treating lexical entries like
bicyclist as identity rules, blocking appears at the very top of a precedence hier-
archy running from the most specific (singleton) rules to the most generic rules.
Since much of morphology is about listing (diacritically marking) various elements,
it may appear attractive to do away with general rules entirely, trying to accomplish
as much by tabulation as possible. But it is clear that children, from a relatively early
age, are capable of performing morphological operations on forms they have never
encountered before. The classic “wug” test of Berko (1958) presents children with
the picture of a creature and the explanation “this is a wug”. When you add a second
picture and say “now there are two of them. These are two . . . ”, by first grade chil-
dren will supply the correct plural (with voiced /wugz/ rather than unvoiced /wugs/).
Since the evidence in favor of such productive use of morphological rules is over-
whelming, it is generally assumed that general (default) rules or constraints are part
of the adult morphological system we wish to characterize.

In this sense, the set of content morphemes is not just large but infinite (open
to the addition of new stems like wug). In contrast, the set of function morphemes
is small (102–103 entries) and closed. For each function morpheme mi , we can ask
what is the set Si � M for which affixation with mi is possible; e.g. fs 2 S js:mi 2
W g. Perhaps surprisingly, we often find Si D Sj . In other words, the distributions
of different function morphemes are often identical or near-identical. For example,
in English, every stem that can take -ed can also take -ing and conversely – excep-
tions such as strong verbs that do not take their past tense in -ed can be readily
handled by the blocking mechanism discussed above. This clustering gives rise to the
fundamental set of diacritics known as lexical categories or parts of speech (POS).
Given that (two and a half millennia after Pān. ini) the actual format of morphological
rules/constraints and their interaction is still heavily debated, it may come as some-
thing of a surprise that there is broad consensus on the invisible (diacritical) part of
the apparatus, and in fact it would be next to impossible to find a grammar that does
not employ lexical categories.

In most, perhaps all, languages, the largest category is that of nouns (convention-
ally denoted N), followed by the class A of adjectives, the class V of verbs, Adv
(adverbials), and Num (numerals). Again, multiple membership is possible, indeed
typical. For each lexical category there is an associated paradigm, sometimes trivial
(as e.g. for adverbs, which generally have no paradigmatically related forms) but on
occasion rather complex (as in verbal paradigms, which often express distinctions as
to voice, aspect, tense, mood, person, and number of subject, direct and even indirect
object, and gender). Paradigms are such a powerful descriptive tool that in an ideal
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agglutinating/inflecting language, the task of characterizing W would be reduced to
providing a few tabular listings of paradigms, plus some diacritic marking (lexical
categorization) accompanying the list of content morphemes. As an added bonus,
we will see in Section 5.2 that syntax, the study of the distribution of words in sen-
tences, is also greatly simplified by reference to lexical categories and paradigmatic
forms. To be sure, no language is 100% agglutinating (though many come remark-
ably close), but enough have large and complex paradigms to justify architecting the
rest of the morphology around them.

A central issue of morphology is whether the use of diacritics can be eliminated
from the system. For example, it is often assumed that lexical categories are semanti-
cally motivated, e.g. nouns are names of things, verbs denote actions, etc. Yet in truth
we do not have a theory of lexical semantics that would sustain the category distinc-
tions that we see, and many things that could equally well be one or the other (the
standard example is fire noun vs. burn verb) actually end up in different categories
in different languages. There has been better progress in eliminating diacritics by
means of phonological marking. For example Lieber (1980) replaces the paradigm
classes of traditional Latin descriptive grammar with phonologically motivated trig-
gers. Yet some hard cases, most notably Sanskrit and Germanic (Blevins 2003), still
resist a purely phonological treatment, and the matter is by no means settled.

4.3 Optimality

Formal descriptions of morphology standardly proceed from a list of basic entries
(roots and stems) by means of inflectional rules that manipulate strings or multitiered
representations to produce the paradigmatic forms and derivational rules that produce
stems from roots or other stems. While this method is highly capable of expressing
the kind of regularities that are actually observed in natural language, very often we
find rule systems that conspire to maintain some observable regularity without actu-
ally relying on it. As an example, consider a language (such as Tiberian Hebrew) that
does not tolerate complex codas. Whenever some process such as compounding or
affixation creates a complex coda, we find some secondary cleanup process, such as
the insertion of a vowel (a process called epenthesis) or the deletion of a consonant,
that will break up the complex coda.

Optimality theory (OT) is built on the realization that in these situations the
observable (surface) regularity is the cause, rather than the effect, so that to state
the grammar one needs to state the regularities rather than the processes that main-
tain them. There are two main technical obstacles to developing such a theory: first,
that the regularities may contradict each other (we will see many examples of this),
and second, that regularities may have exceptions. In the previous section, we saw
how individual (lexical) exceptions can be handled by means of the Elsewhere Con-
dition, and this mechanism extends smoothly to all cases where one subregularity
is entirely within the domain of a larger (super)regularity. But there are many cases
where the domains overlap without either one being included in the other, and for
these we need some prioritization called constraint ranking in OT.
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An OT grammar is composed of two parts: a relation GEN between abstract
(underlying) representations and candidate surface realizations, and a function EVAL
that ranks the candidates so that the highest-ranked or optimal one can be chosen.
The ranking of the candidates is inferred from the ranking of the constraints, which
is assumed to be absolute and immutable for a given language at a given synchronic
stage but may vary across languages and across different synchronic stages of the
same language. Optimality theory is closely linked to the kind of linguistic typology
that we exemplified in Section 4.1 with stress typology in that the constraints are
assumed to come from a universal pool: variation across languages is explained by
assuming different rankings of the same constraints rather than by assuming different
constraints.

The (universal) family of constraints on GEN requires faithfulness between
underlying and surface representations. These can be violated by epenthesis pro-
cesses that create elements present in the surface that were missing from the under-
lying form, by deletion processes that remove from the surface elements that were
present in the underlying form, and by reordering processes that change the lin-
ear order of elements on the surface from the underlying order. The constraints on
EVAL are known as markedness constraints. These prohibit configurations that are
exceptional from the perspective of universal grammar. For example, complex syl-
labic onsets or codas are more marked (typologically more rare) than their simple
counterparts, so a universal prohibition against these makes perfect sense, as long as
we understand that these prohibitions can be overridden by other (e.g. faithfulness)
considerations in some languages.

Once an ordering of the constraints is fixed, it is a mechanical task to assess
which constraints are violated by which input-output pair. This task is organized
by the tableau data structure introduced in the founding paper of OT (Prince and
Smolensky 1993), which places constraints in columns according to their rank order,
and candidate forms in rows. Each form (or, in the case of faithfulness constraints,
each input-output pair) will either satisfy a constraint or violate it. (In early OT work,
the severity of a violation could be a factor, for a modern view, see McCarthy 2003.)
In some cases, it is possible for a form (pair) to violate a constraint more than once;
e.g. if the constraint requires full syllabification and there is more than one unsyl-
labified element. Given the infinite set of candidates produced by GEN, the selection
problem is finding an optimal candidate ! such that for any other candidate 
 the
first constraint (in rank order) that distinguishes between ! and 
 favors !.

Standard phonology (Chomsky and Halle 1968) used context-sensitive rules not
just to describe how the various morphosyntactic features are expressed (often con-
strained by reference to other invisible diacritic elements) but also to clean up the
output of earlier rules so that the results become phonologically well-formed. In
some grammars, most notably in Pān. ini, the cleanup is left to a single postprocessing
stage (the last three sections of the grammar following 8.2, known as the Tripādı̄), but
in many cases (often collected under the heading of boundary strength or level order-
ing) it seems advisable to mix the phonological rules with the purely morphological
ones. To the extent that the morphological constituent structure dictates the order
of rule application, a theory that strongly couples morphological and phonological
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well-formedness has little freedom in ordering the phonological rules. But to the
extent that weaker (or as in the Asht.ādhyāyı̄, no) coupling is used, there remains a
certain degree of freedom in ordering the rules, and this freedom can be exploited to
describe near-truths.

Context-sensitive rules of the form B ! C=A D are called opaque if we
encounter strings ABD, suggesting the rule should have applied but somehow did
not, or ifC appears in an environment other thanA D, suggesting thatC came about
by some other means. To continue with the Tiberian Hebrew example, the language
has a rule of deleting ? (glottal stop) outside syllable onsets, which should be ordered
after the rule of epenthesis that breaks up complex codas. This means that a form
such as deš? first undergoes epenthesis to yield deše? but the final ? is deleted, so
from the surface it is no longer evident what triggered the epenthesis in the first place.

In a constraint-based system the notion of opacity has to be reinterpreted slightly –
we say that a constraint is not surface true if there are exceptions beyond the simple
lexical counterexamples and not surface apparent if the constraint appears true but
the conditions triggering it are not visible. Generally, such situations put such a high
burden on the language learner that over the course of generations the rule/constraint
system is replaced by one less opaque, even at the expense of not transmitting the
system faithfully.

4.4 Zipf’s law

We define a corpus simply as any collection of texts. Linguists will often impose
additional requirements (e.g. that all texts should originate with the same author,
should be about the same topic, or should have consistent spelling), but for full gen-
erality we will use only the more liberal definition given above. When a collection
is exhaustive (e.g. the complete works of Shakespeare), we speak of closed corpora,
and when it can be trivially extended (e.g. the issues of a newspaper that is still in
publication), we speak of open corpora.

Perhaps the simplest operation we can perform on a corpus is to count the words
in it. For the sake of concreteness we will assume that the texts are all ascii, that
characters are lowercased, and all special characters, except for hyphen and apostro-
phe, are mapped onto whitespace. The terminal symbols or letters of our alphabet
are therefore † D fa; b; : : : z; 0; 1; : : : 9;0 ;�g, and all word types are strings in
†�, though word tokens are strings over a larger alphabet including capital letters,
punctuation, and special characters. Using these or similar definitions, counting the
number of tokens belonging in the same type becomes a mechanical task. The results
of such word counts can be used for a variety of purposes, such as the design of more
efficient codes (see Chapter 7), typology, investigations of style, authorship, language
development, and statistical language modeling in general.

Given a corpus S of size L.S/ D N (the number of word tokens in S ), we find
V different types, V 	 N . Let us denote the absolute frequency (number of tokens)
for a type w by FS .w/ and the relative frequency FS .w/=N by fS .w/. Arranging
thew in order of decreasing frequency, the r th type,wr , is said to have rank r, and its
relative frequency fS .wr / will also be written fr . As Estoup (1916) and Zipf (1935)



70 4 Morphology

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

"noh_001.zipf"

Fig. 4.1. Plot of log frequency as a function of log rank for a newspaper issue (150k words)

noted, the plot of log frequencies against log ranks shows a reasonably linear relation.
Figure 4.1 shows this for a single issue of an American newspaper, the San Jose
Mercury News, or Merc for short. Historically, much of our knowledge about word
frequencies has come from corpora of this size: the standard Brown Corpus (Kucera
and Francis 1967) is about a million words. Today, corpora with size 107–108 are
considered medium-sized, and only corpora above a billion words are considered
large (the largest published word count is based on over 1012 words). The study of
such corpora makes the utility of the log scale evident: perfectly ordinary words like
dandruffy or uniform can have absolute frequency 0.000000001 or less. Denoting the
slope of the linear portion by �B , B is close to unity, slightly higher on some plots
and slightly lower on others. (Some authors, such as Samuelsson (1996), reserve the
term “Zipf’s law” to the case B D 1.) As a first approximation, Zipf’s law can be
given as

log.Fr / D HN � B log.r/ (4.3)

where HN is some constant (possibly dependent on S and thus on N , but inde-
pendent of r). This formula is closely related to, but not equivalent with, another
regularity, often called Zipf’s second law. Let V.i; N / be the number of types that
occur i times. Zipf’s second law is usually stated as

log.i/ D KN �DN log.V .i; N // (4.4)

The status of Zipf’s law is highly contentious, and the debate surrounding it is often
conducted in a spectacularly acrimonious fashion. As an example, we quote here
Herdan (1966:88):

The Zipf law is the supposedly straight line relation between occurrence fre-
quency of words in a language and their rank, if both are plotted
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logarithmically. Mathematicians believe in it because they think that lin-
guists have established it to be a linguistic law, and linguists believe in it
because they, on their part, think that mathematicians have established it to
be a mathematical law. . . . Rightly seen, the Zipf law is nothing but the arbi-
trary arrangement of words in a text sample according to their frequency
of occurrence. How could such an arbitrary and rather trivial ordering of
words be believed to reveal the most recondite secrets, and the basic laws,
of language?

Given the sheer bulk of the literature supporting some Zipf-like regularity in domains
ranging from linguistic type/token counts to the distribution of wealth, it is natural
that statisticians sought, and successfully identified, different genesis mechanisms
that can give rise to (4.3, 4.4), and related laws.

The first results in this direction were obtained by Yule (1924), working on a ver-
sion of (4.3) proposed in Willis (1922) to describe the number of species that belong
to the same genus. Assuming a single ancestral species, a fixed annual probability s
of a mutation that produces a new species, and a smaller probability g of a mutation
that produces an entirely new genus, Yule shows that over time the distribution for
the number of genera with exactly i species will tend to

1=i1Cg=s (4.5)

This is not to say that words arise from a single undifferentiated ancestor by a
process of mutation – the essential point of Yule’s work is that a simple uniform
process can give rise, over time, to the characteristically nonuniform ‘Zipfian’ distri-
bution. Zipf himself attempted to search for a genesis in terms of a “principle of least
effort”, but his work (Zipf 1935, 1949) was never mathematically rigorous and was
cut short by his death. A mathematically more satisfying model specifically aimed at
word frequencies was proposed by Simon (1955), who derived (4.3) from a model
of text generation based on two hypotheses: (i) new words are introduced by a small
constant probability, and (ii) old words are reused with the same probability that they
had in earlier text.

A very different genesis result was obtained by Mandelbrot (1952) in terms of
the classic “monkeys and typewriters” scenario. Let us designate an arbitrary symbol
on the typewriter as a word boundary and define “words” as maximum strings that do
not contain it. If we assume that new symbols are generated randomly, Zipf’s law can
be derived for B > 1. Remarkably, the result holds true if we move from a simple
Bernoulli experiment (zero-order Markov process; see Chapter 7) to higher-order
Markov processes.

In terms of content, though perhaps not in terms of form, the high point of the
Zipfian genesis literature is the Simon-Mandelbrot debate (Mandelbrot 1959, 1961a,
1961b, Simon 1960, 1961a, 1961b). Simon’s genesis works equally well irrespec-
tive of whether we assume a closed .B < 1/ or open .B > 1/ vocabulary. For
Mandelbrot, the apparent flexibility in choosing any number close to 1 is a fatal
weakness in Simon’s model. While we side with Mandelbrot for the most part, we
believe his critique of Simon to be too strict in the sense that explaining too much
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is not as fatal a flaw as explaining nothing. Ultimately, the general acceptance of
Mandelbrot’s genesis as the linguistically more revealing rests not on his attempted
destruction of Simon’s model but rather on the fact that we see his model as more
assumption-free.

Although Zipf himself held that collecting more data about word frequency can
sometimes distort the picture, and there is an “optimum corpus size” (for a mod-
ern discussion and critique of this notion, see Powers 1998), here we will follow
a straight frequentist approach that treats corpora as samples from an underlying
distribution. To do this, we need to normalize (4.3) so that its fundamental con-
tent, linearity on a log-log scale, is preserved independent of sample size. Although
in corpus linguistics it is more common to study sequences of dependent cor-
pora SN � SN C1, here we assume a sequence of independent corpora satisfying
L.SN / D N . On the y axis, we divide all values by N so that we can work with rel-
ative frequencies f , rather than absolute frequencies F , and on the x axis we divide
all values by V.N / so that we can work with relative ranks 0 	 x D r=V .N / 	 1,
rather than absolute ranks r . Accordingly, (4.3) becomes

log.f .xV.N /// D HN � log.N / � BN log.x/ � BN log.V .N // (4.6)

The Zipf line intersects the x axis at x D 1, where the relative frequency of the
least frequent item is just 1=N . This is because at the low end of the distribution,
we find a large number of hapax legomena, words that appear only once in the
corpus, and dis legomena, words that appear only twice. (For large corpora, typically
about 40% to 60% of all word types appear only once and another 10% to 15% only
twice.) Since log.1/ is zero, we have HN D BN log.V .N // i.e. that the Zipf line
is always shifted up from the origin by BN log.V .N //. We can reasonably call a
population Zipfian only if the BN will converge to a Zipf constant B , an empirical
requirement that seems to be met by sequences of medium to large corpora – our
current computational ability to analyze corpora without special hardware limits us
to about 1011 words.

Using r D 1 in (4.3) we obtain log.F1/ D HN D B log.V .N // and by sub-
tracting log.N / from both sides log.f .1// D B log.V .N // � log.N /. Here the left
hand side is a constant, namely the log frequency of the most frequent word (in
English, the), so the right-hand side must also tend to a constant with increased N .
Thus we have obtained B log.V .N //  log.N /, known as the power law of vocab-
ulary growth. This law, empirically stated by many researchers including Guiraud
(1954) (with B D 2), Herdan (1960), and Heaps (1978), becomes the following
theorem.

Theorem 4.4.1 In corpora taken from populations satisfying Zipf’s law with constant
B , the size of the vocabulary grows with the 1=B-th power of corpus length N ,

V.N / D cN 1=B (4.7)
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Fig. 4.2. Growth of vocabulary size V(N) against corpus size N in the Merc on log-log scale

Here c is some fixed multiplicative constant (not to be confused with the constant
C of Herdan (1964:157) and later work, which corresponds to the exponent 1=B
in our notation). We illustrate this law on a corpus of some 300 issues of the Merc
totaling some 43 millon words (see Figure 4.2). Increasingly larger independent sam-
ples were taken so as to guard against the effects of diachronic drift (new words
get added to the vocabulary). Although we derived (4.7) as a theorem, it should be
emphasized that it still has the status of an approximate empirical law (since it was
derived from one), and in practice some slower patterns of infinite growth such as
V.N / D ND= log.log.N // would still look reasonably linear for N < 1011 at log-log
scale, and would be just as compatible with the observable data. The same holds for
Zipf’s second law (see Figure 4.3).

Theorem 4.4.2 In corpora taken from populations satisfying Zipf’s law with param-
eter B , (4.4) is satisfied with parameter D D B=.1C B/.
Proof Zipf’s first law gives f .r/ D x�B=N , so the probability of a word is between
i=N and .i C 1/=N iff i 	 x�B 	 i C 1. Therefore, we expect V.i; N / D
V.N /.i�1=B � .i C 1/�1=B/. By Rolle’s theorem, the second term is 1=B��1=B�1

for some i 	 � 	 i C 1. Therefore, log.V .i; N // D log.V .N // � log.�/.B C
1/=B � log.B/. Since log.B/ is a small constant, and log.�/ can differ from log.i/
by no more than log.2/, rearranging the terms we get log.i/ D log.V .N //B=.B C
1/� log.V .i; N //B=.BC 1/. Since KN D log.V .N //B=.B C 1/ tends to infinity,
we can use it to absorb the constant terms.
Discussion The normalization term KN is necessitated by the fact that second law
plots would otherwise show the same drift as first law plots. Using this term, we can
state the second law in a much more useful format. Since log.i/ D log.V .N //B=
.B C 1/ � log.V .i; N //B= .B C 1/ plus some additive constant,

V.i; N / D mV.N/=i1C1=B (4.8)
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where m is some multiplicative constant. If we wish
P1

iD1 V.i; N / D V.N / to hold
we must choose m to be 1=�.1 C 1=B/, which is the reason why Zipfian distribu-
tions are sometimes referred to as � distributions. Since this argument assumes Zipf’s
second law extends well to high-frequency items where the empirical fit is not par-
ticularly good (see Section 7.1 for further discussion), we find Mandelbrot’s (1961c)
criticism of B D 1 to be somewhat less compelling than the case he made against
B < 1. Recall from the preceding that B is the reciprocal of the exponent 1=B in
the vocabulary growth formula (4.6). If we choose a very ‘rich’ corpus (e.g. a table
of logarithms), virtually every word will be unique, and V.N / will grow faster than
N 1�" for any " > 0, so B must be 1. The following example sheds some light on the
matter.
Example 4.4.1 Let L D f0; 1; : : : ; 9g and our word tokens be the integers (in stan-
dard decimal notation). Further, let two tokens share the same type if their smallest
prime factors are the same. Our size N corpus is constructed by N drawings from
the exponential distribution that assigns frequency 2�i to the number i . It is easy
to see that the token frequency will be 1=.2p � 1/ for p prime and 0 otherwise.
Therefore, our corpora will not satisfy Zipf’s law, since the rank of the i th prime
is i but from the prime number theorem pi  i log.i/ and thus its log frequency
 � i log.i/ log.2/. However, the corpora will satisfy Zipf’s second law since,
again from the prime number theorem, V.i; N / D N=i2.log.N /� log.i// and
thus log.V .N //=2� log.V .i; N //=2 D log.N /=2 � log.log.N //=2 � log.N /=2C
log.i/C log.log.N / � log.i//=2, which is indeed log.i/ within 1= log.N /.
Discussion Example 4.4.1 shows that Theorem 4.4.2 cannot be reversed without
additional conditions (such as B > 1). A purist might object that the definition of
token/type relation used in this example is weird. However, it is just an artifact of the
Arabic system of numerals that the smallest prime in a number is not evident. If we
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used the canonical form of numbers, everything after the first prime could simply be
discarded as mere punctuation.
Zipf’s laws, including the power law of vocabulary growth, are near-truths in three
different senses. First, the domain of the regularity needs to be circumscribed: it is
clear that the empirical fit is not nearly as good at the high end as for lower frequen-
cies. Second, these laws are only true in the asymptotic sense: the larger the sample
the better the fit. Finally, these laws are true only as first-order approximations. In
general it makes perfect sense to use not only linear, but also quadratic and higher-
order terms to approximate the function of interest. On a log-log scale, however, it
is not evident that the next term should come from this kind of approach; there are
many other series that would work equally well.
Corollary 4.4.1 Vocabulary is infinite. Since there is no theoretical limit on the size
of the corpus we can collect, andN 1=B tends to infinity withN , it is a trivial corollary
of the Zipf/Herdan laws that there is no theoretical limit to vocabulary size.

4.5 Further reading

Morphology is historically the oldest layer of linguistics: most of the early work on
Sanskrit (Pān. ini, circa 520–460 BCE), Greek (Dionysius Thrax, circa 166–90 BCE),
and Latin (Stilo, circa 152–74 BCE, Varro, 116–27 BCE) concerns morphological
questions. For a clear exposition of the structuralist methods, see Nida (1949). The
idea that paradigms can freely repeat the same form has been raised to a methodolog-
ical axiom, known as the Principle of the maximally differentiated paradigm, by one
of the founding fathers of structuralism, Hjelmslev (1961) [1943]. It is not always
trivial to distinguish purely phonological from purely morphological concerns, and
readers interested in morphology alone should still consult Anderson (1985). The
most encyclopedic contemporary source is Spencer and Zwicky (1998). The use of
(sound, diacritic, meaning) triples is discussed e.g. in Mel’čuk (1993–2000) – Kracht
(2003) speaks of exponent rather than sound and category rather than diacritic when
elucidating the same idea of signs as ordered triples.

The prosodic hierarchy is discussed in detail in Hammond (1995); the approach
we follow here is that of Clements and Keyser (1983). How the abstract picture
of segmental duration assumed in this theory is reconciled with the actual length
variation observed in speech is discussed in Kornai (1995 Ch. 3). The sonority hier-
archy originates with Jespersen (1897); for a detailed application to Tashlhiyt Berber
[SHI], see Dell and Elmedlaoui (1985, 1988). Moras constitute a still unresolved
area; see e.g. Broselow (1995) and Hayes (1995). For the relationship of typology
and diachrony see Aristar (1999). The modern theory of Arabic roots starts with
McCarthy (1979); see also Heath (1987). For clitics, see Zwicky (1985), and for
bound words, see Nevis (1988).

For the purely phonological part of Pān. ini’s system, see Buiskool (1939). Level
ordering in standard phonology is motivated in Kiparsky (1982); for OT-internal
arguments, see Rubach (1977, 2000); for a synthesis of OT and LPM, see Kiparsky
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(2006). Opacity was introduced in Kiparsky (1968), for a syntesis of level ordering
and OT, see Kiparsky (2006). For an influential modern treatment of blocking, see
Aronoff (1976), and for a more detailed discussion of blocking in Pān. ini’s system,
see Kiparsky (2002). Note that blocking is not necessarily absolute since doublets
like bicycler/bicyclist can coexist, but (according to Kroch 1994) these are “always
reflections of unstable competition between mutually exclusive grammatical options.
Even a cursory review of the literature reveals that morphological doublets occur
quite frequently, but also that they are diachronically unstable”.

Methods based on character and word frequency counts go back to the Mid-
dle Ages: in the 1640s, a Swedish sect was deemed heretical (relative to Lutheran
orthodoxy) on the basis of a larger than expected frequency of forms such as Christ
bleeding, Christ suffering, Christ crucified found in its Sion Psalmbook. The same
power law distribution as Zipf’s law has been observed in patterns of income by
Pareto (1897), and there is again a large body of empirical literature supporting
Zipf’s law, known in economics as Pareto’s law. Champernowne (originally in 1936,
but not fully published until 1973) offered a model where the uneven distribution
emerges from a stochastic process (Champernowne 1952, 1953, 1973; see also Cox
and Miller 1965) with a barrier corresponding to minimum wealth. The modern gen-
esis is due to Mandelbrot (1952) and Miller (1957), though Li (1992) is often cited
in this regard. Mitzenmacher (2004) is a good survey. The fundamental observation
behind Herdan’s law is due to Herdan (1960), though Heaps (1978) is often cred-
ited. Theorem 4.4.1 is from Kornai (1999a); for a more recent discussion, see van
Leijenhorst and van der Weide (2005).

Corpus size has grown dramatically in the past half-century. In the 1960s and
1970s the major corpora such as the Brown Corpus, the London-Lund Corpus, or the
Lancaster-Oslo-Bergen (LOB) Corpus had N D 106 or less. By the 1980s corpora
with N D 107–108 were widely disseminated by the Linguistic Data Consortium,
and by the 1990s billion-word (109) probabilistic language models were commonly
used; e.g. in speech recognition. Today, monolingual segments of large search engine
caches provide access to corpora such as the Google 5-gram corpus withN > 1012 –
inspecting the tail end of such caches makes it clear that infinite vocabulary growth
is fueled by compounding and incorporation, as well as certain kinds of affixation
(see Kornai 2002 for further discussion).
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Syntax

The theory of syntax addresses three strongly interconnected ranges of facts. The first
of these is the combinatorical possibilities of words. It is very clear that The boys
ate is a sentence of ordinary English, while four other permutations of these three
elements, *The ate boys, *Ate boys the, *Boys the ate, and *Boys ate the, are outside
the bounds of ordinary English. The remaining one, ?Ate the boys, is harder to pass
judgment on, but it seems clear that its stylistic value is very different from that of the
first sentence. Similarly, speakers of English will strongly agree that The boys eat and
The boy eats are ordinary sentences of the language, while *The boy eat and *The boy
ates are not, a highly generalizable observation that justifies the statement, familiar
to all from school grammar, that predicates agree with their subjects in person and
number.

In most, though not necessarily all, cases it is relatively easy to construct pairs
of sentences, one grammatical and the other not, that bring into sharp relief how a
particular rule or constraint operates or fails to operate. There are areas of grammar
such as ‘weak crossover’ or ‘heavy NP shift’ which are weak in the sense that the
contrast is less visible and obvious than in the examples above, but even if we raise
the bar very high, there are plenty of significant contrasts left for a theory of syntax
to account for. On the whole, the development of syntax is not crucially impacted
by the weaker examples, especially as there are generally other languages where
phenomena marginal in one language, such as resumptive pronouns in English, can
be observed in unequivocal examples, and often in far richer detail.

The second range of facts concerns the internal structure of sentences. Gener-
ally there is a verb, which takes a subject, and often an object, sometimes a second
(indirect) object, and there can be other dependents, modifiers, and so on. Here the
problem is twofold: first, it is not at all evident what primitive notions one should
consider (though the grammatical tradition of millennia offers some rather clear
guidelines), and second, even if a set of primitive grammatical notions is agreed
upon, it is far from clear which word or combination of words fits which notion in
any given sentence.

The third range of facts concerns the fit, or lack thereof, between what is being
said and what is seen in the world. In Chapter 6, we will view sentences as broadly
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analogous to formulas and inquire about their interpretation in various model struc-
tures. Here we begin with a word of caution: clearly, people are often capable of
assigning meaning to grammatically ill-formed utterances, and conversely, they can
have trouble interpreting perfectly well-formed ones. But even with this caveat, there
is a great deal of correlation between the native speaker’s judgments of grammati-
calness and their ability to interpret what is being said, so a program of research that
focuses on meaning and treats grammaticality as a by-product may still make sense.

In fact, much of modern syntax is an attempt, one way or the other, to do away
with separate mechanisms in accounting for these three ranges of facts. In Sec-
tion 5.1, we will discuss combinatorical approaches that put the emphasis on the
way words combine. Although in formal theories of grammar the focus of research
activity historically fell in this category, the presentation here can be kept brief
because most of this material is now a standard part of the computer science cur-
riculum, and the reader will find both classical introductions such as Salomaa (1973)
and modern monographic treatments such as Kracht (2003). In Section 5.2, we turn
to grammatical approaches that put the emphasis on the grammatical primitives;
prominent examples are dependency grammar (Tesnière 1959), tagmemics (Brend
and Pike 1976), case grammar (Fillmore 1968), and relational grammar (Perlmutter
1983), as well as classical Pān. inian morphosyntax and its modern variants. These
theories, it is fair to say, have received much less attention in the mathematical lit-
erature than their actual importance in the development of linguistic thought would
warrant. In Section 5.3, we discuss semantics-driven theories of syntax, in particu-
lar the issues of frame semantics and knowledge representation. In Section 5.4, we
take up weighted models of syntax, which extend the reach of the theory to another
range of facts, the weight a given string of words has. We will present this theory in
its full generality, permitting as special cases both standard formal language theory,
where the weights 1 and 0 are used to distinguish grammatical from ungrammatical,
the extension (Chomsky 1967) where weights between 1 and 0 are used to represent
intermediate degrees of grammaticality, and the probabilistic theory, which plays
a central role in the applications. In Section 5.5, we discuss weighted regular lan-
guages, giving an asymptotic characterization of these over a one-letter alphabet.
Evidence of syntactic complexity that comes from external sources such as difficulty
of parsing or acquisition is discussed in Section 5.6.

5.1 Combinatorical theories

Given some fixed set of vocabulary items †, a central question is to characterize
the subset L � †� that speakers take to be ‘ordinary’ or ‘grammatical’ or ‘well-
formed’ (we use these notions interchangeably) by means of a formal system. One
significant practical difficulty is that †, as traditionally understood, collects together
all words from the language, and this is a very large set. For English, we already have
j†j � 106 if we restrict ourselves to words attested in print, and potentially infinite,
if we permit all well-formed, but not necessarily attested, words. In Section 5.1.1,
we discuss how to define classes of words by distributional equivalence and thereby
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replace the set † of words by a considerably smaller set C of (strict) categories. In
Section 5.1.2, we introduce categorial grammar as a means of characterizing the set
of well-formed expressions, and in Section 5.1.3, we turn to constituent structure.

5.1.1 Reducing vocabulary complexity

Since the vocabulary of natural languages is large, potentially infinite (see Corollary
4.4.1), grammarians have throughout the ages relied on a system of lexical categories
or parts of speech to simplify matters. Originally, these were defined by similarity of
meaning (e.g. adze and ax) or similarity of grammatical function (e.g. both can serve
as the subject or object of a verb). Both these methods were deemed inadequate by
the structuralists:

The school grammar tells us, for instance, that a noun is ‘the name of a
person, place, or thing’. This definition presupposes more philosophical and
scientific knowledge than the human race can command, and implies, fur-
ther, that the form-classes of a language agree with the classifications that
would be made by a philosopher or scientist. Is fire, for instance, a thing?
For over a century, physicists have believed it to be an action or process
rather than a thing: under this view, the verb burn is more appropriate than
the noun fire. Our language supplies the adjective hot, the noun heat, and
the verb to heat, for what physicists believe to be a movement of particles
in a body. : : : Class meanings, like all other meanings, elude the linguist’s
power of definition, and in general do not coincide with the meanings of
strictly defined technical terms. To accept definitions of meaning, which
at best are makeshifts, in place of an identification in formal terms, is to
abandon scientific discourse. (Bloomfield 1933 Sec. 16.2)

The method preferred by the structuralists, formalized in contemporary terms by
Myhill (1957) and Nerode (1958), relies on similarity of combinatorical potential.
Given a word w, we call its distribution the set of all pairs of strings ˛; ˇ such that
˛wˇ 2 L. Two words u; v have the same distribution iff

˛uˇ 2 L , ˛vˇ 2 L (5.1)

Strict lexical categories are defined as the equivalence classes C of (5.1). In Sec-
tion 3.4 we already introduced a variant of this definition with u; v arbitrary strings
(multiword sequences), and we note here that for any strings x; x0 from class c1

and y; y0 from class c2, their concatenation xy will belong in the same distribu-
tional equivalence class as x0y0. Therefore, concatenation is a well-defined binary
operation among the equivalence classes, which is obviously associative since con-
catenation was associative. This operation turns C into a semigroup and, with the
addition of the empty word that serves as the identity, a monoid over C called the
syntactic semigroup or syntactic monoid associated with L.

The algebraic investigation of syntax is greatly facilitated by the introduction
of these structures, which remain invariant under trivial changes such as renaming
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the lexical categories. Needless to say, algebraic structures bring with themselves
the whole apparatus of universal algebra, in particular homomorphisms, which are
defined as mappings that preserve the operations (not just the semigroup product,
but in monoids also the identity, conceptualized as a nullary operation); substruc-
tures, defined as subsets closed under the operations; and direct products, defined
componentwise. We shall also avail ourselves of some notions and theorems more
specific to the theory of semigroups and (semi)automata, in particular divisors,
which are defined as homomorphic images of subsemigroups/sub(semi)automata
(denoted A � B – when A is a divisor of B , we also say B is a cover of A), cascade
products, and the powerful Krohn-Rhodes theory. But before we turn to the general
case in Section 5.6, here we concentrate on the special case where u; v are words,
here construed as atomic symbols of the alphabet rather than as having (phonological
or morphological) internal structure.

By lexical categorization (category assignment) we mean the coarsest one to
one (one to many) mapping f W † ! C that respects distributional equivalence. The
system of strict categories C employed here is slightly different from the traditional
linguistic notion of lexical categories, in that we do not permit words to have multiple
categories. Where linguists would assign a word such as run two categories, Noun (as
in This was a successful run) and Verb (as in Run along!), f maps run to the unique
category NounVerb. Also, the finer distinctions relegated in linguistics to the level of
subcategories, in particular differences among the range of optional and obligatory
complements, are here seen as affecting the category. Verbs with a single obligatory
argument slot are called intransitive, those with two are called transitive, and those
with three are called ditransitive. As far as (5.1) is concerned, these are clearly
distinct: compare She ate something (transitive verb) to *She hiccuped something
(intransitive verb used in a transitive context). Finally, changes in inflection, viewed
by linguists as leaving the category unchanged, have the effect of changing the strict
categories defined by (1): for example, f(eat) ¤ f(eats) because e.g. John eat 62 L

while John eats 2 L.
Altogether, the system C of strict categories used here is obtained from the tra-

ditionally defined set of lexical categories or parts of speech (POS) by (i) making
inflection part of the category, (ii) elevating subcategorial distinctions to full cate-
gorial status, and (iii) taking the Boolean atoms of the resulting system. Linguistics
generally uses a set of only a dozen or so basic lexical categories, presumed to be
common to all languages: the major classes are Noun, Verb, Adjective, Adverb, and
perhaps Preposition (or Postposition, depending on language) – given the promi-
nence assigned to these in school grammars, these will all be familiar to the reader.
There is less agreement concerning minor categories such as Determiner, Pronoun,
Quantifier, etc., and many grammarians permit syncategorematic elements that are
exempted from the domain of f . By extending the discussion to inflectional distinc-
tions, we blow up this basic set to a few hundred or a few thousand, depending on
the complexity of the inflectional morphology of the language in question (Spencer
and Zwicky 1998). While in principle the move to Boolean atoms could blow this up
exponentially, in practice only very few combinations are actually attested, so this
step is far less important than the (additive) effect of using strict subcategories.
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For English, well-developed sets of categories (usually called tags or POS
tags in corpus linguistics) include the Brown Corpus tagset comprising 226 cate-
gories (Greene and Rubin 1971), the LOB Corpus tagset comprising 153 categories
(Johansson et al. 1986), and the CLAWS2 and C6 tagsets with over 160 categories
(Leech et al. 1994). These numbers are slightly extended by adding subcategory
distinctions within nouns (such as count noun vs. mass noun, simple vs. relational,
etc.), adjectives (attributive vs. predicative), and adverbs (manner, time, place, cause,
etc.). A far more significant extension comes from adding subcategory distinctions
for verbs. For example, Levin (1993) distinguished 945 subcategories for English
verbs, with no two of these having exactly the same distribution. The differences are
often expressed in terms of selectional restrictions. For example murder and kill dif-
fer in the requirement imposed on the subject: the former requires a human (compare
The assassin murdered him to *The accident murdered him), while the latter imposes
no such restriction (The assassin/accident killed him).

But when all is said and done, the move from the specific lexical items in † to
the strict categories in C brings a great deal of simplification, especially as it col-
lapses some very large (potentially infinite) sets such as that of numbers or personal
names. Altogether, the method brings down the size of the alphabet to that of an
abridged dictionary, perhaps 103–104 strict categories, sometimes called pretermi-
nals in recognition of the fact that they do not correspond well to either the terminals
or the nonterminals in string-rewriting systems. In this regard, we will follow the
practice of contemporary linguistics rather than that of early formal language the-
ory and think of terminals as either words or (strict) categories, whichever is more
convenient.

5.1.2 Categorial grammar

Once we collapsed words with the exact same distribution, the next task is to endow
the set of (pre)terminals with some kind of grammatical structure that will regu-
late their combinatorical potential. One particularly attractive method would be to
assign each (pre)terminal p 2 C a word s.p/ from a free group G with genera-
tors g0; g1; : : : ; gk and define a string of preterminals pi1pi2 : : : pir to belong in L
iff s.pi1/s.pi2/ : : : s.pir /, as a group-theoretical product, is equal to a distinguished
generator g0 (cf. Example 2.2.2). For reasons that will become clear from the fol-
lowing discussion, this method is more attractive in the Abelian than in the general
(noncommutative) case, and the latter will require conventions that go beyond what
is familiar from group theory.
Example 5.1.1 Arithmetical expressions. Let us collect arithmetic expressions that
contain both variables and numbers in the formal languageA. For example .1:3� x/�
.1:33C x/ 2 A, but 9/.x 62 A. The major categories, with infinitely many elements,
will be Var and Num, and there will be smaller categories Bin for binary operators
C;�; W;� and Uni for the unary operator �. In addition, we need one-member cat-
egories OpenPar and ClosePar. (To eliminate the multiple category assignment of
minus, instead of Bin and Uni we could use StrictBin for C; W;� and BinUni for �,
but this would only complicate matters here.)
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Since Num and Var give well-formed expressions as they are, we take s(Num) D
s(Var) D g0. Members of StrictBin take well-formed expressions both on the left
and the right, so we take s(StrictBin) D g�1

0 – this will work out nicely since
g0 � g�1

0 � g0 D g0. (Notice that the system slightly overgenerates, permitting the
operator to come in Polish or reverse Polish order as well – we will return to this
matter later.) The case of the minus sign is more complicated: when it is a binary
operator, it is behaving the same way as the other operators and thus should get
the signature s.�/ D g�1

0 , but when it is a unary operator it can be prefixed to
well-formed expressions and yields a well-formed expression, making it s(�) D IL

(left unit). Finally, OpenPar creates an expression that turns well-formed expressions
into ill-formed expressions requiring a ClosePar. To handle this requires a second
generator g1, and we take s(OpenPar) D g1g

�1
0 and s(ClosePar) D g�1

1 g0.
Discussion This toy example already displays many of the peculiarities of categorial
grammar writing. First, whenever a preterminal w belongs to multiple categories,
we need to assign it multiple values s(w). In the language of arithmetic, this is a
rare exception, but in natural language the situation is encountered quite frequently.
The categorial signature assignment s thus has to be taken as a one-to-many relation
rather than a function, and the key definition of grammaticality has to be modified
so that as long as there is at least one permitted assignment that reduces to g0, the
string is taken to be grammatical. In a string of r words that are all d -way ambiguous
as far as their categorial assignment is concerned, we therefore need to examine d r

products to see if any of them reduce to g0.
The main difficulty concerns the left unit. In a group, left units are indistinguish-

able from right units, and the unit will commute with every element even if the group
itself is not commutative. However, in syntax, elements that preserve grammaticality
can still have order restrictions: consider, for example, the discourse particle well.
Ordinarily, if ˛ is a sentence of English, so is Well, ˛, but the string ˛, well will not
be grammatical. To address this issue, categorial grammars formally distinguish two
kinds of cancellation, left and right. While in arithmetic 3 � .5=3/ is indistinguish-
able from .5=3/ � 3, in categorial grammar we will make the distinction between
A=B , a syntactic unit that requires a following B to make it A, and BnA, a syntactic
unit that requires a preceding B to make it A. If the category of a full sentence is
T , the category of well is T=T , meaning that it requires something of category T
following it to yield T . This is in sharp contrast with group theory, where gig

�1
i and

g�1
i gi would cancel equally (see Section 6.3.2 for further details). By a cancellation

structure we shall mean the minimal set of formal expressions generated from a
finite set of basic categories P and closed under the operations .pnq/ and .p=q/.

Once cancellation order is controlled, we are in a good position to capture syn-
tactic conventions about arithmetic operators. In standard notation, strictly binary
operators, such as +, take one argument on the left and one on the right, so their type
is .gng/=g. In reverse Polish notation, their type is gn.gng/, and in Polish notation
.g=g/=g. Left units, such as the unary minus operator, can no longer attach any-
where, so expressions like .23:54�/ are now ruled out as long as the type of the
unary minus is g=g, demanding a well-formed expression to its right. But the syn-
tax of natural language still presents some difficulties, even with unary operators like
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well. Sentences like Well, well, : : :, well, John went home look increasingly strange as
the number of wells increases. This effect has no counterpart in (directional) multipli-
cation: if IL is a left unit, multiplying by it many times will not change the outcome
in any way. We return to this matter in Section 5.4, where we discuss valuations
e.g. in terms of degree of grammaticalness, but here we ignore this complication and
summarize the preceding discussion in two definitions.

A unidirectional categorial grammar is given by a set of preterminals P and
a mapping s:P ! 2G , where G is a free Abelian group with a distinguished gener-
ator g. We say that the string p1p2 : : : pn is accepted by the grammar iff there are
elements of G a1; a2; : : : an such that ai 2 s.pi / and a1a2 : : : an D g.

A bidirectional categorial grammar or just categorial grammar is given by a
set of preterminals P and a mapping s:P ! 2G , where G is a cancellation structure
with a distinguished generator g. We say that the string p1p2 : : : pn is accepted by
the grammar iff there are elements of G a1; a2; : : : an such that ai 2 s.pi / and
there is a bracketing of a1a2 : : : an that cancels to g by a series of left- and right-
cancellations sanctioned by the rules q.qnp/ D .p=q/q D p.

Categorial grammar (CG) offers an extremely flexible and intuitive method for
sorting out complex syntactic situations: schoolchildren spend years mastering the
complexities that we can now succinctly capture in a handful of categorial signature
assignments. What is particularly attractive about the system is that the syntax ties to
the semantics in exactly the desired manner: the order of cancellations corresponds
exactly to the order of evaluation. Take for example 3=2=2. The categorial signatures
are g; gng=g; g; gng=g; g so the product is g, making the expression well-formed.
If we begin by evaluating from the left, we first get 3=2 D 1:5, and subsequently
1:5=2 D 0:75. If we begin by evaluating from the right, we get 2=2 D 1, and
subsequently 3=1 D 3. Remarkably, the same kind of ambiguity can be observed in
natural language. Consider, following Montague (1970a),

Every man loves a woman (5.2)

To keep the notation close to Montague’s original, the distinguished generator g0

will be written T , and the second generator g1 is written E. (Anticipating develop-
ments in Section 6.3, T is mnemonic for t ruth value andE for entity.) The categorial
signatures s are given as follows. Common nouns such as man and woman are
assigned the signature T nE. Quantifiers and determiners have signature E=.T nE/,
so that noun phrases come out as E=.T nE/ � .T nE/ D E. Finally, transitive verbs
such as loves have signature EnT=E (i.e. they require an E on both sides to pro-
duce the distinguished generator T ). As in the arithmetic example, the product
s(every)s(man)s(loves)s(a)s(woman) D E=.T nE/ �T nE �EnT=E �E=.T nE/ �T nE
can be computed in two essentially different orders, and these correspond to the two
readings of (5.2), namely

8xman.x/9ywoman.y/loves.x; y/ (5.3)
9ywoman.y/8xman.x/loves.x; y/ (5.4)



84 5 Syntax

It would be trivial to extend this grammar fragment1 to cover proper nouns such
as John by taking s(John) = E, and intransitive verbs such as sleeps by taking
s(sleeps) = EnT . This would correctly derive sentences such as Every man sleeps
or A woman loves John. To add prepositions and prepositional phrases requires
another generator P . By assigning prepositions such as to the signature P=E and
to ditransitives such as gives the signature EnT=E=P , we obtain derivations for
sentences like John gave a book to every woman. Prefixing adjectives like lazy to
common nouns leaves the category of the construction unchanged: lazy man has
essentially the same distribution as man. For this reason, we assign adjectives the
signature .T nE/=.T nE/. The same method is available for adadjectives like very.
Since these leave the category of the following adjective unchanged, we assign them
to the category ..T nE/=.T nE//=..T nE/=.T nE//.
Exercise 5.1 Consider a programming or scripting language with which you are
familiar, such as Fortran, C, Perl, or Python. Write a categorial grammar that captures
its syntax.

5.1.3 Phrase structure

It is a remarkable fact about natural language that some of the more complex (in
linguistic terminology, derived) constructions from †� clearly fit in some of the
equivalence classes of lexical items defined by (5.1). For example, proper nouns such
as John, and noun phrases such as every man, can be substituted for one another
in virtually every context such as Bill visited . Comparing John didn’t go home
yesterday evening to ?Every man didn’t go home yesterday evening (to which speak-
ers strongly prefer No man went home yesterday evening) makes clear that there
are exceptions, but the distributional similarity is so strong that our preference is to
assume identity and fix the exceptions by a subsequent rule or a more highly ranked
constraint.

Not only do proper nouns show near-perfect distributional equivalence with
noun phrases, but the same phenomenon, the existence of distributionally equiva-
lent lexical entries, can be observed with most, if not all, derived constructions. The
phenomenon is so pervasive that it has its own name, lexicality. Informally, the prin-
ciple says that for any grammatical position or role that can be filled by a phrase,
there is a single-word equivalent that can serve in the same position or role. In the
special case where the equivalence is between a construction and one of its compo-
nents, this component is called the lexical head of the construction. A good example
is adjectival modification: lazy old man is equivalent to its lexical head man. Con-
structions that contain their own lexical heads are called endocentric and the rest
are called exocentric. Noun phrases formed by determiners or quantifiers are a good
example of the latter. For example, neither every nor woman shows distributional
equivalence, or even broad distributional similarity, to every woman since the full
construction can appear freely in subject or object position, while *Every sleeps,

1 The presentation here is not faithful to the classic Montague (1973) ‘PTQ fragment’ – see
Section 6.2 for details.
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*Woman sleeps, *John saw every or *John saw woman are ungrammatical, and con-
versely, nouns can undergo adjectival modification while noun phrases cannot (*lazy
every woman). When quantifiers undergo similar modification, as in nearly every,
the semantics makes it clear that these do not attach to the whole construction, we
have (nearly every) woman rather than nearly (every woman).

In endocentric constructions, it is nearly always the case that the nonhead con-
stituents are entirely optional. This phenomenon, though not quite as general as
lexicality, has its own name: optionality. For constructions composed of two parts,
optionality follows from the definition: if uv is equivalent to v, this means u was
optional. For larger constructions, the only exceptions seem to be due to agreement
phenomena: for example, Tom, Dick, and Harry is equivalent to Dick and Harry but
not to any smaller substring since the construction (e.g. in subject position) demands
plural agreement. Even exocentric constructions, where there is no clear candidate
for head or for deletable elements, show evidence for not being composed of parts
of equal importance, and we commonly find the term head extended to the most
important component.

To the extent that there seems to be something of an Artinian condition (no infi-
nite descending chain) on natural language constructions, we may want to inquire
whether there is a Noetherian condition (no infinite ascending chain) as well. A con-
struction whose head is some lexical category c is said to be a projection of c: the
idea is that we obtain more and more complex constructions by successively adjoin-
ing more and more material to the head lexical entry. Can this process terminate in
some sense? Linguistics has traditionally recognized phrases as maximal projections
(i.e. as constructions that can no longer be extended in nontrivial ways). The most
important example is the noun phrase, which is effectively closed off from further
development by a determiner or quantifier. Once this is in place, there is no further
adjective, numeral, or other modifier that can be added from the left (compare *three
the books, *three every books to the three books, every three books) and only relative
clauses are possible from the right (the three books that I saw yesterday). Once such
a that-clause is in place, again there is no room for different kinds of modifications.
Further relative clauses are still possible (the three books that I saw yesterday that
you bought today), but no other kind of element is. Other notable examples include
the verb phrase (VP), the prepositional phrase (PP), the adjectival phrase (AP), and
the adverbial phrase (AdvP) – since this covers all major categories, it is commonly
assumed that every construction is part of a maximal (phrasal) construction that can
be further extended only by the trivial means of coordination.

Another observation connects nonheads (also called dependents) to phrases: in
most constructions, dependents are freely substitutable for their maximal projections.
Thus, where a construction has a dependent adjective, such as traditional in the tra-
ditional dish, it can also have a full adjectival phrase, as in the exceedingly traditional
dish. The phenomenon that dependents are maximal projections is common enough
to have a name of its own: maximality.

There are two formally rather different systems of syntactic description built on
these insights. The first, dependency grammar (DG), uses directed graphs where
arcs always run from dependents to heads (in some works, the opposite convention
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is used), and the second, X-bar theory, uses string-rewriting techniques. Histori-
cally, dependency grammar has not been very concerned with word order, its main
focus being the relationships that can obtain between a head and its dependents.
String rewriting, on the other hand, does not really have the apparatus to deal with
grammatical function, valence, case, and similar matters occupying the dependency
grammarian, its primary focus being the hierarchical buildup of sentence structure.
In the remainder of this section, we concentrate on X-bar theory, leaving case,
agreement, valence, and related issues to Section 5.2.

The key to hierarchical structure is provided by optionality, which enables us
to gradually reduce complex constructions to simpler ones. This is the method of
immediate constituent analysis (ICA), which relies on extending the relation (5.1)
from† to†�. Recall Definition 3.4.2: two strings �; ı are distributionally equivalent
whenever

˛�ˇ 2 L , ˛ıˇ 2 L (5.5)

The key insight, due to Chomsky (1956), was to notice that the typical reduction step
in ICA does not require distributional equivalence, just substitutability in positive
contexts:

˛�ˇ 2 L ) ˛ıˇ 2 L (5.6)

To make this concrete, consider the original example from Wells (1947): The king of
England opened Parliament. We wish to find how this sentence is built from parts and
recursively how the parts are built from smaller parts, etc. ICA begins with locating
the structural break between England and opened (rather than, say, between of and
England) based on the observation that opened Parliament can be substituted by slept
without loss of grammaticality and The king of England can be similarly substituted
by the king. It is clear that the substitution works well only in one direction, that of
simplification. For example, the construction a bed rarely slept in will not tolerate
substitution in the other direction. The famous rule

S ! NP VP (5.7)

captures exactly this step of the ICA. The sentence is analyzed in two constituents, a
(subject) NP The king of England and a verb phrase opened Parliament.

In the original notation of Wells (1947), the constituents were described by
boundary symbols j; jj; jjj; : : : of ever-increasing strength, so that the sentence would
come out The j king jj of j England jjj opened j Parliament, but this has been super-
seded by bracketing, which would make the example come out as (((The king) (of
England)) (opened Parliament)). In general, to formalize ICA by string rewriting,
we need to adjoin new nonterminal symbols to the (pre)terminals found in C or
† so as to cover constructions (multiword constituents). Lexicality means that the
new symbols can be patterned after the ones used for categories. Traditionally, the
same symbols, with superscript bars (hence the name X-bar), are reused so that e.g.
nouns are N, bare noun phrases are N, and full noun phrases are N. We leave open
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the issue of whether there is exactly one bar level between the lexicon and maxi-
mal phrases and use the notation XM to denote a maximal projection of X . (For
many minor lexical categories XM D X ; i.e. no complex phrases of that type can be
built.) If we attach the nonterminal to the opening parenthesis of each constituent, we
speak of labeled bracketings. Just as scanning codes (see Section 3.4) offer a sim-
ple linearized version of an association relation, (labeled) bracketings offer a simple
linearization of parse trees, and many questions about tree structures can be recast in
terms of the code strings (Chomsky and Schützenberger 1963).

Since (5.5) defines an equivalence relation, L itself is the union of some equiva-
lence classes. To the extent that sentences are freely substitutable for one another, L
is covered by a single symbol S , the start symbol of string-rewriting systems. Lex-
icality in this case is traditionally taken to mean that S is a projection of the main
verb – in more modern accounts it is often some abstract property of the verb, such
as its tense marking, that is taken to be the head of the entire sentence. Either way,
rule (5.7) amounts to the statement that the NP on the left (the subject) completes the
VP and thus S has one more bar than VP.

In a string-rewriting formalism, maximality means that only rules of the type
Xn ! YM

1 : : : YM
l
Xn�1ZM

1 : : : ZM
r are possible. Counterexamples are not easy

to find but they exist; consider infinitival clause complements to verbs. Some verbs,
such as want, can take both subjectful and subjectless clauses as their complement:
compare John wanted Bill to win and John wanted to win. Other verbs, such astry,
only take subjectless clauses: John tried to win, *John tried Bill to win. By analogy
to tensed sentences, the tenseless Bill to win has one more bar level than to win
since the subject Bill adds one bar. If this is so, the rule expanding try-type VPs has
one fewer bar on the clausal complement than the rule expanding want-type verbs,
meaning that maximality is violated in the former. Altogether, maximality remains
one of the fascinating near-truths about syntax, and trying to come to grips with this
and similar counterexamples remains an active area of research.

Given the special role that coordination plays in the system, one technique of
great practical significance is extending context-free grammars by permitting rules
of the form A ! r , where r is any regular expression over the alphabet composed of
both terminals and nonterminals: for any string w that matches r , we say that A can
be rewritten as w. It is easy to see that this extension does not change the generative
capacity of the system (if a language can be described by means of an extended
CFG, it can also be defined by an ordinary CFG), yet the perspicuity of the system
is significantly increased.
Exercise 5.2 Prove that extended CFGs only generate CFLs.
All in all, (extended) CFGs offer an extremely transparent and flexible method of
syntactic analysis. Several rather different-looking grammatical traditions are equiv-
alent, at least in some formulation, to CFGs: Postal (1964) argued this for tagmemics
(Pike 1967), and Bar-Hillel et al. (1960) made the argument for categorial grammars.
Yet CFGs can be faulted both for over- and undergeneration. On the one hand, CFGs
can easily handle the problem of balanced parentheses of arbitrary depth. This is
obviously helpful inasmuch as CFGs could not have gained their prominence as the
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primary means of syntactic analysis for programming languages without the ability
to correctly handle parenthesized expressions of arbitrary depth, but in the analysis
of natural languages, arbitrary depth constructions are rarely encountered, if at all.
On the other hand, there is a class of copying phenomena, ranging from cross-serial
dependencies (see Section 5.2.2) to constructions such as Freezing cold or no freez-
ing cold (we will go barefoot), that is outside the CFL domain, see Manaster-Ramer
(1986).

Exploring combinatorical mechanisms that transcend the limitations of CFGs
has been, and continues to be, a major avenue of research in mathematical linguis-
tics. The general problem of discontinuous constituents, i.e. constituents that are
interrupted by material from other constituents, was noted early by the developers of
ICA – for a current summary, see Ojeda (2006b). The fact that cross-serial depen-
dencies are problematic for CFGs was noted by Postal (1964), who cited Mohawk
[MOH] in this regard – later work concentrated on Germanic languages, in particular
Dutch and Swiss German. The first formalism to address the issue was tree adjoin-
ing grammar (TAG – for a modern summary, see Joshi 2003) and, perhaps even
closer to the original spirit of ICA, head grammars (Pollard 1984). Among catego-
rial grammars, combinatory categorial grammar (CCG) provided the same kind of
extension to discontinuities; see Steedman (2001). (Note that where it does not clash
with established mathematical usage, we distinguish combinatorial, ‘pertaining to
combinators’, from combinatorical ‘pertaining to combinatorics’ – CCG uses com-
binators.) Readers interested in further details are directed to Chapter 5 of Kracht
(2003), which discusses all key developments in this area.

5.2 Grammatical theories

The approaches that put the emphasis on string, tree, or category manipulation are
rather new (less than a hundred years old) compared with traditional notions such as
subject, object, or case, which grammarians have invoked for millennia in accounting
for syntactic regularities. The primary impulse of the combinatorical theories is to
do away with these and similar notions entirely; for example, Chomsky (1981:59)
uses (5.7) to define subject as “NP of S” (i.e. as the NP that appears in the rule
rewriting S), predicate as “VP of S”, and object as “NP of VP”. Such definitions
imply that there is no explanatory role for these notions in grammar, that they are
purely epiphenomenal, serving at best as convenient abbreviations for constituents
in some frequently seen combinatorical configurations. Yet grammarians not only
persist in using these notions but in fact the class of theories that rely crucially on
them, what we call ‘grammatical theories’ for lack of a better umbrella term, has
undergone intense development in the past forty years.

The first generative model to give primacy to a grammatical notion of case
over the combinatorical notions of constituency and category was case grammar
(Fillmore 1968), and we will cover role and reference grammar (Valin 2005), and
relational grammar (Perlmutter 1983), as well as classical Pān. inian morphosyntax
and its modern variants (Ostler 1979, Kiparsky 1987, Smith 1996). Over the years,
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even mainstream combinatorical theory (Chomsky 1981, 1995) came to incorporate
modules of case theory and theta theory that employ such grammatical devices.

With the notable exception of lexical functional grammar (LFG; see Bresnan
1982) and a variety of unification grammars, which came mathematically fully artic-
ulated, the formal theory has not always kept up with the insights gained from the
grammatical work. In Section 5.2.1, we take the first steps toward formalizing some
of the key ideas, starting with dependency, agreement, surface case, and govern-
ment. Deep cases and direct linking are discussed in Section 5.2.2, and grammatical
functions and indirect linking are discussed in Section 5.3.

5.2.1 Dependency

Classical grammar has imbued our culture to such an extent that many of its techni-
cal notions, such as subject, object, or predicate, are applied almost unthinkingly in
scientific discourse. So far, we have used these terms without much reflection, essen-
tially in the same somewhat vague but nevertheless widely approved sense as they
are used by all people past grammar school. To see what motivates the use of such
devices, consider first sentence pairs such as

The farmer killed the duckling (5.8)
The duckling was killed by the farmer (5.9)

Clearly there is a very close paraphrase relationship between (5.8), known as an
active sentence, and (5.9), known as a passive: it seems impossible to imagine a state
of affairs in which one is true and the other is false. There is more to active/passive
pairs than semantic relatedness; the constructions themselves show deeper paral-
lelism. Whatever selectional relationship obtains between the active verb and its
object is carried over to the passive verb and its subject, and whatever relationship
obtains between the active verb and the subject is replicated between the passive verb
and the agentive by-phrase.

For Chomsky (1957) and much of the subsequent tradition of transformational
generative syntax, these observations were taken as indicative of a need to treat (5.8)
as basic and (5.9) as derived, obtained from (5.8) by means of a passive transfor-
mation that rearranges the constituents of the active construction and supplies the
requisite grammatical formatives to yield the passive. Unfortunately, the derivational
analysis creates as many problems as it solves. In particular, we find actives with
no passive counterparts, such as John resembles Bill and *Bill is resembled by John.
These require some special mechanism to block the passive transformation. Even
more problematic are passives with no active counterparts, such as *Everyone said
John to be honest/John was said to be honest by everyone, since these call for an
obligatory application of the transformation and thus rely on an abstract deep struc-
ture. This is extremely challenging from the perspective of language acquisition since
the learner has to reverse-engineer the path from deep structure to surface based on
an opaque surface structure.
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That something of a more abstract sort than surface word order or constituency
is required can hardly be doubted, especially if we consider a wider range of alter-
nations. Compare, for example, The butcher cuts the meat / The meat cuts easily to
Kelly adores French fabrics/*French fabrics adore easily or Jack sprayed the wall
with paint/Jack sprayed paint on the wall to June covered the baby with a blan-
ket/*June covered the blanket over the baby. (The examples are from (Levin 1993),
where a broad range of similar alternations are discussed.) Traditional grammatical
theories, having been developed on languages that show overt case marking, gener-
ally use an abstract version of case as the key mechanism to deal with the subtleties
of syntax.

What is case? Structuralist theories of syntax such as Jakobson (1936) took case
to be at the confluence of three major domains: morphology, semantics, and syntax.
From the morphological standpoint, surface cases are noun affixes common to all
but the most isolating of languages. The details of case systems vary greatly, from
languages such as Hindi that have only two, nominative and oblique (plus a vestigial
vocative), to languages such as Hungarian with seventeen and Tsez [DDO] with over
sixty morphologically distinct cases. The typical nominative/accusative system will
include locative cases, accusative, dative, and perhaps some more specialized cases,
such as instrumental and genitive (by convention, all nonnominative cases except
the vocative are called oblique). Latin, which lacks an instrumental case but has a
vocative and two locatives, or Russian, are good examples of the typical pattern.

From the semantic standpoint, cases correlate with the role the nouns or NPs
marked by them play in the sentence. In particular, vocative marks the one the sen-
tence is addressed to, locatives describe where the action or event described by the
sentence takes place, the dative is associated to the recipient or beneficiary, the
instrumental to instruments, and genitive to possession. The correlation between
morphological marking and semantic content is far from perfect. For example, in
many languages, the same dative morphology will express both recipients and experi-
encers. Much of traditional syntax is concerned with enumerating the discrepancies,
e.g. the ‘dative of separation’ that occurs with some verbs instead of the expected
ablative, the ‘genitive of material’ which denotes a relationship of ‘being composed
of’ as in a bar of gold rather than a relationship of possession, and so forth – we will
return to this matter in Section 5.3.

Finally, from the syntactic side, cases correlate with grammatical function: sub-
jects are typically marked with the nominative case, objects with the accusative case,
indirect objects with the dative case, and so forth. Again it has been recognized from
the earliest times that the correlation between grammatical function and case mark-
ing is imperfect. On the one hand, we find what appears to be the same functional
relation expressed by different cases, and on the other, we find that one and the
same case (e.g. the accusative) can serve in different functions. Even so, the syn-
tactic impact of case is undeniable. In particular, it is quite clear that in languages
with overt case marking, the noun phrases that carry these marks can generally be
permuted much more freely than in languages such as English that lack overt case
marking. For example, in Latin, we can have anaticulam agricola occisit or any of
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the other five permutations of duckling.ACC farmer.NOM kill.PAST and the meaning
of the sentence remains the same as that of (5.8).

Here we formalize some essential aspects of grammatical theories, while leav-
ing many issues open. From a combinatorical perspective, the easiest of these is
agreement (concord), which obtains between two elements of a construction. The
minimum requirement for agreement is a set of two words u and v and a paradig-
matic dimensionD that can take at least two valuesD1;D2. For example, the words
can be the subject and the predicate, and the dimension can be number, taking the
values singular and plural. With the standard glossing notation (see Section 2.3),
where forms are given as x:D with x being a stem and D some paradigmatic value,
we have the following definition.
Definition 5.2.1 If for all values Di the strings ˛u:Diˇv:Di� 2 L while for all
i ¤ j we have ˛u:Diˇv:Dj � 62 L, we say that u and v agree in D.
In a string-rewriting formalism, agreement is handled by means of complex sym-
bols: instead of (7) we write S ! NP:DiVP:Di (the . is used here as part of the
morphemic gloss rather than as a pure concatenation marker). Since words can agree
in more than one dimension (e.g. the subject and the predicate will generally agree
both in number and in person), a rule schema like this can be thought of as subsum-
ing as many rules as there are Di . This brings to light the phenomenon of internal
agreement, when a construction as a whole agrees with some part of it; e.g. boys and
lazy boys are both plural, and boy and lazy boy are both singular. Since construc-
tions typically agree with their heads, the head feature convention (HFC; see Gazdar
et al. 1985) stipulates that internal agreement between constructions and their heads
is automatic and it is suspension, rather than enforcement, of this rule that requires a
special rule.

Note that more than two words can participate in agreement. For example, in
Georgian, the predicate agrees not just with the subject but with the object (and
in certain circumstances the indirect object) as well – for a fuller discussion, see
Anderson (1992 Sec. 6.1). The definition naturally extends to situations where one
of the words carries the feature inherently rather than through explicit morphological
marking. For example, in Russian, adjectives agree in gender with the nouns they
modify. The nouns do not exhibit gender variation: they are feminine, masculine, or
neuter, and have no means of assuming a different value for gender as they could
for number. In the typical case of concord it is not clear which of the two Di is
the cause and which is the effect. Traditionally we say that the choice of e.g. first-
person subject forces first-person verbal morphology on the predicate, but we could
equally well say that the choice of first-person verbal morphology forces the use of
a first-person subject. In the Russian case described above, the direction of the value
assignment is clear: only the adjective has a range of values, so agreement comes
from the noun imposing its value on the adjective and not the other way around.
Such cases are therefore also called government.
Definition 5.2.2 If in a construction ˛u:Diˇv:Di� 2 L the value Di is an inherent
lexical property of u (v), we say that u governs v (v governs u) if ˛u:Diˇv:Dj � 62 L
(˛u:Djˇv:Di� 62 L) for any j ¤ i:



92 5 Syntax

In dependency grammar, the key diagnostic for assuming a dependency link between
two items is agreement. In the special case of government, the direction of the link
is set by convention so that it runs from the dependent to the head (governor).
Since verbs can impose case marking on their complements, verbs are the heads,
and not the other way around, a conclusion that in phrase structure grammar would
be reached from a different fact, the optionality of the dependents. The characteri-
zation of the various dependency relations that can obtain between verbs and their
dependents is a primary concern of both case grammar, which uses an inventory of
abstract deep cases to describe them, and relational grammar, which uses the gram-
matical functions subject (called ‘1’ in RG), object (‘2’), indirect object (‘3’), as well
as more deep case-like functions such as Benefactive and Locative. Other relations
of note are modification, as obtains between an adjective and a noun or an adverbial
and a verb, possession between nouns and nouns, and coreference between pronouns
and nouns.

Once an inventory of relations is fixed, it is natural to formulate dependency
grammar in terms of directed graphs: words or higher constituents are vertices and
the relations are the edges. A closely related formalism is that of tagmemics, which
uses abstract construction types (called tagmemes) that have empty slots that require
fillers. To this simple dependency apparatus, relational grammar adds an ordered
set of strata: conceptually each stratum corresponds to a stage in the derivation.
Here we go further, permitting edges to run directly between nodes and other edges
as in traditional sentence diagrams (Reed and Kellog 1878, Kolln 1994, Klammer
and Schultz 1996). We take the graph visualization as secondary, and the primary
formalism is given as an algebraic system. For reasons of wider applicability (see
in particular Section 5.3) rather than defining a single system, we define a metasys-
tem MIL that can be instantiated differently depending on the choice of atoms and
operations.

Definition 5.2.3 (i) The atomic elements of MIL form a finite set A. (ii) The prim-
itive operations of MIL are &, D, and perhaps also finitely many binary operations
P1; P2; : : : ; Pn. & will also be denoted by P0, and we use H as a (metalanguage)
variable ranging over the Pi .i D 0; 1; : : : ; n/.
(iii) If p and q are arbitrary elements, Hpq will be an element, and p D q is
an (elementary) statement. The only predicate of MIL is ‘D’. x; y; z; : : : will be
(metalanguage) variables ranging over elements.
(iv) The system is defined inductively: the only elements, operations, and statements
of MIL are those resulting from the iterated application of (iii).
(v) The axioms of MIL (using prefix notation for operations and infix for equality) are

x D x

Hx&yz D &HxyHxz
&xx D x

H&xyz D &HxzHyz
&xy D &yx
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(vi) The rules of deduction are

x D y

y D x

x D y; y D z

x D z

x D y

Hxz D Hyz

x D y

Hzx D Hzy

The elements of the algebraic structure can be thought of as dependency diagrams.
These are directed labelnode hypergraphs of a special kind, differing from ordinary
graphs only in that edges can also run to/from other edges, not just nodes. What the
operations specify are not the diagrams, just formulaic descriptions of them. Dif-
ferent formulas can describe the same object, depending on the order in which the
graph was built up. The equivalence ‘=’ makes it possible to define a conjunctive
normal form with respect to &. To put it in other words, MIL is a free algebra over
a finite set A generated by the binary operations P0; P1; : : : ; Pn satisfying the equa-
tions (v). Since the rules of deduction in (vi) make = compatible with the operations,
= is a congruence, and its classes can be represented by terms in conjunctive normal
form. & corresponds to union of subgraphs, with concomitant unification of identical
atomic nodes.

To apply the formalism to dependency grammar, we must take words (or mor-
phemes) as the primitive elements and the set of deep cases and other relations as
the primitive operations. To apply it to relational grammar, we need to use a dif-
ferent primitive operation Pi;cj

for each relation i and each stratum cj . To connect
MIL formulas in normal form to the more standard graph notation, depict Piab as
a directed graph with vertices a and b and a directed edge labeled Pi running from
a to b. Note that a nested formula such as Pia.Pj bc/ does not have a trivial graph-
theoretic equivalent since the edgePi now runs from the vertex a to the edgePjab as
in (5.10.i). This frees the formalism from the spurious nodes introduced in Gaifman
(1965), making it perhaps more faithful to the original grammatical ideas.

(i) (ii) (iii) (iv)

b

Pj

��

a
Pi

��

c

a
Pi �� b

c
Pj �� d

a b
Pi�� Pj �� c a �� b

a �� d

(5.10)

To build more complex dependency graphs, the operation & is interpreted as (graph-
theoretic) union: expressions like &PiabPj cd are as depicted in (5.10.ii). Expres-
sions like &PiabPjac correspond to structures like (5.10.iii) – since atoms have to
be unique, structures like (5.10.iv) cannot be formed. The axioms in (v) and the rules
of deduction in (vi) serve to make indistinguishable those structures that differ only
in the order in which they were built up. The temporal aspect of the derivation, to
the extent it is taken to be relevant (in particular in relational grammar), is modeled
through explicit temporal indexing of the edges.
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An intuitively very appealing way of formulating dependency theories is to
invoke a notion of valences in analogy with chemical valences. Under this concep-
tion, grammatical constructions are viewed as molecules composed of atoms (words
or morphemes) that each have a definite number of slots that can be filled by other
atoms or molecules. One key issue is the strength of such valences. Consider for
example

[John]1 rented [the room]2 [from a slumlord]3 [for a barbershop]4

[for the first three months]5 [for fifteen hundred dollars]6 (5.11)

There are a total of six complements here, and most of them are optional: leaving
their slots unfilled leaves a less informative but still evidently grammatical sentence
such as John rented. In English at least, the subject (complement 1) is obligatory
(*rented a room), and we find many verbs such as admit or transcend that posi-
tively require an object (complement 2) as well: consider *John admits or *John
transcended. Ditransitive verbs require an indirect object (complement 3) as well;
compare *John gave, *John gave Bill, and *John gave a last chance to John gave
Bill a last chance. These constructions are perhaps analogous to radicals such as
CH3, which are not found in nature (because they are so highly reactive that the
valence gets filled almost immediately). One point where the chemical analogy may
break down is the existence of situations where one slot is filled by more than one
filler. Superficially, this is what appears in (5.11) with complements 4–6, which are
all prepositional for-phrases – the notion of deep cases is introduced precisely with
the goal of separating such complements from one another, see Section 5.2.3 for fur-
ther details. Pān. ini distinguishes six deep cases: Agent, Goal, Recipient, Instrument,
Locative, and Source (see Staal 1967). The exact inventory is still heavily debated.

5.2.2 Linking

In the Western tradition of grammar, action sentences like (5.8 and (5.9) are viewed
as prototypical, and for the moment we will stay with them. Such sentences always
have a main verb, and here we assume that verbs come with a case frame that spec-
ifies (i) the grammatical relation that the verb has to its dependents, (ii) the case or
other marking that expresses this relation, (iii) the syntactic category of the com-
plements, (iv) the obligatory or optional nature of the complements, and (v) the
subcategorization restrictions the head places on the complements. The primary goal
of syntax, at least in regard to the prototypical class of sentences, is to specify how
the various entities (NPs) named in the sentence are linked in the argument slots.

Well-developed grammatical theories that rely on case frames include classi-
cal DG, head-driven phrase-structure grammar (HPSG; see Pollard and Sag 1987),
lexical-functional grammar (LFG; see Bresnan et al. 1982), case grammar (Fillmore
1968), role and reference grammar (Foley and van Valin 1984, van Valin 2005), rela-
tional grammar (Perlmutter 1983), as well as classical Pān. inian morphosyntax and
its modern variants (Ostler 1979, Kiparsky 1987, Smith 1996). This is not to say
that all these theories are identical or even highly similar. All that is claimed here is



5.2 Grammatical theories 95

that a linking mechanism, expressed one way or another, is an integral part of their
functioning. (Note also that many would take exception to calling this structure a
case frame, preferring, often for reasons that make a lot of sense internal to one the-
oretical position or another, names such as subcategorization frame, lexical form, or
thematic grid.)

Consider again the sentences (5.8) and (5.9). In the active case, we simply say
that the transitive frame shared by kill and many transitive verbs requires a sub-
ject and an object NP (or perhaps an agent and a patient NP, depending on whether
our terminology is more grammatically or semantically inspired). As long as we
accept the notion that in Latin the relationship of subjecthood (or agency) that holds
between the farmer and the act of killing is expressed by overt case marking, while
in English the same relationship is expressed by word order, the essence of the anal-
ysis remains constant across languages. This is very satisfactory, both in terms of
separating meaning from form (e.g. for the purposes of machine translation) and in
terms of capturing variation across languages in typological terms.

In the passive, the central part of the construction is the verbal complex was
killed, which also has two slots in its frame, but this time the second one is optional.
The first slot is that of the subject (a passive experiencer rather than an active agent)
and must be filled by an NP, while the second, that of the agent, can be left open or
be filled by a by-phrase. There is no sense that (5.9) is derived from (5.8); these are
independent constructions related only to the extent that their main verbs are related.
Unlike syntax, which is expected to be fairly regular in its operation, the lexicon,
being the repository of all that needs to be memorized, is expected to be storing a
great deal of idiosyncratic material, so the appearance of idiom chunks such as was
said to be that have their own case frames (in this instance, that of a subject NP and
a predicative AP, both obligatory) comes as no surprise.

We still want to say that resemble is an exception to the lexical (redundancy) rule
that connects transitive verbs V-ed to their passive form was V-en, and the case frame
mechanism offers an excellent opportunity to do so. Instead of taking the verb as a
regular transitive (which demands an accusative object), we treat the second com-
plement as nonaccusative (e.g. goal) and thereby exempt the verb from the passive
rule that operates on true transitives. Such an analysis is strongly supported cross-
linguistically in that in many other languages with overt case endings, the second
complement is indeed not accusative.

If we connect any specific theory of syntax (among the many variants sketched
so far) to a theory of morphological realization rules (see Section 4.2), we obtain
something approaching an end-to-end theory of action sentences, starting with their
logical form and going ultimately to their phonetic realization. In a somewhat con-
fusing manner, both the overall directionality from meaning to form and a specific
theory of syntax within transformational grammar that uses this direction are called
generative semantics. (The reverse direction, progressing from syntactic form to
some kind of meaning representation, is called interpretative semantics and will be
discussed in Chapter 6.) Many theories, such as HPSG (Pollard and Sag 1987) or
role and reference grammar (RRG; see van Valin 2005), are purposely kept neutral
between the two directions.
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To get a richer description of syntax, we need to supplement case frames by
a number of other mechanisms, in particular by rules for dealing with free adver-
bials and other material outside the case frame. In (5.11), many grammarians would
argue that the goal adverbial complement 4, for a barbershop, is outside the core
argument structure of rent: everything can be said to happen with some goal in
view so this is a free adverbial attached to the periphery rather than the core of the
structure. Other supplementary mechanisms include language-particular or universal
word order rules, rules that govern the placement of dependents of nouns (adjectives,
possessors, determiners), the placement of their dependents, and so forth.

Even with these additions, the case frame system has a clearly finitistic flavor.
For every slot, we need to specify (i) the grammatical relation, taken from a small
(typically 	6) inventory, (ii) the case or other marking that expresses the relation,
again taken from a small (typically 	20) inventory, (iii) the syntactic category, typ-
ically a maximal major category, again taken from a small (typically 	5) inventory,
(iv) whether the complement is obligatory or optional, a binary choice, and (v) sub-
categorization restrictions, generally again only a few dozen, say 	50, choices. Since
a verb can never have more than five slots, the total number of case frames is limited
to .6 � 20 � 5 � 2 � 50/5, a number that at 7:7 � 1023 is slightly larger than Avogadro’s
number but still finite. The size of this upper bound (which could be improved con-
siderably e.g. by noting that only a handful of verbs subcategorize for four or five
complements) gives an indication of the phenomenon we noted in Section 5.1.1 that
nominal, adjectival, and other categories have only a few subcategories, while verbs
have orders of magnitude more.

One case of particular interest to modern syntax is whether the frame can become
recursive: what happens when verbs take other verbs as their complement? The most
frequent cases, auxiliary verbs and modals such as have or can, are relatively easy
to handle because they require main verbs (rather than auxiliaries) to complement
them, which blocks off the recursion in short order. There is a less frequently seen
class of verbs (sometimes called control or raising verbs) that take infinitival com-
plements such as try and continue that recurse freely: both John tries to continue to
run and John continues to try to run are perfectly grammatical (and mean different
things). Some of these verbs, such as persuade and want, take sentential infinitival
clauses that have subjects (John persuaded/wanted Bill to run), and the others are
restricted to infinitival VPs (*John tried/continued Bill to run). To resolve the appar-
ent violation of maximality (see Section 5.1.3), it is tempting to pattern the latter
after the former, assuming simply that the subjectless cases already have their sub-
ject slot filled by the subject of the matrix verb by some process of sharing arguments
(dependents). The issue is complicated by the fact that the behavior of such verbs is
not homogeneous in regard to the use of dummy subjects: compare There continues
to be an issue to *There tries to be an issue – we return to the matter in Section 5.2.3.

Clause (v) of the case frame definition expresses the fact that verbs can ‘reach
down’ to the subcategory of their complements (we have seen an example in Sec-
tion 5.1, kill vs. murder) and if some verbal complements are themselves endowed
with a case frame, as must be the case for infinitival complements, it is a question
for recursive constructions of this sort as to how far the matrix verb can control the
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complement of a complement of a complement. The answer is that such control can
go to arbitrary depth, as in Which books did your friends say your parents thought
your neighbor complained were/*was too expensive? This phenomenon, as Gazdar
(1981) has shown, is still easily within the reach of CFGs. There are other significant
cases where this is no longer true, the most important being cross-serial dependen-
cies, which we will illustrate here on Dutch using a set of verbs such as see, make,
help, : : : that all can, in addition to the subject NP, take an infinitival sentence com-
plement (Huybregts 1976). To make the word order phenomena clear, we restrict
ourselves to subordinate clauses beginning with dat ’that’ and leave it to the reader
to supply a main clause such as It is impossible . The verbs in question can thus
participate in constructions such as

. . . dat Jan de kinderen zag zwemmen
that Jan the child.PL see.PAST swim.INF

that Jan saw the children swim

. . . dat Piet de kinderen hielp zwemmen
that Piet the child.PL help.PAST swim.INF (5.12)

that Piet helped the children swim

. . . dat Marie de kinderen liet zwemmen
that Marie the child.PL make.PAST swim.INF

that Marie made the children swim

Once we begin to recursively substitute these constructions in one another, two things
become evident. First, that there is no apparent limit to this process. Second, the
insertion proceeds at two different sites: both subjects and verbs get stacked left to
right.

. . . dat Jan Piet de kinderen zag helpen zwemmen
that Jan Piet the child.PL see.PAST help.INF swim.INF

that Jan saw Piet help the children swim
(5.13)

. . . dat Jan Piet Marie de kinderen zag helpen laten zwemmen
that Jan Piet Marie the child.PL see PAST help.INF make.INF swim.INF

that Jan saw Piet help Marie make the children swim

The case frames of verbs like see contain a subject slot, to be filled by a nomina-
tive NP, and an infinitival complement slot to be filled by an S.INF, which again is
subject to the rule (5.7) that rewrites it as a subject NP and an (infinitival) VP.INF,
and the latter can be filled by an intransitive V.INF. (Mentioning the INF in these
rules is redundant since the Head feature Convention will enforce the inheritance of
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INF from S to VP to V.) In the DG formalism, the innermost arrow runs from the
dependent (subject) child.PL to the head swim.INF. This arrow, corresponding to the
innermost VP, is a dependent of the matrix verb make, which has another dependent,
the subject Marie, yielding the complete infinitival sentence Marie make the chil-
dren swim by (7). Progressing inside out, the next matrix verb is help, with subject
Piet and complement Marie make the children swim, yielding Piet help Marie make
the children swim, and the process can be iterated further. In a standard CFG, recur-
sive application of the rule S.INF ! NP V S.INF, terminated by an application of
S.INF ! V.INF, would yield the bracketing [NP V [NP V [NP V]]] as in Piet help
Marie make children swim, which would be entirely satisfactory for English. But
Germanic word order does not cooperate: we need to supplement the phrase struc-
ture rules either by some verb second (V2) transformation (den Besten 1985), by a
wrapping mechanism (Bach 1980, Pollard 1984), or by a separate linear precedence
mechanism to which we turn now.

Here the fact that DG is generally silent on word order is helpful: all that needs
to be said is stating the typologically relevant generalization (namely that Dutch is
V2 in subordinate clauses) to get the required word order. One way to formulate
generalizations about word order is to state them as constraints on linear precedence.
In the Dutch case at hand, we can simply say NP � V (noun phrases precede
verbs) within structures dominated by an infinitival S . This technique, called imme-
diate dominance/linear precedence, or ID/LP for short, is the one used in generalized
phrase structure grammar (GPSG) (Gazdar et al. 1985). Another possible technique
is based on nearness, a weakening of the relation of immediate adjacency. If no mor-
phological marking is available to signal the fact that two words are strongly related,
the best stand-in is to insist that they appear next to each other, or at least as close
as possible. English uses this device for two rather different functions. In parataxis,
adjacency signals coordination, as in Tom Dick and Harry, where logical calculi
would require Tom and Dick and Harry. The other case is signaling subjecthood: the
only structural position where a subject can appear is the one immediately before
the verb.

Modern theories of morphosyntax (Ostler 1979, Kiparsky 1987, Smith 1996),
which differ from Pān. ini chiefly in their ambition to also handle analytic languages
such as English, have enlarged the inventory of linkers from morphological devices
such as case marking, prepositions, and agreement to include positionally defined
relationships as well. Direct theories of linking offer a straightforward mechanism
to capture the basic intuition with which we started, that cases mediate between
semantic, morphological, and syntactic generalizations. Their central device is the
deep case (kāraka), which serves to link complements to the verb both in sentences
and in nominal constructions derived from verbs. The derivation starts by selecting a
verb with the appropriate tense marking, some nominals with the appropriate number
marking, and the deep cases – the latter will be realized (abhihita, ‘spoken’) by
morphological and structural devices biuniquely but heterogeneously across verbs.
We have biuniqueness in any fixed construction since every deep case that appears
there will be realized by a single linker and every linker realizes some deep case,
and we have heterogeneity in that there is no requirement for the realization to be
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constant across verbs. For example, the accusative (surface) case can serve to realize
Goal or Patient (but not both in any given sentence or nominalization), and Goal can
also be realized by the instrumental case.

Such theories are ‘direct’ because they proceed from the arguments of the verb,
defined semantically, to the linkers, which are visible on the surface, using only
one intermediary, the deep cases. In contrast, indirect theories invoke two sets of
intermediaries, deep cases and grammatical functions (subject, object, etc.), as well.
Relational grammar does not use a separate apparatus for these two (grammati-
cal functions and deep cases are intermingled) but does permit derivational strata,
which make the overall theory indirect. The same is true of case grammar, which
in its original form (Fillmore 1968) was clearly intended as a direct theory but
used transformations, which brought strata with them. The case frame definition
left room for using both grammatical functions and deep cases, and so far there is
little to recommend the traditional notion of grammatical function. Yet there are
some remarkable phenomena that point at differences not easily explained with-
out reference to subjects and objects. Consider first the behavior of reflexives: John
shaved himself is obviously grammatical and *Himself shaved John is obviously
not, yet in both cases the Agent and the Patient of the shaving are both John,
so the difference in acceptability can hardly be attributed to a difference in the
semantics.

To further complicate matters, there is a third set of primitives, called thematic
roles or theta roles, that are regularly invoked in classifying verbal arguments.
These are intended as fully semantical, expressing generalizations that follow from
the meaning of verbs. For example, if V is an action and NP refers to the Agent
of this action, then NP intends V to happen. Comparing John accidentally killed
the pedestrian to *John accidentally murdered the pedestrian shows that under this
definition of Agent (the names used for thematic roles largely overlap the names
used for deep cases), kill does not require an Agent but murder does. The the-
ories of linking discussed so far distinguish between deep and surface cases and
keep both of these distinct from both grammatical functions (subject, object, indirect
object) and thematic roles to the extent they admit them. Direct theories that refer
to thematic roles use them purely as abbreviatory devices to distinguish different
classes of verbs with different lexical entailments, while indirect theories, to which
we now turn, permit combinatorical statements that refer to more than one set of
primitives.

5.2.3 Valency

In Section 5.1 we already considered the informal notion of valency as a means of
stating grammatical regularities. Here we consider a more formal, and in key respects
more general, mechanism for syntactic computations, the use of algebraic structures
as a means of regulating the computation. We illustrate the way these formal systems
are intended to be used by well-known linguistic phenomena, such as the possessor-
possessed relationship, but we do not intend these illustrations to be exemplary in
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the linguistic sense. In many cases, different analyses of the same phenomenon are
also available, often within the confines of the same formal systems.

In many languages, such as Latin or German, the genitive case is affixed to a noun
to indicate that it is the possessor of another noun (or NP) within the same sentence.
The relationship of possession is to be construed as a rather loose one, ranging from
‘being a physical part of’, as in John’s hand; to ‘ownership’, as in John’s book; to
‘being closely associated to’, as in John’s boss; and to ‘being loosely associated
to’, as in John’s cop, who can be the cop that always tickets John at a particular
intersection, the cop that John always talks about, the cop John always calls when a
fight breaks out in the bar, and so on.

Many linguists, starting with Pān. ini, would argue that the genitive is not even
a case, given that it expresses a relation between two nouns rather than a noun
and verb. It is also true that the same possessor-possessed relation is expressed in
many languages by suffixation on the head of the construction, the possessed ele-
ment, rather than on the modifier (the possessor). For our purposes, the main fact of
note is that the possessor can show agreement with the possessed in head-marking
languages. For example, Hungarian az én könyvem, a te könyved, az ő könyve ‘my
book, your book, his book’. By Definition 5.2.1, this means that in the pure case
we have some forms u:Di and v:Di that cooccur in some context ˛ ˇ � , while
for i ¤ j; ˛u:Diˇv:Dj � 62 L. (Not every case is pure since often the paradig-
matic distinction is not entirely visible on the form, such as English you, which
can be second-person singular or plural, or Hungarian az ő, which in the posses-
sive construction can be third-person singular or plural possessor alike. As there are
many languages where all paradigmatic forms are distinct, we can safely ignore this
complication here.)

Since there are only a finite number of cases to consider, almost any method,
including tabulation (listing), would suffice to handle agreement phenomena like
this. For example, if the paradigm has four slots and we denote u:Di .v:Di / by a,b,c,d
(resp. a0; b0; c0; d 0), the four forms ˛aˇa0�; ˛bˇb0�; ˛cˇc0�; ˛dˇd 0� are admissible,
while ˛aˇb0� and the other eleven nonagreeing forms are not. Yet linguistics rejects
this method since the intrinsic complexity of such a list would be the exact same
as that of listing the cyclic permutation ˛aˇb0�; ˛bˇc0�; ˛cˇd 0� , ˛dˇa0� , and the
latter is clearly unattested among natural languages. The preferred method is to for-
mulate a rough rule that generates ˛uˇv� and supplement this by a further condition
stipulating agreement between u and v.

One important method of stipulating such conditions is to map preterminals
onto some algebraic structure that offers some direct means of checking them. For
example, given a free group F over four generators a, b, c, d and their inverses
a0 D a�1; b0 D b�1; c0 D c�1; d 0 D d�1, if ˛; ˇ; and � are mapped on the unit e
of F and a; : : : ; d; a0; : : : ; d 0 onto themselves, the acceptable forms, the ones with
proper agreement, will be exactly the ones whose image is mapped onto e. What
makes cancellation in a group such an attractive model of valency is that it is easily
typed. When talking about valence informally, we always mean finding an appro-
priate filler for some slot. By assigning each slot an independent group element and
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each appropriate filler its inverse, we can guarantee both that slots will require filling
and that different slots receive different fillers.

Given that agreement in natural languages is independent of word order, the fact
that in a group we always have aa�1 D a�1a D e is useful, and so is the fact that we
can take the group used for checking agreement to be the direct product of simpler
cyclic groups used for checking agreement in any particular paradigmatic dimension.
But in situations where the filling of valences is order-dependent, using structures
other than groups and using decomposition methods other than direct products may
make more sense. Before turning to these, let us first consider other potential pitfalls
of modeling valences with cancellation.

A strong argument against a strict cancellation model of valency may be a case
where a single slot (negative valence) is filled by more than one filler (positive
valence), as in coordinated constructions, such as John and Mary won, or con-
versely, cases where a single filler fills more than one slot. Consider, for example,
the accusativus cum infinitivo (ACI) construction in Latin, as in Ad portum se aiebat
ire ‘He said he (himself) was going to the harbor’. Evidently the reflexive pronoun
se ‘himself.ACC’ acts both as the subject of say and the subject of go. On the whole,
the scope of ACI in Latin is remarkably large: almost every verb that can take an
object can also take an infinitival construction as an object. Unlike in English or
Dutch, where He wanted/helped/watched the children to swim are possible but *He
said/judged/delighted the children to swim are not, in Latin sentences such as Thales
dixit aquam esse initium rerum, Karthaginem delendam esse censeo, and Gaudeo te
salvum advenisse are easily formed. Another potential case of a single filler filling
multiple slots comes from the class of control verbs discussed in Section 5.2.2: in
John tried to run, arguably the same filler, John, acts as the subject of try and run at
the same time. Even more interesting are cases of object control such as John asked
Bill to run, where Bill is both the object of ask and the subject of run – compare John
promised Bill to run.

To extend valency to coordination, we need a device that will act as a multiplexer
of sorts, taking two syntactic objects with one positive valence each and returning
a single compound object with one positive valence. Problems arise only in cases
where the compound filler can appear in positions that are closed off for elementary
fillers: clearly John and Mary hated each other is grammatical, while neither *John
hated each other nor *Mary hated each other are, and it is hard to conceive of the
former as being in any sense the coordination of the latter two. Once a multiplexer is
available, it or its dual could be used for unifying slots as well, and expressing general
statements like ‘in object control verbs, the object of the matrix verb is shared with
the subject of the embedded verb’ would be easy.

Yet, just as with coordination, there remain some strong doubts whether using
argument sharing as a conceptual model for apparently shared fillers is truly appro-
priate. For example, I hate to smoke means that I dislike cigarette smoke, while
I hate that I smoke means that I actually like cigarette smoke (but dislike my
own weakness of not being able to give it up). The standard method of formaliz-
ing argument sharing is by means of shared variables: if we treat transitive verbs
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as two-place predicates, try(Someone, Something), hate(Someone,
Something), and intransitives as one-place predicates, run(Someone), or as
two-place predicates with implicit defaults, smoke(Someone,Cigarettes),
we can write John tried to run as x=John, try(x,run(x)) and I hate to smoke
as x=I, hate(x, smoke(x,Cigarettes)), but this representation is clearly
more appropriate for I hate it that I smoke.

How, then, is I hate to smoke to be represented? One possibility is to treat ‘hating-
of-smoking’ as a compound verb that has only one valence and relegate the process
of forming such verbal complexes to the lexicon, where other valency-changing pro-
cesses, such as forming passives or causatives, are also known to operate. In syntax,
then, we can retain a pure form of valence theory that assigns a valence of C1 to
every NP, including coordinated forms, and a valence of �n to n-place predicates.
However, the situation is further complicated by free adverbials and other adjunct
NPs that do not fill any slot associated to the verbal arguments – this is what makes
typing the slots and fillers essential.

In the commutative case, we can restate matters using additive rather than mul-
tiplicative inverses and direct sums rather than direct products. We will say that a
predicate has a valence vector .x1; : : : ; xk/, where the xi are 0 or �1 and the basis
dimensions correspond to grammatical functions or deep cases – for the sake of
concreteness, we will use Agent, Goal, Recipient, Instrument, Locative, and Source
in this order. The valence vector of rent will thus be .�1;�1; 0;�1;�1;�1/, and
for our example (5.11), John rented the room from a slumlord for a barbershop
for the first three months for fifteen hundred dollars, we have five NPs that can fill
the slots: John as the Agent, with valence vector .1; 0; 0; 0; 0; 0/; the room as the
Goal, with valence vector .0; 1; 0; 0; 0; 0/; a slumlord as the Source, with valence
vector .0; 0; 0; 0; 0; 1/; the first three months as the Location, with valence vector
.0; 0; 0; 0; 1; 0/; and fifteen hundred dollars as the Instrument, with valence vector
.0; 0; 0; 1; 0; 0/. The purpose clause, for a barbershop, is floating freely (the Goal is
the immediate result of the renting action in view, namely the room) and thus has
valence vector .0; 0; 0; 0; 0; 0/. As long as the valence vectors sum to 0, we accept
the sentence, seemingly irrespective of phrase order; the reason why *John the room
rented is unacceptable is that in English only the NP in the immediate preverbal
position can be the Agent and only the NP in immediate postverbal position can be
the Goal. In languages where deep cases are morphologically marked (by surface
cases), the expectation is that the clauses can be freely permuted as long as their
morphological marking is preserved.

5.3 Semantics-driven theories

In the most extreme form of semantics-driven theories of syntax, the relation that
connects the form and the meaning of sentences is one of causation: a sentence has a
given form because this is the best way to express some idea or state of affairs. Given
the bewildering variety of ways different languages can express the same thought,



5.3 Semantics-driven theories 103

this appears a hopelessly naive approach, yet a great deal of the methods and motiva-
tion are shared between the semantics-driven and the more ‘pure’ theories of syntax
discussed so far. To solve the problem that different languages use different construc-
tions to express the same idea, all that is needed is a parametric theory of syntax and
a slight relaxation of direct causality. Instead of saying that a sentence has a given
form because this is the best way to express an idea, we now say that it has this form
because this is the best given the language-specific setting of the parameters.

To give an example, consider transitive sentences of the (5.8) type. Semantics-
driven theories maintain that the structure of thought is universal: there is an act
of killing, with the farmer as the agent and the duckling as the patient. Following
Greenberg (1963), we divide languages in six types corresponding into the six pos-
sible permutations of Subject, Object, and Verb. English is an SOV language, so the
sentence comes out as above. In Japanese, an SOV language, we get Hyakusyoo wa
ahiru o korosita ‘As for farmer, duck killed’, while in Irish, a VSO language, we get
Mhairiagh an feirmeoir an lacha, and so forth. Given that word order in different
languages can take any value (according to Hawkins (1983), 45% of languages are
SOV, 42% SVO, 9% VSO, 3% VOS, 0.9% OVS, and 0.1% are OSV), proponents
of the Sapir-Whorf hypothesis must explain why the majority of languages do not
follow the natural order (whichever that may be).

The research program of eliminating nonparametric variation from syntax is
common to many theories, including some of the most pure combinatorical theories,
such as classical transformational grammar and modern minimalist syntax. The stan-
dard form (see Chomsky and Lasnik 1993) is often called principles and parameters
theory, assuming a common core of grammatical principles that operate in all lan-
guages, and a finite set of binary parameters that govern them (so that altogether there
are only finitely many core systems). This is an extremely attractive model, but one
that faces many serious technical difficulties that come to light as soon as we attempt
to flesh out the typological system. First of all, there are many languages that are split
(display a mixture of the pure types). For instance, German, while widely regarded
as an SOV or V2 (verb second) language, displays a pure SVO construction and has
several different word orders both in main and in subordinate clauses. Traditional
descriptions of German word order, such as Drach (1937), therefore employ a lin-
ear structure composed of separate structural positions or topological fields, a notion
that has little typological generality. Even if we could separate out the parochial
from the universal factors in such cases, there is a larger problem: the terms that
we use in establishing our typology may have no traction over the actual variety of
languages.

The marked word orders VOS, OVS, and OSV account for less than 5% of the
world’s languages. However, about one language in ten has no identifiable subject
category at all according to Schachter’s (1976) criteria: a prime example is Acehnese
[ACE] (see Durie 1987). For many languages that fall outside the Greenberg system
entirely, a different typological distinction between ergative and accusative lan-
guages is invoked. As the basic pattern is very strange for those whose only exposure
has been to the 90% of languages that are accusative, we give an example here from
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Warlpiri [WBP] (Hale 1983). The sentences generally considered simplest are the
intransitives. These involve just a single argument:

The baby cried
(5.14)NP.NOM V.PAST

and in the familiar accusative languages that have overt case marking, this argument,
the subject, appears with the nominative case. Transitives, the next simplest case,
require two arguments. We repeat example (5.8) here with the relevant pseudogloss:

The farmer killed the duckling
(5.15)NP.NOM V.PAST NP.ACC

That the glosses in (5.14) and (5.15) are not entirely fictitious even for English is
clear from the use of oblique pronouns him/her in the object position as opposed to
the nominative he/she in the subject position. The Warlpiri pattern is rather different:

Kurdu ka wangka-mi
NP.ABS AUX speak.NONPAST (5.16)

The child is crying

Ngarrka-nguku ka wawirri panti-rni
man.ERG AUX kangaroo.ABS spear.NONPAST (5.17)

The man is spearing the kangaroo

What is striking about this pattern (which is the basic pattern of languages called
ergative in typology) is that the default case marking (called absolutive and realized
by zero morphology in many ergative languages, just as nominative is realized by
zero in many accusative languages) appears with what from the accusative perspec-
tive we would consider the object of the transitive construction, and it is the subject
that receives the overt case marking. As this example shows, it is far from trivial
to put to use grammatical primitives such as subject or object even for their stated
purpose of grammatical description – ergative languages group together the subjects
of intransitives with the objects of transitives.
Example 5.3.1 The basic accusative pattern. In defining the accusative and ergative
patterns, we put to use the algebraic apparatus we started to develop in Section 5.1.1.
For both cases, we will have nominal elements in the category n (John, the baby),
purely intransitive verbs (sleeps, walks), purely transitive verbs (loves/kills), and
verbs that have both kinds of subcategorization (eats, sees), which we place in cate-
gories i , t , and d , respectively. To simplify matters, we shall ignore person/number
agreement but obviously not case marking. For the relevant case suffixes, we will use
N (Nominative) A (Accusative), B (aBsolutive), and E (Ergative), and since these
always attach to nominal elements we will treat them as subcategories of n, writing
simply A instead of the morphemic gloss n.A. The accusative pattern is given by a
finite language X that will have the strings corresponding to intransitive and tran-
sitive sentences, with the appropriate case markings Ni, NtA, Nd, NdA and all their
permutations (free word order).
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The syntactic monoid CX has two distinguished elements: the empty string
(whose equivalence class we denote by I since it is the multiplicative identity) and
a large grab-bag equivalence class U for all strings with more than one verbal or
more than two nominal elements. Members of this class are all cases of unrecover-
able ungrammaticality in the sense that no further element can be added to create a
grammatical sentence. Other strings, such as NA, are also ungrammatical, but in a
recoverable way: adding d or t to the string will create a grammatical sentence, and
in fact it simplifies matters to arrange all equivalence classes in layers running from
the innermost .I / to the outermost .U / in accordance with how many further ele-
ments it takes to make them grammatical. In the innermost layer, we find two classes,
represented by t and A, respectively (these require two further elements to complete
a sentence), in the next layer we find five classes, represented by Nt; i; NA;N , and
d , respectively (these require only one further element), and in the outermost layer
we find two classes represented byNi andNd , respectively (both require zero addi-
tional elements, but they are not in the same class since for one A can still be added).
Altogether, the four basic grammatical strings in the accusative pattern (or five, if we
declare the empty string grammatical) and their permutations yield a total of eleven
syntactic congruence classes i.e. a syntactic monoid with eleven elements.
Discussion The progression from inner to outer layers is a way of recapitulating the
idea of valency discussed in Section 5.2.1, and serves to show an essential property of
the system, namely that no simple sentence ever has a (semigroup-theoretic) inverse:
once valencies are filled in, there is no return. Complex sentences (with more than
one verb) may still show periodic behavior (by filling in a verbal dependent we may
end up with more open valences than when we started out), but the syntactic semi-
group built on simple sentences will always be aperiodic. Since this result is clearly
independent of the simplifying assumption of free word order made above, we state
it as a separate postulate.
Postulate 5.3.1 In any natural language, the syntactic monoid associated to the
language of simple sentences is aperiodic.
In Chapter 2, we already emphasized the importance of Chomsky’s (1965) observa-
tion that natural languages are noncounting in the informal sense that they do not
rely on arithmetic notions. Postulate 5.3.1 provides a more formal statement to the
same effect, and in Section 5.5 we shall offer a formal definition of noncounting that
is, perhaps, easier to falsify empirically than Postulate 5.3.1, but as Yli-Jyrä (2003)
notes, even a large-scale wide-coverage grammar of English (Voutilainen 1994) can
be modified to avoid the Kleene � operator altogether. Note, however, that the state-
ment is clearly relevant only for syntax since phonology evidently shows periodic
patterns, e.g. in the placement of stress (typically binary, sometimes ternary), as dis-
cussed in Section 4.1. This runs counter to the generally unspoken but nevertheless
very real prejudice of early generative grammar that phonology is easier than syntax.

Returning to the ergative pattern for a moment, the language Y will have Bi, EtB,
Bd, EdB, and their permutations. It is a trivial exercise to verify that the monoid CY

is isomorphic to CX . By mapping N to B and A to E, the accusative set of patterns
is mapped on the ergative set in a concatenation-preserving manner. However, this
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is an isomorphism that fails to preserve meaning: The man is spearing the kangaroo
would become The kangaroo is spearing the man, and it is easy to see that in fact
no meaning-preserving isomorphism exists between the two patterns. We return to
this matter in Chapter 6, where we investigate not just the stringsets but rather more
complex structures that contain both the words and their meanings.

The study of the ergative pattern makes it abundantly clear that the overall plan
of using a few examples and counter examples to help navigate the typological
decision tree is very hard to put into practice. Compared with stress typology (see
Section 4.1.4), the situation is rather dismal. The empirical correlates to the primitive
notions are unclear, and the system, however organized, is riddled with split cases.
For example Dyirbal [DBL] has an accusative system in the first and second persons,
ergative in the third person (Schmidt 1985), and many Indo-Iranian languages are
ergative in perfect and accusative in imperfect aspects and so on.

This gives rise to the suspicion, shared by many in the field of artificial intelli-
gence (AI), that mainstream linguistics goes about the whole matter the wrong way,
invoking too many hard to define and hard to apply grammatical intermediaries in
what should be a straightforward mapping from thought to expression. The goal
should be simply to specify the language of thought and explain syntactic complexi-
ties, to the extent we care about them, by means of parochial imperfections in natural
languages. This line of thought goes back at least to the great rationalist thinkers of
the 17th century, in particular Descartes, Pascal, and Leibniz. Early AI research such
as Quillian’s (1969) Teachable Language Comprehender and Anderson and Bower’s
(1973) Human Associative Memory and the subsequent ACT-R took quite seriously
the task of accounting for human long-term memory, including performance effects
such as reaction times.

In modern research, the mental aspects of the language of thought are gen-
erally downplayed, with many researchers being downright hostile to the idea of
looking for brain activity correlates to formulaic descriptions of thoughts or ideas.
Rather, to eliminate any reference to the mental aspects, emphasis is placed on what
the thoughts or ideas are about, in particular on real-world objects (entities) and
assertions about them.

In this view, the task of knowledge representation (KR) begins with hierarchically
organizing the entities that are typically expressed by common nouns. The central
organizational method is Aristotelian, with increasingly special species subsumed
under increasingly general genera. Economy is achieved by a system of default inher-
itance whereby lower nodes on the hierarchy inherit the properties of the higher
nodes unless specified otherwise. Thus, we need not list the property of breathing
with Baby Shamu since she is a killer whale, killer whales are dolphins, dolphins are
mammals, mammals are animals, and animals breathe. However, the inference that
fishes breathe has to be blocked by explicitly stating that fishes do not breathe air,
that indeed breathing water through gills is part of their definition. (Going further,
the default fish rule needs to be suspended for lungfish and other fish species that can
in fact breathe air.) The creation of systems of logic that can sustain nonmonotonic
inferences (overriding default conclusions in special cases) is an important thread in
modern AI and philosophical logic (see Ginsberg 1986a, Antonelli 1999).
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Linguists have long used this technique to hierarchically classify lexical entries,
in particular verbs. At the top of the hierarchy, we find the telic/atelic distinction that
roughly corresponds to the count/mass distinction among nouns. Telic verb phrases
denote events that have a definite endpoint, while atelic VPs lack this; compare
John cleaned the dishes for an hour to *John recognized Bill for an hour. Next,
atelic events are divided into states and activities, telic events into achievements and
accomplishments; see Vendler (1967), Dowty (1979), and Verkuyl (1993). The situa-
tion is greatly complicated by the existence of other largely orthogonal classification
schemes such as stage-level and individual-level predicates (for a modern summary,
see Kratzer 1995) or other semantically motivated groups such as verbs of motion
or psych verbs. Levin (1993) offers a rich selection of grouping criteria but refrains
from hierarchically organizing the data and thus avoids the need to specify exactly
what aspects of the competing cross-classification schemes inherit and to what extent
the different flavors can be mixed.

Just as common nouns correspond to entities, adjectives correspond to properties.
Unlike entities, which are taken to be an atomic type E, properties are taken as
functions from entities to truth values T . Under this analysis, the meaning of an
adjective a is simply the set of entitiesN such that a.n/ is true, and n enjoys property
a just in case n 2 N . A key aspect of this model is the division of properties that
an entity has into accidental and essential properties. Continuing with the example
above, not only do fishes breathe water but this is essential to their being fishes. The
fact that they generally have iridescent scales is accidental: we can imagine fishes
without this property, and indeed we find many, such as sharks or eels, that have no
such scales. What is accidental in one kind of entity may be essential in another,
and to keep track of which is which Minsky (1975) introduced the notion of frames.
These are not to be confused with the case frames introduced in Section 5.2 above –
KR frames apply to nouns, case frames to verbs.

For example, the dog frame will contain slots for name and owner, which are
essential to the definition of dogs as cultural constructs in modern urban life, even
though they would not be relevant for a biological definition. That it is indeed the
cultural, rather than the biological, definition of dogs that is relevant to concerns
of natural language understanding can be seen from the following examples: Rover
has diarrhea. The owner has a hard time complying with cleanup regulations/*The
coenzyme Q10 overdose is evident. Once Rover has been introduced to the discourse,
referring to the owner proceeds smoothly because the former is a definite (singu-
lar) entity and as such implies a definite owner. For people outside the medical and
veterinary professions, the relationship between dogs, diarrhea, and coenzyme Q10
is anything but evident, and introducing coenzyme Q10 overdose with the definite
article the is infelicitous.

For another example, consider the dictionary definition of cup as a usually open
bowl-shaped drinking vessel with or without a handle. What does this really mean?
Clearly, every individual object is with or without a handle, and it is just as true of
the genus fish that it comes with or without a handle as it is of the genus cup. Yet
there is something right about the definition: I found a cup/*fish but the handle was
broken shows the same effortless move from cup (but not from fish) to handle that
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we had from dog to owner. So the cup frame must contain a slot for handle meaning
that having a handle, or not, is an essential property of cups.

Frames extend more or less naturally to events. To avoid confusion with case
frames, we call the frame representation of event objects scripts, as has been stan-
dard in KR since the work of Schank and Abelson (1977). The original intention
was to use scripts as repositories of commonsense procedural knowledge: what to do
in a restaurant, what happens during a marriage ceremony, etc. Scripts have actors
fulfilling specific roles, e.g. that of the waiter or the best man, and decompose the
prototypical action in a series of more elementary sub-scripts such as ‘presenting
the menu’ or ‘giving the bride away’. There are some linguistically better motivated
models, in particular discourse representation theory, that rely on lexically stored
commonsense knowledge, but their scope is more modest, being concerned primar-
ily with the introduction of new entities (the owner, the best man) in the discourse.
Also, there are more systematic studies of ritual, in particular in the Indian tradi-
tion (Staal 1982,1989), but their cross-fertilization with the Western KR tradition
has been minimal so far.

The AI program, then, offers specific solutions to many issues surrounding the
representation of nouns, adjectives, and verbs, with both active and stative verbs
freely used as elementary subunits in scripts. In fact, these subunits are not viewed
as atomic: conceptual dependency (Schank 1972) is a representational theory that
extends ideas familiar from dependency grammar down to the level of mental lan-
guage. To apply the MIL formalism of Section 5.2 to Conceptual Dependency, we
take the primitive objects to be the atomic symbols PP, PA, and AA (which in CD cor-
respond roughly to nouns, adjectives, and adverbs), ATRANS, PTRANS, MTRANS,
GRASP, PROPEL, MOVE, INGEST, EXPEL, ATTEND, SPEAK, MBUILD, and
DO (which correspond roughly to verbs), and choose the Pi as CAUSE, BI-CAUSE,
MOBJECT, INSTRUMENT, ENABLES, RESULTS, INITIATES, and REASON
(which correspond roughly to cases).
Exercise 5.2 Consider all the English example sentences in Chapter 6 and write the
equivalent graphs and formulas.
This skeletal picture would need to be supplemented by a host of additional axioms to
recapitulate the exact combinatorical possibilities of CD, e.g. the notion that objects
need to be AT-LOC before they can PTRANS out of it (Schank 1973). We will not
pursue CD in this detail because the representations preferred in linguistics tend
to use a slightly different set of primitives; e.g. for John gave the book to Bill we
could have DO(John,CAUSE(HAVE(Bill,book))) as the underlying semantic struc-
ture (Jackendoff 1972). The explicit use of implicit illocutionary primitives such as
DO in this example is particularly characteristic of the generative semantics school
(Harris 1995).

An important version of the same broad program has been pursued by Wierzbicka
(1972, 1980, 1985, 1992) and the NSM school (Goddard 2002). The set of prim-
itives is broader, including pronouns I, YOU, SOMEONE, SOMETHING/ THING;
determiners THIS, THE SAME, OTHER; quantifiers ONE, TWO, SOME, ALL,
MANY/MUCH; adjectives GOOD, BAD, BIG, SMALL, TRUE; adadjectives
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VERY, MORE; verbs THINK, KNOW, WANT, FEEL, SEE, DO, HEAR, SAY, HAP-
PEN, MOVE, TOUCH, LIVE, DIE; adverbials WHERE/PLACE, HERE, ABOVE,
BELOW, FAR, NEAR, SIDE, INSIDE, TOUCHING, WHEN/ TIME, NOW,
BEFORE, AFTER, A LONG TIME, A SHORT TIME, FOR SOME TIME; connec-
tives NOT, MAYBE, CAN, BECAUSE, IF; relations KIND OF, PART OF, THERE
IS/EXIST, HAVE, LIKE; and a handful of nouns: BODY, WORDS, MOMENT,
PEOPLE (elements in italics were included in the early work, the rest were added
since the 1990s). Unlike many of the early AI researchers whose work aimed at
immediate algorithmization, Wierzbicka and the NSM school, with a commendable
lack of pretense, eschew formalization and operate entirely with natural language
paraphrases such as the following definition (Wierzbicka 1992:36) of soul:

one of two parts of a person
one cannot see it
it is part of another world
good beings are part of that world
things are not part of that world
because of this part a person can be a good person

To recapitulate this analysis in a more formal framework, we would need to intro-
duce two worlds, one with visible things and one without, a conceptual model of
persons with parts in both worlds, goodness and visibility (or the lack thereof) as
essential properties of the subclass of persons and the superclass of beings, and so
forth. This kind of conceptual modeling of the folk theory or naive theory behind con-
ceptual entities fits very well in the style of logical analysis undertaken in AI (Hayes
1978), except perhaps for the issue of uniqueness: in AI it is commonly assumed that
there will be a unique correct solution reflecting the fundamental nature of reality,
while the NSM school assumes that such definitions may show considerable variation
across languages and cultures.

An even larger set of 2851 primitives, the Longman Defining Vocabulary (LDV),
is used throughout the Longman Dictionary of Contemporary English (LDOCE). For
the reductionist, the NSM list already offers some tempting targets: do we really need
LIVE and DIE as primitives given the availability of NOT? Do we need TOUCH and
TOUCHING? Because the LDV list contains a large number of cultural constructs,
often trivially definable in terms of one another (e.g. Monday, Tuesday, : : :, Sunday
are all listed), it is clearly not a candidate list for the primitive entities in a presumably
genetically transmitted universal internal language of thought. Yet LDOCE performs
the bulk of the work we expect from a reductionist program: it covers over a hundred
thousand word and phrase senses, and clearly every word of English ever encoun-
tered is definable in terms of those defined there. Thus, the more radical reductionist
programs such as CD or NSM only need to cover the 2851 LDV entries; the rest
of English will follow from these (assuming of course that the reductions will not
implicitly rely on background knowledge).
Exercise 5.3 Pick ten words randomly from LDV and define them in terms of the
CD or NSM primitives.
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Given the large number of elusive but nevertheless attractive generalizations that
link semantical notions such as volition or telicity to syntactic notions such as case
or subjecthood, one may wonder why most linguists consider the task of explain-
ing syntax from semantics hopeless. One particularly strong reason is that natural
language has an immense number of constructions that are fixed both in form and
meaning, but the relationship between the two is arbitrary. We already discussed in
Chapter 3 the arbitrariness of signs: the meaning of words is not predictable from
the sounds of which they are composed. As it turns out, the meaning of syntactic
constructions is also not predictable from the words of which they are composed.
Consider arithmetic proportions such as 3 W 5 D 6 W 10. In English, we say 3 is to 5
as 6 is to 10, and the construction extends well beyond arithmetic. We can say Lon-
don is to England as Berlin is to Germany. Notice that the key predicate is to does
not exist in isolation; the only way a phrase like Joe is to Bill can appear is as part
of the X is to Y as Z is to W construction. There appears to be no rational calculus
whereby the overall meaning X W Y D Z W W could be derived from the meaning
of the function words as, is, to, especially as there must be other factors that decide
whether we solve London is to England as Z is to the US by New York (analogy based
on the biggest city) or Washington (analogy based on capital). The number of such
constructions is so large and their range is so varied (see the entry snowclones in
http://www.languagelog.org) that some theories of grammar, in particular
construction grammar (Fillmore and Kay 1997, Kay 2002), take these as the funda-
mental building blocks of syntax, relegating more abstract rules such as (5.7) to the
status of curiosities.

Faced with the immense variety of constructions, most linguists today subscribe
to the autonomy of syntax thesis that both the combinatorical properties of words and
the grammatical descriptions of sentences are independent of their meaning. In this
view, it is necessary to make the relationship between form and meaning the subject
of a separate field of inquiry. This field, what most linguists would call semantics
proper, will be discussed in Chapter 6. Here we are concerned with the issue of
developing a formal theory of semantics-driven syntax, leaving it to the future to
decide how far such a program can actually get us. As is clear from the foregoing, the
formal theory begins with a set of conceptual primitives such as LIVE and MOVE,
which are used in three settings: first, there are some axioms connecting these to each
other, e.g. that good things are not the same as bad things; second, there are some
dictionary definitions or meaning postulates that connect the vast majority of lexical
items to those few we consider primitive; and third, some kind of inner syntax that
regulates how conceptual representations, both primitive and derived, combine with
one another.

In most versions of the theory, in particular in the AI/KR approach, the prim-
itives come equipped with a frame not so different from the grammarian’s case
frame: primitives are modeled as functions with a definite signature, both in terms of
having a fixed arity (number of arguments) and in terms of having type restrictions
imposed both on their input arguments and on their output. The inner syntax does lit-
tle more than type-checking: well-formed conceptual representations correspond to
well-typed programs evaluating to a few distinguished types such as T (truth value)



5.4 Weighted theories 111

for sentences and E (entity) for noun phrases. To obtain predictions about the com-
binatorical possibilities of words, it is necessary to couple this inner syntax to some
statements about word order (e.g. whether an adjective precedes or follows the noun
it modifies) and to morphology (e.g. whether a property is signaled by word-internal
processes or by adding a separate word). The coupling is language-specific, while
the inner syntax is assumed to be universal.

While the AI/KR approach is using function arguments for the slot/filler mech-
anism, the NSM work is more suggestive of categorial grammar in this regard. For
example, a primitive such as VERY could be treated as a function that takes an
adjective and returns an adjective or as an adadjective that combines with a follow-
ing adjective to yield another adjective. These two approaches are not incompatible:
in full generality, the former corresponds to lambda calculus and the latter to combi-
natory logic. However, both of these are Turing-equivalent, while there is no reason
to suppose that syntax, either alone or in combination with semantics, goes beyond
the context-sensitive (linear bounded) domain.
Exercise 5.4 Write a context-sensitive grammar describing the set of first-order
formulas where no quantifier is dangling (every quantifier binds at least one variable).
Exercise 5.5� Write an indexed grammar describing the same set.
In terms of the Chomsky hierarchy, context-sensitive grammars provide an upper
bound on the complexity of natural languages, and many take examples like (5.13)
as indicative of a lower bound, namely that natural languages cannot be properly
described by context-free grammars. Finding mildly context-sensitive grammars that
cover all such examples without sacrificing polynomial parsability has been a focal
point of research in mathematical linguistics since the 1980s, with special attention
on linear and partially linear versions of indexed grammars – for a good summary, see
Kracht (2003). The larger issue of whether structured sets of examples such as (5.13)
can actually provide lower bounds remains unsettled. The first such set of examples,
used in Chomsky (1957) to demonstrate that English is not finite state (regular), was
attacked almost immediately (Yngve 1961) on the grounds that as the length of such
examples increases so does the uncertainty about their grammaticality. We return to
this issue in Section 5.4 from the perspective of weighted languages.

5.4 Weighted theories

Both grammatical and semantics-driven theories rely on devices, such as case, gram-
matical function, thematic role, or frame slot, that are in many constructions obscured
from the view of the language learner and must be inferred by indirect means. To the
extent that combinatorical theories rely on deletion (e.g. the use of traces in modern
transformational theory), they are open to the same charge of multiplying entities
beyond necessity. Since the proper choice of such partially observable devices is any-
thing but clear, it makes a great deal of sense to attempt to bring as much observable
evidence to bear as possible. One important range of facts that is becoming increas-
ingly accessible with the advance of computers and the growth of on-line material is
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the frequency of various word strings: though equally grammatical, Hippopotami are
graceful has one Google hit, while What’s for lunch? has over 500,000. The discrep-
ancy is large enough to lend some plausibility to the assumption that a child learning
English will likely encounter the second, but not the first, early on. Given the paucity
of NP’s for lunch, a theory of language acquisition that relies on direct memoriza-
tion (example-based learning) for the contracted copular ’s in questions that have
the wh-element in situ is far more credible than one that would crucially rely on the
availability of examples like ?Fruit’s for lunch to the language learner.

To the extent that syntactic theories are incapable of accommodating such facts,
the combinatorical statement of the problem as a membership problem is incomplete.
We address this defect by introducing weighted languages, defined as mappings f
from strings w 2 †� to values in a semiring R. f .w/ is called the weight of w. Our
primary example ofR will be the set of nonnegative reals RC endowed with the usual
operations, but the overall framework carries as special cases both standard formal
language theory (with R taken as B, the Boolean semiring with two elements) and
theories that rely on degrees of grammaticality (Chomsky 1967), as well as theories
that use weights in N to count the number of ways a string can be derived. When
the weights taken over the set of all strings sum to 1, we will talk of probabilistic
languages and write P instead of f .

By language modeling we mean the development of models with the goal of
approximating the pattern of frequencies observed in natural language. This includes
not just probabilistic theories but all the theories discussed so far, as these can be
interpreted as offering a crude 0-1 approximation of the actually observable pattern.
To be sure, most theories of syntax were not designed with this kind of explana-
tory burden in mind, and many grammarians actually disdain frequency counts, be
they from Google or from better organized corpora. But the overall question of how
successfully one (weighted) language approximates another remains valid for the
standard (unweighted) case, and the mathematical theory of density developed in
Section 5.4.1 covers both. As we shall see, the central case is when density equals
zero, and in Section 5.4.2 we describe some finer measures of approximation that
are useful within the zero density domain. In Section 5.4.3, we introduce the gen-
eral notion of weighted rules and discuss their interpretation in sociolinguistics as
variable rules. In Section 5.5, we turn to weighted regular languages and discuss
the main devices for generating them, weighted finite state automata/transducers and
hidden Markov models. The larger issues of bringing external data to bear on syntax,
be it from paraphrase or translation, from language acquisition and learnability, from
the study of dialects and historical phases of the language, or from performance con-
siderations such as parsing speed or memory issues, will all have to be rethought in
the probabilistic setting, a matter we shall turn to in Section 5.6.

5.4.1 Approximation

Here we first investigate what it means in general for one (weighted) language to
approximate another. Given f W †� ! RC and a threshold " � 0, the niveau sets
f C

" D fw 2†�jf .w/ > "g; f �
" D fw 2†�jf .w/ < "g; f 0

" D fw 2†�jf .w/ D "g
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are ordinary (nonweighted) formal languages over †. In engineering applications, it
is convenient to restrict the mapping to strictly positive values. Even though a naive
frequentist would assign zero to any string w that has not been observed in some
very large sample, it is hard to entirely guarantee that w will never be seen (e.g. as a
result of a typo), and it is best not to let the model be driven to a singularity by such
random noise. As we shall see in Chapter 9, a great deal of engineering effort is
spent on deriving reasonable nonzero estimates for zero observed frequency cases.
Such estimates, depending on the status of w, can differ from one another by many
orders of magnitude. For example, Saul and Pereira (1997) estimate the ratio of the
probabilities P(colorless green ideas sleep furiously)/P(furiously sleep ideas green
colorless) to be about 2 � 105. This suggests that with a good probabilistic model of
English we may have a broad range from which to choose a threshold " such that
f C

" (f �
" ) approximates the set of grammatical (ungrammatical) strings.

But if P is a probability measure, then PC
" will be finite for any ". Since all

niveau sets will be either finite or cofinite, all niveau sets are regular, rendering our
primary navigation aid, the Chomsky hierarchy, rather useless for probabilistic lan-
guages. This is not to say that there is no way to generalize finite automata, CFGs,
TAGs, or even Turing machines to the probabilistic case (to the contrary, such gen-
eralizations are readily available) but rather to say that studying their niveau sets,
which is generally the focal point of the analysis of probabilistic systems, suggests
that the regular case will be the only one that matters. Since the set of grammati-
cal strings could in principle have nonregular characteristics, while the niveau sets
we use for approximation are of necessity regular, our driving example will be the
approximation of the Dyck language D1 over a two-letter alphabet. As D1 has
infinite index (for i ¤ j; ai and aj always have different distributions), it cannot
be described by a finite automaton, so no regular approximation can ever be per-
fect. The language D1

1 of matched parentheses of depth one, as given by the CFG
S ! aT bjSS j�; T ! abjabT; can be easily described without this CFG by a
finite automaton, and so could be the language D2

1 of matched parentheses of depth
at most two, and so forth. In general, we define a bounded counter of depth k as
a finite automaton having states f0; 1; : : : ; k � 1g and with transitions under a.b/
always increasing (decreasing) state number, except in state k � 1 (resp. 0) where a
(resp. b) keeps the automaton looping over the same state. It is intuitively clear that
with increasing k theDk

1 get increasingly close toD1: our concern here is to capture
this intuition in a formal system.

As in classical analysis, the general problem of approximating an arbitrary
weighted language f by a series of weighted languages fk reduces to the special
case of approximating zero by a series. We will say that the fk tend to f (denoted
fk ! f ) if the symmetric differences .f n fk/ [ .fk n f / ! 0 (here 0 is the
language in which every string has weight 0). We discuss a variety of measures �
for quantitative comparison. These will all assign numerical values between zero and
plus infinity, and if U � V or f 	 g we will have �.U / 	 �.V / or �.f / 	 �.g/.
Some of them are true measures in the sense of measure theory; others are just use-
ful figures of merit. We begin with weighted languages over a one-letter alphabet
and see how a simple quantitative measure, density, can be properly generalized for
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k-letter alphabets. Eilenberg (1974:225) defines the density of a language L over a
one-letter alphabet as

lim
n!1

jf˛ 2 Ljj˛j < ngj
n

if this limit exists. This definition can be generalized for languages over a k-letter
alphabet † in a straightforward manner: if we arrange the elements of †� in a
sequence  and collect the first n members of  in the sets †n,

lim
n!1

jL \†nj
n

D ��.L/ (5.18)

can be interpreted as the density of L when it exists. Since this definition is not
independent of the choice of the ordering , we need to select a canonical ordering.
We will call an ordering  length-compatible if j .n/j 	 j .m/j follows from
n < m. It is easily seen that for arbitrary alphabet† and language L, if  is a length-
compatible ordering of †� and the limit in (5.18) exists, then it exists and has the
same value for any other length-compatible ordering  . In such cases, we can in fact
restrict attention to the subsequence of (5.18) given by †0; †1; †2; : : :. If we denote
the number of strings of length n in L by rn, natural density � can be defined by

�.L/ D lim
n!1

Pn
iD0 riPn
iD0 k

i
(5.19)

To define density by (5.19) over k-letter alphabets for k > 1would have considerable
drawbacks since this expression fails to converge for some simple languages, such as
the one containing all and only strings of even length (Berstel 1973). To avoid these
problems, we introduce the generating function d.z/ D P1

nD0 rnz
n and define the

Abel density � by
�.L/ D lim

z!1
.1 � z/d.z=k/ (5.20)

if this limit exists. A classical theorem of Hardy and Littlewood asserts that whenever
the limit (5.19) exists, (5.20) will also exist and have the same value, so our definition
is conservative. (We use the name Abel density because we replaced the Cesàro
summation implicit in Berstel’s and Eilenberg’s definition with Abel summation.)

For weighted languages, the number of strings rn is replaced by summed weights
Rn D P

jwjDn f .w/ of the strings of length n, otherwise the definition in (5.20)
can be left intact. As long as the individual values f .w/ cannot exceed 1, the Abel
density will never be less than zero or more than one irrespective of whether the
total sum of weights converges or not. As Berstel notes (1973:346), natural density
will not always exist for regular languages, even for relatively simple ones such as
the language of even length strings over a two-letter alphabet. Abel density does not
suffer from this problem, as the following theorem shows.
Theorem 5.4.1 Let L be a regular language over some k-letter alphabet†. The Abel
density �.L/ defined in (5.20) always exists and is the same as the natural density
whenever the latter exists. The Abel density of a regular language is always a rational
number between 0 and 1.
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Proof Since rn 	 kn, d.z/ 	 1=.1 � kz/ so �.L/ 	 1 will always hold. The
transition matrix A associated with the finite deterministic automaton accepting L
has column sums k, so B D A=k is stochastic. Define H.z/ as .1� z/.E � zB/�1.
The limiting matrixH D limz!1H.z/ always exists, and the density of L is simply
vHei , where the j th component of v is 1 of the j th state is an accepting state (and 0
otherwise), and the initial state is the i th. Since H.z/ is a rational function of z and
the rational coefficients of B; and its values are computed at the rational point z D 1,
every coefficient of H is rational and so is the density.

This is not to say that nonregular languages will always have a density. For exam-
ple, the context-sensitive language fai j4n 	 i < 2 � 4n; n � 0g can be shown not
to have Abel density over the one-letter alphabet fag. When it exists, Abel density is
always additive because of the absolute convergence of the power series in z D 1.

The proof makes clear that shifting the initial state to i 0 will mean only that we
have to compute vHei 0 with the same limiting matrix H , so density is a bilinear
function of the (weighted) choice of initial and final states. Because of this, density
is more naturally associated to semiautomata, also called state machines, which are
defined as FSA but without specifying initial or accepting states, than to FSA proper.
The density vector Hei can be easily computed if the graph of the finite determin-
istic automaton accepting L is strongly connected. In this case the Perron-Frobenius
theorem can be applied to show that the eigenvalue k of the transition matrix has
multiplicity 1, and the density vector is simply the eigenvector corresponding to k
normed so that the sum of the components is 1. If this condition does not hold, the
states of the automaton have to be partitioned into strongly connected equivalence
classes. Such a class is final if no other class can be reached from it, otherwise it is
transient.

Theorem 5.4.2 The segment corresponding to a final class in the overall density
vector is a scalar multiple of the density vector computed for the class in question.
Those components of the density vector that correspond to states in some final class
are strictly positive, and those that correspond to states in the transient class are 0.

Proof By a suitable rearrangement of the rows and columns of the transition matrix
A; B D A=k can be decomposed into blocks Di , which appear in the diagonal,
a block C , which corresponds to transient states and occupies the right lowermost
position in the diagonal of blocks, and blocks Si appearing in the rows of theDi and
the columns of C . The column norm of C is less than 1, so E � C can be inverted,
and its contribution to the limiting matrix is 0. The column sum vectors of Si can be
expressed as linear combinations of the row vectors of E �C , and the scalar factors
in the theorem are simply the nth coefficients in these expressions, where n is the
number of the initial state. Moreover, since .E � C/�1 D P1

iD1 C
i holds, all these

scalars will be strictly positive. By the Perron-Frobenius theorem, the density vectors
corresponding to the (irreducible) Di are strictly positive.

We will say that a language L over† is blocked off by a string ˇ if Lˇ†� \L D ;.
L is vulnerable if it can be blocked off by finitely many strings; i.e. iff

9ˇ1; : : : ; ˇs8˛ 2 L9ˇ 2 fˇ1; : : : ; ˇsg8� 2 †�˛ˇ� 62 L
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Theorem 5.4.3 For a language L accepted by some finite deterministic automaton
A, the following are equivalent:

(i) �.L/ D 0.
(ii) The accepting states of A are transient.
(iii)L is vulnerable.

Proof (iii) ) (i). If �.L/ > 0;A has accepting states in some final class by Theorem
5.4.2. If ˛ 2 L brings A in such a state, then no ˇ 2 V � can take A out of this class,
and by strong connectedness there is a � 2 V � that takes it back to the accepting
state, i.e. ˛ˇ� 2 L. Thus, ˛ cannot be blocked off.

(i) ) (ii). This is a direct consequence of Theorem 5.4.2.
(ii) ) (iii). If the accepting states of A are transient, then for every such state i

there exists a string ˇi that takes the automaton in some state in a final class. Since
such classes cannot be left and contain no accepting states, the strings ˇi block off
the language.
Theorem 5.4.4 Probabilistic languages have zero density.
Proof We divide the language into three disjoint sets of strings depending on whether
f .w/ D 0, 0 < f .w/ < ", or f .w/ � " holds. The first of these, f 0

0 , obviously
does not contribute to density. The third, f 0C

" , can have at most 1=" members, and
will thus have Rn D 0 for n greater than the longest of these. In other words, the
generating function for these is a polynomial, of necessity bounded in the neighbor-
hood of 1, so the limit in (5.20) is 0. Thus only words with weight 0 < f .w/ < "

can contribute to density, but their contribution is 	 ", and we are free to choose " as
small as we wish.
Theorem 5.4.5 Hidden Markov weighted languages have zero density.
The proof of this theorem is deferred to Section 5.5 where hidden Markov models
are defined – we stated the result here because it provides additional motivation for
the study of zero density languages, to which we turn now.

5.4.2 Zero density

In Theorem 5.4.3, blocking off corresponds to the intuitive notion that certain errors
are nonrecoverable: once we have said something that arrests the grammatical devel-
opment of the sentence (generally any few words of nonsense will do), no amount
of work will suffice to get back to the language within the same sentence. One needs
an explicit pause and restart. There are some sentence-initial strings that are harder
to block, e.g. whenever we gear up for explicit quotation; And then, believe it or
not, he said is easily followed by any nonsense string and can still be terminated
grammatically by whatever that means. But such sentence-initial strings can still be
blocked off by better crafted ˇs; e.g. those that explicitly close the quotation and
subsequently introduce unrecoverable ungrammaticality.

It is of course highly debatable whether natural languages can be construed as
regular stringsets, but to the extent they can, Theorem 5.4.3 applies and zero den-
sity follows. Clearly any length-delimited subset, e.g. English sentences with less
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than 300 words (which contains the bulk of the data), will be regular, so to escape
Theorem 5.4.3 one would need a strong (infinite cardinality, nonzero density) set of
counterexamples to demonstrate that the entire stringset is not zero density. No such
set has ever been proposed. Even if we accept as grammatical, without reservation,
for arbitrary length, the kind of center-embedded or crossed constructions that have
been proposed in the literature, these carry very strong conditions on the category of
elements they can contain. For example, the Dutch crossed constructions must begin
with a specified formative dat followed by NPs followed by infinitival VPs – this
alone is sufficient to guarantee that they have zero density.

Since the most important weighted languages, probabilistic languages, and nat-
ural languages all have zero density, it is of great importance to introduce finer
quantitative measures. We will consider three alternatives: Bernoulli density, combi-
natorial density, and saturation. Aside from finite lists, the simplest class of weighted
languages is Bernoulli languages over k letters a1; � � � ; ak that have positive proba-
bilities p1; � � � ; pk summing to one: the weight f of a string ai1ai2 � � � air is defined
as pi1pi2 � � �pir . Note that this is a probabilistic process but not a probabilistic lan-
guage. For any n > 0 the probabilities of the strings of length exactly n sum to 1, so
the overall probabilities diverge (a trivial problem that we will fix in Example 5.5.3
by penalizing nontermination at each stage). Beauquier and Thimonier (1986) take
Bernoulli languages as their starting point and define the Bernoulli density ı of a
language by the weights of its prefixes (minimal left factors):

ı.L/ D
X

˛2P ref .L/

f .˛/ (5.21)

where Pref.L/ contains all those strings in L that have no left factors in L. In the
equiprobable case, for languages where every word is a prefix, this coincides with
the combinatorial density �.L/ D P1

nD1 rn=k
n. Finally, the saturation �.L/ of

a language L over a k-letter alphabet is given by the reciprocal of the convergence
radius of d.z=k/ – this again generalizes trivially to arbitrary weighted languages.

Although clearly inspired by Bernoulli languages, Bernoulli density as a formal
construct is meaningful for any weighted or probabilistic language, though it may
be infinitely large. Combinatorial density is restricted to weighted languages and
languages with Abel density 0. For k > 1 if �.L/ > 0, the terms in � will converge
to this value so combinatorial density itself will diverge. As for saturation, we have
the following theorem.
Theorem 5.4.6 If �.L/ > 0, then �.L/ D 1. If �.L/ D 0 and L is regular, then
�.L/ < 1. If L � L0, then �.L/ 	 �.L0/. �.L/ D 0 iff L is finite.
Proof If limz!1.1�z/d.z=k/ > 0, then d.z=k/ tends to infinity in z D 1, and since
it is convergent inside the unit circle, � must be 1. If L is regular, d.z=k/ is rational
(since it is the result of matrix inversion). Therefore if it is bounded in z D 1, it
has to be convergent on a disk properly containing the unit circle. If L1 � L2; then
d1.z=k/ 	 d2.z=k/, and since the Taylor coefficients are nonnegative, it is sufficient
to look for singularities on the positive half-line. There d1.z=k/ must be convergent



118 5 Syntax

if d2.z=k/ is convergent, so �.L1/ 	 �.L2/. Finally, if d.z=k/ is convergent on the
whole plane, then f .1/ D P1

nD0 rn < 1, so L must be finite.
Discussion Which of these three measures is more advantageous depends on the
situation. Neither Bernoulli nor combinatorial density is invariant under multipli-
cation with an arbitrary string, but for Abel density and for saturation we have
�.L/ D �.˛L/ D �.L˛/ and �.L/ D �.˛L/ D �.L˛/ for any string ˛ and for
any L, not just those with zero density. While (5.20) does not always yield a numer-
ical value, Bernoulli density always exists. Although this suggests that ı would be
a better candidate for a basic measure in quantitative comparisons than �, there is
an important consideration that points in the other direction: while Bernoulli density
is only an exterior measure, additive only for languages closed under right multipli-
cation, Abel density is always additive. If L is not closed, there is an ˛ 2 L and a
ˇ 2 V � such that ˛ˇ 62 L. Either ˛ is a prefix or it contains a left factor ˛0 2 L that
is. Consider the two-member language X D f˛0; ˛ˇg:

ı.X/ D p.˛0/ 6D p.˛0/C p.˛ˇ/ D ı.X \ L/C ı.X n L/
Thus, by Caratheodory’s theorem, L cannot be measurable. Note also that for
languages closed under right multiplication rnC1 � krn, so the coefficients in
d.z=k/ D P1

nD0 rnz
n=kn are nondecreasing. Therefore the coefficients of the

Taylor expansion of .1 � z/d.z=k/ are nonnegative, and the Abel density � also
exists.

Now we are in a better position to return to our motivating example, the approx-
imation of the Dyck language D1 by the languages Dk

1 that contain only matching
parentheses of depth k or less. The number of strings of length 2n in D1 is given
by r2n D �

2n
n

�
=.n C 1/, so d.z/ D .1 � p

1 � 4z2/=2z2 and thus �.D1/ D 0.
This makes all three finer measures discussed so far usable: taking the left and
the right parenthesis equiprobable, ı.D1/ D 1=22 C 1=24 C 1=26 C : : : D 1=3,
�.D1/ 
 0:968513, and �.D1/ D 1. Using Bernoulli density, it is clear that
the Dk

1 approximate D1: the shortest string in D1 n Dk
1 has length 2k C 2 and

ı.D1 nDk
1 / D 3=4k , which tends to zero as k tends to infinity. Using saturation, it is

equally clear that the Dk
1 do not approximate D1: no matter how large k we choose,

the convergence radius of the differences remains 1.
Exercise 5.6 IsDk

1 defined by a bounded counter of depth k? Compute �.D1 nDk
1 /.

One class of weighted languages that deserves special attention is when the weights
are set to be equal to the number of different derivational histories of the string. In
the case of CFGs, we can obtain the generating function d.z/ that counts the number
of occurrences by solving a set of algebraic equations that can be directly read off
of the rules of the grammar (Chomsky and Schützenberger 1963). For example, the
grammar S ! aSbjSS j� generatesD1, and the generating function associated with
the grammar will satisfy the functional equation d.z/ D z2d.z/C d2.z/C 1. Thus
d.z/ will have its first singularity in

p
3 > 1, so the language is supersaturated: its

saturatedness 2
p
3 can be interpreted as the degree of its ambiguity.

If strings of length n are generated by some CFG approximately an times, then
anCm 
 anam because context-freeness makes disjoint subtrees in the generation
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tree independent. Therefore, an 
 cn and the base c is a good measure of ambiguity.
By the Cauchy-Hadamard theorem, � D lim sup n

p
an D c. Note also that in the

unambiguous case, log.�/ D lim sup log.an/=n can be interpreted as the channel
capacity of the grammar (Kuich 1970). In the unambiguous case as well as in the case
of context-free languages where weights are given by the degree of ambiguity, the
generating functions corresponding to the nonterminals satisfy a system of algebraic
equations, and therefore d.z/ will have its first singularity in an algebraic point.
Therefore, in such cases, saturation and Abel density are algebraic numbers.

Although from the applied perspective issues such as approximating the Dyck
language are meaningful only if probabilities, rather than derivational multiplicities,
are used as weights, the following definitions are provided in their full generality.
Given two weighted languages f and g over the same alphabet T and a precision
" > 0, we define the underestimation error U."/ of g with respect to f by

U."/ D
X

˛2T �

g.˛/<f .˛/�"

f .˛/ � g.˛/ (5.22)

and the overestimation error by

T ."/ D
X

˛2T �

g.˛/>f .˛/C"

g.˛/ � f .˛/ (5.23)

If we start from an unweighted language and use the values of the characteris-
tic function as weights, (5.22) and (5.23) are often divergent, but for probabilistic
languages they always converge and tell us a great deal about the structure of the
approximation. To apply them to the Dyck case, where different measures of approx-
imation so far have led to different conclusions, we need to endow both D1 and Dk

1

with a probability function. We could start by setting all Dyck strings of length 2n
equiprobable and prescribing a reasonable distribution, such as lognormal, on over-
all length. Yet one would inevitably feel that this is more in the nature of a problem
book exercise than something definitive about the way language works – what we
need is empirical data.

Here we shall briefly consider parenthetical constructions in the Linux kernel.
This has the advantage of removing performance limitations: on the ‘hearer’ side,
the compiler, unlike humans, is ready to handle parentheticals of large depth, and on
the ‘speaker’ side, the authors write the code with a great deal of attention and using
long-term memory aids rather than relying on short-term memory alone. Purists may
object that kernel hacking relies on skills very distant from human language produc-
tion and comprehension, but in written, let alone spoken, language we rarely find
embedding of depth 5, and depth 7 is completely unattested, while in the kernel, in
just three hundred thousand expressions, we find over a thousand with depth 7 and
dozens with depth 10 (topping out at depth 13). Restricting our attention to English
prose would only serve to trivialize the issue.

A simple but attractive model of Dk
1 has one state for each depth starting at 0: at

each level, we either open another parenthesis with probability pi or close one with
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probability 1�piC1. At the bottom, we have p0 D 1 and at the top we assume pk D
0, so as to make the automaton finite. Since the model only has k�1 free parameters
and is perfectly symmetrical left to right, it will fail to account for many observable
regularities; e.g. that back-loaded constructions like (()(())) are more frequent than
their front-loaded counterparts like ((())()) by about half.
Exercise 5.7� Take a large body of code, remove program text, format strings, and
comments, and replace all types of left and right parentheses by ( and ), respec-
tively. Fit a model with parameters p1; : : : pk�1 as above, and compute under- and
overestimation errors for different values of " 
 1=

p
N , where N is your corpus

size. For " > 0 are the under- and overestimation errors always coupled in the
sense that changing one will necessarily change the other as well? Does the model
improve from increased k? Can better models be found with the same number of free
parameters?

5.4.3 Weighted rules

The idea that we should investigate weighted languages using weighted grammars
is a natural one, and probabilistic generalizations of the entire Chomsky hierarchy
of grammars were presented early on (for finite automata, see Rabin 1963). In these
systems, we assign some value between 0 and 1 to each production, and require
these values to sum to one for all productions sharing the same left-hand side. Here
we depart significantly from the historical line of development because probabilistic
grammars at or above the CFG level have shown very little ability to characterize
the distributions that occur in practice. The probabilistic generalizations of finite
automata that are of practical and theoretical significance, finite .k-/transducers and
(hidden) Markov processes, will be discussed in Section 5.5. Here we turn directly
to context-sensitive rules because the practice of associating probabilities to such
rules has long been standard practice within sociolinguistics, the study of language
variation.

In his study of the speech patterns in New York City, Labov (1966) noted that
contraction of is to ’s as in John’s going is almost universal among both white and
African-American speakers when the subject is a pronoun (He’s going). When a full
noun ending in a vowel precedes, contraction is more likely than when a full noun
ending in a consonant precedes, p.Martha’s going/ > p.Robert’s going/. When the
contracting is is copulative, as in John’s a good man, or locative, as in John’s in the
bathroom, contraction is less likely than when it appears before an ordinary VP as
in John’s going, and contraction is most likely preceding the future auxiliary, as in
John’s gonna go.

Arranging the factors in three rows by four columns, with i running over the
values pronoun, V-final, C-final and j running over the values copula, locative, ordi-
nary, gonna, the probabilities (observed frequencies) of is-contraction form a 3 � 4
matrix whose values pij decrease with i and increase with j . The original additive
variable rule model (Cedergren and Sankoff 1974) simply assumed that there are
additive constants �1; �2 and ı1; ı2; ı3 such that pij D p0 C Pi

kD1 �k C Pj

lD1
ıl .
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Obviously, there is no guarantee that the observed pattern of frequencies can be fully
replicated. The model assumed finding the parameters by maximum likelihood fit.

When the observed pij are small (close to 0), often a good fit can be found. When
the pij are large (close to 1), we can take advantage of the fact that the same out-
come, e.g. deleting a vowel or voicing a consonant, can be equally well analyzed by
the obverse rule (addition of a vowel, devoicing a consonant), for which the appli-
cation probability will come out small. For the case where the pij are close to 1/2,
Cedergren and Sankoff (1974) also introduced a multiplicative variable rule model
where the sums are replaced by products or, what is the same, an additive model
of log probabilities is used. However, it is unclear on what basis we could choose
between the additive and the multiplicative models, and when the probabilities are
outside the critical ranges neither gives satisfactory results.

As readers familiar with logistic regression will already know, most of these
difficulties disappear when probabilities p are replaced by odds p=.1 � p/. We
are interested in the effect some factors F1; : : : ; Fk have on the odds of some
event H like is-contraction. We think of the Fi as possibly causative factors
over which we may have control in an experiment. For example, if the experi-
menter supplies the proper name at the beginning of the sentence, she may decide
whether to pick one that ends in a consonant or a vowel. In order to account
for factors that lie outside the experimenter’s control (or even awareness), we
add a background factor F0. By Bayes’ rule, we have P.H jF0F1 : : : Fk/ D
P.H jF0/P.F1 : : : FkjHF0/=P.F1 : : : FkjF0/ and similarly P.H jF0F1 : : : Fk/ D
P.H jF0/P.F1 : : : FkjHF0/=P.F1 : : : FkjF0/ for the complementary event H .
Dividing the two, we obtain the odds P.H/=P.H/ as

O.H/ D P.H jF0/P.F1 : : : FkjHF0/

P.H jF0/P.F1 : : : FkjHF0/
(5.24)

because the terms P.F1 : : : FkjF0/ simplify. Taking logarithms in (5.24), we see that
the log odds of H given the factors F0 : : : Fk are now obtained as the log odds of H
given the background plus log.P.F1 : : : FkjHF0/=P.F1 : : : FkjHF0//. When the
F1; : : : ; Fk are independent of F0, which lies outside the control of the experimenter,
and of each other (which is expected given that the experimenter can manipulate each
of them separately), we can apply the product rule of conditional probabilities and
obtain

e.H jF0 : : : Fk/ D e.H jF0/C
X

log
P.Fi jHF0/

P.Fi jHF0/
(5.25)

where we use e.AjB/ to denote the log odds of A given B . While (5.25) is exact
only as long as the independence assumption is met, we take it to be indicative of
the general class of models even when independence is not fully assured. Log odds
define a surface over the space spanned by the Fi , and (5.25) is a gradient expansion
with constant term e.H jF0/ plus some functions (logs of conditional probability
ratios) that we may as well assume to be linear since they are known to us only at
two points, when the trigger Fi is present and when it is absent.
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In the terminology of modern machine learning, the independent (experimenter-
controlled) variables or triggers Fi are called features or predicates.2 Generally,
features are categorial (present or absent, on or off), and we do not assume that
they are logically or empirically independent of each other. For example, the feature
‘preceding word is vowel-final’ is always on when the subject is he or she, yet the
presence of he/she in that position is such a salient trigger of is-contraction that we
may want to treat it as a feature on its own. From (5.25) we take the lesson that the log
odds of the dependent variable are to be sought in the form e.H/ D �0 CP

�iFi ,
but note that in sociolinguistics the primary goal is data modeling, describing the
observed probabilities with the least number of parameters, while in machine learn-
ing the goal is predicting the value of the dependent variable given some features Fi

(these two goals are not necessarily different).

5.5 The regular domain

Given a system of grammatical description, we would like to characterize both the
set of grammars that can be written in this system and the set of languages that can
be described by such grammars. In the combinatorical view, a language is identified
as a stringset, and weak generative capacity refers to the set of formal languages
that can be generated by the permissible grammars, while strong generative capac-
ity is defined as the structure-generating capacity of the system (Chomsky and Halle
1965a). In some cases, it is possible to investigate issues of strong generative capacity
by linearization, but, on the whole, less combinatorical views of syntax are not served
well by these definitions. Strong generative capacity needs significant reworking
before it can be put to use over the wider range of grammatical theories considered
here (see Rogers 1998, Miller 1999).

Weak generative capacity is practically meaningless when it comes to proba-
bilistic versions of the theory: if defined through niveau sets, only the full stringset
†� can be obtained in the limit. One could in principle use f 0

0 to encode an arbi-
trary stringset, but this runs counter to the probabilistic interpretation, where small
differences in weight are considered empirically undetectable. If defined so as to
include the actual numerical values, the study of weak generative capacity quickly
turns into a study of algebraic independence and transcendence degree: we discuss
the reasons for this in Section 5.5.1, where we treat weighted FSA and transducers.
In Section 5.5.2, we turn to hidden Markov models, which play a critical role in the
applications.

5.5.1 Weighted finite state automata

Probabilistic finite state automata (PFSAs) are defined as FSAs with the addi-
tional requirement that the weights associated to all transitions that can be taken

2 This terminology is completely foreign to sociolinguistics, where ‘feature’ always means
distinctive feature in the sense of Section 3.2. Since in syntax and semantics ‘predicate’ is
always used in the logical sense, there is no easy way out.
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from a given state on scanning a symbol sum to one. Note that we do not require the
probabilities of all transitions that leave a state to sum to one. In fact, if the alphabet
has n symbols the total weight of such transitions will be n. For a one-letter alphabet
already, there is the following theorem.
Theorem 5.5.1 (Ellis 1969) There exist probabilistic languages f W fag� ! RC that
cannot be characterized by any PFSA.
The original proof by Ellis explicitly constructs an infinite set of weights as 1=

p
pi ,

where pi is the smallest prime larger than 4i and proceeds by counting degrees of
field extensions. In response, Suppes (1970) argued that

From the empirically oriented standpoint : : : Ellis’ example, while perfectly
correct mathematically, is conceptually unsatisfactory, because any finite
sample of L drawn according to the density p could be described also by a
density taking only rational values. Put another way, algebraic examples of
Ellis’ sort do not settle the representation problem when it is given a clearly
statistical formulation. Here is one such formulation. : : :
Let L be a language of type i with probability density p. Does there always
exist a probabilistic grammar G (of type i ) that generates a density p0 on L
such that for every sample s of L of size less than N and with density ps the
null hypothesis that s is drawn from .L; p0

s/ would not be rejected?
I have deliberately imposed a limit N on the size of the sample in order to
directly block asymptotic arguments that yield negative results.

Suppes conjectured that the problem, stated thus, has an affirmative solution. To
approach the issue formally, we first define a weighted transducer as a mapping
f W †� � �� ! R, where † and � are finite alphabets and R is a semiring. Note
that in the general case we do not require the mapping to be homomorphic in the
sense that if �; � 0 2 †� and �; � 0 2 ��, then f .�� 0; �� 0/ D f .�; �/ � f .� 0; � 0/
(here � is the product operation of R).

To recover our earlier definition of weighted languages as a special case, we set
† D � and take the transduction between †� and †� to be the identity mapping.
(Again, there is no requirement that weights multiply and f .�� 0/ D f .�/ � f .� 0/ –
were we to impose such a requirement, the only weighted languages would be
Bernoulli languages.) This more complicated definition has the advantage that the
definition of composing weighted transductions given below will extend smoothly
to the case of transducing a weighted language by a weighted transduction. If
f W †� ��� ! R and g W �� ��� ! R are two weighted transductions, their com-
position f ı g is defined to assign .�; ı/ the weight

P
�2�� f .�; �/ � g.�; ı/, where

� refers to the multiplication operation and
P

to the addition operation of R. (While
the definition is meaningful for all kinds of weighted transductions, the motivating
case is that of probabilities.)

Of central interest are weighted finite state transducers (WFST) given by a
finite set † of states, and a finite set of weighted transitions .b; a; l1; � � � ; ln; r/
where b and a are the states before and after the move, the lj are letters scanned
on the j th tape during the move or �, and r is a weight value. When for every b
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and l1; � � � ; ln there is at most one a 2 S such that .b; a; l1; � � � ; ln; r/ 2 T with
r ¤ 0, the transducer is deterministic, and when � never appears in any transition it
is called length-preserving. There are two natural ways to proceed from weighted
transductions to weighted automata: either we can zero out the input alphabet and
obtain a pure generating device, or we can zero out the output alphabet and obtain
a pure accepting device. Either way, to fully characterize a weighted FSA over a
one-letter alphabet fag requires only a set of states † D fs1; : : : ; sng, for each state
i a set of values ti;j that characterizes the probabilities of moving from state si to
sj upon consuming (emitting) an alphabetic symbol, and a set of values li;j that
characterizes the probabilities of moving from state si to sj by lambda-move (i.e.
without consuming (emitting) an alphabetic symbol). For the sake of concreteness,
in what follows we will treat PFSA as generating devices – the results presented here
remain true for acceptors as well. To simplify the notation, we add a start state s0 that
only has �-transitions to si for i > 0 and replace all blocked transitions by transitions
leading to a sink state snC1 that has all (emitting and nonemitting) transitions looping
back to it and has weight 0 in the vector w that encodes the mixture of accepting
states. This way, we can assume that in every state si and at every time tick the
automaton A will, with probability 1, move on to another state sj and emit (or not
emit) a symbol during transition with probability ti;j .li;j /.

The probability ofA emitting ak is the sum of the probabilities over all paths that
emit a k times. Let us introduce a zero symbol z and the automaton A0 that emits z
whereverAmade a �-transition. This way, the probability ofA emitting a; P.ajA/ is
the same as

P
k;l�0 P.z

kazl jA0/, similarlyP.a2jA/ D P
k;l;m�0 P.z

kazlazmjA0/,
and so forth. To compute the probability over a fixed path si1 ; si2 ; : : : ; sin , we sim-
ply multiply the ri associated to the transitions. If the transition matrix is T C L,
where ti;j is the probability of the emitting and li;j the probability of the nonemit-
ting (lambda) transition from si to sj , the probability of going from si to sj in exactly
k steps is given by the .i; j /th element of .T C L/k . It is convenient to collect all
this information in a formal power series p.a; z/ with coefficients in R and noncom-
muting variables a and z: in matrix notation, p.a; z/ D P

k�0.aT C zL/k . Given a
fixed start state s0 and some weighted combination w of accepting states, the proba-
bility of a string x1; : : : ; xn 2 fa; zgn being generated by A0 is obtained as the inner
product of the zeroth row of .T C L/n with the acceptance vector w just as in The-
orem 5.4.1. To obtain the probability of, say, a according to A, we need to considerP

k;l�0L
kTLl , to obtain P.a2jA/ we need to consider

P
k;l;m�0L

kTLlTLm, and
so forth. By collecting terms in expressions like these, it is clear that we are interested
in matrix sums of the form I C LC L2 C L3 C : : :.

Notice that the spectral radius of L is less than 1. Since T C L is stochastic,
the rows of L sum to at most 1, and strictly less for all rows that belong to states
that have outgoing emitting transitions with positive weight. The row norm of the
submatrix R obtained by deleting the zeroth rows and columns will be strictly less
than one as long as pure rest states (those with no emission ever) are eliminated, a
trivial task. Therefore the eigenvalues of L are the eigenvalues of R and zero, and as
the eigenvalues of R are all less than one, the eigenvalues of L are less than one, and
thus the matrix series I CLCL2 CL3 C : : : converges to .I �L/�1. This gives us a
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simple formula for P.ajA/ D eL.I �L/�1T .I �L/�1w (e is the vector that is 1 on
the zeroth component and zero elsewhere, and w is the vector encoding the weighting
of the final states – the initial L is present because the zeroth state by convention has
no emitting transitions), P.a2jA/ D eL.I �L/�1T .I �L/�1T .I �L/�1w, and in
general

P.akjA/ D eL..I � L/�1T /k.I � L/�1w (5.26)

Since the only parts of (5.26) dependent on k are the kth powers of a fixed matrix
.I � L/�1T , the growth of P.akjA/ is expressible as a rational combination of
kth powers of constants �1; �2; : : : ; �n (the eigenvalues of .I � L/�1T ) with the
fixed probabilities ti;j and li;j . Therefore, the ratios of probabilities P.akjA/ and
P.akCi jA/ will tend to fixed values for all fixed i . This proves the following
characterization of PFSA languages over a one-letter alphabet:
Theorem 5.5.2 Any PFSA language p W fag� ! RC is ultimately periodic in the
sense that there exists a fixed k and l such that for all 0 	 i < k either all weights
p.aiCrk/ are zero once i C rk > l or none of the weights p.aiCrk/ are zero for any
r such that i C rk > l and all weight ratios p.aiCrkCk/=p.aiCrk/ tend to a fixed
value �k

1 < 1.
Discussion Since both .I �L/�1 and T are nonnegative, so is .I �L/�1T . If this is
irreducible (every state is reachable from every state), the Perron-Frobenius theorem
guarantees the existence of a unique greatest eigenvalue �1. If it is reducible, each
transitive component corresponds to an irreducible block on the main diagonal, and
will have its unique largest eigenvalue. When there is a unique largest one among
these, it will dominate the high powers of the matrix, but if different blocks have the
same largest eigenvalue �1, this will appear with multiplicity in the overall matrix
and entries over the main diagonal can contribute O.kc�k

1/ where c is the number
of components. However, such a linear factor to the exponentially decreasing main
term will be removed by taking ratios.

Example 5.5.1 Let p0 D 2�1; p1 D p2 D p3 D p4 D 2�2=221
; p5 D : : : D

p20 D 2�3=222
, and in general divide the probability mass 2�n among the next 22n

strings. By Theorem 5.5.2, this distribution will differ from any distribution that is
obtained from a PFSA by inspecting frequencies in finite samples, even though all
probabilities are rational, fulfilling Suppes’ dictum.
Discussion Theorem 5.5.2 provides, and Example 5.5.1 exploits, exactly the kind of
asymptotic characterization that Suppes wanted to avoid by limiting attention to sam-
ples of a fixed size < N . In hindsight, it is easy to see where the strict empiricism
embodied in Suppes’ conjecture misses the mark: with the availability of corpora
(samples) with N > 1010, it is evident that our primary goal is not to characterize
the underlying distribution to ten significant digits but rather to characterize the tail,
where probabilities of 10�40 or many orders of magnitude below are quite common.
Recall from Section 4.4 that perfectly ordinary words often have text frequencies
below 10�6 or even 10�9, so sentences like In our battalions, dandruffy uniforms
will never be tolerated will have probability well below 10�40. Even if we had cor-
pora with N > 1040, the goal of reproducing the exact measured frequencies would
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be secondary: the primary goal is to make reasonable predictions about unattested
events without memorizing the details of the corpus.

The entire corpus available to language learners in the course of, say, the first
twenty years of their lives, is much less than 1010 words, yet they have a clear sense
that some hitherto unseen strings such as furiously sleep ideas green colorless are
much less likely than other, presumably also unseen, strings such as colorless green
ideas sleep furiously. By now it is clear that our interest is precisely with comparing
low-probability events, and the central measure of success is whether, by making
good enough predictions about the high-probability examples that are observable in
the sample, we obtain enough generality to cover the low-probability cases, which
will in general not be observable. In an automaton with 106 states (quite feasible with
today’s technology) and 102 letters (well below the size of commonly used tagsets),
we would have over 1014 free parameters, a huge number that could only lead to
overfitting, were we to follow Suppes’ dictum and restrict ourselves to precisely
matching samples of size 1012. The key issue, as we shall see in Chapter 8 and
beyond, is to reduce the number of parameters, e.g. by appropriately tying together
as many as possible.

By homomorphically mapping all tokens on the same token a, we obtain the
length distribution of the sample. If the initial weighted language is regular, its
homomorphic image will be also, which by Theorem 5.5.2 means it must be ulti-
mately periodic. As the proof above makes clear, for any N we are at total liberty to
prescribe a probability distribution given by a nonincreasing sequence of the first N
values (with judicious use of �-moves, nonmonotonic orders can also be simulated),
and in this sense the conjecture proposed by Suppes trivially holds – in fact it holds
in the stronger form that for any language of type i < 3 we can also fit a PFSA (type
3 grammar) to the first N terms of a distribution to any required precision. A more
interesting question would be to look at the intrinsic complexity of the parameter
space: how many parameters do we really need to describe the first N length obser-
vations. If the probabilities are p1; : : : ; pr , we expect Npr copies of ar so the last r
to show up in the sample will be pr 
 1=N . In the regular case, pr is asymptotically
pr for some p < 1, so we expect r logp 
 � logN or, since logp is a constant
(negative) factor, r 
 logN . In other words, for corpora with 1010 strings, a real-
istic task is to fit a PFSA with about 23 states .2 � 232 
 103 free parameters) to
approximate its length distribution by regular means.
Exercise 5.8� Obtain two gigaword or larger corpora from the Linguistic Data Con-
sortium or by crawling the web, and parse them into sentences along the lines of
Mikheev (2002). What is the length distribution of the first corpus? How many
parameters are needed for a PFSA that provides a good fit? How well does this PFSA
describe the length distribution of the second corpus?
To get a finer picture than what can be provided by the length distribution, and also
to extend the picture from the regular to the context-free case, let us briefly con-
sider t -letter alphabets, where t is the size of the category system, by mapping each
observed sequence of words on the sequence of corresponding preterminals. (As a
practical matter, for corpora of the size discussed here, disambiguating the category
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can no longer be done manually: instead of a perfect data set, we have one that may
already carry considerable POS tagging error.) At first, we will ignore word order,
and replace strings over a t -letter alphabet by count vectors of dimension t whose
j th component cj counts how often the j th symbol appeared in the string. A classic
theorem of Parikh (see e.g. Salomaa 1973 Ch. II/7) asserts that for every CFL there
is a regular language with the same count vectors. However, this theorem does not
smoothly extend to weighted languages where the weight is given by multiplicity
(number of derivations):
Example 5.5.2 Binary trees. The grammar S ! SS ja generates all sequences ak as
many times as there are binary trees with k leaves, i.e.

�
2n
n

�
1

nC1
times.

If we assign probability p to the branching and q to the nonbranching rule, the prob-
ability assigned by an individual derivation of ak will be pk�1qk , and it follows
from Stirling’s formula that the total probability (taken over all derivations) will also
contain a term proportional to k�3=2. So log probabilities would show linearity for
individual derivations but not for the totality of derivations, and therefore by Theo-
rem 5.5.2 the weighted CFL of binary trees cannot be generated by any PFSA. This
is worth stating as the following theorem.
Theorem 5.5.3 PCFGs generate more languages than PFSAs.
Example 5.5.3 Bernoulli languages. These are generated by finite automata of a
very reduced sort: only one accepting state, the initial state, which has outgoing arcs
looping back to itself for each letter si of the alphabet, with the transition assigned log
probability qi . To keep the sum of assigned probabilities convergent, it is necessary
only to add a sink state with a lambda-transition leading to it with any small positive
probability z (for convenience, we will use z D 0:5). In a Bernoulli language, the
log probability of a count vector l D .l1; : : : ; lt / will be given by the multinomial
formula

log

 
l1 C : : :C lt

l1; : : : ; lt

!
C .q; l/C log.1=2/

rX
iD1

li (5.27)

Here the multinomial coefficients again come from the multiple orders in which dif-
ferent strings with the same count vector could be obtained. If we are interested in
probabilities assigned to strings (with a fixed order of letters), the first term of (5.27)
disappears and only linear terms, namely the scalar product .q; l/ of q and l, and the
length normalization term, remain.
Theorem 5.5.4 PCFGs and PCSGs over a one-letter alphabet do not generate all
weighted one-letter languages.
Proof Define the weights as a set with infinite transcendence degree over Q. (That
such sets exist follows from the fundamental theorem of algebra and from the exis-
tence of irreducible polynomials of arbitrary degree. If t1; t2; t3; : : : is such a set,
so will be s1; s2; s3; : : : where si D jti j=.1 C jti j/2i , and the latter will also sum
to 	 1). Now consider the generating functions which are defined by taking the
nonterminals as unknowns and the terminal a as a variable in the manner of Chom-
sky and Schützenberger (1963), except using the probabilities assigned to the rules
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as weights. For example the grammar S ! SS ja of binary trees used in Exam-
ple 5.5.2 yields the functional equation S D pS2 C qa. In the general case, solving
the set of equations for the generating function associated to the start symbol S is
very hard, but over a one-letter alphabet the only variable introduced by CF or CS
rules will of necessity commute with all probabilistically weighted polynomials in
the same variable. Since all defining equations are polynomial, the output probabil-
ities are algebraically dependent on the rule probability parameters. Since a CF or
CS rule system with n rules can generate at most n algebraically independent values,
it follows that s1; s2; s3; : : : ; snC1 cannot all be obtained from the CFG or CSG in
question. ut

These results may leave the reader with some lingering dissatisfaction on two
counts. First, what about Type 0 grammars? Second, there is still the Suppes objec-
tion: what does all of this have to do with transcendence degree? With Theorem 5.5.2
at hand, we are in a better position to answer these questions.

For Turing machines, an important reduction was presented in de Leeuw et al.
(1956), showing that a Turing machine with access to a random number generator
that produces 1s and 0s with some fixed probability p is equivalent to a standard
TM without random components as long as p itself is computable. Any string of
0s and 1s can be uniquely mapped on a language over a one-letter alphabet: we set
ai 2 L if the i th digit was 1 and ai 62 L if it was 0. If the string was generated
by a random number generator with a fixed probability p for 1s, the density of the
associated language will be p. It is easy to program a Turing machine that outputs
a string (or language) with no density (see Section 5.4.1 above), but it is impossible
to program a TM that outputs (or accepts) a language with noncomputable density.
In other words, the key issue is not the randomness of the machinery but rather the
complexity of the real numbers that express the probabilities.

At the bottom of the complexity hierarchy, we find the rationals: every rational
number between zero and 1 (and only these) can be the density of an unweighted lan-
guage over a one-letter alphabet generated/accepted by some FSA. Adding weights
p1; : : : ; pk to an FS grammar or automaton accomplishes very little since we will
of necessity remain in their rational closure. However, real numbers are powerful
carriers of information: as a moment of thought will show, all algorithms can be
encoded in a single real number. When we add just one noncomputable p to the
weight structure, we have already stepped out of the TM domain.

At the next level of the hierarchy, we find the algebraic numbers. These corre-
spond to polynomials and thus, via generating functions, to context-free grammars
and languages. While the relationship is not very visible over the one-letter alphabet
because CFLs have letter-equivalent FSLs, and one needs to consider the structure to
see the difference, algebraic numbers (and only these) arise naturally at every stage
of the analysis of unweighted CFGs – for the weighted case, the same caveat about
introducing arbitrary reals applies.

As for Suppes’ objection, all algebraic numbers, and some transcendental ones,
are computable. By Liouville’s theorem, algebraic numbers of degree n can only be
approximated by rationals p=q to order q�n – if a number can be approximated at a
faster rate, it must be transcendental. (Of course, it may still be transcendental even
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if it has no faster approximation.) Arguments based on transcendence can be thought
of as convenient shorthand for arguments based on order of growth. The analogy is
loose, and we shall not endeavor to make it more precise here, but Theorem 5.5.2
is a clear instance of replacing the heavy machinery of transcendence by a more
pedestrian reckoning of growth (in our case, exponential decay).
Exercise 5.9� Prove Theorem 5.5.4 by direct appeal to order of growth.

5.5.2 Hidden Markov models

A striking consequence of Zipf’s law (see Section 4.4) is that in the same syntactic
category we can find words of radically different empirical frequencies. Indeed, by
Corollary 4.4.1, vocabulary is infinite, and as there are only finitely many strict lex-
ical categories (see Section 5.1.1), by the pigeonhole principle there will be at least
one category with infinitely many words, and in such categories, arbitrarily large
differences in the log frequencies of the high- and the low-frequency items must
be present. For example, frequent adjectives such as red occur over a million times
more often than rarer ones such as dandruffy in the gigaword corpora in common use
today, and as the corpus size grows we will find even larger discrepancies.

Here we begin introducing hidden Markov models (HMMs) by using the POS
tagging problem as our example. Formally, a discrete hidden Markov model is
composed of a finite set S of hidden states (in the example, there is one state for
each POS tag), a transition model that assigns a probability tij to the transition from
state si to state sj and an emission model that assigns, for each state s and for each
output symbol w, a probability Es.w/. A continuous HMM does not have a discrete
set of output symbols, but rather a continuous set of (multidimensional) output values
o, and the emission model is simply a continuous probability distribution Es.o/ for
each hidden state s (see also Section 8.2). The hidden aspect of the model comes
from the fact that the same output, e.g. the word run, can be emitted from more than
one state. In our example, there is a significant nonzero probability that sverb will
emit it but also a (smaller, but not zero) probability that it is emitted by the snoun
state. In other words, from seeing the output run we cannot determine which state
the model is in; this information is (at least to some extent) hidden.

Since there are only finitely many states (in the simple POS tagging example
considered here, generally about 200), even the smallest nonzero transition probabil-
ity is expected to be rather large, on the order of 10�3–10�4. Smaller numbers can
be used of course, but in any given model there are only finitely many transitions,
so there will be a smallest nonzero transition probability. This is in sharp contrast to
emission probabilities, where an infinite set of symbols associated to a state will of
necessity give rise to arbitrarily small nonzero values. In POS models, emission val-
ues going down to 10�9 are quite common, and in the continuous case (which plays
a key role in speech and handwriting recognition; see Chapters 8 and 9), emission
probabilities routinely underflow the 64 bit floating-point range (which bottoms out
at around 10�300) so that log probabilities are used instead. Altogether, it is not just
the obvious Markovian aspect that makes HMMs so suitable for language modeling
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tasks, but the clear segregation of the transition and emission models also plays a
critical role.

Although typically used for recognition tasks, HMMs are best viewed as genera-
tion devices. In a single run, the model starts at a designated state s0 and, governed by
the transition probabilities tij , moves through a set of hidden states si1 ; si2 ; : : : ; sin ,
emitting an output symbolw1; w2; : : : ; wr at each state with probability governed by
Esij

. We say that the probability the model assigns to the output string w1w2 : : : wr

in a given run is the product of the transition and emission probabilities over the
run and that the probability assigned to the string by the model is the sum of the
probabilities assigned in all runs that output w1w2 : : : wr .

HMMs are, at least in the discrete case, clearly finitistic devices that assign prob-
abilities to strings. Yet they differ from WFSAs and WFSTs in some ways even if we
ignore the possibility of emitting an infinite variety of symbols. First, WFSAs and
WFSTs emit on transitions, while HMMs emit at states. As with Mealy and Moore
machines, this distinction carries no theoretical significance but implies significant
practical differences in the design of software libraries. Second, older definitions of
HMMs may use an initial probability distribution to decide in which state the model
starts in a given run. Here, as in the case of WFSTs above, we use a designated
(silent) start state instead – this again entails no loss of generality. The main novelty
that HMMs bring is thus the segregation of emissions from transitions: as we shall
see, this can be thought of as a form of parameter tying.

While in theory it would be possible to abandon the hidden aspect of HMMs
and replace each (state, emission) pair by a dedicated state with only one (weighted
but deterministic) nonsilent emission possibility, this would complicate the model
enormously. For an output inventory of n symbols and a state space of k states, we
would now need nk states, with .nk/2 parameters (transition probabilities) to learn,
as opposed to the k2 C nk required by the HMM. Since k is a fixed (and rather
small) number, as n grows to realistic values, the system would very soon leave the
realm of practicality. Much of the early criticism leveled at Markov models (Miller
and Chomsky 1963) grew out of this issue. The surprising economy provided by
collecting all emissions from a given underlying state was discovered only later, as
attention moved from ordinary ‘open’ Markov chains to HMMs.

Hiding the states from direct inspection was a move very similar to the one taken
by Chomsky (1957), who introduced underlying structure different from the observ-
able surface structure and used the former to characterize the latter. In the simple
POS tagging model taken as our driving example here, the mental state of the speaker
is characterized as a succession of POS tags, and the observables are the words. In
a speech recognition model, the underlying states are the phonemes, and the sur-
face forms are acoustic signals. To recover the underlying states, we need to perform
analysis by synthesis, i.e. to compute the most likely state sequence that could have
emitted the words in the observed sequence. This is done by the Viterbi algorithm,
which is based on a data structure called a trellis: a matrix M with k rows and as
many columns as there are items in the surface string.

The central idea is that to keep track of the sum of the probabilities generated by
every possible run, it is best to group together those runs that end in the same state.
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To compute the probability of a string w1w2 : : : wr in a given run requires 2r prod-
uct operations, and as there are kr possible runs to consider, a naive algorithm would
use 2rkr multiplications and kr additions. Using the trellis, we first populate the first
column ofM according to the initial transition probabilities times the emission prob-
abilities from each state – this takes 2k product operations. Once column i has been
populated, the j th element of column iC1 is constructed as

Pk
lD1 tljMliEj .wiC1/,

which requires 2k product and k sum operations per entry, for a total of 2k2 products
and k2 sums per column. Over a run of length r , this is still only 2rk2 products and
rk2 sums; i.e. a number of operations linear in r for any fixed k. Once the trellis
is filled, we simply pick the maxima in each column to obtain our estimate of the
maximum likelihood state sequence. The number of compare operations required is
again linear in r .

A key aspect of hidden Markov modeling is that the HMMs are trainable: rather
then setting the transition and the emission model parameters manually, given a set
of truthed data where both the underlying state and the outputs are known, there
exist highly efficient algorithms to set the model parameters so that the posterior
probability of the truthed observations is maximized. We return to this matter in
Chapter 8 – here we conclude by proving our Theorem 5.4.5 that weighted languages
generated by HMMs have zero density.
Proof We use the same trellis structure as above but simplify the calculation by
exploiting the fact that for each state both the emission probabilities and the outgoing
transition probabilities sum to one. Starting with the 0th state and summing over all
possible outputs w, we see that

Pk
iD1

Pn
j D1 P.wj jsi /t0i D Pk

iD1 t0i D 1; i.e. that
the total weight assigned to strings of length 1 by the HMM is 1 (or less if silent states
are permitted). Similarly, in filling out the second column, by keeping the first output
w1 fixed, the probability mass assigned to all strings of length two that begin withw1

is at most 1, and therefore the total weight of strings of length two is again at most
1. This means that the coefficients ri of the generating function d.z/ are all 	 1, and
therefore d.z/ 	 1=.1 � z/. By (5.20), we have �.L/ D limz!1.1 � z/d.z=n/ 	
limz!1.1 � z/=.1 � .z=n// D .1 � 1/=.1 � .1=n// D 0.
Discussion The same result is obtained by noting the elementary fact that the HMM
assigns a weight of at most r to strings of length at most r , and there are n C n2

C : : :C nr such strings. This is not a bad result since natural languages, conceived
as regular stringsets, also have density zero by Theorem 5.4.3.

Using the finer measures introduced for zero-density languages in Section 5.4.2
above, the saturation � of the weighted language generated by an HMM is at most
1=n, where n is the size of the output alphabet. Note that, for any corpus, the gener-
ating function is a polynomial, which has saturation 0 (polynomials converge on the
whole plane). To model a corpus of size N , we need, by (4.7), about n D cN 1=B

words. As N tends to infinity, 1=n will tend to zero.
The Bernoulli density ı of HMM languages is 	 1 by the first step of the induc-

tive proof of Theorem 5.4.5 given above. As for natural languages, the Bernoulli
density is hard to estimate, but clearly not every sentence is a prefix, so we have
ı.L/ < 1.
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Finally, for combinatorial density � in HMM languages, we have � 	 �n, where
n is the size of the vocabulary (output alphabet), which again tends to 0 as n tends
to infinity. Whether this is the right prediction for natural languages is hard to say.
As long as we treat vocabulary size as finite (a rather dubious assumption in light of
Corollary 4.4.1), combinatorial density will be positive since at least the words that
are suitable for isolated utterances such as Ouch! or Yes will contribute to �. Since
the Zipf constant B is close to 1, the contribution of two-word or longer utterances
to � will vanish as we increase the corpus size, but it is possible that the probability
of one-word utterances remains above some positive lower bound. We are far from
being able to settle the issue: the total probability mass of one-word utterances is
clearly below 0.001, while the best language models we have today have a total of
over- and underestimation errors on the order of 0.2. To put the issue in perspective,
note that for a fixed HMM with fixed vocabulary it is quite trivial to adjust the proba-
bilities of emitting a sentence boundary so that interjections and similar material are
modeled as one-word sentences with a positive probability – in fact, we expect our
models to automatically train to such values without making any manual adjustments
toward this goal.

5.6 External evidence

Just as rational numbers provide a sufficient foundation for all numerical work in
computer science, regular languages with rational weights are sufficient for all empir-
ical work in linguistics (though in practice irrational numbers in the form of log
probabilities are used quite often). Our interest in models of higher intrinsic com-
plexity comes entirely from their capability to assign relevant structures to widely
attested constructions, not from their improved weak generative capacity, which, at
any rate, comes into play only on increasingly marginal examples. In the standard
unweighted setup there are already reasons to prefer the rational models over the
more complex ones, and these are summarized briefly here.

One key issue in selecting the right model is the amount of resources it takes
to compute the structure it assigns. Without some special effort, even innocent-
looking grammatical frameworks such as CG require time exponential in the size
of input: as we discussed above, if the average ambiguity of a word is d (in prac-
tice d 
 1:5/, brute force algorithms require the inspection of dn combinations
to find all structures associated to a string of length n. This sets the outer limits of
weak generative capacity at or below mild context-sensitivity. Such formalisms are
by definition polynomially parsable (see Kracht 2003 Ch. 5 for further discussion).
In particular, polynomial (typically n6) parsing algorithms are known for all widely
used grammar formalisms such as CCGs or TAGs. For the average case, requiring
a polynomial bound is not very ambitious, inasmuch as humans obviously perform
the task in real time on ordinary sentences, but we have little knowledge of how the
human parser is implemented. Also, by carefully constructed garden path sentences
such as

Fat people eat accumulates (5.28)
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it is quite possible to trip up the human parser, so a worst-case polynomial bound
may still make sense.

Another key issue is learnability: it is clear that humans can learn any human
language they are exposed to at an early age. Ideally, we are looking for a class
of grammars such that the correct one can be selected based on exposure to posi-
tive examples only. This puts much more severe constraints on the weak generative
capacity of the system. For example, context-free grammars cannot be learned this
way (Gold 1967). The best lower bound on this problem is perhaps Kanazawa’s
(1996) result that CGs in which the degree of ambiguity for preterminals is limited
to some fixed k are still identifiable in the limit from positive data. For probabilis-
tic CFGs, the situation is better: algorithms that converge to a probabilistic CFL
are widely used. Since language learning takes several years in humans, the known
complexity bounds (e.g. the fact that learning regular expressions is NP-hard; see
Angluin 1980, 1982) are harder to interpret as imposing external constraints on the
class of human grammars.

The structuralist program of defining a discovery procedure whereby the gram-
marian (as opposed to the child learning the language) can systematically extract a
grammar by selectively testing for distributional similarities has been at least par-
tially realized in the work of Clark and Eyraud (2005), who prove that it is possible
to discover CFGs for those CFLs that are substitutable in the sense that positive con-
text sharing between any two � and ı (the existence of ˛�ˇ; ˛ıˇ 2 L) implies full
distributional equivalence (5.5). To the extent that we have already seen examples
such as slept and opened Parliament that share a positive context without being fully
distributionally equivalent (cf. *a bed rarely opened Parliament in), one may rush
to the conclusion that the Kanazawa result cited above is more readily applicable to
natural language, especially as we have not seen examples of arbitrarily ambiguous
words. But in modern versions of CG arbitrary type lifting (automatic assignment
of higher types) is often present, and a realistic theory of grammar induction remains
one of the central unsolved problems of mathematical linguistics.

Part of the interest in the regular domain comes from the fact that there grammar
induction is feasible, and part comes from the fact that once we add memory limita-
tions, theories with richer structural descriptions such as CFGs or LTAGs also reduce
to finite automata. As we shall see in Section 6.3.2, memory limitations, whether
imposed externally on a richer theory or inherent in the system as assumed here,
can be used in a direct fashion to characterize the syntactic congruence by means of
investigating the number of words that are required to complete a partial sentence.
One striking observation is that natural language syntax seems to be enjoying the
following noncounting property Q4.

ax4b 2 L , ax5b 2 L (5.29)

In general, we say that if a language satisfies axkb 2 L , axkC1b 2 L it is
noncounting with threshold k (has property Qk). Obviously the complement of a
noncounting language is also noncounting, with the same threshold. In (5.29) the
number 4 cannot be further reduced because of agreement phenomena. Some lan-
guages, such as Gunwinggu [GUP], distinguish singular, dual, trial, and plural, so x3
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and x4 may require different a or b. However, to make the performance limitations
truly felt, it can be increased: we could say e.g. that no construction distinguishes
between x13 and x14. As an example, consider expressions such as missile, anti mis-
sile missile, anti anti missile missile missile etc. According to Carden (1983), these
provide a simple way to demonstrate that word formation is not finite state: to get
from the n-degree weapon from n�1, we need to prefix anti and suffix missile, which
would yield the language antin missilenC1. But in reality, the enterprise falls apart at
around three: people will accept anti anti missile, anti anti missile missile, and other
forms about as well as those where the number or antis and missiles around the first
missile is properly balanced.

Observation (5.29) has far-reaching consequences for the structure of the formal
apparatus. For an n element set †, the set of † ! † functions is a monoid, with the
role of multiplication played by function composition and the role of identity by the
identity function. Subsets of this set are called transformation semigroups, trans-
formation monoids, and transformation groups, provided they are closed under
multiplication, contain the identity, and are also closed under inverse, respectively.
A classic theorem of Cayley asserts that any group is isomorphic to a transformation
group. The proof extends to monoids and semigroups as well. Given an arbitrary
semigroup (monoid) S , we can take its members to be the set to be transformed
and define the transformation effected by a given semigroup (monoid) element s
(also called the action of s on S ) as the result of multiplying (from the right) by
s. Unlike in groups, where each transformation is a permutation of the elements, in
semigroups multiplying two different elements r and r 0 by s may lead to the same
result rs D r 0s. The number of elements in the image of S under the transformation
is called the rank of the transformation – this equals jS j only if the transformation
is injective.

The importance of transformation semigroups in linguistics comes from the fact
that each element of the alphabet † induces a transformation on the syntactic con-
gruence. Since automata states are in one-to-one relation with classes of the right
congruence, it is natural to identify the semigroup generators with the transforma-
tions of the state space of the automaton induced by the letters of the alphabet. If all
elements of a semigroup S except the identity transform the base set into a singleton
set, S is called a reset semigroup (monoid). To see the utility of this notion, recall
that every word (more precisely, the lexical category of the word) is a member of
the syntactic monoid of the language and acts as a transformation on it. By picking
several words at random, one is extremely likely to introduce unrecoverable ungram-
maticality, i.e. the combined action of these words is to reset the monoid to a sink
state. This is not to say that every word (lexical category) performs a reset, but they
all narrow down what can come next.

The fundamental theorem of semigroup decomposition (Krohn and Rhodes
1965) asserts that every semigroup is a divisor of some semigroup that can be built
up as a wreath product of those semigroups in which every element has extreme
low rank (reset semigroups) with those where every element has extreme high rank,
namely groups. Fortunately, we do not need to consider Krohn-Rhodes theory in
its full generality because Schützenberger (1965) proved that the transformation
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semigroup associated to a language is group-free (has no nontrivial subgroups) if
and only if the language is noncounting. Combining these results gives the following.

Theorem 5.6.1 (McNaughton and Papert 1968) The semiautomaton associated with
a noncounting language is a divisor of a cascade product of reset monoids U2.
Discussion Cascade products A ı B , defined for semiautomata, and the analogous
wreath products A o B , which are defined directly on semigroups, are somewhat
difficult to grasp because the role of the two terms A and B is asymmetrical: once
A is given, B must take a certain form for their cascade or wreath product to be
defined. This is unusual, but not unheard of. For example, if A were an n row by
k column matrix, the only Bs that could participate in a matrix product AB would
be those with k rows. Specifically, if A has state space QA and input alphabet †, B
must have state space QB and input alphabet QA �† – the construction is called a
cascade because the higher automaton A can transmit its state as part of the input to
B , but the lower automaton B does not have the means to inform A of its own state.

One way of thinking about this construction is to reproduce the lower automaton
in as many copies as there are states in QA and associate one copy to each state of
QA. During this process, the state space QB is preserved exactly, but the transition
function of the copies is made dependent on the state to which they are associated.
We can take the A to be the prime minister and theQB clones as the cabinet. In each
state, the prime minister listens only to the cabinet member associated to that state:
the higher automaton QA takes transition according to its own transition function,
and the QB copies must all fall in line and move to the same state that was dictated
by the transition function of the copy that was distinguished before the transition.
More formally, we have the following definition.
Definition 5.6.1 Given two semiautomata A and B with state spaces QA and QB ,
input alphabets† andQA �†, and transition functions ıA W QA �† ! QA and ıB W
QB �QA �† ! QB , their cascade product A ıB has as its state space the direct
productQA�QB and has the input alphabet† as its input alphabet. From the product
state .q1; q2/, upon input of � 2 † the cascade product automaton will transition to
.ıA.q1; �/; ıB.q2; q1; �//. By definition, cascade products A1 ı A2 ı : : : ı An are
associating ..: : : .A1 ı A2/ ı A3/ : : : ı An/.
The cardinal building block used in Theorem 5.6.1 is the reset monoidU2, which acts
on two elements u and v as a transformation semigroup and has only three elements:
the transformation C that maps everything to u (i.e. the constant function whose
only value is u), the transformation D that maps everything to v, and the identity
transformation I . If we take u and v to be the open and closed parens a and b of
the bounded counter of depth 2, it is easy to see that the semigroup of the language
associated to this automaton is exactly U2.
Exercise 5.10 Consider the k-term cascade product U k

2 D U2 ı : : : ıU2 over a two-
letter alphabet † D fa; bg. What is the largest n for which U k

2 is a cover for the
bounded counter of depth n?
From the linguistic standpoint, this is closest to a single binary feature, which can
take the value ‘C’, the value ‘�’, or be left underspecified. Note that the fourth
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possible action P , mapping u on v and v on u, is missing from U2. Were we to add
this (a mapping that would correspond to ‘negating’ the value of a binary feature),
we would still not obtain a group, since the constant functions C and D have no
inverse, but we would destroy the group-free property since P is its own inverse
and the subset fI; P g would be a group. In other words, Theorem 5.6.1 asserts that
the syntax of those regular languages that enjoy the noncounting property (5.29) can
be handled by relying on binary features alone, a result that goes some way toward
explaining the ubiquity of these features in linguistics.

To see this in more detail, we will first consider a toy language T based on the
example Which books did your friends say your parents thought your neighbor com-
plained were/*was too expensive? The transformational description of sentences like
this involves an underlying structure Your friends say : : : the books were too expen-
sive from which the NP the books gets moved to the front, so that the agreement
in number between books : : : were expensive and book : : : was expensive requires
no further stipulation beyond the known rule of subject-predicate agreement that
obtains already in the simple sentences The book was expensive and The books were
expensive. This is easily handled by extending rule (5.7) with an agreement feature:

S ! NPh˛PLi VPh˛PLi (5.30)

where ˛ is a variable that can take the values ‘C’ or ‘�’. In other words, we
replace (5.7) with a rule schema containing two rules: the assumption (further dis-
cussed in Section 7.3) is that such schemas are no more expensive in terms of
the simplicity measure of grammars than the original (5.7), unadorned with agree-
ment features, would be. Here we assume similarly abbreviated regular expressions:
our language T is defined as the union of Tsg given by which Nh�PLi did Z�
VPh�PLi and Tpl given by which NhCPLi did Z� VPhCPLi. Here Z stands for
sentences missing an object: your friends say , your parents thought , your
neighbor complained , and the Kleene � operator means any number of these
can intervene between the extracted subject book(s) and the predicate was/were.
The regular expression which N did Z� VP, or what is the same, the automaton

0
which �� 1

N �� 2
did ��

Z

��
3

VP �� 4 (5.31)

will accept the desired language without proper agreement. To get the agreement
right, we take the cascade product with the depth 2 bounded counter whose transition
is defined for all clones as the identity mapping for all states and all symbols, except
NhCPLi will move clone 1 from the initial (accepting) state to the other (warning)
state, and for clone 3 the input VPhCPLi will force a move back to the initial state.

What this simple treatment of T shows is that cascade multiplication with a small
reset automaton is sufficient to keep one bit of information around even though an
arbitrary amount of material may intervene before we make use of this bit. If we
measure the complexity of the automaton by the number of states it has, the cas-
cade product is very expensive (multiplying with U2 will double the size of the state
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space), but by the same general principle that treats (5.7) and (5.30) as having equal
or nearly equal cost, a more proper measure of automaton complexity is the number
of states in its cascade decomposition, which increases only linearly in the number
of bits kept around.

5.7 Further reading

Distributional criteria for lexical categorization were advocated by Bloomfield (1926,
1933) and elaborated further by Bloch and Trager (1942) and Harris (1951). Defi-
nition (1) is known as the Myhill-Nerode equivalence or the syntactic congruence
associated with a languageL as it was Myhill (1957) and Nerode (1958) who proved,
independently of one another, the key theorem that this equivalence, extended to†�,
has only finitely many classes iff L is regular. For a modern survey, see Pin (1997).
For the use of noncounting in practical grammar design, see Yli-Jyrä (2003,2005)
and Yli-Jyrä and Koskenniemi (2006).

The classical works on categorial grammars are Ajdukiewicz (1935), where the
group is taken to be Abelian, Bar-Hillel (1953), and Lambek (1958). Some of the
interest in the area was lost when Bar-Hillel, Gaifman, and Shamir (1960) proved
the equivalence of CFGs to one form of categorial grammar, but the field has largely
revived owing to its strong relation to semantics. The equivalence between CFGs and
Lambek grammars has been proven by Pentus (1997) – a more accessible proof is
given in Chapter 3 of Kracht (2003), which presents categorial grammars in greater
depth.

Although X-bar theory clearly originates with Harris (1951), the name itself is
from Chomsky (1970) and subsequent work, especially Jackendoff (1977). For a
more detailed discussion, see Kornai and Pullum (1990). A good survey of the lin-
guistic motivation for going beyond the CF domain is Baltin and Kroch (1989). The
equivalence, both weak and strong, between alternative formulations of extended
phrase structure and categorial systems has been proven in a series of papers by
Joshi and his students, of which we single out here Vijay-Shanker et al. (1987) and
Weir (1992).

Moravcsik and Wirth (1980) presents the analysis of (5.8) and (5.9) in a vari-
ety of syntactic frameworks. Some of these frameworks are still in use in essentially
unchanged format; in particular tagmemics, being the standard theory at the Summer
Institute of Linguistics is in wide use, and covers an immense variety of languages,
many of which have no analyses in any other framework. Other frameworks, such
as Montague grammar, relational grammar, and role and reference grammar, have
changed mildly, but the reader interested in a quick overview can still get the
basic facts from the respective articles in the Moravcsik-Wirth volume. Yet oth-
ers, in particular mainstream transformational theory, have changed so radically that
the presentation of trace theory in that volume is of historical interest only. The
reader interested in more current developments should consult Chomsky (1995) and
subsequent work.
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The first proposal within generative linguistics to use case as the driving mecha-
nism for syntax was by Fillmore (1968, 1977). The standard introduction to ergativity
isDixon (1994). Dependency grammars are due to Tesnière (1959). Other mod-
ern formulations include Sgall et al. (1986), Mel’cuk (1988), Hudson (1990), and
McCord (1990). Again, an important early result that served to deflect interest from
the area was by Gaifman (1965), who proved the equivalence of one formulation
of dependency grammar to CFGs, and again the area revived largely because of
its strong connections to key notions of grammar. A variety of dependency and
valency models are surveyed in Somers (1987) and Tapanainen and Järvinen (1997).
A modern survey of argument linking theories is Levin and Rappaport (2005).

For linearization of Hayes-Gaifman-style DGs, see Yli-Jyrä (2005) and for
linking a different formulation of DGs to mildly context sensitive grammars and lan-
guages see Kuhlmann (2005). The MIL formalization of DG is from Kornai (1987),
except there it was given as an equational system in the sense of Curry and Feys
(1958 Ch. 1E) rather than stated in the more widely used language of universal alge-
bra. The ID/LP analysis of the Dutch crossed dependency is due to Ojeda (1988).
The valence (clause) reduction analysis of hate to smoke and similar constructions
originates with Aissen and Perlmutter (1983); see also Dowty (1985) and Jacobson
(1990).

The method of mapping linguistic expressions to algebraic structures in order
to capture some of their significant properties is not at all restricted to the simple
examples of checking agreement or slot/filler relations discussed here. The modern
theory of using types as a means of checking correctness begins with Henkin (1950).
In type-logical grammar we can use proofnets to check the syntactic correctness of
strings based on their types (Carpenter and Morrill 2005). Another theory of note,
pregroup grammar, uses left and right adjoints to avoid the issues of group elements
commuting with their inverses. Lambek (2004) defines pregroups as partially ordered
monoids where the partial order is compatible with the monoid multiplication, and
multiplication with every element has a left and a right adjoint. His example is the set
of Z ! Z functions that are unbounded in both directions, with function composition
as the monoid operation. The relationship of pregroups to categorial grammar and
(bi)linear logic is discussed in Casadio et al. (2005).

In Minsky’s (1975) theory, the slots are endowed with ranges (used for error
checking) and often with explicit algorithms that compute the slot value or update
other values on an as-needed basis, but there are no clear natural language phenom-
ena that would serve to motivate them. Altogether, the relationship between AI/KR
and syntax is far more tenuous today than it was in the 1970s: on the one hand, AI/KR
has largely given up on syntax as too hard, and on the other, its center of gravity has
moved to machine learning, a field more immediately concerned with linguistic pat-
tern recognition in speech, handwriting, and machine print recognition (see Chapters
8 and 9) than in syntax proper. For default inheritance and defeasible reasoning, see
Ginsberg (1986a). The best introduction to thematic roles remains Dowty (1991).

The complex and often acrimonious discussion that followed Chomsky’s
(1957) introduction of arbitrary depth center-embedded sentences led to important
methodological advances, in particular the introduction of the distinction between
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competence and performance (Chomsky 1965) discussed in Section 3.2. For the
debate surrounding generative semantics, see Newmeyer (1980), Harris (1995), and
Huck and Goldsmith (1995).

For the linguistic use of arbitrary semirings for weighted languages, automata,
and transducers see Mohri et al (1996), Eisner (2001). The interpretation of the
weights as degrees of grammaticality is due to Chomsky (1967). The density of
languages was first discussed in Berstel (1973), who considered pairs of languages
L and mappings f from †� to RC. He also considered the ratio of the summed
weights (summed for strings of length 	 n in L in the numerator and for all strings
in †n in the denominator), while our definition (see Kornai 1998) uses the differ-
ences, segregated by sign. We believe that our choice better reflects the practice of
computational language modeling, since in these models both underestimation and
overestimation errors are present, and their overall effects are seldom determined in
the limit (incorrect estimates for high-frequency strings are far more important than
incorrect estimates for low-frequency strings). For natural numbers represented in
binary, Minsky and Papert (1966) use density arguments to prove that e.g. the primes
in base two are not regular; see also Cobham (1969) and Chapter 5 of Eilenberg
(1974).

The early work on probabilistic FS and CF grammars is summarized in Levelt
(1974 Ch. 3). Outside sociolinguistics, probabilistic theories of grammar had little
influence because Chomsky (1957) put forward the influential argument that col-
orless green ideas sleep furiously is grammatical and *furiously sleep ideas green
colorless is ungrammatical, yet both have frequency zero, so probability has no trac-
tion in the domain of grammar (for a modern assessment of this argumentation, see
Pereira 2000). Within sociolinguistics, however, the variability of the data is so over-
whelming that there was never a question of abandoning the probabilistic method.
The standard introduction to variable rules is Cedergren and Sankoff (1974). The
free choice between the additive and the multiplicative models has been cogently
criticized by Kay and McDaniel (1979). Logistic models were introduced to sociolin-
guistics by Rousseau and Sankoff (1978). HMMs as formal models were introduced
by Baum and Petrie (1966) and Baum et al. (1970), and first put to significant use
in speech recognition by Baker, Jelinek, and their colleagues at IBM. The standard
tutorial introduction is Rabiner (1989); for a more extensive and deeper treatment,
see Jelinek (1997). For a detailed discussion of probabilistic CFGs, see Charniak
(1993).

The use of formal power series in noncommuting variables to describe ambiguity
in CFLs and the concomitant use of semirings originates with Schützenberger (1960).
Early developments are summarized in Chomsky and Schützenberger (1963). For
the rational case, see Eilenberg (1974), and for general development of the semiring-
oriented approach, see Kuich and Salomaa (1986). For further discussion of Parikh
mappings in the weighted case, see Petre (1999). For initial estimates of state space
size, see Kornai (1985) and Kornai and Tuza (1992) – the estimate we shall derive in
Section 6.3.2 also takes ambiguity into account.

For a simple proof of Theorem 5.6.1 see Section 7.12 of Ginzburg (1968), written
by Albert Meyer – the same ideas are presented in Meyer (1969). The classical study
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of this area is McNaughton and Papert (1971), which discusses both the well-known
equivalence of noncounting and star height zero and its relation to temporal logic,
also discussed in Maler and Pnueli (1994). For a modern treatment, see Thomas
(2003). The idea of a prime minister and a cabinet is based on Bergeron and Hamel
(2004), where the important relation between bit-vector operations and noncounting
languages is explored. For closure of noncounting languages under a relaxed alter-
native of Karttunen’s (1995) replacement operator, see Yli-Jyrä and Koskenniemi
(2006).

A significant source of external evidence, not discussed in the main text as there
is no mathematical treatment in existence, is language pathology. For the pioneering
effort in this direction, see Jakobson (1941). Chomsky (1965) has distinguished the
internal combinatorical evidence from the broader external considerations discussed
here under the heading of descriptive vs. explanatory adequacy. The pivotal study
linking the extensive literature of child language acquisition to formal theories of
inductive learning is Wexler and Culicover (1980); see also Cussens and Pulman
(2001). We shall return to inductive inference in Chapter 7.

As discussed in Chapter 2, grammarians before de Saussure and structuralism did
not hesitate to consider evidence from another source: dialectal and historical varia-
tion of the language. Under the influence of de Saussure, such evidence has largely
fallen into disfavor, since it is clear that people can, and do, learn language without
access to such data. The same can be said of evidence from translation: though many
language learners benefit from learning two or more languages in early childhood,
monolingual language acquisition is obviously possible. Evidence from translation
is generally accepted in the form of paraphrases, a method we will discuss further
in Chapter 6.
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Semantics

To the mathematician encountering linguistic semantics for the first time, the whole
area appears as a random collection of loosely connected philosophical puzzles,
held together somewhat superficially by terminology and tools borrowed from logic.
In Section 6.1 we will discuss some of the puzzles that played a significant role in
the development of linguistic semantics from a narrow utilitarian perspective: sup-
pose an appropriate technique of mathematical logic can be found to deal with the
philosophical puzzle – how much does it help us in dealing with the relationship
between grammatical expressions and their meaning? Since the task is to charac-
terize this relationship, we must, at the very least, provide a theory capable of (A)
characterizing the set of expressions and (B) characterizing the set of meanings. By
inspecting the Liar (Section 6.1.1), opacity (Section 6.1.2), and the Berry paradox
(Section 6.1.3), we will gradually arrive at a more refined set of desiderata, distin-
guishing those that we see as truly essential for semantics from those that are merely
nice to have. These will be summarized in Section 6.1.4.

In Section 6.2 we describe the standard formal theory that meets the essential
criteria. Our point of departure will be Montague grammar (MG) in Section 6.2.1,
but instead of formalizing the semantics of a largely artificial and only superficially
English-like fragment, we set ourselves the more ambitious goal of exploring the
semantics of everyday language use, which tolerates contradictions to a surprising
degree. In Section 6.2.2, we introduce a version of paraconsistent logic, Ginsberg’s
(1986) systemD, and survey the main construction types of English from a semantic
perspective.

Finally, in Section 6.3, we begin the development of a formal theory that departs
from MG in many respects. Our main concern will not be with the use of paracon-
sistent/default logic (although we see this as inevitable) but rather with replacing
Tarski-style induction on subformulas by a strict left-to-right method of building the
semantic analysis. We take this step because induction on subformulas presumes tree
structure, while in natural language syntax there are clear technical reasons to prefer
FSTs, HMMs, and other finite state methods of syntax analysis that do not naturally
endow strings with tree structure.
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6.1 The explanatory burden of semantics

While contemporary mathematical logic is indistinguishable from other branches of
mathematics as far as its methods or driving esthetics are concerned, historically it
has grown out of philosophical logic and owes, to this day, a great deal to its orig-
inal philosophical motivations, in particular to the desire to eliminate ambiguities
and paradoxes from the system. From a linguistic perspective, these are questionable
goals since natural language is often ambiguous and clearly capable of expressing
paradoxes. What linguistics needs is not a perfect language free of all ambiguity and
contradiction, but rather a meta-theory that is capable of capturing these character-
istic properties (we hesitate to call them imperfections, as there is no evolutionary
pressure to remove them) of the object of inquiry.

6.1.1 The Liar

Pride of place among the philosophical puzzles readily expressible in natural lan-
guage must go to the Liar:

This sentence is false (6.1)

Perhaps the simplest resolution of the paradox would be to claim that the sentence
(6.1) is simply not grammatical. But given its structural similarity to sentences such
as This man is asleep, this is not a very attractive claim. A more sophisticated ver-
sion of the same argument would use some version of the generative semantics view
introduced in Section 5.2 and claim that sentence generation starts with some state
of affairs to be put into words, and since there is no conceivable state of affairs corre-
sponding to (6.1), the sentence just never gets generated, let alone interpreted. Again,
this is not very attractive in the light of the fact that in rather simple contexts (6.1) is
perfectly meaningful:

The very first sentence in Fisher’s biography of Lincoln asserts “Abe Lincoln
was born in a log cabin in Idaho”. This sentence is false.

Perhaps one could claim that This in (6.1) must refer to something external to the
sentence, but again there is little to support this: examples such as This sentence is
in German or This sentence takes 56 characters to print are perfectly ordinary. Since
we cannot really blame the syntax of (6.1), we need to turn to its semantics. What
is this referring to? Clearly, it refers to the entire sentence S in (6.1). Therefore, we
may conclude that (6.1) asserts

S is false ^ S D ŒThis sentence is false� (6.2)

The classical solution, Russell’s theory of types, is based on the observation that
(6.1) and (6.2) are not the same sentence and not entirely the same assertion. It is
possible to build up a large and useful logical calculus that includes something like
a T-scheme (the axiom scheme connecting assertions about the truth of sentences to
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the actual truth of sentences – more on this later) while carefully banning only a few
self-referential statements. Here we are interested in a more linguistic solution, one
that does not do away with self-referentiality, since there is no evidence that language
treats linguistic objects such as words or sentences in any way different from other
abstract nouns. We state this as our requirement (C): expressions that have similar
form should receive analyses by the same apparatus.

The central observation is that predicates such as true and false are context-
dependent, and in analyzing (6.1) there is no reason to use an eternal absolute notion
of truth and falsehood. Since even the most eternal-looking mathematical expres-
sions such as 6 � 6 D 36 depend on implicit assumptions (e.g. that of using base 10),
there is every reason to suppose that natural language expressions such as (6.1) do
also. Let us call a set of assumptions (closed formulas in a logical language) a context
and denote it by C . If a statement s is true in the context (true in all models that the
set of formulas C holds true), we write s 2 T .C /, if false, we write s 2 F.C/ – it
is possible for s to be true but be outside the deductive closure of C . Now (6.1) and
(6.2) can be reformulated as

S D ŒS 2 F.C/� (6.3)
S 2 C ^ S D ŒS 2 F.C/� (6.4)

respectively. Of these, (6.4) is manifestly self-contradictory, which, in an ordinary
system of two-valued logic, is sufficient cause to declare it false. Kripke (1975)
develops a three-valued logic with a middle truth value that offers an escape, but
we do not follow this development because the ‘strengthened’ version of the Liar,
This sentence is not true, would cause the same problem to a three-valued treatment
that (6.1) causes in a two-valued system. Rather, we follow the Russellian insight
and for each context C define bC as the set of those statements that refer to T .C / or
F.C/. Formally, we adjoin a predicate T meaning ‘is true’ to the language and make
it subject to axioms (called the T-scheme in Tarski 1956) such as x , T .x/. Now
we can capture the essence of the ‘naive’ analysis (formalized by Prior 1958, 1961)
that (6.1) is not just contradictory, but false:

Theorem 6.1 For every context C; (6.1) is false in bC .

Proof Suppose indirectly S 2 T .bC/. By the T-scheme, we have S 2 F.C/, and
therefore C is a context for S . This, by S , leads to S 2 T .C /, a contradiction that
proves that our indirect assumption was false.

Discussion This is not to say that the Liar is not a valuable paradox: to the contrary, in
the history of logic, the Liar and closely related paradoxes such as the barber paradox
have led to many notable advances in logic, including Russell’s theory of types and
Tarski’s undefinability theorem. However, from a linguistic perspective many of the
issues brought up by the Liar are already evident in much simpler nonparadoxical
sentences that have no self-referential or quotational aspect whatsoever. First, and
most important, is the treatment of nonintersective modifiers. At the very least, we
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need a theory that covers enormous flea (Parsons 1970) and lazy evaluation before
we can move on to false sentence.1

Once such a theory is at hand (and as we shall see, this is by no means a trivial
task), there is the further question of whether we really need a linguistic semantic
account of true and false. English, as a formal language, contains many expres-
sions with these words, but formal semantics generally refrains from the explication
of ordinary nouns and adjectives like flea and enormous, preferring to leave such
matters either to specialists in biology and psychology or to lexicographers and
knowledge representation experts. There is no compelling reason why sentence and
true should occupy a more central position in our development of semantics: we
conclude that for the purposes of linguistic semantics an analysis of these notions is
nice but inessential. On the other hand, since self-referential statements are formed
by ordinary grammatical means, it follows from (C) that we should cover them.

Quotational sentences are also problematic from our perspective. Our intona-
tional means to segregate quoted from direct material are limited: a sentence such as
‘Snow is white’ is true if and only if snow is white is practically impossible to render
differently from ‘Snow is white’ is true if and only if ‘snow is white’. Since we are
attempting a formal reconstruction, a general appeal to the universality of natural
language, (i.e. to the notion that everything can be discussed in natural language) is
insufficient – what we need is a precise mechanism whereby matters such as quota-
tion can be discussed. The use of quotation marks in written language provides the
beginnings of such a mechanism, but as far as grammar is concerned these are not
very well regulated, especially when it comes to quotations inside quotations beyond
depth two. And even without embedding, the matter is far from trivial: compare A
‘quine’ is a program that, when compiled and executed, prints its own source code
to A quine is a program that, when compiled and executed, prints its own source
code. We conclude that a theory of quotation is nice but inessential, especially as the
phenomenon is more characteristic of artificially regulated written communication
than of natural language.

6.1.2 Opacity

Another important puzzle is that of opacity (used here in a very different sense from
that in phonology or syntax). It has long been noted that certain predicates P about
statements s and t do not allow for substitution. Even if s D t it does not follow that
P.s/ D P.t/. Frege (1879) used know as an example of such a predicate, but the
observation remains true of many other predicates concerning knowledge, (rational)
belief, hope, preference, (dis)approval, etc., generally collected under the heading
of propositional attitudes. Frege used as his example the knowledge state of ancient
Greeks, who had not realized prior to Pythagoras that Hesperus (the evening star),

1 What is common to the examples is that enormous fleas are not enormous things that
are also fleas (hence the name nonintersective), lazy evaluation is not some lazy thing
that happens to be an evaluation, and true sentences are not true things that happen to be
sentences.
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and Phosphorus (the morning star) were one and the same object, what we call Venus
today. Thus, for an ancient Greek it was perfectly possible to know/believe that a
bright object in the evening sky is Hesperus without knowing/believing that it is
Phosphorus. In other words, Believe(s) does not follow from Believe(t) even though
s D t .

In the tradition of philosophical logic, opacity is intimately linked to a priori,
analytic, and necessary statements, and for those whose goal is to develop rational
theories of beliefs, propositional attitudes, and judgments in general, such consider-
ations are valuable. But from our perspective, the issue is nearly trivial: there is no
denying that (i) sentences about beliefs, etc., are about the mental states of people and
that (ii) mental models need not correspond to facts. The ancient Greeks had a model
of the world in which there were two different entities where in reality there was only
one. In other cases people, or entire civilizations, assume the existence of entities that
do not correspond to anything in reality (the Western philosophical tradition gener-
ally exemplifies this by unicorns) or conversely use models that have literally no
words for important entities. But imperfect knowledge and mistaken beliefs are part
of the human condition: there is no logical error, and what is more important here,
there is no grammatical error in thinking or saying things that are not so. Again, from
a linguistic perspective the issues brought up by opacity are evident in much simpler
cases that do not probe the edges of logical, philosophical, or physical necessity:
ordinary fiction will suffice. What do we mean when we say Anna Karenina is afraid
of getting older? How does it differ from Jean Valjean is afraid of getting older?
Most people will agree that Anna Karenina commits suicide is true and Jean Valjean
commits suicide is false. It is a highly nontrivial task to design a theory that provides
the expected results in such cases, and although the desideratum follows from (C)
it is worth stating it separately: (D) expressions occurring in fiction should receive
analysis by the same apparatus as expressions used in nonfiction contexts.

6.1.3 The Berry paradox

In Section 1.5, we already alluded to the Berry paradox of finding

the smallest integer not definable in k words (6.5)

For k 	 7 the paradox is not apparent: we enumerate definitions of integers e.g. in
lexicographic order, rearrange the list in increasing order of the numbers defined,
and pick the first integer not on the list, say sk . But for k D 8 there is a problem:
(6.5) itself is on the list, so s8 is defined by it, and we must pick s8 C 1 (or, if it
was defined elsewhere on the list, the next-smallest gap). But then, s8 was not on
the list, or was it? What makes this question particularly attractive is that desiderata
(A) and (B) appear to be easily met: it looks trivial to define the syntax of number
names and, for once, we have a well-agreed-upon semantic model of the domain.
There are some core elements one, two, . . . , nine that combine with other base ten
core elements such as ten, twenty, . . . , ninety and hundred, thousand, million, bil-
lion, trillion, quadrillion, . . . all contributing to the comma-separated reading style
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(CSRS) whereby 450; 789; 123; 450; 123 is read off as four hundred and fifty trillion
seven hundred and eighty nine billion one hundred and twenty three million four
hundred and fifty thousand one hundred and twenty three. There is something of a
performance issue in where to terminate the sequence: clearly, numbers such as sep-
tendecillion or nonillion only serve as party amusements, as the people who actually
would need them will in real life switch over to scientific reading style (SRS) some-
where around 109. Once we have made a choice where to terminate the sequence, it
is trivial to define a small finite automaton generating all and only the CSRS numbers
and another automaton generating SRS numbers such as three point two seven five
times ten to the minus nineteenth.

Exercise 6.1 Write a detailed grammar of the CSRS and SRS systems. Make sure
that articles are correctly generated both in the conventional listing of numbers
one, two, : : :, ninety-nine, one hundred, one/a hundred and one, one/a hundred and
two, : : :, two hundred, two hundred and one, : : : and before round numbers. Define
the appropriate notion of roundness. Consider grammatical responses to questions
such as How many students are in this school?, explain why *hundred is ungram-
matical and (exactly) one/a hundred are acceptable.

Yet no sooner than we start specifying the syntax beyond these trivial fragments
we run into difficulties. First, there is no one-to-one relationship between numbers
and expressions composed entirely of number names: seven thirty generally refers
to a time of the day, nine eleven to emergency services, and forty fifty or two three
thousand to approximate quantities given by a confidence interval. This last class is
so similar to CSRS that on occasion the lines between the two are blurred: ninety
nine hundred can refer both to 9,900 and to 99–100. To be sure, in the written lan-
guage hyphens are used with approximate quantities, but spoken English (which for
the linguist has methodological primacy) shows no sign of this. When viewed from
the perspective of spoken language, the whole enterprise of assigning semantics to
CSRS and SRS is of dubious character: such numbers form highly stylized and regu-
lated formal languages whose regulatory principles appear to be arithmetical, rather
than linguistic, in nature. Arithmetic is not acquired with the same effortless ease
as a first language. For most people the process starts later, and for many it remains
incomplete.

To get the Berry paradox really working we also need our syntax to cover arith-
metic expressions (eight cubed is a number expressible in two words instead of the
four required by CSRS), other bases (hex a a b nine only requires five words), the
ability to solve equations (the smallest Mersenne prime with an eight digit expo-
nent) and in general to run algorithms (the result of running md5sum on the empty
file). Unfortunately, as a technical device for the description of algorithms yielding a
numerical output, natural language is spectacularly inadequate, requiring a variety of
support devices such as end markers, quotation marks, and parentheses, which have
little or no use in ordinary language, a fact that is painfully evident to anyone who
has ever tried to debug source code over the phone. This makes writing a grammar
that meets (A) a complex matter, as there is no easy test of whether an expression
evaluates to a numerical value or not.
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At the same time, when it comes to expressions with a numerical value, natural
language overgenerates in two significant ways. First, there are a class of statements
that become true just by means of saying so, and such statements can be used to
define numbers. To illustrate the more general phenomenon, consider whether a
statement such as I promise to come tomorrow can be false. I can break the promise
(by not coming), but merely by saying I promise I have actually promised that I will
come. There is a whole set of verbs such as declare, order, request, warn, and apol-
ogize that are similarly self-fulfilling – following Austin (1962), these are known as
performatives. The only near-performative in mathematical usage is let: when we
say Let T be a right triangle, T is indeed a right triangle. Compared with the per-
formatives in everyday language, the power of let is rather limited. In particular, by
saying things such as let x be a prime between 8 and 10, we have not succeeded in
creating such a prime, while by saying I name this ship Aoxamoxoa one can indeed
create a ship by that name. But in the subdomain of naming numbers, the full power
of let is at our disposal: there are monomorphemic elements such as eleven, twelve,
dozen in broad use, and others such as gross, score, chiliad, and crore known only to
chiliads or perhaps crores of people. As examples such as googolplex show, all that
is required for a successful act of naming is that the language community agrees that
a word means a certain thing and not something else. The word factoriplex does not
exist in current English but is easily defined as the product of all integers from 1 to
googolplex, minus 42. Performatives trivialize the Berry paradox (there is no number
meeting (6.5) since every number is nameable in one word) but yield another strong
desideratum: (E) the system must be flexible about naming.

Second, natural language offers a wealth of algorithmic descriptions of numbers
that are solvable only by encyclopedic knowledge. Clearly, the year Columbus dis-
covered America evaluates to 1492, and equally clearly, knowing this is beyond the
power of linguistic semantics. As far as the expression is concerned, it could refer to
any year within Columbus’ adult life, and no amount of understanding English will
suffice to better pin down the exact date. But if we are reluctant to impute knowl-
edge of medieval history to speakers of English, we should be equally reluctant to
impute knowledge of Mersenne primes, or even knowledge of eight cubed. Rather
than stating this as a negative desideratum, “the system should not rely on exter-
nal knowledge”, we state it as a positive requirement: (F) the system must remain
invariant under a change of facts.

The remarks above are not meant to demonstrate the uselessness or irrelevance of
the Berry paradox (which remains a valuable technical tool e.g. in Kolmogorov com-
plexity; see Chapter 7) but rather to make clear that from the standpoint of linguistics
the difficulties arise long before the diagonalization issues that are in the focus of the
logical treatment would come to force. If we exclude the arbitrariness of number
naming, references to encyclopedic knowledge, and the description of algorithms,
what remains is some extension of the CSRS and SRS grammars. For these, (6.5)
has a solution: we run the grammar, evaluate each expression, and pick the smallest
one missing from the list of numbers so generated. The paradox disappears since this
amounts to describing an algorithm rather than naming a number.
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The hangman paradox

It is possible to interpret the Berry paradox in another manner: consider Your obli-
gation will be fulfilled only when you give Berry half of the money in your pocket.
A reasonable person may conclude that if he gives Berry half of the money in his
pocket, his obligation is fulfilled. However, Berry may object, noting the amount
of money still in the person’s pocket, that the obligation is unfulfilled and demand
another halving, another, and another, ad infinitum. Or consider To complete this
task, you need to sleep on it and you must report back to Berry that you are abso-
lutely certain it’s done. The next day, you may entertain doubts. Since you have not so
far reported back to Berry, you have not completed the task, and you need to sleep on
it. This interpretation, traditionally presented under the name hangman paradox, has
less to do with finding the smallest solution to (6.5) than with the more wide-ranging
problem of imperatives that demand the impossible. There is nothing on the surface
to distinguish these from imperatives that can in fact be met. A perfectly analogous
problem is presented by questions that cannot be answered. For any given question,
we do not know in advance whether an answer exists, and if we permit a question
to be formulated in a sublanguage that is strong enough to refer to algorithmically
undecidable issues, we know that some questions will not have answers. Again, there
is no need to probe the edges of undecidability; ordinary adjectival modification will
already furnish plenty of examples such as prime between eight and ten that receive
no interpretation in any model, and embedding such references to impossible objects
in questions or imperatives is a trivial matter. Carefully crafted realist fiction creates
a world that appears possible, but to the extent that human language use, and indeed
the whole human condition, is greatly impacted by narratives that defy rational belief,
requirement D needs to be further strengthened: (G) all expressions should receive
analysis by the same apparatus as supposed statements of fact.

6.1.4 Desiderata

Let us now collect the requirements on linguistic semantics that have emerged from
the discussion. (A) asks for a characterization of the set of natural language expres-
sions. In mathematical linguistics, this is done by generating the set (see Section 2.1),
and in the previous chapters we have discussed in detail how phonology, morphol-
ogy, and syntax, taken together, can provide such a characterization. (B) asks the
same for the set of meanings, but our lack of detailed knowledge about the internal
composition of the mental form that meanings take gives us considerable freedom in
this regard: any set that can be generated (recursively enumerated) is a viable candi-
date as long as it can be used in a theory of semantics that meets the other desiderata.
One particularly attractive approach is to represent meanings by well-formed formu-
las in some logical calculus, but other approaches, such as network representations,
also have a significant following.

Requirement (C), that expressions similar in form should receive analyses by
the same apparatus, has far-reaching consequences. First, it implies a principle of
homogeneity: to the extent meanings are typed, and this will be necessary at least to
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distinguish objects from statements, questions, and imperatives, (C) calls for expres-
sions of the same linguistic type to be mapped on meanings of the same logical
type. Second, to the extent the meanings of expressions are built recursively from the
meanings of their constituents, (C) calls for direct compositionality in the form of
some rule to rule hypothesis: each step in generating the expression must be paired
with a corresponding step in generating the meaning. Third, to the extent that the
truth, consistency, feasibility, adequacy, or even plausibility of an expression cannot
be fully known at the time it is uttered, (C) implies our (D) and (G): the meaning of
expressions is independent of their status in the real world.

In model-theoretic semantics, the meaning representations (formulas) are just
technical devices used for disambiguating expressions with multiple meanings. Since
the formulas themselves are mapped onto model structures by an interpretation
function, the step of mapping expressions to meanings can be composed with the
interpretation function to obtain a direct interpretation that makes no reference to
the intermediary stage of formulas. In this setup, requirement (F), that the system
must remain invariant under a change of facts, is generally taken to mean that the
interpretation function is symmetrical (invariant under any permissible permutation
of models). But (F) is asking for a considerably more fluid view of facts than what is
generally taken for granted in model-theoretic semantics: from our perspective, the
fact that eight cubed and hex two hundred are the same number, decimal 512, is an
entirely contingent statement, perhaps true in some models where correct arithmetic
is practiced but quite possibly false in others.

Exercise 6.2 From an early age, Katalin was taught by her older brother that three
plus five is eight, except for chipmunks, where three chipmunks plus five chipmunks
are nine chipmunks because chipmunks are counted differently. Two plus two is
four, except for chipmunks, where it is five. One plus one plus one is three, except
for chipmunks, where it is five. By age five, Katalin mastered both regular addition
and multiplication and chipmunk arithmetic up to about a hundred. Describe her
semantics of arithmetic expressions.

Finally, let us call attention to an important consequence of the mundane treat-
ment of arithmetic expressions assumed here. In his discussion of Montague (1963),
Thomason (1977) argues that any direct theory of propositional attitudes is bound to
be caught up in Tarski’s (1935) theorem of undefinability (Tarski 1956), rendering
the resulting analysis trivial. However, as Thomason is careful to note, the conclu-
sion rests on our ability to pass from natural language to the kinds of formal systems
that Tarski and Montague consider: first order theories with identity that are strong
enough to model arithmetic. Tarski himself was not sanguine about this: he held that
in natural language “it seems to be impossible to define the notion of truth or even to
use this notion in a consistent manner and in agreement with the laws of logic”.

To replicate Tarski’s proof, we first need to supplement natural language with
variables. The basic idea, to formalize the semantics of a predicate such as sub-
ject owns object by a two-place relation �.s; o/ is fairly standard (although, as
we shall see in Section 6.3, there are alternatives that do not rely on variables
at all). But the proposed paraphrases for first-order formulas, such as replacing
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8xŒ9y�.x; y/ ! 9z�.z; x/� by for everything x, either there is not something y such
that x owns y or there is something z such that z belongs to x clearly belong in an
artificial extension of English rather than English itself. Second, we must assume that
the language can sustain a form of arithmetic; e.g. Robinson’s Q. We have already
expressed doubts as to the universality of natural language when it comes to logical
or arithmetic calculi, but using Q we can narrow this down further: several of the
axioms in Q appear untenable for natural language. Again, the key issues arise long
before we consider exponentiation (a key feature for Gödel numbering) or ordering.
Q comes with a signature that includes a successor s, addition C, and multiplica-
tion �. By Q2 we can infer x D y from sx D sy, Q4 provides x C sy D s.x C y/,
and Q6 gives x � sy D xyCx. All of these axioms are gravely suspect in light of the
noncounting principle discussed in Section 5.5. There are many ways we can start
counting in natural language: we can look at quotations of quotations (Joe said that
Bill said. . . ) and emphasis of emphasized material (very very. . . ), but there isn’t a
single way that takes us very far – whichever way we go, we reach the top in no
more than four steps, and there Q2 fails.

Since this is one of the key points where the semantics of natural language
expressions parts with the semantics of mathematical expressions, it is worth high-
lighting a consequence of the position that worlds, or models (from here on we use
the two terms interchangeably), need not be consistent: our desideratum (E), that
the system must be flexible about naming, now comes for free. In the following,
we employ paraconsistent logic to make room for entities such as unicorns, tri-
angular circles, and numbers that remain unchanged after adding one. As readers
familiar with modern philosophical logic will know, the use of paraconsistent logic
opens the way to new solutions to the Liar and several other puzzles, but we will not
pursue these developments here – rather, we will concentrate on problems that we
have earlier identified as central, most notably the distinctions between essential and
accidental properties introduced in Section 5.3.

6.2 The standard theory

In a series of seminal papers, Montague (1970a, 1970b, 1973, all reprinted in
Thomason 1974) began the development of a formal theory that largely meets, and
in some respects goes beyond, the desiderata listed above. In Section 6.2.1 we intro-
duce this family of theories, known today as Montague grammar (MG). As there
are several excellent introductions to MG (see in particular Dowty et al. 1981 and
Gamut 1991), we survey here only the key techniques and ideas and use the occa-
sion to highlight some of the inadequacies of MG, of which the most important is
the use of a stilted, semiformalized (sometimes fully formalized) and regimented
English-like sublanguage more reminiscent of the language use of logic textbooks
than that of ordinary English. Linguists brought up in a more descriptive tradition are
inevitably struck by the stock examples of MG like Every man loves a woman such
that she loves him or John seeks a unicorn and Mary seeks it. While still avoiding the
rough and tumble of actual spoken English, we take the object of inquiry to be a less
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regimented language variety, that of copyedited journalistic prose. Most of our exam-
ples in Section 6.2 will be taken from an American newspaper, the San Jose Mercury
News. For reasons of expository convenience, we will often considerably simplify
the raw examples, indicating inessential parts by [] wherever necessary, but in doing
so, we attempt to make sure the simplified example is still one that could be produced
by a reasonable writer of English and would be left standing by a reasonable copy
editor.

6.2.1 Montague grammar

In Chapter 3, we defined signs as conventional pairings of sound and meaning and
elaborated a formal theory of phonology capable of describing the sound aspect of
signs. Developing a formal theory of semantics that is capable of describing the
meaning aspect of signs will not proceed quite analogously since in phonology we
could ignore the syntax, while in semantics it is no longer possible to do so.

The central idea of Montague (1970a) was to introduce two algebras, one syn-
tactic and the other semantic, and treat the whole issue of linguistic semantics as
a homomorphism from one to the other. As there are several minor technical dif-
ferences in the way this idea was implemented in Montague’s main papers on the
subject (and subsequent research has not always succeeded in identifying which of
the alternatives is really the optimal one), we will not remain meticulously faithful
to any of the founding papers, but we will endeavor to point out at least the main
strands of development in MG, which, construed broadly, is clearly the largest and
most influential school of contemporary linguistic semantics.

As usual, an algebra is a set T endowed with finitely many operationsF1; : : : ; Fk

of fixed arity a1; : : : ; ak . By an operation of arity a, we mean a function T a ! T , so
by convention distinguished elements of the algebra are viewed as nullary operations.
For Montague, the syntactic algebra is strongly typed but otherwise unrestricted: if
p and q are expressions of types (categories) P and Q, an operation f will always
(and only) produce an expression f .p; q/ of type R. In practice, Montague always
used binary operations (a tradition not entirely upheld in subsequent MG work) and
was very liberal as to the nature of these, permitting operations that introduce or
drop grammatical formatives and reorder the constituents. Some later work, such as
Cooper (1975) or McCloskey (1979), took advantage of this liberal view and per-
mitted generative transformations as syntactic operations, while others took a much
stricter view, permitting only concatenation (and perhaps wrapping; see Bach 1981).
Either way, the syntactic and semantic algebras of MG provide the characterization
of natural language expressions and meanings required by our desiderata (A) and (B).

The mapping  from the syntactic algebra to the semantic algebra must be a
homomorphism: for each operation f of arity a in the syntactic algebra, there must
be a corresponding operation g of the same arity in the semantic algebra, and if
r D f .p; q/, we must have .r/ D g..p/; .q//. While in practice Montague used
formulas of a higher-order intensional logic called IL as elements of the semantic
algebra, with function composition (including applying an argument to a function)
as the chief operation, it is clear from his work that he took a far more abstract
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view of what can constitute a proper semantic representation. In particular, the IL
formulas are interpreted in model structures by another function  , which is also
a homomorphism, so that the �-calculus formulas, viewed by Montague as a mere
pedagogical device, can be dispensed with entirely, interpreting natural language
expressions directly in model structures. Later work explored several other choices
for semantic algebra: Heim (1982) used file change potentials, Cresswell (1985) used
structures that preserve a record of the way the expression was built up, and many
other options are available, as long as the ultimate model-theoretic nature of the
enterprise is preserved (i.e. the structures of the semantic algebra are interpreted in
models).

Montague used IL first as a means of resolving issues of opacity. Instead of taking
the meaning of terms to be their extension, the set of objects to which the interpreta-
tion function maps them in a single model structure, he chose to explicate meanings
as intensions, the set of extensions in all modally accessible worlds. Since the exten-
sion of expressions may coincide (for example, in realis worlds both the king of
France and the king of Austria denote the empty set), it is not evident how to express
the clear meaning difference between John aspires to be the king of France and John
aspires to be the king of Austria or even John aspires to be a unicorn.

With intensions, the problem is solved: since it is easy to imagine an alternative
world where the French Revolution still took place but Austria, just like Belgium,
retained the institution of monarchy, the intension of the two terms is different and we
can ascribe the different meanings of the whole expressions to the different meanings
of the NPs king of France vs. king of Austria. In MG, verbs denoting propositional or
other attitudes are called intensional since they operate on intensions: their use solves
many subtle interpretation problems already known to the Schoolmen, such as the in
sensu composito/in sensu diviso readings of I want a new car, which may express
that the speaker has her eye on a particular car or that she wants to replace the old
one with a new one and it does not really matter which one. A similar treatment is
available for intensional nouns such as temperature: by taking these to be functions
that take different values in different possible words, we avoid concluding thirty is
rising from the temperature is thirty and the temperature is rising.

One problem that this otherwise very satisfactory theory leaves open is known
as the issue of hyperintensionals: there are expressions like prime between 8 and
10 and triangular circle that denote empty sets in every modally accessible world;
indeed, under most theories of the matter, in any world whatsoever. Clearly, Pappus
searched for a method to trisect any angle presumes very different truth conditions
from Pappus searched for a method to square the circle even if, in hindsight, it is
clear that the two activities are equally futile.

Another technical device of MG worthy of special mention is the use of dis-
ambiguated language. Since  (or  ı  / is a function, only a single translation can
attach to any expression, so those expressions that are ambiguous need to be assigned
as many disambiguated versions as there are separate meanings. In syntax, the pre-
ferred method of disambiguation is by constituent structure, as in [The man on the
hill] with the telescope as opposed to The man on the [hill with the telescope]. In
semantics, however, we often find cases like (5.2), where the constituent structure is
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unambiguous, Every man [loves a woman], yet the sentence has two distinct read-
ings, (5.3) and (5.4), corresponding to the order in which the universal every and
the existential a get to bind the variables in loves(x,y). We can use derivation his-
tory to distinguish such cases: the same constituent structure is reached by applying
(possibly different) operations in different orders.

To see how the ambiguity is handled in MG, we need to consider another char-
acteristic feature of MG, the use of generalized quantifiers. Intuitively, individuals
(proper nouns such as John or NPs such as the dog) should be interpreted as ele-
ments of model structures (type e), and properties (be they expressed adjectivally:
(is) red, (is) sleepy; or by intransitive verbs: sleeps) are interpreted as functions from
individuals to truth values (type e ! t ). Yet quantified NPs, such as some men,
every dog, no tree, etc., are syntactically congruent to simple NPs such as John or
the dog, and our desideratum (C) demands that they should receive analysis by the
same apparatus as these. Since quantified NPs can be easily conceptualized as sets
of properties (those properties, be they essential or accidental, that are shared by all
members of the set), we lift the type of simple NPs from e to .e ! t / ! t and
conceptualize them as the set of all properties enjoyed by the individual. Once this
step is taken, the intuitive assignment of sleeps as function and John as argument
can (indeed, must) be reversed for the function application to come out right. The
translation of every man is �P.8x.man.x/ ! P.x///, so that translation of Every
man sleeps is obtained by applying this function to the translation of sleeps, yielding
(by beta conversion) the desired 8x.man.x/ ! sleep.x//:

Similarly, a woman is translated �P.9x.woman.x/ ! P.x///, and if loves is
translated as a two-place relation l.x; y/, loves a woman will be 9y.woman.y/ !
l.x; y//. Some care must be taken to make sure that it is the second (object of love)
variable that is captured by the existential quantifier, but once this is done, the result
is again an e ! t function ready to be substituted into �P.8x.man.x/ ! P.x///,
yielding 8x.man.x/ ! 9y.woman.y/ ! l.x; y///, the reading given in (5.3).
In Montague’s original system, the other reading (5.4), 9y.woman.y/8x.man.x/
l.x; y/// is obtained by radically different means: by introducing, and later deleting,
a variable that is viewed as being analogous to a pronoun.

From here on, we do not follow Montague closely, since our primary concern is
with natural language rather than with the semiformalized (sometimes fully formal-
ized) and regimented English-like sublanguages used in most works of philosophical
logic. In everyday usage, as evidenced e.g. by newspaper texts, quantified NPs such
as every Californian with a car phone, every case, every famous star, etc., do not lend
themselves to a strict interpretation of every x as 8x inasmuch as they admit excep-
tions: every case, except that of Sen. Kennedy; every Californian with a car phone,
except drivers of emergency vehicles; every famous star, including Benji, etc. The
problem, known as the defeasability of natural language statements, has given rise
to a wide variety of nonmonotonic logic approaches (for an overview see Ginsberg
1986a). Of particular interest here are generic constructions such as Sea turtles live
to be over a 100 years old, which can be true even if the majority of specific instances
fail. At the extreme end, some generic statements such as P6 processors are outdated
may be considered true without any individual instances holding true.
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We define a construction as a string composed of nonterminals (variables rang-
ing over some syntactic category) and terminals (fixed grammatical formatives and
lexical entries) with a uniform compositional meaning, obtained by a fixed process
whose inputs are the meanings of the nonterminals and whose output is the meaning
of the construction as a whole. An example we saw in Section 5.3 was X is to Y as
Z is to W, but we use the term here in the general linguistic sense, which covers the
entire range from completely productive and highly abstract grammatical patterns
such as

NPh˛PERS ˇNUMi VPh˛PERS ˇNUM �TENSEi (6.6)

to highly specified and almost entirely frozen idioms such as

NPh˛PERS ˇNUMi kickh˛PERS ˇNUM �TENSEi the bucket (6.7)

On occasion, when we are interested in the substitution of one construction into
another, it will be necessary to assign a grammatical category (defined as includ-
ing morphosyntactic features specified in angled brackets) to the construction as a
whole, so a context free or mildly context-sensitive theory of constituent structure
(see Section 5.1.3) roughly along the lines of GPSG (Gazdar et al. 1985) or early
HPSG (Pollard 1984) is presupposed. For the purposes of this chapter, we can safely
ignore transference across patterns, such as the phenomenon that the agreement por-
tion of (6.7) is obviously inherited from that of (6.6), and concentrate more on the
semantics of constructions.

As a limiting case, entirely frozen expressions (i.e. those constructions that no
longer contain open slots, such as go tell it to the Marines) are simply taken as lexical
entries; in this case, with meaning ‘nobody cares if you complain’. (The indexicals
implicit in the imperative go and explicit in the paraphrased you do not constitute
open slots in the sense that interests us here.) Since compositionality cannot be main-
tained as a principle of grammar without relegating the noncompositional aspects of
constructions to the lexicon, we introduce the following Principle of Responsibility:
The semantics of any expression must be fully accounted for by the lexicon and the
grammar taken together. To make this principle clear, consider constructions such as

for all NPhCDEFi, S (6.8)

as in the following examples: For all the glamour of aerial fish planting, it was a mass
production money-maker; The Clarence Thomas hearings, for all their import. . . or
For all their efforts at parity and fairness, NFL officials. . . . Informally, the construc-
tion means something like ‘S , in spite of the usual implications of NPhCDEFi’.
In the case of the glamour of aerial fish planting, the implication that needs to be
defeased is that glamorous things are restricted to the few, a notion incompatible with
mass production. Thus, to make sense of (6.8), we need to rely on lexical informa-
tion. Without doing so, the clear difference between the acceptability of the preceding
examples and ???For all their protein content, eggs are shaped so as to ease passage
through the duct would remain completely mysterious.

Since universally quantified natural language NPs can actually have exceptions,
we need to capture the notion of exceptionality some way; e.g. by saying that English
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every man means ‘almost all men’ in the sense that exceptions have measure zero.
Unfortunately, there is no obvious way to define measure spaces over semantic
objects such as legal cases or California drivers with car phones naturally, so to
translate Geraldo Rivera [reveals that he is an extremely attractive virile hunk of
man who] has had sex with [] every famous star in the entertainment industry we
say that for all x such that x has no extra properties beyond being a famous star in
the entertainment industry, Geraldo Rivera has had sex with x.

A less clumsy translation, in keeping with the standard treatment of generalized
quantification, is to say that the property of having had sex with Geraldo Rivera is
implied by the property of being a famous star in the entertainment industry. We say
that every N is the set of typical properties that N has, where typicality is defined in
the lexical entry ofN . Since having four legs is typical of donkeys, every donkey has
four legs will be true by definition and cannot be falsified by the odd lame donkey
with three or fewer legs.

But if having four legs is an analytic truth for donkeys, how can we account for
counterfactuals where five-legged donkeys can appear easily, or for the clear intuition
that being four-legged is a contingent fact about donkeys, one that can be changed
e.g. by genetic manipulation? The answer offered here is that to reach these we need
to change the lexicon. Thus, to go from the historical meaning of Hungarian kocsi
‘coach, horse-driven carriage’ to its current meaning ‘(motor) car’, what is needed is
the prevalence of the motor variety among ‘wheeled contrivances capable of carrying
several people on roads’. A 17th century Hungarian would no doubt find the notion
of a horseless coach just as puzzling as the notion of flying machines or same-sex
marriages. The key issue in readjusting the lexicon, it appears, is not counterfactual-
ity as much as rarity: as long as cloning remains a rare medical technique, we will
not have to say ‘a womb-borne human’.

To summarize our main departure from standard MG: under the treatment as-
sumed here, every man loves a woman means neither (5.3), 8xman.x/ 9ywoman.y/
loves.x; y/ nor (5.4), 9ywoman.y/ 8xman.x/ loves.x; y/; it means that woman-
loving is a typical property of men, just as donkey-beating is a typical property of
farmers. Some of the typical properties of common nouns are analytic relative to a
given lexicon while others are not. In fact, for every noun there are only a handful of
defining properties (see Section 5.3), and these can change with time in spite of the
inherent conservatism of the lexicon.

Ordinary adjectival modification means conjoining another property to the bun-
dle (conjunction) of essential properties, so brown dog refers to the conjunction of all
essential dog properties and brownness. Enormous fleas have the property of enor-
mity conjoined to the essential properties of fleas, which include being rather small,
so the notion is applied, without any special effort, on the flea scale. The same simple
treatment is available for impossible objects such as triangular circles.

Figure 6.1 shows on the left a slightly triangular circle and on the right a slightly
circular triangle. Whether the object in the middle, known as the Reuleaux triangle,
is considered a triangle, a point of view justified by its having three distinct vertices,
or a circle, a point of view justified by its having constant diameter, is a matter of
perception.
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Fig. 6.1. The Reuleaux triangle and its cousins

What is clear from the linguistic standpoint is that adadjectives like slightly,
seemingly, and very attach to adjectives like circular, triangular, and equal that have
a strict mathematical definition just as easily as they attach to adjectives like red,
large, and awful that lack such a definition. Clearly, what these adadjectives modify
is the ‘everyday’ sense of these terms – the mathematical sense is fixed once and for
all and not subject to modification. Just as we were interested in the everyday sense
of all and every and found that these are distinct from the standard mathematical
sense taken for granted in MG, here we are interested in the ordinary sense of cir-
cular. Working backward from typical expressions like circular letter and circular
argument, we find that the central aspect of the meaning is not ‘a fixed distance away
from a center’ or even ‘fixed diameter’ but rather ‘returning to its starting point’,
‘being cyclic’.

In these examples, the morphologically primitive forms are nominal: the adjec-
tival forms circular and triangular are clearly derived from circle and triangle and
not the other way around. Since derivation of this sort changes only the syntactic
category of the expression but preserves its meaning, we can safely conclude that
circle in the everyday sense is defined by some finite conjunction of essential prop-
erties that includes ‘being cyclic’ and that the mathematical definition extends this
conjunction by ‘staying in an (ideal) plane, keeping some (exact) fixed distance from
a point’. Similarly, triangle simply means ‘having three angular corners’ rather than
the exact configuration of points and lines assumed in geometry.

This point is worth remembering, as there is often a somewhat naive tendency
to treat the mathematical definition as the norm and assume that everyday language
is ‘sloppy’ or ‘fuzzy’. In reality, expressions like a triangular patch of snow on the
mountainside are perfectly reasonable and convey exactly the amount of information
that needs to be communicated: nobody would assume that the patch lies in a single
plane, let alone that its edges are perfectly straight lines. Linguistics, as a scientific
endeavor, centers on modeling the data provided by actual language use, as opposed
to providing some norm that speakers should follow. This is not to say that the study
of highly regulated technical language, as found in legal or scientific discourse, is of
no use, but as these language varieties are acquired in a formal schooling process,
over many years of adult study (as opposed to the acquisition of natural language,
which takes place at an earlier age and generally requires no schooling whatsoever),
there is nothing to guarantee that their properties carry over to natural language.
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As everyday terms, circular triangles, triangular circles, she-males, or wide
awake sleepers (spies who eagerly wait for the chance to be activated) are all illus-
trations of the same phenomenon, namely that adjectival modification is not simply
a conjunction of some new property to the set of essential properties but a destruc-
tive overwrite operation. Thus, brown dog is simply an object that has the property
(color) brown in addition to the properties essential to dogs, but ownerless dog is an
object with the same properties except for lacking an owner. In other words, essential
properties are merely defaults that can be defeased.

From this vantage point, English has far fewer hyperintensional constructions
than assumed in the tradition of philosophical logic: certainly triangular circles and
immaculate conceptions give rise to no logical contradictions. This renders the prob-
lem with hyperintensionals discussed above far less urgent, as we now only have to
deal with cases in which the essential meaning of the adjective is in strict contra-
diction to the essential meaning of the noun it modifies, and the latter is given by a
single conjunct. Thus, we need to consider examples such as

Mondays that fall on Tuesdays (6.9)
Mondays that fall on Wednesdays (6.10)

Does it follow that a (rational) agent who believes in (6.9) must also believe in (6.10)?
While the matter is obviously somewhat speculative, we believe the answer to be
negative: if we learn that John believes Mondays can be really weird – he actually
woke up to one that fell on Tuesday, it does not follow that he also believes himself
to have woken up on one that fell on Wednesday. Since he has some sort of weird
experience that justifies for him a belief in (6.9), he is entitled to this belief without
having to commit himself to (6.10), as the latter is not supported by any experience
he has.

What makes this example particularly hard is that Mondays, Tuesdays, and
Wednesdays are purely cultural constructs: there is nothing in objective reality to
distinguish a Monday from a Tuesday, and it is well within the power of society to
change by decree the designation a day gets. When the lexical knowledge associated
to a term is more flexible, as in the case of triangles and circles, accommodation,
finding an interpretation that defeases as little of the lexical meaning as needed to
make sense of the expression, is much easier. Most lexical entries clearly contain
more information than a purely logical definition. For example bachelor, does not
just mean ‘unmarried man’ – the lexical entry must contain a great deal of default
knowledge about preferring to live alone, eating TV dinners, etc., otherwise a sen-
tence such as In spite of having married recently, John remained a true bachelor
could make no sense.

So far, we have assumed that lexical entries contain some mixture of defeasible
and strict (nondefeasible) information without committing ourselves as to their pro-
portion. But whether lexical entries without defeasible content exist at all remains to
be seen – if not, the problem of hyperintensionals is not pertinent to natural language
and the standard MG treatment of opacity remains viable. An even more radical
question, one that we shall pursue in Section 6.2.2, is whether strict content exists in
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the lexicon to begin with. If not, natural language is structurally incapable of carrying
arguments with strict conclusions. To carry out this investigation, we need a system
of logic that can sustain some distinction between essential and inessential properties
and one that can sustain some notion of default. We find a suitable candidate for both
in the seven-valued system D of Ginsberg (1986), to which we turn now.

6.2.2 Truth values and variable binding term operators

Recall that a lattice is an algebra with two commutative and associative binary oper-
ations _ and ^ satisfying the absorption identities a_ .a^ b/ D a; a^ .a_ b/ D a.
Lattices are intimately related to partial orders: we say a 	 b iff a _ b D b or,
equivalently, if a ^ b D a. If neither a 	 b nor b 	 a holds, we say a and b are not
comparable. The lattice operations induce a partial order, and conversely, any partial
order for which incomparable elements have a greatest lower bound and a least upper
bound give rise to a lattice whose induced partial order is the same as the one with
which we started. The least element of a lattice, if it exists, is called the zero or false
element, and the greatest, if it exists, is called the one or true element.

A bilattice over a set B has binary operations _;^;C; � such that B;_;^ and
B;C; � are both lattices, and the operations of one respect the partial order on the
other (and conversely). Using traditional Hasse diagrams with bottom to top rep-
resenting one ordering (say, the one induced by C; �) and left to right representing
the other (induced by _;^), the smallest nontrivial bilattice comes out as a diamond
figure. This is the four-valued system of Belnap (1977) shown in Fig. 6.2(i). As usual,
t and f are the classical true and false, ? means ‘both true and false’, and u means
‘unknown’. For system D, Ginsberg (1986) adds the values dt ‘true by default’, df
‘false by default’, and ? ‘both true and false by default’, as shown in Fig. 6.2(ii):
Let us first see how to use these in lexical entries. We will briefly touch on most lex-
ical categories admitted as primitives by the NSM school – pronouns, determiners,
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quantifiers, adjectives, verbs, adverbials, relations, and nouns – but defer adadjectives
and connectives to Section 6.3. As we go along, we are forced to make a number of
design choices, and the reader should not assume that the ones made here are the only
reasonable ones. Our goal here is not to solve all outstanding problems of semantics
but rather to present a single coherent system that supports a reasonable notion of
everyday paraphrase and common sense inference. The key issue is our desideratum
(C), which calls for some uniform, mechanistic treatment of constructions. As long
as we consider (5.9), The duckling was killed by the farmer, to be a reasonable para-
phrase of (5.8), The farmer killed the duckling, we should be able to parse both these
constructions, turn the crank of the semantic machinery, and obtain the same result
either directly or perhaps by invoking inference steps along the way.

Relations, adpositions

While not considered a primitive category in the NSM system, many grammarians
take the view that adpositions2 form a major lexical category on a par with noun,
verb, adjective, and adverb. Very often, they express a clear spatial relation: e.g.
English under is a relation between two entities X and Y such that the body of X
is, according to the vector set by gravity, below that of Y. To provide an adequate
semantics of constructions involving under, we need to address a number of technical
issues, but most of the machinery will be required elsewhere as well.

First, we need model structures that contain entities and relations. Entities have
type e, and (binary) relations have type e � e. The set of entities in a model structure
is called the universe of the model. To fix ideas, we assume a distinguished model
structure M0 corresponding intuitively to reality, ‘our world as of a fixed date’, and
some set of indexes I . There are model structures Mi with universe Ui for every
i 2 I , and at least some of these are accessible from M0 by the evolution of time).
Unlike MG, which fully integrates time into the structure of models, we leave mat-
ters of time outside a single model structure in this discussion, at least for significant
durations (over a few seconds). We leave open the possibility that a local (possibly
infinitesimally small) temporal environment is part of the model structure or, equiv-
alently, a single model may be able to sustain statements about speed, acceleration,
precedence, etc. We shall also ignore all complications stemming from different ref-
erence frames and relativity (see Belnap and Szabó 1996). We need to sustain two
kinds of inferences:

if X is under Y, and Y is under Z, then X is under Z (6.11)
if X is under Y, Y can fall on X (6.12)

Inference (6.11) is clearly defeasible: if the rug is under the bed, and the coin is under
the rug, it may still be that the coin is not under the bed (but rather under a portion
of the rug that peeks out from under the bed). More importantly, even if the coin lies
geometrically under the bed, once it is covered by the rug it requires a significant

2 In English, prepositions, but in many languages such as Japanese or Uzbek [UZN], often
postpositions: consider soxil tomon shore. NOM toward ‘toward the shore’.
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amount of reconceptualization to consider it being under the bed: this is similar to
the smart aleck of Winograd and Flores (1986) who answers yes to the question is
there water in the fridge? based on the fact that there are vegetables in the fridge and
organic matter is composed of 50% water.

Somewhat surprisingly, it is (6.12) that appears to be nondefeasible: even in
science-fictional contexts, the meaning of under is preserved. The ship’s gravity gen-
erators reversed. The gun under the bed was now over it and began to fall on it.
Although the phenomenon is already clear, with a little effort, even less arguable
cases can be constructed:

if X is under Y, Y is over X (6.13)
if X is to the left of Y, Y is to the right of X. (6.14)

For a fuller theory of lexical semantics, several questions need to be answered. First,
is there a need to distinguish a core (spatial) meaning of under from a more periph-
eral, metaphoric meaning? Clearly, from France was under Vichy rule it does not
follow that *Vichy rule could fall on France. Here we take the methodological stance
that different meanings, as denoted by subscripts in lexicographic practice, are to
be avoided maximally: the lack of a *Vichy rule could fall on France construction
is to be attributed to blocking (see Section 4.2) by the form befell. To be sure, there
will always be cases such as bank1 ‘riverbank’ vs. bank2 ‘financial institution’ where
the semantic relation between the two, if there ever was one, is beyond synchronic
recovery, but for the most part we side with Jakobson, who in response to bachelor1

‘unmarried man’, bachelor2 ‘seal without a mate’, and bachelor3 ‘young knight car-
rying the banner of an established one’ summarized the meaning as ‘unfulfilled in
typical male role’.

Second, where is information such as (6.12) to be stored: in the lexical entry
of under, in the entry of fall, both, or neither? Here we assume a neutral store of
background knowledge we will call the encyclopedia, which is distinct from the lexi-
con, being devoted primarily to extragrammatical or real-world knowledge, but leave
open the possibility that lexical entries may have pointers to encyclopedic knowl-
edge. Our desideratum (F), invariance under change of facts, will be fulfilled by
permitting modification (in the limiting case, full deletion) of the encyclopedia but
keeping the lexicon, at least synchronically, unchanged. Note that arithmetic, includ-
ing the chipmunk arithmetic of Exercise 6.2, is a matter of real-world knowledge.
The main relational constructions that we need to cover include the copulative

S ! NPh˛PERS ˇNUMi COPh˛PERS ˇNUM �TENSEi P NP (6.15)

which is a full sentence such as The cat was under the bed, and the relative clause

NP ! NPh˛PERS ˇNUMi P NP (6.16)

which is an NP such as the cat under the bed.
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Entities, constants

Mathematical logic makes routine use of a class of expressions, constants, that have
no clear counterpart in natural language. Mathematical constants are rigid desig-
nators of the best kind: not only do they correspond to the exact same element in
each model, but this cross-world identity comes at no cost: the name itself guar-
antees that the same cluster of properties is enjoyed by each instance. They are
not subject to adjectival modification, *quick 5, *ancient � , or relativization: the e
that Mary learned about yesterday is the exact same e; 2:718 : : :, that we all learned
about. Kripke (1972) treats all proper names as rigid designators, but this is not well-
supported by the linguistic evidence. Proper names can shift designations as a result
of adjectival modification (the Polish Shakespeare is not Shakespeare but ‘the most
distinguished Polish playwright’) and similarly for possessive or relative clauses (the
Venice of the North is some ‘spectacular city built on islands in the North’), and so
on. Here we take the stance that the relative constancy of proper names is primarily
due to the lexical information associated to them, so that e.g. geographic names have
a great deal more temporal constancy than names of organizations.

Similarly, Kripke (1972) argues that natural kinds such as dog or water cannot
be defined in terms of paraphrases as we have suggested in Section 5.3 – a proper
definition must ultimately rely on the scientific identification, in terms of DNA char-
acteristics for dogs or the H2O chemical formula for water. From a philosophical
standpoint, this may be more satisfactory than the method of definition used here,
which relies on conjoining essential properties. Indeed, it would be hard to argue
that the ultimate reality of water is somehow distinct from H2O. Yet from the natu-
ral language standpoint we are less concerned with ultimate reality than with actual
usage, and H2O is clearly not water but rather ‘distilled water’ or even ‘chemically
pure water’ – adopting the scientific definition would lead to the rather undesirable
consequence that water quenches thirst best would come out as highly questionable,
as there are a range of experiments suggesting that chemically pure water is inferior
to ordinary water in this regard. In general, those contexts that distinguish ordinary
water from chemically pure water would all lead to paradoxical judgments: we would
want to say water generally has trace minerals is true, but if we insist on defining
water as H2O the sentence is by definition false.

The MG treatment of generalized quantification takes not just quantified NPs to
be sets of properties but all NPs. Proper names, in particular, denote not individu-
als but the set of all properties these individuals have. We have already seen that a
more modest selection of properties, taking only those properties that are in some
sense defining (essential, typical) of the quantified noun yields better results for the
every N construction, and it is worth noting that proper names can be quantified the
same way: every Dr. Johnson finds his Boswell ‘great men will find admiring biog-
raphers’. By our requirement (C), which calls for homogeneous semantic treatment
of syntactically homogeneous constructions, NPs composed of a determiner and a
noun should also be sets of properties. We will assume here that the adds a single
property, that of definiteness, to the set of properties that make up common nouns.
This situation provides a clear example of the autonomy of syntax thesis discussed
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in Section 5.3: if ‘definiteness’ is just like ‘redness’, there is no semantic explanation
why the red boy is grammatical but *red the boy is not. To summarize the major
constructions we have to account for:

NP ! every/the N (6.17)

which accounts for singular NPs such as the point, every point, and

NPhPLi ! .every/the/ Num NhPLi (6.18)

which accounts for plural NPs such as every three points [determine a plane] or the
three points [determining a plane].

Adjectives

If all proper names, common nouns, and NPs are bundles of properties, is there still
a need for a simple e type (entities, elements of model structures)? To be sure, it
generally requires a significant amount of definitional work to get to a specific entity:
consider the third nail from the top in the fence segment starting at the northern
end of my backyard at Hiawatha Lane, Arlington, MA. In definitions like these, the
whole expression is anchored to proper names like MA, Arlington, Hiawatha Lane,
to indexicals like I or my, to demonstratives like this, and to essential properties such
as the cardinal directions north, top. Once we have a specific entity, we can name it,
but the two model structures before and after the act of naming are different: in one,
the nail in question is like any other nail, and in the other it enjoys the property of
having a name.

Remarkably, even though a whole set of culturally regulated naming conven-
tions are deployed for the purpose (there are not likely to be two Hiawatha Lanes in
one town, or two Arlingtons in one state), the act of naming the nail still requires the
presence of the definite article the. This is not true for proper names, which are inher-
ently definite: we say London, you know, the one in Ontario rather than *the Ontario
London. The main insight of Kripke (1972), that proper names behave like rigid des-
ignators, can therefore be salvaged by means of assigning the definiteness property
to proper names in the lexicon and by allowing for some relationship between enti-
ties (type e) and the bundle of properties that define them, traditionally taken as type
.e ! t / ! t .

In the Leibniz/Mostowski/Montague tradition, there is a direct, in a philosophical
sense definitional, one-to-one relation between entities and the sets of their proper-
ties: if two entities are not the same, there must be some property that holds for one
but not for the other. If no such property is found, the two entities cannot be individu-
ated and must therefore be counted as one and the same.3 This opens the way toward

3 The philosophical problem of individuation is particularly acute for elementary particles
of the same kind, which have no distinguishing properties once their quantum state is
determined. We make no pretense to be able to contribute to the philosophy of quantum
mechanics and simply assume that things are large enough so that there will be a whole
range of location properties to distinguish between any two tokens of the same type.
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characterizing adjectives by their intension. Following Belnap (1977), we define the
domain of a property P in the universe Ui by two sets, called the positive and the
negative support PC and P�. In classical logic, P� would just be the complement
of PC, but here we permit the two to overlap and their union to leave some of Ui

uncovered. The four truth values, denoted u; t; f , and ?, are assigned to entities
x as expected: P.x/ D?, x 2 PC ^ x 2 P�IP.x/ D t , x 2 PC ^ x 62
P�IP.x/ D f , x 62 PC ^ x 2 P�IP.x/ D u , x 62 PC ^ x 62 P�. We will
need two entailment relations, ˆC and ˆ� (read true-entails and false-entails), with
the expected properties such as I ˆ� U ^ V , I ˆ� U _ I ˆ� V .

We have two candidate definitions for common nouns: on the one hand, we could
identify the meaning of a noun such as candle with the property of ‘being a candle’,
i.e. as a subset of Ui (a single e ! t function at any index). This is the traditional
logical approach. Under the traditional linguistic approach, to find the meaning of
candle, one consults a dictionary, where it is defined as

a light source, now used primarily for decoration and on festive occasions,

made of wax, tallow, or other similar slowly burning material, (6.19)
generally having a cylindrical shape, but also made in different shapes.

Our goal here is to formalize this second approach (i.e. to treat common nouns as
bundles of their essential properties). Since properties are also subsets of Ui , this
amounts to defining the set of candles by the intersection of the essential candle
properties: serving as a light source, being used on festive occasions, being made
of wax or a similar substance, etc. This is not to say that dictionary definitions are
directly applicable as they are: for example, the definition above does not mention
the wick, while we take wicks to be essential for candles. The main construction that
we have to account for is

N ! A N (6.20)

which describes adjectival modification as in cylindrical shape.

Pronouns, indexicals, quantifiers

The standard MG method is to treat pronouns as variables. While the metaphor of
substituting specific instances is attractive, giving pronouns variable status would
leave a gaping hole in the edifice: why cannot we quantify over them? There
is no *every me or *every you. Alternatively, in languages with morphological
person/number marking, it should be easy to use these marks on quantifiers as
well (this is especially clear for languages such as Hungarian that reuse the same
set of markers across verbs and nouns), yet cross-linguistically we do not find
person/number marking on quantifiers at all.

On the whole, pronouns have a distribution very close to that of proper nouns:
perhaps the only situation where a pronoun cannot be replaced by a proper noun is in
resumptive positions as in I wonder who they think that if Mary marries him/*John
then everybody will be happy or in lexical entries such as make it clear that contain
pronouns as in Studying Chapter 2 makes it/*the book very clear that the author
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rejects the global warming hypothesis. Therefore, assigning pronouns and proper
nouns radically different types would be hard to justify. If proper names are of type
e; pronouns will have type e ! e and will correspond to a distinguished func-
tion among all e ! e functions, namely the identity. As there is only one identity
function, this method goes a long way toward explaining why we find only a very
restricted set of pronouns (only as many as there are gender classes), while there is an
infinite supply of variables. If proper nouns are treated as bundles of their essential
features, pronouns will be the identity function over such bundles, except possibly
adding a gender feature to the conjunction.

Another aspect of pronouns worth noting is that I is uniquely identified by the
speaker who utters it, but you generally requires some gesture or equivalent cue to
pick up its referent. This phenomenon is even more marked with other pro-forms
such as here, there, now, etc., whose content clearly depends on the context they are
uttered. Following Kaplan (1978, 1989), these are generally collected under the head-
ing of indexicals. The standard MG treatment is to use n-tuples of speaker, hearer,
time, place etc., to structure the set I of indexes, and make the content of indexicals
dependent on these.

In translating natural language expressions to formulas of some logical calculus,
the standard method is to automatically supply variables to quantifiers. (As dis-
cussed earlier, the standard logical interpretation of 8 is not the appropriate one:
generic sentences such as Hares outrun foxes express states of affairs believed to be
true of whole classes, even though individual exceptions may exist, and the same is
true of the typical use of every. For the moment, we ignore the issue and proceed
the way MG does.) Clearly, the sentence Everyone thinks he will win is reasonably
paraphrased as

8xman.x/think.x;will win.x// (6.21)

and if he is viewed as a variable x, use some mechanism to make sure that everyone
binds x. Needless to say, if he is viewed as a variable y, the translation must become

8yman.y/think.y;will win.y// (6.22)

As long as we treat the formulas as mere abbreviatory devices and take the inter-
pretation in model structures as our eventual goal, alphabetic variants such as (6.21)
vs. (6.22) make no difference, as they will hold in the exact same models. Correct
bookkeeping is more of an issue in theories such as discourse representation the-
ory (DRT) (Kamp 1981, Heim 1982), where the intermediate formulas play a more
substantive role, but even in classic MG, some care must be taken in the choice of
alphabetic variants to avoid the accidental capture of one variable by an unintended
quantifier; otherwise we could end up with 8xŒwoman.x/8xŒman.x/kissed.x; x/��
as the translation of every woman kissed every man.

To present the variable binding mechanism in a standard format, we define a
variable binding term operator (VBTO) as an operator that binds one or more
free variables in a term or formula. An example immediately familiar to the reader
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will be the definite integral
R b

a
dx, which binds the variable x of the function to

whicj it is applied, or the � abstractor �x. As usual, we require the equivalence of
alphabetic variants: if _ is a VBTO, F.x/ and F.y/ are terms with x free in F.x/
exactly where y is free in F.y/, and we require _xF.x/ D _yF.y/. We also require
extensionality: 8xF.x/ D G.x/ ) _xF.x/ D _yF.y/ (see Corcoran et al. 1972).

Once VBTOs are at hand, they can be applied to other phenomena as well, includ-
ing questions such as Who did John see?, where it is the interrogative particle who
that is treated as a VBTO wh so that the translation becomes whx see(John,x), and
also to ‘moved’ and ‘gapped’ constituents as in John saw everyone or John read the
first chapter of everything that Mary did [read the first chapter of]. While it is possi-
ble to translate long distance dependencies such as Who did Mary see that John said
that Bill resented? as

wh x saw(Mary,x) & said(John,resented(Bill,x)) (6.23)

the first occurrence of the variable is now very far from the last, and the bookkeeping
required to keep track of what should bind what where gets very complicated.

While the pure syntax of first-order formulas is context free (this is what makes
Tarski-style induction over subformulas possible), getting the semantics right requires
full context-sensitive (or at least indexed, see Exercise 5.5) power, so the complexity
of the logic apparatus overshadows the syntactic complexity of natural language.
This gives us a vested interest in finding mechanisms of semantic description that
are combinatorically less demanding – these will be discussed in Section 6.3.

In reality, there are significant performance limitations to nesting these construc-
tions, and in practice speakers tend to break them up e.g. as What did John say,
who did Mary see that Bill resented? Even though the meaning of these sentences is
somewhat different from (6.23) in that Mary’s seeing someone now appears as part
of what John said, the added simplicity is well worth the lost expressiveness to most
speakers. Altogether, the semantics should account at least for the cases where pro-
nouns (including interrogative, reflexive, and quantified expressions) appear in the
positions normally filled by NPs, as in He saw John, John saw him, Everyone saw
John, John saw everyone, Who saw John? John saw himself, etc.

The syntax should account for English-specific facts, e.g. that in situ object inter-
rogatives, without an incredulous intonation, John saw WHO?, are far more rare
than their do-support counterparts, Who did John see?, or that constructions such as
*Himself saw John are ungrammatical. The interaction between singular and plural
forms, definite and indefinite articles, and quantifiers is very complex, with seem-
ingly specific constructions such as The hare will outrun the fox still offering generic
readings. Another complicating factor, in English and many other languages, is the
use of the copula. So far, linguistic semantics has not advanced to the stage of pro-
viding a detailed grammar fragment covering these interactions in English, let alone
to a parametric theory that contains English and other languages as special cases.

We emphasize here that the issue of eliminating variables from the statement
of semantic rules is independent of the issue of generics. Even if no variables are
used, the translation ‘hares are fox-outrunners’ (formulated as H � FO in Peirce
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Grammars; see Böttner 2001) implies there are no exceptions, while in fact the crit-
ical observation is that there can be exceptions (and in extreme cases such as the P6
processor discussed above, all cases can be exceptional).

Verbs

As the reader will have no doubt noticed, definition (6.19) of candle already goes
beyond the use of adjectives, with binary or more complex relations such as use for
decoration, use on festive occasions, made of wax, having a cylindrical shape, etc.
With relationships such as

use(people, candle, for decoration) (6.24)
use(people, candle, on festive occasions) (6.25)

several questions present themselves. Is the use of (6.24) the same as the use of
(6.25)? In general, the question of how lexical entries are to be individuated is par-
ticularly acute for verbs: consider John ran1 from the house to the tree, the fence ran2

from the house to the tree, Harold ran3 for mayor, and the engine ran4 for a full week.
Using paraphrases such as the fence/*John extends from the house to the tree, it is
easy to determine that run1 and run2 mean different things. For multilingual speak-
ers, translations also give a good method for separating out dictionary senses: when
the same word must be translated using two different words into another language,
we can be virtually certain that there are two distinct meanings, but the converse does
not hold. For example English run1 and run2 receive the same Hungarian transla-
tion, fut, while run4 is a distinct motion verb jár ‘walk’, and run3 has no single
verb to translate it (more complex phrases such as ‘participates in the election for’
must be used).

Having separated out at least four senses of run, we want to make sure that we
do not go overboard and treat ran differently in John ran the Boston Marathon and
John ran the Boston Marathon yesterday. To do this, we will invoke the traditional
distinction between arguments, which correspond to bindable slots on the relation,
and adjuncts, which do not. We say that Boston Marathon fills an argument slot while
yesterday does not, and it is only arguments that appear in lexical entries.

Formally, we will distinguish six VBTOs or kāraka (deep cases) called Agent,
Goal, Recipient, Instrument, Locative, and Source. The following table summarizes
their English and Sanskrit names, the basic description of the argument they bind,
and the place in the Asht.ādhyāyı̄ where they are defined.

Agent kartr. the independent one (1.4.54)
Goal karman what is primarily desired by the agent (1.4.49)
Recipient sam. pradāna the one in view when giving (1.4.32)
Instrument karan. a the most effective means (1.4.42)
Locative adhikaran. a the locus (1.4.45)
Source apādāna the fixed point that movement is away from (1.4.24)

In constructing lexical entries, we thus need to specify both the arguments and the
way they are linked. Since run4 is intransitive (cf. The engine runs, *The engine
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runs to Boston) we can construct a formula Ax run.x/, where A (Agent) is a VBTO.
When the semantic relation has two arguments, as in AxGy run.x; y/, it is the type
of the binder that decides the role in which the substituted element will appear. In the
case of run3, the Agent is Harold and the Goal is mayor.

In the process of generating the sentence, we begin by setting the (generally inter-
linked) tense, voice, and mood features and deciding on what to use for Agent and
Goal. These get expressed by the appropriate morphological and syntactic devices:
tense/aspect by the choice between runs, ran, is running, will run, etc., the Goal by
the preposition for (as is typical in many languages), and the Agent by appearing in
the preverbal position (a parochial rule of English). In the case of run2, there is no
fixed point that movement is away from. There is no movement to begin with, but
even if we allow for some generalized, symbolic notion of movement, it is clear that
the fence runs from the house to the tree describes the exact same situation as the
fence runs from the tree to the house, while John runs from the house to the tree is
truth-conditionally distinct from John runs from the tree to the house. Thus, we treat
run1 as AxSyGz run.x; y/ and AxLyGz run.x; y; z/.

Here we cannot even begin to survey the variety of constructions that the system
should account for (Pān. ini’s dhātupāt.ha has about two thousand verbal roots, and
Levin (1993) has nearly a thousand verb classes) and will restrict ourselves to the
prototypical action sentence (5.8) as provided by the lexical entry AxGy kill.x; y/.
Unlike many modern theories of the passive, Pān. ini does not require a separate lexi-
cal entry for the passive verbal complex be killed, not even one that is generated by
a lexical rule from the active form.

6.3 Grammatical semantics

In Section 5.2 we surveyed a range of syntactic theories we called grammatical
because they rely on notions such as (deep) case, valence, dependency, and linking,
which are expressed only indirectly in the manner in which words are combined.
Our goal here is to develop a formal theory of semantics that fits these theories as
well as standard MG fits combinatorial theories of syntax. In Section 6.3.1, we sum-
marize the system of semantic types and contrast it with the far richer system of
syntactic types. In Section 6.3.2, we introduce signs and describe the mechanisms of
their combination. We consider the use of system D instead of classic two-valued
logic only a minor departure from MG and one that will not play an important role
in what follows, beyond helping us define the range of semantic phenomena one
should consider critical. A more significant departure from the tradition is that no
MG-style fragment covering all the major constructions surveyed will be presented.
To draw the limits of such a fragment, one would need to survey the frequency of the
construction types in question, an undertaking beyond the scope of this book.

The central innovation in Section 6.3.2 is the introduction of a strict left-to-right
calculus of combining signs (presented as a parser but equally valid as a generation
method). To the extent that MG relies on induction over subformulas, and thus on a
notion of a parse tree for a formula, we significantly depart from the MG tradition
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here. But to the extent that our goal is still to provide a truth-conditional formulation,
as opposed to a ‘language of thought’ model, the reader may still safely consider the
development here as part of MG.

6.3.1 The system of types

From the semantic viewpoint, we have found a need for only two basic types: e
(entities) and t (truth values). Of these, e is used directly only for certain proper
names, if at all. Most entities are treated as bundles of properties .e ! t / ! t .
Derived types were also kept simple: two-place relations are of type e� e rather than
.e ! t / ! t � .e ! t / ! t , three-place relations are of type e � e � e, and so
on. Given the well-known problems with hyperintensionals, we remained neutral on
the use of intensional types for solving the problems of opacity, even though some
scattered arguments in their favor (most notably, the existence of ‘intensional’ nouns
such as temperature, and the ability to treat indexicals by manipulating indexes) have
been noted.

This is in sharp contrast to the syntactic viewpoint, where we see a profusion
of types, both basic and derived. In addition to the basic NP and S types, there are
adverbs S/S (for the time being, we ignore issues of directionality – we return to this
matter in Section 6.3.2), adjectives NP/NP, intransitive verbs S/NP, transitive verbs
S/NPxNP, ditransitive verbs S/NPxNPxNP, and so on. Quantifiers and determiners
require either some type Det so that bare nouns can be treated as NP/Det or some
bare noun type N so that quantifiers and determiners can be assigned type NP/N.
Without loss of generality, we can take the second option and redefine adjectives as
N/N, clearly more appropriate than NP/NP in light of the observation that, at least
in the plural, bare nouns readily take adjectival modifiers (without the need to add a
determiner or quantifier later). Also, nonintersective adjectives are clearly functions
from nouns to nouns.

Let us see how the remaining syntactic categories fit into this basic scheme.
Since the distribution of pronouns is near-identical to that of NPs, we can perhaps
ignore the rare resumptive cases and assign the type NP to pronouns as well. Since
adverbials modify verbs, their type must be S/S, or perhaps V/V, where V is some
abbreviatory device for the main verb types S/NPk . Obviously, adverbs are a class
distinct from adjectives: compare brown fox, soon forgets to *soon fox, *brown for-
gets. In English (and many other languages), there is an overt morphological suffix
-ly that converts adjectives to adverbials: happy fox, happily forgets. By the logic
of category assignment, adadjectives (modifiers of adjectives such as slightly, seem-
ingly, very) must have category A/A, or, if A is analyzed as N/N, adadjectives must
be (N/N)/(N/N). Remarkably, adadjectives can also function as adadverbs (that is,
as modifiers of adverbs): consider slightly happy, very soon, etc. By the same logic,
adadverbs are (V/V)/(V/V), so we have a defining relation

.N=N/=.N=N/ D .V=V /=.V=V / (6.26)

This makes perfect sense if both common nouns and verbs are treated as unary
relations, but such a treatment makes no sense for transitive and higher-arity verbs.
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A similar problem is observed for conjunctions such as and or or, which operate the
same way across the whole system of categories: if X1 and X2 are both of category
C, the phrase “X1 and X2” will also be of category C. Conjunctions therefore must
have type C=CxC where C is some abbreviatory device for all categories S, NP, N,
V, etc., possibly including conjunctions themselves, as in the expression and/or. It is
worth noting that conjunctions work so well that reducing X1 and X2 makes sense
even in cases where theX1 would not get types assigned: consider Mary wanted, and
Bill obtained, every album of John Coltrane. This phenomenon, known as noncon-
stituent coordination (NCC), argues either for a broad view of category combination
or for the adjunction of zero elements to the structure. The former approach is taken
in combinatory categorial grammar (Steedman 2001), but the latter is also defensible
since the zero elements (called traces in transformational grammar) can also be used
to derive the peculiar intonation pattern of NCC sentences.

One way of investigating the apparatus of category combination is to consider
near-synonymous verbs that satisfy defining relations similar to (6.26). Take

AxGyRz give(x,y,z) D AzGySx get(x,y,z) (6.27)

which expresses the idea that the truth conditions of John gives a book to Bill and Bill
gets a book from John are identical. Similar relations hold for sell/buy, fear/frighten,
kill/cause to die, etc. However, adverbs do not affect the arguments uniformly. Com-
pare This book will sell well to *This book will be well-bought, and similarly to kill
the duckling easily does not mean to cause the duckling to die easily, and it is not
clear what, if anything, the expression ?to easily cause the duckling to die should
mean.

In Chapter 3 we described signs as conventional pairings of sound and meaning.
Here we refine this notion, defining a sign as a triple (sound, structure, meaning),
where sound is a a phonological representation of the kind discussed in Chapters 3
and 4 (for ease of reading, we will use orthographical representations instead), struc-
ture is a categorial signature of the kind discussed in Chapter 5, and meaning is a
formula in a logical calculus similar to that used in extensional versions of MG but
taking truth values in system D. There are two kinds of elementary signs we need
to consider, lexical entries and constructions. (Most elementary signs can be further
analyzed morphologically, but from the perspective of syntax they are elementary in
the sense that they have to be learned as units since their overall properties cannot be
deduced from the properties of their parts.)

By a directional category system we mean an algebra with three binary opera-
tions n; =; and :, which have the following properties:

y:.ynx/ D .x=y/:y D x (6.28)
zn.ynx/ D .y:z/nx (6.29)
.x=y/=z D x=.z:y/ (6.30)

The concatenation operation : is marked only for clarity in (6.28)–(6.30), generally
it is not written at all. By a nondirectional categorial system we mean an algebra
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with two binary operations, � (typeset as a fraction) and :, that have the following
properties:

x

y
:y D y:

x

y
D x (6.31)

x
y

z
D x

y:z
D x

z:y
(6.32)

In nondirectional (also called unidirectional) systems, the typography is generally
simplified by using slashes instead of fractional notation – this causes no confusion
as long as we know whether a directional or a nondirectional system is meant.

Given a set of basic categories B , from x; y 2 B we freely form derived direc-
tional categories xny; y=x (in the nondirectional case, x

y
) and the concatenated

category x:y. The full set of categories C is then obtained as the smallest set closed
under these formation rules and containing B as a subset. c-categorial grammars
map the lexicon one-to-many on category systems: we say that a sequence l1; : : : ; lk
of lexical elements is grammatical if there exist values of these mapping c1; : : : ; ck

and some order (not necessarily left to right) of performing the simplifications given
in (6.28)–(6.32) that yield a designated element of the category system.
Discussion The definition given here is slightly different from the one given in
Example 2.2.2 and developed in Section 5.1.2. Categorial grammar, as the term is
generally understood, does not use concatenated categories at all, only those cate-
gories obtained from the basic categories by (back)slashes. However, the linguistic
use of categories is better approximated by the variant presented here – we call the
resulting system c-categorial ‘concatenation categorial’ to preserve the distinction,
to the extent it is relevant, between these and the more standard categorial systems.
As (6.26) makes clear, in the cases of linguistic interest, we are not mapping onto the
free algebra but rather on relatively small and well-behaved factors. In Section 5.2,
we noted that the entire system of (sub)categories is finite, on the order of a few
thousand categories, modified by morphosyntactic features that can themselves take
only a few thousand values. One important way of making sure that free generation
of derived categories does not yield an infinite set of categories is to enforce the
noncounting property (5.29) as defining relations: for each category x 2 C we add
the equation

x:x:x:x D x:x:x:x:x (6.33)

Another important means of controlling the size of the category system is to take the
system of basic categories B to be small. As our survey in Section 6.3.1 indicates,
we can generally make do with only three basic categories: S, NP, and N . This set
is hard to reduce further, as there are clear monomorphemic lexical exponents of
each: sentential expressions such as yes, ouch, etc., are category S ; proper names
like John are category NP; and common nouns like boy are category N. As for the
remaining major categories, adjectives like red areNnN , intransitive verbs like sleep
are NPnS , transitive verbs are NPnS=NP, ditransitives are NPnS= NP.NP, and so
on. It is often convenient to abbreviate the whole class fNPnS=NPi ji D 0; 1; 2; : : :g
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as V , but the category V need not be treated as primitive, just as the category A,
which is simply an abbreviation for NnN , does not need to be listed as part of the
nonderived categories comprising B . Adverbs, adadjectives, and adadverbs are also
derived categories, which leaves only one candidate, the set of adpositions P , as a
potential addition to B . Here we take the view that adpositional phrases differ from
adjectival phrases only in that verbs can subcategorize for them: semantically, they
express two-place relations, so with the adpositional NP filled in they correspond
to adjectives. In other words, we will treat being on the hill as a property, just like
being red.

To complete the argument for B D fS;NP; N g, we need to discuss a variety
of other category-changing (monomorphemic) elements, ranging from inflectional
affixes such as the plural -s to ‘particles’ such as the infinitival to and the relativizer
that. For inflectional material, we can use direct products: if h˛F i is a morphosyn-
tactic feature and x some category, we freely form the category xh˛F i. Ideally, this
would imply that whenever a morphosyntactic distinction such as number or per-
son is available in one category, such as that of verbs, the same distinction should
also be available for all other categories. This is far from true: while nouns are
indeed available in different numbers, only pronouns have different persons, and
cross-linguistically adverbials do not show person or number variants.

In other words, the full system of categories is obtained not as a direct prod-
uct of the basic and the inflectional categories but rather as a homomorphic image
of this direct product. There are a variety of elements, ranging from the marker
of definiteness the to the marker of infiniteness to, that languages with more com-
plex morphology express by inflectional, rather than syntactic, means; cf. Romanian
frate/fratele ‘brother/the brother’, Hungarian eszik/enni ‘he eats/to eat’ – different
languages make the cut between the two parts of the direct product differently.

To make sure that we cover at least the same range of basic facts that MG cov-
ers, we need to consider relative clauses such as [the boy] that Mary saw, [the boy]
that saw Mary. As these are clearly nominal postmodifiers, their category must be
N=N , but note that their semantics differs from that of adjectives (category NnN )
significantly in that relative clauses are always intersective: a lazy evaluation need
not be lazy, but an evaluation that is lazy must be. This observation is given force by
examples such as P: red paint that is blue vs. Q: blue paint that is red – what-
ever substances P and Q may be (perhaps improperly manufactured paints that
left the factory without quality control?), it is evident that P is in fact blue and
Q is red, and not the other way around. To get a relative clause, we need a verb
with one argument missing; e.g. Gx saw(Mary,x) or Ax saw(x,Mary). In categorial
terms, such expressions are S

N
(with directionality, at least in English, tied to which

argument is missing), so for subjectless relatives we have to assign that the cat-
egory .NnN/=.NPnS/ and for objectless relatives .NnN/=.S=NP/. In languages
with overt case marking, the relativizer will actually carry the case of the NP that is
missing from the S . In English, this is marginally observable in the requirement to
use whom in The boy whom Mary saw as opposed to *The boy whom saw Mary.

To simplify the notation, in what follows we will give category information in a
nondirectional fashion (using forward slashes = instead of fractions) and encode the
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directionality restrictions in the phonology portion of the ordered triples. Also, we
generalize from the set of six VBTOs (deep cases) listed in Section 6.2 to a broader
concept of typed VBTOs that can bind only arguments of a given syntactic type T :
for these we use the uniform notation �T . Thus, �V i is a VBTO that can only bind
intransitive verbs, �NPhPL.ACCi is one that can only bind forms that have category
NPhPL,ACCi, and so on. In the semantics, whether coupled with a nondirectional or
a directional system of categories, we take this typing, rather than the linear order
of the VBTOs, to be the determining factor in substitution. What we require is the
analog of Fubini’s theorem that order of execution does not matter. Formally, if x is
of type U; y is of type V , and P is some two-place relation of type U � V , we have

�Ux�V yP.x; y/ D �V y�UxP.x; y/ (6.34)

and if a and b are of types U and V , respectively, we take

�Ux�V yP.x; y/ab D �V y�UxP.x; y/ab

D �Ux�V yP.x; y/ba D �V y�UxP.x; y/ba D P.a; b/
(6.35)

Before reformulating the main constructions surveyed in Section 6.2 in terms of
signs, let us see some example of triples, first without VBTOs. The lexical entry of
the sign for after in constructions such as After the rain, Mary went home will be

.after, s1; s2IS=.S:S/I ‘�.s1/ < �.s2/0/ (6.36)

Here s1; s2 are strings (of type S). We make no apologies for the ad hoc notation ‘the
temporal value of s1 is less than that of s2’ that we provided for the third (semantics)
part of the triple. To make this less ad hoc, one would need to develop a full theory
of temporal semantics, a very complex undertaking that would only detract from
our current purpose. We also gloss over the important problem of how an NP such
as the rain is to be construed as an S to which a temporal value can be reasonably
assigned. An attractive solution is to assume a deleted verb fell, stopped, etc. Turning
to phrasal constructions such as the ‘arithmetic proportion’ discussed in Section 5.3,
we have

.s1 is to s2 as s3 is to s4IS=.NP:NP:NP:NP /I ‘�.s1/=�.s2/ D �.s3/=�.s4/’/
(6.37)

To see how lexical and phrasal signs combine, consider London is to Paris as John
Bull is to Marianne. As discussed in Section 6.2.2, London and Paris are not simply
some rigid designators but contentful lexical entries ‘capital of England, large city
in England’, and similarly John Bull and Marianne are ‘person typifying English
character, personification of England’ and ‘person typifying French character, per-
sonification of France’, which at once makes the proportionality of (6.37) evident:
both sides express some relation of England to France. Were we to ignore the lex-
ical information, it would be a mystery why London is to Berlin as John Bull is to
Marianne is, under the ordinary interpretation of this sentence, false.



6.3 Grammatical semantics 173

6.3.2 Combining signs

While the theory of combining signs is in principle neutral between parsing (anal-
ysis) and generation (synthesis), in practice there is a dearth of truly neutral
terminology and the discussion needs to be cast either in generation- or in parsing-
oriented terms. Here we take the latter option, but this implies no commitment to
interpretative semantics – generative terminology would work just as well.

In the analysis of computer programs, two major strategies are available: either
we begin by a pure syntax pass over the code and translate only a parsed version of
the program (one that has already been endowed by a tree structure), or we build the
entire semantics as we go along. Computer science terminology varies somewhat,
but these strategies are often called compilation and interpretation. Here our focus is
with compilation, assigning as many meaning representations to an entire sentence
(or larger structure) as its degree of ambiguity requires.

As a simple example, consider Time flies, which means ‘tempus fugit’ or, if inter-
preted as an imperative, as a call to measure the speed of a common insect. The
ambiguity rests on the ambiguity of the lexical signs (time; N; ‘tempus’) vs. (time; V;
‘mensuro’) and (flies; V; ‘fugito’) vs. (flies; NhPLi; ‘musca’), and on the existence of
multiple paths through the grammar (state diagram) as shown schematically below:

NP
Vi

���
��

��
��

�

0

NP
��

VthIMPi
���

��
��

��
� S

I
NP

��

(6.38)

Ignoring matters of agreement for the moment, the top path corresponds to the rule
(5.7) and the bottom path to the imperative construction as e.g. in Eat flaming death!
For clarity, we added node labels corresponding to the category of the construction
reached by traversing the arcs from the start state 0 and accepting the sequence of
symbols on them.

Parsing with some FSA consists in tracking paths through the state diagram in
accordance with the lexical entries scanned. We begin by placing a pointer at the
start state and look up the lexical entry (or entries) that have phonological (in our
case orthographical) components that match the first word of the string to be parsed.
In this example there are two such entries, so we nondeterministically advance to
both states at the end of these arcs, collecting the semantics of each as we go along.
In general, the same nondeterministic update step is to be performed on all members
of the active pointer set: for each we consider what outgoing arcs match the incoming
lexical entry or entries and advance the pointer, possibly nondeterministically, to the
ends of the respective arcs – if no such arc can be found, the pointer is removed from
the active set. One important possibility to consider at each step is an update that
matches a silent (nonemitting) arc. For example, in English, object relativizers are
typically optional; e.g. the man that I saw is equivalent to the man I saw, so that the
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entire network responsible for these contains (under a homomorphism that deletes
agreement features) a subnetwork such as (6.39):

3

Vt����
��

��
�

2
NP

��

0
NP �� 1

�

���������

that
		

(6.39)

In parsing a sentence such as (5.28), one path takes us through a relative clause
with a silent relativizer fat (that) people eat, yielding an NP subject for the predicate
accumulates. The formal model itself shows no garden path effect: having matched
fat people to the NP path of (6.38) and subsequently eat to the predicate, the pointer
that embodies this analysis is at node S, corresponding to a complete sentence. The
subsequent word accumulates has no outgoing match, so this pointer is eliminated
from the pointer set, leaving only the correct path, which is as it should be, given the
fact that (5.28) is unambiguous. However, we may speculate that the human parser
does not maintain a full nondeterministic set of pointers and partial parses the same
way a machine could but will prune after awhile all nonpreferred paths. The garden
path phenomenon is suggestive of a pruning strategy corresponding to a very narrow
(perhaps only a couple of words) lookahead.

If parsing is simply the maintenance of a set of pointers and the partial semantic
structures as they are built left to right, two important questions arise. First, how
are the more complex (tree-like) constituent structures created and maintained, and
second, are there grammatical elements, be they lexical or phrasal, that manipulate
the current pointer set in a more direct fashion? Under the construction grammar view
adopted here, there are a large number of flat constructions such as (6.36) and (6.37),
and the number of nonterminal nodes dominating a construction is a direct function
of how these are embedded in one another. For example, in The king of England
opened Parliament there are two constructions to consider: the familiar S ! NP
VP (5.7), and the NPhPOSi ! NP of NP construction. In rewriting terms, we apply
(5.7), rewrite the NP using the possessive rule, and rewrite the VP using

VP ! V NP (6.40)

(or rather, with the VP on the left carrying the same plural agreement feature as the
V on the right, and the NP carrying the ACC case feature; see Section 5.7.)

This means that to understand the contribution of The king we need to first under-
stand how it contributes to The king of England (as discussed in Section 5.2.3, this
is not necessarily a straightforward possessive relation) and next understand how the
whole NP contributes to the sentence (by binding the Agent valency of open). Alto-
gether, the depth of the phrase structure tree corresponds exactly to the degree that
constructions are recursively substituted in one another, and there seems to be no
principled limitation on this. To the extent we see a limitation, it is on the number of
pointers k that can be maintained simultaneously in human memory. What the gar-
den path phenomenon suggests is that this limit is at two. (Even k D 2 is something
of a stretch: in reality, when the first parse dies out, what we need to do is to recall
the whole sentence from short-term auditory memory and restart the process – the
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second pointer is there to keep the mechanism from taking the path it took the first
time by marking that particular analysis as dead).

In the strict left to right parsing model assumed here, each partial parse leads
to a deterministic state, with different parsing alternatives typically corresponding
to different states, though we leave open the possibility of pointer paths merging.
Consider the initial sequence Who did which can be completed in many ways: by
an in situ question particle what?; by an objectless clause Mary see?; by far more
complex constructions such as her parents think would be the best match for Mary?;
or, if we are willing to treat question intonation as a boundary melody, simply by
this melody (orthographically represented as ? in these examples). The last case cor-
responds to sluicing questions, typically uttered by a person different from the one
who uttered the lead sentence: A: John decided to buy an airplane. B: Who did?
As there are at least two different senses of who to consider (one of which can be
replaced by whom in a stylistically marked variant of English, but the other cannot)
and there are at least two different senses of did, we can entertain four different paths
through the state machine. At this state of the parse, the string Who did has a nonde-
terministic analysis (pointer set) composed of these four possibilities: depending on
the continuation, only one will be an initial segment of the complete parse.

One peculiarity of the state machines arising in natural language syntax is that at
any given stage of the left to right parse, at least one of the pointers in the currently
active set is close to a final state. Consider the initial sequence After a good. A com-
plete continuation could be boy does his homework, he may play – this requires seven
words. However, a much shorter continuation, with meal, leave, is also available: we
take advantage of the fact that in English an intransitive verb alone is sufficient to
form an imperative sentence (a form of the lexicality constraint discussed in Sec-
tion 5.1.3) and also of the observation (see Erdélyi-Szabó et al. 2007) that nouns
such as storm, meal, etc., supply temporal coordinates (typecasting meal to S is a
silent move). Since the construction (6.36) involves two sentences, in the homework
continuation a pointer different from that used in the meal case will survive, but the
situation is analogous to chess, where we may consider deeply embedded structures
of gambits and counter-gambits, but a fast way out, by one player resigning, is always
available.

How big is the state machine? In Corollary 4.4.1, we demonstrated that vocabu-
lary size is infinite, but in Section 5.1.1 we argued that the set of strict (sub)categories
C is finite – in Section 5.2.2 we estimated, rather generously, jC j to be below
7:7 � 1023. A more realistic estimate is 106, subdirectly composed of some 103 lex-
ical classes with some 103 inflectional possibilities. By the preceding observation,
any active pointer set has at least one member that is within a few (say, five) steps of
becoming final. As there are at most jC j5 	 1030 five-step continuations, and there
is a pointer in any active set (with at most k members) that leads to a final state by
such a continuation, there can be at most k � 1030 states, given that those states that
can never be reached by any member of an active set can obviously be pruned. Again,
the estimate is rather generous: in reality, much shorter continuations suffice and no
more than 1012 states are expected, even if we permit k > 2. While this number may
still look too large, what really matters is not the raw number of states and transitions
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but rather the manner in which these are organized – the overall complexity of the
system (see Chapter 7) is considerably smaller than these numbers may suggest.

Lexicality, taken in a broad sense, amounts to the statement ‘if it can be done
by a phrase, it can be done by a single word’. So when we ask the general question
whether phrases can manipulate the active pointer set in a manner more direct than
the continuation tracking discussed so far, what we would really like to see are lexical
entries capable of such manipulation. A striking example is provided by coordinat-
ing conjunctions, in particular and. Consider the initial segment Mary wanted and.
This has two major continuations of interest here: obtained records and Bill obtained
records. Absent the rather characteristic intonation pattern (orthographically repre-
sented as ;) of NCC, the preferred path is with constituent coordination: wanted and
obtained become parallel verbs whose Agent valency is filled by Mary and whose
Goal valency is filled by records. However, when we see the next element, Bill, this
path is no longer available, and it is Mary wanted that needs to be made parallel with
Bill . This can only be done if and has the power to introduce new active pointers
nondeterministically at each previously traversed state. The continuation Bill is then
free to take the first of these. One argument in favor of treating and in this fashion is
that it can occur in the initial position: And now, ladies and gentlemen,. . .

How are the semantics portions of signs to be combined? Since constructions
such as (6.37) cannot be recognized until the formatives is to, as, is to that define
them are supplied, the relevant semantic function �.s1/=�.s2/ D �.s3/=�.s4/ can-
not be fully invoked at the stage London is. To invoke it partially, �.London/=�.s2/ D
�.s3/=�.s4/ must already at this stage be maintained as one of the nondeterministic
analyses, only to discard it when the next word, foggy, arrives. Psychologically it may
make more sense to assume that processing is deferred at least until a complete con-
stituent is collected, just as in the processing of predicate calculus formulas, where
interpretation proceeds through well-formed subformulas, but we have no intention
here of presenting a psychologically realistic parsing model (see Section 5.6); our
goal is simply to build a formal account couched in parsing terms.

The real issue, then, is whether disjoint pieces must be kept in partial parses or
whether a single combined sign must be available at each turn. The problem is well
illustrated by the case of English transitives, which, according to most theories, are
built using the rules (5.7) and (6.40). In other words, the construction Vt NP itself
is equivalent to an intransitive verb, and since its semantic representation can only
be built after the object is available, the whole construction cannot be interpreted
earlier. To implement this view as a parsing strategy would require keeping track of
The king of England and opened, and once Parliament comes under scan, combine
it first with opened and combine only the result with The king of England. In the
proposal made here, (6.35) makes the formalism strong enough to carry out the sub-
stitutions in any order, so that the Agent VBTO of AxGy open.x; y/ can bind The
king of England without assuming the existence of a constituent The king of England
opened. To the extent scope-taking does not follow the linear order, we may still
want to invoke a delay mechanism such as Cooper storage (see Cooper 1975), but,
given our observations about the defeasability of quantifiers, much of the standard
evidence in favor of such a mechanism needs significant reexamination.
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6.4 Further reading

The Liar paradox goes back to the 4th century BCE. The solution adopted here is
essentially that of Barwise and Etchemendy (1987), using the elementary formu-
lation of Walker (2003) rather than the more technical ZFC�C Anti-Foundation
Axiom-based version (Aczel 1988) that is now standard. Other notable efforts at a
solution include three-valued logic (for a thorough discussion, see Visser 1989) and
paraconsistent logic (Priest 1979, Priest et al. 1989). Read (2002) and Restall (2007)
reconstruct the work of the medieval logician Thomas Bradwardine, who reaches, by
rather different means, the same conclusion, that (6.1) is not contradictory, it is false.
Our desideratum (C), which amounts to some strong form of direct compositionality,
is somewhat controversial, see Janssen (1997) and Barker and Jacobson (2007).

For the interaction of language and number systems, see Hurford (1975) and
Wiese (2003). For propositional attitudes, see in particular Frege (1879), Quine
(1956), Barwise and Perry (1983), or the short tutorial summary by Bäuerle and
Cresswell (1989). Although our conclusions are diametrically opposed, our discus-
sion is greatly indebted to Thomason’s (1980) summary of the prerequisites for
Tarski’s undefinability theorem. For an alternative view on the viability of quota-
tional theories see des Rivières and Levesque (1986). Another alternative treatment
of opacity, based on structured meanings, was developed in Cresswell (1985). See
Ojeda (2006a) for detailed argumentation why a nonintensional treatment is to be
preferred both on grounds of simplicity and grounds of adequacy.

With the Principle of Responsibility, our discussion departs somewhat from the
MG tradition in that we make lexical semantics carry a great deal of the explana-
tory burden. MG in general is silent on the meaning of lexical entries: aside from
some meaning postulates that tie the meaning of nonintensional verbs and nouns to
their intensionalized meanings, only a few function words are ever assigned trans-
lations, and attempts to push the basic techniques further (see in particular Dowty
1979) go only as far as purely logical meanings can be assigned. For nominals see
Pustejovsky (1995). The method of defining lexical entries in terms of their essen-
tial properties goes back to Aristotle and is perhaps best articulated in contemporary
terms by Wierzbicka and the NSM school. For a recent critique of this approach,
fueled largely by the ideas of Kripke (1972) already discussed here, see Riemer
(2006). Although the use of generalized quantifiers is often viewed as characteristic
of MG, the idea goes back to Leibniz and was stated in modern terms as early as in
Mostowski (1957).

A good starting point for generics is Carlson and Pelletier (1995). That gener-
ics admit exceptions and thus require a mechanism greatly different from that of
standard quantification has long been noted (Jespersen 1924). For a summary evalu-
ation and quick dismissal of nonmonotonic approaches to generics, see Pelletier and
Asher (1997), and for a more sympathetic view, see Thomason (1997) in the same
volume. The standard treatment of exceptions is Moltmann (1995), who takes the
exception domain to be subtracted from each element in the set of properties that
make up a generalized quantifier (see also Lappin 1996). In our case, only essential
properties are used, and the exception domain could be subtracted from them, but our
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discussion here is also compatible with the view that those essential properties that
are contradicted by the exception get dropped out entirely. The possibility of using
paraconsistent logic has already been considered by Bäuerle and Cresswell (1989);

Possibly we would need in addition a nonstandard propositional logic, per-
haps e.g. the kind that Belnap (1977) thinks a computer should use when
reasoning from inconsistent information.

but they dismissed it promptly on the grounds that “it is hard to see how any
approach of this kind can guarantee that we have enough impossible worlds”. We
use Ginsberg’s (1986) system D, which combines paraconsistency with default
reasoning.

The idea of eliminating bound variables from logic goes back to Schönfinkel
(1924), but fuller development begins with Curry and Feys (1958) and Quine (1961).
Suppes (1973) and Suppes and Macken (1978) credit the idea to Peirce; see also
Purdy (1992) and Böttner (2001). For a summary of the main ideas from both the
linguistic and the mathematical perspectives, see Barker (2005), where both the stan-
dard analyses with variables and the variable-free approach pioneered by Szabolcsi
(1987), Jacobson (1999), and others are discussed. Another approach, doing away
with variables in favor of arbitrary objects, is introduced in Fine (1985).

Kārakas are discussed in Staal (1967) and Kiparsky (2002). The use of VBTOs
(in particular, lambda-operators) to capture argument linking was suggested in lec-
tures by Manfred Bierwisch (1988). For c-categorial grammars, we could not locate
any specific reference, but the idea of using concatenated (direct product) categories
is part of the folklore. Some of the ideas about pointer set maintenance go back to
unpublished work of the author and László Kálmán, in particular Kornai and Kálmán
(1985). The sluicing phenomenon was identified (and named) by Ross (1969); for a
recent overview see Merchant (2001).

Historically, only the MG tradition of linguistic semantics has been presented in
a fully formalized manner, but many of the ideas presented in this chapter have been
stated quite clearly, if informally, in studies such as Wierzbicka (1985), Langacker
(1982, 1987, 1991), Fauconnier (1985), and Jackendoff (1972, 1983, 1990).
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Complexity

Grammars are imperfect models of linguistic behavior. To the extent that we are
more interested in competence than in performance (see Section 3.1), this is actu-
ally desirable, but more typically discrepancies between the predictions of the model
and the observables represent serious over- or undergeneration (see Section 2.2).
There is, moreover, an important range of models and phenomena where it is not
quite obvious which of the cases above obtain. Suppose the task is to predict the
rest of the series 2; 3; 5; : : :. A number of attractive hypotheses present themselves:
the prime numbers, the Fibonacci numbers, square-free numbers, the sequence
2; 3; 5; 2; 3; 5; 2; 3; 5; : : :, and so on. The empirically minded reader may object that
the situation will be greatly simplified if we obtain a few more data points, but this is
quite often impossible: the set of actual human languages cannot be extended at will.

Therefore, it would be desirable to have an external measure of simplicity, so
that we can select the best (most simple) hypothesis compatible with a given range
of facts. Starting with Pān. ini, linguists tend to equate simplicity with shortness, and
they have devoted a great deal of energy to devising notational conventions that will
make the linguistically attractive rules and generalizations compactly expressible.
The central idea is that such notational conventions get amortized over many rules,
so in fact we can introduce them without seriously impacting the overall simplicity
of the system.

In this chapter, we begin to develop such a theory of simplicity. In Section 7.1 we
introduce the basic notions of information and entropy, and in Section 7.2 we present
the basic theory of Kolmogorov complexity originally put forth in Solomonoff
(1964). Section 7.3 deals with the more general problem of inductive learning from
the perspective of complexity.

7.1 Information

In the classical model of information theory (Shannon 1948), the message to be trans-
mitted is completely devoid of internal structure: we are given a (finite or infinite) set
A D fa1; a2; : : :g of elementary messages and a probability distribution P over A.
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More complex messages are formed by concatenating elementary messages, and it is
assumed that this is a Bernoulli experiment, so that the choice of the next elementary
message is independent of what went on before. To transmit one of the ai , we need
to encode it as a bitstring C.ai /. We need to make sure that C is invertible and that
CC W AC ! f0; 1gC, defined by lifting C to be a (concatenation-preserving) homo-
morphism, will also be invertible. This is trivially satisfied as long as no codeword is
a prefix of another codeword (i.e. the code is prefix-free) since in that case we know
exactly where each codeword ends (and the next one begins) in the stream of bits
transmitted.1

Exercise 7.1 Construct a codeC such thatC is not prefix-free butCC is nevertheless
invertible.
An important subclass of prefix-free codes are fixed-length codes, where the length
ni of C.ai / is constant (usually a multiple of eight). However, in the cases that are
of the greatest interest for the theory, the number of elementary messages is infinite,
so no fixed-length code will do. Prefix-free variable-length binary codes will satisfy
the following theorem.
Theorem 7.1.1 Kraft inequality. In a prefix-free code, if ci are codewords of
length ni , X

i

2�ni 	 1 (7.1)

Proof A prefix-free set of codewords can be depicted as a binary tree, where each
sequence of zeros and ones corresponds to a unique path from the root to a leaf node,
zero (one) meaning turn left (right). For the tree with two nodes, (7.1) is trivially
satisfied (as equality). Since all prefix codes can be obtained by extending a leaf one
or both ways, the result follows by induction for finite codes and, by standard limit
arguments, for infinite codes as well.
Given a probability distribution P, Shannon-Fano codes are computed by an algo-
rithm that constructs this tree top-down by dividing the total probability mass in two
parts recursively until each node has only one elementary message. Shannon-Fano
codes are of historical/theoretical interest only: in practical applications, the number
of elementary messages is finite, and the more efficient Huffman codes, where the
tree is created from the bottom up starting with the least probable message, have
replaced Shannon-Fano codes entirely.
Exercise 7.2 Specify the top-down algorithm in more detail using raw (cumulative)
probabilities. Compare your algorithms with the actual Fano (Shannon) algorithms.
Specify the bottom-up procedure, and compare it with the Huffman algorithm. Do
any of these procedures fit the notion of a greedy algorithm?
Now we introduce the quantity H.P / D �Pi p log2 p, known as the entropy of
the distribution P . While the definition of H may at first blush look rather arbitrary,
it is, up to a constant multiplier (which can be absorbed in the base of the logarithm

1 Somewhat confusingly, codes enjoying the prefix-free property are also called prefix codes.
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chosen) uniquely defined as the function that enjoys some simple and natural prop-
erties we expect any reasonably numerical characterization of the intuitive notion of
information to have.
Theorem 7.1.2 (Khinchin 1957) Uniqueness of entropy. We investigate nonnegative,
continuous, symmetrical functions I.p1; p2; : : : ; pk/ defined for discrete probability
distributions P D fp1; p2; : : : ; pkg.Ppi D 1/. (i) If P 0 is formed from P by
adding another outcome akC1 with probability pkC1 D 0, we require I.P / D I.P 0/.
(ii) We require I to take the maximum value in the equiprobable case pi D 1=k.
(iii) For P;Q independent we require I.PQ/ D I.P / C I.Q/ and in general we
require I.PQ/ D I.P / C I.QjP /: The only functions I satisfying the conditions
above are �cPpi log.pi / D cH for arbitrary nonnegative constant c.
Proof Let us denote the maximum value I.Pk/ taken in the equiprobable case
Pk D f1=k; 1=k; : : : ; 1=kg by l.k/. By (i) we have l.k/ 	 l.k C 1/. By property
(iii), taking r independent distributions Pk , we have l.kr / D l.P r

k
/ D l.Pkr / D

rl.k/. Letting k D ez and l.ex/ D B.x/, this functional equation becomes
B.zr/ D rB.z/, which, by a well-known theorem of Cauchy, can only be satisfied
by B.z/ D cz for some constant c, so l.ez/ D cz, and thus l.k/ D c log.k/ (and by
the monotone growth of l established earlier, c > 0). Turning to the nonequiprobable
case given by rational probabilities pi D ni=n, we define Q to contain n different
events, divided into k groups of size ni , such that the conditional probability of an
event in the i th group is 1=ni if ai was observed in P and zero otherwise. This way,
we can refer to the equiprobable case for which I is already known and compute
I.QjP / D c

Pk
iD1 pi log.ni / D c

Pk
iD1 pi log.pi /Cc log.n/. In the joint distribu-

tion PQ, each event has the same probability 1=n, so that I.PQ/ D c log.n/. Given
our condition (iii), we established I.P / D �cPk

iD1 pi log.pi / for pi rational and
thus by continuity for any pi . ThatH indeed enjoys properties (i)–(iii) is easily seen:
(i) is satisfied because we use the convention 0 log.0/ D 0 (justified by the limit prop-
erties of x log.x/), (ii) follows by Jensen’s inequality, and finally (iii), and the more
general chain rule H.P1P2 : : : Pk/ D H.P1/CH.P2jP1/CH.P3jP1P2/C : : :C
H.PkjP1P2 : : : Pk�1/ follows by simply rearranging the terms in the definition.
Discussion There are a range of other theorems that establish the uniqueness of H
(see in particular Lieb and Yngvason 2003), but none of these go all the way toward
establishingH as the appropriate mathematical reconstruction of the intuitive notion
of information. One issue is that entropy is meaningful only over a statistical ensem-
ble: the information content of individual messages is still a function (negative log)
of their probability. Many authors find this counterintuitive, arguing e.g. that There is
a leopard in the garden provides the same amount of information as There is a dog in
the garden, namely the presence of an animal. Even if we grant the point that prob-
abilities are important (e.g. a message about a surprising event such as winning the
lottery is more informative than a message about a likely event such as not winning
it), outside the games of chance domain it is not at all trivial to assign reasonable
background estimates to probabilities. Here we take the view that this is inevitable
inasmuch as information content depends on our expectations: the same message, He
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had steak for dinner, is more informative about a supposed vegetarian than about a
meat-and-potatoes guy.
Exercise 7.3� Obtain a sample of English and count the frequency of each character,
including whitespace. What is the grapheme entropy of the sample? How much is the
result changed by using e.g. Perl or C program texts rather than ordinary (newspaper)
text in the sample?
Exercise 7.4� Write a program that parses English into syllables, and count each
syllable type in a larger sample. What is the syllable entropy of the text?
While it is easiest to consider phonemes, graphemes, syllables, and other finite sets
of elementary messages, the definition of entropy is equally meaningful for infi-
nite sets and in fact extends naturally to continuous distributions with density f .x/
by taking H.f .x// D � R1

�1 f .x/ log2.f .x//dx. Here we will consider English
as being composed of words as elementary messages and estimate its word entropy.
The task is made somewhat harder by the fact that words, being generated by produc-
tive morphological processes such as compounding (see Chapter 4), form an infinite
set. Although the probabilities of the, of, to, a, and, in, for, that, and other frequent
words can be estimated quite reliably from counting them in samples (corpora) of
medium size, say a few million words, it is clear that no finite sample will pro-
vide a reliable estimate for all the (infinitely many) words that we would need to
cover.

Therefore we start with Zipf’s law (see Section 4.4), which states that the r th
word in the corpus will have relative frequency proportional to 1=rB , where B , the
Zipf constant, is a fixed number slightly above 1. To establish the constant of pro-
portionality Ck , recall Herdan’s law that a corpus of size N will have about N 1=B

different words. Let us denote the cumulative probability of the most frequent k
words by Pk and assume Zipf’s law holds in the tail, so that we have

1 � Pk D Ck

N 1=BX
rDkC1

r�B 
 Ck

Z N 1=B

k

x�Bdx D Ck

.1 � B/ŒN
1�B

B � k1�B � (7.2)

For large N , the first bracketed term can be neglected, and therefore we obtain
Ck 
 .1 � Pk/.B � 1/kB�1. The first k words, for relatively small fixed k, already
cover a significant part of the corpus: for example, the standard list in Volume 3 of
(Knuth 1971) contains 31 words said to cover 36% of English text, the 130–150 most
frequent collected in Unix eign cover approximately 40% of newspaper text, and to
reach 50% coverage we need less than 256 words. To estimate the entropy, we take

H D �
kX

rD1

pr log2.pr / �
N 1=BX

rDkC1

pr log2.pr / (7.3)

The first sum, denoted Hk , can be reliably estimated from frequency counts and of
course can never exceed the maximum (equiprobable) value of log2.k/. The second



7.1 Information 183

sum can be approximated by integrals:

CkB

log.2/

Z N 1=B

k

log.x/x�Bdx � Ck log.Ck/

log.2/

Z N 1=B

k

x�Bdx (7.4)

The value at the upper limit can be neglected for large N , so we get the following
theorem.
Theorem 7.1.3 The word entropy H of a language with Zipf constant B is given by

H 
 Hk C 1 � Pk

log.2/
.B=.B � 1/ � log.B � 1/C log.k/ � log.1 � Pk// (7.5)

H256 can be estimated from medium or larger corpora to be about 3.9 bits. P256 is
about 0.52, and B for English is about 1.25, so the estimate yields 12.67 bits, quite
close to the  12 bits that can be directly estimated based on large corpora (over a
billion words). In other languages, the critical parameters may take different values.
For example, in Hungarian, it requires the first 4096 words to cover about 50% of
the data, and the entropy contributed by H4096 is closer to 4.3 bits, so we obtain
H 	 15:41 bits. Equation (7.5) is not very sensitive to the choice of k but is very
sensitive to B . Fortunately, on larger corpora, B is better separated from 1 than Zipf
originally thought. To quote Mandelbrot (1961b:196):

Zipf’s values for B are grossly underestimated, as compared with values
obtained when the first few most frequent words are disregarded. As a result,
Zipf finds that the observed values of B are close to 1 or even less than 1,
while we find that the values of B are not less than 1.

As we shall see in the following theorem, for prefix codes the entropy appears as a
sharp lower bound on the expected code length: no code can provide better “on the
wire” compression (smaller average number of bits). Our estimate therefore means
that English words require about 12 bits on average to transmit or to store – this
compares very favorably to using 7-bit ascii, which would require about 35 bits (the
frequency-weighted average word length in English is about five characters).
Theorem 7.1.4 (Shannon 1948) Let ai be arbitrary messages with probability pi and
encoding C.ai / D ci of length ni such that

P
i pi D 1 and the set of codewords is

prefix-free,
L.P / D

X
i

pini � H.P / (7.6)

with equality iff the codewords are all exactly of length log2.1=pi /.
Proof

H.P / � L.p/ D
X

i

pi log2

2�ni

pi

D log2 e
X

i

pi ln
2�ni

pi

(7.7)

The right-hand side can be bound from above using ln x 	 x � 1, and by the Kraft
inequality we get

H.P / � L.p/ 	 log2 e
X

i

pi .
2�ni

pi

� 1/ 	 0 (7.8)
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When probabilities are very far from binary fractions, direct encoding may entail
considerable loss compared with the entropy ideal. For example, if p1 D :9; p2 D :1,
the entropy is 0.469 bits, while encoding the two cases as 0 vs. 1 would require a full
bit. In such cases, it may make sense to consider blocks of messages. For example,
three Bernoulli trials would lead tp 111 with probability .729; 110, 101, or 011 with
probability .081; 001, 010, or 100 with probability .009; and 000 with probability
.001. By using 0 for the most frequent case, 110, 100, and 101 for the next three, and
finally 11100, 11101, 11110, and 11111 for the remaining four, we can encode the
average block of three messages in 1.598 bits, so the average elementary message
will only require 1:598=3 D 0:533 bits.
Exercise 7.5 Prove that no block coding scheme can go below the entropy limit but
that with sufficiently large block size the average code length can approximate the
entropy within any " > 0.
Exercise 7.6 Prove that a regular language is prefix-free iff it is accepted by a DFSA
with no transitions out of accepting states. Is a prefix-free language context-free iff
it is accepted by a DPDA with the same restriction on its control?
In real-life communication, prefix-free codes are less important than the foregoing
theorems would suggest, not because real channels are inherently noisy (the standard
error-correcting techniques would be just as applicable) but because of the peculiar
notion of synchrony that they assume. On the one hand, prefix-freeness eliminates
the need for transmitting an explicit concatenation symbol, but on the other, it makes
no provision for BEGIN or END symbols: the only way the channel can operate is
by keeping the sender and the receiver in perfect synchrony. In Section 7.2 we will
discuss a method, self-delimiting, that makes any set of codewords prefix-free.
Exercise 7.7 Research the role of the ascii codes 0x02 (STX), 0x03 (ETX), and 0x16
(SYN).
Variable-length codes (typically, Huffman encoding) therefore tend to be utilized
only as a subsidiary encoding, internal to some larger coding scheme that has the
resources for synchronization. We will discuss an example, the G3 standard of fax
transmission, in Section 9.3.
Exercise 7.8 Take the elementary messages to be integers i drawn from the geomet-
rical distribution (pi D 1=2i ). We define a complex message as a sequence of n
such integers, and assume that n itself is geometrically distributed. How many bits
will the average complex message require if you restrict yourself to prefix-free codes
(no blocking)? With blocking, what is the optimal block size? What is the optimum
average message length if the restriction on prefix-freeness is removed?
Human language, when viewed as a sequence of phonemes, shows very strong
evidence of phonotactic regularities (i.e. dependence between the elementary mes-
sages). If we choose syllables as elementary, the dependence is weaker but still
considerable. If we use morphemes as our elementary concatenative units, the depen-
dence is very strong, and if we use words, it is again weaker, but far from negligible.
Besides its uses in the study of coding and compression, the importance of entropy
comes from the fact that it enables us to quantify such dependencies. For inde-
pendent variables, we have H.PQ/ D H.P / C H.Q/ (see condition (iii) in
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Theorem 7.1.2 above), so we define the mutual information between P and Q
as H.P / C H.Q/ � H.PQ/. Mutual information will always be a nonnegative
quantity, equal to zero iff the variables P and Q are independent. We also introduce
here information gain, also known as relative entropy and Kullback-Leibler (KL)
divergence, as X

i

pi log2.pi=qi / D �H.P / �
X

i

pi log2.qi / (7.9)

where the last term, denoted H.P;Q/, is known as the cross entropy of P and
Q. The importance of K-L divergence and cross entropy lies in the fact that these
quantities are minimal iff P D Q, and thus methods that minimize them can be used
to fit distributions.

All forms of communication that are parasitic on spoken language, such as writ-
ing, or exercise the same fundamental cognitive capabilities, such as sign language,
are strongly non-Bernoullian. Other significant sources of messages, such as music
or pictures, also tend to exhibit a high degree of temporal/spatial redundancy, as we
shall discuss in Chapters 8 and 9.

7.2 Kolmogorov complexity

The model described above is well suited only for the transmission of elemen-
tary messages that are truly independent of one another. If this assumption fails,
redundancy between successive symbols can be squeezed out to obtain further
compression. Consider, for example, the sequence of bits 010100101011. . . that is
obtained by taking the fractional part of n

p
2 and emitting 1 if greater than .5 and 0

otherwise. It follows from Weyl’s theorem of equidistribution that P(0) D P(1) D .5.
The entropy will be exactly 1 bit, suggesting that the best we could do was to transmit
the sequence bit by bit: transmitting the first n elementary messages would require
n bits. But this is clearly not the best that we can do: to generate the message at the
other side of the channel requires only the transmission of the basic algorithm, which
takes a constant number of bits, plus the fact that it needs to be run n times, which
takes log2 n bits.

We have not, of course, transcended the Shannon limit but simply put in sharp
relief that entropy limits compressibility relative to a particular method of transmis-
sion, namely prefix-free codes. The faster method of transmitting 010100101011. . .
requires a great deal of shared knowledge between sender and recipient: they both
need to know what p is and how you compute it, and they need to agree on for-
loops, if-statements, a compare operator, and so on. Kolmogorov complexity is
based on the idea that all this shared background boils down to the knowledge
required to program Turing machines in general or just one particular (universal)
Turing machine.

Turing’s original machines were largely hardwired, with what we would nowa-
days call the program burned into the finite state control (firmware) of the machine.
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For our purposes, it will be more convenient to think of Turing machines as universal
machines that can be programmed by finite binary strings. For convenience, we will
retain the requirement of prefix-freeness as it applies to such programs. We say that
a partial recursive function F.p; x/ is self-delimiting if for any prefix q of the pro-
gram p; F.q; x/ is undefined. This way, a sequence of programs can be transmitted
as a concatenation of program strings. The second variable of F , which we think of
as the input to the machine programmed by p, is a string of natural numbers or rather
a single (e.g. Gödel) number that is used to encode strings of natural numbers.
Definition 7.2.1 The conditional complexity CF .xjy/ of x given y is the length of
the smallest program p such that x D F.p; y/, or 1 if no such program exists.
To remove the conditional aspects of the definition, we will need two steps, one
entirely trivial, substituting y D 0, and one very much in need of justification,
replacing all F s by a single universal Turing machine U .
Definition 7.2.2 The complexity CF .x/ of x relative to F is the length of the
smallest program p such that x D F.p; �/, or 1 if no such program exists.
Theorem 7.2.1 (Solomonoff 1960, Kolmogorov 1965) There is a partially recursive
function U.p; y/ such that for any partially recursive F.p; y/ there exists a constant
cF satisfying

CU .xjy/ 	 CF .xjy/C cF (7.10)

Proof We construct U by means of a universal Turing machine V.a; p; x/ that can
be programmed by the appropriate choice of a to emulate any F.p; x/. To force the
prefix-free property, for any string d D d1d2 : : : dn, we form d0 D d10d20 : : : 0dn1

by inserting 0s as concatenation markers and 1 as an end marker. Since any binary
string p can be uniquely decomposed as an initial segment a0 and a trailer b, we can
define U.p; x/ by V.a; b; x/. In particular, for F.p; x/ there is some f such that for
all p; x F.p; x/ D V.f; p; x/. In case x can be computed from y by some shortest
program p running on F , we have U.f 0p; y/ D V.f; p; y/ D F.p; y/ D x, so that
CU .x; y/ 	 2jf j C CF .xjy/.
Discussion There are many ways to enumerate the partial recursive functions, and
many choices of V (and therefore U ) could be made. What Theorem 7.2.2 means is
that the choice between any two will only affect CU .xjy/ up to an additive constant,
and thus we can suppress U and write simply C.xjy/, keeping in mind that it is
defined only up to a O.1/ term. In particular, relative to the Turing machine T that
prints its input on its output and halts, we see CT .x/ 	 l.x/C cT for some constant
cT that is independent of the bitstring x (or its length l.x/).

The claim is often made (see e.g. Chaitin 1982) that C.x/measures the complex-
ity of an individual object x, as opposed to entropy, which very much presumed that
the objects of study are drawn from a probability distribution. However, this claim is
somewhat misleading since the focus of the theory is really the asymptotic complex-
ity of a sequence of objects, such as initial substrings of some infinite string, where
theO.1/ term can be really and truly neglected. For a single object, one could always
find a U that will make CU .x/ zero, just as if our only interest was in compressing
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a single file, we could compress it down to 1 bit, with an uncompress function that
prints out the object in question if the bit was set and does nothing otherwise.

To take advantage of asymptotic methods, one typically needs to endow famil-
iar unordered objects with some kind of order. For example, formal languages are
inherently unordered, but it is no great stretch to order †� (or any L � †�) lexico-
graphically. Once this is done, we can talk about the nth string and replace sets by
their characteristic function written as a (possibly infinite) bitstring whose nth bit is 1
or 0, depending on whether the nth string yn enjoyed some property or not. In order
to discuss regular languages, we need to capture the structure of the state machine in
bitstrings. Given some language L � †� and any string x, we define 
 D 
1
2 : : :

to be 1 on the nth bit 
n iff the string xyn is inL – the first n bits of 
will be denoted
by 
:n. Clearly, two strings x and x0 have the same 
 iff they are right congruent, so
that different 
 correspond to different states in the DFSM. For L regular, the first n
bits of any 
 can be transmitted by transmitting the DFSA in O(1) bits, transmitting
the state (out of finitely many) to which the 
 in question corresponds (again O(1)
bits), and transmitting the value of n, which requires no more than log2.n/ bits.
Theorem 7.2.2 (Li and Vitányi 1995) L � †� is regular iff there exists a constant
cL depending on L but not on n such that 8x 2 †� C.
:n/ 	 log2.n/C cL.
Discussion We have already seen the only if part – the converse depends on a lemma
(for a proof, see Li and Vitányi 1997, Claim 6.8.1) that for any constant cL there will
be only finitely many infinitely long bitstrings that have no more than log2.n/C cL

asymptotic complexity – once this is demonstrated, the rest follows by the usual
construction of FSAs from right congruence classes.
Suppose our goal is to transmit bitstrings over a channel that transmits 0s and 1s
in an error-free (noiseless) manner. Unless we have some out-of-band method of
indicating where the transmission of a given bitstring begins and ends, we need to
devote extra bits to the boundary information. An inefficient but simple method is
to prefix each string x by its own length l.x/. For this to work, we need to encode
l.x/ in a manner that makes it recoverable from the code. This can be accomplished
e.g. by giving it as a string of 1s (base one) and using 0 as the end marker – this
is called the self-delimiting code S of x. For example, S.001/ D 1110001. In this
encoding, l.S.x// D 2l.x/ C 1. Not only is S prefix-free, but the codeword and a
following string y can be unambiguously reconstructed from any S.x/y by counting
the number of 1s with which it begins and slicing off as many bits following the
first 0 as there were 1s preceding it. We can use this property of S to create a more
efficient code D.x/, where the payload x is suffixed not to the base one encoding
of the length but rather to S.l.x//, where l.x/ is given in base two rather than base
one; for example, D.001/ D S.11/001 D 11011001. While this particular example
comes out longer, in general

l.D.x// D l.S.dlog2 l.x/e//C l.x/ 	 2 log2 l.x/C l.x/C c (7.11)

i.e. the overhead of the transmission is now only 2 log2 l plus some small constant.
People (mathematicians) have relatively clear intuitions about the randomness

of everyday (resp. mathematical) objects – certainly we feel that *furiously sleep
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ideas green colorless is much more random than colorless green ideas sleep furi-
ously, which at least has largely predictable ordering at the part of speech level. If
the sender and the recipient share this knowledge, e.g. because they are both speakers
of English, it may be possible to transmit the second sentence (but not necessarily
the first) in fewer bits than it would take to transmit a random string of words. Kol-
mogorov complexity offers a way to replace intuitions about randomness by rigorous
definitions, but this comes at a price. As we have emphasized repeatedly, C.x/ is
defined only up to an additive constant. One may think that by fixing a small ‘refer-
ence’ universal Turing machine U this fudge factor could be removed, but this is not
quite so: for any fixed U , the function CU .x/ is uncomputable.

Theorem 7.2.3 (Kolmogorov 1965) C.x/ is uncomputable.

Proof Suppose indirectly that C.x/ W f0; 1g� ! N is computed by some TM: it
is then possible to program another TM that outputs, for each n 2 N, some string
xn that has C.xn/ > n. Let the length of the program emulating this TM on the
universal machine we chose be p: this means that C.xn/ 	 log2.n/ C p since we
found a program of total length log2.n/C p that outputs xn. Since p is fixed but the
program by definition outputs an xn with C.xn/ > n, we have a contradiction for n
sufficiently large, e.g. for n D 2p.p > 2/.
While Kolmogorov complexity oscillates widely and uncomputably, on the whole
C.x/ is well-approximated by l.x/. We have already seen that C.x/ < l.x/CO.1/,
and for any constant k, only a small fraction of the bitstrings of length l can have
C.x/ 	 l � k. More precisely, as there are at most 2l�kC1 � 1 programs of length
	l � k, these can encode at most 2l�kC1 � 1 of the 2l bitstrings of length l , so there
must be at least one string xl for every l that is truly incompressible (has C.x/ D l),
at least half of the strings of length l have C.x/ � l � 1, at least three-quarters have
C.x/ � l � 2, and in general at least 1 � 2�k have C.x/ � l � k.

To put this in perspective, in Section 7.1 we estimated the word entropy of
English to be around 12–13 bits. The readers who worked on Exercise 5.8 will know
that in journalistic prose the median sentence length is above 15 words, so for more
than half of the sentences the simple encoding scheme would require over 180 bits.
Were these typical among the bitstrings of length 180, only 2�30 (about one in a
billion) could be compressed down to 150 bits or less. As we shall see in Chapter 8,
sentences can be compressed considerably better.

Another way to show that only a few strings can have low Kolmogorov complex-
ity is by reference to the Kraft nequality (Theorem 7.1.1) if we encode each string
with its shortest generating program relative to some fixed string y. To make sure this
is a prefix-free code, we use K.xjy/; defined as the shortest self-delimiting program
on some universal TM and called the prefix complexity instead of C.xjy/, which
was defined as the shortest program, not necessarily self-delimiting. With the prefix
notion of Kolmogorov complexity, which differs from our previous notion at most
by 2 log2 C.xjy/, we have X

x2f0;1g�

2�K.xjy/ 	 1 (7.12)
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The most important case is of course y D �. Here the Kraft inequality means that the
numbers 2�K.x/ sum to less than 1. Therefore, we can turn them into a probability
measure either by adding an unknown event that has probability 1�Px2f0;1g� 2�K.x/

or we can normalize by multiplying all values by a constant. Using this latter method,
we define the universal probability distribution by taking the probability of a string
x to be 2�K.x/ (times some constant). Solomonoff (1964) arrived at this notion by
considering the idea of programming a TM by a random sequence of bits. If the
shortest program that leads to x has n bits, the probability of arriving at x by a
randomly selected program is roughly 2�n since longer programs can contribute very
little to this value.

The standard geometrical probability distribution over bitstrings with param-
eter r > 1 simply assigns probability .1 � 1=r/.1=2r/l to any string of length
l – in particular, the probability of the empty string � will be 1 � 1=r . This cor-
responds to an experiment in which 0s and 1s are chosen by tossing a fair coin, and
at each step the experiment is continued with probability 1=r . Transmitting a ran-
dom (incompressible) string x of length l actually requires more than l bits since we
also need to transmit the information that the transmission has ended. We can use
(7.11) as an upper bound on the length of the full transmission, which would yield
.1=2/lC2 log2.l/Cc for a string of length l . For each fixed r; when l is large enough,
the universal distribution generally assigns smaller probability to a string than the
geometrical distribution would – the remaining probability mass is spent on the few
strings that have low complexity.

7.3 Learning

Returning to our original example of predicting the next term of the series 2; 3; 5; : : :,
we can see that to make this more precise we need to make a number of choices. First,
what is the domain and the range of the function to be learned? Can the next term
be �? In mathematical linguistics, our primary interest will be with strings, but this
is not a significant limitation since strings can encode more complex data structures
such as k-strings (see Section 3.3), parse trees (see Section 5.1), or even grammars
(see below). A considerably harder issue is brought up by weighted (probabilistic)
structures since it is not at all obvious that even a single real number, say the
frequency of some feature of interest, can be learned.

Second, we need to specify the hypothesis space that delimits the choice of solu-
tions. In the sequence learning and the closely related sequence prediction tasks, if
we know that the only hypotheses worth considering are quadratic polynomials, the
answer is already given by knowing the value of the function at three points. If, on
the other hand, arbitrary degree polynomials or all computable functions are accept-
able answers, no finite amount of data will uniquely identify one. In mathematical
linguistics, the main issue is to identify a grammar that can generate a given data set,
and this, as we shall see, is so hard that it is worth considering simplified versions of
the problem.

Third, we must specify the method of providing examples to the learning algo-
rithm. For example, if the target to be learned is some formal language, it makes a
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big difference whether it gets presented to the algorithm in a fixed (e.g. lexicograph-
ical) order, completely randomly, or perhaps following some prescribed probability
distribution. In the first case, we can be certain after a while that an example not
encountered so far will never be encountered later (because we are past it in the
lexicographical ordering); the two other methods of providing data have no such
closed-world assumption.

Fourth, we need to have some criteria for success. We will consider two main
paradigms: identification in the limit (Gold 1967) and probable approximate correct-
ness (Valiant 1984). By an algorithm capable of identification in the limit (iitl), we
mean an algorithm that will produce a hypothesis in each step such that after some
number of steps it will always produce the same hypothesis, and it is the correct one.
If the algorithm can signal that it converged, we are speaking of finite identification –
this is obviously a stronger criterion than iitl. By a probably approximately correct
(pac) learning algorithm we mean one that is capable of approximating a family of
distributions to an arbitrary degree with the desired (high) probability. But before
turning to these, we need to capture the idea that the more complex (in the limiting
case, entirely random) the material, the harder it is to learn.

7.3.1 Minimum description length

The mathematical theory of learning, or inductive inference, is very rich, though
by no means mature. Depending on how we specify a problem in the four dimen-
sions above, a broad variety of results can be obtained. In applying the ideas of
Kolmogorov complexity to natural language phenomena, we are faced with two tech-
nical problems. First, the languages of greatest interest in mathematical linguistics
are noncounting, both in the informal sense of being free of arithmetic aspects and in
the precise sense given by the noncounting property (5.29). In spite of the impressive
size of the state space (estimated at 1012 in Section 6.3.2), counter-free automata are
mathematically simpler than the full FSA class, while Theorem 7.2.2 characterizes
the latter as having, for all x 2 †�, a constant cL conditional prefix complexity
K.
:njn/ (or, what is the same, log2.n/ C cL Kolmogorov complexity). Since the
whole machinery of Kolmogorov complexity is defined only up to a constant (the
log2.n/ in C comes from the need to transmit n and thus cannot be improved upon),
there is no easy way to analyze languages simpler than regular. Second, the gram-
mars used in mathematical linguistics are just axiom systems (though highly tuned
to the subject matter and clearly impressive in size), and as such they retain the
unpredictability of smaller axiom systems. Specifically, the great hopes of Chaitin
(1982)

I would like to measure the power of a set of axioms and rules of inference.
I would like to be able to say that if one has ten pounds of axioms and
a twenty-pound theorem, then that theorem cannot be derived from those
axioms

remain unfulfilled since we can construct axiom systems of increasing proof-theoretic
strength whose Kolmogorov complexity is the same (see van Lambalgen 1989,
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Raatikainen 1998). What we need is some refinement of Kolmogorov complexity
that incorporates a notion of universal grammar, which we define here simply as a
set of permissible models A. First we assume, as in principles and parameters the-
ory (see Section 5.3), that there are k binary parameters, so that jAj D 2k . The
complexity of describing some data set x relative to A is therefore the complexity
of describing A, say K.A/, plus the k bits required to select the appropriate model
parameters.

In general, we are interested in all sets A such that K.A/C log2 jAj is, up to an
additive constant, the same as K.x/. If among these OA has the minimal prefix com-
plexity K. OA/, the shortest description of OA is called the minimal sufficient statistic
for x. Because K.xj OA/ D log2 j OAj up to a constant, OA is the optimal model of x in
the sense that x is maximally random with respect to OA.

In applying this framework, known as minimum description length (MDL), to
grammatical model selection, we encounter a number of difficulties. First, the data
x, strings encoding the grammar of some natural language, are not completely at
hand: at best, we have some grammatical description of some languages. Second,
even to the extent the data are at hand, they are not presented in a normalized format:
different grammars use different notational conventions. Third, and perhaps most
important, the devices used for eliminating redundancy are not universally shared
across grammars. Here we consider three such devices, anuvr. tti, metarules, and
conventions.

The Pān. inian device anuvr. tti relies on a characteristic of the formal language
Pān. ini employs in writing grammatical rules that is not shared by later work, namely
that the rules (sūtras) are given in a technically interpreted version of Sanskrit with-
out recourse to any special notation. Since the rules are given in words (and were
for many centuries transmitted orally without the benefit of writing them down), it is
possible to take a rule set

A B C D E (7.13)
P Q C D E (7.14)
R S C D (7.15)

and abbreviate it by deleting those words that were already mentioned in previous
rules to yield

A B C D E (7.16)
P Q (7.17)
R S (7.18)

even though this device leaves some doubts whether (7.18) should really be inter-
preted as R S C D or rather as R S C D E. Such ambiguities are resolved by several
principles. Some of these are highly mechanical, such as the principle that if a main
element is discontinued, so are all its dependents. This can be used to reconstruct
many rules in their unabbreviated format just by listing what is and what isn’t consid-
ered a main element. Other principles (e.g. that a deleted element is to be thought of
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as being present as long as it is compatible with the rule statement) make an appeal to
the meaning of rules. As such, these cannot be considered fully automatic by today’s
standards, or, at the very least, the challenge to program a Turing machine based on
such a principle is wide open. Be that as it may, anuvr.tti shortens the statement of
the grammar by over a third, a very significant compression ratio.

Contemporary formal grammars use a different abbreviatory device, metarules,
which are rules to generate rules. In Section 5.7, we have already seen one instance,
replacing two rules, the singular and the plural versions of (5.7), by a single rule
schema (5.30). Such a schema comes with the interpretation that all variables in it
must be uniformly (in all occurrences) replaced by all specific values the variable
can take to yield as many rules as there are such replacement options. Of particular
interest here are rules that depend on individual lexical entries: there are thousands
of these, and there are generally very good reasons to group several of them together
according to various criteria such as shared elements of lexical meaning, shared
(sub)category, etc. Once we start using a hierarchically organized lexicon (see e.g.
Flickinger 1987), it is natural to use network inheritance as an abbreviatory device,
and in computerized systems this is common practice. Formally, it requires some
system of metarules to unroll all the inheritance and present lexical entries (and the
grammar rules that use them) in their unabbreviated form. The rate of compression
depends greatly on the way rules are formulated, but again we expect very significant
compression of the rule system, perhaps as much as 50%.

Another major device used by many grammarians is the distinction between con-
ventions and rules. This can take many forms, but the key idea is always to designate
some forms or rules as being intrinsically simpler than their representation would
allow. In Section 3.2, we already mentioned the phonological theory of marked-
ness, which takes e.g. the natural class of high vowels to be defined only by their
[Chigh] and [+syll] features: the redundant values such as [�low] or [Cvoiced] are
supplied by an automatic set of markedness conventions. Markedness conventions,
much like anuvr.tti, supply missing values and can interact with the statement of rules
as a whole. Rules simplified under anuvr.tti are simpler in the direct sense of being
shorter (requiring fewer words to state), while rules simplified under markedness are
just regarded as being shorter, inasmuch as we explicitly define a simplicity measure
that only counts marked values. For example, context-sensitive voice assimilation in
obstruent clusters is common, and a rule like

ŒCobst� ! Œ˛voice�=
� Cobst
˛voice

�
(7.19)

which requires cluster members to assimilate to their right neighbor in voicing, is
regarded as intrinsically simple. However, since a rule like

ŒCsyll� ! Œ˛high�=
� Cobst
˛voice

�
(7.20)

is unlikely to crop up in the phonology of any language, we make sure that the sim-
plicity measure penalizes it, e.g. for assimilation of values across features. Generally,
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a complicated simplicity measure is seen as a sign of weakness of the underlying
theory. For example, if assimilation is viewed as spreading (see Section 3.3) of an
autosegment, rules like (7.20) are precluded, and this obviates the need to patch mat-
ters up by a post hoc simplicity measure. However, the working linguist is rarely in
a position to anticipate future breakthroughs, so stipulation of simplicity remains a
part of the descriptive apparatus.

To some extent, these problems can be circumvented by considering grammars
piecemeal rather than in their entirety. For example, stating the stress system of a
language would require (i) finding its place in a typological system such as StressTyp
(see Section 4.1.4) and (ii) describing the stress patterns relative to some slot in
the typology. Describing the ideally clean systems prescribed by the typology is an
expense that gets amortized over many languages, so the termK.A/ enters the overall
complexity with a multiplier considerably lower than the term K.xjA/, which is
specific to the language. This is very much in line with traditional linguistic thinking,
which values universal rules far more than parochial ones.

Unfortunately, decomposition of the grammar in this sense is not entirely unprob-
lematic since one can often simplify the statement of one kind of rule, say the rules
of stress placement, at the expense of complicating some other part of the grammar,
such as the rules of compounding. To apply the MDL framework would therefore
require a problem statement that is uniform across various aspects of the system; for
example, by taking phonology, morphology, syntax, and semantics to be given by
FSTs and assuming that universal grammar is a list of transducer templates that can
be filled in and made part of an intersective definition at no cost (or very little cost,
given amortization over many languages).

One final issue to consider, not just for stress systems but for any situation where
there are only a finite number of patterns, is whether generating the patterns by a rule
system provides a solution that is actually superior to simply listing them. The issue
is particularly acute in the light of theorems such as
Theorem 7.3.1 (Tuza 1987) For every n there exists finite languages Ln containing
n2 � n strings such that it requires at least O.n2= log.n// rules in a regular, context-
free, or length-increasing (context sensitive) grammar to generate Ln.
Discussion Since this is a worst case result, a possible objection is that the specific
construction employed in Tuza (1987), namely languages based on n different termi-
nals collected in a terminal alphabet † and Ln D fxyjx; y 2 †; x ¤ yg, is unlikely
to appear in natural language grammars. In phonology, rules of dissimilation that
forbid the occurrence of more than one token of some type are quite common (for a
brief overview see Idsardi 2006), and there is no easy way to rule these out entirely.
In syntactic rules, the phenomenon of lexicality (see Section 5.1.3) is quite perva-
sive, so much so that for each preterminal (strict lexical subcategory) p we expect at
least one rule unique to p. With the size of the preterminal set estimated at 106 (see
Section 6.3.2), Theorem 7.3.1 limits the compression achievable by generation to a
factor of

p
. log.106// or to about 27% of the length of the raw pattern list (actually

less, since a rule will, in general, take more symbols to encode than a pattern would).
Generative grammar, if viewed as a compression device which has the potential to
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save three quarters of the space that would be required to list the patterns, is clearly
a valuable tool in its basic (finite state, context free, or context sensitive) form, but
the other space-saving devices discussed here, anuvr.tti, metarules, and conventions,
can enhance its compression power considerably.

7.3.2 Identification in the limit

To specify a learning problem in iitl terms, we need to specify the domain and the
range of the functions to be learned, the hypothesis space, and the order in which
data will be presented to the learner. As an example, let us consider the issue of how
infants acquire the phoneme inventory (see Section 3.1) of their language. The func-
tion they must identify is one that has at least acoustic input, utterances, and provides,
for each utterance, a string (or k-string), over a yet to be determined phonemic alpha-
bet (or tier alphabets). We say the input consists at least in acoustic data because it is
clear that the infant also has, almost all of the time, access to visual cues such as lip
rounding – we ignore this fact here but return to the matter in Section 8.3. We also
simplify the problem statement by assuming the existence of automatic (no learn-
ing or training required) low-level acoustical feature detectors that digest the raw
acoustic signal into parallel streams of discrete feature sequences (see Section 8.3).

While this may look like drastic oversimplification, defining away a core part
of the problem, in fact there is massive evidence from psycholinguistics that speech
perception operates in terms of discrete units (a phenomenon known as categorical
perception, see Liberman 1957), that this mechanism is operative in infants even
before they learn to speak (Eimas et al. 1971), and that it leverages deep perceptual
abilities that were acquired evolutionarily long before primates (for chinchilla per-
ception of voicing and syllable structure see Kuhl et al. 1975). High sensitivity to
distinctive features in the acoustical signal has been demonstrated for all the thirty or
so features that act distinctively in the phonology of some languages. We defer the
perceptual problem, how to create detectors for voicing or other features, to Chap-
ters 8 and 9, and consider only the learning problem of finding the right phonemic
alphabet based on the output of this exquisitely sensitive perceptual apparatus, given
in feature vectors. Instead of asking how acoustic waveforms (a class of R ! R

functions) get mapped onto (k-)strings, we ask how strings of feature vectors get so
mapped.

As for the hypothesis space, clearly the most desirable outcome would be to find
a static mapping g that maps feature vectors to phonemes and obtain the sequence-
to-sequence mapping by lifting g (applying it pointwise) to strings. Such a restriction
of the hypothesis space comes with a price: there are many string-to-string mappings
that cannot be so obtained. For example, if the inputs are 0 and 1 (vectors of length 1)
and the outputs are A and B , if f is defined as always A except when the previous
three inputs were 000 or 111, there isn’t a single g that can be lifted to f . A much
broader, but still restrictive, hypothesis would be to assume that the solution is to be
identified with a (multitape) finite state (k-)transducer that outputs a phoneme (or
k-string) based on the feature vector under scan on its input tapes and on its current
state.
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Finally, let us consider the order in which the data are presented to the learner.
Even if the task is to find a function g that operates on individual vectors, it is not
realistic to assume (except, perhaps, for vowels that can be uttered in isolation) that
the data will be presented pointwise – rather, the input is given in longer strings,
syllables at the very least but more likely words or full sentences. In particular, stop
consonants will never occur in isolation, but their phonemic value must be learned
just the same. Since there are only finitely many phonemes, a random presentation
of words will sooner or later contain every one of them, and we do not particularly
need to put any constraint on the presentation of the data other than those excluding
a certain kind of child-directed speech (CDS, also called baby talk and motherese)
that purposely avoids the sounds considered hard or stigmatized. Simplifying mat-
ters somewhat, in modern-day Israel, Sefardic parents, whose phonemic inventory
contained guttural consonants, may not have passed these on to their children since
the Ashkenazi variety of Modern Hebrew, which has higher prestige, lacks them. An
obvious restriction on data presentation, then, is to require that it be semicooperative
in the sense that all relevant data (everything in the domain of the function to be
learned) are eventually presented.

In reality, a great deal of language change can be attributed to imperfect learn-
ing, but the Modern Hebrew case cited above is more the exception than the rule:
phonemic inventories can be very stable and remain virtually unchanged over many
generations and centuries. This is because the phoneme inventory can be iitl learned
upon any reasonable (semicooperative) presentation of the data. The chief learn-
ing strategy appears to be selective forgetting. For example, Ntlaka’pamux [THP]
has glottalized voiceless stop consonants that phonologically differ in place of artic-
ulation (uvular vs. velar), while English lacks this contrast and these consonants
altogether. Learners of English who are 6–8 months oldrecognize the distinction just
as well as Ntlaka’pamux infants of the same age, but by 11–12 months their ability
fades, while the Ntlaka’pamux infants of course retain it (Werker and Tees 1984). In
spite of the selective forgetting of those features that play no distinctive role in the
language, the full learning algorithm seems to involve a great deal of memorization.

The algorithms used by linguists to describe a new language, called discovery
procedures, generally require more than semicooperation and assume full (two-sided)
presentation of the data in the form of an informant who can provide negative infor-
mation (grammaticality judgments) as well, asserting if needed that a certain form
hypothesized by the learner is not in the language. Both negative and very low prob-
ability positive examples help to accelerate the learning process, and this is why in
descriptive grammars we often find references to contrasts not easily exemplified.
For example, in English, the difference between unvoiced š and voiced ž is seen only
in pairs like Aleutian/allusion, Confucian/confusion, mesher/measure, Asher/azure,
and dilution/delusion, which are very unlikely to be heard by infants at an early age.
That said, by age four, when children begin to show signs of acquiring morphol-
ogy, the algorithm that yields the phonemic alphabet has clearly converged on the
basis of positive data alone. How a phoneme like ž gets created by the infant with-
out a great deal of positive evidence is something of a mystery unless we presume a
learning algorithm that can only take a few options and must live with the resulting



196 7 Complexity

overgeneration. If we find that voicing is distinctive in English, for which there is a
great deal of positive evidence outside the š/ž pair, and we find that š is present in the
system, for which again there is overwhelming positive evidence, we must live with
the consequences and admit ž in the system.

As our next example, let us consider iitl of finite automata. Given an alphabet T;
a regular languageL � T �, and a text, defined here as a series of examples s1; s2; : : :
drawn from L semicooperatively (each s 2 L sooner or later appears in the series)
but possibly with repetitions, we are looking for an algorithm that produces at each
step i a DFSA Ai that generates all the sj for 1 	 j 	 i and converges to the DFSA
A0 that generates L in the sense that there exists some k such that Ai D A0 for
i > k.

Stated thus, the problem is not solvable. Let us first consider this for an important
algorithm known as identification by enumeration. This is a lazy algorithm based on
some notion of complexity or a priori probability that can be used to linearly order
all possible hypotheses (DFSAs). At step i , it outputs the first (according to the pre-
specified order) hypothesis that is still compatible with the data points s1; s2; : : : ; si
seen so far. If the text is presented in an adversarial fashion, the algorithm can at no
stage be certain that a string t not presented so far will not be presented later. What-
ever complexity ordering the algorithm embodies, the DFSA U with one (accepting)
state and loops for all symbols will come early in the enumeration in the sense that
we need to entertain other (more complex) hypotheses as well, and the adversary
can pick any language L that is generated by one of these more complex DFSA V .
Since the language T � generated by U is compatible with any finite amount of data
presented semicooperatively, a lazy algorithm will never have a reason to move away
from the hypothesis U and will never reach the correct hypothesis V .

An analogous situation can be found in the game of twenty questions: if there are
more than 220 animals (as there are), an answerer who knows the whole taxonomy
can always win. The key idea is that the answerer need not settle on a particular
animal at the outset; it is enough that at any point there remain animals that fit the
sequence of answers provided so far. Each question cuts the set of still available
animals in two parts, and one of these sets will have more than 220�i members: the
answerer answers so as to select this set. After 20 questions, the answerer still has
more than one animal compatible with the questions asked so far and the questioner
has lost. In other words, since each question can secure at best one bit of information,
and it requires more than 20 bits to code the full set of animals, the questioner cannot
always win (since a winning strategy would amount to a coding of the set in 20 bits)
and an answerer can exploit the information deficit to make sure the questioner never
wins. Gold (1967) presents a similar strategy with adversarial (but semicooperative)
data presentation to prove the following theorem.
Theorem 7.3.2 (Gold 1967) No set of languages that contains all the finite languages
and at least one infinite language is iitl.
Discussion Note that the theorem is sharp: the set of all finite languages is iitl, in
fact the trivial algorithm that simply guesses the language to be the union of the
strings presented so far will learn the correct language from any semicooperative
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text. A family of languages containing all finite languages and at least one infi-
nite one is called superfinite, and since all the classical language families in the
Chomsky hierarchy are superfinite, the theorem is often taken to mean that iitl
with semicooperative data presentation is simply not the right model for grammar
learning. Yet there is no reason to assume that the set of languages permissible
by universal grammar will contain all finite languages; for example, the language
fa; aba; abba; abbba; abbbbag lacks the noncounting property (5.29) and is thus
not a (potential) natural language.

An indexed family of nonempty languages L1; L2; : : : satisfies Angluin’s
Condition 1 iff there is an effective procedure that will create, for each i , a finite
subset Ti of Li such that for all j , Lj 6� Li follows from Ti � Lj . The Ti is called
a telltale for Li because once we know from semicooperative data presentation that
Ti is part of the target language, no subsets Lj of Li need to be considered anymore.
For such families, we have the following theorem.
Theorem 7.3.3 (Angluin 1980) An indexed family of nonempty languages is iitl iff
it satisfies Condition 1.
For alphabets † with at least three letters, a classic construction of Thue (1906,
reprinted in Nagell 1977) asserts the existence of an infinite word � D x1x2x3 : : :,
which is square-free in the sense that no substring of it has the form ˛˛. For any
threshold k > 1, any regular set of subwords of � will be counter-free. Let us now
consider the languageP0 D †� and the languagesPi obtained from†� by removing
from †� the prefix x1; : : : xi of � . This is an indexed family of nonempty languages
that are all regular (complement of a finite language) and noncounting (complement
of a noncounting language) with threshold k for any k > 1. If this family is iitl, by
Theorem 7.3.3 there is a finite telltale T0 such that for all j , Lj 6� †� must follow
from T0 � Lj . Since the conclusion is false but the premiss will be true for any Lj

with j greater than the longest string in T0, we have a contradiction that proves the
following theorem.
Theorem 7.3.4 (Kracht 2007) For k > 1, the family of regular noncounting
languages over an alphabet † that has at least three elements is not iitl.
Discussion To see that Theorem 7.3.3 is applicable, we need to assert that the lan-
guages Pi are constructible. Thue’s original proof relies on the homomorphism h

given by 0 ‘ 01201I 1 ‘ 020121I 2 ‘ 0212021 over the alphabet f0; 1; 2g and
constructs � as 0xh.x/h2.x/h3.x/ : : :, where x D 1201 (i.e. as the result of the
infinite iteration of h from starting point 0). Since h increases the length of any
string at least by a factor of 5 (and at most by a factor of 7), it requires at most
dlog.l/= log.5/e iterations to compute the prefix x1 : : : xl of �. Since the algorithm
A.i; w/ that decides the membership of w in Pi needs only to test whether w is a
prefix in �, it can run in time and space linear in jwj.

Obviously, if A is an iitl learnable family, so is every B � A, and if C is not
iitl learnable, neither will any D � C be iitl learnable. But this is not enough to
characterize the iitl families since there are many incomparable iitl families, such as
the set of all finite languages vs. the set of all languages that can be generated by
CSGs with a bounded number of rules (Shinohara 1990).
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If we are prepared to relax the requirement of semicooperation (positive evidence
only) and admit discovery procedures that rely on more data, there are several impor-
tant results concerning regular languages and DFSAs. With a fully cooperative text
(given in lexicographic order), Trakhtenbrot and Barzdin (1973) provided a polyno-
mial algorithm that produces a DFSA consistent with all data (positive and negative)
up to length n. If full cooperation is relaxed (positive and negative examples are
presented but not all up to a given length), the problem is NP-hard (Gold 1978).
If cooperation is extended by the answerer (informant) providing not just yes/no
answers but also a full set of strings that reach every state of the automaton, the
exact DFSA can be learned in finite time (Angluin 1981). If grammar comparison
is allowed in the form of questions ‘Is this DFSA equivalent to the target?’, polyno-
mial learning of DFSAs is possible (Angluin 1987). It is equally possible to tighten
the requirement of semicooperation by assuming a certain amount of downright
misinformation or just noise.

7.3.3 Probable approximate correctness

Assuming that each language learner is exposed to semicooperatively presented text
from the older generations and identifies a grammar that can account for the text,
there is still no guarantee that the learner’s grammar will be the exact equivalent of
the grammars that were used in generating the text. In fact, languages can and do
change in aspects that go far beyond a superficial updating of vocabulary: whole
grammatical constructions fall into disuse and eventually disappear, paradigms sim-
plify, new constructions and new paradigms enter the language at a surprising rate.
Sometimes the process can be attributed to contaminated text, especially if there is
large-scale migration or change in ruling class, but even languages reasonably iso-
lated from these effects change over time. To capture this phenomenon, we need to
consider some notion of approximate learning that involves some measure of simi-
larity between what is learned and what should have been learned: the key idea of
Valiant (1984) was to express approximation in probabilistic terms.

To specify a pac learning problem, we again need to specify the domain and the
range of the functions to be learned. These are generally the characteristic functions
of some sets called concepts. We also need to specify the hypothesis space, generally
as a family H of concepts (sets) that are all subsets of the same universe called
the sample space S . As the name suggests, S will be endowed with a fixed (but
not necessarily known) probability measure P that dictates both how data will be
presented to the learning algorithm and how the goodness of fit is to be measured
between the target concept C and a hypothesis C 0 proposed by the algorithm. We
say that C 0 approximates C within " if P.C�C 0/ < " (here � is used to denote
symmetric set difference). As for our criterion of success, we say that an algorithm
ı; " pac-learns C if, after being presented with a sufficient number n of randomly
(according to P ) chosen labeled examples, it produces, with probability >1 � ı, a
concept C 0 that approximates C within ". Our chief interest is with algorithms that
are polynomial in n; 1=ı and 1=", and ideally we’d want algorithms that are robust
under change of the distribution P or even distribution-free (i.e. independent of P ).
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As an example, let us again consider regular languages: the sample space is
T � endowed with a suitable (e.g. geometrical) probability distribution, a concept
to be learned is some regular language C � T �, and a hypothesis produced by
the algorithm is some DFSA c0, which generates the language C 0. Stated in pac
terms, the problem is still hard. In particular, Kearns and Valiant (1989) demonstrate
that a polynomial pac learner for all regular languages would also solve some prob-
lems generally regarded as cryptographically hard. However, interleaving languages
(the musical analog of k-strings; see Ross 1995) are pac learnable, and if member-
ship queries are allowed, a polynomial pac discovery procedure for DFSAs exists
(Angluin 1987).

The Vapnik-Chervonenkis (VC) dimension of a space H of concepts is the
maximum number of samples that can be labeled any way by members of H . Each
member of H creates a binary decision (labeling) on S , and if a set of n is such that
all 2n labelings can be obtained by a suitable choice ofH , we say the set of points is
shattered by H – the VC dimension of the hypothesis space is the cardinality of the
largest set that can be so shattered. Obviously, for a finite classH , the VC dimension
will be 	 log2 jH j. The VC dimension of the hypothesis space is closely related to
pac learnability: the number of examples n needed for ı; " pac learning satisfies

�

�
1

"
log

1

ı
C VC.H/

"

�
	 n 	 O

�
1

"
log

1

ı
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"
log

1

"

�
(7.21)

While the two bounds are very close and the VC dimension of many classical learn-
ing models is known, the error bounds computed from (7.21) are rather pessimistic
both because the results are distribution-free and because they are, as is common in
theoretical computer science, worst-case results. In principle, many linguistic prob-
lems could be recast as pac learning, but in a practical sense the algorithms that are
most important for the linguist owe little to the pac framework both because the VC
bounds do not characterize the problem well and because linguistic pattern match-
ing, to which we turn in Chapter 8, is generally concerned with n-way, rather than
2-way, classification problems.

7.4 Further reading

Although there is some interesting prehistory (Nyquist 1924, Hartley 1928), informa-
tion theory really begins with Shannon (1948) – for a modern treatment, see MacKay
(2003). The insufficiency of the classical quantitative theory of information has been
argued in Bar-Hillel (1964), whose goal was to replace it by a semantic theory of
information – the same goal is restated in Dretske (1981) and Devlin (1991). Devlin
(2001) argues that the semantic theory that fits the bill is situation semantics; for a
short introduction, see Seligman and Moss (1997), and for a detailed exposition see
Barwise and Perry (1983).

Li and Vitányi (1997) provide an encyclopedic treatment of Kolmogorov com-
plexity. For a succinct presentation of the central ideas, see Gács (2003) and for
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a discussion of the relation of Kolmogorov complexity and learnability see Clark
(1994). The MDL framework originates with Rissanen (1978). For a thorough dis-
cussion of anuvr.tti, invoking a full metagrammar of over a hundred principles, see
Joshi and Bhate (1984). The idea of using grammars to generate grammars goes
back to Koster (1970). A significant fragment of English grammar, with heavy use
of metarules, is presented in Gazdar et al. (1985). The first major discussion of sim-
plicity measures in generative linguistics is Chomsky and Halle (1968 Ch. 9); for a
comparison with the earlier structuralist ideas, see Battistella (1996).

On the status of ž, see McMillan (1977). The acquisition of phonology offers a
particularly rich storehouse of phenomena that support a universal grammar-based
view of language acquisition. For example, infants employ rules such as redupli-
cation and final devoicing that the adult grammar of the language they learn may
entirely lack. However, the idea that the acquisition of phonology relies heavily
on hardwired UG has its detractors; see e.g. (Zamuner et al. 2005). The same can
be said for syntax, where the poverty of stimulus argument offered in Chomsky
(1980), that certain facts about natural language could not be learned from expe-
rience alone, though widely accepted, has significant detractors; see e.g. Pullum and
Scholz (2002).

The classic sources on iitl and pac learning remain Gold (1967) and Valiant
(1984). For inductive inference in general, see Angluin and Smith (1983), Angluin
(1992), and Florencio (2003). For the lower bound in (7.21), see Ehrenfeucht et al.
(1989), and for the upper bound see Blumer et al. (1989) and Anthony et al. (1990).
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Linguistic pattern recognition

In general, the pattern recognition task is defined as one where an infinite, continuous
set of inputs is associated with a finite variety of outputs. A typical example is face
recognition, where the goal is to identify the face as belonging to the same per-
son in spite of changes in viewing angle, distance, light, makeup and hairdo, facial
expression, etc. We speak of linguistic pattern recognition when the set of outputs
is structured linguistically. This means both that the output units of linguistic sig-
nificance follow each other in discrete time (e.g. a temporal succession of letters,
words, or sentences) and that these units themselves come from a finite (or finitely
generated) set. We could stretch the definition to include data that lack temporal
organization. For example, the recognition of isolated characters is considered by
many to be a linguistic pattern recognition task, especially in the case of Han and
Hangul characters, which can be decomposed spatially though not necessarily tem-
porally (see Sproat 2000). However, no amount of stretching the definition will allow
for face or fingerprint recognition, as the output in these domains can be made finite
only by imposing some artificial cutoff or limitation on the system.

Both linguistic and nonlinguistic pattern recognition involve an early stage of
signal processing, often referred to as the front end. In speech recognition, the front
end is generally based on acoustic principles, while in optical character recognition
image processing techniques are used. In Chapter 7, we looked at codes that were
fully invertible. Here we will distinguish low- and high-level signal processing based
on whether the input signal is largely recoverable from the output or not. In low-level
signal processing, we encode the input in a largely invertible (lossless) manner, while
in high-level signal processing, so much of the information that was present in the
input gets discarded that the output can no longer serve as a basis for reconstructing
the input. It should be clear from the foregoing that the distinction between low-
and high-level signal processing is a matter of degree, especially as many signal
processing algorithms have tunable parameters that control the degree of information
loss. Nevertheless, there are some general guidelines that can, with proper care, be
used to distinguish the two kinds of signal processing in nearly all cases of practical
interest.
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On one side, any transformation that limits losses to such a degree that they are
below the threshold of human perception is definitely low-level. A typical exam-
ple would be the algorithm used in ripping music CDs: here the input is twice 16
bits (stereo) sampled at 44.1 kHz, for a total of 1411 kbps, and the output is MP3,
requiring only 128 kbps (stereo) or 64 kbps (mono). On the other side, any feature
extraction algorithm that produces categorial (especially 0–1) output from contin-
uous input is considered high-level. A typical example would be an algorithm that
decides whether a stretch of speech is voiced or unvoiced (see Chapter 9). Here the
key issue is not whether the output is categorial but rather the number of categories
considered. Two categories (one bit) is definitely high-level, and 64k categories (16
bits) are typical of low-level signal processing. We discuss this issue, quantization,
in Section 8.1. Because of their special importance in linguistic pattern recognition,
in Section 8.2 we revisit the basic notions of Markov processes (chains) and hidden
Markov models (HMMs) that were introduced in Section 5.5 both for the discrete
(quantized) and the continuous cases.

Another criterion for distinguishing low- and high-level processing is whether
the output of the front end is still suitable for human pattern recognition. For exam-
ple, aggressive signal processing techniques can reduce the number of bits per second
required for transmitting speech signals from 64 kbps (MP3 mono) to 2 kbps (MELP)
with considerable degradation in subjective signal quality but little or no loss of intel-
ligibility. Surprisingly, there exist pattern recognition methods and techniques that
work best when the signal is degraded beyond the point of human recognizability.
We discuss such cases, and the reasons for their existence, in Section 8.3. Topic
detection, and the general problem of classifying documents, has all characteristics
of linguistic pattern recognition when there is a single concept such as ‘spam’ to be
learned. As the number of topics increases (complex topic hierarchies often have tens
of thousands of categories) the problem gradually takes on characteristics of nonlin-
guistic pattern recognition. In Section 8.4 we discuss the tools and techniques used
in topic classification in some detail because these have broad applicability to other
linguistic problems as well.

8.1 Quantization

Historically, quantization techniques grew out of analog/digital signal conversion,
and to some extent they still carry the historical baggage associated with considera-
tions of keeping the A/D circuitry simple. We begin with air pressure s.t/ viewed as
a continuous function of time, and we assume the existence of an amplitude bound
A such that �A 	 s.t/ 	 A for all t considered.
Exercise 8.1 Research the empirical amplitude distribution of speech over long
stretches of time. If this has variance � , how do you need to set k in A D k� such
that less than one in a hundred samples will have jsj > A? How do you need to set k
so that on the average no more than one in a thousand samples gets clipped?
Our goal is to quantize both the time axis and the amplitude axis, so that s.t/ is
replaced by a stepwise constant function r.ti /, where r can take on only discrete
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values r0; r1; : : : ; rN . In the simplest case, both the ri and the tj are uniformly
spaced. The reciprocal of tiC1 � ti is called the sampling frequency – in the case
of speech, it is typically in the 6–40 kilohertz range. For simplicity, N is usually
chosen as a power of 2, so that instead of N -way sampling we speak of b-bit sam-
pling, N D 2b . In the electrical engineering literature, this is known as pulse code
modulation, or PCM. In the case of speech, b is typically between 1 and 24. At high
sampling rates (20 kHz or above), one bit is already sufficient for low-quality, but
generally intelligible, speech coding.

Uniform spacing means that the quantization levels are the centers of the 2b

intervals of size � D 2A=2b . The squared error of the stepwise approximation,
called the quantization noise, can be estimated for any elementary interval of time by
taking b sufficiently large so that the error becomes a random variable with zero mean
that is uniformly distributed over the range ��=2;�=2. Since the squared error of
such a variable is obviously�2=12, the more commonly used signal to quantization
noise ratio, or SQNR, is 3Px2

2b=A2, where Px is the signal energy, defined as the
area under the curve s2.t/. Typically, speech engineers express such energy ratios
using the decibel scale, 10 times their base 10 logarithm, so we obtain the conclusion
that adding an extra bit improves SQNR by about 6.02 decibels for PCM.

There is, of course, no reason to assume that the uniform quantization scheme
is in any way optimal. There are many methods to decrease the number of bits
per second required to transmit the signal or, equivalently, to increase signal qual-
ity for the same number of bits, and here we provide only a thumbnail sketch.
In one family of methods, the original signal gets warped by the application of
a concave function W so that we uniformly quantize W.s.t// instead of s.t/. If
W is chosen linear for jsj < A=87:56 and logarithmic for larger s, we speak of
A-law PCM, commonly used in digital telephony in Europe since the 1970s. IfW D
sign.s/A log.1C 255jsj=A/=3, we speak of �-law PCM, commonly used for digital
telephony in the United States and Japan. These log PCM methods, predating MP3
by over three decades, provide high-quality speech at the same 64 kbps rate.

The quality of speech is a somewhat subjective matter: the standard way of eval-
uating it is by mean opinion scale (MOS), ranging from 1 (bad) to 5 (excellent).
A MOS grade of 4.5 or higher is considered broadcast quality; 4.0–4.5 is toll or
network quality (phone networks aim at this level for toll services); 3.5–4.0 is con-
sidered communications quality (also known as cell grade quality); and 2.5–3.5 is
synthetic quality (a historical name that no longer reflects the actual quality of mod-
ern synthetic speech, which can be indistinguishable from broadcast-quality human
speech). Log PCM has MOS 4.3 – below the broadcast level but well within the toll
range.
Exercise 8.2 What must be the amplitude distribution of speech over long stretches
of time for A-law (�-law) to provide the optimal warping function? Compare these
with the result of Exercise 8.1.
Beyond A-law or �-law, in practical terms very little can be gained by matching the
warping function more closely to the long-term characteristics of speech. Adaptive
methods that exploit redundancies in the short-term characteristics of speech will
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be discussed in Section 9.1, but before turning to these, we need to gain a better
understanding of the primary motivational example of quantization, phonemes.

In Section 3.1, we defined phonemes as mental units belonging in a phonemic
alphabet that is specific to a given language. Since humans are capable of transcrib-
ing speech into phonemic units and the resulting string of symbols by definition
preserves all linguistically significant (potentially meaning-altering) contrasts, using
as many quantization levels (actually, quantization cells in n-dimensional space; see
Section 9.1) as there are phonemes in the language is a particularly attractive proposi-
tion. Here we are referring not just to the small group of humans trained in phonemic
transcription but to the much larger set of literate humans who can provide ortho-
graphic transcriptions (an arguably harder task, especially for complex orthographies
with large historical baggage, but one that all cognitively unimpaired humans seem to
be capable of) and even to illiterate people inasmuch as there is a wealth of psycholin-
guistic evidence that they, too, use phonemic units in all language comprehension and
production tasks.

The phoneme recognition problem is made hard by three factors. First, only a
small number of phonemes, the vowels, appear freely in isolation, and human recog-
nition is optimized to deal with sequences, where contextual cues are available,
rather than with isolated phonemes. Second, the linear sequence recognition prob-
lem is often complicated by tempo, pitch, volume, and other autosegmental effects.
For example, the phonetic sequence /tš/ maps on a single phoneme č in Spanish
but on a sequence of two phonemes t and š in German, so the problem is recov-
ering not just the sequence but also the autosegmental linking pattern. Finally, the
mapping from mental units to physical units cannot be inverted: cases of contextual
neutralization such as Example 3.2.1 (Russian final devoicing) abound, and even
more disturbingly, there seem to be many cases of absolute neutralization where a
contrast never surfaces.

A familiar example is the ‘silent e’ of English orthography in words like ellipse: it
is never pronounced, but a system such as Chomsky and Halle (1968) that assumes an
underlying e that gets deleted from the surface seems better equipped to explain the
regularities of English stress than a system that makes no recourse to such devices.
Another example familiar to phonologists is ‘velar’ vs. ‘palatal’ i stems in Hungarian:
until we add a suffix, there is absolutely no way to distinguish the i sound found in
hı́d ‘bridge’ from that of vı́z ‘water’, but once a suffix governed by vowel harmony is
added the distinction becomes evident: hidat (*hidet) ‘bridge.ACC’ but vizet (*vizat)
‘water.ACC’ and similarly with the other harmonizing suffixes (Vágó 1980). A sys-
tem that assumes a rule that wipes out (neutralizes) the distinction between the two
kinds of i is better suited to explaining the facts of the language than one that does
not (see Vágó 1976) – so much so that nobody quite succeeded in constructing a rule
system without any hidden contrast.

In a classic experiment, Peterson and Barney (1952) removed all three confound-
ing factors by restricting attention to the ten steady state vowels of English. By
instructing the speakers to produce clear examples and marking in the data set all
instances where at least one of 26 listeners could not clearly identify the vowel, they
removed the ‘performance’ factors that could lead to neutralization; by using steady
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Fig. 8.1. Peterson-Barney (1952) 1st and 2nd formant data, female speakers

state vowels, they removed all tempo issues; and by using only clearly monophone-
mic vowels, they removed all issues of segmentation and autosegmental association.
One would hope that on such a clean set of data it would be trivial to find ten canon-
ical waveforms p1; : : : p10 and a distance measure d such that for each waveform q

the pi such that d.q; pi / is minimal (in standard notation, argminid.q; pi /) would
serve to identify q. Unfortunately, the original acoustic data are lost, so we cannot
test the performance of contemporary recognizers on this particular set, only the fun-
damental frequencies and the first three formants (resonant frequencies of the vocal
tract) have been preserved (see Watrous 1991).

Figure 8.1 shows the first two formants for unambiguous vowels produced by
female speakers. In formant space, the data show a number of overlapping clusters,
which makes it clear that variability (both across speakers and across repeat utter-
ances of the same speaker) is a major issue. This finding has deeply influenced the
design of modern speech recognition systems, to which we turn now.

8.2 Markov processes, hidden Markov models

We begin with the simple case where the message to be coded exhibits first order
Markovian dependence. Consider a finite set of elementary messages (symbols)
ai .1 	 i 	 k/ with probabilities pi . If in all complex messages P.ain jain�1

/ D
P.ain jai1ai2 : : : ain�1

/ holds (i.e. ain is predictable on the basis of the immediately



206 8 Linguistic pattern recognition

preceding symbol just as well as it is predictable on the basis of all preceding sym-
bols), we say that the messages are generated by a first order Markov process with
transition probabilities tij D P.aj jai /.

In general, a signal process is an infinite sequence of random variables Xt ;

t D 1; 2; 3; : : : whose values are the elementary messages collected in a set A. For
convenience, two-way infinite sequences including variables for X0; X�1; X�2; : : :

are often used since this makes the shift operator S that assigns to every sequence of
values a.ti / the sequence a.ti�1/ invertible. A process is called stationary if the shift
operator (and therefore every positive or negative power of it) is measure-preserving.
Definition 8.2.1 A stochastic process is a probability measure � defined onAZ. If for
every measurable subset U we have �.S.U // D �.U /, the process is stationary. If
for every measurable function f of n variables iD1

n

Pn
iD1 f .Xi ; XiC1; : : : ; XiCk�1/

converges with probability 1 to the expected value E.f .X1; X2; : : : Xk// whenever
the latter is finite, the process is ergodic.
Exercise 8.3 Can a nonstationary process be ergodic? Can a nonergodic process be
stationary?
In general, the entropy of a signal process is defined as

lim
n!1H.X1; X2; : : : ; XN /=N

if this limit exists: in the case of word-unigram based models, it is often referred to
as the per-word entropy of the process. For the Bernoulli case studied in Section 7.1,
the random variables Xi are independently identically distributed, so this definition
reduces to H.X1/ D H.X/. In the non-Bernoulli case, by the chain rule we have
1
N
.H.X1/ C H.X2jX1/ C H.X3jX1X2/ C : : : C H.XN jX1X2 : : : XN �1//, and

if the process is Markovian, this reduces to 1
N
.H.X1/ C H.X2jX1/ C H.X3jX2/

C : : : C H.XN jXN �1//. If the process is stationary, all terms except the first one
are H.X2jX1/, and these dominate the sum as N ! 1. Therefore we obtain the
following theorem.
Theorem 8.2.1 The word entropy of a stationary Markov process is H.X2jX1/.
To fully define one-sided first-order Markov chains we only need a set of initial
probabilities Ii and the transition probabilities tij . In two-sided chains, initial proba-
bilities are replaced by the probabilities Ti that the chain is in state i . These obviously
satisfy Tj D Pn

iD1 Ti tij and thus can be found as the eigenvector corresponding to
the eigenvalue 1 (which will be dominant if all tij are strictly positive). By a classi-
cal theorem of A. A. Markov, if the process is transitive in the sense that every state
can be reached from every state in finitely many steps (i.e. if the transition matrix is
irreducible), the state occupancy probabilities Ti satisfy the law of large numbers:
Theorem 8.2.2 (Markov 1912) For any "; ı arbitrarily small positive numbers, there
exists a length N such that ifmi denotes the absolute frequency of the process being
in state ai during a trial of length N , we have

P.jmi=N � Ti j > ı/ < " (8.1)
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The current state of the chain can be identified with the last elementary message
emitted since future behavior of the chain can be predicted just as well on the basis
of this knowledge as on the basis of knowing all its past history. From Section 8.2.1,
the word entropy of such a chain can be computed easily: ifX1 D ai is given,H.X2/

is �Pj tij log2.tij /, so we have

H.X2jX1/ D �
X

i

Ti

X
j

tij log2.tij / (8.2)

What makes this entropy formula particularly important is that for longer sequences
average log probability is concentrated on this value. By definition, the probability of
any sequence a D ai1ai2 : : : aiN of elementary messages is Ti1

QN �1
kD1 tik ikC1

, and
the probability of a set C containing messages of length N is simply the sum of the
probabilities of the individual sequences.
Theorem 8.2.3 (Shannon 1948) For arbitrary small " > 0 and � > 0, there is a set
C�;" of messages of length N for sufficiently large N such that P.a 62 C/ < " and
if a 2 C , then j log2.1=P.a//=N �H j < �.
Proof Let us collect the tij . If mij counts the number of times tij occurred in the
product Ti1

QN �1
kD1 tik ikC1

, we have

P.a/ D Ti1

Y
i;j

t
mij

ij (8.3)

We define C as containing those and only those sequences a that have positive prob-
ability (include no tij D 0) and satisfy jmij �NTi tij j < N" for all i; j . For these, the
product in (8.3) can be rewritten with exponents NTi tij C N"‚i;j with j‚ij j < 1.
Therefore,

log2.1=P.a// D � log2.Ti1/�N
X

tij ¤0

Ti tij log2.tij /�N"
X

tij ¤0

‚ij log2.tij / (8.4)

Since the second term is just �NH , we have

j log2.1=P.a//=N �H j < � log2.Ti1/=N � "
X

tij ¤0

log2.tij /:

The first term tends to 0 as N ! 1, and the second term can be made less than an
arbitrary small � with the appropriate choice of ". What remains to be seen is that
sequences a 62 C with nonzero probability have overall measure <". For a nonzero
probability a not to belong in C it is sufficient for jmij � NTi tij j � N" to hold
for at least one i; j . Thus we need to calculate

P
tij ¤0 P.jmij � NTi tij j � N"/.

Since this is a finite sum (maximum n2 terms altogether), take any tij ¤ 0 and apply
Theorem 8.2.2 to find N large enough for P.jmi �NTi j < Nı=2/ > 1 � " to hold.
By restricting our attention to state ai , we have a pure Bernoulli experiment whose
outcomes (moving to state aj ) satisfy the weak law of large numbers, and thus for
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any " and ı=2 we can make P.jmij =mi � tij j < ı=2j/ > 1 � ". Combining these
two, we obtain

P.jmi �NTi j < Nı=2/P.jmij �mi tij j < miı=2/ � .1 � "/.1 � "/ � 1 � 2"
By the triangle inequality, P.jmij �NTi tij j < Nı/ � 1�2", so P.jmij �NTi tij j �
Nı/ < 2", and by summing over all i; j , we obtain P.C/ < 2n2", which can be
made as small as desired.
In Section 5.5.2 we defined hidden Markov models (HMMs) by weakening the
association of states and elementary messages: instead of a single (deterministic)
output as in Markov chains, we assign an output distribution Ei to each state
i . It is assumed that the Ei are independent of time and independent of each
other (though possibly identically or very similarly distributed). In the special case
Ei .ai / D 1;Ei .aj / D 0.j ¤ i/, we regain Markov chains, but in the typical
case the state cannot be deterministically recovered from the elementary message
but remains to some extent hidden, hence the name. Each state i of an HMM can be
conceived as a signal process in its own right, with entropyH.Ei / D Hi . We do not
require the Ei to be discrete. In fact continuous density HMMs play an important
role in speech recognition, as we shall see in Chapter 9. Although it would be pos-
sible to generalize the definition to situations where the underlying Markov chain is
also replaced by a continuous process, this makes little sense for our purpose since
our goal is to identify the underlying states with linguistic units, which are, by their
very nature, discrete (see Section 3.1).

The entropy of the whole process can be computed as a weighted mixture of
the output entropies only if each state is final (diagonal transition matrix). In the
general case, we have to resort to the original definition 1

N
.H.X1/CH.X2jX1/C

H.X3jX1X2/C : : :CH.XN jX1X2 : : : XN �1//, and we see that H.X3jX1X2/ and
similar terms can no longer be equated to H.X3jX2/ since it is the previous state of
the model not the previous output that contributes to the current state and thus indi-
rectly to the current output. Introducing a Markov chain of random state variables
Si , we have P.Xi D aj / D Pn

kD1 Si .k/Ek.aj / (where the sum ranges over the
states). By definition, word entropy will be the limit of

1

N
H.X1; : : : ; XN / D 1

N
.H.S1; : : : ; SN /CH.X1; : : : ; XN jS1; : : : ; SN /

�H.S1; : : : ; SN jX1; : : : ; XN // (8.5)

We already computed the first term asH.S2jS1/. The second term is 1
N
NH.X jS/ D

H.X1jS1/, which is generally easy to compute from the underlying Markov pro-
cess and the output probability distributions. It is only the last term that causes
difficulties inasmuch as computing the states from the outputs is a nontrivial task.
Under most circumstances, we may be satisfied with pointwise maximum likelihood
estimates.
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8.3 High-level signal processing

Historically, linguistic pattern recognition systems were heavily slanted towards
symbol-manipulation techniques, with the critical pattern recognition step often
entirely obscured by the high-level preprocessing techniques that are referred to as
feature detection. To the extent we can decompose the atomic concatenative units as
bundles of distinctive features (see Sections 3.2 and 7.3.2), the simultaneous detec-
tion of all features amounts to recognizing the units themselves. In many settings,
both linguistic and nonlinguistic, this makes excellent sense since the actual number
of distinct units N is considerably larger than the number of binary features used
for their feature decomposition, ideally on the order of log2.N /. Further, some of
the well-established features, such as voicing in speech and position in handwriting
recognition, are relatively easy to detect, which gave rise to high hopes that the detec-
tion of other features will prove just as unproblematic – in speech recognition, this
is known as the Stevens-Blumstein (1981) program.

As we shall see in Chapter 9, low-level signal processing makes good use of the
knowledge that phonologists and phoneticians have amassed about speech produc-
tion and perception. But in high-level processing, engineering practice makes only
limited use of the featural and gestural units proposed in phonology and phonetics:
all working systems are based on (auto)segmental units. Aside from voicing and a
handful of other distinctive features, training good feature detectors proved too hard,
and it is only voicing that ends up playing a significant role in speech processing
(see Section 9.1). We have little doubt that infants come equipped with such detec-
tors, but research into these is now pursued mainly with the goal of understanding the
biological system, as opposed to the goal of building better speech recognition. On
the whole, the feature detection problem turned out to be analogous to the problem
of flapping wings: a fascinating subject but one with little impact on the design of
flying machines.

Therefore, we illustrate high-level signal processing on a simple example from
character recognition, that of recognizing the (printed) characters c, d, e, and f. Only
two of these, c and e, are positioned between the normal “n” lines of writing, with
d and f , having ascenders that extend above the normal top line (f, depending on
font style, may also have a descender). And only two, d and e, have loops that
completely surround a white area; c and f leave the plane as a single connected
component. Therefore, to recognize these four characters, it is sufficient to detect the
features [˙ascender] and [˙loop], a seemingly trivial task.
Exercise 8.4 Consider the difficulties of extracting either geometrical features such
as position or topological features such as connectedness from a grayscale image.
Write a list for later comparison with the eventual set of problems that will be
discussed in Chapter 9.
First we apply a low-level step of pixelization, dividing the line containing the string
of characters into a sufficient number of squares, say 30 by 40 for the average char-
acter, so that a line with 80 characters is placed into a 2400 by 40 array such that
the bottom of this array coincides with the baseline of the print and the top coincides
with the horizontal line drawn through the highest points of the ascenders.
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Using 8 bit graylevel to describe the amount of black ink found in a pixel, we
have devoted some 96 kilobytes to encode the visual representation of 20 bytes of
information. To recover the two bits per character that actually interest us, we first
need to segment the line image into 80 roughly 30 by 40 rectangles, so that each of
these contains exactly one character. We do this by considering columns of pixels
one by one, adding up the gray values in each to form a blackness profile. Those
columns where the result is small (zero) are considered dividers, and those where the
values are higher than a threshold are considered parts of characters. We obtain an
alternating string of divider and character zones, and we consider the segmentation
well-established if we have the correct number of character zones (80) and these all
have approximately the same width.

Once these preliminaries are out of the way, the ascender feature can be simply
detected by looking at the top five rows of pixels in each character bounding box. If
these are all white (the sum of grayness is below a low threshold), the character in
question has no ascender, otherwise it does. Detecting loops is a more complex com-
putation since we need to find local minima of the grayness function, which involves
computing the gradient and determining that the Hessian is positive definite. To com-
pute the gradient, it is actually useful to blur the image, e.g. by averaging grayness
over larger neighborhoods (e.g. over a disk of 5–10 pixel radius). Otherwise, com-
pletely flat white and black regions would both give zero gradient, and the gradient
values near the edges would be numerically unstable.

Visually, such transformations would make the image less legible, as would the
ascender transform, which deletes everything but the top five rows of pixels. What
this simplified example shows is that the transformations that enhance automatic fea-
ture detection may be very different from the ones that enhance human perception –
a conclusion that will hold true as long as we focus on the goal of pattern recognition
without any attempt to mimic the human perception/recognition process.

Finally, we note here that human speech is intrinsically multimodal: in the typical
case, we do not just hear the speakers but also see their mouth, hand gestures, etc.
There is clear evidence (McGurk and MacDonald 1976) that the visual cues will
significantly interact with the audio cues: the image of a labial sound such as b being
produced overrides the acoustical cue, so that e.g. the experimental subject will hear
base even if vase was spoken. This McGurk effect is already detectable in young
infants and is independent of the language being learned by the infant – the effect
persists even if the listener does not see the face but just touches it (Fowler and Dekle
1991).

Therefore, it is important to determine the relative contributions of the different
channels, a problem that is made very difficult by the fact that the linguistic signal
is highly redundant. In telephony, a one second stretch is typically encoded in 8
kilobytes, while in imaging, a one square cm area takes about 56 kilobytes at the 600
dpi resolution common to most printers and scanners. On the average, one second of
speech will contain about 10–15 phonemes, each containing no more than 6 bits of
information, so the redundancy is about a thousandfold. For the Latin alphabet, one
square cm will contain anywhere from three handwritten characters, say 18 bits, to
60 small printed characters (45 bytes), so the redundancy factor is between 1200 and
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24000. In fact, these estimates are on the conservative side since they do not take into
account the redundancy between adjacent phonemes or characters – we return to the
issue of compressing the signal in Chapter 9.

8.4 Document classification

As the number of machine-readable documents grows, finding the ones relevant to
a particular query becomes an increasingly important problem. In the ideal case,
we would like to have a question answering algorithm that would provide the best
answer, relative to any collection of documents D, for any (not necessarily well-
formed English) query q such as Who is the CEO of General Motors? Since D may
contain contradictory answers (some of which may have been true at different times,
others just plain wrong), it is clear that in general this is not a solvable problem.
Question answering, together with unrestricted machine learning, machine transla-
tion, pattern recognition, commonsense reasoning, etc., belong in the informal class
of AI-complete problems: a solution to any of them could be leveraged to solve all
problems of artificial intelligence.
Exercise 8.5 Define the problems above more formally, and develop Karp-style
reduction proofs to show their equivalence.
As Matijasevič (1981) emphasizes, the proof of the unsolvability of a problem is
never the final point in our investigations but rather the starting point for tack-
ling more subtle problems. AI-complete problems are so important that finding less
general but better solvable formulations is still an important practical goal. Instead
of unrestricted machine translation, which would encompass the issue of translat-
ing into arbitrary systems of logical calculus, and thus would subsume the whole
AI-complete problem of knowledge representation, we may restrict attention to
translation between natural languages, or even to a given pair of natural languages.
Instead of the full question answering problem, we may restrict attention to the more
narrow issue of information extraction: given a document d (e.g. a news article)
and a relation R (e.g. Is-CEO-Of ), find all pairs of values f.x; y/jx 2 Person, y 2
Company, .x; y/ 2 Is-CEO-Of g supported by d . This is still rather ambitious, as
it requires a more robust approach to parsing the document than we are currently
capable of (see Chapter 5), but at least it does away with many thorny problems of
knowledge representation and natural language semantics (see Chapter 6). Once the
problem is restricted this way, there is no particular reason to believe that it is algo-
rithmically unsolvable, and in fact practical algorithms that run linear in the size of
d are available in the public domain (Kornai 1999), though these do not claim to
extract all instances, just a large enough percentage to be useful.

Even with linear parsing techniques, syntactic preprocessing of a large collec-
tion of documents (such as the web, currently containing about 1010 documents)
remains impractical, and the problem is typically attacked by means of introduc-
ing a crude intermediate classification system T composed of a few hundred to a
few thousand topics. We assume that T partitions D into largely disjoint subsets
Dt � D .t 2 T / and that queries themselves can be classified for topic(s). The idea
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is that questions about e.g. current research in computer science are unlikely to be
answered by documents discussing the economic conditions prevailing in 19th cen-
tury Congo, and conversely, questions about slavery, colonial exploitation, or African
history are unlikely to be answered by computer science research papers.

Therefore we have two closely related problems: in query parsing we try to deter-
mine the set of topics relevant to the query, and in topic detection we try to determine
which topics are discussed in a document. In many practical systems, the two prob-
lems are conflated into one by treating queries as (very short) documents in their own
right. We thus have the problem of document classification: given some documents
D, topics T , and some sample of .d; t/ pairs from the relation Is-About � D � T ,
find the values of Is-About for new documents. Since the space of topics is not really
structured linguistically (if anything, it is structured by some conceptual organiza-
tion imposed on encyclopedic knowledge), strictly speaking this is not a linguistic
pattern recognition problem, but we discuss it in some detail since the mathematical
techniques used are quite relevant to mathematical linguistics as a whole. First, we
present some terminology and notation.

We assume a finite set of words w1; w2; : : : ; wN arranged in order of decreas-
ing frequency. N is generally in the range 105–106 – for words not in this set, we
introduce a catch-all unknown word w0. By general English we mean a probabil-
ity distribution GE that assigns the appropriate frequencies to the wi either in some
large collection of topicless texts or in a corpus that is appropriately representative of
all topics. By the (word unigram) probability model of a topic t , we mean a probabil-
ity distributionGt that assigns the appropriate frequencies gt .wi / to thewi in a large
collection of documents about t . Given a collection C , we call the number of docu-
ments that contain w the document frequency of the word, denotedDF.w;C /, and
we call the total number of w tokens its term frequency in C , denoted TF.w;C /.

Assume that the set of topics T D ft1; tk ; : : : ; tkg is arranged in order of decreas-
ing probability Q.T / D q1; q2; : : : ; qk . Let

Pk
iD1 qi D T 	 1, so that a document

is topicless with probability q0 D 1 � T . The general English probability of a word
w can therefore be computed in topicless documents to be pw D GE .w/ or asPk

iD1 qigi .w/. In practice, it is next to impossible to collect a large set of truly top-
icless documents, so we estimate pw based on a collection D that we assume to be
representative of the distribution Q of topics. It should be noted that this procedure,
while workable, is fraught with difficulties since in general the qj are not known,
and even for very large collections it cannot always be assumed that the proportion
of documents falling in topic j estimates qj well.

As we shall see shortly, within a given topic t , only a few dozen, or perhaps a
few hundred, words are truly characteristic (have gt .w/ significantly higher than the
background probability gE .w/) and our goal will be to find them. To this end, we
need to first estimate GE . The trivial method is to use the uncorrected observed
frequency gE .w/ D TF.w;C /=L.C /, where L.C/ is the length of the corpus
C (the total number of word tokens in it). While this is obviously very attractive,
the numerical values so obtained tend to be highly unstable. For example, the word
with makes up about 4.44% of a 55 m word sample of the Wall Street Journal but
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5.00% of a 46 m word sample of the San Jose Mercury News. For medium-frequency
words, the effect is even more marked. For example, uniform appears 7.65 times per
million words in the WSJ and 18.7 times per million in the Merc sample. And for
low-frequency words, the straightforward estimate very often comes out as 0, which
tends to introduce singularities in models based on the estimates.

The same uncorrected estimate, gt .w/ D TF.w;Dt /=L.Dt /, is of course avail-
able for Gt , but the problems discussed above are made worse by the fact that any
topic-specific collection of documents is likely to be orders of magnitude smaller
than our overall corpus. Further, if Gt is a Markov source, the probability of a doc-
ument containing l1 instances of w1, l2 instances of w2, etc., will be given by the
multinomial formula  

l0 C l1 C : : :C lN

l0; l1; : : : ; lN

!
NY

iD0

gt .wi /
li (8.6)

which will be zero as long as any of the gt .wi / are zero. Therefore, we will
smooth the probabilities in the topic model by the (uncorrected) probabilities that
we obtained for general English since the latter are of necessity positive. Instead of
gt .w/ we will therefore use ˛gE .w/C .1�˛/gt .w/, where ˛ is a small but nonneg-
ligible constant, usually between .1 and .3. Another way of justifying this method
is to say that documents are not fully topical but can be expected to contain a small
portion ˛ of general English.

Since the probabilities of words can differ by many orders of magnitude (both
for general English and for the sublanguage defined by any particular topic), we
separate the discussion of the high-, mid-, and low-frequency cases. If a word has
approximately constant probability gt .w/ across topics t , we say it is a function word
of English. Such words are distributed evenly across any sample and will therefore
have very low KL divergence. The converse is not true: low KL divergence indicates
only that the word is not distinctive for those topics covered in the collection, not
that the word is nondistinctive in a larger corpus.

For function words, the estimate pw D .1 � T /gt .w/ or even simply gt .w/ is
reasonable. If a document d has length l.d/ � 1=pw , we expect the word to appear
in d at least once. Let us denote the size (number of documents) of a collection
C by S.C /. If Dl contains only those documents in D that are longer than l , we
expect DF.w;Dl / D S.Dl /. We can turn this around and use this as a method of
discovering function words: a reasonable choice of threshold frequency would be
10�4, and we can say that the function words of English will be those words that
appear in all (or a very large proportion of) those documents that have length �105.

We emphasize that not all words with high observed frequency will meet the
test: for example the word Journal has about twice the frequency of when in the
widely used WSJ corpora, but it will fail the DF.w;Dl / D S.Dl / test in any other
collection, while when will pass. The extreme high end of the distribution, words
having 0.2% or greater probability, are generally function words, and the first few
hundred function words (which go down to the mid-range) collectively account for
about half of any corpus (see Section 7.1).
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Function words are of course not the only words of general English. In the mid-
range and below we will make a distinction between specific and nonspecific content
words. Informally, a content word is nonspecific if it provides little information about
the identity of the topic(s) in which it appears. For example, words like see or book
could not be called function words even under the most liberal definition of the term
(and there will be many long documents that fail to contain them), but their content
is not specific enough: for any topic t , P.t jw/ is about the same as the general
probability of the topic qt , or, what is the same by Bayes’ rule, gt .w/=gE .w/ is
close to 1.
Exercise 8.6 Assume a large collection of topic-classified data. Define an overall
measure of ‘closeness to 1’ that is independent of the distribution Q of topics (it
does not require that the collection be representative of this distribution).
In practice we rarely have access to a large enough collection of topic-classified data,
and we have to look at the converse task: what words, if any, are specific to a few
topics in the sense that P.d 2 Dt jw 2 d/ � P.d 2 Dt /. This is well measured
by the number of documents containing the word. For example Fourier appears in
only about 200 k documents in a large collection containing over 200 m English
documents (see www.northernlight.com), while see occurs in 42 m and book
in 29 m. However, in a collection of 13 k documents about digital signal processing,
Fourier appears 1100 times, so P.d 2 Dt / is about 6:5�10�5, while P.d 2 Dt jw/ is
about 5:5 � 10�3, two orders of magnitude better. In general, words with low DF val-
ues, or what is the same, high 1/DF D IDF inverse document frequency values, are
good candidates for being specific content words. Again, the criterion has to be used
with care: it is quite possible that a word has high IDF because of deficiencies in the
corpus, not because it is inherently very specific. For example, the word alternately
has even higher IDF than Fourier, yet it is hard to imagine any topic that would call
for its use more often than others.

This observation provides strong empirical evidence that the vocabulary of any
language cannot be considered finite; for if it was finite, there would be a smallest
probability p among the probabilities of the words, and in any random collection of
documents with length � 1=p, we would expect to find no hapaxes at all. Obviously,
for hapaxes TF D DF D 1, so to the extent that every document has a topic this could
be established deterministically from the hapax in question. In machine-learning
terms, this amounts to memorizing the training data, and the general experience is
that such methods fail to work well for new data. Overall, we need to balance the
TF and IDF factors, and the simplest way of doing this is by the classical TF�IDF
formula that looks at the product of these two numbers.

Given a document with word counts li and total length n, if we assume the li
are independent (the ‘naive Bayesian’ assumption), the log probability quotient that
topic t , rather than general English, emitted this document will be given by

NX
iD0

li log
˛gE .wi /C .1 � ˛/gt .wi /

gE .wi /
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We rearrange this sum in three parts: where gE .wi / is significantly larger than
gt .wi /, when it is about the same, and when it is significantly smaller. In the first
part, the numerator is dominated by ˛gE .wi /, so we have

log.˛/
X

gE .wi /�gt .wi /

li (8.7)

which we can think of as the contribution of ‘negative evidence’, words that are
significantly sparser for this topic than for general English. In the second part, the
quotient is about 1 and therefore the logs are about 0, so this whole part can be
neglected – words that have about the same frequency in the topic as in general
English cannot help us distinguish whether the document came from the Markov
source associated with the topic or from the one associated with general English.
Finally, the part where the probability of the words is significantly higher than the
background probability will contribute the ‘positive evidence’X

gE .wi /�gt .wi /

li log
�
˛ C .1 � ˛/gt .wi /

gE .wi /

�
Since ˛ is a small constant, on the order of .2, while in the interesting cases (such as
Fourier in DSP vs. in general English) gt is orders of magnitude larger than gE , the
first term can be neglected and we have, for the positive evidence,X

gE .wi /�gt .wi /

li .log.1 � ˛/C log.gt .wi // � log.gE .wi // (8.8)

Needless to say, the real interest is not in determining log.P.t jd/=P.Ejd//, i.e.
whether a document belongs to a particular topic as opposed to general English, but
rather in whether it belongs in topic t or topic s. We can compute log.P.t jd/=P.sjd//
as log..P.t jd/=P.Ejd//=.P.sjd/=P.Ejd///, and the importance of this step is that
we see that the ‘negative evidence’ given by (8.7) also disappears. Words that are
below background probability for topic t will in general also be below background
probability for topic s since their instances are concentrated in some other topic u
of which they are truly characteristic. The key contribution in distinguishing topics
s and t will therefore come from those few words that have significantly higher than
background probabilities in at least one of these:

log.P.t jd/=P.sjd//
D

X
gE .wi /�gt .wi /

li .log.1 � ˛/C log.gt .wi // � log.gE .wi //

�
X

gE .wi /�gs.wi /

li .log.1 � ˛/C log.gs.wi // � log.gE .wi // (8.9)

For words wi that are significant for both topics (such as Fourier would be for DSP
and for harmonic analysis), the contribution of general English cancels out, and we
are left with

P
li log.gt .wi /=gs.wi //. But such words are rare even for closely
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related topics, and the cases where their probability ratio gt .wi /=gs.wi / is far from 1
are even rarer, so the bulk of log.P.t jd/=P.sjd// is contributed by two disjoint sums
in (8.9). Even these can be simplified further by noting that in any term log.1 � ˛/

is small compared with log.gs.wi // � log.gE .wi // since the former is about �˛
while the latter counts the orders of magnitude in frequency over general English.
Thus, if we define the relevance r.w; t/ of word w to topic t by log.gs.wi // �
log.gE .wi //, we can simply treat this as an additive quantity and for a document d
with counts li we obtain

r.d; t/ D
X

lir.w; t/ (8.10)

where the sum is taken over those words wi whose frequency in documents about t
is significantly higher than their background frequency pwi

D gE .wi /.
What (8.10) defines is the simplest, historically oldest, and best-understood

pattern classifier, a linear machine where the decision boundaries are simply hyper-
planes. As the reasoning above makes clear, linearity is to some extent a matter of
choice: certainly the underlying Markovian assumption, that the words are chosen
independent of one another, is quite dubious. However, it is a good first-order approx-
imation, and one can extend it to second order, third order, etc., by increasing the
Markovian parameter. Once the probabilities of word pairs, word triples, etc., are
explicitly modeled, much of the criticism directed at the naive unigram or bag of
words approach loses its grip.

Of particular importance is the fact that, in topic classification, the models can
be sparse in the sense of using nonzero coefficients gt .wi / only for a few dozen, or
perhaps a few hundred, wordswi for a given topic t even though the number of words
considered, N , is typically in the hundred thousands to millions (see Kornai 2002).
Assuming k D 104 topics and N D 106 words, we would need to estimate kN D
1010 parameters even for the simplest (unigram) model. This may be (barely) within
the limits of our supercomputing ability, but it is definitely beyond the reliability and
representativeness of our data. Over the years, this has led to a considerable body of
research on feature selection, which tries to address the issue by reducing N , and on
hierarchical classification, which aims at reducing k. We do not attempt to survey
this literature here but note that much of it is characterized by an assumption of ‘once
a feature, always a feature’: if a word wi is found distinctive for topic t , an attempt
is made to estimate gs.wi / for the whole range of s rather than the one value gt .wi /

that we really care about.
The fact that high-quality working classifiers can be built using only sparse sub-

sets of the whole potential feature set reflects a deep structural property of the data:
at least for the purpose of comparing log emission probabilities across models, the
Gt can be approximated by sparse distributions St . In fact, this structural property
is so strong that it is possible to build classifiers that ignore the differences between
the numerical values of gs.wi / and gt .wi / entirely, replacing both by a uniform esti-
mate g.wi / based on the IDF (inverse document frequency) of wi . Traditionally, the
li multipliers in (8.10) have been known as the term frequency (TF) factor, and such
systems, where the classification load is carried entirely by the zero-one decision of
using a particular word in a particular topic, are known as TF-IDF classifiers.
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8.5 Further reading

The standard pattern recognition handbook is Duda et al. (2000); see also MacKay
(2003). These authors approach the problem from a practical standpoint – for a more
abstract view, see Devroye et al. (1996) and Hastie et al. (2001). The ‘six decibels
per bit’ rule comes from Bennett (1948). The idea of computing SQNR by assuming
uniform distribution with zero mean for each cell comes from Widrow (1960) – for
the limits of its applicability, see Sripad and Snyder (1977). In practical applications,
analog to digital conversion does not involve circuitry that can quantize to more than
8 bits. Rather, Sigma-Delta conversion (Inose et al. 1962) is used. A-law and �-law
are part of the Consultative Committee for International Telephony and Telegraphy
(CCITT) standard G.711 (1972).

The papers and books recommended for Markov processes and HMMs in Sec-
tion 5.7 approach the subject with linguistic applications in mind. Our treatment
follows the the pure mathematical approach taken in Khinchin (1957). It must be
admitted that there is still a noticeable gap between the purely mathematically ori-
ented work on the subject such as Cappé et al. (2005) and the central linguistic ideas.
While the HMMs used in speech recognition embody the phonemic principle (see
Section 3.1), they fall short of full autosegmentalization (Section 3.3) and make no
use of the prosodic hierarchy (Section 4.1).

Feature extraction (high-level signal processing) is generally performed through
supervised learning, a subject we shall discuss in Chapter 9. The basic literature on
speech perception is collected in Miller et al. (1991).

For topic detection experiments, the widely used Reuters Corpus is available
at http://trec.nist.gov/data/reuters/reuters.html. There is no
monographic treatment of the subject (for a survey, see Sebastiani 2002), and the
reader is advised to consult the annual SIGIR and TREC proceedings. Classification
by linear machine originates with Highleyman (1962), see also Duda et al. (2000
Ch. 5), Haste et al. (2001 Ch. 4), Devroye et al. (1996 Ch. 4).
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Speech and handwriting

Conceptually, the techniques of linguistic pattern recognition are largely independent
of the medium, but overall performance is influenced by the preprocessing to such
an extent that until a few years ago the pattern recognition step was generally viewed
as a small appendix to the main body of signal processing knowledge. To this day,
it remains impossible to build a serious system without paying close attention to
preprocessing, and deep algorithmic work on the recognizer will often yield smaller
gains than seemingly more superficial changes to the front end. In Section 9.1, we
introduce a speech coding method, linear prediction, that has played an important
role in practical application since the 1970s. We extend the discussion of quantization
started in Section 8.1 from scalars to vectors and discuss the Fourier transform-based
(homomorphic) techniques that currently dominate the field.

These techniques, in spite of their analytic sophistication, are still low-level inas-
much as the signal can still be reconstructed, often without perceptually noticeable
loss from the encoding, yet they suffice to decrease the bitrate by several orders of
magnitude. As we shall see, the bitrate provides a surprisingly good measure of our
understanding of the nature of speech: the more we know, the better we can com-
press the signal. This observation extends well beyond low-level signal processing
in that incorporating deeper knowledge about the speech signal leads to further gains
in compression. In Section 9.2, we discuss how a central component of the linguistic
theory of speech, the phonemic principle introduced in Section 3.1, can be leveraged
to yield further compression gains in HMMs.

The recognition of handwritten or printed text by computer is referred to as opti-
cal character recognition (OCR). When the input device is a digitizer tablet that
transmits the signal in real time (as in pen-based computers and personal digital
assistants) or includes timing information together with pen position (as in signature
capture), we speak of dynamic recognition. When the input device is a still camera
or a scanner, which captures the position of digital ink on the page but not the order
in which the ink was laid down, we speak of static or image-based OCR. The dif-
ficulties encountered in dynamic OCR are largely similar to those found in speech
recognition: the stream of position/pen pressure values output by the digitizer tablet
is analogous to the stream of speech signal vectors output by the audio processing
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front end, and the same kinds of low-level signal processing and pattern recognition
techniques are widely employed for both. In Section 9.3, we will deal primarily with
static OCR, emphasizing those aspects of the problem that have no counterpart in the
recognition of spoken or signed language.

9.1 Low-level speech processing

A two-way infinite sequence s D : : : s�2; s�1; s0; s1; s2; : : :will be called a (discrete)
signal, and its generating function

P1
nD�1 snz

�n will be called its z transform
Z.s/: Signals will also be denoted by fsng. If the signal is bounded (a condition we
can always enforce by clipping it; see Section 8.1) and satisfies further conditions that
are generally met, the z transform will be absolutely convergent on a disk of posi-
tive radius and the signal can be uniquely reconstructed from it. A filter (sometimes
called a system) is a mapping from signals to signals: we are particularly interested
in the case where the mapping is both linear and time-invariant (invariant under
the shift operator S ). The signal u defined by u0 D 1; un D 0 .n ¤ 0/ is called
the unit impulse, and the image fhng of this signal under some filter F is called the
impulse response h D F.u/ of the filter F . As long as hn is absolute convergent,
h completely characterizes any linear and time-invariant filter. To see this, consider
any arbitrary input x and write it as

P1
mD�1 xmu

m
0 , where um

0 is u0 shifted by m.
Since F is linear and time-invariant, we obtain

F.x/n D
1X

mD�1
xmhn�m D

1X
mD�1

xn�mhm (9.1)

This sum, which will always converge for x bounded, determines the output uniquely
just from the values of h. A linear and time-invariant filter is called causal if hn D 0

for n < 0 and stable if bounded input always produces bounded output – it is trivial
to see that absolute convergence of hn is both necessary and sufficient for stability. In
what follows, we will be chiefly concerned with filters that are linear, time-invariant,
causal, and stable and will omit these qualifications.

In speech processing applications, we are particularly concerned with the output
of a filter F with impulse response h when the input is a sampled complex sine wave
x D fei!ng: Using (9.1), we obtain

yn D F.x/n D
1X

mD�1
ei!.n�m/hm D ei!n

1X
mD�1

hme
�i!m (9.2)

The term outside the sum is xn. The function
P1

mD�1 hme
�i!m will be denoted

H.ei!/ and called the frequency response or transfer function of F . With this
notation, (9.2) becomes the more perspicuous

y D H.ei!/x (9.3)
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where equality among signals means termwise equality. In general, we define the
frequency spectrum F.x/ of a signal x as

X.ei!/ D
1X

mD�1
xme

�i!m (9.4)

so that the frequency response is just the frequency spectrum of the impulse response.
Since (9.4) is a Fourier series with coefficients x, we can make good use of the
orthogonality of ei!n and ei!m on the �� 	 ! 	 � interval and find x from its
frequency spectrum by the well-known Fourier inversion formula

xn D 1

2�

Z �

��

X.ei!/ei!nd! (9.5)

Now if y D F.x/, and we denote the frequency spectrum of x; y, and h (the impulse
response of F ) by X; Y , and H , respectively, we have, by applying (9.5) to y,

yn D 1

2�

Z �

��

Y.ei!/ei!nd! (9.6)

Since (9.5) holds for all n, we can apply F to the whole series, obtaining

yn D 1

2�

Z �

��

X.ei!/F.ei!n/d! (9.7)

By applying (9.3) to the series ei!n, the last term in this integral, F.ei!n/, can be
expressed as H.ei!/ei!n. Comparing this to (9.6) yields

1

2�

Z �

��

X.ei!/H.ei!/ei!nd! D yn D 1

2�

Z �

��

Y.ei!/ei!nd! (9.8)

which, by the uniqueness of Fourier coefficients, leads to

X.ei!/H.ei!/ D Y.ei!/ (9.9)

Thus, the frequency spectrum of the output is obtained by multiplying the frequency
spectrum of the input with the frequency response of the filter.

The frequency spectrum and the z transform are both obtained from a signal by
using the terms as coefficients in a series of complex functions: the frequency spec-
trum is the z transform with z D ei! (i.e. investigated over the unit circle). Taking
the z transform of both sides of (9.1), it is trivially seen that (9.9) is valid forX; Y;H
z transforms (rather than frequency spectra) of x; y; h. In general, we make little
distinction between Z and F and for any signal s; t; : : : ; x; y; z will follow the engi-
neering convention of using uppercase S; T; : : : ; X; Y;Z to denote its z transform
and frequency spectrum alike. The use of lowercase letters indicates, in engineering
parlance, signals and operations in the time domain, where the independent variable
is time, and the use of uppercase letters refers to the frequency domain, where the
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independent variable is frequency. The two domains are connected by the transforms
and their inverses.

While we are chiefly interested in discrete (digital) signals, it is clear that the
speech waveform is inherently continuous (analog), and one could replace (9.4) by a
continuous version (distinguished by a subscript C ):

XC .i�/ D
Z 1

�1
x.t/e�i�tdt (9.10)

If we measure the continuous signal x.t/ at time intervals T apart (this is called
using a sampling frequency !s D 2�=T ), by the inverse Fourier transform (which
of course remains applicable in the continuous case), we obtain

x.nT / D 1

2�

Z 1

�1
XC .i�/e

i�nT d� (9.11)

We shall now subdivide the integration domain to intervals of length 2�=T starting
at .2m � 1/�=T and obtain the Fourier expansion

x.nT / D T

2�

Z �=T

��=T

1

T

1X
mD�1

XC .i.! C 2�m=T //ei!nT d! (9.12)

where we substituted ! C 2�m=T for � in the mth interval. By (9.5) the discrete
signal fx.nT /g satisfies

x.nT / D T

2�

Z �=T

��=T

X.ei!T /ei!nT d! (9.13)

Comparing (9.12) with (9.13) yields

T

2�

Z �=T

��=T

1

T

1X
mD�1

XC .i.!C 2�m=T //ei!nT d! D T

2�

Z �=T

��=T

X.ei!T /ei!nT d!

(9.14)
and by the uniqueness of Fourier coefficients we have

1

T

1X
mD�1

XC .i.! C 2�m=T // D X.ei!T / (9.15)

If x.t/ is bandlimited in the sense that XC .i!/ D 0 for any j!j � !c and we
restrict ourselves to sampling frequencies !s D 2�=T > 2!c , within the interval
j!c j < !s=2 all but the central term of (9.15) will be zero and there we have

1

T
XC .i!/ D X.ei!T / (9.16)

In other words, the continuous frequency spectrum (Fourier transform) XC is fully
determined by the discrete frequency spectrum X , even though though X will have
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sidebands (k!s translates of the central band) while XC will be, as we assumed,
identically zero outside the critical band. Since the Fourier transform uniquely deter-
mines the function, and the discrete spectrum was computed entirely on the basis
of the sampled values, these values uniquely determine the original continuous
function, and we have the following theorem.
Theorem 9.1.1 Sampling theorem. If a continuous signal x.t/ is bandlimited with
cutoff frequency !c , sampling it at any frequency !s D 2�=T > 2!c or higher
provides a discrete signal fx.nT /g from which x.t/ can be fully reconstructed.
Discussion As is well-known, the upper frequency threshold of human hearing is
about 20 kHz, and human speech actually contains only a negligible amount of
energy above 12 kHz. The 44.1 kHz sampling rate of audio CDs was set with the
sampling theorem in mind since analog HiFi equipment was designed to operate in
the 20 Hz – 20 kHz range and the intention was to preserve all high fidelity audio
in digital format. Telephone speech, sampled at 8 kHz, is perfectly understandable,
in spite of the fact that much of the frequency range below 350 Hz is also severely
attenuated. In speech research, a sampling rate of 20 kHz, and in speech commu-
nications a 10 kHz sampling rate, is common. In what follows, we concentrate on
the digital case, since Theorem 9.1.1 guarantees that nothing of importance is lost
that way.

In Section 8.1, we discussed log PCM speech coding, which, by means of fitting
the quantization steps to the long-term amplitude distribution of speech, achieves
toll quality transmission at 64 kbps. To go beyond this limit, we need to exploit
short-term regularities. Perhaps the simplest idea is to use delta coding, transmitting
the difference between two adjacent samples rather than the samples themselves.
Since the differences are generally smaller than the values, it turns out we can save
about 1 bit per sample and still provide speech quality equivalent to the original (see
Jayant and Noll 1984). Linear predictive coding (LPC) extends the basic idea of delta
coding by considering not only the previous sample but the previous p samples to be
available for predicting the next sample. Thus we shall consider the general problem
of obtaining the signal s from some unknown input signal u such that

sn D �
pX

kD1

aksn�k CG

qX
lD0

blun�l (9.17)

i.e. as a linear combination of the past q C 1 inputs and the past p outputs. (We
assume b0 D 1 and separate out a gain factor G for putting the equations in a more
intuitive form.) With these conventions, the transfer function can be written in terms
of z transforms as

H.z/ D S.z/

U.z/
D G

1CPq

lD1
blz

�l

1CPp

kD1
akz�k

(9.18)

i.e. as a Padé approximation. Since the zeros of the denominator appear as poles in
the whole expression, in signal processing (9.18) is known as the pole-zero model,
with the key case where bl D 0 for l � 1 called the all-pole model – the number of
terms p is called the order of the model.
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Engineers call a signal stationary if its statistical characteristics, as summarized
in the frequency spectrum, stay constant over long periods of time. The vibrations
produced by rotating machinery or the spattering of rain are good examples. We say
a signal X.t/ is stationary in the wide sense if its expectation E.X.t// is constant
and the correlation function E.X.t/X.s// depends only on the difference t � s. This
is less strict than Definition 8.2.1 because we do not demand full invariance under a
single sample shift (and thus by transitivity over the entire timeline) but use a weaker
notion of ‘approximate’ invariance instead. The situation is further complicated by
the fact that speech is rarely stationary, even in this wide sense, over more than a few
pitch periods – this is referred to as the signal being quasistationary. At the high end
(infants, sopranos), the glottal pulses can follow each other as fast as every 2 ms, for
adult male speech 6–12 ms is typical, while at the low end (basso profondo) 22 ms
or even longer pitch periods are found.

To take the quasistationary nature of the signal into account, speech process-
ing generally relies on the use of windowing techniques, computing spectra on
the basis of samples within a 20 ms stretch. Typically such a window will con-
tain more than a full pitch period and thus allow for very good reconstruction of
the signal. Because of edge effects (produced when the pitch period is close to the
window size), rectangular windows are rarely used. Rather, the signal within the
window is multiplied with a windowing function such as the Hamming window,
wn D 0:54 � 0:46 cos.2�n=.N � 1//. In speech processing, given a 20 kHz sam-
pling rate and 20 ms windows, N is about 400, depending on how the edges are
treated. Windows are generally overlapped 50% so that each sample appears in two
successive windows. In other words, analysis proceeds at a frame rate of 100 Hz.

Aside from computing windowed functions, pointwise multiplication of two sig-
nals is rarely called for. A more important operation is the convolution s ı t of
two signals s and t given by .s ı t /k D PN �1

nD0 sntk�n in the discrete case and byR
s.�/t.x � �/d� in the continuous case. When the signal has only finite support

(e.g. because of windowing), we can consider the indexes mod N in performing the
summation, a method known as circular convolution, or we can take values of s and
t outside the range 0; : : : ; N to be zeros, a method known as linear convolution.
Unless explicitly stated otherwise, in what follows we assume circular convolution
for finite signals. For the infinite case, (9.1) asserts that the output of a filter F is sim-
ply the convolution of the input and the impulse response of F , and (9.9) asserts that
convolution in the time domain amounts to multiplication in the frequency domain.

The practical design of filters, being concerned mostly with the frequency
response, generally proceeds in the frequency domain. Of particular interest are
highpass filters, whose response is a step function (0 below the frequency cutoff
and 1 above), lowpass filters (1 below the cutoff and 0 above), and bandpass filters
(0 below the bottom and above the top of the band, 1 inside the band). Since these
ideal pass characteristics can be approximated by both analog and digital circuitry
at reasonable cost, it is common for signal processing algorithms to be implemented
using filters as building blocks, and much of the literature on speech production,
processing, and perception is actually presented in these terms. One tool used par-
ticularly often is a filter bank composed of several filters, each sensitive only in
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a specified subband of the region of interest. In mel filtering, triangular transfer
function filters are used in an overlapping sequence that follows the classical mel
subjective pitch scale (Stevens and Volkman 1940, Beranek 1949).
Exercise 9.1 Given capacitors, resistors, and coils of arbitrary precision, design high-
low- and bandpass filters that pass pure sinusoidal voltage signals within a prescribed
error factor relative to the ideal filter characteristics.
After windowing, we are faced with a very different data reduction problem: instead
of a fast (20 kHz) sequence of (16 bit) scalars, we need to compress a much slower
(0.1 kHz) sequence of vectors, where a single vector accounts for the contents of a
whole frame. We begin by replacing the signal within a window by some appropriate
function of it such as its discrete Fourier transform (DFT), given by

Sk D
N �1X
nD0

sne
� 2�i

N kn (9.19)

Here Sk is the amplitude of the signal at frequency 2�k=N , and it is common to
use notation like S.!/ in analogy with the continuous case even though, strictly
speaking, we are now concerned only with frequencies that are a multiple of 2�=N .
Of special note is the discrete version of Parseval’s theorem:

N �1X
nD0

jsnj2 D 1

N

N �1X
nD0

jSnj2 (9.20)

As in the continuous case, Parseval’s theorem is interpreted as saying that the total
energy of the signal (defined there by

R1
�1 s2.t/dt ) can also be obtained by inte-

grating the energy in the frequency domain. The contribution of a frequency range
(also known as a frequency band in signal processing) a 	 ! 	 b is given byR b

a
S.!/d! C R �a

�b
S.!/d! – the first term is known as the contribution of the pos-

itive frequency and the second as that of the negative frequency. In analogy with the
continuous case, the squared absolute values of the DFT coefficients are called the
energy spectrum and are denoted P.!/ (with implicit time normalization, the term
power spectrum is also often used).

From a given energy spectrum, we can recover the moduli of the DFT coeffi-
cients by taking square roots, but we lose their argument (known in this context as
the phase), so we cannot fully reconstruct the original signal. However, hearers are
relatively insensitive to the distinction between waveforms inverted from full spectra
and from modulus information alone (at least for sound presented by loudspeakers in
a room with normal acoustics – for sounds presented directly through earphones, dis-
carding the phase information is more problematic; see Klatt 1987) and for many, if
not all, purposes in speech processing, energy spectra are sufficient. This is not to say
that the phase is irrelevant (to the contrary, providing phase continuity is important
to the perceived naturalness of synthesized speech) or that it contains no information
(see Paliwal and Atal (2003) for recognition based on phase information alone), but
the situation is somewhat analogous to speech, which contains enough information
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in the 150 Hz – 1.5 kHz band to be nearly perfectly intelligible but also contains
enough information in the 1.5–15 kHz band to be equally intelligible.

The DFT has several important properties that make it especially well-suited
for the analysis of speech. First, note that (9.19) is actually a linear transform of
the inputs (with complex coefficients, to be sure, but still linear). The inverse DFT
(IDFT) is therefore also a linear transform and one that is practically identical to
the DFT:

sk D 1

N

N �1X
nD0

Sne
2�i
N kn (9.21)

i.e. only the sign in the exponents and the normalization factor 1=N are different.
There are, significantly, fast Fourier transform (FFT) algorithms that compute the
DFT or the IDFT in O.N log.N // steps instead of the expected N 2 steps.

Since in (linear) acoustics an echo is computed as a convolution of the original
signal with a function representing the objects on which the sound is reflected, it is
natural to model speech as an acoustic source (either the glottis, or, in the case of
unvoiced sounds, frication noise generated at some constriction in the vocal tract)
getting filtered by the shape of the vocal tract downstream from the source. This is
known as the source-filter model of speech production (Fant 1960). As convolution
corresponds to multiplication of generating functions or DFTs, the next natural step
is to take logarithms and investigate the additive version of the transform, especially
as signal processing offers very effective filtering techniques for separating signals
whose energy lies in separate frequency ranges.

Experience shows that before taking the logarithm it is advantageous to rescale
the energy spectrum by using � D 6 log.!=1200� C p

1C .!=1200�/2/, which
converts the frequency variable ! given in radians/sec into bark units � (Schroeder
1977), as the bark scale (Zwicker et al. 1957) models important features of human
hearing better than the linear (physical) or logarithmic (musical) frequency scale
would. Essentially the same step, nonlinear warping of frequencies, can be accom-
plished by more complex signal processing in the time domain using filter banks
arranged on the mel scale (Davis and Mermelstein 1980). Further perceptually moti-
vated signal processing steps, such as preemphasis of the data to model the different
sensitivities of human hearing at different frequencies, or amplitude compression to
model the Weber-Fechner law, are used in various schemes, but we do not follow this
line of development here as it contributes little to speech recognition beyond making
it more noise-robust (Hermansky 1990, Hermansky et al. 1991, Shannon and Paliwal
2003).

If we now take the log of the (mel- or bark-scaled) energy spectral coefficients,
what was a multiplicative relationship (9.9) between a source signal (a glottal pulse
for voiced sounds or fricative noise for unvoiced sounds) and a filter given by the
shape of the vocal tract becomes an additive relation. The log energy spectrum itself,
being a finite sequence of (real) values, can be considered a finite signal, amenable
to analysis by DFT or by IDFT (the two differ only in circular order and a constant
multiplier). We call the IDFT of the log of the energy spectrum the cepstrum of the
original signal and call its independent variable the quefrency in order to avoid col-
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lision with the standard notion of frequency. For example, if we find a cepstral peak
at quefrency 166, this means recurrence at every 166 samples, which at a sampling
rate of 20 kHz amounts to a real frequency of 120 Hz (Noll 1964,1967).

As we are particularly interested in the case where the original signal or the
energy spectrum is mel- or bark-wrapped, we note here that in mel scaling, a great
deal of economy can be achieved by keeping only a few (generally 12–16) filter bank
outputs, so that the dimension of the cepstral parameter space is kept at 12–16. In the
bark case, we achieve the same effect by downsampling; i.e. keeping only a few
(generally 16–20) points in the energy spectrum. To fully assess the savings entailed
by these steps would require an analysis of the quantization losses. Clearly, 32 bit
resolution on the cepstral parameters is far more than what we need. We postpone
this step but note that 18 32-bit parameters for 100 frames per second would mean
57.6 kbps coding, not a particularly significant improvement over the 64 kbps log
PCM scheme discussed earlier.

The savings will come from the source-filter approach: the glottal pulse can be
modeled by an impulse function (in many cases, more realistic models are desirable –
source modeling is a major research topic on its own) and frication can be modeled
by white noise. Obviously, neither the impulse nor the white noise needs to be trans-
mitted. All that is required is some encoding of the filter shape plus one bit per frame
to encode whether the frame is voiced or unvoiced – in voiced frames, another 8–10
bits are used to convey the fundamental frequency F0. As we shall see, the rele-
vant information about the transfer function of the filter can be transmitted in 40–80
bits, and frame rates as low as 40–50 Hz are sufficient, yielding toll or communica-
tions quality speech coding at 16 kbps or lower. The main advantage of the cepstral
representation is that spectral characteristics of the source and the filter are largely
separated in the quefrency domain and can be extracted (or suppressed) by bandpass
(resp. notch) filtering (called liftering in this domain).

Let us now turn to the issue of modeling a signal, be it an actual time domain
signal or a series of spectral or cepstral coefficients, in the form (9.17), using the all-
pole model. We will for the moment ignore the input signal un and look for a least
squares error solution to en D sn CPp

kD1
aksn�k . By setting the partial derivatives

of
P

n e
2
n to zero, we obtain the set of normal equations

pX
kD1

ak

X
n

sn�ksn�i D �
X

n

snsn�i (9.22)

ForN finite, the expressions
PN �1

nD0 sn�ksn�i are known as the covariances and will
be collected in the covariance matrix ik , which is symmetric. If N is infinite, only
the differences i � k matter, and the same expression is called the autocorrelation
and is denoted by R.i � k/. Either way, we have p linear equations in p unknowns,
the LPC coefficients, and may take advantage of the special form of the covariance
or autocorrelation matrix to solve the problem relatively quickly.
Exercise 9.2 Assuming that the autocorrelation coefficients R.j / have already been
computed (e.g. from estimating them in a fixed size window), find an algorithm to
solve equations (9.22) in O.p2/ steps.
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If we assume that the signal values si are samples of random variables Xi , it is the
expected value E.e2

n/ of the squared error that we wish to minimize, and again by
setting the partial derivatives to zero we obtain

pX
kD1

akE.sn�ksn�i / D �E.snsn�i / (9.23)

For a stationary process, E.sn�ksn�i / D R.k � i/ holds, and speech is generally
considered quasistationary to the extent that this remains a reasonable approximation
if R is estimated on a window comprising at most a few pitch periods.

So far, we have ignored the input signal u in (9.17), but it is clear that the equation
can hold with error en D 0 in an all-pole model only if Gun D en. We cannot take
advantage of this observation point by point (to introduce a term that corrects for
the prediction error would require knowing the error in advance), but we can use it
in the average in the following sense: if we want the energy of the actual signal to
be the same as the energy of the predicted signal, the total energy of the input signal
must equal the total energy of the error signal,

P
n e

2
n D P

n.sn C Pp

kD1
aks

2
n�k

/.
Using (9.22), we can see this to be

Ep D
X

n

s2
n C

pX
kD1

ak

X
n

snsn�k (9.24)

or, using the autocorrelations R.i/, just Ep D R.0/ C Pp

kD1
akR.k/. If the input

signal u is the unit impulse, its energy will be G2, which must be set equal to the
energy Ep of the error signal that we just computed. Since the R.i/ must be com-
puted anyway if the autocorrelation method is used to determine the ai , the gain G
now can also be computed from

G2 D R.0/C
pX

kD1

akR.k/ (9.25)

to provide a complete characterization of the transfer functionH.z/ in (9.18) as long
as no zeros, just poles (zeros in the denominator), are used.
Exercise 9.3 If the samples un are uncorrelated (white noise), show that the autocor-
relations OR.i/ of the output signal Osn D �Pp

kD1
ak Osn�k CGun are the same as the

autocorrelations R.i/ of the original signal as long as G is set so as to preserve the
total energy OR.0/ D R.0/. Does (9.25) remain true in this case?
The considerations above provide justification only for the LPC coding of voiced
(glottal pulse source) and unvoiced (white noise source) signals, but it turns out that
all-pole models are applied with noticeable success to signals such as cepstra that
have characteristics very different from those of the raw speech signal. So far, we
have decomposed the original signal into voiced and unvoiced frames and devoted
8–10 bits per frame to encoding the pitch (F0) of voiced frames. What remains is
transmitting the LPC coefficients ai and the gain G. Since these are sensitive to
quantization noise, the predictors ai are often replaced by reflection coefficients ki ,
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which can be computed essentially by the same recursive procedure that is used in
solving (9.22). Taking p D 10 and using 10 bits per coefficient, 50 frames/sec, we
obtain cell grade speech coding at about one-tenth the bitrate of log PCM.

To make further progress, it makes sense to model the properties of the LPC
(reflection or predictor) coefficients jointly. A vector quantizer (VQ) is an algo-
rithm that maps a sequence xi of (real or complex) vectors on binary sequences
�.xi / suitable for data transmission. It is generally assumed that the range of � is
finite: elements of the range are called channel symbols. For each channel symbol
c, the decoder recovers a fixed vector Oxc from a table M called the codebook or the
reproduction alphabet. Since the coding is generally lossy (the exception would be
the rare case when all inputs exactly match some codebook vector), we do not insist
that the dimension of the output match the dimension of the input. When they do,
the error (quantization loss) can be measured by the average (expected) distortion
introduced by the VQ scheme, again measured in decibels:

SQNR D 10 log10

E.kxk/
E.d.x; Ox// (9.26)

In general, there is no reason to believe that Euclidean distance is ideally suited to
measuring the actual distortion caused by a VQ system. For example, if the vectors
to be transmitted are vowel formant frequencies, as in the Peterson-Barney data dis-
cussed in Section 8.1, it is well-known that the perceptual effects of perturbing F1,
F2, and F3 are markedly different (see Flanagan 1955), and a distortion measure that
is invariant under permutation of the vector components is structurally incapable of
describing this situation well.

If we know the probability distribution P over some space X of the vectors to
be transmitted and know the ideal distance measure d , the problem reduces to a
task of unsupervised clustering: find codebook vectors Ox1; : : : ; Oxn such that SQNR
is maximized. Since the numerator of (9.26) is given, the task is to minimize the
denominator, which, assuming the x inputs are drawn randomly according to P , is
given by Z

X

d.x; Ox/dP.x/ (9.27)

a quantity known as the reconstruction error of the VG system defined by � and
the vectors Oxi . Clearly, the larger the codebook, the more we can decrease the recon-
struction error, but this is offset by an increased number of bits required to transmit
the VQ codes. According to the MDL principle (see Section 7.3.1), we need to opti-
mize the cost (in bits) of transmitting the channel symbols plus the cost of encoding
x given Oxi . In practical systems where the inputs areN -dimensional vectors of 32-bit
reals, the cost of transmitting the residuals x � xi would be overwhelming compared
with the log2.jM j/ bits required to transmit the codes. Without knowing much about
the probability distribution P , we would have to dedicate 32N bits to transmitting a
residual, and in practice codebooks over jM j > 232 make little sense as they would
take up too much memory (in fact, typical codebook sizes are in the 212–220 range).

If the size m of the codebook (also known as the number of levels in analogy
to the scalar case) is set in advance, many clustering algorithms are applicable. The
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most commonly used one is Lloyd’s algorithm, also known as the LBG algorithm,
which uses a random sample of signals sk .1 	 k 	 r � m/. First we pick, either
based on some knowledge about P or randomly, cluster seeds x.0/

i .1 	 i 	 m/ and
consider for each si the x.0/

j that is closest to it as measured by distance d : the index j
(given in binary) is defined as � .0/.si /. In step kC1, we take the (Euclidean) centroid
of all samples in the inverse image of � .k/.i/, and use these as the reconstruction
vector x.kC1/

i transmitted by the label � .kC1/.i/. We stop when the recognition error
no longer improves (which can happen without having reached a global optimum;
see Gray and Karnin 1982). With carefully controlled VQ techniques, taking full
advantage of the HMM structure, communications quality speech coding at 100–400
bps, approaching the phonemic bitrate is possible (Picone and Doddington 1989).
Concatenation techniques, which use the same Viterbi search as HMMs, can improve
this to toll quality without increasing the bitrate (Lee and Cox 2001).

If the final goal is not just compression but recognition of the compressed signal,
the situation changes quite markedly in that supervised clustering techniques now
become available. Here we assume that we have labeled (also known as truthed)
vectors sk whose recognized (truth) value is t .sk/ taken from a finite set t1; : : : ; tl .
Ideally, we would want to set m D l , so that the quantization provides exactly as
many levels as we would ultimately need to distinguish in the classification stage,
but in practice this is not always feasible. For example, if the labels correspond to
phonemes, there may be very distinct signals (corresponding e.g. to trilled vs. tapped
r sounds) that occupy very distinct regions of the signal space, so that clustering
them together would result in a centroid that is part of neither the trilled nor the
tapped region of signals. (English makes no phonological distinction between these
two clusters, but in languages like Spanish the distinction is phonological: consider
perro ‘dog’ vs. pero ‘but’.) Assuming m � l still makes sense because transmit-
ting differently labeled s values by the same code would doom to failure whatever
recognition algorithm we may want to use for the reconstructed signal.

In the supervised case, any distortion that leaves the truth value intact can be
neglected, so the distance d.s; Os/ between the original and the reconstructed signal
should be set as 0 if they have the same label and as 1 if they do not. As long as
there is no absolute neutralization (i.e. no indistinguishable signals can carry differ-
ent labels, see Section 8.1), the inverse images of the labels t1; : : : ; tl partition the
signal space X into disjoint sets X1; : : : ; Xl (plus possibly a remainder set X0 con-
taining nonlabelable ‘junk’ data), and it is natural to take the centroids of Xi as the
codebook vectors. When theXi are very far from perfect spheres in Euclidean space,
it may make a great deal of sense to approximate them by the union of many spheres
and simply take the labeled samples as the center of each sphere. Such systems are
known as nearest neighbor classifiers since for any incoming signal x they find the
nearest (in Euclidean distance) labeled sample si and assign it the same label t .si /.

The ideal metric d that would yield 0 (resp. 1) between two samples exactly when
they have the same (resp. different) labels is only known to us in artificially created
examples. On real data we must work with some approximation. In the case of speech
signals, it is reasonable to assume that if two signals have very little difference in
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their energy spectra, they are more likely to be tokens of the same type than when
their energy spectra indicate audible differences at some frequency. We therefore
investigate the case where d measures the total energy of the quantization error – for
this to be meaningful, we assume the original signals are all normalized (amplitude
scaled) to have the same energy

P
i s

2
i D 1 and that the gain of the all-pole filters

used to encode the data is set in accordance with (9.25).
Suppose the task is to recognize utterances of roughly equal duration (N sam-

ples) from a closed set (e.g. isolated digits), with each of the utterance types t1; : : : ; tl
having equal probability 1=l . We have a number of labeled sample utterances, but our
goal is not to identify them (since no two utterances are perfectly identical, the sam-
ple could just be memorized) but rather to identify hitherto unseen signals taken from
the same subset X of RN , X D Sl

iD0Xl , where P.X0/ D 0; P.Xi / D 1=l .1 	
i 	 l/. Our goal is to create codebook vectors ci in p-dimensional space, p � N

for each of the l clusters Xi so that we get a nearest neighbor classifier. For any
incoming signal s, we compute d.s; ci / for 1 	 i 	 l and select the i for which this
value is minimal. We want the quantization error to be relatively small when the LPC
model of s is close to one of the ci , and we are not much worried about the fringe
cases when it is far from each ci since their probability is low.

Let us pick a single cluster center c, given by an all-pole filter with predictor
parameters a1; : : : ; ap and gain G. If we use white noise for input to this filter, we
should obtain unvoiced versions (akin to whispering but without decrease in signal
energy) of the original signals. The log probability of obtaining any particular signal
s from c is given approximately by

logP.sjc/ D N

2

�
log 2�G2 C 1

G
cRscT

�
(9.28)

Here Rs is the autocorrelation matrix of s, which is symmetric and positive semidef-
inite. Instead of a true distance (symmetrical and satisfying the triangle inequality)
we only have a weaker type of d called a divergence, which will be small if the
signal s is close to the model c and large if it is not. Equation (9.28), known as
the Itakura-Saito divergence, is a special case of the Kullback-Leibler divergence
(see Section 7.2). If we apply Lloyd’s algorithm with the Itakura-Saito divergence,
what we do in effect is average (in the Euclidean sense) the Rx matrices for each
class Xi and compute the model ci on the basis of these average matrices using the
autocorrelation version of (9.22).

9.2 Phonemes as hidden units

Conceptually we can distinguish two main clusters of phenomena in the study of
speech: phonological and phonetic. On the phonological side, we find discrete men-
tal units defined in terms of contrast, where change from one unit to the other results
in change of meaning. A good example is tone, where typically only two levels, high
and low, are available – some languages have three, but languages such as Mandarin
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Chinese that distinguish many ‘tones’ are really distinguishing many tonal config-
urations (sequences of high and low tones, see Section 3.3). On the phonetic side
we have continuously variable physical parameters like pitch (the frequency F0 with
which the vocal folds open and close) that can be changed by any small amount with-
out affecting the meaning. Almost all phenomena we discussed in Chapters 3 and 4
fit squarely in the phonological cluster, while almost everything about the signals
discussed so far indicates continuity, and discretization by sampling or VQ does not
alter this picture since the number of discrete levels used in these steps is vastly larger
than the number of discrete units. For example, in discretizing pitch, 256–1024 levels
(8–10 bits) are common, while for tone we would generally need only 2–4 levels (1
or 2 bits).

The conceptual distinction is matched by reliance on different sorts of evidence:
phonology views the human apparatus for speech production and perception as a
legitimate instrument of data collection and relies almost exclusively on data (judg-
ments concerning the grammaticality and well-formedness of certain forms) that
phoneticians regard as subjective, while phonetics prefers to consider objective data
such as speech waveforms. Yet the distinction between phonological and phonetic is
by no means clear-cut, and the theory of lexical phonology and morphology (LPM,
see Kiparsky 1982) distinguishes between two classes of phonological rules, lexi-
cal and postlexical, of which only the lexical class has clearly and unambiguously
phonological character – the postlexical class shares many key features with purely
phonetic rules. Here the distinctions, as summarized in Kaisse and Hargus (1993),
are drawn as follows:

Lexical Postlexical
(a) word-bounded not word-bounded
(b) access to word-internal structure access to phrase structure only

assigned at same level
(c) precede all postlexical rules follow all lexical rules
(d) cyclic apply once
(e) disjunctively ordered with conjunctively ordered with

respect to other lexical rules respect to lexical rules
(f) apply in derived environments apply across the board
(g) structure-preserving not structure-preserving
(h) apply to lexical categories only apply to all categories
(i) may have exceptions automatic
(j) not transferred to a second language transferable to second language
(k) outputs subject to lexical diffusion subject to neogrammarian sound

change
(l) apply categorically may have gradient outputs

While the criteria (a–l) are only near-truths, they are sufficient for classifying almost
any rule as clearly lexical or postlexical. This is particularly striking when processes
that historically start out as phonetic get phonologized. Not only will such rules
change character from gradual (continuous) to discrete (l), they will also begin to
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affect different elements of the lexicon differently (k), acquire exceptions (i) and mor-
phological conditions (h), and begin to participate in the phonological rule system in
ways phonetic processes never do (c–f).

A good example is provided by phonetic coarticulation, a process that refers
both to the local smoothing of articulatory trajectories and to longer-range interac-
tions that can be observed e.g. between two vowels separated by a consonant (Öhman
1966) whenever some speech organs move into position before the phoneme that will
require this comes up or stay in position afterwards. When the effect gets phonol-
ogized, it can operate over very long, in principle unbounded, ranges – a famous
example is the ruki rule in Sanskrit, which triggers retroflexation of s after phonemes
in the ruki class no matter how many nonruki consonants and vowels intervene. In
reference to their phonetic origin, such rules are known in phonology as anticipatory
and perseveratory rules of assimilation, irrespective of their range.

In Chapters 3 and 4 we presented all the discrete units generally agreed upon
in phonology: features (autosegments), phonemes, syllables, and words. (We also
presented some that are less widely used, such as moras, feet, and cola – here we
will simplify the discussion by concentrating on the better-known units.) Of these,
only words have a clear relationship to meanings. All others are motivated by the
mechanics of speech production and are meaningless in themselves. Even for words,
the appropriate phonological notion, the prosodic word, does not entirely coincide
with the grammatical (syntactic) notion of wordhood (see Section 4.1), but the two
are close enough to say that we can separate words from one another on the basis of
meaning most of the time.

How can the discrete and meaningless units used in phonology be realized in,
and recovered from, the undifferentiated continuous data provided by acoustic sig-
nals? What we call the naturalistic approach is to trace the causal chain, to the extent
feasible, from the brain through the movement of articulators and the resulting air
pressure changes. Within the brain, we assume some kind of combinatorical mech-
anism capable of computing the phonological representation of an utterance from
pieces stored in the mental lexicon. This representation in turn serves as a source of
complex nerve impulse patterns driving the articulators (Halle 1983), with the final
output determined by the acoustics of the vocal tract.

Note that the combinatorical mechanism does not necessarily operate left to right.
In particular, intermediate representations, procedures, and structures are generally
viewed as having no theoretical status whatsoever, comparable to the scratch paper
that holds the intermediate results in long division. This view is shared by context-
sensitive rule-based phonology (Chomsky and Halle 1968), finite-state approaches
(Koskenniemi 1983), and optimality theory (Prince and Smolensky 1993). Only mul-
tistratal theories, such as LPM, treat the output of the individual levels as real, and
even then there is no promise of left to right computation. In particular, there is no
Greibach normal form (see Ex. 2.4) that would force outputting of a segment for
each unit of computation effort.

To the extent that speech production and speech perception rely on the same
discrete phonological representation, tracing the causal chain on the decoder side
implies that the acoustic signal is perceived in terms of the same articulator movement
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patterns as were used in producing the signal. This is known as the motor theory of
speech perception (Liberman 1957). To quote Liberman and Mattingly (1989:491),
speech perception

processes the acoustic signal so as to recover the coarticulated gestures that
produced it. These gestures are the primitives that the mechanisms of speech
production translate into actual articulator movements, and they are also
the primitives that the specialized mechanisms of speech perception recover
from the signal.

Tracing the causal chain this way goes a long way toward explaining what the phono-
logical representations, so painstakingly built by the linguist, are good for (besides
accounting for the linguistic data of course). If the representations can be recast in
terms of articulatory gestures, and moreover if indeed these gestures provide the
key to speech perception, a wealth of extralinguistic evidence, ranging from X-ray
microbeam tracing of the articulators (Fujimura et al. 1973) to perception studies of
formant location (Klein et al. 1970), can be brought to bear on the description of
these representations.

There are two problems left unanswered by following the causal chain. First, the
gap between the discrete and the continuous is left unbridged: even if we identify
phonological representations with gestural scores, these are continuous at best for
timing parameters and the main gestural subcomponents (such as opening or closing
the lips, raising or lowering the velum, etc.) remain discrete. Whatever we may do,
we still need to recover the discrete articulatory configurations from a continuum of
signals. Second, there is an important range of phenomena from sign language to
handwriting that raises the same technical issues, but this time without the benefit of
a complex (and arguably genetically set) mechanism between the representation and
the perceived signal.

It is at this point that the modern theory of speech recognition parts with the
naturalistic theory: if there is a need to create a mapping from discrete elements to
continuous realizations in any case, there does not seem to be a significant advantage
in creating an intermediate representation that is tightly coupled to a complex mech-
anism that is specific to the physiology of the vocal tract. As a case in point, let us
consider the theory of distinctive features (see Section 3.2). A rather detailed qualita-
tive description of the articulatory and acoustic correlates of distinctive features was
available as early as in Jakobson et al. (1952). Nearly three decades later, Stevens and
Blumstein (1981) still had not found a way of turning this into a quantitative descrip-
tion that could be used to automatically detect features (see e.g. Remez 1979), and
to this day research in this area has failed to reveal a set of reliable acoustic cues for
phonological features of the sort envisioned in Cherry, Halle, and Jakobson (1953)
and Cherry (1956).

Thus the naturalistic model that interposes a gestural layer between the men-
tal representations and the acoustic signal has been replaced by a simpler and more
direct view of the mental lexicon that is assumed to store highly specific acous-
tic engrams recorded during the language acquisition process: these engrams can
be directly used as lookup keys into a mental database that will contain syntactic,
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semantic, morphological, and other nonacoustic information about the form in ques-
tion (Klatt 1980). Under this view, surface forms are just acoustic signals, while
underlying forms could contain detailed articulatory plans for the production of
the form, together with links to semantic, syntactic, and morphological information
stored in various formats.

The relationship between psychological units of linguistic processing and their
physical realizations is many to many, both with different phonological representa-
tions corresponding to the same utterance (neutralization; see Section 8.1) and with
the same representation having many realizations, and many conditioning factors,
ranging from the physical differences among speakers sharing the same competence
to the amount of distortion tolerated in the realization process. While phonology
generally works with idealized data that preserve dialectally and grammatically con-
ditioned variation but suppress variation within the speech of an individual and across
individuals sharing the same dialect/sociolect, for the moment we lump all sources
of variation together, and defer the issue of how to separate these out.

The units that we shall take as basic are the phonemes, which are instrumen-
tal in describing such a broad range of phenomena that their psychological reality
can hardly be disputed. A subjective, but nevertheless important factor is that most
researchers are convinced that they are in fact communicating using sentences,
words, syllables, and phonemes. A great deal of the reluctance of speech engineers to
accept distinctive features can no doubt be attributed to the fact that for features this
subjective aspect is missing: no amount of introspection reveals the featural composi-
tion of vowels, and to the extent introspection works (e.g. with place of articulation)
it is yielding results that are not easily expressible in terms of distinctive features
unless a more complex structure (feature geometry, see Section 3.2) is invoked.

A less subjective argument in favor of certain linguistic units can be made on
the basis of particular systems of writing. To the extent that a morpheme-, mora-,
syllable-, or phoneme-based writing system can be easily acquired and consistently
used by any speaker of the language, the psychological reality of the units forming
the basis of the system becomes hard to deny. Distinctive features fare slightly bet-
ter under this argument, given sound-writing systems such as Bell’s (1867) Visible
Speech or Sweet’s (1881) Sound Notation, but to make the point more forcefully, the
ease of use and portability of such writing systems to other languages needs to be
demonstrated. For now, the most portable system we have, the International Phonetic
Alphabet (IPA), is alphabetic, though the idea that its organization should reflect the
featural composition of sounds is no longer in doubt (see Halle and Ladefoged 1988).

The simplest direct model with phonemic units would be one where the map-
ping is one to one, storing a single signal template with each phoneme. To account
for variation, we need to use a probability model of templates instead, leaving open
the possibility, corresponding to neutralization, that the same template may have
nonzero probability in the distribution associated to more than one phonemic unit.
We thus obtain a hidden Markov model, where the hidden units are phonemic,
and the emission probabilities model the acoustic realization of phonemes. Tran-
sition probabilities can be set in accordance with the phonotactics of the language
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being modeled or, if a description of the lexically stored phoneme strings (words) is
available, in accordance with this description.

Since the phonemic units are concatenative, the output signals should also be,
meaning either that we smooth the abrupt change between the end of one signal
(coming from one hidden state) and the beginning of the next signal (coming from
another hidden state) or we adjust the emissions so that only smoothly fitting sig-
nals can follow each other. While concatenation and smoothing continues to play an
important role in speech synthesis systems (see Klatt 1987, van Santen et al. 1997),
in speech recognition the second option has proven more fruitful: instead of directly
modeling phonemes, we model phonemes in context. For example, instead of a single
model for the i in mint, hint, lint, and tint we build as many separate models as there
can be phonemes preceding the i . If we do the same with the l phoneme, building
as many models as there can be phonemes following it (so that different ls are used
in lee, lie, low, lieu, etc.), we can be reasonably certain that the appropriate l model
(one that is based on the context i ), when followed by the appropriate i model (one
that is based on the context l ), will contain only signals that can be concatenated
without much need for smoothing.

HMMs in which the hidden units are phonemes in two-sided phoneme contexts
are called triphone models (the name is somewhat misleading in that the units are sin-
gle phones, restricted to particular contexts, rather than sequences of three phones)
and will contain, if there were n phonemes, no more than n3 hidden units, and pos-
sibly significantly fewer if phonotactic regularities rule out many cases of phoneme
b appearing in context a c. State of the art systems extend this method to quin-
phones (phonemes in the context of two phonemes on each side) and beyond, using
cross-word contexts where necessary.

Starting with Bloomfield, a great deal of effort in mathematical linguistics has
been devoted to defining models that explicate the relation between the low-level
(continuous, phonetic, meaning-preserving) and the high-level (discrete, phonologi-
cal, meaning-changing) items and processes involved in speech. But there are some
persistent difficulties that could not be solved without a full appreciation of the vari-
ability of the system. A triphone or quinphone model will account for a great deal of
this variability, but even a cursory look at Fig. 8.1 makes it evident that other sources,
in particular the identity of the speaker, will still contribute significant variability
once contextual effects are factored out. Also, it is clear that steady-state vowels are
more of an idealization than typical speech samples: major spectral shifts occur every
5–10 milliseconds, and windows that contain no such shifts are a rarity. This problem
is to some extent mitigated by adding delta (first derivative) and delta delta (second
derivative) features to the basic feature set (Furui 1986), since this will re-emphasize
the spectral shifts that the original features may dampen.

The most natural probabilistic model of emission is a normal distribution, where
a single sample acts as the mean �, and all samples are assigned probabilities in
accordance with the density function

1

.2�/N=2jRj1=2
exp

�
�1
2
.x � �/R�1.x � �/T

�
(9.29)
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where R is the N -dimensional covariance matrix that determines the distribution. In
the simplest case, N D 1; i.e. there is a single measurable parameter that character-
izes every sample. Ideally, this is what we would like to see e.g. for tone, which is
determined by a single parameter F0. But when we measure F0 for H (phonologically
high tone) and L (phonologically low tone) syllables, we obtain two distributions
that are nearly identical, with neither the means �H and �L nor the variances �H

and �L showing marked differences. The reason for this is that tonal languages
show a steady, cumulative lowering of F0 called downdrift, which obscures the dif-
ferences between H and L tones on average. At any given position, in particular
sentence-initially, the differences between H and L produced by the same speaker
are perceptible, but averaging speakers and positions together blurs the distinction
to such an extent that separation of H and L by unsupervised clustering becomes
impossible. This is not to say that the distinction cannot be captured statistically, e.g.
by focusing on the phrase-initial portion of the data, but rather to emphasize that
our current techniques are often insufficient for the automatic discovery of structure
from the raw data: unless we know about downdrift, there is no reason to inspect the
phrase-initial portion of the data separately.

This is not to say that unsupervised, or minimally supervised, clustering tech-
niques have no chance of obtaining the correct classes, at least if the data are
presented clearly. For example, if we restrict attention to steady-state vowels with
unambiguous pronunciation and a homogeneous set of speakers (adult males), the
approximate (F1, F2, F3) centroids for the ten vowels measured by Peterson and
Barney (1952) can be found using just the fact that there are exactly ten clusters to
be built (Kornai 1998a). But to accommodate cases of major allophonic variation,
such as trilled vs. tapped r , distinct Gaussians must be assigned to a single phoneme
model. In this case, we talk about mixture models because the density function
describing the distribution of data points belonging to a single phoneme is the mix-
ture (weighted sum) of ordinary Gaussians. By using a large number of mixture com-
ponents, we can achieve any desired fit with the training data. In the limiting case,
we can fit a very narrow Gaussian to each data point and thereby achieve a perfect fit.

The number of Gaussians that can be justified is limited both by the MDL prin-
ciple (see Section 7.3) and by the availability of training data. If we are to model
n3 hidden units (triphones), each with N parameters for the mean and N.N C 1/=2

for variances and covariances, using m mixture components will require a total of
O.n3N 2m=2/ parameters. With typical values like n D 50; N D 40; m D 10,
this would mean 109 parameters. Of the many strategies used for reducing this num-
ber, we single out the use of diagonal models where only the variances are kept
and the covariances are all set to zero. This will reduce the parameter space by a
factor of N=2 at minimal cost since the covariances refer to different dimensions
of a highly compressed (mel cepstral) representation whose individual components
should already be almost entirely uncorrelated. Another method is to use only a
limited number of Gaussians and share these (but not the mixture weights) across
different hidden units. This is called a tied mixture model (Bellegarda and Nahamoo
1990). Tying the parameters and reducing the number of Gaussians is particularly



238 9 Speech and handwriting

important in those cases where not all phonotactically permissible triphones occur in
the training data.

Another important approach to reducing variation is based on speaker adap-
tation. The Peterson-Barney data already show clearly the effects of having men,
women, and children in the sample, and indeed training separate models for men
and women (Nishimura and Sugawara 1988) is now common. If there are separate
mixture components for men and women, it makes eminent sense to deploy selection
strategies that use some short initial segment of speech to determine which compo-
nent the data fits best and afterwards suppress the mixtures belonging in the other
component or components.

Speaker adaptation can also work by noting the characteristic differences between
the speech of the current speaker and those whose speech was used to train the model,
and employ some transformation T �1 to the incoming speech or, alternately, apply-
ing T to the model data, as a means of achieving a better fit between the two. The
former method, e.g. by the normalization of cepstral means, is used more when the
variation is due to the environment (background noises, echoes, channel distortion),
while the latter is used chiefly to control variability across speakers and to some
extent across dialects (especially for nonnative speakers).

Adapting the variances (and covariances, if full covariance models are used) is
less important than adapting the means, for which generally T is chosen as an affine
transform x ‘ xACb, and the new means are computed by maximum likelihood lin-
ear regression (MMLR; see Leggetter and Woodland 1995). A more naturalistic, but
not particularly more successful, method is vocal tract length normalization (VTLN,
see Wakita 1977), where the objective is to compensate for the normal biological
variation in the length of the vocal tract. Altogether, the naturalistic model remains
a source of inspiration for the more abstract direct approach, but the success of the
latter is no longer tied to progress in articulatory or perceptual research.

9.3 Handwriting and machine print

In dynamic OCR, we can be reasonably certain that the input the system receives is
writing, but in image-based OCR the first task is page decomposition, the separation
of linguistic material from photos, line drawings, and other nonlinguistic informa-
tion. A further challenge is that we often find different scripts, such as Kanji and
Kana, or Cyrillic and Latin, in the same running text.

The input is generally a scanned image, increasingly available in very high res-
olution (600 dpi or more) and in full (4 bytes per pixel) color. Uncompressed, such
an image of a regular letter-size page would take up over 130 MB. The naturalistic
program would suggest applying algorithms of early vision such as edge detection,
computation of optical flow, lightness, albedo, etc., to derive representations more
suitable for page decomposition and character recognition. However, practical sys-
tems take the opposite tack and generally begin with a variety of data reduction steps,
such as downsampling, typically to fax resolution (200 dpi horizontal, 100 dpi verti-
cal) and binarization; i.e. replacing color or grayscale pixel values by binary (black
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and white) values. After these steps, a typical uncompressed image will be over 1.8
MB, still too large for fax transmission of multipage documents.

Here we describe the G3 (CCITT Group 3) standard in some detail because it
illustrates not only the basic ideas of Huffman coding (see Section 7.1) but also the
distance between theoretical constructs and practical standards. Each line is defined
as having 1728 binary pixels (thus somewhat exceeding the 8.5 inch page width used
in the United States at 200 dpi) that are run-length encoded (RLE). In RLE, instead
of transmitting the 0s and 1s, the length of the alternating runs of 0s and 1s get
transmitted. In the G3 standard, length is viewed as a base 64 number. For shorter
runs, only the last digit (called terminating length in this system) gets transmitted, but
for longer runs, the preceding digit (called the make-up) is also used. Since the length
distribution of white and black runs differs considerably, two separate codebooks are
used. Terminating length and make-up codes jointly have the prefix-free property
both for white and black, but not for the union of the two codebooks. The following
terminating length and make-up codes are used:

term. white black term. white black make white black
length code code length code code up

0 00110101 0000110111 32 00011011 000001101010
1 000111 010 33 00010010 000001101011 64 11011 0000001111
2 0111 11 34 00010011 000011010010 128 10010 000011001000
3 1000 10 35 00010100 000011010011 192 010111 000011001001
4 1011 011 36 00010101 000011010100 256 0110111 000001011011
5 1100 0011 37 00010110 000011010101 320 00110110 000000110011
6 1110 0010 38 00010111 000011010110 384 00110111 000000110100
7 1111 00011 39 00101000 000011010111 448 01100100 000000110101
8 10011 000101 40 00101001 000001101100 512 01100101 0000001101100
9 10100 000100 41 00101010 000001101101 576 01101000 0000001101101

10 00111 0000100 42 00101011 000011011010 640 01100111 0000001001010
11 01000 0000101 43 00101100 000011011011 704 011001100 0000001001011
12 001000 0000111 44 00101101 000001010100 768 011001101 0000001001100
13 000011 00000100 45 00000100 000001010101 832 011010010 0000001001101
14 110100 00000111 46 00000101 000001010110 896 011010011 0000001110010
15 110101 000011000 47 00001010 000001010111 960 011010100 0000001110011
16 101010 0000010111 48 00001011 000001100100 1024 011010101 0000001110100
17 101011 0000011000 49 01010010 000001100101 1088 011010110 0000001110101
18 0100111 0000001000 50 01010011 000001010010 1152 011010111 0000001110110
19 0001100 00001100111 51 01010100 000001010011 1216 011011000 0000001110111
20 0001000 00001101000 52 01010101 000000100100 1280 011011001 0000001010010
21 0010111 00001101100 53 00100100 000000110111 1344 011011010 0000001010011
22 0000011 00000110111 54 00100101 000000111000 1408 011011011 0000001010100
23 0000100 00000101000 55 01011000 000000100111 1472 010011000 0000001010101
24 0101000 00000010111 56 01011001 000000101000 1536 010011001 0000001011010
25 0101011 00000011000 57 01011010 000001011000 1600 010011010 0000001011011
26 0010011 000011001010 58 01011011 000001011001 1664 011000 0000001100100
27 0100100 000011001011 59 01001010 000000101011 1728 010011011 0000001100101
28 0011000 000011001100 60 01001011 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111
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In order to ensure that the receiver maintains color synchronization, all lines must
begin with a white run length code word (if the actual scanning line begins with a
black run, a white run length of zero will be sent). For each page, first end of line
(EOL, 000000000001) is sent, followed by variable-length line codes, each termi-
nated by EOL, with six EOLs at the end of the page. On the average, G3 compression
reduces the size of the image by a factor of 20.
Exercise 9.4 Research the CCITT Group 4 (G4) standard, which also exploits
some of the redundancy between successive lines of the scanned image and thereby
improves compression by a factor of 2. Research JBIG and JBIG2, which generally
improve G4 compression by another factor of 4.

Since the black and white runs give a good indication of the rough position of content
elements, the first step of page decomposition is often performed on RLE data, which
is generally sufficient for establishing the local horizontal and vertical directions and
for the appropriate grouping of titles, headers, footers, and other material set in a font
different from the main body of the text. Adaptation to the directions inherent in the
page is called deskewing, and again it can take the form of transforming (rotating or
shearing) the image or transforming the models. The tasks of deskewing and page
decomposition are somewhat intertwined because the simplest page decomposition
methods work best when the image is not skewed. Unlike in speech recognition,
where models that incorporate an explicit segmentation step have long been replaced
by models that integrate the segmentation and the recognition step in a single HMM
search, in OCR there is still very often a series of segmentation steps, first for text
zones (i.e. rectangular windows that contain text only), then for lines, and finally for
characters.

The search for text zones can proceed top-down or bottom-up. In the top-down
approach, we first count the black pixels in each row (column), obtaining a column
(row) of blackness counts known as the projection profiles (see Wang and Srihari
1989). These are generally sufficient for finding the headers and footers. Once these
are separated out, the vertical profile can be used to separate text columns, and on
each column horizontal profiles can be used to separate the text into lines. Besides
sensitivity to skew, a big drawback of the method is that it presumes a regular,
rectangular arrangement of the page, and more fancy typography, such as text flow-
ing around a circular drawing, will cause problems. In the bottom-up approach, we
begin with the smallest elements, connected components, and gradually organize
them or their bounding boxes (the smallest rectangle entirely containing them) into
larger structures. By searching for the dominant peak in a histogram of vectors con-
necting each component to its nearest neighbor, the skew of the document can be
reliably detected (Hashizume et al. 1986, O’Gorman 1993). Both the identification
of connected components and the finding of nearest neighbors are computationally
very expensive steps, and once we are willing to spend the resources, other skew-
insensitive methods of segmenting text from images, such as the use of Gabor filters
(Jain and Bhattacharjee 1992) are also available.

Besides deskewing, there are several other normalization steps performed on the
entire image as needed; for example, xeroxing or scanning thick, bound documents
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introduces perspective distortion at the edge of the page (see Kanungo et al. 1993),
and the vibrations of the scanner can cause blurring. Detection and removal of
speckle noise (also known as salt-and-pepper noise because noise can take the form
of unwanted white pixels, not just black) is also best performed on the basis of
estimating the noise parameters globally. Other normalization steps, in particular
removing distortions in the horizontal baseline caused by a loose paper forwarding
mechanism (common in mechanical typewriters and low-quality scanners/faxes), are
better performed line by line.

To the extent that small skew (generally within one degree) and simple rectan-
gular page layout are valid assumptions for the vast majority of holdings in digital
libraries, the less expensive top-down algorithms remain viable and have the advan-
tage that finding text lines and characters can generally proceed by the same steps.
For machine-printed input and for handprint (block letters, as opposed to cursive
writing), these steps reduce the problem to that of isolated character recognition.
Here the dominant technology is template matching, typically by neural nets or
other trainable algorithms. Since direct matching of templates at the bitmap level,
the method used in the first commercially available OCR system in 1955, works well
only for fixed fonts known in advance, attention turned early on to deriving a suit-
able set of features so that variants of the same character will map to close points in
feature space.

For isolated characters, the first step is generally size normalization; i.e. rescaling
the image to a standardized window. Since this window is typically much smaller
than the original (it can be as small as 5 by 7 for Latin, Cyrillic, and similar alphabets,
16 by 20 for Oriental characters), the new pixels correspond to larger zones of the
original bounding box. The new pixel values are set to the average blackness of each
zone, so that the rescaled image will be grayscale (4–8 bits) even if the original was
binary (Bokser 1992). Because characters can vary from the extremely narrow to
the extremely broad, the aspect ratio of the original bounding box is generally kept
as a separate feature, together with the position of the bounding box relative to the
baseline so as to indicate the presence or absence of ascenders and descenders.

Besides absolute size, we also wish to normalize stroke width in handwritten
characters and font weight in machine print. An elegant, and widely used, technology
for this is mathematical morphology (MM), which is based on the dual operations
of erosion and dilation. We begin with a fixed set B � R2 called the structuring
element, typically a disk or square about the origin. The reflection of B , denoted OB ,
is defined as f�xjx 2 Bg – for the typical structuring elements, symmetrical about
the origin, we have OB D B . The translation Bx of B by vector x is defined as
fbCxjb 2 Bg. The dilation A˚B of A by B is defined as fxj OBx \A ¤ ;g, and the
erosion A�B of A by B is defined as fxjBx � Ag. Two MM operations defined on
top of these are the opening A ıB of A by B given by .A�B/˚B and the closing
A � B of A by B given by .A˚ B/� B . Finally, the boundary @A of A according
to B is defined as A n .A� B/.

What makes MM particularly useful for image processing is that all the opera-
tions above remain meaningful if the sets A and B are composed of pixels (elements
of a tiling of R2). For example, if the structuring element B is chosen to be slightly
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smaller than the regular printed dot (both periods at sentence end and dots over is),
the operation .A ı B/ � B will filter out all salt-and-pepper noise below this size
while leaving the information-carrying symbols largely intact. By iterated erosion,
we can also obtain the skeleton of an image, defined as the set of those points in the
image that are equidistant from at least two points of the boundary. While in prin-
ciple the skeleton should be an ideal replacement of characters with greater stroke
width, in practice skeletonization and all forms of thinning are quite sensitive to
noise, even after despeckling. Noise is also a persistent problem for approaches based
on chain codes that express a simply connected two-dimensional shape in terms of
its one-dimensional boundary.

In vertex chain coding, we apply the same principle to triangular, rectangular,
and hexagonal tilings: we pick any vertex of the polygon that bounds the object and
count the number of pixels that are connected to the boundary at that vertex. The
total chain code is obtained by reading off these numbers sequentially following the
polygon counterclockwise. Several chain codes, all cyclic permutations of the same
string, could be obtained, depending on the vertex at which we start. For uniqueness,
we pick the one that is minimal when interpreted as a number. This will make the
code rotation invariant.

Chain codes offer a relatively compact description of simply connected binary
images, and efficient algorithms exist to compute many important properties of an
image (such as its skew; see Kapogiannopoulos and Kalouptsidis 2002) based on
chain codes for all connected components. However, for isolated character recogni-
tion, chain codes are very brittle: many characters have holes, and features such as
‘being n times connected’ (and in general all Betti numbers and other topological
invariants) are greatly affected by noise. In the analysis of handwriting, it is a par-
ticularly attractive idea (already present in Eden 1961) to build a naturalistic model
along the same lines we were all taught in first grade: t is a straight line down, curve
to the right, cross near the top. Noise stands in the way of such structural decom-
position approaches to a remarkable degree, and simple, robust features such as the
height contour, which is obtained from a line by computing the highest and the low-
est black pixel in each column of pixels, turn out to be more helpful in OCR even
though they clearly ignore structural features of the original such as loops.

Therefore it is particularly important to look for noise-robust features that
preserve as many of the desirable invariance properties of chain codes as feasi-
ble. After size normalization, the character image fits in a fixed domain and can
be thought of as a function f .x; y/ with value zero outside e.g. the unit circle
(which is mathematically more convenient than a rectangular bounding box). A typ-
ical normalization/feature extraction step is computing the central moments �pq

defined in the usual manner by computing the x and y directional means x D’
xf .x; y/dxdy=

’
f .x; y/dxdy and y D ’

yf .x; y/dxdy=
’
f .x; y/dxdy

and defining

�pq D
“

.x � x/p.y � y/qf .x; y/d.x � x/d.y � y/ (9.30)
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Clearly, the central moments are invariant under arbitrary translation. Since the
moment-generating function and the two-dimensional Fourier transform of f are
essentially the same complex function viewed on the real and the imaginary axes, it
comes as little surprise that Fourier techniques, both discrete and continuous, play
the same pivotal role in the two-dimensional (handwriting signal) case that they have
played in the one-dimensional (speech signal) case.

To obtain features that are also invariant under rotation, we can express f in
terms of any orthogonal basis where rotation invariance is easily captured. One stan-
dard method is to define the n;m radial polynomials Rnm.�/, where n is the order
of the polynomial, m is the winding number, n � jmj is assumed even, jmj < n by

Rnm.�/ D
n�jmj=2X

sD0

.�1/s .n � s/Š�n�2s

sŠ
�

nCjmj
2

� s
�
Š
�

n�jmj
2

� s
�
Š
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and define the n;m Zernike basis function Vnm.�; �/ as Vnm.�; �/ D Rnm.�/e
im	 .

These functions are orthogonal on the unit disk, with“
x2Cy2�1

Vnm.x; y/Vpq.x; y/dxdy D �

nC 1
ınpımq (9.32)

The Zernike moment Anm of a function f (already assumed size and translation
normalized) is given by

Anm D
“

x2Cy2�1

f .x; y/Vnm.�; �/dxdy (9.33)

If g.�; �/ is obtained from f .�; �/ by rotation with angle ˛ (i.e. g.�; �/ D f .�; � �
˛/), the n;m-th Zernike moment of g is Anme

�im˛ , where Anm was the n;m-th
Zernike moment of f . Thus, the absolute values jAnmj are rotation invariant. Notice
that fully rotation-invariant features are not ideally suited for OCR – for example,
6 and 9 would get confused. A more important goal is the normalization of slant,
both for the recognition of handwriting and for machine print that contains italicized
portions. Projection profiles, taken in multiple directions, give a good indication of
writing slant and are often used.

Altogether, the computation of features for isolated characters often involves a
mixture of normalization and feature extraction steps that may end up producing
more data, as measured in bits, than were present in the original image. This is par-
ticularly true in cases such as Zernike moments or other series expansion techniques
(Fourier, wavelet, and similar techniques are often used), which could lead to a large
number of terms limited only by two-dimensional versions of Theorem 9.1.1. In
general, the goal is not simply data reduction but rather finding the features that pro-
vide good clustering of the data for VQ and other techniques the way Itakura-Saito
divergence does for speech signals.

Typically, data reduction is accomplished by Karhunen-Loève transformation,
also known as principal component analysis (PCA). We begin with a set of (real or
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complex) feature vectors xi .1 	 i 	 n/ with some high dimension N and seek to
find the projection P to d -dimensional space that retains as much of the variance in
the data as possible. To this end, we first compute the (empirical) mean of the data
set x D 1

n

Pn
iD1 xi and subtract it from all feature vectors (in practical applications,

the variances are also often normalized). The covariance matrix of the (now zero
mean) vectors is symmetric (or Hermitian, if complex features are used) and thus
has orthogonal eigenvectors. These are ordered according to decreasing size of the
eigenvalues, and only the first d are kept. P projects the (zero mean) data on the
subspace spanned by these eigenvectors.

If the task is recognition, it is at least in principle possible for important infor-
mation to be lost in PCA since the variability according to some critical feature may
be low. To account for this possibility, sometimes linear discriminant analysis (LDA;
see Fisher 1936, 1937) is used, but the improvement over PCA is generally slight
when LDA is just a preprocessing stage for some more complex recognition strategy
such as nearest neighbor classification. The advantage of LDA is in the fact that it
will derive a robust classifier in its own right and the training process, which uses
only the first and second moments of the distributions of xi , is very fast.
Exercise 9.5�� Develop a handprint classifier using the NIST isolated character
database available at http://www.nist.gov/srd/nistsd19.htm. Com-
pare your results with the state of the art.
Most classification methods that work well for machine print and handprint run into
serious problems when applied to cursive writing because in the character identifica-
tion stage it is very hard to recover from errors made in the segmentation stage. The
filter- and projection-based page decomposition methods discussed here generalize
reasonably well to cursive writing as far as segmentation into text blocks and lines
is concerned, but segmenting a line into separate words and a word into separate
characters based on these and similar methods is prone to very significant errors. For
cursive writing, the segmentation problem must be confronted the same way as in
speech recognition. To quote Halle and Stevens (1962:156),

The analysis procedure that has enjoyed the widest acceptance postulates
that the listener first segments the utterance and then identifies the indi-
vidual segments with particular phonemes. No analysis scheme based on
this principle has ever been successfully implemented. This failure is under-
standable in the light of the preceding account of speech production, where
it was observed that segments of an utterance do not in general stand in a
one-to-one relation with the phonemes. The problem, therefore, is to devise
a procedure which will transform the continuously-changing speech signal
into a discrete output without depending crucially on segmentation.

To this day, we do not have successful early segmentation, and not for lack of trying.
Until the advent of HMMs, there were many systems based on the segmentation-
classification-identification pipeline, but none of them achieved performance at the
desired level. Today, many of the design features deemed necessary by the prescient
Halle-Stevens work, such as the use of generative language models for the lexicon



9.4 Further reading 245

and larger utterances or the pruning of alternatives by multiple passes, are built into
HMMs, but the main strength of these systems comes from two principal sources:
first, that the recognition algorithm explores segmentation and classification alter-
natives in parallel, and second, that the system is trainable. Parallelism means that
HMMs are capable of considering all segmentation alternatives (hypothesizing every
new frame as potentially beginning a new phoneme) without unduly burdening a sep-
arate phoneme-level recognizer. Perhaps ironically, the best segmentation results are
the ones obtained in the course of HMM recognition: rather than furnishing an essen-
tial first step of analysis, segment boundaries arise as a by-product of the full analysis.

9.4 Further reading

Viewed from a contemporary perspective, the great bulk of (digital) signal process-
ing knowledge rests on a clean, elegant foundation of 19th century complex function
theory and should be very accessible to mathematicians once the terminological and
notational gap between mathematics and electrical engineering is crossed.1 Yet the
rational reconstruction of the fundamentals presented here has little in common with
the actual historical development, which is better understood through major text-
books such as Flanagan (1972) (for analog) and Rabiner and Schafer (1978) (for
early digital). In particular, Theorem 9.1.1 goes back to Whittaker (1915) but has
been rediscovered many times, most notably by Shannon and Weaver (1949).

In the theory of time series analysis, Padé approximation is known as the auto-
regressive moving average (ARMA) model, with the all-pole case referred to as
autoregressive (AR) and the all-zero case as moving average (MA); see e.g. Box
and Jenkins (1970). In digital signal processing, there are a wide variety of window-
ing functions in use (see e.g. Oppenheim and Schafer 1999), but for speech little
improvement, if any, results from replacing the standard Hamming window by other
windowing functions. The importance of the fast Fourier transform can hardly be
overstated – see Brigham (1988) for a textbook devoted entirely to this subject. Even
though harmonic analysis is a natural framework for dealing with speech, algorithms
that relied on actually computing Fourier coefficients were considered impractical
before the modern rediscovery of the FFT (Cooley and Tukey 1965). We mention
here that the FFT was already known to Gauss (see Heideman et al. 1984).

The standard introduction to homomorphic speech processing is Schafer and
Rabiner (1975), but the presentation here follows more closely the logic of Makhoul
(1975). Cepstra, and the attendant syllable-reversal terminology, were introduced
in Bogert et al. (1963); see also Childers et al. (1977). Mel-cepstral features have
effectively replaced direct (time domain) LPC features, but linear prediction, either
applied in the quefrency domain or directly (as in the GSM 6.10 standard), remains
a standard data compression method in modern audio transmission.

The savings effected by the fast algorithm of Exercise 9.2 are trivial by today’s
standards since p is generally on the order of 101, so p3 gives less than 105

instructions per second, while the chips embedded in contemporary cell phones are

1 In particular, in engineering works we often find the imaginary unit i denoted by j .
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increasingly capable of hundreds of MIPS. Note, however, that in the image domain a
variety of operations, such as adaptive binarization (setting the binarization threshold
according to local conditions; see Kamel and Zhao 1993), are still quite expensive.

For an overview of unsupervised clustering, see Everitt (1980) and Duda et al.
(2000 Ch. 10), and for the supervised case, see Anderberg (1973). For Itakura-Saito
divergence, see Itakura (1975), and for its relation to Bregman divergences, see
McAulay (1984), Wei and Gibson (2000), and Banerjee at al (2005). For optimal
decorrelation of cepstral features, see Demuynck et al. (1998). Tying techniques,
which are critical for training high-quality HMMs, are discussed further in Jelinek
(1997 Ch. 10). For speaker adaptation, see Richard Stern’s survey article on robust
speech recognition in Cole (1997, with a new edition planned for 2007).

Although somewhat dated, both Bunke and Wang (1997) and O’Gorman and
Kasturi (1995) offer excellent introductions to the many specialized topics related
to OCR. For an overview of the early history, see Mori et al. (1992). For adaptive
thresholding, see Sezgin and Sankur (2004). For page segmentation, see Antona-
copoulos et al. (2005). Mathematical morphology was invented by Matheron and
Serra (see Serra 1982); for various generalizations, see Maragos et al. (1996). For a
comparison of skeletalization and thinning algorithms see Lee et al. (1991) and Lam
et al. (1992). Chain codes were introduced by Freeman (1961). The vertex chain code
presented here is from Bribiesca (1999).

Moment normalization originated with Hu (1962). Zernike polynomials arise in
the study of wavefronts for optical systems with a central axis (Zernike 1934) and
are widely used in opthalmology to this day. Their use in character recognition was
first proposed in Khotanzad and Hong (1990). For an overview of feature extraction
methods for isolated character recognition, see Trier et al. (1996). PCA and LDA are
basic tools in pattern recognition; see e.g. Duda et al. (2001 Sec. 3.8). For the use of
MMLR in dynamic handwriting recognition, see Senior and Nathan (1997), and for
image-based handwriting recognition, see Vinciarelli and Bengio (2002). The state
of the art in handwriting recognition is closely tracked by the International Workshop
on Frontiers of Handwriting Recognition (IWFHR).

Early systems incorporating explicit rule-based segmentation steps are discussed
in Makhoul (2006) from a historical perspective. In linguistic pattern recognition,
trainability (called adaptive learning at the time) was first explored in early OCR
work (see Highleyman 1962, Munson 1968), but the practical importance and far-
reaching theoretical impact of trainable models remained something of a trade secret
to speech and OCR until the early 1990s, when Brown et al. (1990) demonstrated
the use of trainable models in machine translation. This is not to say that theoretical
linguistics ignored the matter entirely, and certainly the single most influential work
of the period, Chomsky (1965), was very explicit about the need for grammatical
models to be learnable. Until the 1990s, theoretical linguistics focused on the rela-
tionship of learnability and child language development (see e.g. Pinker 1984, 2nd
revised ed. 1996), mostly from the perspective of stimulus poverty, and it took the
clear victory of trainable models over handcrafted rule systems in what was viewed
as a core semantic competence, translation, to bring the pure symbol-manipulation
and the statistical approaches together again (Pereira 2000).



10

Simplicity

Writing a textbook is a process that forces upon the author a neutral stance since it
is clear that the student is best served by impartial analysis. Yet textbook authors can
feel as compelled to push their own intellectual agenda as authors of research papers,
and for this final chapter I will drop the impersonal we together with its implied
neutrality and present a view of the overall situation in mathematical linguistics that
makes no claims to being the standard view or even the view of a well-definable
minority.

If one had to select a single theme running through this book, it would no doubt
be the emphasis on regular (finite state) structures. The classic results from this field
originate with the work of Mealy (1955) on electric circuits and Kleene (1956) on
nerve nets with discrete sets of inputs and outputs as opposed to the continuous inputs
and outputs of perceptrons and contemporary neural nets. For the textbook writer, it
was reasonable to assume that at least a streamlined version of this material would
be familiar to the intended readership, as it is generally regarded as an essential
part of the core computer science/discrete mathematics curriculum, and it was also
reasonable to give short shrift to some of the more modern developments, especially
to the use of (k-tape) finite state transducers in phonology/morphology, as these are
amply covered in more specialized volumes such as Roche and Schabes (1997) and
Kornai (1999).

Yet I feel that, without this chapter, some of the impact of this work would
be lost on the reader. On the one hand, the methods pioneered by Mealy, Kleene,
Schützenberger, Krohn, Rhodes, Eilenberg, Angluin, and a host of others remain
incredibly versatile and highly generalizable as mathematical techniques. For exam-
ple, much of the work on regular generalizations of FSA, both to transducers and to
k-strings, is nothing but a rehash of the basic techniques relying on the identification
of the congruence classes (elements of the syntactic monoid) with automata states: if
the (right)congruence has finite index, finite automata are available. But before turn-
ing to the issue of why these techniques are so highly generalizable, it should be noted
that there is an important aspect of these methods that has, to some extent, been sup-
pressed by the general turning of the tide against cybernetics, systems theory, and
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artificial intelligence, namely the direct appeal to neurological models originating
with Kleene.

As we all know, dealing with natural language is hard. It is hard from the stand-
point of the child, who must spend many years acquiring a language (compare this
time span to that required for the acquisition of motor skills such as eating solids,
walking, or swimming), it is hard for the adult language learner, it is hard for the
scientist who attempts to model the relevant phenomena, and it is hard for the engi-
neer who attempts to build systems that deal with natural language input or output.
These tasks are so hard that Turing (1950) could rightly make fluent conversation in
natural language the centerpiece of his test for intelligence. In more than half a cen-
tury of work toward this goal, we have largely penetrated the outermost layer, speech
production and perception, and we have done so by relying on learning algorithms
specific to the Markovian nature of the signal. In spite of notable advances in the
automatic acquisition of morphology, in this next layer we are still at a stage where
speech recognition was forty years ago, with handcrafted models quite comparable,
and in some cases superior, to machine-learned models.

Returning briefly to the issue raised at the beginning of this book: what do we
have when a model is 70%, 95%, or even 99.99% correct? Isn’t a single contradiction
or empirically false prediction enough to render a theory invalid? The answer to
the first question is clearly positive: contradictions must be managed carefully in a
metatheory (multivalued logic) and cannot pervade the theory itself. But the answer
to the second question is negative: a single wrong prediction, or even a great number
of wrong predictions, does not render the theory useless or invalid, a methodological
point that has been repeatedly urged by Chomsky. To quantify this better, let us try to
derive at least some rough estimates on the information content of linguistic theory.

There is a substantive body of information stored in the lexicon, which is clearly
irreducible in the sense that universal grammar will have little to say about the
idiosyncrasies of particular words or set phrases: a conservative estimate would
be the size of an abridged dictionary, 20,000–30,000 words, each requiring a few
hundred unpredictable bits to encode their morphological, syntactic, and semantic
aspects, for a total of about, say, a megabyte. Knowing that speech compression is
already within a factor of five of the phonemic bitrate, we can conclude that the entire
lexicon, including phonetic/phonological information, is unlikely to exceed a couple
of megabytes.

Traditional wisdom, largely confirmed by the practical experience of adult lan-
guage learners, says that to know a language is to know the words, and in fact,
from the middle ages until the 19th century, syntactic theory was viewed as a small
appendix to the main body of lexical and morphological knowledge. Perhaps a more
realistic estimate can be gathered from construction grammar, which relies on a
few dozen generic rules as opposed to thousands of specific constructions, or from
Pān. ini, whose grammar is about 10% the size of his lexicons, the dhātupāt.ha (about
2,000 verbal roots) and the gan. apāt.ha (about 20,000 nominal stems), even though he
attempts neither detailed semantic analysis of content words nor exhaustive coverage
in the lexicon. Be that as it may, a great deal of modern syntax seems to investigate
the recursive behavior of a few dozen constructions, likely encodable in less than
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10 kilobytes, while the bulk of the training/learning effort is clearly directed at the
nonrecursive (list-like) megabytes of data one needs to memorize in order to master
the language.

As the reader who went through this book knows, mathematical linguistics is
not yet a unified theory: there are many ideas and fragments of theories, but there is
nothing we could call a full theory of the domain. This is, perhaps, a reflection on the
state of linguistics itself, which is blessed with many great ideas but few that have
found good use beyond the immediate range of phenomena for which they were
developed. Notions such as the phoneme or the paradigm have had a tremendous
impact on anthropology, sociology, and literary theory, and some of the best work
that predates the still fashionable hodge-podge of ‘critical’ thought in the humanities
clearly has its inspiration in these and similar notions of structural linguistics. If
anything, language stands as a good example of a system “lacking a clear central
hierarchy or organizing principle and embodying extreme complexity, contradiction,
ambiguity, diversity, interconnectedness, and intereferentiality” – the very definition
of the postmodern intellectual state according to Wikipedia. In these pages, in order
to gain clarity and to make a rigorous analysis possible, I have systematically chosen
the simplest versions of the problems, and even these no doubt embody extreme
complexity.

Is there, then, a single thread that binds mathematical linguistics together? This
book makes the extended argument that there is, and it is the attempt to find fast
algorithms. As all practicing engineers know, polynomial algorithms do not scale: for
large problems only linear algorithms work. For example, Gaussian elimination, or
any other O.N 3/ method, must be replaced for large but sparse matrices by rotation
techniques that scale linearly or nearly so with the amount of (nonzero) data. Since
finite state methods are by their nature linear, improving the state of the art requires
a realignment of focus from the algebraically complex to the algebraically simple, in
particular to the noncounting finite state realm. The work is by no means done: there
is surprisingly much that we do not know about this domain, especially about the
weighted versions of the models. For example, it is not known whether noncounting
languages are pac learnable (under mild noise conditions). As Theorem 7.3.4 shows,
there is little reason to believe that noncounting is the end of the story: to get a good
characterization of natural language syntax we need to establish further restrictions
so as to enable iitl learning. That said, noncounting still provides a valuable upper
bound on the complexity of the problem.

The same drastic realignment of focus is called for in the case of semantics. Far
too great attention has been lavished on complex systems with incredibly power-
ful deduction, to the detriment of investigating simpler, decidable calculi. There are
a massive amount of facts for which a well-developed theory of semantics must
account, and in this domain we do not even have the beginnings of a good automatic
acquisition strategy (Solomonoff-Levin universal learning is unlikely to scale). Yet
it is clear that the standard approach of linguistics, ascribing as much complexity to
universal grammar (and, by implication, to the genetic makeup of humans) as can
be amortized over the set of possible languages, is not very promising for semantics.
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The only words that can possibly yield to an approach from this direction belong in
the narrow class of physical sensations and emotional experiences.

In sum, it is not enough to stand on the shoulders of giants – we must also face
in a better direction.

10.1 Previous reading

The best ideas in this book should be credited to people other than the author even
if no reference could be dug up. In particular, the heavy emphasis on noncounting
languages originates with an apocryphal remark by John von Neumann: The brain
does not use the language of mathematics. The idea that VBTOs are first class entities
is from William Lawvere, and the notion that linking is variable binding is from
lectures by Manfred Bierwisch. The concluding sentence follows from a bon mot of
Alan Kay.
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Joffroy Beauquier and Loÿs Thimonier. 1986. Formal languages and Bernoulli pro-
cesses. In J. Demetrovics, G.O.H. Katona, and A. Salomaa, editors, Algebra,
Combinatorics, and Logic in Computer Science, pages 97–112. North-Holland,
Amsterdam.

A. Melville Bell. 1867. Visible Speech. Simpkin and Marshall, London.
Jerome R. Bellegarda and David Nahamoo. 1990. Tied mixture continuous parameter

modeling for speech recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 38(12):2033–2045.

Nuel D. Belnap. 1977. How a computer should think. In G. Ryle, editor, Con-
temporary Aspects of Philosophy, pages 30–56. Oriel Press, Newcastle upon
Tyne.

Nuel D. Belnap and L.E. Szabó. 1996. Branching space-time analysis of the GHZ
theorem. Foundations of Physics, 26(8):989–1002.

W.R. Bennett. 1948. Spectra of quantized signals. Bell System Technical Journal,
27:446–472.

Leo L. Beranek. 1949. Acoustic Measurements. Wiley, New York.
Roger L. Berger. 1966. The Undecidability of the Domino Problem, volume 66.

Memoires of the American Mathematical Society, Providence, RI.
Anne Bergeron and Sylvie Hamel. 2004. From cascade decompositions to bit-vector

algorithms. Theoretical Computer Science, 313:3–16.
George Berkeley. 1734. The Analyst, or a Discourse addressed to an Infidel Mathe-

matician. Reprinted in W. Ewald, editor: From Kant to Hilbert: A Source Book
in the Foundations of Mathematics, Oxford University Press 1966.

Jean Berko. 1958. The child’s learning of English morphology. Word, 14:150–177.
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Gregory J. Chaitin. 1982. Gödel’s theorem and information. International Journal of
Theoretical Physics, 22:941–954.

David G. Champernowne. 1952. The graduation of income distributions.
Econometrica, 20:591–615.

David G. Champernowne. 1953. A model of income distribution. Economic Journal,
63:318–351.

David G. Champernowne. 1973. The Distribution of Income. Cambridge University
Press.

Bruce Chandler and Wilhelm Magnus. 1982. The History of Combinatorial Group
Theory: A Case Study in the History of Ideas. Springer.

Yuen Ren Chao. 1961. Graphic and phonetic aspects of linguistic and mathematical
symbols. In R. Jakobson, editor, Structure of Language and its Mathematical
Aspects, pages 69–82. American Mathematical Society, Providence, RI.

Eugene Charniak. 1993. Statistical Language Learning. MIT Press.
Colin Cherry. 1956. Roman Jakobson’s distinctive features as the normal coordinates

of a language. In Morris Halle, editor, For Roman Jakobson. Mouton, The Hague.
Colin Cherry, Morris Halle, and Roman Jakobson. 1953. Toward the logical

description of languages in their phonemic aspect. Language, 29:34–46.
Donald G. Childers, David P. Skinner, and Robert C. Kemerait. 1977. The cepstrum:

A guide to processing. Proceedings of the IEEE, 65(10):1428–1443.
Noam Chomsky. 1956. Three models for the description of language. IRE

Transactions on Information Theory, 2:113–124.
Noam Chomsky. 1957. Syntactic Structures. Mouton, The Hague.
Noam Chomsky. 1959. On certain formal properties of grammars. Information and

Control, 2:137–167.
Noam Chomsky. 1961. On the notion ‘rule of grammar’. In R. Jakobson, editor,

Structure of Language and its Mathematical Aspects, pages 6–24. American
Mathematical Society, Providence, RI.

Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press.



256 References

Noam Chomsky. 1967. Degrees of grammaticalness. In J.A. Fodor and J.J. Katz,
editors, The Structure of Language, pages 384–389. Prentice-Hall.

Noam Chomsky. 1970. Remarks on nominalization. In R. Jacobs and P. Rosen-
baum, editors, Readings in English Transformational Grammar, pages 184–221.
Blaisdell, Waltham, MA.

Noam Chomsky. 1980. Rules and Representations. Columbia University Press.
Noam Chomsky. 1981. Lectures on Government and Binding. Foris, Dordrecht.
Noam Chomsky. 1995. The Minimalist Program. MIT Press.
Noam Chomsky and Morris Halle. 1965a. Some controversial questions in

phonological theory. Journal of Linguistics, 1:97–138.
Noam Chomsky and Morris Halle. 1968. The Sound Pattern of English. Harper and

Row, New York.
Noam Chomsky and Howard Lasnik. 1993. Principles and parameters theory. In

J. Jacobs, editor, Syntax: An International Handbook of Contemporary Research,
volume 1, pages 505–569. de Gruyter, Berlin.

Noam Chomsky and Marcel Paul Schützenberger. 1963. The algebraic theory of
context-free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, pages 118–161. North-Holland, Amsterdam.
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langues indo-européennes. Teubner, Leipzig.

Paul Schachter. 1976. The subject in philippine languages: topic, actor, actor-topic,
or none of the above. In Charles Li, editor, Subject and topic, volume 3, pages
57–98. Academic Press.

Ronald W. Schafer and Lawrence R. Rabiner. 1975. Digital representation of speech
signals. Proceedings of the IEEE, 63(4):662–667.

Roger C. Schank and Robert P. Abelson. 1977. Scripts, Plans, Goals and Under-
standing: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum,
Hillsdale, NJ.

Roger C. Schank. 1972. Conceptual dependency: A theory of natural language
understanding. Cognitive Psychology, 3(4):552–631.

Roger C. Schank. 1973. The Fourteen Primitive Actions and Their Inferences.
Stanford AI Lab Memo 183.

Annette Schmidt. 1985. The fate of ergativity in dying Dyirbal. Language, 61:
278–296.

Moses Schönfinkel. 1924. On the building blocks of mathematical logic. In J. van
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Axel Thue. 1906. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I.
Mat. Nat. Kl., 7:1–22.

Axel Thue. 1914. Probleme über Veranderungen von Zeichenreihen nach gegeben
Regeln. Skr. Vid. Kritiania, I. Mat. Naturv. Klasse, 10.

Boris Trakhtenbrot and Yan Barzdin. 1973. Finite Automata: Behavior and
Synthesis. North-Holland, Amsterdam.

Oivind Due Trier, Anil K. Jain, and Torfinn Taxt. 1996. Feature extraction methods
for character recognition – a survey. Pattern Recognition, 29(4):641–662.

Nikolai Sergeevich Trubetskoi. 1939. Grundzüge der Phonologie. Vandenhoeck and
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Only significant mentions are indexed. Entries in bold give the definition.

�-law, 203
!-word, 6
anbn, 40
k-string, 35
śivasūtras, 29
do-support, 165

A-law, 203
ablaut, 61
aboutness, 212
abstract phonemes, 28
abstract segment, 28
acceptance, 16
accommodation, 157
accusative, 90, 104
accusativus cum infinitivo, ACI, 101
Acehnese [ACE], 103
action, 134
active, 89
adadjective, 84
adjectival phrase, AP, 85
adjective, 66, 84
adjunct, 102, 166
adverbial, 66
adverbial phrase, AdvP, 85
affix, 61, 62
affixation, 61
affricate, 42
agglutinating languages, 62
agreement, 10, 91
aktionsart, 107

algebra, 151
all-pole filter, 223
alphabet, 17
ambisyllabicity, 54
amplitude, 33
antara, 30
anubandha, 28, 29
anuvr.tti, 191
Arabic, 57, 60, 63

Cairene [ARZ], 58
Aramaic [CLD], 53
Araucanian [ARU], 58
argument, 166
artificial intelligence, AI, 106, 211, 248
ascender, 209
aspect, 63
aspirated, 28
assimilation

across word boundary, 61
anticipatory, 233
nasal, 31
perseveratory, 233
tonal, 34
voice, 192

association, 48
association line, 37
association relation, 42
atelic, 107
autosegmental theory, 34
axiomatic method, vii
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Büchi automaton, 6
baby talk, 195
bag of words, 216
bandpass filter, 224
barber paradox, 143
bark scale, 226
bee dance, 27
Berber [TZM], 53
Berry paradox, 6, 145
biautomaton, 43
bilanguage, 39
bilattice, 158
binarization, 238
bistring, 34, 35
b-catenation, 39
alignment, 39
concatenation, 39
fully associated, 37
proper, 37
t-catenation, 39
well-formed, 35

blank, 35
block coding, 184
blocking, 65
blocking off, 115
bound form, 25
bound morpheme, 61
boundary, 241
boundary tone, 53
bounded counter, 113
bounding box, 240
bracketing, 86

improper, 54
Brahmi script, 54
broadcast quality, 203

c-categorial grammar, 170
cancellation, 82
cascade product, 135
case, 63, 90
Catalan numbers, 127
categorial grammar, 83

bidirectional, 14
unidirectional, 14, 83

categorical perception, 194
category system, 170
central moment, 242
cepstral means normalization, CMN, 238
cepstrum, 226

certificate, 9, 14
channel symbol, 229
character recognition, 201
character size, 241
characters

English, 10
Han, 201
Hangul, 201

Cheremis
Eastern [MAL], 58

Cherokee [CER], 54
child-directed speech, CDS, 195
Chinese, 53, 232
Chinese (Mandarin), 34
Chomsky hierarchy, 20
Chomsky normal form, 16
citation form, 63
class node, 31
clipping error, 202
clitic, 57, 60
closing, 241
clustering

supervised, 230
unsupervised, 229

coarticulation, 233
coda, 54
code

Huffman, 180
Morse, 23
scanning, 44
Shannon-Fano, 180

codebook, 229
coder, 44
colon, 56
combinatory categorial grammar, CCG, 5,

88
communications quality, 203
competence, 21, 27
composition (of weighted transductions),

123
compositionality, 61, 149, 177
compound stress rule, 33
compounding, 60
concatenation, 17
conceptual dependency, CD, 108
concord, 91
connected component, 240
connected speech, 28
consonant, 42, 54
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conspiracy, 11
constituents, 86, 88
constraint ranking, 67
construction, 110, 154
construction grammar, 110, 248
containment, 26
context-free grammar, CFG, 10, 18

extended, 87
context-free language, CFL, 18
context-sensitive grammar, CSG, 9
context-sensitive language, CSL, 19, 165
contour tone, 34
control verb, 96
controversies, 2
convention, 23, 192

Stayman, 23
convolution, 224
coreference, 92
corpus, 69
corpus size, 69, 213
count vector, 127
cover, 80
cross entropy, 185
cybernetics, 1, 248
Cypriot syllabary, 54

data
dialectal, 21
historical, 21

dative, 90
decibel, 203
decidability, 17
deep case, 166
definition, 4

extensive, 4
intensive, 4
ostensive, 4

degree, 63
deletion, 48
delinking, 48
delta features, 236
density

Abel, 114
Bernoulli, 117
combinatorial, 117
natural, 114

dependency grammar, 92
dependent, 85
derivation, 64

derivational history, 10
descender, 209
descriptive adequacy, 140
descriptivity, 16, 156
deterministic FST, 41, 124
dhātupāt.ha, 167, 248
diachrony, 20
diacritic, 28, 65
dilation, 241
diphthong, 42
direct product, 80
disambiguation, 24, 152
discontinuous constituents, 88
discourse representation theory, DRT, 108,

164
discovery procedure, 26, 133, 195
discrete Fourier transform, DFT, 225
dissimilation, 193
distinctive features, 30
distribution, 79
ditransitive, 80
divisor, 80
document classification, 212
document frequency, 212
double articulation, 53
downdrift, 237
downsampling, 227, 238
duality of patterning, 53
Dutch, 97
Dyirbal [DBL], 106

edge marker, #, 19
elsewhere, 66
empty string, �, 17
enclitic, 60
endocentric construction, 85
energy spectrum, 225
English, 77, 79, 81, 98

American, 21
British, 21
general, 212
Modern, 21
Old, 21

entity, 159
entropy, 180
epenthesis, 67
equality, 10
erosion, 241
ETX, 184
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Euclid, vii
exocentric construction, 85
explanatory adequacy, 140
extension, 152
extrametricality, 54

face recognition, 201
fast Fourier transform, FFT, 226
feature assignment, 30
feature bundle, 30
feature decomposition, 30
feature detection, 194, 209
feature geometry, 31
Fibonacci numbers, 13, 18, 20, 179
filter, 220

causal, 220
stable, 220

filter bank, 224
final state, 115
fingerprint recognition, 201
finite autosegmental automaton, 44
finite index, 41
finite state automaton, FSA, 41, 184

deterministic, DFSA, 41
weighted, 124

finite state transducer, FST, 40, 41
deterministic, 124
length-preserving, 124
probabilistic, 124

first order language, FOL, 12
first order Markov process, 206
floating element, 35
font weight, 241
foot, 53, 56
form, 23
formal universal, 32
formant, 205
fragment, 15
free form, 25
free group, 12
free monoid, 12
free morpheme, 61
French, 58
frequency, 33, 70
frequency response, 220
frequency spectrum, 221
fricative, 29
function word, 213

G.711, 217
G3, 239
gan. apāt.ha, 248
garden path, 132
gender, 63
generalized phrase structure grammar,

GPSG, 98
generalized quantifiers, 153
generation, 9

direct, 10
free, 16

generative capacity, 122
generative grammar, 9
generative semantics, 108
generic, 153
genetic code, 27
genitive, 90, 100
geometrical probability distribution, 189
German, 103
gloss, 17, 64
government, 91
grammar, 9
grammaticality, ix, 15
Greek, 63
Greibach normal form, 233
group-free, 135
Gunwinggu [GUP], 63

Hamming window, 224
handprint, 241
hangman paradox, 148
head, 85
Head Feature Convention, HFC, 91
head grammar, 5, 88
Heaps’ law, 76
Herbrand model, 12
Herdan’s law, 72
hiatus, 11
hidden Markov model, HMM, 129, 208

continuous density, 208
diagonal, 237
run, 130
tied mixture, 237

high (vowel feature), 31
high tone, H, 34
highpass filter, 224
Hindi, 90
Hiragana, 54
homomorphism, 80, 151
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homorganic, 31
Hungarian, 58, 62, 64, 90, 171
hyperintensionals, 152

identification in the limit, iitl, 190
image skeleton, 242
immediate constituent analysis, ICA, 86
immediate dominance/linear precedence,

IDLP, 98
improper parentheses, 54
impulse, 220
impulse response, 220
incorporating languages, 62
incorporation, 61
indexed grammar, 5
indexical, 164
infinitesimals, 5
infix, 61
inflecting languages, 62
inflection, 64
informant judgments, 33
information extraction, 211
information gain, 185
insertion, 48
instrumental, 90
integers, base one, 17
intension, 152
interpretation relation, 24
intransitive, 80
Inuktitut [ESB], 63
inverse document frequency, IDF, 214
Irish, 103
Itakura-Saito divergence, 231

Japanese, 103

kāraka, 166
Karhunen-Loève transformation, 243
Kikuria [KUJ], 56
Kiribati [GLB], 56
Kleene closure, �-free, C, 17
Kleene closure, �, 17
knowledge representation, KR, 106, 211
Korean, 31
Kullback-Leibler (KL) divergence, 185
Kwakiutl [KWK], 60

labeled bracketing, 87
labial, 29

lambda move, 41
language, 18

formal, 18
noncounting, 133
probabilistic, 112
regular, 18
weighted, 112

language acquisition, 21
language of thought, 106
Lardil [LBZ], 56
Latin, 56, 63, 90, 91, 101
lattice, 158
left congruence, 41
left factor, 17
length, 17
length distribution, 126
length-preserving FST, 41, 124
lexeme, 61, 63
lexical category, 66, 79, 80
lexical functional grammar, LFG, 89
lexical phonology and morphology, LPM,

50, 232
lexicality, 84
Liar paradox, 6, 142, 143
linear bounded automaton, LBA, 19
linear discriminant analysis, LDA, 244
linear machine, 216
linear predictive coding, LPC, 223
link grammar, 15
Linux, 119
Lloyd’s algorithm (LGB algorithm), 230
locative, 90
log PCM, 203
logic

four-valued, 163
multivalued, 15
paraconsistent, 150

Lomongo [LOL], 34
low (vowel feature), 31
low tone, L, 34
lowpass filter, 224

Macedonian [MKJ], 58
machine learning, 211
machine learning features, 122
machine translation, 211
major class, 54
markedness, 30, 68, 192
Markov, vii, 7, 206
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mathematical linguistics, 1
mathematical morphology, MM, 241
maximal projection, 85
maximum likelihood linear regression,

MMLR, 238
McGurk effect, 210
Mealy FSA, 41
mean opinion scale, MOS, 203
meaning, 23
mel scale, 225
melody, 35
membership problem, 9, 20
metarule, 192
mid tone, M, 34
MIL, 92
minimal sufficient statistic, 191
minimum description length, MDL, 191
minimum form, 25
model structure, 159
model theory, 15
modification, 92
Mohawk [MOH], 88
monostratal theory, 10
Montague grammar, MG, 15, 151
mood, 63
Moore FSA, 41
mora, 53, 55
morpheme, 3, 60
morphosyntactic feature, 63
morphotactics, 53, 61, 185
motherese, 195
multistratal theory, 10
mutual information, 185
Myhill-Nerode equivalence, 41

n line, 209
nasality, 32, 50
natural class, 29, 30
natural kind, 161
nearest neighbor classifier, 230
neogrammarians, 21
neutralization, 204
no crossing constraint, NCC, 35
nominative/accusative case pattern, 90
nonconstituent coordination, NCC, 169
noncounting, 11, 133, 197
nonintersective modifier, 143
nonterminal, 18
normativity, 16, 156

noun, 66
Ntlaka’pamux [THP], 195
nucleus, 54
number, 63
numeral, 66

oblique, 90
odds, 121
onomatopoeic words, 23
onset, 54
opacity, semantic, 144
opacity, phonological, 69
opacity, syntactic, 89
opening, 241
operation, 151
optical character recognition, OCR, 219
overestimation error, 119
overgeneration, 15, 33

Pān. ini, vii, 8, 28–30, 57, 66, 68, 76, 94, 100,
167, 179, 191, 248

page decomposition, 238
palindrome, 18
paradigm, 64
paradox, 143
parataxis, 98
parenthetical expression, 119
parochial rule, 5, 193
part of speech, POS, 66, 79, 80
partial similarity, 24
particle, 62
passive, 89
passive transformation, 89
pattern recognition, 201
pause, 25, 28
performance, 27
performative, 147
person, 63
phonemic alphabet, 26
phonetic interpretation, 28
phonetic realization, 28
phonotactics, 53, 185
phrase, 85
pitch period, 224
place of articulation, 31
POS tag, 81
possession, 92
postulate, 26
poverty of stimulus, 200
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power spectrum, 225
pratyāhāra, 29
preaspiration, 50
prefix, 18, 61
prefix complexity, 188
prefix-fee code, 180
pregroup grammar, 138
prepositional phrase, PP, 85
preterminal, 81
principal component analysis, PCA, 243
principles and parameters, 103
probabilistic finite state automaton, PFSA,

123
probably approximately correct, pac, 190,

198
process

transitive, 206
proclitic, 60
production, 11, 18
projection, 85
projection profile, 240
pronoun

resumptive, 164
propositional attitude, 144
prosodic word, 53, 233
pulse code modulation, PCM, 203
push-down automaton, PDA, 184

quefrency, 226
query parsing, 212
question answering, 211
quinphone, 236

raising verb, 96
rank, 70, 134
reconstruction error, 229
rectification of names, 2
reflection, 241
regular relation, 40
relation, 159
relational grammar, 92
reproduction alphabet, 229
reset semigroup, 134
reversal, 18, 39
rewrite rule, 18
rhyme, 55
Richard paradox, 6
right congruence, 41
right factor, 17

rigid designator, 161
ritual, 108
Romanian, 171
root, 62
ruki, 29, 233
rule, 10

production, 11
WFC, 11

rule to rule hypothesis, 149
run-length encoding, RLE, 239
Russian, 90

sāvarn.ya, 31
Saho [SSY], 60
Sanskrit, 57, 233
Sapir-Whorf hypothesis, 49, 103
satisfaction, 10
saturation, 117
scanning independence, 43
segment, 28
segmentation, 210
selectional restriction, 81
self-delimiting

code, 187
function, 186

semiautomaton, 115
sentence diagram, 92
sentential form, 10
sideband, 223
sign, 23, 169
signal, 220

bandlimited, 222
quasistationary, 224
stationary, 224
stationary in the wide sense, 224

signal energy, 203
signal process, 206

ergodic, 206
stationary, 206
stochastic, 206

signal to quantization noise ratio, SQNR,
203

silence, 28
sluicing, 175
sociolinguistics, 120
sonority hierarchy, 55
sound change, 21
sound law, 28
source-filter model, 226
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span, 35
speaker adaptation

CMN, 238
MMLR, 238
VTLN, 238

speech recognition, 40
split systems, 56, 103
spreading, 39
square-free word, 197
start symbol, S, 18
state machine, 115
stem, 62
stratum, 10, 92
stress, 33, 53
strict category, 80
string, 17
stringset, 18
stroke width, 241
structural change (of CS rule), 19
structural decomposition, 242
structural description (of CS rule), 19
structuring element, 241
STX, 184
subband, 225
subdirect product, 30
substantive universal, 32
substructure, 80
suffix, 61
superfiniteness, 197
suppletion, 63
suprasegmentals, 33
surface form, 28, 40
Swahili, 63
syllabic alphabet, 53
syllable, 53, 54
SYN, 184
syncategoremata, 80
synchrony, 20
syntactic congruence, 41, 137
syntactic monoid, 79
syntactic semigroup, 79
synthetic quality, 203
system, 220

T-scheme, 143
tagmemics, 92
tagset, 81
telic, 107
telltale, 197

template, 60
tense, 63
terminal, 18
text frequency, 212
text to speech, TTS, 40
thematic role, 99
theta role, 99
tier, 34
token, 11
toll quality, 203
tone, 33, 50
topic, 63, 212
topic detection, 212
topic model, 212
trace, 111, 169
transducer

weighted, 123
transfer function, 220
transformation group, 134
transformation monoid, 134
transformation semigroup, 134
transient state, 115
transition, 41

weighted, 123
transitive, 80
tree adjoining grammar, TAG, 5, 88
trigger, 29
triphone, 236
truth, 149

analytic, 155
by T-scheme, 143
data label, 131, 230
in axiomatic systems, 15
near-, 51

truth condition, 152, 167
truth value, 15, 107, 158
Tsez [DDO], 90
Turkish, 63
type, 11
type lifting, 133
type-logical grammar, 138

umlaut, 61
unaspirated, 28
underestimation error, 119
undergeneration, 15
underlying form, 28, 40, 63
underspecification, 135
ungrammaticality, ix, 17
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unrecoverable, 105
unification grammar, 14
universal grammar, UG, 5, 68, 191, 193
universal probability distribution, 189
universality, 144
universe, 159
unmarked member of opposition, 63
unvoiced, 30
utterance, 23

valence, 94, 102, 105
Vapnik-Chervonenkis (VC) dimension, 199
variable binding term operator, VBTO, 164
variable rule model, 121
variable rules, 5
vector quantization, VQ, 229
verb, 66
verb phrase, VP, 85
vertex chain code, 242
Vietnamese, 63
Viterbi algorithm, 130
vocal tract length normalization, VTLN, 238
vocative, 90
voice, 63

voiced, 30
vowel, 31, 42, 54
vowel harmony, 50
vowel height, 31
vulnerability, 115

Wang tiling, 11
Warao [WBA], 58
Warlpiri [WBP], 104
weight, 112
well-formedness condition (WFC), 11
Weri [WER], 59
word, 25, 60, 61

fragment, 26
frequency, 70

word problem, 20
word stress, 57
WWW, 212

Yokuts [YOK], 60

z transform, 220
Zernike moment, 243
Zipf’s law, 70, 182
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