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Preface

The purpose of this book is to review the contribution of statistical
science to our understanding of the acquired immunodeficiency syn-
drome (AIDS) and to summarize and interpret the major epidemiolog-
ical findings. Statistical ideas and approaches have contributed to an
understanding of factors that promote transmission of the human
immunodeficiency virus (HIV) and of strategies for preventing trans-
mission, to an accurate description of the natural history of disease
associated with HIV infection, including the "incubation" distribution
of the time from infection to the onset of AIDS, to the design and
analysis of therapeutic clinical trials and impending vaccine trials, and
to an assessment of the scope and likely course of the HIV epidemic and
of the incidence of AIDS. In some cases, non-standard statistical ideas
are absolutely crucial to avoid misleading interpretations of data,
because standard methods of analysis for chronic disease are not always
suitable for studying a rapidly growing epidemic and because non-
standard "samples of opportunity" can lead to severely biased results
unless the mode of sampling is taken into account.

Two examples illustrate these phenomena. If we plot the crude
numbers of incident AIDS cases reported to the Centers for Disease
Control (CDC) against calendar time, the most recent counts will be
misleadingly small because delays in reporting will reduce recent
counts. To avoid misleading interpretations of AIDS incidence data,
we must adjust for reporting delays. As a second example, the earliest
estimates of the incubation distribution of AIDS were obtained by
studying the incubation times of persons who developed AIDS as the
result of a contaminated blood transfusion. Because the available
cases in such a sample necessarily had relatively short incubation
times, a naive analysis of such data would tend to seriously under-
estimate the usual time it takes to develop AIDS.
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In other contexts, statistical thinking has helped define problems and
assess the extent and sources of uncertainty associated with given
conclusions. For example, the quality and type of information available
from a cohort of individuals whose dates of infection are unknown
("prevalent" cohorts) differ from that of a cohort whose dates of
seroconversion are known ("incident" cohorts). As another example,
estimates of the numbers of persons infected with HIV-1 in the United
States are obtained either from seroprevalence surveys in selected
populations or by "back-calculation" using AIDS incidence data and
information on the incubation distribution. Each of these methods is
subject to large random and systematic sources of error, yet the two
approaches are based on complementary types of information. In
making estimates of the numbers infected, it is essential to consider a
variety of sources of information and to report realistic assessments of
uncertainty.

It is our hope that this book will introduce epidemiologists to
statistical ideas that are helpful in analyzing and interpreting
epidemiologic and clinical data on AIDS. Likewise 'we hope to
introduce statisticians to some of the unusual features of epidemiologic
and clinical information on AIDS so that they may appreciate the need
for specialized statistical methods in this area. Finally, we hope some
readers will be interested in the story of data interpretation and
discovery in a rapidly evolving scientific context.

Topics Covered

We review the discovery of risk factors and the associated methodologic
difficulties of interpreting cohort and case-control data in a rapidly
evolving epidemic (Chapter 2). The statistical features of special
studies on the uninfected sexual partners of infected persons (partner
studies) are also reviewed and discussed (Chapter 2). Chapter 3
describes the results of surveys to estimate trends in HIV seroincidence
and seroprevalence. We also discuss the difficulties of interpreting data
from non-representative samples and of assessing the extent to which
general surveys are biased because persons at high risk of HIV infection
refuse to participate. We describe the special statistical approaches
used to estimate the incubation distribution and review available
results in Chapter 4. Age at infection is the only well documented factor
that influences the incubation distribution, but many markers, especi-
ally CD4+ T lymphocyte levels, have been used to monitor the
progression of HIV illness following infection. Chapter 5 describes
statistical issues that arise in interpreting information on cofactors that
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might influence the incubation distribution and on markers. We discuss
the reliability of assays to detect HIV infection and the effectiveness of
screening for HIV to protect the blood supply in Chapter 6. Chapter 7
outlines surveillance methods used to monitor AIDS incidence, includ-
ing methods for delay correction and extrapolation procedures. Back-
calculation procedures for estimating the infection curve from AIDS
incidence data and for projecting AIDS incidence are presented in
Chapter 8. Transmission models are developed to help understand
factors that influence the infection curve and to help define and
evaluate possible prevention strategies (Chapter 9). Chapter 10 stresses
the need to integrate a variety of sources of information in order to
understand epidemic trends and applies those ideas to studying trends
in underdeveloped countries, to forecasting in small geographic areas,
and to projecting pediatric AIDS. Statistical issues in vaccine develop-
ment and experimental therapeutics are described in Chapter 11.

Readers particularly interested in the natural history of HIV
infection in individuals may wish to concentrate on Chapters 1, 2, 4, 5,
6 and 11. Those interested in monitoring and forecasting the epidemic
in populations may wish to emphasize Chapters 1, 3, 6, 7, 8, 9 and 10.

Although this book is self-contained, there are a number of excellent
general sources for background information. AIDS: Etiology, Diagnosis,
Treatment and Prevention (edited by DeVita, Hellman and Rosenberg,
1988) and AIDS Pathogenesis and Treatment (edited by Levy) provide a
comprehensive introduction to biological and medical issues, and The
Epidemiology of AIDS (edited by Kaslow and Francis, 1989) describes
the epidemiology of specific risk groups. The three books, Confronting
AIDS: Directions for Public Health, Health Care and Research (Institute of
Medicine, 1986), Confronting AIDS: Update 1988 (Institute of Medicine,
1988) and The Second Decade (edited by Miller, Turner and Moses,
1990) document progress in scientific understanding and an evolution
of thinking on social, legal and ethical problems associated with the
AIDS epidemic. Jewell (1990) reviews statistical issues and innovative
statistical methods used to cope with AIDS data. The February, 1988
issue of Science includes papers on AIDS epidemiology in the United
States (Curran, Jaffe, Hardy, et al., 1988), international perspectives
(Piot, Plummer, Mhalu, et al., 1988), economic impact (Bloom and
Carliner, 1988), prevention (Fineberg, 1988) and other aspects.

Baltimore, Md. R. B.
Rockville, Md. M. G.
January 1993
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1
Introduction

1.1 BRIEF HISTORY

In 1981, five homosexual men were reported to have developed a rare
illness, Pneumocystis carinii pneumonia (PCP) (Centers for Disease
Control (CDC), 1981a). Within a few months, 26 cases of a rare tumor,
Kaposi's sarcoma, had been identified among homosexual men (CDC,
1981b), and public health officials soon had evidence that both of these
rare diseases were related to an underlying deficiency in the immune
system (Gottlieb, Schroff, Schanker, et al,, 1981; DeWys, Curran,
Henle, and Johnson, 1982), reflected in a reduced number of helper T
lymphocytes (CD4+ T lymphocytes). In 1982, the new and frighten-
ing "acquired immune deficiency syndrome" (AIDS) was defined as
"a disease at least moderately predictive of a defect in cell-mediated
immunity occurring in a person with no known cause for diminished
resistance to that disease. Such diseases include Kaposi's sarcoma,
Pneumocystis carinii pneumonia and serious opportunistic infections"
(CDC, 1982a). A specific list of AIDS defining conditions was
elaborated, and some new AIDS defining conditions were added later
in response to additional epidemologic evidence and changes in
diagnostic practice resulting from the availability of serologic tests for
the AIDS virus.

Remarkable medical progress was made in the decade following the
identification of this disease. The World Health Organization began
surveillance activities on a global scale. In the United States the CDC
established a surveillance system to keep track of AIDS incidence
within risk groups defined by mode of exposure. This system described
the spread of the epidemic and suggested approaches to prevention.
Special epidemiologic studies identified the major modes of trans-
mission, which are sexual contacts among homosexual and bisexual

3
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men and in heterosexual populations, introduction of the virus into the
blood through contaminated needles or transfusion of contaminated
blood or blood products, and perinatal transmission. Such studies
suggested an infectious etiology. Major breakthroughs occurred
(Barre-Sinoussi, Chermann, Rey, et al., 1983; Popovic, Sarngadharan,
Reed and Gallo, 1984) when a virus, now called the human im-
munodeficiency virus (HIV-1), was isolated from the lymph nodes of
patients with AIDS. Isolation of the virus and procedures for growing
the virus in a laboratory environment (Popovic, Sarnagadharan, Reed
and Gallo, 1984) made it possible to develop serologic tests to detect the
virus. These assays, in turn, led to epidemiologic studies that provided
strong evidence that HIV-1 was the causative agent of AIDS, that
further defined the risks associated with specific modes of behaviors,
and that further delineated the extent and growth of HIV-1 infection
in the population (Gallo, Salahuddin, Popovic, et al., 1984; Sarngad-
haran, Popovic, Bruch, et al. 1984). Moreover, serologic assays made it
feasible to screen blood donors for infection and so to prevent further
spread of disease, and serologic surveys suggested additional
approaches to disease prevention. Isolation of HIV-1 also led to
detailed biochemical studies of the virus, its components, its life cycle,
and the resultant human pathophysiology.

Clinical studies on individual patients characterized the natural
history of HIV-1 infection, including a wide array of AIDS-defining
and other conditions, and provided information on the distribution of
times from infection with HIV-1 to development of an AIDS-defining
condition (the AIDS "incubation distribution"). Incubation times
turned out to be long and variable, with a median of about 10 years. It
was therefore appreciated that the numbers of AIDS cases developing
in the first decade of the epidemic represented only a fraction of all
those already infected and that trends in AIDS incidence could not be
relied upon to measure recent trends in the underlying rates of new
infections (the "infection curve").

Information on the viral life cycle and natural history of illness led to
rational approaches to combat the virus (Broder, 1988), including the
development of zidovudine (AZT). Progress has also been made in
delaying and treating the many sequelae of immune deficiency,
especially opportunistic infections.

Despite this progress, the AIDS epidemic poses an enormous threat
to public health. It has been estimated that more than 5 million people
are infected with human immunodeficiency virus worldwide (Chin,
Sato, and Mann, 1990). In the United States, 206,392 cases of AIDS



Introduction 5

and 133,233 AIDS-related deaths were reported to the CDC through
December 31, 1991 (CDC, 1992a). Quarterly AIDS incidence in the
United States is greatest among homosexual or bisexual men and
intravenous drug users, but as the epidemic has progressed, the
proportion of incident AIDS cases in other exposure groups, such as
people exposed through heterosexual sex, has increased (Figure 1.1).

1.2 HIV VIRUS AND ITS CLINICAL EFFECTS

Until 1970, it was assumed that genetic information was always
transcribed from DNA into RNA, but in 1970 it was discovered that
certain viruses, called "retroviruses," used RNA to carry their genetic
information, and, moreover, employed the enzyme "reverse tran-
scriptase" to transcribe the RNA into DNA in the cells of the infected
host (Temin and Mitzutani, 1970; Baltimore, 1970). HIV-1 turns out
to be such a retrovirus. After attaching to the host cell wall, HIV-1
releases its RNA together with reverse transcriptase into the cytoplasm
of the infected host cell (Figure 1.2). Reverse transcription of the RNA
code yields viral DNA, which resides in the cytoplasm in episomal
(circular) form or enters the cell nucleus and becomes integrated into
host DNA. Integrated viral DNA genes may remain latent, or, in

Figure 1.1 Quarterly AIDS incidence in the United States. Counts are shown
on a semi-logarithmic scale for eight risk groups and for all cases combined.
The incidence data are corrected for reporting delays and are based on
information received at the Centers for Disease Control through March 31,
1990. (Source: Gail and Brookmeyer, 1990b.)
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Figure 1.2 Life cycle of HIV-1. (Source: Adapted from figure 2-3 in Shaw,
Wong-Staal, and Gallo, 1988 and from figure 3 in Fauci, 1988.)

response to viral and host regulatory proteins, these genes may become
activated. When the viral DNA genes are activated, messenger RNA is
transcribed. Some of the earliest proteins to be translated from
messenger RNA are the regulatory proteins tat and rev. Tat protein
promotes the transcription of more messenger RNA. Rev protein causes
multiple spliced segments of messenger RNA to form singly spliced
segments that can be translated into structural proteins, envelope
proteins, and reverse transcriptase. These proteins, together with viral
genomic RNA transcribed from the integrated viral DNA, are as-
sembled to form new HIV-1 viruses, which leave the infected cell and
are available to attack new cells. These phenomena are described in
greater detail by Shaw, Wong-Stall and Gallo (1988), Haseltine
(1991), and Greene (1991).

Infected humans produce antibody to a variety of antigenic viral
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proteins (Figure 1.3). Glycoproteins on the envelope of the virus induce
antibodies. Among these antigenic glycoproteins are gp41, gp!20 and
gplGO. Structural core proteins that surround the RNA, including
notably, p24, p55 and p17, are also antigenic and lead to detectable
production of host antibody. Glycoproteins are encoded by the "ENV"
gene of the RNA, whereas the "GAG" gene contains the code for core
proteins (Figure 1.3). The "POL" gene contains the code for other
essential proteins such as reverse transcriptase (p66, p51), endonu-
clease (p31) and protease, each of which stimulates antibody produc-
tion. Presently, a definitive serologic diagnosis of HIV-1 infection can
be made if the Western blot assay (Chapter 6) confirms the presence of
antibodies to at least two of gp41, p24 and either gp120 or gp!60. For
example, the presence of antibody to both p24 and gp41 would indicate
infection, as would the presence of antibody to both p24 and gp160 or
the presence of antibody to both gp41 and gp160. The presence of
antibodies to gp120 and gp160, but no other antibody, would not be
diagnostic of infection.

Before describing the clinical response to HIV-1, we briefly review
some aspects of immunologic defense. Cells that provide immunologic
defense are generated in the bone marrow and thymus and are found in
lymphoid tissue throughout the body, including the spleen and widely

Figure 1.3 Some genes and components of HIV-1. The virus particle is roughly
spherical with a diameter of 10-5 centimeters.
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distributed lymph nodes. These tissues are connected by a lymphatic
circulatory system that communicates with the peripheral blood.
Various white cells involved in immunologic defense are present in the
peripheral blood, which normally contains 4500—11,000 white
cells//il. A typical peripheral blood white count of 7400 cells/ul includes
4400 neutrophils/ul, 2500 lymphocytes/ul, 300 monocytes/u1, 200
eosinophils/ul and 40 basophils/u1. Although all these cells and others
play a role in immune defense, the specificity of response to foreign
antigen is determined by lymphocytes. Peripheral blood lymphocytes
include T lymphocytes (about 75%), B lymphocytes (about 12%) and
other lymphocytes.

Lymphocytes participate in two broad classes of immune defense:
humoral response and cell mediated response. Humoral response
denotes the production of antibodies to foreign antigens. Such ant-
ibodies can bind to virus or bacteria and, in conjunction with other
elements of the immune system, clear these foreign invaders from the
host's circulation. Antibodies are produced by B lymphocytes, but a
special T lymphocyte called the "helper T lymphocyte" or "CD4+ T
lymphocyte" or "CD4 + T cell" is essential to the B cell humoral
response. The CD4+ T cell recognizes the foreign antigen in relation
to host proteins and causes previously challenged B cells to proliferate
and produce appropriate antibody.

The second major type of immune defense is cell mediated response.
Cell mediated response is important for ridding the host of cells that
have already been infected and that harbor intracellular pathogenic
organisms, such as viruses, fungi, protozoa, and certain bacteria. The
CD4+ T cell plays a major role in recognizing foreign antigen and
stimulating other cells such as macrophages to ingest and destroy
infected cells. The "suppressor T lymphocyte" or "CD8+ T lym-
phocyte" or "CD8+ T cell" can suppress the cell mediated response to
limit damage to host tissue. CD8 + T cells can also attack cells infected
with virus directly ("cell mediated cytotoxicity"). However, CD4+ T
cells are also important in promoting cell mediated cytotoxicity, not
only because CD4+ T cells have direct cytotoxic activity, but also
because they can secrete factors that stimulate the proliferation of
CD8+ cytotoxic T cells.

Thus the CD4 + T cell is a central element in the control of both
humoral and cell mediated immune defenses. Normally, about 60% of
peripheral blood T lymphocytes are CD4+ T cells and about 30% are
CD8+ T cells. Thus, normally there are about 2500 x 0.76 X 0.6
= 1125CD4+ T cells//ul and about 2500 x 0.75 x 0.30 =
562 CD8 + T cells//xl in peripheral blood. These numbers are subject to
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substantial normal variability among individuals and in serial measu-
rements from a single individual. An excellent introduction to the
principles of normal and abnormal immune function is found in the
textbook on internal medicine edited by J. H. Stein (1990).

The clinical response to infection is complex and progressive (Figure
1.4). Within a few days or weeks of infection, the patient often develops
an acute mononucleosis-like syndrome with fever, malaise and lympha-
denopathy. Symptoms abate, but an insidious and progressive attack
on the immune system begins as HIV-1 bonds to cells with CD4
receptors, for which gp120 has high affinity. In particular, HIV-1
attacks CD4+ T cells, whose name derives from the fact that they
contain CD4 receptors. Through incompletely defined mechanisms,
HIV-1 kills CD4+ T lymphocytes and progressively destroys the
immunocompetence of the host. The CD4 + T lymphocyte levels drop
rapidly in the first months following infection to about 800 cells/jul.
Thereafter, the decline proceeds at a slower rate of perhaps 80
cells//ul/year.

Within a week or two of infection, p24 antigen appears in the blood,
followed in about 6 to 10 weeks by the appearance of host antibodies to
envelope proteins and p24 (Figure 1.4). As p24 antibodies appear, p24
antigen disappears. After a period of years, when the CD4+ T
lymphocytes have been seriously depleted to roughly 400 cells/mm3,
p24 antibody levels tend to decline, and p24 antigen tends to reappear,

Figure 1.4 Typical clinical course of HIV infection.
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often in anticipation of advancing clinical illness. The CDC (1986) has
categorized symptoms and signs associated with HIV disease. The term
AIDS-related complex (ARC) is often used to describe signs and symp-
toms of HIV infection that do not meet the surveillance definition of
AIDS. One definition of ARC is the presence of two or more of the
following conditions (but no AIDS-defining condition) in a patient
with laboratory evidence of HIV infection: lymphadenopathy, persist-
ent fevers, persistent diarrhea, involuntary weight loss, oral hairy
leukoplakia, multidermatomal herpes zoster, oral candidiasis, recur-
rent Salmonella bacteremia, nocardiasis and tuberculosis. Finally, as
CD4+ T lymphocyte levels continue to fall, an AIDS-defining con-
dition appears, such as an opportunistic infection, a malignancy
(Kaposi's sarcoma or non-Hodgkin's lymphoma), wasting syndrome,
or dementia.

The various risk groups defining mode of exposure to HIV have
different distributions of initial AIDS-defining criteria in the United
States (Table 1.1). In particular, Kaposi's sarcoma is found mainly
among homosexual men (gay men), although this condition has
become proportionately less frequent even among gay men than earlier
in the epidemic (Lifson, Darrow, Hessol, et al., 1990). Intravenous
drug users (IVDUs) tend to have wasting syndrome or dementia as
initial AIDS defining conditions more often than gay men. Pneumocystis
carinii pneumonia (PCP) is common in all risk groups and accounts for
about half of all initial AIDs-defining conditions. In Africa, diarrhea
and weight loss are common presenting conditions.

The incubation distribution F(t) is the probability that an infected
individual develops clinical AIDS within t years of infection. Clearly,
F(t) depends on the definition of clinical AIDS, which has been
broadened as the epidemic progressed, and on the use of treatments
that can delay the onset of opportunistic infections or the progression of
HIV infection. We usually think of F(t) as describing the "natural
history" of incubation periods, before the surveillance definition of
AIDS was broadened in the United States to include wasting syndrome
and dementia, and before effective treatments were introduced in 1987.
However, models of the incubation distribution that allow for changes
in the definition of AIDS and for treatments are discussed in Chapter 8,
where these adaptations are needed to obtain projections by "back-
calculation" beyond 1987. To estimate F(t) empirically, one usually
takes the date of seroconversion as the date of infection, even though
seroconversion may follow infection by many months in rare instances.
The hazard of developing AIDS within 2 years of infection is very small



Table 1.1 Percentages of Various Initial AIDS-Deflning Conditions for Each Risk Group

Risk Group

Gay men
IVDUs
Gay IVDUs
Hemophiliacs
Heterosexuals
Born in Pattern II

countries
Blood transfusion

recipients
Undetermined
All risk groups

PGP

51.5
49.6
45.0
45.6
50.2

39.5

46.4
53.3
50.4

Other
OIs

27.3
31.9
31.4
32.8
33.4

50.0

32.7
32.6
29.6

Kaposi
Sarcoma

9.7
1.2
7.5
0.0
1.2

3.0

0.9
3.7
6.5

Lymphoma

2.6
1.3
1.9
0.6
2.2

0.4

3.3
1.3
2.1

Wasting
Syndrome

6.0
11.9
9.6

16.1
10.1

5.3

12.4
5.4
8.0

Dementia

2.6
3.9
4.2
5.0
2.6

1.3

4.0
3.1
3.0

Other

0.4
0.2
0.3
0.0
0.3

0.4

0.4
0.7
0.4

Note: Based on cases reported to the CDC in the first half of 1990. The conditions are ordered hierarchically from left to right. For example,
person with PGP and lymphoma is categorized as PGP.
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but increases thereafter. By 10 years, approximately half those infected
will have developed AIDS.

Infection with HIV-1 is insidious because during the long period of
incubation the infected host may be unaware of the infection and can
transmit the virus. Infection with HIV-1 is frightening because the
illness tends to be progressive and to cause serious illness in a large
proportion of those infected. By 5 years nearly all patients have
abnormally low CD4+ T lymphocyte levels (Longini, 1990), and by
10 years, about half of those infected have developed AIDS. The
median survival following the diagnosis of AIDS depends on the initial
AIDS-defining condition but is still only about 2 years, despite progress
in treating this illness.

Recently, another AIDS-causing virus, HIV-2, has been identified
in West Africa (DeCook and Brun-Vezinet, 1989). Because HIV-2 is
not always detected by antibody assays defined for HIV-1, screening
procedures are being modified in the United States to detect both
viruses. We shall sometimes refer to HIV-1 as HIV.

1.3 MEASURING THE EPIDEMIC

If it were readily estimated, the most useful measure to track the course
of the infection in particular risk groups would be the infection rate curve
g(s), which we sometimes will refer to as the "infection rate" or the
"infection curve." The quantity g(s) represents the number of new
HIV infections per unit time at calendar time s. Bacchetti (1990) has
estimated the infection rate curve (Figure 1.5) for gay men in San
Francisco from survey data on seroconversion times. This estimate of
g(s) reaches a peak of about 490 infections per month in the last half of
1981. The squares in Figure 1.5 represent monthly AIDS incidence
counts, which lag well behind the peak of the infection curve. We
define AIDS incidence to be the number of AIDS cases that develop in a
defined population per unit time. The infection curve in Figure 1.5
indicates that rates of infection were much lower in the last half of the
1980s than when the epidemic was at its peak, but even in 1988, the
rate of infection among gay men in San Francisco was about 300 per
year.

The HIV infection curve is closely related to the HIV incidence rate,
which is the ratio of the infection curve at calendar time s to the
number of uninfected people in the population at that time. If a
population is large and stable and if the HIV infection rate is
comparatively small, then the HIV incidence rate is approximately



Introduction 13

Figure 1.5 The monthly infection rate (solid line) and monthly AIDS inci-
dence (squares) in San Francisco, as estimated by Bacchetti (1990). The plot of
HIV prevalence rate (percent) for homosexual and bisexual men participating
in hepatitis B vaccine trials in San Francisco (triangles) is derived from data
in Hessol, Lifson, O'Malley, et al. (1989).

proportional to the infection curve. The HIV incidence rate measures
the instantaneous risk of infection for an uninfected individual, whereas
the HIV infection rate measures the instantaneous rate of infection in
the population.

The HIV infection curve and HIV incidence rate give the most
immediate and direct measures of trends in the epidemic and ul-
timately determine HIV prevalence and AIDS incidence. Information
on HIV incidence would therefore be of immense benefit for planning
and monitoring prevention activities. Unfortunately, it is very difficult
to measure HIV infection rates directly except in selected cohorts
which may not be representative. One can hope to learn something
about the HIV infection curve and HIV incidence rate indirectly by
studying trends in the prevalence of HIV infection, trends in AIDS
incidence, and transmission models that predict the infection curve
from theoretical assumptions about infectivity, rates of risky behavior,
and mixing patterns among subpopulations.

The cumulative number infected to time t is
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For example, the cumulative number infected in San Francisco
through 1988 is estimated from Figure 1.5 as G( 1989.0) = 22,030.

The prevalence, c(t), is the number of people alive and infected with
HIV at calendar time t. In a closed population (no immigration or
emigration), the prevalence is the cumulative number infected less the
number of infected people who died through calendar time t. For
example, assuming there were 3262 deaths among HIV-infected people
in San Francisco through 1988 (Lemp, Payne, Rutherford, et al.,
1990), the prevalence at the beginning of 1989 would be
22,030 - 3262 = 18,768.

If one further assumes that the probability of surviving u time units
beyond the date of infection, J ( u ) , is independent of calendar time of
infection, then the prevalence is given by

At the beginning of the epidemic, most infected people will survive to t,
so that the prevalence will nearly equal the cumulative number
infected, as follows from equation (1.2). Over longer periods of time,
improvements in the treatment of HIV infection may alter J, as may
secular changes in the age distribution of those infected. Moreover, the
prevalence will be altered by patterns of immigration and emigration
unless each emigrant is matched by a corresponding immigrant. These
factors are not accounted for in equation (1.2).

It is useful to distinguish patients with AIDS and AIDS-free patients
with advanced immunodeficiency from other people with prevalent
HIV infection in order to estimate the resources needed for health care.

We define the prevalence rate as c(t) /JV(t), where N(t) is the number
alive in the population at time t in a general population. It may be
difficult to estimate N(t). For example, it is difficult to obtain reliable
data from a representative sample to determine the number of men
who engage in male-to-male sex in the United States, or even in a city
such as San Francisco, where surveys have been conducted within high
risk census tracts (Winklestein, Lyman, Padian, et al., 1987). However,
it is relatively easy to compute the prevalence rate in a well defined
cohort that is followed longitudinally. Seroprevalence rates in a cohort
of gay men in San Francisco (Hessol, Lifson, O'Malley, et al., 1989)
who were being studied to evalute whether vaccination could prevent
Hepatitis B, increased rapidly in 1980, 1981 and 1982 (Figure 1.5), as
one would expect if the infection rate curve estimated by Bacchetti
(1990) were correct. In fact, that infection curve was estimated, in large
measure, from seroconversion data in the Hepatitis B cohort.
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In some settings, seroprevalence surveys provide the most reliable
means for tracking the epidemic. For example, samples of blood from
all newborns in a given state of the United States provide a direct
measure of the HIV burden on newborns and childbearing women. In
developing countries, where effective systems for monitoring AIDS
incidence are not in place, seroprevalence surveys provide the most
useful information for gauging the extent of HIV infection.

In the United States, AIDS incidence data have proved extremely
useful for monitoring the AIDS epidemic. Quarterly AIDS incidence in
the United States, corrected for reporting delays, are shown for all
AIDS cases and for each of the major risk groups (Figure 1.1). Because
the logarithm of AIDS incidence is plotted, straight lines would
indicate exponential growth of the epidemic. In fact, these loci exhibit
curvature indicative of subexponential growth, almost from the very
beginning of the epidemic. For example, the slope of the locus for all
AIDS cases was about 1.0/yr for 1982, corresponding to a doubling
time of log(2)/1.0 = .69 years, whereas the doubling time increased to
about 1.0 years in 1984. Transmission models provide several explana-
tions for such subexponential growth, including diffusion of the
epidemic from groups with high rates of risky behavior to groups with
lower rates of risky behavior. Note that the preponderance of cases
occurred among homosexual men and intravenous drug users
(IVDUs). By December 31, 1991, the percentages in various risk
groups of the 206,392 AIDS cases reported to CDC were: homosexual
men (57.3%), IVDU's (22.2%), homosexual men who use intravenous
drugs (6.4%), patients with hemophillia (0.8%), persons infected by
heterosexual contact (5.8%), recipients of blood transfusions (2.1%),
pediatric AIDS cases (1.7%) and patients infected by other or
undetermined risk factors (3.7%). Further details on AIDS sur-
veillance and precise definitions of those risk groups are published
regularly in HIV/AIDS Surveillance (see, e.g., CDC, 1992).

Because incubation times are long and variable, the AIDS incidence
curve is smoothed and distant reflection of the infection curve, as
illustrated in Figure 1.5. In a closed population with negligible
mortality from causes unrelated to HIV, the AIDS incidence, a(t), is
related to the infection rate curve, g(s), and the incubation density,
f(u), by

For some risk groups, such as recipients of blood transfusions, mortality
may be appreciable before AIDS onset, in which case equation (1.3) is
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not accurate. In principle, provided f is known, one should be able to
learn something about the infection curve by finding that estimate of
g(s) that best fits the observed AIDS incidence series, a(t), in equation
(1.3). This deconvolution process is called "back-calculation." It turns
out that back-calculation yields useful information on the infection
curve up to perhaps five years before the end of the AIDS incidence
series but that back-calculated estimates of the infection curve closer to
the end of the AIDS incidence series are very uncertain. We have
implicitly assumed that the incubation distribution is constant in
calendar time in equation (1.3). Provision must be made for secular
trends in the incubation distribution that arose from changes in the
definition of AIDS and from the use of treatments capable of retarding
the onset of AIDS, particularly after 1987. Back-calculated extimates of
the infection curve have been used to estimate seroprevalence from
relationships like equation (1.3) and to project AIDS incidence.
Indeed, back-calculation yields comparatively reliable projections of
AIDS incidence, unless sudden changes in the surveillance system or
new methods of treatment supervene.

The number of persons living with AIDS (AIDS prevalence) and the
corresponding AIDS prevalence rate, which is obtained by dividing by the
population size, are important indicators of the need for health services.
Projections of AIDS prevalence can be obtained from projections of
AIDS incidence by taking the survival distribution after AIDS dia-
gnosis into account. If SA(u;s) is the probability that a person
diagnosed with AIDS in calendar year s survives beyond year a, then
the number of persons living with AIDS in a closed cohort at calendar
time t is

1.4 WORLDWIDE SCOPE OF THE EPIDEMIC

The World Health Organization (WHO) has developed a program of
world-wide AIDS surveillance. As of January 1, 1991, 314,611 AIDS
cases have been reported to WHO from 179 countries and territories
(WHO, 1991). Table 1.2 gives the distribution of reported AIDS cases
by continent. Countries that have reported 1000 or more cases are also
listed. Although the largest number of reported cases comes from the
United States, the fraction of cumulative cases from the United States
has fallen from 56% in 1989 to 49% in 1990. As of January 1, 1992, the
numbers of reported AIDS cases had increased to 129,066 in Africa;
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Table 1.2 AIDS Cases Reported to the World Health Organization
as of January 1, 1991

Africa— 81,019
Burundi
Congo
Ivory Coast
Ghana
Kenya
Malawi

Asia— 872

Americas— 188211
Brazil
Canada
Dominican Republic

Europe— 41,947
France
Germany
Italy
Netherlands

Oceania— 2,562
Australia

3,305
1,940
3,647
1,732
9,139
7,160

12,504
4,427
1,423

9,718
5,500
7,576
1,487

2,295

Rwanda
Uganda
Tanzania
Zaire
Zambia
Zimbabwe

Haiti
Mexico
United States

Romania
Spain
Switzerland
United Kingdom

3,407
17,422
7,128

11,732
3,494
5,249

2,456
5,113

154,791

1,055
7,047
1,548
3,884

Note: Listed countries have reported at least 1000 cases. Data are from the 1990 World Health
Statistics Annual (WHO, 1991).

252,977 in the Americas; 1254 in Asia; 60, 195 in Europe; and 3189 in
Oceania (WHO, 1992).

The accuracy and completeness of AIDS reporting is highly variable
among countries. Countries are requested to report AIDS cases to
WHO at least once per year even if the number reported is zero.
However, by January 1, 1991, there were nine countries that last
reported to WHO in 1989, seven that last reported in 1988, and four
that last reported in 1987 (WHO, 1991). AIDS case reporting is
considerably more complete in industrialized countries than in devel-
oping countries. Furthermore, industrialized countries often have the
capability to diagnose cases retrospectively, which continually adds to
their AIDS case totals.

The WHO has identified three global patterns of the epidemic (Chin
and Mann, 1989). Pattern I refers to areas where HIV began to spread
in the late 1970s principally among homosexual and bisexual men and
intravenous drug users. North American, Western Europe, and parts of
Latin America have been described as Pattern I. Pattern II refers to
areas where HIV began to spread in the 1970s principally among
heterosexuals and where the ratio of infected males to females is
approximately 1:1. Sub-Saharan Africa and parts of the Caribbean
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have been described as Pattern II. Pattern III refers to areas where
HIV was introduced in the 1980s and where cases are attributed
primarily to individuals who either visited Pattern I or II areas or had
sexual contact with individuals from these areas. Eastern Europe, Asia,
North Africa, and the Middle East have been described as Pattern III.

The Global Programme on AIDS of WHO has supported efforts to
estimate HIV prevalence and to make projections (Chin, Sato, and
Mann, 1990). It was estimated that, by mid-1988, 2.5 million people
were infected in Pattern I countries, 2.5 million were infected in
Pattern II countries, and 100,000 were infected in Pattern III
countries. This total of 5.1 million infected people was projected to
increase to three or four times that number by the year 2000.

In the United States, 284,840 AIDS cases had been reported to the
CDC by March 31, 1993, including 21,582 cases reported since
January 1, 1993 under a broadened surveillance definition that
includes depression of CD4+ T cell levels to below 200 cells/u1
(CDC, 1992b).



2

Risk Factors for Infection
and the Probability of HIV
Transmission

2.1 INTRODUCTION

In this chapter, we describe several types of observational studies that
were used to define behaviors and other factors associated with
increased risk of HIV infection and AIDS. Careful interview of
individual patients with AIDS identified the major modes of trans-
mission. Case-control studies comparing patients with AIDS to subjects
without AIDS further delineated behaviors and other factors as-
sociated with increased risk of AIDS. When assays for antibody to HIV
became available in 1984, investigators classified populations into
seropositive people with prevalent HIV infections and seronegative
people. The prevalent seropositives were compared to seronegatives to
define risk factors for infection in prevalent case-control studies. A
fourth type of study to define risk factors for infection was derived from
longitudinal follow-up of cohorts of initially seronegative individuals.
Such studies could identify factors associated with increased risk of
incident seroconversion. In addition, cohort studies provided estimates
of the probability of seroconversion in a specified time interval (Section
3.5.1). In Sections 2.2 and 2.3 we discuss the strengths and weaknesses
of these designs and some of the findings from such studies.

Studies of the types just mentioned were applied to determining
factors affecting risk of infection among homosexual or bisexual men,
intravenous drug users (IVDUs), patients with hemophilia, and
heterosexuals. In these case-control and cohort studies, there is usually

19
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little information on the precise time or times when exposure to HIV
occurred. For example, an individual may have no idea whether or not
a given sexual partner is infected. However, in other types of studies,
the date or dates of exposure to HIV are more precisely defined. For
example, a hospital worker will often know the precise date on which
he or she may have been inadvertently stuck by a contaminated needle,
and recipients of blood transfusions that are later found to have been
contaminated can be studied to determine what proportion of the
recipients became seropositive. Such studies can be described as cohort
studies with point exposures. We review data from such studies for
blood transfusion recipients, hospital and laboratory workers and
children born to seropositive mothers in Section 2.4.

Another type of study that provides information on the extent of
exposure to an individual who is known to be infected is called a
partner study. Partner studies involve subjects who have engaged in
monogamous sex with an infected partner and who have no other
identified risk behaviors. Ideally, the date of seroconversion of the
infected partner is known, as is the frequency and type of sexual
contacts between the subject and the infected partner. Such data can
be used to study behaviors associated with transmission and to estimate
the probability of transmission per partnership and the probability of
transmission per sexual encounter. Partner studies are discussed in
Section 2.5.

2.2 STUDIES OF AIDS PATIENTS

An enormous amount of epidemiologic information was obtained by
carefully interviewing and studying individual patients with AIDS.
Such studies of a few patients with Pwumocystis carinii pneumonia and
Kaposi's sarcoma (CDC, 1981a; CDC, 1981b; Gottlieb, Schroff,
Schanker, et al., 1981; DeWys, Curran, Henle, and Johnson, 1982)
identified the essential immune deficiency, indicated that homosexual
men were at high risk, and suggested that a transmissible agent such as
cytomegalovirus might be responsible. Masur, Michelis, Greene, et al.
(1981) found a deficit in cell-mediated immunity in 11 males with
Pneumocystis carinii pneumonia and noted that 5 of these patients
were intravenous drug users. Thus, within a few months of the first
reports (CDC, 198la) studies of individual AIDS patients provided
information used to define the "acquired immune deficiency syn-
drome" (CDC, 1982a) and identified the two largest exposure groups
in the United States, gay men and IVDUs.

Studies of individual patients quickly expanded the list of known risk
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groups. AIDS was found among Haitians who denied exposures to
intravenous drugs and male-to-male sex (CDC, 1982b), in an infant
who received multiple blood transfusions (CDC, 1982c), and among
patients with hemophilia (CDC, 1982d). By September 1982, the
Centers for Disease Control was reporting (CDC, 1982a) the pro-
portions of AIDS cases that fell into the following risk groups: gay men
(75%), IVDUs without a history of male-to-male sex (13%), Haitians
(6%), persons with hemophilia A (0.3%) and others (5%). These
categories are hierarchical because to be classified in a later category a
patient must not fall into any of the preceeding categories.

Early reports of heterosexual transmission to the female sexual
partners of men with AIDS in the United States (CDC, 1983) were
confirmed by reports of AIDS among black African males and females
with no history of drug abuse or homosexual sex (Clumeck, Mascart-
Lemone, De Maubeuge, et al., 1983; Clumeck, Sonnet, Taelman, et
al., 1984) and by similar reports of heterosexual transmission to females
and to males in the United States (Redfield, Markham, Salahuddin, et
al., 1985). Likewise, immunodeficiency was reported among infants
whose mothers were at high risk of AIDS or had already developed
immune deficiency (CDC, 1982e; Oleske, Minnefor, Cooper, et al.,
1983; Rubinstein, Sicklick, Gupta, et al., 1983).

By January 1984, the Centers for Disease Control was reporting
AIDS cases in the risk categories shown in Table 1.1 (CDC, 1984),
except that gay intravenous drug users were not broken out as a
separate category. Pediatric AIDS was and continues to be reported
separately.

The epidemiologic evidence that AIDS could be transmitted by
sexual contact, through blood or blood products, and perinatally
strongly implicated a transmissible agent. Additional support for this
concept came from studies designed to determine whether individuals
with AIDS had had sexual contact with other patients with AIDS.
Seventeen cases of AIDS were reported in Los Angeles County,
California, and 2 in Orange County, California, between June 1, 1981,
and April 12, 1982 (CDC, 1982f). All 8 of the survivors were
interviewed to determine their sexual partners in the preceding 5 years,
and histories of sexual contacts were obtained from friends of 7 of
the 11 AIDS patients who had died. Nine of the 15 AIDS patients for
whom interview data were available were found to have had sex with
other AIDS patients within the previous 5 years, including 7 from Los
Angeles County who had had sex with other AIDS patients in Los
Angeles County and 2 from Orange County who had had sex with the
same non-Californian ("patient 0" in Auerbach, Darrow, Jaffe and
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Curran, 1984). This non-Californian was also linked to several patients
with AIDS in New York.

Such extensive clustering seems unlikely to have occurred by chance
and is suggestive that a sexually transmitted infectious agent can cause
AIDS (CDC, 1982f). However, it is not easy to determine how unusual
a cluster is because it is not clear just how to define the clustering event.
Is it that the two cases of AIDS in Orange County both occurred in
men exposed to the same AIDS patient ("patient 0") who lived outside
California? Is it that 9 of 15 patients with interviews had had previous
contact with other AIDS patients? We consider the probability that 7
of the 11 AIDS patients in the interview data in Los Angeles County
should have had sex with 1 of the 18 other AIDS patients in southern
California. If we assume, as in the appendix to Auerbach, Darrow, Jaffe
and Curran (1984), that each of these 11 patients had 610 sexual
partners in the preceeding 5 years and that these partners were chosen
at random from among 250,000 homosexual males in southern Califor-
nia, then the chance that a given patient would have contacted another
identified AIDS patient from southern California is approximately
610 x 18/250,000 = 0.044. From the binomial distribution, the chance
that 7 or more of these 11 patients would have contacted another AIDS
patient is only

However, the mere existence of an unusual cluster of cases is not
proof of a sexually transmitted infectious agent. Auerbach, Darrow,
Jaffe, and Curran (1984) compared AIDS cases who had had sex with
other AIDS cases ("linked" AIDS case) to "unlinked" AIDS cases.
"Linked" AIDS cases were more promiscuous, but they also used more
nitrite inhalants than "unlinked" AIDS cases. Thus non-sexual activ-
ities, such as drug abuse, may have contributed to the apparent
clustering of AIDS.

The success of studies on individual AIDS patients in defining the
major risk categories and suggesting an infectious etiology well before
HIV had been isolated is due in part to the rarity of AIDS-defining
conditions such as Pneumocystis carinii pneumonia and Kaposi's sar-
coma. Because such conditions are rare, cases are highly informative.
Had the only effect of HIV been to increase the risk of developing a
common cancer, such as colon cancer, it is likely that several years
would have elapsed before the problem was even recognized and that
studies of individual cases would have been much less revealing.
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Instead, cases would need to have been compared to non-cases to
identify possible risk factors. In the next section, we describe such
comparative studies, which were useful in identifying specific behaviors
and other factors that modified the risk of HIV infection and AIDS
among members of the various risk groups shown in Table 1.1. A more
extensive discussion of the epidemiology in each of these risk groups is
given in the book edited by Kaslow and Francis (1989) and in the
review of modes of transmission by Friedland and Klein (1987).

2.3 CASE-CONTROL AND COHORT STUDIES TO
IDENTIFY RISK FACTORS

2.3.1 Measures of Risk

The degree of increased risk associated with a specific behavior or other
factor is often measured as the relative risk or relative odds of infection
comparing those with the factor to those without the factor. We define
these terms more precisely in what follows. Suppose that two unin-
fected cohorts (i = 1 or 2) are followed from calendar time t0 = 0 to a
later calendar time, t. Let H i(t) be the cumulative distribution function
of times to infection, h t ( t ) = dH(t}/dt be the density function and
kt(t) = hi(t)l{l — H i ( t ) } be the hazard function for cohort i. These
terms are defined and illustrated in texts on survival analysis, such as
the books by Kalbfleisch and Prentice (1980) and by Cox and Oakes
(1984). Section 4.2 also gives examples.

To determine whether those in population i = 2 are at higher risk
than those in population i: = 1, one can estimate the relative risk
(relative hazard) rr(t) = k 2 ( t ) l k 1 ( t ) . Estimates of the relative risk may
be obtained by following the cohorts to determine when incident HIV
infections occur and dividing the incidence rate estimates in population
i = 2 by those in population i = 1 (chapter 5 in Breslow and Day,
1987). Relative risks can also be obtained from time-matched case-
control studies comparing cases of new HIV infection at time t with
controls chosen from among subjects who are not infected at time t
(Liddell, McDonald and Thomas, 1977; Prentice and Breslow, 1978).

It is often assumed that the relative risk remains constant over time.
Then the common relative risk rr(t) = 9 can be estimated by use of the
proportional hazards model (Cox, 1972), as discussed by Liddell,
McDonald and Thomas (1977) and by Prentice and Breslow (1978).

It may not be possible to follow cohort members closely to determine
precisely when incident HIV infection occurs. Instead, cohort members
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are surveyed for prevalent infection at a single time t. The relative odds
of infection

can be estimated either from the cohort data or from case-control data.
In the latter instance, ro(t) is estimated as the odds of being in
population i = 2 among a random sample of infected subjects (the
"cases") divided by the odds of being in population i = 2 among a
random sample of uninfected subjects at time t. This design is called a
prevalent case-control design. For values of t small enough that H i(t) is
small, the relative odds is approximately equal to H2(t}IHl(t), which is
nearly equal to the relative risk rr(t). Thus, prevalent case-control
studies can yield estimates of the relative risk provided the cumulative
incidence of infection is small. For large /, however, the relative odds is
approximately

Under the proportional hazards assumption, k2(t) = 0 k 1 ( t ) , and pro-
vided H1(00) = H2(<x>) = 1, the relative odds tends to 0, 1 or oo as t
increases, according as 6 is < 1, 1 or > 1 respectively. Thus one can
anticipate differences between relative risk estimates and relative odds
estimates in populations with large HIV prevalences.

Some case-control studies have compared prevalent AIDS cases with
AIDS-free controls. Some of these controls may have been infected, so
it is clear that the relative risk of AIDS need not equal the relative risk
of infection. If we ignore mortality, immigration, emigration and the
possibility that the incubation distribution, F, changes in calendar
time, then the cumulative risk of developimg AIDS by time t in
population i is

The relative odds of AIDS roA(t) can be computed by substituting HAi

for Hi in equation (2.1).
To see how the relative risk of infection, the relative odds of infection

and the relative odds of AIDS may differ, we assume that the hazards of
infection remain constant at k2(t) = 0.1 per year and k 1 ( t ) = 0.05 per
year. Then the true relative hazards of infection at years 1, 3 and 5 are
2, 2 and 2, whereas the corresponding relative odds of infection are
2.05, 2.16 and 2.28. Assuming the incubation distribution of AIDS is
Weibull, with F(t) = 1 - exp (-0.002 t2.516), as in Brookmeyer and
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Goedert (1989), the corresponding relative odds of AIDS are 1.92, 1.78
and 1.66. Thus, the relative odds of AIDS are attenuated toward unity,
compared to the relative risk and relative odds of infection.

An additional problem is that relative risks of infection and relative
odds of infection can change rapidly as the epidemic develops (De
Gruttola and Mayer, 1988; Koopman, Simon, Jacquez, et al., 1988)
and are affected by mixing patterns among high and low risk subgroups
of the population (Koopman, Simon, Jacquez, et al., 1988; Koopman,
Longini, Jacquez, et al., 1991). Thus relative risks and relative odds are
not as stable and reliable as summaries of risk for HIV infection as they
are for other illnesses, such as heart disease and cancer.

To see why relative risks for HIV may be unstable or misleading
consider an uninfected individual (individual "2") who establishes u2

new sexual partnerships per year. Suppose the chance that a selected
partner is infected is ) • Suppose further that individual "2" engages
in behaviors that produce a chance B2 of infection per partnership with
an infected partner. Compared to another uninfected individual ("1")
with parameters u1 B1 and (t), the relative hazard of infection is

The relative hazard will vary in time unless (t) = (t).
Suppose individual "2" only selects partners from among a homog-

eneous randomly mixing cohort of individuals with parameters u2 and
B2, and likewise for individual "1." Since the prevalence of infection in
such randomly mixing homogeneous cohorts grows exponentially in
the initial phases of the epidemic (see equation 9.6), the relative risk
(2.3) becomes

where y2 and y1 are the initial prevalences in cohorts i = 2 and i = 1.
This relative risk increases in time if u2B2 > u1B1-

More generally, individuals "1" and "2" may be selecting partners
from various subgroups with different HIV prevalences. Suppose that
individual "2" selects partners exclusively from a subpopulation with
low prevalence whereas individual "1" selects partners exclusively
from a population with high prevalence. Then the relative risk (2.3)
will seriously underestimate the ratio u2B2/u1B1, which describes the
relative risk that would pertain if both individuals "1" and "2" selected
the same types of partners.

If one is interested in studying factors that affect the probability of
transmission per partnership, B, one must control for the frequency of
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formation of new partnerships, u, and for the chance that a chosen
partner will be infected (t), as is evident from equation (2.3).

We now discuss some findings from studies of risk factors for
transmission. These studies rely on relative risks and relative odds to
characterize the strength of association with a risk factor.

2.3.2 Risk Factors for Transmission Among
Homosexual Men

Winkelstein, Padian, Rutherford, and Jaffe (1989) review studies of
factors affecting the chance of transmission among homosexual men.
The earliest studies compared patients with AIDS to controls without
AIDS. Marmor, Friedman-Kien, Laubenstein, et al. (1982) conducted
a case-control study based on 20 histologically confirmed cases of
Kaposi's sarcoma among homosexual men seen at the New York
University Medical Center between March 1979 and August 1981 and
on 40 controls matched to cases on age and race and selected from the
Manhattan practice of a physician treating homosexual men. Risk was
associated with level of sexual activity in the previous year, with a
history of mononucleosis and of sexually transmitted diseases, and with
the use of "recreational drugs." A multivariate logistic model included
numbers of previous sex partners and lifetime exposures to amyl nitrite.
Despite the suggestion from the multivariate regression that exposure
to nitrites might have an etiologic role for Kaposi's sarcoma, the
authors cautiously concluded that "amyl nitrite use may have been a
surrogate for another causal variable, such as overall drug use or
exposure to a sexually transmitted oncogenic virus." Subsequent
studies on these cases (Marmar, Friedman-Kien, Zolla-Pazner, et al.,
1984) identified receptive anal-genital intercourse with ejaculation and
"fisting" (insertion of the hand or the fist into the partner's rectum) as
important risk factors. Amyl nitrite was no longer needed in a
multivariate model that included detailed information on these two
sexual behaviors and cytomegalovirus titre, suggesting that the uni-
variate associations with drug use might be an artifact of multicol-
linearity with risky sexual behaviors. A larger case-control study of
cases with Kaposi's sarcoma and cases with Pneumocystis carinii pneu-
monia (Jaffe, Choi, Thomas, et al., 1983) identified a large number of
sexual partners, syphilis, and exposure to feces during sex as associated
with increased risk. Thus, even before the isolation of HIV, there was
good evidence in homosexual men associating AIDS with large
numbers of sexual partners and with anal receptive sex.

These case-control studies on AIDS patients had the great ad-
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vantage that they could be performed quickly. However, as discussed
in Section 2.3.1, the relative odds of developing AIDS is not the same as
the relative odds of infection because many control subjects without
AIDS were nonetheless infected. Moreover, factors affecting survival
after infection and factors affecting AIDS diagnosis, such as access to
advanced diagnostic facilities, might influence the odds of having
AIDS but not the odds of becoming infected. Case-control studies on
AIDS patients are also difficult because it may be hard to elicit a
reliable history of sexual exposures at the time of infection, which may
have preceeded the onset of AIDS by many years. These difficulties are
accentuated if the patient is severely ill or has neurologic complications.

Another difficulty, which applies not only to case-control studies of
AIDS patients but to all the designs that were used, was that various
possible exposures, such as the use of nitrites and various sexual
behaviors were highly correlated. This "multicollinearity" makes it
difficult to identify which of several correlated behaviors are, indeed,
risk factors, and which are merely incidential correlates of risky
behavior. Logistic regression analyses cannot provide unequivocal
answers to such questions, and indeed, multicollinearity is a cause of
difficulty of interpretation in many types of regression analyses (Most-
eller and Tukey, 1977). In such circumstances, it usually makes sense to
select variables for modelling transmission in accordance with plausible
pathophysiologic mechanisms, rather than purely on the basis of
observed statistical associations.

The identification of HIV and the development of serologic assays in
1984 made it possible to compare prevalent seropositive cases with
seronegative controls. Several studies based on prevalent seropositive
cases (Goedert, Biggar, Winn, et al., 1984; Melbye, Biggar, Ebbesen, et
al., 1984; Stevens, Taylor, Zang, et al., 1986; Moss, Osmund,
Bacchetti, et al., 1987; Chmiel, Detels, Kaslow, et al., 1987; Wink-
elstein, Lyman, Padian, et al., 1987; Darrow, Echenberg, Jaffe, et al.,
1987) confirmed the importance of number of sexual partners, re-
ceptive anal intercourse with ejaculation, rectal douching and rectal
trauma as risk factors for seropositivity. The study by Melbye, Biggar,
Ebbesen, et al. (1984) emphasized that travel to areas with high rates of
seroprevalence—such as New York City, San Francisco, and Los
Angeles—was also an important risk factor for Danish homosexuals.
Other factors associated with risk for seropositivity have been observed,
including a history of venereal disease, and previous sexual contact
with a person who developed AIDS. These observations form the basis
of prevention efforts in the homosexual community to reduce promiscu-
ity and unprotected receptive anal intercourse.
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Studies of incident HIV infection are costly and time-consuming
because they require following initially seronegative individuals to
determine when seroconversion occurs. Over 2000 initially serone-
gative members of the Multicenter AIDS Cohort Study were re-
examined at 6 month intervals to determine serologic status and to
inquire about sexual behaviors in the preceeding 6 months. The
relative risk of incident seroconversion was about 15 for those who had
engaged in receptive anal intercourse in the preceeding 12 months
compared to cohort members who had avoided anal-genital sex
(Kingsley, Detels, Kaslow, et al., 1987; Detels, English, Visscher, et al.,
1989). Men who participated both in receptive and insertive anal sex
had a relative risk of about 32. These relative risks are higher than the
relative odds of receptive anal intercourse found in the earlier case-
control comparisons of seroprevalent cases with seronegative controls.
In those seroprevalence studies, the odds ratios were usually near 7.
This disparity cannot be explained by the mathematical difference
between relative risks and odds ratios, which would tend to produce
larger odds ratios than relative risks. One possible explanation is that
the information on sexual behavior near the time of infection is much
more reliable in the longitudinal study of incident seroconversions than
in seroprevalence studies. Even if interviews at the time of the cross-
sectional seroprevalence surveys yielded accurate information on
sexual behavior in the preceeding year, they would not necessarily
yield a precise indication of sexual behaviors at earlier times when
infection may have occurred. Misspecification of risk behaviors at the
time of infection can attenuate the relative risk. It is also possible,
however, that members of the Multicenter AIDS Cohort Study who
continued to engage in receptive anal intercourse, despite education
efforts to promote safer practices, chose partners with a higher
prevalence of infection than the partners of men who eschewed anal-
genital sex. Such prevalence differences could increase the relative risk
in the cohort study (equation 2.3), although one would expect a similar
phenomenon to have occurred among participants in seroprevalence
studies. It is a limitation of all these studies that the prevalence of HIV
in the partners of study subjects is unknown.

2.3.3 Risk Factors in Parenterel Drug Users

Friedland (1989) reviewed the epidemiology of HIV infection
among parenteral drug users. Most parenteral drug users are intraven-
ous drug users, although some parenteral drug users inject other sites.
Clearly identified risk factors for HIV infection include the frequency
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of drug injections, the frequency of sharing injection equipment with
others, and the proportion of injections that use equipment that is also
used by two or more other people, as in "shooting galleries." Other
factors include nonwhite race and proximity to New York City, which
are associated with high HIV prevalence in the drug using community
in the United States.

Nicolosi, Leite, Molinari, et al. (1992) found that the seroconversion
rate among intravenous drug users attending treatment centers in
northern Italy decreased from 4.9 per person-year in 1987—1988 to
2.1 per person-year in 1989—90. From 1987 to 1990, the proportions
of drug users who were sharing syringes when initially entered into
treatment programs decreased, as did the proportions who continued
to share syringes while in treatment follow-up. Further studies on
intravenous drug users who seroconverted indicated that having sex
with an HIV-positive partner adds to the high risk of seroconversion
associated with sharing syringes (Nicolosi, Leite, Musicco, et al., 1992).
It was also found that young subjects (<20 years old) and those who
had been using drugs for fewer than 2 years were at increased risk of
seroconversion.

2.3.4 Risk Factors in Heterosexuals

As mentioned in Section 2.2, strong evidence for heterosexual trans-
mission of HIV came from studies of individuals who denied other
known risk behaviors and from clusters of AIDS cases associated with a
single infected individual (Clumeck, Taelman, Hermans, et al., 1989).
Some of the strongest evidence for male-to-female and female-to-male
heterosexual transmission comes from partner studies (Section 2.5).
Haverkos and Edelman (1989) reviewed the epidemiologic evidence
for heterosexual transmission, both in Africa, where it is a dominant
mode of transmission, and in the United States.

Case-control studies in the United States suggest that the primary
risk factors for heterosexual transmission are factors that determine the
probability that the sexual partner is infected. In particular, risk factors
for males in sexually transmitted disease clinics (Quinn, Glasser,
Cannon, et al., 1988; Chaisson, Stoneburner, Lifson, et al., 1990)
included whether or not the female partner was a potential drug user
and nonwhite race. Risk factors for females in these clinics included
whether or not the male partner was a potential drug user or a bisexual
male. Other risk factors included indicators of sexual promiscuity such
as a positive serology for syphillis among men and women, and
prostitution among women. Genital warts and positive serology for
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syphillis remained predictive of HIV infection even after controlling for
the type and number of sexual partners, suggesting that abrasion of the
mucosa by venereal disease facilitates HIV transmission.

More direct information on factors affecting the risk of heterosexual
infection has been obtained from studies of the sexual partners of
individuals who are known to be infected. Such studies are called
"partner studies" (Section 2.5), and the person known to be infected is
called the "index case." A study of 368 female partners (Lazzarin,
Saracco, Musicco, et al., 1991) demonstrated an increased risk of HIV
transmission to the female if the male index case had fewer than 400
CD4 + T-cells per microliter or if the female partner had genital warts
or vaginitis. Behaviors that increased the chance of transmission
included frequent sexual contact and anal sex. Frequent use of
condoms was protective. Those exposed for 1 to 5 years had a greater
chance of infection than those exposed for less than one year. Other
partner studies have also found that risk is increased if the index case is
severely immunodeficient (Goedert, Eyster, Bigger, and Blattner, 1987;
European Study Group, 1989), if anal intercourse is practiced (Euro-
pean Study Group, 1989; Padian Shiboski and Jewell, 1990), if the
female partner has a history of sexually transmitted diseases (European
Study Group, 1989), and if condoms are not used (Padian, Shiboski,
and Jewell, 1990).

The partner study reported by Padian, Shiboski, and Jewell (1991)
found only one case of female-to-male transmission among 72 couples
(1.4%), compared to 61 infected female partners in 307 couples (20%)
with male index cases. Thus the rate of male-to-female transmission
was much higher than the rate of female-to-male transmission.
However, 19 of 159 (12%) of male partners were infected, compared to
82 of 404 (20%) of female partners in the Multicentric European
Partner Study (De Vincenzi, 1992). The higher rates of female-to-male
transmission in this study compared to the finding of Padian, Shiboski,
and Jewell (1991) may reflect a different distribution of cofactors that
promote transmission, unacknowledged risks among male partners,
and random variation in both studies.

2.3.5 Risk Factors for Transmission from Blood
Products

People in the United States are at low risk of exposure to HIV through
blood transfusions, because the chance that a donor is infected is small,
especially since the initiation of HIV screening programs and educa-
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tional programs to deter blood donations from people with risk factors
for HIV exposure (Chapter 6). Even before these prevention efforts, the
chance that a transfusion recipient in the United States would receive
infected blood was small (Peterman and Allen, 1989). Nonetheless,
4636 transfusion-related cases of AIDS had been reported to CDC by
the end of 1991. Of these cases, 477 were incident in 1991.

Patients with hemophilia were at much higher risk because clotting
factor concentrates were made from pools of plasma derived from 2000
to 20,000 donors (Peterman and Allen, 1989). Fifty-five percent of the
members of a cohort of 1219 hemophiliacs from treatment centers
throughout the United States were found to be infected by 1988
(Goedert, Kessler, Aledort, et al., 1989). The very first infections
occurred at the end of 1978, based on stored sera. However, the hazard
of infection was highest between 1981 and 1985. In 1985 and 1986,
methods for screening donors and methods to inactivate HIV, such as
heat treatment of clotting factor concentrates, dramatically reduced
the chance of infection (CDC, 1987a). Nonetheless, the toll of AIDS
cases continues to mount as previously infected patients become ill. As
of December 31, 1991, the CDC had received reports of 1876 AIDS
cases in patients with clotting disorders. This number represents a
substantial fraction of the approximately 14,000 patients with hemo-
philia in the United States (Peterman and Allen, 1989).

The risk of infection was related to the type and severity of
hemophilia. Of those with type A hemophilia (factor VIII deficiency),
64% became infected, but the proportion infected increased from 25%
for those with mild disease to 46% for those with moderate disease to
76% for those with severe disease (Goedert, Kessler, Aledort, et al.,
1989). This dose-response relationship between disease severity, which
determines the clotting factor requirements, and the chance of infection
was also seen for other types of hemophilia. However, other forms of
hemophilia were associated with lower overall risk than type A
hemophilia.Thirty-one percent of patients with type B hemophilia
(factor IX deficiency) were infected, and 14% of patients with other
forms of hemophilia were infected.

Even though it is clear that the risk of infection depended on the type
and amount of clotting factors received, it has not been routinely
possible to determine which lots of clotting factors infected particular
patients. Indeed, a study comparing "exposed" lots, to which an
infected donor who later developed AIDS had contributed, with
"unexposed" lots revealed no difference in infectivity (Jason, Holman,
Dixon, et al., 1986).
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2.4 RISKS FROM POINT EXPOSURES

The following observations characterize the probability of infection
from well defined point exposures.

2.4.1 Recipients of Contaminated Bloodod

Several investigators have traced the recipients of blood transfusions
that were later found to have come from infected donors. For example,
Ward, Deppe, Samson, et al. (1987) traced 201 recipients of blood from
32 infected donors. Of those recipients, 114 had died before the study,
12 refused to be tested for HIV, 3 had other risk factors for HIV
infection and 13 had relocated. Of the remaining 59 recipients, 39
(66%) had positive serology for HIV. Some donors seemed to be more
infectious than others, and recipients seemed to be more likely to
become infected if they received blood close to the time the donor
developed AIDS. Thus the variability of the estimate of 66% infected is
probably somewhat larger than indicated by the binomial standard
error 100{(.66 x .34)/59}1/2 = 6.2%. Smaller studies found that 6
(67%) of 9 tested recipients (Menitove, 1986) and 5 (38%) of 13 tested
recipients (Kakaiya, Cable, and Keltonic, 1987) were infected.

Each of these estimates may be biased if those recipients who died
previously or those who refused to be tested had different infection rates
from those who agreed to be tested.

2.4.2 Health Care Workers and Medical Researchers
Among 860 health care workers who were exposed to the blood of
infected patients by needle stick injuries or cuts with a sharp object, 3
were subsequently shown to seroconvert from seronegative to seropo-
sitive. One other subject was found to be seropositive 10 months after
the injury, but no antecedent sample was available (Marcus, 1988).
Based on binomial sampling, the chance of infection is 4/860 = 0.46%,
with a one-sided upper 95% confidence limit of 0.90%.

Of 103 health workers exposed to infected blood by contact with
mucous membranes or nonintact skin, none were observed to sero-
convert. The estimated risk is 0% with an upper one-sided 95%
confidence limit of 2.9%.

Medical researchers working with concentrated virus are subject to
occupational risk even in the absence of exposure through sharp
objects. One of 99 laboratory workers who handled concentrated virus
was found to be infected with an HIV-1 strain that was genotypically
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"indistinguishable" from a strain used in the laboratory (Weiss,
Goedert, Gartner, et al., 1988). This worker denied all known risk
behaviors for HIV infection, took usual laboratory precautions, and
did not recall any episode of direct exposure to skin or mucous
membranes. The corresponding HIV infection rate was 0.48 per 100
person-years exposure with an upper 95% confidence limit of 2.30 per
100 person-years. To reduce this risk, further laboratory precautions
were recommended, including vigorous decontamination of work
surfaces, adherence to procedures for using and changing gloves, and
the use of goggles, face shields or face masks to discourage hand contact
with the mouth, eyes, ears or nose.

2.4.3 Perinatal Transmission

Several investigators have estimated the probability of transmission of
HIV from an infected mother to her infant in prospective cohort
studies. A central problem is that a mother's antibodies to HIV are
present in the blood of her infant initially. Thus, serologic tests cannot
be used to determine whether the infant is infected initially, and there is
some variation in the literature as to how to define whether the infant is
infected.

Goedert, Mendez, Drummond, et al. (1989) defined the infant as
infected if HIV antibodies remained present at 15 months or if earlier
clinical "signs of HIV-1 disease" were present. They determined that
16 (29%) of 55 infants were infected. The Italian Multicentre Study
(1988) reported that 29 (32.6%) of 89 children of infected mothers who
had been followed for more than 15 months were considered to be
infected. The remaining 60 children were seronegative and free of
symptoms. Blanche, Rouzioux, Moscato, et al. (1989) defined infants
as infected if antibodies to HIV persisted to 18 months of age. They
found that 32 (27%) of 117 infants were infected. If one defines as
infected the 9 additional children who did not have antibodies to HIV
at 18 months, but who did have clinical evidence of HIV infection—
such as hepatomegaly, splenomegaly, adenopathy, hypergamma-
globulinemia, or decreases in CD4+ T-cells—the percentage infected
is 35%. Ryder, Nsa, Hassig, et al. (1989) demonstrated increased
mortality in the children of HIV infected mothers in Zaire, and, in a
randomly selected subset of 92 children who were followed for 12
months, 36 (39%) were found to have "evidence of perinatally
acquired infection."

The European Collaborative Study (1991) defined children as
infected if the infant remained seropositive at 18 months or if AIDS or
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an HIV-related death occurred before then or if HIV virus was
cultured or if HIV antigen was detected in two samples. Of 419
children with at least 18 months of potential follow-up, infection was
demonstrated in 48 (11.4%). However, 47 additional infants were lost
to follow-up within 18 months and were still seropositive when last
examined. Of these, 20 were older than one month. If these 20
remained seropositive at 18 months, the estimated rate of infection
would increase to 16%. The low estimates of the probability of
transmission in this study, compared to other studies, may result in part
from the fact that children with thrush and hepatosplenomegaly, for
example, would not be counted as being infected in this study. It is also
possible that the women in this study had less advanced HIV disease or
other factors that reduced the chance of transmission.

One methodologic issue concerns the proper analysis of infants who
were lost to follow-up or who died of diseases unrelated to HIV.
Suppose that 100 infants are born more than 15 months before the end
of follow-up. Of these, suppose 10 develop clinical evidence of AIDS
within 15 months, 20 are lost to follow-up after they first become
seronegative and before age 15 months, 15 are still seropositive but free
of clinical disease when lost to follow-up before 15 months, 15 remain
clinically well but are HIV antibody positive when tested at 15 months,
and 40 remain clinically well and are antibody negative when tested at
15 months. Suppose, further, that one of the 20 infants who was lost to
follow-up shortly after being found to be seronegative reverts to
seropositivity at 15 months, and that 6 of the 15 infants who were
seropositive when lost to follow-up remain seropositive at 15 months. If
the definition of "infected" is evidence of clinical disease within 15
months or continued seropositivity at 15 months, the true proportion
infected in this study isp = (10 + 1 + 15 + 6)/100 = 0.320.

One method of analysis (Blanche, Rouzioux, Moscato, et al., 1989)
excludes infants whose potential follow-up is less than 15 months and
who are lost to follow-up without clinical evidence of infection before
15 months of age. In the present example, all infants have a potential
follow-up of at least 15 months because they are all born more than 15
months before the study ended. Thus, the estimate is
p = (10 + 15)/65 = 0.385. This procedure is unbiased only if excluded
patients have the same risk of infection as other patients. In the present
example, this estimate is upwardly biased, because those infants who
were lost to follow-up have a lower probability of being infected,
(1 + 6)/(20 + 15) = 0.200, than other infants.

An alternative method of analysis is to regard infants who become
seronegative without clinical disease as uninfected, even if the infant is



Risk Factors for Infection and the Probability of HTV Transmission 35

lost to follow-up before 15 months (Goedert, Mendez, Drummond, et
al., 1989; European Collaborative Study, 1991). "Indeterminant"
infants, who are free of clinical disease but seropositive when lost to
follow-up, are excluded. In the present example, this procedure leads to
the estimate p = (10 + 15)/85 = 0.294. This estimate is biased down-
ward, because the proportion of "indeterminant" infants who are
infected is higher than the proportion of other infants who are infected
and because one of the infants who were seronegative when lost to
follow-up was, in fact, infected.

This example indicates the desirability of obtaining complete data
on serostatus at 15 months (many investigators prefer 18 months).
Additional methodological work might lead to improved estimates by
modelling the probability of infection as a function of the last antibody
level observed before loss to follow-up. Tsai, Goedert, Orazem, et al.
(1992) develop nonparametric procedures for estimating the distribu-
tion function of times to clinical disease among infected infants and for
using information from those who are lost to follow-up to estimate the
probability of transmission. However, these methods depend on the
assumptions that the probability of transmission and the times to onset
of clinical disease are the same among those who are lost to follow-up as
among other cohort members.

A small proportion of infants may have become infected from
nursing (Van de Perre, Simonon, Msellati, et al., 1991; Pizzo and
Butler, 1991). Such transmission would be difficult to distinguish from
transmission in utero or during birth in routine follow-up studies.

Investigators have tried to establish the diagnosis of infection early
by attempting to culture HIV virus from blood samples and by
searching for HIV genetic material with the polymerase chain reaction
(PCR) assay. However, the sensitivities of these two assays are limited,
especially in the first few weeks following birth (Rogers, Qu, Rayfield,
et al. 1989; Comeau, Harris, Mclntosh, et al. 1992).

De Grutolla, Tu, and Pagano (1992) used a different approach to
estimate the probability of transmission. In New York City, newborns
have been screened since December 1987 to determine HIV serostatus.
Although the data collected contain no information to identify indiv-
idual children, the numbers of seropositive children born each month
are known. The numbers of children who develop AIDS and their
dates of birth are also available from an AIDS registry for New York
City. De Grutolla, Tu and Pagano linked these two types of in-
formation and used statistical methods that also accounted for the
period before newborns were screened for HIV seropositivity and for
AIDS reporting delays. They estimated that the probability that an
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infant born to an infected mother would develop AIDS within 10 years
was 26% with a 95% confidence interval (13%, 39%). The point
estimate 26% tends to underestimate the probability of infection
because not all children who developed AIDS were reported and not
all infected children develop AIDS within 10 years. Indeed, one of the
most striking findings of this analysis is that the risk of developing AIDS
persists well into childhood.

2.5 SEXUAL TRANSMISSION AND PARTNER STUDIES

2.5.1 General Considerations

In the last section, the risks of infection from well denned point
exposures were considered. In this section, risks of infection from sexual
transmission are quantified using epidemiological studies called "part-
ner studies." Partner studies can provide unique epidemiological data
for studying sexual transmission because it is known if an individual
was exposed to an infected partner, and the numbers of contacts
between the partners may also be known.

The objective of partner studies is to estimate the probabilities of
transmission that are associated with various types of sexual behaviors.
The partner study is based on individuals who are known to be HIV
infected (the index cases), and their partners (the susceptible partners).
The index case is the potential source of infection for his or her
susceptible partner. Information is collected on the infection status of
the susceptible partner and factors that may affect the probability of
transmission. An important factor that affects this probability is the
number of sexual contacts between the index case and the susceptible
partner that occur subsequent to the infection of the index case.
Additional factors that could affect the transmission probability
include type of sexual behavior, use of condoms, degree of immuno-
suppression of the index case and presence of other sexually transmit-
ted diseases or conditions such as genital ulceration.

Ideally, a partner study would be conducted prospectively. In a
prospective study, the index case and the susceptible partner would be
followed to determine the numbers and types of contacts. The
susceptible partner would be serially tested for HIV infection in order
to determine if and when infection occurs.

However, nearly all partner studies are conducted retrospectively. In
a retrospective study, the current infection status of the susceptible
partner is determined, but, if the partner is infected, it is usually not
possible to determine when the partner was infected (or seroconverted).
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Attempts are made to ascertain the calendar time of infection of the
index case and the subsequent history of the partnership including the
numbers and types of contact, as well as any other high risk behaviors
that occurred outside the partnership. The prospective partner study
has a number of advantages over the retrospective study. First,
information on numbers and types of contacts are more reliable
because they are not subject to recall errors. Second, the time when the
susceptible partner became infected is determined, unlike the retro-
spective study in which only the current infection status (yes or no) is
determined.

There are several examples of retrospective studies of HIV trans-
mission. The Transfusion Partner Study involved partners of patients
with transfusion-associated HIV infection (Peterman, Stoneburner,
Allen, et al., 1988). The study involved spouses (susceptible partner)
who had sexual contact with the infected transfusion recipient (the
index case). Serum samples were obtained for HIV serological testing.
Spouses of the index patient were interviewed to determine the
numbers and types of sexual contact they had with the index case
subsequent to the transfusion. Spouses who were at risk of infection
through another source (e.g., intravenous drug use, or high risk sexual
behavior outside the partnership) were excluded. The Transfusion
Partner Study is unique because the date of infection of all the index
cases could be determined.

The Hemophilia Partner Study involved the female partners of HIV
infected patients with hemophilia (Ragni, Kingsley, Nimorwicz, et al.,
1989). Stored serum samples from patients with hemophilia were tested
to determine the date of HIV seroconversion. The date of seroconver-
sion was estimated as the midpoint of the interval between the dates of
the last seronegative and first seropositive sample. Information was
collected about sexual behaviors following the seroconversion of the
index case, as well as the health status of the index case (e.g., CD4+ T
cell count).

The California Partner Study involved female sexual partners of
HIV infected men (Padian, Marquis, Francis, et al., 1987). The men
(the index cases) were either bisexual, intravenuous drug users,
hemophiliacs or recipients of blood transfusions. Attempts were made
to ascertain the date of infection of the index case from interviews.
However, when the index case was infected through sexual trans-
mission, the calendar time of infection could only be approximated
(Jewell and Shiboski, 1990). Women such as intravenuous drug users,
who were at risk of infection from sources outside the partnership, were
excluded.
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There are a number of other partner studies that have provided
valuable information about heterosexual transmission of HIV. Laz-
zarin, Saracco, Musicco, Nicolosi, and the Italian Study Group on
HIV Heterosexual Transmission (1991) carried out a cross-sectional
study of women who were partners of HIV infected men. They
estimated that about 28% of the women were seropositive. Similar
results on male-to-female transmission were obtained by the European
Study Group (1989). De Vincenzi (1992) reported that HIV
transmission from female-to-male transmission occurred in 12% of
partnerships in the Multicenter European Partner Study.

A major objective of the partner study is to estimate the infectivity
parameter, y, and to identify covariates that affect infectivity. The
infectivity is the probability of viral transmission from a given contact
between the partner and the index case (Wiley, Herschkorn, and
Padian, 1989). If information on numbers of contacts cannot be
ascertained, or, if such information is unreliable, it is possible only to
estimate the probability of transmission per partnership rather than per
contact.

In Section 2.5.2, statistical methods are outlined for estimating
infectivity under the simplifying assumption that infectivity is constant
across partnerships. More complex models that account for heterogene-
ity in infectivity are described in Section 2.5.3. Additional topics are
considered in Section 2.5.4. Jewell and Shiboski (1992) review statist-
ical considerations in the design and analysis of partner studies of HIV
transmission.

2.5.2 Statistical Methods for Partner Studies

Data collected in a retrospective partner study include the current
infection status of the susceptible partner and the estimated number of
contacts between the partners. The number of contacts refers to the
contacts that occurred between the time the index case was infected
and the time of ascertainment of the infection status of the susceptible
partner. For the ith partnership, let

and let Kt be the number of sexual contacts between the ith index case
and his or her partner. We assume that the susceptible partner was at
risk of HIV infection only through contact with the index case.
Methods to relax this assumption are considered briefly in Section
2.5.4.
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The simplest statistical model assumes that each contact produces an
independent chance of infection and that the probability of trans-
mission on each contact is the constant, y. Under these assumptions, the
probability that the susceptible partner is infected after K contacts,
p = P ( r = 1 \ K contacts), is

If one had an estimate of p, then the infectivity parameter could be
estimated by solving (2.5):

For example, data from the California Partner Study is summarized in
Table 2.1 where the numbers of contacts have been grouped into
intervals. There were 21 partnerships who reported between 200 and
299 contacts, and in 8 of these partnerships the susceptible female
became infected. Thus, an estimate ofp after 250 contacts (the interval
midpoint) isp = 8/21 = .381 and from (2.6) it follows that an estimate
of the infectivity is

This estimate of infectivity was based only on a single column in Table
2.1. A better estimate would be based on all the data. This is best done
using a generalized linear model. By twice taking logs of equation (2.5)
one obtains

The parameters in model (2.7) can be estimated using the data
collected on JV partnerships ( r t , K i ) i = 1 , . . . , JV. This can be done
with the generalized linear interactive modeling system (GLIM)
(Payne, 1986) by specifying (i) binomial error, («) a complementary
log-log link and (Hi) inclusion in the linear predictor of both an offset
term, log Kit and an intercept term, B0. The intercept term, B.0, is
related to infectivity by the equation, B0 = log{ —log(l — y)}. Using
this methodology on the California Partner Study, Jewell and Shiboski
(1990) estimated the intercept as  = —6.9, the corresponding infec-
tivity parameter was

The crucial assumption in this approach is that the infectivity y is a
constant both across partnerships and from contact to contact within a
partnership. A generalization of model (2.7) is

B.0



Table 2.1 Grouped Data from California Partner Study

Number of Contacts

Female partner
infected

Female partner
not infected

JV

*

0-9

2

22
24
.08

10-49

6

20
26
.23

50-99

2

18
20
.10

100-199

3

18
21
.14

200-299

8

13
21
.38

300-399

3

7
10

.30

400-599

8

6
14

.57

600-799

2

9
11

.18

800-1499

2

6
8

.25

1500-2170

2

2
4

.50
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Model (2.8) allows the coefficient of log A", which is called the slope
parameter, B1 to be arbitrary. This is in contrast to model (2.7) where
the slope B1 was forced to be 1.0. When B1 is not equal to 1.0, the
probability of transmission changes from one contact to the next. In
particular, the conditional probability of infection on the jth contact
given that the individual is not infected after the (j — 1 )st contact is not
constant as j varies. If B1 > 1, this conditional probability of infection
increases monotonically withj. If B1 < 1, the conditional probability of
infection decreases monotonically with j. There are analogies with the
analysis of survival data: Equation (2.8) defines a discrete time Weibull
survival model, where the number of contacts plays the role of time
(Kalbfleisch and Prentice, 1980) and B1 is the shape parameter. The
conditional probability of infection on con tact j given that no infection
has occurred before contact j is analogous to the usual hazard function
for survival time data.

Jewell and Shiboski (1990) fit model (2.8) to the California Partner
data, and obtained B1t = .22, which suggests that the conditional
probability of infection decreases with increasing contacts. The results
of fitting models (2.7) and (2.8) are displayed in Figure 2.1. Figure 2.1
suggests that the simpler model (2.7) underestimates infection risk at
lower numbers of contacts.

Two explanations have been suggested why model (2.7) or model
(2.5) may not adequately describe data from the California Partner
Study. The first explanation is that the infectivity varies across
partnerships. Transmission may occur more easily in some partnerships
than in others, perhaps because of confounding variables such as
condom use, or the presence of genital ulcers. These factors cause
heterogeneity in infectivity. The susceptible partners in partnerships
with high infectivities becomes infected after only a few contacts and
are removed from the "at risk" population. This leaves a dispropor-
tionate number of susceptible partners in partnerships with low
infectivity and creates the appearance of a decreasing per contact risk
of infection with increasing contacts. Values of B1 less than 1.0 reflect
this decreasing hazard. These are precisely the same "frailty selection"
effects observed in estimating hazards of survival in heterogeneous
populations (Vaupel and Yashin, 1985). Models to account for
heterogeneity in infectivity are described in Section 2.5.3.

A second explanation for the lack of fit of model (2.7) to the
California Partner Study is measurement error in the number of
contacts subsequent to infection of the index case. This error could
reflect either failure to accurately identify the time when the index case
was infected or failure to remember the rate at which contacts occurred
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Figure 2.1 Graphs of the fitted regression lines using model 2.7 and model 2.8
from the California Partner Study. (Source: Jewell and Shiboski, 1990.)

after the index case was infected. If random measurement error is
ignored, the estimated regression coefficient on log K will be attenuated
toward 0. The lack of fit of model (2.7) is likely due to a combination of
both measurement error in the number of contacts, and, heterogeneity
in infectivity.

Models (2.5) and (2.7) are based on the assumption that each
contact provides an independent constant chance of infection, y.
Alternatively, one can estimate P(K), the probability that infection
occurs at or before the Kth contact, non-parametrically. Because P(K)
is a distribution function, it must be monotonic non-decreasing. Thus,
the nonparametric estimator must maximize the likelihood subject to
this constraint (Kaplan, 1990). Ayer, Brunk, Ewing, et al. (1955)
developed a simple algorithm known as the "pool-adjacent violators
algorithm" to obtain the maximum likelihood estimate of P(K). Jewell
and Shiboski (1990) discussed this algorithm and applied it to the
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California Partner Study. Here, the algorithm is illustrated (Table 2.2)
on the Grouped California Partner Study data in Table 2.1. The basic
steps are as follows: (1) Compute the column proportions; (2) Pool the
(K - 1) and Kth columns together if P(K - 1) > P(K) and recompute
the proportions; (3) Reinspect the proportions (in the possibly reduced
number of categories) and again pool adjacent categories together if
P(K — 1) > P(K); (4) Continue until P(K) is nondecreasing. The
results in Table 2.2 show that the nonparametric estimate of the
probability of transmission with fewer than 10, 200 and 1500 contacts
are 0.08, 0.16, and 0.36, respectively. For comparison, the model (2.7)
yielded y — .0010 and from equation (2.5) one obtains P(10) = 0.01,
P(200) =0.18 and P(1500) =0.78. Model (2.7) leads to an under-
estimate of risk for small numbers of contacts and to an overestimate for
large numbers of contacts. Kaplan (1990) suggests a goodness of fit
procedure to compare a parametric model like model (2.7) with the
nonparametric maximum likelihood estimate.

2.5.3 Models for Heterogeneity in Infectivity

The assumption that infectivity is a constant across partnerships is an
oversimplification. Infectivity may depend on covariates such as
condom use, concommittant sexually transmitted diseases and type of
contact. We outline two approaches for modelling heterogeneity in

Table 2.2 Illustration of Algorithm to Compute
Nonparametric Maximum Likelihood Estimate
P(K) Using the Data in Table 2.1

Iteration

Number of Contacts

0-9
10-49

50-99
100-199
200-299

300-399
400-599

600-799
800-1499
1500-2170

(1)

.08
.23")

.lOJ

.14

.38

.30

.57

.18

.25

.50

(2)

.08

.m

.14J

.35

.401

.25)

.50

(3)

.08

.16

.35

.36

.50
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infectivity. The first approach incorporates known covariates into the
statistical model. The second approach accounts for heterogeneity
through a random effects model.

Covariate Modelling of Infectivity
Suppose we have a vector of known covariates, X, for each partnership.
The covariates could describe either the index case or the susceptible
partner (e.g., presence or absence of genital ulceration) or character-
istics of the partnership (types of contacts). We model infectivity as a
linear function of the covariates using a complementary log-log link
function:

Model (2.9) generalizes model (2.8). The regression coefficients a
describe how the infectivity depends upon the covariates. Model (2.9)
can be fit in GLIM by incorporating the covariate X as part of the
linear predictor. Jewell and Shiboski (1990) used model (2.9) to
analyze the California Partner Study. They found that anal inter-
course, nonmenstrual bleeding and failure to use condoms increased
risk of HIV transmission. Results from other partner studies are
presented in Section 2.3.4.

Random Effects Model for Infectivity
If available covariates do not explain the observed heterogeneity in
infectivity, a random efiects model may be useful. The parameter, y,
the infectivity for a given partnership, is considered to be a random
variable drawn from a probability density, f(y). Suppose the ith
partnership had Kt contacts. The probability of transmission is

The objective is to estimate the parameters of the probability density
f ( y ) . This is done by maximizing the likelihood function

where expression (2.10) is substituted for pt. For example, Wiley,
Herschkorn and Padian (1989) suggested a beta distribution for y:

where a and b are the parameters of the beta distribution. Note
that E(y) = a / ( a + b) and variance(y) = ab/(a + b)2(a + b + 1), with



Risk Factors for Infection and the Probability of HIV Transmission 45

a > 0, b > 0. Wiley, Herschkorn, and Padian (1989) show that when y
has a beta distribution, expression (2.10) reduces to

which is called a beta binomial distribution.
An alternative random effects model is to assume partnerships are

drawn from a mixture of two subpopulations. For example, a pro-
portion of partnerships, 7t0, have infectivity y0 and the remaining
proportion, TT, = 1— n0, have infectivity y1. Under this mixture
model, expression (2.10) becomes

Wiley, Herschkorn, and Padian (1989) applied these models to the
Transfusion Partner Study. An unusual feature of the data is that it
appears that the likelihood of infection does not increase with increas-
ing numbers of contacts. For example, among husbands of wives
infected by transfusion, the mean number of contacts were 67 and 180
for the seropositive and seronegative husbands respectively. Similarly
among wives of husbands infected by transfusion, the mean number of
contacts were 82 and 156 for the seropositive and seronegative wives
respectively. The question is whether this anomalous observation could
be explained by heterogeneity in infectivity. Wiley, Herschkorn, and
Padian (1989) used both the beta binomial model (2.12) and a special
case of the mixture model (2.13) where a proportion of partnerships
was assumed to have zero infectivity (i.e., y1 was set to 0.0), to analyze
the data on the 59 male index cases and their female partners. The
estimates obtained from the mixture model were:

The beta binomial model yielded similar results. When the simple
model (2.7) was fit to this data, y = .00139. However, a likelihood ratio
test indicated that the mixture model and the beta binomial model fit
the data considerably better than equation (2.7). Shiboski and Jewell
(1992) also analyzed data from the Transfusion Partner Study data
using a generalization of model (2.8). They found that the estimated
slope B1 was negative, and that this could not be explained by
heterogeneity or random measurement error. They suggested that it
could be due to unknown covariates.
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2.5.4 Additional Topics

Estimating the Probability of Transmission Per Contact as
a Function of Time
The methods outlined in the preceeding sections have been extended to
address a number of other situations and questions. Shiboski and Jewell
(1992) were concerned with estimating infectivity as a function of time
since infection of the index case, y(t). The function y(t), called the
infectivity curve, defines the probability of transmission per contact at
time t following the infection of the index case. Important questions
concern the temporal evolution of the infectivity curve, y(t). Some
biological theories suggested that infectivity is highest shortly after the
time of seroconversion, and again shortly before the onset of symptoms
or AIDS diagnosis. The shape of the infectivity curve has an impact on
epidemic growth (Section 9.3). In order to estimate the infectivity
curve, information or assumptions are required not only about the total
number of contacts that occurred by calendar time T but also about
when the contacts occurred. Suppose we are dealing with "long-term
partnerships" (Shiboski and Jewell, 1992), that is partnerships in
existence at the time of the index case's infection. A simple assumption
is that the contacts occur according to a homogeneous Poisson process.
Under this assumption the K contacts are distributed uniformly over
the interval [0, T]. Suppose contacts occur according to a homog-
eneous Poisson process with constant rate p. Then, the probability the
susceptible partner becomes infected before T time units (time is
measured from when the index case became infected) is

as shown by Shiboski and Jewell (1992). Parametric models for y(t)
could be fit to the data by inserting the above expression in the
likelihood function (2.11). Note that if the value assumed for /i is too
large, y(/) will be correspondingly underestimated because only the
product y(t) • \a is identifiable. Moreover, the estimate of y(t) depends
on the assumption that contacts follow a homogeneous Poisson process.
For example, if contacts occur at an increasingly slower rate, perhaps
due to onset of symptoms, the assumption of homogeneity may
incorrectly suggest declining infectivity. A more general model pos-
tulates that contacts occur according to a nonhomogeneous Poisson
process with intensity n(t), leading to the previous expression for
P(T= 1) with n(t) replacing fi. If u ( t ) was not completely specified, it
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would be possible to estimate only the product of the infectivity curve
and the contact rate, u ( t ) - y ( t ) , because one could not distinguish
between declining infectivity and declining contact rates (Shiboski and
Jewell, 1992). However, if the shape of n(t) were known, the shape of
y(t) could be estimated. Even so, if the assumed scale of u(t) were
incorrect, so would be the estimate of y(t).

Estimating the Probability of Infection per Partnership
In some .studies information may be collected on numbers of partners
rather than numbers of contacts. In such situations it is not possible to
estimate the infectivity per contact, but it may be possible to estimate
infectivity per partner. For example, Grant, Wiley, and Winkelstein
(1987) analyzed data from the San Francisco Men's Health Study. The
study consisted of men who were initially seronegative, and who were
followed 6 months for evidence of seroconversion. Data were collected
on the numbers of partners each man was exposed to. The statistical
model assumed partners were selected at random from a pool in which
the probability a partner is infected, /, is known. Then if the z'th
individual reports nt partners during the 6-month period, the proba-
bility that this individual seroconverted (here we ignore the time lag
between infection and seroconversion) is

where yp is the probability of transmission from an infected partner
(i.e., the per partner infectivity). This expression could be substituted
for pi in the Bernoulli likelihood (equation (2.1 1)). Using this method,
Grant, Wiley, and Winkelstein (1987) estimated the infectivity per
partner for exposure to unprotected anal sex to be yp = .102 (95%
confidence interval .043 — .160). These investigators also attempted to
glean information about the infectivity per contact by making various
assumptions about the number of contacts each individual had with
each reported partner. For example, if three contacts per partner are
assumed, the estimated infectivity per contact was .0351 .

The methods described in Section 2.5.2 — 2.5.3 are applicable when
the susceptible partner is at risk for infection only through contact with
the index case. De Gruttola, Seage, Mayer, and Horsburgh (1989)
developed statistical methods that are applicable when the susceptible
partner is also at risk of infection from a source outside the partnership.
An additional parameter is introduced for the probability of infection
from a source outside the partnership.

Magder and Brookmeyer (1993) considered the situation in which
the partner who was the source of the infection (the index case) is
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unknown. Suppose both partners are infected and both partners are at
risk of infection from sources outside the partnership. Then the
direction of transmission is uncertain and, furthermore, the possibility
that both partners were infected from sources outside the partnership
cannot be ruled out. Madger and Brookmeyer use other covariates such
as a history of intravenous drug use or numbers of previous sexual
partners to assist in identifying the partner who was the source of
infection (index case). The approach requires modelling the proba-
bility of infection from outside the partnership and the probability of
transmission within the partnership simultaneously. Based on efficiency
calculations, Magder and Brookmeyer (1993) conclude that the
method will only be successful if one can identify a covariate that is
highly predictive of the risk of infection from outside the partnership.

Implications for High Risk Behaviors
Estimates of infectivity are useful for quantifying risks associated with
various behaviors. For example, a number of investigators have
calculated the probability of infection as a function of numbers of
partners and contacts per partner. The motivating question was, "Is it
riskier to have more partners with fewer contacts per partner, or,
alternatively, fewer partners with correspondingly more contacts per
partner?" Assuming constant infectivity as in model (2.5), the proba-
bility an individual would be infected after c contacts with each of JV
partners is

where, as before,f is the probability that a randomly chosen partner is
infected. Wiley and Herschkorn (1988) and Eisenberg (1989) show
that having n contacts with one partner is less risky (lower probability
of becoming infected) than having the same number of contacts but
divided among more than one partner. However, surprisingly, if the
infectivity y is low, the number of partners does not significantly effect
this risk. Wiley and Herschkorn (1988) suggest that the "perils of
promiscuity" emerge as the infectivity increases. However, they cau-
tion that these conclusions are based on a model that does not account
for heterogeneity in infectivity.

Equation (2.14) can be refined to account for heterogeneity in
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infectivity. For example, consider a mixture model where a proportion
of partnerships have infectivity 1.0 and the remaining proportion

have infectivity 0.0. Then f in equation (2.14) should be replaced by
(nf). Under this model, and assuming f = .10 and = .189, the
probability of infection for an individual who had 10 contacts with one
partner is .019, compared to .174 for an individual who had one
contact with each of 10 partners. Thus the risk associated with large
numbers of partners becomes greater when infectivity varies among
partnerships (see also Eisenberg, 1991).

2.5.5 Summary

Estimates of infectivity derived from partner studies are uncertain and
subject to a number of important sources of error. One source of error is
measurement error in the number of contacts between the index case
and the susceptible partner. If the exact date of infection of the index
case is unknown, it is impossible to precisely estimate the relevant
numbers of contacts. Furthermore, considerable uncertainty and com-
plexity is introduced if either the susceptible partner is at risk of
infection from another source, or if it is unclear which partner was in
fact the index case. A number of crucial assumptions underlie the
statistical models used to estimate infectivity. These include as-
sumptions of independence of the chance of transmission across
contacts, constancy of infectivity and the form of the models used to
account for heterogeneity and temporal evolution in infectivity.

The large uncertainties in infectivity are illustrated by the wide
range of estimated transmission probabilities found in various studies
and by various methods of analysis arid modelling assumptions (Table
2.3). The probability of transmission per partnership is, of course,
larger than the probability of transmission from a single contact with
an infected partner (Table 2.3). Although precise quantitative es-
timates of transmission probabilities are unavailable, some qualitative
conclusions can be drawn from these data. There is evidence for
heterogeneity in infectivity among partnerships. Overall the proba-
bility of HIV transmission from a single contact with a randomly
selected infected partner is believed to be less than 0.20 and could be as
low as .001. Male to female transmission appears to be more efficient
than female to male transmission although there is considerable
uncertainty in both the per partner and per contact transmission
probabilities (Padian, Shiboski, and Jewell, 1991; De Vincenzi, 1992).
A number of factors appear to affect heterosexual transmission proba-
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Table 2.3 Summary of Some Estimates of Infectivity
Transmission

I.

II.

Transmission probability from a single contact with an
infected partner

Heterosexual transmission
Male to female (California Partner Study)
Male to female (Transfusion Partner Study)

Homosexual transmission

Per partnership transmission probability from a
relationship with an infected partner

Heterosexual transmission
Male to female
Female to male

Homosexual transmission
San Francisco Men's Health Study

from Sexual

.001a--.03b

.001a-. 189b

.008'-. 032'

.20*, .27", .28/

.O1d-.12g

.10h

aWiley, Hcrschkorn, and Padian (1989), assuming constant infectivity model (2.5); see also
Jewell and Shiboski (1990).
bWiley, Herschkorn, and Padian (1989), assuming a mixture model.

'DeGruttola, Seage, Mayer, and Horsburgh (1989); refers to receptive anal intercourse.

'Padian, Shiboski, and Jewell (1991).

'European Study Group (1989).
^Lazzarin, Saracco, Musicco, Nicolosi, and Italian Study Group on HIV Transmission (1991).

•De Vincenzi (1992).
AGrant, Wiley, and Winkelstein (1987); refers to receptive anal intercourse.

bilities (see also Section 2.3.4). Condom use reduces risk of transmission
substantially. Several studies have demonstrated that .severe im-
munodepression in the male "index case" increases the risk of trans-
mission to a female partner. Other factors, such as anal sex, bleeding
during sex, and the presence of genital lesions increase the risk of
transmission to female partners. As mentioned in Section 2.3.2,
unprotected receptive anal intercourse greatly increases the risk of
transmission among homosexual men.
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Surveys to Determine
Seroprevalence and Seroincidence

3.1 INTRODUCTION

The introduction and licensing of reliable assays to detect HIV in 1985
prompted studies to determine seroprevalence. Some studies used sera
stored in previous years, but most studies relied on new samples
available in a variety of settings, such as clinics for sexually transmitted
diseases. Valuable and comprehensive reviews of such data (GDC,
1987b, 1989a) give detailed references for studies of homosexual and
bisexual men, intravenous drug users, patients with hemophilia and
other persons known to be at risk. Table 3.1 contains selected
seroprevalence data for the major risk groups of homosexual men and
intravenous drug users as well as data for female prostitutes and
patients with hemophilia. It is clear that seroprevalence rates among
gay men increased rapidly in San Francisco and New York in the first
half of the 1980s and that seroprevalence rates varied by city. Such
geographic variation is even more pronounced for intravenous drug
users and female prostitutes. Patients with severe hemophilia A, who
required large amounts of clotting factor, tended to seroconvert earlier
and in larger proportions than patients with less severe clotting
disorders.

Despite the huge variability in these seroprevalence estimates, they
provided a completely new perspective on the magnitude of the
epidemic. In June of 1986, when 21,517 cases of AIDS had been
reported to the CDC, seroprevalence data were used to estimate an
HIV prevalence in the United States of between 1 and 1.5 million
(Public Health Service, 1986). The shocking disparity between num-
bers of AIDS cases and estimated HIV prevalence reflects the long
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Table 3.1 Selected Seroprevalence Rates (%) in the United States, 1978-86

Homosexual Men
New York City
Washington, D.C.
San Francisco

Hepatitis B Cohorta

Random Sample from
High Risk Census tractsb

Boston

Intravenuous Drug Users
New York City
New Jersey

< 5 miles from Manhattan
100 miles from Manhattan

Boston
Chicago
San Francisco
New Orleans

Female Prostitutes
Northern New Jersey
Miami
Atlanta

Hemophilia Patientsc

Severe Hemophilia A
Other Clotting Disorders

1978 1979 1980 1981 1982 1983 1984

53 61
12

0.3 4.1 13.8 28.1 42.4 46.7 48.4

22.8 48.6
21

46 68

59
2

42
11
9

0 0 0 1 2 3 4 5 9 6 8
0 0 0 0 0 1 0 1 5

1985 1986

65
44

48.8 49.6

49.4

1

57
19
1

72 73
25 29

Motes: Unless noted by letters a, b, or c, these estimates are taken from Goedert and Blattner (1988), who provide primary references. The letters a, b, and c refer
respectively to Hessol, Lifson, O'Malley, et al. (1989); Winkelstein, Samuel, Padian, et al. (1987); and Goedert, Kessler, Aledort, et al. (1989).
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incubation distribution of HIV infection. This large estimate of HIV
prevalence made extrapolated projections of 270,000 cumulative AIDS
cases through 1991 seem plausible (Public Health Service, 1986;
Morgan and Curran, 1986). Although these estimates of seropre-
valence may have been a little high, and although the cumulative
AIDS incidence through 1991 turned out to be 206,392 (CDC, 1992a),
these initial Public Health Service estimates were remarkably prescient
and provided a useful framework for public health planning and
allocation of resources.

In addition to providing important information on the magnitude of
the epidemic, seroprevalence studies suggested strategies to prevent
further infections. For example, the alarming rates of infection among
female prostitutes in some locations indicated a need for informing the
public, offering testing and counseling services to female prostitutes,
and encouraging the use of condoms.

Although data from selected populations such as those in Table 3.1
helped define the magnitude of the HIV epidemic and suggested
strategies for prevention, such data are not ideally suited for estimating
HIV prevalence in the general U.S. population (Sections 3.3 and 3.4).
It is difficult to know if members of a selected population are
representative of the general population or even of a subclass of the
general population. For example, homosexual males in clinics for the
treatment of sexually transmitted diseases, where a selected sample
might be obtained (see Table 3.6), may have different HIV prevalence
rates from other homosexual males. This problem is called "selection
bias." Furthermore, the information on what proportions of the
general population correspond to various subclasses, such as homo-
sexual men, is uncertain, which compounds the difficulty of estimating
prevalence in the general population from data on subclasses. For these
reasons, it is attractive to consider the use of representative sampling
methods to try to estimate seroprevalence in the general population.

In principle, a representative survey sample avoids sampling bias
and is an ideal approach for estimating seroprevalence in the general
population. However, this method depends on being able to identify all
members of the population under study in order to set up a rigorous
probability sampling plan. In addition, those sampled must agree to
provide a specimen for determination of HIV status. In Section 3.2, we
discuss representative sampling to estimate HIV prevalence rates in a
defined population. Even studies based on representative sampling are
subject to potentially serious biases. The most serious bias, "nonre-
sponse bias," occurs when the very people who are most likely to be
infected refuse to participate in the study. In Section 3.3 we review
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efforts to estimate seroprevalence rates in selected populations, and in
Section 3.4 we consider methods to combine such estimates to obtain
estimates of prevalence for the United States. In many instances, nearly
everyone in these selected populations will provide a blood sample, so
that nonresponse bias is less an issue, but, as mentioned previously, it is
often unclear just how to relate these selected populations to the
general population in the United States.

An even more challenging goal is to estimate trends in seroincidence
rates (Section 3.5). We discuss how such rates have been estimated for
selected cohorts using survival methodology and for other populations
by studying a series of cross-sectional seroprevalence surveys.

Because back-calculation (Chapter 8) provides information on the
infection curve, it can also be used to estimate seroincidence rates,
cumulative numbers infected, and HIV prevalence rates (Rosenberg,
Biggar, Goedert, and Gail, 1991; Brookmeyer, 1991; Rosenberg, Gail,
and Carroll, 1992). It is helpful to compare seroprevalence estimates
obtained by back-calculation with estimates obtained by survey
methods, because these two approaches are based on completely
independent data sources (Chapters 8 and 10).

3.2 ESTIMATING SEROPREVALENCE RATES FROM
REPRESENTATIVE (PROBABILITY-BASED)
SAMPLES

3.2.1 Defining the Population and Survey Approach

The best survey strategy depends on the nature of the population for
which one desires to estimate HIV prevalence and prevalence rates.
One such population might be all persons living in the United States in
1990. Another might be gay men between ages 25 and 54 in 19 denned
high-risk census tracts of San Francisco. Another might be all intraven-
ous drug users in California in 1990. A fourth might be all women who
had live births in the state of New York in 1990. In order to obtain a
representative or exhaustive sample from such populations, one must
be able to identify all members of the population and define a sampling
mechanism that selects each member of the population with a known
probability. Because the blood of practically every newborn in New
York State is now assayed for antibodies to HIV (Novick, Glebatis,
Stricof, et al., 1991) and because maternal antibodies to HIV are found
in the blood of newborns, one has an exhaustive sample of the
population of women who had live births. Hence, the seroprevalence
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rate is known without error in this population, except perhaps for a few
technical failures and for minor imperfections in the assay itself.

Winkelstein, Lyman, Padian, et al. (1987) estimated the number of
gay men aged 25 to 54, and the HIV seroprevalence among these men,
in 19 high-risk census tracts of San Francisco. They sampled residen-
tial blocks within each tract, the number of blocks sampled being
proportional to tract size, and the probability of block selection
proportional to block size. Then they sampled households within
blocks, the number of households sampled being inversely propor-
tional to block size. Finally, all single men aged 25 to 54 living in the
sampled households were invited to participate in a study to determine
their sexual practices and serostatuses. This sampling procedure
implied that each single man age 25 to 54 who lived in a household in
these 19 census tracts had the same chance to participate in the survey.
If all those who were offered the chance to participate had done so, a
truly representative sample of responses would have been obtained.
However, 645 (36.9%) of the 1750 sampled men refused to participate,
and 71 (4.1%) were not studied for other reasons. If the 1034 (59.1%)
men who did participate were nonrepresentative of the 1750 who were
sampled, estimates of the proportions engaging in various homosexual
practices and estimates of the seroprevalence among gay men could be
biased. Such bias is termed nonresponse bias, because it arises when the
nonrespondents have different measured characteristics from the
respondents.

It is hard to obtain a representative sample of intravenous drug users
in California because one does not know how to identify and contact
them. Some are in prison. Some have no fixed address. If one took a
representative sample of people living in households and asked them to
identify themselves as drug users or not, it is likely that many would
give false information. Thus it is difficult to set up a procedure to obtain
a representative probability-based sample for this population. Instead,
one usually studies selected subpopulations, such as intravenous drug
users in treatment programs, and tries to use data from such selected
subpopulations to make informed judgements about what the rates
might be in the general population of intravenous drug users (Section
3.3).

To estimate HIV prevalence in the United States, one could imagine
obtaining a representative sample, but the issue of nonresponse bias
and other problems reduce the attractiveness of this approach. We
discuss these issues in connection with a representative survey con-
ducted in Dallas between September and December of 1989 (CDC,
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199 la). Partly on the basis of this pilot study, officials at the Centers for
Disease Control decided not to attempt to obtain a representative
sample from the United States at present (CDC, 199la).

Instead, as described in Section 3.3, survey estimates for the United
States have been obtained by dividing the entire population into
exclusive and exhaustive strata. Samples in selected subpopulations are
used to estimate seroprevalence rates in these strata, and the HIV
prevalence in the entire United States is estimated as a sum over strata
of the product of the number of persons in each stratum times the
corresponding estimated seroprevalence rate (Section 3.4). Some of the
difficulties of interpreting these data are indicated in Section 3.4.

To summarize, the choice of the target population for which
seroprevalence estimates are required is an important determinant of
the survey strategy. If members of the population can be identified and
contacted, a rigorous procedure for representative probability-based
sampling can often be developed. Although such representative sam-
pling is ideal in principle, one may face uncertainties from non-
response bias and other difficulties (Section 3.2.2). If it is hard to
identify or contact the members of the target population, or if it is
thought that available adjustment procedures cannot adequately
control for nonresponse bias, one may be forced to abandon the
representative sampling approach. An alternative approach is to base
estimates on samples from selected subpopulations and stratification
techniques (Section 3.4). However, these latter estimates are not
protected by random sampling from the target population and are
subject to selection biases of unknown magnitude.

3.2.2 General Problems in Estimating Seroprevalence in
the United States by Representative Sampling

Public health officials began studies to determine the feasibility and
reliability of a representative survey to estimate seroprevalence in the
United States in late 1987. A pilot study to test survey methods was
planned for July 1988 in Washington, D.C. However, opposition by
community leaders and District of Columbia public health officials
caused the cancellation of this pilot study. In a second attempt, officials
from the National Center for Health Statistics worked closely with
community leaders and public health officials in Allegheny County,
Pennsylvania, where a pilot household survey was carried out in
January 1989. In this survey, 263 (85%) of 308 eligible persons
provided questionnaire data and a blood sample. This result en-
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couraged officials to carry out a larger "pretest" survey in Dallas, in
final preparation for a national survey.

These experiences demonstrated the importance of obtaining the
cooperation of local officials and the public in order to carry out a
survey on sensitive issues related to HIV disease. In addition, public
health officials identified four potential sources of bias that could affect
the pretest survey in Dallas and the subsequent national survey
(Massey, Ezzati, and Folsom, 1989). We discuss these potential biases
for a survey design like that used in the Dallas "pretest."

Coverage Bias
The survey is based on sampling households. Therefore, individuals
who are institutionalized for crimes, drug treatment or mental illness
and homeless persons are not represented. Thus, the survey suffers
from coverage bias if the aim is to estimate HIV prevalence among all
people in the target population, including those who do not live in
households. The major impact of undercoverage is on intravenous drug
users (IVDUs). If, for example, only half of IVDUs are covered by
the household survey, and if IVDUs constitute 25% of all persons
with HIV infection, the coverage bias would amount to 0.25 x 0.5 x
100=12.5%.

Assay Errors
The HIV assay with Western blot confirmation is very reliable
(Chapter 6). Assuming a sensitivity of 0.92, a specificity of 0.9999, and
an HIV prevalence rate of 0.005, the probability of a positive test result
is 0.005 x 0.92 + 0.995 x (1 - 0.9999) = 0.0046 + 0.0001 = 0.0047.
Thus the net effect of assay errors would be to underestimate HIV
prevalence by 100 x (0.0050 - 0.0047) = 0.03%, which is 6% of the
true prevalence in this example.

False Information about Risk Behaviors
If all sampled persons gave a blood sample, there would be no need to
inquire about risk behaviors in order to estimate HIV prevalence. An
important motivation for gathering information on risk behavior, in
addition to its value for understanding how HIV infection spreads
(Chapter 9), is to try to impute the missing HIV serostatus of those
sampled individuals who refuse to provide a blood sample. If persons
who refuse to provide blood often falsely deny behaviors that put them
at high risk of HIV infection, such as male-to-male sex or use of
intravenous drugs, this approach to imputing HIV prevalence may
lead to serious underestimates of prevalence.
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Nonresponse Bias
The major problem facing this survey is nonresponse bias, which arises
when the true seroprevalence in the sampled individuals differs from
that of those sampled individuals who do not provide blood, the
nonrespondents. Suppose that a fraction, /, refuse to provide blood,
that t is the seroprevalence among responders and that = p is
the seroprevalence among nonresponders. The quantity p is the
relative risk of seropositivity of nonresponders compared to responders.
Then the seroprevalence in the entire population is

and the ratio of true seroprevalence to that in respondents is

Note that this ratio is one if everyone responds (f = 0) or if p = 1. The
condition p = 1 means that nonresponders and responders have the
same seroprevalence rates so that respondents are representative of the
entire population.

Hull, Bettinger, Gallaher, et al. (1988) studied nonresponse bias
among patients in a New Mexico clinic for sexually transmitted
diseases. These patients were invited to be tested for HIV under
conditions of anonymity. The patient could obtain his or her result by
calling the clinic one week later and giving an identification number.
Persons who were HIV positive were asked to return to the clinic,
where their serostatus would be revealed and counseling offered. The
investigators also tested previously stored sera used for syphilis assays to
determine the HIV serostatus of those who refused to be tested. These
latter tests were performed in a blinded manner so that test results
could not be identified with particular patients. Nonresponse rates, f,
for men were small (Table 3.2), but the relative risk p was 8.8 for black
and Hispanic men, 7.4 for homosexual men, 5.3 for all men and 2.7 for
white men. The corresponding ratios of true prevalence to prevalence
among respondents were 2.63, 2.02, 1.75 and 1.22. In particular, the
true prevalence rate for all men was 1.75 times the rate observed in
male respondents to the survey. It is noteworthy that even among
admitted homosexual men, nonrespondents had a much higher sero-
prevalence than respondents. Possibly, nonresponding homosexual
men tended to engage in very risky behaviors, such as receptive anal
intercourse, in greater proportions than responders. Possibly some
nonresponders who already knew they were symptomatic or HIV-
positive refused testing. If similar differences obtained among nonre-



Table 3.2 Nonresponse Bias Among Men in a New Mexico Clinic for Sexually Transmitted Diseases

All
Homosexual men
White men
Hispanic and black men

Patients Accepting
Testing

HI V + /Total
Tested (%)

8/782 (1.02)
5/90 (5.56)
5/338 (1.48)
3/430 (0.70)

Patients Refusing
Testing

HI V + /Total
Tested (%)

9/167 (5.39)
7/17 (41.2)
2/50 (4.0)
7/114 (6.14)

Nonresponse
Rate

(/)

.177

.159

.129

.210

Relative Risk
of Infection

(P)

5.26
7.41
2.70
8.80

Ratio of Population
Prevalence to

Prevalence
in Responders

(*/*i)

1.75
2.02
1.22
2.63

Source: Based on data in Hull, Bellinger, Gallaher, el al. (1988).
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spondents and respondents in the Dallas pretest survey or the national
survey, nonresponse bias would dominate the sources of error.

Several strategies are used to minimize nonresponse bias, as discussed
for the Dallas pretest survey (Section 3.2.3). First, every effort is made
to encourage participation and prevent nonresponse. Second, nonre-
spondents are approached repeatedly to obtain the needed information
and blood samples. However, there may be restrictions on how
vigorously one can pursue such data from nonrespondents. Finally, one
can attempt to impute the serostatus of nonresponders who never
provided a blood sample. Using data from responders, one first
constructs a model that predicts the probability of being seropositive
conditional on a set of demographic variables, risk factors and other
covariates. One then applies such models to nonrespondents to impute
their serostatus. The basic assumptions in this procedure are: (1)
conditional on available covariates, the nonrespondents have the same
probability of being seropositive as the respondents, and (2) the
probability model is valid for responders. Both of these assumptions are
questionable, and failure of these assumptions may lead to incomplete
corrections for nonresponse bias. If these adjustment procedures fail to
correct fully for nonresponse bias, there is said to be "residual
nonresponse bias."

3.2.3 The Dallas "Pretest" Survey
The target population for the Dallas household survey included all
people in Dallas County who lived in identifiable housing units and
who were between the ages of 18 and 54. The estimated target
population had 954,423 people, of whom about 267,000 were married
men, 203,000 were unmarried men, 286,000 were married women and
199,000 were unmarried women (Research Triangle Institute, 1990).
The basic survey strategy was to oversample households in census
blocks where HIV prevalence was thought to be high or medium
(Table 3.3). Classification of census blocks into high, medium or low
risk geographic strata was based on AIDS incidence rates, syphilis rates
and other factors (Massey, Ezzati, and Folsom, 1990). Within each
geographic stratum, household sampling was balanced so as to have
the same racial composition as for Dallas County as a whole.

Only 15 seropositive samples were detected among 1374 individu-
als who gave blood (Table 3.3). An estimate of the prevalence in
the entire population is obtained by weighting the stratum-specific
prevalence rates by the fractions that each stratum represents in the
entire population. This estimate is 2.558 x 0.0773 + 0.916 x 0.2165 +
0 x 0.7062 = 0.396%. In a population of 954,443, this corresponds



Table 3.3 Dallas Survey Data Within Geographic Risk Strata

Geographic
Strata

High risk
Medium risk
Low risk

Total

Identified
Eligibles"

480
676
568

1724

Percent of eligibles with blood
and questionnaire data

Provided Blood and
Questionnaire"

391
546
437

1374

79.7%

Number
HIV +

10
5
0

Percent
HIV +

2.558
0.916
0.000

Distribution of
Risk Strata in the
Population (%)

7.73
21.65
70.62

100.0

Note'. Population HIV prevalence {%) from the sum of products in last two columns is 0.396%
"Derived from exhibits 4.4 and 4.5 in Research Triangle Institute (1990).
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to 3780 infections. Note, however, that 1374/1724 = 79.7% of eligible
subjects provided blood. If the remaining 20.3% had higher HIV
prevalence, the estimate of 0.396% prevalence would be too low.
There was, in fact, further potential for nonresponse bias, because of
2141 occupied houses in the original sample, only 2061 (96%) were
allowed to be screened to identify eligible subjects.

The first strategy used to reduce nonresponse bias was to try to
minimize nonresponse rates by careful training of interviewers, enlist-
ing the support of community leaders, offering $50 for participation,
and providing strict assurances of anonymity. Nonetheless, 4% of
sampled household units were not allowed to be screened for eligible
subjects, and 22% of the identified eligibles did not provide blood
initially.

A second strategy was to try to obtain questionnaire data and blood
from initial nonrespondents. However, community leaders would not
allow every nonrespondent to be recontacted. Instead, a sample of 175
nonrespondents was recontacted. Of these, 87 were offered $100 to
provide questionnaire data only, and 88 were offered $ 175 to provide
both questionnaire data and blood. Twenty-three of those recontacted
provided blood and questionnaire data, and 64 provided questionnaire
data only. This recontact survey was called the Quality Assessment
Study (QAS), and QAS data are included in Table 3.3. Thus the
20.3% of nonresponders in Table 3.3 included 88 - 23 = 65 people
who would not give blood even when recontacted and offered $175.

There is reason to believe that nonresponders have higher seropre-
valence rates than responders. For example, 8.42% of never-married
men who responded to the initial questionnaire reported having had
male-to-male sex since 1978, compared to 46.71% of initially nonre-
spondent men who provided QAS questionnaire data (exhibit 4.17,
Research Triangle Institute, 1990). There are two reasons why the
relative risk for infection among never married men may be even
higher than the relative risk for male-to-male sex, .4671/0.0842 = 5.5.
First, those who refused to provide QAS data ("ultimate nonre-
sponders") may have higher proportions engaging in male-to-male sex.
Second, nonrespondents who report homosexual behavior may have
higher seroprevalence rates than respondents who report homosexual
behavior, as was found in the study (Table 3.2) of Hull, Bettinger,
Gallagher, et al. (1988). Similarly, 2.83% of men admitted using
intravenous drugs since 1978 on the initial survey, compared to
12.25% on the QAS survey (exhibit 4.15, Research Triangle Insti-
tute, 1990).

The previous calculation of 0.396% infected is partly adjusted for
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nonresponse bias because nonresponders in the high risk geographic
stratum are assumed to have a seroprevalence of 2.488%, whereas
nonresponders in the low-risk stratum are assumed to have a seropre-
valence of 0.000%. Nonetheless, there is every reason to suspect
residual nonresponse bias. For example, even conditional on being in
the high risk geographic stratum, it is likely that nonresponders have a
higher seroprevalence than responders.

A more elaborate "fully adjusted" correction for nonresponse bias
was carried out as described by Horvitz, Folsom, Ezzati and Massey
(1992). Those investigators assume that nonresponse is ignorable
among women, perhaps because earlier adjustments for women pro-
duced minimal changes in prevalence estimates (Massey, Ezzati, and
Folsom, 1990). Of 845 sampled males, 91 provided neither data on risk
factors nor blood specimens, either in the initial survey or in the QAS
survey. For these 91 males, a risk factor category was first imputed, and
then, conditional on that category, a probability of being HIV-positive
was imputed. For 36 other sampled males who had provided ques-
tionnaire data but no blood specimens, it was only necessary to impute
HIV status.

Risk behaviors for males age 18 to 54 were classified into eight
nonbaseline risk categories and one baseline category (Table 3.4). The
nonbaseline categories included 12 of the 13 HIV-positive men in the
survey. Logistic regression was used to estimate the probability that an
individual fell into one of these nine risk categories, based on the
following independent variables: age, race, sex, marital status, geo-
graphic stratum (high, medium or low risk), mention of survey
information sources, mention of objections to the survey, and attitude
toward the QAS survey. This logistic model was estimated from the 754
males who had completed the questionnaire. Then the model was used
to assign probabilities that nonrespondents belonged to particular risk
categories, leading to imputed estimates of numbers of nonrespondents
in each category (Table 3.4). Of the 64,868 persons who are esti-
mated to be nonresponders in a hypothetical complete census of all
469,409 males age 18 to 24 in Dallas County, 48,192 are imputed to
have no risk factors (Table 3.4).

It was assumed that any male who had not provided blood and who
did not fall into one of the eight nonbaseline risk categories in Table 3.4
was seronegative. The probability of being seropositive was computed
from a logistic model based on the number of male partners since 1978,
receptive anal intercourse, and the use of intravenous drugs since 1978.
This model was obtained by analyzing data from the 86 males with
blood samples who had at least one of the nonbaseline risk factor



Table 3.4 Estimated Sizes of Risk Groups and "Fully Adjusted" HIV Prevalence Rates in Dallas County,
Classified by Responses to the Initial Survey and QAS Survey

Risk Group Number of -
Receptive

1
1
3
4
5
6
7
8
9

Total

HIV

Anal Sex

Yes
Yes

Yes
Yes
No
No
No
No
No

males age

prevalence

Male
Partners

10 +
5-9
5-9
1-4

10 +
1-4
1-4
0
0

18-54

rate (%)

Initial Respondents
(Male)

Population
IVDU

No
Yes
No
No
No
Yes
No
Yes
No

Size"

3646
168
951

4831
1145
1595
5786

10,238
333,217

361,577

% HIV + °

33.05
0.00
9.43
3.89
0.00
0.00
0.00
2.46
0.00

0.48

QAS-Respondents
(Male)

Population
Size"

1078
0

3987
140

0
0

2505
6425

28,829

42,964

% HIV +

18.81
0.00

11.50
4.86
0.00
0.00
0.50
0.74
0.00

0.17

Nonrespondents
(Male)

Population
Size"

2776
0

1187
803
473

71
6140
5226

48,192

64,868

% HIV + °

24.82
0.00

11.50
4.86
3.17
2.67
0.50
1.07
0.00

1.49

Females age 18-54 (615 infected)
Total population
Number infected
95% confidence. interval on number infected

Dallas County

Population
Size"

7500
158

6125
5774
1618
1666

14,431
21,889

410,238

469,409

485,014
954,423

4047
2200-7500

Number
HIV + "

2097
0

684
234

15
2

43
356

0

0.73
0.127
0.42

'Imputed as described in Section 3.2.3 and by Horvitz, Folsom, Ezzati, and Massey (1992).
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combinations in Table 3.4. Of these 86 men, 12 were seropositive.
Summing probability-weighted individual estimates of the probability
of HIV infection yielded estimated numbers of nonrespondents who
were infected in each risk category and, hence, model-based seropre-
valence rates, not only for respondents, but also for nonrespondents
(Table 3.4). In some categories, the imputed seroprevalence rate is
higher among nonrespondents than initial respondents and QAS
respondents, but, surprisingly, the seroprevalence rate for nonrespond-
ent males in the first category was 24.82%, which is less than found
among initial respondents, 33.05%. The overall imputed seropre-
valence rate is 1.49% for nonrespondents, compared to 0.48% for
initial respondents and 0.17% for QAS respondents.

This imputation procedure yielded a "fully adjusted" prevalence
rate of 0.42% for the entire population (Table 3.4). The corresponding
number infected was 4047, with 95% confidence interval 2200-7500.
This "fully adjusted" value is only slightly higher than the prevalence
rate 0.396% obtained from geographic risk stratum specific rates
(Table 3.3).

There are several reasons to suspect that the procedures used to
produce Table 3.4 may have failed to account for nonresponse bias
completely. First, even conditional on factors such as age, race and sex
used to model the chance of a given risk behavior, the "ultimate
nonresponders" who failed to provide QAS questionnaire data and the
nonresponders who were never recontacted probably had higher
proportions with various risk behaviors than responders. Yet re-
sponders were used to model the probability of falling into a given risk
category. Second, even conditional on risk behavior category, it is
likely that those who failed to provide blood, including the
88 — 23 = 65 QAS "ultimate nonresponders," have higher seropre-
valence rates than those who provided blood, just as in Table 3.2.
Thus, even if the logistic model correctly describes the probability of
HIV infection given risk behaviors among those who provided blood, it
may not do so among those who did not provide blood. Third, it is
questionable whether that logistic model is reliable even for describing
risk of infection among those who provided blood, because it is based
on only 12 seropositive males. The results in Table 3.4 also seem
anomalous because the estimated seroprevalence among QAS
responders, 0.17%, is less than among initial responders, 0.48%,
and the estimated rate among nonresponders, 1.49% is only
p = 1.49/0.48 = 3.1 times that in initial responders. Finally, by the end
of 1989, about l/58th of all AIDS cases in the United States had been
reported from Dallas. If the epidemic in Dallas was typical, then a
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"fully adjusted" estimate of 4047 cases infected in Dallas would
correspond to 4047 x 58 = 234,700 infections nationally, which is
much smaller than national estimates based on selected surveys
(Section 3.4) and back-calculation (Chapter 8).

For these reasons, we present a sensitivity analysis to explore
plausible ranges of nonresponse bias (Table 3.5). We consider a range
of relative risk factors p in equation 3.2 that seem to be consistent with
data presented in the National Household Seroprevalence Survey
Feasibility Study Final Report, Volume 1 (Research Triangle
Institute, 1990) and with data in Table 3.2. Unfortunately, because we
have no definite information on nonresponders, it does not seem
appropriate to restrict the range of p to smaller values. We also consider
the possibly that the seroprevalence in the low risk geographic stratum
was 0.1% or 0.2%. These possibilities are quite consistent with chance,
because if the true rate were 0.2%, the chance of observing no
seropositives among the 437 members of the low risk stratum (Table
3.3) would be approximately exp(-437 x 0.002) = 0.42. Even
moderate relative risks of p = 5 are consistent with 7000 to 9000
infections, and higher numbers infected are also plausible (Table 3.5).

It might be objected that women are not subject to nonresponse bias,
even though a similar fraction of eligible women failed to give blood
(14%) as men (18%) (Exhibit 4.5, Research Triangle Institute, 1990).
However, because only 2 of the 15 seropositive results occurred among
women, the results in Table 3.5 would be little reduced by assuming
women were not subject to nonresponse bias.

Results like those in Table 3.5 are also subject to random variation.
Confidence intervals were obtained by Horvitz, Folsom, Ezzati, and
Massey (1992) from design weights. If we apply the same ratios of

Table 3.5 Sensitivity Analysis to Account for Potential Nonresponse Bias
on the Estimated Number infected in Dallas

Assumed Prevalence
in the Low Risk Geo|
Stratum

0.000
0.001
0.002

graphic
1

3780
4457
5125

2

4547
5362
6166

P

5

6848
8076
9287

10

10,685
12,600
14,489

Note: The quantity p is the relative risk of infection in nonresponders, compared to responders, used in equation
(3.2). The table assumes a nonresponse rate / = 0.203 in equation (3.2). In that equation, the prevalence rates
in responders it, = 0.396%, 0.467%, and 0.537% correspond respectively to the assumptions that
seroprevalence in the low risk stratum in Table 3.3 is 0.0%, 0.1% and 0.2%.
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confidence interval limits to estimated values as in Table 3.4, we get a
rough idea of stochastic uncertainty. For example, this procedure puts
a 95% confidence interval of (4400—15,100) about the estimate 8076
in Table 3.5. The sensitivity analysis therefore indicates that the survey
is consistent with substantially more infections than the "fully adjus-
ted" confidence interval of 2200—7500.

Rosenberg, Gail and Massey (1992) estimated the number alive and
infected in Dallas County on January 1, 1990, by back-calculation
(Chapter 8). One back-calculation procedure employed AIDS in-
cidence data only through mid-1987, before zidovudine was in wide
use. The back-calculated "plausible range," which takes uncertainty in
the incubation distribution into account, was 7500—14,600 infected. A
second back-calculation method used AIDS incidence data through
1990 and took treatment and changes in the AIDS surveillance
definition into account. Rosenberg, Gail and Carroll (1992) describe
the model used. This method yielded a plausible range of 7500—
20,000 infected. Both these results are substantially higher than the
"fully adjusted" range 2200—7500 found from the survey (Table 3.4).
The back-calculated estimates might be upwardly biased if the
incubation distributions used were too slow or if the infection curve was
decreasing rapidly between 1986 and 1990 (see Rosenberg, Gail, and
Pee, 1991 and Chapter 8). On the other hand, the "fully adjusted"
survey estimate may be too small if there is residual nonresponse bias
(Table 3.5). For these reasons, Rosenberg, Gail, and Massey (1992)
concluded that an intermediate range of 6000—11,000 infected, was
reasonable and consistent both with the survey information and with
back-calculation.

Partly because of these uncertainties associated with nonresponse
bias, it was decided not to attempt a national representative survey to
estimate HIV seroprevalence at present (CDC, 199la). Instead,
resources were used to support a family of surveys in selected popula-
tions (Section 3.3). It can be argued that the procedures used to adjust
for nonresponse bias in the Dallas pretest survey, such as those leading
to Table 3.4, would perform better in the national survey, because
much more data would be available to estimate the imputation models.
Other ways to strengthen such a survey have been described (Research
Triangle Institute, 1990, Chapter 6).

3.2.4 Group Testing to Preserve Anonymity

Gastwirth and Hammick (1990) proposed that blood samples be pooled
into batches before assaying so as to increase the confidence of
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study subjects that their HIV serostatus would remain anonymous.
Presumably, increasing subjects' confidence in anonymity through
group testing would increase participation rates, though this concept
has not been verified empirically. The proposal also has cost ad-
vantages, because only those batches that are screened as positive with
relatively inexpensive enzyme immunoassays (Chapter 6) need be
confirmed using more expensive procedures like the Western blot.

The maximum likelihood estimate of prevalence with groups of size
k = 10 has high statistical efficiency, compared to testing individuals
(k = 1), provided the prevalence is low. For prevalences 0.1%, 1%,
5%, and 20%, the ratios of the variance of the estimate based on
individual testing to the variance based on batch testing are 99.7%,
98.1%, 88.0%, and 50.4%, respectively (table 1, Gastwirth and
Hammick, 1989). Thus, group testing would be highly efficient in a
general population like Dallas County, where prevalence rates are well
below 5% (Table 3.3). However, statistical efficiency would be lost by
group testing homosexual men in a clinic for sexually transmitted
diseases, where prevalences are higher (Table 3.1).

This design has not been used in seroprevalence surveys. There
might be practical problems in deciding which specimens will be
batched together and in convincing a subject in a particular household
that his or her blood will, in fact, be pooled with other bloods. Most
representative surveys employ multistage cluster samples. The theory
in Gastwirth and Hammick (1989), which was based on simple random
sampling, would need to be extended to account for clustering.

Group testing has also been proposed as a way to reduce screening
costs in settings where anonymity is not desired (see Section 6.3).

3.2.5 Randomized Response Design

Randomized response (Warner, 1965) is a sampling procedure desig-
ned to yield unbiased estimates of the proportion of a group of people
with a given sensitive characteristic, without ever knowing precisely
whether that characteristic was present in any particular individual.
This procedure was proposed as a possible means to determine what
proportion of persons falsely denied risk behaviors for HIV infection
(Massey, Ezatti, and Folsom, 1989). The subject would flip two coins
and hide the outcomes. If one coin came up "heads" and the other
"tails," the subject would truthfully answer the question: "Have you
falsely denied being gay, bisexual or injecting street drugs?" If both
coins were "heads," the subject would say "yes"; if both coins were
"tails," the subject would say "no." If subjects followed these rules, the
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probability of a false denial of risk behavior, p, could be estimated,
because the probability of answering "yes" would be 0.5p> + 0.25. Yet
the interviewer would not know whether any particular subject had
answered the sensitive question.

Perhaps because this design requires that subjects be somewhat
sophisticated, willing to play the game, and willing to provide the true
answer when a "head" and "tail" are observed, the procedure was not
attempted in Dallas County.

3.3 SURVEYS OF SELECTED SUBPOPULATIONS

Staff at the Centers for Disease Control, other federal agencies, state
and local health departments, and a variety of private health or-
ganizations are carrying out seroprevalence surveys and monitoring
trends in a number of special subpopulations (Table 3.6). In 1987, staff
from the Centers for Disease Control initiated joint programs to
coordinate and standardize data collection methods, assay methods
and data management and analysis methods among the various
participating agencies (Pappaioanou, Dondero, Petersen, et al., 1990).
The resulting surveys in Table 3.6 are known as the "family of HIV
seroprevalence surveys." Ongoing surveys of populations 1, 2, 3, 4, and
5 in Table 3.6 were established in 46 metropolitan areas throughout the
Unite States and territories, and the serostatus of newborns is being
monitored in 44 states and territories. The aims of this program are to
guide prevention and control activities by studying HIV prevalence
trends and levels in various populations and to obtain some in-
formation useful for estimating national seroprevalence rates.

Blinded, anonymous testing of blood from all participants is used in
most of these surveys, so there is little potential for nonresponse bias.
Even in clinics that provide voluntary confidential testing to facilitate
counseling, blood is drawn for anonymous testing. Therefore, some
persons at high risk may avoid such clinics. Also, blood donors and
applicants for military service are advised that their blood will be
screened. It is thought that persons at high risk for infection tend not to
donate blood or apply for military service ("self-deferral"). The degree
of such selection bias is hard to quantify. The potential for selection bias
is present in every component of the family of surveys. Even the nearly
exhaustive sampling of blood from newborns does not preclude
selection bias for estimating seroprevalence in women of childbearing
age, because the probability of having a live birth may be related to
HIV infection status.

People at clinics for sexually transmitted diseases (STD), people in



Table 3.6 Sentinel Populations in the Family of HIV Seroprevalence Surveys

The range refers to the range of the median values over metropolitan areas unless otherwise indicated.

'CDC (1991b).

'St. Louis, Rauch, Petereen, et al. (1990).

'Gwinn, Pappaioanou, George, et al. (1991).
"St. Louis, Conway, Hayman, et al. (1991).

'Gayle, Keeling, Garcia-Tunon, et al. (1990).

•CDC (1989a).

'Department of Defense (1992). Data through March, 1992.
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Type of Population

1 . Persons with sexually
transmitted disease (STD):
homosexual men
males without other risk
females without other risk

2. IVDUs
3. Persons treated for

tuberculosis (TB)
4. Women seeking family

planning, prenatal care
and abortion services

5. Hospital patients admitted
for non HIV related
conditions

6. Primary care patients

7. Primary care patients

8. Childbearing women
9. American and Alaskan

Natives
10. Job Corps entrants

11. University students
12. Prisoners

13. Homeless persons
14. Civilian applicants for

military service

15. Blood donors

Point of Access

State and local STD clinics

Drug treatment centers
State and local tuberculosis

clinics
Clinics

Hospitals

Centralized clinical laboratories
throughout U.S.

Network of 242 primary care
physicians

Neonatal screening programs
Indian Health Service clinics

Dept. of Labor screening
program

University health clinics
Prisons and jails

Health clinics
Dept. of Defense screening

program

Blood collection agencies

Risk of Exposure
to HIV

increased

increased
increased

all levels

all levels

all levels

all levels

all levels

all levels

all levels
all levels

all levels
reduced by
self-deferral

reduced by
self-deferral
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Number of
Metropolitan Areas

34
43
43
40
18

38

21

39 states/territories

52 states/territories

9 universities
16 populations with com-
pulsory tests

52 states/territories

50 Red Cross Centers

Seroprevalence (%)
Number of

Clinics Median Range"

95 3.2 15-61
104 1.1 0.3-6.5
104 0.7 0.0-11
61 3.9 0.0-44
35 5.9 0.4-36

146 0.2 0.0-1.7

26 0.7 0.1-7.8

0.07 0.0-0.58

0.23 0.0-1.11

0.0 0.0-0.9
0.8 0.0-17

Black males 0.37;
Hispanic males 0.18;
White males 0.05;
Black females 0.14;
Hispanic females 0.09;
White females 0.02
Males 0.04;
Females 0.01

References

b
b
b
b
b

b

c

d

e

f
g

h

b
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treatment for drug abuse, and people in treatment for tuberculosis are
at high risk of HIV infection (Table 3.6).

Categories 4-13 in Table 3.6 represent populations at all levels of
risk. For example, the seroprevalence in newborns ranges from 0.00%
to 0.58% among 39 states (Table 3.6), and within Massachusetts, levels
range from 0.8% for inner-city hospitals to 0.09% for suburban and
rural hospitals (Hoff, Berardi, Weiblen, et al., 1988). Tremendous
variation is also seen among women in clinics for family planning and
prenatal care, among patients being treated for non-HIV related illness
in "sentinel" hospitals, in prison populations, and among university
students (Table 3.6).

The armed forces have been screening civilian applicants since 1985
(Brundage, Burke, Gardner, et al., 1990). Overall seroprevalence rates
have declined gradually from about 0.15% in 1986 to 0.11% in 1989 to
0.07% in 1991 (Department of Defense, 1992). These rates are much
higher in urban areas of the Northeast, and, as of March 1992, about
2.1 times higher in men than women. The ratio of rates for black,
Hispanic, and non-Hispanic white groups is 6.9 : 3.4:1.0 for men and
7.1 :4.6 :1.0 for women. Such racial differences have been seen in other
populations (table 10, CDC, 1989a). Seroprevalence increases almost
linearly with age from 16 to 30 among military applicants. Increasing
prevalence with age is also found in sentinel hospitals and patients at
STD clinics (figure 8, CDC, 1987b). It is thought that homosexual men
and intravenous drug users are aware of the military's screening
program and often decide not to apply. Such "self-deferral" would
tend to make prevalence rates lower in military applicants than in age
and race-matched populations from the same geographic regions.

Active programs to discourage persons at elevated risk of HIV
infection from donating blood (Chapter 6) also increase self-deferral
and account for the very low seroprevalences among blood donors
(Table 3.6).

3.4. ESTIMATING NATIONAL SEROPREVALENCE
FROM SURVEYS OF SELECTED SUBPOPULATIONS

Stratification is used to estimate national seroprevalence from surveys
in selected subpopulations. The entire population is stratified into
mutually exclusive and exhaustive subpopulations (i = 1, 2 , . . . / ) , and
the prevalence rate, pt, in each subpopulation is estimated from a
variety of surveys of members of that subpopulation. However, in most
cases it is not possible to obtain a representative probability-based
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sample of the subpopulation of interest. If the size of each sub-
population, «,-, is known, the national prevalence is

and the national prevalence rate is P = T/jV, where .
The Public Health Service (1986) used this method to estimate that

1-1.5 million people were infected in June 1986 (Table 3.7), at a time
when only 21,517 cases of AIDS had been reported. Such an estimate is
subject to considerable uncertainty. First, estimated prevalence rates in
a given selected population are subject to selection bias. Second, there
is enormous variability in prevalence rates for a given subpopulation
from one sample to the next (Section 3.3). Thus it is not clear what
estimate of pi to use. Third, it is not clear exactly how to define relevant
subpopulations. For example, it is difficult to define risky homosexual
behavior and to estimate the size of the homosexual risk groups. The
extimates of ni in Table 3.7 were based on studies of male sexual
behavior published by Kinsey, Pomeroy, and Martin (1948), which
may be outdated. Estimates of the numbers of intravenous drug abusers
are also uncertain, despite national surveys and innovative capture-
recapture studies used to estimate the prevalence of drug abuse
(Woodward, Bonett, and Brecht, 1985). Finally, in 1986, there was
very little information on other risk groups. For these reasons, the

Table 3.7 Public Health Service Estimates of HIV Prevalence in
the United States, 1986

Subpopulation

Exclusively homosexual
Other homosexual contact
Weekly IVDU
Less frequent IV drug use
Persons with hemophilia
Other Groups

(transfusion, infants,
other heterosexuals)

Total

Rounded total with allowance
for other groups

Estimated
Size

2.5 x 106

2.5-7.5 x 106

7.5 x 106

7.5 x 105

1.4 x 104

not available

Estimated
Prevalence
Rate (%)

15-20
10
30
10
70

not available

Estimated Number
Infected

375,000-500,000
250,000-750,000

225,000
75,000
10,000

not available

935,000-1,560,000

1,000,000-1,500,000

Mote: Adapted from table 13 in CDC (1987b).
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estimated HIV prevalence is uncertain. The broad range in Table 3.7
reflects uncertainty in the prevalence rate for exclusively homosexual
men and uncertainty in the number of men who engage in occasional
male-to-male sex.

A reevaluation of the breakdown in Table 3.7 (Table 14 in CDC,
1987b) yielded a slightly smaller estimate of 945,000-1,402,000 in-
fected. The subpopulation totals were: exclusively homosexual men
(5.00-6.25 x 105), other homosexual contact (1.25-3.75 x 105),
weekly IVDU (2.25 x 105), occasional IV drug user (104), persons
with hemophilia (104), heterosexuals without specified risk factors
(142 x 106 x 0.021% = 3 x 104), and other groups, such as hetero-
sexual partners of persons at high risk, heterosexuals from Haiti and
central Africa, and transfusion recipients (0.45 — 1.27 x 10s).

Another type of stratification is based on age, sex, and race. If age,
race, and sex-specific HIV prevalence rates, pi, were available, these
could be combined to estimate national prevalence from equation
(3.3), where ni would be the number of people in a given age, race and
sex stratum.

There are two main difficulties in using data from the family of
surveys (Table 3.6) to obtain such estimates. First, because of potential
selection bias it is not clear just how the rates found in a particular type
of survey relate to the corresponding age, sex, and race-specific rates in
the general population of the United States. For example, even though
efforts are made to exclude people with HIV-related illnesses from the
survey in sentinel hospitals, stratum-specific rates from such a survey
are probably higher than corresponding national rates (Dondero, St.
Louis, Petersen, et al., 1989). It is not possible to quantify such selection
biases at present. A second difficulty is that various surveys cover only
limited age, race or sex ranges, and, in some surveys, protection of
anonymity requires that race information not be collected.

Dondero, St. Louis, Petersen, et al. (1989) proposed a technique to
extrapolate national rates from a limited range of age, sex, and race-
specific seroprevalence rates. For example, civilian applicants to the
military are between ages 17 and 35. Using age and race-specific
seroprevalence rates from civilian applicants, and weighting these rates
in proportion to their numbers in the U.S. population, Dondero, St.
Louis, and Petersen (1989) calculated U.S. prevalence rates of 0.27%
for males and 0.07% for females in the age range 15-34. They also
estimated the corresponding numbers infected in this age range for
each sex in the United States. For example, about 27,000 women were
estimated as infected. From data in sentinel hospitals, they determined
that 6.7% of all HIV infections occur in women aged 15 to 34, a



Surveys to Determine Seroprevalence and Seroincidence 75

number very close to the proportion of all AIDS cases that occur in
women aged 15 to 34. National estimates for all infections were
therefore estimated from the data on female applicants to the military
as 27,000/0.067 = 402,000. These numbers were taken from graphs in
Dondero, St. Louis, Petersen, et al. (1989) and are therefore
approximate.

Dondero, St. Louis, Petersen, et al. (1989) used similar techniques to
obtain national estimates of prevalence from six types of surveys.
National estimates of about 200,000 from male military applicants and
400,000 from female military applicants were considered too small
because of selection biases from self-deferral. Estimates of about
1,900,000 from sentinel hospitals were assumed to be too large because
some illnesses may be HIV-related, even though the connection is not
obvious. In addition, sentinel hospitals tend to be located in urban
areas where prevalence rates are often elevated. Estimates of 2,200,000
for male Job Corps applicants and even larger numbers for female Job
Corps entrants were considered to be too large because Job Corps
applicants are not excluded from entry on the basis of sexual orienta-
tion, drug use or an HIV screening program, and Job Corps entrants
overrepresent people from urban and low socioeconomic backgrounds.
The estimate of about 1,600,000 from male prisoners was also assumed
to be too high. Childbearing women yielded an estimate of about
825,000 and ambulatory patients an estimate of about 1,200,000.

Dondero, St. Louis, Petersen, et al. (1989) concluded that the "bulk
of the data, however, appear consistent with a true figure lying
somewhat above 800,000 and somewhat below 1.5 million," but they
emphasized that biases are "incompletely understood." Data from the
family of surveys should be considered in connection with other
independent estimates (Section 3.3; Chapter 8; Chapter 10) in arriving
at national estimates of HIV prevalence. The Centers for Disease
Control (1990a) sponsored a workshop for such a purpose in October of
1989, and CDC staff concluded that survey estimates of 0.8-1.2 million
infected by June 1989 were consistent with independent estimates of
0.65-1.4 million from back-calculation (Chapter 8).

3.5 ESTIMATING HIV INCIDENCE FROM
SURVEY DATA

Seroincidence can be estimated directly by studying selected cohorts
(Section 3.5.1), and indirectly by studying seroprevalence trends
(Section 3.5.2) and by back-calculation (Chapter 8). Seroincidence
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data give the most immediate insight into needs for prevention
activities, progress in prevention activities, and the likely course of the
HIV epidemic and AIDS incidence more than 5 years hence. Despite
the public health importance of HIV incidence rates and the multiplic-
ity of approaches to estimating HIV incidence rates, there is even
greater uncertainty in estimates of HIV incidence than of seropre-
valence and of future AIDS incidence. The uncertainty is especially
severe for the present and immediate past few years, where seroin-
cidence trends are most useful.

3.5.1 Longitudinal Follow-up of Selected Cohorts

Selected cohorts of homosexual men, patients with hemophilia, intra-
venous drug users and heterosexual partners of infected companions
have been followed longitudinally to estimate rates of new infection
(Table 3.8). Because cohorts are usually denned in special sub-
populations, because people who are willing to participate in long term
follow-up studies may not be typical, and because the medical care and
advice given to people in long term follow-up may modify the
subsequent risk of infection, one must be cautious in generalizing
findings from cohort studies. Nonetheless such studies provide some of
the best information on HIV incidence trends.

Suppose a cohort of JV uninfected individuals was assembled on
s0 = January 1, 1977 and followed closely. Then standard survival
methods (Kalbfleisch and Prentice, 1980; Cox and Oakes, 1984) could
be used to estimate H(t), the probability that a cohort member
becomes infected within t years after s0. The density h(i) = dH(t)/dt
and the hazard k(t) = h(t}{\ — H ( t } } - 1 can also be estimated. Then
the infection rate curve (Chapter 1) at calendar time s = t + s0 would
be given by g(s) = Nk(t){1- H(t)} = N h ( t ) .

If subjects were followed at regular intervals, as in the Multicenter
AIDS Cohort Study (Kingsley, Zhou, Bacellar, et al., 1991), then the
hazard rate k(t) corresponding to a given calendar period s = t + s0

could be estimated as the number of seroconversions in a time interval
centered on s divided by the person-years at risk accumulated during
the interval, and "Poisson regression" could be used to study factors
affecting H(t) (Kingsley, Zhou, Bacellar, et al., 1991).

In some cohorts there are irregular gaps between serial HIV assay
measurements. The likelihood contribution for a subject who was
seropositive when first assayed at calendar time s = tt + s0 is H( t 1 ) .
For a subject who was seronegative when last tested at calendar time
s2 = t2 + s0, the likelihood is 1 — H( t 2 ) . A person who seroconverted



Table 3.8 Annual Percentage Seroconverting Among Seronegatives in Selected Cohorts

Homosexual Men
Hepatitis B Cohort in S.F."
S.F. Men's Health Study"
Washington, D.C.C

Baltimore/Washingtond

Chicagod

Pittsburghd

Los Angelesd

Patients with Hemophilia
Severe Type Ae

Other Clotting Disorderse

IVDUs in Bronxf

IVDUs in northern Italy*
Heterosexual Partners of

Infected Partner
Of hemophiliacs*
Of general partner*

1978 1979 1980 1981 1982 1983 1984

0.3 3.8 10.1 16.6 19.8 7.4 3.3
18.4b 18.4b 18.4b

18.8C 18.8C 10.7
7.0

12.0
6.0
8.6

0.0 5.0 10.5 11.8 26.7 36.4 20.0
0.0 0.0 2.0 2.0 4.2 6.5 7.0

19.0

16.0*
36.2*

1985

0.7
4.2
4.9
4.8
2.5
1.8
1.7

10.7
10.0

16.0*
36.2*

1986

1.5
4.2
4.0
1.2
1.0
1.2
1.4

0.0
0.0

1987

0.0

1.0
0.8
1.5
1.0

0.0
0.0

6.1

1988

2.6

0.3
0.2
0.6
1.0

0.0
0.0

4.1

1989

0.3
1.8
0.6
0.5

2.2

"Hessol, Lifson, O'Malley, et al. (1989).
'Winkelstein, Samuel, Padian, et al. (1987). Data were grouped from 1982-1984.

Table 12 in CDC (1987b). Data were grouped in 1982-1983.

'Kingsley, Zhou, Bacellar, et al. (1991).

'From Figure 1 in Goedert, Kessler, Aledort, et al. (1989).

'Table 12 in CDC (1987b).

•Nicolosi, Leite, Molinari, et al. (1992).

Table 12 in CDC (1987b). Data were grouped in 1984-1985.
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between the date last tested negative, st = t1 + s0 and the date first
tested positive, s2 = t2 + s0, contributes H(t2) — H(tt) to the like-
lihood. The distribution H(t) can be estimated non-parametrically
from this likelihood for interval-censored data (Turnbull, 1974).
Goedert, Kessler, Aledort, et al. (1989) assumed k(t) was piecewise
constant over calendar years and estimated k(t) parametrically from
the likelihood. Smoother estimates of k(t) have been obtained by
representing k(i) as a spline model (P. S. Rosenberg, 1992, personal
communication). If subjects continue in follow-up beyond seroconver-
sion to determine when AIDS develops, the information can be used
both to estimate the hazard of seroconversion, k ( t ) , and the AIDS
incubation distribution (Chapters 4 and 5).

If one assumes k(t) = k(s — s0) is constant over calendar year s, then
the annual hazard for year s, k(s — s0) = ks, is related to the probability
ps that an individual who is uninfected at the beginning of year s will be
infected by the end of year s by 1 — ps = exp( — ks). If ps is small,
Ps = ^s> where ks is expressed in units of years -1. lf ps is expressed in
percent, ks is nearly equal to ps, provided ks has units per 100 person-
years. In most studies, ps was estimated by actuarial methods and
expressed in percent (Table 3.8).

It is clear that rates of seroconversion peaked in the early 1980s for
selected cohorts of homosexual men in San Francisco and Washington,
D.C. (Table 3.8), but appreciable annual rates of seroconversion
continue to occur in Baltimore/Washington, Chicago, Pittsburgh, and
Los Angeles in 1989 (Table 3.8). If the annual seroconversion rate is
1% among exclusively homosexual men, and if 2.5 x 106 men are at
risk (Table 3.7), such data would indicate that perhaps 25,000 new
infections continue to occur each year among homosexual men. It is, of
course, questionable whether the seroincidence trends observed in these
selected cohorts reflect the current infection rates in smaller cities or
rural locations, or whether participants in these cohort studies have
unusually low or high rates of seroincidence, even when compared to
other homosexual men in the same cities.

The cessation of risk among patients with hemophilia in 1986 reflects
active screening programs to detect HIV contamination and methods
of treating coagulation products to inactivate HIV. Screening
programs and educational programs have also dramatically reduced
the risk from blood transfusions (Chapter 6). Seroconversion rates
among the partners of infected patients with hemophilia (Table 3.8)
indicate that male-to-female heterosexual transmission poses a very
substantial threat (Chapter 2). The susceptible partners of patients
with hemophilia are thought to have little risk of exposure from drugs
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or promiscuous sex, which may explain why partners of infected
companions in other studies exhibit higher rates of seroconversion
(Table 3.8).

Decreasing rates of seroconversion seen among people in treatment
for drug abuse in northern Italy (Table 3.8) coincide with a decreasing
frequency of sharing syringes (Nicolosi, Leite, Molinari, et al., 1992).

McNeil, Brundage, Wann, et al. (1989) measured the incidence of
seroconversion between October 1985 and October 1987 among
171,974 U.S. Army personnel who had been tested for HIV two or
more times and who were initially seronegative. Recent analyses
(personnel communication from Dr. John McNeill, 1991) indicate that
the rate of seroconversion was 0.49 x 10 -3 per person-year from
November 1985 to October 1987 and that the rate dropped to
0.29 x 10-3 per person-year from November 1988 to October 1989.
Standardization of the combined data from November 1985 through
October 1989 for age, race and gender yielded an estimate of 22,000
new infections per year in the United States in the age range 17—39
years. However, many analysts believe that rates of new infection are
lower among military personnel than among comparable age, race and
gender-specific groups in the general population of the United States.
Some reasons for this belief are: (1) seropositive applicants for military
service and applicants who admit to homosexual behavior or intraven-
ous drug use are not inducted; (2) military personnel are informed of
the risks of HIV infection and are subjected to serial HIV testing; (3)
military personnel are often stationed in geographic regions where the
prevalence of HIV is low; (4) proscriptions against homosexual
behavior may cause some people at high risk to leave military service.

3.5.2 Serial Seroprevalence Surveys of a Cohort

We have seen that HIV incidence can be estimated from longitudinal
follow-up of the members of a well-defined cohort (Section 3.5.1). If
one studied such a cohort periodically to determine the Seroprevalence
rates (proportions infected) at successive time points but did not retain
information on individual cohort members, it might still be possible to
infer the HIV incidence rate from equation (1.2). To do so, one would
need to know how long infected cohort members survive and remain in
follow-up. If deaths and other types of loss to follow-up are negligible,
the seroincidence rate can be estimated from the slope of the Seropre-
valence rate curve (equation 1.2).

Brundage, Burke, Gardner, et al. (1990) proposed using serial
Seroprevalence rates on birth cohorts of applicants for military service
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to estimate HIV incidence rates. Of course they were not able to
exhaustively sample each birth cohort, so they had to assume for this
calculation that (1) applicants for military service are representative of
other members of their birth cohort, regardless of infection status, and
(2) for the period of the study, the chance that infected individuals will
die is negligible.

Under these assumptions, the slope of the plot of seroprevalence
against time yields estimates of the HIV seroincidence rate for each
birth cohort. Brundage, Burke, Gardner, et al. (1990) found that most
such slopes ranged from 0.2 X 10"3 to 0.4 X 10 -3 per year. Older
cohorts tended to show the largest seroincidence rates.

If one applied the rate of 0.3 x 10 -3 per year to the 116,852,000
residents of the United States between the ages of 14 and 44 (U.S.
Bureau of the Census, 1991, page 15), one would estimate about 35,000
infections annually. However, this estimate is subject to two important
sources of bias that act in opposite directions. Because applicants for
military service have a larger representation of men, blacks and
Hispanics than the entire U.S. population, and because these groups
have elevated seroprevalence rates, it is likely that there is a bias
tending to overestimate seroincidence in the U.S. population.

A more serious potential bias that acts in the opposite direction is
"self-deferral." People who engage in homosexual behavior, intraven-
ous drug abusers, and people who have other reasons to suspect they
are infected are increasingly aware that they will be screened for HIV
and asked about risk behaviors when applying for military service. Self-
deferral is the preferential tendency of such people not to apply for
military service. If this tendency to self-deferral increases in calendar
time, observed seroprevalence rates may remain stable or even decline,
despite increasing seroprevalence in the general population, leading to
serious underestimates of seroincidence rates (Brundage, Burke,
Gardner, et al., 1990). Some infected people in the birth cohort will die
of HIV disease and others may preferentially decline to apply for
military service. Both these factors will lead to underestimates of
seroincidence.

3.5.3 Serial Cross-sectional Seroprevalence Surveys

Sometimes one obtains serial seroprevalence data on a dynamically
changing population, such as all 21-year-old applicants for military
service (Brundage, Burke, Gardner, et al., 1990), or all infants born in a
given year. In this setting there is no obvious relationship between
serial seroprevalence rates and seroincidence rates, because seropre-
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valence is largely determined by migrations into and out of the
population. For example, the fact that seroprevalence rates among
newborns in New York State remained nearly constant in 1988 and
1989 (Novick, Glebatis, Stricof, et al., 1991) does not imply that there
are no new infections during this period. Rather, these data indicate a
fairly constant number of new infections in successive monthly birth
cohorts (see Section 10.4). Likewise, the fact that the prevalence rate
has declined slightly from October 1, 1985, to September 30, 1989,
among civilian applicants for U.S. military service (Brundage, Burke,
Gardner, et al., 1990) does not imply that there are no new HIV
infections among such applicants. Rather, successive cohorts of appli-
cants have been infected, though perhaps at decreasing rates. As
mentioned above, another explanation is increasing self-deferral of
those at highest risk.



4

The Incubation Period
Distribution

4.1 INTRODUCTION AND HISTORICAL OVERVIEW

The incubation period is the time between infection and the diagnosis
of AIDS. Infected individuals remain seronegative until they develop
detectable HIV antibodies, usually within several months (Figure 1.4).
This event is called seroconversion. Although we define the incubation
period as the time from infection to AIDS diagnosis, many studies
cannot identify the dates of infection and only provide information
about the time from seroconversion to AIDS. However, the time
between infection and seroconversion is relatively short (approximate
median is 2 months; see Section 4.7) compared to the median of the
time from seroconversion to AIDS (approximate median is 10 years).
Accordingly, we also use incubation period to refer to the time from
seroconversion to AIDS. In fact, many published studies on the
incubation distribution implicitly use this latter operational definition.

Incubation periods are extremely variable and some are very long.
This chapter is concerned with methodological problems associated
with estimating the distribution of incubation periods. We discuss
problems in identifying cofactors that alter the incubation period
distribution and markers of disease progression in Chapter 5.

An ideal study for estimating the incubation period distribution
would be to monitor uninfected subjects closely with repeated HIV
antibody tests to determine the date of seroconversion and then to
continue following the infected patients to determine the date of AIDS
onset. Such ideal data would yield straightforward estimates of the

82
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incubation distribution. However, the data that first became available
were far from ideal and required special statistical methods to avoid
serious misinterpretation.

The first data on the incubation period came from a 1986 study of
transfusion-associated AIDS cases (Lui, Lawrence, Morgan, et .al.
1986). Transfusion-associated AIDS cases provide unique epidemi-
ological data because the dates of infection can be ascertained as the
dates of transfusion with infected blood. However, the 1986 study had a
number of limitations because it consisted only of AIDS cases for whom
the dates of infection were determined retrospectively. Because this was
a study of AIDS cases rather than a study of a cohort of infected
individuals, the study provided no information about the proportion of
infected individuals who will eventually progress to AIDS, and, more
generally, about the probability that a member of an infected cohort
would develop AIDS in a given time period. An additional com-
plication is that infected transfusion recipients with long incubation
periods would not have been diagnosed by 1986 and are thus selectively
excluded from the data set. These and other issues are discussed in
Section 4.3.

The limitations of studies which consist only of AIDS cases, such as
the transfusion study, called attention to the importance of following
cohorts of infected individuals to monitor their immune systems and to
determine progression rates to AIDS. One rapid and convenient study
design involves assembling a cohort of individuals who are already
HIV seropositive but whose dates of seroconversion are typically
unknown. These are called prevalent cohort studies. A number of
statistical problems arise in the interpretation and analysis of prevalent
cohorts (Section 4.4).

Some studies were based on periodic screening of individuals for
HIV antibody. Thus, the date of seroconversion could be determined
up to an interval defined by the latest screening test that was negative
for HIV infection and the earliest screening test that was positive.
Examples of these studies include cohorts of hemophiliacs who were
patients at hemophilia treatment centers (National Cancer Institute
Multicenter Hemophilia Cohort Study (Goedert, Kessler, Aledort, et
al. 1989)) and a cohort of homosexual men in San Francisco enrolled in
a study of hepatitis B vaccine (Hessol, Lifson, O'Malley, 1989). Sera
obtained from periodic follow-up visits on these cohorts had been stored
in the 1970s and 1980s. Statistical problems that arise because of the
uncertainty in the dates of seroconversion are discussed in Section 4.5.

As mentioned earlier, the ideal study for learning about the
incubation period would consist of a cohort of uninfected individuals
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who are closely monitored for evidence of infection and then followed
to detect onset of AIDS. A number of such studies got underway in
1984-1985 including the San Francisco Men's Health Study (Wink-
elstein, Lyman, Padian, et al., 1987), the Multicenter AIDS Cohort
Study (Kaslow, Ostrow, Detels, et al., 1987), and the Sydney Cohort
(Tindall, Swanson, and Cooper, 1990). One limitation of these studies
is the relatively short follow-up times on the identified seroconverters
compared to older cohorts for which stored sera are available, such as
the National Cancer Institute Multicenter Hemophilia Cohort
(Goedert, Kessler, Aledort, et al., 1989) and the San Francisco City
Clinic Cohort of homosexual men enrolled in a vaccine trial against
hepatitis B (Hessol, Lifson, O'Malley, et al., 1989). An additional
complication is that increasingly widespread use of effective treatments
such as zidovudine since 1987 may have altered the incubation period
distribution within these cohorts. Methodological issues associated with
quantifying the effects of treatment on the incubation period are
considered in Chapters 8 and 11.

4.2 MATHEMATICAL MODELS FOR THE INCUBATION
PERIOD DISTRIBUTION

The incubation period distribution, F(t), is the probability that an
infected individual progresses to AIDS within t years of the time of
infection, which we usually take to be the time of seroconversion. That
is, if the random variable U represents the incubation period then
F(t) =P(U^t). The survival function is S(t) = l-F(t) and the
probability density of the incubation period is dFjdt = F'(f) —f(t).
The hazard function X(t] = f ( t ) / S ( t ) is the risk of developing AIDS at
time t following infection conditional on not having AIDS just before t.
The hazard function represents the time specific progression rate and
quantifies how the risk of AIDS evolves with time from infection.

The incubation distribution F(t) could be estimated nonparametri-
cally or parametrically (Cox and Oakes, 1984). Below we describe
some useful parametric models for F(t).

Parametric models for the hazard A(<) (which induces a parametric
model for F(t)) should be consistent with epidemiological data and
with theoretical considerations of the pathogenesispa of HIV infection.
The hazard of progression to AIDS is known to be very small shortly
after infection and then increases. The behavior of the hazard function
after 6 years is uncertain because few untreated patients have been
followed beyond this point. Below we describe a number of parametric
models (functional forms) which may be useful in describing the

enesis ofv H
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incubation period distribution. These models allow for initially increas-
ing hazard functions.

The Weibull Model
The incubation period distribution for the Weibull model has the form
F( t ) = 1 – e– > 0, p> 0. The hazard function for the Weibull
model, (t) = p t p – l , is monotonically increasing if p > 1, monotoni-
cally decreasing if p < 1, and constant (the exponential model) if p = 1.
Weibull models with p > 1 have been useful for modelling the HIV
incubation period and have been consistent with a number of
epidemiologic data sets with up to 8 years of follow-up after seroconver-
sion. The Weibull model has been used in studies of the incubation
periods among hemophiliacs (Brookmeyer and Goedert, 1989; Darby,
Doll, Thakar, et al., 1990), homosexuals (Lui, Darrow, and Ruther-
ford, 1988), and transfusion recipients (Lui, Lawrence, Morgan, et al.,
1986; Kalbfleisch and Lawless, 1989; Medley, Anderson, Cox, and
Billard, 1987). However, the Weibull model assumes the hazard
increases indefinitely and is proportional to a power of time from
infection. This assumption may not be accurate in the long term,
particularly if a proportion of infected individuals never progress to
AIDS.

The Gamma Model
The probability density function for the gamma model has the form

where (•) is the gamma function. The gamma model can arise if one
hypothesizes that infected individuals must pass through a series of k
stages and the hazard function of transition from one stage to the next is
the constant . When k > 1, the hazard function monotonically
increases and asymptotically approaches A. The gamma model has
been used in studies of the incubation period among blood transfusion
recipients (Medley, Anderson, Cox, and Billard, 1987).

Log-Logistic Model
The incubation period distribution for the log-logistic model has the
form

If > 1, the hazard function increases initially, until it reaches a
maximum and then decreases monotonically as t . The behavior of
the hazard function is similar to the lognormal model (the lognormal
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model assumes that the logarithm of the incubation period follows a
normal distribution). The log-logistic distribution was used by Lui,
Darrow, and Rutherford (1988) to model the incubation period among
homosexual men.

Piecewise Exponential Model
The hazard function is assumed to be constant over prespecified time
intervals; that is

The piecewise exponential model is very flexible, although one may
need a number of intervals and corresponding parameters to accurately
represent the rapidly increasing hazard function for the first several
years following infection. If (t) = 0 beyond some time t*, a proportion
of infecteds will never develop AIDS.

Staging Models
These models assume infected individuals pass through a series of k
stages with the last stage being AIDS. It is usually assumed that HIV
disease is progressive so that transitions occur in the direction of
advancing disease. The durations in each stage are typically assumed to
be independent random variables. The hazard functions of transition
may differ from stage to stage and may vary with time since entry in a
given stage. A gamma model arises if transition rates are equal and
constant across stages.

An application of these ideas arises in modelling the depletion of
CD4+ T-cells. Suppose that the time from infection to CD4+ cell
depletion (e.g., <200 CD4+ T cells) follows a Weibull model with
hazard function and that the time from CD4 + T cell depletion
to AIDS follows an exponential model with hazard function  The
assumption, here, is that once the CD4 + T cells have dropped to a low
enough level, the individual has a constant hazard of developing an
AIDS-defining condition. Then the incubation period distribution is
given by the convolution of Weibull and exponential models (under the
assumption that the durations in the two stages are independent):

If p > 1 , the hazard for this model is monotonically increasing and
asymptotically approaches  which is similar to the behavior of the
hazard function of the gamma model. This model was used by
Brookmeyer and Liao (1990a). Longini, Clark, Gardner, and
Brundage (1991) considered a multistage Markov model in which
infected individuals progress from infection, to seroconversion, to

ptp-1
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symptomatic (pre-AIDS) HIV disease, to AIDS. The hazard of
transition from stage i to i + 1 was assumed constant at (the
exponential model). These models are considered again in Section 5.6.

Mixture Model
The model assumes that a certain proportion of infected individuals, a,
have incubation period distribution, F1(t) and the remaining pro-
portion, 1 — a, have incubation period distribution F2(t). Then the
incubation period distribution for the entire population of infected
individuals is a mixture of F1 and F2 and is

As a special case, suppose the incubation period distribution F l ( t )
follows a Weibull distribution with p > 1 and F2(t) = 0. This implies
that the proportion (1 – ) of infected individuals never progress to
AIDS while the proportion, a, are the "susceptibles" who progress to
AIDS according to the incubation period distribution F1(t). In this
example, the hazard function for the mixed population is initially
increasing but eventually decreases as the proportion a of susceptibles
are removed. Such a model was used by Lui, Darrow, and Rutherford
(1988) in a study of the incubation period among homosexual men.
Auger, Thomas, and DeGruttolla (1988) used a mixture of two
Weibull distributions (i.e., Fl (t) and F2(t) were assumed to be Weibull
models) in a study of the incubation period among maternally infected
newborns.

4.3 RETROSPECTIVE DATA ON AIDS CASES

4.3.1 Introduction

Some epidemiological studies of the incubation period have involved
only a sample of AIDS cases for whom the dates of infection are
determined retrospectively. For example, the 1986 study of blood
transfusion-associated AIDS was based on all AIDS cases reported to
the CDC with transfusion as the only known risk factor who were
diagnosed before 1986. The dates of infection were assumed to be the
dates of transfusion with infected blood, which is a reasonable as-
sumption if the AIDS case has no other known risk factors for HIV
infection (Lui, Lawrence, Morgan, et al., 1986). A second example
concerns a study of pediatric AIDS patients whose only known HIV
risk was maternal transmission (Auger, Thomas, and De Gruttola,
1988). In this study it was assumed that the date of birth was the date
of infection.
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s = Infection date
w = AIDS diagnosis date
c = Case ascertainment date

Figure 4.1 Schematic illustration of a retrospective study of cases (e.g.,
transfusion-associated AIDS). Only cases diagnosed before calendar time of
case ascertainment are included (i.e., wi<c).

In this section we consider the statistical problems associated with
the analysis and interpretation of incubation period studies that involve
only a sample of cases of disease. Figure 4.1 illustrates the sampling
scheme: All AIDS cases diagnosed before some calendar time c are
sampled. The data consist of the calendar dates of infection, si, and the
calendar dates of diagnosis, wi, for each of N retrospectively ascertained
cases. The incubation period for the ith cases is ui = wi — si. The
criterion for inclusion in the data set is that wi c or alternatively
ui Ti, where Ti = c – si is called the truncation time for the ith
individual. Figure 4.1 indicates the two main problems with the
analysis and interpretation of data of this sort. First, since the data
involve only AIDS cases it can provide no information about the
proportion of infected individuals who eventually develops disease.
Second, the sampling scheme tends to capture cases with shorter
incubation periods. This bias is a form of length biased sampling, the
result of truncation on the right. This bias must be accounted for in the
statistical analysis.

4.3.2 Nonparametric Estimation of
the Truncated Distribution

A serious limitation of retrospective data on AIDS cases is that
incubation periods longer than the maximum truncation time cannot
be observed. For example, suppose the analysis consists of all AIDS
cases diagnosed by January 1, 1986, and it was found that the earliest
calendar time of infection among these cases was January 1, 1977. The
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maximum truncation time is T* = 9 years. The best we can do,
nonparametrically, is to estimate the incubation period distribution
conditional on the incubation period being less than 9 years. We call
this the conditional incubation period distribution

and it is related to F(t) by

Only if T* is sufficiently large and if F(t) is a proper distribution (i.e.,
all infected patients eventually develop AIDS) will F (T*) be approx-
imately 1.0. In this case F* will be a good approximation to F. In
general, F* (t) F(t). An important point is that there is no in-
formation in the data about the probability of having an incubation
period larger than T*, unless one makes strong parametric as-
sumptions about F.

A simple computational method for finding the nonparametric
estimate of the conditional incubation period distribution, F*, adapts
survival and life table techniques for use with right truncated data
(Kalbfleisch and Lawless, 1989; Lagakos, Barraj, and De Gruttola,
1988). This involves expressing F* as the product of conditional
probabilities. For simplicity, we assume the incubation distribution is
discrete with probability mass at the times t1 < t2 < ..., <tm. We
define the conditional probability pj to be the probability that the
incubation period is equal to tj given that it is less than or equal to tj,
that is pj = P(U = tj|U t j ) . Then

A nonparametric estimate of the incubation period distribution is
obtained by substituting estimates of j into equation (4.1). The only
cases who can contribute information about pj are those cases whose
truncation times are greater than or equal to tj and whose incubation
periods are less than or equal to tj. We call these individuals the "risk
set" at tj to emphasize the analogy with life table analyses. The number
of individuals in the risk set at tj is called nj. Let dj be the number of
individuals with incubation times exactly equal to tj. Then a nonpara-
metric estimate of pj is j = d j/n j . The non-parametric estimate of F* (t)
is then
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and F*(tm) = 1.0. The nonparametric estimate (4.2) applies even
when the incubation distribution is not assumed to be discrete, in
which case the product is over all distinct observed incubation times.
The estimate (4.2) is a step function with jumps at observed incubation
times and is analogous to the Kaplan-Meier estimate (1958). An
estimate of the variance is given by an adaptation of Greenwood's
formula

In small sample sizes, it may happen that j = 1 .0, in which case
F*(t) =0.0 (and its variance is not defined) for t < tj. It is re-
commended that the time axis be grouped into intervals within which
events are grouped to avoid this degeneracy.

These methods were applied to transfusion associated AIDS cases
who were diagnosed in the United States prior to July 1986. The data
are reported in Kalbfleisch and Lawless (1989), and include the
calendar dates of infection (transfusion), AIDS diagnosis, and ages at
infection on 295 transfusion associated AIDS cases. The earliest
calendar date of infection (i.e., transfusion with infected blood) among
the 295 cases was March 1978. Thus, the maximum truncation time
was T* = 102 months (the time between March 1978 and July 1986).
Thus, the best that can be done nonparametrically is to estimate the
incubation distribution among incubation periods less than 102
months. Figure 4.2 illustrates the conditional distribution, F*, of
incubation times among individuals who develop AIDS in less than
T* = 8.5 years (102 months) based on the nonparametric procedure
given by equation (4.2). In general, F*(t) > F( t ) . Thus, incubation
periods from F* tend to be shorter than the desired unconditional
incubation periods from F. Also shown in Figure 4.2 is the naive
estimate of F based on the empirical distribution, FE, of the observed
incubation times. The estimate FE is the proportion of cases with
incubation periods less than or equal to t years. This analysis grossly
overestimates the true incubation distribution F (that is, suggests
incubation periods are shorter than they really are), because, unlike
F*, it does not adjust for length biased sampling that arises from right
truncation. Both F* and FE reach the value 1 .0 at 89 months, which
was the largest observed incubation period among the 295 cases.
Similar statistical problems arise in the analysis of reporting delays (see
Section 7.3.1).
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Figure 4.2 Nonparametric estimate F*(t) of the conditional incubation dis-
tribution and of the naive empirical distribution function FE(t), based on
transfusion-associated AIDS cases.

4.3.3 Parametric Estimation

A parametric approach could be used for the analysis of retrospective
data on cases. A parametric model is assumed for F and a likelihood
function is used for parameter estimation. An important point is that
parametric approaches do not circumvent the main weakness in the
data: It is not possible to observe incubation periods longer than the
maximum truncation time. While some parametric assumptions permit
one to estimate not only F* but also F, the resulting estimates of F are
extremely imprecise and depend strongly on the parametric as-
sumptions (Kalbfleisch and Lawless, 1989).

Unless one is willing to assume that the incubation period distribu-
tion is proper or to assume that the proportion who will eventually
develop AIDS is known, one cannot obtain F from F*, even under
parametric assumptions (Brookmeyer and Gail, 1988; Kalbfleisch and
Lawless, 1989). For example, assume that an unknown proportion, a,
of those infected will eventually develop AIDS and that the incubation
period distribution among such individuals, F 1 ( t ) , has a known
parametric form. Retrospective data on cases can be used to estimate
F*(t) = F 1 ( t ) / F 1 ( T * ) , which does not depend on a. Thus, under
parametric assumptions, one can estimate F 1 ( t ) but not the desired
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distribution, F(t) = F1( t) . Most investigators assume that F(t) is
proper (i.e., a = 1), in which case parametric models for F(t) can be
estimated from F*(t) = F ( t ) / F ( T * ) .

We review a number of different likelihood functions that have been
proposed for the parametric analysis of retrospective data on cases.
Suppose infections are generated by a point process with infection
intensity g(s; y) where y are unknown parameters. For convenience, the
origin of calendar time is taken to be the start of the epidemic (that is,
g(s; Y) = 0 for s < 0). The first likelihood function is conditional on N,
the number of cases diagnosed prior to calendar time c.

The second likelihood function, which does not condition on N,
assumes infections are generated by a nonhomogeneous Poisson pro-
cess. Then the number of cases diagnosed by calendar time c has a
Poisson distribution with mean

The full likelihood L2 is then the product of L1 with the probability
of N diagnosed cases by calendar time c,

The conditional likelihood L1 allows g(s) to be estimated only up to a
proportionality constant, because if g(s) = y g o ( s ) then y would cancel
in the numerator and denominator in (4.3) and involve only g0. Thus,
L1 provides information about the shape of g(s) but not about the
absolute rate of infections. On the other hand, L2 permits estimation of
g(s) itself. An advantage of L1 is that it can be used with only a sample
of cases while L2 assumes that all cases diagnosed by c are ascertained
and included in the analysis. Both L1 and L2 produce identical
maximum likelihood estimates and observed Fisher information
matrices for the parameters of F (Kalbfleisch and Lawless, 1989).

A third likelihood function conditions on both N and the calendar
dates of infection of the N cases (Lui, Lawrence, Morgan, et al., 1986),
namely

Several points are worth noting about L3. First, it does not involve g(s) .



The Incubation Period Distribution 93

This is attractive if interest is focused only on estimating F(t). Second,
once we condition on the date of infection si, the only variability in the
data is from the variability in the diagnosis dates within the window of
calendar time [0, c]. The narrower the window, the less information is
available for estimating F. If accurate parametric assumptions are
made on the form of g(s), then inference based on L1 or L2 will usually
lead to more precise estimates of F than inference based on L3

(Brookmeyer and Gail, 1988).

4.3.4 Competing Causes of Death

Infected individuals may be subject to appreciable mortality from
causes unrelated to HIV. This is especially true of transfusion recipients
who tend to be older and sick. If there is significant risk of death from
competing causes, the methods of Sections 4.3.2 and 4.3.3 will be biased
toward shorter incubation periods. The reason is that the cases who are
included in the data are those who are diagnosed with AIDS before
death from a competing cause could occur. Thus, these cases tend to
have shorter incubation periods.

In the presence of competing causes of death, the parametric
methods of Section 4.3.3 do not estimate F, but rather the distribution
function, Fs(t), which is the probability of developing AIDS within t
time units of infection given that AIDS occurs before death. If the
hazard of death, from a competing cause is a constant 6 then

For example, suppose the incubation period distribution follows an
exponential distribution F(t) = 1 – e t. Then the parametric methods
of Section (4.3.3) estimate Fs(t) = 1 – e–( + )t rather than F(t) =
1 — e– t. The ratio of the median of Fs to the median of F is

Thus, if the risk (hazard) of death ( ) is greater than the risk of
progression to AIDS (A), the median incubation time will be under-
estimated by more than 50%.

The nonparametric methods of Section 4.3.2 are also asymptotically
biased in the presence of competing causes of causes and, in this
example, estimate the conditional distribution
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rather than

where T* is the maximum truncation time. It follows that
F (t) F*(t).

4.4 PREVALENT COHORT STUDIES

The prevalent cohort study follows individuals who were infected with
HIV before enrollment but whose calendar times of infection are
unknown. Figure 4.3 is a schematic illustration of the prevalent cohort
study. A prevalent sample of infected individuals is taken at calendar
time T. There are three time scales: calendar time (s), time from
infection («) and follow-up time (t).

An important issue concerns the biases inherent in performing
analyses on the scale of observed follow-up time, t, instead of the
desired, but unobservable scale of time from infection. Specifically, how
do estimates derived from prevalent cohorts of the probability of
developing disease within t years of follow-up, Fp(t) = 1 – Sp(t) relate
to the incubation period distribution F(t)?

The proportion of persons in a prevalent cohort who develop AIDS
within t years of follow-up, Fp(t), does not in general approximate F(t).
Only if the hazard (u) is constant (an exponential distribution for F)
do the two coincide. This follows from the lack of memory property of
the exponential distribution, which implies that newly infected indiv-

Figure 4.3 Schematic illustration of the prevalent cohort study.
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iduals will progress to AIDS at the same rate as individuals who have
been infected for some time. If the hazard (u) is increasing, then
individuals in the prevalent cohort will be at greater risk of AIDS than
newly infected individuals, that is Fp(t) > F(t). The direction of the
bias is reversed for a decreasing hazard. Regardless of shape of the
hazard, Fp(t) is a lower bound on the ultimate proportion of infected
individuals who will develop AIDS, F( ). For example, an early
prevalent cohort study yielded an estimate of the cumulative proba-
bility of developing AIDS within 3 years of follow-up of Fp(3) = .36
(Goedert, Biggar, Weiss, et al., 1986). We now know that the
cumulative probability of developing AIDS within 3 years of infection is
much closer to F(3) = 0.05 (see Section 4.5). Nevertheless, the preva-
lent cohort study indicates that the ultimate proportion of infected
individuals who will eventually develop AIDS is at least 0.36, apart
from sampling variation.

Brookmeyer and Gail (1987) derived an exact expression for the
induced incubation distribution on the observed follow-up time scale,
Fp(t), in terms of the probability density of infection times, g* among
cohort members and the true incubation distribution F. They deter-
mined the direction of the bias associated with using Fp (based on
prevalent cohorts) to estimate F. The following results (Brookmeyer
and Gail, 1987) hold for an arbitrary g*(s):

If the hazard (t) is constant then F p ( t ) =F(t).
If the hazard (t) is monotonically increasing, then F p( t ) >F(t).
If the hazard (t) is monotonically decreasing, then Fp(t) < F(t).
If infected individuals are a mixture of a proportion a who eventually

develop disease and a proportion 1- who never develop disease, then
Fp(t) .

The magnitude of these biases depends not only on the hazard (t)
but also on g* (s). For example, the bias would be small if the prevalent
cohort is assembled near the beginning of the epidemic, in which case
the backward recurrence times (i.e., times from infection to the onset of
follow-up ) would be short.

Some analyses of the data from prevalent cohorts involve imputing
the dates of infection. For example, one would postulate a calendar
time prior to which infection was unlikely to occur, say time s = 0.
Then one could impute the infection date as the midpoint of the
interval [0, ] or the conditional mean with respect to an assumed
distribution for g* (Section 4.5). Alternative methods based on markers
or disease progression have also been suggested (Section 5.7).



96 AIDS Epidemiology: A Quantitative Approach

4.5 STUDIES WITH DOUBLY CENSORED AND
INTERVAL CENSORED DATA

4.5.1 Introduction

In some epidemiological studies, it may be possible to ascertain the
calendar time of seroconversion or infection up to an interval. For
example, consider a cohort of individuals who are periodically screened
for evidence of infection (i.e., presence of HIV antibody). Then the
calendar dates of seroconversion are within the interval defined by the
calendar date of the most recent screening test that was negative for
HIV antibody and the earliest screening test that was positive for HIV
antibody. Such data are described as "interval censored."

An example of such a study was the National Cancer Institute
Multicenter Hemophilia Cohort Study which consisted of hemo-
philiacs who were regularly seen at hemophilia treatment centers
(Goedert, Kessler, Aledort, et al., 1989). Serum samples from each
patient visit, some dating back to the mid-1970s, had been stored for
reasons unrelated to the HIV/AIDS epidemic. The sera were sub-
sequently tested for evidence of HIV infection, and the individuals in
the cohort were followed for onset of clinical AIDS. Another study, the
San Francisco City Clinic Cohort Study, involved a cohort of homo-
sexual men enrolled in a study of hepatitis B vaccine (Hessol, Lifson,
O'Malley, et al., 1989). Serum samples on these men had also been
stored, and the intervals in which seroconversion occurred was deter-
mined by testing the sera. The data structure from the two studies are
very similar. A complication is that while such studies provide
information about the seroconversion date, they provide no in-
formation about the infection date. Estimates of the incubation period
from such studies have typically ignored the time between infection and
seroconversion because it is thought to be short compared to the time
from seroconversion to AIDS (Section 4.7).

In some situations, one may not have both a negative and positive
screening test on an individual, but, nevertheless, one may be willing to
infer an interval of infection based on other considerations. For
example, in the hemophilia cohort study, the first available serum
sample was positive for a number of hemophiliacs. This pattern
resulted primarily from the fact that a number of frozen serum samples
were lost because of freezer malfunctions. A reasonable assumption,
based on the fact that no hemophilia serum samples were found to be
infected before 1978, is that replacement clotting factors in the United
States had not been contaminated before January 1, 1978. Thus one
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could assume that seropositive hemophiliacs with missing early serum
samples seroconverted between January 1, 1978, and the individuals'
first positive serum sample.

Interval censored dates of infection also arise in cohort studies in
which the date of infection is determined from detailed information on
sexual exposure history. For example, a Canadian cohort (Coates,
Soskolne, Read, et al., 1986) involved 249 homosexual/bisexual men
who had sexual contact with individuals who had been diagnosed with
HIV disease (the index case). Information on the date of first and last
sexual contact with the index case was collected for each individual in
the cohort and the calendar dates of infection were assumed to occur
within the intervals defined by these two dates. Implicit assumptions
are that members of the cohort did not have sexual contact with HIV
infected individuals other than the index case, and that the reported
sexual behaviors are accurate. Infection intervals ascertained in this
way are less reliable than those based on repeated serum samples.

The term right censored refers to data for which all that is known is that
the event of interest, such as onset of AIDS, had not occurred before a
certain time. The term doubly censored data refers to time-to-event data
for which both the time origin and failure time are censored. For
example, in the NCI Multicenter Hemophilia Cohort and San Fran-
cisco City Clinic Cohort studies the incubation periods are doubly
censored because the date of infection is interval censored and the date
of diagnosis of AIDS onset is right censored for those individuals who
had not developed AIDS by the time of last follow-up.

A schematic illustration of incubation period studies with doubly
censored data is shown in Figure 4.4. A cohort of infected individuals is
identified at calendar time s = 0. An indicator i is set to 1 if the ith
individual had a positive screening test and 0 otherwise. For those
individuals with a positive screening test, the calendar time of sero-
conversion is known to have occurred in the interval (L i, Ri) where Li is
the known calendar time of the last (most recent) negative test and Ri is
the known calendar time of the first (earliest) positive test. The
calendar time wi is the earlier of the date of the last follow-up and the
date of diagnosis of clinical disease. An indicator i is set to 1 if the
individual developed clinical disease and 0 if the individual had not
developed disease by last follow-up.

4.5.2 Simple Methods Based on Imputed Infection Dates

An ad hoc approach for analyzing doubly censored data is to estimate
(impute) the calendar date of infection (or seroconversion) by the
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Figure 4.4 Schematic illustration of incubation period studies with doubly
censored data. Infection occurs in calendar time interval (L i , Ri). Figure also
illustrates truncation effects in a cohort consisting of individuals who are free
of AIDS at calendar time Y: Individual 1 is included in the cohort and
individual 2 is excluded (see Section 4.5.3).

midpoint of the interval. The imputed midpoint calendar date of
infection is

For individuals who are diagnosed with clinical disease at calendar
time wi without a prior positive screening test the calendar date of
infection could be estimated by

Using these imputed times of infection, the incubation periods for
individuals diagnosed with disease ( = 1) is ûi = wi – i. For indiv-
iduals who did not have disease by last follow-up ( i = 0), the
incubation period is right censored with value ûi = wi – i.

Standard survival analysis techniques for right censored data are
used in the imputed incubation times. For example, the Kaplan–Meier
estimate of the survival function S = 1 – F could be computed from
the data (üi, i) . However, such approaches will typically be biased and
give incorrect variance estimates. The bias of the estimated incubation
distribution resulting from midpoint imputation depends on the width
of the intervals, the true incubation period distribution, F, and the
probability density of infection times g*(s) (Law and Brookmeyer,
1992). For example, if the infection density is monotonically increasing,
as in the exponential growth phase of simple epidemics (see Chapter 9),
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then midpoint imputation will tend to underestimate the time of
infection and thus overestimate the incubation period. Thus, F is
underestimated or equivalently S = 1 – F is overestimated. Table 4.1
shows the asymptotic bias of the Kaplan-Meier estimates of S = 1 – F
with different interval widths using midpoint imputation (4.4a-b).
The calculations assume an exponential growth model for the infection
rate with a doubling time of one year, and the true incubation period
distribution is assumed to be Weibull with a 10-year median. The
magnitude of the bias by midpoint imputation depends on t. If t is less
than the 10th percentile of F, and if the interval widths are large (>4
years) the relative bias (bias/F(t)) can be large. However, if the interval
width is 2 years or less the bias is small, even for doubling times as fast
as 1.0 year.

Midpoint imputation was used in a study of 84 men enrolled in the
San Francisco City Clinic Hepatitis B cohort between 1979 and 1980
(Lui, Darrow, and Rutherford, 1988). These men were randomly
selected from a larger cohort of homosexual and bisexual men, all of
whom had a positive screening test within 12 months of a negative test.
Table 4.1 suggests that the bias resulting from midpoint imputation is
negligible if the interval widths are less than one year. However, if the
study is restricted to individuals with short screening intervals, an
implicit assumption is that they have a similar incubation distribution
as other members of the cohort.

An alternative imputation method, called conditional mean imputation is
to estimate the date of infection by the expected infection date given
that infection occurred between Li and Ri. This approach requires an
estimate, *, of g*. Here, g* is the probability density of infection times

Table 4.1 Asymptotic Bias of Kaplan Meier Estimate Based on Midpoint
Imputation Assuming Exponential Growth in Infections

Quantile of Incubation
Distribution

.10

.25

.50

.75

.90

Interval Widths (years)

1

.002

.004

.005

.004

.003

2

.0009
.016
.020
.016
.010

4

.030

.055

.072

.061

.037

8

.073

.151

.216

.202

.134

Source: Adapted from Law and Brookmeyer, 1992.

Mote: Asymptotic bias is |Sm( t) – S(t)| where Sm(t) is the large sample value of the Kaplan-Meier estimate using
midpoint imputation and S(t) = 1 – F(t). Infection rates are assumed to grow exponentially with 1 year
doubling time, g(s) = .6931 exp(.6931s). Incubation distribution is F(t) = 1 – exp(–.0021t2.516).
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among individuals infected before the end of the study, say c. Then the
imputed infection date is:

where *(t) = *(s)ds. When * is constant (uniform) over the
intervals, midpoint and conditional mean imputation are equivalent.
An estimate of g* can be obtained by postulating a parametric model
for g. The maximum likelihood estimates of the parameters of the
probability density g* can be estimated from the interval censored data
(L i, Ri) using the likelihood function:

4.5.3 Likelihood and Penalized Likelihood Approaches

The parametric approach for analyzing doubly censored data involves
joint estimation of both the probability densities of infection times, g*,
and of incubation times, f. Parametric models are postulated for g*(s)
and f(u). We make three assumptions that simplify the construction of
the likelihood function. First, we assume a cohort of uninfected
individuals is assembled at a fixed calendar time, say s = 0. Second, the
calendar time of infection is assumed independent of the incubation
period. Third, the calendar dates of the screening test are generated by
a point process that is independent of both the calendar date of
infection and the incubation period.

The likelihood contribution for an individual depends on his disease
( i) and infection status ( i). For the ith individual with a positive
screening test ( i =1) , and with clinical disease ( i = 1), the likelihood
contribution is

For an individual with a positive screening test ( i = 1) who was free of
clinical disease at last follow-up ( i = 0), the likelihood contribution is
(4.5) with the probability density f replaced by the survival function S.

An individual who was diagnosed prior to a positive screening test
( i = 0) must have seroconverted in the interval (Li, wi). The likelihood
contribution is (4.5) with the upper limit of integration Ri replaced by
wi.

Individuals whose last screen was negative ( t = 0) and who were
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AIDS free at last follow-up ( i = 0) contribute approximately l-G(wi)
to the likelihood. This approximation results from assuming that the
individual remained uninfected between the last screening test Li and
the last follow-up wi. Alternatively, these uninfected individuals could
be eliminated from the analysis, in which case g(s) in equation (4.5)
becomes g*(s), the density of infection times given that infection
occurred before the end of the study. The log likelihood function is

log li. Maximum likelihood estimates can be obtained by maximizing
the log likelihood function by Newton-Raphson iteration.

A weakly (semi) parametric approach was considered by Bacchetti
and Jewell (1991). A discrete monthly time scale was used for the
incubation period distribution and a separate parameter, i, was used
to represent the discrete hazard for each month i. Here i is the
probability AIDS develops in month i given that the person was still
AIDS free at the beginning of month i after infection. To avoid
irregularities that result from trying to estimate a large number of
parameters, they used a penalized likelihood function; that is, the log
likelihood function is penalized for "roughness." The penalized log-
likelihood function is

where X > 0 is the "tuning" parameter that calibrates the desired
smoothness of the estimated hazard function. A completely nonpara-
metric approach to the problem has been given by De Gruttola and
Lagakos (1989a). However the completely nonparametric estimate is
often numerically unstable, and it is not defined for all values of t.

4.5.4 Application to Hemophilia-associated AIDS

Some of the methods described in Sections 4.5.2 and 4.5.3 are illustrated
on a study of 458 hemophilia-associated AIDS cases and analyzed
by Brookmeyer and Goedert (1989). These data are from a subset
of patients in the National Cancer Institute Multicenter Hemophilia
Cohort Study, who were active patients on January 1, 1978, at one of
three hemophilia treatment centers (Hershey, New York, and
Pittsburgh). Of the 458 hemophiliacs, 296 had a positive screening test
for HIV, and 42 of these progressed to AIDS by last follow-up (May 1,
1988). One hundred twenty-two of these hemophiliacs seroconverted
before the time of their earliest available serum sample (that is, their
first serum sample was positive). It was assumed these individuals
seroconverted between January 1, 1978, and Ri. The widths of the 296
seroconversion intervals (Ri – Li) were variable and ranged between 2
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months and 7.5 years with a median of 2.3 years. We computed the
incubation distributions among hemophiliacs over the age of 20 at
seroconversion using three methodologies: midpoint imputation
(Section 4.5.2), conditional mean imputation (Section 4.5.2), and joint
parametric modeling (Section 4.5.3).

In order to use conditional mean imputation or joint parametric
models, parametric models are needed for the distribution of sero-
conversion times. It had been suggested that the severity of hemophilia
(mild, moderate, or severe) was a risk factor for HIV infection. More
severe cases of hemophilia receive larger and more frequent doses of
replacement clotting factors. Thus, it is plausible that more severe cases
of hemophilia were more likely to have been infected and at an earlier
calendar time than milder cases. Accordingly, we estimated the
cumulative distribution function, G, of calendar times of seroconversion
separately for mild, moderate and severe cases of hemophilia. These
estimates were based on the interval censored data [ ( L i , R i ) , i] using
the nonparametric methods of Turnbull (1976) (Figure 4.5). Figure 4.5
displays the nonparametric estimates of the cumulative proportions
infected (G) for mild, moderate, and severe hemophilia. The figure
shows that severity was a strong risk factor for infection. For example,
by January 1, 1985, more than 84% of severe cases of hemophiliacs had

Figure 4.5 Nonparametric estimates of the distribution function of seroconver-
sion times among hemophiliacs by severity of hemophilia: mild (91 hemophil-
iacs), moderate (55 hemophiliacs), and severe (312 hemophiliacs).
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seroconverted compared to only 15% among mild cases. The figure
also suggests a burst of infections in the early 1980s. Accordingly,
piecewise exponential distributions with jumps in the hazard occurring
at January 1, 1981, and January 1, 1983, were chosen to model the
infection curves for mild, moderate and severe hemophilia. These three
curves were used to impute seroconversion dates using conditional
means. We also performed joint parametric modelling using separate
piecewise exponential curves for g for the three grades of severity, and a
Weibull model for F. The resulting estimates of F are shown in Figure
4.6. There was good agreement among all three estimates (midpoint,
conditional mean, and joint parametric modeling).

4.5.5 Truncation Effects

The previous likelihood developed in Section 4.5.3 assumed that a
cohort of uninfected individuals was assembled at calendar time s = 0.
However, this may not always be the case, and special attention must
be paid to the sampling criteria for entry into the cohort.

For example, uninfected individuals may enter the cohort at arbitary
calendar times, Ei. In the hemophilia example, Ei could refer to the
date of birth of hemophiliacs born after calendar time 5 = 0 (taken to

Figure 4.6 Incubation distribution estimates derived from a cohort of hemo-
philiacs over age 20 at seroconversion using three methodologies: midpoint
imputation, conditional mean imputation, and joint parametric modelling.
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be January 1, 1978). These hemophiliacs are not at risk of infection for
all calendar time and this is accounted for in the analysis by using the
truncated density

instead of g(s) in equation (4.5).
Another example of truncation effects arises if the cohort consists of a

sample of individuals who are free of AIDS at calendar time Y (see
Figure 4.4). The individuals may or may not be infected at time Y, but
must not have been diagnosed with AIDS prior to Y. Thus in Figure
4.4 individual 1 is included, but individual 2 is excluded. The
qualitative effect of this sampling scheme is to selectively exclude those
with very short incubation periods since those who develop AIDS prior
to calendar time Y are not eligible. This can be accounted for in the
analysis by using the truncated density

in place of g in equation (4.5). The denominator of this truncated
density is the probability of being AIDS free at calendar time Y which
is the probability of being either infected and AIDS free or uninfected
at time Y.

4.6 DECONVOLUTION METHODS (Back-Calculating
the Incubation Distribution)

Another approach to estimating the incubation period distribution uses
population AIDS incidence data and estimates of the HIV infection
rates in the population (Bacchetti and Moss, 1989; Bacchetti, 1990).
The expected cumulative AIDS incidence up to calendar time t, A(t), is
related to infection rates at calendar times g(s), and the incubation
period distribution, by the convolution equation

The basic idea is to use data on A(t) and an estimate of g(s) to glean
information about F. These methods are closely related to the back-
calculation methodology described in Chapter 8, which uses data on
A(t) and an estimate of F, to estimate historical infection rates g(s).

The usefulness of this method depends upon the availability of
accurate information on the infection rates in the population. This
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approach has been used successfully in the population of homosexual
men in San Francisco, where there is detailed information from
epidemiologic surveys on the historical infection rates.

The statistical framework is as follows. Let yi represent the number of
AIDS cases diagnosed in the calendar interval [ti-1, ti) i = 1,. . . , m.
Suppose, N, the cumulative number of infections that occurred before
tm is known, and the probability density of infection times of the N
individuals, g*, is known. Then, y = ( y 1 , . . . , y m ) have a multinomial
distribution with sample size N and cell probabilities

where the incubation distribution F(t) is defined to be 0 for t 0. In
this formulation, g* and N are assumed known, and a parametric
model for F is postulated. Then, apart from an additive constant, the
log-likelihood function for the observed AIDS incidence data
( y 1 , . . . , y m ) is

The log-likelihood function is maximized over the parameters of F.
Bacchetti (1990) applied these ideas to estimate F from data on

AIDS incidence and infection rates in gay men in San Francisco. Using
data from three cohorts of gay men in San Francisco, he first estimated
g*(s), the probability density of dates of seroconversion among all those
infected before 1989. Semiparametric methods with a penalty function
like that in equation (4.6) estimate g* (s) as a discrete probability mass
function on each month from January, 1978, to December, 1988. In
order to estimate F from the likelihood (4.8), it was necessary to
estimate the total number of infections in gay men in San Francisco
before 1989. This was done by rescaling the estimate of 8760 AIDS-free
seropositive gay men obtained from a population-based probability
sample in the San Francisco Men's Health Study (Winkelstein,
Lyman, Padian, et al., 1987). Because the estimate of 8760 pertained to
those recruited through September 1984 in an area of San Francisco
that had contributed 45.5% of all AIDS cases reported, the estimate
was rescaled to 8760/0.455 = 19,253. Addition of some patients with
AIDS who were not included in the original survey estimate and a
further rescaling based on g*(s) to account for infections occurring
between October 1984 and December 1988 yielded an estimate of
N = 22,030. Uncertainties in N are important, because N varies
inversely with , as is seen by setting g(s) = Ng*(s) in equation (4.7).
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Both the estimation of g*(s) and N are based on the assumption that
the studied cohorts and the population-based sample in one part of San
Francisco are representative of the epidemic among all gay men in San
Francisco.

To estimate F, a semiparametric model was used that included a
separate discrete time hazard for each month. The hazard estimates
were smoothed using a penalized likelihood like that in equation (4.6).
The hazard of AIDS is negligible for the first several years after
seroconversion and then rises sharply (Figure 4.7). There is con-
siderable uncertainty about the shape of the hazard after 7 years, as
reflected in the sensitivity of the estimated hazard to the degree of
smoothing used.

Two other sources of uncertainty, apart from choice of the tuning
parameter (degree of smoothing) are important. First, an assessment of
the effects of random variability in estimates of N, g*(s) and the
incubation times themselves yields wide confidence intervals on the
estimated hazard after 7 years (figure 6 in Bacchetti, 1990). Continued
increases in the hazard after 7 years and slight decreases in the hazard
after 7 years both fall within these confidence intervals. Second, the
estimate of g*(s) indicates that the HIV infection rate peaked in late

Figure 4.7 Hazard functions of progression to AIDS based on deconvolution of
AIDS incidence data in San Francisco with four choices of the smoothing
parameter. (Source: Bacchetti, 1990. Reprinted with permission from the
Journal of the American Statistical Association. Copyright 1990 by the Ameri-
can Statistical Association.)
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1981 (see Figure 1.5). Because clinical trials of zidovudine were
ongoing in 1986 and because zidovudine and other treatments were
introduced in 1987, only 5 or 6 years after the estimated peak infection
rates, it is possible that the leveling of the hazard beyond year 7 (Figure
4.7) reflects the effect of treatment (Bacchetti, 1990).

Estimates of the incubation distribution based on equation (4.7)
with g(s) assumed known are more precise than analogous back-
calculated estimates of the infection curve g(s) with F assumed known
(Chapter 8). This is because the sharp peak in the infection curve for
San Francisco (Figure 1.5) reduces uncertainty about when infections
occurred. In contrast, the incubation distribution, F, is diffuse, making
it more difficult to extract information about g(s) by deconvolving
equation (4.7).

4.7 DURATION OF THE PRE-ANTIBODY PHASE

The interval between first exposure to HIV and the development of
detectable antibodies (seroconversion) is called the pre-antibody phase.
The duration of the pre-antibody phase has important implications for
the scope of the epidemic because individuals could be infectious even
though they test seronegative (no detectable antibodies).

The duration of the pre-antibody phase is uncertain. The major
methodological problem with studies of the pre-antibody phase is that
the calendar time of first exposure to HIV is often unknown. The most
reliable studies are based on patients who acquire HIV infection
through blood transfusion and organ transplantation or health care
workers exposed to HIV through identifiable accidents, such as needle
sticks. In these instances the date of first HIV exposure (infection) can
be ascertained.

Horsburgh, Qu, Jason, et al. (1989) analyzed 45 published reports of
cases with known infection dates (7 infected by blood transfusion; 8 by
organ transplantation; 17 by contaminated factor VIII among hemo-
philiacs; 7 needle stick injuries; 2 by sexual contact with HIV infected
individuals; and 4 related to contaminated needles associated with
intravenous drug use). These patients were serially tested for HIV
antibody, and thus the date of seroconversion could be ascertained up
to an interval (L i, Ri) where Li is the time of the last seronegative
antibody test and Ri is the time of the first seropositive antibody test,
and where these times are measured since the known point of infection.
These investigators studied several distributions F(t) for the duration of
the pre-antibody phase, including a Weibull model and an exponential
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model, each with a guarantee time parameter (Longini, Clark, Haber,
and Horsburgh, 1989). Models of this type can be fitted by maximizing

Horsburgh, Qu, Jason, et al. (1989) reported a median pre-antibody
duration of 2.1 months (standard error 0.1 months) and a 95th
percentile of 5.8 months, based on an exponential model with a
guarantee time of 1 month. This distribution is F(t) = 0 for 0 < 1,
and F(t) = 1 – exp( – 0.625(t – 1)) for t > 1, where t is measured in
months.

A caveat concerning these results is that individuals with long pre-
antibody durations may have been selectively excluded because the
data set included only individuals who were known to have seroconver-
ted within their follow-up time. Strictly, the contribution of the ith
individual to the likelihood in equation (4.6) should be divided by
1 – e – Ti where Ti is the maximum period of follow-up for the ith
individual. An important point is that this study design involves only
seroconverters and thus provides no information about the probability
of seroconversion given exposure to HIV. It is only informative about
the time to seroconversion following exposure among those individuals
who seroconvert.

A second type of study for quantifying the duration of the pre-
antibody phase is based on detection of HIV DNA by the polymerase
chain reaction (PCR). In these studies, the time of infection was
estimated by detection of HIV DNA from serial alliquots of blood. The
date of infection is assumed to occur in the interval defined by the last
negative and first positive PCR test. Similarly, the dates of seroconver-
sion are assumed to occur in the interval defined by the last negative
and first positive HIV antibody test. Thus, the data is interval censored
on both the left and the right. Horsburgh, Qu, Jason, et al. (1989)
reported the results of such a PCR study based on 39 infected
individuals and assumed an exponential distribution for the pre-
antibody duration. They estimated that the median duration of the
pre-antibody phase was 2.4 months and that 95% of infected indiv-
iduals had a pre-antibody phase of less than 10.3 months.

In contrast, Wolinski, Rinaldo, Kwok, et al. (1989) reported a
median pre-antibody duration of 18 months based on a PCR study.
The discrepancy between the Horsburgh and Wolinski studies is
partially explained by selection bias in the Wolinski study. The latter
study selected individuals from the Multicenter AIDS Cohort Study
who seroconverted late in calendar time (in the late 1980s). These
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individuals are a biased sample and overrepresent the longer pre-
antibody durations because individuals with short pre-antibody dura-
tions would have been more likely to seroconvert earlier in calendar
time and thus not be included in the study (Winkelstein, Royce, and
Sheppard (1990); Wolinski, Rinaldo, and Phair (1990)).

4.8 SYNTHESIS OF KNOWLEDGE OF THE INCUBATION
PERIOD DISTRIBUTION

The main complexities in the analysis and interpretation of epidemi-
ological studies of the incubation period include uncertainty in the
dates of infection and the sampling criteria by which individuals are
included in the data set. Synthesizing and comparing estimates across
studies is important since the estimates are typically based on various
methodologies with different underlying assumptions.

Reviews of studies of the incubation period distribution have been
given by Moss and Bacchetti (1989) and by Gail and Rosenberg
(1992). Table 4.2 presents several estimates of the incubation period
distribution reported from a number of different studies that were
selected to show a range of methodologies and populations. These
studies include: (a) midpoint imputation for the San Francisco City
Clinic Cohort of homosexual men; (b) deconvolution of AIDS in-
cidence data in San Francisco; (c) parametric modeling of a hemo-
philia cohort; and (d) midpoint imputation for a cohort of intravenous
drug users in Italy. Several of these studies have identified a significant
age effect. For example Goedert, Kessler, Aledort, et al. (1989) found
that hemophiliacs over the age of 30 at infection are at higher risk of
progression to AIDS than individuals 19 to 30 years old at the time of
infection. Similar results were found among hemophiliacs by Darby,
Rizza, Doll, et al. (1989) and in a cohort of intravenous drug users
(Mariotto, Mariotti, Pezzotti, et al. 1992; see also Italian Seroconver-
sion Study, 1992). Cofactors such as age are considered again in
Chapter 5.

A general picture emerges from Table 4.2. First, the probability of
developing AIDS within the first two years of seroconversion is very
small, less than .03. Then, the hazard of progression to AIDS begins to
rise rapidly so that the cumulative probability of developing AIDS
within 7.0 years of seroconversion is approximately .25. The
cumulative probability of AIDS approaches .50 at 10.0 years following
seroconversion.

A striking feature of Table 4.2 is the similarity of the estimates in
columns (a )–(d) , especially since the modes of viral transmission are



Table 4.2 Cumulative Probabilities of Progressing to AIDS, F(t)

Years Following
Seroconversion (t)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

SFCCa

(midpoint)

.010

.040

.20

.37

.51

.54

San Francisco*
(deconvolution)

.002

.009

.031

.074

.135

.208

.290

.371

.445

.512

Hemophiliacsc

(joint parametric modeling)

.002

.012

.033

.066

.113

.174

.245

.325

.411

.498

IVDUd

(midpoint)

.002

.015

.031

.048

.093

.143

.212

aSan Francisco City Clinic Cohort of homosexual men enrolled in hepatitis vaccine study. Date of seroconversion estimated by midpoint imputation (Hessol, Lifson,
O'Malley, et al., 1989).
bDeconvolution of AIDS incidence data in San Francisco using epidemiologic surveys to reconstruct the distribution of infection times (Bacchetti and Moss, 1989).
cJoint parametric modeling of 458 hemophiliacs with Weibull model for F(t). F(t) = 1 – exp(—.0021t2.516) for hemophiliacs >age 20 (Brookmeyer and Goedert,
1989).

dCohort of 468 seroconverters who were injecting drug users (Italian Seroconversion Study, 1992). Additional details of this study in Rezza, Lazzarin, Angarano,
et al. (1989).
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different. Mariotto, Mariotti, Pezzotti, et al. (1992) compared the
incubation distribution among male homosexuals and intravenous
drug users in Italian cities and did not find a significant difference.

Follow-up was restricted to about 10 years after infection in these
studies. Thus estimates of the incubation period distribution beyond 10
years, and estimates of the mean incubation period, depend on
assumptions about how to extrapolate the incubation distribution or
upon assumptions about the validity of parametric models beyond the
range of the data. Only additional follow-up on these cohorts will
further define the tail of the distribution. However, the use of
treatments such as zidovudine in these cohorts may alter the incubation
period distribution (see Section 8.6, and Chapter 11). Zidovudine was
introduced in 1987 for both AIDS patients and infected individuals
without AIDS but with advanced HIV disease. Treatments such as
zidovudine, inhaled pentamidine and other therapeutic advances may
lengthen the incubation period. Accordingly, there will be little

Figure 4.8 Smoothed estimates of the hazard of AIDS using follow-up through
January 1, 1987. (Source: Gail and Rosenberg, 1992.)

Key:
aHessol, Lifson, O'Malley, et al. (1989)
bBiggar and the International Registry of Seroconverters (1990), excluding
those in curve (a)
cBacchetti (1990)
dGoedert, Kessler, Aledort, et al. (1989)
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available information on the natural history of HIV infection (i.e., no
treatment intervention) beyond 10 years.

Gail and Rosenberg (1992) evaluated and synthesized information
on the hazard of AIDS following seroconversion from various studies.
They attempted to eliminate the possible effects of treatment by
restricting follow-up to calendar time before 1987. They obtained
smooth hazard estimates by fitting spline models (Figure 4.8) to data
from: (1) the San Francisco City Clinic Cohort of homosexual men who
participated in hepatitis B vaccine trials (Hessol, Lifson, O'Malley, et
al. (1989); (2) a cohort of hemophiliacs who attended hemophilia
treatment centers (Goedert, Kessler, Aledort, et al., 1989); and (3) an
international registry of seroconverters (Biggar and the International
Registry of Seroconverters, 1990). In addition, they included hazard
estimates by deconvolving AIDS incidence and infection rate estimates
in San Francisco (Bacchetti, 1990), as described in Section 4.6. Each of
those studies indicates a rapidly increasing hazard up to about year 5
(Figure 4.8). There is little information about the hazard of progression
to AIDS, in the absence of treatment, beyond 6 years.



5

Cofactors and Markers

5.1 INTRODUCTION

This chapter is concerned with statistical issues in studies of cofactors
and markers of HIV infections. Cofactors are variables that affect the
duration of the incubation period and may explain why some infected
individuals progress to AIDS faster than other individuals. Markers are
variables that track the progression of HIV infection. Markers are
consequences of infection, while cofactors are causal agents rather than
consequences of disease progression (Brookmeyer, Gail, and Polk,
1987). An example of a cofactor is age at infection. Some studies have
shown that infants and the elderly have shorter incubation periods than
other infected individuals. An example of a marker is the number of
CD4+ T cells. The CD4+ T cell is the target cell of HIV, and many
studies show marked declines of the CD4+ T cell count with
progression of HIV disease (Gottlieb, Schroff, Schanker, et al., 1981;
Polk, Fox, Brookmeyer, et al., 1987; Goedert, Biggar, Melbye, et al.,
1987).

Three general classes of AIDS markers have emerged (Goedert,
1990). Immunological markers include concentrations of CD4+ T
cells and CD8+ T cells, levels of serum beta2-microglobulin and serum
neopterin, and anergy to cutaneous tests for delayed hyposensitivity.
Viral markers include presence or absence of detectable p24 (core)
antigen and plasma viremia (detection of infectious HIV in fresh
plasma). Clinical markers include weight loss, candidiasis, persistent
diarrhea, herpes zoster, fatigue and night sweats, persistent fever, and
oral hairy leukoplakia. Some established markers and cofactors of HIV
disease are summarized in Table 5.1.

Knowledge of markers and cofactors is important in three broad
areas of inquiry. First, markers and cofactors characterize the natural
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Table 5.1 Some Established Markers and Cofactors of HIV Disease

I. Markers for Progression to AIDS

Immunologual

Depressed CD4+ T cells
Elevated serum Beta-2

microglobulin
Elevated serum neopterin
Cutaneous anergy

Viral
Detectable p24 (core) antigen
Plasma viremia

Clinical

Weight loss Night sweats
Oral candidiasis Persistent fever
Persistent diarrhea Oral hairy leukoplakia
Herpes zoster

II. Cofactors
Age at infection (very young and very old at increased risk)

Note: General reference: Goedert (1990).

history of HIV infection. Cofactors may at least partially explain the
wide variability in incubation periods. The evolution of markers with
time, such as the CD4+ T cell count trajectory, chronicle the
progression of HIV infection. Second, markers and cofactors are useful
for designing and analyzing clinical studies of treatment for HIV
infection. For example, when comparing two therapies for HIV
infected individuals it may be important to stratify or control for
cofactors and markers measured at baseline (prognostic factors) to
insure the two treatment groups are comparable at baseline. Markers
also may be useful surrogate endpoints in clinical trials. Surrogate
endpoints are alternatives to traditional clinical endpoints such as
AIDS diagnosis or death. The use of surrogate endpoints may shorten
clinical studies, but the clinical interpretation of the results may be
problematic (Chapter 11).

Third, markers and cofactors may be useful prognostic factors for
predicting progression to AIDS and are thus useful in the clinical
management of patients. For example, one might wish to withold a
potentially toxic treatment in asymptomatic HIV infected patients
with CD4+ T cells above 500 cells/ l but aggressively treat an HIV
infected patient with fewer than 200 CD4 + T cells/ l.

We begin our discussion with cofactors. Markers are considered in
Sections 5.5-5.8. Since the early years of the epidemic, epidemiologists
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have been searching for cofactors that may explain why some infected
individuals progress to AIDS faster than others. Variables that have
been investigated as potential cofactors include age at infection, risk or
transmission group (e.g., sexual transmission, blood transfusion recipi-
ent, intravenous drug use), genetic factors such as human lymphocyte
antigen (HLA) type, and behavioral factors such as smoking and
alcohol use.

It is useful to distinguish between two types of cofactors, fixed and
variable. Fixed cofactors are variables that are fixed at the time of
infection. Examples of fixed cofactors include age at infection and
transmission (risk) group. Variable cofactors may change values over
time and could include conditions not present at the time of the initial
HIV infection. An example of a variable cofactor is the number of
pregnancies subsequent to HIV infection. In this framework, treat-
ments given to HIV infected individuals could be viewed as variable
cofactors. Statistical issues in treatment evaluation are considered in
Chapter 11.

The ideal study for learning about cofactors would be a cohort study
of newly infected individuals, an incident cohort. For each member of
the cohort, information would be ascertained on cofactors, date of
infection and date of AIDS diagnosis. Classical survival methods could
be used to analyze the data. For example, the Cox proportional
hazards model (1972) relates the hazard of progression to AIDS at t
years following infection, (t), to a vector of covariates, X(t), through

where are regression coefficients and 0 (t) is an arbitrary nonnegative
function, the baseline hazard. The vector X(t) may include both fixed
and time-varying covariates measured at time t.

A number of important statistical problems arise in applying
classical survival methods to epidemiological studies of cofactors. For
example, in prevalent cohort studies, the duration of infection is
unknown (Section 4.4), and a potentially serious bias known as onset
confounding could result if we use follow-up time rather than duration of
infection as the underlying time scale t in model (5.1). The evaluation
of cofactors from prevalent cohorts is discussed in Section 5.3. Serious
potential biases can also arise in analyses of cofactor effects based on
retrospective studies of AIDS cases (Section 5.4), such as the studies of
transfusion-associated AIDS described in Section 4.3. The most useful
information about cofactors has been obtained from cohort studies in
which the times of infection are known or confined to lie within a
known interval (doubly censored data). Statistical methods for the
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evaluation of cofactors from doubly censored data are considered in
Section 5.2.

5.2 COFACTORS AND DOUBLY CENSORED DATA

In most epidemiological studies of cofactors, the dates of infection will
be known only to lie within defined intervals (see Section 4.5). The only
exceptions are the transfusion-associated studies of AIDS considered in
Section 5.4. If the interval is short, very simple analytic procedures may
be satisfactory, such as using the midpoint of the interval as the
infection date. A number of epidemiological studies have used this
approach. For example, in the National Cancer Institute Multicenter
Hemophilia Cohort Study, the date of infection was estimated as the
midpoint in time between the last negative and first positive specimens
for subjects with previously frozen serum samples (Goedert, Kessler,
Aledort, et al., 1989). This study demonstrated a strong association
between older age at seroconversion and higher risks of progression to
AIDS. A study of hemophiliacs in the United Kingdom also identified
these age effects (Darby, Rizza, Doll, et al., 1989). In that study, the
dates of infection were imputed as the conditional mean, namely the
expected seroconversion date given that seroconversion occurred in a
particular interval. We present simple imputation methods and more
sophisticated procedures that may be needed if the intervals are wide.

5.2.1 Analytic Procedures

Simple Imputation Methods
The following discussion generalizes Section 4.5.2 to incorporate
covariates. We adopt the notation introduced in Section 4.5.2, where
(Li, Ri) is the interval of infection; i is the infection indicator; i is the
disease indicator; wi is the calendar time of last follow-up or AIDS
diagnosis.

An ad hoc approach is to impute (estimate) the calendar time of
infection by the midpoint of the interval in which infection was known
to have occurred (see equations (4.4a) and (4.4b)). This yields imputed
(possibly right censored) incubation periods ( i, i). Standard survival
analytic techniques are used on the imputed incubation periods. For
example, Kaplan–Meier curves could be computed for each level of a
fixed cofactor and one could test for differences between the corre-
sponding incubation distributions by a nonparametric procedure such
as the logrank test (Cox and Oakes, 1984).

If the probability density of infection times does not depend on the
cofactor, X, under investigation, that is g (s) g* (s), the discussion in
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Section 4.5.2 suggests the bias of the Kaplan-Meier estimates based on
the data ( i, i) from midpoint imputation will be small for interval
widths less than two years (Law and Brookmeyer, 1992). Furthermore,
the logrank and other nonparametric tests will have the correct size
using midpoint imputed data for testing the null hypothesis,

H0: F0(t) = F 1 ( t ) ,

where F0 and Fl are the incubation distributions for those with X = 0
and X = 1 respectively. The power of the test will be reduced
compared to using known infection times.

However, there are situations where the covariate X may be
associated with the calendar time of infection, in which case midpoint
imputation can be misleading. In particular, tests of the null hypothesis
H0: F0 F1 may not have the correct size (Law and Brookmeyer,
1992). This is illustrated qualitatively by the following example.
Suppose the dose of innoculum, X, is associated with the risk of infection,
and we are interested in determining if X affects the incubation
distribution. Examples of such covariates are the level of sexual
activity, which is a possible surrogate for the dose of viral innoculum in
sexual transmission and the amount of replacement clotting factor
received by a patient with hemophilia, which is again a possible
surrogate for the dose of viral innoculum. Suppose in truth that X was
unrelated to the incubation period but that individuals with X = 1
were at higher risk of infection than individuals with X = 0. Then,
those with X = 1 are likely to have been infected earlier than those with
X = 0, and midpoint imputation could falsely give the appearance that
the X — 1 subgroup has shorter incubation periods than the X = 0
subgroup. A similar difficulty would attend the use of the conditional
mean or any other imputation procedure that does not allow for the
fact that X is a determinant of when infection occurred. As the intervals
widths get smaller and smaller so that the exact dates of infection are
known precisely, this type of bias vanishes.

If it is believed that X is associated with calendar time of infection,
the following is a sensible alternative to midpoint imputation. The
approach is to separately estimate the infection time distribution for
each level of X based on the interval censored data (L i , Ri, i).
Specifically one would assume parametric models for the infection time
distributions g0 and g1, and obtain estimates 0 and 1 using techniques
for interval censored data. An imputed incubation period is then
computed from the estimates of the conditional mean infection time:
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The key feature of this equation is that the imputation procedure
depends on X. Standard survival analyses are then applied to the
imputed incubation times. This is the approach used by Darby, Rizza,
Doll, et al., (1989).

Joint Parametric Modelling
If the interval widths are large, simple imputation methods may not be
satisfactory, and more formal parametric modelling may be required.
The methods of Section 4.5.3 can be generalized to allow the
distribution of calendar time of infection to depend upon covariates
X1, and the incubation period distribution to depend on covariates X2

(Brookmeyer and Goedert, 1989). Some of the same covariates may be
common to both X1 and X2. Brookmeyer and Goedert (1989) referred
to this approach as a two-stage regression model, where stage 1 was a
model for calendar time of infection and stage 2 was a model for the
incubation period given that infection occurred.

The probability density of infection at calendar time s is called g* (s;
X1, ) where a is a vector of unknown parameters. The probability
density of incubation periods is called f(t; X2, ) with survivorship
function S(t; X2, ) = 1 – F(t; X2, ) where F is the distribution of
incubation periods and is a vector of unknown parameters. It is
assumed that conditional on the covariates X1 and X2, the calendar
time of infection is independent of the incubation period. The validity
of this assumption would be suspect if either the virulence of the virus
changes over time, or if there are additional cofactors, such as the use of
effective treatments, that are not included in X2. It is also assumed that
the frequency and timing of screening serum samples to determine
when infection occurred are independent of both the calendar date of
infection and the incubation period. Under these assumptions, the
likelihood function is constructed as outlined in Section 4.5.3.

5.2.2 Application to Hemophilia Cohort

These methods were applied to the National Cancer Institute Mul-
ticenter Hemophilia Cohort Study (Brookmeyer and Goedert, 1989).
The data derived from 458 patients with hemophilia (see Section 4.5.4
for the study design). Covariates (X1) that were thought to affect risk of
infection included hemophilia treatment center, hemophilia type, and
severity of hemophilia. Covariates (X2) that were thought to affect the
incubation period included age at seroconversion and the severity of
hemophilia. A piecewise exponential regression model for the calendar
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time at infection was used. If 1(s; Xl, ) is the hazard function for
infection at calendar time s for an individual with covariates X1, then

where 0(s) = yi for wi–1 s < wi. Calendar time s was measured from
the origin, January 1, 1978, with changes in the hazard occurring at
January 1, 1981, and January 1, 1983. A Weibull regression model was
used for the incubation period. If 2(t; X2, ) is the hazard of AIDS at
time t units after seroconversion for an individual with covariate vector
X2, then

Maximum likelihood estimates can be obtained by maximizing the
log-likelihood by Newton–Raphson iteration. Good starting values are
important to obtain rapid convergence. One simple approach for
obtaining starting values is to augment the data with the midpoint
estimate, i, of the date of infection. Given i, the likelihood for a
and each have the usual form of likelihoods for right censored
survival data, and the joint likelihood factors into two components, one
involving only a and the other involving only p. Thus a and can be
separately estimated using standard maximum likelihood algorithms
for right censored data. Generalized linear interactive modeling
(GLIM), for example, can be used to maximize likelihoods for right
censored data under piecewise exponential and Weibull regression
models (Aitkin and Clayton, 1980). Using these starting values for
and , one can proceed to maximize the true likelihood function.

Maximum likelihood estimates along with the maximized log-
likelihood are given in Table 5.2. Nested models can be compared by a
likelihood ratio test. The broad conclusions from this model-building
can be summarized as follows. Type A hemophiliacs with the highest
severity of hemophilia (severity = 3) were at highest risk of infection
This is consistent with the hypothesis that HIV preferentially pre-
cipitates out in Factor VIII concentrate, which is the replacement
clotting factor for Type A hemophilia (Goedert, Sarngadharan, Eyster,
et al., 1985). The importance of severity of hemophilia for risk of
infection was also not unexpected, because more severe cases of
hemophilia tend to receive more frequent and larger doses of replace-
ment clotting factors. However severity does not appear to affect risk of
progression to AIDS (compare models 1 and 2: X2(l) = 2(916.45
— 916.40) = .10). If severity can be considered a surrogate measure of
dose of innoculum, then the results suggest that innoculum does
not affect the incubation period. Hemophiliacs who are older at



Table 5.2 Maximum Likelihood Estimatesa Based on Piecewise Exponential/Weibull Two-Stage Model* for

Infection and Disease (AIDS) Incidence

Stage 1 — Infection (X1)

Model

1
¥
3
4
5
6
7
8

Type

–1.286
– 1.287
–1.307
–1.477

—
–1.472
–1.287
–1.286

N.Y.

.112

.112

.095

.627

.102

.673
—
—

Pittsburgh

-.339
-.339
-.334
-.043
-.344

.021
—

-.339

Severity

1.128
1.129
1.133
—

1.082
—

1.105
1.141

Shape (p)

2.497
2.516
2.620
2.346
2.520
2.423
2.516
2.517

Stage 2— AIDS Incidence (X2)

Intercept

( 0)

-22.447
-22.444
-22.298
-21.612
-22.443
-21.806
-22.444
-22.444

Age

1.432
1.432
—

1.563
1.432
1.533
1.432
1.432

Severity

.056
—
—

.119
—
—
—
—

Maximized
loglikelihood

-916.40
-916.45
-924.69
-978.06
-942.91
-978.10
-920.97
-916.74

Source: Brookmeyer and Goedert, 1989.
aAnalyzed in time units of days.
bCovariates coded as follows: N.Y. and Pittsburgh were indicator variables; severity was coded 1, 2 and 3 for mild, moderate and severe, respectively;
hemophilia type coded 0 for A and 1 for other; age coded 0 for <20 years and 1 for 20 years.
cIntercept terms o in piecewise exponential model for infection were –11.91 during 1978-80, -9.985 during 1981-83, and - 10.01 during 1984-July 1985.
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seroconversion ( age 20) are at an increased risk of progression
compared to younger hemophiliacs (compare models 2 and 3:
X2(l) = 2(924.69 - 916.45) = 16.48). Age has been found to be a
cofactor in other studies as mentioned previously.

5.3 Cofactors and Prevalent Cohort Studies

The prevalent cohort study (Section 4.4) is a rapid and convenient
approach to identify cofactors and markers of disease progression.
However, because the time of viral infection is usually unknown in the
cohort, there are several potential sources of bias. These biases arise
from using follow-up time instead of time from infection in survival
analyses of time to AIDS. We review two forms of bias in the analysis of
cofactors in prevalent cohorts: onset confounding and differential
length biased sampling. Our notation and setup is the same as in
Section 4.4. A group of infected individuals are identified at calendar
time and followed for onset of AIDS.

5.3.1 Onset Confounding

Examples
The most important bias associated with identifying cofactors from
prevalent cohorts is called onset confounding (Brookmeyer and Gail,
1987; Brookmeyer, Gail, and Polk, 1987). This occurs when the
unknown calendar date of infection is associated both with the risk of
AIDS and the cofactor under study. A subgroup may appear at higher
risk of progression to AIDS simply because they were infected earlier
than another subgroup. We give several examples of onset
confounding:

1. Figure 5.1 shows estimates of the cumulative probabilities of
progressing to AIDS within t years of follow-up, Fp(t), based on
prevalent cohorts of infected individuals in several cities. Because the
hazard of AIDS increases with time since infection (Chapter 4), the
higher estimate of Fp(t) in the New York cohort of homosexual men
suggests that the New York cohort was infected earlier than the other
cohorts. However, these data are also consistent with the less plausible
conclusion that geography is a cofactor, and, in particular, that the
course of HIV infection is more rapid in New York than in the other
cities.

2. Data from several prevalent cohorts have suggested that sexual
exposure to an AIDS patient or to a person who subsequently develops
AIDS accelerates progression to AIDS (Polk, Fox, Brookmeyer, et al.,
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Figure 5.1 Cumulative proportions developing AIDS as a function of fol-
low-up time in prevalent cohorts. (Source: Goedert, Biggar, Weiss, et al., 1986.
Copyright 1986 by the American Association for the Advancement of Science.)

1987). This observation is consistent with the hypothesis that some
strains of HIV are more virulent than others. However this observation
may also be explained if the exposed group consisting of individuals
who had sex with AIDS patients or with people who subsequently
developed AIDS tended to be infected earlier than individuals who
were not exposed (the unexposed group). Indeed, since partners of the
exposed group had already developed AIDS while the partners of the
unexposed group had not, it is very plausible that the exposed group
had been infected for a longer time than the unexposed group. Because
the hazard of AIDS increases with time since infection, the exposed
group would tend to have higher rates of progression.

3. The number of previous sex partners has been reported to be a
predictor of progression to AIDS in a prevalent cohort (Schechter,
Craib, Le, et al., 1989). This is consistent with the hypothesis that a
large viral dose (for which number of partners could be a surrogate)
accelerates progression. However, the data are also consistent with the
very plausible hypothesis that individuals with higher numbers of
partners were infected earlier in calendar time.

Mathematical Definition
The requirement to insure no onset confounding is that the probability
densities of infection times among individuals infected before calendar
time is the same in the two subgroups that is, g (s) g (s). A subtle
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point is that this requirement is weaker than the requirement that the
rate of infection (Section 1.3) must be the same in both subgroups, that
is g 0 ( s ) g1(s) . To clarify this distinction, suppose that the infection
rate curve in group X = 1 has the same shape as the infection rate
curve in group X = 0, but that the former is times the latter, namely

Figure 5.2 Example of a factor, X, that acts multiplicatively on the infection
rate curve g(s): X satisfies the condition for no onset confounding. (Source:
Brookmeyer, Gail, and Polk, 1987.)

An example of a factor that obeys (5.4) is illustrated in Figure 5.2. Even
though the absolute number of infected individuals is vastly different
among those at levels X = 1 and X = 0, the probability densities of
infection times among those infected before time are identical in the
two subgroups. Whether or not the assumption g (s) g (s) is
reasonable for a covariate must be assessed from outside knowledge.
For example, the calendar times at infection might not be expected to
vary by HLA type, in which case condition g = g is satisfied.
However, if the virus was introduced earlier into one of two commun-
ities, then the probability densities in the two communities might differ
by a translation rather than by a multiplicative constant, in which case
g g (see Figure 5.3).

In the special case that the incubation distributions are exponential
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Figure 5.3 Examples of a factor, X, that translates the infection rate curve g(s):
X may induce onset confounding. (Source: Brookmeyer, Gail, and Polk 1987.)

in the subgroups X = 1 and X = 0, there will be no onset confounding
even if g g . This is because the hazard function for an exponential
is constant; that is, the exponential distribution is "memoryless"
regarding duration of infection.

Stratification to Control Onset Confounding
Onset confounding can be controlled by stratification on factors such as
geographic region. Stratification on a covariate is useful provided we
are not interested in determining whether the covariate itself is a
cofactor of disease progression. In particular, if the analysis is stratified
on a covariate that is thought to be related both to risk of infection and
to risk of AIDS following infection, it cannot be evaluated as a cofactor
of disease progression. For example, individuals with a high level of
sexual activity may tend to be infected earlier in an epidemic. We
cannot stratify on this variable and simultaneously examine it as a
potential cofactor. Another approach that has been suggested to
control onset confounding is to adjust for a baseline level of a marker,
such as the number of CD4+ T cells at the beginning of follow-up. The
appropriateness of this approach depends on how well the marker is
correlated with duration of infection and on the mechanism by which
the cofactor affects the risk of AIDS. These issues are discussed in
Section 5.7.



Cofactors and Markers 125

5.3.2 Differential Length Biased Sampling

Unfortunately, even if X has no direct effect on the infection rate curve,
so that there is no onset confounding, relative risk estimates obtained
from prevalent cohorts may still be biased. Specifically, suppose a
cofactor with two levels obeys the simple proportional hazards model
(5.1),

where u is time from infection and and 0 are hazards of developing
AIDS. If a proportional hazards analysis is performed based on follow-
up time and if there is no onset confounding, then tests of the null
hypotheses H0 : = 1 will be valid. However estimates of 6 based on the
incorrect assumption of proportional hazards on the observed follow-
up time scale will usually be biased for 0. The term differential length-
biased sampling is used to refer to this bias, which results from differences
in the distributions of prior durations of infection (backward recurre-
nce times) between the two prevalent subgroups. The magnitude and
mathematical results concerning this bias have been described in
Brookmeyer and Gail (1987).

The direction of the bias depends on whether the hazard function is
increasing or decreasing. An intuitive explanation for this bias when
the hazard function 0(u) is increasing is as follows: Individuals in the
group X = 0 with low hazard of AIDS will tend to have longer times
since infection (backward recurrence times) than individuals in the
group X = 1 with high hazard of AIDS, (see Figure 5.4). This is
because people with X = 1 who were infected many years earlier are

Figure 5.4 Illustration of differential length biased sampling in the prevalent
cohort study: The low risk group (X=0) has been infected longer at the start of
follow-up than the high risk group (X= 1). (Source: Brookmeyer, Gail, and Polk
1987.)
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more likely to have developed AIDS and thus be excluded from the
prevalent cohort than people with X = 0 who were infected at the same
calendar time. Because people with X = 0 in the prevalent cohort tend
to have been infected for a longer time, and because 0(u) increases
with time since infection, the disparity in the risk of AIDS between the
two groups is reduced, biasing the relative risk toward 1. For diseases
with a decreasing hazard, the direction of the bias is reversed; the
relative risk estimate will be biased away from 1.

Only in the special case when the hazard 0(u) is constant over time
(the exponential model) will the relative risk estimates be unbiased.
The exponential model is "memoryless" and implies that individuals
who have been infected for some time have the same risk of progression
to AIDS as newly infected individuals.

5.4 COFACTORS AND RETROSPECTIVE STUDIES
OF CASES

In this section we consider the analysis of cofactors from studies that
involve only a sample of cases for whom the dates of infection are
determined retrospectively (see Section 4.3). The best known example
is the study of transfusion-associated AIDS (Lui, Lawrence, Morgan, et
ah, 1986). Analyses of data of this type suggested that age at infection is
a cofactor of disease progression (Medley, Anderson, Cox, and Billard,
1987; Kalbfleisch and Lawless, 1989). Retrospective studies of this sort
are useful for generating hypotheses about cofactors, but they are
subject to two serious limitations: the effects of truncation and the effects
of competing causes of death.

5.4.1 Effects of Truncation

The conditional incubation period distribution, F* (t) = F(t) /F( T *), is
the distribution of incubation periods given that the incubation period
is less than T*, the maximum truncation time.

Although the conditional incubation distribution F* can be well
estimated (Section 4.3.2), the unconditional incubation period distri-
bution, F, cannot be estimated reliably from such studies. Inferences
about cofactors based on estimates of a conditional incubation distri-
bution F* can be misleading. For example, subgroup 1 may appear to
have shorter incubation periods than subgroup 0 because
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However, the proportions of individuals with incubation periods less
than T * may in fact be much greater in subgroup 0 than subgroup 1,
that is

F 1 ( T * ) < F 0 ( T * ) .

Thus, subgroup 0 could in fact have a higher proportion of infected
individuals progressing to AIDS within t time units of infection (that is,
F1(t) < F0(t) for all t). We would falsely conclude that subgroup 1 was
at higher risk of disease progression if our inference was based solely on
a comparison of the conditional distributions, F and F .

5.4.2 Effects of Competing Causes of Death

Differential risk of death from competing causes (i.e., causes of death
other than AIDS) among subgroups can distort inferences on cofactors
from these retrospective studies. The effect of mortality from competing
causes is to exclude some individuals with long incubation periods from
the retrospective sample, because such individuals may die before
AIDS onset (Section 4.3.4). Thus, if the risk of death from competing
causes is greater in subgroup 1 than subgroup 0, then subgroup 1 could
artificially appear to have shorter incubation periods than subgroup 0.
For example, suppose older individuals are at greater risk of death from
a competing cause than younger individuals. Then, even if age at
infection was not a true cofactor, it may falsely appear that individuals
who were older at infection have shorter incubation periods.

To illustrate this phenomenon, suppose that the incubation distri-
bution is exponential F(t) = 1 — e– t. A binary covariate (X = 1 or 0)
is under investigation. It is assumed that X has no effect on the
incubation distribution but that the hazards of death from competing
causes, 0 and l, differ in the two subgroups. As pointed out in Section
4.3.4, the parametric methods of 4.3.3 estimate F s( t ) , which is the
probability of developing AIDS within t time units given AIDS
preceded death. The ratio of the median of the distribution Fs in
subgroup 1 to the median of the distribution Fs in subgroup 0 is

If 1 > 0, then the median incubation period in subgroup 1 will
appear smaller than the median incubation period in subgroup 0, when
in fact the covariate X has no effect on F.
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5.5 MARKERS AS PROGNOSTIC FACTORS

Markers track the progression of HIV infection. Markers, unlike
cofactors, are a consequence of infection and indicate the extent of
disease progression. Markers are useful as prognostic factors for the risk
of AIDS or death. For example, an HIV infected individual with fewer
than 200 CD4+ T cells/ l but without AIDS could be expected to be
at considerably higher risk of developing AIDS within the next 6
months than an HIV infected individual without AIDS who has more
than 800 CD4 + T cells/ l. Knowledge of prognostic factors for
progression to AIDS or death is important for the clinical management
of patients and for the design and evaluation of clinical trials.
Information on markers as prognostic factors has been obtained from
incident cohort studies, in which the dates of infection of individuals in the
cohort are known, and from prevalent cohort studies, in which individuals
are known to be infected at baseline but the dates of infection are
unknown.

Suppose that a set of markers are monitored from the date of
infection to time t after infection. The measurements at time t since
infection are denoted Z(t); the entire marker history is characterized by
H(t) = {Z(u): 0 u t}. The hazard, (t), of developing AIDS at
time t following infection can be modelled as a function of t and the
marker history, H(t). A special case of this hazard model is

where Z(t) is some functional of the marker history, H(t), and (t) is
the hazard of a patient with Z(t) = 0. Gail (1981) applied this time-
dependent covariate model (Cox, 1972) to the analysis of serial markers
to predict recurrent colon cancer, and the same ideas have been used to
model AIDS incidence (e.g., Eyster, Gail, Ballard, et al., 1987). Several
introductory points are worth mentioning before more specific con-
sideration of data from incident and prevalent cohorts.

1. Model (5.5) can only be used if the date of infection (or seroconversion)
is known. Suppose model (5.5) is the true underlying model, where the
time scale t is time since infection. Then if one applies model (5.5) using
time since enrollment in a prevalent cohort instead of time since
infection, the resulting estimates of will usually be biased, and the
direction of the bias is unpredictable (Brookmeyer and Gail, 1987;
Brookmeyer, Gail and Polk, 1987).

2. The art of using time-dependent covariates to model the hazard of AIDS
is to select a useful feature of the marker history, H(t). For example, one
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might choose for Z(t) the CD4+ T cell level at t, the CD4+ T cell level
12 months earlier (i.e., at time t — 12), the slope of the least squares fit to
a linear model for the CD4+ T cell count over the 6 month period
preceeding t, or any other interesting and potentially useful feature of the
marker history (Gail, 1981). More than one feature of the marker history
can be accommodated in the vector Z ( t ) .

3. Although equation (5.5) describes the evolving risk of AIDS, conditional
on {Z(u) :0 Z(u) t}, it does not provide a model for how Z(t) will
evolve in the future. Thus, equation (5.5) can be used to compute the
relative risk at t for a patient with Z ( l ) ( t ) compared to another patient
with Z(2)(t); this relative risk is exp[ '{Z(1(t) – Z ( 2 ) ( t ) } ] . However,
equation (5.5) above cannot be used to compute the chance that the first
patient will develop AIDS in the next year, without additional as-
sumptions on how Z(1)(t) will evolve over time.

4. Equation (5.5) can be used to ask the question: "Do the marker attributes
Z ( t ) add prognostic information to time since infection for predicting
AIDS risk?"

5. A nice feature of model (5.5) is that one need not study every member
of an incident cohort to estimate the parameters . Efficient nested case-
control designs and case-cohort designs can also be used (see section 3.2
in Gail, 199la).

5.5.1 Prognostic Factor Studies of Markers from
Incident Cohorts

Ideal data for studying the prognostic value of markers for predicting
risk of AIDS could be derived from incident cohorts of newly infected
individuals who are closely monitored for changes in markers levels and
for onset of disease. Ideally, the timing and quantification of such
marker measurements would be independent of disease status, and the
assessment of disease status would be independent of marker measure-
ments. The effects of the duration of infection can be controlled for in
the statistical analysis of incident cohorts. Studies of incident cohorts
can address the following question: "What prognostic information does
a marker provide in addition to knowledge of time since infection?"
This is in contrast to prevalent cohort studies in which the dates of
infection are unknown and thus the effects of duration of infection
cannot be controlled. Prevalent cohort studies of markers are discussed
at the end of this section.

Suppose one wished to investigate whether the loss in CD4 + T cells
in the year from t — 1 to t provided additional prognostic information
over and above the duration of infection, t, and the current CD4 + T
cell level, X(t). Using data from an incident cohort, we could apply
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model (5.5) with Z(t) = {X(t) – X(t – 1), X(t)}' and ' = ( 1, 2).
Suppose patient 1 had X(t – 1) = 400 cells/ l and X( t ) = 300 cells/ l
and suppose patient 2 had X(t — 1) = 500 cells/ l and X(t) = 300
cells/ l. Then, the relative risk comparing patient 1 to patient 2 would
be exp[  1{ – 100 – ( – 200)} +  (300 – 300)] = exp( 100 1). A neg-
ative value of  would imply that patient 1, who had the smaller
CD4+ T cell decline, was at lower risk of AIDS, even though the
current CD4+ T cell levels were the same in these two patients. The
regression coefficients   and 2 reflect the additional prognostic
information in CD4+ T cell levels over and above the prognostic
information in duration of infection.

An example of an incident cohort study was the National Cancer
Institute Multicenter Hemophilia Study (Goedert, Kessler, Aledort, et
al., 1989; see Section 4.5.4). The dates of seroconversion were known to
lie in an interval defined by the last stored serum sample that was
negative and the most recent stored serum sample that was positive for
HIV antibody. Seroconversion dates were estimated by the interval
midpoint. A proportional hazards model was fit with CD4+ T cell
level as a time dependent covariate. Different analyses were performed
to determine how predictive current and past CD4 + T cell levels were
of relative risk of AIDS. After controlling for infection duration, it was
found that an individual who currently had <200 CD4+ T cells/ l
had a relative risk of AIDS of 16 compared to an individual with
200-499 CD4+ T cells/ /. It was also found that an individual's
earlier CD4+ T cell level predicted current AIDS risk. For example,
an individual with fewer than 200 CD4+ T cells/ l measured 12-36
months previously had a relative risk of 3.0 compared to an individual
with 200-499 CD4+ T cells/ l measured 12–36 months before. Other
studies have shown that the risk of developing AIDS before the CD4 +
T cell count declines below 200 is small (Phillips, Lee, Elford, et al.,
1991).

5.5.2 Prognostic Factor Studies of Markers from
Prevalent Cohorts

A prevalent cohort consists of infected AIDS-free patients whose earlier
dates of infection are unknown. Thus, it is not possible to estimate the
parameters in equation (5.5) because it is not possible to control
adequately for time since infection. These biases are particularly
unpredictable when one attempts to study a time-varying marker by
substituting time since enrollment in the cohort for time since infection
in equation (5.5) (Brookmeyer and Gail, 1987; Brookmeyer, Gail, and
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Polk, 1987). However, analyses of baseline values of markers, which are
measured at the time of enrollment in a prevalent cohort, have proved
useful for estimating relative risks and absolute risks of AIDS measured
on the time scale of time since enrollment. Survival analyses and
proportional hazards analyses on the scale of time since enrollment
only answer the question: "What prognostic information does the
baseline marker value provide in addition to time since enrollment?'' The
question "what prognostic information does the baseline marker value
provide in addition to time since infection?" cannot be answered from
such studies and analyses. Nonetheless, this information is useful,
because the dates of infection are usually unknown in clinical practice.
Thus, results from prevalent cohort studies provide important prognos-
tic information for advising patients from similar prevalent cohorts
about risk. Such studies may also identify important variables for
stratification and adjustment in controlled clinical trials of individuals
with prevalent infection (see Section 5.7, Example 2).

Fahey, Taylor, Detels, et al. (1990) assessed the prognostic value of a
number of cellular and serological markers for progression to AIDS
measured at baseline among prevalent seropositive homosexual men.
They evaluated the absolute and relative risks for progression to AIDS
associated with different levels of the number of CD4 + T cells at the
beginning of follow-up. Individuals with fewer than 242 CD4+ T
cells/ l had more than 8 times the risk of progression to AIDS of
individuals with CD4+ T cell concentrations above 491 cells/ l. The
cumulative proportions progressing to AIDS within 48 months was
about 70% and 15% for those with less than 242, and those with more
than 491 CD4+ T cells, respectively. Although many of the other
markers were correlated with each other and with CD4 + T cell levels
and did not contribute additional prognostic information to CD4 + T
cell levels, the combination of CD4+ T cell levels and either serum
neopterin concentration or serum beta-2 microglublin were especially
predictive of AIDS. In a prevalent cohort study of gay men in San
Francisco, Anderson, Lang, Shiboski, et al. (1990) also found that
elevated levels of serum beta-2 microglobulin and low CD4 + T cell
counts were especially predictive of AIDS. They found that 65.5% of
HIV seropositive individuals with beta-2 microglobulin levels above
3.80 milligrams per liter and CD4+ T cell counts below 500 cells/ l
developed AIDS in less than three years. Figure 5.5 from this study
shows the cumulative probability of progression to AIDS as a function
of follow-up time for different baseline combinations of beta-2 micro-
globulin and GD4+ T cell levels.

Combinations of baseline markers have been used to develop
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Figure 5.5 Cumulative proportion progressing to AIDS by baseline CD4 +
T cell and serum beta-2 microglobulin levels among a prevalent cohort of 346
HIV-seropositive homosexual men in San Francisco. (Source: Anderson, Lang,
Shiboski, et al. 1990. Copyright 1990, American Medical Association.)

simplified staging systems for HIV disease. An early example was the
clinical classification called AIDS-related complex (ARC), which was
based on a number of symptoms, such as those in Table 5.1. The
Walter Reed staging system was based on combinations of both clinical
and immunological markers (Redfield, Wright, and Tramont, 1986).
Royce, Luckman, Fusaro, and Winkelstein (1991) compared various
staging systems predictive of AIDS among individuals who were AIDS-
free at baseline. Baseline clinical markers have also been used to
develop a prognostic staging system for survival in AIDS patients.
Justice, Feinstein, and Wells (1989) proposed three stages of AIDS
based on nutritional, respiratory, serological and hematological para-
meters. The reported median survival from AIDS diagnosis in the three
stages were 11.6, 5.1, and 2.1 months.

Baseline markers have also been used to predict particular AIDS-
defining conditions. Phair, Mu oz, Detels, et al. (1990) evaluated the
risk of Pneumocystis carinii pneumonia (PGP) in 1665 prevalent seropo-
sitive homosexual men. They found, for example, that 33% of infected
individuals with fewer than 200 CD4 + T cells/ l developed PGP in less



Cofactors and Markers 133

than 3 years. These data influenced public health officials to re-
commend prophylaxis against PGP for patients with CD4+ T-
lymphocyte levels below 200 cells/ l.

5.5.3 Prevalent Versus Incident Cohorts

The studies on prevalent cohorts are useful for identifying high risk
persons and predicting risk among persons from similar prevalent
cohorts. However risk estimates derived from prevalent cohorts may
not be directly applicable to cohorts with different distributions of times
since infection, and, in particular, to cohorts of newly infected
individuals. Only if the markers are so informative that the current risk
is conditionally independent of the duration of infection, given the
current marker values, is it reasonable to suppose that estimates of risk
from one prevalent cohort will be generally applicable. This as-
sumption is implicit in stage models of HIV disease (Section 5.6).

Prevalent cohort studies cannot determine if markers carry in-
formation about risk of progression that is independent of duration of
infection. The amount of information in a marker about disease risk
over and above what it reflects about the duration of infection can be
determined only from a study of newly infected individuals (an incident
cohort). For example, persons with low numbers of CD4 + T cells at
enrollment in a prevalent cohort have probably been infected much
earlier and are thus at higher risk than patients with higher CD4 + T
cell levels at enrollment. The excess risk associated with a longer
duration of infection is incorporated into the relative risk associated
with a low CD4 + T cell count from a prevalent cohort, but not into
the relative risk estimates from an incident cohort that control for
duration of infection. Thus, it is expected that relative risks associated
with CD4 + T cell levels based on a prevalent cohort will tend to be
greater than relative risks based on a cohort of newly infected
individuals in which duration of infection is controlled.

5.6 THE MARKER TRAJECTORY

5.6.1 Introduction

In Section 5.5, we studied the risk of progression to AIDS as a function
of current and past marker levels. In this section, our focus is on how
marker values evolve over time. There are two methodological pro-
blems in studying the marker trajectory. First, the marker measure-
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ments can be extremely noisy because of considerable within individual
and between individual variation. Second, marker information on an
individual may not be available after onset of AIDS or shortly before
death. Thus, individuals with the greatest rates of decline of CD4+ T
cells may have the shortest follow-up. We call this informative censoring.
A complete description of the disease process requires joint modelling of
the marker trajectory and incidence of disease and death.

The depletion of CD4+ T lymphyocytes was one of the first
immunological abnormalities found to be associated with AIDS, and
there has been considerable research to characterize changes in the
numbers of CD4+ T cells over time. Our focus in this section is on the
CD4+ T cell trajectory.

Figure 5.6a shows the CD4+ T cell trajectory for 20 infected
hemophiliacs from the National Cancer Institute Multicenter
Hemophilia Cohort Study. The figure is a graph of peripheral blood
CD4 + T cell concentrations as a function of time since seroconversion
for each individual (dates of seroconversion were estimated by interval
midpoints). This figure shows how variable CD4+ T cell measure-
ments can be. Time trends are not readily discernible. There is
considerable variation within and between individuals. As discussed in
Section 5.8, laboratory measurement error and diurnal variation in

Figure 5.6a CD4 + T cell trajectories for 20 infected hemophiliacs. (Source: J.
Goedert, National Cancer Institute, personal communication.)
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CD4+ T cell levels obscure the general pattern of the marker
trajectory for an individual. The interpretation of Figure 5.6a is further
complicated by the fact that one of the 20 patients developed AIDS.

5.6.2 Approaches for Analyzing Trends in the CD4+ T
Cell Trajectory Grouped Means

A simple, though possibly misleading, approach for summarizing data
on the marker trajectories of a group of individuals is to take means at
each point in time (i.e., average the CD4+ T cell values for all
individuals at each time point). For example, Figure 5.6b is a graph of
the means of CD4 + T cells and was obtained by grouping the time axis
into 6 month intervals using the data in Figure 5.6a. A pattern of
decreasing CD4+ T cell levels becomes apparent. However, the
resulting (marginal or population average) marker trajectory may in
fact not describe the trajectory for any individual patient. For example,
consider a mixed cohort of newly infected individuals; half lose CD4 +
T cells at a constant rate of 100 cells/year and the other half lose CD4 +
T cells at a constant rate of 50 cells/year. If the CD4 + T cell count is
averaged at each time point, the population average marker trajectory

Figure 5.6b Mean CD4 + T cell trajectory for 20 infected hemophiliacs. Time
axis grouped into 6-month intervals; means plotted at interval midpoint.
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is linear with a slope of — 75 cells/year, which does not correspond to
any single patient's marker trajectory.

A number of selection biases may make it difficult to piece together
the CD4 + T cell trajectory based on a graph of means at each time
point. We shall discuss such biases in connection with data presented
by Lang, Perkins, Anderson, et al. (1989), who describe changes in
CD4 + and CD8 + T lymphocytes among subjects in the San Fran-
cisco Men's Health Study. They consider three groups of individuals:
(1) individuals who seroconverted during follow-up; (2) individuals
who were seropositive at study entry and remained AIDS free; and (3)
individuals who were diagnosed with AIDS. Mean CD4 + T cell levels
over time for the 3 groups are shown in Figure 5.7. The seroconverters
had mean CD4+ T cell levels of 1119/u/ at 18 months before
seroconversion. Between the 6 months before seroconversion and 6
months after seroconversion, the CD4 + T cell levels dropped a mean
of 360 cell&lul (34%). At 12 months after seroconversion, the sero-
converters resembled the prevalent seropositives. The prevalent seropo-
sitives declined an average of 84 cells per year over the 3-year follow-up
period. The data on AIDS cases in Figure 5.7 are aligned so that time 0
refers to AIDS diagnosis. The mean CD4+ T cell count at AIDS
diagnosis was 190cells/u/. During the 18 months before diagnosis, the
CD4 + T cell concentration declined an average of 160 cells/u/ per
year.

Figure 5.7 Illustration of declines in grouped means of numbers of CD4 +
T cells based on three populations: HIV seroconverters, AIDS-free prevalent
HIV seropositives, and incident AIDS cases. Unit changes in the abscissa
represent 6 months. (Source: Lang, Perkins, Anderson, et al., 1989)
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Possible selection biases should be considered when interpreting
these trends. The sharp decline in CD4 + T cells among AIDS cases
(160/u/ per year) may result from selection of those individuals (AIDS
cases) with the greatest rates of CD4+ T cell decline. Both the
prevalent seropositive and seroconverter trajectories suggest more
modest rates of decline of CD4+ T cells. Further, Figure 5.7 indicates
that the rate of loss of CD4 + T cells diminishes with time, both among
the seroconverters and seropositive patients. This tendency could result
in part from a selection bias whereby individuals with the greatest rates
of CD4 + T cell decline are more likely to be lost to follow-up or be
excluded because of an AIDS diagnosis. The prevalent seropositive
trajectory also excludes individuals who developed AIDS before study
entry. These excluded individuals may be the ones with the greatest
rates of CD4 + T cell decline.

Statistical Models for the Marker Trajectory
An alternative to simply plotting grouped means is to use statistical
models to describe the marker trajectory. For example, consider the
linear regression model that relates the expected logarithm of the
CD4 + T cell count to a linear function of the duration of infection;
that is,

where zi(t) is the CD4+ T cell measurement at time t following
infection for individual i and Eit are mutually independent random
error terms with zero means. Note that each patient is assumed to have
the same mean trajectory, defined by 0 and . Such simple regression
models do not account for the correlation of measurements within an
individual.

HIV disease, as measured by CD4+ T cell concentration, may
progress more rapidly in some individuals than others. It is plausible
that an individual with a large initial drop in the CD4+ T cells will
"track," that is continue to lose CD4+ T cells at a relatively fast rate.
An individual with a small initial drop in CD4 + T cells may continue
to lose CD4 + cells at a slow rate. By tracking we mean that the slopes
(rate of change of CD4 + T cells) for a particular individual over time
are highly correlated.

Statistical models that incorporate tracking are based on random
effects growth curve models (Laird and Ware, 1982; Ware, 1985). For
example, consider the statistical model,
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where Zit is the marker value for individual i at t time units following
seroconversion. The quantities a0i and ali are the random intercept
and random slopes for the ith individual, respectively. Thus, the model
allows for the intercept and slopes to vary among individuals. A simple
model is to assume that the random effects (aoi,a1i) are drawn from a
bivariate normal distribution, and that the errors, ij, are also normal
and independent of the random slope and intercept. This is one
approach for introducing correlation among repeated marker measure-
ments on the same individual. An important assumption of model (5.6)
is that the ith individual's slope, ali; (i.e., change in the marker per unit
time) remains constant over time although the model does allow for
heterogeneity in slopes among individuals. Thus, the model implicitly
assumes that individuals track.

De Gruttola, Lange, and Dafni (1991) applied model (5.6) to serial
measurements of CD4+ T cell counts from individuals in the San
Francisco Men's Health Study. Model estimation procedures were
developed to account for the fact that the date of infection was
unknown for some members of the cohort. This was done by in-
corporating prior information about the infection rate curve in San
Francisco. A refinement of model (5.6) was considered that allowed an
initial sharp drop in CD4+ cells at the time of seroconversion in
addition to the long term decreasing trend. De Gruttola, Lange, and
Dafni (1991) concluded that after a sharp drop in CD4+ T cell count
at the time of seroconversion, the square root of CD4 + T cell count
declines linearly. They also found considerable variation in the slopes
and intercepts among individuals. Their results suggest that the
approximate rate of loss of CD4+ T cells/u/ per year for a "typical"
individual at CD4 + T cell level Z is 4.26 . Thus, at CD4 + T cell
levels Z = 800, 600, and 100 cells\ul, an individual could expect to lose
120, 104, and 43 cells/u/ per year, respectively.

Lange, Carlin, and Gelfand (1992) conducted a Bayesian analysis of
the CD4 + T cell trajectory data from the San Francisco Men's Health
Study. They allow for a nonlinear growth curve for , heterogeneous
variances across individuals, covariate effects, unknown random in-
fection times and varying numbers of observations per individual. The
Gibbs sampler was used to obtain posterior distributions. They
conclude there is considerable noise in the CD4 + T cell trajectory, and
that one cannot reject a simple linear growth model for in favor of
more complicated models, based on these data.

A number of other statistical models have been proposed to describe
the CD4+ T cell trajectory. For example, Berman (1990) assumed
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that the CD4 + T cell count at time t following seroconversion could be
represented by

where X(t) is a stationary Gaussian process. This model assumes that
the effect of HIV infection is to decrease the expected log CD4 + T cell
count by an amount • t where t is the duration of infection. The model
was applied to a cohort of intravenous drug users in detoxification
and methadone maintenance programs in New York City. Taylor,
Cumberland, and Sy (1992) considered a more general model which
included random effects and measurement error as in model (5.6) as
well as a stochastic process to account for additional within-subject
covariance. The model was applied to a cohort of over 1600 homo-
sexual and bisexual men in Los Angeles. It was found that the intra-
individual correlations between two slopes (rate of change in CD4 + T
cell count per microliter per unit time) 3 months apart was only 0.1 .
Thus, this analysis did not find that individuals track. In particular,
individuals with large initial rates of decline in CD4 + T cell concen-
tration do not necessarily continue to experience large rates of declines
over the course of follow-up.

Joint Modeling of the Marker Trajectory and the Disease Process
An important complexity which the previous methods do not address
concerns informative censoring. Specifically, individuals who are
diagnosed with AIDS or other symptoms may be at greater risk of loss
to follow-up or selective exclusion. Further, individuals who die may
have the greatest rate of CD4+ T cell depletion. In order to account
for these potential selection biases, it is necessary to jointly model the
marker trajectory and the risk of progression to AIDS.

One approach for simultaneously modelling the marker trajectory
and risk of AIDS progression or death is based on multistate survival
models. The simplest such model assumes that individuals progress
from one stage of HIV infection to the next. The stages are defined by
marker levels, and the last stage is AIDS diagnosis or death.

Longini, Clark, Gardner, and Brundage (1991), for example, used a
time homogeneous Markov chain to describe the transitions through
seven states defined by CD4+ T cell numbers (>899, 700-899,
500-699, 350-499, 200-345, 0-199, AIDS diagnosis or death). The
underlying assumptions were that individuals progress through a series
of transient states, and the hazard of progression from stage i to stage
i + 1 was a constant . Unlike the random effects growth models, the
Markov model does not allow for tracking. The duration in a
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particular stage is independent of the durations in the other stages.
These methods were applied to data from a cohort study of infected
military personnel (Brundage, McNeil, Miller, et al., 1990). The results
are given in Table 5.3. For an individual at 800, 600, and 100 CD4 + T
cellsIul, the expected rate of decline is 160, 120, and 83 cells per year,
respectively. The expected time from first falling below 200 CD4 + T
cells// to an AIDS diagnosis was 1.6 years. These investigators also
identified an age effect. In particular, the waiting time in the last three
states decreased with increasing age at first exam ( 25 years, 25-30
years, and >30 years). See also Longini (1990).

Although Markov models of this type have enough parameters to
allow them to fit available data on rates of CD4+ T lymphocyte
decline, and although such models yield estimates of the AIDS
incubation distribution in good agreement with estimates derived from
other methods (Chapter 4), the Markov assumption is a strong one and
is probably not correct. Under the Markov stage model above, the time
to death or AIDS is conditionally independent of time since infection,
given a CD4 + T cell stage. Yet, using data from patients given AZT in
the study reported by Fischl, Richman, Grieco, et al. (1987), Tsiastis,
Dafni, De Gruttola, et al. (1992) have estimated that the hazard of
death is more than three-fold greater 18 months after randomization
than at 6 months after randomization when comparing patients with
the same CD4 + T-lymphocyte levels at those two times. This is
evidence that duration of illness has prognostic value above and
beyond that provided by CD4+ T-lymphocyte levels and therefore
that the Markov model cannot be strictly true. Moreover, that model

Table 5.3 Markov Model of CD4 + T Cell Decline among HIV Positive U.S.
Army Personnel

State

1
2
3
4
5
6
7

CD4 + T Cell
Range (per ul)

>899
700-899
500-699
350-499
200 349

0-199
AIDS diagnosis*

CD4 + T cell
decline"

(cells/ul/year)

275
160
120
77
73
83

Mean Waiting
Time in State

(years)

1.1
1.3
1.7
1.9
2.0
1.6

Cumulative
Waiting Time

(years)

1.1
2.4
4.1
6.0
8.0
9.6

Source: Longini, Clark, Gardner, and Brundagc, 1991.

'State 1 assumed to be 900-1200 CD4+ T cell range.

'Defined as Walter Reed Stage 6 case (see Redfield, Wright, and Tramont 1986).
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does not allow for transitions from state i + 1 to state i, even though
CD4+ T-lymphocyte trajectories from individual patients indicate
that such transitions do occur.

Another approach for jointly modeling the marker trajectory and the
progression of disease was proposed by Self and Pawitan (1992). Their
basic idea was to use Cox proportional hazards regression models with
time-dependent covariates to describe the relation between the marker
and disease progression and a mixed linear model to describe the
marker trajectory. Other approaches have also been proposed (De
Gruttola and Tu, 1992; Jewell and Kalbfleisch, 1992).

5.7 OTHER USES OF MARKERS

A number of other uses for markers have been suggested. One
suggestion has been to use markers to control for the effects of onset
confounding in studies of prevalent cohorts. For example, to evaluate a
cofactor ( X 1 ) , one might adjust for the baseline level (at beginning of
follow-up) of a marker, X2, (e.g. concentration of CD4 + T cells) that
might be highly correlated with time since infection. The rationale for
this approach is that since X2 contains information about the duration
of infection, adjustment on X2 would control any onset confounding
that might arise from the association of duration of infection with Xt.
Adjustment could be accomplished either by stratifying on X2 or by
including X2 in a regression model such as a proportional hazards
model (model 5.1). The analysis is then performed using follow-up time
as the time scale rather than time from infection. However, this ap-
proach is not always appropriate and its validity depends upon how well
X2 serves as a substitute for time since infection and on the mechanism
by which Xl affects the risk of AIDS. We illustrate with two examples:

Example 1. Consider a cofactor Xl whose value is fixed at the time of
infection. Suppose its mode of action is to accelerate the decline in
numbers of CD4 + cells, and thereby increase the hazard of AIDS, as
indicated by the following schematic:

The marker X2 is part of the causal pathway. The effect of X1 on the
incubation period is revealed in part through depressed numbers of
CD4+ T cells. Thus adjustment for X2 may eliminate or obscure the
very effects of X1 we are trying to detect. Breslow and Day (1980) have
described related phenomena, called overmatching, in the context
of cancer case-control studies. Jewell and Kalbfleisch (1992) show
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under certain model assumptions that the relative risk of a cofactor will
be biased toward 1 if one uses follow-up time and adjusts for the
marker X2 at entry.

Example 2. Consider a time-dependent cofactor, X1 which takes
effect at the onset of follow-up. An example might be a treatment given
to some members of a prevalent cohort at entry. In this second
situation, unlike the first, the baseline marker X2 contains no in-
formation about the effects of treatment Xl. Adjustment for the
baseline marker X2 helps to insure that the treated and untreated
subgroups are comparable and to reduce the effects of onset confound-
ing. In this example, even if the treatment is assigned randomly so that
the condition for no onset confounding is satisfied (g = g ), there is
still good reason to adjust for baseline markers. This is because
randomization does not guarantee that the distributions of prior
infection times would be exactly the same in the two treatment groups.
Brookmeyer and Gail (1987) show that failure to adequately adjust for
duration of infection will under some conditions bias relative risk
estimates toward 1.0. They call this potential bias "frailty selection."

Markers have been used to try to extract information on the
incubation period distribution from prevalent cohorts. The basic idea is
to try to use baseline markers measured at enrollment to estimate
duration of infection. Munoz, Wang, Bass, et al. (1989) analyzed data
from 1628 prevalent homosexual men in the Multicenter AIDS Cohort
Study (MACS) who were enrolled between April 1984 and March
1985. In 4 years of follow-up, 304 of those subjects developed AIDS,
compared to only 12 of 233 men who were incident seroconverters in
this period. In order to use the information from the prevalent cohort,
these investigators imputed previous infection times by assuming that
these times followed a Weibull distribution with parameters depending
on the percentage of lymphocytes that were CD4 + T cells and on
platelet levels. This model was fit to data from the seroconverters and
then applied to the prevalent cohort. The resulting incubation distri-
bution had a hazard (per person year) of approximately .004, .032,
.064, .074, and .078 at years 1 through 5 respectively. Indications that
the hazard might have been leveling off after only 3 years may be
related to the use of zidovudine and other treatments beginning in 1987
or to the use of the Weibull model for imputing previous dates of
infection. A theoretical concern with this methodology discussed by
Jewell and Nielson (1993) is that it is not possible for the backward
recurrence time (the time since infection) to follow a Weibull distribu-
tion for all times of enrollment, even if covariates in the Weibull model
are allowed to vary with time since infection.
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Taylor, Munoz, Bass, et al. (1990) also tried to extend the range of
the MACS data for estimating the incubation distribution by using
markers. However, these authors imputed the residual time to AIDS
among censored seroconverters. They estimated the residual time to
AIDS distribution, conditional on each subject's percentage of CD4 +
T cells. They assumed that this distribution was lognormal, and,
importantly, that the residual time to AIDS was conditionally inde-
pendent of duration of infection given the marker value. Having fit this
model, they applied it to impute the missing residual times to AIDS
among seroconverters. Standard survival methods were then used to
estimate the incubation distribution from the "complete" data on
seroconverters. Again, a theoretical concern discussed by Jewell and
Nielson (1993) is that use of the lognormal model (or Weibull model)
is "inconsistent" because it is impossible for the residual AIDS-free time
for an individual infected t years to follow a lognormal distribution for
all t.

Markov models have also been used to combine information from
incident and prevalent cohorts. For example, the Markov model of
Longini, Clark, Byers, et al. (1989) uses stages defined by CD4 + T cell
count. An individual in stage i at entry contributes information only
about transition rates beyond stage i. Thus data from prevalent cohorts
can be used. Longini, Clark, Byers, et al. (1989) employed this model to
combine information from incident and prevalent cohorts and to
estimate the average duration in various stages of HIV infection as well
as the distribution of the total incubation period.

5.8 VARIABILITY OF MARKERS

There can be considerable variability in repeat marker measurements
from a given individual. The sources of variability include measure-
ment errors in the assay, diurnal (i.e., time of day) variation and day-
to-day variation in marker levels for a given individual. The effect of
this variation is to bias relative risk estimates toward 1 . Specifically
suppose the underlying model for the hazard of progression is

where Z ( t ) is a marker level at t time units after infection. We measure
which is Z ( t ) plus random measurement error ,

If the measurement error e has zero mean and variance 2, estimates /?
based on will be biased toward 0. Measurement error attenuates the
true marker disease risk association (Prentice, 1982; Pepe, Self, and
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Prentice, 1989; Raboud, Reid, Coates, and Farewell, 1992). An
adjusted or "deattenuated" estimate of has been derived, and it
depends on an estimate of (Prentice, 1992; Raboud, Reid, Coates,
and Farewell, 1992).

Smoothing techniques have been suggested to reduce the effects of
marker measurement error. The basic idea is to adjust the marker value
at a given time t by averaging the marker values in a neighborhood of t
(Hastie and Tibshirani, 1990). Raboud, Reid, Coates, and Farewell
(1992) compare a number of different smoothers, including a historical
running mean which averages marker values from current and previ-
ous visits.

Malone, Simms, Gray, et al. (1990) considered the sources of
variability in repeated CD4+ T cell counts among HIV infected
individuals on three consecutive days. They reported a median
coefficient of variation (standard deviation divided by the mean) of
.145 when samples were drawn at a consistent time of day compared to
a median coefficient of variation of .22 when samples were drawn
throughout the day.

The CD4 + T cell count is calculated as the product of (1) the white
blood cell count concentration (cells/ul), (2) the estimated fraction of
white cells that are constituted by lymphocytes, and (3) the fraction of
lymphocytes with CD4 + T cell receptors, as measured by flow
cytometry. Error is introduced in the measurement of all three
components. Another useful marker is simply the third component
above, often called percent CD4+ T cell (CD4+ %). An advantage of
percent CD4+ T cell is that measurement error is introduced only
through flow cytometry, because it is not necessary to measure the
white blood cell count or the differential fraction of lymphocytes.
Malone, Simms, Gray, et al. (1990) report a median coefficient of
variation of only .075 for percent CD4 + T cell when drawn at a
consistent time of day. Taylor, Fahey, Detels, et al. (1989) compared
the prognostic value of percent CD4 + T cell with that of CD4 + T cell
count and concluded that percent CD4 + T cell may be a better
prognostic factor than the CD4 + T cell count.

5.9 SYNTHESIS OF KNOWLEDGE OF COFACTORS
AND MARKERS

A large number of studies have investigated potential cofactors and
markers of disease progression. This chapter highlighted a number of
statistical issues in the interpretation and analysis of such studies.

The search for cofactors has been less fruitful than the search for
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markers (Table 5.1). Age at infection is the one cofactor that has been
reported in a number of studies. Older hemophiliacs were at higher risk
of progression to AIDS than younger hemophiliacs (Goedert, Kessler,
Aledort, et al. 1989; Darby, Rizza, Doll, et al., 1989; Darby, Doll,
Thakrar, et al., 1990; Phillips, Lee, Elford, et al., 1991). Darby, Doll,
Thakrar, et al. (1990) report that the cumulative probabilities of
developing AIDS within 5 years of seroconversion, F(5), among
hemophiliacs aged <25, 25-44 and >45 years at first seropositive test
were .03, .07 and .20 respectively. This is illustrated in Figure 5.8. A
prevalent cohort study (Moss, Bacchetti, Osmond, et al., 1988) among
homosexual men also suggested a positive association between age and
risk of AIDS progression, although onset confounding cannot be ruled
out because older individuals may have been infected earlier in such a
prevalent cohort. Retrospective studies of transfusion-associated AIDS
cases (Medley, Anderson, Cox, and Billard et al., 1988) found a
quadratic relation of age at infection with risk of AIDS progression.
Children (0-4 years) and the elderly ( 60 years) had shorter
incubation periods than those 5-60 years at infection, although
inferences about cofactors based on such studies are tenuous for the
reasons outlined in section 5.4. Nevertheless, the cumulative evidence
suggests age is a cofactor, at least among patients with hemophilia. No
other cofactors have been consistently demonstrated.

Figure 5.8 AIDS incubation distributions for hemophiliacs age <25 years,
25-44 years, and 45 years at first seropositive test. (Source: Darby, Doll,
Thakrar, et al., 1990.)
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Numerous markers of progression of HIV disease have been ident-
ified and include CD4+ T cells, beta 2-microglobulin, serum neop-
terin, and various clinical and viral markers. The most intensively
studied marker is the CD4+ T cell concentration. Both incident and
prevalent cohort studies indicate that HIV infected individuals with
depressed CD4+ T cells are at elevated risk of progression to AIDS.
Thus, CD4 + T cells carry prognostic information over and above
what it reflects about duration of infection.

The CD4+ T cell marker trajectory is difficult to study because of
laboratory measurement error, day-to-day and diurnal variation, and
informative censoring. Some estimates of the rates of CD4 + T cell
decline based on different methodologies are summarized in Table 5.4.
The rate of loss of CD4+ T cells declines as the CD4+ T cell level
drops. In the range of 600 CD4 + T cells, the expected cell decline is
approximately 100-200 cells per year. In the range of 300 CD4+ T
cells, the expected cell decline is approximately 70-80 cells per year.
More work is needed to determine the extent to which rates of change
of CD4+ T cells "track" for a particular individual over time. The
CD4 + T cell marker trajectory may also depend on covariates such as
age at infection.

Table 5.4 Estimated Rates of CD4 + T cell Decline

Rate of CD4+ T Cell Decline (cells/ul/year)
Current CD4 + T Cell
Level (cells/ul) Growth Curve Modela Markov Model*

800
600
400
300
100

120
104
85
74
43

160
120
77
73
83

Based on results reported in De Gruttola, Lange, and Dafni (1991) (see Section 5.6.2).

''Based on results reported in Longini, Clark, Gardner, and Brundage (1991).

Model
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Screening and Accuracy of Tests
for HIV

6.1 INTRODUCTION

The isolation of the HIV virus from patients with AIDS led to the
development of tests to detect viral antibodies in blood samples
(Sarngadharan, Popovic, Bruch, et al., 1984). Such blood tests were
used to demonstrate the frequent occurrence of HIV antibodies in
persons with AIDS and their absence in healthy individuals and to
monitor the development of HIV antibodies in persons who were
inadvertently exposed to the virus through blood transfusions, hospital
and laboratory accidents and other means. This evidence was decisive
in supporting the hypothesis that HIV causes AIDS. The availability of
such antibody tests also allowed epidemiologists to find risk factors for
HIV infection, such as anal receptive intercourse with many
homosexual partners (Chapter 2). Thus the availability of tests to
detect the presence of HIV infection has been crucial in studying the
etiology and epidemiology of AIDS.

Although accurate tests are important for studying AIDS etiology
and epidemiology, high accuracy is even more important when such
tests are applied to screening large populations to detect infected
individuals and for advising patients. Even very good tests may
needlessly alarm large numbers of healthy persons when used to screen
large healthy populations (Meyer and Pauker, 1987). In this chapter
we discuss measures of test accuracy, including sensitivity and specific-
ity (Section 6.2); some of the more controversial proposals for screening
populations using these tests in relationship to the likely proportions of
false positive and false negative results to be obtained (Section 6.3); and
the use of HIV tests to improve the safety of transfused blood products

147
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(Section 6.4). Viral culture, the polymerase chain reaction to detect
HIV genome, and assays for HIV antigen are described in Section 6.5.
Sloand, Pitt, Chiarello, and Nemo (1991) review recent progress and
procedures for HIV testing.

6.2 SENSITIVITY, SPECIFICITY AND RELATED
MEASURES OF ACCURACY FOR DIAGNOSTIC
TESTS

General principles and statistical methods for evaluating diagnostic
tests are available in texts on clinical epidemiology (Fletcher, Fletcher,
and Wagner, 1988) and expository articles (Begg, 1987; Gail, 1979 and
1991b). Schwartz, Dans, and Kinosian (1988) apply these ideas to tests
for HIV, and Dodd (1986) gives a nice introduction to available HIV
tests and concepts of specificity, sensitivity, and predictive value.

Often a diagnostic test is evaluated in a nondiseased population and
in a population of individuals with the disease of interest, and test
results are recorded as in Table 6.1. The sensitivity of the test is the
probability that the test is positive among diseased individuals and is
estimated by n11/N1 in Table 6.1. The specificity is the probability that
the test will be negative in a nondiseased population; specificity is
estimated by n22/N2.

6.2.1 The Effect of Changing the Definition of "Positive
Test Result"

In applying these simple definitions, care must be taken to precisely
define the criteria used to define a "positive" result, and one must
precisely specify the nature of the non-diseased and diseased popula-
tions. Data in Table 6.2 are taken from a study by Weiss. Goedert,
Sarngadharan, et al. (1985) of the performance of the enzyme-linked
immunosorbent assay (ELISA assay). This assay detects antibodies in

Table 6.1 Cross-Classification by Disease Status
and Test Status

Positive
Test

Negative

No
Disease Disease

n11

n21

n12

n22

N1 N2
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Table 6,2 Distribution of ELISA Absorbance Ratios in Healthy Blood Donors
and AIDS Patients

Absorbance Ratio Category

AIDS
Healthy blood

donors

<2 :

0

202

2-2.99

2

73

3-3.99

7

15

4-4.99

7

3

5-5.99

15

2

6-11.99

36

2

12

21

0

Total

88

297

Source: From Weiss, Goedert, Sarngadharan, et al. (1985).

the blood specimen that bind to antigens from disrupted whole HIV
virus. The bound HIV antibodies themselves become the binding sites
for anti-human immunoglobulin antibodies that are attached to an
enzyme, horseradish peroxidose, which catalyzes a color producing
reaction. The optical absorbance of the color produced increases with
increasing concentration of HIV antibodies in the original blood
specimen. Sandier, Dodd, and Fang (1988) review ELISA assays and
other types of enzyme immunoassays (EIA) that work on the same
principles, as well as immunblot (Western blot) procedures used to
obtain more specific tests. We use the term EIA to represent any type of
enzyme immunoassay, including ELISA. The ELISA results in Table
6.2 are expressed as the ratio of the mean of duplicate absorbances in
the test specimen to the mean of eight negative control absorbances.

It is evident that absorbance ratios tend to be higher among AIDS
patients than among normal blood donors (Table 6.2). Formal tests for
this trend may be based on the Wilcoxon two-sample test, adapted for
ties (Lehmann, 1975; Gail, 1979) or, if one is willing to assign the scores
1,2,3,.. ., 7 to these categories, to standard tests for trend in 2 x k
contingency tables (Armitage, 1955; Mantel, 1963; Agresti, Mehta,
and Patel, 1990). The two-sided Wilcoxon test yields significance level
p < 0.0001 in this case.

Of greater interest than establishing that the ELISA absorbance is
elevated among AIDS patients is estimating sensitivity and specificity.
If the ELISA test is defined as positive whenever the ratio exceeds 4.99,
the sensitivity is estimated from Table 2 as 72/88 = .818 and the
specificity is estimated as 293/297 = .987. A higher sensitivity,
(72 + 7)/88 = .898, is obtained by lowering the positivity cut-point to
a ratio exceeding 3.99, but the corresponding specificity is reduced to
(293-3)/297 = .976. This calculation illustrates the trade-off between
sensitivity and specificity that occurs as one varies the cut-point used to
define a "positive" result.
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A much more complete description of the performance of the
diagnostic test from Table 6.1 is obtained by plotting the sensitivity
against one minus the specificity for all possible choices of cut-point.
Such a plot of sensitivity versus one minus the specificity is called a
receiver operating curve (ROC). A uniformly better assay than the ELISA
assay would have a higher sensitivity for each fixed specificity and
would lie above the ELISA locus on an ROC curve. Part of the
difficulty in comparing various proposed tests for HIV is that data are
often given corresponding only to a single point on the ROC curve, so
that one cannot compare the sensitivities of various tests over a
comparable range of specificities. Statistical methods are available for
comparing ROC curves for two assays over the entire range of
specificities (Hanley and McNeill, 1983) or only over the part of the
specificity range of practical interest (Wieand, Gail, James, and James,
1989).

The estimated specificity 293/297 = 0.987 for cut-point ratio
5.0 or higher is very promising, but it is subject to random error.
The estimated standard deviation is { (I - }/N2}1 / 2 = {(.987)
(1 - .987)/297}1/2 = .0066, which leads to a 95% confidence interval
0.987 1.96 x .0066 = (.974, 1.000). A more accurate lower 97.5%
confidence limit is obtained by finding p such that

where C(X, 297) = 297!/,X!(297 - X ) ! . This formula yields a lower
97.5% confidence limit of p = .9659 rather than .974 above. As we
shall see, even small changes in specificity have implications for the
usefulness of these tests. Similar formulas can be used for putting
confidence limits on estimates of sensitivity.

The data in Table 6.2 were based on one of the first available EIA
procedures. Current commercially available assays perform better
(Reesink, Lelie, Huisman, et al., 1986).

6.2.2 Defining the "Infected" and "Uninfected"
Populations Precisely

Another difficulty with the simple summary of test performance in
Table 6.1 is in defining what is meant by the "nondiseased" and
"diseased" categories. The specificity of a test may be reduced in
persons who have never been exposed to the HIV virus (nondiseased)
but who have other non-AIDS related disorders or other infections that
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give rise to antibodies and other products that may yield false positive
tests for AIDS. Thus the type of nondiseased population must be
carefully characterized in relation to the intended application of the
diagnostic test. Failure to take such heterogeneity of nondiseased
populations into account has been described as spectrum bias (Schwartz,
Dans, and Kinosian, 1988; Ransohoffand Feinstein, 1978; Begg, 1987).

The spectrum of diseased populations is likewise very broad because
different hosts react to the virus in different ways, and especially,
because the interaction between the HIV virus and the host is a
dynamic one that evolves over time. The state of health of the host and
the biological and immunological evidences of infection vary over time.
The word sensitivity thus has meaning only in relation to a well
characterized stage of disease.

6.2.3 Time Course of Detectability of HIV by Various
Assays

Some idea of the complex time course of the infection process is
indicated in Figure 6.1, which depicts laboratory studies from a
hypothetical person infected with HIV at time zero. The evolving
patterns for various laboratory tests are based on the references in the
legend to Figure 6.1. In this patient, antibody to HIV was not
detectable by EIA until about month 2. Viral antigen (p24 protein)
was detectable in the serum within one month of infection; it almost
disappeared by 6 weeks however.

Whereas the EIA detects antibodies to a mixture of HIV proteins,
the Western blot (WB) assay allows one to detect antibodies to specific
HIV proteins and can be used to confirm an initial positive EIA,
resulting in a combined test with enhanced specificity (Esteban, Shih,
Tai, et al., 1985; Burke, Brundage, Redfield, et al., 1988). Western blot
analyses can detect antibodies to proteins from the viral core ("gag"
proteins) such as p17, p24, and p55, proteins produced by the
polymerase ("pol") gene, such as p31, p51 and p66, and the envelope
proteins gp41, gp120 and gp160. The manufacturer of the licensed
Western blot (WB) procedure requires that antibody to proteins from
each of these elements (core, polymerase, envelope) be present in order
for the result to be positive—i.e., p24, p31 and either gp41 or gp160. In
early studies, the U.S. Army (Burke, Brundage, Redfield, et al., 1988)
considered the WB to be positive if either the gp41 band were present
or if both the p24 and p55 bands were present. In the hypothetical
example (Figure 6.1), the WB would be judged positive first at about
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Figure 6.1. Time course of development of detectable viral antigens, anti-
bodies and viral genome in a hypothetical patient. Modeled on data in Ranki,
Valle, Krohn, et al. (1987); Bowen, Lobel, Caruana, et al. (1988); CDC (1988);
Dodd and Fang (1990), and Haseltine (1989).

17 weeks under the U.S. Army criterion and about 5 weeks later under
the manufacturer's criterion. Another widely used criterion (Associa-
tion of State and Territorial Public Health Laboratory Directors, 1987;
CDC, 1989b) is that the WB is positive if antibodies to any two of p24,
gp41 and either gp120 or gp160 are present. This criterion has been
adopted by the U.S. Army. Under this criterion, the hypothetical
patient in Figure 6.1 would be judged positive at 13 weeks.

Of great concern is the "silent" interval or "window" following
infection before sufficient antibody has developed to be detected by
EIA. This window is thought to be on the order of a few months, with
95% of seroconversions occurring within 6 months (Horsburgh, Qu,
Jason, et al., 1989). Nevertheless, some patients have expressed
antibody to core proteins in the WB assay more than a year before
seroconversion (Ranki, Valle, Krohn, et al., 1987), and segments of
HIV DNA coding for core protein have been detected by the
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polymerase chain reaction method in peripheral-blood lymphocytes
more than two years before EIA seroconversion (Imagawa, Lee,
Wolinsky, et al., 1989; Wolinsky, Rinaldo, Kwok, et al., 1989). These
very long silent periods are thought to be atypical, however, because
the sample was selected to include only homosexuals with long EIA
seronegative periods (Winkelstein, Royce, and Sheppard, 1990;
Wolinsky, Rinaldo, and Phair, 1990).

The sensitivity of EIA thus depends on the stage of infection. In
Section 6.5 we discuss the use of assays to detect p24 antigen, live virus,
and HIV DNA. These assays have the potential to detect HIV early in
the course of infection but have not proved practical for mass screening.

6.2.4 Detecting HIV-2

Another factor that can afiect sensitivity is the evolution of new strains
of HIV that can cause AIDS but are biologically distinct from HIV-1,
the strain against which current assays are directed. In fact, a new
strain, HIV-2, has been identified in Africa (De Cook and Brun-
Vezinet, 1989). About 60-90% of people with HIV-2 test positive with
currently used EI As for HIV-1 (CDC, 1990b). Although HIV-2 is
currently rare in the United States, the spectrum of current assays will
need to be broadened, or routine testing for HIV-2 will need to be
implemented, to retain high overall sensitivity in populations where the
prevalence of HIV-2 is appreciable. Centers that collect blood dona-
tions began testing for HIV-2 in the United States in 1992.

6.2.5 Sensitivity and Specificity of EIA and WB Assays

The sensitivity of EIA assays is high in patients with AIDS or ARC.
The data in Table 6.2 suggest a sensitivity of 82% with cut-off ratio 5.0
in patients with AIDS. Later studies of commercial assays in patients
with AIDS or ARC yielded estimates of sensitivity ranging from 97.0%
to 100.0% (Reesink, Lelie, Huisman, et al., 1986). The fact that
sensitivity is less than 100% in patients with AIDS may reflect
technical failures. A second factor is that antibodies can diminish in
end-stage AIDS (Figure 6.1) and disappear, even in asymptomatic
men with previously documented HIV antibody (Farzadegan, Polis,
Wolinsky, et al., 1988). In very rare instances, a person may have
clinical immunodeficiency and an AIDS-defining condition without
HIV infection. If such a person were included in the panel of AIDS
cases, the apparent sensitivity of the EIA would be reduced.
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The sensitivity of the EIA is lower in recently infected individuals,
von Sydow, Gaines, Sonnerborg, et al. (1988) found an EIA sensitivity
of 0.0% (0/12) among homosexual men in the first week of their
primary symptomatic illness. The sensitivity increased to 67% (8/12) in
the second week (Table 6.3). Some of these patients are in the "silent"
interval. Mayer, Stoddard, McCusker, et al. (1986) studied 26 EIA
negative high risk homosexual men, 2 of whom had a partner with
AIDS and 24 of whom had at least 100 lifetime partners. Among these
patients, 2 were found to have HIV virus by direct viral cultures. Thus
the negative predictive value (see Section 6.3.2) was 24/26, and, using
formula (6.4) in Section 6.3.2, one can estimate the sensitivity of the
EIA assay as about 91.8%. In this calculation we assumed that the
prevalence of infection was 50% among the population of high risk
homosexuals in Boston in 1984, when this study was conducted, and
that the specificity of the test was 99%. This lower sensitivity among
high risk homosexuals reflects the fact that new infections were
occurring at a brisk rate, so that a substantial portion of these
individuals were in the silent interval. In Section 6.4.2, we discuss the
sensitivity of a test in relation to the length of the silent interval. Some
positive viral cultures may result from viral contamination of cells used
in the assay, and some positive viral cultures may represent "in-
complete" infections that never progress to clinical HIV disease and
are never transmitted (Imagawa and Detels, 1991). Suppose one of the
two positive cultures mentioned above represented an "incomplete"
infection or an artifact of the viral culture assay and should be ignored.
Then the calculation above would yield an estimated EIA sensitivity of
96.0%, instead of 91.8%.

The specificity of the EIA assay has been calculated from samples of
healthy blood donors by assuming that none of these persons were
infected. Data in Table 6.2 would indicate a specificity of
198/202 = 98.0% for an absorbance cut-off above 4.99. Manufacturers
recommend that an initially reactive EIA be repeated twice on the
same sample and that only individuals whose sera are reactive on at
least one of the two repeat assays be classified as positive. Reesink,
Lelie, Huisman, et al. (1986) reported that specificities for initial EIA
ranged from 98.7% to 99.9% for six commercial assays, whereas
specificities increased to 99.6-100.0% when confirmation by a second
positive EIA was required (Table 6.3). Specificity can be further
enhanced by requiring that a repeatedly reactive EIA be confirmed by
a positive Western blot. Such combined testing will enhance specificity
but necessarily lower sensitivity somewhat. Cleary, Barry, Mayer, et al.
(1987) estimated that the proportion of EIA true positive individuals



Table 6.3 Sensitivity and Specificity of Assays for HIV

EIA

EIA repeatedb

Western Blot

EIA with Western
Blot confirmation
on two samples

PCR

p24 antigen

Viral culture from
plasma

Viral culture from
peripheral blood
mononuclear cells

Specificity (%)

Population Estimates

Random blood donors 98.7-99.9"

Random blood donors 99.6-100.0°

17-18 year old applicants 99.989
for military service from
rural regions with prevalence
< 0.0015 in applicant pool

Repeat blood donors without 90.5-100.0d'
risk factors 94.7 (mean of

5 labs)

Sensitivity (%)

Population

AIDS/ARC

AIDS/ARC and EIA
positive

Homosexual/bisexual men
who are EIA positive and
viral culture positive

AIDS/ARC

AIDS/ARC

AIDS/ARC

Estimates

97.0-100.0"

96.8g

98.0-100.0d

99.0d (mean
of 5 labs)

34.0e

65.6e

97.5e

Sensitivity (%) Estimates
During Primary Illness

in Homosexual men

First week 0.0(0/12)
Second week 67.0(8/1 2) f

First week 84.0(10/12)f

Second week 75.0(6/8)f

Weeks 3-5 18.2(2/11)/

"Reesink, Lelie, Huismen, et al. (1986).
bEIA was repeated with a fresh set of reagents. Positive result required both EIA tests to be positive.
•Burke, Brundage, Redfield, et al. (1988). An estimate of 100.000% with lower two-sided 95% confidence limit 99.9987% has been given by MacDonald, Jackson, Bowman, et
al. (1989) on the basis of viral culture confirmation of positive results.
'Sheppard, Ascher, Busch, et al. (1991).
'Coombs, Collier, Allain, et al. (1989).
fvon Sydow, Gaines, Sonnerborg, et al. (1988).
gAssociation of State and Territorial Public Health Laboratory Directors (1987) and CDC (1989b). The criterion for positivity is any two of p24, gp41 and either gp120 or gp160.



156 AIDS Epidemiology: A Quantitative Approach

who would be confirmed by WB was 23/25 = 92%, and that the
sensitivity of the combined test would be Prob[EIA repeatedly
positive] x Prob[WB positive]EIA repeatedly positive] = .998 x
.92 = .92. In persons with long-standing infection, the concordance of
EIA with WB might be higher, resulting in higher sensitivity of the
combined test.

Requiring WB confirmation of the EIA pushes specificity to very
high levels. However, concerns have been expressed that the perfor-
mance of these tests in the field may not reach the high levels of
sensitivity and specificity attainable in a research laboratory setting.
Burke, Brundage, Redfield, et al. (1988) recently evaluated the
specificity achieved in the U.S. Army's screening program by studying
135,187 specimens from applicants to the Army who were 17 or 18
years old and who resided in rural areas with low HIV prevalence. For
an applicant to be declared positive, the initial sample must be
repeatedly reactive to EIA and must be confirmed by Western Blot.
Then an independent blood sample must also be Western Blot positive.
Of these applicants, 15 were found to be positive. These 15 specimens
were subjected to further detailed biological tests which confirmed
positivity in 14 cases. Only one of these specimens was regarded as a
false positive. It was concluded that only one false positive result was
found among 135,187 tests, for a specificity of .99999. One could argue
that this study merely shows high concordance between the initial
EIA/WB tests and the confirmatory biological tests, and that one
should obtain clinical follow-up information before deciding whether
or not the 15 candidates who tested positive were truly infected. But
even if all 15 had been false positives, a high specificity (0.99989) would
be demonstrated (Table 6.3). This calculation is in line with cal-
culations used for other assays that assume that all members of the low
risk test population are free of infection.

MacDonald, Jackson, Bowman, et al. (1989) also demonstrated high
specificity of the EIA assay with WB confirmation. Only 17 of 290,110
blood donors from Minnesota were confirmed positive by WB. HIV
was subsequently isolated from 16 of these subjects by viral culture.
The remaining positive donor gave a history of high-risk behavior but
was not available for viral culture tests. Based on this evidence, the
authors estimated the specificity as 1.0 with lower two-sided 95%
confidence limit 0.999987.

True specificities are somewhat higher than apparent specificities in
studies of low risk populations that rely on clinical criteria to define
infection because some members of a low risk group who are regarded
as free of HIV may, in fact, be infected. The observed specificity in a
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putatively disease-free population that in fact contains a proportion,
P(D) with HIV infection and a proportion P(D) without infection is

where T is the event that the assay is negative and spec and sens are
true specificities and sensitivities. Because P(D) and (1 — sen) are
both very small in this application, the second term in equation (6.2)
is negligible, and the true specificity is very nearly

For example, in a healthy blood donor population containing a
proportion P(D) = 10 -4 of diseased donors, the true specificity equals
or exceeds (1/.9999) = 1.0001 times the observed proportion negative,
P(T), except for random error. In many settings, the second term in
equation (6.2) is negligible, and the true specificity is very nearly
P ( T ) / P ( D ) .

6.2.6 Reproducibility of Results by Laboratories in
General Practice

General laboratory performance was assessed in 1988 and 1989 by
sending coded samples to approximately 1400 laboratories in the
United States and other countries (CDC, 1990c). To evaluate EIA, 53
coded samples were sent; to evaluate Western Blot, 38 samples were
sent. These samples were determined to be positive or negative by a
consensus of 90% or more among reference laboratories and from
additional information on the source of the specimen. The analytic
sensitivity was defined as the proportion of laboratory tests that were
positive in samples defined to be positive by reference laboratory
consensus. Analytic specificity was defined similarly. The average analytic
sensitivity in 1988 and 1989 was 99.5% for EIA and 99.1% for WB.
The corresponding average analytic specificities were 99.1% for EIA
and 94.7% for WB. In fact, analytic specificity for WB improved from
91.6% in 1988 to 97.8% in 1989. Note that these analytic sensitivities
and analytic specificities refer to the use of EIA and WB as separate
tests rather than as confirmatory testing with WB. More importantly,
analytic sensitivity and analytic specificity are measures of concordance
with a reference laboratory consensus rather than direct measures of
sensitivity and specificity based on clinical criteria for infection.
Nonetheless, these data support the contention that high levels of
reproducibility have been achieved in the general use of these assays.
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6.3 SCREENING APPLICATIONS AND POSITIVE
PREDICTIVE VALUE

6.3.1 Possible Screening Applications

By usual laboratory standards, the EIA assay with WB confirmation
has very high sensitivity and specificity. It is therefore tempting to use
this test: (1) To track the progress of the epidemic by estimating
seroprevalence in various subgroups; (2) to prevent the spread of HIV
infection by identifying infected individuals and counselling them on
how to reduce the risks of transmission to others; and (3) to identify
infected individuals so as to facilitate earlier and more effective
treatment. Surveys to estimate seroprevalence (Chapter 3) are limited
mainly by the willingness of persons to be screened for HIV rather than
by the accuracy of these tests. Volberding (1989) has emphasized the
importance of HIV testing for proper management of the HIV infected
patient. Establishing the diagnosis of HIV infection allows the physi-
cian to advise the patient as to prognosis, plan further monitoring of the
patient's immune status, and institute therapy in a timely manner
rather than after serious complications have occurred. The most
controversial proposals for using assays concern screening populations
for prevention activities, though efforts to screen donated blood
products (Section 6.4) are generally accepted.

The controversy about screening populations for prevention activ-
ities derives from two concerns. First, an appreciable number of false
positive results may occur, especially when screening populations with
low prevalence of HIV infection, resulting in needless anxiety and
other possible adverse consequences in an uninfected individual.
Second, whether or not the test positive individual is infected, he or she
may be adversely affected by social ostracism or exclusion from
insurance or employment opportunities if the test result is revealed.

6.3.2 Positive and Negative Predictive Value

The accuracy of a test in a given screening application is often
quantified in terms of positive predictive value (PPV) and negative
predictive value (NPV). The positive predictive value is the proba-
bility that a person with a positive test result (T) is truly diseased (D),
and the negative predictive value is the probability that a person with a
negative test value is truly negative. The PPV is of major importance
for screening activities because (1 -PPV) is the probability of a false
positive test result. The PPV and NPV depend not only on the
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sensitivity and specificity of the test but also on the prevalence, P(D) of
disease in the population being screened. From Bayes theorem
(Vecchio, 1966),

and

where D denotes absence of disease and
To apply these ideas to the issue of false positives, consider a possible

prevention program based on premarital HIV testing. Following
Cleary, Barry, Mayer, et al. (1987), we assume that a combined
EIA/WB test has sensitivity 0.92 and specificity 0.99990. From
equation (6.4) we calculate (Table 6.4) that the negative predictive
value remains very high over a broad range of population prevalences.
For example, most general populations have prevalence rates well
below 0.01, and for such populations, the NPV exceeds .999. Thus very
few people with negative tests are infected. However, from equation
(6.3), values of PPV are not as high, especially in populations with low
disease prevalence (Table 6.4). For example, in a very low risk
population with prevalence P(D) = 0.0001, more than half the positive
results would be false positives, because PPV = 0.4792. Prevalences in
the range 0.001 to 0.005 are found in candidates for the Army (Burke,
Brundage, Herbold, et al., 1987). For P(D) = 0.001, PPV = 0.902 so
that roughly 1 in 10 persons testing positive will be uninfected. The
PPV increases with P(D). In populations of intravenous drug users or
homosexual men with prevalences above 0.10, the PPV exceeds 0.999,
and very few false positive test results arise. As previously described, the
data of Burke, Brundage, Redfield, et al. (1988) and of MacDonald,
Jackson, Bowman, et al. (1989) suggest that specificity may approach
0.99999 in some programs with rigorous quality control. In this case,
PPV = 0.902 for P(D) = 0.0001.

Table 6.4 Positive and Negative Predictive Values for
Various Levels of Prevalence

Prevalence P(D)

PPV
NPV

.0001

.4792
1.0000

.0005

.9788
1.0000

.001

.9020

.9999

.005

.9788

.9996

.01

.9894

.9992

.10

.9990

.9912

.30

.9997

.9668

Note: Based on an assumed sensitivity of 0.92 and specificity of 0.99990.
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Formulas (6.3) and (6.4) are correct only if estimates of sensitivity,
specificity and prevalence are correct. In Section 6.2 we described some
of the systematic factors that can affect estimates of sensitivity and
specificity as well as the random error associated with such estimates.
Seroprevalence, P(D), is even more difficult to estimate accurately and
is subject to both systematic biases (Chapter 3) and random error. The
reliability of estimates of PPV and NPV should therefore be studied by
varying parameters over plausible ranges of systematic error and by
calculating the statistical variance that arises from random error in
estimates of sensitivity, specificity and prevalence (Gastwirth, 1987).
Bayesian methods have been developed for determining the posterior
distributions of PPV and NPV (Johnson and Gastwirth, 1991; Gas-
twirth, Johnson, and Reneau, 1991).

6.3.3 Benefits Versus Harm from Screening

Weiss and Thier (1988) stress the need to think carefully about how the
results of a screening test might be used before adopting screening
programs, because the benefits must outweigh the harm from false
positive findings and from breeches of confidentiality. Cleary, Barry,
Mayer, et al. (1987) conclude that premarital screening is not cost-
effective and would yield an unacceptably large number of false-
positive results, and Meyer and Pauker (1987) raise similar concerns
for screening in the general population. Epidemic models suggest that
voluntary confidential testing could retard the spread of the epidemic
at modest cost for populations with prevalences of one percent or more
(Gail, Preston, and Piantadosi, 1989). In populations with high
prevalences, such as homosexual communities, voluntary confidential
testing has been advocated (Institute of Medicine, 1988) in conjunction
with a program of counselling to provide psychological support and to
encourage measures to reduce the risk of transmission. Chapter 4 of
Confronting AIDS (Institute of Medicine, 1988) reviews ethical, legal
and social aspects of HIV screening and presents recommendations for
selected applications. The U.S. Public Health Service has published
guidelines for counseling and testing that emphasize prevention activ-
ities and high-risk exposure groups (CDC, 1987c).

6.3.4 Pooled Samples

It may be advantageous to pool samples and then determine whether
the pooled sera contain evidence of HIV infection. This strategy of
group testing may reduce the costs of screening (Cahoon-Young,
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Chandler, Livermore, et al., 1989; Kline, Brothers, Brookmeyer, et al.,
1989). Thus, group testing may be useful in countries where screening
would otherwise be prohibitively expensive. Once a positive pool is
detected, additional tests are required to identify infected individuals.
Group testing may also be used to determine seroprevalence rates while
helping to ensure that the serostatus of individuals who agree to
participate in the survey remains confidential (Gastwirth and
Hammick, 1989). In this application, no further testing is required
once the status of the pooled sera is determined. Some experimental
investigations require the use of group testing, such as a recent study to
determine what proportion of blood donations screened negative by
EIV were in fact infected with HIV (Busch, Eble, Khayam-Bashi, et
al., 1991). By pooling 76,500 blood donations into 1530 groups and
studying these groups with viral culture and DNA amplification
methods, those investigators identified one infected donation. Gast-
wirth and Johnson (1991) calculate that group testing may be feasible
as a quality control measure to monitor the sensitivity of screening
programs.

6.4 SAFETY OF THE BLOOD SUPPLY

As of December 31, 1991, 4636 cases of AIDS reported to the Centers
for Disease Control had been ascribed to receipt of infected transfusion
products. An additional 1876 cases of AIDS reported to the Centers for
Disease Control were ascribed to receipt of coagulation products.
Patients with hemophilia were at very high risk because they required
repeated doses of clotting factors that were obtained from the pooled
sera from thousands of donors (Peterman and Allen, 1989). This route
of exposure has been largely eliminated by encouraging donors with
risk factors not to donate blood, by screening the blood for HIV, and
by taking measures to inactivate HIV in coagulation products
(Goedert, Kessler, Aledort, et al., 1989). Therefore, we shall confine
the present discussion to risks of HIV transmission from transfusion of
whole blood and closely related products like packed red cells, platelets
and white cells. Ward, Bush, Perkins, et al. (1989) found that 119
(59%) of 203 living recipients of infected blood were infected, indicat-
ing a high rate of transmission by this route.

6.4.1 Prevention Efforts

In order to prevent infection from contaminated blood, efforts have
been made to reduce HIV prevalence in the population of donors and
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to screen donated blood for HIV. To increase the sensitivity of the
screening procedure, blood is ejected if the first EIA is positive, even if
that result is not later confirmed by a second EIA or by WB.
Nonetheless, because of the "silent" interval, there remain rare
instances of infection from blood products. Risks of failing to detect
blood from infections in the silent interval are greater in populations
with a preponderance of recent infections. Thus a donor population
that contains 0.01% of infected people, most of whom are infected in
the recent past, poses a greater risk than a donor population that
contains 0.01% of infected people, most of whom were infected years
before.

Several steps have been taken to prevent HIV transmission through
the blood supply. In 1983, the U.S. Public Health Service first
recommended that members of high risk groups be urged not to give
blood. In the spring of 1985, compulsory ELISA screening of donated
blood and blood products for HIV began. If the initial test was positive,
the blood was not to be transfused or manufactured into other products
capable of transmitting infectious agents (GDC, 1985a). This pro-
cedure maximizes sensitivity for detecting contaminated blood. To
improve specificity for counselling donors, the test is only regarded as
positive if the ELISA assay is repeatedly positive and if a subsequent
positive WB result is obtained. Persons found to be positive are urged
not to donate again. It is common practice for a blood bank to retain a
confidential list of persons previously tested positive at that facility, and
to use that list to prevent subsequent donations by such persons. Since
the spring of 1985, the information given to potential donors on who
should defer from donating blood has become more explicit (e.g.,
"males who have had sex with another male at any time since 1977"),
and donors have been given the option to confidentially indicate that
their blood should not be used for transfusion. The establishment of
HIV testing facilities apart from transfusion centers has also been
promoted to discourage the use of blood donation as a means of
checking HIV status. These measures have reduced the risk of infection
from blood transfusion dramatically.

There has been an important decline in HIV prevalence among
donors and in the proportion of blood donations that are confirmed
WB positive (Table 6.5). In every time period, repeat female donors
have much lower seroprevalence than other classes of donors, and new
male donors have much higher HIV antibody prevalence rates (Table
6.5). The effects of voluntary deferral are seen among new male donors
and new female donors. There has been a 44% drop in seroprevalence
among new male donors from 1985 to 1987, and a 10% drop among
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Table 6.5 Rates of Positive Western Blot Results per Million Donations to
the American Red Cross

April-December,
1985

1986
1987

New Male
Donors

898
717
589

Repeat Male
Donors

402
187
123

New Female
Donors

171
148
154

Repeat Female
Donors

51
34
36

Source: From Gumming, Wallace, Schorr, and Dodd (1989).

new female donors. Possibly there is less awareness among females of
what constitutes risk of exposure. The largest percentage drops in
seropositivity are seen in repeat donors, where the combined effects of
voluntary deferral and blood bank imposed deferral operate. There has
been a 69% drop in seropositivity among repeat male donors from 1985
to 1987 and a 29% among repeat female donors.

6.4.2 Effect of the "Silent" Window on the Sensitivity of
the EIA Assay

If the EIA test had 100% sensitivity, all infected donors would be
screened out. However, as we discussed in Section 6.2, the EIA assay
will be negative in the silent time window between infection and the
evolution of antibody to HIV. Consider a population of potential blood
donors for whom the infection rate is g(s) (see Section 1.3) and for
whom the probability of surviving greater than a years after infection is
J(u). Let (u) be the sensitivity of the ELISA assay as a function of
time, u, from infection. Define the normalized density of previous
infection times among infected donors alive at calendar time T as

The density g* (s\ T) describes the distribution of previous infection
times among the infected members of the donor pool at time T. Then
the effective sensitivity of the test at calendar time T for this group of
infected donors is

To simplify, suppose
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sensitivity is thus zero within a window of length w. Under this model,
equation (6.6) reduces to

namely the probability that infection occurred before T — w. For
repeat donors it is reasonable to suppose that new infections occur
uniformly in the interval between screens, which we take to be 54
weeks, following Gumming, Wallace, Schorr, and Dodd (1989). Since
the chance of death is nearly zero within this time period, the sensitivity
of the EIA assay is about (54-w)/54 for persons infected since their last
donation, where the window width, w, is measured in weeks.

The situation is more complicated for first time donors because we
have less knowledge about g* (s\ T). To be concrete, suppose
T = January 1, 1988. We make a rough estimate of g*(s\T) by
assuming it is proportional to the infection curve, g(s), in the United
States. This assumption would not be true if a substantial fraction of
those infected early in the epidemic had died, or if programs to
discourage donations by high risk donors had been more effective for
people infected early in the epidemic than for those infected later. Both
these effects would produce distributions of times of infection more
weighted toward recent infections. Back-calculated estimates of the
infection curve in the United States (see Figure 8.11) suggest that
g*(s\T) can be approximated by the following piecewise linear model:
g*(s\T) = 0 for s < 1979, 0.0342 x (s - 1979) for 1979 s < 1984,
0.1711 for 1984 <s< 1985, and 0.1711 - 0.0250 x (s - 1985) for
1985 s < 1988. Thus 59.9% of the infections among potential first
time donors in January 1988, occurred before January 1, 1985.
Assuming the window, w, is less than 3 years, the sensitivity of EIA is,
from equation (6.6) 0.599 + 0.1711 x (3-w/52) -0.025 x (3-w/52)2/
2, where w is expressed in weeks. For w = 8 weeks, the sensitivity among
first time donors is thus .9847, whereas for repeat donors, the sensitivity
is only (54 - 8)/54 = 0.8519.

We can estimate the number of units of contaminated blood that get
through the HIV screen, per million donated units, by considering the
proportion of blood donated by various types of donors and the
corresponding estimated EIA sensitivity (Table 6.6). The prevalences
for each of these six donor groups in 1987 are taken from the Red Cross
study by Gumming, Wallace, Schorr, and Dodd (1989), as are the
proportions of donors constituted by these groups. We treat new and
untested repeat donors as having the same high sensitivity, 0.9847, as
calculated above, whereas tested repeat donors have the lower sensitiv-
ity 0.8519.



Screening and Accuracy of Tests for HIV 165

Table 6.6 Estimated Number of HIV-positive Units Entering the Blood
Supply in 1987, per Million Donated Units

Prevalence Proportion of EIA Undetected
(per million) Donors Sensitivity Unitsa

New male
Untested repeat

Male
Tested repeat

male
New female
Untested repeat

female
Tested repeat

female

589

319

46
154

94

13

.080

.140

.358

.076

.097

.249

1.000

.9847

.9847

.8519

.9847

.9847

.8519

0.72

0.68

2.44
0.18

0.14

0.48

4.64

Source: Adapted from table 5 in Gumming, Wallace, Schorr, and Dodd (1989).

Note: Prevalence is based on repeatedly EIA reactive Western blot confirmed units.
aCalculated as prevalence times the proportion of donors times 1 minus the sensitivity.

These calculations lead to an estimate of 4.64 contaminated units per
million donated units (Table 6.6). Ward, Holmberg, Allen, et al.
(1988) outlined the window calculation and obtained a rate of 2.6
contaminated samples per million by simply dichotomizing the donor
pool into first time donors and repeat donors and by assuming a
sensitivity of 0.99 for first-time donors. Gumming, Wallace, Schorr,
and Dodd (1989) obtained a somewhat higher rate of 6.5 contaminated
units per million donations from the data in Table 6.6 because they
assumed g* (s) was uniform over the 5 years preceding donation for first
time donors and uninfected repeat donors, yielding an EIA sensitivity
of (5 x 52 — w)/5 x 52 = 0.9692 for a window of 8 weeks, instead of
the value 0.9847 in Table 6.6.

One can compare estimates of the chance of false negative screening
results based on the window calculation with the scant available
empirical data. Cohen, Munoz, Reitz, et al. (1989) found one sero-
conversion among cardiac surgery patients who received 36,282 units,
for a rate of 28 per million units. Based on Poisson sampling, the
corresponding 95% confidence interval is 6.7 to 154 per million units.
Busch, Eble, Khayam-Bashi, et al. (1991) found one positive unit
confirmed by culture and DNA amplication among 76,500 donations
in San Francisco. Based on Poisson variation, the corresponding
estimated rate of false negative results would be 13 per million units,
with 95% confidence interval 3.2 to 73 per million units. The empirical
data thus yield estimates of false negativity rates in reasonable
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concordance with the window calculation, especially in view of the
considerable random uncertainty associated with empirical estimates.

Based on window calculations, one can assert that the risk of
contracting HIV from a blood transfusion is small. A patient requiring
20 units of blood might have a risk on the order of 1-
(1 - 4.6 x 10-6)20 = .00009. If the recent estimate (Petersen, Satten,
and Dodd, 1992) that the average window width is only 45 days is
correct, the risk would be even smaller. To get an idea of the maximum
plausible risk, we assume a window of width w = 16 weeks. Then the
sensitivity for first-time donors decreases to 0.9690, and the sensitivity
for repeat donors decreases to 0.7037. The expected number of
contaminated units per million donations increases to 9.33, and the
chance of infection from receiving 20 randomly selected units increases
to 0.00019. If we further assume that the HIV prevalences in Table 6.6
are too small because the testing procedure with Western blot con-
firmation used to estimate these prevalences has sensitivity 0.90, the
chance of a false negative result is increased further to
9.33/0.90 = 10.37 per million, and the chance of infection from 20 units
increases to 0.00021. If, based on empirical data, we assume the rate of
false negative results is 20 per million units, then the chance of infection
from 20 units increases further to 0.00040. Such risks are small
compared to the risks of not receiving needed blood products.

The window calculations can be refined to take into account
the fact that some persons who tested negative at year T— I and
donated again at year T were, in fact, already infected at or before
T— 1. The screening assay at T would have 100% sensitivity to
detect such persons for window widths less than one year. Hence the
sensitivity would be somewhat higher than the value
(54 -w) /54 = (54-8)/54 = .8519 calculated previously. The im-
provement is small, however, as illustrated by the following cal-
culations. We assume that mortality is negligible and consider the
population of individuals infected before T whose first donation is at
T— 1, and who subsequently donated at T. We assume that the
chance, , of donating at T — 1 and T is the same for persons who were
infected before T — 1 and tested negative at T — 1 as for persons who
were first infected between T — 1 and T. Then, of the infected persons
at T who tested negative at T — 1, a proportion y = A\(A + B) were
already infected by T — 1, where A and B are approximately
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and

Supposing g(s) was proportional to g*(s\T= 1988), which was
defined previously, and setting T— 1 = 1987, we obtain A =•

c(l — 0.9847) x (.8912) by assuming the sensitivity for first time
donors is 0.9847 as before, and B = c(0.98) x (.1088), by assuming
the specificity for a single unconfirmed EIA is 0.98. Here c is a
proportionality constant that cancels out when calculating y = 0.113.
Based on this calculation, the window model with w = 8 weeks predicts
a sensitivity of 0.113 + (1 - 0.113) x (52 - 8)/52 = 0.864 for persons
screened negative one year before. This value is 1.4% greater than the
value .852 obtained by ignoring the possibility of false negative screens
at T — 1. Such calculations suggest that the previous simple window
calculations are sufficiently accurate given other uncertainties, but that
they slightly underestimate the sensitivity of the screening procedure. A
simulation study by Le Pont, Costagliola, Massari, and Valleron
(1989) yields results similar to calculations based on the window model.

6.4.3 Screening Blood in Developing Countries

In a developing country with high seroprevalence rates, screening can
reduce numbers of transfusion-related infections drastically. Even in a
rapidly growing epidemic in which there are many recent infections so
that the dates of infection among infected donors are uniformly
distributed over the previous 5 years, a window calculation with w = 2
months suggests an effective sensitivity of about {(60 — 2)/60} = 0.967.
If the prevalence of infection among donors were 5%, screening could
thus reduce the chance that a transfused unit was infected from 5% to
5% x (1 — .967) = .17%. The chance that a person receiving three
units would become infected would thereby be reduced from
1 - (1 - .05)3 = .142 to 1 - (1 - .0017)3 = .005, a dramatic i
provement. To achieve such gains, developing countries must be able
to find economic and logistical support for screening facilities, and the
tests must be simple and reliable enough to use without the need for
elaborate laboratory facilities and quality control systems. Quinn and
Mann (1989) discuss the role of transfusion of blood products and other
factors that nromoted the snread of HIV in Africa.
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6.5 ASSAYS FOR LIVE VIRUS, FOR HIV ANTIGEN,
AND FOR HIV GENOME

Partly in an effort to reduce or eliminate the "silent" interval and
thereby increase the sensitivity of tests for HIV, researchers have
investigated assays based on viral culture, on detection of HIV p24
antigen, and on detection of viral DNA through the polymerase chain
reaction (PCR). Studies of patients in the acute primary phase of illness
indicate that p24 antigen, live virus and viral DNA may be found
within one month of infection and before antibody is detectable by EIA
(Bowen, Lobel, Caruana, et al., 1988; Clark, Saag, Don Decker, et al.,
1991; Daar, Moudgil, Meyer, and Ho, 1991). Earlier studies on high
risk seronegative homosexual men and on men who had recently
seroconverted had indicated that HIV genome might be detectable
through PCR or hybridization assays months or years before sero-
conversion (Ranki, Valle, Krohn, et al., 1987; Wolinsky, Rinaldo,
Kwok, et al., 1989; Imagawa, Lee, Wolinsky, et al., 1989).

Antigen to p24 has been extensively studied as a means to shorten the
silent interval. In a prospective study, 515,494 blood donations from
thirteen centers in the United States were tested, and 5 samples were
positive for p24 antigen (Alter, Epstein, Swenson, et al., 1990).
However, these same 5 samples were EIA positive. A similar study of
595,000 donations in Austria and Germany between March 1987 and
April 1988 also failed to reveal a single p24 positive, EIA negative case
(Baecker, Weinauer, Cathof, et al., 1988). These data demonstrate that
p24 antigen adds very little to the sensitivity of available EIA tests for
contaminated blood, despite its appearance in the acute phase of
primary infection (Table 6.3). The p24 assay has low sensitivity in
patients with AIDS or ARC (Table 6.3).

A similar large-scale investigation of viral culture for screening blood
has not been undertaken, perhaps because viral culture is expensive
and poses risks to laboratory workers. These practical considerations
make it unlikely that viral culture assays will be widely used for
screening blood (Sloand, Pitt, Chiarello, and Nemo, 1991).

Viral culture is an important research tool and is usually regarded as
the "gold standard" indicator of infection. However, occasionally, it
may be difficult to determine the biological significance of a positive
viral culture. For example, Imagawa, Lee, Wolinsky, et al. (1989)
isolated HIV-1 from 31 (23%) of 133 seronegative homosexual men
who continued to engage in high risk behaviors such as unprotected
anal-receptive intercourse with more than one partner in the previous 6
months. Four men later seroconverted. Subsequent testing of the 27



Screening and Accuracy of Tests for HIV 169

men who did not seroconvert yielded only one instance of viral isolation
in 151 samples (Imagawa and Detels, 1991). These investigators
concluded that these 27 cases probably represented "incomplete
infections" that would not progress to clinical HIV disease or infect
other partners. Positive viral assays may also result from contamination
and other laboratory errors.

The PCR assay amplifies HIV DNA present in a sample and can
detect even a single DNA molecule. As a consequence, any con-
tamination of laboratory facilities or specimens can result in low
specificity and false positive results. Sheppard, Ascher, Busch, et al.
(1991) used coded samples to test the performance of five laboratories
with extensive experience in handling PCR. Ninety-four specimens
were from seropositive, culture-positive homosexual or bisexual men.
One hundred five specimens were from seronegative regular blood
donors without known risk factors. The sensitivities for the five
laboratories ranged from 98.0% to 100.0%. The specificities ranged
from 90.5% to 100.0%. The average sensitivity was 99.0%, and the
average specificity was 94.7%.

Such specificities are too low for mass screening. Assuming an
average prevalence of HIV of 0.0001 among donors (Table 6.5) and a
sensitivity of 99%, a PCR specificity of 96% would yield a positive
predictive value of 0.0025 (see equation (6.3)). Of each 10,000 bloods
screened positive by PCR, 25 would be infected and 9,975 would be
uninfected. Put another way, one must throw away 9,975/25 = 399
units of good blood to prevent one infection. Thus, at present, PCR
does not have high enough specificity for screening blood. By com-
parison, a single EIA test might have a sensitivity of 0.98 and specificity
of 0.995 or greater. With this procedure one throws away about 51
units of good blood to prevent one infection.
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Statistical Issues in Surveillance
of AIDS Incidence

7.1 INTRODUCTION

AIDS incidence refers to the numbers of newly diagnosed cases per unit
time. Before the development of the HIV antibody screening test
(Chapter 6), AIDS incidence data were the only available data for
tracking the course of the epidemic. However, trends in AIDS
incidence do not reflect current trends in the spread of HIV infection
because incubation times are long and variable. Nevertheless, because
of the difficulty in conducting representative HIV seroprevalence
surveys (Chapter 3), AIDS surveillance remains one of the more
reliable tools for monitoring the epidemic. Since 1981, sophisticated
registries have been developed for tracking and counting AIDS cases.
The objective of this chapter is to address a number of statistical and
epidemiological issues that arise in the interpretation of AIDS sur-
veillance data. These issues include delays in reporting, incomplete
reporting, changing surveillance definitions and empirical extrapola-
tion of AIDS incidence curves.

7.2 AIDS INCIDENCE DATA

Registries of AIDS cases have been established for tracking the
epidemic in many countries. The Global Programme on AIDS at the
World Health Organization (WHO) is responsible for worldwide
AIDS surveillance. Countries are requested to report AIDS cases to
WHO at least once per year even if there were no AIDS cases to report.

The Centers for Disease Control in the United States developed the
first national AIDS surveillance system. All states, the District of

170
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Columbia, U.S. dependencies and possessions report cases using a
standardized case definition and report form. Cases are classified by
risk group. A hierarchical scheme is used whereby individuals with two
or more risk factors are classified in the category listed first, with the
exception that homosexual men who are intravenous drug users are
placed in a separate category (see, e.g., CDC, 1990d, and Table 1.1).
Individuals without an identified risk factor are listed as "no identified
risk" (see Section 7.4) and further investigations are conducted. The
reports include information on age, race, sex, geographic region, and
date of diagnosis.

Graphical displays of AIDS incidence data are invaluable for
monitoring the epidemic. The number of newly diagnosed AIDS cases
are grouped into calendar intervals, typically either 6-month, 3-month
or monthly intervals. Before trends can be interpreted, AIDS incidence
data must be adjusted for reporting delays as described in Section (7.3).
Because the reporting delay adjustments are highly uncertain for AIDS
cases diagnosed in the most recent 6 months, analyses are often based
on "delay-corrected" AIDS incidence data up to 6 months before the
analysis.

Green, Karon, and Nwanyanwu (1991) interpreted trends by a
graphical analysis of U.S. AIDS incidence data. Their analyses
emphasized the heterogeneity in trends and the importance of stratify-
ing by risk group and demographic factors. Quarterly AIDS incidence
data were adjusted for reporting delays and smoothed using a locally
weighted moving average (the weights were taken from a normal
distribution with a standard deviation of one year). Their general
conclusions were that the rate of growth of AIDS cases diagnosed per
quarter in the United States increased until 1987. After that time, the
rate of growth declined. However there is considerable geographic and
demographic variation. For example, outside New York City, San
Francisco, and Los Angeles, the slowing in growth in AIDS incidence is
seen only in non-Hispanic whites. Further, Green, Karon, and
Nwanyanwu (1991) conclude there was no evidence for slowing
through mid-1990 among heterosexual cases.

7.3 STATISTICAL ANALYSIS OF REPORTING DELAYS

There can be considerable delays before newly diagnosed AIDS cases
are reported to central registries. For example, AIDS cases diagnosed
in the United States are first reported to the staff of state health
departments, who, in turn, report the cases to the national AIDS
surveillance system at the Centers for Disease Control. Reporting
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Figure 7.1 Monthly AIDS incidence data in the U.S., adjusted and unadjusted
for reporting delays. Error bars represent 95% confidence intervals. (Source:
Harris, 1990a.)

delays may falsely give the appearance of a recent decline in disease
incidence when, in fact, the apparent decline in incidence is due to
incomplete reporting of the most recently diagnosed cases. In order to
accurately monitor disease incidence trends it is necessary to adjust for
delays in disease reporting. Figure 7.1 is a graph of numbers of cases in
the United States by date of diagnosis for cases reported by March 31,
1989 (Harris, 1990a). The lower curve is unadjusted for reporting
delays and suggests a decline in recent AIDS incidence. When the
curve is appropriately adjusted for reporting delays, a different picture
of rising disease incidence emerges.

The statistical analysis of reporting delays is complicated by the fact
that the data are right truncated. This truncation refers to the
exclusion from a data set of individuals with long reporting delays.
Very similar statistical problems arise in the analysis of incubation
periods of transfusion-associated AIDS cases (Chapter 4). Generally,
failure to account for such right truncation will lead to biased results
that underestimate reporting delays. The following discussion is adap-
ted from Brookmeyer and Liao (1990b).

The data available for analysis consist of all cases reported to a
registry as of the current calendar time, say C. The calendar time of
diagnosis, Ui, and the calendar time of report to the registry, Rt, are
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recorded on each case (i indexes the case). The reporting delay for the
z'th case is di = Ri — Ui. We also record covariate values for each case,
such as geographic region of diagnosis, risk group, or calendar time of
diagnosis. Such covariates may explain heterogeneity in reporting
delays. Again, the main complexity with the analysis of reporting
delays is that the data are right truncated; that is, a case is included in
the registry only if the reporting delay di is less than or equal to
Ti = C — Ui. We call Ti the truncation time for the z'th individual.

The cumulative probability that the reporting delay is less than or
equal to t is called the reporting delay distribution, and we use the
notation F(t) = P(d t). The most important limitation of our data for
estimating F(t), is that we cannot observe reporting delays larger than
the maximum truncation time. For example, suppose a disease registry
is examined on January 1, 1989, and it is found that the earliest
diagnosis time of a reported case is January 1, 1983. The maximum
truncation time is 6 years. The best we can do is estimate the reporting
delay distribution conditional on the delay being less than or equal to 6
years. We call this the conditional reporting delay distribution, F*(t),
and it is related to F(f) according to F*(t) = F(t)IF(6).

Our subsequent discussion refers to methods for estimating the
conditional reporting delay distribution F*(t) = F( t ) /F( t m ) for some
value tm which is not greater than the maximum truncation time. If tm is
sufficiently large, then F* may be a good approximation to F. In our
analysis of AIDS reporting delays (Section 7.3.3), we will estimate the
reporting delay distribution conditionally on the delay being less than 4
years. An important point is that there is no information in the data
about the proportion of AIDS cases with long reporting delays that
exceed the maximum truncation time or the proportion of AIDS cases
who are never reported (Lagakos, Barraj, and DeGruttola, 1988;
Kalbfleisch and Lawless, 1989; Brookmeyer and Liao, 1990b). Addi-
tional epidemiological studies, such as death certificate reviews, are
needed to address these important issues, and we return to this point in
Section 7.4. An important caveat associated with an analysis based on
the conditional distribution F* is that it could indicate delays are
longer in subgroup A than subgroup B, but nevertheless, the pro-
portion of cases that are never reported or have very long delays
(greater than tm) could be larger in subgroup B than subgroup A.

We note that a simple linear regression analysis of observed delays di

on calendar time of diagnosis ui can be highly misleading, because we
only get to observe AIDS cases if di is smaller than Ti = C — ui. Thus, a
naive regression analysis of this type will show a trend of reporting
delays becoming shorter over time, even if, in fact, there were no trends
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in the reporting delay distribution or possibly even if there were a trend
toward larger delays.

7.3.1 Nonparametric Estimation

The method for finding the nonparametric estimate of the conditional
reporting delay distribution adapts survival analysis and life table
techniques for use with right truncated data. This approach involves
expressing the conditional reporting delay distribution, F*(t), as the
product of conditional probabilities. We define the conditional proba-
bility pj to be the probability that the reporting delay is equal to tj given
it is less than or equal to tf, that is, pj = P(d = tj\d tj). Then,

where The estimate of the
reporting delay distribution is obtained by substituting estimates of the
conditional probabilities into the above expression. The only cases who
can contribute information about pj are those cases whose truncation
times are greater than or equal to tj and whose reporting delays are less
than or equal to tj. We call these individuals the "risk set at tj" to
emphasize the analogy with life table analysis. The number of
individuals in the risk set at tj is called nj, and the number of cases with
reporting delays of duration tj is called Tj. Thus, an estimate of Pj is

. Then substituting this into the expression for F*, the nonpara-
metric estimate of F* is

The variance is given by

which is analogous to Greenwood's formula.
These methods for nonparametrically estimating the reporting delay

distribution are illustrated with hypothetical reporting delay data
given in Table 7.1. Table 7.1 is hypothetical data of cases cross
classified by the month of diagnosis and the reporting delay (in
months). Since the maximum reporting delay which could possibly be
observed was 5 months, the best that can be done (nonparametrically)
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Table 7.1 Hypothetical Data of Cases Reported by April 30,1991:
Illustration of Reporting Delay Calculations

Reporting Delay (months)

Month of Diagnosis

Dec. ,90

Jan. ,91

Feb. '91

Mar. '91

April '91

50

100

171

207

220

20

55

115

118

—

10

20

45

(836)

6

12

(586)

—

2 —

- (88)
(273)

Note: Numbers in parentheses are total cases in rectangular boxes.

is to estimate the conditional reporting delay distribution given that the
reporting delay is not greater than 5 months. The conditional proba-
bilities pj are

Then the reporting delay distribution given that the delay is less than
or equal to 5 months is calculated from equation (7.1) as follows:

The incidence data adjusted for reporting delays is obtained by
appropriately dividing the observed cases by the reporting delay
distribution. If Zis the number of reported cases who were diagnosed u
time units ago, then the adjusted incidence is Z* = Z/F*(u). Again,

1 2 3 4 5 6
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this adjusted number does not account for cases with reporting delays
longer than tm (in the hypothetical example, tm = 5 months) . The
calculations are illustrated in Table 7.2. There are two sources of
uncertainty associated with the adjusted incidence data Z*: un-
certainty in the estimated reporting delay distribution; and uncertainty
due to binomial variation. The variance of Z* = Z/ * is approximate-
ly (for large Z)

where 2, the estimated variance of F*, is obtained from equation (7.2)
(see Brookmeyer and Liao, 1990) . This formula is obtained by applying
the delta method (Fienberg, 1980) to the ratio Z/F* with the binomial
variance for and the variance of F*.

There are alternative approaches for estimating the reporting delay
distribution. An alternative computational approach which produces
the same estimate given by equation (7.1) is based on Poisson
regression methods for the analysis of triangular incomplete contin-
gency tables. Rosenberg (1990) gives a noniterative computational
approach. These approaches are maximizing a conditional likelihood
that is conditional on the numbers of cases that were reported to be
diagnosed at each calendar time (Brookmeyer and Daminao, 1989;
Harris, 1990a; Kalbfleisch and Lawless, 1989; Lagakos, Barraj, and De
Gruttola, 1988). Another approach assumes a parametric model for the
AIDS incidence curve and maximizes an unconditional likelihood.
This approach is considered in Section 7.5.

7.3.2 Regression Analysis

In this section, statistical techniques for the regression analysis of
reporting delays are briefly outlined. Regression techniques are import-
ant for assessing calendar time (secular) trends in reporting delay and

Table 7.2 Illustration of Adjustment of Hypothetical
Incidence Data for Reporting Delays

Observed Incidence Adjusted Incidence

Dec. 90

Jan. 91

Feb. 91

Mar. 91

April 91

88
187
331
325
220

88
187/.977 = 191
331/.913 = 363
S25/.796 = 408
220/.503 = 437
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identifying covariates, such as geographic region or risk group, that
affect the reporting delay distribution. The main statistical problem is
that the data are right truncated. We assume that there are r covariates
(Xl..., Xr) and that each covariate can take a finite number of
values. Thus, each individual can be grouped into one of K strata
denned by the values of the covariates. We label these strata by the
covariate vector Xt, k=l,..., K. The approach is to model the
conditional probabilities pj as a function of covariates.

We extend the notation in the preceeding section by adding an
additional subscript k to index the covariate strata. Thus, in the kth
stratum, the conditional probability at tj is called pjk; the numbers of
cases with reporting delay equal to tj is called Tjk; and the size of the
risk set at tj is called njk. Our model is that, conditional on njk, the Tjk

have independent binomial distributions, that is,

Although the independence assumption is not strictly correct, it can be
shown that the maximum likelihood estimates and their estimated
variances are not affected by this assumption (Efron, 1988). In order to
allow reporting delays to depend on covariates, we model the binomial
probabilities as follows:

where Oy and = ( • • • ) are parameters to be estimated. The
function g is called the link function in the theory of generalized linear
models (McCullagh and Nelder, 1989).

Two leading choices for the link function are the logistic link,
g(Pjk) = log{/W(l -Pjk)} and the complementary log-log link,
g(P j k) = log{-log(l - P j k ) } . The model given by equations (7.4) and
(7.5) with a logistic link has been termed a continuation ratio model in
the contingency table literature (Fienberg, 1980; McCullagh and
Nelder, 1989). The complementary log-log link is especially attractive
because it induces a simple relation among the distribution functions of
reporting delays:

is the reporting delay distribution function when all the covariates are
0. The interpretation of a regression coefficient associated with one of
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the covariates Xi is as follows: a positive indicates delays are longer
with increasing values of Xt after controlling for the other covariates; a
negative indicates delays are shorter with increasing values of Xi; and
a equal to zero suggests no association between delays and the
covariate Xi.

7.3.3 Reporting Delays in the United States

The methods described in Sections 7.3.1 and 7.3.2 were used to analyze
reporting delays of AIDS in the United States (Brookmeyer and Liao,
1990b). The analyses were based on the October 1989 AIDS Public
Information Data Set. This data set included 109,168 AIDS cases
diagnosed in the United States and reported to CDC before October 1,
1989. The analysis included only cases who met the pre-1987 AIDS
surveillance definition. This restriction is important because some cases
who met only the expanded 1987 surveillance definition were reported
to have been diagnosed months, and in some cases years, before the
new definition went into effect, which could artifically give the
appearance of long reporting delays.

Table 7.3 presents the nonparametric estimates of the reporting
delay distribution for the entire United States and for each of the six
geographic regions (using equation (7.1)). Overall, 51% of cases are
reported within 3 months of diagnosis, and 84% within 12 months. The
fastest reporting occurred in the Northeast and the slowest in the
South. For example, the proportion of cases diagnosed within three
months ranged from 0.56 in the Northeast to only 0.39 in the South.

An important question is whether the distribution of reporting delays
has changed over calendar times. The regression methods of Section
7.3.2 were used to evaluate the separate effects of calendar time, risk
group, and geography on the reporting delay distribution. These
analyses suggested significant geographic variation. The influences of
risk groups and calendar year of diagnosis were not consistent across
each of the geographic regions. Variation among risk groups was
attributed primarily to slower reporting of transfusion-associated and
pediatric AIDS cases. An overall trend toward longer delays with
calendar time of diagnosis was attributed primarily to a trend toward
longer delays in the Northeast.

Adjusted AIDS incidence in the most recent month is very uncertain.
For example, suppose the reporting delay distribution were known
precisely, so that a = 0 in equation (7.3). Then, even with a true
monthly incidence as large as 200 cases/month, the coefficient of
variation of the adjusted incidence in the most recent month, Z*,



Table 7.3 Conditional Reporting Delay Distributiona by Geographic Region of Diagnosis
Among Cases Meeting the Pre-1987 Surveillance Definition

Reporting
Delay in Months
(number of cases)b

1
2
3
4
5
6
7
8
9

10
11
12
18
24
36
48

U.S.
(88,037)c

0.05
0.31
0.51
0.62
0.68
0.72
0.75
0.78
0.80
0.82
0.83
0.84
0.90
0.93
0.97
1.00

Northeast
(22,738)

0.07
0.35
0.56
0.67
0.73
0.76
0.79
0.82
0.83
0.85
0.86
0.87
0.92
0.95
0.98
1.00

Central
(6,375)

0.05
0.32
0.53
0.63
0.69
0.73
0.76
0.78
0.80
0.82
0.83
0.84
0.90
0.93
0.97
1.00

West
(18,471)

0.05
0.35
0.54
0.64
0.70
0.74
0.77
0.79
0.81
0.83
0.84
0.85
0.90
0.93
0.97
1.00

South
(11,342)

0.02
0.19
0.39
0.52
0.61
0.67
0.70
0.74
0.76
0.78
0.81
0.83
0.90
0.94
0.98
1.00

Mid-
Atlantic
(5,585)

0.07
0.32
0.51
0.62
0.69
0.73
0.76
0.78
0.80
0.82
0.83
0.85
0.90
0.93
0.98
1.00

Other
(22,249)

0.04
0.28
0.49
0.59
0.65
0.69
0.72
0.75
0.77
0.79
0.80
0.82
0.88
0.92
0.97
1.00

Source: Brookmeyer and Liao, 1990b.
aCumulative probability F*(t), of a reporting delay less than or equal to t months given the delay is less than or equal to 48 months. Cases reported within
same month of diagnosis coded 1; cases reported in month following diagnosis coded 2, etc.

*Number of cases reported to the CDC before October 1, 1989, that met the pre-1987 surveillance definition.

'Includes an additional 1277 pediatric AIDS cases with missing geographic region information.
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would be over 30% (from equation (7.3)). For this reason, adjusted
AIDS incidence for the most recent month should be typically ignored
when assessing trends. Many analysts recommend ignoring the most
recent 3 or even 6 months of adjusted incidence data.

7.4 UNDERREPORTING OF AIDS CASES

Some AIDS cases may never be reported, and these cases are not
accounted for by the reporting delay adjustments described in Section
7.3. Cases may not be reported either because they were never properly
diagnosed, or, if diagnosed, may not have been reported to the
surveillance system (General Accounting Office, 1989).

One method for assessing underreporting of cases is to identify
individuals who died from AIDS by reviewing death certificates and to
match these individuals to the AIDS surveillance registry. A measure of
the completeness of reporting, f, is the fraction of cases identified by the
death certificate review who are found in the AIDS surveillance
registry:

Hardy, Starcher, and Morgan (1987) used this methodology and
searched death certificates from 1985 in four U.S. cities. They report
f = 487/548 = .89. A source of uncertainty with this methodology is
error in identification of all AIDS-related deaths from death cer-
tificates. AIDS cases that are not reported to the surveillance system
may also be less likely to be correctly classified as an AIDS-related
death on the death certificate.

A disadvantage of the above methodology is that it requires an
identifier (record linkage) to match cases from death certificates with
cases in the registry. An alternate methodology that does not require
identifiers was proposed by Remis and Palmer (1991). Remis and
Palmer assessed the completeness of reporting in the Quebec AIDS
surveillance program by comparing deaths modelled from reported
AIDS cases to AIDS mortality based on death certificates. They
predicted AIDS deaths by propagating forward reported AIDS cases
to obtain predicted dates of death, according to a survival distribution
for AIDS patients. Based on a comparison of predicted and observed
AIDS deaths in 1987-88, they estimated that the completeness of
reporting was 92%.

A separate issue from the underreporting of cases concerns indiv-
iduals with severe HIV disease who do not meet the AIDS surveillance
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definition. Stoneburner, Des Jarlais, Benezra (1988) studied the
increased mortality in the 1980s among New York intravenous drug
users. The death certificates among the IV drug users for whom the
causes of death were AIDS-related were matched to the New York City
Department of Health AIDS Surveillance Registry. They concluded
that there was a large spectrum of severe HIV disease that does not
qualify as AIDS.

An additional problem with tracking trends in individual risk groups
is that the risk group for some cases may be unknown. The practice in
the United States is to temporarily assign these individuals to a
category with undetermined risk ("no identified risk"). Some of these
individuals may then be reclassified to other risk groups, following the
results of more intensive investigation and interviewing. As a result,
trends in the undetermined group typically show pronounced growth
in the most recent past. This "growth" must be interpreted very
cautiously since it is likely due to using the undetermined classification
as a temporary holding category. For example, as of November 1990,
9920 AIDS cases in United States were initially reported as no
identified risk. Additional interviews and follow-up information were
collected from 4863 of these cases, of which 4416 were eventually
reclassified. Only 447 remained classified as no identified risk/other
(Centers for Disease Control, 1990d).

In order to monitor risk group specific trends in AIDS incidence, it is
necessary to redistribute cases with undetermined risk. Green, Karon,
and Nwanyanwu (1992) have performed an analysis to examine past
trends in these redistribution fractions among cases initially with
undetermined risk for whom additional follow-up information and
interviews were obtained. For example, among adult white males with
initially undetermined risk, Green, Karon, Nwanyanwu (1992) report
that eventually 72% are reclassified as gay, 7% as IVDU, 3% as
gay/IVDU, 6% as heterosexual, 4% as transfusion-related, and 8% as
no identified risk/other.

7.5 CHANGES IN THE SURVEILLANCE DEFINITION

The AIDS surveillance definition in the U.S. has been revised several
times. These revisions reflect increasing knowledge of the pathogenesis
of HIV infection and a desire to make sure that the surveillance
definition reflects current diagnostic practice. Before 1985, the sur-
veillance definition was not based on a positive HIV antibody test but
required pathological evidence of AIDS-defining conditions. In 1985,
the definition was expanded to include individuals who also had
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diseases such as disseminated histoplasmosis, chronic isosporiasis, and
high grade or B-cell non-Hodgkins lymphoma (Centers for Disease
Control, 1985b). A more significant revision occurred in 1987 (Centers
for Disease Control, 1987d) when the definition was expanded to
include HIV positive persons with diseases such as extrapulmonary
tuberculosis, HIV dementia, and HIV wasting syndrome. The 1987
definition also included individuals who were HIV antibody positive
and who were diagnosed with certain diseases, such as Pneunocystis
carinii pneumonia and cerebral toxoplasmosis on a presumptive clinical
basis rather than by histological proof. In 1993, the CDC revised the
surveillance definition of AIDS. The case definition was expanded to
include all HIV-infected persons who have <200CD4+ T cells or a
CD4 + T-lymphocyte percentage of total lymphocytes of less than 14.
The expansion includes 3 clinical conditions—pulmonary tuberculosis,
recurrent pneumonia, and invasive cervical cancer—as well as 23
specific clinical conditions in the 1987 AIDS surveillance definition
(Centers for Disease Control, 1992b).

The impact of the definitional changes on reported AIDS incidence
is illustrated graphically in Figure 7.2. Selik, Buehler, Karon, et al.
(1990) report that about 28% of cases diagnosed and reported from
September 1, 1987, to December 31, 1988, met only the new criteria of
the 1987 revision. This proportion was highest among heterosexual
intravenous drug users (43%) and lowest among male homosexuals
(21%).

In general, the effect of broadening the surveillance definition is to

Figure 7.2 U.S. AIDS cases by quarter year of report by category of case
surveillance definition. (Source: Selik, Buehler, Karon, et al., 1990.)
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cause an abrupt increase in AIDS incidence (Figure 7.2). An important
objective of the broadened definition is to capture a wider spectrum of
HIV-related disease. Unfortunately, sudden changes in the surveil-
lance definition make it difficult to interpret trends in AIDS incidence.
There have been several attempts to reconstruct the AIDS incidence
curve that would have been observed if there had been no definitional
changes. Karon, Dondero, and Curran (1988) suggested the concept of
a "consistent" AIDS case series. These cases include individuals who
were diagnosed, either presumptively or definitively, with any one of
the 1985 AIDS defining conditions. The consistent case series excluded
AIDS cases who were diagnosed on the basis of the new 1987 AIDS
defining conditions such as wasting syndrome or HIV encephalopathy.

A limitation of the consistent series is that it does not account for
individuals who are diagnosed with AIDS by one of the new criteria
and then subsequently develop a disease included in the old criteria. To
address this concern, Gail, Rosenberg, and Goedert (1990a) intro-
duced the concept of an "augmented consistent" case series. The idea is
based on a three-state competing-risk model. The model is illustrated
in Figure 7.3 where is the hazard of death for individuals diagnosed
under the new definition and 2 is the hazard of progression to the old
definition for individuals diagnosed under the new definition. Then,
the probability that an individual diagnosed by the new definitional
criteria would subsequently qualify for diagnosis with the old criteria in
the tth month following the first diagnosis is

Figure 7.3 Multistate model of the effect of a change in the surveillance
definition.
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Equation (7.7) is used to obtain an augmented case series as follows:
Suppose ni individuals are diagnosed under the new criteria in calendar
month i. Then the diagnosis times of these ni individuals are reallocated
forward in time so that nipt individuals are considered to have been
diagnosed under the old definition at calendar month (i + t). Figure
7.4 shows trends in both overall AIDS incidence and the augmented
consistent case series among gay men in the United States.

7.6 EMPIRICAL EXTRAPOLATION OF AIDS
INCIDENCE

7.6.1 General Considerations

The simplest spproach for obtaining projections of AIDS incidence is
extrapolation of the AIDS incidence curve. The first Public Health
Service projection made in 1986 estimated 270,000 cumulative AIDS
cases in the United States by the end of 1991 (Public Health Service,
1986; Morgan and Curran, 1986). This projection was based on the
extrapolation of a quadratic polynomial model for transformed month-
ly AIDS incidence, AIDS incidence was transformed using a Box-Cox
transformation before fitting the polynomial model. The projections of
annual U.S. AIDS incidence were 45,000, 58,000, and 74,000 in 1989,
1990, and 1991, respectively (Morgan and Curran, 1986).

The most serious limitation with extrapolation is that the projections
depend crucially on the mathematical function used as the basis for the
extrapolation. Furthermore, as discussed in the preceeding sections,
AIDS incidence data are subject to a number of sources of uncertainty
including reporting delays, underreporting, and changes in the sur-
veillance definition. In this section, we discuss approaches for extra-
polating the AIDS incidence curve and situations when extrapolation
can produce useful short term projections of AIDS incidence.

The first step is to adjust AIDS incidence data for reporting delays as
described in Section 7.3. Figure 1.1 displays the delay-adjusted AIDS
incidence data by calendar quarter of diagnosis separately by risk
group. This figure was based on all cases reported to the CDC by
March 31, 1990. A simple log-linear model for extrapolation implies
exponential growth in AIDS incidence. If E( ) is the expected AIDS
incidence at calendar time t, then

The regression parameters b0 and b1 can be estimated from statistical
computing algorithms for Poisson regression (GLIM, for example,
The regression parameters b0 and b1 can be estimated from statistical
computing algorithms for Poisson regression (GLIM, for example,
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Figure 7.4 Projected and observed quarterly AIDS incidence among homosex-
ual and bisexual men in the United States. Projections were based on
consistently defined AIDS incidence counts through June 30, 1987 (open
squares) without constraints (solid line) and under the constraints that no
infections occurred after July 1, 1985 (dot-dash line), as described by Gail,
Rosenberg, and Goedert (1990a). Vertical lines indicate 95% confidence inter-
vals, and solid squares depict augmented consistently defined quarterly AIDS
incidence beginning in July, 1987. Solid circles depict all AIDS incidence
beginning in July 1, 1987. (Source: figure 1 in Gail, Rosenberg, and Goedert,
1990a.)

Payne, 1986) under the assumption that AIDS incidence approximates
a nonhomogeneous Poisson process. Equation (7.8) forces the expected
AIDS incidence to keep growing exponentially, which is not consistent
with epidemic theory. Indeed Figure 1.1 exhibits subexponential
growth beginning in the early 1980s. Accordingly, it is necessary to add
quadratic time terms to equation (7.8) to obtain

The Public Health Service (PHS) projection in 1986 that there
would be 270,000 cumulative AIDS cases by the end of 1991 was based
on an extrapolation of a model of the form
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where a is a power transformation. This model was applied to
reporting-delay-corrected AIDS incidence data. The projection agreed
with observed AIDS incidence until 1989, when the projections began
to exceed AIDS incidence. By April 1, 1992, 215,263 cumulative AIDS
cases with diagnoses through December 31, 1991, had been reported to
the CDC, and the delay-corrected cumulative projection of AIDS cases
through 1991 was 240,000.

The addition to equation (7.9) of higher order terms in time (e.g., t3

or t4) is not usually recommended. The most recent data points can
have high influence on these regression coefficients and could result in
AIDS incidence curves that predict dramatic changes in incidence in
the short-term.

Even if the mathematical function used for the extrapolation agrees
perfectly with observed counts of AIDS cases, the assumption that the
mathematical function will agree with future AIDS incidence cannot
be verified. Furthermore, any one of a number of statistical models may
fit the observed AIDS incidence data equally well but give radically
different long-term projections. Indeed, extrapolation of some models
may yield anomalous and misleading results. For example, extra-
polation of U.S. AIDS incidence data through 1987 using a normal
density curve predicted sharp decreases in AIDS incidence and a
cumulative final number of AIDS cases of about 200,000 (Bregman
and Langmuir, 1990). The basis for this anomalous results was that
although AIDS incidence was still increasing, it was increasing more
slowly than previously (Gail and Brookmeyer, 1990a).

Conventional confidence intervals for the expected AIDS incidence
at a future time, based on extrapolation methods, reflect the statistical
uncertainty in the estimated regression parameters, but do not reflect
the uncertainty in selecting the assumed parametric regression model.
For example, the confidence bounds reported for the 1986 PHS
projections are correct provided the assumed parametric model is
correct. Conventional confidence intervals also do not reflect the
random variation in future AIDS incidence.

Although these problems with extrapolation limit its usefulness for
obtaining reliable long-term projections, extrapolation may still be
useful for short-term projections. Observed trends in AIDS incidence
may persist over the short term because even abrupt changes in the
underlying transmission of HIV infection would not be seen in counts
of AIDS cases for many years and then only gradually. This is because
the AIDS incidence curve is smoothed when changes in the infection
rate are convolved with the incubation period distribution (Chapter 8).
Smooth curves may lend themselves to simple extrapolation. However
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in some circumstances, even short-term extrapolation can be in error.
For example, some events may have an immediate impact on AIDS
incidence, such as the advent of a new therapy to prevent or delay
AIDS, a sudden increase in reporting delays, or a major change in the
surveillance definitions. In these situations, historical trends in in-
cidence cannot be reliably extrapolated.

7.6.2 Joint Modeling of Reporting Delays and AIDS
Incidence

An alternative to, first, estimating the reporting delay distribution and
then empirically modelling the delay-adjusted incidence data is to
jointly model reporting delays and AIDS incidence (Harris, 1990a;
Zeger, See, and Diggle, 1989). The basic idea is to model, rtu, the
number of AIDS cases diagnosed in calendar time (month) t and
reported u time units (months) later. Zeger, See, and Diggle (1989)
proposed a Poisson model for rtu with expectation given by

where f(t; B) is a function of calendar time (t) with unknown
parameters B, which describes the calendar time trends in AIDS
incidence, and d(u; a) is a function of the reporting delay (u) with
unknown parameters a, which describes the reporting delay distribu-
tion. Specifically,

is the probability of a reporting delay equal to u months (actually, it is
the conditional probability given that the delay is less than or equal to
the maximum observed reporting delay; see Section 7.3). A simple
choice for f ( t ) is a quadratic function f(t; B) = B0 + B1t + B2t

2. Zeger,
See, and Diggle (1989) suggest a cubic spline. A very flexible model for
the delay function is the step function model d(u, a) = au. Models such
as these can be fit using Poisson regression methods (e.g., GLIM in
Payne [1986].

There are several advantages to joint modeling of reporting delays
and AIDS incidence. First, a correctly specified parametric model for
AIDS incidence can increase the precision of delay-adjusted AIDS
incidence considerably for the most recent time periods. Second, joint
modeling accounts for two sources of uncertainty: uncertainty in the
reporting delay adjustments and uncertainty in the estimated re-
gression coefficients.
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Fitted models of AIDS incidence will be unreliable in small sub-
groups with few numbers of AIDS cases (for example, subgroups
defined by small geographic areas and risk groups). Zeger, See, and
Diggle (1989) propose an empirical Bayes approach to predict AIDS
incidence in small subgroups. The basic idea is to borrow strength from
other similar subgroups to improve the trend estimates for a given
subgroup. The empirical Bayes estimate for a given subgroup is a
weighted average of a trend estimate obtained from modelling geo-
graphic and risk group effects from data from many subgroups and the
trend estimate obtained only from the given subgroup.
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Back-Calculation

8.1 INTRODUCTION

Back-calculation is a method for estimating past infection rates from
AIDS incidence data. The method has been useful for obtaining short-
term projections of AIDS incidence and estimating HIV prevalence.
Back-calculation requires reliable counts of the numbers of AIDS cases
diagnosed over time and a reliable estimate of the incubation period
distribution. Early references on back-calculation are Brookmeyer and
Gail (1986; 1988).

The basic idea is to use AIDS incidence data together with an
estimate of the incubation period distribution to reconstruct the
numbers of individuals who must have been previously infected in
order to give rise to the observed pattern of AIDS incidence. Then, the
incubation distribution is applied to these estimated numbers of
previously infected individuals to project AIDS incidence. The funda-
mental relation between the expected cumulative number of AIDS
cases diagnosed by calendar time t, A(t), the infection rate g(s) at
calendar time s, and the incubation period distribution F(t), is given by
the convolution equation

The convolution equation (8.1) is justified by noting that in order for
an individual to be diagnosed by calendar time t, he or she must have
been infected at some prior time s and then have an incubation period
less than t — s. Essentially, the back-calculation methodology uses
equation (8.1) together with knowledge of A(t) (obtained from regis-
tries of AIDS cases as described in Chapter 7) and F(t) (obtained from

189
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epidemiological studies as described in Chapter 4) to glean information
about previous infection rates g(s). Differentiation of equation (8.1)
yields the relationship between AIDS incidence rates and the infection
rate, equation (1.3). Integral equations such as equation (8.1) arise in
many different scientific applications (O'Sullivan, 1986; Mendelsohn
and Rice, 1982; McMahan, Maxwell, and Shephard, 1986) and have
been called Volterra equations of the first kind and are a special case of
Fredholm integral equations (Wahba, 1990; Press, Teukolsky, Vetter-
ling, and Flannery, 1992).

The relationship between AIDS cases, the infection rate and the
incubation period distribution can be illustrated empirically with data
from San Francisco (Figure 1.5). Estimates of the infection rates were
obtained from epidemiological HIV seroprevalence surveys (Bacchetti,
1990). The figure illustrates how AIDS cases lag behind the infections.
This lag is determined by the incubation period distribution. The
figure also shows that the AIDS incidence curve increases steadily and
is considerably smoother than the underlying infection curve, which
rises and falls sharply. Indeed, the effect of the long and variable
incubation period is to smear out the infection curve so that sudden
changes in the infection curve are not clearly reflected in the AIDS
incidence series.

Back-calculation allows us to reconstruct the gross behavior of the
underlying infection curve; however, the finer structure is often lost.
Additional modeling and empirical data are necessary to reconstruct
finer aspects of the shape of the infection curve. Furthermore, because
the incubation period is long there is little statistical information in
AIDS incidence data about the numbers of individuals most recently
infected. As such, two infection curves that are similar early on, but
differ dramatically later on, can produce very similar observed AIDS
incidence curves. However, they have very different long term im-
plications about the scope of the epidemic. For example, De Gruttola
and Lagakos (1989b) fit four different parametric models for the
infection curve to AIDS incidence in the United States in the period
1981-87. Figure 8.la shows that the four fitted infection curves differ
dramatically in the most recent years but nevertheless yield similar
AIDS incidence curves in the period 1981-87 (Figure 8.1b).

Back-calculation is one of the most useful methods for obtaining
quantitative estimates of HIV prevalence and future AIDS incidence.
Nevertheless, before proceeding with the technical development of the
back-calculation methodology, it is important to emphasize a number
of limitations and underlying assumptions of the methodology.
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Figure 8.1 (a) Fitted cumulative number of HIV infections (in millions) based
on U.S. AIDS incidence data 1981-87 using four different parametric models
for the infection rate, (b) Fitted values of cumulative AIDS incidence (in
thousands) based on four parametric models. (Source: De Gruttola and
Lagakos, 1989b. Reprinted by permission of John Wiley & Sons, Ltd.)

1. No Information About Future Infection Rate. Back-
calculation provides no information about the future infection rate and
only attempts to estimate historical infection rates. Accordingly,
projections of AIDS incidence based on back-calculation require
further assumptions to account for future infections. If one assumes no
future infections, one obtains lower bounds on the expected number of
AIDS cases. For this reason, back-calculation has also been referred to
as a method for estimating the minimum size of the epidemic
(Brookmeyer and Gail, 1986). Nevertheless, because of the long
incubation period, future infections have a relatively small impact on
short and intermediate term projections of AIDS incidence. A number
of approaches for accounting for future infections in back-calculation
forecasts of AIDS incidence are described in Section 8.3.2.

2. Little Information About Recent Infection Rate. There is little
statistical information in AIDS incidence data about the numbers of
individuals infected most recently. The numbers of individuals in-
fected in the past year or two are not reliably reflected in AIDS cases
because of the long incubation period. On the other hand, back-
calculation typically yields useful estimates of the infection rates that
occurred 3—5 or more years ago. Short-term projections of AIDS
incidence are also reliable because such projections depend more
strongly on the infection rate in the distant past than in the recent past
and because the back-calculation procedure is calibrated to match
recent AIDS incidence rates. However, long-term projections of AIDS
incidence as well as estimates of recent infection rates will be imprecise
(These points are illustrated in Figure 8.11. This figure is a recon-
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struction of infection rates in the U.S. based on back-calculation
[further details are given in Section 8.7].) Ranges of uncertainty are
much greater for infection rates in the recent past (within the past three
years) than in the distant past. Estimates of recent infection rates will
be sensitive to model assumptions such as the assumed shape of the
infection rate curve (the parametric model for g(s)), and the incubation
distribution. These issues and other questions of sensitivity to model
assumptions are discussed in Section 8.4.

3. Incubation Period Distribution F is Assumed Known. Equa-
tion 8.1 assumed F(t) is known precisely. Back-calculation can be very
sensitive to assumptions about the incubation distribution. This point is
considered in Section 8.4. Longer incubation periods (smaller F ( t ) )
yield higher estimated infection rates because individuals diagnosed
with AIDS represent a smaller fraction of all infected individuals. This
inverse relationship is also evident from equation (8.1), which shows
that a smaller F needs to be compensated for by a larger g in order to fit
the cumulative AIDS incidence series. An additional issue is that the
incubation distribution may be different for different subgroups of
infected individuals. For example, age has been identified as a cofactor
of disease progression (Chapter 5).

4. The Incubation Period Distribution is Assumed Station-
ary. Equation (8.1) is based on the assumption that the incubation
period distribution is stationary over calendar time. However, there are
a number of reasons why the incubation distribution may not be stable.
The most important reason is that treatment of HIV infected indiv-
iduals may lengthen the incubation period. Changes in the surveillance
definition of AIDS can also alter the incubation distribution. Back-
calculation methods can be generalized to account for calendar trends
in the incubation distribution (see Section 8.6).

5. Requires Accurate AIDS Incidence Data. The methods re-
quire accurate data on AIDS incidence over time. Recent AIDS
incidence must be adjusted for reporting delays (Chapter 7). The effects
of underreporting of AIDS cases on back-calculation estimates are
considered in Section 8.4. A related issue concerns changes in the AIDS
surveillance definition.

8.2 DETERMINISTIC DECONVOLUTION

The process of using equation (8.1) with known values for A(t) and F(t)
in order to solve for infection rates, g(s), is called deconvolution.
Deterministic deconvolution ignores random variability in the
cumulative AIDS counts A(t). Instead, A(t) and F(t) are regarded as
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given functions, and an attempt is made to find the infection curve g(s),
that fits A(t) exactly or that minimizes

If the model for g(s) involves too many parameters, the estimate of g(s)
may be very irregular or even negative in places. Such phenomena also
arises in statistical deconvolution (Section 8.3). The major drawback of
deterministic deconvolution is that it provides no framework for
estimating the uncertainty in estimates of g(s). Nevertheless, determin-
istic deconvolution provides a useful introduction to the method of
back-calculation that is easy to understand and that provides insight
into the effects of systematic perturbations in the AIDS incidence data
and the incubation distribution (Hyman and Stanley, 1988).

8.2.1 Discrete Time

Deterministic deconvolution has an especially simple solution if we
assume that infections occur at discrete points in calendar time, such as
the beginning of each calendar year. The unknown numbers of
individuals infected at the beginning of the jth year of the epidemic is
called gj. The known number of AIDS cases diagnosed in the jth year,
namely in the interval [j — l,j), is called rj. Below is a schematic
illustration:

rj = Number of new
AIDS cases

gj = Number of new
infections

AIDS incidence data, the r's, are used to estimate the unknown
numbers infected, the g's, by solving a system of linear equations that
involve the incubation distribution, F, which is assumed known. Let
fi = F(i) — F(i — 1) be the probability that an individual develops
AIDS during the ith year following infection. If equation (8.1) is
obeyed exactly, then r1 must be equal to the number infected in year 1
who have incubation periods less than 1 year: rt = g 1 f i - The number
of AIDS cases diagnosed during year 2 of the epidemic is the sum of two
components: individuals infected in year 2 with incubation periods less
than one year and individuals infected in year 1 with incubation periods
between 1 and 2 years duration, as in r2 = g}f2 + g2f1. Similarly,
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r3 = g1 f3 +g2f2 +g3f1. In general, the number of AIDS cases
diagnosed during the jth year of the epidemic satisfies

There are two limitations with this procedure for estimating the
infection rates. First, the estimated infections rates {gj} can exhibit saw-
toothed, irregular behavior and can even be negative. More plausible
estimates for the infection rates would be smoother and nonnegative.
One could try to alleviate these problems by smoothing the g's in some
manner. Second, estimates of the precision of the estimated infection
rates are not readily available. Statistical deconvolution considered in
Section 8.3 addresses some of these problems.

8.2.2 Continuous Time

Several approaches have been proposed for deterministic deconvol-
ution of AIDS incidence data in continuous time. Hyman and Stanley
(1988) fit a smooth function, namely a polynomial, to the cumulative
AIDS incidence function A ( t ) . The infection rate curve, g(s), was
approximated by a spline (piecewise cubic Hermite polynomial).
Then, the infection rate curve g(s) was estimated by minimizing

[A(t) — A(t)]2dt where A(t) are the fitted values of the cumulative
AIDS incidence at calendar time t. Hyman and Stanley (1988) point
out that if there are too many knots in the spline, the solution for g(s]
will exhibit irregular behavior and high frequency oscillations.

Freund and Book (1990) use Laplace transforms to perform the
deterministic deconvolution. They first fit a smooth function, a(u), to
AIDS incidence. They show that

AIDS incidence data that span n years generate a system of n linear
equations (one for each of the rs) in n unknowns (one for each of the
g's), for which there is a simple solution. The number infected in year 1
is g1 = r l / f 1 . Note that this estimate g1 is very sensitive to small
changes in the AIDS incidence counts or small errors in specifying the
incubation curve F(t), because J1 is very small. For this reason,
equation (8.1) defines an "ill-posed inverse" problem (O'Sullivan,
1986; Hyman and Stanley, 1988). The other g's can be obtained
recursively from the equation
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where /* is the inverse Laplace transform of 1/fL(u) and where

is the Laplace transform of the incubation density. If the incubation
distribution is assumed to be gamma with integer shape parameter k
and scale parameter (Section 4.2), then f*(u) = [1 + (u/ )]k. Thus,
the problem of solving for g(t) is reduced to integration. Freund and
Book use a cubic polynomial for a(t) and show that this produces a
cubic polynomial solution for g(s). An alternative approach is given in
Isham (1989).

8.3 STATISTICAL DECONVOLUTION

8.3.1 Analysis in Discrete Time

Statistical deconvolution with a discrete time infection curve is re-
latively simple. The expected AIDS incidence is required to follow an
equation analogous to (8.2):

where, as in Section 8.2, gj is the number infected in the beginning of
the jth year of the epidemic, and rj are the number of AIDS cases
diagnosed in the Jth year, namely in the interval [j — l,j). It is often
appropriate with count data, such as AIDS incidence, to assume that
the variance of rj is equal to the mean E( r j ) . This assumption would
be justified for example, if the r's have a Poisson distribution. Model
(8.4) can be fit to AIDS incidence data using Poisson regression
analyses. Poisson regression relates the expected values of r to a
function of covariates, and assumes r has a Poisson distribution
(McCullagh and Nelder, 1989). In our application, the f's in equation
(8.4) play the role of the covariates (the design matrix) and the g's play
the role of the regression coefficients. The regression model would be fit
without an intercept term. A difficulty with model (8.4) is that it is not
parsimonious. There are n data points and n parameters. The estimated
g's can exhibit saw-toothed or irregular and unstable behavior and
have very large variances, especially for the most recent infection rates.
O'Sullivan (1986) calls this problem "ill-posed." One approach is to
introduce certain smoothness assumptions on the infection rates
(Bacchetti, Segal, and Jewell, 1993; Becker, Watson, and Carlin, 1991;
Brookmeyer, 1991; Brookmeyer and Liao, 1992). The smoothness
assumptions will reduce variances and problems of instability, but
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biased estimates of infection rates could result if the smoothness
assumptions are incorrect. One faces the usual tradeoff between bias
and variance in making such assumptions.

A simple smoothness assumption is to require that the numbers of
individuals infected, gj, be constant over specified intervals. For
example, suppose gj = gj+1 = Bj in successive pairs of intervals as
illustrated in Figure 8.2. In this figure, Bi is the annual infection rate at
calendar time i. As before, we assume for simplicity that infections
occur only at discrete points in calendar time, for example, on January
1 of each calendar year. Then it follows from equation (8.4), for
example, that the expected AIDS incidences in the first three years are:

In general, the expression for E ( r j ) is linear in the unknown para-
meters, the B'S. Estimates of Bi can be obtained using Poisson regression
analysis.

The statistical methods for discrete deconvolutions are illustrated in
Table 8.1 with hypothetical AIDS incidence data and an incubation
distribution. It was assumed that infection rates were constant over
two-year intervals. A Poisson regression analysis was performed using
the generalized linear interactive modelling computing software
(GLIM, see Payne, 1986) by declaring the "error" as Poisson and the
"link" as the identity, and by fitting the model with four independent

Figure 8.2 Illustration of discrete time infection curve.
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Table 8.1 Illustration of Statistical Deconvolution in Discrete Time

Input Data
AIDS Incidence Data

r1 =
r2 =
r3 =
r4 =

20
39
80

200

Model E ( r ) = X

r5=330 f1

r6 = 500 f2
r7 = 700 f3
r8 = 930 f4

B (Matrix notation)

= .01
= .06
= .08
= .10

Incubation

f5 = .10 f9f9= .08
f6 
f7 = .14 f=04 .04
f8 = .10 f12f12= .05

Results

B1 (SE)
02 (SE)
03 (SE)
04 (SE)

Poisson

587 (56)
1348 (155)
1556 (290)
2378 (722)

Normal
Unweighted

516 (72)
1466 (139)
1559 (158)
2153 (358)

Normal
Weights = 1/r

525 (95)
1463 (272)
1521 (513)
2240 (1265)

variables without an intercept term. The estimated regression coeffi-
cients (the B's) along with standard errors are shown under the results
column of Table 8.1 labeled "Poisson." We have also computed the
results using normal unweighted linear regression and using normal
weighted linear regression with weight equal to 1 / r j . The estimates are
quite similar, although the standard errors (SE) are considerably
different. The normal linear regression with weights equal to 1/rj is a
rough approximation to the Poisson regression analysis.

The standard errors reported in Table 8.1 do not account for a
number of important sources of uncertainty. These include: (1)
uncertainty in the incubation distribution; (2) uncertainty in the AIDS
incidence data due to reporting delay adjustments and underreporting;
and (3) uncertainty in the parametric model used for the infection rate
(in this example, it was assumed that infections occur at discrete points
in time (January 1) and that annual rates were constant over 2-year
intervals). Uncertainty in the incubation distribution is often the main
source of uncertainty.

The results in Table 8.1 can be used to estimate cumulative

F10 = .07.17

= .04
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infections and forecast AIDS incidence. For example, the estimated
cumulative number infected by the end of year 8 is (using the Poisson
estimates) 2(587+1348+ 1556 + 2378) = 11,738. The predicted AIDS
incidence in year 9 is obtained by projecting forward the estimated
infection rates:

This projection does not account for any AIDS cases that occur among
individuals infected in year 9. Various adjustments have been sug-
gested to account for future infections in AIDS projections. One
approach assumes the infection rate in year 8, B4, can be extrapolated
through year 9. Under this assumption the term B4f1 = 24 would be
added to the projection. Then, the adjusted projection is
1167 + 24 = 1191. Other adjustments have also been suggested (see
Section 8.3.2), but because the incubation period tends to be long and
f1 is small, these adjustments are minor and have little effect on short
term projections of AIDS incidence.

8.3.2 General Statistical Framework and Maximum
Likelihood Estimation

We outline a general statistical framework for back-calculation in
which we no longer require the infection curve to be discrete. The data
consist of the number of AIDS cases diagnosed over calendar time. Let
Y = (r1 r2, . . . , rn) where rt represents the number of AIDS cases
diagnosed in the calendar time interval [Ti_l, Ti)), i = 1, . . . ,n . It is
assumed that individuals become infected according to a nonhomog-
eneous Poisson process, although, as indicated in Section 8.8.2, the
results hold more generally. The intensity function of the Poisson
process, g(s', B), is assumed to come from a parametric family with p
unknown parameters p. The objective is to estimate the parameters P.
If infections follow a Poisson process then ri has a Poisson distribution
(Cox, 1963) with mean

where F(t) is defined to be 0 for t 0. The variance of ri is
Var(r i) = ui. By convention, we shall define calendar time 0 to be the
start of the epidemic (that is g(s) = 0 prior to that time) and thus
T0 = 0. The log-likelihood function for the parameters B, LL(B; Y) is
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The log-likelihood function can be maximized to obtain the maximum
likelihood estimates p. The variance-covariance matrix of B, Var(B), is
given by the negative inverse of second derivatives of the log-likelihood
function,

provided B lies in the interior of the parameter space. If the parameters
B are constrained so that the infection rates are nonnegative, the
maximization must be done over the restricted parameter space where
g(s; B) 0. When constraints such as these are placed on the para-
meters, it often occurs that B lies on a boundary of the restricted
parameter space. In this event, standard variance estimates such as
those based on the second derivatives of the log-likelihood are not
correct (Chernoff, 1954). In this situation, the parametric bootstrap has
been used to estimate variances (Gail, Rosenberg, and Goedert,
1990a). In the present context, one would generate a large number, B,
of bootstrap samples of AIDS incidence data { r i *} by sampling ri as
independent Poisson variates with mean . Then parameter estimates

and estimated infection rates g ( s ,B*) are obtained for each
bootstrap sample. The sample variance of the B bootstrap estimates is
used to approximate the variance B (Efron, 1982).

In practice, the AIDS incidence data exhibit extra-Poisson variation.
The overdispersion could be due to a number of sources of including
heterogeneity in reporting delays and incubation distributions. A
more realistic model for the variance of AIDS incidence is to assume
Var(r j) = E ( r j ) where 2 is the overdispersion parameter (Brook-
meyer and Liao, 1 990a) . The overdispersion parameter is estimated by

where rt is the predicted AIDS incidence obtained by substituting
into (8.5). Rosenberg, Gail, and Carroll (1992) account for overdisper-
sion by generating bootstrap samples of AIDS incidence data from a
normal approximation to a negative binomial distribution that has
mean - and variance

Cumulative Number of HIV Infections
The maximum likelihood estimate of the expected cumulative number
of HIV infections that occurred prior to calendar time T (where
is



200 AIDS Epidemiology: A Quantitative Approach

The standard error of this estimate can be obtained by an application
of the delta method provided g(s; B) > 0 or by bootstrapping if
constrained optimization is required. Estimates of cumulative in-
fections are statistically imprecise and are sensitive to model as-
sumptions when T — Tn because then G(T) depends on estimates of
recent infection rates. HIV prevalence is defined to be the number of
HIV infected individuals who are alive. An estimate of current HIV
prevalence is obtained by subtracting the cumulative number of deaths
among HIV infected individuals from G(Tn).

Projections of AIDS Incidence
A lower bound estimate of the expected number of AIDS cases
diagnosed in a future calendar interval [T1,_1; T1,) is obtained by
projecting forward the number of individuals previously infected
according to the incubation period distribution. This estimate is given
by

where F(t) is defined to be 0 for t 0. This is a lower bound since it
projects cases only from among individuals infected prior to calendar
time Tn.

Effect of Future Infections on Projections of AIDS Incidence
An important question concerns the effect of future infections on
projections of AIDS incidence. In the long term, future infections will
be the main determinant of AIDS incidence. However, in the short
term, future infections have only a minor impact on AIDS incidence
because the incubation periods tend to be long. In principle, one
approach to account for future infections is to hypothesize a future
infection rate curve and project these rates forward using the in-
cubation period distribution (Brookmeyer and Damiano, 1989). For
example, if future infections occurring after Tn arrive according to a
non-homogeneous Poisson process with intensity g(s;B), then the
expected number of new AIDS cases to be diagnosed on the interval
[T1 - 1 ,T t) who will be infected after Tn is given by

Expression (8.8) is added to (8.7) to obtain an estimate of AIDS
incidence that accounts for future infections.
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The problem, of course, is that the future infection rate g(s; B) is
unknown. One approach to the problem is to assume different values
for g(s', B) and perform sensitivity analyses. However, since a very small
proportion of individuals progress within three years of infection, even
extremely high assumptions about the future infection rate have a
relatively small effect on three-year projections of AIDS incidence. A
range of values for g(s; B) for the sensitivity analyses could be suggested
from seroprevalence survey data (Chapter 3). For example, monitoring
selected cohorts has yielded estimates of current infection rates (Section
3.5.1).

Another approach is to extrapolate the current infection rate,
estimated from back-calculation, into the future. The assumption is
that the current infection rate remains unchanged in the short-term.
For example, suppose that g(s; B) has been parameterized as a
piecewise constant step function with p steps and that the estimated
infection rate in the last step is Bp. Then, equation (8.8) becomes

More generally, one could use the average value g(s', B) over the
previous few years instead of Bp (Rosenberg and Gail, 1991). There are
two limitations with this approach. First, the estimate of Bp obtained
from back-calculation is highly uncertain. Second, even if Bp was
known exactly, there is no a priori reason why the current infection rate
should persist into the future. Nevertheless, it is important to reem-
phasize that adjustments of this sort typically have a small effect on
projections of AIDS incidence over three years.

Use of the Conditional Incubation Period Distribution in
Back-Calculation
In some situations, the method of back-calculation can be used with an
estimate of a "conditional incubation distribution" rather than F(t).

For example, suppose infected individuals are a mixture of a
proportion, a, of infected individuals who develop AIDS according to
the incubation period distribution, F1 and a proportion (1 — a) of
infected individuals who never develop AIDS. Then F(t) = a F l ( t ) . If
one had only an estimate of FI, it would still be possible to forecast
AIDS incidence. The idea is to back-calculate using Fl in place of F.
However, the resulting estimates of infection rates, g, refer to the
numbers of infected individuals who would eventually develop AIDS
rather than to the total numbers of infected individuals. In order to
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estimate the total infection rate, an estimate of a is required and g
would be inflated by the factor 1/a. Similarly, estimates of the
cumulative number of infections refer only to those individuals who
would eventually develop AIDS. The projections of AIDS incidence
obtained by back-calculating with F1 would be correct because in
order to forecast AIDS incidence it is only necessary to estimate
infection rates among individuals destined to develop AIDS. Of course,
AIDS case projections alone do not reveal the entire scope of the
epidemic. Nevertheless, the ability to project cases based only on Ft

could be important, especially early in the epidemic. This is because,
early in the epidemic, retrospective data on the dates of infection and
diagnosis among AIDS cases may yield an estimate of Fl, but not F (see
Section 4.3.3). Only later may prospective follow-up data become
available to yield an estimate of F.

Suppose one is unwilling to assume the mixture model (F = aF1).
Under some conditions it is still possible to back-calculate using an
estimate of the conditional distribution given that the incubation
period is less than T years, F*(t) = F ( t ) | F ( T ) . However the estimable
quantities using F* have peculiar interpretations and are of limited
interest. For example, suppose the AIDS incidence series spans a period
that is less than T years (i.e., the epidemic is less than T years old). If
one back-calculates using F* instead of F, g(s) refers to the infection
rate among individuals who would have incubation periods less than T
years. Estimates of the cumulative number of infected individuals refer
to the cumulative number of infected individuals with incubation
periods less than T years.

8.3.3 Models for the Infection Curve

The statistical framework for back-calculation outlined in Section 8.3.2
can be used with any parametric model for the infection curve, g(s).
Models for the infection curve that have been used in back-calculation
have ranged from strongly to weakly parametric. We give several
examples below in terms of parameters Bl B2, and K.

Strongly Parametric Models
(Damped) Exponential Model

The model allows for exponential growth if B2 = 1 and subexponential
growth if B2 < 1. It has been used by Taylor (1989), De Gruttola and
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Lagakos (1989) and in Morbidity and Mortality Weekly Report
(Centers for Disease Control, 1987b).

Log-Logistic Model

Under this model, if B2 > 1 , infection rates increase monotonically
until they peak at s = infection
rates decrease monotonically. This model has been considered by
Brookmeyer and Damiano (1989).

Logistic (Prevalence) Model

This model allows for initial exponential growth followed by subexpon-
ential growth and possibly decreasing infection rates in later years. The
model has been considered by Taylor (1989) and by Rosenberg, Gail,
and Pee (1991).

The three models mentioned above are strongly parametric. Once
the infection rates in the early years of the epidemic are fixed, the
model assumption forces infection rates in later years to follow the
shape of the assumed curve. Thus, estimated infection rates in the
recent past are very sensitive to the model assumptions. If the
assumptions are incorrect, estimates of infection rates, especially in the
recent past, can be very biased. Furthermore, usual estimates of
standard errors of infection rate are unrealistically small as a result of
the strong parametric assumptions.

Weakly Parametric Models
An alternative to strongly parametric models are weakly parametric
models, such as a piecewise constant step function model. The
piecewise constant step function is

This model assumes the infection rate is constant at level Bi in the
interval [ci,-1\,ct). The calendar times at which the step function jumps,
the c's, are called the knots. It is a flexible parametric model because
the behavior of the early part of the curve does not pin down the later
behavior.
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The main issue with flexible models such as the piecewise constant
step function is how to choose the number and spacings of the knots.
Because there is little information about infection rates in the recent
past, the standard error of the estimated infection rate in the last step,
Bp, becomes very large as the width of this step is decreased. On the
other hand, if the width of the last step is too large, this infection rate
could be very biased if in fact infection rates are rapidly rising or falling
in this interval. Rosenberg, Gail, and Pee (1991 ) suggest that a width of
about four years in the last step yields a good compromise between bias
and variance.

Splines and Smoothing Approaches
A disadvantage of the piecewise constant step function model is that
g(s; B) has discontinuities at the knots. Splines have the advantage of
yielding smoothed estimates of the infection curve without invoking
strong assumptions about the shape of the infection curve. Rosenberg
and Gail (1991) considered continuous spline function models, which
are polynomial functions between prespecified knots, c0,ct,c2, . . . ,cp.
For example, the continuous linear spline is

where (s — cj-1)+ is defined to be 0 if s < C j - 1 and (s — cj,--1)
otherwise. A spline that is smoother than the continuous linear spline is
the quadratic spline with a continuous first derivative:

Rosenberg and Gail (1991) showed how back-calculation could be
performed using regression methods for very general models of the
infection curve,

where gi(.) are known functions. This general class includes spline
models. Constrained optimization is required to insure that the
estimated infection rates are nonnegative.

An alternative to the spline approach outlined above is based on
Phillips-Tikhonov regularization (Phillips, 1962; Tikhonov, 1963).
This approach was used by Brookmeyer (1991) and Brookmeyer and
Liao (1992). Bacchetti (1990) and Taylor, Kuo, and Detels (1991)
used a similar approach to estimate the incubation distribution (see
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Section 4.6) . The basic idea is to approximate the infection curve by a
step function with a large number of short steps,

and then to impose smoothness requirements on the estimated infection
rates to avoid wild oscillations. This is accomplished by maximizing a
penalized log-likelihood function

where Log L is the log likelihood function, J measures the roughness of
the infection curve and is the smoothing parameter that determines
the degree of smoothness of the infection curve. Constrained optimiza-
tion is required to ensure that estimated infection rates are non-
negative. For a Poisson likelihood, this is equivalent to minimizing
(O'Sullivan, Yandell, and Raynor, 1986)

where the first term measures the closeness of the observed AIDS
incidence data to the expected values and the second term is the
roughness penalty. One measure of roughness is a discrete approxi-
mation to the integrated squared second derivative of the infection
curve, and when the knots are equally spaced, this is given by

where w = cj — c j - l is the spacing between the knots.
A major issue with this approach is how to choose the smoothing

parameter . Various automatic smoothing procedures have been
suggested to guide the degree of smoothing, such as generalized cross-
validation. Generalized cross-validation was proposed by Craven and
Wahba (see Wahba, 1983, 1990) and extended to the case of gen-
eralized linear models by O'Sullivan, Yandell, and Raynor (1986).
Some theoretical work and simulation work suggest that the that
minimizes the generalized cross validation score will minimize a
weighted mean squared error criterion for the AIDS incidence curve
(O'Sullivan, Yandell, and Raynor, 1987). For our purpose, a more
relevant criterion might be a mean square error criterion for the
infection curve rather than the AIDS incidence curve. An alternative
to automatic smoothing is to perform sensitivity analyses to different
choices of the smoothing parameter A. Brookmeyer and Liao (1992)
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show that estimated infection rates in the recent past are much more
sensitive to the choice of smoothing parameter than are estimated
infection rates in the distant past. They also quantify the tradeoff
between bias and variance. In general, less smoothing yields smaller
bias but greater variance in the estimated infection rates.

Another smoothing approach, called EMS, was investigated by
Becker, Watson, and Carlin (1991). This approach also approximates
the infection curve by a large number of narrow step functions but uses
an EM algorithm to estimate the infection rates. At the end of each
cycle of the EM algorithm, the step height parameters are smoothed by
taking running averages. An advantage of this approach is that it
automatically produces positive estimates of infection rates. However,
special methods are needed to assess random variability.

8.4 UNCERTAINTY IN BACK-CALCULATION

8.4.1 Sources of Uncertainty
The Incubation Distribution
Lack of information about the incubation distribution is perhaps the
most important source of uncertainty in back-calculation. A shorter
assumed incubation distribution leads to a lower estimated cumulative
number of infections. Standard errors based on Fisher information and
an assumed incubation distribution do not account for uncertainty in
the incubation period distribution. Sensitivity analyses to different
assumptions about the incubation distribution are important.
Estimates of cumulative infections are much more sensitive to the
incubation distribution than are short term projections of AIDS
incidence.

Rosenberg and Gail (1990) performed a detailed sensitivity analysis
of the choice of incubation distribution on back-calculated estimates of
cumulative infections based on U.S. AIDS incidence data through July
1, 1987. They considered five different incubation distributions (Figure
8.3) and back-calculated the infection rate using a piecewise constant
step function model. Figure 8.4 shows joint confidence regions for the
cumulative numbers infected by January 1, 1985, and July 1, 1987.
These confidence ellipsoids were based on a parametric bootstrap and
account for variability in choosing the placement of the knots in the
step function model as well as for random variation in the AIDS
incidence data. Figure 8.4 shows that systematic uncertainty in the
choice of incubation distribution can overwhelm random uncertainty
in knot selection and model fitting.
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Figure 8.3 Incubation period distributions used in sensitivity analysis of
back-calculation estimates. (Source: Rosenberg and Gail, 1990. Reprinted by
permission of Elsevier Science Publishing Co.)

The Infection Curve Model
The infection curve model, g(s], needs to be chosen with care. There is
a great deal of information in AIDS incidence data about g(s) in the
distant past but little information about g(s) in the recent past. If strong
parametric models, such as an exponential growth model, are used for
g(s] and if the model chosen is not correct, estimates of the infection
rate in the recent past can be severely biased. Furthermore, the resulting
confidence intervals can be very narrow as a result of the strong
parametric assumptions, making it appear that the estimates are more
accurate than they really are. On the other hand, if the model for g(s) is
too flexible, especially within the most recent 2 or 3 years, the standard
errors of estimated recent infection rates will be quite large. The choice
between weakly and strongly parametric models for the infection curve
represents the usual statistical tradeoff between bias and variance. In
the absence of epidemiological data to suggest the parametric family,
we prefer the use of flexible models, such as splines or step functions.
The resulting estimates of infection rates will have wide confidence
intervals, which we believe is preferable to potentially biased estimates
with narrow confidence intervals.
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Figure 8.4 Joint confidence regions for cumulative numbers infected by
January 1, 1985, and July 1, 1987: Sensitivity to the incubation period
distribution. (Source: Rosenberg and Gail, 1990. Reprinted by permission of
Elsevier Science Publishing Co.)

Rosenberg, Gail, and Pee (1991) performed a simulation study to
examine the performance of piecewise constant step functions for a
range of epidemics. Figure 8.5 shows nine different hypothesized
infection curves where time 0 corresponds to January 1, 1977. They
considered different step function models, varying the number and
placement of knots. The simulation study was based on simulating
quarterly AIDS incidence data (counts of AIDS cases in three month
intervals) during the period January 1, 1977, through July 1, 1987.
They considered four families of models with 3, 4 or 5 steps and used a
Pearson chi-square statistic to choose the best fitting model within each
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Figure 8.5 Nine different infection curves, g(s), used in a simulation study of
back-calculation procedures. (Source: Rosenberg, Gail, and Pee, 1991. Rep-
rinted by permission of John Wiley & Sons, Ltd.)

family. The performance of an estimator 9 of 9 was measured by the
percent root mean square error (PRMSE) defined as

where is the estimate from the ith simulation. The percent bias was
defined as I 0 0 - ( 0 — 6)/6, and the percent standard deviation was
defined as

where 9 is the mean value of , over the N simulations.
Figure 8.6 gives the percent root mean square error for cumulative

numbers of infected individuals and projections of AIDS incidence.
The estimated cumulative HIV infections through January 1, 1985,
yielded percent root mean square error (PRMSE) of less than 14% for
each of the nine infection curves. However, the PRMSE for estimated
cumulative infections through July 1, 1987, ranged as high as 33%.
Short-term projection of AIDS incidence (2—3 years ahead) always



Figure 8.6 Simulation study of percent root mean square error for different
step function models for the nine infection curves in Figure 8.5. (Source:
Rosenberg, Gail, and Pee, 1991. Reprinted by permission of John Wiley & Sons
Ltd.)
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had a PRMSE less than 18%. The simulation studies suggested that
step function models with a long last step of about 4 years yielded a
favorable tradeoff between bias and variance.

A "bull's-eye plot" shows the percent standard deviation and
percent bias for fitting step function models with four steps and a last
step of 4 years, for each of the nine epidemics (Figure 8.7). The circular
contours in these plots correspond to constant values of the PRMSE.
The fitting procedure produces small PRMSE for projecting AIDS
incidence and for estimating cumulative numbers infected through
January, 1985, for all nine epidemics. However, biased estimates of
cumulative numbers infected through July 1, 1987, are obtained when
the infection curve is either rapidly rising or decreasing in the period
shortly before mid-1987. For example, if the epidemic is decreasing
rapidly (epidemic 3 in Figure 8.5), step function models with a long last
step can overestimate cumulative numbers infected through July 1,
1987, by about 30% (Figure 8.7b). It would be interesting to carry out
similar studies of the performance of spline models and other smoothing
approaches and to examine the tradeoff between bias and variance for
various choices of smoothing parameters and procedures.

AIDS Incidence Data: Reporting Delay Adjustments and
Underreporting
Back-calculation relies on accurate AIDS incidence data. One source of
error in the data arises because of uncertainty in the reporting delay
adjustments (Chapter 7). Reporting delay adjustments have the most
impact on the recent AIDS incidence data, and recent AIDS incidence
data can have high leverage (Weisberg, 1985) on back-calculation
estimates. One approach is to not use the most recent AIDS incidence
data in back-calculation, because delay adjustments and other un-
certainties are greatest in the most recent AIDS incidence counts
(Section 7.3). Many analysts exclude the most recent six months of
reporting-delay adjusted AIDS incidence data from back-calculation
analyses. Another approach is to formally account for these un-
certainties in the analysis (Harris, 1990a). The approach involves
modeling rij, the number of cases diagnosed in the ith interval with
delay j, rather than modeling ri, the number of cases diagnosed in the
ith interval. The model contains reporting delay "effects" as well as
effects that depend on infection rates and incubation periods. Lawless
and Sun (1992) have also provided a general framework to account for
errors in reporting delay adjustments in back-calculation.

A certain proportion of cases may never be reported. Suppose y is the
probability that a case will be reported, and we assume that y is
constant over time. The back-calculation methodology could still be



Figure 8.7 Bulls-eye plot (relative percent SD vs. relative percent bias) for
a step function model for g(s) with four steps for the nine infection curves in
Figure 8.5. (Source: Rosenberg, Gail, and Pee, 1991. Reprinted by permission
of John Wiley & Sons, Ltd.)
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used, but in this case the infection rate, g(s), refers only to infected
individuals who would be reported if diagnosed with AIDS. In order to
obtain an estimate of the total infection rate, it is necessary to inflate
estimated infection rates by the factor I | y . Similarly the projections of
the total numbers of AIDS cases, both reported and unreported, are
obtained by inflating by the factor I | y . For example, if 90% of cases are
eventually reported, it would be necessary to inflate infection rates and
AIDS incidence projections by the factor 1/.90 = 1.11. The crucial
assumption that justifies this simple adjustment is that the proportion
of cases that are reported, y, has remained constant over calendar time.

Rosenberg and Gail (1990) performed a sensitivity analysis to
evaluate the effect of differential underreporting over calendar time
(i.e., y changes over time). Of particular concern was the possibility of
more underreporting early in the epidemic due to lack of recognition of
AIDS. Also of interest was the effect of increased reporting in later years
due to increased awareness of AIDS and to changes in the surveillance
definition. Table 8.2 shows the sensitivity of the estimated cumulative
numbers infected to perturbations in the AIDS incidence data.
Perturbations of AIDS cases in more recent years have a greater effect
than perturbations in the early years (see also Brookmeyer and Gail,
1986). However, these perturbations do not change estimated
cumulative infections by more than 15%.

Effects of Immigration and Emigration
Individuals may become infected in one community but immigrate
into another community before or after the diagnosis of AIDS. We
consider the situation in which some individuals born in community A
become infected when living abroad and then return home to com-
munity A to receive health care after AIDS diagnosis. The effects of this

Table 8.2 Sensitivity of Estimate of Cumulative Number Infected in the
United States by July 1, 1987, to Perturbations in AIDS Incidence Data

Multiplier

1977-82

1.0
1.5
1.5
1.0
1.0

of AIDS Incidence

1983-84

1.0
1.15
1.0
1.0
1.15

Data

1987

1.0
0.95
1.0
0.95
1.0

Cumulative infections
by July 1, 1987

992,000
916,000

1,048,000
903,000
930,000

Source: Adapted from Rosenberg and Gail (1990).
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type of immigration on back-calculation are similar to the effects of
underreporting. Suppose we wish to back-calculate AIDS incidence
data based on cases reported in community A. Let be the probability
that an infected individual who was born in community A is in fact
diagnosed and reported in community A. This individual may have
been infected in community A or perhaps another community. Back-
calculation of AIDS incidence data from community A yields an
estimate g(s), which refers to the infection rate among individuals who
would be reported in community A if diagnosed with AIDS. Forecasts
of AIDS incidence based on g(s) refer to cases reported in community
A. In fact, this is precisely what is of interest for forecasting future
health care needs in community A. The crucial assumption is that is
constant over calendar time. However, g(s) does not refer to the
infection rate occurring in community A, but rather to the infection
rate among individuals who would be diagnosed and reported in
community A. This latter rate includes some infections that occur
outside community A and excludes some infections that occur in
community A among individuals who later emigrate from that
community. Although we are unaware of studies of the importance
of migration on back-calculation, the effects of immigration and
emigration are probably less important for analyzing national AIDS
incidence data than for analyzing local AIDS incidence data.

8.4.2 Plausible Ranges and Quantifying Uncertainty

It is important to indicate the substantial uncertainty in back-
calculated estimates by presenting plausible ranges for parameter
values rather than simple point estimates.

It also is important to perform sensitivity analyses to investigate the
impact of different underlying assumptions. An ad hoc approach for
obtaining a plausible range on a parameter (such as the cumulative
numbers infected) is to compute confidence limits on the parameter
under each set of postulated assumptions. The plausible range is
determined by the smallest of the lower confidence limits and the
largest of the upper confidence limits. Some investigators have used this
approach to establish plausible ranges on cumulative infections by
considering different assumptions about the incubation distributions
with weakly parametric models for the infection curve (Rosenberg,
Biggar, Goedert, and Gail, 1991; Brookmeyer, 1991; Rosenberg, Gail,
and Carroll, 1992). If strongly parametric models are used instead of
weakly parametric models, it is also important to consider a number of
different parametric families for the infection curve, g(s).
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More formal Bayesian approaches have been suggested for in-
corporating uncertainty in model assumptions. For example, Taylor
(1989) considered 105 different sets of model assumptions determined
by different combinations of the incubation distribution and infection
curve model. Taylor assumed a uniform discrete prior on the various
models and used Bayes' theorem to obtain posterior distributions for
various parameters.

In order to obtain a plausible range on projected AIDS incidence it
is also important to account for uncertainty in the future infection rate.
Brookmeyer (1991) accounted for this uncertainty by performing
calculations under different assumptions about the future infection
rate.

8.5 BACK-CALCULATION FOR INVESTIGATING
HYPOTHESES ABOUT THE INFECTION RATE

Back-calculation is useful for investigating hypotheses about the
infection rate. The basic idea is to use the incubation period distribu-
tion to test if a hypothesis about the infection rate is consistent with the
observed pattern of AIDS cases.

For example, Gail, Rosenberg, and Goedert (1990a) observed a
decrease in the rate of increase in AIDS incidence in the United States,
especially among homosexual men in Los Angeles, New York, and San
Francisco beginning in the middle of 1987. One possible explanation
for the improvement in AIDS incidence trends was that there had been
a marked drop in the infection rate years earlier. Back-calculation
methods were used to test the hypothesis that the fall off in AIDS
incidence was due completely to a drop in the infection rate. This was
done by considering the extreme hypothesis that infections actually
stopped after a certain point in calendar time and constraining the
model for the infection rate accordingly.

Figure 8.8 shows AIDS incidence for homosexual men in Los
Angeles, New York, and San Francisco. A step-function model for the
infection rate that was constrained was used so that the infection rate
was 0 after December 31, 1982. The predicted AIDS incidence based
on back-calculation still overestimated the observed AIDS incidence
after 1987 even under this extreme assumption of no infections after
1982. Thus, even a sharp decline in the infection rate beginning in 1983
cannot fully explain the observed AIDS incidence, and other explana-
tions must be entertained. Other possible explanations include misspec-
ification of the incubation distribution, increased reporting delays,
changes in the definition of AIDS, and secular changes in the
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Figure 8.8 Projected and observed quarterly AIDS incidence among homosex-
ual and bisexual men in San Francisco, Los Angeles, and New York City.
Projections were based on consistently defined AIDS incidence counts
through June 30, 1987 (open squares) without constraints (solid line) and
under the constraints that no infections occurred after January 1, 1983
(dot-dash line), as described by Gail, Rosenberg, and Goedert (1990a). Vertical
lines indicate 95% confidence intervals, and solid squares depict augmented
consistently defined quarterly AIDS incidence beginning in July 1987. Solid
circles depict all AIDS incidence beginning in July 1,1987. (Source: figure 2 in
Gail, Rosenberg, and Goedert, 1990a.)

incubation period distribution. Gail, Rosenberg, and Goedert (1990a)
concluded that the most likely explanation was a secular change in the
incubation period distribution due to the introduction of effective
treatments, such as zidovudine and prophylactic inhaled pentamidine
(see Section 11.4), for AIDS-free patients with advanced HIV disease.

Back-calculation thus led to new hypotheses and focused attention
on the need to consider treatment when forecasting AIDS incidence
and interpreting trends in AIDS incidence. We now discuss how to
adapt back-calculation to account for treatment and other factors that
affect the incubation distribution.
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8.6 GENERALIZED BACK-CALCULATION: EXTENSION
TO ACCOUNT FOR NONSTATIONARY
INCUBATION DISTRIBUTIONS

A fundamental assumption of the back-calculation methods considered
in the preceeding sections is that the incubation period distribution is
stable over calendar time. However, a number of factors, including
treatment of HIV infected individuals who have not progressed to
AIDS could alter the incubation period distribution. For example, the
drug zidovudine was approved by the U.S. Food and Drug Admini-
stration in March of 1987 for the treatment of AIDS patients as well as
for AIDS-free HIV infected individuals with CD4+ T cell counts
below 200 cells/ul. Inhaled pentamidine was approved in 1988 for use
with HIV infected patients to prevent Pneumocystis carinii pneumonia.
These treatments can delay the onset of AIDS and thus lengthen the
incubation period.

In this section, we extend the method of back-calculation to account
for a nonstationary incubation distribution. The basic approach is to
consider not a single incubation distribution but rather a family of
distributions indexed by the calendar year of infection. The funda-
mental equation underlying the back-calculation method can be
generalized to account for changes in the incubation period distribu-
tion (Brookmeyer and Liao, 1990a). The generalization of equation
(8.1) is

where F(t\s) is the incubation period distribution for an individual
infected at calendar time s; that is F(t\s) is the probability of developing
AIDS within t years of infection for an individual who was infected at
calendar time s. Thus, instead of a single incubation distribution we
have a family of distributions indexed by the calendar time of infection.
The equation for the expected AIDS incidence and the methods
described in Section 8.3 generalize simply by substituting F(t\s) for
F(t).

In order to proceed with this methodology, information about F(t |s)
is required. Ideally, separate Kaplan—Meier estimates of the in-
cubation period distribution could be computed from separate cohorts
defined by calendar year of infection. There are two difficulties with
this empirical approach. First, most cohorts contain relatively few
individuals with known calendar dates of infection, and thus there is
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insufficient information for estimating separate incubation distribu-
tions, corresponding to different calendar years of infection. Second,
changes in the incubation period distribution observed in one popula-
tion may not be applicable to another population because such changes
depend both on the efficacy of treatment and on the proportions of
infected individuals in treatment. The proportions of infected indiv-
iduals in treatment may vary widely across populations. The efficacy of
treatment might be expected to be more nearly constant across
populations, though differences in efficacy could arise if compliance to
treatment varies across populations of if the effectiveness of treatment
depends on factors like age, race, sex, or general health status.

Even though available empirical data are insufficient to specify the
family of distribution functions F( t |s) with confidence, there is solid
empirical evidence that treatment has affected the incubation distribu-
tion. Clinical trials have shown that zidovudine can delay the onset of
AIDS (Chapter 11), and data on the extent of zidovudine in AIDS-free
patients with advanced HIV disease suggest that sufficient zidovudine
and other treatments have been used to alter the incubation distribu-
tion significantly (Gail, Rosenberg, and Goedert, 1990a; Rosenberg,
Gail, Schrager, et al., 1991; Graham, Zeger, Kuo, et al., 1991).
Moreover, there is evidence for a secular trend in the incubation
distribution that is temporally related to the introduction of effective
treatments in 1987 in a cohort of homosexual men in Vancouver
(Schechter, Craib, Le, et al., 1989b) and in a cohort of homosexual
men in Los Angeles (Taylor, Kuo, and Detels, 1991).

An alternative to the completely empirical approach for estimating
F(t |s] outlined above is to introduce additional modelling assumptions.
Below we consider some specific models for accounting for secular
trends in the incubation distribution due to the introduction of
treatment.

8.6.1 Models for the Effect of Treatment on
the Incubation Period

Several issues must be addressed in order to model the effect of
treatment on the incubation period. First, antiretroviral treatments for
HIV infection, such as zidovudine, were not available, except in
clinical trials, before March of 1987. Likewise, although some forms of
prophylaxis against Pneumocystis carnii pneumonia were being used
earlier, it was not until 1988 that inhaled pentamidine was widely
recommended for this purpose. Second, some treatments were only
prescribed for individuals in late stages of HIV disease. For example,
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zidovudine was first approved only for HIV infected individuals with
fewer than 200 CD4+ T cells/ul.

One model to account for secular trends in the incubation period
is called a staging model (Brookmeyer, 1991; Longini, 1990; Brookmeyer
and Liao, 1990a, 1992). It is assumed individuals progress from
infection (stage 1) to an advanced stage of HIV disease without an
AIDS diagnosis (stage 2) to AIDS (stage 3). Advanced stage HIV
disease (stage 2) could be defined in terms of CD4+ T cell levels or
clinical signs and symptoms. The main assumptions of this staging
model are as follows: Individuals in advanced stage HIV disease (stage
2) may be treated but individuals with early stage HIV disease are not
treated. An individual who entered stage 2 at calendar time s has a
hazard, h (u |s ) of beginning treatment u time units after entry into stage
2. The effect of treatment is to reduce the hazard of progression to
AIDS by the factor 9 (the treatment relative risk). A schematic
illustration of this four-state model is shown in Figure 8.9. In the
absence of treatment, the hazard of progressing from stage i to stage
i + 1 after u time units in stage i is called (u). These assumptions
induce changes in the incubation period distribution. Analytic ex-
pressions for the resulting nonstationary family of incubation period
distributions have been developed (Brookmeyer and Liao, 1990a).

An example of the nonstationary incubation distribution is illus-
trated in Figure 8.10. Figure 8.10 was based on assuming 1(a) was
Weibull ( 1 , (u) =.029u2.08, median = 6.5 years) and (u) was expo-
nential ( 2 = .277, median = 2.5 years). Treatment was assumed to be
phased in at a constant rate of .20 per year beginning July 1, 1987. To
be precise, h(u|s] =0 for u + s 1987.5 and h(u|s) = .20 for

Figure 8.9 Four state (staging) model of Brookmeyer (1991) to incorporate
secular changes in the incubation period due to treatment.
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Figure 8.10 Nonstationary family of incubation period distributions resulting
from phase-in of treatment. (Source: Brookmeyer, 1991.)

u + s > 1987.5. However, studies have shown considerable variation
across both transmission and demographic groups in access to treat-
ment (Rosenberg, Gail, Schrager, et al., 1991; Moore, Hidalgo,
Sugland, and Chaisson, 1991; Graham, Zeger, Kuo, et al., 1991). The
curve labeled 1975 in Figure 8.10 refers to individuals infected in 1975
and essentially represents the natural history of HIV disease, because
treatment was unavailable during the period 1975-87. The incubation
distribution for cohorts infected in 1980 overlaps the 1975 curve for the
first 7.5 years because treatment was introduced in mid-1987 according
to this model. The longer incubation periods associated with cohorts
infected later in calendar time are attributable to the increasing
availability of treatment as soon as patients enter stage 2.

The staging model makes a number of important assumptions. First
it assumes that treatment reduces the hazard of AIDS by a constant
factor, 6 (i.e., a proportional hazards model). However studies have
suggested that the efficacy of zidovudine may diminish in time, perhaps
due to viral drug resistance (Larder, Darby, and Richman, 1989). The
model could be generalized to allow 9 to depend on time in treatment.
Second, the model does not account for any future therapeutic
advances that could effect the incubation period.

Third, the model assumes individuals must successively pass through
each stage. In fact, individuals may regress from an advanced stage of
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disease back to an earlier stage, for example, if CD4+ T cells rise
sharply. Fourth, the model assumes that durations spent in each stage
are independent within an individual. However, it is plausible that some
infected individuals are fast progressors and some are slow progressors. If
so, sojourn times in successive stages would be correlated and indiv-
idual rates of progression would "track" (Section 5.6).

An alternative to the staging model described above is a "time since
infection" model (Rosenberg, Gail, and Carroll, 1992). In this model,
the hazard of AIDS at t years after infection for a person infected at
calendar time s and given access to treatment at calendar time is

where h0(t) is the "natural history" hazard function for an untreated
patient and (t) is an efficacy function that accounts for treatment
effects. Just because a patient has access to effective treatments at time
does not imply that powerful drugs will be used immediately. In fact,
Rosenberg, Gail, and Carroll assume that the use of drugs that can
alter the natural history hazard will be phased in as the disease
progresses. The efficacy function thus depends on time since infection.
It is assumed that (t) is near 1 when t is near 0 because individuals are
typically not treated shortly after infection. After about 5 years, (t)
decreases to a plateau value min, which resembles 9 in the stage model
above. Rosenberg, Gail, and Carroll (1992) also multiplied the natural
history hazard by a factor to account for changes in the incubation
period that resulted from broadening the AIDS surveillance definition
of AIDS to include dementia, wasting syndrome, extrapulmonary
tuberculosis and a few other conditions in the fall of 1987. The effect of
broadening the AIDS surveillance definition on the incubation period
is to increase the hazard, which partially offsets the favorable changes
induced by treatment.

Both the staging model and the time-since-treatment model allow for
a gradual increase in access to effective treatments beginning in 1987,
resulting in a family of gradually decreasing incubation distributions.
An earlier back-calculation model to accommodate treatment assumed
that the incubation distribution changed suddenly at a single point in
calendar time (Solomon and Wilson, 1990).

An advantage of the staging model is that it permits estimation of the
numbers of individuals in different stages of HIV infection (Brook-
meyer and Liao, 1990). This is important for forecasting health care
needs because it is established that individuals in advanced stages of
HIV infection can benefit from treatment. Estimates of the numbers of
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individuals in different stages of HIV infection are obtained by taking
the back-calculated infection rates and forward calculating using the
stage specific incubation period distributions. Brookmeyer (1991) used
this methodology to estimate the numbers of HIV infected individuals
with fewer than 200 CD4+ T cell |ul (Section 8.7). Longini, Byers,
Hessol, and Tan (1992) extended the staging model to allow for seven
stages of HIV infection that were defined by symptoms and markers
(Chapter 5). They assumed a Markov model where the hazards of
progression from one stage to the next were constant (i.e., the
distribution of durations in each stage were assumed to be expo-
nential). They applied the model to estimate numbers of individuals in
different stages of HIV infection in the San Francisco City Clinic
Cohort.

8.6.2 Qualitative Effects of a Nonstationary Incubation
Distribution

Failure to account for secular changes in the incubation distribution
can lead to severely biased estimates by back-calculations. If the effect
of a treatment is to lengthen the incubation period, a model that
incorporates a treatment effect would estimate a much higher
cumulative number of HIV infections than a model based on a
stationary incubation distribution. The reason is that back-calculation
based on a stationary incubation distribution attributes any fall off in
AIDS incidence to an earlier drop in the infection rate, while back-
calculation based on a nonstationary incubation distribution attributes
some of the fall off to a lengthening of the incubation period. The larger
estimates of HIV prevalence eventually lead to larger numbers of
projected AIDS cases. Thus, paradoxically, back-calculation models
that account for treatment can produce higher AIDS incidence
projections than a model that assumes a stationary incubation distri-
bution (Gail and Brookmeyer, 1990b).

8.7 APPLICATION TO THE U.S. AIDS EPIDEMIC

The back-calculation methods described in the previous sections were
applied to the AIDS epidemic in the United States (Brookmeyer,
1991). The methods were based on the smoothing splines using Phillips
Tikhonov regularization (Section 8.3.3) and the nonstationary in-
cubation distribution illustrated in Figure 8.10.

This analysis was based on AIDS cases diagnosed before April 1,
1990, and reported by September 1990. The AIDS incidence data were
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grouped into 3-month (quarterly) intervals, adjusted for reporting
delays, and inflated 10% for underreporting. The infection curve was
parameterized as a step function with 12 steps spanning the period
January 1977 to April 1990. The lengths of the first and last intervals
were 2 and 1.25 years, respectively; all other intervals were yearly.
Generalized crossvalidation was used to guide the degree of smoothing
(see comments in Section 8.3.3). Figure 8.11 shows the reconstruction
of the infection curve in the United States. Infection rates grew rapidly
during the period 1978-81. The estimated doubling time (time for the
cumulative number of infections to double) increased from 7.8 months
in the beginning of 1981 to 12.7 months in the beginning of 1982 to 19.2
months in the beginning of 1983. The infection rate appears to have
peaked in 1984 at about 160,000 infections per year. There were
marked declines in the infection rate between 1985 and 1987.

Figure 8.11 shows plausible ranges on the estimated infection rates.
The ranges are based on 95% confidence limits (conditional on the
degree of smoothness, that is, the smoothing parameter) using three
different incubation distributions. The ranges are the maximum of the
three upper and minimum of the three lower confidence limits
computed from the three incubation distributions. The hazards of
AIDS for these three distributions rise rapidly with time from infection
and eventually level off. The three distributions account for some

Figure 8.11 Reconstruction of HIV infection rates in the United States. Esti-
mates based on nonstationary distributions illustrated in Figure 8.10. (Source:
Brookmeyer, 1991.)
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uncertainty in how quickly the hazard levels. The median of each
distribution was about 10 years. The estimated cumulative number of
infections by April 1, 1990, was 1,050,000 with a plausible range of
850,000-1,205,000. However, if an incubation period with a median of
9 years instead of 10 years is used, the estimated cumulative number of
infections is 15% lower.

It was also found that estimates of the infection rates before 1987 are
not nearly as sensitive to the choice of the smoothing parameter as are
estimates after 1987, which were quite sensitive. The estimates are also
sensitive to the assumed treatment effects (treatment relative risk and
proportions in treatment) that modify the incubation period. Figure
8.12 depicts a sensitivity analysis of the estimated cumulative infections
by April 1990 to various assumptions about treatment. For example,
an analysis in which a treatment effect is not incorporated yields an
estimate of cumulative number infected of only 715,000 and an earlier
peak in the infection curve.

As previously mentioned, it is possible to estimate the number of
individuals in different stages of HIV disease by propagating forward
the number infected from stage to stage (Figure 8.9) (Brookmeyer and
Liao, 1990a). Estimates of the numbers of AIDS-free patients with
advanced HIV disease (i.e., stage 2 with CD4+ T cells below 200|ul)

Figure 8.12 Sensitivity analysis of estimated cumulative HIV infections by
April 1, 1990, to assumptions about the efficacy of treatment and the propor-
tions of individuals with fewer than 200 CD4 + T cells/mm3 and without an
AIDS diagnosis who were in treatment. (Source: Brookmeyer, 1991.)



Back-Calculation 225

indicate progressive increases from 1991 to 1996 (Table 8.3). However,
these estimates are very sensitive to the assumed median duration of the
advanced stage of HIV disease. The longer this duration, the more
individuals one would expect to find prevalent in the advanced stage.
This phenomenon is related to the well known epidemiological fact
that the steady state prevalence of a disease is equal to the incidence
multiplied by the mean duration.

Projections of AIDS incidence can be obtained by applying the
incubation distribution to the infection rates in Figure 8.11. Projections
of AIDS incidence on a log scale suggest that overall AIDS incidence
will plateau over the next several years (Figure 8.13).

Rosenberg, Gail, and Carroll (1992) used the time-since-infection
model (Section 8.6) to account for treatment effects and changes in the
surveillance definition in 1987. They obtained estimates of cumulative
infections about 27% smaller than Brookmeyer (1991), but, like
Brookmeyer, they predicted a plateau in AIDS incidence from 1991
through 1994. The difference in results between the two approaches are
due primarily to different assumptions about the efficacy of treatment
and the proportions of infected individuals in treatment (Gail and
Rosenberg, 1992).

Back-calculation results for specific transmission groups in the
United States are discussed in Section 10.2. Public Health Service
projections for the United States based on various back-calculation

Table 8.3 Sensitivity of Estimates of U.S. Prevalence
(thousands) of Advanced Stage HIV Disease (stage 2)

Median Duration (in years) in Stage 2

Year

1991
1992
1993
1994
1995
1996

1.5

158
180
197
209
216
218

2.5

265
304
333
354
365
370

3.5

366
412
448
470
480
482

Range

152-380
169-440
182-492
186-510
185-524
178-594

Notes: Prevalence refers to numbers of AIDS-free individuals who are alive
and have GD4+ T cell levels below 200 cells/ul (stage 2). The incubation
distribution is defined by a three stage model: infected (stage 1), advanced
HIV disease (stage 2), and AIDS (stage 3). The sojourn distribution in stage
2 is exponential with median 1.5, 2.5, or 3.5 years. The sojourn distribution
in stage 1 is Weibull with shape parameter 2.08 and scale parameter chosen
so that the median of the total incubation period was fixed at 10.0 years.
Estimates are adjusted for a continuous infection rate of 30,000 per year in
1990 and thereafter. Further details are in Brookmeyer (1991).
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Figure 8.13 Projections of annual AIDS incidence 1991 to 1995 (log scale) for
the entire United States and for four transmission groups. Projections correc-
ted for 10% underreporting. (Source: Brookmeyer, 1991.)

methodologies have been described in CDC (1992c). Back-calculation
methods have also been applied to AIDS surveillance data in many
other countries, including Australia (Solomon, Fazekas de St Groth,
and Wilson 1990), Canada (Marion and Schechter, 1991), New
Zealand (Sharpies, Carlson, Skegg, and Paul, 1991) and the United
Kingdom (Day and Gore, 1989).

8.8 TECHNICAL NOTES

8.8.1 Generalized Least Squares Algorithms

An alternative approach to maximum likelihood estimation for
estimating the infection curve (Section 8.3) is to use regression methods
based on quasi-likelihood (McCullagh and Nelder, 1989). The al-
gorithm is based on generalized least squares (Carroll and Ruppert,
1988). This procedure yields consistent estimates even if the Poisson
assumption is violated, provided models for the mean and variance are
correctly specified. The models for the mean and variance of rt are

and

where V ( u ) is some specified (known) function of the mean u, and 2 is
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called an overdispersion parameter. If 2 is assumed to be 1 and
V ( u ] = u, we have the usual Poisson model. Rosenberg and Gail
(1991) introduced this algorithm for step function and spline models
with Poisson variation v(u) = u. If V(u) = u but 2 is arbitrary, the
model can accommodate extra-Poisson variation (Brookmeyer and
Liao, 1990a).

The generalized least squares algorithm begins with an initial
estimate of B, called Suppose at the jth iteration, the current
estimate is . The algorithm proceeds as follows: First, the updated
estimates, , are obtained by minimizing

over all possible values for where ui(B) is the estimate of
ui = E ( r i ) obtained by substituting into equation 8.9a.

Second, continue updating the estimates until convergence. At
convergence, the generalized least squares estimates, b, are called the
quasi-likelihood estimates (Carroll and Ruppert, 1988; McCullagh
and Nelder, 1989). For some probability distributions (e.g., Poisson),
the quasi-likelihood estimates are actually the maximum likelihood
estimates.

The overdispersion parameter 2 is often estimated by

where p is the dimension of P.
The minimization step in expression (8.10) is especially easy for the

piecewise constant step function model. This is because the expected
value, E ( r i ) = ui.t, is linear in the unknown parameters

where

Then, the updated estimates B(m+1) are given by

where Z is an n + p matrix with (i,j) element given by equation (8.11),
and W is the n x n diagonal weight matrix with diagonal elements
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given by the reciprocal of the mean, estimated by using the parameter
values at the jth iteration. The ith diagonal element of W is

At convergence the variance-covariance matrix of B is

where

This algorithm is computationally simple and fast and is the method of
choice for fitting piecewise constant step function models (Rosenberg
and Gail, 1991). If negative values are produced, constrained optimi-
zation procedures are required (see Waterman, 1974; Gerig and
Gallant, 1975). The constrained maximum likelihood estimates satisfy
the Kuhn-Tucker conditions (McDonald and Diamond, 1990). Gail,
Rosenberg, and Goedert (1990a) obtained nonnegative step function
estimates for the infection curve by examining models obtained by
deleting various steps from the full model until a nonnegative submodel
satisfying the Kuhn-Tucker conditions was found. If there are P steps,
one must examine 2P — 1 submodels, at most, until the appropriate
nonnegative solution is found. The rapidity of the generalized least
squares algorithm makes such a search feasible. Alternatively, an EM
algorithm can be used to fit the piecewise constant step function model.
This algorithm ensures positive values for the parameter estimates
(Brookmeyer and Gail, 1988), but it is computationally slow.

8.8.2 The Poisson Assumption and Alternative
Formulations

The statistical framework for back-calculation described in Section 8.3
used the assumption that infections arrive according to a nonhomog-
eneous Poisson process. However, this assumption is not crucial to the
development.

An alternative formulation is to view the total number of infections
that occurred up to calendar time Tn as a parameter, N, which is to be
estimated (Brookmeyer and Gail, 1988). Suppose infections arrive
according to a point process (not necessarily Poisson). The realized
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intensity function for the process is g ( s ; B ) . Then, given that N
infections have occurred, the JV infection times can be viewed as
independent identically distributed random variables with probability
density

The above statement can be justified by assuming the point process for
infections has the order statistic property (Deffner and Haeusler, 1985),
or alternatively by assuming that the N infection times are
exchangeable.

The number of individuals infected before Tn but not yet diagnosed
is called Tn+1 = N— Y. where

Then Y = (rl, r 2 , . . . , rn, r n + 1 ] has a multinomial distribution with
unknown sample size N and cell probabilities p1 ,p2 , . . . ,pa,pn + \
where

One then proceeds to compute the maximum likelihood estimates
of the parameters N and B from the multinomial log-likelihood
function

Estimation of the size of a multinomial population has been considered
in a number of different contexts (see Bishop, Fienberg, and Holland,
1975).

An alternative approach is to maximize the conditional log-
likelihood, LLC, which is conditional on the observed number of AIDS
cases

This also has multinomial structure:
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where pcj are the conditional probabilities of diagnosis in the jth
interval given that diagnosis occurred before Tn,

Sanathanan (1972) has shown that the conditional and unconditional
likelihoods are asymptotically equivalent.

Rosenberg and Gail (1991) have shown that the Poisson and
multinomial approaches give identical estimates of B and that es-
timated variances of B are the same up to terms of order (1 /N) . This
result should not be surprising given the close connection between the
multinomial and Poisson likelihood (McCullagh and Nelder, 1989,
page 318).

The multinomial framework is more appealing than the Poisson
framework from the point of view that we wish to reconstruct the
infection rate in this AIDS epidemic, which has already occurred,
rather than draw inferences about the infection rate that could be
expected based on realizations of many AIDS epidemics. In this sense,
it is more natural to view the cumulative number of infections that have
occurred, N, as a parameter rather than a random variable.

While the Poisson and multinomial likelihoods yield essentially
equivalent inferences, the stronger Poisson assumption would allow one
to draw inferences about the HIV infection rates in other epidemics in
similar settings. However, for the purpose of back-calculation we are
only concerned with reconstructing the infection rate for this AIDS
epidemic.
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Epidemic Transmission Models

9.1 INTRODUCTION

Even though AIDS incidence data are reliable enough to make useful
short-term projections of AIDS incidence (Chapters 7 and 8), such
data lag the course of infection by several years and give much less
reliable information on underlying infection trends in HIV prevalence
and incidence. Even serial survey of seroprevalence in selected popula-
tions (Chapter 3) provide only uncertain evidence as to the general
course of HIV prevalence and incidence. Yet it is precisely the trends in
HIV prevalence and incidence that will determine the long-range
impact of HIV infection. In this chapter, we discuss mathematical
models of epidemic transmission in an effort to gain insight into
plausible trends in HIV infection curves, g(s).

Although Gonzales and Koch (1987) found that the exponential
growth rate of AIDS incidence can transiently decrease at the
beginning of an epidemic—even though the underlying infection curve
g(s) is increasing exponentially—as a result of convolution with the
incubation period delay, we have calculated these theoretical transi-
ent effects to be small. Thus, the subexponential growth of AIDS
incidence in the United States (Figure 1.1) mainly reflects earlier
subexponential growth in the infection curve, g(s). In this chapter we
discuss epidemic transmission models that account for subexponential
growth in the infection curve. Possible factors include diffusion of the
epidemic from high risk to low risk subgroups, saturation with infection
of high risk subgroups, behavioral changes that reduce the chance of
HIV transmission, and aggregation of temporally separated
subepidemics.

Realistic epidemic models are quite complex. For example, Figure

231
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9.1 depicts lines of transmission among major risk groups. Each risk
group is divided into susceptible (S) and infected (I) individuals. Even
this diagram is simplified, because it does not take hemophiliacs and
transfusion recipients into account nor allow for new individuals to
enter the population (immigration) and others to leave the population
alive (emigration) or die. At any point in time, each member of this
population is in only one compartment. An individual may move from
the compartment representing susceptible individuals to the compart-
ment representing infected individuals in any box, according to
transition laws that depend on the frequency and types of exposure
among individuals in various compartments, the probabilities of viral
transmission corresponding to these types of exposure, and the preval-
ence of infection in each of the interacting subpopulations.

If one knows the initial numbers in each compartment, the law
governing rates of transmission from susceptible to infected status in a
given time increment, and the parameters governing frequency of
contacts and rates of transmission, one could project future HIV
prevalence and infection rates deterministically from this model.
Unfortunately, so many parameters are required, and the projections
are so sensitive to correct specification of some of these parameters, that
one can put very little credence in quantitative projections based on
models of this complexity (Anderson, 1988a; and Isham, 1988). For
this reason we emphasize qualitative findings from studies of epidemic
models. These include: (1) insights into possible patterns for the
infection curve, g(s); (2) statements of conditions under which the
epidemic is likely to grow; (3) some understanding of the effects of
heterogeneity in the population and the role of preferential mixing
within homogeneous subgroups on the infection curve, g(s); (4) the use
of compartmental models to evaluate possible prevention strategies;
and (5) insight into the difficulties of interpreting studies of risk factors
for infection.

Attempts to define epidemic transmission models also help one
organize available epidemic information and identify parameters that
have a major impact on projections of epidemic growth. Such para-
meters frequently warrant special epidemiologic studies to obtain
improved estimates.

In Section 9.2 we discuss a simple two-compartment model, and
some simplifying assumptions are relaxed in Section 9.3 to examine the
effects of behavioral change, for example. The profound effects of
various mixing patterns among several subgroups with differing risk
behaviors are discussed in Section 9.4, and some models used to assess
prevention activities are presented in Section 9.5. Stochastic models are



Figure 9.1 Compartmental model for spread of AIDS. Arrows indicate directions in which HIV may he transmitted. Rates of
transmission from susceptible to infected status are governed by complex laws that depend on frequency and types of contact among
various compartments, transmissibility of virus for corresponding behaviors, and prevalence of infection in each of the interacting
boxes. (Source: Adapted from a presentation by Hethcote, 1987, and copied, with permission, from Gail and Brookmeyer, 1988.)
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mentioned briefly (Section 9.6). Empirical parameter estimates are
compared with estimates from epidemic models in Section 9.7. Three
recent books cover many of these topics (Castillo-Chavez [ed.], 1989;
Tan, 1992; Hethcote and Van Ark, 1992a).

9.2 A CLOSED TWO-COMPARTMENT MODEL

9.2.1 Model Definition and Properties

Suppose a large number of individuals, N0, are engaging in behaviors
that can transmit HIV, and that the chance of transmission per
infected partner contacted is B. To be precise, we are assuming that all
contacts with a partner are concentrated into an instant and that B is
the probability that a susceptible partner is infected by having a
partnership with an infected partner, without regard to the number or
type of sexual acts during the partnership. Suppose the average rate of
formation of new partnerships is u per unit time and that each person is
equally likely to form a new partnership with any other person. I f y ( t ) is
the fraction infected with HIV at time t, then in the time interval
(t, t + dt) each susceptible individual is expected to form partnerships
with uy( t )d t infected individuals. The corresponding chance of infection
is Buy(t)dt. Assuming that the hazard of death among infecteds is
constant at a, so that ay(t)N(t) infecteds die of HIV related illness in
this time interval, the rate of change of infecteds is

If the only losses from the population are HIV related deaths, so that

then the left hand side of the previous equation becomes

and, after rearrangement and division by N(t), (see Bremermann and
Anderson, 1990), one obtains

This equation has the solution
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where k* = — a, and y0 = y(0) is the prevalence at t = 0. Equation
(9.2) is a logistic function.

The infection curve is the number of new infections per unit time and
is given by

The infection curve describes the time course of incident infection,
which is useful in planing prevention activities in various risk groups
and figures prominently in the method of back-calculation for project-
ing AIDS incidence and estimating cumulative infections (Chapter 8).
In a closed population with negligible mortality apart from AIDS
related deaths, and assuming dN/dt = — N ( t ] y ( t ) as previously, the
solution for N(t) is

From equations (9.2), (9.3), and (9.4), the infection curve is given by

At the beginning of the epidemic (t near zero), equations (9.2), (9.4)
and (9.5) are approximately

and

respectively. Thus y ( t ) and g(i] grow exponentially initially, each with
the same exponential growth constant k* = — a. During this period
of exponential growth, the time it takes for both y ( t ) and g(t) to double
is

The "doubling time," td, can be estimated by graphing either
loge{ (t)} or loge{g(t)} against t. The slope of this locus is k*, which
yields an estimate of td from equation (9.9).

Basic Reproductive Ratio, R0

As is evident from equation (9.1), the seroprevalence y(t), will only
grow if k* = — a > 0. This requirement can be reexpressed as

More generally, one defines the basic reproductive ratio, R0, as the
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expected number of infections that a single infected individual would
produce in a large population of susceptibles during the average
duration of infectiousness, D. In terms of this more general definition,

In the simple two-compartment model, we have assumed that an
infected individual remains infectious as long as he survives, and
because the distribution of survival times is exponential with mean
D = I/a, equation (9.10) follows from equation (9.11).

Numerical Examples
As an example, we consider a homosexual male population with . = 15
new partners per year. We assume = 0.1 is the chance of transmission
per infected partner (Chapter 2). The value a is chosen to match the
mean time of the AIDS incubation distribution. The Weibull AIDS
incubation distribution (Chapter 4) has a mean and median near 10
years. Thus we take a = 0.1 per year. If treatments prolong survival
beyond AIDS diagnosis substantially (Chapters 8 and 11), or if the
mean AIDS incubation distribution is longer than predicted by the
Weibull model, then smaller values of a would be appropriate. But a
has little impact on the epidemic provided » a.

Under this model with initial prevalence yo = 0.01, half the popula-
tion is infected in 3.3 years (Figure 9.2) and over 99% is infected by 6.6
years. The infection curve enters a subexponential phase as saturation
is approached and is maximal at 3.23 years (Figure 9.3). By dif-
ferentiating equation (9.5), this maximal time point is found to be

For explosive epidemics with , this expression mainly depends
on the product and the initial prevalence ya. If, instead of ya = 0.01,
the initial prevalence is y0 = 0.03, half the population is infected in 2.5
years, and the infection curve peaks 0.8 years earlier at 2-43 years. Such
explosive growth was seen in HIV seroprevalence in several homo-
sexual cohorts in the United States (CDC, 1987b).

In a rapidly growing epidemic with the initial exponential
growth rate k* depends mainly on . Thus any intervention that
reduces can slow the epidemic dramatically. For example, if the
transmission probability is reduced from = 0.1 to = 0.05, as might
be achieved by modifying sexual practices, the initial exponential
growth rate is nearly halved (Figures 9.2 and 9.3). Reducing also
slows the epidemic dramatically, as indicated for the case = 3 new
partners/years (Figures 9.2 and 9.3).
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Figure 9.2 Seroprevalence curves for four epidemic models conforming to
equation (9.2). Except where otherwise indicated, = 15 partners per year,

= 0.1 per partner, = 0.1 per year, and ya = 0.01.

Some Implications for Projecting HIV Infections
These examples demonstrate the extreme sensitivity of y(t) and g(t) to
y0, and . Estimates of the infection curve also depend directly on No,
the initial size of the population, which is usually uncertain. Because
these parameters are seldom known with precision, quantitative
projections of HIV prevalence and incidence from such an epidemic
model are quite uncertain. However, a less contentious use of such
models might be to suggest a functional form, such as equation (9.2),
for short term extrapolation of trends (Chapter 7).

Implications for Studies of Risk Factors for Infection
The sensitivity to parameter values exhibited in Figures 9.2 and 9.3
also indicates the importance of adequate control for initial prevalence
rates, y0, and for in studies designed to detect factors that influence
the chance of transmission, . For example, assume that an exposed
population (e) of persons who engage in a possibly risky behavior has
an initial prevalence y0 = 0.03, whereas a control population (c) of
persons who do not engage in this behavior has initial prevalence
y0 = 0.01. Then, even if the possibly risky behavior conveys no
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Figure 9.3 Infection curves on a logarithmic scale in a closed population of
10,000 persons for the four epidemics in Figure 9.2.

additional risk, so that  e = c = 0.1 and e= c = 15 per year, the
HIV prevalence odds ratio in a study conducted 2 years later
would be [ye(2)/{1-ye(2)}] (2)/{l-yc,(2)}]-1 = [.330/.670]
[.141/.859]-' = 3.00, and the incidence rate ratio, [ge(2)/N,(2)

ye(t)lyc(t) = .330/.141 = 2.34. Thus, without adequate control for yo,
prevalent HIV case-control studies, which estimate the prevalence
odds ratio, and incident HIV case-control studies, which estimate the
incidence rate ratio, can be seriously misleading (Section 2.3.1).
Similar arguments demonstrate the need to control for in such
studies. De Gruttola and Mayer (1988); Koopman, Simon, Jacquez, et
al. (1988); and Koopman, Longini, Jacquez, et al. (1991) point out
that quantities like prevalence odds ratios and incidence rate ratios are
difficult to interpret because they change rapidly during the course of
an evolving epidemic (Section 2.3.1).

Summary of Results from the Two-Compartment Model
This simple two-compartment model is instructive in several respects.
First, it indicates the quantitative sensitivity to the parameters , y0
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and N0. This sensitivity complicates the use of such models for
projecting the course of the epidemic as well as the interpretation of
studies of factors affecting transmission. Second, this model leads to
consideration of R0 = D = , the basic reproductive ratio, as a
guide to whether the epidemic will grow or not. Third, the model
predicts an initial exponential growth phase for prevalence y(t) and for
the infection curve, g ( t ) , followed by subexponential growth as the
infection saturates the population and, finally, a rapidly decreasing
infection curve (Figures 9.2 and 9.3). Such saturation effects may
contribute to the subexponential growth in national AIDS incidence
rates (Figure 1.1; Chapter 8) as well as to the reductions in the rates
of new infection documented in homosexual cohorts in San Francisco
(Winkelstein, Wiley, Padian, et al., 1988) and elsewhere (CDC,
1987b).

9.2.2 The Need for More General Models
However, this model is oversimplified in several respects, some of which
may contribute importantly to the AIDS incidence trends seen so far
and to the course of the underlying epidemic. In particular, the model
makes the following unrealistic assumptions:

1. All persons in a given population have the same and parameters
(homogeneity).

2. There is free maxing in selecting partners. In particular, an uninfected
individual is as likely to select an infected partner as an uninfected
partner.

3. The population is closed. That is, there is no linkage to other populat-
ions, no immigration of susceptibles, no emigration, and no deaths of
susceptibles.

4. The quantities a and are assumed to be constant on the scale of time
since infection. In fact, we know that the hazard of AIDS, and hence the
hazard of death, increases with time from infection (Chapter 4) so that a
is not truly constant, and some data suggest that the infectiousness is
greatest early and late in the course of infection (Chapter 2) so that ft
may also vary.

5. It is assumed that , a. and ft are constant in calendar time. However,
empirical evidence demonstrates that behavioral changes have occurred
in homosexual populations (McKusick, Horstman, and Coates, 1985,
and Pickering, Wiley, Padian, et al., 1986), and HIV incidence rates
have decreased (Winkelstein, Wiley, Padian, et al., 1988), implying
potential decreases in and ft. Treatments have prolonged the AIDS
incubation distribution and improved survival (Chapters 8 and 11),
implying that a has been decreasing in calendar time.
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That more general models might be required is indicated in Figure
9.4 in which we have plotted the logarithm of the infection curve
estimated by Bacchetti (1990) for homosexual men in San Francisco
together with a simple two-compartment model ( = 15, = 0.1,
a = 0.1, ya = 0.005 and No = 16,195) chosen to match the infection
curve of Bacchetti in the third quarter of 1981. Bacchetti's estimated
infection curve, which was derived from empirical data on dates of
seroconversion in selected cohorts, exhibits subexponential growth
from the very beginning of the epidemic, as indicated by the initial
curvature of this locus in Figure 9.4, whereas the simple two-
compartment model predicts exponential growth initially. After the
maximum rate of HIV incidence is reached, the two-compartment
model predicts exponential decay of the infection curve, as indicated by
the descending straight line in Figure 9.4, whereas the infection curve
estimated by Bacchetti declines more gradually. In Section 9.3 and 9.4
we examine the effects of various modifications of the assumptions in
the simple two-compartment model to gain greater insight into the
behavior of real infection curves. Some of these modifications, such as

Figure 9.4 Comparison of the infection curve estimated by Bacchetti for
homosexual men in San Francisco with the infection curve given by equation
(9.5) with = 15, = 0.1, y0 = 0.005, a = 0.1 and N0 = 16,150. The ordinate is
on a logarithmic scale.
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allowance for immigration, can be made in the context of a two-
compartment model (Section 9.3), whereas other modifications require
general models that allow for heterogeneity in risk behaviors (Section
9.4).

9.3 GENERALIZATIONS OF THE CLOSED
TWO-COMPARTMENT MODEL

9.3.1 Immigration and Emigration

Somewhat more realistic models take into account the fact that the
population is not closed. Rather, new susceptibles immigrate into the
population each year, susceptibles may emigrate or die of causes
unrelated to HIV infection, and infecteds may die of HIV-related or
unrelated causes or emigrate. Typically, the population size will vary in
these circumstances and equations (9.1) and (9.4) would need to be
modified accordingly (Bremermann and Anderson, 1990). For example
Gail and Brookmeyer (1988) considered a hypothetical population of
10,000 individuals between the ages of 20 and 39 years. In line with
demographics from the United States, they assumed that c — 410.7
uninfected new 19-year-olds enter the population each year and that
the annual probabilities of death were 0 = 0.0013 for susceptibles and

t = 0.05 for infecteds. To achieve a steady state population size, they
assumed a proportion = .04037 emigrated alive each year. Gail and
Brookmeyer modeled the epidemic in discrete yearly time intervals. At
time t, S(t) subjects are alive and susceptible and the remaining I(t)
living subjects are already infected with HIV. The chance that a
susceptible would be infected by M randomly selected contacts in year
t is

Here y ( t ) = /(t)/{/(t) + S(t)} is the proportion of living persons in the
population who are infected at year t, and equation (9.13) follows from
the fact that (t) is the chance that any individual partner will be
infected and will transmit HIV during the relationship. Equation
(9.13) is very nearly equal to

Indeed, equation (9.14) is exactly equal to the expected value of
equation (9.13) if M follows a Poisson distribution with mean (Dietz
and Schenzle, 1985) and is numerically very close to equation (9.13)
more generally (Gail, Preston, and Piantadosi, 1989). From equation
(9.14) we see that the probability of transmission depends on the
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product k = , which mainly determines the initial rate of growth of
the epidemic, as in model (9.1).

Annual increments in the susceptible and infected groups are given
by the following difference equations:

and

This discrete time formulation of the epidemic model is easy to study,
because equations (9.15) and (9.16) can be used to propagate the
epidemic forward recursively, beginning at the initial values S(O) and
7(0) . Of course, this model is closely related to the continuous time
model embodied in equation (9.1), and continuous time models can
easily be generalized to allow for immigration and emigration. The
strong analogy between equation (9.16) and equation (9.1) is evident if
one identifies y(t) with y(t), S( t ) with N(/)(1 -y(t)}, I(t) with
N(t)y(t), and 1 with a in the development leading to equation (9.1).
Even though the same notation for and has been used for epidemic
models in continuous time (Section 9.2) and discrete time (Section 9.3)
to emphasize the similarities, the actual values of these parameters
needed to model a given epidemic differ, because the epidemic
compounds continuously in the former models but only at discrete
times in the latter models.

Because of the close analogy between continuous and discrete time
models, it is not surprising that the logarithm of the discrete time
infection curve,

resembles the infection curves in Figure 9.3. As an example, Gail and
Brookmeyer (1988) considered a hypothetical population of 10,000
persons with initial prevalence of 5%, namely I(0) = 500 and constant
growth constant k = 0.8, which is smaller than the value
k = = 0.1 x 15 =5= 1.5 used in Section 9.2. The initial exponential
growth followed by saturation seen with this model (Figure 9.5)
resembles that seen with the close two-compartment models (Figures
9.3 and 9.4). However, unlike the closed population model in Section
9.2, which projects a rapid exponential decay of new infections after
saturation (Figures 9.3 and 9.4), this open population model allows for
an indefinite continuation of infections as new persons enter the
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Figure 9.5 Annual AIDS incidence (the infection curve) on a logarithmic scale
for an open high risk population (k=0.8) of 10,000 persons as described in
Section 9.3 and for an identical population with spread rate decreasing over
five successive years in the sequence A:=0.8, 0.7, 0.6, 0.5, 0.4 and remaining
constant at 0.4 thereafter. (Source: Gail and Brookmeyer, 1988.)

population (Figure 9.5). This is, unfortunately, a very real possibility,
in view of studies showing a continuing risk of infection among young
homosexuals entering the homosexual population (San Francisco
Department of Public Health, 1991). However such immigration does
not account for the relatively slow decreases in loge{g(t)} seen in
Bacchetti's estimated locus (Figure 9.4), because Bacchetti's infection
curve was estimated from closed cohorts.

9.3.2 Secular Changes in the Rate of Contact and
Transmission Probability

Gail and Brookmeyer (1988) also used this discrete time model to study
the effect of secular reductions in the spread constant k = Such
reductions might result either from reductions in the rate of acquiring
partners, , or from specific behavioral changes, such as avoidance of
anal sex, that reduce the chance of transmission per partnership, .
There is evidence that both such protective changes occurred in San
Francisco during the 1980s (Winkelstein, Wiley, Padian, et al., 1988;
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McKusick, Horstman, and Coates, 1985; Pickering, Wiley, Padian, et
al., 1986). To mimic those improvements, Gail and Brookmeyer let
k — 0.8 in year 1, 0.7 in year 2, 0.6 in year 3, 0.5 in year 4 and 0.4 in
year 5 and thereafter (Figure 9.5). After an initial subexponential
phase, the infection curve remained nearly flat for over 10 years.
Anderson, Blythe, Gupta, and Konings (1989) and Anderson (1989)
discuss the effects of behavioral changes using continuous time
epidemic models.

9.3.3 Nonconstant Mortality Rate

To study the impact of the assumption that a remains constant on the
scale of time since infection, Anderson, Medley, May, and Johnson
(1986) compared this model with a more realistic model of the AIDS
incubation distribution that allowed the hazard of AIDS to be small
initially and to increase with time since infection. To make the models
comparable, each was chosen to have the same mean AIDS incubation
period, D. The model with increasing hazard exhibited a slight
acceleration of the epidemic, compared to the simple model with the
exponential AIDS incubation distribution. This result is plausible
because the initial exponential growth rate of the model with constant
AIDS hazard, a, is k* = — a, which is slightly smaller than the
initial exponential growth rate for the model with increasing AIDS
hazard. The latter model has a very small initial hazard of AIDS,
resulting in an initial growth rate of about . Note, however, that the
reproductive rate, R0 = D, is the same for both models. Castillo-
Chavez, Cooke, Huang, and Levin (1989a, 1989b) provide further
details.

9.3.4 Nonconstant Infectivity

The simple model in Section 9.2 also assumes that the per partner
infectivity, ft, does not depend on the duration of infection in the
infected partner. Hyman and Stanley (1988); Anderson (1988b); and
Anderson, Blythe, Gupta, and Konings (1989) studied models in which
the infectivity, , was regarded as a function of time since infection.
Holding the average value of constant, these authors found that
models with higher initial infectivity led to accelerated epidemics
compared to models with higher infectivity later in the course of
infection. This result is again plausible because the initial exponential
growth rate k* = — a would be higher, initially, in the models with
higher initial infectivity.
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9.4 HETEROGENEOUS SUBGROUPS AND
THE IMPORTANCE OF MIXING PATTERNS

9.4.1 The Role of Selective Mixing

The simple two-compartment models in Sections 9.2 and 9.3 ignore the
fact that real populations are not homogeneous. It is usually more
realistic to regard populations as consisting of subgroups with various
levels of risk behavior and to study the impact of such heterogeneity of
risk behavior and of various possible mixing patterns that describe how
frequently members of these subpopulations interact to transmit
infection. Such subgroups could differ not only in their rates of new
partnership formation, but in their transmission probabilities per
partnership, , and in their initial infection prevalences, y0.

May and Anderson (1987) cite data documenting the enormous
variability in the numbers of sexual partners per year found among
homosexual or bisexual men, both in the United States and in the
United Kingdom. For example, unpublished data from London in
1984 indicated that nearly half the men surveyed had reported between
6 and 50 partners per year. However, about 3% reported no partners
and about 5% reported more than 100 partners per year.

Ignoring such heterogeneity and using the simple two-compartment
model with average values of and is misleading in two respects. This
"average" model underestimates the early growth rate of the epidemic.
Over the longer term the average model mistakenly implies exponent-
ial growth and overestimates the rate of rise of seroprevalence in the
population as a whole. In fact, heterogeneity induces subexponential
growth of the epidemic, especially if members of various subgroups
selectively form most new partnerships with members of their own
subgroups.

To see how ignoring heterogeneity can yield an unrealistic model of
the epidemic, consider the instructive case in which the entire popula-
tion of size N is composed of "unlinked" subgroups, with sizes N
contact rates t, common transmission possibilities ,- = and common
initial prevalences y i,(0) =yo. By "unlinked" we mean that contacts
are completely confined within subgroups. This is an example of
complete "selectivity", because no contacts occur among subgroups. If
we ignored this structure and assumed that the epidemic would grow
like a simple two-compartment epidemic with mean contact rate

= ( N and size N = i, we would calculate from equation
(9.8) that the initial infection curve would grow exponentially accord-
ing to
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In fact, from (9.8), the composite epidemic will have an initial infection
curve

For small t, the exponential term can be expanded in Taylor series and
the values i = ( N and = {I(/i, - /Z)2jV,}/jV substituted to
yield the approximation

The ratio of equation (9.18) to equation (9.17) is exp( ), which
exceeds unity and indicates that heterogeneity accelerates the earliest
phases of the infection curve, compared to a homogeneous population
with the average contact rate, fi. In essence, the promiscuous subgroups
have a profound effect on the earliest portions of the composite infection
curve. Anderson, Medley, May, and Johnson (1986) obtained the
result in equation (9.18) for the case of free mixing (proportionate
mixing) across subgroups.

Over the longer term, heterogeneity tends to retard aggregate
epidemic growth. For example, in the previous case of unlinked
subgroups, the rate of growth of the aggregate epidemic decreases
progressively as the subgroups with high contact rates saturate and the
subsequent new infections arise in subgroups with lower contact rates.
This pattern results in markedly subexponential growth of the infection
curve and lower composite seroprevalence rates than a homogeneous
population with the same mean contact rate, Indeed, the epidemic
would die out in those subgroups with reproductive rates less than
unity, resulting in final seroprevalences less than 100%.

Even though the simple model with completely unlinked subgroups
is unrealistic, the results it yields regarding early acceleration of the
epidemic and subsequent retardation are found with more realistic
models of mixing. Koopman, Simon, Jacquez, et al. (1988) studied
composite AIDS incidence as a function of "selectiveness", which they
defined as the proportion of new partnerships reserved exclusively
within subgroups of the population. A population of homosexual men
was partitioned into five subgroups with differing rates of new partner-
ship formation, i. New partnerships that were not reserved exclusively
within subgroups were allocated at random among members of the
entire population. If the selectiveness is 1.0, the subgroups are
completely unlinked, and if the selectiveness is 0.0, there is free mixing.
Koopman, Simon, Jacquez, et al. (1988) showed that increasing
selectivity accelerated AIDS incidence in the earliest phase of the
epidemic in this heterogeneous population but reduced AIDS in-
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cidence rates later. Thus the selective mixing model used by Koopman,
Simon, Jacquez, et al. (1988), which was developed by Jacquez,
Simon, Koopman, et al. (1988), accounts for the early subexponential
growth seen, for example, in the infection curve estimated by Bacchetti
for homosexuals in San Francisco (Figure 9.4).

Other theoretical models of structured mixing are obtained by
partitioning the contacts of various subgroups into social "activity
groups" (Jacquez, Simon, and Koopman, 1989; Koopman, Simon,
Jacquez, and Park, 1989; Sattenspiel, 1987). Dietz (1988) and Dietz
and Hadeler (1988) consider a very important related idea of high
selectivity within heterosexual pairs by dividing the heterosexual
population into eight compartments according to whether an indiv-
idual is male or female, infected or not infected, and paired in a sexual
relationship with a member of the opposite sex or not. The durability of
pairings has an important influence on the spread of the epidemic
because durable pairs of uninfected partners are not at risk of infection.

If many risk groups are indexed by a continuous variable, such as the
number of new partnerships formed per unit time, and if new
partnerships are highly concentrated within the same or adjacent risk
groups only, one can think of the epidemic as a "saturation wave of
infection among risk groups moving from high to low risk" (Colgate,
Stanley, Hyman, et al., 1988; Hyman and Stanley, 1988). Such a
model accounts for subexponential growth from the beginning of the
epidemic. This idea would also seem to be very important in taking age
structure into account in demographic studies, because new partner-
ship formation tends to be restricted to persons with similar ages in
many societies. However, an analysis of this type suggests that sex
between older men and younger women contributes importantly to the
spread of AIDS in Africa (Knolle, 1990).

9.4.2 General Mixing Patterns and Other Effects of
Heterogeneity

A general approach to modeling heterogeneity in discrete time is to
divide the population into sub-groups of size i, to let ij be the average
number of new partnerships that a member of population t will form
with members of population j each year, and to let ij be the
probability that a susceptible person in population i will be infected
during the period of an average relationship with an infected member
of population j. Note that ij and ij need not be symmetric, although
the average annual number of new partnerships formed between
members of populations i and j, namely cy = N = Nj is sym-
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metric. The probability that a member of population i will become
infected in year t is given by

in an extension of the notation used in equation (9.14) (see also Gail
and Brookmeyer, 1988; and Gail, Preston, and Piantadosi, 1989). A
high risk subgroup, i, has large values of ,t+ = and/or large
values of

Gail and Brookmeyer (1988) studied the effects of mixing a high-risk
population of 10,000 persons with initial prevalence 5% with a much
larger low risk population of 90,000 persons with initial prevalence 1 %.
They assumed 11 = 0.05 and 12 = 21 = 22 = 0.1, on the grounds
that relationships involving the low-risk population might last longer
and have greater chances of transmission. This assumption is open to
debate, however (Chapter 2). Other parameters are defined in the
legend to Figure 9.6. Rather than assume selective mixing, Gail and

Figure 9.6 HIV infection curves in a composite population consisting of
10,000 high risk individuals with 5% initial HIV prevalence and a low risk
population of 90,000 individuals with 1% initial prevalence. Assumed par-
ameter values are i(0)=500, Si(0) = 9500, , = 7.529, 12 = 8.471, I2(0) = 900,
S2(0) = 89,100, 21 = 0.941, 22 = 1.059, c, = 411 per year, C2=3696 per year,

=0.05 and 12 = 21= 22 = 0.1.
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Brookmeyer assumed free mixing between the low- and high-risk
populations. This assumption has been termed "proportionate mixing"
(Nold, 1980) because the l+ contacts from subgroup i are allocated to
group j in proportion to the total contacts among members of sub-
group j, namely

An equivalent definition of proportionate mixing is

Under these assumptions, we note from Figure 9.6 that the infection
curve of the high-risk population grows more slowly than when the
high-risk population was isolated (Figure 9.5) because about half of its
contacts are with the low-risk population. Nonetheless, the infection
curve of the linked high risk population reaches a maximum value by
year 8, after which its contribution to the aggregated annual incidence
declines. The infection curve of the low-risk linked population exhibits
rapid exponential growth because it is driven by contact with the high-
risk population. The composite annual incidence rate shows a growth
pattern similar to that of the low-risk subgroup, namely initial
exponential growth followed by a subexponential growth phase. This
pattern is very similar to that seen for the aggregated epidemic of AIDS
cases in the United States (Figure 1.1). Compared to models that allow
for selective mixing, models with proportional mixing lead to more
rapid involvement of low-risk subgroups and a longer exponential
growth phase of the aggregate epidemic (Koopman, Simon, Jacquez,
et al., 1988; Colgate, Stanley, Hyman, et al., 1988; Hyman and
Stanley, 1988). Even under proportionate mixing, however, the
composite prevalence of infection rises more slowly, the greater the
heterogeneity in risk behavior (Anderson, Medley, May, and Johnson,
1986).

Another type of heterogeneity consists of variation in the stage of the
epidemic in different subpopulations. For example, different geo-
graphic areas may have different prevalences at the time when the
epidemic begins to be observed. This phenomenon is illustrated by a
high-risk population with initial prevalence 5% linked to a similar
high-risk population with 0% initial prevalence (Figure 9.7). See the
legend to Figure 9.7 for precise parameter values. The epidemic in the
first population saturates while the epidemic in the second population
is entering its subexponential phase. The composite epidemic grows
subexponentially and then undulates. This example illustrates that the
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Figure 9.7 HIV infection curves in a composite population consisting of
two linked high risk subpopulations at different stages of epidemic develop-
ment. Each subpopulation contains 50,000 members, but one subpopula-
tion has initial HIV prevalence 5%, whereas the other has initial prevalence
0%. The assumed parameter values are Il(0)=2500, S1(0J/ = 47,500, I2(0) = 0,
S2(0) = 50,000, = 16, I2=0.1, 21=0.1, 22 = 16 and n = 12 = ) 21 =

22 = 0.05.

composite infection curve can be hard to predict when subpopulations
at various stages of the epidemic are aggregated. Some work has been
done on the effects of aggregating spatially and temporally distinct
epidemics and of studying linkages between epidemics in different
locations (Gould, 1988; Golub and Gorr, 1990). The models of Blower,
Hartel, Dowlatabadi, et al. (1991) suggest that temporary stabilization
of HIV seroprevalence rates in populations of intravenous drug users in
New York City may have resulted from interactions with the hetero-
sexual population and from heterogeneity of risk behaviors among
intravenous drug users.

9.5 EVALUATING PREVENTION STRATEGIES

A good model of epidemic growth could be used to determine which
parameters had the greatest impact on the course of the epidemic and
to evaluate prevention strategies to change those parameters. Even
though quantitative projections of the course of the epidemic are
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sensitive to many unknown parameters (Section 9.2), a particular
prevention strategy may yield good benefits over a wide range of
assumptions and parameter values. As part of an evaluation of
potential prevention strategies based on epidemic models, it is import-
ant to determine whether the proposed strategies are, in fact, robust, to
model assumptions.

Simply sketching out a compartmental model as in Figure 9.1 can be
a useful step in identifying possible points for prevention activities.
Steps to reduce probabilities of transmission, ij and to reduce new
exposure encounters, ij, especially among high-risk groups, can retard
the epidemic. Steps to sever linkages between high- and low-risk groups
by reducing contacts, ij, can prevent spread to the low-risk groups.

One can gain additional insight into prevention strategies by
examining conditions required for epidemic growth in linked sub-
populations. Suppose there are / subpopulations with prevalences yi.
The epidemic will be farthest from saturation and will have its greatest
potential for growth if all yt are near zero, in which case the
generalization of equation (9.1) to multiple populations (Bremermann
and Anderson, 1990; Hethcote and Yorke, 1984) is

Equation (9.23) is zero for all i = 1, 2, . . . , / and for yt 0 only when
the yi are eigenvectors corresponding to the eigenvalues of the IxI
matrix of coefficients of y-t in (9.23). In fact, the epidemic will grow if
the dominant eigenvalue of the matrix exceeds a, and the basic
reproductive ratio of the epidemic can be defined as R0 = {maximal
eigenvalue of

As an illustration, consider a population containing n1 = 1000
heterosexuals with + = 5 and n2 = 9000 heterosexuals with 2 + = 1 ,
and assume = — 2 = 21 = 22 = 0-05 and a = 0.1. Assume
proportionate mixing. Then one calculates C11 = 1785.7, c12

 =

c21 = 3214.3 and c22 = 5785.7. It follows that 11 = 1.786, 12 =
3.214, 21= 0.357 and 22 = 0.643. For arbitrary , the eigen-
value equation is (1.7860 - ) (0.643 - l) - (3.214 ) (0.357 ) = 0,
which yields maximum eigenvalue = 2.429 . For = 0.05 and
a = 0. 1 , R0 = 2.429/S/a = 1.214, indicating that the epidemic will grow
initially.

Now suppose two prevention strategies are being considered. One is
a wide-ranging publicity campaign to encourage the use of condoms. If
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the effects of this campaign were to reduce from 0.05 to 0.04, R0

would be reduced to 2.429 x 0.04/0.1 =0.97, just below the level
needed for epidemic growth. An alternative strategy is to focus the
campaign on the 1000 members of the higher risk subgroup in an effort
to reduce 1+ to 4 and n = 12 = 21

 to 0-04. Under this strategy,
,2+ = I and 22 = 0.05 are unaffected. Then, under proportionate

mixing, 11 = 1.231, 12 = 2.769, 21 = O-308 and 22 = -692, and
the largest eigenvalue of ( ) is A = 0.0796, leading to a basic
reproductive ratio of R0 — A/a = .796. Under these assumptions, this
strategy would be more effective in preventing the initial spread of the
epidemic than the previous strategy. Note that a strategy that severed
all linkage between the two subgroups could stop the epidemic in the
lower risk subgroup for which R0 = = 1 x 0.05/0.01 = 0.5, but
this strategy would allow rapid initial spread in the high-risk subgroup
for which R0 = 5 x .05/0.1 = 2.5. Diekmann, Heesterbeek, and Metz
(1990) give very general methods for computing the basic reproductive
ratio for complex epidemic models.

The previous examples only dealt with the initial growth phase and
included no sensitivity analyses. By contrast, Gail, Preston, and
Piantadosi (1989) evaluated the effects of a voluntary confidential
screening program for HIV by carrying out projections in hypothetical
populations of 100,000 persons over a 15-year time span and by
considering a wide range of model assumptions and parameter values.
They considered several measures of the effectiveness of intervention,
including the absolute numbers of infections prevented over given time
spans and the economic ratio (ER), which is defined as the number of
HIV screening tests required to prevent one infection. The methods
used allowed for selective mixing among subgroups, and for migration
into and out of the study population. Compartmental models were
adapted to evaluating potential screening programs by dividing
susceptible and infected populations into three compartments: Those
who had been tested as HIV positive previously; those who had been
tested as HIV negative in the preceeding year; and those who had
never tested positive and were untested in the preceeding year. Under a
wide range of assumptions on the behavioral changes induced by
knowledge of a positive HIV test, including some special studies
allowing for perverse reactions to this information, Gail, Preston, and
Piantadosi found that hundreds or thousands of infections could be
prevented in high-risk populations, with economic ratios of 100 or less.
In isolated low-risk populations with 0.1% initial prevalence, ER
values of 2000 or more were found and only a few infections were
prevented. In a mixed population of very active gays, other gays,
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bisexuals, and male and female heterosexuals, it was found that a
voluntary confidential testing program aimed primarily at the gay and
bisexual subgroups prevented more disease in the heterosexual popu-
lation and had lower ER values than a program that tested all
subpopulations equally. Although it may not be possible to make
precise estimates of the gains from a voluntary confidential testing
program by using epidemic models, the broad conclusions remain valid
over a wide range of parameter values and model assumptions and
seem to accord well with the experience and policies adopted by public
health experts (Institute of Medicine, 1988).

Van Druten, Reintjes, Jager, et al. (1990) studied the effects of
programs to prevent needle sharing among intravenous drug abusers in
linked populations of highly promiscuous homosexual and bisexual
men, less promiscuous homosexual and bisexual men, intravenous drug
abusing men and women, and heterosexual men and women. This
analysis requires replacing terms like in equation (9.22) with
sums of such terms over various modes of HIV transmission, such as
sexual transmission and transmission via shared drug paraphernalia.
The results from this model suggest that blocking needle sharing may
benefit both intravenous drug abusers and promiscuous heterosexual
men and women. Peterson, Willard, Altmann, et al. (1990) developed
models that focus on various subpopulations of intravenous drug
abusers defined by frequency of use. They found that interventions to
reduce needle sharing produce good benefits within five years in heavy
users with substantial initial prevalence rates. Thus, as for voluntary
confidential testing, the quantitative benefits of the intervention
depend on the stage of the epidemic. Kaplan (1989) developed a
detailed model of how injection equipment is shared in "shooting"
galleries and described calculations to determine the effectiveness of
programs to encourage cleansing or disinfecting the injection
equipment.

9.6 STOCHASTIC EPIDEMIC MODELS

The previous models (except for Peterson, Willard, Altmann, et al.,
1990) are deterministic in the sense that once the initial conditions and
parameters are specified, the prevalence function and infection curves
are uniquely determined and can be found by recursive methods, as for
example in equations (9.15) and (9.16). Such models adequately
describe the course of an epidemic in large populations with large
numbers infected, because in such populations statistical variations in
the occurrence of events for particular individuals have little influence
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on the epidemic as a whole. By contrast, the random timimg and
occurrence of events in small populations or populations with small
numbers infected can induce substantial unpredictability as to how the
epidemic will develop, even given exact initial conditions, and much
theoretical effort has been devoted to the development of stochastic
epidemic models (Bailey, 1975; Becker, 1989). From such models one
can calculate the probability that the epidemic will die out, the
expected value of the prevalence function, and a prediction interval for
the prevalence function. In large populations with large numbers
infected, the mean prevalence function from a stochastic model will
converge to the corresponding deterministic prevalence function. Tan
and Hsu (1989) studied the effects of stochastic variation in a
population of 100,000 individuals. If only 10 individuals have been
infected initially, the expected number infected at 20 months was
computed to be 160 with variance 1600 and coefficient of variation
1600l/2/160 = .25. If, instead, 10,000 persons were infected initially,
the expected number infected at 20 months was calculated as 30,000
with variance 60,000 and coefficient of variation 60,0001/2/
30,000 = 0.008. Thus, there is negligible variation about the expected
prevalence at 20 months if larger numbers are infected initially, but
considerable uncertainty if only 10 are infected initially. Tan (1992)
discusses such stochastic models in detail.

Although stochastic epidemic models may be useful for special
studies in limited geographic areas or subgroups, such as the study of
Peterson, Willard, Altmann, et al. (1990) on the variability of
epidemics in small drug-using communities, these models require
additional assumptions on probability structure, and calculations are
more difficult than for deterministic models. In addition, most interest
centers on determining the expected prevalence function and infection
curve in large populations. For these reasons, most of the literature on
AIDS modeling has focused on deterministic models that are elaborate
enough to describe important features of the prevalence function and
infection curve.

9.7 COMPARING PARAMETERS IN EPIDEMIC MODELS
WITH EMPIRICAL ESTIMATES OF DOUBLING TIMES
AND HIV PREVALENCE RATIOS

9.7.1 Homosexual and Bisexual Males

The San Francisco infection curve for homosexual men (Figure 1.5)
estimated by Bacchetti (1990) has a doubling time of about 3 months in
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July 1978, 5 months in January 1979, and 8 months in July 1979. Data
from the San Francisco City Clinic Cohort also indicate a doubling
time of about 8 months in early 1979 (Winkelstein, Samuel, and
Padian, 1987). We shall try to use this information to obtain an indirect
estimate of the probability of transmission per partnership, .

Winkelstein, Lyman, Padian, et al. (1987) obtained information
from a probability sample in June 1984 through January 1985 on the
numbers of male sexual partners that each sampled gay man had had
in the previous 2 years. Of 796 sampled gay men, 17 had had 0
partners, 66 had had 1 partner, 206 had had 2—9 partners, 312 had had
10-49 partners and 195 had had 50 or more partners. If we assume that
the average numbers of contacts were 5.5 for the 2-9 category, 29.5 for
the 10-49 category and 60 for the 50+ category, the mean number of
contacts is 27.77 and the variance is 459.89. On a per-year basis, the
mean and variance are = 13.88 and = 114.97.

Because there is substantial heterogeneity in sexual behavior, it could
be misleading to simply apply equations like (9.6) or (9.8) with the
mean number of contacts per year = 13.88 in place of . One
approximation is to assume that the rapid early phase of the epidemic
represents infections in a homogeneous isolated high risk subpopulation
with a contact rate substantially greater than . Letting / = 100 or
50 yields a range of estimates of from 0.008 to 0.055, depending on
and the doubling time (Table 9.1). If one further assumes that risk of
infection only derives from partners who engage in anal/genital sex,
estimates of increase. Available data suggest that about one-third of
partnerships result in anal/genital sex (McKusick, Horstman, and
Coates, 1985; Winkelstein, Samuel, and Padian, 1987). Multiplying
the previous estimates by 3 yields values of ranging from 0.025 to
0.166, in reasonable agreement with the value 0.102 obtained from a
prospective evaluation of gay men who engage in anal/genital sex (see
Section 2.5.4, and Grant, Wiley, and Winkelstein, 1987).

The previous calculation was based on the assumption that the early
doubling time is determined by an isolated high risk subpopulation.
This is an extreme example of selectivity in a heterogeneous popula-
tion. An alternative approach is to assume proportionate mixing in a
heterogeneous population (Anderson, Medley, May, and Johnson,
1986; May and Anderson, 1987; Anderson and May, 1988). The
"effective" rate of contact becomes ( + ) instead of , just as in
equation (9.18). Using the value = 13.9 and = 115 from Wink-
elstein, Lyman, and Padian (1987), one estimates to be between
0.038 and 0.125 for all partnerships. Setting i = 13.9/3 and = 115/9
for partnerships involving anal/genital sex, one estimates to be
between 0.112 and 0.375 (Table 9.1).
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Table 9.1 Estimates of the Transmission Probability per Partnership ( ), Based
on Doubling Times in the Infection Curve in Gay Men in San Francisco

Range of Doubling Times

All partnerships

Epidemic model
Homogeneous high risk population"

= 100 partners/yr
= 50 partners/yr

Proportionate mixing*
( + ) = 13.9+115/13.9

Only partnerships involving anal/genital sex
Epidemic model

Homogeneous high risk population"
= 100/3 partners/yr
= 50/3 partners/yr

Proportionate mixing*
( + ) =4.63+12.8/4.63

3

.028

.055

.125

.083

.166

.375

8

.010

.021

.047

.031

.062

.141

(months)

10

.008

.017

.038

.025

.050

.112

"Calculation is based on equation (9.9) except that k = is used instead of k* = — a, because mortality i
very low shortly after infection.

'Based on equation (9.9) except that k = (ft + 2/ )/ is used in place of k*.

It is clear that both of these approaches are very approximate, not
only because key parameters are imprecisely known, but also because
the models themselves are oversimplified in their treatment of
heterogeneity and selectivity. It is encouraging that an approach based
on complete selectivity and an approach based on proportionate
mixing both yield estimates of in reasonable accord with empirical
data for homosexual partnerships involving anal/genital sex. By con-
trast, ignoring heterogeneity would lead to serious overestimates of .
For example, if one assumed a homogeneous population with

/3 = 4.63 partnerships per year involving anal/genital contact, es-
timates of in Table 9.1 would range from .18 to .60, depending on the
assumed doubling time. These estimates substantially exceed the value
0.10 estimated by prospective follow-up of gay men (Grant, Wiley, and
Winkelstein, 1987),

9.7.2 Heterosexual Populations

In the United States and other developed countries, it is misleading to
interpret doubling times for people infected through heterosexual sex
using calculations such as those in Table 9.1, because many infections
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in heterosexuals arise from contact with bisexual men and with
intravenous drug users. Simple epidemic models might be more
applicable in regions such as Africa, where most transmission is thought
to be related to heterosexual contact (Anderson, May, Boily, et al.,
1991).

Equation (9.23) defines a simple epidemic model for initial hetero-
sexual spread, where i = 1 corresponds to the male and i = 2 to
the female subpopulation. Note that 11 = 22

 = 0. Letting =
( )1/2 and k= ( 12 12 21 21)112, we can write the
solution for males as

where y10 and j>2o
 are tne initial prevalences in males and females

respectively. The prevalence for females is given by equation (9.24)
with jj>2()> Jio and -1 replacing jy10, jy20 and respectively.

Equation (9.24) has several implications:

1. After a short period, the second term becomes negligible, and the
epidemic enters an exponential phase with growth constant (k — a) in
both males and females (May and Anderson, 1987).

2. The epidemic will only grow if k > a. Indeed, the basic reproductive
ratio R0 = k , because the maximal eigenvalue of { } is k.

3. During the exponential growth phase, the prevalence ratio is

Extensions of this model to allow for heterogeneity in the rate of
forming new partnerships show that one should replace 12 and /*21 by
"effective" contact rates such as 12 = 12 + 12/A'i2 as m tne previous
section (May and Anderson, 1988; Diekmann, Heesterbeek, and Metz,
1990).

We apply these ideas to data on sexual practices and HIV preval-
ence among men and women attending outpatient clinics in rural
Uganda (Hudson, Hennis, Kataaha, et al., 1988). Men attending
outpatient clinics claimed to have had 2.8 sexual partners on average in
the last 5 years compared to 1 .5 for women. We shall assume that the
corresponding annual rates of acquisition of new partners are
2.8/5 = 0.56/year and 1.5/5 = 0.30/year, even though specific data on
numbers of new partners were not reported. Of 81 males over age 20, 4
(4.9%) had antibodies to HIV compared to 6 of 83 females (7.2%),
yielding a male-to-female prevalence ratio of 0.68. This is similar to the
sex ratios 0.70, 0.64 and 0.85 observed in three other rural areas of
Uganda (Berkley, Naamara, Okware, et al., 1990). In two of those
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areas, seroprevalence rates of 12.5% and 24% were found for women,
compared to 8.8% and 15% for men, respectively. These data indicate
that the epidemic is advancing in rural Uganda.

In addition to outpatients, Hudson, Hennis, Kataaha, et al. (1988)
studied 36 "suspected prostitutes" and found that 9 (25%) had
antibody to HIV. We suppose that the female population consists of a
proportion, f, of women such as suspected prostitutes with high partner
change rates, , and a proportion, 1 - f , of other women, such as those
visiting the out-patient clinics, with annual partner change rates of
y = 0.30/year. If there are equal numbers of males and females in the
population, the average partner change rate in males, ,12 = 0.56/year,
must equal the average partner change rate in females,

21 = 0.56/year = (1 -f) +f . For f=0.05, 0.1 and 0.3, corre-
sponding values of d are shown in Table 9.2.

To calculate effective contact rates, we need estimates of the variance
of the partner change rates. For men, we estimate the variance as 0.25
from Figure 2 in Anderson and May (1988). Anderson, May, Boily, et
al. (1991) comment that similar heterogeneity of sexual partner change
rates is seen in Africa as in other populations represented in Figure 2 of

Table 9.2 Estimates of Sex Ratios of HIV Prevalence and Doubling Times in
Rural Uganda

Number of new partners/year, 5,
for women with high rates of
partner change

"Effective" contact rate per year,

Assumed female-to-male
transmission probability, 12

0.01
0.1
0.2

0.01
0.1
0.2

Assumed Fraction of Women with
High Rates of Partner Change, f

0.3 0.1 0.05

1.17 2.90 5.50
0.84 1.65 2.85

Sex Prevalence Ratio (male to female)

0.25 0.17 0.13
0.78 0.55 0.42
1.10 0.78 0.60

Doubling Time (years)

17.0 12.0 9.1
5.3 3.8 2.9
3.8 2.7 2.0

Note: The quantity 6 is calculated as in Section 9.7. Doubling times arc given by log(2)/( 12 2iM*2/'Ji)1'2

where /)21 = 0.2 and 12= 1.01/year. The sex prevalence ratio is calculated from = ( 12/ 12/ 21 21)
1/2
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Anderson and May (1988). The effective contact rate for men is
12 = 0.56 + (0.25/0.56) = 1.01. The variance in the mixed populat-
ion of females is 21

 = 2 + (1 ~ f} ~~ from which the effective
contact rate is calculated as 21 — 21 + 21/ 1 (Table 9.2).

The data in Table 9.2 cover a range of possible fractions of women
with high rates of partner change and a range of female-to-male
transmission probabilities per partnership, 12, in order to reflect the
uncertainty in female-to-male transmission rates in Table 2.3. A value
of 21 = 0.2 was assumed for the male-to-female transmission rate (see
Table 2.3). However, higher values of 21 are possible in populations
with a high prevalence of untreated sexually transmitted diseases.

The sex ratios (Table 9.2) corresponding to 12 = 0.01 seem too
small compared to empirical data on sex ratios (Berkley, Naamara,
Okware, et al., 1990), and the corresponding doubling times also seem
too slow to account for the substantial HIV prevalence rates seen in
rural Uganda. Values o 12 of 0.1 or greater seem more consistent with
available information on sex ratios and rates of epidemic growth.
Doubling times of three years or less have been observed in other
regions of Africa (Anderson, May, Boily, et al., 1991).

Calculations of this type indicate that it is difficult to relate
parameters of epidemic models such as y and )8y to observable data
such as doubling times and sex prevalence ratios. The main difficulties
are that estimates of parameters such as and are uncertain and
that the epidemic models are oversimplified, especially in their treat-
ment of heterogeneity and selectivity. Nonetheless, both for hetero-
sexuals in Uganda and for homosexual and bisexual men in San
Francisco, there is approximate agreement between observed doubling
times and sex ratios and corresponding quantities predicted from
epidemic models that use information on estimated contact rates and
transmission probabilities.

Predictions from more complicated compartmental models have
been compared with observed patterns of AIDS incidence and with
data on the infection curve in San Francisco (Hethcote, Van Ark, and
Longini, 1991; Hethcote, Van Ark, and Karon, 1991; Hethcote and
Van Ark, 1992a) and with observed AIDS incidence among homo-
sexual men and intravenous drug users in New York City (Hethcote
and Van Ark, 1992b).

9.8 DISCUSSION

We have indicated how models of epidemic transmission may be useful,
despite limitations for making precise projections of epidemic growth.
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These limitations arise because quantitative projections are very
sensitive to initial sizes and HIV prevalences in subpopulations, to
transmission probability parameters j8y, and to the rates and distribu-
tions of new exposure-producing contacts among and within sub-
populations. This sensitivity also affects the reliability of studies of risk
factors for HIV transmission, because odds ratios and relative risks
depend on the stage of the epidemic, and because many potentially
important confounders must be controlled.

Although simple epidemic models for isolated populations and for
linked populations with proportional mixing suggest that the aggregate
epidemic will grow exponentially initially before entering a subexpon-
ential phase, more realistic models that allow both for substantial
heterogeneity of risk behavior and for selectivity in mixing predict
subexponential growth from the beginning of the epidemic. This
subexponential pattern was observed among homosexual men in San
Francisco, for example (Figure 9.4).

There is rough agreement of quantities such as the doubling time
and the ratio of the prevalence of HIV among males to that in females,
which are observable in studies of populations, with estimates of these
quantities from epidemic models that incorporate data on contact rates
and transmission probabilities.

The shape of the epidemic curve over the longer term is hard to
predict, especially if incident cases from temporally separated sub-
epidemics are aggregated or if behaviors change over time. The pattern
of exposure linkages among subpopulations can have an important
impact on the course of the epidemic. A high degree of segregation
among heterogeneous subpopulations tends to accelerate the earliest
phases of the epidemic but reduces the aggregate prevalence later.

Epidemic models may offer useful leads in planning intervention
strategies. Outlining compartmental models such as Figure 9.1 may
indicate potential interventions and highlight important missing in-
formation. More formal consideration of the basic reproductive ratio to
evaluate the earliest phase of the epidemic and projections over a 15-
year span may give qualitative insight as to which prevention strategies
are most promising.
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Synthesizing Data Sources and
Methods for Assessing the Scope
of the Epidemic

10.1 INTRODUCTION
In the preceeding chapters, we reviewed four methodological
approaches for assessing the scope of the epidemic: surveys of HIV
prevalence (Chapter 3); extrapolations of the AIDS incidence curve
(Chapter 7); back-calculation methods (Chapter 8); and epidemic
models of HIV transmission (Chapter 9). The objective of this chapter
is to briefly review the strengths and limitations of these methodologies
and to consider hybrid approaches that combine information from
various sources. In particular, we review hybrid approaches that have
been proposed for studying pediatric AIDS, for forecasting AIDS
incidence in developing countries, and for forecasting in small geo-
graphic areas.

The selection of appropriate methodologies and data sources for
tracking the epidemic depends on the specific objectives. These
objectives could include: projections of AIDS incidence; estimating
HIV prevalence either in the general population or in specific
subgroups; estimating historical trends in infection rates; projecting
future infection rates; and evaluating the impact of different prevention
strategies. The best methodological approach depends on the specific
objective.

For example, extrapolations of AIDS incidence data yield sensible
short-term projections of AIDS incidence, but no information on
infection rates. Back-calculation can be used to project AIDS incidence
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and provides information about past infection rates, but little in-
formation about recent infection rates and no information about future
infection rates. Single cross-sectional seroprevalence surveys provide
information only about current HIV prevalence, whereas serial sero-
prevalence surveys and ongoing follow-up studies of selected cohorts
may provide useful information on recent trends in the infection rates.
Transmission models provide insight into factors that can influence
future infection rates.

In this chapter, we briefly review the strengths and limitations of
various approaches for estimating HIV prevalence (Section 10.2) and
illustrate approaches for combining data sources and methods in three
examples: developing countries (Section 10.3); pediatric populations
(Section 10.4); and small area estimation (Section 10.5).

10.2 COMBINING DATA AND METHODS

10.2.1 Review of Main Methodologies

HIV prevalence estimates can be obtained from either seroprevalence
surveys, back-calculation methods, or epidemic models of HIV trans-
mission. The sources of error and uncertainties with each of the
approaches were reviewed in detail in the preceeding chapters
(surveys, Chapter 3; back-calculation, Section 8.4; transmission
models, Chapter 9). We have summarized the main sources of
uncertainties with each methodology in Table 10.1 and starred (*) the
most serious problems. The main problem with representative surveys
is nonresponse bias. The main problem with surveys of selected
populations are uncertainty about how representative these surveys are
of the groups they purport to describe and uncertainty about the
overall sizes of those groups (e.g., total number of IV drug users in the
United States). The main problems with back-calculation are un-
certainties in the incubation distribution, treatment effects that modify
the incubation distribution, and inherent statistical imprecision for
estimating recent infection rates. In many developing countries,
surveillance systems to obtain counts of AIDS incidence are too
unreliable for use with back-calculation. The main problems with
epidemic models of transmission include uncertainties in the pattern of
mixing, size of transmission groups, rates of contact, infectivity, initial
HIV prevalence, and behavioral changes.

The suitability of an approach for estimating HIV prevalence
depends on the risk (transmission) group. For example, back-
calculation methods may be more reliable than surveys in both



Table 10.1 Sources of Error and Problems in Estimating HIV Prevalence Associated with Four Methodologies

Representative Surveys

*Nonresponse bias

Expense
Representativeness

of survey (coverage
bias)

Assay errors

Surveys of
Selected Populations

*Representativeness
"Lack of data on the size

of the population represented
Expense

Assay errors

Back-calculation

"Incubation period

"Treatment effects

* Imprecision of estimates
of recent infection
rates

Errors in AIDS incidence
data and reporting delay
corrections

Changes in surveillance
definition

Model selection for the
infection curve

Migration

Epidemic Models of
HIV Transmission

"Patterns of mixing
"Rates of contact
"Size of transmission

groups (compartments)

"Infectivity

"Initial HIV
prevalence

"Behavioral changes
Duration of infectiousness

Incubation period
Migration

Note: The items marked with a * are considered the most significant problems or sources of error.
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homosexual and intravenuous drug using populations because of
nonresponse bias and lack of representativeness of surveys in these
populations and because of uncertainties in the sizes of these popula-
tions. On the other hand, nearly exhaustive HIV seroprevalence
surveys among newborns provide the most valuable data for assessing
the scope of the epidemic in infants and HIV prevalence in childbear-
ing women (Section 10.4).

Fortunately, the sources of the error associated with each of these
methodologies are different. Accordingly, confidence in the estimates is
enhanced if the various methodologies produce consistent results.

10.2.2 Informal Approaches

The estimates obtained from these methodologies usually have been
compared and combined informally. For example, based on HIV
seroprevalence survey data, the CDC estimated that between 800,000
and 1.2 million Americans were infected in 1989 (Centers for Disease
Control, 1990a). Estimates of HIV prevalence based on several back-
calculation models ranged from 650,000 to 1.4 million. The fact that
two different methodological approaches yielded estimates of seropre-
valence centered at about 1 million led CDC to estimate that there
were about 1 million infected Americans in 1989.

Theories of epidemic transmission offer qualitative insight into the
shape of the infection curve and thus provide a check on the plausibility
of back-calculated infection rates. For example, one reconstruction of
the U.S. infection curve based on back-calculation with splines (Figure
8.11) showed that the epidemic quickly slowed to subexponential
growth by the early 1980s. The doubling times of the epidemic (time
for cumulative numbers infected to double) increased from 7.8 months
in the beginning of 1981 to 12-7 months in the beginning of 1982 to 19.2
months in the beginning of 1983. According to epidemic theory this
rapid increase in doubling times could result initially from diffusion of
the epidemic from high to lower risk subgroups e.g., subgroups with
fewer number of sexual partners) and, later, from favorable behavioral
changes and also saturation effects (depletion of uninfected individuals).

Analyses similar to that in Figure 8.11 were performed for each of
four transmission groups in the United States (Figure 10.1). Figure
10.1 displays reconstructed infection rates based on back-calculation
with splines for homosexuals, intravenous drug users, heterosexuals,
and homosexuals who use intravenous drugs (Brookmeyer, 1991). The
sharp declines in infection rates among homosexual men, suggested in
Figure 10.1, are corroborated by surveys and cohort studies that show
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Figure 10.1 Reconstruction of infection curves in the U.S. for transmission
groups based on back-calculation. (Source: Brookmeyer, 1991.)

declines both in rates of high-risk behaviors among homosexual men
(McKusick, Horstman, and Coates, 1987) and in rates of rectal
gonorrhea (Pickering, Wiley, Padian, et al., 1986). Surveys and cohort
studies in the San Francisco homosexual population also provide direct
estimates of the infection rates (see Section 3.5.1 and Table 3.8). These
surveys suggest that the infection rate grew rapidly between 1977 and
1981, slowed between 1981 and 1982 and subsequently declined
markedly (Winkelstein, Samuel, Padian, et al., 1987; Winkelstein,
Wiley, Padian, et al., 1988; Hessol, Lifson, O'Malley, et al., 1989;
Centers for Disease Control, 1987b; Bacchetti and Moss, 1989; Segal
and Bacchetti, 1990). These direct surveys in San Francisco suggest
that infection rates among San Francisco homosexual men peaked in
late 1981 or 1982, almost 2 years earlier than the national recon-
struction for the homosexual epidemic given in Figure 10.1. This
difference could be explained by earlier behavioral changes or by
earlier saturation and diffusion effects in San Francisco than in the rest
of the nation. In any case, both the survey data from San Francisco and
the reconstruction based on back-calculation suggest that the infection
rate among homosexual men peaked in 1984 or even earlier and has
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subsequently declined markedly. However, current rates are uncertain,
and there is disturbing evidence that young gay men continue to
engage in high risk behaviors (San Francisco Department of Public
Health, 1991).

Infection rates among intravenous drug users grew more rapidly
before 1981 than after 1981 (Figure 10.1). This slowing could be
explained either by behavior changes, such as reduced sharing of
injection equipment, or by diffusion of the epidemic to subgroups with
lower levels of high-risk behaviors. Figure 10.1 also indicates that the
rapid initial phase of both the homosexual and intravenous drug user
epidemic preceeded the heterosexual epidemic by several years. This
finding is consistent with the fact that in the early 1980s the primary
source of infection among heterosexuals was sex with a bisexual male or
with an intravenous drug user. The estimated infection rate among
heterosexuals remained relatively constant in the late 1980s (Figure
10.1), as is consistent with epidemic models that incorporate changes in
high risk behavior (Gail and Brookmeyer, 1988).

Despite the encouraging trends estimated for infection rates in
several risk groups (Figure 10.1), one should remember that in-
formation on current infection rates is subject to substantial un-
certainty. Moreover, even if national trends in HIV incidence were
reaching a plateau for heterosexual transmission or transmission
among intravenous drug users, there are local areas where the rates of
infection in these groups is still rapidly increasing (see Rosenberg,
Levy, Brundage, et al. (1992) and Section 10.5). Further, one ought
not be complacent even about risk groups like gay men that have
exhibited decreases in infection rates. If the annual rate of seroconver-
sion remains at 1% in this group (Table 3.8), perhaps 25,000 new HIV
infections per year could result. Furthermore, one must consider the
possibility that younger men who are now beginning to engage in
homosexual behaviors are less likely to avoid risk behaviors than those
who experienced the epidemic in the 1980s (San Francisco Department
of Public Health, 1991).

10.2.3 Formal Approaches

It may be advantageous to combine information from various sources
using formal statistical methods rather than by informal comparisons.
For example, prior information about the shape of the infection curve
could be introduced into back-calculation methods by selecting
appropriate parametric models for the infection curve, g(s',fi)-
Epidemic theory of HIV transmission could suggest a family of
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parametric models for the infection curve (Chapter 9).
A formal approach for combining information from surveys and

back-calculation was suggested by Brookmeyer and Liao (1990a).
Suppose we have both AIDS incidence data and seroprevalence survey
data. Let j be the number of AIDS cases diagnosed in the jth calendar
interval ( T j _ 1; Tj), Let N* be an independent unbiased estimate of the
number of HIV infected AIDS-free individuals in the population at
calendar time T* obtained from surveys. We also assume we have
available a measure of precision of the estimate, N*, namely the
variance, V*. The AIDS incidence data and the survey data both
provide information on the underlying infection rate g(s; ), which we
seek to estimate. For the survey data, the mean and variance of the N*
are (ignoring changes in the size of the population due to emigration
or immigration and mortality)

and

Var(M*) = V*.

Back-calculation (see equation 8.5) yields the relationships

and

Generalized least squares can be used to estimate the common
parameters, , of the infection curve g(s;$) (Carroll and Ruppert,
1990).

10.3 FORECASTING IN DEVELOPING COUNTRIES

A main problem in assessing the scope of the epidemic in developing
countries concerns the incompleteness of AIDS case reporting. The
lack of reliable AIDS incidence data severely limits the usefulness of
back-calculation or simple extrapolation methods. In these situations,
HIV seroprevalence surveys rather than AIDS surveillance data
become the cornerstone for forecasting.

The World Health Organization (WHO) has proposed a metho-
dology for projecting AIDS incidence in developing countries. The
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Figure 10.2 Reported and projected AIDS cases in United States, Europe,
Africa and the world; the gap between the tops of the bars and the curve may
reflect unreported cases. (Source: Chin and Mann, 1989. This material is
reproduced by permission of the World Health Organization.)



Figure 10.2 (Continued)
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methodology involves back-calculating historical infection rates from
seroprevalence surveys rather than from AIDS incidence data (Chin
and Lwanga, 1991). The basic idea is to use survey estimates of HIV
prevalence together with the incubation period distribution to recon-
struct historical infection rates. These rates are then propagated
forward to obtain short-term projections of AIDS incidence. Of course,
many different infection curves can yield the same point prevalence
estimate. The WHO methodology circumvents this problem of "non-
identifiability" by assuming a particular parametric family of infection
curves. Their model assumes a unimodal infection curve of the form

where g(s) is the infection rate at year s, and K and p are parameters.
The peak of this infection curve occurs at time t = (p — 1 ) . Both the
calendar time of the start of the epidemic (corresponding to s = 0) and,
the calendar time of the peak in infection rates are assumed known.
These assumptions determine the shape of the infection curve, g0(s),
and seroprevalence survey data are used to estimate the proportion-
ality constant, K. It is assumed that an estimate of the number of
infected AIDS-free individuals N in year 7" is available from seropre-
valence surveys. Then, an estimate of K is

and the estimated infection curve is g(s} = Kg0(s).
The WHO obtains short-term projections of AIDS incidence by

propagating forward the infection rates, g(s), according to the in-
cubation distribution. This approach has been termed forward cal-
culation. For example, assuming 5 million HIV infected adults in
SubSaharan Africa in 1990 (Chin, 1990; Chin and Lwanga, 1991), the
WHO estimated there would be 700,000 cumulative adult AIDS cases
by the end of 1990. This estimate is 10 times greater than the number of
AIDS cases reported by the end of 1990 (Figure 10.2) and is indicative
of substantial under-reporting of cases in parts of the developing world.

There are important sources of uncertainty in these estimates. First,
the estimates strongly depend on the assumed HIV prevalence (e.g., 5
million HIV infected adults in SubSaharan Africa), which were partly
based on HIV seroprevalence surveys and partly on expert opinion.
Second, the estimates could be expected to be sensitive to the assumed
parametric family of infection curves. Nevertheless the WHO pro-
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cedure illustrates a hybrid approach to forecasting that combines
different data sources (HIV seroprevalence surveys and incubation
period distributions) and different analytical methods (estimation of
prevalence from surveys and forward calculation).

10.4 FORECASTING PEDIATRIC AIDS

In this section, we review some methodological approaches for assessing
the scope of the pediatric AIDS epidemic. The incubation period of
perinatally transmitted HIV infection is somewhat shorter than for
other transmission modes (Auger, Thomas, De Gruttola, 1988).
Furthermore, in some settings one has access to nearly exhaustive HIV
seroprevalence surveys among newborns. Thus, the preferred method-
ological approaches for assessing the scope of pediatric AIDS are
different than for adult AIDS. Predictions for pediatric AIDS are best
obtained by using several methodologies and data sources. We propose
an approach for assessing the pediatric epidemic that combines
empirical extrapolations, back-calculations, and HIV seroprevalence
survey data. The methods are illustrated on the New York City
pediatric AIDS epidemic.

Table 10.2 lists the various modes of transmission for pediatric AIDS
cases in the United States. The vast majority (84%) of cases result from
perinatal transmission (mother to child). Because of the shorter
incubation period of pediatric AIDS, short-term forecasts of pediatric
AIDS strongly depend not only on the numbers of newborns infected
years ago but also on the current and future perinatal infection rates.
In contrast, short-term projections of adult AIDS incidence depend

Table 10.2 Classifications of Pediatric AIDS by
Risk Group in the United States

1. Mother at risk for AIDS/HIV infection 84%
a. Mother is IVDU 42
b. Mother had sex with IVDU 17
c. Mother had sex with bisexual male 2
d. Mother born in pattern II country 8
c. Mother was transfusion recipient 2
d. Mother with other or unspecified 

2. Child was recipient of blood transfusion, 9
component or tissue

3. Child with hemophilia/coagulation disorder 5
4. Undetermined 2

Source: HIV/AIDS Surveillance Report, Centers for Disease Control, January
1991. Based on cases reported through December 1990.

risk 13
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primarily on the number of people infected several years earlier,
because the risk of developing AIDS in the first few years following
infection is small in adults. The annual number of perinatally infected
newborns is given by (Chin, 1990),

i

where N( is the number of infected women at age i; ft is the proportion
of women at age i who give birth in the year (i.e., the age specific
fertility rate); and p is the probability of transmission from an infected
mother to child. A number of different epidemiological studies have
suggested that the transmission probability, p, is approximately one-
third (Section 2.4.3).

A hybrid approach to forecasting AIDS in New York City, using
pediatric AIDS incidence data through 1986, is summarized in four
steps as follows:

1. Use pediatric AIDS incidence data through 1986, together with an
estimate of the pediatric incubation period, to reconstruct perinatal
infection rates for the period 1981-6, using back-calculation methods.

2. Use seroprevalence surveys among newborns in New York to estimate
the perinatal infection rate in 1988.

3. Use simple regression methods to obtain a smoothed reconstruction of
the perinatal infection curve for the period 1981-8. Use simple extra-
polation to forecast perinatal infection rates in the short-term.

4. Propagate forward the perinatal infection rates derived in step 3 by
using the incubation period to obtain projections of pediatric AIDS
incidence.

Step 1. Table 10.3 is a crossclassification of pediatric (perinatal)
AIDS cases in New York City by birth year and incubation period.
The incubation period for perinatally transmitted AIDS is defined as
the age of AIDS diagnosis. The data in Table 10.3 are right truncated
because AIDS cases with long incubation periods may not yet be
diagnosed. The data structure of Table 10.3 is the same as the
transfusion-associated AIDS data considered in Section 4.3 and the
reporting delay data considered in Section 7.3. Methods for right
truncated data outlined in Chapter 7 could be used to estimate both
the incubation period distribution and the number of infected new-
borns by birth year.

Auger, Thomas, and De Gruttola (1988) give an estimate of the
incubation period for pediatric AIDS (Table 10.4); we use this estimate
to reconstruct the number of infected newborns. For example, by the
end of 1987 there were 54 diagnosed AIDS cases who were born in 1986



Table 10.3 New York City Pediatric AIDS Incidence Data Crossclassified by Birth Year and
Incubation Period (cases diagnosed by end of 1987)

Incubation Period (Years)

Birth Year

1981
1982
1983
1984
1985
1986

0-1

1
1

20
20
27
42

1-2

2
4
8
2
7

12

2-3

3
3
1
3
14
—

3-4

0
1
4
4

—
—

4-5 5-6 6-7

5 4 0
1 0 —
2 — —

— — —
— — —
— — —

Diagnosed

15
10
35
29
48
54

Number
Infected

23
18
74
75

148
225

Notes: Data adapted from Auger, et al. (1988). Cases include only those from perinatal transmission (i.e., mother at risk of HIV infection). Number infected is
obtained by dividing cumulative cases by F( T ) where T is the truncation time, and F is the incubation distribution.

Cumulative Gases
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Table 10.4 Incubation Period for Pediatric AIDS

F(l) = .18 F(6) = .60
F(2) = .30 F(7) = .70
F(3) = .35 F(8) = .85
F(4) = .42 F(9) = .92
F(5) = .52 F ( 1 0 ) w l . O O

Source: Based on Auger, Thomas, and De Gruttola (1988).

Notes: F(t) is the cumulative probability of AIDS diagnosis within / years of
birth. Incubation distribution is the conditional distribution given
diagnosis within 10 years. It is assumed F ( 1 0 ) = 1.0, which may be a
reasonable assumption. Auger, Thomas, and De Gruttola estimate
F*(t], the conditional distribution given diagnosis within 10 years. In
this table it is assumed F = F*, that is, F( 10) = 1.0.

(for simplicity we assume they were all born in the middle of the year).
The probability the incubation period is less than 1.5 years is
approximately F(1.5) = [F(2) +F(l)] /2 = .24 (from Table 10.4).
Thus, the estimated number of infected children born in 1986 is
54/.24 = 225. The estimated numbers of infected children by year of
birth is given in the last column of Table 10.3.

Step 2. Novick, Berns, Stricof, et al. (1989) reported the results of an
ongoing newborn seroprevalence study in New York state in the one-
year period from November 30, 1987, to November 30, 1988. Blood
was collected from every infant using heel-prick techniques as part of a
mandatory program for the detection of hereditary disorders. Assays
were performed on anonymous samples, and no identifying informa-
tion was abstracted. During this period in New York City, 125,120
newborns were tested, of whom 1570 were HIV positive (1.25% HIV
seropositive). Assuming a perinatal transmission rate of p = 1/3, one
estimates 1570 x 1/3 = 523 perinatally transmitted infections in 1988.

Step 3. In order to piece together the infection rates based on back-
calculation (1981-6) and seroprevalence surveys (1988), the infection
rates were graphically smoothed by eye (Figure 10.3). A more
sophisticated analysis would regress the log infection rates on a
polynomial in time, using a weighted least squares approach that
accounts for the variance and covariances of the estimated infection
rates. It was necessary to extrapolate Figure 10.3 to obtain future
perinatal infection rates. The working assumption was that rates
remained constant, at least for the very short term. Thus it was
assumed there were about 523 new perinatal infections per year in 1988
and thereafter. In fact, more recent work of Novick, Glebatis, and
Stricof (1991) has shown that the numbers of new seronegative infants
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Figure 10.3 New York City pediatric (perinatal) infection rates. Estimates for
1981-86 based on back-calculation; estimate for 1988 based on seroprevalence
surveys among newboms.

born each year in New York City has remained constant from
November 30, 1987, to March 31, 1990.

Step 4. The rates in Figure 10.3 were propagated forward using the
incubation distribution to obtain AIDS incidence projections. For
example, from the estimated 523 infections occurring in 1988 there are
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an expected 523 x (.085) = 44 AIDS cases diagnosed in 1990. The
factor .085 arises by assuming that all 523 infections occurred in the
middle of 1988. The probability an infant infected in the middle of
1988 would be diagnosed in 1990 is F(2.5) - F(1.5), which is
[F(3) -F(l)]/2 = .085 by linear interpolation. The results of these
sorts of calculations are given in Table 10.5.

A more formal modeling approach for combining AIDS surveillance
with HIV seroprevalence surveys of newborns for assessing the scope of
the pediatric epidemic was described by De Gruttola, Tu, and Pagano
(1992). By combining these two data sources, they estimated that
approximately 10.0-12.0% of children born to infected mothers will
develop AIDS by age 6. They concluded that pediatric AIDS incidence
in New York City will continue to rise, but at rates smaller than those
in Table 10.5, perhaps because their data suggest longer incubation
periods than in Table 10.4. Their analysis suggested that the median
age at diagnosis of a pediatric AIDS case will increase over the next
several years.

To accurately forecast health care needs it is important to consider
not only AIDS incidence but also AIDS prevalence. AIDS prevalence
refers to the numbers of individuals who are alive with an AIDS
diagnosis. In order to forecast AIDS prevalence, AIDS incidence
would be "forward calculated" using the survival function for AIDS.
Scott, Hutto, Makuch, et al. (1989) report a median survival of
pediatric AIDS (time from AIDS diagnosis to death) of 38 months.
Assuming an exponential survival distribution, this suggests that
80.3% of the cases that survive through the end of the current year
would survive to the end of the next year. For each cohort of new AIDS
cases, the factor 80.3% is successively applied to estimate the numbers
of survivors by year following diagnosis. Applying such calculations to
the annual AIDS incidence data in Table 10.5, one projects sharp
increases in the prevalence of pediatric AIDS in New York City from
fewer than 100 cases in 1985 to over 1500 cases in 1995.

This method of forecasting pediatric AIDS depends on a number of
data sources and methods. The results are therefore subject to several
sources of uncertainty. The results are sensitive to the estimated recent
perinatal infection rate based on seroprevalence surveys (e.g., the
estimated number of 523 perinatally transmitted infections in 1988 in
New York City) and to the assumption that this rate persists. Second,
the incubation period of perinatally transmitted HIV infection is
uncertain. The results of Auger, Thomas, and De Gruttola (1988) were
based on right truncated data and do not account for incubation
periods associated with perinatal transmission longer than 10 years (see



Table 10.5 Forward Calculation of Perinatal Infection Rates to Obtain Pediatric AIDS Incidence

Year of
Infection

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

Totals

Yearly Number
Infected

16
35
60
95

148
225
343
523
523
523
523
523
523
523
523

Expected

1987

1.4
3.2
5.1
5.7

12.6
33.8
30.9
—
—
—
—
—
—
—
—

93

1988

2.0
3.2
5.4
8.1
8.9

19.4
51.5
47.1
—
—
—
—
—
—
—

146

1989

1.8
4.4
5.4
8.6

12.6
13.5
29.2
78.5
47.1
—
—
—

—
—
—

201

Yearly Number of AIDS Diagnoses

1990

1.2
3.9
7.5
8.6

13.3
19.1
20.6
44.5
78.5
47.1
—
—
—
—
—-

244

1991

0
2.6
6.6

11.9
13.3
20.3
29.2
31.4
44.5
78.5
47.1
—
—
—
—

285

1992

0
0
4.5

10.5
18.5
20.3
30.9
44.5
31.4
44.5
78.5
47.1
—
—
—

331

1993

0
0
0
7.1

16.3
28.1
30.9
47.1
44.5
31.4
44.5
78.5
47.1
—
—

376

1994

0
0
0
0

11.1
24.8
42.9
47.1
47.1
44.5
31.4
44.5
78.5
47.1
—

419

1995

0
0
0
0
0

16.9
37.7
65.4
47.1
47.1
44.5
31.4
44.5
78.5
47.1

460

Note: Yearly number infected is obtained from Figure 10.3.
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Table 10.4). The results also depend on the assumption that about one
third of initially seropositive newborns are, in fact, infected with HIV
(Section 2.4.3).

10.5 FORECASTING FOR SMALL AREAS

Forecasts for small geographic areas may be subject to considerable
uncertainty because the type and amount of available data may be
limited. In some areas, such as San Francisco, extensive information
from HIV seroprevalence surveys can be used to produce forecasts. For
example, Lemp, Payne, Rutherford, et al. (1990) projected AIDS
incidence in San Francisco by forward projecting infection rates, gt,
according to equation (8.2). The estimated infection rates among
homosexual and bisexual men in San Francisco were based on data
from the San Francisco Men's Health Study and a random-digit
telephone survey on the size of the homosexual population.

Extensive data on infection rates, like that in San Francisco, is
seldom available. Typically, the data in small geographic areas are
limited to a few reported AIDS cases and an occasional seroprevalence
survey. Public health planners have used ad-hoc ratio-type methods to
make projections for small geographic areas. The basic idea of these
approaches is to obtain forecasts and estimates for a small area by
multiplying forecasts and estimates from another larger area, where
more reported AIDS cases or more extensive HIV seroprevalence
surveys are available, by an appropriate ratio, such as the ratio of
cumulative AIDS incidence in the small area to cumulative AIDS
incidence in the larger area.

For example, in 1988 the New York City Department of Health
estimated the number of infected New Yorkers based on an estimate of
the number of infected individuals in San Francisco. The estimates of
the number infected in San Francisco were obtained from extensive
HIV seroprevalence surveys. The underlying assumption was that the
cumulative numbers of AIDS cases in San Francisco and New York are
in the same proportion as the cumulative numbers infected in San
Francisco and New York (Brookmeyer, Dondero, Farber, et al., 1989).
If a is the observed ratio of the cumulative AIDS cases in New York
divided by the cumulative AIDS cases in San Francisco, then the
assumption of the ratio approach is:

Cumulative infections in NYC =
a x Cumulative infections in San Francisco.
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This equation is justified only if the infection curves in San Francisco,
g i ( s ) , and New York City, g2(s), are proportional, that is

The infection curves must have the same shape as illustrated in Figure
5.2. However, if the epidemic began earlier in New York City than San
Francisco, the curves could differ by a translation as illustrated in
Figure 5.3. The New York City calculations for white homosexual men
were adjusted for such a translation by lagging the San Francisco
epidemic behind the New York City epidemic by one year.

Equation (10.3) implies that the ratio, R, of cumulative infec-
tions to AIDS cases in area 1 is the same as the ratio in area 2,
provided the incubation distributions are the same in the two areas.
This ratio depends strongly on the shape of the epidemic curve. Table
10.6 gives the ratio of cumulative infections to cumulative AIDS cases
for the nine epidemics illustrated in Figure 8.5. The ratio R varies from
4.6 (epidemic 4) to 38.7 (epidemic 3). Early in an HIV epidemic, the
ratio is large, as a consequence of the long incubation period of HIV
infection. As cases of AIDS begin to surface, the ratio will typically
decrease (Brookmeyer, 1989). Thus, the ratio of cumulative infections
to cumulative AIDS cases is not constant over time, and may vary
among transmission groups. The variation in the ratio over time and
among transmission groups can be illustrated empirically for homo-
sexual men in San Francisco and persons with hemophilia in the
United States, because historical information on infection rates in these
two populations are available. Both groups exhibit sharp declines in the
ratios (Table 10.7).

Table 10.6 Illustration of Variation in Ratio, R, of Cumulative Infections to
Cumulative ADDS Cases

Epidemic Curve
(From Figure 8.5)

1
2
3
4
5
6
7
8
9

Cumulative Number
Infected

50,000
50,000
50,000
50,000
50,000
50,000
50,000
50,000
50,000

Cumulative AIDS
Cases

10,595
4,683
1,293

10,814
5,412
2,083
3,915
1,536
5,302

Ratio

4.7
10.7
38.7
4.6
9.2

24.0
12.8
32.6
9.4

Note: Incubation distribution F(t) = 1 _e-002112.51-«Hii«i. Ratio = cumulative infections/cumulative AIDS.



Table 10.7 Illustration of Variation Over Time and Across Transmission Groups in the Ratio of
Cumulative Infections to Cumulative AIDS Cases

Homosexual Men in San Francisco

1983
1984
1985
1986
1987

Cumulative
Infections

15,659
19,033
20,443
21,250
21,741

Cumulative
AIDS

109
373

1740
2881
4281

Ratio R

143.7
51.0
11.7
7.4
5.1

U.S. Patients with Hemophilia

Cumulative
Infections

7,428
8,563
9,932

10,052
10,052

Cumulative
AIDS

8
23
82

202
391

Ratio R

928.5
372.3
121.1
49.8
25.7

Source: Adapted from Brookmeyer, 1989.
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If assumption (10.3) holds even approximately, ratio methods may
be useful in applying information from one area to a smaller area where
fewer data are available. The simplicity of the ratio calculation also
make it attractive.

Back-calculations can also be applied to small areas. However when
the number of observed AIDS cases is small, stochastic error (error
from parameter estimation) becomes as important as systematic sources
of uncertainty, such as uncertainties in the incubation distribution. For
example, consider two areas where the infection rates are proportional,
that is, equation (10.3) holds. Under step function models for the
infection curves, the coefficient of variation (CV equals standard error
divided by the true value of the parameter) for any linear functional of
the estimated infection rates (including cumulative infections, or
projected AIDS incidence) for the two" areas are related through

For example, epidemic curve 1 in Figure 8.5 (for which we expect
10,595 cumulative AIDS cases after 10.5 years) gave a coefficient of
variation generally less than 0.05 for a number of important functionals
including estimated cumulative infections (Rosenberg, Gail, and Pee,
1991). If we had a smaller epidemic with similar shape where a = .01,
we would expect only about 106 AIDS cases and the coefficient of
variation would be about 1 / O.Ol x .05 = .50. Epidemics with in-
fection curves similar to curve 1 produce more reliable back-
calculation estimates than some of the other infection curves. However
if there are only 100 observed AIDS cases, even in this situation the
stochastic component of the error will dominate. Nevertheless, back-
calculations have been applied to a number of small areas. Sharpies,
Carlson, Skegg, and Paul (1991) used the methods on 213 cumulative
AIDS cases diagnosed in New Zealand. Tango (1989) used back-
calculation on 45 hemophilia-associated AIDS cases with known exact
dates of AIDS diagnosis in Japan. Further extentions, such as an
empirical Bayes formulation of back-calculation, may offer a fruitful
approach for modelling many small subgroups. Zeger, See, and Diggle
(1989) used an empirical Bayes approach to smooth surveillance data
in small areas (Section 7.6.2).

In small areas, it is especially useful to try to validate results of back-
calculation by analyzing multiple independent data sources. For
example, Rosenberg, Levy, Brundage, et al. (1992) estimated the
infection rates in the District of Columbia from back-calculation on
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3246 AIDS cases. They compared these estimates with independent
data on HIV seroprevalence measured directly in several selected
populations, including exhaustive surveys of newborn infants, civilian
applicants for military service, intravenous drug users in drug treat-
ment settings, and hospital patients admitted for conditions unrelated
to HIV infection. Back-calculation methods yielded an estimate of
11,784 people infected by January 1, 1991, of whom 9461 were still
alive (plausible range 7544-20,844). To obtain race-sex specific
estimates, the back-calculated estimates were multiplied by the pro-
portion of AIDS cases in each race-sex stratum. These estimates were
compared to estimates obtained from seroprevalence surveys. For
example, based only on 247 cumulative AIDS cases among black
women by January 1, 1991, back-calculation yielded an estimate of
2077 living infected black women. In comparison, serosurveys of
newborns indicated that 1957 childbearing women were infected in the
age range 15—44. Likewise, back-calculated estimates of 3823 living
infected intravenous drug users were very similar to the prevalence
estimate of 3552 obtained directly from serosurveys in drug treatment
centers.

These back-calculation estimates indicate that AIDS incidence will
increase by 34% in the District of Columbia during the period from
1990 to 1994, in contrast to flat national trends, and that the increase
will be due almost entirely to increases among intravenous drug users
and heterosexuals. Back-calculations indicate that these increases
among intravenous drug users and heterosexuals reflect increases in
infection rates that began in the mid-1980s. These trends in infection
rates are consistent with survey data from newborns in the District of
Columbia (HIV prevalence doubled from 1989 to 1991 among black
childbearing women), with military applicant screening data, and with
seroprevalence surveys among hospital patients admitted for conditions
unrelated to HIV. Although national trends in infection rates in the
United States may suggest a plateau among heterosexuals, these results
for the District of Columbia indicate that the infection rates may still be
growing rapidly in some urban areas.



11
Developing and Evaluating New
Therapies and Vaccines

11.1 INTRODUCTION

In March of 1987, only 6 years after AIDS was defined, the U.S. Food
and Drug Administration (FDA) approved the use of 3'-azido-2'-3'
dideoxythymidine (AZT), now called zidovudine, for the treatment of
severe HIV infection. This remarkable progress was based on the
isolation of HIV in 1983 and 1984 and its characterization as a
lymphotropic retrovirus (Chapter 1).

In this chapter we review the history of AZT development, in part to
illustrate concrete problems encountered in designing, carrying out,
and interpreting clinical trials for HIV disease (Section 11.2). Section
11.3 contains a discussion of approaches to the development of
therapies based on an understanding of the pathophysiology of HIV
infection. The role of observational studies and examples of such studies
for evaluating therapy are considered in Section 11.4 and followed by a
description of the special problems and design issues for controlled
clinical trials of HIV disease (Section 11.5). We discuss aspects of
vaccine development in Section 11.6.

11.2 HISTORY OF THE DEVELOPMENT OF AZT

11.2.1 Advanced HIV Disease

The development of AZT was based on an understanding of the
biology of HIV. As previously reviewed by Newman (1990), AZT had
been synthesized in 1964 as a possible anticancer agent (Horvitz, Chua,
and Noel, 1964) and was later shown to be active against a mouse

283
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retrovirus called the Friend leukemia virus (Ostertag, Roseler, Krieg,
et al., 1974). Researchers at the Burroughs Wellcome Company
confirmed the activity of AZT against the Friend leukemia virus in
1984. AZT was then shown by Mitsuya, Weinhold, Furman, et al.
(1985) to inhibit the infectivity and cytopathic effects of HIV in human
cells.

Encouraged by this finding, Yarchoan, Klecker, Weinhold, et al.
(1986) carried out a phase I study in 19 patients with AIDS and AIDS-
related complex (ARC) to determine toxity and to establish approp-
riate doses. They found promising examples of patients who gained
weight and patients with increases in CD4+ T-lymphocytes and in
delayed hypersensitivity reactions. Fischl, Richman, Grieco, et al.
(1987) promptly initiated a randomized trial comparing placebo
treatment with AZT, given in 250 mg capsules every four hours
(protocol BW02 in Table 11.1). One hundred sixty patients with AIDS
and 122 with advanced ARC were enrolled between February and
June of 1986. The study was terminated in September 1986 after a
mean duration on study of 4 months and after 20 deaths. The study was
stopped earlier than planned because 19 of the 20 deaths were from the
placebo group. Thus, AZT had been shown to prolong life in patients
with advanced HIV disease. On the basis of this study, the FDA
approved the use of AZT for patients with AIDS or advanced AIDS-
related complex and for patients with CD4 + T-cells below 200 cells

11.2.2 Less Advanced HIV Disease

The early success of AZT in patients with AIDS and advanced ARC
led to studies to evaluate AZT in patients with less advanced HIV
disease (Table 11.1). In a study of "mildly symptomatic" patients with
initial CD4+ T-cell levels between 200 and 800 cells , Fischl,
Richman, Hansen, et al. (1990) found that AZT (200 mg every 4
hours) retarded the development of the earliest of AIDS, death or
advancing AIDS-related complex compared to placebo. After a mean
duration on study of 10 months on AZT and 9 months on placebo,
there were 2 deaths, 5 cases of AIDS and 8 cases of AIDS-related
complex among the 360 patients assigned to AZT, compared to 0
deaths, 21 AIDS cases and 15 cases of AIDS-related complex among
the 351 patients on placebo (protocol ACTG016, Table 11.1). Similar
results were found among 1338 asymptomatic patients with initial
CD4+ T-lymphocyte levels below 500 cells (Volberding, Lagakos,
Koch, et al., 1990). That trial compared 428 patients on placebo with
453 patients who received 500 mg each day (lOOmg every 4 hours
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while awake) and with 457 patients who received I5OO mg AZT each
day (300 mg every 4 hours while awake). The rate of developing AIDS
was about 2.4 times greater among patients on placebo than among
patients on AZT treatment, and the rate of developing AIDS or
advanced AIDS-related complex was about 1.9 times greater (protocol
ACTG019, Table 11.1). Severe anemia developed in 6.3% of those on
the 1500mg/day AZT regimen, compared with 1.1% of those on
500mg/day AZT and 0.2% of those on placebo. Moreover, AIDS and
AIDS-related complex was retarded at least as much by the lower dose
of AZT as by the larger dose. An independent study of low-dose AZT
(600 mg/day) versus high-dose AZT (1500 mg/day) in patients with a
history of Pneumocystis carinii pneumonia and with mean CD4+ T-
cell level of 87 cells//ul confirmed that patients given the lower dose of
AZT had less severe anemia, less neutropenia, and somewhat longer
survival than the group treated with 1500 mg/day (Fischl, Parker,
Pettinelli, et al., 1990).

On the basis of data from these trials, the Food and Drug Adminis-
tration lowered the recommended daily dose of AZT to 500 mg/day,
and on March 2, 1990, the FDA broadened indications for AZT to
include patients with CD4+ T-cell counts of 500 cells//ul or less.

The decision to recommend that even asymptomatic patients with
CD4+ T-cell levels of 500 cells//ul be given AZT was controversial
because the clinical trials had been stopped before a survival benefit
had been established. Indeed, among those with CD4+ T-cell levels
between 200 and 500 cells//// initially, only six deaths occurred during
the study reported by Volberding, Lagakos, Koch, et al. (1990)
(personal communication from Professor Lagakos), and only two
deaths occurred during the study by Fischl, Richman, Hanson, et al.,
1990.

The FDA Antiretroviral Advisory Committee had been persuaded
that there were enough demonstrated benefits from early admini-
stration of AZT to justify its expanded use in those with less advanced
HIV disease. Treatment improvements in CD4 + T-cell levels had
been demonstrated and clinical benefits in retarding AIDS had been
proven. It was at least plausible that these improvements would
translate into improved survival. However, some physicians believed
that more evidence of survival benefit was needed before endorsing the
widespread use of AZT in early HIV disease (Ruedy, Schechter, and
Montaner, 1990). They argued that known hematologic and other
toxicities of AZT and possible unknown long-term toxicities might
outweigh short-term benefits of AZT treatment. A recent analysis of
adverse reactions to treatment with 1200mg of AZT per day in



Table 11.1 Data from Selected Controlled Clinical Trials on HIV Disease

Advanced Disease
BW02.*

S.F. community
prophylaxis trial'

Study Population

Patients with AIDS or
advanced AIDS-related
complex (ARC)

AIDS or AIDS-related
complex

Treatments

1 500 mgAZT daily
vs. placebo

Inhaled pentamidine
30 mg vs. 150mg vs.
300 mg

Endpoints

Death
Opportunistic
infections

PCP

Risk
AZT Placebo Ratio* Comment

1/137 19/145 -05 AZT prolongs life in
patients with advanced

24 45 .56 disease

m mg 150 mg 30 mg Higher doses of pentamidine
prevent PCP, especially

28/139 32/134 41/135 -72 among those with a previous
history of PCP

Less Advanced Disease

ACTGO16d No AIDS; early ARC
with CD4+
T-cell levels between
200-800/fU

1200 mgAZT daily
vs. placebo

'AIDS or
advanced ARC
AIDS
Death

35 AZT prolongs the time to AIDS
13/360 36/351 23 or advanced ARC and to AIDS

5 21 - alone
2 0



Table 11.1 (Continued)

Less Advanced Disease, cont'ed

ACTG019'

VA298*

Asymptomatic without
ARC or AIDS; CD4 +
cells < 500/ul

No AIDS; signs or
symptoms of ARC
present; CD4+ T-
cell between 200-
500/0/

1 500 mgA/T daily
T- vs. 500 mg daily

vs. placebo

Early AZT (1 500 mg
daily) vs. later AZT
after AIDS or CD4 +
T-cells < 200//W

'AIDS or ARC
AIDS
Death

'AIDS or death
AIDS
Death

I500mg
19/457

14
3

Early AZT
38/170

28
23

500 mg Placebo
17/453 38/428

11 33
1 4

Later AZT
48/168

48
20

.52

.41

.78

.57
1.23

AZT prolongs the time to AIDS
or ARC and to AIDS alone

AZT prolongs the time
but no survival benefit
seen

to AIDS,
is

•Fischl, Richtnan, Gricco, ct al. (1987).

*Risk ratio computed as the ratio of hazard rates if the data arc given; otherwise as the ratio of proportions with events.

'Lcoung, Feigal, Montgomery, et al. (1990); risk ratio compares 30 mg to the two higher doses.

'Fischl, Richman, Hanscn, et al. (1990).

'Protocol-defined primary cndpoint.

'Volbcrding, Lagakos, Koch, ct al. (1990); risk ratio compares both AZT doses to placebo.

'Hamilton, Hartigan, Simbcrkoff, ct al. (1992).
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protocol ACTG016 (see Table 11.1) indicates that the benefits of
delaying progression to AIDS are offset, in many cases, by severe
symptomatic reactions (Gelber, Lenderking, Cotton, et al., 1992).
Moreover, substantial HIV resistance to AZT had been demonstrated
in vitro in viral isolates from 5 of 15 patients who had received AZT for
6 months or more (Larder, Darby, and Richman, 1989). In addition,
although patients with advanced HIV disease obtained an impressive
survival benefit from AZT initially (Fischl, Richman, Grieco, et al.,
1987), the mortality rate increased rapidly after this initial respite
(Fischl, Richman, Causey, et al., 1989). As of February 1, 1988, about
22 months after the initiation of AZT in patients with advanced HIV
disease, 68 (47%) of those 144 patients initially assigned to AZT had
died. Thus it was at least theoretically possible that asymptomatic
patients whose CD4 + T-lymphocytes were stable at values somewhat
below 500 cells//z/ might be well advised to wait to initiate AZT
therapy until CD4+ T-cell levels declined or symptoms developed. By
waiting, they could avoid AZT toxicity and AZT resistance.

A recently published trial (Hamilton, Hartigan, Simberkoff, et al.,
1992) compared early AZT treatment (1500mg/day) with delayed
AZT treatment in 338 patients at Veterans Administration Hospitals
(Protocol VA298 in Table 11.1). These patients had initial CD4+ T-
lymphocyte levels between 200 and 500 cells//ul. Those assigned to
delayed AZT were given placebo pills initially but were monitored
every four months for falling CD4+ T-cell levels and advancing
clinical signs. Any patient whose CD4+ T-cell levels fell below 200
cells/fil or who developed AIDS was given AZT (1500 mg/day) at that
time. This trial confirmed the results of previous studies that early use
of AZT prolonged the time to AIDS, but, unfortunately, no survival
benefit was demonstrated. There were 23 deaths among the 170
patients assigned to early AZT treatment and 20 deaths among the 168
patients assigned to delayed AZT treatment. Because there were only
43 deaths, it is possible that a modest survival benefit exists either for
early AZT treatment or for delayed AZT treatment but was obscured
by random error. The relative hazard for death comparing early to
delayed AZT was 1.23, however, with 95% confidence interval (0.63,
2.27). An ongoing study in Europe, the Concorde 1 Trial, may provide
additional data on the survival benefit from early use of AZT. Early
treatment with AZT at the lower dose of 500 mg/day may produce a
survival benefit compared to later treatment with AZT, but this
hypothesis has not been studied.

In summary, while AZT has been shown to prolong survival in those
with AIDS and advanced AIDS-related complex, and to retard the
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onset of AIDS in people with less advanced HIV disease, there is no
consensus as to the best time to initiate AZT therapy in patients with
less advanced disease. Some of these patients may benefit by waiting.

11.3 APPROACHES TO THERAPY BASED ON
THE PATHOPHYSIOLOGY OF HIV DISEASE

The development of AZT was prompted by the knowledge that HIV
was a retrovirus. AZT probably acts to inhibit reverse transcription
(Figure 1.2) through its metabolites, some of which may be competitive
inhibitors of the normal substrate for reverse transcription, thymidine
5'-triphosphate, and some of which are incorporated into the DNA
chain, thereby terminating its further development. Mitsuya, Yar-
choan, and Broder (1990) review the activities of a broad family of
antiretroviral nucleosides like AZT and describe many potential points
of attack on HIV based on an understanding of the viral life cycle
(Figure 1.2).

Among the possible interventions they describe are: (1) blocking
viral attachment to the cell by means of antibodies to the virus or to
cellular CD4 + receptors or by genetically engineered soluble CD4
proteins; (2) blocking fusion of the virus with the target cell with
specific drugs or antibodies; (3) using drugs to block entry of viral RNA
into the target cell and to prevent uncoating of the RNA; (4) blocking
reverse transcription of RNA into DNA with drugs like AZT; (5)
blocking the normal degradation of viral RNA with RNase inhibitors;
(6) blocking the viral DNA from entering the cell nucleus; (7) blocking
the integration of viral DNA into the host DNA; (8) preventing the
transcription of viral DNA back into viral RNA; (9) blocking the
translation of viral messenger RNA into viral protein; (10) interfering
with viral regulatory processes mediated through regulatory proteins
such as tat and rev, (11) inhibiting a viral protease that is necessary to
cleave viral proteins into mature products; (12) inhibiting chemical
reactions such as glycosylation that are needed to produce mature viral
components; (13) preventing efficient packaging of viral RNA into the
developing virus; and (14) blocking the process of budding whereby
mature viruses leave the infected cell.

In addition to therapies directed at HIV, there is a need to treat the
many complications of HIV infection and immune deficiency, includ-
ing opportunistic infections, malignancies, wasting syndrome, and
neurologic disorders.

With so many possible interventions, there is some reason to hope
that effective therapeutic strategies could be devised, especially if one
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considers the use of combinations of agents directed at different viral
targets. To evaluate some of the many possible approaches, a large
clinical trial program was established by the National Institutes for
Allergy and Infectious Diseases. It was and is a major organizational,
administrative and scientific challenge and accomplishment to coor-
dinate hundreds of investigators, thousands of patients, and millions of
data items in an effort to assess multiple promising therapeutic avenues
simultaneously.

As of October 28, 1991, 202 trials were pending initiation or had
been initiated by the AIDS Clinical Trials Group (National Institute of
Allergy and Infectious Diseases, Division of AIDS, 1991). Of the 146
trials that had already been initiated, 19 were preliminary pharmaco-
logic studies, 41 involved treatments of the primary HIV infection, 38
were directed at opportunistic infections, 13 at AIDS-related cancers, 3
at neurologic complications, 20 at pediatric HIV disease, and 12 at
other issues.

A major effort has been made to study alternative antiretroviral
therapies such as 2',3'-dideoxyinosine (ddl) and 2',3'-dideoxycytidine
(ddC). In July 1991, FDA's Antiretroviral Advisory Committee
recommended the use of ddl for individuals who were resistant or
intolerant to AZT. This recommendation was based on improvements
in CD4 + T-cell levels seen in phase I trials (Lambert, Seidlin,
Reichman, et al. 1990; Cooley, Kunches, Saunders, et al., 1990) and in
an ongoing randomized trial comparing ddl with AZT.

Recent news accounts (The Wall Street Journal, January 20, 1992)
indicate that Hoffman-La Roche has halted comparative trials of ddC
versus AZT because 59 of 320 people who took ddC died, compared to
33 of 315 who took AZT. Nonetheless, ddC is still being studied as an
alternative for people who find AZT intolerable and for use in
combination with AZT.

Substantial progress has been made in preventing and treating
opportunistic infections that result from immunodeficiency. Observa-
tional data (Golden, Chernoff, Hollander, et al., 1989) suggested that
inhaled pentamidine could reduce the rate of recurrence of Pneumocystis
carinii pneumonia (PCP) by 50%, and a subsequent randomized trial
comparing three doses of pentamidine (30mg every 2 weeks, 150mg
every 2 weeks, or 300 mg every 4 weeks) demonstrated that the two
higher doses reduced the incidence of PCP by 28%, compared to the
30 mg dose (Leoung, Feigal, Montgomery, et al., 1990). These data
and data relating CD4 + T-cell levels to the risk of PCP were the basis
of Public Health Service recommendations that prophylaxsis against
PCP be instituted in patients with a previous episode of PCP as well as
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in patients whose CD4+ T-cell levels were below 200 cell//*/ or
constituted less than 20% of total lymphocytes (CDC, 1989c). Numer-
ous controlled clinical trials have been published comparing the
effectiveness and toxicities of various agents to prevent and treat PCP
and the myriad other infectious complications of HIV disease.

11.4 OBSERVATIONAL STUDIES

Demonstrations of the efficacy of AZT, pentamidine, and other agents
in controlled clinical trials have permitted the rapid licensing and
introduction of these treatments into clinical practice. Clinical trials
provide convincing evidence of efficacy because random allocation of
treatments to patients reduces the possibility that an apparently
favorable treatment effect is the result of assigning a preponderance of
healthier patients to that treatment. In contrast, observational studies
to determine treatment efficacy do not include a random treatment
assignment. Such studies may be hard to interpret, not only because
the quality of data on prognostic factors and follow-up is often less than
in clinical trials, but principally because the healthier patients may
preferentially be given one treatment or another (Byar, 1980). Thus,
observational data are not usually relied on for proof of efficacy.
Nonetheless, observational data may provide useful confirmation of
clinical trial results and may give an indication of how well a therapy is
performing in general medical practice.

11.4.1 Increased Survival

Several researchers have studied cohorts of patients diagnosed with
AIDS in various years and investigated whether survival, measured
from the date of AIDS diagnosis, is improving with calendar year of
diagnosis. Such an improvement would be consistent with the intro-
duction of AZT into general practice in March 1987 and with
increasing use of agents to prevent and treat PGP and other opportun-
istic infections. Harris (1990b) studied 36,847 AIDS cases who were
reported to CDC before September 1987 and who had been diagnosed
between January 1984 and September 1987. Various procedures such
as linkage of AIDS case reports with death certificates were used to
ascertain vital status as of June 30, 1989. One-year survival improved
from 45.1% for those diagnosed in 1984-5 to 50.9% for those
diagnosed in 1986-7, but the improvements were mainly found among
AIDS cases whose initial AIDS-defining condition was PGP. For such
patients, the 1-year survival improved from 42.7% to 54.5%. Lemp,
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Payne, Neal, et al. (1990) studied 4323 AIDS cases from San Francisco
and found an improvement in median survival from about 10 months
for AIDS patients diagnosed before 1986 to 12 and 16 months
respectively for patients diagnosed in 1986 and 1987. They also noted
that the improvement was largely confined to patients whose initial
diagnosis was PCP. Moore, Hidalgo, Sugland, and Chaisson (1991)
studied 1028 patients in the Maryland AIDS Registry and found
improvements in median survival from about 10 months for patients
diagnosed before 1986 to 13 and 15 months respectively for patients
diagnosed in 1986 and in 1987-9.

These registry based studies demonstrate modest but consistent
improvements in survival following AIDS diagnosis (Table 11.2).
Some of this apparent improvement may be due to basic limitations in
studies of this type. The follow-up information is obtained by linkage
with death certificate reports and other passive surveillance methods.
Increasing delays in reporting AIDS-related deaths or increasing
proportions of AIDS-related deaths that are never reported as such (see
Chapter 7) could explain a portion of the apparent improvement in
survival rates. In addition, increasing awareness of treatments for PCP
in 1986 and thereafter could have led some patients to seek diagnosis
and treatment at an earlier stage of disease. Thus, earlier diagnosis of
PCP could explain some portion of the survival improvements. To
investigate this possibility, one would want to know CD4+ T-cell
levels at the time of diagnosis, but registries usually do not provide this
type of information.

It is difficult to obtain reliable, detailed treatment information from
registry studies. Nonetheless, Lemp, Payne, Neal, et al. (1990) ab-
stracted data on AZT use from medical records. For many patients,
such information was not available. The median survival of 461 AIDS
patients diagnosed in San Francisco in 1986-7 who never received
AZT was 14 months, compared to 21 months for 172 patients who
received AZT. Moore, Hidalgo, Sugland, and Chaisson (1991) deter-
mined AZT use from various sources, including insurance claims for
714 patients diagnosed with AIDS after April 1987. They found that
the median survival was only 6 months for those who never received
AZT, compared to 25 months for those who did receive AZT. In both
these studies, part of the improvement in survival associated with AZT
may be due to AIDS diagnosis at an earlier stage of disease among
people who have good access to medical care.

A bias may account for much of the apparent benefit of AZT for
prolonging life in these two studies. Both Lemp, Payne, Neal, et al., and
Moore, Hidalgo, Sugland, and Chaisson compared AIDS patients who
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Table 11.2 Estimates of Median Survival (in months) Following AIDS Onset
Based on AIDS 'Registry Data

Type of AIDS-Defining
Condition

All cases

Pneumocystis carinii
pneumonia (PCP)

1985 or
Earlier

10
11
10

9

Year of Diagnosis

1986 1987 1988 1989

12 16
12 16
13 14 15 15

12 16

Location

U.S."
San Francisco6

Maryland0

U.S."

'Data on PCP from figure 1 in Harris (1990b). Data for all cases in U.S. from Professor J.E. Harris (personal
communication) as described in Gail, Pluda, Rabkin, et al. (1991).

'Lernp, Payne, Neal, et al. (1990).
cMoore, Hidalgo, Sugland, and Chaisson (1991).

received AZT at some point in their illness with patients who never
received AZT. However, a patient who died shortly after AIDS
diagnosis would have had little chance to receive AZT. Thus, this
comparison group probably included a disproportionate number of
patients with poor survival. In fact, the median survival of 6 months in
the untreated group described by Moore, Hidalgo, Sugland, and
Chaisson is only about half as long as the median survival of patients
treated in 1986, before AZT was available (see Fatkenheuer, Stiitzer,
Salzberger, and Schrappe, 1991, and Table 11.2). This bias does not
affect the analyses of temporal trends in survival following AIDS
diagnosis as shown in Table 11.2.

Despite their limitations, the studies in Table 11.2 provide evidence
that survival following AIDS diagnosis increased over the 1980s.
Registry studies of this type have the advantage that they are usually
based on broad and representative populations.

11.4.2 Delay in Progression to AIDS

Clinical trial data provided strong evidence that AZT can delay the
onset of AIDS in AIDS-free patients with advanced ARC (protocol
BW02 in Table 11.1) and with less advanced HIV disease (protocols
ACTG016, ACTG019, and VA298 in Table 11.1). Schechter, Craib,
Le, et al. (1989b) reported a reduction in AIDS incidence coincident
with the use of AZT in some members of a cohort of homosexual men in
Vancouver. Nonetheless, it was hard to imagine how treatment of a few
thousand patients with AZT beginning in 1987 might account for
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sudden improvements in national AIDS incidence trends seen among
homosexual and bisexual men beginning in mid-1987 (Figure 7.4).
Gail, Rosenberg, and Goedert (1990a) used "consistently" defined
AIDS incidence data through June 30, 1987 (open squares in Figure
7.4) to project future consistently defined AIDS incidence (solid line)
beyond mid-1987. Consistently defined AIDS refers to the surveillance
definition in use before broadening the definition in the fall of 1987
(Section 7.5), but the consistently defined series includes cases diag-
nosed on the basis of presumptive clinical data and makes allowance for
cases diagnosed under the broadened definition who would sub-
sequently be diagnosed under the pre-1987 surveillance definition.
Note that the consistently defined AIDS incidence curve suddenly
flattens after mid-1987 (solid squares in Figure 7.4) and falls well below
the lower 95% confidence bounds of AIDS projections. This sudden
improvement is not fully explained by making back-calculated pro-
jections that allow for no infections after mid-1985 (dash-dot line in
Figure 7.4).

Based on efficacy measurements from clinical trial data, Gail,
Rosenberg, and Goedert (1990a) calculated that only about
5000-7000 gay men needed to have been treated with AZT or other
agents beginning in mid-198 7 to account for the sudden improvements
in national AIDS incidence trends in the last half of 1987, even though
hundreds of thousands of gay men were infected. If the AZT were used
to treat only the sickest AIDS-free patients (e.g., those with CD4+ T-
cell levels below 200 cells////), a small amount of drug could have a
dramatic impact. Rosenberg, Gail, Schrager, et al. (1991) sub-
sequently reported that 3204 AIDS-free homosexual and bisexual men
with severe immunodeficiency received AZT in the initial period of
controlled distribution between March 31, 1987, and September 18,
1987. Others received AZT after this period, and still others received
AZT as the result of participation in clinical trials.

Data on AZT use in the San Francisco Men's Health Study
indicated that the amounts of treatment in use in the last half of 1987
and first half of 1988 could explain the improvements in AIDS
incidence seen in San Francisco, Los Angeles and New York City (see
Figure 8.8; and table 1 in Gail, Rosenberg, and Goedert, 1990a).

Additional support for the hypothesis that AZT and other treat-
ments are affecting national AIDS incidence trends comes from
separate analyses in various risk groups. Groups such as intravenous
drug users that are not expected to have good access to treatment show
no improvement in AIDS incidence trends in the last half of 1987
(Figure 11.1). Rosenberg, Gail, Schrager, et al. (1991) found that the
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Figure 11.1 Projected and observed quarterly AIDS incidence among intra-
venous drug users in the United States. Projections were based on consistently
denned AIDS incidence counts through June 30, 1987 (open squares), as
described by Gail, Rosenberg, and Goedert (1990a). Vertical lines indicate 95%
confidence limits, and solid squares depict quarterly AIDS incidence begin-
ning in July 1987. (Source: Adaptation of figure 3 in Gail, Rosenberg, and
Goedert, 1990a.)

risk groups that received substantial amounts of AZT initially were the
groups that showed improvements in AIDS incidence trends beginning
in mid-1987. Fife and Mode (1992) found improvements in AIDS
incidence trends beginning in 1987 for residents of Philadelphia who
resided in census tracts in the highest tercile of income, regardless of
race. No such improvements were seen among those living in census
tracts in the lowest tercile of income.

Data such as these strongly suggest that treatment had an impact on
AIDS incidence trends, especially from mid-1987 to mid-1988, and
that treatment should be taken into account in projecting AIDS
incidence (Chapter 8). However, the longer term incidence of AIDS
will be determined primarily by trends in the HIV infection curve.
Moreover, surveillance data do not permit one to obtain precise
estimates of the effects of AZT. Other agents, such as pentamidine, are
probably playing a role. Some of the improvements in AIDS incidence
trends may be due to increases in reporting delays or in underreport-
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ing, although recent evidence does not support this explanation
(Buehler, Berkelman, and Stehr-Green, 1992). It has been argued that
some of the improvements could be explained by antecedent decreases
in the infection rate, provided it is also true that the hazard rate of the
AIDS incubation distribution levels off after 6 or 7 years, even without
treatment. Further discussion of these issues is found in Segal and
Bacchetti (1990); Gail, Rosenberg, and Goedert (1990a, 1990b); Gail
and Rosenberg (1992); and Bacchetti, Segal, and Jewell (1992, 1993).

Graham, Zeger, Park, et al. (1991) studied the effects of AZT and
PCP prophylaxis in 2516 seropositive homosexual and bisexual male
members of the Multicenter AIDS Cohort Study. Unlike registry
studies, this cohort study provided data on the stage of disease (CD4 +
T-cells > 500, 350-500, 200-349 without symptoms, 200-349 with
symptoms, <200 without symptoms and <200 with symptoms), data
on treatment use, and active follow-up data for AIDS incidence at 6-
month intervals. AZT was consistently associated with slower rates of
progression to AIDS in all patients whose initial CD4+ T-cell levels
were below 350 cells/fj.1, and PCP prophylaxis was associated with a
further reduction in the rates of AIDS incidence among patients
already receiving AZT. The authors conclude that PCP prophylaxis is
effective and that the efficacy of AZT demonstrated in clinical trials
"can be translated to the population level."

Gardner, Brundage, McNeil, et al. (1992) found that the rate of
progression from advanced immunodeficiency to AIDS decreased
successively in cohorts of U.S. Army personnel first evaluated in 1986,
1987, and 1988. These data again suggest that improvements in
treatment are having an impact in general medical practice.

11.5 SPECIAL PROBLEMS AND DESIGN ISSUES IN
CLINICAL TRIALS FOR HIV DISEASE

11.5.1 Spectrum of Disease

HIV poses special challenges in clinical studies. The spectrum of HIV
disease is extremely broad. A recently infected patient may well live
more than 10 years without any treatment. A patient whose CD4 +
T-cell level has fallen to 200 cells/^/ needs treatment that can
reconstitute immune competence and prevent opportunistic infections
and other complications of immunodeficiency. A patient whose CD4 +
T-cell level is 10 cells/p.1 needs agents that prevent and treat complica-
tions of immunodeficiency, such as PCP, cytomegalovirus, disseminated
tuberculosis or non-Hodgkins lymphoma. Thus the needs for treatment
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are diverse, leading to competiton for resources and a necessary
proliferation of studies. This problem is compounded by the fact that
even among a single class of treatments, such as those directed at
attacking HIV, there are many possible approaches (Section 11.3).

The fact that large numbers of young people have suddenly become
seriously ill adds urgency to the search for treatments. The pace of
conventional approaches to drug development, evaluation, and licens-
ing is slow. The AIDS epidemic has forced a reexamination of many of
the classical standards, including the need for and choice of a proper
control arm, the need for randomization, and the reliance on death or
other clinical evidence as endpoints, rather on less extreme indicators of
progression (Green, Ellenberg, Finkelstein, et al., 1990; Byar,
Schoenfeld, Green, et al., 1990; Ellenberg, Finkelstein, and Schoenfeld,
1992). We now discuss some of these difficulties and proposals to deal
with them.

11.5.2 "Expanded Access" Versus the Need to Promote
Participation in Controlled Trials

Many patients with advanced HIV disease, including many who could
not tolerate AZT or for whom AZT appeared to be losing its
effectiveness, were unwilling or unable to participate in comparative
clinical trials and demanded access to alternative therapies, even
unproven therapies. On September 28, 1989, the FDA approved the
request of the Bristol-Myers Squibb company to begin clinical trials
comparing ddl with AZT and, at the same time, FDA allowed certain
patients who had failed on AZT or could not tolerate it to receive ddl.
On May 20, 1990, the Public Health Service formalized these pro-
cedures and proposed in the Federal Register that promising in-
vestigational AIDS drugs be made available to patients with clinically
significant HIV disease, provided the patient could not tolerate
standard treatments or such treatments were no longer effective, and
provided the patient could not participate in controlled clinical trials.
This new mechanism for access to investigational drugs was termed the
parallel track.

This proposal raised two principal concerns. First, it was possible
that those given investigational drugs might suffer serious toxicities and
complications and that the means to monitor toxicity would be
inadequate. For example, it was reported in March 1990 that the death
rate was 10 times higher among those patients given ddl by Bristol-
Myers Squibb on a compassionate basis than among patients enrolled
in clinical trials of ddl (Institute of Medicine, 1991, page 30). Although
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it was thought that the high death rate was due in part to the poor
states of health of those given ddl outside the clinical trials program, it
was not possible to rule out the possibility that some of the excess
mortality was attributable to misuse or toxicities from ddl.

A second concern was that patients who received investigational
drugs on the parallel track would not be available to participate in
controlled clinical trials, thereby retarding studies to determine efficacy
and toxicity. By January 1991, it was estimated that 14,000 patients
were receiving ddl through expanded access, compared to 1600
patients who were participating in clinical trials (Institute of Medicine,
1991, page 32). Many scientists felt that the program of expanded
access had slowed the clinical trials to some extent, but the impact was
hard to quantify.

Statisticians have considered ways to promote participation in
controlled clinical trials by communicating with AIDS advocates to
help them understand essential features of design and by modifying the
design, where possible, to make participation easier and more at-
tractive (Byar, Schoenfeld, Green, et al., 1990; Green, Ellenberg,
Finkelstein, et al., 1990; Ellenberg, Finkelstein, and Schoenfeld, 1992).
Although these adaptations are potentially important in ensuring the
success of these trials, clinical trials in AIDS research must adhere to
sound principles of clinical trial practice (Friedman, Furberg, and
DeMets, 1984; Pocock, 1983; Meinert, 1986) to produce scientifically
convincing results.

Broadening eligibility criteria can enhance participation. Exclusions
designed solely to assure a homogeneous study population could be
eliminated. Losses in statistical precision that arise from studying
heterogeneous populations can be reduced by the use of stratified
analyses or regression models that adjust for important covariates.
Exclusionary criteria designed to delineate which clinical trial is best
for a given type of patient or to protect certain types of patients from
harm would be retained. By broadening eligibility criteria, one would
hope to provide an appropriate clinical study for most patients, and
one would hope that conclusions derived from such studies would be
broadly applicable.

A major factor in assuring good participation in trials of HIV disease
is to make sure that the comparisons made are useful for managing
HIV infected patients and that both the potential patients and their
physicians are "substantially uncertain" as to which regimen being
compared will turn out to produce the most favorable results (Byar,
Schoenfeld, Green, et al., 1990). Placebo-controlled trials were certain-
ly justifiable before AZT had been shown to be effective in patients with
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advanced disease; such trials may still be advisable in patients with
early HIV disease. However, the use of placebo controls would no
longer be medically relevant, ethical or feasible in studies of more
advanced disease. Instead, patients and doctors would be interested in
comparing new agents, or combinations of agents, with a standard
regimen, such as AZT at 500mg/day (Fleming, 1990; Cooper, 1990).
Such studies may be able to demonstrate that a new regimen is as good
as or better than standard therapy, but, if the new regimen is worse
than standard therapy, it may still be better than no treatment at all.
Deciding whether the new treatment is better than no treatment by
comparing current results with "historical controls" who received no
treatment is problematic (Byar, 1979). Time trends in the nature of the
population studied, in the diagnostic methodology used to determine
initial prognostic categories, and in ancillary supportive care may
render the historical control population incomparable to the populat-
ion under current study. Such time trends usually favor the treatments
under current study, because patients treated previously often had
more advanced disease and received less adequate ancillary care.
Furthermore, adjustment procedures needed to correct for differences
between the historical control population and the current population
may be inadequate because of lack of knowledge about what factors are
prognostic and what mathematical procedures should be used for
adjustment, and because required covariate information may be
missing for historical controls.

Sometimes it may be convincing to compare various doses of a drug
in randomized trials. This strategy led to the useful result that lower
doses of AZT were associated with lower toxicity and improved
survival compared to higher doses (Fischl, Parker, Pettinelli, et al.,
1990). Likewise, the randomized trial showing that higher doses of
pentamidine prevented PCP more effectively than a low dose (Leoung,
Feigal, Montgomery, et al., 1990) was instrumental in persuading
experts of the usefulness of pentamidine for PCP prophylaxis (CDC,
1989c). Of course, dose comparisons may be hard to interpret,
especially if no differences in responses are found. In that case, both
doses may be ineffective or both may be effective.

Rarely there will be no attractive therapeutic option to a proposed
new treatment, and an uncontrolled experiment may be convincing.
Byar, Schoenfeld, Green, et al., (1990) refer to FDA's approval of
ganciclovir for the treatment of retinitis caused by cytomegalovirus
(CMV) and attempt to define those few circumstances where an
uncontrolled trial may be justified. CMV retinitis was known to
progress to blindness in most patients, and no effective treatment was
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available for comparison. Uncontrolled studies of ganciclovir demon-
strated benefit in more than eighty percent of patients treated (Mills,
Jacobson, O'Donnell, et al., 1988) and convinced FDA officials of
efficacy.

A degree of flexibility on the part of clinical investigators and
statisticians can help accommodate the needs of patients and improve
trial participation and compliance. For example, the study by Hamil-
ton, Hartigan, Simberkoff, et al. (1992) addressed whether immediate
use of AZT was better than delayed use of AZT in AIDS-free patients
with CD4+ T-cells in the range 200-500 cells////. Because patients
knew they were being carefully monitored and would receive AZT as
soon as the CD4+ T-cell level fell below 200 cells//*/ or an AIDS-
defining event occurred, they were willing to continue in the study in
large numbers, even after public announcements and information
provided by the trial's investigators that AZT could prolong the time to
an AIDS-defining event. The question answered by this trial is not the
same as whether AZT is better than no treatment, and patients'
willingness to continue indicates that the trial was addressing a
question of practical clinical importance.

When the Public Health Service announced new guidelines re-
commending that PGP prophylaxis be used in patients with CD4 + T-
cell levels below 200 cells/jU/, clinical investigators had to decide
whether to modify their ongoing trials. Because PGP constitutes nearly
half the initial AIDS-defining events in many risk groups (Table 1.1),
the decision to administer pentamidine according to these guidelines
required a prolongation of ongoing trials in order to retain original
levels of statistical power, which depends mainly on the number of
endpoint events. By adopting a flexible approach and changing
protocols to conform with guidelines for PGP prophylaxis, investigators
protected the interests of their patients and answered potentially useful
questions about the efficacy of treatment in the presence of PGP
prophylaxis.

Byar, Schoenfeld, Green, et al. (1990) and Ellenberg, Finkelstein,
and Schoenfeld (1992) discuss some of the promise and some of the
difficulties associated with enrolling the same patient in multiple studies
to accommodate multiple needs for treatment, as well as more formal
factorial designs.

Broadening eligibility requirements, making sure that comparisons
are useful and meaningful to patients as well as to clinical investigators,
and adopting a flexible stance that vigilently protects patients' interests
while preserving scientific validity are ways that organizers of clinical
trials can encourage broad participation in such trials and decrease
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reliance on the parallel track. Communication with patient advocates
is essential to promote participation because politically active advocacy
groups, such as ACT UP, can encourage patients to participate.
Perhaps more importantly, the dialogue between those who plan
clinical trials and patient advocates can help define clinical ques-
tions that urgently require study and can identify aspects of a design
that might discourage participation (Ellenberg, Finkelstein, and
Schoenfeld, 1992).

11.5.3 Surrogate Endpoints

One of the most vexing problems in designing trials of HIV disease is
selecting an appropriate endpoint. In patients with AIDS or advanced
HIV disease, it is likely that information on survival will be forthcom-
ing, and whatever endpoint is chosen for such studies, survival will be of
interest. For patients with less advanced disease, such as AIDS-free
patients with 200-500 CD4+ T-cells/jU/, it is still important to know
whether a new treatment prolongs survival, but it is also clinically
important to establish whether a new treatment can reduce morbidity
by prolonging the time to AIDS, for example. Two clinical trials for
such patients successfully demonstrated that AZT prolonged the time
to AIDS, but these trials were stopped before information on survival
was available (Section 11.2). In this setting, if the ultimate purpose of
the trial had been to show that AZT prolonged survival, then the
clinical endpoints that were used, development of AIDS or advanced
AIDS-related complex (Volberding, Lagakos, Koch, et al., 1990;
Fischl, Richman, Hansen, et al., 1990) would have been regarded as
"surrogates." Often, the term surrogate endpoint refers to a change in
laboratory measurements, such as CD4+ T-cell levels falling below
200 cells//*/. Jacobson, Bacchetti, Kolokathis, et al., (1991) and Moss
(1990) discuss the possible use of a variety of laboratory measurements
as surrogate endpoints or studying HIV disease.

Underlying the concept of surrogate endpoint is the supposition that
there is a primary endpoint of dominant clinical importance, such as
survival time. A surrogate endpoint is any other endpoint chosen for
reasons of ease of study or practicality in the hope that one can learn
about treatment effects on the primary endpoint indirectly through
studies on the surrogate endpoint. Amato and Lagakos (1990) and
Byar, Schoenfeld, Green, et al. (1990) discuss clinical relevance and the
feasibility and reliability of a measurement as factors that should be
taken into account when selecting an endpoint.

Sometimes changes in laboratory markers are used to modify
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treatments, as in protocol VA298 in which AZT was given to patients
whose CD4+ T-cell levels fell below 200 cells I ul (Section 11.2). This
use of a marker can be considered to be an integral part of the
treatment strategy, rather than a surrogate measure of treatment
efficacy.

There are good reasons for wishing to rely on surrogate endpoints,
particularly in patients with early HIV disease. A major motivation is
the desire to accelerate the clinical trial process, thereby saving clinical
trial resources and facilitating rapid approval of new treatments. In a
cohort of patients with early HIV disease, it could take years before a
sufficient number of deaths have occurred to investigate a treatment
effect on survival, whereas surrogate responses, such as rates of change
of CD4 + T-cell levels, could be detected in a much shorter time.

A second motivation for relying on surrogate endpoints concerns
patient compliance and rapid changes in HIV therapeutics. A treat-
ment of interest in 1990 might be irrelevant in 1995, and it is likely that
many patients who were assigned to treatments in 1990 will desire to
stop those treatments or try new ones if their HIV disease progresses, as
indicated by declines in CD4+ T-cells or the onset of AIDS, for
example. Thus standard "intention to treat" comparisons of those
initially assigned to various treatment groups in 1990 may be hard to
interpret when the trial ends in, say, 1997.

The problem with relying on surrogate endpoints is, of course, that
treatment effects on such endpoints may not reflect treatment effects on
the endpoint of primary interest. In order to interpret trials based on
surrogate endpoints with confidence, one must understand the mech-
anism of treatment action, as illustrated in Figure 11.2. In this model,
one can progress to the main endpoint either directly from the initial
state of early HIV disease (path 3) or be successively experiencing a
surrogate event (path 1) and then the main endpoint (path 2). We
make the semi-Markov assumption that the hazards corresponding to
paths 1, 2 and 3 depend only on the time spent in the antecedent state
and not on when the patient arrived in the antecedent state.

If the only effect of treatment is to reduce the hazard in path 1, and
if patients never travel path 3, then an effect of treatment on the surrogate
will reliably anticipate a treatment effect in the same direction on the
main endpoint. This is a special case of the stringent condition
proposed by Prentice (1989) to define an adequate surrogate for
hypothesis testing, namely that the hazard of developing the main
endpoint, conditional on the surrogate history to that point in time, be
independent of treatment. In symbols, this condition is <i{<|^f(<),
7"} = A{t\X(t)}, where X{t\X(t), T] is the instantaneous hazard of the
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Figure 11.2 Relationships between treatment, the main endpoint, and
a surrogate endpoint.

main endpoint at time t given treatment assignment T and given the
entire history of the surrogate information, X ( t ) , up to time t. The
quantity A{<|-Y(<)} is defined similarly but does not depend on treat-
ment. In the present example, if a person still had early HIV disease at
time t, his or her hazard of developing the main endpoint would be
zero, regardless of treatment. Likewise if the patient had experienced
the surrogate endpoint but not yet developed AIDS, his or her hazard
would be the same, regardless of treatment.

Machado, Gail, and Ellenberg (1990) illustrated the effects of
surrogate markers using the model in Figure 11.2 under assumptions
that violate Prentice's condition. They chose parameters to model a
clinical study in which patients were initially AIDS-free with CD4 +
T-cell levels of 400 cells/ult. They defined the surrogate event as a
CD4 + T-cell level falling below 200 cells/ul and the main endpoint as
development of AIDS. In favorable cases, they found that reliance on
the surrogate endpoint could reduce the required time of study from 6.5
years for the main endpoint to 3 years. However, reliance on the
surrogate led to serious overestimates of treatment efficacy if treatment
had serious delayed toxicity (an adverse impact on path 2 in Figure
11.2), or if treatment had only transient beneficial effects (treatment
has a favorable impact on path 1 but no effect on paths 2 or 3).

Empirical studies by De Gruttola, Wulfsohn, Fischl, and Tsiatis
(1992) and by Tsiatis, Dafni, De Gruttola, et al. (1992) indicate that
CD4+ T-cell levels do not reflect the full benefit of AZT in prolonging
the survival of patients with AIDS or AIDS-related complex. They
found that at six months after randomization, patients on AZT with
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CD4+ T-cell counts of 100 cells//!/ has an annual hazard of death of
.090/year compared to 0.620/year for patients with the same CD4 + T-
cell level on placebo. AZT did boost the CD4 + T-cell levels initially in
these studies, but the improvements in CD4 + T-cell levels were
completely insufficient to explain the dramatic improvements in
survival. Such data suggest that AZT is having favorable impacts on
paths 2 and 3 in Figure 11.2, as well as on path 1. Perhaps this result is
not surprising in view of the findings of Justice, Feinstein, and Wells
(1989) that, among patients with AIDS, the number of major clinical
signs and symptoms, such as dyspnea and weight loss, is of dominant
prognostic value. Similar empirical studies are needed to determine the
extent to which CD4+ T-cell levels reflect the benefits of preventing
AIDS in patients with early HIV disease.

These examples demonstrate that it is not sufficient for a surrogate
endpoint to be prognostic in order for that endpoint to give a clear
indication of treatment efficacy on the main endpoint. In addition, the
mechanism of action of the proposed treatment must be understood. If
a new drug is a member of a class of drugs whose mechanism of action
has been well defined, it may be plausible to assume a known
mechanism of action. But even in cases where one has reason to believe
that the mechanism of drug action is well understood, there may be
surprises. For example, a recent study of the drugs encainide and
flecainide to suppress life-threatening ventricular arrythmias in patients
recovering from myocardial infarctions demonstrated effective sup-
pression of such arrythmias. Based on a plausible mechanism of action,
one would assume that suppression of arrythmias should lead to
improved survival. Nonetheless, the trial was stopped early because it
was found that the mortality rate was over twice as high among those
patients given encainide or flecainide as among patients given placebo
(Echt, Liebson, Mitchell, et al., 1991).

11.5.4 Monitoring AIDS Trials

Independent data monitoring boards (DMB) are usually appointed to
determine when a trial should be terminated. The DMB has the
important responsibilities of protecting the interests of patients who are
participating in clinical trials and trying to assure that the trial will
produce scientifically useful and convincing information. Adhering to
these two objectives may become difficult as information on treatment
efficacy and toxicity accumulates. The DMB must decide when to
terminate a study, either because an important scientific goal has been
reached, because continuation would adversely affect patients in the
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trial, or because no useful scientific purpose is served by continuing.
Survey papers describe practical aspects of monitoring clinical trials
(Armitage, 1991; DeMets, 1987) as well as statistical approaches to
monitoring the principal endpoint (Gail, 1982, 1984).

Many of the challenges of studying HIV disease that we have
previously described create difficulties in the monitoring process. In
particular, if the main endpoint of the trial is not clearly identified or if
there are multiple endpoints of importance, it is vital that the DMB
work with the principal investigators to agree on the central purpose of
the trial and on some hierarchy of importance for endpoints.

The rapid pace of scientific advance in HIV disease poses special
challenges to the DMB. If the accepted standard of medical care
changes during the course of the trial, as occurred in 1989 when the
Public Health Service recommended prophylaxis against PGP for all
patients with CD4+ T-cell levels below 200 cells/ul, the DMB may
need to recommend protocol modifications or even termination of a
trial if the required modification would destroy the scientific value of
the trial.

The DMB may be forced to terminate a trial if the question under
study is convincingly answered by another trial. For example, during
the summer of 1989, the National Institutes of Allergy and Infectious
Diseases announced that two studies of AZT versus placebo in AIDS-
free patients had been terminated because they had shown that AZT
could delay the time to AIDS or advancing AIDS-related complex.
These studies were later published by Volberding, Lagakos, Koch, et
al. (1990) and Fischl, Richman, Hanson, et al. (1990), as described
previously. The DMB for the cooperative study of AIDS-free patients
by the Veterans Administration (VA) seriously considered terminating
protocol VA298 in view of these encouraging results. However, there
were important differences between the VA study and the other studies
that led to a continuation of the VA trial, later published by Hamilton,
Hartigan, Simberkoff, et al. (1992). First, the therapeutic questions
were different, because the VA trial compared early versus later use of
AZT, whereas the other trials compared AZT versus placebo. Second,
the VA population contained proportionately more black and
Hispanic patients than the other trials. Third, the VA trial promised to
provide valuable new information on whether AZT prolonged life.
Finally, at the time the decision to continue the VA trial was taken, in
late 1989, there was no internal evidence that AZT prolonged the time
to death or to the combined endpoint of AIDS or death (Simberkoff,
Hartigan, Hamilton, et al., 1993).

In this rapidly evolving scientific context, it is important that
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patients be kept informed regarding treatment options and that they be
reminded of their right to withdraw from the study. In March 1990, the
FDA approved broader indications for AZT, including treatment of all
patients with CD4+ T-cell levels below 500 cells/fit. The DMB for the
VA trial recommended that all patients on that study be advised in
writing of the FDA recommendation and that they be asked to sign a
new informed consent document informing them of their option either
to continue on study medication or to withdraw from the study and
receive treatment at no expense. Seventy-four percent chose to cont-
inue on blinded study treatment (Simberkoff, Hartigan, Hamilton, et
al., 1992).

It is clear from these examples that a DMB may be forced to deal
with many unanticipated contingencies, arising both from internal
data and from external circumstances. It is therefore important that
the DMB include members with a broad range of experience and
knowledge in basic medical science, clinical medicine and statistics. It
may be advisable to include members with formal training in medical
ethics and advocates who understand the special needs of the patient
population. It may be helpful in rare instances to invite outside experts
to provide additional information and perspective before the DMB
takes a particular decision.

11.6 VACCINE TRIALS

Since the discovery that AIDS was caused by a specific retrovirus,
HIV, there has been an urgent desire and effort to develop vaccines to
prevent further infections. The biology of HIV poses special problems,
however (Berzofsky, 1991). First, the envelope protein of HIV is highly
variable, not only among strains in different infected individuals but
also among strains that evolve within a single infected individual.
Thus, it may be difficult to develop a vaccine that will lead to the
production of neutralizing antibody that is effective against the broad
range of HIV strains. Second, HIV can spread from cell to cell as well
as through the blood stream. To fight cell-to-cell spread requires a
cytotoxic response, mediated by cells like CD8+ cytotoxic T-lym-
phocytes, as well as a humoral response (antibody production)
mediated by B-lymphocytes. However, both B-lymphocytes and
cytotoxic T-cells require the adequate functioning of CD4 + T-cells,
known as helper T-lymphocytes (Section 1.2). Unfortunately, HIV
destroys CD4 + T-cells, which limits the host's ability to mount either
an effective humoral or cytotoxic immune response. Finally, once viral
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DNA has been integrated into the DNA of cells of the host, it may
remain latent and protected from immunologic defenses.

Effective vaccines have been made against simian immunodeficiency
virus (SIV), which produces a disease in monkeys very similar to
AIDS, as reviewed by Berzofsky (1991). Those vaccines provided some
protection against infection for monkeys who were later challenged
with SIV, and the protection against the development of fatal
immunodeficiency was even better. However, some of this protection
was based on antibody to antigens from human cells in which the SIV
had been grown (Stott, 1991; Le Grand, Vaslin, Vogt, et al., 1992).
Recent data demonstrate that SIV viral envelope antigens are suffi-
cient to protect Macaca fascicularis monkeys against intravenous chal-
lenge with SIV (Hu, Abrams, Barber, et al., 1992), and human cellular
antigens have been shown to inhibit infection of cultured cells by both
HIV-1 and SIV (Arthur, Bess, Sowder, et al., 1992). Preliminary
encouraging results have shown that vaccines can prevent HIV-1
infection in chimpanzees.

Although such animal studies are vital to vaccine research, there are
important limitations on this type of study. Apart from humans, only
great apes, such as the chimpanzee, and the monkey, Macaca nemestrina,
are known to be susceptible to HIV infection (Agy, Frumkin, Corey, et
al., 1992). Animals such as the chimpanzee are in short supply for
medical research. More importantly, there are significant interspecies
differences in the host response to HIV infection. For example,
champanzees do not become ill following HIV infection. Thus, one
cannot infer from a specific animal study that a particular vaccine will
be effective either in preventing infection or in preventing the develop-
ment of significant disease in humans. Inevitably, studies of safety and
efficacy in humans are required. Stablein (1990) and Dixon and Rida
(1991) discuss aspects of the design of such human studies.

11.6.1 Goals of Vaccine Trials in Humans

One potential application of vaccines is as immunotherapy to prevent
or retard the progression of illness in patients who are already infected.
For example, Redfield, Birx, Ketter, et al. (1991) have carried out
preliminary studies showing that immunization with a molecularly
cloned HIV envelope protein, gp!60, was safe and elicited humoral (B
cell) and cell-mediated (T cell) responses. They concluded that the
therapeutic value of such immunization warrants further study. Such
studies would likely be performed in patients with early HIV disease
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who still have the capacity to mount an immune response. Difficult
design issues include selecting an appropriate endpoint and special
monitoring for possible adverse effects of immunization in this com-
paratively healthy population. However, such clinical trials of im-
munotherapy pose very similar challenges to those described in
Sections 11.2 and 11.5 for other therapeutic clinical trials in patients
with early HIV disease.

The evaluation of vaccination to protect an uninfected population
raises new issues. One goal might be to prevent HIV infection
altogether. For example, one might monitor vaccinated and unvac-
cinated patients with serial Western blot assays to determine whether
there were fewer new infections in the vaccinated group than in the
unvaccinated group. We discuss design aspects of such a study later.

A second goal might be to reduce the incidence of clinically
detectable immunodeficiency in an uninfected population. Many
vaccines do not prevent infection but only bolster the host's response to
infection so as to prevent clinical disease. If one relied on CD4+ T-cell
levels as an endpoint, such a trial might take only a few more years than
a study of incident HIV infection. However, if one defined the endpoint
as the onset of AIDS or AIDS-related complex, such a trial would
require many years and tens of thousands of patients. Therefore, we
consider the design of a trial to measure the effectiveness of a vaccine to
prevent infection. Similar considerations would apply to the designing
of a trial to study vaccine effectiveness in preventing disease, but the
effort required would be more daunting.

11.6.2 Design Considerations for a Vaccine Trial to
Prevent Infection

Finding an appropriate study population will pose major problems.
Even high-risk populations in the United States have annual infection
incidence rates of the order of 1% per year (Table 3.8). Such infection
rates necessitate a study involving many thousands of participants as
described below. If the study were to be performed in an underdevel-
oped part of the world where infection rates were higher, one would
need to resolve the ethical and political issues surrounding such
experimentation, and one would need to make sure that the in-
frastructure was in place to follow patients carefully, to obtain samples
for immunological analysis, and to carry out such analyses using
sophisticated techniques, such as the Western blot procedure.

Once a suitable population is identified, it will be necessary to screen
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potential participants using a sensitive assay, such as the El A (Chapter
6), to eliminate subjects who are already infected from the study.
Counseling will be needed for those already infected, and potential
study participants would need to be advised of the purpose and risks of
the study and of precautions that everyone should take to avoid HIV
infection. Such advice may reduce the HIV infection rate, necessitating
a larger study. Patients who consent to participate are eligible for
randomization.

Individual randomization is an important ingredient of a good
vaccine trial. Each subject should have an independent chance of being
assigned either to vaccine treatment or to placebo immunization. An
alternative to individual randomization is cluster randomization
(Cornfield, 1978). For example, one might locate several clinics for
sexually transmitted diseases or several clinics for drug treatment and
randomly assign each clinic to receive either vaccine or placebo
immunization for all its uninfected patients. However, the chance of
infection depends strongly on the local prevalence of infection in a
community, and people with similar levels and types of risk behavior
may tend to congregate. Therefore it is likely that there will be
significant intraclinic correlation of infections, which reduces the
statistical efficiency of the cluster randomization design (Cornfield,
1978). It is probably unnecessary to stratify the randomization and to
use a balancing scheme to obtain balance within strata, because
sufficient balance will usually be obtained by simple randomization in a
trial involving thousands of subjects (Lachin, 1988). Nonetheless,
baseline covariate information on important determinants of the risk of
infection—such as baseline self-reports of the numbers and types of
behaviors known to lead to infection, location, race, sex, and age—
should be gathered to permit adjustments for these factors in the
analysis.

A crucial issue is how to define the event of "new infection." A
definition must be chosen that is equally applicable to the vaccinated
and placebo groups. However, vaccination will produce changes in the
Western blot assay, necessitating a change in the usual definitions of
HIV infection. For example, one widely used definition is the presence
of antibody to any two of the following protein sets: p24, gp41, and
either gp!20 or gplGO. If a vaccine included no other HIV proteins but
gp!20, a new definition of infection might be: the presence of antibody
to any two of p24, gp41, or gplGO. Such a definition would reduce the
sensitivity of the Western blot procedure because people who had p24
and gp!20, for example, would no longer be defined as "infected." If
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more complicated vaccines were used, such as killed whole HIV, then
immunologic assays like the Western blot might become useless for
monitoring infection because all vaccinated subjects would develop
multiple antibodies to proteins like p24, gp41, gp!20, and gp160, even
in the absence of infection. In this case, it might be necessary to rely on
viral isolation techniques or a polymerase chain reaction assay (Section
6.5) to define infection. However, the technical and logistical demands
of these approaches are substantial, and their specificity is not as high
as EIA with Western blot confirmation (Chapter 6). Whatever
laboratory definition of infection is adopted, it seems important to
maintain very high levels of specificity (Chapter 6) to avoid serious
dilution effects and the need for enormous sample sizes, as described
below. Losses of sensitivity, though they necessitate somewhat larger
sample sizes, are not as deleterious.

It is likely that some study participants will determine whether
active vaccine or placebo has been administered. This "unblinding" of
treatment assignment poses two problems. Some subjects who know
they received active vaccine may feel protected and increase their levels
of risky behavior. This phenomenon would reduce the apparent
benefits of vaccination. Nonetheless, all such subjects should be
included in the analysis of the vaccine trial, which is designed to
evaluate the overall effectiveness of the strategy of vaccination.

Unblinding can also contribute to bias from "differential loss to
follow-up." Loss to follow-up is said to be "nondifferential" if the
expected difference in the proportions infected between the two study
arms is the same among subjects who are lost to follow-up as among all
subjects originally randomized. Otherwise, loss to follow-up is "dif-
ferential." Differential loss to follow-up could arise, for example, if
high-risk subjects who find out that they have received active vaccine
tend to remain on the study, whereas high risk subjects who discover
they received placebo tend to lose interest and be lost to follow-up. In
this case, subjects who remain in follow-up on the placebo arm will
have a lower infection rate than all those originally assigned to the
placebo arm, whereas those who remain in follow-up on the active
vaccine arm will have a higher infection rate than all those originally
assigned to vaccine. A treatment comparison based on those who
remain in follow-up will therefore tend to underestimate the effective-
ness of vaccine, in this hypothetical example. This example illustrates
the importance of minimizing loss to follow-up and of trying to ensure
that subjects with particularly high or low risks are no more likely to be
lost from one study arm than from the other. Effective blinding
promotes this latter condition.
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11.6.3 Definition of Vaccine Efficacy

Let p1 be the probability that a member of a vaccinated cohort
becomes infected during the course of the study, and let p0 be the
corresponding probability for unvaccinated controls. Although the
following ideas hold for more general experimental designs, we assume
for simplicity that the initially uninfected cohorts are fully enrolled at
time t = 0 and that the study ends at time t = T, when all participants
are tested to determine final infection status. The protective efficacy of
a vaccine is defined as

which is estimable from the observed proportions infected, without any
assumptions about the mechanism of action of the vaccine. When the
vaccine prevents infection completely, the efficacy is unity. Note that
the protective efficacy has the same mathematical form as Levin's
(1953) "attributable risk" for a study of disease etiology and therefore
can be estimated either by cohort or case-control methods (Walter,
1976).

Smith, Rodrigues, and Fine (1984) consider the mechanisms of
action for a vaccine. Suppose (t) is the hazard rate for infection of a
member of the unvaccinated cohort. Then, under Model 1, the effect of
vaccination is to reduce the hazard of infection to , where
0 ^ 0 ^ 1. From Model 1, we calculate

where

For experiments, such as we are considering, in which p0 is small, we
find that E = 1 — R is nearly equal to 1 -0.

Under Model 2 of Smith, Rodrigues, and Fine (1984), the effect of
the vaccine is to render a proportion 1 — a of the population complete-
ly immune and to have no effect on the remainder of the population.
Under this model

Understanding the mechanism of action is important if one wants to
apply the results of a vaccine trial with rare events to another setting.
For example, consider a setting in which the probability of infection for
a member of an unvaccinated cohort, p$, is large. If Model 1 is correct,
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the efficacy E* computed by substituting/^ and 9 into equation (11.2)
will be smaller than the protective efficacy observed in the original
experimental setting with small infection rates. This is because the right
hand side of equation (11.2) decreases monotonically to zero as p0

increases to unity, reflecting the fact that all vaccinees eventually get
infected under Model 1.

By contrast, if Model 2 is correct, the same protective efficacy
E* = I — a. will be found for a population with higher infection rates,
pfr, as for the original population, because the right hand side of
equation (11.3) does not depend on p0.

The hazard A0(f) can be related to quantities in epidemic models
(Chapter 9). Let fi denote the number of new partners that a
susceptible subject contacts per unit time. Let /?0 be the chance that an
infected partner will transmit the disease to the susceptible subject
during the partnership and let y(f) be the proportion of people in the
population who are infected at time /. Then, under the assumption that
the susceptible subject has an equal chance of establishing contact with
any member of the population, A0(/) = /i/?0j>(/), Haber, Longini, and
Halloran (1991) define the efficacy of vaccination as 1 — J?i//?0, where
/J, is the chance that an infected individual will transmit disease
to a vaccinated uninfected partner. This definition is equivalent to
Model 1 above, because A I ( £ ) / A O ( £ ) =/?i//?o; thus /5i//?0 corresponds
to 9 in Model 1. Based on a simple epidemic model, Harber, Longini,
and Halloran (1991) suggest that 1 — /^ //?0 be estimated from
1 — {log(l — j&1)/log(l — po)}, which exceeds E = 1 — R in equation
(11.1).

Usually, the mechanism of action of a vaccine will be unknown at the
time of initial studies. We therefore rely on the definition of protective
efficacy in equation (11.1), which can be estimated without further
assumptions.

11.6.4 Sample Size Considerations

We base our test for vaccine effect on the estimated proportions
infected, f>0 and ft, in the unvaccinated and vaccinated groups re-
spectively. If infections are rare, as we assume, essentially the same
sample size requirements would be obtained whether we were following
the patients serially to establish the date at which infection occurred,
or, as we assume, only at the end of the experiment to determine
whether or not infection had occurred (Gail, 1985).

In the case of rare infections with equal numbers of subjects in the
vaccinated and unvaccinated groups, the chi-square statistic for
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comparing the proportions infected in the two groups is very nearly
equal to (Xt — Z0)

2/(Z1 + X0), where Xt is the number of infections in
group i (i = 1 for vaccinated and i = 0 for unvaccinated). We are
assuming for now that the methods used to detect infection have perfect
sensitivity and specificity. The total required sample size, 2JV, needed to
assure power 1 — B = 0.9 for a two-sided a = 0.05 level test is given by

where Za/2 is the 1 — a/2 quantile of the standard normal distribution
and £0 is the 1 — B quantile of the standard normal distribution.

From equation (11.4), it is clear that the required sample size varies
nearly inversely as the square of the vaccine efficacy, E = 1 — R, and
inversely with the probability of infection in the placebo group, p0.

For simplicity, we imagine a 2-year study in which all subjects accrue
at time zero and are examined for infection 2 years later. We assume
that the hazard of infection is constant at 0.0101 per person year
in the unvaccinated group, so that/>0 = 1 — exp( — 2 x 0.0101) = 0.02.
From equation (11.4) we calculate that the total number of subjects
required to detect efficacy values E = I — R of 0.75, 0.5, 0.25, and 0.10
are respectively 2336, 6306, 29,430, and 199,701. The required sample
size increases rapidly with decreasing efficacy. Nonetheless, it may be
useful to detect a vaccine efficacy of only 0.25, because such a vaccine
might prevent a large number of infections.

Even these large required sample sizes do not reflect possible
complications that require even larger samples. To illustrate these
complications, we make comparisons to the previous case of
E = I — R = 0.5 and 2JV = 6306. There are factors that can reducep0,
necessitating a corresponding increase in sample size (equation (11.4)).
If the advice given to study participants to limit risky behaviors
reduces the chance of infection in the placebo group by 25% to
p0 = 0.015, the study size increases by the factor 1/0.75 to 8408
(Table 11.3). Suppose the modified laboratory criteria for detecting
infection are perfectly specific but have a sensitivity of only 80%.
Then the observable rate of infection in placebo patients will be
p0 = 0.80 x 0.02 = 0.016, and the required sample size increases by
the factor 1/0.80 to 7883.

Dilution factors that decrease apparent vaccine efficacy can have
an important impact on sample size. Suppose for example that of the
1% of subjects who are infected in the year before recruitment,
10% of these were infected within the silent "window" before anti-
bodies develop and just before recruitment (Section 6.4). Thus
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Table 11.3 Sensitivity of Sample Size Calculations to
Various Departures from Ideal Conditions

Conditions

Ideal conditions with E = 1 — R = 0.5 and ^0 = 0.02

Factors that reduce p0

Advice given to study participants
reduces the probability of infection
in the placebo group to p0 = 0.015

Laboratory test has sensitivity 0.80
but perfect specificity

Dilution effects
Screening procedure allows infected

subject to constitute 0.1% of the
study population

Vaccination requires 6 months to
induce immunity

Laboratory criterion has perfect
sensitivity but specificity only

0.95
0.99

Note: Size was computed from equation 1 1 .4 with ^/2 = 1 .96 and ^
power 0.9 for the two-sided test.

Required Total Sample
Size (2JV)

6306

8408

7883

6734

12,145

29,930
10,660

= t .282, corresponding to size 0.05 and

0.1 x 10% = 0.1% of the subjects entering the trial are already
infected. The apparent infection rate in the placebo group at the end of
the trial will then have expectation/^ = 0.001 + 0.999 x 0.02 = 0.021
and the corresponding expectation for the vaccinated group is
p\ = 0.001 + 0.999 x 0.02 x 0.5 = 0.011, assuming R = 0.5. Subst-
ituting/*^ and/»i in equation (11.4), we obtain a total required sample
of 6734, which is 6.7% more than 6306, the number needed with
perfect screening. Note that the efficacy has been diluted from
E= 1 -£ = 0.5 to 1 - (0.011/0.021) =0.476.

Another type of dilution occurs if it takes a period of time, say 6
months, before the vaccine offers protection. Then, assuming R = 0.5,
the rate of infection in the vaccinated group would be
p\ = (6/24) x 0.02 + (18/24) x 0.02 x 0.5 = 0.0125, instead of
/»! =0.01, the rate of infection if the effect of vaccination is instan-
taneous. Applying equation (11.4), we obtain 2JV = 12,145, instead
of 6734, an 80% increase. The efficacy is diluted to 1 - (0.0125/
0.02) =0.375.

Lack of specificity of the laboratory criteria for infection can also
cause serious dilution of the apparent vaccine efficacy. Suppose the new
criterion has perfect sensitivity, but specificity 0.95. Then, assuming
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R = 0.5, p'0 = 0.02 + 0.98 x 0.05 = 0.0690 and p\ = 0.01 + 0.99 x
0.05 = 0.0595. The corresponding total sample size is 2JV = 29,930,
almost five times the sample size required if the test has perfect speci-
ficity. The efficacy has been diluted to 1 - (0.0595/0.0690) =
0.138. Even if the laboratory criterion has a specificity of 99%, the
required sample size increases to 10,660 (Table 11.3).

Further adaptations are required to account for the fact that accrual
takes place over time, that the final assessment of infection status may
take place some time after accrual ends, and that some patients will be
lost to follow-up (Rubinstein, Gail, and Santner, 1981). In particular,
one can reduce the required number of subjects by extending the
duration of follow-up, because the power of these studies depends on
the total number of infections observed. Doubling the trial duration
will roughly double p0 in equation (11.4), thus halving the number of
subjects required. Loss-to-follow-up is usually of minor importance
under the assumption that those subjects who are lost are represen-
tative of their respective treatment groups. Lakatos (1986, 1988) gives
very general methods to account for lag times before treatment effect,
loss to follow-up and other factors.

The requirement to have very large trials, as indicated in Table 11.3,
poses serious logistical problems and indicates the difficulty of carrying
out such trials. Moreover, exposing large uninfected populations to the
risks of vaccination, even in an experimental setting, requires a careful
evaluation of potential risks and benefits. However, data from such
trials would certainly be needed before one would risk exposing the
general population or even special exposure groups to the risks of
vaccination. Meier (1957) and Schonberger, Bregman, Sullivan-
Bolyai, et al. (1979) discuss such risks for the polio and Swine flu
vaccination programs, respectively.
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Quasi-likelihood, 227

Random effects models, 44-45,
137-38

Randomized response design, 68-
69

Ratio-type methods, 278-81
Receiver operating curve (ROC),

150. See also Sensitivity; Speci-
ficity

Relative hazard, 23-26
Relative odds, 23-25
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