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Preface

“Enhance 34 to 36. Pan right and pull back. Stop. Enhance 34 to 46. Pull
back. Wait a minute, go right, stop. Enhance 57 to 19. Track 45 left. Stop.
Enhance 15 to 23. Give me a hard copy right there.”

– Harrison Ford in Blade Runner, 1982

If you have never seen the movie Blade Runner, you should. Aside from be-
ing one of the greatest science fiction films of all time, it is uniquely relevant
to the subject of this book: almost 30 years ago, the opening scene of this
movie foresaw the idea of super-resolution. In the intervening years, a great
deal has transpired: computing power has increased by orders of magnitude,
digital cameras are everywhere, and of course digital displays have become
magnificently detailed. Along with these advances, the public’s expectations
for high-quality imagery has naturally intensified, often out of proportion with
the state-of-the-art technology. In fact, in the last few years, the visual quality
of captured images and video has not kept pace with these lofty expectations.
By packing increasingly larger number of pixels into ever smaller spaces, and
using less sophisticated optical elements, public, commercial, and official users
alike have seen an overall decline in the visual quality of their recorded con-
tent. So despite what might at first seem like a losing battle against better
and cheaper sensors, super-resolution technology (and image enhancement
more generally) has really become more relevant than ever. Given that almost
all recorded visual content is now enhanced in one form or another by just
about every digital camera sold today, it is not entirely outrageous then to
believe that before long, super-resolution will become the ”killer application”
for imaging.

Ironically, only two years after the release of Blade Runner, the semi-
nal paper by Tsai and Huang kick-started the modern idea of computational
super-resolution. While results in sampling theory dating as far back as the
’50s (Yan) and the ’70s (Papoulis) had hinted at the idea, it was Tsai and
Huang who explicitly showed that, at least in theory, it was possible to im-
prove resolution by registering and fusing multiple images. The rest, as they
say, is history. We are fortunate to be able to write a little bit of that history
in this book. In the last five years or so, the field of super-resolution imaging
has truly flourished both academically and commercially. The growing impor-
tance of super-resolution imaging has manifested itself in an explosive growth
in the number of papers in this area and citations to these papers (a few dozen

xv
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in 1994, to more than 500 in 2004, and to more than 2000 in 2008). What has
been missing, however, is a book to not only gather key recent contributions
in one place, but also to serve as a starting point for those interested in this
field to begin learning about and exploring the state of the art. This is what
this book hopes to accomplish.

As is probably well-known by now, every super-resolution algorithm ever
developed is sabotaged by at least one spoke of our triumvirate “axis of evil”:
the need for (1) (subpixel) accurate motion estimation, (2) (spatially varying)
deblurring, and (3) robustness to modeling and stochastic errors. To be sure,
these are not independent problems and should ideally be treated in unison
(ambitious graduate students take note!). But realistically, each is sufficiently
complex as to merit its own section in the library, or at least a couple of nice
chapters in this book. This books gathers contributions that will present the
reader with a snapshot of where the field stands, a reasonable idea of where the
field is heading—and perhaps where it should be heading. Chapter 1 provides
an introduction to the history of the subject that should be of broad interest.
Indeed, the collection of citations summarized in this chapter is an excellent
wellspring for continued research on super-resolution.

One of the most active areas of work in image and video enhancement
in recent years has been the subject of locally adaptive processing methods,
which are discussed in Chapters 2, 3, 4, and 5. In contrast to globally optimal
methods (treated later in the book), these methods are built on the notion
that processing should be strongly tailored to the local behavior of the given
data. An explicit goal in some cases, and a happy consequence in others,
local processing enables us to largely avoid direct and detailed estimation of
motion. Readers interested in methods for explicit motion estimation will find
an excellent overview of modern techniques in Chapter 6.

While motion estimation is typically the first step in many super-resolution
algorithms, deblurring is typically the last step. Unfortunately, having been
relegated to the last position has meant that this important aspect of enhance-
ment has not received the respect and attention it deserves. Despite heavy
recent activity in both the image processing and machine vision community,
and some notable successes, deblurring even in its simplest (space-invariant,
known point-spread-function) form is still largely an unsolved problem. Inas-
much as we would like to hope, blur almost never manifests itself in a spatially
uniform fashion. In Chapter 7, the reader will find a well-motivated and di-
rect attack at this challenging problem. Despite our best efforts, a sequential
approach to super-resolution consisting of motion estimation, fusion, and de-
blurring will always be subject to the vagaries of the data, the models, and
noise. As such, building robustness into the reconstruction process, as treated
in Chapter 8, is vital if the algorithm is to be practically useful.

As with most inverse problems, super-resolution is highly ill-posed. In the
most general case, the motion between the frames, the blur kernel(s), and the
high-resolution image of interest are three interwoven unknowns that should
ideally be estimated together (rather than sequentially), and whose effect is
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directly felt in the three points of weakness to which I referred earlier. Prin-
cipled Bayesian statistical approaches addressing these issues are presented
in Chapters 9 and 10, where the ever important prior information is brought
to bear on the super-resolution problem. Of course, prior information can be
brought to the table either in “bulk” form as a statistical distribution, or in
more specific “piecemeal” form as examples. Naively speaking, this distinction
is indeed what leads us to learning-based methods described in Chapter 11.

In the final three chapters of the book, we concentrate on applications.
Among the many areas of science to which super-resolution has been success-
fully applied in recent years, medicine and remote sensing have perhaps seen
the most direct impact. In Chapter 12, a novel application of super-resolution
to massive multispectral remote-sensing data sets is detailed. Medical imaging
applications of super-resolution in Chapter 13 discuss two important problems.
In what should be good news to everyone, high resolution X-ray imaging is
made possible at lower radiation dosages thanks to super-resolution. In an-
other application, detailed imaging of the retina is made possible for diagnostic
purposes. Finally, in Chapter 14, a successful commercial application of super-
resolution (in which I was fortunate to have a hand) is discussed. This chapter
is quite informative not only because of the interesting perspective it provides,
but also because of the valuable practical nuggets it imparts to the reader.
It is an interesting glimpse into what it really takes to make super-resolution
tick.

Perhaps it is worth saying a few words about how this book can be used.
As with any edited volume, it is intended to provide a snapshot of the field,
which is sure to evolve over time. Yet, I have endeavored to organize the
chapters to be used as a teaching tool as well. Indeed, the first four chapters
can easily be incorporated into the latter part of a graduate-level course on
image processing. Other selected chapters of the book can be used to offer
short courses on the subject to a wide audience of engineers and scientists.
The book as a whole can also be used as a text for a semester-long focused
seminar course on the topic, with one or two lectures dedicated to each chapter.
It is hoped that over time the authors may provide supplementary material
for each chapter, including slides, code, or data, which will be archived at the
book Website – so the interested reader is encouraged to revisit the site.

This book is the collective effort of a kind group of friends and colleagues.
I am grateful to each of the authors for giving generously of their time and
contributing to this book. I am also thankful to my students past and present
for their contributions to this topic, and to this book in particular. Specifically,
I acknowledge (soon to be Dr.) Hiroyuki Takeda for his assistance with myriad
LATEX issues.

It is my hope that this book will help to promote this field of endeavor for
many years to come.

Peyman Milanfar
Menlo Park, March 2010
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1.1 Introduction to Super-Resolution

In most digital imaging applications, high-resolution images or videos are
usually desired for later image processing and analysis. The desire for high-
resolution stems from two principal application areas: improvement of pictorial
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FIGURE 1.1: The 1951 USAF resolution test target, a classic test target used
to determine spatial resolution of imaging sensors and imaging systems.

information for human interpretation; and helping representation for auto-
matic machine perception. Image resolution describes the details contained in
an image, the higher the resolution, the more image details. The resolution
of a digital image can be classified in many different ways: pixel resolution,
spatial resolution, spectral resolution, temporal resolution, and radiometric
resolution. In this context, we are mainly interested in spatial resolution.

Spatial resolution: a digital image is made up of small picture elements
called pixels. Spatial resolution refers to the pixel density in an image and
measures in pixels per unit area. Figure 1.1 shows a classic test target to
determine the spatial resolution of an imaging system.

The image spatial resolution is first limited by the imaging sensors
or the imaging acquisition device. A modern image sensor is typically a
charge-coupled device (CCD) or a complementary metal-oxide-semiconductor
(CMOS) active-pixel sensor. These sensors are typically arranged in a two-
dimensional array to capture two-dimensional image signals. The sensor size
or equivalently the number of sensor elements per unit area in the first place
determines the spatial resolution of the image to capture. The higher density
of the sensors, the higher spatial resolution possible of the imaging system. An
imaging system with inadequate detectors will generate low-resolution images
with blocky effects, due to the aliasing from low spatial sampling frequency.
In order to increase the spatial resolution of an imaging system, one straight-
forward way is to increase the sensor density by reducing the sensor size.
However, as the sensor size decreases, the amount of light incident on each
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sensor also decreases, causing the so-called shot noise. Also, the hardware cost
of a sensor increases with the increase of sensor density or corresponding im-
age pixel density. Therefore, the hardware limitation on the size of the sensor
restricts the spatial resolution of an image that can be captured.

While the image sensors limit the spatial resolution of the image, the
image details (high-frequency bands) are also limited by the optics, due to lens
blurs (associated with the sensor point spread function (PSF)), lens aberration
effects, aperture diffractions, and optical blurring due to motion. Constructing
imaging chips and optical components to capture very high-resolution images
is prohibitively expensive and not practical in most real applications, e.g.,
widely used surveillance cameras and cell phone built-in cameras. Besides the
cost, the resolution of a surveillance camera is also limited in the camera speed
and hardware storage. In some other scenarios such as satellite imagery, it is
difficult to use high resolution sensors due to physical constraints. Another way
to address this problem is to accept the image degradations and use signal
processing to post-process the captured images, to trade off computational
cost with the hardware cost. These techniques are specifically referred to as
Super-Resolution (SR) reconstruction.

Super-Resolution (SR) are techniques that construct high-resolution (HR)
images from several observed low-resolution (LR) images, thereby increasing
the high-frequency components and removing the degradations caused by the
imaging process of the low-resolution camera. The basic idea behind SR is to
combine the non-redundant information contained in multiple low-resolution
frames to generate a high-resolution image. A closely related technique with
SR is the single-image interpolation approach, which can be also used to in-
crease the image size. However, since there is no additional information pro-
vided, the quality of the single-image interpolation is very much limited due to
the ill-posed nature of the problem, and the lost frequency components cannot
be recovered. In the SR setting, however, multiple low-resolution observations
are available for reconstruction, making the problem better constrained. The
nonredundant information contained in the these LR images is typically intro-
duced by subpixel shifts between them. These subpixel shifts may occur due to
uncontrolled motions between the imaging system and scene, e.g., movements
of objects, or due to controlled motions, e.g., the satellite imaging system
orbits the earth with predefined speed and path.

Each low-resolution frame is a decimated, aliased observation of the true
scene. SR is possible only if there exists subpixel motions between these low-
resolution frames,1 and thus the ill-posed upsampling problem can be better
conditioned. Figure 1.2 shows a simplified diagram describing the basic idea
of SR reconstruction. In the imaging process, the camera captures several
LR frames, which are downsampled from the HR scene with subpixel shifts
between each other. SR construction reverses this process by aligning the LR

1The mainstream SR techniques rely on motions, although there are some works using
defocus as a cue.
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FIGURE 1.2: The basic idea for super-resolution reconstruction from multiple
low-resolution frames. Subpixel motion provides the complementary informa-
tion among the low-resolution frames that makes SR reconstruction possible.

observations to subpixel accuracy and combining them into a HR image grid
(interpolation), thereby overcoming the imaging limitation of the camera. SR
(some of which described in this book), arises in many areas such as:

1. Surveillance video [20, 55]: frame freeze and zoom region of interest
(ROI) in video for human perception (e.g., look at the license plate
in the video), resolution enhancement for automatic target recognition
(e.g., try to recognize a criminal’s face).

2. Remote sensing [29]: several images of the same area are provided, and
an improved resolution image can be sought.

3. Medical imaging (CT, MRI, Ultrasound, etc.) [59, 70, 47, 60]: several
images limited in resolution quality can be acquired, and SR technique
can be applied to enhance the resolution.

4. Video standard conversion, e.g., from NTSC video signal to HDTV sig-
nal.

This chapter targets an introduction to the SR research area, by explaining
some basic techniques of SR, an overview of the literature, and discussions
about some challenging issues for future research.
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1.2 Notations

Before talking about SR techniques, we introduce the notations we use in this
chapter. Uppercase bold letters X and Y denote the vector form in lexico-
graphical order for HR and LR images respectively. Lowercase bold letters x
and y denote the vector form in lexicographical order for HR and LR image
patches respectively. Underlined uppercase bold letters are used to denote a
vector concatenation of multiple vectors, e.g., Y is a vector concatenation of
Yk (k = 1, 2, ..., K). We use plain uppercase symbols to denote matrices, and
plain lowercase symbols to denote scalars.

1.3 Techniques for Super-Resolution

SR reconstruction has been one of the most active research areas since the
seminal work by Tsai and Huang [99] in 1984. Many techniques have been
proposed over the last two decades [4, 65] representing approaches from fre-
quency domain to spatial domain, and from the signal processing perspective
to the machine learning perspective. Early works on super-resolution mainly
followed the theory of [99] by exploring the shift and aliasing properties of
the Fourier transform. However, these frequency domain approaches are very
restricted in the image observation model they can handle, and real problems
are much more complicated. Researchers nowadays most commonly address
the problem mainly in the spatial domain, for its flexibility to model all kinds
of image degradations. This section talks about these techniques, starting from
the image observation model.

1.3.1 Image Observation Model

The digital imaging system is not perfect due to hardware limitations, acquir-
ing images with various kinds of degradations. For example, the finite aperture
size causes optical blur, modeled by Point Spread Function (PSF). The finite
aperture time results in motion blur, which is very common in videos. The fi-
nite sensor size leads to sensor blur; the image pixel is generated by integration
over the sensor area instead of impulse sampling. The limited sensor density
leads to aliasing effects, limiting the spatial resolution of the achieved image.
These degradations are modeled fully or partially in different SR techniques.

Figure 1.3 shows a typical observation model relating the HR image with
LR video frames, as introduced in the literature [65, 82]. The input of the imag-
ing system is continuous natural scenes, well approximated as band-limited
signals. These signals may be contaminated by atmospheric turbulence be-
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FIGURE 1.3: The observation model of a real imaging system relating a high
resolution image to the low-resolution observation frames with motion between
the scene and the camera.

fore reaching the imaging system. Sampling the continues signal beyond the
Nyquist rate generates the high resolution digital image (a) we desire. In
our SR setting, usually there exists some kind of motion between the cam-
era and scene to capture. The inputs to the camera are multiple frames of
the scene, connected by possibly local or global shifts, leading to image (b).
Going through the camera, these motion related high-resolution frames will
incur different kinds of blurring effects, such as optical blur and motion blur.
These blurred images (c) are then downsampled at the image sensors (e.g.,
CCD detectors) into pixels, by an integral of the image falling into each sen-
sor area. These downsampled images are further affected by the sensor noise
and color filtering noise. Finally, the frames captured by the low-resolution
imaging system are blurred, decimated, and noisy versions of the underlying
true scene.

Let X denote the HR image desired, i.e., the digital image sampled above
Nyquist sampling rate from the band-limited continuous scene, and Yk be
the k-th LR observation from the camera. X and Y ′

ks are represented in
lexicographical order. Assume the camera captures K LR frames of X, where
the LR observations are related with the HR scene X by

Yk = DkHkFkX + Vk, k = 1, 2, ..., K, (1.1)

where Fk encodes the motion information for the k-th frame, Hk models the
blurring effects, Dk is the down-sampling operator, and Vk is the noise term.
These linear equations can be rearranged into a large linear system

⎡
⎢⎢⎢⎢⎣

Y1

Y2

·
·

YK

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

D1H1F1

D2H2F2

·
·

DKHKFK

⎤
⎥⎥⎥⎥⎦

X + V (1.2)

or equivalently
Y = MX + V (1.3)
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The involved matrices Dk, Hk, Fk, or M are very sparse, and this linear system
is typically ill-posed. Furthermore, in real imaging systems, these matrices are
unknown and need to be estimated from the available LR observations, leaving
the problem even more ill-conditioned. Thus, proper prior regularization for
the high resolution image is always desirable and often even crucial. In the
following, we will introduce some basic super-resolution techniques proposed
in the literature and give an overview of the recent developments.

1.3.2 Super-Resolution in the Frequency Domain

The pioneering work for super-resolution traces back to Tsai and Huang [99],
in which the authors related the high resolution image with multiple shifted
low-resolution images by a frequency domain formulation based on the shift
and aliasing properties of the Continuous and Discrete Fourier Transforms.
Let x(t1, t2) denote a continuous high-resolution scene. The global translations
yield K shifted images, xk(t1, t2) = x(t1 +�k1 , t2 +�k2), with k = 1, 2, ..., K,
where �k1 and �k2 are arbitrary but known shifts. The continuous Fourier
transform (CFT) of the scene is given by X (u1, u2) and those of the translated
scenes by Xk(u1, u2). Then by the shifting properties of the CFT, the CFT of
the shifted images can be written as

Xk(u1, u2) = exp [j2π(�k1u1 +�k2u2)]X (u1, u2). (1.4)

The shifted images are impulse sampled with the sampling period T1 and T2 to
yield observed low-resolution image yk[n1, n2] = xk(n1T1 +�k1 , n2T2 +�k2)
with n1 = 0, 1, 2, ..., N1 − 1 and n2 = 0, 1, 2, ..., N2 − 1. Denote the discrete
Fourier transforms (DFTs) of these low-resolution images by Yk[r1, r2]. The
CFTs of the shifted images are related with their DFTs by the aliasing prop-
erty:

Yk[r1, r2] =
1

T1T2

∞∑
m1=−∞

∞∑
m2=−∞

Xk

(
2π

T1

(
r1

N1
−m1

)
,
2π

T2

(
r2

N2
−m2

))
.

(1.5)

Assuming X (u1, u2) is band-limited, |X (u1, u2)| = 0 for |u1| ≥ (N1π)/T1,
|u2| ≥ (N2π)/T2, combining Eqn. 1.4 and Eqn. 1.5 we relate the DFT coeffi-
cients of Yk[r1, r2] with the samples of the unknown CFT of x(t1, t2) in matrix
form as 2

Y = ΦX , (1.6)

where Y is a K × 1 column vector with the kth element being the DFT coeffi-
cient Yk[r1, r2], X is a N1N2× 1 column vector containing the samples of the
unknown CFT coefficients of x(t1, t2), and Φ is a K ×N1N2 matrix relating

2Strictly, subscripts {r1, r2} should be used in the following equation. We omit those for
an uncluttered presentation.
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Y and X . Eqn. 1.6 defines a set of linear equations from which we intend to
solve X and then use the inverse DFT to obtain the reconstructed image.

The above formulation for SR reconstruction assumes a noise-free and
global translation model with known parameters. The downsampling process
is assumed to be impulse sampling, with no sensor blurring effects modeled.
Along this line of work, many extensions have been proposed to handle more
complicated observation models. Kim et al. [49] extended [99] by taking into
account the observation noise as well as spatial blurring. Their later work in
[5] extend the work further by introducing Tikohonov regularization [95]. In
[89], a local motion model is considered by dividing the images into overlap-
ping blocks and estimating motions for each local block individually. In [98],
the restoration and motion estimation are done simultaneously using an EM
algorithm. However, the frequency domain SR theory of these works did not
go beyond as what was initially proposed. These approaches are computation-
ally efficient, but limited in their abilities to handle more complicated image
degradation models and include various image priors as proper regularization.
Later works on super-resolution reconstruction have been almost exclusively
in the spatial domain.

1.3.3 Interpolation-Restoration: Non-Iterative Approaches

Many spatial domain approaches [4, 82, 65, 2] have been proposed over the
years to overcome the difficulties of the frequency domain methods. As the
HR image and the LR frames are related in a sparse linear system (1.3),
similar to the traditional single image restoration problem [26], many flexible
estimators can be applied to the SR reconstruction. These include Maximum
Likelihood (ML), Maximum a Posteriori (MAP)[84, 35], and Projection Onto
Convex Sets (POCS)[88]. In this section, we start with the simplest and a
noniterative forward model for SR reconstruction in the spatial domain, in
analogy to the frequency domain approach.

Assume Hk is Linearly Spatial Invariant (LSI) and is the same for all K
frames, and we denote it as H . Suppose Fk considers only simple motion
models such as translation and rotation, then H and Fk commute [27, 30] and
we get

Yk = DkFkHX + Vk = DkFkZ, k = 1, 2, ..., K, (1.7)

which motivates a forward noniterative approach based on interpolation and
restoration. There are three stages for this approach 1) low-resolution image
registration; 2) nonuniform interpolation to get Z, and 3) deblurring and noise
removal to get X. Figure 1.4 shows the procedure of such an approach. The
low-resolution frames are first aligned by some image registration algorithm
[77] to subpixel accuracy. These aligned low-resolution frames are then put
on a high-resolution image grid, where nonuniform interpolation methods are
used to fill in those missing pixels on the HR image grid to get Z. At last, Z
is deblurred by any classical deconvolutional algorithm with noise removal to
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achieve X. Keren et al. [48] proposed an early two-step approach to SR recon-
struction based on a global translation and rotation model. Gross et al. [101]
proposed a nonuniform interpolation of a set of spatially shifted low-resolution
images by utilizing the generalized multi-channel sampling theorem by Yen
[109] and later Papulis [64], followed by deblurring. Nguyen and Milanfar [62]
proposed an efficient wavelet-based interpolation SR reconstruction algorithm
by exploiting the interlacing sampling structure in the low-resolution data.
Alam et al. [1] presented an efficient interpolation scheme based on weighted
nearest neighbors, followed by Wiener filtering for deblurring. Focusing on the
special case of SR reconstruction where the observation is composed of pure
translation, space invariant blur, and additive Gaussian noise, Elad and Hel-
Or [27] presented a very computationally efficient algorithm. [52] proposed
a triangulation-based method for interpolating irregularly sampled data. The
triangulation method, however, is not robust to noise commonly present in real
applications. Based on the normalized convolution [50], Pham et al. [71] pro-
posed a robust certainty and a structure-adaptive applicability function to the
polynomial facet model and applied it to fusion of irregularly sampled data.
Recently, Takeda et al. [91] proposed an adaptive steering kernel regression
for interpolation on the high-resolution image grid where the low-resolution
images are registered and mapped on.

These interpolation-restoration forward approaches are intuitive, simple,
and computationally efficient [30], [18], assuming simple observation models.
However, the step-by-step forward approach does not guarantee optimality
of the estimation. The registration error can easily propagate to the later
processing. Also, the interpolation step is suboptimal without considering the
noise and blurring effects. Moreover, without the HR image prior as proper
regularization, the interpolation based approaches need special treatment of
limited observations in order to reduce aliasing.

1.3.4 Statistical Approaches

Unlike the interpolation-restoration approaches, statistical approaches relate
the SR reconstruction steps stochastically toward optimal reconstruction. The
HR image and motions among low-resolution inputs can be both regarded as
stochastic variables. Let M(ν, h) denote the degradation matrix defined by
the motion vector ν and blurring kernel h, the SR reconstruction can be cast
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FIGURE 1.4: The interpolation SR approach based on alignment and post
processing of deblurring.

into a full Bayesian framework:

X = argmax
X

Pr(X|Y )

= argmax
X

∫

ν,h

Pr(X, M(ν, h)|Y )dν

= argmax
X

∫

ν,h

Pr(Y |X, M(ν, h))Pr(X, M(ν, h))
Pr(Y )

dν

= argmax
X

∫

ν,h

Pr(Y |X, M(ν, h))Pr(X)Pr(M(ν, h))dν.

(1.8)

Note that X and M(ν, h) are statistically independent [35]. Here
Pr(Y |X, M(ν, h)) is the data likelihood, Pr(X) is the prior term on the
desired high-resolution image and Pr(M(ν, h)) is a prior term on the motion
estimation. V in Eqn. 1.3 usually stands for additive noise, assumed to be a
zero-mean and white Gaussian random vector. Therefore,

Pr(Y |X, M(ν, h)) ∝ exp
{
− 1

2σ2
‖Y −M(ν, h)X‖2

}
. (1.9)

Pr(X) is typically defined using the Gibbs distribution in an exponential form

Pr(X) =
1
Z

exp{−αA(X)}, (1.10)

where A(X) is a non-negative potential function, and Z is just a normalization
factor. The Bayesian formulation in Equation 1.8 is complicated and difficult
to evaluate due to the integration over motion estimates. If M(ν, h) is given
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or estimated beforehand (denote as M), Eqn. 1.8 can be simplified as

X = argmax
X

Pr(Y |X, M)Pr(X)

= arg min
X
{‖Y −MX‖2 + λA(X)},

(1.11)

where λ absorbs the variance of the noise and α in Eqn. 1.10, balancing the
data consistence and the HR image prior strength. Eqn. 1.11 is the popular
Maximum a Posteriori (MAP) formulation for SR, where M is assumed to be
known. The statistical approaches discussed below vary in the ways of treat-
ing degradation matrix M(ν, h), prior term Pr(X), and statistical inference
methods toward Equation 1.8.

1.3.4.1 Maximum Likelihood

If we assume uniform prior over X, Eqn. 1.11 reduces to the simplest max-
imum likelihood (ML) estimator (motion estimation is assumed as a prior).
The ML estimator relies on the observations only, seeking the most likely
solution for the observations to take place by maximizing p(Y |X), giving

X̂ML = arg min
X
‖Y −MX‖2. (1.12)

Differentiating Eqn. 1.12 with respect to X and setting the derivative to be
zero gives the classical pseudo-inverse result

X̂ML = (MT M)−1MT Y . (1.13)

If MT M is singular, the problem is ill-posed and there are infinite many
possible solutions due to the null space of M . This naturally leads to the term
of regularization for the sake of a unique solution from purely the algebraic
point of view, which although can be interpreted in the MAP framework.
For computation, direct inverse of matrix as MT M is usually prohibitive in
practice due to the high-dimensionality problem. For example, if the low-
resolution images are of size 100× 100 and are to be zoomed to a single high-
resolution frame X of 300 × 300, M is of the size 90000 × 90000, requiring
inverse of a matrix of size 90000× 90000. Therefore, many iterative methods
for practical ways to solve this large set of sparse linear equations have been
suggested in the literature [111].

Irani and Peleg proposed a simple but very popular method, based on an
error back-projection scheme inspired by computer-aided tomography, in [39,
40, 41]. The algorithm iteratively updates the current estimation by adding
back the warped simulation error convolved with a back-projection function
(BPF):

Xi+1 = Xi + c
∑

k

F−1
k [hbpf ∗ S ↑ (Ŷk − Yk)], (1.14)

where c is a constant, hbpf is the back-projection kernel, S ↑ is the upsam-
pling operator, and Ŷk is the simulated k-th LR frame from the current HR
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estimation. In [41], the authors applied this idea to real applications by in-
corporating a multiple motion tracking algorithm to deal with partially oc-
cluded objects, transparent objects and some objects of interest. The back-
projection algorithm is simple and flexible in handing many observations with
different degradation procedures. However, the solution of back-projection is
not unique, depending on the initialization and the choice of back-projection
kernel. As shown in [26] and [10], the back-projection algorithm is none other
than an ML estimator. The choice of BPF implies some underlying assumption
about the noise covariance of the observed low-resolution pixels [10]. Treating
the motion estimates M(ν) as unknown, Tom et al. [98] proposed an ML SR
image estimation algorithm to estimate the subpixel shifts, noise of the image,
and the HR image simultaneously. The proposed ML estimation is treated by
the Expectation-Maximization (EM) algorithm.

As in the image denoising and single image expansion case, direct ML
estimator without regularization in SR where the number of observations is
limited can be severely ill-posed, especially when the zoom factor is large
(e.g. greater than 2). The ML estimator is usually very sensitive to noise,
registration estimation errors, and PSF estimation errors [10], and therefore
proper regularization on the feasible solution space is always desirable. This
leads to the mainstream SR reconstruction approaches based on MAP.

1.3.4.2 Maximum a Posteriori

Many works [46, 84, 15] in SR reconstruction have followed the MAP approach
in Eqn. 1.11, where the techniques vary in the observation model assumptions
and the prior term Pr(X) for the desired solution. Different kinds of priors
for natural images have been proposed in the literature, but none of them
stands out as the lead. In the following, we list three commonly used image
priors for the SR reconstruction techniques.

1. Gaussian MRF. The Gaussian Markov Random Field (GMRF) [37, 33]
takes the form

A(X) = XT QX, (1.15)

where Q is a symmetric positive matrix, capturing spatial relations be-
tween adjacent pixels in the image by its off-diagonal elements. Q is
often defined as ΓT Γ, where Γ acts as some first or second derivative
operator on the image X. In such a case, the log likelihood of the prior
is

log p(X) ∝ ‖ΓX‖2, (1.16)

which is well-known as the Tikhonov regularization [95, 26, 63], the most
commonly used method for regularization of ill-posed problems. Γ is usu-
ally referred as Tikhonov matrix. Hardie et al. [35] proposed a joint MAP
framework for simultaneous estimation of the high-resolution image and
motion parameters with Gaussian MRF prior for the HR image. Bishop
and Tipping [96] proposed a simple Gaussian process prior where the
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covariance matrix Q is constructed by spatial correlations of the image
pixels. The nice analytical property of Gaussian process prior allows a
Bayesian treatment of the SR reconstruction problem, where the un-
known high-resolution image is integrated out for robust estimation of
the observation model parameters (unknown PSFs and registration pa-
rameters). Although the GMRF prior has many analytical advantages, a
common criticism for it associated with super-resolution reconstruction
is that the results tend to be overly smooth, penalizing sharp edges that
we desire to recover.

2. Huber MRF. The problem with GMRF can be ameliorated by mod-
eling the image gradients with a distribution with heavier tails than
Gaussian, leading to the popular Huber MRF (HMRF) where the Gibbs
potentials are determined by the Huber function,

ρ(a) =
{

a2 |a| ≤ α
2α|a| − α2 otherwise,

(1.17)

where a is the first derivative of the image. Such a prior encourages piece-
wise smoothness, and can preserve edges well. Schultz and Stevenson
[83] applied this Huber MRF to the single image expansion problem,
and later to the SR reconstruction problem in [84]. Many later works on
super-resolution employed the Huber MRF as the regularization prior,
such as [11, 12, 15, 13, 73, 74] and [3].

3. Total Variation. The Total Variation (TV) norm as a gradient penalty
function is very popular in the image denoising and deblurring litera-
ture [81, 54, 16]. The TV criterion penalizes the total amount of change
in the image as measured by the �1 norm of the magnitude of the gra-
dient

A(X) = ‖∇X‖1 (1.18)

where ∇ is a gradient operator that can be approximated by Laplacian
operators [81]. The �1 norm in the TV criterion favors sparse gradients,
preserving steep local gradients while encouraging local smoothness[13].
Farsiu et al. [30] generalized the notation of TV and proposed the so
called bilateral TV (BTV) for robust regularization.

For more comparisons of these generic image priors on effecting the solution
of super-resolution, one can further refer to [10] and [25].

1.3.4.3 Joint MAP Restoration

Multiple frame SR reconstruction can be divided into two subproblems: LR
registration and HR estimation. Many previous algorithms treat these two
processes as two distinct processes: first do registration and then estimation by
MAP, which is suboptimal as registration and estimation are interdependent.
Motion estimation and HR estimation can benefit each other if interactions
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between them are allowed. In joint MAP restoration, Eqn. 1.11 is extended to
include the motion and PSF estimates as unknowns for inference:

{X, ν, h} =arg max
X,ν,h

Pr(Y |X, M(ν, h))Pr(X)Pr(M(ν, h))

=arg min
X,ν,h

− log [Pr(Y |X, M(ν, h))]− log [Pr(X)]

− log [Pr(M(ν, h))] .

(1.19)

Tom et al. [98] divided the SR problem into three subproblems, namely
registration, restoration and interpolation. Instead of solving them indepen-
dently they simultaneously estimated registration and restoration by maxi-
mizing likelihood using Expectation-Maximization (EM). Later they included
interpolation into the framework and estimated all of the unknowns using EM
in [97]. [35] applied the MAP framework for simultaneous estimation of the
high-resolution image and translation motion parameters (PSF is taken as a
known prior). The high-resolution image and motion parameters are estimated
using a cyclic coordinate-descent optimization procedure. The algorithm con-
verges slowly but improves the estimation a lot. Segall et al. [86, 85] presented
an approach of joint estimation of dense motion vectors and HR images applied
to compressed video. Woods et al.[105] treated the noise variance, regulariza-
tion and registration parameters all as unknowns and estimated them jointly
in a Bayesian framework based on the available observations. Chung et al. [19]
proposed a joint optimization framework and showed superior performance to
the coordinate descent approach [46]. The motion model they handled is affine
transformations. To handle more complex multiple moving objects problems
in the SR setting, Shen et al. [87] addressed the problem by MAP formulation
combining motion estimation, segmentation and SR reconstruction together.
The optimization is done in a cyclic coordinate descent process similar to [46].

1.3.4.4 Bayesian Treatments

Due to limited low-resolution observations, the SR reconstruction problem is
ill-posed in nature. Joint MAP estimation of motion parameters, PSF, and the
HR image may face the problem of overfitting [96]. While motion and blur-
ring is difficult to model in general, simple models spanned by few parameters
are sufficient for SR applications in many scenarios. Given the low-resolution
observations, however, estimating these parameters by integrating over the
unknown high-resolution image is a useful approach. Bishop and Tipping [96]
proposed such a Bayesian approach for SR where the unknown high-resolution
image is integrated out and the marginal is used to estimate the PSF and
motion parameters. To make the problem analytically tractable, a Gaussian
Markov Random Field (GMRF) prior is used to model the high-resolution
image. Even though an unfavorable GMRF is used for the high-resolution im-
age, the PSF and motion parameters can still be estimated quite accurately.
Then the estimated parameters are fixed, and a MAP estimation of the HR
image is performed. An in-depth analysis similar to this for blind deconvo-
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lution is discussed in [53]. Such a Bayesian approach outperforms the joint
MAP approaches in Subsection 1.3.4.3, which will easily get overfitting with
the PSF parameters. However, the integration over the high-resolution image
is computationally heavy and the Gaussian prior over the image leads the final
reconstruction toward excess smoothness. Instead of marginalization over the
unknown high-resolution image, Pickup et al. proposed in their recent works
[73, 74, 72] to integrate over the unknown PSF and motion parameters as
in Eqn. 1.8, which is motivated to overcome the uncertainty of the registra-
tion parameters [79]. The registration parameters are estimated beforehand
and then treated as Gaussian variables with the pre-estimated values as the
means to model their uncertainty. The HR image estimation can be combined
with any favorable image prior for MAP estimation after integrating the ob-
servation model parameters. Sharper results can be obtained with such an
approach compared with [96] as reported in [73, 74, 72].

Such Bayesian treatments, by marginalizing the unknowns, demonstrate
promising power for SR recovery. However, in order for integration to be
tractable, image priors or registration parameters have to take simple para-
metric forms, limiting these models in dealing with more complex cases that
may happen in real videos. Computation could also be a concern for such
algorithms in realistic applications.

1.3.5 Example-Based Approaches

Previous super-resolution approaches rely on aggregating multiple frames that
contain complementary spatial information. Generic image priors are usually
deployed to regularize the solution properly. The regularization becomes es-
pecially crucial when an insufficient number of measurements is supplied, as
in the extreme case, only one single low-resolution frame is observed. In such
cases, generic image priors do not suffice as an effective regularization for
SR [2]. A recently emerging methodology for regularizing the ill-posed super-
resolution reconstruction is to use examples, in order to break the super-
resolution limit caused by inadequate measurements. Different from previous
approaches where the prior is in a parametric form regularizing on the whole
image, the example-based methods develop the prior by sampling from other
images, similar to [24],[38] in a local way.

One family of example-based approaches is to use the examples directly,
with the representative work proposed by Freeman et al. [31]. Such approaches
usually work by maintaining two sets of training patches, {xi}n

i=1 sampled
from the high-resolution images, and {yi}n

i=1 sampled from the low-resolution
images correspondingly. Each patch pair (xi, yi) is connected by the obser-
vation model yi = DHxi + v. This high- and low-resolution co-occurrence
model is then applied to the target image for predicting the high-resolution
image in a patch-based fashion, with a Markov Random Field (MRF) model
as shown in Figure 1.5. The observation model parameters have to be known
as a prior, and the training sets are tightly coupled with the image targeted.
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FIGURE 1.5: The MRF model for single frame super-resolution.

Patch size should also be chosen properly. If the patch size is very small, the
co-occurrence prior is too weak to make the prediction meaningful. On the
other hand, if the patch size is too large, one may need a huge training set to
find proximity patches for the current observations.

A naive way to do super-resolution with such a coupled training sets is, for
each low-resolution patch in the low-resolution image, find its nearest neigh-
bor ỹ in {yi}n

i=1, and then put the corresponding x̃ from {xi}n
i=1 to the high-

resolution image grid. Unfortunately, this simple approach will produce dis-
turbing artifacts due to noise and the ill-posed nature of super-resolution [25].
Relaxing the nearest neighbor search to k-nearest neighbors can ensure that
the proximity patch we desire will be included. Freeman et al. [31] proposed
a belief propagation [108] algorithm based on the above MRF model to se-
lect the best high-resolution patch found by k-nearest neighbors that has best
compatibility with adjacent patches. Sun et al.[90] extended this idea using
the sketch prior to enhance only the edges in the image, aiming to speed up
the algorithm. The IBP [39] algorithm is then applied as a post processing
step to ensure data consistence on the whole image. Wang et al. [103] further
followed this line of work and proposed a statistical model that can handle
unknown PSF.

The above methods are based on image patches directly, requiring large
training sets to include any patterns possibly encountered in testing. Chang
et al. [17] proposed another simple but effective method based on neighbor
embedding [93], with the assumption of correspondence between the two man-
ifolds formed by the low- and high-resolution image patches. For each low-
resolution image patch yt

k from the test image (superscript “t” distinguishes
the test patch from the training patches), the algorithm finds its k-nearest
neighborsNt from {yi}n

i=1, and computes the reconstruction weights by neigh-
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bor embedding

ŵs = argmin
ws

‖yt
k −

∑
ys∈Nt

wsys‖2,

s.t.
∑

ys∈Nt

ws = 1.
(1.20)

The reconstruction weights are then applied to generate the corresponding
high-resolution patch x̂t

k =
∑

ys∈Nt
ŵsxs. To handle the compatibility prob-

lem between adjacent patches, simple averaging in the overlapping regions is
performed. The algorithm works nicely even with smaller patch databases than
[108]. However, fixing k for each low-resolution patch may result in overfitting
or underfitting. Yang et al. [107] proposed another patch-based single frame
super-resolution method. The method is derived from the compressive sensing
theory, which ensures that linear relationships among high-resolution signals
can be precisely recovered from their low-dimensional projections [9], [22]. The
algorithm models the training sets as two dictionaries: Dh = [x1, x2, ...,xn]
and Dl = [y1, y2, ...,yn]. Given a test low-resolution image patch yt

k, the
approach basically seeks the supports by an �1 minimization [23]

ŵ =arg min
w
‖w‖1

s.t. ‖yt −Dlw‖2 ≤ σ2,
(1.21)

which can be rewritten with Lagrange multiplier as an unconstrained opti-
mization problem known as Lasso in the statistics literature [94]. The corre-
sponding high-resolution patch is recovered by xt

k = Dhŵ. Compared to the
neighbor embedding method with fixed k neighbors, Yang’s method adaptively
chooses the fewest necessary supports for reconstruction, avoiding overfitting.
Moreover, the �1 minimization formulation is more robust to noise than the
previous mentioned patch-based methods. In a later version [42], this approach
is further extended by learning a coupled dictionary instead of using the raw
patches, allowing the algorithm to be much more efficient.

One criticism with the aforementioned methods with direct examples is
that operating on local patches cannot guarantee global optimality of the es-
timation. Another kind of example-based approach seeks to perform MAP
estimation with local priors on the image space sampled from examples. The
pioneering work by Baker and Kanade [2] formulated an explicit regulariza-
tion that demands proximity between the spatial derivatives of the unknown
image to those of the found examples. The examples are formed by a pyramid
derivative set of features, instead of raw data directly. Similar method is ap-
plied to text super-resolution in [75]. Datsenko and Elad [21] presented a global
MAP estimation where the example-based regularization is given by a binary
weighted average instead of the nearest neighbor, bypassing outliers due to
noise. This work is further extended and elaborated in [21], where the binary
weighting scheme is relaxed. Another noteworthy approach for example-based
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approach is by Protter et al. [78], generalized from the nonlocal means denois-
ing algorithm [8]. Instead of sampling examples from other training images,
the algorithm explores self-similarities within the image (or sequence) and ex-
tract the example patches from the target image (or sequence) itself. A recent
work by Glasner et al. further explored self-similarities in images for SR by
combining the classical algorithm based on subpixel displacements and the
example-based method based on patch pairs extracted from the target image.

The use of examples can be much more effective when dealing with nar-
row families of images, such as text and face images. A group of algorithms
have emerged targeting face super-resolution in recent years due to its im-
portance in surveillance scenarios. Face super-resolution is usually referred
to as face hallucination, following the early work by Baker and Kanade [2].
Capel and Zisserman [14] proposed an algorithm where PCA [45] subspace
models are used to learn parts of the faces. Liu et al. [58], [57] proposed a
two-step approach toward super-resolution of faces, where the first step uses
the eigenface [100] to generate a medium resolution face, followed by the non-
parametric patch-based approach [31] in the second step. Such an Eigenface-
based approach has been explored in several later works [32],[104] too. Yang
et al. [106] proposed a similar two-step approach. Instead of using the holistic
PCA subspace, [106] uses local Nonnegative Matrix Factorization (NMF)[51]
to model faces and the patch-based model in the second step is adopted from
[107]. Jia and Gong [43], [44] proposed the tensor approach to deal with more
face variations, such as illuminations and expressions. Although these face hal-
lucination algorithms work surprisingly well, they only apply to frontal faces,
and only few works have been devoted on evaluating face hallucination for
recognition [32], [36].

Example-based regularization is effective in our SR problem when insuffi-
cient observations are available. There are still a number of questions we need
to answer regarding this kind of approaches. First, how to choose the opti-
mal patch size given the target image. Perhaps a multiresolution treatment is
needed. Second, how to choose the database. Different images have different
statistics, and thereby need different databases. An efficient method for dic-
tionary adaptation to the current target image may suggest a way out. Third,
how to use the example-based prior more efficiently. The computation issue
could be a difficulty for practical applications. Readers are suggested to refer
to [25] for more detailed analysis on example-based regularization for inverse
problems.

1.3.6 Set Theoretic Restoration

Besides the optimization approaches derived from stochastic view as discussed
above, another stream of methods is through the well-known Projection onto
Convex Sets (POCS) [110]. The POCS methods approach the SR problem by
formulating multiple constraining convex sets containing the desired image as
a point within the sets. Defining such convex sets is flexible and can incorpo-
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rate different kinds of constraints or priors, even nonlinear and nonparametric
constraints. As an example, we introduce several commonly used convex sets
in the POCS methods. The data consistency or reconstruction constraints can
be modeled as K convex sets:

Ck =
{
X
∣∣‖DkHkFkX − Yk‖2 ≤ σ2, 1 ≤ k ≤ K

}
. (1.22)

Smoothness constraints can be defined as

CΓ =
{
X
∣∣‖ΓX‖p < σ2

}
. (1.23)

where p = 1, 2,∞ denotes different norms. Amplitude constraints can also be
modeled:

CA =
{
X
∣∣A1 ≤ X[m, n] ≤ A2

}
. (1.24)

With a group of M convex sets, the desired solution lies in the intersection
of these sets X ∈ Cs =

⋂M
i=1 Ci. The POCS technique suggests the following

recursive algorithm for finding a point within the intersection set given an
initial guess:

Xk+1 = PMPM−1 · · ·P2P1Xk, (1.25)

where X0 is an initial guess, and Pi is the projection operator that projects
a point onto a closed, convex set Ci.

Early POCS techniques for SR reconstruction were proposed by Stark and
Oskoui [88]. Extensions were proposed to handle space-varying PSF, motion
blur, sensor blur, and aliasing sampling effects in [68], [67], [69]. Many super-
resolution works only consider nonzero aperture size (the lens blur, PSF),
but not finite aperture time (motion blur) which is quite common in real
low-resolution videos. [69] is the early work to take into account the motion
blur in SR reconstruction of videos based on POCS technique. As the motion
blurring caused by a finite aperture time will in general be space- and per-
haps time-varying, it cannot be factored out of the SR restoration problem
and performed as a separate post-processing step. The POCS technique can
conveniently handle such problems. Extending this method, Eren et al. [28]
proposed a POCS-based approach for robust, object-based SR reconstruction.
The proposed method employs a validity map to disable projections based on
observations with inaccurate motion estimation, and a segmentation map for
object-based processing. Elad and Feuer [26] analyzed and compared the
ML, MAP and POCS methods for super-resolution, and proposed a hybrid
approach. Patti and Altunbasak [66] extended their earlier work in the image
observation model to allow high order interpolation and modified constraint
sets to reduce the edge ringing artifacts.

The advantage of the POCS technique lies in its simplicity to incorporate
any kinds of constraints and priors that may present as impossible for those
stochastic approaches. However, POCS is notorious for its heavy computation
and slow convergence. The solution is not unique, depending on the initial
guess. The POCS methods also assume priors on the motion parameters and
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system blurs. They cannot estimate those registration parameters and the
high-resolution image as in the stochastic approaches simultaneously. The hy-
brid approach combining a stochastic view and the POCS philosophy suggests
a promising way to pursue.

1.4 Challenge Issues for Super-Resolution

In the previous sections, we have discussed several basic techniques for SR
reconstruction. Although many different approaches have been proposed since
the SR concept was introduced, most approaches work well on toy data rather
than in real problems. In building a practical SR system, many challenging
issues still lay ahead preventing the SR techniques from wide applications. In
the following, we list several challenges that we think are important for the
future development and application of SR techniques.

1.4.1 Image Registration

Image registration is critical for the success of multiframe SR reconstruction,
where complementary spatial samplings of the HR image are fused. The im-
age registration is a fundamental image processing problem that is well known
as ill-posed. The problem is even more difficult in the SR setting, where the
observations are low-resolution images with heavy aliasing artifacts. The per-
formance of the standard image registration algorithms decreases as the res-
olution of the observations goes down, resulting in more registration errors.
Artifacts caused by these registration errors are visually more annoying than
the blurring effect resulting from the interpolation of a single image. Tradi-
tional SR reconstruction usually treats image registration as a distinct process
from the HR image estimation. Therefore, the recovered HR image quality de-
pends largely on the image registration accuracy from the previous step. Many
image registration techniques derived from different principles have been pro-
posed in the literature [7, 114]. However, Robinson and Milanfar [79] showed
that the registration performance is bounded even for the simplest case of
global translation.

LR image registration and the HR image estimation are actually inter-
dependent [80]. On one hand, accurate subpixel motion estimation benefits
HR image estimation. On the other hand, high-quality HR image can facili-
tate accurate motion estimation. Therefore, tailored to the SR reconstruction
problem, the LR image registration can be addressed together with the HR
image reconstruction, leading to the joint ML [97] or MAP [35, 87, 76] frame-
work for simultaneous estimation. These joint estimation algorithms capture
the dependence between LR image registration and HR image estimation, and
performance improvements are observed. However, with limited observations,
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the joint estimation for registration parameters and HR image may result in
overfitting. To overcome this overfitting problem, Tipping and Bishop [96]
employed a Bayesian approach for estimating both registration and blur pa-
rameters by marginalizing the unknown high-resolution image. The algorithms
shows noteworthy estimation accuracy both for registration and blur param-
eters, however the computation cost is very high. Pickup et al. [73, 74, 72]
instead cast the Bayesian approach in another way by marginalizing the un-
known registration parameters, to address the uncertainty inherent with the
image registration [79].

The stochastic approaches associating the HR image estimation toward im-
age registration do demonstrate promising results, however such parametric
methods are limited in the motion models they can effectively handle. Usually,
some simple global motion models are assumed. Real videos are complicated
comprising arbitrary local motions, where parametrization of the motion mod-
els may be intractable. Optical flow motion estimation can be applied to such
scenarios. However, the insufficient measurements for local motion estimations
make these algorithms vulnerable to errors, which may cause disasters for SR
reconstruction [112]. Another promising approach toward SR reconstruction
is the nonparametric methods, which try to bypass the explicit motion esti-
mation. Protter et al. [78] extended the non-local means denoising algorithm
to SR reconstruction, where fuzzy motion estimation based on block matching
is used. Later they proposed a probabilistic motion model in [77], which is a
nonparametric model analogy to [72]. Both [78] and [77] can handle complex
motion patterns in real videos. Compared to the classical SR methods based
on optical flow motion estimation, Protter’s methods reduce the errors caused
by misalignment by a weighting strategy over multiple possible candidates.
Takeda et al. [92] on the other hand applied an 3-D steering kernel proposed
in their early work [91] to video, which also avoids explicit motion estimation,
for denoising and SR reconstruction. The 3-D steering kernel captures both
spatial and temporal structure, encoding implicit motion information, and
thus can be applied to both spatial and temporal SR for video with complex
motion activities. While methods without explicit motion estimation indeed
produce promising results toward the practical applicability of SR techniques,
further improvements may include computation efficiency, combining adaptive
interpolation or regression together with deblurring, and generalizing obser-
vation models to 3-D motions in video, e.g., out-of-plane rotation.

1.4.2 Computation Efficiency

Another difficulty limiting practical application of SR reconstruction is its
intensive computation due to a large number of unknowns, which require ex-
pensive matrix manipulations. Real applications always demand efficiency of
the SR reconstruction to be of practical utility, e.g., in the surveillance video
scenarios, it is desired for the SR reconstruction to occur in real time. Ef-
ficiency is also desirable for SR systems with users in the loop for tuning
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parameters. Many SR algorithms targeting efficiency fall into the previously
discussed interpolation-restoration approach, such as [27], [1], [61], and [34].
In [34], Hardie showed the computation superiority of his algorithm over pre-
vious efficient algorithms proposed in [1] and [61], and claimed that the al-
gorithm can be applied in real time with global translation model. However,
the computation goes up significant when nontranslation model occurs, which
can be ameliorated by massive parallel computing. Others tried to examine
particular modeling scenarios to speed up the optimization problem. Zomet
and Peleg [115] and Farsiu et al. [30] studied the application of Dk, Hk, and
Fk directly as the corresponding image operations of downsampling, blurring
and shifting, bypassing the need to explicitly construct the matrices, bringing
significant speed ups. [6] combined a slightly modified version of [27] and [30]
and implemented a real-time SR system using FPGA, a nice attempt to the
practical use of SR.

However, such algorithms require precise image registration, which is com-
putation intensive in the first place. Moreover, these algorithm can only handle
simple motion models efficiently up to now, far from application in real com-
plex video scenarios. For videos with arbitrary motions, [92] suggests promis-
ing directions for seeking efficient algorithms. It is also interesting to see how
parallel computing, e.g., GPU, and hardware implementations affect the fu-
ture applications of SR techniques.

1.4.3 Robustness Aspects

Traditional SR techniques are vulnerable to the presence of outliers due to
motion errors, inaccurate blur models, noise, moving objects, motion blur,
etc. These inaccurate model errors cannot be treated as Gaussian noise as the
usual assumption with �2 reconstruction residue. Robustness of SR is of in-
terest because the image degradation model parameters cannot be estimated
perfectly, and sensitivity to outliers may result in visually disturbing artifacts,
which are intolerable in many applications, e.g., video standard conversion.
However, not enough work has been devoted to such an important aspect.
Chiang and Boulte [18] used median estimation to combine the upsampled
images to cope with outliers from non-stationary noise. Zomet et al. [116]
cast the problem in a different way, where a robust median-based gradient
is used for the optimization to bypass the influence of outliers. Farsiu et al.
[30],[82] changed the commonly used �2 norm into �1 norm for robust estima-
tion similar to [18] and robust regularization. [113] introduced a simultaneous
super-resolution with Huber norm as the prior for robust regularization. Pham
et al. [71] proposed a robust certainty to each neighboring sample for inter-
polating unknown data, with the same photometric-based weighting scheme
used in bilateral filtering. A similar uncertainty scheme is also used in the
probabilistic motion model [77] for taking care of optical flow motion esti-
mation errors based on block matching. Many of these algorithms showed
improvements for outliers assumed on the toy data, where more experimental
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evaluations are needed to see how much the robustness efforts can benefit real
SR performance.

1.4.4 Performance Limits

The SR reconstruction has become a hot research topic since it was intro-
duced, and thousands of SR papers have bloomed into publications. However,
not much work has been devoted to the fundamental understanding of the
performance limits of these SR reconstruction algorithms. Such a performance
limit understanding is important. For example, it will shed light on SR camera
design, helping to analyze factors such as model errors, zooming factors and
number of frames, etc. In general, an ambitious analysis of the performance
limits for all SR techniques could be intractable. First, SR reconstruction is a
complex task that consists of many interdependent components. Second, it is
still unknown what is the most informative prior given the SR task, especially
for the example-based approaches. Last, a good measure instead of simple
MSE is still needed for performance evaluation. It has been recognized that
an estimation with higher MSE does not have to be visually more appealing.
For example, bicubic interpolation usually achieves smaller MSE compared
with those recovered by some example-based approaches [107].

Several works attempting at the performance understanding have been
proposed over the last several years. [2] analyzed the numerical conditions of
the SR linear systems, and concluded that as the zoom factor increases the
general image prior is of less and less help for SR. [56] derived the performance
limits based on matrix perturbation, but with the assumption that image reg-
istration is known as a prior. With simple translation model, Robinson and
Milanfar in [79], use the Cramér-Rao (CR) bounds to analyze the registration
performance limit. They extend this work in [80] to give a thorough analysis
of SR performance with factors such as motion estimation, decimation factor,
number of frames, and prior information. The analysis is based on the MSE
criterion and the motion model is again assumed to be simple global trans-
lational. Eekeren et al. [102] evaluated several SR algorithms on real-world
data exploring several influential factors empirically. Even though these ef-
forts at understanding performance bounds are far from enough about SR,
they indeed suggest ways for people to follow.

While it is hard to draw consistent conclusions for different SR techniques,
in terms of performance evaluation, some benchmark and realistic datasets
are needed for fair comparison and algorithm understanding. Future research
should pursue more theoretical analysis and performance evaluation for di-
recting SR technique developments.
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Abstract — This chapter will describe an approach to super-resolution (SR)
based on adaptive Wiener filters. In this approach, multiple frames are regis-
tered relative to a common grid. Output SR pixel values are estimated using
a type of adaptive Wiener filter that forms a weighted sum of neighboring
observed pixels on the registered high-resolution grid. The filter weights are
selected to minimize the mean squared error based on statistical correlation
models or empirical training data. This estimation step simultaneously serves
both a nonuniform interpolation function and a restoration function. This SR
approach is most appropriate when the point spread function model and the
motion model commute. If the filter weights can be precomputed, this ap-
proach can lead to very fast implementations. Note that the weights adapt to
different spatial positions of the observed samples and can also be designed
to adapt to local structure in the intensity data (e.g., edges, lines, and flat re-
gions). We consider adaption based on vector quantization and local variance.

35



36 Super-Resolution Imaging

We also consider fast algorithms with precomputed weights and algorithms
with weights computed on the fly.

2.1 Introduction

The spatial sampling rate of an imaging system is determined by the spac-
ing of the detectors in the focal plane array (FPA). The spatial frequencies
present in the image on the focal plane are band-limited by the optics. This
is due to diffraction through a finite aperture. To guarantee that there will be
no aliasing during image acquisition, the Nyquist criterion dictates that the
sampling rate must be greater than twice the cut-off frequency of the optics.
However, optical designs involve a number of trade-offs and typical imaging
systems are designed with some level of aliasing. We will refer to such sys-
tems as detector limited, as opposed to optically limited. Furthermore, with
or without aliasing, imaging systems invariably suffer from diffraction blur,
optical abberations, and noise.

Multiframe super-resolution (SR) processing has proven to be successful
in reducing aliasing and enhancing the resolution of images from detector lim-
ited imaging systems [25]. If relative motion between the scene and camera is
present, sampling diversity is provided by the multiple looks at the scene that
can be exploited to combat undersampling. Such processing can be viewed
as trading temporal resolution for spatial resolution. This allows us to reduce
or eliminate aliasing artifacts. Furthermore, if aliasing can be reduced to a
minimal level, linear restoration techniques can be successfully applied to de-
convolve the blurring effects of the system point spread function (PSF). Note
that if little or no aliasing is present in the uncompensated imaging system,
single frame restoration may be a more appropriate choice for many applica-
tions. If one does employ multiframe SR, it is critical that the motion include
a subpixel component and be estimated accurately.

A class of computationally simple multiframe SR methods are those based
on nonuniform interpolation [12, 2, 19, 30, 1, 36, 26, 34, 23, 10, 11, 33, 28, 35].
Such methods are of particular interest for implementing SR in real-time or
soft real-time. These nonuniform interpolation based methods typically begin
by using image registration to position the observed pixel values from each
frame onto a common high-resolution (HR) grid. However, the extra samples
are generally distributed nonuniformly, unless the motion is very carefully con-
trolled. The nonuniformly sampled HR grid is of little practical use. Therefore,
a nonuniform interpolation operation is used to create a uniformly sampled
high-resolution (HR) image with reduced aliasing. The nonuniform interpola-
tion based SR methods then typically employ a restoration step to reduce the
blurring effects of the system PSF.

Most nonuniform interpolation based SR methods use independent inter-
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polation and restoration steps. One potential downside of this is that an inde-
pendent restoration step may aggravate artifacts from an imperfect nonuni-
form interpolation step. For example, when the distribution of low resolution
pixels on the HR grid is poor, any nonuniform interpolation step will suffer. An
independent restoration step can easily exaggerate any resulting artifacts. A
new approach, using an adaptive Wiener filter (AWF), combines the nonuni-
form interpolation and restoration into a single step [22, 14, 15]. This provides
potential computational savings as well as robustness to the spatial distribu-
tion of low-resolution pixels.

The AWF SR method forms a nonuniformly sampled HR grid in the tra-
ditional way. However, the AWF method produces the final output pixels
with a single spatially-adaptive weighted sum operation using a finite moving
window. Here each output HR pixel is formed as a weighted sum of neighbor-
ing observed pixels from the nonuniform HR grid. By designing appropriate
weights, the output from this single weighted sum operation is not only on a
uniform grid, but also restored from the system PSF. Note that the weights
in the AWF SR approach are optimized for the specific local spatial arrange-
ment of the neighboring pixels on the HR grid. In contrast, when independent
nonuniform interpolation and restoration steps are used, the restoration step
does not exploit knowledge of the original distribution of the observed pixels.
Rather, it only sees a uniform HR produced the nonuniform interpolation.

Some variations of the AWF SR have been explored. In [22], the HR grid
is discrete and the spatial locations of the observed pixels are quantized to
fit on the discrete grid. If more than one observed pixel falls at a particular
location, those multitemporal pixel values are averaged to fill the HR grid
location. Furthermore, the work in [22] uses vector quantization on the pixel
intensities to select the weights used for each observation window, in addi-
tion to the specific spatial distribution of samples. Empirical models for the
required correlations are used in [22] based on training data. In contrast, the
work in [14] uses an unquantized HR grid and theoretical parametric corre-
lation models. This eliminates the need for training data and reduces error
due to sample position quantization. Local estimates of the signal variance
are employed in [14] to allow the weights to adapt to both the spatial distri-
bution of samples and the local signal-to-noise ratio. The vector quantization
in [22] and locally adaptive SNR in [14] have been observed to be beneficial
in moderate to low SNR application. In high SNRs, these extra steps may not
be necessary and can be avoided to reduce computational complexity.

The central challenge with the AWF SR method lies in determining the
weights. The approach for designing the filter weights for the AWF SR method
is based on a finite impulse response Wiener filter. Using correlation models,
weights that minimize the mean squared error (MSE) are found. The approach
is adaptive in the sense that as the spatial distribution of samples in the HR
grid vary with the position of the observation window, so do the weights.
Furthermore, spatially varying local statistics may be used to modify the
correlation model for each observation window position. Note that for pure
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global translational motion, the spatial distribution of samples on the HR grid
is periodic. This means that the number of filter weights required is relatively
small. Since computing the weights is the bulk of the computational load, such
imagery can be processed very fast with the AWF SR algorithm, even with a
nonquantized HR grid [14]. For nontranslational motion, a potentially unique
spatial pattern can be seen for each observation window. While it is possible
to calculate all of these on-the-fly, this is a high computational burden. The
work in [15] has proposed a modified version of the AWF SR algorithm that
uses a specially selected partial observation window applied to a quantized
HR grid. The partial observation window and quantized HR grid reduces the
number of distinct spatial patterns observed, reducing the number of weights
to be computed. With a reduced number of weight vectors, these can all be
precomputed prior to processing video. This allows the AWF SR algorithm
to process frames with very little computational load (given the precomputed
weights), even for nontranslational motion.

In this chapter, we review the AWF SR methods. We discuss the observa-
tion models used including motion models and system PSF models. Also, a
number of experimental results are presented to demonstrate the performance
of the AWF SR methods. The organization of the remainder of the chapter is
as follows. Section 2.2 presents the relevant observation models for the AWF
SR methods. The AWF SR algorithms are presented in Section 2.3. Exper-
imental results are provided in Section 2.4 and conclusions are presented in
Section 2.5.

2.2 Observation Model

In this section we begin with the overall image formation model. We then
discuss the motion model, registration, and finally the system PSF model.

2.2.1 Image Formation Model

The low-resolution (LR) image formation model is shown in Figure 2.1. The
model is used for many SR algorithms including those in [22, 14]. The model
begins with a desired 2-D continuous scene, d(x, y). Here this desired im-
age is assumed to be geometrically aligned with one of the observed frames,
referred to as the reference frame. A geometric transformation is used to ac-
count for any motion between acquired frames, dk(x, y) = Tpk

{d(x, y)}, for
k = 1, 2, ..., P , and the reference frame. Note that the transformation depends
on the motion model parameters in pk. Details of the motion model are pre-
sented in Section 2.2.2. Blurring from the system PSF [17, 14] occurs next
in the observation model, yielding fk(x, y) = dk(x, y) ∗ h(x, y), where h(x, y)
is the system PSF. More will be said about the PSF in Section 2.2.4. The
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FPA in the camera serves to sample the scene for each frame yielding the
vector of samples denoted f(k) for frame k. Here we shall assume that the
detector pitch is not sufficiently small to meet the Nyquist criterion, hence the
need for multiframe SR. Finally, additive noise corrupts the samples yielding
g(k) = f(k)+n(k), where n(k) contains the additive noise samples. Note that
ideal sampling of the scene would give rise to the ideal image, represented here
in lexicographical form as the vector z = [z1, z2, . . . , zK ]T . An equivalent and
entirely discrete observation model can be found to relate z to the observed
frames g(k) using an impulse invariant PSF and downsampling [17].

Let is now consider undersampling in the observation model. First note
that the optics serve to bandlimit the image in the focal plane. For example,
the radial cut-off frequency associated with PSF from diffraction-limited optics
with a circular exit pupil is [13] ρc = 1

λN , where N is the f-number of the optics
and λ is the wavelength of light. To avoid aliasing, the FPA must sample at
more than twice this cut-off frequency. This dictates that to avoid aliasing,
the detector pitch must be less than λN

2 . Consider two imaging systems in
Table 2.1 that will be used for experimental results in this chapter. System
1 uses a 256 × 256 Amber FPA with detector pitch of 50 μm and the optics
have an f-number of N = 3. System 2 uses a 20 μm pitch 640× 512 FPA from
L-3 Cincinnati Electronics also equipped with N = 3 optics. Both systems
produce 14 bit data. As can be seen in Table 2.1, both systems allow for the
acquisition of aliased imagery with the selected optics. This is very common in
imaging system design, since the desire for wide field-of-view small f-number
optics often outweighs concerns over aliasing. Thus, such systems may be
considered detector limited. Multiframe SR methods are a good choice for
resolution enhancement for such systems, given that the pixel motion can be
reliably estimated with subpixel accuracy.

Given this observation model in Figure 2.1, one approach to SR is to
treat this as an inverse problem. This generally leads to iterative image re-

FIGURE 2.1: Observation model relating the desired 2-D continuous scene,
d(x, y), and the observed LR frames.
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TABLE 2.1: Undersamping factors for two imaging systems considered here.

Imaging Optics Cutoff Detector Sampling Under-
System Frequency (ρc) Pitch Frequency sampling

1 Amber F/3 83.3 cyc/mm 50 μm 20 cyc/mm 8.33×
2 L-3 F/3 83.3 cyc/mm 20 μm 50 cyc/mm 3.33×

construction SR algorithms that seek to find a z that would give rise to the
observed g(k) when put through a discrete observation model and be con-
sistent with prior statistical models [18, 21, 4, 9, 7, 17, 39, 24, 8, 31, 16].
However, these iterative approaches can be computationally costly. A simpler
and often faster class of SR algorithms is based on nonuniform interpolation
[12, 2, 19, 30, 1, 36, 26, 34, 23, 10, 11, 33, 28, 35]. To understand these,
consider the case where the motion model and the PSF degradation processes
commute [11]. For such cases, consider switching the order of the motion model
and PSF in the block diagram in Figure 2.1. Now the motion model and uni-
form sampling blocks are back-to-back. These can equivalently be combined
into a single nonuniform sampling block. That is, motion followed by sam-
pling is equivalent to simply altering the sampling locations according to the
motion. Such an alternative observation model is shown in Figure 2.2. This
figure includes a block diagram along with a representation of the imagery at
various stages in the observation model.

Using registration, the LR pixels can be placed on a common HR grid rep-
resented by g in Figure 2.2. Nonuniform interpolation can be used to estimate
a uniform grid of samples of f(x, y) at or above the Nyquist rate. Finally,
image restoration can be applied to reduce noise and reduce the blur caused
by the system PSF, yielding an estimate of z. Note that the motion model
and PSF operations commute for translational motion due to the shift invari-
ance property of convolution. For a circularly symmetric PSF, it can be shown
that they also commute for rotation. With other types of motion, the PSF and
motion do not necessarily commute. In such cases, the observation model in
Figure 2.2 does not strictly apply and hence the interpolation-restoration SR
approaches that are based on Figure 2.2 may be less effective. However, we
have observed that useful results can often be obtained for other types of mo-
tion models using the interpolation-restoration approaches. In this chapter, we
compare the performance of several interpolation-restoration SR approaches
applied to affine motion. Note that for high levels of affine zoom or skew, one
might expect some degradation in performance because such motion does not
commute with the PSF blur. With a highly noncircularly symmetric PSF, we
might also expect to see problems with rotational motion.



Super-Resolution Using Adaptive Wiener Filters 41

2.2.2 Image Motion Model

Consider a static 3-D scene and a moving camera acquiring video for SR. The
resulting 2-D optical flow models for various scenarios are summarized in Table
2.2 [38]. Note that for a planar scene and orthographic projection, the 2-D flow
is affine. However, for the more realistic prospective projection case, but still
with a planar scene, the flow is nonlinear and can be approximated with a
quadratic flow model. For nonplanar scenes and arbitrary camera motion, the
2-D motion is dependent on the specific 3-D scene geometry. In most cases the
scene 3-D geometry is not known and estimating it is an extremely demanding
problem in its own right. Furthermore, occlusion effects and motion parallax
that can lead to discontinuities in the 2-D flow for general camera motion
and nonplanar scenes. These factors make accurate subpixel registration of
multiple frames to a common grid for SR a very difficult task. It is interesting
to note that when no translational camera motion is present (i.e., stationary
camera with angular camera pointing motion only), a simple quadratic model
is a good approximation, even for a nonplanar scene. In this camera angle
variation only scenario, there are no motion parallax or occlusion effects to
contend with and the 2-D optical flow is not scene dependent. From Table 2.2,
it can be seen that for relatively small image regions, the resulting 2-D flow can
be approximated by a affine model for the camera angle variation only case.
This is particularly true for longer focal length optics (as the nonlinear terms
are divided by the focal length). Thus, perhaps one of the most favorable

FIGURE 2.2: Alternative observation model relating a desired 2-D contin-
uous scene, d(x, y), with a set of corresponding LR frames. This model is
appropriate when the motion model and PSF commute.
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TABLE 2.2: 2-D optical flow models based on relative motion between a 3-D
rigid scene and camera [38].

Flow Type Model When Applicable
Affine vx(x, y) = p1x + p2y + p3 Planar scene with

vy(x, y) = p4x + p5y + p6 orthographic projection

Quadratic vx(x, y) ≈ p1y + p2xy + p3x2 + p4 Approximate for prospective projection

(8) = ωZy +
ωXxy

l − ωY x2

l − ωY l projection with camera angle
vy(x, y) ≈ p5x + p6xy + p7y2 + p8 variation only. ωX , ωY , ωZ are camera

= −ωZx − ωY xy

l +
ωX y2

l + ωX l angles in radians, l is focal length
Quadratic vx(x, y) ≈ Approximate for planar scene with
(10) p1x + p2y + p3x2 + p4xy + p5 full prospective projection

vy(x, y) ≈
p6x + p7y + p8y2 + p9xy + p10

Planar vx(x, y) =
p1+p2x+p3y
p7+p8x+p9y − x Exact for planar scene

Projective vy(x, y) =
p4+p5x+p6y
p7+p8x+p9y − y with full prospective projection

acquisition scenarios for video for SR involves a camera at a fixed location
panning and/or rotating from that fixed position relative to a static scene.

In this chapter, we focus on an affine motion model. Although it does not
fully capture all of types of motion in Table 2.2, it can often serve as a useful
approximation and has a number of useful properties. In particular, it only
has 6 parameters to estimate and multiple sequential affine transformations is
still an affine transformation. Thus, we can register each frame to the previous
frame and then accumulate these to reference all the frames to a common
frame or HR grid. Iterative and multiscale registration approaches also benefit
from the accumulation property of affine flow.

2.2.3 Image Registration

For the experimental results presented here, we use a global gradient-based
least-squares algorithm for estimating the affine parameters [5, 17, 27]. To
define the affine registration algorithm, consider relating a new frame d(x, y)
to a prior frame d̃(x, y) through 2-D optical flow. Neglecting occlusion effects
and noise this is given by

d(x, y) = d̃(x̃, ỹ) = d̃ (x + vx(x, y), y + vy(x, y)) , (2.1)

where vx(x, y) and vy(x, y) are the polynomial optical flow functions. A trun-
cated Taylor series approximation for small motions allows us to express this
as

d(x, y) ≈ d̃(x, y) + vx(x, y)gx(x, y) + vy(x, y)gy(x, y). (2.2)

Now that we have removed the polynomial functions vx(x, y) and vy(x, y)
from the argument of d̃( · ), we get a set of linear equations (one per pixel)
that can be solved using least squares. If we assume affine flow, then vx(x, y) =
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p1x + p2y + p3 and vy(x, y) = p4x + p5y + p6. Because of the truncated Tay-
lor series approximation, the least squares estimate is accurate only for small
motions. To address this, an iterative approach is recommended. Here the ini-
tial registration parameters are found between two images using the method
described above. Then one of the images is repositioned using interpolation
according to the registration estimate and a new estimate is formed. This
process repeats until the final incremental estimate is judged to be sufficiently
small. The final registration estimate is formed by accumulating all of the
incremental estimates. The repositioning at each iteration is always done di-
rectly from the original image (using the currently accumulated transform
estimate) so as to avoid accumulating interpolation errors.

While this iterative method extends the useful range of the registration
technique, it may still fail if the initial estimate moves the image in the wrong
direction. This can happen with very large motions between frames. So to
deal with very large motions, a multiscale approach is recommended. Here
the registration begins using low-resolution versions of the two images and
the iterative registration technique is applied. These registration parameters
are used to initialize the registration at the next resolution level. This contin-
ues until registration at the full resolution is complete. Finally, for improved
numerical stability, it is recommended that the x, y coordinates of the center
of the image be represented as 0, 0 when setting up the least squares equations.

The affine registration method described can be applied to the entire im-
age. However, to deal with more complex motion, it might be beneficial to
use a piecewise affine model. That is, break the image up into subimages and
estimate affine parameters for each subimage. A practical way to do this and
deal with large motions is to first do a global affine registration with the entire
image and then refine these estimates in subimages with local affine estimates.
Note that as the size of the subimages gets smaller, fewer equations are used in
the least squares estimate. Hence, the accuracy of the subpixel flow estimate
can be expected to suffer. Thus, a trade-off must be found to balance the the
accuracy of the model parameter estimate (favoring larger subimages) with
the accuracy of the flow model itself (favoring smaller subimages).

Note that deformable scene motion, or simply a nonstatic scene, greatly
complicates the registration process [39]. Numerous additional registration pa-
rameters need to be estimated. Changing the pose of objects within the scene
as well as occlusion further complicate matters in the general motion case. This
makes subpixel registration accuracy across the full image very difficult, if not
impossible. Furthermore, because the image data being used for registration is
aliased and noisy, highly overdetermined linear equations are generally needed
to get an accurate estimate. Joint SR and registration approaches with global
motion models have been proposed to improve registration in the presence
of high levels of aliasing [6, 16, 29]. Handling various types of more complex
scene motion is an ongoing area of research in multiframe SR.
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2.2.4 System Point-Spread Function

In this section, we address the modeling of the system PSF. We begin by
modeling the optical transfer function (OTF) with three components as follows

H(u, v) = Hdif(u, v)Habr(u, v)Hdet(u, v), (2.3)

where u and v are the horizontal and vertical spatial frequencies in cycles
per milimeter. Diffraction limited optics contributes Hdif(u, v), optical aber-
rations contribute Habr(u, v), and detector integration contributes Hdet(u, v).
Other factors such as defocus, motion blur, and atmospheric effects are not
considered here, but could be included if they are deemed to be significant in
a particular application. The blurring effects from diffraction limited optics
with a circular pupil function are described by the following OTF [13]

Hdif (u, v) =

⎧
⎨
⎩

2
π

[
cos−1 (ρ/ρc)− (ρ/ρc)

√
1− (ρ/ρc)

2

]
for ρ < ρc

0 else
,

(2.4)
where ρ =

√
u2 + v2 and ρc = 1

λN . It is this function that provides the band-
limiting of the continuous scene, and consequently determines the necessary
detector spacing to prevent aliasing. Even very well designed optical systems
are likely to have aberrations that alter this diffraction limited model. One
such aberration model is given by the following OTF [32]

Habr(u, v) =
{

1− (WRMS/0.18)2(1− 4(ρ/ρc − 0.5))2 for ρ < ρc

0 else . (2.5)

Note that for a well-tuned system, WRMS = 1/14 may be a good choice [32].
Finally, the detector component of the frequency response, Hdet(u, v), is ob-
tained from the Fourier transform of the function describing the active area of
an individual detector (assuming all detectors in the FPA have the same ac-
tive area shape). Cross sections of the overall 2-D modulation transfer function
(MTF) and its components are shown in Figure 2.3 for the imaging systems
in Table 2.1. Note that the MTF is simply the magnitude of the OTF. Here,
we assume λ = 4 μm and WRMS = 1/14. It can been seen that the detector
MTF dominates the Amber system because of the relatively large detectors
in the FPA. For the L-3 system, the optics dominates the overall MTF. Note
that the Nyquist frequency in both cases is below the cut-off frequency of the
optics. Any frequency content above the Nyquist frequency is “folded” into
lower frequencies, creating aliasing artifacts. In addition to aliasing, another
important thing to note from Figure 2.3 is that, like most any imaging sys-
tem, the MTF is not flat and high frequencies are attenuated (reducing image
detail). The problem is that one cannot simply apply a high-boost filter to the
imagery to restore the attenuated frequencies due to aliasing. However, if the
effective sampling rate is increased by a multiframe nonuniform interpolation
process, such restoration is then possible. The system PSF can be found by
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FIGURE 2.3: Cross sections of the overall theoretical 2-D MTF and its com-
ponents with λ = 4 μm and WRMS = 1/14 for (a) Imaging System 1 (Amber
FPA) in Table 2.1 and (b) Imaging System 2 (L-3 FPA) in Table 2.1.
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FIGURE 2.4: Theoretical PSF with λ = 4 μm and WRMS = 1/14 for (a)
Imaging System 1 (Amber FPA) in Table 2.1 and (b) Imaging System 2 (L-3
FPA) in Table 2.1.



Super-Resolution Using Adaptive Wiener Filters 47

taking the inverse Fourier transform of the optical transfer function. These
are shown in Figure 2.4. Note that the discrete impulse invariant PSF can be
found by sampling this PSF at spacings of the detector pitch divided by the
SR upsampling factor.

2.3 AWF SR Algorithms

The AWF SR algorithms use g(k), for k = 1, 2, . . . , P to form an estimate of
z, denoted ẑ. The SR algorithms can be applied to video using a temporal
sliding window of frames, or it can be used to generate a single output from an
input sequence. The effective sampling rate for the estimated image is defined
to be L times greater than that of the observed imagery. Ideally, L would
selected to meet the Nyquist criterion. However, often a lower value of L may
be sufficient to provide a useful result with minimal aliasing. Inspection of the
system MTF can be useful in making this selection.

The basic AWF SR algorithm is illustrated in the block diagram in Fig-
ure 2.5. As mentioned above, registration allows us to create a nonuniform
HR grid image denoted g in Figure 2.5. A moving window filter spanning
Wx ×Wy HR pixels processes this HR grid to produce the final output. Let
the pixel values spanned by the moving window at position i be denoted
gi = [gi,1, gi,2, . . . , gi,Ki ]T , where Ki is the number of LR pixels within the
i’th observation window.

For each observation window, an estimate of the pixel at the center of the

FIGURE 2.5: Overview of the proposed SR algorithm.
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observation window is formed as a weighted sum. This is expressed as

ẑi = wT
i gi, (2.6)

where ẑi is the estimate of the i’th pixel in the desired image z and wi is a Ki

by 1 vector of weights. It is also possible to use the samples in one observa-
tion window to estimate multiple output pixels [22, 14, 15]. Consequently the
observation window would move by multiple pixel positions at a time. This
can have computational advantages including needing to compute or look-up
fewer weight vectors. The minimum mean squared error weights are found
using the well-known Wiener solution

wi = R−1
i pi, (2.7)

where Ri = E{gig
T
i } and pi = E{zig

T
i }. The weights are normalized so that

they sum to 1 to eliminate potential artifacts from variable DC response of
adaptive filter.

The required statistics are found empirically in [22] based on training
images. A quantized HR grid and a full autocorrelation matrix and cross-
correlation vector can be estimated from fully populated observation windows
at the HR grid resolution. Then, when a partially populated observation win-
dows are encountered, the full autocorrelation matrix and cross-correlation
vector can be subsampled as needed. This allows us to compute the weights
using (2.7). The method in [22] also goes one step farther, and uses vector
quantization to partition on observation space and estimates a full autocor-
relation matrix and cross-correlation vector for each partition [3, 33]. These
statistics are tuned to specific structures such as edges, lines and flat regions.
This is one way to deal with the nonstationarity of most image data for image
restoration [3, 33]. The work in [14, 15] employs a parametric autocorrelation
model for the desired underlying image and generates all of the necessary
statistics from that. Both a global and spatially varying model are considered
in [14]. The spatially varying model, like the vector quantization approach,
seeks to treat the nonstationary nature of the image data. Both the vector
quantization approach in [22] and the spatially varying approach in [14] are
beneficial with moderate and high levels of noise. Under relatively high signal-
to-noise ratio conditions, this added complexity generally does not improve
performance [20]. Thus, for high SNR environments, a simple wide sense sta-
tionary (WSS) auto-correlation model may be the best choice.

The modeling of the autocorrelation matrix and cross-correlation vector
is described in detail in [22, 14]. However, we repeat the key steps of the
WSS model from [14] for convenience. First let gi = fi + ni, where fi is the
noise-free version of the i’th observation vector gi and ni is a random noise
vector. Assuming a zero-mean uncorrelated noise vector with independent and
identically distributed elements of variance σ2

n, the autocorrelation matrix for
the observation vector is given by

Ri = E{gig
T
i } = E{fif

T
i }+ σ2

nI. (2.8)
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The cross-correlation vector is given by

pi = E{zig
T
i } = E{zif

T
i }. (2.9)

Continuing to follow the analysis in [14], let us now assume a WSS autocorre-
lation function, rdd(x, y), for the desired image d(x, y). The cross-correlation
function between d(x, y) and f(x, y), as shown in Figure 2.2, can be expressed
in terms of rdd(x, y) [37] as

rdf (x, y) = rdd(x, y) ∗ h(x, y). (2.10)

The autocorrelation of f(x, y) is given by

rff (x, y) = rdd(x, y) ∗ h(x, y) ∗ h(−x,−y). (2.11)

Evaluating (2.11) based on the distances between the samples in gi yields
E{fif

T
i }. Incorporating the noise term to this result yields Ri as expressed in

(2.8). Similarly, evaluating (2.10) based on the distances between the samples
in gi and the desired sample position gives us pi from (2.9). The desired im-
age autocorrelations, rdd(x, y), can be obtained empirically from statistically
representative training images or defined using a parametric model. Here we
use the same circularly-symmetric parametric model as that used in [14]. This
model is given by

rdd(x, y) = σ2
dρ
√

x2+y2
, (2.12)

where σ2
d is the variance of the desired image and ρ controls the decay of the

autocorrelation with distance.
It is interesting to observe how the AWF SR weights vary with the spa-

tial distribution of samples within the partial observation window. Figure 2.6
shows weights for distinct spatial distributions of samples. For these results
we have selected L = 3, ρ = 0.75, σ2

d

σ2
n

= 100 and a PSF computed for Imag-
ing System 2 in Table 2.1. The weights are shown with the same grayscale
map where middle gray is 0. It can be seen that these minimum MSE weights
change in nontrivial ways as the spatial distribution of samples changes. Note
that Figure 2.6(a) shows the case where only the reference frame pixels are
present in the observation window. This can occur when using only a single
frame or when no motion in that area of the image is present. Here the AWF
SR is effectively performing single frame interpolation and restoration. In Fig-
ure 2.6(d), the observation window is fully populated. In this case, with AWF
weighting is equivalent to that of a standard FIR Wiener filter operating on
the HR grid.

The number of possible spatial patterns in a given observation window on
the quantized HR grid is 2b, where b = WxWy−WxWy

L2 . For the 15×15 window
shown in Figure 2.6, this amounts to 2200 patterns. For an unquantized HR
grid, there are an infinite number of possible patterns. Thus, it is generally im-
practical to precompute all of the weights prior to processing video, even on a
quantized HR grid. However, in [15], a partial observation window is proposed
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that includes the uniform reference frame samples within the Wx ×Wy win-
dow plus the M closest samples to the output position. This is illustrated in
Figure 2.7 where the positions outlined form the partial observation window.
The M closest samples to the output are highlighted. Note that the reference
pixels are guaranteed to be present, whereas the other samples may or may
not be present, depending on the motion between frames. An upper bound on
the number of filter weights to be precomputed using this partial observation
window is given by L22M [15]. Thus, with a suitable choice of M , it is possible
to precompute and store all of the weights. This makes processing frames very
fast as will be seen in Section 2.4.
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FIGURE 2.6: AWF SR filter weights for various spatial distribution of samples.
Weights with only the reference frame samples (no motion) is shown in (a).
Weights for a fully populated observation window are shown in (d). All weights
are shown with the same grayscale map where middle gray is zero.
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FIGURE 2.7: Partial observation window used by the Fast AWF SR algorithm
in [15].

2.4 Experimental Results

In this section, a number of experimental results are presented where we com-
pare the performance of the AWF SR methods to several other benchmark
techniques. All of the SR methods applied are listed in Table 2.3. We use sim-
ulated data for quantitative analysis and real infrared imagery for subjective
analysis in a true application.

2.4.1 SR Results for Simulated Data

The simulated LR frames are generated with different types of affine motion.
We use 8 bit images with L = 3, the PSF for System 2 in Table 2.1, and a noise
standard deviation of 2. The SR is done with P = 9 LR frames of size 180×134.
For the affine motion, the translation parameters are Gaussian and have a
mean of zero and standard deviation of 2 LR pixel spacings. The rotation
angle is Gaussian and has a mean of zero and standard deviation of 5 degrees.
The shear is horizontal only and the parameter is Gaussian with zero mean
and a standard deviation of 0.05 and the zoom factor is Gaussian with a mean
of 1 and standard deviation of 0.05. A three-level multiscale affine registration
is employed with 5 iterations using bicubic interpolation at each level. The
image results are shown in Figure 2.8 where the motion includes translation,
rotation, shear and zoom. These image show a 250 × 250 region of interest
(ROI) from the processed imagery. Figure 2.8(a) shows the true HR image.
The first (and reference) frame zoomed using bicubic interpolation is shown
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TABLE 2.3: SR Algorithm Table

Name Description
Fast AWF Adaptive Wiener filter method using quantized HR spa-

tial grid and partial observation window with precomputed
weights [15]. Simultaneous nonuniform interpolation and
restoration.

Full AWF Adaptive Wiener filter method in [14] adapted for affine
motion and using a discrete (quantized) HR spatial grid.
Full observation window is used and the optimum weights
are computed for each window on the fly. Simultaneous
nonuniform interpolation and restoration.

WNN Weighted nearest neighbor method in [12, 2] adapted for
affine motion. Nonuniform interpolation done using an in-
verse distance based weighting of the nearest 4 neighbors.
Restoration is done with an FFT-based Wiener filter.

Delaunay Based on the method in [19] adapted for affine motion.
Nonuniform interpolation done using Delaunay triangula-
tion. Restoration is done with an FFT-based Wiener filter.

RLS Regularized least squares interative SR method in [17]
adapted for affine motion. This method does not assume
the PSF blurring and motion models commute.

in Figure 2.8(b). The partially populated HR grid is shown in Figure 2.8(c).
The SR outputs for all of the SR methods in Table 2.3 make up the rest of
Figure 2.8. The noise-to-signal ratios (NSRs) that provided the lowest MSE
are used for each method. The AWF SR outputs use an NSR of 0.01. The
WNN method uses an NSR of 0.04 and the Delaunay SR method uses an
NSR of 0.02. The RLS method uses a regularization parameter of λ = 0.01
with 20 iterations [17].

Table 2.4 shows the MSE results for the SR methods along with the average
run time (excluding registration). The processing was done on a Pentium 4
CPU with a clock speed of 2.8 GHz. Note that the registration of the 9 frames
took 3.31 seconds. As noted in [15] this can be sped up using fewer levels
and bilinear interpolation. When processing video, only one new frame needs
to be registered to the previous frame to produce an output frame. This is
because the affine parameters relating each frame to the reference frame can
be determined by accumulating the incremental frame-to-frame registration
parameters. It should be noted, however, that with this approach, registration
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errors may also accumulate. Notwithstanding this, we have observed that this
can generally be a very effective video registration method. Note that single
frame bicubic interpolation output has, by far, the highest MSE. All of the
multiframe SR methods produce a much lower MSE. The RLS SR method
with 20 iterations produces the lowest MSE in this experiment, but at the
cost of a high run time. The Fast AWF has the lowest run time with MSEs
comparable to WNN and RLS with 5 iterations.

TABLE 2.4: MSE for the various SR algorithms with affine motion (L = 3
and P = 9).

Algorithm Translation Rotation Shear Zoom All Time (s)
Bicubic 253.64 253.64 253.64 253.64 253.64 0.357
Fast AWF 141.20 157.25 185.58 158.46 152.23 0.811
Full AWF 127.36 143.65 181.50 144.51 139.26 57.238
WNN 141.93 162.82 211.37 163.95 164.85 1.784
Delaunay 121.36 137.44 191.06 141.20 144.29 21.105
RLS (20 Iterations) 107.40 118.20 167.74 120.40 114.55 275.337
RLS (5 Iterations) 141.32 151.64 182.73 150.88 149.50 67.204

2.4.2 SR Results for Infrared Video Data

The first infrared dataset used for evaluating the SR methods is one obtain
with Imaging System 1 in Table 2.1. These results are shown in Figure 2.9.
The camera is mounted on a stationary tripod and is manually panned and
rotated acquiring a 30 Hz video sequence. The SR methods use P = 20 frames
and form output images of size 256×256 with L = 4. Bicubic interpolation of
the first (reference) frame is shown in Figure 2.9(a). The partially populated
HR grid is shown in Figure 2.9(b). The output for the Fast AWF, Full AWF,
WNN, and RLS methods are shown in Figure 2.9(c)–(f), respectively. The
SNR for the AWF methods is 0.05. The NSR for the WNN method is 0.1.
The RLS method uses 10 iterations and λ = 0.01. The tuning parameters
have been chosen based on subjective image quality. Because of the high level
of aliasing for this imaging system, the aliasing artifacts are rather obvious
in Figure 2.9(a). Most prominently, the artifacts take on the form of jagged
diagonal edges. Overall blurring of the image is also evident from the detector
dominated PSF. It is clear that if single frame restoration is applied to this
imagery, the aliasing artifacts would only be pronounced. The multiframe
SR methods clearly reduce aliasing and sharpen the imagery. The RLS again
appears to provide the best results. However, the fast SR methods like the
Fast AWF and WNN provide a significantly enhanced image (compared with
bicubic interpolation) in a small fraction of the run time of the RLS method.

Finally, results obtained with data from Imaging System 2 in Table 2.1
are shown in Figure 2.10. This camera is also mounted on a stationary tripod
and is manually panned and rotated acquiring a 30 Hz video sequence. The
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FIGURE 2.8: Output images for the simulated image sequence with L = 3 and
P = 9. (a) Desired image, (b) single frame bicubic interpolation, (c) partially
populated high-resolution grid after registration, (d) output of the fast AWF
method with partial observation window and precomputed weights, (e) full
AWF method with weights computed on the fly, (f) WNN with 4 nearest
neighbors, (g) Delaunay triangulation based output, (h) RLS method.
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FIGURE 2.9: Outputs for image sequence from the tripod mounted Amber
imager with L = 4 and P = 20. (a) Single frame bicubic interpolation, (b)
partially populated high-resolution grid, (c) Fast AWF with partial observa-
tion window and precomputed weights, (d) Full AWF with weights computed
on the fly, (e) WNN with 4 nearest neighbors, and (f) RLS method.
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FIGURE 2.10: Outputs for image sequence from the tripod mounted L-3 im-
ager with L = 3 and P = 9. (a) Single frame bicubic interpolation, (b) par-
tially populated high-resolution grid, (c) Fast AWF with partial observation
window and precomputed weights, (d) Full AWF with weights computed on
the fly, (e) WNN with 4 nearest neighbors, and (f) RLS method.
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SR methods use P = 9 frames and form output images of size 230 × 220
with L = 3. Bicubic interpolation of the first (reference) frame is shown in
Figure 2.10(a). The partially populated HR grid is shown in Figure 2.10(b).
The output for the Fast AWF, Full AWF, WNN and RLS methods are shown
in Figure 2.10(c)–(f), respectively. The tuning parameters used on the previous
dataset are also applied here. While the aliasing here is more subtle, the results
appear to be consistent with those for the previous dataset.

2.5 Conclusions

The AWF SR methods are a type of nonuniform interpolation based SR al-
gorithm. A distinctive feature of the AWF SR methods, however, is that the
nonuniform interpolation and restoration are done simultaneously in a single
weighted sum operation. The weights are determined based on FIR Wiener
filter theory and they adapt to the specific spatial distribution of LR samples
in the nonuniformly populated HR grid. Various methods have been explored
in the literature for modeling the correlation statistics needed to determine
the weights. Spatially varying statistics based on vector quantization [22] and
local variance [14] have been used. The spatially varying statistics provide the
most benefit in low signal-to-noise environments. In high signal-to-noise envi-
ronments, like those considered here, a global statistical model is very effective
and simpler to implement.

One of the main benefits of the AWF SR method is the potential for fast
processing. Furthermore, the method is robust to the spatial distribution of
LR pixels on the HR grid and it degrades gracefully towards the case where
no motion is present (or only one frame is used). For translational motion,
the number of distinct weight vectors needed for the Full AWF is small, and
this allows for fast processing. The Fast AWF SR algorithm precomputes all
of the weights for any motion model using a partial observation window [15].

The experimental results show that iterative SR methods, like the RLS,
generally provide the best results. However these have a high computational
complexity. The Fast AWF SR method is observed to have the shortest run
time of any of the SR methods tested, with performance comparable to that
of WNN and the RLS with 5 iterations. Delaunay SR was a notable performer
in that the MSE was comparable to that of the Full AWF and it had a shorter
run time. However, the run time for Delaunay SR was still much longer than
that of the Fast AWF.

This chapter has also explored motion models for multiframe SR. It is
noted that perhaps the most favorable conditions for SR are for a camera that
is panning and tilting from a stationary location with a static scene. In that
case, the 2-D optical flow is approximately quadratic, but can be effectively
modeled as affine in small regions (or piecewise affine for large areas). With the
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stationary camera and static scene, no motion parallax, occulusion, or object
pose variations are present and the optical flow is independent of the 3-D
scene. Using the affine or piecewise affine model for this scenario, it is usually
possible to form a highly overdetermined set of linear equations to solve for
the motion parameters. With many equations and few motion parameters, it
is often possible to get sufficiently accurate estimates, even in the presence of
aliasing and noise.
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Abstract — In this chapter, we discuss a novel framework for adaptive en-
hancement and spatiotemporal upscaling of videos containing complex mo-
tions. Our approach is based on multidimensional kernel regression, where
each pixel in the video sequence is approximated with a 3-D local (Taylor)
series, capturing the essential local behavior of its spatiotemporal neighbor-
hood. The coefficients of this series are estimated by solving a local weighted
least-squares problem, where the weights are a function of the 3-D space-time
orientation in the neighborhood. As this framework is fundamentally based
upon the comparison of neighboring pixels in both space and time, it implic-
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itly contains information about the local motion of the pixels across time,
therefore rendering unnecessary an explicit computation of motions of modest
size. When large motions are present, a basic, rough motion compensation
step returns the sequence to a form suitable again for motion-estimation-free
super-resolution. The proposed approach not only significantly widens the ap-
plicability of super-resolution methods to a broad variety of video sequences
containing complex motions, but also yields improved overall performance.
Using several examples, we illustrate that the developed algorithm has super-
resolution capabilities that provide improved optical resolution in the output,
while being able to work on general input video with essentially arbitrary
motion.

3.1 Introduction

The emergence of high-definition displays in recent years (e.g. 720× 1280 and
1080×1920 or higher spatial resolution, and up 240Hz in temporal resolution),
along with the proliferation of increasingly cheaper digital imaging technology
has resulted in the need for fundamentally new image processing algorithms.
Specifically, in order to display relatively low quality content on such high
resolution displays, the need for better space-time upscaling, denoising, and
deblurring algorithms has become an urgent market priority, with correspond-
ingly interesting challenges for the academic community. The existing liter-
ature on enhancement and upscaling (sometimes called super-resolution)1 is
vast and rapidly growing in both the single frame case [9, 17] and the multi-
frame (video) case [6, 8, 10, 12, 16, 24, 35, 38, 42], and many new algorithms
for this problem have been proposed recently. Yet, one of the most fundamen-
tal roadblocks has not been overcome. In particular, in order to be effective,
essentially all the existing multi-frame super-resolution approaches must per-
form (sub-pixel) accurate motion estimation [6, 8, 10, 12, 16, 24, 35, 38, 42, 27].
As a result, most methods fail to perform well in the presence of complex mo-
tions that are quite common. Indeed, in most practical cases where complex
motion and occlusions are present and not estimated with pinpoint accuracy,
existing algorithms tend to fail catastrophically, often producing outputs that
are of even worse visual quality than the low-resolution inputs.

In this work, we address the challenging problem of spatiotemporal video
super-resolution in a fundamentally different way, which removes the need for
explicit subpixel accuracy motion estimation. We present a methodology that
is based on the notion of consistency between the estimated pixels, which is

1To clarify the use of words super-resolution and upscaling, we note that if the algorithm
does not receive input frames that are aliased, it will still produce an output with a higher
number of pixels and/or frames (i.e., “upscaled”), but which is not necessarily “super-
resolved.”
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derived from the novel use of kernel regression [34], [31]. Classical kernel re-
gression is a well studied, nonparametric point estimation procedure. In our
earlier work [31], we generalized the use of these techniques to spatially adap-
tive (steering) kernel regression, which produces results that preserve and
restore details with minimal assumptions on local signal and noise models
[36]. Other related nonparametric techniques for multidimensional signal pro-
cessing have emerged in recent years as well. In particular, the concept of
normalized convolution [19], and the introduction of support vector machines
[26] are notable examples. In the present work, the steering techniques in
[31] are extended to 3-D where, as we will demonstrate, we can perform high
fidelity space-time upscaling and super-resolution. Most importantly, this is
accomplished without the explicit need for accurate motion estimation.

In a related work [28], we have generalized the nonlocal means (NLM)
framework [2] to the problem of super-resolution. In that work, measuring
the similarity of image patches across space and time resulted in “fuzzy” or
probabilistic motions, as explained in the chapter by Protter and Elad. Such
estimates also avoid the need for explicit motion estimation and give relatively
larger weights to more similar patches used in the computation of the high
resolution estimate. Another recent example of a related approach appears in
[5] where Danielyan, et al. have presented an extension of the block-matching
3-D filter (BM3D) [4] for video super-resolution, in which explicit motion esti-
mation is also avoided by classifying the image patches using a block matching
technique. The objectives of the present work, our NLM-based approach [28],
and Video-BM3D [5] just mentioned are the same: namely, to achieve super-
resolution on general sequences, while avoiding explicit (subpixel-accurate)
motion estimation. These approaches represent a new generation of super-
resolution algorithms that are quite distinctly different from all existing super-
resolution methods. More specifically, existing methods have required highly
accurate subpixel motion estimation and have thus failed to achieve resolution
enhancement on arbitrary sequences.

We propose a framework that encompasses both video denoising, spa-
tiotemporal upscaling, and super-resolution in 3-D. This framework is based
on the development of locally adaptive 3-D filters with coefficients depending
on the pixels in a local neighborhood of interest in space-time in a novel way.
These filter coefficients are computed using a particular measure of similarity
and consistency between the neighboring pixels that uses the local geometric
and radiometric structure of the neighborhood. To be more specific, the com-
putation of the filter coefficients is carried out in the following distinct steps.
First, the local (spatiotemporal) gradients in the window of interest are used
to calculate a covariance matrix, sometimes referred to as the “local structure
tensor” [18]. This covariance matrix, which captures a locally dominant ori-
entation at each pixel, is then used to define a local metric for measuring the
similarity between the pixels in the neighborhood. This local metric distance
is then inserted into a (Gaussian) kernel which, with proper normalization,
then defines the local weights to be applied in the neighborhood.
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The above approach is based on the concept of steering kernel regression
(SKR), earlier introduced in [31] for images. A specific extension of these con-
cepts to 3-D signals for the express purpose of video denoising and resolution
enhancement are the main subjects of this chpater. As we shall see, since the
development in 3-D involves the computation of orientation in space-time [13],
motion information is implicitly and reliably captured. Therefore, unlike con-
ventional approaches to video processing, 3-D SKR does not require explicit
estimation of (modestly sized but essentially arbitrarily complex) motions, as
this information is implicitly captured within the locally “learned” metric. It
is worth mentioning in passing here that the approach we take, while inde-
pendently derived, is in the same spirit as the body of work known as Metric
Learning in the machine learning community, e.g., [37].

Naturally, the performance of the proposed approach is closely correlated
with the quality of estimated space-time orientations. In the presence of noise,
aliasing, and other artifacts, the estimates of orientation may not be initially
accurate enough, and as we explain in Section 3.2.3, we therefore propose
an iterative mechanism for estimating the orientations, which relies on the
estimate of the pixels from the previous iteration.

To be more specific, as shown in Figure 3.8, we can first process a video se-
quence with orientation estimates of modest quality. Next, using the output of
this first step, we can re-estimate the orientations, and repeat this process sev-
eral times. As this process continues, the orientation estimates are improved,
as is the quality of the output video. The overall algorithm we just described
will be referred to as the 3-D iterative steering kernel regression (3-D ISKR).

As we will see in the coming sections, the approach we introduce here is
ideally suited for implicitly capturing relatively small motions using the ori-
entation tensors. However, if the motions are somewhat large, the resulting
(3-D) local similarity measure, due to its inherent local nature, will fail to
find similar pixels in nearby frames. As a result, the 3-D kernels essentially
collapse to become 2-D kernels centered around the pixel of interest within the
same frame. Correspondingly, the net effect of the algorithm would be to do
frame-by-frame 2-D upscaling. For such cases, as discussed in Section 3.2.4,
some level of explicit motion estimation is unavoidable to reduce temporal
aliasing and achieve resolution enhancement. However, as we will illustrate in
this chapter, this motion estimation can be quite rough (accurate to within a
whole pixel at best). This rough motion estimate can then be used to “neu-
tralize” or “compensate” for the large motion, leaving behind a residual of
small motions, which can be implicitly captured within the 3-D orientation
kernel. In summary, our approach can accommodate a variety of complex mo-
tions in the input videos by a two-tiered approach: (i) large displacements are
neutralized by rough motion compensation either globally or block-by-block
as appropriate, and (ii) 3-D ISKR handles the fine-scale and detailed rest of
the possibly complex motion present.

This chapter is organized as follows: in Section 3.2, first we briefly describe
the fundamental concepts behind the SKR framework in 2-D and present the
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extension of the SKR framework to 3-D including discussions of how our
method captures local complex motions and performs rough motion compen-
sation, and explicitly describe its iterative implementation. In Section 3.3,
we provide some experimental examples with both synthetic and real video
sequences, and we conclude this chapter in Section 3.4.

3.2 Adaptive Kernel Regression

In this section, we first review the fundamental framework of kernel regression
(KR) [36] and its extension, the steering kernel regression (SKR) [31], in 2-D.
Then, we extend the steering approach to 3-D and discuss some important
aspects of the 3-D extension.

3.2.1 Classic Kernel Regression in 2-D

The KR framework defines its data model as

yi = z(xi) + εi, xi ∈ ω, i = 1, · · · , P, (3.1)

where yi is a noise-ridden sample measured at xi = [x1i, x2i]T (Note: x1i and
x2i are spatial coordinates), z( · ) is the (hitherto unspecified) regression func-
tion of interest, εi is an i.i.d. zero mean noise, and P is the total number of
samples in an arbitrary “window” ω around a position x of interest as illus-
trated in Figure 3.1. As such, the KR framework provides a rich mechanism
for computing pointwise estimates of the regression function with minimal
assumptions about global signal or noise models.

While the particular form of z( · ) may remain unspecified, we can develop a
generic local expansion of the function about a sampling point xi. Specifically,

FIGURE 3.1: The data model for the kernel regression framework.
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if the position of interest x is near the sample at xi, we have the N -th order
Taylor series

z(xi) ≈ z(x) + {∇z(x)}T (xi − x) +
1
2
(xi − x)T {Hz(x)}T (xi − x) + · · ·

≈ β0 + βT
1 (xi − x) + βT

2 vech
{
(xi − x)(xi − x)T

}
+ · · · (3.2)

where ∇ and H are the gradient (2×1) and Hessian (2×2) operators, respec-
tively, and vech( · ) is the half-vectorization operator that lexicographically
orders the lower triangular portion of a symmetric matrix into a column-
stacked vector. Furthermore, β0 is z(x), which is the signal (or pixel) value of
interest, and the vectors β1 and β2 are

β1 =
[

∂z(x)
∂x1

,
∂z(x)
∂x2

]T
,

β2 =
1
2

[
∂2z(x)

∂x2
1

,
∂2z(x)
∂x1∂x2

,
∂2z(x)

∂x2
2

,

]T
. (3.3)

Since this approach is based on local signal representations (i.e. Taylor series),
a logical step to take is to estimate the parameters {βn}N

n=0 using all the
neighboring samples {yi}P

i=1 while giving the nearby samples higher weights
than samples farther away. A weighted least-square formulation of the fitting
problem capturing this idea is

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − x)− βT
2 vech

{
(xi − x)(xi − x)T

}
− · · ·

]2

·KH(xi − x)
(3.4)

with
KH(xi − x) =

1
det(H)

K(H−1(xi − x)), (3.5)

where N is the regression order, K( · ) is the kernel function (a radially sym-
metric function such as a Gaussian), and H is the smoothing (2 × 2) matrix
that dictates the “footprint” of the kernel function. The simplest choice of the
smoothing matrix is H = hI, where h is called the global smoothing parame-
ter. The contour of the kernel footprint is perhaps the most important factor
in determining the quality of estimated signals. For example, it is desirable
to use kernels with large footprints in the smooth local regions to reduce the
noise effects, while relatively smaller footprints are suitable in the edge and
textured regions to preserve the underlying signal discontinuity. Furthermore,
it is desirable to have kernels that adapt themselves to the local structure
of the measured signal, providing, for instance, strong filtering along an edge
rather than across it. This last point is indeed the motivation behind the
steering KR framework [31] that we will review Section 3.2.2.
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Returning to the optimization problem (3.4), regardless of the regression
order (N), and the dimensionality of the regression function, we can rewrite
it as the weighted least squares problem:

b̂ = arg min
b

(y −Xb)T
K (y −Xb) , (3.6)

where

y =
[

y1, y2, · · · , y
P

]T
, b =

[
β0, βT

1 , · · · , βT
N

]T
, (3.7)

K = diag
[

KH(x1 − x), KH(x2 − x), · · · , KH(x
P
− x)

]
(3.8)

and

X =

⎡
⎢⎢⎢⎣

1, (x1 − x), vech
{
(x1 − x)(x1 − x)T

}
, · · ·

1, (x2 − x), vech
{
(x2 − x)(x2 − x)T

}
, · · ·

...
...

...
...

1, (x
P
− x), vech

{
(x

P
− x)(x

P
− x)T

}
, · · ·

⎤
⎥⎥⎥⎦ (3.9)

with “diag” defining a diagonal matrix. Using the notation above, the opti-
mization (3.4) provides the weighted least square estimator:

b̂ =
(
XT KX

)−1
XT K y (3.10)

and the estimate of the signal (i.e. pixel) value of interest β0 is given by a
weighted linear combination of the nearby samples:

ẑ(x) = β̂0 = eT
1 b̂ =

P∑
i=1

Wi(K, H , N, xi − x) yi (3.11)

where e1 is a column vector with the first element equal to one and the
rest equal to zero,

∑
i Wi = 1, and we call Wi the equivalent kernel weight

function for yi (q.v. [31] or [36] for more detail). For example, for zero-th
order regression (i.e. N = 0), the estimator (3.11) becomes

ẑ(x) = β̂0 =

P∑
i=1

KH(xi − x) yi

P∑
i=1

KH(xi − x)

, (3.12)

which is the so-called Nadaraya-Watson estimator (NWE) [23], which is noth-
ing but a space-varying convolution (if samples are irregularly spaced).

What we described above is the “classic” kernel regression framework,
which as we just mentioned, yields a pointwise estimator that is always a
local “linear,” though possibly space-varying, combination of the neighboring
samples. As such, it suffers from an inherent limitation. In the next sections,
we describe the framework of steering KR in two and three dimensions, in
which the kernel weights themselves are computed from the local window (or
cube), and therefore we arrive at filters with more complex (nonlinear and
space-varying) action on the data.
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3.2.2 Steering Kernel Regression in 2-D

The steering kernel approach is based on the idea of robustly obtaining local
signal structures by analyzing the radiometric (pixel value) differences locally,
and feeding this structure information to the kernel function in order to affect
its shape and size.

Consider the (2 × 2) smoothing matrix H in (3.5). As explained in Sec-
tion 3.2.1, in the generic “classical” case, this matrix is a scalar multiple of the
identity with the global parameter h. This results in kernel weights that have
equal effect along the x1- and x2-directions. However, if we properly choose
this matrix, the kernel function can capture local structures. More precisely,
we define the smoothing matrix as a symmetric positive-definite matrix:

Hi = hC
− 1

2
i (3.13)

which we call the steering matrix and where, for each given sample yi, the
matrix Ci is estimated as the local covariance matrix of the neighborhood
spatial gradient vectors. A naive estimate of this covariance matrix may be
obtained as

Ĉnaive
i = JT

i Ji, (3.14)

with

Ji =

⎡
⎢⎢⎣

...
...

zx1(xj), zx2(xj)
...

...

⎤
⎥⎥⎦ , xj ∈ ξi, j = 1, · · · , Q, (3.15)

where zx1( · ) and zx2( · ) are the first derivatives along x1- and x2-axes, ξi is
the local analysis window around a sample position xi, and Q is the number
of rows in Ji. However, the naive estimate may in general be rank deficient or
unstable. Therefore, instead of using the naive estimate, we obtain covariance
matrices by using the (compact) singular value decomposition (SVD) of Ji.
A specific choice of Ci using the SVD for the 2-D case is introduced in [31],
and we will show Ci for the 3-D case in Section 3.2.3.

With the above choice of the smoothing matrix and a Gaussian kernel, we
now have the steering kernel function as

KHi(xi − x) =

√
det(Ci)
2πh2

exp
{
− 1

2h2

∥∥∥C
1
2
i (xi − x)

∥∥∥
2

2

}
, (3.16)

and the weighted least square estimator as

b̂ =
(
XT KsX

)−1
XT Ks y (3.17)

where

Ks = diag
[

KH1(x1 − x), KH2(x2 − x), · · · , KH
P

(x
P
− x)

]
. (3.18)
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Again, for example, for zeroth order (i.e., N = 0), the estimator (3.17) yields
a pointwise estimator:

ẑ(x) = β̂0 =

P∑
i=1

KHi(xi − x) yi

P∑
i=1

KHi(xi − x)

, (3.19)

which is the data-adapted version of NWE. It is noteworthy that, as shown
in the weight matrix Ks (3.18) involving the steering matrices {Hi}P

i=1 of all
the neighboring samples {yi}P

i=1, the steering kernel function (3.16) effectively
captures the local image structures. We will graphically show the steering
kernels shortly in Figure 3.3.

Figure 3.2 illustrates a schematic representation of the estimates of local
covariance matrices Ci in (3.13) at a local region with one dominant orienta-
tion. First, we compute gradients zx1( · ) and zx2( · ) of the given image, where
the gradients are illustrated as vectors with red arrows. In this example, we
set the size of the regression window ω to 5 × 5 and and the size of the win-
dow ξ for the calculation of the covariance estimate is set to 3× 3. Therefore,
the overall analysis window becomes 7 × 7. Next, sliding the window ξi for
i = 1, · · · , 25, we compute the covariance matrix Ci for each pixel yi in the
middle (5×5) portion. Once Ci’s are available, we perform the steering kernel
regression (3.17) with the weights given by the Ci’s and estimate the pixel
value z(x) at the position of interest. Graphical representations of the steer-
ing kernel weights for noise-free (Pepper and Parrot) images are illustrated in

FIGURE 3.2: A schematic representation of the estimates of local covariance
matrices at a local region with one dominant orientation: First, we estimate the
gradients and compute the local covariance matrix Ci from the local gradient
vectors for each pixel in the local analysis window ωi around the position of
interest (i.e., x13 in the figure).
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Figure 3.3. Figures 3.3(c) and (d) show the steering weight Ks given by (3.16)
without

√
detCi/2πh2 at every 11 pixels in the horizontal and vertical direc-

tions. It should be noted that we compute the steering kernels KHi(xi−x) as
a function of each xi with the position of interest x held fixed. Thus, the ker-
nel involves not only Ci at the position of interest but also its neighborhoods’,
and the steering kernel weights effectively take local image structures into ac-
count. Moreover, the steering weights spread wider in flat regions and spread
along edges while staying small at the texture regions (for example, the region
around Parrot’s eye). Therefore, the steering kernel filtering smoothes pixels
strongly along the local structures rather than across them. Figures 3.3(e)
and (f) show the scalar values

√
detCi/2πh2 of (3.16). The scalars become

large at edges and textured regions and small at flat regions. We also note
that even for the highly noisy case, we can obtain stable estimates of local
structure [31].

3.2.3 Space-Time (3-D) Steering Kernel Regression

So far, we presented the KR framework in 2-D. In this section, we introduce the
time axis and present space-time SKR to process video data. As mentioned in
the introductory section, we explain how this extension can yield a remarkable
advantage in that space-time SKR does not necessitate explicit (subpixel)
motion estimation.

First, introducing the time axis, similar to the 2-D data model, we have
the data model in 3-D as

yi = z(xi) + εi, xi ∈ ω, i = 1, · · · , P, (3.20)

where yi is a noise-ridden sample at xi = [x1i, x2i, ti]T , x1i and x2i are spa-
tial coordinates, ti (= x3i) is the temporal coordinate, z( · ) is the regression
function of interest, εi is an i.i.d. zero-mean noise process, and P is the total
number of nearby samples in a 3-D neighborhood ω of interest, which we will
henceforth call ω a “cubicle”. As in (3.2), we also locally approximate z( · )
by a Taylor series in 3-D, where ∇ and H are now the gradient (3 × 1) and
Hessian (3 × 3) operators, respectively. With a (3 × 3) steering matrix (Hi),
the estimator takes the familiar form:

ẑ(x) = β̂0 =
P∑

i=1

Wi(K, Hi, N, xi − x) yi. (3.21)

It is worth noting that 3-D SKR is a pointwise estimator of the regression
function z( · ) and it is capable of estimating a pixel value at arbitrary space-
time positions x. The derivation for the steering matrix is quite similar to the
2-D case. Indeed, we again define Hi as

Hi = hC
− 1

2
i , (3.22)
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(a) Pepper image (b) Parrot image
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(c) SK weights of the pepper image (d) SK weights of the parrot image
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(e) Scaling values of the pepper image (f) Scaling values of the parrot image

FIGURE 3.3: Graphical representations of steering kernel weights (3.18) for
(a) Pepper and (b) Parrot images: The figures (c) and (d) illustrate the steer-
ing weight matrices Ks given by (3.16) without

√
det Ci/2πh2 at every 11

pixels in horizontal and vertical directions. For this illustration, we chose the
analysis window sizes ω = 11 × 11 and ξ = 5 × 5. The figures (e) and (f)
shows the scalar values

√
det Ci/2πh2. The scalars becomes large at edge and

textured regions and small at flat regions.
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where the covariance matrix Ci can be naively estimated as Ĉnaive
i = JT

i Ji

with

Ji =

⎡
⎢⎢⎣

...
...

...
zx1(xj), zx2(xj), zt(xj)

...
...

...

⎤
⎥⎥⎦ , xj ∈ ξi, j = 1, · · · , Q, (3.23)

where zx1( · ), zx2( · ), and zt( · ) are the first derivatives along x1-, x2-, and
t-axes, ξi is a local analysis cubicle around a sample position at xi, and Q is
the number of rows in Ji. Once again for the sake of robustness, as explained
in Section 3.2.2, we compute a more stable estimate of Ci by invoking the
SVD of Ji with regularization as:

Ĉi = γi

3∑
q=1

�qvqv
T
q , (3.24)

with

�1 =
s1 + λ′

s2s3 + λ′ , �2 =
s2 + λ′

s1s3 + λ′ ,

�3 =
s3 + λ′

s1s2 + λ′ , γi =
(

s1s2s3 + λ′′

Q

)α

, (3.25)

where �q and γi are the elongation and scaling parameters, respectively, λ′

and λ′′ are regularization parameters that dampen the noise effect and restrict
γi, the denominators of �q’s from being zero (q.v., Appendix 3.5.1 for the
derivations), and Q is the number of rows in Ji. We fix λ′ = 1 and λ′′ = 0.1
throughout this work. The singular values (s1, s2, and s3) and the singular
vectors (v1, v2, and v3) are given by the (compact) SVD of Ji:

Ji = UiSiV
T

i = Ui diag {s1, s2, s3} [v1, v2, v3]T . (3.26)

similar to the 2-D case, the steering kernel function in 3-D is defined as

KHi(xi − x) =

√
det(Ci)
(2πh2)3

exp
{
− 1

2h2

∥∥∥C
1
2
i (xi − x)

∥∥∥
2

2

}
, (3.27)

with x = [x1, x2, t]. The main tuning parameters are the global smoothing
parameter (h) in (3.27) and the structure sensitivity (α) in (3.25). The specific
choices of these parameters are indicated in Section 3.3, and Appendix 3.5.2
gives more details about the parameters h and α.

Figure 3.4 shows visualizations of the 3-D weights given by the steering
kernel function for two cases: (a) a horizontal edge moving vertically over time
(creating a tilted plane in the local cubicle), and (b) a small circular dot also
moving vertically over time (creating a thing tube in a local cubicle). Consid-
ering the case of denoising for the pixel located at the center of each data cube
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of Figures 3.4(a) and (b), we have the steering kernel weights illustrated in
Figures 3.4(c)(d) and (e)(f). Figures 3.4(c)(d) and (e)(f) show the cross sec-
tions and the isosurface of the weights, respectively. As seen in these figures,

(a) A tilted plane (b) A thin tube

(c) Cross sections of SK weights of (a) (d) Cross sections of SK weights of (b)

(e) The isosurface of (c) (f) The isosurface of (d)

FIGURE 3.4: Visualizations of steering kernels for (a) the case of one horizon-
tal edge moving up (this creates a tilted plane in a local cubicle) and (b) the
case of one small dot moving up (this creates a thin tube in a local cubicle).
(a) and (b) show some cross sections of the 3-D data, and (b) and (c) show
the cross sections of the weights given by the steering kernel function when
we denoise the sample located at the center of the data cube, and (d) and (e)
show the isosurface of the steering kernel weight for (a) and (b), respectively.
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the weights faithfully reflect the local signal structure in space-time. Also, Fig-
ure 3.5 gives a graphical representation of the 3-D steering kernel weights for
the Foreman sequence. In the figure, we show the cross sections (transverse,
sagittal, and axial) of the video (3-D) data, and draw the cross sections of the
steering kernel weights at every 15 pixels in every direction. For this example,
we chose the analysis cubicle sizes ω = 15× 15× 15 and ξi = 5 × 5 × 5. It is
worth noting that the orientation structures that appear in the x1-t and x2-t
cross sections are motion trajectories, and our steering kernel weights fit the
local motion trajectories without explicit motion estimation.

As illustrated in Figures 3.4 and 3.5, the weights provided by the steering
kernel function capture the local signal structures, which include both spatial
and temporal edges. Here we give a brief description of how orientation infor-
mation thus captured in 3-D contains the motion information implicitly. It is
convenient in this respect to use the (gradient-based) optical flow framework
[1, 11, 20] to describe the underlying idea. Defining the 3-D motion vector as
m̃i = [m1, m2, 1]T = [mT

i , 1]T and invoking the brightness constancy equa-

0

0.5

1

1.5

2

FIGURE 3.5: A graphical representation of 3-D steering kernel weights (3.27)
for the Foreman sequence: The figure illustrate cross sections of the steering
weight matrices Ks given by (3.27) at every 15 pixels in horizontal, vertical,
and time. For the illustration, we chose the analysis cubicle sizes ω = 15 ×
15× 15 and ξi = 5× 5× 5.



Locally Adaptive Kernel Regression for Space-Time Super-Resolution 77

tion (BCE) [15] in a local cubicle centered at xi, we can use the matrix of
gradients Ji in (3.23) to write the BCE as

Jim̃i = Ji

[
mi

1

]
= 0. (3.28)

Multiplying both sides of the BCE above by JT
i , we have

JT
i Jim̃i = Ĉnaive

i m̃i ≈ 0. (3.29)

Now invoking the decomposition of Ĉi in (3.24), we can write

3∑
q=1

�qvq

(
vT
q m̃i

)
≈ 0. (3.30)

The above decomposition shows explicitly the relationship between the
motion vector, and the principal orientation directions computed within the
SKR framework. The most generic scenario in a small cubicle is one where
the local texture or features move with approximate uniformity. In this generic
case, we have �1, �2 � �3, and it can be shown that the singular vector v3

(which we do not directly use) corresponding to the smallest singular value
�3 can be approximately interpreted as the total least squares estimate of the
homogeneous optical flow vector fmi

‖fmi‖ [39, 3]. As such, the steering kernel
footprint will therefore spread along this direction, and consequently assign
significantly higher weights to pixels along this implicitly given motion di-
rection. In this sense, compensation for small local motions is taken care of
implicitly by the assignment of the kernel weights. It is worth noting that a
significant strength of using the proposed implicit framework (as opposed to
the direct use of estimated motion vectors for compensation) is the flexibil-
ity it provides in terms of smoothly and adaptively changing the elongation
parameters defined by the singular values in (3.25). This flexibility allows the
accommodation of even complex motions, so long as their magnitudes are not
excessively large. When the magnitude of the motions is large (relative to the
support of the steering kernels, specifically) a basic form of coarse but explicit
motion compensation will become necessary.

There are two approaches that we can consider to compensate for large
displacement. In our other work in [33], we presented the motion-assisted
steering kernel (MASK) method, which explicitly feeds local motion vectors
directly into 3-D kernels. More specifically, we construct 3-D kernels by shifting
the 2-D (spatial) steering kernels by motion vectors. Moreover, in order to
suppress artifacts in the estimated videos due to the errors in motion vectors,
we compute the reliability of each local motion vector, and penalize the 2-D
steering kernels accordingly. In the next section, we describe an alternative
approach that does not require accurate motion vectors. In general, it is hard
to estimate motions in the presence of occlusions and nonrigid transitions. As
shown in Figure 3.5, the 3-D steering kernel effectively fits them. Therefore,
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all we need is to compensate large displacements by shifting the video frames
with whole pixel accuracy, and the 3-D steering kernels implicitly take the
leftover motions into account as local 3-D image structures.

3.2.4 Kernel Regression with Rough Motion Compensation

Before formulating the 3-D SKR with motion compensation, first, let us dis-
cuss how the steering kernel behaves in the presence of relatively large mo-
tions.2 In Figures 3.6(a) and (b), we illustrate the contours of steering ker-
nels the pixel of interest located at the center of the middle frame. For the
small displacement case illustrated in Figure 3.6(a), the steering kernel ideally
spreads across neighboring frames, taking advantage of information contained
in the space-time neighborhood. Consequently, we can expect to see the effects
of resolution enhancement and strong denoising. On the other hand, in the
presence of large displacements as illustrated in Figure 3.6(b), similar pixels,
though close in the time dimension, are found far away in space. As a result,
the estimated kernels will tend not to spread across time. That is to say, the
net result is that the 3-D SKR estimates in effect default to the 2-D case.
However, if we can roughly estimate the relatively large motion of the block
and compensate (or “neutralize”) for it, as illustrated in Figure 3.6(c), and
then compute the 3-D steering kernel, we find that it will again spread across
neighboring frames and we regain the interpolation/denoising performance of
3-D SKR. The above approach can be useful even in the presence of aliasing

(a) (b) (c)

FIGURE 3.6: Steering kernel footprints for (a) a video with small displace-
ments, (b) a video with large displacements, and (c) the video after neutral-
izing the large displacements.

2It is important to note here that by large motions we mean speeds (in units of pixels
per frame), which are larger than the typical support of the local steering kernel window,
or the moving object’s width along the motion trajectory. In the latter case, even when the
motion speed is slow, we are likely to see temporal aliasing locally.
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when the motions are small but complex in nature. As illustrated in Fig-
ure 3.7(b), if we cancel out these displacements, and make the motion trajec-
tory smooth, the estimated steering kernel will again spread across neighboring
frames and result in good performance.

In any event, it is quite important to note that the above compensation
is done for the sole purpose of computing the more effective steering kernel
weights. More specifically, (i) this “neutralization” of large displacements is
not an explicit motion compensation in the classical sense invoked in coding
or video processing, (ii) it requires absolutely no interpolation, and therefore
introduces no artifacts, and (iii) it requires accuracy no better than a whole
pixel.

To be more explicit, 3-D SKR with motion compensation can be regarded
as a two-tiered approach to handle a wide variety of transitions in video.
Complicated transitions can be split into two different motion components:
large whole-pixel motions (mlarge

i ) and small but complex motions (mi):

mtrue
i = mlarge

i + mi, (3.31)

where mlarge
i is easily estimated by, for instance, optical flow or block matching

algorithms, but mi is much more difficult to estimate precisely.
Suppose a motion vector mlarge

i = [mlarge
1i , mlarge

2i ]T is computed for each
pixel in the video. We neutralize the motions of the given video data yi by
mlarge

i , to produce a new sequence of data y(x̃i), as follows:

x̃i = xi +
[

mlarge
i

0

]
(ti − t), (3.32)

where t is the time coordinate of interest. It is important to reiterate that
since the motion estimates are rough (accurate to at best a single pixel) the
formation of the sequence y(x̃i) does not require any interpolation, and there-
fore no artifacts are introduced. Rewriting the 3-D SKR problem for the new

(a) (b)

FIGURE 3.7: Steering kernel footprints for (a) a video with a complex motion
trajectory, and (b) the video after neutralizing the relatively large displace-
ments.
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sequence y(x̃i), we have:

min
{βn}N

n=0

P∑
i=1

[
y(x̃i)− β0 − βT

1 (x̃i − x)− βT
2 vech

{
(x̃i − x)(x̃i − x)T

}
− · · ·

]2

·KfHi
(x̃i − x)

(3.33)

where the steering matrix H̃i is computed from the motion-compensated se-
quence y(x̃i). Similar to the 2-D estimator (3.11), the above minimization
yields the following pixel estimator at the position of interest (x) as

ẑ(x) = β̂0 = eT
1

(
X̃T K̃sX̃

)−1

X̃T K̃s ỹ

=
P∑

i=1

Wi(K, H̃i, N, x̃i − x) y(x̃i), (3.34)

where ỹ is column-stacked vector of the given pixels (y(x̃i)), and X̃ and K̃s

are the basis matrix and the steering kernel weight matrix constructed with
the motion compensated coordinates (x̃i); that is to say,

ỹ =
[

y(x̃1), y(x̃2), · · · , y(x̃
P
)
]T

, b =
[

β0, βT
1 , · · · , βT

N

]T
,

K̃s = diag
[

KfH1
(x̃1 − x), KfH2

(x̃2 − x), · · · , KfH
P

(x̃
P
− x)

]
, (3.35)

and

X̃ =

⎡
⎢⎢⎢⎣

1, (x̃1 − x), vech
{
(x̃1 − x)(x̃1 − x)T

}
, · · ·

1, (x̃2 − x), vech
{
(x̃2 − x)(x̃2 − x)T

}
, · · ·

...
...

...
...

1, (x̃P − x), vech
{
(x̃P − x)(x̃P − x)T

}
, · · ·

⎤
⎥⎥⎥⎦ . (3.36)

In the following section, we further elaborate on the implementation of the 3-D
SKR for enhancement and super-resolution, including its iterative application.

3.2.5 Implementation and Iterative Refinement

As we explained earlier, since the performance of the SKR depends on the
accuracy of the orientations, we refine it to derive an iterative algorithm we
call iterative SKR (ISKR), which results in improved orientation estimates
and therefore a better final denoising and upscaling result. The extension for
upscaling is done by first interpolating or upscaling using some reasonably
effective low-complexity method (say the “classic” KR method) to yield what
we call a pilot initial estimate. The orientation information is then estimated
from this initial estimate and the SKR method is then applied to the input
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video data yi, which we embed in a higher resolution grid. To be more precise,
the basic procedure, as shown in Figure 3.8 is as follow.

First, estimate the large motions (mlarge
i ) of the given input sequence

({yi}P
i=1). Then using mlarge

i , we neutralize the large motions and generate a
motion-compensated video sequence ({y(x̃i)}P

i=1). Next, we compute the gra-
dients (β̂(0)

1 = [ẑx1( · ), ẑx2( · ), ẑt( · )]T ) at the sampling positions {x̃i}P
i=1 of the

motion-compensated video. This process is indicated as the “pilot” estimate
in the block diagram. After that, we create steering matrices (H̃ (0)

i ) for all
the samples y(x̃i) by (3.22) and (3.24). Once H̃ (0)

i are available, we plug them
into the kernel weight matrix (3.35) and estimate not only an unknown pixel
value (z(x)) at a position of interest (x) by (3.34) but also its gradients (β̂(1)

1 ).
This is the initialization process shown in Figure 3.8(a). Next, using β̂(1)

1 , we
re-create the steering matrices H̃ (1)

i . Since the estimated gradients β̂(1)
1 are

also denoised and upscaled by SKR, the new steering matrices contain better
orientation information. With H̃ (1)

i , we apply SKR to the embedded input
video again. We repeat this process several times as shown in Figure 3.8(b).
While we do not discuss the convergence properties of this approach here, it is
worth mentioning that typically, no more than a few iterations are necessary
to reach convergence.

Figure 3.9 illustrates a simple super-resolution example, where we created
9 of synthetic low-resolution frames from the image shown in Figure 3.9(a)
by blurring with a 3 × 3 uniform PSF, shifting the blurred image by 0, 4,

(a) Initialization

(b) Iteration

FIGURE 3.8: Block diagram representation of the 3-D iterative steering kernel
regression with motion compensation: (a) the initialization process, and (b)
the iteration process.
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or 8 pixels3 along the x1- and x2-axes, spatially downsampling with a factor
3 : 1, and adding white Gaussian noise with standard deviation 2. One of the
low-resolution frames is shown in Figure 3.9(b). Then we created a synthetic
input video by putting those low resolution images together in random order.
Thus, the motion trajectory of the input video is not smooth and the 3-D
steering kernel weights cannot spread effectively along time as illustrated in
Figure 3.7(a). The upscaled frames by Lanczos, robust super-resolution [8],
nonlocal mean based super-resolution [28], and 3-D ISKR with rough motion
estimation at time t = 5 are shown in Figures 3.9(c)–(f), respectively.

In the presence of severe temporal aliasing arising from large motions, the
task of accurate motion estimation becomes significantly harder. However,
rough motion estimation and compensation is still possible. Indeed, once this

(a) Original (b) Low resolution frame (c) Lanczos

(d) Robust SR [8] (e) NLM base SR [28] (f) ISKR with motion comp.

FIGURE 3.9: A simple super-resolution example: (a) the original image, (b)
one of 9 low resolution images generated by blurring with a 3×3 uniform PSF,
spatially downsampling with a factor of 3 : 1, and adding white Gaussian
noise with standard deviation 2, (c) an upscaled image by Lanczos (single
frame upscale), (d) an upscaled image by robust super-resolution (SR) [8],
(e) an upscaled image by nonlocal mean (NLM) based super-resolution [28],
and (f) an upscaled image by 3-D ISKR with rough motion compensation.
The corresponding PSNR values are (c) 19.67, (d) 30.21, (e) 27.94, and (f)
29.16[dB], respectively.

3Note: this amount of shift creates severe temporal aliasing.
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compensation has taken place, the level of aliasing artifacts within the new
data cubicle becomes mild, and as a result, the orientation estimation step is
able to capture the true space-time orientation (and therefore implicitly the
motion) quite well. This estimate then leads to the recovery of the missing
pixel at the center of the cubicle, from the neighboring compensated pixels,
resulting in true super-resolution reconstruction as shown in Figure 3.9.

It is worth noting that while in the proposed algorithm in Figure 3.8,
we employ an SVD-based method for computing the 3-D orientations, other
methods can also be employed such as that proposed by Farnebäck et al. using
local tensors in [7]. Similarly, in our implementation, we used the optical flow
framework [21] to compute the rough motion estimates. This step too can be
replaced by other methods such as a block matching algorithm [40].

3.3 Examples

The utility and novelty of our algorithm lies in the fact that it is capable
of both spatial and temporal (and therefore spatiotemporal) upscaling and
super-resolution. Therefore, in this section we study the performance of our
method in both spatial and spatiotemporal cases.

3.3.1 Spatial Upscaling Examples

In this section, we present some denoising/upscaling examples. The sequences
in this section contain motions of relatively modest size due to the effect of
severe spatial downsampling (we downsampled original videos spatially with
the downsampling factor 3 : 1) and therefore motion compensation as we
described earlier was not necessary. In Section 3.3.2, we illustrate additional
examples of spatiotemporal video upscaling.

First, we degrade two videos (Miss America and Foreman sequences), us-
ing the first 30 frames of each sequence, blurring with a 3× 3 uniform point
spread function (PSF), spatially downsampling the videos by a factor of 3 : 1
in the horizontal and vertical directions, and then adding white Gaussian
noise with standard deviation σ = 2. Two of the selected degraded frame
at time t = 14 for Miss America and t = 7 for Foreman are shown in Fig-
ures 3.10(a) and 3.11(a), respectively. Then, we simultaneously upscale and
denoise the degraded videos by Lanczos interpolation (frame-by-frame up-
scaling), the NL-means based approach of [28], and 3-D ISKR, which includes
deblurring4 the upscaled video frames using the BTV approach [8]. Hence,
we used a radially symmetric Gaussian PSF that reflects an “average” PSF

4Note that the 3×3 uniform PSF is no longer suitable for the deblurring since the kernel
regression gives its own blurring effects.
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induced by the kernel function used in the reconstruction process. The final
upscaled results are shown in Figures 3.10(b)–(d) and 3.11(b)–(d), respec-
tively. The corresponding average PSNR values across all the frames for the

(a) The degraded frame at time t = 14 (b) Lanczos

(c) NLM-based SR[28] (d) 3-D ISKR

FIGURE 3.10: A video upscale example using Miss America sequence: (a) the
degraded frame at time t = 14, (b) the upscaled frame by Lanczos interpo-
lation (PSNR = 34.25[dB]), (c) the upscaled frame by NLM-means based
SR [28] (PSNR = 34.95[dB]), and (d) the upscaled frame by 3-D ISKR
(PSNR = 35.65[dB]). Also, the PSNR values for all the frames are shown
in Figure 3.12(a).
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Miss America example are 34.05[dB] (Lanczos), 35.04[dB] (NL-means based
SR [28]), and 35.60[dB] (3-D ISKR) and the average PSNR values for Fore-
man are 30.43[dB] (Lanczos), 31.87[dB] (NL-means based SR), and 32.60[dB]
(3-D ISKR), respectively. The graphs in Figure 3.12 illustrate the PSNR val-
ues frame by frame. It is interesting to note that while the NL-means method
appears to produce more crisp results in this case, the corresponding PSNR
values for this method are surprisingly lower than that for the proposed 3-D
ISKR method. We believe, as partly indicated in Figure 3.14, that this may

(a) The degraded frame at time t = 7 (b) Lanczos

(c) NLM-based SR[28] (d) 3-D ISKR

FIGURE 3.11: A video upscaling example using Foreman sequence: (a) the
degraded frame at time t = 7, (b) the upscaled frame by Lanczos interpolation
(PSNR = 30.98[dB]), (c) the upscaled frame by NL-means based SR [28]
(PSNR = 32.21[dB]), and (d) the upscaled frame by 3-D ISKR (PSNR =
33.58[dB]). Also the PSNR values for all the frames are shown in Figure 3.12(b).
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be in part due to some leftover high frequency artifacts and possibly lesser
denoising capability of the NL-means method.

As for the parameters of our algorithm, we applied SKR with the global
smoothing parameter h = 1.5, the local structure sensitivity α = 0.1 and a
5 × 5 × 5 local cubicle and used an 11 × 11 Gaussian PSF with a standard
deviation of 1.3 for the deblurring of Miss America and Foreman sequences.
For the experiments shown in Figures 3.10 and 3.11, we iterated SKR 6 times.

The next example is a spatial upscaling example using a section of a real
HDTV video sequence (300× 300 pixels, 24 frames), shown in Figure 3.13(a),
where no additional simulated degradation is added. As seen in the input
frames, the video has real compression artifacts (i.e., blocking). In this ex-
ample, we show the deblocking capability of the proposed method, and the
upscaled results by Lanczos interpolation, NLM-based SR [28] and 3-D ISKR
with a factor of 1 : 3 (i.e., the output resolution is 900×900 pixels) are shown
in Figures 3.13(b)–(d), respectively. The proposed method (applied to the lu-
minance channel only) is able to remove the blocking artifacts effectively as
well as to upscale the video.

3.3.2 Spatiotemporal Upscaling Examples

In this section, we present two spatiotemporal upscaling examples (also known
as, frame interpolation and frame rate upconversion) by 3-D ISKR using the
Carphone and Salesman sequences. Unlike the previous examples (Miss Amer-
ica and Foreman), in the next examples, the Carphone sequence has relatively
large and more complex displacements between frames, and the Salesman
sequence contains motion occlusions. In order to have better estimations of
steering kernel weights, we estimate patchwise (4× 4 block) translational mo-
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(a) Miss America (b) Foreman

FIGURE 3.12: The PSNR values of each upscaled frame by Lanczos, NLM-
based SR [28], and 3-D ISKR for (a) the results of Miss America shown in
Figure 3.10 and (b) the results of Foreman shown in Figure 3.11.
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tions by the optical flow technique [21], and apply 3-D ISKR to the roughly
motion-compensated inputs.

Though we did not discuss temporal upscaling much explicitly in the text
of this chapter, the proposed algorithm is capable of this functionality as well
in a very straightforward way. Namely, the temporal upscaling is effected by

(a) The input frame at t = 5 (b) Lanczos

(c) NLM-based SR[28] (d) 3-D ISKR

FIGURE 3.13: A spatial upscaling example of a real video: (a) Texas football
sequence in luminance channel, and (b)–(d) the upscaled frames by Lanczos
interpolation, NL-based SR [28] and 3-D ISKR, respectively. The input se-
quence has 24 frames in total and it is a real HD-TV content which carries
compression artifacts, namely block artifacts. We upscale the video with the
spatial upscaling factor of 1 : 3.
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producing a pilot estimate and improving the estimate iteratively just as in
the spatial upscaling case illustrated in the block diagrams in Figure 3.8. We
note that this temporal upscaling capability, which essentially comes for free
in our present framework, was not possible in the NL-means based algorithm
[28].

(a) The input at t = 27 (b) Lanczos (t = 27) (c) NML-based SR (t = 27)

(d) 3-D ISKR (t = 26.5) (e) 3-D ISKR (t = 27) (f) 3-D ISKR (t = 27.5)

FIGURE 3.14: A Carphone example of video upscaling with spatial upscaling
factor 1 : 2: (a) the input video frame at time t = 27 (144× 176, 30 frames),
(b)–(c) upscaled frames by Lanczos interpolation and NLM-based SR method
[28], respectively, and (d)–(f) upscaled frames by 3-D ISKR at t = 26.5, 27,
and 27.5, respectively.
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The first example in Figure 3.14 is a real experiment5 of space-time upscal-
ing with a native Carphone sequence in QCIF format (144× 176, 30 frames).
Figure 3.14 shows (a) the input frame at time t = 27 and (b)–(c) the upscaled
frames by Lanczos interpolation and NLM-based method [28], and (d)–(f)
the upscaled frames by 3-D ISKR at t = 26.5, 27 and 27.5, respectively. The
estimated frames in Figure 3.14(d)–(f) shows the application of 3-D ISKR,
namely simultaneous space-time upscaling.

The final example shown in Figure 3.15 is also a real example of frame inter-

t = 6 t = 7

(a
)

O
ri

g
in

a
l

t = 6.5 t = 7.5

(b
)

3
-D

IS
K

R

FIGURE 3.15: A Salesman example of frame interpolation: (a) original (input)
video frames at time t = 6 to 7, (b) intermediate frames estimated by 3-D
ISKR at t = 6.5 and t = 7.5.

5That is to say, the input to the algorithm was the native resolution video, which was
subsequently upscaled in space and time directly. In other words, the input video is not
simulated by downsampling a higher resolution sequence.
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polation (temporal upscaling) using the Salesman sequence where, although
there is no global (camera) motion, the both hands move toward different
directions and occlusions can be seen around the tie as shown in the input
frames (Figure 3.15(a)). In this example, we estimate intermediate frames at
times t = 6.5 and t = 7.5, and the frames in Figure 3.15(b) are the results by
3-D ISKR. 3-D ISKR successfully generated the intermediate frames without
producing any artifacts.

3.4 Conclusion

Traditionally, super-resolution reconstruction of image sequences has relied
strongly on the availability of highly accurate motion estimates between the
frames. As is well-known, subpixel motion estimation is quite difficult, partic-
ularly in situations where the motions are complex in nature. As such, this
has limited the applicability of many existing upscaling algorithms to sim-
ple scenarios. In this chapter, we extended the 2-D steering KR method to an
iterative 3-D framework, which works well for both (spatiotemporal) video up-
scaling and denoising applications. Significantly, we illustrated that the need
for explicit subpixel motion estimation can be avoided by the two-tiered ap-
proach presented in Section 3.2.4, which yields excellent results in both spatial
and temporal upscaling.

Performance analysis of super-resolution algorithm remains an interesting
area of work, particularly with the new class of algorithms such as the proposed
and NLM-based method [28], which can avoid subpixel motion estimation.
Some results already exist that provide such bounds under certain simplifying
conditions [29], but these results need to be expanded and studied further.

Reducing the computational complexity of 3-D ISKR is of great impor-
tance. Most of the computational load is due to (in order of severity): (i) the
computations of steering (covariance) matrices (Ci) in (3.22), (ii) the genera-
tion of the equivalent kernel coefficients (Wi) in (3.34) from the steering kernel
function with higher (i.e., N = 2), and (iii) iterations. For (i), to speed up
the estimation of Ci, instead of application of SVD, which is computationally
heavy, we can create a lookup table containing a discrete set of representative
steering matrices (using, say, vector quantization), and choose an appropriate
matrix from the table given local data. For (ii), computation of the second
order (N = 2) filter coefficients (Wi) from the steering kernel weights (3.35)
may be sped up by using an approximation using the lower order (e.g., zero-
th order, N = 0) kernels. This idea was originally proposed by Haralick in
[13] and may be directly applicable to our case as well. For (iii), we iterate
the process of steering kernel regression in order to obtain better estimates
of orientations. If the quantization mentioned above gives us fairly reasonable
estimates of orientations, we may not need to iterate.
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3.5 Appendix

3.5.1 Steering Kernel Parameters

Using the (compact) SVD (3.26) of the local gradient vector Ji (3.23), we can
express the naive estimate of steering matrix as:

Ĉnaive
i = JT

i Ji = ViS
T
i SiV

T
i

= Vi diag
{
s2
1, s

2
2, s

2
3

}
V T

i

= s1s2s3Vi diag
{

s1

s2s3
,

s2

s1s3
,

s3

s1s2

}
V T

i

= Qγi [v1, v2, v3] diag {�1, �2, �3} [v1, v2, v3]
T

= Qγi

3∑
q=1

�qvqv
T
q , (3.37)

where
�1 =

s1

s2s3
, �2 =

s2

s1s3
, �3 =

s3

s1s2
, γi =

s1s2s3

Q
, (3.38)

and Q is the number of rows in Ji. Since the singular values (s1, s2, s3) may
become zero, we regularized the elongation parameters (�q) and the scaling
parameter (γi) as shown in (3.25) from being zero.

3.5.2 The Choice of the Regression Parameters

The parameters that have critical roles in steering kernel regression are the
regression order (N), the global smoothing parameter (h) in (3.22) and (3.27),
and the structure sensitivity (α) in (3.25). It is generally known that the
parameters N and h control the balance between the variance and bias of
the estimator [30]. The larger N and the smaller h, the higher the variance
becomes and the loser the bias. In this work, we fix the regression order N = 2.

The structure sensitivity α (typically 0 ≤ α ≤ 0.5) controls how strongly
the size of the kernel footprints is affected by the local structure. The product
of the singular values (s1, s2, s3) indicates the amount of the energy of the local
signal structure: the larger the product, the stronger and the more complex
the local structure is. A large α is preferable when the given signal carries
severe noise. In this work, we focus on the case that the given video sequences
have a moderate amount of noise and fix α = 0.1.

Ideally, although one would like to automatically set these regression pa-
rameters using a method such as cross validation [14, 25], SURE (Stein’s
unbiased risk estimator) [22] or a no-reference parameter selection [41], this
would add significant computational complexity to the already heavy load of
the proposed method. So for the examples presented in the chapter, we make
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use of our extensive earlier experience to note that only certain ranges of val-
ues for the said parameters tend to give reasonable results. We fix the values
of the parameters within these ranges to yield the best results, as discussed
in Section 3.3.

3.5.3 Deblurring

Since we did not include the effect of sensor blur in the data model of the KR
framework, deblurring is necessary as a post processing step to improve the
outputs by 3-D ISKR further. Defining the estimated frame at time t as

ẑ(t) = [· · · , ẑ(xj), · · · ]T , (3.39)

where j is the index of the spatial pixel array and u(t) as the unknown image
of interest, we deblur the frame z(t) by a regularization approach:

û(t) = arg min
u

∥∥u(t)−G ẑ(t)
∥∥2

2
+ λCR(û(t)), (3.40)

where G is the blur matrix, λ(≥ 0) is the regularization parameter, and CR( · )
is the regularization term. More specifically, we rely on our earlier work and
employ the bilateral total variation (BTV) framework [8]:

CR(u(t)) =
ν∑

v1=−ν

ν∑
v2=−ν

η|v1|+|v2|
∥∥u(t)− F v1

x1
F v2

x2
u(t)
∥∥

1
(3.41)

where η is the smoothing parameter, ν is the window size, and F v1
x1

is the shift
matrix that shifts u(t) v1-pixels along x1-axis.

In the present work, we use the above BTV regularization framework to
deblur the upscaled sequences frame-by-frame, which is admittedly subopti-
mal. In our work [32], we have introduced a different regularization function
called adaptive kernel total variation (AKTV). This framework can be ex-
tended to derive an algorithm that can simultaneously interpolate and deblur
in one integrated step. This promising approach is part of our ongoing work
and is outside the scope of this chapter.
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Classic super-resolution has long relied on very exact motion estimation for
the recovery of sub-pixel details. As a highly accurate motion field is hard
to obtain for general scenes, classic super-resolution has been known to be
limited to specific cases, where the motion is of a global nature. In this chap-
ter, we present a recently developed family of algorithms that shatters this
barrier. These novel algorithms relax the requirement of a one-to-one motion
field, and replace it with a simple, probabilistic motion estimation. The proba-
bilistic motion field is integrated into the classic (and heavily investigated) SR
framework, and ultimately results in a very simple family of algorithms. The
obtained paradigm gets an algorithmic structure that resembles that of the
nonlocal means, and as such, leads to a localized and easily parallelizable pro-
cedure. Despite their simplicity, the obtained algorithms are nevertheless very
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powerful in handling the most general scenes, with the probabilistic motion
estimation enabling the handling of challenging motion patterns. The result-
ing image sequences are of high quality, and contain few artifacts. These novel
algorithms open the door to a new era in super-resolution that bypasses the
limiting traditional reliance on explicit motion estimation for super-resolution.

4.1 Introduction

Super-Resolution Reconstruction (SRR) proposes a fusion of several low qual-
ity images {yt}T

t=1 into one higher quality result x, which has better optical
resolution than the input images. A wide variety of SRR algorithms have been
developed in the past two decades – see [13] for a list of representatives of this
vast literature. A popular model used for relating the measurements to the
super-resolved image, assumes that {yt}T

t=1 are generated from x through a
sequence of operations that includes (i) geometrical warps Ft, (ii) a linear
space-invariant blur H , (iii) a decimation step represented by D, and finally
(iv) an additive zero-mean white and Gaussian noise nt that represents both
measurements noise and model mismatch1 [7]. All of these operators are lin-
ear, each represented by a matrix multiplying the image they operate on. We
assume hereafter that H and D are identical for all images in the sequence.
Mathematically, the relationship between the high-quality image x and the
measurements {yt}T

t=1 is given by

yt = DHFtx + nt for t = 1, 2, . . . , T. (4.1)

The recovery of x from {yt}T
t=1 is thus an inverse problem, combining denois-

ing, deblurring, scaling-up operation, and fusion of the different images, all
merged to one. We treat y1 as our reference image, and aim to reconstruct x
as its super-resolved version (this implies that F1 = I).

SRR relies on the assumption that D, H , and Ft are known, or can be
reliably estimated from the given data. In particular, such reconstruction relies
on the ability to estimate the motion in the scene with a subpixel accuracy,
so as to enable the merger of the different image sampling grids properly.
Many SRR algorithms start with such an estimating of the motion in the
sequence (e.g., [9, 15, 1, 7, 6]), or couple it with the recovery process, as a
joint-estimation task [8, 19, 16].

Highly accurate general motion estimation, known as optical flow, is a
severely under-determined problem. Various artifacts, and an output image
that is even inferior to the given measurements, are often the result of using

1In [7], the model mismatches are represented as an iid Laplacian distribution, with
L1 penalization as to obtain robustness to outliers. In our work, we choose a Gaussian
model, which simplifies the algorithmic development. Nevertheless, a robustness to outliers
is obtained by the probabilistic approach, as will be discussed later, in Section 3.
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an inaccurately estimated motion within one of the existing SRR algorithms.
In order to estimate the motion with enough accuracy to lead to a successful
reconstruction of a super-resolved image, some simplifying assumptions as to
the structure of the motion field must be made, such as global warps or rigid
bodies. This had led to the commonly agreed and unavoidable conclusion
that general content movies are not likely to be handled well by classical SRR
techniques.

Recently, several papers have tried to circumvent this problem by avoid-
ing explicit motion estimation altogether [13, 17]. The method in [17] relies
on extending the steerable kernel method to multiframe super-resolution. The
method in [13] generalizes the very successful nonlocal means (NLM) [2] de-
noising method to performing super-resolution. The derivation of the SRR
algorithm in [13], termed NLM-SR, is done by defining an energy functional
that explains the NLM, and then modifying it to serve the SRR task. Both
methods do not explicitly estimate the motion, and both are shown to be able
to handle general content video sequences quite successfully.

In this chapter we approach the explicit-motion-estimation-free SRR from
a different perspective. Our starting point is the classic SRR, as in [7]. We
then replace the bijective motion between pixels in each pair of images with
a probabilistic motion field. This simple and alternative derivation is shown
to lead to the same line of algorithms that are proposed in [13]. Furthermore,
the framework proposed here allows different extensions, such as a treatment
of spatio-temporal re-sampling problems. We show this adaptation in general,
and demonstrate its applicability on the de-interlacing problem.

The structure of the chapter is as follows. Section 4.2 describes a classic
SRR formulation, as used in [9, 15, 1, 7, 6], on which we build our even-
tual algorithm. Section 4.3 presents the use of probabilistic motion within the
framework of classic SRR, and develops the proposed algorithm. The adap-
tation to other re-sampling tasks is also described in this section. Section 4.4
provides results for SRR and de-interlacing, demonstrating the abilities of the
proposed method. The key contributions of this work are outlined in Section
4.5, with several directions of possible future work also suggested. We note
that a preliminary version of this chapter has appeared in [12].

4.2 Classic Super-Resolution: Background

Using the model in Equation (14.6), one can seek the most likely high resolu-
tion image, given the existing low-resolution images (and the known decima-
tion, blur, and transformations). This image is called the Maximum-Likelihood
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(ML) estimate of x, and is obtained by minimizing the penalty function

ε2ML (x) =
1
2

T∑
t=1

‖DHFtx− yt‖22 (4.2)

with respect to x. Minimization of (4.2) leads to

∂ε2ML(x)
∂x

=
T∑

t=1

FT
t HT DT (DHFtx− yt) = 0. (4.3)

Denoting A =
∑T

t=1 FT
t HT DT DHFt and b =

∑T
t=1 FT

t HT DT yt, we face a
linear system of equations Ax̂ML = b.

In many cases the measurements are not sufficient for recovering x. In
such cases, the constraints matrix A is singular or possibly ill-conditioned,
and regularization is required. The Maximum A-posteriori Probability (MAP)
estimation proposes a penalty of the form

ε2MAP (x) = ε2ML (x) + λ ·R(x), (4.4)

where the functional R is a regularization term that adds an algebraic sta-
bility to the inversion of A. Beyond the gained stability, R is also a way of
incorporating prior knowledge about the sought x, such as spatial smoothness,
sparsity of its wavelet representation, minimum entropy, etc.. In this work we
force spatial smoothness, by choosing the Total Variation (TV) prior, that
accumulates the gradients norms with �1 [14]. Thus, the MAP estimate in our
case becomes the minimizer of

ε2MAP (x) =
1
2

T∑
t=1

‖DHFtx− yt‖22 + λ ·TV (x), (4.5)

which is typically obtained by an iterative algorithm [9, 15, 8, 1, 7, 6, 19, 16].
This is the core technique we build upon.

The operators D, H , and Ft are assumed to be known in all of the above
discussions. The decimation D is dependent on the resolution scale-factor we
aim to achieve, and as such, it is easily fixed. In this work we shall assume
that this resolution factor is an integer s ≥ 1 in both axes. The blur H refers
to the camera PSF in most cases, and therefore it is also accessible. Even if it
is not, the blur is typically dependent on a small number of parameters, and
those, in the worst case, can be manually set.

While D and H are relatively easy to obtain, this is not the case of Ft.
The warp operators depend on the scene and require highly accurate motion
estimation for their construction. Since such accuracy is hard to obtain in
general, classical SRR algorithms often assume a simple motion pattern, such
as pure translation or global affine warp. Such constraints stabilize the motion
estimation, as they substantially reduce the number of parameters to be esti-
mated, allowing greater accuracy in the estimation (if indeed the motion field
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obeys these assumptions). Attempts to embed the motion estimation (with-
out assuming a specific structure) within the SRR process have been made,
with little success [8, 19, 16]. As already mentioned, inaccurately estimated
motion within SRR often leads to disturbing artifacts that cause the output
to be inferior even when compared to a simple interpolated version of y1. This
fact motivated a quest for bypassing explicit motion estimation, as indeed
practiced in [13, 17].

4.3 The Proposed Algorithm

4.3.1 The New Formulation

We now aim to integrate the notion of probabilistic motion estimation into
the classic SRR formulation introduced in the previous section. Before we
dive into the formulation, we note that when the motion is of a global nature,
and therefore lends itself to an accurate estimation, motion-estimation-based
techniques are likely to obtain better results than the proposed algorithm
in many cases. In other cases, the usage of the proposed algorithm makes
of intra-image redundancy may bring better results even compared to the
motion-compensated algorithms. As such sequences comprise only a small
subset of the sequences to be super-resolved, we don’t continue this discussion
further, and rather tackle general motion sequences by using the probabilistic
motion estimation technique, which we now describe.

The starting point is the observation that the warp operator Ft considers
a bijective (one-to-one) correspondence between pixels in the reference and
the t-th image, and as such, it introduces sensitivity to errors. We replace this
motion field with a probabilistic one that assigns each pixel in the reference
image with many possible correspondences in all the images in the sequence
(including itself), each with an assigned probability of being correct.

Can this become useful for super-resolution for handling general motion
patterns? We now offer one possible way that illustrates that it can. We start
by analyzing the operator Ft, which represents the motion field between the
first image and image t, by indicating for each pixel in the first image its des-
tination in image t. Equivalently, the motion field can be described by listing
a single 2D translation vector for each pixel, independently of other pixels.
Therefore, the entire motion field is represented as a collection of various dis-
placement vectors, one for each pixel.

If the size of the maximal translation is at most D pixels, then the set
of all the possible displacements are covered by a set of M = (2D + 1)2

displacements. By defining {Fm}M
m=1 to be this set of global translations,2 we

2For simplicity, we shall use a set of integer displacements only.
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can write the following equation

Ftx =
M∑

m=1

Qm,tFmx, (4.6)

which describes the action of warping the image x based on the operator Ft.
The matrices {Qm,t}M

1 are diagonal weighting ones, containing ones along
the main diagonal for pixels whose motion is the displacement Fm, namely
[dx(m), dy(m)], and zeros for the rest of the pixels. Using such a decompo-
sition, even the most complicated of motion fields can be represented by a
linear combination of global translations.

While we have replaced the single warping operator with a linear com-
bination of global translation (representing the same general motion field),
a one-to-one relationship between pixels in both images is still implied by
this notation. The next natural step for introducing a probabilistic motion
field is to relax the definition of Qm,t, where varying confidences per pixel
and per motion trajectory are reflected by continuous values. This leads to
a newly defined super-resolution penalty that replaces the use of Ft by their
decompositions as in (4.6).

While this seems like a worthy path to consider, we slightly divert from
this approach, seeking yet a simpler algorithm. We modify the ML formulation
posed in Equation (4.2) by proposing the following probabilistic ML (PML)
penalty3

ε2PML (x) =
1
2

M∑
m=1

T∑
t=1

‖DHFmx− yt‖2Wm,t
. (4.7)

The same intuition, although applied differently, is used in proposing this
penalty. Rather than accumulate the various global translations to form the
effect of Ft as in Equation (4.6), we accumulate the least-squares errors that re-
sult from such global displacements,4 and assign a weight matrix Wm,t to each.
Notice that the weights used in Equation (4.7) are different from those intro-
duced in (4.6). Whereas Qm,t are defined for each pixel in the high resolution
image, Wm,t are also diagonal matrices, but defined over the low-resolution
grid. We shall proceed with the assumption that Wm,t are known, and revisit
their computation in Section 4.3.5.

Even though this formulation contains only global translations, it should
be noted that using the same rational that has led to Equation (4.6), it can
represent any complex motion field. A known motion field can be re-created by
properly assigning the values of Wm,t to be 1s for those pixels whose motion
is Fm and zeros for all others.

One particular interpretation of the above expression is a marginalization
of the least-squared error term with respect to the motion probability density

3We use the notation ‖a‖2
W = aT Wa.

4It is possible to use other sets of warps, such as ones that allow rotations as well.
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function, in a way that resembles the concept proposed in [11]. However, the
authors of [11] perform such a marginalization in order to avoid inaccuracies
in the motion estimation, and their integration is only performed over the
parameters of a global motion model. In our case, very similar to the video
denoising scenario, we handle local motion, and the probabilistic viewpoint
contributes both to a better handling of the estimated motion inaccuracies
and also to the noise reduction.

As a final point in this section, we return to the matter of robustness.
The usage of the above PML has another distinct advantage of robustifying
the algorithm to outliers. Suppose one of the images in the low-resolution set
is in fact an outlier, and does not belong in the sequence. Since this outlier
image does not match the rest of the images, the pixels in it will be assigned
zero weights. This can be understood qualitively from the weights reflecting
the matching of the patch. In Section 4.3.5 the computation of the weights is
discussed, demonstrating how outliers are indeed assigned zero (or negligible)
weights. Effectively, since all pixels in an outlier image are ignored, and are not
considered in the minimization – they are indeed treated as outliers. The same
logic can be applied to local outliers, such as transmission errors, graphics,
boundaries, and more.

4.3.2 Separating the Blur Treatment

Our task is the minimization of a functional that has two terms: ε2PML (x)
and a regularization (e.g., TV). Rather than handling this problem directly,
we decompose it, following the methods developed in [4, 7, 6]. Since both H
and Fm are space-invariant operators, they can be assumed to have a block-
circulant structure (assuming a cyclic boundary treatment), and as such, they
commute. Thus, defining z = Hx, we separate the estimation into two stages,
first concentrating on estimating the “blurry” high resolution image z by
minimizing

ε2PML (z) =
1
2

M∑
m=1

T∑
t=1

‖DFmz − yt‖2Wm,t
, (4.8)

which is the fusion step. The second step is applying a conventional deblurring
step, that minimizes

ε2DB (x) = ‖Hx− z‖22 + λ ·TV (x). (4.9)

This two-step process is sub-optimal to the joint treatment, but neverthe-
less leads to a simplified algorithm. As the second step is conventional and
well-known, we focus hereafter on the fusion step. Note that the deblurring
mechanism chosen here is relatively simple and could be replaced by more
advanced techniques, thereby leading to better results.
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4.3.3 The Algorithm: A Matrix-Vector Version

We now focus on the fusion step; the minimization of Equation (4.8). The
derivative of this functional is given by

∂ε2PML (z)
∂z

=
M∑

m=1

T∑
t=1

FT
mDT Wm,t(DFmz − yt), (4.10)

which leads to a linear system of equations. In order to simplify the obtained
expressions, we introduce the following new notations:

W̃m =
T∑

t=1

Wm,t and ỹm =
T∑

t=1

Wm,tyt. (4.11)

The matrix W̃m is s sum of diagonal matrices, and therefore diagonal in itself.
By rearranging and substituting W̃m and ỹm, we obtain

[
M∑

m=1

FT
mDT W̃mDFm

]
z =

M∑
m=1

FT
mDT ỹm. (4.12)

While this linear system of equations seems complicated, we show next that
it can be rewritten for each pixel in z in a closed form, revealing a simple
structure that leads to a stable solution.

4.3.4 The Algorithm: A Pixel-Wise Version

The Right-Hand-Side (RHS) in Equation (4.12) is an image of the same size
as z. Furthermore, as we are about to show, the matrix multiplying z on the
Left-Hand-Side (LHS) is a diagonal positive definite matrix. Thus, we can
turn the above vector-matrix formulation into a pixel-wise one.

Since the RHS is an image of the same size as z, we start by looking
at how a specific pixel at location [i, j] in the RHS is constructed. A spe-
cific Fm shifts by [dx(m), dy(m)]. Therefore, the term FT

mv positions the
[i + dx(m), j + dy(m)]-th element from the image v in the destination [i, j]
(since the transpose has the effect of an inverse displacement). The image
u = DT ỹm is a scale-up version of the low-resolution image ỹm by zero-filling.
Combining the two implies that if the location [i + dx(m), j + dy(m)] is not
an integer multiple of s (the resolution ratio), this location has a zero entry.
Otherwise, the entry is simply ỹm[k, l], where [k, l] = [i+dx(m), j +dy(m)]/s.
Accounting for all the displacements in the set and for all input images, we
get that at location [i, j]

RHS[i, j] =
∑

[k,l]∈N(i,j)

ỹm[k, l], (4.13)

where we have defined the neighborhood set

N(i, j) = {[k, l] | ∀ m ∈ [1, M ], s ·k = i + dx(m), s · l = j + dy(m)} (4.14)



Super-Resolution with Probabilistic Motion Estimation 105

Plugging the definition of ỹm from Equation (4.11) yields

RHS[i, j] =
∑

[k,l]∈N(i,j)

T∑
t=1

Wm,t[k, l]yt[k, l]. (4.15)

In this expression, Wm,t[k, l] refers to the entry on the main diagonal in Wm,t

that multiplies the [k, l] entry in yt. This formula indicates that each pixel in
the RHS is a weighted sum of pixels, in a neighborhood centered around its
equivalent location in the low-resolution image.

We now turn to discuss the Left-Hand-Side (LHS) in (4.12). The operator
DT W̃mD within this expression is a diagonal matrix that decimates an image
by a factor of s in each axis, weights each pixel by the diagonal weight matrix
W̃m, and then up-scales back the image using the same factor by zero-filling.
When this operator is applied to an image v, a pixel in location [i, j] is nulled
if [i, j]/s is a non-integer (since it is one of the pixels to be zero-filled by DT ),
and is simply weighted otherwise, i.e., it becomes W̃m[i, j] · v[i, j].

When the full operator FT
mDT W̃mDFm is applied to the [i, j]-th pixel in

z, it shifts it to the [i + dx(m), j + dy(m)]-th location, nulls it or weights it
(based on whether [i + dx(m), j + dy(m)]/s is an integer), and finally shifts
the outcome back by [−dx(m),−dy(m)] to its original place, [i, j]. Evidently,
the operator F T

mDT W̃mDFm returns every pixel to its original location. Since
every output pixel depends only on the value of the input pixel in the same
location, this matrix is diagonal. Therefore, each pixel in the LHS is the pixel
in z multiplied by a pixel-specific scalar, and can be computed by

LHS[i, j] =
∑

[k,l]∈N(i,j)

W̃m[k, l]z[i, j] =
∑

[k,l]∈N(i,j)

T∑
t=1

Wm,t[k, l]z[i, j], (4.16)

where we have substituted the definition of W̃m in Equation (4.11). This
expression is similar to Equation (4.15), summing only the weights and serving
as a normalization term. Assuming that this sum is positive (i.e., at least one
weight is non-zero), combining Equations (4.15) and (4.16) leads to a closed
form expression for the [i, j]-th pixel in the estimated z,

ẑ[i, j] =

∑
[k,l]∈N(i,j)

∑T
t=1 Wm,t[k, l]yt[k, l]

∑
[k,l]∈N(i,j)

∑T
t=1 Wm,t[k, l]

, (4.17)

where m is related to [k, l] through [i, j] + [dx(m), dy(m)] = [k, l]. The re-
semblance to the fusion algorithm in NLM-SR is evident (see Equation (30)
in [13]). Just as explained there, the similarity of the final algorithm to the
NLM stands out, but there is a subtle difference between the two, related to
the domain of averaging. The proposed algorithm differs considerably from an
interpolation followed by application of NLM. A visual comparison between
the two in the experimental section will demonstrate the difference.
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4.3.5 Computing the Weights

In the development of the closed-form formula for z, we assumed that
the weighting matrices Wm,t[i, j] are known. We now turn to explain how
Wm,t[i, j] are computed, in order to complete the description of the algorithm.
Observing Equation (4.8), these weights are supposed to encompass the fit,
per pixel, of the desired high resolution image z after being transformed by
Fm and decimated by D, with the input image yt. Thus, the weights could be
related to the error DFmz − yt. Since the pixel value in itself is not enough
to properly estimate the fit, we propose to use some spatial support for each
pixel instead of computing the difference on a single pixel. Defining Ri,j as an
operator that extracts a patch of a fixed and predetermined size (say q × q
pixels) from an image, the weights are computed by

Wm,t[i, j] = exp

{
−
‖Ri,j (DFmz − yt)‖22

2σ2

}
(4.18)

· f

(√
(dx(m))2 + (dy(m))2 + (t− 1)2

)
.

This formula is composed of the two independent parts. The first yields a
value that is inversely proportional to the Euclidean distance between the
transformed image DFmz and the input image yt, computed over some sup-
port around each pixel. This term reflects the per-pixel fit of the displacement
(after decimation). The second term reflects a decreasing confidence in large
spatial and temporal displacements, and adds a decaying weight as a function
of the displacement and time shift magnitudes versus the reference frame. The
function f can be chosen as any monotonically non-increasing function (e.g.,
box function or Gaussian bell).

The computation of the weights relies on the knowledge of the unknown
z. Instead, at the beginning, the weights are computed by using an estimated
version of z, such as a scaled-up version of the reference frame y1. This scale-
up is done using a conventional image interpolation algorithm such as bilinear,
bicubic, or the Lanczos method. As this is only a crude version of the desired
outcome, the process can be iterated, using the newly estimated image ẑ to
obtain more accurate weights that contribute to an improved outcome. In our
tests we employ two such iterations only.

The method in which the weights are computed is reminiscent of clas-
sic block-matching based SR algorithms (e.g., [3]). However, there is a key
difference between these algorithms and the one proposed here. In both ap-
proaches, block-matching is used to crudely estimate the probability of each
trajectory. However, in classic block-matching based SR, only the most likely
of those trajectories is selected, while all other trajectories are ignored. In
the proposed algorithm, all trajectories are considered together, in a proba-
bilistic framework, reflecting the varying confidences of the trajectories. This
difference is what enables the proposed algorithm to handle complex scenarios
where highly accurate motion estimation is not currently possible.
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As said earlier, outliers are to be assigned zero weights. Outliers are char-
acterized by very different patches. Therefore, the block distance in Equation
4.18 is very large, which through the inverse exponent is translated to a neg-
ligible weight. Thus, the outliers are indeed assigned practically zero weight,
and are effectively ignored.

4.3.6 Other Resampling Tasks

In this section we describe how the proposed framework can be adapted to
other re-sampling tasks, such as de-interlacing, inpainting and more, and start
by explaining this extension intuitively. Re-sampling tasks can be considered
as computing pixel values for only some of the pixels in each image (“missing
pixels”). For example, the de-interlacing task may be viewed as providing
pixel values only for the even rows in the odd-numbered fields, as well as for
the odd rows in the even-numbered fields. Formulating this idea, given each
input image (or field) yt, it can be linked to the original (unknown) image
Yt using a masking operator Mt : yt = MtYt. Simply put, Mt discards all
unsampled pixels. It is a binary matrix, with as many rows as the number of
pixels in yt and as many columns as pixels in Yt, with entries of ones indicating
which pixels are to be kept. Note that yt contains only sampled pixels. In the
in-painting case, it contains only the unmasked pixels.

In line with the idea of the probabilistic motion estimation, Yt can be
constructed as a (pixel-wise) weighted average of different transformations of
the target image x. The image x that we seek should be as similar as possible
to each yt, after undergoing each of the transformations and the relevant
masking. This required similarity is weighted on a pixel-wise basis, according
to the (local) probability of the specific transformation having taken place.
Put into the maximum likelihood formulation, a penalty function very similar
to Equation (4.7) arises, where the decimation operator is replaced by Mt,

ε2PML (x) =
1
2

M∑
m=1

T∑
t=1

‖MtHFmx− yt‖2Wm,t
. (4.19)

Minimizing this functional proceeds very similarly to the steps described be-
fore. The treatment of the blur is separated, and a pixel-wise formula for
the values of z is given by Equation (4.17). The difference is in the order of
summation, as the neighborhood N(i, j) of a pixel is now time (and spatial)
dependent. This is because the masking may be different for every image in
the sequence.

The weights for this formula are computed very similarly to the SRR case,
described in Equation (4.18). However, these tasks can benefit from computing
the weights in high-resolution scale. Thus, if we consider that Wm,t is for the
coarse scale, we denote Wm,t = MtW̃m,t, with W̃m,t being the same size as Yt.
The formula for each entry of W̃m,t (when arranged as an image) is therefore
the same as in Equation (4.18), but with Fmz − Yt replacing DFmz − yt.
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In these weights, Yt is an interpolated version of yt (with the interpolation
method depending on the specific task). Of course, these weights should be
computed only for pixels that are kept after the masking Wm,t = MtW̃m,t.

4.4 Experimental Validation

4.4.1 Experimental Results

In this section we demonstrate the abilities of the proposed algorithm in super-
resolving general content sequences. We start with one synthetic (text) se-
quence with global motion that comes to demonstrate the conceptual super-
resolution capabilities of the proposed algorithms. Then we turn to several
real-world sequences with a general motion pattern. The comparison we pro-
vide in most sequences is to a single image upsampling using the Lanczos
algorithm [21, 18], that effectively approximates the Sinc interpolation. Fi-
nally, we demonstrate the adaptation of the algorithm to the de-interlacing
problem.

The first test is a very simple synthetic test, that motion-estimated-based
super-resolution algorithms are expected to resolve well, intended to show
that the proposed algorithm indeed achieves super-resolution. A text image
(in the input range [0, 255]) is used to generate a 9-image input sequence, by
applying integer displacements prior to blurring (using a 3×3 uniform mask),
decimation (by a factor of 1 : 3 in each axis), and the addition of noise (with
std = 2). The displacements are chosen so that the entire decimation space
is covered (i.e., dx = {0, 1, 2} and dy = {0, 1, 2}). The result for this test is
shown in Figure 4.1, including a comparison to both Lanczos interpolation
and the regularized shift-and-add algorithm [5, 7], which is a conventional
motion-estimation-based super-algorithm resolution.

The block size used for computing the weights (R̂) was set to 31 × 31,
since the motion in the sequence is limited to displacements, and a larger
block allows capturing the true displacement better (for real-world sequences,
this size will be greatly reduced, as explained later). The value of σ that
moderates the weights was set to 7.5 (due to the large differences between
white and black values in the scene). Two iterations were ran on the entire
sequence, the first iteration used for computing the weights for the second
iteration.

The similarity between the quality of the classic SR result and the proposed
algorithm is evident. This similarity stems from the large block size used
in the proposed algorithm. This large block size, together with the exiting
global translation, makes the proposed algorithm converge to classic motion-
estimation-based format, as such large blocks basically identify the correct
motion vector for each pixel. We note that such large blocks cannot be used
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(a) (b)

(c) (d)

(e) (f)
FIGURE 4.1: Results for the synthetic text sequence. (a) Original (ground-
truth) image. (b) Pixel replicated image, 13.47dB. (c) Lanczos interpolation,
13.84dB. (d) Deblurred Lanczos interpolation, 13.9dB. (e) Result of shift-and-
add algorithm [5, 7], 18.4dB. (f) Result of proposed algorithm, 18.48dB.

in real-world sequences (shown next), as they do not allow enough adaptation
to the various motion patterns, and therefore much smaller block sizes will be
used.

We now turn to demonstrate the potential of the proposed SRR algorithm
by presenting the results for image sequences with a general motion pattern.
These sequences are also in the input range [0, 255]. Each Low Resolution
(LR) frame is generated from one High Resolution (HR) frame. The HR frame
is blurred using a 3 × 3 uniform mask, decimated by a factor of 1:3 (in each
axis), and then contaminated by additive white zero-mean Gaussian noise with
STD = 2. It is important to note the while the LR images are synthetically
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generated from the HR images (using a known blur kernel and decimation
operator) the motion in the sequence is real, and is not the result of synthetic
manipulations.

The degraded sequence is then input to the proposed SRR algorithm. The
results for three such degraded sequences: “Miss-America,” “Foreman” and
“Suzie” appear in Figures 4.2, 4.3, and 4.4 respectively, for the 3rd, 8th, 13th,
18th, 23rd, and the 28th frames of each sequence.5 The window size used for
computing these weights is set to 13×13, to allow handling complex and local
motion patterns (unlike the text example, in which the motion was global).
The search area was manually adapted for each sequence to ensure that the
real motion is within the search area.

Another example along the same lines appears in Figure 4.5. In this test, a
color High-Definition (HD) sequence was blurred by a 2×2 uniform mask, and
downsampled by a factor of 2 (in each axis). The figure shows a portion of one
HD frame and the same portion of the result of the proposed algorithm. Since
this is a color sequence, the images are converted into the YUV colorspace,
and only the Y channel is processed by the proposed algorithm. The U and V
channels are interpolated, and the three components are then converted back
to RGB colorspace to create the final SR result. This example shows that
while the result is not identical to the input, they are of comparable quality.

In order to demonstrate the proposed algorithm on a directly captured se-
quence, we provide another experiment on the sequence “Trevor,” the results
of which are displayed in Figure 4.6. In this case, there is no ground-truth im-
age available to compare to. Therefore, to demonstrate that a super-resolution
effect is indeed achieved, a comparison is made to an interpolated sequence.
This interpolation is obtained by a Lanczos interpolation, followed by NLM
filtering for denoising, and then deblurring. This comparison serves two goals:
(1) It indeed verifies that the proposed algorithm obtains an SR effect; and (2)
it demonstrates the difference between simply running NLM and deblurring
after up-scaling, compared to running the proposed algorithm. This compar-
ison is important, as the two schemes are confusingly similar (see Equation
4.17). Clearly, a far better image is obtained with the proposed algorithm.

In order to demonstrate the generalized algorithm, we apply it to an inter-
laced sequence. We used the Foreman sequence and composed each interlaced
frame from a pair of original frames by taking the odd-numbered rows from
one frame, and the even-numbered rows from the next, resulting in a sequence
with half as many frames. This sequence was also contaminated by additive
white zero-mean Gaussian noise with STD = 2. This generated sequence can
be considered a true interlaced sequence, as no manipulation (e.g., simulated
blurring) of the pixels has been made other than half the pixels being dis-
carded.

The result of processing this sequence with the framework suggested in

5The sequences appearing in this section (input and output) and others from
[13], along with the various parameters used to generate them, can be found at
http://www.cs.technion.ac.il/∼matanpr/NLM-SR.
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FIGURE 4.2: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Miss America” sequence. From left to right: pixel-replicated low resolution
image; original image (ground truth); Lanczos interpolation; result of the proposed
algorithm.
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FIGURE 4.3: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Foreman” sequence. From left to right: pixel-replicated low-resolution image;
original image (ground truth); Lanczos interpolation; result of the proposed algo-
rithm.
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FIGURE 4.4: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Suzie” sequence. From left to right: pixel-replicated low resolution image; orig-
inal image (ground truth); Lanczos interpolation; result of the proposed algorithm.
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FIGURE 4.5: A High-Definition sequence. Top: Portion of original HD image.
Bottom: Same portion of SR result (from an input downscaled by 2 in each
axis).
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FIGURE 4.6: Original “Trevor” sequence. Top: Interpolated image. Middle:
Interpolation, followed by NLM processing and deblurring. Bottom: Proposed
algorithm. The right column offers a close-up of a portion of the images.
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Section 4.3.6 appears in Figure 4.7. The initial interlaced sequence was split
into fields, and each field was expanded by a factor of two in the vertical axis
only. The missing rows were interpolated by averaging the rows immediately
above and below each missing row. The masks Mt were designed to discard
the even rows in the odd-numbered images, and the odd rows in the even-
numbered images. 5 interlaced frames (10 fields) were used for processing,
and the search area consisted of 10 pixels in every direction. We display the
results for two iterations (where the first is used for computing the weights
for the second), although the differences are much less dramatic than in the
SRR case. As done above, we also show the results of directly filtering the re-
scaled sequence with the NLM filter, to highlight the difference of the proposed
approach. Note how the staircase effect (on the wall) is much decayed by the
proposed algorithm. It should be noted that the purpose of this test is only to
demonstrate the applicability of the proposed framework to other re-sampling
tasks, without claiming that it out-performs other de-interlacing methods.
Further work is required to compare the proposed technique to existing de-
interlacing algorithms.

4.4.2 Computational Complexity

The complexity of the algorithm is essentially the same as that of the NLM
algorithm, with the addition of a deblurring process, which is negligible com-
pared to the fusion stage. The core of the algorithm, which also requires most
of the computations, is computing the weights. In a nominal case in which
a search area of 31 × 31 low-resolution pixels in the spatial domain, and 15
images in the temporal axis, we have ≈ 14, 000 pixels in this spatiotemporal
window. For each pixel in the search area, the block difference is computed,
with a block size of 13× 13 (high-resolution) pixels. Thus, there is a total of
almost 2, 400, 000 operations per pixel. Performing this amount of calculations
for every pixel makes the algorithm irrelevant for practical implementations,
and therefore the computational load must be reduced. In this section we de-
scribe a few possible speed-up options for the proposed algorithm. Several of
the methods to speed-up the NLM algorithm were suggested originally in [10],
and were adopted in our simulations:

1. Computing the weights can be done using block differences in the low-
resolution images, instead of on the interpolated images. This saves a
factor of ≈ s2. This can be applied for the first iteration, resulting in
only a small loss of quality.

2. Computing fast estimations for the similarity between blocks, such as
the difference between the average gray level or the average direction of
the gradient, can eliminate many nonprobable destinations from further
processing. Such an approach was suggested in [10], and was found to
be very effective for the original NLM algorithm.
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(a) (b)

(c) (d)

(e) (f)
FIGURE 4.7: De-Interlacing Results. (a) Original (ground-truth) image. (b)
Interlaced image. (c) Row Averaging, 29.87dB. (d) Row Averaging followed
by NLM processing, 29.93dB. (e) Proposed algorithm first iteration, 30.69dB.
(f) Proposed algorithm second iteration, 30.71dB.
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3. If the patch used to compute the weights is rectangular and with uni-
form weights, the special structure of the patch can be used to dramati-
cally speed up the computation of the weights. The Integral Image [20].
(II (x, y) =

∑x
i=1

∑y
j=1 I (i, j)) can be used to compute the block dif-

ferences using only a small constant number of calculations per pixel,
regardless of block size. Fortunately, there is only a slight effect on the
quality of the outputs of using such a patch structure.

4. A coarse-to-fine approach, transferring only high likelihood destinations
from the coarse level, reduces the effective search area for each pixel,
thus reducing the number of required calculations.

5. Since it is more likely that large spatial displacements will appear when
the temporal distance is large, using a small search area in nearby frames
and enlarging it as the temporal distance grows, can reduce the effective
search area and thus the total number of calculations.

6. Since most of the algorithm is local in nature, it lends itself easily to
parallelization. As 4 and 8 processor configurations are currently widely
available, this can be used for speeding up the algorithm by about one
order of magnitude. Furthermore, as parallel hardware such as Graphical
Processing Units (GPUs) are very common and powerful, with program-
ming tools making implementations on such hardware easier than before,
the parallelistic nature of this algorithm might allow a great speed-up
by an implementation on such processing units.

These suggested speed-up methods can reduce the complexity by at least 3 to
4 orders of magnitude without a noticeable drop in the quality of the outputs.
This makes the proposed algorithm practical.

As for the memory requirements, the proposed algorithm uses approxi-
mately as much memory as required to hold the entire processed sequence in
the high-resolution scale, and is usually not a limitation. However, some of the
speed-up methods suggested do require more memory, so a trade-off between
memory requirements and run-time may be needed.

4.5 Summary

In NLM-SR [13], an earlier work, an explicit-motion-estimation-free SRR algo-
rithm was developed by extending the NLM filter to SRR reconstruction. This
chapter approaches the same task from a different perspective, basing it on a
probabilistic and crude motion estimation instead. Interestingly, this approach
(under some assumptions) leads to the same algorithm as in NLM-SR. How-
ever, since the formulation described here relies on the classic super-resolution
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framework and on the imaging model, we believe it is more intuitive. We give
several examples of the abilities of the proposed algorithm in super-resolving
various sequences.

Another benefit of this formulation is that it allows for different exten-
sions than those proposed in [13]. In this chapter, we have shown that this
framework can in fact be adapted to any re-sampling task. We have given one
example of de-interlacing, showing the validity of this adaptation. This ex-
ample shows than even sequences with large, highly nonrigid motion patterns
can be successfully de-interlaced by the proposed framework.

While the results of the proposed algorithm are encouraging, we believe
further research is needed in order to extract the full potential of this family of
algorithms. We note that in developing the algorithm, we have made several
choices such as relying on integer displacements, only in order to simplify the
development of the algorithm, and to arrive at an algorithm that is relatively
simple to understand and implement. Avoiding such compromises will result
in a more complex algorithm, but one that might also bring about better
results.
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The recent developments in image and video denoising have brought a new
generation of filtering algorithms achieving unprecedented restoration qual-
ity. This quality mainly follows from exploiting various features of natural
images. The nonlocal self-similarity and sparsity of representations are key
elements of the novel filtering algorithms, with the best performance achieved
by adaptively aggregating multiple redundant and sparse estimates. In a very
broad sense, the filters are now able, given a perturbed image, to identify its
plausible representative in the space or manifold of possible solutions. Thus,
they are powerful tools not only for noise removal, but also for providing ac-
curate adaptive regularization to many ill-conditioned inverse imaging prob-
lems. In the case of image/video reconstruction from incomplete data, the
general structure of the proposed approach is very simple and is based on
iteratively refining the estimates alternating two procedures: image/video fil-
tering (denoising) and projection on the observation-constrained subspace. In
this chapter we give an overview of this versatile approach, with particular
emphasis on three challenging and important imaging applications: inversion
from sparse or limited-angle tomographic projections, image reconstruction
from low-frequency or undersampled data, image and video super-resolution.
This approach is especially appealing for the latter application, as the block-
matching procedure, performed both in space and time, makes the explicit
motion estimation unnecessary. The presented experimental results demon-
strate an overall performance on the level of the state of the art.

5.1 Introduction

A priori assumptions on the image to be reconstructed are essential for any
inverse imaging algorithm. In the standard variational approaches, these as-
sumptions are usually given as penalty terms that serve as regularization in
an energy criterion to be minimized.

A main limitation of these approaches is that the minimization usually
involves the evaluation of the gradient of the penalty functional and its con-
vexity. Therefore, if on the one hand the nonstationarity of natural images
calls for locally adaptive nonconvex penalties, on the other hand, to obtain
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a feasible algorithm, the energy criterion and, thus, the penalty needs to be
simple.

This limitation becomes evident particularly for image denoising, for which
the recent years have witnessed the development of a number of spatially
adaptive algorithms that dramatically outperform the established methods
based on variational constraints (see, e.g., [20],[26]).

Our approach to inverse imaging essentially differs from these variational
formulations and appeals to nonparametric regression techniques. We propose
to replace the implicit regularization coming from the penalty by explicit
filtering, exploiting spatially adaptive filters sensitive to image features and
details. If these filters are properly designed, we have reasonable hopes to
achieve better results by filtering than through the formal approach based
on the formulation of imaging as a variational problem with imposed global
constraints.

The presented framework is general and is applicable to a wide class of
inverse problems for which the available data can be interpreted as a smaller
portion of some transform spectrum of the signal of interest. This observa-
tion model has gained recently enormous popularity under the paradigm of
compressive sensing [1].

We demonstrate application of our approach to the inversion from sparse
or limited-angle tomographic projections, image upsampling, and image/video
super-resolution. Depending on the particular way of sampling the spectral
components and the assumptions about the complexity of the image, the re-
cursive procedures can be improved by incorporating random search or staged
reconstruction.

The chapter is organized as follows. In the next section we give formal
definitions of the observation model and of the reconstruction algorithm for a
rather general case. These are then reinterpreted in the context of compressive
sensing in Section 5.3, where we also present inverse tomography and basic
image upsampling experiments. Section 5.4 is devoted to image and video
super-resolution. Concluding remarks are given in the last section.

5.2 Iterative Filtering as Regularization

Let us consider a general ill-posed inverse problem in the form

y = H (x) (5.1)

where x is the true image to be reconstructed and y is its observation through a
linear operator H : X → Y , X and Y being Euclidean spaces with dimensions
dimY < dimX . We start from the naive pseudoinverse

x̂(0) = arg min
x:H(x)=y

‖x‖2
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of (5.1), which is usually very far from the solution one would like to obtain,
particularly when dimY is much smaller than dim X . Nevertheless, due to the
linearity of H, any other solution of (5.1) should differ from x̂(0) only by its
component on the null space ofH, ker (H). To obtain an updated estimate x̂(1),
we first refine x̂(0) with a filter Φ, project Φ

(
x̂(0)
)

on ker (H) and then add x̂(0).
The reason of the last two operations is that the refined estimate, while being
closer to the desired solution may not satisfy (5.1) anymore. This procedure
can be repeated iteratively leading to the following recursive scheme:

{
x̂(0) = arg min

x:H(x)=y

‖x‖2 ,

x̂(k) = x̂(0) + Pker(H)

(
Φ
(
x̂(k−1)

))
,

(5.2)

where Pker(H) is the projection operator on the null space ker (H) and the
superscripts denote the corresponding iteration.

5.2.1 Spectral Decomposition of the Operator

There are several ways how the projection Pker(H) can be realized. A practical
approach, which we follow throughout the chapter, relies on the following
spectral decomposition of the operator H [8].

Let T : X → Θ be an orthonormal transform with basis elements {ti}dim X
i=1

such that ker (H) = span {ti}i∈ΩC , Ω being a subset of indices (subband) and
ΩC its complementary. Given such a transform T , the projection of x ∈ X,
Pker(H) (x) , can be easily obtained as the zeroing out of the T -spectrum of x
on Ω followed by application of T −1. Moreover, we can choose T so that it
performs an eigendecomposition, i.e., so that H can be rewritten as

H ( · ) = T −1
0 (S (T ( · ))) , (5.3)

where S : Θ → ΘΩ is a diagonal operator, which scales each spectrum co-
efficient by its corresponding non-zero eigenvalue, and T0 : Y → ΘΩ is an
orthonormal transform. Here ΘΩ is the space obtained by restricting the ele-
ments of Θ on Ω. Thus, the operator S is simply restricting the T -spectra on
Ω and scaling the retained coefficients, with ker (S) = T (ker (H)). Unless the
eigenvalues are all distinct, the basis elements {ti}i∈Ω of the transform T that
satisfies the above requirements are not uniquely determined. Of course, as the
{ti}i∈Ω are varied, also the transform T0 must vary accordingly, because T0 is
essentially determined by them. In matrix form, the spectral decomposition
(5.3) can be obtained through the singular value decomposition (SVD) of H.

5.2.2 Nonlocal Transform Domain Filtering

In our implementations of the recursion (5.2), as the spatially adaptive filter
Φ we utilize the Block-Matching 3D filtering (BM3D) denoising algorithm [10]
and its extension to video V-BM3D [9]. Our choice of the BM3D algorithms is
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FIGURE 5.1: Illustration of grouping within an artificial image where for each
reference block (with thick borders) there exist perfectly similar ones.

essentially determined by the fact that it is currently considered as one of the
best denoising filters (see, e.g., [26],[20]) and that its remarkable performance
is achieved at a competitive computational cost.

The BM3D algorithm exploits paradigms of nonlocal similarity [2],[20]
in a blockwise fashion in order to obtain a highly sparse representation of
the data. It means that the images to be processed are windowed/segmented
into overlapping blocks and one looks for mutually similar blocks, which are
collected into groups, so that the data in these groups can be processed jointly.
In this way we arrive to a nonlocal estimator with varying adaptive support
where the data used in the estimation can be located quite far from each other.
This estimation can be treated as a sophisticated high-order generalization of
nonlocal means (NLM) [2],[4],[22],[23],[24].

To clarify the idea of grouping, let us consider an illustrative example of
blockwise nonlocal estimation of the image in Figure 5.1 from an observation
(not shown) corrupted by additive zero-mean independent noise. In particular,
let us focus on the already grouped blocks shown in the same figure. These
blocks exhibit perfect mutual similarity, which makes the elementwise averag-
ing (i.e., averaging between pixels at the same relative positions) an optimal
estimator. In this way, we achieve an accuracy that cannot be obtained by
processing the separate blocks independently.

However, perfectly identical blocks are unlikely in natural images. If non-
identical fragments are allowed within the same group, averaging is no longer
optimal. Therefore, a filtering strategy more effective than averaging should
be employed.

Here we give a brief description of the general V-BM3D algorithm, whose
flowchart is presented in Figure 5.2. The BM3D algorithm can be then consid-
ered as equivalent to V-BM3D with the input sequence consisting of a single
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FIGURE 5.2: Flowchart of the the V-BM3D algorithm.

image. Detailed descriptions of the (V-)BM3D algorithms can be found in the
corresponding references.

1. Block-wise estimates. Each image of an input sequence is processed in
sliding-block manner. For each block the filter performs:

(a) Grouping by block-matching. Searching within all images in the se-
quence, find blocks that are similar to the currently processed one,
and stack them together in a 3-D array (group).

(b) Collaborative filtering. Apply a 3-D transform to the formed group,
attenuate the noise by hard-thresholding of the transform coeffi-
cients, invert the 3-D transform to produce estimates of all grouped
blocks, and return the estimates of the blocks to their original place.

2. Aggregation. Compute the estimates of the output images by weighted
averaging all of the obtained block-wise estimates that are overlapping.

What makes this algorithm very different from other nonlocal estimators
is the use of a full-rank complete transform for modeling both the blocks and
their mutual similarity or difference. Due to the similarity between the grouped
blocks, the transform can typically achieve a highly sparse representation of
the true signal so that the noise or small distortions can be well separated by
shrinkage. In this way, the collaborative hard-thresholding reveals even the
finest details shared by grouped fragments and at the same time it preserves
the essential unique features of each individual fragment. Additionally, the
adaptive aggregation of multiple redundant and sparse estimates allows us to
significantly boost the performance and provide high level of robustness to
the algorithm.

Let us note that, for the purposes of this work, we do not perform the
additional collaborative Wiener filtering stage that is otherwise present in the
original BM3D and V-BM3D denoising algorithms [10], [9].

In what follows, the (V-)BM3D filter will be denoted as Φ (z, σ), where
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z is the degraded image/video to be filtered and σ ≥ 0 is a parameter that
originally corresponds to the standard-deviation of the noise in z and that
here we mainly use to effectively control the filter strength: a larger σ implies
a more aggressive filtering, thus enforcing a higher degree of sparsity, while
a smaller σ provides better preservation of weak details at the expense of a
milder noise suppression.

5.3 Compressed Sensing

During the last three years, compressed sensing (CS) has received growing at-
tention, mainly motivated by the positive theoretical and experimental results
shown in [5], [7], [15], [19], [31], [32], [33]. The basic settings of signal recon-
struction under conditions of CS are as follows. An unknown signal of interest
is observed (sensed) through a limited number of linear functionals. These ob-
servations can be considered as an incomplete portion of the spectrum of the
signal with respect to a given linear transform T . Thus, conventional linear re-
construction/synthesis (e.g., inverse transform) cannot in general reconstruct
the signal. For example, when T is the Fourier transform, CS considers the
case where the available spectrum is much smaller than what is required ac-
cording to the Nyquist-Shannon sampling theory. It is generally assumed that
the signal can be represented sparsely with respect to a different relevant basis
(e.g., wavelets) or that, alternatively, it belongs to a specific class of functions
(e.g., piecewise constant functions). Of particular importance is the so-called
incoherence between the basis with respect to which the incomplete observa-
tions are given and the one with respect to which the signal is sparse [6]. In
the publications cited above, it is shown that under such assumptions, stable
reconstruction of the unknown signal is possible and that in some cases the
reconstruction can be exact. These techniques typically rely on convex opti-
mization with a penalty expressed by the �0 or �1 norm [34] which is exploited
to enable the assumed sparsity [14]. It results in parametric modeling of the
solution and in problems that are then solved by mathematical programming
algorithms.

Based on the ideas discussed in the introduction, an alternative and novel
approach to CS reconstruction can be developed by replacing the paramet-
ric modeling with a nonparametric one implemented by the use of spatially
adaptive denoising filtering. The algorithm proposed in [17] extends the itera-
tive scheme (5.2) by incorporating stochastic approximation to obtain stable
recovery of the images. At every iteration, the current estimate is excited by
injection of random noise in the unobserved portion of the spectrum. The
denoising filter attenuates the noise and reveals new features and details out
of the incomplete and degraded observations. Roughly speaking, we seek for
the solution (reconstructed signal) by stochastic approximations whose search
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direction is driven by the denoising filter. It should be remarked that here
we are concerned only in the operative way the solution is found, while we
exploit essentially the same fundamental ideas of sparsity and basis incoher-
ence undertaken by many other authors. As a matter of fact, the observation
domains considered in what follows are much more incoherent with respect
to the adaptive data-driven 3-D transform domain in which BM3D effectively
forces the data to be sparse.

5.3.1 Observation Model and Notation

Let T : X → Θ be an orthonormal transform operating from the image
domain X to the transform domain Θ. The unknown image x ∈ X can be
sensed through the linear operator H : X → Y = ΘΩ, where Ω is a subset of
the T -spectral components we are able to sense and ΘΩ is the corresponding
space of the T -spectra restricted on Ω. The space ΘΩ can be identified with
the subspace of Θ constituted by all spectra that are identically zero outside
of Ω. To clarify these concepts and simplify the coming notation, we introduce
two operators:

• the restriction operator |Ω that, from a given T - spectrum, extracts its
smaller portion defined on Ω;

• the zero-padding operator UΩ that expands the part of T - spectrum de-
fined on Ω to the full T -spectrum by introducing zeros in the complement
of Ω, ΩC .

Likewise, we can define |ΩC and UΩC .
Using these operators, the sensing operator can be explicitly written as

H ( · ) = T ( · )|Ω. Referring to (5.3), we have S = |Ω and T0 is the identity.
Now, if x ∈ X is the unknown image intensity and θ = T {x} ∈ Θ is its

spectrum, the CS problem is to reconstruct θ (or equivalently x) from the
measurements y,

y = θ|Ω = T (x)|Ω . (5.4)

It means that given the known part of the spectrum defined on Ω we have to
reconstruct the missing part defined on ΩC .

5.3.2 Iterative Algorithm with Stochastic Approximation

Following (5.2), we obtain the initial estimate as x̂(0) = argmin
x: H(x)=y

‖x‖2 =

T −1 (UΩ (y)). When the observed data is highly undersampled, the initial es-
timate x̂(0) may contain too little information to enable reconstruction by the
simple scheme (5.2). An improved scheme can be obtained by incorporating
stochasticity into (5.2) resulting in
{

x̂(0) = arg min
x:H(x)=y

‖x‖2 = T −1 (UΩ (y)) ,

x̂(k) = x̂(0) + Pker(H)

h
(1 − γk) x̂(k−1) + γk

“
Φ

“
x̂(k−1), σk

”
+ ηk

”i
, k ≥ 1.

(5.5)
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FIGURE 5.3: Flowchart of the recursive system (5.6).

Here, ηk is some pseudo-random white noise that is injected into the system in
order to provide the stochastic excitation. Equivalently, we can rewrite (5.5)
with respect to spectral variables as
{

θ̂(0) = arg min
θ: θ|Ω=y

‖θ‖2 = UΩ (y) ,

θ̂(k) = θ̂(0) + Pker( |Ω)

h
(1 − γk) θ̂(k−1) + γk

“
T

“
Φ

“
T −1

“
θ̂(k−1)

”
, σk

””
+ ηk

”i
, k ≥ 1,

(5.6)
where Pker( |Ω) ( · ) = UΩC ( ( · )|ΩC ) is the corresponding projection operator in
transform domain, which basically zeroes out all spectral coefficients defined
on Ω.

The flowchart of the system (5.6) is shown in Figure 5.3. The system is
initialized by setting θ̂(0) = UΩ (y). Then, each iteration (k ≥ 1) comprises of
the following steps:

• Image-domain estimate filtering. The spectrum estimate is inverted and
the obtained image is filtered with the filter Φ. In this way, the coef-
ficients from the unobserved part of the image spectrum are recreated
from the given θ|Ω = y. In our implementation of the algorithm the
BM3D is used as the filter Φ.

• Noise addition (excitation). Pseudorandom noise ηk is introduced in the
unobserved portion of the spectrum and works as a random generator
of the missing spectral components. During the subsequent iterations,
these components are attenuated or enhanced by the action of the filter
Φ, depending to what extent they agree with the image features enabled
by the observed spectrum θ|Ω = y.

• The updated estimate θ̂(k) is obtained as the sum of the convex combina-
tion between the previous estimate θ̂(k−1) and the noise-excited predic-
tion of the spectrum obtained after filtering, projected on the subspace
defined by the unknown part of the spectra, and θ̂(0). The factor γk, in
the convex combination, controls the rate of evolution (step size) of the
algorithm.
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5.3.2.1 Comments on the Algorithm

Stochastic approximation. The iterative algorithm (5.6) can be treated as
the Robbins-Monro stochastic approximation procedure (see, e.g., [25]). If the
step-size parameter γk satisfies the standard conditions

γk > 0,
∑

γk =∞,
∑

γ2
k < ∞ (5.7)

and some assumptions on the operator T
(
Φ
(
T −1 ( · )

))
hold, as k → ∞ the

estimates θ̂(k) from the recursive system (5.6) converge in mean squared sense
to a solution θ̂ of the equation

E
{
Pker( |Ω)

[
−θ̂ + T

(
Φ
(
T −1

(
θ̂
)

, σk

))
+ ηk

]}
= 0,

i.e.
Pker( |Ω)

[
θ̂ − T

(
Φ
(
T −1

(
θ̂
)))]

= 0

or equivalently

θ̂ = UΩ (y) + Pker( |Ω)
[
T
(
Φ
(
T −1

(
θ̂
)))]

. (5.8)

If there is no smoothing in the filter Φ, the equation (5.8) becomes the identity.
Thus, any θ̂ that satisfies observation (5.4) satisfies also to the equation (5.8),
there is no image reconstruction and the algorithm does not work. Therefore,
in order for the solution θ̂ to be nontrivial, the adaptive smoothing in (5.8)
should be strong enough.

Excitation noise. The additive noise ηk used in the procedure (5.6) does
not influence the equation (5.8). There are two arguments in favor of excitation
of the algorithm by the random noise. First of all it improves the performance
of the algorithm. It accelerates the transition process of the recursive proce-
dure bringing it fast in the area of solution where the random walks steadies.
The amplitude of these random walks decreases together with γk. It is well
known (e.g., [21]) that the random search applied in optimization problems
results in random walks well concentrated in areas of global extremum. Thus,
the random search imposed by random excitation of the search trajectory can
be useful for separation of local and global extrema. In a similar way, if the
equation (5.8) has more than one solution, the randomness can help to find
a “strong” solution with better quality of imaging or lower values of some
hypothetical criterion function where the gradient (or quasi-gradient) can be
defined as the vector corresponding to Pker( |Ω)

(
θ̂ − T

(
Φ
(
T −1

(
θ̂
))))

. Fur-
ther, by changing the variance of the additive noise ηk one can control the
rate of evolution of the algorithm. Thus, in practice, the assumptions (5.7)
can be relaxed and a fixed γk can be used provided that var {ηk} →

k→∞
0.

Filter parameters. The parameter σk is used in place of the standard-
deviation of the noise of the BM3D filter. This parameter controls the strength
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of collaborative hard-thresholding and thus affects the level of smoothing in-
troduced by the filter. In order to prevent smearing of the small details the
sequence {σk}k=0,1,... should be decreasing with the progress of the iterations,
and normally it is selected to be σ2

k = var {ηk}. The last fact makes (5.6)
to formally differ from the classical Robbins-Monro procedure, where the op-
erator Φ is assumed to be fixed (thus without a second argument σ) with
the overall aggressiveness of the recursion controlled instead by the step size
parameter γk.

Stopping rule. The algorithm can be stopped when the estimates θ̂(k)

approach numerical convergence or after a specified number of iterations.
Image estimates. An image estimate x̂(k) can be obtained at k-th it-

eration as T−1
(
θ̂(k)
)
, although in practice T−1

(
θ̂(k) − Pker( |Ω) (ηk−1)

)
are

better estimates because of the absence of excitation noise. All these estimates
converge to x̂ = T−1

(
θ̂
)

as k →∞.

5.3.3 Experiments

The effectiveness of the proposed algorithm can be illustrated on two im-
portant inverse problems from computerized tomography: Radon inversion
from sparse projections and limited-angle tomography. The former problem
has been used as a benchmark for testing CS reconstruction algorithms (e.g.,
[5]). In particular, the results show that the presented algorithm allows us to
achieve the exact reconstruction of synthetic phantom data even from a very
limited number of projections. An example of image reconstruction from low-
frequency data is also given. This particular example will serve as a bridge to
the super-resolution problems considered in the next section.

The following experiments are carried out using a simplified form of the
iterative scheme (5.6), where γk ≡ 1 and ηk is independent Gaussian noise
with exponentially decreasing variance var {ηk} = α−k−β . For the filter Φ,
we use the block-matching and 3-D filtering algorithm (BM3D) [10], setting
σ2

k = var {ηk}. The separable 3-D Haar wavelet decomposition is adopted as
the transform utilized internally by the BM3D algorithm.

FIGURE 5.4: Available portion Ω of the FFT spectrum for the three experi-
ments: 22 radial lines, 11 radial lines, 90 degrees limited-angle with 61 radial
lines.
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We begin with illustrative inverse problems of compressed sensing for com-
puterized tomography. As in [5], we simulate the Radon projections by “ap-
proximately” radial lines in the rectangular FFT domain. Note that the initial

image estimate x̂(0) = argmin
x:H(x)=y

‖x‖2 = T −1

(
arg min
θ: θ|Ω=y

‖θ‖2

)
coincides with the

conventional back-projection estimate.

5.3.3.1 Radon Inversion from Sparse Projections

First, we reproduce exactly the same experimental setup from [5], where 22
radial lines are sampled from the FFT spectrum of the Shepp-Logan phantom
(size 256×256 pixels), as shown in Figure 5.4 (left). Further, we reduce the
number of available Radon projections from 22 to 11 (see Figure 5.4(center)).
The initial back-projection estimates are shown in Figure 5.5. As the recursive
algorithm progresses, the reconstruction error improves steadily until numeri-
cal convergence, as it can be seen from the plots in Figure 5.6. For both cases
the reconstruction is exact, in the sense that the final reconstruction error
(PSNR �270dB) is comparable with the numerical precision of this particular
implementation of the algorithm (double precision floating-point). We remark,
however, that in practice such a high accuracy is never needed: already at a
PSNR of about 60dB the image estimates can hardly be distinguished from
the original.

5.3.3.2 Limited-Angle Tomography

In the two previous experiments, the available Radon projections were uni-
formly distributed with respect to the projection angle. A more difficult case
arises when the angles under which the projections are taken are limited.
Similarly to [27], we consider an overall aperture for the projections of 90
degrees. This restriction is essential, since all frequency information is com-
pletely missing along half of the orientations, which makes the reconstruction
of, e.g., edges across these orientation extremely hard. We complicate the
problem further, by taking only a smaller subset of 61 projections (a total
of 256 properly-oriented projections would be required to cover a 90 degrees
aperture). These sparse, limited-angle projections are illustrated in Figure 5.4
(right). Although the convergence is here much slower than in the previous
two experiments, the algorithm eventually achieves exact reconstruction.

In the above three experiments, as soon as the estimate reaches a quality
of about 70dB, the recursion enters a phase of improvement at a constant
rate (linear in terms of PSNR since var {ηk} decreases exponentially), which
appears to be limited only by the used arithmetic precision.

5.3.3.3 Reconstruction from Low-Frequency Data

The proposed recursive procedure can be applied also to more conventional
image-processing problems. As a prelude to the image/video super-resolution
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FIGURE 5.5: Clockwise from top-left: back-projection estimates for 22 radial
lines, 11 radial lines, 61 radial lines with limited-angle (90 degrees), and orig-
inal phantom (unknown and shown here only as a reference). For all three ex-
periments, the estimates obtained after convergence of the algorithm coincide
with the original image.

FIGURE 5.6: Progression of the PSNR (dB) of the reconstructed image esti-
mate x̂(k) with respect to the iteration count k for the three experiments: 22
and 11 sparse projections (“22” and “11”) and limited-angle (“LA”).

and upsampling algorithms, which are the subject of the next section, we



136 Super-Resolution Imaging

FIGURE 5.7: Available portion Ω of the FFT spectrum of the Cameraman
image shown in Figure 5.8(left).

FIGURE 5.8: Cameraman: initial estimate x̂(0) (zero-padding) (PSNR=
27.32dB), and reconstructed estimate x̂(62) after 62 iterations (PSNR=
29.10dB).

present here a basic experiment that can be seen as a prototype of image up-
sampling. In particular, we consider the reconstruction of a nonsynthetic test
image, namely Cameraman (256×256 pixels), from the low-frequency portion
of its Fourier spectrum, with the set Ω being a 128×128 square centered at
the DC, as illustrated in Figure 5.7. In Figure 5.8 we show the initial esti-
mate x̂(0) (by zero-padding in FFT domain, thus minimum �2-norm) and the
reconstructed image obtained after few iterations of the algorithm. Despite
the reconstruction is not exact, the salient details of the image are properly
restored and there are no significant artifacts (e.g., ringing) thanks to the
adaptivity embedded in the BM3D filter.
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5.4 Super-Resolution

Image upsampling or zooming, can be defined as the process of resampling
a single low-resolution (LR) image on a high-resolution (HR) grid. Different
resampling methods can be used to obtain zoomed images with specific desired
properties, such as edge preservation, degree of smoothness, etc. In particular,
we concluded the previous section with an example demonstrating how one
can achieve image upsampling by means of iterative BM3D filtering. As a
matter of fact, because of the Nyquist-Shannon theorem, the inverse Fourier
transform of the central low-frequency portion of the spectrum, can be treated
as the LR image obtained upon decimation of the low-passed HR image.

However, fine details missing or distorted in the low-resolution image can-
not be reconstructed in the upsampled one. This is particularly evident when
the downsampling ratio between the HR and LR images is high (in the above
example this ratio was only 2). Roughly speaking, there is no sufficient in-
formation in the low-resolution image to do this. The situation changes when
a number of LR images portraying slightly different views of the same scene
are available. The reconstruction algorithm now can try to improve the spa-
tial resolution by incorporating into the final HR result the additional new
details revealed in each LR image. The process of combining a sequence of un-
dersampled and degraded low-resolution images in order to produce a single
high-resolution image is commonly referred to as super-resolution (SR) image
reconstruction, or, simply, image super-resolution.

The standard formulation of the image SR problem assumes that the LR
images are obtained through the observations given by the model

xlowr = D (B (Fr (xhi))) , r = 1, . . . , R, (5.9)

where xlowr are LR images, Fr, B, D are the linear operators representing
respectively warp, blur and decimaton, and xhi is a high-resolution image
of the scene subject to reconstruction. Blur and decimation operators are
considered to be known.

Besides the difficulty involved in estimating the warping parameters, a
principal drawback of the SR formulation (5.9) is that it assumes that all LR
images xlowr can be mapped and upsampled to a unique HR image xhi.

The observation model (5.9) then can be extended to the more general
form

xlowr = D (B (xhir)) , r = 1, . . . , R, (5.10)

where the warp operators on a single HR image are replaced by a sequence
of HR images. This allows consideration of arbitrary types of deformation
between the frames, such as relative motion between different objects in the
scene, and occlusions. The reconstruction of the HR sequence {xhir}R

r=1 from
the LR sequence {xlowr}R

r=1 is termed video super-resolution.
The classical SR approach is loosely based on the following three steps:
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(1) registration of the LR images to a HR coordinate grid, (2) warping of
the LR images onto that grid by interpolation, and (3) fusion of the warped
images into the final HR image. An additional deblurring step is sometimes
considered to compensate the blur. Several algorithms based on such classical
approach exist and detailed reviews can be found, e.g., in [18].

For successful reconstruction it is crucial to perform accurate registra-
tion between the features represented across different frames. Most of the
existing SR methods rely either on a parametric global motion estimation,
or on a computationally intensive optical flow calculation. However, an ex-
plicit registration of the LR frames is often not feasible: on the one hand, if
the registration map has few degrees of freedom, it is too rigid to model the
geometrical distortions caused by the lens system; on the other hand, when
many degrees of freedom are available (e.g., a dense optical flow), reliable
estimates of the registration parameters cannot be obtained. In either case,
registration artifacts are likely to appear in the fusion, requiring heavy regu-
larization (smoothing) for their concealment [18]. The situation becomes even
more difficult when nonglobal motion is present in images, something that is
typical of video SR. Modern SR methods depart from the classical approach
and we specially mention the video SR reconstruction algorithms [16], [29],
[28], [30] based on the nonlocal means (NLM) filtering paradigm [2]. In these
algorithms, instead of trying to obtain an explicit registration as a one-to-
one pixel mapping between frames, a one-to-many mapping is utilized, where
multiple pixels can be assigned to a given one, with weights typically defined
by the similarity of the patches/blocks surrounding the pixels. The HR image
is estimated through a weighted average of these multiple pixels (or of their
surrounding patches) with their corresponding weights. The increased redun-
dancy of the NLM, which can exploit also multiple patches from a same frame,
contributes significantly to the overall good performance of the methods [29].

Here, based on our previous works [12],[13] we present a unified algorithm
for the upsampling and image/video SR based on iterative (V)-BM3D filtering.
As discussed in Section 5.2.2, the (V)-BM3D algorithm shares with the NLM
the idea of exploiting nonlocal similarity between blocks. However, thanks
to its transform-domain modeling, the BM3D turns out to be a much more
effective filter than the NLM, thus leading to outstanding SR results.

The remainder of this section is organized as follows. First, we show how
the SR problem can be interpreted in terms of the spectral decomposition
(5.3). Then we present an adaptation of the algorithm (5.5) to video SR
reconstruction, with image upsampling treated as a particular case. Finally,
we report experimental results demonstrating the effectiveness and superior
performance of the proposed approach.
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5.4.1 Spectral Decomposition for the Super-Resolution
Problem

The observation model (5.10) for the video SR problem is a particular case of
the general observation model (5.1) where X is the space of high-resolution
images, Y that of the low-resolution frames, and

H ( · ) = D (B ( · )) . (5.11)

Let us show how the blur and decimation operator relate to the general spec-
tral decomposition presented in Section 5.2.1.

The blur in (5.10) can be written as the integral

B (xhir) (s) =
∫

xhir (ξ) b (s, ξ − s) dξ,

where b is a spatially varying point-spread function (PSF). Further, it can be
represented as the inner products

B (xhir) (s) = 〈xhir, bs〉 , (5.12)

where bs (ξ) = b (s, ξ − s). Now, the action of the decimation operator D
in (5.10) can be seen as a retaining only a subset of inner products (5.12)
corresponding to the given sampling points s.

Let us assume that the corresponding retained bs constitute a basis
{ti}dim Y

i=1 for a linear subspace X̃ ⊂ X of dimension equal to the number
of pixels of any of the LR frames xlowr. For the sake of simplicity, we as-
sume this basis to be orthonormal up to a scaling constant β. Hence, X̃ is the
orthogonal complement of ker (H) in X .

The core of our modeling is to complete the basis {ti}dim Y
i=1 with an or-

thonormal basis {ti}dim X
i=dim Y +1 of ker (H), thus obtaining a basis {ti}dim X

i=1 for
X . This constitutes an orthonormal transform T : X → Θ whose basis ele-
ments separate ker (H) from its orthogonal complement. By such a construc-
tion, the subset of basis indices i = 1, . . . , dimY correspond to the set Ω,
ΘΩ = Y . Hence, T0 is identity and S operates the division by β and restric-
tion on Ω.

An evident example of this construction is when B is the blurring with a
uniform kernel of size n × n and D =↓n is a decimation with rate n (along
the rows as well as along the columns): the PSFs bs, i.e., the basis elements
{ti}dim Y

i=1 , are thus nonoverlapping (hence orthogonal) shifted copies of the
same uniform kernel. This basis can be naturally seen as the subbasis of the
n×n block-DCT composed by extracting the DC-basis elements of all blocks.
In this sense, we can complete {ti}dim Y

i=1 with the basis {ti}dim X
i=dim Y +1 composed

by the AC-basis elements of all blocks.
However, we are not bound to use the transform T constructed from the

PSFs in the above direct way. As observed at the end of Section 5.2.1, the
uniqueness of the basis elements {ti}i∈Ω depends on the nonzero eigenvalues
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being distinct, while here all nonzero eigenvalues equal β−1. In this case, any
orthonormal transform that provides the same orthogonal separation between
ker (H) and its complementary can be used in the decomposition. Indeed, in
the example in Section 5.3.3.3 we have used the FFT as the transform T while
the blur PSFs were sinc functions. Of course, if the used T differs from that
constructed directly from the PSFs, also the transform T0 must differ from
the identity. Therefore, in all the following equations, T0 is always written
explicitly, and (5.11) takes thus the form

H ( · ) = T −1
0

(
β−1 T ( · )|Ω

)
. (5.13)

Before we proceed further, let us remark that the assumption on the or-
thonormality (up to scaling constant) of the basis {ti}dim Y

i=1 for X̃ induced
by the blur and decimation operators is mainly for simplicity of exposition.
If {ti}dim Y

i=1 were not orthonormal, the construction would have been simi-
lar, differing from (5.13) either by having a frame and its dual instead of the
orthonormal transform T , or, in accordance with the general spectral decom-
position (5.3), by substituting the factor β−1 by a general diagonal operator
(i.e., multiplying each transform coefficient by its own scaling factor).

5.4.2 Observation Model

Using the above representation of H (5.13), we reformulate the super-
resolution observation model (5.10) as follows.

Let us be given a sequence of R ≥ 1 low-resolution images {xlowr}R
r=1

of size nh
0 × nv

0, with each xlowr being obtained from the subband of the
corresponding T -spectra of original higher-resolution images {xhir}R

r=1 of size
nh × nv as

yr = xlowr = T −1
0

(
β−1 T (xhir)|Ω

)
. (5.14)

The problem is to reconstruct {xhir}R
r=1 from {xlowr}R

r=1. Clearly, for a
fixed r, any good estimate x̂r of xhir must have its Ω subband equal to
βT0 (xlowr) = T (xhir)|Ω. Under this restriction, the estimates constitute an
affine subspace X̂r of codimension nh

0nv
0 in the nhnv-dimensional linear space

X : X̂r = {x̂r ∈ X : T (x̂r)|Ω = βT0 (xlowr)}.
For R = 1, the observation model (5.14) corresponds to the image up-

sampling problem. Whenever R > 1, we are instead in the image or video
super-resolution setting.

5.4.3 Scaling Family of Transforms

The observation model (5.14) uses a pair of transforms T and T0 for relating
the same image at two different resolutions. We can extend this to an arbitrary
number of intermediate resolutions by means of the following scaling family
of transforms.
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(a) DFT (b) Block-DCT

(c) DWT,DCT

FIGURE 5.9: Nested support subsets: the subsets Ω0 and Ω1 are shown as
the shaded subareas of the support ΩM = Ω2 of coefficients of the transform
TM .

Let {Tm}M
m=0 be a family of orthonormal transforms of increasing sizes

nh
m×nv

m, nh
m < nh

m+1, nv
m < nv

m+1, such that for any pair m,m′ with m < m′,
up to a scaling factor βm,m′ , the whole Tm-spectrum can be considered as
a smaller portion of the Tm′ -spectrum. In particular, this means that the
supports Ωm of the Tm-transform coefficients form a nested sequence of subsets
(subbands) of ΩM , i.e. Ω0 ⊂ · · · ⊂ ΩM . The most notable examples of such
{Tm}M

m=0 families are discrete cosine (DCT) or Fourier (DFT) transforms of
different sizes, discrete wavelet transforms (DWT) associated to one common
scaling function, as well as block DCT, DFT and DWT transforms. Figure
5.9 illustrates the nested sequence of supports for these families.

Depending on the specific transform family of choice, the sets Ωm are com-
monly referred to as lower-resolution, low-frequency, or coarser-scale subbands
of the TM -spectrum.

To use such scaling family for the observation model (5.14), we set nh
M =

nh, nv
M = nv, TM = T , Ω0 = Ω, β0,M = β, and for m < m′ we define the

following three operators:

• the restriction operator |Ωm,m′ that, from a given Tm′-spectrum, extracts
its smaller portion defined on Ωm, which can be thus considered as the
Tm-spectrum of a smaller image;

• the zero-padding operator Um,m′ that expands a Tm-spectrum defined
on Ωm to the Tm′ -spectrum defined on the superset Ωm′ ⊃ Ωm by in-
troducing zeros in the complementary Ωm′ \ Ωm;

• the projection operator Pm,m′ that zeroes out all coefficients of Tm′ -
spectrum defined on Ωm. If m = 0 and m′ = M, the operator Pm,m′ =
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P0,M coincides with the projection operator Pker(H) defined in Section
5.2.

Note that Um,m′ (A)|Ωm
= A for any Tm-spectrum A, and B = Pm,m′ (B) +

Um,m′
(
B|Ωm

)
for any Tm′ -spectrum B. Thus, Um,m′ can be regarded as “dual”

operator of |Ωm,m′ .
With this notation, the super-resolution observation model (5.14) becomes

yr = xlowr = T −1
0

(
β−1

0,M TM (xhir)|Ω0,M

)
. (5.15)

5.4.4 Multistage Iterative Reconstruction

In the iterative algorithm presented for the general CS reconstruction, at each
iteration the noise excitation and the adaptive filtering are used to provide
estimates for the whole spectrum. The algorithm presented below is different,
in that it exploits the multiscale feature of the images and performs the scaling
from nh

0×nv
0 size to nh

M ×nv
M gradually, using the transform family {Tm}M

m=0

across M stages, which are indicated using the subscript m = 1, . . . , M .
The complete algorithm is defined by the iterative system

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x̂r,0 = xlowr

x̂r,m = x̂
(kfinal(m))
r,m

x̂
(0)
r,m = T−1

m (Um−1,m (βm−1,mTm−1 (x̂r,m−1)))

x̂
(k)
r,m = T −1

m

„
U0,m (β0,mT0 (xlowr)) + P0,m

„
Tm

`
Φ

`
r,

n
x̂

(k−1)
r,m

oR

r=1
, σk,m

´´««
.

(5.16)
At each stage, the images are being super-resolved from size nh

m−1×nv
m−1

to nh
m×nv

m. The sequence {xlowr}R
r=1 serves as input for the first stage, and the

output of the current stage {x̂r,m}R
r=1 becomes an input for the next one. At

each stage, the initial estimate x̂
(0)
r,m is obtained from x̂r,m−1 by zero-padding

its spectra following the third equation in (5.16). During the subsequent itera-
tions, the estimates are obtained according to the last equation in (5.16), where
the superscript k = 0, 1, 2, . . . corresponds to the iteration count inside each
stage, x̂

(k)
r,m is a sequence of estimates for x̂r,m, Φ is a spatially adaptive filter

and σk,m is a parameter controlling the strength of this filter. In other words,

at each iteration we jointly filter the images
{
x̂

(k−1)
r,m

}R

r=1
obtained from the

previous iteration, perform a transform Tm for each r, substitute the nh
0 × nv

0

coefficients defined on Ω0 with β0,MT0 (xlowr), and take an inverse transform
T −1

m to obtain x̂
(k)
r,m. The flowchart of the system (5.16) is presented in Fig-

ure 5.10. The iteration process stops at iteration kfinal (m) when the distance
between

{
x̂

(k)
r,m

}
and

{
x̂

(k−1)
r,m

}
in some metric becomes less than a certain

threshold δ0, or if the maximum number of iterations kmax (m) is reached.
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FIGURE 5.10: Multistage iterative reconstruction. The inner loop corresponds
to an iteration process inside a stage; the outer loop corresponds to a transition
to the next stage.

In order to prevent smearing of the small details, the sequence {σk,m}k=0,1,...
should be decreasing with the progress of the iterations.

There are a number of reasons in favor of the multistage reconstruction.
First, since at every stage the complexity of each iteration depends on the
size nh

m × nv
m of the image to reconstruct, we have that through multistage

reconstruction we are able to decrease the computational cost of recovering
the coarsest portions of the missing spectrum. Second, the recovery of the
finest details becomes more stable, because when we arrive towards the final
stages, most of the spectrum has already been reconstructed, with good ap-
proximation, in the earlier stages. It turns out that, in this way, the benefit of
the stochastic excitation is also reduced, inasmuch as we do not include this
element in our implementation of the SR reconstruction algorithm (1.12).

5.4.5 Experiments

We present results from three sets of experiments. First, using a synthetic
image sequence, we assess how well our SR algorithm can deal with highly
aliased data, provided that the set of LR images covers the whole HR sampling
grid. Second, we consider video SR reconstruction. Finally, we demonstrate
examples of image upsampling showing that successful reconstruction can be
obtained even in the case when the exact blurring model is unknown.

As seen in the previous section, the algorithm formulations for upsam-
pling and super-resolution coincide. In both cases, the algorithm performs a
reconstruction for each image of the input sequence, and the output sequence
always contains the same number of frames as the input one. Whether the
algorithm performs upsampling or SR reconstruction, depends on the num-
ber of frames in which V-BM3D is allowed to search for similar blocks (the
so-called “temporal search window”). When the search is restricted to the
current frame only, the algorithm independently upsamples each frame of the
input sequence.



144 Super-Resolution Imaging

5.4.5.1 Implementation Details

The filter’s internal 3-D transform is implemented as a composition of a 2-D
discrete sine transform (DST) applied to each grouped block and of a 1-D Haar
wavelet transform applied along the third dimension of the group. The block
size is decreasing with the stages, while within each stage σk,m is decreasing
linearly with respect to k. In terms both of smoothing and scale, this consis-
tent with the “coarse-to-fine” approach analyzed in [3]. The temporal search
window is set to be equal to the number of frames in the input sequence.

The block-matching in BM3D is implemented as a smallest l2-difference
search. It has been found that strong aliasing in the LR images can notice-
ably impair the block matching. To overcome this problem, during the first
few iterations of the reconstruction algorithm, the block matching is com-
puted over smoothed versions of the current image estimates. Furthermore,
the BM3D-based α-rooting described in [11] can be embedded inside V-BM3D
to enhance the high-frequency components during the last iterations. These
simple adjustments effectively improve the overall numerical and visual qual-
ity of reconstruction, leading to sensibly better results than those reported in
[13],[12].

In order to avoid the influence of border distortions and provide more
fair comparisons, in all experiments the PSNR values are calculated over the
central part of the images, omitting a border of 15-pixel width.

5.4.5.2 Super-Resolution

In our super-resolution experiments, we used the same four sequences as
in [29] namely: Text, Foreman, Suzie and Miss America. Both LR and
ground truth HR sequences are available at the Web site of the first author
of [29] http://www.cs.technion.ac.il/˜matanpr/NLM-SR/. All LR sequences
were obtained using the observation model where the HR images are first
blurred using a 3×3 uniform kernel, then decimated by factor 3 and contami-
nated with additive Gaussian noise with standard-deviation equal to 2. Since
our observation model does not assume the presence of noise, we prefilter
the noisy LR input sequence with the standard V-BM3D filter using default
parameters [9].

A scaling family of transforms can be easily associated with the described
observation model, noticing that the LR images can be treated (up to a scaling
factor β0,M = 3) to be composed of DC coefficients of some orthogonal 3×3
block transform. The transform family {Tm}M

m=0 has been chosen to consist
of three 2-D block transforms with 1×1, 2×2, and 3×3 block sizes, which
results in a progressive enlargement of 2 and 1.5 times, providing an overall
enlargement of 3 times. As a particular family of transforms satisfying the
above conditions, we choose the block DCT transforms.
Image super-resolution. For the image super-resolution experiment the Text
sequence is used. The 9-image LR sequence has been obtained from a sin-
gle ground-truth image (shown in Figure 5.11 (left)) by displacing it before
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FIGURE 5.11: Super-resolution result for the Text image. From left to right:
original high-resolution image (ground truth); pixel-replicated low-resolution
image; image super-resolved by the proposed algorithm.

applying observation model described above. The displacements are chosen
so that the entire HR grid is covered by the union of the LR grids (i.e.,
dh, dv = 0, 1, 2,). One of these nine LR images is shown in Figure 5.11 (center),
while a super-resolved image obtained by the proposed algorithm is presented
in Figure 5.11. We can see that despite the strong aliasing in the LR images,
the algorithm succeeds in reconstructing a readable text.
Video super-resolution. We performed SR of the video sequences Foreman,
Suzie, and Miss America mentioned above. For a comparison, we also present
results obtained by the method [29].

The mean (over all 30 frames) PSNR values for the reconstructed sequences
are summarized in Table 5.1. The numerical results obtained by our algorithm
are superior to those of [29]. A visual comparison is provided in Figures 5.12
– 5.14. We can observe that while both methods provide roughly the same
amount of reconstructed image details, in terms of artifacts, the results of the
proposed method are much cleaner.

5.4.5.3 Image Upsampling

Let us present images upsampled of factors q = 4 or q = 8 from their original
resolution. It should be emphasized that in this case we do not know which

Nearest
neighbor [29] Proposed

Foreman 29.0 32.9 35.0
Suzie 30.3 33.0 34.2
Miss America 32.0 34.7 37.0

TABLE 5.1
Mean (over all frames) PSNR (dB) values of the super-resolved video

sequences (see Section 5.4.5.2).
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FIGURE 5.12: Results for the 23rd frame from the Foreman sequence. From
left to right and from top to bottom: pixel-replicated low-resolution image;
original image (ground truth); super-resolved by the algorithm [29]; super-
resolved by the proposed algorithm and their respective zoomed fragments.
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FIGURE 5.13: Results for the 23rd frame from the Suzie sequence. From left
to right and from top to bottom: pixel-replicated low-resolution image; original
image (ground truth); super-resolved by the algorithm [29]; super-resolved by
the proposed algorithm and their respective zoomed fragments.
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FIGURE 5.14: Results for the 23rd frame from the Miss America sequence.
From left to right and from top to bottom: pixel-replicated low-resolution
image; original image (ground truth); super-resolved by the algorithm [29];
super-resolved by the proposed algorithm and their respective zoomed
fragments.
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FIGURE 5.15: Fragments of the Cameraman, Text, and Lighthouse images.

FIGURE 5.16: Upsampling of the three fragments shown in Figure 5.15. From
top to bottom: Cameraman (4 times), Text (4 times), and Lighthouse (8
times).
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blurring and decimation operators have been used to obtain the given images.
Instead, we assume that the blurring kernel is the low-pass analysis filter of
a wavelet transform. Hence, we seek a high-resolution image whose wavelet
approximation coefficients in the LL subband of the log2 (q)-level decomposi-
tion coincide (up to a scaling factor β0,M = q) to the pixel values of the given
low-resolution image.

Figure 5.15 shows three fragments of the Cameraman, Text, and Lighthouse
images at their original resolution. We upsample these fragments applying the
log2 (q)-stage algorithm with the Symlet-8 wavelet transform. The obtained
high-resolution images are shown in Figure 5.16. It is interesting to notice that
the results are quite reasonable, despite our fictitious assumptions about the
blurring and decimation operators. The visual quality is particularly good,
due to the sharp edges and because of the virtual absence of ringing artifacts
typical of transform-domain upsampling.

5.5 Conclusions

In this chapter we discussed the application of spatially adaptive filters as
regularization constraint in inverse imaging problems. Using BM3D as the
leading example of such filters, we demonstrated that even simple iterative
schemes, when coupled with a good filter, can be turned into powerful and
competitive reconstruction methods.

Overall, in the context of compressing sensing, our method introduces
a new and alternative view on the reconstruction strategy from undersam-
pled data. In super-resolution applications, the algorithm proposed in Sec-
tion 5.4 stands in line with the best super-resolution algorithms, possessing
registration-free reconstruction, and showing a state-of-the-art performance.

From a general perspective, the presented material expands the breadth
of filtering in the modern image processing.
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The relation between sensor resolution and the optics of a digital camera is
determined by the Nyquist sampling theorem: the sampling frequency should
be larger than twice the maximum frequency of the image content coming
out of the optical system. If a lower resolution is used, the output is aliased.
Aliasing in digital images is often considered as a nuisance and (both optical
and digital) filters are designed to avoid aliasing in digital cameras. However,
aliasing also contains extra high-frequency information with additional details
about the scene. Super-resolution algorithms extract the information present
in the aliasing to reconstruct a higher-resolution image.

Super-resolution algorithms typically combine multiple aliased images with
small relative motion, and create a single high-resolution image. The input can
be a set of pictures taken with a digital camera from approximately the same
point of view. An application could be to use a low-resolution camera (with
a good optical system), capture a set of images while holding the camera
manually in approximately the same position, and use the small movements
of the camera to reconstruct a high-resolution image. This would allow to
take multiple images with a cheap camera, and combine them to a higher
resolution image as if it had been taken with a more expensive camera. Other
applications can be found for example in situations where a camera sensor
cannot be easily replaced, such as in satellites. It is (almost) impossible to
install a new camera sensor, while a modification of the software enables a
series of images of approximately the same subject to be taken.

The set of images used in a super-resolution algorithm can also be (part
of) a video sequence, where the motion between subsequent frames is typically
small. An application can be found in upscaling of low resolution videos, such
as those acquired with handheld devices. These devices are typically able to
acquire videos with low-resolution (such as CIF, i.e., 288×352 pixels, or QCIF,
i.e., 144×176 pixels) and the videos are coded at relatively low bit rates (such
as 128 Kb/s). Despite the low quality of these videos, we will show later
that super-resolution algorithms can be applied, under certain hypotheses,
to increase the resolution and obtain additionally a significant reduction of
coding artifacts. The procedure to apply a super-resolution algorithm to a
video sequence is represented in Figure 6.1. The input frames are combined
in groups of N consecutive frames. One of the frames, for example I0, is
estimated at higher resolution to produce the output frame I ′0. The result is
added to the output sequence and the procedure is repeated taking the next
input frame as a reference. A simple way to manage the input frames is to use
a circular buffer containing the N most recent input frames. A more flexible
approach, not considered here, is to use a buffer of variable size. This would
allow processing sequences with varying speed and scene changes.

Super-resolution has been a very active research topic over the past few
decades. In 1984, Tsai and Huang introduced a first super-resolution algorithm
to reconstruct a high-resolution image from multiple shifted low-resolution
images using a frequency domain approach [18]. A good overview of existing
super-resolution algorithms is given by Borman and Stevenson [2] and Park et
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Input frames

Output frames

I0 I1 I2I−1I−2

I ′0 I ′1 I ′2

FIGURE 6.1: Super-resolution can be applied to video sequences by combin-
ing the frames in (overlapping) groups of N consecutive frames.

al. [14], or in special issues on the topic in IEEE Signal Processing Magazine
(edited by Kang and Chaudhuri [10]), EURASIP Journal of Applied Signal
Processing (edited by Ng et al. [4]) and The Computer Journal [3].

Most super-resolution algorithms consist of two main parts: image reg-
istration, where the images are precisely aligned, and image reconstruction,
where the aligned images are combined to estimate a higher resolution image.
In this chapter, we will concentrate on the first part, as precise, subpixel im-
age registration is needed in order to be able to correctly reconstruct any high
resolution information. For the reconstruction, we will use existing approaches.

In the next section, we first discuss our camera model, and how super-
resolution can be applied to images captured with such cameras, followed by
a definition of what we understand by the term “resolution.” We will then
present super-resolution as a multichannel sampling problem with unknown
offsets. Using this description, an analysis can be made about the nature of
the problem and conditions under which a solution can be found. Next, we
describe a few solution methods using subspace approaches. We describe two
solution methods for registration of totally aliased signals, followed by two
more efficient methods that take advantage of aliasing-free parts of the input
images to perform subpixel registration. The work presented in Sections 6.1-
6.5.1 was already presented earlier [19, 20, 21] and is reproducible. The code
and data to reproduce those results can be downloaded from the cited websites.

6.1 Camera Model

The pinhole model is the simplest model for a camera. An image of an in-
finitesimally small point light source taken with a pinhole camera contains
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a single, infinitesimally narrow peak at the corresponding pixel location. We
can model its frequency response as a Dirac function.

In a real camera several non idealities contribute to a significant deviation
from the pinhole model. The linear distortion introduced by the optics is
represented by the point spread function (PSF). This is the impulse response
of the imaging system, i.e. the image obtained when a point light source of
infinitesimal size is placed in front of the system. Even when the system is
perfectly focused, the image is not a point of infinitesimal size, but rather
a disk of nonnegligible diameter. This measure describes the quality of the
optical system. For example, lenses that are not ideal or are not precisely
placed, result in an increase of the size of the point spread function. However,
even in the ideal case, the point spread function has a non-negligible size. For
an ideal lens with circular aperture, the point spread function is also called
the Airy disk [8]. Its size is determined by the diffraction of the system, which
is proportional to the wavelength of the light source and the aperture value
(or f -number). Note that higher f -numbers correspond to a smaller aperture
area, or less incident light. A large f -number corresponds to a large Airy disk
and a strong low-pass effect (and at the same time a large depth of field).
Conversely, a small f -number corresponds to a smaller Airy disk and sharper
images.

Similarly to the point spread function, an additional low-pass effect is
introduced by the sensor. In fact, it is not possible to measure light intensity on
a sampling point of infinitesimal size. Instead, a sensor integrates the amount
of photons hitting the pixel surface. Such an integration (along space and
time coordinates) corresponds to a low-pass effect that is proportional to the
size of the integration surface. In the continuing quest for higher-resolution,
pixel sizes are reduced, and therefore the low-pass filtering effect is decreased.
However, to increase light sensitivity, sensor manufacturers increase the fill
factor, i.e. the active part of the pixels. Unfortunately, increasing the fill factor
reduces the bandwidth of the system and limits the advantage of applying
super-resolution algorithms.

In Figure 6.2 and Figure 6.3, we compare the frequency response H(ω)
for some imaging systems. The frequency response is the Fourier transform of
the imaging system’s response to an infinitesimally small point light source.
It includes the effect of both the optical system and the sensor. Typically,
only the magnitude of the frequency response is given. The frequency scale is
normalized with respect to the sampling frequency. Assuming circular unifor-
mity of the system, we average horizontal and vertical responses, resulting in a
one-dimensional function. The frequency responses in Figure 6.2 are computed
analytically, taking only the diffraction of the (ideal) optics and the spatial
integration of the sensor into account (assuming a fill factor of 100%). For the
sensor, we consider the case of a 10.1 Mpixel 4/3′′ sensor1 (with pixel pitch
4.6 µm), typical of a high quality camera, and a 3.2 Mpixel, 1/2.5′′ sensor with

1Note that such size designations in fractional inches do not represent actual sensor
sizes. This notation dates back to the 50s and TV camera tubes, where the size gives the
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FIGURE 6.2: Comparison of frequency responses (PSF and sensor integration)
for different imaging systems. Simulated frequency responses are shown for
camera systems with a 10.1 Mpixel 4/3′′ sensor and f/5.6 and f/2.8 aperture
of the optics, a 3.2 Mpixel 1/2.5′′ sensor with lens aperture f/2.8, and a
QCIF video obtained by combining blocks of pixels from the 3.2 Mpixel 1/2.5′′

sensor.

a pixel pitch of 2.8 µm, which can be found in a handheld device, such as a
mobile phone. In the case of the high-resolution sensor, we consider two (circu-
lar) lens aperture values, namely f/5.6 and f/2.8, and for the low-resolution
sensor we use a lens aperture of f/2.8. Aliasing is necessary to any algorithm
for super-resolution. Therefore, the frequency response has to be nonnegligible
for normalized frequency values larger than 0.5 cycles/pixel. This occurs for
the case of the high-resolution sensor and larger aperture optics, while for the
other cases the aperture area is small with respect to the sensor resolution,
resulting in a large Airy disk, such that the amount of aliasing is not signifi-
cant. Moreover, we see that for the 10.1 Mpixel camera with aperture f/2.8,
the response vanishes for normalized frequencies larger than 1 cycle/pixel.

An interesting case is the one where the low-resolution sensor is used to
acquire a QCIF video. In this case, the sensor resolution (3.2 Mpixel) is larger
than the output resolution (144 × 176 pixels). Blocks of sensor pixels are
combined in order to give an effect equivalent to a reduction of resolution (such
that the pixel pitch would become 32.7 µm). This operation is equivalent to
filtering the image with an averaging filter and then downsampling. Note that
in order to avoid aliasing, an (additional) low-pass filter should be applied prior
to downsampling. However, handheld devices normally do not include such a
filter, and directly subsample the image. It results in a higher level of aliasing

outer diameter of the long glass envelope of the tube. The sensor diagonal is typically
approximately 2/3 of this distance.
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on the final images that compose the video. The equivalent response function
is shown in Figure 6.2. We remark that a significant amount of aliasing can
be present in the range of frequencies between 0.5 and 1 (and even up to 2)
cycles/pixel.
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FIGURE 6.3: Measured frequency responses for a Leica DC250 camera with a
Nikon 85 mm optical system and a Sigma SD10 camera with a Sigma 18− 50
mm lens.

Finally, these modeled frequency responses were compared to the measured
frequency responses of some practical systems (see Figure 6.3). Frequency
responses were measured using a test chart with a slanted edge (see Figure 6.4)
and the method described in the ISO standard [11]. First, we took a Leica
DC250 grayscale digital camera that is often used in microscopy. It has a
8.6×6.9 mm (or equivalently, 2/3′′) sensor with pixel pitch 6.7 µm, producing
images of 1280×1024 pixels. We combined this camera with a Nikon 85mm lens
using a C mount to Nikon adapter (no f -number available for this experiment).
A considerable amount of aliasing is obtained in this setup, up to normalized
frequencies of 1.2 cycles/pixel. As a second test camera, we used a Sigma SD10
digital camera with a Foveon X3 sensor (20.7×13.8 mm, or equivalently about
4/3′′ with a pixel pitch of 9.12 µm). This sensor measures the red, green, and
blue channel at each pixel position, taking away the need for a demosaicing
color interpolation. We used a Sigma 18−50 mm lens at a focal length of 35 mm
with this camera with aperture f/10. The images captured are 2268 × 1512
pixels. The Sigma camera has a lower (relative) cutoff frequency, but still
shows a nonnegligible frequency response up to 0.8 cycles/pixel.
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6.2 What Is Resolution?

Before we dive into super-resolution algorithms to “increase” the resolution,
let us define what we understand by the term “resolution.” There is definitely
more to resolution than a simple pixel count, which is often simplistically used
to indicate camera ‘resolution’. Applying a low-pass filter to an image does
much more to its resolution than merely increasing its number of pixels by
repeating each pixel. Resolution relates to the ability to distinguish details in
an image, in other words, to the resolving power.

In optics, the term “optical resolution” is used as a measure of the ability
of a camera system, or a component of a camera system, to depict picture
detail [8]. Assuming a diffraction-limited lens, two point light sources are said
to be just resolved if the center of one Airy disk coincides with the first
minimum of the other Airy disk. This is called Rayleigh’s criterium. Actually,
this criterium slightly underestimates the resolution, and a better condition
is given by Sparrow. It says that two point light sources can be resolved until
their two Airy disks overlap such that the second derivative at the center of one
of the Airy disks is zero: the dip between the two Airy disks has disappeared.
Similar criteria can also be applied to nonideal optical systems. The role of
the Airy disk is then taken over by the point spread function.

In imaging, we talk about image resolution as a measure of the amount
of detail that is visible in an image. The International Organization for Stan-
dardization (ISO) has developed a precise method to measure the resolution
of a digital camera system [11]. The visual resolution can be measured as the
highest frequency pattern of black and white lines where the individual black
and white lines can still be visually distinguished in the image. It is expressed
in line widths per picture height (LW/PH). The standard also describes a
method to compute the spatial frequency response of a digital camera. It
describes the variation between the maximum and minimum values that is
visible as a function of the spatial frequency (the number of black and white
lines per millimeter). It can be measured using an image of a slanted black
and white edge, and is expressed in relative spatial frequencies (relative to the
sampling frequency), line widths per picture height, or cycles per millimeter
on the image sensor. Figure 6.4 shows the resolution chart used in the ISO
standard. Examples of measured spatial frequency responses using the hori-
zontally and vertically slanted edges at the center of the test chart are shown
in Figure 6.3.
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FIGURE 6.4: Resolution chart used to measure image resolution according to
the ISO standard [11].

6.3 Super-Resolution as a Multichannel Sampling
Problem

Let us now analyze super-resolution reconstruction mathematically, and for-
mulate it as a multichannel sampling problem with unknown offsets. In order
to keep the equations and analysis as simple as possible, we will present most
of the material for 1D signals, and only use 2D notations where needed. The
extension to 2D signals is straightforward. For simplicity, we will also assume
a pinhole camera model, except when explicitly specified.

Consider a (continuous-time) input signal f(x) in an L-dimensional Hilbert
space. We can write f(x) as a linear combination of the Hilbert space basis
functions:

f(x) =
L−1∑
l=0

αlϕl(x), (6.1)

with αl the expansion coefficient corresponding to the l-th basis function ϕl(x).
In many cases, the Hilbert space will be the space of truncated Fourier series,
but it can also be applied to other spaces such as splines, wavelets, etc. Such
a different basis can be useful if we know that the signal can be well approx-
imated using that particular basis. In general, if no particular information
about the signal characteristics is available, a Fourier series will be used as a
basis.

We now sample this signal f(x) with N sample sets yn (0 ≤ n < N) at a
rate K, where each set is taken with an arbitrary offset tn:

yn(k) = f

(
k + tn

K

)
=

L−1∑
l=0

αlϕl

(
k + tn

K

)
. (6.2)
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This results in N sets of K uniformly spaced samples with offsets t =
(t0, t1, . . . tN−1). We can combine the samples for each set in a sample vector
yn, the expansion coefficients αl into a coefficient vector α, and the sampled
basis functions ϕl(x) into a matrix Φtn , where Φtn(k, l) = ϕl

(
k+tn

K

)
. Equation

(6.2) can then be rewritten as

yn = Φtnα. (6.3)

Stacking the different sample vectors and basis function matrices vertically,
we obtain

y = Φtα. (6.4)

In super-resolution imaging we typically want to reconstruct the original
signal f(x) (or equivalently, its coefficients α) from the images yn (0 ≤ n <
N). There are NK equations (6.2) in the L unknown signal coefficients and the
N − 1 offsets (without loss of generality, we can set t0 = 0). This is exactly
the same configuration as in multichannel sampling with unknown offsets.
A reconstruction method for multichannel sampling with known offsets was
presented by Papoulis [13]. We will mainly concentrate here on an accurate
estimation of the offset values t, which is an essential first step in accurate
super-resolution.

As can be seen from (6.2), for general basis functions these equations are
linear in the signal coefficients, but nonlinear in the offset values. It can be
shown that if NK > L + N − 1, the solution to this set of equations is unique
(except in some degenerate cases) [19]. If less samples are available (either by
taking less sample sets or by using sets of lower resolution), the problem is
ill-posed, and an additional regularization is typically needed. In this chapter,
we will mainly consider cases for which NK > L + N − 1.

6.3.1 Fourier Series

Let us now analyze the above setup for the specific case of a truncated Fourier
series:

f(x) =
M∑

l=−M

αlϕl(x), (6.5)

where the index l is now numbered from −M to M because of the usual
numbering for Fourier series (L = 2M + 1). The samples from (6.2) now
become

yn(k) = f

(
k + tn

K

)
=

M∑
l=−M

αle
j2π l(k+tn)

K =
M∑

l=−M

αlW
lkzl

n, (6.6)

with W = ej2π/K and zn = ej2πtn/K . As before, we can rewrite a sample set
in matrix notation as

yn = F ∗Dtnα, (6.7)
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with

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 WM · · · W (K−1)M

...
...

...
1 W · · · WK−1

1 1 · · · 1
1 W−1 · · · W−(K−1)

...
...

...
1 W−M · · · W−(K−1)M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.8)

Dtn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z−M
n 0

. . .
z−1

n

1
zn

. . .
0 zM

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.9)

(6.10)

Note that F is an L ×K forward DFT matrix, and the notation F ∗ is used
to indicate the Hermitian transpose of F , indicating the inverse DFT matrix.
Due to the undersampling (K < L), some of the rows in F are repeated. The
matrix Dtn is an L×L diagonal matrix with its diagonal elements depending
on the offset tn. Just like for the general case, we can combine the different
sample sets into one vector, resulting in

y =

⎛
⎜⎜⎜⎝

y0

y1

...
yN−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F ∗

F ∗Dt1
...

F ∗DtN−1

⎞
⎟⎟⎟⎠α. (6.11)

The Fourier transform yF
n of a sample set yn can be computed as

yF
n =

1
K

FKyn =
1
K

FKF ∗Dtnα, (6.12)

with FK a square K ×K (non-aliased) DFT matrix. As we know from sam-
pling theory, yF

n is an aliased and phase shifted version of the original Fourier
coefficient vector α. This can be seen if we take for example L = 3K:

yF
n =

1
K

FKF ∗Dtnα =
1
K

FK

(
F ∗

K F ∗
K F ∗

K

)
Dtnα

=
(

I I I
)
Dtnα =

1∑
i=−1

ziK
n D′

tn
αi,

(6.13)
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where D′
tn

is the K ×K central part of the L× L matrix Dtn , and αi is the
i-th block of K coefficients from α. In general, when L is not a multiple of K,
we can still do the same decomposition by adding zeros to the vector α up to
the next multiple of K.

m

F (m)

M K

(a)

m

F (m)

MK−M K

(b)

m

F (m)

MK

(c)

FIGURE 6.5: Three sampling situations can be distinguished: (a) Nyquist
sampling (K > 2M), (b) Partially aliased signals (M < K < 2M), and (c)
Totally aliased signals (K < M).

Depending on the sampling frequency K, we can consider three different
cases (see Figure 6.5). If K > L, the signal/image is sampled according to the
Nyquist sampling theorem, and no aliasing is present. From a super-resolution
point of view, this case is not interesting, as there is no aliasing from which
to extract additional high frequency information. If M < K < 2M , part of
the frequency spectrum is aliased, leaving also part of the spectrum free of
aliasing. Solutions for such a case will be discussed in Section 6.5. In the next
section, we will analyze the third case, K < M , where the entire frequency
spectrum is aliased. In such a situation, the registration parameters can only
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be determined accurately by jointly estimating them from the full set of images
(as opposed to the common pairwise registration in other cases).

6.4 Registration of Totally Aliased Signals

6.4.1 Variable Projection Method

As discussed in Section 6.3, the equations from (6.4) are nonlinear in the
registration parameters, and linear in the signal expansion coefficients. We
can write (6.4) as an l2 minimization problem:

min
α,t

‖y −Φtα‖22, (6.14)

which is exactly the template problem in nonlinear least squares [7]. It can be
solved using a variable projection method. For the correct values t, the sample
vector y is a linear combination of the sampled basis functions, represented
by the columns of Φt. In other words, y is in the subspace spanned by Φt, so
we can estimate t by minimizing the difference between y and its projection
onto the estimated subspace:

min
t
‖y −Φt(Φ∗

tΦt)−1Φ∗
ty‖22. (6.15)

This method for solving a nonlinear least squares problem is called the variable
projection method [7]: the sample vector is actually projected on a variable
subspace that depends on the minimization parameters. The link between the
super-resolution problem and variable projections was first made by Robinson
et al. [15].

Note that the variable projection method could be applied to any type of
basis: not only the Fourier basis, but also for example splines or wavelets. The
method does not add any constraints to the basis, as the basis only determines
the space onto which the signal is projected.

For the Fourier basis, this space can be split in a number of orthogonal
subspaces corresponding to the different Fourier vectors. Aliased frequencies
appear in the same subspace. The minimization can therefore be applied inde-
pendently on each of those subspaces (where each subspace will have period-
ically repeating minima), and these can then be combined to obtain the joint
minimum. Moreover, the subspaces containing as many aliased components
as their dimensionality can be skipped, as any set of offsets will work here.
The minimization over independent subspaces is illustrated in Figure 6.6.

This registration method can be generalized to any type of motion model,
as it only requires the basis functions ϕl(t) to be sampled according to the
model. Of course, more complex motion models will increase the dimension-
ality of the optimization problem.
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FIGURE 6.6: Example of the decomposition of the objective function into its
different components belonging to orthogonal subspaces.

6.4.2 Frequency Analysis Method

Let us now consider again an image in Fourier space. The equation from (6.13)
can be generalized for arbitrary L to

yF
n = D′

tn


(S−1)/2�∑
i=
−(S−1)/2�

ziK
n αi, (6.16)

where S = �L/K�, or in other words, L was increased to the next multiple of
K, and α was split up accordingly into S parts αi of length K. If we multiply
both sides of the above equation by D′−1

tn
, we obtain modified sample vectors

D′−1
tn

yF
n =


(S−1)/2�∑
i=
−(S−1)/2�

ziK
n αi. (6.17)

From this equation, it is clear that each modified sample vector D′−1
tn

yF
n is

part of the same S-dimensional subspace spanned by the spectrum vectors αi.
If we therefore take N > S sample vectors, the matrix(

yF
0 D′−1

t1 yF
1 · · · D′−1

tN−1
yF

N−1

)
(6.18)

should be rank-deficient. These modified sample vectors depend on the offset
values, and therefore we can estimate the registration parameters by searching
the parameters that minimize the rank of the matrix in (6.18), or equivalently,
minimize its S + 1-th singular value σS+1:

min
t

σS+1

(
yF

0 D′−1
t1 yF

1 · · · D′−1
tN−1

yF
N−1

)
(6.19)
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6.4.3 Results

The above algorithms were tested in numerical simulations. From an original
image, we created a set of 5 low-resolution images at half the resolution with
relative (periodic) shifts (such that the entire spectrum is aliased). Two such
input images can be seen in Figures 6.7a and 6.7c. Both of the above tech-
niques give correct estimation of the motion parameters, and allow perfect
reconstruction of the original high-resolution images 6.7b and 6.7d.

The minimization required in the two described algorithms has a high
computational complexity. In both cases, an N − 1-dimensional function has
to be minimized (or 2(N − 1) for images with horizontal and vertical shifts),
which has a large number of local minima. Examples of such minimization
functions are shown in Figure 6.8. For some approaches to search algorithms
for finding the optimum and a more detailed complexity analysis, we refer the
reader to our earlier work [19].

6.5 Registration of Partially Aliased Signals

The algorithms presented in the previous section are generally applicable to
super-resolution from aliased images. However, as discussed above, they also
have a high computational complexity. In this section we present two methods
with lower complexity in case only part of the frequency spectrum is aliased.

6.5.1 Super-Resolution Using Frequency Domain Registra-
tion

If we assume M < K < 2M (or equivalently L/2 < K < L), the signal is
aliased, but not over the entire spectrum (see Figure 6.5). In such a case,
we can use the aliasing-free part of the spectrum to estimate the registration
parameters. Using these registration parameters, the aliased part can then be
disambiguated and we can reconstruct a higher-resolution signal.

6.5.1.1 Image Registration

As N > L/2, part of the spectrum is free of aliasing. In (6.13) we can see that
for certain frequencies,

yF
n (l) = zl

nα(l), (6.20)

or in other words, those frequency coefficients are phase shifted versions of
the same coefficients for other images:

yF
n (l)

yF
n′(l)

=
zl

nα(l)
zl

n′α(l)
=

zl
n

zl
n′

. (6.21)
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We can therefore estimate the registration parameters from all frequencies
l < K − L/2. This can be done robustly by fitting a plane through the phase
differences for each of those frequencies. Note that phase wrapping needs to
be taken into account in such an approach. Such a registration method is
equivalent to applying a low-pass filter to the images (removing all aliased
frequencies) prior to registration.

The above approach can be used to estimate horizontal and vertical motion
in a plane parallel to the image plane. We will now extend the frequency
domain registration to rotations in the same image plane. In order to do this,
we need to use two-dimensional notations:

f1(x) = f0(R(x + x1)), (6.22)

with x =
(

xh

xv

)
, x1 =

(
x1,h

x1,v

)
, R =

(
cos θ1 − sin θ1

sin θ1 cos θ1

)
.

This can be expressed in Fourier domain as

fF
1 (u) =

∫∫

x

f1(x)e−j2πuT xdx

=
∫∫

x

f0(R(x + x1))e−j2πuT xdx

= ej2πuT x1

∫∫

x′
f0(Rx′)e−j2πuT x′

dx′,

(6.23)

with fF
1 (u) the two-dimensional Fourier transform of f1(x) and the coordinate

transformation x′ = x + x1.
The rotation can be estimated independently before the shift estimation,

as the amplitude of the Fourier transforms does not depend on the shift values
(for the aliasing-free part of the spectrum):

|fF
1 (u)| =

∣∣∣∣ej2πuT x1

∫∫

x′
f0(Rx′)e−j2πuT x′

dx′
∣∣∣∣

=
∣∣∣∣
∫∫

x′
f0(Rx′)e−j2πuT x′

dx′
∣∣∣∣

=
∣∣∣∣
∫∫

x′′
f0(x′′)e−j2πuT (RT x′′)dx′′

∣∣∣∣

=
∣∣∣∣
∫∫

x′′
f0(x′′)e−j2π(Ru)T x′′

dx′′
∣∣∣∣

=
∣∣fF

0 (Ru)
∣∣ ,

(6.24)

using the transformation x′′ = Rx′. We can see that |fF
1 (u)| is a rotated

version of |fF
0 (u)| over the same angle θ1 as the spatial domain rotation (see

also Figure 6.9). |fF
0 (u)| and |fF

1 (u)| do not depend on the shift values x1,
because the spatial domain shifts only affect the phase values of the Fourier
transforms. Therefore, we can first estimate the rotation angle θ1 from the
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amplitudes of the Fourier transforms |fF
0 (u)| and |fF

1 (u)|. After compensa-
tion for the rotation, the shift x1 can be computed from the phase difference
between fF

0 (u) and fF
1 (u).

One option to estimate the rotation angle between two images is to com-
pute the spectral differences of the aliasing-free frequencies for the reference
image fF

0 (u) with various rotations fF
1 (Ru) of the image to register. However,

this is a computationally very intensive method, as we need to compute rota-
tions of the image spectra over a large number of rotation angles to find the
optimal value. Instead, we will project the (aliasing-free) frequency content of
the image onto a circular line and estimate the rotation angle by estimating
the shift between two such one-dimensional functions. This is equivalent to
transforming the image into polar coordinates and projecting this transform
onto the axis associated to the angular coordinate.

6.5.1.2 Image Reconstruction

After image registration, we reconstruct a high-resolution image from the set of
images using a nonuniform interpolation method implemented in Matlab [12].
Assuming the PSF is very narrow, and can be approximated by a Dirac, we
compute the precise locations of all pixel coordinates on the high-resolution
grid. Next, we perform a Delaunay triangulation using the Quickhull algo-
rithm [1]. The high-resolution pixel values are then non-uniformly interpo-
lated using bicubic interpolation. Such a reconstruction method provides good
precision, with very low computational complexity. For more advanced recon-
struction methods, we refer the reader to other chapters in this book.

6.5.1.3 Results

Some results using the above algorithm are presented in Figures 6.10 and 6.11.
Figure 6.10 shows a high-resolution image reconstructed from 4 grayscale in-
put images obtained using the Leica digital camera measured in Section 6.1.
From the detail images, it is clear that more details can be observed in the
reconstructed image than in any of the input images.

In a second experiment, we reconstructed a high-resolution image from
4 color images taken with the Sigma camera from Section 6.1. Results for a
patch of the image can be seen in Figure 6.11. Again, we can see that the
aliasing has been accurately removed in the horizontal grids of the building.
At the same time, a small mismatch can be seen on the branches of the tree in
front. This is due to errors in the motion model: the planar motion parameters
found for the building do not apply for the branches of the tree that move in
the wind.
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(a) (b)

(c) (d)

FIGURE 6.7: Simulation results of the algorithms for totally aliased images
(noiseless). (a) One of the five 16×16 images used as input. (b) Reconstructed
31×31 image using the algorithm from Section 6.4.1. (c) One of the five 32×32
images used as input. (d) Reconstructed 63 × 63 image using the algorithm
from Section 6.4.2.
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FIGURE 6.8: Examples of the objective functions in (6.15) and (6.19). (a)
Two sets of 91 samples, with 81 unknown coefficients used in (6.15). The
exact offset is t1 = 54.6. Next to the global minimum, they also contain many
local minima. (b) Three sets of 41 samples, with 81 unknown coefficients used
in (6.15). The exact offsets are t1 = 8.2 and t2 = 24.6. Small values are
represented by dark pixels. (c) Two sets of 91 samples, with 81 unknown
coefficients used in (6.19). The exact offset is t1 = 54.6. (d) Three sets of 41
samples, with 81 unknown coefficients used in (6.19). The exact offsets are
t1 = 8.2 and t2 = 24.6. Small values are represented by dark pixels.
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(a) (b)

(c) (d)

FIGURE 6.9: The amplitude of the Fourier transform of an image is rotated
over the same angle (θ1 = 25◦) as the spatial domain image. (a) Original
image. (b) Rotated image. (c) Fourier transform amplitude of the original
image. (d) Fourier transform amplitude of the rotated image.
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.10: Results using the frequency domain registration algorithm for
partially aliased images on a set of still images taken with a Leica DC250
camera. (a) Part of one of the input images, with a detail showing the aliasing
in (b) and (c). (d) high-resolution image reconstructed from part of four Leica
DC250 input images. Details are shown in (e) and (f) to display the differences
better.
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(a) (b)

(c) (d)

FIGURE 6.11: Results of the frequency domain registration algorithm for
partially aliased images on the Sigma SD10 images of the outdoor scene. (a)
(Part of) one of the 4 input images, with a detail in (b). (c) high-resolution
output image, with a detail of the central part in (d) to show the differences
better.
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6.5.2 Super-Resolution from Low-Quality Videos

In this section, we explore the possibility of applying super-resolution tech-
niques to low-resolution videos, such as those acquired with handheld devices.
These devices typically acquire videos with low-resolution (such as CIF, i.e.,
288x352, or QCIF, i.e., 144x176) and the videos are coded at relatively low bit
rates (such as 128 Kb/s). Despite the low quality of these videos, we will show
that super-resolution algorithms can be applied, under certain hypotheses, to
increase resolution and obtain additionally a significant reduction of coding
artifacts.

As discussed in Section 6.1, the limitations of the acquisition system for
the considered application are such that only the case of partial aliasing can
be applied. Moreover, the type of motion present in a video can rarely be accu-
rately modeled by a simple 2D translation or even a 2D roto-translation. This
forces us to consider more general motion models and prevents the application
of algorithms based on the Fourier transform alone.

6.5.2.1 Motion Model

In the case of a video sequence, the movement of the camera can rarely be
approximated by a simple 2D (roto)-translation. For this reason, we consider
here some more general motion models. The parameters of these models have
to be computed with high precision during the registration phase, such that
the displacements in the image plane are much smaller than a pixel. In order
to do this robustly, we restrict the choice of the motion model to those with
few parameters. We used the 3D rotational and the planar model under the
hypothesis of perspective projection. The 3D rotational model describes the
motion in the scene as a 3D rotation around the camera. It is a good approx-
imation when the objects present in the scene are distant from the camera
or the translational component is negligible. The planar model approximates
the scene with a planar surface in 3D space and the camera undergoes an
arbitrary (3D) roto-translation. In both cases, the relation between a point at
position p in the reference image and p′ in one of the nonreference images is
given by [6]

p′ = KHK−1p, (6.25)

where p = [x y f ]T and p′ = [x′ y′ f ]T are the homogeneous coordinates of the
two points and f is the focal length. The matrix K is the camera calibration
matrix and has the structure,

K =

⎡
⎣

α 0 u0

0 β v0

0 0 1

⎤
⎦ , (6.26)

where α and β are the magnification factors (i.e., the number of pixels per
meter along the horizontal and vertical direction of the sensor) and [u0 v0] is
the position of the principal point, i.e., the position of the point where the
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optical axis intersects the sensor. The matrix H is a rotation matrix in the
case of a 3D rotation centered at the focal point. In this case, no assumption is
needed about the structure of the scene, since there is no parallax. In the case
of a planar scene and an arbitrary roto-translation, H takes the structure of
a homography matrix and has 8 degrees of freedom, since it is defined up to
a scaling factor.

In the following, we assume that the parameters f , α, β, u0, and v0 are
known. Their values can be determined precisely using a calibration procedure
or they can be estimated based on the type of camera.

6.5.2.2 Image Registration

Aliasing typically perturbs registration and its influence should be reduced
for accurate results. A first way to achieve this consists in applying a low-
pass filter (or only considering low frequencies) as done in Section 6.5.1. This
reduces the spectral components associated with a large aliasing amplitude.
Another method is to operate in the spatial domain using robust estimators.
The main idea is that the effect of aliasing is typically most visible along image
edges, which are well localized in space. These regions give large registration
errors and perturb algorithms that minimize the mean squared error (MSE).
The problem is illustrated in Figure 6.12 for a simple one-dimensional case.
The original continuous-time signal is represented in Figure 6.12a. It consists
of a low frequency component (a sinusoid) and a step function, which is non-
bandlimited and represents an image edge. Two sets of samples are taken
from the continuous time signal with a relative shift of δ = 0.083 and are
used to obtain an approximation of the input signal. The shift between the
two sets is unknown and should be determined by a registration algorithm.
A way to estimate the shift is to interpolate the sets of samples using a low-
pass filter, as in Figure 6.12b and Figure 6.12c, and determine the shift that
minimizes the signal difference (MSE) between the two. However, this solution
is not necessarily the correct one. For our example, such a minimization results
in a shift δ = 0.25 (while the correct shift was δ = 0.083). Figure 6.12e
shows the difference (error) between the interpolated signals in Figure 6.12b
and Figure 6.12c for the estimated shift δ = 0.25, while the difference for
the correct shift is given in Figure 6.12d. The reason for this behavior is
the presence of the discontinuity, which implies large registration errors. The
minimum MSE method tends to minimize the error at all points, irrespectively
of their amplitude. Instead, we see that the correct shift presents large errors
in the region of the discontinuity, but much smaller errors for the remaining
points. This type of problem has been previously addressed in statistics and
in image registration leading to the development of robust algorithms [9, 16].

As shown in Figure 6.1, we call the reference image I0 and the other images
In, n = ±1,±2, . . . ,±(N − 1)/2, assuming that the size of the circular buffer
is N . A way to implement a robust estimator is to use an M-estimator and
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FIGURE 6.12: Example of signal registration for a 1D case. (a) A signal
composed of a sinusoid and a step function is uniformly sampled twice with
an unknown shift δ (in this example δ = 0.083). The shift between the two sets
of samples should be determined to reconstruct the original signal. (b) and (c)
Low-pass interpolation of the two sets of samples. (d) Difference between the
signals from (b) and (c) for the correct shift (δ = 0.083). The error is large
around the discontinuity (outlier) and small elsewhere. (e) Difference between
the signals in (b) and (c) for the shift obtained using MSE minimization
(δ = 0.25). The error is minimized over the entire domain, but an incorrect
shift value is obtained.
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minimize the quantity

Jn =
∑

p

e(I0(p)− w(In(p), hn)), (6.27)

for each non-reference image. The function w(In(p), hn) computes a warped
version of In(p), i.e., an image for which the movement of the camera has been
compensated. The vector hn is a parametric representation of the matrix H
(for example, the three Euler angles in the case of a 3D rotation). The function
e is used to measure how close the reference and the motion compensated
image are. For example, in the case of the MSE, e(x) = x2, i.e., the error
on each pixel contributes to the total error with the square of its value. The
optimal choice of the function e follows the Maximum Likelihood principle
(ML) which determines e according to the Probability Distribution Function
(PDF) of the residual error [9]. The MSE measure is optimal in the case of a
Gaussian distribution of the residual error. Instead, when outliers are present,
such as in the case of some forms of aliasing, large errors occur proportionally
more often and a slowly decaying PDF is a more appropriate model. In our
implementation, the cost functions Jn are minimized using a multiresolution
Gauss-Newton descent method, similar to that described by Sawhney and
Ayer [17].

Some registration error statistics are given in Table 6.1 for estimators
designed for Cauchy and Gaussian distributions of the residual error. Addi-
tionally, a pre-filter can be applied to reduce aliasing at high-frequency com-
ponents. The values are obtained by running 100 simulations with random
motion parameters (for the 3D rotational model) corresponding to a pixel
displacement in the range [−0.5, 0.5].

The image used for the simulation is shown in Figure 6.13a. A part of the
image is downsampled to obtain the image in Figure 6.13b, which is used as a
reference image for the 100 runs of the registration algorithm. One of the 100
nonreference images is shown in Figure 6.13c. Aliasing is clearly visible in the
region of the regular pattern of the car radiator.

The results in Table 6.1 show that the registration algorithm achieves sub-
pixel precision. Both the low-pass filter and the robust estimator reduce the
average registration error with respect to the Gaussian estimator. However,
the low-pass filter is more effective than the robust estimator. This can be
explained by the small amount of aliasing present in the images and the use
of a Cauchy distribution for the residual error. Even if this is a better model
than the Gaussian, it does not necessarily match the actual error distribution.

6.5.2.3 Image Reconstruction

When the input images are registered with respect to the reference I0, it
is possible to determine the super-resolution image I ′0 corresponding to I0.
We follow an approach similar to Farsiu et al. [5]. The procedure consists in
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(a)

(b) (c)

FIGURE 6.13: Images used to test the motion estimation algorithm. (a) Orig-
inal high-resolution (3072 × 2304) image. (b) low-resolution reference image
(176×144). (c) One of the 100 low-resolution non reference images (176×144)
registered with the reference image in (a).

minimizing, with respect to the unknown image I ′0, the cost function

JS =
∑

n

∑
p

e(In(p)− d ◦ g ◦ w(I ′0(p, hn)) + αT (I ′0), (6.28)

where In are the nonreference images, and the function d ◦ g ◦ w represents
the composition of down-sampling, low-pass filtering, and warping. These
functions represent the transformations that one should apply to the super-
resolution image I ′0 to obtain each of the nonreference images. This is realized
by warping I ′0 according to the parameters computed in the registration step,
and then low-pass filtering the result to simulate the behavior of camera op-
tics, sensor, and motion blur. The last step is downsampling to reduce the
number of pixels to that of the image In. The function e measures the error
of the result with respect to the image In. When the image I ′0 is correct, the
error should be small. As in the case of registration, the function e should be
chosen according to the distribution of the residual errors. Typical choices are
the L1, L2, and Lp norms. The additional term αT (I ′0) in equation (6.28) is
needed to impose regularity on the image I ′0, because in most cases, the input
images are not sufficient to determine the solution unambiguously. The need
for regularization depends on the type of motion and the low-pass filter g. For
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Estimator type Avg. abs. error (pixels) Max abs. error (pixels)
Gaussian 0.0421 0.0756
Cauchy 0.0224 0.0488
Gaussian with prefilter 0.00556 0.0184
Cauchy with prefilter 0.00488 0.0127

TABLE 6.1: Registration errors for different estimators with and without
prefilter. The estimation errors are computed on 100 simulations using a 3D
rotational model with parameters corresponding to displacements in the range
[−0.5, 0.5] pixels. Both the prefilter and the use of robust estimators con-
tribute to the reduction of the registration errors.

example, it is not possible to determine the components of I ′0 that correspond
to zeros of g. The typical choice for T is the Total Variation (TV) measure:

T (I ′0) =
∫ √

‖∇I ′0‖2 + β, (6.29)

where β is a regularization term that makes T differentiable (we used β = 0.01
for frames with values in the range [0, 255]). The value of the Total Variation
is related to the gradient magnitude of the image intensity, which is a measure
of the image sharpness. In this way, the second term of equation (6.28) limits
the amount of high frequencies added by the algorithm. In a software imple-
mentation of the Total Variation, the gradient operator in equation (6.29) is
replaced by a difference operator. In our experiments, we approximated the
derivatives with the average of the forward and backward differences along
the x and the y coordinates. The constant α in (6.28) controls the trade-off
between regularity and level of details in the output image.

The minimization of JS is performed on the space of the possible images I ′0,
which has a dimension equal to the number of pixels. To limit the complexity
of the algorithm, the steepest descent method is used. This consists in applying
iterations

I
′(i+1)
0 = I

′(i)
0 + μ

dJS

dI ′0
, (6.30)

to an initial guess I
′(0)
0 . The step size μ determines the speed of convergence.

6.5.2.4 Results on Video Sequences

The proposed algorithm has been applied to a set of videos acquired using
handheld devices and coded at low bit rates (around 128 Kb/s). The size of the
circular buffer was N = 9. The motion parameters were computed assuming
a 3D rotation, which is a good approximation when the distance of the scene
is much larger than the translation of the camera. The large coding errors
were the main source of noise during the frame registration step. This strongly
reduced the advantage of the low-pass filter and robust estimation to minimize
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 6.14: Results of super-resolution on low-rate encoded videos. The
first column shows one video frame, the second column shows the result of
bicubic interpolation, and the third column the result of the super-resolution
algorithm applied to 9 consecutive video frames.
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the effects of aliasing. However, robust estimators reduced the influence of
regions not following the motion model, for example due to objects moving
in the scene or model mismatch (such as optical distortion or non negligible
translation). The descent method was applied to a multiscale representation of
the frames. We found that 3 resolution levels and a maximum of 50 iterations
were sufficient to obtain sub-pixel precision of the registrations. The super-
resolution images were computed using the iterations from (6.30) with a step
size μ = 0.07. The term α in equation (6.28) determines the influence of the
regularization term. A too small value will result in terms corresponding to
the zeros of the filter g appearing in the solution. On the other hand, if α is
too large, the improvement given by the algorithm is reduced. We found that
α = 5 was a good trade-off for our setup.

Some frames of the processed sequences are shown in Figure 6.14. The left
column shows one of the original frames and the right column contains the
super-resolution results. For comparison, the second column gives the result
of bicubic interpolation. The increased level of details and sharpness is clearly
visible on the super-resolution frames. In addition, we notice that some coding
artifacts, like blockiness, are reduced in the output images. The reason is the
temporal filtering introduced by the super-resolution algorithm, which tends
to remove uncorrelated errors in the input images.

It is interesting to notice that, despite the high compression rate of the
input videos, enough aliasing is still present in the video to be able to apply
super-resolution. The reason is that the motion compensation step of a con-
ventional video coder uses a block-based translational model, while the motion
of the sequence is better modeled by a 3D rotation. Video encoders generally
encode a subset of (intra) frames directly, and use motion compensation to
predict the (inter) frames in between. If the motion model is accurate, the
inter frames can be predicted correctly, and there is no need to encode any
residual error. This would result in a single frame and a set of motion vectors,
and it would be impossible to apply super-resolution. As the 3D rotational
motion is not well modeled by the translational model, the encoder has to
spend a large portion of its bit rate to represent the residual error, which in-
cludes errors due to both motion model mismatch and aliasing. Therefore, we
can conclude that it is the inefficiency of (motion compensation in) current
video coders that makes super-resolution possible.

6.6 Conclusions

We have presented a set of super-resolution algorithms, ranging from a more
theoretical analysis of super-resolution as a multichannel sampling problem
with unknown offsets to a practical algorithm for low-resolution videos cap-
tured with a mobile phone. A special emphasis was given to the registration
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part of such algorithms, as a precise sub-pixel registration is a necessary pre-
requisite for a good reconstruction of additional details. Through simulations
and practical experiments, we have shown the good performance of our algo-
rithms in the relevant use cases.
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The effective resolution of an imaging system is limited not only by the physi-
cal resolution of an image sensor but also by blur. If the blur is present, super-
resolution makes little sense without removing the blur. Some super-resolution
methods considering space-invariant blur are described in other chapters of
this book. The presence of a spatially varying blur makes the problem much
more challenging and for the present, there are almost no algorithms designed
specifically for this case. We argue that the critical part of such algorithms is
precise estimation of the varying blur, which depends to a large extent on a
specific application and type of blur.

In this chapter, we discuss possible sources of spatially varying blur, such
as defocus, camera motion, or object motion. In each case we review known
approaches to blur estimation, illustrate their performance on experiments
with real data and indicate problems that must be solved to be applicable in
super-resolution algorithms.

7.1 Introduction

At the very beginning, we should remark that in this chapter we consider
only algorithms working with multiple acquisitions – situations where we fuse
information from several images to get an image of better resolution. To our
best knowledge, there are no true super-resolution algorithms working with
an unknown space-variant blur. A first step in this direction is the algorithm
[34], detailed in Section 7.5.1. On the other hand, considerable amount of
literature exists on the deblurring of images degraded by space-variant blur.
Our results [33, 32, 31] are described in Section 7.5, other relevant references
[4, 22, 14, 8, 20] are commented in more detail at the beginning of Sections
7.4 and 7.5.3.

We do not treat super-resolution methods working with one image that
needs a very strong prior knowledge – either in the form of shape priors
describing whole objects or sets of possible local patches in the case of example
based methods [11, 7, 13]. Nor do we consider approaches requiring hardware
adjustments such as special shutters (coded-aperture camera [15]), camera
actuators (motion-invariant photography [16]), or sensors (Penrose pixels [5]).
However, these approaches can be considered in the same framework presented
in this chapter.

We first introduce a general model of image acquisition that includes sam-
pling, which we need for modeling resolution loss. This model is used for
deriving a Bayesian solution to the problem of super-resolution. Next, a sub-
stantial part of the chapter discusses possible sources of spatially varying blur,
such as defocus, camera motion, or object motion. Where possible, we included
analytical expressions for the corresponding point-spread function (PSF). In
each case we discuss possible approaches for blur estimation and illustrate
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their use in algorithms described in the second part of the chapter. Where
the existing algorithms work only with deblurring, we indicate problems that
must be solved to be applicable in true super-resolution.

All of the above-mentioned types of spatially varying blur can be described
by a linear operator H acting on an image u in the form

[Hu] (x, y) =
∫

u(x− s, y − t)h(s, t, x− s, y − t) dsdt , (7.1)

where h is a PSF. We can look at this formula as a convolution with a PSF that
changes with its position in the image. The convolution is a special case thereof
with the PSF independent of coordinates x and y, i.e., h(s, t, x, y) = h(s, t)
for an arbitrary x and y.

In practice, we work with a discrete representation of images and the same
notation can be used with the following differences. Operator H in (7.1) cor-
responds to a matrix and u to a vector obtained by stacking columns of the
image into one long vector. In the case of convolution, H is a block-Toeplitz
matrix with Toeplitz blocks and each column of H contains the same PSF. In
the space-variant case, each column may contain a different PSF that corre-
sponds to the given position.

7.1.1 Representation of Spatially Varying PSF

An obvious problem of spatially varying blur is that the PSF is now a function
of four variables. Except in trivial cases, it is hard to express it by an explicit
formula. Even if the PSF is known, we must solve the problem of efficient
representation.

If the PSF changes smoothly without discontinuities, we can store the PSF
on a discrete set of positions and use interpolation to approximate the whole
function h (see Figure 7.7). If the PSF is not known, as is usually the case,
the local PSF’s must be estimated as in the method described in Section 7.5.

Another type of representation is necessary if we consider for example
moving objects, where the blur changes sharply at object boundaries. Then we
usually assume that the blur is approximately space-invariant inside objects,
and the PSF can be represented by a set of convolution kernels for each object
and a corresponding set of object contours.

The final case occurs when the PSF depends on the depth. If the relation
cannot be expressed by an explicit formula, as in the case of the ideal pillbox
function for defocus, we must store a table of PSFs for every possible depth.

7.1.2 General Model of Resolution Loss

Let us represent the scene by two functions: intensity values of an ideal image
u(x, y) and a depth map d(x, y). A full 3D representation is necessary only if
occlusion is considered, which will not be our case.

Digital imaging devices have limited achievable resolution due to many
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theoretical and practical restrictions. In this section, we show a general model
of image acquisition, which comprises commonly encountered degradations.
Depending on the application, some of these degradations are known and
some can be neglected.

First, light rays emanating from the scene come from different directions
before they enter the lens as the camera orientation and position change, which
can be modeled by a geometric transformation of the scene. Second, several
external and internal phenomena degrade the perceived image. The external
effects are, e.g., atmospheric turbulence and relative camera-scene motion. The
internal effects include out-of-focus blur and all kinds of aberrations. As the
light passes through the camera lens, warping due to lens distortion occurs.
Finally, a camera digital sensor discretizes the image and produces a digi-
tized noisy image g(x, y). An acquisition model, which embraces all the above
radiometric and geometric deformations, can be written as a composition of
operators

g = DLHWu + n . (7.2)

Operators W and L denote geometric deformation of the original scene
and lens distortions, respectively. Blurring operator H describes the external
and internal radiometric degradations. D is a decimation operator modeling
the camera sensor and n stands for additive noise. Our goal is to solve an
inverse problem, i.e., to estimate u from the observation g.

The decimation operator D consists of filtering followed by sampling. Fil-
tering is a result of diffraction, shape of light sensitive elements and void spaces
between them (fill factor), which cause the recorded signal to be band-limited.
Sampling can be modeled by multiplication by a sum of delta functions placed
on an evenly spaced grid. For principle reasons, D is not invertible but we will
assume that its form is known.

Many restoration methods assume that the blurring operator H is known,
which is only seldom true in practice. The first step towards more general cases
is to assume that H is a traditional convolution with some unknown PSF.
This model is true for some types of blurs (see, e.g., [23]) and narrow-angle
lenses. In this chapter, we go one step further and assume spatially varying
blur, which is the most general case that encompasses all the radiometric
degradations if occlusion is not considered. Without additional constraints,
the space-variant model is too complex. Various scenarios that are space-
variant and allow solution are discussed in Section 7.5.

If lens parameters are known, one can remove lens distortions L from the
observed image g without affecting blurring H , since H precedes L in (7.2).
There is a considerable amount of literature on the estimation of distortion
[36, 2]. In certain cases the distortion can be consider as a part of the estimated
blurring operator as in the algorithm 7.5.2.

A more complicated situation materializes in the case of geometric defor-
mation W . If a single acquisition is assumed, calculation of W is obsolete
since we can only estimate Wu as a whole. In the case of multiple acquisitions
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in (7.3), the image u is generally deformed by different geometric transforms
Wk’s and one has to estimate each Wk by a proper image registration method
[38]. By registering the images gk’s, we assume that the order of operators Hk

and Wk is interchanged. In this case the blurring operator is H̃k = W−1
k HkWk

(HkWk = WkW−1
k HkWk = WkH̃k). If Hk is a standard convolution with some

PSF hk and Wk denotes a linear geometric transform, then by placing Wk in
front of Hk, the new blurring operator H̃k remains a standard convolution
but with hk warped according to Wk. If Wk denotes a nonlinear geometric
transform, then after interchanging the order, H̃k becomes a space-variant
convolution operator in general. It is important to note that the blurring
operator is unknown and instead of Hk we are estimating H̃k, which is an
equivalent problem as long as the nature of both blurring operators remains
the same. Thus, to avoid extra symbols, we keep the symbol Hk for the blur-
ring operator even if it would be more appropriate to write H̃k from now
on.

As mentioned in the introduction, we need multiple acquisitions to have
enough information to improve resolution. Hence, we write

gk = DWkHku + nk = DkHku + nk , (7.3)

where k = 1, . . . , K, K is the number of input images, lens distortions L are
not considered, D remains the same in all the acquisitions, and the order
of operators Hk and Wk has been interchanged. We denote the combined
operator of Wk and D as Dk = DWk and assume it is known.

In practice, there may be local degradations that are still not included in
the model. A good example is a local motion that violates an assumption of
global image degradation. If this is the case, restoration methods often fail.
In order to increase flexibility of the above model, we introduce a masking
operator M , which allows us to select regions that are in accordance with
the model. The operator M multiplies the image with an indicator function
(mask), which has ones in the valid regions and zeros elsewhere. The final
acquisition model is then

gv
k = MkDkHku + nk = Gku + nk , (7.4)

where gv
k denotes the k-th acquired image with invalid regions masked out.

The whole chain of degradations will be denoted as Gk. More about masking
is in Section 7.5.1.

7.1.3 Bayesian View of Solution

There are a number of possible directions, from which we can approach the
problem of super-resolution. One of the most frequent is the Bayesian ap-
proach, which we adopt here as well. Other approaches can be considered as
approximations to the Bayesian solution.

An important fact is that if we know degradation operators Gk, the MAP
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(maximum a posteriori) solution under the assumption of Gaussian noise1

corresponds to the minimum of a functional

E(u) =
∑

k

1
2σ2

k

‖Gku− gv
k‖2 + Q(u), (7.5)

where the first term describes an error of our model and the second term Q(u)
is a so-called regularization term that corresponds to the negative logarithm
of the prior probability of the image u. Noise variance in the k-th image is
denoted as σk.

The prior probability is difficult to obtain and it is often approximated
by statistics of the image gradient distribution. A good approximation for
common images is for example total variation regularization [21]

Q(u) = λ

∫

Ω

|∇u| , (7.6)

which corresponds to an exponential decay of gradient magnitude. The total
variation term can be replaced by an arbitrary suitable regularizer (Tikhonov,
Mumford-Shah, etc.) [3, 29, 25]. The functional (7.5) can be extended to color
images in quite a straightforward manner. The error term of the functional is
summed over all three color channels (ur, ug, ub) as in [28]:

Q(u) = λ

∫ √
|∇ur|2 + |∇ug|2 + |∇ub|2. (7.7)

This approach has significant advantages as it suppresses noise effectively and
prevents color artifacts at edges.

To minimize functional (7.5) we can use many existing algorithms, de-
pending on a particular form of the regularization term. If it is quadratic
(such as the classical Tikhonov regularization), we can use an arbitrary nu-
merical method for the solution of systems of linear equations. In the case
of total variation, the problem is usually solved by transforming the prob-
lem to a sequence of linear subproblems. In our implementations, we use the
half-quadratic iterative approach as described for example in [32].

The derivative of functional (7.5) with the total variation regularizer (7.7)
can be written as

∂E(u)
∂u

=
∑

k

G∗
k(Gku− gv

k)
σ2

k

− λdiv
(
∇u

|∇u|

)
. (7.8)

G∗
k = H∗

kD∗
kM∗

k is an operator adjoint to Gk and it is usually easy to con-
struct. Adjoint masking M∗

k is equal to the original masking Mk. If Dk is

1Poisson noise can be considered by prescaling the operators Gk in equation (7.5) ac-
cording to values of corresponding pixels in gk.
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downsampling, then D∗
k is upsampling. The operator adjoint to Hk defined in

(7.1) can be written as

[H∗u] (x, y) =
∫

u(x− s, y − t)h(−s,−t, x, y) dsdt. (7.9)

We can imagine this correlation-like operator as putting the PSF to all im-
age positions and computing dot product. The gradient of any regularization
functional of form

∫
κ (|∇u|), where κ is an increasing smooth function, can

be found in [28].
If we know the operators Gk, the solutions are in principle known, though

the implementation of the above formulas can be quite complicated. In prac-
tice however, the operators Gk are not known and must be estimated.

Especially in the case of spatially varying blur, it turns out to be indispens-
able to have at least two observations of the same scene, which gives us addi-
tional information that makes the problem more tractable. Moreover, to solve
such a complicated ill-posed problem, we must exploit the internal structure
of the operator, according to the particular problem we solve. Some parts of
the composition of sub-operators in (7.2) are known, some can be neglected or
removed separately – for example, geometrical distortion. In certain cases we
can remove the downsampling operator and solve only a deblurring problem,
if we find out that we work at diffraction limit (read more about diffraction
in 7.2.4). All the above cases are elaborated in the section on algorithms 7.5.

Without known PSFs it is in principle impossible to register precisely im-
ages blurred by motion. Consequently, it is important that image restoration
does not necessarily require sub-pixel and even pixel precision of the registra-
tion. The registration error can be compensated in the algorithm by shifting
the corresponding part of the space-variant PSF. Thus, the PSF estimation
provides robustness to misalignment. As a side effect, misalignment due to
lens distortion does not harm the algorithm as well.

In general, if each operator Gk = G(θk) depends on a set of parameters
θk = {θ1

k, . . . , θP
k }, we can again solve the problem in the MAP framework

and maximize the joint probability over u and {θk} = {θ1, . . . ,θK}. As the
image and degradation parameters can be usually considered independent, the
negative logarithm of probability gives a similar functional

E(u, {θk}) =
K∑

k=1

1
2σ2

k

‖G(θk)u− gv
k‖2 + Q(u) + R({θk}) , (7.10)

where the additional term R({θk}) corresponds to a (negative logarithm of)
prior probability of degradation parameters. The derivative of the error term
in (7.10) with respect to the i-th parameter θi

k of θk, equals

∂E(u, {θk})
∂θi

k

=
1
σ2

k

〈∂G(θk)
∂θi

k

u, G(θk)u − gv
k〉+

∂R({θk})
∂θi

k

, (7.11)

where 〈.〉 is the standard inner product in L2. In discrete implementation,
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∂G(θk)
∂θi

k

is a matrix that is multiplied by the vector u before computing the dot
product.

Each parameter vector θk can contain registration parameters for images,
PSFs, depth maps, masks for masking operators, etc., according to the type
of degradation we consider.

Unfortunately in practice, it is by no means easy to minimize the functional
(7.10). We must solve the following issues:

1. How to express the Gk as a function of parameters θk, which may be
sometimes complex – for example, dependence of PSF on the depth of
scene. We also need to be able to compute the corresponding derivatives.

2. How to design an efficient algorithm to minimize the nonconvex func-
tional we derive. In particular, the algorithm should not get trapped in
a local minimum.

All this turns out to be especially difficult in the case of spatially varying
blur, which is also the reason why there are so few papers considering super-
resolution or just deblurring in this framework.

An alternative to the MAP approach is to estimate the PSF in advance
and then proceed with (nonblind) restoration by minimization over the pos-
sible images u. This can be regarded as an approximation to MAP. One such
approach is demonstrated in Section 7.5.2.

To finalize this section, note that the MAP approach may not give op-
timal results, especially if we do not have enough information and the prior
probability becomes more important. This is a typical situation for blind de-
convolution of one image. It was documented (blind deconvolution method
[10] and analysis [15]) that in these cases marginalization approaches can give
better results. On the other hand, we are interested in the cases of multiple
available images, where the MAP approach seems to be appropriate.

7.2 Defocus and Optical Aberrations

This section describes degradations produced by optical lens systems and the
relation of the involved PSF to camera parameters and three-dimensional
structure of an observed scene (depth).

We describe mainly the geometrical model of optical systems and corre-
sponding PSFs, including the approximation by a Gaussian PSF. We mention
also the case of general axially-symmetric optical system. Finally, we describe
diffraction effects even though these can be considered space-invariant. The
classical theory of Seidel aberrations [6] is not treated here as in practice
the PSF is measured by an experiment and there is no need to express it in
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the form of the related decomposition. Also the geometrical distortion is omit-
ted as it actually introduces no PSF and can be compensated by a geometrical
transformation of images.

7.2.1 Geometrical Optics

Image processing applications widely use a simple model based on geometrical
(paraxial, Gaussian) optics that follows the laws of ideal image formation. The
name “paraxial” suggests that in reality it is valid only in a region close to
the optical axis.

In real optical systems, there is also a roughly circular aperture, a hole
formed by the blades that limit the pencils of rays propagating through the
lens (rays emanate within solid angle subtended by the aperture). The aper-
ture size is usually specified by f -number F = f/2ρ, where ρ is the radius of
the aperture hole and f is a focal length. The aperture is usually assumed to
be placed at the principal plane, i. e. somewhere inside the lens. It should be
noted that this arrangement has an unpleasant property that magnification
varies with the position of focal plane. If we work with more images of the
same scene focused at different distances, it results in more complicated algo-
rithms with precision deteriorated either by misregistration of corresponding
points or by errors introduced by resampling and interpolation.2

If the aperture is assumed to be circular, the graph of the PSF has a
cylindrical shape usually called a pillbox in literature. When we describe the
appearance of the PSF in the image (or photograph), we speak about a blur
circle or a circle of confusion.

It can be easily seen from the similarity of triangles that the blur circle
radius for an arbitrary point at distance l is

r = ρζ

(
1
ζ

+
1
l
− 1

f

)
= ρζ

(
1
l
− 1

ls

)
, (7.12)

where ρ is the aperture radius, ζ is the distance of the image plane from the
lens and ls distance of the plane of focus (where objects are sharp) that can
be computed from ζ using the relation 1/f = 1/ls + 1/l.

Notice the importance of inverse distances in these expressions. The ex-
pression (7.12) tells us that the radius r of the blur circle grows proportionally
to the difference between inverse distances of the object and of the plane of
focus. Other quantities, ρ, ζ, and f , depend only on the camera settings and
are constant for one image.

2These problems can be eliminated using the so-called front telecentric optics, i. e. ,
optics with the aperture placed at the front focal plane. Then all principal rays (rays
through principal point) become parallel to the optical axis behind the lens and conse-
quently magnification remains constant as the sensor plane is displaced [35]. Unfortunately,
most conventional lenses are not telecentric.
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Thus, PSF can be written as

h(s, t, x, y) =
{ 1

πr2(x,y) , for s2 + t2 ≤ r2(x, y),
0, otherwise,

(7.13)

where r(x, y) denotes the radius r of the blur circle corresponding to the
distance of point (x, y) according to (7.12). Given camera parameters f , ζ
and ρ, matrix r is only an alternative representation of depth map.

Now, suppose we have another image of the same scene, registered with
the first image and taken with different camera settings. As the distance is
the same for all pairs of points corresponding to the same part of the scene,
inverse distance 1/l can be eliminated from (7.12) and we get a linear relation
between the radii of blur circles in the first and the second image

r2(x, y) =
ρ2

ρ1

ζ2

ζ1
r1(x, y) + ρ2ζ2(

1
ζ2
− 1

ζ1
+

1
f1
− 1

f2
) (7.14)

Obviously, if we take both images with the same camera settings except for
the aperture, i. e. , f1 = f2 and ζ1 = ζ2, we get the right term zero and the
left equal to the ratio of f -numbers.

In reality the aperture is not a circle but a polygonal shape with as many
sides as there are blades. Note that at full aperture, where blades are com-
pletely released, the diaphragm plays no part and the PSF support is really
circular. Still assuming geometrical optics, the aperture blur projects on the
image plane with a scale changing the same way as for circular aperture, i. e.
with a ratio

w =
l′ − ζ

l′
= ζ

(
1
l
− 1

ls

)
=

1
l
ζ + ζ

(
1
ζ
− 1

f

)
(7.15)

and consequently

h(s, t, x, y) =
1

w2(x, y)
ĥ(

s

w(x, y)
,

t

w(x, y)
), (7.16)

where ĥ(s, t) is the shape of the aperture. The PSF keeps the unit integral
thanks to the normalization factor 1/w2. Comparing (7.15) with (7.12), one
can readily see that the blur circle (7.13) is a special case of (7.16) for w(x, y) =
r(x, y)/ρ and

ĥ(s, t) =
{ 1

πρ2 , for s2 + t2 ≤ ρ2,

0, otherwise.
(7.17)

Combining (7.15) for two images yields, analogously to (7.14),

w2(x, y) =
ζ2

ζ1
w1(x, y) + ζ2(

1
ζ2
− 1

ζ1
+

1
f1
− 1

f2
). (7.18)

Notice that if the two images differ only in the aperture, then the scale factors
are the same, i.e., w2 = w1. The ratio ρ2/ρ1 from (7.14) is hidden in the
different scale of the aperture hole.
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7.2.2 Approximation of PSF by 2D Gaussian Function

In practice, due to lens aberrations and diffraction effects, PSF will be a circu-
lar blob, with brightness falling off gradually rather than sharply. Therefore,
most algorithms use two-dimensional Gaussian function instead of pure pill-
box shape. To map the variance σ to real depth, [26] proposes to use relation
σ = r/

√
2 together with (7.12) with the exception of very small radii. Our

experiments showed that it is often more precise to state the relation between
σ and r more generally as σ = κr, where κ is a constant found by camera
calibration (for the lenses and settings we tested k varied around 1.2). Then
analogously to (7.14) and (7.18)

σ2 = ασ1 + κβ, α, β ∈ R. (7.19)

Again, if we change only the aperture then β = 0 and α equals the ratio of
f -numbers.

The Corresponding PSF can be written as

h(s, t, x, y) =
1

2πκ2r2(x, y)
e
− s2+t2

2κ2r2(x,y) . (7.20)

If possible we can calibrate the whole (as a rule monotonous) relation
between σ and distance (or its representation) and consequently between σ1

and σ2.
In all cases, to use Gaussian efficiently, we need a reasonable size of its

support. Fortunately Gaussian falls off quite quickly to zero and it is usually
sufficient to truncate it by a circular window of radius 3σ or 4σ. Moreover,
for common optical systems, an arbitrary real out-of-focus PSF has a finite
support anyway.

7.2.3 General Form of PSF for Axially-Symmetric Optical
Systems

In case of high-quality optics, pillbox and Gaussian shapes can give satis-
factory results as the model fits the reality well. For poorly corrected optical
systems, rays can be aberrated from their ideal paths to such an extent that it
results in very irregular PSFs. In general, aberrations depend on the distance
of the scene from the camera, position in the image and on the camera settings
f , ζ and ρ. As a rule, the lenses are well corrected in the image center, but
towards the edges of the image PSF may become completely asymmetrical.

Common lenses are usually axially-symmetric, i.e., they behave indepen-
dently of its rotation about the optical axis. For such systems, it is easily seen
(see Figure 7.1) that

1. in the image center, PSF is radially symmetric,

2. for the other points, PSF is bilaterally symmetric about the line passing
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FIGURE 7.1: Three types of PSF symmetry in an optical system symmetrical
about the optical axis.

through the center of the image and the respective point (two left PSFs
in Figure 7.1),

3. for points of the same distance from the image center and corresponding
to objects of the same depth, PSFs have the same shape, but they are
rotated about the angle given by angular difference of their position with
respect to the image center (again can be seen at two left PSFs in Figure
7.1).

The second and third property can be written as

h(s, t, x, y) = h

(
|(−t, s)(x, y)T |

|(x, y)| ,
(s, t)(x, y)T

|(x, y)| , 0, |(x, y)|
)

. (7.21)

In most cases, it is impossible to derive an explicit expression for the PSF.
On the other hand, it is relatively easy to get it by a raytracing algorithm.
The above-mentioned properties of the axially-symmetric optical system can
be used to save memory as we need not to store PSFs for all image coordinates
but only for every distance from the image center. Naturally, it makes the
algorithms more time-consuming as we need to rotate the PSFs every time
they are used.

7.2.4 Diffraction

Diffraction is a wave phenomenon which makes a beam of parallel light passing
through an aperture to spread out instead of converging to one point. For a
circular aperture it shapes the well-known Airy disk (see Figure 7.2). The
smaller the aperture, the larger the size of the disk and the signal is more
blurry. Due to the diffraction the signal becomes band-limited, which defines
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FIGURE 7.2: Airy function: surface plot (left) and the corresponding grayscale
image (right). The side lobes are very small and do not appear in the image
plot. For this reason, we often talk about the Airy disk as only the central
lobe is clearly visible.

a theoretical maximum spatial resolution and hence implies limits on super-
resolution as will be shown later.

On a sensor array the signal is sampled by photosensitive devices
(CCD/CMOS). Driven by marketing requirements of more and more megapix-
els, present day cameras were brought very close to this diffraction limit. Espe-
cially it is true for compacts with their small sensors. It means that we cannot
neglect this phenomenon and should incorporate the corresponding PSF to
deblurring algorithms.

To study the frequency response of a diffraction-limited optical system, we
use transfer functions, i. e. , the Fourier transform of PSFs. If we assume an
ideal circular aperture, neglect the defocus phenomena and other aberrations,
the Optical Transfer Function (OTF) of the system due to diffraction is given
[19] as

OTF(ω) =

⎧
⎪⎨
⎪⎩

2
π

(
cos−1

(
ω
ωc

)
− ω

ωc

√
1−
(

ω
ωc

)2
)

for ω < ωc

0 otherwise,
(7.22)

where ω =
√

ω2
x + ω2

y is the radial frequency in a 2D frequency space [ωx, ωy],

and ωc = 1/(Fλ) is the cutoff frequency of the lens (λ is the wavelength of
incoming light). For example for aperture F = 4 and λ = 500 nm(in the middle
of visible light), the cutoff frequency is ωc = 0.5 MHz and the corresponding
OTF is plotted in Figure 7.3a as a solid line.

Assuming a square sensor without cross-talk, the Sensor Transfer Function
(STF) is given by:

STF(ωx, ωy) = sinc
(

πwωx

ωs

)
sinc
(

πwωy

ωs

)
, (7.23)
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FIGURE 7.3: Correctly sampled signal: (a) Optical transfer function and sen-
sor transfer function; (b) Signal spectrum modified by diffraction and sensor
sampling.
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FIGURE 7.4: Under-sampled signal: (a) Optical transfer function and sen-
sor transfer function; (b) Signal spectrum modified by diffraction and sensor
sampling.

where sinc(x) = sin(x)/x for x �= 0 and sinc(0) = 1, ωs is the sampling
frequency, and w is the relative width of the square pixel (w ≤ 1). For the fill-
factor of 100% (w = 1) and if the signal is properly sampled (ωs = 2ωc), the
corresponding STF is plotted in Figure 7.3a as a dashed line. As can be seen,
the OTF is the main reason for a band-limited signal, since no information
above its cutoff frequency passes through the optical system.

Figure 7.3b summarizes the effects of diffraction and sensor sampling on
signal spectra. If the frequency spectrum of an original signal is modeled as a
decaying dotted line, the spectrum of the band-limited signal is the attenuated
dashed line, and the spectrum of the sampled signal is the solid line. The
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maximum frequency representable by the sampled signal is 1
2ωs, which in this

case is close to the cutoff frequency ωc (proper sampling), and no aliasing
is available, i. e. , the solid line matches the dashed line. It is clear that if
super-resolution is applied to such data, no high-frequency information can
be extracted and super-resolution merely interpolates.

On the other hand, if the optical system is undersampling the signal, the
corresponding OTF and STF looks as in Fig. 7.4a. For the given aperture,
wavelength and fill-factor, OTF is the same but STF shrinks. The sampled
signal (solid line) has its high frequencies (around 1

2ωs) disrupted due to alias-
ing as Fig. 7.4b illustrates. In this case, super-resolution can in principle unfold
the signal spectra and recover the high-frequency information.

As mentioned above, the sampling of current consumer cameras approaches
the diffraction limit that limits performance of any super-resolution algorithm.
For example, a typical present day 10MP compact camera Canon PowerShot
SX120 IS has its cut-off frequency about 2500 to 4000 per sensor width,3

depending on the aperture, with maximum x-resolution of 3600 pixels. Es-
pecially with higher f -numbers it is very close to the theoretical limit. On
the other hand, highly sensitive cameras (often near and mid-infrared) still
undersample the images that leaves enough room for substantial resolution
improvements.

If the decimation operator D is not considered in the acquisition model
(7.2), the diffraction effect can be neglected as the degradation by H is far
more important. Since the deconvolution algorithm estimates H , OTF and
STF can be considered as part of H and thus estimated automatically as well.
In the case of super-resolution, inclusion of D is essential as the goal is to
increase sampling frequency. The diffraction phenomenon is irreversible for
frequencies above the cutoff frequency ωc and it is thus superfluous to try
to increase image resolution beyond 2ωc. (7.2). The diffraction phenomenon
is irreversible and thus we will assume that the original image u is already
band-limited. The decimation operator D will model only STF and sampling.

7.2.5 Summary

In this section, we described several shapes of PSF that can be used to model
out-of-focus blur. Gaussian and pillbox shapes are adequate for good quality
lenses or in the proximity of the image center, where the optical aberrations
are usually well corrected. A more precise approach is to consider optical
aberrations. However, an issue arises in this case that aberrations must be
described for the whole range of possible focal lengths, apertures, and planes
of focus. In practice, it is indispensable to take diffraction effects into account
as many cameras are close to their diffraction limits.

3Aperture f/2.8− 4.3, sensor size 1/2.5” (5.5 mm width), 3600× 2700 maximum resolu-
tion, the diffraction limit (cut-off frequency), given by ωc = 1/(Fλ), is about 2500/sensor
width (for F = 4.3) up to 4000/sensor width (F = 2.8). Light wavelength λ is taken as 500
nm.
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7.3 Camera Motion Blur

In this section we analyze various types of camera motion for the classical
pinhole camera model. We treat the case of a general motion in all six degrees
of freedom and detail the special cases of camera rotation and translation in
a plane.

To model camera motion blur by a PSF h from (7.1), we need to express
the PSF as a function of the camera motion and a depth of the scene. In the
case of a general camera motion, it can be computed from the formula for
velocity field [12, 8] that gives apparent velocity of the scene for the point
(x, y) of the image at time instant τ as

v(x, y, τ) =
1

d(x, y, τ)

[
−1 0 x
0 −1 y

]
T (τ)+

[
xy −1− x2 y

1 + y2 −xy −x

]
Ω(τ),

(7.24)

where d(x, y, τ) is the depth corresponding to point (x, y) and Ω(τ) and
T (τ) = [Tx(τ), Ty(τ), Tz(τ)]T are three-dimensional vectors of rotational and
translational velocities of the camera at time τ . Both vectors are expressed
with respect to the coordinate system originating in the optical center of the
camera with axes parallel to x and y axes of the sensor and to the optical axis.
All the quantities, except Ω(τ), are in focal length units. The depth d(x, y, τ)
is measured along the optical axis, the third axis of the coordinate system.
The function d is called depth map.

The apparent curve [x̄(x, y, τ), ȳ(x, y, τ)] drawn by the given point (x, y)
can be computed by the integration of the velocity field over the time when
the shutter is open. Having the curves for all the points in the image, the
two-dimensional space-variant PSF can be expressed as

h(s, t, x, y) =
∫

δ(s− x̄(x, y, τ), t − ȳ(x, y, τ))dτ, (7.25)

where δ is the two-dimensional Dirac delta function.
Complexity of derivation of an analytical form of (7.25) depends on the

form of velocity vectors Ω(τ) and T (τ). Meanwhile, most algorithms do not
work directly with analytical forms and use a discrete representation extending
standard convolution masks.

7.3.1 Rotation

Excessive complexity of a general camera movement can be overcome by im-
posing certain constraints. A good example is an approximation used in al-
most all4 optical image stabilizers that they consider only rotational motion

4Recently Canon announced Hybrid IS that works with translational movements as well.
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in two axes. What concerns ordinary photographs, it turns out that in most
situations (landscapes and cityscapes without close objects, some portraits),
translation can be neglected.

If we look at formula (7.24) with no translation, i. e. , T (τ) = 0, we can
see that the velocity field is independent of depth and changes slowly – realize
that x and y are in focal length units that means the values are usually less
then one (equals one for the border of an image taken with 35 mm equivalent
lens). As a consequence, also the PSF has no discontinuities, the blur can be
considered locally constant and can be locally approximated by convolution.
This property can be used to efficiently estimate the space-variant PSF, as
described in Section 7.5.2.

7.3.2 No Rotation

A more complicated special case it to disallow rotation and assume that the
change of depth is negligible with an implication that also the velocity in the
direction of view can be considered zero (T (3) = 0). It can be easily seen
[32] that in this special case, the PSF can be expressed explicitly using the
knowledge of the PSF for one fixed depth of scene.

If the camera does not rotate, that is Ω = [0, 0, 0]T , and moves in only one
plane perpendicular to the optical axis (Tz(τ) = 0), equation (7.24) becomes

v(x, y, τ) =
1

d(x, y, τ)

[
−Tx(τ)
−Ty(τ)

]
. (7.26)

In other words, the velocity field has the direction opposite to camera veloc-
ity vector and the magnitudes of velocity vectors are proportional to inverse
depth. Moreover, depth for the given part of the scene does not change during
such a motion (depth is measured along the optical axis and the camera moves
perpendicularly to it), d(x, y, τ) does not change in time, and consequently the
PSF simply follows the (mirrored because of the minus sign) curve drawn by
the camera in image plane. The curve only changes its scale proportionally to
the inverse depth.

The same is true for the corresponding PSFs we get according to relation
(7.25). Let us denote the PSF corresponding to an object of the depth equal
to the focal length as h0. Note that this “prototype” PSF also corresponds to
the path covered by the camera. Recall that the depth is given in focal length
units. After linear substitution in the integral (7.25) we get

h(s, t, x, y) = d2(x, y)h0(sd(x, y), td(x, y)). (7.27)

Equation (7.27) implies that if we recover the PSF for an arbitrary fixed
depth, we can compute it for any other depth by simple stretching propor-
tionally to the ratio of the depths.
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7.4 Scene Motion

The degradation models we have discussed so far resulted either in the cam-
era motion or in the global scene motion. In many real scenarios, the ob-
served scene is not static but contains moving objects. Local changes inflicted
by moving objects are twofold. First, local motion creates additional vary-
ing blurring, and second, occlusion of the background may occur. To include
these two phenomena in the acquisition model is complicated as it requires
segmentation based on motion detection. Most restoration methods assume
a rigid transform (e.g., homography) as the warping operator W in (7.3). If
the registration parameters can be calculated, we can spatially align input
images. If local motion occurs, the warping operator must implement a non-
global transform, which is difficult to estimate. In addition, warping by itself
cannot cope with occlusion. A reasonable approach is to segment the scene
according to results obtained by local-motion estimation and deal with indi-
vidual segments separately. Several attempts in this direction were explored in
literature recently. Since PSFs may change abruptly, it is essential to precisely
detect boundaries, where the PSFs change, and consider boundary effects. An
attempt in this direction was for example proposed in [4], where level-sets
were utilized. Another interesting approach is to identify blurs and segment
the image accordingly by using local image statistics as proposed, e.g., in
[14]. All these attempts consider only convolution degradation. If decimation
is involved, then space-variant super-resolution was considered, e.g., in [22].
However, this technique assumes that PSFs are known or negligible. A method
restoring scenes with local motion, which would perform blind deconvolution
and super-resolution simultaneously, has not been proposed yet.

A natural way to avoid the extra burden implied by local motion is to
introduce masking as in (7.4). Masking eliminates occluded, missing, or cor-
rupted pixels. In the case of local motion, one can proceed in the following
way. A rigid transform is first estimated between the input images and in-
serted in the warping operator. Then discrepancies in the registered images
can be used for constructing masks. More details are provided in the next
section on algorithms, 7.5.1.

7.5 Algorithms

This section outlines the deblurring and super-resolution algorithms that in a
way consider spatially varying blur.

As we already mentioned, for the present, there are no super-resolution
methods working with unknown spatially varying blur. Deblurring and super-
resolution share the same problem of blur estimation and, as we saw in the
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introduction, it is useful to consider both in the same framework. This section
describes deblurring algorithms based on the MAP framework explained in the
introduction, where a similar approach could be used for true super-resolution
as well.

As the number of blur parameters increases, so does the complexity of
estimation algorithms. We will progress our review from simple to more com-
plex scenarios. If the blur is space-invariant except relatively small areas, we
can use a space-invariant method supplemented with masking described in
the introduction. An algorithm of this type is described in Section 7.5.1. If
the blur is caused by a more complex camera movement, it generally varies
across the image but not randomly. The PSF is constrained by six degrees of
freedom of a rigid body motion. Moreover, if we limit ourselves to only rota-
tion, we not only get along with three degrees of freedom, but we also avoid
the dependence on a depth map. This case is described in Section 7.5.2. If
the PSF depends on the depth map, the problem becomes more complicated.
Section 7.5.3 provides possible solutions for two such cases: defocus with a
known optical system and blur caused by camera motion. In the latter case,
the camera motion must be known or we must be able to estimate from the
input images.

7.5.1 Super-Resolution of a Scene with Local Motion

We start with a super-resolution method [34] that works with space-invariant
PSFs and treats possible discrepancies as an error of the convolutional model.
This model can be used for super-resolution of a moving object on a stationary
background. A similar approach with more elaborated treatment of object
boundaries was applied for deblurring in a simplified case of unidirectional
steady motion in [1].

We assume the K-channel acquisition model in (7.4) with Hk being con-
volution with an unknown PSF hk of a small support. The corresponding
functional to minimize is (7.10) where {θk} = {θ1, . . . ,θK} consists of regis-
tration parameters for images gk’s, PSFs hk’s, and masks for masking oper-
ators Mk’s. Due to the decimation operators Dk’s, the acquired images gk’s
are of lower resolution than the sought-after image u. Minimization of the
functional provides estimates of the PSFs and original image. As the PSFs
are estimated in the scale of the original image, positions of PSFs centroids
correspond to sub-pixel shifts in the scale of the acquired images. Therefore,
by estimating PSFs, we automatically estimate shifts with sub-pixel accuracy,
which is essential for a good performance of super-resolution. One image from
the input sequence is selected as a reference image gr (r ∈ 1, . . . , K) and regis-
tration is performed with respect to this image. If the camera position changes
slightly between acquisitions, which is typically a case of video sequences, we
can assume homography model. However, homography cannot compensate for
local motion, whereas masking can to some extent. Discrepancies in preregis-
tered (with homography) images give us regions where local motion is highly
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probable. Masking out such regions and performing simultaneously blind de-
convolution and super-resolution, produces naturally looking high-resolution
images.

The algorithm runs in two steps:

1. Initialize parameters {θk}: Estimate homography between the reference
frame gr and each gk for k ∈ 1, . . . , K. Calculate masks Mk’s and con-
struct decimation operators Dk’s. Initialize {hk} with delta functions.

2. Minimization of E(u, {θk}) in (7.10): alternate between minimization
with respect to u and with respect to {θk}. Run this step for a predefined
number of iterations or until a convergence criterion is met.

To determine Mk, we take the difference between the registered image gk

and the reference image gr and threshold its magnitude. Values below 10% of
the intensity range of input images are considered as correctly registered and
the mask is set to one in these regions; remaining areas are zeroed. In order
to attenuate the effect of misregistration errors, the morphological operator
“closing” is then applied to the mask. Note that Mr will be always identity
and therefore high-resolution pixels of u in regions of local motion will be at
least mapped to low-resolution pixels of gr. Depending on how many input
images map to the original image, the restoration algorithm performs any task
from simple interpolation to well-posed super-resolution.

The regularization term R({θk}) is a function of hk’s and utilizes relations
between all the input images gk’s. An exact derivation is given in [23]. Here,
we leave the discussion by stating that the regularization term is of the form

R({hk}) ∝
∑

1≤i,j≤K
i�=j

‖hi ∗ gj − hj ∗ gi‖2 , (7.28)

which is convex.
We use a standard web camera to capture a short video sequence of a

child waving a hand with following setting: 30 FPS, shutter speed 1/30s, and
resolution 320× 200. An example of 5 low-resolution frames is in the top row
in Figure 7.5. The position of the waving hand slightly differs from frame to
frame. Registering the frames in the first step of the algorithm removes ho-
mography. Estimated masks in the middle row in Figure 7.5 show that most
of the erroneous pixels are around the waving hand. Note that only the mid-
dle frame, which is the reference one and does not have any mask, provides
information about the pixels in the region of the waving hand. Comparison of
estimating the high-resolution frame with and without masking together with
simple interpolation is in the bottom row. Ignoring masks results in heavy
artifacts in the region of local motion. On the contrary, masking produces
smooth results with the masked-out regions properly interpolated. Remain-
ing artifacts are the result of imprecise masking. Small intensity differences
between the images, which set the mask to one, do not always imply that
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FIGURE 7.5: Super-resolution of a scene with local motion. The first row
shows five consecutive input frames acquired by a web camera. The second
row shows masks (white areas), which indicate regions with possible local
motion. The third row shows the estimated original image using simple in-
terpolation (left), super-resolution without masking (central), and proposed
super-resolution with masking (right).

the corresponding areas in the image are properly registered. Such a situation
may occur for example in regions with a small variance or periodic texture.

7.5.2 Smoothly Changing Blur

This section demonstrates space-variant restoration in situations where the
PSF changes gradually without sharp discontinuities, which means that the
blur can be locally approximated by convolution. A typical case is the blur
caused by camera shake, when taking photos of a static scene without too
close objects from hand. Under these conditions, the rotational component
of camera motion is dominant and, as was shown in Section 7.3.1, the blur
caused by camera rotation does not depend on the depth map.

In principle, in this case, the super-resolution methods that use convolu-
tion could be applied locally and the results of deconvolution/super-resolution
could be fused together. Unfortunately, it is not easy to sew the patches to-
gether without artifacts on the seams. An alternative way is first to use the
estimated PSFs to approximate the spatially varying PSF by interpolation of
adjacent kernels (see Figure 7.7) and then compute the image of improved
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FIGURE 7.6: A night photo taken from hand with shutter speed 1.3s. The
right image shows PSFs computed within white squares on the left using the
algorithm described in Section 7.5.2. Short focal length (36 mm equivalent)
accents spatial variance of the PSF.

FIGURE 7.7: If the blur changes gradually, we can estimate convolution ker-
nels on a grid of positions and approximate the PSF in the rest of the image
(bottom kernel) by interpolation from four adjacent kernels.

resolution by minimization of the functional (7.5). The main problem of these
naive procedures is that they are relatively slow, especially if applied on too
many positions. A partial speed up of the latter can be achieved at the expense
of precision by estimating the PSF based solely on blind deconvolution and
then upscaling to the desired resolution. This algorithm has not been tested
yet.

To see, whether the interpolation of the PSF can work in practice and
what is the necessary density of the PSFs, we applied this approach for the
purpose of image stabilization in [33].

We worked with a special setup that simplifies the involved computations
and makes them more stable. It considers the possibility to set the exposure
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FIGURE 7.8: Details of restoration. From left to right – the blurred image,
noisy image and the result of the algorithm combining them to get a low-noise
sharp photo.

time of the involved camera, which is an acceptable assumption as we can
alway balance noise with motion blur by setting a suitable shutter speed. In
particular, we set the exposure time of one of the images to be so short, that
the image is sharp, of course at the expense of noise amplification. The whole
idea was explored relatively recently [27, 17, 37].

In Figure 7.6, we can see a night photo of a historical building taken at
ISO 100 with shutter speed 1.3s. The same photo was taken once more at
ISO 1600 with 2 stops underexposure to achieve a hand-holdable shutter time
1/50s. The following algorithm fuses them to get one sharp photo.

The algorithm works in three phases:

1. Robust image registration;
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2. Estimation of convolution kernels (Figure 7.6 right) on a grid of windows
(white squares in Figure 7.6 left) followed by an adjustment at places
where the estimation failed;

3. Restoration of the sharp image by minimizing the functional (7.5). The
PSF described by the operator H for the blurred image is approximated
by interpolation from the kernels estimated in the previous step.

We do not describe in detail the image registration here. Just note that the
ambiguous registration discussed in Section 7.1.3 does not harm the procedure
because the registration error is compensated by the shift of the corresponding
part of the PSF.

The second step is a critical part of the algorithm and we describe it here
in more detail. In the example in Figure 7.6, we took 49 square subwindows
(white squares), in which we estimated kernels hi,j (i, j = 1..7). The estimated
kernels are assigned to centers of the windows where they were computed. In
the rest of the image, the PSF h is approximated by bilinear interpolation
from blur kernels in the four adjacent sub-windows.

The blur kernel corresponding to each white square is calculated as

hi,j = arg min
c
‖di,j ∗ c− zi,j‖2 + α‖∇c‖2, c(x) ≥ 0, (7.29)

where hi,j(s, t) is an estimate of h(x0, y0; s, t), x0, y0 being the center of the
current window zi,j , di,j the corresponding part of the noisy image, and c the
locally valid convolution kernel.

The kernel estimation procedure (7.29) can naturally fail. In a robust sys-
tem, such kernels must be identified, removed, and replaced by for example
an average of adjacent (valid) kernels. There are basically two reasons why
kernel estimation fails – a lack of texture and pixel saturation. Two simple
measures, sum of the kernel values and its entropy turned out to be sufficient
to identify such failures.

For minimization of the functional (7.5), we used a variant of the half-
quadratic iterative approach, solving iteratively a sequence of linear subprob-
lems, as described for example in [32]. In this case, the decimation operator
D and masking operator M are identities for both images. Blurring operator
H is the identity for the noisy image. The geometric deformation is removed
in the registration step. Note that the blurring operator can be speeded up by
Fourier transform computed separately on each square corresponding to the
neighborhood of four adjacent PSFs [18].

To help reader recognize differences in quite a large photograph (1154 ×
1736 pixels), we show details of the result in Figure 7.8. Details of the algo-
rithm can be found in [33].

7.5.3 Depth-Dependent Blur

In this section, we demonstrate algorithms working for PSFs that depend on
the depth, which implies that besides the restored image we must estimate
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(a) Two motion blurred images with small depth of focus

(b) Result of the algorithm (left) and ground truth (right)

FIGURE 7.9: Removing motion blur from images degraded simultaneously by
motion blur and defocus by the algorithm described in Section 7.5.3.

FIGURE 7.10: Depth map corresponding to images in Figure 7.9 and the PSF
estimated locally around the flowers close to the center of the left input image.

also an unknown depth map. This includes the blur caused by a camera mo-
tion and defocus. Similarly to the previous section, there are no published
algorithms that actually increase the physical resolution. On the other hand,
a considerable work has been devoted to deblurring.

In the case of scenes with significant depth variations, the methods re-
quiring PSFs without discontinuities are not suitable. Artifacts would appear
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especially at the edges of objects. For this case, so far, the only approach that
seems to give relatively precise results is based on the MAP approach, which
estimates simultaneously an unknown image and depth map by minimization
of a functional in the form (7.10). The main assumption of these algorithms
is that the relation between the PSF and the depth is known. One exception
is [32], where this relation is estimated for a camera motion constrained to
movement in one plane and without rotation. This result is described later in
this section.

First this approach appeared in the context of out-of-focus images in [20]
proposing to use simulated annealing to minimize the corresponding cost func-
tional. This guarantees global convergence, but in practice, it is prohibitively
slow. Later, this approach was adopted by Favaro et al. [8] who modeled the
camera motion blur by a Gaussian PSF, locally deformed according to the
direction and extent of blur. To make the minimization feasible, they take ad-
vantage of special properties of Gaussian PSFs as to view the corresponding
blur as an anisotropical diffusion. This model can be appropriate for small
blurs corresponding to short locally linear translations. An extension of [8]
proposed in [9] segments moving objects but it keeps the limitations of the
original paper concerning the shape of the PSF. Other papers related to this
type of variational problem can be found also in the context of optical flow
estimation, such as [30].

We start our discussion with a difficult case of the blur caused by an
unconstrained camera motion. If the cameras’ motion and parameters (focal
length, resolution of the sensor, initial relative position of cameras) are known,
we can, at least in theory, compute the PSF as a function of depth map and
solve the MAP problem (7.10) for an unknown image u and a parameter
set {θk} corresponding now to a depth map for one of observed images gk.
An issue arises from the fact that the PSF is a function of not only depth
but also of coordinates (x, y). In other words, different points of the scene
draw different apparent curves during the motion even if they are of the same
depth. In addition, the depth map is no longer common for all the images
and must be transformed to a common coordinate system before computing
Hk using (7.24) and (7.25). The numerical integration of the velocity field is
unfortunately quite time-consuming. A solution could be to precompute the
PSF for every possible combination of coordinates (x, y) and depth values. As
it is hardly possible, a reasonable solution seems to store them at least on a
grid of positions and compute the rest by interpolation. The density of this
grid would depend on application.

In [32] we show that obstacles of the general case described above can be
avoided by constraining camera motion to only one plane without rotations.
This corresponds to vibrations of a camera fixed for example to an engine or
machine tool.

A nice property of this case is that the PSF actually changes only its scale
proportionally to inverse depth (see Section 7.3.2). As a consequence, if we



Towards Super-Resolution in the Presence of Spatially Varying Blur 213

(a) Two out-of-focus images taken with aperture F/5.0 and F/6.3

(b) Results of the algorithm (left) and ground truth (right).

FIGURE 7.11: Removing out-of-focus blur by the algorithm described in Sec-
tion 7.5.3. The extent of blur increases from front to back.

estimate the PSF for one depth, we know the whole relation between the PSF
and depth (7.27). In addition, the depth map is common for all images.

The algorithm works in three steps:

1. PSF estimation at a fixed depth using the blind deconvolution algorithm
[24]. A region where the PSF is estimated is specified by user (depth
variations must be negligible). This region must be in focus, otherwise
we would not be able to separate motion and out-of-focus blur.

2. Rough depth map estimation using a simpler method assuming that the
blur is space-invariant in a neighborhood of each pixel (also described
in [32]).

3. Minimization of the functional (7.10) to get a sharp image and a more
precise depth map.
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What concerns the degradation operators Gk in the functional (7.10), the
operators Dk and Mk are identities and we work only with a blurring. The min-
imization proceeds alternately by conjugate gradients in the image subspace
and steepest descent in the depth map subspace. We chose total variation for
image regularization and Tikhonov regularization for the depth map. Note
that the depth map we estimate is relative to the distance of the object on
which we estimated the PSF in the first step.

An example in Figure 7.9 illustrates the performance of the algorithm
compared to ground truth. Besides the motion blur the photographs contain
also defocus but the defocus is common for both images and is not to be
removed. Figure 7.10 shows the convolution kernel estimated in the first step
of the algorithm (right) and the recovered depth map (left).

Figure 7.11 shows a result of the above described algorithm [32] modified
to remove defocus (there is no motion blur in the images). It assumes that the
PSF of the lens can be modeled by a pillbox function as a function of depth
according to relation (7.13). For minimization of the corresponding functional,
we use the same method as in [32]. Details are given in [31].

7.6 Conclusion

Bringing this all together, for the present, the restoration of images blurred
by spatially varying blur is not resolved satisfactorily for most cases. In this
chapter, we went through the special cases where at least a partial solution is
known and we explained the basic principles on which published algorithms are
based. We showed that from the Bayesian perspective it is usefull to consider
deblurring and super-resolution in one framework.

Many open questions and unresolved problems remain. A large number of
blur parameters we need to estimate brings significant errors to the solution
and for the present there is no analysis of super-resolution limits for these
cases. It may turn out that in many cases super-resolution does not bring
much more than mere deblurring. We have shown several algorithms that es-
timated space-variant blur considering only the deblurring problem. It will be
interesting to see if the extension to true super-resolution really works. Espe-
cially difficult is the situation when the changes in the PSF are not continuous,
e.g., several independently moving objects (motion blur) or even worse, if the
PSF depends on the depth of scene (defocus, camera motion).
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deconvolution of video. In Proc. Int. Conf. on Pattern Recognition, pages
1–4, 2008.

[35] Masahiro Watanabe and Shree K. Nayar. Rational filters for pas-
sive depth from defocus. International Journal of Computer Vision,
3(27):203–225, 1998.

[36] Wonpil Yu. An embedded camera lens distortion correction method for
mobile computing applications. Consumer Electronics, IEEE Transac-
tions on, 49(4):894–901, Nov. 2003.

[37] Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum. Image de-
blurring with blurred/noisy image pairs. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers, page 1, New York, NY, USA, 2007. ACM.
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8.1 Introduction

Super-resolution is a technique to reconstruct a high-resolution image from
low-resolution images. Super-resolution algorithms are roughly divisible into
two main categories. One category includes reconstruction-based algorithms.
The other includes learning-based algorithms. Learning-based algorithms es-
timate high-frequency image details based on the training database or the
model learned with the training database. Learning-based algorithms are
usually applied to enhance the resolution of single low-resolution images.
Reconstruction-based algorithms reconstruct the high-resolution image using
overlapped multiple low-resolution images. This chapter presents discussion
of reconstruction-based algorithms. Reconstruction-based algorithms consist
of two phases: high-accuracy image registration and super-resolution (SR) re-
construction. In image registration, multiple input images are registered with
subpixel accuracy. Then SR reconstruction is performed based on the regis-
tration information and the multiple input images. Accurate registration for
real scenes sometimes fails because of nonrigid motions, luminance changes,
occlusions, and multiple motions, which all must be addressed adequately.
For practical super-resolution, robustness against them is a key factor. Since
reconstruction-based super-resolution consists of the registration and recon-
struction, we must improve the robustness of both the registration and the
super-resolution. A common key technique for both robust registration and
robust reconstruction is outlier rejection, or to select appropriate pixels that
can correctly contribute the high-resolution image reconstruction. The ro-
bustness of the registration and the super-resolution could be improved if
we were able to select appropriate pixels. We introduce a novel outlier rejec-
tion method based on the similarity measure and displacement estimation.
In this chapter, we briefly overview existing robust registration and robust
super-resolution techniques. Then, we address the novel robust and accurate
registration method consisting of feature-based registration, region-based reg-
istration, and outlier rejection.

Section 8.2 presents a brief description of existing robust SR reconstruction
and robust registration. The proposed SR reconstruction, using pixel selection
based on the similarity measure and displacement estimation, is discussed in
Section 8.3. We demonstrate that the proposed SR reconstruction can im-
prove the image quality using the motion vectors encoded in the MPEG data
in Section 8.4. We also propose, in Section 8.5, robust and accurate image
registration algorithms: a feature-based algorithm, a region-based algorithm,
and a region extraction algorithm using the proposed pixel selection.
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8.2 Overviews

8.2.1 Super-Resolution Reconstruction

The reconstruction process of the reconstruction-based super-resolution can
be formulated as an inverse problem that estimates the source of the high-
resolution image from observed low-resolution images assuming an image gen-
erative model. Several image generative models have been proposed for SR
reconstruction [5, 12, 20, 13]. A widely used image generative model is

yi = D Hi Fi x + vi , (8.1)

where yi is the vectorized i-th observed image, x is the vectorized high-
resolution image, Fi is a matrix representing the motion of the i-th image,
Hi is a matrix representing the point-spread function (PSF) of the i-th im-
age, D is a matrix representing the downsampling, and vi represents the noise
of the i-th image.

A maximum a posteriori (MAP) estimation is the popular solution of the
inverse problem associated with the generative model in Eq. (8.1). The MAP
estimation is performed by minimizing the cost function:

E =
N∑

i=1

||yi −D Hi Fi x||22 + α λ (x) , (8.2)

where λ(x) is a constraining function derived from the prior distribution of
the high-resolution image, α is a hyper-parameter, and N is the number of
observed images. The cost function is the negative logarithm of the posterior
distribution of the high-resolution image when the observed low-resolution im-
ages are given, wherein the noise model is assumed to be independent Gaussian
distribution.

Tikhonov regularization, λ (x) = ||Q x||22, is a traditional constraint func-
tion in which the matrix Q represents a high-pass filter so that the regulariza-
tion represents the general smoothness constraint. Tikhonov regularization is
known to tend to be oversmooth. Therefore, several edge-preserving smooth-
ness constraints have been proposed [22, 13, 15].

Herein, we specifically examine the first term of the cost function, or the
fidelity term, to improve the SR reconstruction robustness. The fidelity term
is related directly to the image generative model in Eq. (8.1). However, this
image generative model is often insufficient for practical applications.

In the real application of the super-resolution, a set of low-resolution im-
ages is usually given, meaning that the PSF and the motion should be assumed
and/or estimated to construct the image generative model. For this reason,
accurate registration between low-resolution images is important. However,
accurate subpixel registration is well known to be a difficult problem. The
estimated motion is usually inaccurate and includes registration error. That
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is true also for PSF estimation. In addition, the image generative model in
Eq. (8.1) does not express illumination changes and/or occlusions.

All of the registration error, the inaccurate PSF, the illumination changes,
and the occlusions violate the image generative model in Eq. 8.1. It is possible
to incorporate these errors into a generative model, if we know the statistics of
these errors. However, the statistics of these errors are usually unknown and
complicated. These errors of the image generative model must be addressed to
improve the robustness of SR reconstruction. In other words, outlier handling
is the key to robust SR reconstruction.

8.2.2 Robust SR Reconstruction

First, we show the pixel-wise cost function to express a general robust cost
function. The pixel-wise generative model can be derived from Eq. (8.1) as

yi,j = bT
i,j ·x + vi,j , (8.3)

where yi,j is the j-th pixel value of the i-th observed image, vi,j represents
the noise of the j-th pixel value of the i-th observed image, and bT

i,j is defined
as

D Hi Fi =

⎛
⎜⎝

bT
i,1

bT
i,2
...

⎞
⎟⎠ . (8.4)

The cost function of the MAP estimation in Eq. 8.2 can also be rewritten
as a pixel-wise expression,

E =
N∑

i=1

Mi∑
j=1

[
yi,j − bT

i,j ·x
]2

+ α λ (x) , (8.5)

where Mi is the pixel number of the i-th observed image.
The occlusion and/or the registration error are not involved in the pixel-

wise generative model. Therefore, we must reject the occluded pixels and the
pixels with registration error as outliers for SR reconstruction. This is the
general concept of robust SR reconstruction.

The mathematical expression to reject the certain pixel is to assign it zero
weight. The other approach is to use a robust error function or M-estimator
instead of the L2 norm.

The general expression of the cost function of the robust SR reconstruction
is

I =
N∑

i=1

Mi∑
j=1

wi,j ρ
(
bT

i,j ·x− yi,j

)
+ α λ (x) , (8.6)

where, wi,j is a real value weight or a binary mask for the j-th pixel of the
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i-th observed image, and function ρ(x) is a robust error function. The key
of robust super-resolution is how to design the weight and robust error func-
tion adaptively. The existing SR reconstruction algorithms are also classifiable
into the pixel-weight approach [26, 17, 16, 18] and the robust error function
approach [10, 28, 13].

First, we overview the pixel-weight approach. In the pixel-weight approach,
zero weights or small weights are used to reject the outlier pixels, where the
error function is the L2 norm.

Zhao and Sawhney [26] have proposed robust SR reconstruction, which
assigns zero weight pixel-by-pixel based on the similarity between the reference
image and registered input images, where the reference image is the image to
be super-resolved. They use cross-correlation to measure the similarity and
apply a simple thresholding approach. They concluded that super-resolution
with unstable registration such as optical flow is possible if outlier pixels that
are occluded and/or those of large registration error can be rejected.

Ivanovski et al. [17] proposed the outlier rejection algorithm based on
differences between pixel values. They compared several criteria for pixel re-
jection: the pixels of registered input image are compared to the median of
the registered pixels (MDM), the initially interpolated high-resolution image
(MDIM), and the current estimated high-resolution image (MDSRE). They
reported that MDM is slightly better than MDIM and MDSRE. They also
mentioned that MDIM and MDSRE yield similar results.

Lee and Kang [18] proposed an algorithm that assigns real-value weights
instead of binary weights frame-by-frame. They design the weight to satisfy the
following properties: the weight is inversely proportional to ||yi−D Hi Fi x||22,
and the weight is proportional to the constraint term. Their algorithm, which
assigns a lower weight to a frame that has the larger fidelity term, can adap-
tively remove an input frame with large registration error. Their cost function
is not a quadratic form with respect to the high-resolution image because
the weight is a function of the high-resolution image. Although they exper-
imentally described that the algorithm converges, that convergence is not
theoretically guaranteed.

He and Kondi [16] extended Lee’s algorithm with mathematical analysis of
the convergence. Although the basic idea is similar to that of Lee’s algorithm,
they mathematically guarantee the convergence of their algorithm.

The second approach is to use the robust error function. Although the L2

norm is derived from the Gaussian distribution, the L2 norm is too sensitive
to outliers. In other words, the outlier pixels have a dominant effect for the L2

norm case. Therefore, the robust error function is designed to have less effect
by the outlier pixels.

Farsiu et al. [11] proposed the L1 norm to use for the fidelity term instead
of the L2 norm. The error function of the L1 norm case is ρ(x) = |x|. The L1

norm has a smaller effect for large-error pixels than that of the L2 norm. In
this regard, the L1 norm is more robust than the L2 norm.

Other famous robust error functions are Lorentzian, Huber, and Geman–
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McClure. Actually, SR reconstruction algorithms using the Lorentzian func-
tion have been proposed [21, 10]. A Lorentzian function is defined as

ρ(x; τ) = log
(

1 +
1
2

x2

τ2

)
, (8.7)

where τ is a thresholding parameter.
Patanavijit and Jitapunkul [21] use the Lorentzian function for the data

fidelity term. They manually set the thresholding parameter τ . Then they
reported that their algorithm is robust and better than either the L1 or L2
norm.

The different thresholding parameter yields different results. Therefore,
El-Yamany and Papamichalis [10] proposed an adaptive design of the thresh-
olding parameter for each frame based on similarities of the frame between
the reference frame and the registered input frames. They assign a smaller
thresholding parameter for the frame that has a lower similarity to the refer-
ence frame.

Both the pixel-weight and the robust error function approaches have a
common framework: outlier handling is performed based on similarities. How-
ever, similarities have strong correlation with the texture, as described in
Section 8.3.1. Therefore, we propose a novel pixel-weighting algorithm based
on similarities and registration error estimations.

8.2.3 Robust Registration

General image registration includes photometric and geometric registration
[5]. In this chapter, we specifically examine geometric registration, which is a
process to obtain a dense correspondence between multiple images. In a gen-
eral sense, the dense correspondence must be defined for every image point.
However, if we can assume a motion model such as planar projective trans-
formation, then we can obtain a dense correspondence by estimating the mo-
tion model parameters. Registration is generally complex and includes many
challenging problems, especially for super-resolution, which requires subpixel
accuracy registration.

Registration algorithms are classifiable into two major categories: region-
based algorithms and feature-based algorithms. Region-based algorithms esti-
mate the motion parameters to minimize the intensity difference between the
reference image and the warped input image for a given region [3]. Region-
based algorithms can estimate with subpixel accuracy. Region-based algo-
rithms are known to be very sensitive to illumination changes, specular effects,
occlusions, etc. Black and Anandan [4] proposed a registration algorithm to
improve the robustness using M-estimator.

One other challenge is to specify the region that includes only a single
motion. Region-based algorithms can estimate the parameters of the single
motion in the given region. However, the region in real scenes often includes
multiple motions, such as the foreground and the background. In that case,
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we must specify the region that includes only a single motion before the reg-
istration process. However, region specification is not an easy task.

The second category of registration includes feature-based algorithms.
Feature-based algorithms perform registration based on point matching in-
stead of the difference of pixel intensities. In feature-based algorithms, the
feature points are first extracted from the reference image and the input image.
Subsequently, feature point matching is performed based on feature descrip-
tors. SIFT [19], which is robust and applicable for large motions, is a powerful
tool for feature point extraction and matching. The motion parameters are
estimated based on corresponding feature points with the elimination of out-
liers. Several algorithms for outlier elimination have been proposed [8, 14, 7].
Feature-based algorithms are robust compared to region-based algorithms be-
cause feature-based algorithms can easily include outlier elimination mecha-
nisms. Super-resolution requires information related to the motion and the
region associated with the motion. However, feature-based algorithms merely
provide the motion parameters and the inlier feature point pairs. The asso-
ciated region should be estimated after feature-based registration. Therefore,
in Section 8.5, we propose a novel algorithm that sequentially estimates the
multiple motions and the associated regions.

8.3 Robust SR Reconstruction with Pixel Selection

In this section, we propose a novel SR reconstruction with pixel selection based
on both the similarity measure and displacement estimation. Existing pixel
selection algorithms only use the similarity measure. First, we show a strong
dependence of the similarity measure on the image texture. The similarity
measure is insufficient to reject a pixel with the registration error. Then, pixel
selection based on both the similarity measure and displacement estimation is
proposed. Experiments are done to assess whether the proposed algorithm can
correctly reject both the occluded pixels and the pixels with the registration
error. Results show that the proposed SR reconstruction can reconstruct the
high-resolution images correctly, even if the registration is not accurate.

8.3.1 Displacement and Similarity Measure

For outlier rejection, the existing SR reconstruction algorithms fundamentally
use similarities between the reference image and the warped input image.
These algorithms reject pixels that have low similarities. This is a common idea
for both the pixel weighting approach and the robust error function approach.

However, outlier rejection based on the similarity measure has limitation.
This outlier rejection can remove the occluded pixels and the pixels whose
luminance is changed because the similarities of these pixels present a large
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FIGURE 8.1: Displacement and NCC of the poor texture image: (a) Image,
(b) NCC, and (c) Absolute value of the estimated displacement using NCC.
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FIGURE 8.2: Displacement and NCC of the rich texture image: (a) Image,
(b) NCC, and (c) Absolute value of the estimated displacement using NCC.

difference between the reference image and the warped input image. Further-
more, the difference of the similarities depends strongly on the texture, espe-
cially when the pixels include registration error, which cannot be evaluated
using the similarity measure alone. For this reason, it is difficult to remove the
pixels with the registration error for outlier rejection based on the similarity
measure alone.

We show, experimentally, the texture dependency of the similarity when
the registration error is included. We evaluate similarities of the poor and
the rich texture images shifting one image to other. The Normalized Cross-
Correlation (NCC) is used for the similarity evaluation. The calculated NCC
for the poor texture image and the rich texture image are portrayed respec-
tively in Figures 8.1 and 8.2. Images with subpixel displacement are synthe-
sized by down-sampling from the high-resolution image.

The NCCs of the poor texture image are almost identical even if subpixel
displacements exist, although the NCCs of the rich texture image decrease
for the subpixel displacements. The pixels, whose registration error is greater
than 0.5, can be removed using the outlier rejection algorithm based on the
similarity measure if we set the threshold of the NCC 0.96 for the rich texture
image. However, for images with poor texture, the outlier rejection algorithm
based on the similarity measure judges inlier pixels, even if those pixels have a
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large registration error. The subpixel level registration error must be handled
because the super-resolution requires subpixel accuracy registration.

Our idea is to evaluate the registration error directly instead of the simi-
larity measure. A parabola fitting algorithm is used to estimate the subpixel
displacement [23]. In a one-dimensional case, the parabola-fitting algorithm
gives subpixel displacement from three pixel-level similarities as

Δ =
R(−1)−R(1)

2R(−1)− 4R(0) + 2R(1)
(8.8)

where Δ is the estimated subpixel displacement, R(0) is the pixel-level maxi-
mum similarity, and R(1) and R(−1) respectively signify similarities for which
one image is shifted one pixel from the pixel-level maximum position. Figures
8.1(c) and 8.2(c) show the estimated subpixel displacement for each given
displacement, where we show the absolute value of the displacement because
only the absolute value is important for outlier rejection. These results show
that the displacement estimation is independent of the texture, in contrast to
the similarity measure, which depends strongly on the texture. For instance,
when the estimated displacement at a position is larger than 0.5 pixels, we can
reject the pixel at the position for the poor and rich texture images. Therefore,
we propose novel pixel selection algorithms using the similarity measure and
the displacement estimation.

8.3.2 Proposed Pixel Selection Algorithm

First, we specify what kind of pixels should be used for SR reconstruction.
To reconstruct the high-resolution image robustly, we should use pixels that
satisfy the following properties:

1. no occlusions,

2. registration with subpixel accuracy, and

3. no luminance change.

In the following section, we present our pixel selection algorithm in consider-
ation of these properties. The proposed algorithm selects pixels based on the
similarity measure and the displacement estimation, so that the pixels that are
not occluded are registered correctly with subpixel accuracy. In the proposed
robust SR reconstruction, luminance correction is also performed for selected
pixels. Then, the high-resolution image is reconstructed using these pixels.

8.3.2.1 Pixel Selection Based on Similarity Measure and Displace-
ment Estimation

We use the similarity measure and the displacement estimation to select pixels
for robust SR reconstruction, as discussed earlier. The NCC is used for the
similarity measure. Luminance correction is performed after pixel selection.
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Therefore, the NCC becomes a suitable similarity measure with the proposed
algorithms. The NCC of the region that includes aliasing effects tends to
be a small value. Therefore, a low-pass filter is applied to the image before
evaluating the NCC to reduce the aliasing effects. For subpixel displacement
estimation, we apply two-dimensional parabola fitting using eight-neighbor
similarities.

Suppose that the reference image Ib(x, y), the input image Ik(x, y), and
the estimated warp parameters are given, where (x, y) is the image coordinate
in the low-resolution image. The NCC for each pixel between the input image
and the reference image that is warped using the estimated warp parameter
is calculated. The local NCC at the position (x, y) in the input image is

R(ξ, η; x, y) =

∑
(u,v)∈C(x,y)

[Ik(u, v)× I ′b(u + ξ, v + η)]

√ ∑
(u,v)∈C(x,y)

Ik(u, v)2 ×
∑

(u,v)∈C(x,y)

I ′b(u + ξ, v + η)2
, (8.9)

where I ′b(x, y) is the warped reference image, (ξ, η) represents the translational
displacement, C(x, y) is the neighbor pixel at the position (x, y), and (u, v) is
the image coordinate to represent the neighbor pixel.

Let consider the input image pixel at the position (x, y). When the posi-
tion (x, y) is given, the NCC R(ξ, η; x, y) can be considered as a function of the
displacement (ξ, η). Then, the NCCs are calculated for the nine displacements:
(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), and (1,1). To estimate
subpixel displacement from these nine points of NCCs, we fit these data to the
two-dimensional parabola function, z(ξ, η) = aξ2 + bξη+ cη2 + dξ + eη + f , by
least squares [24]. The translational displacement is estimated by finding the
maximum point of the fitted parabola. The fitted parabola must be concave
upward to have the maximum point. The necessary and sufficient condition
for being concave upward is

a < 0 , c < 0 , D < 0 , (8.10)

where D = b2−4ac. In the case where the fitted parabola function is not con-
cave upward, it can be considered that registration of the associated pixel has
failed. Then, the associated pixel is rejected. The translational displacement
(ξ̂, η̂) is estimated as ⎧⎪⎨

⎪⎩
ξ̂ =

2cd− be

D

η̂ =
2ae− bd

D

. (8.11)

That result reflects that the registration of the associated pixel is inaccurate
if the estimated translational displacement is greater than 0.5 pixels. These
pixels are also rejected.
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The maximum NCC should be corrected if the subpixel translational dis-
placement exists. The corrected maximum NCC is obtainable as

z0 =
ae2 + cd2

D
+ f . (8.12)

The associated pixel is rejected if the corrected maximum NCC is a small
value for some reason, such as an occlusion.

In summary, the proposed pixel selection algorithm selects pixels that sat-
isfy

z0 ≥ κ, |ξ̂| ≤ 0.5, |η̂| ≤ 0.5 , (8.13)

where κ is the threshold for the similarity measure. The main difference from
the existing robust SR reconstruction algorithm is that the proposed algorithm
selects pixels based on the similarity measure and the displacement estimation,
while existing algorithms use only the similarity measure.

8.3.3 Luminance Correction

The luminance changes also degrade super-resolution results. An approach
to handle the luminance changes is to reject the pixels if the luminance of
the corresponding pixel is changed. However, this approach also reduces the
number of pixels that contribute to reconstruction of the high-resolution im-
age. Another approach is to correct the luminance. The number of pixels
that contribute to reconstruction of the high-resolution image increases if we
can correct the luminance. Therefore, we propose a luminance-correction ap-
proach.

The luminance can be assumed as spatially smooth [9]. We simply estimate
the average luminance using low-pass filtering of the value image represented
in the HSV color space. The estimated luminance image is

L(x, y) = G(x, y) ∗ V (x, y) , (8.14)

where G(x, y) is the low-pass filtering kernel that is typical Gaussian kernel,
∗ represents the convolution operator, and V (x, y) is the pixel value in HSV
color space for the position (x, y). The pixel value in HSV color space is given
as

V = max{R, G, B} . (8.15)

Using the estimated luminance of the reference image and the input image,
the pixel value can be corrected as

I ′
k(x, y) = Ik(x, y)× Lb(x, y)

Lk(x, y)
, (8.16)

where I ′k(x, y) is the corrected pixel value, Lb(x, y) is the estimated luminance
of the reference image, and Lk(x, y) is the estimated luminance of the input
image.



230 Super-Resolution Imaging

Input 
images

Reference  
image

Estimated 
motion

Image 
warping

Local 
similarity 

estimation
Pixel 

selection
Image 

reconstruction
Reconstructed 

image

FIGURE 8.3: Process pipeline of the proposed robust SR reconstruction.

8.3.4 Experiments

The proposed robust super-resolution with pixel selection based on the sim-
ilarity measure and the displacement estimation is compared experimentally
to those with the pixel selection based solely on the similarity measure. Figure
8.3 shows the process pipeline of the proposed robust SR reconstruction. We
capture an input image sequence, rotating a nonplanar complex shaped object.
Three input frames are portrayed in Figure 8.4.

Motion parameters are then estimated for the region, as presented in
Figure 8.4(b), assuming that the motion is the planar projective transfor-
mation, where the region size is 180× 180. The inverse compositional image
alignment (ICIA) algorithm [3] is used for motion parameter estimation. Al-
though the planar projective transformation is a theoretically perfect model
for the planar object, the object of this experiment is a nonplanar object.
Therefore, the estimated motions include subpixel registration error, although
motion can be estimated.

For the SR reconstruction, we apply the fast MAP reconstruction with sim-
ple smooth prior [25]. Figure 8.5 presents comparisons of the super-resolution
results, where the 40× 40 sized region is super-resolved to the 120× 120 sized
image using 60 frames.

The SR reconstruction without the pixel selection yields a blurry result
because all pixels are used for reconstruction even if those pixels have large
registration error. The result of the SR reconstruction with the pixel selec-
tion based on the similarity measure is improved compared to that of the SR
reconstruction without the pixel selection. However, the pixel selection based
on subpixel registration error is so difficult that only the similarity measure is
insufficient to suppress all the blurry effect. The proposed SR reconstruction
with the pixel selection based on the similarity measure and the displacement
estimation yields the best result among the three algorithms because the pro-
posed pixel selection based on the similarity measure and the displacement
estimation can correctly reject the pixels even if these pixels have subpixel
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(a) Frame 0 (b) Frame 20 (b) Frame 40

FIGURE 8.4: Input images.

(a) interpolation (b) without pixel selection

(c) with pixel selection based on
the similarity measure only

(d) with pixel selection based on
the similarity measure and
displacement estimation

(proposed)

FIGURE 8.5: Comparison of super-resolution results.
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Frame 1 Frame 2 Frame 3

Macroblock Macroblock

FIGURE 8.6: Registration using motion vector tracing.

B B I B B P B B P

FIGURE 8.7: I, P, and B pictures.

registration error. This comparison tells that evaluating the displacement esti-
mation by adding to the similarity measure for the pixel selection can improve
the robustness, especially against the subpixel registration error.

8.4 Robust Super-Resolution Using MPEG Motion
Vectors

In the previous section, we proposed the robust SR algorithm with pixel selec-
tion based on the similarity measure and displacement estimation. The pro-
posed algorithm can correctly reject pixels with subpixel registration error.

In this section, we demonstrate that the proposed robust super-resolution
can improve the resolution using the registration which is obtained from the
motion compensation vector embedded in compressed video data. Although
the embedded motion vectors are often in 1/8 or 1/4 pixel accuracy (or even
worse) that is not accurate enough for the SR reconstruction, our robust
algorithm is capable of producing higher-resolution images because it can
effectively reject the pixels registered at a wrong position. The experimental
results show that our SR algorithm is suitable for improving the visual quality
of MPEG videos.

8.4.1 Registration Using MPEG Motion Vectors

Motion compensation is usually used in video compression such as the Moving
Picture Experts Group (MPEG) [1, 2] standard. A motion vector of each frame
is encoded in MPEG data. The motion vector represents the translational
motion of the block between two images. The correspondence between any
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frame distance can be obtained by tracing the motion vectors. Figure 8.6
illustrates an example that is useful to trace the motion vectors from frame 3
to frame 1. This tracing process is designated as motion vector tracing. Motion
vector tracing enables us to correspond between frames, even if the motion
vectors are not encoded directly between these frames.

The actual motion vector tracing is not as simple as that shown in Fig-
ure 8.6 because MPEG data usually include an Intra picture (I-picture), a
Predictive picture (P-picture), and a Bidirectionially predictive picture (B-
picture). A schematic drawing of the motion vector tracing for typical Group
of Pictures (GOP) is illustrated in Figure 8.7. The I-picture does not include
the motion vector. The P-picture includes the motion vectors to the previous
I- or P- picture. The B-picture includes the motion vectors to the previous
and the future I- or P- pictures. The P- and/or B- picture sometimes include
I-blocks that do not include the motion vector. Motion estimation is then
applied for I-pictures and I-blocks.

Motion vector tracing is the computationally effective algorithm for image
registration. However, motion vector tracing is inaccurate for super-resolution.
The registration error is also accumulated through the motion vector tracing.
The proposed SR algorithm is robust against registration errors and it is still
able to super-resolve MPEG.

8.4.2 Experiments of Robust SR Reconstruction

Figure 8.8 shows an image sequence that is synthesized by rotating the Lena
image clockwise and occluding the lower right region. This image sequence is
encoded using MEPG4 with the Advanced Simple profile. The motion vector
tracing algorithm is applied to register all frames to the initial frame (frame
0). Figure 8.9 shows the registration results, where the white region represents
the correctly registered region within 0.5 pixel error, and the black region rep-
resents the pixels registered incorrectly. We classify registered pixels into three
categories: correctly registered, incorrectly registered, or occluded. Pixel quan-
tities of these three categories are counted for each frame and are presented in
Figure 8.10. The number of correctly registered pixels decreases as the frame
distance between the reference image and the input image increases. That is
because, although the motion of the synthesized image sequence is rotation,
the translational motion is estimated in the MPEG encoding process. Thus,
there are possibly many pixels that are incorrectly registered and the pixel
selection algorithms or the robust SR reconstruction algorithms are necessary
to reconstruct the high-resolution image by using the motion vector tracing
of the MPEG motion vector.

Non-pixel-selection, pixel selection based on similarity measure only, and
the proposed pixel selection based on the similarity measure and displacement
estimation are applied for motion vector tracing results. In the proposed al-
gorithm, we re-estimate the subpixel displacement for the pixel selection after
the vector tracing. Figures 8.11 and 8.12 depict the number of correctly se-
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TABLE 8.1: Categories of selected pixels.
Correctly Falsely
registered registered Occluded

Non-pixel-selection 63030 288262 86039
Similarity only 50221 138276 0

proposed 32659 11055 0

lected pixels and the number of incorrectly selected pixels in the non-occluded
regions, respectively. Although the number of the selected pixels by the pro-
posed pixel selection algorithm is slightly lower than the number of the pixels
selected by the pixel selection with the similarity measure only as shown in
Figure 8.11, Figure 8.12 shows that the proposed pixel selection rejects in-
correctly registered pixels more effectively than the pixel selection with the
similarity measure only. Also, the occluded pixels and the pixels with large
registration error severely degrade the reconstructed image. Therefore, the
proposed pixel selection, which can effectively reject the occluded pixels and
the pixels with large registration error, is suitable for super-resolution. Selected
pixels are classifiable into three categories: correctly registered pixels, falsely
registered pixels, and occluded pixels. Table 8.1 presents the numbers of pixels
of respective categories. This result demonstrates that pixel selection based
solely on similarity measures can reject the occluded pixels. However, pixel
selection based on similarity measures only selects many falsely registered pix-
els or pixels with large registration error. Therefore, similarity measures can
accommodate the occlusion, but it is difficult to reject pixels with registration
error using only the similarity measure.

Next, Figure 8.13 shows the comparison of the SR reconstruction by the
three algorithms using a cropped section from the synthesized MPEG se-
quence shown in Figure 8.8. The magnification factor of this example is three.
Figures 8.13(b) and 8.13(c) show that the non-pixel-selection approach and
the pixel selection algorithm with the similarity measure only produce unde-
sired artifacts and a deformed eye shape. On the other hand, the result of
the proposed pixel selection, Figure 8.13(d), successfully suppresses all the
artifacts.
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Frame 1 Frame 9 Frame 17 Frame 25

FIGURE 8.8: The synthetic image sequence is generated by rotating the Lena
image clockwise. The occluding object also moves in from the bottom-right.
The resolution of the image sequence is 128× 128.

Frame 1 Frame 9 Frame 17 Frame 25

FIGURE 8.9: The results of registering Frames 1, 9, 17, and 25 to Frame 0
by the motion vector tracing of the embedded motion vector in the MPEG
data. The white regions represent that correctly registered pixel by the motion
vector tracing.
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FIGURE 8.11: The number of the correctly selected pixels.
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FIGURE 8.12: The number of the incorrectly selected pixels in the non-
occluded region.

(a) (b) (c) (d)

FIGURE 8.13: Comparison of super-resolution results: (a) nearest neighbor
interpolation, (b) non-pixel-selection, (c) pixel selection based on similarity
measure only, and (d) proposed pixel selection based on the similarity measure
and displacement estimation.
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Motion vector tracing is applied to the well-known Mobile Calendar se-
quence. First, the image sequence is downsampled by a factor of two. Then
the down-sampled image sequence is encoded using MPEG4 with the Ad-
vanced Simple profile. Motion vector tracing is applied to this encoded image
sequence. We generate stabilized images for the initial frame to evaluate the
performance of the motion vector tracing. The generated stabilized images
are portrayed in Figure 8.14, where the black region represents the region in
which the motion vector tracing fails to track.

Although motion vector tracing is a very simple algorithm, Figure 8.14
shows that motion vector tracing is sufficient for rough registration. However,
registration by the motion vector tracing includes estimation error.

Next, similar to the previous example, we apply the three SR algorithm
for the registered pixels and reconstruct a high resolution image with the
magnification factor three and the same parameter that we used for the results
in Figure 8.13. The results are shown in Figure 8.15.

The result of the SR reconstruction without the pixel selection includes
particle noise. It is blurred because the occluded pixels and pixels with reg-
istration error are used for the reconstruction. The occluded pixels and the
pixels with registration error yield the particle noise and the blur. The result
of the SR reconstruction with the pixel selection only with the similarity mea-
sure is better than that of the SR reconstruction without the pixel selection.
However, several portions are still deformed, especially the letters “5” and “6”.
The pixels with small registration error yield visible deformation. As discussed
above, the pixel selection with only the similarity measure can only reject the
occluded pixels and the pixels with large registration error; the pixels with a
small registration error are difficult to reject. The two reconstruction exam-
ples in Figures 8.13 and 8.15 show that our robust SR algorithm using the
proposed pixel selection can reconstruct higher-quality images than the other
two algorithms by detecting pixels with subpixel registration errors and reject
them effectively.

8.5 Robust Registration for Super-Resolution

As demonstrated in Section 8.4.2, our robust SR algorithm is capable of pro-
ducing high-resolution images even in the presence of the registration errors.
Even though we apply the robust SR reconstruction, we need many pixels to
reconstruct high-quality image. When the registration is inaccurate, the pixel
selection process rejects a lot of pixels with registration error. As a result, the
quality of the reconstruction image cannot be improved with inaccurate regis-
tration. An optical flow based registration and the motion vector tracing using
the motion vector embedded in the MPEG data as discussed in Section 8.4.1
can register images in the presence of complex motions. However, these two
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Frame 1
(Reference,
I-Frame)

Frame 10
(P-Frame)

Frame 20
(B-Frame)

Frame 30
(B-Frame)

FIGURE 8.14: Reference image and stabilized images (Mobile Calendar).

(a) (b) (c) (d)

FIGURE 8.15: Comparison of super-resolution results (Mobile Calendar):
(a) nearest neighbor interpolation, (b) non-pixel-selection, (c) pixel selection
based on similarity measure only, and (d) proposed pixel selection based on
similarity measure and displacement estimation.

algorithms often register inaccurately. Robust and accurate registration is still
preferable to improve the visual quality of the output images further. Robust
and accurate registration makes more pixels available for the pixel estimation
at every position of the high-resolution image. Hence, the quality of the recon-
structed image strongly depends on the accuracy of the registration. In this
section, we discuss robust and accurate registration for multiple motions.

8.5.1 Proposed Multiple Motion Estimation

Feature-based algorithms are robust because they can include outlier elimi-
nation mechanisms as mentioned in Section 8.2.3. Feature-based algorithms
merely provide the motion parameters and the inlier feature point pairs. The
region associated to the estimated motion remains unknown. Region-based
algorithms can estimate motion parameters with higher accuracy than that
provided by feature-based algorithms. However, region-based algorithms re-
quire a single motion within the region and initial motion parameters that
are close to true parameters. We use these two algorithms complementarily
to achieve robust and high-accuracy motion estimation required for super-
resolution. First, we describe estimation of the motion parameters and the
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associated region for a single object. Then, we extend the proposed algorithm
to multiple motion estimation.

8.5.1.1 Motion Estimation and Region Extraction for a Single
Object

Figure 8.16 shows the motion estimation and the region extraction algorithm
for the single object. In general, the region that includes only a single motion
is also unknown. Therefore, we need to extract the region associated to the
estimated motion.

First, the feature-based algorithm estimates motion parameters between
the reference image and the input image, so that the robustness of the pro-
posed registration is improved. Then, the region-based algorithm is applied
for accurate registration. The motion parameters estimated by the feature-
based algorithm is used for the initial motion parameters of the region-based
algorithm. Although the region-based algorithm also requires the region that
includes the single motion, the region is not provided by the feature-based
algorithm. We extract the single motion region associated with the estimated
motion by the same manner of the proposed pixel selection described in Sec-
tion 8.3.2. We call this process single-motion region extraction. The region-
based algorithm refines the motion parameters with the extracted region from
the motion parameters estimated by the feature-based algorithm. Finally, we
obtain the refined motion parameters and the region.

For feature point extraction and matching, we use SIFT [19]. We apply the
PROSAC algorithm [8] to estimate the motion parameters from corresponding
points, having eliminated outliers. The region associated with the estimated
motion parameters is extracted using the algorithm proposed in Section 8.3.2.
The pixel selection algorithm is also used to extract the region. The selected
pixels are considered to represent the region. Region extraction using the
pixel selection algorithm is simply called region extraction. For the region-
based algorithm, we use the ICIA algorithm [3], which is known as a fast and
accurate region-based algorithm.

The accuracy of the feature-based algorithm is roughly equivalent to the
low-resolution image (LRI) pixel accuracy, whereas super-resolution requires
subpixel accuracy. Although the region-based algorithm can estimate motions
in subpixel accuracy, the single-motion region and the initial motion param-
eters are required. Fortunately, region extraction can be done with LRI pixel
accuracy estimation. Then region extraction using the motion parameters esti-
mated with the feature-based algorithm generates a single-motion region that
is associated with the estimated motion. The motion parameters estimated us-
ing feature-based algorithms are useful as initial motion parameters. Once we
obtain the region and the initial motion parameters, we can apply the region-
based algorithm. The region-based algorithm refines motion parameters so
that super-resolution can reconstruct the high-resolution image (HRI).

In summary, our motion estimation algorithm first computes large motions
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Reference 
image

Input   
image

FIGURE 8.16: The block diagram of our robust and accurate estimation al-
gorithm of the single motion.

roughly by the feature-based algorithm, and then refines the motions in sub-
pixel accuracy by the region-based algorithm. In addition, unlike the region-
based algorithm [3] require a single-motion region, which is usually manually
selected, our algorithm selects the single-motion regions automatically.

8.5.1.2 Multiple Motion Estimation

Practical algorithms to classify the feature point pairs based on their mo-
tions have been reported [8, 7]. We perform multiple motion estimation in
the same manner of the feature point classification algorithm. First, we ap-
ply the feature-based algorithm using all extracted and matched feature point
pairs. The outputs of the feature-based algorithm are the estimated motion
parameters and inlier feature point pairs. These motion parameters represent a
dominant motion. The dominant motion is the motion that is associated with
the most numerous inlier feature point pairs. Then, the inlier feature point
pairs are removed. The feature-based algorithm is applied for the remainder of
the feature point pairs. This scheme can sequentially estimate multiple motion
parameters and associated feature point pairs.

The difference between the proposed algorithm and the existing algo-
rithms [8, 7] is that the proposed algorithm can estimate the region asso-
ciated with the dominant motion, whereas existing algorithms merely classify
the feature point pairs.
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8.5.2 Super-Resolution for Multiple Motions

The MAP-based super-resolution is formulated as the optimization prob-
lem [13]. The cost function for the single motion is same Equation (8.2).

The proposed multiple motion estimation algorithm provides multiple mo-
tion parameters and associated regions. The estimated region can be consid-
ered as a set of inlier pixels associated with motion parameters. In this sense,
the proposed multiple motion estimation algorithm is closely related to the
robust super-resolution using outlier rejection [17, 26]. Super-resolution with
outlier rejection is formulated using the weighted cost function. The weight,
or mask, is generated from outlier rejection results. The cost function of the
multiple motion super-resolution can be derived using the weight representing
the extracted motion regions. The cost function for the multiple motions is

E =
N∑

i=1

Ki∑
�=1

(Ai�x− yi)
T diag(wi�) (Ai�x− yi) + α λ (x) , (8.17)

where the suffix i� represents the �-th single motion region of the i-th frame,
w is the vectorized weight image, which represents the single-motion region,
diag(w) is the diagonal matrix whose diagonal elements are elements of w,
and K� is the number of motions in the i-th frame. In addition, the matrix
Ai� is

Ai� = D Hi Fi� , (8.18)

where Fi� is a matrix representing the �-th motion of the i-th frame. The pixel
value of the image w is 1 if the pixel is inside the region and 0 if the pixel is
outside.

8.5.3 Experiments

We apply the proposed algorithm to a real-image sequence. Figure 8.17 shows
that the captured sequence includes two planar objects. Planar homography
is assumed for the motion model. These targets move independently. A single
planar homography cannot represent the motions of two planes.

Figure 8.18 illustrates the estimated regions, where the first and the second
rows show the extracted regions for the left and the right objects, respectively.
The results show that the regions of the planar objects are extracted correctly,
although the extraction is not perfect, especially the object’s boundaries. The
correctness of the extracted region is important because super-resolution re-
sults are degraded in comparison to the original reference image if the ex-
tracted region includes the wrong region. Super-resolution requires highly ac-
curate motion parameters, but perfect regions of the objects are not necessary.
Figure 8.19 illustrates the images warped to the reference image for the left
and right objects. These regions can also be improved by our SR algorithm.

Next, we apply the proposed robust super-resolution described in Sec-
tion 8.3 using the motion parameters estimated using the proposed algorithm.
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(a) Reference (b) frame 16 (c) frame 21 (d) frame 26

FIGURE 8.17: Image sequence.

(a) frame 16 (b) frame 21 (c) frame 26

FIGURE 8.18: Estimated regions.

(a) frame 16 (b) frame 21 (c) frame 26

FIGURE 8.19: Images warped to the reference image.

For comparison, we also generate super-resolution results obtained using the
motion parameters estimated using the ICIA algorithm [3]. As regions of in-
terest for the ICIA algorithm, we manually set three different regions: whole
image, left object, and right object. For robust super-resolution, we use the
outlier rejection algorithm, which is based on local similarity and local motion
estimation error [6]. The reconstruction algorithm proposed in [25] is applied,
where the zooming factor is 3× 3 and the number of frames is 30. Figure 8.20
presents the super-resolution results. We apply the proposed robust super-
resolution algorithms, and none of them produce any undesired artifacts. In
this regard, the proposed robust super-resolution algorithm is powerful. How-
ever, the robust super-resolution cannot improve the image quality of the re-
gion that includes registration error. In left images of Figure 8.20, Figures 8.20
(c) and (e) show improved image quality compared to Figures 8.20 (b) and
(d). In right images of Figure 8.20, image qualities of Figures 8.20 (d) and (e)
are better than those of Figures 8.20 (b) and (c). These differences are caused
by the motion estimation errors. The experimental results described herein



Toward Robust Reconstruction-Based Super-Resolution 243

(a) Observed

(b) Motion parameters are estimated using the whole image

(c) Motion parameters are estimated using the left object region

(d) Motion parameters are estimated using the right object region

(e) Motion parameters are estimated using the proposed algorithm

FIGURE 8.20: Super-resolution results using 30 frames, where (a) portrays
the observed image (size: 40× 20), and (b), (c), (d), and (e) presents super-
resolution results (size: 120×60) with different motion estimation. The whole
image, the region of the left object, and the region of the right object are used,
respectively, for motion estimations of (b), (c), and (d); (e) depicts the result
obtained using the proposed algorithm.
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demonstrate that the proposed algorithm can estimate the motion parame-
ters of multiple targets.

8.6 Conclusions

Robustness is a key factor of the practical super-resolution. The reconstruc-
tion based SR approach consists of image registration and SR reconstruction.
Therefore, we must improve the robustness of both image registration and SR
reconstruction.

Although several robust SR reconstruction algorithms based on the sim-
ilarity measure have been proposed [26, 17, 16, 18], we have demonstrated
that the similarity measure is an insufficient criterion, especially for the reg-
istration error. We have proposed a pixel selection algorithm based on the
similarity measure and displacement estimation. The proposed pixel selection
algorithm uses displacement estimation directly in order to effectively reject
pixels registered incorrectly.

To demonstrate the robustness of the SR reconstruction with the pro-
posed pixel selection, we super-resolved MPEG videos using the embedded
motion vectors in MPEG data. Although the embedded motion is not accu-
rate enough, the proposed pixel selection can correctly reject the pixels placed
at wrong positions. The experimental results attest that the proposed pixel
selection correctly rejects the occluded pixels and pixels that have registration
error.

We also proposed a robust and accurate registration for multiple motions
in Section 8.5. Real scenes usually include multiple motions such as those of
the background and foreground. We must estimate the multiple motions and
their associated regions for super-resolution. The proposed registration algo-
rithms perform three processes: feature-based registration, region extraction,
and region-based registration. For region extraction, we use the proposed pixel
selection algorithm. It can robustly estimate multiple motions with high ac-
curacy without initial motion parameters or an associated region, which are
required by many motion estimation algorithms [3, 27].

Bibliography

[1] Generic coding of moving pictures and associated audio: Video. ISO/IEC,
pages 13818–2, 1996.

[2] Coding of audio-visual objects: Visual. ISO/IEC, pages 14496–2, 1998.



Toward Robust Reconstruction-Based Super-Resolution 245

[3] S. Baker and I. Matthews. Lucas-Kanade 20 years on: a unifying frame-
work. International Journal of Computer Vision, 56(3):221–255, 2004.

[4] M.J. Black and P. Anandan. The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields. Computer Vision and Image
Understanding, 63(1):75–104, 1996.

[5] D. Capel. Image mosaicing and super-resolution. Springer-Verlag New
York Inc, 2004.

[6] S Chang, M Shimizu, and M Okutomi. Multi-frame super-resolution
with multiple motion regions. Korean Japan Joint Workshop on Pattern
Recognition (KJPR), 107(281):57–62, 2007.

[7] O. Choi, H. Kim, and I.S. Kweon. Simultaneous plane extraction and
2D homography estimation using local feature transformations. Asian
Conference on Computer Vision (ACCV), 4844:269–278, 207.

[8] O. Chum and J. Matas. Matching with PROSAC-progressive sample
consensus. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 1:220–226, 2005.

[9] F. Durand and J. Dorsey. Fast bilateral filtering for the display of
high-dynamic-range images. Proc. the Annual Conference on Computer
Graphics and Interactive Techniques, pages 257–266, 2002.

[10] N.A. El-Yamany and P.E. Papamichalis. Robust color image super-
resolution: an adaptive M-estimation framework. Journal on Image and
Video Processing, 8(2), 2008.

[11] S. Farsiu, M. Elad, P. Milanfar, et al. Multiframe demosaicing and super-
resolution of color images. IEEE Transactions on Image Processing,
15(1):141–159, 2006.

[12] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. Advances and chal-
lenges in super-resolution. International Journal of Imaging Systems and
Technology, 14(2):47–57, 2004.

[13] S. Farsiu, MD Robinson, M. Elad, and P. Milanfar. Fast and robust
multiframe super resolution. IEEE Transactions on Image Processing,
13(10):1327–1344, 2004.

[14] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. Communications of the ACM, 24(6):381–395, 1981.

[15] T. Gotoh and M. Okutomi. Direct super-resolution and registration using
raw CFA images. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2. IEEE Computer So-
ciety; 1999, 2004.



246 Super-Resolution Imaging

[16] H. He and LP Kondi. An image super-resolution algorithm for dif-
ferent error levels per frame. IEEE Transactions on image processing,
15(3):592–603, 2006.

[17] Z.A. Ivanovski, L. Panovski, and L.J. Karam. Robust super-resolution
based on pixel-level selectivity. In Proceedings of SPIE, volume 6077,
2006.

[18] E.S. Lee and M.G. Kang. Regularized adaptive high-resolution image
reconstruction considering inaccurate subpixel registration. IEEE Trans-
actions on Image Processing, 12(7):826–837, 2003.

[19] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[20] S.C. Park, M.K. Park, and M.G. Kang. Super-resolution image re-
construction: a technical overview. IEEE Signal Processing Magazine,
20(3):21–36, 2003.

[21] V. Patanavijit and S. Jitapunkul. A Lorentzian stochastic estimation
for a robust iterative multiframe superresolution reconstruction with
Lorentzian-Tikhonov regularization. EURASIP Journal on Advances in
Signal Processing, 2007(2):21–21, 2007.

[22] R.R. Schultz and R.L. Stevenson. Extraction of high-resolution frames
from video sequences. IEEE Transactions on Image Processing, 5(6):996–
1011, 1996.

[23] M. Shimizu and M. Okutomi. Subpixel estimation error cancellation
on area-based matching. International Journal of Computer Vision,
63(3):207–224, 2005.

[24] C. Sun. Fast algorithms for stereo matching and motion estimation. Proc.
of Australia-Japan Advanced Workshop on Computer Vision, pages 38–
48, 2003.

[25] M. Tanaka and M. Okutomi. A fast MAP-based super-resolution algo-
rithm for general motion. Electronic Imaging Computational Imaging IV,
6065:1–12, 2006.

[26] W.Y. Zhao and H.S. Sawhney. Is super-resolution with optical flow fea-
sible? Lecture Notes in Computer Science, pages 599–613, 2002.
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This chapter examines multiframe image super-resolution in a probabilistic
framework. Many multiframe super-resolution algorithms begin by a point
estimate of the unknown latent parameters, such as those describing the mo-
tion or the blur function. The focus of this chapter is on alternatives to this
practice that can yield superior super-resolution results.

We begin with the generative model and simple Maximum Likelihood (ML)
and Maximum a Posteriori (MAP) solutions for the super-resolution image.
Then, in the second section, we illustrate the consequences of inaccurate point
estimates of the latent parameters on the simple MAP algorithm.

The third section introduces the simultaneous MAP algorithm, which esti-
mates the super-resolution image together with parameters such as the image
registration, allowing the high-resolution information to influence and improve
the estimates of the latent parameters. In the fourth section, we show how
Bayesian marginalization can integrate the latent parameters out of the prob-
lem, leading to a cost function in terms of the low-resolution images that can
be optimized with respect to the high-resolution pixels directly. We conclude
with a brief discussion of the benefits of these two Bayesian approaches to
super-resolution.

9.1 The Generative Model

A generative model is a parameterized, probabilistic model of data generation,
which attempts to capture the forward process by which observed data (in
this case low-resolution images) is generated by an underlying system (the
scene and imaging parameters), and corrupted by various noise processes.
This translates to a top-down view of the super-resolution problem, starting
with the scene or high-resolution image, and resulting in the low-resolution
images, via the physical imaging and noise processes.

For super-resolution, the generative model approach is intuitive, since the
goal is to recover the initial scene, and an understanding of the way it has in-
fluenced the observed low-resolution images is crucial. The generative model’s
advantage over classical descriptive models is that it allows us to express a
probability distribution directly over the “hidden” high-resolution image given
the low-resolution inputs, while handling the uncertainty introduced by the
noise.

A high-resolution scene x, with N pixels (represented as an N ×1 vector),
is assumed to have generated a set of K low-resolution images, where the
kth such image is y(k), and has M pixels. The warping (e.g., to account for
motion), blurring, and subsampling of the scene is modelled by an M × N
sparse matrix W (k) [4, 15], and a global affine photometric correction results
from multiplication and addition across all pixels by scalars λ

(k)
1 and λ

(k)
2 re-

spectively [4]. Thus, the generative model for one of the low-resolution images
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FIGURE 9.1: The generative model for two typical low-resolution images.

is

y(k) = λ
(k)
1 W (k)x + λ

(k)
2 1 +N

(
0, β−1I

)
, (9.1)

where λ2 is the scalar λ2 multiplied by a vector of ones, and the final term
on the right is a noise term consisting of i.i.d. samples from a zero-mean
Gaussian with precision β, or alternatively with standard deviation σN , where
β−1 = σ2

N .
Figure 9.1 shows the generative model for two typical greyscale low-

resolution images in terms of the images at each step in the procedure. On
the left is the single ground truth scene, and on the extreme right are the two
images (in this case y(1) and y(K), which might represent the first and last
images in a K-image sequence) as they are observed by the camera sensors.
Given a set of low-resolution images like this,

{
y(k)
}
, the goal is to recover x,

without knowing the values associated with
{
W (k), λ(k), σN

}
.

9.1.1 Considerations in the Forward Model

While specific elements of W are unknown, it is still highly structured, and
generally can be parameterized by relatively few values compared to its overall
number of nonzero elements, though this depends upon the type of motion
assumed to exist between the input images, and on the form of the point-
spread function.

Motion Models: Early super-resolution research was predominantly con-
cerned with simple motion models where the registration typically had only
two or three degrees of freedom (DoF) per image, e.g., from datasets ac-
quired using a flatbed scanner and an image target. Some models are even
more restrictive, and in addition to the 2DoF shift-only registration, the low-
resolution image pixel centers are assumed to lie on a fixed integer grid on the
super-resolution image plane [7, 13].
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Affine (6DoF) and planar projective (8DoF) motion models are generally
applicable to a much wider range of common scenes. These are typically pa-
rameterized by a vector θ of parameters, which may either be quantities such
as shifts, rotations, shears etc., or alternatively coordinates for nondegenerate
pairs of corresponding image points (three and four pairs, respectively).

The 8DoF case is most suitable for modelling planar or approximately
planar objects captured from a variety of angles, or for cases where the cam-
era centre rotates about its optical center, e.g., during a panning shot in a
movie [8]. Though it is equally possible to create W matrices from more com-
plex motion models such as optic flow, the methods described in this chapter
are based upon planar projective homographies.

The point-spread function: To go from a high-resolution image (or a
continuous scene), to a low-resolution image, the function representing the
light levels reaching the image plane of the low-resolution image is convolved
with a point-spread function (PSF) and sampled at discrete intervals to rep-
resent the low-resolution image pixels. This point-spread function can be de-
composed into factors representing the blurring caused by camera optics and
the spatial integration performed by a CCD sensor [1].

Generally, the PSF associated with each low-resolution pixel is approxi-
mated by a simple parametric function centered on the corresponding location
in the high-resolution: the two most common are an isotropic 2D Gaussian
with a covariance σ2

PSF I, or a circular disk (top-hat function) with a radius
rPSF .

The noise model: The image noise is assumed to be i.i.d. Gaussian,
which leads to an L2 data error measure. Several common types of image
noise contain more structure than this model would predict, e.g., noise levels
which depend on observed pixel intensities, or errors introduced by quanti-
zation artifacts in the JPEG or MPEG compression process. However, it can
be shown that even for nonlinear noise such as JPEG quantization, the Gaus-
sianity assumption performs well [14], and has the benefit that the problem
remains convex. Some authors assume other families of noise, e.g., Laplacian
or salt-and-pepper noise, for which the L1 norm is more appropriate [6]. It is
worth noting that in most of the algorithms presented in this chapter the L1

norm can be substituted into the derived objective functions if appropriate,
though gradient expressions must then be adjusted accordingly.

Constructing W (k): Each low-resolution image pixel can be created by
dropping a blur kernel into the high-resolution scene and taking the corre-
sponding weighted sum of the pixel intensity values. The center of the blur
kernel is given by the location of the center of low-resolution pixel when its
location is mapped into the frame of the high-resolution image. This means
that the ith row in W (k) represents the kernel for the ith low-resolution im-
age pixel over the whole of the high-resolution image, and W (k) is therefore
sparse, because pixels far from the kernel center should not have significantly
nonzero weights.
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9.1.2 A Probabilistic Setting

From the generative model given in (9.1) and the assumption that the noise
model is Gaussian, the likelihood of a low-resolution image y(k), given the
high-resolution image x, geometric registration parameters θ(k) and photo-
metric registration parameters λ(k), may be expressed

p
(
y(k)
∣∣∣x, θ(k), λ(k)

)
=
(

β

2π

)M
2

exp
{
−β

2

∥∥∥y(k) − λ
(k)
1 W (k)x− λ

(k)
2

∥∥∥
2

2

}
,

where W (k) is a function of the PSF and of θ(k).
It can be helpful to think in terms of the residual errors, where the residual

refers to the parts of the data (in this case our low-resolution images), which
are not explained by the model (i.e., the high-resolution estimate), given values
for all the imaging parameters. We define the kth residual, r(k), to be

r(k) = y(k) − λ
(k)
1 W (k)x− λ

(k)
2 . (9.2)

Using this notation, the compact form of the data likelihood for the whole
low-resolution dataset may be written

p
({

y(k)
} ∣∣∣x,

{
θ(k), λ(k)

})
=
(

β

2π

)KM
2

exp

{
−β

2

K∑
k=1

∥∥∥r(k)
∥∥∥

2

2

}
.(9.3)

9.1.2.1 The Maximum Likelihood Solution

The Maximum Likelihood (ML) solution to the super-resolution problem is
simply the super-resolution image which maximizes the probability of having
observed the dataset,

x̂ML = arg max
x

(
p
(
{y(k)}|x, {θ(k)λ(k)}

))
. (9.4)

If all other parameters are known, x̂ML can be computed directly as the pseu-
doinverse of the problem. Neglecting the photometric parameters for the mo-
ment, if y(k) = W (k)x +N

(
0, β−1I

)
, then the pseudoinverse would be

x̂ML =
(
W T W

)−1
W T y, (9.5)

where W is the KM × N stack of all K of the W (k) matrices, and y is the
KM × 1 stack of all the vectorized low-resolution images. Re-introducing the
photometric components gives

x̂ML =

(
K∑

k=1

λ
(k)2
1 W (k)T W (k)

)−1 [ K∑
k=1

λ
(k)
1 W (k)T

(
y(k) − λ

(k)
2

)]
.(9.6)

Thus we can solve for x̂ML directly if we know
{
W (k), λ(k)

}
. This can be a
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time-consuming process if the W matrices are large or have many nonzero el-
ements, and if the matrix W T W is singular (e.g., when KM < N) the direct
inversion is problematic. Instead, the ML solution can be found efficiently us-
ing a gradient descent algorithm like Scaled Conjugate Gradients (SCG) [12].
Such schemes take an objective function L, and its derivative with respect to
the current estimate of the high-resolution image, ∂L

∂x , and find the optimal x
using an iterative scheme. For the ML solution, the expressions of interest are
therefore

L =
1
2

K∑
k=1

∥∥∥y(k) − λ
(k)
1 W (k)x− λ

(k)
2

∥∥∥
2

2
(9.7)

=
1
2

K∑
k=1

∥∥∥r(k)
∥∥∥

2

2
(9.8)

∂L
∂x

=
K∑

k=1

−λ
(k)
1 W (k)T r(k). (9.9)

When this is initialized with a reasonable estimate of the super-resolution
image, this scheme can be used to improve the super-resolution estimate iter-
atively, even when KM < N .

Note that L is essentially a quadratic function of x, so this problem is
convex. A unique global minimum exists, and gradient-descent methods (which
include SCG) can find it given enough steps. Typically one might need up to
N steps (where there are N pixels in the super-resolution image) to solve
exactly for x, but generally far fewer iterations are required to obtain a good
image. Using SCG, small super-resolution images (under 200×200 pixels) tend
to require fewer than 50 iterations before the super-resolution image intensity
values change by less than a gray level per iteration. This requirement roughly
scales with the number of pixels under consideration.

9.1.2.2 The ML Solution in Practice

Unfortunately, ML super-resolution is an ill-conditioned problem whose so-
lution is prone to corruption by very strong high-frequency oscillations. To
illustrate this, a set of synthetic Graffiti datasets is introduced in Figure 9.2,
where the number of images and the amplitude of the additive Gaussian noise
is varied, and the registration parameters are determined randomly under a
planar projective motion model. The noise amplitude is measured here in gray
levels, with one gray level being one 255th of the intensity range (e.g., assuming
8-bit images, which have 256 possible intensity values per pixel).

The ML super-resolutions for some of these are shown in Figure 9.3. There
are four input images in the datasets in the left column, going up in powers
of two to 64 images for each output in the right column. The standard devi-
ation of the noise goes from zero for the top row to 2, 5, and 10 gray levels
proceeding down the figure. The more images there are in the dataset, the
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Ground Truth
low−res 1 low−res 2

low−res 3 low−res 4

FIGURE 9.2: The synthetic graffiti dataset. Left: ground truth graffiti wall
image. Right: four of the low-resolution images generated according to the
forward model, with a Gaussian PSF of std 0.4 low-resolution pixels, and a
zoom factor of 2.
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FIGURE 9.3: The ML super-resolution estimate. Synthetic datasets with vary-
ing numbers of images and varying levels of additive Gaussian noise were
super-resolved using the ML algorithm.

less the ocillations dominate the output, though even with 64 input images,
visible degradation is still evident in the output for cases with 5 and 10 gray
levels of noise.
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9.1.2.3 The Maximum a Posteriori Solution

A prior over x is usually introduced into the super-resolution model to avoid
solutions which are subjectively very implausible to the human viewer. The
Maximum a Posteriori (MAP) approach is explained here in terms of the
generative model and its probabilistic interpretation. We go on to cover a few
of the general image priors commonly selected for image super-resolution.

The MAP estimate of the super-resolution image comes about by an ap-
plication of Bayes’ theorem,

p(x|d) =
p(d|x)p(x)

p(d)
. (9.10)

The left hand side is known as the posterior distribution over x, and if d
(which in this case might represent our observed data) is held constant, then
p(d) may be considered as a normalization constant.

Applying these identities to the super-resolution model, we have

p
(
x|
{
y(k), θ(k), λ(k)

})
=

p
({

y(k)
}
|x,
{
θ(k), λ(k)

})
p(x)

p
({

y(k)
}
|
{
θ(k), λ(k)

}) (9.11)

If we again assume that the denominator is a normalization constant in
this case — it is not a function of x — then the MAP solution, x̂MAP, can be
found by maximizing the numerator with respect to x, giving

x̂MAP = arg max
x

p({y(k)}|x, {θ(k), λ(k)})p(x). (9.12)

We take the objective function L to be the negative log of the numerator
of (9.11), and minimize L with respect to x. The objective function and its
gradient are

L = − log (p(x)) +
β

2

K∑
k=1

∥∥∥r(k)
∥∥∥

2

2
(9.13)

∂L
∂x

=
∂

∂x
[− log (p(x))]−

K∑
k=1

λ
(k)
1 W (k)T r(k). (9.14)

In order to solve this, one requires a form for the image prior p(x).
In general the prior should favor smoother solutions than the ML approach

typically yields, so it is usual to promote smoothness by penalizing excessive
gradients or higher derivatives. Log priors that are convex and continuous are
desirable, so that gradient-descent methods like SCG [12] can be used along
with (9.13) and (9.14) to solve for x efficiently. A least-squares-style penalty
term for image gradient values leads to a Gaussian image prior that gives a
closed-form solution for the super-resolution image. However, natural images
do contain edges where there are locally high image gradients, which it is
undesirable to smooth out.
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FIGURE 9.4: Maximum a Posteriori super-resolution images. This figure uses
the same input data as 9.3, but uses the Maximum a Posteriori method to
infer the super-resolution images using an array of prior parameter settings.
With only 9 images and 5 gray levels of noise, the corresponding ML output
would be swamped with noise (not shown). However, in all but the top left case
(weakest prior), the MAP images clearly show the details of the underlying
scene.

Figure 9.4 shows the improvement in super-resolution image estimates that
can be achieved using a very simple prior on the super-resolution image, x.
The super-resolution images were reconstructed using exactly the same input
datasets as Figure 9.3, with 9 images and 5 gray levels of noise, but this
time a Huber function [9] prior was used on image gradients, and all of the
noise present in the ML solutions is gone. A few simple forms of prior will be
considered next.

9.1.3 Selected Priors Used in MAP Super-Resolution

While ostensibly the prior is merely required to steer the objective function
away from the “bad” solutions, in practice the exact selection of image prior
does have an impact on the image reconstruction accuracy and on the com-
putational cost of the algorithm, since some priors are much more expensive
to evaluate than others.

This section introduces a few families of image priors commonly used in
super-resolution, examines their structure, and derives the relevant objective
functions to be optimized in order to make a MAP super-resolution image
estimate in each case.

GMRF Image Priors

Gaussian Markov Random Field (GMRF) priors arise from a formulation
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where the gradient of the super-resolution solution is penalized, and corre-
spond to specifying a Gaussian distribution over x:

p(x) = (2π)−
N
2 |Zx|−

1
2 exp

{
−1

2
xT Z−1

x x

}
, (9.15)

where N is the size of the vector x, and Zx is the covariance of a zero-mean
Gaussian distribution:

p(x) ∼ N (0, Zx). (9.16)

For super-resolution using any zero-mean GMRF prior, we have:

L = β ‖r‖2 + xT Z−1
x x (9.17)

∂L
∂x

= −2βλ1W
T r + 2Z−1

x x, (9.18)

where L and its derivative can be used in a gradient-descent scheme to find
the MAP estimate for x.

Because the data error term and this prior are both Gaussian, it follows
that the posterior distribution over x will also be Gaussian. It is possible to
derive a closed-form solution in this case:

x̂GMRF = βΣ

(
K∑

k=1

λ
(k)
1 W (k)T

(
y(k) − λ

(k)
2

))
(9.19)

Σ =

[
Z−1

x + β

(
K∑

k=1

λ
(k)2
1 W (k)T W (k)

)]−1

, (9.20)

where Σ here is the covariance of the posterior distribution. However, the size
of the matrices involved means that the iterative approach using SCG is far
more practical for all but the very smallest of super-resolution problems.

Depending on the construction of the matrix Zx, the GMRF may have
several different interpretations. They are often expressed as the square of
some linear operation on the pixels of x, such as an approximation to the
image gradient or image Laplacian. This gives a general form

p(x) =
1
Z

exp
{
−ζ

2
||Dx||22

}
, (9.21)

so that

Z−1
x = ζDT D. (9.22)

In [4], D is a matrix which premultiplies x to give a vector of first-order
approximations to the magnitude of the image gradient in horizontal, vertical
and two perpendicular diagonal directions, giving a 4N ×N sparse D matrix
with two nonzero elements per row. In [7], D is a small discrete approximation
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to the Laplacian-of-Gaussian filter, so the result for each pixel is the difference
between its own value and the average of its four cardinal neighbors. Thus D
is an N ×N sparse matrix where the ith row has an entry of 1 at position i,
and four entries of − 1

4 corresponding to the four cardinal neighbors of pixel
i. In neither of these cases do Z and Z−1 need to be computed explicitly for
the iterative solution to be found.

In their Bayesian Image Super-resolution work [15], Tipping and Bishop
treat the high-resolution image as a Gaussian Process, and suggest a form of
Gaussian image prior where Zx is calculated directly according to

Zx(i, j) = A exp
{
−||vi − vj ||2

r2

}
, (9.23)

where vi is the two-dimensional position of the pixel that is lexicographically
ith in super-resolution image x, r defines the distance scale for the correlations
on the MRF, and A determines their strength.

This differs from the other two GMRF priors described above because
here the long-range correlations in the high-resolution space are described
explicitly, rather than resulting from the short-range weights prescribed in a
difference matrix.

Image Priors with Heavier Tails than a Gaussian

The Bilateral Total Variation (BTV) prior is used by Farsiu et al. [5]. It
compares the high-resolution image to versions of itself shifted by an integer
number of pixels in various directions, and weights the resulting absolute
image differences to form a penalty function. This leads again to a prior that
penalizes high spatial frequency signals, but is less harsh than a Gaussian
because the norm chosen is L1 rather than L2.

Huber Prior

The Huber function is used as a simple prior for image super-resolution which
benefits from penalizing edges less severely than any of the Gaussian image
priors. The form of the prior is

p(x) =
1
Z

exp

⎧
⎨
⎩−ν

∑
g∈D(x)

ρ(g, α)

⎫
⎬
⎭ , (9.24)

where D is the same set of gradient estimates as (9.21), given by Dx. The
parameter ν is a prior strength somewhat similar to a variance term, Z is the
normalization constant, and α is a parameter of the Huber function specifying
the gradient value at which the penalty switches from being quadratic to being
linear:

ρ(x, α) =
{

x2, if |x| ≤ α
2α|x| − α2, otherwise. (9.25)
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For a very simple 1D case, the probability function corresponding to the
Huber function is

p(x) =
1
Z

exp {−νρ(x, α)} , (9.26)

and one can verify by integration that

Z =
1

να
exp
{
−2να2

}
+
(π

ν

) 1
2

erf {αν} . (9.27)

Super-resolving with the Huber-MRF prior is very straightforward. The
objective function and its gradient with respect to the high-resolution image
pixels are

L =
K∑

k=1

β‖r(k)‖22 + ν
∑

g∈Dx

ρ(g, α) (9.28)

∂L
∂x

= −2β

K∑
k=1

λ
(k)
1 W (k)T r(k) + νDT ρ′(Dx, α) (9.29)

where

ρ′(x) =
{

2x, if |x| ≤ α
2α sign(x), otherwise. (9.30)

and D is again a 4N × N matrix giving first order approximations of the
gradients in four directions in the image space. This has the advantage over
the TV prior that unless α→ 0, the function and its gradient with respect to
x are continuous as well as convex, and can be solved easily using gradient-
descent methods like SCG.

9.2 Where Super-Resolution Algorithms Go Wrong

There are many reasons why simply applying the MAP super-resolution algo-
rithm to a collection of low-resolution images may not yield a perfect result im-
mediately. This section consists of a few brief examples to highlight the causes
of poor super-resolution results from what should be good and well-behaved
low-resolution image sets. In particular, the super-resolution problem involves
several closely-interrelated components: geometric registration, photometric
registration, parameters for the prior, noise estimates and the point-spread
function, not to mention the estimates of the values of the high-resolution
image pixels themselves. If one component is estimated badly, there can be
a knock-on effect on the values of the other parameters needed in order to
produce the best super-resolution estimate for a given low-resolution dataset.
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Keble ground truth

low−res 1

low−res 2

Frog ground truth

low−res 1

low−res 2

FIGURE 9.5: Keble and Frog datasets. Ground truth images for the synthetic
Keble and Frog datasets, along with two low-resolution images of each (not
to scale).

9.2.1 Point-Spread Function Example

A bad estimate of the size and shape of the point-spread function kernel
leads to a poor super-resolution image, because the weights in the system
matrix do not accurately reflect the responsibility each high-resolution pixel
(or scene element) takes for the measurement at any given low-resolution
image pixel. The solution that minimizes the error in the objective function
does not necessarily represent a good super-resolution image in this case,
and it is common to see “ringing” around edges in the scene. These ringing
artifacts can be attenuated by the prior on x, so in general, a dataset with
an incorrectly-estimated PSF parameter will require a stronger image prior to
create a reasonable-looking super-resolution image than a dataset where the
PSF size and shape are known accurately.

To illustrate this, 16 images from the synthetic “Keble” dataset (see Fig-
ure 9.5) with a noise standard deviation of 2.5 gray levels are super-resolve at
a zoom factor of 4 using the known geometric (8Dof) and photometric (2DoF)
registration values, and a Huber prior with α = 0.05. The PSF standard de-
viation, γ, is varied, and for each value the the prior strength ratio (ν/β
in (9.28)), which minimizes the RMS error with respect to the ground-truth
image is found.

The results are plotted in Figure 9.6, which clearly shows that as γ moves
away from its true value of 0.4 low-resolution image pixels, the error increases,
and the prior strength ratio needed to achieve the minimal error also increases.
Figure 9.7 shows three images from the results. The first is the image recon-
structed with the true γ, showing a very good super-resolution result. The next
is the image reconstructed with γ = 0.7, and is a very poor super-resolution
result. The final image of the three shows the super-resolution image recon-
structed with the same poor value of γ, but with a much stronger prior; while
the result is smoother than our ideal result, the quality is definitely superior
to the middle case.

The important point to note is that all these images are constructed using
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FIGURE 9.6: Reconstructing the Keble dataset with various PSF estimates.
When the PSF standard deviation, γ, is overestimated by a factor of 50%, the
prior needs to be almost two orders of magnitude larger to reconstruct the
image as well as possible.

(a) γ=0.4, ν
1
: err=34.8 (b) γ=0.7, ν

1
: err=78.9 (c) γ=0.7, ν

2
: err=45.4

FIGURE 9.7: Reconstructing the Keble dataset with various PSF estimates:
images. (a) The best reconstruction achieved at the correct value, γ = 0.4.
(b) The super-resolution image obtained with the same prior as the left-hand
image, but with γ = 0.7. Heavy ringing is induced by the bad PSF estimate. (c)
The best possible reconstruction using γ = 0.7. This time the prior strength
ratio is almost 100 times stronger than for the first image, even though the
input images themselves are identical.

exactly the same input data, and only γ and ν were varied. The consequence of
this kind of relationship is that even when it is possible to make a reasonably
accurate estimate of each of the hyperparameters needed for super-resolution,
the values themselves must be selected together in order to guarantee a good-
looking super-resolution image.
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FIGURE 9.8: Reconstructing the Keble dataset with photometric error. Left:
RMSE of the reconstruction increases with the uncertainty in the photometric
shift parameter (0 to 10%). Right: the prior strength setting necessary to
achieve the best reconstruction for each setting of the photometric parameters.
The prior strength increases by well over an order of magnitude between the
no-error case and the 10% case.

9.2.2 Photometric Registration Example

The photometric part of the model accounts for relative changes in illumi-
nation between images, either due to changes in the incident lighting in the
scene, or due to camera settings such as automatic white balance and expo-
sure time. When the photometric registration has been calculated using pixel
correspondences resulting from the geometric registration step and bilinear in-
terpolation onto a common frame, some errors may be expected because both
sets of images are noisy, and because such interpolation does not agree with
the generative model of how the low-resolution images relate to the original
scene.

To understand the effect of errors in the photometric estimates, several
super-resolution reconstructions of the Keble dataset are made with a noise
standard deviation of 2.5 gray levels, using the ground truth point-spread
function (a Gaussian with std 0.4 low-resolution pixels), the true geometric
registration, and a set of photometric shift parameters that are gradually
perturbed by random amounts, meaning that each image is assumed to be
globally very slightly brighter or darker than it really is relative to the ground
truth image.

For each setting of the photometric parameters, a set of super-resolution
images was recovered using the Huber-MAP algorithm with different strengths
of Huber prior. The plots in Figure 9.8 show the lowest error (left) and prior
strength ratio, log10 (ν/β) (right) for each case. Figure 9.9 shows the deteri-
oration of the quality of the super-resolution image for the cases where the
sixteen photometric shift parameters (one per image) were perturbed by an
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(c) closeup(b) closeup(a) closeup

(c) σ
err

=10% of intensity range(b) σ
err

=2% of intensity range(a) No photometric error

FIGURE 9.9: Reconstructing the Keble dataset with photometric error: im-
ages. Top: full super-resolution image; Bottom: close-up of the main window
where the different levels of detail are very noticeable. Left-to-right: recon-
struction with additive errors of 0%, 2%, and 10% on the photometric shift
parameters. As the error increases, the edges still remain well-localized, but
finer details are smoothed out due to the necessary increase in prior strength.

amount whose standard deviation was equal to 2% and 10% of the image
range, respectively.

The edges are still very well localized even in the 10% case, because the
geometric parameters are perfect. However, the ill conditioning caused in the
linear system of equations solved in the Huber-MAP algorithm means that the
optimal solutions require stronger and stronger image priors as the photomet-
ric error increases, and this results in the loss of some of the high-frequency
detail, like the brick pattern and stained-glass window leading, which are vis-
ible in the error-free solution.

9.2.3 Geometric Registration Example

Errors from two different sources can also be very closely-coupled in the super-
resolution problem. In this example, we show that errors in some of the geo-
metric parameters θ(k), can to a small extent, be mitigated by a small increase
in the size of the blur kernel.

Sixteen images from the synthetic Frog dataset of Figure 9.5 with a zoom
factor of 4, a PSF width of 0.4 low-resolution pixels, and various levels of
i.i.d. Gaussian noise are taken as a starting point. Because the ground-truth
image is much smoother than the Keble image, with fewer high-frequency
details, it is in general easier to super-resolve, and leads to reconstructions
with much lower RMS error than the Keble image dataset.

Errors are applied to the θ parameters governing the horizontal and verti-
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FIGURE 9.10: Reconstructing the Frog image with small errors in geometric
registration and point-spread function size. The six colors represent six levels
of additive random noise added to the shift parameters in the geometric reg-
istration. The curves represent the optimal error as the PSF parameter γ was
varied about its ground truth value of 0.4. The larger the registration error,
the bigger the error in γ is in order to optimize the result.

cal shifts of each image, with standard deviations of 0, 0.01, 0.02, 0.03, 0.04,
and 0.05 low-resolution pixels, i.e., a very small amount. For each of these six
registrations of the input data, a set of super-resolution images is recovered
as the PSF standard deviation, γ is varied, and for each setting of γ, the prior
strength ratio giving the best reconstruction is found.

Figure 9.10 shows how the best error for each of the six registration cases
varies with the point-spread function size. When the geometric registration
is known exceedingly accurately, the minimum falls at the true value of γ.
However, as the geometric registration parameters drift more with respect
to one another, the point at which the lowest error is found for any given
geometric registration increases. This can be explained intuitively because a
single high-resolution pixel is related by W to several low-resolution image
regions, and if mis-registration causes these regions not to be aligned with
one another exactly, then the super-resolution image pixel may end up being
required to explain a mixture of values from that neighborhood in the high-
resolution space, and thus more blur will help.

9.3 Simultaneous Super-Resolution

In the preceding section, we saw that the the problems of determining image
registration or motion estimation, low-resolution image blur estimation, se-
lection of a suitable prior, and super-resolution image estimation are seldom
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truly independent. In addition, it is also expected that each scene will have
different underlying image statistics, and a super-resolution user generally
has to hand-tune these in order to obtain an output that preserves as much
richness and detail as possible from the original scene without encountering
problems with conditioning, even when using a GMRF. Taken together, these
observations motivate the development of an approach capable of registering
the images at the same time as super-resolving and tuning a prior, in order
to get the best possible result from any given dataset.

9.3.1 Super-Resolution with Registration

Standard approaches to super-resolution first determine the registration, then
fix it and optimize a function like the MAP objective function of (9.13) with
respect only to x to obtain the final super-resolution estimate. However, if
the set of input images is assumed to be noisy, it is reasonable to expect the
registration to be adversely affected by the noise.

In contrast, we make use of the high-resolution image estimate common to
all the low-resolution images, and aim to find a solution in terms of the high-
resolution image x, the set of geometric registration parameters, θ (which
parameterize W ), and the photometric parameters λ (composed of the λ1

and λ2 values), at the same time, i.e., we determine the point at which

∂L
∂x

=
∂L
∂θ

=
∂L
∂λ

= 0 (9.31)

where L is defined e.g., as in 9.28.
The registration problem itself is not convex – for example, repeating tex-

tures can cause näıve intensity-based registration algorithms to fall into local
minima, though when initialized sensibly, very accurate results are obtained.
The pathological case where the footprints of the low-resolution images fail
to overlap in the high-resolution frame can be avoided by adding an extra
term to L to penalize large deviations in the registration parameters from the
initial registration estimate, e.g., by assuming a very broad Gaussian prior
distribution over relevant components of the geometric registration.

The simultaneous super-resolution and image registration problem closely
resembles the well-studied problem of Bundle Adjustment [16], in that the
camera parameters and image features (which are 3D points in Bundle Adjust-
ment) are found simultaneously. Because most high-resolution pixels are ob-
served in most frames, the super-resolution problem is closest to the “strongly
convergent camera geometry” setup, and conjugate gradient methods are ex-
pected to converge rapidly [16].

The objective function for simultaneous registration and super-resolution
is very similar to the regular MAP negative log likelihood, except that it is
optimized with respect to the registration parameters as well as the super-
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resolution image estimate, e.g.,

L =
K∑

k=1

β‖r(k)‖22 + ν
∑

g∈Dx

ρ(g, α) (9.32)

[xMAP, θMAP, λMAP] = arg max
x,θ,λ

L, (9.33)

where (9.32) is the same as (9.28), repeated here for convenience, though any
reasonable image prior can be used in place of the Huber-MRF here.

The gradient with respect to x is given by (9.29), and the gradients with
respect to W (k) and the photometric registration parameters are

∂L
∂W (k)

= −2βλ
(k)
1 r(k)xT (9.34)

∂L
∂λ

(k)
1

= −2βxT W (k)T r(k) (9.35)

∂L
∂λ

(k)
2

= −2β
M∑
i=1

r
(k)
i . (9.36)

The gradient of the elements of W (k) with respect to θ(k) could be found ana-
lytically for simple parametric motion models, but for projective homographies
it is simpler to use a finite difference approximation, because as well as the
location, shape and size of the PSF kernel’s footprint in the high-resolution
image frame, each parameter also affects the entire normalization of W (k),
requiring a great deal of computation to find the exact derivatives of each
individual matrix element.

Initializations for this scheme will be outlined in Section 9.3.4, but first the
extensions to learning parameters for the prior distributions are considered.

9.3.2 Learning Prior Strength Parameters from Data

For most forms of MAP super-resolution, one must determine values for free
parameters like the prior strength, and prior-specific additional parameters
like the Huber-MRF’s α value. In order to learn parameter values in a usual
ML or MAP framework, it would be necessary to be able to evaluate the
partition function (normalization constant), which is a function of ν and α.
For example, the expression for the Huber-MRF is

p(x) =
1

Z(ν, α)
exp

⎧
⎨
⎩−ν

∑
g∈Dx

ρ(g, α)

⎫
⎬
⎭ , (9.37)
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and so the full negative log likelihood function is

L =
1
2

K∑
k=1

β‖r(k)‖22 − log p(x) (9.38)

=
1
2

K∑
k=1

β‖r(k)‖22 + ν
∑

g∈Dx

ρ(g, α)− log Z(ν, α). (9.39)

For a ML solution to ν and α, this should be optimized with respect to those
two variables, and in fact the entire data-error term could be neglected, since
it does not depend on these variables. However, the partition function Z(ν, α)
for these sorts of edge-based priors is not generally easy to compute because
the structure of the image means that each pair of pixel differences cannot be
assumed independent.

Rather than setting the prior parameters using an ML or MAP technique,
therefore, cross-validation is chosen for parameter-fitting. However, it is nec-
essary to determine these parameters while still in the process of converging
on the estimates of x, θ, and λ. This is done by removing some individual
low-resolution pixels from the problem to create a validation set, then solv-
ing for x using the remaining pixels. This solution for x is projected back
into the original low-resolution image frames, giving pixel intensity estimates
for all low-resolution pixels (including those in the validation set). The error
in the super-resolution estimate is determined by examining the L1 norm of
the difference between the predicted and measured intensity values over the
validation set, though the L2 norm or the Huber potential are also suitable
measures, and give comparable results in practice. The selected α and ν should
minimize this cross-validation error.

To evaluate a proposed pair of α and ν values, we optimize L w.r.t. x, start-
ing with the current x estimate, for just a few steps to determine whether the
parameter combination improves the estimate of x, as determined by cross-
validation. This optimization to re-estimate x does not need to run to con-
vergence in order to determine whether the proposed values ν and α make an
improvement over the previous values, and are therefore worthy of consider-
ation. A gradient-descent scheme can then be used on (ν, α)-space to select
prior parameter values that give better high-resolution image estimates.

This scheme is much faster than the usual approach of running a complete
optimization for a number of parameter combinations. An arbitrary 5% of
pixels are used for validation, ignoring regions within a few pixels of edges, to
avoid boundary complications.

9.3.3 Scaling and Convergence

The elements of x are scaled to lie in the range [− 1
2 , 1

2 ], and the geomet-
ric registration is decomposed into a “fixed” component, which is the initial
mapping from y(k) to x, and a projective correction term, which is itself
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decomposed into constituent shifts, rotations, axis scalings and projective pa-
rameters, which are the geometric registration parameters, θ. The registration
vector for a low-resolution image k, θ(k), is combined with the photometric
registration parameter vector, λ(k), to give one ten-element parameter vector
per low-resolution image. These registration vectors are concatenated with
the image vector x to form the full vector of free parameters over which the
algorithm optimizes. Further details of parameter scaling are given in [14].

Using the Scaled Conjugate Gradients (SCG) implementation from Net-
lab [12], rapid convergence is observed up to a point, beyond which a slow
steady decrease in the negative log likelihood gives no subjective improve-
ment in the solution, but this extra computation can be avoided by specifying
sensible convergence criteria.

Convergence for the simultaneous algorithm is defined to be the point at
which all parameters change by less than a preset threshold in successive
iterations. The outer loop is repeated till this point, typically taking 3-10
iterations. Thresholds are defined differently depending on the nature of the
parameter. For x, the point at which the iteration has failed to change any
pixel value in x by more than 0.3 gray levels (e.g., 1/850 of the image range)
is chosen. For ν and α, we work with the log values of the parameters (since
neither should take a negative value), and look for a change of less than 10−4

between subsequent iterations.
A description of the overall structure of the simultaneous super-resolution

algorithm described here is summarized in Table 9.1. In the inner-loop itera-
tions use the same convergence criteria as the outer-loop, but additionally the
number of steps for the update of x and θ (algorithm part 2c) is limited to
20, and the number if steps for the prior update (algorithm part 2b) is limited
to ten, so that the optimization is divided more effectively between the two
groups or parameters.

9.3.4 Initialization

In our experiments, input images are assumed to be pre-registered by a stan-
dard algorithm [8] (e.g., ransac on features detected in the images) such
that points at the image centers correspond to within a small number of low-
resolution pixels. This takes us comfortably into the region of convergence for
the global optimum even in cases with considerable repeating texture.

The Huber image prior parameters are initialized to around α = 0.01 and
ν = β/10; as these are both strictly positive quantities, they are represented
as log values throughout. A candidate PSF is selected in order to compute the
average image, a, which is a stable though excessively smooth approximation
to x. Each pixel in a is a weighted combination of pixels in y, such that ai

depends strongly on yj if yj depends strongly on xi according to the weights
in W . Lighting changes must also be taken into consideration, so

a = D−1W TΛ−1
1 (y − λ2), (9.40)
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1. Initialize PSF, image registrations, high-resolution image, and
prior parameters.

2. (a) (Re)-sample the set of validation pixels, selecting them from
across all low-resolution images.

(b) Update α and ν (prior parameters). Perform gradient descent
on the cross-validation error to improve the values of α and ν.

(c) Update the super-resolution image and the registration pa-
rameters. Optimize L (equation 9.32) jointly with respect to x
(super-resolution image), λ (photometric transform), and θ (geo-
metric transform).

3. If the maximum absolute change in α, ν, or any element of x, λ or φ is
above preset convergence thresholds, return to 2.

TABLE 9.1: Basic structure of the simultaneous algorithm.

where W , y, and λ2 are the stacks of the K groups of W (k), y(k), and
λ

(k)
2 1 respectively, Λ1 is a diagonal matrix whose entries are a stack of λ

(k)
1 1

values, and D is a diagonal matrix whose elements are the column sums of W .
Notice that both inverted matrices are diagonal, so a is simple to compute.
The resulting images are generally much smoother than the corresponding
high-resolution frame calculated from the same input images will be, but are
very robust to noise on the low-resolution images.

In order to get a registration estimate, it is possible to optimize L of (9.32)
with respect to θ and λ only, by using a in place of x to estimate the high-
resolution pixels. This provides a good estimate for the registration parame-
ters, without requiring x or the prior parameters, and we refer to the output
from this step as the average image registration. We find empirically that this
out-performs popular alternatives such as mapping images to a common ref-
erence frame by bilinear interpolation and setting the registration parameters
to minimize the resulting pixel-wise error.

To initialize x, we begin with a, and use the SCG algorithm with the ML
solution equations as in (9.8) and (9.9) to improve the result. The optimization
is terminated after around K

4 steps (where K is the number of low-resolution
images), before the instabilities dominate the solution. This gives a sharper
starting point than initializing with a as in [4]. When only a few images
are available, a more stable ML solution can be found by using a constrained
optimization to bound the pixel values so they must lie in the permitted image
intensity range.
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(a) ground truth image (b) 1st input, interpolated

FIGURE 9.11: Synthetic “eyechart” dataset. Left: Ground truth “eyechart”
image; Right: one of 16 low-resolution images, upsampled using bilinear inter-
polation.

9.3.5 Evaluation on Synthetic Data

Before applying the simultaneous algorithm to real low-resolution image data,
an evaluation is performed on synthetic data, generated using the generative
model (9.1) applied to ground truth images. The first experiment uses only
the simultaneous registration and super-resolution part of the algorithm, and
the second covers the cross-validation. Before presenting these experiments,
it is worth considering the problem of making comparisons with ground-truth
images when the registration itself is part of the algorithm.

Joint Registration and Super-Resolution

The simple “eyechart” image of Figure 9.11 was used to generate 16 low-
resolution images at a zoom factor of 4, with each pixel being corrupted by
additive Gaussian noise to give a SNR of 30dB. The image is of text and
has 256 gray levels (scaled to lie in

[
− 1

2 , 1
2

]
for the experiments), though the

majority of the pixels are black or white, i.e., the original image is effectively
binary-valued. The low-resolution images are 30× 30 pixels in size. Values for
a shift-only geometric registration, θ, and a 2D photometric registration λ are
sampled independently from uniform distributions.

An initial registration was then carried out using the average image reg-
istration technique described above. This is taken as the “fixed” registration
for comparison with the joint MAP algorithm, and it differs from the ground
truth by an average of 0.0142 pixels, and 1.00 gray levels for the photometric
shift.

Two sets of super-resolution images were computed: one set with a fixed
registration, and one set using the simultaneous approach. Within each set,
the value for the prior strength parameter ν was varied while keeping the
Huber parameter α set to 0.04. The noise precision parameter β is chosen so
that the noise in every case is assumed to have a standard deviation of 5 gray
levels, so a single “prior strength” quantity equal to log10 (ν/β) is used. For
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FIGURE 9.12: Synthetic data results. RMSE compared to ground truth for the
“eyechart” text image, plotted for the fixed and joint MAP algorithms, and for
the Huber super-resolution image found using the ground truth registration.

each prior strength, both the fixed-registration and the joint MAP methods
are applied to the data, and the root mean square error (RMSE) compared to
the ground truth image is calculated.

The RMSE compared to the ground truth image for both the fixed regis-
tration and the joint MAP approach are plotted, in Figure 9.12, along with a
curve representing the performance if the ground truth registration is known.
The joint MAP curve is very close to that of the true registrations, showing
that allowing the super-resolution image to inform an update to the registra-
tions does indeed yield an improvement in super-resolution performance.

Cross-Validation Example

A second synthetic-data experiment shows that the cross-validation-based
prior learning phase is effective. The cross-validation error is measured by
holding a percentage of the low-resolution pixels in each image back, and per-
forming Huber-MAP super-resolution using the remaining pixels. The super-
resolution image is then projected back down into the withheld set, and the
mean absolute error is recorded. This is done for three different validation set
sizes (2%, 5%, and 10%), and at a range of prior strengths, where all the prior
strength values are given as log(ν/β).

The low-resolution images were generated from the “Keble” image, and
the results are plotted in Figure 9.13, along with a plot of the error measured
from reconstructing the image using all low-resolution pixels and comparing
the results with the ground truth high-resolution image. The best ground-
truth comparison occurs when the log prior strength ratio is −2.92. In the
cross-validation plots shown in the center of the figure, the curves’ minima
are at −2.90, −2.90, and −2.96, respectively, which is very close indeed. The
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FIGURE 9.13: Cross-validation errors on synthetic data. Left: Error with
respect to ground truth on the Keble dataset for this noise level. center: Three
cross-validation curves, corresponding to 2%, 5%, and 10% of pixels being
selected. Right: More cross-validation curves at each ratio.

final plot shows that for a variety of different random choices of validation pixel
sets, the minima are all very close. All the curves are also very smooth and
continuous, meaning that we expect optimization using the cross-validation
error to be straightforward to achieve.

9.3.6 Experiments on Real Data

The Surrey library sequence: An area of interest is highlighted in the 30-
frame Surrey Library sequence from http://www.robots.ox.ac.uk/∼vgg/data/,
shown in Figure 9.14. The camera motion is a slow pan through a small
angle, and the sign on a wall is illegible given any one of the inputs alone.
Gaussian PSFs with std = 0.375, 0.45, 0.525 are selected, and super-resolution
images estimated are made with both the fixed-registration or simultaneous
super-resolution algorithms. There are 77003 elements in y, and x has 45936
elements with a zoom factor of 4. W has around 3.5× 109 elements, of which
around 0.26% are nonzero with the smallest of these PSF kernels, and 0.49%
with the largest. Most instances of the simultaneous algorithm converge in 2 to
5 iterations. Results in Figure 9.15 show that while both algorithms perform
well with the middle PSF size, the simultaneous-registration algorithm handles
the worse PSF estimates more gracefully.

The Colored Book Sequence: Finally, the simultaneous super-resolution

method is demonstrated on a publicly-available color super-resolution
dataset1. The dataset consists of 30 low-resolution images captured with a
color camera following a global translation model. The PSF standard devia-
tion was chosen to be 0.4 low-resolution pixels, the desired zoom factor was
set to π, and the simultaneous algorithm was run as described above.

1Data from http://www.soe.ucsc.edu/∼milanfar/software/sr-datasets.html
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In generalizing the basic algorithm to handle color images, a very simple
approach is taken. The three color channels are treated separately, though the
geometric and photometric components are shared between the three channels.
The Huber prior and data error terms are summed over the three channels,
and all other algorithm components remain the same. Note that no color
demosaicing step has been introduced for the purpose of this example.

Figure 9.16 shows 9 of the 30 low-resolution input images along with the
super-resolution result in this case. This result compares well to other results
for algorithms that do not employ a color demosaicing step in their models;
the “jagging” artifacts visible at book edges, especially on the left-hand side

FIGURE 9.14: The “Surrey library” real dataset: close-ups of text from 9 of
the 30 images across the low-resolution sequence, recorded with a real camera
panning over a scene including the external wall of a library.

(f) Simul. reg. σ = 0.525(c) Fixed reg. σ = 0.525

(e) Simul. reg. σ = 0.45(b) Fixed reg. σ = 0.45

(d) Simul. reg. σ = 0.375(a) Fixed reg. σ = 0.375

FIGURE 9.15: Results on the Surrey Library sequence. Left column (a,b,c)
Super-resolution found using fixed registrations. Right column (d,e,f) Super-
resolution images using our algorithm. While both algorithms perform well
with the middle PSF size, the simultaneous-registration algorithm handles
the worse PSF estimates more gracefully.
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low−res 25/30low−res 22/30low−res 19/30

low−res 16/30low−res 13/30low−res 10/30

low−res 7/30low−res 4/30low−res 1/30 super−resolved x3.14

FIGURE 9.16: Results on the colored book sequence. Left: nine of the 30
color low-resolution images. Right: the super-resolution image when the zoom
factor was chosen arbitrarily to be π.

of the image, result from this color channel alignment, but overall the prior
term has adapted effectively to keep the overall image natural-looking at most
of the edges, and book titles such as Kalman Filtering and French Review and
Practice are clearly legible, which is not the case in the input images. Other
than specifying the PSF and the desired zoom factor, this is achieved entirely
automatically without any parameter-tuning necessary.

9.4 Bayesian Marginalization

This section describes a method to handle uncertainty in the set of estimated
imaging parameters (the geometric and photometric registrations, and the
point-spread function) in a principled manner by Bayesian marginalization.
Such parameters are sometimes known as nuisance parameters because they
are not directly part of the desired output of the algorithm, which in this case
is the high-resolution image.

We also describe the alternative Bayesian approach of Tipping and
Bishop [15], which marginalizes over the high-resolution image in order to
make a maximum marginal likelihood point estimate of the imaging parame-
ters. This gives an improvement in the accuracy of the recovered registration
(measured against known truth on synthetic data) compared to the Maximum
a Posteriori (MAP) approach, but has two important limitations: (i) it is re-
stricted to a Gaussian image prior in order for the marginalization to remain
tractable, whereas others have shown improved image super-resolution results
are produced using distributions with heavier tails, and (ii) it is computa-
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tionally expensive due to the very large matrices required by the algorithm,
so the registration is only possible over very small image patches, which take
a long time to register accurately. In contrast our registration-marginalizing
approach allows for a more realistic image prior and operates with smaller
matrix sizes.

Both the registration-marginalizing and image-marginalizing derivations
proceed along similar lines mathematically, though the effect of choosing a
different variable of integration makes a large difference to the way in which
the super-resolution algorithms proceed.

9.4.1 Marginalizing over Registration Parameters

The goal of super-resolution is to obtain a high-resolution image, and so ap-
proach treats the other parameters – geometric and photometric registra-
tions and the point-spread function – as “nuisance variables” that might be
marginalized out of the problem.

If these parameters are collected together into a single vector, φ, these
marginalizations can be expressed simply as

p
(
x
∣∣∣
{
y(k)
})

=
∫

p
(
x, φ
∣∣∣
{
y(k)
})

dφ

=
∫

p (x, φ)
p
({

y(k)
})p
({

y(k)
}
|x, φ

)
dφ

=
p (x)

p
({

y(k)
})
∫

p
({

y(k)
}
|x, φ

)
p (φ) dφ. (9.41)

Notice that p (x, φ) = p (x) p (φ) (because the super-resolution image and
registration parameters are independent) and that p (x) and p

({
y(k)
})

can
be taken outside the integral. This leaves one free to choose any suitable
super-resolution image prior p (x), rather that being constrained to picking a
Gaussian merely to make the integral tractable, as in the image-marginalizing
case discussed later.

A prior distribution over φ, which appears within the integral, must be
specified. We assume that a preliminary image registration (geometric and
photometric) and an estimate of the PSF are available, and also that these reg-
istration values are related to the ground truth registration values by unknown
zero-mean Gaussian-distributed additive noise. The registration estimate can
be obtained using classical registration methods, either intensity-based [10]
or estimation from image points [8]. There is a rich literature of Blind Image
Deconvolution concerned with estimating an unknown blur on an image [11].

We introduce a vector δ to represent the perturbations from ground truth
in the initial parameter estimate. For the parameters of a single image, this
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gives
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where θ̄
(k) and λ̄

(k) are the estimated registration, and θ(k) and λ(k) are the
true registration. The stacked vector δ is then composed as

δT =
[
δ(1)T , δ(2)T , . . . , δ(K)T , δγ

]
(9.43)

where the final entry is for the PSF parameter so that γ = γ̄ + δγ , and γ̄ is
the initial estimate.

The vector δ is assumed to be distributed according to a zero-mean
Gaussian:

δ ∼ N (0, V ) . (9.44)

The covariance matrix V is assumed to be diagonal, and its elements are
chosen to reflect the confidence in each parameter estimate, for example by
setting the entries corresponding to translation parameters to give a standard
deviation of a tenth of a low-resolution pixel, which should be correct given a
good registration as a starting point.

The final step before the integral of (9.41) can be evaluated is to bring out
the dependence on φ in p

({
y(k)
}
|x, φ

)
. Starting with

p
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and where where θ, λ and γ are functions of δ and the initial registration
values, we can then expand the integral in (9.41) to an integral over δ,
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2
δT V −1δ

}
dδ. (9.47)

We can expand e (δ) as a second-order Taylor series about the parameter
estimates

{
θ̄

(k)
, λ̄

(k)
}

and γ̄ in terms of the vector δ, so that

e (δ) = f + gT δ +
1
2
δT Hδ. (9.48)
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Values for f , g and H can be found numerically (for geometric registration
parameters) and analytically (for the photometric parameters) from x and{
y(k), θ(k), λ(k)

}
.

We are now in a position to evaluate the integral in (9.47) using the iden-
tity [2]

∫
exp
{
−bx− 1

2
xT Ax

}
dx = 2π

d
2 |A|−

1
2 exp

{
bT A−1b

}
, (9.49)

where d is the dimension of the vector b.
The exponent in the integral in (9.47), becomes
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2
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2
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(9.53)

where S =
[

β
2 H + V −1

]
and n is the number of registration parame-

ters (geometric and photometric) per image. Using this integral result along
with (9.47), the final expression for our conditional distribution of the super-
resolution image is

p
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x
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8
gT S−1g

}
. (9.54)

To arrive at an objective function that we can optimize using gradient
descent methods, we take the negative log likelihood and neglect terms that
are not functions of x. Using the Huber image prior from Section (9.1.3), this
gives

L =
ν

2
ρ (Dx, α) +

β

2
f +

1
2

log |S| − β2

8
gT S−1g. (9.55)

This is the function we optimize with respect to x to compute the super-
resolution image. The dependence of the various terms on x can be summa-
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rized
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(k)
1 (δ)W (k)(δ)x− λ
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2 (δ)
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g(x) =
∂f(x)

∂δ
(p× 1 gradient vector) (9.57)

H(x) =
∂g(x)

∂δ
(p× p Hessian matrix) (9.58)

S(x) =
β

2
H(x) + V −1 (p× p matrix), (9.59)

where δ is the p-element vector of “nuisance variables” (e.g., registrations and
PSF size), which is assumed to be Gaussian distributed with covariance V . A
detailed derivation of the gradient of (9.55) can be found in [14].

9.4.2 Marginalizing over the High-Resolution Image

We will outline the marginalization method used in [15] here, since it is useful
for comparison with our method, and also because the model used here extends
theirs, by adding photometric parameters, which introduces extra terms to the
equations.

The prior used in [15] takes the form of a zero-mean Gaussian over the
pixels in x with covariance Zx. A simplified version has already been discussed
in Section 9.1.3 (equations (9.15) and (9.23)), but if we consider the exact form
of the probability and its normalizing constant, it is

p(x) = (2π)−
N
2 |Zx|−

1
2 exp

{
−1

2
xT Z−1

x x

}
. (9.60)

This is used to facilitate the marginalization over the super-resolution pix-
els in order to arrive at an expression for the marginal probability of the
low-resolution image set conditioned only on the set of imaging parameters:

p
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y(k)
}∣∣∣
{

θ(k), λ(k)
})

=
∫

p
({

y(k)
}∣∣∣x,

{
θ(k), λ(k)

})
p(x)dx. (9.61)

The data likelihood component of the integral is exactly as in equation (9.3)
and the full derivation can be found in [14].

Taking y to be a stacked vector of all the input images
{
y(k)
}
, and λ2 to

be a stack of the λ
(k)
2 vectors, this marginal distribution over y conditioned

on the registration parameters turns out to be

y ∼ N (λ2, Zy) , (9.62)

where

Zy = β−1I + Λ1WZxW TΛT
1 . (9.63)
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Here Λ1 is a matrix whose diagonals are given by the λ
(k)
1 values of the

corresponding low-resolution images, and W is the stack of individual W (k)

matrices.
The objective function, which does not depend on x, is optimized with

respect to
{
θ(k), λ(k)

}
and γ, and is given by
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where
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The expression for the posterior mean μ is the closed form of the overall
MAP solution for the super-resolution image. However, in [15], the optimiza-
tion over registration and blur parameters is carried out with low-resolution
image patches of just 9× 9 pixels, rather than the full low-resolution images,
because of the computational cost involved in computing the terms in (9.64)
— even for a tiny 50× 50-pixel high-resolution image, the Zx and Σ matrices
are 2500× 2500. The full-sized super-resolution image can then be computed
by fixing the optimal registration and PSF values and finding μ using the
full-sized low-resolution images, y(k), rather than the 9 × 9 patches. This is
exactly equivalent to solving the usual MAP super-resolution approach of
Section 9.1.2.3, with p (x) defined as in (9.15), using the covariance of (9.23).

In comparison, the dimensionality of the matrices in the terms comprising
the registration-marginalizing objective function (9.55) is in most cases much
lower than those in (9.64). This means the terms arising from the marginal-
ization are far less costly to compute, so our algorithm can be run on entire
low-resolution images, rather than just patches.

9.4.3 Implementation Notes

The objective function (9.55) can be optimized using Scaled Conjugate Gra-
dients (SCG) [12], noting that the gradient can be expressed as

dL
dx

=
ν

2
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dx
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2
df
dx
− β2

4
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4
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dvec(H)
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, (9.67)

where

ξ = S−1g, (9.68)
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and where vec is the matrix vectorization operator. Derivatives of f , g, and
H with respect to x can be found analytically for photometric parameters,
and numerically (using the analytic gradient of e(k)

(
δ(k)
)

with respect to x)
with respect to the geometric parameters.

The upper part of H is block-diagonal nK × nK sparse matrix, and the
final (nK + 1)th row and column are non-sparse, assuming that the blur pa-
rameter is shared between the images, as it might be in a short video sequence,
for instance, and that the image registration errors for two different images
are independent. Notice that the value f in (9.55) is simply the reprojection
error of the current estimate of x at the mean registration parameter values,
i.e., the value of (9.46) evaluated at θ̄

(k), λ̄
(k), and γ̄. Gradients of this ex-

pression with respect to the λ parameters, and with respect to x can both
be found analytically. To find the gradient with respect to a geometric reg-
istration parameter θ

(k)
i , and elements of the Hessian involving it, a central

difference scheme involving only the kth image is used.

9.4.4 Experimental Evaluation

Results from two experiments show the marginalization methods working on
synthetic and real data. The first example uses a synthetic dataset to allow
a quantitative measure of performance to be taken with respect to known
ground truth high-resolution images. The second example shows the full sys-
tem working on real data, and compares the results to the standard Huber-
MAP method, and to the approach of [15].

Synthetic Eyechart Sequence

Sixteen low-resolution “eyechart” inputs were created from the ground truth
image of an eye chart, as used for Figure 9.12. Each image is generated at a
zoom factor of 4, again using the model with 2 translational degrees of freedom
and two photometric degrees of freedom. A Gaussian point-spread function
with a standard deviation of 0.4 low-resolution pixels is used, and Gaussian
noise (30dB; standard deviation equivalent to approximately 3.4 gray levels)
is added to the intensity of each low-resolution pixel independently.

Geometric and photometric registration parameters were initialized to the
identity, and the images were registered using an iterative intensity-based
scheme [3]. The resulting parameter values were used to recover two sets of
super-resolution images: one using the standard Huber-MAP algorithm, and
the second using our extension integrating over the geometric and photometric
registration uncertainties. The Huber parameter α was fixed at 0.01 for all
runs, and ν was varied over a range of possible values representing ratios
between ν and the image noise precision β.

The images giving lowest RMS error from each set are displayed Figure
9.17. Visually, the differences between the images are subtle, though the bot-
tom row of letters is better defined in the output from our algorithm. Plotting
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(a) Ground truth high−res

(c) Best fixed (err = 14.00)

(b) Interpolated low−res

(d) Best int (err = 12.37)
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FIGURE 9.17: Super-resolving the synthetic eyechart dataset. (a) ground
truth image; (b) interpolated low-resolution image; (c) best (minimum MSE)
image from the regular Huber-MAP algorithm; and (d) best result using our
approach of integrating over θ and λ. As well as having a lower RMSE, note
the improvement in black-white edge detail on some of the letters on the
bottom line. Right: variation of RMSE with prior strength for the standard
Huber-prior MAP super-resolution method and our approach integrating over
θ and λ.

the RMSE as a function of ν, it is clear that the registration-marginalizing ap-
proach achieves a lower error compared to the ground truth high-resolution im-
age than the standard Huber-MAP algorithm for any choice of prior strength,
log10 (ν/β). Because ν and β are free parameters in the algorithm, it is an ad-
vantage that the marginalizing approach is less sensitive to variation in their
values.

Real Data

The final example uses real data with a 2D translation motion model and a
2-parameter lighting model exactly as above; the low-resolution images appear
in Figure 9.18. Homographies were provided with the data, but were not used.
Instead, an iterative illumination-based registration was used on the subregion
of the images chosen for super-resolution, and this agreed with the provided
homographies to within a few hundredths of a pixel.

Super-resolution images were created for a number of image prior
strengths, and equivalent values to those quoted in [4] were selected for the
Huber-MAP recovery, following a subjective evaluation of other possible pa-
rameter settings. For the registration-marginalizing approach, a similar pa-
rameter error distribution as that used in the synthetic experiments was as-
sumed. Finally, Tipping and Bishop’s method, extended to cover the illumina-
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FIGURE 9.18: Two of the ten input images in the real dataset.

(c) regular Huber (detailed region) (d) Tipping & Bishop (detailed region)

(a) integrating parameters
(b) integrating parameters (detailed region)

FIGURE 9.19: Super-resolving the “Československo” sequence. (a) Full output
from our algorithm. (b) Detail of the central letters, again with our algorithm.
(c) Detail with the regular Huber-MAP super-resolution image. (d) Detail
with Tipping and Bishop’s method of marginalization. The Gaussian form of
their prior leads to a more blurred output, or one that overfits to the image
noise on the input data if the prior’s influence is decreased.

tion model, was used to register and super-resolve the dataset, using the same
PSF standard deviation (0.4 low-resolution pixels) as the other methods.

The three sets of results on the real data sequence are shown in Figure 9.19.
To facilitate a better comparison, a sub-region of each is expanded to make
the letter details clearer. The Huber prior tends to make the edges unnatu-
rally sharp, though it is very successful at regularizing the solution elsewhere.
Between the Tipping and Bishop image and the registration-marginalizing
approach, the text appears more clear in our method, and the regulariza-
tion in the constant background regions is slightly more successful. Also note
that the Gaussian prior on the image-marginalizing method is zero-mean
(see Equation (9.23)), so in this case having a strong enough prior to sup-
press the background noise has also biased the output image towards the
mid-gray zero value, making the white regions appear darker than they do in
the other methods.



282 Super-Resolution Imaging

9.4.5 Discussion

It is possible to interpret the extra terms introduced into the objective function
in the registration-marginalizing method as an extra regularizer term or image
prior. Considering (9.55), the first two terms are identical to the standard
MAP super-resolution problem using a Huber image prior. The two additional
terms constitute an additional distribution over x in the cases where the
parameter covariance S is not dominated by V ; as the distribution over θ
and λ tightens to a single point, the terms tend to constant values.

The intuition behind the method’s success is that this extra prior resulting
from the final two terms of (9.55) will favor image solutions which are not
acutely sensitive to minor adjustments in the image registration. Since the
checkerboard patter in ML super-resolution images die to ill-conditioning is
very sensitive to the exact registration, this component of the super-resolution
image is penalized.

9.5 Concluding Remarks

In this chapter we have highlighted the importance of considering latent quan-
tities such as image registration or point-spread function size as part of the
super-resolution problem instead of estimating and fixing them in advance.
Within a probabilistic framework based on a generative model of the image
formation process, two different algorithms were described: one which opti-
mizes the latent variables at the same time as the super-resolution image, and
one which marginalizes them out of the problem.

The registration-marginalizing approach to super-resolution shows several
advantages over Tipping and Bishop’s original image-integrating algorithm.
These are a formal treatment of registration uncertainty, the use of a much
more realistic image prior, and the computational speed and memory effi-
ciency relating to the smaller dimension of the space over which it operates.
Note that while the examples in the marginalization section concentrated on
a translation-only motion model, there is no constraint in the mathematical
derivation that prevents it from being applied to more complex parametric
motion models such as affine or planar projective homographies.

The simultaneous super-resolution algorithm that was presented earlier is
conceptually simpler to understand and implement than the marginalization
approach, but likewise demonstrated a quantitative improvement in super-
resolution image quality. While a combination of the two approaches may
yield even more accurate results at a higher computational cost, the efficacy
of the simultaneous approach makes it a reliable choice of super-resolution
algorithm when a high degree of reconstruction accuracy is required.
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10.1 Introduction

In many imaging applications, acquiring an image of a scene with high spatial
resolution is not possible due to a number of theoretical and practical limita-
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tions. These limitations include for instance the sensor resolution, the Rayleigh
resolution limit, the increased cost, data transfer rate, and the amount of shot
noise due to the size of the digital sensor, among others. In these cases, super-
resolution (SR) methods can be utilized to process one or more low-resolution
(LR) images of the scene together to obtain a high-resolution (HR) image. The
basic principle of super-resolution is that changes in the LR images caused by
the blur and the (camera or scene) motion provide additional data that can be
utilized to reconstruct the HR image from the set of LR observations. Super-
resolution methods are widely utilized in a number of imaging fields, such as
surveillance, remote sensing, medical and nano-imaging.

Although the super-resolution literature is rich (see [26, 25, 34] for reviews)
it is still an open and widely investigated topic. The challenges in formulating
and solving the super-resolution problem are the accurate modeling of the gen-
erative process, the description and incorporation of prior knowledge about
unknown variables into the restoration process (regularization), the adapta-
tion of the solution to the characteristics of the unknowns (spatially adaptive
or nonstationary solutions), the automatic determination of the parameters of
the problem, the adaptation of the estimates of these parameters as the iter-
ations progress, and the efficient implementation of the solution approaches.

super-resolution is a highly ill-posed problem, especially when the motion
and blur parameters are estimated along with the HR image solely from the
LR images. A number of methods perform the estimation of these parameters
in a separate preprocessing stage [15, 53, 17, 49]. However, these parameters
are generally very hard to estimate using only LR observations, which makes
estimation errors unavoidable in many practical systems. The errors in esti-
mating the blur and registration parameters cause significant drawbacks in
super-resolution, leading to instabilities in the recovery of the HR image and
significantly affecting the robustness of the restoration procedures.

Some methods utilize robust image estimation methods to alleviate the
problems caused by the errors in the motion estimates. A robust backprojec-
tion method is proposed in [53] based on median estimators. Farsiu et al. [17]
proposed to use an observation model based on l1-norms and image priors
based on bilateral total-variation (BTV) functions, whose combination makes
the algorithm robust to motion outliers. Other methods employ regularization
by modeling the registration errors as Gaussian noise [28, 21]. All methods in
this category attempt to reduce the effect of estimation errors and noise by
decreasing the weight of unreliable observations in the restoration process, but
they do not attempt to correct the errors in the motion estimation process.

Another class of SR methods estimate both the HR image and the mo-
tion parameters simultaneously. The most common approach in this category
is alternating minimization (AM), where at each iteration, the estimates of
the HR image and the motion parameters are improved progressively in an
alternating fashion [20, 35, 43, 42, 44, 52, 24, 48, 38]. Some methods in this
category also employ explicit models of the errors in motion estimates. In
[48] and [38], the errors in motion and blur parameters are assumed to fol-
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low Gaussian distributions. In [48], the HR image is marginalized out from
the joint distribution and the motion and blur parameters are estimated from
this marginal distribution. A major disadvantage of this method is that the
marginalization of the HR image requires the utilization of a Gaussian image
prior, which overpenalizes strong image edges and therefore reduces the quality
of the estimated HR image. In [38], this problem is overcome by marginalizing
the motion and blur parameters, and employing a Huber prior to model the
HR image. Recently, a joint identification method is proposed in [22] where
the optimization problem is solved simultaneously for both the HR image and
motion parameters. Finally, methods that do not utilize explicit knowledge of
the motion estimation parameters have been proposed in [46, 39].

A major drawback of most super-resolution methods is that they employ
a number of parameters that need to be tuned. This tuning process can be
cumbersome and time-consuming since the parameter values have to be chosen
differently for each image and degradation condition. Moreover, the algorith-
mic performance depends significantly on the appropriate choice of parame-
ters, such that generally a long supervised process is needed to obtain useful
results.

The Bayesian framework provides a powerful means for addressing all the
challenges described above. First, a systematic modeling of the observations,
the sought after unknown variables, and the algorithm parameters can be
achieved using a Bayesian formulation. Second, the Bayesian methodology
offers a variety of inference methods for the estimation of the unknowns, which
have a number of advantages over more traditional (deterministic) methods.
These include accounting for the estimation errors that increases robustness;
providing distribution estimates instead of point estimates, which provides
a measure of uncertainty of the estimation process; and providing a general
framework for quantitative selection and comparison of models and inference
strategies based on specific applications.

In this chapter, we describe the Bayesian framework for systematically
modeling the observed LR images, the unknown HR image, and the motion
and blur parameters. Using this model we develop two SR algorithms that
jointly estimate the HR image and all algorithmic parameters. Through the
utilization of variational Bayesian analysis, the proposed framework provides
uncertainties of the estimates during the restoration process, which helps to
prevent error-propagation and improves robustness. All required algorithmic
parameters are estimated along with the HR image, and therefore algorithms
do not require user supervision. Moreover, the parameters are estimated opti-
mally in a stochastic sense, which provides high-reconstruction performance.
We demonstrate experimentally that the proposed methods provide HR im-
ages with high quality and compare favorably to existing SR methods. Finally,
we discuss extensions of the model to incorporate the estimation of the motion
and blur parameters.
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10.2 Problem Formulation

In super-resolution, the general discrete model of the generation of LR images
yk, k = 1, . . . , L from the HR image x caused by warping, blurring, and
downsampling is given in matrix-vector form by

yk = AHkC(sk)x + nk = Bk(sk)x + nk, (10.1)

where A is the N ×PN downsampling matrix, Hk is the PN ×PN blurring
matrix, C(sk) is the PN × PN warping matrix generated by the motion
vector sk, and nk is the N × 1 acquisition noise. Note that the matrices Hk

and C(sk) and the noise nk can be different for each LR image yk. The LR
images yk and the HR image x consist of N and PN pixels, respectively,
where the integer P > 1 is the factor of increase in resolution.

The effects of downsampling, blurring, and warping can be combined into
a single N ×PN system matrix Bk(sk), such that each row in matrix Bk(sk)
maps the pixels in the HR image x to one pixel in the LR image yk. Given
(10.1), the super-resolution problem is to find an estimate of the HR image x
from the set of LR images {yk} using prior knowledge about {B(sk)}, {nk},
and x.

In super-resolution algorithms, the blurring matrices Hk and the motion
vectors sk are generally assumed to be known. However, this assumption does
not hold in many practical systems since exact blurring and motion infor-
mation are very hard to obtain. Therefore, a more practical solution is to
incorporate their estimation along with the estimation of the HR image. The
estimation of the blur and motion can be performed in two ways: First, they
can be identified separately from x, and these estimates can later be utilized in
an HR image estimation algorithm. Algorithms in a second category estimate
the unknown image, blur and motion parameters simultaneously. The most
common approach in this category utilizes alternating minimization methods,
where the formulated optimization problem is solved for the HR image, mo-
tion and blur in an alternating fashion. Recently, a joint identification method
is proposed in [22] where the optimization problem is solved simultaneously
for both the HR image and motion parameters.

10.3 Bayesian Framework for Super-Resolution

The fundamental principle of Bayesian methods is to treat all parameters and
observable variables as unknown stochastic quantities and assign probabil-
ity distributions to them. Therefore, in super-resolution, the unknown image
x, the motion parameters {sk}, and the blurring matrices Hk (if they are
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assumed unknown) are all treated as samples of random fields, with corre-
sponding prior probability density functions that incorporate our knowledge
about the imaging process and the nature of the image into the estimation
process.

These prior distributions depend on parameters Ω, which are termed hyper-
parameters. Most super-resolution algorithms assume that these parameters
are known, or are estimated separately from the image, motion, and blur.
On the other hand, in the Bayesian framework an additional modeling stage
can be incorporated, where hyperprior distributions are assigned to model
the hyperparameters. This additional modeling stage leads to a hierarchical
Bayesian framework, which generally increases robustness to errors when there
is uncertainty, and it is essential when the confidence in the observed data is
low (for instance, due to high-acquisition noise, or very low-spatial resolution).

Specifically, the hierarchical Bayesian framework for super-resolution con-
sists of two stages and is formulated as follows. In the the first stage the
prior distributions p(x|αim), p(sk, Hk|Ω), and the conditional distribution
p(y|x, {sk}, {Hk}, {βk}) are defined. The hyperparameters Ω are modeled by
the hyperprior distribution p(Ω) in the second stage. This hierarchical mod-
eling allows us to write the joint distribution as

p(x, {sk}, {Hk}, Ω, y) = p(y|x, {sk}, {Hk}, Ω)p(x|Ω)p({sk}, {Hk}|Ω)p(Ω) .

(10.2)

In the following subsections we provide the description of the individual
distributions used to model the unknowns.

10.3.1 Observation Models

Due to the model in (10.1), the conditional distribution of the observed images
yk is related to the noise nk. A typical model for nk is zero-mean independent
white Gaussian noise, which results in the conditional distribution of the LR
image yk given by

p(yk|x, sk, Hk, βk) ∝ β
N/2
k exp

[
−βk

2
‖ yk −Bk(sk)x ‖2

]
, (10.3)

with βk the inverse variance (precision). Assuming statistical independence of
the noise among the LR image acquisitions, the conditional probability of the
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set of LR images y given x can be expressed as

p(y|x, {sk}, {Hk}, {βk}) =
L∏

k=1

p(yk|x, sk, Hk, βk)

=

[
L∏

k=1

β
N/2
k

]
exp

[
−1

2

L∑
k=1

βk ‖ yk −Bk(sk)x ‖2
]

.

(10.4)

The independent Gaussian model in (10.4) is used in most of the existing
super-resolution methods [28, 48, 21, 38, 48, 11, 24]. Some methods utilized
l1-norm based observation models that take both acquisition and registration
noise into account [53, 17]. Alternatively, an explicit modeling of the regis-
tration errors can be utilized so that (10.4) only models the acquisition noise
[48, 38].

10.3.2 Image Models

The prior distribution p(x|Ω) reflects our prior knowledge about the nature
of the HR image x and constrains the space of possible solutions to the most
probable ones. Therefore, the quality of the estimated HR image, as well as
the accuracy in the estimates of other unknowns depends on the incorpora-
tion of accurate image models. Typical descriptions of the natural images used
in the super-resolution literature are smooth, piecewise-smooth, or textured,
among others. These descriptions are embedded into the Bayesian framework
using priors, which typically specify probabilistic relations between neighbor-
ing pixels or their derivatives.

An important consideration while choosing the image prior is the analyt-
ical tractability of the Bayesian inference. This generally limits the possible
choices. The simplest possible image prior is the noninformative flat prior
[45, 47, 23]

p(x) ∝ constant. (10.5)

The most common model is the class of Gaussian models, often termed as Si-
multaneous Autoregression (SAR) or Conditional Autoregression (CAR) mod-
els, expressed as

p(x|αim) ∝ exp
[
−αim

2
‖ Cx ‖2

]
, (10.6)

where C is the discrete Laplacian operator. The SAR model is suitable for
the image if it is assumed that the luminosity distribution is smooth on the
image domain. However, it is also well-known that generally this prior leads
to oversmooth image estimates, where the image edges are overpenalized and
not well-preserved. Non-quadratic image priors are generally considered more
appropriate for natural images, as they aim at preserving edges by not over-
penalizing discontinuities, i.e., outliers in the image gradient distribution. One
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of the most popular non-quadratic image priors is the total variation (TV) im-
age prior. The TV function is utilized successfully in a number of image recov-
ery methods including denoising [41], blind deconvolution [5, 13], inpainting,
and super-resolution [36, 12]. The TV prior is given by

p(x|αim) =
1

Z(αim)
exp
[
−1

2
αimTV(x)

]
, (10.7)

where Z(αim) is the partition function and

TV(x) =
PN∑
i=1

√
(Δh

i (x))2 + (Δv
i (x))2. (10.8)

The operators Δh
i (x) and Δv

i (x) correspond, respectively, to the horizontal
and vertical first order differences at pixel i. For a fully-Bayesian analysis,
the explicit form of the partition function Z(αim) is needed but it cannot be
calculated. It can, however, be approximated by a quadratic function [5]

p(x|αim) ∝ c α
PN/2
im exp

[
−1

2
αimTV(x)

]
, (10.9)

where c is a constant.
Many other image priors have been proposed in the literature, including

bilateral TV priors [17], Huber functions [38], anisotropic diffusion [27], and
compound models [40]. Unfortunately, most of these complex priors cannot
be directly used within Bayesian formulations, since they do not result in
tractable inference procedures. In the case of the TV prior in (10.9) [2] and
wavelet-based priors based on lp norms (0 < p ≤ 1) [3, 19], majorization-
minimization approaches can be used to obtain variational approximations. A
general framework for variational methods for nonquadratic image priors can
be found in [37].

10.3.3 Blur Models

As mentioned above, the blur PSF is assumed to be known in most super-
resolution algorithms. On the other hand, if they are assumed unknown, their
estimation can also be incorporated into the Bayesian formulation using blur
prior distributions. Depending on the nature of the blur the imaging device
is expected to introduce, the blur prior can be chosen from one of the priors
presented in Section 10.3.2. For instance, SAR priors are commonly used for
smooth blur PSFs without discontinuities, including lens blur and blur due
to atmospheric turbulence [33]. On the other hand, TV-based blur priors can
be utilized for blur PSFs with discontinuities, such as box-shaped PSFs [13,
5]. Other choices include Dirichlet distributions [31], mixture distributions of
exponentials [6, 18], among others (see [10] for a review of blur models).
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10.3.4 Motion (Registration) Models

super-resolution is a highly ill-posed problem, especially when the motion
parameters are estimated along with the HR image solely based on the LR
images. In many cases, the motion is modeled using parametric models, such as
translational, affine, projective motion, which significantly reduces the number
of parameters to be estimated. These models are effective in capturing the real
motion in the case of image super-resolution, whereas more general per-pixel
dense motion fields are needed for video super-resolution.

Even when parametric motion models are utilized, the registration pa-
rameters are generally very hard to estimate using only LR observations,
which makes estimation errors unavoidable in many practical systems. The
errors in estimating the registration parameters cause significant drawbacks
in super-resolution, leading to instabilities in the recovery of the HR image
and significantly affecting the robustness of the restoration procedures.

The Bayesian methodology can be utilized to model the estimation er-
rors in the registration parameters by treating these parameters as stochastic
variables and modeling their uncertainty using probability distributions. Let
us denote by s̄p

k the estimate of sk obtained from LR observations in a pre-
processing step, using registration algorithms, such as the ones reported in
[50, 29]. We can model the motion parameters as following Gaussian distribu-
tions with a priori means set equal to the preliminary motion parameters s̄p

k,
that is,

p(sk) = N (sk|s̄p
k,Λp

k) , (10.10)

with Λp
k the prior covariance matrix. The parameters s̄p

k and Λp
k incorporate

prior knowledge about the motion parameters into the estimation procedure.
If such knowledge is not available, s̄p

k can be set equal to a zero vector, and
(Λp

k)−1 equal to a positive definite matrix with elements close to zero. This
makes the observations solely responsible for the estimation process. Utilizing
Gaussian distributions to model the uncertainty in the motion parameters
have also been used in [28, 48, 38].

10.3.5 Hyperpriors on the Hyperparameters

The hyperparameters are crucial in determining the performance of the SR
algorithm. Most super-resolution methods leave their estimation to the user,
which requires a long parameter-tuning process and therefore limits the appli-
cability of the super-resolution method. On the other hand, employing a fully
Bayesian analysis allows their estimation as well. To obtain tractable Bayesian
inference, generally conjugate hyperprior distributions are utilized, which lead
to straightforward calculation or approximation of the posterior distribution
p(x, sk, Hk, Ω|y). Conjugate priors allow one to begin with a certain func-
tional form for the conditional and prior distributions and end up with the
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posterior of the same functional form, but with parameters updated from the
observed samples.

A large part of the Bayesian literature is devoted to finding conjugate
hyperprior distributions (see [8]). The most commonly used hypeprior distri-
bution is the uninformative prior model

p(Ω) = const. (10.11)

More flexible hyperprior distributions can also be utilized that allow for the
incorporation of prior knowledge about the hyperparameters. For instance, for
parameters ω corresponding to the precisions (inverse variances) of Gaussian
distributions, the Gamma distribution is used, given by

p(ω) = Γ(ω|ao
ω, bo

ω) =
(bo

ω)ao
ω

Γ(ao
ω)

ωao
ω−1 exp [−bo

ωω] , (10.12)

where ao
ω > 0 and bo

ω > 0 are the shape and scale parameters, respectively. By
appropriately selecting these parameters one can make the estimation process
rely on information provided by the observed data and prior knowledge about
the hyperparameters.

10.4 Bayesian Inference

Let us denote the set of all unknowns by Θ = {x, {sk}, {Hk}, Ω} for clarity. As
is widely known, the Bayesian inference is based on the posterior distribution

p(Θ | y) =
p(Θ, y)
p(y)

. (10.13)

There is a number of methods that can be utilized to obtain estimates of
the HR image x and possibly the motion parameters and blur using (10.13).
Depending on the prior models used, analytical solutions may be hard to find,
so often approximations are needed.

Most methods in the literature seek point estimates of the unknowns,
which are generally obtained by finding values that maximize the posterior
distribution

Θ̂ = argmax
Θ

p(Θ | y) . (10.14)

Maximum likelihood (ML) and maximum a posteriori (MAP) solutions
correspond to (10.14), which reduce the problem to one of optimization.
Regularization-based approaches frequently found in the literature fall into
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this category. Methods providing point estimates to the unknowns might suf-
fer in some cases from a number of disadvantages. Common problems are over-
fitting in the presence of high noise, error propagation among the estimates
of different unknowns, and lack of providing uncertainties of the estimates.

On the other hand, the Bayesian framework provides other methodolo-
gies for estimating the distributions of the unknowns, which deal better with
uncertainty. Approximating or simulating the posterior distributions are two
options. For instance, marginalization can be utilized to perform inference
on a subset of unknowns. One option is to marginalize out the unknown HR
image x, that is,

ŝk, Ĥk, Ω̂ = argmax
sk,Hk,Ω

∫

x

p(x, {sk}, {Hk}, Ω, y) dx , (10.15)

and then to select as the HR image estimate

x̂ = argmax
x

p(x|Ω̂)p(y|x, {ŝk}, {Ĥk}, Ω̂) . (10.16)

This method is also called the evidence-based analysis and is utilized in [48].
A major disadvantage of this method is that the marginalization of the HR
image requires for tractability the utilization of a Gaussian image prior, which
overpenalizes strong image edges and therefore reduces the quality of the esti-
mated HR image. In [38], this problem is overcome by adopting an empirical -
based approach where first the motion and blur parameters are marginalized
out, and the HR image is then estimated by employing a Huber image prior.

In evidence- and empirical -based approaches the marginalized variables
are called hidden variables. The expectation-maximization (EM) algorithm,
first described in [14], is a very popular method in signal processing for itera-
tively solving ML and MAP problems that include hidden variables. The basic
principle of the EM algorithm is to first integrate out hidden variables from
the joint distribution to obtain marginal distributions, and then maximize the
posterior distribution obtained from the marginal distribution to provide es-
timates of the unknowns. The EM algorithm has the advantage of guaranteed
convergence to local maxima of the posterior distribution, and it is particu-
larly suited for inverse problems in image processing since the unknown image
x is a natural choice for hidden data. However, in many applications, the cal-
culation of the posterior distribution is intractable, which severely limits the
application of the EM method.

To overcome this problem, variational Bayesian methods can be utilized.
Variational Bayesian methods are generalizations of the EM algorithm where
the intractable posterior distribution p(Θ|y) is approximated by a tractable
distribution q(Θ). This approximating distribution is found by minimizing
the Kullback-Leibler (KL) distance between q(Θ) and the posterior p(Θ | y),
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given by

CKL(q(Θ) ‖ p(Θ|y)) =
∫

q(Θ) log
(

q(Θ)
p(Θ|y)

)
dΘ

=
∫

q(Θ) log
(

q(Θ)
p(Θ, y)

)
dΘ + const, (10.17)

which is always nonnegative and equal to zero only when q(Θ) = p(Θ | y),
which corresponds to the EM result.

In order to reduce computational complexity and to obtain analytical so-
lutions for the approximations of the parameter distributions, the distribution
q(Θ) is assumed to have a factorized form using the mean field approxima-
tion [9, 7, 30]. For instance, in super-resolution, we may use the following
factorization of q(Θ)

q(Θ) = q(x, {sk}, Ω) = q(x)q(Ω)
L∏

k=1

q(sk)q(Hk) . (10.18)

For a parameter θ ∈ Θ, let us denote by Θθ the subset of Θ with θ re-
moved. An iterative procedure can be obtained by minimizing (10.17) using
the factorization (10.18). At each iteration, the distribution q(θ) of the pa-
rameter θ can be estimated using the current estimates of other parameters
Θθ as follows [9]

q(θ) = argmin
q(θ)

CKL(q(Θθ)q(θ) ‖ p(Θ|y)) (10.19)

= const× exp
(
〈log p(Θ, y)〉q(Θθ)

)
, (10.20)

where 〈 · 〉q(Θθ) denotes expected value with respect to the distribution q(Θθ).
Alternating minimization strategies are generally employed to provide esti-
mates for all unknown distributions.

Finally, sampling methods can be utilized to approximate the posterior
distributions. Sampling methods represent the most general approaches to
performing inference, and in theory they allow for the utilization of arbitrar-
ily complex observation models and prior distributions. Sampling (or simulat-
ing) the posterior can provide solutions closer to the optimal ones than other
methods, but they are computationally very intensive and their convergence
is very hard to establish.

Variational Bayesian methods have certain advantages over other methods.
First, they provide accurate approximations to the whole posterior mass. If
the posterior distribution is sharply peaked about its maximum value this does
not provide any advantage. However, in the case of high noise or heavy-tailed
posterior using the maximum posterior values as estimates can be unreliable.
For instance, as mentioned in [32], for a Gaussian in high dimensions most of
the probability mass is concentrated away from the probability density peak,
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which corresponds to the solutions provided by the ML and MAP methods.
In this case, variational Bayesian methods are expected to provide more accu-
rate and robust solutions. The second advantage of the variational Bayesian
methods is that they account for the uncertainties in the estimation processes
through the use of distribution estimates. Finally, they are computationally
much more efficient than sampling approaches.

10.5 Variational Bayesian Inference Using TV Image
Priors

The general variational Bayesian analysis can be directly utilized for Gaus-
sian observation models and Gaussian image priors (such as SAR). However,
as mentioned above, Gaussian priors tend to result in oversmooth image es-
timates with reduced image quality. Unfortunately, non-quadratic (and non-
convex) image priors cannot be directly utilized within variational Bayesian
methods, as the calculation of the KL distance in (10.17) is intractable. This
difficulty can be overcome by resorting to majorization-minimization (MM)
[19] approaches (also referred to as variational approximations [37]). The main
goal in these methods is to obtain bounds to the joint distribution that are
easier to evaluate analytically than the original forms.

MM methods have been proposed for a number of non-Gaussian image
priors. Examples include priors based on l1-norms, lp-norms with 0 < p <
1 [2, 19] and TV image priors [3, 4]. In the following we will present an
MM approach for TV image priors in combination with variational Bayesian
inference for super-resolution reconstruction. We will first assume that the
blurring matrices Hk and the registration parameters sk are known, and later
we will provide an outline of how this framework can be extended to include
their estimation as well.

The main principle of the MM approach is to find a bound of the joint
distribution in (10.2), which makes the minimization of (10.17) tractable. A
lower bound of the distribution in (10.2) can be found as follows. Let us first
define a functional M(αim, x, w) with a PN−dimensional vector w ∈ (R+)PN ,
with components wi, i = 1, . . . , PN , as follows

M(αim, x, w) = c α
PN/2
im exp

[
−αim

2

∑
i

(Δh
i (x))2 + (Δv

i (x))2 + wi√
wi

]
,

(10.21)
where c is the same constant as in (10.9). As will become clear later, the
auxiliary variable w is a quantity that needs to be computed and it has an
intuitive interpretation related to the unknown HR image x. Let us next
consider the following inequality, derived from the geometric-arithmetic mean



Variational Bayesian Super-Resolution Reconstruction 297

inequality, which states that for real numbers a ≥ 0 and b > 0

√
ab ≤ a + b

2
⇒
√

a ≤ a + b

2
√

b
. (10.22)

Using a = (Δh
i (x))2 +(Δv

i (x))2 and b = wi in the inequality (10.22) it is easy
to show that the functional M(αim, x, w) is a lower bound of the image prior
p(x|αim), that is,

p(x|αim) ≥ M(αim, x, w). (10.23)

This lower bound can be used to find a lower bound for the joint distribution
in (10.2), given by

p(y, Θ) ≥ p(y|Θ)M(αim, x, w)p(αim)
L∏

k=1

p(βk)

= F(Θ, w, y), (10.24)

which results in an upper bound of the KL distance in (10.17) as

CKL(q(Θ) ‖ p(Θ, y)) ≤ CKL(q(Θ) ‖ F(Θ, w, y)). (10.25)

The minimization of (10.17) can be replaced by the minimization of its upper
bound in (10.25), since minimizing this bound with respect to the unknowns
and the auxiliary variable w in an alternating fashion results in closer bounds
at each iteration [5]. The bound in (10.25) is quadratic and therefore it is easy
to evaluate analytically. Utilizing this bound, the standard solution of the
variational Bayesian methods in (10.20) can be used to estimate the unknown
distributions q(θ) with θ ∈ Θ as follows

q(ξ) = const× exp
(
〈log F(Θ, w, y)〉q(Θξ)

)
. (10.26)

In the following, the subscript of the expected value will be removed when it
is clear from the context.

Let us now proceed with deriving the explicit forms of the solutions for
each unknown using (10.26).

10.5.1 Estimation of the HR Image Distribution

From (10.26), the distribution q(x) of the HR image x can be found as

q(x) ∝ exp
(
− 1

2
<αim>

∑
i

(Δh
i (x))2 + (Δv

i (x))2
√

wi

− 1
2

∑
k

<βk> ‖ yk −AHkC(sk)x ‖2
)

. (10.27)
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This distribution is a multivariate Gaussian distribution q(x) =
N (x|μx, Σx) with parameters

μx = Σx

[∑
k

<βk>Bk(sk)T yk

]
, (10.28)

Σ−1
x =

∑
k

<βk>Bk(sk)T Bk(s̄k) + <αim>(Δh)T WΔh + <αim>(Δv)T WΔv ,

(10.29)

where

W = diag
(

1
√

wi

)
, i = 1, . . . , PN. (10.30)

The elements wi, i = 1, . . . , PN , of the auxiliary vector w are calculated as

wi = Ex[(Δh
i (x))2 + (Δv

i (x))2]

= (Δh
i μx)2 + (Δv

i μx)2 + trace
[
(Δh

i )T (Δh
i )Σx

]
+ trace

[
(Δv

i )T (Δv
i )Σx

]
.

(10.31)

It is clear from (10.31) that the vector w represents the local spatial activity
in the HR image x. Therefore, the matrix W introduces spatial adaptivity
into the estimation process of the HR image in (10.28)–(10.29) by controlling
the smoothing applied at different locations. Moreover, the uncertainty of the
image estimate is also taken into account by the last two terms in (10.31)
when calculating the spatial adaptivity vector w using the distribution q(x).

10.5.2 Estimation of the Hyperparameter Distributions

In the last step of the algorithm, the distributions of the hyperparameters
q(αim) and q(βk) are found from (10.26) as Gamma distributions, expressed
as

q(αim) ∝ α
PN/2−1+ao

αim
im exp

[
−αim(bo

αim
+
∑

i

√
wi)

]
, (10.32)

and

q(βk) ∝ β
N/2−1+ao

β

k exp

[
−βk(bo

β +
Ex

[
‖ yk −B(sk)x ‖2

]
2

)

]
. (10.33)

The quantity Ex

[
‖ yk −B(sk)x ‖2

]
can be calculated as

Ex

[
‖ yk −B(sk)x ‖2

]
=‖ yk −B(sk)μx ‖2 +trace

[
B(sk)T B(sk)Σx

]
.

(10.34)
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The means of the distributions in (10.32) and (10.33), which are used as
hyperparameter estimates, are given by

<αim> =
PN/2 + ao

αim∑
i

√
wi + bo

αim

, (10.35)

<βk> =
N + 2ao

β

Ex [‖ yk −B(sk)x ‖2] + 2bo
β

. (10.36)

Note that the shape and scale parameters ao
αim

, ao
β , bo

αim
, bo

β can be used
to incorporate prior knowledge about the variances of the HR image and
observation noise, in case such knowledge is available. If they are set equal
to ao

αim
= ao

β = 1 and bo
αim

= bo
β = 0, which corresponds to utilizing flat

hyperprior distributions for the hyperparameters, the observed LR images are
made solely responsible for the whole estimation process.

In summary, the algorithm iterates between estimating the HR image using
(10.28) and (10.29), the spatial adaptivity vector w using (10.31), and finally
the hyperparameters using (10.35) and (10.36). The algorithm is summarized
below as Algorithm 1. A major computational difficulty with Algorithm 1
is the explicit construction of the matrix Σx in (10.29), which requires the
inversion of a PN × PN matrix. To avoid this computation, we solve (10.28)
efficiently using the conjugate gradient method, and in equations where the
explicit form of Σx is needed, i.e., in (10.31) and (10.34), Σx is approximated
by a diagonal matrix obtained by inverting the diagonal elements of (10.29).
We have conducted extensive experiments with small images that permit the
explicit inversion of (10.29) to verify the validity of this approximation. We
have found out empirically that this approximation results in small errors,
thus having a minor effect in the estimation process. Similar approximations
have been utilized in other Bayesian recovery methods [48, 5, 24].

Algorithm 1 Variational Bayesian Super-Resolution
Calculate initial estimates of the HR image and hyperparameters
while convergence criterion is not met do

1. Estimate the HR image distribution using (10.28) and (10.29).
2. Compute spatial adaptivity vector w using (10.31).
3. Estimate the distributions of the hyperparameters αim, {βk} using
(10.32) and (10.33).

It is worth emphasizing here that we did not assume a priori that q(x) is
a Gaussian distribution. This result is derived due to the minimization of the
KL divergence with respect to all possible distributions according to the fac-
torization q(αim)q(x)

∏L
k=1 q(βk) [9]. We can, however, make an assumption

that these distributions are degenerate, i.e., they take one value with probabil-
ity one and the rest of the values with probability zero. Using this assumption,
we obtain another algorithm very similar to the one presented above, with the
only difference that the uncertainty terms arising from the covariance matrices
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Algorithm 2 Variational Bayesian Super-Resolution with Degenerate
Distributions

Calculate initial estimates of the initial HR image and hyperparameters
while convergence criterion is not met do

1. Calculate the HR image estimate x̂ using

x̂ =

[∑
k

β̂kBk(sk)T Bk(sk) + α̂im(Δh)T WΔh + α̂im(Δv)T WΔv

]−1

×
[∑

k

β̂kBk(sk)T yk

]
(10.37)

2. Compute spatial adaptivity vector w using

wi = (Δh
i (x̂))2 + (Δv

i (x̂))2 (10.38)

3. Compute hyperparameter estimates α̂im, β̂k using

α̂im =
PN/2 + ao

αim∑
i

√
wi + bo

αim

, (10.39)

β̂k =
N + 2ao

β

‖ yk −B(sk)x̂ ‖2 +2bo
β

, (10.40)

are removed. The derivation of this algorithm is very similar to the first one,
and therefore we omit its details and provide the iterative procedure below in
Algorithm 2.

It is clear that using a degenerate distribution for x in Algorithm 2 removes
the uncertainty terms in the image and hyperparameters estimates. However,
the incorporation of these uncertainties through the covariance of x improves
the restoration performance, especially in cases when the observation noise
is high. This is mainly due to the fact that poor estimations of one variable
(due to noise or outliers) can influence the estimation of other unknowns, and
as a result the overall performance can significantly be affected. By estimat-
ing the full posterior distribution of the unknowns instead of point estimates
corresponding to the maximum probability (such as MAP estimates), the un-
certainty of the estimates is incorporated into the estimation procedure to
ameliorate the propagation of estimation errors among unknowns.

We conclude this section by commenting on the computational complexity
of the algorithms. Algorithms 1 and 2 have similar complexities, with Algo-
rithm 1 requiring more computations per iteration due to the incorporation of
the covariance matrices. The majority of computations in both algorithms is
performed for estimating the HR image, which is calculated efficiently using
the conjugate gradient method. Therefore, the algorithms have computational
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FIGURE 10.1: (Left) Original HR image, (right) Five synthetically generated
LR images.

demands very similar to most existing SR algorithms in the literature (for in-
stance, the AM methods [20, 35, 48, 38]).

10.6 Experiments

In this section, we will provide experimental results with both synthetic and
real data to demonstrate the performance of the algorithms developed in the
previous section. In synthetic experiments, the quality of the restored HR
image is measured quantitatively by the peak signal-to-noise ratio (PSNR),
which is defined as

PSNR = 10 log10

NP

‖x̂− x‖2 , (10.41)

where x̂ and x are the estimated and original HR images, respectively, and
pixel values in both images are normalized to lie in the interval [0, 1]. In
the following, Algorithm 1 will be abbreviated as ALG1, and Algorithm 2 as
ALG2. We consider a motion model consisting of translational and rotational
motion, so that sk = (θk, ck, dk)T , where θk is the rotation angle, and ck and dk

are the horizontal and vertical translations of the kth HR image, respectively,
with respect to the reference frame x.

In all experiments reported below, the initial values of the algorithms
ALG1 and ALG2 are chosen as follows: The registration parameters are es-
timated from the LR observations using the standard Lucas-Kanade method
[29] (similar results were obtained with other registration algorithms such as
[50]). The HR image estimate is then initialized using the average image [38],
which is an oversmooth estimate of the HR image obtained using the LR
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TABLE 10.1: Mean PSNR values and standard deviations of the estimated
HRD images in 20 experiments provided by the SR algorithms at different
SNR levels.

SNR 5dB 15dB 25dB 35dB 45dB
BCB 15.96± 0.08 17.02± 0.03 17.14± 0.01 17.16± 0.01 17.16± 0.01
ZMT 18.71± 0.08 20.48± 0.24 20.69± 0.38 20.55± 0.28 20.53± 0.01
RSR 19.07± 0.08 22.25± 0.05 26.40± 0.08 31.22± 0.06 33.67± 0.07
ALG1 20.34± 0.05 24.93± 0.13 28.66± 0.12 32.67± 0.11 36.85± 0.14
ALG2 17.48± 0.05 24.93± 0.12 28.48± 0.11 32.15± 0.09 36.05± 0.16

images as

xa = s−1
L∑

k=1

Bk(sk)T yk, (10.42)

where s is a diagonal matrix with the column sums of Bk(sk) as its elements.
Note that this initial estimate is calculated very efficiently, and it generally in-
creases the robustness of the algorithms to the noise. On the other hand, other
initializations (such as bicubic interpolation) resulted in similar restorations.

The covariance matrices in ALG1 are initially set equal to zero. The rest
of the algorithm parameters are automatically calculated from the initial HR
image estimate using the algorithmic steps provided in Algorithms 1 and 2.
As the convergence criterion we used ‖xn − xn−1‖2/‖xn−1‖2 < 10−5, where
xn and xn−1 are the image estimates at the nth and (n − 1)st iterations,
respectively.

For comparison, the following methods are used: (1) Bicubic interpolation
(denoted by BCB), (2) the robust SR method in [53] (denoted by ZMT ),
which is based on backprojection with median filtering, and (3) the robust
SR method in [17] (denoted by RSR), which is based on bilateral TV priors.
We also experimented with other SR methods contained in the EPFL SR
software [51], but they provided inferior results compared to ZMT and RSR,
and therefore they are not reported here.

We generated 5 synthetic LR images from the HR image shown on the left
in Figure (10.1) through warping, blurring, and downsampling by a factor of 2.
The warping consists of both translation and rotation, where the translations
are chosen as

(
0.0
0.0

)
,

(
0.0
0.5

)
,

(
0.5
0.0

)
,

(
1.0
0.0

)
,

(
0.0
1.0

)
(10.43)

pixels, and the rotation angles are (0◦, 3◦,−3◦, 5◦,−5◦), respectively. For the
blur we used a 3×3 uniform PSF. The LR images obtained after the warping,
blurring and downsampling operations are further degraded by additive white
Gaussian noise at SNR levels of 5dB, 15dB, 25dB, 35dB, and 45dB. Example
LR images corresponding to the 25dB SNR case are shown in Figure (10.1).



Variational Bayesian Super-Resolution Reconstruction 303

FIGURE 10.2: Mean PSNR values of SR algorithms for different input SNR
levels (ALG1 and ALG2 : the variational Bayesian methods, BCB : bicubic
interpolation, ZMT : method in [53], RSR: method in [17]).

Note that this resolution chart image is chosen for better illustration of the
performance in resolution enhancement; similar results were obtained in ex-
periments with other images.

We conducted simulations with 20 different noise realizations at each SNR
level, and the average and variance of these experiments are reported. Since
the algorithms ZMT and RSR contain algorithmic parameters, we exhaus-
tively searched for the parameters resulting in the maximum PSNR value,
so as to report their best performance. Moreover, we reported the maximum
PSNR result obtained during their iterations rather than the PSNR result
at convergence, and initialized the algorithms with both the bicubic interpo-
lation result and the average image in (10.42), and chose the best resulting
image among them. Note, however, that the parameters of ALG1 and ALG2
are estimated automatically, that is, there is no need for parameter tuning.

Mean PSNR values and standard deviations of the estimated HR images
provided by the algorithms are shown in Table 10.1, and the mean PSNR
values are plotted in Figure (10.2). As expected, all SR algorithms result in
better reconstructions than bicubic interpolation. It is also clear that ALG1
and ALG2 provide the best performance among all methods across all noise
levels. It should be emphasized that the PSNR values of the methods ZMT and
RSR are obtained by exhaustively adjusting their parameters, which requires
multiple runs, whereas the proposed methods provided their results in a fully-
automated fashion in a single run. Therefore, even for the cases where the
PSNR values are similar, algorithms ALG1 and ALG2 should be preferred as
the methods of choice.
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(a) (b) (c)

(d) (e)

FIGURE 10.3: Example estimated HR images from different SR methods
in the case when SNR=25dB. Results of (a) Bicubic interpolation -BCB -
(PSNR = 17.14dB), (b) ZMT (PSNR = 20.55dB), (c) RSR (PSNR =
26.41dB), and the variational Bayesian methods (d) ALG1 (PSNR =
28.75dB), and (e) ALG2 (PSNR = 28.58dB).

In general, ALG1 provides restored HR images with slightly higher qual-
ity than ALG2. This is especially evident in high-noise cases (e.g., SNR =
5dB), where the incorporation of the uncertainty prevents the algorithm from
overfitting due to high noise.

Example HR restorations are shown in Figure (10.3) for the SNR = 25dB
case, and in Figure (10.4) for the SNR = 45dB case. It is clear that ALG1
and ALG2 provide the most visually enhanced restorations with significantly
reduced ringing artifacts and much sharper edges compared to the other meth-
ods. Restorations provided by ALG1 and ALG2 are very similar, with ALG1
providing slightly sharper edges with less ringing artifacts.

Next we show example super-resolution results with a real-image dataset.
15 LR images were taken from the Adyoron dataset from [1]. The blur PSF
is assumed to be a 5x5 Gaussian with variance 1. Algorithms ZMT and RSR
are used again for comparing the performance of the algorithms, and we used
the MDSP software [16] to obtain their results. We also provide results with
the algorithm in [15], denoted by EF. The motion parameters are estimated
from the LR images using the MDSP software.

The reconstructed HR images with a resolution enhancement by a factor
equal to three obtained by bicubic interpolation and SR algorithms are shown
in Figure (10.5). It is clear that methods ALG1 and ALG2 provide HR image
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(a) (b) (c)

(d) (e)

FIGURE 10.4: Example estimated HR images from different SR methods
in the case when SNR=45dB. Results of (a) Bicubic interpolation -BCB -
(PSNR = 17.16dB), (b) ZMT (PSNR = 20.53dB), (c) RSR (PSNR =
33.56dB), and the variational Bayesian methods (d) ALG1 (PSNR =
36.81dB), and (e) ALG2 (PSNR = 35.85dB).

estimates with sharper edges and fewer ringing artifacts than other methods.
This is especially clear around the edges and around the letters in both images.
Another observation is that ALG1 and ALG2 are very effective in preserv-
ing sharp image features while suppressing noise and motion artifacts. ALG1
and ALG2 provide very similar results, but ALG1 results in slightly sharper
images and the ringing artifacts around the edges are more suppressed than
in the results of ALG2.

In summary, experimental results with both synthetic and real-image sets
demonstrate that algorithms ALG1 and ALG2 are very effective in providing
high quality super-resolution results, and they compare favorably to some of
the state-of-the-art super-resolution methods.

10.7 Estimation of Motion and Blur

In Section 10.5, we developed two super-resolution algorithms that jointly
estimate the HR image and the hyperparameters, where we assumed that the
motion and blur information is known. However, both motion and blur can
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.5: Super-resolution results (3x resolution increase) by (a) bicu-
bic interpolation -BCB -, (b) EF [15], (c) ZMT [53], (d) RSR [17], and the
variational Bayesian methods (e) ALG1 and (f) ALG2.
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also be modeled and estimated using the framework presented in Section 10.5.
This incorporation is done by utilizing prior distributions on the unknown blur
and motion parameters, as mentioned in Sections 10.3.3 and 10.3.4. In this
section, we will provide an overview of how the motion parameters can be
estimated simultaneously with the unknown image and the hyperparameters.
The blur can be estimated using similar principles.

Let us again consider a motion model consisting of translational and rota-
tional motion, so that sk = (θk, ck, dk)T , where θk is the rotation angle, and ck

and dk are the horizontal and vertical translations of the kth HR image, respec-
tively, with respect to the reference frame x. As explained in Section 10.3.4,
we first calculate the motion parameters from the LR observations. These
parameters, denoted by s̄p

k, are considered inaccurate and assumed to follow
Gaussian distributions given in (10.10).

Using the same prior distributions as before, the joint distribution can be
formed as

p(x, sk, Ω, y) = p(y|x, {sk}, {βk}) p(x|αim) p(sk) p(αim)
L∏

k=1

p(βk) . (10.44)

We can then proceed in the same fashion as presented in Section 10.5.
The only major exception is that since now the registration parameters sk are
also stochastic variables, the expectations should also be taken with respect to
them. This might constitute some problems, since generally the terms contain-
ing C(sk)x are nonlinear with respect to sk, and therefore the expectations
with respect to sk cannot be taken in a straightforward manner. However, this
problem can be overcome by approximating C(sk)x with bilinear interpola-
tion schemes, as was proposed in [22]. In this chapter, we will only provide an
overview of the estimation procedure; detailed derivation and results can be
found in [4].

Let us now provide the forms of the distribution approximations resulting
from this formulation. The image distribution is found as

q(x) ∝ exp
(
− 1

2
<αim>

∑
i

(Δh
i (x))2 + (Δv

i (x))2√
wi

− 1
2

∑
k

<βk>Esk

[
‖ yk −AHkC(sk)x ‖2

] )
. (10.45)

The explicit form of this distribution depends on the expectation
Esk

[
‖ yk −AHkC(sk)x ‖2

]
. By utilizing a bilinear interpolation scheme and

Taylor series expansions, it can be shown that [4] the image distribution is
again a multivariate Gaussian distribution q(x) = N (x|μx, Σx) with param-
eters
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μx = Σx

[∑
k

<βk>Bk(<sk>)T yk

]
, (10.46)

Σ−1
x =

∑
k

<βk>Bk(<sk>)T Bk(<sk>) +
∑

k

<βk>f(λk, <sk>, x)

+ <αim>(Δh)T WΔh + <αim>(Δv)T WΔv , (10.47)

where the function f(λk, <sk>, x) introduces the uncertainty of the registra-
tion parameters sk, and λk are posterior precisions of the distributions of sk.
Note also that when estimating this distribution, the mean values <sk> of
the registration parameters are used.

Next, we estimate the registration parameters as follows. The posterior
distribution approximations of the parameters sk are found as Gaussian dis-
tributions, that is,

q(sk) = N (sk|<sk>,Λk), (10.48)

where when calculating the parameters <sk> and Λk, the uncertainty of the
image estimate is also taken into account through the covariance Σx. We
do not provide explicit forms of these parameters here for brevity. After the
estimation of the HR image and the motion parameters, the hyperparameters
λk can also be estimated using the same formulation. Details can be found in
[4].

In summary, in addition to the HR image, the developed framework is
rich enough to incorporate the modeling and estimation of the motion and
blur parameters as well. Moreover, all required hyperparameters are also esti-
mated using this framework. In addition to freeing the user from cumbersome
parameter-tuning processes, the Bayesian framework allows for the estimation
of these parameters optimally in a stochastic sense, i.e., without resorting to
ad-hoc methods.

10.8 Conclusions

In this chapter, we presented the Bayesian framework for super-resolution re-
construction. We have shown that the Bayesian framework provides a powerful
means to systematically model the low-resolution image acquisition process,
the unknown high-resolution image, and the required algorithmic parameters.
Moreover, if the motion and blur information is also unknown, these can also
be modeled and estimated using the Bayesian formulation. A number of in-
ference procedures are presented, and the advantages of utilizing Bayesian
inference are discussed. We then presented a novel framework for utilizing
total variation image priors within a Bayesian formulation, and developed
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two super-resolution algorithms with variational Bayesian analysis. Both al-
gorithms estimate all unknowns and algorithmic parameters solely from the
observed low-resolution images without prior knowledge or user intervention.
The presented methods have a number of advantages: First, this framework
allows for the estimation of distributions of unknowns, which prevent the prop-
agation of estimation errors within the estimation procedure. This is especially
useful when the acquisition noise is heavy. Second, all required parameters of
the algorithms are calculated automatically so that they do not require user su-
pervision unlike most existing super-resolution methods. Experimental results
with both synthetic and real images are provided to demonstrate that despite
the lack of manual parameter tuning, the methods provide super-resolution
results superior to existing algorithms.
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Pattern recognition and machine learning define the act of taking data col-
lected a priori, observing relationships inside the data, and generalizing the
learned relationships. The output of such algorithms can either be discrete
or continuous, categorized as classification or regression problems. Because
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Knowledge Base (Training Set):
{ (input0, output0), (input1, output1), ..., (inputN, outputN) }

Observation
Informed
Decision

Decision Operations
Based on Specified

Cost Function

FIGURE 11.1: Statistical and machine-learning general framework.

super-resolution is an ill-posed problem, different combinations approaching
from both types of paradigms exist with the same purpose: enhancing reso-
lution. This chapter explores techniques and methodologies involved in for-
mulating the problem through frameworks involving classification techniques,
regression techniques, and combinations thereof.

11.1 Introduction

Human beings have survived for millions of years in large part by our ability
to recognize patterns and draw inferences from them. In an attempt to com-
prehend what is involved in generalizing to real-world phenomena, computer
scientists study statistical and machine learning principles. The underlying
methodology behind statistically modeling data is to extract functional rela-
tionships from a controlled database and apply them to unseen test points.
Based on what has been previously observed, an informed decision can be
made. In pattern recognition terms, Figure 11.1 shows the block diagram that
is universal to machine-learning algorithms.

The attribute that distinguishes pattern recognition techniques from other
types of algorithms is a training set. Hence, the topics in this chapter refer
to algorithms that use collected training data as a tool for image processing.
For this reason, learning-based super-resolution algorithms with the frame-
work shown in Figure 11.1 are often called example-based super-resolution
algorithms. In this respect, relationships between low and high-resolution im-
ages in the algorithms discussed in this chapter are derived, for the most part,
empirically.

Whereas computer vision fully embraces pattern recognition and statis-
tical and machine-learning, the equivalent effort in image processing in the
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past has largely been left unexplored, and only recently have conferences been
dedicated to the topic (see EURASIP’s Special Issue on Machine Learning in
Image Processing). Despite the limited scientific exposure, it seems only nat-
ural to utilize learning because humans use a similar process in assessing the
quality of images. When the underlying solutions mimic how human learning
would process the image, the results should reflect a more favorable human
visual system (HVS) evaluation, i.e., effect a more visually pleasing image.

Because pixels can take on a wide range of values, the most direct approach
to solving for high-resolution information is through regression. That is, we
can replace the central block in Figure 11.1 with a function estimation block.
Pixel values can be found directly from a group of features that relate to the
high-resolution labels based on spatial proximity. The most common form of
regression in image processing use linear filters, where high-resolution pixel
values are derived from a linear combination of observed features. However,
super-resolution is arguably a more complicated process than can be expressed
by a single linear scheme. Therefore, a number of ideas brought forth in this
chapter describe nonlinear regression algorithms whose parameters have been
primarily determined through relationships learned from a training set.

On the other hand, not all the information in the training set may be
relevant to the observation all the time, and it makes sense to pare down
the information to only what is relevant for a given input. The choice of
points within a training set define another problem: classification. Because
learning algorithms were initially applied to problems that ask questions of
a discriminating nature, nearest neighbor, classification, and clustering tech-
niques are well-studied and easily applicable. Such techniques offer ways to
partition the feature domain so that different types of image content can be
treated differently. With respect to images, segmenting the input space is in-
timately connected to determining the “type” of image patch that the input
feature represents. An action can then be taken based on the class that the
input feature falls into. Moreover, the need for regression is not excluded (al-
though classification may, in fact, sufficiently cover the nonlinear aspect of the
problem).

Figure 11.2 depicts a common framework and puts Figure 11.1 into more
mathematical terms. To relate to super-resolution, the feature space or input,
xobs, represents low-resolution image content while the output denoted by yout

represents high-resolution image content. The learned relationship could result
in pixel values, high-frequency frequency components, or any other useful
information necessary to create high-resolution images, which are all derived
from a training set Ω. The varied algorithms in this chapter are interesting
because they decide what form Ω, may take, how it is obtained, and most
importantly, where and the manner in which it is applied.

The mathematical terminology in pattern recognition allows freedom in
assigning vectors xobs and yout to nearly any feature-space and co-domain.
Specific to our case, the input observation vector xobs in Figure 11.2 refers to
any collection of low-resolution information taken from the test image. The
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Ω = { (x0, y0), (x1, y1), ..., (xN, yN) }

xobs

Subset Selection

Training Set

(clustering, nearest neighbor, etc.)

Regression Model
with updated parameters

yout

FIGURE 11.2: Common learning-based super-resolution framework

algorithms described in this chapter, with the exception of Markov-related op-
timizations, operate locally. That is to say, we super-resolve individual subsets
{xi} of pixels in the low-resolution image to determine pixel values in yi, which
are, in turn, subsets of the high-resolution image. The simplest example defini-
tions x and y are vectorized collections of contiguous pixels, or image patches.

11.2 Nearest Neighbor Super-Resolution

A few years ago, Freeman, Jones, and Pasztor [25] introduced a learning-based
algorithm for the explicit purpose of super-resolving images. While applying
learning to super-resolution was hardly a novel concept [11, 16], the article
titled “Example-based Super-Resolution” became seminal to the community
in that its discussion initiated a dialogue arguing that image content may be
too rich to solve analytically.

The algorithm that Freeman et al. themselves propose utilizes the simplest
learning technique: the nearest neighbor algorithm. That is,

Definition 1 Given a training set Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )}, the
nearest neighbor pair to an observed test point xobs is the pair that satisfies

(xnn,ynn) = argmin
(xi,yi)

||xi − xobs||, ∀xi ∈ Ω (11.1)

The vectors x and y denote vectors corresponding to 5× 5 low-resolution and
7× 7 high-resolution image patches, respectively.
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(a) Original

(b) 2× Interpolation (c) High-Frequencies

FIGURE 11.3: Super-resolution results using a single neighbor.

Algorithms described in this chapter require some kind of prepro-
cessing to be applied to x (and likewise, some postprocessing of y). One
suggestion is to filter out the low-frequencies because it is plausible that
the highest frequency components are the most important in predict-
ing higher resolution information. Other preprocessing methods include
subtracting out the center pixel, subtracting out DC values, and normal-
izing the variance of the low-resolution image patch. There are a variety
of ways to extract and represent the feature space, depending on the
technique used.

Unfortunately, a single neighbor, even among several candidates, is insuf-
ficiently descriptive of the relationship between low and high resolution, often
leading to poor results. This is because a single choice causes increased sus-
ceptibility to noise. Using a single neighbor is problematic also due, in part,
to the ill-posed nature of the problem; often, a single xobs could correspond
to multiple xi ∈ Ω.

Figure 11.3 shows the results using a single neighbor with only local and
individual patch information with no spatial neighbor patches. On the bottom,
the high-frequencies of local reconstruction efforts look “like oatmeal” as aptly
put by Freeman et al. [25] Hence, the use of a Markov Random Field (to be
discussed later) serves as a way to somewhat globalize the effort, improving
the situation greatly.
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11.2.1 k-Nearest Neighbor

In an effort to stem the effects of estimation noise that so obviously ails single
neighbor super-resolution, we can use a decently sized subset of the training
set Ω. That is, instead of a single training point, we draw information from k
training points that are closely related to the input vector, xobs, in Figure 11.2.
For image interpolation, once the relevant training samples are found, filters
are specially designed to determine high-resolution values after identifying
low-resolution content.

The k-nearest neighbor (k-NN) [21] rule is among the simplest statistical
learning tools in density estimation, classification, and regression. Trivial to
train and easy to code, the nonparametric algorithm is surprisingly competi-
tive and fairly robust to errors given good cross-validation procedures.

Definition 2 Given a training set Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )}, the
k nearest neighbors to an observation test point xobs can be mathematically
expressed as the set of points that satisfy:

xj = argmin
xi∈Ωj

KF(xobs,xi) (11.2)

where 1 ≤ j ≤ k, xj is the jth vector of k nearest neighbors, and Ωj =
{Ωj−1\xj−1} ⊂ Ω.

The Radial Basis Function
Regression, classification, or density estimation algorithms sometimes

turn to functionals to represent a nonlinear relationship. In order to main-
tain generality, representations like that of (2) often do not specify a partic-
ular function or vector space for use. In practice, the most popular function
in image processing used almost to exclusivity is the radial basis function
(RBF).

The kernel function K used in many of the discussed algorithms is the
RBF, stated in (11.3)

KF(xi,xj) =
1

2π‖Σ‖ exp {−dF(xi,xj)} ≤ 1 (11.3)

where dF(xi,xj) is the Mahalanobis distance or weighted Euclidean dis-
tance specified by 1

2 (xi − xj)
T Σ−1 (xi − xj). Unfortunately, in the absence

of prior knowledge, most k-NN algorithms determine proximity through
unweighted Euclidean distances. With image data, a scaled version of the
covariance matrix from the training set may be determined, though in most
cases, the situation does not improve much with known Σ.

In Definition 2, K represents a kernel that integrates to one and is used
as an appropriate similarity metric. Conceptually, the k-NN in (2) are simply
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the k closest training points to xobs with respect to the kernel. Incidentally, K
can also be used to estimate the density [21], where kernels are placed around
every training point to approximate the probability density function (PDF).

11.2.2 k-Nearest Neighbor Regression

Statistical regression is defined as the estimation of a function that fits data
to a model so that a continuous domain may be mapped onto a continuous
range. Regression models estimate the relationship between observed values
of y from select features of x by which the most probable value of y can
be predicted for all values of x. There are various techniques to obtain a
regression model, and regression by k-NN is examined in this section.

Definition 3 Let Ω be a training set of N input-output pairs. Then,

Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )} (11.4)

The k-NN regression estimate g(xobs) of y at test point xobs is given by [19,
18]:

ŷ = g(xobs) =
1
k

N∑
i=1

Wi(xobs, Ω)yi (11.5)

where Wi ∈ {0, 1} depending on whether or not xi is among the k nearest
neighbors of xobs.

For the problem specifically relating to image super-resolution, xi is com-
prised of the ith low-resolution image patch in the training set. Likewise, yi

defines the ith high-resolution image patch. During runtime, where we de-
note runtime values with subscript obs, the adaptation of k-NN determines
the high-resolution image patch yout from a single low-resolution image patch
xobs. For mathematical reasons, it is easier to represent image patches xobs

and yout as vectors instead of square patches. Therefore, in subsequent deriva-
tions x and y are both vectors that have been rearranged from image blocks
into a single column.

Naturally, the definition of (11.5) could be extended by not necessarily
limiting Wi to 0 or 1, but rather the constraint

∑N
i=1 Wi = k. In fact, there

are several common weighting schemes, ranging from posterior probability like
expressions [21] to iteratively determined convex solutions [2], all functions of
distances or weights that can used to minimize some criterion as in [12].
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Large Sample Risk
For (x, y) jointly normal, under the squared-error loss case, the uncon-

ditional, large sample risk R as N →∞ of the k-NN estimate satisfies

R
(k)
N =

⎛
⎝1 + 1/k +

σ2
1

σ2
2

E

[
xobs −

1
k

k∑
i=1

xi,N

]2⎞
⎠R∗ (11.6)

Here, R∗ is the Bayes risk (minimum expected loss), xi ∈ Ω, and pa-
rameters σ1 and σ2 are standard deviation parameters in probability distri-
bution functions (PDFs) f(y) and f(y|x). To minimize risk, (11.6) suggests
a tradeoff between the 1/k term that limits erroneous reconstruction and
the final term in (11.6), which simultaneously favors a larger k. This type
of tradeoff is common in k-NN problems, and provides much need for cross-
validation as will be seen even for adaptable k values [14].

One k-nearest neighbor algorithm [12], called Local Linear Embedding
(LLE), involves manifold embedding. The training pairs in Ω refer to two
spaces X and Y on which points xi and yi lie for all i. LLE depends on as-
sumptions that data points sampled near each other from space X lie on or
close to a manifold that is locally linear (or one that can be approximated
as such), the geometry of which can be characterized through linear recon-
struction weights. The manifold, which has high dimensionality, pulled from
the sampled points are assumed to have an intrinsic dimensionality of much
lower order, so that we might apply the same weights to manifolds on Y.

Suppose xobs is the observation vector to be super-resolved to yout, and
let Nxobs

be the neighborhood in X that surrounds xobs. Then the optimal
least squares weights w can be obtained by minimizing the L2 reconstruction
error for xobs:

θ = argmin
θ

||xobs −
∑

xi∈Nxobs

θx,ixi|| (11.7)

Let X denote a matrix whose columns are the k nearest neighbor to xobs. The
local Gram matrix Tx can be defined as

Tx = (xobs1T −X)T (xobs1T −X). (11.8)

Then, the solution is

θ =
T−1
x 1

1T T−1
x 1

, (11.9)

and we can write:
y =

∑
xi∈Nxobs

θTyi (11.10)
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Unfortunately, one of the paramount assumptions in neighbor embedding
algorithms is isometry, which recent studies [54] have shown does not hold un-
der the L2-norm. One could, of course, use a different metric, but a more direct
approach would be to embed the neighbors in a space that is not necessarily
linear. Weinberger and Saul have promoted a large body of work devoted to
kernel manifold learning (e.g., [60, 62, 61]).

Alternatively, another family of solutions of (11.5) known as locally
weighted regression (LWR) offers more flexibility in application. This is done
by replacing W by a particular model class g(xobs, ϑ), in which yout is deter-
mined locally by a function g with parameter vector ϑ based on how similar
point xi is to xobs [53]. (Depending on the choice of function, ϑ may differ
in size and kind.) Then, the task of k-NN for regression becomes estimating
select parameters for reconstruction in (11.11).

ϑ∗ = argmin
ϑ

∑
xi∈N (xobs)

dR (g(xi, ϑ),yi)KF (xi,xobs) (11.11)

where dR is a distance metric in the range (high resolution) and feature space
(low resolution), respectively, and N (xobs) is the neighborhood of xobs. It is
this general regression form that garners the most attention in what follows
in Section 11.2.3.

11.2.3 Adaptive k-NN for Super-Resolution

The crux is to achieve specificity with regard to image content without any
loss of generalization of application. That is, how detailed can we make an
image look while still maintaining a broad base of applicability?

The answer to this question is intimately related to the number of training
samples used per reconstruction filter. In images, more training points per
filter, i.e., k is large, implies better generalization, where estimation errors are
diminished. Likewise, fewer training points per filter, i.e., k is small, implies
better specificity, where image reconstruction is clearer and more detailed.
Hence, it is reasonable to conclude that to accommodate a variety of possible
test inputs, k must be variable.

In initializing an adaptive k-NN algorithm, modifications can be made
to (11.11) for a viable alternative over LLE. With LWR, the only required
assumption is that linear filtering yields an excellent approximation for local
image construction as opposed to assuming some kind of duality between low-
resolution and high-resolution manifolds in [12]. Hence, the g(x, ϑ) in (11.11)
becomes the linear filter in question, which can be reduced to an MMSE filter
formulation, and we can approximate yout by

y = E [yout|xobs] ≈ g(xobs, ϑ) = Ĝxobs (11.12)

where Ĝ is a u× d matrix, u being the upsizing factor, and is constructed by
probability parameters ϑ and neighboring low-resolution and high-resolution
pairs.
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As a matrix, G is a linear regression, which can be found through least
squares solutions. Eventually, preprocessing steps such as mean-shifting or
variance normalization should be implemented to determine the feature space
F for both k-NN identification and regression, but for simplicity, let us say
that these steps have already been incorporated. Let X and Y define matrices
formed by collections of neighbors xi and yi, respectively, setting up auto-
and cross-correlation matrices defined by RXX = XXT and RXY = XY T .

Because training data is seldom uniformly distributed, it is desirable to
weight the estimated parameters by training points according to their rele-
vance. This can be done by constructing a matrix P for a given neighborhood
of xobs. Let p be a vector of similarity measures whose ith entry is the value
KF(xi,xobs). Then, a proper weighting of xi ∈ N (xobs) can be written:

P = 1T p, (11.13)

where k is the number of neighbors to use and 1 is a k dimensional vector of
all ones. Hence, P has dimension d× k. A least squares-like filter formulation
roughly equivalent to the derivations from [3] can then be written:

G =
(
(P ◦X)XT

)−1 (
(P ◦X)Y T

)
(11.14)

where the “◦” operator denotes the Hadamard product, the element-wise prod-
uct of two matrices.

The goal, then, is to find the right k for a desired tradeoff. Let k∗ be the
ideal number of neighbors. Then, k < k∗ causes G to overfit; the manifestation
is a grainy and discontinuous image. Furthermore, if k were exceedingly small,
k � k∗, G could become singular. This is because training points near xobs

could be very close together causing (11.14) to be underdetermined. Analyti-
cally speaking, vectors in X that are too similar can mean that RXX is rank
deficient and thus noninvertible. This is a dilemma because while k-NN should
find the most relevant data, it is designed such that the collected vectors based
on xobs are similar to each other. Hence, though it is counterintuitive, it is
important to choose a large enough neighborhood in F so that diversity in the
N (xobs) exists.

Definition 4 Given a training set Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )}, the
optimal k∗ is determined by

k∗(x, Ω) = argmin
k

N∑
i=1

Wi(x, Ω, k)K(xi,x) ≥ η

where Wi(x, Ω, k) ∈ {0, 1} (11.15)

where η is a cross-validated value expressing the minimum number of points
to be used.
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The expression in (11.15) obtains k∗ by finding the minimum number of
neighbors whose sum of similarity measures exceeds a threshold η, which is
obtained through cross-validation. Moreover, η is a minimum bound of k since
K(xi,xobs) ≤ 1 for all xi.

Analyzing (11.15) for a given xobs, if there are only a few xi with high prob-
ability of being related to it, that is

∑
i K(xi,xobs) is small, then the proposed

algorithm will need to consider more points in hopes of generalizing well. Al-
ternatively, if there are many xi that are related to xobs, i.e.,

∑
i K(xi,xobs) is

large, it is unnecessary to use other points where the similarity is low because
the specialized filter generated by the points within

∑
i K(xi,xobs) ≤ η is very

likely to be accurate. Conceptually, we can visualize a ring that extends fur-
ther and further depending on whether or not there are enough points inside
the ring.

11.2.4 Heuristics for Insufficient Training in Adaptive k-NN
Regression

Problems may arise in k-NN in cases where training is insufficient. For the
adaptive k defined in (11.15), the further the ring of values under consideration
extends, the smaller the similarity values and the less suited any additional
training point is to complete the task of reaching η. In extreme cases, η may
not even be reached before the entire training set is exhausted.

Consequently, for suboptimal training sets, it makes sense to restrict k∗

by letting ζ be a maximum limit on k. A generic technique, i.e., bicubic inter-
polation, may then be used for those xobs that Ω does not represent well. The
complexity reduction from prematurely stopping the neighbor search through
ζ should be obvious. However, error minimization also occurs because we ef-
fectively acknowledge that for xobs, the original intention of the proposed
algorithm cannot be carried out due to a less than competent training set.
Therefore, for any xobs that k-NN is ill-equipped to manage (i.e., k∗ > ζ), the
errors are bounded by whatever interpolation algorithm replaces k-NN.

The question now becomes finding what kind of interpolation algorithm
should replace k-NN. Is there a particular type of image patch that the k-
NN algorithm consistently disfavors? Moreover, based on this bias, are there
certain properties of these patches that allow us to tailor a solution using this
knowledge? The answer is yes on both accounts. After running several tests,
we came across a peculiar reoccurring theme in generic training and testing
images: texture patches never reached ζ and appeared at high quality, but
edge patches often did and needed attention.

Using 2× 105 training points and observing similarity measures in (11.13)
(which are based on Euclidean distances), the texture matches usually retain
similarity values of K(xobs,xi) ≈ 0.93 (out of 1.00), whereas edge matches
usually satisfy K(xobs,xi) ≤ 0.40. Furthermore, in viewing a single image,
only a small percentage of image patches are actually edges, so accumulating
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(a) Original Interpolation (b) Patches with Insufficent
Training

FIGURE 11.4: Areas of insufficient training for two hundred thousand points.

relevant image patches in (11.15) to surpass η is even more improbable. The
situation is best described in Figure 11.4.

Though texture results in high peak signal to noise ratios (PSNR), unfor-
tunately, the human visual system (HVS) focuses on edges [9, 50]. Fortunately,
research into edge-oriented image filtering has been well-studied. In our frame-
work, we can agglomerate a bank of edge-oriented filters that do “well-enough”
when the “best” filter through k-NN is unavailable, effectively reducing the
implementation to a specialized version of [3] with an added Markov Random
Field (MRF) improvement (see the next section, Section 11.3).

With enough data points, however, replacing k-NN conditioned on k∗ > ζ
should occur relatively few times. That is, edges may and often are well-
represented in the training set, which indicates the algorithm is operating
closer to capacity.

11.3 Markov Random Fields and Approximations

It is widely acknowledged [49, 25, 38, 28] that local interpolation could benefit
from global image information to predict high-resolution pixel values. Con-
struction of high-resolution image detail from isolated, local low-resolution
image patches (i.e., without information from adjacent patches and the image
as a whole) using a single neighbor is shown in Figure 11.3, where overall re-
sults are described as looking “like oatmeal” from [25]. Without information
from adjacent patches, high-frequency components of an image as a whole
become patchy and discontinuous. The most common remedy is to globalize
the effort by using surrounding window information, where many image pro-
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z3
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z4

z2

K(zi,xobs)

Ψ(z1,z2)

FIGURE 11.5: MRF model

cessing algorithms call upon Markov networks, specifically, in two-dimensions,
the Markov Random Field (MRF).

The principle assertion of an MRF is that the distribution of any image
patch site is conditional on the values of other image patches at neighboring
image sites, likely chosen to be the ones closest in proximity. MRFs differ from
other random fields in that a site distribution given all other site information
depends solely on its neighbors. Which sites to call a neighbor, what rela-
tionships to enforce, and how they affect the output are intimately associated
with its local specifications, which include model type and choice of clique.

The diagram in Figure 11.5 is very similar to the one in [25] (the difference
being terminology). We can use K(xobs, zi), where xobs is the observation and
xi ∈ Ω in Section 11.2 to determine possible states, {z}. The Ψ assigns an
inter-patch compatibility metric between output states. Functions K and Ψ
often take on the same form, and a sensible model taken from [25] is given
in (11.16).

P (z|x) =
1
Z

∏
ij

Ψ(zi, zj)
∏

i

K(xobs, zi) (11.16)

where Z is a normalization factor, z is the output state, and x is the input
patch. If Ψ and K make use of Gaussian subkernels, then (11.16) exemplifies
the Gibbs distribution, a configuration that describes a global joint distribution
of the graph that we assume the image fits into.

Parameters in MRFs can be determined by optimizing globally over all
patches, a solution that must be iteratively determined. As one might guess,
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convergence to a single, meaningful solution result is likely intractable, so
several techniques exist to approximate the MRF annealing process. Belief
propagation approximates the solution in a few iterations and appears to
perform very well [25]. The application MRF described in this section will be
of the k-NN algorithm.

Super-resolution can seldom afford to nondeterministically iterate and an-
neal to a solution. Single-pass algorithms [25, 26] include extra arguments into
the decision making process that increase propensity towards one neighbor
over another. With single nearest neighbor algorithms, single-pass algorithms
are simple to design and implement; one simply observes (11.16) without it-
erating. In the adaptive k-NN algorithm in Section 11.2 and in algorithms in
sections to follow, designing a regression with globalization concerns can be
done with a weighting matrix.

Recall (11.14) in Section 11.2.3. Filter design is augmented with a weight-
ing matrix P . We could, in theory, use the belief propagation results or a
single pass system to influence this P matrix to take advantage of an expres-
sion that is already designed to penalize or reward regression estimates. The
logical course of action would be to reward those states that contain high
values for K(xi, zi) and Ψ (zi, zj).

An Example Conditioning Scheme

Local relationships are governed by their proximity and likeness,
and a simple weighting scheme takes advantage of both. A sub-
tle weighting matrix for P in (11.14) that takes on the same
form as (11.16) is shown here with some added flexibility. Keep
in mind the scaling factor α should be rather small should we
wish more attention on the observation patch xobs. The Gibbs
distribution is

P(i, · ) =
1
Z

exp

⎛
⎝||xobs − zi||+ α

∑
n∈N

∑
j

||z(n)
j − zi||

⎞
⎠ (11.17)

Here, z(n)
j refers to the jth candidate state (see Figure 11.5) of

the nth low-resolution (LR) block in N , the neighborhood of the
input block.

There are efficient ways to implement Figure 11.6. For example, all
neighboring low-resolution blocks are needed to calculate their high-resolution
blocks in order to calculate P . Though the final output patch is calculated
at every image patch site, the high-resolution regression values need only be
calculated once. Hence, redundancy in a single-pass iterative algorithm is re-
duced.
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Training Set
Ω = { (x0, y0), (x1, y1), ..., (xN, yN) }

xobs

Subset Selection
(clustering, nearest neighbor, etc.)

Regression Model
with updated parameters

youtN (xobs)

Full LR Image

MRF Approximation
Weight Adjustments

FIGURE 11.6: Applying Markov random field approximates.

11.4 Kernel Machines for Image Super-Resolution

Inferencing is a term often applied to machine learning and image processing.
In super-resolution, we are inferring high-resolution pixel values from known
low-resolution information. One branch of inferencing that has a privileged
place in image processing are kernel methods because they are particularly
effective in solving inverse problems like image restoration [63], deconvolu-
tion [40], and image super-resolution [45, 29, 34].

The most well-known kernel machine is the support vector machine
(SVM) [15]. Initially, SVMs were extensively studied in classification prob-
lems [22, 46, 10], and later on, generalized to regression [42, 13, 58, 20] termed
support vector regression (SVR). Because pixel values can take on a large
number of values (depending on type of pixel representation), regression rather
than classification makes the most sense in our problem space. Therefore, SVR
is especially useful to image super-resolution because it can directly model
and represent the highly nonlinear and complex relationship between low-
and high-resolution image data.

It is the kernel function in SVR that offers algorithmic nonlinear capabil-
ity, so naturally, a large body of work addresses kernel learning. But while
kernel learning has been investigated for a number of applications, including
classification [37] and dimensionality reduction [60], prior to Ni et al. [45],
kernel learning for SVR has been largely left unstudied (save for some erro-
neous derivations in a technical report [48]). In fact, [45] specifically solves the
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image super-resolution problem via convex optimization framework, and this
chapter reviews the work and its implications and conclusions.

Comparing Nearest Neighbor, k-NN and SVMs :

Suppose we have a training set Ω with N points. It is not always the
case that N is large and for these problems, the large sample risk RN of
nearest neighbor (where k = 1) in (11.6) is usually smaller than the risk
of k-NN [14], but overall, when N is large, k-NN is invariably the rule of
choice over NN. Actually, when N is large and the dimensionality of xi

is small, k-NN is almost always preferable or at least competitive among
other estimation techniques such as SVR. This is fairly intuitive because
k-NN expects to blanket the entire domain with samples, possible only
with N large, and easier if the number of dimensions were sufficiently
small. However, SVR performs well when N is small and the dimen-
sionality is large, and as will be shown, SVR is an excellent generalizing
technique.

11.4.1 Support Vector Regression

The support vector machine (SVM), originally proposed in [57], is a learning
algorithm with the ability to provide function estimation. By using a mapping,
Φ : X → F , where X is the domain and F is usually a high-dimensional
feature space, support vector regression (SVR) operates in feature space to
approximate unknown functions in an output space Y, thereby using nonlinear
functions to linearly estimate an unknown regression. That is, to estimate a
function, f : x → y, nonlinearly, x becomes embedded in a high-dimensional
feature space F via mapping functions, φ(x) : X → F .

As an ill-posed problem, image super-resolution is inherently a nonlinear
operation. Yet, by taking training image patches, SVR models a way to gen-
eralize unseen inputs to what has been observed in the training set as the
following optimization problem [51].

Definition 5 Given a training set Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )}, the
support vector regression optimization problem pertains to finding the hyper-
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plane w and intersect b in the following problem:

min
w,b,ξ+/−

(
1
2
||w||+ C

N∑
i=1

(
ξ+
i + ξ−i

)
)

s.t. (〈w, φ(xi)〉+ b)− yi ≤ ε + ξ+
i

yi − (〈w, φ(xi)〉+ b) ≤ ε + ξ−i
and

ξ−i , ξ+
i ≥ 0, (11.18)

for all i ∈ [1, N ] and where w ∈ F . The regression estimate is

yi = 〈w, φ(x)〉+ b (11.19)

Notice that for y ∈ Y, ∀ i ∈ [1, N ], there are two inequalities that bound the
output training: one for the upper boundary and one for the lower boundary.
Meanwhile, slack variable vectors ξ+

i and ξ−i correspond to the upper and
lower parameters in which the function g(x) = 〈w, φ(x)〉 + b is allowed to
deviate for a prespecified error and cost, [ε, C] ≥ 0T .

Theorem 1 The dual optimization problem

max
α+,α−

−1
2

∑
i,k

{
(α+

i − α−
i )(α+

k − α−
k )K(xi, xj)

}

−ε
∑

i

(α+
i + α−

i ) +
∑

i

yi(α+
i − α−

i )

s.t.
∑

i

(α+
i − α−

i ) = 0

0 ≤ α
+/−
i ≤ C (11.20)

with the regression estimate as

g(x) =
∑

i

(α+
i − α−

i )K(x,xi) + b (11.21)

where a dot product in F is defined by K(s, t) = 〈φ(s), φ(t)〉, the kernel func-
tion.

Using a mapping Φ : X �→ F , SVR is often better suited to represent
complicated relationships that we otherwise could not realize linearly. Within
F , a kernel function written as a kernel matrix is defined to be a collection
of dot products for an arbitrary Φ that may or may not be known. Using
the kernel matrix K, computational complexity is reduced because the actual
high-dimensional mapping in determining d = 〈φ(s), φ(t)〉, which is quite often
intractable, is unnecessary when solving (11.20). This definition also allows Φ
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to be unknown, in which case, K can be conceptually chosen to be a desired
similarity metric depicting the “nearness” of two vectors. Thus, the selection
of the kernel matrix K becomes important and should be sensitive to the
training data.

Ordinarily, a single kernel matrix, usually a factor decided by human de-
cision, is selected from a set of precalculated kernels to some degree of ac-
curacy if sufficiently cross-validated. Rather than doing this, several works
[37, 48, 45, 64, 35, 6] have explored the prospect of learning the kernel matrix.
Of particular interest is [37] in which a linear combination of known ker-
nels is optimized to produce a large kernel with good feature representation
for the classification problem. The motivation behind this section is that the
impossible task of cross-validating all possible combinations of precalculated
kernels to determine an optimal one can be derived theoretically instead of
analytically.

Within the ideas proposed in [37] is the possibility of incorporating mul-
tiple data sources to describe inherent vector space relationships by using
multiple kernels. We can choose which features to use (i.e., dot products of
x′ = [x1, x3, . . .]T or x′ = [x2, x5, . . .]T , etc.) and how they will be used (i.e.,
RBF kernels, polynomial kernels, etc.), The extra degrees of freedom fit espe-
cially well with our design because the vector space for our particular problem
is multidimensional, compounded by the seemingly desultory nature of local
image content. As will become clearer later in this section, it is often the case
in high-dimensional spaces that individual dimensions of the input vector x
relate differently in the actual feature space. That is to say, individual fea-
tures may be more relevant than others (feature selection or weighting) or
contribute differently (Hilbert space selection).

Like the classification case in [37],1 the analogous optimization for regres-
sion has been explored in [48], although errors lead the derivation to an incor-
rect outcome. The following sections present a reformulation of a semidefinite
programming (SDP) and quadratically constrained quadratic programming
(QCQP) problem to learn the kernel for regression in much the same way
that it has been derived for classification.

11.4.2 Inductively Learning the Kernel Matrix for
Regression

The nonlinear power of SVMs comes about through the kernel function or
matrix. The diversity of image content implies a propensity towards includ-
ing data from several sources: i.e., using not one but a convex function of
multiple different kinds of kernel matrices. Hence, the capability to resolve
high-resolution content relies on building an optimal feature space that is

1Lanckriet et al. [37] offers a method to both inductively and transductively learn a kernel
matrix, but the domain in super-resolution is too large to predict input vectors beforehand
and therefore induction is exclusively used.
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both expressive and nonredundant. This section describes how to obtain this
feature space by learning the kernel matrix in terms of a single convex opti-
mization problem: a semidefinite programming problem.

Definition 6 An SDP problem is a convex optimization problem of the form

min
u

cTu

s.t. F (j)(u) = F
(j)
0 + u1F

(j)
1 + . . . + umF (j)

m  0
Au = b, (11.22)

for a specified number of j and where F
(j)
i are square matrices and u ∈ R

m.

As it turns out, learning the coefficients of a linear combination of Ki taken
from a set S = {Ki} of known kernels is a solvable SDP problem (11.35). In
truth, any convex set of S would yield a convex optimization problem, though
the problem may be exceedingly complex. This avoids a trivial solution, and
thus, we now optimize with respect to the coefficients μi, of the linear combi-
nation in

K =
∑

i

μiKi( · , · ) . (11.23)

Theorem 2 Given a labeled training set

Ω = {(x1,y1), (x2,y2), · · · , (xN ,yN )} , (11.24)

the SDP problem that optimizes for the kernel matrix in the SVR prob-
lem (11.18) is stated as

min
μ,t,λ,q+

u ,q−l ,q−u
t

s.t.

⎛
⎝ 2

∑
i

μiKi γ

γT t− 2C1T (q+
u + q−

u )

⎞
⎠  0

q+
u , q−u , q−l  0

ε1 + q+
u + q−u − q−

l  0∑
i

μiKi  0

trace(K) = c. (11.25)

Proof Starting from the dual optimization problem in (11.20), for simpli-
fication, let 1 be a vector of ones and

α+ + α− = β+

α+ −α− = β− (11.26)
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Recall the dual optimization problem in (11.20). Substituting for α+ and
α− in (11.26), the optimization problem is written as

max
β+,β−

−1
2
β−T

Kβ− + yT β− − ε1T β+

s.t. 1T β− = 0
0 ! β+ + β− ! 2C

0 ! β+ − β− ! 2C. (11.27)

The optimal objective value of (11.27) is the point-wise supremum of affine
functions in K, so it is a convex function of K [8]. Thus, it can be optimized
with respect to K to yield an optimal kernel matrix. To ensure good general-
ization, the trace of K is constrained [37], and the corresponding optimization
problem can be expressed in terms of its Lagrangian function as

min
K

max
β+/−

min
λ,q

+/−
l,u

L(K, β+/−, λ,q+/−
l ,q+/−

u ) (11.28)

where we minimize with respect to K. Here, we have introduced the La-
grangian variables λ, q+/−

u/l  0, and constrained our solution with trace(K) =
c. The Lagrangian L in (11.28) is written as

L(K,β+/−, λ,q+/−
l ,q+/−

u ) =

− 1
2
β−T Kβ− + yT β− − ε1T β+ + λeT β−

+ (β+ + β−)T q+
l + (β+ − β−)Tq−

l

− (β+ + β− − 2C1)T q+
u

− (β+ − β− − 2C1)T q−
u . (11.29)

(11.27) is a convex optimization problem and the constraints are strictly fea-
sible. Therefore, from Slater’s conditions [56], strong duality holds and we can
exchange the order of the maximum and minimum. In terms of β+ and β−, we
have an unconstrained quadratic optimization problem, which can hence can
be analytically solved. The global minimum is found by setting the derivative
with respect to β+ and β− to zero. That is,

(
∂L
∂β+

� 0
)
⇒ − ε1 + q+

l + q−
l − q+

u − q−
u = 0

(
∂L

∂β− � 0
)
⇒β−

opt = K−1(y + λ1 + q+
l − q−

l − q+
u + q−

u ) (11.30)

Aside from both β’s, we can eliminate an additional variable, so we substitute
for q+

l such that

q+
l = ε1 + q+

u + q−
u − q−

l

⇓
β−∗ = K−1(y + λ1 + ε1 + 2q−

u − 2q−
l ) (11.31)
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Let
γ = (y + λ1 + ε1 + 2q−

u − 2q−
l ). (11.32)

Then, we rewrite the objective function using (11.30) to obtain the expression:

1
2
γT K−1γ + 2C1T (q+

u + q−
u ) (11.33)

The dual optimization problem after some relaxation is then a minimiza-
tion of (11.33) with some added constraints. The variable K−1 in the first
constraint brings up an important technique in the formulation of many SDP
problems: the Schur complement lemma. The Schur complement lemma is
useful in that it allows constraints to be expressed in linear matrix inequality
(LMI) form. In terms of its usage with the problem at hand, K  0 implies
that

t ≥ 1
2γT K−1γ + 2C1T (q+

u + q−
u )

#(
2K γ
γT t− 2C1T (q+

u + q−
u )

)
 0 , (11.34)

where in (11.34), the positive semidefiniteness of the encompassing matrix in
the bottom expression has been rewritten as an LMI by considering the Schur
complement in the top expression. The final optimization problem takes the
following form:

min
K,t,λ,q+

u ,q−
l ,q−

u

t

s.t.
(

2K γ
γT t− 2C1T (q+

u + q−
u )

)
 0

q+
u ,q−

u ,q−
l  0

εe + q+
u + q−

u − q−
l  0

trace(K) = c

K  0 (11.35)

For the full derivation, see Ni and Nguyen’s work [45] on the application of
SVM’s to image super-resolution.

11.4.3 The Quadratically Constrained Quadratic
Programming Problem

There is an extra check in (11.25) as K =
m∑

i=1

μiKi may not yield a positive

definite kernel if some μi < 0. Additionally, learning kernels from S under
an SDP problem formulation with interior point methods and primal/dual
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optimization toolboxes are polynomial time, but have worst-case complexity
of roughly O((m + N)2N2.5), nearly intractable even with today’s compu-
tational power. Introducing a constraint μi ≥ 0 will both ensure a positive

definite kernel K =
m∑

i=1

μiKi and reduce complexity to O(mN3) under inte-

rior point methods. The constraint will also lead to a quadratically constrained
quadratic programming (QCQP) problem.

Definition 7 A QCQP problem is defined to be a convex optimization prob-
lem of the form

min
u

f0(u)

s.t. fj(u) ≥ 0, j = 1, . . . n (11.36)

for a specified number of j and where fj are quadratic functions of the form
fj(u) = (Aju + b)T (Aju + b).

From (11.25), the QCQP for learning K arises from an added constraint,
μi ≥ 0, which causes some loss of generality, though it does ensure positive
definiteness when inductively applying the learned kernel. The intuition be-
hind this is simple; a linear combination of kernels where the coefficients of the
combination are guaranteed to be positive will always yield a positive-definite
matrix and hence a valid kernel. Mathematically, this is

μi ≥ 0⇒
{∑

i

μiKi  0⇔ K  0

}
. (11.37)

On the other hand, the complexity of the kernel is never simplified because
the positive eigenvalues of each (μiKi) will never reduce kernel rank.

Theorem 3 Let Ki be the ith example positive definite kernel function and
μi ≥ 0. The QCQP problem is given as:

max
β+,β−,p

2yT β− − 2ε1T β+ − cp

s.t. p ≥ β−T Kiβ
−

1T β− = 0
0 ! β+ + β− ! 2C

0 ! β+ − β− ! 2C (11.38)

A single optimization variable p may seem to suggest that only one dual
variable μi is necessary, meaning that β−T Kiβ

− = p is likely satisfied for one
i. In low dimensional spaces in which there are fewer nonredundant Ki, this
may be the case. In higher dimensional, more complicated spaces (including
the vector space defined by our super-resolution approach), there may be sev-
eral μi’s that simultaneously satisfy equality in the constraint p ≥ β−Kiβ

−.
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FIGURE 11.7: Kernel learning 2× image super-resolution.

This has important ramifications that justify both QCQP and SDP problems
over single kernel cross-validation because it implies that there are several
nonzero μi’s. Consequently, several Ki matrices are required to fully describe
a sufficiently descriptive Hilbert space, which through (11.38), can be theoret-
ically obtained. The high probability that ||μ||0 (the L0 norm of the weighting
vector of μi scalars) is strictly greater than unity further validates the theo-
retical approach over the impossible task of cross-validating over every linear
combination of Ki in S = {Ki}.

11.4.4 Applications to Super-Resolution

The feature space for nonlinear regression in image super-resolution is var-
ied as there are many domains to which we can apply SVR. For example,
we could apply SVR onto bicubic interpolations, effectively determining only
“high” resolution content. Or, we could apply SVR to the higher order DCT
coefficients of an 8×8 block. In this section, we examine the most straightfor-
ward administration of SVR and its optimal kernel to image super-resolution.

Given low and high-resolution image patches ILR and IHR with sizes D×D
and U × U respectively, to super-resolve the single center pixel of ILR by a
factor of U , we define vectors

x = vectorize(ILR)− center pixel(ILR) ∈ R
D2×1

y = vectorize(IHR)− center pixel(ILR) ∈ R
U2×1 (11.39)

in a given training set Ω of xi feature and yi label pairs. The task at hand
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is super-resolution by a factor of U to predict U high-resolution pixels cor-
responding to the center pixel of the D ×D patch. For 2X super-resolution,
this is shown in Figure 11.7 for D = 5 and U = 2.

This is a multiple output regression problem and in the literature it is
often solved as separate single output regressions. There has been some work
on learning vector valued functions in [43, 55, 59], but in this chapter, we
only discuss the traditional method of separate single output regression prob-
lems for each output dimension. Therefore, learning the four outputs becomes{
y
(j)
out = g(j)(x)

}
⊂ R for j = 1, . . . , 4, given the input x ∈ R

D2
, and g(j) is

estimated by SVR in (11.20).
Although the results show that SVR has the capability to provide this

regression with fairly clear results, the idea could stand to gain from im-
provements. A single regressor for a large training set introduces substantial
computational complexity. Depending on the dataset, the problem quickly be-
come intractable in (11.35) and (11.38), when the kernel matrix size for each
Ki( · , · ) scales according to N2 where N is the number of training points. For
K( · , · ) to be a sum of m small kernels, the required order of memory exceeds
m ·N2 without even considering other inequality constraints. Also, without
further enhancements, this idea relies on the heavy machinery of SVR to rec-
ognize all types of image content, which affects the quality of the prediction
due to the problem complexity and the large variety of x in X .

A Word of Caution:

While SVR is ideally able to fit an arbitrarily complex system by
properly cross-validating, without intimate knowledge of all the high-
dimensional manifolds and subspaces of image patches (which involves
a complex mixture of edges, gradients, texture, etc.), the perfect RKHS
using known kernel functions for a single SVR may still not be solv-
able. Consequently, the sheer number of parameters for an SVR with an
imperfect kernel space may render the optimization problem unmanage-
able. If such a problem is encountered, one should try boosting or using
multiple SVRs trained on smaller datasets, a concept to be discussed in
the next section.

11.5 Multiple Learners and Multiple Regressions

Diversity and complexity in image patches suggest that super-resolution is
inherently a nonlinear operation. So far, the discussion has centered around
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regression techniques whose base function estimation is linear, and nonlinear-
ity has been provided through some kind of embedding, kernel or otherwise.
The quality of the nonlinear function estimation is only accurate to the extent
of the capabilities of the high-dimensional mapping defined by the embedding.
Additionally, if the underlying assumptions on the input space are incorrect,
then the number of parameters could potentially become unmanageable even
in a scalable estimation technique such as SVR.

Instead of embedding the image structure directly, the complicated struc-
ture defining image complexity can be modeled nonlinearly by using many
function estimates instead of a single regression. Depending on how the learn-
ers are organized, there are many approaches under different names that work
towards their goals through this concept: (ada)-boost [27], mixtures of ex-
perts [5, 36, 41], neural networks [1, 47], vector quantized regression [16],
etc. This section examines the application of ensemble learning to the super-
resolution problem, and goes through the most popular approaches.

Let f(x) be the true function that maps low-resolution image patches to
high-resolution image patches. Then, we substitute an all-encompassing func-
tion g(x) that approximates f(x) by aggregating several smaller functions
gi(x). The implementation varies, but most often, the weak learners are con-
tent enhancers that sharpen, smooth, etc., depending on when it is necessary
to do so. Additionally, it is necessary to weight individual regression results
by a certain quantity that may be chosen in a sensible manner.

11.5.1 Neural Networks and Super-Resolution

No survey of pattern classification/recognition and machine learning algo-
rithms is complete without including descriptions of neural networks [21, 23,
31]. Neural networks are rooted in artificial intelligence, and its unsupervised
training simultaneously learns nonlinear relationships alongside the actual dis-
criminating function.

Neural networks work by using a collection of perceptron functions or neu-
rons. The neurons are grouped in a number of layers, where the only visible
layers are input and output layers. The rest of the neurons are embedded in
hidden layers as their activations cannot be directly seen. The construct can
be viewed in Figure 11.8.

Neural networks can be described as feed-forward or as more complicated
networks with feedback paths. Most image super-resolution algorithms [44,
16], to keep from overfitting and excessive training times, utilize three-layered
feed-forward neural networks.

Again, while neural networks implement linear functions, they are fre-
quently applied in nonlinear space. For example, each item in Figure 11.8
could potentially be an RBF, a common theme in early learning-based super-
resolution works [1]. Additionally, the variety of nonlinearity is unlimited,
and each neuron could potentially express a different kind of relationship.
Like the kernel machines described in the previous section, to obtain the scal-
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FIGURE 11.8: Three-layer feed-forward neural network framework.

ing weights of the nonlinear functions, multi-layer neural networks are often
trained through iterative descent techniques like back propagation [32]. Un-
like kernel machines, determination of the weights through training must be
explicitly solved in nonlinear space.

Recently, we have seen the decline of neural networks. While the expressive
power of neural networks is great, because one can simply add hidden units to
represent complicated relationships, one of the more difficult problems to solve
in using neural networks lies in regularizing the scale of the overall network.
This is especially the case in training networks that allow for more circuitous
feedback paths. Although the visible layers are fixed, bounds to the number of
hidden neurons, weights, and parameters depend on a number of factors, which
to date, can at best be solved heuristically. Hence, training can be painfully
slow. For complicated relationships, “weeks” is quite common; a good neural
network trains for “years.” Nevertheless, with enough training time and data,
neural networks tend to work extremely well.

11.5.2 Unsupervised Clustering

This section describes unsupervised methods to break up image content into
classes. The intuition for multiple classes derives from the fact that different
attributes may define the representations that an image patch can take on and
therefore require different treatment. In other words, the type of image patch
dictates how we super-resolve it. For example, take a 5×5 image patch x with
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low interpixel variance. The image patch is probably an area of an image that
may be a portion of a wall, floor, sky, or some other area where no interesting
image activity is occurring. We could label x as a surface patch. On the other
hand, if the left half of x is dark and the right half is light, then x could be
labeled a left-to-right edge “type.”

Because there may be a considerable number of classes or “types,” if not
infinite, hand labeling training sets may not be entirely feasible. Instead, unsu-
pervised clustering serves as an organizing tool to learn classes without having
the user explicitly label them. Unsupervised learning in pattern classification
is not unlike the problem of density estimation. In fact, one of the most suc-
cessful super-resolution algorithms [4] assumes mixture distributions on x and
that the individual components that make up the mixture describe a single
class. A popular image patch distribution takes on the form of a Gaussian
mixture, and can hence be modeled as a multivariate Gaussian mixture model
(GMM).

Definition 8 The multivariate random variable x is distributed as a Gaussian
mixture of order “m” if it can be represented in the general form of

x =
m∑

j=1

πjG (x, μj , Σj) (11.40)

where the jth Gaussian G is weighted by πj and is of the form

G(x, μj , Σj) =
1

(2π|Σj|)d/2
exp
(
−1

2
(x− μj)T Σ−1

j (x− μj)
)

(11.41)

with mean μj and covariance matrix Σj.

The most common method to determine GMM parameters is via the ex-
pectation maximization (EM) algorithm [17]. The basic idea in EM extends
maximum-likelihood techniques to learn a governing distribution from an in-
complete training set with missing features. Solving for GMM parameters
is a special case in which the “missing data” are vectors denoting the class
information.

GMMs are especially attractive because they offer confidence measures
representing how sure we are that x belongs to the mixture component j. The
measures come directly out of the expectation step in EM, which essentially
calculates Bayes’s rule through the posterior probability:

hj|x = Pr(j|x)

=
Pr(j)Pr(x|j)

Pr(x)

=
πjG(x, μj , Σj)∑

j

πjG(x, μj , Σj)
, (11.42)
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where P (j) = πj , the prior probability that an image content “type” arises.
To go from x → y, i.e., super-resolve, the output y is represented as a

mixture of experts in an expected value-like expression in (11.43).

g(x) = E[y|x]

=
∑

j

E[y|x, j]Pr(j|x)

=
∑

j

hj|xgj(x, hj|x), (11.43)

with posterior probability hj|x and individually trained regression, which we
have equated with E[y|x, j]. Training and applying function g to x to estimate
y will be discussed in Section 11.5.4.

Unsupervised training to find multiple class descriptions can also be
approached discriminantly rather than generatively. Under discriminant
paradigms, there are no assumptions on underlying distributions (such as
GMM), and the input space is partitioned in a relatively straightforward
manner. Vector quantization (VQ) [33] and tree-based super-resolution [4]
are examples with considerable success in image super-resolution.

Super-resolution with vector quantization [33] creates a number of proto-
type vectors {vj} to compare to the vectorized image patch, xobs. Typically,
thousands of vectors are used to achieve specificity. The estimation uses the
best choice of regression gj∗ from a bank of pretrained regressors {gj(x)}
corresponding to each vj . The output estimate y is given by:

y = gj∗(x) (11.44)

where
j∗ = argmin

j
||vj − xj || (11.45)

A more advanced classification scheme selects individual types of regres-
sors using classification trees instead of vector quantization. The end applica-
tion is still framed as (11.44), but the difference lies in how j∗ is chosen and
how the training classes are obtained. Tree-based resolution enhancement [4]
iteratively partitions the training set into subsets according to the primary
eigenvector of the subset’s covariance matrix. The tree is grown and each sub-
set is divided until the resultant division gives a regression error that exceeds
the error prior to division. The tree is then pruned on a large cross-validation
set, eliminating classes that yield excessive regression error. Runtime compu-
tational complexity is dependent on the tree depth, but usually, finding j∗ is
trivial.

11.5.3 Supervised Clustering

Numerical results for clustering (or unsupervised classification) algorithms
yield very accurate results, but the class selection may not always entirely
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make visual sense as shown in Figure 11.10. As mentioned, we would like to
avoid parsing the training set by hand, but human design of classes may be
done quickly provided enough knowledge of the problem domain is present.
We can design a group of functions to correlate with input vectors based on
what properties exist in the image patch.

FIGURE 11.9: Example discriminant functions for vertical and horizontal soft
edges selected from DCT coefficients.

There are several choices in how to analytically design classification
schemes. Figure 11.9 is an example using Discrete Cosine Transform (DCT)
coefficients. The devised algorithm correlates the input patch x with the pri-
mary and most descriptive DCT coefficients, and based on the class, a regres-
sion can be provided. The results are spotlighted in Figure 11.10.

In Figure 11.10a, Bouman’s unsupervised EM software produces a four-
class unsupervised classifier based on a GMM. There is apparently no visually
discernable pattern in Figure 11.10. Other than the edge class on the upper-
right corner,Figure 11.10a [3] lacks interesting visual patterns. Meanwhile,
DCT classes in Figure 11.10b mark off vertical edges, horizontal edges, smooth
areas, and texture, clockwise from the top-left quite well.

11.5.4 Integrating Regression

With a number of classes, the training set can be clustered or classified into a
number of subsets, each of which requires a function estimator (or regressors)
for final super-resolution.

Definition 9 Suppose we have a training set with N points:

Ω = {(x1,y1), (x2,y2), . . . (xN ,yN )} , (11.46)

where xi and yi denote low and high-resolution information, respectively. The
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(a) GMM Classification [3] (b) Supervised Classification

FIGURE 11.10: Class Comparisons in (a) unsupervised clustering using EM
on a GMM assumption versus (b) supervised clustering based on DCT basis
functions.

“m” subsets Ωi classification schemes can divide the set Ω into m subsets:

Ω =
{
{(x(1)

i ,y
(1)
i )}, {(x(2)

i ,y
(2)
i )}, . . . (x(2)

m ,y(2)
m )}
}

= {Ω1, Ω2, . . . , Ωm} (11.47)

then the jth regression is the regression that most accurately maps domain to
range in Ωj:

gj : x(j) → y(j) (11.48)

Section 11.5.2 has introduced several clustering methods, most of which fall
into one of four common categories [30]: exclusive, overlapping, hierarchical,
and probabilistic clustering. Of the four types, only probabilistic clustering
offers uncertainty measures of random patterns belonging to specified clusters.
The attribute fits especially well with GMM clustering through EM described
in Section 11.5.2 where posterior probabilities can produce a weighting system
in producing optimal regression estimates.

Rather than independently (and blindly) training function estimators for
each class, recall in Section 11.2 and Section 11.3 the introduction of the P
matrix (or vector). During training, the same idea can be applied with scalar
elements Pj of P corresponding to individual uncertainty measures for class
j. One such choice of P in consideration of the training point xi is a matrix of
the posterior probabilities hj|xi

= P (J = j|xi). This section explores choices
of gj , which come in the form of techniques described throughout Section 11.2
to Section 11.4 and the estimation of their parameters given that we know j
and Ωj .

Section 11.5.2 has introduced a mixture of experts framework in (11.43)
used by Resolution Synthesis techniques [3]. The modified weighted least
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squares regression is applied in (11.49):

g(x) =
∑

j

hj|xGjx, (11.49)

where Gjx substitutes for the conditional expectation, E[y|x, j].
There are numerous methods to apply regression given the class. For spe-

cific linear regression techniques, we can modify frameworks to apply P to
a wide variety of methodologies (RANSAC [24], MARS [39], etc.) The ex-
pression for a modified weighted least squares linear regression using P is
exactly the solution in (11.14). In terms of nonlinear regression, we examine
the SVRs introduced in Section 11.4 (though other nonlinear regression tech-
niques [52, 7] have potential as well). Weighting points in the SVR framework
is analogous to the effect of choosing C in the original primal problem (11.18)
for every training point, (11.50), on the solution hyperplane.

min
w,b

1
2
‖w‖2 +

∑
i

Ci(ξ+
i + ξ−i )

s.t.
yi − (〈w, φ(xi)〉+ b)− ε ≤ Ciξ

+
i

(〈w, φ(xi)〉+ b)− yi − ε ≤ Ciξ
−
i

Ci, ξ
−
i , ξ+

i ≥ 0 (11.50)

The larger Ci is, the more penalty is incurred for nonflat regression so-
lutions, in effect restricting the freedom to closely fit the training data in
the constraints. The optimization arises from individual weighting of slack
variables ξ

+/−
i for every point in the training set. Then, for the jth SVR, mul-

tiplying all ξ−i with the corresponding posterior probability of a particular
class, hj|xi

produces a desired effect.
Consequently, to obtain an expression with weighted importance on train-

ing points, let Pj be a vector of probabilities of all the points belonging to class
j. Then, the final equations can be rewritten from the optimization problems
in Section 11.4.

Theorem 4 The weighted SDP problem for the cth support vector regression
in a mixture of SVM’s for image super-resolution is defined as

min
μ,t,λ,q+

u ,q−l ,q−u
t

s.t.

⎛
⎝ 2

∑
i

μiKi γ

γT t− 2CPT
c (q+

u + q−u )

⎞
⎠  0

trace(K) = c∑
i

μiKi  0

q+
u , q−

u , q−l  0
εe + q+

u + q−u − q−
l  0

(11.51)
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Theorem 5 If μi > 0, ∀i in (11.51), then the equivalent SDP problem can be
written as a QCQP problem, which is written as

max
β+,β−,p

2yT β− − 2ε1T β+ − cp

s.t. p ≥ β−Kiβ
−

1T β− = 0
0 ! β+ + β− ! 2PcC
0 ! β+ − β− ! 2PcC

(11.52)

11.6 Design Considerations and Examples

A number of learning algorithms have been introduced throughout this chap-
ter, all of which have involved training. Hence, in using data-driven techniques,
the proper setup and design considerations must be implemented, of which
cross-validation is an integral concept. In this section, we go over a cross-
validation example and then draw up some comparisons that describe the
merits and advantages of the nonlinearity modeling in image super-resolution
through our various classification and regression frameworks. A short dis-
cussion follows with observations conveying the power of pattern recognition
techniques in the super-resolution domain.

(a) min k, η = 50 (b) min k, η = 500 (c) min k, η = 5, 000

FIGURE 11.11: Cross-validation: effect of varying η in the adaptive k-NN
super-resolution scheme described in Section 11.2.3.

Cross-validation, an important component of all learning algorithms, as-
sesses the fit of a model prior to its usage. Empirical methods for image and
video processing, like the ones discussed in this chapter, must not only be
tuned numerically but visually as well. Common forms of cross-validation
are leave-one-out and k-fold cross-validation. Cross-validation guards against
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overfitting and overgeneralizing. For example, Fig. 11.11 aids in the design of
the adaptive k-NN regression techniques described by Section 11.2.3, where
the parameter η must be cross-validated. Too small an η and the image be-
comes visually noisy whereas too large an η and the image is blurred and
washed out.

(a) Multiple Linear Regression (b) Multiple Nonlinear SVR

FIGURE 11.12: Multiple learners in a mixture of experts method through a
GMM as described in Section 11.5.4: linear vs. nonlinear regression.

On the whole, modified least squares regression estimates have been effec-
tive through the various communicated frameworks. More computationally-
tasking, nonlinear SVR estimates, of course, perform better in the same frame-
works given their expressive power. The examples in Figure 11.12 and Fig-
ure 11.13 implements a mixture of experts framework [5, 47, 27] yielding
somewhat similar results (with a presharpening preprocessing step in the lin-
ear case), though the nonlinear case produces a somewhat crisper image. One
must be careful, however, as poorly chosen models and training sets degrades
both model complexity and reconstruction quality.

Each algorithm elucidates certain image attributes that are attractive de-
pending on what the viewer notices the most. As expected, k-NN performs well
in areas of texture (observe the leaves and bushes in Figure 11.13.) We have
collected enough training data to avoid the heuristics of Section 11.2.4, but
the concepts introduced in that section do appear to come into play around
the edges. It is only noticeable upon closer-inspection, and quality-wise, adap-
tive k-NN approaches are competitive. Yet, their complexity at O(N) runtime
leaves much to be desired. A number of approximate neighbor methods ad-
dress this issue. As an alternative, multiple regressors in Figure 11.13c and
Figure 11.13d take advantage of the HVS model’s sensitivity to edges, though
the SVR produces better texture results.
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(a) Single NN + MRF [25] (b) Adaptive k-NN + MRF

(c) Multiple Linear Regressors [3] (d) Multiple SVR Regressors [45]

FIGURE 11.13: Comparisons of various learning algorithms described
throughout the chapter.

11.7 Remarks

We have a reviewed a number of learning-based image super-resolution al-
gorithms. Although we have, by no means, addressed the application of all
pattern recognition techniques to image super-resolution, we have covered the
most successful and popular methods. Any of the techniques could easily be
expanded into an entire book (see the references for resources), but the ideas
and techniques should be adequate to start the reader on their way. As the field
of machine learning continues to advance, we expect the powerful potential
for applications to image super-resolution to do the same.

It is crucial to remember that learning algorithms, although powerful in
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generalization, do not exempt the user from detailed and intimate knowledge
of the problem domain. Learning algorithms provide a gateway to infer rela-
tionships that may otherwise be too complicated to describe. Like any other
tool, one needs to know how to use it for a given scenario. While throwing a
learning algorithm at a problem as an initial step may work somewhat, one
may never realize the full potential without careful study of the domain and
co-domain.

11.8 Glossary

Clique: A grouping of image sites whose individual sites are not neighbors of
themselves. Additionally, a clique’s elements that are neighbors of other
image sites have, in turn, those image sites as neighbors for themselves.

Cross-Validation: A technique to determine how well a statistical analysis
generalizes using independent sets of data.

Expressive Power: The capability to implement different types of functions.

Functional: A functional is a real-valued function on a vector space. The
vector space can and is often a space of continuous and differentiable
functions.

Image Patch: An organized collection of pixel values that are taken from a
single, spatially contiguous image location.

Image Patch Site: The (x, y)-position of an image patch.

Mixture of Experts: From an input vector, several functions, or “experts”
pool their decisions to vote on whose outcome is most likely correct. The
output is a result that is a weighted consideration of the experts’ decision.

Overfitting: The event that a statistical model begins to describe the noise
of a training set instead of its underlying relationships.

Perceptron Functions: A simple, single unit in a network of functions (i.e.,
neural network).
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This chapter describes how super-resolution techniques can be applied to im-
prove both spatial and spectral resolution of the multichannel images. The
digital cameras that become a part of the daily life captures color images that
have three channels (i.e., red, green, and blue), however the number of fre-
quency channels can go up to hundreds for some multichannel data such as
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hyperspectral images. The multichannel data in remote sensing applications
addresses the need to resolve not only the shape of a particular object but
also its compositional features (e.g., concrete, asphalt, brick, etc.) With the
advent of analysis tools, the multichannel imagery makes it possible to iden-
tify, recognize, detect, or classify objects or regions of interest for commercial,
civilian and military reconnaissance purposes.

There are several agents that reduce the quality of multichannel imagery.
These are sensor noise, solar illumination and atmospheric effects, changes
in viewing angle, and secondary illumination coming from nearby objects.
The resolution enhancement methods offer invaluable solutions to these lim-
iting factors on the quality of final imagery without the need of expensive
equipment. An important design factor that has to be considered for the en-
hancement of the multichannel data is their dimensionality. The analysis of
high-dimensional data such as hyperspectral imagery becomes cumbersome
due to the computational burden and the storage issues. On such cases, ap-
plying a dimension reduction technique with an appropriate subspace rep-
resentation, which utilizes the inherent low-dimensionality of the data, has
apparent computational and storage benefits for data analysis. Besides, the
reduced dimensional subspace representation has been shown to provide some
level of robustness against noise for the resolution enhancement applications
as well [7], [20]. Therefore, improving the resolution of the multichannel data
with subspace based super-resolution method has a high return value. This
chapter is dedicated to formulate the super-resolution problem in a reduced
dimensional spectral subspace mainly for hyperspectral data. Nevertheless,
the introduced super-resolution method can be applied to improve the resolu-
tion of any multichannel imagery. First a generative image model is defined to
approximate sensor acquisition process at spectral and spatial domains. Next,
a blind source separation method is introduced to decompose the spectral
information at each pixel into approximated constituent endmembers (pure
materials). By only using a limited number of the approximated endmem-
bers to represent spectral data at each pixel, the computational load and the
noise inherent in the data will be reduced. Finally, the acquisition model with
the reduced dimensional subspace representation is integrated into the super-
resolution formulations to improve the spectral and spatial resolution of the
given multichannel data.

12.1 Introduction

Before getting into the details of the super-resolution reconstruction of multi-
channel images, it would be useful to introduce the basics of the multichannel
imaging and their applications. This summary does not intend to explain var-
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ious interacting physical phenomena that affects the final imagery, hence the
interested readers are encouraged to refer to [10], [21] for a better treatment.

Any imaging application relies on the fact that object reflects, absorbs, and
emits electromagnetic radiation. The interaction between the composition of
the constituent matter that forms the object and the shape of it determines
the amount of electromagnetic energy reflected at each wavelength. During the
evolution, the human visual system is adapted to its environment by having
photoreceptor cells that are tuned to absorb light at different wavelengths.
Similarly, a conventional camera records intensity images at red, green and
blue spectral radiations scattered from the objects. Thus, the multichannel
remote sensing with color is already a significant part of daily life.

In the engineering community, the name remote sensing is often associated
with the field that does the analysis of the data obtained via the satellites,
high/low altitude reconnaissance planes, etc. [12]. In the early stages of this
field, only the gray-scale images of the Earth surface were available to re-
searchers. Now, however, with the advanced sensing systems used in space
technology, it is possible to capture various forms of the multichannel im-
agery such as multispectral, hyper-spectral, or color images, which supply
vast amounts of information to the researchers about the characteristics of
the objects and materials for further analysis.

For more accurate analysis of the nature of the observed objects, the sci-
entists working in the remote sensing field proposed to measure the electro-
magnetic radiation reflected from objects or materials at a higher number of
wavelength bands. In this effort, the hyperspectral imaging is introduced as
an effective way to extract a contiguous spectral signature of the materials at
a distance. Since each material has a different spectral reflectance property,
even the detection of subtle objects become possible with hyperspectral imag-
ing. The difference of hyperspectral sensors compared to conventional imaging
devices comes from its ability to sample the spectrum of the reflected radi-
ation at a higher number of wavelengths (orders of hundreds) at each pixel
location. Therefore, a distinct spectral feature for the objects or materials of
interest can be extracted. This enables superior analysis of ore fields, detailed
mineral exploration, accurate measurement of the crop yield, identification of
military vehicles even under camouflage, and so on.

For multichannel image data, there are two main agents that determine
the final spectral characteristics at each pixel site. These are the reflectance
properties of the constituent matters (endmembers) of the object or material
of interest and the solar radiation at the spectral band that sensors are working
on. There are various other factors that might effect the quality of the final
imagery, such as the atmospheric effects that are caused by absorption and
scatter of the reflected radiance, illumination from nearby objects and changes
in viewing angle. Nevertheless, these effects are either considered negligible
or compensated ahead of the resolution enhancement process. Thus, without
going into complicated details of these effects, the image acquisition model
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is kept very straightforward; yet it captures the main characteristics of the
imaging process in the spatial and spectral domains.

There are a wide variety of approaches that have been used to increase the
resolution of multichannel data, especially after the recent interest on hyper-
spectral images. A very common approach for spectral resolution enhancement
in the literature is to use the spatial information of the high-resolution imagery
of a different sensor (such as panchromatic or multispectral) to improve the
spectral characteristics of the hyperspectral data. For this, the component sub-
stitution methods replace the low-pass components with the high-resolution
imagery [17], whereas the high-pass techniques improves the spectral bands
of the low-resolution data by adding the high spatial frequency content of the
high-resolution images [2]. Inherently these methods are similar to the sharp-
ening methods employed to improve human interpretation of the multispectral
images in the early literature. A different approach to enhance the resolution
of the hyperspectral images is utilizing the spectral mixture analysis [18], [6].
Basically these methods employ the linear mixing model and find the fractions
of the high-resolution endmembers at each pixel by a constrained nonlinear
optimization. The presented super-resolution algorithm also uses very basic
unmixing methods for spectral representation as a part of its reconstruction
method. However, rather than fusing information from different types of sen-
sors, the motion difference between the shots of the same scene is utilized to
achieve high-resolution imagery.

The super-resolution algorithm of this chapter tries to improve the resolu-
tion of the imagery at spatial and spectral domains simultaneously via convex
set projections similar to [1]. These convex sets put constraints on the statis-
tics of the residual data, which is defined as the difference between the actual
observation and the estimated one produced by the imaging model. Next, for
each constraint set a corresponding projection operator is defined. With the
successive application of the projection operation onto these convex constraint
sets, the residual data approaches to the noise of the image acquisition model;
hence, the estimated observations get close to actual ones. The projection
operators alter the input of the imaging model, which is the desired high-
resolution image. Therefore, if the outputs of the imaging system consistently
match with the actual observations for a particular scene, the reconstruction
with convex set projection will achieve the desired high-resolution image.

12.2 Notation

The multichannel images are formed by stacking up two-dimensional snap
shots of the scene at different wavelengths, hence they are three-dimensional
data (refer to Figure 12.1). It is important to introduce the notation that is
adopted in this chapter before moving on to details of the super-resolution re-
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FIGURE 12.1: Hyperspectral data.

construction. Apparently a new convention for data representation is needed.
Here, the 3D discrete data of size M ×N ×K is represented by X[x, y, z] ma-
trix notation. As show in the Figure 12.1, x and y are the spatial coordinates
of the data X, while z is the spectral one. For the sake of simplicity, this 3D
matrix is mapped to a 2D one by lexicographically arranging the spatial coor-
dinates at each wavelength. This mapping of 3D coordinate system, [x, y, z],
into 2D system, [�, z], can be expressed by the spatial coordinate mapping
� = f(x, y) = x + (y − 1) ×M . The new vector of spatial data at band b is
defined as

xb =
[

X[1, b], X[2, b], · · · , X[M.N, b]
]T (12.1)

where the spatial resolution is M×N pixels. xb vector is the lexicographically
ordered 2D image at band b. Next, for each co-registered pixel location, a
spectral vector of size K × 1 is defined as

x� =
[

X[�, 1] X[�, 2] · · · X[�, K]
]T

. (12.2)

In the text, this vector is often referred as the spectral signature at pixel �. To
better visualize the relation between these vectors their matrix representation
is given below

X =

⎛
⎜⎜⎜⎜⎝

x1T

x2T

...
xKT

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

x1 x2 · · · xM.N

⎞
⎟⎟⎟⎟⎠

. (12.3)

With this matrix form, it is easy to see these equalities X[�, b] = xb[�] = x�[b].
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FIGURE 12.2: Image acquisition.

12.3 Image Acquisition Model

The image acquisition process given in Figure 12.2 simply highlights some
basic components that will be incorporated into an observation or imaging
model. First, the continuous scene data passes through the optics, which is
followed by some form of spatial sampling due to the spatial arrangements
of the spectral sensors in two-dimensional array. These spectral sensors acts
like a simple prism that disperse the incoming light into a spectrum of colors.
Basically, in the remote sensing applications, the tools like prisms are exploited
for the spectral selection. Especially for hyperspectral imaging, to produce a
contiguous spectrum with high number of wavelength bands various spectral
selection techniques other than prisms such as gratings, filter wheels, and
interferometer are employed [3]. Finally, the dispersed energy of the incoming
light is recorded at different wavelengths to form the multichannel images.

Assuming that the necessary atmospheric corrections related with the solar
radiation is done, the observation model given in Figure 12.3 roughly approx-
imates the rest of the imaging processes. Note that the order of the functional
blocks of the observation model does not have one-to-one matching with the
actual image acquisition picture at Figure 12.2. The main reason is that it is
easy to work with discrete data. Therefore, the model starts with continuous
to discrete sampling without aliasing,

X[x, y, z] = X(x.Cx, y.Cy, z.Cz) (12.4)

where X(.) represent continuous data, the scalar Cz is the spectral sampling
period, and the variables Cx and Cy control the spatial sampling density.
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FIGURE 12.3: Observation model.

12.3.1 Motion Compensation

In this discrete signal domain, several methods are available to find the relative
motion between the sensors and the observed scene. By finding the relative
motion, the different observations of the same scene can be registered to a
common two-dimensional grid (often at a higher resolution level). This regis-
tration process can be done by the standard motion estimation algorithms like
blockmatching. However, since the scene is relatively static during the imaging
process, finding the global motion parameters that describe the relative mo-
tion between the reference grid and the observations with a projective trans-
form can provide a more accurate registration. As shown in Figure 12.3, the
motion compensation functional block acts on high-resolution data. Unfortu-
nately, the high-resolution data is not available; hence, the motion parameters
can only be calculated with the low-resolution observations. The advantage
of using the global projective mapping for the motion compensation of low-
resolution observations is because it enables a very accurate estimation of
individual pixel locations at the corresponding high-resolution grids.

The registration process is provided in Figure 12.4. Here, the ground plane
denotes the region of interest for the super-resolution algorithm. The purpose
is to improve the surface details of that region. The smaller planes with names
R, O1, and O2 are the reference, the first and the second observation planes,
respectively. These planes indicates the imaging planes of three multichannel
sensors facing the ground. Thus, each sensor produces images of the same
scene at different views. This sensor configuration can be the result of three
different passes of the same sensor at that region or three completely different
sensors collecting data simultaneously.

Considering that the pictures of Earth are taken at very high altitudes,
assuming a planar region of interest for super-resolution reconstruction is in
general reasonable. Therefore, it is possible to find a mapping between the
pixels of the reference plane R and observation planes O1 and O2 simply by
finding the 2D planar homography between the observations. Essentially, 2D
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FIGURE 12.4: Registration of sensor imaging planes via planar homography.

planar homography is a projective transform that can locate the corresponding
points in two planes. Let (x1, y1, 1) and (x2, y2, 1) be the homogeneous coordi-
nates of reference and observation planes, then with 2D planar homography,
these planes can be registered with

⎛
⎝

x1

y1

1

⎞
⎠ = T

⎛
⎝

x2

y2

1

⎞
⎠ (12.5)

The details of finding the planar homography matrix T that registers the
observations into one reference grid can be found in [8]. Note that due to
the mapping, the coordinate (x1, y1, 1) may end up in noninteger location.
For that case, a linear interpolation algorithm will be employed to find the
intensity values at the pixel positions. The Figure 12.4 shows a point on the
ground plane, Q, and its corresponding observations at different sensors (P ,
P ′, and P ′′), which can be located by the projective mapping. Similarly, every
pixel at any imaging plane that faces the region of interest can be registered
to a reference two-dimensional grid at plane R with this mapping. As it was
mentioned before, the T matrix can be formed by using any other motion
estimation algorithm, too.

12.3.2 Spatial Filtering

In the design of an imaging model for the super-resolution reconstruction,
since the desired resolution level is higher than the resolution of the observed
images, the blurring and the downsampling operations are usually incorpo-
rated into the model to explain the relation between the targeted and ob-
served resolution. These operations helps to simulate the aggregate effect of
many different physical processes on the final imagery. The optical blur, the
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point-spread function (PSF) of the imaging sensor, the motion blur and the
distance between the scene and the sensor are a few of these physical effects.
The spatial filtering functional block in Figure 12.3 encapsulates the blurring
and the downsampling operations in the spatial domain. The corresponding
mathematical operations for the image at band b can be given as

yb[n1, n2] =
∑

xb[m1, m2]hb[n1, n2; m1, m2] (12.6)

where the spatial filtering operator hb acts on the band b and composes three
functional building blocks. For a simpler analysis, the matrix notation will be
used. Next, let the Hb be the convolution matrix of the operator hb then,

Hb = DBbW (12.7)

where Bb is a square matrix that blurs the pixels of the motion compensated
xb with a Gaussian filter of support n× n. The actual blur is time and space
varying and estimating that would require considerable effort. However, under
certain conditions the spatial blurring filter in the model can be approximated
with a linear space-time invariant Gaussian kernel, which also simplifies the
reconstruction process (the justification is provided at [1]). Downsampling op-
eration is denoted by the matrix D, reducing the sampling rate of the targeted
imagery to the observed signal’s resolution. Hence, to achieve a spatial res-
olution of 1080x1920 pixels while the observed resolution is 540x960 pixels,
a downsampling factor of 2 will be used for both of the coordinate axes in
the observation model. Finally, the matrix W does the motion compensation
operation using the projective mapping matrix T given in Equation 12.5 and
a linear interpolation method to find the intensity values at integer locations
(i.e., at each pixel). In the equations that follow, as a convention, the character
y will be reserved to denote degraded imagery (either in spatial or spectral
domain) while letter x will be used for the high-resolution data.

12.3.3 Spectral Filtering

The observation model described up to this point is very general and can
be found in the standard formulations of the super-resolution reconstruction.
However, the relation between the desired and the observed spectral resolu-
tion has to be constructed for the multichannel data. In this text, the spectral
resolution is defined as the number of contiguous bands within a given spectral
window. As an example, The Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) database of hyperspectral images has spectral radiance of 224 con-
tiguous spectral bands between 400 to 2500 nanometer wavelengths [4]. Thus,
the spectral resolution of the hyperspectral imagery at the AVIRIS database
is 224.

The spectral vector at a pixel location is also referred to as the spectral
signature of the material at that particular pixel location (see Equation 12.2).
The level of absorption of electromagnetic radiation at each wavelength can
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provide distinct features of a particular material for data analysis such as
material identification. However, some materials have resembling spectral sig-
nature that might hinder identification if appropriate spectral resolution is
not available. In general, having a higher spectral resolution can significantly
improve the accuracy of the data analysis tasks. Therefore, a spectral filtering
functional block is introduced into the model so that the resolution of the
observed scene at the spectral domain can be increased.

In Figure 12.5 the spectral signatures of two pure minerals are given. One
of the distinguishing features of Kaolinite (a phylosilicate) from Microcline
(a silicate) is the double-trough due to electromagnetic absorption between
2-2.5 micron(μm) wavelengths. On a spectral interval, if a sensor does not
have enough spectral resolution to capture this feature, Kaolinite can be con-
fused with other silicates. This demonstrates that for better analysis of the
multichannel data, higher spectral resolution is needed. These subtle features
become even more essential for making an accurate analysis of the spectra of
the mixed (nonpure) materials.

As a part of the effort to increase the spectral resolution, the following
model is used in the derivations. Here, the low-resolution spectral signature at
�’th pixel position, y�, is expressed in terms of its high-resolution counterpart,
x�, as

y�[k] =
∑

x�[l]h�[k; l] (12.8)

where the one-dimensional operator h� first blurs and then subsamples the
data x�. Using the convenient matrix notation, this relation can be explained
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FIGURE 12.5: Pixel spectra of two pure materials (Microcline and Kaolinite)
from the ASTER spectral library [11].
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as,
y� = H�x� = D�B�x�. (12.9)

where the convolution matrix B� blurs the high-resolution spectral signature
vector, which is followed by the downsampling operator, D�. It is important
to note that the performance of spectral resolution enhancement with the
described model is tied to the performance of the spatial resolution enhance-
ment. This is mainly because the observed multichannel images are assumed
to be captured by the sensors that have same wavelength sampling patterns.
Therefore, there is no extra information about the missing frequencies that
can be fused at a higher resolution grid; hence only the increased accuracy
of the existing frequencies provide the resolution improvement at the spectral
domain. Nevertheless, the super-resolution algorithm described in this chapter
can also be used to achieve higher spectral resolution if the multichannel data
with different wavelength sampling patterns is available.

12.3.4 Multichannel Observation Model

The multichannel observation (or imaging) model tries to mimic the physical
process that the high-resolution signal goes through in the imaging pipeline
of the sensor. If the synthetic output of the observation model, ŷ, produces
reliable estimates of the observed signal, y, then the model will be in agreement
with the observations. Having this generative imaging model, the desired high-
resolution data can be reconstructed by the tools designed for solving the
inverse problems.

To finalize the multichannel observation model, the functional blocks that
are described above are put together. Here the input signal of the observa-
tion model is the targeted high-resolution data. First, this signal is warped
according to the relative motion between the observed image and the refer-
ence high-resolution grid. Then, the spatial filtering is applied to the warped
input signal at all frequency bands. Next, with spectral filtering the observed
spectral signature at pixel location � is generated.

y� = H�

⎛
⎜⎜⎜⎜⎝

H1[�, .] 0 . . . 0

0 H2[�, .]
...

...
. . . 0

0 · · · 0 HK [�, .]

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xK

⎞
⎟⎟⎟⎠+ η�. (12.10)

here H1[�, .] is the �’th row of the spatial filter matrix applied to 1st spectral
band. Also the term, η�, is introduced to account for the combination of the
spatial and the spectral observation noise. Since the noise term sums up the
effects of all the possible sources of distortion, a zero mean additive white
Gaussian noise is assumed. For all the spectral signature vectors of the same
scene, the motion compensation parameters will be the same due to the global
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projection. For simplicity, the observation model can be written as,

y� = H�M�x + η�. (12.11)

where

M� =

⎛
⎜⎜⎜⎜⎝

H1[�, .] 0 . . . 0

0 H2[�, .]
...

...
. . . 0

0 · · · 0 HK [�, .]

⎞
⎟⎟⎟⎟⎠

, x =

⎛
⎜⎜⎜⎝

x1

x2

...
xK

⎞
⎟⎟⎟⎠ (12.12)

Note that the lexicographically ordered image of the scene at the b’th spectral
band, xb, is a large vector. However, since the support of the Gaussian blur is
localized around the �’th pixel, the most of the term of Hb[�, .] vector is zero.
Thus, the multiplication of the row vector Hb[�, .] with xb can be significantly
simplified. Another simplification can be done by decomposing the spectral
bands into a fewer number of basis planes by subspace representation. In the
next section, the details of such a subspace representation based on blind
source separation is given.

12.4 Subspace Representation

Employing a subspace representation method for the super-resolution recon-
struction problem has two reasons. First, the multichannel data with a large
number of spectral bands complicates the reconstruction problem. The fact
that spectral bands have significant correlation, the inherent dimensionality
of the data is expected to be less than the actual number of bands. With
certain accuracy, it is possible to approximate the spectral bands by a linear
combination of a small number of basis vectors, hence the complexity of the
enhancement algorithm can be reduced considerably. Using a subspace ap-
proach to decrease the dimensionality of the spectral signatures might seem
to contradict with the general goal of the super-resolution algorithm. Never-
theless, since the error of approximation is almost zero even with a few (often
less than ten) basis vectors, the super-resolution reconstruction is not affected.
The second reason for having a subspace representation is to gain robustness
against the noise in the multichannel data. For the subspace representation
methods such as Karhunen-Loeve Transform (KLT), the eigenvectors of the
covariance matrix of the data with high eigenvalues are often retained in the
reduced dimensional linear representation. In fact, the process of eliminating
the eigenvectors with low eigenvalues from the representation acts like a de-
noising operation. This is because the eigenvectors with low eigenvalues are
considered to capture the noise in the data. Therefore, removing them from
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the representation essentially denoises the data. Therefore, performing the
super-resolution reconstruction in this reduced dimensional linear subspace
adds robustness again the noise. In the Experiments and Discussions section,
you can find results that are validating this observation.

Karhunen-Loeve Transform is the optimal method to reduce the dimen-
sions of the data, in the minimum mean square error sense. However, it is ar-
gued at [13] that the metric induced by blind source separation/independent
component analysis (BSS/ICA) is superior to KLT by providing a representa-
tion that is more robust to the effects of the noise. Also, as it was noted earlier,
each pixel site in a hyperspectral data can possess more than one constituent
material (endmember spectra). With the assumption that any observed spec-
trum at a co-registered pixel location is formed by linear combination of the
spectrums of the endmembers, the utilization of blind source separation as a
linear unmixing method is reasonable. Nevertheless, the spectral signatures
of endmembers are not statistically independent; hence, one cannot expect
the unmixed endmembers (or sources) of BSS to match exactly with the ac-
tual endmembers. A detailed treatment of application of BSS for unmixing
hyperspectral data can be found in [14].

12.4.1 Blind Source Separation

Recently, blind source separation with independent component analysis at-
tracted many researches in various fields from medical signal processing to
speech processing as a data analysis tool. The name “blind” comes from the
fact that both the source signal (in this case spectra of endmembers) and how
they are mixed (abundance fraction) is unknown. The only assumption that
will lead to the separation of the source signals is, that they are non-Gaussian
and statistically independent. Therefore, the BSS with ICA reduces higher
order dependencies compared to KLT that just makes signals uncorrelated.
The basic linear mixture model of ICA for spectral analysis can be written as,

x� = As� + e� (12.13)

where x� is the K× 1 spectral signature vector that has the reflectance values
at K different wavelengths, s� is the k×1 spectral independent component (IC)
vector where K � k. The A matrix of size K × k, on the other hand, has the
source signature vectors (approximated endmember spectra) on its columns.
The reconstruction error term, e�, is a result of the dimension reduction step
applied prior to the core ICA algorithm. Essentially in this step, KLT is used
to reduce the signal dimensionality.

There are various algorithms available to solve the BSS/ICA problem.
In the experiments, a symmetric fixed-point algorithm with f(x) = tanh(x)
nonlinearity is used for a fast and simple solution [9]. The algorithm starts
with a random orthogonal matrix Q and at each iteration its rows, (q), are
updated by

q := E[x̂f(qT x̂)]− E[f ′(qT x̂)]q (12.14)
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where x̂ the input data to core BSS/ICA algorithm. The expectations are cal-
culated over a fairly large data set of spectral signatures. With this operation,
the algorithm tries to find the direction that maximizes the negative entropy
of the data. Next, after each iteration the Q matrix is orthonormalized by the
following formula

Q = (QQT )−1/2Q. (12.15)

Finally, after the convergence of the iterations is achieved, the A matrix is
constructed by

A = EΛ1/2QT (12.16)

where Λ denotes the diagonal matrix containing the k largest eigenvalues of
the covariance matrix of the spectral signatures and the columns of E matrix
have the eigenvectors of the k largest eigenvalues.

12.4.2 Observation Model with BSS

Having introduced the subspace model with the blind source separation, the
next step is to integrate it into the observation model. Especially for hyper-
spectral images that have hundreds of spectral bands, BSS provides a linear
representation with less then ten endmembers. As a result, the computational
complexity of the super-resolution reconstruction algorithm will be reduced
substantially. In order to decompose a given spectral signature vector, x�,
into its independent component vector, s�, first an unmixing matrix, B, is
calculated by taking the inverse of matrix A,

B = Q−T Λ−1/2ET (12.17)

then the s� vector will be found by

s� = Bx� (12.18)

Since the number of constituent endmembers are expected to be significantly
less the number of spectral bands, the dimension of the s� vector will be far
smaller than the dimension of the spectral signature vector x�. The BSS will
be applied to find A and B matrices of each scene. This way the compositional
features of each scene can be captured to have a better subspace representa-
tion. The decomposition of spectral signatures with the BSS/ICA transform
will be repeated for all pixels. By doing so, a new multichannel data will be
formed, which will have k bands (k � K), where k is the number of end-
members assumed to exist in the scene and K is the spectral resolution. If the
number of endmembers in the scene is unknown, one can find k value by keep-
ing 99.9% of the energy of the representation at the dimension reduction stage
of KLT. In the experiment, for hyperspectral images with K = 244, 99.9%
energy preservation is achieved with k values around 7 to 9. Then using the
notation introduced before, the observation model can be updated,

y� = H�AM�(s + e) + η� (12.19)
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where the s�’s and e�’s are rearranged to form the spectral basis image sb and
the reconstruction error at that band eb. The corresponding notations used
in the Eq. 12.19 are

M� =

⎛
⎜⎜⎜⎜⎝

H1[�, .] 0 . . . 0

0 H2[�, .]
...

...
. . . 0

0 · · · 0 Hk[�, .]

⎞
⎟⎟⎟⎟⎠

, s =

⎛
⎜⎜⎜⎝

s1

s2
...
sk

⎞
⎟⎟⎟⎠ , e =

⎛
⎜⎜⎜⎝

e1

e2

...
ek

⎞
⎟⎟⎟⎠

(12.20)
Note that although the diagonal terms of the M� does not change the number
of rows reduces to k. In the next section, a detailed review for super-resolution
reconstruction algorithm is given.

12.5 Reconstruction Algorithm

The super-resolution reconstruction is a signal restoration problem where the
original signal is assumed to have a higher resolution compared to the observed
signal. The observations are degraded and noisy versions of the original sig-
nal. The signal restoration is a common problem for various fields in signal
processing including system identification, image and speech processing, etc.
There are various techniques in the literature to solve the restoration problem
under different degradation models. The introduced model for multichannel
images is a generative imaging model in which the distortion mechanism is
separated into the degradation operators and the noise process. Different than
the standard super-resolution formulations, the imaging model describes the
individual spectrum at each pixel location (i.e., the spectral signature at that
pixel) as follows,

y(i)
� = H�M

(i)
� x + η

(i)
� . (12.21)

where superscript (i) denotes the observation number. The spatial degrada-
tion matrix M

(i)
� integrates the effects of motion, blur, and distance from the

camera (by decimation or downsampling) for the (i)’th observation of �’th
spectral signature vector. The H� matrix, on the other hand, is the degrada-
tion operator at spectral domain that incorporates the quality of spectral data
acquisition device into the model. The vector η

(i)
� , on the other hand, is the

observation noise that combines the inaccuracy in the measurements due to
the sensor properties and some secondary effects like atmospheric conditions
into a single term. Here, the sensors are assumed to have the same physical
characteristics, and only the motion compensation operation changes from one
observation to the other, hence, the M(i) notation is used.

The restoration of the high-resolution data, f, by using the linear set of
equations in Eq. 12.21 is an ill-posed problem. The solutions like the inverse
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filtering will just amplify the noise in the observations. Therefore, the regular-
ization methods are needed to integrate a priori information about the distor-
tion mechanism into the solution. In this chapter, the projection onto convex
sets (POCS) method is employed to recover high-resolution multichannel im-
agery. POCS is an iterative method that employs a priori information about
the degradation operator, the noise statistics, and the actual high-resolution
image distribution. With this a priori information an estimate to the low-
resolution observation is generated. The difference between the actual and
the estimated low-resolution observations is called the residual of the imaging
or observation model. In this case, the residual can be written as,

r(i) = y(i)
� −H�M

(i)
� x (12.22)

where y(i)
� is the i’th low-resolution observation. To have a consistent estimate

of the observations, the residual should have the same characteristics as the
observation noise. However, the noise process cannot be known exactly. Gen-
erally, the only available information about the noise is its mean and variance.
With this knowledge, a confidence interval can be defined for the residual data
such that if an outlier is observed, the estimated high-resolution data, f, will
be corrected accordingly. This correction operation is called the projection
onto convex sets. The convex sets in this definition will be the constraint sets
that are bounding the statistics of the residual signal (such as the outliers).
Here, the assumption is that the solution (in this case, the high-resolution
image) will be the the member of intersections of these constraint sets. The
intersection set essentially satisfies all the constraints that can be imposed on
the true solution. This intersection set is also called as the feasible region of
the inverse problem. The method of POCS converges to a point in this feasible
region called as the feasible solution by successive projection of an initial esti-
mate of the solution onto the convex constraint sets. Depending on the initial
estimate of the solution, and the order of projection, the solution produced
by the POCS algorithm can change. Therefore, the solution provided by the
method of POCS is not unique unless the feasible region has a single point.
The fundamental mathematical concepts for POCS can be found in [19], [22].

12.5.1 The Subspace Observation Model

Before moving on to the description of the the super-resolution reconstruction
algorithm with POCS, the residual signal has to be redefined for the subspace
observation model that is given in Equation 12.19. Just to recap, the subspace
observation model for the (i)’th observation is expressed as

y(i)
� = H�AM

(i)
� (s + e) + η

(i)
� . (12.23)

To be able to use the POCS-based reconstruction method, the noise and the
degradation processes should be identified. The difference between the noise
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processes of two observation models at Eq. 12.21 and 12.23 is the reconstruc-
tion error term, e(i), due to reduced dimensional subspace representation. The
noise term for the subspace observation model will be

ν
(i)
� = H�AM

(i)
� e + η

(i)
� . (12.24)

Since it is common to assume a Gaussian distribution for the reconstruction
error, and all the operators acting on reconstruction error is linear, the final
noise term ν� will be Gaussian as well. Next, the residual signal of the subspace
observation model associated with an estimate ŝ is given as,

r(i) = y(i)
� −H�AM

(i)
� s. (12.25)

The POCS algorithm will try to make the statistical characteristics of this
residual term approximately equal to those of the noise term, ν�, of the sub-
space observation model. Next, the details of two different POCS algorithms
are provided. There is no a priori method to choose which one of these POCS
algorithms will perform better for a given dataset. Therefore, the best way
to choose the reconstruction algorithm is to test both and pick the better
performing one.

12.5.2 POCS with Outliers of Residual

The POCS method relies on constraining the solution term when the residual
signal deviates from the statistics of the noise process. Given that, to find
the statistical characteristics of the noise process, an experimental set-up can
be used to synthetically generate the noise term in Equation 12.24. Once the
noise process is generated by a large number of synthetic observations, the
noise statistics such as the variance and the mean can be calculated easily.
The super-resolution algorithms that utilize the method of POCS often define
constraints on the solution by limiting the extremum values of the residual
signal (or the outliers) [16], [15], [5].

For the POCS with outliers of the residual, the constraints on the solution
are performed by sequentially projecting the initial high-resolution estimate
onto convex sets based on outliers when the residual deviates an unlikely
amount from the mean. The convex set for the �’th pixel location at the b’th
band is defined as,

C[�,b]
o =

{
s|
∣∣∣y(i)

� [b]−
[
H�AM

(i)
� s
]
b

∣∣∣ ≤ δo

}
(12.26)

where [v]b is the b’th term of the vector v and δo is the statistical bound on
the residual value. With the assumption that ν� has a Gaussian distribution,
the confidence limit δo can be found by

δo = 3σν (12.27)
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where σν is the mean standard deviation of the components of the noise vector
ν�, and the bound δo reflects 99% confidence.

The feasible solution to the problem, s, lies at the intersection of convex
sets, C

[�,b]
o ’s, for all [�, b]. Moving on the projection operator, first the residual

signal with an estimate ŝ is given as,

r(i) = y(i)
� − V

(i)
� ŝ. (12.28)

where V� = H�AM�. The corresponding projection operation for the set C
[�,b]
o

is

P [�,b]
o s =

{ s + r(i)[b]−δo

‖vb‖2 vb , r(i)[b] > δo

s , −δo ≤ r(i)[b] ≤ δo

s + r(i)[b]+δo

‖vb‖2 vb , r(i)[b] < −δo

(12.29)

where the vector vb has the entries of b’th row of matrix V�.

12.5.3 POCS with Variance of Residual

Another way to incorporate a priori information about the distortion mecha-
nism of the imaging process into the POCS restoration is to use the variance
of the residual signal. This time, the constraint requires that the variance of
the residual be approximately equal to the noise variance. The constraint on
the solution is defined as follows,

C [�]
v =

{
s|
∥∥∥y(i)

� −H�AM
(i)
� s
∥∥∥

2

≤ δv

}
(12.30)

where δv is the statistical confidence bound on the estimated variance of the
residual, which is derived from noise statistics. The set C

[�]
v denotes the vari-

ance constraint on the solution imposed by the spectral signature observation
at the �’th pixel location. The feasible solutions lies at the intersection of these
constraint sets defined for all pixel locations,

⋂
� C

[�]
v .

As mentioned before, noise is assumed to be uncorrelated Gaussian noise.
Therefore the sample variance of residual will have a chi-square distribution.
The confidence bound δv can be calculated by a Gaussian approximation of
chi-square distribution. The formulation provided by [23] is as follows,

δv = σ2[±lim0.95 +
√

2(K − 1)]2/2K (12.31)

where σ2 is the mean sample variance of the residual signal and K is the
dimensionality of the spectral signature of the observed data, y�. The nota-
tion lim0.95 is used to denote the 95% confidence limit for standard Gaussian
distribution. The corresponding projection operator for the set C

[�]
v is given

as

P [�]
v s =

{
s + (VT

� V� + 1
λ I)−1VT

� r(i) , ‖r(i)‖2 ≤ δv

s , otherwise
(12.32)
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where λ is the Lagrange multiplier coming from the optimization formulation.
For a detailed treatment of the derivation of the projection operators refer to
[23]. Note that although less than or equal to sign is used in Equation 12.30
for defining the constraint on the solution, since the projection of any estimate
of the solution that is outside the constraint set will be onto the boundary of
the set, the approximate equality of the variance of the noise to the variance
of residual signal can be achieved.

12.6 Experiments and Discussions

In order not to confuse the reader with too many results, the method of
POCS with the variance of residual is chosen as the main super-resolution re-
construction approach, as it performed better than the method of POCS with
the outliers of residual for the hyperspectral data used in the experiments.
To test the performance of the super-resolution reconstruction algorithm two
sets of experiments are designed. In the first setup, the subspace-based super-
resolution algorithm is tested against the affects of the observation noise. For
this, the different realizations of white Gaussian noise at various power levels
are added to spectral bands. The robustness of the subspace-based and the
pixel-based (standard) super-resolution algorithms are examined with quan-
titative measures. In the second experiment, the resolution improvement at
spatial and spectral domain is compared with a 3D interpolation technique
designed for multichannel data.

The experiments are conducted on the AVIRIS hyperspectral dataset [4]
which provides a workbench for the targeted multichannel resolution enhance-
ment methods. Two specific hyperspectral images are used to test the perfor-
mance of the reconstruction algorithm at rural and urban settings. For the
rural case, a portion of the AVIRIS database taken over Northwestern Indi-
ana’s Indian Pine Test Site is used. The Indian Pine hyperspectral data only
has grass, corn, and soybean fields with very limited structural information.
For urban settings, a portion of Moffett Field of AVIRIS database is extracted.
Compared to Indian Pine data, the urban images of Moffett Field contain more
structures with fine details such as buildings, roads, ponds, etc. The number
of spectral bands, K, for the Moffett Field data is 224 while Indian Pine has
220 bands.

It is important to note that the hyperspectral image of the AVIRIS
database is static and does not have any motion information. To implement
the multichannel super-resolution reconstruction algorithm, the low-resolution
images are needed to be generated synthetically. In this case, the original data
will be the ground truth for the quantitative comparisons of the reconstruc-
tion performances. The super-resolution methods generate a high-resolution
estimate of the scene by fusing the subpixel level information of the low-
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resolution observations. Therefore, the low-resolution versions of the original
data have to possess relative subpixel motion with respect to the reference
image. Otherwise, the super-resolution reconstruction cannot exceed the per-
formance of standard interpolators. In the experiments, the observations are
assumed to be captured by a hyperspectral sensor at different passes along
a simple directional trajectory. Since the scene is expected to be stationary
at different shots, the assumption of global motion becomes quite reasonable.
After introducing various translational motion patterns, the original data will
be blurred and subsampled in spatial and spectral domains to generate the
low-resolution observations.

The most common measure to quantitatively understand the performance
of the reconstruction is the peak-signal-to-noise-ratio. It can be defined as

PSNR = 20 log10

(
Speak√
MSE

)
(12.33)

where MSE is the mean square error between the ground truth and the
estimated high-resolution signal, Speak is the peak signal value. The peak
signal value for each band can significantly change, which makes this measure
biased towards bands with higher energy. To compensate this the definition
of standard PSNR is changed in [1] as flows,

PSNR = 20 log10

(∑K
b=1 Speak,b√

MSE

)
(12.34)

where Speak,b is the peak signal value at b’th band. The PSNR measure used
in the experiments are calculated by this new formulation.

12.6.1 Spectral Subspace

The important part of the experiments is to form the spectral subspace for
the reconstruction algorithm. For each scene, first a reference observation is
selected so that the rest of the observations will be registered with respected
to the reference. Each spectral band of the reference observation is interpo-
lated by a bicubic interpolator to the target high-resolution dimensions. The
interpolated reference is used to calculate the mean value of each spectral
band. The mean spectral signature is found by

x̄ =
1

M.N

M.N∑
�=1

x�. (12.35)

Next, the covariance matrix of the spectral signature is calculated as

C =
1

M.N

M.N∑
�=1

(x� − x̄)(x� − x̄)T . (12.36)
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Finally, with the eigen-decomposition of the covariance matrix

C = EΛET (12.37)

the E matrix that has the eigenvectors in its columns and the eigenvalue
matrix Λ can be found. Using only the eigenvector with k largest eigenvalues,
one can obtain the mixing and unmixing matrices for blind source separation
as given in Eq. 12.16 and Eq. 12.17. Note that in order to work in this subspace,
all the observations have to be centered with the mean signature vector x̄.
After the reconstruction algorithm is applied, this mean vector is needed to
be added to the final enhanced image.
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FIGURE 12.6: Robustness of subspace and pixel-based super-resolution al-
gorithm with bicubic interpolation for (a) Moffett Field and (b) Indian Pine
hyperspectral data of AVIRIS.

12.6.2 Robustness against Noise

The first set of experiments are more focused towards analyzing the behavior
of the reconstruction algorithms at changing noise levels. For this, the white
Gaussian noise is added to each spectral band. To simplify the analysis, the
number of spectral bands (spectral resolution) of the observed and the desired
high-resolution signal is assumed to be the same. This assumption is rational
when the spectral resolution is satisfactory for the targeted application. Basi-
cally, in the first set of experiments only the spatial resolution enhancement
is employed to hyperspectral data.

The enhancement of spatial resolution of each spectral band separately by
the method of POCS with outliers of residual is called as pixel-based super-
resolution. This enables one to make a fair comparison with the subspace-
based super-resolution methods, which utilizes the correlation between the
bands. Therefore, the main difference of two methods stems from the uti-
lization of the correlation between the spectral bands. With the utilization
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FIGURE 12.7: One-dimensional linear interpolated and super-resolved spec-
tral signatures compared with the original one from Moffett Field data.

of spectral correlation, the subspace representation provides superior image
reconstruction.

The downsampling factors at the spatial domain are denoted by fx and
fy, and at the spectral domain by fz. For this experiment fx = fy = 2. To ac-
count for the effects of optics, the images at each spectral band are convolved
with a Gaussian kernel of size [2fx − 1× 2fx − 1]. In Figure 12.6 the effect of
increased noise level on the PSNR of the reconstruction is shown. Note that
while the standard deviation of the noise increases, the reconstruction per-
formance of the subspace-based super-resolution (SR) stays relatively stable
compared to the pixel-based super-resolution. Figures 12.8 and 12.9 show qual-
itative comparisons of three different approaches. To see the one-dimensional
reconstruction performance at a single spectral signature, a sample selected
from Moffett Field data is shown in Figure 12.7. Note that in this experi-
ment only the spatial resolution is enhanced; yet the reconstruction result of
the subspace-based SR method gets very close to the original high-resolution
spectral signature.

12.6.3 Simultaneous Spatial and Spectral Super-Resolution

In the second set of experiments, the subspace-based super-resolution algo-
rithm is tested for its spectral and spatial resolution enhancement perfor-
mance. To reduce the spectral resolution, a Gaussian blur is applied before
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TABLE 12.1: Reconstruction performance of a 3D interpolator and subspace-
based super-resolution at various spatial and spectral scaling factor for a
subimage of 224-band Moffett Field.

fx, fy fz 3D interpolator Subspace-based SR
2 2 27.26dB 29.03dB
2 4 24.34dB 25.90dB
2 8 21.85dB 23.87dB
2 16 19.07dB 20.77dB
4 2 25.38dB 27.67dB
4 4 23.18dB 24.99dB
4 8 21.09dB 23.15dB
4 16 18.57dB 20.58dB

subsampling the spectral signature with a factor of fz. The comparisons are
done with a 3D interpolator. The 3D interpolator applies first the bicubic in-
terpolation at the spatial domain then at each pixel location spectral vectors
of size K × 1 are generated by linear interpolation (K = 224 for this exper-
iment). In Table 12.1, the quantitative performance of the 3D interpolator
and the subspace-based super-resolution is given in terms of PSNR. Again
fx is set to be equal to fy. Note that the subspace-based super-resolution
provides 1.5dB to 2.0dB better reconstruction performance compared to the
3D interpolator. This performance can be increased if more observations are
incorporated into the super-resolution reconstruction algorithm.

12.7 Conclusion

This chapter introduces an application of super-resolution techniques to mul-
tichannel data, specifically to hyperspectral images. It is shown that the re-
quirement to design expensive equipment to capture high-resolution spectral
data can be circumvented by fast, simple, and cost-efficient postprocessing
methods. To achieve this, a basic spectral unmixing methods is incorporated
into a super-resolution reconstruction approach, which enables calculation of
accurate fractions of approximated endmembers at each pixel. These fractions
are essentially the coefficients of the subspace basis vectors. The presented al-
gorithm not only offers faster computation times compared to the pixel-based
methods but also it provides a significant level of robustness against the noise
due to the acquisition process. It is possible to improve the reconstruction
performance of the presented method by employing better spectral mixing
models and incorporating a priori information about the endmembers in the
scene.
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(a)

(b) (c)

(d) (e)

FIGURE 12.8: The results for a subimage of 220-band Indian Pines test site of
the AVIRIS database. (a) Noisy low-resolution observation (downsampled in
the spatial domain by a factor of two), (b) The original high-resolution data,
(c) Bicubic interpolation, (d) Pixel-based super-resolution, (e) Subspace-based
super-resolution.
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(a)

(b) (c)

(d) (e)

FIGURE 12.9: The results for a subimage of 224-band Moffett Field of AVIRIS
database. (a) Noisy low-resolution observation (downsampled in the spatial
domain by a factor of two), (b) The original high-resolution data, (c) Bicu-
bic interpolation, (d) Pixel-based super-resolution, (e) Subspace-based super-
resolution.
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The image processing algorithms collectively known as super-resolution have
proven effective in producing high-quality imagery from a collection of low-
resolution photographic images. In this chapter, we examine some of the ad-

383



384 Super-Resolution Imaging

vantages and challenges of applying the super-resolution framework to ap-
plications in medical imaging. We describe two novel applications in detail.
The first application addresses the problem of improving the quality of digi-
tal mammography imaging systems while reducing X-ray radiation exposure.
The second application addresses the problem of improving the spatiotempo-
ral resolution of spectral domain optical coherence tomography systems in the
presence of uncontrollable patient motion. Experimental results on real data
sets confirm the effectiveness of the proposed methodologies.

13.1 Introduction

The invention of the charge coupled device (CCD) created a new era of imaging
wherein optical images could be efficiently captured by an array of solid-state
detectors and stored as digital information. The resolution of the captured
image depended on the size and number of these detectors. Most imaging
applications critically depend on high-resolution imagery. Increasing resolu-
tion by improving detector array resolution is not always a feasible approach
to improving resolution. For example, while improvements in semiconductor
manufacturing have translated into higher-resolution image sensors, shrink-
ing pixel sizes have a tendency to decrease signal-to-noise ratios (SNR) and
light sensitivity. Furthermore, practical cost and physical limitations limit
the ability to change detectors for most legacy imaging systems. To address
this issue, the image processing community is developing a collection of algo-
rithms known as super-resolution for generating high-resolution imagery from
systems having lower-resolution imaging detectors. These algorithms combine
a collection of low-resolution images containing aliasing artifacts and restore
a high-resolution image. The ability to transcend the fundamental resolu-
tion limits of sensors using super-resolution algorithms has shown significant
progress and capability in the area of photographic imaging. By far, the major-
ity of applications using super-resolution technology have been in the area of
photographic imagery for either consumer or defense-type applications, which
are discussed in the other chapters of this book.

Relatively recently, researchers have begun developing methods to ex-
tend the super-resolution framework to different medical imaging applications.
Medical imaging applications differ from photographic imaging in several key
respects. First, unlike photographic imaging, medical imaging applications of-
ten use highly controlled illumination of the human subject during image ac-
quisition. As with any imaging system, stronger illumination energy results in
higher signal-to-noise ratios. In the case of medical imaging, however, illumi-
nation radiation is limited to prevent tissue damage, thereby limiting the SNR
to well below that of photographic imaging. Second, imaging speed is more
important in medical imaging applications than in photographic applications.



New Applications of Super-Resolution in Medical Imaging 385

Short acquisition times both limit patient discomfort and minimize imaging
artifacts associated with patient movement. Third, unlike photographic imag-
ing, the goal of medical imaging is to facilitate the detection or diagnosis
of disease, rather than produce visually pleasing imagery. Consequently, im-
age processing artifacts are much less tolerable in medical images than in
photographic applications. Luckily, medical imaging systems operate under
highly controlled environments with highly similar objects. Algorithm devel-
opers can leverage prior knowledge about the anatomy or biology to improve
image quality. Finally, the majority of medical imaging applications involve
creating images from radiation propagation through three-dimensional ob-
jects. Thus, while the final images are two-dimensional, they represent some
form of projection through a three-dimensional volume.

In this chapter, we describe super-resolution and its applications from the
medical imaging community’s point of view. In Section 13.2, we describe the
general super-resolution framework and provide a brief review of the differ-
ent super-resolution algorithms. In Section 13.3.1, we introduce the first of
two novel applications of super-resolution in medical imaging. Namely, we
describe how we tailor the super-resolution framework to improve the res-
olution for digital X-ray mammography. In Section 13.3.2, we describe how
we apply the super-resolution framework to Optical Coherence Tomography
(OCT). Finally, we conclude in Section 13.4 with some thoughts about future
applications of super-resolution in medical imaging.

13.2 The Super-Resolution Framework

The goal of super-resolution image processing is to extract a high-resolution
image from a collection of images containing aliasing artifacts. When a collec-
tion of aliased, low-resolution images contains sufficient variation, the high-
resolution, aliased image content can be separated from the low-resolution
image content thereby increasing the image resolution. This type of super-
resolution is not to be confused with optical methods for transcending the
optical diffraction limit (e.g., [63]). There are a number of broad reviews of
super-resolution algorithms [3, 15, 35]. In this section, we describe the general
super-resolution imaging framework. The section begins with a description of
a generic image capture model and concludes with a general super-resolution
estimation framework.

13.2.1 Image Capture Model

The image capture model describes the various physical processes involved
when capturing a set of images. As with most multiframe image super-
resolution algorithms, the collection of images must contain relative motion
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between the sets of images from which resolution is enhanced. We assume very
simple translational motion for several reasons. First, even if this motion is
not appropriate in a wide-field sense, the motion model is typically accurate
for local regions within the images [1]. Second, the imaging acquisition system
can often be controlled to induce only translational motion in the captured
images. Thus, for the remainder of this chapter, bear in mind that when we
refer to an image, we could also be referring to a cropped portion of a larger
image. This model has been used in several previous works on super-resolution
[11, 16, 23, 32].

The general image capture model, or forward model, combines the various
effects of the digital image acquisition process such as point-wise blurring,
motion, undersampling, and measurement noise. We represent the forward
imaging model using matrix notation as

yk = DHS(vk)x + ek, (13.1)

where x and y are rearranged in lexicographic order. Here, the vector yk rep-
resents B×B (assumed square without loss of generality) samples of the cap-
tured image yk(m′

1, m
′
2), where m′

1, m
′
2 ∈ [0, B− 1], are ordered as a (B)2 × 1

vector. The captured image is undersampled with respect to an unknown
high-resolution image x(m1, m2), where mi ∈ [0, DiB − 1], by a factor of D1

and D2 in each of the two respective dimensions. The vector x represents
samples of the unknown D1B × D2B high-resolution image tile x(m1, m2)
similarly ordered. The warping operator S(vk) of size D1D2B

2 × D1D2B
2

represents the subpixel spatial shifts between the captured images. Without
loss of generality, we assume that the image y0 defines the coordinate system
of the high-resolution image and hence we only have to estimate the unknown
motion parameters for the remaining K images. Note that, here to simplify
notations, instead of vk,0, we use vk = [vk1 , vk2 ], which is the spatial shift-
ing between the reference frame (0th) and the kth frame. In Section 13.3.2,
however, we will use the full form of vk,i to represent the motion between
the ith and kth frames. In our model, we assume that these spatial shifts are
continuous values in the range of [−Di, Di]. This corresponds to the range
of subpixel motion in the captured images. The downsampling operator D of
size B2 × D1D2B

2 captures the undersampling of the detector. The matrix
H represents the blurring associated with the imaging system. This blurring
could be the result of multiple processes within the imaging system. For exam-
ple, this blurring could be the result of integration apertures or motion during
the image capture, or scattering of radiation in the object medium as a point
spread function (PSF). For the time being, we will assume that this can be
reliably measured or estimated from some other process (note [39] as an exam-
ple of jointly estimating the high-resolution image and the blur parameters in
a Bayesian framework). Finally, ek of size B2×1 represents the noise inherent
in the analog-to-digital conversion. For our purposes, we assume this noise to
be uncorrelated, zero-mean noise with standard deviation σ. This model is
sufficiently broad as to cover a wide variety of imaging systems.
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13.2.2 Super-Resolution Estimation Framework

The goal of super-resolution image processing is to estimate the high-
resolution image x from the set of captured images {yk}. The most common
estimation framework begins with a cost function or penalty function relating
the observed data to the unknown high-resolution image. The most common
statistical framework found in super-resolution is that of the maximum a pos-
teriori (MAP) penalty function of the form

Ω(x, {vk}) = Ωd(x, {vk}) + Ωp(x). (13.2)

The MAP functionals are based on the construction of a cost function
(Ω), which is the summation of two distinct terms. One is the data penalty
term Ωd, which measures the closeness of data to the estimates. The other
is the regularization term Ωp, which applies the prior information about or
constraints on the unknown high-resolution image (x).

Early MAP functionals used in super-resolution processing utilized simple
quadratic data penalty and regularization terms [10, 45]. The most commonly
employed regularization terms use Tikhonov type functionals despite their
tendencies to reduce edge contrast. These quadratic regularization functionals
penalize the amount of high spatial-frequency energy in the high-resolution
image estimate. For example, using the generic imaging model of Equation
(13.1), a typical quadratic MAP functional takes the form

Ω(x, {vk}) =
K∑

k=0

‖yk −DHS(vk)x‖2 + λxT C−1
x x, (13.3)

where C−1
x is often a spatial high-pass operator and λ is the weighting scalar.

When Cx is the exact covariance of the unknown high-resolution image, then
this cost function produces the ideal Wiener filter estimate of the unknown
image. This MAP functional has the advantage of being quadratic, which
means that the penalty function has an analytic solution that is a linear
function of the input measurements.

Through the years, application of more advanced prior functions Ωp such
as Adaptive Kernel regression [53] and Bilateral Total-Variation (B-TV) [16]
have produced higher quality estimates of the final by imposing more accurate
assumptions about the image content. The tradeoff, however, is that such
non-linear prior functionals are more expensive to evaluate and require more
computationally-complex iterative minimization techniques. For example, the
B-TV cost function is defined as

ΩB-TV(x, {vk}) =
K∑

k=0

‖yk −DHS(vk)x‖22 + λ
L∑

t1,t2=−L

�|t1|+|t2|‖x− S(t)x‖1,

(13.4)

where t = [t1, t2] is a set of integer pixel shifts and 0 < � ≤ 1 is a constant
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[16]. Such nonquadratic functionals can, however, preserve many important
features of images such as edges. Also, MAP-based robust super-resolution
techniques (e.g., [9, 16, 36]) are able to reduce the effect of outliers such as
motion estimation error.

Both the quadratic and non-quadratic MAP functionals require knowledge
of the relative shifts between the collection of low-resolution images. When the
SNR is reasonably high and the amount of aliasing artifacts are low, then the
shifting parameters {vk} can be reasonably estimated in an initial step from
the captured images yk. Theory as well as experimental evidence, however,
suggests that using a separate shift estimation process in low-SNR cases is
suboptimal. Therefore, the critical issue of joint super-resolution and motion
estimation problem has been the topic of several papers (e.g., [2, 24, 43, 58,
59, 62]). Note that, additional priors on motion vector distribution may be
also added to the above cost function [24].

13.3 New Medical Imaging Applications

Early, fast, and accurate detection of imaging biomarkers of the onset and
progression of diseases is of great importance to the medical community since
early detection and intervention often results in optimal treatment and re-
covery. The advent of novel imaging systems has for the first time enabled
clinicians and medical researchers to visualize the anatomical substructures,
pathology, and functional features in vivo. However, earlier biomarkers of dis-
ease onset are often critically smaller or weaker in contrast compared to their
corresponding features in the advanced stages of disease. Therefore, medical
imaging community strives for inventing higher-resolution/contrast imaging
systems. As noted in Section 13.2, super-resolution can be beneficial in im-
proving the image quality of many medical imaging systems without the need
for significant hardware alternation.

An excellent review of previous medical imaging applications of super-
resolution is given in [20]. We refer the interested reader to [20] for a broad
review of applications in magnetic resonance imaging (MRI) [21, 38], func-
tional MRI (fMRI)[37], and positron emission tomography imaging system
(PET) [29, 30]. In the following two sections, we explore novel applications
of the super-resolution framework to medical imaging. The first application
is in the area of X-ray digital mammography. The second is in the area of
Optical Coherence Tomography (OCT). Each application has its own unique
properties that demand customization of the general super-resolution frame-
work described in the previous section. In both applications, the advantage of
applying the super-resolution framework is achieved by special modification
of the standard image acquisition technique.
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13.3.1 Super-Resolution in Low Radiation Digital X-Ray
Mammography

Digital mammography provides the opportunity to efficiently control and cap-
ture digital images of the breast, while exposing the patient to the minimum
amount of radiation. Today’s digital detectors cannot shrink pixel sizes to
increase resolution without sacrificing the SNR measurement. To maximize
image resolution, we have explored digitally combining multiple low-dosage
images, each containing spatial shifts. These shifts are the result of patient
movement, intentional dithering of the detector, vibration in the imaging sys-
tem, and small movement of the imaging gantry. In practice, the motion con-
tained in the captured images is a combination of all such sources necessitating
accurate registration of the aliased, low-resolution images.

Applying super-resolution processing to X-ray imaging requires overcom-
ing two challenges. The first is the large amount of data associated with digital
mammogram images. The captured low-resolution images could have as much
as 10 megapixels worth of data. Thus, computational efficiency is extremely
important during processing. Second, the total radiation exposure over the col-
lection of images cannot exceed that of a normal X-ray image dosage. There-
fore, the captured data has extremely low peak-SNR (PSNR). For example,
Figure 13.1 compares a high-dosage X-ray image (computed PSNR1 � 13
dB) with the very low exposure images (computed SNR � 3 dB) used in our
multiframe scheme.

Thus, providing high-resolution imagery requires sophisticated, nonlinear
reconstruction techniques to address the extremely low SNR of the captured
images. To address these two challenges, we apply a divide and conquer ap-
proach to both improve efficiency while maximizing the denoising effective-
ness. To achieve this, we propose a three-stage (registration, reconstruction,
and restoration) algorithm. The overall algorithm procedure is shown in Fig-
ure 13.2. The entire algorithm operates on a tile-based fashion. The process
begins by finding a collection of tiles with approximately equal regions-of-
interest. Then, each of these tiles are registered to a subpixel precision to esti-
mate the shifts {vk}. Next, we apply a multiframe image restoration step with
a weak quadratic prior function, resulting in a deblurred aliasing free image
with reconstruction artifacts with known statistics. Next, we perform a fast
estimate of wavelet coefficients, which best match the reconstruction artifacts
in the previous step. Finally, we apply a nonlinear wavelet thresholding-based
denoising step, to recover an efficiently denoised super-resolved image. In what
follows we describe each step in detail.

1In this work, the PSNR was computed numerically as PSNR= 20log10
s
n

. In experiments
on real images s is the grayscale difference between the minimum and maximum signal
regions and n is the noise standard deviation estimated from flat regions. In simulated
experiments, n is the RMSE error between the estimated and ground truth image.
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(a)

(b) (c)

FIGURE 13.1: Mammogram X-ray images from the phantom breast in (a).
The red rectangular section in (a) is zoomed in (b) and (c). The high dosage
image in (b) is captured at 226mAs (PSNR � 13 dB). The extremely low-
dosage image in (c) is captured at 11.3 milliAmpere-second (mAs) (PSNR� 3
dB). Regardless of SNR, both images show aliasing artifacts.
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FIGURE 13.2: The block diagram shows the noniterative super-resolution
algorithm we apply to digital mammogram images.

13.3.1.1 Multiframe Shift Estimation

Apart from the basic block-matching required to find a collection of approxi-
mately registered image tiles {yk} [41], the super-resolution algorithm begins
with a multiframe subpixel shift estimation algorithm. The efficiency of this
stage is improved by ignoring the optical blur. Considering the locally space-
invariant PSF and shift assumptions in our models, we may reverse the order
of the shifting and blur operators in Equation (13.1) [11] and reformulate the
forward model without the blur operator as

yk = DS(vk)z + ek, (13.5)

where z = Hx is the unknown high-resolution blurry image.
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The registration algorithm begins with a variant of the quadratic penalty
function of Equation (13.3). The optimization process then will be formulated
as

Ω1(z, {vk}) =
K∑

k=0

‖yk −DS(vk)z‖22 + λzT C−1
z z, (13.6)

where Cz is the covariance matrix of the unknown signal z, which is typically
assumed to be stationary. In other words, we can ignore the optical blur
for this stage of processing. A typical solution to the above problem is the
cyclic coordinate-descent method [24], in which in each iteration one unknown
variable is updated based on the estimate of the other unknown variable from
the previous iteration.

Noting that Equation (13.6) is known in numerical analysis literature as
the Separable Nonlinear Least Squares problem [18], we momentarily assume
in our Variable Projection technique [42, 58] that the non-linear parameters
(motion-vectors) are known. Consequently, the estimate of the set of linear
parameters (z) is computed as

ẑ =
(
Q({vk}) + λC−1

z

)−1
g({vk}), (13.7)

where

Q({vk}) =
1
σ2

K∑
k=0

ST (vk)DT DS(vk), (13.8)

g({vk}) =
1
σ2

K∑
k=0

ST (vk)DT yk . (13.9)

We plug the parametric estimate of the blurry high-resolution image (ẑ)
into the MAP functional (Eq. (13.6)) and after some algebraic simplifications,
we get a new (maximization) cost function that only relies on the motion-
vectors:

Ω1({vk}) = g({vk})T
(
Q({vk}) + λC−1

z

)−1
g({vk}). (13.10)

Note that, unlike the cyclic coordinate-descent method, we require no it-
erations between the sets of parameters since we do not explicitly calculate
Equation (13.7). Indeed, a direct approach to maximize Equation (13.10) in-
volves inverting a large matrix of size D1D2B

2 ×D1D2B
2, which is compu-

tationally challenging for even small image tiles. In [42], we described a series
of numerical tricks to speed up the process. One is solving the problem in the
Fourier domain and taking advantage of the spectral folding phenomenon in
aliased images.
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13.3.1.2 Multiframe ForWaRD Deconvolution and Denoising

The output of the previous algorithm is an estimate of the set of sampling
shift offsets {vk} with which we can estimate the high-resolution image x.
We estimate a high-quality super-resolution image using a noniterative, two-
stage, linear deconvolution and nonlinear denoising algorithm. The algorithm
addresses the SNR versus sharpness tradeoff inherent to quadratic-type reg-
ularization functionals without resorting to iterative, nonlinear regularization
penalty functions. More information about the algorithm can be found in [44].

The first stage of the algorithm performs multiframe deconvolution using a
weak quadratic penalty function. Armed with estimates of the image shifts, a
sharpened, high-resolution image can be obtained using a variant of Equation
(13.7) given by

x̌ = B−1(v̂)HT g(v̂), (13.11)

where

B(v̂) = HT Q(v̂)H + λC−1
x ,

(13.12)

v̂ = [v1, ..., vk]T and Q and g were defined in Equations (13.8) and (13.9).
In this first stage of the algorithm, we use a very small value of λ so

as to underregularize the estimate of the high-resolution image estimate x̂.
This creates a very sharp high-resolution image at the expense of extreme
noise amplification. The second stage of the algorithm involves eliminating
the noise while preserving the image signal content. We achieve this with a
type of wavelet thresholding algorithm similar to the ForWaRD algorithm of
[34] or the BayesShrink algorithm of [4]. The wavelet thresholding algorithm
operates by first applying a wavelet transform to the noisy high-resolution
image represented as

w = Ψx̌, (13.13)

where the matrix Ψ represents the wavelet transform operator and w the
wavelet coefficients. Then, the wavelet coefficients are scaled according to

w′
i = sgn(wi)max(0, |wi| − γi), (13.14)

where wi represents the individual wavelet coefficients, sgn is the sign func-
tion, and γi represents the threshold value for those wavelet coefficients. Af-
ter applying this threshold, the inverse wavelet transform is applied to the
thresholded wavelet coefficients to get the final denoised estimate of the high-
resolution image

x̂ = Ψ−1w′. (13.15)
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This type of wavelet thresholding has the ability to eliminate noise while
preserving signal content. More information about how this is implemented
efficiently can be found in [44].

13.3.1.3 Experimental X-Ray Results

We applied our multiframe reconstruction and restoration algorithm to real
images captured on an experimental X-ray imaging system. Our experimental
imaging system is based on a Mammomat NovationTOMO digital mammog-
raphy prototype system (Siemens Medical Solutions, Erlangen Germany),2

stationed at Duke University Medical Center. The system uses a stationary
selenium-based detector having 85 μm pixels. Pixels with this size correspond
to a Nyquist sampling rate of 5.6 line pairs per millimeter (lp/mm). We used a
CIRS model 11A breast phantom (CIRS Inc., Norfolk VA) to test our super-
resolution algorithms. We introduced shifts in the image by two methods.
First, we allowed the X-ray tube to rotate by ± 1 degree. Second, we manually
moved the breast phantom to introduce motion into the system. This manual
motion was completely uncontrolled. Our dataset consisted of 15 frames at the
low dosage level of 11.3 mAs at 28 kVp tube voltage. As a point of reference,
we also acquired a single frame at a more typical dosage of 226 mAs at 28
kVp tube voltage (Figure 13.1), which is 25.

The breast phantom includes several testing features including a pair of
resolution bar charts and small grains that mimic calcification in the breast.
The results reported here are focused on the test resolution chart and the
calcification grains that best represent the contrast performance and potential
improved-detection abilities of the multiframe image reconstruction system.

We applied our algorithm to 100 × 100 pixel tiles in the captured image
to estimate 400× 400 pixel high-resolution images (enhancement D = 4). We
modeled our system PSF as a heavy-tailed exponential energy distribution
with β = 1.5. To get a measure of the PSNR, we calculated the standard
deviation in a textureless region of the phantom. We also measured the dif-
ference in grayscale values between registration bars in the resolution chart
to get an approximate PSNR value of 3 dB. We employed 2-tap Daubechies
filters for the soft thresholding wavelet functions and 6-tap Daubechies filters
for the coarse denoising by way of hard wavelet coefficient thresholding. We
focus on the portion of the resolution chart beyond the Nyquist rate for the
imaging system (5.6 lp/mm). The numbers indicate the resolution in terms of
line pairs per millimeter (lp/mm). Figure 13.3 shows the images throughout
the super-resolution process.

The first image (Figure 13.3a) shows one of the 15 low-dosage images. The
image has very low SNR and shows some of the aliasing associated with an
undersampled detector. The second image (Figure 13.3b) shows an example

2Caution: Investigational Device. Limited by US Federal law to investigational use. The
information about this product is preliminary. The product is under development and is
not commercially available in the US; and its future availability cannot be ensured.
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(a) Single low-resolution image (b) Multiframe average

(c) Multiframe restored (d) Denoised image

FIGURE 13.3: Different restoration techniques applied on the low-dosage set
of images. (a) Low-dosage image, (b) Multiframe averaged image, (c) Multi-
frame restored x̌, (d) Denoised super-resolved image x̂. The multiframe aver-
age image shows the aliasing present in the captured image. The super-resolved
images show image contrast beyond the native sampling rate of the system.
The total dosage of using 15 of these frames (15×11.3 = 170 mAs) is still less
than the high dosage image of 225 mAs in Figure 13.1b with clear aliasing
artifacts on resolution bars labeled with numbers higher than 8.
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(a) Single low-resolution
low-dosage

(b) Multiframe low-dosage
average

(c) Single low-resolution
high-dosage

(d) Multiframe low-dosage
restored

FIGURE 13.4: Different restoration techniques applied on the low-dosage set
of images. (a) Low-dosage image, (b) Multiframe averaged image, (c) High-
dosage image at 226 mAs, (d) Denoised image x̂ (15 × 11.3 = 170 mAs).
Restoration combining the 15 low-dosage frames in (d) frames, most clearly
demonstrating the pentagram-shaped set of microcalcification cluster.

of averaging the 15 low-resolution frames followed by interpolation. While the
SNR is improved, the aliasing contained in the low-resolution images becomes
clear as the 5 bars appear as three bars above 7 lp/mm. The third image
(Figure 13.3c) shows the resulting image x̌ after applying the multiframe image
restoration step. This image shows contrast improvement but at the expense of
significant noise amplification. The final image (Figure 13.3d) shows the final
image estimate x̂ after applying the non-linear wavelet thresholding denoising
algorithm. The image shows that the contrast is preserved while eliminating
most of the amplified noise.

The primary goal of mammography is detecting and diagnosing cancerous
lesions in the breast. The breast phantom includes small grains of calcium for
evaluating the diagnostic capability of micro-calcifications. Figure 13.4 shows
another block from the same experiment demonstrating the ability of the
nonlinear denoising algorithm to clearly eliminate noise while preserving the
signal for a cluster of 0.275 mm-sized calcite grains. This provides confidence
in the nonlinear denoising algorithm’s ability to discern the signal from noise.
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13.3.2 Super-Resolution in Optical Coherence Tomography

The invention and utilization of Optical Coherence Tomography (OCT), first
reported in [27] in 1991, has had a profound impact on many fields of research,
especially ophthalmic sciences [25, 26, 46, 49, 55]. OCT systems provide non-
invasive yet high-resolution invivo images of retinal structures, which can be
used to define imaging biomarkers of the onset and progression of many oph-
thalmic diseases. By employing an interferometer [8, 17], several OCT-based
imaging systems have been developed throughout the years, most notably
the time-domain OCT (TDOCT) and ultrahigh resolution OCT (UHROCT)
[40]. The advent of the Spectral Domain Optical Coherence Tomography
(SDOCT) system has further improved the image quality and acquisition
speed [33, 51, 60, 61, 64, 65]. Today, several commercial SDOCT systems
are available with similar capabilities and 20-30 kHz A-scan rates.

FIGURE 13.5: A volumetric SDOCT scan set is a collection of azimuthally
sampled B-Scans (a), creating a 3-D view of the retina (b). The braces in
(a,b) mark the lower retinal slab shown in (c) containing the shadows from
the overlying larger vessels. (d) is the summed voxel projection (SVP) created
by axial projection of the lower half of the B-Scans, demonstrating the vessel
pattern [22, 28]. Each B-Scan corresponds to one line on the SVP.
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A noninvasive, accurate characterization of retinal lesions and other patho-
logical abnormalities is only possible with high-resolution, 3-D ocular imag-
ing. Commonly, the lateral, axial, and azimuthal resolution of many imaging
systems, including OCT, are associated with (and calculated based on) the
illumination source characteristics (e.g., bandwidth), the optical path (e.g.,
diffraction limit due to pupil diameter, ocular aberrations, dispersion, etc.),
and other physical characteristics. Utilization of fast and efficient CCD de-
tectors has facilitated the creation of aliasing-free 3-D images of anatomical
structures. However, for some in vivo imaging applications, the SDOCT acqui-
sition time is not short enough to avoid abrupt motions such as blinking, thus
creating motion artifacts in the densely sampled volumetric measurements
(Figure 13.6). Therefore, in practice, to speed up the image acquisition pro-
cess, these systems are utilized at a significantly lower than nominal resolution.
In SDOCT imaging, practical resolution in the azimuthal axis corresponds to
the number of B-scans sampled at relatively equal distances in a volumetric
scanning scheme (Figure 13.5). Note that, valid quantitative measurements
of retinal disease biomarkers (e.g., drusen [56] volume) are only feasible from
B-Scans with known azimuthal displacement.

(a) (b)

FIGURE 13.6: SVPs from densely sampled volumetric SDOCT scans of two
subjects. The ellipsoids mark motion artifact locations.

On the quest to gather useful information from SDOCT through improv-
ing the hardware design, one quickly runs into the problem of diminishing
returns. Specifically, the optical components necessary to capture very high-
quality, dense scans become prohibitively expensive or too sensitive for many
practical applications. Unlike alternative approaches that require expensive
hardware such as eye tracking systems [22], we propose a software-based im-
age processing solution in this section based on our earlier work [12], that is
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applicable to virtually any SDOCT imaging system, including the handheld
SDOCT systems that are more prone to motion errors [5, 6, 47].

In this section, we introduce a novel application of the super-resolution
framework for improving the azimuthal resolution of SDOCT images. We
propose a method based on capturing several repeated fast sparse 3-D scans,
followed by detecting and removing the ones affected by motion artifacts, and
finally fusing the artifact-free scans. Our approach to reduce motion artifacts
in the 3-D tomographic structure, in spirit, is close to the multi-camera time-
space super-resolution [48], MRI inter-slice reconstruction [21], and video syn-
chronization [57] problems. However, the proposed reconstruction algorithms
and applications are fundamentally different and novel.

13.3.2.1 Proposed Method: Sparse Repeated Imaging

Our goal is to transcend the limitations of SDOCT imaging systems, reduce
motion artifacts (Figure 13.6), and obtain densely sampled, high-quality, and
accurate 3-D SDOCT images of unpredictably moving structures such as a
human eye. In typical SDOCT ophthalmic imaging practice, the region of in-
terest is swept with a relatively high number of B-Scans. For many patients,
due to the multiple seconds required to capture scans, a dense scanning strat-
egy is prone to motion artifacts such as blinking.

Alternatively, we propose to capture several (N) sparsely sampled vol-
umetric scans with a significantly lower number of B-Scans than the target
resolution. Since the number of frames in each sequence (K) is relatively small,
each scan is captured very fast. Therefore, it is reasonable to assume that some
of these sequences will be less affected by the abrupt patient motion. We de-
tect such sequences, reorder and interlace their frames, and create a densely
sampled, artifact-free representation of the retina. Figure 13.7 represents the
main idea, where two sparsely sampled sequences are fused together creating
a dense representation of the underlying pathological structures.

Putting together the frames of different scan sets (interlacing) in a cor-
rect order is a challenging task. A naive approach involves sorting via pair-
wise registration and computing a closeness measure (e.g., normalized cross-
correlation or sum-of-squared difference) of all frames. In the case of fusing
only two volumetric B-Scan sets, each frame in the first volume sequence is
registered to all frames of the second sequence. Then, in the fused output
sequence, this individual frame is inserted into the second sequence nearest
to the frame in the second sequence with the highest cross-correlation value.
This process would be repeated for all remaining frames in the first sequence.
Of course, this is a simplified variation of the video synchronization prob-
lem, discussed in detail in the computer vision literature [57]. However, aside
from the prohibitively heavy computational load of registering large SDOCT
datasets, the SNR of the SDOCT images is significantly lower than the com-
mercial camcorders for which the method in [57] is developed. Therefore, the
commonly used closeness measures such as normalized cross-correlation may
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not always be sensitive enough to discriminate between very small structural
changes in the neighboring SDOCT ophthalmic scans (Figure 13.7).

FIGURE 13.7: Fusing (interlacing) multiple sparsely sampled scan sequences
to create an azimuthally higher resolution volume of B-Scans. Indeed, un-
like this schematic example, in clinical applications the displacement between
sequences might be noninteger as it is induced by patient motion.

To reduce the computational complexity of 3-D registration and improve
accuracy, we introduce an alternative global solution based on 2-D registra-
tion. Note that, the azimuthal axis displacement is the only motion that we
need to estimate to be able to interlace the 3-D volumetric scans. A quick
consultation with Figure 13.5 shows that the y-axis in the 2-D SVP images
corresponds to the azimuthal axis in the 3-D data volumes. Therefore, instead
of dealing with full 3-D datasets, we axially project the input 3-D sequences
and create corresponding SVP images (Figure 13.5). This will reduce the task
of registering K sets each with B images (B-Scans) of size [B × L] pixels, to
registering only K images (SVPs) each of size [B ×B] pixels. In essence, we
are projecting down into the SCP domain to create a collection of K images
that are undersampled in only one dimension (e.g., D1 = 1).

Aside from a significant reduction in data volume, the axial projection
reduces the noise in the SVP images by averaging over hundreds of pixels. As
SNR of the SVP images is relatively higher, outlier (motion artifact corrupted)
image sets can be more accurately detected and excluded from the data pool.

We recover the order of the frames in the dense 3-D output by registering
the remaining SVPs. As explained in the next subsection, we calculate the y-
axis motion between different SVPs and associate this to the azimuthal motion
parameters (frame number) of the 3-D volumes. For example, an estimated
five pixel displacement for the SVPs of two scan sets in y-axis, indicates an
offset of five frames in the corresponding B-Scan sequences. Moreover, by
estimating the x -axis motion of the SVPs, we recover the lateral registration
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parameters needed for aligning the fused (interlaced) B-Scans in the final fused
3-D volume.

13.3.2.2 Multiframe Joint Registration

In many super-resolution applications, fast pairwise image registration is suf-
ficient for estimating the relative shifts between the sets of low-resolution
images. The basis for this approach is based on the following approximation
of Equation (13.5)

yk = DS(vk)z ≈ S(v′k)p + ek + ak (13.16)

where v′k = [v1,kv2,k/D2] is the apparent motion in the undersampled image,
p is the approximate nonaliased portion of the low-resolution image, and ak

is the aliasing artifacts that we approximately treated as noise. From the
simplified model of Equation (13.16), we see that the relationship between a
pair of low-resolution images yk and yj is approximately given by

yk = S(v′j − v′k)yj ≈ yj + (v′j − v′k)∇S(0)yj (13.17)

where the second half of the equation is based on the first order Taylor ap-
proximation of the shift operator S(v). In practice, the operators ∇S(0) =
[Sx(0)Sy(0)] are approximately the x and y gradient operators. Equation
(13.17) is known as the optical flow constraint and can be used to estimate
the shift between any pair of low-resolution frames. Such an approach works
as long as the energy in the aliasing artifacts ak are minimal. We use the
notation v′j−k = v′j − v′k.

Due to the sub-Nyquist sampling in the azimuthal direction, the SVPs of
the sparse, fast-acquired sequences are aliased in the y-axis, complicating the
subpixel motion estimation task. Moreover, small estimation bias in the pair-
wise SVP registration is magnified to a significant misalignment error when
several sequences are fused together. Therefore, to minimize the overall motion
estimation error, we exploit global consistency conditions in a multiframe mo-
tion estimation framework [14, 19]. This bundle-adjusted, optical flow-based
technique relies on the fact that the operator describing the motion between
any pair of frames must be the composition of the operators between two other
pairs of frames. In effect, by incorporating this prior information in the joint
motion estimation framework of [14], we minimize the motion estimation bias
while having extremely fast registration by estimating motion entirely in the
low-resolution domain.

We overcome the errors associated using a global constraint enforcing the
transitivity of the pairwise motion estimates. For example, if we consider three
frames, then the transitivity of the motion estimates requires that

v′k−j = v′l−j + v′k−l (13.18)

Figure 13.8 schematically describes this motion constraint. In the case of mul-
tiple translational motion vectors [14], the above conditions can be described
by simple linear equations relating the motion vectors between the frames as
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FIGURE 13.8: Global motion consistency conditions that exist for any set
of images: the operator describing the motion between any pair of images is
the composition of the operators between two other pairs of images: vi,k =
vi,j + vj,k.

UV = 0 , (13.19)

where U is a
[
2(K−1)2 × 2K(K−1)

]
consistency condition matrix and U is

a vector collecting the set of unknown motion vectors {v′k}. Each row in the
sparse matrix U has only two or three non-zero (±1) elements. Motion vectors
are estimated by minimizing a global cost function such as

ΩOF(V ) =
K∑

i�=j

∥∥yi − yj − v′i−j∇S(0)yj

∥∥
1
, s.t. UV = 0 , (13.20)

We used nonlinear programming (“fmincon” function in MATLAB
TM

) to
minimize this cost function. The above conditions for the more general case of
affine motion are defined in [14]. This is a simpler but faster implementation
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of the general framework described in Section 13.2. Since we do not estimate
the high-resolution image jointly with the registration parameters our solution
is suboptimal. Indeed, mathematically more rigorous solutions for registering
aliased images are also possible [42], which increase computational complex-
ity of the proposed algorithm. However, noting the extremely large SDOCT
image sets (hundreds of images of size [512× 1024] or larger), the goal of our
proposed solution is to be practical for clinical implementation rather than
mathematically optimal.

13.3.2.3 Experimental Results

The above registration technique recovers the order and the relative azimuthal
distance of B-Scans from different scan sets, which can be exploited to recon-
struct a dense 3-D view of the imaged pathological structure. Since misaligned
or broken vessels are easily detectable in retinal imaging applications, the ves-
sel pattern as seen on the SVP serves as an efficient qualitative measure of the
success and accuracy of the overall algorithm. Therefore, we use the estimated
motion parameters to reconstruct a fused (super-resolved) 2-D SVP map of
retinal vessel structure.

Figure 13.6 shows a dense scanning of a subject, whose motion artifacts
have resulted in an SVP with broken vessel structure. From the same subject,
we captured 12 sparsely sampled volumetric scans (each with 50 B-Scans)
and adjusted the baseline of each image using the fast registration StackReg
plug-in (Biomedical Imaging Group; Swiss Federal Institute of Technology
Lausanne) [54] for ImageJ (freeware; National Institutes of Health; Bethesda,
MD). Following [28], by summing the lower half of the B-Scans in the ax-
ial direction, we created SVPs with distinct vessel patterns. After contrast
adjustment, four of the six sequences with the highest SVP normalized cross-
correlation values were manually selected to be registered. Figures 13.9a and
13.9b show two corresponding SVPs of these four sequences. Registered and
sequentially ordered AVI movies of these four input sequences are available
in http://www.duke.edu/∼sf59/datasets/SDOCT SR.avi, screenshots of which
are shown in Figure 13.9f.

We used the multiframe projective bundle-adjusted motion estimation
method of [14] to recover the subpixel translational motion parameters of
these four SVPs (Section 13.3.2.2). We used the fast zero-order classic kernel
regression-based super-resolution algorithm described in [52] to reconstruct
the fused SVP. Since there are no aliasing artifacts in the x -axis (lateral di-
rection), the SVP resolution is only enhanced in the y-axis. The SVP of the
fused sequence is shown in Figure 13.9c, which has more details than any of
the input SVPs.

As a point of reference, we also captured a gold-standard sequence shown
in Figure 13.9d, which is the visually best of 4 densely sampled volumetric
scans (100 B-Scans). The reconstruction accuracy and quality improvement
is confirmed by comparing the input and output SVPs to the gold-standard.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 13.9: (a) and (b) are two representative SVPs of four input retinal
SDOCT sequences (50 regularly sampled B-Scans each). (c) is the SVP of the
fused sequence (200 irregularly sampled B-Scans). (d) is the Gold-Standard
SVP which is the best dense (100 regularly sampled B-Scans) out of 4 such
sequences (Figure 13.6b is an example of dense sampling of the same subject
with motion artifacts). (e) and (f) are the screen shots of the AVI movies
of registered four input B-Scan sets and the reordered and interlaced output
B-Scan set, respectively (2.1 MB).
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We believe the small jaggedness in reconstructed vessels of Figure 13.9c is
mainly due to the dynamic structural deformation of the vessels during the
cardiac cycle. Overall, the vessel pattern in Figure 13.9c shows fewer disconti-
nuities (blue ellipsoids) compared to the input SVPs. Moreover, due to the less
aggressive interpolation in the azimuthal (y-axis) direction, the vessel thick-
nesses are more accurate in Figure 13.9c than in any of the input frames (red
ellipsoids).

13.4 Conclusion

We have provided a proof of concept for the applicability of image processing-
based algorithms as an alternative to expensive hardware for creating robust
high-quality X-ray mammography and SDOCT ophthalmic imaging. The pro-
posed super-resolution-based algorithm enables ophthalmic imaging practi-
tioners and radiologists to optimally utilize the SDOCT and X-ray systems in
their highest resolution capacity.

For the SDOCT case, several implementation variations for improving the
efficiency are possible. For example, rather than discarding a whole defected
sequence, we may discard only those B-Scans affected by abrupt motion arti-
facts (e.g., blinking), and use the remaining uncorrupted B-Scans. To produce
more visually appealing SVPs, more efficient super-resolution techniques such
as the steering adaptive kernel [52] or robust super-resolution [16] may be also
exploited. Moreover, incorporation of an advanced adaptive sparse sampling
strategy (3-D extension of the method in [13]) in this imaging framework is
part of our ongoing research.

While the proposed algorithm efficiently removes abrupt motion artifacts,
a practical drawback is the case of imaging objects with constant deformable
motion. For example, in the case of imaging pulsing blood vessels, each sparse
sequence is associated with a unique position of the blood vessels compared to
the background tissues. A possible remedy is synchronizing the start of image
acquisition in each sparse sequence with the electrocardiogram (EKG) signal.

We note that two alternative related sparse imaging scenarios can be also
considered. One is based on capturing large field of view repeated scans, dense
in the azimuthal direction but sparsely sampled in the lateral direction. Then,
a classic super-resolution algorithm (e.g., [16, 52]) may reconstruct the lat-
eral resolution of individual B-Scans. Our pilot experimental results have
shown moderate improvements, when imaging objects under a SDOCT micro-
scope. However, in practical clinical trials the difficulty of capturing repeated
scans from a unique azimuthal location largely voids the applicability of this
strategy.

Alternatively, the authors of the published work in [66] propose to capture
azimuthally dense scan sets with a small field of view in the axial-lateral plane
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(e.g., the en face view is divided into four subsections, which are imaged
subsequently). A customized semi-automatic software stitches the 3-D scan
volumes, creating a visually appealing, large field of view, 3-D rendition of
the retina. However, unfortunately for the same practical imaging problem
noted for the aforementioned strategy, as evident in the experimental results
in [66], it is extremely hard (if not impossible) to recover unique, large field
of view B-Scans without evident registration artifacts.

As for the mammography, we believe the design of future X-ray imag-
ing systems would benefit from a systematic analysis of the resolution and
SNR required for mammographic screening and diagnosis. In the future, we
will explore the fundamental tradeoffs between radiation exposure, number
of frames, and reconstruction performance. Furthermore, we will investigate
more sophisticated redundant wavelet techniques such as curvelets [50] or
ridgelets [7], which might show an even better performance than the proposed
multiframe ForWaRD technique. In fact, recent research has shown that use
of more sophisticated wavelets can improve the image quality in other medical
imaging applications [31].

We believe this novel application of super-resolution can be used as a
stepping stone toward many other image fusion-based medical imaging system
designs, aimed especially at patients with uncontrollable motion, pediatrics,
or handheld probe imaging. While this chapter was focused on X-ray and
OCT image enhancement, similar strategies can be exploited for enhancing the
quality of some other volumetric medical imaging devices such as ultrasound.
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14.1 Abstract

MotionDSP makes software for super-resolution (and, more generally, video
enhancement) that is used in various professional and consumer applications.
This chapter discusses some of the design decisions made while developing
and implementing super-resolution algorithms for the real world. It also de-
tails challenges, such as robustness, automation, speed (i.e., computational
complexity), and specific limitations of a video imaging pipeline (acquisition
speed, noise, and compression). Based on our experience, solutions to these
challenges should be incorporated early into the design of super-resolution
algorithms and products.

14.2 Introduction

The past several years have clearly marked the advent of a true video age.
More video is shot and published than ever before,1 and the growing trend of
using digital video for personal and professional communication seems to be
accelerating. As more people are becoming involved with video, expectations
of its quality are (often unrealistically) high. Casual video creators strive for a
professional look in their videos; forensic video analysts hope to recreate the
success of their CSI2 counterparts. In short, everybody is looking for improve-
ments. This chapter aims to help active SR researchers better understand the
potential markets (and roadblocks) for their work and to identify applications
where super-resolution can have an immediate impact.

This demand for improved video quality is partially appeased by the steady
innovation around the imaging technology (such as better sensors, improved
on-board image processing, and more efficient compression). But there is an-
other, often underutilized way of improving video, and that is postprocessing.
While the desired postprocessing outcome depends on the application,3 there
is a growing consensus that the objective quality improvement is possible.
Postprocessing techniques most commonly used to that end generally include
some variant of multiframe processing, such as super-resolution (SR), tempo-
ral denoising, or stabilization.

There are several strong arguments supporting increased interest in video
post-processing (i.e., “smart” decoding). Firstly, the real-time nature of video
capture sets an upper limit on the amount of processing that can be done

1At least 20 hours of video are being uploaded to YouTube every minute [37].
2Crime Scene Investigation, a popular TV show.
3For example, consumers want their videos to “look nicer” subjectively; a forensic user

seeks additional information in the video.
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on-board a capture device. There is not such a hard limit for “off-line” post-
processing that, combined with the computing power of modern computers,
makes post-processing more appealing. Secondly, many existing video cam-
eras reside on multifeature devices (e.g., cell phones), which further limits
the resources dedicated to the video module, such as processing power or bat-
tery. Finally, miniaturization of cameras has led to significant physical imaging
problems related to small aperture and focal length, with an impact on output
resolution and overall video quality.

14.2.1 Video Quality Trends

Let us expand our point on video quality. Contrary to popular belief, the
recording quality of an average video-capable device (across all applications)
has not been improving in recent years – as a matter of fact, it has been
declining. This is closely following the trend in still photography of an in-
creasing share of lower-quality cameras, such as cameraphones. For example,
in June 2009, Apple’s iPhone became the #1 camera used on Flickr.com,4

surpassing DSLR (Digital Single-Lens Reflex) cameras, which had dominated
the upload charts for years (Fig. 14.1(a)). Though the digital video trends typ-
ically lag several years behind trends of digital photography usage, a similar
growth path is already clear. Video-enabled phones are becoming increas-
ingly popular, as are high-speed data connections. For example, in just one
week after the launch of Apple’s iPhone 3GS (the first iPhone model with the
video recording capability), the number of mobile uploads to YouTube, the
world’s largest video site, increased by a staggering 400% [20]. Even without
the iPhone, YouTube has been seeing major growth across the entire mobile
space – mobile uploads have gone up 1,700% just in the first six months of
2009.

This explosion of relatively low-quality mobile content has a profound im-
pact outside consumer electronics applications and the ways people record
and watch video. We have witnessed firsthand an exponential increase in the
number of mobile phone videos used as evidence in criminal investigations. An
increase in low-quality video is also present in the video surveillance market;
the proliferation of inexpensive IP cameras and limited bandwidth and stor-
age [7] seriously impact effectiveness [3] of many current surveillance systems.

14.2.2 The Need for Postprocessing

It is therefore obvious that a great need exists for a postprocessing solution
that would alleviate the problem of poor video quality – and the field of com-
putational super-resolution promises to do just that. Indeed, many hundreds

4Flickr.com is one of the largest photo sharing sites in the world. Updated camera statis-
tics for the Flickr site can be found at http://www.flickr.com/cameras/.
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(a) (b)

FIGURE 14.1: (a) Most popular cameras in the Flickr community for 2009
(for updated figures, please visit http://www.flickr.com/cameras/). The
graphs show the number of Flickr members who have uploaded at least one
photo or video with a particular camera on a given day over the last year. (b)
Camera penetration in mobile phones, 2004 – 2010 [19]. It is expected that
more than 1 billion cameraphones will ship in 2010, with 60% of them having
video recording capabilities.

TABLE 14.1
Potential Roadblocks for Applying Current Super-Resolution

Research on Existing Video Processing Problems.

Research Industry

Typical data Clean video Compressed video
Synthetic sequences Dynamic scenes
No motion blurring Motion blurred

High framerates Low framerates
Synthetic noise Shot noise

User interaction No research Desired
(forensic apps)

Motion model Simple (e.g., global) Complex

Code speed 100 – 10,000 × Real-time or
slower than real-time near real-time
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of papers on super-resolution have been published since the seminal paper of
Tsai and Huang [41] in 1984, and the interest in the field seems to be picking
up significantly in recent years. But, for all its promise, super-resolution failed
early on to make significant inroads in the real world. At the time of writing
(late 2009), there are only a handful of implementations of SR technology
outside research labs. Some of the potential roadblocks for direct application
of existing SR research are presented in Table 14.1 and discussed below.

14.2.3 Why is Super-Resolution Not Used More?

The first explanation for limited real-world super-resolution presence is the
computational complexity that comes with it; many SR algorithms are at
least an order of magnitude more computationally involved than even the
most sophisticated video coders (e.g., H.264/AVC).5 The gap between com-
pute capability available to the average user and that required in most SR
algorithms has started to close just recently, with advances in general purpose
parallel hardware designs and access to better development tools. To improve
their chances of being adopted in practice, new SR algorithms have to run fast.
This often means that they need to be implemented using parallel computing,
which should be incorporated early into algorithm designs.

There is another, often overlooked, reason for the limited deployment of
super-resolution, and that is a mismatch in datasets and use cases between
academic and industry applications, and the responsibility for it lies with
the research community. Indeed, the majority of published SR papers deal
predominantly with synthetic data, or, at best, with video recorded under
carefully controlled shooting scenarios (e.g., with both camera and the scene
fully controlled), but there is very little published work on the effects of video
compression on super-resolution performance. Motion blur is another signif-
icant problem; while some work has been done to account for it [2] [4], its
implementation is computationally prohibitive. Considering the number of
cameras with the motion blurring problem, even a simple method for effective
detection of blurred frames would have a significant immediate impact on SR
applications. There are many more important topics that have received little
or no coverage in the context of SR (e.g., modeling sensor noise, segmenting
compressed and aliased video, or estimating motion for large interframe dis-
placements).

5Mostly due to their multi-frame nature and the need for very accurate motion estima-
tion.
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14.2.4 Automation versus User Interaction

In many forensic video applications, interaction between the user (operator)
and the software is not only possible but also desirable. Some very difficult
video processing and computer vision problems become much easier when hu-
man assistance is available. A better understanding of a video forensic work
flow would go a long way towards optimizing the time spent on different re-
search subtasks and in focusing on those that promise to help the most. This
is not to say that fully automated solutions are not relevant; for example, the
enhancement of consumer video does require significant automation.6

14.2.5 Modeling Motion for Super-Resolution

Another important problem is the lack of focus on high-quality motion estima-
tion. This comes as a bit of a surprise; as a matter of fact, the focus on motion
has allowed us to build a robust super-resolution technology at MotionDSP.
Some SR algorithms simply skip the motion estimation problem, assuming
that it is known, and start from the frame fusion process; others simplify mo-
tion models to the point that they can no longer describe dynamics of real
videos. Finally, many SR algorithms ignore motion altogether and assume
multiple low-resolution images (LRIs) of a continuous scene are available and
taken at the same time. While this assumption sets a convenient background
for theoretical analysis (as it removes the relative scene displacement), it does
not match reality. In practice, LRIs are always sampled at different time in-
stances (as video frames), which leads not only to relative motion between
LRIs (due to camera shift), but also to the change in the scene itself, in the
form of object motion, occlusion, or illumination change.

In some cases, the proposed solution is in conflict with the research mo-
tivation. For example, the face hallucination SR methods [1] were developed
with a declared goal of improving face recognition, both for human observers
and for automatic face recognition systems. This is well aligned with the in-
terests of the forensic video community, which most of the time looks for
faces and persons of interest in the recorded footage. However, there is a se-
rious roadblock with this approach: as hallucination methods admittedly do
not add any new information [1], it would be hard for their results to be ac-
cepted as valid evidence (especially in courts). Furthermore, these results are
dependent on the input training set and can vary significantly when different
training sets are used. In addition, required normalization (i.e., pose detection
and image scaling) limits algorithm robustness and presents another problem
the research rarely addresses.

6However, as consumer videos are often watched in real-time, smaller resolution improve-
ment is usually acceptable.
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14.2.6 Performance Issues

Let us spend a moment to expand on the issue of speed. We have already
discussed computational complexity of super-resolution algorithms in general.
While it is not realistic to expect significant code optimization in the imple-
mentation of research algorithms, even a brief analysis can help assess their
potential for practical (industry-strength) implementation. For example, it is
safe to assume that at least a tenfold increase in speed from the research-level
code can be done by using code optimizations and faster hardware. But if the
algorithm is slower than required by 3 or 4 orders of magnitude (e.g., it takes
minutes to output a video frame for the application that aims at real-time per-
formance), its chances of contributing to the solution of any real problem are
seriously hampered. What is encouraging is that many leading companies are
making a focused effort [24] to evangelize new development platforms among
research institutions. This has led to improved awareness of the importance
of fast algorithm implementation.

14.2.7 Relationship to Existing Standards

Finally, for any new video technology to have its chance of being adopted it
usually has to follow important industry canons and, preferably, piggyback
on existing standards or infrastructure. As a case study, a new paradigm of
distributing the load (and complexity) between the encoding and decoding
side of video channel was introduced in the early 2000s, with several inde-
pendent efforts [15] [28] jump-starting significant interest in distributed video
coding. Such a scheme (or, more generally, the model of shifting the compu-
tational load to the decoding end of the video communication channel that
we strongly support) makes even more sense these days with the ascent of
high-power personal computers or super-computers [23] [36]. However, simi-
lar to some earlier initiatives aimed at re-designing video encoding standards
from scratch,7 there was no real impact on practical applications. It is safe to
claim that for any new video coding technology to be successful it will have
to be aligned with the large investment into infrastructure based on exist-
ing video-coding standards and transport mechanisms, like H.264/AVC and
MPEG-TS.

In the following part of this chapter, we do not attempt to provide ready-
made recipes on how to do super-resolution.8 Instead, we offer our observations
of the needs for super-resolution in practice, which are based on our interaction
with dozens of companies and thousands of individual users. We hope that

7Technically sound but commercially unsuccessful JPEG2000 and Wavelet-based Scal-
able Video Coding come to mind.

8Not only because we do not have all the answers (our algorithms are constantly being
tweaked and reworked), but also because publishing all details of our algorithm would be
detrimental to our business.
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our experience will benefit both academic researchers and those working on
commercialization of super-resolution technologies.

14.3 MotionDSP: History and Concepts

MotionDSP was founded in 2005, with its roots in super-resolution research
done at the University of California at Santa Cruz in the 2000s.9 MotionDSP
started by licensing super-resolution patents from UCSC, but has since then
built a strong internal SR portfolio since 2006. The joint motion estimation
(partially based on [5]) and segmentation as well as a novel frame fusion
technology form its core intellectual property. Following the academic roots, all
of our SR algorithms fall under a reconstruction-based category, as they follow
the classic framework for image formation and solving the inverse problem
[12], [13], [14]. As our understanding of practical super-resolution problems
and users’ needs have evolved over the years, most of the recent research has
been driven by a direct demand from the users.10 Working directly with our
users, we have witnessed firsthand many real problems requiring immediate
attention, which has led us to several design decisions presented below.

MotionDSP: A Brief History

The first engineering goal of MotionDSP in 2006 was to produce
a practical super-resolution software that runs on generic hard-
ware (i.e., common PC). Combining classical reconstruction-
based super-resolution framework with the advanced spatial mo-
tion modeling, we were able to deliver the first working proto-
type to the market in late 2006. As a result, MotionDSP at-
tracted new investors (In-Q-Tel) and early customers (US gov-
ernment agencies) for its ”Ikena” forensic video products. Ikena
was designed as a multi-threaded x86 Windows application, run-
ning efficiently on Intel- or AMD-based PCs.

2007 saw us refining our core super-resolution technology and ex-
panding our customer base in the forensic and intelligence video
market. In parallel, we developed and launched a consumer web

9Disclosure: the editor of this book is one of MotionDSP’s founders.
10Although we found another (somewhat unexpected) driver for SR research in the hard-

ware industry. At this moment, super-resolution is one of a handful of compute-thirsty
multimedia applications having the potential to grow into a mainstream business. Many
industry leaders (Intel, NVIDIA, AMD) have shown interest in informing their future hard-
ware designs with critical SR computational operations.



Practicing Super-Resolution: What Have We Learned? 421

application11 that was designed as a cloud-based video enhance-
ment service, offering automated video enhancement (including
super-resolution) to the wide consumer audience. The site at-
tracted tens of thousands of users and received excellent reviews
(such as winning CNET’s WebWare 100 award [38]). It also pro-
vided us with direct user feedback and gave us access to a large
number of training videos for algorithm development.

In the first half of 2008 we successfully ported our parallel
algorithms to NVIDIA’s CUDA programming platform [22],
which enabled a further three-to five fold improvement in per-
formance over already highly optimized CPU software. As a re-
sult, NVIDIA became an investor and partner [30]. Our web
service was transformed into a consumer-grade software appli-
cation named vReveal. vReveal was launched in March 2009 to
great reviews [10] and it reached hundreds of thousands of users
within the first 9 months. In the meanwhile, the customer-base
for Ikena grew to include many video forensic labs, government
agencies, and the U.S. Navy.

14.3.1 Design Decisions

One of our earliest design decisions was to operate as a purely post-
processing technology, without requiring any modifications of the existing
encoder/channel/decoder processing pipeline. That way, we could reach as
many users as possible.

Another early (and more controversial) choice was not to use any mo-
tion/encoding information already available in the video stream. While one
can argue that re-using some of this precomputed data could, in theory, im-
prove the quality of the final reconstruction, we have observed at least three
separate problems with this approach. First, there is too much customization
involved in supporting various codecs and their different profiles. In addition,
this motion information is external to our core algorithm (which operates in
an uncompressed pixel domain), and it might not be always available (this
depends on the decoder over which we often have no control). Second, the
confidence in motion fields required to drive the super-resolution algorithm is
qualitatively different from those used to encode video.12 Naturally, motion
for video encoding is intentionally designed to be “flawed,” as there is always

11www.fixmymovie.com
12Not only because motion accuracy has to be real-valued (non-quantized), but also be-

cause a simplistic motion model such as block-matching cannot support the SR algorithm.
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TABLE 14.2
Improvement in Maximum Performance of Ikena over the
past 4 years; Input: VGA Frames (640 × 480),
Super-Resolution 2×, 7 Matching Frames. Measured on a
High-End PC.

2006 2007 2008 2009

CPU (cores) 2 4 4 8
GPU (cores) - - 240 240

Max. processing speed (fps) 0.2 1.5 10 30

a prediction error layer to correct for it. Finally, even if used for the simple
initialization of the SR problem, time saved is minimal at best.

Another important design decision was to rely exclusively on off-the-shelf
hardware PC components. Although some competitive solutions (such as
Sarnoff’s Acadia Video Processors [33]) have relied on custom ASICs to max-
imize processing speed,13 we believed that only general purpose computing
platforms could provide sufficient flexibility and allow for quick algorithm
tune-ups. All our software is x86 compatible, with implementations of the
core video-processing engine available on Windows and Linux. In addition, a
highly parallel version of our core technology that runs on NVIDIA’s CUDA-
capable GPUs is also available on both operating systems. (Our front-facing
applications, Ikena and vReveal, are Windows-only.) We have spent signifi-
cant time working directly with NVIDIA and Intel on the optimization of our
software. As a result of this work, we have achieved dramatic performance im-
provement over the last three years (Table 14.2), and also enabled larger input
resolutions (up to 1080p) and new product features (real-time processing) in
more recent versions of our products.

14.4 Markets and Applications

In the past few years, we have seen the emergence of three clearly distinct mar-
kets for super-resolution technology: consumer, forensic, and so-called “real-
time” professional market. Their overview is presented in Table 14.3. As we
will shortly see, the applications in these markets are very different, but the
same core technology can be applied to improve video resolution in all of them.

13Application-specific integrated circuit.
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TABLE 14.3 Markets for Super-Resolution in 2009.
Consumer Forensic Real-Time Pro

Domain full frame details (ROI) both

Resolution ≤ HD ≤ SD ≤ SD

Interest general quality details both

Typical input digicam CCTV live feed (UAV)

User interaction minimal high variable

High-speed processing desired not critical critical

Hardware platforms diverse diverse very high-end

Price tolerance $ $$$ $$$$

Market size tens of millions tens of thousands thousands

14.4.1 Forensic and Real-Time Markets: MotionDSP’s Ikena

The forensic (sometimes referred to as the “law enforcement”) market con-
sists of thousands of forensic video labs, both public (police departments and
government agencies) and private. Revealing more details is critical as any
new information recovered from video evidence can potentially be very valu-
able. Subjective enhancements that do not contribute new information are
of minimal value (e.g., improved white balance or better upscaling). Good
forensic results are sometimes even visually incorrect (e.g., some analysts use
negatives for better legibility of white-on-black text). Finally, the tolerance to-
wards longer core processing times is much higher,14 and, consequently, more
complex algorithms can be used. Also, the users are typically willing to inter-
act more with the software. As a matter of fact, user-interaction is desirable
and can help get the best possible results.

Most of the installed base of cameras and imaging sensors in 2009 are still
on the low end in terms of quality as the transition to new, digital surveillance
systems is still in progress. Typical video in this market suffers from significant
compression artifacts, as DVR15 systems used for video storage try to fit days,
and sometimes weeks, of footage onto limited disk space [7]. Many scenes are
dark (as more incidents happen at night-time), and the dynamic range of these
sequences is very low. Especially critical is the low frame rate, which makes
any kind of multiframe analysis difficult. On the application level, the user
interface should be rich, but also intuitive, in order to allow novice users to

14The duration of end-to-end processing, which includes tasks such as video import or
setup actions, should still remain reasonably short, in order to process the high volume of
cases typically handled by modern-days video forensic labs. Any software aiming to become
a standard tool in this market should try to streamline various pre- and postprocessing
tasks and closely follow established workflows and procedures.

15Digital Video Recording.
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(a) Ikena Workspace. Main panels: Project List (left), Player (mid-
dle), Enhancements (right), Assets (bottom).

(b) (above) Region-of-Interest (licence
plate): enlarged view. Ikena’s so-called
”Live Preview” mode enables user to im-
mediately preview result of enhancements
and quickly set best processing parameters.

(c) (right) Detailed view of Ikena’s
Enhancements panel. Main processing
filters (from top to bottom): Deinterlacing,
Resolution, Stabilization, Deblurring,
Contrast, Light, and Color.

FIGURE 14.2: Screenshots of MotionDSP’s Ikena 1.5.
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use the software. In addition, the enhancement process needs to be relatively
simple, straightforward, and reproducible.16

Currently, most video forensic labs do not use sophisticated multiframe
postprocessing. Many police departments still rely on consumer-level video
players, like Window Media Player, to review and visually inspect video.
Adobe Photoshop is a popular tool for applying advanced spatial transforms
and filters, but it lacks an automated solution for the multiframe enhancement.
This is usually replaced with a series of long and tedious manual steps. Firstly,
multiple video frames are aligned, so that Areas-of-Interest are matched in ex-
actly the same spatial position in every frame. Secondly, temporal averaging
of all available frames (sometimes called “frame averaging”) is performed to
reduce noise and increase effective signal-to-noise ratio. Ikena, MotionDSP’s
flagship forensic product, is designed to help operators quickly produce much
higher quality results (due to superior motion estimation and SR process-
ing) using a process that is significantly less labor-intensive (as many steps of
the standard workflow are combined and performed automatically). Ikena’s
screenshots are presented in Figure 14.2.

The real-time professional SR market is dominated by the high-end surveil-
lance or defense applications, that require live stream processing. Compared
to forensic markets, there is a much smaller variety of video sources (e.g., most
areal platform use some flavor of DV video). Due to strict specifications for the
software’s performance (processing speed, quality, and latency), the product
is typically delivered on a certified PC workstation (such as R5400 by Dell)
and on high-end video capture platform (such as Xena by AJA). Much of the
video in this market is still analog; major improvements can be obtained by
high-quality SR deinterlacing.

14.4.2 Consumers: MotionDSP’s vReveal

Our first observation about the consumer market for super-resolution is that
there is a phenomenal variety of video cameras (from cameraphones to pro-
sumer17 devices) and video resolutions (from QCIF to HD). Handling different
formats and decoders is a daunting challenge in its own right, even before any
enhancement is involved, but it is necessary. Regarding enhancement, the res-
olution improvement per se is less critical to the end-user than overall video
quality perception. For example, using a multiframe SR approach simply to
remove noise often produces excellent results (i.e., upscaling is not always
required), especially after applying contrast or gamma corrections.

Additionally, consumer videos are almost always viewed in real-time, and
the important enhancement metric is related not to better resolution or PSNR,
but rather to the satisfaction level of the videographer and audience. In other

16The process has to produce the same results each time for given video and processing
settings. Reliance on training data is not desirable.

17Market segment typically describing high-end consumer devices, often on a par with
equipment used by professionals.
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(a)

(b)

FIGURE 14.3: Screenshots of MotionDSP’s vReveal 1.2. (a) Gallery view:
users can quickly navigate through their local folders containing video files
using built-in video browser (left panel). vReveal’s internal video player (right
panel) can also be used for quick editing tasks (trim and rotate). (b) Enhance-
ment view: Available basic filters (from top to bottom): Clean, 2× Resolution,
Sharpen, Auto Contrast, Stabilize, and Fill Light. vReveal also offers fully au-
tomated (“One Click Fix”) video enhancement solution.
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words, this is a very subjective market, and better video quality assessment
tools (discussed in more details in Section 14.7) would go a long way in im-
proving subjective video enhancement.

vReveal offers the market-leading video postprocessing solution for con-
sumers (see Figure 14.3 for screenshots). vReveal is based on the same fun-
damental principles and technologies as Ikena.18 In vReveal, we adjusted our
core algorithms to match consumer’s requirements and maximize subjective
video quality. Despite using state-of-the-art multiframe post-processing tech-
nologies, vReveal is still very easy to use (for example, users can enhance their
videos using ”One Click Fix” option) and fast (it is optimized for NVIDIA’s
CUDA). In order to keep vReveal’s focus on its core strength (video enhance-
ment), we designed and positioned it, both in terms of features and the price,
as a complementary tool to popular nonlinear editing (NLE) software tools,
such as Adobe Premiere or Sony Vegas, rather than as their direct competitor.

14.5 Technology

In Section 14.3 we briefly discussed the origins and basic design principles
of our technology. In order to classify our SR approach, we briefly review
three major categories of SR algorithms: frequency-based, learning-based, and
reconstruction-based algorithms.

Frequency-based SR. Frequency-based SR methods were first proposed
in the mid-1980s [41]. Tsai and Huang tried to de-alias LRIs by exploiting
phase differences among them. This first algorithm operated on observations
that are free from degradation and noise. Though computationally attractive,
frequency-based methods have significant disadvantages as the assumption of
ideal sampling is unrealistic and observation noise is not considered. Most
importantly, their global translation model is, for many applications, inappro-
priate.

Learning-based SR. Learning-based SR algorithms have gained signif-
icant popularity since their introduction around 2000 [1]. They incorporate
strong application-dependent priors in order to reconstruct HRI. One of the
most frequently used approaches is so-called ”hallucination” reconstruction.
This is the process of obtaining a high-resolution image (usually of a human
face) from an input low-resolution image (or images, although an SR result
can be obtained even from a single image), with the help of a large collection of
other high-resolution images (a training set). While the result of this process
often looks sharp and eye-pleasing, it is indeed “hallucinated” and is strongly
dependent on the training set used. As such, its usefulness in forensic applica-
tions is limited. General consumer applications of learning-based SR methods

18Naturally, with fewer options and lesser capabilities.
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are possible (e.g., improving quality of thumbnail images), but they require a
large amount of training. In addition, it is often necessary to normalize video
input (i.e., resize it to standard size, or compensate for a difference in pose)
before applying a learning-based SR algorithm, which introduces complexity
and limits overall robustness of the system.

Reconstruction-based SR. Classic SR framework, which we use for our
work, is also known as reconstruction-based super-resolution. In it, the high-
resolution image is computed as the MAP estimate from multiple LRIs, using
explicit temporal correlation between them and various regularization priors.
In the conventional approach to reconstruction-based super-resolution, tem-
poral data correlation plays a critical role. There is a wide consensus that the
accuracy of motion estimation is crucial for the success of the super-resolution
process (although a couple of promising methods that use probabilistic motion
estimation have been proposed recently [27], [26], [40]). While we cannot share
details of our motion estimation and frame fusion process, we here provide
the broad outline of our reconstruction process. Our algorithms combine the
parametric global camera model19 with the parametric motion over segmented
frame patches and local, optical-flow based motion. This mixture of motion
models is computed over several levels of Gaussian pyramid, which facilitates
faster implementation and improves robustness. For the frame fusion step, we
depart from the conventional “shift-and-add” algorithm, which in most cases
ends up being computationally expensive (due to the unpredictable cost of
non-uniform interpolation). Instead, inspired by motion-compensated tempo-
ral filtering [5] [17] [18] [35], which is effectively used in scalable video coding,
we developed a proprietary fusion method that is very robust and efficient.

In terms of a desired outcome of the SR process, most algorithms (in-
cluding ours) attempt to improve subjective visual quality. Depending on the
application, some SR algorithms [16] use, as a reconstruction criterion, a more
specific, application-driven metric, such as improving the success ratio of a face
recognition system when SR is used as a preprocessing step.

14.5.1 Robust Parametric Motion Estimation

Classic implementation of super-resolution consists of four phases: initial mo-
tion estimation, motion refinement, frame fusion, and deblurring. As an il-
lustration, we here outline the first two steps for computing the parametric
global camera motion.

Initial motion estimation. Let I1 and I2 represent two successive images
corresponding to two time instances t1 and t2 = t1+Δt. Also, let a parametric
model M represent a mapping between the two image index spaces:

I2 = M(I1; a), (14.1)

19An illustration of which is presented in Section 14.5.1.
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where a = (a1, a2, . . . , an) is the vector of parametric motion.
The goal of parametric motion estimation is to determine the parameter

vector a in such a way that:

â = argmin
a

‖I2 −M(I1; a)‖22, (14.2)

which represents the standard minimization in the least square sense.

As a first step, the motion between successive video frames is calculated
using the iterative Newton-Raphson algorithm for non-linear least square min-
imization [42], where the following iterative minimization procedure can be
used to determine â:

âk+1 = âk − [H(âk)]−1 · ∂J(âk)
∂a

, (14.3)

where H(âk) is an approximation of Hessian matrix:

H(âk) =
∑(∂J(âk)

∂a

)
·
(∂J(âk)

∂a

)T
, (14.4)

and J(âk) = ‖I1 −M(I1; âk)‖22 = ‖e(âk)‖22 is the squared motion prediction
error in iteration k.

In order to improve the chance of finding a global minimum, this minimiza-
tion algorithm is implemented on a Gaussian pyramid built on original video
frames.20 The number of levels in the pyramid is determined heuristically,
based on the spatial resolution of the frame and temporal video dynamics.
Typically, the model used for global camera motion at this stage consists of
four motion parameters corresponding to camera zoom (z), rotation around
principal camera axis (r), and camera’s horizontal and vertical translation (tx
and ty). This model describes the index space mapping that can be repre-
sented by homogeneous transform matrix TTRZ (translation-rotation-zoom)
of the following form:

TTRZ =

⎡
⎣

z r tx
r z ty
0 0 1

⎤
⎦ . (14.5)

Using this notation, we can express mappings as matrix multiplication, which
facilitates fast implementation. For example:

⎡
⎣

x2

y2

1

⎤
⎦ = TTRZ

⎡
⎣
x1

y1

1

⎤
⎦ , (14.6)

20Additional techniques for improving robustness of the solution, such as smart initial-
ization of motion parameter vector a through temporal motion modeling, can be deployed
to avoid local minima.
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is transforming pixel coordinate (x1, y1) from frame I1 to coordinate (x2, y2)
in frame I2. As the initial motion estimation is completed for each pair of con-
secutive frames, frames from the user-definable temporal window are stored
in the frame cache and remain available to next stages of SR algorithm.

Motion refinement. Before frame fusion, another motion estimation
phase, called motion refinement, is performed over all frames present in the
frame cache. The algorithm starts by concatenating initially available index-
space mappings. These concatenated mappings, describing index mapping be-
tween each of the reference frames and the anchor frame (the frame that is
being enhanced), are then used as the initial solution for the motion refinement
phase.

An effective solution for the motion refinement in the case of global cam-
era motion is a robust version of non linear iterative Newton-Raphson’s least
squares algorithm.21 The robustness against outliers is achieved by substitut-
ing L2 norm (14.2) with Geman-McClure M-estimator [34]:

ρGM (z) =
z2

1 + z2
, (14.7)

where z = e(ak)
σ is the motion prediction error normalized with scale fac-

tor σ (approximating its standard deviation). Derivative of ρGM (z), denoted
ΨGM (z) = 2z

(1+z2)2 is called the influence function, and, as we will show below,
can be used to compute weights for a reformulated least-squares problem. Our
robust motion estimation problem now becomes:

â = argmin
a

[
ρGM (σk, I1 −M(I2; a))

]
. (14.8)

In the context of Newton-Rapshon iterative solution, this means that Hessian
approximation (14.4) needs to be modified in the following way:

H(âk) =
∑(∂E(âk)

∂a

)
diag(Ψ′

GM (σk, E(âk))
(∂E(âk)

∂a

)T
, (14.9)

which means that each element of the Hessian matrix is weighted by the
gradient of Geman-McClure potential:

Ψ
′
(z) ≈ Ψ(z)

2z
, (14.10)

calculated at each pixel. The standard variation σ is evaluated at each iter-
ation using approximation formula for standard deviation of the signal with
Gaussian distribution with zero mean [25]:

σk = 1.4826 median(|e(âk)|).

21Other higher-order parametric motion models, such as affine or projective, can replace
the original TRZ model here.
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Obviously, this simplified motion estimation will successfully describe the
entire scene only in the case of global camera motion, without any objects
exhibiting local motion. Although the robustness term in the refinement stage
will prevent the parametric solution from exploding with relatively small out-
liers in the scene, foreground objects that occupy 25% or more of the frame
will cause parametric camera motion estimation to fail. This is a soft (empiri-
cal) threshold, and it depends greatly on the quality and strength of textures
in both background and foreground areas. However, if global motion estima-
tion is sufficient for a particular application (e.g., stabilization), these motion
parameters may be useful and are also very quick to compute. To guarantee
a good performance in general case, this global camera motion model is ex-
tended to include both parametric local motion and local pixel-based motion
(i.e., optical flow).

14.6 Results

In this section we present some super-resolution results from typical con-
sumer and forensic sequences. All results are generated directly from ei-
ther Ikena or vReveal (versions available to the public, for details visit
www.motiondsp.com), and all processing parameters are accessible from appli-
cation’s graphical user interface (GUI). Processing time used to generate these
results was minimal; even at maximum quality settings (e.g., using a frame
cache of 50 frames, processing speed set to slow), processing time was under
200ms per frame for mobile and digicam clips and under 400 ms per frame for
DV and HD content. Results are generated on an off-the-shelf PC workstation
with Intel i7 Core CPU (2.66GHz) and G200 NVIDIA GPU (GTX280). The
cost of this system is under $1,500 at the time of writing.

One of the most challenging super-resolution problems is a lack of a vi-
able metric for assessing the quality of the reconstruction. While it is possible
to design a scheme that will allow us to measure PSNR in a prepared ex-
periment (when the ground truth is known), this means little in real-world
scenarios (where ground truth is never known). That is why we have decided
to avoid PSNR altogether; we present all our results in visual form (as frames
from the output sequence). Even then, it is impossible to demonstrate video
results accurately – the only solution is to see the full motion video. We,
therefore, encourage the reader to try our software itself (available online at
www.motiondsp.com), or to visit www.motiondsp.com/SRbook for input video
sequences and results presented in this chapter.
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(a) (b)

(c) (d)

FIGURE 14.4: Sample super-resolution results for cellphone (top) and digital
still camera video (bottom). (a) Original frame, upscaled 2× using bicubic
interpolation. Source: H.263 video at 170 kbps, 176×144 at 5 fps, (b) Super-
resolution results (2×) using 21 matching frames. (c) Detail from original
frame, upscaled 2× using bicubic interpolation. Source: MotionJPEG video
at 2.7 Mbps, 320×240 at 15 fps, (d) Super-resolution results (2×) using 31
matching frames.

14.6.1 Mobile and Digital Still Camera Video

As mentioned earlier, cameraphones are quickly becoming the most popular
video sources among consumers. These videos usually suffer from high com-
pression, low dynamic range, and are very susceptible to motion blur as there
are generally no advanced recording controls. In Figure 14.4 we show some
typical results for super-resolution of consumer-level videos.

Users who shot video on mobile phones and digital still cameras (as well
as the most casual video creators) care not so much about pure resolution im-
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provements as about the noise removal. For these users, applying high-quality
long-term motion-compensated temporal filtering (MCTF) leads to good re-
sults most of the time, with significantly reduced compression artifacts. Res-
olution gains are often obtained implicitly (i.e., without additional upscaling)
as the result of MCTF. multiframe super-resolution technology produces es-
pecially good results in high-noise clips, where sensor noise (shot noise due to
high ISO settings) is significant.

14.6.2 DV and HD Video

DV was one of the most popular formats for recording and playing back digital
video from 1995 until the mid-2000s. DV video suffers from relatively low
chroma resolution, interlacing, and unsophisticated compression (though at a
very high bit-rate). Super-resolution can address all of these very successfully,
and our software produces excellent results on most DV material. In addition
to consumer applications, many CCTV22 and surveillance systems deploy DV
cameras. A large number of these systems is still in use and many are in need
of postprocessing enhancement. In addition, as DV was extensively used by
independent filmmakers and journalists, large collections of DV material exist
and often need to be processed (cleaned and upscaled) before they are edited
and combined with newer, higher-resolution content.

Consumer-grade high-definition (HD) cameras started to gain popularity
in the late 2000s. They produce excellent video and are usually equipped with
higher-quality lenses ensuring image sharpness. But despite a very high pixel
count, residual aliasing is often present in HD footage. This high spatial-
frequency content can be used to obtain excellent SR results (such as in
Figure14.5) even at HD input resolutions, especially when video is shot in
low light. While there are currently no commercially available video displays
with resolutions above HD23 to truly benefit from full-frame HD upscaling,
high-quality denoising (obtained as a result of SR process with no upscaling),
can significantly improve visual quality of HD content.

14.6.3 Handling Complex Motion

As we have discussed earlier, the key to successful super-resolution of full-
frame video lies in a robust mix of different spatial motion models and their ef-
fective temporal recombination. Many spatial-domain SR algorithms use only
translation or other parametric global motion that can produce good results
for some scenes, but are incapable of handling more complex motion present
in nearly all videos. To obtain high-quality reconstruction results without vi-
sually annoying artifacts (e.g., ghosting), local motion needs to be employed

22Closed-circuit television.
23And first experimental 4K displays (4096×2160) are just starting to emerge, like Pana-

sonic’s 4K HDTV [8].
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(a) (b)

(c) (d)

(e) (f)

FIGURE 14.5: Super-resolution (2×) of DV and HDV video. Left: Detail from
DV video (shot on Canon ZR200 DV camcorder, 720×480, interlaced, 29.97
fps). (a) Original frame (two fields weaved together), bicubic upscaling, (c)
Motion-compensated deinterlacing using two fields. (e) SR deinterlacing result
with 15 matching frames. Right: High Definition video shot on Canon HV30
HDV camera (1080p @ 24 fps) (b) original detail at 2× (bicubic upscaling),
(d) original detail with improved contrast, (f) SR result with 21 matching
frames.
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for foreground handling, in addition to parametric global camera motion used
to process background pixels.

Figure 14.6 illustrates the use of such local motion. The clip shown here
(baby crawling) is representative of many videos shot indoors when additional
lighting is not available. Original frame (upscaled 2× using bicubic interpo-
lation) from the video sequence is shown in (a). The first obvious problem
is that the video is underexposed (only about 30% of a full dynamic range
is used). Frame (b) shows the same frame with contrast correction applied.
While more details are visible due to improved contrast, noise is also much
more visible. Furthermore, its random nature makes it even more perceptible
when video is played at full frame rate.

The result of SR reconstruction using only global camera motion and 15
matching frames24 is presented in (c). Notice much improved reconstruction
of details on the floor and in the background (e.g., the character in the middle
of blue flower – blanket, middle right) and overall greatly reduced noise levels.
However, the use of global motion results in a blurry foreground object (baby)
and unacceptable ghosting artifacts. Many details on both baby’s head (hair)
and body (pajamas) are lost, and baby’s left hand has almost completely
disappeared from the frame.

For best results, we perform joint motion-based segmentation and motion
estimation that includes a combination of local parametric motion (e.g., baby’s
body), local pixel-based motion (e.g., baby’s hair), and global camera motion
(background). The result is a sharp output displayed in frame (d). Notice the
preserved details in the background and denoised and sharper view of the
baby (details on the back, right hand, and in the hair).

14.6.4 Practical Limits of Super-Resolution

Several efforts to determine the theoretical limit of resolution enhancement
were carried out in the past. For example, Lin and Shum suggest that the
limit of resolution enhancement on real-world video is 1.6×, though up to
5.7× improvement is possible under synthetic conditions [21]. As we have seen
in previous sections, more frames with consistent content (and sufficient high-
frequency information) will result in better reconstruction. Contrary to the
result of Lin and Shum, and as demonstrated theoretically in [31], it is clear
that there is no single answer to the question “how many frames is enough?”
as this mostly depends on the amount of useful high-frequency information
available in neighboring frames. Other factors that play a role in determining
sufficient size of processing cache are video noise (compression or imaging),
the geometry of the scene (in how many frames is the object at least partially
visible), and corruption of frames, due to transmission errors or motion blur.
We here present several heuristic rules based on our experience (as with any
practical observation, exceptions are possible):

247 frames before and 7 frames after the anchor frame.
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(a) (b)

(c) (d)

FIGURE 14.6: Example of efficient global and local motion mixture: (a) Origi-
nal video frame (1.5Mbps AVC/H264 at 640×480 at 15fps), upscaled 2× using
bicubic interpolation ; (b) Contrast correction applied (notice the increased
noise visibility), 2× using bicubic interpolation; (c) SR result (2×, 15 match-
ing frames) using only global parametric motion model. Notice the visible
ghosting due to inability of this motion model to account for local motion. (d)
SR (2×, 15 matching frames) using mixture motion model.

• The minimal number of frames required for useful reconstruction of
aliased information is not smaller than 5;

• For better visual quality, as many as 50 frames can be effectively used;

• In analyzing the results of SR, human perception is what matters.

We illustrate these points through a real-world example. In Fig.14.7 (a)–(d),
we show how the license plate number is recovered from a noisy video. Typi-
cally, a frame cache containing between 5 and 15 frames should provide enough
aliased data25 for a good reconstruction. Notice the improved legibility of the
result using 5 matching frames compared to the original; while visually better,

25If such high-frequency spatial information is present in the video.
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the result is still not definitely clear (especially the first digit). This illustrates
a real-world problem of subjectivity of visual enhancement. For improved con-
fidence, more frames should be used, when available. We have seen meaningful
improvements in reconstruction quality even with an increase in frame cache
size beyond 40 frames.

However, that much useful data is not always available. Much of surveil-
lance video is captured at a very low frame-rate, sometimes in the 1–3 FPS26

range. In such systems, the chance of capturing many frames containing dif-
ferent observations of objects of interest (e.g., people, vehicles) is significantly
diminished. In order fully to exploit benefits of multiframe processing (such as
super-resolution), any major decisions to upgrade a video surveillance system
should be accompanied with a clear analysis of the content’s nature (especially
its dynamics).

Even when the goal of reconstruction is not forensic, using more frames
(beyond 15) can help produce a better result. Fig. 14.7 (e)–(h) demonstrates
how Moiré patterns can be remove using super-resolution principles.

14.7 Lessons Learned

Based on our experience, we have identified ten critical super-resolution issues
that we discuss in more detail below.

1. Not all algorithms are equal in front of the law. As already dis-
cussed, the need for forensic super-resolution analysis is expected to con-
tinue to grow exponentially in the foreseeable future. Over the course of
several years working with law enforcement, we became aware of the role
that video evidence plays in the justice system and of the critical impact
of legal procedure on the way video is handled and used as valid evidence.
For example, great attention is given to preserving the integrity of any
video material used, typically by employing various hashing techniques.

In addition, legal proceedings can often take months or years to fin-
ish. For the result of any video processing algorithm to be accepted in
court as evidence, the algorithm itself has to be fully deterministic and
its results reproducible at any time during this process. Based on our
experience, if the output video depends on a training set (as in many
learning-based SR methods), its chance of being treated as a valid evi-
dence is small.

With this in mind, certification of current and future SR algorithms
for their use in the judicial system presents a critical task in which

26Frames Per Second.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

FIGURE 14.7: Demonstrating visual improvements in reconstruction when
increasing the number of matching frames. (a)–(d) Improving resolution. a)
Original frame upscaled 2× using bicubic interpolation, b) Original frame
after contrast adjustment (2× bicubic upscaling), c) 2× SR result using 5
matching frames, d) 2× SR result using 15 matching frames. The license plate
number is clearly readable only in the last image (NI-949 29). (e)-(h) Removing
compression noise and Moiré patterns. (a) no SR (2× bicubic upscaling), (b)
2× SR, 5 matching frames, (c) 2× SR, 15 matching frames, (d) 2× SR, 50
matching frames. Notice how in this example 15 frames are not sufficient to
completely remove Moiré patterns. MotionJPEG at 3.4 Mbps, 320 × 240 at
20 fps.
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FIGURE 14.8: Three frames from the sequence affected by motion blur.
Automatic detection of blurred frames could improve SR results in gen-
eral by excluding these frames from processing.

super-resolution research community should play an important role.27

In addition, all SR researchers who aim to advance practical super-
resolution should be aware of this issue before starting their work.

2. Motion blur is a significant practical problem. Motion blurring
presents a very significant reconstruction problem, especially when doing
fully automated or semi-automated super-resolution. In many modern
cameras, used for both consumer and professional applications, the user
has no explicit access to camera gain and shutter speed. Even when
shutter priority options exist on a camera, many users are unaware of it,
and they record video using either default (Automatic) mode or “Night”
mode, which usually makes the motion blurring problem even worse.

When video is captured in low light,28 shutter speed in many consumer
cameras usually drops too low and causes motion blurring. Small aper-
ture and small sensor size of these devices just aggravate this problem as
they limit the amount of collected light. What is even more problematic
is that for all videos shot from handheld devices, direction and inten-
sity of motion blurring varies greatly over time, and often from frame
to frame. Any technique of estimating motion blur and using the time-
varying point-spread function (PSF) for reconstruction is prohibitively
computationally expensive (in addition to this problem being very hard
in the general case). In the context of super-resolution, control over the
minimum shutter speed is desirable but rarely available. New research
on robust detection of motion blur would help automate the process of
selecting frames that maximize the output quality.

Also, most camera manufacturers decide to use lower shutter speeds ag-

27In collaboration with makers of SR products, professional associations (such as LEVA
[11]), and the justice system itself.

28A large majority of the clips shot indoors without additional lighting fall under this
category.
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gressively when total illumination of the scene decreases.29 It is obvious
that limiting the minimum shutter speed will result in noisier video,
but this, at least, can be easier to fix in the postprocessing phase than
motion blurring.

3. Speed matters. For SR algorithms to be of practical use to a larger
number of users, they need be reasonably fast (i.e., run in real-time or
close to it). We found that most users are motivated to wait to get re-
sults,30 especially if their videos are of high personal value, but that the
interest in doing SR postprocessing drops dramatically if significantly
higher processing times are required. With high-definition video cam-
eras becoming ubiquitous (e.g., Flip HD, Kodak HD) and providing SR
algorithms with large amounts of data to process, this “need-for-speed”
is even more pronounced. It is also important to keep in mind that the
majority of consumers have hardware that is typically 2-3 years behind
the consumer state of the art. This translates into 3–5× performance
drop,31 which should be considered when projecting the impact of any
new technology, including SR.

Making the problem even more challenging, real-time SR applications
(e.g., enhancement of UAV32 video [9]), require not only highly efficient
implementation but also a minimal latency. Algorithm latency becomes
absolutely critical when super-resolution software is part of a closed-
loop system. In that case, no forward-looking (i.e., future) frames may
be used for reconstruction. In closed-loop systems,33 maximal tolerable
latency is typically around 100 ms (about three frames at 30 frames per
second), which also includes the time needed for video acquisition and
other tasks not directly related to core SR processing. This hard limit
on the processing time should be included into any algorithm being
developed for this market.

4. User interaction with the algorithm is often desirable. The
subjective nature of the super-resolution reconstruction emphasizes
the importance of human perception. In professional applications,
users/operators are willing (and often motivated) to assist in the recon-
struction. Examples of what the user may do to assist processing include
manual object segmentation and feature identification (e.g., marking
vertices of the licence plate). It is, therefore, beneficial to keep in mind a
possibility for user’s input when designing new SR algorithms as this can
dramatically reduce the complexity of some image processing problems.

29Therefore, opting for more motion blur over more shot noise, which is likely driven by
consumer preference for brighter video.

30But not for too long; typically up to five times of the video duration.
31Based on Moore’s Law.
32Unmanned Areal Vehicle.
33For example, those including image trackers, where the output of processing is used to

change the camera direction.
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(a) (b)

FIGURE 14.9: User interaction: In forensic applications, trained users
are willing to interact with the software (in this case, by visually inspect-
ing original frame (a) and marking a region-of-interest (b)) in order to
quickly obtain a super-resolution result.

At the same time, increased user interaction does require more effort in
designing the user interface and a larger investment in user training –
the benefits of which are that optimal or near-optimal results can be
obtained by a large number of users.

5. Beauty is in the eyes of the beholder. As many researchers before
us have concluded, it is often hard to draw direct correlation between
PSNR and visual quality (even worse, results are sometimes deceiving,
with higher PSNR video of obviously lower visual/forensic quality). In
addition, the nature of super-resolution makes the problem of objec-
tively estimating resolution/quality gains inherently impossible, as in
real applications there is no ground truth that we can use as a reference.
In this context, an effort on standardizing new subjective enhancement
metrics when ground truth is not available is very much needed [43],
[44], [6].

6. Some sources are better then others (in SR terms). User gener-
ated content (UGC) is, in general, a great source for super-resolution.34

Most of the time, UGC represents the first generation of video. UGC
is typically shot using handheld cameras, which introduces necessary
subpixel relative frame displacement and allows for full-frame resolution

34Since large quantities of user-generated content are freely available online, the easiest
way to get access to it is by using one of the video downloaders, such as [29]. (Be sure to
understand all legal implications before using any such tool.) Also, different sites store their
videos in different formats for video streaming (typically through Adobe’s Flash Player), but
it is often possible to obtain original content, which was not additionally transcoded on the
server. At MotionDSP, we used UGC uploaded to our own service (www.fixmymovie.com)
to test and develop our algorithms.
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(a) (b) (c)

FIGURE 14.10: Examples of user-generated and preproduced content.
(a) Good video source, often found in user-generated content; (b) Poor
video content for super-resolution, usually professional footage mixing
natural video with synthetic elements; (c) Explicit masking of synthetic
content can significantly improve super-resolution and stabilization re-
sults but it requires user intervention (screenshot from Ikena’s built-in
mask editor).

improvement even when there is no intrinsic motion in the scene. Also,
UGC rarely includes text overlay or other static content mixed with nat-
ural video. One example of UGC video frame is shown in Figure 14.10a.

On the other hand, pre-produced video containing both natural and
synthetic content (Figure 14.10b) can often be difficult to segment and
process automatically. In general, this problem is very hard; one solution
to limiting the impact of burned-in text is to ask users for an explicit
segmentation of natural and synthetic content. We implemented this as
a standard feature in Ikena UAV, where the user can easily create a
new “mask” in the integrated mask editor (illustrated in Figure 14.10c).
Similarly to our previous point on user interaction with the algorithm,
even a small input from the operator can go a long way in reducing
complexity of the problem.

7. Super-resolution is a great denoiser. Even without explicit upscal-
ing, SR can improve perceivable resolution by reducing noise. This is
especially effective at larger frame resolutions (VGA and higher), where
it also makes sense from the computation point of view (processing larger
frames require more memory and time, so skipping upscaling is some-
times even necessary). More importantly, the multiframe nature of SR
means that it can implicitly help with many common problems with
video, including shot noise and compression artifacts. With more and
more people being involved with the process of video creation – and often
shooting in subideal conditions (resulting in noisy videos) – SR denois-
ing, indeed, has a very large addressable market and a very promising
future.

8. It is generally good to avoid core design customization. Our ap-
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proach to core SR algorithm design was to limit the level of customiza-
tion in order to expand the range of applications that could benefit
from it. For mass-market applications, it is rarely beneficial to tie the
algorithm’s performance to a particular class of videos.35 The finite re-
search and development resources are usually better spent on making
core algorithmic improvements that will result in improved general case
performance.

9. Custom imaging solutions can benefit from incorporating SR
into their designs. If the imaging system is envisioned to work with
a super-resolution postprocessing system [32], [39], it is a good idea to
include some requirements of the SR algorithm into the very design of
the imaging pipeline (for example, the amount of aliasing in the camera
output might be controlled to optimize SR processing). As a rule of
thumb, when used in any forensic application, sharper, aliased video is
always preferred to smoother, non-aliased video, regardless of subjective
appearance.

10. Super-resolution is not the end of it. As we have illustrated in
this chapter, super-resolution can produce great results and can make a
significant impact in both consumer and professional applications. Nev-
ertheless, super-resolution is not the only way to improve video qual-
ity, nor is it always the most computationally effective solution. This
is particulary true when video is processed and viewed in real-time. In
that case, the most effective way for maximum quality improvement is
to combine super-resolution with other video enhancement technologies,
especially those stemming from in-depth understanding of the scene mo-
tion (like robust stabilization). Other high-impact enhancements may
include adaptive contrast enhancement, histogram equalization, out-of-
focus deblurring, high-quality deinterlacing, rolling shutter correction,
or frame-rate upscaling. Joint optimization of visual impact and time
spent on each processing block presents an interesting research opportu-
nity. Also, sharing and reusing already computed data between various
processing blocks is crucial for an efficient implementation; ideally, this
should be incorporated early in the design process.

35For example, we tried to include the information about key-frames into the SR recon-
struction process (by assigning larger weights to key-frames during reconstruction). While
we saw certain improvements in reconstruction quality when this method was applied on
videos compressed with some older codecs, this approach, in general, was not very suc-
cessful (as newer codecs, like H.264/AVC, have much better control over temporal quality
variation).
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14.8 Conclusions

Improving video resolution is a very important task and there are numer-
ous real-world applications where super-resolution is adding the real value.
multiframe video processing has a great potential to become a mainstream
“killer” application, especially with the increase in compute power available
in the vicinity of the video decoder. We hope that our experience will help in
bringing more exciting technologies from labs to the market.
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AWF, see Adaptive Wiener filter

B
Back-projection function (BPF), 11

449
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Bayesian Image Super-resolution, 257
Bayesian inference, 290
Bayesian marginalization, 273
Bayesian perspective, see Multiframe

super-resolution (Bayesian
perspective)

Bayesian super-resolution
reconstruction, see
Variational Bayesian
super-resolution
reconstruction

BCE, see Brightness constancy
equation

Bilateral total variation (BTV), 13
framework, 92
prior, 257

Blind source separation (BSS), 368
Block-Matching 3D filtering

(BM3D), 126
Blur(ring)

circle, 195
estimation, variational Bayesian

super-resolution, 305
matrices, 288
models, 291
operator, 190, 210
out-of-focus, 190
point spread function, 83
PSF, 40
removal, 213
spatial, 8

Blur, spatially varying, 187–217
adjoint masking, 192
Airy disk, 198
algorithms, 204–214

depth-dependent blur,
210–214

smoothly changing blur,
207–210

super-resolution of scene with
local motion, 205–207

aperture hole, scale of, 196
Bayesian view of solution,

191–194
blur circle, 195

blur removal, 213
blurring operator, 190, 210
camera calibration, 197
camera lens, 190
camera motion blur, 202–203

no rotation, 203
rotation, 202–203

camera settings, 196
Canon PowerShot SX120 IS, 201
chain of degradations, 191
circle of confusion, 195
decimation operator, 190
deconvolution algorithm

estimates, 201
defocus and optical aberrations,

194–201
approximation of PSF by 2D

Gaussian function, 197
diffraction, 198–201
general form of PSF for

axially-symmetric optical
systems, 197–198

geometrical optics, 195–196
summary, 201

depth map, 202
Dirac delta function, 202
general model of resolution loss,

189–191
geometric deformation, 190
homography, 204
kernel estimation procedure, 210
megapixels, 199
noise variance, 192
optical transfer function, 199
out-of-focus blur, 190
Penrose pixels, 188
pillbox, 195
prototype PSF, 203
PSF scale proportionality, 212
PSF symmetry, 198
radial frequency, 199
registration error, 193
regularization term, 192
representation of spatially

varying PSF, 189
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robust image registration, 209
scene motion, 204
sensor transfer function, 199
shutter speed, 208
signal spectrum, 200
space-variant model, 190
sub-pixel accuracy, 205
Tikhonov regularization, 192
Toeplitz blocks, 189
unknown depth map, 211
web camera, 206

BM3D, see Block-Matching 3D
filtering

BPF, see Back-projection function
Brightness constancy equation

(BCE), 76–77
BSS, see Blind source separation
BTV, see Bilateral total variation

C
Camera

Apple iPhone, 415
calibration, 197
Canon PowerShot SX120 IS, 201
digital, 156
Digital Single-Lens Reflex, 415
global motion, 429
intensity images, 357
Leica, 160, 170, 174
lens, 190
model, 157–160
motion, 41
motion blur, 202–203

no rotation, 203
rotation, 202–203

Nikon 85mm lens, 160
pinhole, 162
resolution, 161
roto-translation, 176
settings, 196, 261
shift, 418
shutter speed, 208
Sigma, 170
surveillance, 3
tripod, 53

web, 206, 207
zoom, motion parameters, 429

Cameraphones, 415
CAR model, see Conditional

Autoregression model
CCD, see Charge-coupled device
CCTV systems, 433
Československo sequence, 281
CFT, see Continuous Fourier

transform
Charge coupled device (CCD), 2, 199

aliasing-free 3-D images, 398
invention, 384
spatial integration, 250

Circle of confusion, 195
Clique, definition of, 349
Clustering, unsupervised, 340
CMOS, see Complementary

metal-oxide-semiconductor
CNET WebWare 100 award, 421
Colored Book Sequence, 271
Complementary

metal-oxide-semiconductor
(CMOS), 2, 199

Compressed sensing (CS), 129, see
also Inverse imaging,
spatially adaptive filtering
as regularization in

Computer(s)
-aided tomography, 11, 133
AMD-based PCs, 420
human assistance, 418
Intel-based PCs, 420
machine learning, 316
MATLAB’, 402
parallel computing, 22
post-processing, 415
Sarnoff Acadia Video

Processors, 422
StackReg plug-in, 403
super-, 419
vision, 316, 399

Conditional Autoregression (CAR)
model, 290

Conjugate gradient, 299
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Continuous Fourier transform
(CFT), 7

Convex sets, projection onto, 370
Cramr-Rao (CR) bounds, 23
CR bounds, see Cramr-Rao bounds
Cross-validation, definition of, 349
CS, see Compressed sensing

D
Data

error, 256, 266
hyperspectral, 359
infrared video, 53–57
leading strength parameters

from, 265
low-frequency, 134–136
missing, pattern recognition, 341
MPEG, 220
multichannel image, 357
penalty term, 387
real, multiframe

super-resolution, 280
simulated, Wiener filters, 51–53
synthetic, 269

Database(s)
Airborne Visible/Infrared

Imaging Spectrometer, 363,
373

functional relationships
extracted from, 316

patch, 17
Dataset

benchmark, 23
eyechart, 269
frog, 259, 262
Graffiti, 252
Keble, 259, 260, 261
Surrey library, 272
synthetic, 253
synthetic graffiti, 253

Daubechies filters, 394
DCT, see Discrete Cosine Transform
Deblurring, 9, 10, 92, 102
Decimation operator, 190
Degrees of freedom (DoF), 249

Delaunay SR, 57
Denoising, 124
Depth map, 202
DFTs, see Discrete Fourier

transforms
Diffraction, definition of, 198
Digital Single-Lens Reflex (DSLR)

cameras, 415
Discrete Cosine Transform (DCT),

343
Discrete Fourier transforms (DFTs),

7
Discrete sine transform (DST), 144
DoF, see Degrees of freedom
Downsampling, multichannel images,

363
DSLR cameras, see Digital

Single-Lens Reflex cameras
DST, see Discrete sine transform
DVR systems, 423

E
Eigendecomposition, 126
EM algorithm, see

Expectation-maximization
algorithm

Equivalent kernel weight function, 69
Error(s)

algorithms vulnerable to, 21
data, 256, 266
mean squared, 37, 177
PSF estimation, 12
reconstruction, 367
registration, 9, 20, 181

spatially varying blur, 193
subpixel, 230

residual, 179, 251
root mean square, 270

Evidence-based analysis, 294
Example-based algorithms, 316
Excitation noise, 132
Expectation-maximization (EM)

algorithm, 12, 294
Expressive power, definition of, 349
Eyechart dataset, 269
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F
Face hallucination, 18
Fidelity term, 221
Filter(s), see also Wiener filters,

adaptive
adaptive Wiener, 37
coefficients, computation of, 65
Daubechies, 394
Laplacian-of-Gaussian, 257
NLM, 116
parameters, 132

Filtering, see also Inverse imaging,
spatially adaptive filtering
as regularization in

bilateral, 22
collaborative, 128
image-domain estimate, 131
median, backprojection with,

302
spatial, multichannel images,

362
spectral, multichannel images,

363
Flickr.com, 415, 416
Focal plane array (FPA), 36

active area shape, 44
vector of samples, 39

Foreman sequence, 85, 112, 146
FPA, see Focal plane array
Frame averaging, 425
Frame interpolation, 86
Frame rate upconversion, 86
Frequency

analysis (Fourier space), 167
domain registration

algorithm, 174
image reconstruction, 170
image registration, 168–170
results, 170
super-resolution using,

168–170
radial, 199

Frog dataset, 262
Functional, definition of, 349

Future challenges, see Image
super-resolution (historical
overview and future
challenges)

Fuzzy motion estimation, 21

G
Gaussian Markov Random Field

(GMRF), 12, 14, 255
Gaussian mixture model (GMM),

341
Gaussian models, 290
Gaussian noise, 9, 22, 82, 110, 289,

375
Geman-McClure M-estimator, 430
Generative model, 248
Gibbs distribution, 327
Global smoothing parameter, 68
Global transition model, 271
GMM, see Gaussian mixture model
GMRF, see Gaussian Markov

Random Field
GPUs, see Graphical Processing

Units
Graffiti datasets, 252
Gram matrix, 322
Graphical Processing Units (GPUs),

118
Graphical user interface (GUI), 431
GUI, see Graphical user interface

H
Hallucination

face, 18
reconstruction, 427

Hidden variables, 294
High-Definition sequence, 114
High-resolution image (HRI), 239
Historical overview, see Image

super-resolution (historical
overview and future
challenges)

HMRF, see Huber MRF
Homography, 204
HRI, see High-resolution image
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Huber function, 255, 257
Huber MRF (HMRF), 13
Huber norm, 22
Human visual system (HVS)

evaluation, 317
HVS evaluation, see Human visual

system evaluation
Hyperparameters, 289, 292, 298
Hyperprior distributions, 289, 292
Hyperspectral data, 359

I
IBP algorithm, 16
ICIA algorithm, see Inverse

compositional image
alignment algorithm

IC vector, see Independent
component vector

Image(s), see also Multichannel
images, super-resolution
reconstruction of

acquisition
limitation, 285
model, 360

average, computation of, 267
blurry high-resolution, 103
color, 355
distribution, 307
-domain estimate filtering, 131
gradient values, 254
gray-scale, 357
Huber, 276, 282
intensity, 357
Keble, 270
motion model, 41
observation model, 5, 6
patch(es), 16

definition of, 349
site, 327
type determination, 317

poor texture, 226
prior, total variation, 291
processing problem,

fundamental, 20
reconstruction, multiframe, 394

reference, 177
registration, see Registration
scaling values, 73
sequence, synthetic, 235
super-resolution, 137
trackers, 440
upsampling, 137
zooming, 137

Image enhancement, registration for
super-resolution, 155–185

Airy disk, 158, 161
aliased frequencies, 166
camera

model, 157–160
resolution, 161
roto-translation, 176

definition of resolution, 161
digital camera, 156
Fourier series, 163–166
frequency domain registration

algorithm, 174
frequency response, 158, 159
Hilbert space, 162
low rate-encoded videos, 182
mean squared error, 177
motion estimation algorithm,

180
multichannel sampling problem,

super-resolution as, 162–166
multiresolution Gauss-Newton

descent method, 179
optics, linear distortion, 158
partially aliased signals,

registration of, 168–183
frequency domain registration,

super-resolution using,
168–170

low-quality videos,
super-resolution from,
176–183

pinhole camera model, 162
QCIF video, 159
Rayleigh’s criterium, 161
reference image, 177
registration errors, 181
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regularization term, 181
Sigma camera, 170
steepest descent method, 181
subpixel image registration, 157
totally aliased signals,

registration of, 166–168
frequency analysis method,

167
results, 168
variable projection method,

166
Total Variation, software

implementation, 182
unknown signal coefficients, 163
upscaling, 156

Image super-resolution (historical
overview and future
challenges), 1–33, see also
Super-resolution

additive noise, 10
aperture diffractions, 3
back-projection kernel, 11
benchmark datasets, 23
bilateral filtering, 22
bilateral total variation, 13
challenge issues, 20–23

computation efficiency, 21–33
image registration, 20–21
performance limits, 23
robustness aspects, 22–23

charge-coupled device, 2
computer-aided tomography, 11
Cramr-Rao bounds, 23
cyclic coordinate-descent

optimization procedure, 14
deblurring, 9, 10
discrete Fourier transforms, 7
downsampling, 6, 22
Expectation-Maximization

algorithm, 12
face hallucination, 18
fundamental image processing

problem, 20
fuzzy motion estimation, 21

Gaussian Markov Random
Field, 12

Gaussian noise, 9, 22
generic image priors, 15
Huber norm, 22
IBP algorithm, 16
introduction to super-resolution,

1–4
application areas, 1–2
spatial resolution, 2–4

Lasso problem, 17
lens aberration effects, 3
Markov Random Field model, 15
multiple motion tracking

algorithm, 12
noise term, 6
Nonnegative Matrix

Factorization, 18
notations, 5
optical blurring, 3
optimization problem, 22
out-of-plane rotation, 21
parallel computing, 22
patch databases, 17
pixels, 2
point spread function, 3
prior, 15, 23
prior term, 10
registration errors, 9, 20
shot noise, 3
spatial blurring, 8
subpixel

accuracy, 8
displacements, 18
motion estimation, 20
shifts, 3, 12

surveillance
camera, 3
video, 4

techniques, 5–20
Bayesian treatments, 14–15
example-based approaches,

15–18
image observation model, 5–7
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interpolation-restoration
(non-iterative approaches),
8–9

joint MAP restoration, 13–14
maximum a posteriori, 12–13
maximum likelihood, 11–12
set theoretic restoration,

18–20
statistical approaches, 9–15
super-resolution in frequency

domain, 7–8
Tikhonov regularization, 12
Total Variation norm, 13
triangulation-based method, 9
Wiener filtering, 9

Independent component (IC) vector,
367

Inferencing, 329
Influence function, 430
Infrared video data, 53
International Organization for

Standardization (ISO), 161
Intersection set, 370
Inverse compositional image

alignment (ICIA)
algorithm, 230, 239

Inverse imaging, spatially adaptive
filtering as regularization
in, 123–153

aggregation, 128
Block-Matching 3D filtering, 126
block-wise estimates, 128
collaborative filtering, 128
compressed sensing, 129–136

experiments, 133–136
iterative algorithm with

stochastic approximation,
130–133

limited-angle tomography, 134
observation model and

notation, 130
radon inversion from sparse

projections, 134
reconstruction from

low-frequency data, 134–136

denoising, 124
discrete sine transform, 144
eigendecomposition, 126
energy criterion, 124
excitation noise, 132
filter parameters, 132
Foreman sequence, 146
grouping by block-matching, 128
image-domain estimate filtering,

131
image estimates, 133
image super-resolution, 137
image upsampling, 137
incoherence, 129
inverse imaging problems, 124
iterative filtering as

regularization, 125–129
nonlocal transform domain

filtering, 126–129
spectral decomposition of

operator, 126
Miss America sequence, 148
noise addition, 131
nonconvex penalties, 124
nonlocal means filtering

paradigm, 138
Nyquist-Shannon theory, 129,

137
penalty terms, 124
projection operator, 141
restriction operator, 130, 141
Robbins-Monro procedure, 133
singular value decomposition,

126
stopping rule, 133
super-resolution, 137–150

experiments, 143–150
image reconstruction, 137
image upsampling, 145–150
implementation details, 144
inverse imaging, 144–145
multistage iterative

reconstruction, 142–143
observation model, 140
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scaling family of transforms,
140–142

spectral decomposition,
139–140

Suzie sequence, 147
updated estimate, 131
upsampling, 143
V-BM3D algorithm, 127
video super-resolution, 137, 145
zero-padding operator, 130, 141

ISKR, see Iterative SKR
ISO, see International Organization

for Standardization
Iterative SKR (ISKR), 80

K
Karhunen-Loeve Transform (KLT),

366, 367
Keble dataset, 259, 260, 261
Kernel regression (KR), 63–96

adaptive kernel regression, 67–83
classic kernel regression in

2-D, 67–69
implementation and iterative

refinement, 80–83
kernel regression with rough

motion compensation 78–80
space-time (3-D) steering

kernel regression, 72–78
steering kernel regression in

2-D, 70–72
adaptive kernel total variation,

92
bilateral total variation

framework, 92
brightness constancy equation,

76–77
choice of regression parameters,

91–92
classical kernel regression, 65
covariance matrix, 70, 71
cubicle, 72
deblurring, 92
elongation parameters, 74

equivalent kernel weight
function, 69

examples, 83–90
spatial upscaling, 83–86
spatiotemporal upscaling,

86–90
frame interpolation, 86, 89
frame rate upconversion, 86
Gaussian noise, 82
global smoothing parameter, 68
iterative SKR, 80
local structure tensor, 65
Metric Learning, 66
motion-assisted steering kernel

method, 77
motion compensation, 79
multidimensional kernel

regression, 63
Nadaraya-Watson estimator, 69
noise-ridden sample, 72
nonlocal means framework, 65
orientation information, 80
pilot initial estimate, 80
regularization term, 92
scaling parameters, 74
sequence

Foreman, 85
Miss America, 84
Texas football, 87

singular value decomposition, 70
steering kernels, 75, 78

parameters, 91
regression, 66

steering matrix, 70
Texas football sequence, 87
Video-BM3D, 65
video upscaling, carphone

example, 88
weighted least square estimator,

69
zero mean noise, 67, 72

KLT, see Karhunen-Loeve Transform
k-nearest neighbor ( k-NN) rule, 320
k-NN rule, see k-nearest neighbor
KR, see Kernel regression
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L
Lanczos interpolation, 84
Laplacian-of-Gaussian filter, 257
Laplacian operator, 290
Lasso problem, 17
Law enforcement market, 423
Learning

-based algorithms, 220
kernel, 337
machine, 316
Metric, 66

Leica camera, 160, 170, 174
Lessons learned, see Practice
Limited-angle tomography, 134
Linearly Spatial Invariant (LSI), 8
Linear matrix inequality (LMI), 335
LLE, see Local Linear Embedding
LMI, see Linear matrix inequality
Local Linear Embedding (LLE), 322
Locally weighted regression (LWR),

323
Local structure tensor, 65
Low-quality videos, super-resolution

from, 176–183
image reconstruction, 179–181
image registration, 177–179
motion model, 176–177
results on video sequences,

181–183
Low radiation digital X-ray

mammography, 389–396
experimental X-ray results,

394–396
multiframe ForWaRD

deconvolution and
denoising, 393–394

multiframe shift estimation,
391–392

Low-resolution image (LRI), 239, 418
LRI, see Low-resolution image
LSI, see Linearly Spatial Invariant
Luminance correction, 229
LWR, see Locally weighted regression

M
Machine learning, 316
Magnetic resonance imaging (MRI),

388
Majorization-minimization (MM)

approaches, 296
Mammography, low radiation digital

X-ray, 389–396, see also
Medical imaging

experimental X-ray results,
394–396

multiframe ForWaRD
deconvolution and
denoising, 393–394

multiframe shift estimation,
391–392

MAP, see Maximum a posteriori
probability

Markov Random Field (MRF), 327
improvement, 326
model, 15
nearest-neighbor

super-resolution, 319
MARS methodology, 345
MASK method, see Motion-assisted

steering kernel method
Maximum a posteriori probability

(MAP), 8, 11, 100
Bayesian inference, 283
Bayesian marginalization, 273
estimator, 8, 11
negative log likelihood, 264
proposed penalty, 100

Maximum Likelihood (ML)
estimator, 8, 11, 99–100,
273

MCTF, see Motion-compensated
temporal filtering

Mean squared error (MSE), 37, 177
Medical imaging, 4, 383–412

Adaptive Kernel regression, 387
aliasing artifacts, 384
BayesShrink algorithm, 393
charge coupled device, 384
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CIRS model 11A breast
phantom, 394

data penalty term, 387
Daubechies filters, 394
detector array resolution, 384
ForWaRD algorithm, 393
hard wavelet coefficient

thresholding, 394
magnetic resonance imaging, 388
mammography, primary goal of,

396
Mammomat NovationTOMO

digital mammography
prototype system, 394

MATLAB’, 402
micro-calcifications, diagnostic

capability of, 396
multiframe image

reconstruction, 394
new medical imaging

applications, 388–405
low radiation digital X-ray

mammography, 389–396
optical coherence tomography,

397–405
nonlinear programming, 402
Optical Coherence Tomography,

388, 397
optical flow constraint, 401
phantom breast, 390
positron emission tomography,

388
restoration techniques, 395
SDOCT ophthalmic imaging

practice, 399
semiconductor manufacturing,

384
signal-to-noise ratios, 384
spectral domain OCT, 397, 398
StackReg plug-in, 403
sub-Nyquist sampling, 401
subpixel spatial shifts, 386
super-resolution, 385–388

algorithms, 384
effectiveness, 383

image capture model, 385–386
super-resolution estimation

framework, 387–388
Tikhonov type functionals, 387
time-domain OCT, 397
ultrahigh resolution OCT, 397
Variable Projection technique,

392
volumetric scanning scheme, 398

Megapixels, 199
Metric Learning, 66
Miss America sequence, 84, 111, 148
Mixture of experts, definition of, 349
ML estimator, see Maximum

Likelihood estimator
MM approaches, see

Majorization-minimization
approaches

Mobile video enhancement, see
Image enhancement,
registration for
super-resolution

Model(s)
blur, 291
camera, 157–160
Conditional Autoregression, 290
Gaussian mixture, 341
generative, 248, 356
global transition, 271
image capture, medical imaging,

385
image motion, 41
image observation, 5, 6
Markov Random Field, 15
motion, 176
multichannel image acquisition,

360
observation, 38–47, 370

image formation model, 38–40
image motion model, 41–42
image registration, 42–43
system point-spread function,

44–47
pinhole camera, 162
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Simultaneous Autoregression,
290

space-variant, 190
wide sense stationary

autocorrelation, 48
Modulation transfer function (MTF),

44
Motion, see also Probabilistic motion

estimation
-assisted steering kernel

(MASK) method, 77
camera, 41
-compensated temporal filtering

(MCTF), 433
-compensated video sequence, 81
compensation, 79, 361
complex, 433
deformable scene, 43
estimation

algorithm, 180
optical flow, 21
variational Bayesian

super-resolution, 305
fuzzy motion estimation, 21
-invariant photography, 188
model, 176
multiple, 241
patterns, 101
refinement, 430
subpixel, 4
trajectory, input video, 82
vector

MPEG, 232
tracing, 233

MotionDSP (history and concepts),
420–422

consumers (MotionDSP’s
vReveal), 425–427

forensic and real-time markets
(MotionDSP’s Ikena),
423–425

markets and applications,
422–427

Moving Picture Experts Group
(MPEG), 232

data, 220
encoding process, 233
motion vectors, 232–237

MPEG, see Moving Picture Experts
Group

MRF, see Markov Random Field
MRI, see Magnetic resonance

imaging
MSE, see Mean squared error
MTF, see Modulation transfer

function
Multichannel images,

super-resolution
reconstruction of, 355–381

agents affecting quality, 356
Airborne Visible/Infrared

Imaging Spectrometer
database, 363, 373

atmospheric corrections, 360
camera, intensity images, 357
chi-square distribution,

Gaussian noise, 372
color images, 355
dimensionality, 356
downsampling, 363
experiments and discussions,

373–377
robustness against noise,

375–376
simultaneous spatial and

spectral super-resolution,
376–377

spectral subspace, 374–375
feasible region of inverse

problem, 370
Gaussian noise, 375
generative image model, 356
hyperspectral data, 359
image acquisition model,

360–366
motion compensation,

361–362
multichannel observation

model, 365–366
spatial filtering, 362–363
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spectral filtering, 363–365
independent component vector,

367
intersection set, 370
Karhunen-Loeve Transform,

366, 367
noise term, 371
notation, 358–359
observation model, 361, 370
pixel

-based super-resolution, 375
spectral signature, 359

planar homography matrix, 362
projection onto convex sets, 370
projection operator, 372
pure minerals, spectral

signatures, 364
reconstruction algorithm,

369–373
POCS with outliers of

residual, 371–372
POCS with variance of

residual, 372–373
subspace observation model,

370–371
reconstruction error term, 367
remote sensing, 357
solar illumination, 356
spectral resolution enhancement,

358
subspace representation,

366–369
blind source separation,

367–368
observation model with BSS,

368–369
zero mean additive white

Gaussian noise, 365
Multiframe super-resolution

(Bayesian perspective),
247–284

average image
computation of, 265
registration, 268, 269

Bayesian Image
Super-resolution, 257

Bayesian marginalization,
273–282

discussion, 282
experimental evaluation,

279–281
implementation notes,

278–279
marginalizing over

high-resolution image,
277–278

marginalizing over registration
parameters, 274–277

Bilateral Total Variation prior,
257

camera settings, 261
CCD sensor, 250
Československo sequence, 281
covariance matrix, 275
cross-validation example, 270
data error term, 256, 266
eyechart dataset, 269
eyechart image, 269
frog dataset, 262
generative model, 248–258

considerations in forward
model, 249–250

maximum a posteriori
solution, 254–255

maximum likelihood solution,
251–252

ML solution in practice,
252–253

probabilistic setting, 251–255
selected priors used in MAP

super-resolution, 255–258
geometric registration

parameters, 251
global transition model, 271
GMRF image priors, 255
Graffiti datasets, 252
homographies, 280
Huber function, 255, 257
Huber image, 276, 282
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Huber parameter, 279
image gradient values, 254
Keble dataset, 259, 260, 261
Laplacian-of-Gaussian filter, 257
log priors, 254
low-resolution pixels, 266
MAP negative log likelihood,

264
maximum marginal likelihood

point estimate, 273
normalization constant, 254
nuisance parameters, 273
nuisance variables, 277
photometric registration

parameters, 265
pixel intensity values, 250
posterior distribution, 254
PSF, decomposition, 250
residual errors, 251
root mean square error, 270
Scaled Conjugate Gradients, 278
simultaneous super-resolution,

263–273
evaluation on synthetic data,

269–271
experiments on real data,

271–273
initialization, 267–268
learning prior strength

parameters from data,
265–266

scaling and convergence,
266–267

super-resolution with
registration, 264–265

super-resolution image estimate,
264–265

Surrey Library sequence, 271
synthetic datasets, 253
synthetic eyechart sequence,

279, 280
synthetic graffiti dataset, 253
unknown zero-mean

Gaussian-distributed
additive noise, 274

validation set, 266
where super-resolution

algorithms go wrong,
258–263

geometric registration
example, 262–263

photometric registration
example, 261–262

point-spread function
example, 259–260

zero-mean Gaussian, 277
zero-mean GMRF prior, 256
zoom factor, 273

N
Nadaraya-Watson estimator (NWE),

69
NCC, see Normalized

Cross-Correlation
Neural networks, 339
Newton-Raphson algorithm, 429, 430
NLE software tools, see Nonlinear

editing software tools, 427
NMF, see Nonnegative Matrix

Factorization
Noise

additive, 10
excitation, 132
Gaussian, 9, 22, 82, 110, 274,

365
realizations, simulations with,

303
-ridden sample, 72
robustness against, multichannel

images, 375
shot, 3
-to-signal ratios (NSRs), 52
term, 6, 49, 371
variance, 192
zero mean, 67

Nonlinear editing (NLE) software
tools, 427

Nonlocal means, 99
filtering paradigm, 138
framework, 65
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Nonnegative Matrix Factorization
(NMF), 18

Normalized Cross-Correlation
(NCC), 226

NSRs, see Noise-to-signal ratios
Nuisance

parameters, 273
variables, 277

NWE, see Nadaraya-Watson
estimator

Nyquist criterion, 47
Nyquist frequency, 44
Nyquist-Shannon theory, 129, 137

O
Object-based reconstruction, 19
Observation model, 38–47, 370

image formation model, 38–40
image motion model, 41–42
image registration, 42–43
system point-spread function,

44–47
OCT, see Optical Coherence

Tomography
Optical Coherence Tomography

(OCT), 388, 397–405
experimental results, 403–405
multiframe joint registration,

401–403
sparse repeated imaging,

399–401
Optical flow, 98

constraint, 401
motion estimation, 21

Optical transfer function (OTF), 44,
199

Optics, linear distortion, 158
OTF, see Optical transfer function
Overfitting, definition of, 349

P
Patch databases, 17
Pattern recognition techniques,

315–354
Bayes risk, 322

classification problems, 315
clique

choice, 327
definition of, 349

convex optimization problem,
334

cross-validation, 346, 349
design considerations and

examples, 346–347
Discrete Cosine Transform, 343
example-based super-resolution

algorithms, 316
expressive power, 349
functional, 349
Gaussian mixture model, 341
Gibbs distribution, 327
glossary, 349
Hilbert space selection, 332
human visual system evaluation,

317
image patch

site, 327, 349
type determination, 317

inferencing, 329
insufficient training, 325
kernel learning, 337
kernel machines for image

super-resolution, 329–338
applications to

super-resolution, 337–338
inductively learning of kernel

matrix for regression
332–335

quadratically constrained
quadratic programming
problem, 335–337

support vector regression,
330–332

k-nearest neighbor rule, 320
Lagrangian function, 334
learning algorithms, 347, 348
linear matrix inequality, 335
local Gram matrix, 322
Local Linear Embedding, 322
locally weighted regression, 323
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machine learning, 316
manifold embedding, 322
Markov random fields and

approximations, 326–328
MARS methodology, 345
missing data, 341
mixture of experts, 349
multiple learners and multiple

regressions, 338–346
integrating regression,

343–346
neural networks and

super-resolution, 339–340
supervised clustering, 342–343
unsupervised clustering,

340–342
nearest neighbor

super-resolution, 318–326
adaptive k-NN for

super-resolution, 323–325
heuristics for insufficient

training in adaptive k-NN
regression, 325–326

k-nearest neighbor, 320–321
k-nearest neighbor regression,

321–323
nonlinear operation, 338
observation test point, 320
overfitting, 349
pattern recognition, 316
perceptron functions, 339, 349
pixel values, 326
probability density function,

321, 322
quadratically constrained

quadratic programming
problem, 332, 336

radial basis function, 320
RANSAC methodology, 345
regression

estimate, 331
globalization concerns, 328
problems, 315

remarks, 348–349
sample scheme, 328

Schur complement lemma, 335
semidefinite programming, 332
support vector

machine, 329
regression, 329

texture patches, 325
training set, 320, 324
tree-based resolution

enhancement, 342
unweighted Euclidean distances,

320
vector quantization, 342

PDF, see Probability Distribution
Function

Penalty terms, 124
Perceptron functions, 339, 349
PET, see Positron emission

tomography
Photography, motion-invariant, 188
Pillbox, 195
Pilot initial estimate, 80
Pixel(s), 2

accuracy, low-resolution image,
239

-based super-resolution, 375
categories, 234
intensity values, 250
low-resolution, 266
neighbor, 228
occluded, 237
Penrose, 188
registered, median of, 223
registration error, 226
selection algorithm, 227
spectral signature, 359
values, prediction of, 326

PML, see Probabilistic ML
POCS, see Projection onto convex

sets
Point spread Function (PSF), 3, 5, 93

blur, 40, 83, 291
decomposition, 250
estimation errors, 12
imaging sensor, 363
increase in, 158
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multiframe super-resolution, 250
prototype, 203
scale proportionality, 212
spatially varying blur, 188
spectral decomposition, 139
symmetry, 198

Positron emission tomography
(PET), 388

Posterior distribution, 254
Practice, 413–447

Apple iPhone, 415
Areas-of-Interest, 425
automation versus user

interaction, 418
cameraphones, 415
casual video creators, 414
CCTV systems, 433
CNET WebWare 100 award, 421
Digital Single-Lens Reflex

cameras, 415
DVR systems, 423
Flickr.com, 415, 416
frame averaging, 425
frequency-based

super-resolution, 427
Gaussian pyramid, 429
Geman-McClure M-estimator,

430
graphical user interface, 431
hallucination reconstruction, 427
Hessian matrix, 429
image trackers, 440
index space mapping, 429
influence function, 430
iterative Newton-Raphson

algorithm, 429
law enforcement market, 423
learning-based super-resolution,

427
lessons learned, 437–443

algorithms, 437
core design customization,

442–443
custom imaging, 444
denoiser, 442

high-impact enhancements,
443

motion blur, 439
speed, 440
user generated content, 441
user interaction, 440
visual quality, 441

limited super-resolution
presence, 417

low-resolution image, 418
modeling motion for

super-resolution, 418
Moore’s Law, 440
motion-compensated temporal

filtering, 433
MotionDSP (history and

concepts), 420–422
consumers (MotionDSP’s

vReveal), 425–427
forensic and real-time markets

(MotionDSP’s Ikena),
423–425

markets and applications,
422–427

motion estimation and frame
fusion process, 428

motion refinement, 430
need for postprocessing, 415–417
Newton-Raphson’s least squares

algorithm, 430
nonlinear editing software tools,

427
NVIDIA CUDA, 427
optical-flow based motion, 428
performance issues, 419
real-time professional market,

422
reconstruction-based

super-resolution, 428
relationship to existing

standards, 419–420
results, 431–437

DV and HD video, 433
handling complex motion,

433–435
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mobile and digital still camera
video, 432–433

practical limits of
super-resolution, 435–437

robustness term, 431
surveillance systems, 433
technology, 427–431

frequency-based SR, 427
hallucination reconstruction,

427
initial motion estimation,

428–430
learning-based SR, 427–428
motion refinement, 430–431
reconstruction-based SR, 428
robust parametric motion

estimation, 428–431
Unmanned Areal Vehicle, 440
user generated content, 441
VGA frame resolution, 442
video-enabled phones, 415
video quality trends, 415
YouTube, 415

Prior(s), 15
Bilateral Total Variation, 257
generic image, 15
GMRF image, 255
Huber, 287
image

registration, 23
total variation, 291

log, convex and continuous, 254
observation model parameters,

15
term, 10
zero-mean GMRF, 256

Probabilistic ML (PML), 102
Probabilistic motion estimation,

97–121
block-matching, 106
classic super-resolution

(background), 99–101
deblurring step, 103

de-interlacing results, 117
experimental validation, 108–118

computational complexity,
116–118

experimental results, 108–116
Foreman sequence, 112
Gaussian noise, 110
Graphical Processing Units, 118
High-Definition sequence, 114
image interpolation algorithm,

106
least-squared error term, 102
Miss America sequence, 111
NLM filter, 116
NLM-SR, 99
normalization term, 105
optical flow, 98
probabilistic motion field, 102
proposed algorithm, 101–108

computing of weights, 106–107
matrix-vector algorithm, 104
new formulation, 101–103
other resampling tasks,

107–108
pixel-wise algorithm, 104–105
separating of blur treatment,

103
regularization term, 100
resolution factor, 100
subpixel accuracy, 98
summary, 118–119
Super-Resolution

Reconstruction, 98
Suzie sequence, 113
synthetic text sequence, 109
Trevor sequence, 115

Probability Distribution Function
(PDF), 179, 321

Projection onto convex sets (POCS),
8, 18, 370

Projection operator, 141
PROSAC algorithm, 239
PSF, see Point spread function
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Q
QCQP problem, see Quadratically

constrained quadratic
programming problem

Quadratically constrained quadratic
programming (QCQP)
problem, 332, 336

R
Radial basis function (RBF), 320
Radon inversion, 134
RANSAC methodology, 345
Rayleigh’s criterium, 161
RBF, see Radial basis function
Reconstruction

algorithms, 220
error term, 367
hallucination, 427
high-resolution image, 170
object-based, 19
unknown image, 170–171

Reconstruction-based
super-resolution, 219–246,
428

constraint term, 223
data fidelity term, 224
feature-based algorithm, 239
feature point extraction and

matching, 239
fidelity term, 221
ICIA algorithm, 239
inverse compositional image

alignment algorithm, 230
learning-based algorithms, 220
low-resolution image pixel

accuracy, 239
motion parameters, 243
motion vector tracing, 233
MPEG

data, 220
encoding process, 233
motion vectors, 232

neighbor pixel, 228
Normalized Cross-Correlation,

226

occluded pixels, 237
overviews, 221–225

robust registration, 224–225
robust SR reconstruction,

222–224
super-resolution

reconstruction, 221–222
PROSAC algorithm, 239
reconstruction algorithm, 220,

242
region-based algorithm, 239
region extraction, 239
robust registration for

super-resolution, 237–244
experiments, 241–244
motion estimation and region

extraction for single object,
239–240

multiple motion estimation,
240

proposed multiple motion
estimation, 238–240

super-resolution for multiple
motions, 241

robust SR reconstruction with
pixel selection, 225–232

displacement and similarity
measure, 225–227

experiments, 230–232
luminance correction, 229
proposed pixel selection

algorithm, 227–229
robust super-resolution using

MPEG motion vectors,
232–237

experiments of robust SR
reconstruction, 233–237

registration using MPEG
motion vectors, 232–233

SIFT, 225, 239
single-motion region extraction,

239
subpixel

accuracy, 220
displacement, 226
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registration error, 230
super-resolution results,

comparison on, 231
synthetic image sequence, 235

Reference frame, 38
Reference image, 177
Region extraction, 239
Region of interest (ROI), 4

imaging plane, 362
processed imagery, 51
SDOCT ophthalmic imaging

practice, 399
super-resolution algorithm, 361
zoom, 4

Registration, 20, 42, see also Image
enhancement, registration
for super-resolution

affine, 42, 43
average image, 268, 269
error, 9, 20, 181

spatially varying blur, 193
subpixel, 230

geometric, 251, 262
parameters, marginalizing over,

274
photometric, 261
robust, 209
subpixel, 157
super-resolution with, 264

Regression
Adaptive Kernel, 387
classical kernel, 65
classification schemes, 344
estimate, 331
globalization concerns, 328
kernel, 67
locally weighted, 323
multidimensional kernel, 63
parameter choice, 91
posterior possibilities, 344
problems, 315
steering kernel, 66
training set, 343

Regularization term, 92, 100, 181,
192

Remote sensing, 4, 286, 356
Residual errors, 251
Resolution, see Super-resolution
Restriction operator, 130, 141
RMSE, see Root mean square error
Robbins-Monro procedure, 133
Robustness term, 431
ROI, see Region of interest
Root mean square error (RMSE),

270

S
SAR model, see Simultaneous

Autoregression model
Sarnoff Acadia Video Processors, 422
Scaled Conjugate Gradients (SCG),

278
SCG, see Scaled Conjugate Gradients
Schur complement lemma, 335
SDOCT, see Spectral domain OCT
SDP, see Semidefinite programming
Semiconductor manufacturing, 384
Semidefinite programming (SDP),

332
Sensor transfer function, 199
Sequence

Československo, 281
colored book, 273
Foreman, 85, 112, 146
High-Definition, 114
Miss America, 84, 111, 148
Surrey Library, 271
Suzie, 113, 147
synthetic eyechart, 279, 280
synthetic text, 109
Texas football, 87
Trevor, 115

Shot noise, 3
SIFT, 225, 239
Sigma camera, 170
Signal

coefficients, unknown, 163
-to-noise ratios (SNR), 384
partially aliased, 168
spectrum, 200
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variance, 37
Simultaneous Autoregression (SAR)

model, 290
Single-motion region extraction, 239
Singular value decomposition (SVD),

70, 126
SKR, see Steering kernel regression
SNR, see Signal-to-noise ratios
Software tools, nonlinear editing, 427
Sony Vegas, 427
Spatial resolution, 2–4

definition, 2
medical imaging, 4
remote sensing, 4
sensor point spread function, 3
surveillance video, 4
video standard conversion, 4

Spectral domain OCT (SDOCT),
397, 398

SR, see Super-resolution
Statistical approaches, 9–15

Bayesian treatments, 14–15
joint MAP restoration, 13–14
maximum a posteriori, 12–13
maximum likelihood, 11–12

Steering kernel, 75, 78
Steering kernel regression (SKR), 66
Steering matrix, 70
Stopping rule, 133
Subpixel

accuracy, 8, 39, 98, 220
displacements, 18
flow estimate, 43
motion, 4, 20, 90
registration, 41, 230
shifts, 3, 12

Summed voxel projection (SVP), 397
Super-resolution (SR), 35, see also

Image super-resolution
(historical overview and
future challenges); Inverse
imaging, spatially adaptive
filtering as regularization in

algorithms, see Algorithms
Bayesian framework, 288

Delaunay, 57
effectiveness, 383
frequency-based, 427
image estimate, 264–265
image reconstruction, 137
learning-based, 318, 427
multiframe, 36
nearest neighbor, 318
nonlocal means, 99
pixel-based, 375
practical limits, 435
reconstruction, 3, 98, 428
simultaneous, 263
spectral, 376
variational Bayesian, 299, 300
video, 137, 145

Support vector
machine (SVM), 329
regression (SVR), 329

Surrey Library sequence, 271
Surveillance

camera, 3
systems, 433
video, 4

Suzie sequence, 113, 147
SVD, see Singular value

decomposition
SVM, see Support vector machine
SVP, see Summed voxel projection
SVR, see Support vector regression
Synthetic datasets, 253
Synthetic eyechart sequence, 279, 280

T
TDOCT, see Time-domain OCT
Temporal search window, 143
Texas football sequence, 87
Texture patches, training points and,

325
Tikhonov matrix, 12
Tikhonov regularization, 12, 192, 221
Tikhonov type functionals, 387
Time-domain OCT (TDOCT), 397
Toeplitz blocks, 189
Total Variation (TV)



470 Index

bilateral, 13, 92
norm, 13
software implementation, 182

Trevor sequence, 115
TV norm, see Total Variation

U
UAV, see Unmanned Areal Vehicle
UGC, see User generated content
UHROCT, see Ultrahigh resolution

OCT
Ultrahigh resolution OCT

(UHROCT), 397
Unknowns

distributions of, 294
inference methods, 287

Unmanned Areal Vehicle (UAV), 440
Upsampling, see Inverse imaging,

spatially adaptive filtering
as regularization in

Upscaling, spatiotemporal, 86
User generated content (UGC), 441

V
Validation set, 266
Variable projection method, 166
Variational approximations, 296
Variational Bayesian super-resolution

reconstruction, 285–313
alternating minimization

approach, 286, 288
approximations, 296
backprojection with median

filtering, 302
Bayesian framework for

super-resolution, 288–293
blur models, 291
hyperpriors on

hyperparameters, 292–293
image models, 290–291
motion (registration) models,

292
observation models, 289–290

Bayesian inference, 290, 293–296
blurring matrices, 288

Conditional Autoregression
model, 290

conjugate gradient method, 299
covariance matrix, 302
degenerate distributions, 299
discrete Laplacian operator, 290
downsampling, 288
estimation of motion and blur,

305–308
evidence-based analysis, 294
expectation-maximization

algorithm, 294
experiments, 301–305
Gaussian models, 290
Gaussian noise, 289
hidden variables, 294
Huber prior, 287
hyperparameters, 289, 292, 298
hyperprior distributions, 289,

292
image acquisition, limitation,

285
majorization-minimization

approaches, 296
marginalization, 294
noise realizations, simulations

with, 303
problem formulation, 288
Simultaneous Autoregression

model, 290
TV image priors, 296–301

HR image distribution,
297–298

hyperparameter distributions,
298–301

unknowns
distributions of, 294
inference methods, 287

Vector quantization (VQ), 48, 342
Video(s)

-BM3D, 65
-coding standards, 419
-enabled phones, 415
encoders, 183
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enhancement, see Image
enhancement, registration
for super-resolution

infrared, 53
low-quality, super-resolution

from, 176–183
image reconstruction, 179–181
image registration, 177–179
motion model, 176–177
results on video sequences,

181–183
low-rate encoded, 182
low-resolution, 156
motion trajectory, 82
QCIF, 159
quality trends, 415
sequence, motion-compensated,

81
standard conversion, 4
steering kernel footprints, 79
super-resolution, 137, 145
surveillance, 4
upscaling, carphone example, 88
zoom region of interest, 4

VQ, see Vector quantization

W
Web camera, 206, 207
Weighted least square estimator, 69
Wide sense stationary (WSS)

autocorrelation model, 48
Wiener filters, adaptive, 9, 35–61

affine registration, 42, 43
algorithm table, 52
aliasing

artifacts, 53
avoiding, 39

autocorrelation matrix, 48
AWF SR algorithms, 47–50

autocorrelation matrix, 48
cross-correlation vector, 49
Nyquist criterion, 47
pixel estimate, 47–48
reference frame, 50

spatial patterns, 49
cross-correlation function, 49
cross-correlation vector, 49
experimental results, 51–57

infrared video data, 53–57
simulated data, 51–53

focal plane array, 36
inverse problem, 39
mean squared error, 37
modulation transfer function, 44
multiframe super-resolution, 36
noise-to-signal ratios, 52
noise term, 49
Nyquist criterion, 47
Nyquist frequency, 44
observation model, 38–47

image formation model, 38–40
image motion model, 41–42
image registration, 42–43
system point-spread function,

44–47
optical transfer function, 44
PSF

blur, 40
theoretical, 46

reference frame, 38
signal variance, 37
subpixel

accuracy, 39
flow estimate, 43
registration, 41

tripod mounted Amber imager,
55

uniform reference frame
samples, 50

vector quantization, 48
WSS autocorrelation function,

49
Windows

Media Player, 425
x86 application, 420

WSS autocorrelation model, see
Wide sense stationary
autocorrelation model
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Y
YouTube, 415

Z
Zero mean additive white Gaussian

noise, 365
Zero-mean Gaussian, 277
Zero-mean GMRF prior, 256
Zero-mean noise process, 72
Zero-padding operator, 130, 141
Zoom

affine, 40
factor, 273

colored book sequence, 273

eyechart image, 269, 279
frog dataset, 262
Gaussian, 51
Keble dataset, 259
ML estimator, 12
performance limits, 23
reconstruction algorithm, 242
Surrey Library sequence, 271

fragments, 146, 147, 148
images, 137
mammogram X-ray images, 390
region of interest (video), 4

Zooming, definition of, 137
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