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Preface

The field of image processing is now quite a mature one. Many impor-
tant developments have taken place over the last three or four decades.
It finds applications in many diverse areas and a plenty of new applica-
tions are being suggested on a regular basis. The bottom line of all image
processing applications is that the quality of the input images should be
good. Further, the area of interest in the digital picture should be repre-
sented at a sufficiently high spatial resolution. One way to increase this
resolution is to go for a very high resolution CCD camera which is often
not a viable option. Thus, a need for generating a super-resolution im-
age from a set of low resolution observations was felt by the researchers
and this book is an outcome of such an effort.

I, as the editor of the book, requested a team of authors to cover a
wide range of problems and methods coming under the topic of super-
resolution imaging so that the readers get a survey of the present state of
the field. I believe that the field super-resolution imaging has reached a
first stage of maturity, justifying the timeliness of the book. We primar-
ily concentrate on three different issues in this book – summarization of
the existing results, exploration of new ideas, and preparation of ground
for further investigations. I hope that the book will become a widely
used general reference and that it will motivate further research in this
topic and stimulate communication between mathematicians, scientists
and practicing engineers. If the book serves to demonstrate that there
is a basic need for further exploration in this topic, I would consider my
goal of editing this book to have been achieved.

The book is addressed to a broad audience. The senior undergrad-
uate and the graduate students in electrical engineering, computer sci-
ence and mathematics disciplines may find it a good reference for their
courses and seminars on image processing and computer vision. The
academicians and the researchers at the universities and various labo-
ratories may find it suitable to supplement their research interest. The
practicing engineers will also find the book to be quite useful as the con-
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tributing authors have discussed the methodologies in sufficient details
so that they can be very easily implemented.

The book being very focused on a particular topic, it is mostly self
contained. One does not require a very strong background in image pro-
cessing to appreciate the contents of the book. However, some knowledge
on image restoration would definitely help.

The contributors of this book would be happy if the readers find the
book to be useful. I would very much appreciate if readers send me some
constructive suggestions.
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Chapter 1

INTRODUCTION

Subhasis Chaudhuri
Department of Electrical Engineering
Indian Institute of Technology-Bombay, Powai
Mumbai-400 076, India.
sc@ee.iitb.ac.in

It has been well over three decades now since the first attempts at
processing and displaying images by computers. Motivated by the fact
that the majority of information received by a human being is visual,
it was felt that a successful integration of the ability to process visual
information into a system would contribute to enhancing its overall in-
formation processing power. Today, image processing techniques are
applied to a wide variety of areas such as robotics, industrial inspection,
remote sensing, image transmission, medical imaging and surveillance,
to name a few. Vision-based guidance is employed to control the mo-
tion of a manipulator device so as to move, grasp and then place an
object at a desired location. Here the visual component is embedded
in the feedback loop in the form of a camera which looks at the scene,
a frame grabber which digitizes the analog signal from the camera into
image data and a computer which processes these images and sends out
appropriate signals to the manipulator actuators to effect the motion.
A similar set-up is required for an industrial inspection system such as
a fault detection unit for printed circuit boards or for detecting sur-
face faults in machined parts. In remote sensing, multi-spectral sensor
systems aboard spacecraft and aircraft are used to measure and record
data.
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In almost every application, it is desirable to generate an image that
has a very high resolution. Thus, a high resolution image could con-
tribute to a better classification of regions in a multi-spectral image or
to a more accurate localization of a tumor in a medical image or could
facilitate a more pleasing view in high definition televisions (HDTV) or
web-based images. The resolution of an image is dependent on the res-
olution of the image acquisition device. However, as the resolution of
the image generated by a sensor increases, so does the cost of the sensor
and hence it may not be an affordable solution. The question we ask in
this book is that given the resolution of an image sensor, is there any
algorithmic way of enhancing the resolution of the camera? The answer
is definitely affirmative and we discuss various such ways of enhancing
the image resolution in subsequent chapters. Before we proceed, we first
define and explain the concept of resolution in an image in the remainder
of the chapter.

1. The Word Resolution
Resolution is perhaps a confusing term in describing the characteris-

tics of a visual image since it has a large number of competing terms
and definitions. In its simplest form, image resolution is defined as the
smallest discernible or measurable detail in a visual presentation. Re-
searchers in optics define resolution in terms of the modulation transfer
function (MTF) computed as the modulus or magnitude of the optical
transfer function (OTF). MTF is used not only to give a resolution limit
at a single point, but also to characterize the response of the optical sys-
tem to an arbitrary input [1]. On the other hand, researchers in digital
image processing and computer vision use the term resolution in three
different ways.

Spatial resolution refers to the spacing of pixels in an image and
is measured in pixels per inch (ppi). The higher the spatial res-
olution, the greater the number of pixels in the image and corre-
spondingly, the smaller the size of individual pixels will be. This
allows for more detail and subtle color transitions in an image. The
spatial resolution of a display device is often expressed in terms of
dots per inch (dpi) and it refers to the size of the individual spots
created by the device.

Brightness resolution refers to the number of brightness levels that
can be recorded at any given pixel. This relates to the quantization
of the light energy collected at a charge-coupled device (CCD)
element. A more appropriate term for this is quantization level.
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The brightness resolution for monochrome images is usually 256
implying that one level is represented by 8 bits. For full color
images, at least 24 bits are used to represent one brightness level,
i.e., 8 bits per color plane (red, green, blue).

Temporal resolution refers to the number of frames captured per
second and is also commonly known as the frame rate. It is related
to the amount of perceptible motion between the frames. Higher
frame rates result in less smearing due to movements in the scene.
The lower limit on the temporal resolution is directly proportional
to the expected motion during two subsequent frames. The typical
frame rate suitable for a pleasing view is about 25 frames per
second or above.

In this book, the term resolution unequivocally refers to the spatial
resolution, and the process of obtaining a high resolution image from a
set of low resolution observations is called super-resolution imaging.

2. Illustration of Resolution
Modern imaging sensors are based on the principle of charge-coupled

devices [2] that respond to light sources. A sensor with a high density
of photo-detectors captures images at a high spatial resolution. But a
sensor with few photo-detectors produces a low resolution image lead-
ing to pixelization where individual pixels are seen with the naked eye.
This follows from the sampling theorem according to which the spatial
resolution is limited by the spatial sampling rate, i.e., the number of
photo-detectors per unit length along a particular direction. Another
factor that limits the resolution is the photo-detector’s size. One could
think of reducing the area of each photo-detector in order to increase the
number of pixels. But as the pixel size decreases, the image quality is de-
graded due to the enhancement of shot noise. It has been estimated that
the minimum size of a photodetector should be approximately
This limit has already been attained by current charge-coupled device
(CCD) technology. These limitations cause the point spread function
(PSF) of a point source to be blurred. On the other hand, if the sam-
pling rate is too low, the image gets distorted due to aliasing.

Consider a pin hole model of a camera which focuses an object of
length a at a distance u onto the image plane which is at a distance f
from the pin-hole (see Figure 1.1). Assume a square detector array of
side x mm containing pixels. If the field of view is described by the
angle in Figure 1.1, then



4 SUPER-RESOLUTION IMAGING

For x = 10 mm and N = 512, we have a resolution of about 51
pixels/mm  which can focus objects at a distance However,
as the object is moved closer to the camera to the new position indi-
cated by the dotted line, for the same field of view, the same number of
pixels on the imaging plane are now used to represent only a fraction of
the earlier object. Hence, one has a higher resolution representation of
the same (or part of the) scene.

We can also explain the limit to the resolution of an image from the
principle of optics. The total amount of light energy which enters the
optical system is limited by a physically real pupil or aperture that exists
somewhere in the optical system. If this limiting pupil is described as an
aperture function a(x,y), then the OTF H(u,v) is the auto-correlation
of the aperture function [4], i.e.,

While within the aperture, transmission is perfect and a(x,y) = 1, out-
side the aperture the transmission a(x,y) = 0 and no wave can propa-
gate. Thus the OTF goes to zero outside of a boundary that is defined
from the auto-correlation of the aperture function and all spatial fre-
quency information outside the region of support is lost. The limit to
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the maximum spatial frequency that can pass through the aperture and
form the image is given by where is the wavelength of the
light, is the focal length of the optics, D is the diameter of the circular
limiting aperture and is the spatial cut off frequency.

3. Image Zooming
Mere re-sizing of the image does not translate into an increase in

resolution. In fact, re-sizing should be accompanied by approximations
for frequencies higher than those representable at the original size and at
a higher signal to noise ratio. We may call the process of re-sizing for the
purpose of increasing the resolution as upsampling or image zooming.
The traditional method of upsampling has been to use interpolating
functions wherein the original data is fit with a continuous function
(strictly speaking, this is called interpolation) and then resampled at
a finer sampling grid. In implementing resampling, interpolation and
sampling are often combined so that the signal is interpolated at only
those points which will be sampled [5]. Sampling the interpolated image
is equivalent to interpolating with a sampled interpolating function.

The simplest interpolation algorithm is the so-called nearest neigh-
bor algorithm or a zero-order hold where each unknown pixel is given
the value of the sample closest to it. But this method tends to pro-
duce images with a blocky appearance. More satisfactory results can
be obtained with bilinear interpolation or by using small kernel cubic
convolution techniques [6]. Smoother reconstructions are possible using
bicubic spline interpolation [7] and higher order splines in general. See
[8, 9] and [10] and references therein for more recent literature on image
interpolation.

The quality of the interpolated image generated by any of the single
input image interpolation algorithms is inherently limited by the amount
of data available in the image. Image zooming cannot produce the high
frequency components lost during the low resolution sampling process
unless a suitable model for zooming can be established. Because of this
reason image zooming methods are not considered as super-resolution
imaging techniques. To achieve further improvements in this area, the
next step requires the investigation of multi-input data sets in which
additional data constraints from several observations of the same scene
can be used. Fusion of information from various observations of the same
scene allows us a super-resolved reconstruction of the scene.
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4. Super-Resolution Restoration
The phenomenon of aliasing which occurs when the sampling rate

is too low results in distortion in the details of an image, especially
at the edges. In addition, there is loss of high-frequency detail due to
the low resolution point spread function (PSF) and the optical blurring
due to motion or out-of-focus. Super-resolution involves simultaneous
up-conversion of the input sampling lattice and reduction or elimina-
tion of aliasing and blurring. One way to increase the sampling rate
is to increase the number of photo-detectors and to decrease their size
thereby increasing their density in the sensor. But there is a limit to
which this can be done beyond which the shot noise degrades image
quality. Also, most of the currently available high resolution sensors
are very expensive. Hence, sensor modification is not always a feasible
option. Therefore, we resort to image processing techniques to enhance
the resolution. Super-resolution from a single observed image is a highly
ill-posed problem since there may exist infinitely many expanded im-
ages which are consistent with the original data. Although single input
super-resolution yields images that are sharper than what can be ob-
tained by linear shift invariant interpolation filters, it does not attempt
to remove either the aliasing or blurring present in the observation due
to low resolution sampling. In order to increase the sampling rate, more
samples of the image are needed. The most obvious method seems to be
to capture multiple images of the scene through sub-pixel motion of the
camera. In some cases, such images are readily available, e.g., a Landsat
satellite takes pictures over the same area on the ground every 18 days
as it orbits around the earth.

With the availability of frame grabbers capable of acquiring multi-
ple frames of a scene (video), super-resolution is largely known as a
technique whereby multi-frame motion is used to overcome the inher-
ent resolution limitations of a low resolution camera system. Such a
technique is a better posed problem since each low resolution obser-
vation from neighboring frames potentially contains novel information
about the desired high-resolution image. Most of the super-resolution
image reconstruction methods consist of three basic components : (i)
motion compensation (ii) interpolation and (iii) blur and noise removal.
Motion compensation is used to map the motion from all available low
resolution frames to a common reference frame. The motion field can be
modeled in terms of motion vectors or as affine transformations. The sec-
ond component refers to mapping the motion-compensated pixels onto
a super-resolution grid. The third component is needed to remove the
sensor and optical blurring.
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The observation model relating a high resolution image to the low
resolution observed frames is shown in Figure 1.2. The input signal
f (x,y) denotes the continuous (high resolution) image in the focal plane
co-ordinate system (x ,y) . Motion is modeled as a pure rotation
and a translation The shifts are defined in terms of low-resolution
pixel spacings. This step requires interpolation since the sampling grid
changes in the geometric transformation. Next the effects of the physical
dimensions of the low resolution sensor (i.e., blur due to integration over
the surface area) and the optical blur (i.e., out-of-focus blur) are mod-
eled as the convolution of with the blurring kernel h(x,y). Fi-
nally, the transformed image undergoes low-resolution scanning followed
by addition of noise yielding the low resolution frame/observation

Most of the multi-frame methods for super-resolution proposed in the
literature are in the form of a three-stage registration, interpolation, and
restoration algorithm. They are based on the assumption that all pix-
els from available frames can be mapped back onto the reference frame,
based on the motion vector information, to obtain an upsampled frame.
Next, in order to obtain a uniformly spaced upsampled image, interpola-
tion onto a uniform sampling grid is done. Finally, image restoration is
applied to the upsampled image to remove the effect of sensor PSF blur
and noise. The block diagram of constructing a high resolution frame
from multiple low resolution frames is shown in Figure 1.3. Here, the
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low resolution frames are input to the motion estimation or
registration module, following which the registered image is interpolated
onto a high resolution grid. Post-processing of the interpolated image
through blur and noise removal algorithms results in the generation of
a super-resolution image. As discussed in subsequent chapters in this
book, other cues such as the relative blurring between observations can
also be used in generating the super-resolution images.

5. Earlier Work

The literature on super-resolution can be broadly divided into meth-
ods employed for still images and those for video. Most of the research in
still images involves an image sequence containing sub-pixel shifts among
the images. Although some of the techniques for super-resolution video
are extensions of their still image counterpart, a few different approaches
have also been proposed. In this section, we briefly review the available
literature for generation of super-resolution images or frames from still
images or a video sequence. Further references can be found in other
chapters in the book as per their contextual relevance to the topic dis-
cussed therein.

5.1. Super-resolution from still images
Tsai and Huang [11] were the first to address the problem of recon-

structing a high resolution image from a sequence of low resolution un-
dersampled images. They assume a purely translational motion and
solve the dual problem of registration and restoration - the former im-
plies estimating the relative shifts between the observations and the lat-
ter implies estimating samples on a uniform gird with a higher sampling
rate. Note that their observations are free from degradation and noise.
Thus, the restoration part is actually an interpolation problem dealing
with non-uniform sampling. Their frequency domain method exploits
the relationship between the continuous and the discrete Fourier trans-
forms of the undersampled frames. Kim et al. extend this approach to
include noise and blur in the low resolution observations and develop an
algorithm based on a weighted recursive least squares theory [12]. This
method is further refined by Kim and Su who consider the case of dif-
ferent blurs in each of the low resolution observations and use Tikhonov
regularization to determine the solution of an inconsistent set of linear
equations [13].

Ur and Gross utilize the generalized multichannel sampling theorem
of Papoulis [14] and Brown [15] to perform a non-uniform interpolation
of an ensemble of spatially shifted low resolution pictures. This is fol-
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lowed by a deblurring process. The relative shifts of the input pictures
are assumed to be known precisely. Another registration-interpolation
method for super-resolution from sub-pixel translated observations is
described in [16]. Irani and Peleg describe a method based on the
principle of reconstruction of a 2D object from its 1D projections in
computer aided tomography [17]. Whereas in tomography, images are
reconstructed from their projections in many directions, in the super-
resolution case, each low resolution pixel is a “projection” of a region
in the scene whose size is determined by the imaging blur. Here image
registration is carried out using the method described in [18] followed by
an iterative super-resolution algorithm in which the error between the
set of observed low resolution images and those obtained by simulating
the low resolution images from the reconstructed high resolution image
is minimized. Since registration is done independently of the high reso-
lution image reconstruction, the accuracy of the method depends largely
on the accuracy of estimated shifts. The sub-pixel registration method
in [18] looks at two frames as two functions related through the horizon-
tal and vertical shifts and the rotation angle. A Taylor series expansion
of the original frame is carried out in terms of the motion parameters
and an error function is minimized by computing its derivatives with
respect to the motion parameters.

The interdependence of registration, interpolation and restoration has
been taken into account by Tom and Katsaggelos in [19] where the prob-
lem is posed as a maximum likelihood (ML) estimation problem which is
solved by the expectation-maximization (EM) algorithm. The problem
is cast in a multi-channel framework in which the equation describing
the formation of the low resolution image contains shifts, blur and noise
variables. The structure of the matrices involved in the objective func-
tion enables efficient computation in the frequency domain. The ML
estimation problem then solves the sub-pixel shifts, the noise variances
of each image, and the high resolution image. In [3], Komatsu et al. use
a non-uniform sampling theorem proposed by Clark et al. [20] to trans-
form non-uniformly spaced samples acquired by multiple cameras onto
a single uniform sampling grid. However if the cameras have the same
aperture, it imposes severe limitations both in their arrangement and
in the configuration of the scene. This difficulty is overcome by using
multiple cameras with different apertures. Super-resolution via image
warping is described in [21]. The warping characteristics of real lenses is
approximated by coupling the degradation model of the imaging system
into the integrating resampler [22].

Wirawan et al. propose a blind multichannel high resolution image
restoration algorithm by using multiple finite impulse response (FIR)
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filters [23]. Their two stage process consists of blind multi-input-multi-
output (MIMO) deconvolution using FIR filters and blind separation of
mixed polyphase components. Due to the downsampling process, each
low resolution frame is a linear combination of the polyphase components
of the high resolution input image, weighted by the polyphase compo-
nents of the individual channel impulse response. Accordingly, they pose
the problem as the blind 2D deconvolution of a MIMO system driven
by polyphase components of a bandlimited signal. Since blind MIMO
deconvolution based on second order statistics contains some coherent
interdependence, the polyphase components need to be separated after
the deconvolution.

Set theoretic estimation of high resolution images was first suggested
by Stark and Oskoui in [24] where they used a projection onto convex
sets (POCS) formulation. Their method was extended by Tekalp et al.
to include observation noise [25]. In addition, they observe that the
POCS formulation can also be used as a new method for the restora-
tion of spatially variant blurred images. They also show that both the
high resolution image reconstruction and the space variant restoration
problems can be reduced to the problem of solving a set of simultaneous
linear equations, where the system is sparse but not Toeplitz. Calle and
Montanvert state the problem of increasing the resolution as an inverse
problem of image reduction [26]. The high resolution image must belong
to the set of images which best approximates the reduced estimate. The
projection of an image onto this set provides one of the possible enlarged
images and is called induction. Hence the super-resolution problem is ad-
dressed by elaborating a regularization model which restores data losses
during the enlargement process.

Improved definition image interpolation or super-resolution from a
single observed image is described in Schultz and Stevenson [27]. They
propose a discontinuity preserving nonlinear image expansion method
where the MAP estimation technique optimizes a convex functional. Al-
though they consider both noise-free and noisy images, they exclude
any kind of blur in their model. A MAP framework for jointly esti-
mating image registration parameters and the high resolution image is
presented by Hardie et al. in [28]. The registration parameters, hor-
izontal and vertical shifts in this case, are iteratively updated along
with the high resolution image in a cyclic optimization procedure. A
two stage process of estimating the registration parameters followed by
high resolution image reconstruction with the knowledge of the optical
system and the sensor detector array is presented in [29]. The high
resolution image estimate is formed by minimizing a regularized cost
function based on the observation model. It is also shown that with the
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proper choice of tuning parameter, the algorithm exhibits robustness in
presence of noise. Both gradient descent and conjugate-gradient descent
optimization procedures are used to minimize the cost function. In [30],
Baker and Kanade propose an algorithm that learns recognition-based
priors for specific classes of scenes and illustrate it on faces and text
images. They also show that for large enough magnification factors, the
super-resolution reconstruction constraints do not provide much useful
information as the magnification increases.

Elad and Feuer propose a unified methodology that combines the
three main estimation tools in image restoration, viz., ML estimator,
MAP estimator and the set theoretic approach using POCS. The pro-
posed restoration approach is general but assumes explicit knowledge
of the blur and the smooth motion constraints. They also propose a
hybrid algorithm that combines the benefits of the simple ML estimator
and the ability of the POCS to incorporate non ellipsoidal constraints.
The hybrid algorithm solves a constrained convex minimization prob-
lem, combining all the a priori knowledge on the required result into the
restoration process. Cheeseman et al. applied Bayesian estimation with
a Gaussian prior model to the problem of integrating multiple satellite
images observed by the Viking orbiter [31]. Some extensions of this
method including 3D reconstruction are also presented.

Most super-resolution algorithms proposed in the literature are con-
fined to 2D applications. A 3D version was proposed in [32] where the
high resolution albedo of a Lambertian surface was estimated with the
knowledge of high resolution height and vice versa. The problem of
surface reconstruction has been formulated as that of expectation max-
imization and has been tackled in a probabilistic framework using a
Markov random field (MRF) model. The idea has been extended to the
inverse problem of simultaneous reconstruction of albedo and height in
[33] using the extension of Papoulis’ generalized sampling theorem to
N-dimensional cases.

As indicated earlier in Section 2, within the optics community, resolu-
tion is described in terms of the OTF. This has led to a slightly different
definition of super-resolution. In [4], super-resolution is defined as the
processing of an image so as to recover object information from beyond
the spatial frequency bandwidth of the optical system that formed the
image. The physical size of the image remains the same. This can
be seen as equivalent to extrapolating the frequency spectrum [34]. The
Gerchberg algorithm is one of the earliest algorithms for super-resolution
[35]. Here the constraints that exist on the object are imposed on the
image in the spatial domain. The modified image is then Fourier trans-
formed after which constraints in the Fourier domain are imposed on
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the Fourier data. This constraint would typically come from the knowl-
edge of the Fourier transform below the diffraction limit. The modified
Fourier transform is then inverse transformed to the spatial domain.
Walsh and Delaney describe a modification to the Gerchberg algorithm,
which computes the spatial frequency components above the diffraction
limit directly [36]. Shepp and Vardi use an iterative technique based on
an ML estimation of the Poisson statistics in the emission of positrons in
positron emission tomography. A similar algorithm is proposed by Hunt
and Sementilli in which Poisson statistics is assumed and a MAP esti-
mate is iteratively reconstructed. Performances of such super-resolution
algorithms have been studied in [37].

In [38], the author has proposed an interesting application of the
super-resolution imaging technique. The depth related defocus blur in a
real aperture image is used as a natural cue for super-resolution restora-
tion. The concept of depth from defocus [39] has been incorporated in
this scheme to recover the unknown space-varying defocus blur. Since
the depth is related to the relative blurring in two (or more) observations
of the same scene, a dense depth map can also be recovered. The author
proposes a method for simultaneous super-resolution MAP estimation
of both the image and the depth fields. Both the high resolution inten-
sity and the depth fields have been modeled as separate MRFs and very
promising results have been obtained.

5.2. Super-resolution from video
As mentioned earlier, most of the super-resolution algorithms appli-

cable to video are extensions of their single frame counterpart. Irani
and Peleg minimize the mean squared error between the observed and
simulated images using the back projection method similar to that used
in computer aided tomography [40]. This method is the same as the
one used by them for super-resolution of a single image from shifted
observations. However, here the core issue that is addressed is the accu-
rate computation of image motion. After the motion for different image
regions is computed, these regions are enhanced by fusing several suc-
cessive frames covering the same region. Possible enhancements include
improvement of resolution, filling-in occluded regions and reconstruction
of transparent object.

Earlier Keren et al. minimized the same difference but their minimiza-
tion method was relatively simple : each pixel was examined in turn, and
its value incremented by unity, kept constant, or decreased by unity, so
that a global cost function was decreased [18]. Bascle et al. optimize
a cost function which in addition to the squared difference between the
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observed and the simulated low resolution images, contains second order
smoothness constraints on the reconstructed image [41]. Also, the sim-
ulated low resolution image takes into account motion blur, optical blur
as well as signal averaging by each cell of the CCD array due to spatial
sampling.

Schultz and Stevenson use the modified hierarchical block matching
algorithm to estimate the sub-pixel displacement vectors and then solve
the problem of estimating the high resolution frame given a low reso-
lution sequence by formulating it using the MAP estimation, resulting
in a constrained optimization problem with unique minimum [42]. This
method is similar to their method of image expansion described in [27].
Patti et al. propose a complete model of video acquisition with an arbi-
trary input sampling lattice and a non-zero aperture time [43]. They pro-
pose an algorithm based on this model using the theory of POCS to re-
construct a super-resolution video from a low resolution time sequence of
images. However, the performance of the proposed POCS-based super-
resolution algorithm will ultimately be limited by the effectiveness of
the motion estimation and modeling. Of course, this fact is pertinent to
any motion based super-resolution algorithm. Eren et al. extended the
technique in [43] to scenes with multiple moving objects by introducing
the concept of validity maps and segmentation maps [44]. Validity maps
were introduced to allow robust reconstruction in the presence of errors
in motion estimation. Segmentation maps enable object-based process-
ing, which leads to more accurate motion models within each object. In
addition, the proposed method is able to address occlusion issues. The
super-resolution video enhancement algorithm proposed by Shah and
Zakhor also considers the fact that motion estimation used in the recon-
struction process will be inaccurate [45]. To this end, their algorithm
finds a set of candidate motion estimates instead of a single motion vec-
tor for each pixel and then both the luminance and chrominance values
are used to compute the dense motion field at a sub-pixel accuracy. The
high resolution frame estimate is subsequently generated by a method
based on the Landweber algorithm. Hong et al. define a multiple in-
put smoothing convex functional and use it to obtain a globally optimal
high resolution video sequence [46]. Baker and Kanade propose an algo-
rithm for simultaneous estimation of super-resolution video and optical
flow taking as input a conventional video stream. This is shown to be
particularly useful for super-resolution of video sequences of faces [47].
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6. Organization of the Book
The need for high resolution images in a variety of applications is

now established. The development of a particular technique for super-
resolution is driven by the ultimate use to which the super-resolved image
is put. This volume is a testimony to the success of super-resolution as
a method to overcome the inherent limitations of currently available
inexpensive image capturing devices. However, as with every growing
area of research, much more need to be done for super-resolution to
attain full maturity and eventually become part of a commercial product.

In Chapter 2, Kaulgud and Desai discuss the use of wavelets for zoom-
ing images. Although zooming of a single image does not strictly fall
in the realm of super-resolution, it is nevertheless interesting to study
zooming from a wavelet perspective in order to seek pointers towards
use of wavelets for super-resolution. The authors use a multi-resolution
analysis based on zero trees to estimate the wavelet coefficients at a
finer scale after which the inverse wavelet transform is taken to obtain
the zoomed image. They extend this method to color images where the
K-L transform is used to generate the (monochrome) principal compo-
nent of the color image which is then zoomed using the multi-resolution
technique.

In Chapter 3, Rajan and Chaudhuri develop a method called gener-
alized interpolation and use it to generate super-resolution images. In
generalized interpolation, the space containing the original function is
decomposed into appropriate subspaces such that the rescaling operation
on individual subspaces preserves the properties of the original function.
The combined rescaled sub-functions lead us back to the original space
containing the interpolated function, possibly with less information loss
compared to direct interpolation in the original space. This method
is shown to be effective in structure-preserving super-resolution and in
super-resolution rendering. In addition, the generalized interpolation
is applied to perceptually organized image interpolation and to trans-
parency images.

In Chapter 4, Tom, Galatsanos and Katsaggelos initially reviews the
sub-pixel shift based methods for the generation of super-resoled im-
ages. The problem is described in both spatial and frequency domains.
Finally, they propose expectation-maximization based algorithms that
perform the tasks of registration, restoration and regularized interpo-
lation simultaneously. Various experimental results are presented to
validate the proposed techniques.

The use of sub-pixel displacements or motion among the low resolution
observations has been widely used in algorithms for super-resolution.
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However, in such cases the issue of image registration has to be ad-
dressed. In Chapter 5, Rajan and Chaudhuri describe a method of gen-
erating super-resolution images from a sequence of blurred observations
with no relative motion among them. The motivation for using blur as
a cue is twofold : (a) the phenomenon of blurring is inherent during
the formation of an image and hence it can be seen as a natural cue to
be exploited, and (b) the pre-requisite of registration among the images
is done away with. The super-resolved image is modeled as a Markov
random field and a maximum a posteriori estimate of the super-resolved
image is obtained.

Warping is commonly used in computer graphics. In Chapter 6, Boult,
Chiang and Micheals use warping to generate super-resolution images.
Their method is based on a concept called integrating resampler whose
purpose is to warp the image subject to some constraints. They also
suggest that there is a need for evolving a mechanism to quantify the
performance of a super-resolution algorithm. To this end, they make an
extensive comparison among several variants of their super-resolution al-
gorithm as applied to optical character recognition and face recognition.

In Chapter 7, Komatsu, Aizawa and Saito address the problem of
increasing the spatial resolution using multiple cameras with different
apertures. The motivation for using multiple apertures stems from the
fact that the spatial uniformity in the generated high resolution image
in the case of same apertures is guaranteed if and only if multiple cam-
eras are coplanar and the object of imaging is a two-dimensional plate
perpendicular to their optical axes. Their super-resolution algorithm
consists of an iterative two stage process of registration and reconstruc-
tion from non-uniformly spaced samples and is based on the Landweber
algorithm.

In Chapter 8, Zomet and Peleg present the super-resolution problem
as a system of a large set of sparse linear equations which are solved using
the conjugate gradient method. The algorithm is accelerated through
the use of basic image operations, instead of multiplication of sparse
matrices, to compute the gradient.

As mentioned earlier, the bulk of the effort on generating super-
resolution images lies in estimating the sub-pixel shifts. Compare this
to the problem of video compression where motion compensation be-
tween frames defines a crucial stage. In MPEG video, such a motion
information is already available in the bit stream. In Chapter 9, Segall,
Katsaggelos, Molina and Mateos explore the possibility of utilizing this
information in generating the super-resolved image from the compressed
video.
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Finally, in Chapter 10, Baker and Kanade ask a fundamental question
on an aspect which is the essence of super-resolution : how much extra
information is actually added by having more than one image for super-
resolution? It is shown analytically that various constraints imposed
on the reconstruction stage provide far less useful information as the
decimation ratio increases. They also propose a new super-resolution
algorithm in which features are extracted from the low resolution image
and it is the resolution of these features that are enhanced, leading to a
super-resolved image. The performance of the method is evaluated on
analyzing face images.
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Abstract Here we propose a method to zoom a given image in wavelet domain.
We use ideas from multiresolution analysis and zerotree philosophy for
image zooming. Wavelet coefficient decay across scales is calculated
to estimate wavelet coefficients at finer level. Since this amounts to
adding high frequency component, proposed method does not suffer
from smoothing effects. Zoomed images are (a) sharper compared to
linear interpolation, and (b) less blocky compared to pixel replication.
Performance is measured by calculating signal to noise ratio (SNR),
and the proposed method gives much better SNR compared to other
methods.

Keywords: Wavelets, Multiresolution, Zooming, Zerotree

1. Introduction
Image interpolation or zooming or generation of higher resolution im-

age is one of the important branch of image processing. Much work is
being done in this regard even now. The recent IEEE conference on Im-
age Processing (ICIP-2000) had a full section on interpolation. Classical
methods include linear interpolation and pixel replication. Linear inter-
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polation tries to fit a straight line between two points. This technique
leads to blurred image. Pixel replication copies neighboring pixel to the
empty location. This technique tends to produce blocky images. Ap-
proaches like spline and sinc interpolation are proposed to reduce these
two extremities. Spline interpolation is inherently a smoothing opera-
tion, while sinc produces ripples (the Gibbs phenomenon) in the output
image. Researchers have proposed different solutions for the interpola-
tion problem. Schultz and Stevenson [21] propose a Bayesian approach
for zooming. In the super-resolution domain, Deepu and Chaudhuri
[19] proposes physics based approach. Knox Carey et al. [25] proposed
wavelet based approach. Jensen and Anastassiou [6] proposes a non-
linear method for image zooming. In this paper, we propose a simple
method to estimate high frequency wavelet coefficients to avoid smooth-
ing of the edges. We use the ideas of zerotree coding [22] and multiscale
edge characterization [12].

This article is organized as follows: Section 2 gives some background
on wavelets, multiresolution analysis (MRA) and KL transform. In Sec-
tion 3 we overview some of the existing methods. Section 4 discusses
the proposed method using MRA, Karhunen Loéve (KL) transform and
scaling function based interpolations. Section 5 extends Section 4 to
color images. Section 6 presents discussion on simulation results to il-
lustrate superiority of the proposed method. Section 7 provides some
concluding remarks.

2. Background
Here we present some background on multiresolution (wavelet) anal-

ysis of signals and KL transform.

2.1. Wavelets
Let be the space of all square integrable functions. Then, it

has been shown [l]-[2] that there exist a multiresolution analysis of the
form: (Z is set of integers) where, the subspaces
have the following properties: [1]

3 According to property-2, we see that then
Moreover, therefore, Consequently, can
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be written as

where h(k) is the scaling function coefficient

4 Let the orthogonal direct sum decomposition of be
Then we can write

Moreover, there exists a function (referred to as the wavelet)
such that

5 Since we can express as

6 Finally, for any we have the decomposition

Coefficients and are calculated (inner product) as:

Apart from these, we make use of the following two properties [10].
Let be the operator which approximates a signal at a resolution
Then:

The approximation signal at a resolution contains all the nec-
essary information to compute the same signal at a lower resolution

This is the causality property.

The approximation operation is similar at all resolutions. The
spaces of approximated functions should thus be derived from one
another by scaling each approximated function by the ratio of their
resolution values. That is,
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2.2. The KL Transform
Let be a complex random sequence whose auto

correlation matrix is R. Moreover, let

Then the Karhunen-Loéve transform (KL transform of
is defined as [5]

Moreover the inverse transform is

where y(k) is the k – th element of the vector y.
The KL transform orthogonalizes the data, namely,

If R represents the covariance matrix rather than the auto correlation
matrix of x, then the sequence y(k) is uncorrelated. The unitary matrix

is called the KL transform matrix and is an N × N unitary matrix,
that reduces R to its diagonal form. One dimensional KL transform can
easily be extended to two dimensions.

3. Some Existing Methods
Interpolation involves filling intermediate values. Most commonly

used methods involve placing zeros in the intermediate samples, and
then passing through a filter. Different methods of interpolation are at-
tributed to different types of filters. Here we mention some of the pop-
ular interpolation methods, paying special attention to wavelet based
interpolation techniques. We compare our method with some of these
methods.

3.1. Spatial domain methods
Pixel replication: It is a zero-order hold method, where, each pixel
along a scan line is repeated once and then each scan line is re-
peated. Or equivalently, pad rows and columns with zeros and
then convolve with the mask



Image Zooming: Use of Wavelets 25

Due to replication of pixels, it gives a blocky image.

Linear interpolation: This is basically a first order hold method.
Here a rows and columns of the low resolution images are first
interleaved with zeros. Then, a straight line is fit along rows,
followed by straight line fit along columns. The straight line fits
are equivalent to convolving the image with the mask

origin being the center of the mask. Since it is an averaging filter,
linear interpolation tends to produce a blurred image.

Spline interpolation: Spline (cubic spline) interpolation [14],[24]
is one of the most popular techniques. The goal is to get an inter-
polation that is smooth in the first derivative, and continuous in
the second derivative. We have used the spline routine of [26].

3.2. Transform domain methods
Sinc interpolation: The sinc interpolation is basically a Fourier
transform (FT) based interpolation method. It assumes the signal
under consideration to be band limited and thus can be carried out
by zero extension of the FT. That is, we take the N point Discrete
FT (DFT) of the original sequence, pad it with zeros for N + 1 to
2N, and take 2N point inverse DFT. This results in a sequence of
2 × length.

Instead of choosing the DFT, we can choose Discrete Sine Trans-
form (DST) or Discrete Cosine Transform to perform in-
terpolation. Method will be similar to that of using DFT. Martucci
[13] proposes a new set of basis for DST and DCT approaches and
use convolution-multiplication property of DSTs and DCTs.

3.2.1 Wavelet techniques. Since our focus is on wavelet based
interpolation, we will give more emphasis to wavelet based interpolation
techniques

In the recent past, wavelets are used for modeling images - particularly
the smooth regions [9] [12]. Extension of these works particularly for
image zooming can be found in [3][15][16][17][25].

1JPEG (http://www.jpeg.org) uses DCT



26 SUPER-RESOLUTION IMAGING

Grouse et al [9] proposes the use of Hidden Markov Model (HMM)
for predicting wavelet coefficients over scales. In the training phase,
HMM is trained using an image database. They predict exact coefficient
from the observed coefficient of a noisy image, for denoising application.
Principle used here is that the coarser scale coefficients are less affected
by noise, while the detail coefficients contain most of the noise. The
same idea is be extended to image zooming also.

Carey et al [25] use the Lipschitz property, namely, near sharp edges,
the wavelet coefficients decay exponentially over scale [11] [12]. At each
index, an exponential fit over scale was used for wavelet coefficients. If
the fit was close enough to exponential, then it was used to predict the
detail signal at the finer scale, else data was left unmodified. On a similar
basis, Chang et al [3] extrapolates the features in textured region as well.
Their method extrapolates wavelet transform extrema across scales, and,
important singularities are selected. Corresponding extrema across the
scales are associated using least squares error criterion.

Nicolier et al [17] uses zero-crossings to predict the high frequency
coefficients in the wavelet domain. Using order type wavelets, zero-
crossings in the detail coefficients are produced at the location of a step
signal. They have shown the result using 9th order B-spline wavelet for
the purpose.

3.3. Scaling function based
This method was proposed in [20]. Consider a wavelet now, if the

wavelet in question generates a multiresolution analysis of and
for some j, where is the MRA corresponding to

then one can write

where is the scaling function corresponding to the wavelet Thus,
we can express f completely in terms of its scaling function coefficients

Hence, from the given data samples if we can somehow estimate
the scaling function coefficients at resolution j then we have solved the
problem. Given a MRA of with a compactly supported, p times
differentiable scaling function we want to estimate the scaling function
coefficients of a smoothest function at some resolution j. This scaling
function passes through the samples of the given function

We assume that both f and for some known
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Let us denote the scale scaling coefficient as From the above
assumption, we can write

Then, we have the following conditions on

1

2 should be at least as smooth as f.

Once we have we can compute the value of at any point using
(2.9). Thus, the problem of estimating f is the same as that of estimating

Next, if b and c are vectors such that and
then (2.10) can be written as

Where, is a matrix, given by

Consider the minimization problem

The solution for 2.13 is well known and is given by

Thus we have estimated scaling coefficients of a smoothest possible
linear interpolation. The smoothness condition assures visual quality of
the signal while interpolating images.
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4. Proposed Method
In this section we present a Multiresolution analysis (MRA) based on

the approaches for estimating the wavelet coefficients at higher (finer)
scales. Some of these results have been reported earlier in[7]-[8].

4.1. MRA method
The basic strategy for zooming is depicted in Fig. (2.1), where

is the available low resolution image, while is the (unknown) high
resolution image. H and L are appropriate high pass and lowpass fil-
ters in the wavelet analysis. Using we estimate the coefficients
required for synthesizing the high resolution signal. Having estimated
the coefficients, rest is a standard wavelet synthesis filter bank.

Figure 2.1. Basic zooming strategy

In order to illustrate the estimation of the coefficients in Fig. (2.1),
consider Figure (2.2a). We assume that a wavelet transform of an M × M
image composed of boxes 0, I, II, IV, V, VII, VIII, is available and we want
to zoom it to size 2M × 2M. This would be possible if we can estimate
the wavelet coefficients in boxes III, VI and IX. Having estimated these
wavelet coefficients, we simply feed these along with the M × M image to
the wavelet based image synthesis filter bank (Fig. 2.2(b)) and obtain
the interpolated (zoomed) image of size 2M × 2M. We exploit ideas
from zerotree concept [22] to estimate the wavelet coefficient in boxes
III, VI and IX. The zerotree concept has the following properties:

If a wavelet coefficient at a coarser scale is insignificant with respect
to a given threshold T, then all wavelet coefficients of the same
orientation in same spatial location at finer scales are likely to be
insignificant with respect to that T.

In a multiresolution system, every coefficient at a given scale can
be related to a set of coefficients at the next coarser scale of similar
orientation.

To estimate the wavelet coefficients at the next finer level, namely, in
boxes III, VI and IX, we find the significant wavelet coefficients at two
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Figure 2.2. Zooming Process using estimated wavelet coefficients (a) estimated
wavelet coefficients (b) synthesis filter

Figure 2.3. Estimated significant wavelet coefficients in box VI,IX and XI for the
Lena image based on MRA zooming scheme
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resolutions (namely, in boxes I – II, IV – V, VII and VIII). For ex-
ample, consider boxes I and II of Fig(2.2a), with significant coefficients
shown as dots. Denote coefficients in respective boxes as
and Note that, satisfy
and Also, are related by

represents the floor operator); are similarly related. We
have found through empirical studies that the ratio of the coefficients
of finer scale (box II) the the next coarser scale (box I) remains almost
invariant. We define as (between boxes I and II):

Figure 2.4. (a) Original low-resolution Boat Image, and (b) MRA Based Zoomed
Image.
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Figure 2.5. Sinc (top) and Spline Based (bottom) zoomed Boat Images
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Figure 2.6. Scaling function based zoomed boat image

These values are used to estimate coefficients at the finer
scale (box III).

we set:

is an indicator function; is set to zero, if d(i, j) is significant,
else to one. We define d(i, j) to be significant if Note
that Eqn. 2.17 implies an exponential decay and this is consistent with
what is reported in [3] [12],[25]. Thus, we refer to  as the decay
parameter.

In principle, for each coefficient we should have four coef-
ficients in box III. But, our experiments has shown that doing this leads
to a ”blocky” zoomed image. Hence, we generate only two coefficients in
box III corresponding to Moreover, we know that the de-
tail sub-images using the wavelet transform yields vertical lines in boxes
I, II and III; horizontal lines in boxes IV, V and VI; and diagonal lines
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in boxes VII, VIII and IX. We use this intuition and compute wavelet
coefficients along vertical direction in box III, along horizontal direction
in box VI, and along diagonal direction in box IX and that too only
along alternate lines. For box III equation (2 17) and (2.18) hold good.
Analogous expressions can easily be obtained for wavelet coefficient in
box IV and IX. Now, the estimated and the original M × M image
is fed to the wavelet based image synthesizer (Fig2.2b) to obtain the
zoomed image which is of twice the size of the given image. In all our
simulation the threshold T was selected as half the maximum coefficient
in the respective boxes, namely boxes II, V and VII. Fig. (2.3) shows an
example of the estimated wavelet coefficients that were used in zooming
of the Lena image. DAUB4 wavelet was used for computing the discrete
wavelet transform. Pseudocode for the above scheme is:

BEGIN
take two level wavelet transform of image(x) size M x M ;
/* for box II of Fig. 2.2(a) */

FOR i=M/2 TO M DO
FOR j = 0 TO M/2 DO

find the max coefficient in box II ;
T= max/2 ;
FOR i=M/2 TO M DO
FOR j = 0 TO M/2 DO
BEGIN

IF (x[i][j] && x[i/2][j/2] > T )
estimate wavelet coefficients for box II

END FOR
/* Repeat for boxes V and VII **/
take 3-level inverse wavelet transform of x

to get 2M x 2M image ;
END.

Results from individual methods shown in the figures 2.4-2.9.

5. Color Images
The proposed method was extended to color images as well. Many

color coordinates are reported in literature and are in use [4] [18] [23] [27].
Most of the color coordinates are obtained as a transformation of other
coordinate, usually the RGB. Here we discuss the results obtained from
YIQ color coordinates. The Y component of the image is considered as
simple gray scale image and the proposed MRA algorithm was run on it.
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Figure 2.7. (a) Original Airport Image and (b) MRA based zoomed image

For I and Q components, pixel replication and linear interpolation give
similar results as any other methods. This is due to the fact that these
components are comparatively smooth. Keeping computational com-
plexity in mind, we opted for linear interpolation for zooming I and Q
components and MRA based method for zooming Y component. Results
for Suzie image is shown in Fig.(2.10 - 2.14). We compare the proposed
MRA method with spline interpolation method. For both the methods,
I and Q components are linearly interpolated and Y component alone
is zoomed by the appropriate methods. Resulting images are shown in
(Fig.2.11-2.14). We can readily observe the proposed performing better
than spline interpolation method (it is not apparent in the monochrome
versions of images, but, for color images, difference is apparent). Image
quality may further be improved by pre and post-processing techniques.

5.1. K-L Transform
The KL transform method is used for multi spectral images - color

images, in our case. With color image having RGB components, X
of equation (2.5) is three-dimensional. Then, the co-variance and
matrices will be of size 3 × 3. The covariance matrix is given by
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Figure 2.8. Sinc (top) and Spline based (bottom) zoomed Airport images
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Figure 2.9. Scaling function based Zoomed airport images

Figure 2.10. Y component of Suzie image: Original and zoomed using MRA
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Figure 2.11. I component of Suzie image: Original and zoomed using linear inter-
polation

Figure 2.12. Q component of Suzie image: Original and zoomed using linear inter-
polation

Figure 2.13. Spline interpolated Suzie image Y component



38 SUPER-RESOLUTION IMAGING

Figure 2.14. Low resolution Suzie image: Y ,I and Q components

Where, is the vector corresponding to
the means of the individual spectra. Now we have a monochrome image
Y generated from the color image X as per Eqn.(2.5). Once we have
generated a monochrome image Y, as the principle component of color
image X, interpolation of this Y is carried out as described in section
(4.1). We can interpolate and retain only the principle component which
results in a interpolated monochrome image from a multi-spectral image
which is shown in the figure2(2.15,2.16). Alternatively, we can take the
inverse KL transform and combine the three components to get color
interpolated image. In such a method, we see that there is a slight
deterioration in the contrast of the image. This has to be taken care by
proper post processing.

The pseudo code for this method is:

BEGIN
read the RGB component of the image ;
evaluate the mean for R, G and B component ;
evaluate the co-variance matrix, and -

- eigenvectors of co-variance matrix ;
estimate the principle component as y
interpolate the principle component y using MRA

(section 4.1) ;
END.

6. Results and Discussion
Results of individual methods are illustrated for two image samples

in Figures (2.4-2.9). First set of images Fig. (2.4-2.6) show the results
for boat images and the second set namely, Fig.(2.7-2.9), are for airport
image. As expected, sinc method produces ripples at the image bound-
aries, evident from Fig. (2.5a) and (2.8a). According to Fig. (2.5b)

2Image courtesy and ©SAC, Ahmedabad, India
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Figure 2.15. Original Gujarat Coast Line - RGB components (enhanced for display
purposes).

Figure 2.16. Zoomed Gujarat coast image, Using KL Transform (Principal Compo-
nent)
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and (2.8b), visual qualities of spline and scaling function based methods
are comparable, and seem to perform better. However, both of them
smooth out some sharp edges of original low-resolution images. This
can be observed at the rope which is tied to the tyre in boat image (Fig.
2.4b) and the road outside the airport (2.7b).

We evaluate the performance of different techniques by calculating
Peak Signal to Noise Ratio (PSNR), which is defined as:

where, X is the original image and  is the zoomed image. The PSNR
values are tabulated in Table(2.1)

Note: To calculate PSNR, a low resolution version of the high resolu-
tion image is zoomed. A low resolution image is generated according to
the method proposed in [21].

We observe that the proposed method performs well for various classes
of images. This is evident from the PSNR improvements, as per Table
(2.1). Even though a little amount of staircase effect is observed in
the zoomed image from the proposed method, overall quality of zoomed
image is good, as sharp edges of original image are retained (ropes in
boat image). To retain these sharp edges, we have used Daubechies
DAUB4 wavelet. It is observed that higher wavelets, like DAUB6, tends
to smooth the edges and Harr wavelet produces more staircase effect.

For color images, it is seen that color contrast deteriorates slightly
while operating on RGB color coordinates. This has to be taken care of
by suitable post-processing. In this regard, YIQ color coordinate gives
satisfactory results, without the need for pre or post-processing.

We compare the wavelet coefficients obtained by the proposed MRA
method with those obtained by the scaling function based method. Re-
sults of obtaining coefficients from these two methods is shown in Fig.
(2.17). It is observed that coefficients obtained from both the methods
are almost the same, and hence, the proposed method is justified. The
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proposed method is computationally less taxing than the scaling func-
tion based method and hence faster. Visually, scaling function based
method performs slightly better.

For zooming up to 8 times (8×), the output suffers from staircase
effect. For such cases (8×), spline does a better job. Another limitation
with the proposed technique is presence of spurious edges, when there
is a rapid change in the gray levels. For checkerboard kind of images,
these spurious edges are more predominant. These spurious edges can be
attributed to the insertion of high frequency components in the image.
This effect can be overcome by some post-processing techniques. For a
relatively smooth image, the proposed method performs very well.

7. Conclusion
We have reviewed some of the techniques for image interpolation, pay-

ing special attention to the wavelet based zooming methodologies. Basic
idea of image zooming in wavelet domain is to estimate the coefficients
at the finer scale. We have overviewd some of the techniques reported
in literature, to estimate these coefficients.

We have proposed a simple scheme, which is computationally fast.
As the proposed scheme is efficient, it can be used for color images and
in real-time applications also. We have mentioned the advantages and
limitations of the proposed scheme.

Comparing the performance of the proposed technique with some of
the conventional approaches, we observe that output images are sharper
and there is a good improvement of PSNR with about 3 dB. Thus, the
proposed method performs better than conventional approaches, both
visually and numerically.
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Abstract       In this chapter, we present a generalized interpolation scheme for image
expansion and generation of super-resolution images. The underlying
idea is to decompose the image into appropriate subspaces, to inter-
polate each of the subspacs individually and finally, to transform the
interpolated values back to the image domain. This method is shown to
presere various optical and structural properties of the image, such as
3-D shape of an object, regional homogeneity, local variations in scene
reflectivity, etc. The motivation for doing so has also been explained
theoretically. The generalized interpolation scheme is also shown to be
useful in perceptually based high resolution representation of images
where interpolation is done on individual groups as per the perceptual
necessity. Further, this scheme is also applied to generation of high-
resolution transparencies from low resolution transparencies.
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1. Introduction
In several applications like medical imaging, consumer electronics and

aerial surveillance, interpolation of images is done to zoom into a par-
ticular region of the image or to increase the resolution of the image
as a whole. The standard procedure for interpolation is to fit the data
with a continuous function and resample the function at finer intervals
as desired. The difference among various approaches lies in the interpo-
lation model that is chosen [1, 2]. The simplest interpolating function
is the nearest neighbor function where the value at the interpolating
point is the same as the value at the grid point closest to it. In linear
interpolation, the unknown point is interpolated linearly between the
grid points. Bilinear and cubic spline interpolators are the standard
techniques preferred in commercial image processing tools due to their
improved performance and moderate complexity. Enlargement and re-
duction of digital images through interpolation in the intensity domain
have been extensively studied; see e.g. [1, 2, 3, 4]. It is well known that
lower order interpolation methods are the simplest and the fastest, but
they produce artifacts. Higher order interpolation methods, particularly
smoothing splines perform better though they tend to blur the image.
Recently, wavelets have emerged as a promising tool for interpolation,
as discussed in the previous chapter.

In many engineering applications, we come across situations where a
problem is transformed from its original domain to another through an
operator in order to develop elegant solutions. A classic instance is the
pattern classification problem where separability, linear or polynomial,
of random patterns is crucial. According to Cover’s theorem, a com-
plex pattern classification problem cast in high-dimensional space non-
linearly is more likely to be linearly separable than in a low-dimensional
space [5]. In some other cases, the problem space is decomposed into
appropriate subspaces which possess certain properties such that the
functions/elements contained in them can be represented in a mathe-
matically tractable form as well as processed effectively. Consider the
case of sampling and reconstruction of a function that is not bandlim-
ited; it is customary to use an ideal low-pass filter before the sampler, to
suppress aliasing [6, 7]. Based on this observation, the sampling process
is viewed as an approximation procedure leading to the formulation of
least square sampling theories for a class of functions generated from
a generating kernel and its integer translates [8]. In this chapter,
we describe a method of generalized interpolation [9] where the space
containing the original function values is decomposed into appropriate
subspaces. These subspaces are chosen so that the rescaling operation
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preserves those properties of the original function, some of which might
not even be evident in the original space. On combining the rescaled
“sub-functions”, we get back to the original space containing the en-
larged function, possibly with less information loss compared to direct
interpolation in the original space. Those properties that were concealed
earlier could also be revealed in this fashion. Such an interpolation
scheme is called the generalized interpolation in this chapter.

The primary focus of researchers trying to solve the image (or scat-
tered data) interpolation problem is in treating it as an approximation
problem subject to some standard continuity conditions. Even though
there has been a spate of developments in this area, what is often over-
looked is that the quality of the interpolated image is judged by the way
one perceives it. A particular interpolation scheme may perform quite
well for an image if it contains objects of nearly similar textures. In
presence of dissimilarly textured regions, it affects the intervening re-
gion. The motivation here is to preserve the output from introducing
any perceptual artifacts, mostly at places of object boundaries. In the
literature there has been very little effort in developing a perceptually
motivated interpolation method. Ramponi [10] has proposed a space
variant linear image interpolation scheme wherein the definition of dis-
tance (as in the bilinear interpolation) is locally changed to take care of
the neighborhood structure at a grid point. Although it is difficult to
analyze the result mathematically, it may have a weak relevance to the
nature of visual perception, namely the locality of the dynamic range.
Thurnhoffer and Mitra [11] have proposed a non-linear interpolation
scheme based on a polynomial operator wherein perceptually relevant
features (say, edges) are extracted and zoomed separately. Usually the
edges play an important role in perception and the authors put due em-
phasis on this fact while interpolating the image. It should be possible
to extend the idea further by perceptually grouping these features and
treating them individually as per their perceptual relevance.

In the next section, we develop the mathematical theory of the gener-
alized interpolation. Section 3 illustrates the proposed technique through
several practical applications. We pick a few applications like gen-
eration of 3-D structure and reflectance preserving method of image
interpolation using photometric stereo, super-resolution rendering and
perceptual-grouping based interpolation and show results of the pro-
posed scheme in Section 4. Conclusions are presented in Section 5.
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2. Theory of Generalized Interpolation
Let us first review the existing method of image (or scattered data)

interpolation. The real valued multivariate interpolation problem can
be stated as follows : Given N different observation points
i = 1,..., N and N real observations find a
mapping satisfying the interpolation conditions
i = 1,..., N. Similarly, if we want to approximate a set of data

with a function f, one needs to minimize
the following cost function,

Obviously, in either case, the solution is ill-posed as the interpolation
function can take arbitrary values f(x) where the function is not defined.
This calls for the use of a regularizing term, and one solves the following
cost function :

where P is the constraint operator, also called a stabilizer, and is a
positive real number called the regularization parameter. Duchon [12]
and Meinguet [13] consider stabilizers of the form

where For a bivariate interpolation
scheme, a common choice of the regularization term is [14]

coplanar points. The surface that minimizes this expression is referred
to as thin plate spline since it relates to the energy in a thin plate forced
to interpolate the data [14].

According to Lagrange’s Theorem, if a function F(x) possesses the
derivative at all points of an interval containing the

point the remainder is representable in the form
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for every point x of this interval where is a number lying between  x0

and x. Using this, it can be easily shown that for a order polynomial
approximation of the original (unknown) function at a point away
from the nearest grid point, the approximation error is bounded by [15]

For a thin plate fitting spline over a square grid of size h, the maximum
error is bounded by [16]

where c is a positive number given by
Let us now consider the following abstract parametric decomposition

of the function

where are different functions of the interpolating
variable x and when they are combined by an appropriate m-variate
function g, one recovers the original function f. We simply assume
these functions and g to be arbitrary, but continuous (i.e., in
The rationale for such a parametric decomposition will be explained in
the next section. We can now interpolate the individual functions
and combine them using Eq. (3.7) to obtain a rescaled We call
this operation as generalized interpolation.

The interpolation error at a point x can be written as

where represents the result of generalized interpolation. Here
i = 1,2,... , m are the interpolation errors at the same point x for the
associated interpolant For a mathematically tractable evaluation
of equation (3.8), it is necessary to have some knowledge of the functions
g and In order to get a feel for the behavior of the error function,
we consider g to be a linear function, i.e.,
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From Eq. (3.9), the interpolation error using a kth order polynomial at
a point away from a grid point x is given by

or

i.e.,

On the other hand, if one performs a kth order polynomial interpolation
at the same location on the scattered data itself, the corresponding
error bound is

We need to determine whether we gain anything by individually interpo-
lating the constituent functions of g instead of interpolating the function
f(x) directly? In order to prove that there is, indeed, some gain, one
should compare Eq. (3.10) and (3.11) and must prove that

Similarly, for a thin plate spline interpolation, it can be shown that if
one were to achieve a lower approximation error using the parametrically
decomposed generalized method, we must have

Similarly, if the function g has the product form

the corresponding relationship to be satisfied can be derived to be
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Unfortunately, all these above relationships are not valid when g is a ra-
tional function of polynomials. Thus, a direct interpolation of the func-
tion f(x) seems to be a better option instead of the indirect one. How-
ever, although the authors are not aware of any proof, except for what
has been proved in the theorem given below, there may exist some arbi-
trary functions g for which the inequality
may hold (here fg represents the result of generalized interpolation), jus-
tifying the interpolation of the constituent functions. Our experimental
results in Section 4 support this. Furthermore, we know that the solution
for a thin plate spline interpolation is of the form [12]

where the function is defined as

and the parameters satisfy the equations

Hence, if the functions actually have a form similar to that of s(x)
given in Eq. (3.15), the product form decomposition of the image f(x)
definitely reduces the approximation error.

We refrain from attempting, in this study, to find out the exact math-
ematical conditions under which the generalized interpolation scheme
would outperform the image based interpolation method as this is an
unsolved problem. But we do prove below the superiority of the pro-
posed scheme for a particular case.

Theorem. If all functions given in Eq. (3.7) are bandlim-
ited to a maximum frequency of W, and the functional f(x) is sampled
uniformly with a sampling frequency then

where the symbol denotes upsampling by a factor of n, and when
the sinc interpolation is used for upsampling. The equality holds only
when the function g(·) is such that the bandwidth of the resulting func-
tion

Proof: The proof is quite simple. Since all are band-limited
and since a sinc interpolation is used, all interpolations are exact, i.e.,
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Hence the generalized interpolation yields zero error as given
in Eq. (3.16).

Now the function given in Eq. (3.7) need not be band-limited
to the frequency W. This is true when the function g(·) is non-linear.
Under such circumstances, the function f(x) suffers from aliasing, when
upsampling does not help, as aliased components cannot be recovered.
However, the generalized interpolation scheme can recover the original,
unaliased signal exactly. It may be noted that one can construct some
pathological examples when the bandwidth of f(x) is less than that
of For an example, consider where

Because of cancellation of the
common factor, the bandwidth of f(x) gets reduced. It should be noted
here that any bandlimited function can be written in terms of
Nyquist pulses and the samples values

The same argument is valid for However, not being
bandlimited, the above representation (equation (3.17)) is neither valid
for nor The function will have aliasing above
the frequency nW. By selecting the upsampling factor n, it is possible
to recostruct perfectly.

Illustration. Consider a simple function

We take and The function f(n) as shown in
Fig. 3.1(a) suffers from aliasing. When f(n) is upsampled using a sine
interpolator, as shown in Fig. 3.1(b) suffers from the same kind
of aliasing. In Fig. 3.1(c), we plot the result of
generalized interpolation, and this is free from any aliasing.

The theory of generalized interpolation scheme is also shown to be
suitable for interpolation based on perceptual grouping. According to
Lowe [17] : “Perceptual organization refers to a basic capability of the
human visual system to derive relevant groupings and structures from
an image without prior knowledge of its contents.” Several researchers
have addressed the problem of perceptual grouping in computer vision.
Sarkar and Boyer [18] modify the formalism of Bayesian networks to
aid in an integration of the top-down and bottom-up approaches for vi-
sual processing. Clemens and Jacobs [19] illustrate the importance of
grouping to indexing based recognition strategies. Raman et al. [20]
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Figure 3.1. (a) The original signal, (b) Sinc interpolation of (a) wherein the aliased
component remains, (c) Generalized interpolation of (a) which is free from aliasing.

describe a method for automatic generation of educated guesses regard-
ing structures present in medical images. Liou et al. [21] develop a
signal level perceptual organization(SLPO) to generate abstract repre-
sentations for partitioning and identification of regions. The fact that
low level features like edges or regions group together to form higher



54 SUPER-RESOLUTION IMAGING

level inxgeometric features suggest that such geometric arrangements
are mutually dependent. Thus, perceptual grouping can be viewed as a
inxbottom-up process in which image features from a single object tend
to cluster together.

Our contention is that the interpolation procedure should not be in-
dependent of the perceptual grouping present in an image. Rather, it
should be such that the properties of the respective perceptual groups
are retained. To this end, we assume that the perceptual grouping has
already been done on an image. Cues that could be used to achieve
this may include texture, directionality, edges, contours, depth related
defocus, symmetry, etc. For the proposed technique the functions
can be defined based on grouping as is explained in the next section. For
example, Syeda-Mahmood [22] does grouping based on salient textural
features. These are examples of tangible cues based on some physical
properties of the image. In this paper we allow the grouping to be based
on abstract cues also. In general, the grouping results in disjoint par-
titions of the image, where each region can be interpolated separately,
leading to a fairly trivial solution. Interestingly enough, the grouping
does not have to be disjoint in the image space. Take the case of image
transparency when objects at different depths are superposed together
on the same image plane. One can use a method proposed in [23] to
separate the corresponding transparency layers. Instead of doing inter-
polation on the combined image (when edges at different layers appear at
different locations and they tend to affect the gray level in other layers),
one must perform the interpolation on the perceptually grouped data
(i.e., different layers) and combine them meaningfully. In yet another
example, we may want to group the objects in an image in terms of its
3-D shape and/or variations in albedo. These are all intrinsic properties
of a scene and they get very easily changed whenever any processing is
done on the image, thus losing their significance. By employing the gen-
eralized interpolation scheme described above, we can handle all these
above categories of perceptual grouping problems in a unified framework.
Indeed, all kinds of groupings such as disjoint, overlapped and abstract,
are allowed under the proposed method.

3. Some applications of Generalized
Interpolation

In this section, we illustrate some applications of the proposed gener-
alized interpolation scheme.
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3.1. Structure preserving super-resolution
The proposed generalized interpolation scheme can be applied to gen-

eration of super-resolved images. The question we pose is - how can the
3D structural information of an object present in the scene be exploited
to generate super-resolved images? A super-resolution technique based
on the surface reflectance properties of objects in an ensemble of im-
ages captured under different distributions of light source positions is
presented in [24]. Given such an ensemble the task is to obtain a super-
resolved image not only with a source position already present in one of
the images in the ensemble, but also with an arbitrary source position.
This is achieved through interpolation in the structural domain (i.e.,
surface normals at different points on the object) and on the albedo of
the surface. The key idea here is to preserve the 3D surface properties
of the object rather than the observed image property during the up-
sampling process. The importance of this has already been suggested by
Peleg and Ron in [25] during the downsampling process. Assuming all
sources to be point sources and surfaces to be Lambertian (note that the
method is valid for any other reflectance model) and that the images are
formed by orthographic projection, we use photometric stereo to recover
local surface orientation (p,q) and albedo [26]. Two images taken
with different lighting yield two irradiance equations:

where p and q are the surface normals and is the intensity at (x,y)..
where p and q are the surface normals and is the intensity at (x,y).
However, in order to recover albedo simultaneously, we need another
equation and hence a third image with a different source position. Sup-
pose the unit vectors in the directions of three source positions are,
respectively, given by

and the unit surface normal at a location (x,y) is given by

then where is the albedo Writing this expres-
sion in matrix form, we get

where the rows of S are the source directions and the components of
the vector E are the three brightness measurements. Assuming non-
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singularity of S,

The length of the vector in Eq. (3.21) gives the albedo. For the case
of m brightness measurements, a least squared solution for is found
from Eq. (3.21) by taking the pseudo-inverse of S.

Having obtained the surface normals for, say, an M × N image, bicu-
bic spline (or any other suitable) interpolation is carried out individu-
ally in the p, q and albedo spaces to yield magnified normal and
albedo spaces of dimension Mb × Nb, where b is the magnification fac-
tor. Such a spline interpolation technique is commonly known as vector
spline interpolation [27, 28]. The interpolated normals are now used
to reconstruct the image according to the image irradiance equation.
Note that this reconstruction is general in the sense that any source
position can be used to generate the corresponding shaded image. No
matter which source directions were used in the estimation of normals
and albedo, a new view can always be generated. In comparison to inter-
polation in the image domain f(x, y), we note that here the interpolants

are non-
parametric functions of (x, y) and the equivalent function g in Eq. (3.7)
is an irrational function of the interpolants We further
note that in order to obtain the inverse one requires several pho-
tometric measurements. However, the advantage is that one does not
require to establish the sub-pixel registration of different observations,
as most of the existing methods in the literature do, (e.g., [29] and [1]),
while generating the super-resolution image.

3.2. Object-based grouping
This is a very simple example to illustrate the concept of generalized

interpolation. Consider an image f(x) consisting of an object and a
background. Let denote the characteristic function of set A. Then

where subscripts bac and obj stand for background and object areas,
respectively. Often the significant part of the information in an image
is contained in the foreground while little or irrelevant information is
present in the background. A typical instance is that of medical im-
ages like CT and MRI scans. Under such conditions, the computational
cost of interpolation can be minimized by interpolating the object and
the foreground separately and differently, as per the demand of visual
perception, e.g., the foreground could be interpolated with B-splines for
higher accuracy while a simple bilinear interpolation will suffice for the
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background. One, however, must know in order to proceed with
the interpolation. The characteristic function can be obtained through
a proper scene segmentation.

3.3. Super-resolution Rendering
At the core of any 3D graphics system is a sub-system that renders

objects represented by a set of polygons. The usual approach to render-
ing of 3D objects is to build a basic renderer that incorporates a local
reflection model like the Phong model [31] into an incremental shader
and then add on various enhancements. Gouraud shading and Phong
shading are two algorithms that have contributed to the growth of poly-
gon based renderers. While Gouraud shading calculates intensities at
polygon vertices only, using a local reflection model, and interpolates
these for pixels within the polygon, Phong shading interpolates vertex
normals and applies a local reflection model at each point.

We consider the case of image rendering at a higher resolution, which
incorporates the shading effects of multiple illumination sources. Hence,
the problem is to generate a high-resolution image wherein the shading
effects due to multiple images are integrated. In comparison to ordinary
image rendering techniques, we do not have the shape of the object
apriori; we find the shape at a low resolution using photometric stereo.
Two approaches to the solution are suggested. The first one involves
interpolation in the surface normals and albedo space and the other
involves interpolation in the spatial domain itself.

In the first method, i.e., Phong shading which is an existing usage of
generalized interpolation, the surface normals (p,q) and albedo are
determined from photometric stereo, followed by cubic spline interpola-
tion in the p and q spaces, as was done in the section 3.1. The albedo
space is also separately interpolated. If there are m sources, each having
a corresponding weight then

The weights are normalized so that The interpolated values
of normals and albedo are used to reconstruct the super-resolved image
using Eq. (3.22). Further modifications to the rendered image can be
done by changing the high resolution albedo, causing new textures, soft
shadows, etc. to be introduced.

The second approach (Gouraud shading combined with generalized
interpolation) is to carry out interpolation in the spatial domain itself,
but taking into account the differences in illuminated (il) and dark (da)
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regions in the image. This is similar to the example in Section 3.2, where
the dichotomy was between object and background regions. Let
be the shaded image obtained from the ith source Following the
notation used earlier

For each source and for each region of the image, one can perform
the corresponding Gouraud shading differently using appropriate in-
terpolation schemes (for example, some of these schemes could include
wavelet based interpolation, Markov random field-based interpolation,
traditional spline fitting or bilinear interpolation). The corresponding
rendered image would be of the form

3.4. Grouping based on Transparency
In a typical outdoor or indoor scene, there exist many transparent

objects with glossy surfaces such as glass and water. We see the re-
flected image of an object on such transparent surfaces together with
other objects behind them. Thus, there is an overlapping of objects
behind and in front of the transparent layer. A typical instance is the
case of a person in a car who is not clearly visible from outside due to
reflection of the surrounding scene on the window glass. Separation of
real components from reflected components in an overlapping image is
useful for high quality TV camera images, transparent object avoidance
for mobile robots and detection of objects outside the camera’s field of
view. Although separation of transparent layers seem to be a very diffi-
cult task computationally, the human visual system is able to group the
layers very effectively. A few techniques have been proposed for separat-
ing real and virtual objects based on the polarization of light reflected
on a specular surface using a series of images captured by rotating a
polarizing filter [32, 33]. Schechner et al., [23] use the depth from fo-
cus cue for detection and depth estimation of transparent layers. The
overlapping image is represented as

where is due to object A behind the transparent object and
is due to object B in front and on the same side as the cam-

era. The images may have different structural properties and
hence, it is not a good idea to interpolate the combined image I as a sin-
gle entity. Hence these layers must first be grouped separately and then
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processed. The constituent images and should be separately inter-
polated using appropriate interpolation techniques and then combined.
The additional information one requires here is the separate availability
of individual layers or the cue needed to split the image into different
layers.

4. Experimental Results

In this section, we present some experimental results to demonstrate
the performance of the proposed generalized interpolation scheme. First,
the case of structure preserving super-resolution imaging is illustrated
through simulations on the synthetic “sphere” image of size 64 × 64. The
albedo varies from 1 at the center of the sphere to 0.75 at the occluding
boundary according to where is the radius of the sphere.
Figure 3.2(a) shows one such low-resolution image with source position
at (0,0), out of an ensemble of 9 input images. Various super-resolved
images of magnifications 2,3 and 4 were generated using the technique
described. Figure 3.2(b) is the super-resolved image of Figure 3.2(a) with
a magnification 2. In this case, surface normals and albedo were esti-
mated using 3 sources. The intensity domain interpolated sphere image
is shown in Figure 3.2(c). It is quite apparent from the figures that both
techniques yield nearly identical results as the image intensity and the

functions are all very smooth. Any difference between these two
reconstructions can be captured through the computation of root mean
square (RMS) errors (with respect to the original image). Figure 3.3
shows the RMS error in the reconstruction of a twice enlarged image,
as the number of sources is increased. The source positions used
are indicated at the bottom of the figure in serial order. (In all the
simulations, sources were used in this order, e.g., 6 sources used to es-
timate normals/ albedo implies that the first six source positions were
used). For the sake of clarity, we have included plots for only 4 out of 9
reconstructions. Each curve in the graph corresponds to reconstruction
with a particular source position, e.g., curve labeled “e9” corresponds
to reconstruction of the 9th image whose source position is (0.3, -0.4).

We now add zero mean white Gaussian noise to the input images
to study how the technique works for noisy images. Reconstruction
errors for a two-fold magnified image is shown in Figure 3.4 for the same
experimental data and, as expected, the error goes down with more
number of observations. Comparisons with cubic spline interpolation
in the intensity domain are presented for the noise-free and noisy cases
in Figures 3.5 and 3.6, respectively. One can clearly see the benefit of
using the generalized interpolation scheme as the RMS error is less for
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Figure 3.2. (a) Example of a low-resolution image of a sphere, (b) super-resolved
image of (a) using the proposed technique, and (c) intensity domain interpolation of
(a). (©Elsevier Science)

Figure 3.3. RMS errors in reconstruction of the spherical object with magnification
2. The corresponding RMS error for intensity domain interpolation for source position
e2 is 7.613, which is more than what is obtained with generalized interpolation.

the proposed method at all magnifications. Figure 3.7 illustrates the
effect of increasing noise on the reconstruction error. This figure also
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shows how additional information as the number of sources is increased,
reduces error in the super-resolved image. In the next example, we
take the case of a real image where we obtain perceptually improved
interpolation results using the generalized interpolation scheme.

Figure 3.4. RMS errors in reconstruction of noisy image with magnification 2 (Noise
variance for 4 instances of source positions. The corresponding RMS error for
intensity domain interpolation for source position e2 is 10.691. (©Elsevier Science)

Figure 3.5. Comparison between interpolation in surface normals/albedo domain
(ei’s) and intensity domain (intei’s) for 2 instances of source positions, in absence of
observation noise.
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Figure 3.6. Comparison between interpolation results in surface normals/albedo do-
main (ei’s) and intensity domain (Intei’s) for 2 instances of source positions with noise
variance (©Elsevier Science)

Figure 3.7. Effect of increased noise on reconstruction error (vari indicates i sources
used for reconstruction). (©Elsevier Science)
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Figure 3.8. One of the low-resolution images of the pen-stand. (©Elsevier Science)

Here, we consider a real example where most of the information in
the image is contained in the foreground while there is little or no infor-
mation in the background. Images of an object with matte surface were
captured under controlled illumination. Eight low resolution images of
size 235 × 235 with different distributions of source were used to generate
a super-resolved image of size 470 × 470. One such low resolution im-
age with source directions (0.2352, 0.4778) is shown in Figure 3.8. The
super-resolved image for an arbitray source direction, i.e., one which
is not contained in the original ensemble, is shown in Figure 3.9. The
clarity of the script printed on the pen-stand after the interpolation is
very good compared to its low resolution version given in Figure 3.8 or
the intensity domain interpolated image given in Figure 3.10. Further-
more, the right rim of the object which was almost lost in the input
image has been recovered quite well in the proposed method. Thus, if
the available source positions are insufficient to illuminate a particular
part of an object, our method is suitable to reveal details therein. The
super-resolved image of Figure 3.8 using the same source position as in
that figure is shown in Figure 3.11. Comparison of Figure 3.11 with
Figure 3.10 clearly shows the superiority of the proposed method since
the letters in the former are much clearer than those in the latter image.
While interpolating the (p, q) vectors, each component was interpolated
independently as this is much easier to accomplish. Hence the inter-
polated function may not satisfy the integrability

constraint, i.e., We also ran experiments where the above con-
straints were explicitly enforced, but no visible improvement in image
quality was observed.

We illustrate the super-resolution rendering concept on the “pen-
stand” image. Figures 3.12(a) and 3.12(b) show the result of rendering
with three light sources each having different positions and weights. Note
that in the absence of the weights for each source, the object would have



64 SUPER-RESOLUTION IMAGING

Figure 3.9. The “pen-stand” image with a magnification of two using the proposed
technique.

Figure 3.10. The “pen-stand” image interpolated in the intensity domain.
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Figure 3.11. The “pen-stand” image super-resolved using the proposed technique
with the same source position as in the low resolution observation of Figure 3.8.
(©Elsevier Science)

been illuminated uniformly from all the directions and thus no effect of
rendering would have been achieved. The utility of this method arises
in those cases where the sources cannot be moved around, and yet we
would like a rendering of the object that illuminates a particular portion
of it which, otherwise, would not be possible with any combination of
sources “switched” on.

In order to illustrate the interpolation scheme using the object based
grouping, consider the “collage” image given in Figure 3.13 which con-
sists of 5 parts, each having its own perceptual details, e.g. there are
more features contained in the “cameraman” portion of the figure com-
pared to the smooth surface of the “vase” (bottom left). Hence, depend-
ing on the type of features present in each object, appropriate image
expansion techniques can be used to maintain the perceptual quality of
the scaled image. In this example, the cameraman and lena portions
are interpolated using bicubic splines, the vase and the text image por-
tions are expanded by zero order hold replication of the pixels over a
neighborhood while a bilinear interpolation is carried out over the cen-
tral part of the image. The top half needs a better clarity during the
interpolation and hence a spline is used. However, a spline smoothens
the textual part. A simple zero-order hold offers a better perceptual
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Figure 3.12. Super-resolution rendered “pen-stand” images with multiple weighted
sources.
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quality, apart from savings in computation. For the vase part of the
image, any interpolation scheme does a fairly good job, and the zero-
order hold is used from the computational point of view. The results of
both the grouping-based interpolation and the existing bi-cubic spline
interpolation over the entire image are shown in Figure 3.14(a) and Fig-
ure 3.14(b), respectively. We observe that the proposed technique offers
better results in terms of (a) preserving the distinctness of the regional
boundaries, (b) preventing over smoothening of the textual component,
and (c) savings in computation.

Figure 3.13. Original “collage” image. (©Elsevier Science)

(a) (b)

grouping into account. (©Elsevier Science)

Next, we illustrate the application of the generalized interpolation
scheme to grouping based on transparency. Figure 3.15 shows a trans-
parency image consisting of text pasted on the glass window of a labo-
ratory. Here the “text” region is in the foreground and the “lab” forms
the background. The camera is set to focus on the text layer while the

Figure 3.14. Interpolation (a) using object based grouping and (b) without taking
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Figure 3.15. Low resolution transparency image containing text pasted on the glass
window of a laboratory. (©Elsevier Science)

“lab” layer is defocused. Assuming the layers are separated, using an
algorithm as in [23], we have two objectives at hand : the first is to gen-
erate a high resolution transparency of the given image and the second is
to reconstruct a high resolution transparency where the focus is now set
to the background “lab” layer while the “text” layer in the foreground
is defocused. Since the background contains plenty of detail, bilinear
interpolation is carried out there while zero order hold interpolaton is
done over the more sparse foreground. Figure 3.16(a) shows the result of
applying the generalized interpolation scheme. For comparison, we have
also illustrated in Figure 3.16(b), the case in which the transparency
image is enlarged without taking grouping into account; here bilinear
interpolation is done over the entire low-resolution transparency. Fig-
ure 3.17 shows the reconstructed high resolution transparency image in
which the foreground “text” layer is out of focus while the background
“lab” layer is focused. This assumes that the blur parameters are known
so that the different layers can be manipulated accordingly. We can
clearly see the textured pattern of the shirt on the person standing in
the lab.

5. Conclusions
We have proposed a generalized interpolation scheme for image re-

sizing and super-resolution applications. There are two facets to our
technique. Firstly, the image is decomposed into appropriate subspaces
and interpolation is done in each of the subspaces, followed by an in-
verse transformation of the interpolated space back to the original do-
main. This allows us to better preserve the structural properties of the
object(s) and other reflectance properties in the scene after the interpo-
lation. Secondly, the generalized interpolation scheme is applied to high
resolution perceptual grouping in images. The intensity distribution of
the image is exploited to determine which areas in an image require
a finer and more accurate interpolation technique and in which areas a
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Figure 3.16. Transparency image Figure 3.15 enlarged (a) using the proposed scheme
and (b) without taking grouping into account. (©Elsevier Science)

Figure 3.17. Reconstructed transparency image where the “lab” layer is focused but
the “text” layer is defocused. (©Elsevier Science)
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crude interpolation will suffice, thus saving in computation. A few situa-
tions were described where the generalized interpolation scheme is found
to be suitable. This is corroborated with experimental results. Future
work will involve further consolidating the theory by finding a class of
decompositions which guarantees superiority of the proposed scheme.
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Abstract      In this chapter the problem of reconstructing a high resolution image
from multiple aliased and shifted by sub-pixel shifts low resolution im-
ages is considered. The low resolution images are possibly degraded by
unknown blurs and their sub-pixel shifts are not known. This problem
is described in the frequency and spatial domains. Algorithms for pro-
viding solutions to it are reviewed. In addition, two approaches are pre-
sented in detail for solving this low-to-high resolution problem. In the
first of these two approaches registration and restoration is performed si-
multaneously using the expectation-maximization (EM) algorithm. The
high resolution image is then reconstructed using regularized interpola-
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tion which is performed as a separate step. For this reason this approach
is abbreviated as RR-I which corresponds to registration/restoration-
interpolation. In the second of these approaches registration, restoration
and interpolation are perfomed simultaneously using the EM algorithm.
Therefore this approach is abbreviated as RRI which corresponds to
registration/restoration/interpolation. Numerical experiments are pre-
sented that demonstrate the effectiveness of the two approaches.

Keywords: High resolution images, image registration, multi-channel image restora-
tion, regularized interpolation, expectation maximization algorithm.

1. Introduction
In applications such as remote sensing, military, and medical imag-

ing, images with high-resolution are often required. Such images offer
additional detail that may be critical in accurately analyzing the im-
age. Currently, Charge-Couple-Devices (CCDs) are used to capture such
high-resolution images digitally. Although this is adequate for most of
today’s applications, in the near future this will not be acceptable. This
is because the technology of CCDs and high precision optics cannot keep
up with the demand for images of higher and higher resolution. For ex-
ample, in order to obtain images approaching (or surpassing) the quality
of 35mm film, considered to be the quality criterion for non-electronic vi-
sual media, a resolution higher than High Definition Television (HDTV)
is needed (greater than 2000 × 2000 pixels), and current CCD technology
cannot achieve this very high resolution [1]. In addition, the presence of
shot noise, which is unavoidable in any imaging system, prescribes an
upper limit on the resolution of CCDs. This upper limit arises from the
fact that while reducing the area of each CCD increases the resolution
(more CCDs), the signal strength (number of photons hitting the CCD)
is correspondingly decreased, while the noise strength remains roughly
the same [40]. This limit on the size of each CCD is roughly 50 µm2,
and current CCD technology has almost reached this limit [1], With a
lower CCD area, the Signal-to-Noise (SNR) ratio is too low for images
to be useful.

Aside from the approaching limit posed by the presence of shot noise,
cost is another concern in using high precision optics and CCDs. Launch-
ing a high resolution camera into space on board a satellite can be costly,
and even risky. It is more cost-efficient to launch a cheaper camera with
a lower resolution into orbit if higher resolution images can be obtained
on the ground through image processing techniques.

Finally, another impediment to using high-resolution digital cameras
is that often the imaging is done under less than ideal situations. In
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military surveillance, for example, taking images of an enemy’s troop
movement is difficult at best because the enemy is taking steps to move
at night, in fog, etc., to hamper surveillance. Weather provides another
difficulty for remote sensing, where cloud cover may occlude the area of
interest.

For these reasons, an alternative solution is necessary to obtain high-
resolution images. Instead of obtaining the high-resolution image di-
rectly from a high-resolution digital camera, this approach uses signal
processing techniques. First, several subsampled, and misregistered low-
resolution images of the desired scene are obtained. These low-resolution
images can be either obtained as a sequence taken over time, or taken at
the same time with different sensors. A pictorial example of the overlay
of three misregistered images is shown in Figure 4.1, where the sub-pixel
shifts for each frame, are also shown. Figure 4.2 shows the re-
lationship between the subsampled, multiple low-resolution images and
the high-resolution image.

The main reason that a single high-resolution frame can be con-
structed from low-resolution frames is that the low-resolution images
are subsampled (aliased) as well as misregistered with sub-pixel shifts.
If the images are shifted by integer amounts, then each image contains
the same information (intensity values at the same spatial location), and
thus there is no new information that can be used. In this case, a simple
interpolation scheme (bilinear, cubic spline, etc.) can be used to increase
the resolution. However, if the images have sub-pixel shifts, and if alias-
ing is present, then each image cannot be obtained from the others,
assuming each image has different shifts. New information is therefore
contained in each low-resolution image, and can thus be exploited to
obtain a high-resolution image.

In what follows, we review the relationships between high and low-
resolution images first in the spatial and then in the frequency domain
in Sections 1.1 and 1.2, respectively. In Section 2 we present a literature
review of the solution approaches to this problem. In Section 3 we
present the image model that we use. In Sections 4 and 5 we present the
two approaches that we have proposed to solve this problem. Section 6
contains experimental results and Section 7 concludes this chapter. In
the rest of this chapter the term interpolation will be used to describe
the process of computing samples, of the high-resolution image from the
low-resolution images, either in the spatial or the frequency domain.
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Figure 4.1. Overlay of three misregistered images
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Figure 4.2. Relationship between low-resolution images and the high-resolution im-
age
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1.1. Spatial Domain Interpolation
Let us denote by f (x,y) the continuous two-dimensional (2D) image,

by the high-resolution discrete image of size
and by the l-th low-resolution discrete image of size N × N.
They are related by

where and are the sampling periods in the x and y directions, and

with the sampling periods and given by
and and represent the shifts in the x and y direction of the lth
low-resolution image with respect to a reference image. respectively. di-
rection of the lth low-resolution image with respect to a reference image.
Then the equation relating the high and the low-resolution images, also
known as the interpolation equation, is given by [10]

where and are defined by

Ordering lexicographically indices m, n and l, equation (4.3) can be writ-
ten in matrix-vector form as

where the vectors and are of dimensions
1, respectively, and is the interpola-
tion operator between the P(N × N) and the  grids, and
the shifts are given by
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The problem therefore at hand is, given the observation vector and
the matrix assuming the shifts are known, to solve Eq. (4.5)
for        In this case, it is in general possible to find the least-squares
solution of Eq. (4.5), or the exact solution if and
is invertible. This solution, however, is a computationally formidable
task due to the sizes of the matrices involved. Additionally, in many
applications the shifts are not known, and therefore need to be estimated
from the available data. Even worse, in certain applications the low-
resolution images are degraded due to deterministic blur and noise.

Equation (4.3) is pictorially represented in Fig. 1.3 for an one dimen-
sional (1D) signal, for Figure 1.3 (a) shows (bold dotted
lines) obtained by multiplying the high-resolution signal by the interpo-
lation kernel (dotted line). Since the shift is zero for this low-resolution
image, interpolation corresponds to subsampling by a factor of 2. Figure
1.3 (b) shows obtained when the shift is not zero. The dotted line
again in Fig. 1.3(b) depicts the shifted by sinc function which is the
interpolation kernel that generates according to Eq. (4.3).

1.2. Frequency Domain Interpolation

The low to high-resolution problem is now described in the frequency
domain. To the best of our knowledge, Tsai and Huang [49] first intro-
duced the low to high-resolution problem in the frequency domain. Let

be a set of spatially shifted
version of the continuous image f (x, y). Then in the Fourier domain, we
have

Image is now sampled with the sampling periods and to
generate Its N × N discrete Fourier transform (DFT) is given
by

Due to the sampling theorem, the continuous and discrete Fourier trans-
forms are related by [10]

If the Fourier transform of the original image, F(u, v), is bandlimited
such that it satisfies for and (i.e.,



Figure 4.3. Graphical representation of the relationship between high and low-
resolution signals (1D version of Eq. (4.3) with Thin lines indicate the
samples of the high-resolution signal, bold dotted lines the low-resolution signal, and
dotted lines the interpolating kernel-sinc function.
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and are the Nyquist sampling periods in the x,y
directions), the DFT of the low-resolution signal in equation (4.8) is
aliased. Then, each discrete is the sum of
discrete samples of the original F(u, v) according to the equation

Substituting from Eq. (4.6) into Eq. (4.9) we obtain

Using lexicographic ordering for the indexes m, n in the right hand side
and l in the left hand side of equation (4.10), we obtain in matrix vector
form

where the dimensions of and are
and respectively. The low to high-resolution problem again
is to solve Eq. (4.11) for and the interpolation matrix
assuming the shifts are known. A major difference among the spatial do-
main formulations is that each discrete frequency of the high-resolution
signal is recovered separately, which results in the solution (or inversion)
of small P × P (if matrices.

A pictorial representation of the relationship between the low and high
resolution signals in the frequency domain is shown in Fig. 1.4, for an
1D signal, with Figure 1.4(a) shows the spectrum
of the continuous signal F(u). Figures 1.4 (b) and (c) show one period
of the continuous spectrum of the low-resolution signal for and

respectively. In the first case i.e., subsampling by
2), two shifted versions of the spectrum F(u) are used to form
while in the second case i.e., subsampling by a factor of four)
four shifted versions are used to form               The sampled versions of
the spectra shown in Figs. 1.4 (b), (c) follow from Eq. (4.10).

2. Literature Review
From the previous analysis it is clear that interpolation is possible

both in the spatial and frequency domains. However, in either case



Figure 4.4. Graphical representation of the relationship between high and low-
resolution signals in the frequency domain. (a) Spectrum of one dimensional high-
resolution signal; spectra of the low-resolution signals for (b) and (c)
respectively.
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knowledge of the shifts of the low-resolution images is necessary. In most
practical applications, in addition to the fact that these shifts are un-
kown, the low-resolution images might be degraded by blur and noise.
Thus, before interpolation to reconstruct the high-resolution image it
is necessary to restore the low-resolution images. Therefore, in prac-
tice reconstruction of high-resolution images involves the following three
tasks: restoration of the low-resolution images, registration of the low-
resolution images to find the shifts, and interpolation to reconstruct the
high-resolution image.

The individual tasks associated with the problem of reconstructing
high from low-resolution images (registration, restoration, interpolation)
are on their own important problems that have been extensively re-
searched. For the registration task, see for example [3, 5, 31, 33], for
restoration in general, good reviews can be found in [23, 24, 4], while
for interpolation, see for example [7, 9, 12, 28, 39, 50]. Since all low-
resolution images are very similar, optimal restoration results are ob-
tained if a multi-channel approach is used. According to this approach,
the correlations between the low-resolution images (channels) are uti-
lized in addition to within channel correlations. For a recent review on
multi-channel image recovery approaches see [17]. In spite of this, sig-
nificantly better results can be expected if instead of addressing each of
these tasks independently a more comprehensive approach is taken. This
is because all of the tasks associated with the problem of reconstructing
a high-resolution image from low-resolution images are coupled. The
general problem of reconstructing a single high-resolution image from
multiple low-resolution images (all of which are taken of the same scene)
has been investigated by several researchers, some of which are Frieden
and Aumann [13], Stark and Oskoui [40], Aizawa et. al [1, 2], Tsai and
Huang [49], Irani and Peleg [20], Tekalp et. al [41], Srinivas and Srinath
[38], Kim et. al [30], Kim and Su [29], and Bose et. al. [6]. The dif-
ferences among these works lie in the method used, assumptions made,
and degree of degradations (if any) incurred by the sensor.

Of these approaches, the earliest comprehensive work was by Tsai and
Huang [49]. They derived an interpolation equation that described the
low-resolution image as a function of the high-resolution image and the
shifts between the low resolution images in the Fourier domain. They
also proposed a registration approach based on minimizing the energy
of the high-resolution signal However, they did not consider the case
when the images were noisy or blurred, and because of this, neglected
to address the issue of inverting the interpolation matrix, which could
prove difficult in the presence of noise. They also proposed an approach
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to estimate the shifts based on minimizing the energy of the interpolated
high-resolution signal outside the assumed bandwidth.

Kim, et. al [29, 30] extended this work to include noise and blur. In
order to account for the blur in [30], Tikhonov regularization [42] was
employed. Thus, they addressed both the restoration and interpolation
sub-problems together. However, the issue of choosing the optimum
regularization parameter was not addressed. Also, the cross-correlation
terms were not used to restore the degraded images, which, according to
[14, 47], is sub-optimal because of the additional information that they
contain. In addition, it was assumed that the shifts were known.

Similarly, Srinivas and Srinath [38] combined the restoration and in-
terpolation steps together, while assuming that the shifts were known
exactly. A distinguishing feature from [6, 29, 30] is that they formulated
the restoration sub-problem in a multi-channel framework, recognizing
that the restoration could be improved if the cross-correlation terms were
used. This agreed with results found in [14, 47].

In [41, 35] both Frieden’s frequency domain method [13] and Stark’s
projection onto convex sets (POCS) method [40] were extended in order
to account for both sensor noise and blur. A method was also proposed
where the interpolation step was performed before the restoration step.
The problem of reconstructing a band-limited signal from nonuniformly
sampled points has been previously discussed in the literature [12, 28,
39, 50]. Following this interpolation step, the Wiener filter was used
to restore the image (actually, any general restoration algorithm could
have been used). However, this method still requires that the shifts be
known.

A completely different approach to estimate the high-resolution image
was developed by Irani and Peleg [20]. In this work, a method to esti-
mate the displacements was presented, based on their earlier work (they
also assume that the images could be slightly rotated with respect to
the reference image). Instead of using a standard interpolating matrix
to obtain the high-resolution image, they chose an iterative technique
similar to the back-projection method commonly used in computed to-
mography. Experimental results of improved resolution was presented
for both gray-scale and color images. They also showed that the high-
resolution problem reduces to the standard restoration problem when the
input is a single image, and no upsampling is necessary. An estimate
of the point spread function (PSF) was obtained by evaluating control
images (i.e., the literal definition of point spread function). However,
additive noise is handled by simply averaging all of the contributions
of the low-resolution pixels, and is not explicitly accounted for in the
iterations. A similar low to high-resolution problem described in this
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chapter so far can be formulated when multiple frames in a dynamic im-
age sequence are considered (see for example, [37], [48]). The subpixel
shifts in this case are due to the motion of objects which is represented
by motion vectors of sub-pixel accuracy. This is a problem described
in other chapters in this book, and is therefore not considered here. In
[11] maximum a posteriori (MAP) estimation and POCS were applied to
this problem. However, the imaging model assumed perfectly registered
images and thus bypassed the difficulty of registration.

In summary, by reviewing the literature on this problem it is apparent
that although the problem has a long history, very little work has been
done in addressing this problem in a comprehensive manner. In other
words, no comprehensive framework has been presented for combining
all of the tasks that are involved in this problem, with the exception of
possibly [19]. In [19] a MAP framework is proposed where simultane-
ous restoration, registration and interpolation was performed. A block-
matching like algorithm was used to estimate the shifts between the
low-resolution frames. However, to simplify computations a suboptimal
optimization strategy was used according to which the high-resolution
image and the shifts were estimated one at a time while keeping the
other fixed.

In this chapter we propose two formulations to solve the high-resolution
problem in a comprehensive manner. Both approaches combine the reg-
istration and restoration steps into a single step, thus, they are solved
simultaneously. In particular, a multi-channel blur identification and
restoration algorithm [47] is used to estimate the displacements while
simultaneously restoring the image(s). This multi-channel framework
improves the estimates of the shifts while simultaneously estimates the
original, undegraded image.

The difference between these two formulations lies in the interpola-
tion step. The first approach, called the RR-I (Registration Restora-
tion - Interpolation) formulation, performs the interpolation step inde-
pendently of the first two steps. This approach can be implemented
easily by slightly modifying the multi-channel restoration and identifica-
tion algorithm in [47]. The second approach, called RRI (Registration
Restoration Interpolation), formulates all three sub-problems into a sin-
gle equation, yielding an optimal solution at the expense of the increased
computational cost. These two approaches are presented in Sections 4
and 5 of this chapter.
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3. Imaging Model
Let P be the number of the available low-resolution images, and let

each low-resolution image be of size N × N. The discrete image observed
at the ith sensor is given by

where and represent the N × N observed, original and noise
images, respectively, at the ith sensor (channel), and the discretized
impulse response modeling both the within (i = j) and between
channel degradation mechanisms.

Equation (4.12) represents a multi-channel degradation model, that
also allows cross-channel degradations. It can be written in matrix vector
form as

where and are vectors given by

and and are the lexicographic orders of and
respectively. H is a matrix which has the form

where each sub-matrix, . is of size and represents the
PSF between the ith and jth sensors. Since within each sensor the
degradation operator represents a linear convolution, matrices are
block-circulant. However, because the shifts are incorporated into the
degradation operator, and are spatially varying, i.e., the shifts between
grids i and j are not the same between grids i + k and j + k, so that

H is not block-circulant. Matrices of this form have
been studied in the context of multi-channel problems and are named
block semi-circulant (BSC) [14, 27, 17].

A different form of this matrix structure can be obtained if the channel
index is used for ordering first, followed by the spatial indices. The
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multi-channel vector is then given by

Using the definition

we can now write Eq. (4.17) as

When this lexicographic ordering is applied to the linear degradation
model in Eq. (4.13) H the linear degradation operator has
the form

where the P × P sub-matrices (sub-blocks) have the form

Note that represents an intra-channel blurring operator, while
represents the inter-channel blur. Matrix H in Eq. (4.20)

has a structure which is the dual to that of H in Eq. (4.16). In other
words, it contains P × P non-circulant blocks that are arranged in a
circulant fashion. Matrices of this form are called semi-block circulant
(SBC) [27, 15, 17].

The covariance matrices of multi-channel signals where within-channel
but not between-channel stationarity is assumed are also either BSC or
SBC depending on the lexicographic ordering that was used to arrange
the multi-channel vector

Mathematical expressions containing SBC matrices and multi-channel
vectors can be computed very efficiently in the DFT domain.
SBC matrices are transformed in the DFT domain by the transformation
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where    is the P × P identity, W the                      DFT matrix and
the Kronecker product. Application of this transformation to H a

SBC matrix and use of the diagonalization properties of
the DFT for circulant matrices gives

where a P × P matrix. In what follows the SBC representation will
be used to convert equations in the DFT domain.

Substituting Eq. (4.5) into Eq. (4.13), the final equation relating all
three sub-problems can be written as

Equation (4.13) is the starting equation for the RR-I formulation, where
is to be solved for as an intermediate step. The next and final step

is to solve Eq. (4.5) for the high resolution image, given  0      In
the RRI formulation, Eq. (4.24) is the governing equation, where
is to be solved for directly from the observable, noisy images,

4. Simultaneous Registration and Restoration,
RR-I Approach

In this section, the RR-I approach is presented [43, 44, 46]. This
approach, shown in Fig. 4.5, solves the first two sub-problems simulta-
neously, and performs the interpolation step independently. More specif-
ically, this approach first estimates and shifts from Eq. (4.13) and
then via interpolation reconstructs the high-resolution image, i.e., finds

by inverting Eq. (4.5). In other words, the restoration and the reg-
istration step are combined. This is accomplished by selecting an image
covariance model which is parameterized by the shifts. This model is
estimated simultaneously with the restored low-resolution images in an
iterative maximum likelihood framework that is based on the Expecta-
tion Maximization (EM) algorithm [8, 25].

4.1. Image Covariance Model
The incorporation of the sub-pixel shifts into the likelihood function

is achieved by assuming a particular image covariance model for the
low-resolution frames. A popular covariance model is the separable co-
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Figure 4.5. Block diagram of constructing a high-resolution frame from multiple low
resolution frames, RR-I approach

variance model, given by [21]

where r(m, n) is the (m, n)th spatial location of the image covariance,
is the variance of the random field, and are the correlation

coefficients in the x and y directions, respectively. This separable char-
acteristic is highly desirable, and will prove to be very useful.

The covariance of the multi-channel low-resolution image is

where E is the expectation operator. From Eq. (4.25), is block
Toeplitz. Using Eq. (4.26) and (4.25), the entries of the sub-block of
the image covariance are given by

where is the (m, n)th element of the (i, j)th block. Using Eq.
(4.27), when the lexicographic ordering in Eq. (4.15) is used for the
covariance matrix of the low-resolution image can be shown to be
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where again denotes the Kronecker product of two matrices and the
matrices and are respectively of sizes P × P, N × N, and

N × N. Their respective (i, j)th elements are equal to
and Clearly the displacements are incorporated into the co-

variance matrix. The Kronecker product arises from the separability
of the covariance model. The matrices and are N × N
Toeplitz. However, as N grows and as we move away from the main
diagonal and go to zero. Asymptotically then these
Toeplitz can be approximated by circulant matrices [18]. The Kronecker
product is a block-circulant matrix. Thus,
is a special case of a matrix because of the Kronecker
product based decomposition. In general BSC and SBC matrices do not
have a Kronecker based decomposition.

4.2. Maximum Likelihood based
Restoration-Registration

Multi-channel linear minimum mean squared error (LMMSE) restora-
tion will be used to restore the low-resolution images from the ob-
served images For this purpose knowledge of the covariance of the
signal, and noise, and the linear degradation H are necessary.
Maximum likelihood (ML) estimation will be used for their estimation,

and v are assumed uncorrelated Gaussian random processes, thus
the observed image, is also Gaussian with zero mean, and pdf given
by

To emphasize that is parameterized, we rewrite it as
where represents the quantities of interest. The ML
estimation of this parameter set is that set which maximizes the
likelihood function or its logarithm, that is

Taking the logarithm of Eq. (4.29) and disregarding constant multiplica-
tive and additive terms, the maximization of the log-likelihood function
becomes the minimization of the function given by
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However, minimizing explicitly as written in Eq. (4.31) with
respect to H, and is a difficult problem due to the size of
the matrices involved as well as its high degree of nonlinearity. The
alternative and more suitable approach is to transform Eq. (4.31) into
the frequency domain, and use an iterative technique, such as the EM
algorithm, to minimize this objective function.

The likelihood function, after discarding constant terms, can be writ-
ten as

where represents the unknown parameter set, given by

For linear Gaussian problems the application of the EM algorithm is
well studied. In [25, 32] the EM algorithm was applied to the single-
channel linear image restoration blur identification problem. In [46] the
EM algorithm was applied to the multi-channel image restoration and
blur identification problem.

Without going through the analysis steps, we present here the results
derived in [46, 47]. If as complete data we select the function
that has to be minimized iteratively, instead of the likelihood in Eq.
(4.32), for obtaining the estimates of at the k + 1 iteration is

where  and  are the estimates of and at the k iteration

and are parameterized by The conditional mean and covariance
are given by

The EM algorithm is an iterative algorithm and consists of the E and
M steps. During the E-step of the iteration the estimates (the
shifts and the parameters, which define the covariance of
as well as the noise variance, are used to compute the conditional
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mean and conditional covariance During the M-

step of the iteration the conditional mean and covariances from
the iteration are used in the objective function, which is
then minimized with respect to These values of form then
the new parameter estimates. Because of the Gaussian assumption and
the linearity of the observation model the conditional mean is the Lin-
ear Minimum Mean Square Error (LMMSE) estimate of Thus the
restored image and the unknown parameters are updated in every iter-
ation.

4.3. Formulation of L in the frequency domain
One important issue that remains to be addressed is the implementa-

tion of the EM algorithm for this problem. Direct computation of Eqs.
(4.33), (4.34) and (4.35) is not possible due to the very large size of the
matrices involved. To solve this problem, it is first trasformed in the
DFT domain based on the lexicographic ordering in Eq. (4.17), which
yields SBC matrices. These matrices when transformed in
the DFT domain give SBD matrices, as explained earlier.

The covariance of the multi-channel low-resolution vector, because of
the Kronecker decomposition gives a very simple SBD DFT domain rep-
resentation. This representation using the Kronecker product properties
is given by

where since and are N × N circulant matrices,
R is block-circulant [21], and W the 2D-DFT matrix, with

where is the N × N 1D-DFT matrix. Thus,

where is the diagonal matrix of   whose entries
are given by the DFT of the first row of or

where Similarly, is diagonal with
entries
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Thus, with
a P × P matrix.

All SBC matrices in Eq. (4.33), (4.34) and (4.35) can be transformed
in the DFT domain. Using the properties of the Kronecker product we
can then write Eq. (4.33) as

where

and

In the previous equations
a P × 1 vector of the (m, n) frequency of the DFT of the observed
image; and are P × P matrices and P × 1 vectors,
respectively, containing the DFT representations of the SBC conditional
covariance and the multi-channel conditional mean. They are given by

where the frequency notation (m, n) has been dropped for brevity, and
and are P × P matrices resulting from the DFT

representation of the SBC and matrices, respectively.
Thus, in the M-step of the algorithm by minimizing de-

rived in Eqs. (4.37)-(4.41) with respect to we obtain the estimates of
In the E-step the conditional statistics in Eq. (4.41)

are computed. Due to space constraints, we do not present furhter de-
tails of the implementation in this chapter (for more details see [46, 47]).
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4.4. Iterative Interpolation for the RR-I
Formulation

Applying the previously described EM algorithm yields estimates of
the displacements and the restored low-resolution images (see [46] for
details). The final step is to interpolate the intensity values of the desired
high-resolution image. Mathematically, the interpolation equation, Eq.
(4.5) needs to be solved. Before discussing the inversion, however, a
good model for the interpolation matrix, needs to be chosen. The
form of this matrix can be given as

where each sub-matrix is given by

where are integers specifying the degree of interpolation in the x
and y directions, respectively. For . the image size doubles
in both dimensions. In the following discussion,  in order
to make a square matrix. In this case the total number of pixels in
both the high-resolution image and the four low-resolution images is
the same, since the number of pixels in each low-resolution image is one
quarter the number of pixels of the high-resolution image. In Eq. (4.44),

denotes the greatest integer of x, and modulo y. As
a reminder, the relationships between the sampling period of the low-
resolution frame and that of the high-resolution frame were taken to be

While the lexicographic ordering of the low-resolution images has al-
ready been discussed, the lexicographic ordering for the high-resolution
image needs to be also specified. Due to the interlacing among the low-
resolution images, the ordering for the high-resolution image should keep
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the same spatial coordinate system. In this case becomes block-
Toeplitz at the matrix level, and can therefore be approximated by a
semi-block circulant matrix (SBC), which can then be diagonalized by
the same transform matrix as in Sec. 3 [46]. Once Eq. (4.5) is written
in the frequency domain, it follows that Eq. (4.24) can also be expressed
in the frequency domain.

4.5. Regularization
Direct inversion of the interpolation matrix, is not a viable ap-

proach due to the large dimensions of the matrix and the ill-posedness
of the problem. That is, small errors (noise) in the estimates of the
shifts will be enhanced in the estimates of the high-resolution image.
Regularization techniques modify the inverse problem appropriately so
that this noise amplification is controlled, while providing a meaningful
solution to the original problem. Regularization has also been used in
conjunction with iterative techniques for the restoration of noisy and
degraded images [22, 23, 26]. Therefore, using an iterative regularized
approach, Eq. (4.5) can be rewritten as

where b is a parameter controlling the convergence and the speed of
convergence, Q is the regularizing operator and the regularizing pa-
rameter [26]. The regularizing operator Q is typically chosen to be a
Laplacian operator, usually a five point Laplacian. The choice of is
a very important issue, and has been studied extensively [16]. A good
initial choice is

where this choice weights equally both the high pass energy constraint
(Q) and the noise power constraint (fidelity to the data) [36].

5. Simultaneous Restoration, Registration and
Interpolation: RRI Approach

In this section, the RRI formulation is outlined. A major difference
between the two formulations is that in RR-I, the output are the low-
resolution, restored images, which need to be interpolated up to
iteratively, while for the RRI formulation, the output is the final, re-
stored, high-resolution image, obtained directly from the observed
noisy images, Another major difference is that in the RR-I case the
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shifts axe expressed as part of the covariance matrix of the low-resolution
images only while in the RRI formulation, they are part of the inter-
polation operator also. The inclusion of the interpolation operator into
the degradation equation still enables us to enter the frequency domain
as in the RR-I formulation, since the interpolation matrix is semi-block
circulant [46]. Due to this inclusion of the interpolation matrix into the
degradation operator, the equations for the noise variances and power
spectra are unchanged in form from Sec. 4, where the only difference is
that the degradation matrices in Sec. 4 are replaced by two matrices -
the degradation matrix and the interpolation matrix.

Again, using the same assumption of a Gauss-Markov ergodic model
on Eq. (4.24), the pdf of the low-resolution observations can be written
as

Taking the logarithm of Eq. (4.47) and ignoring constant additive and
multiplicative terms, the maximization of the log-likelihood function be-
comes the minimization of

Comparing Eq. (4.48) (representing the RRI formulation) with Eq.
(4.32) (representing the RR-I formulation) it is clear that the only differ-
ence is the inclusion of the interpolation operator,  in other words,
we obtain the former equation from the latter by replacing H by
We have followed similar steps in minimizing in these two equa-
tions (Eqs. (4.48) and (4.32)). That is, the EM algorithm is used in
minimizing Eq. (4.48) with the same choice of complete data as in Sec.
(4). Furthemore since is an SBC matrix, as was described in Sec.
(4.4), Eq. (4.48) is written in the discrete frequency domain, where the
E-step of the EM algorithm is formulated. The minimization step, how-
ever, is now considerably more complicated than in the RR-I case. This
stems from the fact mentioned earlier that the unknown shifts appear
now both in the interpolation sinc functions, the entries of and the
image covariance function. Differentiating therefore in Eq. (4.48)
with respect to is considerably more complicated. All the details of
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 RRI algorithm can be found in [46, 45], but are not presented here
due to lack of space.

6. Experimental Results
The performance of the RR-I approach described in Sec. 4 is demon-

strated with the following experiment. Four 128 × 128 low-resolution
images, shown in Fig. 4.6, were generated from the 256 × 256 image
in Fig. 4.7 (upper left) using Eq. (1.3) and the shifts shown in the
second column of Table 4.1. White Gaussian noise was added to all of
the frames, resulting in SNR of 30 dB. The estimated shifts by applying
the EM algorithm of Eqs. (1.38-1.41) are shown in the last column of
Table 4.1, along with the initial values of the shifts. These values are
then used in interpolation via Eq. (1.45) to generate the image shown
in Fig. 4.7 (lower left). In the same figure are also shown the bilinearly
interpolated image (upper right) from the (undegraded) zero shift low-
resolution image, as well as, the interpolated image using the estimated
(lower left) and true values of the shifts (lower right). It is clear that
the RR-I approach performs considerably better than bilinear interpo-
lation. In particular, note the increased legibility of the “F-16” on the
tail of the airplane, as well as the words “U.S. Air Force” on the body
when comparing the upper right image to the lower left image. Further
improvement in in the legibility of the words “U.S. Air Force” can be
seen when comparing the lower left image to the lower right image. The
peak signal to noise ratio (PSNR), defined by

where x, denote the original and estimated images, respectively, and
N × N the size of the images, was used to quantify the results. The
PSNR values for the bilinearly interpolated case (of the undegraded low
resolution zero shift low-resolution image) and the RR-I algorithm using
the estimated and true shifts in the interpolation step are listed in Table
4.2. The differences in PSNRs between the bilinearly interpolated case
and the RR-I approaches are significant, and increase with the accuracy
of the estimated shifts.

It is also interesting to note that according to this experiment the
difference between the high-resolution images generated by the RR-I
approach with the estimated and true values of the shifts (lower left
and lower right images, respectively) is not as large as might have been
suggested by the error in the shift estimation.
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In order to test the RRI approach, the 256 × 256 cameraman image
was used in another experiment, and four 128 × 128 low-resolution images
were generated again using Eq. (1.3). These low-resolution images were
then blurred by a 3 × 3 Gaussian linear space-invariant filter with vari-
ance of 1.0. Additive noise was added resulting in a blurred SNR of 30
dB for each frame. The degraded low-resolution frames are shown in Fig.
4.8. In order to compare the RRI results with those from a bilinear in-
terpolation, the zero shifted degraded low-resolution frame was restored

Table 4.1. True, initial, and estimated shifts by the RR approach.

Table 4.2. PSNRs from the bilinearly interpolated and RR-I approaches.

Figure 4.6. Four 128 × 128 low-resolution images
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using an iterative Wiener filter with the blur PSF known. This restored
low-resolution image was then bilinearly interpolated to 256 × 256. The
image on the left of Fig. 4.9 shows this result, while the image on the
right is from the RRI approach, where the blur PSF was also known,
but the sub-pixel shifts and the noise variances were unknown. Note the
additional detail afforded by the RRI approach along the legs of the tri-
pod and the man’s face. Furthermore, the background of the bilinearly
interpolated image shows significant artifacts from the restoration pro-
cess, while that from the RRI approach is much smoother. The PSNRs
for these two images are 21.77 and 22.52 dB, respectively. The true, ini-

Figure 4.7. (upper left): original high-resolution image; (upper right): bilinearly
interpolated image from the zero shift low-resolution image; results of the RR-I algo-
rithm using: (lower left) estimated shifts; (lower right) true shifts
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Table 4.3. True, initial, and estimated shifts by the RRI approach.

tial, and estimated shifts are shown in Table 4.3. Most of the estimated
shifts were reasonably close to the true values, with the exception of
and

Figure 4.8. Degraded low-resolution images.
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Figure 4.9. Bilinearly interpolated image from restored low-resolution image and
reconstructed image from RRI approach using estimated shifts.

7. Conclusions and Future Work
In this chapter the problem of reconstructing a high-resolution image

from multiple degraded low-resolution images is addressed. We first for-
mulated the problem in the spatial and frequency domains and reviewed
the relevant literature. We then presented a unified framework based on
maximum likelihood estimation and the EM algorithm that simultane-
ously deals with all the subtasks involved; namely that of registration,
restoration, and interpolation. Although the framework is presented in
the discrete spatial domain, the problem is transformed and solved in
the discrete frequency domain by appropriately exploiting the structures
of the matrices appearing in the likelihood function. This framework is
elegant and quite straightforward to understand. However, the result-
ing M-step of the EM algorithm involves a complex and non convex
minimization. This makes the resulting estimates of the subpixel shifts
dependent on the initial conditions used for the optimization. Current
work involves the exploration of the frequency domain relationship be-
tween the high and the low-resolution images and the formulation of the
problem in a way which is better suited for non convex problems, such
as Graduated Non Convexity [34].

Acknowledgments
The authors would like to acknowledge the assistance of Carlos Luna

and Passant Karunaratne, at Northwestern University, during the prepa-
ration of the manuscript.



102 SUPER-RESOLUTION IMAGING

References

[1] K. Aizawa, T. Komatsu, and T. Saito, “A Scheme for Acquiring
Very High Resolution Images Using Multiple Cameras,” IEEE Proc.
ICASSP-92, San Francisco, CA, vol. III, pp. 289-292, 1992.

[2] K. Aizawa, T. Komatsu, T. Saito, and M. Hatori, “Subpixel Regis-
tration for a High Resolution Imaging System Using Multiple Im-
agers,” IEEE Proc. ICASSP-93, Minneapolis, MN, vol. V, pp. 133-
136, 1993.

[3] P. E. Anuta, “Spatial Registration of Multispectral and Multitem-
poral Digital Imagery Using Fast Fourier Transform Techniques,”
IEEE Trans. Geoscience Electronics, vol. GE-8, no. 4, pp. 353-368,
Oct. 1970.

[4] M. R. Banham and A. K. Katsaggelos, “Digital Image Restoration,”
IEEE Signal Processing Magazine, vol. 14, no. 2, pp. 24-41, March
1997.

[5] D. I. Barnea and H. F. Silverman, “A Class of Algorithms for Fast
Digital Image Registration,” IEEE Trans. Computers, vol. C-21,
no. 2, pp. 179-186, 1972.

[6] N. K. Bose, H. C. Kim, H. M. Valenzuela, “Recursive Implemen-
tation of Total Least Squares Algorithm for Image Reconstruction
from Noisy, Undersampled Multiframes,” IEEE Proc. ICASSP-93,
Minneapolis, MN, vol. V, pp. 269-272, April 1993.

[7] C. Cenker, H. G. Feichtinger and H. Steir, “Fast Iterative and Non-
Iterative Reconstruction of Band-Limited Functions from Irregular
Sampling Values,” IEEE Proc. ICASSP-91, Toronto, pp. 1773-1776,
1991.

[8] A. D. Dempster, N. M. Laird and D. B. Rubin, “Maximum Likeli-
hood from Incomplete Data via the EM algorithm,” J. Roy. Stat.
Soc., vol. B39, pp. 1-37, 1977.

[9] F. DeNatale, G. Desoli, D. Giusto, and G. Vernazza, “A Spline-Like
Scheme for Least-Squares Bilinear Interpolation of Images,” IEEE
Proc. ICASSP-93, Minneapolis, MN, vol. V, pp. 141-144, 1993.

[10] D. Dudgeon, and R. Mersereau, Multidimensional Digital Signal
Processing, Prentice Hall 1984.

[11] M. Elad and A. Feuer, “Restoration of a Single Superresolution
Image from Several Blurred, Noisy, and Undersampled Measured
Images,” IEEE Trans. on Image Processing, vol. 6, no. 12, pp. 1647-
1657, December 1997.

[12] H. G. Feichtinger and K. Gröchenig, “Iterative Reconstruction of
Multivariate Band-Limited Functions from Irregular Sampling Val-
ues,” SIAM J. Math. Anal., vol. 23, no. 1, pp. 244-261, Jan. 1992.



REFERENCES 103

[13] B. R. Frieden and H. H. G. Aumann, “Image Reconstruction from
Multiple 1-D Scans Using Filtered Localized Projections,” Appl.
Opt., vol. 26, pp. 3615-3621, 1987.

[14] N. P. Galatsanos and R. T. Chin, “Digital Restoration of Multi-
channel Images,” IEEE Trans. Acoust., Speech, Signal Proc., vol.
37, no. 3, pp. 415-421, March 1989.

[15] N.P. Galatsanos, A.K. Katsaggelos, R.T. Chin, A. Hillery, “Least
Squares Restoration of Multi-Channel Images,” IEEE Trans. Signal
Processing, vol. 39, no. 10, pp. 2222-2236, Oct. 1991.

[16] N.P. Galatsanos and A.K. Katsaggelos, “Methods for Choosing the
Regularization Parameter and Estimating the Noise Variance in Im-
age Restoration and their Relation,” IEEE Trans. Image Process-
ing, vol. 1, pp. 322-336, July 1992.

[17] N. P. Galatsanos, M. Wernick, and A. K. Katsaggelos, “Multi-
channel Image Recovery”, in Handbook of Image and Video Process-
ing, A. Bovik, editor, ch. 3.7, pp. 161-174, Academic Press, 2000.

[18] R. M. Gray, ”On the Asymptotic Eigenevalue Distribution of
Toeplitz Matrices”, IEEE Trans. on Information Theory, vol. IT-
18, pp. 725-730, November 1972.

[19] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP
Registration and High-Resolution Image Estimation Using a Se-
quence of Undersampled Images”, IEEE Trans. on Image Process-
ing, vol. 6, no. 12, pp. 1621-1633, December 1997.

[20] M. Irani and S. Peleg, “Improving Resolution by Image Registra-
tion,” CVGIP: Graphical Models and Image Proc., vol. 53, pp. 231-
239, May 1991.

[21] A. K. Jain, Fundamentals of Digital Image Processing, Prentice
Hall, 1988.

[22] M. G. Kang and A. K. Katsaggelos, “General Choice of the Regular-
ization Functional in Regularized Image Restoration,” IEEE Trans.
Image Proc., vol. 4, no. 5, pp. 594-602, May 1995.

[23] A. K. Katsaggelos, “Iterative Image Restoration Algorithms,” Op-
tical Engineering, vol. 28, no. 7, pp. 735-748, July 1989.

[24] A. K. Katsaggelos, ed., Digital Image Restoration, New York:
Springer-Verlag, 1991.

[25] A. K. Katsaggelos and K. T. Lay, “Identification and Restoration of
Images Using the Expectation Maximization Algorithm,” in Digital
Image Restoration, A.K. Katsaggelos, editor, Springer-Verlag, 1991.

[26] A. K. Katsaggelos, J. Biemond, R. M. Mersereau, and R. W.
Schafer, “A Regularized Iterative Image Restoration Algorithm,”
IEEE Trans. Signal Processing, vol. 39, no. 4, pp. 914-929, April
1991.



104 SUPER-RESOLUTION IMAGING

[27] A. K. Katsaggelos, K. T. Lay, and N. P. Galatsanos, “A General
Framework for Frequency Domain Multi-Channel Signal Process-
ing,” IEEE Trans. Image Proc., vol. 2, no. 3, pp. 417-420, July
1993.

[28] S. P. Kim and N. K. Bose, “Reconstruction of 2-D Bandlimited
Discrete Signals from Nonuniform Samples,” IEE Proc., vol. 137,
pt. F, no. 3, pp. 197-204, June 1990.

[29] S. P. Kim, N. K. Bose and H. M. Valenzuela, “Recursive Recon-
struction of High Resolution Image From Noisy Undersampled Mul-
tiframes,” IEEE Trans. Acoust., Speech, Signal Proc., vol. 38, no.
6, pp. 1013-1027, June 1990.

[30] S. P. Kim, W. Y. Su, “Recursive High-Resolution Reconstruction
of Blurred Multiframe Images,” IEEE Proc. ICASSP-91, Toronto,
pp. 2977-2980, 1991.

[31] S. P. Kim, W. Su, “Subpixel Accuracy Image Registration By Spec-
trum Cancellation,” IEEE Proc. ICASSP-93, Minneapolis, MN, vol.
V, pp. 153-156, 1993.

[32] K. T. Lay and A. K. Katsaggelos, “Image Identification and
Restoration Based on the Expectation-Maximization Algorithm,”
Optical Engineering, vol. 29, pp. 436-445, May 1990.

[33] M. S. Mort and M. D. Srinath, “Maximum Likelihood Image Reg-
istration With Subpixel Accuracy,” Proc. SPIE, vol. 974, pp. 38-44,
1988.

[34] M. Nikolova, J. Idier, and A. Mohammad-Djafari, “Inversion of
Large-support Ill-posed Linear Operators Using a Piecewise Gaus-
sian MRF,” IEEE Transactions on Image Processing, vol. 7, no. 4,
pp. 571-585, 1998.

[35] A. Patti, M. Sezan and A. Tekalp, “Superresolution Video Recon-
struction with Arbitrary Sampling Lattices and Non-zero Apper-
ture Time,”, IEEE Trans. Image Processing, vol. 6, pp. 1064-1076,
August 1997.

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd. ed.,
Cambridge University Press, 1992.

[37] R. R. Schultz, R. L. Stevenson, “Extraction of High-Resolution
Stills from Video Sequences”, IEEE Trans. in Image Processing,
vol. 5, no. 6, pp. 996-1011, June 1996.

[38] C. Srinivas and M. D. Srinath, “A Stochastic Model-Based Ap-
proach for Simultaneous Restoration of Multiple Misregistered Im-
ages,” Proc. SPIE, vol. 1360, pp. 1416-1427, 1990.

[39] K. D. Sauer and J. P. Allebach, “Iterative Reconstruction of Band-
Limited Images from Nonuniformly Spaced Samples,” IEEE Trans.
Circuits and Systems, vol. 34, no. 10, pp. 1497-1505, Oct. 1987.



REFERENCES 105

[40] H. Stark and P. Oskoui, “High-resolution Image Recovery from
Image-Plane Arrays, Using Convex Projections,” J. Opt. Soc.
Amer. A, vol. 6, no. 11, pp. 1715-1726, Nov. 1989.

[41] A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High-Resolution
Image Reconstruction from Lower-Resolution Image Sequences and
Space-Varying Image Restoration,” IEEE Proc. ICASSP 92, San
Francisco, vol. III, pp. 169-172, 1992.

[42] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, John
Wiley and Sons, 1977.

[43] B. C. Tom and A. K. Katsaggelos, “Reconstruction of a High Res-
olution Image from Multiple Degraded Mis-Registered Low Res-
olution Images,” Proc. SPIE, Visual Communications and Image
Processing, Chicago, IL, vol. 2308, pt. 2, pp. 971-981, Sept. 1994.

[44] B. C. Tom, A. K. Katsaggelos, and N. P. Galatsanos, “Reconstruc-
tion of a High Resolution from Registration and Restoration of Low
Resolution Images,” IEEE Proc. International Conference on Image
Processing, Austin, TX, vol. 3, pp. 553-557, Nov. 1994.

[45] B. C. Tom and A. K. Katsaggelos, “Reconstruction of a High-
Resolution Image by Simultaneous Registration, Restoration, and
Interpolation of Low-Resolution Images,” IEEE Proc. International
Conference on Image Processing, Washington D.C., vol. 2, pp. 539-
542, Oct. 1995.

[46] B. C. Tom, “Reconstruction of a High Resolution Image from Multi-
ple Degraded Mis-registered Low Resolution Images,” Ph.D. Thesis,
Northwestern University, Department of ECE, December 1995.

[47] B. C. Tom, K. T. Lay and A. K. Katsaggelos, “Multi-Channel Image
Identification and Restoration Using the Expectation-Maximization
Algorithm,” Optical Engineering, “Special Issue on Visual Commu-
nications and Image Processing”, vol. 35, no. 1, pp. 241-254 Jan.
1996.

[48] B. C. Tom and A. K. Katsaggelos, “Resolution Enhancement of
Monochrome and Color Video Using Motion Compensation,” Trans
Image Proc., vol. 10, no. 2, pp. 278-287, Feb. 2001.

[49] R. Y. Tsai and T. S. Huang, “Multiframe Image Restoration and
Registration,” Advances in Computer Vision and Image Processing,
vol. 1, T. S. Huang, ed., Greenich, CT: Jai Press, ch. 7, pp. 317-339,
1984.

[50] S. Yeh and H. Stark, “Iterative and One-Step Reconstruction from
Nonuniform Samples by Convex Projections,” J. Opt. Soc. Amer.
A, vol. 7, no. 3, pp. 491-499, 1990.



Chapter 5

SUPER-RESOLUTION IMAGING USING
BLUR AS A CUE

Deepu Rajan*

School of Biomedial Engineering
Indian Institute of Technology-Bombay
Powai, Mumbai-400 076. India.
dr@doe.cusat.edu

Subhasis Chaudhuri
Department of Electrical Engineering
Indian Institute of Technology-Bombay
Powai, Mumbai-400 076. India.
sc@ee.iitb.ac.in

Abstract  In this chapter, we present a parametric method for generating a super-
resolution image from a sequence consisting of blurred and noisy ob-
servations. The high resolution image is modeled as a Markov random
field (MRF) and a maximum a posteriori (MAP) estimation technique
is used for super-resolution restoration. Unlike other super-resolution
imaging methods, the proposed technique does not require sub-pixel
registration of given observations. A simple gradient descent method is
used to optimize the cost. The discontinuities in the intensity process
can be preserved by introducing suitable line processes. Superiority of
this technique to standard methods of image interpolation is illustrated.
The motivation for using blur as a cue is also explained.
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1. Introduction
Super-resolution deals with obtaining still images and video at a res-

olution higher than that of the sensor used in recording the image. The
objective is to undo the effects of aliasing due to undersampling, loss of
high frequency detail due to point spread function (PSF) averaging and
due to motion or out-of-focus optical blurring. As indicated in Chapter
1, most of the techniques for super-resolution restoration reported so far
involve multiple sub-pixel shifted images of a scene which implies the
availability of more number of samples for image reconstruction. But
the attendant pre-requisite for such an approach is that of registration
of the observed frames or the estimation of the sub-pixel shifts. In some
cases these shifts are assumed to be known, e.g. [1]. In this chapter,
we avoid the task of registration by considering decimated, blurred and
noisy versions of an ideal high resolution image which are used to gen-
erate a super-resolved image. There are no spatial shifts but the images
are captured with different camera blurs.

The phenomenon of blurring is inherent during the formation of an
image due to the low resolution of the point spread function of the cap-
turing device. Blurring can also arise due to the relative motion between
the camera and the scene. In the case of real aperture imaging, we know
that the blur at a point is a function of the depth of the scene at that
point. Hence, we see the blur as a natural cue in a low resolution image
and hence, it should be exploited. Thus, the motivation behind using
blur as a cue is the fact that it is already present in the low resolution
observations. When different images of a scene are captured using differ-
ent camera parameter (focus, aperture, etc.) settings, the relative blur
between the observations are known. Here, in this work, we assume that
the blurs are known. Of course, in the practical case where the blurs
are unknown, there are techniques by which they can be estimated [2].
Assuming the blurs to be known and that the high resolution image can
be represented by a Markov random field, we perform a super-resolved
restoration of the observations to obtain the high resolution image.

Contextual constraints are essential in the interpretation of visual
information. The theory of Markov random fields (MRF) provides a
convenient and consistent way of modeling context dependent entities.
The practical use of MRF models is largely ascribed to the equivalence
between MRFs and Gibbs distribution established by Hammersely and
Clifford and further developed by Besag [3]. This equivalence enables the
modeling of vision problems by a mathematically sound and tractable
means for image analysis in the Bayesian framework. From the com-
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putational perspective, the local property of MRFs leads to algorithms
which can be implemented in a local and massively parallel manner.

In this chapter we model the super-resolved image to be estimated as
an MRF. Together with statistical decision and estimation theories, the
MRF model enables the formulation of objective functions in terms of es-
tablished optimality criteria. Maximum a posteriori probability (MAP)
is one of the most popular statistical criteria for optimality. In the MAP-
MRF framework, the objective is the joint posterior probability of the
MRF labels. The prior model for the super-resolved image is chosen in
such a way that the resultant cost function is convex. Consequently a fast
optimization technique such as gradient descent minimization suffices.
One can obtain an improved result for super-resolution if appropriate
line fields are included in the cost function to preserve the discontinuities
in the intensity process. [4]. However, in this case the computational
requirement goes up. In situations where the computational cost is not
an issue, simulated annealing can be used for optimization. A relatively
faster optimization technique would be the graduated non-convexity al-
gorithm[5].

In the following section, we briefly review the theory of MRFs. Sec-
tion 3 describes the low resolution image formation in terms of the un-
kown high resolution image. In Section 4, the cost function using the
MAP estimator is derived. Section 5 presents experimental results and
conclusions are presented in Section 6.

2. Theory of MRF
Since the theory of MRF has been used for super-resolution restora-

tion of observations, a quick review of the MRF is given in this section
for completeness of discussion.

A lattice S is a square array of pixels A random
field is the triplet where is the sample space, is the
class of Borel sets on and P is a probability measure with domain
A random field model is a distribution for an M-dimensional random
vector X, which contains a random variable for the ‘label’ at site t.
Label could be gray values, pattern classes, etc.

The sites in S are related to each other through a neighborhood system
defined as

where is the set of sites neighboring site i. The neighborhood rela-
tionship has the following properties :

1 a site is not neighboring itself :
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2 the neighboring relationship is mutual :

The pair (S, N) constitutes a graph where S contains the nodes and N
determines the arcs between the nodes. A clique c for (S, N) is defined
as a subset of sites in S in which all pairs of sites are mutual neighbors.
Cliques can occur as singletons, doublets, triplets and so on. The first

Figure 5.1. Illustration of (a) first and (b) second order neighborhood and (c) asso-
ciated cliques

and second order neighborhoods of a site and their corresponding cliques
are shown in Figure 5.1.

A discrete Gibbs random field (GRF) provides a global model [6] for
an image by specifying the following probability mass function :

where U(x) is called the energy function, x is a vector of ‘labels’ and
Z is a normalizing constant called the partition function, given by

The joint distribution indicates that smaller the energy of
a particular realization x, the more likely it is to occur. A potential
function is associated with each clique and the energy function
can be expressed as
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where is the set of all cliques in a neighborhood system. A GRF is
parameterised by the choice of clique functions, e.g., [7]

While a GRF describes the global properties of an image in terms of
the joint distribution of labels for all pixels, an MRF is defined in terms
of local properties. A random field, with respect to a neighborhood
system, is a discrete MRF if its probability mass function satisfies the
following properties [8, 9]: (Notation : S\t is the set of all sites in S
excluding site t. is the set of all sites in the neighborhood of site t,
excluding site t itself.)

1 (Positivity)

2  (Markov Property)

3  (Homogeneity) is the same for all sites t.

While an MRF is characterized by its local property, viz., the Marko-
vianity, a GRF is characterized by its global property. The utility of
MRFs arises from the Hammersley-Clifford theorem which states that
X is an MRF on S with respect to N if and only if X is a GRF on S
with respect to N [3, 6]. The theorem provides a simple way of express-
ing the joint probability P(X = x) by specifying the clique potential
functions This enables the a priori knowledge to be encoded into
the estimation process.

A variety of physical phenomena is characterized by smoothness. It is
one of the most common assumptions in computer vision models, espe-
cially those formulated as MRFs [4, 10]. The line process model, intro-
duced by Geman and Geman [4] assumes piecewise smoothness whereby
the smoothness constraint is “switched off” at points where the magni-
tude of the signal derivative exceeds certain threshold. It is defined on
a dual lattice that has two sites corresponding to the vertical and hori-
zontal line fields whose elements are v(i, j) and l(i, j), respectively, that
take on binary values from {0,1} resulting in corresponding binary line
fields V and L. The a priori Gibbs distribution in (5.1) can be modified
to

where the partition function The on-state of
the line-process variable indicates that a discontinuity, in the form of
a high gradient, is detected between neighboring points, e.g., l(i, j) =
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1 if Threshold, else l(i, j) = 0. Each turn-on of a
line-process variable is penalized by a quantity so as to prevent spu-
rious discontinuities. Thus, for the so-called weak membrane model [5],
the energy function is written as

It may be noted that the energy function defined as above is not differen-
tiable and hence minimization of the energy function is computationally
demanding. One may, however, define a smoothly varying line process
l(i, j) and v(i, j) such that the energy function is differentiable.

3. Modeling the Low Resolution Observations
The low resolution image sensor plane can be perceived as a collection

of square sensor elements. The low resolution intensity values
are denoted as and If
the downsampling parameters are and in the horizontal and vertical
directions, respectively, then the high resolution image will be of size

Without loss of generality, we can assume
and therefore the desired high-resolution image will have intensity
values and Given
{z(k, l)}, the process of obtaining {y(i, j)} is written as

i.e., the low resolution intensity is the average of the high resolution in-
tensities over a neighborhood of pixels. This decimation model sim-
ulates the integration of light intensity that falls on the high-resolution
detector.

Each of the decimated images is blurred by a different, but known
linear space invariant blurring kernel. Motivation for having such a blur
is already given in Section 1. Elad and Feuer [11, 12] have shown that
in this case super-resolution restoration is possible even if there is no
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relative motion between the input images. They derive the following
necessary condition for super-resolution to be possible for images that
are not represented parametrically :

where (2m + 1) × (2m + 1) is the size of the blurring kernel and p
is the number of input images. In the current study, since the high
resolution image has been modeled by an MRF and since the model
parameters (in terms of clique potential) are assumed to be known, one
can recover the high resolution image with much fewer observations.
Hence, although more number of blurred observations of a scene do not
provide any additional information in the same sense as sub-pixel shifts
of the camera or changing illuminant directions do, it is, nevertheless,
possible to achieve super-resolution with these blurred samples, provided
equation (5.5) is satisfied. Even if only the relations among the blurring
functions are known, as is the case in, say, depth from defocus problems
[13, 2], it is tantamount to knowing all the blurs provided any one of
them is known. Finally, i.i.d. zero mean Gaussian noise is added to the
decimated and blurred images. Noise is assumed to be uncorrelated in
different low resolution images.

Next, we formally state the problem by casting it in a restoration
framework. There are p observed images each of size
which are the decimated, blurred and noisy versions of a single high
resolution image of size where and If

is the lexicographically ordered vector containing pixels
from the low resolution image then a vector of size
containing pixels of the high resolution image can be formed by placing
each of the q × q pixel neighborhoods sequentially so as to maintain
the relationship between a low resolution pixel and its corresponding
high resolution pixel. After incorporating the blur matrix and the noise
vector, the image formation model is written as

where D is the decimation matrix of size H is the
blurring matrix (PSF) of size is the
noise vector and p is the number of low resolution observations. In the
current study, we assume the blur kernel to be shift invariant so that
the matrix H is block-Toeplitz. In a practical case, where the cue comes
from the natural blur due to defocus [2], the blur will be shift varying
and hence the matrix H will not be block-Toeplitz. The decimation
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matrix D consists of values of in each row and has the form [14]

It may be noted that representing the high resolution intensity pro-
cess is not lexicographically ordered unlike For a lexicographically
ordered data the matrix D will have a different structure.

Thus, the model indicates a collection of low resolution images, each
of which differs from the others in the blur matrix, which is akin to
changing the focus of a stationary camera looking at a stationary scene.
However, as noted earlier, here we assume that the blurs are known.
Since we have assumed noise to be zero mean i.i.d, the multivariate
probability density function of is given by

where denotes the variance of the noise process. Our problem now
reduces to estimating given which is clearly an ill-posed, inverse
problem.

Although the process of decimation followed by blurring is the re-
verse of the more intuitive process of decimation of a blurred image,
we have observed from simulations that the results are very similar in
both the cases. Moreover, the computational overhead in the model of
equation (5.6) will increase, if the positions of and D are swapped.
Mathematically, both the models (i.e., positions of. and D swapped)
are equivalent as and D are both known.

4. MAP Estimation of the Super-resolution
Image

The maximum a posteriori (MAP) estimation technique is used to
obtain the high resolution image given the ensemble of low resolution
images, i.e.,

From Bayes’ rule, this can be written as
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Since the denominator is not a function of equation (5.10) can be
written as

Taking the log of posterior probability,

Hence, we need to specify the prior image density and the condi-
tional density

4.1. Prior Model for the Super-resolution Image
MRF models have been widely used to solve computer vision problems

because of their ability to model context dependency, since interpreta-
tion of visual information necessitates an efficient description of contex-
tual constraints. As mentioned earlier, the utility of MRF models arises
from the Hammersley-Clifford theorem which describes the equivalence
of the local property that characterizes an MRF and the global property
which characterizes a Gibbs random field (GRF). The lexicographically
ordered high resolution image satisfying the Gibbs density function is
now written as

where Z is a normalizing constant known as the partition function,
is the clique potential and is the set of all cliques in the image. In order
to employ a simple and fast minimization technique like gradient descent,
it is desirable to have a convex energy function. More importantly, the
minimization procedure should not get trapped in a local minima. To
this end, we consider pair wise cliques on a first order neighborhood and
impose a quadratic cost which is a function of finite difference approxi-
mations of the first order derivative at each pixel location, i.e.,

where can be viewed as a “tuning” parameter. It can be interpreted
as the penalty for departure from smoothness in In this study, we
make no attempt at finding out the parameters that constitute the MRF
model for a given scene. Indeed, if one has access to the correct model
and the corresponding parameters, one is likely to perform much better
restoration. Here, we demonstrate that the method performs well even
while using a simple model to describe the intensity process.
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It is well known that in images, points having significant change in the
image irradiance carry important information. In order to incorporate
provisions for detecting such discontinuities, Geman and Geman [4] in-
troduced the concept of line fields located on a dual lattice. We describe
a prior using horizontal and vertical line fields in Section 4.4 and use
graduated non-convexity (GNC) algorithm to optimize the correspond-
ing cost function. As mentioned earlier, where computational issues do
not arise, one could go in for simulated annealing (SA) in which case, we
observe a significant improvement in the performance of the restoration
process.

4.2. MAP Solution
From equation (5.12), since the noise process are independent,

Since noise is assumed to be i.i.d Gaussian, from equations (5.6) and
(5.8) we obtain

where is the noise variance. Substituting in (5.15) and using (5.13)
we get,

Substituting equation (5.14) into equation (5.17), the final cost function
is obtained as
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The above cost function is convex in terms of the unknown image and
hence a simple gradient descent optimization can be used to minimize
it. It may be mentioned here that although the super-resolved image
has been assumed to be an MRF, the low resolution observations do
not constitute separate MRFs, and hence a multi-resolution MRF model
based super-resolution scheme will not work [15].

4.3. Gradient Descent Optimization
The cost function of equation (5.18) consists of two parts - the first

part is the error between the observation model and the observed data
and the second part is the regularization term which is minimized when
is smooth. It is not sufficient to minimize the error term alone since this
will lead to excessive noise amplification due to the ill-posed nature of
the inverse problem. The contribution of the two terms are controlled by
the noise variance and the regularization parameter The gradient
of (5.18), at the iteration is given by

where at location (k,l) in the super-resolution lattice is given by

The estimate at iteration,

where is the step size, is computed iteratively until
Threshold. The initial estimate is chosen as the bilinear interpola-
tion of the available least blurred, low resolution image. It should be
noted here again that the necessary condition for obtaining the super-
resolution image given in equation (5.5) is not applicable here as the
super-resolved image is modeled by an MRF unlike in [11] where is
not represented parametrically. It is the parameteric representation of
the super-resolved image (in terms of the MRF model) along with the
blur cue that helps us in obtaining the super-resolution.

4.4. Preservation of Discontinuities
Presence or absence of discontinuities conveys important information

such as change in surface orientation, depth, texture, etc. The concept of
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line fields on a dual lattice, consisting of sites corresponding to vertical
and horizontal line fields, was introduced in [4]. The horizontal line
field element l(i, j) connecting site (i, j) to (i, j – 1) aids in detecting
a horizontal edge, while the vertical line field element v(i, j) connecting
site (i, j) to (i–1, j) helps in detecting a vertical edge. Note that we have
chosen l(i, j) and v(i, j) to be binary variables in this study. However,
one can use continuous variables as well without much changing the
problem formulation [9]. The advantage of using continuous variable line
fields lies in having a differentiable cost function when a gradient-based
optimization method can still be used. The log of the prior distribution
in equation (5.13), observing the normalizing term in other parameters,
becomes

where

and

Here is the same smoothness term but punctuated through the incor-
poration of the appropriate line fields, and the term quantifies the
amount of punctuation in the otherwise smooth field. Given a preset
threshold, if the gradient at a particular location is above that thresh-
old, the corresponding line field is activated to indicate the presence of a
discontinuity. The term multiplying provides a penalty for every dis-
continuity so created. Putting the above expression into equation (5.17),
we arrive at the modified cost function

When the energy function is non-convex, there is a possibility of the
steepest descent type of algorithms getting trapped in a local minima.
As shown earlier, our cost function was chosen to be convex. This saved
us from the requirement of using a computationally intensive minimiza-
tion technique like simulated annealing (SA). However, on inclusion of
line field terms in the cost function to account for discontinuities in the
image, the gradient descent technique is liable to get trapped in local
minima. We see the similarity between the above cost function and the
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energy function of the weak membrane formulation [5]. Hence, the GNC
algorithm is apt for carrying out the minimization. Although the results
indicate an improvement over the gradient descent approach, still better
estimates of the super-resolved image are observed using SA since it
guarantees the attainment of the global minima as opposed to the GNC
algorithm which is a sub-optimal one.

5. Experimental Results
In this section, we present results of simulation of the technique on

various images. Figure 5.2 shows two of the five low resolution noisy
images of Lena, CT and Pentagon, each of size 64 × 64, obtained by
decimating the respective original images and blurring the decimated
images with Gaussian blurs, repeated here that the reverse process of
blurring the original image and decimating it, does not produce signif-
icant difference from the results reported here. Although the Gaussian
blur has an infinite extent, for purpose of computation we chose the ker-
nel size according to an extent of where is the blur parameter.
Each low resolution observation contains zero mean Gaussian noise with
variance 5.0.

Figure 5.2. Low resolution, noisy images of Lena, CT and Pentagon with blurs (a)
and (b) respectively.

First, we present the results of super-resolution using the gradient
descent method. As mentioned in Section 4.3, the initial estimate of the



120 SUPER-RESOLUTION IMAGING

high resolution image is the bilinear interpolation of the least blurred
observation. The smoothness parameter was chosen as 16.75 for the
Lena and CT images and 20.0 for the Pentagon image. These parameters
were chosen mostly on an adhoc basis and no effort has been made in this
study to arrive at their optimal values. The step size was initially chosen
as 0.1 and was reduced by a factor of 0.99 after each iteration. For large
values of the data consistency term in equation (5.18) dominates,
producing excessive blockiness in the expanded image. On the other
hand, a small value of causes over-smoothing. The super-resolved
Lena image using the gradient descent optimization scheme is shown
in Figure 5.3. Results of zero order hold expansion and cubic spline

Figure 5.3. Super-resolved Lena image obtained using gradient-descent optimization.

interpolation of the least blurred Lena image are shown in Figures 5.4(a)
and 5.4(b), respectively. The blockiness in the zero-order hold expanded

Figure 5.4. Lena image (a) zero order hold expanded and (b) cubic spline interpo-
lated, respectively.

image is clearly discernible, while the spline interpolated image is not
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only significantly noisy, but, as is expected of splines, it is also blurred
due to over-smoothing. On the other hand, the proposed algorithm also
does deblurring in addition to removing noise and generating a super-
resolved image. The super-resolved CT and Pentagon images with 5
low resolution observations using the proposed method are shown in
Figure 5.5. The gradient descent method was used for the optimization
purpose. The cynuses in the bone near the right middle edge of the
CT image which are not visible in the low resolution observations show
up clearly in the super-resolved image. The super-resolved Pentagon
image contains more details of the circular central part than any of the
low-resolution images.

Figure 5.5. Super-resolved images of (a) CT and (b) Pentagon with 5 low resolution
observations, using the gradient-descent method.

The mean squared error between the original image and generated
super resolved image is defined as

Table 5.1 shows the comparison of the MSE for the proposed method
with standard methods like zero-order hold and cubic spline interpo-
lation. Notice the significant drop in the MSEs for CT and Pentagon
images in going from cubic spline interpolation to the proposed technique
using gradient descent optimization technique.

In another experiment, only two low resolution observations, each of
Lena, CT and Pentagon were constructed, out of which one was not
blurred and the other was blurred with The mean squared
errors of the super-resolved Lena, CT and Pentagon images shown in
Figure 5.6 were 0.003586, 0.021446 and 0.009416, respectively. Compare
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Table 5.1. Comparison of MSEs for different interpolation schemes.

this to the results given in the third row in table 5.1. This is not very
different from the results we obtained when all the input images were
defocused. Hence, there is no appreciable gain in having focused images
in the low resolution ensemble. The proposed technique is, therefore,
suitable for low-resolution images that are blurred, since the algorithm
inherently performs a deblurring operation. It was observed that there
was a marked progressive reduction in the mean square errors till four
input observations; however, for five or more images, the errors did not
decrease significantly, although more number of images helps in smooth-
ing out noise.

Next, we present results of minimization of the modified cost function
when line processes are used to preserve discontinuity. As before, we
consider 5 low resolution observations. The super-resolved images using
GNC as the optimization technique are shown in Figure 5.7. The MSE
for this method is indicated in Table 5.1. Visually, there is a significant
reduction in noise of the super-resolved images generated using the dis-
continuity preserving method. In yet another experiment, we carried out
the optimization of the modified cost function using SA, but with the
output of the GNC algorithm as the initial estimate of the super-resolved
image. The super-resolved Lena, CT and Pentagon images obtained us-
ing this method are shown in Figure 5.8. Notice that the estimates of
the GNC algorithm have undergone further deblurring resulting in a
sharper image, e.g. around the eyes of Lena and on the Pentagon image
as a whole. We noted earlier that in order to avoid the computational
expense of simulated annealing, we opted for a convex cost function by
choosing a suitable expression for the clique potentials. However, with
incorporation of line fields and optimization using the GNC, which is
proven to have a faster convergence than SA, we obtained a better es-
timate of the super-resolved image. When computational complexity is
not an issue, we could go further and use the SA to obtain still better
estimates.
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Figure 5.6. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using only two
low resolution observations with and

Simulations were also carried out to investigate the effect of the num-
ber of observations on the quality of the super-resolved image. As shown
in Figure 5.9, the mean square errors decrease as the number of low reso-
lution observations increases. The plots also illustrate the superiority of
the discontinuity preserving method to the gradient descent approach.
As noted earlier, the flat nature of the plots for the gradient descent
approach implies that the errors do not reduce significantly, although
more number of images do contribute to smoothening out noise. On
the other hand, an increase in the number of images does bring about a
substantial reduction in errors when line fields are included in the cost
function.

Finally, we present some results from our on-going study on recov-
ering a super-resolved image from a sequence of space varying blurred
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Figure 5.7. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using the GNC
optimization scheme.

observations. The details are available in [16]. We consider the case
where the blurring is constant over a certain contiguous region of the
image and then the amount of blurring varies linearly over a second re-
gion and finally is constant again over the remaining part of the image.
Such a variation in the blur kernel occurs when the images are captured
with a finite aperture lens and when the depth in the scene has simi-
lar variations. Two such blurred images of the sail image are shown in
Figure 5.10(a) and (b) and the super-resolved image is shown in Fig-
ure 5.10(c). Unlike in previous experiments, the blur kernel was not
assumed to be known; rather it was estimated locally at each pixel using
the depth from defocus technique. The super-resolved image recovery
technique has performed quite well. The numerals on the sail as well as
the thin lines on the sail are discernible.
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Figure 5.8. Super-resolved (a) Lena, (b) CT and (c) Pentagon images using simulated
annealing (SA).

A second example of super-resolution from space varying blurred im-
ages is illustrated through low resolution observations of the Text image.
Each observation of size 46 × 212 is blurred by a space varying blur hav-
ing a step profile. Two of the five low resolution images are shown in
Figure 5.11(a) and (b). Due to the step-like variation in the blur pro-
file, we notice the text getting progressively blurred from the left to the
right end of the input images. The estimated super-resolved text image
is shown in Figure 5.11(c) in which the text is readable throughout. The
above two examples illustrate that depth related defocus blur could be
used as a natural cue for generating super-resolution images.
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Figure 5.9. Comparison of mean square errors between the gradient-descent and the
discontinuity preserving (GNC) approaches for (a) Lena, (b) CT and (c) Pentagon
images, as the number of observations increases.
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Figure 5.10. (a) and (b) Two of the low resolution Sail images and (c) the super-
resolved Sail image.

Figure 5.11. (a) and (b) Two of the low resolution Text images and (c) the super-
resolved Text image.

6. Conclusions
This chapter addressed the problem of generating a super-resolution

image from a sequence of blurred, decimated and noisy observations of
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an ideal image. A MAP-MRF approach was used to minimize the func-
tion. Initially, the energy function was chosen to be convex by selecting
the finite difference approximation of the first order derivative of the
intensity at each pixel location. This enabled the use of steepest-descent
type of algorithms to be used for minimization. The errors are seen to
level off after about 35 iterations for all the images considered in this
paper. Comparison with zero order hold and spline interpolation tech-
niques shows that the proposed method is superior. Since there is no
relative motion between the observed images, as is the case in most of
the previous work in super-resolution, the difficult tasks of image reg-
istration and motion estimation are avoided. For the same reason, the
performance of the proposed scheme cannot be compared with those ob-
tained using motion-based super-resolution techniques. Next, the cost
function was modified to include line fields to preserve discontinuitites,
which is then minimized using the GNC algorithm. Since GNC is a sub-
optimal optimization technique, we also used the more computationally
intensive simulated annealing algorithm. In addition to significant noise
reduction, the sharpness in the image was also observed to be enhanced.

In this chapter we assumed that the blurring kernels are known. How-
ever, in most practical situations, this may not be the case. Hence, the
next natural step is to look at the problem of super-resolved restora-
tion with unknown blurs. This translates to a joint blur identification
and super-resolution restoration problem. Investigations are currently
underway [16] to achieve the above.
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Abstract
This chapter focuses on three issues: supporting image warping algo-

rithms for super-resolution, examples of how image warping algorithms
impact super-resolution image quality, and the development of quanti-
tative techniques for super-resolution algorithm evaluation.

The warping approach proposed in this chapter is based on the inte-
grating resampler [Chiang and Boult, 1996] which warps the image while
both enforcing the underlying image reconstruction and satisfying the
imaging consistent constraint [Boult and Wolberg, 1993]. The imag-
ing consistent constraint requires that the image reconstruction yields a
function which, when convolved with the imaging system’s point-spread
function (PSF), is consistent with the input image. Many popular re-
construction techniques, including bilinear and natural cubic splines, do
not satisfy the imaging consistent constraint. In this chapter, we review
imaging consistent warping algorithms, how they form the core of the
integrating resampler, and their implementation.

Although imaging consistent warping techniques can be used in other
super-resolution implementations, such as those discussed in Chapter 8,
we present its use in a simpler direct approach: warping followed by
a straightfoward fusion. Examples are provided on grayscale images of
simple patterns, text, and human faces. The use of priors in the fusion,
such as those used in Chapter 10 could further enhance the results, but
we analysize the simpler approach to isolate the impact of the warping
algorithm.

The chapter then discusses the important problem of quantitative
evaluation and presents a summary of two different quantitative exper-
iments: using OCR and face recognition as metrics. These experiments
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clearly show the importance of high-quality reconstruction and warping
to super-resolution. Perhaps more importantly, these experiments show
that even when images are qualitatively similar, quantitative differences
appear in machine processing. As the super-resolution field is pushed
towards its boundardies, the ability to measure progress, even if it is
small, becomes increasingly important.

Keywords:  Super-Resolution, Imaging-Consistent Restoration/Reconstruction, In-
tegrating Resampling, Integrating Resampler, Quantitative Evaluation,
OCR, Bi-linear Resampling, Image Reconstruction, Image Restoration,
Image Warping, Balanced Repeated Replicates, Replicate Statistics,
Face Recognition.

1. Background and Introduction
The fundamental purpose of image warping is to allow the reshap-

ing of image geometry for a variety of applications. Inherent in any
super-resolution algorithm that uses multiple images is the alignment,
or “matching,” of data among the images—the computation of a map-
ping from each pixel in the low resolution image to a pixel in the super-
resolution image. Except in specalized devices that intentionally cause
precise sub-pixel shifts, alignment is almost always to a regular grid, and
hence can be viewed as a general warp of the input image. General im-
age warping, as is needed for super-resolution, requires the underlying
image to be resampled at non-integer, and generally spatially-varying
locations. Hence, super-resolution requires sub-pixel image reconstruc-
tion, but is not necessarily amenable to efficient image reconstruction via
convolution. When the goal of warping is to produce output for human
viewing, only moderately accurate image intensities are needed. In these
cases, techniques using bilinear interpolation have been found sufficient.
However, as a step for applications such as super-resolution, the preci-
sion of the warped intensity values is often important. As we shall show
in this chapter, super-resolution based on bilinear image reconstruction
may not be sufficient.

One of the first explicit uses of image warping for super-resolution was
in [Peleg et al., 1987, Keren et al., 1988]. Peleg and Keren estimated
an initial guess of the high-resolution image, and simulated the imaging
process via warping so that the difference between the observed and
simulated low-resolution images was minimized. Irani and Peleg [Irani
and Peleg, 1991, Irani and Peleg, 1993] used a back-projection method
similar to that used in tomography to minimize the same difference.
Bascle et al. [Bascle et al., 1996] extended this back-projection method
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to include a simple motion blur model. We note, however, that all
previous work has ignored the impact of image warping techniques.

Not all prior image-based work has used image warping. Algebraic
approaches do have some significant advantages; analysis of the under-
lying linear systems may constrain the blur kernel enough to permit the
computation of new information. Also, algebraic approaches are more
naturally extended to allow for Bayesian estimation and the use of priors.
Note, however, that algebraic constraints still require sub-pixel evalua-
tion of the input for each pixel in the super-resolution image, which is
tantamount to warping. One can view warping as a pre-processing that
takes the spatial alignment and matching information and generates re-
constructed images that would make solution of the algebraic equations
more efficient. The lack of high-quality reconstruction for warping may
be the unstated reason that algebraic techniques have not embraced
warping.

This chapter is structured as follows. In Section 2, the image forma-
tion process and the relationships between restoration, reconstruction,
and super-resolution are briefly reviewed. The integrating resampler - an
efficient method for warping using imaging-consistent reconstruction &
restoration algorithms - is given in Section 3. In Section 4, we introduce
the super-resolution algorithms considered in our analysis. Quantitative
measurement of super-resolution imaging using three different applica-
tions is shown in Section 5.

2. Image Formation, Image Restoration and
Super-Resolution

To address the problem of super-resolution, we need to first under-
stand the process of image formation, reconstruction, and restoration.
Although previous chapters provide most of the necessary background,
to better describe our warping and super-resolution techniques, we briefly
review the image formation process and sensor model as proposed in
[Boult and Wolberg, 1993].

Generally, image formation can be described as a cascade of filtering
operations. There is an overall blur applied at each pixel, h(x,y), that
can be decomposed as the sequence of operations as shown figure Fig. 6.1.
Let f(x,y) be the intensity distribution of a scene in front of a lens
aperture. That distribution is acted upon by the blurring component
of the lens, yielding The application of a geometric
distortion function, produces image At this point,

strikes the image sensor where it undergoes additional blurring
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Figure 6.1. The image formation process and the relationship between restoration, re-
construction, and super-resolution.

by a point spread function, which generates image This
blurring reflects the limitation of the sensor to accurately resolve each
point without the influence of neighboring points. We choose to use a
simple model wherein this blurring takes place within one pixel because
for CCD and CID cameras the physical boundaries between photosites
generally allow only insignificant charge transfer between pixels. Image

undergoes spatial sampling as it hits the discrete CCD or CID
photosites. The combination of convolution with the photosite blur
and sampling is known as area sampling and reflects the finite size of a
discrete photosite. If was assumed to be an impulse, then we have
point sampling. While point sampling is often assumed for theoretical
considerations, it is not true in practice. In either case, intensities in
the sampled image are now defined only for integer values of u and v.
The digital image I(u, v) is obtained via an analog-to-digital converter
that quantizes the samples of Note that parts of this decomposition
are more conceptual than physical since, for instance, the geometric and
blurring components occur simultaneously.

Reconstruction and restoration start with I (and models for one or
more blur kernels and seek to solve for one or more Re-
covering an approximation of f(x, y) is known as image restoration and
is of considerable interest in image processing. The most common for-
mulation of that problem, however, is actually recovering a discretized,
rather than continuous, form of f. Recovering might be called
intra-pixel restoration, though it is is not commonly discussed in the
literature.

Given this image formation model we might define super-resolution as
the use of multiple images and/or prior model information to recover an
approximation to f(x, y) better than what would be obtained by image
reconstruction followed by debluring using knowledge of This
definition includes approximating the image at a larger size with reason-
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able approximations for frequencies higher than those representable at
the original size. While it may seem non-traditional it also includes im-
proving the SNR while keeping the image size fixed. Given such an SNR
improved image, one could simply perform a finer resampling and de-
blur to obtain a super-resolution with increased spatial resolution. Note
that since debluring amplifies noise, the increased SNR can have a more
significant result on the super-resolution image than might be initially
expected. In practice, however, one would want to improve the SNR
at the higher spatial resolution to reduce the impact of reconstruction
artificats when increasing the resolution.

Because of the multiple, and different degradations in this imaging
model, we will define two different types of super-resolution that will
be considered in this chapter. Recovering a discrete approximation,
with resolution higher than to is called (plain) super-resolution
and appoximation to f is called super-resolution with deblurring. Note
that super-resolution with deblurring requires knowledge of the primary
bluring kernel — a reasonable assumption for simple lens blur but tenu-
ous for atomospheric or depth of field effects. Because super-resolution
increases the signal-to-noise ratio in the approximation to it signifi-
cantly ameliorates the ill-conditioned nature of deblurring.

3. Imaging-Consistency and The Integrating
Resampler

Image reconstruction plays a key role in all super-resolution algo-
rithms. Given the finite set of samples, there is an uncountably infi-
nite number of functions that satisfy the data, and hence, image in-
terpolation involves adding regularization constraints to allow a unique
function to be defined, given the image data. Often there is a need
to balance computational complexity against the sophisticated nature
of the assumptions and constraints. The many constraints developed
in the design of image reconstruction filters have been extensively dis-
cussed: in books [Andrews and Hunt, 1977, Pratt, 1978, Gonzalez and
Wintz, 1987, Pavlidis, 1982, Wolberg, 1990, Pratt, 1990], articles [Simon,
1975, Andrews and Patterson, 1977, Hou and Andrews, 1987, Park and
Schowengerdt, 1982, Reichenbach and Park, 1989, Jain, 1989, Oakley
and Cunningham, 1990], and comparison papers [Parker and and D.E.
Troxel, 1983, Mitchell and Netravali, 1988, Maeland, 1988]. Many of
these constraints are related to how well the underlying filter approxi-
mates the ideal sinc filter. Even the “ideal” sinc interpolation is based on
the assumption that the image is an infinite signal sampled at or above
its Nyquist rate. While it is true that optics limit image bandwidth, it
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need not result in images that are Nyquist sampled. If the underlying
function f was Nyquist sampled, then except for noise removal, there is
no need for super-resolution.

In [Boult and Wolberg, 1993], a new constraint was added to the
mix of potential assumptions for image reconstruction: requiring the
algorithm to be imaging-consistent. An algorithm is called imaging-
consistent if it is the exact solution for some input function, which,
according to the imaging model, would have generated the measured
input. This constraint is particularly important for super-resolution be-
cause it means each resampling would, when subjected to the imaging
model, actually be consistent with the measured image.

For image reconstruction, we can achieve a imaging-consistent recon-
struction by first restoring the image to yield an approximation to
then performing an additional blur by the pixel’s PSF. Although restora-
tion is ill-posed, blurring produces an image reconstruction that is to-
tally consistent with the input data, regardless of the resampling rate.
The use of image restoration technique permits the work presented in
this chapter to achieve image reconstruction in a fundamentally different
way than traditional approaches. Our approach is in the spirit of the
work of [Huck et al., 1991], where it is argued that sampling and image
formation should be considered together. Imaging-consistent algorithms
directly combine knowledge of image formation and sampling into the
reconstruction & restoration process. The way that knowledge is used,
however, is quite different from [Huck et al., 1991].

Imaging-consistent algorithms follow quite naturally from a general
approach to algorithm development known as information-based com-
plexity (IBC) (see [Traub et al., 1988]). From IBC, it can be shown
that the imaging-consistent algorithms enjoy very good error properties
for many definitions of error. In particular, imaging-consistent algo-
rithms have, within the presribed space of functions, an error at most
twice that of any algorithm for any error measure defined as a weighted
norm on the space of solutions (e.g., or even a weighted least-squares
measure). Note that most image-quality measures yielding a scalar are
error measures of this type — e.g., the QSF measure of [Drago and
Granger, 1985, Granger, 1974], QSF extensions that include contrast ef-
fects, any weighted integral of the modulation transfer function (MTF),
and the measure of [Park and Schowengerdt, 1982] when weighted and
integrated over frequency For the algorithms discussed here we pre-
sume the space of functions are continuous and piecewise analytic with
a bounded first derivative in each piece. More discussion of these error
properties, and alternative spaces of functions, can be found in [Chiang,
1998].



Super-Resolution via Image Warping 137

Of course, an algorithm that performed a full restoration followed by
blurring could be computationally expensive. Fortunately, with some
effort, the imaging consistency constraint can be applied in a functional
way, and incorporated into a very efficient algoirthm. In this chapter,
only an overview is provided. For more details, and the derivation of
four other imaging consistent algoirthms, see [Boult and Wolberg, 1993,
Chiang, 1998]. One-dimensional image models are presented herein, but
since higher dimensions may be treated separably, the process is easily
extended.

The simplest imaging-consistent method to consider is based on a
piecewise quadratic model for the image. If we assume each photosite
PSF is a Rect filter (1.0 inside the pixel, zero otherwise), an imaging
consistent algorithm is easy to derive. To ensure that the function is
continuous and local, we define the value of the reconstruction at the
pixel boundaries and to be equal to and . Any method
of approximation could be used to compute though our examples
will only include cubic convolution or linear interpolation. See [Chiang,
1998, Section 2.3] for a more detailed derivation and more examples.

Given the values at the pixel edges, an imaging consistent con-
straint is that the integral across the pixel must equal This results
in exactly three constraints:

From Eq. (6.1), one can derive the following quadratic polynomial

where Using cubic convolution with parameter a to
derive yields

So that the cubic convolution kernel resembles the sinc funtion, the
parameter a is generally in the range [-3, 0], with the values –0.5, –0.75,
and –1.0 having special significance (see [Simon, 1975, Keys, 1981, Park
and Schowengerdt, 1983]). Note that with a = 0, we have
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In other words, for a = 0, cubic convolution interpolation of the edge
values (i.e., midpoints between pixels) is equal to the value given by
bilinear interpolation.

When applied over the entire image, Eq. (6.2) yields  an intra-pixel
restoration. If an imaging-consistent reconstruction is desired, it may be
obtained from the intra-pixel restoration via covolution with the pixel
PSF. Assuming a Rect PSF for the pixel, one can integrate Eq. (6.2) to
derive a functional form for reconstruction. The result is the per-pixel
cubic polynomial

where spans from the center of one input pixel to the next.
It is interesting to note that if a = 0 as in Eq. (6.4) (i.e. linear

interpolation) is used to determine Ei, the resulting imaging-consistent
reconstruction (Eq. (6.5)) is tantamount to cubic convolution with the
“optimal” value of a = –0.5 — proof can be found in [Chiang, 1998,
Section 2.4]. No other value of a yields a reconstruction that satisfies the
imaging-consistent constraint with a simple PSF. That is, if we use cubic
convolution with to estimate the resulting imaging consistent
polynomial is not equivalent to any cubic convolution. We have found
that using cubic convolution with a =  –0.5 to estimate is one of the
best imaging consistent algorithms and it is the value used for most of
the examples in this chapter.

This section presented a model that is globally continuous and ana-
lytic except on the pixel boundaries, which results in a per pixel model
which is quadratic after restoration (cubic after reconstruction). In
[Boult and Wolberg, 1993, Chiang, 1998], we also present/analyze al-
ternatives that are globally differential or smoother, and also models
that have multiple polynomials per pixel.

3.1. Imaging Consistent Warping: The
integrating resampler

To define an imaging-consistent warping, we generalize the idea of
the imaging-consistent reconstruction/restoration. Whereas imaging-
consistent reconstruction assumes that the degradation models are iden-
tical for both input and output, imaging-consistent warping allows both
the input and output to have their own degradation models, and also
allows for the degradation models to vary its size for each output pixel.
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The imaging-consistent algorithms described above and in [Boult and
Wolberg, 1993] are linear filters. We designed them for use in what we
call the integrating resampling approach. For the super-resolution results
described herein, we consider only the integrating resampler assuming a
Rect PSF filter as described in [Chiang and Boult, 1996], which we refer
to as QRW.

As described before, our model of image formation requires the image
to be spatially sampled with a finite area sampler. This is tantamount
to a weighted integral being computed on the input function. Because
we have a functional form for the restoration, we can simply integrate
this function with the PSF for the output area sampler. In this section,
although we assume that the output sampler has a Rect PSF, it should be
noted that there is no limitation on other potential degradation models.
However, Rect is used not only to simplify the algorithms, but because it
is a good model for super-resolution where each photosite is represented
with a pixel.

When resampling the image and warping its geometry, this new ap-
proach allows for efficient pre-filtering and post-filtering. Addition-
ally, because a functional form of the input has already determined, no
spatially-varying filtering is needed, unlike a case using a direct inverse
mapping.

Computing the exact value of the imaging-consistent warped value
(the integrated restored function weighted by the PSF) can represented
in functional form if the mapping function has a functional inverse and
the PSF is simple. In general, however, super-resolution algorithms may
have complex maps requiring numerical integration, since such maps
cannot be represented in closed form. To reduce the computational
complexity, we propose a scheme where for within each input pixel, we
use a linear approximation to the spatial warp, but use the full non-linear
warp to determine the location of pixel boundaries. This integrating
resampler, first used in [Boult and Wolberg, 1992] and formally described
in [Chiang and Boult, 1996], also handles anti-aliasing of partial pixels
in a straightforward manner.

Assume n input pixels are being mapped into k output pixels accord-
ing to the mapping function m(t). Let mi be the mapped location of
pixel i, for i=0,..., n. Compute  j=0,..., k, as the linear approxima-
tion to the location of as shown in Fig. 6.2. To avoid fold-over
problems, we assume that the mapping function is strictly increasing.
For an approach to modeling fold-over, see [Wolberg and Boult, 1989].

For efficient computation of the integral as well as the ability to per-
form proper antialiasing, the integrating resampler, given as pseudo code
in Fig. 6.3, “runs” along the input and output determining in which im-
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Figure 6.2. Linear approximation to the location of

Table 6.1.   A simple step edge, and the resulting values and polynomials that serve as
input to the integrating resampler. In computing the edge values, we presume pixel
replication outside the image.

age the next pixel boundary will be crossed. To do this, there are two
variables: inseg which represents the fraction of the current in-
put pixel left to be consumed, and outseg, which specifies the amount of
input pixels required to fill the current output pixel. In the integrating
resampler, the function R(t; g) is obtained from the definite integral of
an imaging-consistent restoration g(x) as

which, natrually, changes according to each pixel. An example showing
image values edge values imaging consistent intra-pixel restora-
tion gi, and imaging consistent reconstuction R is presented in table 6.1.
Note this is not the same cubic polynomial as Eq. (6.5) - an integral
over a full pixel size by our prevous definitions, implies a combination of
two different quadratics. The table shows values only within individual
pixels.

Assuming proper update to the algorithm’s state, whenever inseg <
outseg, we know that the input pixel will finish first, so it may be con-
sumed. If, on the other hand, it happens that the output
pixel will finish first, so an output is produced. Thus, in each iteration
of the loop we either consume one input pixel or produce one output
pixel. Therefore, the algorithm requires at most k + n iterations.
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Figure 6.3.  The integrating resampler assuming a output model of an Rect PSF filter.
See text for discussion.
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The underlying idea of this integrating resampler can be found in
the work of Fant [Fant, 1986] who proposed an efficient bilinear warping
algorithm. With some effort, one can see that by setting
the integrating resampler implements a bilinear warp.

In summary, the contribution discussed in this section is twofold:

1 the generalization of Fant’s orginal algorithm into the integrating
resampler which supports the use of advanced imaging-consistent
reconstruction algorithms, and

2 the provision for modeling real lens effects by using real warps
that affect the image radiance. In Fant’s original work, the goal
was to warp images for graphic effects, and hence to affect geom-
etry without disturbing the intensities. To do this, the algorithm
maintains knowledge of the input size and normalizes the integral
to account for this size, giving a normalized intensity. Thus, if a
constant image was stretched to twice its normal width, it would
change shape but retain the same intensities. If a lens was placed
into an imaging system so as to double the width of the image
on the sensor plane, then the value measured would be halved.
The algorithm is flexible enough to support both “graphics” and
“lens” modeling. If the super-resolution is over images that vary
because of, say, atmospheric variations, or if we are correcting for
lens distortions, an unnormalized warp should used.

These contributions are at the foundations of our fusion of image con-
sistent warping and super-resolution.

4. Warping-based Super-Resolution
We turn now to the use of warping for super-resolution. As described

in earlier chapters, super-resolution refers to the process of construct-
ing high-resolution images from low-resolution image sequences. Given
the image sequence   our warping-based super-resolution algorithm
is formulated, as follows:

Define Reference and Mapping Choose one of the images, say
as the reference image, and compute the motion field between all
the images and the reference image.

Warp Scale up the reference image using QRW, and then use QRW to
warp all the images to the reference image based on the motion
field and scale computed in the previous step.

Fusion Obtain a super-resolution image by fusing all the images to-
gether.
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Deblur (If desired) Deblur the resulting super-resolution image using

This method presumes that lens blur, is approximately the same for
all images. Otherwise, the deblurring step must be performed before
the fusion stage. However, because of the noise amplification caused by
deblurring in each image, deblurring before fusion is not as effective and
should be used only when necessary.

We presume that a dense motion-field is computed between each im-
age in the sequence - a straightforward calculation for motion that locally
approximates a rigid transform. The motion field computations for the
examples presented in this chapter are based on a sum-of-square differ-
ence matching algorithm with 11x11 and 7x7 template windows for the
first and second experiments, respectively. In each case, the matching
is a dense disparity surface. Sub-pixel estimates are obtained by fitting
a quadratic to each point at which the match is unique and to its two
neighbors. When off-the-shelf lenses and cameras are used, pre-warping
can be used to remove the distortions. In [Chiang and Boult, 1996], we
showed that the pre-warping with integrating resampler can improve the
match quality given significant lens distortior.

In the face-based experiments, we did not have access to a face image
database with a large number of views of the same subject. (We used
the FERET database; more on this later). Therefore, we used a set of
synthetic downsamplings from a single image to generate a sequence of
perspective warps. Since the experiment called for warping so many im-
ages we directly used the matching information defined by the synthetic
mappings. The mappings for each face were randomly generated, but the
same set was used for both the bilinear and the QRW super-resolution
warpings.

The fusion step is not the focus of this chapter, nor of our past work.
We have tried several different approaches to fuse the images together,
including a simple averaging or a median filter. Our experiments show
that the median filter is better, though often not much better than the
averaging filter. Median filtering is used for the OCR experiments and
simple averaging for the others. More advanced techniques using priors,
(see Chapter 10), could probably produce better results but would still
be expected to benefit from the increased quality in fusion input. Again,
the experiments in this chapter sought to isolate the effects of warping.

The test data shown in this section was taken using two different Sony
cameras, models XC-77 and XC-999, captured by a Datacube MV200
System. Fig. 6.4 show our an experimental result with Fig. 6.5 showing
the same results except that all the images are normalized so that the
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dynamic ranges are identical. All the resulting super-resolution images
are 256 × 256, and were scaled-up by a factor of approximately four (4).
We note that the previous works [Gross, 1986, Peleg et al., 1987, Keren
et al., 1988, Irani and Peleg, 1991, Irani and Peleg, 1993, Bascle et al.,
1996] report results only scaling by a factor of two (2).

Fig. 6.4 shows the super-resolution results of our first example. Fig. 6.4
(a) shows an input image blown up by a factor of 4 using pixel replica-
tion so that the value of each pixel can easily be seen. Fig. 6.4 (b) shows
super-resolution by our implementation of the back-projection method
described in [Irani and Peleg, 1991] (not the ordinal authors, see [Chiang
and Boult, 2000, Chiang, 1998] for details); Fig. 6.4 (c) shows super-
resolution using bilinear resampling followed by deblurring; Fig. 6.4 (d)
shows super-resolution using QRW followed by deblurring. Also, for the
purpose of comparison, we assume that Figs. 6.4 (c) and 6.4 (d) have
undergone the same degradation before sampling. Fig. 6.4 (e) and (f)
show the super-resolution results without deblurring.

Fig. 6.5 shows the results after all the images are normalized so that
the dynamic ranges are identical, as follows:

where are, respectively, the normalized image and the image
to be normalized, maxu and minu are, respectively, the minimum and
maximum intensity values of the image to be normalized.

Fig. 6.6 shows an example captured with a Sony XC999, which is a
one-chip color camera. Note the target is similar to (yet different) from
that in the first example. Fig. 6.6a shows one of the original images
blown up by a factor of 4; it can be easily seen that inter-frame motion
is involved in this case. Fig. 6.6b shows super-resolution using QRW
followed by deblurring. Obviously, our super-resolution method removes
most of the interframe motion and significantly improves the sharpnes
of the image.

We implemented the back-projection method proposed in [Irani and
Peleg, 1991] and found it somewhat difficult to work with since it is
sensitive to the choice of its parameters called normalizing factors. For
the comparisons, we tried many normalizing factors and chose one that
resulted in the back-projected images (Fig. 6.4d) with minmal sum-of-
square difference (SSD) between the observed and simulated images. It
is worth pointing out that in this particular case, SSD is not necessarily
a good error measure because it is not robust. Furthermore, the same
normalizing factor does not always give the best result in terms of the



Super-Resolution via Image Warping 145

Figure 6.4. Final results from an 8 image sequence (64x64) taken by XC-77. (a) An
orginal image blown up by a factor of 4 using pixel replication; (b) super-resolution by
back-projection using bilinear resampling to simulate the image formation process and
(e) as the initial guess; (c) super-resolution using bilinear warping followed by deblurring;
(d) super-resolution using QRW followed by deblurring. Image (e) shows (c) (bilinear
warping) without deblurring and (f) shows (d) (QRW) without deblurring.
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Figure 6.5. Results of Fig. 6.4 after being normalized to have the same dynamic range.
(a) An orginal image blown up by a factor of 4 using pixel replication; (b) super-resolution
by back-projection (c) super-resolution using bilinear warping followed by deblurring; (d)
super-resolution using QRW followed by deblurring.

error measure when different resampling algorithms are used or when
the input set is changed.

Results from our experiments show that the direct method we pro-
pose herein is not only computationally cheaper, but it also gives results
comparable to or better than those using back-projection. Moreover, it
is easily seen from Fig. 6.4 that the integrating resampler outperforms
traditional bilinear resampling. Not surprisingly, our experiments show
that most of the additional information carried by each image is concen-
trated on the high frequency part of the image. This observation also
explains why the integrating resampler outperforms bilinear resampling.
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Figure 6.6.  Super-resolution results from a very noisy image sequence of 32 images
(64x64) taken by XC-999. (a) one of the original images blown up by a factor of 4; (b)
super-resolution with QRW followed by deblurring.

As was shown in [Boult and Wolberg, 1993], when viewed as a recon-
struction filter, bilinear causes more blurring than the imaging-consistent
reconstruction of Eq. (6.5).

Table 6.2.  Running times for our first examples (8 images) assuming the same degrada-
tion model. See text for details.

Table 6.2 gives the running times of our first example, as measured
in 1996, using a Sun 143MHz Ultra SPARC running Solaris 2.5 and a
120MHz Pentium running Linux 2.0.12. Note that for both the main-
tenance of precision and ease of implementation, all operations were
performed in double-precision floating point, and neither algorithm was
explicitly optimized. Also, note that the motion field computation, re-
quired by both methods, is included in the timings. This required the
warping and fusion of 8 images with the final size 256 × 256.

As shown in Table 6.2, for this example, our method is more than
four times faster than our implementation of Irani’s back-projection
method. In general, Irani’s back-projection method takes an amount
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of time roughly proportional to both the number of iterations and the
degradation model. Our experiments show that although each iteration
of Irani’s back-projection method takes approximately 65% of the run-
ning time of our method, the algorithm performs a minimum of two
iterations. Thus, even in its best case, Irani’s back-projection method
is about 30% slower than our method. Our experiments also suggest
that more than three iterations are often required to minimize the sum-
of-square difference implying that the direct warping approach is often
more than 100% to 200% faster than Irani’s back-projection method.

5. Quantitative Evaluation
In this section, we turn our discussion to the quantitative measure-

ment of super-resolution. Historically, as new super-resolution tech-
niques have been developed, the standard practice has been to present
a few examples of the technique to allow the reader to reach their own
qualitative conclusions. It is difficult to justify comparisons between
super-resolution algorithms that make different fundamental assump-
tions — for instance regular sub-pixel shifts vs. aperture changes vs.
object motion. However, in order to make progress, we need to be able
to quantatively measure the improvements of algorithms.

Some seemingly natural measures would be a blind measure of im-
age quality; for instance, some measure of difference between a high-
resolution image and the recovered super-resolution image or some type
of spectral analysis seeing how well high-frequencies are recovered. Blind
image-quality metrics are, however, fraught with problems as an overall
measure of super-resolution algorithms because they are inherently task
independent and disregard the underlying signal. Image differences from
ground truth have been used in many areas as a measure of quality for
comparison, but it remains difficult to decide how the differences should
be weighted. In spectral analysis, we can look at how well the result-
ing super-resolution spectrum compares with the original. In section 5.1
we briefly review the quantitative and qualitative spectral analysis from
[Chiang, 1998, Chapter 4].

While we have explored image differences and spectral measures, it is
difficult to reduce them to a simple quantitative measure to allow com-
parison of two algorithms. The major difficulty with either difference
or spectral analysis is how to combine the different spatial or spectral
differences to a comparison metric. Simple approaches such as RMS
of the difference is not very meaningful, just as RMS error is not a
very good measure of image quality for compression. Also note that
for super-resolution magnifications of more than double, the original
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images contain frequencies so far above the Nyquist rate of the small
images that the reconstruction techniques have no hope of recovering
them. The intensity variations measured in these regions are a mix-
ture of blurring and unmodeled aliasing. Neither super-resolution nor
any resampling/reconstruction algorithm can recover all the lost infor-
mation. While we are aware of these differences (their existence cannot
be avoided), their significance is unknown. Rather than attempting to
define what is important in some generic image sense, we believe that
task oriented measures are more appropriate.

We present two realistic problems for which super-resolution is a nat-
ural augmenting tool. Since the metrics are computed using commercial
products, their implementation and ease by which the evaluation may
be reproduced are straightforward. The first problem, optical character
recognition, or OCR, is considered in Section 5.2. The second, face-
based human identification, is presented in Section 6. In both domains,
image detail is critical to the systems’ final performance.

In our OCR experiment, input is obtained from a hand-held camera,
as opposed to the more traditionally used flat-bed scanner. Limited
by NTSC resolution, we will show not only that super-resolution can
significantly increase the recognition rate, but also the importance of
warp quality. The experiment, described in section 5.2 and [Chiang
and Boult, 2000], however, has drawbacks. The quantitative analysis
used only a small number of samples. In addition, binary nature of the
input may allow over-enhancements to cause increased recognition rates.
Because of these limitations, we sought an additional domain.

Another approach, based on appearance matching and pose estima-
tion, can be found in [Chiang, 1998, Chapter 7]. That analysis used
grayscale images captured at two different resolutions and compared
the results of running SLAM [Nene et al., 1994], an appearance-based
recognition & pose algorithm, over various super-resolution images. The
results were, in general, consistent with the OCR problem, except that
there were instances where blurring the image actually increased accu-
racy of the recognition & pose estimation. In these unexpected cases,
super-resolution did not help. Again, the sample size was small, and
the targets with significant numbers of high-contrast edges may have
dominated the results. Finally, in retrospect, the problem of pose com-
putation from low resolution images was slightly artificial, and hence is
not presented here.

In the case of face recognition we are addressing a very real problem —
the recognition or verification of a human’s identity from low-resolution
facial images. In the human identification problem, it is common for a
wide-field of view camera to be used and for subjects to be at varying
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distances. Increasing the working range of existing systems is an ongo-
ing research topic, and super-resolution is one potential way of achieving
this. We synthetically “project” the images to produce the low resolu-
tion data. For true super-resolution, we would need multiple views of
hundreds of heads and a robust facial matching techniques (since the
head may rotate between frames). An experiment using multiple cam-
era resolutions and facial matching is being planned. In this experiment,
there is a large enough data space to instill confidence in the results.
This allows us to quantitatively compare super-resolution using bilinear
resampling with super-resolution using QRW and have statistical con-
fidence in the hyphothesis that improved image warping (QWR) may
improve super-resolution results.

5.1. Spectral Analysis of Super-Resolution from
Synthetically Down-Sampled Images

For a spectral comparison, a sequence of five synthetically down-
sampled images were used. The original high-resolution image provides
the necessary ground truth for comparing the super-resolution results.

Fig. 6.7 shows the experimental results. The test images are generated
from the high-resolution image shown in Fig. 6.7 by translation followed
by down sampling. Fig. 6.7 (a) shows the original high-resolution image;
Fig. 6.7 (b) the scale-up of the down-sampled version of Fig. 6.7 (a) by
a factor of 4 using bilinear resampling (no super-resolution); Fig. 6.7
(c) the super-resolution result from the synthetically down-sampled im-
age sequence using bilinear resampling with deblurring; Fig. 6.7 (d) the
super-resolution result from the synthetically down-sampled image se-
quence using QRW with deblurring.

Table 6.3 shows the powers of the Fourier transform of the images
shown in Fig. 6.7. For summary analysis, the images are divided into
regions based on their relation to the sampling rate of the low-resolution
(64 × 64) image. The regions are shown graphically in Table 6.3a, with
the power within them shown in Table 6.3b. The column marked P3

shows the power of the whole region (i.e., the whole spectrum). The
columns marked show, respectively, the power of the
central 192 × 192 region, the power of the central 128 × 128 region, and
the power of the central 64 × 64 region of the image spectrum. The col-
umn marked show, respectively, the power of the whole
region minus the power of the central 192 × 192 region, the power of
the whole region minus the power of the central 128 × 128 region, and
the power of the whole region minus the power of the central 64 × 64
region. As is to be expected, most of the power concentrates in the
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Figure 6.7. Results from a sequence of five synthetically down-sampled images. (a)
the original image; (b) the scale-up of the down-sampled version of (a) by a factor of
four using bilinear resampling (no super-resolution); (c)–(d) super-resolution from the
synthetically down-sampled image sequence using, respectively, bilinear resampling with
deblurring and QRW with deblurring.

central 64 × 64 region which are the frequencies that can be directly rep-
resented in the low-resolution images. Outside this region, the power is
relatively small. Obviously, super-resolution using QRW with deblurring
does considerably better.

Figs. 6.8 shows the difference between a slice of the 2D Fourier spectra
(scanline 128 i.e. DC component in y) of the super-resolution reconstruc-
tions and the ground truth high-resolution image shown in Fig. 6.7a.
Clearly this spectral analysis example shows the superiority, both quan-
titatively and qualitatively, of QRW warping over simple bilinear warp-



152 SUPER-RESOLUTION IMAGING

Table 6.3. Power of the Fourier transform of the images shown in Fig. 6.7. (a) Regions
in the computation of the powers of the 2D Fourier transform. (b) the power within those
regions with being the whole region (i.e., the whole spectrum); being
the regions inside the inner squares (192x192, 128x128, and 64x64, respectively); Primed
labels indicated the complementary area of a region. Recall the original images were
64x64, so is associated with the power representable in those images, and what was
gained by processing. Bi-linear is simple warping with bi-linear without super-resolution
or debluring (i.e reconstruction of a single input image). SRBD is super-resolution using
bi-linear warping followed by debluring, and SRQRWD is super-resolution using QRW
followed by debluring.

ing or bilinear super-resolution. However, the quantitative analysis was
very crude as it was based only on the power in the various regions.
The next two sections show the superiority of QRW using task-based
quantitative metrics.

5.2. OCR-based evaluation
In this section, we discuss our evaluation using OCR, which we refer

to as OCR-based measurement. The fundamental idea of this approach
is to use OCR as our fundamental metric (as the name suggests). The
evaluation consists of three basic steps:

1 Obtain the super-resolution images using the super-resolution al-
gorithm described in Section 4.

2 Pass the super-resolution results obtained in the previous step
through a “character-oriented” OCR system.

3 Determine the number of characters recognized, i.e., the rate of
recognition.
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Figure 6.8. Display of  where  and                 are the Fourier
spectra in x, sampled at the the DC component (row 128) in y) for the various super
resolution approximations and the original image Fig. 6.7. (a) shows the difference using
bilinear resampling (no super-resolution) and the original; (b) shows the difference between
super-resolution using bilinear resampling with deblurring and the original and (c) showing
the difference between super-resolution using QRW with deblurring and the original.

The goals of this evaluation is to quantify the effectiveness of super-
resolution. Evaluations herein are made by comparing the super resolu-
tion results and those using bilinear warping.

While most ‘state-of-the-art’ OCR programs can use dictionary lookup
to aid in their recognition, we chose to use a pure character based sys-
tem. This ensures that the system’s behavior is driven only by the image
input and not significantly impacted by the grammatical context of ex-
amples. We have also chosen to use a font-independent system, i.e., one
that is not trained on the font and on the resolution being used. Train-
ing the OCR system might allow the training to compensate for poor,
but consistent, behavior in resampling or super-resolution.
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Since the OCR program is not trained on a particular font, we break
up our analysis of errors into two categories. The first error measure
compares the OCR output to the ground-truth input characters. We
use to indicate the number of characters correctly recognized. We
consider multiple types of errors, including which
give, respectively, the number of incorrectly recognized characters, the
number of missing characters, the number of extra characters, and the
number of characters that are split into two or more characters, with

being the sum of these. %Correct indicates the percentage of
characters correctly recognized divided by For many
fonts, some characters are so visually similar that without the use of
training or context, distinguishing pairs of characters is quite difficult,
e.g.,                    and in some fonts, / vs l vs t and h vs b
(see Fig. 6.13). In the context of our experiments, Fig. 6.9 contains three
ambiguous characters, Fig. 6.11 contains four ambiguous characters and
Fig. 6.13 contains seventeen ambiguous characters.

For brevity, we also use the abbreviations as shown in Table 6.4 to
describe the algorithms discussed.

Table 6.4.  Abbreviations of algorithms considered. Distortion correction is needed to
remove radial lens distortions common in inexpensive lenses.

The OCR program used for the experiments described herein is “Di-
rect for Logitech, Version 1.3.” The images used are normalized with
respect to the super-resolution image with deblurring, as follows:

where is the normalized image, is the average of the intensity values
of the super-resolution image with deblurring, and is the average of
the intensity values of the image to be normalized. Within each dataset,
the same threshold is used to binarize all the images.
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The test data shown in this section was taken using laboratory quality
imaging systems, a Sony XC-77 camera, attached to either a Datacube
MV200 System or a Matrox Meteor Capture Card. As is to be expected,
better imaging reduces the need for super-resolution; lower quality cam-
eras increase the significance of super-resolution imaging.

All examples herein are scaled up by a factor of four, with the distance
between camera and sample being changed so that the scaled images
would yield an image with character sizes within the range accepted by
the OCR system. We qualitatively evaluated the approach on a wider
range of fonts and imaging conditions. Note that fonts with thinned
letters, such as the “v” in Fig. 6.11, tend to be broken into multiple
letters. Characters in slanted serif fonts tend to connect and thus, fail
to be recognized. Inter-word spacing is not handled well (and multiple
spaces are ignored in our measures). The ease of finding a good thresh-
old depends on the uniformity of the lighting, image contrast, and lens
quality. Better OCR algorithms may remove most or all of these diffi-
culties. The quantitative examples show a few of these features, but in
general, we choose examples that are not dominated by these artifacts.

Figure 6.9. Super-resolution results from a sequence of 32 391×19 images taken by a
Sony XC-77 Camera. (a) one of the original images scaled up using bilinear resampling
and without distortion correction; (b) and (c) the results after distortion correction, with
(b) showing bilinear warping with deblurring and (c) showing super-resolution using QRW
with deblurring.

Fig. 6.9 shows the super-resolution results from a sequence of 32
391 × 19 images taken by a Sony XC-77 camera attached to a Datacube
MV200 System before they are passed through OCR for recognition.
Fig. 6.9a shows one of the original images scaled up using bilinear re-
sampling and without distortion correction. Fig. 6.9b and Fig. 6.9c show
the results after distortion correction, with Figs. 6.9b showing bilinear
warping with deblurring and Figs. 6.9c showing super-resolution using
QRW with deblurring.
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Figure 6.10. Output of OCR for the first example, the text shown in Fig. 6.9. The
smaller size of text and more significant distortions make the impact of super-resolution
using QRW very dramatic.

Figs. 6.10 summarizes the results of passing the super-resolution re-
sults shown in Fig. 6.9 through OCRThis example did not contain any
font-related ambiguities. The original text (see Fig. 6.9) consists of to-
tal 48 characters, including the two periods but excluding whitespace.
Columns marked give, respectively, the number of
incorrectly recognized characters, the number of missing characters, the
number of extra characters, and the number of characters that are split
into two or more characters.

Because of the nonuniformity of the lighting in this example, each
image had its own threshold which was chosen to maximize its recog-
nition rate. Using bilinear resampling without distortion correction,
and deblurring (BRX), 32 out of the 48 characters (67%) were recog-
nized. Using bilinear warping with distortion correction and deblurring
(BRDCD), 35 out of the 49 characters (71%) were recognized. Using the
super-resolution algorithm given in Section 4 with deblurring (SRDCD),
45 out of the 48 characters (94%) are recognized. Compared to bilinear
resampling without distortion correction, super-resolution using QRW
recognizes 27% more characters. Compared to bilinear with distortion
correction and deblurring, super-resolution using QRW recognizes 21%
more of characters. With text consisting of thousands of characters, this
is definitely a significant improvement.

Qualitatively, one might note the errors are concentrated on the outer
edges of the example where there was the most significant distortions and
the worst lighting.

Fig. 6.11 shows the super-resolution results for an example with larger
characters (almost twice the size) taken with a better lens (much less
distortion and less blur). The input was a sequence of 8 430 × 75 images
taken by a Sony XC-77 camera attached to a Matrox Meteor Capture
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Figure 6.11. Super-resolution results from a sequence of 8 430×75 images taken by XC-
77. (a) one of the original images scaled up using bilinear warping; (b) (a) deblurred; (c)
super-resolution using QRW with deblurring.

Card before they are passed through OCR for recognition. The original
text consists of a total of 66 characters including three periods and one
exclamation mark.

Figure 6.12. Results of the OCR test for the second example, shown in Fig. 6.11. Again
debluring helped in both cases and super-resolution using QRW with debluring was the
best algorithm.

Fig. 6.12 shows the experimental results of passing the super-resolution
results shown in Fig. 6.11 through OCR. While the bilinear and QRW
super-resolution (SRD) images look nearly identical, the quantitative



158 SUPER-RESOLUTION IMAGING

OCRanalysis shows a difference. Compared to bilinear resampling with-
out deblurring (BR), 7% more of the characters are recognized with
QRW. Compared to bilinear warping with deblurring (BRD), 2% more
of the characters are recognized. 2% may mean a lot depending on ap-
plications. Compared to bilinear resampling without deblurring (BR),
super-resolution with deblurring (SRD) reduces the number of incor-
rectly recognized, missing, extra, and split characters from 7 to 1.

Figure 6.13. The third example sequence of 8 490×140 images taken by XC-77. The
top (a)shows the results using bilinear warping with debluring and the bottom (b) shows
the results of super-resolution using QRW with deblurring. While the images look nearly
identical, the quantitative OCRanalysis shows a difference.

Fig. 6.14 shows the analysis for a third quantitative experiment. The
original text, Fig. 6.13 consists of total 142 characters with mixed fonts
and a large number of ambiguous characters. Compared to bilinear
resampling without deblurring (BR), 5% more of the characters are rec-
ognized. Compared to bilinear resampling with deblurring (BRD), 3%
more of the characters are recognized. Again, 3% could mean a lot de-
pending on applications – if there were 2000 characters on a page, it
is a difference of 60 characters. Discounting the ambiguous characters
will increase the rate of recognition by 2% for all methods except bilinear
(BR) which increases by only 1%. Compared to bilinear resampling with
or without deblurring (BR or BRD), super-resolution with deblurring
(SRD) reduces the number of incorrectly recognized, missing, extra, and
split characters from 18 to 12. Looking at the details one can see that
the italics was handled poorly. While a multi-font OCRsystem might
do much better overall, the example does show that super-resolution
improves the results.
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Figure 6.14. Performance of OCR testing for the third experiment. As you can see by
looking at the recovery detail, the italics was poorly handled. Overall super-resolution
using QRW and deburing performed the best.

5.3. OCR experiments summary
The qualitative aspects of our experimental results can be summarized

as follows:

Naturally, the better the quality of the original images and the
larger the input characters, the smaller the impact of super resolu-
tion on OCR. But even for large clear text, it did have a measurable
impact.

If there is no motion, minimal warping and good large text, super-
resolution will not help much more than simple temporal averaging
with bilinear warping.

Type style has a strong impact on the rate of recognition.

This section has shown how OCRcan be used used for super-resolution
evaluation. The advantages of this approach is that it is very straight
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forward; there are a large number of both commercial and free OCR
packages, and data collection is also straightforward. The use of OCR is
well suited for evaluation of super-resolution tasks which will be similar
in nature to OCR, e.g., license plate recognition, 2D pattern matching,
and handwritting recongition.

In general, the difficulties of using OCR as a measurement for super-
resolution can be summarized as follows:

The rate of recognition depends, to a large extent, on the quality
of the OCR programs. Better OCRprograms, especially those that
use dictionary lookup, would reduce the impact of low level pro-
cessing. But in general, better low level processing would provide
better results.

If binary images are required for recognition, as most of the OCR
programs do even if implicitly converted internally, then the rate of
recognition is sensitive to the thresholding process used to convert
gray-scale or color images to binary images. This evaluation used
external thresholding and different thresholds may give different
results. While localized thresholding would help increase the rate
of recognition, we have not used them here.

Many OCR programs treat their inputs as “binary”. Thus as an
evaluation for super-resolution techniques, it may seem to down-
play the importance of accurate grayscale production, especially
at middle intensity levels. On the other hand, these intermediate
levels do occur on character boundaries and may, in fact, be the
driving factor in the superiority of super-resolutions. However the
nearly binary nature of the data may suggest that over enhance-
ment might do better.

6. Face-Based evaluation
In this section, we evaluate how SR can be used to improve the per-

formance of a face recognition (FR) system. A formal description of
the FR problem is given first, followed by an evaluation of a simulated
SR-enhanced FR sytem.

Face Recognition Systems
One view of an FR system is a facility that provides a mapping from

facial images to labels that uniquely identify the subject of the image.
We assume that given an FR system, there exists some image set of
known subjects, also known as a gallery, which we denote as G. In
addition, there exists some probe set where each
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Figure 6.15. Comparison operators. The precise comparison operators used in our
evaluation and their names as described by the FaceIt documentation.

image, and is an image of some subject the FR system
has to recognize. In the system considered here, assume that the gallery
G and the probe set P are non-identical, but have been created from the
same population.

Most FR systems, presented with a gallery image and probe image
have the capability of computing some bounded similarity measure

representing the “strength” of the match between the images.
Without loss of generality, assume that a score of 10.0 indicates
the highest possible system confidence that the subject in image is the
same as the subject in image p, and that a score of 0.0 indicates
the lowest possible system confidence that the subjects are the same (or
highest confidence that they are different).

Let id(x) represent the true identity of the subject in image x, and
represent the gallery image of subject h. Given a probe p, a vector of
similarity scores can be calculated from all images Sorting
the similarity vector and finding the subject’s relative position along it,
determines the probe’s rank. Specifically, a probe has a rank of n over
gallery set G if in the similarly vector, there exist exactly n scores greater
than or equal to

The algorithm used in the evaluation was Visionics’ FaceIt. FaceIt is
a commercial, high-quality, face detection and recognition system based
on Local Feature Analysis. FaceIt requires no explicit “training” stage;
i.e. no internal component of the system incorporates information across
the entire gallery. This is different from many linear subspace classifiers
(such as Eigenface approaches) which must be trained with respect to
the entire gallery. With FaceIt, adding an image to the gallery does not
require a retraining, and has no side effects on the probe to gallery image
comparison. In other words, given a particular gallery and probe image
and p, the addition of a new gallery image has no effect on the FaceIt
similarity measure Naturally, the rank could be effected. For
our evaluation, we selected two different similarity measures, described
in Figure 6.15.
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Experimentation

The context of the evaluation consisted of a subset of the Essex
database packaged with FaceIt. Due to constraints in the available data,
we selected 352 image pairs. Each pair consists of two images of the same
subject with approximately the same pose, but slightly different expres-
sion. These images, in FERET nomenclature, are referred to as A and
B images. All subjects selected were front facing, imaged in front of sim-
ple (essentially monochromatic) backgrounds, and diffusely illuminated.
Since we were more interested in the effects of the image preprocessing
stages, we presented favorable data to the system.

More formally, let represent the set of four
images of subject i and represent the set of all c
images — in our case, Let f(q) represent some image
processing function on image q (this will soon be replaced with a super-
resolution algorithm), s represent a similarly measure, and
represent the rank of probe p over gallery G via similarity measure s.
Then, using G, P, s, and f, an evaluation that obtains a set of ranks
(one set per probe image) can be denoted as

In order that confidence intervals could be obtained, an evaluation frame-
work based on population stratification and methods of replicate statis-
tics (balanced repeated replicates or BRR, specifically) was used. Letting
each subject correspond to a stratum, three samples per stratum (or
PSUs) are obtained by fixing one set of images as the gallery and prob-
ing the gallery with the remaining data sets. That is, one set of samples
was obtained with another with
and so on.

Dataset Generation In this section we describe the probe and gallery
sets used in our evaluation. The notation used here will also be used to
describe the results of the evaluation.

A series of low-resolution images to serve as input to the SR algorithm
is generated first. Based on previous results [Chiang, 1998], it was de-
cided that four low-resolution input images would be used. To simluate a
low-resoultion face from slightly different views, a perspective projection
was used. Let m represent a random, but known, perspective and scalar
pixel-to-pixel mapping, where the image width and height are reduced
to 25 percent of their original size. In this evaluation, the perspective
projection was limited so that a pixel’s horizontal coordinate would be
displaced by at most 10% of the original image width. Let M represent
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the inverse operation — a 4 times dilation and perspective “correction.”
Since four low-resolution images were generated, four such m mappings
needed. A set of four (distinct) mappings generated from a random seed
k is denoted as It follows that the set of
complimentary mappings is denoted as

Given a map m, image p, and warping algorithm a, a new low-
resolution image can be denoted as a function of m and p, or

Let r and b represent QRR and bilinear warping algorithms
respectively. Then, for each probe image a set of four low-
resolution images generated from warping algorithm a is

If we denote a SR algorithm using warp a as then we may modify
Equation (6.7), our previous definition of eval, to reflect as

In the ideal case, the SR algorithm generates the corrective maps by
directly inverting each distortion m. Naturally, this is only possible
when m is known a priori. Note that other phenomena, such as sensor
noise, deformations in expression, and changes in illumination, are not
incorporated into the evaluation. By using ideal conditions, such as
nearly ideal inverse mappings, our evaluation is not only significantly
simplified, but better reflects a more “upper bound”-like measure of the
effects of SR.

As reflected in Equation (6.9), changing a SR algorithm has no effect
on the particular maps (m and M) used. This critical constancy ensures
that differences in the resulting ranking can be attributed only to the
change in warping algorithm.

6.1. Experimentation and Results
To establish a peformance gain (or loss) for SR, the raw low-resolution

images will be used as the baseline evaluation. In a system without SR,
these raw images are what would be used as probe images. The ideal SR
images give an indication of the “best” possible performance gain due
to SR.

Unfortunately, rank, as defined previously, can be a non-robust mea-
sure. The penalty incurred by a misdetection (defined as a rank greater
than t, where t is some predefined threshold) is linearly related. For ex-
ample, suppose a probe has a very high (poor) rank — 400, for instance.
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Figure 6.16. Low-resolution images of Subject 202.  Example of a set of four,
perspective projection distored, low resolution images which serve as SR algorithm input.
All images were generated from the higher-resolution A image of subject 202. Closer
inspection reveals subtle difference between the images: the first face appears narrower
and slighly elongated with respect to the other three faces, the fourth appears slighly
smaller, lower, and wide than the other three, etc. The black stripes on the left and
right side of the images are artifacts resulting from the projection. Because each subject
has their own set of unique maps, some low-resolution image sets will show more or less
variation between images.

The penalty incurred in the mean rank due to this 400-rank misdetect
is much greater than that due to a probe with a rank of, say 50. In
both cases, however, if our threshold t = 10, then they are both clearly
misdetects. Therefore, for our evaluation, we perform the BRR mean
and variance over the following statistic, where r represents a probe’s
rank and is some threshold rank

Another view of is the expected value of the fraction of probes within
the top match candidates. For this particular evaluation, we used
alpha = 0.01. In other words, a probe scored a 1 if its subject was
within the top of candidate images (just the top image in our case).

The generation of multiple low-resolution images provides a broad
baseline. Let represent the set of all ith low-resolution images
generated from Essex databaset set using warping algorithm a. In
other words, the set or

is the set of all low-resolution images from set generated from a
map of index 3. Note that this partitioning is somewhat arbitrary, and
only dependent on particular indexes. This notation will be used again
shortly. Similarly, we let
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denote the super-resolution image sets generated from their respective
low-resolution images. Finally, the BRR mean estimates are generated
from each set. These are denoted by replacing the set
index with the symbol For example

These BRR estimators incorporate rank information across all A, ..., D
sets (appropriately).

The raw results of the evaluation are shown in Figure 6.17. For each
row, the table shows the expected value of the fraction of probes that
produce ranks of 0. The BRR estimated standard error of these means
is shown in parenthesis. As shown in the figure, both QRW and bilinear
based super-resolution improves the fraction of recognized faces with
a statistical significance.1 For all experiments, QRW super-resolution
produced better fractions then bilinear. This is not always the case
for the component fractions. This indicates that in certain cases, it
is possible that a particular low-resolution image may be better than
a super-resolution image. In a real face recognition system, however,
ground truth is not available. Therefore, it would be impossible to
know which low-resolution produces the correct result. Nevertheless,
this phenomenon is more of a face-recognition system issue than a super-
resolution issue. It should be noted that increasing (for α < 10) does
not dramatically change the fact that QRW produces statistically sig-
nificant higher fractions.

Figure 6.17 shows the results of both the FaceIt algorithms. In the
first algorithm, the overall peformance is much better and we see that
super-resoltion helps for both bilinear warping and for QRW. It also
shows that QRW is statistically superior, being at least three standard
deviations above bilnear-based super-resolution. The second algorithm,
overall, did not perform as well. The behavior of QRW is consistent —
again showing a statistically significant improvement for super-resolution
over the individual low-resolution inputs. However, this algorithm had
cases where bilinear outperformed QRW on the individual examples.
However, this example shows that unlike QRW, with bi-linear warping,
super-resolution was not better than the individual inputs.

7. Conclusion
This chapter discussed techniques for image consistent reconstruction

and warping using the integrating resampler. By coupling the degrada-

1This is a statistically sound statement which is dependent on the unique properties of BRR.
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Figure 6.17. Mean Rank Estimates. The results of the evaluation, showing the
expected value of the fraction of the probes that have rank 0 (most likely candidate).
Standard devations are shown in parenthesis.

tion model of the imaging system directly into the integrating resam-
pler, we can better approximate the reconstructed image and the warp-
ing characteristics of real systems. This, in turn, significantly improves
the quality of super-resolution images. Examples of super-resolutions
for gray-scale images show the usefulness of the integrating resampler in
applications scaling by a factor of upto 4 using 8-32 images. We disussed
three quantitative evaluation approaches and in each case, we saw that
super-resolution using QRW was superior to bilinear approaches. Even
in those cases where the super-resolution images were visually similar,
we had measurable quantitative improvements.
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Abstract This chapter develops very high definition image acquisition system
which is based on the signal-processing approach with multiple cam-
eras. The approach produces an improved resolution image with suffi-
ciently high signal-to-noise ratio by processing and integrating multiple
images taken simultaneously with multiple cameras. Originally, in this
approach, we used multiple cameras with the same pixel aperture, but
in this case there needs to be severe limitations both in the arrangement
of multiple cameras and in the configuration of the scene, in order to
guarantee the spatial uniformity of the resultant resolution. To over-
come this difficulty completely, this chapter presents the utilization of
multiple cameras with different pixel apertures, and develops a new, al-
ternately iterative signal-processing algorithm available in the different
aperture case. Experimental simulations and results are also presented.
These results show that the utilization of multiple different-aperture
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cameras prospects well and that the alternately iterative algorithm be-
haves satisfactorily.

Keywords: CCD camera, shot noise, registration, image acquisition, high-resolution
imaging

1. Introduction
Solid-state imaging device technology is considered promising as a

high-resolution imaging device. Although a CCD camera with two mil-
lion pixels has been developed for HDTV, spatial resolution should be
enhanced further for the development of super high resolution visual me-
dia such as the digital cinema. The most straightforward approach for
enhancing the spatial resolution is to apply the production technology
to reducing the pixel size, viz., the area of each photo detector, in order
to increase the number of pixels. As the pixel size decreases, however,
so does the amount of light available for each pixel. Hence, the picture
quality is degraded because the existence of shot noise, viz., variation
of input, is unavoidable in principle. To keep shot noise invisible on
a monitor, there needs to be a limitation in the pixel size reduction,
and the limitation is estimated at approximately [2]. The cur-
rent solid-state imaging device technology has almost reached this limit.
Therefore, a new approach is required to enhance the spatial resolution
further beyond this limit.

One promising approach towards improving spatial resolution further
is to incorporate signal processing techniques into the imaging process.
Along the lines, we presented a new signal processing based method for
acquiring an improved resolution image with sufficiently high signal-to-
noise ratio (SNR) by processing and integrating multiple images taken
simultaneously with multiple cameras[1],[9],[11]. Originally we used mul-
tiple cameras with the same pixel aperture, where the term of the ‘pixel
aperture’ means the spatial shape of each photo detector of a solid-state
imager. Afterwards, we have found that to obtain the spatially uni-
form resolution improvements in the same-aperture case there must be
limitations both in the arrangement of multiple cameras and in the ge-
ometrical configuration of the scene[10]. In the same aperture case, if
and only if multiple cameras are coplanar and the object of imaging is
a two-dimensional plate perpendicular to their optical axes, the spatial
uniformity of the resultant resolution will be guaranteed. The limita-
tions are considered to be very severe, and lower the applicability of the
signal-processing based imaging scheme.
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The utilization of multiple different-aperture cameras frees the sig-
nal processing based imaging scheme from the above limitations com-
pletely. The signal processing based imaging scheme will work well on
the assumption that imaged areas of pixels of multiple cameras do not
coincide with each other. In the different aperture case, imaged areas of
pixels do not coincide with each other, irrespective of the arrangement
of multiple cameras and the geometrical configuration of the scene. In
the different aperture case, however, the aliasing artifacts included in
low-resolution images taken with multiple different cameras disturb the
smooth performance of the signal processing for integrating the multiple
low-resolution images into an improved resolution image, more heavily
than in the same aperture case because each camera produces its own
aliasing artifacts corresponding to its pixel aperture. In the different-
aperture case, it is especially important to render the signal processing
robust under the condition that aliasing is occurring severely and in
various ways. To solve this problem, we incorporate a new, alternately
iterative algorithm for integrating multiple low-resolution images into
the signal processing based imaging scheme.

2. Original Concept

2.1. Concept
Figure 7.1 illustrates the concept of the signal processing based image

acquisition scheme using multiple cameras. It trades computational com-
plexity of signal processing for improvement in spatial resolution. The
concept of this image acquisition method is to unscramble the within-
passband and aliased frequency components, which are weighted dif-
ferently in undersampled images, by integrating multiple images taken
simultaneously with multiple cameras, and then to restore the frequency
components up to high frequencies so as to obtain an improved-resolution
image with sufficiently high SNR. The signal-processing based approach
using multiple cameras consists of the two stages.

2.1.1 Estimation of discrepancies and integration of sam-
pling points (Registration). Firstly, we estimate the relative
discrepancies of pixels between two different images chosen from among
multiple images with fractional pixel accuracy, and then we combine to-
gether sampling points in multiple images, according to the estimated
discrepancies, to produce a single image plane where sampling points are
spaced nonuniformly. The estimation of discrepancies is referred to as
registration, and is extensively studied in various fields of image process-
ing. As for the estimation of discrepancies in fractional pixel accuracy,
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the block-matching technique and the least square gradient technique
may be used[6], but the work presented here employs the block-matching
technique to measure relative shifts.

Figure 7.1. Schematic diagram of the signal processing based image acquisition using
multiple cameras.

2.1.2 Reconstruction of an improved-resolution image (Re-
construction). In the reconstruction stage, an improved resolution
image with uniformly-spaced samples is reconstructed from the nonuni-
formly spaced samples composed of samples of multiple images. This
stage involves a two-dimensional reconstruction method for producing
uniformly spaced sampling points from nonuniformly spaced sampling
points. Reconstruction is an extensively treated problem, and for this
purpose we might use various reconstruction methods, e.g., a polynomial
interpolation method [5], a coordinate transformation method [4], a DFT-
based method[14], an iterative method[3],[7],etc. The methods suggested
so far have individual limitations in the two-dimensional case. Presently,
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we believe that the iterative method using the Landweber algorithm[12]
is fairly flexible, it is suited to the present problem, and thus is a promis-
ing candidate for the two-dimensional reconstruction method relevant to
the VHD image acquisition. Hence we use the Landweber-type iterative
method[12].

The achievable passband, when using a camera of solid-state-type
imaging device, depends on the aperture impulse response function of
a photo detector, provided the degradation by an optical lens is small
enough. In other words, the aperture effect determines the upper bound
in the performance of an imaging system.

Our theoretical analysis based on the aperture effect, which deter-
mines the upper bound of the performance of this method, has yielded
the following conclusions:

1 If we use two cameras with the same pixel aperture and the aper-
ture ratio is 100%, the resolution improvement is limited to twice
the original sampling frequency. (We define the aperture ratio as
the ratio of the total area of all the photo detectors of a solid-state
imager to the area of the imaging chip surface of the solid-state
imager.)

2 If we use more than two cameras with the same pixel aperture,
SNR of the reconstructed improved-resolution image will be en-
hanced even in the case of the unit aperture ratio. This means
that the pixel size can be further reduced in advance, because the
photo detector size limitation is determined by SNR. Therefore,
the spatial resolution can be further increased in advance.

2.2. Registration

The block-matching technique firstly interpolates given input images
N times, compares image blocks of one magnified image to the other
magnified image, and then determines the displacement of 1/N pixel
accuracy which gives the best similarity between the two blocks. In
most cases, the block-matching method works well to provide stable es-
timation of relative shifts, but involves large computational efforts. The
least square gradient technique computes the displacement of fractional
pixel accuracy in itself, and can handle a linear transformation as well
as translation; but occasionally leads to unstable erroneous estimation
of discrepancies. The work presented here employs the block-matching
technique to measure relative shifts.

Undersampled images include aliased frequency components, which
might cause errors in the estimation process. It is important to render
the discrepancy estimation robust under the condition that aliasing is
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occurring severely. Because of this, the work reported here limits the
estimation accuracy to one-fourth pixel accuracy.

2.3. Reconstruction
Fig.7.2 illustrates the reconstruction method based on the Landweber

algorithm. The relevant reconstruction problem is to find uniformly
spaced samples g using the observed nonuniformly spaced samples f.
The Landweber algorithm solves the reconstruction problem by starting
with initial uniformly spaced samples g(0) and then updating the value of
the uniformly spaced samples g(n) iteratively by the recurrence formula

Where A is the nonuniform sampling process, is the adjoint opera-
tor of the operator A  and the value of the parameter a should be set
small so that the operator B is a contraction mapping to guarantee the
convergence. Prom the fixed point theorem [13], it follows that g(n)

converges to an attracting fixed point where A+ is the
Moore-Penrose pseudo inverse operator of the operator A, irrespective
of an initial entity g(0) as n grows to infinity. Hence we can choose an
initial entity g(0) arbitrarily.

In Fig.7.2, given the observed nonuniformly spaced samples  f , the
method starts with initial uniformly spaced samples g(0) and produces
uniformly spaced samples g(n), approximating the original unknown uni-
formly spaced samples g better than by the iterative application
of eq.7.1. Assuming that the pixel aperture of a camera is square and its
sensitivity is uniform within the aperture, the operator A represents the
nonuniform sampling process, as illustrated in Fig.7.2, which produces
the low-resolution nonuniformly spaced sample by averaging the cor-
responding pixels within the region of the high resolution uniformly
sampled image. On the other hand, as illustrated in Fig.7.2, the opera-
tor is used to distribute the error of the low-resolution
nonuniformly spaced sample onto the region with the 0th order
interpolation method. In the high-resolution uniform sample domain, all
interpolated errors are combined by summing them. Irani and Peleg’s
(intuitively deriving) approach[7] belongs to this general formulation,
although they have not dealt with the nonuniform displacement case.
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Figure 7.2. Reconstruction method based on the Landweber algorithm.
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3. Image Acquisition with Multiple
Different-Aperture Cameras

3.1. Weak Points in the Imaging Scheme with
Multiple Same-Aperture Cameras

When we use multiple cameras with the same pixel aperture, the im-
provements of spatial resolution depend both on the arrangement of mul-
tiple cameras and on the geometrical configuration of the scene. Hence,
in general, we might not expect that the resolution improvements will
be spatially uniform everywhere in the reconstructed image. If and only
if multiple cameras are coplanar and the object of imaging is a two-
dimensional plate perpendicular to their optical axes, the spatial uni-
formity of the resultant resolution will be guaranteed. Let us consider
two typical cases where the spatial uniformity of the resultant resolution
cannot be guaranteed.

One typical case is as follows: two cameras are located with con-
vergence; their optical axes intersect at a point in the middle of the
two-dimensional object plate. In this case, in the portion of the two-
dimensional object plate where the optical axes of the two imagers in-
tersect, a pixel of one image taken with one camera almost coincides
with some pixel of another image taken with another camera. Hence, in
this portion, spatial resolution is not improved satisfactorily.

On the other hand, at a distance from the middle of the two-dimensional
object plate there lies a portion where a pixel of one image does not coin-
cide with any pixel of another image completely. Hence, in this portion,
spatial resolution is improved to some extent. Therefore, in this case,
the resolution improvements are never spatially uniform.

Another typical case is as follows: two cameras are coplanar, but the
object of imaging is not a two-dimensional plate perpendicular to their
optical axes. Fig.7.3 illustrates this case. Let us imagine that a point
P(X, Y, Z) on the object surface is projected onto the two cameras. On
the image plane of a reference camera, the projected location is

where f is the focal length. On the image plane of another camera, the
projected location is
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Figure 7.3. Arrangement of the two cameras. The two cameras are coplanar, but
the object of imaging is not a two-dimensional plate perpendicular to their optical
axes.
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where a and b are the baseline distances in the x and y directions, respec-
tively, between the two cameras. Let us suppose that the parameters
(a, b, f ) are known in advance. The relative shift of each sampling point
position between the two images is

The relative shift changes according to the depth of the point
on the object surface. Hence, on the image plane there exists a portion
where a pixel of one image almost coincides with some pixel of another
image. Therefore, in this case also, the resolution improvements are
never spatially uniform.

3.2. Utilization of Multiple Different-Aperture
Cameras

As shown in Fig.7.4, if we use multiple cameras with different pixel

Figure 7.4. Different pixel apertures and their overlapping patterns: (a) horizontally
wide rectangular pixel aperture; (b) vertically long rectangular pixel aper-
ture; (c) overlapping pattern, No.l; (d) overlapping pattern, No.2; (e) overlapping pat-
tern, No.3; (f) overlapping patern,No.4.

apertures, a pixel of one image taken with one camera would never co-
incide with any pixel of another image taken with another camera, irre-
spective of the arrangement of multiple cameras and/or the geometrical
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configuration of the scene. Hence, we might expect that the resultant
resolution will be spatially uniform.

Fig.7.5 compares a reconstructed image in the different aperture case
with that in the same aperture case. Fig.7.6 illustrates the different two

Figure 7.5. Reconstructed image in the different-aperture case versus that in the
same-aperture case; two cameras are located horizontally with 1° convegence and
the relative displacement is assumed to be known perfectly: (a) two-dimensional test
plate, (b) part of the image captured by a single camera, (c) part of the image recon-
structed with two cameras having the same pixel aperture, (d) part of the image re-
constructed with two cameras having different pixel apertures.

pixel apertures used in the different-aperture case. In the simulation of
Fig.7.5, we used a high resolution printing digital image data with 2048
pixels x 2048 pixels as a two-dimensional test plate, and we assume
that two cameras are located horizontally with 1° convergence; their
optical axes intersect at a point in the middle of the two-dimensional
test plate and the angle between their optical axes is 1°. Moreover,
we suppose that the aperture ratio is 100%. Under these conditions,
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Figure 7.6. Different pixel  apertures for two cameras used in the experimental sim-
ulations of Fig.7.5, Figs.7.8-7.11:(a) horizontally wide rectangular pixel aperture used
for a left camera, (b) vertically long rectangular pixel aperture used for a right camera.

we simulate the imaging process of each camera with the horizontally
wide rectangular aperture or the vertically long rectangular aperture
of Fig.7.6; viz., we simulate the projection of the two-dimensional test
plate onto the image plane of each camera with low resolution, and thus
produce projected low-resolution images. In the simulation of Fig.7.5, we
use the computationally projected low-resolution images instead of a real
image captured with each camera. To avoid some unfavorable effect of
using the computationally projected low-resolution images, we limit the
spatial resolution, viz., the number of pixels, of each camera to one-tenth
of the spatial resolution of the test digital image data. Furthermore, we
assume that the relative shifts of pixels between the two computationally
projected low-resolution images are known perfectly, and we simulate the
imaging scheme with two cameras.

Fig.7.5(a) shows a high-resolution image used as a two-dimensional
test plate. Fig.7.5(b) shows part of the image captured by a single cam-
era with the horizontally wide rectangular pixel aperture of Fig.7.6(a),
but in this figure, for ease of comparison, the image is interpolated and
magnified with the sinc function in the horizontal direction. Fig.7.5(c)
shows part of the image reconstructed by the imaging scheme with two
cameras having the same pixel aperture, viz., the horizontally wide rect-
angular pixel aperture of Fig.7.6(a). Fig.7.5(d) shows part of the image
reconstructed by the imaging scheme with two cameras having differ-
ent pixel apertures; one camera has the horizontally wide rectangular
pixel aperture of Fig.7.6(a) and another camera has the vertically long
rectangular pixel aperture of Fig.7.6(b). In the same-aperture case of
Fig.7.5(c), the aliasing artifacts are not fully eliminated, and the re-
sultant resolution does not seem to be spatially uniform; around the
vertical spokes of the bicycle the aliasing artifacts are not eliminated
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well, but in the portion of the spherical and square test charts the res-
olution improvements are clearly visible. On the other hand, in the
different-aperture case of Fig.7.5(d), the aliasing artifacts are eliminated
well, and the resultant resolution seems to be spatially uniform.

As is obvious from this instance, the utilization of multiple different-
aperture cameras will be advantageous on condition that the displace-
ment estimates are derived in the registration stage with sufficiently high
accuracy.

3.3. Frequency Response of the Imaging Scheme
with Multiple Different-Aperture Cameras

In order to estimate the frequency response of the imaging scheme
with two cameras having the different pixel apertures of Fig.7.6 by ex-
perimental simulations, we used a digital image data with a single spa-
tial frequency component as shown in Fig.7.7 as a two-dimensional test
plate. We estimate the frequency response by changing the spatial fre-

Figure 7.7. Image data used for estimation of a frequency responce of an imaging
scheme.

quency of the digital image data used as the test plate and by using the
projected low-resolution images produced from the digital image data
computationally in the same way as described in Section 3.2. We de-
fine the frequency response as the modulation transfer function, viz.,
the ratio of the output power of the frequency component contained in
the image reconstructed by the imaging scheme with the two different-
aperture cameras to the input power of the digital image data with the
single spatial frequency component, under the condition that the two
cameras are located horizontally in parallel and the test plate is located
perpendicularly to the optical axes of the two cameras. Moreover, we
suppose that the aperture ratio is 100 %. In this case, the relative shift
of each sampling point position between the two images captured with
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the two cameras is spatially uniform and assumed to be known perfectly
in the simulation. However, as shown in Figs.7.4(c)-7.4(f) there exist
various overlapping patterns between the two different pixel apertures.
In the simulation, however, we apply the experimental analysis of the
frequency response only to the cases of Figs.7.4(c) and 7.4(f), because
the cases of Figs.7.4(d) and 7.4(e) are considered to provide intermediate
frequency responses between those in the cases of Figs.7.4(c) and 7.4(f).

Figure 7.8 shows the estimated frequency responses. In Fig.7.8, in the
spatial frequency domain normalized in the radius direction, the contour
lines of -1dB, -3dB and -6dB are shown for each estimated frequency
response. Figures 7.8(a) and 7.8(b) show the estimated frequency re-
sponses of the imaging scheme with the two different-aperture cameras,
and Figs.7.8(a) and 7.8(b) correspond to the estimated frequency re-
sponses in the cases of Figs.7.4(c) and 7.4(f), respectively. Figure 7.8(c)
shows the estimated frequency response of a single camera with the verti-
cally long rectangular pixel aperture of Fig.7.6(b). Figure 7.8(d) shows
the estimated frequency response of a single camera with the square
pixel aperture with the area equal to that of the vertically long rectan-
gular pixel aperture of Fig.7.6(b). In the case of a single camera such
as Fig.7.8(c) and 7.8(d), the estimated frequency response is identical to
the usual modulation transfer function.

As is obvious from Fig.7.8, the imaging scheme with multiple different-
aperture cameras provides an improved frequency response, which ap-
proximates the logical sum of frequency responses of multiple cameras
used in the imaging scheme and is almost kept unchanged irrespective
of overlapping patterns shown in Fig.7.4.

3.4. Alternately Iterative Algorithm for
Registration and Reconstruction

In the different-aperture case, there still remains an unsolved prob-
lem about the registration stage. In the different-aperture case, all the
image contents such as spatial frequency components contained in one
image taken with one camera do not necessarily appear in another im-
age taken with another camera; the aliasing artifacts produced by each
camera change according to its pixel aperture. Therefore, it would seem
that separately from the reconstruction stage we cannot render only the
registration stage robust under the condition that aliasing is occurring
severely, and in various ways.

On the other hand, however, once we reconstruct an improved res-
olution image by integrating low-resolution images taken with multiple
different-aperture cameras, then we might utilize the improved-resolution
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Figure 7.8. Estimated frequency responses of imaging schemes
(a)imaging schemes with two different-aperture cameras in the case of

the overlapping pattern of Fig.7.4(c),(b)imaging scheme with two different-aperture
cameras in the case of the overlapping pattern of Fig.7.4(f),(c)single camera with
the vertically long rectangular pixel aperture of Fig.7.6(b),(d) single camera with the
square pixel aperture with the same area as that of the vertically long rectangular
pixel aperture of Fig.7.6(b).
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image as a reference image in the registration stage so as to enhance
its estimation accuracy; we might estimate the relative shift of each
sampling-point position of one image compared to the reference improved-
resolution image with higher accuracy to some extent, because the refer-
ence improved-resolution image holds most of the image contents lying
in a low resolution image taken with each camera. Prom this viewpoint,
we might conjecture that for the increase of the estimation accuracy
in the registration stage it is indispensable to combine the registration
stage with the reconstruction stage. Along the lines, we develops an
alternately iterative algorithm for performing the registration operation
together with the reconstruction operation.

The alternately iterative algorithm is organized as follows:

Alternately Iterative Algorithm

1 Apply the block-matching technique to images taken
with multiple different-aperture cameras and then
estimate the relative discrepancies of pixels in each of the observed
images compared to the reference observed image
In this step, firstly interpolate and magnify each observed image

horizontally and vertically in the ratio according to its pixel
aperture with the 0th order interpolation technique so as to obtain
the magnified image of the same size prescribed in advance,
then compare image blocks in each of the magnified images

to the reference magnified image and finally determine
the displacement with fractional pixel accuracy.

2 Integrate all the pixels of the observed images into
the reference observed image according to the displacement es-
timates derived in the step 1, and then reconstruct an improved
resolution image I with the Landweber algorithm.

3 This step is similar to the step 1 except that the improved res-
olution image I, instead of the observed image is used as a
reference image. In this step, firstly compare image blocks in each
of the magnified images to the reference improved-
resolution image I, and then estimate the relative discrepancies.

4 This step is similar to the step 2 except that the displacement
estimates derived in the step 3, instead of those derived in the
step 1, are used. In this step, reconstruct an improved-resolution
image I anew by integrating the observed images into
the reference observed image according to the displacement es-
timates derived in the step 3. If the improved resolution image I
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is almost unchanged compared to the preceding one, then halt the
algorithm; otherwise, return to the step 3.

4. Experimental Simulations
In order to evaluate the alternately iterative algorithm for the whole

process of registration and reconstruction in the different-aperture case,
first we used a two-dimensional zone plate chart as shown in Fig.7.9(a).To
make a projected low resolution image from a two-dimensional test plate,
which simulates the imaging process with each camera, we modeled the
imaging process as follows:

1 The projection is perspective.

2 Two cameras are located horizontally in parallel; their optical axes
are parallel.

3 The two-dimensional test plate is located perpendicularly to the
optical axes of the two cameras.

4 The two cameras have different pixel apertures as shown in Fig.7.6;
the aperture ratio of each camera is 100%.

We used a two-dimensional zone plate chart as a two-dimensional test
plate. The zone plate chart has the special property that the magnitude
of its Fourier transform is the same as its own magnitude. Hence, we can
clearly see the aliased frequency components produced by the imaging
process as a moire pattern, directly on the projected image of the zone
plate chart. Figures 7.9 and Fig.7.10 show the simulation results. Figure
7.9(a) shows an original zone plate chart used as a two-dimensional test
plate. Figure 7.9(b) shows part of the image captured by the left cam-
era with the horizontally wide rectangular pixel aperture of Fig.7.6(a),
but in this figure, for ease of comparison, the image is interpolated and
magnified with the sinc function in the horizontal direction. Figure
7.9(c) shows part of the image captured by the right camera with the
pixel aperture of Fig.7.6(b), but in this figure the image is interpolated
and magnified in the vertical direction. Figure 7.9(d) shows part of the
improved resolution image which is reconstructed under the ideal condi-
tion that the relative displacement between the two images of Fig.7.9(b)
and 7.9(c) is known perfectly. Figures 7.9(e) ~7.9(h) shows part of the
improved resolution image reconstructed at each iteration step of the
alternately iterative algorithm.

Figure 7.10 illustrates the accuracy chart of the displacement esti-
mates derived at each iteration step of the alternately iterative algo-
rithm, in the fpllowing manner. The white area of the accuracy chart
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Figure 7.9. Results of experimental simulations conducted on a two-dimentional
zone plate chart; reconstructed images provided by the alternately iterative algo-
rithm: (a) original zone plate chart, (b) part of the image captured by the left cam-
era, (c) part of the image captured by the right camera, (d) part of the image recon-
structed under the ideal condition that the relative displacement is known per-
fectly, (e) part of the image reconstructed at the 1st iteration step, (f) part of the image
reconstructed at the 2nd iteration step, (g) part of the image reconsturucted at the 4th
iteration step, (h) part of the image reconstructed at the 10th iteration step.
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represents pixel positions where the displacement estimate is provided
within one-fourth pixel accuracy; the black area denotes pixel positions
where the difference between the displacement estimate and the true
value exceeds a half pixel; the gray area corresponds to pixels for which
the displacement estimate is not provided within one-fourth pixel accu-
racy, but within one-half pixel accuracy.

In the image of Fig.7.9(e) reconstructed at the initial iteration step
of the alternately iterative algorithm, which image is identical to the
image reconstructed by the conventional non-iterative algorithm[9], be-
cause of insufficient accuracy of the displacement estimates, the reso-
lution improvements do not reach the improvement level of the image
of Fig.7.9(d), which is reconstructed under the ideal condition that the
displacement is known perfectly. At the early iteration steps (such as
the 2nd or the 3rd iteration step) only in the relatively narrow, low-
frequency region lying around about the middle of the zone plate chart,
the displacement is estimated with satisfactorily high accuracy. With
the advance of the iteration, however, as is obvious from Fig.7.10, the
region where the highly accurate displacement estimates are provided is
extended gradually to the peripheral higher frequency region lying at a
distance from the middle of the zone plate chart. Furthermore, after a
few iterations the algorithm provides an ideally improved resolution im-
age; we cannot distinguish between the image of Fig.7.9(h) reconstructed
at the 4th iteration step and the image of Fig.7.9(d) reconstructed under
the ideal condition that the displacement is known perfectly.

In the second simulation, we used two real images of Fig.7.11(a) and
Fig.7.11(b). These two images are generated from the images taken with
one stationary video camera. We produce the image of Fig.7.11(a) by
computing average intensity of horizontally adjacent two pixels, whereas
we generate the image of Fig.7.11(b) by computing average intensity of
vertically adjacent two pixels. These averaging operations are meant
to simulate imaging the scene with the two cameras having different
pixel apertures as shown in Fig.7.6. Figure 7.11(c) shows the improved-
resolution image that is reconstructed at the 10th iteration step of the
alternately iterative algorithm. In Fig.7.11, after several iterations, the
algorithm provides a fairly improved resolution image, which is analo-
gous to the case of Fig.7.9.

From these results, we might conclude that the alternately iterative
algorithm is a very potential technique for the signal-processing based
image acquisition scheme with multiple different-aperture cameras.
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Figure 7.10. Accuracy chart of the displacement estimates derived at each iteration
step for a two-dimensional zone plate chart: (a) original zone plate chart, (b) accuracy
chart at the 1st iteration step, (c) accuracy chart at the 2nd iteration step, (d)
accuracy chart at the 4th iteration step, (e) accuracy chart at the 10th iteration step.
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Figure 7.11. Result of the experimental simulation conducted on real images; a re-
constructed image provided by the alternately iterative algorithm: (a) the image
captured by the left camera, (b) the image captured by the right camera, (c) the
image reconstructed at the 10th iteration step.
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5. Conclusions
The signal processing based imaging scheme with multiple cameras is

to produce an improved resolution image by integrating multiple images
taken simultaneously with multiple cameras, and the imaging scheme
is very promising for improving spatial resolution further beyond the
physical limit of existing image acquisition devices. If imaged areas of
pixels of multiple cameras do not coincide with each other, the signal
processing based imaging scheme will work well. When we use multiple
cameras with the same pixel aperture, there are severe limitations both
in the arrangement of multiple cameras and in the configuration of the
scene, in order to guarantee the spatial uniformity of the resultant res-
olution. The utilization of multiple different-aperture cameras frees the
signal processing based imaging scheme from the above limitations com-
pletely. In this case, however, the registration problem becomes more
difficult to solve than in the same aperture case. To solve the regis-
tration problem, we incorporate a new, alternately iterative algorithm
into the signal processing based imaging scheme. The experimental sim-
ulations demonstrate that the utilization of multiple different-aperture
cameras is a promising method and that the alternately iterative algo-
rithm is a very potential technique for the signal processing based image
acquisition scheme with multiple different-aperture cameras.
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Abstract  Normal video sequences contain substantial overlap between successive
frames, and each region in the scene appears in multiple frames. The
super-resolution process creates high-resolution pictures of regions that
are sampled in multiple frames, having a higher spatial resolution than
the original video frames.

In this chapter existing super resolution algorithms are analyzed in
the framework of the solution of large sparse linear equations. It is
shown that the gradient of the function which is minimized when solv-
ing these equations can be computed by means of image operations like
warping, convolutions, etc. This analysis paves the way for new algo-
rithms, by using known gradient-based optimization techniques. The
gradient is computed efficiently in the image domain instead of multi-
plying large sparse matrices.

This framework allows versatile imaging conditions, including arbi-
trary motion models, camera blur models, etc. Prior knowledge can also
be combined efficiently for obtaining a MAP super resolution solution.

As an example, super resolution is implemented with the conjugate-
gradient method, and a considerable speedup in the convergence of the
algorithm is achieved compared to other methods.

Keywords: Super-Resolution MAP
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1. Introduction

Video sequences usually contain a large overlap between successive
frames, and regions in the scene are sampled in several images. This
multiple sampling can sometime be used to achieve images with a higher
spatial resolution. The process of reconstructing a high resolution image
from several images covering the same region in the world is called Super
Resolution. Additional tasks may include the reconstruction of a high
resolution video sequence [1], or a high resolution 3D model of the scene
[2].

A common model for super resolution presents it in the following way:
The low resolution input images are the result of projection of a high
resolution image onto the image plane, followed by sampling. The goal
is to find the high resolution image which fits this model. Formulating
it in mathematical language:

Given K images of size find the image of size
which minimizes the Error function:

where:

1 Can be any norm, usually

2 is the projection of onto the coordinate system and
sampling grid of image

When this optimization problem does not have a single solution, addi-
tional constraints may be added, expressing prior assumptions on
such as smoothness.
The projection is usually modeled by four stages:

1 Geometric Transformation

2 Blurring

3 Subsampling

4 Additive Noise

The major differences between most modern algorithms are in the
optimization technique used for solving this set of equations, the con-
straints on which are added to the system, and the modeling of the
geometric transformation, blur and noise.
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1.1. Modeling the Imaging process
1.1.1 Geometric Transformation. In order to have a unique
super resolved image the coordinates system of should be de-
termined. A natural choice would be the coordinate system of one of the
input images, enlarged by factor q, usually by two. The geometric trans-
formation of to the coordinates of the input images is computed by
finding the motion between the input images.
Motion computation and image registration are beyond the scope of this
paper. It is important to mention that high accuracy of registration is
crucial to the success of super resolution. This accuracy can be obtained
when and assumption on the motion model holds, such as an affine or
a planar-projective transformation. For highly accurate model-based
methods, see [3, 4, 5].

1.1.2 Blur. Image blur can usually be modeled by a convo-
lution with some low-pass kernel. This space-invariant function should
approximate both the blur of the optics, and the blur caused by the
sensor. The spectral characteristics of the kernel determine whether the
super resolution problem is uniquely solvable: If some (high) frequencies
of the kernel vanish, then there is no single solution [6]. In this case,
constraints on the solution may be added [7].
The digitized result of the camera blur is called ”The PSF - Point Spread
Function” . Several ways to estimate it are:

1 Use camera manufacturer information (Which is hard to get).

2 Analyze a picture of a known object [8, 9].

3 Blind estimation of the PSF from the images [10].

Some algorithms can handle space-variant blur, such as space-variant-
motion blur, air turbulence, etc.

1.1.3 Subsampling. Subsampling is the main difference be-
tween the models of super resolution and image restoration. Sometimes
the samples from different images can be ordered in a complete regular
grid, for example when the motion of the imaging device is precisely con-
trolled. In this case image restoration techniques such as inverse-filtering
and De-convolution can be used to restore a high resolution image. In
the general case of a moving camera, the super resolution image is re-
constructed from samples which are not on a regular grid. Still, image
restoration techniques inspire some of the super resolution algorithms
[11].
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1.1.4 Additive Noise. In super resolution, as in similar image
processing tasks, it is usually assumed that the noise is additive, nor-
mally distributed with zero-mean. Under this assumption, the maximum
likelihood solution is found by minimizing the error under Mahalanobis
Norm (using estimated autocorrelation matrix), or norm (assuming
uncorrelated ”white noise”). The minimum is found by using tools de-
veloped for large optimization problems under these norms, such as ap-
proximated Kalman-filter [1], linear-equations solvers [11, 12], etc. The
assumption of normal distribution of the noise is not accurate in most
of the cases, as most of the noise in the imaging process is non-gaussian
(quantization, camera noise, etc.), but modeling it in a more realistic
way would end in a very large and complex optimization problem which
is usually hard to solve.

1.2. Historical Overview
The theoretical basis for super resolution was laid by Papoulis [6], with

The Generalized Sampling Theorem . It was shown that a continuous
band-limited signal G can be reconstructed from samples of convolutions
of G with different filters, assuming some properties of these filters (see
1.1.2-blur). This idea is simple to generalize to 2D signals (images).

A pioneering algorithm for super resolution for images was presented
by Huang & Tsai [13], who made explicit use of the aliasing effect, as-
suming the image is band limited, and the images are noise-free. Kim et.
al. generalized this work to noisy and blurred images, using least square
minimization [14]. Spatial domain algorithm was presented by Ur &
Gross [15]. Assuming a known 2D translation, a fine sample grid image
was created from the input images, using interpolation, and the camera
blur was canceled using deblurring technique. The above methods as-
sumed blur function which is uniform over all the images, and identical
on different images. They were also restricted to global 2D translation.

A different approach was suggested by Irani & Peleg [8, 16], based
on previous work by Peleg et al. [17]. The basic idea, Iterative Back-
ward Projecting - IBP, was adopted from computer-aided Tomography
(CAT). The algorithm starts with an initial guess and iteratively
simulate the imaging process, reprojecting the error back to the super
resolution image. This algorithm can handle general motion and non-
uniform blur function, assuming they can be approximated accurately.
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To reduce noise and solve singular cases, several algorithms incorpo-
rate prior knowledge into the computation by constraining the solution.
Stark & Oskoui [18] and later Pati et. al. [12] base their algorithm on
a set theoretic optimization tool called POCS (Projection Onto Convex
Sets). It is assumed that convex constraints on the solution are known,
so that their intersection is also a convex set. The implementation of
the algorithm is similar to the IBP algorithm of Irani & Peleg, with a
modification in the backprojection stage: The errors in the imaging are
projected onto the solution image, while keeping the solution in the con-
vex set defined by the constraints. Pati et. al. also added motion blur
to the imaging process model.

Markov Random Field was also used to regularize super resolution.
Shekarforoush et. al. [19] formulated the super resolution problem in
probabilistic bayesian framework, and used MRF for modeling the prior,
and finding the solution. Similar formulation was presented by Schultz
& Stevenson [20], who use prior on the edges and smoothness of the im-
age to compensate for bad motion estimation, based on Huber-Markov
Random Field formulation.

There is a great similarity between super resolution and image restora-
tion, and indeed many of the super resolution techniques are adopted
from image restoration. A unifying framework for super resolution as a
generalization of image restoration was presented by Elad & Feuer [11].
Super resolution was formulated using matrix-vector notations, and it
was shown that existing super resolution techniques are actually vari-
ations of standard quadratic minimization techniques for solving linear
equations sets. Based on this analysis, they proposed other sparse ma-
trix optimization methods for the problem.

Finally, an analytical probabilistic method was recently developed by
Shekarforoush & Chellapa [10]. They proved that super resolution image
can be directly constructed by a linear combination of a basis which is
biorthogonal to the PSF function. The combination coefficients are the
input images intensity values. They also presented an algorithm for the
estimation of the camera PSF from the images.

2. Efficient Gradient-based Algorithms
2.1. Mathematical Formulation

Super resolution can be presented as a large sparse linear optimiza-
tion problem, and solved using explicit iterative methods [11, 21, 7]. In
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the presented framework a matrix-vector formulation is used in the anal-
ysis [11], but the implementation is by standard operations on images
such as convolution, warping, sampling, etc. Altering between the two
formulations, a considerable speedup in the super resolution computa-
tion is achieved, by taking advantage of the two worlds: Implementing
advanced gradient based optimization techniques (such as conjugate gra-
dient), while computing the gradient in an efficient manner, using basic
image operations, instead of sparse matrices multiplications.

In the analysis part images are represented as column vectors, (with
any arbitrary order of the pixels). Basic image operations such as con-
volution, subsampling, upsampling and warping are linear, and thus can
be represented as matrices operating on these vector images.

The image formation process can be formulated in the following way
[11]:

where:

is the high resolution image of size reordered in
a vector.

is the n-th image of size reordered in a vector.

is the normally distributed additive noise in the n-th image,
reordered in a vector.

is the geometric warp matrix, of size

is the blurring matrix, of size

is the decimation matrix, of size

Stacking the vector equations from the different images into a single
matrix-vector:

For practical reasons it is assumed the noise is uncorrelated and has
uniform variance. In this case, the maximum likelihood solution is found
by minimizing the functional:
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taking the derive of E with respect to and setting the gradient to
zero:

Gradient-based iterative methods can be used without explicit construc-
tion of these large matrices. Instead, the multiplication with A and
is implemented using only image operations such as warp, blur and sam-
pling.

The matrix operates on vectors corresponding to an image
of the size of the super resolution solution

The matrix operates on vectors stacking of the input images
reordered in column vectors

The matrices model the image formation process, and their
implementation is simply the image warping, blurring and subsampling
respectively. The implementation of the transpose matrices is also very
simple:

is implemented by upsampling the image without interpola-
tion, i.e. by zero padding.

- For a convolution blur, this operation is implemented by
convolution with the flipped kernel, i.e.if h(i, j) is the imaging blur
kernel, then the flipped kernel satisfies
For space-variant blur is implemented by forward projection
of the intensity values, using the weights of the original blur filter.

is implemented by backward warping, then should
be the forward warping of the inverse motion.

The simplest implementation of this framework is using Richardson
iterations [22], a from of steepest-descent with iteration step:
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This is a version of the Iterated Back Projection [8], using a specific blur
kernel and forward warping in the back projection stage.

The ability to compute the gradient of the super resolution func-
tional by image operations opens possibilities to efficiently use advanced
gradient-based optimization techniques:

Fast non-constrained optimization. An example is the Conjugate-
Gradient method, which is elaborated in the following section.

Constrained minimization, bounding the solution to a specific set.
An example for this is the POCS solution [12, 18].

Constrained minimization, using linear regularization term. The
regularization operator should be also easily implemented using
image operations. An example is given in the following section.

2.2. Super Resolution By the CG method
2.2.1 The Conjugate Gradient method. To demonstrate
the practical benefit of computing the gradient by image operations, a
super resolution algorithm using the conjugate-gradient (CG) method
was implemented. The CG method is an efficient method to solve linear
systems defined by symmetric positive definite matrices.

Definition 1 Let Q be a symmetric and positive definite matrix. A
vector set is Q-conjugate if

A Q-conjugate set of vectors is linearly independent, and thus form a ba-
sis. The solution to the linear equation is therefore a linear combination
of these vectors. The coefficients are very easily found:

The CG algorithm iteratively creates a conjugate basis, by converting the
gradients computed in each iteration to vectors which are Q-conjugate
to the previous ones (e.g. Graham-Shmidt procedure). Its convergence
to the solution in n steps is guaranteed, but this is irrelevant to the
super resolution problem, since n, the matrix size in super resolution,
is huge. Still, the convergence rate of the CG is superior to steepest
descent methods. Below is an implementation of CG.
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solves QX = Y, and mMax limit the number of iterations

2 Do While and

(a) if m = 1 then p = r
else and

(b) w = Qp

(c)

(d)

2.2.2 CG super resolution. In the CG implementation to
super resolution, the input includes the low resolution images, mMax
and the estimated blur function. First the motion between the input
images is computed, and an initial estimate to the solution is
set, for example the average of the bilinearly upsampled and aligned
input images.

Then, in order to use the CG code, two functions are implemented,
project and backProject. The simple vector operations, such as inner
product and multiplication with a scalar are easily translated to opera-
tions on images (correlation and multiplication by scalar). The matrix
operations are handled in the following way:

Step 1 - In the super resolution case and The
code to compute the residual r is therefore:
r = 0
for n=l to K do r = r + backProject( -project , n)

steps 2-b is replaced by the following code:
w=0
for n=l to K do w = w + backProject(project(p, n), n)

and the functions backProject,project are simply:

– = blur(p, n) blur image p by the blur operator (e.g.
convolution filter h(i, j))

– = backwardWrp(  n) Warp using backward warp-
ing, i.e. for each pixel in find its sub-pixel location in
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based on the motion to the n-th image, and use interpolation
to set its value.

–  return subsample   decimate the image, to get an image
of the size of the input image

=backProject(p, n)

–       = upsample(p) enlarge p to the size of the super resolved
image, by zero padding.

–  = forwrdWrp               Warp using forward warping,
i.e. for each pixel in find its sub-pixel location in
based on the motion to the n-th image. Spread the intensity
value of the pixel on the pixels of I2, proportionally to the
interpolation coefficients.

–  return  blur                     blur image p by the transpose of the
blur operator (e.g. in the case H is defined by a convolu-
tion filter h(i, j), its transpose is implemented by convolution
with the flipped filter

2.2.3 Adding regularization. In many cases the super res-
olution does not have a unique solution, and the matrix is not
invertible. This can be solved by introducing constraints on the solu-
tion, e.g. smoothness. If the constraints f are differentiable, and their
derivative can be approximated from the images, then they can be easily
combined with our proposed framework, by minimizing:

Where is the regularization coefficient. Taking the derivative of E
with respect to results in a set of equations:

In each iteration the image corresponding to is added to
the image corresponding to For example, when f can be
expressed by a linear operator M:

This image can be computed from the image corresponding to by
applying the operator M and its transpose. (The implementation of
MT in the image domain is derived similarly to the transpose of the
blur operators). The selection of the optimal f and is beyond the
scope of this paper [7].
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Figure 8.1. The sum of squared error in the images as a function of the running time
(measured in seconds). The circles mark the iteration times of the CG algorithm, and
crosses mark the iteration times of the IBP algorithm.

3. Computational Analysis and Results
To demonstrate the computational benefit of the proposed framework,

the running time of the CG super resolution is compared to another
image-based non-constrained algorithm, the IBP of Irani & Peleg. Im-
ages of a planar scene were captured by a hand held camera, and the
projective-planar motion between them was computed. Then both meth-
ods of super resolution were applied, and the computation time and re-
sults were compared.

The graph in Figure 8.1 presents the projection error E as a function
of the running time. The first iteration in the CG method is slower,
since it requires additional multiplication with the matrix The
next iterations of both of the methods require a single multiplication
with A and so the running time is similar (with small advantage
to the CG method). This means that the comparison of the running
time of these algorithm depends mainly on the convergence rate. It is
notable in the graph that the convergence of the CG method in the first
crucial iterations is much faster, yielding better results in a very short
time. This can be further accelerated by using efficient image operations
in the computation of the gradient.

The results of the super resolution algorithm are presented in Fig.
8.2. A set of images were captured by a hand-held camera. First the
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motion between the images was computed [3]. Then, the proposed su-
per resolution algorithm was applied (Fig. 8.2:E). For comparison, the
images were enlarged and warped to a common coordinate system, and
their median was computed (Fig. 8.2:C). Both the median and the SR
improved the readability dramatically. The SR result is sharper than
the median. After applying high-pass filter to the median results (Fig.
8.2:D), the readability is improved, but the result is not as good as the
SR result.

4. Summary

Super resolution can be presented as a large sparse linear system.
The presented framework allows for solving this system efficiently using
image-domain operations. With the rapid advance in computing speed,
applying super resolution algorithms on large video sequences becomes
more and more practical. There is still work to be done in improving
the noise model and the noise sensitivity of super resolution algorithms.
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Abstract The problem of recovering a high-resolution frame from a sequence of low-
resolution and compressed images is considered. The presence of the
compression system complicates the recovery problem, as the operation
reduces the amount of frequency aliasing in the low-resolution frames and
introduces a non-linear noise process. Increasing the resolution of the decoded
frames can still be addressed in a recovery framework though, but the method
must also include knowledge of the underlying compression system.
Furthermore, improving the spatial resolution of the decoded sequence is no
longer the only goal of the recovery algorithm. Instead, the technique is also
required to attenuate compression artifacts.

Key words: super-resolution, post-processing, image scaling, resolution enhancement,
interpolation, spatial scalability, standards conversion, de-interlacing, video
compression, image compression, motion vector constraint

1. INTRODUCTION

Compressed video is rapidly becoming the preferred method for video
delivery. Applications such as Internet streaming, wireless videophones,
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DVD players and HDTV devices all rely on compression techniques, and
each requires a significant amount of data reduction for commercial
viability. To introduce this reduction, a specific application often employs a
low-resolution sensor or sub-samples the original image sequence. The
reduced resolution sequence is then compressed in a lossy manner, which
produces an estimate of the low-resolution data. For many tasks, the initial
reconstruction of the compressed sequence is acceptable for viewing.
However, when an application requires a high-resolution frame or image
sequence, a super-resolution algorithm must be employed.

Super-resolution algorithms recover information about the original high-
resolution image by exploiting sub-pixel shifts in the low-resolution data.
These shifts are introduced by motion in the sequence and make it possible
to observe samples from the high-resolution image that may not appear in a
single low-resolution frame. Unfortunately, lossy encoding introduces
several distortions that complicate the super-resolution problem. For
example, most compression algorithms divide the original image into blocks
that are processed independently. At high compression ratios, the
boundaries between the blocks become visible and lead to “blocking”
artifacts. If the coding errors are not removed, super-resolution techniques
may produce a poor estimate of the high-resolution sequence, as coding
artifacts may still appear in the high-resolution result. Additionally, the
noise appearing in the decoded images may severely affect the quality of any
of the motion estimation procedures required for resolution enhancement.

A straightforward solution to the problem of coding artifacts is to
suppress any errors before resolution enhancement. The approach is
appealing, as many methods for artifact removal are presented in the
literature [1]. However, the sequential application of one of these post-
processing algorithms followed by a super-resolution technique rarely
provides a good result. This is caused by the fact that information removed
during post-processing might be useful for resolution enhancement.

The formulation of a recovery technique that incorporates the tasks of
post-processing and super-resolution is a natural approach to be followed.
Several authors have considered such a framework, and a goal of this chapter
is to review relevant work. Discussion begins in the next section, where
background is presented on the general structure of a hybrid motion
compensation and transform encoder. In Section 3, super-resolution
methods are reviewed that derive fidelity constraints from the compressed
bit-stream. In Section 4, work in the area of compression artifact removal is
surveyed. Finally, a general framework for the super-resolution problem is
proposed in Section 5. The result is a super-resolution algorithm for
compressed video.
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2. VIDEO COMPRESSION BASICS

The purpose of any image compression algorithm is to decrease the
number of bits required to represent a signal. Loss-less techniques can
always be employed. However for significant compression, information
must be removed from the original image data. Many possible approaches
are developed in the literature to intelligently remove perceptually
unimportant content, and while every algorithm has its own nuances, most
can be viewed as a three-step procedure. First, the intensities of the original
images are transformed with a de-correlating operator. Then, the transform
coefficients are quantized. Finally, the quantized coefficients are entropy
encoded. The choice of the transform operator and quantization strategy are
differentiating factors between techniques, and examples of popular
operators include wavelets, Karhunen-Loeve decompositions and the
Discrete Cosine Transform (DCT) [2]. Alternatively, both the transform and
quantization operators can be incorporated into a single operation, which
results in the technique of vector quantization [3].

The general approach for transform coding an MxN pixel image is
therefore expressed as

where g is an (MN)x1 vector containing the ordered image, T is an
(MN)x(MN) transformation matrix, Q is a quantization operator, and x is an
(MN)x1 vector that contains the quantized coefficients. The quantized
transform coefficients are then encoded with a loss-less technique and sent to
the decoder.

At the standard decoder, the quantized information is extracted from any
loss-less encoding. Then, an estimate of the original image is generated
according to

where is the estimate of the original image, is the inverse of the
transform operator, and represents a de-quantization operator. Note that
the purpose of the de-quantization operator is to map the quantized values in
x to transform coefficients. However, since the original quantization
operator Q is a lossy procedure, this does not completely undo the
information loss and

The compression method described in (9.1) and (9.2) forms the
foundation for current transform-based compression algorithms. For
example, the JPEG standard divides the original image into 8x8 blocks and
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transforms each block with the DCT [4]. The transform coefficients are then
quantized with a perceptually weighted method, which coarsely represents
high-frequency information while maintaining low-frequency components.
Next, the quantized values are entropy encoded and passed to the decoder,
where multiplying the transmitted coefficients by the quantization matrix
and computing the inverse-DCT reconstructs the image.

While transform coding provides a general method for two-dimensional
image compression, its extension to video sequences is not always practical.
As one approach, a video sequence might be encoded as a sequence of
individual images. (If JPEG is utilized, this is referred to as motion-JPEG.)
Each image is compressed with the transform method of (9.1), sent to a
decoder, and then reassembled into a video sequence. Such a method clearly
ignores the temporal redundancies between image frames. If exploited,
these redundancies lead to further compression efficiencies. One way to
capitalize on these redundancies is to employ a three-dimensional transform
encoder [5, 6]. With such an approach, several frames of an image sequence
are processed simultaneously with a three-dimensional transform operator.
Then, the coefficients are quantized and sent to the decoder, where the group
of frames is reconstructed. To realize significant compression efficiencies
though, a large number of frames must be included in the transform. This
precludes any application that is sensitive to the delay of the system.

A viable alternative to multi-dimensional transform coding is the hybrid
technique of motion compensation and transform coding [7]. In this method,
images are first predicted from previously decoded frames through the use of
motion vectors. The motion vectors establish a mapping between the frame
being encoded and previously reconstructed data. Using this mapping, the
difference between the original image and its estimate can be calculated.
The difference, or error residual, is then passed to a transform encoder and
quantized. The entire procedure is expressed as

where x is the quantized transform coefficients, and is the motion
compensated estimate of g that is predicted from previously decoded data.

To decode the result, the quantized transform coefficients and motion
vectors are transmitted to the decoder. At the decoder, an approximation of
the original image is formed with a two-step procedure. First, the motion
vectors are utilized to reconstruct the estimate. Then, the estimate is refined
with the transmitted error residual. The entire procedure is express as
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where is the decoded image,  is uniquely defined by the motion vectors,
and is the de-quantization operator.

The combination of motion compensation and transform coding provides
a very practical compression algorithm. By exploiting the temporal
correlation between frames, the hybrid method provides higher compression
ratios than encoding every frame individually. In addition, compression
gains do not have to come with an explicit introduction of delay. Instead,
motion vectors can be restricted to only reference previous frames in the
sequence, which allows each image to be encoded as it becomes available to
the encoder. When a slight delay is acceptable though, more sophisticated
motion compensation schemes can be employed that utilize future frames for
a bi-directional motion estimate [8].

The utility of motion estimation and transform coding makes it the
backbone of current video-coding standards. These standards include
MPEG-1, MPEG-2, MPEG-4, H.261 and H.263 [9-14]. In each of the
methods, the original image is first divided into blocks. The blocks are then
encoded using one of two available methods. For an intra-coded block, the
block is transformed by the DCT and quantized. For inter-coded blocks,
motion vectors are first found to estimate the current block from previously
decoded images. This estimate is then subtracted from the current block,
and the residual is transformed and quantized. The quantization and motion
vector data is sent to the decoder, which estimates the original image from
the transmitted coefficients.

The major difference between the standards lies in the representation of
the motion vectors and quantizers. For example, motion vectors are signaled
at different resolutions in the standards. In H.261, a motion vector is
represented with an integer number of pixels. This is different from the
methods employed for MPEG-1, MPEG-2 and H.263, where the motion
vectors are sent with half-pixel accuracy and an interpolation procedure is
defined for the estimate. MPEG-4 utilizes more a sophisticated method for
representing the motion, which facilitates the transmission of motion vectors
at quarter-pixel resolution.

Other differences also exist between the standards. For example, some
standards utilize multiple reference frames or multiple motion vectors for the
motion compensated prediction. In addition, the structure and variability of
the quantizer is also different. Nevertheless, for the purposes of developing
a super-resolution algorithm, it is sufficient to remember that quantization
and motion estimation data will always be provided in the bit-stream. When
a portion of a sequence is intra-coded, the quantizer and transform operators
will express information about the intensities of the original image. When
blocks are inter-coded, motion vectors will provide an (often crude) estimate
of the motion field.
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3. INCORPORATING THE BIT-STREAM

With a general understanding of the video compression process, it is now
possible to incorporate information from a compressed bit-stream into a
super-resolution algorithm. Several methods for utilizing this information
have been presented in the literature, and a survey of these techniques is
presented in this section. At the high-level, these methods can be classified
according to the information extracted from the bit-stream. The first class of
algorithms incorporates the quantization information into the resolution
enhancement procedure. This data is transmitted to the decoder as a series
of indices and quantization factors. The second class of algorithms
incorporates the motion vectors into the super-resolution algorithm. These
vectors appear as offsets between the current image and previous
reconstructions and provide a degraded observation of the original motion
field.

3.1 System Model

Before incorporating parameters from the bit-stream into a super-
resolution algorithm, a definition of the system model is necessary. This
model is utilized in all of the proposed methods, and it relates the original
high-resolution images to the decoded low-resolution image sequence.
Derivation of the model begins by generating an intermediate image
sequence according to

where f is a (PMPN)x1 vector that represents a (PM)x(PN) high-resolution
image, g is an (MN)x1 vector that contains the low-resolution data, A is an
(MN)x(PMPN) matrix that realizes a sub-sampling operation and H is a
(PMPN)x(PMPN) filtering matrix.

The low-resolution images are then encoded with a video compression
algorithm. When a standards compliant encoder is assumed, the low-
resolution images are processed according to (9.3) and (9.4). Incorporating
the relationship between low and high-resolution data in (9.5), the
compressed observation becomes

where is the decoded low-resolution image, and are the forward
and inverse DCT operators, respectively, Q and are the quantization and
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de-quantization operators, respectively, and is the temporal prediction of
the current frame based on the motion vectors. If a portion of the image is
encoded without motion compensation (i.e. intra-blocks), then the predicted
values for that region are zero.

Equation (9.6) defines the relationship between a high-resolution frame
and a compressed frame for a given time instance. Now, the high-resolution
frames of a dynamic image sequence are also coupled through the motion
field according to

where and are (PMPN)x1 vectors that denote the high-resolution data at
times l and k, respectively, and is a (PMPN)x(PMPN) matrix that
describes the motion vectors relating the pixels at time k to the pixels at time
l. These motion vectors describe the actual displacement between high-
resolution frames, which should not be confused with the motion
information appearing in the bit-stream. For regions of the image that are
occluded or contain objects entering the scene, the motion vectors are not
defined.

Combining (9.6) and (9.7) produces the relationship between a high-
resolution and compressed image sequence at different time instances. This
relationship is given by

where is the compressed frame at time l and is the motion
compensated prediction utilized in generating the compressed observation.

3.2 Quantizers

To explore the quantization information that is provided in the bit-stream,
researchers represent the quantization procedure with an additive noise
process according to

where represents the quantization noise at time l. The advantage of this
representation is that the motion compensated estimates are eliminated from
the system model, which leads to super-resolution methods that are
independent of the underlying motion compensation scheme. Substituting
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(9.9) into (9.8), the relationship between a high-resolution image and the
low-resolution observation becomes

where the motion compensated estimates in (9.8) cancel out.
With the quantization procedure represented as a noise process, a single

question remains: What is the structure of the noise? To understand the
answers proposed in the literature, the quantization procedure must first be
understood. In standards based compression algorithms, quantization is
realized by dividing each transform coefficient by a quantization factor. The
result is then rounded to the nearest integer. Rounding discards data from
the original image sequence, and it is the sole contributor to the noise term of
(9.10). After rounding, the encoder transmits the integer index and the
quantization factor to the decoder. The transform coefficient is then
reconstructed by multiplying the two transmitted values, that is

where and denote the transform coefficient of the low-
resolution image g and the decoded estimate respectively, q(i) is the
quantization factor and x(i) is the index transmitted by the encoder for the
transform coefficient, and Round(·) is an operator that maps each value to
the nearest integer.

Equation (9.11) defines a mapping between each transform coefficient
and the nearest multiple of the quantization factor. This provides a key
constraint, as it limits the quantization error to half of the quantization factor.
With knowledge of the quantization error bounds, a set-theoretic approach to
the super-resolution problem is explored in [15]. The method restricts the
DCT coefficients of the solution to be within the uncertainty range signaled
by the encoder. The process begins by defining the constraint set

where is the high-resolution estimate, is a vector that contains the
quantization factors for time l, is estimated by choosing transform
coefficients centered on each quantization interval, and the less-than
operator is defined on an element by element basis. Finding a solution that
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satisfies (9.12) is then accomplished with a Projection onto Convex Sets
(POCS) iteration, where the projection of  onto the set is defined as

where is the projection operator that accounts for the influence of the
observation on the estimate of the high-resolution image

The set-theoretic method is well suited for limiting the magnitude of the
quantization errors in a system model. However, the projection operator
does not encapsulate any additional information about the shape of the noise
process within the bounded range. When information about the structure of
the noise is available, then an alternative description may be more
appropriate. One possible method is to utilize probabilistic descriptions of
the quantization noise in the transform domain and rely on maximum a
posteriori or maximum likelihood estimates for the high-resolution image.
This approach is considered in [16], where the quantization noise is
represented with the density

where is the quantization noise in the spatial domain, is the
determinant of the transform operator, and denote the
probability density functions in the spatial and transform domains,
respectively [17].

Finding a simple expression for the quantization noise in the spatial
domain is often difficult, and numerical solutions are employed in [16].
However, an important case is considered in [18, 19], where the quantization
noise is expressed with the Gaussian distribution
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where is the covariance matrix of the quantization noise in the transform
domain for the frame of the sequence, and Z is a normalizing constant.

Several observations pertaining to (9.15) are appropriate. First, notice
that if the distributions for the quantization noise in the transform domain are
independent and identically distributed, then is spatially uncorrelated
and identically distributed. This arises from the structure of the DCT and is
representative of the flat quantization matrices typically used for inter-
coding. As a second observation, consider the perceptually weighted
quantizers that are utilized for intra-coding. In this quantization strategy,
high-frequency coefficients are represented with less fidelity. Thus, the
distribution of the noise in the DCT domain depends on the frequency.
When the quantization noise is independent in the transform domain, then

will be spatially correlated.
Incorporating the quantizer information into a super-resolution algorithm

should improve the results, as it equips the procedure with knowledge of the
non-linear quantization process. In this section, three approaches to utilizing
the quantizer data have been considered. The first method enforces bounds
on the quantization noise, while the other methods employ a probabilistic
description of the noise process. Now that the proposed methods have been
presented, the second component of incorporating the bit-stream can be
considered. In the next sub-section, methods that utilize the motion vectors
are presented.

3.3 Motion Vectors

Incorporating the motion vectors into the resolution enhancement
algorithm is also an important problem. Super-resolution techniques rely on
sub-pixel relationships between frames in an image sequence. This requires
a precise estimate of the actual motion, which has to be derived from the
observed low-resolution images. When a compressed bit-stream is available
though, the transmitted motion vectors provide additional information about
the underlying motion. These vectors represent a degraded observation of
the actual motion field and are generated by a motion estimation algorithm
within the encoder.

Several traits of the transmitted motion vectors make them less than ideal
for representing actual scene motion. As a primary flaw, motion vectors are
not estimated at the encoder by utilizing the original low-resolution frames.
Instead, motion vectors establish a correspondence between the current low-
resolution frame and compressed frames at other time instances. When the
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compressed frames represent the original image accurately, then the
correlation between the motion vectors and actual motion field is high. As
the quality of compressed frames decreases, the usefulness of the motion
vectors for estimating the actual motion field is diminished.

Other flaws also degrade the compressed observation of the motion field.
For example, motion estimation is a computationally demanding procedure.
When operating under time or resource constraints, an encoder often
employs efficient estimation techniques. These techniques reduce the
complexity of the algorithm but also decrease the reliability of the motion
vectors. As a second problem, motion vectors are transmitted with a
relatively coarse sampling. At best, one motion vector is assigned to every
8x8 block in a standards compliant bit-stream. Super-resolution algorithms,
however, require a much denser representation of motion.

Even with the inherent errors in the transmitted motion vectors, methods
have been proposed that capitalize on the transmitted information. As a first
approach, a super-resolution algorithm that estimates the motion field by
refining the transmitted data is proposed in [18, 19]. This is realized by
initializing a motion estimation algorithm with the transmitted motion
vectors. Then, the best match between decoded images is found within a
small region surrounding each initial value. With the technique, restricting
the motion estimate adds robustness to the search procedure. More
importantly, the use of a small search area greatly reduces the computational
requirements of the motion estimation method.

A second proposal does not restrict the motion vector search [20, 21].
Instead, the motion field can contain a large deviation from the transmitted
data. In the approach, a similarity measure between each candidate solution
and the transmitted motion vector is defined. Then, motion estimation is
employed to minimize a modified cost function. Using the Euclidean
distance as an example of similarity, the procedure is expressed as

where is a matrix that represents the estimated motion field, is a
two-dimensional vector the contains the motion vector for pixel location i,

is a matrix that contains the motion vectors provided by the encoder,
produces an estimate for the motion at pixel location i from

the transmitted motion vectors, and quantifies the confidence in the
transmitted information.

In either of the proposed methods, an obstacle to incorporating the
transmitted motion vectors occurs when motion information is not provided
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for the frames of interest. In some cases, such as intra-coded regions, the
absence of motion vectors may indicate an occlusion. In most scenarios
though, the motion information is simply being signaled in an indirect way.
For example, an encoder may provide the motion estimates  and

while not explicitly transmitting When a super-resolution
algorithm needs to estimate the method must determine  from the
transmitted information. For vectors with pixel resolution, a straightforward
approach is to add the horizontal and vertical motion components to find the
mapping The confidence in the estimate must also be adjusted, as
adding the transmitted motion vectors increases the uncertainty of the
estimate. In the method of [18, 19], a lower confidence in results in
a larger search area when finding the estimated motion field. In [20, 21], the
decreased confidence results in smaller values for

4. COMPRESSION ARTIFACTS

Exploring the influence of the quantizers and motion vectors is the first
step in developing a super-resolution algorithm for compressed video. These
parameters convey important information about the original image sequence,
and each is well suited for restricting the solution space of a high-resolution
estimate. Unfortunately, knowledge of the compressed bit-stream does not
address the removal of compression artifacts. Artifacts are introduced by the
structure of an encoder and must also be considered when developing a
super-resolution algorithm. In this section, an overview of post-processing
methods is presented. These techniques attenuate compression artifacts in
the decoded image and are an important component of any super-resolution
algorithm for compressed video. In the next sub-section, an introduction to
various compression artifacts is presented. Then, three techniques for
attenuating compression artifacts are discussed.

4.1 Artifact Types

Several artifacts are commonly identified in video coding. A first
example is blocking. This artifact is objectionable and annoying at all bit-
rates of practical interest, and it is most bothersome as the bit-rate decreases.
In a standards based system, blocking is introduced by the structure of the
encoder. Images are divided into equally sized blocks and transformed with
a de-correlating operator. When the transform considers each block
independently, pixels outside of the block region are ignored and the
continuity across boundaries is not captured. This is perceived as a
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synthetic, grid-like error at the decoder, and sharp discontinuities appear
between blocks in smoothly varying regions.

Blocking errors are also introduced by poor quantization decisions.
Compression standards do not define a strategy for allocating bits within a
bit-stream. Instead, the system designer has complete control. This allows
for the development of encoders for a wide variety of applications, but it also
leads to artifacts. As an example, resource critical applications typically rely
on heuristic allocation strategies. Very often different quantizers may be
assigned to neighboring regions even though they have similar visual
content. The result is an artificial boundary in the decoded sequence.

Other artifacts are also attributed to the improper allocation of bits. In
satisfying delay constraints, encoders operate without knowledge of future
sequence activity. Thus, bits are distributed on an assumption of future
content. When the assumption is invalid, an encoder must quickly adjust the
amount of quantization to satisfy a given rate constraint. The encoded video
sequence possesses a temporally varying image quality, which manifests
itself as a temporal flicker.

Edges and impulsive features introduce a final coding error. Represented
in the frequency domain, these signals have high spatial frequency content.
Quantization removes some of the information for encoding and introduces
quantization error. However, when utilizing a perceptually weighted
technique, additional errors appear. Low frequency data is preserved, while
high frequency information is coarsely quantized. This removes the high-
frequency components of the edge and introduces a strong ringing artifact at
the decoder. In still images, the artifact appears as strong oscillations in the
original location of the edge. Image sequences are also plagued by ringing
artifacts but are usually referred to as mosquito errors.

4.2 Post-processing Methods

Post-processing methods are concerned with removing all types of
coding errors and are directly applicable to the problem of super-resolution.
As a general framework, post-processing algorithms attenuate compression
artifacts by developing a model for spatial and temporal properties of the
original image sequence. Then, post-processing techniques find a solution
that satisfies the ideal properties while also remaining faithful to the
available data.

One approach for post-processing follows a constrained least squares
(CLS) methodology [22-24]. In this technique, a penalty function is
assigned to each artifact type. The post-processed image is then found by
minimizing the following cost functional
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where p is a vector representing the post-processed image, is the estimate
decoded from the bit-stream, B and R are matrices that penalize the
appearance of blocking and ringing, respectively, is the motion
compensated prediction and and express the relative importance of
each constraint. In practice, the matrix B is implemented as a difference
operator across the block boundaries, while the matrix R describes a high-
pass filter within each block.

Finding the derivative of (9.17) with respect to p and setting it to zero
represents the necessary condition for a minimum of (9.17). A solution is
then found using the method of successive approximations according to

where determines the convergence and rate of convergence of the
algorithm, and and denote the post-processed solution at iteration k
and k+1, respectively [25]. The decoded image is commonly defined as the
initial estimate, Then, the iteration continues until a termination criterion
is satisfied.

Selecting the smoothness constraints (B and R) and parameters  and
defines the performance of the CLS technique, and many approaches

have been developed for compression applications. As a first example,
parameters can be calculated at the encoder from the intensity data of the
original images, transmitted through a side channel and supplied to the post-
processing mechanism [26]. More appealing techniques vary the parameters
relative to the contents of the bit-stream, incorporating the quantizer
information and coding modes into the choice of parameters [27-29].

Besides the CLS approach, other recovery techniques are also suitable for
post-processing. In the framework of POCS, blocking and ringing artifacts
are removed by defining images sets that do not exhibit compression
artifacts [30, 31]. For example, the set of images that are smooth would not
contain ringing artifacts. Similarly, blocking artifacts are absent from all
images with smooth block boundaries. To define the set, the amount of
smoothness must be quantified. Then, the solution is constrained by

where is the smoothness threshold used for the block boundaries and B is
a difference operator between blocks.
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An additional technique for post-processing relies on the Bayesian
framework. In the method, a post-processed solution is computed as a
maximum a posteriori (MAP) estimate of the image sequence presented to
the encoder, conditioned on the observation [32, 33]. Thus, after applying
Bayes’ rule, the post-processed image is given by

Taking logarithms, the technique becomes

where is often assumed constant within the bounds of the
quantization error.

Compression artifacts are removed by selecting a distribution for the
post-processed image with few compression errors. One example is the
Gaussian distribution

In this expression, images that are likely to contain artifacts are assigned a
lower probability of occurrence. This inhibits the coding errors from
appearing in the post-processed solution.

5. SUPER-RESOLUTION

Post-processing methods provide the final component of a super-
resolution approach. In the previous section, three techniques are presented
for attenuating compression artifacts. Combining these methods with the
work in Section 3 produces a complete formulation of the super-resolution
problem. This is the topic of the current section, where a concise
formulation for the resolution enhancement of compressed video is
proposed. The method relies on the MAP estimation techniques to address
compression artifacts as well as to incorporate the motion vectors and
quantizer data from the compressed bit-stream.
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5.1 MAP Framework

The goal of the proposed super-resolution algorithm is to estimate the
original image sequence and motion field from the observations provided by
the encoder. Within the MAP framework, this joint estimate is expressed as

where is the estimate for the high-resolution image, G is an (MN)xL matrix
that contains the L compressed observations TF and TB are
the number of frames contributing to the estimate in the forward and
backward direction of the temporal axis, respectively, and and

are formed by lexicographically ordering the respective motion
vectors into vectors and storing the
result in a (PMPN)x(TF+TB+1) matrix.

5.1.1 Fidelity Constraints

Definitions for the conditional distributions follow from the previous
sections. As a first step, it is assumed that the decoded intensity values and
transmitted motion vectors are independent. This results in the conditional
density

Information from the encoder is then included in the algorithm. The
density function describes the noise that is introduced during
quantization, and it can be derived through the mapping presented in (9.14).
The corresponding conditional density is

when is the decoded image at time instant l and is the noise covariance
matrix in the spatial domain that is found by modeling the noise in the
transform domain as Gaussian distributed and uncorrelated.
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example distribution is

where is the motion vector for pixel location i,
estimates the motion at pixel i from the transmitted motion vectors, and is a
positive value that expresses a confidence in the transmitted vectors.

As a final piece of information from the decoder, bounds on the
quantization error should be exploited. These bounds are known in the
transform domain and express the maximum difference between DCT
coefficients in the original image and in the decoded data. High-resolution
estimates that exceed these values are invalid solutions to the super-
resolution problem, and the MAP estimate must enforce the constraint. This
is accomplished by restricting the solution space so that

where is the vector defined in (9.12) containing the quantization factors
for time l

5.1.2 Prior Models

After incorporating parameters from the compressed bit-stream into the
recovery procedure, the prior model  is defined. Assuming that
the intensity values of the high-resolution image and the motion field are
independent, the distribution for the original, high-resolution image can be
utilized to attenuate compression artifacts. Borrowing from work in post-
processing, the distribution

is well motivated, where R penalizes high frequency content within each
block, B penalizes significant differences across the horizontal and vertical
block boundaries and and control the influence of the different
smoothing parameters. The definitions of R and B are changed slightly from

the original motion field. Following the technique appearing in (9.16), an

The second conditional density relates the transmitted motion vectors to
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the post-processing method in (9.22), as the dimension of a block is larger in
the high-resolution estimate and block boundaries may be several pixels
wide. The distribution for could be defined with the methods
explored in [34].

5.2 Realization

By substituting the models presented in (9.25)-(9.28) into the estimate in
(9.23), a solution that simultaneously estimates the high-resolution motion
field as well as the high-resolution image evolves. Taking logarithms, the
super-resolution image and motion field are expressed as

The minimization of (9.29) is accomplished with a cyclic coordinate-
decent optimization procedure [35]. In the approach, an estimate for the
motion field is found while the high-resolution image is assumed known.
Then, the high-resolution image is predicted using the recently found motion
field. The motion field is then re-estimated using the current solution for the
high-resolution frame, and the process iterates by alternatively finding the
motion field and high-resolution images. Treating the high-resolution image
as a known parameter, the estimate for the motion field becomes
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where is the current estimate for the high-resolution image at time k.
Finding a solution for accomplished with a motion estimation
algorithm, and any algorithm is allowable within the framework. An
example is the well-known block matching technique.

Once the estimate for the motion field is found, then the high-resolution
image is computed. For the current estimate of the motion field,
minimization of (9.29) is accomplished by the method of successive
approximations and is expressed with the iteration

where and are the enhanced frames at the and iteration,
respectively, is a relaxation parameter that determines the convergence and
rate of convergence of the algorithm,  compensates an image backwards
along the motion vectors, defines the up-sampling operation and is the
projection operator for the quantization noise in frame i, as defined in (9.13).

5.3 Experimental Results

To explore the performance of the proposed super-resolution algorithm,
several scenarios must be considered. In this sub-section, experimental
results that illustrate the characteristics of the algorithm are presented by
utilizing a combination of synthetically generated and actual image
sequences. In all of the experiments, the spatial resolution of the high-
resolution image sequence is 352x288 pixels, and the frame rate is 30 frames
per second. The sequence is decimated by a factor of two in both the
horizontal and vertical directions and compressed with an MPEG-4
compliant encoder to generate the low-resolution frames.

5.3.1 Synthetic Experiments

In the first set of experiments, a single frame is synthetically shifted by
pixel increments according to

where is the original frame, mod(k,4) is the modulo arithmetic operator
that divides k by 4 and returns the remainder, and and
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represent the identity transform, a horizontal pixel shift, a vertical pixel shift,
and a diagonal pixel shift, respectively. The original frame is shown in
Figure 9.1, and the goal of the experiment is to establish an upper bound on
the performance of the super-resolution algorithm. This is achieved since
the experiment ensures that every pixel in the high-resolution image appears
in the decimated image sequence.

The resulting image sequence is sub-sampled and compressed with an
MPEG-4 compliant encoder utilizing the VM5+ rate control mechanism. No
filtering is utilized, that is H=I. In the first experiment, a bit-rate of 1 Mbps
is employed, which simulates applications with low compression ratios. In
the second experiment, a bit-rate of 256 kbps is utilized to simulate high
compression tasks. Both experiments maintain a frame rate of 30 frames per
second.

An encoded frame from the low and high compression experiments is
shown in Figure 9.2(a) and (b), respectively. Both images correspond to
frame 19 of the compressed image sequence and are representative of the
quality of the sequence. The original low-resolution frame 19 supplied to
the encoder also appears in Figure 9.2(c). Inspecting the compressed images
shows that at both compression ratios there are noticeable coding errors.
Degradations in the 1 Mbps experiment are evident in the numbers at the
lower right-hand corner of the image. These errors are amplified in the 256
kbps experiment, as ringing artifacts appear in the vicinity of the strong edge

Figure 9.1. Original High Resolution Frame
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features throughout the image.
Visual inspection of the decoded data is consistent with the objective peak

signal-to-noise ratio (PSNR) metric, which is defined as

where f is the original image and is the high-resolution estimate. Utilizing
this error criterion, the PSNR values for the low and high compression
images in Figures 9.2(a) and (b) are 35.4dB and 29.3dB, respectively.

With the guarantee that every pixel in the high-resolution image appears
in one of the four frames of the compressed image sequence, the super-
resolution estimate of the original image and high-resolution motion field is
computed with (9.29), where TB=1 and TF=2. In the experiments, the shifts
in (9.32) are not assumed to be known, but a motion estimation algorithm is
implemented instead. However, the motion vectors transmitted in the
compressed bit-stream provide the fidelity data. The influence of these
vectors is controlled by the parameter which is chosen as Other

Figure 9.2. Low-Resolution Frame: (a) Compressed at 1 Mbps; (b) Compressed at 256 kbps,
and (c) Uncompressed. The PSNR values for (a) and (b) are 35.4dB and 29.3dB,

respectively.
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parameters include the amount of smoothness in the solution, expressed as
and in (9.31) and chosen to vary relative to the amount of quantization in
the scene. For the low compression ratio experiment, while for
the high compression experiments Finally, the relaxation
parameter is defined as the iterative algorithm is terminated when

and a new estimate for DTB, TF  is computed whenever

The high-resolution estimate for the 1 Mbps experiment appears in Figure
9.3(a), while the result from the 256 kbps experiment appears in Figure
9.4(a). For comparison, the decoded results are also up-sampled by bi-linear
interpolation, and the interpolated images for the low and high compression
ratios appear in Figure 9.3(b) and 9.4(b), respectively. As can be seen from
the figure, ringing artifacts in both of the super-resolved images are
attenuated, when compared to the bi-linear estimates. Also, the resolution of
the image frames is increased. This is observable in many part of the image
frame, and it is most evident in the numbers at the lower right portion of the
image. The improvement in signal quality also appears in the PSNR metric.
Comparing the super-resolved images to the original high-resolution data,
the PSNR values for the low and high compression ratio experiments are
34.0dB and 29.7dB, respectively. These PSNR values are higher than the
corresponding bi-linear estimates, which produce a PSNR of 31.0dB and
28.9dB, respectively.

Computing the difference between the bi-linear and super-resolution
estimates provides additional insight into the problem of super-resolution
from compressed video. In the 1 Mbps experiment, the PSNR of the super-
resolved image is 3.0dB higher than the PSNR of the bi-linear estimate.
This is a greater improvement than realized in the 256 kbps experiment,
where the high-resolution estimate is only .8dB higher than the PSNR of the
bi-linear estimate. The improvement realized by the super-resolution
algorithm is inversely proportional to the severity of the compression.
Higher compression ratios complicate the super-resolution problem in a
major way, as aliased high frequency information in the low-resolution
image sequence is removed by the compression process. Since relating the
low and high-resolution data through a motion field is the foundation of a
super-resolution algorithm, the removal of this information limits the amount
of expected improvement. Moreover, the missing data often introduces
errors when estimating the motion field, which further limits the procedure.

Overcoming the problem of high-resolution data that is observable at
other time instances but removed during encoding is somewhat mitigated by
incorporating additional frames into the high-resolution estimate. This
improves the super-resolved image, as an encoder may preserve the data in
one frame but not the other. In addition, the approach benefits video
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Figure 9.3. Results of the Synthetic Experiment at 1 Mbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate. The PSNR values for (a) and

(b) are 34.0dB and 31.0dB, respectively.
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Figure 9.4. Results of the Synthetic Experiment at 256 kbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate. The PSNR values for (a) and

(b) are 29.7dB and 28.9dB, respectively.
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sequences that do not undergo a series of sub-pixel shifts. In either case,
increasing the number of frames makes it more likely that information about
the high-solution image appear at the decoder. The amount of improvement
is however restricted by the fact that objects may only appear in a limited
number of frames and motion estimates from temporally distant frames may
be unreliable.

5.3.2 Non-Synthetic Experiments

Increasing the number of frames that are utilized in the super-resolution
estimate is considered in the second set of experiments. In this scenario, the
high-resolution image sequence is considered that contains the frame
appearing in the synthetic example. The scene consists of a sequence of
images that are generated by a slow panning motion. In addition, the
calendar object is also moving in the horizontal direction.

Like the previous experiments, the high-resolution frames are down-
sampled by a factor two and compressed with an MPEG-4 compliant
encoder utilizing the VM5+ rate control. No filtering is utilized, and the
sub-sampled image sequence is encoded at both 1 Mbps and 256 kbps to
simulate both high and low compression environments. Encoded images
from both experiments are shown in Figure 9.5(a) and (b), respectively, and
correspond to frame 19 of the sequence. As in the synthetic example, some
degradations appear in the low compression ratio result, which become more
noticeable as the compression ratio is increased. These errors appear
throughout the frame but are most noticeable around the high-frequency
components of the numbers in the lower right-hand corner.

The super-resolution estimates for the 1 Mbps and 256 kbps experiments
appear in Figure 9.6(a) and 9.7(a), respectively, while the decoded results
after up-sampling with bi-linear interpolation appear in Figure 9.6(b) and
9.7(b), respectively. By inspecting the figure, conclusions similar to the
synthetic experiments are made. Ringing artifacts in both of the super-
resolution estimates are reduced, as compared to the bi-linear estimates. In
addition, the resolution of the image frames is increased within the numbers
appearing at the lower right of the frame. (Specifically, notice the
improvement on the 6.) These improvements result in an increase in PSNR.
For the super-resolved images, the low and high compression ratio
experiments produce a PSNR of 31.6dB and 29.1dB, respectively. The bi-
linear estimate provides lower PSNR values of 30.9dB and 28.7dB,
respectively.

Comparing the improvement in PSNR between the synthetic and actual
image sequences provides a quantitative measure of the difficulties
introduced by processing real image sequences. For the 1Mbps experiments,



236 SUPER-RESOLUTION IMAGING

Figure 9.5. Low-Resolution Frame: (a) Compressed at 1 Mbps, and (b) Compressed at 256
kbps. The PSNR values for (a) and (b) are 35.5dB and 29.2dB, respectively.

the PSNR of the high-resolution estimate is .7dB larger than the bi-linear
result. This is a smaller improvement than realized with the synthetic
example, where the gain is 3.0dB. Differences between the experiments are
even more noticeable at the lower bit-rate, where the PSNR of the high-
resolution estimate is only .4dB greater than the bi-linear estimate. This is
also a decrease in performance, as compared to the .8dB gain of the synthetic
simulations.

As discussed previously, several problems with actual image sequences
contribute to a decrease in performance. These problems include the
removal of information by a compression system and the absence of sub-
pixel shift in the image sequence. To address these problems, it is
advantageous to include additional frames in the super-resolution estimate,
as these frames contain additional observations of the high-resolution
estimate. The impact of the additional frames is explored in the final
experiment, where the super-resolution estimate for the 256 kbps actual
image sequence is recomputed. Parameters for the experiment are equal to
the previously defined values, except that nine frames are included in the
high-resolution estimate, corresponding to TB=3 and TF=5.

The super-resolution image for the nine frame experiment appears in
Figure 9.8, and it illustrates an improvement when compared to the four
frame estimate shown in Figure 9.8. As in the previous experiments,
differences between the images are most noticeable in the regions
surrounding the numbers, where the addition of the five frames into the
super-resolution algorithm further attenuates the ringing and improves the
definition of the numbers. These improvements also increase the PSNR of
the high-resolution estimate, which increase from 29.1dB to 29.5dB after
incorporating the extra five frames.
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Figure 9.6. Results of the Non-Synthetic Experiment at 1Mbps: (a) Super-
Resolved Image and (b) Bi-Linear Estimate. The PSNR values for (a) and

(b) are 31.6dB and 30.8dB, respectively.
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Figure 9.7. Results of the Non-Synthetic Experiment at 256 kbps: (a)
Super-Resolved Image and (b) Bi-Linear Estimate. The PSNR values for

(a) and (b) are 29.1dB and 28.7dB, respectively.
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Figure 9.8. Result of the Non-Synthetic Experiment with Nine Frames.
The compression rate is 256 kbps, and the PSNR is 29.5dB.

6. CONCLUSIONS

In this chapter, the problem of recovering a high-resolution frame from a
sequence of low-resolution and compressed images is considered. Special
attention is focused on the compression system and its effect on the recovery
technique. In a traditional resolution recovery problem, the low-resolution
images contain aliased information from the original high-resolution frames.
Sub-pixel shifts within the low-resolution sequence facilitate the recovery of
spatial resolution from the aliased observations. Unfortunately when the
low-resolution images are compressed, the amount of aliasing is decreased.
This complicates the super-resolution problem and suggests that a model of
the compression system be included in the recovery technique. Several
methods are explored in the chapter for incorporating the compression
system into the recovery framework. These techniques exploit the
parameters in the compressed bit-stream and lead to a general solution
approach to the problem of super-resolution from compressed video.
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Abstract
A variety of super-resolution algorithms have been described in this

book. Most of them are based on the same source of information how-
ever; that the super-resolution image should generate the lower reso-
lution input images when appropriately warped and down-sampled to
model image formation. (This information is usually incorporated into
super-resolution algorithms in the form of reconstruction constraints
which are frequently combined with a smoothness prior to regularize
their solution.) In this final chapter, we first investigate how much ex-
tra information is actually added by having more than one image for
super-resolution. In particular, we derive a sequence of analytical re-
sults which show that the reconstruction constraints provide far less
useful information as the decimation ratio increases. We validate these
results empirically and show that for large enough decimation ratios
any smoothness prior leads to overly smooth results with very little
high-frequency content however many (noiseless) low resolution input
images are used. In the second half of this chapter, we propose a super-
resolution algorithm which uses a completely different source of infor-
mation, in addition to the reconstruction constraints. The algorithm
recognizes local “features” in the low resolution images and then en-
hances their resolution in an appropriate manner, based on a collection
of high and low-resolution training samples. We call such an algorithm
a hallucination algorithm.

Keywords: Super-resolution, analysis of limits, learning, faces, text, hallucination.
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1. Introduction
A large number of super-resolution algorithms have been described in

this book. Most of them, however, are based on the same source of infor-
mation; specifically, that the super-resolution image, when appropriately
warped and down-sampled to model the image formation process, should
yield the low resolution images. This information is typically embedded
in a set of reconstruction constraints, first introduced by (Peleg et al.,
1987; Irani and Peleg, 1991). These reconstruction constraints can be
embedded in a Bayesian framework incorporating a prior on the super-
resolution image (Schultz and Stevenson, 1996; Hardie et al., 1997; Elad
and Feuer, 1997). Their solution can also be estimated either in batch
mode or recursively using a Kalman filter (Elad and Feuer, 1999; Dellaert
et al., 1998). Several other refinements have been proposed, including
simultaneously computing 3D structure (Cheeseman et al., 1994; Shekar-
foroush et al., 1996; Smelyanskiy et al., 2000) and removing other de-
grading artifacts such as motion blur (Bascle et al., 1996).

In the first part of this chapter, we analyze the super-resolution re-
construction constraints. We derive three analytical results which show
that the amount of information provided by having more than one image
available for super-resolution becomes very much less as the decimation
ratio q increases. Super-resolution therefore becomes inherently much
more difficult as q increases. This reduction in the amount of informa-
tion provided by the reconstruction constraints is traced to the fact that
the pixel intensities in the input images take discrete values (typically
8-bit integers in the range 0–255). This causes a loss of information and
imposes inherent limits on how well super-resolution can be performed
from the reconstruction constraints (and other equivalent formulations
based on the same underlying source of information.)

How, then, can high-decimation ratio super-resolution be performed?
Our analytical results hold for an arbitrary number of images so us-
ing more low resolution images does not help. Suppose, however, that
the input images contain printed text. Moreover, suppose that it is
possible to perform optical character recognition (OCR) and recognize
the text. If the font can also be determined, it would then be easy to
perform super-resolution for any decimation ratio. The text could be re-
produced at any resolution by simply rendering it from the script of the
text and the definition of the font. In the second half of this chapter,
we describe a super-resolution algorithm based on this idea which we
call hallucination (Baker and Kanade, 1999; Baker and Kanade, 2000a).
Our super-resolution hallucination algorithm is based, however, on the
recognition of generic local “features” (rather than the characters de-
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tected by OCR). It can therefore be applied to other phenomena such
as images of human faces.

2. The Reconstruction Constraints
Denote the low resolution input images by where

The starting point in the derivation of the reconstruction constraints is
then the continuous image formation equation (Horn, 1996):

where is the continuous irradiance function that would have
reached the image plane of the camera under the pinhole model, and

is point spread function of the camera. The (double) integra-
tion is performed over the image plane of See Figure 10.1 for an
illustration.

2.1. Modeling the Point Spread Function
We decompose the point spread function into two parts (see Fig-

ure 10.1):

where models the blurring caused by the optics and
models the spatial integration performed by the CCD sensor (Baker
et al., 1998). The optical blurring is typically further split into a
defocus factor that can be approximated by a pill-box function and a
diffraction-limited optical transfer function that can be modeled by the
square of the first-order Bessel function of the first kind (Born and Wolf,
1965). We aim to be as general as possible and so avoid making any as-
sumptions about Instead, (most of) our analysis is performed for
arbitrary optical blurring functions. We do, however, assume a para-
metric form for We assume that the the photo-sensitive areas of
the CCD pixels are square and uniformly sensitive to light, as in (Baker
et al., 1998; Barbe, 1980). If the length of the side of the square photo-
sensitive area is the spatial integration function is then:

In general the photosensitive area is not the entire pixel since space
is needed for the circuitry to read out the charge. Therefore the only
assumption we make about is that it lies in [0,1]. Our analysis
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Figure 10.1. The low resolution input images are formed by the convolution of
the irradiance with the camera point spread function We model the point
spread function itself as the convolution of two terms: (1) models the optical
effects caused by the lens and the finite aperture, and (2) models the spatial
integration performed by the CCD sensor.
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is then in terms of (rather than the inter-pixel distance which is
assumed to define the unit distance.)

2.2. What is Super-Resolution Anyway?

We wish to estimate a super-resolution image Precisely
what does this mean? Let us begin with the coordinate frame of
The coordinate frame of a super-resolution image is typically defined
relative to that of the corresponding low resolution input image. If the
decimation ratio is q, the pixels in will be q times closer to each
other than those in the corresponding low resolution image, say.
The coordinate frame of can therefore be defined in terms of that for

via:

In this chapter we assume that the input images have already been
registered with each other and therefore with the coordinate frame of

Then, denote the point in image (where k may or may not
equal that corresponds to (x, y) in by From now on
we assume that is known.

The integration in Equation (10.1) is performed over the low resolu-
tion image plane. Transforming to the super-resolution image plane of

gives:

where is the determinant of the Jacobian of the registration

Now, is the irradiance that would have reached the im-
age plane of the camera under the pinhole model, transformed onto
the super-resolution image plane. Assuming that the registration is cor-
rect, and that the radiance of every point in the scene does change across
k (a Lambertian-like assumption), should be the same for
all k. Moreover, it equals the irradiance that would have reached the
super-resolution image plane of under the pinhole model. Denoting
this function by I(x, y), we have:

The goal of super-resolution is then to recover (a representation of)
I(x, y). Doing this requires both increasing the resolution and “deblur-



248 SUPER-RESOLUTION IMAGING

ring” the image; i.e. removing the effects of the convolution with the
point spread function

In order to proceed we need to specify which continuous function
I(x, y) is represented by the discrete image For simplicity, we
assume that represents the piecewise constant function:

for all and Then, Equa-
tion (10.6) can be rearranged to give the super-resolution reconstruction
constraints:

where and:

The super-resolution reconstruction constraints are therefore a set of
linear constraints on the unknown super-resolution pixels in
terms of the known low resolution pixels and the coefficients

3. Analysis of the Constraints
The constant coefficients in the reconstruction con-

straints depend on both the point spread function and the registra-
tion Without some assumptions about these functions any analysis
would be meaningless. If the point spread function is arbitrary, it can
be chosen to simulate the “small pixels” of the super-resolution image.
Similarly, if the registration is arbitrary, it can be chosen (in effect) to
move the camera towards the scene and thereby directly capture the
super-resolution image. We therefore have to make some (reasonable)
assumptions about the imaging conditions.

Assumptions Made About the Point Spread Function
As mentioned above, we assume that the point spread function takes

the form of Equation (10.3). Moreover, we assume that the width of the
photosensitive area is the same for all of the images (and equals
S.) In the first part of our analysis, we also assume that

where is the Dirac delta function. Afterwards, in the second
and third parts of our analysis, we allow to be arbitrary; i.e. our
analysis holds for any optical blurring.
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Assumptions Made About the Registration
To outlaw motions which (effectively) allow the camera to be moved

towards the scene, we assume that each registration takes the form:

where is a constant translation (which in general may be dif-
ferent for each low resolution image k) and the accounts for the change
of coordinate frame from high to low resolution images. See also Equa-
tion (10.4).

Even given these assumptions, the performance of any super-resolution
algorithm will depend upon the exact number of input images K, the
values of and, moreover, how well the algorithm can regis-
ter the low resolution images to estimate the Our goal is to
show that super-resolution becomes fundamentally more difficult as the
decimation ratio q increases. We therefore assume that the conditions
are as favorable as possible and perform the analysis for an arbitrary
number of input images K, with arbitrary translations We
also assume that the algorithm has estimated these values perfectly. Any
results derived under these conditions will only be stronger in practice,
where the registrations may be degenerate or inaccurate.

3.1. Invertibility Analysis
We first analyze when the reconstruction constraints are invertible,

and what the rank of the null space is when they are not. In order
to get an easily interpretable result, the analysis in this section is per-
formed under the scenario that the optical blurring can be ignored; i.e.

(This assumption will be removed in the follow-
ing two sections.) The expression for in Equation (10.9)
then simplifies to:

Using the definition of it can be seen that is equal
to times the area of the intersection of the two squares in
Figure 10.2 (the high resolution pixel
and the region where non-zero and equals We then have:

Theorem 1 If q · S is an integer greater than 1, then for all
the reconstruction constraints (Equations (10.8) and (10.11)) are not
invertible. Moreover, the dimension of the null space is at least (q · S –
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Figure 10.2. The high-resolution pixel over which the integration is performed
in Equation (10.11) is indicated by the small square at the upper middle left of the
figure. The larger square towards the bottom right is the region in which is non-
zero. Since takes the value in this region, the integral in Equation (10.11)
equals where A is the area of the intersection of the two squares. This figure
is used to illustrate the 1D proof of Theorem 1.

1)2. If q · S is not an integer, and always exist such that the
constraints are invertible.

Proof: We provide a proof for 1D images. (See Figure 10.2.) The
extension to 2D is conceptually no more difficult and so is omitted for
reasons of brevity.

The null space is defined by where

is the area of intersection of
the 2 squares in Figure 10.2. Any element of the null space therefore
corresponds to an assignment of values to the small squares such that
their weighted sum (over the large square) equals zero, where the weights
are the areas of intersection.

In 1D we just consider one row of the figure. Changing (and
to slide the large square along the row by a small amount, we get a
similar constraint on the elements in the null space. The only difference
is in the left-most and right-most small squares. Subtracting these two
constraints shows that the left-most square and the right-most square
must have the same value.

If q · S is not an integer (or is 1), this proves that neighboring values
of must be equal and hence 0. (Since q · S is not an integer, the
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Figure 10.3. Validation of Theorem 1: The results of solving the reconstruction
constraints using gradient descent for a square point spread function with S = 1.0.
(a) When q · S is an integer, the equations are not invertible and so a random periodic
image in the null space is added to the original image, (b) When q · S is not an integer,
the reconstruction constraints are invertible (in general) and so a smooth solution is
found, even without a prior. (The result for q = 1.5 was interpolated to make it
the same size as that for q = 2.0.) (c) When a smoothness prior is added to the
reconstruction constraints the difficulties seen in (a) disappear. (For larger values of
q simply adding a smoothness prior does not solve this problem, as will be seen.)

big square slides out of one small square before the other and the result
then follows by transitivity of equality.) Therefore, there exist values for
the translations (and such that the null space only contains the
zero vector; i.e. the reconstruction constraints are invertible in general
if q · S is not an integer (or is 1).

If q · S is an integer greater than 1, this same constraint places an
upper bound of on the maximum dimension of the null space
computed over all possible translations (and The space of all
assignments to that are periodic with period q · S and which have a
zero mean can also easily be seen to always lie in the null space and so
this value is also a lower bound on the dimension of the null space for
any translations (and

To validate this theorem, we solved the reconstruction constraints
using gradient descent for the two cases q = 2.0 and q = 1.5, (where
S = 1.0.) The results are presented in Figure 10.3. In this experiment,
no smoothness prior is used and gradient descent is run for a sufficiently
long time that the (smooth) initial image does not bias the results. The
input in both cases consisted of multiple down-sampled images of the
face. Specifically, 1024 randomly translated images were used as input.
Exactly the same inputs are used for the two experiments. The only
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difference is the decimation ratio. (The output for q = 1.5 is actually
smaller than that for q = 2.0 and was interpolated to be the same size
for display purposes. This is the reason it appears slightly smoother
than (c).)

As can be seen in Figure 10.3, for q = 2.0 the (additive) error is
approximately a periodic image with period 2 pixels. For q = 1.5 the
equations are invertible and so a smooth solution is found, even though
no smoothness prior was used. For q = 2.0, the fact that the prob-
lem is not invertible does not have any practical significance. Adequate
solutions can be obtained by simply adding a smoothness prior to the
reconstruction constraints, as shown in Figure 10.3(c). For the
situation is different, however. The rapid rate of increase of the dimen-
sion of null space (quadratic in q · S) is the root cause of the problems,
as will be seen in the next two sections.

3.2. Conditioning Analysis
Most linear systems that are close to being not invertible are usually

ill-conditioned. It is no surprise then that changing from a square point
spread function to an arbitrary blurring function results
in an ill-conditioned system, as we now show in the second part of our
analysis:

Theorem 2 If (x, y) is a function for which for all
(x, y) and then the condition number of the
reconstruction constraints (Equations (10.8) and (10.9)) grows at least
as fast as

Proof: We first prove the theorem for the square point spread function
(i.e. for Equations (10.8) and (10.11)) and then generalize.

The condition number of a linear operator A can be written as:

It follows from Equations (10.8) and (10.11) that if for
all then for all (i, j). Hence the numerator in
Equation (10.12) is at least 1. Setting to be the checkerboard
pattern (1 if is even, -1 if odd) we find that
since the integration of the checkerboard over any square in the real plane
lies in the range [–1, 1]. (Proof omitted.) Hence the denominator is at
most The desired result for follows immediately.
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For arbitrary point spread functions, note that Equations (10.8) and
(10.9) can be combined and then rewritten as:

where we have set and changed variables
Both of the properties of that we used to prove

the result for square point spread functions therefore also hold with
replaced by using standard properties of the convolution
operator. Hence, the desired, more general, result follows immediately
from Equation (10.13).

This theorem is more general than the previous one because it ap-
plies to arbitrary optical blurring functions. On the other hand, it is a
weaker result (in some situations) because it only predicts that super-
resolution is ill-conditioned (rather than not invertible.) This theorem
on its own, therefore, does not entirely explain the poor performance
of super-resolution. As we showed in Figure 10.3, problems that are
ill-conditioned (or even not invertible, where the condition number is
infinite) can often be solved by simply adding a smoothness prior. (The
not invertible super-resolution problem in Figure 10.3(a) is solved in
Figure 10.3(c) in this way.) Several researchers have performed con-
ditioning analysis of various forms of super-resolution, including (Elad
and Feuer, 1997; Shekarforoush, 1999; Qi and Snyder, 2000). Although
useful, none of these results fully explain the drop-off in performance
with the decimation ratio q. The weakness of conditioning analysis is
that an ill-conditioned system may be ill-conditioned because of a sin-
gle “almost singular value.” As indicated by the rapid growth in the
dimension of the null space in Theorem 1, super-resolution has a large
number of “almost singular values” for large q. This is the real cause of
the difficulties seen in Figure 10.4, as we now show.

3.3. Analysis of the Volume of Solutions
If we could work with noiseless, real-valued quantities and perform

arbitrary precision arithmetic then the fact that the reconstruction con-
straints are ill-conditioned might not be a problem. In reality, however,
images are always intensity discretized (typically to 8-bit values in the
range 0–255 grey levels.) There will therefore always be noise in the
measurements, even if it is only plus-or-minus half a grey-level. Suppose
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that int[·] denotes the operator which takes a real-valued irradiance mea-
surement and turns it into an integer-valued intensity. If we incorporate
this quantization into our image formation model, the reconstruction
constraints in Equation (10.13) become:

Suppose also that is a finite size image with n pixels. We then have:

Theorem 3 The volume of solutions of the intensity discretized recon-
struction constraints in Equation (10.14) grows asymptotically at least
as fast as

Proof: First note that the space of solutions is convex since integration
is linear. Next note that one solution of Equation (10.14) is the solution
of:

The definition of the point spread function as and the
properties of the convolution give Therefore, adding

to any pixel in is still a solution since the right hand side
of Equation (10.15) increases by at most 1. (The integrand is increased
by less than 1 grey-level in the pixel, which only has an area of 1 unit.)
The volume of solutions of Equation (10.14) therefore contains an n-
dimensional simplex, where the angles at one vertex are all right-angles,
and the sides are all units long. The volume of such a simplex
grows asymptotically like (treating n as a constant and M and
S as variables). The desired result follows.

In Figures 10.4 and 10.5 we present results to illustrate Theorems 2
and 3. We took a high resolution image of a face and translated it by
random sub-pixel amounts, blurred it with a Gaussian, and then down-
sampled it. We repeated this procedure for several decimation ratios;
q = 2, 4, 8, and 16. In each case, we generated multiple down-sampled
images, each with a different translation. We generated enough images
so that there were as many low resolution pixels in total as pixels in
the original high resolution image. For example, we generated 4 half
size images, 16 quarter size images, and so on. We then applied the
algorithms of (Hardie et al., 1997) and (Schultz and Stevenson, 1996).

The results for (Hardie et al., 1997) are shown in the figure. The re-
sults for (Schultz and Stevenson, 1996) were very similar and are omit-
ted. We provided the algorithms with exact knowledge of both the
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Figure 10.4. Results of the reconstruction-based super-resolution algorithm (Hardie
et al., 1997) for various decimation ratios. A high high-resolution image of a face is
translated multiple times by random sub-pixel amounts, blurred with a Gaussian, and
then down-sampled. (The algorithm is provided with exact knowledge of the point
spread function and the sub-pixel translations.) Comparing the images in the right-
most column, we see that the algorithm does quite well given the very low resolution
of the input. The degradation in performance as the decimation ratio increases from
left to right is very dramatic, however.



256 SUPER-RESOLUTION IMAGING

Figure 10.5. An illustration of Theorems 2 and 3 using the same inputs as in Fig-
ure 10.4. The reconstruction error is much higher than the residual, as would be
expected for an ill-conditioned system. For low decimation ratios, the prior is unnec-
essary and so the results are worse than predicted. For high decimation ratios, the
prior does help, but at the price of smooth results. (See Figure 10.4.) An estimate
of the amount of information provided by the reconstruction constraints is given by
the improvement of the reconstruction error over the interpolation error. Similarly,
the improvement from the predicted error to the reconstruction error is an estimate
of the amount of information provided by the smoothness prior. By this measure, the
smoothness prior provides more information than the reconstruction constraints for

point spread function used in the down-sampling and the random sub-
pixel translations. Restricting attention to the right-most column of
Figure 10.4, the results look very good. The algorithm is able to do a
decent job of reconstructing the face from input images which barely
resemble faces. On the other hand, the performance gets much worse as
the decimation ratio increases (from left to right.)

Our third and final theorem provides the best explanation of these
results. For large decimation ratios q = 8 and 16, there is a huge vol-
ume of solutions to the discretized reconstruction constraints in Equa-
tion (10.14). The smoothness prior which is added to resolve this ambi-
guity simply ensures that it is one of the overly smooth solutions that
is chosen. (Of course, without the prior any solution might be chosen
which would generally be even worse.)
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Using the same inputs as Figure 10.4, we plot the reconstruction error
against the decimation ratio in Figure 10.5; i.e. the difference between
the reconstructed high resolution image and the original. We compare
this error with the residual error; i.e. the difference between the low res-
olution inputs and their predictions from the reconstructed high resolu-
tion image. As expected for an ill-conditioned system, the reconstruction
error is much higher than the residual. We also compare with a rough
prediction of the reconstruction error obtained by multiplying the lower
bound on the condition number by an estimate of the expected
residual assuming that the grey-levels are discretized from a uniform dis-
tribution. For low decimation ratios, this estimate is an under-estimate
because the prior is unnecessary for noise free data; i.e. better results
would be obtained without the prior. For high decimation ratios the
prediction is an over-estimate because the local smoothness assumption
does help the reconstruction (albeit at the expense of overly smooth
results.)

We also plot interpolation results in Figure 10.5; i.e. just using the
reconstruction constraints for one image (as was proposed, for example,
in (Schultz and Stevenson, 1994).) The difference between this curve and
the reconstruction error curve is a measure of how much information the
reconstruction constraints provide. Similarly, the difference between the
predicted error and the reconstruction error is a measure of how much
information the smoothness prior provides. For a decimation ratio of
16, we see that the prior provides more information than the super-
resolution reconstruction constraints.

4. Super-Resolution by Hallucination
How then is it possible to perform super-resolution with a high deci-

mation ratio without the results looking overly smooth? As we have just
shown, the required high-frequency information was lost from the recon-
struction constraints when the input images were discretized to 8-bit
values. Smoothness priors may help regularize the problem, but cannot
replace the missing information.

Our goal in this section is to develop a super-resolution algorithm
which uses the information contained in a collection of recognition de-
cisions (in addition to the reconstruction constraints.) Our approach
(which we call hallucination) is to embed the results of the recognition
decisions in a recognition-based prior on the solution of the reconstruc-
tion constraints, thereby hopefully resolving the inherent ambiguity in
their solution.
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Our approach is somewhat related to that of (Freeman and Pasztor,
1999) who recently, and independently, proposed a learning framework
for low-level vision, one application of which is image interpolation. Be-
sides being applicable to an arbitrary number of images, the other major
advantage of our approach is that it uses a prior which is specific to the
class of object (in the “class-based” sense of (Riklin-Raviv and Shashua,
1999)) and a set of local recognition decisions. Our algorithm is also
related to (Edwards et al., 1998), in which active-appearance model are
used for model-based super-resolution.

4.1. Bayesian MAP Formulation
We use a Bayesian formulation of super-resolution (Cheeseman et al.,

1994; Schultz and Stevenson, 1996; Hardie et al., 1997; Elad and Feuer,
1997). In this approach, super-resolution is posed as finding the maxi-
mum a posteriori (or MAP) super-resolution image i.e. estimating
arg Bayes law for this estimation problem is:

Since is a constant because the images are (known) inputs,
and since the logarithm function is a monotonically increasing function,
we have:

The first term in this expression is the (negative log)
probability of reconstructing the low resolution images given that
the super-resolution image is xH. It is therefore normally set to be a
quadratic (i.e. energy) function of the error in the reconstruction con-
straints:

where is defined in Equation (10.9). In this expression,
we are implicitly assuming that the noise is independently and identically
distributed (across both the images and the pixels) and is Gaussian with
covariance
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4.2. Recognition-Based Priors
The second term on the right-hand side of Equation (10.17) is (the

negative logarithm of) the prior –          Usually the prior is chosen
to be a simple smoothness prior (Cheeseman et al., 1994; Schultz and
Stevenson, 1996; Hardie et al., 1997; Elad and Feuer, 1997). Instead,
we would like it to depend upon the results of a set of recognition de-
cisions. Suppose the outputs of the recognition decisions partition the
inputs (i.e. the low resolution input images into a set of subclasses

We then define a recognition-based prior as one that
can be written in the following form:

Essentially there is a separate prior for each possible
partition of the input space. Once the low resolution input images

are available, the various recognition algorithms can be applied, and
it can be determined which partition the inputs lie in. The recognition-

based prior then reduces to the more specific prior
This prior can be made more powerful than the overall prior

because it can be tailored to

4.3. Multi-Scale Derivative Features
We decided to try to recognize generic local image features (rather

than higher level concepts such as ASCII characters) because we want to
apply our algorithm to a variety of phenomena. Motivated by (De Bonet,
1997), we also decided to use multi-scale features. In particular, given
an image x, we first form its Gaussian pyramid (Burt,
1980). Afterwards, we also form its Laplacian pyramid
(Burt and Adelson, 1983), the horizontal and vertical

first derivatives of the Gaussian pyramid, and the hor-
izontal and vertical second deriva-
tives of the Gaussian pyramid. (See Figure 10.6 for examples of these
pyramids.) Finally, we form a feature pyramid:

The pyramid is a pyramid where there are 5 values
stored at each pixel, the Laplacian and the 4 derivatives.

Then, given a pixel in the low resolution image that we are performing
super-resolution on, we want to find (i.e. recognize) a pixel in a collection
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Figure 10.6. The Gaussian, Laplacian, and first derivative pyramids of an image
of a face. (We also use two second derivatives but omit them from the figure.) We
combine these pyramids into a single multi-valued pyramid, where we store a vector of
the Laplacian and the derivatives at each pixel. The Parent Structure vector
of a pixel (i, j) in the level of the pyramid consists of the vector of values for that
pixel, the vector for its parent in the level, the vector for its parent’s parent,
etc (De Bonet, 1997). The Parent Structure vector is therefore a high-dimensional
vector of derivatives computed at various scales. In our algorithms, recognition means
finding the training sample with the most similar Parent Structure vector.

of training data that is locally “similar.” By similar, we mean that both
the Laplacian and the image derivatives are approximately the same, at
all scales. To capture this notion, we define the Parent Structure vector
(De Bonet, 1997) of a pixel (i, j) in the lth level of the feature pyramid

As illustrated in Figure 10.6, the Parent Structure vector at a pixel in the
pyramid consists of the feature vector at that pixel, the feature vector
of the parent of that pixel, the feature vector of its parent, and so on.
Exactly as in (De Bonet, 1997), our notion of two pixels being similar
is then that their Parent Structure vectors are approximately the same
(measured by some norm.)

4.4. Finding the Closest Parent Structure

Suppose we have a set of high resolution training images where

We first form feature pyramids
Also suppose that the input image is at a resolution that is
times smaller than the training samples. (The image may have to be
interpolated to make this ratio exactly a power of 2.) We can then com-
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Figure 10.7. We compute the feature pyramids for the train-
ing images and the feature pyramids for the low resolution
input images For each pixel in the low resolution images, we find (i.e. recognize)
the closest matching Parent Structure in the high resolution data. We record and out-
put the best matching image and the pixel location of the best matching Parent
Structure Note that these data structures are both defined independently for
each pixel (i, j) in each image

pute the feature pyramid for the input image from level l and upwards
Figure 10.7 shows an illustration of this scenario

for
Independently for each pixel (i, j) in the input we compare

its Parent Structure vector against all of the training
Parent Structure vectors at the same level l; i.e. we compare against

for all m and for all The best matching image
and the best matching pixel are stored

as the output of the recognition decision, independently for each pixel
(i, j) in (We found the performance to be largely independent of
the distance function used to determine the best matching Parent Struc-
ture vector. We actually used a weighted norm, giving the derivative
components half as much weight as the Laplacian values and reducing
the weight by a factor of 2 for each increase in the pyramid level.)

Recognition in our hallucination algorithm therefore means finding the
closest matching pixel in the training data in the sense that the Parent
Structure vectors of the the two pixels are the most similar. This search
is, in general, performed over all pixels in all of the images in the training
data. If we have frontal images of faces, however, we restrict this search
to consider only the corresponding pixels in the training data. In this
way, we treat each pixel in the input image differently, depending on its
spatial location, similarly to the “class-based” approach of (Riklin-Raviv
and Shashua, 1999).
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4.5. The Recognition-based Gradient Prior

For each pixel (i, j) in the input image we have recognized the
pixel that is the most similar in the training data, specifically, the pixel

in the level of the pyramid for training image
These recognition decisions partition the inputs into a collection of sub-
classes, as required by the recognition-based prior described in Sec-
tion 4.2. If we denote the subclasses by (i.e. using a multi-
dimensional index rather than l) Equation (10.19) can be rewritten as:

where                                      is the probability that the super-

resolution image is given that the inputs lie in the subclass
that will be recognized to have as the best matching pixel in

training image

We now need to define We decided to
make this recognition-based prior a function of the gradient because the
base, or average, intensities in the super-resolution image are defined by
the reconstruction constraints. It is the high-frequency gradient infor-
mation that is missing. So, we want to define the prior to encourage the
gradient of the super-resolution image to be close to the gradient of the
closest matching training samples.

Each low resolution input image has a (different) closest matching
(Parent Structure) training sample for each pixel. Moreover, each such
Parent Structure corresponds to a number of different pixels in the
level of the pyramid, of them to be precise. See also Figure 10.7.)
We therefore impose a separate gradient constraint for each pixel (i, j)
in the level of the pyramid (and for each input image The best
matching pixel is only defined on the level of the pyramid.
For notational convenience, therefore, given a pixel (i, j) on the level
of the pyramid, define the best matching pixel on the level of the
pyramid to be:

Also define the best matching image as

If (i, j) is a pixel in the level of the pyramid for image the

corresponding pixel in the super-resolution image is
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We therefore want to impose the constraint that the first derivatives of
at this point should equal the derivatives of the closest matching

pixel (Parent Structure) in the training data. Parametric expressions

for can easily be derived as lin-
ear functions of the unknown pixels in the high resolution image xH .
We assume that the errors in the gradient values between the recognized
training samples and the super-resolution image are independently and
identically distributed and moreover that they are Gaussian with covari-
ance Therefore:

This prior enforces the constraints that the gradient of the super resolu-
tion image should equal to the gradient of the best matching training
image.

4.6. Algorithm Practicalities
Equations (10.17), (10.18), (10.22), and (10.24) form a high dimen-

sional linear least squares problem. The constraints in Equation (10.18)
are the standard super-resolution reconstruction constraints. Those in
Equation (10.24) are the recognition-based prior. The relative weights
of these constraints are defined by the noise covariances and We
assume that the reconstruction constraints are the more reliable ones
and so set

The number of unknowns is equal to the number of pixels in xH .
Inverting a linear system of such a size can prove problematic. We
therefore implemented a gradient descent algorithm using the standard
diagonal approximation to the Hessian (Press et al., 1992) to set the
step size in a similar way to (Szeliski and Golland, 1998). Since the
error function is quadratic, the algorithm converges to the (single) global
minimum without any problem.

4.7. Experimental Results on Human Faces
Our experiments for human face images were conducted with a subset

of the FERET dataset (Philips et al., 1997) consisting of 596 images of



264 SUPER-RESOLUTION IMAGING

278 individuals (92 women and 186 men). Most people appear twice,
with the images taken on the same day under similar illumination condi-
tions, but with different expressions (one expression is neutral, the other
typically a smile.) A small number of people appear 4 times, with the
images separated by several months.

The images in the FERET dataset are 256 × 384 pixels, however the
area occupied by the face varies considerably, but most of the faces are
around 96 × 128 pixels or larger. In the class-based approach (Riklin-
Raviv and Shashua, 1999), the input images (which are all frontal) need
to be aligned so that we can assume that the same part of the face ap-
pears in roughly the same part of the image every time. This alignment
was performed by hand marking the location of 3 points, the centers of
the two eyes and the lower tip of the nose. These 3 points define an
affine warp (Bergen et al., 1992), which was used to warp the images
into a canonical form. These canonical 96 × 128 pixel images were then
used as the training samples where

We used a “leave-one-out” methodology to test our algorithm. To test
on any particular person, we removed all occurrences of that individual
from the training set. We then trained the algorithm on the reduced
training set, and tested on the images of the individual that had been
removed. Because this process is quite time consuming, we used a test
set of 100 randomly selected images of 100 different individuals rather
than the entire training set.

Comparison with Existing Super-Resolution Algorithms
We initially restrict attention to the case of enhancing 24 × 32 pixel

images four times to give 96 × 128 pixel images. Later we will consider
the variation in performance with the decimation ratio. We simulate
the multiple slightly translated images required for super-resolution us-
ing the FERET database by randomly translating the original FERET
images multiple times by sub-pixel amounts before down-sampling them
to form the low resolution input images.

In our first set of experiments we compare our algorithm with those
of (Hardie et al., 1997) and (Schultz and Stevenson, 1996). In Fig-
ure 10.8(a) we plot the RMS pixel error against the number of low res-
olution inputs, computed over the 100 image test set. (We compute the
RMS error using the original high resolution image used to synthesize
the inputs from.) We also plot results for cubic B-spline interpolation
(which only uses one image) for comparison.

In Figure 10.8(a) we see that our hallucination algorithm does out-
perform the reconstruction-based super-resolution algorithms, from one
input image to 25. The improvement is consistent across the number
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Figure 10.8. A comparison of our hallucination algorithm with the reconstruction-
based super-resolution algorithms of (Schultz and Stevenson, 1996) and (Hardie et al.,
1997). In (a) we plot the RMS pixel intensity error computed across the 100 image test
set against the number of low resolution input images. Our algorithm outperforms
the the traditional super-resolution algorithms across the entire range. In (b) we vary
the amount of additive noise. Again we find that our algorithm does better than the
traditional super-resolution algorithms.

of input images and is around 20%. The improvement is also largely
independent of the actual input. In particular, Figure 10.9 contains the
best and worst results obtained across the entire test set in terms of the
RMS error of the hallucination algorithm for 9 low resolution inputs.
As can be seen, there is little difference between the best results in Fig-
ure 10.9(a)–(d) and the worst ones in (e)–(g). Notice, also, how the
hallucinated results are a dramatic improvement over the low resolution
input, and moreover are visibly sharper than the results for Hardie et
al..

Robustness to Additive Intensity Noise
Figure 10.8(b) contains the results of an experiment investigating the

robustness of the 3 super-resolution algorithms to additive noise. In
this experiment, we added zero-mean, white Gaussian noise to the low
resolution images before passing them as inputs to the algorithms. In
the figure, the RMS pixel intensity error is plotted against the standard
deviation of the additive noise. The results shown are for 4 low resolution
input images, and again, the results are an average over the 100 image
test set. As might be expected, the performance of all 4 algorithms
gets much worse as the standard deviation of the noise increases. The
hallucination algorithm and cubic B-spline interpolation, however, seem
somewhat more robust than the reconstruction-based super-resolution
algorithms. The reason for this increased robustness is probably that
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Figure 10.9. The best and worst results in Figure 10.8(a) in terms of the RMS error
of the hallucination algorithm for 9 input images. In (a)–(d) we display the results
for the best performing image in the 100 image test set. The results for the worst
image are presented in (e)–(g). (The results for Schultz and Stevenson are similar to
those for Hardie et al. and are omitted.) There is little difference in image quality
between the best and worst hallucinated results.

Figure 10.10. An example from Figure 10.8(b) of the variation in the performance
of the hallucination algorithm with additive zero-mean, white Gaussian noise. As can
be seen, the output is hardly affected until around 4-bits of intensity noise have been
added to the inputs. The reason the hallucination algorithm is so robust to noise
it that it uses the strong recognition-based face prior to generate smooth, face-like
images however noisy the inputs are.
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Figure 10.11. The variation in the performance of our hallucination algorithm with
the input image size. We see that the algorithm works well down to 12 × 16 pixel
images. It begins to break down for 6 × 8 pixel images. See (Baker and Kanade, 1999)
for examples.

the hallucination algorithm always tends to generate smooth, face-like
images (because of the strong recognition-based prior) however noisy the
inputs are. One example of how the hallucination algorithm degrades
with the amount of additive noise is presented in Figure 10.10.

Variation in Performance with the Input Image Size
We do not expect our hallucination algorithm to work for all sizes of

input. Once the input gets too small, the recognition decisions will be
based on essentially no information. In the limit that the input image
is just a single pixel, the algorithm will always generate the same face
(for a single input image), but with different average grey levels. We
therefore investigated the lowest resolution at which our hallucination
algorithm works reasonable well.

In Figure 10.11 we show example results for one face in the test set
for 3 different input sizes. (All of the results use just 4 input images.)
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Figure 10.12. Selected results for 12 × 16 pixel images, the smallest input size for
which our hallucination algorithm works reliably. (The input consists of only 4 low
resolution input images.) Notice how sharp the hallucinated results are. See (Baker
and Kanade, 1999) for the results of (Hardie et al., 1997) which are omitted due to
lack of space.
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We see that the algorithm works reasonably well down to 12 × 16 pixels.
(For 6 × 8 pixel images it produces a face that appears to be a pieced-
together combination of a variety of faces. See (Baker and Kanade, 1999)
for examples.)

In the last row of Figure 10.11, we give numerical results of the av-
erage improvement in the RMS error over cubic B-spline interpolation
(computed over the 100 image test set.) We see that for 24 × 32 and
12 × 16 pixel images, the reduction in the error is very dramatic. It is
roughly halved. For 48 × 64 pixel images, the RMS is only cut by about
25% because cubic B-spline does so well it is hard to do much better.

The results for the 12 × 16 pixel image are excellent, however. (Also see
Figure 10.12 which contains several more examples.) The input images
are barely recognizable as faces and the facial features such as the eyes,
eye-brows, and mouths only consist of a handful of pixels. The outputs,
albeit slightly noisy, are clearly recognizable to the human eye. The
facial features are also clearly discernible. The hallucinated results are
also a huge improvement over (Hardie et al., 1997) and (Schultz and
Stevenson, 1996). See (Baker and Kanade, 1999) for these results which
are omitted due to a lack of space.

Results on Non-FERET Test Images
In our final experiment for human faces, we tried our algorithm on

an image not in the FERET dataset. The results in Figure 10.13 give a
big improvement over the cubic B-spline interpolation algorithm. The
facial features, such as the eyes, nose, and mouth are all enhanced and
appear much sharper in the hallucinated result that either in the input
or in the interpolated image.

Results on Images Not Containing Faces
In Figure 10.14 we briefly present a few results on images that do not

contain faces, even though the algorithm has been trained on the FERET
dataset. (Figure 10.14(a) is a miscellaneous image and Figure 10.14(c) is
a constant image.) As might be expected, our algorithm hallucinates an
outline of a face in both cases, even though there is no face in the input.
This is the reason we called our algorithm a “hallucination algorithm.”

4.8. Experimental Results on Text Data
We also applied our algorithm to text data. In particular, we grabbed

an image of an window displaying one page of a letter and used the
bit-map as the input. The image was split into disjoint training and
test samples. The results are presented in Figures 10.15. The input in
Figure 10.15(a) is half the resolution of the original in Figure 10.15(f).
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Figure 10.13. Example results on a face not in the FERET dataset. The facial
features, such as eyes, nose, and mouth, which are blurred and unclear in the original
cropped face, are enhanced and appear much sharper in the hallucinated image. The
cubic B-spline result is overly smooth.

Figure 10.14. The results of applying our algorithm to images not containing faces.
(We have omitted the low resolution input and just display the high resolution one.)
A face is hallucinated by our algorithm even when none is present, hence the term
“hallucination.”
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The hallucinated result in Figure 10.15 (c) is the best reconstruction of
the text, both visually and in terms of the RMS intensity error. For
example, compare the appearance of the word “was” in the second sen-
tence in Figures 10.15(b)–(f). The hallucination algorithm also has an
RMS error of only 24.5 grey levels, compared to over 48.0 for the other
algorithms.

5. Summary

In the first half of this chapter we showed that the super-resolution
reconstruction constraints provide less and less useful information as
the decimation ratio increases. The major cause of this phenomenon is
the spatial averaging over the photosensitive area; i.e. the fact that S is
non-zero. The underlying reason that there are limits on reconstruction-
based super-resolution is therefore the simple fact that CCD sensors
must have a non-zero photosensitive area in order to be able to capture
a non-zero number of light photons.

Our analysis assumes quantized noiseless images; i.e. the intensities
are 8-bit values, created by rounding noiseless real-valued numbers. (It
is this quantization that causes the loss of information, which when com-
bined with spatial averaging, means that high decimation ratio super-
resolution is not possible from the reconstruction constraints.) Without
this assumption, however, it might be possible to increase the number
of bits per pixel by averaging a collection of quantized noisy images (in
an intelligent way). In practice, taking advantage of such information
is very difficult. This point also does not affect another outcome of our
analysis which was to show that reconstruction-based super-resolution
inherently trades-off intensity resolution for spatial resolution.

In the second half of this chapter we showed that recognition processes
may provide an additional source of information for super-resolution al-
gorithms. In particular, we developed a “hallucination” algorithm and
demonstrated that this algorithm can obtain far better results than exist-
ing reconstruction-based super-resolution algorithms, both visually and
quantitatively.

6. Discussion
In the past 10-15 years or so much of the research on super-resolution

has focused on the reconstruction constraints, and various way of incor-
porating simple smoothness priors to allow the constraints to be solved.
It is a major accomplishment that most of this area is now fairly well
understood. This does not mean that super-resolution is now a “solved”
problem. As we have shown in this chapter, simply writing down the
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Figure 10.15. The results of enhancing the resolution of a piece of text by a factor
of 2. Our hallucination algorithm produces a clear, crisp image using no explicit
knowledge that the input contains text. In particular, look at the word “was” in
the second sentence. The RMS pixel intensity error is also almost a factor of 2
improvement over the other algorithms.
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reconstruction constraints, adding a smoothness prior, and solving the
resulting linear system does not necessarily mean that a good solution
will be found. There are therefore a number of wide open areas for future
super-resolution research:

One such area involves conducting detailed analysis of the recon-
struction constraints, when they provide additional information,
how much additional information they provide, and how sensitive
the information is to the signal to noise ratio of the input images.
Some preliminary work has been done in this area, including (Elad
and Feuer, 1997; Shekarforoush, 1999; Qi and Snyder, 2000; Baker
and Kanade, 2000b). However, many issues are still a long way
from being fully understood.

Much of the work on super-resolution assumes a fairly simple image
formation model. For example, there is almost no modeling of the
effect of non-Lambertian surfaces and varying illumination. As a
result, many algorithms (including the one described in this chap-
ter) are very sensitive to illumination effects such as shadowing.
Although some illumination invariant super-resolution algorithms
have been proposed (Chiang and Boult, 1997), much more work
remains to be done.

In the second half of this chapter we proposed a hallucination algo-
rithm. This algorithm is an instance of a model-based algorithm.
Other examples include (Edwards et al., 1998; Freeman and Pasz-
tor, 1999; Baker and Kanade, 2000a). These approaches appear
very promising, however the area of model-based super-resolution
is in its infancy and a great deal of work remains to be done for
completely exploit the idea.

Other areas which have been largely overlooked include the in-
vestigation of applications of super-resolution and the evaluation
of the utility of super-resolution algorithms for those applications.
There are two types of applications: (1) those where the enhanced
image will be shown to a human, and (2) those where the enhanced
image will be further processed by a machine. The evaluation of
these two types of applications will be very different. The first will
need to be done using rigorous subjective studies of how humans
can make use of the super-resolution images. The second use of
super-resolution is best evaluated in terms of the performance of
the algorithms that will actually use the enhanced images. Both of
these areas have barely been touched, even though they are vital
for proving the utility of super-resolution as a whole.
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