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PREFACE 

This volume 'Use ofMicrocomputers in Geology' is the sixth in the 
series Computer Applications in the Earth Sciences published by Plenum 
Press in New York. The series was started in 1969 to publish proceedings 
of important meetings on geomathematics and computer applications. 
The first two volumes recorded proceedings ofthe Colloquia (1969,1970) 
sponsored by the Kansas Geological Survey at The University ofKansas 
in Lawrence. The third volume was proceedings ofthe 8th International 
Sedimentological Congress (1971) held in Heidelberg, West Germany; 
the fourth was preceedings ofthe 8th Geochautauqua (1979) at Syracuse 
Universityin Syracuse, New York; and the fifth was selected papers from 
the 27th International Geological Congress (1989) held in Washington, 
D.C. All meetings were cosponsored by the International Association for 
Mathematical Geology. 

These special publications are important in the development of 
quantitative geology. Papers by a wide range of authors on a wide range 
of topics gives the reader a flavor for recent advances in the subject - in 
this volume, those advances in the use ofmicrocomputers. The 24 authors 
ofthe 15 papers come from nine countries -Australia, Austria, Canada, 
France, Italy, Portugal, Switzerland, UK, and USA. My coeditor, Hans 
Kürzl, has given pertinent information on the included papers in the 
Introduction. 

Microcomputers made their first impact in the earth sciences in 
about 1982. In nine years they have permeated every conceivable nitch 
in the science from workstations to laptop field computers. They are used 
foreverythingfrom numbercrunching, graphics toelectriccommunication, 
to word processing. They have become a way of life. Here then in this 
volume is a collection ofpapers extolling some ofthe virtues ofmicros. 

For the purist, it should be noted that all the papers in the IGC 
session on 'Microcomputer Applications in Geology' were not available for 
publication. Therefore, a few papers on the subject were 'commissioned' 
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Vlll PREFACE 

from practioners willing to make a contribution to 'fill out' the volume. It 
is sincerely hoped that this potpourri will inform. and inspire those 
interested in micros. 

Several people helped with the preparation ofthis volume. I want to 
thank the anonymous reviewers. Patricia M. Vann of Plenum Press 
arranged for publication ofthe volume. The authors are to be commended 
for their contributions, which if the volume enjoys any success will be 
because of their efforts. 

Skara, Sweden 
June,1991 

D. F. Merriam 
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lNTRODUCTION 

The 28th International Geological Congress (IGC) took place in 
Washington, D.C. from 9 -19July1989. Acomprehensive poster session 
coveringnearly all fields of geoscience accompanied the technical program. 
COGEODATA, the lUGS Commission on Storage, Automatie Processing 
and Retrieval of Geological Data and IAMG, the International Associa
tion for Mathematical Geology have been active over many years to 
increase the knowledge, the development, and training in computer 
applications for geoscientific data. Consequently this topic was included 
in the IGC's poster program under the title "Microcomputer Applications 
in Geology" (H.Kürzl and J.O.Kork, Convenors). 

During my affiliation with "Joanneum Research Association" until 
1989 the main activities ofthe Mineral Resources Research Division in 
Leoben were dedicated to the development of data analysis and presen
tation systems for the regional geochemical and geophysical surveys of 
Austria. At the beginning ofthese projects in the early eighties already 
contacts were made to COGEODATA members and representatives to 
get scientific support and insight into the latest developments and ideas 
in geodata-processing. Especially RSinding-Larsen, P.Leymarie, 
RG.Garrett, and RB.McCammon supported our new group with excel
lent advice. First results were presented on a joint seminar with 
COGEODATA in Leoben at the end of1984. 

The following years were characterized by intensive project work, 
many personal visits, scientific communications, and presentation of 
research results within COGEODATAlIAMG activities. The projects of 
the Austrian regional mineral reconnaissance surveys have been finished 
in the last few years by using latest techniques in data reduction and 
multivariate analysis, which have been assembled, modified, and com
pleted to packages on our grown-up Leoben computer system. 

The invitation for convening the microcomputer poster session by 
the IGC organizing committee in 1988 was a big surprise but a challeng-
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xii INTRODUCTION 

ing mandate. It offered an interesting opportunity to shape this small but 
important event as part ofthe large extensive technical program. I really 
do hope, although I have changed my position now to a free consulting 
engineer, the friendly connection to all these people will continue and 
further common activities will arise in the future. 

The call for papers led to the acceptance of15 posters, with contri
butions from 12 different countries all over the world. The session was 
held with 12 presentations on Friday moming, 14 July 1989, and caused 
a lot of attention among the congress participants. Due to the actual 
political development in the first half of1989 the three Chinese partici
pants were unable to come and their three announced posters had to be 
withdrawn. 

Encouraged by the chairmen ofCOGEODATA and IAMG a prelimi
nary call for papers for publication was carried out at the Congress and 
ten participants documented their interest in preparing a manuscript. 
This was enough support to continue with that idea. The results can be 
seen on the following pages. Studying the contributions, we can recognize 
that microcomputers have already become an integral part in all fields of 
geoscience. The development is yet progressing and goes rapidlyin highly 
sophisticated applications, such as artificial intelligence tools and tech
niques. But also in the practical fields, microcomputers have spread. 
They now support all types of surveys. They are used in professional 
resource developments as weIl and represent an integral part of many 
modern geoscientific teaching and training courses. 

In the following let me introduce the authors and their papers 
presented: 

H.GARCIA PEREIRA and A. SOARES (Zoneography of mineral 
resources) present a new multivariate data-analysis approach to detect 
continuous zones with similar characteristics in the early stage of 
mineral-resource evaluation. In combination with factorial analysis, 
graphical representation of groups, expert geological advice, and mor
phological geostatistics, a methodology to cope with zonation problems 
was developed and is illustrated by two case studies. 

M.V ANNIER and R.WOODTLI (Teaching and testing strategy in 
mineral exploration by simulation techniques on personal computers) 
give a detailed description ofthe evolution ofuse ofmicrocomputers and 
related software in the field of geological modeling. It is shown how this 
was introduced in teaching mineral exploration and how it can be applied 
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to simulate geological data training programs in geostatistics and mul
tivariate geodata analysis. 

PATRICE POYET (Computer-aided decision techniques for 
hydrogeochemical uranium exploration) introduces multivariate data
analysis techniques under the aspect of different geological data types 
and their relevant heter?geneous behavior. He describes a very efficient 
set of data processing, \data interpretation, and data representation 
software available on microcomputers, offering assistance to the explora
tion geochemist especially when faced with decision-making problems. 

F.P. AGTERBERG (Estimating the probability of occurrence of 
mineral deposits from multiple map patterns) discusses the problems of 
estimatingthe probability ofthe occurrence ofmineral deposits from map 
patterns. This paper is a continuation ofhis investigation on the probabil
ity of occurrences modeled as a function of map-element characteristics. 
Weights of evidence modeling and logistic regression are discussed as 
methods for estimating the prob ability. 

ROBERT S. STERNBERG (Use of a laptop computer and spread
sheet software for geophysical surveys) describes the successful introduc
tion of laptop computers and spreadsheet software to many types of 
geophysical problems and shows applications to geophysical field work 
for data acquisition, logging, reduction, and plotting. Exam pIes discussed 
range from seismic data acquisition to gravity data reduction and gravity 
modeling. 

B.B. HOLUB (A program for petrophysical database management) 
gives details on the computer program ROCKBASE which manages data 
obtained in the laboratory from field sampies. The petrophysical param
eters measured on the sampies can be from hydrogeology, geochemistry, 
or petrography. 

PATRICE POYET and MICHEL DETAY (Artificial intelligence 
tools and techniques for water-resources assessment in Mrica) present 
the development of a hydrogeological expert system able to handle the 
drilling location problem within the scope of village water-supply pro
grams based on experience gained by the authors in fifteen Mrican 
countries. The recognition of relevant hydrogeological parameters and 
examples of advanced computer knowledge modeling methods are de
scribed in detail. 
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ANGELO MINISSALE and G.F. BUCCIANTI (Hydrodat®: a pack
age for hydrogeochemical data management) describe a PC-based data
base oriented system especially designed to handle and analyze 
hydrogeochemical data. It gives positive evidence that the integration of 
different commercially available software modules to one package can 
lead to efficient solutions for many different working fields in 
hydrogeochemistry. 

D.G.W. SMITH and H. OMOUMI (Minldent - some recent devel
opments) describe the Minldent program as adapted to a PC from the 
mainframe. Minldent is a database containing some 1500 descriptions of 
mineral species and their synonyms which are used primarily for the 
identification and retrieval ofminerals and associated data. 

P.L. GUTH (Microcomputer application of digital elevation models 
and other gridded data sets for geologists) is concerned with the program 
MICRODEM which was developed for terrain analysis using a digital 
elevation model. The program, adapted to a PC, handles a variety of 
gridded digital data sets. 

FRED J. GUNTHER (Reusable code works!) reports on some per
sonal experience in microcomputer applications programming for statis
tical analyses and graphie displays. He shows that reusing code has 
increased software reliability as weIl as programm er productivity and 
has decreased development costs significantly. 

N.!. FISHER, C. McA. POWELL, A. GELIN, and D. McP. DUNCAN 
(A pe statistical package for field acquisition and analysis of two
dimensional orientation data) present a PC statistical package for ori
entation data. The versatile package can be used in comparing and 
combining summary values from different data sets. 

J.C. BROWER and D.F. MERRIAM (A simple method for the 
comparison of adjacent points on thematic maps) outline a simple method 
for comparing adjacent points on aseries of maps. Similarities or 
differences can be computed and the correlation, Euclidean, or Mahlanobis 
coefficient plotted and contoured to depict these similarities and differ
ences. The resultant patterns then can be related to geological features 
of the original data sets and further analyzed by other statistical tech
niques. 
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E. TABESH (Map integration model applied in site selection) intro
duces a concept of a mapintegeration model that has the decision-making 
ability to aid in the selection of the most suitable site. She takes into 
consideration both structured (well-defined) and unstructured (ill-de
fined) decision-making which includes the concept offuzzy set theory. 

R. DUTTER and G. KARNEL (Analysis of space and time dependent 
data on a PC using a data-analysis system (DAS): a case study) make a 
presentation on their data analysis system for the PC. The program is 
easy to use for exploratory, numerical, or graphical statistical data 
analysis and is flexible for use for just about any interactive graphical 
analysis. 

The diffusion of micros in all fields of geoscience is obvious and it will 
become an essential tool covering the wide range from science to practice. 
However, we should never forget that they are a product of our mind and 
will hopefully never replace creativity and personal know-how in re
search and applied work. 

I want to thank especially G. Gaal ofCOGEODATA, R. McCammon 
of IAMG, and J. Wolfbauer of Joanneum Research for their friendly 
encouragement to proceed with this project and their steady support and 
assistance. Special thanks are due to D. Merriam, who identified himself 
with the project spontaneously and offered the necessary cooperation in 
final editing and preparation of the book. In addition, appreciation is 
given to Dr. H. Baeck ofLogistic-Mangement-Service Leoben, who made 
available his office facilities to do all the necessary preparation work for 
editing the manuscripts and for carrying out all the management activi
ties to ensure a good and interesting publication. 

Logistic-Management-Service 
Franz-Josef-Straße 6 
A-8700 Leoben, Austria 

Hans Kürzl 



ZONEOGRAPHY OF 
MINERAL RESOURCES 

H. Garcia Pereira and A. Soares 
CVRM - 1ST, Lisbon, Portugal 

ABSTRACT 

In facing the problem of the exploitation of heterogeneous mineral 
resources (ore or oil), the question of defining continuous zones exhibit
ing similar characteristics may arise. A method to approach this ques
tion using factorial and geostatistical techniques was developed. It 
contains three main steps: 

(1) Taking as an input the data matrix (samples x variables), a 
factorial technique (principal components analysis or corre
spondence analysis) is applied, giving rise to groups of samples 
of similar characteristics. 

(2) The problem of contiguity within samples of the same group 
and the number of groups to be retained is solved by expert 
advice of the geological/exploitation team, based on graphical 
representation of zones. 

(3) Once decided which samples belong to each final group, the 
boundaries from zone to zone are estimated, using a transitive 
kriging technique, relying on the geometric variogram. 

1 



2 PEREIRA AND SOARES 

Two case studies are presented to illustrate the method: The first 
one discusses a polymetallic sulfide orebody located in the South of 
Portugal, which is to be split into zones feeding different mineral
processing units. In the second, a Middle East petroleum reservoir is 
divided into homogeneous zones in order to improve the secondary oil
recovery planning. 

The method presented here, combining factorial analysis and geo
statistics, is a useful tool for the purpose of delineating zones in hetero
geneous deposits ofmineral resources. It provides estimates ofbounda
ries between zones based on their geometrie structure and gives a 
reliable basis for further exploitation planning. 

INTRODUCTION 

When planning the development of large mineral resources, the 
problem of defming continuous zones with similar characteristics may 
arise. 

When the information available on each sam pie includes a great 
variety of attributes of different types, a data reduction procedure based 
on multivariate statistics is helpful for establishing the zonation guide
lines. But the groups of sampies provided by the classification procedure 
must exhibit spatial contiguity in order to meet the requirements ofthe 
exploitation method. Furthermore, it usually is necessary to estimate 
the morphology of each zone by the group of sampies with similar 
properties, which constitutes a technological unit. 

By combining factorial analysis, graphical representation of groups, 
and expert geological advice and morphological geostatistics, a method
ology to cope with zonation problems was developed. It contains three 
main steps: 

(1) Taking as an input the data matrix (sampies x variables), a 
factorial technique (principal components analysis or corre
spondence analysis) is applied, giving rise to groups of sampies 
of similar characteristics. 

(2) The problem of contiguity within sampies ofthe same group 
and the number of groups to be retained is solved by expert 
advice of the geologicaVexploitation team, based on graphical 
representation of zones. 
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(3) Once decided which samples belong to each final group, the 
boundaries from zone to zone are estimated, using a transitive 
kriging technique, relying on the geometrie variogram. 

Two case studies are presented to illustrate the proposed method
ology: the first one regards a polymetallic sulphide orebody located in the 
south of Portugal, which is to be divided into zones feeding different 
mineral processing units. In the second, a Middle East petroleum 
reservoir is divided into homogeneous zones, in order to improve secon
dary oil-recovery planning. 

A MASSIVE POLYMETALLIC SULPHIDE OREBODY 

The available data were obtained from several deep drillholes, 
assayed on 1 m sections for 11 elements - Cu, Pb, Zn, S, Fe, Ag, Hg, Sn, 
As, Sb, and Bi. The element grades were arranged in matrix form. The 
corresponding rows represent the 780 samples. 

In a first step, the data matrix of780 samples with 11 variables was 
submitted to an algorithm performingthe principal components analysis 
(PCA) of standardized data (Lebart, Morineau, and Warwick, 1984). The 
output gives projections of the sampies and variables onto the main 
factorial axes. 

Results of this procedure are shown in Figure 1, where projections 
ofvariables onto Axis 1 and 2 are displayed, as weH as the initial limits 
defining 3 groups ofsamples in the plane ofthe two principal axes. 

Limits on Figure 1 then were changed interactively, according to 
geological context, until a final morphologie al definition of zones is 
reached. The spatial continuity of each zone is visualized through the 
representation of experimental data, and its final shape is estimated via 
morphological kriging (Soares, 1990), as displayed for the pyritic ore type 
in Figure 2. 

MIDDLE EAST OlL FIELD 

Data on an extensively explored oil reservoir were taken from 1 72 
weHs. Their locations are given in Figure 3. 

The set of variables available on each weH was divided into two 
categories: the first includes the elevation of the oil-hearing formation 
and water saturation, whereas the second contains porosity, permeabil
ity, and facies. For the purpose of correspondence analysis application 
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(Greenacre,1984), the first subset is denoted "principal", controlling the 
reservoir quality zones, and the second, denoted "supplementary", pro
vides the basis for a validation criterion construction. The degree of 
homogeneity of the supplementary variables within each zone is ex
pected to be maximum. 

Several contingency tables, which cross-tabulate the two principal 
variables for different class limits, were used as input into the correspon
dence analysis program. The results ofthis procedure for one input table 
are given in Figure 4. 

Based on sampIe projections onto Axis 1, the splitting procedure was 
carried out on the output provided by applying correspondence analysis 
to each ofthe contingency tables to be tested. The resulting groups were 
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eompared from the standpoint of weIl eontiguity and of the homogeneity 
ofthe supplementary variables. For the purpose ofboundaries estima
tion, sampies belonging to eaeh group were eoded as indieator variables, 
and the geometrie variogram, reflecting the morphologieal strueture of 
groups, was used as a basis for the transitive kriging proeedure 
(Matheron, 1971). 

To eonvert the indieator kriged values into a binary map, the same 
methodology ofthe previous example was applied. The estimated shape 
is given by the set of1's ofthe binary map. 

This iterative process produeed the final zonation displayed in 
Figure 5 for the three main zones ofthe reservoir. 
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In order to assess the influence of the information level on the 
performance of the method, a test was carried out for zone 1 using only 
11, 27, or 56 weHs. These correspond to three stages in the reservoir 
recognition process. 

The results ofthis test are given in Figure 6, where confidence bands 
of the geometry produced by the estimated method also are displayed. 

CONCLUSIONS 

The zonation problem has been solved using a new methodology 
combining factorial analysis and geostatistics. The results of applying 
this to two case studies are given to illustrate its potential as a tool 
aiming at the interactive zoneography of mineral resources. In the 
sulphide orebody, three ore types which feed different metallurgical 
plants were recognized and mapped. In an oil reservoir, several quality 
zones supporting specific production strategies were found and their 
boundaries estimated and plotted. 
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TEACHING AND TESTING STRATEGY IN 
MINERAL EXPLORATION BY 

SIMULATION TECHNIQUES ON 
PERSONAL COMPUTERS 

M. Vannier 
Ecole des Mines de Paris, Fontainebleau, France 

and 

R. Woodtli 
Geodidax, Lausanne, Suisse 

ABSTRACT 

The coming of a generation of personal computers with low-cost 
graphic cards and math processors, gives a new impulse to geological 
modeling. It now is possible to simulate rapidly and with accuracy 
complex geological environments with reduced hardware. Such models 
can be used for teaching mineral exploration or for simulating geological 
data that can be output easily and used in teaching related techniques 
like geostatistics or multivariable analysis. 

Aside from teaching, several uses of complex geological models are 
promising such as the modeling of real targets in order to test various 
strategies of exploration or exploitation. Another use is the experimen
tation of natural processes such as erosion, dissemination of elements 
around ore-bodies, folding, faulting, etc ... 

9 
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INTRODUCTION 

Our experiments in simulation started in 1965 and developed by 
degrees through the years, mainly as a teachinginstrument. Today, they 
also are an attractive method of experimenting or modeling processes, 
either natural or artificial, in a given geological environment. 

The main goal is the teaching of mineral exploration. Learners 
involved are students in geology and in mining engineering (last year) 
and professionals attending refreshment courses. The aim is to guide 
learners in understanding the diversity, the relative importance, and the 
interdependence of the numerous factors which playa role in deeision
making when looking for minerals. They are led to apply their seientifie 
knowledge to praetieal goals while taking into aceount teehnieal and 
eeonomieal eonstraints. They have to interpret, eorrelate, represent, and 
use the large amount ofinformation available during mineral explora
tion. 

A SHORT HISTORIe 

We started teaehing by using the classieal method ofCase Studies, 
but we dropped it early for more aetive involvement of the students. 

Relying on detailed data about a real gold ore deposit in Mrica, we 
then supplied learners with real base material taken from a huge 
number of topographie and geologieal maps, logsheets, cross sections, 
chemical analysis, and so on. The method worked rather weIl but was 
limited to information actually available and thus was not satisfaetory. 

After having experienced these limitations, it beeame clear that we 
eould give learners an opportunity to eonduet their own exploration with 
the same eonstraints as in reallife byusing artifieial data and simulating 
an investigation of an idealized ore deposit. Our previous attempts had 
shown that it was eonvenient to supply learners with geologieal informa
tion through logsheets and so this medium was seleeted as the main 
exploration method. We then had to prepare beforehand logsheets of 
simulated boreholes driIled in an idealized orebody. We began to intro
duee economieal eonstraints by simulating the availability of drilling 
machines from where learners eould rent material and take into aceount 
expenditures like the eost of drilling per meter. At the same time, we 
introduced technical constraints on drills such as maximum depths and 
speeds. The teaching period was divided into rounds of sessions, each 
session representing one month of field and laboratory work in reallife 
but squeezed into a few days of simulated exploration. Although rough, 
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the model was reliable and adapted to simulation ofmany aspects ofreal 
situations. The main obstacle was the time consuming task ofpreparing 
logsheets which thus prevented any sophistication of the geological 
model. 

The next attempt was based on an analogical model for the geology. 
A geological model made of transparent sheets of plastic was used to 
simulate discontinuities between lithological formations. A drill, whose 
position could be adjusted precisely along the x and y axes as weH as in 
direction and pitch, was used to make tiny holes through the structure. 
All intersections were reported on a logsheet. The main advantage of 
such an analogical model lies in its ability to be presented to learners at 
the end ofthe sessions, therefore giving them an opportunity to compare 
their abstract view of a three-dimensional block of data with a realistic 
representation ofthe geological space. Here again, some difficulties were 
present, the main one being the long task of performing a drilling. 

In 1970, mainframe computers where readily available and seemed 
to be the obvious solution to our quest for accurate and quick answers. 
After some research, it became possible to simulate on a computer a 
sophisticated model of geological space as weH as models for technical 
and economical constraints (Vannier and Woodtli, 1979). Logsheets were 
calculated and typed rapidly, allowing us to improve dramatically the 
sophistication of models responses. In fact, a new aspect of simulation 
clearly available at that time: the need of sorting the huge amount of 
data, a computer can output and the imperative that simulation must 
present an already pre-digested set of data. For instance the computer 
could output, instead ofthe name of a rock sampIe, its color, its hardness, 
its structure or even its chemical analysis and let the leamer determine 
its nature, as is the situation in reallife. Such an influx of data would 
have burdened learners without benefiting our goal which was to 
emphasize exploration and not petrology. Roughly speaking, one could 
say that it was possible to shrink one month ofreal work on the field into 
a few days of simulation with the only condition that many aspects ofthe 
real work has to be done by the computer itself. 

For the first time it became possible to investigate mineralization 
more thoroughly and perform geostatistical evaluations of ores (Maig
nan and Woodtli, 1981). 

The progress, compared to other attempts was impressive, but there 
were some drawbacks: mainly the chore ofbuilding such realistic models. 
An example may help to understand the complexity of a computerized 
model. One of our last models described an area of 30 km by 20 km wide 
and more than 2000m high. More than twenty lithological units were 
introduced with more than ten occurrences ofcomplex mineralizations. 
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Faulting and several types offolding occurred in the prospect. A topogra
phical surface had to be generated taking into account the superficial 
geology. In such a model, information concerningfeatures as sm all as one 
meter wide could be retrieved and it was not conceivable to build it 
entirely by hand. The computer had to take some initiative in creating 
thousands of geological details. A primary model indeed was carved by 
hand. It contained primary tectonics and the computer was asked to add 
other phases of foldings, to introduce mineralizations in their respective 
environment, to create a realistic topography etc ... 

Because ofthis initiative given to the computer, it was difficult for 
designers to be aware of all the real aspects of the model and they had to 
drill the model everywhere in order to make sure that no geological 
inconsistency had taken place. When any inconsistency was discovered, 
the whole process had to be done again after a correction had been made 
inside the databank. In fact, some inconsistencies were discovered years 
after our model had been in use, fortunately without any serious 
hindrance for teaching. 

The coming ofthe new generation ofpersonal computers with their 
astounding capabilities in speed, memory, and cheap graphic boards has 
deeply modified our conceptions. 

THE NEW GENERATION OF MODELS 

The impact ofpersonal computers has been twofold: a better control 
on what really is inside the model at the conception stage and, for 
teaching, a new approach by learners who now are able to process their 
data directly on their own computer (Jaboyedoff and others, 1989). 

Depending on which type of participants are involved in the game, 
two different ways have been in use. The teaching period may cover one 
semester (16 weeks) with a one-half-day session a week and homework, 
or on the contrary, it may be concentrated into 3-4 weeks, with one or two 
rounds a day. In the first situation, lectures and seminars are included 
in the workshop, whereas in the second situation there is little time 
available for theoretical teaching and general discussions. 

In both situations, learners are divided into teams ofthree people 
each, with the effect of introducing a feeling of solidarity within the 
teams and ofmotivating competition between teams. Each team has a 
sm all personal computer and communicates with the leader by the 
channel of floppy disks. Requests are written on the floppy, then 
processed on the leader's computer and answers are written back on the 
same floppy. The answers data can be alphanumeric or graphic and can 
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be output on a local printer. When a computer for each team is not 
affordable, a simpler solution is to input requests and output all docu
ments on the leader's computer. For years in the past, this was the 
solution we adopted. 

At the beginning of a teaching period, learners receive the necessary 
initial information about rules of the game and some documents con
cerned with the geology and metallogeny ofthe investigated area. Their 
first task is to analyze and then to synthesize all information in order to 
select exploration targets and elaborate a strategy they will have to use 
given the time and resources allowed. Several games may be staged, 
depending on the initial knowledge ofthe prospect: either identification 
of mineralized zones, or selection of ore showings for further investiga
tions, or systematic exploration including evaluation of reserves. Con
secutive games may be linked together and learners in this situation 
have to refer to previous reports of predecessors. 

Although drilling is the most important method of investigation, 
new tools have been included, especially geochemistry and recently the 
oldest geological tool ever used, hammer geology. Participants mayorder 
geological maps with indications on lithology and dips or geochemistry 
maps (stream sediments or tactic) for several elements. Geophysics 
prospection will be available in a near future, mainly as down-the-hole 
geophysics. 

Usually, learners are free to select any method ofinvestigation they 
want: tools, locations, depths ofboreholes all are open options. They are 
free to use any procedure for processing their data: by using the computer 
or by more conventional ways such as maps or cross sections. The main 
interest in this type of teaching is to bring learners to discover by 
themselves, with the constant help of the leader, the best techniques 
adapted to their needs. For instance, our experiences has shown us that 
many students are overloaded at first with the huge amount ofborehole 
data to handle properly until they are advised to use structural maps as 
an alternative to logsheets or cross seetions. They also discover the 
interest of anticipating results when planning drillings; they are not 
allowed to change orders after their request is made, therefore request
ing an adequate depth or location of a drilling may save money and time 
for other purposes. In addition, they discover that even some elementary 
theoretical views on mining geology may help to understand the rela
tions between ores and regional or local geology and are pushed to make 
some investigations into the literature or to bring forth discussions with 
the leader. This simulation can be best seen as merely a method of 
impelling learners to ask questions and of putting them in a situation 
where theoretical, technical, and financial aspects of mineral research 
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become acute topics and need to be investigated. These remarks point out 
the important role ofthe leader which is really an essential part ofthe 
game because he has to transform what could be a type ofarcade game 
into a real simulation. Thus the role ofleader can be played only by well
experienced people, having good knowledge of mining exploration or 
geostatistics, etc ... depending on the goals. 

In the situation ofmineral exploration, simulated laws imposing a 
rhythm in the taking of claims force leamers to make decisions. They 
have to give up some less promising claims and concentrate step by step 
on one or two locations. 

At the end ofthe teaching session, the leader, colleagues, and guests 
from the mineral industries or even from banking are gathered in order 
to listen to and to appraise the presentation by each team of areport on 
their exploration. This report has to be ready a few days in advance so as 
to be read beforehand by the leader. It contains information on geology, 
the strategy selected and results and recommendations for any future 
work on selected prospects. This type of brainstorming session incites 
numerous suggestions and ideas and usually is as useful for leamers as 
it is for the leader. It has been the source ofmany improvements for the 
games. 

THE BUlLDING OF A GEOLOGICAL MODEL 

When confronted with the problem ofmodeling a geological space, 
the first thought was to build by hand or by simulation a databank where 
any information conceming an elementary cell could be retrieved rap
idly, the data being accessed by the three coordinates of the cello In a 
prospect of 3Ox30 km where gold mineralizations of 20 cm high can be 
intersected at a depth ofmore than 100 m, it would be necessary to store 
more than 1.0E+ 13 cells, each ofthem containing parameters about rock 
formation, grades of several elements, etc ... It was clearly a wrong 
solution for many reasons, even if this huge theoretical number of 
elementary cells could have been considerably reduced by using more 
sophisticated techniques. 

Models used in teaching and models used in simulating processes 
are not always compatible. Precise modeling of processes, such as 
erosion, needs long calculations and although they give realistic results, 
they can not be used always to build a geological model for teaching 
exploration. For teaching purposes, models have to be quick and a 
compromise between speed and realism has to be determined. 
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Geological models used to simulate a three-dimensional space now 
will be discussed through the example ofClaim. The main part ofClaim 
is a function written in C language whose name is "fore". 

Fore is in itself a simulated geological model where any vertical 
drilling can be performed in an area of 30x30 square kilometers and for 
an unlimited depth. The topographicallevel is calculated by this func
tion. More than five types of drillings are allowed: percussing, core 
drillings, dry drillings, augers, and special drillings, each ofthem leading 
to differents answers. For instance, percussion drills usually are faster 
than core drills but give less precise information on geologicallevels or 
grades and do not show distinctions between certain types of rocks. 
Special drillings are used to get information on the last eroded portion in 
connection with the simulation of geochemistry or other geological data. 

This function uses a databank where all information concerning 
lithology, mineralization, topography, weathering modules of rocks, 
etc... are stored. As the databank can be changed easily by qualified 
people, it is possible to use fore with different databanks and produce 
different geological environments. This function has been devised to 
work rapidly even on a personal computer and is used for a lot ofpurposes 
that may need thousands of drillings such as the mapping of geology. 

The first task of fore is to calculate every intersection of a given 
vertical with surfaces representing discontinuities. A discontinuity can 
be a limit between two lithological units or it can be a fault or a facies 
change. Even extrapolated intersections have to be calculated in order to 
fill the whole space with accuracy. Mathematically, these surfaces are 
described in several ways depending on the nature of the discontinuity. 
A surface can be described by a succession of cross sections, by triangu
lation, or by mathematical formulae. It may require two or more steps to 
generate a surface; a first step for the general shape and subsequent 
steps for small-scale details. For instance, the description of an old 
eroded basement can be produced first by cross sections and then by 
adding mathematical distortions to simulate hundreds of rolling hills 
that occur in such a paleotopography. 

The second task of fore is to eliminate all virtual parts such as 
extrapolated portions ofsurface through faults forexample. This method 
of calculating intersections between geological discontinuities is power
ful and signified a breakthrough in our geological simulation when first 
derived. 

At that point of the calculation, it is possible to introduce several 
phases offaulting and folding each ofthem following a style that can be 
imposed by the computer. 
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The next stage is to ealculate ore grades and paragenesis, if any. The 
simulation of ore grades is made by piling three-dimensional "clouds". A 
cloud ean be eonsidered as an ellipsoid defined by four parameters in 
addition to its center coordinates: its length, width, height, and grade 
present at its center location. A mathematieallawis given to deseribe the 
way grades are fading away when the distance from center is inereasing. 
It ean be positioned either directly or inside a defined geologieal unit 
prior to any tectonic event. Other mathematieal shapes have been used 
to simulate ore grades such as toroidal ones, depending on the type of 
mineralization (Lanoe, 1981). When this first stage of ealeulation has 
been done, a seeond stage consists in adding geostatistieal perturbations 
in order to simulate small-seale details within ore-grade distribution. 
Usually a predefined variogram is superposed to the first stage distribu
tion. Paragenesis are simulated in a similar fashion. 

The final task then is to create alandseape in aecordance with the 
geologieal underground (Fig. 1). We determined that the easiest way to 
perform such a complex task was to use a simplified simulated erosion 
process taking into account a meehanieal eharaeteristie for outcropping 
rocks. It would be possible to simulate a realistie erosion process but, as 
we said earlier, the model has to answer quiekly and eannot take into 
aeeount data from distant areas without long ealeulations. The simpli
fied erosion process is done in two steps: a first step removes all rocks 
above a predefined smooth topography and a seeond step removes rocks 
starting from this first soil and aecording to specifie parameters associ
ated with all geologieal formations. The first topographie level is ealeu
lated by interpolation of an arbitrary set of data simulating a gently 
slanted landscape and is quiekly available. For the second step, a random 
regionalized distribution is added to the meehanieal parameter in order 
to simulate variations of a rock's response to erosion. A special process 
of ealeulation is used to simulate small scale topographie details in 
undifferentiated geologieal formations as, for instance, basement eom
plexes that do not need to be known precisely in eertain applieations. In 
that situation, a type of fraetal generation is seleeted, but for efficieney 
reasons, a noniterative mode of ca1eulation has been derived that uses a 
Fourier's development. 

Using a similar procedure, several alteration levels are ereated 
starting from the topographie level. A bedrock is first ealeulated leading 
to what is termed a soillayer. When this layer is thin, it is alleged that 
an outcrop occurs at this location. A weathered zone then is created. This 
zone eannot be sampled by usual drillings. A third zone termed washed 
zone, is where sulfide mineralizations are subjeet to oxidation. 
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Figure 1. Simulated landscape. Altitudes ure highly exaggerated. This area shows 
contact between metamorphic complex Geft upper corner) and overlaying folded 
sedimentary series. Fault is visible. This type of picture is not available for learners. 

In addition to the basic function fore, a number of programs have 
been written. Some of them use the fore function, for instance the 
geochemical model or the geological map model and some do not, for 
example the logistic model which is handling budgets, expenditures, and 
tools. 

MODELS USED IN AGAME 

The first use ofthe fore function is a program to simulate drillings, 
either vertical or inclined. A first type of drillings uses augers to perform 
vertical boreholes not deeper than the bedrock and that can be dis
patched on arrays. Other types are percussion drillings and core drillings 
for information below the bedrock and dry drillings for sampling into the 
weathered part. When mineralizations are encountered, chemical analy
ses are systematically performed. 
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The geochemical model simulates exploration using geochemical 
sampling. Sampling is done on a regular array and takes into account 
backgrounds of alllithological units and grades of ores if any, either in 
the immediate underground or in the last eroded part (Fig. 2). Topogra
phy is used to simulate a diffusion of metals down the slope. Data can be 
output in different ways: through listings or maps with or without 
contours printed on conventional dot-matrix printers. All geochemical 
backgrounds can be modified easily by the leader. Stream sediment 
geochemistry is done by hand, taking into account data from the geo
chemical model and topographical data concerning the hydrography. 

The geological map model creates geological maps at a given scale, 
with information on lithological units and on dips (Fig. 3). It is possible 
to create maps restricted to outcrops such as those simulated by the 
weatheringprocess or specialmaps strippedofthe soillayer. Outputs are 
sent to a dotmatrix printer. All maps use agraphie key for each geological 
unit, avoiding the need of color printers and copiers. Three types of 
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Figure 2. Siniulated geochemical map for copper (in ppm). Distance between sampIes 
is 5Om. Contouring is optional. Topographical maps are output in same way. 
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Figure 3. Lithological map and dip map restricted to outcrops. Scales and type of 
mapping are optional. 
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mapping are allowed: mapping of all geological formations, mapping of 
main geological units, and lithological mapping. Usually, teams receive 
only dip maps and lithological maps of outcrops, the other types ofmaps 
being reserved to the leader. Graphic keys can be modified easily, each 
design being selected among more than one hundred possibilities. 

The logistic model manages all tasks concerning teams' budgets, 
leasing of drilling machines, and boreholes' location archives. It keeps a 
statistical archive of each team's way of spending its financial resources. 
It is possible to know how much money has been spent on leasing 
material, on boring with any given type of drill, on geochemistry or 
geological maps and so on. Usually teams are allotted a first budget 
covering expenses for three or four periods. They have to provide sound 
reasons thatjustify their needs in order to receive more funds. It should 
be noted that this logistic model can be bypassed for games that do not 
need financial guidance. 

TOOLS FOR MANAGING 

The leader has access to several managing softwares through a 
menu. The first one used is the initialization of a game session. Prior to 
this initialization it is possible to indicate the number ofteams and to 
change some default data about drilling machines allowed, costs of 
leasing, drilling, moving, etc ... 

Other commands concern checking floppy requests prior to their 
processing, processing requests, and allotting budgets. 

The leader has restricted access to a number of tools which are 
devised to help him understand rapidly any problem arising during the 
game. It can be a pure geological problem such as understanding a 
complex structure or checking any strange interpretation of data by a 
team. It also can be a financial problem, such as bad management of 
resources by a team which is running out ofmoney. 

For geological investigations, a fast program giving random cross 
sections at any given scale with or without information on ore locations 
and grades is provided (Fig. 4). This graphic software needs a conven
tional graphic screen (CGA 320x200 type) and can be used easily to 
retrieve any information. Another tool is a software able to produce sm all 
sc ale geological maps not usually available to learners. Results can be 
output on a graphic screen (VGA 640x480 type) but also on a dot-matrix 
printer. 
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Figure 4. Cross seetion, as it appears on low-resolution screen. It is possible to edit 
drawing and to display rock names before printing. Mineralizations ean be indieated 
when superior to requested grade. 

For logistical control the computer can output any information 
needed from the past periods. All team requests are kept on the leader's 
hard disk and can be consulted any time as weIl as statistical data on 
financial resources. 

LEARNERS TOOLS AND EQUIPMENT 

When the solution of providing each team with a computer is 
selected, several basic softwares are accessible through a menu on each 
local computer. One concerns the filling ofrequests and can be viewed as 
an editor. Its main function is to perform a first level control ofrequests 
syntax. Other commands concern the handling of answers and perform 
simple functions like the printing of alphanumeric or graphic da ta 
(maps). 

Depending on the aims, other softwares may be installed similar to 
conventional statistics or more sophisticated tools such as geostatistics 
for ore evaluation. It may be useful to install a text processing software 
and a small documentary databank where some literature concerning 
the geology and economy of related ore deposits can be accessed. 
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Each team disposes of a private room where documents can be laid 
out easily and safely and where discussions can be carried freely on 
without interference from other teams. It is important to preserve a 
spirit of competition between teams and to encourage discussions and 
criticism inside teams or between teams and the leader. As in reallife, 
the composition of a team may have tremendous effects on its ability to 
handle the task and it is studied carefully beforehand. 

COMPUTER REQUIREMENTS 

Minimal computer hardware requirements are small' For the leader, 
a simple PC working under DOS (or XENIX) operating system with a 
hard disk and with 520 ko (720 ko) ofRAM is sufficient. In practice, it is 
necessary to use an arithmetic coprocessor in order to minimize comput
ing time. A dot-matrix printer also is needed to produce documents used 
during discussions with learners (financial documents, for instance) or 
as working tools. Agraphie screen of fair resolution similar to VGA 
greatly helps to understand any geological problem in a prospect as 
mentioned earlier. Software is for the 80286 processor but also work on 
the 80386 processor. 

For teams, equipment depends mainly on the type of data process
ing needed by learners. For example, iflearners are required to use geo
statistical methods for ore evaluation, an arithmetic coprocessor is 
needed. Agraphie screen ofmoderate resolution, such as CGA, also may 
be usefuL Softwares are built for DOS operating system and for 8086 and 
80286 processors. Although less convenient, a solution without comput
ers for the teams is possible, all requests and documents being prepared 
on the leader's computer. 

The game also could work on a mainframe computer running under 
the UNIX operating system. Teams use terminals instead of personal 
computers. 

CONCLUSIONS 

A model of a geological space can be used for teaching various topics 
such as mineral exploration, evaluation, and exploitation of ore deposits. 
It can be used also to simulate complex processes such as erosion or 
geochemical diffusion of elements. Depending on the goal, different ways 
ofbuilding a model are possible, the main considerations being the speed 
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of calculation and the sophistication ofthe hardware. These are crucial 
elements in teaching experiments but good compromises between real
ism and efficiency are possible. Personal computers offer speed and now, 
fair graphie capabilities at low costs. They are suited perfectly for such 
tasks. 
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ABSTRACT 

Multivariate analysis has been recognized as a powerful tool in 
geochemical exploration, but special emphasis also has been given to the 
necessity to complete adequate preliminary investigation of the data 
before attempting to use sophisticated data processing and manipula
tions. The methodology presented here relies on extensive experience 
with multivariate methods gained from the processing of large case 
studies coming from surveys carried out by French mining companies 
using hydrogeochemical uranium exploration. We have developed a 
robust methodological approach and a set of integrated software avail
able on microcomputers to model the distribution of elements in water 
analysis and to account for the mixing of the geochemical end-members 
observed and to tackle the definition of an adjustable modeling of 
background compositions and of their related anomalies after the re
moval of the disturbing outliers from the recognized statistical popula
tions has been achieved. The policies used lead to an efficient set of data 
processing, data integration, and data representation software making 
it possible to offer practical assistance to the exploration geochemist 
when faced with decision-making processes. 

25 
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INTRODUCTION 

Geoscience data have become huge sets since the progress of the 
modern analyticallaboratory led to low cost comprehensive multiele
ment information for geochemical surveys. This explosion of data gath
ering has been noticeable especially in the context ofhydrogeochemical 
exploration where tens of variables can be measured for hundreds of 
sampIes covering the abundance of major or trace elements in water 
analyses. An immediate consequence is that this enormous volume of 
data precludes any relevant thorough processing without the computer 
assistance spanning from the data collection and static organization 
thanks to relational or object-based database systems, the processing 
using univariate, multivariate, or complex numerical analysis methods, 
the representation based on high resolution displays and printers, the 
integration ofhigh level highly significant model results, to the assisted 
decision-making process involving sophisticated programs based on 
advanced software engineering techniques such as expert systems. The 
widespread use of powerful 32 word bit based microprocessor units 
rendered possible this extraordinary evolution in the geochemical infor
mation management and lead us to develop an integrated set of pro
grams to cope with the management ofhydrogeochemical data collected 
during the water geochemical surveys of the Corbigny and Lodeve 
(France) reconnaissance programs devoted to locate blind uranium 
deposits through indirect prospecting based on water sampIes collected 
in drillholes. The methodology developed to achieve the data modeling 
phase to account for the background composition and the related identi
fication of relevant anomalies was validated using data collected in the 
Lodeve area where an important mineralization has been recognized for 
a longtime and where important on-site miningwork led to a comprehen
sive knowledge of the three-dimension geographie distribution of the 
orebody. These techniques were applied later on to the Corbigny area 
(Morvan, France) where it was possible to evaluate their significance as 
a prospecting scheme, and confirmed the discovery of a mineralization of 
limited extent. As abrief introduction to the method developed, let us 
present the main treatment steps. First, a data segmentation phase 
leads to homogeneous units, for which a mixing model is proposed to 
compute the geochemical background and to appraise for the different 
types of groundwaters involved in the related proportions of the end
members. According to this iterative method (many iterative steps can 
be achieved to obtain correct subsets) it is possible to explain some part 
of the observed concentration for the trace elements thanks to the 
previous mixing model based on major constituents and then to assess 
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second-order anomalies which can be identified as representing the 
unexplained part ofthe measured concentrations. Applying this frame
work with careful and knowledgeable policies (concerning the transfor
mation of geoscience data responses to geochemical processes) seemed to 
be an efficient prospecting scheme for the discovery of blind orebodies 
using indirect prospecting methods such as groundwater geochemistry. 
First, we describe the methodology proposed to recognize significant 
multivariate anomalies, then we illustrate the discussion throughout 
with the processing of a set of real data drawn from the Corbigny area. 
Abrief introduction to the geological context is provided, main results 
are reported and a description ofthe original use ofmultivariate methods 
is made when necessary. 

DATA-PROCESSING FRAMEWORK 

Basic Layer 

When the exploration geochemist faces a survey, the first task is to 
gather the data and to organize them in a coIlection of items according 
to a formalism weIl suited to ensure their further retrieval. Much 
software has been developed to cope with these requirements such as the 
GRASP program ofthe USGS or the FFG system we designed a few years 
ago, generally making it possible to select sampIes according to predicate 
calculus based on logical or arithmetical requests. But we must observe 
that computer scientists have tackled this problem for a long time 
leading to the design of extremely efficient fault tolerant environments 
ahle to cope with huge amount of data, ensuring moreover data integrity 
and coherency and defining normalized formalisms to achieve data 
requests based on algebraic ensemblist languages such as the SQL 
standard for relational models. Recent developments in the domain of 
object-oriented databases are really promising and aim to merge deduc
tive capabilities coming from the artificial intelligence field and massive 
data-storage facilities issued from the database technologies. This is one 
ofthe main reasons why we will assume that some database systems are 
used by the geochemist without describing this layer further (our files 
are processed by the FFG) as current technologies are becoming obsolete 
quickly. Let us consider that this layer provides for usual database 
functions such as storage, retrieval capabilities based on operators such 
as selections, projections or joints for relational environments, update 
and of course usual statistical functions most of the time including 
comprehensive packages to achieve at least univariate analysis. Once 
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basic data have been collected and digitized into a database computer 
system, it is a wise strategy at an early stage of data treatment to carry 
out some form of analysis to determine the morphology ofthe data. It now 
is weIl known that ifthe original data can be subdivided into one or more 
homogeneous statistical subsets, it would be far more meaningful to 
carry out aseries of separate analysis after having discriminated the 
subsets into sets ofclear geological significance (8inding-Larsen, 1975; 
Tuckey, 1979). 

Data 8egmentation 

According to technical and geochemical considerations, it is difficult 
and indeed not relevant to process as a bulk of information trace 
elements and main components as their respective concentration ranges 
are different. Geochemicallaws accounting for the observed concentra
tions oftrace elements (Rn, He, U) differ from those involved to explain 
the abundance ofmain components such as 8i02, Ca2+, Mg2+, Na+, K+, 
Cl·, 8042-, HCOa-, or F- (referred later on as major elements) measured 
in water sampIes collected at drillholes. This observation leads us to 
model the concentrations ofthe major elements first, and then to provide 
an interpretation scheme based on the results of the former model to 
explain trace values. Moreover it should be stated that whereas results 
of interpretation of an entire data set may indicate vague generalized 
relationships or broad element associations, if such results have been 
obtained using heterogeneous data populations including outliers, the 
observations are not relevant and can be invalidated at the detailed level 
(Howarth and 8inding-Larsen, 1983). Thus, the first step, of course, is to 
remove obvious outliers from the data set and to study them apart. The 
next stage is to identify homogeneous composition sets thanks to a 
clustering method and to characterize them using basic statistical 
parameters such as means, standard deviations, and analyzing the 
sampIe corpus and especially remote sampIes from the center of the 
classes. Many methods can be used to achieve clustering (Duda and Hart, 
1973; Everitt, 1974) and a review is presented in Cormack (1971) and 
Tryon and Bailey (1970), but we select the "dynamic cloud method" 
developed by (Diday, 1975) for the sake ofrobustness and as it ensures 
an easy interpretation of the results. This typological method assumes 
that we know, apriori, how many subsets the population will have to be 
subdivided into and to pick at random a sampIe to form the center of the 
first group. The center of the second class will be the sampIe lying the 
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farthest away from the first one (according to any given distance 
criterion) and so on, selecting the remaining centers at maximum 
distances away from those already allocated. SampIes then are assigned 
to the group to whose center they are the nearest. If Xik stands for a set 
ofmeasurements on the ith sampIe in group k, and there are nk sampIes 
assigned to that group, the group average or its center of gravity is given 
by (1): 

(1) 

For each composition set, it is easy to compute a measurement ofthe 
scattering ofthe data within this group (2): 

k nk 

W = I I (Xik - ~ik)2 
j=l i=l 

(2) 

As long as the process iterates, sampIes are attached to the groups 
so as to minimize the criterion W. The gravi ty center of each grou pis then 
recomputed, and substituted to the old one. Group centers move until a 
stable position minimizing W can be reached and lead to recompute for 
each iteration the distances of the sampIes to the new group nucleii, a 
complete process representing "a trial". Many successive trials are 
achieved and the results compared until robust shapes can be obtained 
for the groups, thus leading to stable collections of sampIes. Let us 
illustrate this approach with the real sampling available for the Cor
bigny area. We suspected that eight distinct groups of water composi
tions could occur and the results for the set of 58 sampIes appear as 
follows (Table 1): 
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Table 1. This table shows partitioning obtained using "dynamic doud 
method" for eight dasses of water compositions for major elements 
measured 

Var Pop Class1 Class2 Class3 Class4 Class5 Class6 Class7 
He 70.1 6.6 4.5 6.9 9.1 112.8 268.4 325.7 
F- 2.0 1.2 0.5 0.7 2.6 2.6 3.5 3.5 
HCOs' 270.0 400.1 353.2 405.9 193.1 214.5 66.9 224.6 
S042 • 213.6 1196.3 41.5 529.2 39.7 63.4 250.0 61.6 
Cl' 66.0 51.2 18.0 41.5 25.8 158.7 361.7 334.4 
SiOI 12.8 9.9 10.9 12.0 14.3 13.3 8.3 14.6 
Cal , 128.7 455.9 106.1 234.1 56.9 60.9 216.5 71.0 
Mg2' 22.0 72.3 13.0 60.1 10.5 12.4 0.2 12.7 
Na' 61.8 40.6 13.0 46.3 18.3 116.6 42.5 246.4 
K' 9.6 24.2 7.2 11.0 6.3 8.1 37.2 9.3 

Without providing detailed explanations ofthese results which will 
be given further when considering the Corbigny case study, one should 
notice three particular composition poles: the extreme sulfated composi
tion represented by dass 1 induding two remaining outliers (refer to 
Table 2), a chloridized pole modeled by dass 7 (we also could assign to 
that group the sampIe individualized in dass 6), a bicarbonated calcifer
ous pole represented by dass 2 (and also dass 4), and a geochemical trend 
characterized by a composition enriched in chloride and sodium span
ning from dass 5 to dass 7. The immediate issue ofcourse is to consider 
the geographical distribution of the observed classes and the various 
maps produced are discussed in the related section. Interesting informa
tion also can be deduced from the analysis ofthe position of each sampIe 
within its associated class given its distance to the class center, and from 
various representations characterizing the compositions of the classes. 
This first appraisal ofthe data structure is relevant to assess the exact 
diversity of the compositions encountered which should be related to 
geochemical processes (here mixingmodels), and also can be used to split 
the data population into various homogeneous subsets reused for further 
modeling. Of course, such preliminary results should be confirmed 
thanks to a cross checking using complementary methods. Q mode factor 
analysis seems to be an extremely powerful tool, both to confirm the 
previously recognized end-members (i.e. contributing to arelevant data 
partitioning), but moreover offering a framework to account for mixing 
models, of special interest in our situation where each sampIe is a 
mixture ofvarious water end-members coming from different aquifers. 
Onee extreme compositions have been discarded, outliers removed and 
studied apart, it is possible to model mixing problems and especially to 
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compute the contribution of each aquifer to the global composition of the 
sampled water. The process can iterate until homogeneous sub sets can 
be obtained, either to be able to explain the trace compositions in terms 
of the mixing model elaborated for the major constituents (thanks to 
multiple regression analysis) or to determine adjustable trace thresh
olds according to the composition stratum characterized by major ele
ments. 

Mixing Models 

Factor analysis has become widely used by geochemists, but this 
extremely powerful multivariate method leads in many situations to 
poor results because ofmisunderstanding ofthe underlying assumptions 
coupled to the processing ofheterogeneous sets. Nevertheless interest
ing results were obtained using these techniques to solve mixing prob
lems such as petrologie ones, and we deemed the outcomes so promising 
and our problem close enough to mixing formulations to use Q-mode 
factor analysis extensively and to provide a new interpretation frame
work to the technique in the context of water mixing problems. Factor 
analysis encompasses a broad panel of techniques ranging from Princi
pal Components Analysis (PCA), Q-mode and R-mode Factor Analysis 
(FA), True Factor Analysis (TFA), and amongother methods Correspon
dence Analysis (ACP). References given here cover most ofthese topics, 
and we now will focus the presentation on Q-mode factor analysis, 
especially weIl suited to the modeling of mixing problems such as those 
arising in water-mixing issues. The aim of factor analysis, whatever the 
underlying mathematical model may be, is to assess relationships 
occurringin a set ofvariables or sampIes and to summarize the scattered 
information in a set offactors representing new variables able to express 
clearly interrelations happening in the data set. Factors are theoretical 
variables, obtained as a linear combination of original variables, and 
computed so as to account for a significant part ofthe observed variance 
or covariance. Variables and sampies can be considered as vectors in a N
dimensional space, where the data matrix is X(Nxp), N being the number 
of sampies and p the number ofvariables. Factor analysis aims to reduce 
the dimension ofthe initial space, to summarize the valuable geochemi
cal information. The starting point ofthese methods is to factor the data 
matrix, determining the rank of the matrix which is the smallest 
common order among all pairs of matrices whose product is the data 
matrix. It suggests that the data matrix can be regarded as the product 
oftwo matrices ofwhich the orders can be significantly less than that of 
the original matrix, thus replacing the data in a smaller subspace whose 
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dimension corresponds to the number of linearly independent vectors 
(i.e. the rank ofthe data matrix). This basic structure ofthe data matrix 
can be obtained thanks to the Eckart-Young theorem, stating that any 
arbitrary rectangular matrix can be represented as: 

x=vru' (3) 

- where X is the data matrix; 
- V is the matrix of eigenvectors of the major product of order N x p; 
- G is the diagonal matrix of singular values (i.e. square roots of the 

eigenvalues) of order p x p; 
- U is the matrix of eigenvectors ofthe minor product (i.e. inner product) 

and U' its transpose, square orthonormal matrices of order p x p. 

The analysis of XX' corresponds to Q-mode factor analysis which 
aims to account for interobject relations, and analyses the major product 
of the data matrix by its transpose. The aim of factor analysis is to 
approximate in a least-square sense a matrix W representing an approxi
mation oflower rank ofthe initial data matrix X, such as: 

(4) 

where: Vk is made ofthe k first columns ofV, Gk is made ofthe k first rows 
and k first columns ofG, and Uk is made ofthe k first columns ofU, so 
that: 

(5) 

Post multiplying Equation (5) with Uk G-\ leads to: 

(6) 

where Vk stores the coordinates ofthe points in the new factorial space 
of reduced dimension k. Let us now give the formulation of the general 
factor analysis model, and then provide more detailed consideration 
covering the Q-mode calculus. Any factor analysis methods rely on the 
foUowing mathematical expression: 
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(7) 

and a solution to this formulation can be obtained factoring the data 
matrix X as the result ofthe product ofthe factor scores matrix F with 
the factor loadings A, making it possible to represent the sampIes in a 
subspace of dimension k, E accounting for the errors observed when 
reconstructing the sampIes in the reduced factorial space. Using the 
Eckart-Young decomposition given Equation (3) and neglecting the error 
term, Equation (7) can be rewritten as: 

(8) 

and a possible solution is given by: 

(9) 

Q-mode factor analysis seems to be a well-suited technique when 
the objective is to classify (in some sense) a sampIe of observations (i.e. 
measurements in our situation) on the basis of several compositional 
properties. Q-mode factor analysis lies in the definition ofinterobjects 
(i.e. occurrences, observations or measurements, elements of the sam
pling) similarities, expressed thanks to an N x N similarity matrix 
containing the degree of similarity (according to any relevant assump
tion) between all possible pairs ofN occurrences. The degree of similarity 
between two objects may be evaluated in relation to the proportions of 
their constituents, and for any two observations n and m of the data 
matrix (i.e. row vectors), the coefficient ofproportional similarity (com
puting the eosine of the angle between the two row vectors as situation 
in p-dimensional space) usually is defined as: 

p 

L"nj Xmj 
j=l 

COS 9nm = ---;======-
p p 

LX~j Lx!j 
j=l j=l 

(10) 
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permitting to compute cos q for eaeh possible pair of sam pIes, and to 
arrange eonveniently them in a N x N matrix of associations H, 
representing the matrix to be factored, the eigenvectors of this matrix 
providing a set of linearly independent reference veetors to whieh the 
sampIes (i.e. row veetors of X) may be referred. Row normalization, 
ensuring the removal of the effeets of size differenees between sam pIes, 
ean be aehieved for the raw data matrix X using Equation (11): 

(11) 

where D = diag (XX'). The association matrix H, ean be defined as the 
major produet of the row-normalized data matrix, thus leading to 
Equation 12: 

H=WW (12) 

Observing that H is a real symmetrie matrix, we have HU = UL, where 
L is a diagonal matrix of the eigenvalues and U is the matrix of 
eigenveetors ordered as columns, and U being square orthonormal so 
that U'U = U U' = I, this lead to Equation (13): 

H=ULU' (13) 

Aeeording to the solution assumed by Equation (9), we ean state that: 

A A = Uk r k r k Uk 

AA =Uk!fUk 
A A 

AA =UkAx Uk 

(13 bis) 

whieh indieates according to Equation (13) and to Equation (14), that 
AA' = H, and leads to: 

In matrix form Equation (14) ~ is a diagonal matrix storing the k 
largest eigenvalues ofH. Finally we ean establish that according to the 
deeomposition ofEquation (3), the faetor analysis model deseribed by the 
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Equation (7), the simplified model of Equation (8) neglecting the error 
term, the hypothesis emitted Equation (9), the solution for the factor 
loading matrix can be deduced from the matrix decomposition of H 
(Equation (13», and can be given by Equation (14): 

(14) 

which can be computed as the matrix ofeigenvectors ofH scaled by the 
squared roots of the eigenvalues of H. Moreover W, can be expressed 
according to the model ofEquation (7), and omitting the error term as: 

W=AF (15) 

where A is the N by k matrix of loadings and F is the p by k matrix if 
scores, and k is the approximate rank ofW. Thus premultiplication by A' 
gives: 

A 

A W=A AF 

and observing that: 

we can deduce a solution for the matrix ofthe factor scores: 

F=A-1AW 
F=W AA-1 

(16) 

(17) 

(18) 

One ofthe main objectives ofQ-mode factor analysis then is to determine 
the number ofindependent end-members k, determining the rank ofthe 
normalized data matrix W(NxP) or that ofits major product moment H(NxNr 
Moreover it may be possible to get a dose approximation of W with 
significantly less factors, thus representing true compositions mixing to 
account for the observed measurement according to the proportions 
expressed by the factor loadings. Q-mode factor analysis, therefore, can 
be viewed as an attempt to reduce a data matrix into a sm aller matrix 
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that may facili tate interpretation in terms ofthe mixing of compositional 
end-members, such as solution or precipitation ofmaterial that tends to 
be of a specific composition (i.e. pole). The data matrix is resolved into a 
concise model for which each analyzed sampIe is modeled as the mixture 
of a small number of factors reconstructing original material sources. 
Moreover, the extended form offactor analysis we use (Miesch, 1976), 
facilitates the interpretation of the results as they are expressed in the 
same units as the original data (otherwise they are dimensionless), and 
the composition loadings (refer to Eq. (14» sum to unity and can be 
considered as mixing proportions. 

Factor analysis also is a straightforward technique for classifying 
sampIes, and can be used immediately to achieve cross-checlcing ofthe 
results previously obtained with the clustering phase (Table 1), making 
it possible to reliably dis tribute original data in homogeneous subsets for 
which an accurate description ofthe compositional variation in sampIe 
suites can be achieved. For the same case study corresponding to Table 
1 (i.e. the Corbigny area), we carried out a Q-mode factor analysis to give 
confirmation further to the water classes observed thanks to the cluster
ing technique, attempting to explain with few factors a significant part 
of the variance of the data, and outlining relevant compositional end
members, wen suited to evaluate the proportions ofthe mixing respon
sible for the sampIes values. According to the analysis of the factor
variance diagram based on the coefficients of determination, the vari
ability in this data set can be accounted for reasonably by the three factor 
model ofTable 2: 

Table 2. Factor scores obtained thanks to Q-mode factor analysis for 
mixing model of Corbigny area (three more significant factor scores) 

He -7.180923 30.347321 0.183632 
F- 0.868396 0.414385 0.476858 
HC03- 96.345291 6.362858 -4.847492 
8042- -17.986694 5.954410 79.984940 
CI- -0.741257 30.414734 0.109348 
8i02 6.308267 0.974594 -2.505931 
Ca2+ 19.128326 2.016218 21.822952 
Mg2+ 2.016218 0.694438 5.241902 
Na+ -0.446445 21.873993 -0.266135 
K+ 1.688759 0.892729 0.753642 

Given the factor scores representing the theoretical compositions involved 
in the mixing problem (Table 2), and the associated factor loadings 
accounting for the proportions ofthe factor scores for each sampIe ofthe 
data set, it is possible to reconstruct the composition of the j th 
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component for the i th sampie applying Equation (19), where aik 

represents the proportion of the k th factor for the i th sampie (i.e. 
loadings), and fkj models the abundance ofthe j th component for the k th 
factor (scores): 

(19) 

For example, the estimated amount of He for the first data set 
sampie of the Corbigny area can be computed given the scores of Table 
2 and the related loadings as: 

He (estimated) = 0.6914 * (-7.1809) + 0.1229 * (30.3473) + 0.1856 
(0.1836) 

The difficulty arising here, is that considering strict mixing models, 
negative factor scores or negative factor loadings are not relevant. Thus, 
in situations where negative composition scores are unacceptable, they 
can be avoided by the selection of a different set of reference axes. 
Moreover, in any situation where either the addition of an end-member 
as indicated by a positive loading or the subtraction of an end-member 
as indicated by a negative loading, is unreasonable, a new selection of 
reference axes may be desirable. In fact, given the initial solution 
provided by the factor model, an infinity of rotated solutions can be 
computed. A simplified factor model given Equation (7), can be written 
in matrix form: 

(20) 

considering a regular transformation matrix T (kxk)' and its inverse 1'-1, 

Equation (20) can be rewritten in the following form: 

(21) 

thus leading to a new solution expressed as: 

A * * 
X(nxp) = .Ä(nxk) F(kxp) (22) 
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glVIng new factor scores and new factor loadings satisfying some 
constraints such as positive scores and loadings when modeling the 
mixing ofvarious solutions. The estimated compositions, the residuals 
and the coefficients of determination (for the same number offactors) are 
thereafter the same for any model. The following transformation matrix 
was selected for the factor model shown in Table 3. 

Table 3. Transformation matrix used to rotate initial solution displayed 
in Table 2, to respect positive constraint applying to scores and loadings 
in situation true mixing model 

0.694 
0.000 
0.180 

0.163 
1.000 
0.260 

0.143 
0.000 
0.560 

Applying Equation (21) to the data of Table 2 and Table 3, leads to the 
new scores presented in Table 4. 

Table 4. Rotated factors scores for true mixing model of Corbigny area 
satisfying positive constraint 

He -0.010688 30.347321 6.700572 
F- 0.602021 0.414385 -0.002989 
HCOI ' 67.207581 6.362858 16.281891 
8042• -0.074349 5.954410 43.102112 
Cl' 4.458806 30.414734 7.835640 
8i02 4.178469 0.974594 -0.014434 
Ca2+ 16.733231 2.070524 16.202286 
Mg2+ 2.262041 0.694438 3.478939 
Na+ 3.217570 21.873993 6.457644 
K+ 1.425284 1.892729 1.958126 

These positive factor scores now represent compositional end-members, 
and without providing further explanation of these results (it will be 
done in the related section), one should notice that each one ofthese new 
factor scores represents a different aquifer ofthe Corbigny area with its 
specific composition: the first factor corresponds to the silicified level (i.e. 
an intermediate geologicallayer), the second to the basement groundwater 
seepage with high He values, and the third to the superficial layer. 
Depending upon the local piezometric conditions, these various aquifers 
mix one another, and for each sampie the contribution of each aquifer to 
the global measurements can be determined, the factor model providing 
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a way to compute the proportions (i.e. loadings) of the different 
groundwaters involved. Given Equation (22), the factor model can be 
used to reconstruct the sampIe compositions, and to compute residuals 
representing the part ofthe geochemical signal not accounted for by the 
modeL The factormodel provides arelevant assessmentofthe background, 
whereas large-scale residuals should be considered as potentially 
indicating element enhancement (or depletion) which is not accounted 
for by the general trend for the data reconstruction achieved by the 
modeL These residuals are of special interest when considering trace 
elements as they represent valuable candidates for the recognition of 
significant multi-elementary anomalies. 

Once homogeneous subsets have been obtained and the modeling of 
compositional trends achieved, graphie al projections of the sampIes in 
the factor space makes it possible to represent concisely the results ofthe 
modeL The space dimension is determined by the number offactors kept 
for the model and the sampIe coordinates are merely the factor loadings. 
Usually, various projections are done using as reference axes the scores 
themselves, but noticing that: 

(23) 

for a three factor scores model, it is possible to represent the whole 
factor space as a single compositional plane (Fig. I), all the sampIes lying 
in a restricted part ofthis plane in so far as loadings are positive and obey 
to the constraint expressed by Equation (23). 

The representation displayed in Figure I also can be considered as 
a ternary diagram, the extremity ofwhich are PI P2 P3, a type of graphie 
geochemists are more accustomed to than binary projections (FIF2, 
FIF3, F2F3). The new axes are represented as the x and y lines. It has 
been used thoroughly in this work and seems to be a more efficient tool 
to visualize compositional sampIe suites than stereographic projection. 
The three original factors have the following coordinates in this repre
sentation: 

(24) 
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P2 F2 

Figure 1. Compositional plane can be used to display all sampIes on same 
representation without requiring any projection, taking advantage of constraint 
expressed by Equation (22) and of positive property of compositional subspace 
(true mixing model). 

and given any coordinate couple (x,y) observed in the plane Pl P2 P3, it 
is possible to compute its related loadings: 

(25) 

This representation makes it possible to study the entire composi
tional cloud on a single display, facilitates the selection of compositional 
end-members analyzing the structure of the factorial space, and to 
compute the loadings of the new poles given their related (x,y) coordi
nates in the Pl P2 P3 plane, thus leading to new end-members. 
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Once it has been possible to provide for a computational framework 
accounting for the mixing problem observed for the major constituents 
(estimating the end-members and their contributions to the sampie 
measurements), a fundamental topic then is to reuse this model to 
explain the trace concentrations, characterizing the trace signal con
nected to each end-member and thereafter determining the source and 
regular amount ofthe trace elements. Regression analysis is a powerful 
technique to achieve such an objective, and residuals of this model 
represent significant anomalies, unexplained by any ofthe models. The 
Lodeve case study is an example where obvious wild values were 
meaningless and using careful methods, subdividing the original data 
set in various homogeneous subsets, confirming the clustering results 
with factor analysis also involved to account for the mixing model, then 
explaining trace concentrations thanks to regression analysis, made it 
possible to recognize extremely low values anomalies, connected to 
significant uranium ore bodies. Let us consider now the multiple regres
sion model enabling us to estimate the background concentration for 
trace elements on the basis of the factor analysis results for the major 
constituents. 

Regression Analysis 

In this section we will consider multiple regression which is a further 
generalization of regression analysis to many-dimensional space. The 
variable beingexamined is the dependent or·regressed variable designated 
Yi and is modeled as a linear combination of independent variables or 
regressor variables denoted the X's. The general formulation of such a 
model is given by Equation (26): 

A 

y= ßo + ßIXl + ß2X2 + ... + ßmXm + E (26) 

where e is a random variable of zero mean and S2 variance, having a 
normal distribution. The criterion used to fit the regression is usually a 
least-squares solution, thus minimizing the following expression: 

(27) 

i=l 
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thus leading to the resolution of a set of normal equations which can be 
written in matrix form in the following way (Davis, 1973): 

LXo LXI LX2 LX. 
1 ßo LY 

LXI Lxi LXIX2 LXIXi ßI LXIY 

LX2 LX2XI LX~ LX2Xi ß2 
= LX2Y (28) 

LXi LXiXI LXiX2 LX~ ß· LX.Y 1 
1 1 

where ~ is a dummy variable equal to 1 for each observation, thus the 
sum (on the Xo) being equal to n, the number of sampIes. The resolution 
of this set of normal equations provides the values of the coefficients of 
the regression bio An estimation ofthe goodness-of-fit ofthe regression 
can be provided by the multiple correlation coefficient R, the ration of 
Equation (29) being near unity ifthe model is correct: 

(29) 

where SSR is the sum of squares as a result of regression computed as: 

(30) 

and where SST is the total sum of squares given by Equation (31): 

n 
~ A - 2 

SSR = L.J (Yi - y) (31) 

i=1 
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The aim is to select a regressed variable, one of the trace elements 
to be studied, and to provide a model explaining the observed concentra
tions and modeling the background values for this element thanks to a 
combination of regressor variables. A good way to summarize the 
information on the major constituents is to reuse the results ofthe factor 
analysis, each factor accounting for a given aquifer in our model, and to 
consider the factor scores as the regressor variables. Trace concentra
tions will be modeled as a linear combination ofthe compositional water 
sources, and trace values then are explained directly by the mixing 
model, each aquifer providing some amount ofthe trace element. Consid
eringthe piezometricconditions, indirect prospecting(i.e. in the overbur
den basement) is straightforward when the basement water flows 
upwards through the surface water, thus providing an immediate 
indication of the basement characteristics. Residuals of the multiple 
regression model are an efficient way to recognize trace concentrations 
remaining unexplained by the mixing model, thus representingvaluable 
prospects. The selection ofthe trace elements to be regressed is based on 
the correlation matrix com puted for the traces and the factor scores, thus 
permitting to identify the trace elements showing a good relationship 
with the factors. An example ofregression analysis for the He concentra
tions taking as regressor variables the factor scores displayed in Table 
4, is provided for the Corbigny case study. Residuals as any other 
variable such as major constituents, traces, clusters, factor scores or 
complex subdomains defined by logical expressions (i.e. predicates ex
pressed as conjunction of disjunctions of basic variables) or by expert
system rules can be mapped, providing direct insight into the spatial 
ordering and the spatial distribution of the elaborated criteria. 

Mapping and Graphical Displays 

Geochemists and hydrogeologists are weIl trained to use graphics, 
maps and many other specialized displays (Howarth, 1977, 1983; How
arth and others, 1980; Fisher, 1983), confirming the classical proverb: a 
picture is worth a thousand words. Moreover, many of the previous 
results can be mapped either using a discrete form or a regionalized 
approach interpolating (in some sense) values from regular grids, thus 
providing new data to be later integrated in the decisional process. 

Therefore, four fundamental types ofmaps can be distinguished and 
handled by the system we developed: 
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- local value maps displaying square codified spots accounting for any 
type of symbolic representation. Classes coming from cluster analysis 
can be represented in such a way, selecting for each sampIe a color 
corresponding to its class and varying the saturation level (of the 
related color) according to distance ofthe sampIe to the class center; 

- contour maps representing quantitative variables taken as basic 
measurements such as altitude, resistivity, remote soundings such as 
radiometry, or as model results such as factor scores; 

- polygon maps showing classified or qualitative variables remaining 
constant within polygons, such as mining works, lithofacies, or corre
sponding to results elaborated using logical predicates (i.e. areas 
located at less than 20 meters from a leucogranite contact, for ex
ample); 

- maps of classified lines such as faults, veins, lithological boundaries, or 
delimited by the results ofimage processing (i.e. contour detection, for 
example); 

Moreover, external images also can be incorporated to this informa
tion system, mainly digital remote-sensing scenes either collected using 
airborne platforms or satellite scanners on various wavelengths such as 
the MSS channels of LANDSAT or stereographic couples for the Spot 
imagery system for example. 

Most of the information gathered as basic geochemical variables 
(i.e. major or trace element concentrations in rocks, in water drillings or 
in stream sediments) or as physical measurements (i.e. such as resistiv
ity, radiometry (Duval, 1976», computed as model results and codified 
in the form of variables (i.e. one byte for each sampIe value) or of 
characteristics (i.e. one bit for each observation accounting for the 
boolean result ofa logical predicate) (McCammon and others, 1983), or 
collected as images thanks to various sensors, can be handled in a 
geographic information system making it possible to build the databank. 
Homogeneous maps representing the spatial distribution of regionalized 
variables, are the results ofnumerous processing, interpolating contour 
maps between digitized contours to provide smooth models, estimating 
and interpolating concentrations between regular grid points computed 
from the initial random sampling (e.g. in the situation of geochemical or 
theoretical variables such as factor scores or residuals), or rescaling and 
updating different (or even incompatible) representation systems. Vari
ous techniques can be used to provide valuable estimators such as 
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kriging (Matheron, 1972; Clark, 1977b), or to ensure interpolation 
between irregularly distributed observed or computed values at sampie 
points such as trend-surface analysis (Clark, 1977a) or linear weighting. 
The maps we produced were computed mainly with the last method, thus 
yieldinginterpolated maps with a rustic estimator (compared to kriging) 
but making no serious assumptions on the variable properties such as 
stationary (for the kriging estimator) or polynomial distribution (in the 
situation oftrend surface approximation), for example. Each node to be 
assessed is computed using the six nearest control points: 

6 

I-I-~ 
i=l ~ z=-----

6 I_I 
i=l ~ 

(32) 

various linear combinations being later on possible, to enhance the 
influence of the nearest of the six control points, for example. Finally 
maps produced usually are transformed using spline functions to yield 
larger images increasing the legibility and to conform to the scale 
adopted for the remainder of the data bank documents. This map and 
image database summarizes all the information collected or modeled by 
the system and will represent the basis of further processing to define 
favorable characteristics during the data integration phase or to support 
the reasoning of expert modules. 

Data Integration 

Once this overall set of data has been collected and stored in an 
adequate form in the databank, the next logical step of the treatment 
process is to integrate various information layers into decisional maps 
(or parameters) accounting for favorable (respectively unfavorable) 
parts of a geochemical script (Mellinger and others, 1984; Leymarie and 
Durandau, 1985). Data integration follows the same reduction space 
logic as was involved in factor analysis but going one step further, trying 
to substitute to a large figure of variables (some of them being at this 
stage of high level such as model results) synthetic maps giving some 
insight into fragments ofmetallogenic scenarios. For each partial script 
accounting for some metallogenic factor, a predicate is built to account 
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for the corresponding evidence in a rule-based reasoning framework. 
Training areas make it possible to assess the relevance of each scenario 
proposed based on a probabilist approach and in favorable situations 
lead to the inference of the corresponding hypothesis. 

Let us briefly describe the formalism underlying this approach. We 
consider an event Ej related to a surface elementary unit, described by a 
logical predicate stating the validity of that event for the cell considered. 
Predicates are built using the databank maps or images and the logical 
and arithmetic operators excluding at this stage existential or universal 
quantifiers. Thus typical predicates are such as "the resistivity is less 
than 300 W m / m2" or "select areas located at less than 20 meters from 
a redox barrier" and the domain D. where a given predicate displays the 
logical value "true" is referred as the extent ofE., i.e. the geographie area 
where the event occurs. This approach handl~s at the same time the 
statistical space thanks to the event based definition, the geographie 
space delimiting the extent of the statistical realization of E. and the 
logical space characterizing occurrences by logical predicates~' 

Complex predicates can be built, involving the well-known alge
braic relational operators including conjunctions and disjunctions of 
elementary predicates. Following Leymarie and Heckert Gripp (1983), 
let us now define target indicators and objectives. Considering an event 
H, characterized by a predicate P and referred to as the objective, we are 
interested to know its status (true or nil). Let EJ.' another event, be an 
indicator of the realization of H and let us consider: 

- pr (H) the apriori probability of H; 

-pr (H I Ej ) the conditional probability ofH given the realization ofEj ; the 
relevance of Ej as an indicator of H can be verified stating: 

pr(HIEj ) 

pr (H) ;I; 1 (33) 

which s~ml?ly indi~~s that the realization ofthe event Ej ~hould modify 
the a pnon probabIlIty ofH. We may encounter favorable mdicators (E. 
reinforces the presence of H) or unfavorable ones (E. expresses th~ 
absence of H). J 
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pr(~) 
pr (H) > 1 

(34) 

Equation (34) expresses that E. is an indicator of the presence of the 
objective Hand: J 

pr(~) 
-~.::,-< 1 pr (H) 

(35) 

Equation (35) expresses that E. is an indicator of the absence of the 
objective H. J 

Noticing that: 

(36) 

it is possible to define the reliability of the target indicator as the 
probability of seeing the objective H realized when the indicator E. 
occurs, that is pr (H / E. ), and the detection rate ofthe objective H by thJ 
indicator E., which is the probability of observing the indicator E. when 
the objecti~e His satisfied. The prospecting strategy will aim to m~mize 
one ofthese two incompatible criteria, thus increasing the detection rate 
if the objective is to inventory resources in a comprehensive way or the 
reliability if the goal is to avoid unsuccessful in-situ mining operations. 
Given training areas where it is possible to test the relevance ofvarious 
indicators (some known mineralization exists), it is possible to calculate 
the respective probabilities required to compute the ratios ofEquations 
(34) and (35) thanks to measurements ofthe frequencies of occurrences 
of the related events for the corresponding database images. The 
assessment of the apriori and conditional probabilities relies on the 
computation of the image histograms (pixel counting) for the logical 
expressions formed. Two limitations affect this approach, the first one 
comes from the necessity to rely on training areas seldom available in 
true prospecting and the second is the extremely step-by-step 
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computationalmethodologyinvolved. Foreachindicator, foreach domain 
considered, for each objective addressed, the related probabilities have 
to be computed stepwise, storing logical masks and evaluating in an 
incremental way the logical predicates and their combinations 
(disjunctions of conjunctions of elementary predicates), storing the 
associated histograms and pixel counting. 

But the main pitfalls arising from the system developed came from 
technological topics. Multivariate data processing is achieved by a 
knowledgeable engineer, preliminary interpretation and all mappings 
are achieved by hand, the constitution ofthe databankis time consuming 
and monitored by a human specialist, data integration supposes a 
trained engineer to imagine scenarios, to build the corresponding predi
cates and to test their relevance using training areas, then final interpre
tation of the results necessitates skilled experts of the processing 
techniques and of the geochemical processes involved. The conceptual 
approach is promising and significant results were obtained (Leymarie 
and Poyet, 1983; Poyet, 1986), but the methodology involved obviously is 
not realistic in terms ofhuman resources required and efficiency reached. 
At the time this project was launched, no alternative was possible either 
from the software engineering viewpoint or from hardware limitations. 
Heterogeneous codes carrying out extremely diverse functions could not 
be integrated in a coherent and cooperative framework, each one being 
triggered according to the operator need, without aglobaI automated 
logic which could be managed by a more intelligent software layer, able 
to achieve on its own the nondeterministic process of data analysis, to 
build the map and image corpus (for model results), to assert partial 
hypothetical metallogenic scenarios carrying out alone the data integra
tion phase and finally to fit the scenarios together in a coherent attempt 
to provide a validation of some prospecting policy. Major progress had to 
be achieved to imagine an integrated software embedding the complete 
set ofbasic functionalities required for elementary processing needs, but 
moreover providing for a metarepresentation level enablingthe software 
to "know" what it is made of and to get a perception of what its functions 
are useful for, to provide the environment with a high-level processing 
logic leading to multicooperative expert architectures. The work we 
accomplished to develop a new software workbench taking advantage of 
the most recent and advanced software engineering techniques (Poyet, 
1990), lead to design on the theoretical and practical bases described to 
achieve the treatment of geochemical data, a new generation of tool. 
Some of the features of such an environment are highlighted in the next 
section. 
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Expert Systems 

Expert systems have been born as real world applications of artifi
cial intelligence research efforts, and the PROSPECTOR system (Duda, 
Gaschnig, and Hart, 1979) is one of the first operational and promising 
prototypes to be designed, thus contributing to an early introduction of 
these techniques into the geoscience community. Architectures ofsuch 
softwares have evolved during this decade, following increasing hard
ware capabilities and the improvement of software engineering tech
niques. Workstations and microcomputers today offer more processing 
power and memory storage facilities on highly integrated machines than 
were available on expensive computers a few years ago. The first expert
system generation is currently moving towards transportable small 
machines (McCammon, 1986) and can even lead, thanks to sophisticated 
software architectures, to in-situ operational computerized assistants 
such as the HYDROLAB system (Poyet and Detay, 1990; Poyet and 
Detay, 1989a, 1989b, 1989c; Poyet and Detay, 1988a, 1988b), whereas 
larger computers provide enough power to design new expert system 
architectures addressing much more challenging topics such as knowl
edge-base distribution (Nü, 1986a, 1986b), cooperative multiexpert 
systems (Corby, 1987), coupled with object-oriented database facilities 
(Valduriez, 1987; Sibertin-Blanc, 1988), reusable software components, 
hardware independent high-level bitmap displays (Scheifler and Gettys, 
1986; Devin, 1988) incorporating hypertext and hypermedia facilities 
(Bauer and Holz, 1989; Bensadoun, and others, 1989; Sandvad, 1989), 
and in a close future integration ofimage and parallel processing. But the 
main characteristic of second-generation expert systems is to handle 
deep knowledge, thus not only providing a superficial behavioral model 
stating that when a particular event occurs such action should be 
undertaken, but offering a deep model ofthe states of a given system and 
providing a meta representation ofwhat the system knows and what its 
components are useful for and under which assumptions. This is a 
radical evolution and allied with current machine capabilities and many 
other software advances, most ofthem relying on object-based technolo
gies (Boock, 1986; Cox, 1986; Moon, 1986; DeMichel and Gabriel, 1987; 
Bobrow and Kiczales, 1988; Cointe, 1988; Meyer, 1988; Roche and 
Laurent, 1989), it makes it possible to drawup the bases of the future 
systems on which we are working. Making an analogy with a database 
conceptual model (Briand and others, 1989), three main software levels 
can be identified. The physicallayer corresponds to the basic entities 
handled by the software, such as computer codes (i.e. multivariate 
analysis functions (Anderson, 1958; Cooley and Lohnes, 1971» or maps 
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or images stored in the databank. The logicallayer accounts for the meta 
knowledge representation facilities required to manage the former 
entities, thus providing for each ofthem an object model describing, for 
example in the situation of computing codes, their applicability condi
tions, their inputs and outputs, interpretation strategies ofthe results, 
ways to assess the robustness of the estimates, etc. The boundary 
separating the physical from the logicallayer acts as a mirror where each 
low-Ievel entity reflects in its corresponding high-level object endowed 
with its associated methods providing a manner to send them requests 
and to get adapted behaviors as in message-passing-based programing 
systems (Moon and Weinreb, 1981; Goldberg and Robson, 1983). This 
logicallayer accounts for the deep understanding of what is going on in 
the software activity and can he used to carry on further rule-based 
reasoning on the object-Iayer, modeling the software constituents. The 
conceptuallayer finally takes these objects as a reasoning basis to pursue 
the global strategies to he followed by the system when trying to assess 
favorable target areas according to some generic scenario. The analogy 
used has no exact physical reality in the implementation policies but 
provides for an adequate mental framework to tackle with the software 
architecture, which is hetter described as a cooperative aggregate of 
expert components, each one taking in charge some circumscribed task. 
Isolated packages already have heen imagined using such an approach, 
designing for example intelligent front-end on comprehensive statistical 
packages (Gale, 1986). We will not give further details ofthese software 
developments, as they are not the central topic of this paper, but it is 
worthwhile to emphasize the great complexity of such unsupervised 
systems aiming to handle extremely diversified entities, to achieve on 
their own data analysis, mapping of relevant parameters, rescaling of 
the maps produced and ensuring their storage within the GIS, to carry 
out image analysis taking full advantage ofthe object based representa
tion (e.g. a generic map is able to respond to a generic surface area 
message but not to a slope or height message specifically attached to 
topographic maps defined as a subtype ofthe map typological hierarchy), 
to carry on the test ofpartial metallogenic scenarios handling rule-based 
predicates modeling spatial reasoning, to assess finally the reliability of 
some global prospecting framework on the basis of tremendously diver
sified knowledge sources coming from structural geology (e.g. locating 
favorable situations such as synforms, structural barriers), petrology 
(e.g. analyzing differentiation rates or particular lithofacies), metallo
geny (e.g. stable species), and hydrogeochemistry in the context of this 
study, thus connecting the numerical models describing the solution 
compositions with the hydrogeochemical processes such as redox barri-
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ers or solution-mineral equilibriums. All these knowledge sources have 
to cooperate in a coherent software architecture to account for efficient 
target recogni tion. 

CASE STUDIES 

Formulation ofthe Water Mixing Model 

The objective is to achieve an indirect exploration ofthe basement 
uranium content thanks to hydrogeochemical prospecting at drilling 
sampling sites, to look for blind mineralization hidden by a superficial 
sedimentary layer. Given the mathematical model described previously, 
the aim is to use the compositional Q-mode factor analysis to provide a 
mixing model enabling us to describe the global composition observed at 
each sampIe site as a mixture ofvarious end-members corresponding to 
a weighted sum of the contributing aquifers described by the factor 
scores with proportions given by the factor loadings. Given n water 
sampIes Ei (i=l,n), for which we have p ionic measurements 1. G=1 ,p) for 
the major constituents, representing the global observations corre
sponding to the mixing ofr water end-members Tk (k=l,r), and given ckj 
the concentration measured in mg/l for the j th ion in the water type T k' 
the dry content ofthis end-member Tk is given by Equation (37): 

(37) 

given ~ the mass ofEi' and ~k the mass ofT k for the sampIe Ei' we have: 

(38) 

and the related proportion ofTk for the water sampIe Ei' referred as bik 
is given by Equation (39): 

(39) 
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with the following property: 

r 

L bik = 1 
k=l 

POYET 

(40) 

and the concentration, assessed in mg/l for the j th ion of sampIe Ei' 
referred xij is obviously given by Equation (41): 

r 

Xij = L bik • Cjk 

k=l 

(41) 

The model used to reconstruct themeasuredconcentration is the extended 
Q-mode factor analysis, operating on constant row-sums data, and 
permitting to account for the geochemical signal, given a reduced 
number offactors r' explaining the main part ofthe variance observed for 
the data set. Ifwe refer to Z'ij as the transformed value ofthe estimate Zij 
of"tj given Equation (42): 

100. Zjj 
~'= 

J Si 
(42) 

the factor model provides an estimate z' .. of the transformed data (i.e. 
with constant row-sums equal to 100) gi~en Equation (43): 

r 

~j = L~k. fkj 

k=l 
(43) 

where a'ik represents for each measurement the proportions ofthe water 
end-members T k and where the f k' accounts for the transformed 
concentration (i.e. with constant row-iums equal to 100) ofthej ions for 
the modeled water end-member Tk. The a'ik and the f kj verify the usual 
properties of factor loadings and factor scores, that is: 
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r p 

L 3.jk = 1 ; L fkj = 100 (44) 
k=l j=l 

To provide an interpretation framework of the model results, it is 
necessary to transform the concentrations f kj of each end-member, 
multiplying it with a coefficient lk' so that the concentrations lk . f kj are 
as similar as possible to those of an observed water or of a saturated 
solution in equilibrium with known rocks, such as: 

p 

L A.k . f kj = 100 . A.k = sk 

j=l 
(45) 

where Sk is the dry content. The mixing model then yields the estimates 
Zik: 

r ( J Si • 3J.k ~k = L 100. A. . ( A.k . fkj-) 
k=l k 

(46) 

allowing an easy interpretation, based on the equivalence of the 
proportions bik ofEquation (39) with the term given by Equation (47): 

(47) 

moreover, identifying the concentration cOk of the end-members (i.e. 
water types ofEquation (37)), to the corresPonding lk' fko of(46). It then 
is possible to characterize the composition of each wafer pole and to 
provide a quantitative assessment ofthe proportions of each estimated 
water type T' k for each sampIe measurement. This interpretation 
framework will be reused throughout the case studies carried out to 
illustrate the relevance of this modeling approach. 
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Corbigny Case Study 

The first site is located in the West part ofthe Morvan granitic horst, at 
the southwest ofthe volcano-tectonic Montreuillon basin. Granites, cut 
by great N-S faults are covered by Mesozoic limestones (Fig. 2). The 
objective is to locate uranium hidden deposits under a covering 
sedimentary layer ranging from 10 to 100 meters thick. The drillings 
carried out provided rock geochemistry and hydrogeochemistry data 
including for the latter the piezometric surface observation, the 
transmissivity, pR, major element concentrations, and values for U, Rn 
and Re. At the interface between the different layers, groundwaters flow 
on an aquifer of about 10 km2 • Their leaching on granitic rocks along 
microfissurations (especially for the boundary separating the basement 
from the silicified layer), is the key of this type of prospecting. 

Figure 2 provides a good insight into the geological context fairly 
weH summarized by the opposition between the basement layer and the 
recent sedimentary formations. The basement can be subdivided into 
three main components: 

- a volcanic occurrence at the north, itself subdivided into the ignimbritic 
complexe de Blismes, a carboniferous layer of 50-meters thick which 

N s 
Tamnay 

A • _..,.. ..... ..,.. ..... VII. ..,.. "" •• ,:: v. ..,.. _ .......... ..,.. ..... . 
___ ..,.. ___ ~ __ ~ _____ ~_v 

~ ~ Lias (Karstified) .. .. Volcanic rocks .... 
~ ...... Trias (clays) [TI] Granites 

lillillIilll Trias (silicified layer) ttYtY) Volcano-detritic 

Figure 2. Geological context of Corbigny area. 
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can be eroded locally and the complexe de Montreuillon, representing 
the upper part of this volcanic layer; 

- foliated microgranites observed all around the caldera and intrusive in 
the borders; 

- granites of Chateau Chinon representing the infrastructure of the 
basin, characterized as phorphyroid monzo-granites; 

This basement can be considered from a hydrogeological point ofview as 
a rather homogeneous unit, corresponding to a unique aquifer polluted 
by descending waters from the surface in the northern part of the area, 
with a generalized directional water flow oriented towards the south, 
according to the piezometric surface. This basement aquifer (referred to 
as unit 1), finally percolates through the surface groundwaters when the 
hydraulic charge in the southern part of the studied area is sufficient. 
The sedimentary cover includes a Triassic silicified layer, topped by 
Triassic fine-grained clayey layers, the sequence being ended by a 
karstified Lias. The hydrogeological framework is characterized by an 
aquifer hosted by the silicified layer (i.e. unit 2), isolated from the upper 
groundwater seepage (karstified aquifer or unit 3), thanks to the Triassic 
marls. As we mentioned briefly, communications between units 3 and 2 
are the result ofmajor tectonic features such as faults and fractures, and 
those between units 2 and 1 are regulated by piezometric gradients, 
leading to the contamination of the basement groundwaters by surface 
flows in the north and corresponding to areverse scheme in the south 
where the basement aquifer percolates through the silicified layer. The 
Iocation where flows reverse between units 1 and 2, can be situated near 
to the Tamnay-en-Bazois village (Fig. 2). 

According to this complex hydrogeological framework and to the 
goals followed (i.e. indirect prospecting of the basement), our aim is 
twofold; first recognizing outliers with a good confidence (to study them 
apart), then obtaining a mixing model enabling us to map the various 
water compositions and to compute the mixing proportions between the 
three groundwater units for each sampie analyzed. In fact we provide 
here a summary of the real approach followed, more complex indeed 
when considering the operational study, and describing a simplistic 
reasoning scheme. The central point to be kept in mind is that we cross
check results from various methods to obtain robust analysis, modeling 
first major compositions and trying then to take advantage ofthe results 
to account for trace content. 
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The first step is to compute many cluster analyses ofthe initial data 
set based on the composition ofthe major constituents, each run provid
ing results such as those reported in Table 1. Successive runs lead to 
rather similar outcomes making it possible to recognize stable composi
tional water classes outlining a topological ordering in the classification 
space, and to point out remote sampies from the model. Representing the 
robust classes ofthe classification space using a ternary compositional 
diagram makes it possible to display a structural ordering. Figure 3 
moreover leads us to suspect for a mixing model between three main end
members, intermediate classes accounting either for local variations or 
for transitional compositions. 

The distribution in the compositional space of the robust classes 
identified (Fig. 3), lead us to suspect a mixing model between composi
tional end-members represented by the sulphated waters ofthe covering 
(i.e. represented by class 1), the bicarbonated calciferous waters of the 
silicified layer (i.e. represented by dasses 2 and 4) and the chloridized 
and sodic waters coming from the basement (i.e. represented by class 7). 

Moreover, for each run, sampies are classified as in Table 5, the 
labeling done permitting us to assess the typicality of each measure
ment. Finally, sampies suspected to represent outliers for the major 
elements model and the mixing model itselfmust be cross-checked using 
another method, such as factor analysis for example. 

Sulphated 

Bicarbonated Chloridized 

Figure 3. Structural ordering of classes in compositional space (same patterns as for 
Fig.2). 
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Table 5. Sample classes: each sample is labeled with its residual inertia 
(ratio between distanee to gravity center to intrainertia of population) 

Six elements belong to class 1: 
BA03(170) BAl6(299) BA18(456) AU34(557) AU33(1939) BAl9(3739) 
Twelve elements belong to class 2: 
BA21(5) AUl5(15) AUl4(16) BA01(18) BAlO(21) AU03(22) 
BAl2(24) BA22(35) BA13(35) BAI 5(46) AUlO(81) AUl2(170) 
Five elements belong to class 3: 
AU21(15) AU09(31) AU36(134) AU08(261) AUll(497) 
Twenty-one elements belong to class 4: 
BA05(1) AU27(2) AU26(4) AU25(4) BA20(4) AU24(7) 
AU01(9) AU04(lO) AU02(13) BA04(13) BA17(14) AU20(18) 
AU38(21) BAll (22) AUl3(28) AU06(32) BA06(36) AUl6(42) 
AUl7(62) BA02(65) CR05(116) 
Five elements belong to class 5: 
AU40(5) AU41(6) AU35(40) AU31(145) AU28(267) 
One element belongs to class 6: 
AU19() 
Eight elements belong to class 7: 
SPCH(17) AU32(28) AU30(43) AU39(54) BA34(60) BA08(63) 
BA07(73) AU29(91) 

An immediate advantage of the classification techniques is to lead 
to a straightforward mapping of the compositional classes, assigning a 
specific color to each class and saturating it according to the distance of 
each sampIe to its class center, providing in this way for discrete maps 
at sampIe sites (i.e. local value maps). Then robust shapes can be 
identified (i.e. coHecting sampIes being frequently elassified together) 
and also mapped to assess the spatial distribution ofthe groupings given 
by robust clusters. The most interesting property arising from classifica
tion techniques andjustifying their use as a preliminary approach to the 
data-set structure stems from the fact that the results obtained are elose 
to the initial data and once an interpretative framework has been 
elaborated, it is possible to visualize the geological reality without 
distorting it with complex models. Of course, onee the preliminary 
investigation has been made, it is worthwhile to compute a continuous 
model, confirming the supposed outliers, distributing the measured 
concentrations between the various end-members recognized and per
mitting contour maps to be drawn. This is the purpose of Q-mode factor 
analysis. 

For this case study, and based on the values of the coefficients of 
determination (i.e. factor-variance diagram), a three factor model ac
counts weH for aH variables exeept K, Mg, and F. A fourth factor would 
explain moreover Mg and F, but for the sake of simplicity the three factor 
model is deemed as satisfactory. Initial resuIts ofthe factor analysis were 
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reportedin Table2, thenrotated usingthe matrix ofTable 3, thusleading 
to the positive compositional end-members ofTable 4. A brief analysis of 
these results provides a confirmation of the mixing model previously 
supposed (Fig. 3), factor 1 accounting for the composition ofthe silicified 
groundwater level, factor 2 modeling the composition of the basement 
aquifer, and factor 3 representing the surface waters ofthe sedimentary 
covering. 

Using the representation previously described to display all com
positional variations in the same PI-P2-P3 plane, it is possible to obtain 
Figure 4. The result ofthe computation, expressedin this graphical way, 
is an interesting mixing model showing the groundwaters ofthe silicified 
aquifer as the starting point of two geochemical trends joining the 
basement waters and the surface aquifer. Moreover it provides an 
efficient way to identify outliers standing outside ofthe main geochemi
cal trends, characterized by high residual values and by contrasted 
factor loadings (i.e. unrealistic proportions). 

The calciferous and bicarbonated water-pole ofthe silicified aquifer 
is represented by the factor 1 ofthe factor model and its composition can 
be summarized by the two following representative sampIes for this pole 
(Table 6): 

Table 6. Characteristic sampIes for silicified aquifer 

BA21 
AU14 

He 
.27 
.16 

F
.39 
.62 

HC03 
360.87 
319.74 

804 
20.40 
13.75 

CI-
18.44 
21.27 

Si02 
20.00 
11.60 

Ca2+ Mg2+ 
106.29 8.46 
111.10 0.68 

Na+ K+ 
5.75 5.0 
4.90 3.0 

This groundwater end-member is polluted, according to the Iocal 
piezometric conditions, by the surface water in the northern part of the 
area studied and by the basement groundwaters in the south. The 
composition ofthe chloric and sodic water ofthe basement, enriched in 
Helium, located on the bottom right part of Figure 4 and modeled by 
factor 2, is weIl summarized by the three foIlowing sampIes: 

Table 7. Characteristic sampIes for basement groundwaters 

He 
BA07 355.27 
BA08 373.41 
AU29 358.23 

F- HC03 804 Cl-
3.50 234.56 75.20 241.11 
4.20 236.88 92.80 376.55 
3.00 228.32 108.00 429.03 

8i02 Ca2+ Mg2+ Na+ 
12.80 57.31 11.04 249.00 

8.50 61.56 9.53 310.00 
18.75 83.37 12.74 284.00 

K+ 
8.20 

12.45 
10.65 
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Figure 4. Results ofmixing model represented in compositional plane PI P2 P3. 

Finally, characteristic composition for the calcic and sulphated 
waters of the surface appearing on the top of Figure 4 and represented 
by factor 3, can be described given two representative sampIes such as 
Table 8: 

Table 8. Characteristic samples for surface aquifer 

BA18 
BA03 

He 
0.21 
1.13 

F- HC03 804 
.24 293.00 1400.0 
.02 269.22 1190.0 

CI-
8.50 

27.66 

8i02 Ca2+ 
1.00 535.00 

12.20 419.08 

Mg2+ 
60.00 
22.47 

Na+ 
7.50 
9.20 

K+ 
10.00 

4.60 

The composition of the sampIes located on Figure 4 between the 
mentioned hydrogeochemical end-members and constituting the ob
served trends can be explained given the mixing model as a blending of 
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the three poles according to the proportions described by the factor 
loadings. For example, the composition of each one of the sampIes is 
reconstructed as the mixing of the three poles according to the loadings 
ofTable 9. 

Table 9. Loadings for five first sampIes ofCorbigny data set 

BA01 .9749 -.0574 .0825 
BA02 .6003 -.1154 .5151 
BA03 -.0624 -.3063 1.3707 
BA04 .7176 -.1165 .3992 
BA05 .7223 .1271 .1507 
etc ... 

Residuals can be computed for the mixing model and represent the 
unexplained part ofthe geochemical signal for the major constituents. 
For example Table 10 shows the residuals for the five first sampIes ofthe 
data set: 

Table 10. Residuals of mixing model for major constituents 

BA01 1.54 -.44 3.34 -2.59 -1.30 -1.59 -1.50 - .73 .19 3.09 
BA02 .09 -.30 5.10 -5.67 2.12 -1.01 .04 .25 -.60 -.02 
BA03 .23 .17 -2.39 3.60 .32 1.20 .90 -3.28 -.07 -.71 
BA04 .94 -.27 2.79 -3.80 1.84 -1.22 1.41 -.61 -.59 -.28 
BA05 -.43 .34 -.52 2.85 -1.35 -1.00 - .43 .07 .49 -.03 

SampIes presenting high values, and not located within the geo
chemical sequences or within the pole themselves, should be rejected as 
outliers when the cross-checlcing with the results obtained from the 
clustering is positive. They are studied apart and the trace thresholds 
are defined specifically for these particular populations (they present no 
interesting features for this Corbigny case study). For the general 
population, the framework involved in studying the trace compositions 
is twofold: files are sorted according to the clustering achieved for the 
major constituents and the subpopulations trace contents are character
ized. Then significant traces which can be used as uranium tracers (Le. 
such as direct tracers like Rn or He or indirect ones as F - (mineralization 
is associated to fluorine in the Corbigny area» and showing significant 
correlation with the mixing model developed for the major constituents 
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are regressed (i.e. factors are used as regressorvariables) to compute the 
geochemical background. 

Then residuals are substituted to the observed values when pos
sible, and a classification for the "trace signal" can be achieved highlight
ing sensitive areas representingvaluable prospects. Finally according to 
the hydrodynamic scheme and depending upon the hydrogeochemical 
context (i.e. equilibrium conditions according to pH and Eh diagrams) it 
is possible to provide for a global conceptual interpretation of the 
observed phenomenons. Let us describe briefly results obtained for the 
Corbigny area following that framework. 

The selective study ofthe trace content for the geochemical classes 
computed for the major components and illustrated by Table 1 shows 
that surface waters (i.e. classes 1 and 3) present no particular anomaly 
of the trace signal except that their content seems to be diluted. Base
ment groundwaters (i.e. classes 5, 6, and 7) correspond to measurements 
made in the southern part ofthe studied area where they can percolate 
through the upper layers and show high values ofthe He and F - content. 
An intermediate composition represented by class 4, corresponding to 
the mixing ofthe silicified aquifer with the basement groundwaters (in 
a location where the piezometry begins to allow it) shows the most 
interesting multiple anomalies both for Rn and for the U dry residue, and 
sampies AU25, AU26, AU38, BA06, AUI7, CR05 grouping geographi
cally together already seem to be most interesting. 

Keeping in mind the general properties of the three main aquifers 
for the trace content, it now is possible to try to explain the trace values 
thanks to the former mixing model developed for the major components. 
Of course a preliminary check is to verify that a close correlation exists 
between the traces and the factor scores. Table 11 provides a summary 
ofthe correlations computed: 

Table 11. Correlation matrix for traces and factor scores (mixing model 
formajorcomponents)- U-wstandsforUraniumcontentin waterand U
dr for Uranium dry residue 

Rn He U-w U-dc F- Fl F2 F3 
Rn 1.00 -.17 .30 .58 .31 .13 -.03 -.23 
He 1.00 -.09 -.14 .43 -.37 .91 -.26 
U-w 1.00 .54 .08 -.04 -.25 .41 
U-dr 1.00 .34 .00 -.03 -.19 
F- 1.00 -.18 .54 -.40 
Fl 1.00 -.16 -.36 
F2 1.00 -.63 
F3 1.00 
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Three trace elements can be supposed to obey the mixing model 
developed for the major components, that is He, U (water content), and 
F-. For these elements, we are going to compute regressions and residu
als representing finally significant anomalies not accounted for by the 
mixing model. The first regression analysis computed accounts for the 
He content. The following coefficients of regression have been obtained 
for the least-square solution under constraints (Table 12): 

Table 12. Coefficients computed for regression ofHe taking factor scores 
as regressors 

Name Coef Sigma t Student Coefficient Sigma (norm.) 
F1 .641 .812 .789 .0150 .0190 
F2 29.799 .545 54.669 1.0994 .0201 
F3 6.303 .252 24.880 .5239 .0210 

Contribution ofthe various factors seems to be as a confirmation of 
the hydrogeochemical hypothesis made concerning the He origin (refer 
to the characterization ofthe trace content of classes 5, 6, and 7). Factor 
2, corresponding to the basement groundwater proportion shows the 
higher contribution (refer to coefficient values) thus proving the base
ment origin ofthis element, representing a valuable indicator ofthe U 
rock conte nt (only in the southern part of the area). A straightforward 
evaluation ofthe goodness-of-fit ofthe regression model can be displayed 
graphically, taking as an abscissa the trace values and representing on 
the other axe the estimated values. The straightline displayed in Figure 
5 is then an indicator of the correctness of the model. 

The graph shows that the hypothesis of the basement origin of the 
He content is satisfactory. It then is possible to substitute for the 
measured values ofHe the residuals computed by that regression model, 
keeping only the unexplained part of the geochemical signal. Regres
sions made for U and F - did not seem to be satisfactory and these 
elements do not conform to the mixing model developed for the major 
constituents. Therefore, trace classes are computed given Rn, U (water 
content), U (dry residue), F-, and regression residuals for He represent
ing the regionalized anomaly for that element. Results for such a model 
are displayed in Table 13. 

This analysis shows two diluted water classes corresponding to the 
silicified aquifer (classes 1 and 2), a dass showing adepleted content of 



COMPUTER-AIDED DECISION TECHNIQUES 63 

1 .... our=m:I.32903. hauleur-I63.862IlII. namre de polm ... 41. echoU. : 1"",12.1111iC11 _.....:1.1\1. 1 11,,-.1111 
+~ .. _- ..... _---- .. _.-._--_ .. __ .. - .. _----_.--_. __ . __ ._-·._.0._ .. _____________ ... ________ .. _______________ ... _. ________ s ___ ... 
I 1 
I 1 
I 1 
I 1 
1 " 1 
I " 1 
I 1 
I " 1 
I "I 
: 1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
! 

• I 

ID"I n 
DII 

" 

• • 

z.- - .. _____ 0_.. . ... __ ._ •. _ .... _ .. _ •• _. ____ .. __ ._._ ... ___ .. _._._. ___ ._." •.. __ . ___ • ___ •• __ .... 
• 1 11--------_·_-___ . ___ ... __ ... _______ . _____ .. _. _____ . _______ . _______ ._. _____________________ ._. __ . _______ . _______________ ...... 

Figure 5. Estirnated He values as function of observed value. 

Table 13. Cluster analysis for trace content and He residuals 

Var Pop Class1 Class2 Class3 Class4 Class5 Class6 Class7 
(41) (6) (17) (1) (5) (5) (4) (3) 

Rn 22.9 31.2 11.8 22.0 11.4 7.8 37.9 93.2 
U-w 2.5 1.8 1.5 4.8 4.4 1.5 4.2 4.7 
U-dr 4.6 1.7 2.9 7.5 2.5 2.7 15.1 12.4 
F- 2.2 1.1 1.8 3.5 1.6 3.3 2.8 4.5 
He-res -15.4 -14.6 -15.4 55.0 -56.5 14.5 -20.7 -15.3 

He and a slight positive anomaly of U (water-content), two classes 
enriched in He (classes 3 and 5) and corresponding to sampIes located in 
the south part of the studied area characterized by the basement 
groundwater composition, and two classes depleted in He (classes 6 and 
7) but showing relevant multielement significant anomalies enriched in 
Rn, U (water content), U (dry residue), and F-, located in the middle part 
of the area, at the north of Tamnay-en-Bazois (Fig. 2). 

Let us consider now the drawbacks arising from this case study. 
First of all let us remember that the silicified aquifer considered in great 
detail in this study (the sampling available for this layer was more 
comprehensive than for any other aquifer) can provide valuable informa
tion about the rock content (this is the final objective of this indirect 
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prospecting of blind orebodies) only in the southern part of the area, 
where the basement groundwaters can percolate through the upper 
layers due to the hydraulic charge. According to this observation, 
indirect prospecting of the basement should be possible only there, but 
one should notice that the mixing model developed shows that some 
mixing ofunits 1 and 2 also occurs in the central area, to the immediate 
North ofTamnay-en-Bazois. The interpretative framework is that two 
main anomalies have been recognized: the first one corresponds to high 
values for all traces studied (Rn, U-wc, U-dr, F-) and depleted values for 
He (residual), occurring in the central area of the zone studied, to the 
immediate North of Tamnay-en-Bazois, just where the mixing model 
shows slight pollution ofthe silicified aquifer by the basement ground
waters, and the second anomaly corresponds to high contributions ofthe 
basement aquifer in the extreme south part of the area (He enriched 
anomaly), where the global concentrations mainly are the result ofthe 
basement groundwaters signature. The conceptual interpretation of 
such distribution of the anomalies outlined is that a target has been 
recognized at the immediate North of Tamnay-en-Bazois and that the 
basement groundwaters, leaching this anomaly, flow towards the south 
according the general piezometric surface with a high He enriched 
content, and finally percolate through the surface aquifers, mainly 
polluting the silicified layer. This assumption relies on rock geochemis
try, which led to the discovery of a blind orebody oflimited extent (it is 
not a paying ore under the current economic conditions), emphasizing 
the sensitivity ofthe methods presented in this paper. 

CONCLUSIONS 

This work and the approach presented here to process the 
hydrogeochemical data gathered in the context of blind uranium 
exploration were inspired by Tukey's well-known book on Exploratory 
Data Analysis, where the author emphasized the importance of the 
following four facets: 

- Graphical displays to reveal the structure of the data; 

- Transformation and reexpression ofthe data using ad-hoc functions 
such as logarithmic or power transformations to simplify the data 
response and behavior; 
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- Robust (i.e. in the sense of statistical resistance) analysis methods 
ensuring that remaining outliers should not unduly distort a whole 
modeling attempt; 

- Residual-based decisions, focusing the exploration geochemist 
attention on the unexplained remaining part of the geochemical 
signal accounted for by the models. 

The root of this work is founded in such an approach, but was 
tailored for principles of operational practice in the specific domain of 
hydrogeochemical exploration oftrace elements basedon indirect ground
water-based methodology (thanks to sampling drillholes), and of course 
a complete framework was developed to gather, process, integrate, and 
represent geochemical data emphasizing some of the key-points of 
Tukey's approach (Tukey, 1977), developing new techniques, giving 
original interpretations to well-known ones, moreover providing a 
complete methodology tested on real-world programs. But the problem 
outlined in this paper is a difficult one as the data gathered represent an 
indirect appraisal of the rock content and as the values measured 
correspond to an overall bulk with no indication of the origin of its 
chemical content. Subdividing the samplings into various packages 
thanks to clustering techniques, and cross-checking the results using 
factor analysis lead to homogeneous composition poles corresponding to 
hydrogeological units mixing according to the hydrodynamic conditions 
prevailing in the area. These compositional end-members can be con
firmed easily using factor analysis, and moreover a mixing model can be 
proposed to assess for each sam pie the mixing proportions of the main 
elementary compositional units contributing to the global measurement. 
Once this mixing model can be considered as satisfactory to explain the 
water content ofthe major constituents, factor scores can be reused as 
regressor variables to build a linear model accounting for the content of 
trace elements. Thus, mathematical techniques provide a powerful tool 
to understand what goes on in the data set, providing a reliable way to 
distribute sampies within homogeneous subsets for which valuable 
modeling can be proposed, focusing attention on model residuals gener
ally corresponding to an unexplained part of the geochemical signal. 
Considering trace elements properly accounted for by the regression 
analysis, residuals can be computed and used to characterize the re
gional anomaly much more significantly than the selection ofunrelevant 
outliers correctly explained by the model. Of course, multielement 
anomalies as observed in this Corbigny survey should be considered as 
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highly significant and should be later included in the databank after 
adequate mapping has been realized to achieve the data integration 
phase. Considering this didactic study, there was no need to carry out a 
time consumingintegration process; nevertheless the complete method
ology as presented has been extensively used to handle difficult situ
ations requiring the assessment and validation ofmetallogenic scenarios 
involving extremely diversified data. In the current example, thanks to 
the aforementioned results and taking into account the hydrodynamic 
conditions ofthe area studied, an easy confirmation ofthe ore body was 
given revealing the sensitivity of such indirect groundwater-based 
prospecting techniques. 
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ESTIMATING THE PROBABILITY OF 
OCCURRENCE OF MINERAL DEPOSITS 

FROM MULTIPLE MAP PATTERNS 

Frederik P. Agterberg 
Geological Survey of Canada, Ottawa, Ontario, Canada 

ABSTRACT 

By superimposing binary or other types of discrete map patterns on 
top of one another, a study area can be divided into many small map 
elements. In this paper, the probability of occurrence of mineral deposits 
is modeled as a function of the characteristics of such map elements. The 
two methods discussed for estimating this probability are weights of 
evidence modeling and logistic regression. Special consideration is given 
to the effects of selection of study area and map elements for a deposit 
type, intensity of exploration and spatial autocorrelation effects. 

INTRODUCTION 

Geoscience map patterns are used for decision-making in mineral 
exploration. Various prognostic indicators based on these patterns serve 
to predict future supplies from a region, or to rank target areas in order 
of priority before development consisting of more detailed surveys and 
drilling. Microcomputers equipped with geographicinformation systems 
are helpful for computation and display of prognostic indicators which 
generally are logical combinations of features known to be associated 
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with mineral deposits. Prognostic indicators can be expressed in terms 
ofprobabilities which are numbers between zero and one which obey the 
rules of probability calculus. In the statistical estimation of these 
probabilities, several factors must be considered: 1) Mineral deposits 
generated by different processes have different indicator variables 
which must be defined separately; 2) it is necessary to distinguish 
between probability of discovery and probability of existence; and, 3) 
although the map patterns are two-dimensional, it should be kept in 
mind that they are projections of three-dimensional objects which were 
formed over different periods of geological time. 

Methods ofmultivariate analysis and expert systems already were 
used during the 1970s and early 1980s for estimatingprobabili ties. Early 
prognostic maps (see e.g., Agterberg, 1984, with discussion by Tukey, 
1984) were cell-based in that they displayed values estimated from 
variables quantified for cells belonging to grids superimposed on the map 
patterns. With the recent advent of geographie information systems, it 
has become practical to use, on microcomputers, numerous small, irregu
larly shapedhomogeneous map elements which are separated by natural 
boundaries instead ofby grid-lines. Such small map elements are used 
in weights of evidence modeling (Agterberg, Bonham-Carter, Wright, 
1990; Bonham-Carter andAgterberg, 1990; Bonham-Carter, Agterberg, 
and Wright, 1990). Earlier methods (e.g., logistic regression analysis) 
also can be modified to compute probabilities for small map elements. 

The similarity between problem-solving in mineral resource ap
praisal and logical reasoning in medical expert systems (Spiegelhalter, 
1986; Lauritzen and Spiegelhalter, 1988) was discussed in Agterberg 
(1989a). Spatial analysis presents an additional requirement in mineral 
resource appraisal. This paper is organized as folIows. The procedure for 
estimating the probability of occurrence of mineral deposits used in 
weights of evidence modeling is outlined first. This is followed by a 
detail~d discussion ofthe methods required to handle spatial aspects and 
to use map elements instead of grid-cells. 

BASIC RULES OF PROBABILITY CALCULUS 

Before the advent of expert systems in the 1970s, there were two 
main methods for working with uncertainty: frequentist and Bayesian. 
In the frequentist approach, scientific measurements are modeled by 
using random variables, and the entire approach is underlain by the 
logically coherent framework of probability calculus. The Bayesians 
allow unmeasured, "subjective" prior probabilities as initial guesses 
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which are modified on the basis of new evidence by using methods of 
mathematical statistics. The approach followed in this paperis "frequen
tist" in that the initial probabilities are measured and interpreted as the 
outcomes of stochastic experiments. Subjectivity is assumed to be re
stricted to definition ofmineral deposits, indicator variables and study 
area. 

The scientists who developed the first expert systems worked with 
subjective prior probabilities. Contrary to the Bayesians, they feIt that 
the methods of mathematical statistics were too restrictive for the 
propagation ofthese probabilities. For this reason, systems ofheuristic 
rules were developed. The two main systems at present are "fuzzy logic" 
(Zadeh, 1983; Duda, Gaschnig, and Hart, 1979) and Dempster-Schafer 
evidential reasoning (Schaf er, 1987; Garvey, 1987; Chung and Moon, 
1990). For a discussion of these systems and the use of probabili ty theory, 
also see Kiiveri (1990). 

The rules ofheuristic systems can be regarded as approximations to 
the rules ofprobabili ty calculus. For example, one rule of"fuzzy logic" (cf. 
Duda, Gaschnig, and Hart, 1979) is as folIows. Ifn events all have a given 
probability of occurring, the probability that they will occur simultane
ouslyis set equal to the smallest ofthe n probabilities. This rule generally 
gives better results than using the product of the probabilities of the n 
events. In evidential reasoning, different types ofindependent evidence 
in support of the same hypothesis are weighted relatively strongly, 
because the possibility ofthe hypothesis holding true may be ruled out 
if the supporting evidence is not logically consistent. Drawbacks of 
adopting a system with rules that are approximations to the rules of 
probability theory are: (1) approximations may be applied even when 
they are unnecessary (cf. Spiegelhalter, 1986); and (2) it is not possible 
to use methods of statistical inference to test the validity of heuristic 
rules. The basic rules for probabilities can be summarized as folIows. 

Suppose that p(D I B) represents the conditional probability that 
event D occurs given event B (e.g., mineral deposit D occurs in a small 
unit cell underlain by rock type B). This conditional probability obeys 
three basic rules (cf. Lindley, 1987, p. 18): 

(1) Convexity: 0 S p(D IB) S 1 (D occurs with certainty if B logically 
impliesD; thenp(D IB) = 1, andp(Dc IB) = 0 whereDcrepresents the 
complement of D); 

(2) Addition: p(BuC ID) = p(B ID) + p(C ID) - p(BnC ID); and 

(3) Multiplication: p(BnC ID) = p(B ID) . p(C I BnD). 
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These three basic rules lead to many other rules. For example, 
replacement of B by BrJJ in the multiplication rule gives: 

or 

p(BnCrJJ) = p(BrJJ) . p(C IBrJJ) 

Likewise, it is readily derived that: 

p(BnCrJJ) = p(C IBrJJ) . p(B ID) . p(D) 

This leads to Bayes' theorem in odds form: 

p(D I BnC) = p(B I CrJJ) p(D I C) 

p(Dc I BnC) p(B I CrJJc) p(DC I c) 

O(D IBnC) = exp(WBnC)' O(D IC) 

where 0 = pl(l- p) are the odds corresponding to p = 0/(1 +0), and WBnC 

is the "weight of evidence" for occurrence of the event D given B and C. 
Suppose that the prob ability p refers to occurrence of a mineral deposit 
D within a sm all area on the map (unit cell). Suppose further that B 
represents a binary indicator pattern, and that Cis the study area wi thin 
which D and B have been determined. Theoretically, Cis selected from 
an infinitely large universe (parent population) with constant probabili
ties for the relationship between D and B. In most applications only one 
study area is selected per problem and C can be deleted from the 
preceding expression. Then Bayes' theorem can be written in the form: 

In O(DjB) = WB + + In O(D); In O(DjBc) = WB - + In O(D) 

for presence and absence of B, respectively. If the area of the unit cell 
underlain by Bis small in comparison with the total area of B, the odds 
o are approximately equal to the probability p. 

As an example ofthis type of application ofBayes' theorem, suppose 
that a study area C, which is a million times as large as the unit cell, 
contains 100 deposits; 10 percent of Cis underlain by rock type B, which 
contains 30 deposits. The prior probability p(D) then is equal to 0.0001; 
the posterior prob ability for a unit cell on B is equal to 0.0003. The 
weights of evidence are WB + = 1.10 and WB - = -0.25, respectively. 
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WEIGHTS OF EVIDENCE MODELING 

The preceding formulation of Bayes' theorem can be used to esti
mate weights WK (K =A, B, C, ... ) for different geoscience featuresA, B, 
C, ... In weights of evidence modeling, it is attempted to use features 
which are conditionally independent of the point pattern of mineral 
deposits (D). In the situation of three map patterns, the probabilities 
satisfy: 

p(AnBnCrD) = p(A I BnCrD) . p(B I CrD) . p(C ID) . p(D) 

Ifthe map patterns are binary, any symbol for presence of a feature 
(e.g., A) can be replaced by its complement (e.g., Ac) indicating absence. 
In total, there are 16 probabilities which add to one. This system, 
therefore, has 15 degrees offreedom. It is noted that the order ofthe map 
patterns and the pattern of deposits can be interchanged in the preceding 
equation. It is convenient to keep D in the last position. If there are more 
than two states for some ofthe patterns, or ifthere are more than four 
patterns, the number of degrees of freedom is considerably larger than 
15. In general, it is not possible to estimate all probabilities in the system 
directly from the patterns unless the number of deposits is very large. In 
a larger system, it is likely that many of the estimated probabilities 
would become zero and that the others would have large variances. In 
weights of evidence modeling, the preceding equation would be approxi
mated by: 

p(AnBnCrlJ) = p(A ID) . p(B ID) . p(C ID) . p(D) 

The number of degrees of freedom then is reduced to six, and all 16 
probabilities can be calculated from six weights of evidence, for presence 
and absence of each of the three binary patterns, respectively. For 
example, if Ais absent and Band C are present: 

Each pair of weights (W+, W-) for presence or absence of a binary 
pattern is estimated from all mineral deposits in the study region. 
Consequently, the weights and the posterior probabilities are relatively 
precise. However, bias is introduced if the assumption of conditional 
independence is not satisfied. After estimation of all posterior probabili-
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ties by means of the weights of evidence method, it is possible to apply a 
chi-square or a Kolmogorov-Smirnov test for comparison of observed and 
expected frequencies of deposits by using the map of the posterior 
probabilities. A second type of significance test consists of eval uating the 
hypothesis of conditional independence (and other models) on all pos
sible combinations oftwo or three map patterns (see next section for more 
detailed discussion). 

The hypothetical example graphically represented in Figure 1 can 
be used to illustrate the strategy followed in weights ofevidence model
ing. In addition to D, there are nine map patterns in this example. The 
connecting lines in the graph represent relationships between patterns 
that are statistically significant. With the exception of E, all map 
patterns are related to D. The following equation expresses these 
relationships: 

p(ArlBr. ... rJ) = p(A IBflD) . p(B ID) . p(CIDr.E). p(D). p(FID) 
xp(GIDrJInlrJ). p(HIDnlrJ). p(lIDrJ). p(JID) 

Figure 1. Hypothetical example of weights of evidence modeling. Mineral-deposit 
pattern D in center is related to nine map patternsA, B, ... , J. Relations between 
patterns are shown as solid lines. In weights of evidence modeling, posterior 
probabilities should be computed from weights for patterns that are conditionally 
independent of D. In order to achieve this, pattern E can be omitted because it is 
related only indirectly toD, and clusters ofinterrelated patterns CA. B and G, H, I, J) 
can be replaced by new patterns P AB and P GHIJ. 
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As it stands, only map pattern Fis conditionally independent of the 
otherpatterns. ThemappatternsG,H,I, andJaremutuallyinterrelated 
in addition to being related to D. For example, they could represent a 
group of chemical elements that are all related to mineralization. In a 
situation of this type, addition of weights in the modeling is likely to 
create significant bias. In order to avoid this, one, for example, might 
perform first logistic regression analysis to replace the four patterns by 
a single probability index P GHIJ' Then only two instead of eight separate 
weights would be estimated and the four patterns would not reinforce 
one another. 

Ifthe map patterns A and B would be conditionally independent of 
D,p(A IBN) simply would be replaced by p(A IB). This substitution is 
not allowed, because A and Bare related in the example. They could be 
combined into a single pattern according to one ofthe following two rules: 
P AB = p(Ar\B I D) if the measured joint probability for presence of the 
three events exceeds the value estimated by assuming conditional inde
pendence; or P AB = p(AuB) ifit is less. After deleting E because it does not 
contribute directly information towards D, the preceding equation for 
weights of evidence modeling becomes: 

p(ArJJr'I ... rJ) = PAB • p(C ID) . p(FID) . P GHIJ 

The four remaining patterns could again be tested for approximate 
conditional independence before application. This type of test will be 
discussed briefly in the next section. 

TESTING THE STRENGTH OF RELATIONSHIPS 
BETWEEN MAP PATTERNS 

Methods of discrete multivariate analysis (see e.g. Bishop, Fien
berg, and Holland, 1975) can be used for testing the assumption of 
conditional independence. Six models proposed in Agterberg (1990) are 
illustrated schematically in Figure 2. Models 1 to 4 are for two map layers 
(B and C) in addition to the point pattern of deposits (D), and models 5 
and 6 are for three map layers (A, Band C) in addition toD. 

Models 1 and 6 test for conditional independence by assuming that 
the relationships between the map layers are not significant statisti
cally. IfModel2 is acceptable, C can be deleted because it independent 
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Figure 2. Six models (1 to 6) for testing strength ofrelationships between point 
pattern ofmineral deposits (D) and sets oftwo or three map layers (A, B, and C). Solid 
lines are for statistically significant relations between patterns, and broken lines for 
relations that are not significant. See text for further explanation. 

of Band D. Model 3 assumes that both Band C are independent of D. The 
usefulness of models 2 and 3 is limited because it is unlikely that map 
patterns that are not related to mineralization would be considered in 
practice. In model 4, B is related directly to D whereas C is related 
indirectly to D. In practice, this indicates that C should be used only if the 
information on B is missing. If B is known, Cis redundant. Any results 
obtained from models 5 and 6 should corroborate those of modell. In 
larger systems where all possible combinations ofthree map patterns are 
tested, models 5 and 6 are helpful in outlining groups of map patterns 
that are mutually interrelated such as G, H, I, and J in Figure 1. 

The models ofFigure 2 can be evaluated for goodness-of-fit by two 
types of chi-square test (see Bishop, Fienberg, and Holland, 1975). A 
model should not be used ifthe estimated chi-square value is too large 
provided that the spatial autocorrelation effects discussed at the end of 
this section are considered. Differences between successive models also 
can be tested by a chi-square test (steps from modell to 2, from 2 to 3, 
and from 5 to 6). The partial test for the step from model 5 to 6 is helpful 
in determining the extent to which the assumption of conditional 
independence is violated for specific pairs of map patterns. Contrary to 
models 1, 3, and 6, models 2, 4, and 5 yield different results when Band 
C are interchanged. This provides information on which one of a pair of 
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map patterns is irrelevant (model 2), redundant (model 4), or condition
ally independent with respect to a pair of other map patterns (model 5). 

The chi-square tests for goodness-of-fit ofthe six models should be 
applied with caution. The test statistics are distributed asymptotically 
as chi-square with degrees of freedom determined by relationships 
between variables if the observations can be regarded as independent 
random trials. If the variables are map patterns, there are significant 
spatial autocorrelation effects which become large if the unit cell is 
decreased in size. Each test statistic can be divided into two parts, for 
comparing frequencies ofunit cells with and without deposits, respec
tively. Only the first part (for unit cells with deposits) is independent of 
unit cell size and distributed as chi -square with one-half as many degrees 
of freedom as when all frequencies are used. Although they are not 
distributed approximately as chi-square, test statistics based on all 
frequencies (unit cells with and without deposits) remain useful for 
comparison with one another. 

Problems of estimating the probability of occurrence of mineral 
deposits from multiple map patterns will be discussed by using the 
artificial examples ofFigures 3 to 5. 

WEIGHTS OF EVIDENCE; INTENSITY OF 
EXPLORATION; SPATIAL ANALYSIS 

The effect ofintensity of exploration is shown in Figure 3A-C where 
the study area is underlain by three rock types (A, B, and C). Part ofthe 
study area is not exposed because of a lake. Clearly, the number of 
discovered deposits increases in the course of time as a nondecreasing 
function of cumulative amount of exploration. Weights of evidence can be 
estimated only with relative precision if a sufficientJy large number of 
deposits have been discovered. If ne represents number of deposits 
underlain by map pattern C, then the variance ofthe weight for presence 
of C approximately satisfies S2(We +) = lIne (cf. Agterberg, Bonham
Carter, and Wright, 1990). Suppose that nT represents total number of 
deposits in the test area (T); and that Me and MT are the areas of C and 
T, respectively. The unit cell area can be assumed to be small in 
comparison with Me so that ne is negligibly small in comparison with the 
total number ofunit cells underlain by C. Then the weight of evidence for 
presence of C satisfies: 
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Figure 3. Artificial examples to illustrate effect ofintensity of exploration (3A, B, C), 
spatial analysis (3D, E, F) and combining map patterns (3G, H, I). Prior probability is 
proportional to number ofknown deposits (*) in study area and increases as 
nondecreasing function of cumulative exploration; weights of evidence cannot be 
estimated if there are no known deposits as in 3A and for rock type A in 3B, 3C; on 
average, weights of evidence are independent ofintensity of exploration; posterior 
probabilities for rock types Band C are proportional to number ofknown deposits per 
rock type in 3B, 3C. Deposits and lineaments in 3D were dilated by using circle in 3E 
and 3F, respectively. Totallength oflineament segments within dilated pattern of 3E 
is related to number of deposits on corridors of 3F (see text for equation). Initially, 
prior probability is same for 3G and 3H; when two patterns are combined in weights 
of evidence modeling, posterior probability for an area of overlap 3F is obtained by 
applying weight of evidence of one pattern 3G or 3H to new prior probability that is 
set equal to posterior probability of other pattern 3H or 3G. 

This is the likelihood ratio by which the prior odds O(D) = n./MT 

should be multiplied in order to obtain the posterior odds O(D I C) for 
occurrence of a deposit in a unit cell. Because unit cell size is very small, 
the posterior probability is equal approximately to these odds, or p(D I C) 
= ne/Me. This first example illustrates the following three points: 

(1) The weight of evidence for a map pattern depends on the ratio 
between frequencies of deposits on the map pattern and within the 
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total study area, respectively. If the intensity of exploration can be 
regarded as constant across the test area, this frequency ratio is 
constant and the estimate ofthe weight of evidence is unbiased and, 
on the average, independent of the intensity of exploration. If the 
intensity of exploration increases, the variance of the estimated 
weight of evidence decreases. 

(2) The posterior probability for a unit cell on a map pattern is equal to 
the expected value of the random variable that can be defined for 
frequency of deposits per unit cell. This random variable, for ex
ample, would have a Poisson distribution ifthe deposits are distrib
uted randomly across the map pattern. 

(3) In general, the selection of study area may be arbitrary. For example, 
MT would be changed ifthe lake in Figure 3A were to be excluded from 
T. Obviously, all measurements performed on a pattern are changed 
when the boundaries ofthe study area are moved. However, deposit 
density and weight of evidence for a map pattern are not biased by 
selection of study area, provided that the statistical relationship 
between the deposits and the map patterns does not change within 
the larger universe (parent population) from which the study area is 
selected. 

The second example (Figure 3D-F) illustrates the spatial statistical 
analysis of map patterns (for deposit points D and lineaments L in this 
example) which is a field of research where considerable progress has 
been made during the past 10 years (cf. Berman and Diggle, 1989). Map 
patterns are regarded as sets.(A set consisting ofline segments or plane 
figures contains an infinitely large number of points.) By using a 
geographie information system, measurements on dilated map patterns 
can be performed quickly. In dilation a map pattern is enlarged by 
superimposing a circle or other plane figure on all its points and 
including all additional points in the dilated pattern. For example, 
Figure 3E shows parts oflineaments contained in circles (with radius r) 
around the deposits; Figure 3F shows corridors which contain all points 
within a distance r from the lineaments. Ifthe circle used for dilation is 
written as Br , the dilated patterns can be written as DffiBr (Fig. 3E) and 
LffiBr (Fig. 3F), respectively. 

Suppose that the combined length ofthe line segments in Figure 3E 
is written as C1(r) = (D9B)r\L; and the number of deposit points on the 
corridors ofFigure 3F as C2(r) = (L9Br)rJJ. Two intensity measures, for 
average length ofline and average number of deposit points per unit cell, 
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can be denoted as PI = MJMT and 802 = n.jMT • Then (cf., Stoyan and 
Stoyan, 1982), the spatial covariances Cl and C2 are related by the 
equation PI' C2(r) = 80 2 ' C1(r). In general, Pi' C.(r) = P j ' q(r)(with i;t:j; 
ij = 1,2 or 3), because B r also can be applied for dilation of areal patterns. 
Equations of this type are useful potentially because one type of spatial 
covariance Ci (i = 1, 2, or 3) can be computed from another. Stoyan and 
Stoyan (1982) have derived various measures of spatial influence of one 
pattern upon another from Ci (also see Stoyan and Ohser, 1982). 

Corridors around linear features can be useful indicator patterns for 
mineral deposits. In Agterberg, Bonham-Carter, and Wright (1990), the 
following method was used to decide on the optimum width of the 
corridors. Weights W+ and W- are determined for increasing r; the 
contrast C = W+ - W- is calculated for each successive corridor patterns; 
and the pattern with the largest value of C is selected. The contrast 
provides a measure of spatial correlation between an areal pattern and 
a point pattern. Its expected value is zero when the points are distributed 
randomly across the study area. 

Figures 3G-I illustrate how two binary patterns are combined with 
one another in weights of evidence modeling. Suppose that the two 
patterns are termed Band C. In the area of overlap (see Fig. 31), the prior 
probability is multiplied by exp(WB + + Wc +). The two patterns reinforce 
one another as follows. If Bis known to be present, the prior prob ability 
is changed from n.jMT to niMB' before it is multiplied by the likelihood 
ratio for C which is equal to exp(Wc+) if C also is present. Likewise, 
presence of C changes the prior prob ability for B. 

THREE-DIMENSIONAL MODELING; LACK OF 
CONDITIONAL INDEPENDENCE; CLUSTERING 

A potentially useful three-dimensional extension of two-dimen
sional dilation is shown in Figures 4A-C. Suppose that the pattern in 
Figure 4A is for two intrusive rock bodies with contacts that dip steeply 
to the north (= toward top of diagram) and gently to the south. Ordinary 
dilation leads to the pattern ofFigure 4B but three-dimensional dilation 
perpendicular to the contacts would yield a different, probably more 
realistic pattern as illustrated in Figure 4C. The three-dimensional 
aspects of relations between mineral deposits and rock types become 
relatively more important when the scale of the geoscience map is 
increased. 

Figures 4E-F show two possible violations of the assumption of 
conditional independence which is assumed to be satisfied in Figure 4D. 
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Figure 4. Artificial examples to illustrate three-dimensional effect of depth to contact 
ofintrusive rock (4A, B, C), lack of conditional independence (4D, E, F) and clustering 
(4G, H, 1). Amount of dilation is assumed to depend on strike and dip of contact in 4C. 
Deposits are restricted to rock type C which is contained within B in 4E; Band C are 
without overlap in 4F. This suggests that it may be possible to delete B from 4E, and 
combine Band C into single pattern in 4F. Clusters ofmineral deposits without and 
with additional information are shown in 4G and 4H; deposits cluster around contact 
ofrock type B in 41. See text for further explanations. 

Posterior probabilities for unit cells within the area of overlap ofthe two 
map patterns predicted by using the assumption of conditional inde
pendence are less and greater than those observed in Figures 4E and 4F, 
respectively. A possible strategy for avoiding biased posterior probabili
ties (also see previous discussion ofFig. l) then is to combine Band C into 
a single new map pattern using BnC (for Fig. 4E) and BuC (for Figure 
4F), respectively. 

Problems of clustering of mineral deposits without and with addi
tional information are graphically illustrated in Figures 4G-1. The 
probability that a cell Q (similar the squares in Fig. 4G) placed at random 
on the study area T contains one or more deposits can be measured by 
dila ting the deposi ts D by Q. If M denotes area, this probabili ty is equal 
to the ratio M(DaJQ)IM(T). Suppose that the occurrence of Dis restricted 
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to a smaller area where a known indicator variable is present (see Fig. 
4H). Then the number of deposits per cell Q is a discrete random variable 
controlled by relative area of the indicator variable in the cello For 
example, ifthis relative area is a continuous random variable with the 
gamma distribution, then the number of deposits per cell satisfies a 
negative binomial distribution (cf. Agterberg, 1984). 

In Figure 41, the deposits are spatially related to the contact ofrock 
type B. In order to characterize this type of situation, Agterberg and 
Fabbri (1978) measured the ratio M{Bn(D9Q)}/M(Da3Q) and regarded it 
as an estimate ofthe mean ofthe random variable Y for the relative area 
of B in a cell Q with a deposit at its center. The random variable Y was 
related to random variable X = M{Bn(Pa3Q)}lM(Pa3Q) where P repre
sents a point with random location within the study area. This resulted 
in an estimate of the relative area of B in cells most likely to contain a 
deposit. In the situation of Figure 41, this optimum proportion value 
would be slightly less than 50 per cent because the deposits occur outside 
the curved contact of B. 

CONTOUR MAPS; GRIDDING; MAP ELEMENTS AND 
MAP ELEMENT TYPES 

Figure 5A is an example of a contour map on which the mineral 
deposits are associated with the anomaly with the highest values. In this 
situation, the contour map can be changed into a binary map with 
separate weights of evidence for presence and absence of the highest 
values. The threshold value (= 4.0 in Fig. 5A) can be optimized by 
estimating the contrast C = W+ - W- for successive contour values and 
selecting the contour with the largest contrast. This procedure cannot be 
followed in the situation of the contour map of Figure 5B which can be 
changed into a binary map by taking two threshold values. Figure 5C 
shows the combination ofthe binary pattern ofFigure 5B with another 
binary pattern. A general method for estimating a variable weight 
function W+(x) which depends on contour value x has been proposed in 
Agterberg and Bonham-Carter (1990). 

The problem of loss of precision when variables are quantified by 
using grid cells is illustrated in Figures 5D-F. In Figures 5D and 5E the 
presence of a feature in a cell is indicated by a plus sign at the cell center. 
Contour values at cell centers can be used in the situation ofFigure 5F. 
An advantage ofusing relatively large grid cells for coding is that these 
define neighborhoods of coexisting variables. Thus new variables can be 
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Figure 5. Artificial examples to illustrate reduction of contour maps to binary map 
patterns (5A, B, C), gridding (5D, E, F) and definition ofmap elements using contour 
maps (5G, R, 1). Binary values between 2.5 and 4.0 respectively. Pattern of 5B is 
combined with pattern for rock type in 5C. Crosses in 5D and 5E are for presence of 
lineaments and rock type in grid cells. Contour values at cell centers can be used in 
5F. Superposition ofrock type pattern and another contour pattern on contour pattern 
of 5G are illustrated in 5R, and 51, respectively. Different map elements belong to 
same types as follows: type 4 in 5G; (5,1) in 5R; and (3,5) in 51. See text for further 
explanations. 

defined for features which are in each other's vicinity. For example, 
many types of deposits tend to be associated with contacts between two 
rock types. Although a deposit may be underlain by one of these rock 
types on the geological map that it used, the presence ofthe other rock 
type in the immediate vicinity then significantly increases the probabil
ity of occurrence of a deposit. Ifregression analysis (cf. Agterberg, 1984) 
is used for estimation, weights are computed for all indicator variables. 
The use ofproduct variables x .. = x . . x., where x. and x. represent relative 

IJ IJ 1 J 
cell area underlain by two rock types i andj, then allows more weight to 
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be assigned to coexistence oftwo rock types in the same cells. In general, 
one or more ofthe product variables x ij provide better indicator variables 
than x. and x. taken separately. 

N~verth~less, it is likely that any advantage ofusing grid cells for 
characterizing neighborhoods is offset by the drawbacks resulting from 
loss ofprecision. In general, it is better to work with small, homogeneous 
map elements as illustrated previously for binary patterns (e.g., Figs. 3A 
and 31), and for contour maps in Figures 5G-I. Spatial associations such 
as contacts between rock types then can be modeled by morphological 
operations such as dilation. When P indicator variables are defined for a 
study area, every map element has P values for these variables. Nonad
jacent map elements can have the same set ofvalues for the indicator 
variables as illustrated in Figure 5H where two map elements of map 
element type (5,1) have value 5 for the variable based on the contour map 
ofFigure 5G, and value 1 for presence ofthe rock type. The example of 
Figure 51 shows two map elements oftype (3,5) with values derived from 
two contour maps. 

WEIGHTED LOGISTIC REGRESSION ANALYSIS 

The prob ability Pi that a mineral deposit occurs in a small unit cell 
locatedinamapelement belongingtotype i(i = 1,2, ... ,n)can beestimated 
by logistic regression with each map element type weighted according to: 
(1) the number of deposits it contains, and (2) the combined area ofits 
map elements. This procedure will be described here. It is followed in the 
FORTRAN 77 program LOGPOL which is a modified version of the 
microcomputer program LOGDIA (Agterberg, 1989b). Applications of 
LOGPOL are described in Agterberg (1990) and Reddy, Agterberg, and 
Bonham-Carter (in press). 

In logistic regression, the prob ability Pi is derived from its logit Vi = 
In fp /(1-p i)} = Xi a w here Xi is the row vector of val ues for the indicator 
variables and ais a column vector ofunknown coefficients which are to 
be estimated. Suppose that m i represents the number of deposits in map 
element type i, and that mi is greater than zero for nd map element types. 
It is convenient to relabel m i as m. (j = 1,2, ... ,nd ) after deleting all values 
m i = O. The total number ofunit cehs belonging to map element type i can 
be written as t.. In general, t. is not an integer number because it 

1 1 

represents total area ofthe map element type with the unit cell used as 
unit of area. Ifthe size ofthe unit cells is sufficiently small, the number 
ofunit cells without deposits per map element type i can be set equal to 
t i (i = 1,2, ... ,n). 
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The input data block for logistic regression can be divided into two 
parts, for unit cells in map element types with and without deposits, 
respectively. A column vector Y with N = nd+n elements can be defined 
to distinguish between these two parts. The top part of Y consists of nd 
ones for map element types with deposits only, and its bottom part has 
n zeros for all map element types. Consequently, Y. = 1 ifj~nd' and Y. = 
O 'f · ...... 11.1 J J 1 nd<J~v. 

Thej-th row (j = 1,2, ... ,N) ofthe data block for logistic regression 
consists ofthej-th row of a column matrix X with values for the indicator 
variables, an element ofthe column vector Y, and a weight w .. The first 
nd rows of X are for relabeled map element types with ode or more 
deposits. In the data block, they have Y. = 1, and weights w. = m. (j = 
1,2, ... ,nd). The remaining n rows of X ire identical to the previ~usly 
defined rowsXi (i = 1,2, ... ,n) with ~ = 0 (j = nd+l, ... ,N), and weights t. == 
ti • Suppose now that V is an (N x N) diagonal matrix with nonz~ro 
elements V. = w . . Y. . (l-y') where Y. is an estimated value of the 
probability p .. (lf is rioted t~at p. == Pi tor i = j - nd = 1,2, ... ,n.) If the 
maximum li~elihood method is uJed for estimation, a column vector of 
scores S = Y - Yis made toconverge until the relationXS = Ois satisfied. 

Suppose that the subscript k is used to distinguish between succes
sive estimates during the iterative process preceding the final result. 
Before convergence is reached, successive approximations al ,a2, ••• , ~, 

of the vector of coefficients (a) satisfy: 

At the beginning ofthe iterative process, a preliminary estimate <xo 
is used to obtain So and Vo' leading to cxl • Setting all coefficients of CXo 
equal to zero normally leads to satisfactory results in fewer than ten 
iterations. After convergence, the (fmal) estimated coefficients <X are 
used to calculate the logits Vi (i = 1,2, ... ,n) and this results in the (final) 
estimated probabilities. 

In ordinary logistic regression, the goodness-of-fit of the model is 
evaluated by using a chi-square test and the deviance statistic. In the 
preceeding weighted version for map element data, these two test statis
tics depend on unit cell size. If the unit cells are sufficiently small, a 
further decrease in their size does not result in changes in the estimates 
of the coefficients except for the constant term which continues to 
decrease. (Each decrease in the constant term is equal to the natural 
logarithm of the factor by which the unit cell size is decreased.) For 
smaller unit cell sizes, the chi-square and deviance statistics continue to 
increase. (The chi-square increases more rapidly than the deviance.) It 
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is, however, possible to evaluate the goodness-of-fit of the model by 
classifying the deposits by using the probabilities estimated for the map 
element types to which they belong. Observed and expected frequencies 
ofmineral deposits then are compared by means ofthe same type oftest 
(chi-square or Kolmogorov-Smirnov test) used for the evaluation of 
posterior probability maps in weights of evidence modeling. 

CONCLUDING REMARKS 

An advantage of logistic regression with respect to weights of 
evidence modeling is that bias due to lack of conditional independence of 
the map patterns is avoided. On the other hand, weights of evidence 
modeling has the advantage of greater flexibility: each map pattern has 
two coefficients (W+ and W-) instead of one. The estimated weights of 
evidence of a map pattern and their variances are independent of those 
of the other map patterns and can be used when information on one or 
more of the other map patterns is not available at a particular place. 
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USE OF A LAPTOP COMPUTER AND 
SPREADSHEET SOFTWARE FOR 

GEOPHYSICAL SURVEYS 

Robert S. Sternberg 
Franklin and Marshall College 
Lancaster, Pennsylvania, USA 

ABSTRACT 

The use of a laptop computer and spreadsheet software have been 
introduced to geophysical field work for data acquisition, logging, reduc
tion, and plotting. This is a helpful method for many types of geophysical 
problems, and can support the geophysicist in the field to understand 
what is happening as the survey progresses. Examples are given of the 
application to seismic data acquisition, gravity data reduction, and 
gravity modeling. 

INTRODUCTION 

Geophysical survey equipment usually involves rapid data collec
tion. This is especially true for surveys covering a small area where the 
operators can walk between stations, and where terrain is not an 
obstacle. For such surveys, the traditional jotting down of readings in a 
field notebook, along with later entering of data into an office computer, 
may not be the most efficient way to proceed. Seismic traces, although 
not collected rapidly, consist of many data points. For other data types, 
such as gravity, the readings must be reduced to account for various 
corrections, so the meaning of the raw readings may not be readily 
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apparent. In addition, even simple modeling of corrected data in the field 
can yield a hetter understanding of the survey as it develops. Hence, 
digital data acquisition and data reduction, modeling and graphing in 
the field may save time in the long run, can give an immediate feel for 
what is going on with the survey, and may even he useful interactively 
to guide the survey in new directions. 

The availability of compact and relatively inexpensive laptop com
puters, which can run in the field offrechargeable batteries, and generic 
spreadsheet software provides one approach for working with the data 
while in the field. Jones (1983) and Kelly, Dale, and Haigh (1984), for 
example, discuss the use of microcomputers for various types of geo
physical field work. Tarkoy (1986) descrihes generic software, including, 
spreadsheets, useful for applications in engineering geology. These tools 
are useful particularly for teaching exploration geophysics to under
graduate students taking their first or second geophysics course. 

COMPUTER HARDWARE 

Laptop computers are useful not only for the traveling business 
executive seen in many advertisements, but also for the traveling 
scientist, including the field geophysicist. We have used an IBM -com pat
ible laptop computer (NEC Multispeed) as a field computer. The com
puter is a typicallaptop: it runs on wall current or for about 4 hours from 
rechargeable batteries, has 640K memory, two 3-112" 720K disk drives, 
a 25-line liquid crystal display graphics monitor, weighs 5 kg, and costs 
under $1500. Hard disks, improved backlit screens, and modems also are 
available for laptops. We also have an inkjet printer (Diconix 150) which 
can run from wall current or rechargeable batteries, weighs 1.7 kg, and 
costs about $400. The computer and printer together fit into a briefcase
sized bag. Drawbacks to this equipment are that a single computer 
battery pack is not adequate for a fuIl day of field work, and this 
equipment is not intended for use in rugged conditions (dirt, tempera
ture, humidity, etc.). The former problem, at least, can be circumvented 
with the use of a supplementary battery pack, which can be purchased 
for about $100. 

Some geophysical instruments also are able to store data digitally. 
This is a feature available, for example, in several models of proton 
precession magnetometers. The magnetometer data then can be uploaded 
to the computer while in the field. It is possible also to construct digital 
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interfaces for certain instruments. AB discussed briefl.y here (and also in 
Spadafore and Stemberg, 1990), we have constructed such an interface 
for our one-channel seismograph. 

SPREADSHEETSOFTWARE 

Spreadsheets, modeled after the accountant's ledger, also are useful 
for scientific and pedagogic applications (e.g., Herweijer, 1986; Tarkoy, 
1986; Dory, 1988; Guglielmino, 1989; Walter, 1989). Either data or text 
can be entered into columns, rows, or the individual cells where a 
particular row and column intersect. Numerical operations can be 
performed on the data using equations entered into the cells; these can 
incorporate constants embedded in the spreadsheet as weIl as intrinsic 
spreadsheet mathematical functions. Equations can be copied quickly to 
a group of related cells. For example, column 1 might contain values of 
anindependentvariablex. Thecellinrow1 ofcolumn2couldcontain the 
equation representing the dependent variable y which depends on the 
value ofx in row 1 of column 1 and other constants. This equation can be 
quickly copied to the other rows of column 2, with each calculated value 
ofy using the corresponding value ofx. Ifthe constants or independent 
variables are changed, the dependent variables expressed by these 
equations will be updated automatically. 

U sing a spreadsheet has some similarity to computer programming, 
but spreadsheet templates, as spreadsheet programs usually are termed, 
can offer several advantages over conventional programming. Con
structing a spreadsheet may be simpler than writing a computer pro
gram; the basics needed to understand and construct spreadsheet 
templates can be leamed in a few hours. The spreadsheet visually 
emphasizes the interrelationships between the different parts of a 
problem. The spreadsheet allows models to be gradually constructed. 
Finally, the spreadsheet easily permits data, model parameters, or 
model structures to be altered in a "what-if' fashion. Graphics and some 
database capabilities are included in many spreadsheet packages, which 
usually can run from one or two 720K floppy disks, 256K of computer 
memory, and cost about $200. We use the spreadsheet Quattro in the 
field, although the printouts included here were generated by transfer
ringthe templates (with minormodifications) to the spreadsheet program 
Excel on a Macintosh computer, and using a laser printer in the labora
tory. 
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APPLICATIONS 

Seismics - An Example of Data Acquisition 

For seismic refraction surveys we have been using a single-channel 
signal-enhaneement seismograph (Bison Model 1570C). In our earlier 
work, first breaks were picked offthe screen in the field, after which the 
traees were erased. However, permanent records of the traces are 
desirable in order to compare adjaeent traees, check the picks for first 
breaks, and possibly to detect additional phases. Bison does offer a 
stripchart recorder and a digital cassette tape recorder to which traces 
can be dumped. The former gives only an analog record, and the latter 
was a bit expensive for our use. 

In order to obtain digital records that could be examined in the field, 
we took a different approach. Steve Spadafore ofFranklin and MarshalI 
College designed and built a simple circuit to convert the seismograph 
communications port from parallel to serial. Schematics of this circuit 
will be given in Spadafore and Sternberg (1990), or can be obtained from 
the author. The 256 points comprising each trace are uploaded at 9600 
baud into the computer and saved to disc in a text file using a BASIC 
program (also available from author). The data in the file can be loaded 
into a spreadsheet template and plotted from the spreadsheet (Fig. 1). 
State-of-the-art multichannel seismographs already have a similar 
computer interface as part ofthe instrument. The power ofour seismo
graph has been amplified considerably with this addition to our system. 

Gravity - An Example ofData Reduction 

Spreadsheet capabilities are weIl illustrated by an example from 
gravity surveying. Collection of gravity data is relatively slow, so the 
data logging is not a limiting factor . N onetheless, the laptop/spreadsheet 
can serve as an electronic field book for logging the raw data. In addition, 
the spreadsheet can be designed to make the necessary gravity correc
tions, so gravity anomalies can be calculated and plotted while in the 
field. Jones (1983) has done these reductions using an HP41 calculator. 
The ledger-like nature of the spreadsheet makes it suitable to apply 
repeatedly the same gravity correction formulae to measurements made 
at different stations. Herweijer (1986) used a spreadsheet approach 
similar to the one described here for reduction of gravity data onee back 
in the office, but doing this while in the field is instructive as the survey 
develops. Sutter and Sternberg (1988) also used a spreadsheet for 
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Figure 1. Seismograph trace uploaded into field computer and plotted from 
spreadsheet template. Trace consists of 256 points equally spaced in time. Units of 
relative amplitude are offset for shot-geophone distance oflO m. 

tabulation of gravity survey data, although the data reduction was done 
actually with a linked BASIC program. Their approach, although some
what more difficult than the straight spreadsheet approach advocated 
here, can become advantageous for larger projects or for more compli
cated types of data reduction (e.g., topographie and tidal). 

A spreadsheet template for the reduction of gravity data is shown in 
Figure 2, displaying the numerical results as the spreadsheet generally 
appears to the user. Reader information describes the program and the 
survey for which it is being used. Inputs include: the factors needed to 
calibrate from dial units to mgal on the LaCoste and Romberg gravime
ter (ceHs B44-B46, where the letter designates the column and the 
number designates the row); initial and final base station readings used 
for the drift correction (B50-C51); latitude (B54) and the Bouguer gravity 
anomaly (B57) of the base station used for the latitude correction and 
calculation of anomalies relative to the base station; Bouguer density 
used for the Bouguer correction (B60). Run constants include: the drift 
rate determined from the base station readings (ceH F49); conversion 
factors from feet-to-meters and from mgal-to-gravity units (F54, F55); 
the free-air correction factor (F56); the Bouguer correction factor calcu
lated for the given Bouguer density (F57); and the latitude correction 
factor calculated for the given base station latitude (F58). For each 
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A B C I D I E F G H I 
1 I I 
2 GRAVITY SlJRVEY DIITA REDUCTION 
3 I I I 
4 '**'~**"*****'****j****.*********'******************* k*t*.t'",*,** •• **,*,** 
5 I 
6 Name: Grav-Redl 
7 
8 Author: Roh StC!rnherc 
9 Franklin & Marshall Colleqe 

10 Data: IIpr-88 I 
11 Sllghtly moditled for t:xccl: Dec-89 
12 I I 
13 Purpos~: '1'0 rcduc(~ 1~1Coste and Homherg gravltv survev data to 
14 corrC'~~[>Qu.0.~qrrlVt ty anolllal los. I I 
~ ---- I)" f ilU .!..!i-'::>l'h I" _fotil! anolllr11y V!,. N-S dlgtanco. 

16 
17 Instructions: I I I 
18 1 Entee anv notes concerninq surv~ .. 
19 2 Enter _.'lrav1meter dial units-to-m'lal ca 11:". a tlon data. 
20 Use the ran'le that is most appl1cable. I I 
21 3 Enter base station readinqs and times. I I 
22 Assumes onc: inital n.nd ono f 1n,11 base station readinq. 
23 Socond rc-',-1dlnq may h" "nter"d after it 15 Laken. I 
24 1 Enlor latltudo of baso station for latitudinal correction. 
25 5 Enter absolute qravity anomaly at base station. 
26 6 Enter densitv for l30uauer slab. I 
27 7 Enter data for survey stations. I 
28 I I I 
29 Referünces: LaCoste and Rombera Instruetion Manual 
30 ~ 
31 An Introduction to Geophysical Prospp.ctinq 
32 P. Kearey and M. Brooks J 
33 Blo'lckwell Oxford 1984 eh. 6 
34 I I 
35 k***"""t**"""""*"***'**"'*******'******"'"it***t* __ *_t* ___ ***.!*.* 
36 
37 SlJRVEY NOTES I I 
38 Date Mar-SB ICrew Geo 37 class 
39 Location southern Lancaster county I 
40 PlJrpose To inv"stl'ilte the south-north '1ravl\:.y qradlent 
41 Notes Latl tud" correetion r"lative to 10.03 deq N 
42 1 
43 GHIIVrMETEH CALIBHATION INPUTS 
44 dial 3700 
45 rnqal 3785.98 
46 factor 1. 02108 
47 
48 BASE STIITION INPUTS BIISE STATION DRIFT CIILCULIITIONS 
49 hilse dial time (m in drift -0.001 dial/min 
50 1 3702.044 41 
51 2 3701.959 210 

..g.. 
53 BASI': STATION LIITJTUlll': INPUT CONSTAN'I'S 
54 1.11: il:udel 10.03Idc>, n,es ft-to-m 0.3048 rn/ft 
55 I mqal-qu 10 'lu/rn, a] 
56 BASE STATION ANOMALY INPU'J free air 3.086 qu/m 
57 doll" q -558.901 qu BoumJer 1.13EtOO 'lu/in 
58 I latitude 7.998 au/km 
59 BOUGUER DENSITY INPUT 
60 denstty I 27001 k'l/m3 
61 J 

Figure 2. Spreadsheet template for reduction of gravity data. 
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62 I I 
63 STI\TION !NPlrrS DI\']'/\) 
64 .it' •• A'ki."""""""**_""'.'.""'" 
65 St.ilt.jon -S dist. ülov. tImo road im 
66 km ft min. dial 
67 1 -13.60 400.0 89 3'112.388 
69 2 -11.70 260.0 107 3719.501 
69 3 -9.70 340.0 139 3713.413 
70 4 -7.60 420.0 160 3706.677 
71 5 -4.70 260.0 156 3713.029 
72 6 -2.95 240.0 196 3711.941 
73 7 -0.70 360.0 212 3704.315 
74 base 1 0.00 400.0 41 3702.044 
75 
76 STII'/'ION CI\T.CUJ.I\'I'/ONS 
77 t*t,'*tt".'.' •• "_""""_"*""""'_'_""""'"k.t'*t'k""""*""'" 
78 r.lov. drilt :alibrate convert latit:udo fron r'llr flouquer ~com belse! total 
79 m dial rnqal gJ; '1u (n1 qu (n1 (jU 

80 17.1. 9 3n2.11'7. 3798.691 37986.91 38095.68 38471.93 38333.97 214 .95 -343.95 
81 '79.2 3"19.534 3805.985 38059.85 38153.42 38397.98 38308.31 189.29 -369.61 
82 103.6 3713.462 3799.766 37997.66 38075.25 38395.05 38277.79 158.77 -400.13 
83 128.0 3706.737 3792.879 37928.79 37989.58 38384.63 38239.77 120.76 -438.14 
84 79.2 3713.087 3799.382 37993.82 38031.41 38275.97 38186.30 67.28 -491. 62 
85 73.2 3712.019 3798.288 37982.88 38006.48 38232.2'; 38149.45 30.43 -528.47 
86 109.-' 3704.401 3790.487 37904.87 37910.47 38249.09 38124.92 5.91 -552.99 

Figure 2. Continued 

station, inputs (cells A67-E74) include: station number; distance ofthe 
station along the traverse; elevation ofthe station used for the elevation 
correction; time of the reading used for the drift correction; and the 
reading itself. Finally, the spreadsheet then calculates for each station 
(rows 80-86, in successive columns A-I): the elevation in meters; the drift
corrected dial reading; the calibrated mgal readings; the equivalent 
value in gravity units; the latitude-corrected result; the free-air anom
aly; the simple Bouguer anomaly; the Bouguer anomaly relative to the 
base station; and the absolute Bouguer anomaly. 

The same spreadsheet is shown in Figure 3 using the option to 
display the formulae that were entered originally into the template. The 
text in the upper part of the spreadsheet is not shown, and some of the 
column headers are truncated. The equation for the latitude correction 
in cell F58 illustrates how equations are entered. This equation is given 
algebraically as 

latitude correction = 8.12 sin(20 ) gravity units/kilometer, (1) 

where 0 is the latitude ofthe base station. The spreadsheet recognizes 
the entry in this cell as an equation rather than a number or character 
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string by the leading "=". The entry LAT in cell F58 is a named constant 
which has been designated elsewhere to refer to cell B54, which contains 
the latitude ofthe base station in degrees. Spreadsheet programs include 
a number ofintrinsic functions, such as the SIN function used in cell F58. 
Because trigonometrie functions in spreadsheets generally operate on 
angles expressed in radians, the conversion of latitude from degrees to 
radians is made using the intrinsie function PIO, which is equal to 1t 

radians. The resulting latitude correction calculated for this base station 
latitude, 7.998 gu/km., is shown in cell F58 ofFigure 2. 

The block ofcells under STATION INPUTS shows the utility ofthe 
spreadsheet format for data tabulation. The block under STATION 
CALCULATIONS illustrates the utility ofthe spreadsheet for repeated 
calculation. The equations entered in row 80 were copied down simply to 
rows 81-87. Relative cell references are changed automatically as the 
equations are copied. For example, the elevation conversion in cell A81 
changes the elevation in feet for station 1 given in cell C67 to meters. As 
this equation is copied downwards for the other stations, the form ofthe 
equation and the constant remain the same, whereas the relative cell 
references are updated to refer to successive cells below C67. Absolute 
cell references can be used to avoid such updating, either by using labels 
as discussed, or using dollar marks with the cell designator (as in the 
equations in cells H80-H87). 

Computer programs, similar to written language, should not just 
work but also be well-structured so that they are understandable, easily 
debugged, and easily modified (e.g., Kernighan and Plougher, 1978). The 
same can be said for spreadsheet style (Nevison, 1987). Figure 2 illus
trates some aspects of good spreadsheet style: a general header, instruc
tions for use, column headers, minimization of clutter, and the separa
tion of cell blocks used for constants, data input, and output calculations. 

Figure 4 is a spreadsheet-generated graph of the Bouguer anomaly 
given in cells 180-186 of Figure 2. The data were collected as part of an 
exercise by a geophysics dass along an approximately north-south 
profile in Lancaster County, Pennsylvania. The intent ofthe survey was 
to demonstrate to the class the latitudinal gradient of gravity. As the 
survey progressed and the data were being reduced and graphed, it 
became clear that as we moved north, Bouguer gravity was decreasing, 
contrary to what the latitude effect alone would yield. Thus, we were able 
to discuss during the survey the possible geological causes of this 
anomaly. 
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ßougucr anomaly 
(gll) 

STERNBERG 
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Distance north from base station (km) 

Figure 4. Bouguer anomaly results from spreadsheet of Figure 2. 

Gravity - An Example ofData Modeling 

The "what-if' capabilities of the spreadsheet make it an exceHent 
tool for simple forward models of geophysical anomalies. In the spread
sheet, distance along the profile (independent variable) can be placed in 
one column, and the anomaly (dependent variable) can be calculated in 
another column. Properties of the body (e.g., size, depth, density con
trast) can be set as constants in separate ceHs and easily changed. These 
changes immediately ripple through the rest ofthe spreadsheet, and the 
anomalies are recalculated for the new parameter values. The spread
sheet example in Figure 5 is for the model of aburied sphere, and includes 
some real data that can be modeled adequately with a sphere. Anomalies 
(ceHs C52-C72) are calculated at the positions on the profile (A52-A72) 
where data exist (column E), and at some additional positions in order to 
generate a smooth profile. Missing data in ceHs E52-E72 are indicated by 
a value of999. Figure 6 shows the formulae used in this template. Figure 
7 is a graph generated by the spreadsheet of the data and a model 
anomaly, using the parameters shown in Figure 5. As the model parame
ters in the spreadsheet template are changed, the graph also is updated 
automatically, facilitating iteration towards a good-fitting model. 
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A 

Namo: 

f-f- 'uLl,o" 
9 

10 Date: 
11 

B c D E F 

GRAVIT't MODELING FOR A BURlEO SPHERE 

Grav-Soh 

Hob !il{!rnbcn 
Frankl1n , Marshall Collene 
5""t-86 

G 

12 PurDasa: 
13 
U 
15 
16 

Ta ca!culate the rJravÜ:-V- ananalv alona CI traverse above a 
burip.d snhere and to nlet model anomalv. 
Dat .. can be olotted on same araph but onlv one serles of 
distancns can bc entered. Mlssina values can bo used 
in ülther modelcd anorna~ oe data, but will lot dS zeros. 

19 
20 
21 
22 
23 
24 
25 
26 Hefcrenccs: 
27 

IntrodueLion to Gco ,tlyslcal Prospectln 3rd ed. 

28 
29 
30 Modified: Jun 89 
31 

Milton B. Dobrin 
McGraw-Hl11 New 'torI<. 19-/6 eh. 11 

from Macintosh/Excel to NEC/ uattro 

32 .... '*,o,o,o .. * * .... * * .t •••••••• ,o.* •• "** ••• ,.* .... * * "".i •• * .*** _,*,.",., 
33 
34 DATA NOTES 
3S Data from L. L. Nettleton 
36 Tak01l {rom Turcotlc and Schubert rin. 5-10 

E .~.111 d(~nn 1:>1 mll(~:; .<;1-: of G .. 1)VO!;\ on, TX 

38 
39 INPUT PARN1ETERS FOR SPHERE UNIVERSAL CONSTANT 

40 radius 4000 meters G 6. 670E-ll 
U denth 6000 meters 4/3"pr*G 2.79E-l0 m3/ }(.(1 s2 
42 dens cant -200 ku/m3 
43 RUN CONSTANTS .. max anm -99.3' ravitv u 
4S 1/2 width 4598 meters .. ., .. M:)DEL DATA 
49 •• l •••• ' ..................... 

50 Dlst"ancc DJ stance G ancrnai G anomal 
51 meters km ml -'I\l 
52 -10000 -10 -14 999.00 
53 -8500 -. -I' 11.10 
54 -7750 -8 -23 -19.40 
55 -6875 -7 -28 -30.60 
56 -6000 -6 -35 -'0.30 
57 -5250 -42 -50.00 
58 -43/5 -4 -52 -61.10 
59 -3500 -. -6' -70.80 
60 -1500 -2 91 -80.60 
61 -1000 -1 -95 999.00 
62 0 0 -99 999.00 
63 1000 1 -95 90.30 
64 1500 2 -91 999.00 
65 3375 -66 -80.60 
66 4000 -57 -70.80 
67 .750 .8 -61.10 
6B 5375 -'1 -50.00 
69 6125 -34 -'1.70 
70 7250 -26 -30.60 
71 8125 -21 -20.80 
72 J 0000 10 14 -11.10 

103 

Figure 5. Spreadsheet template for modeling of gravity anomaly over buried sphere. 
Included are some data that can be represented adequately by this mode1. Data are 
from Figure 5-10 ofTurcotte and Schubert (1982). 
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-la -8 -6 -4 -2 o 2 4 6 8 10 
r---+---~--~---r--O~---r---r--~--~~~ 

Bouguer 
anoma1y 

(gu) 

Distance (km) 

Figure 7. Graphs of data (filled symbols) and model anomaly (solid line) from template 
ofFigure 5. 

Other Applications 

The examples given here indicate a few of the many possible 
applications of laptop computers and spreadsheets in geophysical sur
veying. Some other possibilities are suggested here. 

(1) Calculating gravity anomalies for other bodies with simple geome
try. Other simple geometries, such as the buried horizontal cylin
der, are also easy to set up on a spreadsheet. Modeling ofpolygonal 
bodies would be possible, although more complex. 

(2) Uploading of proton precession magnetometer data. Many models 
now have digital memories and serial interfaces which Can be 
connected to the serial port on the host computer. Uploading can be 
accomplished with a simple BASIC program, or with vendor-sup
plied software. Data collection in small surveys can be rapid, and the 
magnetometer memory may be filled in several hours, requiring it 
to be dumped. 

(3) Drift correction for magnetometer data. This is especially easy for 
simple survey designs, such as base station reoccupations before 
and after each line is run. This is feasible for small surveys. The 
corrected profiles then can be plotted while in the field. 
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(4) Calculating magnetic anomalies. Again, this is straightforward for 
simple geometries. 

(5) Calculating apparent resistivities. The spreadsheet is useful for 
logging the data acquired in resistivity profiling or sounding. The 
readings then can be converted into apparent resistivities by using 
the appropriate equation and array parameters. Resistivity profiles 
and sounding curves can also be plotted. 

(6) Logging/acquisition of electromagnetic survey data. Electromag
netic conductivity surveys can proceed quite. For a small-scale 
survey, one member ofthe crew can make the readings, and another 
can manually log the data into the computer. Some meters have 
been modified so that readings are triggered with a switch, and 
transmitted to a digital data logger. These readings can then be 
uploaded periodically to the host computer. Profile plots can be 
generated in the field. 
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A PROGRAM FOR PETROPHYSICAL 
DATABASE MANAGEMENT 

Bernhard B. Holub 
Leoben University, Leoben, Austria 

ABSTRACT 

The personal computer program ROCKBASE based on dBASE IV is 
presented. The aim of this menu-driven and mask-oriented interactive 
program is the management of data from irregularly distributed field 
samples that are measured in the laboratory. Statistical modules such as 
calculation of mean values are offered, but the main purpose of ROCK
BASE is the preparation of the data for graphic output. As an interface 
the ASCII format enables full compatibility with commercial graphic 
packages. It is shown that thematic maps of an investigation area can be 
produced with little expense. 

INTRODUCTION 

The measurement of petrophysical parameters is of great impor
tance for many problems in geoscience. These parameters mainly com
prise seismic velocities, specific electrical resistivity and polarisability, 
magnetic susceptibility, intensity and direction of natural remanent 
magnetization (NRM), rock density, and natural radioactivity. The 
investigations concern both 'soft' rocks, 'hard' rocks, and artificial depos
its (dams, waste deposits, dumps) for prospecting, geotechnical and 
hydrogeological, as well as environmental problems. 

109 
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Depending on the problem and the measuring technique, the data 
will be collected in the field, using gridded or irregularly distributed 
points, in the laboratory from hand sampIes, ormeasured directly by wen 
logging. For easy administration of such amounts of data, a database
management system on a mainframe or personal computer is normally 
used. In contrast to many highly developed programs for well-Iogging 
data, individual solutions, designed especially for irregular distributed 
measuring data from the field, generally are utilized (Puranen and 
Hongisto, 1989). 

Because of the growing importance of petrophysics, several papers 
have been published within the last years, that summarize the petro
physical parameters ofimportant minerals and rocks (Kobranova, 1989; 
Puranen, 1989; Puranen, Elo, and Airo, 1978; Schön, 1983; Touloukian, 
Judd, and Roy, 1981). 

In this paper, the personal computer program ROCKBASE is 
presented, which depends on the database system dBASE IV. It is 
designed for management ofpetrophysical data generated in the labora
tory from field sampIes. The database program is adaptable easily for 
other applications such as hydrogeology, geochemistry, or petrography. 

FUNDAMENT ALS 

dBASE IV is a relational database-management system with its 
own language, that enables the creation of specific programs, and speeds 
up routine work. The programs run under the control of dBASE IV, or 
independently using a runtime module. The database structure of 
dBASE IV contains a flexible number of equivalent data fields with 
defined length, which can be treated and presented in any order and 
selection. The individual data fields can be defmed as alphanumeric, 
numeric, logical, or data fields. Each database can be sorted in ascending 
or descending order on the basis of an index field. Using a selection 
criteria, a restricted part ofthe database can be viewed, or written to an 
ASCII file. 

PROGRAM ORGANIZATION 

The structure ofROCKBASE is divided into a statistical part, and 
apart containing the measurements. The statistical part contains infor
mation about 
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• SampIe name 
• Rock type 
• Rock code 
• SampIe locality 
• Map sheet 
• Coordinates of sampIe locality 
• Date of sampIe collection 
• SampIe orientation 
• Name of sampIe collector 
• 2 fields for individual selection criteria 
• Measuring method 
• Comment 

In the other part, the measurements are stored in SI-units in the 
same file as the statistical data, and comprise the following data fields: 

• Density 
• Susceptibility 
• Resistivity 
• IP-effect 
• Intensity of NRM 
• Declination of NRM 
• Inclination of NRM 

[kg/m3] 

[10-3] 

[n_m] 
[%] 
[nT] 
[ . ] 
[ . ] 

Additional data fields, for example seismic velocities, can be ap
pended easily to the database. On the other hand, unused fields can be 
removed. 

ROCKBASE alIows a compIeteIy menu-driven data management 
(Fig.1) with little knowledge about database structure and syntax ruIes. 
For complex questions a direct data access with dBASE query language 
is possible additionally to the program. 

After selection of the suitable database in the menu 'Database/ 
Select' one can determine a data field in 'Mode/Sort' after which the 
database is sorted. In addi tion to the defaul t sorting by sam pIe name, one 
can select rock code, map sheet, or measurement values. 

An input mask in 'ModeIFilter' enables the construction of selection 
criteria by fixed numerical values (e.g. map sheet 163) and also with help 
of comparison operators (e.g. density >3000). Complex selection criteria 
also can be defined using dBASE query language. The total number of 
records in the database, and the number ofthose records which match 
the selection criteria, are displayed on the screen (Fig.2). The defined 
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PETROPHYSICAL DATABASE MANAGEMENT 

Database: PSTMK Sorting: Samples 

Oatabase Mode 

445 Records total 
63 Records filtered! 

Filter argument: 
(Map sheet Leibnitzl 
OEK=190 

Table 
Single record 
Mean values 

Input 

Statistics ,.--------, 
Crossplot 
Bär Ch. t, 
Isolines 

113 

Quit 

Figure 2. Menu-driven program handling with display of active database, sorting 
criterion, total nurnber ofrecords, and selection criteria. 

criteria remain active for all subsequent program aetions, but are 
ehangeable or could be deactivated at any time. 

Data input or alteration is done by a mask for statistics and 
measurement values (Fig.3). Either the mode 'InputJSingle record' - for 
just one data re cord displayed -or 'InputJTable' -for several records listed 
in a table can be seleeted.) These masks are organized in that way, such 
that misentries are avoided - for example, an 'empty' entry in the field of 
sampie name or, in numerical fields, unrealistic values such as density 
<1000. If no measurement data are available, the appropriate data fields 
are marked by a negative number (e.g. resistivity -1). The same masks 
used for data input are available for data query with the difference, that 
the data are only readable to prevent misentry. 

In 'Query/Mean values' the me ans for eaeh measured parameter of 
a special rock type which is represented by its rock code, are ealculated. 
Those map sheets on whieh the selected rock type occurs are displayed 
on the screen and one can select one or more map sheets to calculate the 
mean values. The output mask shows the number ofmeasuring values, 
minimum, maximum, and the mean value with standard deviation for 
each parameter (Fig.4). 

In the menu 'Query/Statistics', all rock types that match the selee
tion criteria are displayed in conjunction with the total number of stored 
sampies and the number ofmeasured values for density, susceptibility, 
ete. (Fig.5). The output ean also be directed to a printer or written to an 
ASCII file. 

A main part ofROCKBASE is the data output to ASCII files. So the 
measured values can be transferred easily to graphie programs, or 
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Sample 
Rock 
Locali ty 
Rock code 

Map s heet 189 

X- Koord & .. 60 
Y- Koord 1~. 3~ 
City code 6Jl. 

Date 
Name 
Orient. 

Commen t Literature: Be~kj;"'!'i'ii:l!riflI:lC"'" ...... Cl..,..~,..,..., 

eOdel X 

Code~ 

Sample L03 

Denslty 
Susceptibility 

Resistivity 
IP-ef ect 

Intensity NR 1 
leasuring method 
Additional data 

Codel B 

Code2 

2872 
. ;1. 450 
:M6 

3.32 

'X 
F 

s'r064 
Phyllite graphitic, ore bearing 

Main road 300m NW St . Georgen,km 7.0 
~lilP sheet 159 

A 

B 

Figure 3. Input mask for single record mode. Misentry is prevented by input checking. 
A, Statistical data; B, Measuring data. 

ST08I Gneiss flattened Crystalline Basement 
lap sheet: 188 189 205 206 (all) 

51 Sampies 

Density: 
n=51 
~lininlum 
Maximum 
Meiln value 

Susceptibili ty : 

[kg/m3] 
2548 
2973 
2818 ± 81 

n=47 [10-3 SI] 
Minimum 0.220 
Maximum 1.170 
Mean value 0.570 ± 0.204 

Resistivity: 
no data 

IP - effect: 
no data 

Figure 4. Calculation ofminimum, maximum, mean values, and standard deviation of 
selected rock type with display ofmap sheets ofits occurrence. 
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Database: PSTMK.DBF 
Fjlter argument: 
OEK=189 
(Map sheet Deutschlandsberg) 

Code Rock type 

STOßl Gneiss flattened 
ST082 Pegmatojd gneiss and micaschist 
ST083 Pegmatoid gneiss 
ST084 EClogite, metagabbro 
ST085 Marble 
ST088 Quartzite 
ST092 Amphibolite 
ST094 Paragneiss, Plagioklasegneiss 
ST095 Pegmatite 

n Den 

38 38 
16 16 
13 13 

6 6 
6 6 
4 4 
2 2 

13 13 
3 3 

115 

Sus Res IP Int 

37 
13 
13 

6 
5 
3 
2 

11 
2 

Figure 5. List of a11 rock types with total amount of sampies and number of measuring 
values for each petrophysical parameter. 

treated as tables. In the menu 'Query' one can selecl between output for 
crossplots, bar charts, or contour maps (Fig.2). 

Additional to the listed possibilities, dBASE or DOS commands can 
be used within ROCKBASE. On the other hand, the 'assist mode', the 
user interface of dBASE IV can be accessed. 

In the menu 'Database/Save', the active database will be written to 
disko New databases are created by the database structure which is 
stored in a control file. 

GRAPHIe OUTPUT 

For further graphie processing, the filtered data are stored in ASCII 
format. This format is readable by any program and offers many 
possibilities for individual use of graphie software (Fig.6). Many graphie 
programs enable the creation of output masks (e.g. semilogarithmic 
crossplots with axes labels and grid lines) and storage in control files. 
With a batch file, the ASCII data from ROCKBASE are included in those 
masks automatically. In this way a graphie output with different data 
groups is easily achieved. 

Crossplots are the most important type of presentation for petro
physical data. These diagrams allow comparison of all possible parame
ters (e.g. density vs. susceptibility). Using X and Y coordinates, position 
maps of sampIe localities also can be established. 

Bar charts are used to show the frequency distribution of parame
ters. The necessary calculation is done easily in spreadsheet programs 
such as Lotus 1-2-3. 



116 

cross 10 bar-chart 

l~::·:.:·::· ....... 
" .. 

- . 

dB.\ E IV 
dalaba e I 

program 
I 

ASt I I e 

2D Plot 

HOLUB 

3D plot 

Figure 6. Possibilities of graphie processing of output files created by ROCKBASE. 

Contour maps are used to provide surface distribution of rock 
parameters in two or three dimensions. This consideration allows the 
delimitation of anomalies, or the investigation of surface inhomogenei
ties of a rock type. In contour mapping it is important to consider the 
method of grid calculation from irregular distributed data. As weIl 
developed and powerful tool to create 2D and 3D plots, the SURFER 
package was proved. This program enables graphie output in DXF 
format, whieh offers further processing in CAD programs such as 
AutoCAD. In that way digital thematic maps of a measuring area with 
additional topographie information (cities, river net, digital surface 
model, ete.) ean be produeed with little effort from the data managed by 
ROCKBASE. 
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ABSTRACT 

This paper presents the development of a hydrogeological expert 
system able to handle the drilling location problem within the scope of 
village water-supply programs. This work is based on the experience the 
authors gained from thousands of drillings carried out in fifteen African 
countries. The cognitive model comes from the practical know-how 
acquired from real-world programs, from original statistics and proba
bilistics analyses showing connections between data collected during the 
drilling-site selection and hydrodynamic parameters registered in the 
borings and from the research the authors carried out in the artificial 
intelligence field to propose a comprehensive knowledge modeling frame
work. The paper includes a description ofthe specific knowledge involved 
in the drilling location process. Relevant hydrogeological parameters 
recognition and examples of advanced computer knowledge modeling 
methods are presented. First the rules of thumb and the interpretative 
frames retained for the cognitive model are described, then the charac
teristics of the HYDRO LAB expert system devoted both to computer
aided decision and to computer-assisted learning support. 
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INTRODUCTION 

The various estimations carried out within the scope ofthe Interna
tional Drinking Water Supply and Sanitation Decade (1981-1990) show 
that the water demand in countries of Western and Central Mrica is 
considerable. The most optimistic statistics indicate that drinking water 
is not available to more than 80% of the rural population in developing 
countries. The problem ofwater prospecting is more than ever a crucial 
objective. Even if Mrican states have devoted themselves for more than 
twenty years to the improvement of the water supply to the rural 
population, extrapolation of the 1976 estimations suggest that 100,000 
water points need to be created by 1990. To meet the water demand in 
developing countries, thousands of water points remain to be created 
within the scope of village water-supply programs. 

Since 1973, we have been working on the question of extending the 
water resources of developing countries and we have analyzed the 
mechanisms governing the hydrodynamic characteristics of aquifers in 
drought-prone areas. The considerable wealth ofknowledge and experi
ence we gained from the aforementioned work, the existence of a large 
amount ofstatistical data, the repetitive nature ofthe steps to be carried 
out for a hydrogeological search and the Mrican technicians' training 
needs, enabled us to develop a hydrogeological expert-system consult
ant. 

This paper is an overview of hydrogeological studies in the field of 
village water-supply programs. Its primary interest lies in the way it 
identifies decisive hydrogeological parameters and in its use of artificial
intelligence techniques in this domain. We first present the main 
features of Mrican hydrogeology which represent the context of this 
study, then we summarize the methods used by experts for well-Iocation 
studies. These techniques and the specialists' behavior represent the 
background we analyzed to recognize a suitable cognitive material for 
the knowledge modelling process we aimed to achieve. We explain our 
methodology to identify decisive hydrogeological parameters and pres
ent original data showing connections between data collected during the 
location studies and the hydrodynamic parameters registered when 
operating the drillings. The HYDROLAB expert-system consultant is 
the concrete result of this research, as it embodies the previously 
recognized rules of expertise, their associated interpretative models, and 
the related decision-making parameters. We finally present some in
sight to the expert-system architecture and describe its range of applica
tion, either as a computer-based expert consultant to help in solving the 
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well-site location, or as a computer assistant for village water-supply 
courses. 

GEOLOGICAL CONTEXT OF THE STUDY 

Groundwater usually is connected direct1y to geological units, and 
this remark takes its fuH significance in village water supply as the 
strategies involved widely rely on the recognized geological context. In 
Mrica, and following a schematic description, the geological context is 
divided into three large groups: the Precambrian crystalline bedrock, 
corresponding to the basement complex that represents the oldest 
formations of the Mrican Shield (granites, gneisses, quartzites, schists, 
etc.); old formations, tabular, Infracambrian and Primary, associated 
with the deep-seated complex; and sedimentary formations, both post
primary and recent deposits. From these three geological contexts, two 
major types of aquifer systems can be determined: sedimentary and 
igneous/metamorphic. 

The sedimentary formations and recent deposits are permeable 
formations and generally enclose continuous aquifer. These are encoun
tered in large sedimentary basins, mainly in the Sahel latitude: the 
Senegalo-Mauritanian basin, the central delta ofthe Nigerriver, Taoudeni 
Basin, Nigerian Basin, and Chadian Basin. They represent 85% of the 
surface area ofSenegal, 65% ofMauritania, 75% ofNigeria, 64% ofMali, 
65% ofthe Congo, 52% ofChad, and form a narrow costal band occupying 
a small portion of the Ivory Coast, Togo, Benin, Gabon, the Togo and 
Cameroon. The Precambrian crystalline bedrock and the old formations 
characteristically have a discontinuous aquifer. They occupy most ofthe 
Ivory Coast (97% of the country's surface area), Burkina Faso (95%), 
Togo (94%), Benin (83%), Cameroon (89%), and Gabon (80%), and 
correspond to zones of high population density. 

The research that we have undertaken in this field since 1973, 
covers fifteen or so countries in Mrica (Bernardi and Mouton, 1975; 
Bernardi and Detay, 1989; Detay, 1987; Detay and Poyet, 1988a, 1988b, 
1989a, 1989b, 1990; Detay and others, 1986, 1990) and the resolution 
techniques proposed should address the continental sc ale ofthe problem. 
Few tasks in applied hydrogeology are more difficult than locating 
drilling sites for water in igneous and metamorphic rocks and 50% of the 
wells in some areas are registered as failures. Extreme variations of 
lithology and structure coupled with highly localized water-producing 
zones make geological and geophysical exploration difficult, especially 
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for the Basement Context. Soll and vegetation usually cover outcrops 
and make the necessary detailed geological observations impossible. 

We would remind the reader that rural water-supply programs aim 
at delivering good quality water but the expected yields are relatively low 
as a cubic meter per hour can be considered a satisfying result. The main 
difficulties concern the well-site selection for which no formal approach 
is available. These tasks require a great amount of expertise and involve 
conceptual and cognitive models as weIl as statistical studies that 
summarize in some way the knowhow gained from the practical pro
grams accomplished. 

The steps followed by experts during the interpretative process and 
the decisional variables involved to determine the location strategy are 
drastically different for sedimentary formations and for the crystalline 
environment. Sedimentary contexts involve a dedicated approach for 
each formation submitted according to its observed hydrogeological 
characteristics, whereas a generic behavior can be modeled in the 
situation of a saprolite reservoir enclosing a discontinuous aquifer. It is 
worthwhile to notice that our attention will be focused within the scope 
of this paper on the methodology to be followed for the crystalline 
basement context, as a general reasoning frame of the cognitive proc
esses involved can be modeled in this situation. 

DEVELOPMENT OF A COGNITIVE MODEL 

Introduction 

The fIrst step in the modeling of a cognitive process is to identify the 
collection of data involved in the activity and a set of mechanisms that 
should be triggered when some conditions are fulfilled. Elementary 
information will be referred to as basic data, and will be used to build 
decisional variables of different orders thanks to an analysis ofthe tasks 
carried out by the specialists. A set of specialized inference rules aims to 
reproduce some intelligent behaviors triggered when their premises are 
satisfied and accounts for the solution recognition phase. We describe 
here the main phases of the cognitive process including the gathering 
and the selection ofbasic data, the recognition of decisional variables and 
oftheir associated interpretative models, the description of a typology of 
the various sets of inference rules required to account for knowledge
based activities, a short presentation of the solution models we have 
developed, and a summary of the decision making parameters used both 
to provide in-situ drilling strategy and to forecast some hydraulic 
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parameters for the future weHs. Figure 1 is abrief overview ofthe overall 
strategy we have designed to account for the knowledge involved in 
selecting well-site. One should notice that the process is truly expertise 
based and that sophisticated mathematical models are sei dom involved 
as they usually require detailed calibration sets of data not available for 
rural studies in Mrica and as they lead to an over-accurate local 
knowledge that is not reusable for further large-scale investigation even 
for rather similar sites showing an inherently different calibration set. 
To avoid the problems caused by such computational sensitivity, we 
followed a statistical approach enabling us to forecast some of the 
estimated characteristics of the drillings thanks to a set of robust 
decision-making-parameters recognized by experts and accurately 
modeled by statistical means. 

Figure 1. Overview of cognitive model proposed to account for experts' knowledge and 
activities involved in handling drillings location problem. Rules are indicated by 
diamond-shaped boxes, data or decisional variables by rectangles or smoothed 
rectangles (round-ended), solution models and decision-making parameters by 
ellipses. 
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The Assessment Phase 

Even if the behavior of each expert is idiosyncratic, general guide
lines can be proposed to conduct the data-collecting phase according to 
the synthesis ofthe observed attitudes. To amass the necessaryelemen
tary data, groundwater development normally is preceded by proper 
investigation and assessment and four major techniques contribute to a 
rational groundwater exploration. Each ofthese produce basic data that 
need to be combined within a semantic network to furnish meaningful 
first-order decisional variables allowing the generation of a valuable 
insight to the geological context. 

Basic studies, such as the localization of villages on maps and 
inventory of essential data easily available such as rainfall measures, 
pluviometric deficits, catchment basin surface area, estimation of the 
runoff, geomorphological position, etc., are the first steps to be carried 
out and provide interesting primary data. There are completed by the 
study of aerial photographs which make excellent base maps. Stere
opairs can be used for three-dimensional study ofhydrologic features in 
order to distinguish rock and soil types, identify pattern of fractures, 
detect springs and marshes, all of them being considered as elementary 
information. 

Then, field studies allow on-site recognition of relevant geological 
features. At this stage an inventory ofwater resources can be carried out 
to show the expert other fundamental parameters such as the thickness 
ofthe weathered zone or the position and variations ofthe watertable 
level. Moreover a discussion with the village authorities will allow the 
socioeconomic demands of the village to be taken into account. Finally 
geophysical exploration methods are used to obtain complementary 
material on the character of formations. The electrical resistivi ty method 
is a major geophysical tool used in groundwater exploration efforts and 
the results derived from such studies will reinforce the basic set of data 
collected. 

When all these tasks have been scheduled (Data Gathering Process 
on Figure 1), the specialist is confronted wi th a set ofintricate data (Basic 
Data illustrated on Figure 1), some ofthem being highly relevant for the 
current situation and some others presenting only a relatively low 
significance. It is worthwhile to select among the available information 
those meaningful for the current context (i.e., first order decisional 
variables) and to exhibit a cognitive model that will enable us to handle 
more general concepts such as the quality of the groundwater intake or 
the interest ofthe reservoir (i.e., secondary order variables). 
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I t hel ps the later classification of a region into areas of good, fair, and 
poor groundwater prospects and represents a basis of the decision
making process. The HYDRO LAB system developed corresponds exactly 
to such an approach and we shaIl see that it reproduces the data 
collecting phase as a task scheduling process in the computer science 
sense, and that the system's attention is focussed on the relevant 
decisional variables and associated interpretative models to achieve the 
matching with analogical solutions and the generation of second-order 
variables suitable for the recognition ofthe generic solutions. Finally the 
results are expressed in terms of decision-making parameters giving 
help to the program manager. 

Among the aforementioned elementary data issued from the gath
ering phase, we propose now a comprehensive evaluation of the first
order decisional variables used by groundwater specialists to perform 
weIl-Iocation. 

Search for Decisive Hydrogeological First-Order Variables 

Among the many elementary data previously collected, not all of 
them are equally interesting for the Basement Context we wish to model 
here. Favorable ones are identified as connection tropes, as each ofthem 
can be considered as valuable for the assessment ofthe overall context, 
and obey a mental approach dose to synecdoche, a process permitting to 
establish a connection from some part to the whole. 

As such, we extracted from this set ten first-order decisional vari
ables believed to be the major meaningful hydrogeological parameters 
for the crystalline aquifer environment. Each of these first-order vari
ables can be used by experts as a partial but significant appraisal ofmore 
general concepts such as the amount ofwater intake or the potential of 
the water-bearing rocks, and represent different parts useful to address 
a wider objective later on described as second-order decisional variables. 
For each ofthese connection tropes, we implemented for the automated 
system expertise rules (i.e. the inferential or decisional process of the 
experts) and interpretative models (i.e. mental representation or statis
tical models of the analyzed process). 

The first-order decisional variables that have been retained for the 
model presented are inferred from the basic data (refer to Fig. 1). Figure 
2 illustrates some ofthe associated rules of expertise (referred to as Re.) 
and ofthe connected interpretative models (referred to as Im.) used for 
such a processing. It also shows the generallogicinvolved by the program 
to help the decision-making process, highlighting the data required, the 
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reasoning models involved and the functional organization ofthe various 
tasks to be carried out before a recommendation can be proposed by the 
system. 

Before giving more insight to the relevant first-order decisional 
variables, considering the Basement Context modeled here, it is worth
while to recall the conceptual model of the crystalline aquifer generally 
used by experts. In a crystalline environment, the storage and drainage 
functions coexist in each aquifer level, the weathered zone being essen
tially a storage layer and the bedrock being a drainage system. 

The conceptual model of crystalline aquifer, which generally is 
accepted, is made of a semiconfining overburden (saprolite reservoir)-

8 b 
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Figure 3. Conceptual model of aquifers systems in crystalline environment. 

A: weathered zone (Ea) (i .e., storage function corresponding to a saprolite reservoir) 
B: fissured zone (i.e., drainage function corresponding to the bedrock aquifer) 
C: fault zone (i .e., drainage function corresponding to the bedrock aquifer) 
D: two-layered groundwater reservoir 
E: single-layered aquifer of saprolite, fissures or faults 
F: equivalent model ofthe aquifer 
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this is mainly a storage reservoir, supplied from the surface--overhang
ing a fissure and fault confined aquifer (i.e., bedrock), draining the 
overburden and essentially having a drainage function. Although being 
not exhaustive, the aim ofthis scheme is to facilitate the reasoning. In 
this situation, it is considered that the aquifer system in the crystalline 
environment presents the structure of a two-Iayered (Fig. 3B, 3C, 3D) or 
even multilayered groundwater reservoir (Fig. 3A, 3F). However, single
layered aquifers of saprolite, fissures or faults (Fig. 3E) may exist 
separately (Bernardi and others, 1989). 

The position ofthe piezometric level: This variable has proven to be 
a reliable first-order decisive element. Referring to the previous concep
tual model, the piezometric level can be located either in a porous zone 
(weathered zone), in the fissured zone or in the fractured zone. In North 
Cameroon, we observed that the distribution of the piezometric level 
obtained from 527 observations shows that in 88,6% ofthe situations, in 
a crystalline environment, the piezometric level is located in the weath
ered zone, corresponding to the saproli te reservoir (Fig. 4) and (Fig. 2, Im. 
3). 

There is a strong positive correlation between the presence of a 
saturated saprolite environment and the yield values obtained in the 
water catchment facilities. In terms ofrules of expertise, the position of 
the piezometric level in the weathered rocks is a favorable element in the 
search for groundwater, and conversely its absence introduces a high 
percentage ofrisk (Re. 2). The position ofthe watertable and its associ
ated variations during the year (especially during the dry season) can be 
recorded thanks to the observation of the pre-existing traditional weHs 
dug by the viHagers. These data are provided to the expert system during 
the water point inventory phase (§ 3.2). 

Extent and thickness ofthe weathered layer: the in-situ weathered 
overburden thickness and the connections existing with the hydrody
namic characteristics of the aquifer, have been expressed thanks to a 
statistical approach by (Detay, 1987), using thousands of drillings 
carried out in the basement context. Probabilistic functions have been 
deduced showing the connections between the size of the weathered 
zone, the hydrodynamic properties of the aquifer measured by such 
characteristics as the yield or the specific yield, and the percentage of 
chances of obtaining the infra-yield (Fig. 5, Im. 4). The indications given 
by such graphics are connected to the decision-making parameters used 
by the expert system. We must add that the assessment ofthe thickness 
ofthe weathered layer involves a lot ofbasic data such as the depth ofthe 
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Figure 4. Position of piezometric level in different reservoirs. 
Gn = gneisses (205 observations); Gr = granites (256 observations); 
Vo volcanic (43 observations); Sc = schists (23 observations). 
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tradition al weHs (viHagers dig up to the compact and tough rock layer), 
the depth of the electrically resistant layer, on field observations, etc. 

A thorough study allows us to study the influence ofEa on the yield 
(Q), the specific yield (Qs), and the probabili ty of obtaining the infra yield 
(iQ), (Fig. 5). The yield expressed in m3/h, has been studied from 
pumping tests carried out on 540 operating drillings. The curve Q(Ea) 
shows the positive relation between the increase ofEa and the yield. The 
curve Q(Ea) is interpolated by the irregular rational function (1): 

(1) 
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Figure 5. Hydrodynamic characteristics and success rate according to thickness of 
saprolite layer (Wl represent thickness ofweathered layer, iQ for success rate (i.e., 
infrayield of 0, 75 m3lh), Q for yield in m3/h, and Qs for specific yield in m3/h/m). 

The curve Qs(Ea), determined from 176 measurements, shows a linear 
increase in the first 13 meters before dropping (critical threshold) to tend 
to reach values less than 1.1 0-1 m3/hJm beyond 35 meters in the saprolite 
zone. Qs(Ea) is interpolated by the regular rational function (2): 

o. 76Ea +0.34 
(2) 

The probability, expressed in percentage, to obtain a minimum yield 
(fixed here at 0,5 m3lh) has been determined from aseries of 715 
drillings. The curve iQ(Ea) is interpolated by the irregular rational 
function (3): 

(3) 



AI TOOLS AND TECHNIQUES FOR WATER ASSESSMENT 131 

The functions Q(Ea), Qs(Ea), and iQ(Ea) apply for positive or less than 
60 meters values ofEa (limits ofthe sampling). These results, accounting 
for the interpretative model Im. 4, can fit into the state-of-the-art as 
folIows: the flows in a fractured zone are directed by fissuring, they 
generally remain laminar and comply with the Darcy's law. The yield 
eoefficient being proportionate to the eube of the fissure width, the 
progressive blocking of the fissures in relation to the overburden in
erease, mainly clayed, results in a stabilization of the yield, and the 
exponential deerease ofthe specific yield when Ea increases. The proba
bilistie eurves proposed clearly show the critieal thresholds: 30 m for 
Q(Ea), 13 m for Qs(Ea). 

Influence ofthe thickness ofthe saturated weathered zone: Thanks 
to kriging, we have been able to represent geometrieally (Fig. 6) the 
relation between the thiekness ofthe saprolite reservoir, the importanee 
of the saturated weathered zone and the yield (Im. 8). The thiekness of 
the saturated weathered zone may be negative when the piezometrie 
level is situated in the bedrock. The yield seems to be direetly linked to 
the thiekness ofthe saturated zone. This relation re fleets the mechanism 
of the aquifer system. 

Figure 6. Influence of thickness of saturated weathered zone. 



132 POYET AND DETAY 

The water availabilityvariable: in view ofthe size ofthe catchment 
basin, a balance can be computed for the distribution of the meteoric 
water (measured from the class ofpluviometry the village is belonging 
to) between evapotranspiration (computed thanks to the Turc's formula 
for example), runoff(evaluated from measured yields at sampIe points of 
the drainage network), and effective infiltration (generally estimated as 
the unknown variable). This element which helps quantify the global 
amount of water available in the area, is not indicative of the water 
intake for a particular place as many other parameters should be 
considered including for example the properties of the sheet-type joint 
system or the relative development ofthe reservoirs (it will be done to 
assess second-order variables). Hut a careful examination shows that 
precise relationships exist between the infiltration capacity aforemen
tioned and the prob ability to get a positive drilling and this computation 
gives straightoffa way to classify the area studied within a context that 
will be reused by any other decisional variables. Moreover, useful rules 
of thumb can be extracted from these observations and for example a 
practical corollary is that for the basement context studied here, an 
empiricallink exists between the efficient rainfall and the hydrodynamic 
characteristics permitting to identify three domains where a minimum 
size of catchment basin is needed to get a positive drilling. These are 
respectively, 8 km2, 5km2, and 3km2 for the domains ofefficient rainfall 
ofbelow 125 mmlyear, between 125 and 500 mmlyear, andmore than 500 
mmlyear, respectively. The related rules are referred to as Re. 6 on 
Figure 2, and are connected to the interpretative model Im6 contribut
ing to the evaluation of potential groundwater supply, one of the most 
important second-order decisional variables. 

The drainage pattern variable: the size ofthe stream, its declivity, 
its profile, the shape of the bed and the morphology, are elements that 
permit an evaluation of groundwater recharge and discharge together 
with varying assoclated water levels, water quality, and pollution. This 
first-order variable is especially meaningful when the location is likely 
to concern underflow streams close to the village and when the aquifer 
is dependent mainly on the related marsh. In such a situation, the 
perenniality of the resources can be threatened during the dry season, 
and this variable is combined with other first-order variables such as the 
thickness of the weathered layer or the intensity of the sheet-type joint 
system, for example, to evaluate in a proper way the potentiality of the 
area. A complex arbitration between first-order parameters may be 
carried out, and the methods we used will be emphasized to illustrate the 
computation of second-order variables enabling generic reasoning func
tions (§ 4.6). Interpretative models (Im. 2) showing the connections 
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between the drainage pattern, the average depth of the crystalline 
basement, and the percentage of failure in the drillings, are helpful is 
such situations. 

The rock-type variable: the water-bearing characteristics of most 
crystalline rocks are controlled primarily by weathering and structure 
(Re. 4). Rock type alone usually is of secondary importance. Differences 
in weIl yields tend to reflect differences in degree of weathering or 
fracturing rather than inherent differences of mineralogy or fabric 
within the rocks (Re. 5). It should be noticed anyway, that the thickness 
ofthe weathered layer is significantly more developed in Western Africa, 
at the confidence threshold of 95%, on the granites than on the gneiss. 
This was established according to a statistical analysis we carried out to 
assess the significance of the difference of the means for two separate 
samples ofthese crystalline rock populations (respectively granites and 
gneiss). The only interesting issue is the potential implication of this 
variable on the development of the water-bearing reservoir. Rock type 
alone is not useful and so must be considered in a more general frame, 
including the amount and the properties of the weathering products 
generated. Special attention should be paid to the development of 
interstitial clays, apt to fill in the fracture network and to deteriorate the 
hydrogeological potential of the area. 

The sheet-type joint system variable: It can be studied from aerial 
photographs. There may be a correlation between fracturing and the 
drainage pattern which indicates the potential water-bearing fracture 
system. Rules of expertise can be based, in hard rocks, on the evaluation 
ofthe density and extent ofthe system of cracks and fractures. Schematic 
searches can be made in the catchment area for major multikilometric 
fractures where the maximum volume of saprolite reservoir can be 
drained (Re. 3). For some situations, and especially when the weathered 
zone is under-developed, the only chance to get a positive drilling relies 
on the optimal use ofthe fracture network and on the search for favorable 
connections between subnetworks that join together. Nevertheless, one 
should be careful when confronted with an over-developed network of 
cracks, faults, and fractures, clearly discernible on the aerial pictures as 
it shows the thinness of the weathered layer, which is an unfavorable 
indication. Once more, intricate connections are displayed here between 
most of these first-order decisional variables, and their integration will 
be the result of an aggregating process described in the next section. 

Longitudinal conductance variable: the research work carried out 
by our team since 1975 (Bernardi and Mouton, 1975; Bernardi and 
Detay, 1989) shows a relationship between the registered longitudinal 
conductances issued from the geoelectrical investigation (computed as 
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the ratio between the expected thickness of the layer and its measured 
resistivity), the percentage of failure in the drillings and the hydrody
namic characteristics ofthe aquifer (Table 1). The definite totallongitu
dinal conductance on the electrical soundings (from the position of the 
final ascending branch ofthe diagrams) corresponds to ~tlXt in which ~t 
represents the thickness of the different layers that compose the com
plex, and xt their resistivity. Table 1, established after 273 drillings, 
carried out in Togo, Benin, Central African Republic, Cameroon, and 
Burkina Faso, statistically indicates that relatively high yields corre
spond to the high values of the total longitudinal conductance and 
inversely, low yields correspond to the low values oflongitudinal conduc
tance. Rules of expertise and interpretative models can be deduced, and 
offer efficient and reliable support in the decisional process. 

The obvious meaning here is to seek for both conductive and thick 
layers, that represent of course favorable objectives. For more detailed 
information refer to Bernardi and Detay (1989). 

The geomorphological variable: the first stage in photointerpreta
tion and in the field study is a phase of observation. Topography has been 
determined to be an important indication ofwell yield in certain regions, 
as drillings on flat uplands and in valleys tend to yield larger amounts 
of water than those on valley sides and sharp hin tops. Rules of thumb, 
as elementary as (Re. 1): "in hard rocks move away from crystalline 
domes, mountain crests and sides which are non-water bearing" are 
nevertheless useful to avoid obvious mistakes sometimes observed. The 
lack of water on or near the steeper slopes can be explained by the fact 
that erosion has removed much of the weathered and more permeable 
rocks and by the intensity of the runoff. Water levels also are farther 
below the surface, because groundwater drains to points of discharge in 
adjacent lowlands. This decisional variable helpful in itself (making it 

Table 1. Relationship between yield, success rate and longitudinal 
conductance (Im. 7) 

Conductance Villages Success rate Yield 
(mho) (%) m3/h) 

info to 0, 1 48 info to 25% info to 1 
0,1 to 0, 2 61 78 % 2 
0,2 to 0,5 88 98 % 2,8 
0,5 to 2,5 76 66 % 3,5 
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Figure 7. Hydrodynarnie characteristics and success rate according to depth of 
drilling in basement complex. 

possible to avoid incredible errors), is profitable fully when coupled with 
some of the previously described first-order variables (Im. 1). 

DqJlh 
Im) 

The depth ofborings - is there an optimal depth ?: this variable is the 
only one the operator can influence. To attempt to answer this question 
we worked on the depths of penetration into the crystalline basement 
itself (i.e., the total depth of the boring minus the size of the weathered 
zone). With 427 borings as a starting point, we calculated the depth of 
penetration into the crystalline basement by 5-meter segments of in
creasing depth, and we calculated the average yield in cubic meters per 
hour (m3/h) per segment (Fig. 7). An interpretative model has been 
deduced (Im. 5), showing the relationship between weIl yield per unit 
length ofwell penetration in the aquifer. It shows from 5 to 50 meters of 
drilling into the crystalline basement a negative relationship between 
the increase in depth and the increase in yield and from 50 to 60 meters 
a positive relationship. The water production per meter ofwell decreases 
rapidly wi th an increase in weIl depth. The optimum depth ofwater wells 
in crystalline rocks is determined mainly by economic factors unless the 
geological structure is known in detail. 
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Second-order Variables 

Each of the first-order variables previously recognized, and some of the 
basic data themselves can be used to match the current context with 
reference situations stored from water-supply programs, and thus lead 
to a type ofreasoningnamed analogical inferences. Nevertheless, to take 
fuH advantage ofthe expertise embedded within the cognitive model it 
is worthwhile to assess second-ordervariables which represent a compil
ing of the overall knowledge available and of the interdependencies 
observed between individual first-order variables. This integration leads 
to two essential second-order variables, which aims at analyzing the 
water intake and the potentialities of the water-bearing layer considered 
as a target reservoir. The way in which this integration is achieved reHes 
on a formal framework entitled multiple objective decision-making 
theory, tailored to handle the location problem, and permitting the 
aggregation ofmultiple criteria leading to the aforementioned two main 
second-order variables. Formally, a criterion aims to summarize, thanks 
to a function, the assessment of an action on various consequences. A 
criterion gis a function providing real values, defined on the set A of the 
possible actions so as to compare the result oftwo separate actions a and 
b, thanks to their functional result g(a) and g(b) (i.e., two real values). 
The criterion g leads to assert the foHowing statement: 

g(b) ~ g(a) => b Sg a (4) 

where Sg is a binary relation having a semanti.c such as "at least as good 
as", concemed with the consequences mastered by the g criterion. 
Referring to the meaning ofthe previous definition ofthe relation Sg, b 
Sg a can cover situations ranging from indifference (b Ig a) to strict 
preference (b Pg a). Using the model ofthe true criterion it is possible to 
distinguish these situations stating that: 

g(b) = g(a) <=> b Ig a 
g(b) > g(a) <=> b Pg a 

(5) 
(6) 

According to the strong assumptions made when defming both the 
criterion (i.e., here the g function) and the consequences ofthe actions, 
it is relevant to consider two thresholds making it possible to define the 
pseudo-criterion model. In such a situation we can replace the previous 
definitions by: 
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g(b) = g(a) <=> b Ig a si g(b) - g(a) ~ qg(g(a» (7) 
g(b) > g(a) <=> b Pg a si g(b) - g(a) > pg(g(a» (8) 

The situation not covered by these formulae: 

qg(g(a» < g(b) - g(a) < pg(g(a» (9) 

corresponds to the shallow preference Qg defined as an undetermined 
situation ranging from indifference to strict preference, where the func
tions qg and pg are referred to as the indifference or preference threshold. 

For a criterion to be useful it is necessary to defme in an accurate 
way the exact process making it possible to associate for each potential 
action a, the real number g(a) characterizing the performance of this 
action according to the selected criterion. To illustrate the approach, let 
us consider the situation where the criterion g aims to handle only one 
consequence, a measure of which is 't. Usually, this parameter is not 
exactly known; an appraisal is given by its probability distribution, 
where [pa(g), pa(g)d't] is the prob ability range when the parameter is 
enclosed between 't and 't+d't. It is possible to compare various actions 
according to their mean values of't, expressed for't enclosed between m 
andMby: 

M 

g( a) = J 't Pa (g( 't» d-c (10) 
m 

Of course, this approach can be unsatisfactory considering the 
observed standard deviations. An action a can be preferred to an 
intrinsically "better" action b (i.e., g(b) > g(a» ifit is characterized by a 
sm aller standard deviation (i.e., o(pa(g» < o(pb(g» ). Thus in this 
situation action b leads to a better value for the consequences (i.e., 
according to the probability measure), but with a greater uncertainty. To 
handle this difficulty we use a monotone transform u( 't), characterizing 
the semantic attached to the measure of 't: 

M 

g(a) = J u( -c) Pa (g( -c» d(-c) (11) 

m 

To properly use such type of criteria it is necessary to determine 
correctly the function u( 't) and to characterize the probability law in a 
realistic way. 
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Of course, an isolated criterion is in itself not significant, and to 
achieve a relevant assessment of second-order variables it is necessary 
to develop a more detailed model based on multicriteria analysis. Let us 
consider now a family ofcriteria, each one ofthem concemed only with 
an homogeneous (set 00 consequence(s). The result is to model second
order variables as more complex criteria coming from the aggregation of 
some ofthe n individual criteria ofthe family F. The problem now is to 
be able to discriminate actions taking into account the entire set of 
criteria applying to them, thus achieving the performance aggregation. 
Let us define the relation S for the set of actions A, such as a S b stems 
for the action ais at least as favorable as the action b. The first possible 
reasoning to achieve aggregation is to consider the set of concordant 
criteria C(a S b) with the proposition a S b. 

This approach relies only on the ordinal properties of the assess
ments made using the performance table built up given the criterion 
results. But one can notice that some conflicting criterion(s) can be so 
important (i.e., g(b) » g(a)) that even if a majority of concordant 
observations was respected to assess the reliability of the proposition, 
some doubt can exist and the proposition can be rejected as adefinite 
threshold is stated. Obviously this observation leads to the definition of 
substitution rates between the criteria to establish the way in which an 
increase of value x on the conflicting criterion i is balanced with an 
increase ofy on the concordant criterionj. 

Let us consider the well-site selection, the situation where we 
aggregate in two synthetic criteria (i.e., water-supply favorability and 
water load-bearing structure capabilities), the overall set of primary 
criteria (i.e., first-order variables). An aggregation function V is defined, 
stating: 

g(a) = V(gl(a), g2(a), ... , gn(a)) (12) 

Once this formulation is asserted, it is possible to compare any action in 
terms ofindifference, strict preference (or shallow preference if discrimi
nation thresholds were introduced), and to proceed to a prescription (i.e., 
here we evaluate the two main parameters on which the decision is 
based) according to the alpha problematic described in Roy and Bouyssou 
(1988) (i.e., selection of a restricted set of satisfying actions or satisfe
cums). The aggregation function generally takes one of the following 
forms: 

g(a) = ~ k. g. (a) L J J 
j=l 

(13) 
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or 

g(a) = ~ k. v. (g.(a» L J J J 
j=l 

(14) 

where the kj are positive coefficients and the vj are monotone and strictly 
growing functions. This approach requires that there remains no incom
parability between the criteria and that substitution rates could be 
defined accurately. Let us state that the substitution rate between the 
criterion gj and gh at the point: 

(15) 

of the space performance is the variation on the criterion gj making it 
possible to balance a variation of reference on the criterion gh. If we 
assess a variation on gh ofone unit, the substitution rate is the number 
such that the action characterized by the performances at point gO is not 
different than the action having the performance such as: 

(16) 

thus leading to express the substitution rate in an additive model such 
as: 

(17) 

or if some derivative conditions are satisfied, and the variation on the 
criterion is such that gh->O: 

5V(g) 5V(g) 
r jh (g) = B(g.) - 5( ) 

J gh 
(18) 

According to Equations (13) and (14) it is possible to compute the 
values ofthe second-order decisional variables, thus involving the sub
stitution rates defined for the various criteria as stated by Equations (17) 
and (18). The predicates water-intake-favorability (VI) and 
water-bearing::-favorability (V2) are in charge of this task and the 
variables VI and V2 returned by the activation ofthe relevant PROLOG 
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clauses make it possible to assess the performance reached by the 
current situation for these two decisive and aggregating variables. 

Decision-making Parameters 

Proper weIllocation, however, is but one of a number of problems 
facing the prospective weIl owner. Poor water quality, biological con
tamination, future lowering of water levels in weIls, and improper 
completion methods are some of the many problems dealt with fre
quently by hydrogeologists. To make relevant recommendations, the 
hydrogeologist uses a decision-making process. In order to make the 
expert system operational we undertook the task of quantifying decision
making-parameters (Dmp.). 

* 

* 

* 

* 

* 

We defined: 

First-order parameters, which help in the decision to set up weIl 
location studies. Figure 5 indicates the probabilist evolutionary ten
dencies of the hydrodynamic characteristics according to the thick
ness ofthe saprolite reservoir. The utilization ofthese graphs makes 
it possible to do the following: 

Dmp. 1.a: evaluate the percentage of chances of obtaining the 
infrayield. I t measures the boring risk as a function of the thickness 
of the saprolite reservoir; 
Dmp. 1.b: evaluate the average potential yield limit of the future 
wells; 
Dmp. 1.c: evaluate the average potential specific yield limit of the 
future weHs. 

Second-order parameters, which help in the decision-making process 
when carrying out the drilling. Depth and cost are second-order 
decision-making parameters. They intervene not only from an eco
nomic point ofview, but also are decisive in the potential failure or 
success of the drilling process. Figure 6 permits to do the following: 

Dmp. 2.a: evaluate the chances of obtaining the infrayield. It meas
ures the boring risk as a function of the depth of the drilling; 
Dmp. 2.b: decide to what extent it would be opportune to continue the 
boring or whether it would be better to stop drilling, taking into 
account the finance available for the project; 
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* Dmp. 2.c: evaluate at each moment by scales of boring depth the 
average yield and the average specific yield and their evolutionary 
tendencies. 

Third-order parameters, which help in the decision-making 
process to design the weIl equipment and to use properly 
completion methods. 

Following the project requirements and the water needs, these 
decision-making parameters help the user to take the right decision. 

Task Analysis 

As a brief summary to this cognitive analysis, first-order decisional 
variables and their associated interpretative models help to define a 
basic assessment of the context allowing a low-Ievel matching with 
characteristic situations according to metonymy, second-order deci
sional variables lead to a higher level diagnosis based on the recognition 
of generic models using synechdoche, and decision-making parameters 
occur as operational recommendations handling the hydrodynamic 
characteristics of the wells and the economic factors. 

This cognitive model represents the fundamental framework used 
to develop the HYDROLAB consultant, and the system's architecture 
reproduces at the software level these cognitive components and the 
links observed. 

THE EXPERT-SYSTEM APPROACH 

In troduction 

Expert systems come from applied research in artificial intelli
gence. Computer-aided software aims to help in the decision-~aking 
process, and are designed to solve complex problems while trying to 
imitate human reasoning. Unlike mathematical or stochastic models, 
which operate on precise numerical data, expert systems mainly use a 
symbolic representation ofthe problem, known as a knowledge base and 
an associated chain ofreasoning called strategy ofinference. Neverthe
less, coupled expert systems may solicitate the services of numerical 
models to gather and compute specific data. 

To make the presentation ofthe HYDRO LAB expert system under
standable we refer where possible to the concepts described in section 3 
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and summarized in Figures 1 and 2, such as the Re., the Im., and the 
Dmp. previously described. It has not been possible to overview the 
entire HYDROLAB process which is about 5500 lines of PROLOG 
language (Colmerauer, 1983; Clocksin and Mellish, 1984; Warren, 1977; 
Borland, 1986). We have to refer to other Re. or specific questions Sq. 
which we have not been able to describe in this paper. We apologize for 
this, for more information please refer to authors' references. 

System Overview 

From an operational viewpoint, the start-up and the use of the 
system is extremely simple. The useris encouraged to volunteerinforma
tion in naturallanguage with HYDROLAB in order to provide various 
parameters that correspond to the data gathered for the given environ
ment (Fig. 8). 

From a functional viewpoint, the system identifies the hydrogeol
ogical context and evaluates the nature ofthe risk in using the described 
Im. to recognize different sorts of solutions. Depending on the signifi
cance of the risk it may reconsider its approach and ask for additional 
information on some point or other it considers important, before making 
a diagnosis. 

r 
Interac:tlue wlndow of the EHpert system 

My name is HVDROLAB - I am a hydrogeologist consultant 
My domain: groundwater location strategy 
Would you like to use the automatie demonstration mode? 

Help wlndow and/or c:urrent rea.onlng wlndow 

HVDROLAB ~ccepts answers in natural and technicallanguage 
HVDROLAB IS devoted to computer-aided deeision and 10 
computer assisted learning support. 

Control panel 
Number_oCstates State_number Branching_tree_factor Number _oCsolution. 

5 5 0 0 
Depth_in_search_tree Current....goal Current_context Rule Prob. 

5 taskJist Planner 624 sys. 
\.: 

Figure 8. HYDROLAB startup screen. 
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run :
initializations, 
/* ... */ 
planer, 
I . , 
/* ... */ 
fundamental_inferences(State_depth), 
/* ... */ 
conclusions, 
shutdown, 
browse results. 

Figure 9. First clause of HYDROLAB expert system. 

From an interactive viewpoint, thanks to the system windowing it 
is possible for the user to understand the objectives followed by the 
software at any time, and to inquire about the implications of questions 
that have been asked. These functions confer to HYDROLAB computer
assisted learning (CAL) capabilities, moreover the system provides help 
facilities adapted to the type ofrequest emitted by the operator. 

Two types of solutions can be given by HYDROLAB: analogical ones 
are related to referential databases storing descriptions of local hydro
geological knowledge (i.e., case studies), and generic solutions provide a 
model offavorability for a given problem, based on abstract hydrogeol
ogical concepts (i.e., waterintake, water bearing, etc.). Finally, decision
making parameters give technological information, derived from the 
adjustment of statistical laws for the observed distributions for large 
water-supply programs (i.e., thousands of drillings), enabling the user to 
forecast some ofthe drilling properties, thus representing a decisive help 
to the difficult location problem. 

Description and Start-up 

The system is composed of three main modules, as shown in Figure 
9, a planer providing a way to trigger the tasks recognized during the 
cognitive analysis, an inference module devoted to the solution recogni
tion, and a set of utilities allowing the display of the results. 

The initial PROLOG dause to be evaluated is "run" where the /* ... 
*/ pattern stands for many suppressed other clauses (Fig. 9). We 
reproduce here the PROLOG code, where predicates are English state
ments (original code is French), and variables to be unified are concepts 
enhanced by upper-case letter (PROLOG convention). Initializations, 
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amongotherfunctions, aim toverifythat the location submittedis within 
the scope of the program, and reject any proposal not conforming to the 
system's target (i.e., North Cameroon). 

Data-gathering Phase 

The planer is an important component, its role being to recognize 
the context encountered and then to trigger the relevant set of actions. 
The first step is to discriminate the context, that is, is the problem 
submitted corresponding to a basement, sedimentary, or mixed environ
ment?, then to ensure that it will never be possible to reconsider this 
statement, the repeat clause avoiding backtraclring until that point. As 
we emphasized in the cognitive analysis, reasoning is so exclusive for 
such different contexts that the system has to know soon ifthe cognitive 
model developed in this paper is relevant for the case submitted (i.e., 
basement context), or ifit needs to apply a regionalized reasoning based 
on the geographical distribution of productive sedimentary layers, pre
viously classified for each country considered (topics not considered in 
this article). Finally, according to this context selection, the software 
activates the control for the supposed context (Fig. 10). 

The control clause is only a way to select a plan depending upon the 
filter Assessed_context (Fig. 11). The proper clause is selected among the 
three possibilities, the plan is retrieved (stored after its elaboration 
within the dynamic PROLOG database), and then scheduled. The slash 
(i.e. /or !) indicates that once the right clause is selected (and a plan is 
selected), the system will never reconsider other pending selections (i.e. 
remaining clauses). 

planer :-
/* ... */ 
discrirninate_context(Assessed_context), 
/* ... */ 
repeat, 
retract_backtrack, 
control(Assessed_context), 

Figure 10. Planer discriminate probable context and schedules relevant set of tasks. 
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control(basement) :
basement_task_agenda(List_of_task), 
scheduler(List_of_task), ! . 

control(sedimentary) :
sedimentary_task_agenda(List_of_task), 
scheduler(List_of_task), ! . 

control(mixt) :-
mixt_task_agenda(List_of_task), 
scheduler(List_of_task), ! . 

Figure 11. Control c1ause permitting selection and triggering of adequate plan. 

The List_oCtask variable is a just a list of symbols, each of them 
being the name to be used to match with the filter of a task entry. This 
is an interesting property, in so far as the list is constructed dynamically 
and leads to a reactive behavior, using the data to pilot the control, the 
code itselfbeing compiled and needing no runtime interpretation. The 
processing of that list, following the easier framework we developed, is 
straightforward, andjust needs to satisfy a recursive call of the scheduler 
clause. For each head ofthe task list, the task predicate is invoked using 
the Task variable as a filter to retrieve selectively further suited clauses, 
and the processing ends when no symbol is left within the task agenda. 
In that situation we slash again, no pending selections having to be left 
here (Fig. 12). 

For each task symbol extracted from the task agenda, a generic 
clause is used to process the task call. Three clauses are used to 
implement this function in a compact way, moreover allowing powerful 
control facilities, such as local or remove backtraclring within the stack 
used to push and pop the tasks. The first clause is used to push the tasks 
in the stack, thus making it possible to go further in the selective and 
context-driven data collecting process, representing the first activity to 
be achieved (refer to Fig. 1). Variables such as Goal, Context, Rule, 
Proba, and Message are unified for the current task, then used to update 

scheduler ( []) : - ! . 
scheduler ( [Task I Q]) .

task(Task), 
scheduler(Q), ! . 

Figure 12. Scheduler c1ause a1lowing processing oftask agenda. 
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For each task to be scheduled, once the Answer corresponding to 
Message is acquired, the system goes to the task_entry clause. If the 
~riggering of the task is requested by the user (i.e., the frontchar of the 
tracking. Thus ifthe user wishes to return to a previous point in the past 
dialog (i.e., to change his mind for any given value or parameter for 
example), the task_entry predicate will fail before entering the task_entry 
clause, and will assert a backtrack fact within dynamic memory if a 
remote backtrack call was detected (i.e., operator will backtrack more 
than one step before), leading to pop from the stack as many task entries 
as necessary to reach the desired action. None of the two other clauses 
will be at that point eligible whatever happens, and the system will have 
to come back from at least one recursive call (i.e., thus popping the stack 
of the active tasks). Then either a backtrack fact has been introduced 
within the dynamic database, and the system clears the work previously 
done, then slashes (!) and fails until it reaches the right remote task and 
finally uses the third clause when the desired task is reached, or directly 
enter the last and third clause in a step by step backtrack to achieve a 
new recursive call for the proper task (Fig. 13). 

task(Task_name) :-
get-pannel(Task_name, Goal, Context, Rule, Proba), 
get_message(Task_name, Message), 
update_blackboard(Goal, Context, Rule, Proba), 
shiftwindow(2), 
print_optional_message(Task_name), 
change_activity(active, 2), 
task_entry_verification(Message, Answer, Task_name), 
change_activity(inactive, 2), 
task_entry(Task_name, Answer) . 

task(Task_name) :
backtrack(Symbol), 
Symbol <> Task_name, 
clear(Task_name), /* destructive backtrack */ , . , 
faH. 

task(Task_name) :
not(generated_backtrack(Task_name», 
clear(Task_name), 
retract_backtrack, 
task(Task_name) . 

, . , 

Figure 13. Task generic entry providing powerful control facilities. 
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task_entry(Task_name, Answer) :
frontchar(Answer, 'y', _), ! , 
sub_task(Task_name). 

task_entry(Task_name, Answer) :
frontchar(Answer, 'n', _), ! , 
negative_optional_actionCTask_name). 

task_entry(Task_name, Answer) :
backtract_solicitatedCAnswer ), , ., 
retract_backtract.-,gen erator, 
assertz(generated_backtrack(Task_name», 
fail. 

task_entryL, --> :- ! . 

Figure 14. Task_entry predicate based on naturallanguage analysis to provide 
control functions. 

the system interface control panel thanks to the update_blackboard 
dause. An optional message can be printed, then the system switches its 
activity level to trigger the control facilities providing access to back
Answer is 'y' for yes), the sub_task predicate is reached. In such a 
situation, it is ofmajor importance to slash (1), in order to suppress any 
other backtracking possibility that could be generated if the sub_task 
predicate was to fail. 

Ifnot, two situations can arise: either the operator does not want to 
consider this action and HYDROLAB can decide to achieve some comple
mentary optional actions depending on the current task, or the natural 
language analysis ofthe Answer shows that a backtrack solicitation has 
been requested (i.e., step-by-step or remove) and the software slashes (l) 
to suppress any other clause to be used, then assert a 
"generated_backtrack(Task_name)" fact within dynamic database, and 
finally fails so as to make the entire task predicate call unsuccessful 
(refer to explanations given for Fig.14) In such an instance the process
ing will be reactivated at the task predicate level. 

From that point, for each sub_task the required elementary data are 
gathered and asserted within the PROLOG dynamic database, thus 
making it possible to assess the values of the first-order decisional 
variables. 

This process goes on until the blackboard is supposed to be filled. 
Then the first inferential process can start, leading for the best situations 
to the immediate recognition of analogical solutions (Fig. 15). 
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HYDROLAB® - The hydrogeologist expen system consultant - V. 2.0 

~~ ------ --_ ... 
umber of SUIlCS Statc number Branching trcc factor Number of solutions 

88 88 6 Rulcs 0 Prob Dcpth in scarch trcc Cuercm goal Cuercnt cootcxt 
41 Rcsistivily Gcophysics 866 I 

Softwarc Engineering by ? POYET and Hydrogeological Expertise by M. DETA Y 

Figure 15. Example of HYDROLAB screen display during matching phase in 
analogical solution tree. 

Inferences, Matching, Dynamic Planning 

Referring to the section on "Description and Start-up"and Fig
ure 9, one can see that the next step is to trigger the inference 
mechanisms both to produce the remaining reliable first-order deci
sional variables, and moreover to recognize analogical solutions using 
metonymy. This work is done thanks to the fundamental_inferences 
predicate, written so as to activate all the possible inferences. 

Once an inference has been made, the predicate fails, then back
track generates next inference, and the process repeats until the last one 
is reached. The predicate then is satisfied using the second dause, and 
the system slashes (!), (Fig. 16). 

The "inferences" predicate is subdivided into four dauses. The first 
one is straightforward and directly matches with the analogical solu-

fundarnental_inferences(State_depth), 
inferences(Prof_etat) , 
fail . 

fundarnental_inferences( ) : - ! 

Figura 16. Triggering ofinferential mechanisms. 
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inferences(State_depth) :-

/* Matching with analogical solutions */ 

/* set of fuzzy predicates enabling the fuzzy matching 
of the current situation with each database reference 
considered, thanks to first order decisional 
variables, 
leading for each to a global matching level */ 

/* Solutions recognized are asserted within PROLOG 
dynamic memory database */ 

Figure 17. First clause ofinferences predicate matches with analogical solutions. 

tions stored within the databases of drillings to be considered as refer
ences (i.e. representative case studies). Side effects are represented 
mainly as screen update, and tree structure displays. This first dause is 
applied for all the known references (Fig. 17), until a solution can be 
discovered by fuzzy matching (Poyet and Detay, 1989c, 1989d), thus 
satisfying the inference predicate. In this situation, first-order deci
sional variables enable the system to recognize a typical pattern, and the 
software directly j um ps to the cond usions, and expresses some forecasts 
according to the decision making parameters. 

Otherwise, the second dause is used, once a new plan has been 
triggered to complement the basic data and the set of first-order deci
sional variables (i.e. this is the purpose ofthe third dause), to assess the 
favorabili ty ofthe water intake (VI) and ofthe water-bearing layer (V2), 
before scheduling the generic inferences based on these second-order 
decisional variables. 

The variables VI and V2 are the result of a complex evaluation ofthe 
first-order decisional variables to be able, finally, to summarize the 
favorability thanks to two numerical parameters, allowing the discrimi
nation of only one generic solution using synechdoche (Fig. 18). 

inferences(State_depth) :-
complementary-plan , 
fork(State_depth), 
water_intake_favorability(Vl), 
water_bearing_favorability(V2), 
generic_inferences(State_depth, Vl, V2). 

Figure 18. Second clause aims to assess water intake and water-hearing favorability. 
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inferences(State_depth) :-
fork(State_depth), 
not(solution(_, _», 
not(complementary-p1an), 
assess_complementary-p1an(Set_of_actions), 
/* ... */ 
scheduler(Set_of_actions), 
/* ... */ 
inferences(New_state_depth) . 

Figure 19. Third dause collects proper complementary actions and enters recursion to 
trigger them. 

If the third clause is reaehed, the system knows that it was 
impossible to reeognize an analogieal solution (Le. first clause failed), 
and that a complementary gathering plan has not yet been done (Le. 
seeond clause failed beeause the faet "complementary_plan" was not yet 
asserted within PROLOG dynamie memory). 

So, HYDRO LAB assesses a list of eomplementary aetions to be 
aecomplished, and returns a list of symbols, the Set_oCaetions variable, 
used to enter a recursive eall of the seheduler predieate, to ensure the 
triggering of the new plan (Fig. 19). Finally, the system makes a 
reeursive call to the inferences predieate, thus restarting a eomplete 
phase of deduetion, beginning with analogie models, then as a eomple
mentary plan was achieved with generic ones (i.e. clause 2). 

When none of the previous clauses is applieable, the system must 
reeord a reasoning failure, this is the purpose of the fourth clause 
(Fig.20). 

Once solutions have been reeognized and thus asserted in the 
PROLOG dynamie database either matched (i.e. analogie solutions) or 
built up from scratch by the system (i.e. generie ones), the fundamental 
task remains ofreporting them to the user. As the reeognition is based 
on a cumulative likelihood, an obvious pitfall would be to make a erude 
report whieh eould incorporate nonsignificant observations in that few of 

inferences(State_depth) :
fork(State_depth), 
not(solution(_, _», ! , 
/* ... */, 
assertz(solution(O, for_fun». 

Figure 20. Fourth dause registers reasoning failures. 
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rule(Number) :-
db_open(ruledba, "rule.bin", in_file), 
bt_open(ruledba, "btree_rule", Btreesel), 
str_int(Key, Number), 
key_search(ruledba, Btreesel, Key, Ref), 
ref_term(ruledba, listestring, Ref, Message), 
/* ... */ 
print_rule(Message), 
bt_close(ruledba, Btreesel), 
db_close(ruledba), ! . 

rule C) :
db_close(ruledba), 
fail. 

Figure 21. First type of role dause addressing database. 

them could account for the main part of the overall varianee observed. 
Thus, describing the work aehieved and explaining the reasons for whieh 
a solution was seleeted is areal inference process and HYDROLAB uses 
the rule predieate to earry out this reasoning process, either for explain
ing for eaeh first decisional variable taken into account factors leading 
to the analogie matching (Fig. 17) or, for seeond-order decisional vari
ables, reasons leading to a partieular generie ease (Fig. 18). This rule 
predieate is built of hundreds of elauses whieh can be subdivided in two 
main groups. The first set is made oftwo elauses only, aiming to retrieve 
a database message eorresponding to an expert preseription once the 
local corresponding reasoning has been done. The first one of these two 
elauses below uses the rule message number as a hasheode to generate 
a key making it possible to retrieve, thanks to the binary tree file, the 
location ofthe reeord within the database. Onee retrieved, this message 
is reported to the user, and the two databases (i.e. data and binary tree 
seleetors) are elosed. The second elause is just used to elose the database 
when the first attempt (i.e. first elause) fails (Fig. 21). 

The seeond group of elauses aehieves specifie reasoning funetions, 
aeeording to thematie goals, to infer and explain for eaeh first-order 
deeisional variable eonsidered the observed situation, the diagnosis 
made, and the related expert advice, to account for the analysis of second
order deeisional variables and report the preseriptions related to the 
water intake and water-bearing strueture favorability, and to assess the 
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proper context to trigger numerical codes able to forecast hydrodynamic 
weIl properties according to the decision making parameters. To illus
trate these concepts, we selected the rule numbered 749, aiming to 
provide a generic diagnosis related to the reservoir characteristics. 

Figures 22,23, and 24 illustrates, among many other hydrogeologi
cal patterns considered (i.e., many clauses have been suppressed), three 
possibilities deemed as representative of the type of analysis made to 
evaluate the reservoir properties. 

The first clause concludes on the presence of a generalized aquifer, 
verifying the existence of a sedimentary context (i.e., the scope of the 
implemented program is far beyond the cognitive model presented here 
only concerned with the basement), checlcingfor the absence of dry weHs, 
assessing the thickness of the wet layer, etc. (i.e. many clauses were 
suppressed for intelligibility), evaluating the correctness of the water 
intake and reservoir favorability, finally reporting the result of its 
analysis (i.e., the rule (700) predicate call), and fails to permit the 
triggering of the lasting rules. 

Figure 23, corresponds to the second clause for this rule numbered 
749, and proposes to check for the existence of underflow streams 
enabling the water recharge, in the absence of a generalized aquifer. The 
reasoning is based mainlyon the observation of dry weHs (for a short 
time), of restricted water intake, and of proper characteristics for the 
given marsh. 

rule(749) :-
context (sedimentary, _' _' _), % any kind of sedimentary context 
no_dry_well (Vtest), Vtest=l, % no dry weIl observed 
determine_water_table(Level), 
Useful_reservoir = Level + 10, 
wet_Iayer(Useful_reservoir, -9999, VI), 
VI = 1, % more than 10 meters of potential wet reservoir 
/* ... */ % many clauses suppressed 
water_intake_quality(Note1), 
Note1 >= 12, 
reservoir_quality(Note2), 
Note2 >= 12, 
rule(700), 
fail. 

% water intake is correct 

% reservoir is correct 
% we suppose a generalized aquifer. 

Figure 22. Second $Ort ofrules concerned with diagnosis-like functions (generalized 
aquifer situation). 
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rule (749) :-
dry_wells (0, 3, Vtest), Vtest = 1, 

% wells are dry less than three months a year 
/* ... */ % many clauses suppressed 

water_intake_quality(Note1), 
Note1 <= 12, % poor water intake 

presence_of_marsh(V1), 
V1 = 1, % there is a marsh 

marsh_distance (-9999, 2, V2) , 
V2 = 1, % less than 2 kilometers far 

perenniality_marsh (10, -9999, V3), 
V3 = 1, % water availability > 10 months 
rule (705) , % suspect underflow streams to produce water recharge 

% in the absence of a generalized aquifer 
fail. 

Figure 23. Underflow streams could account for observations reported. 

Going over many remaining clauses, Figure 24 is the last dause 
presented for this rule 749, and checks for the possible existence of a 
discontinuous fissured reservoir, mainly on the basis of the assessed 
waterintake quality and on the existence offractures and dry weHs. Real 
reasoning is far more complex, but we tried to illustrate this second type 
of rule predicates with a concrete example. 

This part ofthe real system is made ofhundreds ofrules, one set for 
each first-order decisional variable, one set again for each second-order 
decisional variables, and one for each decision-making parameter to 
trigger. HYDROLAB rules are written directly in PROLOG, leading to 
great efficiency as they are compiled by the PROLOG compiler in native 
code for the target machine. 

rule (749) :
dry_wells(O, 3, V1), 
V1 = 1, % wells are dry less than three months a year 
/* ... */ % many clauses suppressed 

water_intake_quality(Note1), 
Note1 <= 12, % poor water intake 
fractures ( ,_), % fractures (whatever their type can be) exist 
rule (710) , % suppose a discontinuous fissured reservoir 
fail. 

/* ... * / % MANY OTHER CLAUSES 

rule(749) :- !. 

Figure 24. Supposed existence of discontinuous fissured reservoir. 
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Results 

The results provided by this research are twofold and must be 
evaluated in terms of experience gained from the development and the 
validation ofthe system and ofbenefits arising from the services offered 
by the software. Let us consider first the policies used to validate the 
environment and then the results obtained during the operational 
utilization. Automatie validation techniques applied to lmowledge base 
integrityaim to guarantee the information consistency and to ensure the 
inference completeness. In that respect, research developments are 
mainly achieved in the formal context of propositionallogics for mono
tonie bases (Ayel, Piparc, and Rousset, 1986; Le Beux and Fontaine, 
1986; Pipard, 1988). Recent studies try to handle logics based on the first
order predicate calculus (Lalo, 1988; Rousset, 1987). Let us recall that a 
fact base is inconsistent if different values are encountered for the same 
property or attribute and that a rule base BR is potentially inconsistent 
if given a consistent fact base BF, the results provided by BF X BR are 
inconsistent; finally a rule base is declared incomplete if given a deduct
ible attribute A there exists v one of the possible values V(A) for this 
attribute, such as for any initial consistent fact base BF, the couple (A, 
v) never belong to BF X BR. HYDROLAB relies on a first-order logic, its 
dynamic fact base is nonmonotonie (i.e., facts can be suppressed and the 
information flow is not monotonically growing) and facts handled by the 
system are intrinsically inconsistent. These properties stem from the 
development policies used and from the application domain particulari
ties. Rules have been implemented thanks to the first-order logic of the 
PROLOG environment, facts can be suppressed as consequences ofrules 
(nonmonotonie behavior), and different values can be assessed by vari
ous techniques for the same attribute (uprising fact inconsistencies). As 
a consequence, no automatie validation techniques can be used to 
guarantee the system coherency, and the correctness ofthe program can 
only be assessed thanks to robust software engineering policies based on 
incremental development and proper logistics. An unrealistic validation 
process would be to check the system for the overall set ofnot necessarily 
absolutely coherent but maximum fact bases F, that is, built ofthe set 
ofundeductible facts supposed provided by the user, later saturating the 
fact base applying BF X BR and checking its coherency thanks to 
integrity constraints. This would not be arelevant process, observing 
that a subset ofF can be extracted easily thanks to semantic constraints, 
considering the domain covered by the system. This subset of the 
maximum bases (defined as including the maximum set ofundeductible 
coherent facts) can be used to check the system behavior for a represen-
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tative set of hydrogeological situations, thus allowing the knowledge 
base coherency to be proven for a representative set of validating case 
studies. One should notice that initial bases are not necessarily abso
lutely coherent as some inconsistencies arise according to the logic of our 
application, and the aim is not to get rid of all inconsistencies but to 
provide mechanisms for the program. As was emphasized in the cogni
tive analysis section, consideringforexample the depth ofthe crystalline 
basement, various estimations lead to conflicting values, coming either 
from the depth oftraditional wells, from an assessment ofthe thickness 
of the weathered layer, or from high-resistivity layers showed by geo
physical prospecting. We provided the system with reasoning policies to 
handle such conflicting parameters, but no provision was made to handle 
wrongvalues which could be provided on purpose by the user to evaluate 
the system robustness. The strategy previously described makes it 
possible to handle conflicting rules thanks to the test bases but does not 
cover the completeness of the rule set. 

A strict logistics was involved to achieve the prototype development, 
moreover taking advantage of robust software engineering policies 
leading to incremental and modularized implementation. The program 
requirements and prespecifications were established in collaboration 
with an expert. They were reused as a basis to establish a productive 
confrontation with different specialists coming from the many subdo
mains concerned by the decision-making process, thus enabling us to 
write detailed functional specifications leading to the first implementa
tion. Taking advantage of the large rural water-supply programs we 
carried out in North Cameroon (1250 drillings), in the Central African 
Republic (350 drillings), and in Gabon (500 drillings) leading to the 
gathering of really numerous data, we designed the maximum coherent 
bases to be used as test modules for assessing the rule coherency. 

Then the system was controlled as a practical exercise of a course we 
teach at the International Training Centre for Water Resources Manage
ment, at the N ancy National Geological Engineering School and at Nice 
University (France). The system then was presented to international 
congresses and modified to take into account suggested improvements. 

Finally it was possible to install the first operational environment 
in different African technical establishments such as the rural engineer
ing section ofthe Central African Republic and at Bangui University to 
collect a feedback from the effective daily practice ofthe software. It leads 
us to consider more industrial and in-situ problems, topics seldom 
covered by AI developments rarely going farther than the prototype 
stage in the majority ofknown projects (Yatabe and Fabbri, 1989). 
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Functional capabilities ofthe program are straightforward and lead 
to high-value services to handle the well-site selection. A working session 
with HYDROLAB is attractive for the users because of its ability to 
explain its own reasoning, to understand the questions asked in natural 
language, to explain its approach at any given time, and to undergo 
changes and acquire new data. But the real interest, of course, comes 
from the results provided by the system, which are expressed in terms of 
proximity to case studies (i.e., analogical solutions) and to generic 
descriptions of conceptual hydrogeological contexts (i.e., generic solu
tions). For each one of the solution types, the software explains its 
diagnosis, reports the observed semantic proximity and the rules in
volved to discover it, analyses the consequences of the decision-making 
parameters to forecast some of the hydrodynamic properties of the 
drilling once achieved. This clear macroscopic behavior of the expert 
system leads to a good operator understanding ofthe actions carried out 
by the software, probably accounting for the success encountered by the 
program for in-situ operations. Moreover its functional capabilities 
ensure high-success rates such as 80% in the situation of the drillings 
achieved underthe program control in areas such as the North Cameroon. 

CONCLUSION 

The problem of village and rural water supply has to be handled at 
a continental seale, and must take into account the diversity of the 
encountered situations thanks to flexible and intelligent tools. The 
behavior of these systems must be mapped on the steps followed by 
specialists when handling various geologieal contexts. Taking advan
tage of an exhaustive modeling ofthe available location strategies for the 
North Cameroon area including either sedimentary or crystalline base
ment seepages, we developed a eognitive framework permitting us to 
cope with a more generic approach reliable for the basement context 
whatever the area. 

We went through the identification of decisional variables of differ
ent orders and of decision-making parameters and we described the 
expert-system approach to model the process used by a hydrogeologist 
to carry out successfully drilling-sites studies. Taking advantage of the 
large amount of expertise formalized and of original knowledge modeling 
policies and software engineering teehniques, it was possible to develop 
an extremely efficient operational software with a high performance 
level on low-cost mierocomputers, a result which would not have been 
conceivable on large computers a few years ago. 
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We believe that in the near future the growth ofthis technology will 
make it possible to reduce considerably the cost of studies thanks to the 
training and the increased involvement of national experts in the 
development of their countries' water resources. Artificial intelligence 
therefore should be able to playa significant role in solving the water 
problem in Mrica especially within the scope of programs for village 
water supply. We hope that artificial intelligence will furnish material 
of both practical and theoretical interest to water resources scientists 
and also to those involved in water-resource assessments and planning 
for water-resources management. 
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ABSTRACT 

Hydrodat®: is a database system with reference to phreatic and 
running waters (more generally to liquid and condensate phases) and gas 
phases. This database system was written for personal computers 
running MS-DOS. 

The three principal data files for physical and chemical character
istics which the program runs (one for phreatic waters, one for stream 
waters, and one for gases), the calculation routines-some from the 
literature, others specifically processed-and the graphic elaboration 
(available through "Grapher" and "Surfer" of Golden Software) are 
controlled by procedures using mainly dBase IV language of Asthon 
Tate. 

The following points indicate the possible fields of investigations 
supported by the use of the database: 
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(1) fluid's geochemistry; 
(2) hydrochemical prospecting; 
(3) geothermics; 
(4) volcanology; 
(5) environmental control; 

MINISSALE AND BUCCIANTI 

(6) monitoring ofindustrial fluids. 

The program requires a minimum configuration of640 Kb ofRAM 
memory and is supported entirely by window-menu and window-help 
instructions. 

INTRODUCTION 

The wide diffusion of personal computers, including laptops, in 
particular the new 32-bit 80386 INTEL equipped models, has made 
these machines convenient and economical. 

Hydrodat®,whichwill be described and illustrated in the following 
paragraphs, is an example of relational database written using DB IV 
Asthon Tate language. It manages three data files of chemical analyses, 
graphic, and processing procedures. 

The data handled by this program are physical parameters and 
chemical data ofphreatic and stream waters-more generally liquid and 
condensate phases-and analyses of natural or industrial gas phases 
(Fig. 1). This database mainly res ponds to the needs of those concerned 
with fluid geochemistry, volcanic and geothermal fluids, springs and 
mineral waters, and stream waters. It also can be used for hydrochemical 
prospecting, chemical, and pollution monitoring in aqueducts, purifica
tion plants, etc. A further category to be processed by the program are 
isotopic data of fluid phases. In Figure 2 the window for groundwater 
data entry is shown as an example. 

A more recent version ofHydrodat® has been developed for manag
ing any type of environment al analyses data files. In this version, which 
runs all the graphic and statistic procedures of Hydrodat®, data entry 
windows and related units can be set up by the operator. 

DATABASE STRUCTURE AND 
DATA-EXTRACTION CRITERIA 

The input windows of the physical parameters and chemical species 
are divided into: 
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MAIN '-1E_NU-=--= REV'SE DATA C:::=~2I:~ 
EXTRACT DATA 

STREAMWATERS DATA 
NUMERIC ElABORATIONS 

GAS DATA BASE 
GRAPHie ElABORATIONS 

PRINTER OUTPUTS 

FILES MANAGER 

~ Opt ion I Enter/ -- ~ Seleetion Ese/«- ~ Ouit 

Figure 1. Starting window of program. 
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Y'c::J 

r t-I~ = Mo". pointer I A End = ConfIrm Input f Eac ::;: Prevloua acr.an I 

Figure 2. Window of data entry for groundwaters data-file. 
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(1) groundwaters (Fig. 2); 
(2) stream waters; 
(3) gases. 

MINISSALE AND BUCCIANTI 

The two phreatic and running water input windows differ for the 
quality of the data processed. In particular the main polluting agents, 
both organic and inorganic, have been considered in the stream water 
record. 

In the groundwater input window, pC02 and salinity (T.D.S.) of 
sampIes are calculated automatically at the time of data input and then 
are processable in their turn (Fig. 2). 

In the gas record the program automatically reports if, for any given 
gas sampIe, there is a corresponding analysis in liquid phase. Moreover 
in regard to gases, the program automatically calculates the ratio 
between the 3He/4He and 4°Arf36Ar values in the sampIe and the corre
sponding atmospheric values. 

For additional data input, the three main datafiles automatically 
fall into alphabetical order and selected input date order. This makes it 
easy to retrieve any sampIe for updating or deleting and, at the same 
time, it facilitates sequential extraction of data from the main data files 
and to process graphically the extracted files in time. 

Aseries of filtering procedures are provided by: 

(1) name; 
(2) code; 
(3) input date; 
(4) area code; 
(5) morpholocical code (hot spring, acid water, boiling pool, etc.; 
(6) chemical type (chloride, sulphide, or bicarbonate); 
(7) elevation or depth range; 
(8) temperature range; 
(9) salinity range; 
(10) time interval; 
(11) any association ofthe previous 10 parameters. 

They are released with the package, but every user can build easily 
his or her own procedure for extracting data to print or process. Descrip
tions for sampling areas, morphological types, etc., can be handled 
through accessory procedures that may or may not be transparent to the 
user. 
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...----lFILES MANAGER~ 

BAMPING AREA. 

TVPE OF SAMPLE 

FILE 's EXlAACTION PARAMETERS 

~ 
I DEUTE FilES 

IIG.WATERS I IU-'''' I 
DATA BASE 

I 8. WATERS IU -"11 
ELEMENTS 

GAS -IIU-'1I1 I 

CONFIRMI 8U-1". 

TOSCANA I VULCANO 

Tl. : Option Ente .. Sel.ellon Eie: Pr.v loul acr •• n 

Figure 3. Input window of Files Manager which runs secondary extracted files as 
wen as area's and morphological type's codes. 

Once aseries ofparameters have been selected (e.g., the mentioned 
time), the program makes it possible to extract from the main data file 
one or more secondary datafiles for further processing. Similar extrae
tion criteria are available for stream waters and the gas main databases, 
as weIl as for all databases, already mentioned for the recent generalized 
version of Hydrodat®. 

As previously said, the procedure uses codes for sampling areas and 
morphological types, whose description can be handled through acces
sory tables. In Figure 3 the handling of the mentioned accessory codes 
(sampling areas and types of sampIes), and of the extracted secondary 
datafiles (visualization of extraction parameters, deletion of extracted 
files) is shown. 

DATA PROCESSING 

Both graphie and numeric processing can be done on extracted files. 
The following is an example for groundwater data: 

(1) X-Y diagrams (including in time diagrams as in Fig. 4); 
(2) tri angular diagrams; 
(3) histograms; 
(4) Piper diagrams (only for groundwaters as in Fig 5). 
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For eaeh ofthe mentioned diagrams, the drawing, the modifieation 
of data and symbols, as wen as the monitored visualization and the 
output on plotter or graphie printer ean be done through the Golden 
Software's "Grapher" program instruetions. 

In the eartesian and ternary diagrams, it is possible to seleet 
variables, both singular physieal parameters and ehemieal species , as 
wen as algebrie eombination of speeies and numerie quantities [e.g.: 
log(a), aIlOO, Va, (a+b)/e., ete.J. 

In time diagrams (Fig. 4) the program automatieally selects the time 
seale on the basis of the age of samples. 

Na + K (meq/I) 
18 -r----------'----, 

Fe (meq/I) 
O.1-r-----------, 

14 

0.06 

10 

0.02 
6 

0 
1976 1980 1984 1988 1976 1980 1984 1988 

T(y) Tm 

12 
NH4 /H3B03 

60 
H3B03/Li 

8 40 

4 

1980 1980 1984 T 1988 
(v) 

Figure 4. Example ofin time variation X-Y diagrams. 
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-CI-.. 

Figure 5. Example ofPiper diagram output on plotter. 

Numerical processing provides elementary statistics on single 
variables: 

(1) the numbers of data; 
(2) the minimum value; 
(3) the maximum value; 
(4) the sum total ofvalues; 
(5) the mean value; 
(6) the variance 
(7) the standard deviation; 
(8) the % variation coefficient; 

and multicomponent statistics: 
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Table 1. Correlation coefficients 

** file = LARDEREL.WAT **** CORRELATION COEFFICIENTS ********* 25/05/1989 ** 

tCOCI 1.000 -.121 -.124 -.234 -.169 -.177 -.095 -.137 0.651 -.134 -.129 -.197 
HC03 1.000 -.111 -.069 -.093 -.136 -.103 -.029 -.122 0.814 -.127 -.084 
H2S 1.000 -.155 -.049 -.154 -.134 -.105 -.119 -.109 0.752 -.127 
Cl 1.000 -.143 -.071 -.163 -.154 -.227 -.040 -.132 0.550 
H3B03 1.000 -.127 -.046 -.107 -.178 -.105 -.054 -.129 
NH4 1.000 -.105 -.078 -.199 -.140 -.158 -.111 
g/v 1.000 -.095 -.122 -.116 -.150 -.127 
H2Sg 1.000 -.149 -.026 -.133 -.142 
H2 1.000 -.103 -.087 -.209 
CH4 1.000 -.121 -.063 
N2 1.000 -.152 
NH4/B 1.000 

Example on printer output of multivariate analysis Ccorrelation coefficientsl 

from secondary extracted file taken from the maln qroundwater data-dase. 

(1) multiple correlation coefficients calculation and display 
(Table 1); 

(2) cluster analysis with dendrogram display; 
(3) factor analysis. 

Single programs taken from the literature or specifically developed, 
allow the following calculations: 

(1) ionic strength of solution (Table 2); 
(2) activity coefficients and the activities of all species in solution 

(Table 2) 
(3) solubility product (Ka ) ofthe solution for calcite, anhydrite and 

fluorite (saturation condition for the solution in these mineral 
species (Table 3); 

(4) partial pressure ofC02 in solution; 
(5) temperatures calculated with the main chemical geothermome

ters in liquid phase for geothermal purposes (Table 4). 

Graphie processing provides presentations of parameters in areal 
distribution maps. For this purpose two numeric fields of relative 
coordinates (x,y) are available in each single input window (Fig. 2). By 
using these coordinates it is possible to generat&-by the commercially 
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Table 2. Activity of chemical species in solution 

** file = APUANE.WAT *ttttttttt A C T I V I T Y ttt*t****** 25/05/1989 *t 

SAMPLE 
CODE 
AREA CODE 
DATE 
TEMPERATURE (oCI 

Species 

Acqua nera 
16 
Apuane 
01/05/1989 
15.0 

ppm [MI 10<] [MI 

IONIC STRENGTH 
SUM OF ANIONS 
SUM OF CATIONS 
DrSCREPANCY 

a 

6.73 E-2 
60.39 meq./1 
61.25 meq./l 
1.41 % 

log (al 
-----+------------------------:2-----------------------------:2----------
1 N~ 1196.65 5.20 E_ 4 -1.2837 0.799 4.16 E_ 4 -1.3811 
2 K tt 17.90 4.58 E_ 3 -3.3394 0.787 3.6 E_ 3 -3.4434 
3 Ca tt 115.54 2.88 E_ 3 -2.5402 0.451 1.3 E_ 4 -2.8859 
4 Mg 34.93 1.44 E_9 -2.8428 0.489 7.02 E_9 -3.1535 
5 HS04-_ 5.33 E_ 5 -8.2733 0.799 4.26 E_ 5 -8.3707 
6 NaS04 7.99 6.71 E_ 6 -4.1731 0.802 5.39 E_6 -4.2686 
7 KS04_ 0.32 2.33 E_ 6 -5.6323 0.793 1.85 E_ 6 -5.7329 
8 C03 _ 0.35 5.82 E_ 3 -5.2353 0.419 2.44 E_ 3 -5.6128 
9 HCQ3 337.77 5.54 E_ 3 -2.2568 0.805 4.46 E_ 3 -2.3511 

10 HS 4.46 E_ 7 0.793 4.46 E_ 7 
11 H2B03-_ 0.01 1.95 E_ 7 -6.7104 0.799 1.56 E_ 7 
12 H3~i04 0.02 1.61 E_ 8 -6.7937 0.843 1.36 E_ 8 
13 OH t 8.92 E_ 6 -7.0496 0.793 7.08 E_ 6 
14 NH4 + 0.09 4.99 E_S -5.3015 0.787 3.93 E_ 5 
15 CaHC03t 5.6 5.54 E_ 5 -4.2563 0.812 4.5 E_ 5 
16 Mg~~03 3.64 4.28 E_ 5 -4.3685 0.799 3.42 E_ 5 
17 Fe 3.42 E_ 2 0.451 3.42 E_ 2 
18 Cl 1790.38 5.05 E_ 3 -1.2967 0.787 3.97 E_ 4 
19 S~4 205.32 2.14 E_ 8 -2.6701 0.408 8.72 E_ 8 
20 H 7.65 E_8 -7.1161 0.843 6.46 E_ 8 

-6.8078 
-6.8677 
-7.1502 
-5.4055 
'4.3468 
-4.4659 

-1. 4007 
-3.0596 
-7.1900 

2221 [.S-l'~ 6.46 E_ 5 0.430 6.46 E_5 
0.14 2.00 E_ 5 -4.699 0.820 1.64 E_ 5 -4.7854 

23 F-++ 1.64 E_ 5 0.793 1.64 E_ 5 
24 Sr 1.64 E_ 4 0.430 1.64 E_ 4 
25 cas04 14.73 1.08 E_ 5 -3.9658 1.000 1.08 E_5 
26 MgS04 10.23 8.51 E_ 4 -4.07 1.000 8.51 E_ 4 
27 H2C03 46.64 8.00 E_ 4 -3.0967 1.000 8.0 E_ 4 
28 H2S 8.00 E_ 4 1.000 8.0 E_ 4 
29 H4Si04 11.13 1.16 E_ 9 -3.9362 1.000 1.16 E_9 
30 NH40H 5.84 E_ 5 -8.2333 1.000 5.84 E_5 
31 H3B03 1.41 2.28 E_8 -4.642 1.000 2.28 E_8 
32 S102 2.25 E_6 -7.6472 1.000 2.25 E_ 6 
33 CaC03 0.35 3.54 E_6 -5.4508 1.000 3.54 E_ 6 
34 MgC03 0.12 1.45 E -5.8373 1.000 1.45 E 

-3.9658 
-4.0700 
-3.0967 

-3.9362 
-8.2333 
-4.6420 
-7.6272 
-5.4508 
-5.837.3 

Examp1e on printer output of activity coefficients and activities 
calcu1ated in a sampie of a secondary extracted file from the main 
groundwaters data-base. 
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Table 3. Saturation in calcite, anhydrite, and fluorite 

** file ITALIA.WAT ttttttttt S A T U RAT lOH S tttttttt 25/05/1989 t** 

SAMPLE Abano Terme log Kps log Ka 
CODE 14 
AREA CODE ItaUa calcite -9.162 -8.605 (oversaturatedl 
DATE 01/03/1989 anhydrite -5.373 -5.244 (oversaturatedl 
TEHPERATURE (oCI 83.0 fluorite -10.574 -10.130 (oversaturatedl 

Example on printer output of solubility products for the evaluation of 

saturation condition in calcite, anhydrite and fluorite, in a sample 

of a secondary extracted file taken from the main grounwaters data-base. 

Table 4. Temperatures (OC) evaluated with chemical geothermometers 
in liquid phase 

tt file = ITALIA.WAT ttttttttttt G E 0 T HER KOM E T R Y ttttttttt 25/05/1989 tt 

CODE SAMEILE Tcalc Tqtz THa-k l THa-K2 THa-K-ca TNa-K-ca-Kg THa-Li TLi 
2 

TK -Hg THg-Li 
------------------------------------------------------------------------------------
14 Abano Terme 80 110 182 144 167 82 628 96 399 
21 Acqua Borra 23 62 178 140 178 88 737 117 442 
35 Acqua Santa 30 68 158 116 147 69 81 
52 Acque Sante 39 73 54 3 80 69 92 
54 All I 154 112 161 30 94 
1 Aqui Terme 73 104 115 68 98 30 479 100 469 

36 Bagno Orte 23 62 300 297 33 33 344 45 198 
24 Bagnolo 71 101 370 402 59 59 738 182 63 108 
9 Bormio 46 81 252 233 4 4 503 142 24 59 

16 B. Romagna 39 75 97 48 118 78 218 182 79 166 
12 Caldiero 31 69 264 249 40 40 297 41 187 
32 canino 65 97 353 377 69 69 340 73 194 
48 Caronte N. 85 113 172 133 158 76 454 88 283 
50 Caronte S. 65 97 193 158 48 48 894 280 44 147 
20 Casciana 48 83 248 227 -4 -4 211 19 97 

Example on printer output of temperatures computed with chemical geothermometers in 
liquid phase in samp1es of a secondary extracted file taken from the main grounwaters 
data-base. 
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Figure 6. Example ofisodistribution map showing log Pc~ (calculated by program) in 
Italian thermal springs. 

available "Surfer" package of Golden Software--areal or three-dimen
sional distribution maps of aseleeted ehemieal variable (or eombina
tions) in certain areas, as shown in Figure 6. This type ofrepresentation 
of data ean be useful particularly in the field of geoehemieal prospeeting, 
and in monitoring defined areas (e.g., a hydrologie basin, an aqueduet 
network .... ete.), for environment eontrol purposes. 

Further details of Hydrodat® ean be requested to ECOSYSTEMS 
s.a.s. Via Mariti 10,50127 Firenze (Italy). 
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MINIDENT - SOME RECENT 
DEVELOPMENTS 

Dorian G.W. Smith and Heida Omoumi 
University of Alberta, Edmonton, Alberta, Canada 

ABSTRACT 

MinIdent is a command-driven program developed originally on a 
mainframe and now ported to a PC. Since its initial description, a 
substantial amount of new data and several new features have been 
added. In addition to information published on new mineral species, 
data have been included for about 700 presently unnamed minerals. A 
subset facility also has been added, as well as an extensive synonymy 
which provides abbreviated information and source references for some 
1500 synonyms, varieties, discredited minerals and species of dubious 
authenticity. A full mineral classification scheme also has been in
cluded. MinI dent-PC requires at least 560 kbytes of usable RAM, one 32 
Mbyte HD drive and a math coprocessor. 

INTRODUCTION 

The MinIdent database and software for mineral identification 
have undergone substantial development since their initial description 
(Smith and Leibovitz, 1984, 1986; Smith, 1986). Importantly, they have 
been ported successfully to a microcomputer (''MinIdent-PC'') and in 
addition numerous facilities have been added or improved. The database 
also has been substantially enlarged. These developments, which will be 
described on the following pages, have been implemented on both the 
mainframe and PC versions. At the present time both versions are 
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command driven, a mode of operation that seems to have retained the 
preference of a majority of serious scientific users of such software. 

GENERAL DESCRIPTION 

It has been said that the most important thing to know about a 
mineral is its name because this allows retrieval of all ofthe information 
that has been gathered through the years about that mineral. The 
MinIdent database is intended primarily for identification of minerals 
and retrieval of their associated data. A comprehensive list of the 
properties and parameters included in Minident was given in Smith and 
Leibovitz (1986). Numerical data consist of compositional, optical, and 
physical properties. In addition to these, abbreviated literature refer
ences, geographie locations, geological occurrence, and relevant remarks 
- particularly the hand-specimen characteristics - also are included. 
Summaries of properties are contained in displays. Alternatively, 
tabulations may be used to show the variations of properties and 
parameters of interest amongst any number of selected minerals. 

DOCUMENTATION 

MinIdent is documented thoroughly by comprehensive users' 
manuals for both the mainframe and the PC versions. These indexed 
manuals not only offer more complete explanations of the terms and 
commands that can be used but also provide examples oftheir use. In 
addition, extensive sections are included with worked examples illus
trating how the MinIdent software may be used for mineral identifica
tion and other purposes. 

The MinIdent (MTS) manual illustrates how the program and its 
database can be used with the AMDAHL mainframe computer at the 
University of Alberta. Access can be arranged to this computer and the 
MinIdent program using data communications networks such as DATA
PAC, TELENET, TYMNET, etc. The MinIdent-PC manual illustrates 
how the program and its database can be used with IBM-compatible AT 
clones or 386 machines. For successful operation, such computers must 
be equipped with at least 560 kbytes usable RAM, one 32 Mbyte (or 
larger) RD drive, and a math coprocessor. 
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HELP 

In line with most modern computer software, considerable effort 
has be made to ensure that the MinIdent program is "user friendly." 
Virtually all commands, procedures, and parameters are explained in an 
extensive HELP facility which can be accessed at any time from within 
the program by typing HELP (or?) followed by the term for which further 
information is required. A tabulation of all the terms that can be 
explained in this way can be obtained by simply typing LIST (Table 1). 
Capitalletters in this list indicate the minimum input required. 

THE DATABASE 

The database consists of a compilation of mineral data from the 
literature. Four different types of data have been used to construct the 
database and their current size and their relationship is shown in Figure 
1: 

SAMPLE DATA: Data specific to one particular sampIe of a 
mineral are included in a sampIe record. 

GENERAL DATA: Ranges or generalized values observed for one 
or more properties of several sampIes of a given mineral are 
included in a general record. 

MINERAL DATA: Parameters that are constant from sampIe to 
sampIe are included in a mineral record. Examples are: name, 
formula, symmetry, space group, and classification. 

COMPILED DATA: All the sampIe, general, and mineral records 
for a given mineral are compiled by the program into a compiled 
record which is the data set used for identification purposes. The 
maxima, minima, means, and in the situation of compositions, 
standard deviations are determined by the program and repre
sent the observed variation of data for each parameter. 

USE IN MINERAL IDENTIFICATION 

The 4659 minerals shown as being included in the database in 
Figure 1, include a hundred or so listings for series, classes, groups, 
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Table 1. Help terms 

" s, 1, 
" f, e, A, ABBrevlatlons, 
ACCess rlghts, APO, ALL, ALPha, ANGLE-EHTRY, 
ANGLES, ATTENtion, AVErage, S, SATCH, 
BATCH FILE, BATCHPrlnt, SETa, BIRefrlngence, BLAnk, 
BREAK, C, C(A lpha). C(Seta) , C(Eps Ilon). 
C(Gamna). C(lftga), CALPHA, CASE, CBETA, 
CEPSILON, CGAMMA, CHARGE., CLASSlfy. CM, 
COllECTlon, COlOR, COLOR(A lpha) , COlOR(Seh). COLOR (Eps 110n) , 
COLOR (Gamna) , COLOR( 1ftga) , COLOUR, COLOUR (A lpha). COLOUR(Beta). 
COLOUR(Epsl1on). COlOUR(6amna) , COlOUR(Qnega) , COLOUR-ENTRY, 
COLOURS, CDIIEGA, COIIMAND, COMMANDS, COIIMENTS, 
COMPILE, COMPILED Data, CONTI NUA TlON, CONTINUE, CDORDlnat Ion, 
COPYRIGHTs, CRD, CUTOFF, D-Values, DATA, 
DATA SOURCES, DATA Types, DATE, DEFAULT, DEFAULTS, 
DELETE, DENslty, DESTROY, DEVELOPMENT CHARGES, 
DICHROISM, DiMension, DINltlals, DISCLAIMER, DISCREDlted, 
DISPersion, DISPLAY, DISPLAYlNG, DIVisions, OOCIJIENTA TI ON, 
DSOurce, DVAlues, EDATA2, EOGes, EDIT, 
EDITIHG, ELlST, EPSilon, ERRORs, EXn, 
EXPLAIH, FDRmula, GAMma, GENERAL Data, GENERALS, 
GRECords, HELP, ID, I DENT SECTI ON, IDENTIFIER, 
I DENTIFY , IGNOREd, IM, INDices, INITials, 
INTRODUCTION, JCPds, LCUTOFF, LENGTH, LEVel, 
LIST LOCallty, LOCATlon, MATCH, MAXInun, 
HERGE, MINERAL, MINERAL Data, MINIDENT, MINIMum, 
HISmatch, MLOcallty, HOCcurrences, MODIFY Sectlon,MOHs, 
HOVE, MREHarks, HTS, N, N(Alpha). 
N(Beta). N(Epsllon). N(Gamna). H(Omega) , HALpha, 
HAMe, HBEta, NE Ps 110n, NEWHINera 1, NGAmna, 
NOMega, NONe, NULLs, NlJlber, OAP, 
OCCurrence, OF, OMEga, OPM, OUTPUT, 
OXides, PASSWORD, PBASE, PBASIS, PERMIT, 
PLEOchrolsm, POLymorphs , PRECISIOH, PROPORTION-Basis, 
PROPORTlON-Sum, PSIJI, PSW, Qult, 
R(470), R(S46). R(S89). R(6S0), RANGE, 
RECords, REFERences, REFLectance, REFLECTANCE(470nm) , 
REFLECTANCE(S46nm) , REFLECTANCE(589nm) , 
REFLECTANCE (650nm) , REFRact Ion, REHarks, REQuests, 
RESTRICT, RFL, RFR, RIGhts, R470nm. 
RS46nm, R589nm, R6S0nm, SAMPLE Date, SAHPLEs, 
SAVE, SET ,MIN, SGLlST, SHOW, SHOIINull , 
SIGN, SORT, SOURCE, SPAce-group, SPCGRP, 
SRECords, STATUS, STop, SUSSET, SUGGESTIons. 
SUM, SYMBOLS, SYMmetry, SYNONYM Datl, SYNONYMS, 
SYNTAX, TABLE, TABULATE, TEST, TIMe, 
TITLE, TLlST, TM, TREE, TYPE, 
Unknown, UNKNOWH Data, UNLOAD, VARIABLEs, VERTlCAt BAR, 
VHN, Welght, WIDTH, YEAr-ftrst-descrlbed, 
YFD, YRECords, ZERO, 2V, 2V(Alpha). 
2V(Gamna), 2V+, 2V-, 2VAlpha, 2VGaIII1Ia , 
2VX, 2VZ, 
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Data 

remarks, oc:currence, 
location, polymorph<, ytar 
tin! described 

4659 
Compiled Records 

Figure 1. Current size and relationship of data types in database. 
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families, etc. The remaining -4,500 minerals (including almost 700 
described but presently unnamed minerals) constitute a formidable 
number of possibilities for the practicing mineralogist attempting to 
make that all-important first step ofmineral identification. There now 
are many programs in the private, public, and commercial domains 
which offer assistance in the problems ofmineral identification. For the 
most part these are specific to certain techniques, for example reflec
tance microscopy - Gerlitz and Leonard (1989); or X-ray powder diffrac
tion (a recent review ofprograms in this area was given by Smith, 1989). 
In the vast majority of situations, the software uses simple search/match 
algorithms. The power of MinIdent for identification purposes comes 
from its use of data obtained from any of a whole range oftechniques and 
also from its use of"scoring algorithms" (see IDENTIFY commands) to 
rank minerals according to their similarity to the material being inves
tigated. 

The basic command sequence used in mineral identification is as 
follows: 

UNKNOWN 
... parameters 
SAVE 
MATCH 
UNKNOWN EDIT 
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... parameters 
SAVE 
IDENTIFY AND 
TABULATE 
DISPLAY 

SMITH AND OMOUMI 

In the list: 

UNKNOWN 

... parameters 

SAVE 

MATCH 

is used to enter input mode for specifying parame
ters. 

represents data that have been obtained for the un
known (e.g., composition, refractive indices, hard
ness, d-values etc.) and which are to be used in the 
search. 

indicates to the program that input ofinformation 
is complete. 

searches the entire database for minerals that ex
actly match the properties ofthe unidentified min
eral. Data for the unidentified mineral usually are 
entered as ranges which includes generous error 
limits in order to consider all possible minerals in 
the match process and allow for possible analytical 
inaccuracies. The primary purpose ofMA TCH is to 
reduce the number of possibilities that need to be 
considered in detail. 

UNKNOWN EDIT indicates that additional or more precise informa
tion for the mineral beingidentified is to be entered. 

IDENTIFY 

... AND 

selects the most likely matches and is different 
from the MATCH procedure in that it will not 
eliminate minerals if one or more of their parame
ters do not exactly match those of the unidentified 
mineral. Instead, demerit points are assigned and 
a matching index is calculated for each possible 
candidate . 

is a "logical and." It may be used in conjunction wi th 
either the MATCH or IDENTIFY commands to 
limit consideration to the list ofpossibilities gener
ated by the previous procedure. 
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TABULATE lists, in tabular format, matched or identified miner
als together with the corresponding data used in the 
identification process. It also may be used to tabulate 
other properties of the matched minerals. 

DISPLAY may be used to display the compiled record of any of 
the matched minerals in order to obtain a complete 
compilation of all the various parameters for that 
mineral. 

AB an example ofthe application ofthe identification procedures in 
a real situation, we shall take a rather poor analysis (low total) of a 
complex rare earth-bearing uranium mineral and attempt an identifica
tion on the basis of the published composition. 

MinIdent command",,?UNKNOWN 
Unknown Input""?w Nb205=msjor 
Unknown Input""?w Ti02=msjor 
Unknown Input""?w Y203=msjor 
Unknown Input""?save 
MinIdent command""?MATCH 
Scanning within MINERALS division. 
4659 minerals examined, 0 ignored, 4637 not matched and 22 matched. 
MinIdent command",,?UNKNOWN EDIT 
Unknown Input""?w=null 
Unknown Input""?w U308=22.7 
Unknown Input""?w Th02=6 
Unknown Input""?w Y203=18.9 
Unknown Input""?w Nb205=26.9 
Unknown Input""?w Ta205=O.4 
Unknown Input""?w Ti02=19.7 
Unknown Input""?w FeO=1.9 
Unknown Input""?w Dy203=3.9 
Unknown Input""?w Er203=2.4 
Unknown Input""?w Ho203=1.4 
Unknown Input""?save 
MinIdent command""? IDENTIFY AND 
100% of database identified. 
22 minerals examined, 0 ignored and the top 20 identified. 
MinIdent command""?TABULATE 
Defaults are: unk nam tm w 0 w Ti w Fe w Y w Nb w Dy w Ho w Er w Ta w Th w U 
(See Table 2) 

In this list, it will be noted that, in the first instance, crude 
information on composition (major meaning anywhere between 3% and 
100%) was entered and the MATCH procedure used. The objective was 
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Table 2. TM value (total matching index) gives measure of"goodness-of-
fit" 

Name TM 0 Ti Fe Y Nb Dy Ho Er Ta Th U 

unidentified sImple 25.4 11.692 1.462 14.734 18.616 3.364 1.21 2.078 0.324 5.22 19.057 
25.913 11.928 1.492 15.031 18.992 3.432 1.234 2.12 0.331 5.326 19.442 

EUXENITE-(YI 78.3 28.324 8.242 4.379 13.734 27.033 1.18 0.0 0.924 3.78 2.027 7.582 
POL YCRASE - (Y I 75.5 26.566 14.285 1.41 13.235 15.465 1.613 0.428 1.582 5.288 3.098 7.749 
UM1926-01 52.5 25.383 19.925 12.327 28.118 19.053 35.725 
AE5CHYNITE-(YI 45.8 26.196 16.172 1.811 8.779 17.005 2.63 0.506 1.619 3.57 5.618 2.423 
PI5EKITE 45.1 25.137 2.518 2.021 7.334 28.661 5.651 1.845 8.815 
FERGU50N ITE - (Y I 39.4 22.481 1.327 0.777 17.997 25.919 2.86 2.689 3.67 1.13 
AE5CHYNITE-(CE) 29.4 25.608 14.834 1.57 1.932 19.592 0.535 0.106 0.308 1.943 11.212 0.632 
MURATAITE 29.3 25.378 22.703 3.397 9.497 6.997 1.899 0.498 2.102 
FERSMITE 29.2 29.111 4.003 0.779 1.541 45.338 0.632 0.151 0.511 3.149 0.608 0.416 
YTTR08ETAFITE-(YI 21.3 33.311 9.023 2.903 6.189 22.446 6.646 0.923 7.946 
UH1930-01 26.5 28.206 2.572 4.092 13.89 28.933 5.954 1.389 10.658 
K08EITE-(YI 21.9 32.486 20.308 8.382 18.158 3.591 0.883 9.518 
UMI911-01 21.0 23.813 13.249 9.017 1.126 5.761 3.603 2.991 
SAMARSKITE-(YI 19.1 26.132 1.512 6.106 5.548 25.651 1.289 0.251 1.461 10.236 2.408 10.883 
YTTROPYROCHLORE - (YI 18.9 32.924 1.188 3.498 10.55 21.651 0.0 0.0 5.219 0.991 1.855 
51HICITE 18.9 27.858 1.482 2.819 5.583 23.883 1.126 1.121 5.33 
TANTALAESCHYH ITE -(V) 18.1 23.105 1.991 0.684 3.488 12.921 0.534 0.096 0.306 30.111 4.512 0.353 
ZIRKELITE 16.0 28.885 17.993 4.958 2.066 4.095 0.469 0.251 0.281 1.932 0.966 
N 1080-AESCHYN!TE - (YI 12.1 23.853 11.451 0.745 3.481 27.197 0.862 0.0 0.331 6.779 9.465 0.339 
SCHETEL IGITE 11.2 26.88 11. 229 1.461 4.725 6.461 16.379 

Note: blanks indielte no data are availlble. The determined absence of In element is indleated bya zero. 

to reduce greatly the number ofpossibilities that needed to be considered 
in the much more complex scoring algorithms used by the subsequent 
IDENTIFY procedure. In Table 2 the TM value (total matching index) 
gives a measure of the "goodness-of-fit." The values of 78 and 75 for 
euxenite-(Y) and polycrase-(Y) are not particularly high - indicating to 
the user that the results should be regarded with some caution. In this 
particular situation the analyzed sampie has an abnormally high U308 
context - higher than any previously recorded in the literature. 

OTHER FACILITIES 

A number of special facilities have been developed for MinIdent. 
These include: 
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Subsets 

Creation of a subset allows a user to consider only a certain 
restricted group of minerals. Examples of such subsets might include: 

all known AMPHffiOLES 
all known PYROXENES 
all known RARE EARTH-BEARING MINERALS 
all known PLATINUM GROUP MINERALS ("PGM's") 
all minerals known to occur in METEORITES 
all unnamed minerals 
any group ofminerals ofinterest to the user 

Once created, subsets can be stored and invoked at will. Ultimately 
they may prove particularly useful for teaching purposes. They also 
reduce the search time drastically. 

Unnamed Minerals 

This is a compilation of data for minerals which have occurred in the 
literature but which have not yet received names. Unnamed minerals 
are scattered throughout the literature as inadequately described but 
possibly new species. The MinIdent database contains the first computer 
compilation oftheir optical, physical, and chemical properties. Presently 
there are nearly 700 unnamed minerals in the database, many ofwhich 
are undoubtedly genuine new species for which a name has not been 
proposed. The majority are described inadequately minerals whose 
identification has not been possible based on the data available, and 
further work is required. Ultimately, the entire suite of unnamed 
minerals will be matched against the rest of the database in order to 
determine whether any now may be equated with minerals that are 
known presently and named. 

A scheme has been adopted for the nomenclature ofthese unnamed 
minerals consisting of the year first described, followed by an arbitrary 
number. For example, UM1976-15 represents an unnamed mineral that 
was described in 1976; it was probably the 15th unnamed mineral 
entered for that year. 

Synonyms and Discredited Minerals 

An extensive synonymy presently with nearly 1500 entries has been 
incorporated into the database. It includes many varietal and archaic 
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names, in addition to spelling variants. In each situation the correct 
name and source references, have been included and, in many instances, 
brief comments offered. When arequest for information about a mineral 
which occurs in the synonyms list is made, the program retrieves the 
data from the records for the correct mineral name. Discredited mineral 
names are those which subsequent to their publication, have been shown 
to be unnecessary or inappropriate for various reasons. For example, it 
may have been shown that a so-called mineral is actually an intimate 
mixture of two previously described species. The source references and 
reason for discreditation can be obtained from the MinIdent database. 

EXAMPLES 

NAME: Daphnite 
SYNONYM: Chamosite 
REMARKS: An unnecessary name for a variety of chlorite. 
REFERENCE: Can. Min. v.13, p.178-180. 

NAME: Yttromicrolite 
This is a discredited mineral. 
REMARKS: Determined to be an amorphous mixture of calcium 

sulphate, tantalite, and microlite. 
REFERENCE: Can. Min. v.25, p.374. Amer. Min. v.67, p.164-165. 

Mineral Classification 

A primary division into TYPES and SPECIES has been adopted in 
the construction of the database. The term type is used here to refer to 
the fundamental division on the basis of chemical compositions, for 
example, silicates, oxides, sulphides, etc. Further division into class, 
group, family, supergroup, series, variety, etc. also is possible. The 
general classification scheme used in the MinIdent database follows 
closely that adopted by Fleischer (1987, 1989) in his GLOSSARY OF 
MINERAL SPECIES. There are some differences, which have to do 
mainly with the level assigned. For example, in MinIdent zeolites are 
considered a F AMILY whereas in Fleischer (1987) they are shown as a 
GROUP. Complete implementation of a classification scheme has been 
impeded by the lack of a universally accepted scheme with defined levels. 
However, apart from providing the user with information about where a 
particular name fits in the mineral kingdom, the classification facility in 
MinIdent should be ofvalue in permitting ranges ofproperties wi thin the 
various divisions to be examined. 
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SOME RECENTLY IMPLEMENTED CLASSIFICATIONS: From 
time to time the nomenclature ofimportant mineral groups becomes 
so chaotic that an IMA (International Mineralogical Association) 
Subcommittee may be set up with the task ofmaking recommenda
tions for simplifications, extinction of names, etc. Thus recently 
pyroxene nomenclature was studied by a special Subcommittee of 
the IMA COMMISSION ON NEW MINERALS AND NEW MIN
ERAL NAMES. As a result of its recommendations, the list of 
accepted pyroxene species names was reduced to 20 (with appropri
ate adjectival modifiers to indicate compositional varieties - e.g., 
"chromianjadeite"). As a consequence ofthat work, more than 100 
pyroxene names in the literature were declared "obsolete." MinIdent 
attempts to implement such official IMA recommendations as soon 
as possible. In most instances, the obsolete name is entered-into the 
synonym list with a brief explanation and reference. Some recent 
revisions to the nomenclature used include the following: 

AMPHIBOLES - Following the scheme proposed by the IMA Sub
committee on Amphibole Nomenclature (Leake, 1978). 

PYROXENES - Following the scheme proposed by the IMA Subcom
mittee on the Pyroxene Nomenclature (Morimoto and others, 1988). 

RARE-EARTH MINERALS - Following the IMA approved scheme 
in which the dominant REE symbol is appended in parenthesis after 
the species name, for example, monazite-(Nd) (see, e.g., Bayliss and 
Levinson, 1988). 

THE CHLORITE GROUP - Here the classification is based on the 
proposals ofBayliss (1975). 

Table 3 shows the classification scheme recently recommended for 
the pyroxene minerals (Morimoto and others, 1988) as implemented in 
MinIdent. Note that this implementation, allows for the possibility ofa 
particular species being classified under more than one higher level (i.e., 
series, group, etc.) 

FUTUREDEVELOPMENTS 

Many developments of MinIdent may be undertaken through the 
coming years, although the degree that these are reliable will be 
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Table 3. Classification of pyroxene minerals 

Mlnldent comnand"'·7tree pyroxene fu11 

I MINERALS top 
2 SILICATES type 
3 IHOSILICATES class 

PYROXENE-FAMILY famlly 
HATALYITE specles 
MN-MG-PYROXENES sub-group 

7 KANOITE specles 
8 OONPEACORITE speclas 

MG-FE -PYROXENES sub-group 
10 PIGEOHITE specles 
11 CLIHOENSTATITE-CLIHOFERROSILITE-SERIES serles 
12 CLINOFERROSILITE specles 
13 CLlNOENSTATlTE specles 
14 EHSTATITE-FERROSILITE-SERIES serles 
15 FERROS I L ITE spec I es 
16 ENSTATITE specles 
17 CLINOPYROXENE-GROUP group 
18 KANOITE spec les 
19 CA-PYROXENES sub-group 
20 AUG ITE spec I es 
21 OIOPSI0E-HEDEN8ERGITE-SERIES serles 
22 HEDEN8ERGITE spec les 
23 DIOPSIDE specles 
24 DIOPSIDE-JOHANNSENITE-SERIES serles 
25 JOHANNSEHITE specles 
26 DIOPSIDE specles 
27 ESSEHEITE specles 
28 PETEDUHNITE specles 
29 HA-PYROXENES sub-group 
30 AEGIRIHE specles 
31 KOSMOCHLOR specles 
32 JADEITE specles 
33 JERVISITE specles 
34 CA-HA-PYROXENES sub-group 

35 OHPHACITE specles 
36 AEGIRINE-AUGITE specles 
37 SPODUMEHE specles 
38 PIGEOHITE specles 
39 CLlHOEHSTATITE-CLlNOFERROSILITE-SERIES serles 
40 CLlNOFERROSILITE specles 
41 CLlNOENSTATlTE specles 
42 ORTHOPYROXEHE -GROUP group 
43 ENSTATlTE-FERROSILITE-SERIES serles 
44 FERROSILITE specles 
45 ENSTATITE specles 
46 OONPEACORITE specles 
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dependent upon the extent to which the database can be made self
supporting. Given a favorable response from possible users, develop
ment of the following features is envisaged: 

1) Addition ofnew minerals, significant new data for existing min
erals, synonyms, and discredited minerals. 

2) Incorporation ofnew, IMA-approved schemes for mineral nomen
clature and classification. 

3) Gradual elimination of residual data errors - both those of a 
literature and a typographical origin. 

4) Development ofa compact disk version ofthe database. 

5) Implementation ofmenu-driven operation. 

AV AlLABILITY 

MinIdent-PC now is available commercially through ASTIMEX 
SCIENTIFIC LTD, 351 Wellesley St. East, Toronto, Ontario, Canada. 
M4XIH2 
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MICROCOMPUTER APPLICATION 
OF DIGITAL ELEVATION MODELS 
AND OTHER GRIDDED DATA SETS 

FOR GEOLOGISTS 

Peter L. Guth 
u.s. Naval Academy, Annapolis, Maryland, USA 

ABSTRACT 

Personal computers have the disk storage capacity, processor speed, 
and color graphics displays necessary to manipulate and display large 
gridded data sets recording elevations, bathymetry, gravity, and mag
netic information. These gridded data sets can be used for general terrain 
analysis, specific geologic calculations, or as the base for a geographic 
information system. Standard microcomputer hardware lets geologists 
evaluate, compare, and use data sets with hundreds of thousands of 
values. 

INTRODUCTION 

Gridded data sets provide a compact, efficient way to store large 
amounts of data, allowing rapid retrieval of randomly selected data. 
Microcomputers can access these data and provide high-resolution gra
phical displays and hardcopy output on dotmatrix or laser printers. Data 
analysis and display, previously restricted to mainframes or expensive 
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workstations (e.g., Duguay and others, 1989; McGuffie and others, 1989; 
Verhoef and others, 1990), can be performed on personal computers. 
Microcomputers can generate color output such as slope maps (Moore 
and Mark, 1986) or shaded reliefmaps (Pike and Thelin, 1989). Micro
computers bring the capability to manipulate digital data within the 
re ach of all geologists, with acceptable speed and graphics capabilities. 

The MICRODEM program has been evolving since 1986 (Guth, 
1986; Guth, Ressler, and Bacastow, 1987; Guth, 1988). Initially designed 
for terrain analysis using a digital elevation model prepared by the U.S. 
Defense Mapping Agency (DMA), the program now handles a wide 
variety of gridded digital data sets. The program requires modest 
investment in computer hardware, and both executable and source code 
are available. The discussion that follows focuses on the capabilities of 
MICRODEM. Other programs can duplicate many ofthese features, but 
source code for most other programs with similar capabilities is not 
available. 

MICRODEM runs on microcomputers using the MS-DOS operating 
system. The program requires 640 kb of memory, and a hard disk for 
storage of realistic amounts of data, although student problem sets can 
run on dual floppy drive systems. It uses the standard EGA and VGA 
monitors (some operations will run on CGA or Hercules screens). Higher 
resolution output, up to 180 dots per inch, appears on dotmatrix printers 
(both 8 and 24 pin) and on the Hewlett Packard LaserJet. Third party 
software can capture screen images and redirect them to a color printer 
or plotter. A math coprocessor greatly improves many program opera
tions. Input is interactive and menu-driven, using either a mouse or the 
cursor keys. The program accepts scanned images of maps or aerial 
photographs from a scanner producing TIFF format files, such as the 
Hewlett Packard ScanJet. 

The VGA monitor has a 16 color mode with 640x480 resolution. The 
16 colors can be selected from a palette of about 256,000 colors, which 
includes 64 shades of red, green, blue, cyan, magenta, yellow, or gray. 
With sixteen shades selected from the 64 available, excellent results can 
be achieved in displaying black and white images. Page scanners 
typically produce 16 color images, which the VGA faithfully depicts, and 
satellite data such as LANDSAT, SPOT, or A VHRR weather images will 
convey much of their information when displayed with 16 colors. AI
though the satellites typically record data in 256 intensity levels (or even 
1028 for the A VHRR instrument), most images actually use many fewer 
intensity levels. The VGA thus provides satisfactory image analysis 
hardware at low cost, and VGA monitors have become available widely 
even on machines used only for wordprocessing or spreadsheet manipu-
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lation. Some MICRODEM applications, such as shaded reliefmaps, can 
use this graphie mode to great advantage. 

DIGITAL DATA SET FORMAT 

A digital elevation model (DEM) uses an array ofnumbers to record 
surface elevation. Because of their wide application in other fields such 
as geography, hydrography, and cartography, a wide literature and no
menclature has been developed for DEMs (e.g., Yoeli, 1983; McCullagh, 
1988). The same principles apply to other geophysical data sets, and the 
same operations can be applied to them, although users initially may 
have trouble mentally interpreting a three-dimensional representation 
of the Earth's magnetic or gravity field. For simplicity I will refer to 
DEMs, when in fact the discussion applies to all gridded data sets. An 
alternative to gridded data, triangulated networks, will not be discussed 
here because the readily available data sets use the gridded format. 
Actually having data available outweighs any theoretical advantage of 
another format. McCullagh (1988) discusses relative merits of gridded 
versus triangulated data when the user must select which to use and 
then creates the data set. 

DEMs usually consist of a regular grid of elevations with x-y 
coordinates implicit in the data structure. The grid structure saves 
storage space because only the elevations (field values) need to be stored, 
and it allows rapid random access. DEMs can use rectangular grids such 
as Universal Transverse Mercator (UTM), or geographie latitude-longi
tude grids. Because of convergence of the meridians approaching the 
poles latitude-Iongitude grids are not rectangular, although over sm all 
areas they may be treated as rectangular. Latitude-longitude grids are 
easier to use when crossing the boundary of one data set to another, 
because at the 6° zone boundaries UTM coordinates in adjacent areas 
cannot easily be reconciled. Some UTM-gridded data sets also clip their 
data to boundaries from latitude-longitude coordinates, which results in 
irregular rows and columns; programs using these data sets much 
convert them to a regular grid and flag the missing values. 

By convention most digital elevation models have been organized by 
columns, with the westernmost column first and the eastemmost last. 
Within rows the values progress from south to north. Thus the first point 
in the array would be the southwestern corner, and the last point would 
be the northeastern corner. DMA and the U.S. Geological Survey (USGS) 
both use this format for their elevation models, and the U.S. National 
Ocean Survey (NOS) has adopted it for its bathymetric data sets. In the 



190 GUTH 

terminology of Hittelman, Kinsfather, and Meyers (1989) this is BTR 
(bottom to top then right), and MICRODEM requires data sets to have 
this format. Some operations, such as gridded contouring or slope map 
calculation, require access to several columns of data at a time for 
efficient computation. Although these operations could work equally 
weH with rows, such flexibility would require different code for the two 
situations. Conversion ofthe data to a single format allows simple, fast, 
single case processing, and MICRODEM will convert from the LRD (left 
to right then down) format used by the binary output from the Geophys
ics of North America CD-ROM (Hittelman, Kinsfather, and Meyers, 
1989). 

Integers usually represent the data values in DEMs. An integer 
requires only two bytes of computer storage, and can represent values 
from 32767 to -32768. In contrast storage of values as real number 
requires four bytes or more depending on the accuracy desired, at least 
doubling the storage requirements. For elevations and bathymetry using 
integer values in meters provides sufficient accuracy. Geophysical val
ues with smaHer ranges can be stored as integers with appropriate units; 
magnetic anomalies use tenths ofnannoteslas, whereas gravity anoma
lies use tenths of milligals. 

AVAILABLE DATA 

Gridded data sets tested extensively with MICRODEM include a 
variety of types of data. Digital elevation models include the DMA 
1 :250,000 DEM (available through USGS) and the USGS 1 :24,000 DEM 
(Fig. 1). The DMA data has 3 arc second latitude-Iongitude spacing, 
which translates into 60-90 m (variable with latitude) between data 
points and provides complete coverage ofthe United States. The basic 
unit for this DEM, a 1 ·x1· region, contains 1.44 million elevations. The 
USGS data has 30 m UTM spacing, but covers only about 25% of the 
Uni ted States. Its basic unit, a 7112 'x7112 ' quadrangle, contains about 
175,000 elevations (variable with latitude). NOS has begun producing a 
digital bathymetric data set covering the Economic Exclusive Zone 
(EEZ), with data spacingof250 m on the UTM grid (Fig. 2). The ETOP05 
data set, with both land topography and marine bathymetry at 5 arc 
minute spacing, covers the entire world. 

Digital geophysical data sets on compact disk (Hittelman, Kinsfa
ther, and Meyers, 1989) include 5' topography and bathymetry (from the 
ETOP05 data set), 30" topography (thinned from DMA data) and 
bathymetry, 2.5' gravity and magnetics, and A VHRR satellite images. 
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Figure 1. Oblique view ofMt St Helens, Washington, looking south. Data from USGS 
1 :24,000 DEM. Produced on Hewlett Packard LaserJet with high-resolution software 
driver. 

Some ofthe data sets cover only the United States, whereas many cover 
the entire North American plate. Many ofthe data sets on the CD-ROM 
represent recent compilations for the Decade ofNorth American Geol
ogy. 

The computer stores data in binary format as a file of two byte 
integers. MICRODEM handles variably sized grids; a header file con
tains the grid size, extreme values, and information on the ellipsoid and 
datum used for digitization and display. Missing data flags alert the 
software to avoid spurious interpolations or program crashes. The data 
sets are limited currently to 1201 rows and an unlimited number of 
columns, but this could be changed by redefining a single constant and 
recompiling the program. Larger data sets exceed the display resolution 
of microcomputer screens, and will produce best results when subdi
vided. Datasets withfewerthan 120,000values runmuchfaster because 
the entire data set can load into computer RAM, significantly faster than 
even a RAM disko 

USGS 1 :24,000 DEMs typically have around 175,000 points and 
require about 350 kb of disk space. A 15'x15' subset of DMA Digital 
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Terrain Elevation Data (DTED Level 1 , the USGS 1 :250,000 DEM) has 
90,000 points and requires 180 kb while a 30'x30' subset needs 720 kb for 
360,000 points. The program considers these three data sets as stan
dards, and file names define the area covered and hence the adjoining 
data sets. The program can open up to nine adjacent data files and access 
them to produce output that crosses boundaries between data sets. 
Public domain or other compression programs typically compress data 
sets by a factor of about 50% when not in use, saving on disk space. 

ACCURACY AND RESOLUTION 

Users of a DEM must consider data resolution (spacing) and 
accuracy (relation of values to "true" elevation). Increasing resolution 
increases production costs for hetter photographie coverage ofthe input 
stereographie model and more processing. Better resolution also in
creases storage needs and the number of calculations when using the 
DEM, important considerations on a microcomputer. Halving the data 
spacing quadrupies the volume of data. 

Many users will not have digitization capabilities, especially for the 
effort involved to create a DEM with tens or hundreds of thousands of 
data points, and must assess available DEMs to determine suitability for 
proposed needs. Users designing DEM specifications must recognize the 
tradeoffbetween resolution and accuracy (cost) versus area covered, and 
determine whether full coverage at a small scale is better than partial 
coverage at a larger scale. Should a DEM not provide absolute quantita
tive results because of limitations in accuracy or resolution, the com
puter can provide yet an acceptable qualitative sense ofthe terrain. As 
discussed next, MICRODEM contains tools for users to assess the 
adequacy of a DEM. 

For a user without recourse to digitizing (and these large DEMs 
represent major investments in digitization), a DEM either exists cover
ing the area of interest or does not. Ifthe DEM exists, i t is ei ther accurate 
enough to use or not. That decision will be subjective; in some situations, 
"pushing" a DEM beyond its accuracy may he preferable to the alterna
tive ofusing a paper map and doing the work by hand. The user must take 
responsibility for specific uses of the data. Perfect DEMs will never exist, 
and there will be tradeoffs in their design and use. 
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DATUMS 

Geologists using DEMs must be aware that coordinates, whether 
UTM or latitude-Iongitude, depend upon the datum and ellipsoid used 
for the projection (Snyder, 1987). Different datums are used throughout 
the world, both because ofirregularities in the Earth's shape that result 
in locally optimal results assuming different shapes for the Earth, and 
historical vagaries of mapping from different local starting points. 
Satellite geodesy has allowed the creation of datums that can be applied 
worldwide. Changing the datums can result in the same coordinates 
representing points on the ground separated by several hundred meters. 

Datum shifts will soon be a concern with all mappingin the United 
States. The countryis shifting from the North American Datum of1927 
(NAD27) to the North American Datum of1983 (NAD83) with shifts up 
to 100 m (Dewhurst, 1990) in locating points on the ground. All coordi
nates should be prefaced with the datum used to avoid ambiguity and 
allow precise relocation of points, as paper topographie maps with 
NAD83 will begin replacing the older maps on NAD27. Even before the 
datum shift, users of DEMs had to worry about the datums as the 
different scale DEMs used for a different datum. The USGS 1:24,000 
DEMs were digitized on NAD27, whereas the 1:250,000 DEM produced 
by DMA used the World Geodetic Survey 1972 (WGS72) datum. Newer 
DEMs in those series will use NAD83 and WGS84 respectively; fortu
nately the datum of the two are essentially identical. Users of DEMs 
wanting precise locations must know the datum of their data; with 
datum shifts up to 100 m, the 1 :24,000 DEM can be offup to three or four 
data points if the wrong datum is assumed, and the 1 :250,000 DEM can 
be offby one data point. Small-scale data sets, similar to 5 are minute 
topography, assume a spherical Earth and datum shifts of 100 mare 
negligible when data spacing reaches 6-9 km. 

By default, MICRODEM assumes constant data spacing, using the 
average along the edges ofthe data set, on a UTM grid and computes 
coordinates in a simple rectangular reference frame. For data sets 
digitized on the UTM grid, such as the USGS 1 :24,000 DEM and the NOS 
EEZ bathymetry, this is exact. For other data sets, similar to the DMA 
1 :250,000 DEM, this leads to misregistration of about 1 % within a 15'x15' 
region because of the assumption of constant data spacing. Given the 
other limitations on the 1 :250,000 DEM, this additional distortion 
should be acceptable. For the small-scale data sets such as those with 5 
arc minute spacing, the distortion from forcing the data on a regular 
rectangular grid can be severe, especially at high latitudes. In those 
situations exact projection on a number of different projections (Sinu-
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Figure 3. Contour map of gravity field in Pacific. Major discontinuity in southern part 
of map is Mendocino Fracture Zone. Plotted on Lambert AzimuthaI Equal Area 
projection, apparent from orientation of crosses every 2' oflatitude and longitude. 
Data from NOAA (Hittelman, Kinsfather, und Meyers, 1989). Produced as screen 
dump ofVGA screen on LaserJet. 

soidal, Hammer, Orthographie, Lambert Azimuthai Equal Area, Moll
weide, Gnomonic, Stereographic, and Mercator) can be used, at a signifi
cant penalty in performance to calculate all coordinates (Fig. 3). Cur
rently the precise projeetions assume a spherical earth, but could be 
modified for any desired ellipsoid (Snyder, 1987). 

IMPORTING DATA 

Getting data onto the microcomputer presents one of the greatest 
challenges to increasing usage of gridded data. Many agencies that 
create and archive digital data gear their efforts toward nine track 
magnetic tape, a medium that is not especially available on personal 
computers. Because ofthe megabyte and greater size ofthe data sets, the 
transfer of large quantities of data becomes a major challenge. 
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Nine track tape units can be attached to microcomputers (at a cost 
perhaps equal to or several times that ofthe computer itselO, and provide 
extremely rapid downloading of data from tape with rates of several 
megabytes per minute. A cheaper, but slower method involves reading 
the tape on a mainframe or minicomputer, and then downloading the 
data onto the microcomputer using a communications program. Transfer 
rates will depend on the speed of the communications lines available 
(4800 or 9600 baud represent minimums acceptable), data-line quality, 
and the degree of error checking. At best I have been able to download 
several megabytes per hour, and usually several megabytes requires an 
overnight transfer which runs unattended on an otherwise unused 
personal computer. 

Data are becoming available on other formats usually for the 
microcomputer. NOS provides their gridded bathymetric data sets on 
high-density floppy disks, and a commercial firm advertises USGS 
DEMs on floppy disks (Miller, 1990). Read only compact disk storage 
units provide cost effective storage for hundreds of megabytes of data, 
and the National Oceanic and Atmospheric Administration (NOAA) has 
produced a disk covering the geophysics of the N orth American tectonic 
plate (Hittelman, Kinsfather, and Meyers, 1990). Although access to the 
CD-ROM is significantly slower than a hard disk, the ease ofuse easily 
eclipses nine track tape, the only alternative for obtaining such large 
data sets. 

MICRODEM contains import software for three types of data sets, 
digital elevation models supplied by USGS, NOS digital bathymetric 
data, and data sets exported from the Geophysics ofNorth America CD
ROM. The USGS DEMs come only on nine track tape in similar ASCII 
formats; the 1:250,000 DEM covers 1x1 cells in approximately 10 MB 
files, whereas the 1 :24,000 DEM covers 7'x7' quadrangles that require 
about 1 MB. Once the data have been transferred to the personal 
computer, MICRODEM will convert the ASCII file into a binary, random 
access data file, plus create the required he ader file with minimal input 
from the user. The NOS bathymetric data sets require significant user 
input in creating the header, because the header information on the dis
tribution disks does not have a standard format comparable to the USGS 
DEMs. 

The NOAA CD-ROM comes with software to export data into files 
on the user's hard disko Because the data sets on the CD- ROM come in 
a variety of formats, and because of the slow speed of access to the CD
ROM, MICRODEM does not attempt to access directly the CD-ROM. 
MICRODEM will convert binary files exported from the CD-ROM and 
automatically create the header; the files are converted to the BTR 
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format used by MICRODEM instead ofthe LRD format used by the data 
exported from the CD-ROM (Hittelman, Kinsfather, and Meyers, 1989). 

GEOLOGIC APPLICATIONS 

DEM applieations inelude general terrain analysis, various geologie 
operations, and geographie information systems (GIS). General terrain 
analysis functions available in MICRODEM include eolored tinted 
maps, eontour maps, three-dimensional views, and histograms of the 
elevation distribution. The program also ean perform some coordinate 
transformations, between latitude-Iongitude and UTM, and between the 
datum of different data sets. These and related operations on the DEM 
have applieation for geomorphology (e.g. Evans, 1980; Franklin, 1987; 
MeCullagh, 1988; Pike, 1988) and terrain evaluation preliminary to any 
geologie work. 

Properly sealed eolored tinted maps ean display elevation, slope, 
aspeet (the downhili direetion), or refleetance. Elevation maps display 
most rapidly because no ealeulations need to be performed on the integer 
data values; the other operations require floating point arithmetie. For 
simplicity and speed the slope ealeulation uses the largest ofthe slopes 
from the point to its eight nearest neighbors; alternatively a surface 
eould be fitted in the neighborhood ofthe point and the derivative taken. 
The aspeet map merely ealculates slopes in the eight principal eardinal 
direetions and displays a color showing the direetion with the maximum 
downhill slope. The refleetance map uses the algorithm ofPelton (1987) 
for rapid display ofrealistie images on a VGA monitor. 

Three-dimensional views inelude both oblique (block diagram, see 
Fig. 1) and perspeetive (view from a point, see Fig. 2). Users ean seleet 
from a number of oblique methods: a painters algorithm whieh starts at 
the rear and shows hidden terrain before drawing over it, and hidden
line algorithms that start at the front and eannot show hidden terrain. 
The hidden-line algorithm ean use fishnet tie lines, and optionally fill the 
blocks in the fishnet with colors tied to elevation. Finally, a rotating 
oblique revolves in real time on the display sereen, allowing the user to 
see the seleeted terrain from all sides. 

MICRODEM allows eomparison of two elevation models eovering 
the same area, or multiple data sets such as bathymetry, gravity, and 
magneties. The eomparison ean take a number offorms, such as super
posed profiles (Fig. 4), elevation histograms (Fig. 5), eontour maps, or 
maps showing the differenee between values interpolated in two data 
sets. The eomparison allows determination of the aeeuraey of DEMs 
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Figure 5. Elevation histograrns ofPlutoniurn Valley quadrangle, southern Nevada, 
frorn USGS 1:24,000 DEM (N36W116K NW) and corresponding subset ofDMA 
1:250,000 DEM. Smaller scale 1:250,000 DEM contains spikes corresponding to source 
rnap's contour lines, an artifact of digitization. Produced as screen durnp ofVGA 
screen on LaserJet. 

covering the same area at different scales. Overlaying contours on a 
scanned image ofthe map sheet, imported from the HP ScanJet, clearly 
shows the user the effects of resolution and accuracy of the DEM 
compared to the paper map. 

Hydrologists have used DEMs extensively for basin delineation and 
storm runoff calculation. MICRODEM incorporates algorithms ofMarks, 
Dozier, and Frew (1984), Jensen (1985), and Martz and DeJong (1988), 
but probably will require programming modification for optimal results 
to adjust for the scale ofthe DEM used and the morphology ofthe basins 
investigated. 

Guth (1988) discussed using the DEM to help draft geologie cross 
sections; the CROSSX program now has been incorporated into MI
CRODEM. DEM use for cross-section generation lets the computer draw 
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topographie profiles and assist drawing by keeping track ofmany details. 
Specific geologie applications include using the DEM to solve three-point 
problems, calculate thicknesses based on map outcrop patterns, or trace 
the path of a plane (fault or formation contact) across topography. These 
applications involve repetitive, simple mathematical operations, but in 
the situation of contact tracing the volume of calculations realistically 
precludes manual operation. Because ofthe ease of computer operation, 
many calculations can be performed rapidly and results compared. 

The three-point problem uses the x, y, and z coordinates of three 
points to determine the orientation ofthe plane that contains them. After 
the user selects the three points and the computer interpolates eleva
tions from the DEM, the mathematics is straightforward: calculate the 
equation of the plane, derive the normal, and convert the normal to 
standard geologie notation (N35E 75NW) as well as the slope in percent. 

The thickness of a unit can be calculated given the strike and dip of 
a unit and the location oftwo contacts (upper and lower) oriented along 
the dip direction. The user selects a point and enters the unit's orienta
tion in one of the following formats: N45E 23SE (strike, Dip, Dip 
Direction), 23 S45E, 23135, 23/135, or 23-135 (all variations with dip and 
dip direction). The computer calculates and draws the dip direction, and 
the user moves a cursor along the line dip direction to select the upper 
and lower contacts ofthe unit. The computer then calculates the thick
ness. 

If a unit contact or fault is assumed planar, the computer can 
calculate and graph its outcrop trace on the Earlh's surface (Fig. 6). The 
user interactively selects one point on the contact and enters the 
orientation of the contact. The search can be a fast threading or an 
exhaustive search if other, disconnected outcrops of the plane are 
suspected. 

Starting with the known point on the contact, the algorithm consid
ers the four surrounding data points which form a rectangle on the map 
and a prism in space. Each side of the rectangle corresponds to a line in 
space, and the computer calculates the general equations of that line 
(equations oftwo distinct planes containing the line). The computer then 
calculates the intersection ofthe line and the contact from the intersee
tion of three planes, and determines if the intersection lies along the 
perimeter of the rectangle. Two of the four intersections willlie on the 
rectangle's perimeter, indicating the surface trace of the contact. The 
computer connects those points, and follows the contact into the adjacent 
rectangle. Threading ofthe contact continues until the contact leaves the 
screen or closes on the starting point. 
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Figure 6. Projeeted traees of dipping eontaets on topographie base map. Contour 
interval is 50 m. Reetangular UTM grid with 1 km squares is shifted slightly east 
from true north. Three heavy lines have same orientation (N15E 15E), and were 
projeeted from points along southernmost east-west UTM grid line. Produeed as 
sereen dump ofVGA screen on LaserJet. This figure and next three use part ofDMA 
1:250,000 DEM for Sheep Range in southern Nevada. 

This threading algori thm will not determine other occurrences of 
the same contact within the map area; at a cost in execution time, they 
can be located by eheclcing all grid rectangles on the map. The exhaustive 
search will square approximately the time required for the simple 
threading of the known contact. 

A DEM can serve as the basis for a GIS, particularly appropriate for 
many geologie applications where surface topography plays a role. A GIS 
combined with DEM can store weIl and drill-log data. The program will 
track weIllocations, and anumber offormation tops specified by the user. 
The user enters data interaetively, the program stores it in an ASCII file, 
and can display it on a eontour map ofthe topography. It also will project 
weIl data onto a line of section (Fig. 7) and show formation tops in cross
section view. Isopachous and structural contour maps can be displayed, 
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overlaid on the topographie map or as a separate display (Fig. 8). A 
triangulation contouring algorithm (Watson, 1983) works with irregu
larly spaced data such as weIl locations. In addition to weIl data, for 
which it was designed initiaIly, other data such as sea-surface tempera
ture and barometrie pressure for a storm can be plotted and contoured 
on the topographie or bathymetric base map. 

PROGRAM MECHANICS 

The program is in Turbo Pascal, version 5.5, and currently includes 
over 36,000 lines of code. Of this about 7000 lines are the user interface 
(graphics, printer control, menus, mouse operations) which is available 
onlyas a compiled unit. The remainder of the source code, except for 
experimental modules under development, is available. The executable 
program is about 200 kb in size, with a 350 kb overlay file that remains 

Figure 7. WeIl data plotted on topographie base and projeeted onto line of section. 
Data points indieated with boxes, and those with eross and box are projected onto 
seetion line (stars); user speeified maximum distanee from line to project. 
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Figure 8. Triangulation contours overlaid on contour base map. Heavy lines show 
contours of user's data field. 

on disk during program operation. The program brings the overlaid 
major modules into memory only when required, to minimize memory 
requirements. The program takes up about 200 kb, the digital data set 
can require up to 240 kb if loaded into RAM for best operations (larger 
data sets must remain on disk), the printer image consumes 60 kb, and 
some additional memory is needed for temporary buffers. With current 
version ofMS-DOS easily taking up to 100 kb when loaded with all the 
necessary device drivers, the 640 kb available to DOS fill rapidly. 

FUTUREDEVELOPMENTS 

Work in progress focuses on a number of enhancements. Creation of 
data sets with a scanner or digitizer will make it possible for users in 
other parts ofthe world, without available data, to create their own data 
sets. Field geologists could scan their field map, and use the computer 



204 GUTH 

and the DEM to check geometry ofbedded units by assuming a dip and 
calculating thiclmess at multiple points along an outcrop band, or by 
calculating dip from three exposures. While DEM accuracy and resolu
tion must be addressed, the geologist could perform a great number of 
calculations extremely rapidly and should be able to assess accuratelyat 
least the magnitude of the values. MICRODEM will superimpose DEM 
elevation contours on satellite images or scanned aerial photographs 
displayed on a VGA monitor, or drape satellite images on a three
dimensional block diagram. The program also will be able to work with 
multiple data sets covering the save area, such as marine bathymetry, 
gravity, and magnetics, showing all three on screen at the same time. 
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REUSABLE CODE WORKS! 

Fred J. Gunther 
Computer Sciences Corporation, Laurel, Maryland, USA 

ABSTRACT 

Personal experience in microcomputer applications programming 
for statistical analyses and graphic displays has provea the value of 
reusing code. Reusing code has been determined to increase software 
reliability, increase programmer productivity, and decrease develop
ment cost. 

INTRODUCTION 

During the past several years, the author has used a series of data 
analysis computer programs in his personal work and professional 
research. For each new program, rather than develop a complete set of 
new requirements, a new design, a new data structure, a new file 
structure for disk storage of data, completely new code, a new test plan, 
and new documentation, the author has reused materials and concepts 
that he developed in earlier programs. Rewriting and modifying docu
mentation and code modules to provide new or different functions and 
capabilities from a base of previously developed, well-used and opera
tionally tested modules has resulted in new, reliable code produced 
quickly, at low cost. The author has determined it useful to reuse code. 
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The programs have performed a variety of functions: 

• Data Editor 
• Basic Sampie Statistical Analysis 
• Time-Series Graphie and Statistical Analysis 
• Paired-Sample Statistical Analysis (Gunther, 1982) 
• Scatter-Diagram (X,Y) Graphie and Statistical Analysis 

(Fig.1) 
• Bar-Graph Graphie and Statistical Analysis 
• Calibration-Pulse Analysis for Landsat TM Data (Gunther, 

1984) 
• Rose-Diagram Graphie and Statistical Analysis (Gunther, 

1986) (Fig. 2) 
• Plot Geographie Data on Map Background (Gunther, 1987) 
• Time-Duration Graphie and Statistical Analysis 
• Age-Pyramid Graphie and Statistical Analysis (Fig. 3) 
• Oceanography Hydro-cast Analysis (Fig. 4) 
• Oceanography Data Analysis 

FEATURES ASSISTING REUSE 

The programs are written in a language for a standard, available 
hardware configuration. Theyare written in Applesoft BASIC to run on 
the Apple-II series ofmicrocomputers; two programs have been trans
lated to an Amiga microcomputer. The programs were developed on an 
Apple II+, with 48K RAM on the main board and 16K RAM on an Apple 
Language System card in slot 1; programs have been run on Apple IIe 
and IIc computers. Results are displayed on color or monochrome 
monitors using normal Apple-II high-resolution graphics. Graphics are 
printed using the OrangeMicro Grappler interface card to dump the high 
resolution memory pages to an Epson dotmatrix printer. Statistics (Fig. 
5) and annotated data matrices (Fig. 6) are printed on the Epson using 
standard Apple II system and Applesoft BASIC commands. 



REUSABLE CODE WORKS! 

L.D. (MM) 
2 

o 
G.D. (MM) 
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2 

Figure 1. SampIe scatter diagram of shell measurements (greater diameter and lesser 
diameter) in mm of Elphidium crispum (Linne,), from author's collection from Mount 
Soledad (Pacific Beach, CA) (compare with Nicol, 1944). 
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LATITUDE RANGE IS = 34 Ta 36.5 
LaNGITUDE RANGE IS = -115.5 Ta -113.5 
DEGREES / SEGMENT = 6 

N 

GUNTHER 

Figure 2. SampIe rose diagram for test lineament length and orientation data; 
geographie area has been divided into 3x3 eell matrix to display subregional trends. 
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30 

OA/N24W70/S71026/WHOI-3620 

33 

o 
TEMP (C> 

08U OCC433 118 
W70*10'OO" N24*2S'S9" 

SALINITV 

GUNTHER 

38 

THE HORIZONTAL RANGE 18 33 TO 38 8ALINITY 

THE VERTICAL RANGE 18 0 TO 30 TEMP (C) 

VERTICAL INCREMENT 18 5 

Figure 4. SampIe Temperature-Salinity analysis ofhydrographic data from c1assroom 
data set showing three water masses; data collected from Atlantic Ocean off Canary 
Islands. 
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HAND-DIGITIZED TEST DATA 

LATITUDE RANGE IS = 34 TO 36.5 
LONGITUDE RANGE IS = -115.5 TO -113.5 

CELL = 1, 

DEGREES I SEGMENT 6 

AZIMUTHS STRIKE-FREQUENCY WEIGHTED BY LENGTH(KM) 

13 - 19 
19 - 25 
25 - 31 
31 - 37 
37 - 43 
43 - 49 
49 - 55 
55 - 61 
61 - 67 
67 - 73 
73 - 79 
79 - 85 
85 - 91 
91 - 97 
97 - 103 

103 - 109 
109 - 115 
115 - 121 
121 - 127 
127 - 133 
133 - 139 
139 - 145 
145 - 151 
151 - 157 
157 - 163 
163 - 169 
169 - 175 
175 - 181 
181 - 187 
187 - 193 

LINEARS 

PERCENT OF TOTAL = 

MINIMUM LENGTH(KMI 

0 
0 
0 
0 
0 
0 
4 
0 
0 
0 
0 
0 
0 
14 
0 
0 
10 
40 
23 
24 
18 
47 
0 
14 
9 
4 
11 
6 
18 
5 

28 

9.06148868 

1.8 

** 

********** 

******* 
***************************** 
***************** 
***************** 
************* 
*********************************** 

********** 
****** 
** 
******** 
**** 
************* 
*** 

Figure 5. Sarnple statistics produced on printer; see NW cell of Figure 2. 
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HAND-DIGITIZED TEST DATA 

VARIABLE 0 2 3 
# -- ID AZIMUTH LENGTH(KM) XMID(W) YMID(N) 

SAMPLE 
1 N43W 317 10.5 -115.089 34.712 
2 N37E 37 10.5 -114.967 35.006 
3 N06W 354 18.7 -115.013 35.171 
4 N44E 44 8.2 -114.974 35.225 
5 N35W 325 23.8 -113.726 35.374 
6 N40W 320 35.1 -113.943 35.61 
7 N50W 310 7.02 -114.089 35.77 
8 N32W 328 7.02 -114.14 35.823 
9 N18E 18 24.6 -114.115 36 

10 N34E 34 23.4 -114 36.193 
11 N52W 308 23.4 -114.013 34.524 
12 N64W 296 11.7 -113.834 34.374 
13 N63W 297 21.1 -113.752 34.352 
14 N08W 352 11. 1 -113.752 34.524 
15 N24W 336 8.2 -113.72 34.412 
16 N73W 287 3.5 -113.682 34.369 
17 N61W 299 28.1 -115.388 34.118 
18 N39W 321 29.8 -114.885 34.283 
19 N56W 304 8.2 -114.924 34.278 
20 N11W 349 11. 1 -114.847 34.176 
21 N49W 311 15.2 -115.405 36.417 
22 N53W 307 28.1 -115.382 36.444 
23 N67W 293 42.1 -115.032 36.278 
24 N02.5E 2.5 17.6 -114.529 36.471 
25 N37.5W 322.5 9.9 -114.191 35.941 
26 N62W 298 9.9 -115.433 35.936 
27 N80.5E 80.5 11.7 -114.191 35.567 
28 N14W 346 17.6 -114.35 35.283 
29 N36.5W 323.5 17.6 -114.134 34.064 
30 N26E 26 10.5 -114.159 34.267 
31 N36E 36 11.7 -113.847 35.749 
32 N41E 41 3.5 -113.656 35.727 
33 NOE 0 11.7 -113.592 35.855 
34 N13E 13 9.4 -113.586 35.952 
35 N23E 23 9.4 -113.675 36.043 
36 N9.5E 9.5 8.2 -113.649 36.118 
37 N35E 35 7.6 -113.796 36.053 
38 N34E 34 5.9 -113.821 36.064 
39 N19E 19 11.7 -113.879 36.037 
40 N33E 33 23.4 -113.879 36.091 
41 N11W 349 7 -113.649 34.936 
42 N18W 342 8,,2 -113.719 35.064 
43 N13W 347 11. 1 -113.713 34.989 
44 N07W 353 14 -113.802 35.064 
45 NOOW 0 9.4 -113.821 35.011 
46 NOOE 0 9.4 -113.815 34.497 
47 N21W 339 6.4 -113.828 34.572 
48 N15W 345 12.3 -113.93 34.738 
49 N36W 324 24.6 -113.98 34.219 
50 NOOE 0 9.4 -113.753 35.942 

Figure 6. Sam pIe annotated data matrix where number ofsamples (OCC) > 50 and 
number ofvariables (NV) < 6, so that sampIes are printed 50/page (see Table 1). 
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Table 1. Common record structure for data files (PEG programs use 
upwards compatible structure) 

Record Variable Description 

1 NY,OCC Array size parameter values: 
NY = number of variables 
OCC = number of samples 

2 ID$ ~56 character string for 
identification 

3 VNAME$(NY) Array of variable names 
4 OCNAME$(OCC) Array of sample names 
5 ARRA Y(NY,OCC) Array of data values 

These programs use a common data structure for data re cords 
recorded on a disk file using the Apple DOS 3.3 system (Table 1). This 
allows almost any program to read almost any data file; the user must 
determine if the analysis is appropriate. Within each program, data 
arrays are sized dynamically and labeled by parameters read at the start 
ofthe file. 

These programs also use a common design and resulting program 
structure (Fig. 7). The development of each program normally reused 
many code modules from one or more previous programs (Table 2). 

CONCLUSIONS 

Reusing code makes it easy to develop new programs to fit new 
applications or new requirements. The reuse of tested code increases 
software reliability while at the same time increasing developer and 
programmer productivity, thus reducing cost. The author has deter
mined that new programs can be developed, coded, tested, and placed in 
operation in as little as one working day by reusing selected modules of 
previously developed, well-tested code. 
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A PC STATISTICAL PACKAGE FOR 
FIELD ACQUISITION AND 

ANALYSIS OF TWO-DIMENSIONAL 
ORIENTATION DATA 

N. 1. Fisher, CSIRD, Sydney, Australia 
C. McA. Powell, University of Western Australia, Perth, Australia 

A. Gelin, Macquarie University, Sydney, Australia 
and 

D. McP. Duncan, Department of Mines, Tasmania, Australia 

ABSTRACT 

We describe a newly developed PC statistical package which, in 
conjunction with a suitably designed laptop or rugged field computer, 
can be used by practicing geoscientists collecting orientation data in the 
field. Potential users include structural geologists, field mappers, 
sedimentologists, and any scientists gathering orientation data. This 
paper illustrates how the package might be used in practice, in summa
rizing individual sets of measurements and comparing and combining 
the summary values from the various sets. 

DESCRIPTION OF PACKAGE 

The package uses the most up-to-date statistical methods available 
for analyzing single sets of orientations, and for comparing and combin
ing several sets of measurements based on the large-sample methods 

219 
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devised by Fisher and Lewis (1983) and Watson (1983), and the bootstrap 
techniques of Fisher and Hall (1989, 1990), and an unpublished report 
"New statistical methods for directional data 11: bootstrap confidence 
regions for mean directions"). It offers the systematic framework for 
handling such data described by Fisher and Powell (1989). It is IBM
compatible, MS DOS-based and menu-driven. It can be used in a pe in 
a laboratory, where the extended graphics capabilities of a pe can be 
exploited. However, we envisage that its real value will be in its 
application in the field, in conjunction with a sturdy field-portable pe. 
The geoscientist will be able to log orientation data and other field 
information directly into the computer, process the data immediately to 
decide whether enough have been collected to form reliable estimates, 
compare measurements from different sites to identify trends, and so on. 
At the end of a day, or a field trip, the data and results then can be 
transferred directly to a database or a larger IBM-compatible computer 
and plotter. 

A typical field operation involves 

(a) entry of general information about the field site; 

(b) entry ofpaleocurrent (or other structural) data, and on-the-spot 
analysis to check that all data satisfy reliabili ty criteria, and that 
the total data set meets desired confidence levels; and 

(c) comparison and synthesis with other data sets. 

The procedure is ill ustrated in the next section. 

EXAMPLE 

Here we show how the package might be used in practice. The data 
would be collected in the field together with other relevant in-situ infor
mation, and stored in a file XBGR26A, the contents of which would 
appear as printed in Table 1. 

U sing the statistics described in Fisher and Powell (1989), this data 
set can be summarized by line 1 ofTable 2. Lines 2, 3, and 4 are similar 
data sets from adjacent localities. At this point, we may wish to compare 
the mean directions ofthe localities and ü appropriate, pool them to form 
an overall estimate of the mean direction. 

Using the large-sample test given in Fisher and Powell (1989), we 
determine that localities 1, 2, and 3 can be taken to be drawn from 
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Table 1. Field data 

File: XBGR26A 

Dcscriptioll: Red Mans ßlurf Sands tOlle, Basal U nit, Cross-Bedding Fluvial, Mediurn-
to Coarse-Grained Quartzarenite, Horsharn, 1:100 000 Grid Ref. 226158, April 13, 
1987. Pebbles to 41 rnm long dimension, eoset approximately 20 m thick. 

Data (in Dip/Dip Azimuth Format) 

Regional Bedding Cross-Bedding Set Thickness 
Measured Restored (ern) 

24/021 52/026 28/029 17 
2 (mean of 44/355 24/333 15 
3 4 measurements) 49/346 32/326 26 
4 38/324 31/289 19 
5 44/359 23/340 17 
6 48/346 31/325 29 
7 38/000 18/334 24 
8 50/005 28/354 20 
9 40/005 18/346 35 

10 34/320 30/281 30 
11 42/000 21/339 24 
12 51/335 22/330 8 
13 41/011 18/359 35 
14 36/359 16/328 30 
15 " 42/034 19/048 15 
16 " 55/018 31/016 25 
17 46/005 24/351 35 
18 49/022 25/023 35 
19 42/010 19/358 19 
20 48/015 24/010 16 
21 41/012 18/001 8 
22 " 34/021 10/021 150 
23 39/348 22/317 10 
24 30/350 15/300 53 
25 32/345 18/300 35 
26 60/026 36/028 45 
27 26/341 17/279 267 
28 " 41/358 21/335 70 
29 36/041 15/070 55 
30 " 46/359 25/341 17 
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Table 2. Data summary 

Filename No of Median Vector-mean Mean Circular 95% Confidence Quartiles 
Vectors Azimuth Resultant Standard Interval 

Length Error 

n B jJ. R (; a~s B.2S B.7S 

1 XBGR26A 30 340.5 344.65 0.8228 0.1159 13.13 325.5 010.1 
2 XBGR27A 34 339.0 342.61 0.8064 0.1155 13.09 318.6 016.6 
3 XBGR07A 30 357.0 352.47 0.8284 0.1158 13.12 324.9 017.4 
4 XBGR13A 30 076.5 072.17 0.7698 0.1330 15.11 45.0 102.7 

populations with the same mean direction; the mean direction oflocality 
4 differs significantly from the others. It therefore is appropriate to form 
a pooled estimate of the common mean direction for the first three 
localities. 

Another example is given in Taylor and Mayer (1990, table 1) where 
paleocurrents from the fluvial Upper Devonian Worange Point Forma
tion, NSW, are analyzed and combined to form higher order pooled 
estimates of the common mean direction. 

The advantages of doing these statistical tests in the field are: 

(1) The data can be checked to eliminate any measurements which 
fall outside tolerable limits (e.g. foreset dips< 8° or > 40°). New 
data can be measured to replace rejected data. 

(2) The data can be checked to see if acceptable precision (expressed 
partly by confidence interval) has been achieved - although note 
that large amounts of dispersion in the data are characteristic of 
certain populations, and may result in wide confidence limits. 

(3) Checks can be made as to whether the mean directions are similar 
or different from previously measured data, thus improving 
knowledge about the changing paleocurrent patterns as the data 
are being measured. 

DISCUSSION 

Three of the localities (1, 2, and 3) have paleocurrent data which 
satisfy statistical tests that they have drawn from populations with a 
common mean direction, and one locality (4) contains data whose mean 
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orientation differs significantly from the others. Nonetheless, all four 
localities are in the same geological uni t (the basal pebbly band of the Red 
Mans Bluff Sandstone), and there may be geological reasons why one 
might want to use information from all four localities to calculate a grand 
mean for the entire unit. For instance, each locality represents a single 
estimate ofthe mean orientation ofthe paleostreams which formed the 
crossbeds. Ifwe wish to look at the mean orientation of all such estimates 
of paleostream orientation across an area, or in a mappable geological 
unit, we are entitled to take the estimate of mean paleocurrent flow at 
each locality, and, using appropriate weighting factors such as the areal 
distribution or the percentage ofthe geological unit which the paleocur
rent information represents, we could combine the vector-mean azi
muths into a higher order estimate ofthe mean paleocurrent direction 
for the unit (Potter and Pettijohn, 1977, p. 383-384). 

The important aspect treated in this paper concerns statistical tests 
that allow us to determine whether the orientation data from any two or 
more localities can be regarded as being drawn from populations with a 
common mean direction, and, if they cannot, prompts us to ask the 
question ofwhat the significance ofthat observation iso The statistical 
tests do not prevent us from amalgamating or merging data, ifit can be 
argued on geological grounds that such merging should occur. For 
example, the crossbeds used in this example are a sedimentary structure 
of rank 5 (Table 3, after Miall, 1974), and form the basic direction 
structure from which geologists try to answer questions about paleoslope 
requiring information two or three rank orders higher. 

Information about paleoslope directions can only be acquired prop
erIy if appropriate sampling strategies are adopted, and field informa
tion is collated and weighted according to the directional question being 
asked. Thus, whereas 30 crossbed measurements in one coset represent
ing a single paleostream can give an accurate estimate of the flow 
direction in that paleostream, how accurate is the estimate of regional 
paleoslope given that one paleostream flow direction? A more accurate 
estimate of the paleoslope would be given by taking a few crossbed 
measurements in several paleostreams, so that the variability of paleo
channel orientation could be smoothed out. 

A full discussion of the strategies and procedures involved in 
paleocurrent sampling is beyond the scope of this paper, and is men
tioned here as a caution to guide sensible use ofthe statistics we present 
herein. 
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Table 3. Rank hierarchy in fluvial systems (after Mia1l197 4) 

Riillk Type of structure Source of observations 
1 Entire drainage systems Regionallithologieal, facies, paleocurrent and isopach maps. 
2 Meander belts of individual rivers. Detailed lithological, facies, paleocurrent and isopach maps. 
3 Major channel reaches within meander belts. Detailed lithologieal, facies, paleocurrent and isopach maps. 
4 Minor subsidiary channels, transverse, lateral Channel axes, epsilon crossbeds. 

and point bars. 
5 Structures within bars. Crossbedding, trough axes. 
6 Structures superimposed on rank 5 structures Ripple marks, small-scale cross-lamination, pebble 

imbrication. 

APPLICATION TO STRUCTURAL ANALYSIS 

The statistical methods illustrated in this paper have much broader 
application than paleocurrent analyses. The methods can be used for 
any structural analysis where linear or directional data are involved. 
Two examples are the analysis of joints and aerial-photograph line
aments, and the analysis offold axes and lineations in ductily deformed 
terranes. 

The analysis of joint distributions and orientations has great eco
nomic significance in the coal-bearing Sydney Basin, and has been the 
subject of several substantial investigations in the past decade (e.g. 
Shepherd and Huntington, 1981; Cudahy and Creasey, 1986). Our 
statistics enable these joints distributions to be analyzed in an objective, 
quantifiable way, and, by use ofthe summary statistical tables, informa
tion gathered later can be added to existinginformation without the need 
to reprocess the entire raw data set. 

Statistical analysis offracture and lineation data in folded terranes 
is likely to become increasingly important in the mining industry, 
especially as the open-cut phase of gold mining leads to the deeper level 
underground mines where ore shoots usually follow fracture or fold 
directions. At present, there are few statistical packages developed 
specifically for quantifying such mining problems, and we intend to 
extend our present analysis to three dimensions. 

ACKNOWLEDGMENTS 

Development of this PC package was supported by a CSIRO
Macquarie University Research Grant and the Australian Research 



PACKAGE FOR FIELD ACQUISITION AND ANALYSIS 225 

Couneil. Extensive field work which underpins the data, and led to 
clarifieation of the problems to be addressed, has been supported by 
Maequarie University and ARGS research grants. 

REFERENCES 

Cudahy, T.J., and Creasey, J.W., 1986, Theroleofbasementstrueturein 
controlling structural and sedimentary pattern in the southern 
Sydney Basin: CSIRO Inst. Energy and Earth Resources, Invest. 
Rep. No. 1628R, 3 vols. 

Fisher, N.I., and Hall, P., 1989, Bootstrap eonfidence regions for direc
tional data: Jour. Am. Statist. Assoc., v. 84, no. 408, p. 996-1002. 

Fisher, N.!., and Hall, P., 1990, New statistieal methods for directional 
data I. Bootstrap eomparison ofmean directions and the fold test in 
paleomagnetism: Geophys. Jour. Royal Astr. Soc., v.101, p. 305-313. 

Fisher, N.!., and Lewis, T., 1983, Estimatingthe common mean direction 
of several eircular or spherical distributions with differing disper
sions: Biometrika, 70, No. 2, p. 333-341; Correction, v. 71, no. 3,1984, 
p.655. 

Fisher, N.!., and Powell, C. McA., 1989, Statistical analysis of two
dimensional paleocurrent data: methods and examples: Aust. Jour. 
Earth Sei., v. 36, p. 91-107. 

Miall, A.D., 1974, Paleocurrent analysis ofalluvial sediments: a diseus
sion of direetional variance and vector magnitude: Jour. Sed. Pet., v. 
44, no. 4, p. 1174-1185. 

Potter, P.E., and Pettijohn, F.J., 1977, Paleocurrents and basin analysis 
(2nd ed.): Springer-Verlag, Heidelberg, 425 p. 

Shepherd, J., and Huntington, J.F., 1981, Geological fracture mapping 
in coalfields and the stress fields of the Sydney Basin: Jour. Geol. 
Soc. Aust., v. 28, p. 299-309. 

Taylor, G., and Mayer, W., 1990, Depositional environments and pale
ogeography of the Worange Point Formation, New South Wales: 
Aust. Jour. Earth Sei., v. 37, p. 227-339. 

Watson, G.S., 1983, Statisties on spheres in Univ. Arkansas Leeture 
Notes in the Mathematical Sciences, Vol. 6: John Wiley Interseience, 
NewYork, 238 p. 



A SIMPLE METHOD FOR THE 
COMPARISON OF ADJACENT POINTS 

ON THEMATIC MAPS 

James C. Brower 
Syracuse University, Syracuse, New York, USA 

and 

Daniel F. Merriam 
Kansas Geological Survey, University of Kansas, 

Lawrence, Kansas, USA 

ABSTRACT 

A simple method is outlined for comparing adjacent grid points that 
have been measured for a series of maps. It is generalized and can be 
calculated for different types of maps where the original data are 
continuous or discrete. Either original or standardized data can provide 
the input information; standardization expresses the various maps in the 
same uni ts. Next, similarities or differences are computed for all adj acent 
points from east to west and from north to south on the grid. The 
coefficients computed include correlation coefficients, Euclidean dis
tances, and Mahlanobis distances; however, other statistics could be 
employed where appropriate. The coefficients then are plotted on the grid 
and contoured to depict the distribution of similarities and differences. 
Various patterns of similarities and differences between the points are 
shown by different coefficients and standardizations which can be related 
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to geologie features underlying the original data. The maps ofthe point
to-point comparisons are suitable for subsequent study with other meth
ods such as trend surfaces, filtering, or Fourier analysis. The example 
given is based on five structure contour maps from the Paleozoic of 
Kansas. 

INTRODUCTION 

In geology the analysis of spatial data is a major aspect of many 
studies (Merriam and Jewett, 1988; Brower and Merriam, 1990; Herzfeld 
and Merriam, 1991). The relationship ofthe data points to each other is 
important also as are the assumptions made in applying statistical 
techniques to the data. Therefore, understanding these interrelations 
can affect the outcome and the interpretation. Consequently any method 
that can show and evaluate these interrelationships can aid in the 
investigation of mapped data. 

The approach proposed here is one such method. We have taken a 
gridded data set that was compiled for a spatial data integration and 
comparison study to test the validity of this approach (see Brower and 
Merriam, 1990; Table 1). Examination ofthe interrelations ofadjacent 
data points for five structure contour maps was made to determine what 
if anything could be learned. The comparison of the neighboring data 
points was based on standardized and nonstandardized data; the distri
bution of the similarities and differences between the adjacent data 
points shows the spatial patterns of similarities and differences. 

Interpretation ofthe maps is not straightforward and requires some 
knowledge and background in the geology and data set of the area. 
Nevertheless the results are interesting and give the investigator new 
insight into the interrelations ofthe data and how they might affect the 
results from other analyses. 

A study by Merriam and Sondergard (1989) explored the use of a 
Reliability Index (RI) to determine where pairwise comparisons ofmaps 
were in high correspondence and thus had good predictability. The effect 
ofthis analysis was to look at the relationships between variables (the 
maps); whereas this study determines the relationships between sampIes 
(the data points). Merriam and Sondergard showed the RI indicated that 
matches were high (good) over most of the geological maps compared 
except for local anomalous areas, but that there was little correspondence 
between different types of thematic maps (eg. geological/geophysical, 
geologicalJtopographic, and geophysical/topographic). 
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Table 1. List of map data. Units consist of elevations in feet below 
sealevel 

MAPS 

Softoplt •• _r LHJI •• h ... CIty IIIaIUI ..... ArII ..... 'r"-' 
I 770 1160 1395 2100 2500 
2 690 1040 1310 1760 2300 
3 590 890 1150 1600 2100 
4 480 800 1005 1290 2010 
5 350 705 865 1210 1750 
6 290 670 1000 1300 1750 
7 350 310 950 1400 1000 
8 825 1185 1490 2090 2n0 
9 700 1100 1420 1800 2520 

10 600 980 1210 1670 2240 
11 475 795 1050 1400 1900 
12 300 705 950 1290 mo 
13 350 680 950 1400 2000 
14 435 790 1385 1720 2450 
15 880 1250 1605 2180 2750 
16 800 1185 1440 1965 2590 
17 600 1025 1300 1770 2375 
18 560 850 1080 1300 2000 
19 440 735 990 1410 1950 
20 460 800 1200 1300 1500 
21 405 750 1350 1770 2405 
22 930 1340 1600 2100 2840 
23 820 1205 1525 2050 2695 
24 695 1030 1380 1no 2430 
25 430 805 1100 1300 2000 
26 380 740 1010 1400 1950 
27 250 500 1000 1500 1300 
28 420 725 1325 1820 2400 
29 940 1395 1700 2250 2980 
30 840 1230 1595 2100 2740 
31 750 1120 1460 1850 2590 
32 620 1005 1300 liSO 2500 
33 475 825 1125 1300 2350 
34 450 550 1200 1810 1980 
35 390 800 1320 1825 2380 
36 1000 1405 1690 2150 2930 
37 850 1270 1610 2100 2800 
38 725 1160 1480 1950 2615 
39 550 1000 1315 1500 2300 
40 180 700 1100 1080 1800 
41 460 900 1250 1700 2525 
42 200 835 1315 1800 2485 
43 1040 1490 1800 2260 3100 
44 850 1310 1610 2000 2900 
45 675 1205 1505 1900 2640 
46 590 1100 1:10 1700 2420 
47 550 900 1300 1700 2500 
48 500 1020 1410 1850 2510 
49 320 810 1305 1i20 2400 
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The normal assumption in any geological study is that the data 
points are independent, but geostatisticians have shown in recent years 
that this assumption usually is not valid (eg. Journel and Huijbregts, 
1978). This study confirms that adjacent data points may be highly 
correlated especially in areas where there is a high degree of coinci dence 
of structural features on the maps. This is the geologie al situation with 
this data set from Kansas where structures tend to persist and normally 
become better defined and sharper with increasing depth (Merriam, 
1963). 

DATA 

Five structure contour maps from eastern Kansas were selecled to 
illustrate our method of point-to-point com parisons; these include the top 
of Precambrian (Cole, 1962), top of the Ordovician Arbuckle Group 
(Merriam and Smith, 1961), top ofMississippian (Merriam, 1960), base 
ofthe Pennsylvanian Kansas City Group (Watney, 1978), and top ofthe 
Pennsylvanian Lansing Group (Merriam, Winchell, and Atkinson, 1958) 
(Figs. 1A-E). The original units are elevations in feet below sealevel. 
Forty-nine points, located at six-mile intervals on a 7 by 7 square grid, 
were measured on each map to generate the test data (Fig.1F; Table 1). 

The data set is limited in several respects. (1) Inasmuch as the five 
maps are structure contours, all are of the same basic type. For most 
applications, one would want to compare different types ofmaps, such as 
structure, topography, gravity, magnetics, lithofacies, biofacies, pale
ocurrents, etc. (2) The five maps of this data set are all measured at the 
same points, the 7 by 7 grid in this instance. This may not be the situation 
as for example with subsurface data, where all wells do not reach all of 
the units that would be involved in the comparisons. Here, gridding 
would be necessary because the grid points would provide the input data. 

NUMERICAL DATA 

The intent ofthis study is to depict point-to-point similarities and 
differences with respect to all of the maps. These have an obvious 
significance for reconstructing the geologie his tory of an area or exploring 
for economic deposits of petroleum or minerals. The method has the 
virtue of simplicity if nothing else. The basic concept of studying the 
spatial relationship between similar to the idea of geostatistics (the 
theory ofregionalized variables). 
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L-__________________ ~F 

Figure 1. Structure contour maps from eastern Kansas. Units are elevations in feet 
below mean sealevel. A. Lansing; B. Kansas City; C. Mississippian; D. Arbuckle; E. 
Precambrian; F. Map of 49 grid points. 
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Similarity or distance coefficients are calculated for all adjacent 
pairs ofpoints from east to west and from north to south on the grid. For 
the first row of the grid, the coefficients for the east-west comparisons 
would involve points 1 and 2,2 and 3, 3 and 4,4 and 5,5 and 6, 6 and 7. 
The analogous coefficients from north to south for the seventh and last 
column ofthe grid would be calculated for points 7 and 14,14 and 21,21 
and 26,26 and 35,35 and 42, 42 and 49 (see Fig.1 F). The coefficients then 
are plotted on the grid and the patterns of similarities or differences are 
revealed by the contours. Note that this scheme preserves most of the 
original dimensions ofthe maps except for "bites" at the corners and along 
the edges. 

Comparison ofthe points based on standardized or unstandardized 
data with various coefficients shows different aspects of similarities and 
differences. Analyses were determined for the original structure contours 
in feet below sealevel and data where each map was standardized by Z
Scores or standard deviation scores. This form of standardization expresses 
the maps in the same units so that each map will contribute equally to the 
coefficients computed for the parts of points. Because of this transfor
mation, the high and low areas of a single maps are associated with low 
negative and high positive Z-scores, listed in the same order. The 
coefficients selected for the point-to-point comparisons consist ofPearson
product-moment correlations, Euclidean distances, and Mahlanobis co
efficients correct for redundant information between the maps because 
the distances between the points, say i andj, are weighted inversely with 
respect to the pooled covariances for the variables or maps. The analyses 
are not limited to the coefficients employed here, and others, for example 
Manhattan metrics, could be treated if desired. 

Although we have not done so, the original coefficients could be 
replaced with their significance or prob ability levels. For example, one 
might contour the probabilities that the correlation or distance coeffi
cients differ from nil. Positive and negative correlations would be indi
cated by the corresponding signs. Henderson and Heron (1977) and Raup 
and Crick (1979) adopted this approach in working with probablistic 
similarities for paleoecological and biogeographical information. 

The maps of the point-to-point comparisons can be used for later 
analyses with techniques such as trend surfaces, filtering, or Fourier 
analysis. 

In the final step ofthe study, the resulting contour maps ofthe point
to-point similarities and differences are compared with unweighted-pair
group-method cluster analysis ofmatrices of correlation coefficients and 
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absolute values of correlation coefficients. The input data comprise the 
vectors ofthe coefficients comparing the adjacent pairs ofpoints. 

RESULTANT MAPS 

Figure 2A contains the map of point-to-point Eculidean distances 
where the data on each map were standardized by Z-scores. The most 
prominent feature ofthe map is the elongate northeast-trending feature 
on the eastern side where the largest distance coefficients, ranging from 
1.01 to 1.98, are located. This area corresponds to the Nemaha Anticline 
(see Fig.1) as would be expected inasmuch as the most rapid changes take 
place in this region. It is interesting and important to note that the 
underlying structure is reflected clearly in the distances between the 
adjacent points of the grid. Smaller distance values are present in the 
western part of the map which is relatively featureless in terms of the 
underlying structure. The "boxy" configuration is not truly realistic but 
the geologie features in this region do have a northeast grain. 

The map based on Euclidean distances and the original elevations in 
feet below sealevel is pictured in Figure 2B. Here, the distances span a 
large interval of 19.0 to 241.8 because the data were not standardized. 
This map closely replicates the previous one. The Nemaha Anticline 
along the eastern side again is marked by large distances. The large 
anomaly in the northeastern corner of the map is present on both 
Euclidean distance maps. In addition, the position ofthe large distances 
outlining the Nemaha Anticline is nearly the same in both maps. The 
main contrast between the two maps is that in the western part where the 
trends are slightly less prominent and the features are more diverse. 

The configuration ofthe map ofthe Mahlanobis distances (Fig. 2C) 
is similar to that of the two Euclidean distance maps except that the 
variation of the distances is lower. This is probably the result of the 
standardization introduced into Mahlanobis distances by scaling them 
inversely with respect to the pooled covariance matrix between the 
variables ofmaps (see Sneath and Sokal, 1973). The distances range from 
0.43 to 5.85 with the largest values being concentrated alongthe N emaha 
Anticline. The structure in the Salina Basin in the western part of the 
map shows up as aseries ofrather subdued features oflow magnitudes 
that are elongated from northeast to northwest similar to maps shown in 
Figure 2A and to a lesser extent 2B. 

The map for the correlation coefficients between the points based on 
the original data is given in Figure 2D. The Nemaha Anticline dominates 
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Figure 2. Maps showing point-to-point similarities and differences. A. Euclidean 
distances for standardized data; B. Euclidean distances for original data; C. 
Mahlanobis distances for original data; D. Correlations for original data; E. 
Correlations for standardized data; F. Map of 49 grid points. 
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the map, and it extends across the eastern side ofthe map in a northwest
erly direction. The contours in the western area are irregular and diflicul t 
to characterize although the prevailing orientations are northeast and 
northwest. Scrutiny ofthe structure contour maps (Fig. 1) indicates that 
there are many small-scale structural features in the western area; 
however, these cannot be detected on the map ofthe correlation coefficients 
because of the relatively coarse size of the grid. Visual inspection of the 
map ofthe correlations and the structure contour maps makes it obvious 
that the lower correlations (down to 0.771) are associated with the 
Nemaha Anticline which has the most structural relief. Conversely, the 
higher correlations lie in the relatively flat and featureless eastern flank 
of the Salina Basin where most of the correlations are on the order of 
0.0999. The underlying interpretation ofthis pattern is straightforward. 
In relatively featureless areas the adjacent grid points exhibit similar 
values for all of the structure contour maps which produces the large 
correlations. With more intense structural features, the data can change 
more rapidly between neighboring points; in addition, the magnitudes of 
the changes usually are not consistent on all maps. These factors interact 
and result in lower correlation coefficients between the neighboring 
points can be related clearly to the patterns on the structure contour 
maps. 

Figure 2E portrays the geographie variation of the correlation 
coefficients that were calculated from the standardized structure contour 
maps. The strong "boxy" nature of the configuration is most likely a 
function of the contour interval and the coarse structure of the grid. 
Interestinglyenough, the crest ofthe N emaha Anticline, a strong positive 
structure, is represented by aseries of large negative correlative struc
ture, is represented by aseries oflarge negative correlation coefficients. 
West of the Nemaha Anticline, the correlations range from positive to 
negative values which roughly correspond in area to structures, but they 
may differ in sign. In other words, positive features are associated with 
negative structures (or synclines) and vice versa. 

RELATIONSHIPS BETWEEN THE MAPS 

Cluster analysis of the unweighted-pair-group-method type dis
plays the similarities and differences between the maps ofthe point-to
point relationships (Sneath and Sokal, 1973). The data represent the 
vectors of coeflicients com paring the adjacent points. The dendrogram for 
the correlation coefficients between the maps yields two distinct groups 



236 

CORRELATION COEFFICIENT 

-1.0 -0.6 -0.2 0.2 0.6 

I 
1.0 

BROWER AND MERRIAM 

A 

CORRELATION. STANDARDIZED DATA 

CORRELATION. ORIGINAL DATA 

EUCLIDEAN DISTANCE. STANDARDIZED DATA 

EUCLIDEAN DISTANCE. ORIGINAL DATA 

MAHLANOBIS DISTANCE 

ABSOLUTE VALUE OF CORRELATION COEFFICIENT B 

0.0 0.2 

I 
0.4 0.6 

I 
0.8 1.0 

I 

EUCLIDEAN DISTANCE. STANDARDIZED DATA 

EUCLIDEAN DISTANCE. ORIGINAL DATA 

MAHLANOBIS DISTANCE 

CORRELATION. ORIGINAL DATA 

CORRELATION. STANDARDIZED DATA 

Figure 3. A. Dendrogram of correlation coefficients; B. Absolute value of correlation 
coefficients. 

which are linked at a correlation of -0.562; one cluster contains the three 
distance maps whereas the other includes the two based on correlations 
(Fig. 3A). Inspection of Figure 2 demonstrates that the distances and 
correlations are inversely related. Areas characterized by large distances 
exhibit comparatively low correlations and vice versa as would be ex
pected (compare Figs. 2A-2C with 2D and 2E). Within the three distance 
maps, the one for Mahlanobis distance is least similar, mainly because of 
the different orientations ofthe patterns ofsimilarities and differences in 
the western side ofthe maps. The relatively low similarity between the 
two maps ofthe correlation coefficients is dictated by differential varia
tion ofthe similarity coefficients ofthe western data points. 

The matrix of the absolute values of the correlations should better 
reflect the underlying similarities of patterns between the five maps of 
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the point-to-point relationships. The dendrogram contains a single rather 
loose cluster where the two maps of Euclidean distances are nearly 
identical (Fig. 3B; compare Figs. 2A and 2B). The maps for Mahlanobis 
distance and correlation coefficients of the original data form the next 
joiners into the cluster. The latter maps resemble the first two in the 
vicinity ofthe Nemaha Anticline but contrasts become apparent in the 
western part of the maps. The contours on the two Euclidean distance 
maps are elongated from east to west but those of the Mahlanobis 
distance and correlation maps are relatively featureless and blocky 
(compare Figs. 2A and 2B with 2C and 2D). The one for correlation 
coefficients and standardized data comprises the "odd map out," possibly 
because the standardization process generates more detail in the western 
region. 

INTERPRETATION 

Visual inspection ofthe five maps ofthe point-to-point similarities 
and differences shows that most prominent features on the maps are 
coincident with major structural features on the structure contour maps. 
The Nemaha Anticline is the dominant structure extending across 
eastern Kansas from northeast to southwest. The Salina Basin lies in 
north-central Kansas west of the Nemaha where it forms a gentle, 
approximately-symmetrical basin which continues northward into Ne
braska. The detailed structure of the Salina Basin is not evident on 
contour maps constructed from welllogs because the data are sparse; 
these structures are clear only on seismic surveys or other geophysical 
maps. The eastern flank of the Salina Basin does contain several small 
structure which generally parallel the Nemaha Anticline, and they can 
be recognized by workers familiar with Kansas geology. Some ofthese 
structures carry through on the five maps although they may be offset 
slightly. 

The map of Figure 2D is the easiest to interpret. The Nemaha is 
apparent as is the northeast and northwest orientations of the smaller 
structures ofthe Salina Basin. On the map for Euclidean distances ofthe 
standardized data (Fig. 2A), the Nemaha is certainly obvious, and some 
of the small structures of the Salina Basin seem to be trending subpar
allel to the major feature. Where reliefis small, note that the data could 
be contoured differentlyusingthe same grid spacingandcontourinterval. 
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The association of the strong (large) negative values with positive 
structural features on the map of the correlation coefficients for the Z
scored data is not readily understandable (Fig. 2E). However, this 
association is consistent with the interpretation of the geology of the 
Salina Basin. Ifthe uni ts ofthe original maps are eliminated by standard
ization, basic geometry would indicate that the correlation coefficients 
will either increase or decrease in the region where the axis of a large 
flexure present on all or most ofthe original maps is crossed. The maps 
of Figures 2C-2E suggest also that the structures in the Salina Basin 
have a northeast or northwest orientation as shown by the pattern ofthe 
contours. 

The low correlations of Figure 2D, the negative correlations of 
Figure 2E, and the large distances of Figure 2A-2C generally coincide. 
This may be interpreted as resulting from several possibilities. Where the 
structural features are more prominent and marked, larger changes 
usually take place between adjacent grid points and regularity is not 
general. As mentioned previously, the direction of and the amount ofthe 
changes are not necessarily the same for all the input maps. Conversely, 
in the Salina Basin where the units are nearly featureless, horizontal, 
and parallel, there is little difference between the adjacent grid points. 
Consequen tly, smaller distances and higher correlations are observed for 
most ofthe adjoining data points. Examples ofchanges that could affect 
the distances or correlations between neighboring points include (1) 
offset or migration of structural axes with depth which is usual in Kansas 
Plains-type folds; (2) truncation ofbeds by unconformities, such as the 
Pennsylvanian-Mississippian unconformity which causes differences in 
struetural attitudes; and (3) variations ofstruetural orientations ofbeds 
generated by ehanges in thiekness of stratigraphie units because of 
differential eompaction. Several hypothetieal traverses aeross different 
types of structures were generated graphically to determine whether the 
postulated causes could produce correlations and distances that resemble 
those observed for the five structure contour maps. Simple graphical 
simulations were done for (a) differential compaction and (b) off sets of 
fold axes. In the simulations both positive and negative correlations were 
obtained, however the negative ones do not neeessarily go with structural 
highs and positive ones with structurallows ifthe data are standardized. 
The simulations do suggest tha tone or more of these agen ts of change are 
at least plausible. N eedless to say other explanations also ean be visualized 
for these data and other sampIes where this technique might be used. 
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CONCLUSIONS 

Our technique for the comparison of adjacent spatial data points 
taken from aseries thematic maps is another aspect of spatial geostatis
tics; it combines the virtues of speed and simplicity and provides another 
way to examine the interrelationships of spatial data. The method 
discussed here can be included easily in any spatial analysis package for 
the investigator to visualize the lateral variation between data points on 
a group ofmaps. The method is programmed easily for a computer. 
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ABSTRACT 

Site selection is a location dependent decision-making task, and it 
is carried out traditionally by overlying various types of maps and 
attempting to assimilate number of factors into a composite picture. 
Geologists may be involved in various site selection jobs such as: 
exploration, environmental studies, construction, and drilling-site selec
tion. 

Such a decision can be one of the two types. The first is the 
unstructured decision-that is based on experience and an overall 
understanding of the problem. The second type of decision involves a 
certain amount of precise data and an algorithm to process it, so that a 
definite or structured decision can be reached. Analysis of the elements 
of a geologic problem identifies the spectrum the problem belongs. 
Structured (well-defined) versus unstructured (ill-defined) decision 
making for site selection will be discussed. To keep the location 
dependency of variables and taking them into account during the process 
of decision-making, the variables treated in layers or maps. A map 
integration model will be introduced that carries the decision-making 
task and results in the most suitable location. 
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INTRODUCTION 

What is adecision? Adecision is the result of a process of selecting 
a specific course of action from a number of possibilities. The conse
quences of the action should be preformulated and appraised. The 
relevant existing site selection models in the literature are based on 
determining a mathematical solution to the problem, and have made use 
of statistical decision theory. Many researchers have approached this 
concept in context of mineral exploration. Two major methods are used 
more than the others in applications: "Bayesian" and "non-Bayesian" 
(classical). Statisticians ofboth schools agree on the fundamental rules. 
The difference is that the Bayesian approach provides a formal mecha
nism for taking the preferences into account instead ofleaving it to the 
intuition of decision maker. However, without formalization, adecision 
made under uncertainty has remained essentially arbitrary. The for
malization ofutilities and weights lead to decisions that are arbitrary but 
in some ways more objective. In most applied decision problems, both the 
preferences of a responsible decision maker and the judgment on the 
weights to be attached to the various possible states ofnature are based 
on substantial objective evidence. The quantification ofpersonal prefer
ences and judgment enables the decision maker to arrive at adecision 
which involves these objective evidences. 

STRUCTURED (WELL-DEFINED) DECISION MAKING 

Decision Parameter 

To frame adecision problem the following parameters must be 
identified for each individual situation. 

1) Space offeasible actions: A={a}. 
The decision· maker selects a single act a from domain A, which 
includes a set of potential acts. For site selection, a will be the 
subarea the most suitable for certain purpose. 

2) State space: S={s}. 
There must be at least two different "states of the world": the 
consequence of adopting act a depends on some state of the world. 
The selection or response of the decision maker is to accept one or 
another hypothesis ofthe possible state ofthe world. In site selection 
problem, this variable will be represented by subareas with higher 
potential. 
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3) Family ofresulting events: E={e}. 
The evidence or information that the decision maker uses is denoted 
bye from a family E. For a site selection, it is the consequence of 
certain decisions in terms of the involved factors. 

4) Utility function: u( ., ., ., ). 
The decision maker assigns a utility function u(e,a,s) to perform a 
particular e, taking a particular action a, and then determining that 
a particular s obtains. The function u considers the cost assoclated 
with certain decision in the different subareas under the prevailing 
conditions. 

In addition to the given parameters Bayesian decision making has 
an extra parameter. 

5) Probability assessment: P{ ., .1 e} 
For every e in E the decision maker directly or indirectly assigns a 
probability to show the likelihood of evidence e in the set of E. 

Rendu (1976) reviewed this method in the context of mineral 
exploration. A complete example offraming a site selection problem in 
a structured decision-making model was given and approached by the 
Bayesian method. He concluded that 

Statistical analysis appears to be a logical tool for optimization of 
decision in mineral exploration. However, geologists might find it 
difficult to quantify their opinion .. decision makers might consider that a 
utility function gives an over-simplified representation of their prefer
ences. Some aspect ofthe statistical decision theory, such as the use ofa 
decision tree and rigorous structurization of the decision process will be 
more easily accepted and can be used as a starting point for introduction 
of the theory in an exploration company. 

The problems that Rendu (1976, p. 443) mentioned are general and 
they apply not only to Bayesian decision-making models but also to all 
classical decision-making methods. 

Definition 

Given the set offeasible actions, A, the set ofrelevant states, S, the 
set ofresulting events, E, and a (rational) utility function, u that orders 
the space of events with respect to their desirability the optimal decision 
under uncertainty is the choice ofthe action leading to the event with the 



244 TABESH 

highest utility; such adecision can be described by the quadrupie 
{A,S,E,u}. Itshould benoted thatA, S, andE are sets, and uis afunction 
that induces an order on e. The components of the basic model under 
certainty are taken to be crisp sets of function. Crisp indicates dichoto
mous (selection of one and only one decision ofX, which is considered to 
be "best"). 

The set of action, set A can be defined precisely if the possible state 
(or states) and the utility function u are precise. Vagueness enters the 
picture only when considering decisions under risk, which occurs if one 
of the mentioned elements is not precise or uncertainty concerns the 
occurrence of astate or the event itself. 

Geologists constantly work with nature and its complexity; there
fore, all ofthe factors that they have to consider in the decision-making 
model inherit the complexities to some extent. Most geologie data are 
imprecise and incomplete; so that geologists must make decisions in an 
uncertain world based on inferential reasoning. Objective decision
making models are not efficient enough to accommodate these complexi
ties, or to consider the approximate and incompleteness nature of 
geologie data. 

This problem can be resolved by imitating the human decision
making process. There are both major differences and similarities 
between human and formal reasoning and decision making. Both 
procedures are based on probabilistic reasoning. With questions about 
the probability that event A originates from process B, the degree to 
which A is representative of or resembles B is evaluated, although 
ignoring prior probabilities, the effect of sampie size and the principle of 
regression to the mean are ignored. Another heuristic method used by 
adecision maker assesses the probability of an event based on the ease 
with which instances or occurrences can be reminded. In both the logical 
and statistical domains, it seems that human reasoning is dependent on 
context, so that different operations or inferential rules are required in 
different context. 

UNSTRUCTURED (lLL-DEFINED) DECISION MAKING 

Generally , making certain decisions reHes com pletely on the proce
dures of decision making rather than on the objective of thought. These 
are subjective; there exist in the mind of a person thinking rather than 
to the objective problems. Any subjective evaluation or decision is the 
result of a conscious classification. This type of decision is dependent on 
context and is considered to be information processing. Usually it is 
difficult to define the sets A, S, and E, and even the utility function is 
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considered to be developed within the decision process. Decisions are 
treated dependent ofcontext, and the analysis must include the human 
being as the decision maker. This is termed unstructured decision 
making. Precision is no longer assumed, and ambiguity and vagueness 
may be modeled only verbally, which usually does not permit the use of 
mathematical methods for analysis and computation. Most human 
decisions are considered to be subjective. Classical decision-making 
models are not adequate to model such problems. 

Fuzzy set theory provides a mathematical framework in which 
vague phenomena can be studied precisely and rigorously. It serves as 
a modeling language for situations in which fuzzy relations, criteria, and 
phenomena exist. Because geologie information is descriptive and 
usually described by naturallanguage, fuzzy set theory can help formu
late complexities, incompleteness, and uncertainties associated with 
geologie problems. 

THECONCEPTOFFUZZYSETTHEORY 

A crisp set is defined normally as a collection of elements or objects 
xeX which can be finite and countable. Each element can either belong 
or not belong to sets A, A t X. The statement that "x belongs to A" is true; 
in the former situation but not in the latter. Such a set can be described 
in different ways, one can list the elements that belong to the set. 
analytically for instance, by stating conditions for membership (A={xeX I 
x:::;;5}) similarly one can define the member elements by using the 
characteristic function VA, in which VA(x)=1 indicates membership of 
x to A and lIA(x)=O nonmembership. In a fuzzy set the characteristic 
function allows the degree ofmembership for the elements of a given set 
to differ between 1 and O. 

Example 1 

A geologist is searching for the best location in an area to set up a 
drilling rig. A suitable site may be on a potentially host rock for a certain 
type of mineralization. Assume that the area consists of eight different 
rock types with different potentiallikelihood with respect to being the 
host rock. Let X={1,2,3, .... ,8} be the label ofthese rock types. Then, the 
fuzzy set "favorable subarea based on the rock types" will be described as 

Ä= {(I, .5), (2, .2), (3, .8), (4, 1), (5, .7), (6, .3), (7, .5), (8, .9)} 
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(favorability ranges from 0 to 1 with 1 being most favorable). Obviously, 
the judgment of which rock type is most favorable for different types of 
mineralization is based on geologist knowledge, experience, and obser
vations. 

A fuzzy set is a generalization of classical sets and the membership 
function is a generalization of characteristic functions. Because we refer 
to a crisp set X, some elements of a fuzzy set may have zero degree of 
membership. It may be appropriate to consider those elements in the 
universe that have a non zero degree of membership in a fuzzy set. 

Definition 

The crisp set of elements that belongs to the fuzzy set A, at least to 
the degree a, is termed the "a -level set." 

A a = {xeX I m A (x) ~ a } 

A'a= {xeX Im A (x) ~ a} is referred to as a "strong a-Ievel set" or "strong 
a-cut." Again, with reference to the example 1 and listing the possible a
level sets: 

A.2 = {1,2,3,4,5,6,7,8,} 

A.5 = {1,3,4,5,7,8,} 

Note that the rock types 2 and 6, with respective degrees ofmembership 
.2 and .3, are present in A.2 but not in Ä. 5• 

A.s= {3,4,8} 

~= {4} 

Example 2 

Let A be the fuzzy set from example 1 and B be the fuzzy set ofthe 
rock types with favorable fracture systems as favorable features for 
mineralization: 

-B= {(I, .2), (3, .5), (4, .3), (6, .4), (7, .7)} 

The intersection C=A h Bis then 

-
C= {(I, .2), (3, .5), (4, .3), (6, .3), (7, .5)} 
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... 

The union D=A u B is 

D={ (I, .5), (2, .2), (3, .8), (4, 1), (5, .7), (6, .4), (7, .7), (8, .9)} 
... 

The complement of VB, which is interpreted as "area with insufficient 
fracture density," is 

VB= {{I, .8), (2, 1), (3, .5), (4, .7), (5, 1), (6, .6), (7, .3), (8,1)} 

Decision Making Under Fuzzy Conditions 

In a fuzzy decision model (Bellman and Zadeh, 1970) the objective 
functions and their constraints are characterized by their membership 
functions. Because the purpose is to satisfy (optimize) the objective 
functions and constraints, adecision in a fuzzy environment is defined 
by analogy to a nonfuzzy environment as the selection of activities that 
simultaneously satisfy objective function{s) and constraints. According 
to the given definition and assuming that the constraints do not interact, 
the logical "and" corresponds to the intersection. The decision in a fuzzy 
environment therefore can be viewed as the intersection of fuzzy con
straints and fuzzy objective function{s). 

Example 3 

Objective function x should be substantially larger than 10 and 
characterized by the membership function 

x<10 

x>10 

Constraint x should be in the vicinity of 11, and characterized by the 
membership function 

mc{x)= (1+{x-ll)4)-1 

The membership function mjj{x) ofthe decision is then 

= {
mO in{1+{x+{X-l0)-2)-1, {1+{x-ll)4)-1} for x>10 

for x<10. 
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The fuzzy decision is characterized by its membership function for all 
xeX: 

mfi(X)= min{ma(x), mc(x)} 

If the decision maker in tends to make a crisp decision, i t seems appropri
ate to suggest the state with the highest degree of membership in the 
fuzzy set "decision." This is termed the maximizing decision xmax with 

mD-(x )= max min { mG-(x), mc-(x)} max x 

In the previous situation the min-operator was used based on the 
following argument: in the classical (crisp) selection model of decisions 
the verballinkage between constraints and goals usually is "and." The 
intersection of fuzzy sets, however, has so far been modeled or defined by 
amin-operator. The question arises whether the association "and" -
"logical and" - ''intersection'' - "min-operator" lead to an appropriate 
model for decisions. 

Bellman and Zadeh (1970) indicated that their interpretation of a 
decision is more general in several ways. One possible generalizations 
involves logical operators, as illustrated in the foIlowing example. 

Example 4 

A geologist intends to drill a hole in an area that has been divided 
into a number of subareas. An evaluation based on geological and 
geophysical factors for one ofthe subareas shows two different favorabil
ity factors or degrees ofmembership in the fuzzy sets "favorable geologi
cal condition (G)" and "favorable geophysical condition (P)", in compari
son with the other sets. Assume that the favorability was evaluated as 
folIows: 

and 

Ifthe decision by the geologist corresponds to the degree ofmembership 
ofthe fuzzy set ''best location for drilling" it would be conceivable that the 
geologist's best decision mD could be determined by 

The generalization makes it easy to include the selection model as weIl 
as the evaluation model in the notion of a fuzzy decision. In asense, this 
has already been done in example 4. 
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Decision Making and Georeferenced Data 

Decision making, similar to other operations in the context of 
georeferenee data, is location-dependent, and somehow this dependeney 
must be taken into aeeount. Here it ean be argued that X and Y 
coordinates ean be treated as twoindividual constraints; this ean be valid 
for a single-eriterion decision making. When comparing different solu
tions in terms of desirability, judging the suitability, and determining 
the "optimal" solutions multiple phenomena generally should be used. 
This has led to the subjeet of Multi-Criteria Decision-Making (MCDM) 
in the framework of numerous evaluation sehemes that have been 
suggested, one of whieh eoncentrates on decision making with several 
phenomena in Multi-Attribute Decision-Making (MADM). In examples 
1 and 2 seleeting the most satisfaetory location for a drilling rig is a 
decision that is being affeeted by several variables. The eoordinate data 
differ from the rest ofthe attributes; and should not be treated in same 
wayas the rest ofthe data. Yet, at the same time, all the attributes are 
depend on location, and they have to be treated according to geographie 
locations. MCDM and MADM models are not adequate for multiattrib
ute decisions that are applieable to spatially distributed data. The 
inherited uneertainty and subjecliveness also should be modeled some
how. 

To consider location dependeney the data should be treated as 
layers. Eaeh attribute is represented by one layer. To summarize: a 
proper decision-making model for site seleetion should be able to address 
the following issues: 

1) Uneertainties associated with nature. 
2) Vague and ineomplete information. 
3) Deseriptive information, and the diffieulties of eonverting 

them into numerieal format, also subjectiveness. 
4) Inhomogeneities in the nature of data. 
5) Spatial-dependeney of data. 

To address these issues a map integration model is developed based 
on adapting subjeetive decision making. The model works the best in 
association with an expert system or it ean be built in most GIS 
(Geographie Information System) paekages running on mierocomputers. 
The model will be deseribed in relation to an example. 
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APPLICATION 

The model is tested by applying to a data set from Big HilI silver-zinc 
deposit, Pembroke, Maine. The area has a long history of exploration, a 
detailed geologie map is available, geophysical and geochemical surveys 
were carried out. Resulting maps show the distribution of several 
elements in the soil. The goal is to consider the locality of metallic 
anomalies, and the other controlling factors that affect the economy of 
exploration, and design an "optimal" pattern for exploratory drilling. 
The map integration model is applied to this data set in order to select 
the best or the optimize drilling sites. 

Geology 

Figure 1 shows the geological map ofthe area. The area is underlain 
by Silurian volcanic rocks typical ofthe Machias-Eastport volcanic rocks 
ofNorthern Appalachian region. The basalts are reported to be part of 
the Leighton Formation of Silurian-Early Devonian age (Gates and 

r~~--l -- --=.::.-

Figure 1. Geologie map ofBig HilI area. 
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Moench 1981). They are composed of basalt flows, coarse basaltic 
agglomerate, tuffbreccia, and ash fall deposits. The dip of stratigraphie 
sequence averages 30 degree to the northeast. The sequence is repeated 
at the surface several times because of shallow folding and normal 
faulting. A dense well-ordered fissure pattern is located at the Big Hill 
area and seems to partially control the mineralization. 

The mineral enriched flow traveled upward along channels, and 
was deposited at certain elevations, by filling the fissures (SchaffI982). 
In brittle rocks, such as basalt flows, quartz-carbonate-sulfide minerali
zation occurs continuously for hundreds offeet as stockwork and shatter 
breccias. Where fissure feeders transacted porous stratigraphie hori
zons, such as avalanche breccia and conglomerates, tuffbreccia, and flow 
breccia. The quartz-carbonate-sulfide mineralization saturates the 
pores of the primary rock and open spaces which are structure related. 

The low-sulfide primary ore consists of stringers, disseminations 
and coarse clotty aggregates of low-iron sphalerite, galena, pyrite, 
chalcopyrite, and minor tetrahedrite. Native silver was reported present 
as inclusions in all ofthe sulfides, including pyrite, but mainly in galena 
and sphalerite. Quartz and carbonate are the gangue minerals. The 
pertinent geological factors include a map of distribution of host rocks: 
basalt, breccia and ashfall, and a map of distribution of fracture and 
faults. 

Map Digitization and Integration 

A map layer is a two-dimensional data set showing the distribution 
of a single variable or attribute. Individuallayers of digitized map were 
produced for the pertinent factors. In the host rock map geologist decided 
to differentiate between various type of host rock by assigning various 
favorabili ty factor with respect to their suitability ofbeing host rock. The 
following set offactor represents the suitability ofhost rocks: basalt (1), 
upper breccia (0.7), lower breccia (0.5), and ash fall (0.6). Of course these 
factors are subjective and are based on geologist judgment, but the 
purpose is to model subjectivity in decision making. The area can be 
divided into grided subareas, and based on dominant rock type a 
favorability factor will be assign by the system to each cello The factors 
are treated as continuous variables and are shown by contour lines. 
Figure 2 is the result of an evaluation of the area based on host-rock 
distributions with respect to higher chance of hitting the orebody. 

The map layer showing the distribution of faults and fractures is 
treated differently. The distribution offractures is a favorable factor in 
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Figure 2. Contour map showing reck favorability with respect to mineralization in 
Big Hill area. 

porphyry and stockwork deposits. Therefore, the area with the highest 
fracture densities is the most favorable area for mineralization. The 
distribution of fractures also is treated as a fuzzy set, and the degree of 
membership is represented by favorability factors. Based on the as
sumption that the 0011 with the highest fracture density is the most 
favorable area for mineralization, the rest of the cells were compared 
with that one and ranked. The system overlays a grid mesh on the top 
of the map, and then searches for the cell with the highest fracture 
densities and assigns 1 to the most favorable subarea for mineralization. 
The search continues and each grid ooll is evaluated depending on its 
relation to the cell with the highest density; and favorability factors 
ranging from 0 to 1 are assigned (Fig. 3). Figure 4 is the contour map 
showing the distribution of densities in Big Hill. Finally, the maps 
representing the favorable area based on the presenoo of host rock and 
fracture densities will be integrated by applying the logical operator. 
The grids that are laid over each map layer are differed and it is a 
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Figure 3. Contour map showing fracture density in Big Hill area; 1 represents highest 
density. 
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Figure 4. Contollr map showing geologie fu\'orability. Map is rcsult ofintegrating 
maps in Figures 2 amI 3. 
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function of the size of the feature on each layer. For the purpose of 
integration, the finer sized grids have to be converted to the largest size, 
and the values assigned to the smaller cells will be added and then 
divided by the number of grid cells (Fig. 5). Ifthe larger grid covers some 
fraction of the sm aller ones, the area of each fraction acts as a weight for 
the value assigned to it (Fig. 6). 

An ideal situation for porphyry deposits is the presence ofhost rocks 
and a dense fracture system. To integrate these two map layers 
representing two complementary variables, the logical operator AND 
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0.41+0.48+0 .37+0.20/16= 0.31 

Figure 5. Converting smaller cell values to larger one. Larger cell lies over an even 
number of sma1ler cells. Because smaller cells occupy equal proportion of area, 
arithmetic mean will represent value for large cello 
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Figure 6. Converting smaller cell values to larger one. Large cell does not overlay even 
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was used. This is an emulation of the selecting process of an area for a 
specific goal (drilling) with respect to the geology, that an expert geolo
gist folIows. 

Processing Exploration Data 

Exploration data refers to the data gathered through geophysical 
and geochemical surveys. In the Big Hill area geochemical analyses of 
the soil were carrled out for four elements: lead, zinc, silver, and copper. 
The distributions are shown in Figures 7-10. Spontaneous Polarization 
(SP) surveys were carried out over the area, the negative anomalies 
indicate the location of silver concentrations (Fig. 11). 

The user should establish a second map file for the exploration data, 
digitize the maps, and store them. The system evaluates each individual 
map layer based on instruction provided for various data sets. For 
example, the user should make it clear that on the SP map the negative 
anomalies are favorable and that they indicate silver concentrations. 
The system divides the area into subareas by overlaying an appropri
ately sized grid mesh, evaluates each subarea, and assigns favorability 
factors to them. These evaluated map will be stored in a secondary file. 
Figures 12-16 show the evaluated maps for each data layer. It is obvious 
in these maps that the areas showing higher favorability factors coincide 
with the anomalies in the original maps. The map integration process 
follows the same procedures that were followed for integrating the host 
rocks and fracture density maps. The map shown in Figure 17 indicates 
the area with the highest favorability with respect to geochemical data. 
Figure 18 shows the result of integrating Figure 17 with the SP
evaluated map (Fig. 16). It should be remembered that SP anomalies 
indicate the silver concentration; as a result the silver factor in Figure 18 
already is weighted. Ifthere is an interest in specific elements because 
ofhigher market price or higher demand the data can be evaluated with 
a weighting factor that expresses the level ofinterest. 

Processing Engineering Factors 

Because ofthe nature and subjectivity of some ofthe engineeringfactors, 
they could not be taken into account so far, but they are important in 
exploration capital cost. The approach should be analytical and starts 
by the indication ofvarious attributes. In the Big Hill area these factors 
are recognized as the physiography of the area and accessibility to the 
road. For these two factors the topographic map ofthe area was digitized 
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Figure 7. Lead concentrations in soil, Big Hill area. 
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Figure 8. Zinc concentrat;ions in soil, Big HilI area. 
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Figure 9. Silver concentrations in soil, Big HilI area. 

90 

80 

70 

50 

~ ILO-----2~20----~2J~O~sm~2~4~0----~25~0----~2~~~---2~7~O----~27.80~--~2~90~--~JOO 
CI= 500 ppm Scala_ 1:15,300 

Figure 10. Copper concentrations in soil, Big HilI area. 
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Figure 11, Results from spontaneous polarization surveys, Big HilI area. 
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Figure 12. Contour map showing favorable areas based on lead concentrations in soil, 
Big HilI area. 
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Figure 13. Contour map showing favorable areas based on zinc concentrations in soi!, 
Big HilI area. 
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Figure 14. Contour map showing favorable areas based on silver concentrations in 
soil, Big Hill area. 
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Figure 15. Contour map showing favorable areas based on copper concentrations in 
soil, Big HilI area. 

90 

80 

70 

60 

50 

40 

30 
21~0-----2~20-----2~3O--~AL-=~~~~~~--~27~O----~28~0----729~O----~300 

HIGHEST FAVORABILlTY=1 LOWEST FAVORABllITY. O Clo,1 Scala. 1 : 15.300 

r 
N 

Figure 16. Contour map showing favorable areas based on SP surveys, Big HilI area. 
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Figure 17. Contour map showing favorable areas based on eoneentrations of lead, 
zine, silver, and eopper in Big HilI area. Map is result oflogieal integration ofFigures 
12-15. 
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from Figure 1 and reproduced by computer (Fig.19). A second map layer 
was produced by digitizing the roads accordingly to their ranking. The 
system subdivided the area by overlying a grid mesh on the map. For 
example it calculates the distance between the center of each cell to the 
road. Cells on topography map will be evaluated based on their suitabil
ity for setting up the rig. The factors that were considered in evaluating 
the area include slope and accessibility to the area. Figure 20 shows the 
favorability based on these two factors. 

Final Integration and Results 

The maps representing favorability based on three groups offactors 
(of geological, exploration, and engineering) are integrated by applying 
the OR operator. The action ofthis operatoris similar to comparing these 
map layers and selecting the area with the maximum favorability 
factors. The integration ofmaps within each group offactors involved the 
application of the AND operator. The action of this operator is similar 
to comparing various map layers and selecting the grid cell with the 
minimum favorability factors. The combination of AND and OR opera
tors result in the "max-min" (maximum ofthe minimum value), which is 
logically the best or optimum selection under the prevailing conditions. 
This is the essence of unstructured decision making that allows ill
defined constraints to be taken into account. 

By comparing the maps indicating favorable areas with respect to 
geology (Fig. 4) with those showing exploration data (Fig. 18), it can be 
seen that the favorable exploration area coincides with part of the 
geologically favorable area (at the middle of the map). Figure 21 was 
produced by laying Figure 18 over Figure 1 and it shows the anomalous 
area located next to a fault. Along the same fault there is another 
anomalous area toward the north. Because the exploration data consist 
ofsoil analyses, these anomalies might be an indication ofthe fault being 
a channel-way to silver-enriched flow and of the concentration of the 
elements along it therefore, the groundwater flow should be studied in 
the area and be considered as an important factor. Two other anomalies 
occur in the area that already has been drilled. Based on these results, 
it seems that drilling had priority in the indicated areas rather than 
around Mains Zone and the Barrett deposits. Another favorable area 
falls on the south of the Barrett deposit and a small one north of the 
Moore deposits. 

Figure 22 is the result of integrating Figure 18 and Figure 20 
(favorable area based on engineering factors). This figure confirms the 
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Figure 19. Computer reproduction oftopographic map ofBig Hill area. 
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areas indicated in Figure 18 as highly favorable areas. In addition to 
those areas, there are a few new areas on the eastern side of the maps. 
Because these anomalies first occur on this map they cannot be reliable 
and have to be examined in detail before being recommended for drilling. 
Visually comparing Figure 22 with Figure 2 (the geologically favorable 
area), it can be detected that the appearance of these anomalies is the 
result of the favorable geological circumstances of the area. 

CONCLUSIONS AND RECOMMENDATIONS 

The introduced map integration/site selection model is able to 
consider location dependent variables from various sources, and assists 
geologists to make a site selection decision. Because this model is based 
on the use oflogical operator, the technique Can be added simply to anY 
GIS package. The system is based on subjective decision making which 
allows considering features such as: vague and incomplete data sets, 
uncertainties associated with geological variables, and inhomogeneous 
data. Because this model emulates human decision making, the best 
application for it, is to extend that by designing an interface between the 
GIS and an expert shell. Then the concepts for evaluation and assigning 
the scale factors can be constructed in form ofrules in the knowledge base 
of expert shell, and the whole evaluation process can be done automati
cally. 

The application ofthe system requires a rigorous amount of digiti
zation. If a file of scanned map data can be converted into a digital file 
that is compatible to the system, then the digitization will not be 
necessary. 
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ANALYSIS OF SPACE AND 
TIME DEPENDENT DATA ON A PC 
USING A DATA ANALYSIS SYSTEM 

(DAS): A CASE STUDY 
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ABSTRACT 

The program system DAS (Data Analysis System) is designed for 
the interactive graphical analysis of spatial data on the PC. It has no 
special features for the treatment of spatial time series but it is so flexible 
that it can be used for the analysis of such data. Some properties of the 
program and a case study on pollution data in Austria are presented to 
illustrate its capabilities. 

THE PC PROGRAM DAS: DATA ANALYSIS SYSTEM 

DAS is an easy to use PC program for exploratory, numerical, and 
graphical statistical data analysis. It is both (optionally) command and 
menu driven. The graphics modules include histogram, cdf-plot, one
dimensional scattergram, density trace, boxplot, xy-diagram, ternary 
diagram, and draftman's display. Statistical tables including mean, 
standard deviation, robust mean (Huber and Hampel), robust scale, 
median, percentiles, hinges (quartiles), interquartile range, medmed, 
letter values, and tabulation of upper and lower outliers by result and 
sample number can be calculated and printed. Sorted data tables, 
multielement-outlier tables and raw data tables can be prepared as well. 

267 
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Additionally, DAS offers two special features: 

• the use and interactive definition of data subsets in almost all 
graphics, and 

• the possibility to use regionalized variables and to combine the 
geographical distribution of sampIes with their statistical analysis. 

These two features make DAS an ideal instrument for all scientists 
working with regionalized data (e.g. environmentalists, geochemists, 
biologists, toxicologists) who want to map the geographical distribution 
of sampIes and results in addition to a modern statistical analysis. 

Data subsets can be predefined or interactively created in diagrams 
and maps or by using simple mathematical operations. Up to 100 data 
subsets or subsubsets can be saved in the original data file under a 
unique name. The geographical distribution of any subset can be studied, 
subsets can be compared in most graphics and a full statistical analysis 
can be carried out for any one, or all, data subset(s). 

For the special geographical displays, digitized topographical maps 
can be used as background information. These topographical back
ground maps can be converted from AUTOCAD (tm)\footnote{Any 
trademarks mentioned here are trademarks of the respective compa
nies.}, ARCIINFO (tm)1, or simple ASCII datafiles. 

Further support during data analysis is offered by a data transfor
mation module (log, logit, box-cox, multiplication, ladder ofpower, range, 
etc.), a case selection module and a data definition facility. The lattercan 
be used to define new variables via mathematical operations (e.g. 
$FeO=Fe \times 1.286$ or $A={NaL{2} O+K_{2}O)$. 

The data set for DAS can be entered either directly into DAS via 
screen forms, or taken from dBase IIIIIV (tm) or Lotus 1-2-3 (tm). Of 
course, DAS also can create directly dBase IIIIIV or Lotus 1-2-3 files. 
Additionally, several ASCII data file formats can be used for data input! 
output. 

All graphical outputs of DAS can be prepared in publication ready 
quality. Almost every parameter influencing the graphical presentation 
on the screen can be modified. 

Each of the diagrams, maps, etc. can be arranged on the screen in 
an arbitrary fashion. A worksheet of any predefined size (usually A4 or 

lAny trademarks mentioned here are trademarks ofthe respective companies. 
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A3 but, also up to 3m by 3m) is divided interactively into windows which 
will contain further on the diagrams, maps, explanations, or text. Any 
once-designed worksheet layout can be saved into special "sheet"-files 
using a unique name. 

A text facility can be used to write, move, modify, and save annota
tions for the layout. More than 20 different text fonts are available. A set 
ofmore than 100 symbols for mapping such as north arrows, scale bars, 
symbols for castles, churches, towns, etc. is included. Each symbol can be 
positioned anywhere on the screen in any size. It also is easy to create 
new symbols and add them to the set. 

A command tracing can be involved where all used commands 
(typed or generated via the menu) will be written on a file. This file can 
be used to repeat parts of or the complete session of your analysis. 

A "SNAPSHOT" command can be issued at any time. Whenever the 
user approves the graphicallayout on the screen, "snapshot" will write 
the present layout to a meta file. This meta file can be displayed at 
another time, plotted, printed by a laser printer, or converted to be read 
by AUTOCAD (tm) for further graphical processing. It may be edited in 
a simple way to make final corrections. Interfaces to popular desktop 
publishing programs such as Ventura Publisher (tm) or Page Maker (tm) 
exist as weIl as interfaces to word-processing programs such as WORD 
5.0 or TeX (see also Dutter and others, 1990). 

THECASE 

The data we are using have been collected in an industrial area of 
Austria where stack sulphur and dust have been collected and the pH
value has been "measured at 34 spots around a chimney. Each observa
tion corresponds to aperiod of 28 days, that is one year consists of 13 
units. The original data have been stored on separate files for each year 
and spot so we had to reorganize them by gathering all 1 70 files (34 spots 
in 5 years) in one large file to be able to begin with the analysis. The 
original data file consisted of6 variables, three ofthem were S02' SOa' 
and sulphur per day. After some calculations we noticed that these 
variables had been constructed by multiplying the measured sulphur 
with a constant. Thus, from the statistical point of view these variables 
are ofno further interest and we will focus on sulphur, dust, and the pH
value. 
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THE ANALYSIS 

Univariate Statistics 

In this section we will compute some basic statistics such as the 
median, mean, variance, and some robust measures of our three vari
ables and we will plot histograms, density and cumulative density 
functions, and boxplots of each variable. 

Sulphur - Table 1 is taken directly from the output ofDAS. Sulphur 
is measured in mg. First we can see the number of missing values heing 
49 out of 2048. Different location estimates are provided as weIl as 
estimates ofvariation. Skewness and kurtosis are large, that is the bulk 
of the data is narrow and the larger values produce a heavy tail. 

Table 1. Univariate analysis of sulphur 

+======+ 
!Smg! 
+======+ 

Number ofvalues used : 1999 
Number ofmissing values: 49 
Name of subset(s) : NONE 

Boxplot Statistics Location Estimates 
Median : 1.172 Mean : 1.6645 
Hinges: 0.581 2.217 
Whiskers: 0.005 4.667 
Fences : -1.873 4.671 
Extremes: 0.005 11.088 

Huber: 1.39103 

Variance : 2.60195 
St. Dev. : 1.61306 

HampeI: 1.52019 

Coeff. ofVariation: 0.969096 

Hinge-Spread: 1.636 (Normal Consistent: 1.21275) 
MedMed : 0.706 (Normal Consistent: 1.0467) 
Robust Variance (Huber): 1.2883 

Value Value/S.E. 
Skewness: 2.03958 37.2282 
Kurtosis: 5.24043 47.8264 

Minimum Standard Score: -1.02879 Maximum Standard Score: 5.84201 
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In Figure 1 three pictures show the shape of the data. The first one 
is a histogram combined with a scatterplot which is spread randomly in 
the y-axis, the second one shows a density function computed via kernel 
estimation combined with a boxplot and the third one shows a cumula
tive distribution function of the data in the logarithmic scale. 
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Figure 1. Univariate plots of sulphur. 

Dust - Dust is measured in mg similarly to sulphur; 106 values are 
missing and again the skewness and the kurtosis are large (see Table 2). 

The data are presented Figure 2 in the same way as Figure 1. 
pH-value - The pH-value is missing in nearly one-third of the 

sampies, skewness and kurtosis show a different behavior than the other 
two variables investigated. Here the bulk of the data is spread out and 
the tails are rather shorl (see Table 3). 

In Figure 3 the data are presented in the same way as Figure 1 and 
Figure 2, only the scale of the cumulative density function is not a 
logarithmic one. 

Time Series 

In this section we want to look at our data in dependence of time. 
Without using any time-series smoothing procedure, Figure 4 and 
Figure 5 clearly show seasonal fluctuations the result of domestic fuel in 
winter. 

On the other hand, dust and pH-value do not indicate any seasonal 
fluctuations (see Fig. 6 and Fig: 7). 
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Table 2. Univariate analysis of dust 

+=========+ 
! Dust mg ! 
+=========+ 

Number ofvalues used : 1942 
Number ofmissing values : 106 
Name of subset(s) : NONE 

Boxplot Statistics Location Estimates 
Median: 119 Mean : 196.992 
Hinges: 57.1 227.2 
Whiskers: 0.1 480.8 
Fences : -198.05 482.35 

Huber: 142.665 

Extremes: 0.1 3157 

Variance : 65777.5 
St. Dev. : 256.471 

Hampel: 172.255 

Coeff. ofVariation: 1.30194 

Hinge-Spread: 170.1 (Normal Consistent: 126.093) 
MedMed 73 (Normal Consistent: 108.228) 
Robust Variance (Huber): 14363.6 

Value ValuelS.E. 
Skewness: 4.15411 74.7356 
Kurtosis: 28.8522 259.536 

Minimum Standard Score: -0.767696 Maximum Standard Score: 11.5413 
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Figure 2. Univaliate plots of dust. 
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Table 3. Univariate analysis ofpH-value 

+==========+ 
! pH-Value! 
+==========+ 

Number ofvalues used : 1397 
Number ofmissing values : 651 
Name of subset(s) : NONE 

Boxplot Statistics 
Median : 6.26 
Ringes: 5.01 6.95 
Whiskers: 3.15 9.57 
Fences: 2.1 9.86 
Extremes: 3.15 9.57 

Variance : 1.44484 
St. Dev. : 1.20201 

Location Estimates 
Mean: 6.05548 

Huber: 6.06441 
Hampel: no convergence 

Coeff.ofVariation: 0.1985 

Ringe-Spread: 1.94 (Normal Consistent: 1.4381) 
MedMed 0.88 (Normal Consistent: 1.30467) 
Robust Variance (Huber): 1.76559 

Value Value/S.E. 
Skewness: -0.197919 
Kurtosis: -0.704905 

-3.02002 
-5.37803 

Minimum Standard Score: -2.41717 Maximum Standard Score: 2.92386 

Figure 3. Univariate plots of pH-value. 
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Figure 4. Sulphur through time. 
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Figure 5. Boxplot of sulphur through time. 
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Figure 6. Boxplot of dust through time. 
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Figure 7. Boxplot ofpH-value through time. 
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Figure 8. Sulphur over all spots. 
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Figure 9. Dust through all spots. 
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Figure 10. pH-values through an spots. 
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Figure 12. Sulphur in 1986. 
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Visualizing Space Dependent Data 

A simple way to visualize spatial data is to plot a variable against 
all spots, that is their indices without considering the exact geographical 
Iocation, simiIarIy to the time series. In our example we have 65 values 
at each spot (5 years \'a 13 units). With sulphur one easily can detect 
some large values indicated by '+' (see Fig. 8). These observations can be 
identified easily interactively by using the mouse or the cursor. Some 
spots (such as 6, 13, 34) seem to be the ones with the smallest amount of 
sulphur measured, whereas other spots (such as 5 and 11) show high 75% 
percentiles, and 12 shows a high maximum. 

With dust, only some spots (11, 17, 18, 32, 33) have large 75% 
percentiles and 10 and 31 have large maxima, whereas all the others are 
rather small (see Fig. 9). 

With pH-value, we can see that for some spots (such as 17, 18, 33) 
the values are rather large and for other spots (suc as 25) the values are 
rather small. That is, 17, 18, 33 are more alkaline, whereas 25 is more 
acid (remember: 7 would be neutral; see Fig. 10). 
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This type of plots allows to look at all observations of all spots at the 
same time. Unfortunately, we are not able to see the location ofthe spots. 
In DAS we have the possibility to plot a map ofthe locations. Moreover, 
we can use one certain time and plot a coded variable on these spots. For 
example,in Figure 11 we can see a map ofthe variable dust at time 13 
(that is: 5.12.1985 - 2.1.1986). The special symbol in Figure 11 indicates 
the chimney stack. The larger the circles, the larger are the measured 
values. The explanation tells us how the borders of each class have been 
defmed. 

To see the development of a variable through the time we plot a map 
for each time through one year (see Figs. 12,13, and 14). In Figure 14 we 
can see that at some periods the pH-value has not been measured, 
therefore only the locations are plotted. 
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