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Jean-François Massieu
GREYC Lab, University of Caen Basse-Normandie, France

Felipe González Montañez
Departamento de Energı́a, Universidad Autónoma Metropolitana, México
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Romeo Ortega
LSS, SUPELEC, CNRS, France

Hamid Ouadi
FSAC, University of Casablanca, Morocco

Alessandro Pilloni
Deptartment of Electrical and Electronic Engineering (DIEE), University of Cagliari, Italy

Manuel Pineda-Sanchez
Deptartment of Electrical Engineering (DIE), Universidad Politécnica de Valencia, Spain
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Preface

The last two decades have witnessed spectacular developments in the technologies of power
electronics and microprocessors. Due to these developments, sophisticated power converters
and digital signal processors (DSP) have become available, making possible the use of high-
performance AC drives in widespread applications. For this goal to be fully realized, one
should get as much benefit as possible from the considerable progress made in the field of
control theory. Three decades of intensive research activity has resulted in a proliferation of
nonlinear control methods, published in hundreds of journal and conference papers. Of course,
not all nonlinear control methods apply to AC motors, but a significant fraction does. The aim
of this monograph is to make available to the scientific community a resource reflecting the
wide variety of control problems posed by AC motors and drawing up the state of the art of
the corresponding control methods for design, analysis, and implementation. In this respect,
special focus is made on the topics of sensorless nonlinear observers, adaptive and robust
nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms,
and fault-tolerant controllers. The most significant developments in these topics, and their
applications to AC motor control, are described in this book, as well as some new research
topics. Most of the concepts and methods are presented by their own inventors.

The book is intended for a wide variety of readers, including academia and industry
researchers, graduate students and their professors, engineers, and practitioners. Although
it includes many aspects of the theory, it is nonetheless beneficial to practitioners who will be
able to use the methods without necessarily understanding every single detail of the theory. It
will also be useful for newcomers to research in the field of AC motor control. For students and
newcomers, the main prerequisites are undergraduate courses on linear and nonlinear system
control, on electric machines, and on power electronics. Each chapter includes an introduction
and an individual reference list, and the different chapters are written in a way that makes
them readable independently from each other.
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Introduction to AC Motor Control

Marc Bodson1 and Fouad Giri2
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1.1 AC Motor Features

The principles of operation of (AC)motors may be found in many books, including Hindmarsh
(1985), Vas (1990), Leonard (2001) and Chiasson (2005). In this section, some basic facts are
recalled, focusing on the features that contribute to the success of ACmotors in motion control
and to the continuing growth of their applications. “ACmotors” refers to electric machines that
convert AC electric energy into mechanical energy. There is a wide variety of such machines
that differ by their operating principles, physical characteristics, and power level. Considering
their operating principles, AC motors are classified in two main categories: induction and
synchronous.
Induction motors exist in two main types, squirrel cage and wound rotor. In wound rotor

machines, both the stator and the rotor windings are made of individually insulated coils.
The rotor coils are made accessible on the stator side through slip rings. In squirrel-cage
machines, the rotor windings are replaced by longitudinal bars placed in slots beneath the
rotor’s outer surface. The rotor bars are connected by circular conductors placed at the extrem-
ities. Operationally, a squirrel-cagemotor is similar to awound rotormotor with short-circuited
windings.
For both types of motors, the stator windings generate a rotating magnetic field when

supplied with polyphase AC. The speed of rotation of the field is given by the stator current
frequency divided by the number of magnetic pole pairs created by the windings. By Faraday’s
and Lenz’s laws, currents are induced in the rotor windings whenever the rotor speed differs
from the speed of the magnetic field produced by the stator. This speed difference, called
slip speed, must be kept small to guarantee high-energy conversion efficiency. Under this
constraint, a change of rotational speed requires an adjustment of the stator electrical
frequency.

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Synchronousmotors also exist in two versions, namely, permanent-magnet andwound rotor.
Unlike induction motors, there are no induced rotor currents in synchronous motors in steady
state, because the rotor rotates at the same speed as the rotating magnetic field. A motor torque
is developed due to the interaction between the stator rotating field and a rotor field generated
either by permanent magnets or by an injected rotor current.
For both induction and synchronous motors, variable speed operation is possible if the

stator supply frequency is made variable. Until the development of modern power electronics,
there was no simple and effective way to vary the frequency of the motors’ supply voltages.
Nowadays, reliable high-speed switching power converters are available that serve as actuators
in AC motor control. Specifically, an AC motor is supplied with power through an association
of two power converters, a rectifier and an inverter (Figure 1.1). The former, also called AC/DC
converter, converts the AC power provided by the grid into DC power. Control of the rectifier
is not always implemented, but is useful to regulate the DC voltage, or to enable regeneration
of power to the grid. The inverter, also referred to as DC/AC converter, transforms the DC
voltage into an AC voltage with a specified frequency. The result is achieved by chopping the
DC voltage at a high rate, typically using a pulse-width modulation (PWM) technique. In this
respect, it is worth emphasizing the considerable progressmade in computer technology, which
has resulted in fast multiprocessor computers and high-performance analog-digital interfaces.
This progress has made possible the real-time implementation of sophisticated methods to
control the power converters associated with AC machines.
DC motors require schemes similar to Figure 1.1, but with lower bandwidth requirements

and fewer channels. However, ACs are produced in conductors through mechanical commu-
tation, rather than electrical commutation. The commutators of DC motors are complex and
vulnerable. As a result, AC motors offer a higher power/mass ratio, relatively low cost, and
simple maintenance. AC motors exist with a variety of characteristics and in a large range of
sizes, from a few watts to many thousands of kilowatts. For these reasons, AC drive systems
have already replaced DC drives in several industrial fields and this widespread proliferation
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is expected to continue. Nowadays, AC drives are used in almost all industrial applications,
such as the following:

1. Transport: vehicle traction, marine propulsion
2. Milling in cement, steel, paper, and others industries
3. Pumping/compressing in oil and gas industry
4. Cranes and industrial vehicles
5. Domestic machines: lifts, washing machines, and others.

1.2 Control Issues

1.2.1 State-Feedback Speed Control

The prime objective in AC motor control is to make the rotor turn at a desired speed despite
load variations. If the desired speed is constant, one talks of speed regulation, while tracking
problems correspond to time-varying speeds. The desired speed, also called the speed refer-
ence signal, is often unknown a priori, making the control issue more difficult. Indeed, the
achievement of a desired rotor speed profile necessitates a sufficient motor torque to overcome
the load torque, but also to provide the required accelerations of the rotor during transient
periods.
In AC induction motors, the generation of a given torque necessitates a sufficient level of

rotor magnetization, that is, a sufficiently high flux magnitude in the rotor. Flux control is thus
not independent from the problem of speed control and both are acted upon through the inverter
control signals. These signals are binary signals commanding on and off conduction modes.
The electromechanical nature of the motor entails nonlinearities associated with products of
fluxes with currents and fluxes with speed. Furthermore, the three-phase nature of the motor
means that the overall model is nonlinear, of high dimension, as well as controlled through
binary signals. A common practice consists in reducing the model dimension by resorting to
Park’s transformation, which projects the three-phase variables (generally referred to as abc)
on a two-phase rotating coordinate frame (generally referred to as dq) (see, e.g., Blaschke 1972;
Leonard 2001). The binary nature of the inverter signals is generally coped with by averaging
the signals over the PWM period and letting the control design be based on the corresponding
averaged two-coordinate model (see, e.g., Sira-Ramirez and Silva-Ortigoza 2006). Model
nonlinearity is handled using modern nonlinear control design techniques, including state-
and output-feedback linearization, Lyapunov control, sliding-mode (SM) control, passivity-
based control (Ortega et al. 1998; Isidori 1999; Sastry 1999; Vidyasagar 2002; Khalil 2003).
The basic ideas described so far lead to the control strategy depicted in Figure 1.2.

1.2.2 Adaptive Output-Feedback Speed Control

The basic state-feedback control strategy of Figure 1.2 assumes that all controlled system
parameters are known. However, some system parameters are generally not known a priori,
and may even be varying in normal operating conditions. In particular, the stator and the rotor
resistances are sensitive to the magnitude of the currents, and thus undergo wide variations in
the presence of speed reference and load torque changes. The rotor-load set inertia and rotor
friction coefficient may also vary (e.g., in transportation applications). To maintain the control
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Figure 1.2 AC motor basic control strategy: state-feedback speed control

performance at the desired level despite changing operating conditions, the speed controller
may need to be reinforced with a parameter adaptation capability (Krstic, Kanellakopoulos,
and Kokotovic 1995; Astolfi, Karagiannis, and Ortega 2007).
Another limitation of the control strategy of Figure 1.2 is that all state variables are assumed

to be accessible throughmeasurements. However, reliable and cheap sensors are only available
for stator currents and voltages. Flux sensors are generally not available on machines because
of their high implementation cost and maintenance complexity. Mechanical sensors (for speed
and, more rarely, torque measurements) are common, but also entail reliability issues and extra
maintenance costs due to physical contact with rotor. Therefore, state observers are attractive
to obtain online estimates of the states based only on electric measurements (Besançon 2007).
Sensorless controllers involving online state estimation using observers are commonly referred
to as output-feedback controllers. Modern control strategies, illustrated in Figure 1.3, combine
both features: parameter adaptation and sensorless output-feedback.

1.2.3 Fault Detection and Isolation, Fault-Tolerant Control

Like any complex system, AC motors are facing faults in otherwise normal operating con-
ditions. Faults may originate from the failure of certain system components, for example,
sensors, inverter, rectifier, power supply, or even stator/rotor windings. Sensor failure may
result in a loss of observability, while inverter, rectifier, or supply failure may cause a loss of
controllability. Regardless, the controller designed on the basis of a faultless model may see its
performance deteriorate drastically, sometimes causing unsafe operation of the whole system.
To prevent unsafe running and continuously guaranteeing an acceptable level of performances,
a fault-tolerant control (FTC) system is needed. The development of FTC systems has been
an active research topic, especially over the past 15 years, and a review of relevant concepts
and methods can be found in Blanke et al. (2000), Steinberg (2005), and Zhang and Jiang
(2008), and Noura et al. (2009). Distinction is usually made between passive and active FTC
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approaches. In the first case, component failures are considered as disturbances and a single
control law is designed so that it is robust against the predefined set of disturbances. The active
FTC approaches are those that dynamically react to fault occurrence by performing control
reconfiguration. This is mainly done in two ways:

1. Selecting online (within a set of predesigned laws) the control law that best fits the detected
fault type.

2. Redesigning online the control law to adapt it to the detected faulty situation.

Active FTC approaches require a fault detection and isolation (FDI) module. The role of the
latter is twofold:

1. Making a binary decision, either that something has gone wrong or that everything is fine.
2. Determining the location as well as the nature of the fault.

FDI techniques are broadly classified as information-based, model-based (MB), and artificial-
intelligence-based. An overview of MB techniques is provided by the survey papers Willsky
(1976), Isermann (1984, 2005), Hwang et al. (2010). In this respect, observer-based FDI
is particularly suitable to build up FTC in presence of mechanical sensors failure. This is
illustrated in Figure 1.4.
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1.2.4 Speed Control with Optimized Flux

It is common to set the flux reference to a constant value that generally equals the machine’s
nominal flux. However, energetic efficiency is only maximal when the motor operating con-
ditions, essentially determined by the load torque, remain close to the nominal conditions.
In practice, the torque may be subject to wide-range variations. Then, in presence of small
loads (compared to nominal load), maintaining the nominal flux entails a waste of energy and
a lower than optimal energetic efficiency. However, if the motor flux is given a small value,
the achievable motor torque may not be sufficient to counteract large load torques. In general,
speed-control strategies involving constant flux references do not guarantee optimal machine
performance in the sense of maximal energetic efficiency and maximal torque. To remove the
above shortcomings, it is necessary to let the flux reference be dependent on both the speed
reference and the load torque. Thus, the flux reference must be state-dependent (Figure 1.5).
Flux weakening is also used for both synchronous and induction machines to maximize the
torque at high speeds in the presence of voltage constraints.



Introduction to AC Motor Control 7

Rectifier

AC/DC
Inverter
DC/AC

AC
motor

2-3
Transformation

3-2

AC
power 
supply

Adaptive
speed-flux controller

Speed torque and
flux estimates

Transformation

Adaptive observer

Parameter
estimates

 Flux
reference

Load

Decision on FDI

Reconfiguration

Speed 
reference

 Flux
reference  
optimizer

Figure 1.5 AC motor control strategy combining ftc and flux optimization

1.2.5 Power Factor Correction

The role of the rectifier in Figures 1.2, 1.3, 1.4, and 1.5 is to convert the supply AC power
into DC power and transmit this power through a constant DC link voltage. Regulation of this
voltage is desirable for the AC motor to operate effectively. Moreover, the rectifier-inverter-
motor set strongly interacts with the AC power supply net as the power flow is bidirectional:
the direction depends on the speed profile and on load variations. Then, undesirable current
harmonics are likely to be generated in the AC line, due to the strongly nonlinear nature of the
association “rectifier-inverter-motor.” This harmonic pollution has several damaging effects on
the quality of power distribution along the AC line, for example, electromagnetic compatibility
issues, voltage distortion, larger power losses, and so on. In this respect, existing standards (e.g.,
IEEE519-1992 and IEC 61000-3-2/IEC 6100-3-4) indicate specific current harmonic limits,
expressed in terms of power factor. Of course, the harmonics and power factor correction
(PFC) can be improved using additional equipment and/or over-dimensioning the converter.
However, this solution is costly and may not be sufficient.
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In light of the above remarks, it becomes clear that a high-performance control strategy deals
with the control problem for the whole “rectifier-inverter-motor” set, seeking simultaneous
achievement of all relevant control objectives, namely, tight speed regulation for wide set-
point variation range, FDI, flux optimization despite large load changes, and PFC. Figure 1.6
describes a global control strategy accounting for all requirements.

1.3 Book Overview

The main control problems relevant to AC motors have been briefly described in the previous
section. The present book is not intended to be an encyclopedic survey of all existing solutions
for all types of ACmachines. It rather aims at showing howmodern control methods involving
sophisticated design and analysis techniques are beneficial to AC motors. The focus is on
the most significant types of AC motors and a representative sample of application fields.
The book gives an illustrative presentation of the motors and control methods, referring to
specialized monographs for the required technical background in machine theory. In addition
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to the present introduction, the book includes 22 other chapters organized in five parts, briefly
overviewed in the following subsections.

1.3.1 Control Models for AC Motors

The first part of the book is about modeling of AC motors and their relevant power con-
verters. It consists of Chapters 2 and 3, respectively, which are devoted to induction motors
and synchronous motors. The physical principles of these machines and associated power
converters are recalled. The corresponding three-phase models are established, and it is
shown how simpler two-phase models can be obtained using specific coordinate transfor-
mations. Identification methods are presented for estimating the model parameters using
experimental data. The established models will prove to be useful for control design in later
chapters.

1.3.2 Observer Design Techniques for AC Motors

The second part of the book includes four chapters on observer design for ACmotors. Chapter 4
is about the design and analysis of sensorless state observers for induction motors. Estimation
issues and observability properties in induction motors are reviewed. The case of lack of speed
measurement and unknown electrical parameters is considered. Then, a unifying observer
approach is presented that includes sensorless observer design and its convergence analysis.
The performance of the approach is evaluated, both by simulations and experiments.
Chapter 5 deals with state observers for active disturbance rejection in induction motor

control. Generalized proportional integral (GPI) observers are proposed, in combination with
linear output feedback controllers, for the direct field-oriented control and the classical field-
oriented two-stage output feedback controller design. An observer-based active disturbance
rejection scheme cancels the lumped effects of exogenous, time-varying, load torque distur-
bances, and of the endogenous state-dependent nonlinearities. The high-gain GPI observers
estimate online the output phase variables and the lumped disturbance inputs affecting the
underlying linear dynamics. Experimental results are presented for angular velocity and angu-
lar position trajectory tracking tasks, when the inductionmotor is subject to chaotic load torque
profiles generated by an armature current programmed DC motor.
In Chapters 4 and 5, the nonlinear state observers are developed for induction motors

assuming a continuous-time implementation. However, in modern control applications,
continuous-time systems are only observed through sampled output signal measurements.
Then, a classical solution consists of constructing a discrete-time approximation of the
(continuous-time) observer. This solution is somewhat burdensome computationally, and
does not necessarily preserve the convergence properties of the original continuous-time
observer. Chapter 6 presents a different solution based on the hybrid continuous-discrete
estimation principle. Hybrid observers are designed for induction motors taking into account
communication constraints. They are formally shown to maintain satisfactory estimation
accuracy when applied to the (continuous-time) system model, and the theoretical result is
confirmed using experimental data.
Chapter 7 is on observer design for permanent-magnet synchronous motors (PMSM). A

special emphasis is placed on the loss of observability arising at zero-speedwithoutmechanical



10 AC Electric Motors Control

sensors. This issue is dealt with by using an observer design method based on a high-order SM.
The obtained observer turns out to be robust against disturbances and avoids the chattering
phenomenon inherent to standard first order SMs. Stability and finite time convergence of the
observer are analyzed and commented upon. Experimental results are carried out to highlight
the technological interest of the proposed method. The constraints and issues of real-time
computation are discussed.

1.3.3 Control Design Techniques for Induction Motors

The third part of the book includes seven chapters dealing with control design techniques
for induction motors. Chapter 8 is about the use of high-gain observers in the control of
induction motors with and without rotor position sensors, emphasizing closed-loop analysis of
field-orientation schemes, and including the impact of orientation errors. The framework for
studying field orientation in the presence of model uncertainty is used to design and analyze
a nonlinear output feedback controller that requires only measurements of the rotor position
and stator currents. The controller is designed to be robust to uncertainties in the rotor and
stator resistances as well as to a bounded, time-varying load torque. A high-gain observer is
used to estimate the rotor speed and acceleration from its position measurement. The same
framework is extended to a case where only stator current measurements are available. In this
case, a high-gain observer is used to estimate the speed from the field-oriented currents and
voltages.
Chapter 9 is on adaptive output-feedback control of induction motors. It addresses the

problem of adaptively controlling induction motors in order to achieve rotor speed and flux
magnitude tracking, all without resorting to mechanical sensors. Uncertainties in the load
torque and the rotor and stator resistances are accounted for. Adaptive output-feedback con-
trollers are developed and formally shown to solve the control problem. The controller involves
online estimation of the unknown parameters. The specific observability and identifiability
conditions that allow for the exponential tracking and identification of the uncertain parame-
ters are emphasized in terms of persistent excitation conditions. The key idea of the control
and estimation design relies in adopting a two-time scale strategy by performing a sufficiently
slow adaptation for the stator resistance estimate.
Chapter 10 is on nonlinear control of induction motors for speed regulation with maximal

energetic efficiency. It is noticed that optimization cannot be properly coped with if the mag-
netic circuit nonlinearity is not accounted for. The controller includes an optimal flux reference
generator (optimal in the sense of minimal stator current consumption) and a nonlinear regula-
tor obtained using the backstepping design technique. It is shown that the controller regulates
well the motor speed and the rotor flux in presence of wide-range variations of the machine
speed reference and the load torque.
Chapter 11 presents an experimental evaluation of two robust control design techniques

for induction motors, including a nonlinear backstepping technique with integral terms that
improve robustness against parametric uncertainties, and a high-order SM technique designed
for its intrinsic robustness quality. The two controllers are experimentally compared using an
industrial benchmark setup.
Chapter 12 is on multiphase induction motor control. The motor is represented by a new

complex dynamic model where the harmonic injection is considered and represented using
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the power-oriented graphs graphical technique. Different field-oriented control strategies are
designed in the multiphase and compared by investigating the trade-off between the different
solutions that differ in required control degrees of freedom.
Chapter 13 is on the control of a wound rotor, or doubly-fed induction machine (DFIM) and

associated AC/DC rectifier and DC/AC inverter. A multiloop nonlinear controller is developed
using the backstepping design technique. It includes three regulators of rotor speed, DC link
voltage, and PFC, respectively. The controller is formally shown to meet its objectives, that is,
accurate motor speed-reference tracking, tight regulation of the DC Link voltage, and PFC.
Chapter 14 is on FDI in induction motors. Both MB and data-driven (DD) methods are

developed. The MB approach involves SM observers based on residual evaluation and thresh-
olding. DD methods, also referred to as “motor current signature analysis” (MCSA), are
designed using processing techniques based on FFT, Hilbert transforms, and more advanced
time/frequency combined analysis techniques.

1.3.4 Control Design Techniques for Synchronous Motors

The fourth part of the book includes six chapters on synchronous motor control. In Chap-
ter 15, PMSMs are considered and the control problem is solved using a passivity-based
output-feedback control. The structure of the main block of the controller comes from the
application of the technique of interconnection and damping assignment passivity-based con-
trol. It involves different observers that estimate the mechanical coordinates (speed and load
torque) and stator fluxes (which, in turn, are used to obtain information related to the mechan-
ical position). Both simulation and experimental results are included.
Chapter 16 is on adaptive output-feedback control of PMSMs. Assuming that only sta-

tor currents and voltages are available for feedback, a novel sixth order nonlinear adap-
tive control algorithm is designed, which does not rely on nonrobust open-loop integration
of motor dynamics and guarantees, under persistency of excitation, local exponential rotor
speed tracking. Satisfactory performance is obtained even in the presence of inaccurate motor
parameters, time-varying load torques, current sensing errors, and discrete-time controller
implementation.
Chapter 17 is on robust fault detection and control of PMSMs. It proposes first a robust

speed observer making use of currents measurements only. Next, a control law fed by speed
observations is presented, and closed-loop stability of the overall system is proved robustly
with respect to parameter variations of the dynamic model of the motor (inertia, friction, and
load) with known bound. Finally, a residual-based detection approach is discussed for sensor
faults affecting current measurements.
Chapter 18 is on digitization of variable structure control for PMSMs. SM controllers are

designed to control the motor position and velocity and currents. The aim is to suppress
mechanical resonance and reach high performances of PMSM servo systems, such as fast
response, strong robustness, and high precision. In addition, an SM-based mechanical reso-
nance suppressing method is proposed. An observer is applied to estimate the load speed and
the shaft torsion angle. Finally, a high-order SM control is designed to guarantee the stability
of the system. The digitization of the designed SM controllers is discussed for the purpose of
practical implementation. The discretization behaviors of PMSM servo systems are analyzed,
which helps obtain approximate boundary conditions for the sampling period.
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Chapter 19 is on the control of interior permanent-magnet (IPM) synchronous motors. The
control trajectories in terms of the current and voltage limit boundaries for optimum drive
response is discussed. Techniques of sensorless control are proposed via direct torque control
(DTC) in the stator dq flux estimation and in the rotor frame via stator flux and rotor position
observers. Both open- and closed-loop operations are described. Techniques of sensorless
control combining signal injection and observer methods at very low speed and covering a
wide speed range are also included.
Chapter 20 is about nonlinear state-feedback controllers for three-phase wound-rotor

synchronous motors. Considering the “converter-motor” set, the method makes it possi-
ble to provide motor speed regulation, in addition to other important control objectives
such as PFC with respect to the grid supply and DC Link voltage regulation. To achieve
these objectives, an adaptive control strategy is developed, based on a nonlinear model
of the whole “converter-motor” set. The adaptation feature is motivated by the uncertain
nature of some motor characteristics, for example, mechanical parameters. The closed-
loop system stability and performance properties are formally analyzed using averaging
theory.

1.3.5 Industrial Applications of AC Motors Control

The last part of the book consists of three chapters devoted to applications of AC motors in
some industrial fields.
Chapter 21 is on AC motor control applications in vehicle traction. It describes the require-

ments of vehicle traction applications that AC drive systems must meet. The chapter reviews
recent trends of vehicle traction drive architectures in the marketplace and in the available liter-
ature. It discusses suitable motor types, control requirements, energy storage and management
issues between drive and regenerative braking modes of operation, and battery sizing. The
battery management system with temperature compensation for charging and discharging cur-
rent limits and for monitoring the state of charge (SOC) are discussed. The converter systems
between batteries and the motor drive are designed for efficient management of bidirectional
power flow. Examples of vehicle traction systems that use induction and IPM machines are
included, as well as other types of machines in commercially available traction applications.
Chapter 22 is on induction motor control applications in high-speed train (HST) electric

drives. It illustrates how state observers can be useful in fault diagnostic for modern high-speed
electric traction applications. State observers are used for online estimation of motor speed
and load torque. The analysis of speed and load torque signals makes it possible to assess the
state of speed sensor and torque transmission systems in electric traction vehicle. When some
malfunctioning is detected, for example, in the case of speed sensor faults, the motor control
system can be switched to speed sensorless mode. The proposed diagnostic system is applied
to a HST propelled by an induction squirrel-cage motor. Simulation and experimental results
for a high-speed traction drive are presented.
Chapter 23 is on ACmotor control applications in high-power industrial drives. The applica-

tions discussed include steel mills, cement and ore mills, ship drives, pumps and compressors
for petrochemicals and electric power industry, paper mills, and so on. The brief features of the
industrial AC drives developed by the leading manufacturers worldwide are presented together
with new developments and trends for the future.
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2.1 Introduction

It is widely recognized that the induction motor has become one of the main actuators for
industrial use. Indeed, as compared to the DC machine, it provides a better power/mass ratio,
simpler maintenance (as it includes no mechanical commutators), and a relatively lower cost.
It is largely agreed that these machines have promising perspectives in the industrial actuator
field. This hasmotivated an intensive research activity on inductionmachine control, especially
over the last 15 years.
However, the problem of controlling induction motors is not a simple issue due to the

multivariable and highly nonlinear nature of these machines. Besides, some of their parameters
are time varying and some of their state variables are not accessible to measurements. The
problems of induction motor control and observation have been given a great deal of interest
over the last decade (see, e.g., Lubineau et al. 2000; Montanan et al. 2006; Traore et al. 2008;
El Fadili et al. 2012a). These problems are generally dealt with using model-based control
approaches, that is, the controller or the observer design relies upon a given model that is
supposed to accurately describe the machine of interest.
Control-oriented modeling of induction motors has first been accomplished by considering

simplified assumptions, for example, linear magnetic characteristic and constant (or slowly
varying) rotor speed (e.g., Lubineau et al. 2000). Then, the obtained models turn out to be
linear and of quite limited use. More accurate nonlinear models, describing well the induction
motor operating at nonconstant rotor speed, have been developed later (e.g., De Leon et al.
2001). Furthermore, these nonlinear models proved to be tractable and thus have been widely

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



18 AC Electric Motors Control

used in control design. That is, most control designs presented in this book are based on
the models that are by now standard. Therefore, the present chapter is mainly devoted to the
development of these standard models. This will be accomplished by considering successively
the cases of triphase motors and doubly-fed induction motors (DFIM).
This chapter is organized as follows: Section 2.2 is devoted to a brief description of triphase

induction motor principles; the modeling of these motors is completed in Section 2.3 and the
estimation of their unknown parameters, using experimental measurements, is dealt with in
Section 2.4; the modeling of the DFIM machine is presented in Section 2.5; and concluding
remarks and a list of references end the chapter.

2.2 Induction Motors—A Concise Description

As pointed out in Chapter 1, triphase induction motors are classified in two main categories:
squirrel cage and wound rotor. In squirrel-cage induction motors (Figure 2.1), the stator is
equipped with a winding directly connected to the power supply. The rotor winding is made
of longitudinal bars in slots fixed just beneath the rotor outer surface. The bars are connected
together at their extremities and short-circuited by rings. The rotor winding may be constituted
of individual bars and rings made of conducting material connected together, or it may be a
one-piece structure made by die casting together the rings and the bars. The rotor circuit
is not externally accessible. This provides the motor with robustness but makes its control
more complex.
The wound rotor induction motor is similar to the squirrel-cage motor except that the rotor

winding is made of individually insulated coils. Connections from the coils are brought to
collector rings. The rotor circuit is not short-circuited on itself as in the squirrel-cage motor.
Rather, it is completed through external circuit (resistors, converters, etc.) connected to brushes
that bear on the collector rings (Figure 2.2).

Figure 2.1 Squirrel-cage induction motor. Copyright granted, 2012, ABB; all rights reserved. (For a
color version of this figure, please see color plates.)
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Figure 2.2 Wound rotor of the DFIM. http://ewh.ieee.org; accessed December 21, 2012 C© 1997
IEEE.

For both types of machine, a three-phase equivalent circuit is associated to the stator and to
the rotor (Figure 2.3). By Faraday’s and Lenz’s Laws, the stator carrying a sinusoidal current
of pulsation ωs generates a rotating magnetic field. Then, induced currents are generated in the
rotor bars. The induced currents tend to oppose the flux variation in the rotor coils resulting
in a mechanical torque applied on the rotor. Then, the rotor starts turning at a speed ωm and
the rotor currents oscillating at the pulsation ωr = ωs − pωm . The electromagnetic torque is
proportional to the pulsation ωr . It vanishes whenever the rotor current pulsation is zero. This
is called synchronization. In normal operation, torque generation is necessarily accompanied
by a difference ωr between the stator pulsation ωs and the rotor speed pωm . This difference is
called slip pulsation and constitutes an image of the torque.

isa

vra

i

θ

ra

vsb

isb

vrb

irb

vsc
isc

vrc irc

vsa

Figure 2.3 Induction motor structure equivalent
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2.3 Triphase Induction Motor Modeling

2.3.1 Modeling Assumptions

1. Linearity: The fluxes and the corresponding induced currents are proportional, that is, all
self- and mutual inductances are constant.

2. All iron losses are neglected.
3. The machine air gap is constant, smooth, and symmetric.
4. The stator and the rotor windings present a symmetrical structure providing the induction
machine with a three-phase equivalent circuit (equation 2.3).

The machine triphase structure entails a sinusoidal spacial distribution of magnetomotive
force (MMF) in the air gap and three-phase currents in the stator and rotor currents whenever
the stator voltage is three-phase.

2.3.2 Triphase Induction Motor Modeling

The modeling process consists of applying the electromagnetic laws to the different windings
and the motion equations to the rotor carrying the load (e.g., Leonard 2001). The application
of the electromagnetic laws yields six voltage equations and six flux equations.

Voltages Equations

[vsabc] = [Rs][isabc]+ d

dt
[φsabc]. (2.1)

[vrabc] = [Rr][irabc]+ d

dt
[φrabc]. (2.2)

Flux Equations

[φsabc] = [Los][isabc]+ [Mosr][irabc]. (2.3)

[φrabc] = [Lor][irabc]+ [Mosr][isabc]. (2.4)

In the above expressions, the following notations are used:

[vsabc] =
⎡
⎣ vsa

vsb

vsc

⎤
⎦ ; [isabc] =

⎡
⎣ isa

isb

isc

⎤
⎦ ; [φsabc] =

⎡
⎣φsa

φsb

φsc

⎤
⎦ . (2.5)

[vrabc] =
⎡
⎣ vra

vrb

vrc

⎤
⎦ ; [irabc] =

⎡
⎣ ira

irb

irc

⎤
⎦ ; [φrabc] =

⎡
⎣φra

φrb

φrc

⎤
⎦ . (2.6)

That is, the triphase quantities [vsabc], [isabc], [φsabc], [vrabc], [irabc], and [φrabc] denote the stator
and the rotor voltages, currents, and fluxes. The subscripts s and r refer to the stator and the
rotor, respectively. Similarly, the indices a, b, and c refer to the three phases.
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A direct consequence of the machine perfect symmetry is that all resistance and inductance
matrices are symmetric, that is,

[Rs] =
⎡
⎣ Rs 0 0
0 Rs 0
0 0 Rs

⎤
⎦ , [Rr] =

⎡
⎣ Rr 0 0
0 Rr 0
0 0 Rr

⎤
⎦ , (2.7)

[Los] =
⎡
⎣ los Mos Mos

Mos los Mos

Mos Mos los

⎤
⎦ , [Lor] =

⎡
⎣ lor Mor Mor

Mor lor Mor

Mor Mor lor

⎤
⎦ , (2.8)

where Rs and Rr are the stator and the rotor resistances, los and lor are the self-inductances, Mos

is the mutual inductance between two stator phases, and Mor is the mutual inductance between
two rotor phases. Also, an immediate consequence of the working assumptions (Section 2.3.1),
is that the various mutual inductances between the rotor and the stator are sinusoidal functions
of the rotor position θ . Specifically, one has

[Mosr] = Mo

⎡
⎢⎣

cos(pθ ) cos
(

pθ + 2π
3

)
cos

(
pθ + 4π

3

)
cos

(
pθ + 4π

3

)
cos(pθ ) cos

(
pθ + 2π

3

)
cos

(
pθ + 4π

3

)
cos

(
pθ + 2π

3

)
cos(pθ )

⎤
⎥⎦ , (2.9)

where p designates the number of pole-pairs and Mo denotes the maximal mutual inductance
between the stator phase and the rotor phase.

Mechanical Equations

The rotor motion undergoes the following usual second order differential equation:

J
dωm

dt
= −Fωm + Tem − TL − Td, (2.10)

whereωm, TL, Tem, and Td are, respectively, the rotor speed, the load torque, the electromagnetic
motor torque, and the dry torque. J designates the inertia of the rotor-load set, and F the viscous
friction coefficient.
The expression of Tem is obtained from the energy balance. Specifically, one has

Tem = ∂Wmag

∂θ
with Wmag = 1

2

(
[isabc]

T [φsabc]+ [irabc]
T [φrabc]

)
, (2.11)

where Wmag denotes the magnetic energy. The induction motor model, including the seven
equations (2.1), (2.2), and (2.10), entails two difficulties. On the one hand, the system order is
relatively large and, one the other, the matrix (2.9) is a function of the rotor position θ , which is
time varying. To overcome these difficulties, adequate coordinate transformations are available
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that reduce the system order and eliminate the dependence on θ . The main transformations are
presented in the following subsection.

2.3.3 Park Transformations

The key idea is that the MMF, created by a physical three-phase system, can be equivalently
created by a fictive two-phase system involving two orthogonal windings (Figure 2.4).
The three-phase current system (ia, ib, ic) traversing n1 turns and two-phase current system

(id, iq), traversing n2 turns are said to be equivalent if they produce the same air-gap MMF.
The MMF created by (ia, ib, ic) has the following components:

εa = n1ia, εb = n1ib, εc = n1ic.

Similarly, the components of the MMF due to (id, iq) are the following:

εd = n2id, εq = n2iq.

Referring to Figure 2.4, the MMF due to (ia, ib, ic) is represented by the vector �ε, which is
a vector sum of the three MMF vectors ( �εa, �εb, �εc). Figure 2.4 illustrates the projection of
the vector �ε along two orthogonal axes referred to direct axis d and quadrature axis q. The

ia
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ic

vq

iq

vb
ib

va

d

q

εaεb

εc

εd

εq

vd

id

ψεωs

Figure 2.4 Triphase system (ia, ib, ic) and its equivalent two-phase system (id, iq). Both systems create
the same MMF �ε
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obtained components, �εd and �εq, are given by the following expression:

[
εd

εq

]
=

[
cos(ψ) cos

(
ψ − 2π

3

)
cos

(
ψ − 4π

3

)
− sin(ψ) − sin (

ψ − 2π
3

) − sin (
ψ − 4π

3

)
] ⎡

⎣ εa

εb

εc

⎤
⎦ . (2.12)

The system (2.12) is clearly noninvertible as it involves a nonsquare matrix. This is overcome
by adding a third equation associated with a fictive MMF denoted εo. The new variable is
defined to be proportional to the homopolar component of the triphase (εa, εb, εc). Specifically,
one has εo = Ko(εa + εb + εc) for some proportional constant Ko to be defined later. To the
fictive MMF εo is associated a fictive current, denoted io, referred to homopolar. Accordingly,
one has εo = n2io.
Replacing in equation (2.12) theMMFs by the corresponding currents one gets the following

relation between the three-phase current (ia, ib, ic) (traversing n1 turns) and the equivalent
two-phase current (id, iq) (traversing n2 turns):

⎡
⎣ id

iq

io

⎤
⎦ = n1

n2

⎡
⎢⎣
cos(ψ) cos

(
ψ − 2π

3

)
cos

(
ψ − 4π

3

)
− sin(ψ) − sin (

ψ − 2π
3

) − sin (
ψ − 4π

3

)
Ko Ko Ko

⎤
⎥⎦

⎡
⎣ ia

ib

ic

⎤
⎦ . (2.13)

As the fictive current io is not physically involved in the creation of the MMF, its orientation
can be chosen arbitrarily. For convenience, the homopolar axis is let to be orthogonal to the
plane dq. To complete the transformation (2.13), it remains to assign values to n1

n2
and Ko.

Two options are discussed in the rest of this subsection leading to two variants of the Park
transformation.

Park Transformation Preserving Amplitudes

The Park transformation goes back to 1929 (Blaschke 1972; (Vas 1990). The interest it has
lately regained is mainly due to the considerable progress made in the digital computer
technology and in the power electronic component technology. The spectacular advances
achieved in these fields have made it possible to implement real-time applications involving
the construction andmanipulation of the Park transformation. The original Park transformation
is defined by equation (2.13) letting the free parameters (i.e., n1

n2
and Ko) be chosen to meet

the following requirements:

1. The homopolar current io coincides with the arithmetic mean value of the currents
(ia, ib, ic).

2. The components of the two-phase current (id, iq) have the same amplitude as those of the
triphase current (ia, ib, ic), that is, current amplitude is preserved by the Park transformation.

The first requirement leads to the following double equality:

io = 1

3
(ia + ib + ic) = n1

n2
Ko(ia + ib + ic).
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This yields

n1

n2
Ko = 1

3
. (2.14)

The amplitude preservation requirement immediately entails the following expressions:

ia(t) = Im cos(ωt), ib(t) = Im cos

(
ωt − 2π

3

)
, ic(t) = Im cos

(
ωt − 4π

3

)
,

id(t) = Im cos(ωt − ψ), iq(t) = Im sin(ωt − ψ). (2.15)

On the other hand, one gets from equation (2.13) that

id(t) = n1

n2

3

2
Im cos(ωt − ψ), iq(t) = n1

n2

3
2 Im sin(ωt − ψ). (2.16)

Comparing equations (2.15) and (2.16) gives, using (2.14):

n1

n2
= 2

3
and Ko = 1

2
. (2.17)

Using (2.17), it follows from (2.13) that the (amplitude preservation-based) Park transfor-
mation [idqo] = [P(ψ)][iabc] is entirely characterized by the following matrix:

[P(ψ)] = 2

3

⎡
⎢⎣
cos(ψ) cos

(
ψ − 2π

3

)
cos

(
ψ − 4π

3

)
− sin(ψ) − sin (

ψ − 2π
3

) − sin (
ψ − 4π

3

)
1
2

1
2

1
2

⎤
⎥⎦ . (2.18)

The inverse transformation, that is, [iabc] = [P(ψ)]−1[idqo], is characterized by the inverse
Park matrix

[P(ψ)]−1 =

⎡
⎢⎢⎣
cos(ψ) − sin(ψ) 1

cos
(
ψ − 2π

3

) − sin (
ψ − 2π

3

)
1

cos
(
ψ − 4π

3

) − sin (
ψ − 4π

3

)
1

⎤
⎥⎥⎦ . (2.19)

The particular value, ψ = 0, yields the so-called Clarke matrices

[C] = 2

3

⎡
⎢⎢⎣
1 −1

2
−1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

⎤
⎥⎥⎦ , [C]−1 = 2

3

⎡
⎢⎢⎣
1 0 1

2

−1
2

√
3
2

1
2

−1
2

−√
3

2
1
2

⎤
⎥⎥⎦ . (2.20)
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Park Transformation Preserving Energy

In this variant of (2.13), the free parameters, that is, the ratio n1/n2 and Ko, are chosen to
ensure power conservation when passing from the triphase system to the two-phase system.
Analytically, this means that the following equalities must hold:

vaia + vbib + vcic = vdid + vqiq + voio. (2.21)

Equation (2.21) may be rewritten in the following more compact vector form:

[vabc]
T [iabc] = [vdqo]

T [idqo]. (2.22)

By (2.13), one has [vdqo] = [P(ψ)][vabc] and [idqo] = [P(ψ)][iabc]. Then, it follows from
(2.22) that

[vdqo]
T [idqo] = [[P(ψ)][vabc]]

T [P(ψ)][iabc] = [vabc]
T [P(ψ)]T [P(ψ][iabc]. (2.23)

Comparing with equation (2.22) yields

[P(ψ)]T = [P(ψ)]−1 (2.24)

and

n1

n2
=

√
2

3
, Ko = 1√

2
.

Then, the direct Park matrix conserving the power is

[P(ψ)] =
√
2

3

⎡
⎢⎢⎣
cos(ψ) cos

(
ψ − 2π

3

)
cos

(
ψ − 4π

3

)
− sin(ψ) − sin (

ψ − 2π
3

) − sin (
ψ − 4π

3

)
1√
2

1√
2

1√
2

⎤
⎥⎥⎦ , (2.25)

and its inverse is

[P(ψ)]−1 =
√
2

3

⎡
⎢⎢⎣
cos(ψ) − sin(ψ) 1√

2

cos
(
ψ − 2π

3

) − sin (
ψ − 2π

3

)
1√
2

cos
(
ψ − 4π

3

) − sin (
ψ − 4π

3

)
1√
2

⎤
⎥⎥⎦ . (2.26)

It is this transformation that is retained in the rest of this chapter, as well as in the next
ones. Note that, the angle ψ = 0 is a free parameter in that transformation. One possible
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choice is ψ = 0 and the corresponding Park matrix, commonly called Concordia matrix, is
given by

[C] =
√
2

3

⎡
⎢⎢⎣
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

⎤
⎥⎥⎦ . (2.27)

Its inverse is

[C]−1 =
√
2

3

⎡
⎢⎢⎣
1 0 1√

2

− 1
2

√
3
2

1√
2

− 1
2 −

√
3
2

1√
2

⎤
⎥⎥⎦ . (2.28)

2.3.4 Two-Phase Models of Induction Motors

Equations (2.1)–(2.4), and (2.10) get simplified by applying the Park transformation defined
by the matrix (2.27). Roughly, all mathematical relationships initially expressed in terms of
the triphase frame (a, b, c) are rewritten in terms of (d, q, o). The perfect symmetry of the
induction motor implies that the sum of the currents carried by the rotor and the sum of
those carried by the stator are both null. Then, the corresponding homopolar currents (i.e. the
components along the axis o) are null (Blaschke 1972; Vas 1990; Leonard 2001). It turns out
that, in the new frame (d, q), the initial electromagnetic system (2.1), and (2.2), consisting of
six equations, boils down to a simpler system, consisting of only four equations. As mentioned
earlier, the angleψ in (2.27) is a free parameter assuming several possible choices. This entails
several variants of the two-coordinate frame (d, q). The two most common in the literature are
the following:

• The fixed reference frame (α, β), connected to the stator.
• The rotating reference frame (d, q), linked to, for example, the rotor flux or the stator current.

The passage from the triphase frame (a, b, c) to the fixed (α, β) frame is accomplished by
choosing the transformation angle ψ , in the transformation matrix (2.25), as follows:

• Set ψ = 0, for the transformation of the stator variables.
• Set ψ = θ , for the transformation of the rotor variables.

The passage from the triphase frame (a, b, c) to the rotating frame (d, q) is accomplished
by choosing the transformation angle ψ as follows:

• Set ψ = θs, for the transformation of stator variables.
• Set ψ = θr = θs − θ , for the transformation of the rotor variables.
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Figure 2.5 Angles between electric frames

Electric Equations in dq Coordinates

Following the above rules, the passage from the triphase frame (a, b, c) to the (d, q) frame
necessitates the following transformations of the electric variables (Figure 2.5):

[
vsd

vsq

]
= [P(θs)][vsabc],

[
isd

isq

]
= [P(θs)][isabc],

[
φsd

φsq

]
= [P(θs)][φsabc], (2.29)[

vrd

vrq

]
= [P(θr )][vrabc],

[
ird

irq

]
= [P(θr )][irabc],

[
φrd

φrq

]
= [P(θr )][φrabc]. (2.30)

Applying the transformations (2.29) and (2.30) to the induction machine equations (2.1)
and (2.2), yields the following (d, q) equations:

vsd = Rsisd + dφsd

dt
− ωsφsq, (2.31)

vsq = Rsisq + dφsq

dt
+ ωsφsd, (2.32)

vrd = Rrird + dφrd

dt
− (ωs − pωm)φrq, (2.33)

vrq = Rrirq + dφrq

dt
+ (ωs − pωm)φrd, (2.34)
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where

ωs = dθs

dt
, ωm = dθ

dt .

Flux Equations in dq Coordinates

Similarly, the passage from the triphase frame (a, b, c) to the (d, q) frame necessitates the
following transformations of the fluxes:

[φsdq] = [P(θs][φsabc]. (2.35)

[φrdq] = [P(θr][φrabc] (2.36)

Using the flux-current expressions (2.3) and (2.4), the couple of equations (2.35) and (2.36)
develops as follows:
At the stator:

[φsdq] = [P(θs][Ls][isabc]+ [P(θs][Msr][irabc],

which implies, using (2.29)

[φsdq] = [P(θs][Ls][P(θs]
−1[isdq]+ [P(θs][Msr][P(θr]

−1[irdq]. (2.37)

At the rotor, one has

[φrdq] = [P(θr][Lr][irabc]+ [P(θr][Msr][isabc],

which implies, due to (2.30)

[φrdq] = [P(θr][Lr][P(θr]
−1[irdq]+ [P(θr][Msr][P(θs]

−1[isdq]. (2.38)

The obtained flux equations in the (d, q) frame can be given the more compact forms

[φsdq] = Ls[isdq]+ Msr[irdq], [φrdq] = Lr[irdq]+ Msr[isdq], (2.39)

with

Ls = lso − Mos, cyclical stator inductance; (2.40)

Lr = lro − Mor, cyclical rotor inductance; (2.41)

Msr = 3

2
Mo,mutual inductance between the stator and rotor windings. (2.42)
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Mechanical Equation in dq Coordinates

The mechanical equation of the induction motor describes the motion of the rotor carrying a
load. It is readily checked that the motion undergoes the following dynamic equation:

dωm

dt
= − F

J
ωm + Tem

J
− TL

J
− Td

J
. (2.43)

The electromagnetic torque is given by the expression

Tem = p
pm

ωs
, (2.44)

where pm designates the mechanical power developed by the motor. The electric power
absorbed by the motor is given by the expressions

pa = vsaisa + vsbisb + vscisc + vraira + vrbirb + vrcirc

= vsdisd + vsqisq + vrdird + vrqirq,
(2.45)

where the second equality is a direct consequence of the Park transformation preserving
power when passing from the three- to the two-coordinate frame. Using equations (2.31),
(2.32), (2.33), and (2.34) in the expression (2.45), it follows that that the power pa can be
decomposed into three parts:

1. The power dissipated by the Joule effect:

Rs
(
i2sd + i2sq

) + Rr
(
i2rd + i2rq

)
. (2.46)

2. The power related to the electromagnetic exchange with sources:

isd
dφsd

dt
+ isq

dφsq

dt
+ ird

dφrd

dt
+ irq

dφrq

dt
. (2.47)

3. The mechanical power pm, that produces the electromagnetic torque:

pm = (φsdisq − φsqisd)
dθs

dt
+ (φrdirq − φrqird)

dθr

dt
. (2.48)

Taking into account the flux equation (2.39), and replacing the rotor current components
(d, q) by their equivalent expressions, one obtains from (2.48)

pm = Msr

Lr
(φrdisq − φrqisd)

d(θs − θr)

dt
. (2.49)

Then, it follows from equation (2.44) that the torque rewrites as follows:

Tem = p
Msr

Lr
(φrdisq − φrqisd). (2.50)
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The electromagnetic torque can also be expressed in the following two forms:

Tem = p(φsdisq − φsqisd), Tem = p Msr
Ls
(φsdirq − φsqird). (2.51)

Induction Motor Model in General dq Coordinate Frame

Eliminating the flux components (φsd, φsq) and the current components (ird, irq) in equations
(2.31), (2.32), (2.33), and (2.34) and substituting equation (2.50) in equation (2.10), one gets
the model of the induction machine expressed in the rotating frame (d, q):

dωm

dt
= p

Msr

J Lr
(φrdisq − φrqisd)− TL

J
− Td

J
− F

J
ωm, (2.52)

disd

dt
= −γ isd + ωsisq + Msr Rr

σ LsL2r
φrd + pωm

Msr

σ LsLr
φrq + 1

σ Ls
vsd, (2.53)

disq

dt
= −γ isq − ωsisd + Msr Rr

σ LsL2r
φrq − pωm

Msr

σ LsLr
φrd + 1

σ Ls
vsq, (2.54)

dφrd

dt
= − Rr

Lr
φrd − (ωs − pωm)φrq + Rr Msr

Lr
isd, (2.55)

dφrq

dt
= − Rr

Lr
φrq + (ωs − pωm)φrd + Msr Rr

Lr
isq, (2.56)

with

γ =
(
L2r Rs + M2

sr Rr
)

σ LsL2r
, σ = 1− M2

sr
Ls Lr

,

where the following relations have been used:

ird = φrd − Msrisd

Lr
, irq = φrq − Msrisq

Lr
, (2.57)

φsd = σ Lsisd + Msr

Lr
φsd, φsq = σ Lsisq + Msr

Lr
φsq. (2.58)

Induction Motor Model in Fixed αβ Coordinate Frame

The model of the induction motor in the fixed (α, β) frame is obtained by just letting ωs = 0
in the general model described by equation (2.54). Doing so, one gets the following model:

dωm

dt
= p

Msr

J Lr
(φrαisβ − φrβ isα)− TL

J
− Td

J
− F

J
ωm, (2.59)

disα
dt

= −γ isα + Msr Rr

σ LsL2r
φrα + pωm

Msr

σ LsLr
φrβ + 1

σ Ls
vsα, (2.60)



Control Models for Induction Motors 31

disβ
dt

= −γ isβ + Msr Rr

σ LsL2r
φrβ − pωm

Msr

σ LsLr
φrα + 1

σ Ls
vsβ, (2.61)

dφrα

dt
= − Rr

Lr
φrα + pωmφrβ + Rr Msr

Lr
isα, (2.62)

dφrβ

dt
= − Rr

Lr
φrβ − pωmφrα + Msr Rr

Lr
isβ. (2.63)

Induction Motor Model in Oriented d-q Reference Frame

The rotor-flux-oriented model is obtained by considering as rotating reference frame the one
whose d-axis coincides with the rotor flux r . Analytically, this amounts to letting φrd = r

and φrq = φ̇rq = 0. An immediate consequence is that the model becomes a fourth order
(instead of fifth in the preceding model). Also, it readily follows from equation (2.54) that the
pulsation ωs takes the following value:

ωs = pωm − Msr Rr

Lr

isq

r
.

This, together with equations (2.54) gives the-rotor-flux oriented model

dωm

dt
= p

Msr

J Lr
risq − TL

J
− Td

J
− F

J
ωm, (2.64)

disd

dt
= −γ isd + ωsisq + Msr Rr

σ LsL2r
r + 1

σ Ls
vsd, (2.65)

disq

dt
= −γ isq − ωsisd − pωm

Msr

σ LsLr
r + 1

σ Ls
vsq, (2.66)

dr

dt
= − Rr

Lr
r + Rr Msr

Lr
isd. (2.67)

2.3.5 Doubly-Fed Induction Motor Model

In the case of a DFIM, the rotor coils are not short-circuited and, consequently, the voltages
vrd and vrq are not null.
Considering the flux components, φsd and φsq, and the current components, ird and irq, as

state variables and assuming that magnetic circuit is linear, the two-phase model of the DFIM,
represented in a rotating reference frame (d, q), is as follows:

dωm

dt
= p

Msr

J Ls
(φsqird − φsdirq)− F

J
ωm − TL

J
− Td

J
, (2.68)

dφsd

dt
= − 1

τs
φsd + ωsφsq + Msr

τs
ird + vsd, (2.69)
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dφsq

dt
= − 1

τs
φsq − ωsφsd + Msr

τs
irq + vsq, (2.70)

dird
dt

= −γ1ird + (ωs − pωm)irq + γ2

τs
φsd − pωmγ2φsq − γ2vsd + γ3vrd, (2.71)

dirq
dt

= −γ1irq − (ωs − pωm)ird + γ2

τs
φsq + pωmγ2φsd − γ2vsq + γ3vrq. (2.72)

The parameters γ1, γ2, γ3, σ , and τs are defined as follows:

γ1 = Rr L2s +Rs M2
sr

σ Lr L2s
, γ2 = Msr

σ Ls Lr
, γ3 = 1

σ Lr
, σ = 1− M2

sr
Ls Lr

, τs = Ls
Rs

.

By choosing a reference frame linked to the stator voltage, the stator and grid currents are
made directly related to the active and reactive powers. Then, the power exchanged between
the motor and the grid can be controlled by controlling the currents. Letting the d-axis of
the frame be oriented along the stator voltage entails vsd = Vs and vsq = 0. Then, the model
(2.68), (2.69), (2.70), (2.71), and (2.72) rewrites as follows (in the stator voltage linked dq
frame):

dωm

dt
= p

Msr

J Ls
(φsqird − φsdirq)− F

J
ωm − Td

J
− TL

J
, (2.73)

dφsd

dt
= − 1

τs
φsd + ωsφsq + Msr

τs
ird + Vs, (2.74)

dφsq

dt
= − 1

τs
φsq − ωsφsd + Msr

τs
irq, (2.75)

dird
dt

= −γ1ird + (ωs − pωm)irq + γ2

τs
φsd − pωmγ2φsq − γ2Vs + γ3vrd, (2.76)

dirq
dt

= −γ1irq − (ωs − pωm)ird + γ2

τs
φsq + pωmγ2φsd + γ3vrq. (2.77)

2.4 Identification of Induction Motor Parameters

In this section, an experimental procedure is described to get estimates of the mechanical and
the electrical parameters of a squirrel-cage induction machine. The estimation procedure is
illustrated using a machine of 2.2 kW power, whose characteristic are described in Table 2.1.

2.4.1 Identification of Mechanical Parameters

Deceleration Test

The present experiment consists, in first running the motor, being loadless (TL = 0). Then, at
some time the stator supply voltage is suddenly turned off. The time when the voltage is turned
off is considered as t = 0, for the present experiment, and the motor speed at that moment is
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Table 2.1 Rating plate of the used induction motor

Nominal power Pn 2.2 kW
Nominal voltage Usn 380/420 V
Nominal current Isn 4.9 A
Frequency f 50 Hz
Nominal speed ωmn 1430 rad/min
cosψ 0.81

denoted ωmo. As a consequence, the stator currents and the electromagnetic torque Tem vanish
at t = 0 and the mechanical equation (2.52) simplifies to, for t > 0,

J
dωm

dt
= −Fωm − Td. (2.78)

Clearly, equation (2.78) is linear in the quantities ( Td
J ) and (

F
J ). Then, the least squares

estimator can be resorted to get estimates of these quantities using a sufficiently large sample
of measurements (t, ωmo) (e.g., Ioannou and Fidan 2006). Presently, a quite simpler alternative
necessitating only four speed measures is presented, getting benefit of the fact that speed
measurements are weakly noisy. The key point is that the solution of the first order equation
(2.78) is easily found. Specifically, one has

ωm(t) =
(

ωmo + Td

F

)
e

−t
τm − Td

F
, (2.79)

using the fact thatωm(0)= ωmo, where τm = F
J is themechanical constant time. The expression

(2.79) shows that the rotor speed is exponentially decaying and vanishes at a finite stop time,
say ts . Figure 2.6 shows the decaying speed curve obtained when the motor of Table 2.1 is
submitted to the deceleration test. From such a curve, let us get two arbitrary time-speed
couples (t1, ωm1) and (t2, ωm2) with t2 = 2t1. Writing equation (2.79) for t = t1 and t = t2,
one gets the following equations:

ωm1 =
(

ωmo + Td

F

)
e

−t1
τm − Td

F
, (2.80)

ωm2 =
(

ωmo + Td

F

)
e

−2t1
τm − Td

F
. (2.81)

Subtracting side-to-side equation (2.80) from equation (2.81), gives

ωm2 − ωm1 =
(

ωmo + Td

F

)
e

−t1
τm

(
e

−t1
τm − 1

)
. (2.82)

Also, one immediately gets from (2.80)

ωm1 − ωmo =
(

ωmo + Td

F

) (
e

−t1
τm − 1

)
. (2.83)
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Figure 2.6 Speed evolution during deceleration test

Dividing side-to-side equations (2.82) and (2.83), one obtains an equation where the only
unknown is τm . Solving that equation, one gets the following expression that determines
τm = F

J from available informations

τm = − t1

ln
(

ωm2−ωm1
ωm1−ωmo

) . (2.84)

A second useful expression is immediately obtained from equation (2.79) using the fact that
the speed ωm(t) vanishes (i.e., the motor stops turning) at t = ts , which is a known time. Doing
so, one gets an equation where the only unknown quantity is Td

F . Solving that equation with
respect to the unknown, one gets

Td

F
= ωmo

e
ts
τm − 1

. (2.85)

To illustrate the above procedure, consider again the deceleration test response of Figure 2.6.
From that response one reads the numerical values of Table 2.2 concerning the quantities ωmo,
ωm1, ωm2, t1, and ts .

Table 2.2 The main results for the deceleration test

t1 ts ωmo ωm1 ωm2

5 s 36 s 156, 5 rd/s 125, 82 rd/s 98.05 rd/s
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Table 2.3 Measurements obtained during
a progressive startup test

Pas Vas Ias

51.9 W 21.56 V 1.59 A

Then, applying equations (2.84) and (2.85), one obtains the following values of τm and
Td
F :

τm = 50.17 s, Td
F = 149.22 rd/s (2.86)

where τm = F
J . The point is that the two above equations involve three unknowns,

namely F, J, and Td. That is, a supplementary test is needed to determine the mechanical
parameters.

Progressive Start Test

The dry torque Td can be determined using a progressive start-up experiment. Accordingly,
the stator voltage being initially null (stationary machine) is very slowly increased until the
motor only just starts moving. At this time, the motor speed is still quasi null. Then, it follows
from equation (2.43) that the dry torque Td is quasi equal to the electromagnetic couple Tem,
which we know is given by the expression (2.44). It follows the following expression of the
dry torque:

Td = p
Pas

ωs
, (2.87)

where Pas is the power absorbed at the moment when the motor only just begins turning andωs

is the grid voltage frequency. Note that all losses (copper, rotational) are null because the rotor
speed is quasi zero and the stator voltage is very small. Table 2.3 describes the measurements
obtained on the machine of Table 2.1.
From Table 2.1, one readily gets ωs = 157 rd/s and from Table 2.3 one has Pas = 51.9 W.

These yield the value of the dry torque using the expression (2.87). This, together with the
expressions in (2.86), gives the numerical values of all mechanical parameters (see Table 2.4).

2.4.2 Identification of Electrical Parameters

Traditionally, the steady-state model of a three-phase induction motor is represented by the
per phase equivalent circuit. The steady state per phase equivalent circuit as viewed from the
stator side is represented in Figure 2.7 (Leonard 2001).

Table 2.4 Mechanical parameters for induction motor

J F Td

0.11 kgm2 0.0022 Nms/rd 0.33 Nm
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R/s

NRs

LsRcVs

Is Ir

Figure 2.7 Per phase equivalent circuit, viewed from the stator, of a three-phase induction motors. Vs

is the stator phase voltage; Rs is stator resistance and R is the rotor winding resistance brought to the
stator side; N is the equivalent inductance of both stator and rotor leakage brought to the rotor side. Ls

is the magnetizing and stator inductance; Rc is the equivalent resistance for core loss; and s is the slip.

The equivalent circuit parameters for an induction motor can be determined using specific
tests on the motor. The tests are quite similar to those performed on transformers.

Stator Winding Resistance Measurement

The resistance of the stator winding is measured at DC, and the measurement is preferably
performed after the motor temperature has reached its nominal value. This experimental test
gives, for the induction motor characterized by Table 2.1, the following value:

Rs = 2.5 �, (2.88)

Loadless Test

This experiment consists of applying a balanced three-phase voltage, at the rated frequency,
to the stator terminals, while the rotor is carrying no mechanical load. Currents, voltages, and
powers are measured at the motor input. As the slip of the loadless induction motor is very
low, the value of the equivalent resistance in the rotor branch of the equivalent circuit is very
high. The no-load rotor current is then negligible and the rotor branch of the equivalent circuit
can also be negligible. The approximate equivalent circuit, in the loadless test, simplifies as it
is shown in Figure 2.8.

Rs

Ls
RcVnl

Inl

Figure 2.8 Induction machine equivalent circuit in loadless test
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Table 2.5 The main results for the no-load test

Vnl Inl Pnl Qnl ωm nl

220 V 1.6 A 140 W 1046.5 VAr 156.5 rad/s

In the loadless test, the losses are caused by the core, the stator copper, and the friction. It
turns out that, the loadless test input power expresses as follows:

Pnl = Pcop + Prot + Pco, (2.89)

where the stator copper losses are given by

Pcop = 3Rs I 2nl. (2.90)

The friction losses are given by

Prot = Fω2m nl + Tdωm nl, (2.91)

and the core losses are given by

Pco � V 2
nl

Rc
(2.92)

where Vnl, Inl, Pnl, Qnl, and ωm nl denote, respectively, the stator voltage, the stator current, the
absorbed active power, the absorbed reactive power, and the rotor speed. The measurements
performed, in loadless test on the induction motor of Table 2.1, yield the numerical values of
Table 2.5.
The stator inductance Ls and the core resistance Rc are given by the following expressions:

Ls = 3V 2
nl

ωs Qnl
, Rc = 3V 2

nl

Pnl−3Rs I 2nl−Fω2m nl+Td∗ωm nl
. (2.93)

From equation (2.93) and Table 2.5, one gets the following values:

Ls = 441.6 mH, Rc = 9500 � (2.94)

Blocked Rotor Test

In this experiment the rotor is blocked, that is, prevented from turning. Then, a balanced
three-phase voltage is applied to the stator terminals so that the resulting current equals the
rated current. Again, all currents, voltages and powers are measured at the motor input. In the
blocked rotor operation, the slip s is equal to 1. Then, the secondary impedance becomes much
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R

NRs

Vbl

Ibl = In

Figure 2.9 Induction machine equivalent circuit in blocked rotor test

smaller, compared to the magnetizing branch, so that the corresponding equivalent circuit boils
down to the simpler configuration of Figure 2.9.
The measurements to be performed in this test are the following:

• The three-phase active power Pbl.
• The three-phase reactive power Qbl.
• The line voltage Vbl.
• The line current Ibl.

R and N can be calculated from the following equations:

R = Pbl

3I 2bl

− Rs, N =
√(

Vbl
Ibl

)2−(R+Rs )2

ωs
. (2.95)

As N = σ Lr (
Ls
Msr
)2 and R = Rr (

Ls
Msr
)2 , the knowledge of R and N allows to calculate the

rotor time constant and the parameter σ , using the expressions

Tr = Ls + N

R
, σ = N

N+Ls
. (2.96)

The measurements made, in the blocked rotor test, on the induction machine of Table 2.1,
are described in Table 2.6.

Table 2.6 Measurements made in blocked
rotor test on the induction motor

Vbl Ibl Pbl Qbl

63.5 V 4.9 A 504 W 785 VAr
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Table 2.7 Electrical parameter estimates of the induction motor

Rs Rr Ls Lr Msr Tr σ

2.5 � 2.5 � 441.6 mH 441.6 mH 441.6 mH 100.6 ms 0.33

Then, using Table 2.6 and using the approximation that Lr = Msr, one gets from equations
(2.95) and (2.96) the electrical parameter estimates described in Table 2.7.

2.5 Conclusions

In this chapter, the problem of modeling induction motors has been concisely addressed. First,
the triphase model is established applying electromagnetic and mechanical laws. This model is
certainly the most physical as all variables it involves can be made accessible to measurements.
However, it is hardly applicable in control design due to its high complexity. Then, simpler
two-phase variants of that model are obtained by using the Park transformation. The simpler
(two-phase) models are still nonlinear but will prove to be tractable in control design.
The modeling approach presented in this chapter is deliberately kept simple in the sense

that the magnetic circuit has been supposed to be linear. As a matter of fact, in real-life
machines, the magnetic circuit characteristic is nonlinear and linear approximations are only
accurate if the machine operation does not entail wide-range rotor flux variation. Typically, the
rotor flux must remain all the time close to its nominal value. The point is that a constant-flux
operation cannot be optimal in the presence of varying load, when large speed variations are
needed. In these situations, it is necessary to make the machine work with changing flux
values to ensure high-efficiency operation. Models that account for the nonlinear nature of the
machine magnetic characteristic have been presented in Levi (1995), Novotnak et al. (1999),
Ouadi et al. (2011), and El Fadili et al. (2012b). An example of such models will be presented
in Chapter 10 of this book.
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3.1 Introduction

Compared to others, synchronous motors enjoy several features, for example, they are suitable
for all applications necessitating important speed reversion and they are more efficient for
drive applications where wide-range power variations are needed (from a few watts to several
megawatts). Due to these features, the synchronous machine is nowadays widely used in vari-
ous fields, for example, electric traction, high-speed machining, automotive, robotics, watches,
computer peripherals, and energy production (Krause et al. 2002). Synchronousmachines exist
in two main variants: wound-rotor synchronous machines (WRSM) and permanent-magnet
synchronous machines (PMSM). In WRSMs the rotor magnetic field is generated by a wound
fixed on the rotor, while in PMSMs that field is generated by permanent magnets fixed on the
rotor. Compared with induction motors, synchronous motors (especially PMSMs) are more
suitable for electric traction as due to their better mass/power ratio, their higher power level,
and their better efficiency. In effect, joule losses in PMSMs are much smaller (than in induc-
tion motors) due to the absence of rotor currents. WRSMs are quite suitable for high-power
applications such as train driving (for instance, the French high-speed train “Atlantic TGV” is
equipped with such type of machines) (El Magri et al. 2006). They also feature three control
inputs (i.e., stator current amplitude, flux angle, and filed current), which makes them, just as
their permanent-magnet cousins, able to ensure power optimization and high-power efficiency.
This chapter is about control-oriented mathematical modelling of synchronous motors. In

the literature, three main modelling approaches have been developed for electrical machines
in general. The first one is based on the finite element method (FEM) (Minnich et al. 1981;

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Arkkio et al. 1990; Bangura and Arkadan 1999). This method provides a very accurate
description of the electromagnetic field distribution in the machine. But, the proposed models
are quite complex (large number of parameters) and computationally burdensome, which
makes them of little interest for control design purpose. The second modelling method,
referred to permeance network, consists of representing the machine magnetic circuit by an
equivalent circuit diagram (Hecquet and Brochet 1998; Srairi et al. 2006). The obtainedmodels
are reasonably accurate but they suffer a large sensitivity to the air-gap permeance. The third
modelling approach consists of applying to the machine the standard electromagnetic and
mechanical laws (Blaschke 1972). The equations are made simpler by considering commonly
admitted assumptions, for example, sinusoidal induction in the air gap, linearity of themagnetic
circuit, negligence of iron losses, higher harmonics in slots, and spaces not account for.
Furthermore, the size of the model is reduced thanks to the Park transformation, which
projects the physical three-phase quantities onto two-coordinate frames. The models thus
obtained prove to be reasonably accurate and tractable for control design.
This chapter is organized as follows: synchronous machine structures are briefly described

in Section 3.2; in Section 3.3, the main modelling assumptions are described together with a
new presentation of the Park transformation; the mathematical models of the PMSM and the
WRSM are respectively established in Sections 3.4 and 3.5; and a conclusion and a reference
list end the chapter.

3.2 Synchronous Machine Structures

Like all rotating electrical machines, the synchronous machine is an energy converter. It is
reversible in the sense that it can operate either as a current generator (alternator) or as a motor.
It is composed of two main parts, commonly referred to armatures (Figure 3.1). The stator is
composed of three identical windings symmetrically distributed in space (120◦ between them).
Thewindings are fixed in notches on themagnetic circuit.When the statorwindings are current-
fed by a balanced three-phase AC power supply, a turning field is generated along the air gap

Stator winding

Rotor excitation winding

Rotor pole

StatorAir gap

Figure 3.1 Electrical and magnetic structure of a wound-rotor synchronous machine with salient poles
(number of poles p = 2)
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Stator winding

Rotor (the magnetic circuit)

Permanent-magnet

Stator
Air gap

Figure 3.2 Structure of the permanent-magnet synchronous machine (number of poles p = 2)

(due to Ferraris’s theorem (Kothari and Nagrath 2004)). The rotation speed of the turning field
is proportional to both the number of poles of the machine and the pulsation of the stator
currents (Krause et al. 2002; Multon et al. 2005). The second armature is the rotor (inductor)
including, in the case of wound-rotor machines, a winding carrying a DC current, (Figure 3.1),
or consisting of permanent magnets, in case of permanent-magnet machines (Figure 3.2). In
the first case, the rotor consists of poles and windings wounded around. The windings carrying
a DC current produce a magnetomotive force (MMF) along the air gap (Kothari and Nagrath
2004). In the second case, the MMF is generated by the permanent magnets. The inductor
magnetic field interacts with the turning field created by the stator. This interaction results
in an electromagnetic torque applied to the rotor entailing a rotation motion. In steady-state
regime, the rotor velocity is identical to the speed of the turning field generated by the stator.
This motivates the designation “synchronous machine” attributed to this type of machines.

3.3 Preliminaries

3.3.1 Modeling Assumptions

The following assumptions will prove to be useful in simplifying the machine modelling
procedure, leading to tractable models:

A1: The induced electromagnetic force is assumed to be sinusoidal (with quasi-
sinusoidally distributed stator winding).

A2: Iron permeability in the machine is assumed to be infinite. Therefore, the
reluctance of the flux path is composed solely of the air gap and leakage reluc-
tances. This amounts to supposition of the magnetic characteristic to be linear and
ignore magnetic saturation.

A3: The Foucault current and the hysteresis losses are insignificant.
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A direct consequence of the above assumptions is that the various mutual inductances between
the stator and the rotor can be expressed as sinusoidal functions of the rotor position. The
above assumptions are generally accepted as the resulting modelling errors are negligible in
normal operation modes.

3.3.2 Three-Phase to Bi-Phase Transformations

A triplet (xa, xb, xc) composed of sinusoidal variables is said to be a balanced three-phase
system if the involved signals are of the form

xa = A cos(ωt + ϕ), (3.1a)

xb = A cos(ωt + ϕ − 2π/3), (3.2b)

xc = A cos(ωt + ϕ + 2π/3). (3.3c)

The variables may be currents, voltages, or magnetic fluxes. An inherent property to (balanced)
three-phase systems is that their homopolar components, that is, x0 = xa + xb + xc, are null all
the time. In the latter, this property will be systematically used because all involved three-phase
systems will be balanced.
It was already emphasized in Chapter 2 that, a three-phase system like equation (3.1)

is associated to a (fictive) three-coordinate frame, say abc. This frame is sometimes also
said to be stationary or stator-related. Then, the Concordia transformation is resorted to
project the abc-frame onto the fixed two-coordinate αβ-frame (Blaschke 1972). Accordingly,
one has

⎛
⎝ xa

xb

xc

⎞
⎠ = C32

(
xα

xβ

)
(3.2)

and

(
xα

xβ

)
= CT

32

⎛
⎝ xa

xb

xc

⎞
⎠ , (3.3)

where C32 denotes the Concordia (3× 2) matrix defined by

C32 =
√
2

3

⎛
⎝ 1 0

−1/2 √
3/2

−1/2 −√
3/2

⎞
⎠ . (3.4)

It is easily checked that CT
32C32 = I2, where I2 is the 2× 2 identity matrix.
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3.3.3 Concordia-Park Transformation (αβ to dq)

The passage from the two-coordinate “α–β” frame to the rotating two-coordinate “d–q” is
performed by multiplying the former by the following transformation matrix (Blaschke 1972)

P(ρ) =
(
cos(ρ) − sin(ρ)
sin(ρ) cos(ρ)

)
, (3.5)

where, ρ is the angular position of the rotating reference frame (dq). The latter is allowed to
be rotating at any speed. Note that P(ρ)T P(ρ) = I2. Using equation (3.4), it turns out that the
passage from a stationary three-phase system (a, b, c) to the corresponding bi-phase system
expressed in the rotating dq-frame is performed as follows:

(
xd

xq

)
= P(ρ)T CT

32

⎛
⎝ xa

xb

xc

⎞
⎠ . (3.6)

3.4 Dynamic Modeling of Wound-Rotor Synchronous Motors

The three-phaseWRSM contains three identical armature windings, symmetrically distributed
around the air gap, and one field winding (Figure 3.1).
From the electromagnetic viewpoint, the WRSM is described by a set of three stator circuits

coupled through motion with a field winding (Figure 3.3). The stator and rotor circuits are

b-axis

c-axis

a-axis

f-axis
vf

isb

isa vsa

isc

vsc

vsb

if

Winding and fixed coordinates

Winding and rotating coordinate

Figure 3.3 Electric structure of the wound-rotor synchronous machines
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magnetically coupled with each other. Applying Faraday’s and Ohm’s laws, one gets the
following equations describing the electrical dynamics of this machine:

⎛
⎝ vsa

vsb

vsc

⎞
⎠ =

⎛
⎝ Rs 0 0
0 Rs 0
0 0 Rs

⎞
⎠

⎛
⎝ isa

isb

isc

⎞
⎠ + d

dt

⎛
⎝φsa

φsb

φsc

⎞
⎠ (3.7)

and

v f = R f i f + dφ f

dt
, (3.8)

where vsabc, isabc, Rs , and φsabc are respectively the stator voltage, current, resistor, and flux,
while v f , i f , R f , and φ f are the corresponding quantities of the rotor.
The fluxes of phase windings a, b, c, and f can be expressed in terms of the self- and mutual

inductances

[φsabc] = [Lss][isabc]+ [Ms f ]i f , (3.9a)

[φ f ] = [M f s][isabc]+ [L f ]i f , (3.9b)

with,

[isabc] = [
isa isb isc

]T
; [φsabc] = [

φsa φsb φsc
]T
; (3.10a)

[M f s] = [
M f a M f b M f c

]T
; [Ms f ] = [M f s]

T ; (3.10b)

[Lss] =
⎛
⎝ La Mab Mac

Mba Lb Mbc

Mca Mcb Lc

⎞
⎠ ; [Rs] =

⎛
⎝ Rs 0 0
0 Rs 0
0 0 Rs

⎞
⎠ . (3.10c)

In the above expressions, [isabc] and [φsabc] are the stator current and flux, [M f s] is the mutual
inductance between the rotor and the stator, [Lss] is the stator inductance matrix, and [Rs] is
the stator resistor.
The rotor saliency (compared to the stator) entails the variation of the magnetic circuit

permeance. Accordingly, when the rotor makes a complete turn, the geometrical configuration
is repeated 2p times with p being the number of pole pairs. It turns out that the period of the
self- and the mutual inductances is 2pθ , with θ being the rotor position. The mutual inductance
between the stator and the rotor windings also has a varying period, equal to pθ . Analytically,
the self-inductances of the (a, b, c) phase windings assume the following expressions:

La = Ls0 + Lsv cos(2pθ ), (3.11a)

Lb = Ls0 + Lsv cos(2pθ + 2π/3), (3.11b)

Lc = Ls0 + Lsv cos(2pθ − 2π/3). (3.11c)
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The mutual inductances between the stator phases are as follows:

Mab = Ms0 + Lsv cos(2pθ − 2π/3), (3.12a)

Mbc = Ms0 + Lsv cos(2pθ ), (3.12b)

Mac = Ms0 + Lsv cos(2pθ + 2π/3). (3.12c)

The mutual inductances between the stator phases and the excitation winding are as follows:

Ma f = M f s cos(pθ ), (3.13a)

Mbf = M f s cos(pθ − 2π/3), (3.13b)

Mcf = M f s cos(pθ + 2π/3), (3.13c)

where Ls0, Lsv , Ms0, Ms f , and L f are nonzero real constants depending on the machine
structure.
Using equations (3.9a–b), it follows fromequation (3.7) and (3.8) that the electrical equations

of the three-phase model (a, b, c) can be rewritten as follows:

[vsabc] = [Rs][isabc]+ d

dt
{[Lss][isabc]+ [Ms f ]i f }, (3.14)

v f = R f i f + d

dt
{[M f s][isabc]+ L f i f }. (3.15)

Owing to the mechanical equation, it follows applying the fundamental principle of dynamics
to the rotor motion

Tem = TL + Fω + J
dω

dt
, (3.16)

where TL denotes the load torque, F is the viscous friction coefficient, and J the global rotor-
load inertia. The electromagnetic torque developed by the machine depends on the inductance
matrix and the current vector and can be given the following general expression:

Tem = 1

2
[i]T

{
d L

dθ

}
[i], (3.17)

where [L] includes all inductances and [i] all currents. Specifically, one has

Tem = 1

2

[
[isabc] i f

]T
[

d

dθ

[
[Lss] [Ms f ]
[M f s] L f

]] [
[isabc]T i f

]T
. (3.18)

Note that L f is independent on the rotor position θ and [Ms f ] = [M f s]T . It immediately
follows that

Tem = 1

2
[isabc]

T

[
d[Lss]

dθ

]
[isabc]+ [isabc]

T

[
d[Ms f ]

dθ

]
i f . (3.19)
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The stator and the rotor voltages equations (3.14) and (3.15) constitute, together with the
mechanical equation (3.19), the model of the WRSM in the fixed three-coordinate frame
linked to the three stator windings. From expressions (3.10b–c), of the self-inductance [Lss]
and the mutual [Ms f ], it is seen that the stator and the rotor flux depends on both the time
and the rotor position. This makes this model difficult to be exploited in control design.
Indeed, the inductance matrix contains 13 nonzero terms, including 12 depending on the
rotor position θ . This entails burdensome real-time implementations especially in transient
regimes. To overcome these difficulties, the the Park transformation is resorted to obtain a
lower-size position-independent model. Analytically described by equation (3.6), this transfor-
mation allows the passage from the (stator-related frame) three-phase models (3.14), (3.15),
(3.10b–c) to the corresponding rotating dq-frame two-phase model. In the dq-frame, all
inductances turn out to be constant and all signals are steady-state sinusoidal and referred to
dc-quantities along d-axis or q-axis.

3.4.1 Oriented dq-Frame Model of Salient Pole WRSM

As explained in Chapter 2, it is beneficial to let the dq-frame be rotating at the rotor speed
and be oriented along the the rotor flux d-axis so that the rotor flux q-component can be set to
zero, reducing the model size (Blaschke 1972).
Then, operating the transformation (3.6), on the (three-phase) current [isabc], the voltage

[vsabc], and the flux [φsabc], one obtains the two-phase system ([isdq ], [vsdq ], and [φsdq ]).
Following closely a similar procedure in Chapter 2, one gets the equations that govern the dq
quantities. The obtained equations are listed in order.
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c-axis

a-axis

f-axis

vsc

isc

isb

vsb

isa
vsaif

vf

β-axis

α-axis

q-axis

d-axis

θ

Figure 3.4 abc- and dq-coordinate frame in wound-rotor synchronous machines
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Voltage Equations in dq Coordinates

[vsdq ] = [Rs][isdq ]+ d[φsdq ]

dt
+ pωQ[φsdq ], (3.20)

v f = R f i f + dφ f

dt
. (3.21)

Flux Equations in dq-Coordinates

φsd = Ldisd + Mi f , (3.22a)

φsq = Lqisq , (3.22b)

φ f = L f i f + Misd . (3.22c)

Electromagnetic Torque Developed by the Machine

Tem = p{φsd isq − φsq isd} = pisd isq (Ld − Lq )+ pMisq i f , (3.23)

where Ld = 3(Ls0 + Lsv)/2 is called d-axis inductance, Lq = 3(Ls0 − Lsv)/2 is the q-axis
inductance, and M = √

3/2M f s is the direct axis magnetizing inductance (mutual between
the stator and rotor windings).
For convenience, equations (3.20), (3.21), (3.22), and (3.23) are put together

dω

dt
= − F

J
ω + a1

J
isd isq + a2

J
i f isq − 1

J
TL , (3.24a)

disq

dt
= −b1isq − b2isdω − b3i f ω + b4vsq , (3.24b)

disd

dt
= −c1isd + c2R f i f + c3isqω + c4vsd − c5v f , (3.24c)

di f

dt
= −d1R f i f + d2isd − d3isqω − d4vsd + d5v f . (3.24d)

The fourth order state-space representation (equations (3.24a-d) constitutes the model of the
salient poleWRSM in the (rotor-flux-oriented) rotating dq-frame. This model is still nonlinear
but it will prove to useful for control design purpose. It is acted on by vsd and vsq , the stator
voltage in dq-coordinates, and v f , the rotor excitation voltage. The model state vector includes
the stator currents (isd , isq ), the rotor excitation current i f , and the rotor speed ω. The model
enjoys the facts that all its parameters (see Table 3.1) are constant and all its state variables
are measurable. Besides, the control of the instantaneous electromagnetic torque can be done
easily through the currents (isd , isq , and i f ).
The model coefficients are described in Table 3.1.
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Table 3.1 Notations used in wound-rotor synchronous machines (WRSM) model (equations 3.24a–d)

a1 = p(Ld − Lq ) a2 = pM

b1 = Rs

Lq
b2 = p

Ld

Lq
b3 = p

M

Lq
b4 = 1

Lq

c1 = Rs L f

Ld L f − M2
c2 = M

Ld L f − M2
c3 = pL f Lq

Ld L f − M2
c4 = L f

Ld L f − M2
c5 = M

Ld L f − M2

d1 = Ld

Ld L f − M2
d2 = Rs M

Ld L f − M2
d3 = pM Lq

Ld L f − M2
d4 = M

Ld L f − M2
d5 = Ld

Ld L f − M2

Rs , stator resistor; R f , rotor resistor; Ld , Lq , d- and q-axis stator inductances; L f , rotor inductance;
M , rotor and stator mutual inductance; p, number of pole pairs; F , combined rotor and load viscous
friction; J , combined rotor and load inertia; TL , machine load torque.

3.5 Permanent-Magnet Synchronous Machine Modeling

3.5.1 PMSM Modeling in abc-Coordinates

As already mentioned, PMSMs differ from WRSMs in that the excitation is provided by
permanent magnets fixed on the rotor (Figure 3.5). Presently, the PMSM modelling is dealt
with following the same approach as for theWRSM, using the same assumptions, conventions,
and notations. Accordingly, the three fixed stator windings are labeled a, b, and c (just as for
the WRSM). Then, the voltages between the three phases is given by the expression

[vsabc] = [Rs][isabc]+ d[φsabc]

dt
(3.25)

where vsa , vsb, and vsc denote the three-phase stator voltage in abc-coordinates; Rs the stator
winding resistor; isa , isb, and isc are the currents in the three windings of the stator; and φsa ,
φsb, and φsc are the induced flux within the stator windings. In the rotor, a constant flux is
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Figure 3.5 abc-coordinate frame and two-phase, stationary and rotating, frames in PMSMs
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created by the magnets. The distribution of the excitation field in the air gap and the MMFs
are assumed to be sinusoidal (by assumption A3). Consequently, the expressions of the mutual
flux of the inductor phases assume the following expressions:

φra = φr cos(pθ ), (3.26a)

φrb = φr cos(pθ − 2π/3), (3.26b)

φrc = φr cos(pθ + 2π/3), (3.26c)

where φr is the amplitude of the flux produced by the permanent magnets, assumed to be
constant as the variation with temperature is insignificant. It turns out that the flux through
each of the stator windings is the sum of the flux induced by the rotor magnets and the flux
produced by the currents carried by the stator phases. Specifically, one has

[φsabc] = [Lss][isabc]+ [φrabc]. (3.27)

Furthermore, the fact that the rotor flux (PMSMs) is generated by permanent magnets, equa-
tion (3.9a) is still valid provided that the quantity [Ms f ]i f (flux produced by the inductor in
the WRSM case) is replaced by its PMSM equivalent, that is, [φrabc]. Now, using the flux
expression (3.26a), the stator voltage expression (3.25) becomes

[vsabc] = [Rs][isabc]+ d

dt
{[Lss][isabc]} + ω

d

dθ
[φrabc], (3.28)

where we have used the rule d
dt (•) = dθ

dt
d

dθ
(•) = ω d

dθ
(•).

The WRSM mechanical equation (3.19) remains valid for PMSMs again, provided the
WRSM quantity [Ms f ]i f is replaced by its PMSM equivalent [φrabc]. Doing so, one gets

Tem = 1

2
[isabc]

T

{
d[Lss]

dθ

}
[isabc]+ [isabc]

T

{
d[φrabc]

dθ

}
. (3.29)

For convenience, the usual motion equation is rewritten

Tem = TL + Fω + J
dω

dt
. (3.30)

3.5.2 PMSM Model in the Rotating dq-Frame

Electric Equations

The PMSMmodel in the rotating dq-frame, linked to the rotor (Figure 3.4), is derived from the
abc-model, described by equation (3.28), by using the Concordia-Park transformation (3.6).
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The dq-frame is made linked to the rotor by letting the angular position ρ (in equation (3.6))
be equal to the electrical position θe = pθ . Doing so, we get

C32P(θe)[vsdq ] = RsC32P(θe)[isdq ]+ d

dt

(
[Lss]C32P(θe)[isdq ]

)

+ω
d

dθ

(
C32P(θe)[φrdq ]

)
. (3.31)

It can be checked that the matrix of inductances [Lss] can be given in the following form:

[Lss] = Lsv I3 + 3

2
LsvC32P(θe)Q P(θe)

T CT
32 (3.32)

with,

Q =
(
1 0
0 −1

)
; I3 =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

Then, multiplying both sides of equation (3.31) by P(pθ )T CT
32 and replacing [Lss] by its

expression (3.32), it follows that:

[vsdq ] = Rs[isdq ]+ ωP(θe)
T CT

32
d

dθ

(
C32P(θe)[φrdq ]

)

+P(θe)
T d

dt

{
CT
32

(
Lsv I3 + 3

2
LsvC32P(θe)Q P(θe)

T CT
32

)
C32P(θe)[isdq ]

}
. (3.33)

The following properties are readily checked:

d

dt
(•) = ω

d

dθ
(•), (3.34a)

d

dθ
(P(θe)) = pP(θe)Q′, (3.34b)

P(θe)Q
′ P(θe)

T = Q′, (3.34c)

with,

Q′ =
(
0 −1
1 0

)
.

Using equation (3.34a–c), the expression (3.33) is rewritten as follows:

[vsdq ] = Rs[isdq ]+ pωQ′[φrdq ]+
(

Lsv I2 + 3

2
Lsv Q

)
d[isdq ]

dt

+ pωP(θe)
T

(
Lsv P(θe)Q

′ + 3

2
Lsv P(θe)Q

′ Q
)
[isdq ] (3.35)
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The matrix of inductances in the dq-frame is defined as follows:

[Ldq ] =
(

Ld 0
0 Lq

)
= Lcs I2 + 3

2
Lsv Q, (3.36)

where the second equality is obtained using the definitions of the the direct axis inductance,
Ld = 3(Lso + Lsv)/2, of the quadratic inductance, Lq = 3(Lso − Lsv)/2 and cylique induc-
tance Lcs = 3

2 Ls0. Using equation (3.36), the stator voltage equation (3.35) takes the following
final form:

[vsdq ] = Rs[isdq ]+ [Ldq ]
d[isdq ]

dt
+ pωQ′[Ldq ][isdq ]+ pωQ′[φrdq ]. (3.37)

Mechanical Equation

The torque expression in the rotor-linked dq-frame is obtained from equation (3.29) using
equation (3.32) and the properties (3.34a–c). Doing so, one obtains

Tem = p
1

2
[isdq ]

T P(θe)
T CT

32
3

2
pLsvC32P(θe)

(
Q′ Q + Q Q′T )

[isdq ]

+p[isdq ]
T P(θe)

T CT
32C32P(θe)Q[φrdq ]. (3.38)

Note that P(pθe)T CT
32C32P(pθe) = I2 (properties of Park and Concordia transformations). It

is also readily checked that

[isdq ]
T Q′ Q[isdq ] = 2isd isq ; Lsv = 3(Ld − Lq )/4; and Q′ Q = Q Q′T = I2.

Then, the expression (3.38) rewrites

Tem = TL + Fω + J
dω

dt
= p

(
Ld − Lq

)
isd isq + [isdq ]

T Q′[φrdq ]. (3.39)

Recall that in the rotor-like dq-frame, the rotor flux is aligned with the d-axis. Consequently,
the flux q-component φrq turns out to be null, while the d-component is determined by the
equation [isdq ]T Q′[φrdq ] = √

3/2 φr isq . Then, the electromagnetic torque rewrites

Tem = TL + Fω + J
dω

dt
= p

(
Ld − Lq

)
isd isq + p

√
3/2isqφr . (3.40)

From equations (3.37) and (3.40), replacing [Ldq ] and Q′ by their expressions given by
equation (3.36), one obtains the final form of the PMSM model in the rotor-flux-oriented,
rotor-like dq-frame

dθ

dt
= ω, (3.41a)

dω

dt
= − F

J
ω + p

(Ld − Lq )

J
isd isq + p

√
3

2

φr

J
isq − 1

J
TL , (3.41b)
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disq

dt
= − Rs

Lq
isq − p

Ld

Lq
isdω − p

√
3

2

φr

Lq
ω + 1

Lq
vsq , (3.41c)

disd

dt
= − Rs

Ld
isd + p

Lq

Ld
isqω + 1

Ld
vsd . (3.41d)

3.5.3 PMSM Model in the Fixed Bi-Phase αβ-Frame

Electric Equations

The model of the machine in the fixed αβ-frame is obtained from equations (3.37) and (3.39)
by applying the Park-Concordia transformation defined in equations (3.2), (3.3), (3.4), (3.5),
and (3.6). Accordingly, one has

P(θe)
T [vsαβ] = Rs P(θe)

T [isαβ]+ [Ldq ]
d

dt

(
P(θe)

T [isαβ ]
)

+pωQ′[Ldq ]P(θe)
T [isαβ]+ pωQ′ P(θe)

T [φrαβ]. (3.42)

Multiplying both sides of equation (3.42) by P(θe), yields

[vsαβ] = Rs[isαβ]+ P(θe)[Ldq ]
d

dt

(
P(θe)

T [isαβ ]
)

+pωP(θe)Q
′[Ldq ]P(θe)

T [isαβ]+ pωP(θe)Q
′ P(θe)

T [φrαβ], (3.43)

where we have used the fact that P(θe)P(θe)T = I2. Using again the properties (3.34a–c), the
above equation becomes

[vsαβ] = Rs[isαβ]+ [Ldq ]
d

dt
[isαβ ]

+pωP(θe)
(
Q′[Ldq ]+ [Ldq ]Q

′T )
P(θe)

T [isαβ]+ pωQ′[φrαβ]. (3.44)

It is easily checked that pωP(θe)
(
Q′[Ldq ]+ [Ldq ]Q′T )

P(θe)T = pω(Ld − Lq ). Accord-
ingly, the stator voltage expression, in the fixed αβ-coordinate frame, takes the following
form:

[vsαβ ] = Rs[isαβ]+ [Ldq ]
d

dt
[isαβ ]+ pω

(
Ld − Lq

)
[isαβ]+ pωQ′[φrαβ]. (3.45)

Mechanical Equation

Again, applying the transformations (3.2), (3.3, (3.4), (3.5), and (3.6) to the torque expression
(3.39), one obtains the corresponding αβ form

Tem = p
3

2
Lsv[isαβ ]

T P(θe)Q
′ Q P(θe)

T [isαβ]+ p[isαβ]
T P(θe)Q

′ P(θe)
T [φrαβ]. (3.46)
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Introducing the notation R(θe) = P(θe)Q′Q P(θe)T , the above expression rewrites

Tem = p
3

2
Lsv[isαβ]

T R(θe)[isαβ]+ p[isαβ]
T Q′[φrαβ]. (3.47)

It is easily checked that [isαβ]T Q′[φrαβ] = (φrαisβ − φrβ isα). Accordingly, the mechanical
equation rewrites as follows:

Tem = TL + Fω + J
dω

dt
= p

3

2
Lsv[isαβ ]

T R(θe)[isαβ]+ p(φrαisβ − φrβ isα) (3.48)

On the other hand, operating the Park-Concordia transformation on the balanced three-phase
flux system (3.26a–c) one obtains the corresponding two-phase system in the αβ-frame. It is
checked that the obtained flux components, φrα and φrβ , undergo the following equations:

dφrα

dt
= −pωφrβ, (3.49a)

dφrβ

dt
= pωφrα. (3.49b)

Writing together equations (3.45), (3.48), and (3.49a–b), yields the PMSM model in the
fixed αβ-frame.

disα

dt
= − Rs

Ls
isα + p

Ls
ωφrβ + 1

Ls
vsα, (3.50a)

disβ

dt
= − Rs

Ls
isβ − p

Ls
ωφrα + 1

Ls
vsβ, (3.50b)

dφrα

dt
= −pωφrβ, (3.50c)

dφrβ

dt
= pωφrα, (3.50d)

dω

dt
= 2p

3J
Lsv[isαβ ]

T R(θe)[isαβ]+ p

J
(φrαisβ − φrβ isα)− F

J
ω − 1

J
TL . (3.50e)

3.6 Conclusions

The modelling of smooth pole synchronous machines is identical to that of the salient pole
machines. The air gap being uniform (constant thickness) entails Lsv = 3(Ld − Lq )/4 = 0
yielding Lq = Ld = Ls . Equations (3.24a–d), (3.41), and (3.50) remain all valid. The expres-
sion of electromagnetic torque simplifies to Tem = p

√
3/2φr isq , because the variable reluc-

tance torque is zero (no saliency).
The Park-Concordia transformations have proved to be major instruments in passing from

the complex triphase machine model, expressed in the abc-frame, to the simpler fixed two-
phase αβ-coordinate model and the rotating dq-coordinate model. The simpler models enjoy
lower sizes and constant parameters that make them tractable in control design. The real-time
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implementation of these models and the controllers based upon them has become possible in
recent years due to the advances made in digital computer technology.
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4.1 Introduction

Induction motors are basically characterized by their dynamics in currents and fluxes under the
effect of the applied voltages at the stator. Those electrical dynamics generate the mechanical
torque and rotating speed of the machine. Estimation issues then arise from the fact that among
all those quantities of interest, only stator currents can easily bemeasured online, while they are
needed for control, or monitoring. From this, a lot of efforts have been dedicated to methods of
reconstruction of the unmeasured variables, which amounts to a problem of observer design.
The fact that a solution can exist is characterized by the so-called observability property, and
in the case of induction motors, due to the nonlinear nature of the dynamics, this property
depends on the operating conditions.
In addition, the problem is made even more difficult by the fact that model parameters

themselves can change during operation, or just not be very well known. From this, the
problem of state variable reconstruction extends to that of parameter identification.
The main point of this chapter is to review those three items: (1) observability, (2) state

observer, state, and (3) parameter estimation, mostly in the spirit of former studies (Besançon
2001; Besançon et al. 2001; Besançon and Ţiclea 2003; Ţiclea 2006; Ţiclea and Besançcon
2006a, b, 2008). Those problems are also put in the perspective of some of the main studies
that have been published in that respect over the last two decades.
Section 4.2 thus first recalls the problem(s) statement and some related references, while

Section 4.3 focuses on some observer solutions and related conditions. Section 4.4 then

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
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60 AC Electric Motors Control

provides some illustrative simulation results accordingly, and some conclusions are finally
given in Section 4.5.

4.2 Motor Representation and Estimation Issues

4.2.1 Problem Statement

The estimation issues and possible solutions will be settled for a model under the assumption
of symmetric operation with uniform values of parameters over each phase.
Under those assumptions, electrical variables can be represented by two components, here

chosen to be related to a frame rotating with the rotor, and denoted by α and β. Notations
i and φ will be used to respectively refer to currents and fluxes, and subscripts s and r will
respectively refer to the stator and the rotor. With the additional notation ωm for the machine
rotor speed, we can summarize state variables, for instance, by the following set:

isα, isβ – the components of the stator current phasor is,

φsα, φsβ – the components of the stator flux phasor φs,

ωm – the mechanical speed,

while inputs correspond to the components usα and usβ of the stator voltage phasor us .
The corresponding state equations finally read as

d
dt is =

[
−

(
Rr

σ Lr
+ Rs

σ Ls

)
I + pωmJ

]
is +

[
Rr

σ Ls Lr
I − p 1

σ Ls
ωmJ

]
φs + 1

σ Ls
us,

d
dt φs = −Rsis + us,

d
dt ωm = − F

J ωm + p 1J (isβφsα − isαφsβ)− 1
J Tl ,

(4.1)

where L stands for inductance, R stands for resistance (with indexes s and r still referring to
the stator and the rotor, respectively), σ = 1− L M

2

Ls Lr
with L M the maximummutual inductance

between one stator and one rotor winding, and

I =
(
1 0
0 1

)
, J =

(
0 − 1
1 0

)
. (4.2)

In addition, Tl denotes the load torque, J the total inertia momentum (rotor plus load), and
F the friction coefficient. Finally, in both electrical and mechanical parts, p represents the
number of pairs of poles.
On the basis of such amodelling, the estimation problems depend on the informationwe have

on the model; for a classical state reconstruction problem, the model parameters are assumed
to be pretty well known, and the problem is fully defined by the available measurement upon
dynamical variables. In general, such a measurement, usually denoted by y, will be a vector
at least corresponding to stator currents is . It often further includes ωm , but the problem of
avoiding the use of any rotor speed sensor has also motivated a lot of work.
In addition, the estimation problem can extend to the model parameters themselves, which

may not be accurately known, or vary significantly under operation (typically under heating
effect); a lot of work has been dedicated to the problem of rotor time constant estimation in
that respect for instance.
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A brief overview on existing results about estimation issues in induction motors is proposed
in next subsection.

4.2.2 Short Literature Review

Complex instrumentation placed on an induction motor would only cancel the major strength
of this device—simplicity. It is the reason why one can hardly, if ever, see flux transduc-
ers in induction-motor-driven variable speed industry applications. On the other hand, flux
information is crucial for the control of the drive, so flux estimation is an inescapable part
of any variable-speed control design. Moreover, speed sensors might also be undesirable,
leaving the stator current as the only output information that can be used for state estima-
tion. Notice then that “sensorless” in the context of induction motor usually means “speed-
sensorless.”
When the mechanical speed is available through measurement, the measured values can

be injected into the differential equation (4.1) making the model linear time varying, which
therefore allow for a possible Kalman-like observer (see Section 4.3). However, under mea-
sured speed conditions, it is possible to build effective reduced-order observers for flux only,
which, as opposed to a Kalman solution, may employ a constant gain in the correction term
(Verghese and Sanders 1988). Passivity can also be exploited in order to build flux observers
when the speed is measured (Martin and Rouchon 2000).
When the rotor speed is not available through measurements, the observation problem

becomes significantly complex. Not only the model is now nonlinear and requires some ded-
icated observer design, but studies such as Canudas de Wit et al. (2000) and Ibarra Rojas
et al. (2004) show that under zero synchronous speed and constant mechanical speed the
systems becomes unobservable (in fact, in this case there is no information from the rotor side
contained in the stator currents). The locus of the unobservability points is a straight line in
the speed-torque plane—called the unobservability line of the motor—that runs through the
origin of the plane and lies in the quadrants that correspond to a generator operating mode
of the motor. Notice that, under closed-loop operation with load torques falling in the range
safely handled by the motor (acting as a brake), such observability losses usually happen at
rather low mechanical speeds. Based on this idea, some authors claim speed-sensorless esti-
mation results with respect to low mechanical speed situations, which is actually a rather long
stretch from the precise unobservability conditions; in reality, at any constant speed, the syn-
chronous speed is the one responsible for the presence of information exchange between rotor
and stator.
Any effort to accurately observe the state of the induction motor is futile if the parameters

of the system are not known with sufficient precision. Unfortunately, this is likely to be
the case during operation; in particular, the parameters that are the most susceptible to be
uncertain are the resistances, as they (significantly) change with the temperature. Therefore,
a realistic induction motor observation problem would actually be a joint state and parameter
estimation problem. It is worth noticing at this point that it is impossible to identify all
five fundamental electrical parameters from the input-output data, even when using speed
measurements. In reality, it is only possible to estimate variables that are in bijection with Lr

Rr
,

Rs , Ls , and σ (Besançon et al. 2001). Some potential sources of errors in simultaneous state and
parameter estimation for induction motors with equations expressed in a stator-fixed reference
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frame and with known stator resistance are pointed out in the sensitivity study performed by
Alamir (2002).
The challenges raised by the induction motor observation problemmotivated many research

groups into efforts to design effective solutions, from both pure observation and observation in
support of some particular control strategy perspectives. This generated in time an enormous
body of literature on the subject of induction motor estimation and control, such that it is
impossible to give a complete account of all existing solutions. We shall therefore limit
ourselves here to mention the most relevant ideas that have been pursued in these efforts.
Examples of references will be provided, which can be used as entry points for the interested
reader to explore the literature.
Some factory values issued from equivalent circuit identification through some standard tests

(Chapman 2005) are normally available for the parameters of electric machines. However, for
improved accuracy, recursive output error identification methods (e.g., Børsting et al. 1994),
linear least squares methods (e.g., de Souza Ribeiro et al. 2000; Zamora and Garcı́a Cerrada
2000; Alonge et al. 2001) and nonlinear least squares methods (e.g., Wang et al. 2005; Oteafy
et al. 2009) can also be applied, some without speed measurement, and with the advantage
that they can be adapted to online operation for critical parameter monitoring.
Moving to simultaneous state and parameter estimation, the so-called extended Kalman

filter (EKF) is a much employed solution that can accommodate a wide range of state and
parameter combinations to be estimated, as the reader can discover by exploring the liter-
ature; this flexibility is however paid in rather low returned performance. Very popular in
the 1990s, the EKF also captured the attention of researchers in recent years (Alonge and
D’Ippolito 2010).
One of the major sources of problems with the EKF comes from the fact that the covariance

of the estimation is propagated through a linear model, which leads to rather important
inaccuracies. The unscented Kalman filter (UKF) adopts a superior technique to propagate
this quantity, which leads to improved accuracy (although some empirical tuning is involved).
See Akin et al. (2006) and Jafarzadeh et al. (2012) for its application to induction motor state
estimation.
By exploiting the fact that the induction motor model is linear with respect to the current

and flux, one class of methods considers the speed as an unknown parameter (constant or time
varying) and focuses on building some speed-adaptive flux observers (Kubota et al. 1993).
Efforts have also been made to include the adaptation of some parameters (resistances) along
with the adaptation of the speed. Recent advances on these methods as well as a glimpse at the
associated state-of-the-art can be found in Zaky 2012). A somewhat related class of methods
uses reference models of flux or current dynamics in order to generate error signals that can
be used to adapt the value of the mechanical speed. An overview on some of the methods
that exploit this (model reference adaptive system (MRAS)) concept, as well as related recent
advances, can be found in Orlowska-Kowalska and Dybkowski (2010).
Moving to nonlinear design techniques, the idea of adapting some parameters also appears

in the design of sliding-mode observers for induction motors (e.g., Rao et al. 2010). For state
estimation only, nonlinear interconnected observers are also reported (Ghanes et al. 2010).
Efforts were also aimed at building nonlinear controllers that include adaptation mechanisms
for the unmeasured states (speed, flux) and for some parameters (load torque, resistances).
While solutions relied at first on open-loop integration of currents to compute an estimation
of the flux (just like some of the early sliding-mode designs), results that did not employ
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such integration started to emerge in recent years. For instance, speed-sensorless nonlinear
controllers with local convergence have been designed with torque adaptation in Montanari
et al. (2006) and torque and rotor resistance in Marino et al. (2008).
In the present chapter, we rather focus on a versatile solution to the construction of observa-

tion solutions for induction motors that can be adapted to the estimation of any combination of
state variables and electrical parameters. This solution relies on the immersion of the induction
motor model into an affine structure with respect to the unknowns; a Kalman-like observer
can then be used for the observation of the system under this new (inherently redundant)
representation.
Thismethodology is introduced in the sequel, after a review on possible observer approaches

for estimation configurations of increasing complexity. Further details on the related observer
tools can be found in Besançon (2007) and references therein.

4.3 Some Observer Approaches

4.3.1 Estimation under known and constant Speed and Parameters

In the case when the mechanical speed is known and assumed to be constant, or varying
in a slow enough way, as well as all parameters, the motor modeling can be reduced to the
current and flux dynamics, under the form of a classical linear time-invariant state-space
representation

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),

(4.3)

where x gathers components of is, φs , and y = is , and matrices A, B, C directly follow from
this fact and equation (4.1).
For such a model, the possibility to build a state observer is directly related to the observ-

ability property, which is classically characterized by the so-called Kalman rank condition

rankO = n,

where n is the dimension of the state vector (n = 4 here), andO =

⎛
⎜⎜⎜⎝

C
C A
...

C An−1

⎞
⎟⎟⎟⎠ is the observ-

ability matrix.
This condition is clearly satisfied here whatever the operating conditions are (in particular

the value of the speed), which means that an observer can be built under the classical form

˙̂x(t) = Ax̂(t)+ Bu(t)− K [Cx̂(t)− y(t)], (4.4)

where the observer gain K is designed either by pole placement (as in Luenberger approach)
or by linear quadratic optimization (as in Kalman approach).
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Using a forgetting factor for instance, Kalman equations can take the following form:

Ṡ(t) = −λS(t)− AT S(t)− S(t)A + CT C ; S(0) > 0;

K (t) = S−1(t)CT ;
(4.5)

for a positive tuning parameter λ.
Notice that in any other situation, the estimation problem a priori becomes a nonlinear

problem. It can in general be approached via a so-calledEKF technique, namely the application
of Kalman equations to a model linearized along the trajectories currently estimated by the
observer, but with the limitations of the underlying approximation that is made via this
linearization.
Depending on the specific situation under consideration however, some exact linear-like

approaches can alternatively be applied, as described in next subsections.

4.3.2 Estimation under known Speed and Parameters

In the casewhen the speed variationmay be significant, but remainsmeasured, its measurement
can be injected in the observer so as to keep a linear structure for the estimation error; in this
situation, the speed variation is to satisfy some appropriate excitation condition so that the
convergence of an observer based on Kalman equations is still guaranteed.
In that case, model (4.1) can again be reduced to state variables of is and φs as in equations

(4.3), but now with a matrix A = A(ωm) varying according to the rotor speed variations ωm(t).
This means that the model structure is still linear, but now time varying, and consequently,

Kalman equations (e.g., as in equation (4.5) can still provide the basis for an observer design,
provided that the time-variation guarantees boundedness of A(ωm), and uniform complete
observability in the following sense:

∫ t+T0

t
�T

ωm
(τ, t)CT C�ωm (τ, t)dτ ≥ α I, (4.6)

for some T0, α > 0, any t ≥ t0 for some t0 ≥ 0, and �ωm the transition matrix of system
ζ̇ (t) = A(ωm(t))ζ (t).
Under this condition, an observer of the form (4.4) is again possible, where K is computed

as in Kalman equations (4.5).

4.3.3 Estimation under unknown Speed and known Parameters

In the case when the speed is unknown and varying, then its dynamical equation is to be taken
into account in the model for observer design (as in model (4.1). In this situation, the model
becomes nonlinear, and the observer design is now subject to a nonlinear observability con-
dition, corresponding to a rank condition based on the so-called observation space (Hermann
and Krener 1977).
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For the model rewritten as

ẋ(t) = f (x(t))+ g(x(t))u(t) =: fu(x(t)),

y(t) = h(x(t)),
(4.7)

where x now gathers is, φs , and ωm , while y = is , and f, g, and h result from model (4.1), the
observability rank condition (at x) reads

rank[dOh(x)] = n,

(with n = 5 now), where Oh denotes the smallest real vector space containing the output
function h and closed under Lie derivation1 along fu for u ∈ R

m (observation space), and
dOh(x) the set of differential forms of functions of the observation space at x .
When applied to model (4.1), the inspection of this rank condition can lead to conditions

for structural observability of the motor (Canudas de Wit et al. 2000). In particular, it results
that observability can be lost under special conditions (see also Ibarra Rojas et al. 2004),
when the speed is not measured (so-called sensorless case), corresponding to the notion of
unobservability “at zero (low) speed” for instance, as it is commonly referred to in the literature.
In fact, a condition for unobservability is typically given by the case of zero synchronous speed
and constant rotor speed, yielding to a so-called unobservability line in the plane relating the
electromechanical torque Tem to the rotor speed ωm

Rr

pφT
r φr

Tem + ωm = 0,

where φr = Lr
Lm

φs + Ls Lr
Lm

σ is denotes the rotor flux, and

Tem = pi T
s J φs, (4.8)

with notations of equation (4.2).
In practice, this problem may be overcome by fluctuations, for instance due to the noise

reinjected by feedback, or the inverter harmonic—omitted in the modeling considered here.
A possible observer solution for speed reconstruction is presented in the next subsection

when the estimation problem is also extended to the case of possible unknown parameters.

1The Lie derivative of a function h : Rn → R along some f : Rn → R
n of components fi , is defined for any x ∈ R

n

of components xi , by L f h(x) =
n∑

i=1

∂h

∂xi
fi (x) (Isidori, 1995).
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4.3.4 Estimation in the presence of unknown Speed and/or Parameters

Taking into account possible unknown—or slowly varying—parameters in model (4.1), and
gathering them into a vector θ , the model becomes

ẋ(t) = fun(x(t), θ )+ gun(x(t), θ )u(t),

y(t) = h(x(t)),
(4.9)

for some uncertain fun and gun depending on vector θ .
This model can typically be rewritten in an extended form as

ẋ(t) = fun(x(t), θ )+ gun(x(t), θ )u(t),

θ̇ = 0,

y(t) = h(x(t)),

(4.10)

for which an EKF could be tried.
Alternatively, one can look for an appropriate transformation to rewrite this extended model

again in a linear-like structure as follows:

Ẋ (t) = A(u(t), y(t))X (t)+ B(u(t), y(t)),

y(t) = C X (t),
(4.11)

for which an exact Kalman Filter applies, and converges under an excitation condition similar
to the one in inequality (4.6).
Remember that a formal study on the possibility to identify electrical parameters in the

model can be found in Besançon et al. (2001), and that it appears that a set of four parameters,
in bijection with

Rr

Lr
, Rs, Ls, σ

is indeed structurally identifiable, and that this result extends to the problem of simultaneous
state estimation.
A significant study on appropriate transformation of model (4.1) into the form (4.11) (even

including the load torque Tl in the parameters to be estimated) can be found in Ţiclea and
Besançon (2006b), and is briefly recalled hereafter.

4.4 Some Illustration Results

This section presents some simulation results in order to illustrate the performance of the esti-
mation method presented here. The main idea here is to summarize some appropriate transfor-
mations, and show that the necessary excitation level required by the observer can be available
during normal operation within a closed-loop configuration that includes a voltage inverter. A
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Figure 4.1 Setup for observer simulations. PWM, pulse-width modulation

typical configuration is given by the speed control scheme of Figure 4.1 hereafter, which is
used as a test bench for our estimation method.
Within this setup, the behavior of the induction motor is implemented through equation

(4.1) with parameters taken from an experimental platform available at GIPSA-lab, which
is built around a two-pole induction motor with 7.5 kW rated power, 1450 rpm rated speed
and 50 Nm rated torque. The values of the electrical parameters that the observer will try to
estimate are as follows:

Ls = 0.097 H, Lr = 0.091 H, M = 0.091 H,

Rs = 0.63 , Rr = 0.4 .

As far as the mechanical parameters are concerned, their values correspond to

Jm = 0.22 kg m2, fv = 0.001 N s/rad,

and are supposed to be known at all times.
The input of the induction motor is a PWM-like waveform generated through the model of

a three-bridge voltage source inverter with ideal switch characteristics (e.g., no commutation
delay) based on a vector control strategy. The reference vector for the inverter is in its turn
generated by a torque and flux controller, designed by using available input-output (exact)
linearization techniques applied to induction motors (von Raumer et al. 1994); the flux norm
reference is set to 1 Wb, while the reference for electromechanical torque (as defined in
equation (4.8) is provided by a (linear) PI speed regulator.
This strategy is proposed as an example of model-based control synthesis dependent on

online estimations, that can illustrate the integration of the proposed observation solution into
a closed-loop configuration. In fact, for all the variables involved in the control law that are
not initially known, estimated values are used.
In the simulations, the measured signals fed to the observer and to the regulators are affected

by measurement noise with sufficiently large spectrum so that it can be assimilated to white
noise, with 10 mV peak value for stator voltages, 40 mA peak value for stator currents, and
0.01 rad/s for mechanical speed.
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As far as the observer is concerned, note that the exponential forgetting factor recalled earlier
admits both continuous-time and discrete-time formulations. In addition, both formulations
can be specialized to simultaneous state and parameter estimation, yielding adaptive observers.
We shall limit ourselves to present simulations involving the continuous-time exponential for-
getting factor observer. See Ţiclea and Besançon (2008) for results with the continuous-time
adaptive observer, Ţiclea and Besançon (2009) for the discrete-time exponential forgetting fac-
tor observer, and Ţiclea and Besançon (2012) for the discrete-time adaptive observer version.
For the transformation procedures summaries, the following notations will be used: y for

stator currents of model (4.1) and z for stator fluxes, each of them being a vector of dimension
2, with components yi and zi , i = 1, 2, respectively.
In addition, let us define the following set of parameters (of a vector θ ):

θ1 : = Rr
σ Lr

, θ2 := Rs
σ Ls

, θ3 := Rr Rs
σ Lr Ls

,

θ4 : = 1
σ Ls

, θ5 := Rr
σ Lr Ls

, θ6 := Rs, θ7 := Tl .
(4.12)

On this basis, the main transformations of interest can be recalled, and more details can be
found in Ţiclea (2006) and Ţiclea and Besançon (2006b).

4.4.1 State and Parameter Estimation under known Speed

In the case when the rotor speed is known, but electrical parameters are to be estimated together
with the state variables and the load torque, the following procedure can be used:

Set Z1 := θ5z; Z2 := θ4z.

Then it can be checked that the extended vector

X1 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

y
z

Z1
Z2
ωm

θ

⎞
⎟⎟⎟⎟⎟⎟⎠

satisfies a new state representation of the form

Ẋ1 = A1(u, y, ωm)X1 + B1u,

y = C1X1,

for appropriate matrices A1, B1, and C1.
An observer based on Kalman equations can then be designed. Some corresponding illus-

trative simulation results are presented in Figures 4.2, 4.3, and 4.4 where the speed tracking,
torque estimation, and flux and parameter estimation errors can be seen, respectively. From
those figures, it is clear that the speed indeed tracks its reference, while the torque as well as
the flux components and the electrical parameters are well estimated.
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Figure 4.2 Evolutions of mechanical variables under speed-sensed control with unknown parameters

4.4.2 State and Speed Estimation under known Parameters

In the case when the parameters are known, but only stator currents are measured, both the set
of electrical state variables and the rotor speed can be estimated following a similar procedure
as before. One can indeed check here that

X T
2 :=

(
yT zT ωm ωm zT z21 z22 z1z2 Tl zT Tl

)T

now yields a state representation of the form

Ẋ2 = A2(u, y)X2 + B2u,

y = C2X2,

for new matrices A2, B2, and C2.
Related estimation results are given as follows: the considered speed reference profile is

presented in Figure 4.5 and the load torque evolution profile in Figure 4.6. Those figures
also show the actual speed against the reference and the estimated load torque against the
simulated one. The corresponding error evolution for all the estimated state variables can be
seen in Figure 4.7.
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Figure 4.3 Evolution of flux estimation error under speed-sensed control with unknown parameters
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Figure 4.7 State estimation errors under sensorless-speed estimation with known parameters

4.4.3 State, Parameter, and Speed Estimation

In the case when both the rotor speed and the set of electrical parameters are not known,
they can be estimated together with the remaining variables by now considering the following
transformation:

X T
3 :=

(
yT zT Z T ωm Z T

2 Tl Z T
2 ξ T θ̄ T

)
,
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Figure 4.8 Speed tracking under speed-sensorless control with unknown parameters

with

Z := (
Z T
1 Z T

2 θ2zT
)T

, ξ := (
ωm θ4z21 θ4z22 θ4z1z2 θ2ωm θ4ωm

)T
,

and θ̄ made of θ together with Rsθ2, Tlθ2, and Tlθ4.
This new vector can indeed be checked to satisfy a new representation again of the form

Ẋ3 = A3(u, y)X3 + B3u,

y = C3X3,

for some matrices A3, B3, and C3.
Some related simulation results can be found in Figures 4.8, 4.9, 4.10, and 4.11. In those

simulations, one point is to show how the observer reacts to perturbations—it is therefore
considered that the parameters are perfectly known at t = 0 (for instance, following preliminary
open-loop tests with measured speed or not). The speed reference profile is now presented in
Figure 4.8 along with the actual evolution of the speed. The associated load torque is presented
in Figure 4.9 along with the estimated value of this quantity. Figure 4.10 presents the evolution
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Figure 4.9 Speed-sensorless load torque estimation with unknown parameters
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Figure 4.10 State estimation errors under speed-sensorless estimation with unknown parameters

of the state estimation errors, while Figure 4.11 presents the relative errors in the estimations
of the electrical parameters.
From these evolutions it appears that the reaction of the observer to perturbations is reflected

to a significant degree into the estimations of the parameters before everything settles back to
reasonable estimation errors. One possible remedy is to slow down the update actions with
respect to the estimation of the parameters by employing an adaptive observer; see Ţiclea and
Besançon (2008) for an exploration of this idea.
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Figure 4.11 Relative parameter estimation errors under speed-sensorless estimation

4.4.4 Estimation close to Unobservability

As a last set of illustrative results, let us here consider the case of an operation close to this
unobservability linementioned in Section 4.3.3, with the requirement that the parameters need
to be monitored (i.e., the preceding working configuration). Specifically, the mechanical speed
is regulated to the value of 0.5 rad/s under the action of a driving torque that determines zero
synchronous speed at steady state. For the values of parameters that are considered here, this
gives a load torque of about −4.4 Nm.
The stator flux evolution obtained in those conditions is presented in Figure 4.12. In order to

illustrate the behavior of the observer, we limit ourselves to the presentation of the evolution
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Figure 4.12 Stator flux evolution under speed-sensorless control close to the unobservability line
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Figure 4.13 Relative estimation errors for the parameters under operation close to the inobservability
line

of the relative estimation errors for the parameters in Figure 4.13. It is obvious that the
unobservability condition is not rigorously fulfilled, as there are slight stator flux variations,
mainly due to noise and errors propagating through the loop. It is nevertheless an operation
close to the unobservability line and the results show that a sufficient excitation level can ensure
observer stability even under conditions in which, theoretically, the system is on the verge
of unobservability. It is worth remembering at this point that in the case of the exponential
forgetting factor observer, the least singular value of S represents an indicator of the quantity
of meaningful information that is present in the signals fed to the observer. This indicator can
be monitored in real time in order to detect potentially critical situations for the observer.

4.5 Conclusions

In this chapter, various estimation problems related to the classical model of induction motors
have been reviewed, at the light of (nonlinear) observer approaches for possible solutions.
They include the basic problem of flux reconstruction, from stator currents and rotor speed
measurements, as well as the analysis of the widely studied situation of estimation without
any speed sensor (so-called sensorless configuration in the literature). The latter has also been
extended to the case of possible unknown parameters, and various simulation results have been
provided accordingly.
Although the formal analysis has been mostly provided on the basis of a continuous-time

representation, some possible extensions to discrete-time have also been highlighted. Finally,
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it should be emphasized that similar approaches can also be of interest for other machines,
like synchronous ones for instance.
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BesançonGand ŢicleaA (2003) Simultaneous state and parameter estimation in asynchronousmotors under sensorless
speed control. Proceedings of the 2003 European Control Conference.
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Ţiclea A (2006) Techniques d’immersion pour l’estimation non linéaire. Application aux systèmes de puissance (In
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Ţiclea A and Besançon G (2008) On the state and parameter simultaneous estimation problem in induction motors.
Proceedings of the 17th IFAC World Congress, pp. 11184–11189.
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5.1 Introduction

Asymptotic estimation of perturbation inputs, with the aim of exactly, or approximately,
canceling their influence on the system at the controller stage, has been treated in the existing
literature under several headings: disturbance accommodation control, active disturbance
rejection control (ADRC), and intelligent Proportional–Integral–Derivative (PID) control,
also called, model-free control. In all these approaches, disturbances, whether state-dependent
or not, are treated as a lumped single disturbance input that may be estimated online and
then appropriately canceled by the controller. Roots of this line of work may be found in
Shipanov (1939). Disturbance accommodation control is represented by the work of C.D.
Johnson. Originally, the approach was cast in the context of linear systems (see Johnson 1971)
and included a known linear model for the exogenous disturbances. The method, however, has
been actively evolving, including extensions to discrete-time systems and to the decoupling of
nonlinear systems (see Johnson (2008) for a survey). The ADRC method is represented by the
works of the late Prof. Jingqing Han. The emphasis of this work lies on nonlinear observer-
based disturbance estimation, for the canceling, and efficient time derivative calculations,

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
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for the feedback (see, Han 2009). The original work of Han has been suitably extended
and applied to various interesting technological fields by Z. Gao and his colleagues (see
Gao 2001; Sun and Gao 2005; Gao 2006). The third methodology: model-free control, was
developed by Fliess and Join (2008). This technique proposes controller design on the basis of
one-dimensional, or at most two-dimensional, local phenomenological models (called local
ultra-models) of the nonlinear plant. These models are online adapted to the actual plant via
fast algebraic estimation and identification techniques characterized by frequent resettings.
The theoretical support of this methodology stems from the differential algebraic viewpoint in
linear and nonlinear systems (see Fliess et al. 2008). In recent years, the authors of this chapter
have been involved in developing illustrative laboratory applications of the ADRC method
for nonlinear systems using only linear feedback and linear observers, known as generalized
proportional integral (GPI) observers, for simultaneous estimation of states and of nonlinear
disturbances. The disturbances are viewed as an aggregation of exogenous and endogenous
disturbances into a single time signal with no additional structure. The method thus proposes
global ultra-models of the perturbed plant that require no online resettings. The approach is
systematically used in the context of an input-output system description, regardless of the
complexities of the nonlinear system. The method is circumscribed to either differentially flat
systems, or to minimum phase systems (see Luviano-Juárez et al. 2010; Sira-Ramı́rez et al.
2009; Sira-Ramı́rez et al. 2012a; Sira-Ramı́rez et al. 2012b; Sira-Ramı́rez et al. 2012c).
GPI observers, a dual counterpart of GPI controllers (see Fliess et al. 1991), were introduced

in Sira-Ramı́rez and Feliu-Battle (2011) in the context of sliding-mode observers for flexible
robotics systems. The nonsliding version appears in Luviano-Juárez et al. (2010), as applied
to chaotic systems synchronization. The linear GPI observer naturally incorporates a self-
updating polynomial model of the overall disturbance effects as well as iterated output error
integral injections aimed at attenuating the effects, on the estimation error dynamics, of lumped
exogenous and state-dependent perturbation input signals present in the input-output model
of the plant. GPI observers are capable of accurate online estimations of: (a) the output-
related phase variables of the underlying pure integration input-output system obtained after
disturbance cancelation, (b) the, nonlinear state-dependent, additive perturbation input signal
itself, and (c) the estimation of a certain number of the perturbation input time derivatives (this
allows a natural extension to the control of nonlinear input-delayed systems; Sira-Ramı́rez
et al. 2010a).
This chapter is devoted to the GPI observer-based ADRC approach for trajectory tracking in

induction motors subject to, both, external disturbance inputs and endogenous nonlinearities
treated also as unknown disturbances. Two traditional control design techniques are cast into
this context. Namely, the two stage (inner loop–outer loop) controller design and the direct
armature voltage field-oriented controller. The fundamental advantage of this proposal lies
in the single-handed cancelation of the effects of time-varying torques, and of unmodeled
frictions and nonlinearities containing possibly uncertain parameters. For detailed background
on induction motor control, we refer the readers to the excellent books by Trzynadlowski
(1994), Leonhard (2001), Ortega et al. (1998), Chiasson (2005), and Marino et al. (2010). The
chapter is organized as follows: Section 5.2 deals with the problem of controlling an induction
motors using two observer-based ADRC loops, one for the current tracking task and a second
one for the angular velocity regulation. Section 5.3 presents the armature voltage field-oriented
controller for the decoupled regulation of the angular velocity and the flux magnitude. Both
schemes present experimental results and comparisons with existing control strategies. Finally,
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the Appendix contains some theoretical generalities about the active disturbance rejection
(ADR) scheme and its relation to global ultra-models.

5.2 A Two-Stage ADR Controller Design for the Induction Motor

Consider the following model of the induction motor in a fixed stator frame:

J
dωm

dt
= pMsr

Lr
Im

(
isφr

) − Bωm − TL (t), (5.1)

Lr
dφr

dt
= − (Rr − j pLrωm)φr + Rr Msris, (5.2)

Lsσ
dis
dt

= Msr

L2r
(Rr − j pLrωm)φr − γ Lsσ is + vs, (5.3)

where ωm is the shaft’s angular velocity, is is the complex armature current, φr is the complex
flux, vs is the complex input voltage, and the variable TL (t) is the unknown, time-varying,
load torque perturbation input. Also, the following auxiliary parameters are defined in terms of
themachine parameters: σ := 1− M2

sr/(Ls Lr ); γ := Rs L2r + Rr M2
sr/(Lsσ L2r ). The following

complex variable notation is used: is = isα + j isβ ; φr = φrα + jφrβ = ψr e jθψ ; and vs = vsα +
jvsβ , where j = √−1 is the imaginary unit, and z is the conjugate of z.

5.2.1 The Flux Simulator

Of all variables in the induction motor model, the rotor flux variable, φr, cannot be easily
measured. For this reason, an observer is usually devised for the flux dynamics given in
equation (5.2). In this case, the observer is simply given by a replica of the system itself (see
Verghese and Sanders 1988; Martin and Rouchon 2000; Chiasson 2005). If the observer is
proposed as

Lr
dφ̂r

dt
= − (Rr − j pLrωm) φ̂r + Rr Msris, (5.4)

the estimation error, defined as eφr := φr − φ̂r , satisfies

Lr
deφr

dt
= − (Rr − j pLrωm) eφr (5.5)

Consider the Lyapunov function candidate, V (eφr ) = 1
2 Lr |eφr |2. Then, along solutions of

equation (5.5), V̇ (eφr ) = −Rr |eφr |2 = −2 Rr
Lr

V (eφr ). Hence, the origin of the complex simula-
tion error space, eφr = 0, is a globally asymptotic exponential equilibrium point for equation
(5.5). The flux simulator variable, φ̂r , will be used, henceforth, in place of the actual flux
without further considerations. The stability theoretical issues of its presence in a stabilizing
feedback loop has been thoroughly analyzed in the existing literature (see Hinkkanen (2004)
and the references therein).
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5.2.2 Formulation of the Problem and Background Results

The compact model in complex variables (5.1), (5.2), and (5.3) may be expanded to be written
in the following form:

J
dωm

dt
= pMsr

Lr
Im

(
isψre− jθψ

) − Bωm − TL ,

d

dt
ψ2

r = −2 Rr

Lr
ψ2

r + 2 Rr Msr

Lr
Re

(
isψre

− jθψ
)
,

Lr
d

dt
θψ = pLrωm + 1

ψ2
r

Rr MsrIm
(
isψre

− jθψ
)
,

Lsσ
dis
dt

= Msr

L2r
(Rr − j pLrωm)ψre

jθψ − γ Lsσ is + vs.

(5.6)

The first two equations in (5.6) reveal an interesting indirect control decoupling property.
The mechanical part of the system, represented by the angular velocity equation, is ruled
by Im

(
isψr e− jθψ

) = Im
(
isφr

)
, while the electromagnetic part, represented by the squared

flux magnitude equation, is governed by Re
(
isψr e− jθψ

) = Re
(
isφr

)
. Therefore, viewing the

complex current is as auxiliary control inputs, both constitutive parts of the system can, in
principle, be controlled independently of each other. This representation also establishes that
the complex flux phase angle θψ is largely determined by the manner in which the angular
velocity is controlled via the stator currents.

5.2.3 Assumptions

• It is assumed that only the shaft’s angular position θm is measured. The angular velocity ωm

and the angular acceleration ω̇m are either online estimated by the GPI observer, or else,
they are obtained via the “dirty derivative” method.

• The gain parameters pMsr/J Lr and 1/σ Ls are assumed to be known. The viscous friction
coefficient B is assumed to be unknown.

• The load torque TL (t) is assumed to be, time varying but unknown. However, a finite number
of its time derivatives are assumed to be uniformly absolutely bounded almost everywhere.

The trajectory tracking problem will be formulated in terms of the angular velocity. The
disturbance observer, however, will be treated in terms of the angular position second order
dynamics. This allows an alternative estimation of the angular velocity.

5.2.4 Problem Formulation

Consider the induction motor dynamics equations (5.1), (5.2), and (5.3). Given a desired
constant reference level for the square of the rotor flux magnitude, ψ∗

r
2, and given a smooth

reference trajectory, ω∗
m(t), for the angular velocity of the motor shaft, find a feedback con-

trol law for the voltage vs such that ωm is forced to track the given reference trajectory,
ω∗

m(t), while the square of the rotor flux magnitude ψ2
r is set to stabilize itself around the
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desired constant value, ψ∗
r
2. These objectives are to be achieved regardless of the presence

of unknown but bounded perturbation inputs represented by (1) the load input torque, TL(t),
(2) unmodeled torques due to friction terms in the rotor shaft dynamics, and (3) the effects of all
additive, flux- and current-dependent, nonlinear terms acting on the (complex) stator current
dynamics.

5.2.5 Control Strategy

The proposed control scheme consists of a two-stage feedback controller design led by the
ADRC methodology. The first design stage controls the angular velocity of the motor shaft to
track the reference signal ω∗

m(t) by means of the stator currents is taken as auxiliary control
inputs. As a simultaneous, decoupled objective, it is desired to have the square of the flux
magnitude ψ2

r converging towards a given constant value ψ∗
r
2.

As a result of the first design stage, a set of desirable current trajectories is synthesized. The
obtained currents are thus taken as output references for the second design stage where the
control inputs are now represented by the stator voltages. The second stage designs a feedback
controller to force, in a robust fashion, the actual currents to track the current references
obtained in the first stage.

Outer Loop Controller Design Stage

Consider the perturbed rotor dynamics in equation (5.1). Taking the complex stator current,
is , as a control input vector, the following partial complex feedback controller is obtained:

is = φr

ψ2
r

[
ψ∗

r
2

Msr
+ jvaux

]
, (5.7)

withψ∗
r being a constant desired fluxmagnitude reference value and vaux is a yet to be specified

auxiliary control input that does not affect the flux magnitude dynamics.
Indeed, in closed loop, the square modulus of the rotor flux satisfies

dψ2
r

dt
= −2 Rr

Lr

[
ψ2

r − ψ∗
r
2] ,

and then, clearly, ψr tends to ψ∗
r in an exponential asymptotic manner. Notice, that the partial

feedback equation (5.7) requires no cancelations of exogenous or endogenous disturbances.
On the other hand, the partially controlled angular position dynamics satisfies the following

perturbed set of differential equations:

dθm

dt
= ωm,

dωm

dt
= pMsr

J Lr
vaux − Bωm − TL(t)

J
. (5.8)
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Considerations are shifted towards the following global ultra-model (see the Appendix for
definitions and properties):

dθm

dt
= ωm,

dωm

dt
= pMsr

J Lr
vaux + ξ1(t). (5.9)

where ξ1(t) = −Bωm(t)− TL(t)/J is regarded as a pure time-varying unknown but uniformly
absolutely bounded signal with a finite number of equally unknown but bounded time deriva-
tives, directly related to the load torque and of the effects of the possibly unknown viscous
friction term. Note that ξ1(t) is observable according to the differential algebraic definition
in Diop and Fliess (1991). The control input vaux is the auxiliary control input appearing in
equation (5.7), specified by the next theorem.

Theorem 5.2.1 Consider the global ultra-model in equation (5.9) describing the partially
closed-loop angular position dynamics in equation (5.8). Assume that ξ1(t) is uniformly
absolutely bounded with uniformly absolutely bounded time derivatives up to some given
finite order p. The observer-based control input vaux,

vaux = J Lr

pMsr

[
ω̇∗

m(t)− kωm

(
ω̂m − ω∗

m(t)
) − ξ̂1(t)

]
, (5.10)

forces the angular velocity tracking error to evolve in a small vicinity of zero in spite of the
effects of the lumped disturbance input ξ1(t).

The variables ξ̂1 and ω̂m, are given, respectively, by ρ1θm and ω̂m, which, in turn, are
generated via the following linear GPI observer:

d θ̂m

dt
= ω̂m + λ(p+1)1(θm − θ̂m),

dω̂m

dt
= pMsr

J Lr
vaux + ρ1θm + λp1(θm − θ̂m),

ρ̇1θm = ρ2θm + λ(p−1)1(θm − θ̂m),

...

ρ̇pθm = λ01(θm − θ̂m),

with appropriately chosen gain parameters λ(p+1)1, . . . , λ01, and kωm > 0, so that the dominant
characteristic polynomials, respectively, governing the tracking error eωm = ω − ω∗(t) and
the estimation errors ẽθm = θm − θ̂m, ẽωm = ˙̃eθm + λ(p+1)1ẽθm

pc,ω(s) = s + kωm ,

po,θ (s) = s p+2 + λ(p+1)1s p+1 + · · · + λ11s + λ01, (5.11)
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are Hurwitz polynomials with roots sufficiently far into the left half of the complex plane. While
the position estimation error characteristic polynomial is Hurwitz, the angular velocity esti-
mation error remains bounded. The further away from the imaginary axis the location of such
roots, the smaller the neighborhoods uniformly bounding, respectively, in the reconstruction
error phase space and the tracking error phase space, the angular position estimation error
phase vector χ = (ẽθm , ˙̃eθm , . . . , ẽ(p+1)

θm
)T and the tracking error eωm .

Proof: The angular position estimation error, defined as ẽθm := θm − θ̂m, satisfies the follow-
ing perturbed injected dynamics:

ẽ(p+2)
θm

+ λ(p+1)1ẽ
(p+1)
θm

+ · · · + λ11 ˙̃eθm + λ01ẽθm = ξ
(p)
1 (t).

By an appropriate choice of the coefficients, λi; i = 0, 1, . . . , p + 1; the characteristic poly-
nomial corresponding to the linear part of the above dynamics can be selected to be a Hurwitz
polynomial. The estimation error is assured to be ultimately uniformly bounded by a small
disk around the origin of the estimation error state space as the observer gains are set to
produce eigenvalues sufficiently far at the left half of the complex plane (for more details, see
the Appendix at the end of this chapter.).
The first order tracking error dynamics for the angular velocity, ωm, is given by

ėωm + kωm eωm = ξ1(t)− ξ̂1(t)− kωm(ωm − ω̂m). (5.12)

According to the dynamics induced by the GPI observer, the estimation errors ξ1(t)−
ξ̂1(t) and ωm − ω̂m = ˙̃eθm + λp+1ẽθm converge towards an arbitrarily small vicinity of zero
and, consequently, the right-hand side term of equation (5.12) remains uniformly ultimately
bounded. The tracking error, eωm = ωm − ω∗

m(t), uniformly absolutely converges towards a
small as desired vicinity of zero for an appropriately chosen gain, kωm , so that the corresponding
root of the dominant characteristic polynomial in the complex variable s, pc,ωm(s) = s + kωm ,
is located, on the real line, sufficiently far into the left half of the complex plane.

Inner Loop Controller Design Stage

Consider now the perturbed stator currents dynamics

dis
dt

= Msr

σ LsLr

(
Rr

Lr
− j pωm

)
φr − γ is + 1

σ Ls
vs.

Let i∗
s (t) be the desired stator current vector reference trajectory as represented by equation

(5.7).
The stator current tracking error, eis := is − i∗

s (t), satisfies

deis

dt
= 1

σ Ls
vs + ξ2(t), (5.13)
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with ξ2(t) given by

ξ2(t) = Msr

σ LsLr

(
Rr

Lr
− j pωm

)
φr − γ is − di∗s (t)

dt
.

It is assumed that ξ2(t) and a sufficiently large number, q, of its time derivatives are
uniformly absolutely bounded. In a more general context this condition has been found to be,
both, a necessary and sufficient condition for the existence of solutions of nonlinear differential
equations with state-dependent perturbation inputs (see Gliklikh 2006).

Theorem 5.2.2 The observer-based controller specified by

vs = −σ Ls
[
kis eis + ξ̂2(t)

]
,

with ξ̂2(t), generated by the GPI observer,

dêis

dt
= 1

σ Ls
vs + ϑ1eI + λq2(eis − êis ),

ϑ̇1eI = ϑ2eI + λ(q−1)2(eis − êis),
...

ϑ̇(q−1)eI = ϑqeI + λ12(eis − êis ),

ϑ̇qeI = λ02(eis − êis ),

ξ̂2 = ϑ1eI ,

(5.14)

globally asymptotically stabilizes the tracking error eis to a small as desired vicinity of zero,
while ξ̂2(t) arbitrarily closely reconstructs the unknown (state-dependent) disturbance ξ2(t),
provided the constant coefficients, {λq2, λ(q−1)2, . . . , λ02} and kis are chosen so that the poly-
nomials in the complex variables s,

pξ (s) = sq+1 + λq2s
q + λ(q−1)2sq−1 + · · · + λ12s + λ02,

pis (s) = s + kis ,

are Hurwitz polynomials with roots located sufficiently far from the imaginary axis in the
complex plane.

Proof: The proof is similar to that of the previous theorem.

A scheme of the proposed strategy is depicted in Figure 5.1.
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Figure 5.1 Control scheme. GPI, generalized proportional integral

5.2.6 Experimental Results

An induction motor coupled with a DC motor generating a time-varying load torque input,
was used for the experimental tests (see Figure 5.2). The induction motor, manufactured by
WEG, has the following nominal parameters: rated power, 0.75 HP, J = 2× 10−3 kg m2,
p = 1, Msr = 0.2374 H, Lr = 0.2505H, Ls = 0.2505 H, Rs = 4.32�, and Rr = 2.8807�.
The position measurement was carried out by a 10 000 PPR optical encoder, directly coupled
to the rotor shaft, and the induction motor current signals and the armature current of the
load DC motor were measured by Hall Effect current sensors (LEM LA-55P). The torque
load was measured indirectly through the DC motor current, given that TL (t) = kmiL , with
km = 1.4285 Nm/A. The reference value for the flux magnitude was chosen so as to maximize
the induced torque when subject to nominal currents. It was set ψ∗

r = Minom/
√
2 = 0.5036

Wb, where inom = 3A.
The GPI observer-based controller was synthesized on a MATLAB - xPC Target environ-

ment using a sampling period of 0.125 ms. The communication between the plant and the
controller was performed by two data acquisition devices. Analog data was channeled through
a National Instruments PCI-6025E data acquisition card. The digital outputs and the position
encoder readings were gathered in a National Instruments PCI-6602 data acquisition card.

Figure 5.2 Experimental setup



State Observers for Active Disturbance Rejection in Induction Motor Control 87

Host

D
A

Q
 IN

 P
C

I-
60

25
Signal

conditioning
u3

u2

u1

i1

i2

P
C

I-
66

02

PWM
inverter

6 PWM
generation

TA
R

G
E

T

Induction
motor

θ

Torque
load

u1
u2
u3

u1

i1
u2

i2
u3

Figure 5.3 Block diagram of the control system. PWM, pulse-width modulation

The voltage and current signals were low pass filtered with a cut-off frequency of 1.0 kHz. A
schematic diagram of the control system is depicted in Figure 5.3.
The angular velocity reference trajectory to be tracked ω∗(t) was set to be a rest-to-rest

smooth trajectory rising from 0 to 15 s−1, in 5 s. The characteristic polynomial associated with
the velocity control loop was set to be s + kωm , with kωm = 85 (the associated approximation
coefficient of Theorem5.2.1, p, was 5). The characteristic polynomial associated to the current-
control loopwas set to be s + kis , with kis = 400. The characteristic polynomial associatedwith
the velocity-control loop disturbance observer was specified by (s2 + 2ζo,ωωo,ωs + ω2o,ω)

3(s +
po,ω), with ζo,ω = 4.5, ωo,ω = 4, and po,ω = 4. The characteristic polynomial associated with
the current-control loop disturbance observer was given by (s2 + 2ζo,scωo,scs + ω2o,sc)

3(s +
po,sc), with ζo,sc = 6.2, ωo,sc = 80, and po,sc = 80 (the approximation parameter q given in
Theorem 5.2.2 was also 5).
Figure 5.4 shows an accurate velocity tracking with respect to the desired trajectory. Figure

5.5 shows that the flux magnitude is regulated within an absolute error below 2× 10−4 Wb.
Figure 5.6 depicts the actual current variables perfectly tracking the desired reference currents
in both phases. Finally, to illustrate the robustness of the strategy, a load torque was applied
via a DC motor, in generator configuration, whose armature current tracked a state variable of
a Chua’s circuit. The load is switched in at the instant t = 5 s. The disturbance estimation, as
well as the applied load torque are shown in Figure 5.7.
We carried out experiments under the same trajectory tracking task using two other effective

approaches. One tried method consisted in the passivity-based control, reported in Karagiannis
et al. (2009), where a load torque estimator is proposed to solve the problem of controlling
the velocity of an induction motor in the presence of unknown mechanical torque inputs.
The proposed parameters for this scheme were set as follows: k = 10, c = 0.4, δ = 0.001,
ε = 2273, and γ = 30. The other methods used for comparisons included the classic
observer-based PI control scheme in a field-oriented control scheme, obtained from Bodson
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Figure 5.4 Velocity trajectory tracking

et al. (1995). The controller parameters were determined as follows: the closed-loop charac-
teristic polynomial for the velocity was given by s2 + 2ζ1ω1s + ω21, with ζ1 = 1 and ω1 = 50.
The closed-loop characteristic polynomial for the flux regulation was s2 + 2ζ2ω2s + ω22, with
ζ2 = 1 and ω2 = 8. Finally, the closed-loop characteristic polynomial for the current variables
was given by s2 + 2ζ3ω3s + ω23, with ζ3 = 1 and ω3 = 45.
Figure 5.8 shows that the three control strategies achieve efficient angular velocity tracking

results. However, in the flux regulation task, the passivity-based approach did not achieve
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Figure 5.5 Flux magnitude regulation and control input
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Figure 5.6 Current tracking and disturbance electric variables

an accurate regulation, while the observer-based PI controller and the GPI observer-based
control scheme exhibited good results. Finally, since the observer-based PI control scheme is
not capable of estimating the disturbance input, the disturbance estimations were reported for
the passivity-based scheme and the GPI scheme (Figure 5.9). Both methodologies achieved
good performances in spite of abrupt load variations.
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Figure 5.7 Lumped mechanical disturbances estimation
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5.3 Field-Oriented ADR Armature Voltage Control

The classical indirect control decoupling property, exploited in the preceding paragraphs for
the two-stage controller design, is seen to be inherited in the form of a direct control decoupling
property, by the field-oriented voltage-control approach here explored. This direct approach
has been used in feedback linearization control schemes for the induction motor in Kim et al.
(1990) and Bodson et al. (1994).
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5.3.1 Control Decoupling Property of the Induction Motor System

It is not difficult to see that the variables ωm and ψ2
r are, both, relative degree 2 outputs with

respect to the complex control input vs and that, moreover, these variables satisfy the following
set of real, nonlinear, second order controlled differential equations:

d2ωm

dt2
= pMsr

J Lr Lsσ
Im

(
vsφr

) + ξω

(
ωm, ω̇m, ψ2

r ,
dψ2

r

dt
, TL , ṪL

)
,

d2

dt2
ψ2

r = 2Rr Msr

Lr Lsσ
Re

(
vsφr

) + ξψ

(
ωm, ω̇m, ψ2

r ,
dψ2

r

dt
, TL

)
,

(5.15)

where

ξω(·) = pMsr

Lr

[(
Rr

Lr
− σ

)
Im

(
isφr

) − pωmRe
(
isφr

) − p

Ls Lrσ
ωmψ2

r

]
− Bω̇m − ṪL,

ξψ (·) =
(
4R2r
L2r

+ 2R2r M2
sr

Lsσ L3r

)
ψ2

r +
(−6R2r Msr

L2r
− 2Rrγ Msr

Lr

)
Re

(
isφr

)
+

(
2Rr Msr p

Lr

)
ωmIm

(
isφr

) +
(
2R2r M2

sr

L2r

)
i2s .

(5.16)

As it can be easily seen, the nature of the nonlinear terms ξω(·) and ξψ (·) is quite involved.
As it was shown in the last section, the key observation in the GPI observer-based control
approach is that such time-varying perturbation inputs can be approximately estimated (and
then canceled at the controller stage) using linear high-gain observers equipped with sufficient
output estimation error iterated integral injections. This procedure is, incidentally, in the
very same spirit of total ADR (see Gao 2006; Tian and Gao 2009) and nonlinear model-
free control (see Fliess et al. 2008). The armature input voltage vs can be directly used to
robustly control, in a naturally decoupled fashion, both the angular velocity of the motor
shaft and the squared magnitude of the flux via extended, second order, controlled equations.
For this, we propose to consider the observer construction problem in the context of the the
angular velocity dynamics and the squared flux magnitude extended dynamics viewed as
simplified global ultra-models with purely time-varying additive disturbance inputs. Denote
by ξω(t) the quantity ξω(ωm(t), ω̇m(t), ψr (t),

dψr (t)2

dt , TL (t), ṪL (t)) and by ξψ (t), the function

ξψ (ωm(t), ω̇m(t), ψr (t),
dψr (t)2

dt , TL (t))

d2ωm

dt2
= pMsr

J Lr Lsσ
Im

(
vsφr

) + ξω(t)

d2

dt2
ψ2

r = 2Rr Msr

Lr Lsσ
Re

(
vsφr

) + ξψ (t) (5.17)
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The above fourth order dynamics is complemented with the following perturbed dynamics
for the complex flux argument, θψ :

d

dt
θψ = pωm + Rr

pψ2
r

(J ω̇m + Bωm + TL (t)) . (5.18)

This last equation will play the role of the zero dynamics corresponding to the controlled fourth
order system described above. Note that ω̇m is just a state of the extended angular velocity
dynamics written in equation (5.17).

5.3.2 Problem Formulation

It is desired to have the rotor angular velocity ωm track, even if in an arbitrarily closed manner,
a given, desired angular velocity reference trajectory ω∗(t), while the squared magnitude of
the complex flux is independently controlled, as closely as desired, towards a given constant
reference value, ψ∗

r
2. Besides, the tracking process must be carried out regardless of the

unknown time-varying load input torque TL (t), the presence of both viscous and Coulomb
friction terms in the rotor dynamics, and the rather complex nonlinearities represented by

the functions ξω(ωm, ω̇m, ψ2
r ,

dψ2
r

dt , TL (t),
dTL (t)

dt ) and ξψ (ωm, ω̇m, ψ2
r ,

dψ2
r

dt , TL (t)), respectively
affecting the extended second order dynamics of the angular velocity and of the squared
magnitude of the flux.

5.3.3 Control Strategy

Suppose, for a moment, that the complex flux, φr, is perfectly known. Then, it is possible to
set, with the help of the auxiliary complex control input variable: v = va + jvb, the following
input voltage field-oriented controller:

vs =
(

φr

ψ2
r

)
v, (5.19)

yielding the following set of control-decoupled linear disturbed systems,

d2ωm

dt2
=

(
pMsr

J Lr Lsσ

)
vb + ξω(t),

d2

dt2
ψ2

r =
(
2Rr Msr

Lr Lsσ

)
va + ξψ (t). (5.20)

Naturally, the lack of measurability of φr prompts us to rely on the asymptotic complex flux
estimate, φ̂r. For a discussion on how the “nonlinear separation principle” has been traditionally
used in induction motor control see pp. 359–360 in Ortega et al. (1998), and for its justification
in feedback linearization, seeMaggiore and Passino (2005). For a justification in rather general
terms, see Hinkkanen (2004), and the many references therein.
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For the theorem below, let the set of parameters, {κψ

1 , κ
ψ

0 }, {κω
1 , κω

0 }, be such that the
polynomials in the complex variable s, given by

pψ,c(s) = s2 + κ
ψ

1 s + κ
ψ

0 , pω,c(s) = s2 + κω
1 s + κω

0 , (5.21)

are Hurwitz polynomials. Similarly, let the set of parameters, for some given integers n and
m1, {γ ψ

m+1, γ
ψ
m , . . . , γ

ψ

0 }, {πω
n+1, π

ω
n , . . . , πω

0 }, be such that the polynomials in the complex
variable s, given by

pψ,o(s) = sm+2 + γ
ψ

m+1s
m+1 + γ ψ

m sm + · · · + γ
ψ

0 ,

pω,o(s) = sn+2 + πω
n+1s

n+1 + πω
n sn + · · · + πω

0 , (5.22)

are alsoHurwitz polynomials, with roots located sufficiently far into the left half of the complex
plane. Furthermore, let ξ (m)ψ (t) and ξ (n)ω (t), be functions of time uniformly absolutely bounded
by finite constants.

Theorem 5.3.1 The armature voltage field-oriented controller,

vs = vsα + jvsβ =
(

φ̂r

ψ̂r
2

)
v, v = va + jvb,

va = − Lr Lsσ

2Rr Msr

[
ξ̂ψ + κ

ψ

1

(̂
dψ2

r

dt

)
+ κ

ψ

0

(
ψ̂r

2 − (ψ∗
r )
2
)]

,

vb = − J Lr Lsσ

pMsr

[
ξ̂ω − ω̈∗(t)+ κω

1 (̂̇ωm − ω̇∗(t))+ κω
0

(
ωm − ω∗(t)

) ]
, (5.23)

with ξ̂ψ and
(̂

dψ2
r

dt

)
given, respectively, by the variables ϑ

ψ

1 and ζ
ψ

2 generated by the following

linear high-gain GPI observer:

ζ̇
ψ

1 = ζ
ψ

2 + γ
ψ

m+1(ψ̂r
2 − ζ

ψ

1 ),

ζ̇
ψ

2 = ϑ
ψ

1 +
(
2Rr Msr

Lr Lsσ

)
va + γ ψ

m (ψ̂r
2 − ζ

ψ

1 ),

ϑ̇
ψ

1 = ϑ
ψ

2 + γ
ψ

m−1(ψ̂r
2 − ζ

ψ

1 ),

ϑ̇
ψ

2 = ϑ
ψ

3 + γ
ψ

m−2(ψ̂r
2 − ζ

ψ

1 ),

...

ϑ̇
ψ

m−1 = ϑψ
m + γ

ψ

1 (ψ̂r
2 − ζ

ψ

1 ),

ϑ̇ψ
m = γ

ψ

0 (ψ̂r
2 − ζ

ψ

1 ), (5.24)

1The integers n and m are, in principle, sufficiently large, indicating the number of iterated output estimation error
integral injections needed to attenuate the effect of unmodeled plant nonlinearities in the GPI observation error
dynamics. In practice, however, they are small and chosen within the range of 3–5. We recall here a quote by J. von
Neumann: “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk!”
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and with ξ̂ω and ̂̇ωm given, respectively, by the variables ϑω
1 and ζω

2 , generated by the following
linear high-gain GPI observer:

ζ̇ ω
1 = ζω

2 + πω
n+1(ωm − ζω

1 ),

ζ̇ ω
2 = ϑω

1 +
(

pMsr

J Lr Lsσ

)
vb + πωm

n (ωm − ζω
1 ),

ϑ̇ω
1 = ϑω

2 + πω
n−1(ωm − ζω

1 ),

ϑ̇ω
2 = ϑω

3 + πω
n−2(ωm − ζω

1 ),

...

ϑ̇ω
n−1 = ϑω

n + πω
1 (ωm − ζω

1 ),

ϑ̇ω
n = πω

0 (ωm − ζω
1 ), (5.25)

globally ultimately drives the angular velocity ωm(t) and the squared magnitude of the
flux, ψ2

r , towards vicinities of the reference trajectories ω∗(t) and (ψr)2, which can be uni-
formly made as small as desired, regardless of the nonlinearities present in the functions,
ξψ (ωm, φ, is, φr , dψ2

r /dt) and, ξω(ωm, ω̇m, φr , is, TL , ṪL ), defined above.

Proof: Define the tracking error: eω := ωm − ω∗
m(t), and the stabilization error: eψ := ψ2

r −
(ψ∗

r )
2. Likewise, let ẽω := ωm − ζω

1 and ẽψ := ψ2
r − ζ

ψ

1 denote, respectively, the estimation
errors associated with the angular velocity and the squared flux magnitude. The estimation
errors are easily seen to satisfy the following linear perturbed equations:

ẽ(n+2)
ω + γ ω

n+1ẽ
(n+1)
ω + · · · + γ ω

0 ẽω = ξ (n)ω (t),

ẽ(m+2)
ψ + π

ψ

m+1ẽ
(m+1)
ψ + · · · + π

ψ

0 ẽψ = ξ
(m)
ψ (t). (5.26)

In the Appendix, it is proven in general terms that under all the assumptions specified
above, the GPI observer estimation error trajectories, and those of its various time derivatives,
converge towards arbitrarily small neighborhoods of the estimation error phase space where
they remain ultimately bounded.As for the control part, the closed-loop dynamics of the second
order tracking error dynamics for the angular velocity, ωm , and the closed-loop dynamics of
the squared flux magnitude, ψr

2 (given that ψ̂r → ψr , exponentially), are given by

ëω + κω
1 ėω + κω

0 eω = ξω(t)− ξ̂ω(t)+ κω
1
˙̃eω,

ëψ + κ
ψ

1 ėψ + κ
ψ

0 eψ = ξψ (t)− ξ̂ψ (t)+ κ
ψ

1
˙̃eψ. (5.27)

The convergence of ξ̂ω(t) towards an arbitrarily small vicinity of ξω(t) and that of ˙̃eω towards
a small vicinity of zero establishes that the tracking errors eω and ėω ultimately absolutely
converge towards a small as desired vicinity of the origin for gains, κω

1 and κω
0 , appropriately

chosen so that the roots of the dominant characteristic polynomial in the complex variable s,
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pc,ω(s) = s2 + κω
1 s + κω

0 are located sufficiently far into the left half of the complex plane.
A corresponding statement can be made for ξ̂ψ (t) and ˙̃eψ with the same implications on eψ

and ėψ .
The “steady state” of the load torque perturbed complex flux argument dynamics, corre-

sponding to the previously defined controller, is described by

d

dt
θψ = pω∗

m(t)+
Rr

p(ψ∗
r )
2

(
J ω̇∗

m(t)+ Bω∗
m(t)+ TL (t)

)
.

Instability of the complex flux argument θψ is of no concern whatsoever, much as it is of no
concern the “instability” of the unbounded uniformly growing angular position of the rotor,
for any ultimately constant angular velocity reference trajectory. Moreover, it has been seen
that θψ has absolutely no influence on the closed-loop dynamics of ωm and ψ2

r .

5.3.4 Experimental Results

Experimental tests were carried out to illustrate the effectiveness of the proposed control
scheme in an angular velocity tracking task, using the same test bed as used in the two-
stage controller design case. For the control scheme of Section 5.3, the angular velocity was
estimated through the discrete measurement of the position, by taking the filtered difference
between consecutive encoder records, where the filter proposed was a first order low pass
filter with cut frequency of 67 Hz. The angular velocity output reference trajectory ω∗(t)
was defined as a series of ramps, which takes values of 0 to 35, 35 to −5, −5 to 15, 15 to
−5, and −5 to 20 rad− s−1, during time intervals of 2.0 s. The characteristic polynomial
associated with the velocity control loop was set to be of the form: s2 + κω

1 s + κω
0 , with

κω
1 = 208 and κω

0 = 6400. The characteristic polynomial for the flux control loop was set to
be of a similar form, with κ

ψ

1 = 20 and κ
ψ

0 = 100. The characteristic polynomial associated
with the angular velocity control loop disturbance observer (setting p = 5) was chosen of the
form: (s2 + 2ζo,ωωo,ωs + ω2o,ω)

3(s + po,ω), with ζo,ω = 11, ωo,ω = 60, and po,ω = 60, while
the characteristic polynomial associatedwith the flux control loop disturbance observer (setting
m = 5) was set to be: (s2 + 2ζψ,ωωψ,ωs + ω2ψ,ω)

3(s + pψ,ω), with ζψ,ω = 1, ωψ,ω = 200, and
pψ,ω = 200.
Figure 5.10 depicts a rather accurate angular velocity tracking of the desired reference

trajectory. Figure 5.11 depicts the remarkable quality of the flux magnitude stabilization.
In Figure 5.12, the armature control input voltage and armature currents are shown in the
reference frame: α, β. The chaotic nature of the DC motor generated mechanical load torque
is depicted in Figure 5.13. Figure 5.14 shows the disturbance estimations, associated with the
flux and velocity control loops. The chaotic load torquewas synthesized using the evolution of a
Chua’s circuit state variable trajectory acting as a reference signal for the armature current in the
DC motor.
The performance of our proposed control scheme was compared with other two armature

voltage field-oriented control strategies, differing only in the linear part of the design while
excluding the GPI observer. A PD controller and a PID control scheme with well-tuned
gains were chosen for the comparison. The experimental comparison results are depicted
in Figures 5.15, 5.16, 5.17, and 5.18, where the GPI observer significantly improves the
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performance of the single PD control loop (the control gainswere even larger than the ones used
in the GPI observer-based control). The PD control scheme exhibits poor tracking results. On
the other hand, the PID controller shows a quite satisfactory performance in, both, the velocity
and flux control. However, its behavior in the presence of the applied torque input is slightly
affected by the time-varying disturbance. The proposedGPI observer-based controller achieved
the most accurate results in steady state. In Figure 5.18, the power consumption analysis is
shown for a mechanical torque generation Pm . In this case, even though all strategies had a
similar power consumption, the GPI control exhibited the lowest results.

5.A Appendix

5.A.1 Generalities on Ultra-Models and Observer-Based Active
Disturbance Rejection Control

Consider the following problem: it is desired to asymptotically stabilize to the origin the set
of phase variables of the scalar, nth order, nonlinear controlled system

y(n) = φ(t, y, ẏ, . . . , y(n−1))+ μ(t, y)u, (5.A.1)

on the basis of knowledge of the output function, y(t), alone.

5.A.2 Assumptions

• It is assumed that for every given set of initial conditions:Y0 = {y0, ẏ0, . . . , y(n−1)
0 }, specified

at time t = 0, and any given smooth bounded scalar control input function, u(t), a bounded
solution, y(t), exists for equation (5.A.1).
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• Assume that the scalar function φ(t, y, ẏ, . . . , y(n−1)) is completely unknown while the
control input gain function, μ(t, y(t)), is perfectly known. Notice that for a given
u(t), the solution y(t) of the above differential equation trivially satisfies: y(n)(t) =
φ(t, y(t), ẏ(t), . . . , y(n−1)(t))+ μ(t, y(t))u(t).

• It is assumed, based on the last fact, that as a time function, the first time derivatives
φ( j)(t, y, ẏ, . . . , y(n−1)), up to a given finite order m, are all uniformly absolutely bounded.
In other words, there exists constants K j such that,2

sup
t

|φ( j)(t, y(t), ẏ(t), . . . , y(n−1)(t))| ≤ K j , j = 0, 1, 2, . . . , m. (5.A.2)

• The scalar control input gain μ(t, y(t)) is bounded and uniformly absolutely bounded away
from zero, that is, there exists a constant M > 0, such that inft |μ(t, y(t))| ≥ M

Definition A.2.1 The scalar perturbed system

z(n) = μ(t, z)u + ξ (t), (5.A.3)

with initial conditions {z0, ż0, . . . , z(n−1)
0 } = Y0, is a global ultra-model of equation (5.A.1), if

for every u and for all t ≥ 0

ξ (t) = φ(t, y(t), ẏ(t), . . . , y(n−1)(t)). (5.A.4)

Definition A.2.2 Two systems: y(n) = A(t, y, ẏ, . . . , y(n−1)) and z(n) = B(t, z, ż, . . . , z(n−1))
with identical corresponding sets of initial conditions, Y0 and Z0, are trajectory equivalent if
y(t) = z(t) for all t ≥ 0.

Theorem A.2.3 The system (A.3), with initial conditions: Z0 = Y0, and satisfying equation
(A.4), is trajectory equivalent to the system (A.1).

Proof: The error, e(t) = y(t)− z(t), clearly satisfies

e(n)(t) = [μ(t, e(t)+ z(t))− μ(t, z(t))] u(t),

with e0 = ė0 = · · · = e(n−1)
0 = 0. It follows that e(n)0 = e(n+1)

0 = · · · = e(n+ j)
0 = 0 for all j .

Hence, e(t) = 0 for all t . The systems are trajectory equivalent.

2This assumption cannot be verified a priori when φ(·) is completely unknown. However, in cases where the nonlin-
earity is known except for some of its parameters, as it is the case of our motor system, its validity can be assessed with
some work. As pointed out earlier, these conditions constitute a necessary and sufficient condition for the existence
of solutions of the perturbed system for any given smooth and bounded control input u (see Gliklikh, 2006)
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The systems (5.A.1), (A.3), and (5.A.4), are identical in the precise sense that their trajec-
tories are the same, over any time interval, for a sheared control input function and with the
same initial conditions. Consequently, the distinction between z and y becomes irrelevant.
Any pertinent consideration on the system (5.A.1) may be examined on the linear trajectory
equivalent system (5.A.3), viewed now without any ambiguity as

y(n) = μ(t, y)u + ξ (t), (5.A.5)

which is devoid of the phase variables-dependent nonlinear structure. In practise, the time-
valued nonlinearities, lumped in ξ (t), constitutes an unknown term, thus acting as a proper
disturbance to the system that needs to be estimated for ADRC.

5.A.3 Observing the uncertain System through the Ultra-Model

Setting y1 = y, y2 = ẏ, . . . , yn = y(n−1), a state space model for such an uncertain system is
given by

ẏ j = yj+1, j = 1, . . . , n − 1,
ẏn = φ(t, y1, y2, . . . , yn)+ μ(t, y1)u. (5.A.6)

Propose the following observer for the phase variables, {y1, y2, . . . , yn}, associated with y,
characterized by the states ŷ1, . . . , ŷn , and complemented bym output estimation error iterated
integral injections, characterized by the variable, ζ1. We have

˙̂y j = ŷj+1 + λn+m−j(y1 − ŷ1), j = 1, . . . , n − 1,
˙̂yn = μ(t, y1)u + ζ1 + λm(y1 − ŷ1),

ζ̇i = ζi+1 + λm−i(y1 − ŷ1), i = 1, . . . , m − 1,
ζ̇m = λ0(y1 − ŷ1). (5.A.7)

Let the estimation error, ẽy , in reference to the ultra-model system, be defined as ẽy = ẽ1 :=
y1 − ŷ1 = y − ŷ1 with ẽ2 = y2 − ŷ2, etc.,

˙̃ej = ẽj+1 − λn+m−jẽ1, j = 1, . . . , n − 1,
˙̃en = ξ (t)− ζ1 − λmẽ1,

ζ̇i = ζi+1 + λm−iẽ1, i = 1, . . . , m − 1,
ζ̇m = λ0ẽ1. (5.A.8)

It is not difficult to see that the estimation error, ẽy = ẽ1, satisfies, after elimination of all
variables ζ , the following n + mth order perturbed linear differential equation:

ẽ(n+m)
y + λn+m−1ẽ(n+m−1)

y + · · · + λ1 ˙̃ey + λ0ẽy = ξ (m)(t). (5.A.9)
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Clearly, if ξ (m)(t) is uniformly absolutely bounded, then choosing the gain coefficients, λ j ,
j = 0, 1, . . . , n + m − 1, so that the characteristic polynomial in the complex variable s,

po(s) = sn+m + λn+m−1sn+m−1 + · · · + λ1s + λ0, (5.A.10)

exhibits all its roots sufficiently far from the imaginary axis, in the left half of the complex
plane, then the trajectories for ey and for its time derivatives ultimately absolutely converge,
in an exponentially dominated manner, towards a small as desired vicinity of the origin
of the estimation error phase space, {ẽy, ˙̃ey, . . . , ẽ(n+m−1)

y }, where they remain ultimately
bounded. The further away the roots are located in the left half of the complex plane the
smaller the vicinity of ultimate boundedness around the origin of the estimation error phase
space. To prove this result we proceed as follows: let χ = (ẽ1, . . . , ẽn+m)T denote the phase
variables of equation (5.A.9). The perturbed linear system (5.A.9) is of the form χ̇ = Aχ +
bξ (m)(t), with A being a Hurwitz matrix written in companion form and b is a vector of
zeroes except for the last component being equal to 1. The Hurwitz character of A implies
that, given a positive definite matrix Q, there exists a positive definite matrix P , such that
−Q = AT P + P A. The largest (real negative) eigenvalue of −Q denoted by σmax(−Q) < 0
satisfies |σmax(−Q)| ≤ 2‖P‖|ρmax(A)| with |ρmax(A)| being the absolute value of the largest
negative real part of the eigenvalues of A. The Lyapunov function candidate, V (χ ) = 1

2χ
T Pχ ,

exhibits, along the solutions of the linear perturbed system, a time derivative of the form
V̇ (χ, t) = 1

2χ
T (AT P + P A)χ + bT Pχφ(m)(t). It follows, using the form of b, the uniform

bound on ξ (m)(t) and the just established matrix inequalities, that everywhere outside the
sphere: S = {χ ∈ Rn+m | ‖χ‖2 ≤ K 2/(|ρmax(A)|)2}, the time derivative V̇ (χ, t) is strictly
negative, while inside the sphere S its sign is undefined. Hence, all trajectories, x(t), starting
outside this sphere, defined in the estimation error phase space, converge towards its interior,
and all those trajectories starting inside S will never abandon it. The more negative the real
parts of all the eigenvalues of A, the larger (ρmax(A))2, and smaller the radius of the ultimate
bounding sphere S in the x space. From equation (5.A.8) it follows that

ζ1 = ξ (t)− λmẽ1 − ˙̃en. (5.A.11)

Hence, as ẽ1 and ẽn evolve towards the small bounding sphere in the estimation error phase
space, the trajectory of ζ1 tracks arbitrarily close the unknown function, ξ (t). This fact demon-
strates the self-updating character of the polynomial disturbance model, as an internal model in
the GPI observer. Clearly, ζi converges towards a vicinity of ξ (i−1)(t), i = 1, . . . , m. From the
definition of the estimation errors for y, and its time derivatives, it follows that ŷ j , j = 1, . . . , n,
reconstruct, in an arbitrarily close fashion, the time derivatives of y.

5.A.4 The Observer-Based Active Disturbance Rejection Controller

The stabilizing controller is given by

u = − 1

μ(t, y)

[
n−1∑
k=0

κk ŷk+1 + ζ1

]
, (5.A.12)
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with the set of coefficients, {κ0, . . . , κn−1}, chosen so that pc(s) = sn + κn−1sn−1 + · · · + κ0
exhibits all its roots in the left half of the complex plane C. The closed-loop output e =
y − 0 = y is governed by

e(n) + κn−1e(n−1) + · · · + κ0e = (ξ (t)− ζ1)+
n−1∑
k=1

κkẽ(k)y . (5.A.13)

Theorem A.4.1 The disturbance rejection output feedback controller in equation (A.12)
drives the trajectory of the controlled system output, y(t), towards a small as desired vicinity
of the origin of the output phase space, (y, ẏ, . . . , y(n−1)), provided the set of coefficients
{κ0, . . . , κn−1}, are chosen so that pc(s) = sn + κn−1sn−1 + · · · + κ0 is a Hurwitz polynomial
with roots sufficiently far from the imaginary axis in C.

Proof: According to the previous theorem, the term ξ (t)− ζ1 and the terms ẽ(k)y ,
k = 1, 2, . . . , n − 1, evolve toward a small as desired neighborhood of the origin. It fol-
lows that the right-hand side of the linear system (5.A.13) evolves, in an uniformly ultimately
bounded fashion, within a sufficiently small neighborhood of the origin of the output tracking
error phase space. Using the same arguments as in the proof of the previous theorem, it follows
that the error, e = y − 0, and its time derivatives, converge towards a small as desired vicinity
of the tracking error phase space coordinates: η = (e, ė, . . . , e(n−1)), provided the roots of
pc(s) are located sufficiently to the left of the imaginary axis in C.

Implementation of the GPI observer-based ADRC algorithm requires low pass filtering,
along with “clutching” of the high-gain observer output signals. Real life noises do not
preclude the application of high-gain observers, as it can be inferred from the experimental
results here presented. The integer m, depicting the order of approximation of the lumped
disturbance signal ξ (t), is typically chosen as m = 3 or, at most, m = 5 (see Sira-Ramı́rez
et al. (2010b) for experimental details on other types of systems).
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6.1 Introduction

This work is devoted to observer design for a class of uniformly observable systems with
sampled and delayed measurements. In the last decades, the design of nonlinear observers for
continuous systems with sampled measurements has received a great attention. This interest is
motivated bymany engineering applications, such as network control systems (NCSs) in which
the output is transmitted over a shared digital communication network, and is only available at
discrete-time instants. For linear systems, it is usually possible to design observers by using the
discrete-time model of the continuous-time system. This is not always possible for nonlinear
systems because the exact discrete-time model is generally not available. In this case, there
exist two main approaches for dealing with this problem. The first one is based on the design
of a discrete observer by using a consistent approximation of the exact discretized model.
This approach provides a semi-global practical stability of the observation error. More details
on this method can be founded in the work from Arcak and Nešić (2004) and its references.
The second one is based on a mixed continuous and discrete design. This approach has been
inspired by Jazwinski (1970) who introduced the continuous-discrete Kalman filter to solve a
filtering problem for stochastic continuous-discrete time systems. It consists of two steps. In
the first one (which is called the prediction step), the observer is a copy of the model system,

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
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whereas in the second step, the value of the state estimate is updated using the newly available
sampled measure. The exponential convergence of the observation error is then ensured under
some sufficient conditions on the sampling period through the stability analysis of impulsive
systems. Deza et al. (1992) use this approach to write a discrete-continuous version of the well-
known high-gain observer (Gauthier et al. 1992). Nadri and Hammouri (2003) have designed
observers for a MIMO class of state affine systems where the dynamical matrix depends on
the inputs when those inputs are regularly persistent. This work was extended to adaptive
observers by Ahmed-Ali et al. (2009). Astorga et al. (2002) used a similar method for a larger
class of systems and applied it to the observation of an emulsion copolymerization process. The
observation of a class of systems with output injection has been treated by Nadri et al. (2004)
and recently, Hammouri et al. (2006) developed a high-gain continuous-discrete observer by
using constant observation gains. Andrieu and Nadri (2010) extend the work from Zemouche
et al. (2008) to the discrete-time measurements case. Recently, a hybrid sampled-data observer
dedicated of a class of nonlinear systems has been presented by Karafyllis and Kravaris (2009).
This scheme is based on an inter-sample time predictor that estimates the output between two
sampling instants: the estimates remain continuous and only the predictor is re-initialized at
each sampling instant. This algorithm has been extended to some networked control systems by
Ahmed-Ali and Lamnabhi-Lagarrigue (2012) by using a Lyapunov Krasovskii approach. The
design of observers for linear detectable systems with sampled and delayed measurements
was also treated by Hespanha et al. (2007b) by using a descriptor system approach and a
Lyapunov Krasovskii functional. The authors have proposed a hybrid observer for a class of
linear systems and derive sufficient conditions based on linear matrix inequalities to guarantee
exponential convergence of the observation error. This idea has also been used by Raff et al.
(2008) and Van Assche et al. (2011) for some classes of nonlinear systems with nonuniformly
sampled measurements.
In this chapter, we present two classes of observers. The first one is an extension to delayed

measurements of the continuous-discrete observer developed by Nadri and Hammouri (2003).
The second one is based on the introduction of an estimator of the delayed output between two
updating instants. It can be viewed as an extension of the work by Ahmed-Ali et al. (2012) to
the sampled-data case by using the idea that consists the predicting of the output between two
sampling instants developed by Karafyllis and Kravaris (2009).
The chapter is structured as follows: first, two observer designs are presented, then the

application of those designs to the case of an inductionmotorwithout speed sensor is explained,
and eventually, some simulations results are given to illustrate this application.

6.2 Nomenclature

The following notationwill be used throughout this chapter.R denotes the field of real numbers,
R

+ the set of strictly positive real numbers and R
+
0 = R

+ ∪ {0}. Ip is the identity matrix of
dimension p × p and 0p represents the zero matrix of dimensions p × p. The transpose of a
matrix M will be noted M ′. The Euclidean norm of a vector a will be noted ‖a‖ and the L2
norm of a matrix A will be noted ‖A‖. The time dependency of the signals will be omitted for
signals taken at time t , that is, the system state x(t) will be written x and its derivative will be
written ẋ .
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6.3 Observer Design

6.3.1 Nonlinear System Model

In this chapter, two observer designs are presented to be applied to the case of anACmotor with
sampled measurements. Those designs can be applied to a larger class of nonlinear models
and are first presented within the framework of this class of systems. Then, their application
to the case of an AC motor is explained.
The value of the output of the system is known only at the sampling instants noted tk where

(tk)k∈N is an increasing sequence with limk→+∞ tk = +∞. It is assumed that an upper bound
Te is known for the size of the sampling intervals

Te ≥ tk+1 − tk, ∀k ∈ N. (6.1)

A general nonlinear system with sampled output can be written{
ẋ = f (x, u),

y(tk) = h(x(tk)).
(6.2)

The observer design presented in the sequel applies to the following class of uniformly
observable nonlinear systems: {

ẋ = Ax + φ(x, u),

y(tk) = Cx(tk),
(6.3)

with the following hypothesis:

H1: The state vector x ∈ R
n is composed of q subvectors, x1, . . . , xq , that is,

x = (
x ′
1 · · · x ′

q

)′
(6.4)

with ∀i = 1, . . . , q, xi ∈ R
p, with, obviously, n = pq.

H2: A ∈ R
n×n is a block diagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 Ip 0 · · · 0
...

. . . Ip
. . .

...
...

. . .
. . . 0

...
. . . Ip

0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6.5)
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H3: φ is a n × 1 matrix of mappings, block-triangular in x , that is,

φ(x, u) =

⎛⎜⎜⎝
φ1(x1, u)

φ2(x1, x2, u)
. . .

φq (x1, . . . , xq , u)

⎞⎟⎟⎠. (6.6)

H4: The functions φi are globally Lipschitz with respect to x , uniformly in u, that
is, ∃β > 0 such that ∀(xa, xb) ∈ R

n × R
n and ∀u ∈ R

p

∥∥φi (xa,1, . . . , xa,i , u)− φi (xb,1, . . . , xb,i , u)
∥∥ ≤ β

∥∥xi
a − xi

b

∥∥ , (6.7)

where xi
a and xi

b are the vectors (xa,1, . . . , xa,i )′ and (xb,1, . . . , xb,i )′,
respectively.

H5: C ∈ R
p×n with C = (

Ip 0p · · · 0p
)
.

6.3.2 Observer Design with a Time-Delay Approach

The first observer design we present handles the sample mechanism as a variable time-delay.
This observer is an extension to the multiple output case of the observer proposed by Van
Assche et al. (2011), based on the high-gain approach from Gauthier et al. (1992), to handle a
class of nonlinear systems with variable measurements delays, without imposing a bound on
the variation rate of the delay.
The samplingmechanism is transformed into a time-variable delay by defining the following

delay function:

τ (t) = t − tk, ∀t ∈ [tk, tk+1), (6.8)

with τ̇ = 1 in the intervals [tk, tk+1), such that at any time t ∈ [tk, tk+1), system (6.3) is
equivalent to {

ẋ = Ax + φ(x, u),

y(tk) = Cx(t − τ (t)).
(6.9)

The following theorem applies to any variable time delay system of the form (6.9). In the
sequel, it will be applied to the particular case where the delay is of the form (6.8) to model
the sampling mechanism.

Theorem 6.3.1 Consider the observer

˙̂x = Ax̂ + φ(x̂, u)− θ�−1S−1CT
[
Cx̂(t − τ )− y(t − τ )

]
, (6.10)

where θ is a positive constant satisfying θ > 1, S is a symmetric positive definite matrix
solution of the equation

S A + AT S − CT C = −S, (6.11)
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and � is the following block-diagonal matrix:

� = Diag

(
Ip,
1

θ
Ip,

1

θ2
Ip, . . . ,

1

θq−1 Ip

)
. (6.12)

For sufficiently large positive value of θ , there exists a positive constant T such that, for any
τ (t) < T and any initial condition x(0) = x0 and x̂(0) = x̂0,

lim
t→+∞ ‖x̂ − x‖ = 0. (6.13)

Proof: Let the observation error be noted

x̃ = x̂ − x . (6.14)

Using equations (6.3) and (6.10), one can write the dynamic equation of this error

˙̃x = Ax̃ + φ(x̂, u)− φ(x, u)− θ�−1S−1C ′Cx̃(t − τ (t)). (6.15)

Using the change of coordinates

x̄ = �x̃ (6.16)

and the Newton-Leibniz formula

x̄(t − τ (t)) = x̄ −
∫ t

t−τ (t)

˙̄x(σ )dσ,

together with the property C� = C�−1 = C , one can rewrite equation (6.15) in the following
form:

˙̄x = θ
[
A − S−1C ′C

]
x̄ + �

[
φ(x̂, u)− φ(x, u)

] + θ S−1C ′C
∫ t

t−τ (t)

˙̄x(σ )dσ. (6.17)

In order to derive an upper bound on the delay ensuring the asymptotic convergence of
the observation error, we use a Lyapunov-Krasovskii functional proposed by Fridman et al.
(2008).

W = x̄ ′Sx̄ +
∫ t

t−T

∫ t

σ

∥∥ ˙̄x(ξ )∥∥2 dξdσ. (6.18)

After some straightforward computations, the functional (6.18) can be rewritten as

W = x̄ ′Sx̄ +
∫ t

t−T
(σ − t − T )

∥∥ ˙̄x(σ )∥∥2 dσ.
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Its derivative satisfies the following inequality:

Ẇ ≤ θ x̄ ′ (A′S + S A − 2C ′C
)

x̄ + 2x̄ ′S� (φ(x̂, u)− φ(x, u))

+2θ x̄ ′C ′C I + T
∥∥ ˙̄x∥∥2 −

∫ t

t−T

∥∥ ˙̄x(σ )∥∥2 dσ, (6.19)

with

I =
∫ t

t−τ (t)

˙̄x(σ )dσ. (6.20)

We will now bound the different terms of the right-hand side of this equation to express a
sufficient condition on T ensuring that this derivative is negative.
Using equation (6.11) in the first term of (5.19) leads to

Ẇ ≤ θV − θ x̄ ′C ′Cx̄ + 2x̄ ′S� (φ(x̂, u)− φ(x, u))+ 2θ x̄ ′C ′C I + T
∥∥ ˙̄x∥∥2

−
∫ t

t−T

∥∥ ˙̄x(σ )∥∥2 dσ, (6.21)

where V = x̄ ′Sx̄ .
Using the triangular structure and the Lipschitz property of the function φ, if θ > 1, Gauthier

et al. (1992) proved that

‖� (φ(x̂, u)− φ(x, u))‖ ≤ √
qβ ‖x̄‖ . (6.22)

This implies the existence of a constant

k1 = 2
λmax(S)

λmin(S)
√

qβ, (6.23)

such that ∥∥2x̄ ′S� (φ(x̂, u)− φ(x, u))
∥∥ ≤ k1V, (6.24)

where λmax(S) and λmin(S) are the largest and smallest eigenvalues of S, respectively. Thus,
equation (6.21) becomes

Ẇ ≤ −θV + k1V − θ x̄ ′C ′Cx̄ + 2θ x̄ ′C ′C I + T
∥∥ ˙̄x∥∥2 −

∫ t

t−T

∥∥ ˙̄x(σ )∥∥2 dσ. (6.25)

Now, remark that

2θ x̄ ′C ′C I − θ x̄ ′C ′Cx̄ = θ I ′C ′C I − θ (Cx̄ − I )′ (Cx̄ − I ) ≤ θ I C ′C I,
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therefore,

Ẇ ≤ −θV + k1V + θ I ′C ′C I + T
∥∥ ˙̄x(t)∥∥2 −

∫ t

t−τ (t)

∥∥ ˙̄x(σ )∥∥2 dσ. (6.26)

From equation (6.17) comes∥∥ ˙̄x∥∥ ≤ θα ‖x̄‖ + ‖� (φ(x̂, u)− φ(x, u))‖ + θλmax
(
S−1) ‖I‖ ,

where α = ∥∥A − S−1C ′C
∥∥. Using equation (6.22) once again leads to

∥∥ ˙̄x∥∥ ≤ θ
(
α + √

qβ
) ‖x̄‖ + θλmax(S

−1) ‖I‖ ,

and consequently, through the Young inequality, to

∥∥ ˙̄x∥∥2 ≤ θ2k2
(
V − ‖I‖2) ,

where

k2 = 2 sup

{(
α + √

qβ

λmin(S)

)2
, λ2max(S

−1), 1

}
. (6.27)

With the Jensen’s inequality

‖I‖2 ≤ T
∫ t

t−τ (t)

∥∥ ˙̄x(σ )∥∥2 dσ, (6.28)

we get

∥∥ ˙̄x∥∥2 ≤ θ2k2

(
V + T

∫ t

t−τ (t)

∥∥ ˙̄x(σ )∥∥2 dσ)
.

Using this into equation (6.26) gives

Ẇ ≤ −(θ − k1 − T θ2k2)V − (1− θT − T 2θ2k2)
∫ t

t−τ (t)

∥∥ ˙̄x(σ )∥∥2 dσ. (6.29)

Let us set T = 1
2k2θ
, so that equation (6.29) becomes

Ẇ ≤ −
(

θ

2
− k1

)
V −

(
1− 3

8k2

) ∫ t

t−τ (t)

∥∥ ˙̄x(σ )∥∥2 dσ. (6.30)
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Since k2 ≥ 1, we always have
(
1− 3

8k2

)
≥ 0. Hence, with this value of T , if

(
θ
2 − k1

)
> 0,

then Ẇ is negative and equation (6.30) becomes

Ẇ ≤ −
(

θ

2
− k1

)
V < 0. (6.31)

Integrating this equation and applying Barbalat’s lemma proves that if the two following
conditions are met:

θ > sup{1, 2k1}, (6.32a)

τ (t) ∈
[
0, 1

2k2θ

)
, (6.32b)

then

lim
t→+∞ ‖x̃‖ = 0, (6.33)

which proves the theorem.

Theorem 6.3.1 proves that if the variable delay τ (t) is bounded with a sufficiently small
bound in system (6.3), equation (6.10) gives an asymptotically convergent observer. Further-
more, equation (6.32) gives computable conditions on the delay bound T and the observer
gain θ such that the convergence of the observation error is ensured. Obviously, this result can
be directly applied to the sampled measurements case, as in the following result.

Corollary 6.3.2 Consider a system with sampled measurements

{
ẋ = Ax + φ(x, u),

y(tk) = Cx(tk),
(6.34)

for which the hypotheses H1–H5 apply. In this case, the observer can be written

˙̂x = Ax̂ + φ(x̂, u)− θ�−1S−1CT
[
Cx̂(tk)− y(tk)

]
for t ∈ [tk, tk+1). (6.35)

Assuming that the following conditions are fulfilled:

θ > sup{1, 2k1}, (6.36a)

Te < 1
2k2θ

, (6.36b)

where k1 and k2 are defined by equations (6.23) and (6.27), respectively, then (6.35) is a global
asymptotic observer for system (6.34).
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Proof: This corollary is a straightforward application of Theorem 6.3.1: taking τ (t) = t − tk ,
with k such that tk ≤ t < tk+1, system (6.34) can be rewritten as system (6.3).

Note that in this case, τ̇ = 1 and the demonstration of theorem 6.3.1 still holds thanks to
the Lyapunov-Krasovskii functional used.

Remark 6.3.3 In the case where the measurements are acquired through a numerical network
inducing a further transmission delay δ, it is easy to adapt this scheme with the variable delay
τ = t − tk by taking k such that t ∈ [tk + δ, tk+1 + δ), that is, the total delay minimum value
equals δ and it is reset to this minimum value at each instant tk + δ, k ∈ R. The observer
converges asymptotically if ∀k, tk+1 − tk + δ < Te and conditions (6.36) are respected.

6.3.3 Observer Design with an Output Predictor

In the observer presented above, the error between the system output y and the observer output
Cx̂ is used at each sampled instant. Although this observer converges when the sampling
intervals are sufficiently small, its performance degrades rapidly as the sampling intervals
increase. To allow larger sampling interval, we follow Karafyllis and Kravaris (2009) and add
an inter-sample output prediction equation to the observer.
In this case, the output delay δ, which comes in addition to the sampling of themeasurements,

has to be explicitly taken into account. Hence, the system we handle now is similar to (6.34)
but it is assumed that the measure y(tk) is not available to the observer before instant tk + δ,
where δ represents the transmission delay.

Corollary 6.3.4 Consider system (6.34) with hypotheses H1–H5. For sufficiently large values
of θ , there exist two positive reals Tδ and Te such that if δ ≤ Tδ and, ∀k ∈ N, tk+1 − tk < Te

then ⎧⎪⎨⎪⎩
˙̂x = Ax̂ + φ(x̂, u)− θ�−1S−1C ′(Cx̂(t − δ)− w),

ẇ = C Ax̂(t − δ)+ Cφ(x̂(t − δ), u(t − δ)), for t ∈ [tk + δ, tk+1 + δ),

w(tk + δ) = y(tk),

(6.37)

is a global exponential observer.

The variable w represents the prediction of the output of the system when the current
measured output is not available: at each delayed sampling instant tk + δ,w takes the value of
the measured output y(tk) and between two sampling instants, the evolution of w is computed
continuously using the estimated state x̂ . The observation equation itself is the classical
continuous-time high-gain observer equation, using the predictor output w instead of the
unavailable system output y.

Sketch of the proof: To prove this corollary, two error terms are needed, the usual state
estimation error and the error due to the delay δ between the predictor and the system output

x̃ = x̂ − x, (6.38)

w̃ = w − y(t − δ). (6.39)
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The equations of the evolution of those errors are deduced from equations (6.34) and (6.37),

˙̃x = Ax̃ + φ(x̂, u)− φ(x, u)− θ�−1S−1CT (Cx̂ − w) , (6.40)

˙̃w = C Ax̃(t − δ)+ Cφ(x̂(t − δ), u(t − δ))− Cφ(x(t − δ), u(t − δ)) (6.41)

∀t ∈ [tk + δ, tk+1 + δ),

w̃(tk + δ) = 0. (6.42)

To prove the convergence of the error x̃ towards 0, the following Lyapunov candidate is used,
based on the work from Hespanha et al. (2007b):

U = x̄ ′Sx̄ +
∫ t

t−τ

∫ t

ζ

∥∥ ˙̄x(σ )∥∥ dσdζ + γψ(t) ‖w̃‖2 , (6.43)

where x̄ = �x̃ , as in (6.16), γ is a positive design parameter and ψ(t) is a piecewise differen-
tiable function such that ⎧⎪⎨⎪⎩

ψ(t) > 0, ∀t > 0,

ψ(tk) = ψmax ∈ R
+, ∀k ∈ N,

ψ̇(t) < 0, ∀k ∈ N, ∀t ∈ [tk, tk+1).

(6.44)

Since, w̃(tk) = 0 for all k ∈ N,

U (tk) ≤ lim
t→t−

k

U (t). (6.45)

The functional U is differentiable on the intervals [tk, tk+1). Equation (6.43) is differ-
entiated and, for each term of its differentiation, a suitable bound depending on either
‖x̄‖2 ,

∫ t
t−δ

∥∥ ˙̃x(σ )∥∥2 dσ , or ‖w̃‖2 can be found, such that one can find three constants k1, k2,
and k3 with, ∀k ∈ N,∀t ∈ [tk, tk+1),

U̇ ≤ −k1 ‖x̄‖2 − k2

∫ t

t−δ

∥∥ ˙̃x(σ )∥∥2 dσ − k3 ‖w̃‖2 ≤ −εU, (6.46)

for some real ε > 0. Equations (6.45) and (6.46) imply thatU decreases inside each sampling
interval and does not increase at the sampling instants thus proving the corollary.

6.4 Application to the AC Motor

6.4.1 Model of the AC Motor

This section presents the application of the above observer designs to a model of induction
motor in the (α, β) reference frame. The machine is controlled through the stator voltage
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vsα and vsβ and the stator current isα and isβ are the measured and sampled outputs, and
we note

v =
(

vsα

vsβ

)
and i =

(
isα

isβ

)
.

It is also assumed that the load torque TL may vary with time, hence an unknown and bounded
input signal is added: uL , which represents the variation of the load torque.
The state of the system is a dimension 6 vector that will be subdivided into 3 subvectors of

dimension 2 for the design of the observer

x =

⎛⎜⎜⎜⎜⎜⎜⎝
isα

isβ

φrα

φrβ

ωm

TL

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎝ i,

�

x3

⎞⎠, (6.47)

where the subvector � =
(

φrα

φrβ

)
is the instantaneous rotor flux vector and the components

of the third subvector x3 are the rotor speed ωm and the load torque TL : x3 =
(

ωm

TL

)
. The

output vector y is measured at each sampling instant: y(tk) = i(tk) = Cx(tk), with k such that
tk ≤ t < tk+1 and C = (

I2 02 02
)
.

The model of the induction machine is then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di

dt
= −γ i + k F(ωm)� + 1

σ Ls
v,

�̇ = Lm

τr
i − F(ωm)�,

ω̇m = pLm

J Lr

(
φrαisβ − φrβ isα

) − 1

J
TL ,

ṪL = uL ,

y = i(tk), with k such that tk ≤ t < tk+1,

(6.48)

with

γ = Rs

σ Ls
+ Rr Lm

2

σ Ls Lr
2 , k = Lm

σ Lr Ls
,

σ = 1− Lm
2

Lr Ls
, τr = Lr

Rr
,

F(ωm) = 1

τr
I2 − pωm J2, J2 =

(
0 1
−1 0

)
.

The definition of the parameters in this model are given in Table 6.1.
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Table 6.1 AC machine parameters

Parameter Definition

Ls Stator self-inductance
Lr Rotor self-inductance
Lm Mutual inductance between stator and rotor windings
Rr Rotor resistance
Rs Stator resistance
τr Rotor time constant

This model will also be noted in a shorter form,{
ẋ = f (x, v)+ h(uL ),

y = Cx(tk).
(6.49)

To be able to design a high-gain observer as in Corollary 6.3.2, we follow the method
proposed by Dib et al. (2011) for the continuous-time case. The following change of variable
is used:

z =
⎛⎝ z1

z2
z3

⎞⎠ = g(x), (6.50)

where z1, z2, and z3 belong to R
2, with

z1 = g1(x) = i, (6.51)

z2 = g2(x) = k F(ωm)�, (6.52)

z3 = g3(x) = pωm J2

(
−kLm

τr
i + k F(ωm)�

)
+ kp

(
kLm

J Lr
�J2i + TL

J

)
J2�. (6.53)

We assume that the Jacobian of g(x)

∂g

∂x
=

⎛⎜⎜⎜⎜⎜⎝
I2 02 02

02
∂g2
∂�

∂g2
∂x3

∂g3
∂i

∂g3
∂�

∂g3
∂x3

⎞⎟⎟⎟⎟⎟⎠ (6.54)

is regular almost everywhere, which is true provided that � = 0 and

arctan

(
�β

�α

)
− arctan (pτrωm)
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is not constant almost everywhere (Dib et al. 2011). This implies that the AC Motor model
used is weakly observable in the sense of Hermann and Krener (1977).
Using z as state variable, the machine model (6.48) becomes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż1 = z2 + ψ1(z1, v),

ż2 = z3 + ψ2(z1, z2),

ż3 = ψ3(x, uL ),

y = z1(tk), with k such that tk ≤ t < tk+1,

(6.55)

where

ψ1(z1, u) = −γ z1 + 1

σ Ls
v,

ψ2(z1, z2) = 1

τr

(
Lm

τr
z1 − z2

)
,

ψ3(x, uL ) = ∂g3
∂i

di

dt
+ ∂g3

∂�
�̇ + ∂g3

∂ωm
ω̇m + ∂g3

∂TL
uL .

This system can be rewritten

{
ż = Az + ψ(z, u),

y = Cz(tk),
(6.56)

with

A =

⎛⎜⎝02 I2 02,

02 02 I2
02 02 02

⎞⎟⎠, ψ(z, u) =

⎛⎜⎝ ψ1(z1, v)

ψ2(z1, z2)

ψ3(x, uL )

⎞⎟⎠.

The AC machine model in z is of the form (6.3), hence we can present two observer designs
whose convergences are ensured by Corollaries 6.3.3 and 6.3.3, respectively.

6.4.2 Observer for AC Machine with Sampled and Held Measurements

The first observer, as written in Corollary 6.3.3, is a direct adaptation to the sampled measures
case of the one proposed by Dib et al. (2011):

˙̂x = f (x̂, v)+ θ�−1
(

∂g

∂x

)−1
S−1CT [Cx̂(tk)− y(tk)] ,

∀t ∈ [tk, tk+1) (6.57)
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Applying the change of variables (6.50) to the state estimation, we define

ẑ = g(x̂). (6.58)

From equations (6.48) and (6.56), we have

∂g

∂x
f (x, v) = Az + ψ(z, u), (6.59)

and, obviously, by replacing x with x̂ ,

∂g

∂ x̂
f (x̂, v) = Aẑ + ψ(ẑ, u). (6.60)

Multiplying equation (6.57) by the Jacobian of g, using equation (6.60), and remarking that
Cx̂ = Cẑ, leads to

˙̂z = Aẑ + ψ(ẑ, u)+ θ�−1CT [Cẑ(tk)− y(tk)] . (6.61)

This is indeed the form of the observer from Corollary 6.3.2. Hence,

lim
t→∞ ‖ẑ − z‖ = 0 (6.62)

provided that the gain θ and the sampling period Te are set such that conditions (6.36) are
fulfilled.

6.4.3 Observer for the AC Machine with Predictor

The second observer design adds an output-predictor⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˙̂x = f (x̂, u)− θ�−1

(
∂g

∂x

)−1
S−1CT [Cx̂(t − δ)− w] ,

ẇ = C f
(
x̂(t − δ), v(t − δ)

)
, t ∈ [tk + δ, tk+1 + δ),

w(tk + δ) = y(tk).

(6.63)

In the same way as in Section 6.4.2, we apply the change of variable (6.58) to this observer to
rewrite it in the form used in Corollary 6.3.3. The first equation from (6.63) is treated in the
same way as the observer equation (6.57) in Section 6.4.2 (except that w replaces y). For the
second equation from (6.63), one can remark, from (6.54), that

C

(
∂g

∂x

)
f (x̂, u) = C f (x̂, u). (6.64)
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Table 6.2 Simulation parameters

Parameter Value Definition

Ls 140 mH Stator self-inductance
Lr 25 mH Rotor self-inductance
Lm 50 mH Mutual inductance between stator and rotor windings
Rr 0.5 � Rotor resistance
Rs 1.67 � Stator resistance
Ts 2e-04 s Simulation step time
T 60× Ts = 0.012 s Sample time
θ 42 Observer gain

Hence, we have, for t ∈ [tk + δ, tk+1 + δ),

ẇ = C

(
∂g

∂x

)
f (x̂, u) = C Aẑ(t − δ)+ Cψ (ẑ(t − δ), u(t − δ)) . (6.65)

Hence, observer (6.63) can be rewritten in the form used in Corollary 6.3.3⎧⎪⎨⎪⎩
˙̂z = Aẑ + ψ(ẑ, u)− θ�−1S−1CT [Cẑ(t − δ)− w] ,

ẇ = C Aẑ(t − δ)+ Cψ (ẑ(t − δ), u(t − δ)) , t ∈ [tk + δ, tk+1 + δ),

w(tk + δ) = y(tk),

(6.66)

and converges for small enough values of the maximal sample interval Te and the delay δ.

6.4.4 Simulation

Both observers introduced in Sections 6.4.2 and 6.4.3 have been applied to the same simulation
model of an AC machine of the form (6.48) with sampled output. The parameters values used
in the simulation are presented in Table 6.2. The physical values have been measured on a real
AC Motor bench at the GREYC Laboratory by Dorléans and Massieu (2012).
The results of the simulation of the motor model and both observer schemes are shown in

Figure 6.1. The control input of the motor is the square wave function seen in Figure 6.1a.
To test the observers, a perturbation is introduced: the load torque TL is also a square wave,
with a phase shift of one-fourth of a period compared to the input signal (as seen in Figures
6.1c and 6.1e). The effect on the motor speed is visible in the bumps seen on the curve of the
actual speed in Figure 6.1a. For both observers, the speed estimation (Figures 6.1b and 6.1d)
and torque estimation (Figures 6.1c and 6.1e) are drawn.
As shown in Figure 6.1b–c, with those parameters, the observer with sample and hold

equation (6.57) does not converge. Note that we were able to make this observer converge by
reducing the sample interval Te.With the parameters fromTable 6.2, the observerwith predictor
(6.63) does converge (see Figures 6.1d,e. The added complexity and increased computation
involved by the inclusion of the predictor in the observer scheme is counterbalanced by the
larger sample intervals it allows.
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(c) Observer with sample and hold (6.57): 
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speed estimation

(d) Observer with predictor (6.63): 
speed estimation

(e) Observer with predictor (6.63): 
torque estimation

Figure 6.1 Simulation results
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6.5 Conclusions

This chapter presents two observer designs for nonlinear systems with sampled measurements
and their application to an induction motor. The first design is a direct adaptation of the
continuous high gain observer proposed by Dib et al. (2011). The output is sampled and its
value is held, thus the correction term in the observer equation is constant between sampling
instants. The second observer scheme includes a predictor based on the work by Karafyllis
and Kravaris (2009) to estimate the output between two sampling instants. At each sampling
instant, the predictor is reset to the actual value of the output. The output estimation is fed to
the correction term of the observer.
The Matlab/Simulink was used to test the implementation of those observer on a simulation

model of the induction machine. The model of the induction machine was adapted to the high
gain framework through a change of variable. Simulations were done with different values
of sampling period and observer gain and the introduction of the predictor allows for larger
sampling intervals, as in the case shown on Figure 6.1.
Further work involves the implementation of the observer with predictor on a real induction

machine. The real-time numerical implementation of the predictor scheme is not trivial, not
only because of the predictor itself but also because of the change of variable used to adapt the
motor model as it involves the computation of the inverse of the Jacobian of the transformation.
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Dorléans P and Massieu JF (2012) Plate-forme machine asynchrone et carte DSP DS1103. Internal report, AUTO
Team, GREYC Lab.

Fridman E, Dambrine M, and Yeganefar N (2008) On input-to-state stability of systems with time-delay: a matrix
inequalities approach. Automatica, 44, 2364–2369.

Gauthier J, Hammouri H, and Othman S (1992) A simple obsever for nonlinear systems: application to bioreactors.
IEEE Transactions Automatic Control, 37(6), 875–880.

Hammouri H, Nadri M, and Mota R (2006) Constant gain observer for continuous-discrete time uniformly observable
systems Proceeding of the 45th IEEE on & Control, San Diego, CA, pp. 6240–6244.

Hermann R and Krener AJ (1977) Nonlinear controllability and observability. IEEE Transactions on Automatic
Control, AC-26, 1–34.

Hespanha J, Naghshtabrizi P, and Xu Y (2007b) A survey of recent results in networked control systems. IEEE Special
Issue on Technology of Networked Control Systems, 95(1), 138–162.



122 AC Electric Motors Control

Jazwinski A (1970) Stochastic processes and Filtering Theory. Mathematics in Science and Engineering. Academic
Press.

Karafyllis I and Kravaris C (2009) From continuous-time design to sampled-data design of nonlinear observers. IEEE
Control, 54, 2169–2174.

Nadri M and Hammouri H (2003) Design of a continuous-discrete observer for state affine systems. Applied Mathe-
matics, 16, 967–974.

Nadri M, Hammouri H, and Astorga CM (2004) Observer design for continuous-discrete time state affine systems up
to output injection. European Journal of Control, 10, 252–263.
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7.1 Introduction

7.1.1 Problem Statement

Permanent-magnet synchronousmotors (PMSM) drives are replacing classicDC and induction
motors drives, such as industrial robots and machine tools (Yang et al. 2009). Advantages of
PMSMs include high efficiency, compactness, high torque to inertia ratio, rapid dynamic
response, and simple modeling and control (Changsheng and Elbuluk 2001); (Peng et al.
2010). In the last years the price of rare-earth magnet material decreased significantly. For this
reason PM-Machines are available for standard drives up to 300 kW (Montesinos et al. 2005).
PMSMs can be divided in two categories, which are based on the assembly of the permanent-

magnets. The permanentmagnets can bemounted on the surface of the rotor (surface permanent
magnet synchronous motor—SPMSM) or inside of the rotor (interior permanent-magnet syn-
chronous motor—IPMSM). These two configurations have an influence on the shape of the
back electromotive force (BEMF) and on the inductance variation (Benjak and Gerling 2010).
This chapter is devoted to the first configuration, that is, SPMSM. Industries concerned by
SPMSM are continuously seeking for cost reductions in their products. The main drawback
of a SPMSM is the position sensor. The use of such direct position/speed sensors induces
additional electronics, extra wiring, extra space, frequent maintenance, careful mounting, and
default probability. Moreover, the sensor is vulnerable for electromagnetic noise in hostile

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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environments and has a limited temperature range. In addition, the inertia of the rotor is
increased by the attachment of the sensor to the rotor axis (Chi et al. 2009). For PMSM rated
up to 10 kW the cost of an encoder is below 10% (Benjak and Gerling 2010), but for appli-
cations in the automotive industry with the high number of produced units the elimination of
the position sensor is desirable.
For these reasons, PMSM drive research have been concentrated on the elimination of

the mechanical sensors at the motor shaft (encoder, resolver, etc.) without deteriorating the
dynamic performances of the drive.

7.1.2 State of the Art and Objectives

State of the Art

In order to avoid sensor position of SPMSM, several approaches for the so-called sensorless
control have attracted a great deal of attention recently (see, Bolognani et al. 2001; Gumus et al.
2007; Yu and Kaynak 2009; Arellano-Padilla et al. 2010; Benjak and Gerling 2010; Halder
et al. 2010; Lee and Lee 2013). These methods can be classified into three main categories. The
first category is based on fundamental excitation methods, which are divided into two main
groups; nonadaptive (Benjak and Gerling 2010) or adaptive methods (Bolognani et al. 2001;
Yu and Kaynak 2009; Benjak and Gerling 2010; Lee and Lee 2013). The second category is
based on saliency and signal injection methods (Arellano-Padilla et al. 2010). The third one is
based on artificial intelligence methods (Gumus et al. 2007; Halder et al. 2010). This chapter
is devoted to the first category with adaptive methods, that is, using mainly observer methods.
To our best knowledge, the methods proposed in the literature to estimate the position and
speed of SPMSMmotor are usually tested and evaluated experimentally at high speed whereas
as shown in Zaltni and Ghanes (2010) the main difficulties are primarily at very low speed of
the SPMSM unobservability.

Objectives

The aim of this chapter is to provide an experimental evaluation of a model reference adaptive
system (MRAS) observer based on super twisting observer (STO) without a position sensor
of SPMSM. The observer is implemented and tested on experimental setup, with the aim
to compare its speed and position tracking capability on high speeds and low speeds where
particularly the motor state of SPMSM is unobservable.

Organization

This chapter is organized as follows:

• In Section 7.2, SPMSMmodel and a brief review of its observability analysis are presented.
• In Section 7.3, MRAS observer for SPMSM is described.
• In Section 7.4, experimental results of MRAS observer are illustrated on SPMSM high- and
low-speed benchmark.

• In Section 7.5, some conclusions are drawn.
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7.2 SPMSM Modeling and its Observability

7.2.1 SPMSM Model

In the (α − β) fixed reference frame, the dynamic model of the SPMSM reads (Zaltni and
Ghanes 2010; Lee and Lee 2013)

⎛
⎜⎝

i̇α
i̇β
ω̇

⎞
⎟⎠ =

⎛
⎜⎝

− Rs
Ls

iα + φm

Ls
eα

− Rs
Ls

iβ + φm

Ls
eβ

P
J φm(− sin(θe)iα + cos(θe)iβ)− fv

J ω

⎞
⎟⎠ +

⎛
⎜⎝

1
Ls

0 0

0 1
Ls

0

0 0 − 1
J

⎞
⎟⎠

⎛
⎜⎝

uα

uβ

Tl

⎞
⎟⎠, (7.1)

where

{
eα = −ωe sin(θe),

eβ = ωe cos(θe)
, (7.2)

refer respectively to BEMF and ω is the rotor speed; ωe = P.ω is the electric rotor speed;
[iα iβ]T [uα uβ]T are the (α − β) stator current and voltage vector, respectively; Rs is the
stator resistance; Ls is the stator inductance; P is the pair pole number; J is the moment of
inertia; φm is the magnetic flux; fv is the viscous friction; Tl is the load torque.

7.2.2 Quick Review on the Observability of SPMSM

The observability phenomena of SPMSMhas been studied by several authors (see, for instance,
Junfeng et al. 2004; Vaclavec and Blaha 2008; Zaltni and Ghanes 2010). In Zaltni and Ghanes
(2010) we have presented sufficient and necessary conditions under which the PMSM is
observable and unobservable. The problem was to characterize the conditions under which the
state x of the sensorless PMSM can be observed from measures (currents) and its derivatives
at any order. The result is that the SPMSM observability cannot be established in the particular
case of zero speed and zero acceleration even if we use the higher derivatives of currents. This
is a sufficient and necessary condition for loss of observability.

7.3 Robust MRAS Observer

The structure of the proposed MRAS speed observer based on STO for SPMSM is shown in
Figure 7.1. This structure is made up of a reference model (STO), an adjustable model, and an
adaptation mechanism.

7.3.1 Reference Model

The reference model consists of designing a second order sliding-mode observer (STO),
which computes the reference BEMFs êα,β = [êα êβ]T using only measured stator currents
and voltages. This reference model does not depend on the velocity.
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Figure 7.1 Structure of the MRAS speed-observer-based STO

The general form of the STO is defined as follows (Levant 1998):

{
v(e1) = v1 + λ|e1| 12 sgn(e1),

v̇1 = αsgn(e1),
(7.3)

with e1 = x1 − x̂1, λ, α > 0 are the observer parameters, v1 is the output of the differen-
tiator, x1 is the estimated variable and

sgn(e1),=
⎧⎨
⎩

1, i f e1 > 0;
−1, i f e1 < 0;

∈ [−1 1], i f e1 = 0.

Let x = [iα iβ]. Consider only current dynamic equations of model (7.1), we can write

⎧⎨
⎩

ẋ1 = ax1 − beα + cuα,

ẋ2 = ax2 − beβ + cuβ, (7.4)

where a = − Rs
Ls
, b = φm

Ls
, and c = 1

Ls
. Let

[xa xb] = −b[eα eβ] (7.5)

be the vector of unknown variables. System (7.4) becomes

{
ẋ1 = ax1 + xa + cuα,

ẋ2 = ax2 + xb + cuβ
. (7.6)
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Currents and voltages are assumed to be measurable. Applying the STO (7.3) to system (7.6),
we obtain

˙̂x1 = x̃a + ax̂1 + cuα + λ1|e1| 12 sgn(e1),

˙̃xa = α1sgn(e1), (7.7)

˙̂x2 = x̃b + ax̂2 + cuβ + λ2|e2| 12 sgn(e2),

˙̃xb = α2sgn(e2),

where e1 = x1 − x̂1, e2 = x2 − x̂2, and λ1, λ2, α1, α2 > 0.
Error dynamics of the observer are given by

ė1 = (xa − x̃a)+ a(x1 − x̂1)− λ1|e1| 12 sgn(e1),

ėa = f1(xb)− α1sgn(e1), (7.8)

ė2 = (xb − x̃b)+ a(x2 − x̂2)− λ2|e2| 12 sgn(e2),

ėb = f2(xa)− α2sgn(e2),

with f1(xb) = ωexb and f2(xa) = −ωexa

Corollary 7.3.1 Taking into account the result proposed in Levant (1998) with respect to the
STO (7.3) dedicated to the observer design (7.7). For any initial conditions x(0), x̂(0), there
exists a choice of λi and αi such that the observer state x̂ converges in finite time to x, that
is, x̂1 �−→ x1 and x̂2 �−→ x2, then e1, e2, ė1, and ė2 converges to zero and by consequence
x̃a �−→ xa and x̃b �−→ xb.

The observer parameters α1, α2, λ1, and λ2 have respectively the following expressions (Levant
1998):

α1 > f +
1 and λ1 > ( f +

1 + α1)

√
2

α1 − f +
1

,

α2 > f +
2 and λ2 > ( f +

2 + α2)

√
2

α2 − f +
2

, (7.9)

where f +
1 = max( f1(xb)) and f +

2 = max( f2(xa)).
Having x̃a and x̃b we can easily deduce the estimated BEMFs êα,β from equation (7.5).

7.3.2 Adjustable Model

The adjustable model is tunable by the estimated velocity and it computes the estimated
BEMFs ẽα,β = [ẽα ẽβ]T from the following equation:

˙̃eα,β = ω̂e J ẽα,β + M(ẽα,β − êα,β ), (7.10)
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where ω̂e is the estimated velocity and

J =
(
0 −1
1 0

)
.

For convergence, a feedback loop is introduced and the feedback gain

M = m

(
1 0
0 1

)
,

where m is a positive constant.

7.3.3 Adaptation Mechanism

If the velocity estimation error exist, it will lead to the observed BEMFs estimation errors

ε = ẽα,β − êα,β . (7.11)

Then, these errors together with the estimation model’s output ẽα,β are used to construct the
manifold S as

S = εT J ẽα,β . (7.12)

The estimated velocity is

ω̂e = K sgn(S). (7.13)

Note that the speed estimate is a discontinuous function of the manifold and K is a positive
constant.
The BEMFs used in the reference model also satisfy the following equation

˙̂eα,β = ωe J êα,β . (7.14)

To show that the sliding mode can be enforced in the manifold S = 0, we need to show that
there exists M sufficiently high such that the manifold is attractive

SṠ < 0. (7.15)

After differentiating (7.12) and replacing the derivative of the BEMFs from (7.10) and (7.14),
the following expression is obtained:

Ṡ = f (ωe, êα,β, ẽα,β )− K (ẽT
α,β êα,β )sgn(S), (7.16)

where f is a function of the reference and estimated BEMFs and speed. Since this term is
greater than zero when the motor is exited and f has a positive upper value, it’s clear from
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(7.16) that sufficiently high K can be selected such that condition (7.15) is fulfilled. Thus,
sliding mode is enforced in the manifold S and after sliding mode begins, we have S = 0.
The boundary layer method described in Utkin et al. (1999) is used to find the equivalent

control ωe,eq . Once sliding mode occurs, we can also assume Ṡ = 0 along with S = 0. The
expression of the equivalent control becomes

ωe,eq = ωe + m
εT J ẽα,β

ẽT
α,β êα,β

. (7.17)

From equation (7.17), when the manifold converge to zero (S = εT J ẽα,β = 0), the equivalent
speed tends to the real speed. The equivalent speed represents the low-frequency component
of the discontinuous term (7.13). Thus, while the high-frequency switching function is fed
into the observer, its low-frequency component can be obtained by low-pass filtering (LPF)
and represents the speed estimate.

7.3.4 Rotor Position Observer

The observed rotor position is obtained simply from the phase of the estimated BEMFs coming
from equation (7.7) and (7.5) as follows:

θ̂e = arctan

(−êα

êβ

)
. (7.18)

However, it is shown in Zaltni andGhanes (2010) that the SPMSM is not observable at very low
speed. To overcome this problem, an estimator/observer swapping system is proposed to ensure
position estimation in all speed range and to overcome position observability problems at very
low frequencies (see Section 7.2.2). The estimator is obtained by integrating the estimated
speed in equation (7.17). So it does not depend directly on the BEMFs. Thus, since the speed is
always observable, there is no problem of observability using this position estimator. However,
it is evident that the estimator is sensible to parameter variation. The position is equal to the
observer when the motor operate at high frequencies and swap to the estimator since the speed
become less than 5 rad/s.

7.4 Experimental Results

The observer is tested on a significant benchmark where high- and very low-speed operation
modes of SPMSM are considered (Figure 7.3). It is tested in an open-loop control as showed
in Figure 7.2.
The experimental testing is composed of an SPMSMwith a 4096-pulse incremental encoder

to validate the observer. Another identical SPMSM is used as load torque generation. A
commercial 15 kW inverter is supplied with a DC voltage source Xantrex. Three LEM current
sensors (LEM LA 100P) are used. A real-time controller board of dSPACE DS1104 and
interfaces are used to implement the speed, current control, and the proposed observer. The
experimental results (measurements and state estimation) are obtained with ControlDesk. The
experimental sampling time Te is equal to 200 μs.
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Figure 7.2 Block diagram scheme

The specifications and parameters of SPMSM and MRAS observer are listed in
Table 7.1.

7.4.1 Nominal Conditions

Using the identified parameters of SPMSM (Table 7.1), the proposed MRAS observer is
designed. It’s clear that due to experimental conditions, the identified parameters are not exactly
the real parameters of SPMSM. The control experimental conditions are nearly different,
taking into account the identification conditions. Furthermore, the identification methodology
introduces a certain uncertainty in its results. Thus, this case is by oneself a robustness test.
From now this case is called the nominal condition test.

Rotor Speed Observation Results

The experimental results of rotor speed are given in Figure 7.3. It can be noted that the
observed speed (Figure 7.3 (dash-dot line)) coming from equation (7.17), tracks correctly the
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Table 7.1 Parameters specification of SPMSM and MRAS observer

SPMSM
parameters value

MRAS observer
parameters value

Pn 1.6 kW α1 80 000
ωn 3000 rpm α2 80 000
Un 540 V λ1 100
In 5.8 A λ2 100
Rs 2.06 	 K 700
Ls 9.15 mH m 100
P 3
φm 0.29 Wb
J 0.0249 kgm2

fv 0.0075 kgm2s−1

Tl 5.1 Nm

SPMSM, surface permanent-magnet synchronous motor; MRAS,
model reference adaptive system.

motor speed (Figure 7.3 (dashed line)) when the synchronous motor operates at high and very
low speeds.

Rotor Position Observation Results

For rotor position observation, the experimental results are displayed in Figure 7.4. The
observed position (Figure 7.4 (solid line)) is obtained at high and very low frequencies
according to Section 7.3.4 and tracks well the measured position (Figure 7.4 (dashed line)).
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However, at very low speeds (t = 4 s to t = 5 s) the estimated position (Figure 7.4 (solid line))
is affected by chattering phenomena due to significant current measurement noises.
The applied stator voltages uα-uβ andmeasured stator currents iα-iβ are shown in Figure 7.5.

7.4.2 Parameter Variation Effect

The robustness to internal disturbance of the proposed observer is tested by variation of
+100% of stator resistance Rs . Experimental results of rotor speed and position observation
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Figure 7.5 Stator voltages and currents
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Figure 7.6 Rotor speed and position with +100% of Rs

are depicted in Figure. 7.6. Compared to the results of nominal condition (Figures 7.3 and
7.4), it can be remarked that the proposed observer is very robust to this variation. However,
the observed speed is a little sensible at high speeds, while the observed position is sensitive
only at very low speeds.

7.4.3 Load Torque Effect

The robustness to external disturbance of the proposed observer is tested by applying to the
motor a constant load torque Tl at high and low speeds. At same time, a variation of +100%
of stator resistance Rs is carried out. The experimental results (Figure 7.7a-b) show that the
observed speed is well estimated when the load torque is applied at high speed (Figure. 7.7a).
However, at very low speeds the observed speed (Figure 7.7b) is very sensitive.

7.5 Conclusions

A robust MRAS observer based on super twisting algorithm is proposed for acceptable accu-
racy and robustness rotor speed observation. This observer is designed to achieve sensor-less
control scheme for SPMSM. The stability of the proposed MRAS observer has been studied
using Lyapunov arguments. To overcome the problem of observability at very low speed,
the rotor position has been obtained using an estimator/observer swapping system when the
speed becomes less than 5 rad/s. An experimental evaluation has been presented to illus-
trate the performance and the robustness of the proposed speed and position observation
design.
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Figure 7.7 Rotor speed with +100% of Rs and load torque
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Feedback Control of Induction
Motors

Hassan K. Khalil and Elias G. Strangas
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8.1 Chapter Overview

In this chapter, a nonlinear control approach to the speed tracking problem of induction motors
is discussed. In this approach, no speedmeasurement is used, but instead either reliable position
measurement by optical encoders or resolvers or no position measurement at all is utilized.
For this task, no rotor flux measurement is needed; a second order observer is used to estimate
the flux.
Classic field orientation requires the transformation of variables, to either the stator, or, most

commonly, the rotor flux frame of reference. Here the field orientation change of variables is
performed using the flux estimate rather than the flux itself. This makes all the new variables
available for feedback.
To estimate speed, and acceleration when it is needed, a special design of the observer gain

is used that makes the observer robust to uncertainties in modeling nonlinear functions. The
technique, known as high-gain observers, works for a wide class of nonlinear systems and
guarantees that the output feedback controller recovers the performance of the state feedback
controller when the observer gain is sufficiently high. A separation principle allows us to
separate the controller design into two tasks. First, to design a state feedback controller that
stabilizes the system andmeets other design specifications. Then, an output feedback controller
is obtained by replacing the state by its estimate, provided by the high-gain observer.

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Uncertainty in the rotor resistance and the load torque is allowed. Robust control techniques
are used to overcome the effect of this uncertainty on the tracking accuracy. The flux controller
is designed using either the traditional method with two PI controllers or a continuous approxi-
mation of variable structure control. For speed control, in the case when position measurement
is available, the use of robust control is presented for current-control and voltage-control
schemes. In the current-control scheme, a PI controller is used to regulate the current to a
desired value that is designed using sliding-mode control. The voltage-control scheme uses
another change of variables that brings the acceleration as one of the state variables. This
change of variables, which is dependent on the uncertain quantities, results in a state equation
where the uncertain terms satisfy the matching condition. The uncertain change of variables
is not used in the implementation of the controller, as both the speed and acceleration are
estimated from the position using a robust high-gain observer. The control design is a contin-
uous approximation of sliding-mode control. We show that the speed tracking error will be
asymptotically bounded by a bound that can be made arbitrarily small by choice of certain
design parameters. We also show that in the special case when the speed reference and load
torque are constant, the speed tracking error tends to zero asymptotically as time approaches
infinity.
When position measurement is not available, the speed control is a current-control scheme

in which a PI controller is used to regulate the current, as in the previous case. We derive
a third order nonlinear model that captures the essence of the speed control problem. The
model has the speed and two flux estimation errors as state variables, the q-axis current as the
control input, and a virtual speed, provided by the high-gain observer, as the measured output.
We show how the model can be used to investigate the design of a feedback controller with
integral action.

8.2 Field Orientation

The squirrel-cage induction machine can be described by the fundamental equations that result
from electromagnetic considerations. These relate stator and rotor flux linkages and terminal
voltages and currents, as well as the developed torque and speed. We start with these equations
describing a linear model, neglecting saturation and nonuniform current distribution in the
rotor bars. We use variables in complex form, in the natural frames of reference of the stator
and rotor. The angle θ is the relative position of the rotor (axis of phase a with respect to the
stator),

Rr ir + dλr

dt
= 0, (8.1)

Rs is + dλs

dt
= us, (8.2)

with the flux linkages λr and λs in their corresponding natural stator and rotor frames of
reference,

λr = M
[
(1+ σr )ir + ise−ipθ

]
, (8.3)

λs = M
[
(1+ σs)is + ir eipθ

]
. (8.4)
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These result in

Rr ir + Lr
dir
dt

+ M
d

dt

(
ise−ipθ

) = 0, (8.5)

Rs is + Ls
dis
dt

+ M
d

dt

(
ir eipθ

) = us, (8.6)

with Ls = (1+ σs)M and Lr = (1+ σr )M . The torque, resulting from the interaction of
currents and fluxes, can be written in a variety of ways. Using stator currents and rotor flux
linkages we obtain

Td = pM

Lr
�

[(
λr eipθ

)∗
is
]
, (8.7)

The equation of motion is

d2θ

dt2
= ω̇ = 1

J
[Td − TL ] , (8.8)

with J as the system moment of inertia and TL the load torque.
This system of equations can be rewritten with all variables transformed in any common

frame of reference. Of the possible frames of reference, the most often used are the stator,
stator voltages, stator flux, and rotor flux; see, for example, Leonhard (1996), Krishnan (2001),
and Novotony et al. (2010). Although the motor is often driven by stator currents, we keep the
stator voltage equation so that we can use it to estimate rotor position.
In the reference system of the stator, and using matrix notation, the equations become

θ̇ = ω, (8.9)

ω̇ = −μλT
r Eis − TL/J, (8.10)

λ̇r = (−αr I + pωE)λr + αr Mis, (8.11)

i̇s = (βαr I − p βωE)λr − (asη + αrβM)is + γ us, (8.12)

where αr = Rr/Lr , αs = Rs/Ls , β = M/σ Lr Ls , γ = 1/σ Ls , η = 1/σ , μ = pM/J Lr ,
σ = 1− M2/Ls Lr , and

I =
[
1 0
0 1

]
, E =

[
0 −1
1 0

]
.

The rotor flux, stator current, and stator voltage in the stator frame of reference are

λr = [λa, λb]
T , is = [ia, ib]

T , us = [ua, ub]
T . (8.13)

The angle between the stator and the rotor flux is:

ρ = tan−1(λa, λb). (8.14)
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The rotor flux, stator current, and stator voltage in the rotor flux frame of reference are

λr = [λd , 0]
T , is = [

id , iq
]T

, us = [
ud , uq

]T
, (8.15)

and the transformation matrix is

F(ρ) =
[
cos ρ sin ρ

− sin ρ cos ρ

]
. (8.16)

In particular,

[
id

iq

]
= F(ρ)

[
ia

ib

]
,

[
ud

uq

]
= F(ρ)

[
ua

ub

]
,

[
λd

0

]
= F(ρ)

[
λa

λb

]
. (8.17)

The torque equation in the rotor flux frame of reference becomes

Td = pM

Lr
λd iq , (8.18)

and the rotor flux λd can be estimated through an open-loop observer using equation (8.11),
while the angle of this flux, ρ, can be calculated from the stator currents and speed

λ̇d = −αrλd + αr Mid , (8.19)

ρ̇ = ω + αr Miq

λd
. (8.20)

Equations (8.18) and (8.19) show decoupling of the rotor flux from the q-axis current and
suggest a simple controller for the torque, while the open-loop observer from equations (8.19)
and (8.20) is the classic rotor field orientation method. Finally, the stator current satisfies

i̇d = p ωiq + αrβλd − (αsη + αrβM)id + αr Mi2q/λd + γ ud , (8.21)

i̇q = −p ωid − p ωβλd − (αsη + αrβM)iq − αr Midiq/λd + γ uq . (8.22)

The estimates of ρ and λd depend on the parameters of the system and are subject to errors.
Of those, errors in the rotor resistance, Rr , and the corresponding rotor time constant, 1/αr ,
cause inaccuracies in the estimates of both flux magnitude and angle. Moreover, an open-loop
observer based on equation (8.11) requires the speed ω. The underlying assumption in this
chapter is that the speed is not directly measured. It is estimated from the position θ when
a mechanical sensor is used or from the stator current and voltage when θ is not measured.
Therefore, the implemented open-loop flux observer takes the form

˙̂λr = (−αr0 I + p ω0E)λ̂r + αr0Mis, (8.23)

where αr0 is a nominal value of αr and ω0 is a replacement for ω, with the most common
choices are a speed estimate ω̂ or the speed reference ω∗. The estimated rotor flux and its
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angle, tan−1(λ̂a, λ̂b), which are obtained from the flux observer (8.23), are different from the
ones obtained when αr = αr0 and ω0 = ω. However, for convenience, we continue to denote
them by λd and ρ, which are now given by

λ̇d = −αr0λd + αr0Mid , (8.24)

ρ̇ = pω0 + αr0Miq

λd
. (8.25)

The stator current and voltage transformed to this estimated frame of reference are given
by equation (8.17), with the newly calculated ρ. To calculate the developed torque in this
estimated frame of reference we start again from equation (8.7)

Td = pM

Lr
(ibλa − iaλb). (8.26)

Defining rotor flux errors in the stator frame of reference

ea = λa − λ̂a, eb = λb − λ̂b,
[

ea, eb
]T = F(−ρ)

[
ed , eq

]T
, (8.27)

and transforming the variables for the torque to the estimated frame of reference

[
ia

ib

]
= F(−ρ)

[
id

iq

]
,

[
λa

λb

]
= F(−ρ)

[
λd

λq

]
, (8.28)

and since λq = 0, we obtain

[
λa

λb

]
= F(−ρ)

{[
λd

0

]
+

[
ed

eq

]}
, (8.29)

giving the torque equation using variables in the estimated frame of reference

Td = pM

Lr

[
iqλd + (iqed − ideq )

]
. (8.30)

The stator currents id and iq satisfy the equations

i̇d = p ω0iq + αrβλd − (αsη + αrβM)id + αr0Mi2q/λd + γ ud + αrβed + p βωeq , (8.31)

i̇q = −p ω0id − p ωβλd − (αsη + αrβM)iq − αr0Midiq/λd + γ uq − p βωed + αrβeq ,

(8.32)

while the rotor flux errors ed and eq satisfy the equations

ėd = −αr ed + (p ω0 − p ω + αr0Miq/λd )eq + (αr − αr0)(Mid − λd ), (8.33)

ėq = −(p ω0 − p ω + αr0Miq/λd )ed − αr eq + (αr − αr0)Miq + p(ω − ω0)λd . (8.34)
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8.3 High-Gain Observers

To motivate the design of high-gain observers, consider the second order nonlinear system

ẋ1 = x2, (8.35)

ẋ2 = φ(x, u, w, d), (8.36)

y = x1, (8.37)

where x = [x1, x2]T is the state vector, u is the control input, y is the measured output, d is a
vector of disturbance inputs, and w is a vector of known exogenous signals. The function φ is
locally Lipschitz in (x, u) and continuous in (d, w). We assume that d(t) andw(t) are bounded
piecewise continuous functions of time. Suppose the state feedback control u = γ (x, w)
stabilizes the origin x = 0 of the closed-loop system

ẋ1 = x2, (8.38)

ẋ2 = φ(x, γ (x, w), w, d), (8.39)

uniformly in (w, d), where γ (x, w) is locally Lipschitz in x and continuous inw. To implement
this feedback control using only measurements of the output y, we use the observer

˙̂x1 = x̂2 + h1(y − x̂1), (8.40)

˙̂x2 = φ̂(x̂, u, w)+ h2(y − x̂1), (8.41)

where φ̂(x, u, w) is a nominal model of φ(x, u, w, d). The estimation error

x̃ =
[

x̃1
x̃2

]
=

[
x1 − x̂1
x2 − x̂2

]

satisfies the equation

˙̃x1 = −h1 x̃1 + x̃2, (8.42)

˙̃x2 = −h2 x̃1 + δ(x, x̃, w, d), (8.43)

where

δ(x, x̃, w, d) = φ(x, γ (x̂, w), w, d)− φ̂(x̂, γ (x̂, w), w).

In the absence of δ, asymptotic error convergence is achieved when the eigenvalues of the
matrix [−h1 1

−h2 0

]

have negative real parts, which is the case for any positive constants h1 and h2. In the presence
of δ, we design h1 and h2 with the additional goal of rejecting the effect of δ on x̃ . This is
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ideally achieved if the transfer function

Go(s) = 1

s2 + h1s + h2

[
1

s + h1

]

from δ to x̃ is identically zero. While this is not possible, we can make supω∈R ‖Go( jω)‖
arbitrarily small by choosing h2 � h1 � 1. In particular, taking

h1 = α1

ε
, h2 = α2

ε2
, (8.44)

for some positive constants α1, α2, and ε, with ε � 1, it can be shown that

Go(s) = ε

(εs)2 + α1εs + α2

[
ε

εs + α1

]
.

Hence, limε→0 Go(s) = 0. The disturbance rejection property of the high-gain observer can
also be seen in the time domain by using the scaled estimation errors

ξ1 = x̃1
ε

, ξ2 = x̃2, (8.45)

which satisfy the singularly perturbed equation

εξ̇1 = −α1ξ1 + ξ2, (8.46)

εξ̇2 = −α2ξ1 + εδ(x, x̃, w, d). (8.47)

This equation shows that reducing ε diminishes the effect of δ. However, the transient response
suffers from the peaking phenomenon. The initial condition ξ1(0) could be O(1/ε) when
x1(0) 	= x̂1(0). Consequently, the transient response of equation (8.46) could contain a term of
the form (1/ε)e−at/ε for some a > 0. While this exponential mode decays rapidly, it exhibits
an impulsive-like behavior where the transient peaks to O(1/ε) values before it decays rapidly
towards zero. In fact, the function (1/ε)e−at/ε approaches an impulse function as ε tends to
zero. In addition to inducing unacceptable transient response, the peaking phenomenon could
destabilize the closed-loop nonlinear system (see Khalil 2002, Section 14.5). A key idea to
overcome the peaking phenomenon is to design the control law γ (x̂, w) and the nominal
function φ̂(x̂, u, w) to be globally bounded in x̂ , that is, bounded for all x̂ when w is bounded.
This property can be always achieved by saturating u and/or x̂ outside compact sets of interest.
A typical way to determine the saturation levels is to simulate the closed-loop system under
state feedback and determine a compact set of operation; that is, a set � such that x(t) ∈ �

for all t ≥ 0. Then we determine bounds M1 and M2 such that |x1(t)| < M1 and |x2(t)| < M2

over �. The estimates x̂1 and x̂2 are saturated at ±M1 and ±M2, respectively. The global
boundedness of γ and φ̂ in x̂ provides a buffer that protects the plant from peaking because
during the peaking period the control γ (x̂, w) saturates. Since the peaking period shrinks
to zero as ε tends to zero, for sufficiently small ε the peaking period is so small that the
state of the plant x remains close to its initial value. After the peaking period, the estimation
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error becomes of the order O(ε) and the feedback control γ (x̂, w) becomes O(ε) close to
γ (x, w). Consequently, the trajectories of the closed-loop system under the output feedback
controller asymptotically approach the trajectories under the state feedback controller as ε

tends to zero. Thus, the performance achieved under state feedback can be recovered by
output feedback by choosing ε small enough. This allows us to separate the observer design
from the feedback control design. For the purpose of feedback control, we act as if both x1 and
x2 were measured. Then, a high-gain observer is implemented, x1 and x2 are replaced by their
saturated estimates, and ε is tuned, by gradually decreasing it, until the performance under
output feedback is sufficiently close to the performance under state feedback.
The high-gain observer design can be extended to higher order systems of the form

ẋi = xi+1, for 1 ≤ i ≤ r − 1; (8.48)

ẋr = φ(x, z, u, w, d); (8.49)

ż = ψ(x, z, u, w, d); (8.50)

y = x1; (8.51)

where x and z constitute the state vector. The vector x represents a chain of r integrators
with the state of the first integrator x1 being the measured output y. The vector z represents
the state of the internal dynamics, which are not estimated by the high-gain observer. The
r -dimensional high-gain observer takes the form

˙̂xi = x̂i+1 + (αi/ε
i )(y − x̂1), for 1 ≤ i ≤ r − 1; (8.52)

˙̂xr = φ̂(x̂, u, w)+ (αr/ε
r )(y − x̂1); (8.53)

where ε is a small positive constant and the positive constants α1 to αr are chosen such that
the roots of the polynomial

sr + α1s
r−1 + · · · + αr−1s + αr

have negative real parts. In feedback control, we first design a state feedback controller as if
the vector x was measured; then we replace x by its estimate x̂ provided by the high-gain
observer. By tuning ε to be small enough we recover the performance achieved under state
feedback.

8.4 Speed and Acceleration Estimation using High-Gain Observers

8.4.1 Speed Estimation using a Mechanical Sensor

When measurement of θ is available using a mechanical sensor, such as an optical encoder,
the estimation of speed is based on the model

θ̇ = ω, (8.54)

ω̇ = μ
[
iqλd + (iqed − ideq )

] − TL

J
. (8.55)
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A high-gain speed observer is taken as

˙̂θ = ω̂ + (α1/ε)(θ − θ̂), (8.56)

˙̂ω = μiqλd + (α2/ε2)(θ − θ̂ ), (8.57)

where α1 and α2 are positive constants that assign the roots of s2 + α1s + α2 at desired
locations in the left-half plane and ε is a small positive parameter, which is tuned to achieve
the desired performance.

8.4.2 Speed and Acceleration Estimation using a Mechanical Sensor

In one of the control schemes of Section 8.6, the feedback controller uses the speed ω and the
acceleration a = ω̇. When θ is measured, we can build a high-gain observer to estimate ω and
a using the model

θ̇ = ω, (8.58)

ω̇ = a, (8.59)

ȧ = F(ω,ω0, λd , id , iq )+ μγλduq + δ2(·), (8.60)

where F is given by

F = μλd
[−p βωλd − p ω0id − (αr0 + αsη + αr0βM)iq

]
,

and δ2 is an uncertain function whose components are proportional to ed , eq , or (αr − αr0). A
high-gain observer to estimate ω and a is given by

˙̂θ = ω̂ + (α1/ε)(θ − θ̂), (8.61)

˙̂ω = â + (α2/ε2)(θ − θ̂), (8.62)

˙̂a = F(ω̂, ω0, λd , id , iq )+ μγλduq + (α3/ε3)(θ − θ̂ ), (8.63)

where the constants α1, α2 and α3 assign the roots of s3 + α1s2 + α2s + α3 in the left-half
plane and ε > 0 is chosen sufficiently small. It is typical to implement the the flux observer
(8.23) with ω0 = ω̂, in which case ω0 in (8.63) is taken as ω̂.

8.4.3 Speed Estimation without a Mechanical Sensor

Information about ω is contained in the derivative of iq , as seen from the term pωβλd on the
right-hand side of (8.32). Rewrite equation (8.32) together with the ω̇-equation

i̇q = −p β λdω − f1(λd , id , iq , uq , ω0)+ δ3, (8.64)

ω̇ = μiqλd + δ4, (8.65)
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where

f1(λd , id , iq , uq , ω0) = p ω0id + (αsη + αr0βM)iq + αr0Midiq/λd − γ uq

is available online, and δ3 and δ4 are uncertain terms given by

δ3 = −(αr − αr0)βMiq − p β ωed + αrβeq ,

δ4 = μ(iqed − ideq )− TL/J.

We view iq as the measured output and use it, together with the models (8.64) and (8.65),
to build an observer to estimate ω. The high-gain observer of Section 8.3 can be designed if
the uncertain terms appear only on the right-hand side of (8.65). The presence of δ3 in (8.64)
violates this condition. The change of variables

� = ω − δ3

p β λd

=
(

λd + ed

λd

)
ω + 1

p β λd
[(αr − αr0)βMiq − αrβeq ] (8.66)

brings equations (8.64) and (8.65) into the form

i̇q = −p β λd� − f1(λd , id , iq , uq , ω0), (8.67)

�̇ = μiqλd + δ5, (8.68)

which is suitable for high-gain observer design, where

δ5 = δ4 − d

dt

(
δ3

p βλd

)
def= f2(λd , id , iq , ω, uq , ed , eq , TL , ω0),

and f2 is a continuous function of its arguments. The change of variables (8.66) is invertible,
provided λd + ed 	= 0. We use the high-gain observer

˙̂iq = −p βλd�̂ − f1(λd , id , iq , uq , ω0)+
(α1

ε

)
(iq − îq ), (8.69)

˙̂� = μiqλd −
(

α2

ε2 p βλd

)
(iq − îq ), (8.70)

where ε is a small positive parameter and α1 and α2 are positive constants that assign the roots
of s2 + α1s + α2 = 0 at desired locations in the left-half plane. The scaled estimation errors

ξ1 = iq − îq

ε
, ξ2 = � − �̂
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satisfy the equations

εξ̇1 = −α1ξ1 − p βλdξ2, (8.71)

εξ̇2 =
(

α2

p βλd

)
ξ1 + εδ5. (8.72)

For small ε, the closed-loop system will be a singularly perturbed one, with ξ1 and ξ2 as the
fast variables. According to singular perturbation theory (Kokotović et al. 1999), the stability
of the fast dynamics is determined by the matrix

⎡
⎢⎣

−α1 −p βλd

α2

p βλd
0

⎤
⎥⎦

in which λd > 0 is treated as a constant. By design, the roots of the characteristic equation
s2 + α1s + α2 = 0 have negative real parts. From the high-gain observer theory (Atassi and
Khalil 1999), we know that if the control input us is bounded uniformly in ε, then the estimation
error � − �̂ will be O(ε) after a short transient period [0, T (ε)], where limε→0 T (ε) = 0.
Moreover, the closed-loop system with feedback from �̂ recovers the performance of the
closed-loop system with feedback from � as ε tends to zero. Hence, we can design the
feedback controller with feedback signals from λd , id , iq , and the virtual speed �, defined by
(8.66). In implementation, � is replaced �̂, which is provided by the speed observers (8.69)
and (8.70). The boundedness of us uniformly in ε is ensured by saturating �̂ outside a compact
set of interest.

8.5 Flux Control

In the traditional field-oriented control, the estimated flux λd is regulated to a reference flux
λ∗ > 0, which is taken here as a constant or a time-varying function that approaches a constant
at steady state. This is achieved by the design of a state feedback control law for ud using the
second order model

λ̇d = −αr0λd + αr0Mid , (8.73)

i̇d = p ω0iq + αrβλd − (αsη + αrβM)id + αr0Mi2q/λd + γ ud

+ αrβed + p βωeq . (8.74)

This is a simple control problem and there are several methods to design such a controller. The
traditional approach uses two PI controllers (Leonhard 1996), which are derived as follows.
First, we view id as a control input to equation (8.73) and design the PI flux controller

φ̇λ = λd − λ∗ def= λ̃d , iD = −K f (τ f λ̃d + φλ), (8.75)
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to regulate λd to λ∗. Then, we design the PI current controller

φ̇d = id − iD
def= ĩd , ud = −Kd (τd ĩd + φd ), (8.76)

for equation (8.74) to regulate id to iD . With tight feedback loops, we can ensure the regulation
of λd to λ∗ for a wide range of variation of the variables (iq , ed , eq ) and the parameter αr . The
design should ensure that λd starts at a positive value and approaches λ∗ monotonically so that
λd is always positive. The initial condition of λd is determined by the initial condition of the
observer (8.23), which is at our disposal.
Alternatively, we can approach the design of ud as a nonlinear control problem for which a

number of techniques are available to robustly regulate λd to λ∗. As an example, we describe
a continuously implemented sliding-mode controller. Taking the sliding surface as

s1 = Mid − λ∗, (8.77)

we can rewrite equations (8.73) and (8.74) as

λ̇d = −αr0λd + αr0λ
∗ + αr0s1, (8.78)

ṡ1 = M[p ω0iq + αrβλd − (αsη + αrβM)id + αr0Mi2q/λd + γ ud

+ αrβed + p βωeq ]− λ̇∗. (8.79)

Taking

ud = 1

γ
[−p ω0iq − αr0βλd + (αsη + αr0βM)id − αr0Mi2q/λd + λ̇∗/M + vd ],

reduces the ṡ1-equation to

ṡ1 = M[vd + αrβed + p βωeq − (αr − αro)βMid ].

The choice

vd = −k1sat(s1/μ1),

with

k1 ≥ k0 + |αrβed + p βωeq − (αr − αro)βMid |,

for some positive constants k1 and k0 and a small positive constant μ1, ensures that

s1ṡ1 ≤ −k0M |s1|, for |s1| ≥ μ1,

which shows that, within finite time, s1 and |λd − λ∗| will be of the order O(μ1). By choosing
λ∗ and the initial condition λd (0), it can be ensured that λd will be always positive.
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8.6 Speed Control with Mechanical Sensor

The goal is to design a feedback controller to regulate the speed ω to the speed reference
ω∗ with measurement of the angle θ . We describe two designs. The first design is a current-
control scheme where the current iq is treated as the control input, while vq is determined
by a PI controller that regulates the current iq to its desired value. The second design is a
voltage-control scheme where the voltage uq is treated as the control input.
In the current-control scheme, we assume that the flux observer (8.23) is implemented using

the speed estimate ω̂ provided by the high-gain observer of Section 8.4.1. Because of the
performance recovery property of the high-gain observer, we proceed with the design as if ω
was available for feedback. Therefore, the current iq is designed using the model

θ̇ = ω, (8.80)

ω̇ = μ
[
iqλd + (iqed − ideq )

] − TL/J, (8.81)

ėd = −αr ed + αr0Miqeq/λd + (αr − αr0)(Mid − λd ), (8.82)

ėq = −αr0Miqed/λd − αr eq + (αr − αr0)Miq , (8.83)

where equations (8.82) and (8.83) are obtained from equations (8.33) and (8.34), respectively,
by setting ω0 = ω. To study the regulation of ω to ω∗, we set

x1 = θ −
∫

ω∗, x2 = ω − ω∗.

Assuming that the flux λd has been regulated to a constant value λ∗, the term (Mid − λd ) on
the right-hand side of equation (8.82) is set equal to zero and equations (8.80), (8.81), (8.82),
and (8.83) simplify to

ẋ1 = x2, (8.84)

ẋ2 = μ(λ∗ + ed )iq − μλ∗eq/M − ω̇∗ − TL/J, (8.85)

ėd = −αr ed + αr0Miqeq/λ
∗, (8.86)

ėq = −αr0Miqed/λ
∗ − αr eq + (αr − αr0)Miq . (8.87)

The function

V = e2d + e2q

satisfies the equation

V̇ = −2αr V + 2(αr − αr0)Miqeq ,

which shows that for any bounded iq the flux errors ed and eq will be bounded and, after some
finite time, their ultimate bounds will be proportional to

√|αr − αr0|. Therefore, the design
of the control iq can be carried out using equations (8.84) and (8.85) provided it is made
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robust with respect to the bounded uncertainties ed , eq , and TL . Consider the continuously
implemented sliding-mode control

iq = Iq sat(s2/μ2),

where

s2 = ax1 + x2, a > 0,

Iq is the maximum value of iq , and μ2 is a small positive constant. Let � be a compact set
defined by

� = {|x1| ≤ b/a, |s2| ≤ b, V ≤ c2},

where b > μ2 and c > (αr − αr0)M Iq/2. If the inequalities

λ∗ + ed ≥ k1 and Iq ≥ k2 + ax2 − μλ∗eq/M − ω∗ − YL/J

μ(λ∗ + ed )

are satisfied in � for some positive constants k1 and k2, then it a positively invariant set,
because on the boundaries |x1| = b/a, |s2| = b and V = c2, we have x1 ẋ1 ≤ 0, s2ṡ2 ≤ 0, and
V̇ ≤ 0, respectively. All trajectories starting in � will reach the set

{|x1| ≤ hμ2/a, |s2| ≤ μ2}, h > 1,

in finite time, which shows that the regulation error x2 = ω − ω∗ will ultimately be of the order
of μ2; hence, it can be reduced by decreasing μ2. Furthermore, if ω∗ and TL are constant and
(αr − αr0) is sufficiently small, it can be shown that the trajectories converge to an equilibrium
point where ω = ω∗.
In the voltage-controlled scheme, the voltage uq is treated as the control input while iq is a

state variable that satisfies equation (8.32). Under assumptions similar to the current-control
scheme, and with the definitions

x1 = θ −
∫

ω∗, x2 = ω − ω∗, x3 = ω̇ − ω̇∗,

we arrive at the model

ẋ1 = x2, (8.88)

ẋ2 = x3, (8.89)

ẋ3 = μλ∗[−p βωλ∗ − p ωλ∗/M − (αr0 + αsη + αr0βM)iq )]− ω̇∗ + μγλ∗ud + δ6,

(8.90)

ėd = −αr ed + αr0Miqeq/λ
∗, (8.91)

ėq = −αr0Miqed/λ
∗ − αr eq + (αr − αr0)Miq , (8.92)
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where δ6 is an uncertain term whose components are proportional to ed , eq , or (αr − αr0).
Once again, for any bounded iq the flux errors ed and eq will be bounded and, after some
finite time, their ultimate bounds will be proportional to

√|αr − αr0|. Thus, the design of
uq is a robust control problem for the equations (8.88), (8.89), and (8.90). Using the high-
gain observer of Section 8.4.2 to estimate ω and ω̇, and relying on the performance recovery
property of high-gain observers, we can proceed to design a state feedback control in terms of
x1, x2, and x3. A continuously implemented sliding-mode controller can be designed similar
to the current-control scheme and with similar results. The details can be found in Khalil et al.
(1996).

8.7 Speed Control without Mechanical Sensor

The goal is to design a feedback controller to regulate the speed ω to the speed reference ω∗.
This time, however, we do not have measurements of θ and we use the high-gain observer of
Section 8.4.3 to estimate the speed. The flux observer (8.23) is implemented with ω0 = ω∗

and we assume that flux λd has been regulated to a constant value λ∗. We rewrite equation
(8.32) as

i̇q = −(αsη + αrβM)iq − αr0iq + γ uq + d2, (8.93)

where

d2 = −p βωλ∗ − pω∗λ∗/M − −p βωed + αrβeq

acts as a disturbance input. For any current command iQ , we can design a state feedback
controller for uq , with sufficiently large gains, to regulate iq to iQ . Once again, the traditional
approach (Leonhard 1996) uses the PI current controller

φ̇q = iq − iQ
def= ĩq , uq = −Kq (τq ĩq + φq ). (8.94)

This allows us to view iQ as the control input. Thus, the motor dynamics can be described by
the third order model

ėd = −αr ed + (pω∗ − pω + αr0MiQ/λ∗)eq , (8.95)

ėq = −(pω∗ − pω + αr0MiQ/λ∗)ed − αr eq + (αr − αr0)MiQ + p(ω − ω∗)λ∗, (8.96)

ω̇ = μ[iQ(λ
∗ + ed )− eqλ

∗/M]− TL/J, (8.97)

� =
(

λ∗ + ed

λ∗

)
ω − αr eq

pλ∗ + aiQ, (8.98)

where � is viewed as the measured output and a = (η − η̂)/(p βλ∗). In Khalil et al. (2009) it
is shown how to apply the singular perturbation theory (Kokotović et al. 1999), to justify the
model (8.95), (8.96), (8.97), and (8.98) when the gain Kq is sufficiently large.
The model (8.95), (8.96), (8.97), and (8.98) enables us to design the current iQ as a feedback

function of � to regulate ω to ω∗, and perform rigorous analysis of the nonlinear closed-loop
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system. When ω∗ and TL are constant, or approach constant limits at steady state, it is natural
to use integral action to ensure zero steady-state error (Khalil 2002). Under the condition
� = ω∗, the equilibrium equations are

0 = −αr ēd + (pω∗ − pω̄ + αr0MīQ/λ∗)ēq , (8.99)

0 = −(pω∗ − pω̄ + αr0MīQ/λ∗)ēd − αr ēq

+ (αr − αr0)MīQ + p(ω̄ − ω∗)λ∗, (8.100)

0 = μ[īQ(λ
∗ + ēd )− ēqλ

∗/M]− TL/J, (8.101)

ω∗ =
(

λ∗ + ēd

λ∗

)
ω̄ − αr ēq

pλ∗ + aīQ . (8.102)

Solving equations (8.99) and (8.100) for ēd and ēq in terms of īQ and ω̃
def= ω̄ − ω∗ and

substituting in equation (8.102), it can be shown that

(
−pω̃ + αr0MīQ

λ∗

) (
pω̃ + (αr − αr0)MīQ

λ∗

)
ωc = 0, (8.103)

where

ωc = pω∗ + αr0MīQ

λ∗ .

Assuming that ωc 	= 0, the equation has two solutions:

ω̃ = −(αr − αr0)MīQ

pλ∗ or ω̃ = αr0MīQ

pλ∗ .

It is clear that the first solution is the one we should be interested in because it yields zero
steady-state speed error in the nominal case αr0 = αr . The equilibrium point corresponding to
this solution is

ēd = ēq = 0, (8.104)

īQ = bω∗ + TL/J

μλ∗ ,

ω̄ = ω∗ − (αr − αr0)MīQ

pλ∗ . (8.105)

Can we stabilize this equilibrium point while using integral action? To answer this question,
we linearize equations (8.95), (8.96), (8.97), and (8.98) at the equilibrium point (8.105) to
obtain the linear model

ẋ = Ax + B(iQ − īQ),

� − ω∗ = Cx + D(iQ − īQ),
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where

A =

⎡
⎢⎢⎢⎢⎢⎣

−αr
αr MīQ

λ∗ 0

− αr MīQ

λ∗ −αr pλ∗

μīQ − μλ∗
M −0

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

0

(αr − αr0)M

μλ∗

⎤
⎥⎥⎥⎥⎦ ,

C =
[

ω̄
λ∗ − αr

pλ∗ 1
]
, D = (αr − αr0)M

pλ∗ ,

with the transfer function

G(s) = C(s I − A)−1B + D = n(s)

d(s)
,

in which

n(s) = μλ∗
[

s2 + αr s + ωcαr MīQ

λ∗

]

×
[
1+ (αr − αr0)M

μpλ∗2 s

]
,

d(s) = s

[
(s + αr )

2 +
(

αr MīQ

λ∗

)2]

+ pμλ∗2

M

(
s + αr − αr M2 ī2Q

λ∗2

)
.

Let us note the important role played by ωcīQ in the control design. When ωcīQ = 0, G(s) has
a zero at the origin. Hence, it is impossible to design any linear controller with integral action.
This follows from the theory of servomechanisms (Davison 1976). When ωcīQ < 0, G(s) has
a real zero in the right-half plane; hence, it is nonminimum phase. It is possible to design a
controller with integral action to stabilize the system, but such a controller cannot be a simple
PI controller. This fact can be seen by sketching the root locus of the system for the different
possible pole-zero patterns. For a PI controller, the root locus will always have a branch that
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lies entirely on the positive real axis. This leaves us with the case when ωcīQ is positive. In
this case the transfer function G(s) is minimum phase and we can design a PI controller with
high-gain feedback, of the form

φ̇ω = � − ω∗, iQ = −K [(� − ω∗)φω],

to stabilize the closed-loop system and achieve good tracking properties. The condition

ωcīQ = īQ

[
pω∗ + αr0MīQ

λ∗

]
> 0

is satisfied when the motor is operated in the motoring mode, but not in the generating mode.
The conditionωcīQ = 0 is satisfied if īQ = 0 orωc = 0. The caseωc = 0 indicates operation

at zero frequency. It is well known in the induction motor literature that operating the motor
at zero (or low) frequency is challenging, and that a design for such case will have to exploit
secondary phenomena of the machine, which are not conveyed in our model (see, e.g., Ferrah
et al. 1992). The case īQ = 0 indicates that the motor is running at constant speed without
producing electromagnetic torque, which is unrealistic because balancing the motor’s friction
alone would require production of electromagnetic torque.

8.8 Simulation and Experimental Results

In Khalil and Strangas (1996), Aloliwi et al. (2000), and Aloliwi et al. (1997), the speed
tracking problem is discussed and a controller is developed using rotor position sensors and
under uncertainty of the stator and rotor resistance and the load torque. Simulation results are
presented in Khalil et al. (1996) and Aloliwi et al. (2000), while Aloliwi et al. (1997) presents
experimental results. The change of variables presented earlier is utilized and a third order
high-gain observer is used to estimate the rotor speed and acceleration from its position. In
the experimental results of Aloliwi et al. (1997), the rotor resistance was varied up to 200%,
and the controller was shown to track the speed reference even after the application of a step
load. The actual and estimated speed and flux for rotor resistance at 200% of its nominal value
showed good performance.
In Strangas et al. (1999), a torque controller is presented. Neither the terminal voltages nor

the speed is measured, and the rotor resistance and torque are unknown, although the stator
resistance is considered to be known accurately. The speed of the rotor is estimated from
the stator currents using a high-gain observer. Simulation and experimental results verify the
analysis results that the system is locally stable at zero torque and flux errors at low speeds as
long as the torque command is adequate, and remains at the original stable point during short
torque transients. This was demonstrated for speed reversal where the load was only inertia
and for torque command reversal. Also, although there could be a significant error in speed
estimate, the torque tracking was appreciably better.
In Khalil et al. (2009), the problem of tracking a speed command without a position

measurement is addressed. The discussion is centered on the development of a high-gain speed
observer to estimate the speed from field-oriented currents and voltages. It is independent of
the feedback controller design, and uses the change of variables discussed earlier. It allows for



High-Gain Observers in Robust Feedback Control of Induction Motors 157

errors in both rotor and stator resistance. Simulation and experiments on a 2HP squirrel-cage
induction motor showed closeness between the results of a full and reduced model, made
possible by the use of high-gain feedback. These were compared for 10% increase in Rs and
Rr . The inability to maintain stability at steady state when ωcīQ < 0 as discussed earlier was
demonstrated.

8.9 Conclusions

This chapter summarized the research conducted at Michigan State University to use high-
gain observers and robust nonlinear techniques for the control of electric drives. The work has
focused on field-oriented control of induction motors, but the same tools can be applied to
other machines and different control strategies. One outcome of the experimental testing of the
proposed control strategies is the confirmation that high-gain observers can be successfully
implemented in electric drives with a sampling frequency in the range 10–20 kHz and with
the typical measurement noise that results from using optical encoders.
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9.1 Introduction

Induction motors have definite advantages with respect to more expensive and less reliable
electric motors such as direct-current ones: no commutator, no brushes, no rotor windings in
squirrel-cage motors, capability of producing higher torques with lower weights, smaller size,
and lower rotating masses. The availability of low-cost powerful digital signal processors and
significant advances on power electronics allow for the design of complex induction motor
(IM) controllers with the aim of achieving high performance on speed tracking and power
efficiency. Flux sensors are typically not available so that an output feedback control problem
is to be addressed, in which only the rotor speed and the stator currents are available from
measurements. On the other hand, speed sensors may fail or be eliminated on purpose to
increase reliability and noise immunity as well as to reduce cost and maintenance: in this case,
the estimation and tracking control problem is called “sensorless” since only stator currents are
assumed to be measured and available for feedback. Several difficulties naturally arise: motor
dynamics are nonlinear and multivariable; measured outputs (stator currents for the sensorless
case and stator currents/rotor speed for the output feedback case) do not coincide with the
controlled outputs (rotor speed and flux modulus) that are required to track smooth bounded
reference signals; three critical parameters, namely rotor and stator resistances (which vary
during operations due to motor heating) and load torque (which depends on applications), are
typically uncertain and are to be estimated online.
The sensorless estimation and tracking control problem with no use of nonrobust open-

loop integration of flux dynamics (or equivalently rotor flux measurements) has been recently
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addressed. Even though significant contributions can be found in Khalil et al. (2009), Lin
et al. (2000), Marino et al. (2005, 2008), Montanari et al. (2006, 2007), (see also Zaky 2012;
Traoré et al. 2012), the problem of designing an estimation and tracking control algorithm and
of proving its closed-loop stability for sensorless IMs with uncertainties in load torque and
stator and rotor resistances still remains open to the best of our knowledge. This constitutes
an important problem in real applications since, as experimentally demonstrated in Montanari
et al. (2006) (see alsoMitronikas et al. 2001;Karanayil et al. 2007; Jadot et al. 2009;Hinkkanen
et al. 2010), errors in estimating the stator resistance may lead to steady-state rotor speed and
flux modulus tracking errors and even to instability, especially at low speeds.
Even when the rotor speed measurement is available for feedback (output feedback case)

the corresponding theoretical estimation and tracking control problem can be still considered
open: the available results in Behal et al. (2003), Fattah and Loparo (2001), Feemster et al.
(2000), Jadot et al. (2009), Karagiannis et al. (2009), Marino et al. (1999), Peresada and
Tonielli (2000), Peresada et al. (1999), and Vedagarbha et al. (1997) do not solve, via a
priori verifiable persistency of excitation conditions, the critical case of output tracking in the
presence of uncertain load torque, rotor and stator resistances. In particular: (1) only the case
of known stator resistance is solved in Marino et al. (1999), in the presence, however, of not a
priori verifiable persistency of excitation conditions; (2) only a qualitative sensitivity analysis
of the persistency of excitation conditions is provided by Jadot et al. (2009) for the speed
regulation (and not tracking) problem.
The aim of this chapter is to show that, under specific observability and identifiability

conditions, solutions to the above sensorless and output feedback estimation and tracking
control problems exist. They are constituted by dynamic nonlinear adaptive control algorithms
that incorporate closed-loop observers for the unmeasured motor variables and closed-loop
identifiers for the uncertain parameters (load torque andmotor resistances). In particular, owing
to the use of a sufficiently slow adaptation for the stator resistance estimate (see Montanari
and Tilli (2006) and Jadot et al. (2009) for a similar approach to parameter estimation in IMs
(Ha and Lee 2000) and for the identification of stator resistance from the generated torque at
steady state, the closed-loop error system is guaranteed to be locally exponentially stable under:
(1) persistency of excitation conditions, which may be interpreted in terms of rotor speed and
flux observability and rotor resistance identifiability, and involve the rotor speed and flux
modulus reference signals only; (2) conditions for the identifiability in first approximation of
the stator resistance at steady state. Exponential rotor speed and flux modulus tracking is thus,
in both cases, achieved along with exponential estimation of the unmeasured state variables
and uncertain parameters.
Theoretical and simulative comparisons between the two presented controllers (sensorless

control and output feedback one) are finally carried out in terms of persistency of excitation
requirements and closed-loop performances: a time-varying rotor flux reference signal is no
longer needed in the output feedback case (leading to the possibility of minimizing the power
losses at steady state), while, as expected, transient performance are largely improved when
the rotor speed signal is available for feedback.

9.2 Problem Statement

Assuming linear magnetic circuits, the dynamics of a balanced nonsaturated IM with one pole
pair in a fixed reference frame attached to the stator are given by the well-known fifth order
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model (see, for instance, Krause 1986; Leonhard 2001; Marino et al. 2010)

dωm

dt
= μ(φraisb − φrbisa)− TL

J
,

dφra

dt
= −αφra − ωmφrb + αLmisa,

dφrb

dt
= −αφrb + ωmφra + αLmisb, (9.1)

disa

dt
= −

( Rs

σ
+ βαLm

)
isa + 1

σ
νsa + βαφra + βωmφrb,

disb

dt
= −

( Rs

σ
+ βαLm

)
isb + 1

σ
νsb + βαφrb − βωmφra,

in whichωm is the rotor speed, φra and φrb are the rotor fluxes, isa and isb are the stator currents,
ωm, φra, φrb, isa, and isb constitute the state variables, νsa, and νsb are the stator voltages
(which constitute the control inputs) in a fixed reference attached to the stator; the outputs

to be controlled are the rotor speed ωm and the rotor flux modulus
√

φ2ra + φ2rb. The model
parameters are: load torque TL = TLn + θ , where θ ∈ [−θm, θm] denotes the constant uncer-
tain variation from the constant nominal value TLn (TL is typically uncertain since it depends
on applications); (known) motor moment of inertia J ; rotor and stator windings resistances
Rr and Rs and (known) inductances Lr and Ls ; and (known)mutual inductance Lm . To simplify

notations we use the reparametrization: α = 1
τr

= Rr
Lr

, β = Lm
σ Lr

, μ = Lm
J Lr

, σ = Ls(1− L2m
Ls Lr ).

Besides the load torque TL , the parameters α and Rs are also assumed to be uncertain taking
into account resistance variations during operations due to motor heating. If we introduce,
as in Marino et al. (1999), an angle ε0(t), whose dynamics

dε0(t)
dt = ω0(t) will be later

defined (ε0(0) is an arbitrary initial condition), we can equivalently consider the vectors
[φrd , φrq ]T , [isd , isq ]T , and [νsd , νsq ]T , which are obtained by multiplying the corresponding

(a, b) vectors [φra, φrb]T , [isa, isb]T , and [νsa, νsb]T by the matrixR(ε0) =
[
cos ε0 sin ε0

− sin ε0 cos ε0

]
.

Such vectors contain the direct and quadrature components of rotor flux, stator current, and
stator voltage vectors, respectively, with respect to a time-varying (d, q) reference frame
rotating at speed ω0(t) and identified by the angle ε0(t) in the fixed (a, b) reference frame.
Using the state coordinates (ωm, φrd , φrq , isd and isq ) and the control variables (νsd and νsq )
the motor dynamics (9.1) become (see, for instance, Krause 1986)

dωm

dt
= μ(φrd isq − φrq isd )− TL

J
,

dφrd

dt
= −αφrd + (ω0 − ωm)φrq + αLmisd ,

dφrq

dt
= −αφrq − (ω0 − ωm)φrd + αLmisq , (9.2)

disd

dt
= −

( Rs

σ
+ βαLm

)
isd + 1

σ
νsd + ω0isq + βαφrd + βωmφrq ,

disq

dt
= −

( Rs

σ
+ βαLm

)
isq + 1

σ
νsq − ω0isd + βαφrq − βωmφrd .
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Let us denote by ω∗
m(t) and φ∗(t) ≥ cφ > 0 the smooth bounded reference signals with

bounded time derivatives for the output variables to be controlled, which are the rotor

speed ωm and the rotor flux modulus
√

φ2ra + φ2rb =
√

φ2rd + φ2rq , respectively. Following the

field-oriented control strategy in Blaschke (1972), our goal is to design dynamic sensorless
and output feedback compensators of the form

dε0(t)

dt
= ω0(t), (9.3)[

νsa(t)
νsb(t)

]
=
[
cos ε0(t) − sin ε0(t)
sin ε0(t) cos ε0(t)

] [
νsd (t)
νsq (t)

]
,

by choosing ω0(t), νsd (t), and νsq (t) so that, for any initial condition (ωm(0), φra(0),
φrb(0), isa(0), isb(0), or ε0(0)) in a suitable domain D and for any uncertainty [θ, α, Rs]T in
the known region [−θm, θm]× [αm, αM ]× [Rsm, RsM ], (θm ≥ 0, 0 < αm ≤ αM , 0 < Rsm ≤
RsM ), we have

lim
t→∞

[
ωm(t)− ω∗

m(t)
] = 0, (9.4)

and

lim
t→∞

[
φrd (t)− φ∗(t)

] = 0, (9.5)

lim
t→∞

[
φrq (t)

] = 0, (9.6)

which imply that

lim
t→∞

[√
φ2ra(t)+ φ2rb(t)− φ∗(t)

]
= 0.

Equations (9.5) and (9.6) imply that the flux vector (φra(t) and φrb(t)) asymptotically rotates
at speed ω0(t) and that the (d, q) frame rotating at speed ω0(t) tends to have the d-axis
coincident with the rotating flux vector as t goes to infinity, that is, field orientation is
achieved.

9.3 Nonlinear Estimation and Tracking Control for Sensorless
Induction Motors

Sensorless control for rotor speed and flux modulus tracking in IMs is typically based on
the feedforward control, which depends on all system parameters, including load torque and
resistances. The simplest feedback action is to add PI controls on the direct and quadrature
stator voltage vector components on the basis of the direct and quadrature stator currents errors
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(see, Marino et al. 2004 2010). Field orientation is not attained in the presence of parameter
errors (especially in load torque and rotor resistance) and steady-state errors may appear:
they cannot be arbitrarily reduced by increasing the PI gains in the current loop. Steady-state
speed tracking errors may not be acceptable in high-performance traction applications such
as driverless subways or trains. Field orientation and consequently vanishing speed tracking
errors can be achieved by online estimation of the critical parameters load torque and rotor
resistance: this estimation is inherently linked with the estimation of rotor speed and fluxes and
of stator resistance. This is a difficult problem since there are identifiability and observability
issues when only stator currents are measured: it is well established that a time-varying flux
modulus is required for the simultaneous estimation of rotor speed and rotor resistance (see
Ha and Lee 2000; Marino et al. 2010, and references therein). Hence the estimation and
tracking control problems are strictly related for sensorless IMs: a controller with parameters
errors may give steady-state errors or even instability, while parameter estimation cannot be
achieved if the sensorless motor is not kept in persistently exciting operating conditions. In this
section we present a sensorless solution to the estimation and tracking control problem for IMs
with uncertain load torque and rotor and stator resistances, which relies on: (1) persistency of
excitation conditions, which may be interpreted in terms of rotor speed and flux observability
and rotor resistance identifiability and involve the rotor speed and flux modulus reference
signals only; (2) conditions for the identifiability in first approximation of the stator resistance
at steady state.

9.3.1 Estimation and Tracking Control Algorithm

We propose the following estimation and tracking control algorithm, which is based on a stator
current-control loop containing feedforward actions and stabilizing feedback terms:

[
νsa

νsb

]
=
[
cos ε0 − sin ε0
sin ε0 cos ε0

] [
νsd

νsq

]
,

νsd = σ
[( R̂s

σ
+ α̂βLm

)
isd − ω0isq − βα̂φ̂rd − βω∗

m φ̂rq − ke(isd − i∗
sd )+

d

dt
i∗
sd (t)

−k

4
(isd − i∗

sd )β
2
(
3+ α2M + ω∗2

m + φ̇∗2

α̂2
+ L2m(isd − i∗

sd )
2
)]

,

νsq = σ
[( R̂s

σ
+ α̂βLm

)
isq + ω0isd − βα̂φ̂rq + βω̂m φ̂rd − ke(isq − i∗

sq )+
d

dt
i∗
sq (t)

−k

4
(isq − i∗

sq )β
2
(

L2m[i
∗2
sq + (isq − i∗

sq )
2]+ ω∗2

m + 5+ α2M + φ∗2
)]

, (9.7)[
isd

isq

]
=
[
cos ε0 sin ε0

− sin ε0 cos ε0

] [
isa

isb

]
,

in which: the reference signals i∗
sd and i∗

sq for isd and isq and the speed ω0 of the (d, q) rotating
frame, which, as in field-oriented control, are responsible for rotor speed and flux modulus
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tracking, are chosen as

i∗
sd = φ∗

Lm
+ φ̇∗

α̂Lm
, (9.8)

i∗
sq = 1

μφ∗
[
−kω(ω̂m − ω∗

m)+
TLn

J
+ sat(θ̂ )

J
+ ω̇∗

m

]
,

ε̇0 = ω0 = ω̂m + α̂Lmi∗
sq

φ∗ ;

the estimates (ω̂m, φ̂rd , φ̂rq , θ̂ , α̂, and R̂s) for the unmeasured state variables (ωm, φrd ,

and φrq ) and for the uncertain constant parameters (θ, α, and Rs) appearing in equations
(9.7) and (9.8) are provided by the eighth order dynamic closed-loop adaptive observer, which
includes four auxiliary internal variables (îsd , îsq , ẑd , and ẑq )

φ̂rd = − 1
β
(isd − ẑd ), φ̂rq = − 1

β
(isq − ẑq ),

˙̂i sq = −
( R̂s

σ
+ βα̂Lm

)
isq + 1

σ
νsq − ω0isd − βω̂mφ∗ + (λ1 + λ2 + λ3)(isq − îsq )

− φ̇∗

φ∗ (isq − îsq )− β[ω∗
m(φ̂rd − φ∗)− α̂φ̂rq ],

˙̂ωm = μφ∗isq − (λ1λ3 + λ1λ2 + λ2λ3)

βφ∗ (isq − îsq )

−TLn

J
− θ̂

J
+ 1

φ∗
[TLn

J
+ sat(θ̂)

J
+ ω̇∗

m

]
[φ̂rd − φ∗]

−μ
[ φ∗

Lm
+ φ̇∗

α̂Lm

]
φ̂rq ,

˙̂θ = Jλ1λ2λ3

βφ∗ (isq − îsq ), (9.9)

˙̂i sd = −
( R̂s

σ
+ βα̂Lm

)
isd + 1

σ
νsd + ω0isq − ω∗

m(isq − ẑq )− α̂(isd − ẑd )+ ki (isd − îsd ),

˙̂zd = − R̂s

σ
isd + 1

σ
νsd + ω0 ẑq + α̂

γ1
(isd − îsd ),

˙̂zq = − R̂s

σ
isq + 1

σ
νsq − ω0 ẑd + ω∗

m

γ1
(isd − îsd ),

˙̂α = Proj

[
−βφ̇∗

γ2α̂
(isd − îsd ), α̂

]
,

α̂(0) ∈ [αm, αM ], 0 < αm − εα,

˙̂Rs = −εR

[
(ω∗

misq + α̂isd )

σγ1
(isd − îsd )

]
,

R̂s(0) ∈ [Rsm, RsM ],
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where Proj[ζ, α̂] is the projection algorithm (see, Marino et al. 2008) defined by

Proj[ζ, α̂] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ, if αm ≤ α̂ ≤ αM ;
ζ, if α̂ < αm and ζ ≥ 0;
ζ, if α̂ > αM and ζ ≤ 0;
ξζ1ζ, if α̂ < αm and ζ < 0;
ξζ2ζ, if α̂ > αM and ζ > 0;

ξζ1 = 1− αm
2 − α̂2

αm
2 − (αm − εα)2

,

ξζ2 = 1− α̂2 − αM
2

(αM + εα)2 − αM
2
.

The load torque uncertainty saturated estimate appearing in equations (9.8) and (9.9) is defined
as

sat(θ̂ ) =
⎧⎨
⎩

θ̂ , if 0 ≤ θ̂ ≤ θm ;∑3
i=0 li θ̂

i , if θm < θ̂ < θm + ε;
θm + ε, if θ̂ ≥ θm + ε;

l0 = θ2m(θm + ε)

ε2
, l1 = −2θmε − 3θ2m + ε2

ε2
,

l2 = ε + 3θm

ε2
, l3 = − 1

ε2
,

in which sat(x) is a class C1 odd function that is linear in the closed set [−θm, θm] and satisfies
|sat(x)| ≤ θm + ε for all x ∈ �. The overall estimation and tracking control algorithm (9.7),
(9.8), and (9.9) depends on: the available isa and isb measurements; the smooth bounded
reference signals (ω∗

m and φ∗) and their bounded first and second order time derivatives; the
known motor parameters J, Lr , Ls, and Lm ; the known bounds θm, αm, αM , Rsm, and RsM ;
the positive control parameters kω, ke, k, ki , λ1 	= λ2 	= λ3, γ1, γ2, εα, εR, and ε.

9.3.2 Stability Analysis

As in Marino et al. (2008), introduce the angle ε∗
0 that satisfies

ε̇∗
0(t) = ω∗

m(t)+
αLm

μφ∗2(t)

[TL

J
+ ω̇∗

m(t)
]
,

ε∗
0(0) = ε0(0),

depending on the uncertain parameters α and TL ; define the tracking and estimation
errors: ω̃m = ωm − ω∗

m, φ̃rd = φrd − φ∗, φ̃rq = φrq , ed = isd − i∗
sd , eq = isq − i∗

sq , ĩsd = isd
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−îsd , ĩsq = isq − îsq , eω = ω̂m − ωm, eφd = φrd − φ̂rd , eφq = φrq − φ̂rq , θ̃ = θ − θ̂ , α̃ = α

− α̂, R̃s = Rs − R̂s . Consider the changes of variables[
z̃a

z̃b

]
=
[
cos ε∗

0 − sin ε∗
0

sin ε∗
0 cos ε∗

0

] [
βeφd

βeφq

]
,

x̃1 = ĩsq

β2φ∗2 , x̃2 = eω

βφ∗ , x̃3 = θ̃

Jβφ∗ ,

e =
⎡
⎣ 1 1 1

λ2 + λ3 λ1 + λ3 λ1 + λ2
λ2λ3 λ1λ3 λ1λ2

⎤
⎦

−1⎡
⎣ x̃1

x̃2
x̃3

⎤
⎦ ,

let y = [ω̃m, φ̃rd , φ̃rq , ed , eq , eT , ĩsd , z̃a, z̃b, α̃]T ∈ �12, and choose the positive control param-
eters ke, λ1, λ2, and λ3 such that

ke > αM L2m,

min{λ1, λ2, λ3} + inf
t≥0

{ φ̇∗(t)
φ∗(t)

}
≥ c̃φ > 0.

Assume, as in Marino et al. (2008), that there exist two positive reals tp and kp such that the
persistency of excitation condition (I3 is the 3× 3 identity matrix)

∫ t+tp

t
�T (τ )�(τ )dτ ≥ kp I3, ∀ t ≥ 0, (9.10)

which may be physically interpreted in terms of motor observability and rotor resistance
identifiability (see Marino et al. 2008, and related references therein), holds with

�T (t) =

⎡
⎢⎢⎣

α cos ε∗
0(t)− ω∗

m(t) sin ε∗
0(t)

α sin ε∗
0(t)+ ω∗

m(t) cos ε
∗
0(t)

− βφ̇∗(t)
α

⎤
⎥⎥⎦ .

Note that ε∗
0 (and consequently (9.10)) only depends on the exogenous reference signals ω∗

m
and φ∗.

Remark 9.3.1 The proposed estimation and tracking control algorithm is obtained by
replacing the uncertain stator resistance Rs by its estimate R̂s in the estimation and tracking
control law presented in Marino et al. (2008), which assumes the knowledge of the stator
resistance and relies on backstepping and robust adaptive techniques involving the Lyapunov
function

W = 1

2

[
ω̃2m + sα(φ̃

2
rd + φ̃2rq + e2d + e2q )+ sβ‖e‖2

+sγ

(
ĩ2sd + γ1 z̃

2
a + γ1 z̃

2
b + γ2α̃

2 + 2p
∥∥Q p(t)[z̃a, z̃b, α̃]

T − �T (t)ĩsd

∥∥2)],
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where sα, sβ, sγ , p ∈ �+ and the matrix Q p(t) is the solution of the linear matrix differential
equation

Q̇ p(t) = −Q p(t)+ �T (t)�(t),

Q p(0) = e−tp kp I.

The fluxes are estimated through the estimates ẑd and ẑq of the auxiliary variables zd =
isd + βφrd and zq = isq + βφrq whose dynamics

żd = − Rs

σ
isd + 1

σ
νsd + ω0zq ,

żq = − Rs

σ
isq + 1

σ
νsq − ω0zd

depend on neither the unmeasured rotor speed ωm nor the uncertain parameter α.

The design of the estimation law for R̂s is based on the following stability analysis. The
closed-loop error system can be written as

ẏ = Q1(y, t)+ Q2(y, t)R̃s

.= Ay(t)y + By(y, t)y + AR(t)R̃s + BR(y, t)R̃s,

where

lim
‖y‖→0

sup
t≥0

‖By(y, t)y‖
‖y‖ = 0,

lim
‖[y,R̃s ]‖→0

sup
t≥0

‖BR(y, t)R̃s‖
‖[y, R̃s]‖

= 0.

Since, according to Marino et al. (2008), the origin of the unperturbed system (i.e., when
R̃s = 0)

ẏ = Ay(t)y + By(y, t)y

is locally exponentially stable, the origin of the linearized unperturbed system

ζ̇ = Ay(t)ζ
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is exponentially stable (see Khalil 1996) so that there exists a function Vζ such that

c1‖ζ‖2 ≤ Vζ (ζ, t) ≤ c2‖ζ‖2,
∂V (ζ, t)

∂t
+ ∂V (ζ, t)

∂ζ
Ay(t)ζ ≤ −c3‖ζ‖2,

∥∥∥∥∥∂V (ζ, t)

∂ζ

∥∥∥∥∥ ≤ c4‖ζ‖,

in terms of certain positive reals ci , 1 ≤ i ≤ 4.
As in Jadot et al. (2009) and Montanari and Tilli (2006) and in accordance with our

simulation results, we assume that there exists, for any R̃s in a sufficiently small compact
set (containing the origin), a steady-state solution h(R̃s, t) to the closed-loop error system. In
particular, let Br (0) be the closed ball centered at the origin with sufficiently small radius r
and assume that for all (R̃s, t) ∈ Br (0)× [0,+∞) the following condition holds:

A) there exists a smooth solution h(R̃s, t) to the nonlinear partial differential equation

∂h(R̃s, t)

∂t
= Q1(h(R̃s, t), t)+ Q2(h(R̃s, t), t)R̃s

with h = [hω̃m , hφ̃rd
, hφ̃rq

, hed , heq , he1 , he2 , he3 , hĩsd
, hz̃a , hz̃b , hα̃]T (h(R̃s, t) being

bounded on Br (0)× [0,+∞) along with its first order partial derivatives) and
satisfying

h(0, t) = 0, ∀ t ≥ 0.

We will look for a measurable steady-state solution component from which R̃s can be
in first approximation identified. To this purpose, we first recall that βeφd = zd − ẑd =
z̃d , and βeφq = zq − ẑq = z̃q , so that

[
z̃a

z̃b

]
=
[
cos ε∗

0 − sin ε∗
0

sin ε∗
0 cos ε∗

0

] [
z̃d

z̃q

]
,

and we then consider the dynamics of z̃a and z̃b. They only depend, in first approximation, on
the measurable ĩsd and on the uncertain R̃s , and they can be written as

˙̃za = ω̃0 z̃b − 1

γ1
[α̂ cos ε∗

0 − ω∗
m sin ε∗

0]ĩsd − R̃s

σ
[isd cos ε

∗
0 − isq sin ε∗

0]

.= pa(y, t)− Aza(y, t)R̃s − Bza(y, t)p(y),

˙̃zb = −ω̃0 z̃a − 1

γ1
[α̂ sin ε∗

0 + ω∗
m cos ε

∗
0]ĩsd − R̃s

σ
[isd sin ε∗

0 + isq cos ε
∗
0]

.= pb(y, t)− Azb(y, t)R̃s − Bzb(y, t)p(y),
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where

ω̃0 = ω̃m + eω − Lm

μφ∗2
[TL

J
+ ω̇∗

m

]
α̃ + Lm

μφ∗2 (α − α̃)
[
−kω(ω̃m + eω)− (θ − sat(θ̂))

J

]
,

and

Aza = 1

σ
[isd cos ε

∗
0 − isq sin ε∗

0],

Bza = 1

γ1
[α̂ cos ε∗

0 − ω∗
m sin ε∗

0],

Azb = 1

σ
[isd sin ε∗

0 + isq cos ε
∗
0],

Bzb = 1

γ1
[α̂ sin ε∗

0 + ω∗
m cos ε

∗
0],

pa = ω̃0 z̃b, pb = −ω̃0 z̃a, p = ĩsd .

From the (z̃a, z̃b)-dynamics we obtain at steady state

fa(R̃s, t)
.= ∂hz̃a (R̃s, t)

∂t

= pa(h(R̃s, t), t)− Aza(h(R̃s, t), t)R̃s

−Bza(h(R̃s, t), t)p(h(R̃s, t)),

fb(R̃s, t)
.= ∂hz̃b (R̃s, t)

∂t

= pb(h(R̃s, t), t)− Azb(h(R̃s, t), t)R̃s

−Bzb(h(R̃s, t), t)p(h(R̃s, t)). (9.11)

Even though the signals Bza and Bzb are not measurable owing to their dependence on the
unmeasurable ε∗

0 , the variable (we omit, for the sake of brevity, the dependence on y and t)

sπ = [Aza Bza + Azb Bzb]p =
(
α̂isd + ω∗

misq
)

σγ1
ĩsd

is available for feedback and shows the following useful property: at steady state for R̃s ∈ Br (0)
(we omit, for the sake of brevity, the dependence on R̃s, h(R̃s, t), and t), it satisfies

sπ = −Aza fa − A2za R̃s + Aza pa

−Azb fb − A2zb R̃s + Azb pb, (9.12)
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which, according to Hadamard’s Lemma in Arnold (1992), becomes ( f̄a(R̃s, t) and f̄b(R̃s, t),
are suitable functions, and R̃s ∈ Br (0))

sπ = −[Aza f̄a + A2za + Azb f̄b + A2zb]R̃s + Aza pa + Azb pb

= −[Aza f̄a,0 + A2za + Azb f̄b,0 + A2zb]R̃s + Aza pa

+Azb pb − [Aza( f̄a − f̄a,0)+ Azb( f̄b − f̄b,0)]R̃s, (9.13)

where f̄a,0 = f̄a(0, t), and f̄b,0 = f̄b(0, t). By neglecting, in the right- hand side of the previous
equation, the higher order terms1 in R̃s (in accordance with our local results) we obtain for
R̃s ∈ Br (0)

sπ = −λR̃s, (9.14)

with

λ = i2dr

σ 2
+ i2qr

σ 2
+ f̄a,0

σ
[idr cos ε

∗
0 − iqr sin ε∗

0]+
f̄b,0

σ
[idr sin ε∗

0 + iqr cos ε
∗
0],

idr = φ∗

Lm
+ φ̇∗

αLm
,

iqr = 1

μφ∗
[TL

J
+ ω̇∗

m

]
.

We now assume that in first approximation, R̃s is identifiable at steady-state from sπ . In
analytical terms, according to (9.14), we thus introduce the following condition (b = 1 or
b = −1; R̃s ∈ Br (0))

B) bλ(t) ≥ cR for all t ≥ 0 with cR a positive real.

The remainder of the section is devoted to show that, if B is satisfied, designing the stator
resistance estimation law as

˙̂Rs(t) = −bεRsπ (y(t), t)

solves the problem stated in the previous section. Without loss of generality we will consider
b = 1, which is in accordance with our simulation results and with the following remark.

Remark 9.3.2 If f̄a,0 = f̄b,0 = 0, then λ = i2dr
σ 2

+ i2qr

σ 2
, whose positiveness is clearly related

to stator resistance identifiability conditions. The above design may be thus interpreted as
a modification of the design proposed in Marino et al. (2010) for the case of constant rotor
speed and flux modulus and zero load torque, which led to the stator resistance estimator

1Recall that, by Hadamard’s Lemma in Arnold (1992), h(R̃s , t) = h∗(R̃s , t)R̃s with h∗(R̃s , t) a suitable bounded
function on Br (0)× [0, +∞).
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[kR is a positive control parameter]

R̂s = ξs − kR

2

(
i2sa + i2sb

)
,

ξ̇s = −kR

σ

(
i2sa + i2sb

)
R̂s + kR

σ
(νsaisa + νsbisb) ,

with a resulting stator resistance estimation error dynamics of the form

˙̃Rs = −kR

σ

(
i2sa + i2sb

)
R̃s

= −kR

σ

(
i2sd + i2sq

)
R̃s .

Define

y∗(t) = h(R̃s(t), t),

so that we can write for R̃s ∈ Br (0)

ẏ∗(t) = gt (R̃s(t), t)+ gR(R̃s(t), t) ˙̃Rs(t)

= Q1(h(R̃s(t), t), t)+ Q2(h(R̃s(t), t), t)R̃s(t)+ gR(R̃s(t), t) ˙̃Rs(t)

= Ay(t)y∗(t)+ By(y∗(t), t)y∗(t)+ AR(t)R̃s(t)+ BR(y∗(t), t)R̃s(t)

+εR gR(R̃s(t), t)[Aza(y(t), t)Bza(y(t), t)

+Azb(y(t), t)Bzb(y(t), t)]p(y(t)),

with

gt (R̃s, t) = ∂h(R̃s, t)

∂t
,

gR(R̃s, t) = ∂h(R̃s, t)

∂ R̃s
.

Introduce the tracking error

ξ (t) = y(t)− y∗(t) = y(t)− h(R̃s(t), t)

= [ξω̃m (t), ξφ̃rd
(t), ξφ̃rq

(t), ξed (t), ξeq (t), ξe1 (t),

ξe2 (t), ξe3 (t), ξĩsd
(t), ξz̃a (t), ξz̃b (t), ξα̃(t)]

T ,
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so that we have for R̃s ∈ Br (0)

ξ̇ (t) = Ay(t)ξ (t)+ By(y(t), t)y(t)− By(y∗(t), t)y∗(t)

+BR(y(t), t)R̃s(t)− BR(y∗(t), t)R̃s(t)

−εRgR(R̃s(t), t)[Aza(y(t), t)Bza(y(t), t)

+Azb(y(t), t)Bzb(y(t), t)]hĩsd
(R̃s(t), t)

−εRgR(R̃s(t), t)[Aza(y(t), t)Bza(y(t), t)

−Azb(y(t), t)Bzb(y(t), t)]ξĩsd
(t). (9.15)

We will show that the origin of the closed-loop error system with state variables (ξ and R̃s) is
locally exponentially stable provided that the design parameter εR is chosen sufficiently small:
exponential convergence to zero of R̃s(t) will guarantee exponential convergence to zero of
y∗(t) (and therefore of y(t)). To this purpose, from equation (9.11) we write for R̃s ∈ Br (0)

fa(R̃s(t), t) = pa(y∗(t), t)− Aza(y(t), t)R̃s(t)− Bza(y(t), t)p(y∗(t))

−[Aza(y∗(t), t)− Aza(y(t), t)]R̃s(t)

−[Bza(y∗(t), t)− Bza(y(t), t)]p(y∗(t)),

fb(R̃s(t), t) = pb(y∗(t), t)− Azb(y(t), t)R̃s(t)− Bzb(y(t), t)p(y∗(t))

−[Azb(y∗(t), t)− Azb(y(t), t)]R̃s(t)

−[Bzb(y∗(t), t)− Bzb(y(t), t)]p(y∗(t)),

so that

ma(y(t), y∗(t), t) = −Aza(y(t), t)R̃s(t)− fa(R̃s(t), t)

+pa(y∗(t), t)− [Aza(y∗(t), t)− Aza(y(t), t)]R̃s(t)

−[Bza(y∗(t), t)− Bza(y(t), t)]p(y∗(t))
.= −Aza(y(t), t)R̃s(t)− fa(R̃s(t), t)+ Na(y(t), y∗(t), t),

mb(y(t), y∗(t), t) = −Azb(y(t), t)R̃s(t)− fb(R̃s(t), t)

+pb(y∗(t), t)− [Azb(y∗(t), t)− Azb(y(t), t)]R̃s(t)

−[Bzb(y∗(t), t)− Bzb(y(t), t)]p(y∗(t))
.= −Azb(y(t), t)R̃s(t)− fb(R̃s(t), t)+ Nb(y(t), y∗(t), t), (9.16)

with

ma(y(t), y∗(t), t) = Bza(y(t), t)p(y∗(t)),

mb(y(t), y∗(t), t) = Bzb(y(t), t)p(y∗(t)).
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The stator resistance estimation error dynamics can be rewritten as (R̃s ∈ Br (0))

˙̃Rs(t) = εR[Aza(y(t), t)Bza(y(t), t)

+Azb(y(t), t)Bzb(y(t), t)]p(y∗(t))

+εR[Aza(y(t), t)Bza(y(t), t)

+Azb(y(t), t)Bzb(y(t), t)]ξĩsd
(t),

since, by definition, p(y∗(t)) = hĩsd
(R̃s(t), t) and ξĩsd

(t) = ĩsd (t)− hĩsd
(R̃s(t), t). Thus we have

(R̃s ∈ Br (0))

˙̃Rs(t) = εR[Aza(y(t), t)ma(y(t), y∗(t), t)

+Azb(y(t), t)mb(y(t), y∗(t), t)]

+εR[Aza(y(t), t)Bza(y(t), t)

+Azb(y(t), t)Bzb(y(t), t)]ξĩsd
(t). (9.17)

Recalling that for R̃s ∈ Br (0) (a1 and a2 are suitable positive reals that do not depend on εR

and t)

‖y∗‖ ≤ a1|R̃s |,

‖gR(R̃s, t)‖ =
∥∥∥∂h(R̃s, t)

∂ R̃s

∥∥∥ ≤ a2,

‖y‖ ≤ ‖y∗‖ + ‖ξ‖, (9.18)

on the basis of the quadratic function

V (ξ, R̃s, t) = Vζ (ξ, t)+ R̃2s
2

and its time derivative along the trajectories of the closed-loop system we can establish,
according to B, that the origin of the closed-loop error system (recall equations (9.12), (9.13),
(9.14), (9.15), (9.16), (9.17), and (9.18)) with state variables (ξ and R̃s) is locally exponentially
stable2 provided that a sufficiently small design parameter εR is chosen. Since exponential
convergence to zero of R̃s(t) implies exponential convergence to zero of y∗(t), we can establish
that y(t) converges exponentially to zero. Therefore exponential convergence to zero of all
tracking and estimation errors is achieved3.

2Due to the conservative nature of the Lyapunov analysis, the computable attraction domain of the origin of the
closed-loop error system may be much smaller than the effective one and, in any case, its determination depends on
the knowledge of the positive real cR appearing in B.
3Note that, since the origin of the closed-loop error system is locally exponentially stable, sufficiently small initial
tracking and estimation errors guarantee that R̃s (t) ∈ Br (0) for all t ≥ 0.



Adaptive Output Feedback Control of Induction Motors 173

Remark 9.3.3 The conditions A and B required by the above control design can be inter-
preted as follows. Assume that: (1) the motor is controlled, under persistency of excitation
(9.10), by the algorithm proposed in Marino et al. (2008), which is not adaptive with respect to
the stator resistance; (2) the stator resistance is slightly different from its nominal value used
by the controller so that a sufficiently small stator resistance estimation error R̃s appears. A
sufficient condition for successfully applying the above estimation and tracking control design
is the existence, for any R̃s in a sufficiently small compact set (containing the origin), of a
steady-state solution h(R̃s, t) to the closed-loop error system with the suitable measurable
component sπ from which R̃s can be in first approximation identified (in the sense of B).
The gist of the control and estimation design can be alternatively explained in the following
simplified terms: if the controller in Marino et al. (2008) is used with a constant value of the
stator resistance, which is slightly different from its actual value, then a steady-state solution
appears that causes the output function sπ to be, in first approximation, monotone with respect
to the Rs-estimation error R̃s; thus, by adjusting the Rs-estimate R̂s on the basis of this output
function (slowly in order not to deviate too much from the steady-state solution) one can obtain
correct estimation of Rs and consequent convergence to zero of all tracking and estimation
errors.

Remark 9.3.4 The ninth order estimation and tracking control algorithm (9.7), (9.8), and
(9.9) contains twelve control parameters kω, ke, k, ki , λ1, λ2, λ3, γ1, γ2, εα, εR and ε whose
role may be evaluated by examining both the closed loop error equations and the corresponding
stability analysis. The parameters kω, ke, ki , (λ1, λ2, λ3) directly affect the dynamics of the
tracking and estimation errors ω̃m, (ed , eq ), ĩsd , (x̃1, x̃2, x̃3), respectively, while the parameter
γ1 determines the influence of the estimation error ĩsd on the dynamics of the error variables
(z̃a, z̃b); the parameter γ −1

2 and εR are the adaptation gains for α̂ and R̂s , respectively, while
the parameters k, εα and ε characterize the robustifying terms in νsd and νsq , the projection
algorithm Proj[·, ·], and the saturation function sat(·), respectively.

Remark 9.3.5 As in Marino et al. (2008), the rotor flux modulus reference sig-
nal is required to be time varying: if ‖[φ̇∗(t), ω̈∗

m(t)]‖ = 0 for all t ≥ 0, then all the
points (ω̃m, φ̃rd , φ̃rq , ed , eq , x̃1, x̃2, x̃3, ĩsd , z̃a, z̃b, α̃, R̃s) = (−Gα̃, 0, 0, 0, 0, 0, G

βφ∗ α̃, 0, 0,

0, 0, α̃, 0), with G = Lr
φ∗2 (TL + J ω̇∗

m), are equilibrium points for the closed-loop system so
that, when both rotor speed and flux modulus reference signals are constant, local exponential
rotor speed tracking may not be guaranteed by the sensorless estimation and tracking control
algorithm (9.7), (9.8), and (9.9). This is strictly related to the fact that when rotor speed and
(nonzero) flux modulus are constant so that Lmisa − φra = −cφrb, Lmisb − φrb = cφra with
c = TL Lr

(φ2ra+φ2rb)
model (9.1) becomes

0 = μ(φraisb − φrbisa)− TL

J
,

dφra

dt
= −αeφrb,

dφrb

dt
= αeφra,
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disa

dt
= − Rs

σ
isa + 1

σ
νsa + βαeφrb,

disb

dt
= − Rs

σ
isb + 1

σ
νsb − βαeφra,

in which the lumped parameter αe = αc + ωm replaces the separate α and ωm in (9.1).
Recall that necessary conditions for equation (9.10) to be satisfied (see Marino et al. (2008)
accordingly are (τ ∈ [t, t + tp]): i) ε̇∗

0(τ ) 	= 0, in the case of constant rotor speed reference
signal ω∗

m(τ ); ii) φ̇∗(τ ) 	= 0. A sufficient condition for inequality (9.10) to be satisfied (with
tp = 2π

|ω0c| ) is to choose a time-varying rotor flux modulus reference signal φ∗(t) and a constant
rotor speed reference value ω∗

m such that (t ≥ 0)

1

φ∗2(t)
= φ∗2

c + ε∗ cos
( t

ε∗

)
,

0 	= ω0c = ω∗
m + αLm TLφ∗2

c

μJ
,

in which φ∗
c is a positive constant and ε∗ is a sufficiently small positive real. Note that the

smaller the ω∗
m is, the larger tp results: roughly speaking, the convergence to zero of the

tracking and estimation errors is faster at higher speeds.

Remark 9.3.6 The estimation and tracking control algorithm (9.7), (9.8), and (9.9) for
sensorless IMs exhibits the following interesting similarities with the estimation and track-
ing control algorithm for sensorless permanent-magnet synchronous motors (PMSMs) rigor-
ously derived in Tomei and Verrelli (2011): (1) both estimation and tracking control algo-
rithms are straightforward modifications of the field-oriented controls for IMs and PMSMs,
which incorporate closed-loop observers for the unmeasured variables (rotor speed ωm, rotor
fluxes φra and φrb for IMs—rotor speed ωm, sine and cosine functions of electrical angle
sin(θe) and cos(θe) for PMSMs) and the uncertain parameters (load torque TL and motor
resistances Rr and Rs for IMs—load torque TL for PMSMs); (2) both estimation and track-
ing control algorithms use estimates of stator currents (as auxiliary variables) and estimates
of advantageous variables whose dynamics do not depend on unmeasured variables and
uncertain parameters4; (3) the closed-loop observers incorporated by both the estimation
and tracking control algorithms rely on persistency of excitation conditions, which can be
physically interpreted in terms of motor observability and parameter identifiability and only
restrict the family of reference signals5.

4The role played by zd and zq for IMs is played by ξa and ξb for PSMSs where ξa = a cos(θe)+ bisa and ξb =
a cos(θe)+ bisb with a, b positive parameters.
5The role played by ε̇∗

0 and φ̇∗ for the IMs case is played by ω∗
m for the PMSMs case.
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9.4 Nonlinear Estimation and Tracking Control for the Output
Feedback Case

The intuitive steps of the estimation and tracking control design presented in the previous
section allow for a straightforward simplification when the rotor speed is measured. This leads
to a novel output feedback estimation and tracking control algorithm for IMs, which is itself
a specific contribution of this chapter.

9.4.1 Estimation and Tracking Control Algorithm

When rotor speed is measured and available for feedback, an estimation and tracking control
design similar to the one presented in the previous section leads to the following slight
modifications to the adaptive observer (9.9) (λ1 	= λ2):

˙̂ωm = μφ∗isq + (λ1 + λ2)(ωm − ω̂m)− TLn

J
− θ̂

J

+ 1

φ∗
[TLn

J
+ sat(θ̂)

J
+ ω̇∗

m

]
[φ̂rd − φ∗]− μ

[ φ∗

Lm
+ φ̇∗

α̂Lm

]
φ̂rq ,

˙̂θ = −Jλ1λ2(ωm − ω̂m),

˙̂i sq = −
( R̂s

σ
+ βα̂Lm

)
isq + 1

σ
νsq − ω0isd − βωmφ∗

+ki (isq − îsq )− β[ω∗
m(φ̂rd − φ∗)− α̂φ̂rq ],

˙̂zd = − R̂s

σ
isd + 1

σ
νsd + ω0 ẑq + α̂

γ1
(isd − îsd )− ω∗

m

γ1
(isq − îsq ),

˙̂zq = − R̂s

σ
isq + 1

σ
νsq − ω0 ẑd + ω∗

m

γ1
(isd − îsd )+ α̂

γ1
(isq − îsq ), (9.19)

˙̂α = Proj

[
− β

γ2

[
φ̇∗

α̂
(isd − îsd )+ Lmi∗

sq (isq − îsq )

]
, α̂

]
,

α̂(0) ∈ [αm, αM ], 0 < αm − εα,

˙̂Rs = −εR

[ (ω∗
misq + α̂isd )

σγ1
(isd − îsd )+ (−ω∗

misd + α̂isq )

σγ1
(isq − îsq )

]
,

R̂s(0) ∈ [Rsm, RsM ].

9.4.2 Stability Proof

Local exponential rotor speed and flux modulus tracking along with uncertain parameters
estimation can be proved by using arguments similar to those used in the previous section.
This simplified algorithm (locally) extends the result presented in Marino et al. (1999) to
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the case of uncertain stator resistance6, while providing, in contrast to Jadot et al. (2009),
the following, a priori verifiable, persistency of excitation conditions depending on reference
signals only:

P) there exist two positive reals tp and kp such that

∫ t+tp

t
�̄T (τ )�̄(τ )dτ ≥ kp I3, ∀ t ≥ 0 (9.20)

holds with

�̄(t) =
[

l11(t), l12(t),− βφ̇∗(t)
α−l12(t), l11(t),−βLmiqr (t)

]
,

l11(t) = α cos ε∗
0(t)− ω∗

m(t) sin ε∗
0(t)

l12(t) = α sin ε∗
0(t)+ ω∗

m(t) cos ε
∗
0(t).

In particular, in contrast to the sensorless case, constant rotor speed and fluxmodulus references
and nonzero load torques suffice to satisfy equation (9.20) (with tp = 2π

|ε̇∗
0 |
). On the other hand,

equation (9.20) cannot be satisfied when rotor speed and flux modulus reference signals are
constant and the load torque is zero: when rotor speed and flux modulus are constant and the
load torque is zero (so that no rotor currents are induced), the rotor resistance is not identifiable
from rotor speed and stator current measurements.

Remark 9.4.1 Even though the structure of both estimation and tracking control algorithms
(sensorless case and output feedback case) is similar7, the observation and adaptation strate-
gies are substantially different: while in the sensorless case the information about (ωm, TL ) and
(φrd , φrq , α) is taken from isq and isd respectively, in the output feedback case the information
about TL is directly extracted from ωm and the remaining information about (φrd , φrq , α) is
taken from (isd , isq ).

9.5 Simulation Results

We perform simulations for the two controllers designed in the previous sections. The aim is
to confirm the analytical results presented in the chapter while enlightening the reader about
the theoretical role of the speed sensor in the considered scenario. The simulations are carried
out with reference to the three-phase single pole pair 0.6 kW IM (OEMER 7-80/C), whose
model has been experimentally validated in Marino et al. (2010) and whose parameters are:
J = 0.0075Kgm2, Rs = 5.3�, Rr = 3.3�, Ls = 0.365H, Lr = 0.375H, and Lm = 0.34H

6Note that the simplified controller is apparently much simpler than the one presented in Marino et al. (1999) and it
exhibits definite implementation advantages.
7Note that, even though the measured speed ωm is available, no modification of i∗

sq and ω0, as well as of νsd and
νsq , is introduced: from a practical point of view, this allows the filtered estimate ω̂m to appear in crucial parts of the
controller instead of the possibly noisy signal ωm .
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Figure 9.1 Sensorless case: rotor speed and flux modulus reference signals, applied load torque, and
stator resistance

(see Section 1.8 of Marino et al. (2010) for the complete set of data provided by the manufac-
turer). All initial conditions of the motor and of the estimation and tracking control algorithms
are set to zero except for φra(0) = 0.1 Wb, α̂(0) = 11.1 s−1 (the value of the parameter α is
8.8 s−1), and R̂s(0) = 5.39�.

9.5.1 Sensorless Case

We test the sensorless estimation and tracking control algorithm (9.7), (9.8), and (9.9) by
simulation with parameters (the values are in SI units) kω = 120, ke = 900, k = 0.01, ki =
900, λ1 = 120, λ2 = 150, λ3 = 180, γ1 = 120−1, γ2 = 900−1, αm = 4.5, αM = 13.5, εα =
0.9, and εR = 0.001. The references for rotor speed and flux modulus along with the applied
torque and the stator resistance are reported in Figure 9.1. The rotor flux modulus reference
is time varying according to the persistency of excitation condition (9.10). The rotor speed
reference goes from 0 to 100 rad/s and back to zero, which is a critical theoretical situation
for stator resistance uncertainty. The stator resistance increases its nominal value from 5.3�

to 6.3� as rotor speed increases and then decreases to 5.2� as rotor speed decreases. The
load torque TL (5.104 Nm) is applied at t = 0.9 s (before that the rotor speed reference signal
grows up to the value 100 rad/s); the uncertainty θ is −12% of the load torque nominal value
TLn . Figures 9.2 and 9.3 show the time histories of the rotor speed and flux modulus and the
corresponding tracking errors, Figures 9.4, 9.5, and 9.6 show the convergence to zero of the
uncertain parameters estimation errors, while the a and b components of the stator voltage



178 AC Electric Motors Control

–20

0

0 5

(r
ad

/s
)

(r
ad

/s
)

10 15 20 25

20

40

60

80

100

–8

–6

0 5 10
(s)

15 20 25

–4

–2

0

2

Rotor speed

Rotor speed tracking error

Figure 9.2 Sensorless case: rotor speed and corresponding tracking error

0
0

0.5

0.5

0.4
0.3
0.2
0.1

0
–0.1
–0.2

1

1.5

5

Rotor flux modulus

Rotor flux modulus tracking error

(s)

(s)

(W
b)

(W
b)

10 15 20 25

0 5 10 15 20 25

Figure 9.3 Sensorless case: rotor flux modulus and corresponding tracking error



Adaptive Output Feedback Control of Induction Motors 179

0
0 5 10 15 20 25

1

2

3

(N
m

)
(N

m
) 4

5

6
Load torque estimate

–1
0 5 10 15 20 25

–0.5

0

0.5

1

1.5
Load torque estimation error

(s)

Figure 9.4 Sensorless case: load torque estimate and estimation error

2
0 5 10 15 20 25

4

6

8

(1
/s

)
(1

/s
)

10

12 α estimate

–4
0 5 10 15 20 25

–2

0

2

4

6 α estimation error

(s)

Figure 9.5 Sensorless case: α estimate and estimation error



180 AC Electric Motors Control

5
0 5 10 15 20 25

5.5

6

(Ω
)

(Ω
)

6.5
Stator resistance estimate

–0.4
0 5 10 15 20 25

–0.3

–0.1

0.1
0.2

0

–0.2

0.3
0.4

Stator resistance estimation error

(s)
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vector are reported in Figure 9.7. Rather satisfactory dynamic performances, in the presence
of parameter uncertainties, are achieved by only measuring the stator currents.

9.5.2 Output Feedback Case

We test the output feedback control by simulation with the same control parameter values (λ3
is not needed here). Since no constraint concerning the time-varying nature of the rotor flux
modulus reference is required, we are able to illustrate the benefits of choosing a definitely
constant rotor flux modulus reference signal that asymptotically minimizes the power losses
depending on the uncertain parameters estimates. The references for rotor speed and flux
modulus along with the applied torque and the stator resistance are reported in Figure 9.8. The
first and the last two profiles are the same of the previous subsection (rotor speed reference
signal, load torque8, and stator resistance), while the availability of estimates for the critical
uncertain parameters TL , Rs, and α involved in the expression of the rotor flux modulus

φ∗
pl (TL , Rs, α) = 4

√(
L2m Lrα

Rs
+ L2r

)
T 2L , (9.21)

minimizing the power losses at steady state (see, Vedagarbha et al. 1997), allows for online
adjustment of the rotor flux modulus reference. In particular, after a flux excitation phase (of

8As in the previous subsection the uncertainty θ is −12% of the load torque nominal value TLn .
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Figure 9.9 Output feedback case: rotor speed and corresponding tracking error

about 1 s), the rotor flux modulus reference is chosen as the output of a unitary gain third
order filter with input φ∗

pl (q1, q2, q3), which depends on the saturated estimates (provided by
the adaptive controller)

q1 = sat(TLn−θm,TLn+θm)(T̂L ),

q2 = sat(Rsm ,Rs M )(R̂s),

q3 = sat(αm ,αM )(α̂),

of the uncertain load torque, stator resistance, and parameter α. The saturation function
sat(l1,l2)(x) is a continuous odd function, which is linear in the closed set [l1, l2] and satisfies
sat(l1,l2)(x) = l1 for all x ≤ l1 and sat(l1,l2)(x) = l2 for all x ≥ l2. Figures 9.9 and 9.10 show
the time histories of the rotor speed and flux modulus and the corresponding tracking errors,
Figures 9.11, 9.12, and 9.13 show the convergence to zero of the uncertain parameters esti-
mation errors, while the absorbed power and the power losses are reported in Figure 9.14.
Satisfactory dynamic performances are achieved in the presence of parameter uncertainties,
while stator currents and voltages are within physical limits: transient tracking and estima-
tion behaviors are, as expected, largely improved when the rotor speed signal is available for
feedback (compare Figures 9.9 and 9.10 with Figures 9.2 and 9.3).
Finally, the same simulation is performed bymaintaining the nominal value (1.16Wb) of the

rotor flux modulus reference9 instead of suitably adjusting it via the converging estimates of

9Note that 1.16 Wb is the value to which a sinusoidal component has been previously added in order to obtain rotor
resistance identifiability.
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the uncertain parameters: Figure 9.15 (recall Figure 9.14) apparently illustrates the corre-
sponding benefits, since an increase of the absorbed power results.

9.6 Conclusions

In this chapter, the existence of solutions to both the sensorless and output feedback estimation
and tracking problems for sensorless IMs (9.1) with uncertain load torque and resistances has
been demonstrated. Exponential rotor speed andfluxmodulus tracking is guaranteed alongwith
unmeasured states and uncertain parameters estimation provided that persistency of excitation
conditions restricting the reference signals ω∗

m and φ∗ are satisfied along with conditions
for the identifiability in first approximation of the stator resistance at steady state. Specific
contributions of the chapter are: (1) a proof for the the exponential estimation of both rotor
and stator resistances in the presence of uncertain load torque for IMs with no speed sensors;
(2) a novel estimation and tracking control algorithm when the rotor speed is measured;
(3) a clear interpretation, in terms of parameter identifiability and power loss minimization, of
the theoretical potentialities of feeding back speed measurements in the presented scenario of
uncertain load torque and motor resistances.
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10.1 Introduction

Agreat deal of interest has been paid to inductionmachine control over the last years. However,
most works have focused on the speed/flux/torque regulation supposing the machine magnetic
circuit to be linear. The point is that speed regulation cannot be ensured in optimal efficiency
conditions, for a wide range of speed and load torque variations, unless the magnetic circuit
nonlinearity is explicitly accounted for in the motor model. Several studies have dealt with
speed/flux regulation (with constant flux reference (CFR)) following several control strategies
ranging from simple techniques, for example, field-oriented control (Montanan et al. 2006;
Ouadi and Giri 2002), to more sophisticated nonlinear approaches, e.g. feedback linearization
(Abdelaziz and Ghedjati 2007), direct torque control (Jasinski et al. 2006; Singh et al. 2006),
or sliding-mode control (Traore et al. 2008). A common point of these works is that the control
design relies on a relatively simple model, called standard in Chapter 2. This model assumes
a linear representation of the magnetic circuit and this assumption is not true in real-life
machines. Accordingly, the control objective concerning the flux is limited, in most available
solutions, to regulation around constant values (Figure 10.1). Specifically, the CFR is equal

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 10.1 Control strategy involving constant flux reference (the controller is obtained from the
standard model)

to its nominal value generally located at the elbow of the machine magnetic characteristic
(Moreno-Eguilaz and Peracaula 1999; Canudas et al. 2000). Doing so, energetic efficiency is
only maximal when the machine operates all the time in the neighborhood of its nominal point.
But, this is not the case in all practical applications because the machine load is generally
varying online or may depend on system states such as position or velocity (Leonard 2001).
Indeed, in presence of small loads, the operation point is below the nominal value causing
useless energy stored in stator inductances, which reduces the machine efficiency. Also, in
the case of overloaded machine, the operation point is placed in the saturation zone of the
magnetic characteristic. Then, the standard model is no longer valid and, consequently, the
control performances are no longer guaranteed. To overcome the above shortcomings, it is
necessary in speed control to let the flux reference be dependent on both the speed reference
and load torque, that is, the flux reference must be state-dependent (Figure 10.2). Examples
of speed/flux controllers involving state-dependent flux reference have been developed in
Novotnak et al. (1999), Elfadili et al. (2009), Ouadi et al. (2010), El Fadili et al. (2012). The
proposed controllers include flux reference optimizers, the design of which relies on a machine
model that takes into account the nonlinearity of the magnetic characteristic.
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Figure 10.2 Control strategy involving state-dependent optimal flux (SDOF) reference
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The control strategy presented in this chapter enjoys the following features:

System modeling: The induction machine is represented by an experimentally
validated model that accounts for the nonlinearity of the magnetic characteristic
(Ouadi et al. 2011).

Control design:Amultivariable controller is built up on the basis of the preceding
model, using a nonlinear design technique. Specifically, the controller consists of
two main components: (1) A nonlinear regulator that makes the motor velocity
match its varying reference value and enforces the rotor flux norm track its optimal
state-dependent reference. (2) An online flux reference optimizer that provides the
preceding speed/flux regulator with the optimal flux reference (OFR) trajectory.
Optimality is intended in the sense that the developedmotor torque is not oversized,
reducing thus the stator current consumption. The flux optimizer design relies on
the above motor model and expresses in function of state variables, especially the
stator currents.

Control performance analysis: The performances of the whole nonlinear con-
troller are formally analyzedmaking adequate use of relevant tools fromLyapunov
stability.

The chapter is organized as follows: in Section 10.2, the induction motor is modeled taking
into account magnetic saturation; the multi-objective controller is designed and analyzed
in Section 10.3; the control performances are illustrated through numerical simulations in
Section 10.4.

10.2 Induction Motor Modeling with Saturation Effect Inclusion

As mentioned in Section 10.1, the achievement of speed regulation and flux optimization
in presence of wide-range load variation necessitates that the control design is based on a
model that takes into consideration the nonlinear nature of the machine magnetic circuit.
Several modeling methods have been proposed to account for such saturation effect (Faiz and
Seifi 1995; Levi 1995; Thiringer 1996; Abdel Fattah and Loparo 2003; Pedra et al. 2009).
However, the obtained models have usually proved not to be useful for control design purpose.
Alternative modeling methods that provide control-oriented models are still very few, for
example, Novotnak et al. (1999) and Ouadi et al. (2011). Presently, the focus is put on the
approach of Ouadi et al. (2011).

Inductances Saturation

In this section, we emphasize the effect of magnetic saturation on the self- and mutual induc-
tances at, and between, the stator and the rotor. The magnetic fluxes for the stator and rotor
phases are given by Leonard (2001)

φs = φls + φμ = ls is + φμ, (10.1)

φr = φlr + φμr = lr ir + φμr , (10.2)
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where φμ and φμr designate the magnetizing air-gap fluxes along one phase of the stator and
rotor, respectively; φls and φlr are the leakage fluxes at the stator and the rotor, respectively.
The expressions (10.1)-(10.2) mean that φls and φlr are proportional, respectively, to the

stator and the rotor current. This is valid in real-life machines because the large leakage flux
is circulating in air, not in iron. Letting k denote the machine transformation ratio, the flux
equations (10.1) and (10.2) are rewritten as, in the dq-coordinates:

φsd = ls isd + φμd , φsq = ls isq + φμq , (10.3)

φrd = lr ird + kφμd , φrq = lr irq + kφμq . (10.4)

The contribution of the stator and the rotor to the air-gap flux generation is expressed in term
of the magnetizing current, denoted by iμ (Ouadi et al. 2011; Thiringer 1996; Faiz and Seifi
1995). Then, the (d, q) components of the system are given by the expressions

iμd = isd + kird, iμq = isq + kirq. (10.5)

For squirrel-cage motors, the transformation ratio can be chosen equal to unity, that is,
k = 1.
Assuming that the magnetizing flux saturates only in amplitude (its direction remains

unchanged), it follows that the instantaneous quantities φμ and iμ are in phase. On the other
hand, the norms�μ and Iμ are related to each other by themagnetic characteristic�μ = λ(Iμ),
depicted by Figure 10.3a. Using these observations, it follows that the instantaneous values
φμ and iμ are related by

φμ = �μ

Iμ
iμ. (10.6)

The forthcoming development involves the staticmagnetizing parameter Lm , defined as follows
(Ouadi et al. 2011):

Lm = �μ

Iμ
= �μ

λ−1(�μ)
. (10.7)

Clearly, the magnetizing inductance Lm is dependent on the (varying) magnetizing flux�μ. In
Ouadi et al. (2011), it is shown that this dependence can be captured by a polynomial function
of the form

1

Lm
= κ(�μ) = q0 + q1�μ + q2�

2
μ + · · · + qn�

n
μ. (10.8)

Figure 10.3b illustrates the polynomial approximation for a (loadless) 7.5 kW induction
machine. In view of equation (10.7), the (d, q)-components of the magnetizing flux can be
expressed as follows:

φμd = Lmiμd , φμq = Lmiμq . (10.9)
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From equations (10.3), (10.4), (10.5), and (10.9), the inductances Ls and Lr can be written
as the sum of the leakage and the magnetizing inductances

Ls = ls + Lm, Lr = lr + Lm . (10.10)

In induction motor analysis, the leakage inductances are usually grouped together either in the
stator side or on the rotor side. Considering the first option, amounts to let lr = 0 and ls = lseq.
Then, equation (10.10) becomes

Ls = lseq + Lm, Lr = Lm, φr = φμ, (10.11)

where lseq is the equivalent inductance of both the stator and the rotor leakage brought to the
stator side.

Induction Motor Model

Using the previous inductance expressions, it is shown in Ouadi et al. (2011) that, the induction
machine dynamics are described in the α-β frame by the following model that accounts for
magnetic saturation:

dωm

dt
= p

Lm

J Lr
(φrαisβ − φrβ isα)− TL

J
− F

J
ωm, (10.12)

disα

dt
= −γ isα + Lm Rr

σ Ls L2r
φrα + pωm

Lm

σ Ls Lr
φrβ + 1

σ Ls
vsα, (10.13)

disβ

dt
= −γ isβ + Lm Rr

σ Ls L2r
φrβ − pωm

Lm

σ Ls Lr
φrα + 1

σ Ls
vsβ, (10.14)

dφrα

dt
= − Rr

Lr
φrα + pωmφrβ + Rr Lm

Lr
isα, (10.15)

dφrβ

dt
= − Rr

Lr
φrβ − pωmφrα + Lm Rr

Lr
isβ. (10.16)

Replacing the stator, the rotor and the mutual inductances (Ls , Lr , and Lm) by their
equivalent expressions given by equation (10.11), the above model simplifies to

dωm

dt
= p

J
(φrαisβ − φrβ isα)− TL

J
− F

J
ωm, (10.17)

disα

dt
= −γ isα + Rr

lseq
κ(�r )φrα + p

1

lseq
ωmφrβ + 1

lseq
vsα, (10.18)

disβ

dt
= −γ isβ + Rr

lseq
κ(�r )φrβ − p

1

lseq
ωmφrα + 1

lseq
vsβ, (10.19)

dφrα

dt
= −Rrκ(�r )φrα + pωmφrβ + Rr isα, (10.20)

dφrβ

dt
= −Rrκ(�r )φrβ − pωmφrα + Rr isβ, (10.21)
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where lseq is the equivalent inductance of both stator and rotor leakage brought on the stator

side. In this case, the parameter σ = 1− L2m
Ls Lr

becomes σ = Ls−Lm
Ls

= lseq

Ls
. The corresponding

model in the rotating dq-coordinate frame is described by the following equations:

dωm

dt
= p

J
(φrdisq − φrqisd )− TL

J
− F

J
ωm, (10.22)

disd

dt
= −γ isd + ωs isq + Rr

lseq
κ(�r )φrd + p

1

lseq
ωmφrq + 1

lseq
vsd , (10.23)

disq

dt
= −γ isq − ωs isd + Rr

lseq
κ(�r )φrq − p

1

lseq
ωmφrd + 1

lseq
vsq, (10.24)

dφrd

dt
= −Rrκ(�r )φrd − (ωs − pωm)φrq + Rr isd , (10.25)

dφrq

dt
= −Rrκ(�r )φrq + (ωs − pωm)φrd + Rr isq, (10.26)

where the various notations are defined as follows:

• κ(�r ) is the only varying parameter depending on the machine magnetic state as shown by
Figure 10.3b; this dependence has been given a polynomial approximation in Ouadi et al.
(2011)

κ(�r ) = q0 + q1�r + q2�
2
r + · · · + qn�

n
r , (10.27)

and the involved coefficients have been identified (based on spline approximation) using the
experimental magnetic characteristic of Figure 10.3a.
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Figure 10.3 Magnetic characteristic experimentally obtained in (Ouadi et al. 2011) for a 7.5 kW induc-
tion motor. The crosses (+++) indicate experimental points, the solid line the corresponding polynomial
interpolation
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• �r denotes the amplitude of the (instantaneous) rotor flux, denoted as φr . Accordingly,
one has

�r =
√

φ2rα + φ2rβ (10.28)

where (φrα , φrβ) (resp. (φrd, φrq)) denote the rotor flux α, β (resp. d, q) components.
• (isα , isβ) (resp. (isd , isq)) are the α, β (resp. d, q) components of the stator current.
• (vsα , vsβ ), (resp. vsd , vsq) denote the stator voltage in α, β (resp. d, q) coordinate (obtained
after Park transformation) of the three-phase stator voltages.

• ωm represents the motor speed.
• Rs and Rr are the stator and rotor resistances.
• F , J , and TL are respectively the friction coefficient, rotor inertia, and load torque.
• p is the number of pole pairs.
• lseq = σ Ls is the equivalent inductance of both stator and rotor leakage brought to the stator
side.

• γ = Rs+Rr
lseq

Numerical values of the model parameters are given by Table 10.1, they correspond to an
induction motor of 7.5 kW.

10.3 Controller Design

10.3.1 Control Objective

The aim is to develop a controller able to achieve the two following objectives:

1. Speed regulation: the machine speed ωm must track, as closely as possible, a given time-
varying reference signal ω∗

m .
2. Flux optimization: the rotor flux norm �r must track as accurately as possible a state-
dependent flux reference �∗

r = F(Is), where Is denotes the stator current norm and the
function F(.) has yet to be determined so that �r = �∗

r entails the minimization of the
stator current consumed by the machine.

10.3.2 Rotor Flux Reference Optimization

It was already mentioned that, most existing induction machine speed controllers involve a
flux regulation loop (Figure 10.1). Furthermore, this loop is generally designed based upon
standard models that ignore the machine magnetic saturation. Then, for coherency, the flux
reference signal is generally given a constant value coinciding with the machine nominal flux
value (Ouadi and Giri 2002; Jasinski et al. 2006; Montanan et al. 2006; Singh et al. 2006;
Abdelaziz and Ghedjati 2007; Traore et al. 2008). As a result, such controllers are unable
to achieve optimal machine performances (high energetic efficiency, unitary power factor,
optimized motor torque) in presence of small loads. In El Fadili et al. (2012) and Ouadi et al.
(2010), new controllers have been proposed that include flux reference optimizers. Optimality
was intended in the sense of minimal stator current consumption and the optimizers were
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designed using models that account for the magnetic circuit saturation. The approach of El
Fadili et al. (2012) is revisited in the following text.
The first step is to find a relationship between the rotor flux norm and the stator current norm.

In this respect, recall that the norms of all electrical quantities are invariant when passing from
the αβ-coordinates to the dq-coordinates. Then, it makes sense for simplicity to conduct the
present development within the oriented dq-coordinates frame. Indeed, within this reference
frame, the flux q-component is null and all state variables are constant in steady state. That is,
the dq-coordinate model described by equations (10.22), (10.23), (10.24), (10.25), and (10.26)
is based upon. It turns out that, the machine electromagnetic torque Tem is simply expressed
as follows:

Tem = pφrdisq = p�r isq. (10.29)

On the other hand, equation (10.25) simplifies to

d�r

dt
= Rr isd − Rrκ(�r )�r , (10.30)

yielding the steady-state current isd ,

isd = κ(�r )�r . (10.31)

In turn, the stator current norm expression simplifies to

Is =
√

i2sd + i2sq. (10.32)

Then, using equations (10.29), (10.30), (10.31), and (10.32), one gets the following expression
of the electromagnetic torque:

Tem = p�r

√
I 2s − (κ(�r )�r )2. (10.33)

Figure 10.4 shows the curves representing the electromagnetic torque Tem versus the flux �r ,
for various values of the stator current Is . It is clearly seen that, to a given torque it corresponds
a multitude of operation points differing by the value of the flux �r and the current Is . For
instance, a torque Tem = 20 Nm can be produced, for the machine of Table 10.1, with

• a flux �r = 0.5 Wb and a current Is = 8.5 A;
• a flux �r = 0.37 Wb and a current Is = 10 A;
• a flux �r = 0.21 Wb and a current Is = 16 A.

From an energetic viewpoint, the best operation point is one that involves the least current
consumption. Let Tei (i = 1, . . . , r ) be a sufficiently large sample of relevant torque values. It is
readily seen from Figure 10.4 that for any Tei , there is a unique couple (�ri , Isi ) that involves
the least possible stator current. That is, a set of couples (�ri , Isi ) can be obtained using
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Figure 10.4 Electromagnetic torque Tem in function of rotor flux φr , for different stator currents
norm Is

equation (10.33) and interpolated to get a polynomial function F(.) such that �ri = F(Isi ).
The polynomial interpolation thus obtained, referred to flux reference optimizer, is denoted as

�∗
r = F(Is) = h0 + h1 Is + h2 I 2s + · · · + hn I n

s . (10.34)

Note that this polynomial flux optimizer is nothing other than the optimal current flux (OCF)
characteristic. The optimizer associated to themachine defined by the numerical characteristics
of Table 10.1 is shown in Figure 10.5. Recall that optimality is understood in the sense of
minimal absorbed stator current Is for a given torque Tem .

Remark 10.3.1 The polynomial interpolation yielding the function F(.) can be performed
using, for example, the Matlab functions POLYDER, POLYVAL, SPLINE, and POLYFIT.
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Figure 10.5 Optimal current-flux characteristic obtained, for the induction machine with physical
characteristics of Table 10.1
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10.3.3 Speed and Flux Control Design and Analysis

In this section, a speed and a flux regulator is designed for the saturated induction machine
described by equations (10.17), (10.18), (10.19), (10.20), and (10.21). The speed reference ω∗

m
and its two first derivatives are bounded. These requirements can always be met by filtering the
original reference through second order linear filters. The flux reference�∗

r is provided online

by the optimizer (10.34). Recall that if �r (with �r =
√

φ2rα + φ2rβ) equals �∗
r , the machine

will operate in optimal conditions (i.e., with minimal absorbed stator current Is).
The speed/flux controller design will now be performed in two steps using the backstepping

technique (Krstic et al. 1995). First, introduce the tracking errors

z1 = ω∗
m − ωm, (10.35)

z2 = �∗2
r − (φ2rα + φ2rβ), (10.36)

from the polynomial interpolation of the experimental points (�∗
Tej
, I ∗

Tej
). This characteristic

defines the flux reference optimizer

Step 1. It follows from equation (10.17), (10.20), and (10.21) that the errors z1 and z2 undergo
the differential equations

ż1 = ω̇∗
m − p

J
(φrαisβ − φrβ isα)+ TL

J
+ F

J
ωm, (10.37)

ż2 = 2�̇∗
r �

∗
r − 2(φ̇rαφrα + φ̇rβφrβ),

ż2 = 2�̇∗
r �

∗
r + 2Rrκ(�r )�r + Rr (isαφrα + isβφrβ).

(10.38)

In equations (10.37) and (10.38), the quantities p
J (φrαisβ − φrβ isα) and Rr (isαφrα + isβφrβ)

stand up as virtual control signals. Let us temporarily suppose these to be the actual control
signals and consider the Lyapunov function candidate

V1 = 1

2
(z21 + z22). (10.39)

It can be easily checked that the time derivative of equation (10.39) can be made negative
definite function of (z1, z2), that is,

V̇1 = −c1z
2
1 − c2z

2
2, (10.40)

by letting p
J (φrαisβ − φrβ isα) = μ1 and Rr (isαφrα + isβφrβ) = ν1 with

μ1 = c1z1 + ω̇∗
m + TL

J
+ F

J
(ω∗

m − z1), (10.41)

and

ν1 = c2z2 + 2�̇∗
r �

∗
r + 2Rrκ(�r )�r , (10.42)

where c1 and c2 are any positive design parameters.
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As the quantities p
J (φrαisβ − φrβ isα) and Rr (isαφrα + isβφrβ) are not the actual control

signals, they cannot be let equal to μ1 and ν1, respectively. Nevertheless, we retain the
expressions of μ1 and ν1 as the first stabilizing functions and introduce the new errors

z3 = μ1 − p

J
(φrαisβ − φrβ isα), (10.43)

z4 = ν1 − Rr (isαφrα + isβφrβ). (10.44)

Then, using the notations (10.41), (10.42), (10.43), and (10.44), the dynamics of the errors z1
and z2, initially described by equations (10.37) and (10.38), can be rewritten as follows:

ż1 = ω∗
m − (μ1 − z1)+ TL + Fωm,

ż1 = −c1z1 + z3,
(10.45)

ż2 = −c2z2 + z4. (10.46)

Similarly, the time derivative of V1 can be expressed in function of the new errors as follows:

V̇1 = −c1z
2
1 − c2z

2
2 + z1z3 + z2z4. (10.47)

Step 2: The second design step consists of choosing the actual control signals, vsα and vsβ ,
so that all errors (z1, z2, z3, and z4) converge to zero. To this end, it must be made clear how
these errors depend on the actual control signals (vsα and vsβ). First, focusing on z3, it follows
from equation (10.43) that

ż3 = μ̇1 − p

J
(φ̇rαisβ + φrα i̇sβ − φ̇rβ isα − φrβ i̇sα). (10.48)

Using equations (10.18), (10.19), (10.20), (10.21), and (10.41), one gets from equation (10.48)

ż3 = c1 ż1 + ω̈∗
m + ṪL

J
+ F

J
(ω̇∗

m − ż1)− p

J
((−Rrκ(�r )φrα + pωmφrβ + Rr isα)isβ

+φrα

(
−γ isβ + 1

lseq
Rrκ(�r )φrβ − p

1

lseq
ωmφrα + 1

lseq
vsβ

)
− (−Rrκ(�r )φrβ − pωmφrα + Rr isβ)isα

−φrβ

(
−γ isα + Rr

lseq
κ(�r )φrα + p

1

lseq
ωmφrβ + 1

lseq
vsα)

)
. (10.49)

For convenience, the above equation is given the following compact form:

ż3 = μ2 + p

J

1

lseq
(φrαvsβ − φrβvsα), (10.50)
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with

μ2 = c1(−c1z1 + z3)+ ω̈∗
m + ṪL

J
+ F

J
(ω̇∗

m − (−c1z1 + z3))

− p

J
((−Rrκ(�r )φrα + pωmφrβ + Rr isα)isβ

+φrα

(
−γ isβ + Rr

lseq
κ(�r )φrβ − p

1

lseq
ωmφrα

)
− (−Rrκ(�r )φrβ − pωmφrα + Rr isβ )isα

−φrβ

(
−γ isα + Rr

lseq
κ(�r )φrα + p

1

lseq
ωmφrβ)

)
. (10.51)

Similarly, it follows from equation (10.44) that z4 undergoes the following differential equa-
tion:

ż4 = ν̇1 − Rr (i̇sαφrα + isαφ̇rα + i̇sβφrβ + isβφ̇rβ). (10.52)

Using equations (10.17), (10.18), (10.19), (10.20), (10.21), and (10.42), it follows from equa-
tion (10.52):

ż4 = (c2 ż2 + 2�̈∗
r �

∗
r + 2Rr κ̇(�r )�r + 2Rrκ(�r )�̇r )+ 2�̇∗2

r

− Rr

(
−γ isα + Rr

lseq
κ(�r )φrα + p

1

lseq
ωmφrβ + 1

lseq
vsα

)
φrα

+ isα((−Rrκ(�r )φrα + pωmφrβ + Rr isα)

+
(

−γ isβ + Rr

lseq
κ(�r )φrβ − p

1

lseq
ωmφrα + 1

lseq
vsβ

)
φrβ

+ isβ (−Rrκ(�r )φrβ − pωmφrα + Rr isβ)), (10.53)

where the derivative κ̇(�r ) is obtained from (10.27):

κ̇(�r ) = dκ

d�r

�r

dt
= dκ

d�r

(
φ̇rα

�r
φrα + φ̇rβ

�r
φrβ

)
. (10.54)

In turn, equation (10.53) is given the following compact form:

ż4 = ν2 − Rr

lseq
(vsαφrα + vsβφrβ), (10.55)

with

ν2 = (c2(−c2z2 + z2)+ 2�̈∗
r �

∗
r + 2Rr κ̇(�r )�r + 2Rrκ(�r )�̇r )+ 2�̇∗2

r

− Rr

(
−γ isα + Rr

lseq
κ(�r )φrα + p

1

lseq
ωmφrβ

)
φrα
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+ isα((−Rrκ(�r )φrα + pωmφrβ + Rr isα)

+
(

−γ isβ + Rr

lseq
κ(�r )φrβ − p

1

lseq
ωmφrα + 1

lseq
vsβ

)
φrβ

+ isβ (−Rrκ(�r )φrβ − pωmφrα + Rr isβ)). (10.56)

To analyze the stability of the error system, composed of equations (10.45), (10.46), (10.50),
and (10.55), consider the following augmented Lyapunov function candidate:

V2 = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2
z24. (10.57)

Its time derivative along the trajectory of the state vector (z1, z2, z3, z4) is

V̇2 = z1 ż1 + z2 ż2 + z3 ż3 + z4 ż4. (10.58)

Using equation (10.47), (10.48), and (10.55), equation (10.58) gives

V̇2 = −c1z
2
1 − c2z

2
2 + z1z3 + z2z4 + z4

(
ν2 − Rr

lseq
(vsαφrα + vsβφrβ)

)

+ z3

(
μ2 + p

J

1

lseq
(φrαvsβ − φrβvsα)

)
. (10.59)

Adding−c1z21 − c2z22 − c3z23 − c4z24 to the right-hand side of equation (10.59) and rearranging
terms, yields

V̇2 = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + z4

(
ν2 + z2 + c4z4 − Rr

lseq
(vsαφrα + vsβφrβ)

)

+ z3

(
μ2 + z1 + c3z3 + p

J

1

lseq
(φrαvsβ − φrβvsα)

)
, (10.60)

where c3 and c4 are new arbitrary positive real design parameters. Equation (10.60) suggests
that the control signals vsα and vsβ should be chosen in order to set to zero the two quantities
between curly brackets (on the right-hand side of equation (10.60)). Letting these quantities
equal to zero and solving the resulting second order linear equation system with respect to vsα

and vsβ gives the following control law:

[
vsα

vsα

]
=

[
λ0 λ1
λ2 λ3

]−1 [−μ2 − z1 − c3z3
−ν2 − z2 − c4z4

]
, (10.61)

with

λ0 = − p

Jlseq
φrβ, λ1 = p

Jlseq
φrα,

λ2 = − Rr

lseq
φrα, λ3 = − Rr

lseq
φrβ.

(10.62)
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Note that inversed matrix in equation (10.61) is nonsingular in practice because its determinant

is given by D = λ0λ3 − λ2λ4 = − Rr
l2seq

p
J (φ

2
rα + φ2rβ ) and �r =

√
φ2rα + φ2rβ never vanish in

practice because of the machine nonzero remnant flux.
The properties of the speed/flux regulator thus designed are described in the following

theorem:

Theorem 10.3.2 (Speed/flux regulator). Consider the closed-loop system composed of:

• the induction machine, described by model (10.17–10.21),
• and the nonlinear regulator defined by the control law (10.61) and the flux optimizer (10.34).

Then, one has the following properties:

1. The closed-loop error system undergoes, in the (z1, z2, z3, z4) coordinates, the following
equations:

ż1 = −c1z1 + z3, (10.63)

ż2 = −c2z2 + z4, (10.64)

ż3 = −c3z3 − z1, (10.65)

ż4 = −c4z4 − z2. (10.66)

2. The above linear system is globally asymptotically stable with respect to the Lyapunov
function V2 = 1

2 z21 + 1
2 z22 + 1

2 z23 + 1
2 z24. Consequently, all errors vanish exponentially

fast, whatever their initial conditions.

Proof: Part 1. Equations (10.63) and (10.64) are immediately obtained from equation (10.45)
and (10.46). Equation (10.65) is obtained by substituting the control law (10.61) to (vsα, vsβ )
on the right-hand side of equation (10.50). Equation (10.66) is obtained by substituting the
control law (10.61) to (vsα, vsβ ) on the right-hand side of equation (10.55). This proves
Part 1.

Part 2. On the other hand, it is readily seen from equation (10.57) that V2 is a Lyapunov
function of the error system (10.63), (10.64), (10.65), and (10.66). Substituting the control law
(10.61) to (vsα , vsβ) on the right-hand side of equation (10.60) yields:

V̇2 = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4. (10.67)

As V̇2 is a negative definite function of the state vector (z1, z2, z3, z4), the error system is
globally asymptotically stable. But asymptotic stability implies exponential stability due to
system linearity (Khalil 2003). Theorem 10.3.1 is established.

Remark 10.3.3 The derivatives �̇∗
r and �̈∗

r are obtained using the relation

�r = F(Is) = h0 + h1 Is + h2 I 2s + · · · + hn I n
s . (10.68)
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Specifically, one has:

�̇∗
r = d F(Is)

d Is

d Is

dt

= d F(Is)

d Is

(
i̇sαisα + i̇sβ isβ

Is

)
. (10.69)

�̈∗
r = d2F(Is)

d I 2s

(
i̇sαisα + i̇sβ isβ

Is

)2

+d F(Is)

d Is

(
ïsαisα + i̇2sα + ïsβ isβ + i̇2sβ

Is

)
− dF(Is)

dIs

(
(i̇sαisα + i̇sβ isβ)2

I 3s

)
. (10.70)

Note that the derivatives dF(Is )
dIs

and d2F(Is )
dI 2s

are easily obtained due to the polynomial nature of
equation (10.34).

10.4 Simulation

This section illustrates the supremacy of the control strategy, involving the OFR optimizer,
over control strategies with a CFR. The comparison is performed using a 7.5 kW induction
machine whose characteristics are summarized in Table 10.1. The experimental protocol is
described by Figures 10.6, 10.7, 10.8, and 10.9e. The applied load torque TL (Figure 10.6)
and rotor speed reference ω∗

m (Figure 10.7) are chosen so that the induction machine works in
two very different zones of its magnetic characteristic. Recall that the nonlinear controller to
be illustrated is described by: (1) the control laws (10.61); and (2) the flux reference optimizer
(10.34). The following values of the controller design parameters proved to be suitable:
c1 = 100, c2 = 400, c3 = 500, and c4 = 1000. The above controller will be compared with
its simplified CFR version obtained keeping the flux reference constant equal to its nominal
value, that is, �∗

r = 0.56 Wb. To avoid confusion, the two controllers will be referred to
OFR controller and CFR controller. The performances of both controllers are illustrated by
Figures 10.7, 10.8, and 10.9. It is seen in Figure 10.7 that both controllers ensure a perfect
asymptotic speed reference tracking despite the changes of load torque TL . Figure 10.8 shows
the resulting (state-dependent) OFR (for the OFR controller) and the CFR (for the simplified

Table 10.1 Numerical values of considered motor characteristics

Characteristic Symbol Value Unity

Nominal power PN 7.5 kW
Nominal voltage Usn 380 V
Nominal flux �rn 0.56 Wb
Stator resistance Rs 0.63 �

Rotor resistance Rr 0.52 �

Inertia moment J 0.22 Kgm2

Friction coefficient F 0.001 Nm s rad−1

Number of pole pairs p 2
Leakage equivalent inductance lseq 7 mH
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Figure 10.7 Rotor speed ωm (rad/s) response: the identical speed responses obtained by the OFR
controller and the constant flux controller
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Figure 10.8 Flux tracking. Dashed, rotor flux reference; solid, measured flux response
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Figure 10.9 Supremacy of the OFR controller (containing flux reference optimizer) over the CFR
regulator (involving constant flux reference)
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CFR controller). Clearly, the state-dependent flux reference varies significantly in function of
the load torque and the speed.
Figures 10.9a–e show a substantial supremacy of the OFR regulator over the CFR regulator.

First, let us focus on Figure 10.9a,which shows the absorbed stator currents for both controllers,
in various operation conditions. It is seen that the OFR controller requires a smaller current
than the constant flux controller. This difference is more significant in presence of low load
torques, because in this situation the OFR is most different from the CFR. The reduction of the
absorbed stator current entails the reduction of the consumed reactive power Q (Figure 10.9c).
The absorbed active power P , which is mainly determined by the speed and load torque,
remains quasi the same with both regulators (Figure 10.9b). Let us evaluate the consequence
of these observation in terms of energetic efficiency and of power factor correction. These are
analytically defined by

η = TLωm

P
, p f = P√

P2 + Q2
, (10.71)

where the active and reactive powers are given by the following expressions, respectively:

P = vsαisα + vsβ isβ, Q = vsβ isα − vsαisβ. (10.72)

Figures 10.9d–e show that the machine efficiency η and power factor p f are much better with
the OFR control strategy, thanks to the flux reference optimizer.

10.5 Conclusions

The problem of induction machine control has been addressed in presence of magnetic cir-
cuit saturation. A speed-flux controller described by equation (10.61) is designed using the
backstepping technique based on model (10.17), (10.18), (10.19), (10.20), and (10.21). The
proposed controller involves a (state-dependent) flux reference optimizer. The latter performs
an online tuning of the flux reference so that the absorbed stator current is minimized. It is for-
mally shown (Theorem 10.3.2) that the proposed controller guarantees the global convergence
of the errors z1 = ω∗

m − ωm , and z2 = �∗2
r − �2

r to zero (with �2
r = φ2rα + φ2rβ ). That is, the

tracking objective is perfectly achieved both for the rotor speed and flux. Furthermore, it is
shown by simulation that, in all operation conditions, the absorbed stator current is actually
smaller with the proposed OFR controller, compared to standard CFR controllers.
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11.1 Introduction

The induction motor (IM) is one of the most widely used actuator for industrial applications,
due to its reliability, ruggedness, and relatively low cost. Unlike DC motors, the IM is difficult
to control due to the coupling nonlinear dynamics. However, thanks to the new developments
in power electronics, several methodologies have been proposed to solve such control problem.
To facilitate the design and implementation of the IM controller, it is necessary to introduce
sensors to measure the electrical currents, the rotor position, and velocity. A load torque sensor
is very rare. A reduction in the number of sensors reduces the cost and the maintenance of the
overall control system and becomes attractive economically. It is a challenge for a scientific
point of view. For these reasons the IM drive without mechanical sensor has had a considerable
interest in the last years. In controlling an IM, several difficulties are found, for instance, the
estimation of the state variables at low frequencies and ensuring the robustness of the controller
against parameter variations, where the most critical parameter affecting performance at low
speed is stator resistance (see Holtz 2002).
Several efforts have focused on sensorless schemes in order to solve the IM control prob-

lem, taking into account the robustness with respect to parametric uncertainties and their

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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performance under different operation conditions. This drawback is mainly due to the IM
observability property that can be lost under some operation conditions. For instance, in
Ibarra-Rojas et al. (2004), the authors have demonstrated that the main conditions to lose
the observability of IM are: the excitation voltages frequency is zero and the rotor speed
is constant.
In this chapter, a comparative experimental study between nonlinear robust sensorless IM

controllers, taking into account different operation conditions and under parametric uncer-
tainties, is presented. The nonlinear controllers considered in the chapter are (a) a integral
backstepping control (IBC) (Traore et al. 2012) and (b) a high-order sliding-mode control
(HOSMC) (Traore et al. 2008). These control schemes are designed to improve the perfor-
mance of the sensorless IM, at different operation conditions, in particular at low frequencies
and in presence of unknown load torque.
Furthermore, to improve the performance of the backstepping control method, additional

integral terms are introduced to improve the robustness properties of the controller in spite of
uncertainties and perturbations.
Regarding the high-order sliding-mode (HOSM) speed-flux controller, a sliding manifold

is designed in order to ensure finite-time convergence of sliding variable and its high-order
time derivatives to zero in spite of uncertainties and disturbances.
For implementing such controllers and to reduce the number of sensors, an adaptive inter-

connected observer is designed for estimating of the fluxes, the speed, the load torque, and,
moreover, the stator resistance.
Furthermore, experimental results comparing the performance of both control schemes are

obtained on the framework of a specific sensorless IM benchmark (Benchmark 2005).
This chapter is organized as follows. Section 11.2 is devoted to the description of the

IM model and the problem formulation. The robust integral backstepping is developed in
Section 11.3. The HOSMC is presented in Section 11.4. To implement the proposed controller
and to estimate the nonmeasured variables in Section 11.5, an adaptive interconnected
observer design is introduced. Furthermore, experimental results are given and discussed
related with the performance of the control schemes in Section 11.6. Finally, conclusions are
drawn in Section 11.7.

11.2 Problem Formulation

In a rotating frame d- and q-axes (Chiasson 2005), the IM is described by⎛⎜⎜⎜⎜⎝
i̇sd

i̇sq

φ̇rd

φ̇rq

ω̇m

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
baφrd + bpωmφrq − γ isd + ωs isq + m1vsd

baφrq − bpωmφrd − γ isq − ωs isd + m1vsq

−aφrd + (ωs − pωm)φrq + aLmisd

−aφrq − (ωs − pωm)φrd + aLmisq

m(φrd isq − φrqisd)− cωm − 1
J Tl

⎞⎟⎟⎟⎟⎠ , (11.1)

where isd , isq , φrd , φrq , vsd , vsq , ωm , Tl , and ωs , respectively, denote the stator currents, the
rotor fluxes, the stator voltage inputs, the angular speed, the load torque, and the stator
frequency. The subscripts s and r refer to the stator and rotor. The parameters a = Rr/Lr , b =
Lm/σ Ls Lr , c = Fv/J , γ = L2r Rs+L2m Rr

σ Ls L2r
, σ = 1− (L2m/Ls Lr ), m = pLm/J Lr , m1 = 1/σ Ls ,
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and γ1 = L2m Rr

σ Ls L2r
. We denote Rs and Rr as the resistances, Ls and Lr as the inductances, Lm as

the mutual inductance between the stator and rotor windings, p as the number of pole pair, J
as the inertia of the system (motor and load), and Fv as the viscous damping coefficient.
The following assumptions are introduced:

1. The stator currents are available for measurement and they represent themeasurable outputs
of the system; on the contrary, the speed and the fluxes are not available for measurement,

2. The load torque is unknown and is considered as a disturbance modeled by a piecewise
function.

3. The stator resistance is considered as a bounded parameter slowly varying with the tem-
perature.

4. The other parameters are constant and given by offline identification with bounded uncer-
tainties.

11.2.1 Control and Observation Problem

The IM control problem is solved by combining the advantages of the field-oriented controller
(FOC) design with the robustness properties of nonlinear controllers.

The IM observation problem can be established as follows: to estimate the speed and flux,
and, moreover, to identify the load torque and the stator resistance simultaneously, from the
measurement of the stator currents and the stator voltages under different operation conditions
(at low and high speed: Ghanes et al. 2006b).

11.3 Robust Integral Backstepping

By using the same reference frame as the FOC design (Blaschke 1972), a nonlinear backstep-
ping control is robustly designed by introducing additional integral terms. Denoteω∗

m and φ∗ as

the smooth bounded reference signals of the speed ωm and the rotor flux modulus
√

φ2rd + φ2rq ,

respectively. Following the strategy of FOC (‖φrd‖ =
√

φ2rd + φ2rq , φrq = 0) (see Blaschke

1972) and the fact that the stator frequency is given by ωs = pωm + a Lm
φrd

isq , a control strategy
based on an integral backstepping method is designed.

11.3.1 Controller Design using an Integral Backstepping Method

Following the classical backstepping method (Krstic et al. 1995) completed by an integral
action to reject some class of uncertainties (see Traore et al. 2012), the controller design is
done in two steps:

1. The control problem is to choose i∗sd and i∗sq in such a way as to force ωm and φrd to track
their desired reference signals ω∗

m and φ∗
rd , that is, (ωm → ω∗

m) and (φrd → φ∗
rd ).

2. Current loops design: Find the controls vsd and vsq such that the currents isd and isq converge
fast to desired references i∗sd and i∗sq, respectively.
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It is well known that the control performances of IM is still affected by the uncertainties
of the plant, such as mechanical parameter uncertainties, external load disturbance, no ideal
field orientation in a transient state, and unmodeled dynamics in practical applications. As
introduced before, the backstepping control robustness of speed/flux and currents controllers
can be increased by the introduction of new integral terms. This design is detailed in the
following text.

Speed and Flux Loops

Let us consider the reduced model of IM given by

(
ω̇m

φ̇rd

)
=

(
mφrd isq − cωm − Tl

J + ��ωm

(
m, c, Tl

J

)
−aφrd + aLmisd + ��φrd (a, Lm)

)
, (11.2)

where��ωm (m, c, Tl
J ) and��φrd (a, Lm) are the parametric uncertain terms satisfying |��σ | ≤

ησ , for σ = ωm, φrd .
The reduced model is obtained using current controls vsd and vsq (defined later), which

are designed and tuned to force isd and isq to track their corresponding references i∗sd and i∗sq
sufficiently fast. Consequently, references i∗sd and i∗sq can then be considered as virtual inputs
of the reduced model (11.2).
To solve speed and flux tracking problem, let us define the tracking errors as

zσ = σ ∗ − σ + K ′
σ

∫ t

0
(σ ∗ − σ )dt, for σ = ωm, φrd ,

where a supplementary integral term is introduced with respect to the classical backstepping
algorithm.
Next, replacing isq by i∗

sq and isd by i∗
sd in equation (11.2), it follows that the dynamics of

zωm and zφrd are expressed as{
żωm = ω̇m

∗ − mφrd i∗
sq + cωm + Tl

J + K ′
ωm
(ω∗

m − ωm)− ��ωm ,

żφrd = φ̇∗
rd + aφrd − aLmi∗

sd + K ′
φ(φ

∗
rd − φrd )− ��φrd .

(11.3)

Choosing the following candidate Lyapunov function Vzωm
= 1

2 z2ωm
and by taking the deriva-

tive along the trajectories of equation (11.3) yields

V̇zωm
= −Kωm zωm

{
ω̇m

∗ − mφrd i∗
sq + cωm + Tl

J
+ K ′

ωm
(ω∗

m − ωm)− ��ωm

}
.

Following the backstepping methodology, by choosing the virtual control inputs i∗
sq as

i∗
sq = 1

mφrd
[ω̇m

∗ + cωm + Tl
J + Kzωm + K ′

ωm
(ω∗

m − ωm)], (11.4)
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it follows that

V̇zωm
= −Kωm z2ωm

− zωm ��ωm , Kωm > 0.

Following the same procedure as above, consider the Lyapunov function Vzφrd
= 1

2 z2φrd
.

Then,

V̇zφrd
= zφrd {φ̇∗

rd + aφrd − aLmi∗
sd + K ′

φ(φ
∗
rd − φrd )− ��φrd }.

Choosing the virtual control inputs i∗
sd as follows:

i∗
sd = 1

aLm
[φ̇∗

rd + aφrd + Kφzφrd + K ′
φ(φ

∗
rd − φrd )]. (11.5)

Finally, we get

V̇zφrd
= −Kφz2φrd

− zφrd ��φrd , Kφrd > 0.

Current Loops

Now to design the control laws for the complete model (11.1), one introduces the following
tracking errors:

ziσ = i∗
sσ − isσ + z′

iσ , with z′
iσ = K ′′

iσ

∫ t
0 (i

∗
sσ − isσ )dt, (11.6)

for σ = d, q. K ′′
iq and K ′′

id are positive constants. Next, consider the following candidate
Lyapunov functions:

Vziq = Vzωm
+ 1

2 z2iq + 1
2 z′2

iq , Vzid = Vzφrd
+ 1

2 z2id + 1
2 z′2

id . (11.7)

Taking the time derivative of Vziq along the trajectories of equation (11.3) and by replacing
equation (11.4), it follows that

V̇ziq = −Kωm z2ωm
+ ziq

{
di∗

sq

dt
− disq

dt
+ K ′′

iq (i
∗
sq − isq )

}
+z′

iq K ′′
iq (i

∗
sq − isq )− zωm ��ωm .

(11.8)

From equation (11.1), disq

dt = baφrq − bpωmφrd − γ isq − ωs isd + m1vsq and by choosing
the control vsq as

vsq = 1

m1

[
Kiq ziq + bpωmφrd − abφrq + γ isq + ωs isd + di∗

sq

dt

]
, (11.9)

it follows that

V̇ziq = −Kωm z2ωm
− Kiq z2iq + {ziq + z′

iq}K ′′
iq (i

∗
sq − isq )} − zωm ��ωm

= −Kωm z2ωm
− {Kiq − K ′′

iq}z2iq − K ′′
iq z′2

iq − zωm ��ωm

≤ −K1Vzid − zωm ��ωm ,

(11.10)
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where Kiq and K ′′
iq are positive constants with Kiq > K ′′

iq and K1 = min{Kωm , Kidq −
K ′′

iq , K ′′
iq}.

Now, taking the time derivative of Vzid along the trajectories of equation (11.3) and replacing
equation (11.5), it follows that

V̇zid = −Kφz2φrd
+ zφrd

{
di∗

sd

dt
− disd

dt
+ K ′′

id (i
∗
sd − isd )

}
− zφrd ��φrd . (11.11)

From equation (11.1), disd
dt = baφrd + bpωmφrq − γ isd + ωs isq + m1vsd and by working out

the control vsd

vsd = 1

m1

[
Kid zid − baφrd − bpωmφrd + γ isd − ωs isq + di∗

sd

dt

]
, (11.12)

equation (11.11) can be rewritten as

V̇zid = −Kφz2φrd
− {Kid − K ′′

id}z2id − K ′′
id z′2

id − zφrd ��φrd

= −K2Vzid − zφrd ��φrd

(11.13)

where Kid and K ′′
id are positive constantswith Kid > K ′′

id and K2 = min{Kφ, Kid − K ′′
id , K ′′

id}.

Proposition 11.3.1 Consider the reduced order model of IM drive system represented by
equation (11.2) with the reference signals ω∗

m and φ∗
rd , and assume that they are differentiable

and bounded. Then, system (11.2) in closed loop with speed, flux, and current tracking laws
(11.4), (11.5), (11.9), and (11.12) is strongly uniformly practically stable.

Proof: Consider the following candidate Lyapunov function

Vc = Vziq + Vzid

= 1

2
z2ωm

+ 1

2
z2iq + 1

2
z′

iq
2 + 1

2
z2φrd

+ 1

2
z2id + 1

2
z′

id
2.

(11.14)

Taking its time derivative and replacing the suitable terms, after straightforward computations,
one has

V̇c = −κVc + ϒ, (11.15)

where κ = min{Kωm − 1
2̃ξ 21

, Kφ − 1
2̃ξ 22

, Kiq , Kiq − K ′′
iq , Kid , Kid − K ′′

id , K ′′
id} and ϒ =

ξ̃ 21 η
2
ωm
2 + ξ̃ 22 η

2
φrd
2 , ∀ ξ̃i ∈ (0, 1) i = 1, 2.

It follows that the tracking dynamics is strongly uniformly practically stable (Lakshmikan-
tham et al. 1990). The tracking errors converge to the ball of radius ϒ

κ
, which can be reduce

by the tuning of the controller gains.

11.4 High-Order Sliding-Mode Control

The success of sliding-mode (SM) control for electric drives is mainly due to its disturbance
rejection property, strong robustness and simple implementation, as shown by the large number
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of papers on sensorless IM drive (see e.g., Zhang et al. 2000; Lascu et al. 2005), that use the
standard approach of SM control. In Utkin (1993), the concepts and principles of SM control
applied to electrical motors has been introduced. However, one of the disadvantages associated
with SM control is the chattering phenomenon that may occur on the neighbor of the sliding
surface.
Several approaches have been proposed in order to reduce or eliminate the undesirable effects

of chattering. In order to overcome this drawback and to improve the controller performances,
an approach called HOSM algorithm has been proposed to keep the main advantages of the
standard SM control, the chattering effect being attenuated and high-order precision provided
(Levant 2001).
A r th order SM controller with finite-time convergence has been proposed in Plestan et al.

(2008), Levant (2001), and Laghrouche et al. (2006). In the sequel, the HOSM speed-flux
control is based on Plestan et al. (2008) and Traore et al. (2008) where it is proposed an
easy implementation, an a priori well-known convergence time with robustness with respect
to uncertainties and disturbance.
Then, in this section, the goal is to design a robust (with respect to uncertainties/disturbances)

flux and speed controller. Define σφ and σωm , the sliding variables as σφ = φrd − φ∗
rd and

σωm = ωm − ω∗
m . From equations (11.26) and (11.27), the relative degree of σφ and σωm with

respect to u are equal to (2, 2), which implies that at least a second order SM controller is
respectively designed for the flux and speed.
Furthermore, to reduce or eliminate the chattering effect and to improve the robustness of

the controller, third order HOSM controllers are designed for the two outputs, which means
that the discontinuous term is applied to σ

(3)
φ and σ (3)ωm

through u̇.
It follows that (

φ
(2)
rd

ω(2)m

)
=

(
ϕα1 (·)
ϕα2 (·)

)
+ ϕβ(·)

(
vsd

vsq

)
. (11.16)

For flux-oriented control φrq = 0, ϕα1 , ϕα2 , and ϕβ read as

ϕα1 = −aφ̇rd + aLm(baφrd − γ isd + ωs isq ), (11.17)

ϕα2 = m[φ̇rd isq + φrd (−bpωmφrd − γ isq − ωs isd )]− cω̇m − Ṫl

J
, (11.18)

ϕβ =
[

aLmm1 0
0 mm1φrd

]
. (11.19)

As there are uncertainties on several parameters, one supposes that the previous terms read as

ϕα1 = ϕNom
α1 + �ϕα1, ϕα2 = ϕNom

α2 + �ϕα2,

ϕβ = ϕNom
β + �ϕβ,

(11.20)

such that ϕNom
α1 , ϕNom

α2 , and ϕNom
β are the well-known nominal terms whereas �ϕα1, �ϕα2,

and �ϕβ contain all the uncertainties due to parameters variations and disturbance. Suppose
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that these uncertainties are bounded. The control input u reads as (note that matrix ϕNom
β is

invertible on the work domain (φrd 	= 0))1

(
vsd

vsq

)
= ϕNom

β

−1
{

−
(

ϕNom
α1

ϕNom
α2

)
+

(
νsd

νsq

)}
. (11.21)

From equations (11.16), (11.17), (11.18), (11.19), (11.20), and (11.21), switching variables
dynamics read as

(
φ
(2)
rd ω(2)m

)T = �α + �β

(
νsd νsq

)T
. (11.22)

ϕNom
α1

, ϕNom
α1

, and ϕNom
β are bounded C1-functions in the operation domain D of IM, which

implies that �α and �β are uncertain bounded C1-functions. Then, one gets(
σ
(3)
φ

σ (3)ωm

)
= �̇α + �̇β

(
νsd

νsq

)
−

(
φ
(3)
rd∗

ω∗
m
(3)

)
︸ ︷︷ ︸

ϕ1

+ �β︸︷︷︸
ϕ2

(
ν̇sd

ν̇sq

)
.

The control law synthesis is made in two steps: the design of the switching variable and the
discontinuous input.

11.4.1 Switching Vector

From equation (29) and Theorem 3 in Traore et al. (2008), the switching vector reads as

• For t ≤ tF . Sφ = σ
(2)
φ − χφ , and Sωm = σ (2)ωm

− χωm with

χφ = Kφ F2eFt T σφ(0)− 2ζφωnφ(σ̇φ − Kφ FeFt T σφ(0))− ω2nφ(σφ − KφeFt T σφ(0)),

χωm = Kωm F2eFt T σωm (0)− 2ζωm ωnωm (σ̇ωm − Kωm FeFt T σωm (0))

−ω2nωm
(σωm − Kωm eFt T σωm (0)).

• For t > tF . Sφ = σ
(2)
φ + 2ζφωnφσ̇φ + ω2nφσφ and Sωm = σ (2)ωm

+ 2ζωm ωnωm σ̇ωm + ω2nωm
σωm ,

with

Kφ =
[
σ
(2)
φ (0)0σ̇φ(0)0σφ(0)0

]
· K −1

φ ,

Kωm = [
σ (2)ωm

(0)0σ̇ωm (0)0σωm (0)0
] · K −1

ωm
,

1The interest of a such feedback is that it allows to minimize gain values of the control discontinuous function.
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with F being a 2r × 2r -dimensional stable matrix (strictly negative eigenvalues), T being a
2r × 1-dimensional vector and

Kc = [
Fr−1T σ

(r− j)
c (0) Fr−1eFt f T Fr−2T σ

(r− j)
c (0)

Fr−2eFt f T · · · T σ
(r− j)
c (0) eFt f T

]
,

(11.23)

with c := φ,ωm .

11.4.2 Discontinuous Input

The control discontinuous input reads as

(
ν̇sd ν̇sq

)T = (−αφ.sign(Sφ) − αωm .sign(Sωm )
)T

. (11.24)

From equation (11.23), it yields

(
Ṡφ Ṡωm

)T = ϕ1 + ϕ2 · ν̇ − (
χφ χωm

)T
. (11.25)

By using the same method as Theorem 3 in Traore et al. (2008), it yields that there exist
gains αφ and αωm such that

Ṡφ Sφ ≤ −ηφ|Sφ|, Ṡωm Sωm ≤ −ηωm |Sωm ,

to obtain the convergence to the sliding surfaces.

11.5 Adaptive Interconnected Observers Design

In this section, an observer is designed to estimate the unmeasurable variables of the IM.
However, under different operation conditions of the IM some difficulties are present. One the
most important difficulties is the observability problem at low speed. However, few studies
have highlighted this problem of unobservability. In Canudas et al. (2000), Ibarra-Rojas et al.
(2004), Ghanes et al. (2006b), it is shown that there is observability lost when excitation
voltages frequency is zero and rotor speed is constant. Nevertheless, in the literature, some
sensorless algorithms are tested and evaluated at high and low speed (Ghanes et al. 2006a;
Montanari and Tilli 2006).
Then, taking into account the observation problem, an adaptive interconnected observer is

designed for the sensorless IM to estimate speed, flux, load torque, and stator resistance.
Now, considering system (11.1) and from the previous assumptions, the model can be

extended by the equations

Ṫl = 0, Ṙs = 0.



216 AC Electric Motors Control

Then, the extended IM model can be represented as the interconnection between subsystems
(11.26) and (11.27).

�1 :
{

Ẋ1 = A1(X2, y)X1 + g1(u, y, X2, X1)+ �Tl , (11.26)

�2 :
{

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2) . (11.27)

y1 = C1X1, y2 = C2X2, X1 = (isdωmRs)T , X2 = (isqφrdφrq )T are the states, u = (vsdvsq )T is
the input, and y = (isd isq )T is the output of the IM model, Tl is considered as a parameter to
be identified by the adaptive part of the observer.

Remark 11.5.1 Furthermore, the IM physical operation domain D is defined by the set of
values

D = {X ∈ R6 | |φrd | ≤ �d
max , |φrq | ≤ �q

max , |isd | ≤ Id
max , |isq | ≤ Iq

max ,

|ωm | ≤ ωmax
m , |Rs | ≤ Rs

max },

where X = (φrd , φrq , isd , isq , ωm, Tl , Rs), and �d
max ,�q

max , Id
max , Iq

max , ωmax
m , Tl

max , and
Rs

max are respectively the actual maximum values for the fluxes, currents, speed, torque
load, and stator resistance determined from the motor specification sheet. This domain is
important because it allows to determine the domain of the realistic initial conditions for the
observer-controller scheme. Moreover, the bounds of the motor parameters uncertainties are
known.

From equations (11.26) and (11.27), we can easily verify that the matrix A1(X2, y) is
globally Lipschitz with respect to X2, and matrix A2(X1) is globally Lipschitz with respect
to X1. The terms g1(u, y, X2, X1) and g2(u, y, X2, X1) are globally Lipschitz with respect
to X2, X1 and uniformly with respect to (u, y), as long as the IM state remains in D. Then,
the nominal adaptive interconnected observers for equations (11.26) and (11.27) are given by
equations (11.28) and (11.29):

O1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
X̂1 = A1(X̂2, y)X̂1 + g1(u, y, X̂2, X̂1)+ �T̂l

+ (
��S−1

3 �T + �S−1
1

)
CT
1 (y1 − ŷ1)+ K CT

2 (y2 − ŷ2),

˙̂T l = � S−1
3 �T CT

1 (y1 − ŷ1)+ B1(X̂2)(y2 − ŷ2)+ B2(X̂2)(y1 − ŷ1),

Ṡ1 = −θ1S1 − AT
1 (X̂2, y)S1 − S1A1(X̂2, y)+ CT

1 C1,

Ṡ3 = −θ3S3 + �T CT
1 C1�,

�̇ = (
A1(X̂2, y)− �S−1

1 CT
1 C1

)
� + �,

(11.28)

O2 :

⎧⎨⎩
.
X̂2 = A2(X̂1)X̂2 + g2(u, y, X̂1, X̂2)+ S−1

2 CT
2 (y2 − ŷ2),

Ṡ2 = −θ2S2 − AT
2 (X̂1)S2 − S2A2(X̂1)+ CT

2 C2,
(11.29)
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with ŷ1 = C1 X̂1, ŷ2 = C1 X̂2, X̂2 = (îsd ω̂m R̂s)T , and X̂2 = (îsq φ̂rd φ̂rq )T are the estimated
state variables, respectively, of X1 and X2. θ1, θ2, and θ3 are positive constants, S1 and S2 are
symmetric positive definite matrices, with S3(0) > 0, B1(X̂2) = kmφ̂rd , B2(X̂2) = −kmφ̂rq ,
� = diag(1, 1, α), K CT

2 = (−kc1,−kc1, 0)T , where k, kc1, kc2,α, and� are positive constants.
Note that (��S−1

3 �T CT
1 + �S−1

1 CT
1 ) and K CT

2 are the gains of observer (11.28) and S−1
2 CT

2
is the gain of observer (11.29).
Following Remark 11.5.1, one now assumes that all parameters of IM are uncertain and

bounded with well-known values. In order to analyze the robustness of the observer under
parametric uncertainties, systems (11.26) and (11.27) are now written in the following form:

�1,� :
{

Ẋ1 = A1(X2, y)X1 + g1(u, y, X2, X1)+ �Tl + �A1(X2, y)
+�g1(u, y, X2, X1),

(11.30)

�2,� :
{

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2)+ �A2(X1)+ �g2(u, y, X1, X2) , (11.31)

with y1 = C1X1, y2 = C2X2, where �A1(X2, y), �A2(X1), �g1(u, y, X2, X1), and
�g2(u, y, X1, X2) are, respectively, the uncertain terms of A1(X2, y), A2(X1),
g1(u, y, X2, X1), and g2(u, y, X1, X2).
Let us define the estimation errors as

ε′
1 = X1 − X̂1, ε2 = X2 − X̂2, ε3 = Tl − T̂l .

From equations (11.30), (11.31) and (11.28), (11.29) and applying the transformation ε1 =
ε′
1 − �ε3, the dynamics of the estimation errors are given by

ε̇1 = [
A1(X̂2, y)− �S−1

1 CT
1 C1 + ��2

]
ε1 + [A1(X2, y)

+�A1(X2, y)− A1(X̂2, y)]X1 + g1(u, y, X2, X1)+ ��2�ε3

+�g1(u, y, X2, X1)− g1(u, y, X̂2, X̂1)+ (�2� − K ′)ε2,

ε̇2 = [
A2(X̂1)− S−1

2 CT
2 C2

]
ε2 + [A2(X1)+ �A2(X1)− A2(X̂1)]X2

+g2(u, y, X1, X2)− g2(u, y, X̂1, X̂2)+ �g2(u, y, X1, X2),

ε̇3 = − [
� S−1

3 �T CT
1 C1� + �2�

]
ε3 − [

� S−1
3 �T CT

1 C1 + �2
]
ε1 − ��1ε2,

(11.32)

where �1 = B1(X̂2)C2, �2 = B2(X̂2)C1, and K ′ = K CT
2 C2.

Consider the following candidate Lyapunov function
∑3

i=1 Vi , where Vi = εT
i Siεi . Taking

the time derivative of Vo and by using equation (11.32), and by developing some computations,
implies

V̇o ≤ −δVo + μψ
√

Vo, (11.33)

where μ is a constant associated with the nonlinear terms that are Lipschitz and ψ > 0 (see
Traore et al. (2008) for the computations details). Then, using practical stability results, it
follows that the observation error is uniformly practically stable.
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Remark 11.5.2 For the FOC, by definition it is necessary to have φrq ≡ 0. The d-axis angle
θm can be computed from the stator frequency (ωs):

θ̇m = ωs = pωm + a
Lm

φrd
isq . (11.34)

The estimation θ̂m of the d-axis angle is then computed by

˙̂θm = ω̂s = pω̂m + a
Lm

φ̂rd
isq − (isq − îsq )

β1φ̂rd
kωs . (11.35)

Then, the error dynamic of the estimation is given by

ε̇θm = pεωm − aLmisq

φrd φ̂rd
εφrd + kωs

β1φ̂rd
εisq , (11.36)

with εθm = θm − θ̂m, εωm = ωm − ω̂m, εφrd = φrd − φ̂rd , and εisq = isq − îsq . The gain kωs can
be tuned to ensure the convergence to zero for the nominal case or to a small ball for the
uncertain case for which the radius can be balanced by the gain tuning.

Remark 11.5.3 Since the observability properties are lost at very low speed, it is well
known that it is impossible to reconstruct the state of the IM that asymptotically converges
to indistinguishable trajectories (Ibarra-Rojas et al. 2004). However, under these trajecto-
ries, it is possible to design an observer whose, performances are acceptable even if the
asymptotic stability can not be guaranteed. Thus, it is necessary to use a notion of stability
that is more suitable than asymptotic stability, this is the practical stability (Lakshmikantham
et al. 1990).

Then, using Lyapunov-like arguments, an analysis of stability has been presented in Traore
et al. (2012), where sufficient conditions have been obtained in order to ensure the practical
stability of the closed-loop system.

11.6 Experimental Results

The experimental results are obtained using an experimental setup described in Benchmark
(2005) and shown in Figure 11.1. The experimental setup and observer-controller scheme is
given in Figure 11.2.

IM characteristics
The motor parameters values are: nominal rate power 1.5 kW, nominal angular speed

1430 rpm, number of pole pairs 2, nominal voltage 220 V, nominal current 7.5 A.
The identified parameters values are Rs = 1.633 �, Lm = 0.099 H, Rr = 0.93 �, J =

0.0111 Nms2/rad, Ls = 0.142 H,Fv = 0.0018 Nms/rad, Lr = 0.076 H.
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Figure 11.1 Experimental setup. (For a color version of this figure, please see color plates.)

Hardware characteristics
To implement the controllers and observer, the setup hardware consists in the following
components:

1. Three-phase inverter operated with a symmetrical pulse-width modulation (PWM) tech-
nique with 5 kHz switching frequency.

2. A permanent-magnet synchronous motor controlled by an industrial drive to provide a
desired load torque.

Figure 11.2 Experimental setup and observer-control scheme. (For a color version of this figure, please
see color plates.)
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Figure 11.3 Benchmark trajectories. a, reference speed ωm (rad/s); b, load torque disturbance Tl (Nm);
c, reference flux φ∗

rd (Wb)

3. A custom floating-point digital signal processor dSPACE (DS1103) board, and its interface.
The dSPACE board performs data acquisition (two stator currents, DC-link voltage, load
torque and rotor speed, by means of a 512 ppr incremental encoder (only for monitoring
purposes), computes the control algorithm and generates the PWM signals for the inverter.

Software characteristics
The software associated with the data acquisition and control system are:

1. Matlab/Simulink,
2. a user-developed interface between the Simulink program and the dSPACE system board.

Benchmark trajectories
The sensorless trajectories of the benchmark are such that (see Figure 11.3): after the reference
speed is carried to 20 rad/s and from 1.5 to 2.5 s the load torque is applied. This first step allows
to test the performances and the robustness of the controller without mechanical sensors at
low speed but under observable conditions. From 3 to 4 s, the speed is carried to its nominal
value (100 rad/s) and remains constant until t = 6 s. Again the load torque is applied from
5 s. This second step is defined to test the controller behavior during a great transient speed.
Then, the motor is driven to reach a negative constant low-speed value from 7 to 9 s. This
speed is chosen to obtain a stator pulsation equal to zero. This last step allows to illustrate the
IM unobservability phenomena (from t = 7 s to t = 9 s). Finally, the IM is driven in order to
leave the unobservability conditions.
All control and observer algorithms are computed with a sampling rate of 200 μs.

Interconnected adaptive observer Tuning
The Interconnected Adaptive observer is implemented to estimate the flux and the rotor speed
and to identify the load torque and the stator resistance.
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For the observer design, the gains are chosen as follows: α = 50, � = 10, k = 0.16,
kc1 = 450, Kc2 = 0.5, θ1 = 5000, θ2 = 7000, and θ3 = 10−9.
Rotor speed and flux amplitude are provided by observer (11.28) and (11.29). Stator resis-

tance observer is initialized as Rs0 = 1.9 �. The initial value of φrd in the observer is φrd0 =
0.1 Wb.
Now, experimental results for the two proposed-observer schemes are given for nominal

conditions and robustness test cases, then compared.

11.6.1 Integral Backstepping Control and Adaptive Observer

To implement the integral backstepping controller the following gains of the controller were
chosen as follows: Kωm = 200 s−1, Kφ = 1100 s−1, Kid = 550 s−1, K ′

id = 20 s−1, K ′′
id =

34 s−1, Kiq = 1200 s−1, K ′
iq = 10 s−1, K ′′

iq = 35 s−1, and kωs = 90 rad s �2.

Nominal case
The experimental responses obtained by considering the nominal case with identified param-
eters are shown on Figure 11.4. Notice the good performance of the proposed scheme that
maintains the speed close to the desired reference even though the presence of disturbance
(load torque). Notice that on the experimental setup, the load torque is measured to compare
it with the value provided by the observer.
Note that, for experimental test, “nominal case” means with the use of the identified param-

eters (thus with already errors on parameters). The estimated load torque (Figure 11.4d)
converges to the measured load torque (Figure 11.4c) under conditions of observability and at
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e, reference flux; b, d, f, g, observed speed, load torque, flux(φrd ), and stator resistance

very low frequency (conditions of unobservability between 7 and 9 s). Nevertheless, it shows
a small static error when the motor speed increases (between 4 and 6 s).
The following cases are experimented under parameters variations for robustness tests:

+50% rotor resistance variation (Rr )
In Figures 11.5 and 11.6 the results for a +50% variation of Rr that are included in the
observer-controller parameters are shown. These results are similar to those obtained for the
nominal case (Figure 11.4). following can be noted:

• the estimated speed (Figure 11.5b) converges to the measured one (Figure 11.5a),
• a good tracking for the flux (Figures 11.5e and f) and a good estimation of the load torque
(Figures 11.5c and d),

• the estimation error for the flux angle (φrq ) is almost zero (Figure 11.6d),
• the estimation of the stator resistance is always good (Figure 11.5g).

+10% rotor inductance variation (Lr )
Figures 11.7 and 11.8 display the good performances for the case of a+10% rotor inductance
variation applied at the same time for the observer and the controller parameters. A good



Experimental Evaluation of Nonlinear Control Design Techniques for Sensorless IM 223

0
(r

ad
/s

)

–5

0

5

21

a

b

c

d

43 65 87 9 1110

0
× 10–3

21 43 65 87 9 1110

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110

–5

5

0

–6

6

–0.04

0.04

–0.02

0.02

0

–4

4

–2
0
2

(N
m

)
(W

b)
(W

b)

Time (s)

Figure 11.6 Integral backstepping control (IBC) +50% for Rr ; a, b, speed and load torque estimation
errors; c, d, flux tracking error (φrd ) and flux angle error (φrq ) du flux

0

(r
ad

/s
)

0

50

100

21

a

b

c d

f

g

43 65 87 9 1110

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110
1.78

1.88
1.86

1.8

1.84
1.82

(N
m

)

(W
b)

(Ω
)

e

Time (s)

0
–2

2
4
6
8

10

0.58
0.585
0.59

0.6
0.595

Figure 11.7 Integral backstepping control (IBC), +10% of Lr ; a, c, measured speed and load torque;
e, reference flux; b, d, f, g, observed speed, load torque, flux(φrd ), and stator resistance



224 AC Electric Motors Control

(r
ad

/s
)

–5

0

5 a

b

d

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110

0 21 43 65 87 9 1110
–0.05

0

0.05

(N
m

)
(W

b)
(W

b)

c

Time (s)

0

–2

2

4

–4
–2

4
6

2
0

× 10–3

Figure 11.8 Integral backstepping control (IBC), +10% of Lr ; a, b, speed and load torque estimation
errors; c, d, flux tracking error (φrd ) and flux angle error(φrq )

tracking is obtained with disturbance rejection. The flux angle is well oriented Figure 11.8d
even when the load torque is applied.

+10% stator inductance variation (Ls)
A robustness test is given by a +10% variation on the stator inductance for the controller
and the observer parameters (Figures 11.9 and 11.10). The estimated load torque converges
even for the unobservable areas (Figure 11.9c) to the measured load torque (Figure 11.9d). In
addition, there are not many oscillations of the IM speed for the high speed (Figure 11.10a for
t = 5 s) and a good flux angle (Figure 11.10d). Nevertheless oscillations appear on the speed
and the flux when the load torque is canceled for slow speed (Figures 11.9a–f for t = 2.5 s). A
good stator resistance estimation is obtained (Figure 11.9g). It is clear that the IBC has good
robutness performances when associated to the adaptive interconnected observer.

The conclusion is that, in all cases, the speed and the flux track the desired
references, which shows the robustness of the proposed scheme under parametric
uncertainties and unknown load torque disturbance even in the unobservable case.

11.6.2 High-Order Sliding-Mode Control and Adaptive Observer

To optimize the behavior and the performances of the motor, two parameters tuning have
been chosen: the first one to induce the reaching of the motor flux, the second one to reject
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disturbance (such as load torque) and to ensure high-level accuracy for the trajectory tracking.
Then, the HOSM controller parameters are chosen such that tF = 0.3 s and

• t ≤ 5 s. ζφ = 0.35, ωnφ = 316 rad/s, αφ = 6.104, ζωm = 1.56, ωnωm = 32 rad/s, αωm =
8.104,

• t > 5 s. ζφ = 0.35, ωnφ = 447 rad/s, αφ = 15.104, ζωm = 0.7, ωnωm = 200 rad/s, αωm =
8.106

Nominal Case

The experimental results of the nominal case with identified parameters (except stator resis-
tance) are shown in Figure 11.11. These figures show the good performance of the complete
system observer-controller in trajectory tracking and disturbance rejection. The estimated
motor speed (Figure 11.11b) converges to the measured speed (Figure 11.11a) near and under
conditions of unobservability. It is the same conclusion for estimated flux (Figure 11.11f) with
respect to reference flux (Figure 11.11e). The estimated load torque (Figure 11.11d) converges
to the measured load torque (Figure 11.11c), under conditions of observability and at very
low frequency (conditions of unobservability) (between 7 and 9 s). Nevertheless, it shows a
small static error when the motor speed increases (between 4 and 6 s). The load torque is well
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rejected excepted at the time when it is applied (Figure 11.11h and j at time 1.5 s and 5 s) and
when it is removed (Figure 11.11h, j at time 2.5 s). In Figure 11.11g, it can be viewed that the
stator resistance estimation remains almost constant despite noise and transient dynamics of
speed and load torque. This test shows the capability of the proposed controller to guarantee
flux and speed tracking of slowly varying speed reference with excitation frequency close to
zero (between 7 and 9 s).

Robustness Tests

+50% rotor resistance variation (Rr ): The robustness of the observer-controller scheme is
confirmed by the result obtained with rotor resistance variation (+50%) applied to the observer
and controller parameters Figure 11.12 (evaluation of robustness with respect to inductances
variations has also been successfully made). The increase of the rotor resistance value does not
affect the performance of the speed trajectories tracking, when the observability conditions of
are verified. It shows a static error when the motor is under unobservable condition (between
7 and 9 s) (Figure 11.12a, b). The static error transitory increases when the load torque is
applied at time 1.5 s and 5 s (Figure 11.12h, j).

+10% rotor inductance variation (Lr ): Robustness tests are made with variation of rotor
inductance (+10%). The results of these tests are shown on Figure 11.13. The rotor inductance
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Figure 11.12 HOSM, rotor resistance variation (+50%); a, b, estimated and measured speeds; c, d,
measured and estimated load torques; e, f, reference and estimated fluxes; g, estimated stator resistance;
h, speed error; i, torque error; j, flux error versus time
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Figure 11.13 HOSM, rotor inductance variation (+10%); a, b, estimated and measured speeds; c, d,
measured and estimated load torques; e, f, reference and estimated fluxes; g, estimated stator resistance;
h, speed error; i, torque error; j, flux error versus time

does not affect the performances of both observer-controller schemes. It appears a small
oscillation at the time when the load torque is applied (Figure 11.13a, b) at time 5 s.

+10% stator inductance variation (Ls): Last robustness tests are made with variation of
stator inductance (+10%). The results of these tests are shown on Figure 11.14. By analyzing
this figure, we can see that the stator inductance variation does not affect the performances of
both observer-controller schemes. Nevertheless, it shows a small oscillation at the time when
the load torque is applied (Figure 11.14a and b) at time 5 s.

11.7 Robust Nonlinear Controllers Comparison

In this section, we compare the performance of the two proposed control approaches. To
validate the performance of such controllers, we take into account the following criterions:

• Practical implementation
• Robustness under uncertainties
• Computational effort
• Simplicity to tune
• Transient performances
• Structural properties and knowledge of the process control.
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Figure 11.14 HOSM; stator inductance variation (+10%); a, b, estimated and measured speeds; c, d,
measured and estimated load torques; e, f, reference and estimated fluxes; g, estimated stator resistance;
h, speed error; i, torque error; j, flux error versus time

The HOSM and the IBCs are implemented and validated experimentally on the same IM
setup and use the same electromechanical model for the control design.

11.7.1 High-Order Sliding-Mode Control

It is well known that the success of the SM control applied to IM drives is due to its disturbance
rejection and robustness. The HOSM control introduced in Section 11.4 is characterized by:

Advantages

1. Convergence properties: Finite-time convergence is achieved. The time of convergence can
be fixed a priori.

2. Stability and robustness despite uncertainties.

Limitations

1. Tuning difficulty.
2. Computational effort: The control design requires a mayor computational effort and diffi-
culties for the experimental implementation.

3. Transient performance: High-frequency signal components.
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11.7.2 Integral Backstepping Control

The proposed IBC design is a robust recursive design methodology. The construction of the
control laws and Lyapunov functions is easy and systematic.

Advantages
1. Recursive design procedure: Its flexibility to avoid cancelations of useful nonlinearities
and to pursue the objectives of stabilization and tracking.

2. Convergence properties: Asymptotic convergence is achieved.
3. Stability with uncertainties: Lyapunov arguments are used to prove stability and it is easy
to built.

4. Computational effort: The control design is simple and easy to implement experimentally.
5. Structural properties: The integral term increases the robustness of the control.
6. Transient performance: Easy to tune.

Limitations
The backsteppingmethodology (with integral termor not) needs the knowledge of a sufficiently
precise model.

11.7.3 Experimental Results: Comparison

From experimental results, the following observations can be made:

1. The same hardware and software are used to implement the different control laws on the
same setup.

2. The transient performance is improved by using IBC.
3. Even if attenuated with respect to SM of order one, the HOSM controller leads to signi-
ficative high-frequency content in the control signals.

4. The behavior of the IBC is more desirable since the chattering voltages and currents can
damage the motor and hence shorten the longevity.

5. The price to pay for the elimination of the chattering is an important computation effort to
achieve the tracking performance.

In Table 11.1, a computation time comparison is reported for the two controllers and the
observer presented in this paper. Two other observers-controllers computation times are also

Table 11.1 Time computation comparison

Controller Control time (μs) Observation time (μs)

PI 10 20a

SM order 1 11 20a

Backstepping 12 34b

HOSM 35 34b

SM, sliding mode; HOSM, high-order sliding mode.
a Interconnected observer, bAdaptive interconnected observer.
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given: an FOC-PI controller (Traore et al. 2007b) and a SM controller of order 1 (Traore
et al. 2007a) associated to an interconnected oberver. Even though their computation times are
lower for these observer-controller schemes, the global performances of these two controllers
are weaker than the two controllers presented in this paper.

11.8 Conclusions

This study investigates two observer-control schemes based on two approaches: an HOSMC
and an IBC, which are applied to the control of an IM without using mechanical sensors
(position sensor, speed sensor, load torque sensor).
The major contributions of this study are summarized as follows:

1. An adaptive interconnected observer to estimate the rotor speed, the rotor fluxes, and the
load torque even when nominal value of the external load disturbance is applied.

2. A comparative study to investigate the performances of the proposed control schemes
in order to achieve good speed and flux trackings for IM without mechanical sensor
under conditions of observability and unobservability. The advantages and limitations are
analyzed in terms of: (a) practical implementation, (b) robustness under uncertainties,
(c) computational effort, (d) simplicity to tune, (e) transient performances, (f) structural
properties.

3. The implementation of the proposed control schemes on experimental setup with a sig-
nificant sensorless control benchmark, has been presented. Finally, the robustness of the
observer and controller have been tested under significant parameter variations.

This research has been partially supported by CONACYT Ciencia Basica No. 105799. CONA-
CYT Estancias Sabaticas. SEP CASEP-CA-232 UANL.
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Multiphase Induction
Motor Control

Roberto Zanasi and Giovanni Azzone
Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Italy

12.1 Introduction

The interest in multiphase variable-speed induction machines is considerably increased
during the last few years (see Jones and Levi 2002; Levi et al. 2007), especially in the last
two decades when the multiphase machines started to be considered as potential alternative to
the conventional three-phase machines. The reasons can be easily pointed out considering the
advantages and benefits of the multiphase motors with respect to the conventional three-phase
ones, such as reduction of the torque pulsations, improved reliability, and higher power in
terms of provided mechanical torque. Combining all these enhancements with the intrinsic
induction motors robustness and versatility, it is quite clear that their use in industrial applica-
tions has seen a substantial growth worldwide. Nowadays there are several applications where
the use of these kinds of machines is considerably growing: electrical and hybrid vehicles,
aerospace applications, electrical ship propulsion, locomotive traction, high-power industrial
applications, and in general applications where high reliability is demanded. Moreover, the
advantages of the odd order harmonic injection, existing in concentrated-winding multiphase
machines (see Toliyat et al. 1991a, 1991b), are well known in literature for providing a higher
torque density and adding additional degrees of freedom especially in terms of motor control.
In literature, different field-oriented control strategies addressed to induction motors with
a specific number of stator and rotor phases have been discussed, especially for five-phase
machines (see, for instance, Xu et al. 2001, 2002, Pereira et al. 2006; Duran et al. 2008).
This chapter presents a new complex dynamic model of a multiphase induction motor

considering an arbitrary number of stator and rotor phases and including the odd order
harmonic injection. Starting from the machine equations, the indirect rotor field-oriented

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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x1

y

(a) Elaboration block

G(s)

x2

y

x1

y1

(b) Connection block

K∗

K x2

y2

Figure 12.1 POG main blocks

control (IRFOC) is extended to the multiphase general case. Finally, some simulation results
are presented in the specific case of a five-phase induction motor.

12.2 Power-Oriented Graphs

The power-oriented graphs technique (hereafter called POG) (see Zanasi 1991; Morselli and
Zanasi 2006; Zanasi 2010), is a graphical energy-based technique particularly suitable for
modeling dynamic physical systems. The POG block schemes are normal block diagrams
combined with a particular modular structure essentially based on the use of the two blocks
shown in Figure 12.1: the elaboration block stores and/or dissipates energy (i.e., springs,
masses, dampers, capacities, inductances, resistances, etc.); the connection block redistributes
the power within the system without storing nor dissipating energy (i.e., any type of gear
reduction, transformers, etc.). The POG schemes can be used for both scalar and vectorial
systems, described by both real and complex variables. In the vectorial case, G(s) and K are
matrices: G(s) is always a square matrix of positive real transfer functions; matrix K can also
be rectangular, time varying, and function of other state variables. The circle present in the
elaboration block is a summation element where the black spot represents a minus sign that
multiplies the entering variable. The connection block transforms the power variables imposing
the constraint x∗

1y1 = x∗
2y2. The main feature of the POGs is to keep a direct correspondence

between the dashed sections of the graphs and real power sections of the modeled systems: the
real part of the scalar product x∗y of the two power vectors x and y involved in each dashed
line of a POG (see Figure 12.1) has the physical meaning of the power flowing through that
particular section. From the POG schemes one can directly obtain the state space equations
of the system: L ẋ = −Ax + Bu, y = B∗x. This correspondence is shown in Figure 12.2. The
energy matrix L is always symmetric and positive definite: L = L∗ > 0. When an eigenvalue
of matrix L tends to zero (or to infinity) the system degenerates towards a smaller dynamic
system. The dynamic equations Lż = −Az+Bu and y = B

∗
z of the “reduced” system can be

obtained from the original one using a “congruent” transformation x = Tz (matrix T can also
be complex and/or rectangular) where L = T∗LT, A = T∗AT − T∗LṪ, and B = T∗B. When
matrix T is rectangular, the system is transformed and reduced at the same time. The POG
schemes maintain their physical meaning even when the dynamic system is described using
complex variables.
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(12.1)

(12.2)

Lx = −Ax + Bu˙

y = B*x

(x = Tz)

Lz = −Az + Bu˙

y = B*z

Figure 12.2 POG block scheme of a generic dynamic system

An example of POG modeling of an electrical RC circuit is shown in Figure 12.3. The
C and R physical elements are described by two POG elaboration blocks. There is a direct
correspondence between physical power sections and dashed sections in the POG model. The
summation elements present in the elaboration blocks are a mathematical description of the
current and voltage Kirchhoff’s laws applied to the considered electrical system.

12.2.1 Notations

In this chapter the following notations are used to denote, respectively, full, diagonal, column,
and row matrices:

i j∣∣[ Ri, j
]∣∣

1:n 1:m

=

⎡
⎢⎢⎢⎣

R11 R12 · · · R1m
R21 R22 · · · R2m
...

...
. . .

...
Rn1 Rn2 · · · Rnm

⎤
⎥⎥⎥⎦ ,

i

|[ Ri ]|
1:n

=

⎡
⎢⎣

R1
. . .

Rn

⎤
⎥⎦ ,

i

|[ Ri ]|
1:n

= [
R1 R2 · · · Rn

]T
,

j∣∣[ R j
]∣∣

1:m

= [
R1 R2 · · · Rm

]
.

V1 V2

V4

I1 I2

I3

I2

C

R

1 2 3

I1

V1

1

I3

Kirchhoff’s
current law

1
C s

2

V4

Kirchhoff’s
voltage law

1
R

3

I2

V2

Figure 12.3 POG modeling of an electrical RC circuit
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The symbol δ(n)|mk denote the following function:

δ(n)|mk =
{
1, if n ∈ [k, k ± m, k ± 2m, . . .];
0, in the other cases ;

where n, k, m ∈ Z. The symbol Im denotes an identity matrix of order m.

12.3 Multiphase Induction Motor Complex Dynamic Modeling

The basic structure of a multiphase star-connected induction motor is shown in Figure 12.4.
The electrical and mechanical parameters of the motor are shown in Table 12.1. All the
electrical parameters of the motor have been obtained connecting in series the p polar couples
of the motor.

12.3.1 Hypothesis for the Induction Motor Modeling

H1: The stator and rotor phases are considered star-connected, therefore the following relations
hold:

ms∑
h=1

Ish = Is1+ Is2+. . .+ Isms = 0 ,

mr∑
h=1

Irh = Ir1+ Ir2+. . .+ Irmr = 0. (12.3)

H2: The stator and rotor phases have a concentrated-winding structure in order to provide the
harmonic injection: this means that the self- andmutual inductances are described by odd order
Fourier series decompositions, and therefore their resultant shapes depend on the assigned

Is1 Is2 Is3 Isms Ir1 Ir2 Ir3 Irmr

Ls

Rs

V1 V2

Vs0

V3 Vms Vrr

Vr0

Lr

Rr

Msr

Ms3msMs23Ms12 Mr3mrMr23Mr12

Jm

bm
ωm

τm τe

Figure 12.4 Structure of a multiphase induction motor
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Table 12.1 Electrical and mechanical parameters of a multiphase induction motor

ms , mr Number of stator and rotor phases
p Number of rotor and stator polar expansions
γs , γr Stator and rotor angular phase displacement (γs = 2π

ms
, γr = 2π

mr
)

θm , ωm Angular position and angular velocity of the rotor
θs , ωs Angular position and frequency of the stator voltages
θ Electric angle (θ = p θm)
Rs , Ls Resistance and self-inductance coefficient of the stator phases
Rr , Lr Resistance and self-inductance coefficient of the rotor phases
Ms0, Mr0 Maximum mutual inductance coefficients of the stator and rotor phases
Msr0 Maximum mutual inductance coefficient between stator and rotor phases
Isi , Iri Stator and rotor currents of the i th phase
Vi Line voltage of the i th stator phase
Vs0, Vr0 Stator and rotor voltages of the star centers
Jm , bm Inertia momentum and linear friction coefficient of the rotor
τm , τe Electromotive torque and external load torque acting on the rotor

Fourier coefficients and on the number of injected harmonics. This can be mathematically
expressed defining the self- and mutual inductance coefficients Lsi , Lri , Msi j , and Mri j as
follows:

⎧⎪⎪⎨
⎪⎪⎩

Msi j = Ms0

ms−2∑
n=1:2

as
n cos(n (i − j)γs)

Ls0 = Ls − Ms0 > 0

,

⎧⎪⎪⎨
⎪⎪⎩

Mri j = Mr0

mr −2∑
n=1:2

ar
n cos(n (i − j)γr )

Lr0 = Lr − Mr0 > 0

(12.4)

with i, j ∈ {1, 2, . . . , ms} for the stator and i, j ∈ {1, 2, . . . , mr } for the rotor. Parameters as
n

and ar
n are the stator and rotor Fourier coefficients. The coefficients Ls0 and Lr0 describe the

part of the self-inducted flux that does not concatenate with the other stator and rotor phases.

H3: The rotor phases are short-circuited: Vrr = Vr0 (see Figure 12.4).

H4: The input stator voltages Vi are supposed to be balanced:
∑ms

i=0 Vi = 0.

12.3.2 Complex Dynamic Modeling of the Induction Motor

Let now t Vs , t Is , t Vr , and t Ir denote the stator phase and rotor phase voltage and current
vectors in the external reference frame �t (see Figure 12.4):

t Vs =

⎡
⎢⎢⎢⎣

Vs1

Vs2
...

Vsms

⎤
⎥⎥⎥⎦ , t Is =

⎡
⎢⎢⎢⎣

Is1

Is2
...

Isms

⎤
⎥⎥⎥⎦ , t Vr =

⎡
⎢⎢⎢⎣

Vr1

Vr2
...

Vrmr

⎤
⎥⎥⎥⎦ , t Ir =

⎡
⎢⎢⎢⎣

Ir1

Ir2
...

Irmr

⎤
⎥⎥⎥⎦
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where Vsi = Vi − Vs0 for i ∈ {1, 2, . . . , ms}, and Vri = Vrr − Vr0 = 0 for i ∈
{1, 2, . . . , mr }. Using the following generalized state vector t q̇ and extended input
vector t V:

t q̇ =
⎡
⎣ t Is

t Ir

ωm

⎤
⎦ =

[
t Ie

ωm

]
, t V =

⎡
⎣ t Vs

t Vr

−τe

⎤
⎦ =

[
t Ve

−τe

]

and applying the “Lagrangian” approach discussed in Zanasi et al. (2009) and Zanasi and
Azzone (2010), one obtains the following dynamic equations of the multiphase induction
motors:

d

dt

([
t Le 0
0 Jm

]
︸ ︷︷ ︸

t L(t q)

[
t Ie

ωm

]
︸ ︷︷ ︸

t q̇

)
= −

[
t
Re + t Fe

t Ke

− t KT
e bm

]
︸ ︷︷ ︸

t R + t W

[
t Ie

ωm

]
︸ ︷︷ ︸

t q̇

+
[

t Ve

−τe

]
︸ ︷︷ ︸

t V

. (12.5)

The structures of the energy matrix t L(t q), the dissipating matrix t R, and the energy redistri-
bution matrix t W are the following:

t L(t q) =
⎡
⎣ t Ls

t MT
sr (θm) 0

t Msr (θm) t Lr 0
0 0 Jm

⎤
⎦ =

[
t Le 0
0 Jm

]
,

t R =
⎡
⎣ t

Rs 0 0
0 t

Rr 0
0 0 bm

⎤
⎦ =

⎡
⎣ Rs Ims 0 0

0 Rr Imr 0
0 0 bm

⎤
⎦ =

[
t
Re 0
0 bm

]
,

t W =

⎡
⎢⎢⎣

0 − 1
2

t ṀT
sr

1
2

∂ t MT
sr

∂θm

t Ir

− 1
2

t Ṁsr 0 1
2

∂ t Msr
∂θm

t Is

− 1
2

t ITr
∂ t Msr
∂θm

− 1
2

t ITs
∂ t MT

sr
∂θm

0

⎤
⎥⎥⎦ .

In order to take into account the odd order harmonic injection of the motor, see equations
(12.4) of Hypothesis H2, the self- and mutual inductance matrices t Ls , t Lr , and t Msr are
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supposed to have the following structure:

t Ls = Ls0 Ims + Ms0

i j∣∣∣∣∣
[

ms−2∑
n=1:2

as
n cos(n (i − j)γs)

]∣∣∣∣∣
1:ms 1:ms

,

t Lr = Lr0 Imr + Mr0

i j∣∣∣∣∣
[

mr −2∑
n=1:2

ar
n cos(n (i − j)γr )

]∣∣∣∣∣
1:mr 1:mr

,

t Msr (θ ) = Msr0

i j∣∣∣∣∣
[

msr −2∑
n=1:2

asr
n cos(n(θ + iγr − jγs))

]∣∣∣∣∣
0:mr −1 0:ms−1

,

where msr = min{ms, mr }, Ls0 = Ls − Ms0, and Lr0 = Lr − Mr0, that means the stator and
rotor phases have a concentrated-winding structure. The coefficients as

n , ar
n , and asr

n of the
Fourier series are supposed to satisfy the following constraints:

ms−2∑
n=1:2

|as
n| ≤ 1,

mr −2∑
n=1:2

|ar
n| ≤ 1,

msr −2∑
n=1:2

|asr
n | ≤ 1.

Once the motor dynamic equations have been obtained, a state space transformation has to be
performed in order to project them onto a new rotating reference frame. Let t T̃ωN ∈ C

m×(m+1)/2

denote the following composed matrix:

t T̃ωN (m, θ ) = t T̃ω(m, θ ) Nm = [
t T̃ω zm

]
Nm, (12.6)

where t T̃ω(m, θ ) ∈ C
m×(m−1)/2 is a complex orthonormal matrix defined as

t T̃ω(m, θ ) =
√
1

m

h k∣∣∣[ e j k(θ−hγm )
]∣∣∣

0:m−1 1:2:m−2
, γm = 2π

m
,

and vector zm ∈ R
m and matrix Nm ∈ R

(m+1)/2×(m+1)/2 are defined as follows:

zm =
h∣∣∣[ √ 1

m

]∣∣∣
0:m−1

, Nm =
[ √

2 I m−1
2
0

0 1

]
.

Based on matrix (12.6), the following transformation matrix

t Tω ∈ C
(ms+mr +1)×(ms+mr )/2+2
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can be defined as

t Tω =
⎡
⎣ t T̃ωN (ms, θs) 0 0

0 t T̃ωN (mr , θp) 0
0 0 1

⎤
⎦ =

[
t TωN 0
0 1

]
(12.7)

=
⎡
⎣ t T̃ω(ms, θs) 0 0

0 t T̃ω(mr , θp) 0
0 0 1

⎤
⎦
⎡
⎣ Nms 0 0

0 Nmr 0
0 0 1

⎤
⎦ (12.8)

=
[

t Tω 0
0 1

] [
N 0
0 1

]
= t Tω N, (12.9)

where θp = θs − θ . The complex matrix t Tω, whose columns are orthogonal vectors, is used
to perform a “pseudo” state space transformation t q̇ = t Tω

ωq̇ from the original external
reference frame �t to a new complex rotating one �̄ω. The new dynamic equations of the
transformed system assume the following structure:

[
ωL̄e 0
0 Jm

]
︸ ︷︷ ︸

ωL

[
ω ˙̄Ie

ω̇m

]
︸ ︷︷ ︸

ωq̈

= −
[

ω
R̄e + ωF̄e + ω
̄e

ωK̄e

− ωK̄∗
e bm

]
︸ ︷︷ ︸

ωR + ωW

[
ω Īe

ωm

]
︸ ︷︷ ︸

ωq̇

+
[

ωV̄e

−τe

]
︸ ︷︷ ︸

ωV

. (12.10)

The reason why the considered state space transformation is called “pseudo” is because the
complex vectors ωq̇ and ωV are obtained using matrix t Tω (see equation (12.7)):

ωq̇ = t T∗
ω

t q̇ =
⎡
⎣ ω Īs

ω Īr

ωm

⎤
⎦ =

[
ω Īe

ωm

]
, ωV = t T∗

ω
t V =

⎡
⎣ ωV̄s

ωV̄r

−τe

⎤
⎦ =

[
ωV̄e

−τe

]

while the transformed matrices ωL, ωR, and ωW are obtained using matrix t Tω (see equation
(12.9)):

ωL = t T
∗
ω

t L t Tω, ωR = t T
∗
ω

t R t Tω, ωW = t T
∗
ω

t W t Tω.

Note that the transformation matrix t Tω does not change the diagonal structure of the trans-
formed matrix ωR with respect to t R, it only reduces its dimension:

ωR = t T
∗
ω

t R t Tω =
⎡
⎣ ω

R̄s 0 0
0 ω

R̄r 0
0 0 bm

⎤
⎦ =

⎡
⎣ Rs I ms −1

2
0 0

0 Rr I mr −1
2

0
0 0 bm

⎤
⎦ =

[
ω
R̄e 0
0 bm

]
.
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On the contrary, it can be easily proved that the energy matrix ωL in the new transformed
reference frame �̄ω has the following symmetric constant structure:

ωL =
⎡
⎣ Ls0 + ms

2 Ms0 as Msre aTsr 0
Msre asr Lr0 + mr

2 Mr0 ar 0
0 0 Jm

⎤
⎦ ,

and the energy redistribution matrix ωW has the following skew-symmetric structure:

ωW =
⎡
⎣ j ωs kms (Ls0 + ms

2 Ms0 as) j (ωs − ω
2 )Msre kms aTsr

ωK̄s

j (ωs − ω
2 )Msre kmr asr j ωp kmr (Lr0 + mr

2 Mr0 ar ) ωK̄r

− ωK̄∗
s − ωK̄∗

r 0

⎤
⎦ ,

where

km =
k

|[ k ]|
1:2:m−2

, Msre = Msr0
√

msmr

2
, ωp = ωs − ω.

Note that ωp is the slip velocity of the motor. Moreover as , ar , and asr are real, constant
matrices (function of the Fourier series coefficients) defined as follows:

as =
k∣∣[ as

k

]∣∣
1:2:ms−2

, ar =
k∣∣[ ar

k

]∣∣
1:2:mr −2

, asr =
k l∣∣[ asr

k δ(k)|∞l
]∣∣

1:2:mr −2 1:2:ms−2
.

The transformed complex conjugate stator and rotor torque vectors are defined as

ωK̄∗
s = − j

p

2
Mω

sre Ī∗
r kmr asr , ωK̄∗

r = j
p

2
Msre

ω Ī∗
s kms a

T
sr .

The transformed vectors ω Īe and ωV̄e have the following structure:

ω Īe = t T
∗
ωN

t Ie =
[ t T̃ ∗

ωN (ms, θs) t Is
t T̃ ∗

ωN (mr , θp) t Ir

]
=

⎡
⎢⎢⎣

ω Īs
ω Isms
ω Īr

ω Irmr

⎤
⎥⎥⎦ ,

ωV̄e = t T
∗
ωN

t Ve =
[ t T̃ ∗

ωN (ms, θs) t Vs
t T̃ ∗

ωN (mr , θp) t Vr

]
=
⎡
⎣ ωV̄s

ωVsms

0

⎤
⎦ ,

(12.11)

where ωV̄r = 0 because the rotor phases are short-circuited. The components ω Isms ,
ω Irmr ,

and ωVsms in (12.11) are defined as follows:

ω Isms=
1√
ms

ms∑
i=1

Isi ,
ω Irms=

1√
mr

mr∑
i=1

Iri ,
ωVsms=

1√
ms

mr∑
i=1

Vsi .
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Considering that the stator and rotor phases are star-connected (see equation (12.3)), it results
that ω Isms = 0 and ω Irmr = 0. Moreover, ωVsms = 0 because the input stator voltages are
supposed to be balanced. The vectors ω Īs , ω Īr , and ωV̄s in (12.11) have the following
structure:

ω Īs =
k∣∣∣[ ω Īsk

]∣∣∣
1:2:ms−2

=
k∣∣∣[ Idsk + j Iqsk

]∣∣∣
1:2:ms−2

, ω Īr =
k∣∣∣[ ω Īrk

]∣∣∣
1:2:mr −2

=
k∣∣∣[ Idrk + j Iqrk

]∣∣∣
1:2:mr −2

,

ωV̄s =
k∣∣∣[ ω V̄sk

]∣∣∣
1:2:ms−2

=
k∣∣∣[ Vdsk + j Vqsk

]∣∣∣
1:2:ms−2

.

Finally, the mechanical torque τm in the reference frame �̄ω can be expressed as follows:

τm = Re ( ωK̄∗
e

ω Īe) = Re

([
ωK̄∗

s
ωK̄∗

r

][ ω Īs
ω Īr

])

= p

2
Msre Re

([− j ω Ī∗
r kmr asr j ω Ī∗

s kms aTsr

][ ω Īs
ω Īr

])

= p Msre

msr −2∑
k=1:2

k asr
k (Idrk Iqsk − Idsk Iqrk). (12.12)

A POG graphical representation of system (12.10) is shown in Figure 12.5. Section ©1 –©3
represents the state space transformation�t ↔ �̄ω. Function “Re(·)” denotes the “complex to
real conversion” of the input. Section©3 –©4 , that is, the lightly shaded section of Figure 12.5,
represents the electrical part of the system: note that this part is described only by complex
matrices and complex variables. The mechanical part of the motor is described by section
©6 –©7 : this part is characterized only by real values and real variables. Section©4 –©6 represents
the energy and power conversion (without accumulation or dissipation) between the electrical
and mechanical parts.
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Figure 12.5 POG graphical representation of a multiphase induction motor in the frame �̄ω
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It can be easily proved that in (12.10), the term ωKe ωm is simplified by the term ωF̄e
ω Īe,

so the dynamics of the system can be rewritten in the following simplified form:

[
ωL̄e 0
0 Jm

]
︸ ︷︷ ︸

ωL

[
ω ˙̄Ie

ω̇m

]
︸ ︷︷ ︸

ωq̈

=−
[

ω
R̄e+ ω
̄e 0
− ωK̄∗

e bm

]
︸ ︷︷ ︸

ωR+ ωW

[
ω Īe

ωm

]
︸ ︷︷ ︸

ωq̇

+
[

ωV̄e

−τe

]
︸ ︷︷ ︸

ωV

. (12.13)

12.4 Multiphase Indirect Field-Oriented Control with
Harmonic Injection

The field-oriented control in the multiphase case can be now investigated starting from equa-
tion (12.13). Let us now consider the case ms = mr = msr and let Pπ denote the following
permutation matrix:

Pπ =
h∣∣[ eh ems+h
]∣∣

1: msr−1
2

, (12.14)

where eh denotes a column vector of length msr −1 with 1 in the hth position and 0 in all
the other positions. Applying the transformation ω Īe = Pπ

ω Īek to the electrical part of system
(12.13), the following reordered system referred to the new reference frame �̄ωk is obtained:[

ωL̄ek 0
0 Jm

]
︸ ︷︷ ︸

ωLk

[
ω ˙̄Iek

ω̇m

]
︸ ︷︷ ︸

ωq̈k

= −
[

ω
R̄ek + ω
̄ek 0
− ωK̄∗

ek
bm

]
︸ ︷︷ ︸

ω
Rk + ωWk

[
ω Īek

ωm

]
︸ ︷︷ ︸

ωq̇k

+
[

ωV̄ek

−τe

]
︸ ︷︷ ︸

ωVk

, (12.15)

where matrices and vectors ωL̄ek = PTπ
ωL̄e Pπ , ω

R̄ek = PTπ
ω
R̄e Pπ , ω
̄ek = PTπ

ω
̄e Pπ ,
ω Īek = PTπ

ω Īe, ωV̄ek = PTπ
ωV̄e, and ωK̄∗

ek
= ωK̄∗

e Pπ are expressed as follows:

ωL̄ek =
k∣∣∣∣
[

Lsek Msrek

Msrek Lrek

]∣∣∣∣
1:2:msr −2

, ω Īek =
k∣∣∣∣
[

ω Īsk
ω Īrk

]∣∣∣∣
1:2:msr −2

, ωV̄ek =
k∣∣∣∣
[

ω V̄sk

0

]∣∣∣∣
1:2:msr −2

,

ω
R̄ek =

k∣∣∣∣
[

Rs 0
0 Rr

]∣∣∣∣
1:2:msr −2

, ω
̄ek =
k∣∣∣∣
[

j ωs k Lsek j ωs k Msrek

j ωp k Msrek j ωp k Lrek

]∣∣∣∣
1:2:msr −2

,

ωK̄∗
ek

=
k∣∣[ j p

2 k Msrek
ω Ī ∗

rk − j p
2 k Msrek

ω Ī ∗
sk

]∣∣
1:2:msr −2

,

with Lsek = Ls0 + ms
2 as

k Ms0, Lrek = Lr0 + mr
2 ar

k Mr0, and Msrek = Msre asr
k . From (12.15) it

clearly follows that a multiphase induction motor with an odd order harmonic injection can
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be mathematically described by msr−1
2 sets of decoupled equations in the frame �̄ωk : in other

words, the system can be seen as the set of msr−1
2 three-phase induction motors whose dynamic

equations are the projection of system (12.10) in the kth subspace and supplied by balanced
voltages at frequencies k ωs . In addition, the overall mechanical torque of the motor τm is the
sum of the torques generated by the msr−1

2 internal decoupled motors:

τm =
msr −2∑
k=1:2

τmk =
msr −2∑
k=1:2

Re ( ωK̄∗
ek

ω Īek )

= Re

⎛
⎜⎜⎝

msr −2∑
k=1:2

k∣∣∣[− j
p

2
k Msrek

ω Ī ∗
rk j

p

2
k Msrek

ω Ī ∗
sk

]∣∣∣
1:2:msr −2

k∣∣∣∣
[

ω Īsk
ω Īrk

]∣∣∣∣
1:2:msr −2

⎞
⎟⎟⎠

= p Msre

msr −2∑
k=1:2

k asr
k (Idrk Iqsk − Idsk Iqrk).

Clearly, this expression coincides with the one given in (12.12). The same concept can be
applied to the field-oriented control theory: the basic idea is to define the global control
equations in the multiphase case as a set of msr−1

2 independent control equations, respectively
referred to each odd harmonic subspace. For this purpose the multiphase IRFOC is considered.
This type of control, in the three-phase case, is widely described in Vas (1990) and Leonard
(2001). Let ω�̄ek = ωL̄ek

ω Īek denote the flux vector in the frame �̄ωk . Substituting
ω�̄ek in

equations (12.15) one obtains the following reordered motor dynamic equations as function
of the flux:

k∣∣∣∣
[

ω V̄sk

0

]∣∣∣∣
1:2:msr −2

=
k∣∣∣∣
[

Rs 0
0 Rr

]∣∣∣∣
1:2:msr −2

k∣∣∣∣
[

ω Īsk
ω Īrk

]∣∣∣∣
1:2:msr −2

+
k∣∣∣∣
[

j ωs k 0
0 j ωp k

]∣∣∣∣
1:2:msr −2

k∣∣∣∣
[

ω�̄sk
ω�̄rk

]∣∣∣∣
1:2:msr −2

+
k∣∣∣∣∣
[

ω ˙̄�sk
ω ˙̄�rk

]∣∣∣∣∣
1:2:msr −2

.

where
ω�̄sk = �dsk + j �qsk,

ω�̄rk = �drk + j �qrk .

Imposing the field orientation condition, that is the rotor flux is supposed to be aligned with
the direct axis ensuring null quadrature components of the rotor flux, one can write the IRFOC
main equations in the frame �̄ωk as follows:

τm =
msr −2∑
k=1:2

τmk = p
msr −2∑
k=1:2

k
Msrek

Lrek

�drk Iqsk, (12.16)

�r =
msr −2∑
k=1:2

�drk =
msr −2∑
k=1:2

Msrek Idsk, (12.17)

ωpk = k
Iqsk

Trk Idsk
, k ∈ {1 : 2 : msr − 2}, (12.18)
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where �drk = Re( ω�̄rk), Idsk = Re( ω Īsk), Iqsk = Im( ω Īsk), and Trk = Lrek /Rr is the rotor
constant of the kth harmonic subspace. Note that each subspace is characterized by the respec-
tive ωpk slip velocity. Concluding, the multiphase induction motor with harmonic injection
can be described and modeled as a set of k = msr −1

2 three-phase decoupled machines that can
be independently controlled performing the decoupling between the torque and flux in each
harmonic subspace, as described by equations (12.16), (12.17), and (12.18).

12.4.1 Five-Phase Indirect Rotor Field-Oriented Control

Let us now consider the case of a five-phase induction motor characterized by the combined
action of the fundamental and third harmonic currents. The IRFOC equations can be obtained
from equations (12.16), (12.17), and (12.18) imposing ms = mr = msr = 5:

τ1 = p
Msre1

Lre1

�dr1 Iqs1, τ3 = 3 p
Msre3

Lre3

�dr3 Iqs3, (12.19)

�dr1 = Msre1 Ids1, �dr3 = Msre3 Ids3, (12.20)

ωp1 = Iqs1

Tr1 Ids1
, ωp3 = 3

Iqs3

Tr3 Ids3
. (12.21)

Note that τm = τ1 + τ3 and �r = �dr1 + �dr3. In this case it is clear that the field-oriented
control of the two subspaces is totally decoupled: the stator direct-current components Ids1

and Ids3 directly control the rotor direct flux components �dr1 and �dr3, while the stator
quadrature current components Iqs1 and Iqs3 independently control the torque components τ1
and τ3, assuming that the rotor flux components remain constant. Let us now suppose that the
third harmonic component is a k3 fraction of the fundamental component:

Ids3 = k3 Ids1, Iqs3 = k3 Iqs1. (12.22)

In this case, it has been chosen k3 = 0.15 in order to avoid saturation effects ensuring a
more flattened flux (see Xu et al. 2001, 2002). Substituting the expressions of the direct and
quadrature third harmonic stator current components Ids3 and Iqs3 defined in equation (12.22)
into equations (12.19), (12.20), and (12.21), one obtains the following direct and quadrature
fundamental stator current components Ids1 and Iqs1 and slip velocity:

Iqs1 = τm

p �r

(
Msre1

Msre1 + k3 Msre3

)
(

Msre1

Lre1

+ 3 k23
M2

sre3

Lre3 Msre1

) , (12.23)

Ids1 = �r

Msre1 + k3 Msre3

, (12.24)

ωp1 = Iqs1

Tr1 Ids1
. (12.25)
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Figure 12.6 IRFOC of a five-phase induction motor: fundamental plus third harmonic injection

These variables are used to implement the IRFOC control of a five-phase induction motor
as shown in Figure 12.6: the outer PIω regulator controls the motor angular velocity ωm by
tracking the defined velocity reference ω

re f
m and generates the torque reference τ

re f
m . The inner

PIdk and PIqk controllers respectively regulate the stator direct-current components Ids1 and
Ids3, directly controlling the rotor flux �r , and the stator quadrature current components Iqs1

and Iqs3, directly controlling the mechanical torque τm . In such a way, the decoupling between
the fundamental and the third harmonic has been achieved and the voltage references V ref

ds1 ,
V ref

ds3 , V
ref
qs1 , and V ref

qs3 are then transformed to generate the balanced motor input voltage vector
t Vs . Note that K = [1 k3] according to equation (12.22).
An alternative strategy that can be considered is to control the first subspace only, that

corresponds to the fundamental harmonic, and generate the voltage references V ref
ds1 and

V ref
qs1 , while the third harmonic injection contributions can be obtained using an appropriate

scaling coefficient kV3 = f (k3) in order to calculate the voltage references V ref
ds3 = kV 3 V ref

ds1

and V ref
qs3 = kV 3 V ref

qs1 that act in the third subspace. The first solution (see Figure 12.6) is
more flexible because a custom control for each harmonic subspace can be designed, but its
implementation has a higher cost in terms of number of used controllers and tuning. On the
other side, the second solution (see Figure 12.7) has a simpler structure but it is limited to
the first subspace only, so the control is focused only on the subspace of the fundamental. The
trade-off that has to be considered is between the control degrees of freedom and the control
computational and implementation costs.
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Figure 12.7 IRFOC of a five-phase induction motor: control of the fundamental and scaling of the
third harmonic (see Figure 12.6 for the remaining scheme)

12.4.2 Five-Phase IRFOC Simulation Results

The simulation results presented in this section have been obtained in Matlab/Simulink by
implementing the complex and reduced order model of a five-phase induction motor consid-
ering the third harmonic injection and using the IRFOC strategy described in Figure 12.6. The
electrical and mechanical parameters of the considered motor are listed in Table 12.2. Note
that this motor is supposed to have a concentrated winding phase structure in order to take
into account the third harmonic injection. In this case the balanced voltage input vector has
the following structure:

t Vs =
h∣∣∣[Vsh

]∣∣∣
1:5

=
3∑

k=1:2

h∣∣∣[Vmk cos(k (θs − (h − 1) γs))
]∣∣∣,

1:5

Table 12.2 Electrical and mechanical parameters of the considered
five-phase induction motor

Stator parameters Rotor parameters

ms 5 mr 5
Ls 115.5 mH Lr 43.2 mH
Rs 2.7
 Rr 0.85


Ms0 114 mH Mr0 42.9 mH

Motor parameters

p 2 Msr0 66.2 mH
Vs� 220 V fn 50 Hz
Jm 0.002 Kg m2 ωn 1390 rpm
Pn 0.75 kW �rn 0.58 Wb
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Figure 12.8 Mutual inductance between the first stator phase and the rotor phases (for a color version
of this figure, please see color plates.)

where k indicates the injected harmonic order and h the number of stator phases. The following
Fourier coefficient matrices have been used:

as = ar = asr =
[
0.8 0
0 0.2

]
.

These coefficient matrices define the shape of the mutual inductance t Msr . The behavior of
the mutual inductance t Msr between the first stator phase and the rotor phases as function of
the rotor revolutions is shown in Figure 12.8.
The outer velocity tracking is shown in Figure 12.9: the dashed line represents the trapezoidal

profile reference ω
re f
m (see Figure 12.6) while the solid line represents the motor angular

velocity ωm . The tracking error is quite small and it increases only during the rising and
falling edges. On the other hand, the inner current loops separately control the fundamental
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Figure 12.9 Angular velocity ωm : actual values (solid) and reference values (dashed)
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Figure 12.10 Controlled stator current components Ids1 and Iqs1 in the fundamental subspace: actual
values (solid) and reference values (dashed)

and the third harmonic subspaces: in each subspace the stator direct and quadrature current
components are controlled, as depicted in Figures 12.10 and 12.11, in order to perform the flux
and torque control. The time behavior of the stator voltage and current vectors t Vs and t Is in
the original reference frame�t during the rising ramp of the velocity tracking are respectively
shown in Figures 12.12 and 12.13: from their detailed zooms one can note that the shape
of the phase voltages and currents is the sum of the fundamental and the third harmonic
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Figure 12.11 Controlled stator current components Ids3 and Iqs3 in the third harmonic subspace: actual
values (solid) and reference values (dashed)
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Figure 12.12 Stator voltages in the original reference frame �t during the velocity rising ramp (for a
color version of this figure, please see color plates.)

contributions. The generated mechanical torque τm and the applied load torque profile τe are
shown in Figure 12.14: for t ∈ [0, 0.5] and t ∈ [3.5, 4] the torque τm is null because no load
torque τe is applied and no velocity is tracked, while for t ∈ [0.5, 1.5] and t ∈ [2.5, 3.5] the
torque τm evolves according to the load torque profile τe and to the velocity rising and falling
transients (see Figure 12.9).
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Figure 12.13 Stator currents in the original reference frame �t during the velocity rising ramp (for a
color version of this figure, please see color plates.)
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Figure 12.14 Mechanical torque τm and load torque τe

12.5 Conclusions

In this chapter the modeling and control of a multiphase induction motor with harmonic
injection has been addressed. First of all the motor dynamic equations in the complex rotating
reference frame have been obtained considering a generic number of stator and rotor phases and
the corresponding odd order harmonic injection. Starting from this equations, the multiphase
field-oriented control has been investigated and themainmultiphase IRFOC relations have been
given. Finally, a five-phase induction motor has been considered and the control decoupling
between the fundamental and the third harmonic subspaces has been presented. The five-phase
model together with the decoupled IRFOC have then been implemented in Matlab/Simulink
and the obtained simulation results have been shown.
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13.1 Introduction

The doubly-fed induction motor (DFIM) enjoys several features, for example, high-power
handling capability (without necessitating power rating increase of the converters), good
stability performances both at low- and high-speed operations (Khojet El Khil et al. 2006).
These features explain why this type of machine is getting spread in different fields of industry.
It has proved to be quite suitable both as a motor in various applications (Metwally et al. 2002;
Peresadaa et al. 2004; Bonnet et al. 2007; Salloum et al. 2007; Vidal et al. 2008; Xiying
and Jian 2010) as well as a generator, especially in wind–energy conversion (Boukhezzar and
Siguerdidjane 2009; Poitiers et al. 2009; Abo-Khalil 2012; Song et al. 2012). It also turns out to
be a possible alternative to the synchronous machine in high-power applications, for example,
railway traction, marine propulsion, metallurgy, rolling mills, or hydroelectric stations, and in
very low-speed applications, for example, coiler-uncoiler.
The DFIM is a wound-rotor AC induction motor that can be controlled from the stator

and/or from the rotor, thus offering various combinations. The first option is one where the
DFIM is (doubly) acted upon, that is, both from the stator and the rotor (Figure 13.1). This
configuration necessitates two converters, powering respectively the stator and the rotor. Of
course, this has a price but this is largely compensated by the flexibility offered by the numerous

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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AC

AC grid

DC
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DC
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Figure 13.1 DFIM supplied by tow inverters in stator and rotor

control inputs, yielding four freedom degrees (Ourici 2012). The second configuration is one
where the DFIM is controlled from the rotor (Figure 13.2). Then, a single bidirectional pulse-
width modulation (PWM) power converter is implemented on the rotor, while the stator side
is directly connected to the power grid (Verna et al. 2010). This configuration is suitable
for applications involving limited rotor speed variation around the synchronous speed value.
Indeed, as the power supplied from the rotor (slip power) is proportional to the slip, only a
small fraction of the overall system power can be handled by means of the rotor-side power

DFIM
3~

DC

AC

DC

AC

AC grid

Figure 13.2 DFIM supplied by the rotor (inverter in rotor only)
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converter. Moreover, in varying-speed drive applications, the slip power regenerated by the
rotor-side converter, during motor operation stages, is released to the line grid resulting in
highly efficient energy conversion (Peresadaa et al. 2004).
The problem of controlling DFIMs has been dealt with following different approaches.

In Hopfensperger et al. (2000), a field-oriented controller without position sensor has been
proposed for DFIMs in motor applications with one converter on the rotor side whereas the
stator side is connected to the network. Field-oriented control of DFIMs with tow inverters,
with and without speed sensor, was presented in Metwally et al. (2002) and Khojet El Khil
et al. (2004). In Gritli et al. (2011), fault-tolerant control of DFIMs has been studied under
time-varying conditions. Other control strategies have been proposed including direct torque
control (Bonnet et al. 2007), sliding-mode control (Vidal et al. 2008), output-feedback control
(Peresadaa et al. 2004), and loop-shaping H∞ control (Salloum et al. 2007).
This chapter presents a theoretical framework for designing a global control strategy of

the DFIM and related power equipments. The DFIM stator windings are directly connected
to the line grid, while the rotor windings are controlled via a bidirectional power converter.
The control objective is twofold: (1) tight speed regulation over wide-range speed-reference
variation, despite the load torque uncertainly; (2) power factor correction (PFC) for the overall
controlled system including the DFIM and related converters. A multiloop nonlinear adaptive
controller is designed, on the basis of the DFIM nonlinear model, using the backstepping
technique. The achieved control performances are formally described using tools from the
averaging theory.
The chapter is organized as follows: in Section 13.2, the whole association including the

AC/DC/AC power converters and the DFIM is modeled; the multiloop adaptive controller
is designed and analyzed in Section 13.3; the control performances are illustrated through
numerical simulations in Section 13.4.

13.2 Modeling “AC/DC/AC Converter—Doubly-Fed
Induction Motor” Association

The controlled system is illustrated by Figure 13.3. It includes two parts: (1) a “DFIM-inverter”
association; (2) a triphase AC/DC rectifier. The rectifier is an AC/DC converter operating, just
as the DC/AC inverter, according to the well-known PWM principle.

13.2.1 Doubly-Fed Induction Motor Model

The model of DFIM, expressed in the oriented stator-voltage-linked dq-frame, has already
been presented in Chapter 2. It was obtained by operating the (energy preserving) Park
transformation on the three-phase electrical quantities. This choice is suitable as it facilitates
the control of the active and the reactive powers exchanged between the motor and the grid.
Considering as state variables the flux components (φsd and φsq ) and the current components

(ird and irq ), the DFIM two-phase model has been shown to be defined by the following state-
space representation:

dωm

dt
= p

Msr

J Ls
(φsq ird − φsd irq )− TL

J
− F

J
ωm, (13.1)
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Figure 13.3 Controlled system including a DFIM and associated AC/DC/AC converters

dφsd

dt
= − 1

τs
φsd + ωsφsq + Msr

τs
ird + Vs, (13.2)

dφsq

dt
= − 1

τs
φsq − ωsφsd + Msr

τs
irq , (13.3)

dird

dt
= −γ1ird + (ωs − pωm)irq + γ2

τs
φsd − pωmγ2φsq − γ2Vs + γ3vrd , (13.4)

dirq

dt
= −γ1irq − (ωs − pωm)ird + γ2

τs
φsq + pωmγ2φsd + γ3vrq , (13.5)

where φsd and φsq are stator flux dq-components; ird and irq are rotor current dq-components;
Vs is the stator voltage norm; vrd and vrq are rotor voltage dq-components; ωm is the motor
speed; ωs is the dq-frame speed; Rs and Rr are stator and rotor resistances; Ls and Lr are
stator and rotor self-inductances; Msr is the mutual inductance between the stator and the
rotor; F , J , and TL are friction coefficient, rotor inertia, and load torque, respectively; and p
is the number of pole pairs and rotor windings.
The remaining parameters are defined as follows:

γ1 = Rr L2s + Rs M2
sr

σ Lr L2s
, σ = 1− M2

sr

Ls Lr
, τs = Ls

Rs
, γ2 = Msr

σ Ls Lr
, γ3 = 1

σ Lr
.



Backstepping Controller for DFIM with Bidirectional AC/DC/AC Converter 257

13.2.2 Modeling of the System “DC/AC Inverter–DFIM”

The inverter is featured by the fact that the rotor voltage d and q components are independently
controlled. To this end, these voltages are expressed in function of the corresponding control
inputs (see, e.g., Michael et al. 1998):

vrd = vdcu1, vrq = vdcu2, iin = u1ird + u2irq , (13.6)

where u1 and u2 are (averaged versions) of the dq-components of the triphase duty ratio system
(s1, s2, s3). Specifically, the former are obtained by operating the Park transformation on the
latter and averaging the result over the PWM periods; iin designates the input current inverter;
vdc denotes the voltage in capacitor C ; and s1, s2, and s3 are binary input signals, defined as
follows:

si =
{
1, if Si On and S

′
i Off;

0, if Si Off and S
′
i On;

i = 1, 2, 3. (13.7)

Now, let us define the averaged state variables:

ωm = x1, φsd = x2, φsq = x3, ird = x4, irq = x5, vdc = x6, vrd = u1x6, vrq = u2x6.

As is clear from the context, the notation • refers to averaging over the PWM periods. Then,
it is proved in many places that instantaneous “DFIM-inverter” representation (equations
(13.1), (13.2), (13.3), (13.4), and (13.5) assumes the following averaged form, involving the
averaged variables (13.6):

dx1
dt

= − F

J
x1 + p

Msr

J Ls
(x3x4 − x2x5)− TL

J
, (13.8)

dx2
dt

= − 1

τs
x2 + ωs x3 + Msr

τs
x4 + Vs, (13.9)

dx3
dt

= − 1

τs
x3 − ωs x2 + Msr

τs
x5, (13.10)

dx4
dt

= −γ1x4 + (ωs − px1)x5 + γ2

τs
x2 − pγ2x1x3 − γ2Vs + γ3x6u1, (13.11)

dx5
dt

= −γ1x5 − (ωs − px1)x4 + γ2

τs
x3 + pγ2x1x2 + γ3x6u2. (13.12)

13.2.3 AC/DC Rectifier Modeling

The AC/DC rectifier, connected to the triphase power grid, is depicted in Figure 13.4. It
consists of six (semiconductor) insulated gate bipolar transistors (IGBTs) and antiparallel
diodes, allowing for bidirectional current flow mode, arranged in three legs denoted 1, 2,
and 3. The six semiconductors are considered as ideal switches. On a given leg, only one
switch is conducting at a time.
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Figure 13.4 AC/DC converter power with triphase input

It is readily checked, applying Kirchhoff’s laws, that the rectifier is described by the fol-
lowing set of differential equations:

Lo
d[ire]123

dt
= [vs]123 − vdc[k]123, (13.13)

dvdc

dt
= 1

C
(iot − iin), (13.14)

iin = [k]T123[ire]123, (13.15)

where

[ire]123 = [
ire1 ire2 ire3

]T

is the power grid current (rectifier side),

[vs]123 = [
vs1 vs2 vs3

]T

is the sinusoidal triphase grid voltage (with known constant frequency ωs), iot is the recti-
fier output current, and ki is a binary function, representing the position of the switch Ki .
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Specifically, one has

ki =
{
1, if Ki On and K

′
i Off;

0, if Ki Off and K
′
i On;

i = 1, 2, 3 . . . (13.16)

For control synthesis purpose, the Park transformation is applied to the triphase representation
(13.13) and (13.14), with the d-axis being linked to the stator voltage. Doing so, one obtains
the following equations, expressed in the dq-coordinates:

dired

dt
= ωs ireq + Vs

Lo
− vdcu3

Lo
, (13.17)

direq

dt
= −ωs ired − vdcu4

Lo
, (13.18)

dvdc

dt
= 1

C
(iot − iin), (13.19)

where ired and ireq denotes the rectifier-side grid current dq-coordinates; and u3 and u4
represent the averaged d- and q-axis components of the triphase duty ratio system (k1, k2, k3).
Introducing the state variables x7 = i red and x8 = ireq , and replacing iot by iot = u3x7 +

u4x8, the above rectifier model rewrites as follows:

dx6
dt

= 1

C
(u3x7 + u4x8 − i in), (13.20)

dx7
dt

= ωs x8 + Vs

Lo
− x6u3

Lo
, (13.21)

dx8
dt

= −ωs x7 − x6u4
Lo

. (13.22)

For convenience, the state-space equations obtained so far are cast together within a sin-
gle global state space model representing the whole system including the DFIM combined
with the associated AC/DC/AC converters. For future referencing, the complete model is
rewritten as

dx1
dt

= − F

J
x1 + p

Msr

J Ls
(x3x4 − x2x5)− TL

J
, (13.23)

dx2
dt

= − 1

τs
x2 + ωs x3 + Msr

τs
x4 + Vs, (13.24)

dx3
dt

= − 1

τs
x3 − ωs x2 + Msr

τs
x5, (13.25)

dx4
dt

= −γ1x4 + (ωs − px1)x5 + γ2

τs
x2 − pγ2x1x3 − γ2Vs + γ3x6u1, (13.26)

dx5
dt

= −γ1x5 − (ωs − px1)x4 + γ2

τs
x3 + pγ2x1x2 + γ3x6u2, (13.27)



260 AC Electric Motors Control

dx6
dt

= 1

C
(x7u3 + x8u4 − i in), (13.28)

dx7
dt

= ωs x8 + Vs

Lo
− x6u3

Lo
, (13.29)

dx8
dt

= −ωs x7 − x6u4
Lo

. (13.30)

13.3 Controller Design

13.3.1 Control Objectives

There are two operational control objectives:

1. Speed regulation: the machine speed ωm must track, as closely as possible, a given
reference signal x∗

1 , despite the load torque TL uncertainty.
2. PFC requirement: the whole system input current (ig1, ig2, ig3) must be sinusoidal with
the same frequency as the supplied power grid and the reactive power absorbed by the
DFIM must be null all the time.

The flexibility offered by the available four control inputs, that is, u1, u2, u3, and u4, makes
possible to add two more control objectives. The following additional objectives present a
practical interest:

3. Controlling the continuous voltage vdc making it track a given reference signal x∗
6 = v∗

dc.
The latter is generally set to a constant value equal to the nominal voltage powering the
converter.

4. Regulating the stator flux norm �s =
√

x22 + x23 to a reference value�∗
s , preferably equal

to its nominal value.

13.3.2 Motor Speed and Stator Flux Norm Regulation

The problem of controlling the rotor speed and stator flux norm is presently addressed for
the DFIM described by equations (13.23), (13.24), (13.25), (13.26), and (13.27). The speed
reference x∗

1 = ω∗
m is any bounded and derivable function of time and its two first derivatives

are available and bounded. These conditions can always be complied by filtering the (possibly
nondifferentiable) original reference by unit static gain second order linear filter. The stator
flux reference �∗

s is set to its nominal value. The controller design will now be performed in
two steps, using the adaptive backstepping technique (Krstic et al. 1995).

Step 1: Introduce the tracking errors:

z1 = x∗
1 − x1, (13.31)

z2 = �∗
s
2 − (x22 + x3

2). (13.32)
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It follows from (13.23), (13.24), and (13.25) that the errors z1 and z2 undergo the differential
equations

ż1 = ẋ∗
1 + F

J
x1 − p

Msr

J Ls
(x3x4 − x2x5)+ TL

J
, (13.33)

ż2 = 2�∗
s �̇

∗
s − 2(ẋ2x2 + ẋ3x3)

= 2�∗
s �̇

∗
s + 2

τs
(x2

2 + x3
2)− 2Msr

τs
(x2x4 + x3x5)− 2x2Vs . (13.34)

In equations (13.33) and (13.34), the quantities p Msr
J Ls
(x3x4 − x2x5) and

2Msr
τs
(x2x4 + x3x5) stand

up as virtual control signals. If these were the actual control signals, the error system (13.33)
and (13.34) could be globally asymptotically stabilized letting p Msr

J Ls
(x3x4 − x2x5) = μ1 and

2Msr
τs
(x2x4 + x3x5) = ν1 with

μ1
def= c1z1 + ẋ∗

1 + F

J
x1 + TL

J
, (13.35)

ν1
def= c2z2 + 2�∗

s �̇
∗
s + 2

τs
(x22 + x23 )− 2x2Vs . (13.36)

Presently, the load torque TL is not assumed to be known. This suggests that one must consider
the certainty equivalence form of equation (13.35). That is, one has

μ1
def= c1z1 + ẋ∗

1 + F

J
x1 + T̂L

J
, (13.37)

where c1 and c2 are any positive design parameters and T̂L is the estimate of TL (yet to be
determined).
As the quantities p Msr

J Ls
(x3x4 − x2x5) = μ1 and

2Msr
τs
(x2x4 + x3x5) = ν1 are not the actual

control signals, they cannot be let equal to μ1 and ν1, respectively. Nevertheless, we retain the
expressions of μ1 and ν1 as first stabilizing functions and introduce the new errors

z3 = μ1 − p
Msr

J Ls
(x3x4 − x2x5), (13.38)

z4 = ν1 − 2Msr

τs
(x2x4 + x3x5). (13.39)

Then, using the notations (13.37), (13.38) and (13.39), the dynamics of the errors z1 and z2,
initially described by (13.33) and (13.34), can be rewritten as follows:

ż1 = −c1z1 + z3 + T̃L

J
, (13.40)

ż2 = −c2z2 + z4, (13.41)
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where,

T̃L = TL − T̂L (13.42)

Step 2: The second design step consists of choosing the actual control signals, u1 and u2, so
that all errors (z1, z2, z3, z4) converge to zero. To this end, we should make clear how these
errors depend on the actual control signals (u1, u2). Focusing first on z3, it follows from (13.38)
that

ż3 = μ̇1 − p
Msr

J Ls
(ẋ3x4 + x3 ẋ4 − ẋ2x5 − x2 ẋ5). (13.43)

Assume that the load torque TL is constant or slowly time varying and using equations (13.23),
(13.24), (13.25), (13.26), (13.27), (13.42) and (13.37), one gets from (13.43)

ż3 = μ2 +
(

c1 − F

J

)
T̃L

J
−
˙̃T L

J
− p

Msr

J Ls
γ3x6(x3u1 − x2u2), (13.44)

with

μ2 = −c21z1 + c1z3 + ẍ∗
1 −

(
F

J

)2
x1 + p

Msr

J Ls

(
F

J
+ γ1 + 1

τs

)
(x3x4 − x2x5)

− F

J

T̂L

J
+ p

Msr

J Ls

[
px1x3x5 + pγ2x1�

2
s + px1x2x4 + γ2x3Vs + x5Vs

]
. (13.45)

Similarly, it follows from equation (13.39) that z4 undergoes the following differential
equation:

ż4 = ν̇1 − 2Msr

τs
(ẋ2x4 + x2 ẋ4 + ẋ3x5 + x3 ẋ5). (13.46)

Using equation (13.23), (13.24), (13.25), (13.26), (13.27), and (13.36), it follows from (13.46)
that:

ż4 = ν2 − 2Msr

τs
γ3x6(x2u1 + x3u2), (13.47)
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with

ν2 = c2(−c2z2 + z4)+ 2(�̇∗
s )
2 + 2�∗

s �̈
∗
s

+2Msr

τs

(
3

τs
+ γ1

)
(x2x4 + x3x5)+ 4

τs

(
− 1

τs
�2

s + Vs x2

)

−2Vs

(
− 1

τs
x2 + ωs x3 + Msr

τs
x4 + Vs

)

−2Msr

τs

(
Msr

τs
(x24 + x25 )+

γ2

τs
�2

s + px1(x3x4 − x2x5)+ x4Vs − γ2x2Vs

)
. (13.48)

To analyze the error system composed of (13.40), (13.41), (13.44), and (13.47), let us consider
the following augmented Lyapunov function candidate:

V = 1

2
z21 + 1

2
z22 + 1

2
z23 + 1

2
z24 + 1

2

T̃ 2L
J

. (13.49)

Its time derivative along the trajectory of the state vector (z1, z2, z3, z4) is

V̇ = ż1z1 + ż2z2 + ż3z3 + ż4z4 +
˙̃T L T̃L

J
. (13.50)

Using equations (13.40), (13.41), (13.44), and (13.47), equation (13.50) develops as follows:

V̇ = z1

(
−c1z1 + z3 + T̃L

J

)
+ z2(−c2z2 + z4)

+z3(μ2 +
(

c1 − F

J

)
T̃L

J
−
˙̃T L

J
− p

Msr

J Ls
γ3x6(x3u1 − x2u2))

+z4

(
ν2 − 2Msr

τs
γ3x6(x2u1 + x3u2)

)
+
˙̃T L T̃L

J
, (13.51)

adding c3z23 − c3z23 + c4z24 − c4z24 to the right-hand side of equation (13.51) and rearranging
terms, yields

V̇ = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4

+z3

[
μ2 + c3z3 + z1 −

˙̃T L

J
− p

Msr

J Ls
γ3x6(x3u1 − x2u2)

]

+z4

[
ν2 + c4z4 + z2 − 2Msr

τs
γ3x6(x2u1 + x3u2)

]

+ T̃L

J

[(
c1 − F

J

)
z3 + z1 + ˙̃T L

]
. (13.52)
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Equation (13.52) immediately suggests the following parameter adaptation law:

˙̃T L = −
(

c1 − F

J

)
z3 − z1, (13.53)

which, in view of (13.42), yields

˙̂T L =
(

c1 − F

J

)
z3 + z1. (13.54)

Substituting the parameter adaptation law (13.53) to ˙̃T L in the right-hand side of equation
(13.52), gives

V̇ = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4

+z3

[
μ2 +

(
c3 + 1

J

(
c1 − F

J

))
z3 +

(
1+ 1

J

)
z1 − p

Msr

J Ls
γ3x6(x3u1 − x2u2)

]

+z4

[
ν2 + c4z4 + z2 − 2Msr

τs
γ3x6(x2u1 + x3u2)

]
, (13.55)

where c3 and c4 are new positive real design parameters. Equation (13.55) suggests that the
control signals u1 and u2 must be chosen so that the two quantities between curly brackets
(on the right-hand side of (13.55)) are set to zero. Letting these quantities equal to zero and
solving the resulting second order linear equation system with respect to u1 and u2, gives the
following control law:

[
u1
u2

]
=

[
λ0 λ1
λ2 λ3

]−1 [
μ2 + (c3 + 1

J (c1 − F
J ))z3 + (1+ 1

J )z1
ν2 + z2 + c4z4

]
, (13.56)

with

λ0 = p
Msr

J Ls
γ3x6x3, λ1 = −p

Msr

J Ls
γ3x6x2,

λ2 = 2Msr

τs
γ3x6x2, λ3 = 2Msr

τs
γ3x6x3. (13.57)

It is worth noticing that the matrix

[
λ0 λ1
λ2 λ3

]
is nonsingular as its determinant, D = λ0λ3 −

λ2λ4 = 2p M2
sr

J Lsτs
γ 23 x26 (x

2
2 + x23 ), stay away from zero because the flux �s =

√
x22 + x23 never

vanishes in practice due to the presence of the remnant flux.
Substituting the control law (13.56) to u1 and u2 on the right-hand side of (13.55) yields

V̇ = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4. (13.58)
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As the right-hand side of equation (13.58) is a negative definite function of the state vector
(z1, z2, z3, z4), the latter are globally asymptotically vanishing (Khalil 2003). The result thus
established is more precisely formulated in the following proposition:

Proposition 13.3.1 (Speed regulation). Consider the closed-loop system composed of:

1. the DFIM-DC/AC inverter association, described by model (13.23), (13.24), (13.25),
(13.26), and (13.27),

2. the nonlinear controller defined by the control law (13.56), and
3. the parameter update law (13.54).

Then, one has the following properties:

1. The closed-loop error system undergoes, in the (z1, z2, z3, z4, T̃L ) coordinates, the following
equations:

ż1 = −c1z1 + z3 + T̃L

J
, (13.59)

ż2 = −c2z2 + z4, (13.60)

ż3 = −c3z3 − z1 +
(

c1 − F

J

)
T̃L

J
, (13.61)

ż4 = −c4z4 − z2, (13.62)

˙̃T L = −
(

c1 − F

J

)
z3 − z1. (13.63)

2. The above linear system is stable with respect to the Lyapunov function V = 1
2 z21 + 1

2 z22 +
1
2 z23 + 1

2 z24 + 1
2

T̃ 2L
J and the errors (z1, z2, z3, z4) are exponentially vanishing, whatever their

initial values.

Proof: Equations (13.59) and (13.60) are immediately obtained from (13.40) and (13.41).
Equation (13.61) is obtained by substituting the control law (13.56) and the parameter update
law (13.54) to (u1 and u2) on the right-hand side of (13.44). Equation (13.62) is obtained
by substituting the control law (13.56) to u1 and u2 on the right-hand side of (13.47). Equa-
tion (13.63) is a copy of (13.53). Part 1 is proved. On the other hand, it is readily seen

from (13.49) and (13.53) that V = 1
2 z21 + 1

2 z22 + 1
2 z23 + 1

2 z24 + 1
2

T̃ 2L
J is a (radially unbounded)

Lyapunov function of the error system (13.59), (13.60), (13.61), and (13.62). As V̇ is a
semi-negative definite function of the state vector (z1, z2, z3, z4,), the whole error system
is stable (by Lyapunov’s equilibrium point theorem) and the above errors converge to zero
(by Lasalle’s invariant principle), whatever are their initial values. Besides, asymptotic stabil-
ity implies exponential stability due to system linearity (Khalil 2003). Proposition 13.3.1 is
established.
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Remark 13.3.2 Note that the exponential nature of stability guarantees stability robustness
with respect to modeling and measurements errors (Khalil 2003).

13.3.3 Power Factor Correction and DC Voltage Controller

Controlling Rectifier Input Current to Meet PFC Requirement

The PFC objective means that the grid current, powering the overall system, should be sinu-
soidal and in phase or in opposite phase with the AC supply voltage. Accordingly, one seeks
a regulator that makes the q-components of the input current, that is, i gq = i sq + ireq , track a
null reference signal igq . Doing so, one ensures that the grid current ig will be in phase with
the voltage supply vs .
As the reference signal i∗

gq = 0, it follows that the tracking error z5 = i∗
gq − igq undergoes

the following equation:

z5 = −i sq − x8. (13.64)

Using the fact that

x3 = Lsisq + Msr x5, (13.65)

equation (13.64) becomes

z5 = − x3
Ls

+ Msr

Ls
x5 − x8. (13.66)

In view of equations (13.25), (13.27), and (13.30), the above error variable undergoes the
following equations:

ż5 = − ẋ3
Ls

+ Msr

Ls
ẋ5 − ẋ8

= − 1

Ls

(
− 1

τs
x3 − ωs x2 + Msr

τs
x5

)
+

(
ωs x7 + x6u4

Lo

)

+ Msr

Ls

(
−γ1x5 − (ωs − px1)x4 + γ2

τs
x3 + pγ2x1x2 + γ3x6u2

)
. (13.67)

To get a stabilizing control law for this first order system, consider the quadratic Lyapunov
function V5 = 0.5z25. It can be easily checked that the time derivative V̇5 is a negative definite
function of z5 if the control input u4x6 is chosen as follows:

u4x6 = −c5Loz5 − Loωs x7 + h1(x), (13.68)
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with c5 > 0 is a design parameter and

h1(x) = Lo

Ls

(
− 1

τs
x3 − ωs x2 + Msr

τs
x5

)

+ Lo Msr

Ls

(
γ1x5 + (ωs − px1)x4 − γ2

τs
x3 − pγ2x1x2 − γ3x6u2

)
. (13.69)

DC Link Voltage Regulation

The aim is now to design a control law u3 so that the rectifier output voltage x6 = vdc is steered
to a given reference value x∗

6 = v∗
dc. As mentioned above, v

∗
dc is generally (not mandatory) set

to the nominal value of the rotor voltage amplitude. The point is that u3 acts also on the current
x7. A suitable control strategy is one that simultaneously regulates well the DC voltage x6 and
allows the control of the current transient. This double requirement is to be met using only one
control input, namely u3. This suggests the use of a cascade control strategy. Accordingly, an
inner loop is first designed so that the current x7 is enforced to track a reference signal x∗

7 , by
acting on the only available control signal u3. Then, an outer loop is designed that generates
the current reference x∗

7 so that the DC voltage x6 is regulated well to its a priori known set
point.

Inner Loop Design for Current x7

Introduce the current tracking error z7:

z7 = x∗
7 − x7. (13.70)

The z7-dynamics are described by the following equation:

ż7 = ẋ∗
7 − ωs x8 − Vs

Lo
+ x6u3

Lo
. (13.71)

To get a stabilizing control signal for this first order system, consider the following quadratic
Lyapunov function:

V7 = 1

2
z27. (13.72)

It is easily checked that the time derivative V̇7 can be made negative definite in the state z7 by
letting the quantity x6u3 be chosen as follows:

x6u3 = −c7Lox∗
7 + c7Lox7 − Loẋ∗

7 + Loωs x8 + Vs, (13.73)

with c7 > 0 is a design parameter.
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Outer Loop Design for DC-Voltage x6

Now, let us introduce the squared voltage variable y = x26 . Using equation (13.28), it follows
that that y undergoes the following equations:

ẏ = 2

C
(x7x6u3 + x8x6u4 − x6i in)

= − 2
C
(c7Lox7x

∗
7 + Lox7 ẋ

∗
7 + c5Lox8z5)+ h2(x), (13.74)

with

h2(x) = 2

C
(c7Lox27 + Vs x7 + x8h1(x)− x6i in) (13.75)

where the second line in (13.74) is obtained using (13.73). As previously mentioned, the
reference signal y∗ = v∗

dc
2 (of the squared DC-link voltage x6 = vdc) is chosen to be constant

(i.e., ẏ∗ = 0). It is given the nominal value of the rotor voltage amplitude. Then, it follows
from (13.74) that the tracking error z6 = y∗ − y undergoes the following equation:

ż6 = ẏ∗ + 2

C
(c7Lox7x

∗
7 + Lox7 ẋ

∗
7 + c5Lox8z5)− h2(x). (13.76)

To get a stabilizing control law for the system (13.76), consider the following quadratic
Lyapunov function:

V6 = 1

2
z26. (13.77)

Deriving V6 along the trajectory of (13.76) yields

V̇6 = ż6z6. (13.78)

This suggests for x∗
7 the following control law:

ẋ∗
7 = −c7x

∗
7 − c5z5

x8
x7

+ C

2Lox7

(−c6z6 − ẏ∗ + h2(x)
)
, (13.79)

with c6 > 0 a design parameter. Indeed, substituting x∗
7 to (13.78) gives V̇6 = −c6z26, which is

clearly negative definite in z6.

Proposition 13.3.3 Consider the control system consisting of the subsystem (13.28), (13.29),
and (13.30) in closed-loop with the control laws (13.68), (13.73), and (13.79). The resulting
closed-loop system is described, in the (z5, z6, z7, x∗

7 ) coordinates, by the following equation:

Ż = AZ + g(x),⎡
⎢⎢⎣

ż5
ż6
ż7
ẋ∗
7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−c5 0 0 0
0 −c6 0 0
0 0 −c7 0

−c5
x8
x7

− c6C
2Lox7

0 −c7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z5
z6
z7
x∗
7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0

C
2Lox7

(h2(x)− ẏ∗)

⎤
⎥⎥⎦ . (13.80)
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This equation defines a stable system and the vector (z5, z6, z7,x∗
7 ) converges exponentially

fast to (0, 0, 0, C
2c7Lox7

h2(x)), whatever their initial values.

Proof: Equation (13.80) is obtained by substituting the control law (13.68), (13.73), and
(13.79) to x6u3, x6u4, and x∗

7 on the right-hand side of equations (13.67) and (13.78). It is
clear that the matrix A is Hurwitz implying that the closed-loop system (13.80) is globally
exponentially stable. This completes the proof of Proposition 13.3.3.

13.4 Simulation Results

The nonlinear adaptive controller, developed in Section 13.3, including the control laws
(13.54), (13.68), (13.73), and (13.79) and the parameter adaptive law (13.53), will now be
evaluated by simulation, considering the experimental setup described by Figure 13.5. The
simulated system is given the following characteristics:

• Supply network: Triphase 220 V/50 Hz
• AC/DC/AC converters: Lo = 15 mH; C = 1.5 mF; modulation frequency 10 KHz.
• DFIM: 1.5 kW power, the remaining characteristics are summarized in Table 13.1.

The simulation protocol is described by Figures 13.6 and 13.7, which show that, the ref-
erence signals and the machine load are profiled so that the machine is enforced to operate,
successively, both at high and low speeds. Specifically, the machine operates in high speed
(ω∗

m = 150 rad/s) over the interval [0, 6 s] and at low speed (ω∗
m = 10 rad/s) over [6, 8 s].

The DC-link voltage reference is set to the constant value v∗
dc = 220 V. The reference value

�∗
s for the stator flux norm is set to its nominal value (0.7 wb).

Table 13.1 Numerical values of the considered doubly-fed induction motor
characteristics

Characteristic Symbol Value Unity

Nominal power PN 1.5 kW
Nominal stator voltage Usn 380 V
Nominal stator current Isn 4.3 A
Nominal flux �sn 0.56 Wb
Stator resistance Rs 1.75 


Stator inductance Ls 0.295 H
Nominal rotor voltage Urn 225 V
Nominal rotor current Irn 4.5 A
Rotor resistance Rr 1.68 


Leakage inductance Msr 0.195 H
Rotor inductance Lr 0.165 H
Inertia moment J 0.35 Kgm2

Friction coefficient F 0.026 Nm s rad−1

Number of pole pairs p 2
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The design parameters (c1, c2, c3, c4, c5, c6, c7) have been selected using a trial-error
search procedure. The experimental setup is simulated in the Matlab/Simulink environment
with a computation step of 5 μs. This value is motivated by the fact that the inverter frequency
commutation is 10 kHz. In the light of the closed-loop responses (see Figures 13.8, 13.9, 13.10,
and 13.11), it is seen that the multiloop nonlinear adaptive controller meets all its objectives
and enjoys quite satisfactory transient performances.

13.5 Conclusions

In this chapter, the problem of controlling systems including DFIMs and the associated AC/DC
rectifier and DC/AC inverter, has been addressed. The system dynamics are described by the
averaged eighth order nonlinear state space model (13.23), (13.24), (13.25), (13.26), (13.27),
(13.28), (13.29), and (13.30). Based on such a model, the nonlinear controller, defined by
(13.54), (13.68), (13.73), (13.79), and (13.53) has been progressively developed using the
backstepping design technique. The controller, depicted by (Figure 13.5), is adaptive and
multiloop. It is formally shown that this controller makes the motor velocity track well
is reference trajectory and ensures a unity power factor, despite the external load torque
uncertainty and variations. Furthermore, the DC link voltage is tightly regulated to its reference
value. The control system performances are formally analyzed and numerically confirmed
using simulation. Thewhole control problem is dealt with in the rotating synchronous reference
frame with the d-axis oriented as the space voltage vector of the main AC supply.
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14.1 Introduction

This chapter introduces recent developments in fault diagnostics of induction motors
(IMs), by providing theoretical, simulative, and experimental results along with a number
of implementation-related practical considerations and guidelines. Remarkably, methods
for IM fault detection in both steady-state and transient operating conditions will be
outlined. The chapter is structured as follows: Section 14.2 is a short introduction in
which the more common faults of IM are concisely described as well as their causes,
consequences, and symptoms. Section 14.3 introduces an example of model-based approach
for fault detection and isolation (FDI) in IMs based on dynamical observers. Sections 14.4,
14.5, 14.6, 14.7, 14.8, and 14.9 deal with diagnostic techniques based on signal analysis
approaches; in all of these approaches the stator current is used as diagnostic signal; stator
current is the most used diagnostic signal in the industrial applications, since it enables
for noninvasive diagnostic and does not require the use of additional probes. Sections
14.4 and 14.5 are dedicated to signal analysis techniques valid for steady-state operation;
these methods, commonly designated as motor current signature analysis (MCSA) include
the conventional Fourier transform (FT) approaches, and the more recently developed
Hilbert-transform (HT)-based approaches. Today, the steady-state-based techniques are
the most spread in the industrial environment; nevertheless, they cannot be used in some
important applications—for example, wind generators or electrical vehicles—in which the
functioning conditions continuously vary. Thus, in Sections 14.6, 14.7, 14.8, and 14.9,

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Table 14.1 Main faults in electrical machines

Failure Percentage

Bearings damaged 41%
Stator faults 37%
Rotor faults 10%
Other faults 12%

Source: Durocher and Feldmeier 2004.

state-of-the-art approaches based on time-frequency analysis tools, which enable for diagnos-
tic in transient conditions are introduced. In these sections, the basis and practical remarks for
the application to IM diagnostic of time-frequency analysis tools are given; the discrete wavelet
transform (DWT), in Section 14.6, the continuous wavelet transform (CWT), in Section 14.7,
the Wigner-Ville distribution (WVD), in Section 14.8, and the instantaneous frequency (IF)
approach, in Section 14.9, will be described along with their experimental verification.

14.2 Description and Classification of IMs Faults

Electrical machines are the main generators of mechanical power. Although its design takes
into account the possibility of the most typical faults, such as overvoltage and overcurrent, it is
impossible to warrant that the electrical machine hold out the normal status during all its life.
During the last decades there have been several technical studies with regard to the faults in the
electricalmachines, attending to its origin.A fault in themachine causes a nonprogrammed stop
in the process, with serious economic consequences. Table 14.1 summarizes the percentage
of fault occurrences in the electrical machines.
Other studies detail the failure occurrences in each part of the machine, such as Singh

et al. (2003). Nowadays, there is not any standardized or unified failure classification in the
electrical machine, and it can be done by different criteria, such as the origin of the failure
(mechanical, electrical, hydraulic, etc.), the element of the machine (stator or rotor) where the
failure occurs, and so on.

14.2.1 Electrical Faults

Most commonly, electrical faults are classified according to the element in which they occur.
Their origin, causes, and possible methods of detection are outlined in this chapter.

Stator Part Winding Failures

These failures occur inside the stator or in the supply system. The most common types of
failures are related to failures in the windings insulation, and the different possible failures,
along with the corresponding effects on the machine’s operation, are listed as follows:

• Short-circuits between adjacent turns. The machine can run for an uncertain time.
• Short-circuits between coils of the same phase. The machine can run for an uncertain time.
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• Short-circuits between phases. The machine stops instantly.
• Short-circuits between one phase and earth. The machine stops instantly.
• Open circuit of a given phase. The machine can run depending on the load and its protection.

These faults can cause high temperatures in the coils or stator core, stator core degradation,
deterioration of clamp short-circuit end-rings, oil, moisture and dirt contamination, imbalances
in supply or electric shocks, and leaks in refrigeration systems.
For example, the detection of the shorted coils is based on detecting frequency components

fsc given by the following equation (Nandi et al. 2005):

fsc =
(

k ± n · (1− s)

p

)
f1 k = 1, 3, 5, . . . n = 1, 2, 3, . . . (14.1)

where f1 is the frequency supply, p is the pole pair numbers, and s is the slip.

Rotor Part Broken Bar Damages

The most common electrical rotor failures, in the case of squirrel-cage IMs, are breakages in
the rotor-cage winding. These failures introduce abnormalities in the magnetic air-gap field
that produce sideband harmonic components of frequency fbrb in the line current spectrum
around the fundamental component, and also near other harmonics caused by nonideal winding
distribution (Kliman et al. 1988; El Hachemi Benbouzid 2000; Puche-Panadero et al. 2009).
The characteristics frequencies of these fault-related harmonic components fbrb are given by

fbrb = ((1− s) k/p ± s)) f1 k/p = 1, 3, 5 . . . (14.2)

The left sideband harmonic (LSH) is obtained by substituting k/p = 1 in (14.2); this
component produces oscillations in the rotor speed, originating a new family of fault-related
components (Bellini et al. 2001), with frequencies given by

fbrb = (1± 2 k s) f1 k = 1, 2, 3, . . . (14.3)

Although broken rotor bars do not immediately cause the motor to fail, they can be a
serious problem with several secondary effects (i.e., overheating, bar hitting, damaging of
motor insulation and consequent winding failure, etc.).

External Source

These failures are related to the source supplying the machine, normally electronic equipment,
or related to the load of the system.

14.2.2 Mechanical Faults

Almost always, mechanical failures occur in the rotor, as it is themoving part, and are identified
as rotor’s imbalances, misalignment, bearing failures, gear failures, and eccentricities in all
their variants.
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Imbalances

A rotating mechanical system is balanced when the resultant forces (internal and external) are
constant. Because of this there are two types of imbalances:

1. Static imbalance, which is produced by a nonhomogeneous distribution of mass in the
rotor. This failure is detectable with the rotor stopped.

2. Dynamic imbalance, which is produced by a nonhomogeneous longitudinal distribution
of weights in the rotor.

Misalignment Failures

It is very hard to obtain a perfect coupling between the electrical machine and its mechanical
load, so that the resultant forces are zero. When the coupling is not perfect, fault-related
components appear in the motor current at frequencies given in Cabanas and Melero (1998).

Eccentricity Failures

Rotor eccentricity can result from a variety of sources such as design features, manufactur-
ing tolerances, and operating conditions. The rotor may be positioned slightly off-center in
the stator bore. Eccentric rotor running of IMs can result sufficient to increase in the unbal-
anced magnetic pull (UMP) to cause stator-rotor contact (Kral et al. 2004). Four types of
Eccentricities can be identified via MCSA:

1. Static eccentricity can be produced by a stator ovality, or by a misalignment of the
mounted bearings or the bearing plates. As a consequence, there is an angular position
with the minimum radial air-gap length, which is fixed in space. It is characterized by a
displacement of the axis of rotation, which can be caused. Since the rotor is not centered
within the stator bore, the field distribution the air gap is no longer symmetrical. The
nonuniform air gap gives rise to a radial force of electromagnetic origin, called UMP. This
produces distortion frequencies given by

fecc static =
[(
(k N )

(
1− s

p

)
± υ

)]
f1, (14.4)

where k is a positive constant, N is the number of the rotor slots, and υ is the harmonic
order.

2. Dynamic eccentricity corresponds to the case where the rotation axis of the rotor does
not coincide with its geometric center. This kind of eccentricity may be caused by a bent
shaft, mechanical resonances, bearing wear on movement. For each air gap position, the
radial length of the air gap varies with time, sinusoidally modulated, and this results in an
asymmetric magnetic field. This causes distortion frequencies given by (nd is a positive
integer)

fecc dynamic =
[(
(k N ± nd )

(
1− s

p

)
± υ

)]
f1. (14.5)
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3. Mixed eccentricity is the combination of static and dynamic eccentricity. It causes char-
acteristic sideband components in the currents spectrum given by El Hachemi Benbouzid
(2000), Antonino-Daviu et al. (2009), and Puche-Panadero et al. (2009):

fecc mixed = fs ± k fr , k = 1, 2, 3 . . . (14.6)

The overall (static plus dynamic) air-gap eccentricity specified by manufacturers is called
the radial air-gap eccentricity and is normally given as a percentage of the nominal air-gap
length. Levels of air-gap eccentricity should not exceed a maximum of 10% in three-phase
IMs to avoid catastrophic damage.

4. Axial eccentricity appears when the eccentricity varies along the axis of the rotor. There-
fore, the axis of rotor is not parallel to the stator axis and has different eccentricity in each
section of the machine.

Gear Failures

The use of the gears in the electrical machines is due to the use of different speed and
torque reference in different industrial applications. Because of this, trains are used, which
are composed by different elements such as pinions, gear set, complex structure, and so on.
Of course, these external elements of the machine have influence in the electrical machine
behaviour. Different characteristic frequencies appear depending on the gear configuration.

Damaged Bearings

Electrical machines have two bearings where the rotor shaft end is held. These bearings allow
the rotational movement of the rotor, and they wear due to the continuous friction that they
undergo. A bearing is a rolling element with extremely small tolerances to avoid any internal
displacement, except the rotational one.
If the bearing has been damaged, then characteristic frequencies appear as a function of the

type of damage. The following equation shows the characteristic frequency if there is a fault
in the inner or outer raceway (Blödt et al. 2010):

fouter raceway =
(

Nb

2

)
fr

[
1− Dd cos (β)

Dc

]
, (14.7)

finner raceway =
(

Nb

2

)
fr

[
1+ Dd cos (β)

Dc

]
, (14.8)

where the number of balls is denoted Nb, their diameter is Db, the pitch or cage diameter is
Dc, and the contact angle is β (see Figure 14.1). If the fault appears in the balls then

fballs =
(

Dc fr

2Db

) [
1−

(
Db cos (β)

Dc

)2]
. (14.9)
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Figure 14.1 Geometry of a rolling-bearing

14.3 Model-Based FDI in IMs

14.3.1 Introduction

The model-based approach to FDI in automated processes has received considerable attention
during the last two decades (Simani et al. 2003). The kernel of a model-based FDI algorithm
is the generation of residual signals, which are indicators (symptoms) of the specific faults of
interest. Ideally, each residual should selectively react to a specific fault only to allow fault
isolation. Observer-based schemeswerewidely considered as residual generators, constructing
the residual by a properly weighted output estimate error (Simani et al. 2003). In particular,
when the system model admits significant degree of uncertainty, a particular class of nonlinear
observer, the so-called sliding-mode observers (SMOs), appears to be an appropriate choice
(Edwards et al. 2000; Simani et al. 2003; Pisano et al. 2008).
In this paper an observer-based FDI methodology is presented, which can detect the occur-

rence of broken bar fault (BBF) or eccentricity fault (EF) conditions. The method is based on
a mathematical model of the motor under the considered faulty conditions, which represents
the faults by means of suitably located fault injection signals. Its implementation requires
the measurement of stator currents, shaft speed, and supply voltages, and the knowledge
of the nominal motor electromechanical parameters. Noticeably, to overcome the uncertainty
in the load torque, and to cope with, at the same time, the unknown fault injection signals, an
unknown-input observation approach, robust to the presence of certain unmeasurable exoge-
nous input terms, is taken. The framework of design relies on the so-called high-order SMO
(Floquet et al. 2004; Fridman et al. 2007) and the suggested scheme is able to reconstruct at
the same time both the fault injection signals and the load torque as well. The convergence
property of the proposed algorithm will be supported by a Lyapunov-based stability proof.
A suitable residual is computed on the basis of the estimated fault injection signals,which can

be processed by a threshold-based logic enabling a quick and computationally simple detection
of the occurrence of the faulty conditions. The standard model describing the nominal (i.e.,
healthy) dynamics of the three-phase induction (wound-rotor or squirrel-cage) machine in
the fixed (α, β) stator reference frame is expressed by the next fifth order nonlinear system
(Krause and Thomas 1965; Marino et al. 1993):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = a1 (x3x4 − x2x5)− a2x1 + a3TL ,
ẋ2 = b1x4 − b2x2 + b3x1x3 + b4usα

,
ẋ3 = b1x5 − b2x3 − b3x1x2 + b4usβ

,
ẋ4 = c1x2 − c2x4 − n px1x5,
ẋ5 = c1x3 − c2x5 + n px1x4,

(14.10)
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Table 14.2 Parameters of IM model

Model parameters

Pole pairs number n p –
Rotor and stator resistance Rr,s �

Rotor, stator, and mutual inductance Lr,s,m H
Viscous friction coefficient fv Kg m2/s
Rotor inertia J Kg m2

where x1 denotes the shaft speed, x2 and x3 denote the α and β components of the stator
current in the fixed reference frame, x4 and x5 denote the α and β components of the rotor
flux, uα and uβ denote the α and β components of the stator supply voltage, TL denotes the
load torque, and parameters ai , bi and ci take the form

a1 = n p Lm

J Lr
,

a3 = − 1
J

,

b1 = Lm Rr

σ Ls L2r
,

b3 = n p Lm

σ Ls Lr
,

c1 = Rr

Lr
Lm,

a2 = fv
J

,

σ = 1− L2m
Lr Ls

,

b2 = L2m Rr + L2r Rs

σ Ls L2r
,

b4 = 1

σ Ls
,

c2 = Rr

Lr
.

(14.11)

The electromechanical parameters of the presented model (14.10) and (14.11) are described
in Table 14.2.

14.3.2 Modeling of IMs with Faults

Due to the considerations presented in Section 14.2, regarding fault patterns in the considered
fault scenarios, we can devise that inserting additional exogenous voltages fsα

and fsβ
in the

stator current equation of (14.10) might be a reasonable approach to model a faulty IM drive.
Therefore, a mathematical model representing a faulty IM can take the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a1 (x3x4 − x2x5)− a2x1 + a3TL ,

ẋ2 = b1x4 − b2x2 + b3x1x3 + b4(usα
+ fsα

),
ẋ3 = b1x5 − b2x3 − b3x1x2 + b4(usβ

+ fsβ
),

ẋ4 = c1x2 − c2x4 − n px1x5,
ẋ5 = c1x3 − c2x5 + n px1x4,

(14.12)
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where in absence of faults the additional entries fsα
and fsβ

are identically zero, whereas
when fault conditions arise they becomes nonzero and inject in the model the appropriate
characteristic frequencies.
The load torque TL being generally not available for measurements in applications, it is

treated as an “unknown input” within the observer design problem using the model (14.12).
It is concluded from the inspection of (14.2) and (14.6) that an accurate estimation of the

speed x1 is a prerequisite for making a reliable diagnosis by spectral methods.

14.3.3 Fault Detection Observer Design for IMs

An algorithm for fault detection in IMs, supported by the theory of model-based FDI (Simani
et al. 2003), shall be presented hereinafter.
Model-based FDI is built upon a number of idealized assumptions, one of which is that

the mathematical model used for constructing the observer is a faithful replica of the plant
dynamics. This is, of course, not possible in practice, as an accurate and completemathematical
description of a process is never available. For these reasons a major objective of model-based
FDI is to maximize the delectability of faults while minimizing at the same time the effect of
modeling errors and disturbances (Simani et al. 2003).
The approach taken in this paper relies upon the use of robust observer based on the sliding-

mode theory. Particularly, we exploit the desirable feature of SMOs of providing, under certain
conditions, the capability of reconstructing the unknown inputs acting on the observed system.
It is clear that the fault signals fsα

and fsβ
contain useful information (symptoms) about the

faults, and their estimation would be extremely useful for diagnosis purposes.
We will then devise a scheme that can reconstruct both the unknown exogenous faults

signals fsα
and fsβ

in (14.12) while mitigating the effect modeling errors by relying on the
inherent robustness properties of SMOs.
The detection of faults will be achieved by a nonconventional, threshold-based residual

evaluation procedure applied to the reconstructed fault signals.
Hereinafter, we shall describe the two main stages of the scheme for the considered case of

study, respectively, residual generation and residual evaluation units.

14.3.4 Residual Generation and Evaluation

The aim of residual generation is to reconstruct fault symptoms using available inputs and
outputs from the monitored system in order to obtain information about the occurrence of
fault. The structure of the suggested unknown-input observers (UIO) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂x1 = a1 (x3 x̂4 − x2 x̂5)− a2x1 + a3ν1,
˙̂x2 = b1 x̂4 − b2x2 + b3x1 x̂5 + b4(usα + ν2),
˙̂x3 = b1 x̂5 − b2x3 − b3x1 x̂4 + b4(usβ + ν3),
˙̂x4 = c1x2 − c2 x̂4 − n px1 x̂5,
˙̂x5 = c1x3 − c2 x̂5 + n px1 x̂4.

(14.13)

Note that the observer equation (14.13) is a replica of the faulty motor model (14.12) with
suitable injection terms ν1, ν2, and ν3 replacing the unknown inputs fsα

, fsβ
, and TL . Shaft

speed x1 and stator currents x2 and x3 are supposed to be available for measurements, whereas
x̂i (i = 1, . . . , 5) represent the estimated state variables.
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Denote the observation error variables as

ei (t) = x̂i (t)− xi (t) i = 1, . . . , 5, (14.14)

and note that the error variables e1, e2, and e3 are accessible for measurements, while the flux
errors e4 and e5 are unknown.
The restrictions assumed on the considered exogenous fault signals are specified as follows.

Assumption 14.3.1 There exist a priori known constant Fs and FL such that, at any t ≥ 0,
the time derivatives of the unknown inputs fsα

, fsβ
, and TL satisfy the next inequalities

∣∣∣∣ d

dt
fsi (t)

∣∣∣∣
i=α,β

≤ Fs,

∣∣∣∣ d

dt
TL (t)

∣∣∣∣ ≤ FL . (14.15)

The observer injection terms are built according to the next relations

νi (t) = νi1 (t)+ νi2 (t), i = 1, 2, 3, (14.16)

with {
νi1 (t) = −ki

√| ei (t) | sign (ei (t)) ;

ν̇i2 (t) = −wi sign (ei (t)) , νi2 (0) = 0;
(14.17)

where (ki , wi ), i = 1, 2, 3, are proper tuning constants.
The next theorem sets the underlying tuning rules of the considered observer and establishes

the associated convergence properties.

Theorem 14.3.2 Consider the faulty IM model (14.12) and let Assumption 14.3.1 be sat-
isfied. Then, the observer (14.13), (14.16), and (14.17) with the tuning parameters chosen
according to

wi > Fi , k2i > 4Fi
wi + Fi

wi − Fi
, i = 1, 2, 3, (14.18)

F1 = FL , F2 = F3 = Fs (14.19)

guarantees the achievement of the next condition starting from a finite moment T ∗

ν1(t) = TL (t)+ ξ1(t), (14.20)

ν2(t) = fsα
(t)+ ξ2(t), t ≥ T ∗, (14.21)

ν3(t) = fsβ
(t)+ ξ3(t), (14.22)

where ξ1(t), ξ2(t), and ξ3(t) are exponentially vanishing signals.

Proof: See Pilloni et al. (2012).
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The injection signals ν2 and ν3, which satisfy (14.21) and (14.22), will be used as residuals
in the next analysis, as they provide asymptotically converging estimates of the fault signals
( fsα

, fsβ
). Signal ν1 represent an asymptotically exact estimation of the unknown load torque

TL , which may be useful in direct torque control (DTC) applications (see La et al. 2000; Youb
and Craciunescu 2007). The suggested observer also provides an exponentially converging
estimate of the rotor flux components, as well as a consequence of the fact that e4 and e5 are
exponentially vanishing.
Residual evaluation exploits the relations (14.21) and (14.22). The instantaneous power of

the two residuals are summed up to build a scalar measure of fault occurrence

r (t) = ν22 (t)+ ν23 (t). (14.23)

The two considered faults will be referred to as BBF (broken bar fault) and EF (eccentricity
fault), respectively.
The simplest fault detection strategy could be sought as follows (Simani et al. 2003):

{
if r (t) ≤ ε, then machine is healthy;
if r (t) > ε, then BBF or EF is active;

(14.24)

with a suitably chosen constant threshold ε. However, the above fault detection logic suffers
of the oscillating nature of ν2(t) and ν3(t), and it may be highly sensitive to the errors in
the reconstruction of the fault injection signals due to the instantaneous dependence on ν2(t)
and ν3(t).
For these reasons we propose to consider the average power of the residuals in a receding

horizon temporal window of analysis. Then the next signal is constructed

E(t) =
√∫ t

t−
T
r (τ )dτ , t ≥ 
T, (14.25)

where 
T is the width of the receding horizon time window, and the fault detection logic
correspondingly becoming:

{
if E(t) ≤ ε then machine is healthy;
if E(t) > ε then BBF or EF is active.

(14.26)

Once the occurrence of the faulty condition is detected, spectral methods can be employed
to identify the types of fault occurred.

14.3.5 Experimental Results

In order to support the treatment presented in the previous sections we are going to present
some experimental result validating the suggested procedure. The presented methodology
has been tested offline by using real measurement acquired from several healthy and faulty
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Figure 14.2 Experimental setup (left) and a drilled rotor-cage bar (right)

commercial drives intentionally damaged in order to reproduce a BBF and the two considered
types of eccentricity.
Figure 14.2 (left plot) depicts the structure of the experimental setup, where a DC motor is

mechanically coupled to the rotating shaft of the IMs under test in order to apply a constant load
torque. Figure 14.3 shows a picture of the two motors. The three-phase supply voltages, phase
currents, and speed are acquired using a digital oscilloscope. Several commercial squirrel-cage
IM drives, manufactured by Siemens, in healthy and (intentionally induced) faulty condition
have been tested. Two 4-pole Siemens IMs 1LA7090 4AA10 drives for the broken bar tests,
and three 2-pole Siemens IMs 1LA7090 2AA10 for the eccentricity tests, fed, respectively, at
400 V− Y, 50 Hz and 230 V− 
, 50 Hz were considered.
BBF has been realized by drilling a single rotor bar (see right plot of Figure 14.2), whereas

EFs have been reproduced by suitable hardware modification. We have tested respectively a
machine with 0.2 mm of static eccentricity, and a second one with, in addition, 0.07 mm of
dynamic eccentricity.
Table 14.3 summarizes the experimental condition tests carried on the load conditions in

terms of slip’s percentage, the measured speeds, and the theoretical sideband frequencies
associated with (see equations (14.2) and (14.6)). The electromechanical motor parameters
needed for the observer implementation are derived from the motor’s data sheet’s. After few
trial and error tests, devoted to guarantee an accurate convergence to zero of the measurable

Figure 14.3 Laboratory test rig with IM and DC motor load
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Table 14.3 Experimental working condition for the broken bar and
eccentricity tests and fundamental fault sideband frequencies

Speed Slip 2 Slip fs fr fbrb fecc

Test (rpm) (%) (Hz) (Hz) (Hz) (Hz)

Broken bar 1452 3.2 3.21 –
46.78
53.21 –

Static eccentricity 2908 3.07 − 48.46 − 98.46
Mixed eccentricity 2906 3.15 – 48.43 – 98.43

estimation errors e1, e2, and e3 in healthy operating condition, the observer gains in all tests
have been set as follow

w1 = 14
k1 = 80

,
w2 = 22
k2 = 200

,
w3 = 22
k3 = 200

, (14.27)

Offline computations are done in the MATLAB environment. The observer scheme is digitally
implemented by means of Euler discretization with sampling time Ts = 10−4 s. Spectral
analysis are made using a time window of 7 s.
Hereafter the effectiveness of proposed UIO (14.13), and the validity of the faulty IMmodel

(14.12), will be investigated by experiments with real data.
Figure 14.4 (left) refers to data from a motor undergoing the BBF, and compares the spectra

of the measured machine α current and that of the corresponding injection signal ν2. It shows
that the spectra are almost analogous in shape, and differ by a scaling factor only. Figure 14.4
(right) shows the same plots during a different test with measurements data taken from a motor
undergoing the EF. The conclusion is, however, the same as before.
Taking into account the proposed residual evaluation algorithm (14.25) and (14.26), Fig-

ure 14.5 shows the E(t) residual profiles obtained using measurements from an healthy and a
faulty motor in the two cases of BBFs and EFs.
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Figure 14.4 Comparison between the normalized spectra of the faulty motor stator currents and that
of the observer injection signal ν2 for the broken bar test (left) and for the eccentricity test (right)



Fault Detection in Induction Motors 287

0
0

200

400

600

2

E healthy test
E faulty test
Fault threshold

4

Comparison between current’s residuals
for healthy and faulty machine

Time (s)
6 8 10 12

0
0

1

1.5

0.5

2

2 4
Time (s)

6 8 10 12

0
3000

4000

5000

6000

7000

8000

2

Static eccentricity test
Mixed eccentricity test

Healthy test

Fault threshold

4

Comparison between current residual
for healthy and faulty machine

Time (s)
6 8 10 12

00

0.5

1.5

1

2

2 4
Time (s)

6 8 10 12

Figure 14.5 Residuals and chosen threshold (upper plot) and diagnosis signal (lower plot) for the
broken bar tests (left) and for the eccentricity tests (right)

Note that the residual evaluation logic (14.25) is activated after 9 s, to let the machine reach
the sinusoidal steady state during which the the receding horizon mean (14.25) has a near
constant value that facilitate the detection of abnormal conditions by the simple threshold-based
algorithm (14.26). These figures show that the healthy and faulty residuals are appreciably
different in both the faulty scenarios investigated, and a suitable threshold value ε, to be used
in order to obtain an accurate detection the fault occurrence, can be found. It is apparent that
the faulty conditions are diagnosed almost instantaneously after that the algorithm (14.25) and
(14.26) is activated.
The time window size
T in (14.25) has been chosen as 0.3 s. The choice of
T turned out

to be not critical, provided it is not chosen too short to avoid permanently unsteady profiles of
E(t). Satisfactory performance has been obtained with different values as well.

14.4 Classical MCSA Based on the Fast Fourier Transform

The fast Fourier transform (FFT) has been the first signal analysis tool used for fault diagnostic
of IMs. This technology was developed in the 1980s (Kliman et al. 1988), taking profit of the
availability of digital oscilloscopes and computers, which enabled to sample and process the
signals. Initially, the signals chosen for carrying out the diagnosisweremainly vibration-related
mechanical ones, but quickly the interest turned on the stator currents, originating a family
of methodologies designated as MCSA methods, which has been continuously improved
since then. The use of the stator currents as diagnosis signal enable for noninvasive and cheap
diagnostic techniques, since in industrial applications the IMs are usually providedwith current
clamps and no additional sensors are required. The basis of the MCSA approaches based on
FFT is very simple. First a stator current is sampled using a sampling frequency fs , during
a time T , thus obtaining a discrete signal I (t) = I1, I2, . . . , IN in the discrete time domain,
were N = fs T is the number of samples. Once the FFT algorithm is applied to the sampled
signal, a new signal in the discrete frequency domain is obtained—the signal spectrum—in
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Figure 14.6 FFT spectrum of a simulated IM in healthy condition (left), with a broken rotor bar (center)
and with a mixed eccentricity fault (right)

which the signal is decomposed into N/2 sinusoidal components with frequencies below half
the sampling frequency and a frequency resolution
 f = 1/T . As it was explained in Section
14.2, different faults originate or substantially increase specific components of the signal,
whose frequencies depend on the speed s, as it is shown in equations (14.1), (14.2), (14.3),
(14.4), (14.5) (14.6), (14.7), (14.8), and (14.9). Diagnostic is based on the identification into the
current spectrum of these fault-related components. As an example, Figure 14.6 shows three
spectra corresponding to a simulated IM under different fault conditions: in healthy state (left),
with a broken bar (center), and with a forced mixed eccentricity (right). The characteristic
components in which diagnostic is based on are pointed out.
MCSA is based on FFT, which is the most used diagnostic approach in the industrial

environment. Nevertheless, despite being a very easy and convenient method in a wide amount
of applications, the industrial application of MCSA has practical limitations, mainly due to
the following reasons:

• Spectral leakage: This is the result of sampling the signal using a finite-time window. The
energy of the main frequency spreads over the other frequencies and can hide the sideband
components. This problem has been reported by Eltabach et al. (2004), Douglas et al.
(2005), Didier et al. (2006), and Jung et al. (2006). Solutions such as the use of a Hanning
window and the Barlett periodogram have been proposed in Didier et al. (2006), as well as
the filtering of the main frequency (Douglas et al. 2005).

• Need of a high-frequency resolution: Frequency resolution (
 f ) is the frequency separa-
tion between two adjacent bins in the spectrum. It is inversely proportional to the time of
measurement T . This is a theoretical limit that indicates the ability of the spectrum analysis
to resolve two different tones with neighboring frequencies in the signal. Diverse techniques
that can improve frequency resolution without increasing the measurement time have been
presented in (Aiello et al. (2005), Yazidi et al. (2005), Bellini et al. (2006), and Kia et al.
2007).

• Varying load conditions: If the load varies during the sampling time, then the frequencies
of the fault components, which depend on the motor slip, change with the speed. These
changing frequencies can invalidate an MCSA-based diagnosed process, because they pro-
duce a typical smearing effect on the current spectrum (Thomson and Fenger 2001), which
make it difficult to identify the fault components (Ian and Wendell 2007).
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• Confusing mechanical frequencies: Speed-reducing devices such as gearboxes (Ian and
Wendell 2007), or oscillating load can generate sideband frequencies that will behave
identically to those caused by actual faults.

Some of the proposed solutions to the aforementioned problems are conflicting: long time
periods are needed to achieve sufficient spectral resolution, but load conditions are likely to
vary during this time, thus generating distorted data. All these drawbacks inherent to the FFT-
based analysis have made it advisable to develop new diagnostic methods based on advanced
signal analysis tools, such as Hilbert transform, or mixed time-frequency approaches.

14.5 Hilbert Transform

14.5.1 Bases of the Application of the Hilbert Transform of a Phase
Current to the Diagnosis of Electrical Machines

This section introduces the HT and discusses its application to the current analysis of healthy
and faulty machines. The HT of a real signal x(t), as the phase current, is used to emphasize
its local properties. Mathematically, it is defined as the convolution with the function 1/t , as
follows (Cizek 1970):

H T (x(t)) = y(t) = 1

π t
∗ x(t) = 1

π

∫ +∞

−∞

x(τ )

t − τ
dτ. (14.28)

Coupling the x(t) and its HT, the so-called analytic signal (AS) is created:

�x(t) = x(t)+ j y(t) = a(t)e jθ (t), (14.29)

where

a(t) = [
x2(t)+ y2(t)

]1/2
, θ (t) = arctan (x(t)/y(t)) , (14.30)

a(t) is the instantaneous amplitude of �x(t), which can reflect how the energy of x(t) varies
with time, and θ (t) is the instantaneous phase of �x(t). Three key properties of the HT and the
AS that give a more physical insight about it are:

• The HT of a trigonometric function x(t) is a version of itself with a π/2 phase shift: sins
are transformed to cosines and vice versa. The spectrum of a Hilbert transformed series
has the same amplitude and frequencies contents as the original data, but the phase of each
frequency component is shifted by π/2.

• The AS has a one-sided FT, that is, its components at negative frequencies are 0. It retains
the positive frequency content of the original signal, suppressing negative frequencies and
doubling the DC component.

• All the low frequencies of the original signal are in the amplitude , and the high frequencies
in the phase of the AS.
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The application of the HT to the analysis of faulty IMs has been considered, for example,
in Liu et al. (2004) and Puche-Panadero et al. (2009).

Analytic Signal of the Current in a Healthy Machine

The steady-state phase current in an ideal machine, running at constant speed, is purely
sinusoidal:

i(t) = Im cos(ωt) = Im

(
e jωt + e− jωt

2

)
. (14.31)

The FT of i(t) shows two distinct components, at frequencies f = ω/2π and f = −ω/2π ,
with an amplitude of Im/2.
The AS corresponding to i(t) is

�i(t) = i(t)+ j H T (i(t)) = Im(cos(ωt)+ j sin(ωt)) = Ime jωt . (14.32)

The FT of equation (14.32) will show a single spike corresponding to the positive frequency
f = ω/2π , with an amplitude double respect to the original signal spectrum component
(14.31). The modulus of the AS reflects how the energy of i(t) varies with time, and contains
its low-frequency components. In the case of a healthy machine (14.32), it has a constant value
of Im , indicating that the energy of the phase current does not vary with time.

Analytic Signal of the Current in a Faulty Machine

In the case of periodic disturbances, like those produced by a broken bar in a motor that rotates
at constant speed, the amplitude of the current in each phase is modulated with the principal
frequency f0 characteristic of the fault

ib(t) = i(t) [1+ β cos(ω0t)] , (14.33)

where β denotes the modulation depth (modulation index) and ω0 = 2π f0. By substituting
(14.31) in (14.33)

ib(t) = Im cos(ωt) [1+ β cos(ω0t)] . (14.34)

After performing the cosines multiplications, we get

ib(t) = Im cos(ωt)+ β Im

2
[cos ((ω − ω0) t)+ cos ((ω + ω0) t)] , (14.35)

which shows the presence of the two sideband frequencies characteristic of the fault. The HT
of this current is constructed by changing the cosines functions by sine ones

H T (ib(t)) = Im sin(ωt)+ β Im

2
[sin ((ω − ω0) t)+ sin ((ω + ω0) t)] , (14.36)
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which can be expressed as

H T (ib(t)) = Im sin(ωt) [1+ β cos(ω0t)] . (14.37)

The AS is constructed by combining (14.34) (real part) and (14.37) (imaginary part):

�ib(t) = [1+ β cos(ω0t)] Im (cos(ωt)+ j sin(ωt)) = [1+ β cos(ω0t)] Ime jωt . (14.38)

In this case, and in contrast to the case of a healthy machine (14.31), the modulus of the AS
shows a pulsation with the characteristic frequency of the machine fault.

14.5.2 Experimental Results

The proposed method has been applied to the analysis of a commercial 1.1 kW IM. Tests
were carried out in two different conditions: healthy state and faulty condition in which a
single bar was broken by drilling. In both cases, the test was performed at absolute no-load
conditions, keeping free the motor shaft, to test the feasibility of the proposed method at very
low slips. Additional test were performed with the faulty machine under three different loads
(low, medium, and full) to assess the performance of the proposed method over the full range
of motor load. In each tests a phase current was sampled for 100 seconds at 100 kHz, and
six consecutive measurements were averaged to reduce the average noise level. Table 14.4
summarizes the load conditions of these five experimental tests, the measured speeds, and the
theoretical sidebands components associated to the fault.
Two types of spectra are presented for the sake of comparison, the FFT of the phase current

(classical method), and the FFT of IHilbert, the alternating component of the modulus of IHilbert.
Figure 14.7 (left) presents the spectrum of the line current. The sidebands components

characteristic of the broken bar condition are distinguishable only in the tests performed under
full load (s = 6.16%) and medium load (s = 2.96%). In the low-load test (s = 0.61%) these

Table 14.4 Experimental tests of the healthy and faulty motor and theoretical fault sidebands

Motor Load
Speed
(rpm)

Slip
(%)

2s f1
(Hz)

Fault
sidebands
f1 ± 2s f1
(Hz)

Healthy a) No 1497.9 0.19 0.19 –
49.86

b) No 1498.8 0.20 0.20 50.26
Faulty 49.44
(one broken bar) c) Low 1492.5 0.61 0.61 50.66

47.04
d) Medium 1456.2 2.96 2.96 52.98

43.84
e) Full 1407.6 6.16 6.16 56.16
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Figure 14.7 Spectrum of the phase current i(t) (left) and spectrum of the modulus of IHilbert (right)
in five experimental tests. Unloaded healthy machine (a), and machine with a broken bar under four
different load conditions: unloaded (b), low load (c), medium load (d), and full load (e).

components are hardly detected, and in the case of absolute no-load (s = 0.20%) they are
completely buried under the main frequency component spectral leakage. In this last case the
classical MCSA method is unable to correctly diagnose the fault.
The proposed method relies on the analysis of the variation of IHilbert. Its spectrums, in the

five cases presented in Table 14.4, are shown in Figure 14.7 (right). In this case, linear scale
instead of logarithmic one has been used for the vertical axis, greatly improving the legibility
of the graph.

14.6 Discrete Wavelet Transform Approach

14.6.1 Basis for the Application of the DWT to Diagnostic
of Electrical Machines

The DWT performs the decomposition of a sampled signal s(t)(s1, s2, . . . , sN ) onto n + 1
wavelet signals: an approximation signal an(t) and n detail signals d j (t) with j varying from
1 to n:

s(t) = an + dn + · · · + d1. (14.39)
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The parameter n is an integer known as number of decomposition levels and can be set
freely. As it will be shown later, for specific diagnostic applications, n is set by considering
the sampling rate fs used for capturing s(t), and the interval of frequencies covered by the
fault-related component that is searched for. Conceptually, the detail signal d1 is calculated as

d1(t) =
∑

i

β1i · ψ1
i (t), (14.40)

where β1i are the wavelet coefficients (real numbers), ψ1
1 is the mother wavelet (the base

function used for the decomposition); the functions ψ1
i are identical to the mother wavelet

but shifted in time by δt = i/T , being T the sampling period of s(t). The detail signal d j is
calculated in a similar way, but using as a base the wavelet with level j , which is a scaled and
time-expanded version of the mother wavelet

d j (t) =
∑

i

β
j

i · ψ
j

i (t). (14.41)

The approximation signal an is obtained similarly, but using the scaling function φn
j and

scaling coefficients αn
j , instead of the wavelet function and coefficients

an(t) =
∑

i

αn
j · φn

j (t). (14.42)

Each mother wavelet is associated with a family of scaling functions, which are perfectly
determined once the mother wavelet is selected. The practical procedure for the application of
DWT is known as Mallat’s algorithm (Burrus et al. 1998) or sub-band coding algorithm; the
approximation signal behaves as a low-pass filter, whereas each wavelet signal behaves as a
passband filter, extracting the time evolution of the components of the original signal included
within its corresponding frequency band. Figure 14.8 shows the sub-band coding algorithm
regarding the coefficients of the transform at the different levels according to the description
by Polikar et al. (1998). In this figure the length of those coefficients and frequency content at
each level is shown considering an original signal with n = 1024 samples and sampling rate
of fs samples/s.

g[n]

h[n]

S(n)
N = 1024
Fs  samp/s

Level 1 of detail coefficients
[f/4–f/2]
n = 512

Level 2 of detail coefficients
[f/8–f/4]
n = 256 Level 3 of detail coefficients

[f/16–f/8]
n = 128

...

g[n]

g[n]
h[n]

h[n]

2

2
2

2
2

2

Figure 14.8 Sub-band coding algorithm scheme used for the practical application of DWT
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Table 14.5 Frequency bands for the wavelet signals

Frequency band Frequency band
Level fs = 5000 samp/s fs = 2000 samp/s

d1 1250–2500 Hz 500–1000 Hz
d2 625–1250 Hz 250–500 Hz
d3 312.5–625 Hz 125–250 Hz
d4 156.25–312.5 Hz 62.5–125 Hz
d5 78.12–156.25 Hz 31.25–62.5 Hz
d6 39.06–78.12 Hz 15.625–31.25 Hz
a6 0–39.6 Hz 0–15.625 Hz

Source: Riera et al. (2008a).

The main idea that underlies the application of the DWT is the dyadic band-pass filtering
process carried out by this transformation. Each one of the signals an , d j generated by the
wavelet filtering of the original signal s(t) is associated with a specific frequency band (see
Table 14.5). The analysis of these signals reveals the time evolution of the components of the
signal s(t) which are contained within its corresponding frequency band. More concretely,
if fs (samp/s) is the sampling rate used for capturing s(t), then the detail d j contains the
information concerning the signal components with frequencies included in the interval:

f (d j ) ∈ [
2−( j+1) fs, 2

− j fs
]
Hz (14.43)

The approximation signal an includes the low-frequency components of the signal, belonging
to the interval

f (an) ∈ [
0, 2−(n−1) fs

]
Hz (14.44)

For instance, Table 14.5 (Riera-Guasp et al. 2008b) gives the frequency bands obtained
for two different sampling frequencies ( fs = 5000 and 2000 samp/s) and n = 6 levels of
decomposition.
Therefore, the DWT carries out the filtering process shown in Figure 14.9. Note that the

filtering is not ideal, a fact leading to a certain overlap between adjacent frequency bands
(Antonino-Daviu et al. 2006). This causes some distortion if a certain frequency component of

an

fs

dn d2 d1

f = 50 Hz

0
2(n+1)

fs
2n

fs
8

fs
4

fs
2

Figure 14.9 Filtering process performed by the DWT
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the signal is close to the limit of a band. This undesirable effect can be minimized if high-order
mother wavelet (e.g., Daubechies-40) are used.
Due to the automatic filtering performed by the wavelet transform, the tool provides a

very attractive flexibility for the simultaneous analysis of the transient evolution of rather
different frequency components present in the same signal. At the same time, in comparison
with other tools, the computational requirements are low. In addition, the DWT is available in
standard commercial software packages, so no special or complex algorithm is required for
its application.

14.6.2 Application of the DWT to the Analysis of the Start-up Current
of a Healthy Motor

Figure 14.10 shows the sampled start-up current (signal s, at the top) and the signals resulting
from the DWT with n = 6 (a6, d6, . . . , d1), corresponding to an experimental healthy cage
motor. This current was sampled at fs = 5000 samp/s. These graphs can be explained as
follows:

• The detail d6 practically reproduces the analyzed start-up current. This is because, for the
sampling frequency used, the frequency band corresponding to this signal is 39.06–78.12
Hz (see Table 14.5) and thus includes the fundamental component of the current, which is
more than 30 times greater than the rest of the components.

• The approximation a6 does not show any relevant pattern, once the initial oscillations due
to electromagnetic transient and border effects are extinguished. This means that there are
no significant low-frequency components (below 39.06 Hz) within the signal.

• Regarding the details d5, d4, and d3, a clear pattern can be observed; this pattern is produced
by a component with frequency increasing with time; at the beginning of the start-up, this
component is included within the detail d6; consequently it is masked by the fundamental
component. At t ≈ 1.3 s, its frequency becomes higher than 78.012 Hz and the component
penetrates within the detail d5. As time (or rotor speed) increases, so does the frequency,
moving to d4 at t ≈ 2.2 s, crossing successively the frequency bands of d4 ([156.25–312.5
Hz), and d3 (312.5–625 Hz), and finally, remaining within d2 when the steady state is
reached. The pattern described above fits well the evolution during the start-up of the
current principal slot harmonic (IPSH) of the machine, the frequency of which, as function
of slip (Nandi et al. 2001), is given by

fPSH = [14 (1− s)− 1] f1 (14.45)

At the beginning of start-up s ≈ 1 and fPSH ≈ 50 Hz. As slip decreases fPSH increases,
reaching a constant value fPSH ≈ 650 Hz in steady state (s ≈ 0). Fourier analysis of the
stationary portion of d2 confirms the previous interpretation, showing a predominant com-
ponent of 640 Hz. So, this pattern, which can be almost always found in the DWT of start-up
current, is not caused by the presence of any fault.

• The detail d1 includes the high-frequency components of the signal with frequencies in the
interval (1250–2500 Hz); nothing relevant is observed in this detail signal.
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Figure 14.11 Theoretical evolution of the LSH component of the start-up current of a cage motor with
one broken bar (left) and DWT of the start-up current of a machine with a broken bar (right), showing
the characteristic pattern of low-frequency wavelets signals

14.6.3 Application of the DWT to the Analysis of the Start-up Current of a
Motor with a Broken Bar in the Rotor

The previous test was repeated, but using amachine in which a rotor bar was artificially broken.
Figure 14.10 (left) shows the DWT of the start-up current for this case. Comparison between
Figures 14.10 (left) and 14.10 (right) shows that the bar breakage is clearly detected through
the alteration of the approximation a6 (or in general, the approximation of the same level as that
of the detail containing the fundamental component); the change in this signal, as justified in
Riera-Guasp et al. (2008a), is caused by the left sideband component; its amplitude increases
substantially when a rotor asymmetry is present and its frequency evolves during almost the
whole start-up within the frequency band of a6; the similitude between the waveform of the
approximation a6 and the theoretical evolution of the left sideband component during the
start-up, deduced in Riera-Guasp et al. (2008b), which is shown in Figure 14.11 (left), should
be highlighted. This fact makes the diagnosis based on the approximation signal very reliable,
since it is very unlikely that the pattern in a6 could be caused by a fault or perturbation different
from a rotor asymmetry. An alternative way for detecting a rotor asymmetry is shown in Figure
14.11 (right); in this approach the number of DWT decomposition levels is increased up to 9 (3
more than the level of the detail signal containing the fundamental component). In this way, the
evolution of the sideband along the start-up is spread across four consecutive wavelet signals
(d7, d8, d9, and a9), with frequency bands covering from near the main frequency to zero Hz.
A clear pattern can be observed in these signals, which, according to the precedents sections,
corresponds to a component with decreasing frequency in the time interval 1 < t < 3 s and
then, increasing frequency between t = 3 and t = 6. This also constitutes a reliable signature
for the left sideband identification.

14.6.4 Diagnosis of a Machine with Mixed Eccentricity through the
Start-up Current

Before carrying out this experimental investigation, it was necessary to prepare a motor intro-
ducing a certain degree of eccentricity in it. This was achieved by sanding down the inner and
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Figure 14.12 DWT of the start-up current of a healthy machine (left) and a machine with eccentricity
(right)

outer rings of the bearings, so that a slight play was achieved between the bearing and the
shaft (for dynamic eccentricity) and between the bearing and its housing (for static eccentric-
ity). Conventional Fourier analysis shows steady-state mixed eccentricity-related components
f1 ± fr increased by a factor of 3 after this process, growing their amplitude from 0.5% of the
fundamental amplitude to 1.6%. Figure 14.12 shows respectively the DWT of the start-up cur-
rent before (left) and after modifying the bearings (right); only the significant wavelet signals
for this diagnosis are shown, that is, the signals containing the related eccentricity components
( f1 ± fr ) during the start-up. Comparing both figures, clear changes in the waveforms of d4
and a5 can be observed. These changes are produced by the components f1 ± fr , which eccen-
tricity introduces into the current of the faulty machine, that are included within the detail d5
at the beginning of start-up; as the rotor speed increases their frequencies change, reaching the
limits of the band of d5 when the start-up is almost finished. From this point, the decreasing
component ( f1 − fr ) moves into a5 and the increasing component ( f1 + fr ) moves into d4.
Subsequently, the diagnosis based on the DWT not only detects the fault through the increase
of the amplitudes of the signals, like the steady-state-based analyses, but also through the
characteristic pattern due to the progressive increment in this amplitudes during the transient.
This fact enables a more reliable diagnosis of the fault.

14.7 Continuous Wavelet Transform Approach

14.7.1 Application of the CWT to Diagnostic of Electrical Machines

While the figures generated by the DWT clearly show the time-frequency pattern of the LSH
component of the start-up current of a cage motor with one broken bar during a start-up
transient (LSHst) (see Figure 14.11 (left), or the EF pattern (see Figure 14.12), they are not
very suitable for being processed by automatic pattern recognition systems: there are many
different images that must be simultaneously analyzed to detect the target pattern. A solution
to this problem is to assemble a unique matrix, with each row containing the time evolution of
the signal in a single frequency band. This matrix can be plotted as a single two-dimensional
time-frequency image, by displaying the amplitude information as a color coding schema, as
shown in Figure 14.13 for the case of the simulated LSHst presented in Figure 14.11 (left).
The image displayed in Figure 14.13 has two main drawbacks: it has a poor frequency

resolution, due to the fixed frequency bands imposed by the dyadic character or the DWT, and
the sinusoidal time variation of the signal appears as alternating color bands that obscure its
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Figure 14.13 Two-dimensional image representing the time-frequency evolution of theLSHcomponent
of the start-up current of a cage motor with one broken bar, with its absolute amplitude displayed with a
color coding schema. The frequency pattern is superimposed in dashed line

amplitude variation. In fact, DWT is a nonredundant representation of the signal, associated
with an orthonormal basis, that can be useful for compression purposes, but not for an accu-
rate representation of the signal in the time-frequency domain. All these drawbacks can be
overcome with the use of the CWT.
The CWT is a time-scale decomposition that links a time domain function to its time-scale

wavelet domain representation. The most natural way to obtain this representation (Cohen
1989) is to define a family of scaled and translated functions

ψa,b(t) = 1√
a

ψ

(
t − b

a

)
, a > 0, b ∈ R, (14.46)

where ψ is a fixed function, called the mother wavelet, that is, an oscillatory signal, well
localized both in time and frequency. The CWT of a function f ∈ L2(R) is defined as

CWT f (a, b) = 〈
f, ψa,b

〉 = 1√
a

∫
f (t)ψ

(
t − b

a

)
dt. (14.47)

From a practical point of view, the CWT can only be computed on a discrete grid of points
(an, bn)n∈Z. In MCSA, the current signal i(t) is sampled at instants tn = n 
t = n/ fs, n =
0 . . . N − 1, where fs is the sampling frequency and N is the total number of sampled values.
In this case, and performing the analysis up to a maximum scale mmax (14.47) becomes

CWTi (m, n) = 1√
m

N−1∑
k=0

∫ k+1

k
i(k
t) · ψ

(
t − n
t

m

)
dt , with

{
m = 1...mmax;

n = 0...N − 1.
(14.48)
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The analyzing mother wavelet used in this paper is the nth derivative of a Gaussian (DOG)
function, given by (14.49). A value n = 8 has been selected in this work (gaus8 wavelet): it is
a symmetric wavelet, it is infinitely differentiable in the time domain, and has eight vanishing
moments, the minimum value proposed by Douglas et al. (2005).

ψn(t) = (−1)n√
2(n−1/2)·�(n + 1/2)

· dn(e−t2 )

dtn
(14.49)

The LSHst has been processed with the CWT, and the absolute value of the resultant
coefficients are shown in Figure 14.14 (left), which offers a clear visual insight of the time-
frequency evolution of the LSHst. Nevertheless, the alternating nature of this signal leads to a
succession of clear and dark vertical bands, which represents an obstacle for its classification
by an automatic pattern recognition system. The use of the complex CWT (CCWT) solves
this problem, as it is shown in the next section.

14.7.2 Application of the Complex CWT to Diagnostic
of Electrical Machines

The CCWT is defined as in equation (14.49) but using complex valued wavelets, instead of
real ones, so that the modulus of the coefficients can be computed:

ψn(t) = (−1)n√
2(n−1/2)·�(n + 1/2)

dn(e− j t · e−t2 )

dtn
. (14.50)

The CCWThas been applied to the LSHst, and the absolute value of the resultant coefficients
is shown in Figure 14.14 (right). The advantage of using the CCWT to represent the time-
frequency evolution of the LSHst is that the modulus of the CCWT tracks the evolution of its
envelope, instead of its instantaneous value. This fact eliminates the vertical, alternating bands
of Figure 14.14 (right), which facilitates the work of automatic recognition systems.

14.7.3 Experimental Results

The line current signal during the start-up transient of motor with a broken bar has been
processed using the proposed method (modulus of the CCWT of the line current) to obtain
a high-resolution representation of the current in the time-frequency plane, where the LSHst
appears clearly defined (see Figure 14.15).

14.8 Wigner-Ville Distribution Approach

14.8.1 Basis for the Application of the WVD to Diagnostic
of Electrical Machines

The distribution of the energy of a signal x(t) over the two description variables time and
frequency, that is, its energy density function, Px (t, ν), can be obtained with the use of a
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Figure 14.15 Experimental modulus of the complex CWT of the faulty motor line current during the
start-up transient, with the amplitude displayed as a color intensity map (computed separately for each
frequency band). The broken bar faults pattern has been superimposed in dashed line

time-frequency distribution (Hlawatsch and Boudreaux-Bartels 1992), as proposed recently
for motor fault detection in Blödt et al. (2010) and Rajagopalan et al. (2008). A desirable
property of such a distribution is the time and frequency covariance; that is, if the signal
is delayed in time and modulated, its time-frequency distribution must be translated of the
same quantity in the time-frequency plane. The class of energy time-frequency distributions
verifying this property, the Cohens class, has the following general expression (Cohen 1989):

Px (t, ν) =
� +∞∫

−∞
e j2πξ (s−t) f (ξ, τ )x∗

(
s − τ

2

)
x

(
s + τ

2

)
e− j2πντ dξdsdτ . (14.51)

Individual distributions (Spectrogram,Wigner-Ville, Choi-Williams, etc.) are obtained using
different kernels f (ξ, τ ) in equation (14.51). The WVD is the simplest one in the group of the
Cohens class, with a kernel function equal to unity.

W Vx (t, ν) =
+∞∫

−∞
x∗

(
t − τ

2

)
x

(
t + τ

2

)
e− j2πντ dτ . (14.52)

This expression shows that the WVD of a function is obtained as the FFT with respect the
variable τ (delay) of the convolution of the signal with a translations in time and frequency of
itself.

14.8.2 Application of the WVD to Monocomponent Signals

Figure 14.16 shows the result of applying the WVD to a monocomponent signal such as
the simulated LSH of Figure 14.11. In this spectrogram a clear “V” pattern is shown. The
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Figure 14.16 Wigner-Ville distribution of the LSH during a start-up

interpretation of this pattern is that the frequency of the analyzed signal first decreases with
time, from 50 to 0 Hz (at t ≈ 0.85 s), and then increases again, reaching a value near to 50
at the end of the signal (t ≈ 0.85 s). Moreover, from the colored scale of the spectrogram,
it is seen that the amplitude of the signal is decreasing in the descending branch, whereas in
the upward branch, it first increases, reaches a maximum, and finally decreases. This behavior
matches perfectly the evolution of the frequency and amplitude of the LSH during a start-up
(see Figure 14.11) described in Riera-guasp et al. (2008b); therefore, the detection of this “V”
pattern into a start-up current enables diagnostic of a rotor breakage.
One drawback of the WVD is the presence of interference cross-terms, as can be noticed in

Figure 14.16. The cross-terms are artifacts resulting from the interaction between the searched
components of the signal and other components or noises, which produce high-amplitude
patterns in regions that actually have no energy. In real multicomponent signals, these artifacts
can completely hide the searched patterns. To minimize them, other distributions belonging
to the Cohens class using different kernels have been proposed, as the smoothed pseudo
Wigner-Ville and the Choi-Williams distributions; nevertheless, using kernels deteriorates
certain desirable properties of WVD and also increases the computational requirements.

14.8.3 Application of the WVD to Multicomponent Signals

Another alternative for minimizing the undesirable effects of the cross-terms consists of
applying some kind of pretreatment to the signal before computing theWVD, in order to isolate
the component of interest into a frequency band in which it is predominant. For instance, the
DWT can be used as an efficient technique for isolating the LSH in a start-up current since—
as it is well known—if the LSH exists, during start-up its frequency evolves below the main
frequency. This technique is applied to analyze the startup current of Figure 14.11 (signal s,
on the top, machine with a broken bar). The WVD is applied to the approximation a6 , which
contains the components of the current belonging the interval [0, 39.06] Hz. The resulting
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Figure 14.17 Wigner-Ville distribution of the start-up current of a machine with a broken bar (left) and
of a machine with 37% eccentricity (right)

energy distribution is shown in Figure 14.17 (left); the characteristic “V” pattern associated to
the LSH during start-up is clearly visible, leading to a diagnostic of faulty machine.
A more general and systematic methodology for the pretreatment of the signal before

applying the WVD is proposed in Climente-Alarcon et al. (2011): In a first stage, the start-up
current undergoes a filtering process; in this stage a series of constant frequency components
not related with the fault (fundamental component and winding harmonics) are filtered using
optimized notch filters. Then the HT is applied to the filtered signal to obtain an AS, whose
spectrum does not contain negative frequencies. Finally high- and low-pass filters are used for
keeping only the range of frequencies of interest. In this way, the WVD is applied to a signal
in which the more important components not related with the fault have been suppressed, and
thus, the cross-terms are strongly reduced; as a result, the computed energy distribution enables
appreciation of simultaneously several fault components evolving through a wide frequency
band. As an example, Figure 14.17 (right) (Climente-Alarcon et al. 2011) shows the result of
applying this methodology to the start-up current of a cage motor having a mixed eccentricity.
The spectrogram shows the evolution of the couple of main eccentricity components ( f1 ± fr )
designed as EC-25 clearly and EC-75 in Figure 14.17 (right). The trajectory in the t– f plane
of these components can be followed during the full start-up transient, reproducing the same
conceptual pattern appearing in Figure 14.12 (right), but in this case in a more explicit way.
Also, the evolution of other second order eccentricity-related components (designed as EC-
100, EC-125, EC-50, EC-175 in Figure 14.17 (right)) can be followed, improving the reliability
of the diagnostic of faulty machine.

14.9 Instantaneous Frequency Approach

14.9.1 Basis for the Application of the IF Approach to Diagnostic of
Electrical Machines

As it was explained in the previous section, the diagnostic based on conventional MCSA relies
on the fact that different kind of fault produces specific families of harmonics to appear (or
greatly increase their amplitude) in the currents circulating in the windings of the machine.
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For instance, and considering only the most important components, it has been demonstrated
that:

• Rotor asymmetry produces a substantial increase in the amplitude of the lower and upper
sideband component of stator currents, whose frequencies are given by

fbS(s) = |(1± 2 · s) f1| , (14.53)

where fbS is the frequency of the main rotor asymmetry fault-related components in the
stator current, f1 is the supply frequency, and s is the slip.

• A mixed eccentricity induces stator current harmonics at specific frequencies. The main
harmonic produced by the mixed eccentricity can be found by substituting k = 1 in equation
(14.6), at the frequency given by

fecc(s) =
∣∣∣∣ f1 − f1

p
(1− s)

∣∣∣∣ , (14.54)

where fecc is the frequency of the main fault component produced by a mixed eccentricity
in the stator current, and p is the pole pair number.

ConventionalMCSAuses equations (14.53) and (14.54) as formulas that give the frequencies
at the current spectrum where the fault components appear when a fault happens. On the
contrary, in the IF approach, these formulas are understood as functions that describe the
trajectory of the fault components in the slip-frequency plane when a faulty machine undergoes
a transient that involves any speed variation. It is remarkable that these trajectories are straight
lines, with a specific slope and offset, different for every fault, irrespective of the way in which
speed varies (increasing, decreasing, oscillating) and the machine characteristics (rated power,
rated voltage), thus, constituting very reliable patterns for diagnostic purposes. For a direct
online start-up, Figure 14.18 gives the theoretical evolution of the IF of the fault components
related to a rotor asymmetry (left) and a mixed eccentricity (right). These graphs have been
obtained making s vary from 1 to 0 in equations (14.53) and (14.54).

14.9.2 Calculating the IF of a Monocomponent Signal

The IF of a monocomponent signal sm(t) can be calculated using different mathematical tools,
as for instance the HT and the WVD, among other.

• If xa is the AS obtained from the HT of sm(t), the IF of this signal is defined as the derivative
of the phase of the AS (Ville 1948):

νi (t) = 1

2π

d (arg(xa))

dt
= 1

2π

dφ

dt
, (14.55)

where φ(t) is the phase of xa .
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Figure 14.18 Characteristic slip-frequency pattern of the IF of the LSH of a machine with broken bars
(left) and with eccentricity (right) during a start-up transient

• From the WVD, the IF of sm(t) can also be calculated as the first conditional moment of
frequency for a given time of theWVD of the signal; that is, as the average of the frequencies
existing in the time-frequency plane for a given time (Cohen 1989):

< ν >t=
∫

ν Px (t, ν)dν∫
Px (t, ν)dν

= 1

2π

dφa

dt
= νi (t). (14.56)

It can be demonstrated that both definitions are equivalent.

14.9.3 Practical Application of the IF Approach

An important remark is that the concept of IF lacks a simple physical meaning when is
applied to real multicomponent signals, as the stator current of a cage motor. This problem
has been reported extensively in the technical literature: the IF of a multicomponent signal can
exhibit large fluctuations, and it can extend beyond the band defined by any of the individual
components (Nho and Loughlin 1999). Thus, as in the application of the WVD, the diagnosis
based on the IF implies a pretreatment of the tested signal, with the aim of extracting the
frequency bands from it in which the searched fault-related component, if it exists, is the most
prominent. Figure 14.19 plots the calculated IF versus slip of the LSH of the tested start-up
current (signal s) of Figure 14.10 (right). This current corresponds to a cage motor with a rotor
broken bar. Also, in this case, the DWT has been used for isolating the LSH; actually this
graph shows the calculated IF (blue dots) of the approximation a6 of the tested current, since
this wavelet signal contains the components of the start-up current below the fundamental
frequency; therefore, if the LSH is present in the start-up current, it will be prominent in this
approximation. As the calculated IF matches the theoretical pattern (red lines) perfectly, a
reliable diagnostic of faulty machine is deduced.
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15.1 Introduction

Sensorless control of electrical machines is a topic that imposes the challenging problem of
eliminating the use of sensors for mechanical variables (position and speed) for controller
design purposes (Rajashekara et al. 1996). Its solution is both important from the applications
perspective (due to its economic impact) and quite attractive from the control theory approach
(for the mathematical complexity that it exhibits). In spite of the maturity level achieved for
understanding the usual strategies implemented in industrial applications as well as in the
proposition of novel control schemes (Dawson et al. 1998; Ortega et al. 1998; Khorrami et al.
2003; Nam 2010), the sensorless control problem is currently recognized as a longstanding
essentially open problem.
In this paper we are interested in the sensorless control for nonsalient permanent-magnet

synchronous motors (PMSM). For solving it, three variables must be estimated out of the
measurement of the electrical coordinates: (1) rotor position, (2) rotor speed, and (3) load
torque—the latter assumed constant. Heuristically conceived solutions for this problem abound
in the literature (see, e.g., Ichikawa et al. (2006) and Fabio et al. (2010) for recent surveys).
Many results are also available for the (practically unrealistic) cases of known initial position
(Tomei and Verrelli 2008; Ezzat et al. 2010b) or zero-load torque (Ezzat et al. 2010a), or
the (theoretically unjustifiable) assumption of bounded trajectories (Ezzat et al. 2010b). An
approximate stability analysis of the scheme proposed in Matsui (1996) is carried out in Nahid
et al. (2001). In Marino et al. (2008) a probably stable sensorless scheme for wound-rotor

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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synchronous motors is proposed. A key difference of the latter machine from the PMSM is
the availability of flux measurements that considerably simplifies the observation problem.
The observability properties of PMSMs have been recently studied in Zaltni et al. 2008, Ezzat
et al. (2010), Ortega et al. (2011).
Among other techniques, like the use of high-frequency electric variables or the imple-

mentation of extended Kalman filters, for nonsalient pole PMSMs (also known as “surface
mounted” PMSMs) the simplest and most common rotor position estimation strategy con-
siders the estimation of the back-EMF induced by the permanent magnets (Ichikawa et al.
2006), hence it is adopted in this paper. However, instead of using standard methods, that are
difficult to tune for standstill and low-speed regimes, the globally (under some conditions,
even exponentially) stable position observer reported in Ortega et al. (2011) is considered,
which has been successfully evaluated in an experimental setting, combining it with an ad hoc
linear speed estimator and a standard field-oriented controller (Lee et al. 2010), but without a
theoretical justification.
The main objective of this paper is to prove that direct application of two well-established

design methodologies—immersion and invariance (I&I) (Astolfi et al. 2007) for the observer,
and interconnection and damping assignment passivity-based control (IDA-PBC) (Ortega and
Garcia-Canseco 2004) for the control—can be combined with the observer of Ortega et al.
(2011) to design an asymptotically stable sensorless controller. The result builds upon some
preliminary work reported in Ortega et al. (2011) and Shah et al. (2009), where, assuming
position is known, I&I techniques are used to design a speed and load torque observer, and in
Akrad et al. (2007) and Petrovic et al. (2001) where full state-feedback, globally convergent,
IDA-PBCs for the PMSM are proposed. To the best of our knowledge, this is the first time
a complete theoretical analysis of a sensorless controller is done—under reasonable practical
and theoretical assumptions.
The remaining of the paper is organized as follows. The models of the PMSM and the

problem formulation are given in Section 15.2. The controller structure and the main result
are presented in Section 15.3. In Section 15.4 the limitations of a linearization-based design
are highlighted. A full information IDA-PBC is given in Section 15.5. Section 15.6 recalls
the position observer of Ortega et al. (2011), while in Section 15.7 a new I&I speed and
load torque observer is proposed. The proof of the main result is given in Section 15.8. Some
simulation and experimental results are given in Section 15.9, including a comparison with
the heuristic controller of Lee et al. (2010). Finally, we wrap-up the paper with concluding
remarks in Section 15.10.

15.2 PMSM Models and Problem Formulation

The classical fixed-frame αβ model of the unsaturated nonsalient PMSM is given by Chiasson
(2005) and Krause (1986):

L
diαβ

dt
= −Riαβ − n pω�J

[
cos(θ )
sin(θ )

]
+ vαβ,

J ω̇ = n p�i�
αβJ

[
cos(θ )
sin(θ )

]
− τL ,

θ̇ = n pω, (15.1)
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where J :=
[
0 −1
1 0

]
, iαβ =

[
iα
iβ

]
and vαβ =

[
vα

vβ

]
are the stator currents and motor termi-

nal voltages, respectively, ω is the rotor angular velocity, with 1
n p

θ the corresponding position,
L is the stator inductance, R is the stator resistance, n p is the number of pole pairs, J is the
moment of inertia (normalized with n p), � is the magnetic flux, and τL is the load torque,
which is assumed constant, but unknown.
To design the observer it is convenient to embed the dynamics (15.1) into the higher

dimensional system

L
diαβ

dt
= −Riαβ − n pω�J ραβ + vαβ, (15.2)

J ω̇ = n p�i�
αβJ ραβ − τL , (15.3)

ρ̇αβ = n pωJ ραβ, (15.4)

where the vector

ραβ :=
[

ρα

ρβ

]
=

[
cos(θ )

sin(θ )

]
(15.5)

is defined. Notice that, if ραβ is known, θ can be easily reconstructed inverting the trigonometric
functions.
The model (15.1) can be written in rotating dq-coordinates by means of the transformation

eJ θ =
[
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

]
= ρα I2 + ρβJ , (15.6)

with I2 as the 2× 2 identity matrix, to obtain

L
di

dt
= −(RI2 + n pωLJ )i − n pω�J e1 + v,

J ω̇ = n p�i2 − τL ,

θ̇ = n pω, (15.7)

where the rotated signals

i =
[

i1

i2

]
:= e−J θ iαβ, v =

[
v1

v2

]
:= e−J θ vαβ, e1 =

[
1

0

]
:= e−J θραβ, (15.8)

are defined.
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Remark 15.2.1 The main advantage of the dq model is that it transforms the periodic orbits
associated to the constant speed operation of the αβ model of the PMSM into equilibrium
points. See Section 15.5.2.

Remark 15.2.2 The industry standard field oriented control (Nam 2010) is designed for this
model, hence the need to reconstruct θ . Indeed, it must be recalled that the input is vαβ , while
the measurable output is iαβ , but θ is an unmeasurable variable.

15.2.1 Problem Formulation

The main contribution of the paper is the solution of the following Sensorless control problem.
Consider the PMSM model (15.2), (15.3), and (15.4)with some desired constant speed ω∗ �= 0,
under the following conditions:

A1 The only variables available for measurement are iαβ .

A2 The load torque τL is constant but unknown.

A3 The parameters R, L ,� and J are known.

Design an output-feedback controller that ensures the existence of a set of initial conditions,
which guarantees that all signals are bounded and that ω(t) converges, exponentially fast,
to ω∗.

Remark 15.2.3 Even though we have restricted ourselves to the case of constant desired
speed and constant load torque, it is clear that the controller, being exponentially stable hence
robust, will be able to track (slowly) time-varying references and reject changes in the load
torque. Interestingly, the simulations and experimental results of Section 15.9 show that the
proposed controller yields a good performance even in the face of fast changes in the speed
reference and the load torque. The constraint ω∗ �= 0 is necessary in the present (sensorless)
context, because it is easy to show (see, e.g., Zaltni et al. 2008; Ezzat et al. 2010a; Ortega
et al. 2011), that the rank condition for observability is violated when the motor is at standstill.
Practically, this assumption is not restrictive because, once again, the intrinsic robustness of
the controller accommodates sign changes in the desired speed.

15.3 Controller Structure and Main Result

To simplify the presentation of the main result it is convenient to explain the controller
structure and define the notation. The proposed controller is a fourth order certainty equivalent
version of a full-information globally asymptotically stabilizing controller, which is a static
state-feedback IDA-PBC of the form vαβ = q(ραβ, ω, τL , iαβ).
The certainty equivalent version is obtained by replacing ραβ, ω, and τL by their estimates.

The dynamics of the controller is, then, due to the I&I observer, which generates the estimates
that we denote ρ̂αβ, ω̂, and τ̂L , respectively. The controller, combined with the third order
PMSM dynamics (15.7) yields a seventh order closed loop system.
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As usual, the analysis is carried out in error coordinates, which is a mixture of regulation
errors, (·)− (·)∗, and estimation errors, (̂·)− (·). To simplify the notation, all these errors are
lumped into a seventh dimensional vector denoted χ , and defined as1

χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1
χ2
χ3
χ4
χ5
χ6
χ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
:=

⎡⎢⎢⎢⎢⎣
L(i − i∗)

J (ω − ω∗)
e−J θ

(
ρ̂αβ − ραβ

)
ω̂ − ω

τ̂L − τL

⎤⎥⎥⎥⎥⎦ . (15.9)

Notice that the errors in both, the currents and the vector ραβ , are defined in the dq coordinates.
Our main result is the following proposition, whose proof is given in Section 15.8.4.

Proposition 15.3.1 There exists a fourth order observer-based speed regulator of the form

ψ̇ = g(ψ, iαβ, vαβ ),⎡⎢⎣ ρ̂αβ

ω̂

τ̂L

⎤⎥⎦ = h(ψ, iαβ, vαβ ),

vαβ = q(ρ̂αβ, ω̂, τ̂L , iαβ ),

where ψ ∈ R4 and g, h, q are suitably defined functions that solve the sensorless control
problem2. More precisely, the closed-loop error dynamics are described by a differential
equation of the form

χ̇ = f (χ ), (15.10)

with zero (locally) exponentially stable equilibrium. Consequently, there exist constants
m, ε, α > 0 such that the following implication holds:

(|χ (0)| ≤ ε ⇒ |χ (t)| ≤ me−αt |χ (0)|) ,

for all t ≥ 0, where | · | is the Euclidean norm.

1The constants L and J are introduced because—consistent with the Hamiltonian formulation—the IDA-PBC is
derived with the motor dynamics represented using the energy variables, flux, and momenta.
2The output-feedback controller consists of (15.18), the position observer (15.23) and (15.25), and the speed-load
torque observer (15.30).
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15.4 Unavailability of a Linearization-Based Design

Before proceeding with the design of a controller for the nonlinear model it is natural to explore
the possibility of basing the design on the PMSMs linearization. This question is particularly
relevant in our case since, as explained below, the stability analysis of the proposed controller
relies on the linearization of the closed loop.
To answer this question, it is convenient to work with the dq model (15.7), with measurable

output signals the currents iαβ . Fixing a constant desired speed ω∗, and its corresponding
constant equilibrium current i∗, define the error signals

δx (t) =

⎡⎢⎢⎣
i(t)− i∗

ω(t)− ω∗

θ (t)− θ∗(t)

⎤⎥⎥⎦ , δv := v − v∗,

where θ∗(t) = θ (0)+ ω∗t , and v∗ is the constant control signal that assigns the equilibrium
(i∗, ω∗). Now, as the measurable signal is iαβ , invoking (15.8) we define the “output” error

δy(t) := eJ θ(t)i(t)− eJ θ∗(t)i∗.

The linearization of (15.7) and the output map above, along the equilibrium trajectory, yields
the linear time-varying system

δ̇x = Aδx + Bδv,

δy = C(t)δx ,

where

A :=

⎡⎢⎢⎣
− (

R
L I2 + n pω

∗J ) −n pJ
(

�
L e1 + i∗) 0

n p

J �e�
1 J � 0 0

0 n p 0

⎤⎥⎥⎦ , B :=

⎡⎢⎣
1
L I2

0
0

⎤⎥⎦ ,

C(t) := [
eJ θ∗(t) 0 eJ θ∗(t)J i∗ ]

.

Although, apparently, this is an innocuous linear time-varying system for which an observer-
based controller could be designed, there are several aspects that stymies this task. First of all,
the equilibrium is unknown because, on one hand, i∗ depends on the unknown load torque τL .
On the other hand, the position θ∗(t) is also unknown, due to its dependence on θ (0)—see
the remark below. Consequently, the system coefficients are unknown. On top of that, the
“output” δy is known up to the bias term eJ θ∗(t)i∗. In summary, since there exist products of
unknown parameters and the unmeasurable state ω, designing an output-feedback controller
implies that the solution of a nonlinearly parameterized adaptive observer problem—to the
best of our knowledge—is not possible with existing techniques.
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Remark 15.4.1 It is sometimes argued that the motor operation often starts at a known
rotor position, hence θ∗(t) can be computed. It is obvious that this “trajectory-dependent”
controller suffers, in the face of disturbances, from serious robustness problems—that, as is
well known, is the main drawback of schemes based on open-loop integration.

15.5 Full Information Control

In this section, a full-information IDA-PBC, assuming known state and load torque, similar to
the one reported in Akrad et al. (2007) and Petrovic et al. (2001), is presented. This scheme
serves as a basis for our certainty equivalent design.

15.5.1 Port-Hamiltonian Model

Following the IDA-PBC methodology (Ortega et al. 2002; Ortega and Garcia–Canseco 2004)
it is convenient to write the system dynamics in port-Hamiltonian form (van der Schaft 2000),
thus we define the state vector as

x =
[

x12

x3

]
=

[
Li
Jω

]
, (15.11)

and the energy function H (x) = 1
2 x� Qx , with

Q =
[ 1

L I2 0

0 1
J

]
. (15.12)

Then, the dq system (15.7) can be written in the form

ẋ = F(x)∇ H (x)+
[

v

−τL

]
, (15.13)

where ∇ = ( ∂
∂x )

� and the interconnection and damping matrices are lumped into

F(x) =
[ −RI2 −n pJ (x12 + �e1)

n p(x12 + �e1)�J � 0

]
.

Notice that Ḣ = −R|i |2 + v�i − τLω, which is the power balance equation for the motor.
The assignable equilibrium set for (15.13) is given by

{
x∗ ∈ R3 | x∗

2 = L

n p�
τL

}
,
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with arbitrary x∗
1 and x∗

3 . Consistent with engineering practice, and without loss of generality,
we will fix x∗

1 = 0 in the sequel. See the remark below.
The objective of IDA-PBC is to find a state-feedback control law v = v(x) that assigns

to the closed loop a desired energy function, say Hd (x), which satisfies x∗ = arg min Hd (x).
This is achieved by modifying the interconnection and damping matrices, endowing the closed
loop with the port-Hamiltonian form

ẋ = Fd (x)∇ Hd (x), (15.14)

where Fd (x)+ F�
d (x) ≤ 0. This ensures stability of the equilibrium x∗with Lyapunov function

Hd (x). Under some standard detectability assumptions (e.g., Lemma 3.8, van der Schaft 2000),
the equilibrium is shown to be asymptotically stable.

15.5.2 A Full-Information IDA-PBC

Proposition 15.5.1 Consider the PMSM dq model (15.13) with a desired equilibrium point

x∗ =

⎡⎢⎢⎣
0

L
n p�

τL

Jω∗

⎤⎥⎥⎦ . (15.15)

The full-information control

vFI = dx12 +
[ − L

J�
τL x3

n p�ω∗ + r
n p�

τL

]
, (15.16)

where d := R−r
L , with r > 0 a damping injection term, renders x∗ globally asymptotically

stable.

Proof: Define the desired closed-loop energy function as the quadratic in the errors form

Hd (χ13) = 1

2
χ�
13Qχ13,

with

χ13 =
[

χ12

χ3

]
=

[
x12 − x∗

12

x3 − x∗
3

]
,

where Q is as in (15.12).
In order to achieve the required matching between the right-hand sides of equations (15.13)

and (15.14), it is considered that matrix Fd (x) is partitioned in an appropriate way, with
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elements given by Fi j (x), that x∗
1 = 0, and the definition of x∗

2 in (15.15). Thus, the third row
of this marching equation, which actually states the only constraint to be solved since the first
and second components can be easily satisfied with a suitable selection of the control inputs
v1 and v2, can be written in an equivalent way as

n p�

L
χ2 = 1

L
F31χ1 + 1

L
F32χ2 + 1

J
F33χ3.

Then it is recognized, that a solution is given by

F31 = F33 = 0; F32 = n p�.

The nonpositivity condition on the symmetric part of Fd (x) suggests to define F23 = −F32 =
−n p�. Replacing this choice in the second row of the matching equation yields

− R

L
x2 − n p

J
x1x3 + v2 = 1

L
F21x1 + 1

L
F22(x2 − x∗

2 )+
n p�

J
x∗
3 ,

where the term n p

J �x3 has been canceled. A solution to this equation is obtained by selecting

F21 = − Ln p

J x3, F22 = −r and

v2 = dx2 + r

L
x∗
2 + n p�

J
x∗
3 ,

which, upon replacement of the definitions of x∗
2 and x∗

3 , yields the expression given in the
proposition. With the definitions given up to this point, the third component of the matching
equation can be satisfied by taking F11 = −r , F12 = Ln p

J x3, F13 = 0, and

v1 = dx1 − n p

J
x∗
2 x3.

Finally, the closed-loop system takes the desired port-Hamiltonian form (15.14) with

Fd (x) =

⎡⎢⎢⎣
−r Ln p

J x3 0

− Ln p

J x3 −r −n p�

0 n p� 0

⎤⎥⎥⎦ , (15.17)

hence, the equilibrium x∗ is stable. Asymptotic stability follows, verifying that

Ḣd = − r

L2
|χ12|2

and that |χ12|2 is a detectable output for the closed-loop system (15.14).
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15.5.3 Certainty Equivalent Sensorless Controller

If the states are measurable, the control law to be practically implemented is obtained by
combining (15.16) with

vF I
αβ = eJ θ vF I = (ρα I2 + ρβJ )vF I .

However, under the impossibility for measuring the states ραβ , ω, and the unknown nature of
the perturbation τL the proposed implementable sensorless controller takes the form

vαβ = (ρ̂α I2 + ρ̂βJ )v̂,

v̂ := dx12 +
[ − L

�
τ̂L ω̂

n p�ω∗ + r
n p�

τ̂L

]
. (15.18)

Notice that since the controller in dq coordinates requires the currents x12, its implementable
structure is given in terms of the estimated currents in the αβ reference frame given by
(ρ̂α I2 + ρ̂βJ )x12.

15.6 Position Observer of Ortega et al. (2011)

In this section, the observer presented in Ortega et al. (2011), which estimates the rotor position
θ via the observation of the flux, is briefly revisited. Also, an alternative representation of the
observer, which is instrumental for the speed-load torque observer given in the next section,
is presented. Before presenting the results, a word on notation is in order. To facilitate the
reference to Ortega et al. (2011), the notation used in this paper is kept here. In particular, we
define the observation error λ̃ := λ̂ − λ, with λ the stator flux and λ̂ its estimate.

15.6.1 Flux Observer and Stability Properties

In PMSMs, the stator flux, λ, is related with the currents and voltages via (Krause 1986)

λ = Liαβ + �ραβ. (15.19)

Therefore, (15.2) can be equivalently written as

λ̇ = −Riαβ + vαβ. (15.20)

This representation of the electrical dynamics of the PMSM is used in Ortega et al. (2011) to
develop a position observer. To explain this observer, we make the important observations that
λ̇ is measurable, and that the vector function

η(λ) := λ − Liαβ (15.21)
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satisfies

|η(λ)| = �. (15.22)

In Ortega et al. (2011) it is shown that

˙̂λ = −Riαβ + vαβ + γ η(λ̂)[�2 − |η(λ̂)|2], (15.23)

where γ > 0 is an observer gain, is a gradient descent observer for the flux. It is also proven
that the dynamics of the observation error λ̃ is described by the second order nonautonomous
equation

˙̃λ = −γ [|λ̃|2 + 2�λ̃�ραβ (t)][λ̃ + �ραβ (t)], (15.24)

which enjoys the following remarkable stability properties:

P1: Global stability: For arbitrary speeds, the disk

{λ̃ ∈ R2| |λ̃| ≤ 2�}

is globally attractive. This means, that all trajectories of (15.24) will converge to
this disk.

P2: Exponential stability under persistent excitation: The zero equilibrium of
equation (15.24) is exponentially stable if there exists constants T, and � > 0
such that

1

T

∫ t+T

t
ω2(s)ds ≥ �,

for all t ≥ 0.
P3: Constant non-zero speed: If the speed is constant and satisfies

|ω| >
1

4
γ�2,

then the origin is the unique equilibrium of (15.24) and it is globally asymptotically
stable3.

15.6.2 Description of the Observer in Terms of ραβ

Instrumental for the development of the position and load-torque observer, as well as for the
analysis of the closed-loop system, is the representation of the previous flux observer, and its
estimation error, in terms of ραβ .

3Notice the presence of the free adaptation gain γ on the lower bound.
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Proposition 15.6.1 From equation (15.19) and the observer (15.23) define the estimate

ρ̂αβ = 1

�

(
λ̂ − Liαβ

)
(15.25)

and the error ρ̃αβ := ρ̂αβ − ραβ. The observer (15.23) may be written as

˙̂ραβ = −γ�2
(|ρ̂αβ |2 − 1) ρ̂αβ + n pωJ ραβ, (15.26)

while the estimation error ρ̃αβ satisfies

˙̃ραβ = −γ�2
(|ρ̃αβ |2 + 2ρ̃�

αβραβ

) (
ρ̃αβ + ραβ

)
. (15.27)

Proof: First, notice that λ̃ = �ρ̃αβ , which replaced in equation (15.24) yields

˙̃l = −γ�3 (|ρ̃αβ |2 + 2ρ̃�
αβραβ

) (
ρ̃αβ + ραβ

)
leading directly to (15.27). Now, notice that |ρ̃αβ |2 + 2ρ̃�

αβραβ = |ρ̂αβ |2 − 1, while ˙̃ραβ =
˙̂ραβ − n pωJ ραβ , which replaced in (15.27) yields (15.26).

15.7 An I&I Speed and Load Torque Observer

In this section an observer for the unmeasurable variables ω and τL is designed following the
I&I methodology (Astolfi et al. 2007). The construction proceeds along the following steps:

S1: The parametrization of the mechanical dynamics—in terms of ραβ—given in
equation (15.3), as well as the representation of the flux observer (15.23) given in
equation (15.26), are used.

S2: The term ραβ in both equations is decomposed as the sum of its estimate ρ̂αβ

and the error ρ̃αβ , and we treat the latter as a perturbation.

S3: A globally exponentially convergent I&I observer of ω and τL is designed
neglecting the perturbation in the system4.

The mechanical equation (15.3) and the position observer (15.26) can be written in the
“perturbed” form

J ω̇ = n p�i�
αβJ ρ̂αβ − τL − (

n p�i�
αβJ ρ̃αβ

)
,

˙̂ραβ = −γ�2
(|ρ̂αβ |2 − 1) ρ̂αβ + n pωJ ρ̂αβ − (n pωJ ρ̃αβ). (15.28)

4The perturbation term that is neglected in this section is lumped into the overall error dynamics, whose stability is
analyzed in Section 15.8.
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Their corresponding unperturbed forms, that is, with ρ̃αβ = 0, are given by

J ω̇ = n p�i�
αβJ ρ̂αβ − τL ,

˙̂ραβ = −γ�2
(|ρ̂αβ |2 − 1) ρ̂αβ + n pωJ ρ̂αβ,

τ̇L = 0, (15.29)

where, for completeness, the last (trivial) equation has been added.

Proposition 15.7.1 Consider the system (15.29) and the speed and load torque observer

ξ̇ = A33ξ +
[ a2

J
− n pa21

n pa1a2

]
A

(
ρ̂β

ρ̂α

)
+

⎡⎣ n p�

J
i�
αβJ ρ̂αβ

0

⎤⎦ ,

[
ω̂

τ̂L

]
= ξ +

[
a1

−a2

]
A

(
ρ̂β

ρ̂α

)
, (15.30)

where A(·) is an operator defined in Appendix A5, and A33 is the Hurwitz matrix

A33 :=
⎡⎣−n pa1 − 1

J
n pa2 0

⎤⎦ , a1, a2 > 0. (15.31)

For some α > 0 and for all initial conditions (ω(0), ξ (0)) ∈ R × R2,

lim
t→∞ eαt

∣∣∣∣[ ω̂(t)− ω(t)

τ̂L (t)− τL

]∣∣∣∣ = 0. (15.32)

That is, equation (15.30) is a globally exponentially convergent speed and load torque observer
for the unperturbed system (15.29).

Proof: Following the I&I procedure (Astolfi et al. 2007), we define a manifold (in the
extended state space of the plant and the observer) that should be rendered attractive and
invariant. As is well known, to achieve the latter objective a partial differential equation (PDE)
should be solved.
For the system (15.29), we propose the manifold

M := {(ξ, ω, ρ̂αβ) : ξ −
[

ω

τL

]
+ ζ (ρ̂αβ) = 0} ⊂ R5, (15.33)

where ξ ∈ R2 is the observer state, the dynamics of which are defined below, and the mapping
ζ (ρ̂αβ) is also to be defined.

5As explained below, the operator A(z), which is widely used in the drives community, is “essentially” equal to
arctan(z), and is introduced to avoid singularities and jumps.
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To prove that the manifoldM is attractive and invariant it is shown that the off-the-manifold
coordinate

χ67 := ξ −
[

ω

τL

]
+ ζ (ρ̂αβ), (15.34)

the norm of which determines the distance of the state to the manifoldM, is such that:

• χ67(0) = 0 ⇒ χ67(t) = 0, for all t ≥ 0 (invariance);
• χ67(t) asymptotically (exponentially) converges to zero (attractivity).

Notice that, if χ67(t) → 0, an asymptotic estimate of

[
ω

τL

]
is given by ξ + ζ (ρ̂αβ).

To obtain the dynamics ofχ67, differentiate (15.34) along the trajectories of (15.29), yielding

χ̇67 = ξ̇ − ∇ζ [γ�2
(|ρ̂αβ |2 − 1) ρ̂αβ − n pωJ ρ̂αβ]+

[
τL
J − n p�

J i�
αβJ ρ̂αβ

0

]
.

Our objective is to find ξ̇ and a mapping ζ to obtain an asymptotically stable linear dynamics
for χ67. Towards this end, notice that selecting ξ̇ as

ξ̇ = A33(ξ + ζ )+ γ�2
(|ρ̂αβ |2 − 1) ∇ζ ρ̂αβ +

[ n p�

J i�
αβJ ρ̂αβ

0

]
(15.35)

yields

χ̇67 = A33(ξ + ζ )+
[

τL
J

0

]
+ n pω∇ζJ ρ̂αβ .

Consequently, if we can solve the PDE

∇ζJ ρ̂αβ =
[

a1
−a2

]
, (15.36)

recalling equation (15.34), one gets

χ̇67 = A33χ67, (15.37)

as desired. The PDE (15.36), indeed, has a solution:

ζ (ρ̂αβ) =
[

a1
−a2

]
arctan

(
ρ̂β

ρ̂α

)
. (15.38)
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Now, with the definition above,

∇ζ = −1
|ρ̂αβ |2

[
a1

−a2

]
ρ̂�

αβJ .

Consequently, ∇ζ ρ̂αβ = 0, and the second right-hand term in (15.35) vanishes. The proof is
completed noting that

A33

[
a1

−a2

]
=

[ a2
J − n pa21
n pa1a2

]
,

replacing the function arctan by the operator A in equation (15.30), and noting that the
derivations above remain valid after this substitution.

Remark 15.7.2 If the arctan function is used instead of the operator A in order to recover
the estimate ρ̂αβ , some Dirac delta functions might appear in the speed estimation and the
error dynamics. To explain this phenomenon consider the case of (constant) regulation of
the motor speed and assume that ρ̂αβ(t) ≡ ραβ(t). Then, in view of (15.38), we have that
ζ (ρ̂αβ(t)) ≡ θ (t) = ω∗t(mod π ), which is a periodic function defined on the set (−π, π). In
this scenario, the arctan jumps instantaneously from the value π

2 to the value −π
2 inducing a

train of Dirac delta functions, δT (t), in the derivative of arctan. This term propagates, through
ζ̇ (ραβ), into the error dynamics that now reads as6

χ̇67 =
[−n pa1 − 1

J

n pa2 0

]
χ67 +

[
a1

−a2

]
δT .

As illustrated in the simulations of Section 15.9 this undesirable effect is removed by using
instead the operator A defined in Appendix A.

Remark 15.7.3 Proposition 15.7.1 refers to the unperturbed dynamics (15.29), for which
it was assumed that ρ̃αβ = 0. Some simple calculations show that if this term is not zero the
error dynamic of χ67 takes the form

χ̇67 =
[−n pa1 − 1

J

n pa2 0

]
χ67 − n pω

|ρ̂αβ |2
[

a1

−a2

]
ρ̂�

αβρ̃αβ +
[ n p�

J i�
αβJ ρ̃αβ

0

]
. (15.39)

In the next section, the effect of the additional terms on the overall dynamics is analyzed.

6The expression above shows that, away from the isolated points where the δ–functions appear, the observer error
exponentially converges to zero.
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15.8 Proof of the Main Result

In this section, the stability properties of the closed-loop system, composed by the motor
(15.7), the output-feedback controller (15.18), the position observers (15.23) and (15.25), and
the speed-load torque observer (15.30) are studied.
The dynamics are described using the error coordinates (15.9), which yields a set of non-

linear differential equations of the form (15.10). For ease of reference, these equations are
sequentially derived for χ13, χ45, and χ67. The stability properties of the system are established
by invoking Lyapunov’s indirect method. Towards this end, the equations are written in the
form

χ̇ = Aχ + �(χ ), (15.40)

where A is the system matrix of the linearized system, that is, A := ∇ f (0), where f (χ ) is
defined in (15.9) and (15.10), and the elements of the vector �(χ ) contain (second or higher
order) products of the components of χ . The proof of the claim of asymptotic stability of
Proposition 15.3.1, follows showing that A is a Hurwitz matrix.

15.8.1 Currents and Speed Tracking Errors

Lemma 15.8.1 Consider the PMSM model (15.7) in closed loop with the output-feedback
controller (15.18). The first three components, χ13, of the error vector χ—defined in (15.9)—
evolve according to the following dynamics:

χ̇13 = A11χ13 + A12χ45 + A13χ67 + �13(χ ), (15.41)

where

A11 = Fd (x
∗)Q,

A12 =

⎡⎢⎢⎢⎣
− L

J�
τL x∗

3 −dx∗
2 − n p�

J x∗
3 − r

n p�
τL

dx∗
2 + n p�

J x∗
3 + r

n p�
τL − L

J�
τL x∗

3

0 0

⎤⎥⎥⎥⎦ ,

A13 =

⎡⎢⎢⎣
− L

�
τL − L

J�
x∗
3

0
r

n p�

0 0

⎤⎥⎥⎦ , (15.42)

where d = R−r
L , while Fd (x) and Q are defined in equations (15.17) and (15.12), respectively,

and �13(χ ) is such that ∇�13(0) = 0. Moreover, the matrix A11 is Hurwitz.
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Proof: The output-feedback controller (15.18) can be written as

vαβ = [
ρ̃α I2 + ρ̃βJ

]
v̂ + eJ θ v̂,

which, in dq coordinates, that is, considering v = e−J θ vαβ , takes the form

v = v̂ + [v̂1 I2 + v̂2J ]χ45, (15.43)

where we have used the errors χ45 = e−J θ ρ̃αβ , and v̂1 and v̂2 are the components of v̂.
On the other hand, some simple calculations show that

v̂ = vF I +
[− L

�
τL − L

J�
x∗
3

0 r
n p�

]
χ67 −

[ Lχ7
�

(
1
J χ3 + χ6

)
0

]
,

with the full-information control vF I given by (15.16). Using the definition of χ3, the latter
can be decomposed as

vF I = dx12 +
⎡⎣ − L

J�
τL x∗

3

n p�

J x∗
3 + r

n p�
τL

⎤⎦ +
[− L

J�
τLχ3

0

]
.

Finally, the second term of the control law v can be expanded as

[v̂1 I2 + v̂2J ]χ45 =
⎡⎣ − L

J�
τL x∗

3 −dx∗
2 − n p�

J x∗
3 − r

n p�
τL

dx∗
2 + n p�

J x∗
3 + r

n p�
τL − L

J�
τL x∗

3

⎤⎦χ45 + �13(χ ),

for some �13(χ ) verifying the conditions of the lemma. Using all the expressions above to
define v, and replacing in equation (15.13), yields (15.41) and (15.42), allowing to complete
the first part of the proof.
To prove that the matrix A11 is Hurwitz we use equations (15.17) and (15.12) to evaluate

Fd (x
∗)Q =

⎡⎢⎢⎣
− r

L
n p

J x∗
3 0

− n p

J x∗
3 − r

L − n p�

J

0 n p�

L 0

⎤⎥⎥⎦ .

Some simple calculations show that the characteristic polynomial is of the form s3 + c1s2 +
c2s + c3, with the coefficients ci > 0 and verifying c1c2 > c3 that, a simple Routh–Hurwitz
test proves is the necessary and sufficient condition for stability.
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15.8.2 Estimation Error for ραβ

Lemma 15.8.2 Consider the mechanical equation of the PMSM model (15.4) together with
the flux observer (15.23). The fourth and fifth components, χ45, of the error vector χ—defined
in equation (15.9)—satisfy the following differential equation:

χ̇45 = A22χ45 + �45(χ ), (15.44)

with

A22 =
[−2γ�2 n p

J x∗
3

− n p

J x∗
3 0

]
, (15.45)

and �45(χ ) is such that ∇�45(0) = 0. Moreover, the matrix A22 is Hurwitz for all x∗
3 �= 0.

Proof: Computing the time derivative of χ45 = e−J θ ρ̃αβ yields

χ̇45 = −n p

J
x3J χ45 + e−J θ ˙̃ραβ.

Now, from equation (15.27), and using the facts that |ρ̃αβ | = |χ45| and that e−J θραβ = e1, it
is possible to write

˙̃ραβ = −γ�2
(|χ45|2 + 2χ�

45e1
)

eJ θ (χ45 + e1) .

Replacing the latter in the expression above yields

χ̇45 = −
[n p

J
(x∗
3 + χ3)J + γ�2 (|χ45|2 + 2χ4

)]
χ45 − γ�2 (|χ45|2 + 2χ4

)
e1,

which concludes the first part of the proof.
The proof that, for all x∗

3 �= 0, A22 is Hurwitz follows trivially computing the characteristic
polynomial.

15.8.3 Speed and Load Torque Estimation Errors

Lemma 15.8.3 Consider the mechanical equations of the PMSM model equation (15.3) and
(15.4), together with the flux observer (15.23). The sixth and seventh components, χ67, of the
error vector χ—defined in (15.9)—satisfy the following differential equation:

χ̇67 = A32χ45 + A33χ67 + �67(χ ), (15.46)
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where

A32 =
⎡⎣− n p

J

(
a1x∗

3 − �x∗
2

L

)
0

n p

J a2x∗
3 0

⎤⎦ ,

A33 is the Hurwitz matrix defined in (15.31), and �67(χ ) is such that ∇�67(0) = 0.

Proof: As indicated in Remark 15.7.3, the dynamics of χ67 is given by equation (15.39). For
the last right-hand term we have the identity

i�
αβJ ρ̃αβ = 1

L
χ�
12J χ45 + 1

L
(x∗
12)

�J χ45, (15.47)

where x12, defined in (15.11), is the stator current in the dq reference frame. On the other hand,
after some lengthy but straightforward computations, the second right-hand term of equation
(15.39) can be written as

n pω

|ρ̂αβ |2 ρ̂
�
αβρ̃αβ = n p

J

(
x∗
3 + χ3

)
χ4 + �(|χ |2), (15.48)

where �(|χ |2) contains term of order higher or equal to |χ |2. Thus, the proof follows imme-
diately by considering that x∗

1 = 0 and replacing equations (15.47) and (15.48) in equation
(15.39).

15.8.4 Proof of Proposition 15.3.1

Combining the results of Lemmata 15.8.1, 15.8.2, and 15.8.3 we obtain that the error vector
χ satisfies a differential equation of the form (15.40) where

A =

⎡⎢⎣ A11 A12 A13

0 A22 0
0 A32 A33

⎤⎥⎦ , �(χ ) =

⎡⎢⎣�13(χ )

�45(χ )
�67(χ )

⎤⎥⎦ .

Recalling that ∇�(0) = 0, it only remains to prove that A is Hurwitz. For, we notice that A is
similar to a block triangular Hurwitz matrix. More precisely, with

T =

⎡⎢⎣ I3 0 0

0 0 I2
0 I2 0

⎤⎥⎦ ,
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we get

T AT −1 =

⎡⎢⎣ A11 A12 A13

0 A33 A32
0 0 A22

⎤⎥⎦ ,

which is Hurwitz due to the fact that A11, A22, and A33 are Hurwitz matrices, completing the
proof.

15.9 Simulation and Experimental Results

The usefulness of the proposed control scheme was evaluated through numerical simulations
and experiments. For the simulations, the considered motor parameters were L = 0.0038 H,
R = 0.225 �, � = 0.17 Wb, n p = 3, and J = 0.012 kgm2, which correspond to an experi-
mental setup located in the Laboratoire de Genie Electrique de Paris, where the experiments
were carried out.

15.9.1 Simulation Results

Three types of simulations were developed, the first was devoted to illustrate the performance
under nominal (ideal) conditions, where the motor parameters are known, while the second
was intended to exhibit the operation under several cases of parametric uncertainty. Finally,
we carried out a third set of simulations to compare the performance of the proposed scheme
with one proposed in the drives community, namely the one reported in Nam (2010). The
signal profiles and the parameter variations were taken from the benchmark proposed by the
French Working Group Commande des Entraı̂nements Electriques7.
In order to evaluate the scheme under stringent conditions, the motor was at standstill at

the beginning of the simulations. Hence, the initial conditions for both currents and speed,
as well as, the initial values for the estimated speed and load torque were set to zero. To
avoid singularities, the initial conditions of the position observer were set as ρ̂α(0) = � and
ρ̂β(0) = 0. On the other hand, from t = 1 s to t = 2.5 s and from t = 5 s to the end of the
experiment, a 1 Nm load torque was applied.
The tuning parameters of the control schemewere chosen as γ = 5000, for the ραβ observer,

and a1 = 20, a2 = 6, for the speed-load torque observer. In both cases, the selection was taken
to obtain a better response of the closed–loop system under parametric uncertainty operation.
The high value assigned to the gain γ is due to the high sensitivity exhibited by the position
observer with respect to the stator resistance R.
In Figure 15.1, the behavior of the motor speed and the load torque are included under

nominal operation. At the top of this figure, both the actual and the desired speeds are shown.
Here it can be noticed that, as predicted by the theory, when the desired speed is constant,
the achieved performance is remarkable. Moreover, when the speed reference is time varying

7The complete evaluation procedure can be consulted in http://www2.irccyn.ec-nantes.fr/CE2/
(accessed December 10, 2012).
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Figure 15.1 Reference and actual speed (top) and load torque and its estimate (bottom) in nominal
operation

the speed error still remains within reasonable values. At the bottom of the same figure the
actual load torque and its estimate are presented. In Figure 15.2, the corresponding observation
errors for the position and the speed-load toque observers are presented. In both cases their
magnitudes are negligible, even in the presence of changes in the load torque perturbation and
under time-varying speed references. This picture is complemented with the tracking speed
error. In Figure 15.3, the stator currents and voltages are presented.
To illustrate the controller robustness against parametric uncertainty, in Figure 15.4, the

observer and speed tracking errors corresponding to a 50% positive variation of the stator
resistance value are depicted, while the behavior of the same variables for a 50% increase of
the stator inductance and a 15% positive change of the field flux are included in Figure 15.5 and
Figure 15.6, respectively. It is important to mention that these parameter variations correspond
to the maximum uncertainty that the controller can manage without going to instability.
In Nam (2010) (also see Lee et al. 2010), the observer of Ortega et al. (2011) is used together

with a phase-locked-loop-like speed and load torque observer to implement an output-feedback
version of the classical field-oriented controller Krause (1986). To compare the performance
of our new speed and load torque observer and the proposed IDA-PBC, we show in Figure 15.7
the response of both schemes to the previous benchmark references. It is clear from the figure
that our scheme outperforms the one in Nam (2010), both in speed regulation as well as load
torque estimation.
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Figure 15.2 Observer and speed tracking errors in nominal operation
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Figure 15.3 Stator currents and voltages in nominal operation
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Figure 15.4 Observer and speed tracking errors with a 50% error of the stator resistance
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Figure 15.5 Observer and speed tracking errors with a 50% increase of the stator inductance
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Figure 15.6 Observer and speed tracking errors with a 15% positive increase of the field flux
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Figure 15.7 Comparative behavior of the proposed scheme (denoted TAC) with the one reported in
Nam (2010) (denoted NAM)



Sensorless Speed Control of PMSM 337

0 1 2 3 4 5 6 7 8 9 10
250

300

350

400

450

500

550

600

650

Time (s)

S
pe

ed
 (

rp
m

)
ω∗
ω
ω̂

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

Time (s)

T
or

qu
e 

(N
m

)

τ̂L

Figure 15.8 Reference, measured, and actual speeds (top) and observed load torque (bottom) in the
experimental rig

15.9.2 Experimental Results

Experiments were carried out to test the performance of the proposed controller. Unfortunately,
at the moment of writing this paper the evaluation of the full-information IDA-PBC and the
observers was carried out in a separated way, that is, it was not possible to present the output-
feedback operation. The behavior of the several components is depicted in Figure 15.8 for a
positive speed reference, while in Figures 15.9 and 15.10, the operation for a speed reference
that crosses through zero is shown.

15.10 Future Research

From a theoretical viewpoint the need to include the operator A
(

ρ̂β

ρ̂α

)
to avoid the presence

of spikes may seem unsatisfactory. However, in practice this kind of modifications are sys-
tematically applied and widely accepted. Given the theoretical complexity of the problem, we
tend to believe that the problem does not admit a “smooth” solution. The result is presented
without a detailed analysis of the effect of this operator—that is currently under investigation.
Another research line that we are currently pursuing is the establishment of a nonconser-

vative estimate of the region of attraction of the equilibrium point. It has been observed in
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simulations that the estimates that are obtained with the standard Lyapunov tools are extremely
conservative and provide little insight on the choice of the free parameters γ , a1, and a2. This
research is, obviously, related with the analysis of the full-fledged nonlinear dynamics, that
seems a formidable task.
Simulations have shown that performance is sensitive to parameter uncertainty, particularly

in the field flux. To enhance robustness it would be interesting to incorporate an adaptation
algorithm, but this task is far from trivial given the nonlinearly parameterized nature of the
problem. Robustness can also be enhanced trying alternative solutions for the PDEs that appear
in the IDA-PBC and the I&I design methodologies.
Some preliminary experimental results, which have confirmed the remarkable properties of

the observers, have been reported here. Current research is under way to experimentally try
the output-feedback controller proposed in the paper.

Part of the work of Gerardo Espinosa–Pérez was developed during a sabbatical leave at LSS–
SUPELEC supported by SUPELEC Foundation. Currently, his work is supported by DGAPA–
UNAM (IN111211). The work of Dhruv Shah was supported by the Indo-French project No.
3602-1, under the aegis of IFCPAR. The authors want to thank Alain Glumineau and Robert
Boisliveau (IRCCyN, France) for the computational code to generate the operator A.

15.A Appendix

In computer programming languages the single argument arctan(u) function is computed in
such away that its output value e is wrapped in the set (−π, π]. This situation results in the exis-
tence of discontinuities since each time the output of the function e takes a value higher (lower)
than π (resp.,−π) then it is assigned the value −π (resp.,π ). With the aim of avoiding these
discontinuities it is usual practice to modify the arctan (u) function by including at its output an
additional block whose input is e, the output of the arctan function, and its output is given by

y = e + 2nπ,

where n is a counter, initialized at zero, that is increased by 1 each time the e > π or decreased
by 1 if e < −π . From a mathematical perspective, the result is an operator, denoted as A(u),
that has as input the argument of the arctan function and as output a continuous variable that
corresponds to the unwrapped version of the original output of the arctan function.
It is clear that A(u) can be easily implemented in any programming language, like C or

Matlab. The code for doing this considers two consecutive values of e at two consecutive
sampling times, kT and (k + 1)T , and compute its difference di f = e[kT ]− e[(k + 1)T ] in
order to know if there has been a jump from π to −π or viceversa. According to this, three
different possibilities can appear:

1. if di f < −2π then n = n + 1;
2. if di f > 2π then n = n − 1;
3. otherwise the value of n is not changed.

The computational loop is closed by updating the value of y and assigning k = k + 1.
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Adaptive Output-Feedback
Control of Permanent-Magnet
Synchronous Motors

Patrizio Tomei and Cristiano Maria Verrelli
Dipartimento di Ingegneria Elettronica, Universitá di Roma “Tor Vergata,” Italy

16.1 Introduction

Two major classes of permanent-magnet AC machines exist: (1) the trapezoidally excited
machines (typically known as brushless DC motors), which are specifically designed to
develop nearly constant output torque when they are excited with six-step switched cur-
rent trapezoidal waveforms; (2) the sinusoidally excited machines in which the windings are
typically distributed overmultiple slots in order to approximate a sinusoidal distribution.While
trapezoidally excited machine drives are distinguished by their control simplicity and minimal
sensor requirements, sinusoidally excited machines drives offer opportunities for extended
high-speed operating ranges and extremely smooth torque production. Due to their excellent
serviceability and durability, high efficiency and power density, as well as high torque to
inertia ratio and absence of external rotor excitation and rotor windings, the (sinusoidally
excited) permanent-magnet motors are used in practical applications such as printers, tape
drives, hard drives in PCs, process control systems, home appliances, and have been grad-
ually replacing DC motors in a wide range of drive applications such as machine tools and
industrial robots. The high complexity in the control of these motors is the price to pay for the
above advantages.
When the motor mechanical variables (rotor position or speed) are available from mea-

surements, high closed-loop performances can be achieved in rotor position or speed tracking
applications for permanent-magnet synchronous motors (PMSMs) even in the presence of
uncertain model parameters (see, for instance, Zribi and Chiasson 1991; Bodson et al. 1993;

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Marino et al. 1995, 2012; Dawson et al. 1998; Di Gennaro 2000; Khorrami et al. 2003;
Chiasson 2005; Bifaretti et al. 2011a, 2011b; Verrelli 2011a, 2011b; Verrelli 2012). The speed
or the position tracking control of PMSMs requires the knowledge of rotor shaft position
and speed signals in order to control the stator current vector suitably and then achieve high
performance (Zribi and Chiasson 1991; Marino et al. 1995). When all machine parameters (in
addition to load torque) are exactly known, the classical control is a nonlinear state-feedback
algorithm which is designed after performing the direct-quadrature dq coordinate transfor-
mation for the two-phases currents and voltages: it may be viewed as a feedback linearizing
control law (Zribi and Chiasson 1991); experimental results reported in Bodson et al. (1993)
show that this control achieves good tracking performances even in the presence of current
sensor noise and not very accurate position measurements. A full state-feedback nonlinear
adaptive control is presented in Marino et al. (1995), which guarantees global asymptotic
tracking of a desired angle reference signal when all motor parameters are unknown. The
extension to the case in which the rotor speed measurement is not required can be found in Di
Gennaro (2000).
Since shaft sensors induce several drawbacks such as high drive cost, large machine size,

low reliability and noise immunity, as well as performance degradation owing to vibration
or humidity1, the attention of the electric drives community has been recently paid to the
“sensorless” control problem of (nonsalient pole surface) PMSMs in which only stator current
and voltage measurements are available for feedback. Even though relevant contributions
concerning this problem have been presented and experimentally validated in the literature
(see De Angelo et al. 2006; Nahid-Mobarakeh et al. 2007; Rashed et al. 2007; Chan et al.
2008; Bisheimer et al. 2010; Hinkkanen et al. 2012), a rigorous solution to such a problem
(i.e., a solution guaranteed by a closed loop stability proof) turned to be rather difficult to
be derived since: motor dynamics are nonlinear and multivariable; measured outputs (stator
currents) do not coincide with one of the controlled outputs (rotor speed) that are required to
track smooth bounded reference signals; and the load torque depends on applications and is
typically an uncertain model parameter.
This chapter collects the most recent results (with stability proof) by the authors who

appeared in Tomei and Verrelli (2008, 2011), and Bifaretti et al. (2012). The preliminary
result in Tomei and Verrelli (2008) is first revisited with the well-known “s-alignment” and “c-
alignment” procedures being theoretically analyzed in detail. The control algorithm in Tomei
and Verrelli (2011) is then reported. It is based on stator current and voltage measurements
only and incorporates two closed-loop observers: (1) the second order observer analyzed in
Ortega et al. (2011) and experimentally validated in Lee et al. (2010), which constitutes
an improvement of the open-loop estimators used in Tomei and Verrelli (2008) for the sine
and cosine functions of the rotor position; (2) the closed-loop fourth order adaptive observer
designed in Tomei and Verrelli (2008) for the rotor speed and the load torque. The overall
closed-loop stability analysis shows that local exponential speed tracking is guaranteed under
a persistency of excitation condition that only restricts the family of speed reference signals

1For instance, the installation of position (and speed) sensors in applications involving vacuum pumps is troublesome
due to the difficulties of extending the motor shaft out of the motor housing, while in some crane and elevator
applications the large distance between the motor and the inverter causes high sensor signal attenuation and noise
interference. On the other hand, even when the motor is equipped with a motion sensor, sensorless controls are
beneficial in the case of sensor failures to increase reliability.
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and admits a clear physical interpretation in terms of motor observability. Simulation and
experimental results (see Bifaretti et al. (2012) illustrate how the reported theoretical analysis
provides actually effective tools for identifying conditions in which satisfactory performances
can be obtained in practice.

16.2 Dynamic Model and Problem Statement

Assuming linear magnetic materials, nonlinear flux density distribution due to the air-gap
geometry only, and negligible magnetic hysteresis and Foucault currents, the dynamics of a
PMSM with no saliency and a sinusoidal flux density distribution in a fixed reference frame
attached to the stator are given by the well-known fourth order model2 (see, for instance,
Marino et al. (1995); Dawson et al. (1998); Khorrami et al. (2003), Chiasson (2005) for its
derivation and modeling assumptions):

θ̇r = ωm,

ω̇m = − F

J
ωm + KM

J

[
−isa sin(pθr )+ isb cos(pθr )

]
− TL

J
,

disa

dt
= − Rs

Ls
isa + KM

Ls
ωm sin(pθr )+ νsa

Ls
, (16.1)

disb

dt
= − Rs

Ls
isb − KM

Ls
ωm cos(pθr )+ νsb

Ls
,

in which θr is the rotor angle, ωm is the rotor speed, isa and isb are the stator currents
θr , ωm, isa and isb constitute the state variables, νsa and νsb are the stator voltages (which
constitute the control inputs); the output to be controlled is the rotor speed ωm . The control
problem is called “sensorless” when only stator currents and voltages are measured. The
load torque TL , which depends on applications, is assumed to be an unknown constant model
parameter. The (known) motor parameters are viscous friction coefficient F , number of pole
pairs p, rotor moment of inertia J , stator windings resistance Rs and inductance Ls , and motor
torque constant KM. While J, Rs, Ls, and KM are positive parameters, F is assumed to be
nonnegative, so that the main stability result of this paper is not based on the positiveness of F ,
which gives some advantage for the design in the speed-sensorless scenario. If we introduce,
as in Park (1929); Zribi and Chiasson (1991); Tomei and Verrelli (2008), the Park’s transfor-
mation, that is, the transformation of the vectors ν = [νsa, νsb]T and i = [isa, isb]T expressed
in the fixed stator frame (a, b), into vectors expressed in a frame (d, q), which rotates along
the fictitious excitation vector i f directed as the d axis:

[
wd

wq

]
=

[
cos(pθr ) sin(pθr )

− sin(pθr ) cos(pθr )

] [
wa

wb

]
.= R(θr )

[
wa

wb

]
,

2Model (16.1) also describes the dynamics of a permanent-magnet step motor under the above assumptions, provided
that the number of rotor teeth Nr replaces the number of pole pairs p.
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then the dynamics (16.1) expressed in terms of currents and voltages in rotating dq coordinates,
become

θ̇r = ωm,

ω̇m = − F

J
ωm + KM

J
isq − TL

J
,

disd

dt
= − Rs

Ls
isd + pωmisq + νsd

Ls
, (16.2)

disq

dt
= − Rs

Ls
isq − pωmisd − KM

Ls
ωm + νsq

Ls
.

Model (16.2) is suitable for control design since the rotor speed dynamics are influenced
by the stator current vector q-component isq only: adaptive backstepping techniques may be
successfully applied provided that cos(pθr ), sin(pθr ) are available for feedback along with the
rotor speed ωm . In particular, the (previously introduced) sensorless control problem, whose
main technical difficulty is constituted by the lack of position and speed measurements, can
be solved by resorting to a suitable closed-loop observer-based controller.
In the following, we denote by ω∗

m(t) the known smooth bounded reference signal with
known bounded time derivatives ω̇∗

m(t) and ω̈∗
m(t) for the rotor speed ωm(t), and by i∗

sd (t) the

known smooth bounded reference signal with known bounded time derivative di∗
sd (t)
dt for the

current isd (t), which may be simply chosen as i∗
sd = 0 (see Marino et al. (2008) for the field

orientation) or may be related to the reference speed ω∗
m(t) to comply with voltage saturation

at high speeds (see Chiasson (2005) for the field weakening).

Remark 16.2.1 There are cases, as in the master–slave synchronization problems, in which
the reference signals foreknowledge is typically not available so that reference signal time
derivatives cannot be directly compensated by feed-forward actions. Output tracking can be
still obtained by resorting to (state-feedback) learning control algorithms (see Verrelli 2011a,
2012).

16.3 Nonlinear Adaptive Control

The sixth order nonlinear adaptive output-feedback control of Tomei and Verrelli (2011) is
reported here:

[
νsa

νsb

]
=

[
ψθc −ψθs

ψθs ψθc

] [
νsd

νsq

]
,

νsd = Ls

[
−φd − ki (isd − i∗

sd )
]
,

νsq = Ls

[
−φq − ki (isq − i∗

sq )
]
,[

isd

isq

]
=

[
ψθc ψθs

−ψθs ψθc

] [
isa

isb

]
,
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φd = − Rs

Ls
i∗
sd + pω̂misq − di∗

sd

dt
,

φq = − Rs

Ls
i∗
sq − pω̂misd − KM

Ls
ω̂m − J

KM

[
F

J
ω̇∗

m

−kω

dsatκ (ω̂m − ω∗
m)

d (ω̂m − ω∗
m)

( ˙̂ωm − ω̇∗
m)+

˙̂T L

J
+ ω̈∗

m

]
,

i∗
sq = J

KM

[
F

J
ω∗

m − kωsatκ (ω̂m − ω∗
m)+

T̂L

J
+ ω̇∗

m

]
,

˙̂i sa = − Rs

Ls
îsa + KM

Ls
ω̂mψθs + νsa

Ls
+ ke(isa − îsa)+ pω̂m(isb − îsb),

˙̂i sb = − Rs

Ls
îsb − KM

Ls
ω̂mψθc + νsb

Ls
+ ke(isb − îsb)− pω̂m(isa − îsa), (16.3)

˙̂ωm = − F

J
ω̂m + KM

J
[−isaψθs + isbψθc]− T̂L

J

+ 2γ 2 + r FλJ 2

γ 2λ + r Fλ2 J 2

[
KM
Ls

ψθs(isa − îsa)− KM
Ls

ψθc(isb − îsb)

]
,

.= − F

J
ω̂m + KM

J

[
−isaψθs + isbψθc

]
− T̂L

J

+γω

[
KM
Ls

ψθs(isa − îsa)− KM
Ls

ψθc(isb − îsb)

]
,

˙̂T L = 2γ 2F + λJγ + λJ 2r F2

γ 2λ + r Fλ2 J 2

[
− KM

Ls
ψθs(isa − îsa)+ KM

Ls
ψθc(isb − îsb)

]
,

.= γT

[
− KM

Ls
ψθs(isa − îsa)+ KM

Ls
ψθc(isb − îsb)

]
,

ψθc = ̂cos(pθr ) = p

KM

(
ξ̂a − Lsisa

)
,

˙̂ξ a = −Rsisa + νsa + γθ

(
ξ̂a − Lsisa

) [
K 2
M

p2
− (

ξ̂a − Lsisa
)2 − (

ξ̂b − Lsisb
)2 ]

,

ψθs = ̂sin(pθr ) = p

KM

(
ξ̂b − Lsisb

)
, (16.4)

˙̂ξ b = −Rsisb + νsb + γθ

(
ξ̂b − Lsisb

) [
K 2
M

p2
− (

ξ̂a − Lsisa
)2 − (

ξ̂b − Lsisb
)2 ]

.
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It consists of: (1) a stator current-control loop (containing feedforward actions and suitable
stabilizing terms) asymptotically forcing (isd , isq ) to (i∗

sd , i∗
sq ), where i∗

sq , designed according
to the field-oriented control strategy, is responsible for the rotor speed tracking; (2) a sixth
order closed-loop observer (which includes the auxiliary variables îsa , îsb, ξ̂a , ξ̂b) providing
estimates for the unmeasured cos(pθr ), sin(pθr ), ωm , and the unknown TL . The overall control
algorithm (16.3) and (16.4) depends on:

• the available signals isa , isb;
• the reference signals ω∗

m , i
∗
sd ;

• the saturation function satκ (x) (a C∞ odd function whose derivative is always positive and
has a positive finite limit κ as x goes to +∞);

• the known positive machine parameters J , KM , p, Rs , Ls , and the known nonnegative
machine parameter F ;

• the positive control parameters ki , kω, κ , ke, γθ ;
• the positive control parameters γ , λ, r satisfying the conditions

γ >
λ2e4Tp L4s
pe KM4T 2p

+ 8pe
KM

4

L4s
,

pe <

Rs
Ls

+ ke

12
(
4KM6

λ2Ls
6 + KM2(Rs+Ls ke)2

Ls
4 + KM2

Ls
2

)
+ KM2

Ls
2

,

r ≥ (J 3KM
4T 2p e−4Tp pe)

−1(2γ 2L4s ), (16.5)

in terms of a positive scalar Tp ∈ R+.

Remark 16.3.1 As we shall see, the advantage of introducing the variables

ξa = KM
p

[
cos(pθr )+ pLs

KM
isa

]
,

ξb = KM
p

[
sin(pθr )+ pLs

KM
isb

]
,

relies on the fact that their dynamics

ξ̇a = −Rsisa + νsa,

ξ̇b = −Rsisb + νsb,

depend on neither the unmeasured variables (θr , ωm) nor the unknown load torque TL: thus
ξa and ξb are good candidates to be estimated in order to recover cos(pθr ) and sin(pθr )
through

̂cos(pθr ) = p

KM

(
ξ̂a − Lsisa

)
,

̂sin(pθr ) = p

KM

(
ξ̂b − Lsisb

)
.
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Remark 16.3.2 The algorithm (16.3) and (16.4) is constituted by: (1) the second order
observer (16.4) analyzed in Ortega et al. (2011) and experimentally validated in Lee et al.
(2010), which constitutes an improvement of the open-loop estimators used in Tomei and
Verrelli (2008) for the sine and cosine functions of the rotor position; (2) the fourth order
observer-based adaptive control (16.3) designed in Tomei and Verrelli (2008) which relies on
the estimates of rotor speed and load torque. Note that when γθ = 0, the controller (16.3) and
(16.4), properly initialized, exactly reduces to the one designed in Tomei and Verrelli (2008),
which, for the sake of exhaustivity, is revisited in the following section.

16.4 Preliminary Result (Tomei and Verrelli 2008)

In this section we assume that themotor is initially (at t = t0) aligned (i.e., cos(pθr (t0)) = 1) so
that sin(pθr )(t) and cos(pθr )(t) can be obtained by open-loop integration (see equation (16.4))
of known dynamics from known initial conditions. In other terms, the following theorem
establishes that the adaptive control (16.3) and (16.4), properly initialized ( ̂cos(pθr )(t0) = 1,
̂sin(pθr )(t0) = 0) and with γθ = 0, guarantees asymptotic speed tracking.

Theorem 16.4.1 Assume that cos(pθr (t0)) = 1 and that ̂cos(pθr )(t0) = 1, ̂sin(pθr )(t0) = 0.
Then, the sixth order nonlinear adaptive output-feedback control algorithm (16.3) and (16.4)
with γθ = 0 substituted in model (16.1), guarantees boundedness of ωm, isa , isb, ω̂m, îsa , îsb,
and T̂L and uniform local asymptotic stability of the closed-loop system equilibrium point
(ωm − ω∗

m, isd − i∗
sd , isq − i∗

sq , isa − îsa , isb − îsb, ω̂m − ωm, TL − T̂L ) = 0 with domain of
attraction

B = {
[ξ1, ξ2, ..., ξ7]

T ∈ R7 : ‖[ξ4, ξ5, ξ6, ξ7]T ‖ < Cr
}
,

where

Cr = Ls

2KM p

√√√√ min{s1, pe}q
pe

(
s2 + 2pe

(
KM
Ls

)2
max

{
1,

(
KM
Ls

)2}) ,

q = Rs

Ls
+ ke − pe

[
12

(4KM6

λ2Ls
6 + KM2(Rs + Lske)2

Ls
4 + KM2

Ls
2

)
+ KM2

Ls
2

]
,

and (s1, s2) ∈ R+ are the minimum and the maximum eigenvalues of the symmetric matrix P =
[pi j ]1≤i, j≤4, p11 = p22 = 1

2 , p33 = λ
2 , p44 = ( γ 2

λJ 2 + r F
2 ), p34 = − γ

2J , p12 = p13 = p14 =
p23 = p24 = 0.

Proof: Assume that cos(pθr (t0)) = 1. Then, according to the stator currents dynamics
in (16.1),

cos[pθr (t)] = ψθc(t),

sin[pθr (t)] = ψθs(t).
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Introducing the tracking and the estimation errors

ω̃m(t) = ωm(t)− ω∗
m(t), eω(t) = ω̂m(t)− ωm(t),

ĩsd (t) = isd (t)− i∗
sd (t), ĩsq (t) = isq (t)− i∗

sq (t),

ĩsa(t) = isa(t)− îsa(t), ĩsb(t) = isb(t)− îsb(t),

T̃L (t) = TL − T̂L (t)− F[ω̂m(t)− ωm(t)],

we obtain the error system

˙̃ωm = − F

J
(ω̃m + eω)− kωsatκ (ω̃m + eω)+ KM

J
ĩsq − T̃L

J
,

˙̃i sd = −
(

Rs

Ls
+ ki

)
ĩsd − peωisq ,

˙̃i sq = −
(

Rs

Ls
+ ki

)
ĩsq + peωisd + KM

Ls
eω,

˙̃i sa = −
(

Rs

Ls
+ ke

)
ĩsa − KM

Ls
eω sin(pθr )− pω̂mĩsb,

˙̃i sb = −
(

Rs

Ls
+ ke

)
ĩsb + KM

Ls
eω cos(pθr )+ pω̂mĩsa, (16.6)

ėω = 2γ 2 + r FλJ 2

γ 2λ + r Fλ2 J 2

[
KM
Ls
sin(pθr )ĩsa − KM

Ls
cos(pθr )ĩsb

]
+ T̃L

J
,

˙̃T L = − F

J
T̃L + Jγ

γ 2 + r FλJ 2

[
KM
Ls
sin(pθr )ĩsa − KM

Ls
cos(pθr )ĩsb

]
.

Consider the function

V = 1

2

(
ĩ2sa + ĩ2sb

)
+ 1

2
λe2ω + γ 2

λJ 2
T̃ 2L − γ

J
eω T̃L + r F

2
T̃ 2L ,

whose time derivative satisfies

V̇ ≤ −
(

Rs

Ls
+ ke

) (
ĩ2sa + ĩ2sb

)
+ λ

J
eω T̃L − γ

J 2
T̃ 2L + γ 2

4J 3r
eω
2.

The last four equations in (16.6) may be rewritten as

ẋ = Ax + B(t)z + H (t)x,

ż = D(t)x + 1

J
w, (16.7)

ẇ = − F

J
w + λJγ

2γ 2 + r FλJ 2
D(t)x,
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with x = [ĩsa, ĩsb]T , z = eω, w = T̃L , and

A =
[− Rs

Ls
− ke 0

0 − Rs
Ls

− ke

]
,

B(t) =
[− KM

Ls
sin(pθr (t))

KM
Ls
cos(pθr (t))

]
,

D(t) = 2γ 2 + r FλJ 2

γ 2λ + r Fλ2 J 2

[
KM
Ls
sin(pθr (t)), − KM

Ls
cos(pθr (t))

]
,

H (t) =
[

0 −pω̂m(t)
pω̂m(t) 0

]
.

Since for all t ≥ t0 (Tp > 0)

‖A‖ = Rs

Ls
+ ke, ‖B(t)‖ = KM

Ls
, ‖D(t)‖ ≤ 2KM

λLs
,

‖ḂT (t)+ BT (t)H (t)‖ ≤ KM p

Ls
|z|,

∫ t+Tp

t
BT (τ )B(τ )dτ = KM

2Tp

L2s
,

we choose the positive control parameters γ and r in order to satisfy the inequalities in (16.5)
so that system (16.7) complies with the hypotheses of Lemma 1 in Tomei and Verrelli (2008)
by setting T = Tp and, consequently, the point (ĩsa, ĩsb, eω, T̃L ) = 0 is locally exponentially
stable with domain of attraction

A = {ζ ∈ R4 : ‖ζ‖ < Cr }.

The second and third equations in (16.6), may be rewritten as

μ̇ =
(

− Rs
Ls

− ki −peω

peω − Rs
Ls

− ki

)
μ +

( −pi∗
sq

pi∗
sd + KM

Ls

)
eω,

withμ = [ĩsd , ĩsq ]T . Since (i∗
sd (t), i∗

sq (t)) are bounded on [t0,+∞) and, for any initial condition
[ĩsa(t0), ĩsb(t0), eω(t0), T̃L (t0)]T in A, eω(t) tends exponentially to zero, the system above
complies with the hypotheses of Lemma III.1 in Marino and Tomei (1995) and (ĩsd , ĩsq ) tend
exponentially to zero for any initial condition [ĩsa(t0), ĩsb(t0), eω(t0), T̃L (t0)]T in A. Recalling
the first equation in (16.6), we can establish that, since, for any initial condition [ĩsa(t0),
ĩsb(t0), eω(t0), T̃L (t0)]T inA, (ĩsq , eω, T̃L ) tend exponentially to zero, ω̃m is bounded and tends
uniformly asymptotically to zero for any initial condition [ĩsa(t0), ĩsb(t0), eω(t0), T̃L (t0)]T inA
and for any saturation value κ: in particular, the origin is a uniformly asymptotically stable
equilibrium point for system (16.6) with domain of attraction B.
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Remark 16.4.2 If (γ, r ) are chosen so that the inequalities in (16.5) are satisfied, then,
for any initial condition [ĩsa(t0), ĩsb(t0), eω(t0), T̃L (t0)]T in A: (1) since ω̃m tends uniformly
asymptotically to zero, uniform asymptotic speed tracking is achieved; (2) since (ĩsd , ĩsq )
tend exponentially to zero, stator currents tend exponentially to the corresponding refer-
ence signals; (3) since eω tends exponentially to zero, rotor speed is exponentially esti-
mated; (4) since T̃L and eω tend exponentially to zero, load torque TL is exponentially
estimated.

In the remainder of this section, the well-known “s-alignment” and “c-alignment” proce-
dures, in which the motor is preliminarly forced to reach certain known equilibrium points,
are theoretically analyzed: they can be used to comply with the conditions of Theorem 16.4.1
and to preliminarly obtain cos(pθr (t0)) = 1.

Proposition 16.4.3 “s-alignment” procedure: Let ucs ∈ R+ be a positive real scalar and
suppose that no-load torque TL is applied to the motor. Then, the static controller

νsa(t) = 0,

νsb(t) = ucs, (16.8)

substituted in model (16.1), guarantees boundedness of (ωm, isa, isb) and

lim
t→+∞ cos(pθr (t)) = 0,

lim
t→+∞ ωm(t) = 0,

lim
t→+∞ isa(t) = 0,

lim
t→+∞ isb(t) = ucs

Rs
.

Proof: Denoting by ĩsb = isb − ucs
Rs
the stator current vector b-component regulation error,

the closed-loop system is

θ̇r = ωm,

ω̇m = − F

J
ωm + KM

J

[
− isa sin(pθr )+ ĩsb cos(pθr )+ ucs

Rs
cos(pθr )

]
,

disa

dt
= − Rs

Ls
isa + KM

Ls
ωm sin(pθr ),

˙̃i sb = − Rs

Ls
ĩsb − KM

Ls
ωm cos(pθr ),
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whose equilibrium points are

(θr , ωm, isa, ĩsb) = (θes, 0, 0, 0),

with θes = π
2p , 3π2p , . . . ,

(
2p − 1

2

)
π
p . Consider the function

Us = 1

2

( J

Ls
ωm

2 + isa
2 + ĩ2sb

)
− KMucs

pLs Rs

(
sin(pθr )− 2

)
,

which is always positive. Its time derivative along the trajectories of the closed loop
system is

U̇s = − F

Ls
ω2m − Rs

Ls

(
isa
2 + ĩ2sb

)
.

Since U̇s(t) ≤ 0 [recall that F ≥ 0], by virtue of LaSalle theorem (see Khalil 2002), we can
establish that every solution is attracted into the largest invariant subsetMs of the set U̇s = 0,
consisting of the equilibrium points (θr , ωm, isa, ĩsb) = (θes, 0, 0, 0).

Proposition 16.4.4 (“c-alignment” procedure). Let ucs ∈ R+ and ucc ∈ R+ be positive real
scalars. Assume that no-load torque TL is applied to the motor and that the positive real
scalars ucs ∈ R+ and ucc ∈ R+ satisfy the condition

KMucc

pLs Rs
(1− δs)−

(
u2cs + u2cc

)
2R2s

> 0,

with δs ∈ R+. Then, for sufficiently small initial conditions ‖zs(t0)‖ .= ∥∥[
cos(pθr (t0)), ωm(t0),

isa(t0),
(
isb(t0)− ucs

Rs

)]∥∥, the static controller

νsa(t) = ucc,

νsb(t) = 0, (16.9)

substituted in model (16.1), guarantees boundedness of (ωm, isa, isb) and

lim
t→+∞ cos(pθr (t)) = 1,

lim
t→+∞ ωm(t) = 0,

lim
t→+∞ isb(t) = 0,

lim
t→+∞ isa(t) = ucc

Rs
.
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Proof: Denoting by ĩsa = isa − ucc
Rs
the stator current vector a-component regulation error,

the closed-loop system is

θ̇r = ωm,

ω̇m = − F

J
ωm + KM

J

[
− ĩsa sin(pθr )− ucc

Rs
sin(pθr )+ isb cos(pθr )

]
,

˙̃i sa = − Rs

Ls
ĩsa + KM

Ls
ωm sin(pθr ),

disb

dt
= − Rs

Ls
isb − KM

Ls
ωm cos(pθr ),

whose equilibrium points are

(θr , ωm, ĩsa, isb) = (θec, 0, 0, 0),

with θec = 0, π
p , 2πp , . . . , (2p − 1)πp . Consider the function

Uc = 1

2

( J

Ls
ωm

2 + ĩ2sa + isb
2
)

− KMucc

pLs Rs

(
cos(pθr )− 2

)
,

which is always positive. Its time derivative along the trajectories of the closed loop system is

U̇c = − F

Ls
ω2m − Rs

Ls

(
ĩ2sa + isb

2
)
.

Since U̇c(t) ≤ 0 [recall that F ≥ 0], by virtue of LaSalle theorem (see Khalil 2002), we can
establish that every solution is attracted into the largest invariant subsetMc of the set U̇c = 0,
consisting of the equilibrium points (θr , ωm, ĩsa, isb) = (θec, 0, 0, 0). Since U̇c(t) ≤ 0, we have
for all t ≥ t0

Uc(t) ≤ Uc(t0),

and in particular

lim
t→+∞ Uc(t) = lim

t→+∞

[
− KMucc

pLs Rs

(
cos(pθr (t))− 2

)]
,

≤ Uc(t0) =
(
u2cs + u2cc

)
2R2s

+ 2KMucc

pLs Rs
+ ϑs(zs(t0)),

where the continuous function ϑs(·) : R4 → R(ϑs) satisfies

lim
‖zs (t0)‖→0

ϑs(zs(t0)) = 0.
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Choosing a sufficiently small ‖zs(t0)‖ such that
pLs Rs

KMucc
|ϑs(zs(t0))| ≤ δs,

suffices to guarantee

lim
t→+∞ cos(pθr (t)) = 1.

Remark 16.4.5 The proof of Theorem 16.5.1 clarifies that (16.9) does not guarantee

lim
t→+∞ cos(pθr (t)) = 1

for any initial condition, since for instance

[
θu

ec = π

p
,
3π

p
, . . . , (2p − 1)π

p

]
,

θr (t) ≡ θu
ec,

ωm(t) = isb(t) ≡ 0,

ĩsa(t) = ĩsa(t0)e
− Rs

Ls
(t−t0),

are solutions of the closed-loop system.

16.5 Main Result (Tomei and Verrelli 2011)

In this section, we present the main result of this chapter: the assumption that the motor that is
initially aligned is definitely removedwhile a nonzero γθ will be used. For the sake of simplicity,
we set t0 = 0. Let�e(t) be the vector whose components are the tracking and estimation errors:
cos(pθr (t))− ̂cos(pθr )(t), sin(pθr (t))− ̂sin(pθr )(t), ωm(t)− ω∗

m(t), isd (t)− i∗
sd (t), isq (t)−

i∗
sq (t), isa(t)− îsa(t), isb(t)− îsb(t), ω̂m(t)− ωm(t), TL − T̂L (t).

Theorem 16.5.1 Assume that the rotor speed reference signal ω∗
m(t) is persistently exciting,

that is, there exist positive reals T and cp such that the persistency of excitation condition

P :
∫ t+T

t
ω∗

m(τ )
2dτ ≥ cp, ∀ t ≥ 0

is satisfied. Then, for the closed-loop system (16.1), (16.3), and (16.4), boundedness of
(ωm(t), isa(t), isb(t), ̂cos(pθr )(t), ̂sin(pθr )(t), ω̂m(t), îsa(t), îsb(t), T̂L (t)) on [0,+∞) is guar-
anteed along with exponential convergence to zero of ‖�e(t)‖, provided that ‖�e(0)‖ is
sufficiently small.
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Proof: Recall the expressions for the variables ξa and ξb and define the estimation error (see
Lee et al. 2010)

F = K 2
M

p2

[
cos(pθr )

2 + sin(pθr )
2 − ̂cos(pθr )

2 − ̂sin(pθr )
2]

=
[

K 2
M

p2
− (

ξ̂a − Lsisa
)2 − (

ξ̂b − Lsisb
)2]

,

which is available for feedback3. Design the estimation laws for (ξ̂a, ξ̂b) as

˙̂ξ a = −Rsisa + νsa − ϕaF,

˙̂ξ b = −Rsisb + νsb − ϕbF,

with (ϕa, ϕb) being yet to be designed. Let us introduce the tracking and estimation errors the
same, excepting for ξ̃a, ξ̃b, of the previous section with z and w directly in place of eω and T̃L :

ω̃m = ωm − ω∗
m, z = ω̂m − ωm,

ĩsd = isd − i∗
sd , ĩsq = isq − i∗

sq ,

ĩsa = isa − îsa, ĩsb = isb − îsb,

w = TL − T̂L − F[ω̂m − ωm],

ξ̃a = ξa − ξ̂a, ξ̃b = ξb − ξ̂b,

and the vector

q = [ω̃m, ĩsd , ĩsq , ĩsa, ĩsb, z, w, ξ̃a, ξ̃b]
T ,

so that the error system can be written as

˙̃ωm = − F

J
(ω̃m + z)− kωsatκ (ω̃m + z)+

[
0,

KM
J

]
μ − w

J
,

μ̇ =
[

− Rs
Ls

− ki 0,

0 − Rs
Ls

− ki

]
μ + hi (q, t),

ẋ = Ax + B(t)z + H (t)x + hx (q, t),

ż = D(t)x + w

J
+ hz(q, t), (16.10)

ẇ = − F

J
w + λJγ

2γ 2 + r FλJ 2
D(t)x + hw(q, t),

˙̃ξ = 2KM
p

[
ϕa(t) −ϕb(t)
ϕb(t) ϕa(t)

] [
cos(pθr (t)) sin(pθr (t))

0 0

]
ξ̃ −

[
ϕa(t)
ϕb(t)

]
‖ξ̃‖2, (16.11)

3Recall that sin(pθr )2 + cos(pθr )2 = 1.
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where μ = [ĩsd , ĩsq ]T , x = [ĩsa, ĩsb]T (the same as the previous section), ξ̃ = [ξ̃a, ξ̃b]T ,

A =
[

− Rs
Ls

− ke 0

0 − Rs
Ls

− ke

]
,

B(t) = KM
Ls

[
− sin(pθr (t))

cos(pθr (t))

]
,

D(t) = (2γ 2 + r FλJ 2)KM
(γ 2λ + r Fλ2 J 2)Ls

[sin(pθr (t)),− cos(pθr (t))] ,

H (t) =
[

0 −pω̂m(t)

pω̂m(t) 0

]
,

and hi , hx , hz , and hw are suitable functions satisfying (ahj are positive reals, j = i, x, z, w)

‖hi (q, t)‖ ≤ ahi
(|z| + ‖ξ̃‖) + hi∗(q),

‖hx (q, t)‖ ≤ ahx‖ξ̃‖ + hx∗(q),

|hz(q, t)| ≤ ahz‖ξ̃‖ + hz∗(q),

|hw(q, t)| ≤ ahw‖ξ̃‖ + hw∗(q),

with

lim
‖q‖→0

|h j∗(q)|
‖q‖ = 0, j = i, x, z, w.

If we choose the yet to be designed functions ϕa and ϕb as

ϕa = −γθ KM
p

̂cos(pθr ) = −γθ KM
p

cos(pθr )+ γθ ξ̃a,

ϕb = −γθ KM
p

̂sin(pθr ) = −γθ KM
p

sin(pθr )+ γθ ξ̃b,

then the ξ̃ -subsystem (16.5) becomes

˙̃ξ = −2γθ K 2
M

p2
R(θr )

−1
[
cos(pθr )ξ̃a + sin(pθr )ξ̃b,

0

]
+ hξ (ξ̃ , t), (16.12)

with

lim
‖ξ̃‖→0

sup
t≥0

‖hξ (ξ̃ , t)‖
‖ξ̃‖ = 0,
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so that, by introducing the nonsingular change of variables

η = [
ηd , ηq

]T = R(θr )ξ̃ ,

the dynamics (16.12), expressed in the new variables, become

η̇ =
[

− 2γθ K 2
M

p2 pω∗
m

−pω∗
m 0

]
η + pω̃m

[
ηq

−ηd

]
+ R(θr )hξ (R(θr )

−1η, t). (16.13)

The closed-loop error system, when higher order terms are neglected, exhibits a useful trian-
gular structure (characterized by the positive reals ahj , j = i, x, z, w)4: a composite Lyapunov
function can be thus successfully found on the basis of the proof of Theorem 16.4.1 to guar-
antee, under persistency of excitation P , the local exponential stability of the origin of the
system with a computable domain of attraction depending on ahj , j = i, x, z, w.

Remark 16.5.2 The exponential stability of the origin of the closed-loop error system
allows for establishing certain robustness properties: ultimate boundedness of the solutions
of the closed-loop error system when perturbed by modeling errors, aging, uncertainties, and
disturbances, which exist in any realistic application, is guaranteed, according to Lemma
9.2 in Khalil (2002), for sufficiently small initial conditions and sufficiently small uniformly
bounded perturbations that do not change the system dynamic order.

Remark 16.5.3 Since ω̃m exponentially tends to zero, exponential rotor speed tracking
is achieved; since (ĩsd , ĩsq ) exponentially tend to zero, stator currents exponentially tend
to the corresponding reference signals; since z exponentially tends to zero, rotor speed is
exponentially estimated; since w and z exponentially tend to zero, the load torque TL is
exponentially estimated; since ηd and ηq exponentially tend to zero, cos(pθr ) and sin(pθr ) are
exponentially estimated.

Remark 16.5.4 The persistency of excitation conditionP , which is to be satisfied by the rotor
speed reference signal ω∗

m(t), is a sufficient condition for guaranteeing rotor speed tracking.
It is related to motor observability (see Basic et al. 2010): in the case of constant admissible
inputs (νsa, νsb), all the equilibrium points for system (16.1)

(θr , ωm, isa, isb) =
(

θ∗, 0,
νsa

Rs
,
νsb

Rs

)
,

with θ∗ satisfying

KM
Rs
[−νsa sin(pθ∗)+ νsb cos(pθ∗)] = TL ,

4Recall that ‖η‖ = ‖ξ̃‖.
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which are indistinguishable from input-output measurements. In particular, when ωm(t) ≡ 0
for all t ≥ 0 (so that θr (t) ≡ θc for all t ≥ 0 with θc a constant value), all the points

(ξ̃a, ξ̃b) = 2KM
p
(cos(pθc), sin(pθc))

for which ̂cos(pθr )
2 + ̂sin(pθr )

2 = 1, are equilibrium points for the ξ̃ -subsystem (16.5).

Remark 16.5.5 Note that the origin ξ̃ = 0 is an equilibrium point for the ξ̃ -subsystem so
that if cos(pθr (0))− ̂cos(pθr )(0) = 0 and sin(pθr (0))− ̂sin(pθr )(0) = 0, then cos(pθr (t))−
̂cos(pθr )(t) ≡ 0 and sin(pθr (t))− ̂sin(pθr )(t) ≡ 0 for all t ≥ 0. In this case, the persistency

of excitation condition P is no longer required to obtain a result that is similar to the one
stated by Theorem 16.4.1.

16.6 Simulation Results (Bifaretti et al. 2012)

The proposed control algorithms (16.3) and (16.4) have been tested by simulations with control
parameters (the values are in SI units) ki = 20, kω = 100, κ = 9, ke = 12000, γθ = 180,
γω = 10, and γT = 9 for the (nonsalient pole surface) PMSMwith sinusoidal flux distribution
in Marino, Peresada, & Tomei (1995), whose parameters are:

viscous friction coefficient F = 0 kg m2 s−1

number of pole pairs p = 6

total rotor-load inertia J = 0.01 kg m2

stator resistance Rs = 3 Ω

stator self inductance Ls = 0.006 H

torque constant KM = 2 N m A−1.

The reference i∗
sd for isd (t) has been set to zero (field orientation), while the reference ω∗

m(t)
for the rotor speed ωm(t) has been generated by using ramp functions and the third order linear
filterH(s) = ( s

�0
+ 1)−3 with�0 = 45 rad/s. The necessary first and second order derivatives

have been obtained from the state space realization of the filter. All initial conditions of the
motor have been set to zero excepting for θr (0) = π/6 rad.

16.6.1 Response to Time-Varying Load Torque

A time-varying load torque (whose profile includes regenerating mode and ramp-wise vari-
ations) has been applied at t = 0.05 s. The rotor speed reference and the applied torque
are reported in Figure 16.1. The initial conditions for the controller have been set to zero
excepting for ξ̂a(0) = KM

p cos(pθu), ξ̂b(0) = KM
p sin(pθu) with θu = θr (0)+ π/576 (obtained

by using the previously described finite-time alignment procedures). Figures 16.2, 16.3, 16.4
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Figure 16.5 (a, b)-components of stator current and voltage vectors

and 16.5 demonstrate the effectiveness of the proposed nonlinear adaptive control algorithm
even in the presence of time-varying variations of the load torque: exponential rotor speed
tracking is achieved while exponential convergence of isd to i∗

sd = 0 is obtained along with
exponential estimation of the unmeasured cos(pθr ), sin(pθr ) and of the unknown TL . Similar
results (see Figures 16.6 and 16.7) can be achieved for different controller initial conditions
leading to larger initial estimation errors in sin(pθr ) and cos(pθr ) (ξ̂a(0) = KM

p cos(pθu),

ξ̂b(0) = KM
p sin(pθu) with θu = θr (0)+ π/414 and θu = θr (0)+ π/306, respectively) larger

transient output tracking/regulation errors are accordingly obtained.

16.6.2 Response to Parameter Uncertainties

The aim of this subsection is to illustrate the robustness of the proposed controller with respect
to: (1) stator current sensor bias errors (0.05A); (2) variations in stator resistance Rs (a 3%
increase at t = 0.3 s); (3) uncertainties in themotor moment of inertia J (the actual value 0.018
kg m2 is different from the nominal value 0.01 kg m2 used by the controller). The load torque
(2 Nm, the rated value) has been applied at t = 0.05 s. The rotor speed reference (including
low speed operation) and the applied torque are reported in Figure 16.8. The controller initial
conditions are the same of the previous subsection. The results are reported in Figures 16.9,
16.10, 16.11, and 16.12: a steady-state residual rotor speed tracking error appears which, as
expected (recall the proof of Theorem 16.5.1 for the influence of T , cp inP on the exponential
rate of convergence of the overall closed-loop error system), is larger when smaller rotor speed
reference signals are involved.
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Figure 16.12 (a, b)-components of stator current and voltage vectors

16.7 Experimental Setup and Results (Bifaretti et al. 2012)

ATetra 56SR1.35 three-phase PMSM,manufactured byMotor Power Company, has been used
in the experiments. Its main specifications are: stall torque of 1.35 Nm, rated phase-to-phase
voltage of 95 VAC, maximum phase current of 11.9 Arms . A current-controlled DCmotor (RS
263-6005 with rated voltage 24 V DC and motor torque constant of 9 N cmA−1) provides the
load torque to the PMSM. The PMSM is fed by a three-phase bridge using 70 V DC bus, while
the DCmotor is fed by a H -bridge using 25 V DC. The DC bus voltage is generated by single-
phase grid voltage whose amplitude is, at first, reduced by a variac and then rectified. The
experimental tests have been performed applying a 16 kHz switching frequency for the power
MOSFET (IXYS FMM50-025TF) used for both the three-phase and the H -bridges. A Texas
Instruments controller board, based on DSP TMS320F28335, is employed to implement the
proposed control algorithm and to generate the logic driving signals for the power switches (see
Figures 16.13 and 16.14). The sensorless control algorithms (16.3) and (16.4) are executedwith
a sampling interval Ts = 62.5 μs imposed by a suitable interrupt service. At the beginning
of each sampling interval, the phase currents values, provided by two Hall effect current
sensors, are acquired. The experimental prototype is shown in Figure 16.14 in which the main
mechanical and electronic subsystems are highlighted by dashed boxes. A 2000 pulse per
revolution encoder, interfaced to a dedicated hardware unit on the DSP that counts the rising
and falling edges of the two quadrature encoder signals, provides, in conjunction with the
discrete-time Kalman filter proposed in Bellini et al. (2003) (with a 20 Hz cut-off frequency),
the rotor speed measurements required to evaluate the rotor speed tracking performance. All
the initial conditions of the motor (16.1) are zero (the motor is aligned and at rest); a zero
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Figure 16.13 Functional block diagram

reference signal i∗
sd for the stator current vector d-component isd is chosen (field orientation);

all the initial conditions for the sensorless controls (16.3) and (16.4) are set to zero except
̂cos(pθr )(0) = 1; the control parameters (all values are in SI units) are: ki = 700, kω = 1800,

ke = 3000, γθ = 1000, γω = 100, γT = 0.08, and κ = 30. The nominal parameter values
directly provided by the manufacturer, that is. J = 5.8 · 10−5 kgm2, KM = 0.4 NmA−1

rms,
p = 2, Rs = 1.48 Ω, Ls = 1.1 · 10−3 H (the effect of F is neglected) (which can naturally

Figure 16.14 Experimental prototype
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slightly differ from the actual motor parameter values), are used by the controller. A time-
varying load torque (negative for t ≤ 4.5 s and positive for t ≥ 4.5 s) is provided by the DC
motor and applied even when the rotor speed reference is zero (see Figure 16.15, which shows
the DC motor phase current idc). Figure 16.16 shows how the rotor speed tracks its reference
signal ω∗

m , while Figures 16.17 and 16.18 show the reasonable behaviors of the stator currents
and voltages (isa, isb), (νsa, νsb). According to Figure 16.16, satisfactory rotor speed tracking is
achieved (though with relatively small nonzero steady-state errors due to system uncertainties
and model inaccuracies): the motor is able to start the operation with a nonzero applied load
torque; only 2.5% and 2% maximum speed tracking errors are obtained when the rotor speed
reference is imposed to 52 rad/s and 105 rad/s, respectively (better performance are reasonably
achieved at higher speeds according to P); even in the case of a negative load torque (braking
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Figure 16.16 Rotor speed reference signal ω∗
m (dash) and rotor speed ωm (solid)
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actions are to be performed by the PMSM motor in this case) only a 2.5% maximum speed
tracking error is obtained.

16.8 Conclusions

According to the recent advances in Tomei and Verrelli (2008, 2011), and Bifaretti et al.
(2012), the nonlinear adaptive speed tracking control algorithm (16.3) and (16.4) has been
presented in this chapter for a (nonsalient pole surface) PMSM (16.1): it relies on the theoreti-
cal result (not based on motor friction) stated in Theorem 16.5.1. Simulation and experimental
results are presented. Satisfactory performances are obtained in practice in conditions (per-
sistently exciting rotor speed reference signals, relatively small initial tracking and estimation
errors, relatively accurate knowledge of motor parameters, relatively accurate measurements
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of available variables, relatively fast algorithm execution), which can be inferred by deeply
analyzing the reported theoretical analysis. To this purpose, this chapter clarifies that the use of
the closed-loop second order observer (16.4)—instead of the nonrobust open-loop estimators
introduced in Tomei and Verrelli (2008) for theoretical purposes (see Theorem 16.4.1)-turns to
be crucial: it is theoretically related to the exponential stability of the origin of the closed-loop
error system, which allows for establishing certain robustness properties.
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17.1 Introduction

Permanent-magnet synchronous motor (PMSM) drives are currently extensively used in many
industrial applications, where continuity of operation and reliability are major features to
be pursued. Indeed, a fault arising in an industrial process may produce not only safety
problems but results in increased costs due to lost production. As a consequence, fast and
accurate diagnosis of failures in the drive system is important for preventing major damages
to the motor and, mostly, to guarantee continuity of operation and minimize eventual machine
downtime for maintenance.
Common faults of electrical machines are broadly classified as (Rosero et al. 2006; Kim

et al. 2010):

• Mechanical faults, like static and/or dynamic air-gap irregularities, eccentricity, bearing and
gearbox failures;

• Electrical faults, like stator faults resulting in the opening and shorting of one or more stator
phase winding, abnormal connections, and demagnetization of the permanent magnet.

The most common electrical faults, however, are known as stator winding fault, and are
caused by the breakdown of insulation as a result of the voltage, current, and thermal stress

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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acted on the stator winding (Kim et al. 2010). In this case, the early detection of the fault
is important to avoid the propagation to more stator turns, in order to reduce repair costs
and maintenance time. A number of papers are available in the literature addressing fault
detection in the stator winding, and the most used approaches are based on wavelet transform
(Cusido et al. 2008), negative sequence current (Quiroga et al. 2008), frequency analysis of
line current (Rosero et al. 2006), experimental methods using current monitoring (Kim et al.
2010), artificial neural networks (Awadallah et al. 2005), and AI tools (Awadallah and Morcos
2003). None of these methods use the so-called model-based diagnosis, which is nonetheless
one the most common techniques used in fault detection. According to this approach, a model
is needed of the unsupervised process, in order to build a residual function able to signal any
difference between nominal and faulty status. Unfortunately, real processes are characterized
by model uncertainties, known as structured uncertainties, associated to parameter variations.
It follows that any model-based fault detection technique should be made robust with respect
to structured uncertainties, to avoid generation of false alarms. Furthermore, in the case of
PMSM drives, the nonlinear character of the model hinders the use of well-known observers
available for linear systems (Patton et al. 2000) for the generation of residuals, a nonlinear
control technique being claimed for. In this context, it is worth mentioning the paper (Huangfu
et al. 2008) where second order sliding modes are used for control and observation, under
the assumption of stable zero dynamics for ensuring the existence of a standard sliding
surface, and assuming the availability of the whole state vector. Note that parameter variations
cannot be accounted for, albeit the recognized robustness of sliding modes, because standard
feedback linearization is applied. A further paper deserving attention because model-based
fault detection is considered is Liu and Carter (2005), but the quasi-dynamic approach is
adopted there and nonlinearity and coupling affects are basically neglected.
The present paper proposes the adoption of a robust nonlinear observer of the rotor angular

position and velocity, which can be used for fault detection purposes. Convergence of such
observer is ensured by the enforcement of a sliding motion on given surfaces, based on
motor currents, which are of course affected by all faults influencing stator currents and can
easily detect them. Simulations with additive faults have been reported, proving the reliability
of the proposed solution. Note that observer and control design are not performed in the
(d, q) reference frame but in the (α, β) frame, since any fault affecting the angular position
measurement could invalidate the whole model and the consequent design.

17.2 Preliminaries

17.2.1 PMSM Modeling

In the (α, β) reference frame, the electrical equations of motion of a PMSM can be written as

⎧⎪⎪⎨
⎪⎪⎩

diα
dt

= − R

L
iα + ωe

λ0

L
sin(θe)+ 1

L
vα,

diβ
dt

= − R

L
iβ − ωe

λ0

L
cos(θe)+ 1

L
vβ,

(17.1)

where iα and iβ are the respective stator currents; vα and vβ are the respective stator voltages;
R is the winding resistance and L is the winding inductance, λ0 is the flux linkage of the
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permanent magnet, θe and ωe are the electrical angular position and speed, respectively, of the
motor rotor.
The electrical torque Te is given by

Te = Kt (iβ cos(θe)− iα sin(θe)), (17.2)

in which Kt = 3
2λ0Nr is the torque constant with Nr as the number of pole pairs.

For the electrical angular position/speed and the mechanical angular position/speed, the
following relations hold:

Nr = ωe

ωr
= θe

θr
, (17.3)

with θr denoting the mechanical angular position of the motor rotor. In the following it will
be assumed that Nr = 1, therefore ωe = ωr .

17.3 Control Design

17.3.1 A Robust Observer of Rotor Angular Position and Velocity for the
Tracking Problem

In standard drives, rotor position is given by encoder measurements, and rotor speed is usually
estimated as the incremental ratio of encoder positions over one sampling period. In the
following, a position and speed observer will be proposed ensuring the asymptotical vanishing
of the observation error and of the tracking error, in the presence of bounded uncertainties
affecting the coefficients of the dynamical model, usually largely inaccurate.
The mechanical motion equation is described by

J ω̇r + Bωr = Te − τ, (17.4)

θ̇r = ωr , (17.5)

where J is the total mechanical inertia of the the PMSM. The torque τ summarizes the effect
of the external torque (generally known with large inaccuracy) and Te is the electromagnetic
torque. It is likely to introduce the following assumption.

Assumption 17.3.1 The model parameters appearing in (17.4) are uncertain, with bounded
uncertainty:

J = J̄ + �J ; B = B̄ + �B;
τ

J
= τ̄

J̄
+ �τ ; (17.6)

|�J | ≤ ρJ ; |�B| ≤ ρB ; |�τ | ≤ ρτ ; (17.7)
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The tracking problem is considered here, that is, the variable ωe is required to track a known
reference ω∗. Consider the following copy of the plant:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dîα
dt

= − R

L
îα + ω̂e

λ0

L
sin(θ̂e)+ 1

L
(vα + να),

dîβ
dt

= − R

L
îβ − ω̂e

λ0

L
cos(θ̂e)+ 1

L
(vβ + νβ),

J̄ ˙̂ωe = −B̄ω̂e + Kt (îβ cos(θ̂e)− îα sin(θ̂e))− τ̄ ,
˙̂θ e = ω̂e.

(17.8)

The following result can be proved.

Theorem 17.3.2 With reference to the plant (17.1), (17.4), (17.5), the observer (17.8) is able
to robustly guarantee the asymptotic vanishing of the observation error and of the tracking
error for a suitable choice of the control variables vα , vβ and of the auxiliary inputs να, νβ .

Proof: Consider the following sliding surfaces:

sα = iα − îα = 0, (17.9)

sβ = iβ − îβ = 0. (17.10)

It is straightforward to verify that a sliding motion can be enforced on each surface by the
following auxiliary inputs:

να = −R(iα − îα)+
(
ωM

e + |ω̂e|
)
λ0sign(sα), (17.11)

νβ = −R(iβ − îβ)+
(
ωM

e + |ω̂e|
)
λ0sign(sβ), (17.12)

where it has been taken into account that physical constraints of the device are such that a
maximum achievable velocity ωM

e and a maximum admissible nominal torque τ M exist. Once
sliding motions on surfaces (17.9) and (17.10) have been established (this can be forced within
a finite time ts), one has the obvious consequence that it holds

diα
dt

− dîα
dt

= −λ0

L
(ω̂e sin(θ̂e)− ωe sin(θe)) = 0, (17.13)

diβ
dt

− dîβ
dt

= −λ0

L
(ω̂e cos(θ̂e)− ωe cos(θe)) = 0. (17.14)

This implying that

ωe = ω̂e,

that is, that the observation error vanishes.
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To guarantee the robust tracking of the assigned reference, consider the following sliding
surface:

sω = ω∗ − ω̂e + λ1(θ
∗ − θ̂e) = 0 λ1 ≥ 0, (17.15)

whose derivative is

ṡω = ω̇∗ + B̄

J̄
ω̂e − Kt

J̄
(iβ cos(θ̂e)− iα sin(θ̂e))+ τ̄

J̄
+ λ1(ω

∗ − ω̂e). (17.16)

According to the previous expression, one can consider two reference currents: i∗
β =

I ∗(t) cos(θ̂e) and i∗
α = −I ∗(t) sin(θ̂e), whose tracking will be ensured later and where I ∗(t) is

to be determined. When iα = i∗
α = −I ∗(t) sin(θ̂e) and iβ = i∗

β = I ∗(t) cos(θ̂e), one has

ṡω = ω̇∗ + B̄

J̄
ω̂e − Kt

J̄
I ∗(t)+ τ̄

J̄
+ λ1(ω

∗ − ω̂e), (17.17)

and choosing I ∗(t) as follows:

Kt

J̄
I ∗(t) = ω̇∗ + B̄

J̄
ω̂e + τ̄

J̄
+ λ1(ω

∗ − ω̂e), (17.18)

the condition ṡω = 0 is guaranteed.
The imposition of the conditions iα = i∗

α and iβ = i∗
β can be easily carried out by considering

the following Lyapunov function:

W = 1

2
(iα − i∗

α)
2 + 1

2
(iβ − i∗

β)
2, (17.19)

and imposing that Ẇ < 0, that is,

Ẇ = (iα + I (t) sin(θ̂e))

[
− R

L
iα + ωe

λ0

L
sin(θe)+ 1

L
vα + İ (t) sin(θ̂e)+ I (t)ω̂e cos(θ̂e)

]

+ (iβ − I (t) cos(θ̂e))

[
− R

L
iβ − ωe

λ0

L
cos(θe)+ 1

L
vβ − İ (t) cos(θ̂e)+ I (t)ω̂e sin(θ̂e)

]
< 0.

Splitting the previous inequality into the following ones:

(iα + I (t) sin(θ̂e))

[
− R

L
iα + ωe

λ0

L
sin(θe)+ 1

L
vα + İ (t) sin(θ̂e)+ I (t)ω̂e cos(θ̂e)

]
< 0,

(17.20)

(iβ − I (t) cos(θ̂e))

[
− R

L
iβ − ωe

λ0

L
cos(θe)+ 1

L
vβ − İ (t) cos(θ̂e)+ I (t)ω̂e sin(θ̂e)

]
< 0,

(17.21)
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and using the fact that both θ̂e and ω̂e tend to θe and ωe, respectively, possibly within a finite
time (as previously proved), it turns out immediately that a possible solution is the following:

1

L
vα = − İ (t) sin(θ̂e)− I (t)ω̂e cos(θ̂e)+ R

L
iα − ζ

(
ωM

e

λ0

L
+ η

)
sign(iα + I (t) sin(θ̂e)),

(17.22)

1

L
vβ = İ (t) cos(θ̂e)− I (t)ω̂e sin(θ̂e)+ R

L
iβ − ζ

(
ωM

e

λ0

L
+ η

)
sign(iβ − I (t) cos(θ̂e)),

(17.23)

with ζ > 1, η > 0.

17.4 The Faulty Case

Variations of stator currents with respect to the healthy behavior may arise due to several
reasons, such as interturn short-circuit, inherent motor instrumentation asymmetries, load
variations, and unbalanced supply voltages (Quiroga et al. 2008). Such conditions can be
reflected in negative sequence components, whose spectral behavior at high frequency has been
largely studied in order to discriminate, not always easily, between fault occurrence and load
fluctuation (Quiroga et al. 2008). This section is devoted to show that the introduction of the
previously described observer allows to easily detect variations of stator currents with respect
to the healthy behavior, regardless of the presence of load variations within a prescribed range.
Consider the case of additive faults affecting currents, that is, such that the faulty currents

īα and īβ have the form

{
īα = iα + fα(t),

īβ = iβ + fβ(t),
(17.24)

where fα(t) and fβ(t) represent (possibly time-dependent) perturbations affecting the stator
currents acting from a given time on

fα(t) = f1(t)δ−1(t − T f α); | fα(t)| ≤ ρ f α;

fβ(t) = f2(t)δ−1(t − T fβ); | fβ(t)| ≤ ρ fβ ;

f1(t) and f2(t) being unknown but bounded functions, and T f α and T fβ representing the times
of occurrence of the faults. It is straightforward that in the perturbed case, the auxiliary inputs
(17.11) and (17.12) are unable to necessarily enforce sliding motions on surfaces (17.9) and
(17.10), since the measure of variable iα is not reliable, due to the fault. Therefore ω̂e deviates
from the actual ωe. Consequently, with reference to the variable I (t), it is verified that the
variable I ∗(t) (17.18) deviates from the variable corresponding to the vanishing of the surface
sω (17.15), and the vanishing of W given by (17.19) is no longer ensured.
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Corollary 17.4.1 With reference to the plant (17.1) fed by the controllers (17.22) and (17.23),
whenever it holds W (τ ) �= 0 for any time τ ≥ t̄ then a fault has occurred at a time t ≤ τ , t̄
being the reaching time for the surface W = 0, W being given by (17.19).

Proof: Recalling the proof of the previous result, it is verified that, whenever the auxiliary
inputs (17.11) and (17.12) are unable to enforce slidingmotions on surfaces (17.9) and (17.10),
then ω̂e deviates from the actualωe and the described control policy cannot ensure the vanishing
of W . In this case one can deduce that an extra term, not accounted for, has perturbed the
sliding mode. Note that load variations can be excluded since they are allowed as long as they
are below the admissible threshold τ M .

17.5 Simulation Tests

Simulations have been performed using technical data of the Technosoft MBE.300.E500
PMSM, as a preliminary step before experimental implementation. The motor catalog electric
and mechanical parameters are given in Table 17.1.
Some of the performed speed-tracking tests are shown in Figures 17.1, 17.2, 17.3, 17.4, and

17.5. The following conditions have been used for simulations:

• A reference speed trajectory of the form ω∗(t) = 150 ∗ sin( 2π0.1 t).
• A nominal load torque of 0.01 K g, with a 20% variation.
• 20% parameter variations applied to nominal values of parameters B, J .
• Boundary layers have been used to avoid chattering.

Table 17.1 Technosoft MBE.300.E500 PMSM parameters

Coil-dependent parameters

Phase-phase resistance � 8.61
Phase-phase inductance mH 07.13
Back-EMF constant V/1000 rpm 3.86
Torque constant mNm/A 36.8
Pole pairs – 1

Dynamic parameters

Rated voltage V 36
Maximum voltage V 58
No-load current mA 73.2
No-load speed rpm 9170
Maximum continuous current (at 5000 rpm) mA 913
Maximum continuous torque (at 5000 rpm) mNm 30
Maximum permissible speed rpm 15000
Peak torque (stall) mNm 154

Mechanical parameters

Rotor inertia Kgm2 10−7 11
Mechanical time constant ms 7
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Moreover, a time-varying fault has been considered to affect current iα additively as
follows:

īα = iα + fα(t) = iα + 1

2

[
1− e−( t−0.025

0.001 )
]

for t > 0.025 s

in order to simulate a progressive reduction of effectiveness.
Figure 17.1 shows the tracking performance obtained considering the sinusoidal velocity

profile. Notice the presence of an initial transient of duration of nearly ts = 0.012 s due to
the reaching phase of the sliding motion. This fact is also particularly evident in Figure 17.2
showing the sliding surface sω (17.15).
Figure 17.3 reports the variable I (t) (17.18), showing a peak at time t f = 0.0263 s, which

signals the detection of the time-varying fault. To emphasize detection, a dotted variable has
been reported in the picture when detection is made. Finally, Figure 17.4 depicts the sliding
surfaces sα and sβ , showing a relevant activity far from zero after the fault occurrence, and
Figure 17.5 shows the Lyapunov function (17.19).



380 AC Electric Motors Control

References

Awadallah M and Morcos M (2003) Application of AI tools in fault diagnosis of electrical machines and drives-an
overview. IEEE Transactions on Energy Conversion, 18(2), 245–251.

Awadallah M, Morcos M, Gopalakrishnan S, and Nehl T (2005) A neuro-fuzzy approach to automatic diagnosis and
location of stator inter-turn faults in CSI-fed PM brushless DC motors. IEEE Transactions on Energy Conversion,
20(2), 253–259.

Cusido J, Romeral L, Ortega J, et al. (2008) Fault detection in induction machines using power spectral density in
wavelet decomposition. IEEE Transactions on Industrial Electronics, 55(2), 633–643.

Huangfu Y, Liu W, and Ma R (2008) Permanent magnet synchronous motor fault detection and isolation using second
order sliding mode observer. 3rd IEEE Conference on Industrial Electronics and Applications, pp. 639–644.

Kim KH, Choi DU, Gu BG, and Jung IS (2010) Fault model and performance evaluation of an inverter fed permanent
magnet synchronous motor under winding shorted turn and inverter switch open. IET Electric Power Applications,
4(4), 214–225.

Liu L and Carter DA (2005) On-line identification and robust fault diagnosis for nonlinear pmsm drives. 2005
American Control Conference, pp. 2023–2027.

Patton RJ, Frank PM, and Clark RN (ed.) (2000) Issues of Fault Diagnosis for Dynamic Systems. Springer-Verlag,
New York.

Quiroga J, Liu L, and Carter DA (2008) Fuzzy logic based fault detection of PMSM stator winding short and long
fluctuations using negative sequence analysis. 2008 American Control Conference, pp. 4262–4267.

Rosero J, Cusido J, Garcia A, et al. (2006) Broken bearings and eccentricity fault detection for a permanent magnet
synchronous motor. 32nd Annual Conference on IEEE Industrial Electronics, IECON 2006, pp. 964–969.



18
On Digitization of Variable
Structure Control for Permanent
Magnet Synchronous Motors

Yong Feng1,2, Xinghuo Yu2, and Fengling Han3
1Department of Electrical Engineering, Harbin Institute of Technology, China
2School of Electrical and Computer Engineering, RMIT University, Australia
3School of Computer Science and Information Technology, RMIT University,
Australia

18.1 Introduction

ACMotors have been widely used in various applications, such as factory automation, house-
hold electrical appliances, computers, CNC (Computer Numerical Control) machine tools,
industrial robots, high-speed aerospace drives and high-technology tools used for outer space
in the past decades (Jang et al. 2003; Zhang et al. 2006; Feng et al. 2011). There are two main
types of AC motors depending on the principle of operation, the induction motor (IM) and the
permanent magnet synchronous motor (PMSM). The rotor of IM includes a winding, while
the rotor of a PMSM is a permanent magnet and has no winding. The rotor of PMSMs turns
at the same speed as the rotating synchronous magnetic field of the stator which is generated
by the stator currents. Unlike PMSMs, an IM always turns slightly slower than the rotating
stator magnetic field generated by the stator currents. The difference is called the slip, which
generates the torque of the motor (Trzynadlowski 2001).
IMs are generally used for fans, pumps, compressors, elevators, hydraulics, machinery, and

actuation systems as well as industrial, aerospace, and medical applications because of their
simple design, no brushes, rugged construction, load-bearing capacity, flexibility, relatively
low cost, and characteristically long operating life.

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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PMSMs, on the other hand, can be used in specialized high-performance applications
requiring smooth and fast operation, and demanding low torque ripple because PMSMs offer
the advantages of relatively high power density, high efficiency, low rotor inertia, fast dynamics,
good compatibility, reduced rotor losses, efficient heat dissipation structure, reduced motor
size, the elimination of brushes, ease of control, and minimal maintenance requirements.
The most important application of PMSMs is servo systems commonly used in a positioning
application that requires high instantaneous torque response, lower torque ripple, a wide
adjustable speed range, and excellent speed regulation. Since PMSMs are mainly used in
specialized high-performance applications, this chapter focuses on the control of PMSM
servo systems, which play an important role in achieving the objective of high precision,
high speed, high efficiency, and high reliability in many practical applications. PMSMs are
multivariable, time-variant, strong coupling, and uncertain nonlinear systems. The control
of PMSM servo systems aims at the goal of good performances of servo systems subjected
to parameter variations and external load disturbances. Many control methods have been
proposed to improve the robustness and dynamic performance of PMSM servo systems, such
as the adaptive control, fuzzy control, artificial neural networks, and the active disturbance
rejection control (Rahman and Hoque 1998; Baik et al. 2000). Among them, sliding mode
control method does not request a high accurate mathematical model, and is strongly robust
with respect to the system parameter perturbation and external disturbances (Edwards and
Spurgeon 1998; Utkin et al. 1999).

18.2 Control System of PMSM

Vector control is an important technique used for the control ofACmotors. Itmakes possible the
application of AC servo systems in high-performance tasks where traditionally only DC servo
systems were applied. A PMSM employing vector control can be used for high-performance
servo applications. A typical structure of the vector control system of the PMSM is shown in
Figure 18.1. There are three feedback loops in the PMSM servo system: position control loop,
velocity control loop, and current control loop. An encoder, a tachometer, or a resolver can
be used to measure the speed of the rotor. An encoder can be used to measure the position of
the rotor. Generally, the measurement of both the position and speed of the rotor can be done
using an encoder in practical applications.
The design task of a PMSM servo system is to design three controllers, position controller,

speed controller and current controller, and a filter in speed loop. The design process of the three
controllers is from the inner loop (current loop) to outer loop (position loop). Compared to the
velocity controller, the design of the current controller and the position controller are usually
easy. The parameters of the current controller mainly depend on the measureable parameters of
the motor stator, such as the inductance and resistor. Firstly, the current controller is designed.
Secondly, the speed controller is designed based on the current closed-loop control system.
Finally, the position controller is designed, which is easy because the speed closed-loop control
system has been regulated well according to some classical model, such as a second-order
system. Compared to the current controller and the position controller, the design of the
velocity controller is more challenging, since mechanical resonances, backlash, and friction
in servo systems mainly influence the performance and stability of the velocity loop. In order
to suppress the mechanical resonance in servo systems, a notch filter is generally utilized in
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Figure 18.1 A typical structure of PMSM servo systems

the velocity loop to eliminate a single frequency or narrow band of frequencies, as shown in
Figure 18.1.

18.3 Dynamic Model of PMSM

In order to derive the dynamic model of PMSMs, the following assumptions are made:

(a) The induced EMF is sinusoidal.
(b) The eddy current and magnetic hysteresis loss are negligible.
(c) The magnetic saturation is neglected.

With the above assumptions and taking the rotor coordinates (d–q axes) of the motor as the
reference coordinates, the dynamic model for the PMSM can be expressed in the state-space
by both an electrical model (Su et al. 2005; Feng et al. 2011):

{
i̇d = − Rs

L id + pωiq + ud
L ,

i̇q = −pωid − Rs
L iq − pψ f

L ω + uq

L ,
(18.1)

and a mechanical model (Su et al. 2005; Feng et al. 2011):

{
dθ
dt = ω,

J dω
dt + Bω + TL = TM ,

(18.2)

where ud and uq are the d–q axes stator voltages, id and iq the d–q axes stator currents, L the
d–q axes inductance, Rs the stator winding resistance, ψ f the rotor flux, p the number of pole
pairs, TM the driving torque of the motor (Nm), TL the load torque of the motor (Nm), J the
moment of inertia of the motor rotor and the load (kgm2), B the viscous damping coefficient,
ω the angular speed of the motor (rad/s), and θ the angular position of the motor (rad). The
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driving torque TM in equation (18.2) can be expressed by the following equation (Zhu et al.
2000):

TM = 3p

2

(
ψ f iq + (Ld − Lq )id iq

)
, (18.3)

where Ld and Lq denote the d- and q-axis inductances, respectively. According to the principle
of the vector control of PMSMs, the d-axis current id in equations (18.1) and (18.3) should be
controlled to be zero in the current loop of the motor system. Therefore, equation (18.3) can
be rewritten as

TM = 3p

2
ψ f iq = kqiq , (18.4)

where kq = (3p/2)ψ f denotes an electrical-mechanical energy conversion constant, or simply
a torque constant, which can be determined by using the experimental data. It can be seen
from equation (18.4) that the driving torque TM is only proportional to iq and kq is a constant,
which means that TM can be controlled only by the q-axis current iq .

18.4 PI Control of PMSM Servo System

PMSM servo systems generally utilize PI controllers in industrial applications. The typical
structure of PI control-based PMSM servo system is shown in Figure 18.2. The vector control
technique is applied in the current control loop. Three phase currents of the motor stator
(ia , ib, ic) are transformed into the direct and quadrature components id and iq in two rotor
coordinates (d–q axes). In order to realize the maximization of the driving torque of a PMSM,
the stator magnetic field should be orientated perpendicularly to the rotor field, which can be
implemented by forcing id to zero. On the other hand, iq is the component of the stator flux that
is producing the driving torque. In order to overcome the integral saturation of PI controller in
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Figure 18.2, the anti-reset windup method (Shin 1998) can be used. The PI speed controller
with anti-reset windup structure is shown in Figure 18.3. The algorithm of the controller can
be expressed by the following equation:

i∗
q = kpeω +

[
eω

kp

τi
− 1

kc
(i∗

q − ir
q )

]
1

s
, (18.5)

where, kc > 0 is the compensation coefficient, both i∗
q and ir

q are depicted in Figure 18.3.
Equation (18.5) can be rewritten as follows:

i∗
q = kckp

τi

τi s + 1
kcs + 1eω + 1

kcs + 1 ir
q . (18.6)

18.5 High-Order Terminal Sliding-Mode Control of PMSM
Servo System

In order to improve the performances of PMSM servo systems, such as the precision, response
speed, and robustness, high-order terminal sliding-mode (TSM) control strategy is employed
to control PMSM servo systems (Feng et al. 2002, 2004, 2007, 2009). The structure of the
system is shown in Figure 18.4 (Zheng et al. 2008).
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18.5.1 Velocity Controller Design

The design of the velocity controller can be described step by step as follows:

1. A TSM manifold is chosen as follows:

lω = ėω + γωeqω/pω

ω , (18.7)

where eω = ω∗ − ω denotes the motor speed error, ω∗ the desired motor speed.
2. The TSM control strategies are designed as follows:

i∗
q = iqeq + iqn, (18.8)

iqeq = J

kq

(
ω̇∗ + γωeωqω/pω + B

kq

)
, (18.9)

i̇qn + Tωiqn = vω, (18.10)

vω = (kT ω + kd L + ηω)sgn(lω), (18.11)

where kT ω, Tω, and kd L are constants, which satisfy the following condition:

∣∣i∗
qn

∣∣ <
kT ω

Tω

, (18.12)

∣∣Ṫ ∗
L

∣∣ < kd Lkq . (18.13)

ηω > 0 is a design parameter. The error speed of the motor eω = ω∗ − ω will converge to
zero in finite time.

The high-order sliding-mode technique is employed in the control strategies in equations
(18.8)–(18.11). Although a switching function exists in equation (18.11), the actual output
signal of the speed controller in equation (18.8) is softened to be smooth, hence there is no
chattering phenomenon in the TSM controller.

18.5.2 q-Axis Current Controller Design

1. A TSM manifold is chosen as follows:

sq = ėq + γqe
qq/pq
q , (18.14)

where, γq > 0, pq and qq are odds, 1 < pq/qq < 2; eq = i∗
q − iq is the q-axis current error;

i∗
q is the desired q-axis current.

2. The control law is designed as follows:

uq = uqeq + uqn, (18.15)

uqeq = Li̇∗
q + Lpωid + Rsiq + pψ f ω + Lγqe

qq/pq
q , (18.16)

u̇qn + Tquqn = vqn, (18.17)

vqn = (kTq + ηq )sgn(sq), (18.18)
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where ηq > 0 is a design parameter; kT q and Tq are constants, which satisfy the following
condition:

∣∣uqn

∣∣ <
kTq

Tq
. (18.19)

The q-axis current controller can guarantee the q-axis current converge to its desired
reference in finite time.

18.5.3 d-Axis Current Controller Design

1. A nonsingular TSM (NTSM) manifold is chosen as follows:

sd = ėd + γdeqd/pd

d , (18.20)

where, γd > 0, pd and qd are odds, 1 < pd/qd < 2; ed = i∗
d − id = −id is the current error;

i∗
d = 0 is the desired current;

2. The control law is designed as follows:

ud = udeq + udn, (18.21)

udeq = Rsid − Lpωiq + Lγdeqd/pd

d , (18.22)

u̇dn + Tdudn = vdn, (18.23)

vdn = (kTd + ηd )sgn(sd), (18.24)

where ηd > 0 is a design parameter; kT d and Td are constants, which satisfy the following
condition:

|udn| <
kTd

Td
. (18.25)

The d-axis current controller can guarantee the d-axis current converge to its desired
reference in finite time.

18.5.4 Simulations

Some simulations are carried out for evaluating the TSM control strategies of PMSM servo
systems. The parameters of the PMSM are PN = 1.5 kW, nN = 1000 rpm, IN = 3.5 A,UN =
380 V, p = 3, Rs = 2.875 �, L = 33 mH, J = 0.011 kgm2, B = 0.002, ψ f = 0.8 Wb. The
q-axis current limit is Iq max = 4A. The simulation results of PI controllers andTSMcontrollers
are shown in Figures 18.5 and 18.6. The motor speed responses for the different perturbation
of the inertia, 	J = ±0.5J , are depicted in Figure 18.5. The motor speed responses for the
different perturbation of the stator flux, 	ψ f = ±0.2ψ f , are displayed in Figure 18.6. It can
be seen from these simulation results that the robustness of the TSM controller is better than
that of the PI controllers.
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Figure 18.5 Motor speed response when J has a perturbation: (a) PI control; (b) high-order TSM
control

18.6 Sliding-Mode-Based Mechanical Resonance Suppressing Method

Mechanical resonance is one of the most common problems when trying to improve the
dynamic response speed and accuracy of servo systems. It is usually caused by a combination
of high servo gains and a flexible coupling between the motor and load, such as drive shafts,
belts, gears, harmonic speed changer, and so on. These transmission mechanisms have a finite
stiffness, and a pair of conjugate complex poles is introduced in the transfer function of
the system. The phenomenon of mechanical resonance can deteriorate the system stability,
damage motors and transmission mechanisms, and reduce the system reliability. However,
in practical applications, the phenomenon is often neglected or considered to be unmodeled
dynamics, so the bandwidth of the system is limited by the resonant frequency (Zheng et al.
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Figure 18.6 Motor speed response when ψ f has a perturbation: (a) PI control; (b) high-order TSM
control
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2007; Zheng and Feng 2008). Three kinds of methods have been proposed to suppress the
phenomenon of mechanical resonance. The first method is to use filter, as shown in Figure
18.1. The low-pass filter is easy to use, but inefficient for the commonly found case of low-
frequency resonances, and it introduces the phase lag (Ellis and Lorenz 2000). The notch
filter is utilized to reduce the effects of resonance in Schmidt and Rehm (1999). However, the
system is sensitive to parameter changes. If the mechanical parameters such as load inertia
or spring constant changes, the notch filter may be ineffective. The second method is to use
the motor acceleration feedback (Schmidt and Lorenz 1992; Lee et al. 1995). Acceleration
feedback can reduce the sensitivity to mechanical resonance, since it can increase the motor
inertia equivalently. This method is robust, but the system response becomes slow to the input
signal. On the other hand, the method is limited by the cost of the acceleration transducer and
the application conditions. The third method is to use the observer of the motor acceleration or
load torque (Ji and Sul 1995; Valenzuela et al. 2005). However, they still have disadvantages
such as high dependency on system models. This chapter describes a TSM based mechanical
resonance suppressing method (Zheng et al. 2007; Zheng and Feng 2008). TSMmanifolds are
designed for stator currents and the load speed, respectively, to realize convergence in finite
time and obtain better tracking precision. A full-order state observer is applied to estimate
the load speed and the shaft torsion angle which cannot be measured directly in applications.
And a high-order sliding-mode control is designed to guarantee the stability of the system.
Compared to the acceleration feedback and the notch filter method, the TSM controller can
suppress mechanical resonance more effectively, increase convergence speed of the system,
and reduce the overshoot. In addition, it is robust and does not need to use the acceleration
transducer. Based on the vector control principle, high-order TSM controllers are designed
for two stator currents id , iq , and the load speed ωL , respectively, as shown in Figure 18.7.
	θ̂ is the estimate of the shaft torsion angle 	θ = θM − θL , and ω̂L is the estimate of ωL . A
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full-order state observer is utilized to obtain the two variables, for they are difficult to measure
directly in applications but the stator currents, the angular position and angular velocity of the
motor are measurable.

18.6.1 Load Speed Controller Design

Suppose that eω is the error between the given value and the actual value of the load speed i.e.

eω = ω∗
L − ωL . (18.26)

Then, the error system is:

ėω = ω̇∗
L − [Ks	θ + bs(ωM − ωL )− TL ]

1

JL
. (18.27)

A linear sliding mode (LSM) manifold and a TSM manifold are designed as follows:

sω = eω + βωėω, (18.28)

lω = sω + γω ṡ pω/qω

ω , (18.29)

where, βω > 0, γω > 0, pω > 0, and qω > 0 are odds, 1 < pω/qω < 2. In order to eliminate
chattering, a third-order sliding mode controller is designed step by step as followings (Zheng
et al. 2007; Zheng and Feng 2008):

1. The LSM manifold and the TSM manifold are chosen as equations (18.28) and (18.29),
respectively;

2. The control law is designed as follows:

i∗
q = iqeq + iqn, (18.30)

where

iqeq = JM JL

bs pφ f

[
ω̈∗

L +
(

b2s
Jp JL

− Ks

JL

)
(ωM − ωL )+ Ksbs

Jp JL
	θ

]
(18.31)

and iqn is obtained by the following low-pass filter:

iqn + βω i̇qn = JM JL

bs pψ f

[
(kω + ηω)sgn(lω)+ qω

γω pω

ṡ2−pω/qω

ω

]
, (18.32)

where kω >

∣∣∣− bs

J 2L
TL + (−βω

bs

J 2L
+ 1

JL
)ṪL + βω

JL
T̈L

∣∣∣, ηω > 0, 1/Jp = 1/JM + 1/JL . The load

speed of the system can converge to the equilibrium point asymptotically.
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18.6.2 d-Axis Current Controller Design

Suppose that ed is the error between the given value and the actual value of the d-axis current
i.e.

ed = i∗
d − id . (18.33)

Then, the d-axis current error system is

ėd = −pωMiq + Rs

L
id − ud

L
. (18.34)

In order to realize fast convergence and better tracking precision, a nonsingular terminal sliding
mode manifold is designed as follows:

sd = ed + γd ė pd/qd

d , (18.35)

where, γd > 0, pd , qd are all odds, 1 < pd/qd < 2. The d-axis current controller can be
designed as following steps:

(a) An NTSM manifold is chosen as equation (18.35).
(b) The control law is designed as follows:

ud = udeq + uqn, (18.36)

udeq = Rsid − Lpωiq , (18.37)

udn = L
∫ t

0
[qd/(γd pd )ė

2−pd .qd

d + kdsgn(sd )]dτ, (18.38)

where, kd > 0. The d-axis current of the error system (18.34) can converge to zero in finite
time.

18.6.3 q-Axis Current Controller Design

Suppose that eq is the error between the given value and the actual value of the q-axis current
i.e.

eq = i∗
q − iq . (18.39)

Then, the q-axis current error system is

ėq = i̇∗
q + pωMid + Rs

L
iq + pψ f

L
ωM − uq

L
. (18.40)

The NTSM manifold is designed as follows:

sq = ėq + γqe
pq/qq
q , (18.41)
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where, γq > 0, pq , qq are all odds, 1 < pq/qq < 2. The q-axis current controller can be
designed as following steps:

(a) The TSM manifold is chosen as equation (18.41);
(b) The control law is designed as follows:

uq = uqeq + uqn, (18.42)

uqeq = LpωMid + Rsiq + pψ f ωM + Li̇∗
q , (18.43)

uqn = L
∫ t

0
[qq/(γq pq )ė

2−pq .qq
q + kqsgn(sq )]dτ, (18.44)

where kq > 0. The q-axis current of the error system (18.40) can converge to zero in finite
time.

18.6.4 Simulations

Some simulations are carried out for evaluating the sliding-mode based mechanical resonance
suppressingmethod. The parameters of the controllers are designed as βω = 0.01, γω = 0.008,
pω = 7, qω = 5, kω + ηω = 500 and k ′

ω = 200. The step responses of themotor speed for three
different methods, namely, notch filter, acceleration feedback, and TSM control, are shown
in Figure 18.8a. The step responses of the load speed are depicted in Figure 18.8b. It can be
seen that the speeds of both the motor and the load using notch filter are fastest compared
to other two methods. The effect of suppressing mechanical resonance using the acceleration
feedback is better than the notch filter. Compared to other two methods, effect of suppressing
mechanical resonance in both the motor speed and the load speed using the TSM control is
best. The speed response time of the TSM control is similar to the notch filter.
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18.7 Digitization of TSM Controllers of PMSM Servo System

In industrial applications, the PMSM servo systems are generally implemented by DSP or
microcontroller. It means that all controllers for a PMSM servo system are executed by a pro-
gram. Therefore, all the designed controllers must be transformed into their discrete versions.
There are many existing numerical approximation methods to transform continuous-time sys-
tem representations to discrete-time and vice versa, such as standard z-transform, backward
difference, forward difference, bilinear transform, pole-zero mapping, impulse invariance,
Simpson’s rule, and matched z-transform, (Phillips and Nagle 1995). In particular, back-
ward difference and bilinear transform are regarded as two of the most practical numerical
approximations in all aspects of digital control applications (Lin and Tsai 2009). Here, we use
backward difference and bilinear transform discretization method to digitize the continuous
TSM controllers in previous sections.
The TSM control strategies can be rewritten as the following form:

u(t) = ueq (t)+ un(t) = ul (t)+
∫ t

0
ui (t)dt, (18.45)

where ul (t) and ui (t) are two parts of the TSM control law.

18.7.1 Backward Difference Discretization Method

Let t = kT , k = 0, 1, 2, · · ·, where T is denoted as the sampling time. From equations (18.45),
u(k) and u(k − 1) can be obtained as follows:

u(k) = ul (k)+
∫ kT

0
ui (t)dt, (18.46)

u(k − 1) = ul (k − 1)+
∫ (k−1)T

0
ui (t)dt. (18.47)

Subtracting equation (18.47) from equation (18.46) gives

u(k) = u(k − 1)+ ul (k)− ul(k − 1)+
∫ kT

(k−1)T
ui (t)dt. (18.48)

Therefore, the digitization of TSM controllers of PMSM servo system can be obtained using
the backward difference method as follows from equation (18.48):

u(k) = u(k − 1)+ ul (k)− ul(k − 1)+ T ui (k). (18.49)

18.7.2 Bilinear Transformation

The bilinear transform is a technique of transforming continuous-time system representations
to the discrete-time counterpart. It is themost commonly usedmethod for converting controllers
from the continuous-time domain into the discrete time domain. The digitization of TSM
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controllers of PMSM servo system using the bilinear transform can be obtained as follows
from equation (18.48):

u(k) = u(k − 1)+ ul(k)− ul (k − 1)+ T

2
(ui (k)+ ui (k − 1)). (18.50)

It should be mentioned that discretization of sliding mode control may result in periodic,
near-periodic, and irregular orbits. It was found (Yu et al. 2012) that the reason of emergence
of these behaviors is due to the fact that the sampling period must satisfy certain boundary
conditions between the system parameters and the sampling period. Here only the motor speed
controller is analyzed. For the purpose of the simplicity, the following two assumptions are
made:

(a) The LSM manifold is utilized to replace the TSM manifold in (18.7):

g(x) = ėω + γωepω/qω

ω = cT x, (18.51)

where eω = ω∗ − ω denotes the speed error, ω∗ the desired speed, x = [eω ėω]
T
.

(b) The load torque TL in (18.2) is time invariant, that is,

ṪL = 0. (18.52)

From equations (18.2) and (18.4), it can be obtained:

ėω = ω̇∗ − ω̇ = ω̇∗ − pnψ f

J
i∗
q + B

J
ω + TL

J
(18.53)

or

ėω = −kq

J
i∗
q + B

J
ω + TL

J
(18.54)

the control i∗
q is designed as follows:

i∗
q = − B

kq
ω + v. (18.55)

Then equation (18.54) can be rewritten as

ėω = −kq

J
v + TL

J
. (18.56)

Taking the derivative of equation (18.56) with the time gives

ëω = −kq

J
v̇ + ṪL

J
= −kq

J
v̇. (18.57)
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The system (18.57) can be rewritten as the following state space representation:

ẋ = Ax + bu, (18.58)

where x = [ eω ėω ]T , u = −kq/J v̇, A and b are as follows:

A =
[
0 1
0 0

]
, b =

[
0
1

]
.

In (18.51), it can be assumed c = [ c1 1 ]T . Therefore, cT b = 1. The control signal u in
system (18.58) can be designed as follows:

u = ueq + un, (18.59)

where ueq = −(cT b)−1cT Ax = −cT Ax and un = −α(cT b)−1sgn(g(x)) = −αsgn(g(x)).
To study the discretization behaviors, the continuous-time system (18.58) is converted into

the discrete form firstly:

x(k + 1) = eAh x(k)+
∫ h

0
eAhdτbuk, (18.60)

where h is the sampling time, uk = ueq (k)+ un(k) = −cT Ax(k)− αsgn(g(x(k))), k =
0, 1, . . .. System (18.60) can be rewritten as:

x(k + 1) = x(k)− α�sk, (18.61)

where  = eAh − ∫ h
0 eAτ dτcT A, � = ∫ h

0 eAτ dτb, sk = sgn(g(x(k))). System (18.61) can be
further rewritten as the following form:

x1(k + 1) = x1(k)+ vx2(k)− γ1αsk, (18.62)

x2(k + 1) = dx2(k)− γ2αsk . (18.63)

Equations (18.62) and (18.63) can be considered as a dynamical system switching between
two discrete-time invariant linear systems with two different equilibriums. The behaviors of
the system can be described using the following theorem:

Theorem 18.7.1 (Yu and Chen 2003): The system (18.62) and (18.63) is stable in the sense
of Lyapunov if

− 1 < d < 1,

∣∣∣∣ υγ2

1− |d|
∣∣∣∣ < |γ1. (18.64)

Furthermore, the system state is bounded by

|x1(∞)| ≤ γ1α + (c1−1− υ)|γ2|α
1− |d| , |x2(∞)| ≤ |γ2|α

1− |d| . (18.65)
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For analyzing the discretization behaviors, some strict assumptions have been made and the
linearized models of the PMSM systems have been obtained. The PMSM systems are actually
nonlinear systems and include internal parameter uncertainties and time-varying disturbances.
But at least near the desirable operation points, the linearized models would help obtain
approximate boundary conditions for the sampling period. This area of research is to be
further explored.

18.8 Conclusions

This chapter has described the sliding-mode control of PMSM servo systems. The typical
structure of the systems consists of the position, velocity, and current control loops. The
design of three controllers, position controller, speed controller, and current controller, and
a filter in speed loop has been described respectively, aimed at reaching high-performances
of PMSM servo systems, such as fast response, strong robustness, and high precision. The
digitization of TSM controllers of PMSM servo system has been discussed for the purpose of
practical implementation.

This work was supported in part by the National Natural Science Foundation of China
(61074015), and also in part by the Linkage Project (LP100200538) and the Discovery
Project (DP0986376) of the Australian Research Council.
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Control of Interior Permanent
Magnet Synchronous Machines

Faz Rahman and Rukmi Dutta
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19.1 Introduction

Synchronous machines with permanent magnet excitation in the rotor became viable since
commercialization of the Neodymium Iron Boron (NdFeB) magnet material from 1984 by
GE and Sumitomo Metals. The availability of Neodymium in the earth’s crust is as plen-
tiful as lead (though quite localized, such as in China, as of now). The much lower price
of this material in sintered and bonded varieties with energy product (BHmax) higher than
Samarium Cobalt thus offered commercial viability for such machines. The Sumitomo (later
Hitachi) production process offers the sintered variety with remanent flux density (Br ) as
high as 1.4 T, while the GE process offers the cheaper more easily shaped and manufac-
tured bonded variety with Br around 0.8. The sintered material is prone to corrosion, thus
requiring special coating to seal the magnet surfaces and it has higher conductivity than the
bonded variety leading to high eddy current losses at high speed operation. Both versions
also suffer from high temperature dependence of its flux density, becoming more prone to
demagnetization as the temperature of the magnet rises towards 100◦C. By alloying the mate-
rial with Dysprosium, the maximum withstand capability is now 175◦C that is adequate for
most applications. The world market for the sintered variety is now 10 times larger than the
bonded variety, largely because of the more compact machines that become possible with the
sintered material.
The remanent flux density (Br ) and coercivity (Hc) of NdFeB and two other low-cost PM

materials are shown in the second quadrant of the B H plane in Figure 19.1. Because the
magnets are subject to the demagnetizing MMF of the stator, this is the quadrant which is of

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 19.1 Demagnetization characteristics of several PM materials

interest to machine designers and users. The NdFeB material characteristic is also indicated at
100◦C in Figure 19.1, showing the knee of the B H characteristic encroaching into the second
quadrant at this temperature. This implies that at this temperature, the magnet B is unable to
recoil along its characteristic line to its designed value if the stator MMF H exceeds about 750
kA/m in operation after the high temperature and the applied MMF are removed. This implies
some permanent demagnetization of the magnets, which must be avoided.
The design of the interior permanent magnet synchronous machine (IPMSM) with the

desired air gap and the best utilization of the iron in the stator and rotor circuits, places the
operating point down the left-hand side of the BH characteristic, to a point where the load
line of the magnetic circuit intersects this characteristic. A sufficient margin at the operating
point for preventing demagnetization at the maximum working MMF of the stator and at the
highest operating temperature and also achieving high energy product B Hmax, given by the
shaded area in Figure 19.1b, are also the considerations at the design stage (Miller 1989).
Proper consideration of these issues leads to an IPMSM that yield high power density, high
efficiency and wide field weakening/constant-power speed range (CPSR).
A number of designs of the IPMSMs have emerged in recent years that incorporate some

of the above design goals. The IPMSM, as opposed to the surface magnet SM, has the
magnets buried inside the rotor iron in slots. This offers the magnets additional protection
against demagnetization and also offers the mechanical housing to withstand the centrifugal
force when the operating speed is high. This also allows the q-axis inductance (Lq ) of the
machine to be larger than the d-axis inductance (Ld ), resulting in the exploitation
of the inherent reluctance torque capability of such a machine, while simultaneously weak-
ening the magnet flux by armature reaction, allowing operation of the machine above the
base speed with constant power. This is particularly desirable in electric traction applications.
Figures 19.2a–e depicts a few cross-sections of rotor magnetic circuits of IPMSMs, indicating
the d- and q-axes for each design. The stators of these machines all have sine distributed
winding, as with other conventional AC machines.
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Figure 19.2 Cross-sections of some well-known IPM rotor structures: (a) Radially magnetized;
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Cross-sections of some well-known IPM rotor structures are indicated in Figure 19.2.
Depending on the direction of flux crossing in the air gap, the IPM rotors can be broadly
categorized as axially laminated, transversally magnetized, and radially magnetized. The
axially laminated design (Soong et al. 1995) can produce very large ratio of Lq to Ld , but
mechanical construction is expensive and complex. Because of this, the axially laminated IPM
rotor has limited applications. In the tangentially magnetized IPM rotor, the magnet poles
are in the form of spokes. In this machine, the d-axis inductance (Ld ) is higher than the
q-axis inductance (Lq ). Because of this reversal of inductance values, the reluctance torque
does not enhance the torque contributed by the magnets, as it does in a conventional IPM
machine (Bianchi and Bolognani 1999). There are also problems of high cogging torque
and nonsinusoidal back EMF associated with the tangentially magnetized design of the IPM
machines. However, some recent studies are showing its potential in wind power generation
(Haraguchi et al. 2009).
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Table 19.1 Typical machine parameter of a radially
magnetized IPM machine

Number of pole pairs 2
Stator resistance 5.8 (�)
Magnet flux linkage 0.377 (Weber)
d-axis inductance 0.0448 (Henry)
q-axis inductance 0.1024 (Henry)
Rated phase voltage 132 (V rms)
Rated phase current 3 (A rms)
Rated base speed 1260 (rpm)
Maximum speed 1460 (rpm)
Rated torque 3.7 (Nm)
Rated power 1 (kW)

Since the IPM machine is a new emerging technology, none of the configurations yet has
been standardized. Nevertheless, the most common construction is the radially magnetized
type rotor (Wang et al. 2011). In the radially magnetized design, there exist narrow iron bridges
at the interpolar regions that are usually deeply saturated by the magnet leakage fluxes. The
flux barriers/guards made of nonmagnetic material at the either sides of a magnet pole prevent
magnetic short circuit of the adjacent opposite poles. The flux barriers also aid in the flux
concentration at the individual pole shoe. The conventional radial flux design has modest Lq

Ld

ratio and a narrow constant power speed range. Some new IPM rotor structures have emerged
in recent years such as the inset magnet, multilayered and V-shaped magnet (Kamiya 2006;
Wang et al. 2011).
The inset magnet IPM machine can operate in an extended torque-speed range and has

some field-weakening capability (Satoh et al. 2004). It has been used as a traction motor in
Honda’s first-generation mild hybrid electric vehicles. The required magnet volume in this
type of IPM rotor is larger than for other types. The multilayered IPM rotor of Figure 19.2d can
produce relatively large Lq

Ld
ratio, hence larger reluctance torque than any other types (Honda

et al. 1998). However, the design is relatively complex and mechanically less robust. Recently
V-shaped magnet design has gained popularity because of its successful use in Toyota’s hybrid
electric vehicle (Kamiya 2006). With this design very good flux-concentration is possible by
optimizing the magnet pole pitch angle (Dutta and Rahman 2008). A wider constant power
speed range is also achievable with this design.
The typical machine parameters of a radially magnetized IPM machine is shown in Table

19.1.
A typical torque-speed characteristic of a radially magnetized IPM machine is shown in

Figure 19.3a. Figure 19.3b shows a torque speed characteristic of a V-shaped magnet IPM
machine used in Toyota hybrid electric vehicle (Kamiya 2006).

19.2 IPM Synchronous Machine Model

For dynamic control of the developed torque, the IPMSM is represented in the rotor reference
frame, via Park‘s dq-transformation. Equations (19.1) and (19.3) are for d- andq-axes voltages,
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respectively, Equation (19.3) for d- and q-axes flux linkages and equation (19.4) for the
developed torque. The circuit representation of the machine in the rotor dq frame, as indicated
in Figure 19.4, follows from equation (19.1):

vd = Rd + dλd

dt
− λq

dθ

dt
= Rd + Ld

did

dt
− ω Lqiq , (19.1)

vq = Rq + dλq

dt
+ λd

dθ

dt
= Rq + Lq

diq

dt
+ ω (Ldid + λ f ), (19.2)

λd = Ld id + λ f λd = Lq iq , (19.3)

T = 3p

2
(λd iq − λq id ) = 3p

2

[
λ f iq + (

Ld − Lq
)

iq id
]
. (19.4)

Figure 19.4 Circuit representation of an IPMSM in rotor d- and q-axes
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Figure 19.5 Phasor diagram of an IPMSM at base and higher speeds: (a) at base speed, ωo, (b) at speed
ω1 > ωo, (c) at speed ω2 > ωo

Control of flux linkage and torque can be approached based on equations (19.3) and (19.4),
respectively, when the machine is driven from a current source inverter with independent
and decoupled control of id and id . In order to understand the torque-speed envelope of the
machine and some of its control restrictions, it is useful to represent the machine in terms of
its steady-state equivalent circuit, in which the dq stator windings are stationary, but produces
their MMFs along the rotor dq axes. In this representation, the dq stator windings have AC
voltages, currents and flux linkages at the frequency corresponding to the speed of rotation.
Figure 19.5 shows the phasor diagrams of the IPMSM at the base and two other speeds that
are higher than the base speed, assuming that the voltage drops in the stator resistances are
negligible at these speeds. V0 is the rated phase voltage. E f o is the PM excited phase voltage
at base speed. θ and δ are the power factor and load angles, respectively.

19.2.1 Torque-Speed Characteristics in the Steady State

The torque-speed characteristic of the IPMSM near and above the base speed where the stator
resistance voltage drop is negligible, is given by equation (19.5), in which the first term, the
so-called reluctance torque, is due to the PM excitation and the second term is because of the
difference in the d- and q-axes inductances of the machine. Typical proportions of these two
torque components are indicated in Figure 19.6:

T = 3p

ωs

[
E f V

Xd
sin δ + V 2

2

(
Xd − Xq

Xd Xq

)
sin 2δ

]
. (19.5)

It is clear from equation (19.5) that the inverter RMS output voltage V should increase
proportionately with speed up to the rated voltage at base speed if the machine is to be capable
of developing its maximum torque. For operation at higher speeds, the inverter output voltage



404 AC Electric Motors Control

Total torque

Magnet torque
To

rq
ue

 (
N

m
)

2.5

2

1.5

1

0.5

0
0 20 40

Current angle β (Elec. Deg.)

60 80 100

Reluctance torque
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remains fixed at this value corresponding to the DC link voltage, while the speed is increased
by increasing the supply frequency ωs (= 2π fs). The excitation voltage E f and the d- and
q-axes reactances also increase proportionately with ωs . The phasor diagrams of Figure 19.5
show the V , E f and the input current I phasors at three speeds above the base speed. These
figures also indicate that operation at higher than base speed can be arranged by controlling
the phase angle of the input current phasor from the excitation voltage E f , when a current
source inverter drive is used. This type of control increases the −ve d-axis current as speed is
increased beyond base speed, thereby reducing the air-gap field by armature reaction. Equation
(19.4) implies that the −ve d-axis current increases the reluctance torque component of an

IPM machine, which is beneficial because the total current I =
√

I 2d + I 2q of the machine

must also be subject to a maximum limit, where Id and Iq are the RMS values of id and iq. It
other words, the increased reluctance torque afforded by increased −Id may allow reduction
in Iq , helping the drive to operate within its maximum current limit while at the same time
maximizing the total developing torque.
In a servo type drive, the machine is required to develop the maximum possible torque from

zero speed up to the rated speed. Operation above this speed may not be required. It may be
noted from Equation (19.4) that for an IPM machine, a given torque can be obtained by many
combinations of id and iq . For such applications, the emphasis inmachine and controller design
is on covering the required speed range with minimum current, the so-called maximum torque
per ampere (MTPA) trajectory in the (id , iq ) plane, in order to achieve high efficiency (Jahns
et al. 1986). Traction and spindle type applications require diminishing torque as the operating
speed increases beyond the base speed. In other words, such applications require constant-
power operation over an extended speed range. For traction drives, a constant maximum torque
over a low speed range and a wide CPSR is also required. The CPSR is covered by weakening
the total air-gap field by armature reaction. Field weakening by −ve id current allows the
machine air-gap field to be reduced, leading to increase of speed beyond the base speed that is
achieved when the machine is supplied with its rated voltage. The −ve id helps the machine
to maintain torque so that a wide speed range is covered at constant power, by exploiting its
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reluctance torque capability. In general, a saliency difference, Lq − Ld , or more appropriately
the saliency ratio, ξ = Lq

Ld
, is good for a wide constant power range, however, the ratio λ f

Ld
also

plays a more significant role in this, as will be explained later.

19.2.2 Optimum Control Trajectories for IPM Synchronous Machines
in the Rotor Reference Frame

The torque reference, T ∗, which is determined by an outer speed loop, must be translated into
i∗
q and i∗

d references, so as to achieve the maximum efficiency and minimum inverter capacity
for both constant torque and constant power (field-weakening) speed ranges. This is because
the developed torque of the IPMSM is determined by both iq and id (see equation (19.4)).

The Maximum Torque per Ampere Trajectory

Toobtain fast transient response and high torque, the current phase angleβmust be controlled to
achieve themaximum torque/current characteristic. In equation (19.4), id and iq can be replaced
by the d- and q-axes intercepts of the stator current vector i s = îs∠β = Is cosβ + Is sinβ, as
indicated in Figure 19.7. In order to determine the β angle that produces the maximum torque
for a given amplitude Is ,

dT

dβ
= −3

2
λ f Is sinβ + 3p

2
(Ld − Lq )I

2
s cos 2β = 0. (19.6)

From this, the relationship between id and iq for the MTPA trajectory can be derived as

id = λ f

2(Ld − Ld )
−

√
λ2f

4(Ld − Ld )2
+ i2q . (19.7)

Figure 19.7 Voltage and currents phasors in the stator frame
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Equation (19.7) implies that the MTPA can be achieved if id is determined by this equation
for any iq . iq can be determined by the outer speed loop (Sebastiangordon and Slemon 1987).
It should be noted that torque is not proportional to iq , which is why torque control via only
iq current control is sometimes referred to as indirect torque control.
MTPA control was initially proposed by Jahns et al. (Jahns et al. 1986) in order to achieve

high-efficiency operation of IPMmotors by improving torque production in the constant torque
region. As a result, the required power rating of the inverter was reduced. It was shown that
the MTPA trajectory is tangent to the q-axis at the origin of the rotor flux reference frame
axes and asymptotes to a 45◦ trajectory on a normalized idn , iqn plane. As torque increases,
the reluctance torque term, which is proportional to the product of d- and q-axes currents,
increases compared with the field-alignment torque term, which is only linearly proportional
to the iq current. This reflects the hybrid nature of the torque production. Morimoto revealed
further that with MTPA control, higher torque is produced also with higher power factor
(Morimoto et al. 1994).

Constraints Imposed by Machine/Inverter Current and Voltage Limits

When an IPM synchronous motor is supplied from an inverter, the maximum stator current and
voltage must be limited by the inverter/motor current and dc-link voltage ratings, respectively
(Morimoto et al. 1990, Morimoto et al. 1994). These constraints can be expressed as

Is =
√

i2d + i2q ≤ Ism, (19.8)

Vs =
√

v2d + v2q ≤ Vsm, (19.9)

where Ism and Vsm are the available maximum current and voltage of the inverter/motor.
Equation (19.9) may be expressed in terms of id and iq instead of vd and vq . For simplicity,

the analysis of the voltage constraint is based on the steady-state voltage equations which are
obtained from equation (19.1) as follows:

[
vd

vq

]
=

[
R −ωLq

ωLd R

] [
id

iq

]
+

[
0

ωλ f

]
. (19.10)

From equation (19.10) into equation (19.9),

Vs =
√
(R id − ωLqiq )2 + (R iq + ωLdid + ωλ f )2 ≤ Vsm . (19.11)

Equation (19.11) can be simplified as equation (19.12) if the stator resistance is neglected:

(
Lq iq

)2 + (
Ld id + λ f

)2 ≤
(

Vsm

ω

)2
. (19.12)

Equation (19.8) defines a circle of radius Ism centred at the origin of the id − iq plane, while
equation (19.12) gives ellipses located at (0, − λ f

Ld
) that become smaller as speed ω increases,
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Figure 19.8 Current and voltage limit trajectories in the id − iq frame

as indicated in Figure 19.8. The trajectories of id and iq satisfying theMTPA characteristic and
current and voltage limit constraints are represented by equations (19.7), (19.8), and (19.12),
respectively. These are drawn for an IPMSM in the id − iq plane of Figure 19.8. If the current
vector is controlled inside the circle, the current limit constraint is always satisfied. Otherwise,
if the current vector lies outside the circle, the motor current will exceed its limitation. The
MTPA and current limit trajectories are independent of the rotor speed and are only determined
by the motor parameters and inverter current rating.
It is seen that the voltage limit trajectory is an ellipse which contracts when the rotor speed

increases. When the rotor speed increases infinitely, the voltage limit ellipse becomes a point
on the −ve axis. The d-axis current represented by this point is the so-called characteristic
current, Ich , of the machine.

Characteristic current, Ich = −
(

λ f

Ld

)
. (19.13)

If the IPM machine is so designed that its Ich falls inside the current limit circle, the machine
field can be weakened by −ve id so that the field weakening speed range extends to infinity
producing zero torque at the infinite speed. If it is outside, the maximum −ve id satisfying
the current limit of Equation (19.8) applies and the machine has finite field weakening speed
range. A special case applies when |Ich | = Ism , in which case the machine produces high
torque as it approaches infinite speed by exploiting the reluctance torque to the fullest extent
(the optimum field weakening condition) (Jahns 1987). The control trajectories at any speed
are selected by satisfying MTPA, maximum current and voltage limits given by equations
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(19.7), (19.8), and (19.12), respectively. After selecting iq , normally by the speed controller,
id is selected as described below.

19.3 Optimum Control Trajectories

19.3.1 The MTPA Trajectory

This trajectory is indicated by line OA on the id − iq plane in Figure 19.9. The id and iq

references (or load) and speed are such that Ism will not be exceeded. The id reference is
obtained from equation (19.7). The intersection of the trajectory at point A with the current
limit circle is found from

id A = λ f

2(Lq − Ld )
−

√
λ2f

4(Lq − Ld )2
+ I 2sm − i2d A

= λ f

4(Lq − Ld )
−

√
λ2f

16(Lq − Ld )2
+ I 2sm

2
,

iq A =
√

I 2sm − i2d A. (19.14)

The intersection point A of the MTPA and the current limit trajectory occurs for a speed ωb

at which the machine develops its maximum torque. This speed, referred to as the base speed
(ωb) of the machine, is given by

ωb = Vsm√(
λ f + Ldid A

)2 + (
Lqiq A

)2 . (19.15)
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Figure 19.9 Current limit, voltage limit, and MTPA trajectories of an IPMSM
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This trajectory should be followed when operation is below the base speed. id A and iq A are
the current limits that must be placed on the d- and q-axes current controllers when operation
is along this trajectory during transient operation.

19.3.2 The Field-Weakening (Constant-Power) Trajectory

When operation is above the base speed ωb, field weakening has to be employed so that the
stator voltage is kept within the rated limit given by equation (19.11). In Figure 19.9, the voltage
limit trajectory for the base speed of 1500 rpm is indicated. As the speed increases, the id and
iq current limits must follow the values given by equation (19.14), along the intersections of
current and voltage limit trajectories for each speed. The d- and q-axes currents are controlled
in order to satisfy the machine voltage limit Vom given by

vo =
√

v2do + v2qo ≤ Vom, (19.16)

where, vdo = −ωLqiq , vqo = ωλ f + ωLdid , and Vom = Vsm − RIsm . The relationship
between the id and iq in the field weakening range is given from equation (19.12) with
Vsm replaced by Vom in order to include the effect of stator resistance drop. Thus,

id = −λ f

Ld
+ 1

Ld

√
v2om

ω2
− (Lq iq )2. (19.17)

By controlling the current vector according to equation (19.17), the terminal voltage is always
kept within Vsm in the steady state. The intersection between the current limit and voltage
limit trajectories at each speed provides the respective current limits for producing maximum
torque at each operating speed. These limit values are given by

idv = −λ f Ld

a
+ 1

a

√
λ2f L2d − ab, (19.18)

iqv =
√

I 2sm − i2dv, (19.19)

where a = L2d − L2q , b = I 2sm L2q + λ2f − V 2
sm

ω2
.

The voltage limit trajectory is also indicated in Figure 19.9 for the crossover speed (ωc) of
2400 rpm when the load is zero (or id = iq = 0). When the machine is operated between the
base and crossover speeds, the operating mode is determined by the load. For example, when
the motor runs at 2200 rpm, the corresponding voltage limit trajectory is BCO in Figure 19.9.
If the machine is heavily loaded, the id − iq trajectory is along BC. When lightly loaded,

the trajectory is along CO which is on the MPTA trajectory.
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19.3.3 Implementation Issues of Current Vector Controlled IPMSM Drive

As mentioned earlier, the speed controller output determines the q-axis current reference
i∗
d . The i∗

d reference is obtained from considerations explained above and further described
by Figure 19.10a and b. The compensated current controller outputs in Figure 19.10b can
be further decoupled using the back-emf and voltage drops in the dq axes as indicated in
this figure. Full decoupling has some stability implications because of the positive feedback
indicated in Figure 19.10b.
The analysis of the stator voltage constraint in the previous sections was based on the

steady-state equations. In the flux-weakening operation, the stator voltage is kept equal to the
maximum stator voltage Vsm . The voltage resulting from commanded i∗

d and i∗
q may exceed

Vsm in transient operations when id or iq are required to change abruptly, when the drive is
also in the field weakening speed range. As a result, the dq current controllers can become
saturated and the current control performance may become poor. As is revealed by Jahns et al.
(1986), and suggested by Morimoto (Morimoto et al. 1994) the id current should be controlled
prior to iq current in the case of current controller saturation. The voltage compensation in
which vqo is determined from equation (19.19), as shown in Figure 19.11, can be used to
prevent the current controls from saturating.
Separate closed-loop controllers are normally employed to regulate machine dq currents

to their reference values, as indicated in Figure 19.12. This entails measuring motor currents
ia − ic and transforming into id and iq currents in the rotor reference frame using the rotor
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Figure 19.11 Voltage compensation scheme to prevent current controller saturation

position feedback obtained from a high-resolution mechanical sensor. The compensated i∗
d and

i∗
q values are then decoupled according to the voltage equations of equations (19.1) and (19.3),
followed by inverse dq transformation, producing the voltage references for the PWM inverter.
The limit values for the id and iq current references are determined by equations (19.14) and
(19.19), respectively, according to the trajectory selected. Figures 19.13a–d illustrate a few
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cases of optimum trajectory followings when an IPMSM is operated with MTPA below
(base speed), and with flux–weakening at higher speeds. Precise trajectory following with
smooth transition between the two trajectories, using the controls indicated in Figures 19.10,
19.11, and 19.12), is clearly demonstrated.

19.4 Sensorless Direct Torque Control of IPM Synchronous Machines

The above-mentioned control techniques are based on id and iq current vector controls in the
rotor dq-reference frame. The demanded torque reference from the outer speed control loop
primarily defines the iq current reference. The d-axis current is also controlled simultaneously
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in order to exploit the machine’s reluctance torque and field-weakening capabilities. A shaft-
mounted mechanical sensor is mandatory for this type of control.
Mechanical sensorless drive systems have drawn industrial interest for a variety of reasons

(Corley and Lorenz 1998). The IPMSM, because of its inductance variation with angular
position, lends easily to sensorless control, as will be described further in latter sections. A
more direct torque and flux control approach than the current vector control of the previous
section is the so-called direct torque control (DTC), in which the developed torque T and the
stator flux linkage λs are controlled using estimations of these quantities from the machine
model. In this approach, the torque T and λ are the control inputs directly, rather than current
references for id and iq in the indirect schemes of the previous sections. This approach is also
inherently mechanical sensorless. The method only requires the initial rotor position at start,
which can be obtained in a variety of ways, without requiring a mechanical sensor (Haque
and Rahman 1994; Kim et al. 2004). The feedback signals for T and λs can be obtained in
the stator flux reference frame in a number of ways. The control of torque T and λs is via
application of stator voltage vectors relative to the estimated rotor angular position or load
angle δ of the machine (Zhong et al. 1997; Rahman et al. 1998; Sayeef and Rahman 2009).
The control scheme in its simple form is indicated in Figure 19.14 in which subscripts α and
β refer to the quantities in the stator α and β axes (α-axis being the magnetic axis of the
stator winding A). The stator flux linkages λα and λβ are computed from simple integration
of the stator voltages minus the respective resistance voltage drops. This figure also indicates
the hysteresis torque and flux comparators, the discrete outputs of which, in conjunction of
the six sectoral information (θ ) of the rotor flux λ f , selects the required machine voltage
vectors for optimum torque and flux linkage response. Such direct torque control method
has been shown to deliver as fast responses of torque and flux as with the dq current vector
control strategy of Sections 19.2 and 19.3, if not faster (Zhong et al. 1997; Rahman et al.
1998).
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Figure 19.15 Voltage vectors in a two-level inverter

19.4.1 Control of the Amplitude and Rotation of the Stator
Flux Linkage Vector

The DTC scheme, using the two-level inverter of Figure 19.15, is based on applying the six to
eight voltage vectors available from the inverter and according to the errors in torque T and
stator flux linkage λs to the machine. When hysteresis comparators of Figure 19.14 are used,
full voltage vectors indicated in Figure 19.16 that must be applied for regulating the torque
and the stator flux linkage in an optimal way can be deduced from simple logic. Additionally,
the current and voltage limits described in Section 19.3 must not be crossed. The stator flux
linkage in the stator reference is obtained from a simple integration of the back EMF, as given
by equation (19.20):

λs = vs t − R
∫

isdt + λs |t=0, where λs =
√

λ2d + λ2Q∠ tan−1
(

λQ

λD

)
. (19.20)
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Figure 19.16 Stator flux trajectory with voltage of a two-level inverter
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Figure 19.17 Angular relationships between stator flux and dq reference frames

If the applied voltage vectors remain constant during a switching interval and if the resistance
voltage drops are neglected, the tip of the stator flux linkage vector moves in the direction of
the applied voltage vectors as indicated in Figure 19.16 (left).
The angular relationships of the moving rotor and stator flux vectors with the stator αβ and

rotor dq axes are indicated in Figure 19.17. By resolving the d- and q-axes fluxes and currents
into the stator flux axes xy, it can be shown that the developed torque can be expressed as in
equation (19.21), when the stator flux linkage is held constant:

T = 3p

2
λs iy, (19.21)

where iy = 1
2Ld Lq

[
2λ f Lq sin δ − λs(Lq − Ld ) sin 2δ

]
and

T = 3pλs

4Ld Lq

[
2λ f Lq sin δ − λs(Lq − Ld ) sin 2δ

]
. (19.22)

When torque is controlled by placing the stator flux linkage vector ahead or behind of the
rotor flux linkage vector by a suitable angle δ, two requirements must be fulfilled, namely, that
λs <

Lq

Lq−Ld
λ f so that |T | increases with increase of |δ|, and

δm = cos−1

⎡
⎣1
4

⎛
⎝ a

λs
−

√(
a

λs

)2
+ 8

⎞
⎠

⎤
⎦ , (19.23)

where a = λs Lq

Lq−Ld
, so that the limiting load angle δm is not exceeded. The variation of δ and

the limiting δm , with variation in λs are indicated in Figure 19.18.
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19.4.2 Optimum Control Trajectories with DTC

For each id , iq pair, there exist corresponding T , λs , and δ values, any two of which will be
related to the other one:

T = 3p

2

[
λ f iq + (

Ld − Lq
)

iq id
]
, (19.24)

λs =
√(

λ f + Ldid
)2 + (

Lqiq
)2

, (19.25)

δ = tan−1
(

Lqiq

λ f + Ldid

)
. (19.26)

Maximum Torque per Ampere Trajectory

For the MTPA trajectory, using equation (19.7), the flux linkage and load angle trajectories
are given by

λs =
√

λ2f −
(

L2d
Lq − Ld

+ Lq − Ld

)
λ f id + (

L2d + L2q
)

i2d , (19.27)

δ = tan−1
(

Lq

λ f
+ Ldid

√
i2d − λ f

Ld − Lq
id

)
. (19.28)
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The relationships among λs , δ and positive T for the prototype motor are shown in Figure
19.19. For negative torque, λs remains the same and δ becomes negative. It is seen from Figure
19.19 that both the amplitude and angle increase with the increase of torque. As is also seen
from this figure, the load angle δ will not exceed δm with the MTPA control when the torque
is limited below the maximum torque the motor can produce.
Also, according to equations (19.24)–(19.26), if two of the three variables, namely, T ,

λs , and δ, are known, the third one is uniquely determined. Provided the torque is known,
maximum torque per ampere (MTPA) control is achieved if the amplitude or the angle of the
stator flux is determined from the MTPA trajectory of Figure 19.19a, which can be stored in
a lookup table. For direct torque control, it is obvious that the torque and the amplitude of the
stator flux linkage, rather than its angle, should be controlled (Zhong et al. 1997). When the
torque and λs are controlled in this way, the angle δ will be automatically controlled and for
the prototype motor it will not exceed δm .

Current and Voltage Constraints in T−λs Plane

Similar to the trajectory control described in Sections 2 and 3, the maximum current and
voltage constraints of the motor/inverter have to be also taken into account under DTC when
the motor operates in the constant-torque (i.e., below base speed) and field-weakening regions.
The current and voltage constraints are rewritten below in equations (19.29) and (19.30):

|id | =
√

I 2sm − i2q , (19.29)

|vd | =
√

V 2
sm − v2q . (19.30)

From equations (19.24), (19.25), and (19.29), the current limit trajectory in the T –λs plane can
be plotted as shown in Figure 19.20a. Because the stator voltage is proportional to the product
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of the rotational speed and the amplitude of the stator flux linkage, if the stator resistance is
neglected,

Vs = ωrλs, (19.31)

where ωr is the rotational speed of the stator flux linkage. In the steady state, the rotational
speeds of the stator flux linkage and the rotor magnet flux linkage are the same and equation
(19.30) can be rewritten as

Vs = ωrλs = ωbλsr = ωcλ f , (19.32)

where ωr , ωb, and ωc are the rotor speed, base speed, and crossover speed, respectively. λsr is
the rated stator flux linkage. ωc is the crossover speed for which the unloaded motor develops
the rated phase voltage Vsm . Maximum voltage trajectories for a motor can be determined
by each (id , iq ) pair and speed, and by using the voltage equations (19.1) and (19.3). From
equation (19.31), the maximum voltage limit for each speed is a vertical line (if voltage drop
in stator resistance is neglected), as indicated in Figure 19.20a. As speed increases, these lines
move to the left as also indicated. The current and voltage limit trajectories in the T –λs plane
are as shown in Figure 19.20a. If these trajectories are plotted in the δ–λs plane, it is revealed
that with very low λs (deep flux weakening), the limiting δm angle may be exceeded when an
IPMSM is operated at its current and voltage limits, as indicated in Figure 19.20b, indicating
a limit to the maximum field weakening.
The current limit is satisfied if T and λs are controlled below the current limit trajectory.

The intersection of the current limit and maximum torque-per-ampere trajectories is at point
A in Figure 19.20a, which corresponds to the operating point with the maximum torque and
current. The current limit is always satisfied if the torque is limited below the value at the
operating point A for the maximum torque-per-ampere control. Below base speed, the voltage
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limit trajectories are to the right of the MTPA OA in Figure 19.20a. Therefore, there is no
requirement here to control the amplitude of the stator flux linkage λs to satisfy the voltage
limit.
When the rotor speed increases, the voltage limit trajectories move to the left of the inter-

section point A and the stator flux will have to be reduced in order to satisfy the voltage limit
requirement. For operation below the base speed, the MTPA should be selected. For the opera-
tion above the crossover speed, field-weakening control is selected since the voltage limit will
no longer be satisfied if the torque and λs are controlled along the MTPA trajectory. However,
for the operation between the base and crossover speeds, the control mode is determined by
load torque. With the MTPA control, for instance, if the vertical dashed line in Figure 19.20a
represents the voltage limit corresponding to the operation with the rotor speed between ωb

and ωc, there is an intersection of this line and the maximum torque-per-ampere trajectory, and
at this point the torque is TB . If the actual torque is greater than TB , field-weakening control
is selected. Otherwise, if the actual torque is smaller than TB , MTPA is selected even though
the rotor speed is above the base speed.

19.4.3 Implementation of Trajectory Control for DTC

The block diagram of the outer speed loop for implementation of the trajectory control in DTC
is show in Figure 19.21a. A lookup table is used to determine the amplitude of the stator flux
linkage according to the MTPA trajectory for constant torque control. For field-weakening
operation, the amplitude of the stator flux linkage is simply determined by the inverse of the
speed. The control flow-chart for the control mode selection is shown in Figure 19.21b.

Figure 19.21 (a) Block diagram of the speed loop for trajectory control in DTC; (b) flow chart for the
control mode selection



420 AC Electric Motors Control

λβ (Wb)

–1.5 –1 –0.5 0 0.5 1 1.5
–1.5

–1

–0.5

0

0.5

1

1.5

–4

Time (s)

Current

control

DTCTorque (Nm)

(a)

λα (Wb)

(b)

–0.05 0 0.05 0.1 0.15 0.2

–3

–2

–1

0

1

3

2

4

δrated

 – δ
rated

57°

57°

Figure 19.22 (a) Torque control dynamics under DTC and current control; (b) δ angle limitation during
operation with MTPA

For applying DTC with trajectory control, it is necessary to check, if δ is smaller than δm .
As mentioned earlier, with MTPA control, δ is always smaller than δm for the prototype motor.
The field-weakening operation starts from point A in Figure 19.20a, and shifts to the current
limit trajectory when the speed controller is still in saturation as shown in Figure 19.20b.
Correspondingly, δ increases as the rotor speed increases. After point C , at which δ is equal
to δm , δ should be limited at the value of δm . In this case, the torque limit value should be
calculated from Figure 19.22, in which the amplitude of the stator flux linkage is already
known, with δm obtained from Figure 19.23.
Figure 19.22a shows experimental data on torque responses of the test machine under a

square-wave torque reference, with closed-loop id − iq current control and DTC during the
MTPA mode operation. The dark trace represents torque response in the current controlled
system, while the faint trace indicates the torque response under DTC. The variation of the
load angle δ in the case of DTC is indicated in Figure 19.22b, clearly showing the limit values
of δ during acceleration and deceleration along the MTPA trajectory. Figures 19.23a–e show
a few more dynamic responses for torque, fluxes and trajectory following, with MTPA and
field weakening controls. Smooth trajectory following with MTPA and field-weakening are
demonstrated, similar to responses under current vector control shown in Figure 19.13.

19.5 Sensorless DTC with Closed-Loop Flux Estimation

It is be noted from Figure 19.15 and equation 19.20 that the stator flux linkage, which is
used also to produce the feedback signal for torque, may be obtained from a simple, open-loop
integration of themachine backEMF. The errors of such a flux estimator becomes unacceptably
large at low speed when the back EMF amplitude becomes too low compared to the voltage
drops in the stator resistance, the inverter switches, and distortions due to the inverter dead
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stator flux linkage response; (d) trajectory following; and (e) stator flux locus. Experimental results

time. Integration of signals that may have offset in measurements also causes unacceptable
errors at low speed. The minimum sampling time restriction of cost-effective realization of
the hysteresis controllers for torque and flux also causes unacceptable ripples. The errors in
flux estimation at low speed also causes unacceptable error in the estimation of speed that is
required for closing the speed loop in a speed control system. The results of Figure 19.23 also
show the high torque and flux ripples when DTC is realized with cost-effective controllers
of limited sampling speed (about 75 μs). The dynamic performance of the DTC scheme of
Figure 19.14 for drives covering full rated torque cannot generally be guaranteed below 10%
of the base speed.
The problem of high the torque and flux ripples has been overcome with the IPMSM DTC

drive by the replacement of hysteresis comparators with SVM (Tang et al. 2004). Torque
and flux references of Figure 19.14 are used to produce the stator voltage references vα and
vβ or the space vector modulation (SVM) in several ways (Xu and Rahman 2007; Boldea
et al. 2008). A sliding-mode (SM; variable-structure) controller is suitable for the nonlinear
IPMSM. It restricts the error trajectories of the controller to specified boundaries as it regulates
the system. Design of such a controller and the proof of its stability have been fully described
in references (Xu and Rahman 2007; Sayeef and Rahman 2009). It produces the voltage
references vα and vβ for the SVM.
SM closed-loop flux observers based on forcing the errors in estimated currents from the

actual measured currents have delivered more accurate flux linkage estimation than is possible
with integrating the bemf for flux estimation. Use of SM flux observers using the concept of
extended back EMF and extended rotor flux (Chen et al. 2003; Boldea et al. 2006; Piippo
et al. 2008) with online compensations for switch voltage drops, inverter dead-time and stator
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resistance variation and a simplified Kalman filter for speed estimation, have demonstrated
significant extension of the low speed operating speed range (Sayeef and Rahman 2009). Full
analysis and design of these SM controllers and flux observers are included in Xu and Rahman
(2007) and Sayeef and Rahman (2009) and will not be covered here. Figure 19.24a shows
the block diagram of the SM DTC drive with closed-loop SM observer for flux for a 4-pole
IPMSM with rated load torque applied. Nearly ripple-free steady-state torque and flux at 150
rev/min and the slightly deteriorated results at 95 rev/min are evident from these results. It
may be noted that persistent operation at very low speeds and at zero speed, with variation
of load torque from no load to full rated torque, is still not achievable with these methods.
The dynamic response of such a drive retains the fast response characteristic of DTC, and
furthermore, the scheme can be applied reliably as the speed becomes higher than about 100
rev/min for a 4-pole IPMSM.
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Figure 19.25 A sensorless control scheme in the estimated dq reference frame

Another scheme of sensorless control employs the indirect torque and flux control scheme
of Sections 19.2 and 19.3, via id and iq controls, as indicated in Figure 19.25. In this scheme,
the rotor velocity/position is estimated from a closed-loop flux and current observers and the
position information is then used for transforming the stator currents into id and iq . Current
vector control of Section 19.2 and 19.3 is then used for indirect torque and flux control
(Corley and Lorenz 1998; Bolognani et al. 1999; Kim et al. 2002). Various refinements of
this method have been available, however, reliable operation at very low speed has not been
guaranteed.

19.6 Sensorless Operation at Very Low Speed with
High-Frequency Injection

The desirability to operate mechanical sensorless at very low speed and standstill has led to
the recent development of another sensorless approach where the saliency of the machine
is used to modulate a high frequency signal injected into the stator in order to extract flux
or rotor position information. Several high frequency signal injection techniques for current
vector controlled IPMSM drives have been reported in recent literature (Jung-Ik and Seung-
Ki 1999; Spiteri et al. 2002; Caruana et al. 2003). While some of these methods require
additional hardware, the DTC scheme is favorably disposed to the dq frame rotating injection,
because the voltage vectors applied in the DTC scheme can readily be adapted for the HF
injection without requiring additional hardware. The following section will describe the dq
frame rotating injection that has been adopted industrially.
The rotatingHF injection, being at a reasonably high frequency compared to the fundamental

AC current in the machine, removes the influence of stator resistance on the machine model.
We assume that a carrier frequency voltage given by equation (19.33) is injected into the
estimated d-axis.

[
vdc

vqc

]
= Vc cos(ωct)

[
1
0

]
. (19.33)



424 AC Electric Motors Control

The model of the machine to the carrier frequency voltage is then given by

[
vαc

vβc

]
≈ d

dt

[
L0 + L1 cos(2θre) −L1 sin(2θre)

−L1 sin(2θre) L0 − L1 cos(2θre)

] [
iαc

iβc

]
, (19.34)

resulting in

[
iαc

iβc

]
= cos(ωct)

[
Ic0 cos(θ̂re)− Ic1 cos(2θre − θ̂re)

−Ic0 sin(θ̂re)+ Ic1 sin(2θre − θ̂re)

]
, (19.35)

where L0 = Lq+Ld

2 and L1 = Lq−Ld

2 are the average inductance and the amplitude of the
spatial modulation of the inductance, respectively, and Ic0 = Vc

ωc

L0
L20−L21

and Ic1 = Vc
ωc

L1
L20−L21

. By

transforming equation (19.35) into the estimated dq axes, the HF component in the estimated
q-axis is

îqc = Ic1 cos(ωct) sin
(
2(θre − θ̂re)

)
. (19.36)

By using a band-pass, demodulation, and low-pass filters as indicated in Figure 19.26a and
a phase-locked loop with a PI controller and integrator, the estimated rotor position can be
extracted as indicated in Figure 19.26b. While the HF injection described above delivers
reliable operation at very low and zero speeds in the face of change of full load, temperature
and machine parameters (Foo et al. 2010), the HF injection scheme loses its merit when the
drive is operated at high speeds where the separation between the fundamental AC frequency

qcî ε ≈ 2Kε sin(2θre)

sin(ωct)

ˆ

BPF

(a)

LPF

(b)

LPF

PI
1
s

+

–
2Kε

θm εθm
~

θm
ˆωmˆ

Figure 19.26 (a) Filtering and demodulation of HF q-axis current for rotor position estimation; (b)
extraction of rotor position with PLL. LPF, low-pass filtering
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in the stator and the HF signal is not high. Clearly, the HF injection is best applied at very
low speed and it should be removed when the drive reaches a reasonable speed. A handover
mechanism is therefore needed that allows this transfer to take place smoothly. The transfer
algorithm may consist of a linear transition weighting of 0 − 1 between speeds of ±100 and
±500 rev/min, as indicated in Figure 19.27a (Foo and Rahman 2010). The flux and speed
estimations are mainly supplied by the HF injection scheme (i.e., W1 = 1) from 0 to ±100
rev/min, linearly reducing to zero at ±500 rev/min while these are mainly supplied by the
SM observer (i.e., W2 = 1) from and ±500 rev/min to top speed, linearly reducing to zero at
±100 rev/min. Figure 19.27b shows the combined HF and SM flux observers with SM DTC.
Figure 19.28 shows the steady-state (at zero speed) and dynamic performance of the controller
of Figure 19.27b. Figure 19.28a indicates the zero-speed performance in terms of actual and
estimated speeds, estimated torque, estimated flux and the speed error, when rated torque is
applied and removed abruptly. The HF injection scheme fully supplies the position, speed,
flux linkage and torque feedback signals during this test. Figure 19.28b shows these signals
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Figure 19.28 Performance of the combined SM DTC and HF injection scheme of Figure 19.27 (a)
zero-speed performance with full rated torque applied abruptly; (b) speed reversal between ±1000
rev/min. [experimental results]

when the machine is driven with speed reference reversing between ±1000 rev/min. Smooth
transition of these estimated signals between the SMO and HF injection schemes is clearly
observed.

19.7 Conclusions

This chapter has described the control characteristics and techniques for the interior permanent
magnet synchronous machine, which has been adopted in traction and a host of other industrial
applications lately. It starts with some description of the magnetic circuits of the machine
followed by a description of its steady-state torque-speed characteristics in a stator quadrature
frame and its dynamic model. The exploitation of the inverse saliency for reluctance torque in
order to achieve a high field-weakening (constant-power) speed range is highlighted. The above
models are used in determining the references for its inner torque control. The control of the
machine in the rotor dq reference frame with mechanical position feedback for transforming
the measured stator currents into the rotor dq reference is then described. There are no
issues with operating this machine under such control to cover a wide speed range from zero
to full field weakening speed range. The mechanical sensor, which is a weak link in drive
systems such as in vehicle traction, is eliminated in sensorless operation. Sensorless control
techniques, which employ the direct torque control and high-frequency injection approaches,
are described in detail. Open-loop and closed-loop stator flux estimators, which are at the heart
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of any sensorless scheme, are then illustrated and their problems and applicability at very low
speed are highlighted. The high-frequency signal injection scheme which estimates the stator
flux with adequate accuracy by exploiting the saliency of such machines for operation at very
low and zero speed is then described. In conclusion, it can be stated that the IPM machine
drive technology now offers very attractive solutions for industrial drives covering speed from
zero to a wide constant-power speed range.
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20.1 Introduction

Compared to others, synchronous motors present several benefits. As already pointed out, for
exanple, in Chapter 3, they feature a remarkable speed reversion flexibility, they exist in a
variety of characteristics (ranging from a few kilowatts to several megawatts), and they enjoy
three control inputs (this is the case of wound rotor synchronous machines (WRSMs)) making
possible to achieve energetic optimization, in addition to speed control.
It is well known that forWRSMs (and generally for all ACmachines), the speed variation can

only be performed by changing the stator frequency. Therefore, three-phase DC/AC inverters
are resorted, due to their high capability, to ensuring flexible voltage and frequency variation.
In the case of AC supply, the (three-phase) net is connected to the three-phase DC/AC inverter
through a transformer and an AC/DC rectifier. The connection line between the rectifier and
the inverter is called DC link.
The control problem at hand is to design controllers able to ensure speed regulation for the

system including the AC/DC converter, the DC/AC inverter and the WRSM (Figure 20.1).
As the rotor is wound, a variable DC voltage source is needed. This is realized by inserting
a DC/DC converter as shown by Figure 20.1. The point is that such system behaves as a
nonlinear load with respect to the AC supply line. Then, undesirable current harmonics are
likely to be generated in the AC line. These harmonics reduce the rectifier efficiency, induce
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Figure 20.1 Structure of the AC/DC/AC-WRSM system

voltage distortion in the AC supply line and cause electromagnetic compatibility problems.
To overcome this drawback, the control objective must not be limited to speed regulation, it
should also include the compensation of current harmonics. The last objective is referred to
power factor correction (PFC) (Singh et al. 2006).
In most works dealing with WRSM control, the control design is simplified by only

focusing on the subsystem “DC/AC inverter—Machine.” That is, the the dynamics of the
AC/DC rectifier are neglected and, consequently, the interaction with the power supply grid
is ignored. The simpler problem has been dealt with using several control strategies rang-
ing from simple techniques, for example, field-oriented control (Saleh et al. 2004), to more
sophisticated nonlinear approaches, for example, feedback linearization (Kuroe et al. 1998),
direct torque control (Pyrhonen et al. 1998) or backstepping design technique (El Magri
et al. 2006), or nonlinear adaptive control (Tomei and Vorelli 2008). A control strategy that
ignores the presence of the AC/DC rectifier suffers at least from two drawbacks. First, the
controller design relies on the assumption that the DC voltage (provided by the AC/DC
rectifier) is perfectly regulated. The point is that perfect regulation of the rectifier output
voltage cannot be ensured ignoring the rectifier load which is nothing other than the set
“DC/AC inverter-Motor.” The second drawback lies in the entire negligence of the PFC
requirement.
The problem of controlling the whole association “AC/DC/AC-PMSM,” connected to a

mono-phase AC grid hase been addressed in El Magri et al. (2010a) and El Magri et al. (2012).
A nonlinear multiloop control strategy has been developed and shown to meet speed regulation
and PFC. This control strategy is presently revisited in two directions by considering WRSMs
(instead of PMSMs) and three-phase AC/DC rectifiers (instead of monophase rectifier). It
turns out that the controlled “AC/DC/AC-WRSM” system is directly supplied by a three-phase
power grid.
The nonlinear multiloop control system is progressively developed in several steps. First, a

three-variable loop is designed that (i) makes the speed motor track its varying reference value;
(ii) regulates the d-component of stator current to zero optimizing thus the absorbed stator
current; and (iii) enforces the excitation current (and consequently the flux in the excitation
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winding) to track a given reference signal. Then, the voltage at the DC link between the
AC/DC rectifier and inverter is regulated to a constant reference value despite changes of
the motor operation conditions. Finally, a reactive power loop is designed that controls the
reactive power delivered to the supply grid. All control loops are designed using the Lyapunov
and the backstepping technique (Krstic et al. 1995). Furthermore, the load torque TL , the
rotor inertia J , the friction coefficient F , and the rotor resistor R f are considered to be
unknown parameters. This parameter uncertainty is coped with by equipping the controller
with a parameter adaptation capability. It will be formally proved that the proposed multiloop
adaptive controller actually stabilizes (globally and asymptotically) the global controlled
system and meets its tracking objectives with a good accuracy. These theoretical results are
obtained making judicious use of adequate control theory tools (Khalil 2003).
The chapter is organized as follows: the system under study (i.e., the AC/DC/AC-PMSM

association) is modeled and given a state space representation in Section 20.2; the controller
design and the closed-loop system analysis are presented in Section 20.3; the controller
performances are illustrated through numerical simulations in Section 20.4.

20.2 System Modeling

The controlled system is illustrated by Figure 20.1. It consists of three subsystems: an AC/DC
boost rectifier, a combination “inverter-synchronous motor,” and a DC/DC converter (exci-
tation circuit). All converters are operating according to the pulse wide modulation (PWM)
principle.

20.2.1 Three-Phases AC/DC Rectifier Modeling

The considered rectifier is a three-phase DC/AC converter of boost type (Figure 20.2). It
involves six semiconductors (insulated gate bipolar transistors (IGBTs)with antiparallel diodes
for bidirectional current flow mode) displayed in three legs a, b, and c. To avoid the short-
circuit of the three-phase voltage source, only one switch on the same leg can be conducting at
a time. Applying Kirchhoff’s laws, this subsystem is shown to be described by the following

AC/DC
converter

Ka

Ka

Kb

Kb

Kc

Kc
' ' '

Vdc

2C

R
S
T

A
C

 G
rid

L0

iris

iga

igb

igc

egaegbegc

Figure 20.2 AC/DC rectifier power circuit for three-phase inputs
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set of differential equations:

L0
d[igabc]

dt
= [egabc]− vdc[kabc] (20.1a)

2C
dvdc

dt
= is − ir (20.1b)

is = [kabc]
T [igabc], (20.1c)

where [igabc] = [ iga igb igc ]T is the three-phase input currents in the electric grid, [egabc] =
[ ega egb egc ]T is the sinusoidal three-phase net voltages (with known constant frequency
ωg), vdc denotes the voltage in capacitor 2C, ir designates the output current converter and
ki (i = a, b, c) is a binary control input determining the switch position. Specifically, one
has

ki =
{
1 if Ki is ON and K ′

i is OFF
0 if Ki is OFF and K ′

i is ON (i = a, b, c).
(20.2)

To simplify the three-phase representation (20.1a) for the synthesis of control laws, the Park
transformation is resorted to project the triphase electrical quantities onto the two-coordinate
dq-frame. Doing so, one gets the following two-phase model:

digd

dt
= 1

L0
Egd + ωgigq − 1

L0
ugdvdc, (20.3a)

digq

dt
= 1

L0
Egq − ωgigd − 1

L0
ugqvdc, (20.3b)

2C
dvdc

dt
= is − ir , (20.3c)

where (Egd , Egq ), (igd , igq ), and (ugd , ugq ) denote, respectively, the network voltage and
current and input control of the rectifier in dq-coordinate. Averaging is performed (over the
PWM cutting ratio) to get around the difficulty associated to the binary nature of the physical
three-phase control input (ka, kb, kc).
The instantaneous power absorbed by the AC/DC converter is given by the well-known

expression PLoad = [egabc]T [igabc] = Egdigd + Egqigq . On the other hand, the power released
by the network is given by POut = isvdc. Using the power conservation principle, that is,
POut ≈ PLoad, one gets irvdc = Egdigd + Egqigq . Then, multiplying by vdc the first equation of
the system (20.3a-c), this rewrites:

2vdc
dvdc

dt
= 1

C
Egdigd + 1

C

(
Egqigq − vdcir

)
, (20.4a)

digd

dt
= 1

L0
Egd + ωgigq − 1

L0
ugdvdc, (20.4b)

digq

dt
= 1

L0
Egq − ωgigd − 1

L0
ugqvdc. (20.4c)
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Vdc

Figure 20.3 The association of the three-phase inverter, DC/DC power circuits, and WRSM

20.2.2 Inverter-Motor Subsystem Modeling

The considered inverter is depicted by Figure 20.3. It contains of six IGBTs, with antiparallel
diodes for bidirectional power flow purpose, connected in bridge mode. The whole system
modeling is generally accomplished in the rotating dq-coordinate frame. Accordingly, all
sinusoidal signals are transformed into continuous quantities along the d- or the q-axis. It is
shown in El Magri et al. (2006) and El Magri et al. (2010b) that the WRSM model, expressed
in the dq-coordinates, can be given the following state space form:

dω

dt
= − F

J
ω + a1

J
isd isq + a2

J
i f isq − 1

J
TL , (20.5a)

disq

dt
= −b1isq − b2isdω − b3i f ω + b4vsq , (20.5b)

disd

dt
= −c1isd + c2R f i f + c3isqω + c4vsd − c5v f , (20.5c)

di f

dt
= −d1R f i f + d2isd − d3isqω − d4vsd + d5v f , (20.5d)

where (vsd ,vsq ) denotes the averaged stator voltage in dq-coordinates, v f denotes the averaged
rotor excitation voltage. The involved coefficients are described in Table 20.1.
The inverter features the fact that the d- and q-components of the stator voltage can be con-

trolled independently. To this end, these voltages are expressed in function of the corresponding
control action (Michael et al. 1998):

vsq = u1vdc, vsd = u2vdc, v f = u3vdc.
In turn, the averaged current writes:

ir = u1i sq + u2i sd + u3i f ,

where u1 = usq ; u2 = usd represent the averaged d- and q-axis components of the three-phase
duty ratio system (s1, s2, s3); u3 = u f is the averaged duty ratio of s4. The binary control
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Table 20.1 Notations used in the WRSM model (20.5)

a1 = p(Ld − Lq ) a2 = pM

b1 = Rs
Lq

b2 = p Ld
Lq

b3 = p M
Lq

b4 = 1
Lq

c1 = Rs L f

Ld L f −M2 c2 = M
Ld L f −M2 c3 = pL f Lq

Ld L f −M2 c4 = L f

Ld L f −M2 c5 = M
Ld L f −M2

d1 = Ld
Ld L f −M2 d2 = Rs M

Ld L f −M2 d3 = pM Lq

Ld L f −M2 d4 = M
Ld L f −M2 d5 = Ld

Ld L f −M2

Rs , stator resistor; R f , rotor resistor; (Ld , Lq ), d- and q-axis stator inductances; L f , rotor inductance;
M , rotor and stator mutual inductance; p, number of pole pairs; F , combined rotor and load viscous
friction; J , combined rotor and load inertia; TL , motor load torque.

inputs si (i = 1 . . . 4), representing the switch positions, are defined as follows:

si =
{
1 if Si is ON and S‘i is OFF
0 if Si is OFF and S‘i is ON (i = 1, 2, 3)

(20.6a)

s4 =
{
1 if S4 is ON
0 if S4 is OFF.

(20.6b)

Now, let us introduce the state variables,

x1 = ω, x2 = i sq , x3 = i sd , x4 = i f , x5 = v2dc, x6 = i gd , and x7 = i gq ,
and the inputs,

u4 = ugd , u5 = ugq .

The latter represent the average d- and q-axis components of the three-phase duty ratio
system (ka, kb, kc). Wherever it comes in, the averaging is intended over the PWM cutting
periods.
The state space equations established so far form a state-space model of the whole system

including the AC/DC/AC converters combined with the wound rotor synchronous motor. For
convenience, the whole model is rewritten here for future referencing:

dx1
dt

= − F

J
x1 + a1

J
x2x3 + a2

J
x2x4 − 1

J
TL , (20.7a)

dx2
dt

= −b1x2 − b2x1x3 − b3x1x4 + b4u1vdc, (20.7b)

dx3
dt

= −c1x3 + c2R f x4 + c3x1x2 + c4u2vdc − c5u3vdc, (20.7c)

dx4
dt

= −d1R f x4 + d2x3 − d3x1x2 − d4u2vdc + d5u3vdc, (20.7d)

dx5
dt

= 1

C
Egd x6 + 1

C

(
Egq x7 − vdcir

)
, (20.7e)
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dx6
dt

= 1

L0
Egd + ωgx7 − 1

L0
u4vdc, (20.7f)

dx7
dt

= 1

L0
Egq − ωgx6 − 1

L0
u5vdc. (20.7g)

20.3 Nonlinear Adaptive Controller Design

20.3.1 Control Objectives

Based on the system model (20.7a–d), a controller has to be developed in order to achieve the
following control objectives:

CO 1: The machine speed ω must track, as closely as possible, a given reference
signal ωref .

CO 2: The inverter output currents (iga, igb, igc) must be sinusoidal with the same
frequency as the supplied power grid, the reactive power in the AC grid must be
well regulated.

As there are five control inputs at hand, namely, u1, u2, u3, u4, and u5, we seek three additional
control objectives, namely:

CO 3: Regulate the current isd to a reference value isdref , preferably equal to
zero in order to guarantee the absence of d-axis stator current, implying thus no
reluctance torque. Doing so, only the q-axis reactance impacts the final voltage.
In particular, no direct magnetization/demagnetization along the d-axis is needed,
that is, only the field winding contributes to producing the flux along this direction
(Muhammad and Rashid 2001).

CO 4: Control the excitation current i f (and so the flux in the excitation winding)
making it track as closely as possible a given reference signal ifref (generally equal
to the constant nominal excitation current).

CO 5: Control the continuous voltage vdc making it track a given reference signal
vdcref . Generally, this is set equal to the constant nominal voltage applied at the
inverter input.

The above control objectives must be achieved despite the fact that the load torque TL , the
inertia J , the viscous friction F , and the rotor resistor R f are presently allowed to be unknown
and changing. This parameter uncertainty is coped with by providing the controller with an
adaptation capability. The adaptive controller design will be performed using the backstepping
technique (Krstic et al. 1995). This technique has already used in previous chapters (e.g., 10
and 13). It involves a progressive construction of Lyapunov functions, virtual control signals,
and stabilizing control functions. Given the system complexity and the control objective
multiplicity, the resulting adaptive controller will consist of several loops the design of which
will be organized in two major stages. The control design for the inverter-motor subsystem is
dealt with in the first stage; the rectifier control designwill be is investigated in the second stage.
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20.3.2 Inverter-Motor Subsystem Control Design

The control inputs that act on the inverter-motor subsystem are (u1, u2, u3). The corresponding
control laws must be designed in order to meet the three control objectives concerning the
inverter-motor, namely, CO 1, CO 3, and CO 4. These objectives will be separately investigated
in three separate subsections, where the control law of each input (u1, u2, u3) is established.

Speed Regulator Design for WRSM

Presently, the focus is made on the control objective CO 1. Based on equations (20.7a–b), a first
equation involving the control inputs (u1, u2, u3) will now be designed, using the backstepping
technique (Krstic et al. 1995), so that the motor speed ω tracks well any reference ωref . As the
subsystem (20.7a–b) is of relative degree 2, the design towards that equation is performed in
two steps.

Step 1: Let z1 denotes the speed tracking error:

z1 = x1 − x∗
1 def= ω − ωref . (20.8)

In view of (20.7a), this error undergoes the following equation:

ż1 = − F

J
x1 + 1

J
(a1x3 + a2x4) x2 − TL

J
− ẋ∗

1 . (20.9)

In (20.9), the quantity α = (a1x3 + a2x4) x2 stands up as a (virtual) control input for the z1-
dynamics because the actual control inputs (presently u1, u2, and u3) act on z1 indirectly
through α. Following the backstepping design technique, the following Lyapunov function
candidate is considered:

V1 = 0.5 z21. (20.10)

Deriving V1 along the trajectory of (20.9) yields

V̇1 = z1 ż1 = z1

(
− F

J
x1 + 1

J
α − TL

J
− ẋ∗

1

)
. (20.11)

This suggests the following control law for the (virtual control) α:

α∗ = −k1 J z1 + F x1 + TL + J ẋ∗
1 (20.12)

with k1 > 0 a design parameter. Indeed, substituting α∗ to α gives V̇1 = −k1 z21 that is negative
definite in z1. The point is that J , F , and TL are unknown. Then, these must be replaced in
equation (20.12) by their estimates (denoted Ĵ , F̂ , and T̂L that have yet to be determined).
Doing so, one gets the following stabilizing function:

α̂∗ = −k1 Ĵ z1 + F̂ x1 + T̂L + Ĵ ẋ∗
1 . (20.13)
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As α = (a1x3 + a2x4) x2 is just a virtual control input, one cannot set α = α̂∗. Nevertheless,
the above expression of α̂∗ is retained and a new error is introduced:

z2 = α − α̂∗. (20.14)

Using equations (20.13)–(20.14), it follows from (20.9) that the z1-dynamics undergo the
following equation:

ż1 = −k1 z1 + z2
J

+ J̃

J

(
k1 z1 − ẋ∗

1

) − T̃L

J
− F̃

J
x1, (20.15)

where J̃ = J − Ĵ , F̃ = F − F̂ , and T̃L = TL − T̂L .
Step 2: Now, the aim is to make the couple of errors (z1, z2) vanish asymptotically. The

trajectory of the error z2 is obtained by time-derivation of the equation (20.14):

ż2 = (a1 ẋ3 + a2 ẋ4) x2 + (a1x3 + a2x4) ẋ2 − ˙̂α
∗
. (20.16)

Using equations (20.13)–(20.15) and the subsystem (20.7a–b) in (20.16) yields the following
z2-dynamics:

ż2 = α1 u1vdc + α2 u2vdc + α3 u3vdc

+β (x1...4)− Ĵ
(
k21 z1 + ẍ∗

1

) + k1 z2 + F̂
(
k1 z1 − ẋ∗

1

)
− J̃

J

(
k1 z2 − Ĵ k1

(
k1 z1 − ẋ∗

1

)) − F̃
J Ĵ k1 x1 − T̃L

J ( Ĵ k1 + F̂)

+ (
k1 z1 − ẋ∗

1

) ˙̂J − ˙̂T L − ˙̂F x1

− F̂
J

(
z2 + J̃

(
k1 z1 − ẋ∗

1

) − T̃L − F̃ x1
) + x2x4 (a1c2 − a2d1) R̃ f

(20.17)

with

β (xi=1...4) = (a1 x3 + a2 x4) (−b1 x2 − b2 x1 x3 − b3 x1 x4)

+a1 x2
(−c1 x3 + R̂ f c2 x4 + c3 x1x2

)
+a2 x2

(−R̂ f d1 x4 + d2 x3 − d3 x1x2
)

α1 = b4 (a1 x3 + a2 x4)

α2 = x2 (a1 c4 − a2 d4)

α3 = x2 (−a1 c5 + a2 d5) ,

where R̃ f denotes an estimate (yet to be determined) of R f and R̃ f = R f − R̂ f . For conve-
nience, the error equations (20.15) and (20.17) are put together:

ż1 = −k1 z1 + z2
J

+ J̃

J

(
k1 z1 − ẋ∗

1

) − T̃L

J
− F̃

J
x1, (20.18a)
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ż2 = γ − F
J z2 + x2x4 (a1c2 − a2 d1) R̃ f

− J̃
J

(
k1 z2 − ( Ĵ k1 − F̂)

(
k1 z1 − ẋ∗

1

))
− F̃

J

(
( Ĵ k1 − F̂)x1 + z2

) − T̃L
J

(
Ĵ k1 − F̂

)
,

(20.18b)

with

γ = β (x1...4)+ k1 z2 + α1 u1vdc + α2 u2vdc + α3 u3vdc

− Ĵ
(
k21 z1 + ẍ∗

1

) + F̂
(
k1 z1 − ẋ∗

1

) + ˙̂J
(
k1 z1 − ẋ∗

1

) − ˙̂T L − ˙̂F x1,
(20.19)

Note that the actual control inputs (u1, u2, u3) have come out for the first time in the second
differential equation (20.18a), through the quantity γ which acts there as a control variable.
To determine a stabilizing control law for (20.18a), let us consider the following quadratic
Lyapunov function candidate:

V2 = 1

2
z21 + 1

2
z22 + 1

2J
J̃ 2 + 1

2J
F̃2 + 1

2J
T̃ 2L . (20.20)

Using (20.18a), one gets from (20.20):

V̇2 = z1 ż1 + z2 ż2 + J̃
J
˙̃J + F̃

J
˙̃F + T̃L

J
˙̃T L

= −k1 z21 + γ z2 + 1
J z1z2 − F

J z22 + (a1c2 − a2d1) x2x4z2 R̃ f

+ J̃
J

(
z1 (k1 z1 − ẋ∗

1 )− k1 z21 + ( Ĵ k1 − F̂)(k1 z1 − ẋ∗
1 )z2 − ˙̂J

)
+ F̃

J

( − x1z1 − z22 − ( Ĵ k1 − F̂)x1z2 − ˙̂F
)

+ T̃L
J

( − z1 − ( Ĵ k1 − F̂)z2 − ˙̂T L
)
.

(20.21)

The three last terms in the second equality (20.21) can be canceled by using the following
adaptive laws:

˙̂J = z1
(
k1 z1 − ẋ∗

1

) − k1 z21 + ( Ĵ k1 − F̂)
(
k1 z1 − ẋ∗

1

)
z2, (20.22a)

˙̂F = −x1z1 − z22 − ( Ĵ k1 − F̂)x1z2, (20.22b)

˙̂T L = −z1 − ( Ĵ k1 − F̂)z2. (20.22c)

Substituting (20.22a–c) in (20.21), one gets

V̇2 = −k1 z21 + γ z2 + 1

J
z1z2 − F

J
z22 + (a1c2 − a2d1) x2x4z2 R̃ f . (20.23)

This suggests for the control variable γ the following choice:

γ = −k2 z2, (20.24)
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where k2 > 2 is a new design parameter. Indeed, substituting equation (20.24) in (20.23) yields
(20.25):

V̇2 = −k1 z21 −
(

k2 + F

J

)
z22 + 1

J
z1z2 + a1(c2 − d1) x2x4z2 R̃ f . (20.25)

Now, substituting (20.24) in (20.18a), one obtains the following speed closed-loop control
system:

ż1 = −k1 z1 + z2
J

+ J̃

J

(
k1 z1 − ẋ∗

1

) − T̃L

J
− F̃

J
x1 (20.26)

ż2 = −k2 z2 − F
J z2 + (a1c2 − a2d1) x2x4z2 R̃ f

− J̃
J

(
k1 z2 − ( Ĵ k1 − F̂)(k1 z1 − ẋ∗

1 )
)

− F̃
J

(
( Ĵ k1 − F̂)x1 + z2

) − T̃L
J ( Ĵ k1 − F̂).

(20.27)

Finally, combining (20.24) and (20.19) gives a first equation involving the three actual control
inputs (u1, u2, u3):

(α1 u1 + α2 u2 + α2 u2)vdc = −k2 z2 − β(x1...4)− F̂
(
k1 z1 − ẋ∗

1

)
+ Ĵ

(
k21 z1 + ẍ∗

1

) − k1 z2 − ˙̂J
(
k1 z1 − ẋ∗

1

) + ˙̂T L + ˙̂F x1.
(20.28)

Control Design for the Stator d-axis Current

Here, the focus is put on the control objective CO 3 that involves the d-axis current x3 = i sd

that is required to track its reference x∗
3
def= isdref = 0. To harmonize notation throughout this

section, the corresponding tracking error is denoted z3 = x3 − x∗
3 = x3 . It follows from

equation (20.7c) that z3 undergoes the differential equation ż3 = −c1 z3 + v with,

v = c2R f x4 + c3 x1x2 + c4 u2vdc − c5 u3vdc. (20.29)

Clearly, v acts as a virtual input in the differential equation ż3 = −c1 z3 + v. As the latter
is a first order, it can be (globally asymptotically) stabilized using a simple proportional
control law, that is, v = c1 z3 + k3 z3 with k3 any positive real parameter. The point is that the
parameter R f is unknown making this resistor not accessible to measurements. Therefore, we
consider as virtual input the following equivalence form of v:

v̂ = c2 R̂ f x4 + c3 x1x2 + c4 u2vdc − c5 u3vdc, (20.30)

where R̂ f is an estimate (yet to be found) of R f . Then, equation ż3 = −c1 z3 + v can be
expressed in term of v̂ as follows:

ż3 = c1 z3 + v̂ + R̃ f c2 x4, (20.31)
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where R̃ f = R f − R̂ f . To asymptotically stabilize this first-order system, we consider the
following (adaptive) proportional control law:

v̂ = c1 z3 − k3 z3. (20.32)

Substituting the right side of equation (20.30) to v̂ in (20.31), one gets the following represen-
tation of the d-axis current control loop:

ż3 = −k3 z3 + R̃ f c2 x4. (20.33)

The asymptotic stability of the error equation (20.33) cannot be performed before a variation
law is associated to R̃ f = R f − R̂ f (or, equivalently, to R f ). This will be done in a next
subsection because the parameter R f influences also the excitation current i f . In other words,
the update law for R f must selected bearing in mind both control objectives CO 3 and CO 4,
which concern the currents isd and i f , respectively. Nevertheless, one major result of the
present subsection is the couple of equations (20.30) and (20.32). Combining these, one gets
a second equation in the three control inputs (u1, u2, u3), that is,

− c4 u2vdc + c5 u3vdc = R̂ f c2 x4 + c3 x1x2 − c1 z3 + k3 z3. (20.34)

Excitation Current Control Design

According to the control objective CO 4, the excitation current x4 = i f must track its reference
signal x∗

4 = ifref , generally equal to the nominal value of that current. Introducing the tracking
error z4 = x4 − x∗

4 , it follows from (20.7d) that this error undergoes the following equation:

ż4 = −d1R f x4 + w − ẋ∗
4 , (20.35)

where

w = d2 x3 − d3 x1x2 − d4 u2vdc + d5 u3vdc. (20.36)

The signal w acts in (20.35) as a virtual control input. As the equation (20.35) is a first-order
system, it can be asymptotically stabilized using a simple proportional control law, that is,
w = d1R f x4 + ẋ∗

4 − k4 z4, with k4 is any positive real parameter. Indeed, combining this
control law with (20.35) gives ż4 = −k4 z4 which clearly is globally asymptotically stable
because k4 is positive. The point is that the rotor resistor R f is unknown. Then, the above
control law is replaced by its equivalence form, simply obtained by substituting R̂ f to R f :

w = R̂ f d1 x4 + ẋ∗
4 − k4 z4. (20.37)

Combining (20.37) and (20.35), one obtains the following differential equation describing the
closed-loop for the current i f :

ż4 = −k4 z4 − d1 R̃ f x4. (20.38)
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Combining equations (20.36) and (20.37), one gets a third equation in the control inputs (u1,
u2, u3):

d4 u2vdc − d5 u3vdc = −R̂ f d1 x4 − d3 x1x2 + d2 x3 + k4 z4 − ẋ∗
4 . (20.39)

Control Laws and Rotor Resistor Update Law

Solving equations (20.34) and (20.39) with respect to (u2, u3), one gets

[
u2
u3

]
= 1

vdc

[
c4 −c5

−d4 d5

]−1 [
c1 z3 − k3 z3 − R̂ f c2 x4 − c3 x1x2
R̂ f d1 x4 − k4 z4 − d2 x3 + d3 x1x2 + ẋ∗

4

]
. (20.40)

Now that (u2, u3) are available, one can obtain u1 from (20.28), that is,

u1 = 1
α1 vdc

{−α2 u2vdc − α3 u3vdc − k2 z2 − β(x1...4)− F̂(k1 z1 − ẋ∗
1 )

+ Ĵ
(
k21 z1 + ẍ∗

1

) − k1 z2 − ˙̂J (k1 z1 − ẋ∗
1 )+ ˙̂T L + ˙̂F x1}.

(20.41)

The above control laws involve the parameter estimates Ĵ , T̂L , F̂ , and R̂ f . The first three
parameters are updated by the adaptive laws (20.22a–c). The update law of the fourth parameter
has yet to be determined. To this end, consider the following augmented Lyapunov function:

V = V2 + 1

2

(
z23 + z24 + R̃2f

)
. (20.42)

Using equations (20.25), (20.33), and (20.38), the time-derivation of (20.42) gives

V̇ = V̇2 + z3 ż3 + z4 ż4 + R̃ f
˙̃R f

= −k1 z21 − (
k2 + F

J

)
z22 + 1

J z1z2 − k3 z23 − k4 z24

+R̃ f
(
c2 x4z3 − d1 x4z4 + (a1c2 − a2d1) x2x4z2 − ˙̃R f

)
.

(20.43)

The last line on the right side of equation (20.43) suggests the following update law for R̃ f :

˙̃R f = − ˙̂R f = −c2 x4z3 + d1 x4z4 − (a1c2 − a2d1) x2x4z2. (20.44)

Remark 20.3.1 The inversed matrix in (20.40) is actually invertible because its determinant
c4d5 − c5d4, equal to 1

Lsd L f −M2 , is nonzero. Also, the division by the DC-link voltage vdc

implies no singularity risk in practice. In this regard, recall that vdc is the DC voltage at the
output of the AC/DC rectifier. This will be regulated to track a nonzero constant reference value,
generally equal to the amplitude of the nominal inverter input voltage. That is, the (theoretical)
singularity risk may only occur in transient periods. Also, note that a null voltage vdc means
that the motor is no longer powered and so it stops rotating. Practically, this situation is
mainly faced at start-up stages. This issue is usually coped with by resorting to open-loop
control at start-up stages which last a short time, just the necessary time to make the motor
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start rotating. In practice, it is also usual to substitute in (20.40), max(vdc, ε) to vdc with ε a
sufficiently small threshold.

Theorem 20.3.2 (inverter-motor control performances). Consider the closed-loop system
composed of the inverter-motor subsystem, described by equations (20.7a-d), and the adaptive
regulator (20.40)–(20.41). Then, one has the following properties.

(1) The error vector Z1 = [z1 z2 z3 z4]T undergoes the following equation:

Ż1(t) = B1Z1(t)+ η(Z1(t), �̃), (20.45)

with

�̃ = [
J̃ F̃ T̃L R̃ f

]T
; B1 =

⎛
⎜⎜⎝

−k1
1
J 0 0

0 − (
k2 + F

J

)
0 0

0 0 −k3 0
0 0 0 −k4

⎞
⎟⎟⎠

η(Z1, �̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J̃
J (k1 z1 − ẋ∗

1 )− T̃L
J − F̃

J x1

J̃
J

(
k1 z2 − ( Ĵ k1 − F̂)(k1 z1 − ẋ∗

1 + F̃
J x1 + T̃L

J )
)

+ F̃
J z2 + (a1c2 − a2d1)R̃ f x2x4z2

c2 R̃ f x4

−d1 R̃ f x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2) Let the design parameters (k1, k2, k3, k4) be any positive real numbers such that δ > 0,

with δ
def= min(k1, (k2 + F

J
))− J

2
. Then, the vectors Z1 and �̃ remain bounded and

Z1 = [z1 z2 z3 z4]T vanishes asymptotically, whatever their initial conditions.

Proof: The system with the augmented state vector
[
Z T
1 �̃T

]T
is defined by equations

(20.22a–c), (20.44), and (20.45) that actually can be given the compact form:

Ż1(t) = B1Z1(t)+ η(Z1(t), �̃) (20.46)

˙̃� = ξ (Z1, �̃), (20.47)

where the four components of ξ (Z1, �̃) are nothing other than the right sides of (20.22a–c) and
(20.44). To analyze the nonautonomous system (20.46), consider again the Lypunov function
(20.42) and its time-derivative (20.43). Substituting the right side of (20.44) to ˙̃R f in (20.42),
one obtains the time derivative of Lyapunov function V :

V̇ = −k1 z21 −
(

k2 + F

J

)
z22 + 1

J
z1z2 − k3 z23 − k4 z24. (20.48)
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Using the well known inequality z1z2 ≤ 1
2 (z

2
1 + z22) in (20.48), one gets

V̇ ≤ −δ
(
z21 + z22

) − k3 z23 − k4 z24 with δ
def= min

(
k1,

(
k2 + F

J

))
− J

2
. (20.49)

As δ > 0, the derivative V̇ turns out to be a negative definite function of (z1, z2, z3, z4).
This immediately implies that V , and so zi (i = 1 . . . 4) and �̃, remain bounded. Furthermore,
applying Lasalle’s invariant principle, it follows from equation (20.49) that the vector Z1 =
[z1 z2 z3 z4]T converges to the origin, whatever the initial conditions.

20.3.3 Reactive Power and DC Voltage Controller

In this subsection, we seek the realization of the control objectives (CO 2) and (CO 5). The
former consisting in making sure that the input current is sinusoidal and in phase or opposite-
phase (if the references of the reactive power is regulated equal to zero) with the supply grid
voltage. The objective (CO 5) entails the regulation of the continuous voltage vdc making
it track a given reference signal vdcref . These objectives will be achieved by designing two
additional control loops. The DC voltage regulation loop is designed first. and the second
ensures the injection of the desired reactive power.

DC voltage Loop

Based on equations (20.7e–g), a first equation involving the control input u4 will now be
designed so that the squared DC-link voltage x5 = v2dc > 0 tracks well any reference signal
x∗
5 = v2dcref . As the subsystem (20.7e–f) is of relative degree 2, the design towards that equation
is performed in two steps.

Step 1: Let z5 denote the squared DC-link voltage tracking error:

z5 = x5 − x∗
5 . (20.50)

In view of (20.7e), the above error undergoes the following equation:

ż5 = 1

C
Egd x6 + β1(x1...7, z1...4)− ẋ∗

5 , (20.51)

where

β1 = 1

C
Egq x7 − vdc

C
(u1x2 + u2x3 + u3x4) .

In equation (20.51), the quantity ρ = 1
C Egd x6 stands up as a (virtual) control input for the

z5-dynamics because the actual control input u4 acts on z5 indirectly through ρ. Following
the backstepping design technique, the Lyapunov function candidate V5 = 1

2 z25 is considered.
Deriving V5 along the trajectory of (20.7e) yields

V̇5 = z5 ż5 = −z5

(
− Egd

C
x6 − β1(x, z)+ ẋ∗

5

)
. (20.52)
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This suggests for the (virtual control) ρ the following control law:

ρ∗ = k5 z5 + β1(x, z)− ẋ∗
5 . (20.53)

with k5 > 0 a design parameter. Indeed, substituting ρ∗ to ρ = 1
C Egd x6 gives V̇5 = −k5 z25

which clearly is negative definite in z5. As ρ is just a virtual control input, one can not set
ρ = ρ∗. Nevertheless, the above expression of ρ∗ is retained and a new error is introduced:

z6 = ρ − ρ∗. (20.54)

Using (20.53), it follows from (20.51) that the z5-dynamics undergoes the following equation:

ż5 = −k5 z5 + z6. (20.55)

Step 2: Now, the aim is to make the couple of errors (z5,z6) vanish asymptotically. The
trajectory of the error z6 is obtained by time-derivation of (20.54), that is,

ż6 = Egd

C
ẋ6 + k5 ż5 + β̇1(x, z)− z̈∗

5. (20.56)

Using equations (20.55) and (20.7e–f) in (20.56) yields

ż6 = β2(xi , zi )− Egd

C L0
u4vdc, (20.57)

with

β2(xi , zi ) = k5 ż5 + β̇1(x, z)− ẍ∗
5 + E2gd

C L0
− Egd

C
ωgx7. (20.58)

To determine a stabilizing control law for (20.7e–f), let us consider the quadratic Lyapunov
function candidate V6 = 1

2 z25 + 1
2 z26. Using (20.38)–(20.55), one gets from the expression of

V6 that

V̇6 = −k5 z25 + z6

(
z5 + β2(x, z)+ Egd

C L0
u4vdc

)
. (20.59)

This suggests for the control variable u4 the following choice:

u4 = − C L0
Egdvdc

(k6 z6 + z5 + β2(x, z)) , (20.60)

where k6 > 0 is a new design parameter. Indeed, substituting (20.60) in (20.59) yields

V̇6 = −k5 z25 − k6 z26 < 0. (20.61)
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Now, substituting (20.60) in (20.57) one obtains the DC voltage closed-loop control system:

ż5 = −k5 z5 + z6, (20.62a)

ż6 = −k6 z6 − z5. (20.62b)

Reactive Power Loop

To meet the control objective (CO 2), the reactive power Qg must be enforced to track its
reference Q∗

g . In this respect, note that the electrical reactive power injected in the grid is given
by Qg = Egd x7 − Egq x6. To harmonize notation throughout this section, the corresponding
tracking error is denoted z7 = Qg − Q∗

g . It follows from (20.7f–g) that z7 undergoes the
following differential equation:

ż7 = β3(x6, vdc)− vdc

L0

(
Egd u5 − Egq u4

)
, (20.63)

with

β3(x6, vdc) = −ωg
(
Egd x6 + Egq x7

) − Q̇∗
g.

As the equation (20.63) is a first order, it can be (globally asymptotically) stabilized using a
simple proportional control law:

(
Egq u4 − Egd u5

) vdc

L0
= −k7 z7 − β3(x6, vdc) with k7 > 0. (20.64)

Then the control law u5 is given by

u5 =
(

L0
Egdvdc

(k7 z7 + β3(x6, vdc))+ Egq

Egd
u4

)
. (20.65)

It can be easily checked that the dynamic of z7 undergoes the following equation:

ż7 = −k7 z7. (20.66)

The DC voltage and reactive power regulators, defined by (20.60) and (20.65), are analyzed
in the following theorem.

Theorem 20.3.3 Consider the control system consisting of the subsystem (20.7e–g) and
the control laws (20.60) and (20.65). The resulting closed-loop system undergoes, in the
Z2 = [z5 z6 z7]T coordinates, the following equation:

Ż2 = B2 Z2, (20.67)

with,

B2 =
⎛
⎝−k5 1 0

−1 −k6 0
0 0 −k7

⎞
⎠ .
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This equation defines a stable system and the error vector Z2 = [z5 z6 z7]T converges
exponentially fast to zero, whatever their initial values.

Proof: Equation (20.67) is directly obtained from equations (20.62) and (20.66). It is clear
that the matrix B2 is Hurwitz, implying that the closed loop system (20.67) is globally
exponentially stable. This completes the proof of theorem 20.3.3.

Remark 20.3.4 (i) The motor speed, the d-component of its stator current and the excitation
current all converge to their respective references because the errors (z1, z3, z4) converge to
zero. This is a direct result of Theorem 20.3.2.

(ii) Theorem 20.3.3 also demonstrates that the tracking objectives concerning the DC-link
squared voltage x5 = v2dc and the reactive power Qg = Egd x7 − Egq x6 are actually achieved.

20.4 Simulation

20.4.1 Simulation and Implementation Considerations

The global control system described by Figure 20.4 is simulated using the Matlab/Simulink
(V. R2010a), operating under Windows Vista. The ODE14x (extrapolation) solver is selected
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Figure 20.4 Adaptive control system developed for the association including AC/DC/AC converters
and a wound rotor synchronous motor
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Table 20.2 System characteristics

Characteristics Symbol Value Unity

Supply network
Three-phase voltages 380–220 V
Network frequency fg 50 Hz

AC/DC/AC converters
Inductor L0 10.00 mH
Capacitor C 47.00 mF
Modulation frequency 10.00 KHz

Synchronous motor
Nominal power Pn 7.00 KW
Stator resistor Rs 1.11 �

d-axis stator inductance Ld 45.40 mH
q-axis stator inductance Lq 37.48 mH
Number of pole pairs p 2
Combined rotor and load inertia J 0.22 Nm/rad/s2

Combined rotor and load viscous friction F 0.0064 Nm/rad/s

with fixed step time 10μs. The controlled part is a system including the associated three-phases
AC/DC/AC power converters and the wound rotor synchronous motor with the numerical
values of Table 20.2. The adaptive nonlinear feedback controller, including the control laws
(20.40), (20.41), (20.65), and (20.65), is also implemented using Matlab/Simulink resources.
The same equation solver as previously is selected.
For convenience, let us recapitulate the underlying control and update laws generating the

five control actions (u1, u2, u3, u4, u5):

u1 = 1
α1 vdc

{−α2 u2vdc − α3 u3vdc − k2 z2 − β(x1...4)− F̂(k1 z1 − ẋ∗
1 )

+ Ĵ
(
k21 z1 + ẍ∗

1

) − k1 z2 − ˙̂J (k1 z1 − ẋ∗
1 )+ ˙̂T L + ˙̂F x1},[

u2
u3

]
= 1

vdc

[
c4 −c5

−d4 d5

]−1 [
c1 z3 − k3 z3 − R̂ f c2 x4 − c3 x1x2

R̂ f d1 x4 − k4 z4 − d2 x3 + d3 x1x2 + ẋ∗
4

]
,

u4 = − C L0
Egdvdc

(k6 z6 + z5 + β2(x, z)) ,

u5 =
(

L0
Egdvdc

(k7 z7 + β3(x6, vdc))+ Egq

Egd
u4

)
,

˙̂J = z1 (k1 z1 − ẋ∗
1 )− k1 z21 + ( Ĵ k1 − F̂)(k1 z1 − ẋ∗

1 )z2,
˙̂F = −x1z1 − z22 − ( Ĵ k1 − F̂)x1z2,
˙̂T L = −z1 − ( Ĵ k1 − F̂)z2,
˙̂R f = c2 x4z3 − d1 x4z4 + (a1c2 − a2d1) x2x4z2.

As a matter of fact, the control performances depend, among others, on the numerical values
given to the controller parameters, that is, ki (i = 1 . . . 7). The point is that there is no systematic
way, especially in nonlinear control, to make suitable choices for these values. Therefore, the
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usual practice consists in proceeding with a try-and-error search. Doing so, the following
(nonunique) suitable numerical values are obtained:

k1 = 9; k2 = 100; k3 = 20; k4 = 20; k5 = 10; k6 = 900; k7 = 9.

The controller performances will be evaluated in presence of (time-varying) rotor speed
reference x∗

1 = ωref and load torque TL . According to the control design (Section 20.3), the
remaining closed loop inputs are kept constant, namely, x∗

3 = isdref = 0, x∗
4 = ifref = 3.5 A,

vdcref = 600 V and Qgref = 0 V AR. The system unknown parameters (i.e., the combined
rotor/load inertia J (Nm/rd/s2), the viscous friction F(Nm/rd/s) and the rotor resistor (R f )
will also be subject to variations.

20.4.2 Simulation Results

Presently, both the rotor speed reference ωref and load torque TL are filtered step-like sig-
nals (Figure 20.5a). First, Figure 20.5a shows that the speed signal reference takes a low, a
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Figure 20.5 Tracking performances of the controller defined by equations (20.41) and (20.40) in
response to the varying speed reference and load torque and variations of the machine parameters.
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Figure 20.6 Tracking performances of the controller defined by (20.60) and (20.65) in response to the
varying speed reference and load torque.

medium and a high value (respectively, equal to 20, 100, and 150). Filtering is resorted to
make these references derivable and their derivatives available because these are needed in the
controller. The unknown system parameters are varying as shown by Figure 20.5d. Accord-
ingly, the viscous friction coefficient is subject to a step variation of 50% of its nominal value,
0.0096Nm/rd/s, between t = 9 s and t = 9.5 s. Similarly, a variation of 100% (resp. 50%) of
the inertia (resp. the rotor resistor) between t = 8 s and t = 8.5 s (resp. t = 7 s and 7.5 s) is
considered. All parameter variations are entirely ignored in the controller which solely relies
on the nominal values.
The adaptive controller performances are illustrated by the curves in Figures 20.5 and

20.6.
Curves (a) and (b) show that the machine speed, x1 = ω, the d-component of the stator

current, x3 = isd and the excitation current x4 = i f , all perfectly converge to their respective
references; confirming thus theorem (20.3.2). The tracking quality, of these variables, is quite
satisfactory as the response time (after each change in the speed reference, load torque and/or
the unknown variations of the parameters values) is less than 0.3s for all variables. The resulting
control actions (u1, u2, u3) are illustrated by Figure 20.5c. It is seen, from this figure, that
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all the control inputs of the DC/AC converter are bounded and belong to the interval [−1 1].
Figure 20.6a shows that DC-link voltage vdc is tightly regulated: it quickly settles down after
each change in the speed reference and/or load torque.
Figures 20.6b and 20.6c show respectively the reactive power (Qg) extracted at the three-

phases AC-grid and the corresponding current in phase a (iga). It is seen that the reactive power
is perfectly converging to its reference trajectory. Figure 20.6c shows that the current amplitude
changeswhenever the speed reference and/or the load torque vary (comparewith Figure 20.5a).
But, the current frequency is insensitive to these changes (second figure in Figure 20.6b).
Furthermore, the current remains (almost) all time in phase with the supply net voltages
complying with the PFC requirement. This is particularly demonstrated by Figure 20.6d
which shows that the control inputs (u4, u5), of the three phase AC/DC converter, converge to
constant values, after transient periods following the changes in rotor speed reference, and/or
load torque.

20.5 Conclusion

We have addressed the problem of adaptively controlling associations including an AC/DC
rectifier, a DC/AC inverter and a wound rotor synchronous motor. The controlled system is
connected with a three-phase supply grid. Parameter adaptation is resorted to cope with the
uncertainty on the rotor inertia J , the viscous friction F , the load torque TL , and rotor resistor
R f . The system dynamics have been described by the averaged seventh order nonlinear state-
space model (20.7). Based on this model, the multiloop nonlinear controller defined by the
control laws (20.41), (20.40), (20.60), and (20.65) is developed using the backstepping design
technique. It is formally shown that the multiloop nonlinear adaptive controller meets all
control objectives (CO 1, CO 2, CO 3, CO 4, and CO 5). This theoretical result is confirmed
by simulation.
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21.1 Introduction

The application of electric machines in electric and hybrid electric vehicles, in which an
electric motor is used for providing the traction either fully (for EVs) or partially (for HEVs),
has been gathering pace after many decades of sporadic developments (Rajashekara 1994;
Dutta et al. 2011). Currently, there exist many variants of HEVs in which one or two electric
motors combine with an internal combustion engine (ICE) in delivering traction to the wheels.
The impetus for the current trend towards HEVs and EVs stems not only from considerations
of environmental issues and fuel saving but also from adding enhanced functionalities and
features that can be derived from electric traction (Hori et al. 1998). At the heart of a modern
EV or HEV is an electric motor that can deliver bidirectional torque quickly and precisely
over a wide speed range on demand set by a driver or the vehicle control system. An electric
motor, which does this job better than an ICE, will have the following attributes:

1. Ability to produce high torque at low speed, including zero speed, for operation without a
clutch. This torque must be produced with high dynamics.

2. Operation with a high field-weakening (constant-power) speed range (CPSR), up to about
five times the base speed. The base speed is the speed up to which the motor is capable of
producing its maximum or rated torque.

3. Operation of themotor and its drive circuits over the whole speed rangewith high efficiency,
high reliability and low maintenance.

4. Four-quadrant operation with regenerative braking, returning the overhauling energy into
a storage device.

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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These attributes can be met by well-designed AC machines, such as the AC induction
and interior permanent magnet (IPM) synchronous machines. Recently developed switched
reluctance motors are also showing signs of comparable performance, notwithstanding the
poorer volt-ampere capacity of its power converter, compared to the other AC machines.
The dynamic response of an electric machine to a torque demand is considered to be at least

an order of magnitude faster than an ICE, and not subject to driving conditions such as air
temperature, fuel type, and the regular maintenance requirements of the ICE as much. These
make possible many new functionalities to be included in EVs (Hori et al. 1998). Although
various configurations of HEVs and EVs have been tried over more than a century, HEVs
became commercially viable since 1997 when Toyota introduced the Prius model. Honda
introduced its Insight HEV in 1999. Toyota has now sold more than 2.5 million HEVs and the
worldwide sale of this type of vehicles appears to be rising exponentially. Almost all major
vehicle makers now have an HEV product line. Pure electric vehicles, which do not use an
ICE for traction directly but may use the ICE for charging the batteries for extending the drive
range. GM Volt, introduced in 2011, uses this strategy. Other than these, various HEV and
EV structures are now finding use in electric bicycles, motor cycles, scooters, trucks, buses
and military vehicles, not to mention the electric propulsion in railway locomotives and ships.
Even Boeing has declared its intention of using electric propulsion in subsonic aircraft in order
to shorten the take-off distance and to reduce noise.
During the past 15 years, several generations of hybrid electric vehicles have evolved. These

combine an ICEwith an electric motor for traction, and for regenerative braking in which some
of the energy of the overhauling vehicle are returned to a battery for later use in traction and
start-stop duty. The start-stop duty may eliminate the idling mode of operation that is routine
for vehicles with ICE only. The latter two modes of operation immediately improve the fuel
efficiency of the vehicle. Sharing of the traction loadwith both the ICE and the electric machine
and the faster response of the electric machine allows additional features to be incorporated.
The development and adoption of commercial electric and plug-in electric vehicles have lagged
behind HEVs mainly owing to lack of cost- and space-effective battery capacity.
The major equipment for electric traction in vehicles consist of bidirectional power con-

version units, electric machines for traction and generation, and battery charging circuits that
may be shared with inverter used for driving the traction motor. Figure 21.1a depicts a parallel
hybrid system popularized by Toyota in which the shaft torque from an ICE and a traction
motor are coupled through a planetary gearbox indicated in Figure 21.1b. The power range of
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Figure 21.1 (a) Configuration Toyota parallel HEV and (b) its planetary gear system
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(a) (b)

Figure 21.2 (a) Toyota THS parallel hybrid drivetrain and (b) Ford parallel hybrid drivetrain. (For a
color version of this figure, please see color plates.)

the traction motor is normally in the range of 30–100 kW. A separate smaller capacity electric
machine, operating as generator, may also be used for charging the battery when the ICE
drives the traction load. The traction motor typically operates, in conjunction with the ICE and
the smaller machine, to accelerate the vehicle from start. Once the acceleration is completed,
that is, during steady-speed running, the ICE drives the vehicle. The battery capacity for this
structure is small, sufficient enough for recuperating the regenerative energy and for driving
the vehicle over a short acceleration period. Re-use of the regenerative braking energy and use
of the ICE for nearly constant speed operation are primarily responsible for the fuel saving,
while faster vehicle dynamics are afforded by a combination of electric traction, ICE and
the additional battery charging machine, if used. Figures 21.2a–b depict the Toyota and Ford
HEVs. Honda Insight vehicles use a somewhat less complex parallel system, as depicted in
Figure 21.3, in which an electric motor of lower capacity than the Toyota system is located
on the driveshaft between the ICE and the transmission. This allows the electric machine to
assist traction, provide recuperation of regenerative braking energy, and act as an integrated
starter-alternator.
Figure 21.4 depicts a series hybrid system, such as in the GM Volt. In this scheme, an

ICE/generator charges a battery that supplies the traction motor. The ICE is not normally
used for traction duty directly. This scheme is easily amenable to plug-in EV with drive range
extension via the ICE.
Figure 21.5 depicts an Audi retro-fit approach to HEVs in which the front-wheel ICE drive

is kept unchanged except for some reduction of the ICE capacity, while adding an independent
electric traction to rear wheels. The integration of the two independent traction systems is
done via a controller.
The advent of pure electric vehicles of configuration indicated in Figure 21.6, that is,

without any ICE support, is already taking place. Some of the drive power electronics in
this scheme may be shared between plug-in charging and traction, as indicated in this figure.
A few automotive manufacturers have already marketed low capacity pure electric vehicles
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(a) (b)

Ice Mot/Gen
Trans

DF

Figure 21.3 (a) Configuration of Honda Insight parallel hybrid and (b) schematic of Honda Insight
drivetrain. (For a color version of this figure, please see color plates.)

in this category. Although driving range is an issue because of the limited storage capacity
and density of existing batteries/ultra-capacitors, nevertheless, this trend is expected to gain
significant momentum in coming years.
This chapter primarily aims to describe machine and control techniques that are applied in

control of traction of modern automotive vehicles. This application employ machines typically
in the power range from about 10–100 kW. The focus is on the control of the traction motor
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Figure 21.4 Configuration of GM Volt series HEV
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Figure 21.5 (a) Schematic of an Audi experimental HEV, and (b) photo of rear electric drivetrain from
PCIM2010, Nuremberg. (For a color version of this figure, please see color plates.)

Figure 21.6 Configuration of pure EV drive with plug-in charging

drive, which can be for a single or more than one machines in HEV or EVs with plug-in
charging of its battery as indicated in Figure 21.7. The major components of electric traction
part of these vehicles are indicated in this figure. Elaborate descriptions of the power converters
and the energy management of the storage devices such as batteries, ultra-caps and fuel cells
are excluded.
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Figure 21.7 Schematic of a plug-in EV system
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21.1.1 Electromechanical Requirements for Traction Drives
in the Steady-State

Torque-speed Requirements for Vehicle and Motor

Before an electric motor can be contemplated for electric traction, the short-time and steady-
state torque-speed requirements for the vehicle which the traction motor must match needs to
be considered. The total tractive effort which must be provided for propulsion of a vehicle is
given by

Ftrac = meq
dx2

dt2
+ Faero + Frf + Frr + Fgrade N . (21.1)

In this equation, meq = the equivalent mass of the vehicle, passenger and other payload
referred to the traction motor shaft position in terms of the vehicle’s longitudinal displacement
in metres:

Faero = the aerodynamic force = sgn(V − Vair)
1

2
ρairCd A(V − Vair)

2 N, (21.2)

where V and Vair are the vehicle and tail wind velocities, A is the frontal area of the vehicle,
ρ is the density of air and Cd is it’s drag coefficient.

Frf = front wheel rolling resistance force = Rof mvf g cosα N, (21.3)

where Rof is the rolling resistance coefficient in kg/kg and mvf is the vehicle kerb mass (kg)
referred to the front wheel, g is the acceleration due to gravity and α is the road gradient:

Frr = rear wheel rolling resistance force = Rormvrg cosα N, (21.4)

where Ror is the rolling resistance coefficient in kg/kg and mvr is the vehicle kerb mass (kg)
referred to the rear wheel:

Fgrade = tractive force to overcome the road grade = meqg sinα N, (21.5)

where the grade angle α should be taken as negative when the vehicle is moving down grade.
The vehicle speed V is different from the crankshaft speed because of wheel slip. This

difference in speeds is normally expressed as a ratio, called the slip-speed ratio λ, which is
the ratio of the slip speed to vehicle speed. It should be noted that the maximum longitudinal
traction force Ftrac that can be applied to the wheels is limited by the coefficient of friction μ

of tyres with the road surface. The longitudinal aerodynamic friction coefficient indicated in
equation (21.2) as a function of slip is indicated in Figure 21.8 (Miller 2003).
If an electric motor takes a fraction of the entire traction load, the masses and velocities of

equation (21.1) must take into account the effective gear ratios and their transfer efficiencies,
so that the reflected traction force on the motor and ICE shaft can be determined. This involves
knowing the gear ratios, the vehicle dimensions in terms of the wheel base, the centre of
gravity of the vehicle in terms of its location, and the distance along the wheel base. Assuming



AC Motor Control Applications in Vehicle Traction 461

Longitudinal
driving force

C
oe

ff
ic

ie
nt

of
fr

ic
ti

on
,μ

Slip-speed ratio,  λ

Figure 21.8 Friction coefficients versus slip-speed ratio

that the load on the traction motor for the HEV or EV is known, the following observation can
be made:

1. The tractive force Ftrac in equation (21.1) is in the longitudinal (x) direction in which
the vehicle is required to travel providing for acceleration, regenerative braking and fuel
economyover the full speed range. Tractive forces along the pitch (lateral) and yaw (vertical,
along gravity) axes, which also govern the dynamics of the vehicle along these axes are in
general of secondary consideration (Miller 2003). Motions along these axes are modified
with inputs from the steering wheel and other sensors. The speed and acceleration of the
vehicle along the longitudinal direction is governed by input signals from the acceleration
and brake pedals indicated in Figure 21.8. Signals from both pedals stand for the desired
torque, accelerating or braking.

2. The maximum traction force is required at low speed, from start of motion, when the
acceleration

(
dx2

dt2
)
is the highest. Vehicles are frequently characterized in terms of a certain

number of seconds to achieve 0–100 km/h of speed and this defines the maximum torque
that the traction motor must deliver, in conjunction with the other terms in equation (21.1).
This force or torque demand is desired to be maintained until a predetermined longitudinal
speed, the so-called base speed ωb, is reached, beyond which the fast acceleration will not
in general be required. Over this speed range, the first term in equation (21.1) dominates.
Because production of maximum torque is desired in this mode, the air-gap flux should
be maintained constant; that is, the machine should be driven with its maximum torque
per ampere (MTPA) characteristic. This translates to a roughly V/ f operation of the AC
machine. The maintenance of flux to a constant level during this period of operation usually
requires decoupled vector control of the machine. The base speed is also the speed at which
the machine develops its maximum back EMF, which is consistent with the inverter DC
voltage rating.

3. The continuous power rating of the motor, which largely determines it size, is found from
the product of the desired maximum steady torque and the base speed specifications. It
may be noted that the maximum short time torque/current rating of an electric motor is
about twice its continuously rated torque/current limit from power loss and heat dissipation
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Figure 21.9 Limiting torque-speed characteristics of traction motors

considerations. The torque-speed envelops of machines for traction loads generally have
a large constant-power speed range as indicated in Figure 21.9. Most electrical machines
generally have a CPSR, except machines with permanent magnets at the surface of the air
gap. The black trace in Figure 21.9 indicates the rated toque-speed envelope in the steady
state, indicating constant torque and constant power speed ranges. The low-speed torque
also indicates an intermittent (short-time) maximum torque rating (the red trace) which is
required for the fastest acceleration/deceleration (braking) of the vehicle. The base speed
ωb is also defined as the speed at which the machine develops its continuous rated torque
and power with rated inverter output voltage, the available DC link supply voltage and rated
magnetic field in the air gap. This speed is approximately matched to the average vehicle
speed at which acceleration from start is completed and the torque demand begins to fall
as higher speed is attained.

4. Once the vehicle reaches the desired speed after start, the demand for acceleration falls to
a low value. In order to maintain steady speed beyond the base speed, the torque demand is
much lower than the maximum torque mentioned above. Fast acceleration above the base
speed requires higher power than the product of the rated torque and the base speed, so
that a compromise is struck between the required maximum acceleration at high speed and
motor power rating.

5. At high speed, the aerodynamic force begins to prevail because it is proportional to speed
squared. Thus a maximum speed, ωmax, is defined beyond which the motor cannot meet the
torque demand. The ratio, ωmax/ωb, is the speed range over which the motor can deliver
some acceleration subject to the limitation of its power rating. Note that in the speed range
of wb to wmax, the maximum power which the machine can develop remains fixed because
of the voltage and current rating limitations of the machine and the inverter. The speed
range is thus aptly called the constant-power speed range (CPSR, = ωmax/ωb). It has been
found that for clutch less (i.e., without variable gearbox) operation over the desired vehicle
speed range, the required CPSR ≈ 5. The CPSR has a profound impact on the efficiency,
weight, volume and cost of the drive. Such constant power operation above the base speed
is normally achieved by weakening the air-gap field of the machine linearly with speed,
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so that operation along the full CPSR may take place without exceeding the voltage and
current limits of the machine. In other words, the machine in a vehicle should be controlled
by a torque controller (with appropriate limits) while the speed is lower than the base speed,
and by a field controller also with an overriding voltage limiter in addition to maximum
torque or current limit as a function of the speed when the operating speed is higher than
the base speed. It should be noted here that machines with such wide CPSR have to be
carefully designed in order to cover this speed range.

6. In order to have adequate dynamic performance for longitudinal traction, and for pitch
and yaw motion controls, the motor drive system needs to employ high-performance con-
trollers. Decoupled field oriented (vector) control incorporating a mechanical position and
velocity sensor of high resolution is routinely applied in HEVs and EVs. Sensorless control
techniques, such as direct torque control (DTC), are also capable of achieving the required
response requirements, with the advantage of not requiring the delicate electromechani-
cal position and speed sensor. It should be noted here that highly dynamic control over
the developed torque is also required at very low speed, in fact down to zero speed. For
mechanical sensorless drives, this is still a significant challenge.

21.1.2 The Impact of CPSR on Motor Power Rating and Acceleration Time
of a Vehicle

Under the idealized conditions that the traction motor drives the vehicle via a fixed gear ratio,
the friction torque is negligible, and the vehicle reaches a certain speed ωrv in TF seconds, the
following can be written:

J
∫ ωb

0

dω

Tm
= TF , (21.6)

where J is the total equivalent rotating moment of inertia, ωb is the base speed and Tm is the
rated maximum torque which the motor develops. From equation (21.6),

J

(∫ ωb

0

dω

PR/ω
+

∫ ωrv

ωb

dω

PR/ω

)
= TF . (21.7)

From equation (21.7), the motor power rating PR is given by

PR = J

2TF

(
ω2b + ω2rv

)
. (21.8)

Using the expression, CPSR = ωmax

ωb
, equation (21.8) becomes

PR = Jω2b

2TF

(
1+ ωmax

CPSR2 ω2rv

)
= Jω2b

2TF

(
1+ ω2b

ω2rv

)
. (21.9)
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If ωb = 0, so that the entire speed range is covered with constant power and CPSR = ∞, the
required power rating of the machine is minimum, with a value

PR = Jω2b

2TF
Watts. (21.10)

If ωb = ωmax, so that the entire speed range is covered with constant torque and CPSR = 1,
the required power rating of the machine is given by

PR = Jω2b

TF
Watts, (21.11)

which is twice the minimum rated power of (21.10). For CPSR = 5, say, and ωb = ωrv,

PR = Jω2b

2TF

(
1+ ω2b

5ω2rv

)
≈ 1.25PRmin. (21.12)

Thus, a high CPSR reduces the required power rating of the traction motor, based on the
assumptions taken for this simple analysis. It also tends to reduce the total loss in the drive.
CPSR > 5 may lead to diminishing returns because of the increase of Faero with vehicle speed.

21.2 Machines and Associated Control for Traction Applications

Traction machines which have been adopted for automotive vehicles in recent years include
induction machines (IMs), interior permanent magnet synchronous machines (IPMSM), and
switched reluctance machines (SRM). The IMs have been used in the Tesla Roadstar and
Audi HEVs; IPMSMs tend to have been preferred by most other HEV and EV manufacturers.
Table (21.1) shows some typical data of traction motors used in present day EVs and HEVs.
The present scarcity of permanent magnet materials like Neodymium and associated materials
to enhance its temperature withstand capability has led to renewed development efforts in
SRMs that require no PMmaterial (Rahman and Schultz 2002; Takano et al. 2010). Promising
developments in enhancing the torque density and efficiency of SRMs were reported by
Rahman and Schultz (2002). The SRM reported by Takano et al. (2010) compares very
favourably with a similar sized Toyota IPMSMmachine used in its current Prius HEVs. Noise
and Volt-Ampere data for this machine, which are drawbacks of SRM, are not available yet.
It may be noted that an SRM based HEV was used in a showcase GM Commodore vehicle in
Australia as far back as in 2000 (Lovatt and Dunlop 2002).
One of the important issues of traction machines, apart from the CPSR, is the efficiency,

because of the limited power source available in a vehicle. Also because of this MTPA rather
than rated flux operation is preferred in the low-speed region. As a result, some magnetic
saturation of the machine’s iron is inevitable (Jeong and Lee 2011).
The IPMSMs typically offer efficiencies higher than 92% over the full CPSR (Dutta and

Rahman 2008; Olszewski 2008; Reddy et al. 2011). The IMs offer lower efficiencies and
larger volume because of the extra electric loading in the stator in order to establish the
rotor flux (Gosden et al. 1994). Figures 21.10a–c indicate a few typical efficiency maps of
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Table 21.1 Traction motor, ICE and battery data of a few recent HEV and EVs

Vehicle Traction machines used ECE data Battery

Honda Insight
hybrid, 2010

Brushless PMDC, 9.7 kW,
@ 1500 rev/min

1.3 L petrol 100.8 V, 5.75 Ah

Ford Fusion hybrid PMSM, 79 kW @ 6500
rev/min

2.5 L petrol 275 V, NiMH

Toyota Prius
hybrid, 2011

PMSM 1, 30 kW @ 1800
rev/min

1.8 L petrol, 73 kW
@ 5200 rev/min

201.6 V, NiMH

PMSM 2, 50 kW @ 1200
rev/min

Inverter DC link
voltage = 600 V

Toyota Lexus 450h
hybrid, 2010

PMSM, 123 kW on front
wheel; 50 kW on rear
wheels

3.5 L V6 petrol 37 kW, NiMH

GM Volt hybrid,
2011

PMSM, one 55 kW MG, &
one 111 kW motor

1.4 L petrol 16 kWh, 45 Ah, Li-Ion

Hyundai Sonata
hybrid, 2011

PMSM, 30 kW, 2.4 L Petrol Li-Polymer

Tesla Roadstar,
2009, EV

Induction machine, 215 kW – Li-Ion, 375 V, 53 kW;
range: 365 km

Mistubishi iMiEV PMSM, 47 kW – 16 kWh, Li-ion, range:
160 km

Renault Fluence
EV

PMSM, 7 kW – 22 kWh Li-ion, range:
185 km

BMW Active EV PMSM, 125 kW – 32 kWh, Li-ion, range:
151 km

Ford Focus BEV PMSM, 107 kW – 23 kWh, Li-ion, range:
122 km

traction motors superimposed on their limiting T − ω characteristics. In the following three
subsections, the above three types of machines and their controls are briefly discussed.

21.2.1 Induction Machines

This machine has the advantage of being low-cost and simple construction and wide availabil-
ity. A 215 kW 4-pole IM has been adopted notably in the Tesla Roadstar and by a few other
automakers. Unlike PM machines, the position of the rotor flux vector (or phasor) cannot be
directly measured for an IM. For fast dynamical control of IMs, as is required for modern
vehicles, two control strategies have evolved, namely, the rotor flux oriented control (RFOC)
and the DTC (Nash 1997; Casadei et al. 2008).

Indirect Rotor Flux Oriented Control

In RFOC, the desired stator flux angle is obtained by adding the slip speed, ωsl = ωe − ωr ,
to the rotor speed. By fully decoupling the d- and q-axes equations of the machine, the slip
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Figure 21.10 Torque-speed characteristics and efficiency maps of (a) the IMPMSM in Toyota Camri
Hybrid (Olszewski 2008), (b) an induction machine (Gosden et al. 1994), and (c) an SRM (Takano et al.
2010). (For a color version of this figure, please see color plates.)

speed can be made proportional to torque and the q-axis current iqs in the synchronously
rotating frame, subject to magnetic saturation and change of rotor resistance. The IM machine
dynamics in this reference frame, the slip speed, rotor flux and torque equations are given as

⎡
⎢⎢⎢⎢⎢⎣

vds

vqs

vdr

vqr

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Rs + pLs −ωe Ls pLm −ωe Lm

ωe Ls Rs + pLs ωe Lm pLm

pLm −(ωe − ωr ) Rr + pLr −(ωe − ωr )Lr

(ωe − ωr )Lm pLm (ωe − ωr )Lr Rr + pLr

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ids

iqs

idr

iqr

⎤
⎥⎥⎥⎥⎥⎦

,

(21.13)

ωe − ωr = ωsl = Lm

λr

Rr

Lr
iqs, (21.14)
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Lr

Rr

dλr

dt
+ λr = Lmids, (21.15)

T = 3P

2

Lm

Lr
λr iqs. (21.16)

The control structure for torque and rotor flux is depicted in Figure 21.11.
The torque reference for the traction motor, received either from the acceleration pedal or

the braking pedal, with the braking pedal input overriding, defines the q-axis current reference
i∗
q from equation (21.16), and in turn defines the slip reference from equation (21.14). Below
the base speed ωb, the rotor flux remains at the rated value defined by equation (21.15) for
achievingMTPA characteristic. At higher speed, the rotor flux reference, λ∗

r , is reduced in order
to maintain the motor/inverter voltage at the rated value. The reduction in λr must be matched
by corresponding increase inωsl, so that the integrity of rotor flux and torque controllers remain
fixed. The slip speed ωsl cannot increase beyond a certain limit from power loss consideration,
and in any case, the limited slip mode of operation in the high-field weakening range is not
useful for traction applications. The torque-speed envelope of an IM with slip-speed limits for
operations below and above the base speed are indicated in Figure 21.12.
The significant parameter dependence of the RFOC, in particular to changes in Tr and Lm ,

is one of the problem of tuning high-performance torque and flux controllers of this drive.
These can be overcome in a number of ways. Look up tables with inputs of ids and temperature
has some merit. Neural and observer methods that do not require a temperature sensor are also
effective (Telford et al. 2003; Karanayil et al. 2005).
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Figure 21.11 The RFOC control structure for induction machines
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Direct Torque Control

In DTC, the machine torque, and stator and rotor flux linkages are estimated from the machine
model using machine voltages and currents that are sensed at the machine/inverter terminals,
without requiring the mandatory mechanical position sensor which is indicated in the RFOC
scheme of Figure 21.11 (West and Lorenz 2009). According to the errors in torque and flux,
hysteresis controllers with optimum switching states for the inverter are determined which
apply one of the eight voltage vectors to the motor. Space vector modulators, replacing the
hysteresis controller that introduces variable switching frequency, have also been used. The
DTC has been applied successfully in railway traction applications for some time (Kondou and
Matsuoka 1997). The torque and flux control responses of the DTC scheme of Figure 21.13 can
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ŝi α
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Figure 21.13 DTC scheme for an induction motor drive
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be just as fast as, if not higher, than the RFOC scheme of Figure 21.11, because of the absence
of delays suffered through linear controllers and pulse-width modulators. The elimination of
the position sensor, considering the harsh environment in which a traction drive is expected
to operate in, combined with the fast torque and flux responses of the DTC drive, makes
this scheme a strong contender for traction drives. Simple, open-loop torque and stator flux
estimators can be obtained from the integrator equation (21.17), in the stator orthogonal xy
reference frame:

λ̄s =
∫ t

0

(
v̄s − Rsīs

)
dt + λ̄so, (21.17)

T = 3P

2

Lm

σ Ls Lr
λ̄s λ̄r = 3p

2

Lm

σ Ls Lr
|λ̄s ||λ̄r | sin(θs − θr ), (21.18)

where

σ = 1− L2m
Ls Lr

. (21.19)

Also,

λ̄s = Ls īs + Lmīr , (21.20)

λ̄r = Lmīs + Lr īr , (21.21)

λ̄r = Lr

Lm

(
λ̄s − σ Ls īs

) = λrx + jλry, (21.22)

θr = tan−1
(

λry

λr x

)
. (21.23)

The dynamics of the rotor flux is given by

Rr īr + dλ̄r

dt
− jωr λ̄r = 0. (21.24)

The dynamics of the rotor flux vector is much slower compared to the rate at which the stator
flux vector can be rotated. This implies, from equation (21.18), that torque and flux responses
under the DTC is determined mainly by the speed with which the stator flux linkage can be
rotated. When the inverter applies full voltage vectors to the motor without significant delay,
and the delays in the controllers are also negligible, the torque and flux responses under DTC
can be as fast as, or even faster than, RFOC. This also implies that the switching table applied
to the motor must have a high sampling frequency. Typically, sampling frequency of the order
of about 25 kHz is called for. Figures 21.14a and b compare the dynamic torque responses of
an IM under RFOC and DTC.
The estimated stator and rotor fluxes and the estimated torque from equations (21.17) and

(21.18) suffer from errors due to offsets in measurements and stator resistance variation.
The parameters used in the computation of torque and rotor flux using equation (21.18) and
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Figure 21.14 Torque response of an IM under RFOC and DTC

(21.22) also have to be compensated. Various improvements in computing the stator flux using
closed-loop techniques, notably the sliding-mode and variable-structure observers that depend
on eliminating the errors in the estimated and measured stator d- and q-axes currents, have
led to high performance DTC schemes down to quite low speed (West and Lorenz 2009).
Furthermore, the inductances Lm amd Lr may both suffer from magnetic saturation when the
applied voltage and load are high, so these must also be adjusted with the help of look-up
tables using īs and īr or by using some observer techniques.
The simple integrator of equation (21.17) for estimating the stator flux is not very accurate

at low speed. A better approach is to use some closed-loop observer, such as the sliding-
mode observer (SMO) that delivers more accurate estimations down to a much lower speed.
Figure 21.15 compares the performance of pure integrator versus SMOobservers on the control
of torque in an IM.
The DTC scheme for vehicles also entails operation of the machine with the rated rotor

flux up to the base speed ωb, followed by linear reduction in rotor flux with speed, up to
the maximum speed ωmax. It should be mentioned here that the sensorless DTC scheme for
induction machines do not have the advantage of saliency to exploit at very low speed, as with
the IPMSM, in order to, guarantee operation down to very low and zero speeds.
When operation at very low speed is required, for instance, when the vehicle is operated at

crawling speed for parking, other means of improving the very-low speed performance with
stability is required. High-frequency injection of voltage superimposed on the estimated d-
axis stator voltage and adaptive (closed-loop) flux observers have proved to be effective (Holtz
2006) as a means of mechanical sensorless control. Traction control for vehicles must have full
zero-speed performance with guaranteed stability. Operation of an IM down to very low speed
that rely on high-frequency injection (explained in Chapter 19 for the DTC IPMSM drive)
with full torque capability have been reported in literature (Holtz 2006). Industrial adoption
this HF injection technique is still awaited.
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Figure 21.15 Comparison of integrator and SMO flux observers for a DTC IM drive

21.2.2 Interior Permanent Magnet Synchronous Machines

The overwhelming majority of HEVs and EVs in production today have adopted this type
of machine for vehicle traction, as indicated in Table 21.1. The main advantages are the
high torque and power to volume ratio achievable because of high energy-density permanent
magnets, and the high efficiency which this machine can deliver because of the PM excitation.
Although the IPM synchronous machines in early HEVs did not deliver a sufficiently high
CPSR (it was not perhaps needed because themotorwas required only to operate below the base
speed for acceleration duty only), however, traction machines for EVs must have a CPSR close
to five or higher. The desired CPSR (or field weakening range) of recently developed interior
permanent machines with distributed and fractional-slot windings have reached values greater
than 5. PM machine structures are still evolving vigorously. The IPMSM with distributed
winding in the stator and V-shaped magnets in the rotor, as indicated in Figure 21.16, has
been adopted in the HEVs from Toyota and a number of other vehicle manufactures and
in a few recently commercialised EVs. The drive towards PM machines with higher torque
and power densities than the IPMSM has recently led to developments of the fractional-
slot SPM and IPM machines, examples of which are indicated in Figures 21.17 and 21.18,
respectively.
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Figure 21.17 The electromagnetic design of the SPM machine with fractional-slot winding developed
at the University of Wisconsin-Madison (Reddy et al. 2011). (For a color version of this figure, please
see color plates.)
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Figure 21.18 The electromagnetic design of the SPM machine with fractional-slot winding developed
at the University of New South Wales (Dutta et al. 2011). (For a color version of this figure, please see
color plates.)

Descriptions of the IPM machine and its control techniques, both sensor-based RFOC and
sensorless DTC controls have been included in Chapter 19 of this book and in Rahman et al.
(1998). Sensorless control of such machines using high frequency injection in the estimated
rotor d-axis has also been described in Chapter 19. These techniques have been reported further
in Foo et al. (2010) and Sayeef et al. (2010). These will not be repeated here.

21.2.3 Switched Reluctance Machines

The SRM, having no PM excitation in the rotor and a doubly salient structure as indicated
in Figure 21.19, are very rugged and of low cost. These qualities have provided the incentive
for using this type of machine for vehicle traction, leading to recent developments of SRMs
which are claimed to have power densities and efficiencies comparable to IPMSMs (Rahman
and Schultz 2002; Takano et al. 2010).
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Figure 21.20 (a) Torque production mechanism of phase A of an SRM; (b) Torque versus current
versus displacement characteristic of an SRM

The control of torque of an SRM is via control of amplitude, duration and angular position
of rectangular phase current pulses relative to the rotor position. Placement of a phase current
pulse over the displacement angle θon − θoff , where the rate of change of co-energy of the
winding with respect to the rotor angular position is the most positive than for all other
windings maximizes the positive developed torque (MTPA). Placement of a phase current
pulse over the displacement angle where the rate of change of co-energy of the winding with
respect to the rotor angular position is the most negative than for all other windings maximizes
the reverse (regenerative) developed torque, as indicated in Figure 21.20. Each phase of the
machine contributes to the developed torque according to the representation of Figure 21.20,
in which the nonlinear relationships of current, flux linkage and torque versus current versus
angular position characteristics are also indicated. A fast response torque controller based
on the flux-linkage versus current versus angular position characteristics of Figure 21.20 is
indicated in Figure 21.21. The control parameters are the turn-on angle (θon), turn-off angle
(θoff) and the amplitude for phase currents. The reference and estimated torque of each phase
of four-phase SRM is indicated in Figure 21.22a, while Figure 21.22b shows the actual torque
response when the machine accelerated and decelerated.
The torque control scheme of Figure 21.21 requires a high-resolution position sensor.

Another control scheme is one which does not require a high-resolution encoder and does not
control the phase currents in closed loops explicitly. In this scheme, direct control of torque via
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Figure 21.21 Torque controller structure for an SRM with asymmetric half-bridge converter for each
phase

flux estimation and PWM control of voltage to the phases, albeit with commutation arranged
via a low-resolution position sensor. This approach is similar to the DTC schemes that have
been used with induction and IPM synchronous machines, except that phase commutation
signals must be derived from a position sensor. The method is based on relating the developed
torque to phase current and flus linkage of a phase winding, as indicated in Figure 21.23. The
DTC based on Figures 21.23 is depicted in Figure 21.24. The dynamic response of torque
obtained from this scheme is indicated in Figure 21.25.

21.3 Power Converters for AC Electric Traction Drives

With AC traction drives, there often are two stages of power conversions, as indicated in
Figures 21.26a–b, in order to optimize the selection of motor and DC supply voltage levels.
Often the battery voltage is around 300 V DC; it is normally boosted to a higher level
of about 600 V. The reverse arrangement is also possible. The bidirectional boost or buck
input converters of Figures 21.26a and b respectively, and the three-phase inverter for the
traction motor allow some flexibility when ultra-capacitors are used for rapid acceleration and
deceleration. The inverter inputDCvoltage in this case is supplied by ultra-capacitors that allow
faster discharging (during motor operation) and charging (during regenerative operation) than
it is possible with a battery. Transfer of energy between the two storage devices is arranged
through outer voltage and inner current controls of each converter. The dynamics of the
controllers for the ultra-capacitor is about an order of magnitude higher than the controllers
for the battery, in order to decouple the operation of the two storage devices. Control system
designs for these two storage systems will not be discussed here.
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21.4 Control Issues for Traction Drives

Apart from fast torque and flux control, the three other important elements of control in an
electric traction drive are as follows:

1. Slip-speed ratio and torque control for the desired longitudinal and lateral motion.
2. Control of regenerative braking.
3. Sensorless control.

21.4.1 Torque and Slip-Speed Ratio Control

It is well known that electric traction affords torque response 100–500 times faster than ICE
driven vehicles, in both forward traction and regenerative braking modes of operation (Fujii
and Fujimoto 2007). The slow response of an ICE-driven vehicle stems from the requirements
for adjustment of air valve, fuel and oil pressure. The delay associated with these adjustments



AC Motor Control Applications in Vehicle Traction 479

is often more than 200 ms. In contrast, the AC electric motors when driven with RFOC and
DTC have delays less than 10 ms. The fast response implies more accurate regulation of the
optimum slip-speed ratio, and hence better delivery of torque from the motor to the wheels.
This has significant impact on the control of vehicle dynamics and stability, as well as longer
driving range per battery charge because low-drag tyres can be used (Fujii and Fujimoto
2007).
With electric traction, the actuator motor applies two forces on the vehicle body, namely,

the longitudinal and lateral (yaw) forces. These forces depend significantly on the slip-speed
ratio, λ, as defined in terms of the difference between the wheel and vehicle speeds, vw and v,
respectively, as defined in equation (21.25):

λ = (vw − v)

v
. (21.25)

The wheel speed vw can be obtained from the effective radius of the driving wheel; however,
the vehicle speed is normally estimated from the wheel speed(s) and vehicle accelerometer
sensor (Hori et al. 1998). The relationship between coefficients of friction and the slip-speed
for longitudinal and lateral motions are as indicated in Figure 21.27, for a certain road surface
condition.
The friction or driving force fd between the road and the wheel is given by

fd = Fvμ(λ)where Fv is the vertical force meqg of the vehicle. (21.26)

The traction motor delivers the total torque rf d via the fixed gear ratio that may exist
between the motor and the driven wheel. It may be noted that the lateral force diminishes
rapidly with increase in the slip-speed ratio. It is also ameliorated by steering control, so
that motor torque is mainly used for longitudinal control. The torque control system for the
vehicle primarily receives its torque reference from the angle of the acceleration and brake
pedals (with brake pedal over-riding the two references); however, a slip-speed controller,
as indicated in Figure 21.28, precedes input to the torque reference so that the slip-speed is

Figure 21.27 Longitudinal and lateral force coefficients versus slip-speed ratio
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Figure 21.28 Slip-speed ratio controller

maintained close to the optimum value for achieving maximum adhesion of the wheel with
the road surface. With estimated vehicle speed, the slip-speed is also estimated and controlled
in a closed loop for the maximum adhesion to be achieved.
Several methods of reducing the slip-speed to the optimum value, as the tyre slips on

application of motor torque to the wheel, have been described in the literature (Hori et al.
1998; Fujii and Fujimoto 2007). These are based on the mechanical system model of the
vehicle and will not be covered here. It suffices to mention here that with very fast control
of torque developed by an electric motor, the requirement for optimum slip speed control
becomes much more important than with an ICE driven vehicle. Fast torque response from the
motor also allows the optimum slip speed, and hence optimum adhesion of the driven wheel
with road surface, to be achieved easily, as indicated in Figure 21.29

21.4.2 Control of Regenerative Braking

In a vehicle, the reference for braking torque is derived from the brake pedal angle. Initially this
signal produces a negative torque or −iq reference in the reference frame used for controlling
the AC machine. When the brake pedal is depressed hard, mechanical friction braking may
also be applied simultaneously. The braking effort may be distributed among the front, rear or
individual wheels depending on the driving condition.When regenerative braking is employed,
the braking current charges the ultra-capacitor across the DC link and the battery system taking
into account the voltage rise of the storage systems, state of charge, current limits and battery
temperature. The battery and ultra-capacitor voltage must be placed under closed-loop control,
followed by an inner current loop. The d-axis current must also be appropriately adjusted with
speed as the machine slows down, in order to ensure that the machine operates with rated back
EMF and MTPA characteristic when slowing down in the constant power speed range.

Dynamic Model of DC-Link Voltage Control for IM and PMSM

Dynamics of the inverter andmachine during regenerative braking can be represented as shown
in Figure 21.30. The leakage resistance of the ultra-capacitor C is represented by RDC. The
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dynamics of the ultra-cap is assumed to be much faster than the battery, so the battery model
is ignored.
By balancing the DC and AC sides,

vDCi1 = 3

2

(
vqsiqs + vdsids

)
. (21.27)
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Figure 21.30 Representation of the DC link capacitor charging circuit
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For the DC side of the inverter,

i1 = iDC − iC − iR = iDC − C
dvDC

dt
− vDC

RDC
. (21.28)

From (21.27) and (21.28),

vDC
dvDC

dt
+ v2DC

RDCC
= PDC

C
− 3

2C

(
vqsiqs + vdsids

)
. (21.29)

By ignoring the small power loss in the stator resistance, compared to the power from the
machine back EMF,

vDC
dvDC

dt
+ v2DC

RDCC
= PDC

C
− 3

2C
ωe

Lm

Lr
λdriqs for an IM, (21.30)

vDC
dvDC

dt
+ v2DC

RDCC
= PDC

C
− 3

2C

(
ωe{λf iq + (

Ld − Lq
)

idiq}
)
for an IPMSM. (21.31)

Equations (21.30) and (21.31) can be rewritten by multiplying both sides by 2RDCC and
expressing the left-hand side as

RDCC
dv2DC

dt
+ 2v2DC = 2RDC

(
PDC − 3

2
ωe

Lm

Lr
λdriqs

)
for an IM. (21.32)

If the variable v2DC, instead of vDC, is regarded as the control variable, and if the control
bandwidths of ids and iqs are much faster than the control bandwidth of the capacitor voltage
vDC, equation (21.32) can be drawn as in Figure 21.31a. With the fast current control and
complete decoupling of RFOC, the above control block diagram simplifies to Figure 21.31b.
It may be noted that with a large input capacitor C and fast current controls in the d–q axes,

theDCbus voltage control is independent ofmachine dynamics (IMand IPMSM). Figure 21.32
shows experimental data of the DC bus voltage dynamics when an IM is operated with fast
acceleration and deceleration into and out of field weakening range. The DC bus voltage is
tightly regulated under this highly dynamic situation.

Dynamic Model of DC-Link Voltage Control for SRM

Regenerative control of the switched reluctance generator entails control of the switches for
each phase winding while the flux linkage is decreasing, as opposed to increasing that is
required for motoring. From the phase voltage equation,

v = Ri + ∂λ

∂i

∂i

∂t
+ ∂λ

∂θ

∂θ

∂t
. (21.33)

The back EMF of each phase reverses its sign when ∂λ
∂θ
is negative. During this period, switches

T1 and T2 in the asymmetric half-bridge converter indicated in Figure 21.24 conducts,
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increasing the flux in the winding. When the switches are turned off, the diodes D1 and
D2 charges the DC link capacitor. Figures 21.33a–c show the control structure for regenera-
tive braking when the DC link capacitor is charged. The duty cycle of the switches is adjusted
in order to control the regenerative current, and hence, the charging rate of the DC capacitor.
It should be noted here that the switching interval for each winding must be appropriately
advanced with increasing speed to ensure that current has time to build up to the desired value
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Figure 21.32 Capacitor voltage during acceleration and regenerative braking of an IM
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Figure 21.33 Regenerative control and DC link capacitor charging of an SRM

during the conduction period of the switches, as in motoring. As with IM and IPMSM drives, it
can be shown that when phase current control is much faster than the capacitor voltage dynam-
ics, the capacitor voltage control with regenerative braking is essentially decoupled from the
current controls. Figure 21.34 shows the dynamic response of DC link voltage change when
an SRM is operated as a generator charging the DC link capacitor and supplying a DC load
that changes abruptly to zero.

Sensorless Control

Shaft-mounted mechanical sensor based RFOC techniques guarantee robust dynamic perfor-
mance of a vehicle down to very low speed, including zero speed. This is regarded as an
essential requirement for vehicles. Mechanical sensorless control techniques such as DTC of
AC traction drives cannot at present guarantee this requirement without additional techniques
such as position sensing using high-frequency injection into the estimated d-axis. The latter
technique relies on some saliency in the rotor magnetic circuit that is conveniently offered
by IPMSMs. The hostile conditions such as high mechanical shock, temperature and fluid
ingestion are not conducive for maintaining the reliability of a mechanical sensor mounted
on the drive motor shaft. Mechanical sensorless methods are currently regarded as possible
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Figure 21.34 DC link capacitor voltage during abrupt change of regenerative braking

standby technique of controlling a vehicle when signals from the shaft-mounted mechanical
sensor become unavailable. Sensorless control of IPMSMs suitable for zero speed operation
has been described in Chapter 19 (Rahman et al. 1998; Foo et al. 2010). Methods for IMs are
available in reference by Holtz (2006).

21.5 Conclusions

This chapter has brought out the characteristics required for electric machines for traction
applications. The focus was on machines and their control issues for HEVs and EVs. Together
with Chapter 19, the coverage of induction, permanent magnet synchronous and SRM, which
are the three types of machines currently used in vehicles, has described the high-performance
control, both mechanical sensor based and sensorless. It is stressed that high-performance
dynamic control requirements of vehicles are met by these decoupled control techniques, such
as the RFOC and DTC, which have evolved in recent years. Apart from the control of torque,
stator and rotor flux linkages in the stator or rotor reference frames, the tractive forces on tyres
can be controlled more effectively with electric traction, leading to enhanced energy efficiency
and stability. Some of power conversion and control issues related to regenerative braking
have also been described.
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Jarosław Guziński,1 Zbigniew Krzeminski,1 Arkadiusz Lewicki,1

Haitham Abu-Rub,2 and Marc Diguet3
1Faculty of Electrical and Control Engineering, Gdansk University of Technology, Poland
2Department of Electrical & Computer Engineering, Texas A&M University
at Qatar, Qatar
3Alstom Transport, France

22.1 Introduction

In the modern electric traction drive systems particular attention is being paid to improve their
reliability by numerous diagnostic systems (Ohnishi et al. 1996; Kowalski 2005; Jung et al.
2006; Kia et al. 2007). Such solutions of the faults detection, which are utilized, for example,
in high speed railway systems (Madej 2000; Kadowaki et al. 2007) can predict the inception of
faults. If the failure mode is detected, then presence of the serious faults is possible. Having the
knowledge of faults’ symptoms, possible failures can be predicted and thus effectivemitigation
techniques may be developed.
Mostly, diagnostic systems of the mechanical parts are based on analysis of the signals of the

measured torque. In the measurement system, different sensors are used, for example, strain
gauge, accelerometers or microphones (Kucharski 2002). Unfortunately, all torque oscillation
sensors are sensitive to disturbances and troublesome in practical use. Additionally, with an
increase of sensors numbers, the traction system becomes more complicated, which makes a
train service and its repair more complicated and expensive.
The use of the advanced microprocessor techniques makes it possible to realize sensorless

diagnostic systems in such applications. In modern calculation-based diagnostic systems, only
already existing sensors are used. The existing sensors are being used for other purposes, for
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example, motor control. However, such solution requires complicated computational algo-
rithms (Tondos 1993; Krzeminski 2000; Vedmar and Andersson 2003; Hedayati et al. 2009).
An important part of traction drive is a system that is responsible for torque transmission

from motor shaft to vehicle drive axis. Previously, the diagnosis of such system was based on
motor and gear vibration measurement (Kowalski 2005). Now the modern calculation-based
solutions are reported (Hedayati et al. 2009; Guzinski et al. 2009a).
In the transmission diagnostic, an analysis of mutual shaft positions of the gear or of drive

mechanical oscillations makes it possible for early fault detection, for example, gear dam-
ages (Hedayati et al. 2009; Guzinski et al. 2009a). The problems with torque transmission
system are complicated. After an initial period of operation, the problems with the transmis-
sion can appear as a result of wearing and material consumption. The wear of gears causes
growing amplitudes of the frequencies related to the gear meshing. In case of transmission
faults, the train might be stopped or may work with some mechanical oscillations and noises.
Some faults of the torque transmission system have also serious influence on the safety of
the train and the passengers. This is the reason of the necessity to introduce the proposed
diagnostic system.
Motor mechanical speed sensor is also the important part of the whole transmission system.

Numerous traction drives are equipped with different speed sensors used for traction motor
control. In case of motor speed sensor fault, the drive cannot work properly and is probably
switched off immediately. If there is only one drive in the train, the whole vehicle is stopped,
which blocks the track. If several drives used in the vehicle, the shutdown of one drive has an
influence on the train speed, thus causing delay and traffic choking problem.
To solve this problem, the motor speed calculations or estimation instead of speed mea-

surement could be implemented. Nowadays, for an increasing number of industrial drive
state observers are being utilized instead of speed sensors. A lot of speed observer systems
are presented in the literature (Luenberger 1971; Rajashekara et al. 1996; Magureanu et al.
2000; Orlowska 2003; Depenbrock and Evers 2006; Holtz 2006; Orlowska and Szabat 2007;
Krzeminski et al. 2008). Most popular observers are based on Luenberger theory (Luenberger
1971),Kalmanfilters (Magureanu et al. 2000) andNeuralNetworks (Orlowska 2003;Orlowska
and Szabat 2007), or disturbance-based algorithms (Zawirski and Urbanski 2000; Krzeminski
2008). The differences between such algorithms depend on speed calculation accuracy in
steady state and in transients and on algorithms implementation and tuning complication
as well.
In this chapter, a traction system is presented, in which speed and load torque observers are

implemented for diagnostic purposes. The presented solution is small part of developed bigger
high-speed train (HST) predictivemaintenance system. In the whole diagnostic system, several
problems are under consideration, for example, speed sensor faults, mechanical transmission
faults, and motor stator and rotor faults.

22.2 Description of the High-Speed Train Traction System

The proposed solution is designed for the application of HST—electric traction multiple unit.
The analyzed multiple unit, presented in Figure 22.1, consists of two driving cars and few
passenger wagons.
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Figure 22.1 Multiple unit of the high speed train

Previously, in traction vehicles wagons (Guzinski et al. 2008; Guzinski et al. 2009a), DC
motors and wounded rotor synchronous motors were popular. Nowadays, these motor are
replaced by more reliable and cheaper induction motors or permanent magnet synchronous
motors.
In HST, one motor propels one axle in every motorized bogie. In each bogie, one or two

motors may exist. A motorized car typically has two bogies with motors. In the presented HST
solution, each of the driving cars is propelled by four 1.2 MW induction motors, which are fed
by separate voltage source inverters. Each of these traction motors is coupled with individual
driving axles through complex torque transmission system—Figure 22.2.
The torque transmission unit consists of two-toothed gears and coupling systems to ensure

a compensation of the position change between motor shaft and drive axle. The motor and the
one gear are fixed with the car body; however, the next gear is fixed to bogie frame. Therefore,
a sliding axle and some cardans are installed between gears shafts. The motor speed sensor
is mounted directly on the motor shaft. This sensor is for motor control. Additional speed
sensors, mounted on each gears output are for the wheels antislip control.
The whole model of the HST drive contains four main parts: traction motor, transmission,

converter, and controller. For initial investigation of the presented system, the simulation
method was used. The dedicated simulation programs in C language and in Matlab were
prepared. With the simulation software different conceptions of the diagnostic procedures
were verified.

Figure 22.2 Structure of the HST driving bogie
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Table 22.1 Per unit system definitions

Base value Meaning

Vb = √
3Un Voltage

Ib = √
3In Current

Zb = Un
In

Impedance

ω0 = 2π fn Electrical speed

Tb = Ub Ib p
ω0

Torque

�b = Ub
ω0

Flux

ωb = ω0
p Mechanical speed

Lb = �b
Ib

Inductance

Jb = Tb
ωbω0

Inertia

τ = ω0t Time

22.2.1 Induction Motor

For train propulsion, high-power induction motor is used. The data of the HST motor are
Pmax = 1.2[MW], Un = 810[V], nn = 269[rpm], In = 586[A], fn = 133[Hz], ηn = 96[%],
cosϕn = 0.88, 3 poles pairs. When used in HST gear and wheels, the motor nominal and
maximum speeds are related to the train speeds of the values about 225 km/h and 320 km/h,
respectively—depending on train wheels wear.
Motor model is described in the rectangular coordinates noted as xy. The xy coordinates

me rotating with arbitrary speed ωa . Next state variables were chosen: stator current isx , isy

and rotor flux φr x , φry components, and motor mechanical speed ωm . Whole system variables
were recalculated into per unit system as shown in Table 22.1 (Krzeminski 2001).
Equations of the used motor model are as follows

disx

dτ
= − Rs L2r + Rr L2m

Lrwσ

isx + Rr Lm

Lrwσ

φr x + ωaisy + ωm
Lm

wσ

φry + Lr

wσ

vsx , (22.1)

disy

dτ
= − Rs L2r + Rr L2m

Lrwσ

isy + Rr Lm

Lrwσ

φry − ωaisx + ωm
Lm

wσ

φr x + Lr

wσ

vsy, (22.2)

dφr x

dτ
= − Rr

Lr
φr x + (ωa − ωm)φry + Rr

Lm

Lr
isx , (22.3)

dφry

dτ
= − Rr

Lr
φry − (ωa − ωm)φr x + Rr

Lm

Lr
isy, (22.4)

dωm

dτ
= − 1

JM

(
Lm

Lr
(φr x isy − φryisx )− TS1

)
, (22.5)
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Table 22.2 Parameters of the motor equivalent circuit

Parameter Value Description

Rs 0.01226 p.u Stator resistance
Rr 0.01085 p.u. Rotor resistance
Lm 4.56150 p.u. Mutual inductance
Ls 4.73790 p.u. Stator inductance
Lr 4.68320 p.u. Rotor inductance

where Rr , Rs, Lr , Ls, Lm are motor equivalent circuit parameters presented in Table 22.2, TS1

is the motor load torque, JM is the motor inertia (6.1 kg m2), and wσ is the coefficient defined
as wσ = Lr Ls − L2m .
For simulation purposes, the stationary αβ coordinates were used and the motor model

(22.1)–(22.5) have been rewritten using motor stator currents and rotor flux αβ components:
isα , isβ , φrα , φrβ (Krzeminski 2001).

22.2.2 Torque Transmission System

For simulation purposes HST transmission system was reduced to a two-mass system which
is presented in Figure 22.3 (Tondos 1993; Orlowska and Szabat 2007).
The integral property of the traction vehicle is a macroslip / microslip effect. The rolling

stock of the coach moves by the adhesion force between rail and driving wheel. Approximated
relation between the adhesion force and the slip velocity is presented in Figure 22.4 (Kadowaki
et al. 2007).
In the slip velocity two areas are distinguished: stable (microslip) and unstable (macroslip).

In the investigated HST the stable area is limited to the slip up to 2%. In the coach each driven
axle has different slip phenomena mainly depending on current axle load. In the investigated
HST each driving axle is propelled by one electric motor which is connected to the separate
inverter. Such trend simplifies the torque control of the motor to prevent macroslip. Adhesion
limit for HSTs imposed by European Technical Specification Interoperability is 0.15 for speed
up to 200 km/h and decreases for higher speeds.
In the considered two-mass model, the macroslip phenomena was omitted according to

assumption that superior adhesion control is implemented in the system. Small microslip
phenomenon was included in the elastic model of the shaft and gear.

JM JL

Tem

Ts1 Ts2
TL

niωm ωLϕm ϕL

Motor Transmission Load

Figure 22.3 Reduced, two-mass model of the torque transmission system
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The two-mass model of the mechanical system is as follows:

JM
dωm

dt
= Tem − TS1, (22.6)

JL
dωL

dt
= ni TS2 − TL , (22.7)

dϕr

dt
= ωm, (22.8)

dϕL

dt
= ωL , (22.9)

TS1 = K2 (θm − niθL )+ H2 (ωm − niωL ) , (22.10)

TS2 = ni |TS1|, (22.11)

where ωL is the mechanical speed of the load, θm is the angle position of the motor rotor, θL is
the angle position of the load, Te is the motor electromagnetic torque, TL is the traction load
torque, TS1 is the transmitted torque on gear input = motor load torque, TS2 is the transmitted
torque on gear output, K2 is the stiffness function, H2 is the damping coefficient (170 Ns/m),
JL is the load inertia (3000 kgm2), and ni is the gear ratio (1.97).
Function K2 depends on gear wheel tooth stiffness (Muller 1979):

K2 = KS + K D sin(zϕm), (22.12)

where KS is the stiffness average value (3.5× 105 N/m), K D is the stiffness maximum value
(5.7× 105 N/m), and z is the number of the gear driving wheel teeth (25 teeth).
In (22.7), the meshing frequency higher harmonics were omitted. It is a result of skew teeth

in the modeled gear. For such gear the meshing amplitudes in healthy condition are very small.



Induction Motor Control Application 493

The misalignment in the transmission system was modeled as an additional load torque
component Tw:

JM
dωm

dt
= Tem − TS1 − Tw. (22.13)

The additional torque component Tw is sinusoidal value with frequency equal to the motor
shaft rotation:

Tw = Twav (1+ sin(ϕm)) , (22.14)

where Twav is the average value of the misalignment load torque component (720 Nm).
In (22.6), a viscous friction was considered:

JM
dωm

dt
= Tem − TS1 − Tw + T f , (22.15)

where T f is the viscous friction load torque component.
The torque component T f is

T f = Fωm, (22.16)

where F is the viscous friction coefficient (0.8 Ns/m).

22.2.3 High-Power Electronic Converter

The HST traction system has double way supply: ac supply 25 kV 50 Hz and dc supply 1.5 kV.
The train high-speed range is obtained only with the ac high-voltage traction mode. In case
of using an ac train supply, one-phase transformer is utilized (Wilk 2009). The transformer
output ac supply is converted into dc by full controlled transistorized rectifier, filtered in the
intermediate dc link and converted to ac motor supply by a three-phase voltage inverter with
insulated gate bipolar transistor (IGBT) transistors (Figure 22.5). In the simulation program,
the voltage inverter was modeled with ideal switches controlled with a pulse width modulation
method. Regarding the high power of the drive transistor, a switching frequency of the IGBT
in the traction drive is variable within the range from 450 Hz for low speeds of the motor to
square wave for highest motor speeds.

Figure 22.5 Supply system of the HST traction motor
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22.2.4 Motor Control Principle

The most popular in industrial applications, field-oriented control (FOC) scheme is used
for precise and fast dynamics and response of traction motor (Blaschke 1971). The control
structure used in the presented work is illustrated in Figure 22.6. In the traction application
of the field-oriented method, torque mode of operation is used and thus as such the speed
controller was not used. The operator commanded value is the motor torque that is changed
using stator current component isq . The traction system of the HST is working also in the field
weakening region that is used to obtain high speed of the train.

22.3 Estimation Methods

22.3.1 Speed Observer

Speed computation in real time is presented in many publications (Luenberger 1971;
Rajashekara et al. 1996;Krzeminski 2000;Magureanu et al. 2000;Krzeminski 2001;Orlowska
2003; Depenbrock and Evers 2006; Holtz 2006; Krzeminski et al. 2008). Most popular solu-
tions are based on motor models using the concept of Luenberger state observer (Luenberger
1971). One of these methods, characterized by high precision and fast dynamics, was used
in the diagnostic system in Krzeminski (2000), Krzeminski (2008), and Krzeminski (2001).
The use of state observer makes it possible to simultaneously compute the angular speed and
magnetic flux (Krzeminski 2001).
Each of the observers has limited bandwidth depending on observer internal structure.

For diagnostic purposes, the observer bandwidth should satisfy the interesting diagnostic
bandwidth. For that reason, the observer solution presented in Krzeminski (2001) was applied
into presented HST system. The bandwidth of the chosen observer is significantly higher than
other comparable observers (Bogalecka and Kolodziejek 2008).
In this application, the speed observer needs only four input signals, which are usually

accessible in the control. These signals are signals of inverter output currents and signals of
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Figure 22.6 Base structure of the HST motor control algorithm
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Figure 22.7 Input/output block of the induction motor observer

the PWMcommanded voltages (Figure 22.7). The equations of the speed observer in stationary
αβ coordinates are as follows (Guzinski et al. 2009b):

dîsα

dτ
= a1 îsα + a2φ̂rα + a3ξ̂β + a4v

com
sα + k1(isα − îsα), (22.17)

dîsβ

dτ
= a1 îsβ + a2φ̂rβ − a3ξ̂α + a4v

com
sβ + k1(isβ − îsβ ), (22.18)

dφ̂rα

dτ
= a5φ̂rα + a6 îsα − ξβ − k2Sbφ̂rα + k3φ̂rβ(Sb − SbF ), (22.19)

dφ̂rβ

dτ
= a5φ̂rβ + a6 îsβ + ξα − k2Sbφ̂rβ − k3φ̂rα(Sb − SbF ), (22.20)

d ξ̂α

dτ
= a5ξ̂α + a6ω̂mîsα − ω̂m ξ̂β − k1(isβ − îsβ), (22.21)

d ξ̂β

dτ
= a5ξ̂β + a6ω̂mîsβ − ω̂m ξ̂α + k1(isα − îsα), (22.22)

d SbF

dτ
= k f o(Sb − SibF ), (22.23)

ω̂m = φ̂rαξ̂α + φ̂rβ ξ̂β

φ2rα + φ2rβ
, (22.24)

where ∧ denotes calculated value in the observer, Sb, SbF are internal observer variables,
a1 · · · a6 are constants depending on motor parameters a1 = −(Rs L2r + Rr L2m)/(Lrwσ ), a2 =
Rr Lm/(Lrwσ ), a3 = Lm/(Lrwσ ), a4 = Lr/wσ , and k1, k2, k3, k4, k f o are observer gains.
With observer calculation, the motor electromagnetic torque could be also identified:

T̂em = φ̂rα îsβ − φ̂rβ îsα. (22.25)

The block structure of the observer is presented in Figure 22.8. The speed observer (22.17)–
(22.24) is based on the Luenberger observer theory (Luenberger 1971) in addition using motor
electromotive forces as additional state variables. The mechanical equation of the system was
omitted and the motor mechanical speed is treated as a variable parameter of the motor. Such
approach was also successfully implemented for the synchronous permanent magnet motor
(Zawirski and Urbanski 2000).
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Figure 22.8 Speed observer structure

In the observers equations (22.17)–(22.24), in contrary toKrzeminski (2008), the component
related to motor speed derivative was omitted assuming that for small step of the observer
calculation this component is close to zero for high-inertia train system.
Observer gains require appropriate tuning to assure fast estimation and to guarantee stable

work of the observer. Practically that process is based mainly on the experience of the designer.
It is a result of high complexity of the whole system. With the modern simulation tools and
high-speed computers, this approach seems to be more precisely performed than using formal
mathematical computation. For that reason sometimes the neural network-based algorithms
are employed; for example, the numerous observer’s gains and time constants could be tuned
using algorithm random weight change (RWC) (Burton et al. 1997). In each step of the RWC
algorithm, the transient state of the observer were simulated and quality coefficient were
calculated. At the beginning, the observer gains were tuned randomly in wide range of the
field of research. After that the field of research was reduced and observer gains were precisely
found (Pajchrowski and Urbanski 2001). That way is very close to the designer experimental
tuning.

22.3.2 Motor Torque Estimation

In the industry, instead of the mechanical vibrations measurements, calculation methods
are much more interesting. For the diagnostic of traction torque transmission system using
calculation-based methods the analysis of the motor supply current or motor load toque
signals is used (Tondos 1993; Begg et al. 1999; Kucharski 2002; Vedmar and Andersson
2003; Kowalski 2005). Especially, an analysis of the motor load torque looks promising
(Hedayati et al. 2009).
The simplest method for load torque calculation is to use the mechanical equations:

T̂S1 = T̂em − JM
dωm

dτ
, (22.26)

where T̂S1 is the estimated motor load torque.
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The load torque calculation method (22.26) is very simple; however, it is not precise.
This results from its sensitivity to any inaccuracy and the simplifications in the mechanical
equations. Because of that it is rather not viable tool for diagnostic system.
Instead of simple estimation (22.26), the observer methods seems to be more precise. Some

of the load torque observers are presented in the literature, for example, the concept of the
observers for systems with unknown and inaccessible inputs or the concept of full order
Luenberger-based systems (Brdys and Du 1991). Unfortunately, some of the observers have
strongly limited bandwidth or are not applicable to the FOC control algorithm.
In the presented application, different methods for the load torque calculations were previ-

ously tested (Guzinski et al. 2009a). The best results were obtained with an observer based
on the Gopinanth’s method (Ohnishi et al. 1996) that was previously used in the traction
application as part of train wheels slip detection system (Kadowaki et al. 2007).
The load torque observer is described as the next:

d

dτ

[
z1
z2

]
=

[
0 −k1L

1 −k2L

] [
z1
z2

]
+ [

k1Lk2L JM (k22L − k1L )JM
]
ω̂m +

[
k1L

k2L

]
T̂em, (22.27)

T̂S1 = z2 − k2L JM ω̂m, (22.28)

where k1L , k2L are observer gains, z1, z2 are internal observer variables, T̂em are motor torque
computed by equation (22.25).
Presented load torque observer (22.27)–(22.28) does not require speed sensor because the

motor speed is computed in the speed observer procedure.

22.4 Simulation Investigations

Simulation was realized using Matlab software. An example of the results obtained using
speed observer operation are depicted in Figure 22.9. In Figure 22.9, the desired motor torque
is used as the commanded value.
For improving simulation time a smaller inertia of the whole train was assumed. Motor

speed is changed to the next values referring to train speed 30 · · · 160 · · · 210 · · · 150 km/h.
The error between the measured and estimated speeds is also shown, and it is observed that
this error is significantly small and it is less than 2%.
In the next simulation test, the load torque TL is applied at the start of the drive transmission

with simultaneous changes of motor speed. Also in this case, the operation of the proposed
observer is correct as illustrated in Figure 22.10.
In Figure 22.10, a comparison of he real motor load torque TS1 with the computed one in

the observer T̂S1 is presented. The results show correct performance except at initial time, in
which load observer started computation.

22.5 Experimental Test Bench

In the second step of verification of the speed and load torque observers the experiments were
done. The experiments were provided in the HST factory, where the HST test bench were
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Figure 22.9 Speed observer simulation results

accessible. In the test, bench singular train drive with 1.2 MW is installed. The traction motor,
power converter, and control system are the same as in real train. The HST control system is
based on digital signal processors (DSP). The differences are in the gear, which has different
gear ratio and different gear wheels’ teeth number. That gear ratio fits the speed of the load
machine. The simplified structure of the test bench is presented in Figure 22.11. On the test
bench, series of tests were performed to investigate observer action at different motor speeds
and load torque levels in steady states and in transient conditions.
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Figure 22.10 Load torque observer simulation results
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Figure 22.11 Simplified structures of the experimental test bench

The test bench has efficient data acquisition structure. The DSP control board has several
programmable analog outputs where some internal control variables are sent. These variables
are the measured signals, for example, motor currents or internal DSP variables of the control
algorithm. The chosen signals in analog form are sent through wiring system to the general
purpose data acquisition board (DAB) connected to PC computer through USB interface. The
PC software collects data in graphic waveforms and in binary files, which are used for data
processing. The block structure of the data acquisition system is presented in Figure 22.12. Due
to limited time access to the test bench, a two-step, procedure was used in the experiments.
In the first step a list of desired tests was prepared and next required DSP variables and
measurements were collected: input inverter voltage, motor speed, PWM modulation index,
angle position of PWM commanded voltage vector, and motor two-phase currents.
The next tests were done: starting of the train and work with constant speed with different

load levels and motor speed, breaking of the train with different load levels and work with
different constant motor speed for 0%, 25%, 50%, 75%, 100% load, and so on. An example of
recorded experimental waveform is presented in Figure 22.13. For the obtained data analysis,
the observer calculation were done off-line in PC with the help of the Matlab software. The
experimental data were used as inputs for observers S-function.

USB Card

Figure 22.12 Structure of the test bench, data acquisition system



F
ig

ur
e

22
.1

3
E
xp
er
im
en
t:
th
e
ex
am
pl
e
of
th
e
re
co
rd
ed
w
av
ef
or
m
s
du
ri
ng
sy
st
em

w
ith
di
ff
er
en
t
lo
ad
le
ve
ls
(1
-i
nv
er
te
r
su
pp
ly
vo
lta
ge
,
2-
m
ot
or

sp
ee
d,
3-
PW
M
m
od
ul
at
io
n
in
de
x,
4-
m
ot
or
su
pp
ly
vo
lta
ge
ve
ct
or
po
si
tio
n,
5-
st
at
or
cu
rr
en
ts
)



Induction Motor Control Application 501

(p.u.)

(%)

ωr

Δω

0.3

0.2

0.1

0.0
2
1
0

–1
–2

0 5 10 15 20 25 30 (s)

Figure 22.14 Speed observer experimental results—the train start to 50 km/h

22.6 Experimental Investigations

The examples of the experimental speed observer calculations are illustrated in Figures 22.14
and 22.15. In the test of Figure 22.14, speed observer error is low and does not exceed 1.5%. In
Figure 22.15, an increase in computation error with train speed is noticed. At speed 320 km/h
(the train full speed), this error reached 5%. This error is caused by a distortion in motor stator
current. With an increase in motor speed, inverter switching frequency was decreased from
450 Hz until an operation without PWM for full train speed. The changes in PWM are done
to fully utilize the inverter dc supply voltage in the motor high-speed range. The distortion of
the motor current in the high-speed range are presented in Figure 22.16.
The proposed load torque observer is supposed to be used for fault detection in the torque

transmission system. Comparable experimental investigation should be realized for correctly
working torque transmission system and for faulty system for different fault types. However,
because of limited access to faulty real system and because of high cost of faulty transmission
system, experimental investigations were up to now limited to the existing in the HST factory
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Figure 22.15 Experimental results—the train start up to 320 km/h
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2298.5

motor phase current 1

–2298.5

–685.7
A

Figure 22.16 Motor supply phase current at motor speed related to train speed of 320 km/h

healthy system only. The realized tests of the torque observer for the healthy system aims
to know if the suggested observer is able to develop the same motor shaft torque as the one
measured using installed torque sensor.
The realized tests have shown torque observer’s acceptable precision. In the test bench,

it was possible to identify meshing frequency of transmission driving wheel. The vibration
amplitudes that result from such frequency were out of measurement bandwidth of the existing
instrumentation system of the torque sensor. Nevertheless, the proposed observer identifies
these signals correctly.
The examples of the experimental results of the load torque observer are presented in

Figures 22.17 and 22.18. In Figures 22.17 and 22.18 tests, the motor operates at constant

Frequency (Hz) Load
(%)

Ts1

Figure 22.17 Identification of the gear meshing frequency for motor speed related to 50 km/h train
velocity. (For a color version of this figure, please see color plates.)
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Frequency (Hz)
Load
(%)

Ts1

Figure 22.18 Identification of the gear meshing frequency for motor speed related to ca. 150 km/h
train velocity. (For a color version of this figure, please see color plates.)

speeds—related to next train speeds: 50 km/h and 150 km/h. For each speed, the load was
changed to the levels 25%, 50%, 75%, 100%. Fast Fourier transform (FFT) harmonic analysis
was then realized for the load torque and next the amplitudes levels related to meshing
frequencies were plotted. According to the transmission theory, an increase of amplitudes
with load increment is noticed (Muller 1979).
Higher precision of computation was observed for lower speed 50km/h which is, similarly

to the case of speed observer, caused by distorting current waveform with decreasing inverter
transistors switching frequency at higher speeds.
Above 150 km/h torque observer was not able to identify meshing frequency, which makes

it possible to assume that its practical use could be limited for speed range up to 150 km/h.
Nevertheless, torque observer is applicable for diagnosis purposes, because it is not required
that it works all the time but, for example, at lower speeds only. This is supposed to ensure a
detection of transmission system faults. Assembly defects of transmission system are charac-
terized by violent failures, which could be detected during initial test for train travels at lower
speeds.

22.7 Diagnosis System Principles

Diagnosis system is currently intended to evaluate diagnostic criterion. It is assumed that a
diagnostic system will not utilize any additional sensor except the sensors that are currently
used in existing HST. The main parts of our diagnostic system are speed and load torque
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observers. For condition detection of speed sensor and drive transmission system, specific
values computation is going to be realized and analyzed according to the defined criterions.
This aims for proper fault detection appearing and to the prediction of future faults before
their occurring.

22.7.1 Diagnosis of Speed Sensor

The base speed sensor diagnosis depends on real-time inspection of the next diagnostic
criterion:

|ω̂m − ωm | > Emlimit (22.29)

where Emlimit is the error limit between the measured and the computed speed.
On the base of the simulation and experimental tests, it was assumed that this error level

Emlimit is limited to 3%. This value was selected to be higher than the maximum observed
speed observer computational error, a 2% value.
If the diagnostic system identifies crossing of this limit level, then the system should give

an appropriate fault alarm and then HST control system could be switched to sensorless mode
of operation (Figure 22.19). In Figure 22.19, the speed sensor fault appeared at instant 5 s. At
this instant, the measured speed was equated to zero. The control system detected fault and a
diagnostic indicator dωm has been changed from 0 to 1. This was done immediately—in one
step of the control calculation algorithm. Simultaneously, the whole system was switched to
the speed sensorless operationmodewithout any noticeable disturbances. After fault detection,
the commanded motor torque was changed and the system has reacted correctly.
The other fault of the speed sensor is also possible—in the speed scanning buffer the last

proper value of the measured speed could be memorized. If this happens during a steady state,
the diagnostic system does not react immediately. In such case, the whole system still works
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Figure 22.19 Speed sensor fault identification and switch to speed sensorless control
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Figure 22.20 Load torque harmonics analysis

properly until the moment when the torque commanded signal is set or when the system starts
losing its operating point. In that case, after the time when the diagnostic indicator reaches a
3% level, the fault is also identified with some delay.
It is assumed that to differentiate between the sensor failure and motor failure a different

motor stator and rotor diagnostic system has to be used. The HST motor failure is going to
be monitored by separate algorithm based on analysis of the control signals in the closed loop
(Cruz and Cardoso 2006).

22.7.2 Diagnosis of Traction Torque Transmission

Vibrations of the torque transmission unit are caused by, for example nonexact meshing in the
gear, eccentricity of toothed wheel, and variable teeth stiffness (Guzinski et al. 2009c). Such
vibration causes a creation of harmonics with frequencies of torque transmission elements
rotation and of meshing frequencies.
Diagnostic system of torque transmission system uses harmonic analysis of the computed

load torque (Figure 22.20). The proposed structure of the transmission diagnostic system is
shown in Figure 22.21.
This structure presented in Figure 22.21 is divided into two parts: “online” and “off-line.” An

“online” part is used for detection of serious faults, which are characterized by violent increase
in the selected harmonics. An “off-line” subsystem is used to predict slowly increasing faults.
For an analysis of computed load torque, initially a classic power spectral concentration is

used. More advanced signal spectrum computation or wavelet analysis could be also employed
in future development.

22.8 Summary and Perspectives

The provided simulation and experimental investigations have proved an applicability of
presented observers for diagnostic purposes. Because of that the proposed diagnostic solution
is currently under implementation in a real railway system of HST.
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Figure 22.21 Conception of the transmission diagnostic system

According to the requirements of the train manufacturer, in the first step of the practical
implementation a specialized additional microprocessor DSP system will be installed in the
trains. The designed DSP system will first operate in an open-loop mode to collect speed
and load torque values calculated online by observer systems. The collected information is
to be used for the further analysis, simultaneously with the information obtained from the
HST maintenance center. On the basis of that data, the diagnostic criteria will be elaborated
and verified. A DSP system will communicate with the existing HST control system through
communication interface using an industrial network link. By this way, DSP systemwill obtain
the essential information needed to analyze the measured values and command values for the
control system.
Regularly, all data about the condition of transmission system are registered by train operator.

Thus, in this way it is possible to prepare essential data base of the system faults. With verified
diagnostic criteria, the additional DSP diagnostic system will be included into HST control
system and will work in closed loop mode.
The presented diagnostic system concept is general in nature and is not limited to only

HST induction motor drives. The implementation to other traction systems is also possible.
Nowadays diagnostic systems are also under implementation for tramway vehicles and also
for the newest traction drives with permanent magnet synchronous motors.
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AC Motor Control Applications
in High-Power Industrial Drives

Ajit K. Chattopadhyay
Electrical Engineering Department, Bengal Engineering & Science University,
India

23.1 Introduction

The power ratings of large medium voltage (2.2–13.8 kV) industrial drives range between
few hundred kilowatts to a few tens of megawatts and even 100 MW. The upper limit is
decided by the requirements of the applications rather than by the technology of the converters
and machines (Stemmler 1994). The available speed range lies from 10 rpm for low-speed
machines (e.g. Cement mills), 1500/3000 rpm for normal-speed drives to even 18 000 rpm for
very high power high speed drives (e.g., compressors). The limits for the dc motors such as
cost, size, commutator problems and inability to operate satisfactorily in a dirty and explosive
environment have called for ac motor drives for high power applications. Major technical
breakthroughs have occurred both in the power conversion and in control areas of variable
voltage variable frequency (VVVF) ac drives to meet the exacting requirements of ac drives
using direct ac/ac cycloconverters or ac/dc/ac link inverters that feed either induction motors
(IM) or synchronous motors (SM). The machine may be excited by a voltage source inverter
(VSI) or a current source inverter (CSI). Synchronous motor drives have the advantages over
the induction motor drives in that, with separate field excitation, these can be operated at
any power factor-leading, lagging and unity. The operation near unity power factor reduces
armature copper loss and permits inverter size reduction with simplicity of commutation (load
commutation) with thyristors as switches. Further, a synchronous motor runs at a precisely set
speed independent of load and voltage fluctuations unlike an induction motor.
The recent trends in high-power ac drives are to use pulse width modulated (PWM) VSI

or CSI with self-commutated devices like insulated gate bipolar transistors (IGBTs), gate turn

AC Electric Motors Control: Advanced Design Techniques and Applications, First Edition. Edited by Fouad Giri.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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off thyristors (GTOs), integrated gate commutated thyristors (IGCTs) and injection enhanced
gate transistors (IEGTs) for efficient VVVF control with harmonic reduction. The devel-
opment of new high-power semiconductors such as 3.3/4.5 kV, 1.7/1.2 kA IGBTs, 6 kV,
6 kA IGCTs and 4.5 kV, 5.5 kA IEGTs capable of snubberless operation and the introduc-
tion of three level topologies in contrast to earlier two level ones have led to an increased
application of PWM controlled Voltage Source Converters (VSC) ranging from 0.5 MVA to
about 30MVA (Chattopadhyay 2010). CSI-fed drives with simplified regeneration control and
microcomputer-controlled drives implementing evolutionary concepts like field orientation
or vector control (VC), with either inverter or cycloconverter-fed induction or SM by which
dc machine-like performance can be obtained and direct torque control (DTC) are now find-
ing increasing acceptance in high-performance industrial ac drives for applications such as
steel mills, ore-grinding mills, cement kilns, ship drives, mine winders, and electric traction
(Chattopadhyay 1997a). The converters for such drives meeting the high performance require-
ments must:

• generate smoothly variable frequency and voltage;
• produce nearly sinusoidal current waveforms throughout the operating range to avoid unde-
sirable torque oscillations;

• permit highly dynamic control both in forward and reverse motoring and braking applica-
tions;

• provide as nearly as possible or even better performance than that of the dual converter-fed
dc drives as regards cost, service reliability and harmonic effects on the system.

Besides the application of field-oriented control (FOC) in PWM inverter-fed motor drives with
various PWM schemes like carrier-based, hysteresis-band control and space vector modulation
(SVM), the recent application of DTC to ac drives (Chattopadhyay 2010) has been claimed to
achieve the highest torque and speed performance ever achieved with variable speed drives,
making it possible to control the full torque within a few milliseconds, reducing the impacts
of load shocks.
Thus, rapid and remarkable progress has beenmade over the years in the ac drive technology

used in the high-power drives and their control. Figure 23.1 shows a block diagram of a typical
high power ac drive system for a mill with its various components. The technology is vast
and the objective of this chapter is to present a brief but comprehensive state-of-the-art
overview of the development of each of the components such as high-power semiconductor
devices, converter topologies, motors used and the control strategies employed together with
their various application examples in the industry. The brief features of the industrial ac
drives developed by the leading manufacturers worldwide are also provided as well as new
developments and possible future trends.

23.2 High-Power Semiconductor Devices

Rapid advances in industrial ac drives and power conversion systems have been possible
due to continuous and astonishing development of the rating and performance of the power
semiconductor devices over the last 50 years. Two major types of high-power semiconductor
devices are used in high power converters in the industry: the thyristor-based (current switched)
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Figure 23.1 Block diagram of a typical drive system. Reprinted with permission from IEEE
(Chattopadhyay 2010)

devices that include SCR (silicon-controlled rectifier), GTO, IGCT (or GCT), and the transistor
based (voltage switched) devices that comprise IGBTand IEGT.The voltage and current ratings
of these devices as commercially available today for high power converters are shown in Figure
23.2 (Wu 2006). Some typical high-power devices are shown in Figures 23.3 and 23.4 (Sato
and Yamamoto 2001; Ichikawa et al. 2004).

23.2.1 High-Power SCR

Figure 23.3a shows a 12 kV /1.5 kASCR that is a high-power press-pack thyristor-based device
with three terminals: gate, anode, and cathode. Its turn-on process is initiated by applying a
pulse of positive gate current and it turns off when anode current becomes negative. The
turn-on time is 14 μs and turn-off time is 1200 μs. The on-state voltage drop is about 4 V.
This device blocks voltage in both forward and reverse directions. Originally, developed and
marketed by GE, USA in 1958, it is the highest rated power device so far (specially with the
light-triggered ones) for use with cycloconverter—and load-commutated inverter (LCI) fed
motor drives besides HighVoltageDC (HVDC) systems and Static VARCompensators (SVC).

23.2.2 High-Power GTO

The GTO is a self-commutated thyristor-based device that can be turned off by a negative gate
current. Figure 23.3b shows a 6 kV, 6 kA press-pack GTO (high-power GTOs being developed
by Japanese since 1980s), which is turned on by a pulse of positive gate current and turned
off by a negative gate current pulse. However, the turn-off current gain is typically 4–5 which
means that a GTO with a 6000 A anode current rating may require−1500 A gate current pulse
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(Eupec) (Toshiba)

Figure 23.2 Voltage and current ratings of high-power semiconductor devices. Reprinted with permis-
sion from IEEE (Chattopadhyay 2010)

(a) 12-kV, 1.5-kA SCR (b) 6-kV, 6-kA GTO

(c) 6-kV, 6-kA IGCT/GCT

Figure 23.3 Thyristor-based (current switched) high-power semiconductor devices. Reprinted with
permission from IEEE (Chattopadhyay 2010)
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(a) 3.3 kV HVIPM (b) 4.5 kV HVIGBT

(c) IEGT with gate driver

Figure 23.4 Transistor-based (voltage-switched) high-power semiconductor devices. Reprinted with
permission from IEEE (Chattopadhyay 2010)

to turn off. GTOs need bulky and expensive turn-off snubbers and complex gate driver. The
typical turn on time is 2.5 μs and turn-off time is 25 μs. The on-state voltage drop is typically
4.4 V. The GTO switching frequency is lower than that of IGBTs and IGCTs (to be described
later). So, the GTO converters operating in PWM (high-frequency) mode use energy recovery
snubbers consisting of a capacitor, a diode and a resistor across each device in addition to a
turn-on snubber consisting of an anode inductor in series with each device to reduce di/dt of
the anode current. The GTO can be fabricated with asymmetrical structures suitable for VSIs
or symmetrical structures suitable for CSIs.

23.2.3 IGCT/GCT

IGCT (also known as GCT) is a hard-driven GTO (developed by ABB in 1996) with unity
current gain that means that a 6000 A (anode current) device is turned off by a −6000 A gate
current (Sato and Yamamoto 2001). However, the current pulse should be very narrow with
low energy for fast turn off. Figure 23.3c shows an ABB press-pack type 6.5 kV, 6 kA IGCT
with a built-in integrated gate drive circuit (consisting of several MOSFETs in parallel) on the
same module. The IGCTs have replaced the GTOs for the medium-voltage drives over the past
few years due to their special features like snubberless operation and low switching loss. The
snubberless operation is possible because of extremely low gate inductance (typically< 3 nH
compared to < 30 nH for GTOs) by special construction. The rate of the gate current change
at turn-off is normally greater than 3000 A/μs compared to around 40 A/μs for GTO. The
turn-on and turn-off times are much faster than those of the GTO. Though the IGCT does not
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require a turn-off snubber, it requires a simple turn-on snubber or a clamping circuit since the
di/dt capability of the device at turn-on is around 1000 A/μs only. The on-state voltage of
IGCT at 6000 A is only 4 V compared to 4.4 V for a GTO at 4000 A. As the storage time
of IGCT is reduced to 1/10th compared to GTO, a high switching speed is obtained. IGCTs
have a higher switching frequency (typically 1.0 kHz) than GTOs (typically 0.5 kHz). Besides
the asymmetrical IGCT (suitable for VSI as shown in the Figure 23.3c, marketed by ABB),
symmetrical SGCTs (suitable for CSI) are available fromMitsubishi for smaller ratings. IGCTs
are simple to use, easily available and have demonstrated their reliability in many applications
that include rolling mill drives (e.g., ACS 6000 by ABB and SIMOVERT-ML2 by Siemens).

23.2.4 IGBT

After completely dominating the low-voltage converters, IGBTs are increasingly used for
medium-voltage converters. It is a voltage controlled hybrid device (developed by Baliga of
GE in 1983) combining the advantages of MOSFET’s high-gate circuit resistance and BJT’s
small collector-emitter drop at saturated condition. The ratings of these devices have reached as
high as 6.5 kV/0.6 kA or 3.3 kV or 4.5 kV/1.2 kA. It can be turned on with a 15 V gate voltage
and turned off when the gate voltage is zero or negative. The majority of high-power IGBTs are
of modular design as shown in Figure 23.4a and b. It can be turned on within 1 μs and turned
off within 2 μs. The main advantages of IGBT are simple gate driver, snubberless operation,
high-switching speed, modular design, and controllability of switching behavior providing
reliable short-circuit protection. Presspack devices are also available which are suitable for
series operation. The device has only forward blocking capability and can be used in a VSI
with a feedback diode. However, very recently, reverse-blocking IGBTs are also available.
High-voltage IGBTs have a higher voltage drop (e.g., 4.3 V for a 3.3 kV/1.2 kA device) during
conduction compared to thyristors or GTOs. IGBT devices can be available in intelligent
power module (IPM or HVIPM in Figure 23.4a) form with gate drivers and built-in protection
features to provide lower size and cost, improved reliability and fewer EMI problems.

23.2.5 IEGT

IEGT is basically an advanced high-voltage high-power IGBT with special gate construction
commercially developed by Toshiba in 1999 (Ichikawa et al. 2004). It is designed in such a
way that large numbers of electrons accumulate at its electrodes and it exhibits low on-state
voltage (compared to IGBTs and GTOs of the same rating). Figure 23.4c shows a 4.5 kV/2.1
kA (turn-off current 5.5 kA) IEGT and its gate driver that is less than 1/200 in gate power
compared with that of GTO/IGCT and more reliable. It can be turned on by the gate voltage
of +15 V and turned off by that of −15 V. The transistor-based IEGT has the potential to
achieve higher output frequencies than the IGCT/GCT. Another advantage over the IGCT is
the power required to turn the device on and off. Figure 23.5 (Tessendorf and Hosoda 2004)
shows the comparison of typical gate trigger pulses required for equivalent power devices. As
a transistor-based device, the gating power of IEGT is low and approximately equal for both
turn-on and turn-off. The on-state voltage drop across this device is of the order of 3.0 V (much
less than that of IGBT or GTO of similar rating). In the IEGT-based system, neither turn-on
nor turn-off snubber is required for each IEGT as in the case of GTO. However, each IEGT
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IGCT/GCT
50 A

1.5  . 

IEGT

A

4000 A

1.5 A

Figure 23.5 Typical gate trigger pulses for IGCT/GCT and IEGT. Reprinted with permission from
IEEE (Chattopadhyay 2010)

leg needs simple and efficient clamp circuits to eliminate the snubbers. As discussed later,
Toshiba has supplied 8 MVA IEGT-based three-level inverter systems for rolling mill drives
in 2000 with an efficiency of 98.5%, which is 2% more than that of an equivalent GTO-based
system thus saving a lot of energy.

23.3 High-Power Converters for AC Drives and Control Methods

Figure 23.6 shows a classification of converters as used for the high-power drive applications.
The direct topology connects the load directly to the source through power semiconductors
and a suitable control logic, while the indirect topology transfers the power in two stages,
rectification and inversion. For direct connection, the cycloconverter is the most used topology

High power
drives

Current source
Matrix

converter

Voltage source

Multilevel
inverters

High power
two-Level VSI

Flying
capacitor

Figure 23.6 Classification of converters for high-power drives
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in high-power applications that uses an array of naturally commutated power semiconductor
devices such as thyristors, to connect directly the power supply to the machine, converting a
three-phase ac voltage with fixed magnitude and frequency to a three-phase ac voltage with
variable magnitude and variable frequency (VVVF). Matrix converters (MC), belonging to
this category using self-commutated bilateral devices have a limited application. Only very
recently they have been used for medium-voltage, high-power drives with multilevel operation
(Yamamoto et al. 2011). Indirect dc-link invertersmaybe current source (CSI) or voltage source
(VSI) type depending on the dc-link energy-storage component which can be a capacitor that
provides a stiff dc voltage in voltage source drives or an inductor that smoothes the dc current
in current source drives. While the CSIs for high-power applications may be either PWM-CSI
or LCI, the VSIs may be two-level PWMwith switches in series or multi-level PWM. Inverter
originally developed as the neutral-point clamped (NPC) three-level inverter in 1981 (Nabae
et al. 1981). Other topologies of the multilevel inverters that have been commercialised are
flying capacitor (Rodriguez et al. 2007) and cascaded H-Bridge (Rodriguez et al. 2007) for
medium-voltage drives up to about 40 MVA.

23.3.1 Pulse Width Modulation for Converters

Pulse width modulation techniques to control the voltage output and improve the waveform
of the converters may be carrier-based sinusoidal pulse width modulation (SPWM), PWM
with selected harmonic elimination, hysteresis band current control PWM and SVM. These
modulation techniques have become mature technology and implemented in power convert-
ers for high-performance drives as commercial products (Rodriguez et al. 2007). Out of
these schemes, SVM is an advanced digital modulation technique preferred over the SPWM
technique as it provides better utilisation of the dc bus voltage and lower harmonics. This
method deals with the interactions among all the phases in contrast to the case of SPWM,
where each phase is treated independently. The concept of rotating space vectors are involved
here and it needs a microcomputer or digital signal processor (DSP) (Bose 2002) for its
implementation.

23.3.2 Control Methods of High-Power Converter-Fed Drives

Converter-fed AC drives with, either induction or SM, are controlled with control of frequency
and voltage (or current). To obtain high performance, closed loop control is preferred, while the
open-loop control is popular for pump, fan- and compressor-type drives, because this control
is simple and does not involve any complex feedback signal measurement or estimation as
needed for closed loop control. In general, the control methods for converter-fed drives may
be classified as scalar (volts/hertz or V/ f ) control, VC or FOC and DTC. DTC is an advanced
scalar control with performance comparable with the VCmethod. The VC inherently provides
high performance and permits to control the ac machine like a dc machine and most of the
advanced control techniques like adaptive control, optimal control, intelligent control (with AI
techniques) and fault-tolerant control can be applied to ac drives with the VC (Bose 2011a).
Scalar control, unlike VC, means control of the magnitude of a variable, whereas in the latter,
both magnitude as well as phase of the space vector variables are controlled.
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23.4 Control of Induction Motor Drives

23.4.1 Induction Motor Drives with Scalar or Volts/Hz Control

The simplest type of scalar control is open-loop Volts/Hz (V/ f ) control with low perfor-
mance compared to closed-loop VC. Machines are normally operated at rated flux so that the
developed torque/Amp of stator current is high and transient response is fast.

PWM Two-Level VSI Induction Motor Drive

The well-known two-level VSI as shown in Figure 23.7a with a line side PWM rectifier using
either IGBTs or GTOs feeding a well-regulated dc voltage with little ripple and at a high-
power factor to a load side PWM inverter also using IGBTs or GTOs is applied for medium-
and high-power industrial drives. To increase the converter voltage, a series connection of
these switches is applied. The capacitor used as a dc-link filter provides the voltage source.
A simple and most common SPWM method of 2-level voltage control is shown in Figure
23.7b. An isosceles triangle carrier is compared with the sine wave reference signal and the
crossover points determine the points of switching. Except at low-frequency range, the carrier

3-Ph

50 Hz

PWM
rectifier

Load
voltage O

O

Reference sinewave

Fundamental component

Carrier wave

wt

wt

PWM
inverter

AC motor

vd/2

Figure 23.7 (a) Two-level PWM Rectifier-PWM-VSI Inverter, (b) Two-level carrier-based sinusoidal
PWM. Reprinted with permission from IEEE (Chattopadhyay 2010)
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Figure 23.8 Constant V/ f or scalar control of a rectifier-inverter induction motor drive with slip
regulation

is synchronised with the signal and an integral ratio (multiple of 3) is maintained to improve
harmonic content. The fundamental output voltage can be varied by variation of themodulation
index (the ratio Ar/Ac, where Ar and Ac are the amplitudes of reference and carrier waves,
respectively).
The classical flux regulation control scheme for an SCR-rectifier-inverter fed drive with

simple constant V/ f ratio or scalar control for the constant torque region with slip regulation
is shown in Figure 23.8 (Bose 1982). The slip frequency ωsl which is proportional to torque
is regulated by the speed loop error. The ωsl signal is added to ωr to generate the inverter
frequency ωe. The voltage control signal Ve is generated from ωe through a function generator
so as to maintain the airgap flux nearly constant. A small boost voltage is added with the
estimated voltage to overcome the machine resistance drop that becomes dominant at very low
frequency. The drive accelerates with the clamped value of slip corresponding to the maximum
torque and then settles down to a value as dictated by the load torque. If the commanded speed
ω∗

r is reduced at steady state, the slip becomes negative and the drive system goes into the
dynamic or regenerative braking mode. Instead of regulating the slip, it can be maintained
constant and the speed loop error may control the dc-link voltage. The variation of V/ f ratio
causes the variation of air-gap flux and correspondingly the developed torque is regulated.
The open-loop scalar control is popular in the industry when a small drift in speed and air-gap
flux due to fluctuation are of no significance. Commercial drives with V/ f control are also
available with efficiency optimisation control (Bose 2011a).

PWM Three-Level VSI-Induction Motor Drive

Figure 23.9 shows a three-phase three-level PWM inverter (also known as neutral-clamped
converter (NPC) using IGBTs / GTOs). In two-level inverters, the output voltages consist of
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Figure 23.9 Three-level PWM inverter circuit diagram with output voltage waveform

pulses of either +Vd/2 or −Vd/2, whereas with a three-level inverter, these may be +Vd/2,
0, and −Vd/2. For high-power high-speed drives, three-level inverters have been preferred as
they can be operated with twice the rated voltage without any series connection and therefore
with twice the rated power with significantly improved output voltage waveform when com-
pared to a two-level inverter. However, a three-level inverter consists of 12 IGBTs/GTOs—4
IGBTs/GTOs per phase. Here, the connection in each phase may be represented by a three-
point changeover switch, the output of which can be connected to the positive pole, zero or
the negative pole of the dc supply. One three-level inverter can be regarded as an inverter that
can be operated with two independent pulse patterns. Till 1993, the rated power and frequency
of GTO-VSIs were limited to about 2 MW/60 Hz for two-level VSIs and 4 MW/130 Hz for
three-level VSIs but now with IGCTs (developed by ABB in 1996) and IEGTs (developed by
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Figure 23.10 Three-level GTO converter-inverter system for steel rolling mills

Toshiba in 1999) and breakthrough in series connection, the rating of the converters has gone
above 10 MVA. Siemens has introduced SIMOVERT-ML drive with three-level converters of
MW range with VC for application to synchronous or induction motor drives.
Hitachi Ltd., Japan, also developed three-level GTO-based 6.4 MW inverter induction

motor drive for steel rolling mills in 1996. The synchronous motor is often the most cost-
effective solution for applications with a wide field weakening range and for high surge
load requirements. Several recent applications of three-level inverters for large drives with
regenerative front end includes a 20 MW downhill conveyer system with GTOs. Figure 23.10
(Okayama et al. 1996) shows a three-level GTO converter-inverter system used for steel
rolling mills with VC (to be discussed later). The same configuration has been used with
IGBTs, IGCTs or IEGTs as switches replacing GTOs with improvement in efficiency and
reduced volume and weight.

Current Source Inverter-Induction Motor (CSI-IM) Drive

A schematic diagram of a dual PWM CSI-fed drive using GTOs is shown in Figure 23.11
(Chattopadhyay 2002). The system is a dual of the PWM-VSI rectifier-inverter system in Figure
23.7a. The PWM rectifier provides sinusoidal input current at unity power factor. This scheme
has replaced the earlier phase-controlled rectifier-fed auto-sequentially commutated inverter
(ASCI) using SCRs with capacitors and series diodes as commutation elements, Figure 23.12
(Chattopadhyay 2002). The variable dc voltage is converted to a current source by connecting
a large inductor in series eliminating the filter capacitor of the VSI. The freewheeling diodes,
typical of VSI, are absent in CSI as when supplied by a current source, current in any half-leg
of the inverter cannot change in polarity and can only flow through the power switches. A
method of speed control with CSI in which the slip ωsl is varied as a function of the Id
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Figure 23.11 CSI-PWM rectifier PWM-inverter fed induction motor drive

(pre-computed for given parameters of the machine) to maintain constant air-gap flux (as in
the V/ f control of the VSI-fed drive) is shown in Figure 23.13 (Chattopadhyay 2002). The
full four-quadrant capability of the drive can be obtained.

Cycloconverter-AC Motor Drive

Acycloconverter converts ac line power fromone frequency to that in another directly (AC/AC)
in contrast to the dc link inverter (AC/DC/AC). For large drives, 6 or 12 pulse converter
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Figure 23.12 ASCI-fed induction motor drive
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bridges are used requiring 36 or 72 thyristors in total, respectively. Like dual converters, the
cycloconverters can be operated in the circulating current-free mode where no circulating
current is permitted between the P- and N-groups by appropriate logic control. The circuit
operates in phase control line commutation mode and the firing angles are modulated to
synthesise a mean sine wave voltage. Basic cycloconverter configurations (both for non-
circulating and circulating current type) are shown in Figure 23.14 (Chattopadhyay 2010)
with voltage and current waveforms for the non-circulating current one. The bridge that

(a)

(b) (c)

Dead interval 
Component
converter I

Component
converter II

4th 3rd

M

M

VA

IA
1st quadrant 2nd

Dead interval 

Figure 23.14 (a) Non-circulating current-type cycloconverter, (b) circulating current-type cyclocon-
verter, (c) voltage and current waveforms for (a). Reprinted with permission from IEEE (Chattopadhyay
2010)
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conducts the current generates the voltage. Due to line commutation, its output frequency is
limited to, typically, 1/3 to 1/2 of the line frequency and is suitable for low-speed high-power
drives, with easy four quadrant operation. The circulating current type, though expensive, is
commonly employed for its simplicity, less torque ripple, higher maximum output frequency
compared to the noncirulating current type, which though more efficient has a dead time of 1
to 3 ns for switching between forward and reverse current resulting in a higher torque ripple.
The output voltage of a cycloconverter contains a complex harmonic pattern given by

k1n fi ± k2 f0, where fi is the input frequency, fo is the output frequency, n is the pulse number
and k1, k2 are integers. A cycloconverter output may contain sub-harmonics of lower frequency
than the output frequency that may be reduced bymodifying the cosine firing control technique
and feedback method to improve power quality and operating output frequency range. Because
of the phase control principle, the cycloconverter presents lagging reactive power at the input
irrespective of the power factor of the load and various schemes to improve this power factor
have been developed including fast current control loop or trapezoidal modulation. The control
method concepts discussed with VSI and CSI can be extended to cycloconverter drives. The
cycloconverter-fed induction/synchronous motor drives have been used with scalar control for
low-speed multi-motor-driven steel mill roller tables and with VC, in cement mills and rolling
mill drives as discussed later.

Matrix Converter-Fed AC Motor Drive

The MC is a development of the force-commutated cycloconverter (Gyugi and Pelly 1976)
based on bi-directional fully controlled switches, incorporating PWM voltage control, as men-
tioned earlier. With the initial progress made by Venturini (1980), it has received considerable
attention in recent years as it provides a good alternative to the double-sided PWM voltage
source rectifier-inverters having the advantages of being a single-stage converter with only
nine switches for three-phase to three phase conversion and inherent bi-directional power
flow, sinusoidal input/output waveforms with moderate switching frequency, possibility of a
compact design due to absence of dc link reactive components and controllable input power
factor independent of the output load current. The main disadvantages of the MCs devel-
oped so far are the inherent restriction of the voltage transfer ratio (0.866), complex control,
commutation and protection strategy and above all the non-availability of a fully controlled
bi-directional high-frequency switch integrated in a silicon chip. The power circuit diagram
of the most practical three-phase to three-phase MC is shown in Figure 23.15a that uses nine
bi-directional switches so arranged that any of three input phases can be connected to any
output phase as shown in the switching matrix in Figure 23.15b. Thus, the voltage at any
input terminal may be made to appear at any output terminal or terminals while the current
in any phase of the load may be drawn from any phase or phases of the input supply. For
the switches, the inverse-parallel combination of reverse-blocking self-controlled devices like
Power MOSFETs or IGBTs or transistor embedded diode bridge as shown have been used so
far. New perspective configuration of the bi-directional switch is to use two RB-IGBTs with
reverse blocking capability in anti-parallel eliminating the diodes reducing the conducting
losses in the converter significantly. The circuit is called a MC as it provides exactly one
switch for each of the possible connections between the input and the output. The switches
should be controlled in such a way that, at any time, one and only one of the three switches
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Figure 23.15 Three-phase to three-phase MC circuit with input filter, (b) Switching matrix for (a)

connected to an output phase must be closed to prevent “short circuiting” of the supply lines
or interrupting the load.
The control methods adopted so far for the MC are quite complex and are subjects of

continuing research (Zhang et al. 1998). Out of the several methods proposed for independent
control of the output voltages and input currents, two methods are of wide use: (i) the Venturini
method based on a mathematical approach of transfer function analysis and (ii) the SVM
approach (as has been standardised now in the case of PWM control of the dc link inverter).
These are discussed in Zhang et al. (1998).
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Figure 23.16 Multi-level MC: (a) configuration, (b) switch symbol, (c) switch realisation (Erickson
and Al-Naseem 2001)

A vector controlled high-performanceMC-inductionmotor is described in Ishii et al. (2000).
A multilevel MC with four-quadrant dc link H-bridge switching cells suitable as shown in
Figure 23.16 for medium or high voltage ac-to-ac power conversion was introduced in 2001
(Erickson and Al-Naseem 2001). The use of four transistors in the switch cell of Figure 23.16c
allows the average current to be doubled relative to the conventional MC whose four-quadrant
switches are realized using two transistors and two diodes. With dc capacitor, the switch cell
is capable of producing instantaneous voltages +V , 0, −V .
The Yaskawa medium voltageMC (Yamamoto et al. 2011) utilises a series connected multi-

level topology shown in Figure 23.17, where a three-phase input/single phase output MC is
a basic component called the cell. Connecting three cells in series, each designed for 635V
yields a line-neutral voltage of 1905 V, corresponding to a line-line voltage of 3300 V. These
multi-cell medium voltageMCs (FS Drive-MXIS) of rating 3 kV, 200–3000 kVA or 6 kV, 400–
6000 kVA have been built by Yaskawa and applied to 200 V, 22 kW wind turbine generator
system, 400 V, 16 kW elevator system and 3.3 kV, 3 MVA skin-pass mills (Yamamoto et al.
2011). Compared to PWM converter-inverter system, the MC scheme has higher reliability,
improved efficiency from 92.7% to 96.9% and weight about 62% (Yamamoto et al. 2011).

Slip-Power Controlled Induction Motor Drive

With wound rotor IM, while the stator is connected to the ac system, the rotor side slip power
can be controlled by a converter cascade, either a rectifier-inverter or a cycloconverter, via
slip rings as described in (Akagi 1998). New applications for high power ratings of some
hundred megawatts involving cycloconverters or GTO inverters are in the fixed-frequency
variable speed motor generators in pumped-storage plants in Japan. Figure 23.18 shows the
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arrangement of a 400MWadjustable-speed pumped-storage system in Japanwhere a 72MVA,
3-phase, 12-pulse line-commutated cycloconverter feeds the slip rings of the Scherbius drive.
The armature terminals, rated at 18 kV, of the 20-pole induction machine are connected to
a 500 kV utility grid through a step-up transformer. The output frequency of the circulating
current-free cycloconverter is controlled within ±5 Hz, and the line frequency is 60 Hz. With
a synchronous speed of 360 rpm the speed can be controlled from 330 rpm to 390 rpm. The
total operational efficiency of the system increases by 3% when compared to the conventional
constant-speed version of the system.

23.4.2 Induction Motor Drives with Vector Control

The vector or FOC, introduced in the beginning of 1970s (Blaschke 1972), has revolutionised
the control of high-performance ac drives when, with this control, an induction motor drive
can be operated like a separately excited dc motor drive. The stability and sluggish response
problems of the higher order and complex coupling model of ac machine under scalar control
vanishes with VC. In a separately excited dc machine, use of power electronic converters with
current feedback provides a direct control of the magnitude of the armature current and in
proportion, the torque. For ac machine, however, this control is to be achieved in terms of both
amplitude and phase that has led to the generic term VC. In addition, unlike the dc machine,
where the orientation of the field flux and the armature MMF is fixed by commutator and
brushes, ac machine requires external control to fix this orientation without which the space
angle between various fields vary with load (and during transients), giving rise to oscillatory
dynamic response. Field orientation control (FOC) directly controls this space angle and, in
particular, attempts to make it 90◦ between the specifically chosen field components so as
to emulate a dc machine and provide de-coupling control. The technique can be applied to
either induction or synchronous motor fed from either CSI/ CRPWM (current regulated PWM
VSI) / VSI or cycloconverter (Chattopadhyay 1997a). Early conceptual works on VC were
developed in Germany in the beginning of seventies and its implementation progressed with
the development of microprocessors in early eighties. In VC, the currents i e

ds and i e
qs , the d-axis

and q-axis components, respectively, of the stator current in synchronously rotating reference
frame are analogous to the field current I f and to the armature current Ia of the dc machine
and therefore the torque can be expressed as Te = Kt�miqs = K ′

t I f Ia = K ′′
t i e

qsi e
ds . These two

components can be independently controlled. For normal operation as in the dc machine, the
current i e

ds remains constant and the torque is varied by varying the i e
qs component. There are

two basic methods of VC based on the acquisition of the flux vector angle θe (= ωet) that
assures the alignment of i e

ds with �m and i e
qs with the airgap voltage (Bose 2002). The direct

method is based on the measurement or computation of the magnitude as well as the position
of the flux vector and the indirect method uses a slip relation to compute θe as a sum of θr and
θsl (corresponds to ωr and ωsl , respectively).

Direct Vector Control (Flux Feedback)

Figure 23.19 shows the block diagram of a direct VC scheme for a Current-regulated PWM
(CRPWM) inverter-fed induction motor drive (Chattopadhyay 1997a). The reference control
signals i e∗

ds and i e∗
qs , which are dc quantities, are converted to a stationary reference frame by
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(Chattopadhyay 1997a)

a vector rotator with the cos θe and sin θe signals generated from the flux signals followed
by 2/3 phase transformation as shown. A flux feedback loop provides precision flux control.
The speed control loop provides the torque command that generates the current reference.
The air-gap fluxes �s

dm and �s
qm can be measured directly by search coils /Hall probes or

estimated (observed) from stator voltage and current signals. Though the air-gap or the stator
flux orientation is attractive due to ease of fluxmeasurement or computation, it has been shown
that they lead to instability and not a perfect de-coupling and the orientation to rotor flux is
resorted to by synthesising the rotor flux �r from the directly sensed air-gap flux.

Indirect Vector Control (Flux Feed-Forward)

An alternative to direct measurement or estimation of the flux position for application of VC
is to employ a slip relation derived from rotor voltage equations in a synchronously rotating
reference system with rotor flux entirely in the d-axis (Bose 2002),

ωsl = Lm

� ′
r

e

(
R′

r

L ′
r

)
i e
qs (23.1)
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to compute the flux position relative to the rotor by summing a sensed rotor position signal
with a commanded slip position signal

θ∗
e = θ∗

sl + θr . (23.2)

Figure 23.20 shows the block diagram of the indirect vector-controlled induction motor
drive (Chattopadhyay 1997a). The commanded currents i e∗

qs and i e∗
ds are converted to stator

referred reference currents by transformation as in the case of the direct field orientation.
i e∗
qs is controlled according to the desired torque and constant rotor flux. i e∗

ds is obtained as
� ′

dr/Lm at the steady state. Indirect VC, also known as flux feedforward control, has the
limitation in the slip calculation that depends on the commanded machine parameters that
may differ from the actual values during the running condition of the drive. Several methods
of parameter adaptation have been attempted as discussed in Bose (2002). A universal field
oriented controller applicable to both direct and indirect field orientation was reported in
DeDoncker and Novotny (1994).
Few typical simulation results as obtained and experimentally verified (Chattopadhyay

1997a) are shown in Figure 23.21 for both indirect and direct VC.

Sensorless Vector Control of Induction Motors

Sensorless VC essentially means VC without any speed and flux sensor (Figure 23.22). A
mechanical speed encoder is undesirable in a drive as it adds to the cost and reliability
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Figure 23.21 Simulation results showing (a) speed, (b) torque and (c) rotor flux of a vector-controlled
induction motor drive for speed reversal (+600 to −600 rpm) (i) direct VC and (ii) indirect VC
(Chattopadhyay 1997a)

problems, besides the need for shaft extension and mounting arrangement. The speed signal
can be estimated from machine terminal voltages and currents by a number of methods
(Rajashekara et al. 1996; Bose 2002) such as slip calculation, direct synthesis from machine
state equations, model referencing adaptive systems, speed adaptive flux observer, extended
Kalman filter and slot harmonics. These estimation methods are complex and dependent on
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Figure 23.22 Block diagram of a sensor-less VC system

machine parameters. Further the estimation near zero speed imposes a challenge. Attempts
have beenmade to inject auxiliary signal at a carrier frequency from the stator side for amachine
designed with saliency and processing the response but with limited success (Holtz 2002).
Several speed-sensorless vector-controlled induction motor drives have been implemented by
Toyo Electric Company of Japan in newspaper printing machines, coating machine, textile
machines and so on. with a wide range of speed control with speed control accuracy of±0.5%
and speed response of 90 rad/s (Akagi 1998).
Two commonly used methods for flux estimation by sensing the machine terminal voltages

and currents are the voltage model and current model as described in Bose (2002). Voltage
model flux estimation is better at higher speed ranges, whereas the current model estimation
can be made at any speed. A hybrid model (Jansen and Lorenz 1992) is possible where the
voltage model is effective at higher speed ranges but transitions smoothly to the current model
at lower speed ranges.
Speed-sensorless vector-controlled system requires information on motor parameters to

realise high performance. A speed-sensorless vector-controlled inverter equipped with auto-
measuring of the parameters is reported in Ohmori et al. 1995). A DSP-based speed adaptive
flux observer is described in Kubota et al. (1993).

23.4.3 Induction Motor Drives with Direct Torque Control (DTC)

A new concept to control the torque and flux in induction motor drives, popularly known as
DTC, which is basically a performance-enhanced scalar control was developed in the late
eighties and commercialised in the late nineties by the ABB with IGCT inverters. It can be
shown that the developed torque of themachine is proportional to the product of synchronously
rotating stator flux �s , rotor flux �r and the angle θs between them. The main variable to be
controlled in the DTC scheme is �s that can be directly controlled by the stator voltage vs

(neglecting stator resistance). With this scheme it is possible to obtain a good dynamic control
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of the torque without any mechanical sensor on the shaft (sensorless). The scheme is shown
in Figure 23.23 (Wu 2006), where both the flux �s and the torque Te are controlled by the
hysteresis controllers in the outer loops as indicated. The machine voltages and currents are
sensed to estimate the torque and the flux vector that gives information about the angle θs in
one of the 60◦ sectors as shown in Figure 23.24 (Bose 2006). The vector�s rotates in a circular
orbit within a hysteresis band covering six sectors as shown. Figure 23.24 (Bose 2006) shows
the six active voltage vectors and two zero vectors of the two-level inverter (relevant to the
Space Vector PWM control) controlled by the voltage switch logic unit (SLU) of Figure 23.23.
If a voltage vector is applied for time �t , the corresponding flux vector increment is given
by the relation �ψ s = V s�t . The flux increment vector contributed by each voltage vector
is indicated in the same figure. The flux is initially established at zero frequency in the radial
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direction aA, as shown in Figure 23.24a. With the rated flux, the command torque is applied
and the flux vector starts rotating in the usual counterclockwise direction within the hysteresis
band depending on the selected voltage vector. The motor state calculations are updated in
each sampling period�t (e.g. 25 μs) in the software model by a DSP. The control loop errors
generate the digital signals ε� and εT through the respective hysteresis-band comparators.
The delays associated with the PWM stage are replaced by an optimal switching flux vector
selection table SLU (can be realised by an ASIC hardware or through a DSP software) or
a look-up table which selects the most appropriate voltage vector to satisfy the flux and the
torque demands. The drive has a faster response than the field oriented/VC and the absence of
the closed loop current control, PI regulators, vector transformation and conventional PWM
algorithm simplifies the scheme. However, as the feedback signals are estimated from the
machine terminals, the low speed limitation and the parameter variation problems are similar
to those of the stator flux oriented direct VC. In contrast to FOC, which is a linear control
where the PWM and the static converter are modeled as a linear actuator, DTC is nonlinear,
which in turn exploits the discrete nature of the static converter for the sake of robustness and
dynamics. Recently, a number of solutions of the inherent problems have been developed with
the use of improved switching logic, discrete SVM techniques, three-level inverters, adaptive
hysteresis-band control (Okumas and Aktas 2007) and introduction of fuzzy and neuro-fuzzy
techniques involving more computer power. Figure 23.25 (Malik and Khage 1998) shows a
circuit configuration of a compact 5 MW three-level IGCT converter motor system ACS 1000
with front-end rectifier and DTC control where the static speed control error is in the range
of 0.1%. Typical torque response of a DTC drive is <10 ms compared with 10–20 ms for a
vector-controlled drive and >100 ms for an open-loop PWM drive. This has been used for
pumps, compressors, conveyors and other auxiliary processes in a steel or process industry.
ABB has supplied IGCT-based ACS 6000 (3–27 MVA) with front-end controlled rectifier
(Active Rectifier Unit) designed to meet specific challenges faced by plate mills and reversing
cold mills-one in the new 5 m wide plate mill in China in 2005 where 10 MW synchronous
motors are used.

Isolation
transformer

Rectifier DC link

a b

Inverter Filter Motor

Ind.
motor

Figure 23.25 Three-level IGCT Inverter topology for ACS1000 (ABB) (Malik and Khage 1998).
Reprinted with permission from IEEE (Chattopadhyay 2010)
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23.5 Control of Synchronous Motor Drives

23.5.1 Synchronous Motor Drives with Scalar Control

Self-Synchronous or Commutator-Less Motor

The synchronous motor drives have essentially two different modes of operation. One is
the true synchronous mode in which the machine is controlled by inverter or cycloconverter
through an independent oscillator just like the V/ f control of an induction motor drive. The
other mode is the self-synchronous mode which is known as commutator-less motor (CLM)
mode (Figure 23.26) where the inverter or cycloconverter firing signals are derived from a rotor
shaft position sensor; dc-CLM, when supplied from an inverter and ac-CLM when supplied
from a cycloconverter. In the self-synchronous mode, the synchronous motor acts exactly
like a dc motor-the mechanical brush system being replaced by the shaft position sensitive
converter. Here, the frequency is slaved to the speed and not vice versa. Therefore, there is no
risk of pull out. Any slow down of the motor, no matter sudden, causes a corresponding drop
in frequency. The magnitude of the dc current supplied to the static commutator (for dc CLM)
determines the torque and the speed.

LCI Synchronous Motor Drive

An important feature of the synchronous machine is that it can be operated at leading power
factor and when supplied by a CSI, load commutation can be used. Figure 23.27 shows the
power circuit for such a drive. With a normal synchronous motor, the inverter is not capable
of load commutation below a certain speed (typically 10%) because of inadequate counter
EMF. Special starting arrangements with forced commutation through fourth leg or ‘current
pulsing’ are to be made at starting /low speed running. In 1997, an SCR-based inverter based
load-commutated commutator-less seriesmotor (CLSM) (SenGupta et al. 2000) with unaided
start-up capability, having the field winding in the dc link (Figure 23.28), suitable for a vehicle
drive as developed at IIT Kharagpur, India, has been reported. LCI-fed drives in CLM mode
are widely used in high-power drives such as pumps, compressors, pumped storage hydro-
and gas turbine start-up applications besides continuous rolling mills and traction drives. The
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Figure 23.26 Commutator-less dc motor
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Figure 23.27 LCI-fed synchronous motor drive

power rating for this drives has gone up to 100 MW for a NASA wind tunnel drive with a
single synchronous motor as discussed later.

Cycloconverter-Synchronous Motor (ac-CLM) Drive

Four quadrant torque-speed operation at a high power level with high torque at low speed is the
drive requirement for which the cycloconverter-fed synchronous motor as ac-commutatorless
(ac-CLM) drive (Figure 23.29) is best suited (Das and Chattopadhyay 1996). Some of the
applications are:

• Gear-less cement mill drives; the mill tube is driven from a low-speed wrap-around motor
with higher number of poles (Richlen 1971; Salzmann 1978);

• Reversing rolling mill drives with high dynamic requirements for torque and speed reversal
employing VC (Timpe 1982; Sugi et al. 1983; Nakano et al. 1984; Ichihara et al. 1986);

Th4 Th2 Th6

Th1 Th5 Th3

F
i
e
l
d

Synchronous
machine

Position
encoder

Inverter 
controller

C

Three
phase
AC IN

ω

φa

φb

φc

Figure 23.28 Power circuit diagram of an SCR-based CLSM (SenGupta et al. 2000)
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• Drives for mine hoists with high power ratings (Madiseti and Ramlu 1986);
• Icebreakers and other ships equipped with diesel generator-fed cycloconverter-fed SM with
power rating up to about 20 MW rating per unit (Hill et al. 1987).

The cycloconverter is normally operated with line commutation but can have load com-
mutation if the output frequency approaches or exceeds the line frequency. The firing pulses
are derived from shaft position sensors and the machine terminal power factor is maintained
at unity by field excitation control. The method of driving the motor from a cycloconverter
with the transvector control principle involving FOC was patented and used by Siemens
in Germany, for years, in very high capacity cement Mills (>8 MW) and also for rolling
mills rated above 3 MW since 1978. A 4 MW (peak loading 10 MW) blooming mill with a
cycloconverter-synchronous motor drive having a speed of 60–120 rpm was commissioned in
1981 together with a 4 MW roughing stand of a strip mill (Timpe 1982). The control concept
and relevant vector diagrams for field oriented operation is detailed in Salzmann (1978) and
Sugi et al. (1983) and discussed briefly in the next sub-section.
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23.5.2 Synchronous Motor Drives with Vector Control

The VC of SM is different from that of induction motors primarily due to the fact that, in
the latter, the magnetising current can be supplied from the field side independently of the
armature current and the space position of the field is located by the position of the rotor.
Additionally, the steady-state slip between the rotor (field winding) and the controlled flux
vector vanishes in the steady state. Therefore, the indirect or feed-forward type of VC as used
extensively for the induction motor does not seem obvious for a synchronous machine. For a
self-synchronous or CLM with rotor position feedback and VC, the implementation calls for
control of the magnitude and the phase of the stator current with respect to the location of
the field winding axis. The response of the field current is sluggish because of the large time
constant and as a result, the response of a self-controlled synchronous machine is slow. The
response can be improved considerably by using VC, where the transient magnetising current
demand to maintain the rated flux can be temporarily supplied from the stator side.

Vector Control of a Cycloconverter-Fed Synchronous Motor Drive

Figure 23.30 (Trantner and Wick 1988; Rodriguez et al. 2005) shows the vector diagram
of the synchronous machine (as preferred for a high-capacity steel mill), used to develop
FOC required to adjust speed and torque, where es is the air-gap emf, iq (torque-producing
component) is the quadrature axis component of the current is , id (flux-producing component)
is the direct axis component of current is , � the magnetic flux, iμ is the magnetizing current,
ϕL is the load angle, ϕs is the flux axis angle and λ is the rotor axis angle. The currents id and
iq of the stator current in synchronously rotating reference frame are analogous to the field
current I f and to the armature current Ia of the dc machine and the toque can be expressed as
Te = Ktiq = K ′

t I f Ia = K ′′
t id iq . These two components can be independently controlled with

VC. Figure 23.31 shows the simplified block diagram (Rodriguez et al. 2005) of the speed
and torque control system adopted by Siemens (Trantner and Wick 1988) that includes a PI
controller for the speed n and another PI controller for the flux�. The speed controller delivers
the reference value of the torque-producing current i∗

q , while the flux controller delivers the
reference value of the field-controlling current i∗

d . The stator currents iL1, iL2 and iL3 and the
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Figure 23.30 Vector diagram of the synchronous machine. Reprinted with permission from IEEE
(Chattopadhyay 2010)
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Figure 23.31 Block Diagram of the speed and torque control for the the mill with cycloconverter
(Siemens). Reprinted with permission from IEEE (Chattopadhyay 2010)

voltages vL1, vL2 and vL3 are measured and used in voltage model block M1 to calculate the
magnitude |�| and the position (sinϕS , cosϕS) of the flux. The position of the flux is used to
transform from d − q to α − β reference axis in block 2. Block 4 transforms the two-phase
currents iLα and iLβ into three-phase reference currents i∗

L1, i∗
L2 and i∗

L3 which are delivered
to the current controllers of the cycloconverter. M2 in block 6 is the current model that uses
the current components in field coordinates (id , iq ) to determine the flux position with respect
to the rotor axis. Then, the field position with respect to the stator axis is obtained by adding
ϕL to the rotor position λ. The current model is useful during low-operating speeds as needed
at starting and positioning of the mill when the machine voltage terminals are very noisy for
using voltage model. Block 2 is the field flux controller used to generate the reference value
of the rotor current i∗

e fed to the controlled rectifier of block 8. Nakano et al. (1984) reported
the development of a high-performance synchronous motor drive for a rolling mill by Fuji
in Japan, with an open-loop flux estimator and PI current controller. Here, the flux linkage
was kept constant by feeding part of the field current to the armature windings transiently and
the power factor could be controlled to unity. An improved PC (personal computer)-based
VC scheme for a 6-pulse non-circulating current cycloconverter-fed synchronous motor with
a closed-loop flux observer and operating with unity power factor for a rolling mill drive as
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developed in IIT Kharagpur, India, in 1996 and a prototype made by C-DAC, Trivundrum,
India, is reported in Das and Chattopadhyay (1997) and Chattopadhyay (1997b). It is briefly
described in the following sub-section.

Observer-Based Vector Control of a Cycloconverter-Fed Synchronous Motor Drive

Figure 23.32 shows the block diagram of an observer-based stator flux oriented vector con-
trolled six-pulse cycloconverter drive as applicable to rolling mills (Das and Chattopadhyay
1997) and the corresponding phasor diagram. This is an improvement on the Siemens’ drives
(Bayer et al. 1972; Trantner and Wick 1988) as well as the Japanese one (Nakano et al. 1984).
The implementation aims at a control that maintains a spatial orthogonality between the flux
vector �s and the armature current vector ia as shown in the space phasor diagram. The
reference speed and reference flux commands are given to the vector rotator that generates
the reference analog voltages for the cyclocoverter (through the current controller) and the
field converter. The stator flux is estimated by a closed loop reduced order observer. C1 is the
speed controller (PI) that generates the torque command that is divided by the stator flux to
generate the torque component of current isT . The magnetisation current along the flux axis i ′

m
is obtained from a flux controller (PI) C2. The transient stator flux component of current ism is
obtained from the relationship, I ∗

sm = i ′
m − i f d cos δ, which decays down to zero in the steady-

state. The steady state displacement angle is decided by the displacement angle controller and
the power factor can be maintained at unity. The set value of the field current is obtained from
the relation, i f d = i ′

m/ cos δ. C3 is the field current controller (PI) that generates the control
voltage for triggering the field converter. The vector rotator (VR) transforms the vector from
two-axes flux-torque reference frame to abc stationary reference frame. The observer and the
control circuit design aspects together with the PC-based implementation are detailed in (Das
and Chattopadhyay 1997). The observer is closed loop in nature, having constant gain matrix,
and is robust to speed variation. It is easier for digital computer implementation as it does not
contain any derivative term. The synchronous motor model with state variables comprising
stator fluxes and stator as well as field currents is utilised to estimate the stator fluxes using
the current measurements (Das and Chattopadhyay 1997).
Figure 23.33 shows the simulated and experimental current waveform of a phase following

a speed reversal from +200 to −200 rpm, a range appropriate for reversing rolling mill
applications.

23.6 Application Examples of Control of High-Power AC Drives

23.6.1 Steel Mills

While motors used in the primary area of steel making like Coke Oven, Blast Furnace,
Steel Melting Shop do not need very accurate speed or torque regulation, the motors used in
Roughing mills, Finishing mills, Plate mills, Tube mills, Run-out Tables, Coilers/Un-Coilers,
Pinch roles and so on need speed and torque regulation of higher accuracy. Since 1970s, AC
motor drives having either IM or SM fed from either direct ac/ac cycloconverters or ac/dc/ac
link inverters have replaced the earlier Thyristor-Leonard DC motor drives. The AC Drive
realises higher efficiency, less maintenance and a smaller motor. Synchronous motor drives
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motor drive. Reprinted with permission from IEEE (Das and Chattopadhyay 1997)



AC Motor Control Applications in High-Power Industrial Drives 541

Ref.
current
(pu)

Speed
(rpm)

Speed
(rpm)

200 (r/min)

Time (s)

1.0

–0

300

1  8.00v  2  2.00v

V 1(1) – 17.10V V 2(1) – 0.000 V

..............

.............. .............. .............. .............. .............. .............. ..............

........................................................ .............. ..............

.............. ..............

ΔV(1) – 17.:0 V

100

–100

–300
Time (s)

(a)

(b)

isa(A)

Figure 23.33 Speed and current response to step speed reversal: (a) simulation results, (b) experi-
mental results. The entire experiment lasts 5 seconds. Reprinted with permission from IEEE (Das and
Chattopadhyay 1997).

have the advantages over the induction motor drives in that these can be operated in near
unity or even leading power factor with excitation control, reducing armature copper loss and
permitting simplicity of commutation with thyristors or SCRs (silicon-controlled rectifiers)
as switches (as in a LCI-fed drive) and it runs at a precisely set speed independent of load
and voltage fluctuations. Thyristor or SCR-based cycloconverter-fed with FOC or VC (Chat-
topadhyay 1997b) have been extensively used in main rolling mill drives and cycloconverter-
fed induction motor drives with scalar V/Hz control have been utilised in roller / run-out
table drives.
With the introduction of FOC, a high performance 4 MW Blooming Mill with a

cycloconverter-synchronous motor drive having a speed of 60–120 rpm was commissioned
by Siemens in 1981 together with a 4 MW roughing stand of a strip mill (Chattopadhyay
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2010). Major manufacturers of cycloconverter drives above 10 MVA are Siemens (Simovert
D), Toshiba (Tosvert-μ /S850), ABB (ACS6000C) andAlstom (ALSPACL9000). Cold rolling
mills such as tandem mills require high dynamic response, accurate speed and torque control
of main and auxiliary drives while hot rolling mills, such as roughers, and hot strip mills
require good torque control and momentary overloadability; all such performance criteria are
met by these drives.
Because of the limitations of cycloconverters such as low-power factor, presence of low-

frequency inter-harmonics, less maximum output frequency, advances in IGBT and GTO
technology cleared the way for their application to the steel mill drives with PWM two-level
and later three-level NPC-inverters with high switching frequency, since 1990s. Hitachi and
Mitsubishi of Japan reported the development of high-performance three-level GTO-based
6.4 MW and 10 MVA inverters for induction and synchronous motors, respectively, for steel
main rolling mill drives in 1996. One such configuration developed by Mitsubishi is shown
earlier (Figure 23.10). Regenerative snubber circuit developed to have high efficiency and
a SVM method to minimise harmonic distortion are discussed in Okayama et al. (1996).
Hitachi (Tobise et al. 1996) developed similar GTO-based three-level inverters 5–6.4 MW
and 2 MW IGBT-based three-level inverters for steel rolling mills at the same time. Siemens
introduced SIMOVERT-ML drive with three-level GTO converters of MW range with VC
for application to synchronous and induction motors. These converters compete with cyclo-
coverters in the capacity region of 10 MVA or less. Three-level IGBT inverters with the same
configuration as the three-level GTO inverters in Figure 23.10 were introduced in many steel
plants up to 3 MW of medium capacity, for example 1.5 MVA IGBT inverter as in Tobise
et al. (1996), where three inverters were driven by a common converter. Group-drive appli-
cations like Approach Tables, Run-Out Tables are configured with one inverter supplying
several motors in a simple V/ f mode. Mitsubishi MELVEC 2000 N three-level IGBT inverter
(1.5–3 MVA) is claimed to be 40% smaller than the conventional equipment (Masuda and
Toyoda 2000).
Figure 23.34 (Yullang et al. 2008) shows the application of DTC controlled IGCT-based

ACS 6000 as supplied by ABB to a cold reversing mill and plate mill, respectively. These
schemes result in higher switching frequency (1 kHz) compared with GTO-based schemes
(0.5 kHz), higher efficiency (98%) and higher input power factor (0.97) and less space because
of snubberless operation. The DTC method employed allows accurate control of both rotor
speed and torque without pulse encoder feedback from the motor shaft.
High-performance three-level IEGT inverters have been introduced by Toshiba for main

drives in the steel industry since 2000 (Ichikawa et al. 2000, 2004; Suzuki et al. 2001),
replacing the GTOs in the same converter-inverter configuration as shown in Figure 23.10,
resulting in higher efficiency and less size of the equipments. 4.5 kV, 5.5 kA press-packaged
IEGTs have been used in an 8 MVA converter-inverter with 99% efficiency, 50% reduction
in converter volume and weight (Ichikawa et al. 2000). The 8 MVA IEGT inverter supplied
by TMEIC, Japan (Hosada et al. 2005), for a hot strip mill of Hunan Valin Liangang Steel
Co. of China is working since 2003. A new method of PWM control named as fixed pulse
pattern PWM to reduce the harmonics in the source input currents without increasing the
switching frequency for use with these inverters has been reported in Tsukakoshi et al. (2005).
GE-Toshiba has developed 6–26 MVA Dura-bilt5 MV drives with IEGT-based NPC inverters
(GE Toshiba 2003). Figure 23.35 shows one phase leg of a three-level 10 MVA IEGT Inverter
with its packaging unit (Tessendorf et al. 2008) for rolling mills.
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Clamp
snubber

OutputNeutral

Figure 23.35 One phase leg of a three-level 10 MVA IEGT inverter with packaging unit for a rolling
mill (Tessendorf et al. 2008). Reprinted with permission from IEEE (Chattopadhyay 2010) (For a color
version of this figure, please see color plates.)

23.6.2 Cement and Ore Grinding Mills

By the end of 1960s, the advent of thyristors and control equipment made it possible to design
gearless drives via a cycloconverter and a synchronous motor for cement and ore-grinding
mills. The world’s first gearless Tube/Ball mill drive with motor rating of 8700 hp (6400 kW)
at 15 rpm (44 poles, 5.5 Hz) in Le Havre, France, was reported in 1970 (Wurgler 1970). The
electrical aspects of the first large gearless ball mill installed at St. Lawrence Cement company
in Ontario, Canada, were reported in Allan et al. (1975) with a motor rating 8750 hp (6500
kW) at 14.5 rpm (4.84 Hz). The motor is in the self-controlled mode with the stator frequency
directly controlled by rotor speed (ac-commutatorless motor) with a rotor position sensor. The
motor thus cannot fall out of step and the characteristics are similar to dc machine. However,
control of these cycloconverter-fed drives was scalar. First gearless drive with the ring motor
(rotor of the synchronous machine wrapped directly round the mill cylinder) and FOC is
reported by Siemens in 1978 (Salzmann 1978) and later an improved version in Trantner and
Wick (1988). The VC system of the cycloconverter-fed synchronous motor used is described
under Section 23.5.2. ABB developed world’s largest gearless ball mill drive in cement rated
15 000 hp (11 200 kW) installed in the United States for a mineral grinding process (Errath
1996). A view of the the “wrap-around” gearless ring motor without shaft and bearings is
shown in Figure 23.36. The rotor is divided into a number of segments equaling the number of
poles that are mounted directly on the mill tube flange. The flange is bolted on to the mill drum.
A typical gearless ore grinding mill for mining applications looks the same (Rodriguez et al.
2005). The grinding circuit of a typical variable speed SAGmill of 12 MWwith two fixed ball
mills with SM of 5.5 MW for a copper mine is reported in (Pontt et al. 2003; Rodriguez et al.
2005; Bose 2011b). Cycloconverters were preferred instead of LCIs to improve the quality
and global performance of the grinding process.

23.6.3 Ship Drive and Marine Electric Propulsion

Electric propulsion is now well-established in large ship drives and in the merchant marine,
particularly, in cruise liners, icebreakers, shuttle tankers, and so on, as well as in warships. The
schemes include power electronic converters located between the generators and the propulsion
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Figure 23.36 View of a wrap-around or ring motor for cement or ore grinding mill

motors to facilitate variable motor speed and thrust from fixed or controllable pitch propellers.
The power electronic converters mostly used in modern marine electrical propulsion are ac
cycloconverter, LCI and the PWMVSI. The feasibility of a practical marine MC for electrical
propulsion system has been studied recently (Bucknall and Ciaramella 2010).
Cycloconverter drive technology is ideally suited to the extreme requirements (large powers

at low speeds and high dynamic performance) of the icebreaker. For example, US Coast Guard
Icebreaker Healy is equipped with 2× 11.2 MW, 0–130/160 rpm dual wound motors driving
twin shafts, each motor being powered by two 5.6 MW 12-pulse ALSTOM Alspa CL9000
Cycloconverters capable of providing 175% full load trorque for 30 s at zero speed (English
2001; Radan 2004). A shuttle tanker equipped with ABBmade cycloconverter propeller drives
is also mentioned in Radan (2004). A vector-controlled cycloconverter-fed drive designed for
icebreaker to deliver 16 000 hp to the twin propeller shafts of a Canadian Coast Guard
icebreaker is reported in (Hill et al. 1987).
LCI-fed synchronous motor drives (also known as Synchroconverter-CSI drives) are ideally

suited to normal high-power ship propulsion applications such as the cruise liners, for example,
RCI Cruise Liner INFINITY with two 19 MW Mermaid podded propulsers which use 2× 7
MW,0–118/135 rpmmotorswith 2× 12-pulse synchroconverters (English 2001;Radan 2004).
Another interesting application of LCIs is in a container ship (Clegg et al. 1999), where a
24-pulse SCR-rectifier-inverter system serves as a frequency converter to convert a voltage of
14–25.7 Hz generated by the shaft generator to a bus voltage of 6.6 kV, 60 Hz for the ship’s
main distribution system.
Medium voltage source two-level inverters with water-cooled series IGBTs with ratings

typically up to 20 MW, 2000 rpm, 6.6 kV have been used in drill ships. The ship Pride
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Figure 23.37 Schematic diagram of a IPS drive system of a ship (Crane and McCoy 1999)

Africa is fitted with 7 medium voltage ALSTOM VDM5000 IGBT variable speed thrustor
drives up to 4.5 MW (English 2001). World’s first electric warship-UK’s “daring class” Type-
45 Destroyer, in service from 2007 is fitted with two 15-phase 20 MW, 4.16 kV ALSTOM
VDM25000 PWM drives with advanced induction motors for main propulsion. An integrated
power system for all electric ship in a full-scale main propulsion drive for US navy (Crane and
McCoy 1999) consists of a main propulsion 19 MW induction motor drive system. The PWM
converter (Figure 23.37) consists of three 6-pulse rectifier bridges, three 6 kV dc links and 15
IGBT-based H bridges feeding a 15-phase induction motor.

23.6.4 Mine Hoists, Winders, and Draglines

The trends in the electronic control of mine hoists and winders in the 1970s and 1980s
were reviewed in Madiseti and Ramlu, (1986), where it was mentioned that SM supplied by
cycloconverter control are ideally suited for hoisting applications that are directly coupled.
Torques of about six times the rated torque at low speed are possible andwith digitalmonitoring
the winding cycle can be optimised, smooth and accurate. Advanced hoist technologies in coal
mines in China and zinc and copper mines in Finland with high-power SM (e.g 2.5 MW, 3 ×
3050 V, 8.7 Hz, 65.8 rpm by ABB in Pyhasalmi mine in Finland with shaft depths of 1450 m)
are enumerated in Chadwick (2010). The Pyhasalmi mine hoist is the first in the world to
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use ABB’s state-of-the-art ACS6000SD with DTC control using IGCTs to power the16-pole
2.5 MW synchronous motor of the mine hoist. This technology offers several advantages
over the alternative systems like cycloconverter and PWM converter in terms of footprint, high
reliability, high torque control over the entire speed range, unity power factor and lower energy
consumption. The Siemens has supplied two winders for a 537.5-m-deep Majaling coal mine
in China equipped with one 3 500 kW synchronous motor and another 435 kW, having Simatic
programmable logic controllers for the automation system. Gearless AC drive system-Simine
DRAG has been developed by Siemens and Bucyrus with 13 000 hp drive with a performance
of 9.7 MW for hoist and dragline for use in Zhungeer coal line in China. The drive with ring
motor is controlled by IGBT inverters supplied by Siemens Energy & Automation and is in
operation since 2007 (Siemens 2011)

23.6.5 Pumps, Fans and Compressors in the Industry

Pumps, compressors and fans are used in the widest range of industry: oil and gas sector,
water supply and waste water, chemical and pharmaceutical, cement plants, textile and paper,
mining, food and beverage, power plants, climate control and refrigeration systems. AC
drive applications in this market, sometimes referred as HVAC (Heating, Ventilation and Air
Conditioning) have been developing over the last 35 years. An adjustable speed 10 000 hp
ac drive utilising a doubly-fed wound rotor ac motor and a cycloconverter in the rotor circuit
was proposed in 1974 (Weiss 1974) for driving a pump or compressor for transportation of
gas or liquid through a pipe line. Later in 1980s, adjustable-speed LCI-fed synchronous motor
drive system with constant V/Hz control for pump and compressors were discussed in Weiss
(1983). LCIs with typical power range of 10–75 MW have emerged for these applications
(Hiller et al. 2010). Learning experiences encountered on a large variable frequency induction
motor drive installation for retrofit of 22 pipeline pumping stations with 3000 HP motors are
reported in (Rossman and Ellis 3000). Largest variable-speed synchronous motor fan drive is
for the NASA 100 MW wind tunnel consisting of a converter with two independent channels,
resulting in a total of four identical six-pulse thyristor bridges and a six-phase synchronous
motor having two sets of stator windings with 30◦ electrical phase shift between them (Bhatia
et al. 1999). The efficiency of the LCI drive is very high (99%) and is very important in
high-power drives in energy saving.
Oil & Gas utilities and LNG (liquefied natural gas) plants requiring large compressors make

use of large-scale variable speed drive systems such as VSI and high-power ac motor drive.
TMEIC (Toshiba-Mitsubishi Electric Industrial Systems Co) has developed a 30 MVA IGCT
controlled five-level VSI-fed synchronous motor (25 MW, 7.2 kV, 3600 rev min) drive system
applicable to oil and gas industry (Tsukakoshi et al. 2009). The five-level inverter is configured
with two NPC legs per phase, connected in a single phase and these phases are combined with
a star connection for three-phase output. The five-level inverter output voltage and current are
much more sinusoidal and of higher magnitude compared to three-level inverter. The 7.2 kV
30 MVA converter can be applied in parallel up to four sets for a maximum capacity of 120
MVA using balancing reactors. Recently, TMEIC has developed a 20 MVA 6.0 kV five-level
IEGT Inverter for the LNG Industry with efficiency more than 99% (Tsukakoshi et al. 2010).
Commercial drives developed by Siemens (e.g. Siemens Sinamics GM150 converter with
IGBTs) and ABB (e.g. ACS 1000, ACS 5000 & ACS 6000 with IGCTs and DTC) are widely
used for high-power pump and compressor applications.
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23.7 New Developments and Future Trends

With the continued development of power semiconductor devices,multi-level inverters, control
and estimation technologies, variable speed high power ac drives have gone through a dynamic
evolution and poised for new developments in future. Few among various promising fields are
as follows:

• The application of silicon carbide (SiC) power semiconductor devices (Singh and Pecht
2008) replacing the present silicon power devices (as described) in high power drives is
expected to improve the system performance, reduce system size, reduce power loss, process
high power for a given temperature and thus potentially lowering the overall cost. However,
the challenges are the SiC device fabrication processes which are expected to advance in
the next few years.

• FPGAs (field programmable gate array) are being progressively used in high-performance
industrial control systems (Monmassom and Christea 2007) including rotor flux oriented
control (Sinard et al. 2009) and direct torque control of IM (Kowalski et al. 2007). The
extremely fast FPGA computation time allows higher throughput and parallel architecture
to overcome the typical bottlenecks of DSP sequential algorithms

• Adaptive, optimal and intelligent control based on fuzzy logic (FL) and neural network
are emerging technologies (Bose 2012) that, when commercialised, will have dominant
impact on high power drives in future. Adaptive controls can be self-tuning control,
model reference adaptive control and sliding mode or variable structure control. Opti-
mal control may be model-based predictive control where a performance parameter like
response time, efficiency, or energy consumption is optimised. It has shown lot of promise
recently in the high-performance drives (Kouro et al. 2009). Intelligent control is based
on artificial intelligence (AI) techniques like expert system, FL, artificial neural network
and genetic algorithm. Fuzzy logic has been used in online search-based flux program-
ming efficiency optimisation control of indirect vector-controlled induction motor drive
(Sousa et al. 1995). Neural network applications have been proposed in motor drives
and power electronics as discussed in Bose (2007). Various fault tolerant control systems
of ac motor drives have been researched (Wechko et al. 2004; Delgado et al. 2008) to
improve reliability in their operation. The concept here is that the drive will continue to
operate at a minimum level of performance as per system requirements after sustaining
a fault.

23.8 Conclusions

A comprehensive but brief state-of-the-art review of the development of AC motor control in
industrial high-power drives involving high-power semiconductor devices, power converter
topologies, induction andSM, advanced control strategies used and their implementation, along
with their application examples is presented in this chapter. Scalar and VC of induction and
synchronousmotor drives usingVSI, CSI, LCI and cycloconverter are discussed. Scalar control
includes V/Hz control and DTC control as used extensively in high power industrial drives.
Vector-controlled IM and SM drives including sensorless control have been elaborated. Recent
improvement in MC, for medium-voltage highpower drives is also reported. Application
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examples of AC motor control in high-power drives such as steel mills, cement and ore-
grinding mills, ship drives, mining winders and hoists, pumps, compressors and fans as
developed for these industries by the leading drive manufacturers worldwide are highlighted.
At the end, new technology developments and future trends in this field have been indicated.
It is hoped that this chapter will serve as a useful reference for the academic researchers as
well as the practicing engineers working in the field of high power converters and control of
adjustable-speed drives.
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Figure 2.1 Squirrel-cage induction motor. Copyright granted, 2012, ABB; all rights reserved.
(See page 18).

Figure 11.1 Experimental setup. (See page 219).
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Figure 11.2 Experimental setup and observer-control scheme. (See page 219).
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Figure 12.12 Stator voltages in the original reference frame �t during the velocity rising ramp. (See
page 250).
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Figure 21.2 (a) Toyota THS parallel hybrid drivetrain and (b) Ford parallel hybrid drivetrain.
(See page 457).

(a) (b)
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Figure 21.3 (a) Configuration of Honda Insight parallel hybrid and (b) schematic of Honda Insight
drivetrain. (See page 458).
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Figure 21.5 (a) Schematic of an Audi experimental HEV, and (b) photo of rear electric drivetrain from
PCIM2010, Nuremberg. (See page 459).
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Figure 21.10 Torque-speed characteristics and efficiency maps of (a) the IMPMSM in Toyota Camri
Hybrid (Olszewski 2008), (b) an induction machine (Gosden et al. 1994) and (c) an SRM (Takano et al.
2010). (See page 466).
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Figure 21.16 The electromagnetic design of the IPMSM in Toyota Prius HEV and its torque-speed
and CPSR characteristics. (See page 472).
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Figure 21.17 The electromagnetic design of the SPM machine with fractional-slot winding developed
at the University of Wisconsin-Madison (Reddy et al. 2011). (See page 472).

0
0

To
rq

ue
 (

N
m

)

1000 2000

Speed (rpm)

CPSR > 7:1

3000 4000 5000
0

P
ow

er
 (

W
)

100
200
300
400
500
600
700
800
900
1000

2

4

6

8

10

12

14

Figure 21.18 The electromagnetic design of the SPM machine with fractional-slot winding developed
at the University of New South Wales (Dutta et al. 2011). (See page 473).
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Figure 21.19 Cross section of an 8/6 SRM. (See page 473).

Figure 22.17 Identification of the gear meshing frequency for motor speed related to 50 km/h train
velocity. (See page 502).



Figure 22.18 Identification of the gear meshing frequency for motor speed related to ca. 150 km/h
train velocity. (See page 503).
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Figure 23.34 (a) Cold reversing mill with ACS6000 and (b) plate mill with ACS 6000 ABB Reprinted
with permission from IEEE (Chattopadhyay 2010). (See page 543).
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Figure 23.35 One phase leg of a three-level 10 MVA IEGT inverter with packaging unit for a rolling
mill (Tessendorf et al. 2008) Reprinted with permission from IEEE (Chattopadhyay 2010). (See page
544).


