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Preface

A Smart Grid is a massively distributed and hierarchical electrical generation,

consumption, and distribution system that is instrumented with sensors and utilizes

many types of devices and controls. At a fundamental level, an electrical grid exists

to provide the means of generating and routing power to meet consumption

demands. The intent of a Smart Grid is to use technological advances in commu-

nication networks, sensing, and controls to manage the grid safely, reliably, and

efficiently. Linear programming is a type of mathematical model that can explicitly

produce solutions that optimize allocations of resources in the presence of con-

straints on their availability in time and place and on supporting infrastructure.

Linear programming is also highly scalable to practical problems that are large and

complex. Thus, this book concerns the use of Linear Programming models for

resource-allocation problems that arise in Smart grid applications. The intended

audience are members of the scientific community who work in energy-related

fields, computer scientists, and engineering students. The book also serves as a

reference book for anyone interested in the area of operations research for utility or

other domains of interest.

In recent years, advances in computing and communication have resulted in

large-scale, distributed environments. Environments that are capable of storing

large volumes of data and, often, have multiple compute nodes. However, the

inherent heterogeneity of the data components, the dynamic nature of distributed

systems, the need for information synchronization and data fusion over a network,

and the security and access-control issues make the problem of resource manage-

ment and monitoring a tremendous challenge in the context of a Smart grid.

Unfortunately, the concept of cloud computing and the deployment of distributed

algorithms have been overlooked in the electric grid sector. In particular, central-

ized methods for managing resources and data may not be sufficient to monitor a

complex electric grid. Most of the electric-grid management, including generation,

transmission, and distribution, is, by and large, at a centralized control. In this book,

we present a distributed algorithm for resource management which builds on the

traditional simplex algorithm that is utilized to solve large-scale, linear
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optimization problems. The distributed algorithm is exact, meaning that its results

are identical if it is run in a centralized setting.

More specifically, the authors discuss a distributed decision model, where a

large-scale electric grid is decomposed into multiple submodels that can support the

resource assignment, communication, computation, and control functions that are

necessary to provide robustness and to prevent incidents such as cascading black-

outs. The book’s key contribution is to design, develop, and test a resource-

allocation process through a decomposition principle in a smart grid. We have

implemented and tested the Dantzig–Wolfe decomposition process with standard

IEEE 14-bus and 30-bus systems. The book details how to formulate, implement,

and test such an Linear Programming (LP)-based design in order to study the

dynamic behavior and the impact of an electrical network while considering

network’s failure and repair rates. The Dantzig–Wolfe approach’s computational

benefits for finding an optimal solution and its applicability to IEEE bus systems are

presented.

The last two chapters are dedicated to PMU placement problems and renewable

energy allocation using the linear programming formulation. We hope you find this

text useful to build research models using linear programming.

Grand Forks, ND Prakash Ranganathan

Fargo, ND Kendall E. Nygard
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Chapter 1

Introduction

The worldwide electric-power industry is undergoing a transformation unlike

anything that it has seen in over a century. The entire supply chain for electricity,

including how the power is generated, transmitted, distributed, and consumed, is

being overhauled with the goal of establishing a more sustainable energy future.

Adopting new technologies and the associated market restructuring are a complex

undertaking that requires knowledge about the many interacting variables and the

conflicting cost functions for various market participants, such as power producers,

system operators, load-serving entities, regulators, aggregators, service providers,

and consumers. The smart grid is an information-enriched energy network, and it is

going to require substantial information processing, storage, and data-mining

resources. An entirely new software sector is being created to meet the challenges

and to fill the many needs resulting from smart grid’s arrival. Spending for the

Smart grid is estimated to be $165 billion over the next 20 years, and a good portion

of this cost will be for software and data services [RPT07, AW05]. The Smart grid

is a complex, highly networked system that must operate in diverse, often-

challenging environments that combine large and complex facilities with vast

numbers of edge nodes, e.g., the smart meters that are grid’s consumer-fronting

boundary. The smart meters require sophisticated software in order to operate

efficiently. Upgrading utility information and control infrastructure is critical to

maintain the electric distribution system’s reliability at a time of rising costs.

To meet the enormous challenge of creating a sustainable energy infrastructure

for the future, which is driven by a smart grid, researchers and practitioners need to

quantitatively investigate the complex interactions between different components

of the electricity grid and to evaluate the impact of new ideas and technologies,

considering the interdependencies among markets, power flows, and information

and communication networks [Ami05]. To assist with a quantitative understanding

of the grid, there is an unprecedented need for (near) real-time visibility about the

state of the grid and its loads, with volumes of data being collected from smart

meters and other sensing devices that are added to the grid. The book is a collection

of design models which address these complex interactions through linear
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programming (LP) models. LP-based systems provide a paradigm for conceptual-

izing, designing, and implementing software systems with simplicity and robust-

ness. The proposed, master LP model can act autonomously and can communicate

with other LP structures across open and distributed environments.

The proposed approaches are comprised of multiple design models as shown in

Table 1.1. The models are explained in the following chapters.

Model 3’s contribution is a probability-based LP formulation for a directed

network under uncertainty conditions with supply and demand units. Here, our

contribution is modeling and expanding the basic integer linear-program formula-

tion of a bi-partite graph to a network grid structure with known uncertainty. This

approach is described in Chap. 3. Model 2’s contribution involves developing and

implementing a branch-and-bound technique that allocates the distributed energy

resources (DERs) to a set of demand units. Here, we discuss how distributed energy

resources can maximize their preferences when subjected to various equality and

inequality constraints. Model 3’s contribution is the formulation, implementation,

and testing of a decomposition procedure for an electric-grid resource-allocation

problem. Models 4 and 5 discuss a placement problem of PMUs and integrating

wind sources to the power grid. Models 6 and 7 detail a capacitated transshipment

solver and economic dispatch problem using LP methods.

In the book, we treat an agent as a piece of software code that can run LP

functions continuously and autonomously in an environment where other processes

take place and where other agents exist. The sense of “autonomy” means that the

agent activities do not require constant human guidance or intervention. We

envision this architecture as a distributed system consisting of a collection of

autonomous micro-grids, which can make decisions themselves, connected through

an electrical network and distribution middleware, which enables the Independent

System Operator (ISO) to coordinate the activities and to share the smart-grid

system’s resources so that consumers perceive the system as a single, integrated

computing facility.

Smart-grid technology promises to revolutionize the way electricity is produced,

delivered, and utilized. A fundamental problem when building open-distributed

systems is to design mechanisms that compute optimal system-wide solutions

Table 1.1 List of linear programming models

System

models Models

Model 1 An LP-based resource optimization that uses the Dantzig-Wolfe technique

Model 2 An optimal resource assignment uses a branch and bound model for a Smart grid

Model 3 A probabilistic energy-reallocation technique that uses linear programming in a

Smart grid

Model 4 A placement problem of Synchro phasors using LP with redundancy criteria

Model 5 Unbiased optimum power flow model integrating wind sources

Model 6 A capacitated transshipment problem solver

Model 7 A distributed network decomposition into micro-grids using betweeness indices for

economic dispatch

2 1 Introduction
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effectively despite the self-interest of individual micro-grids. In particular, using

renewable energy sources is expected to result in a massively distributed power-

generation and distribution system that is composed of a large number of generating

stations which operate on disparate renewable technologies. The optimal allocation

of existing energy resources becomes a challenge due to the massively distributed

nature of the generation facilities and consumption sites, and due to the uncertainty

caused by inherent random fluctuations with generation. How should resources be

effectively and computationally allocated to such a highly distributed system?

Therefore, we target a distributed resource-allocation problem to satisfy both the

local and global objectives in order to reach an optimum solution for a smart-grid

application by studying the current IEEE electric-grid bus systems. We propose an

iterative, distributed algorithm for the resource optimum problem as a solution. The

algorithm is scalable for deployment in large electricity networks because it

requires fewer computations than modeling via a centralized, direct LP

implementation.

1.1 Objectives of the Book

The main objective of this book can be summarized in a single sentence: to develop

an LP model for the resource-allocation problem in a Smart grid. The book focuses

on a distributed linear-programming technique for an electric utility’s resource-

allocation problem. The computational effectiveness of the Dantzig-Wolfe model-

ing, and the associated tasks and objectives are given in the following sections:

1.1.1 Objective #1. Formulate a Mathematical Model
for the Smart-Grid Resource-Allocation Problem

Task 1: Study and review prior modeling approaches that are explained in the

literature in order to ascertain the computational benefits for resource-allocation

problems. To study how these approaches can be applied in a smart-grid

application by reviewing various techniques, such as LP, fuzzy logic, and

heuristic methods, the Literature Review is presented in Chap. 2. Compared to

the other formulation types reported in the literature, the Dantzig-Wolfe

(DW) LP formulation has a much simpler structure, and we argue that it can

be modeled for large-scale systems such as the IEEE 30 bus system for a Smart

grid. Solution algorithms for general LP problems exist in commercially avail-

able software; these solvers, however, are intended for generic problems and

cannot detect and take advantage of special problem structures, limiting the size

of the problem that can be solved. We address how Smart-grid resources can be

formulated as a special case structure in order to apply the DW method.
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Task 2: Formulate the Dantzig-Wolfe decomposition constraints for an IEEE 14-

and IEEE 30-bus system. An LP formulation of inter-regional constraints of a

large-scale grid by decomposition process is described in Chap. 5.

Task 3: Formulate the bi-directional flow network constraints.

Task 4: For the 14-bus system, decompose the entire grid into multiple regions

(Regions 1, 2, and 3), and formulate their constraints.

Task 5: Develop a two-region decomposition formulation of the same problem, and

compare the resulting optimal resource-allocated solutions with the three-region

decomposition’s formulation. This task provides information about whether all

decompositions yield similar performance and computational time savings.

1.1.2 Objective #2. Design, Develop, and Implement a
Distributed Solution Procedure for the
Mathematical Model

Task 1: Develop any additional constraints and objectives for the proposed prob-

lem. Here, the objectives are twofold: (1) to reduce the overall system-failure

rate and (2) to reduce the repair rate for an IEEE bus system.

Task 2: Study the suitable LP solver tools to implement such a scheme.

Task 3: Design a distributed solution procedure to compute dual values for the

Dantzig-Wolfe procedure, and exchange dual values between local micro-grids

and global objectives.

Task 4: Implement the LP approach directly, without decomposition, in a large-scale

algebraic LP solver such as A Mathematical Programming Language (AMPL).

Task 5: Implement Task 4 with the decomposition applied.

1.1.3 Objective #3. Develop an Experimental Design
for Testing the Procedure Referenced in Objective 2

Task 1: Set up the simulation environment in AMPL for the IEEE 14- and IEEE

30-bus systems.

Task 2: Develop experimental design parameters for power-flow constraints in the

transmission lines. Restrict the flow in one direction at a time by using binary

operators.

Task 3: Study the feasibility regions of the proposed mixed-integer problem.

Task 4: Develop contingency scenarios about how the method will react to, along

with the feasibility of, the solution it provides.

Task 5: Choose the Computer Processing Unit (CPU) run time as one of the main

performance parameters.
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1.1.4 Objective #4. Conduct the Experimental Testing
Referenced in Objective 3

Task 1: Test the experimental setup for various scenarios. Conduct sensitivity

analysis by simulating line failures and observing the optimum.

Task 2: Compare the DW procedure with direct LP implementation, and analyze

the resultant computational savings.

Task 3: Test the procedure’s scalability as the number of resources and the system

demand increase. For example, how does the procedure scale with a 30-bus

system?

1.1.5 Objective # 5. Develop Decision Models Using Linear
Classifier, and Placement of Synchro phasors Using LP

Task 6: This task discusses on how decision can be made using simple linear

classifier, and a placement problem of a sensor known as Synchro phasor with

zero injection constraints.

1.1.6 Objective # 6. Integrating Wind Source to Smart Grid
Decision Using Linear Programming, and Modeling
Capacitated Resources

Task 7: This task details how uncertainty in the wind resource can be reduced, when

integrated to smart grid networks, and also discusses a Capacitated Transship-

ment Problem Solver. Chapter 12 in this task also outlines novel way to

decompose micro-grids using between indices.

The tested results are detailed in Chap. 6, yielding significant results about the

computational savings for such a decomposition procedure that is used by utility

operators during contingency scenarios. Such a decomposition formulation is

neither tested nor formulated using real IEEE bus-system data. The DW proce-

dure’s applicability is the first of its kind to consider bi-directional power-flow

constraints. We strongly believe that this novel technique will enable local system

operators to predict, apply, maintain, and balance the resource allocation effectively

for their systems in a time-sensitive grid. We assert that this approach will generate

broad interest in the utility market for analysis and adaptation. Moreover, the

procedure is guaranteed to converge and does not require the revelation of local

information from each micro-grid, and all algorithm actions can be realized by

programmable smart devices on the smart grid.
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Table 1.2 shows the number of tasks that are completed for each objective. The

book has 11 chapters that include this Introduction chapter. Chapter 2 details the

Literature Review for linear programming and Smart-grid modeling. Two

published papers are included as Chaps. 3 and 4, and they describe probabilistic

resource-reallocation modeling as well as a branch-and-bound technique,

respectively.

In summary, we have contributed to the three models using LP in the book. The

first model contribution is a probability-based LP formulation for a directed net-

work under uncertainty conditions with supply and demand units. Here, our con-

tribution is modeling and expanding the basic integer linear-program formulation of

a bi-partite graph to a network-grid structure with known uncertainty. This

approach is described in the published paper given in Chap. 3. Our second contri-

bution involves developing and implementing a branch-and-bound technique for

allocating distributed energy resources (DERs) to a set of demand units. Here, we

present results that show how distributed energy resources can maximize their

preferences when subjected to various equality and inequality constraints. This

model is completely developed, implemented, and tested by using a branch-and-

bound method. This method is outlined in the published paper that is presented in

Chap. 4.

Chapter 5 details a decomposition model using the Dantzig-Wolfe procedure

as well as its formulation for the standard IEEE 14-bus and IEEE 30-bus systems.

This procedure is the book’s third major contribution. Chapter 6 describes the

implementation and testing phase as well as the results of the Dantzig-Wolfe

procedure. The conclusion and future work are provided at the end of this book.

Chapters 6 and 7 discuss implementation, testing, and remarks on application of

Dantzig-Wolfe decomposition for micro-grid decomposition.

Chapters 8 and 9 detail on a linear classifier, and placement of PMUs using zero

injection constraints. Chapter 10 is a research work on optimal power flow for

power systems with wind power integration using LP approach. Chapter 11 dis-

cusses a capacitated transshipment problem solver.

Table 1.2 Objectives and the number of tasks

Completed objectives Completed tasks Chapters

Objective #1 Tasks 1, 2, 3, 4, and 5 Chaps. 1–7

Objective #2 Tasks 1, 2, 3, 4, and 5

Objective #3 Tasks 1, 2, 3, 4, and 5

Objective #4 Tasks 1, 2, and 3

Objective #5 Task 6 Chaps. 8 and 9

Objective #6 Task 7 Chaps. 10–12
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Chapter 2

Literature Review

The goal of this chapter is to provide prior work done with linear-programming

approaches for the resource-allocation problem. Operations-research

(OR) modeling often concerns finding the best quantitative solution for manage-

ment problems [HL01, Mom01]. The OR methods include mathematical-

optimization modeling as simulation, and using OR methods has grown signifi-

cantly since their origination during World War II. Templeman [Tem91] describes

quantitative OR methods for designing and controlling industrial and economical

operations. Many private and government organizations have improved their oper-

ations by successfully using mathematical programming [Wad83, Aro02, Chv83,

Dan63, SS85]. This book focuses on a resource-allocation problem and applies

linear programming for the solution approach.

2.1 Linear Programming in Practice

LP problems are decision problems where the purpose is to compute values for a set

of decision variables in order to optimize (maximize or minimize) a linear-

objective function, subject to a set of linear constraints. A formal definition for

the class of LP problems is given below; because this book is primarily about

solving LP problems in practice, I, first, briefly consider the context in which such

problems arise and the importance of being able to solve them.

A diverse range of real-world problems can be approximated and formulated as

LP problems, and there is often great economic or other value attached to finding an

optimal solution. The LP field was originally developed to plan military-logistic

operations during the Second World War (The word “programming” in LP means

“planning.”), and since then, the range of applications has flourished. Examples

include industrial diamond blending, hired-car fleet management, distribution

warehousing and supply chain management, oil refining, and gas-pipeline flow.
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(Many other applications are described in the literature [GPS00, BBG77, Bou01,

Bou02, Wil93].)

The value of being able to identify an optimum solution, as opposed to a feasible

solution or sometimes no solution, can run into the order of many millions of

dollars. For instance, a difference of 1% in the objective value in the yearlong

PowerGen problem represents an annual cost difference of $520 million [Pow98].

Dr. Warren Powell of Princeton University and others developed a model for the

Commercial Transport Division of North American Van Lines. Under high levels

of demand uncertainty, this model dispatches thousands of trucks from customer

origins to customer destinations each week. Working closely with upper manage-

ment, the project team developed a new type of network model for assigning drivers

to loads. The model, LOADMAP, combined real-time information about drivers

and loads with an elaborate forecast of future loads and truck activities in order to

maximize profits and service. It gave management a new understanding about the

economics of truckload operations; integrated load evaluation, pricing, marketing,

and load solicitation with truck and load assignment; and increased profits by an

estimated $2.5 million annually while providing a higher level of service [PSN88].

The growth of LP as a practical technique would not have been possible without

simultaneous progress in the power and availability of computing. Today, software

for LP optimization is highly sophisticated, with several commercial codes being

actively developed and marketed. A symbiotic relationship exists between the

capacity of the codes and the growth of applications, with solutions for larger

problems being demanded in less time as codes improve. This book investigates a

well-known, but not well-used, method which has the potential to solve large

problems quickly by exploiting the structure.

LP optimization software uses two main method classes. The simplex method is

a gradient-descent method that moves along the edge of the feasible region [Chv83,

Dan63]. Interior-point methods (IPM) move through the interior of the feasible

region [Wri97]. We do not dwell on these well-known methods but take the solution

of an LP problem with either of these methods as granted, provided that practical

considerations allow it. DW decomposition was developed in the late 1950s, a

decade after the simplex method and many years before interior-point methods

were applied to LPs [Dan63, Dan83]. The DW procedure immediately aroused

widespread interest, and many attempts were made to implement it as a computa-

tional method. Practical experiences, however, were mixed, with some claims of

success but no lasting achievements when measured by the methods used to solve

practical problems. There has been no evaluation about and development of differ-

ent options and strategies for computational implementations, whereas there have

been continued research and development for over 50 years with the simplex

method and for over 20 years with the Integer Programming Method (IPM).

Perhaps the greatest challenge with the Dantzig-Wolfe decomposition has been

that, when viewed simply as an alternative LP optimization method, successes have

been rapidly overtaken by improvements in simplex and IPM implementations. The

continued improvement with LP optimization technology could be used to enhance

the implementation of the Dantzig-Wolfe decomposition.
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In the book, we primarily focus on the technique referred to as Dantzig-Wolfe

decomposition (DW), an optimization technique for solving large-scale, block-

structured, linear-programming (LP) problems. Opportunities from many different

fields, such as production planning, refinery optimization, and resource allocation,

may be formulated as LP problems. Where there is some structure arising from

repeated problem components, such as handling multiple periods, locations, or

products, the problem may potentially be solved by using the Dantzig-Wolfe

decomposition.

As preparation for our practical work, we investigate how suitable block struc-

tures can be identified in practical LP problems. We develop the decomposition

algorithm from first principles, delineating the theoretical requirements and show-

ing which aspects are open for experimentation in a practical implementation. We

illustrate, geometrically, the transformation from the original problem to the

Dantzig-Wolfe master problem, and we establish precisely how solutions obtained

from the decomposition algorithm correspond to answers for the original problem.

We critically review previous practical work.

Smart-grid control systems have used both centralized and decentralized (dis-

tributed) approaches [BCP08]. Centralized control systems have the best perfor-

mance for small-scale power networks and delivering power in one direction (i.e.,

from substation to loads). Today, the evolution of some power-distribution routines,

such as distributed power storage and distributed generators (DGs), requires

deploying smart-control systems [NF12]. Most traditional power-control systems

act preventively or reactively to events, whereas more recent control systems add

active control options to their strategies [Wan01]. Control architectures for power

grids have widely utilized central and hierarchal methods. Considering their higher

efficiency and reliability, decentralized and fully distributed intelligent controllers

are beginning to appear [DNS95].

Optimization techniques have been used for power systems and have been

studied with many resource-allocation applications [Son99, Moo91,

Sal04]. Power-distribution networks are usually designed radially with load-feed

flows in one direction. This type of network experiences increased loss, decreased

voltage amplitude, and voltage instability (when using a motorized maximum load)

due to its radial design and, probably, its long length. One effective solution for

improving the performance of distribution networks, from a technical point of view,

is using distributed generation supplies. Generally speaking, the advantages of

using a distributed generation pattern can be categorized into two technical and

economic aspects [KHS05].

The technical advantages of a distributed generation include decreased line loss,

improved voltage profile, decreased environmental pollution, increased energy

efficiency, higher-quality power, improved system reliability, and security. On

the other hand, the economic advantages of applying distributed generation patterns

include various investments to improve facilities, decreased operational costs,

optimized production, decreased costs to save energy, and increased security for

critical loads. A distributed allocation technique using branch and bound is studied

for allocating DERS in the context of a smart grid [RN10]. A probabilistic approach
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using linear programming is applied for a Smart-grid resource-allocation problem.

Several other Smart-grid implementations for a self-healing grid using LP are

studied [PFR09]. LP-based decision support for situational awareness is outlined.

Comprehensive universal markup language (UML) representations of micro-grid

architecture are developed. The preliminary results of the resource-allocation

problem in a Smart grid using the Dantzig-Wolfe procedure are presented.

2.2 Development of a Distributed Linear-
Programming Model

A massive power blackout that caused some five million people in Arizona,

California, and Mexico to lose electricity was apparently triggered by one person

in Arizona. Figure 2.1 shows a map of the electric outage areas. An Arizona Public

Service worker “removed a piece of monitoring equipment” which set off a chain

reaction across the region, according to the Associated Press [RN12]. The outage

appeared to be related to a procedure that an Arizona Public Service (APS)

employee was performing at the North Gila substation which is located northeast

of Yuma. Operating and protection protocols typically would have isolated the

resulting outage to the Yuma area. The reason that the isolation did not occur in this

case was mostly blamed on a lack of automated programs and reliance on heavy

manpower. Our approach addresses such outage events through the LP programs

discussed in the next paragraph [DCN04, FES12, GPR09].

We restrict the attention to the general LP approach and the Dantzig-Wolfe

decomposition technique in the context of a Smart grid. The following macro-grid

architecture has a centralized agent called an independent system operator (ISO)

which coordinates the micro-grid activities. An agent is a piece of software code

that performs tasks autonomously in the event action is needed to restore the grid

process, such as self-healing the grid during an outage, running resource allocation,

or scheduling tasks [NF12]. Thus, every micro-grid has an objective function and

constraints that are formulated as an LP problem. We treat each individual LP

program as an individual agent that monitors these micro-grids and associated

activities as shown in Fig. 2.2.

Similarly, any macro-operations, such as coordinating all micro-grids, are

conducted by an independent system operator, and they are treated as a master

LP program and constraints run by AMPL. The master LP program interacts with

the sub-problems via the exchange of dual variables. Figure 2.3. shows the distrib-

uted linear programming architecture.

As an information infrastructure with monitoring, control, and protection func-

tions in a smart-transmission grid, the wide-area measurement system (WAMS),

based on a synchronized phasor measurement unit (PMU), gradually becomes an

important guarantee for the security and stability of power systems. The WAMS

can be used to conduct real-time monitoring and control for dynamic system states,
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enhancing the system’s security level because it utilizes the highly precise, syn-

chronous clock in a global positioning system (GPS) to build unified time-space

synchronization. The WAMS usually includes the PMUs, phasor data concentrator

(PDC), control center (CC), and the high-speed data communication networks.

Figure 2.4 shows a local micro-grid with PMU-PDC integration as part of the

Fig. 2.1 Electric outages in the Sandiego Gas and Electric (SDG and E) Territory: September

8, 2011, 6:39 pm [RN12]

Fig. 2.2 LP as agents
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WAMS. I assume that each block of the micro-grid structure shown in Fig. 2.4 has

these units and integration in place.

Applying the Dantzig-Wolfe procedure would be significant if it is used with the

WAMS or micro-grid architecture. In the book, we will show the computational

significance of a small-scale grid, such as an IEEE bus network, to demonstrate its

computational efficiency. Chapters 3 and 4 discuss a resource-allocation procedure

where the preliminary results motivated us to continue the computational study of

the Dantzig-Wolfe procedure.

Microgrid N
Generators
Loads
DERs
Circuit Breakers

Microgrid A
Generators
Loads
DERs
Circuit Breakers

Microgrid B
Generators
Loads
DERs
Circuit Breakers

Microgrid C
Generators
Loads
DERs
Circuit Breakers

Fig. 2.3 A distributed linear-programming architecture.

PMU2

PMU1

PMUN

PDC
Local micro-grid

communication network

ISO Control Center

Satellite (Time-stamp information)

Fig. 2.4 Local micro-grid integration as part of the WAMS
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Chapter 3

Energy Reallocation in a Smart Grid

When a malfunction occurs in a smart-grid electricity-provisioning system, it is

vitally important to quickly diagnose the problem and to take corrective action. The

self-healing problem refers to the need to take action in near real time in order to

reallocate power to minimize the disruption. To address this need, we present a

collection of integer linear programming (ILP) models that are designed to identify

the optimal combinations of supply sources, the demand sites for generators to

serve, and the pathways along which the reallocated power should flow. The models

explicitly support multiple time periods and the uncertainty associated with alter-

native sources such as wind power. Model solutions are evaluated using a simulator

configured with multiple, intelligent, distributed software agents.

3.1 Introduction

A Smart grid is a digital-age, electrical generation, and distribution system that is

fully networked, instrumented, controlled, and automated. A Smart grid is a

quintessential machine-to-machine system where the major components, such as

generators, relays, transformers, power lines, and electrical meters, are networked

and digitally addressable with methods such as Internet Protocol (IP). Many

components are also equipped with sensors and processors that are capable of

carrying out intelligent actions with little or no human intervention. Available

The material in this chapter was co-authored by Prakash Ranganathan and Kendall E. Nygard.

Prakash Ranganathan had primary responsibility to develop the linear-programming formulation

for a resource-allocation problem that includes flow-balance constraints and uncertainty

information. Prakash Ranganathan was the primary developer of the modeling conclusions that

are advanced here. Prakash Ranganathan also drafted and revised all versions of this chapter.

Kendall E. Nygard served as a proofreader and checked the LP formulation conducted by Prakash

Ranganathan. The others contributed to software interface.
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power resources for a Smart grid include conventional types of generating plants

and small-scale, renewable distributed energy resources (DERs).

A Smart grid provides great potential advantages for many stakeholders. At the

user level, smart-meters at power-demand sites create possibilities for dynamically

pricing electricity, making it possible for consumers to receive lower rates by

shifting their usage from periods of high demand to times of low demand. Smart

meters also assist utilities by reducing peak loads, allowing meters to take action to

optimize resource allocation and to maximize efficiency. When disruptions occur,

the grid’s instrumentation immediately communicates exact information that pin-

points the location and type of problem, making maintenance and repair activities

more responsive and efficient. At the transmission-grid level, PMUs placed at

strategic locations provide detailed information about grid health, and can trigger

messages that report problems or initiate control actions.

Cascading failures that have occurred in past years highlight the need to under-

stand the complex phenomena that can occur in power networks and to develop

emergency controls and restoration procedures. In addition to mechanical failures,

overloading a line can create power-supply instabilities such as phase or voltage

fluctuations. A truly intelligent grid is able to predict impending fault states and

failures [ADH94, CLD02, AS08, DCN04].

Self-healing capabilities are highly desirable in a Smart grid. We define self-

healing as the ability to detect the need for corrective actions in the grid and to

autonomously carry out such actions. Once a fault state is detected, the grid should

perform appropriate procedures, such as dynamically controlling the power flow to

restore grid components from a fault state to normal operation. Examples of

common failures that occur in the power grid are power outages, low power quality,

overloads that could lead to cascading failures, and service disruptions.

In our work, we model the topology of the Smart grid as an abstract network of

nodes representing supply sources, demand sites, and transshipment junctions that

are interconnected by links representing transmission lines. Devices such as gen-

erators, relays, and transformers are associated with specific nodes. Our models are

integer linear programs that provide a self-healing capability by identifying optimal

alternatives for reallocating and rerouting power when disruptions and failures

occur. Failures affect the ability of supply sources to meet energy demands at

certain sites. Our primary modeling goal is to balance the flow of power across

the system to ensure that no consumer site experiences an outage while also

maximizing the system’s overall efficiency, cost-effectiveness, and reliability.

Our models account for multiple factors, such as availability, reliability, uncer-

tainty, cost-effectiveness, and consumer preference. The basic modeling template is

the Capacitated Transshipment Problem (CTP). An additional model structure

incorporates uncertainty at supply sources and ensures that capacities (load limits)

for the transmission lines and through devices are not exceeded. Uncertainty about

the available supply at certain sources is modeled within the integer linear-

programming framework using chance-constrained programming methods. The

integer linear-programming models provide the basis for intelligent decision-

making in the grid as model pertains to resource allocation. An agent-oriented
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simulation of the Smart-grid operation is available to test and evaluate alternative

resource-allocation solutions.

This chapter is organized in six sections following the Introduction. Section 3.2

provides the Problem Statement and necessary background. Section 3.3 provides a

brief review of Smart grid modeling and ILP. In Sect. 3.4, we present a collection of

ILP models that capture various aspects of the self-healing problem, including an

uncertainty model. Section 3.5 discusses the evaluation of the integer linear pro-

gramming models in a Smart-Grid Simulation environment. In Sect. 3.6, we present

Conclusions and describe future work.

3.2 Problem Statement

When building a Smart-grid self-healing model, multiple issues need to be

included. Some issues pertain to the physical infrastructure, such as the generators,

busses, relays, and transmission lines. Other considerations pertain to the cyber

infrastructure, such as the communication networks, storage, protocols, security,

and procedures for managing the grid. Here, we focus on the issues with the

physical infrastructure that involve resource allocation.

3.3 Physical Infrastructure Issues

3.3.1 Distributed-Device Control Functions

Most devices associated with nodes in the system must be controllable through

remote action. One example is the traditional remote relay-control circuit that is

capable of tripping a circuit breaker when the electrical current is higher than the

threshold. A second example is adaptive control of inverters to ensure stable

voltages. Fully centralized control is impossible, but local-device control with

distributed intelligence is highly desirable.

3.3.2 Selective Load Control

The ability to selectively switch off customers under certain conditions can help

avoid a wide-ranging blackout. This selection process also allows consumers to

manage their energy consumption, emphasizing low-cost time periods.
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3.4 Micro-Grid Islanding

Distributed Energy Resources (DERs) are small-scale power generators, such as

micro-turbines, diesel generators, solar arrays, fuel cells, and wind farms, that are

located near a customer cluster. When configured into a micro-grid, these systems

automatically disconnect themselves from a single point of connectivity with the

primary grid when a disruption occurs. When the primary grid returns to normal

conditions, a micro-grid must reconnect and resynchronize its operation.

3.5 Distributed Pathway Control

Alternative, redundant pathways for electricity can be utilized to maintain service

under disruptive conditions. The mathematical models that we develop are focused

on the distributed pathway control issue, with the objective of finding an optimal set

of alternative pathways for electricity to flow from supply sources to demand sites

while also satisfying the constraints for the transmission line’s capacity [CT99,

CLD02, DCN04, DNS95].

3.6 Smart-Grid Modeling

Several models have been developed to characterize the grid functioning under

various conditions. A probabilistic model of load-dependent cascading failure is

presented in the literature [KJN04, Kru06]. The important area for managing

consumers’ electric consumption in response to supply conditions and pricing has

received attention. The role of factors such as load scheduling and market prices in

driving consumer behavior and achieving energy efficiency is described [MWJ10,

She95]. User preferences are modeled using the concept of the discomfort level

within an optimization-problem formulation that balances the load and minimizes

the user’s inconvenience that are caused by demand scheduling [She95]. An

energy-consumption scheduling problem is established to minimize the overall

energy cost [Kad09]. Javed et al. [JAW10] formulated a linear program for distri-

bution management. Kadar [Kad09] developed an optimization model to design the

Smart-grid network infrastructure. Our work is the first development of optimiza-

tion models, specifically for real-time self-healing, that directly incorporate uncer-

tainty. Several studies were done on multi-agent-based architecture in a Smart grid

[JW00, NGL11, PFR09, Wan01, NS02].

At the center of any power-system design is the control and communication

architecture, which is comprised of the hardware and protocols to exchange critical

status and control signals. In conventional electric-power systems, this
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communication architecture can be achieved with the Supervisory Control and Data

Acquisition (SCADA) system [BW03, RI10].

3.7 Integer Linear-Programming Models

Early linear programming (LP) models came into prominence and practice during

World War II as a means to improve the efficiency and utilization of scarce

resources. LP models have a linear objective function to minimize or maximize

as well as linear constraints in the form of inequality equations. Dantzig’s [Dan98]
simplex method has been a mainstay solution methodology, and the more recent

interior-point method is also prominent. Integer ILP models often arise from node-

arc network formulations. These network models date to the pioneering work of

Ford and Fulkerson [FF10]. Work on the capacitated transshipment problem (CTP)

[BBG77] gave the first full descriptions of highly efficient solution algorithms for

the type of ILP that applies to the self-healing problem.

In a self-healing Smart grid, we assume that disruptions with the available

energy occur due to malfunctioning or failed devices and/or inoperative transmis-

sion lines [Ami04, AS08, BCP08, CT99]. These disruptions affect the ability of

particular supply sources to meet energy demands at specific sites. In response to

the associated need to allocate electrical power in alternative ways in order to

accomplish self-healing, we devise several optimization models for increasing

complexity to assign supply sources to demand sites. More specifically, we assume

that there are J distinct energy demands for which alternative supply sources must

be allocated in the short term in order to respond to disruptions. For each of these

J demands, there is a finite set of available supply sources that can be allocated to

meet the need. We index the supply sources by i¼ 1, 2, 3, . . ., I. Figure 3.1 shows a
bi-partite graph where the supply sources are nodes in the left set and where demand

sites are nodes in the right set.

The graph’s arcs model intact transmission paths with multiple links that utilize

sequences of transmission lines, busses, relays, transformers, capacitors, and other

devices. The graph is typically not complete, with missing arcs modeling the

Fig. 3.1 A bi-partite graph

with supply and demand

sites
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unavailability of a viable transmission path. We use cij to denote the cost of

assigning supply source i to demand site j. The objective function’s parameters

are evaluations of a utility function that includes multiple factors taken together,

such as prices established under existing contracts, regulatory principles, prices

negotiated in near real time, issues related to the transmission paths’ viability, and
expected reliability. Supply source i has a specified level, si, of energy available;

demand sites have a specified level, dj, of energy needed; sources can supply

multiple demand sites; and demand sites can be served from multiple sources.

We note that the available supplies and demands can be split freely in their

allocations, and the variables, xij, can be viewed as power flows from supply sources

to demand sites. We must also ensure that the transmission paths connecting supply

sources to demand sites have sufficient capacity to bear their load levels. In a self-

healing situation, we let uij denote an increased load level (capacity) that can be

allocated to an available pathway connecting nodes i and j. This node-to-pathway
relationship leads to the following problem:

Max z ¼
XI

i¼1

XJ
j¼1

cijxij ð3:1Þ

Subject to

XI

i¼1

xij � dj for all j ð3:2Þ

XJ
j¼1

xij � si for all i ð3:3Þ

0 � xij � uij ð3:4Þ

One limitation of this basic model is the implicit assumption that the transmis-

sion paths modeled by the arcs have no links in common, which may not be the case

in practice. This assumption leads to an expanded model formulation that breaks the

bipartite graph into a more general network and includes capacities for the indi-

vidual links:

3.8 Notation

The directed graph (network) has node set N and link set A ¼ N � N. We denote

typical elements:

i belongs to N, and (i,j) belongs to A.
cij ¼ utility per power flow unit on (i,j).
uij ¼ capacity (upper bound) of (i,j).
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bi ¼ supply of power at node i (interpret negative bi as a demand of -bi units).
Variable xij ¼ power flow on link (ij).

The problem is to find the set of flows that minimizes the total cost subject to

constraints which require (i) “flow balance” at each node and (ii) capacity restric-

tion for each link. The formulation is as follows:

Max z ¼
X
i; jð Þ2 A

cijxij

Subject to.

X
i: i; jð Þ2 A

xij �
X

j: i; jð Þ2 A

xji ¼ bi for all i j ð3:5Þ

0 � xij � uij for all i, j ð3:6Þ

Constraint set 1 consists of flow-balance constraints. The first term in such a

constraint is summed for all links with a tail at node i, which is referred to as the

forward star of node i. Similarly, the second term is summed for all links with a

head at node i, the “reverse star” of node i. This model requires that the total supply

and total demand are equal. The model is known as the Capacitated Transshipment

Problem (CTP) in the literature. Figure 3.2 illustrates the topology for this type of

network.

More generally, it may be important to explicitly distinguish supply sources by

type. For example, if a site supplies power with wind, there may be specific,

important information about that source, such as uncertainty. In the following

model, supply sources and demand sites are indexed and differentiated by type, p,
where the index takes on values p ¼ 1, 2, . . ., P. Accordingly, we now have the

following notation:

Parameters:

cijp ¼ utility per unit of flow of type p on link (i,j).
uij ¼ capacity (upper bound) for flow on link (i,j).
bip ¼ supply of power of type p at node i (interpret negative bi as a demand of -bi).
xijp ¼ flow of power of type p on link (ij).

Max z ¼
X
i;jð Þ2A

X
p2P

cijpxijp

Subject to

X
i: i;jð Þ2A

xijp �
X

j: i;jð Þ2A

xjip¼ ¼ bip For all i; jð Þ ð3:7Þ
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XP
p¼1

xijp � uij For all i; jð Þ ð3:8Þ

xijp � 0 For all i; jð Þ and p ð3:9Þ

In the literature, this type of modeling is known as the multi-commodity CTP.

The first constraint set enforces that flow balance must occur for each type of power

through every node i. The value of bip is positive at strictly supply source nodes,

negative at strictly demand-site nodes, and zero at pure transshipment nodes. The

model allows for supply sources or demand sites to also serve as transshipment

points, but such a transshipment arrangement would be unusual in practice. The

second constraint set allows for each link in the distribution system to be restricted

by joint capacity for all flows that pass through it. The model is NP-complete.

3.9 Uncertainty in Resource Allocation

We now consider the possibility that supplies and demands at certain nodes are

uncertain, as is often the case for supply sources such as wind or solar power. The

typical power curve shown in Fig. 3.3 illustrates the uncertainty of the power output

that can be obtained from a wind machine.

Fig. 3.2 Smart-grid topology
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For a given source node i and power type p, we modify a constraint in set (1) to

make it probabilistic as follows:For a specific i

Pr
X

i: i:jð Þ2A
xijp ¼ bip

2
4

3
5 � 1�/ip ð3:10Þ

For an easier explanation, we assume that node i is the sole source of commodity

type p and that it does not serve as a transshipment point for power originating at

other sites. In this constraint, 1 � αip is the pre-assigned, smallest-allowable

probability with which the power available from source i is sufficient to supply

bip units for a demand site. We view αip as the acceptable risk of not receiving bip
MegaWatts [MW] of electrical power from the specific DER source. For specific

values of i and p, we assume that bip is a random variable that follows a statistical

distribution. We note that varying the value of bip results in different flows through
the network links which then, in turn, affects the links’ capacity constraints. In the

case where bip follows the normal distribution with mean E{bip} and variance var.

{bip}, we standardize the random variable by subtracting the mean and dividing by

the square root of the variance, resulting in the following equivalent, probabilistic

condition:

Pr

P
i: i;jð Þ2A

xijp � E bip
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q

2
64

3
75 ¼ bip � E bip

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q

2
64

3
75

2
64

3
75 � 1� αip ð3:11Þ

The true meaning of the equation in the application should be to enforce the

condition that the power distributed from supply source i to its outgoing links is at a
level for which there is confidence that at least that much power will actually be

delivered with a prescribed probability. Any overage would likely be dissipated.

This consideration makes it legitimate to replace the equation with an inequality in

the analysis:

Fig. 3.3 Wind-machine

power curve
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Pr

P
i: i;jð Þ2A

xijp � E bip
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q

2
64

3
75 � bip � E bip

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q

2
64

3
75

2
64

3
75 � 1� αip ð3:12Þ

We let Φ represent the cumulative distribution function for the standard normal

distribution and let K/ip
be the standard normal value such that

Φ K/ip

� � ¼ 1�/ip ð3:13Þ

Then, the probabilistic condition given above is realized if

P
i: i;jð Þ2Axijp � E bip

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q

2
64

3
75 � K/ip

ð3:14Þ

This equation can be rewritten as a constraint:

X
i: i;jð Þ2Axijp � E bip

� �þ K/ip

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q
ð3:15Þ

This constraint gives the condition that the power delivered will be within the

upper-bound value given by the right-hand side with a probability 1 � αip. By the

symmetry of the normal distribution, constraint

X
i: i;jð Þ2Axijp � E bip

� �� K/ip

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bip

� �q
ð3:16Þ

sets the requirement for the minimum level of power that is delivered with the

prescribed probability. This equation is a linear constraint that is incorporated into

the optimization problem as a so-called “chance constraint,” effectively modeling

probabilistic conditions within a linear program. As an example, suppose that the

supply for node 3 is a wind source that provides power with a mean value of 7 MW

and a variance of 4 MW, and that the supply has outgoing distribution links to

transshipment nodes 4, 7, and 8. Node index 3 also identifies the type of power

generated at node 3. If we allow a 5% risk for not meeting the supply objective, we

have the following condition:

x343 þ x373 þ x383 � 7þ 1:645� 2

or

x343 þ x373 þ x383 � 11:935 ð3:17Þ
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The value 1.645 comes from a table of standard normal variates. The condition

means that there is a 95% chance that the realizable power from the wind source is

no more than 11.935 MW. Using the symmetry,

x343 þ x373 þ x383 � 7� 1:645� 2

or

x343 þ x373 þ x383 � 3:71 ð3:18Þ

This constraint means that at least 3.71 MW of power can be realized with 95%

probability. If we increase the prescribed probability to a more stringent 99%, the

standard normal variate value is 2.33, and the constraint becomes

x343 þ x373 þ x383 � 2:34 ð3:19Þ

The model can also be readily extended to multiple indexed time periods with a

time-dependent, supply-demand allocation that has fixed costs. This formulation is

important for consistency with the time-period planning granularity models used by

most utilities.

3.10 Smart-Grid Simulation

Our Smart-grid simulator runs as a Multi-Agent System (MAS) using the Java

Agent Development Framework (JADE). Software agents act autonomously and

communicate with each other across open and distributed environments, making an

agent design ideal for simulating a Smart grid. The agents can sense, act, commu-

nicate, and collaborate with each other; be empowered with degrees of autonomy;

are decentralized; and have local views and knowledge. The simulation has a

low-level, physical-device layer with components that can exhibit fault conditions

and fail. A middle layer has agents with a knowledge base, including consumer,

DER, device-managing, and monitoring agents. An upper layer consists of man-

agement agents that receive the system’s state information, carry out analyses, and

invoke decision-support models. The optimization models described in this chapter

reside at this third level. However, the simulator is also designed to support suites

for decision-support models, including fuzzy logic, statistical hypothesis testing,

Bayesian belief networks, and constraint satisfaction. These agents also stream

reporting information, allowing for convenient performance comparisons [GK03,

FG96, KH09, Mar94].

When a three-layer optimization model generates a workable solution in a self-

healing situation, solution values are then converted into the associated corrective

actions that are done at lower layers to invoke the appropriate response. Each

corrective action is modeled by an agent-task-pair. The task breaks into detailed
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roles and actions at the device and transmission-line level. A graphical user

interface allows human intervention, if appropriate, or autonomous execution by

simply setting initial values for parameters, conditions, and state information.

3.11 Conclusions

The developed optimization models include objective functions that maximize a

utility function and constraints that ensure feasibility for the resource allocation.

Stochastic information can be directly included with the constraints to model

situations with known uncertainty. The agent-based simulation provides a realistic

and readily validated means to evaluate the performance of the integer linear-

programming solutions as they would function in an operational Smart grid.
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Chapter 4

Resource Allocation Using Branch
and Bound

The chapter describes a resource-allocation problem in a smart-grid application that

is formulated and solved as a binary integer-programming model. To handle power

outages from the main distribution circuit, the Smart grid’s intelligent agents have
to utilize and negotiate with distributed-energy resource agents that act on behalf of

the grid’s local generators in order to negotiate power-supply purchases to satisfy

shortages. We develop a model that can optimally assign these DERs to the

available multiple regional utility areas (RUAs) or units that are experiencing

power shortages. This type of allocation is a resource-assignment problem. The

DERs in our model depict the behavior of power created with a wind turbine, solar

generation, or other renewable generation units, and the region or area refers to a

centralized distribution unit. The integer-programming approach is called Capac-

ity-Based Iterative Binary Integer Linear Programming (C-IBILP). All simulation

results are computed using the optimization tool box in MATLAB. Computation

results exhibit very good performance for the problem instances tested and validate

the assumptions made.

The material in this chapter was co-authored by Prakash Ranganathan and Kendall Nygard.

Prakash Ranganathan had primary responsibility for developing the linear-programming

formulation of a resource-allocation problem using the branch-and-bound method. Prakash

Ranganathan was the primary developer for modeling, implementing, and testing the

conclusions that are advanced here. Prakash Ranganathan also drafted and revised all versions

of this chapter. Kendall Nygard served as a proofreader and checked the LP formulation that was

run by Prakash Ranganathan.
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4.1 Distributed Energy Resources in a Smart Grid

Dynamic, real-time power systems often operate in continuously changing environ-

ments, such as adverse weather conditions, sudden transformer failures, or a

malfunctioning sub-system in a transmission or distribution network. These disrup-

tions, along with the complexity of power systems, cause the power system’s energy
demands and loads to fluctuate, potentially resulting in widespread outages and huge

price spikes. Data from the North American Electric Reliability Council (NERC) and

analyses from the Electric Power Research Institute (EPRI) indicate that the average

outages from 1984 to 2004 affected nearly 700,000 customers annually

[Ami04]. Smaller outages occur much more frequently and affect tens to hundreds

of thousands of customers every few weeks or months while larger outages occur

every 2–9 years and affect millions. Although preventing these outages remains a

challenge, such demand changes (increases or decreases) from consumers can often

be offset by distributed energy resources (DERs) which are renewable resources.

Solar- and wind-based power can satisfy the shortages or reduce the outage levels. In

our work, we consider the use of such DER-based standby mechanisms to support

any additional demand. We apply an Iterative Binary Integer Linear Programming

(IBILP) technique [Web01] to optimally assign DERs for a region based on criteria

such as power levels, demands, and preferences. Resource allocation for a complex

power system is robust with respect to demand variations and power-level fluctua-

tions. The amount of additional power that DERs can generate and that can be

effectively utilized in a power network is a measure of robustness. Hence, we

argue that a capacity-based Iterative Binary Integer Linear Programming (C-IBILP)

model is, inherently, a robust resource allocation.

The structure for the rest of the chapter is as follows. In Sect. 4.2, an overview

and Related Work for the smart grid is discussed. In Sect. 4.3, we present a general

formulation of this DER assignment problem. In Sect. 4.4, we describe how to solve

this problem optimally by using a branch-and-bound based (BB) algorithm with

equality and inequality constraints. In Sect. 4.5, we show the experimental results.

4.2 Related Work

Mathematical programming has enjoyed a burgeoning presence in theoretical

computer science, both as a framework for developing algorithms and, increas-

ingly, as a bona fide model of computation where the limits are expressed in terms

of the formulations’ sizes and the formulations’ integrality gaps [ABL06, AAT05,

BJN98]. Linear formulations are an appealing model for computation because both

optimization and decision problems fit naturally into the framework and because

both theoretically tractable and efficient practical algorithms exist to solve linear

programs. For instance, state-of-the-art approaches to exactly solve large-scale

instances of many NP hard problems rely on integer-programming approaches
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that require the repeated solution of integer programs that represent the problems

[BJN98]. The polynomial-time algorithms [Kru56] and other algorithms [KY97,

KP94] cannot be used in this application due to high complexity and extensive

run-times. Modification will be investigated in future work. We refer to a funda-

mental model for DER assignment as the capacity-based Iterative Binary Integer

Linear Programming (C-IBILP) model. There has been little attention given to this

approach in smart electrical-grid analyses. To our knowledge, these smart-grid

problems have not been solved for DER allocations using models that perform

optimal matching for supply sources’ demand sites by predicting generation and

market-controlled consumption. Such optimization algorithms are comparable to

hard, unsolved problems about inference, optimization, and control [Web02].

4.3 Assigning DER to RUA Formulation

To illustrate our problem formulation, we assume that there are seven areas (RUAs)

and six DER units with the demand and preference levels shown in Figs. 4.1 and 4.2

respectively. We define a regional utility area (RUA) as the local-distribution power

utilities within the micro-grid that distribute power within their network for its loads

[Ami04]. For simplicity, we name them Area1, Area 2, . . ., Area 7 as illustrated in

Fig. 4.1. The power demand and the preferences in Fig. 4.2 depict a demand-driven

DER assignment problem that accommodates preference information. The param-

eters in the figure are for illustration purposes.

A simple allocation “text” script in MATLAB would be as follows: text (0.1, .73,

‘area1’); text (.35, .73, ‘area2’); text (.60, .73, ‘area3’); text (.82, .73, ‘area4’); text
(.35, .42, ‘area5’); text (.60, .42, ‘area6’); text (.82, .42, ‘area 7’).

area1 area2 area3 area4

area5 area6 area 7

Area layout: the areas in higher power demand are in the bottom row

Fig. 4.1 RUA layout
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For example, suppose our simulation study is charged with a need to optimally

assign six DERs, DER1, DER2, DER3, DER4, DER5, and DER6, to seven regional

utility areas (RUAs) based on criteria such as the power-level capacity that these

DERs are able to generate and preferences in the area where these DERs wish to

operate. For simplicity with our optimization procedure, we also assume that each

RUA can have no more than one DER and that each DER gets exactly one RUA.

The DERs can have a preference for the area that they wish to join, and their

preferences are considered based on their capacity; i.e., the more power they have

been able to generate, the higher the capacity is. We weigh the preferences based on

the DERs’ power-level capacity through a preference weight matrix (pwm) so that

the more power that the DERs can generate, the more their preferences count.

Also, we impose multiple constraints, such as some RUAs have demand, some

do not, and some demands are higher than others. DER3 and DER4 often work

together, so be would like them to be no more than one RUA away from each other;

DER5 and DER6 often work together, so they, too, should be no more than one

RUA from each other. Our approach to solve the assignment problem is to formu-

late it as a capacity-based Iterative Binary Integer Linear Programming (C-IBILP)

model and to relax the integrality constraints. Our overall objective is to maximize

DER 

DER 

DER 

DER 

DER 

DER 

RUA/

RUA/

RUA/

RUA/

RUA 

RUA/

RUA/

B

I

N

A

R

Y

demand

preference

Fig. 4.2 DER vs. RUA

assignment problem
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the satisfaction for the preferences weighted by capacity which will allocate these

DERs to their areas. This task is done through a binary integer-programming model

by defining a linear objective function. Our algorithm uses a branch-and-bound

procedure with linear-programming bounds that have “minimum integer infeasi-

bility” as the branch strategy and a “depth-first search” for the node-search strategy.

To develop our problem formulation, the first step is to choose what each

element of the solution vector, |x|, represents. We use binary integer variables

which represent the specific assignments of DERS to RUAs. If the DER is assigned

to a RUA, the variable takes the value 1, and if not assigned, the variable takes the

value 0. We consider the DERs in sequential order as DER1, DER2, DER3, DER4,

DER5, DER6, and DER7. The nth sequence of elements in vector |x| stores the

assignment variables for DER n. In our example, |x (1)| to |x (7)| corresponds to

DER1 being assigned to Area 1, Area 2, etc., up to Area 7. In all, vector |x| has

6 sequences of 7 elements each, or 42 elements in all. Each sequence has a single

binary variable set to 1, enforcing a multiple-choice condition for each DER.

4.4 DER Capacities

We impose constraints based upon the DER preference level in the area of opera-

tion driven by the capability to generate power. The concept is that, the more power

a DER can generate, the higher the preference level is. For example, consider the

following randomly set power levels given in kilowatts (kW).

DER1!9 kW.

DER2!10 kW.

DER3!5 kW.

DER4!3 kW.

DER5!1.5 kW and

DER6! 2 kW.

We create a normalized weight vector based on capacity and also assume that

certain DERs should be used in some preferred region or area, such as a DER with

more power-generation capability being used in high-demand areas. This normal-

ized weight vector can be obtained in MATLAB as follows:

capacity ¼ [9 10 5 3 1.5 2];

weight vector ¼ capacity/sum (capacity);
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4.5 RUA Preferences

We set up a preference weight matrix (pwm or prefmatrix) where the rows

correspond to areas and the columns correspond to DERS. We assume that each

DER will give values for each area so that the sum of all their choices (i.e., their

columns) is 100. A higher number means that the DER prefers the area. We justify

using the preference matrix by noting that limitations in algorithm scalability and

data availability preclude a fully centralized solution for the problem of interest.

Thus, decision making must be decentralized, and we, accordingly, divide the

power network into many smaller RUAs, where the prefmatrix concept is applied

to individual regions in the network. An example of DER preferences is shown

here:

DER1 ¼ [0; 0; 0; 0; 10; 40; 50];

DER2 ¼ [0; 0; 0; 0; 20; 40; 40];

DER3 ¼ [0; 0; 0; 0; 30; 40; 30];

DER4 ¼ [1; 3; 3; 3; 10; 40; 40];

DER5 ¼ [3; 4; 1; 2; 10; 40; 40];

DER6 ¼ [10; 10; 10; 10; 20; 20; 20];

The ith element of a DER’s preference vector is the value of the ith RUA. Thus,
the combined preference matrix is expressed as “prefmatrix”:prefmatrix ¼ [DER1

DER2 DER3 DER4 DER5 DER6];
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4.5.1 Case 1

We treat the above “prefmatrix” arrangement as case 1 for analysis. We then weigh

the preference matrix with the |weight vector| to scale the columns by capacity. We

also reshape this matrix as a vector in column-order so that it corresponds to the |x|

vector. This task is achieved in MATLAB script as follows:

PM ¼ prefmatrix * diag (weightvector);

c ¼ PM (:);
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The objective is to maximize the total preference measure weighted by capacity.

This is a linear objective function, max c’*x or, equivalently, min -c’*x, with c

being the DER preferences. We use the BINTPROG script of MATLAB to run our

model that is defined as follows:

min
x

f Tx :
A:x � b,
Aeq:x ¼ beq

x : binary

8
<

:
,

where

f ¼ Vector containing the coefficients of the linear-objective function.A ¼ Matrix

containing the coefficients of the linear-inequality constraints, A�x � b.b ¼ Vector

corresponding to the right-hand side of the linear-inequality constraints.

Aeq ¼ Matrix containing the coefficients of the linear-equality constraints,

Aeq�x ¼ beq.beq ¼ Vector containing the constants of the linear-equality con-

straints.x0¼ Initial point for the algorithm.Options: Option structure containing the

algorithm’s options.x: A binary integer solution vector: that is, its entries can only

take the values 0 or 1.

4.6 Constraints

The first set of constraints requires that each DER is assigned to exactly one area.

For example, because DER2 is the second DER, we enforce the condition that |sum

(x (8:14))¼ 1|. We represent these linear constraints in an equality matrix, Aeq, and

right-hand side vector, beq, where |Aeq*x ¼ beq|, by building the appropriate

matrices. Matrix |Aeq| consists of ones and zeros. For example, the second row of

|Aeq| corresponds to DER2 getting exactly one RUA, so the row pattern is as

follows:

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0

These conditions are implemented in MATLAB code as follows:

jAeq (2,: )*x ¼ 1j is equivalent to jsum(x (8:14)) ¼ 1j.
numAREAS ¼ 7;

numDERS ¼ 6;

numDim ¼ numAREAS * numDERS;

onesvector ¼ ones (1, numAREAS);

Each row of Aeq corresponds to one DER.

Aeq ¼ blkdiag (onesvector, onesvector, onesvector, onesvector, onesvector,

onesvector);

beq ¼ ones (numDERS, 1);

view the structure of Aeq, that is, where there are nonzeros (ones) Figure;
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The second sets of constraints are inequalities. These constraints specify that

each area has no more than one DER in it; i.e., each AREA has one DER in it or is

empty. We build matrix |A| and vector |b| such that |A* � b| to capture these

constraints. Each row of |A| and |b| corresponds to a RUA, so row 1 corresponds to

the DER assigned to RUA 1. In this case, the rows have the pattern type shown

below for row 1:

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 ... 1 0 0 0 0 0 0

Each subsequent row is similar but is shifted (circularly) to the right by one spot.

For example, row 3 corresponds to RUA 3 and enforces jA(3,:)*x ( 1j so that

AREA 3 cannot have more than one DER. Figures 4.3 and 4.4 illustrate the equality

and inequality constraints.

A ¼ repmat (eye (numAREAS),1, numDERS);

b ¼ ones (numAREAS,1);

where repmat represents the replicate and tile array. Elements of the next constraint

set are also inequalities, so they are added to matrix |A| and vector |b| that already

contain the previous inequalities. We wish to enforce that DER3 and DER4 are no

more than one area (RUA) from each other, and similarly, DER5 and DER6 are no

more than one area away from each other. First, the symmetric distance matrix for

the RUAs is built using physical locations and Manhattan (i.e., the “taxicab”

metric).

0 5 10 15 20 25 30 35 40

DER1
DER2
DER3
DER4
DER5
DER6

nz = 42

Equality constraints: each DER gets exactly one RUA or Area

Fig. 4.3 Equality constraints

DER1 DER2 DER3 DER4 DER5 DER6

AREA 1
AREA 3
AREA 5
AREA 7

nz = 42

Inequality constraints: no more than one DER per RUA or area

Fig. 4.4 Inequality constraints
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D ¼ zeros(numAREAS); // generates a 7 � 7 zero matrix.

Setting up the top-right half of the matrix,

D(1,2:end) ¼ [1 2 3 2 3 4];

D(2,3:end) ¼ [1 2 1 2 3];

D(3,4:end) ¼ [1 2 1 2];

D(4,5:end) ¼ [3 2 1];

D(5,6:end) ¼ [1 2];

D(6,end) ¼ 1;

The lower-left half is the same as the upper-right D ¼ triu(D)’ + D. We find the

RUAs that are more than one distance unit away.

[AREAA,AREAB] ¼ find(D > 1);

numPairs ¼ length(AREAA);

This finds |numPairs| area pairs. For example, if DER3 occupies one area in the

pair, then DER4 cannot occupy the other AREA in the pair; otherwise, it would be

34 4 Resource Allocation Using Branch and Bound



more than one unit away in terms of AREA. The same condition holds for DER5

and DER6. This situation gives |2*numPairs| additional inequality constraints

which we add to |A| and |b|. By adding rows to A, we accommodate these

constraints as follows:

numrows ¼ 2*numPairs + numAREAS;

A((numAREAS+1):numrows, 1:numDim) ¼ zeros(2*numPairs,numDim);

For each pair of AREAS in numPairs, for the |x(i)| that corresponds to DER3 in

jAREAAj and for the jx(j)j that corresponds to DER 4 in jAREABj, x(i) + x(j) � 1;

i.e., either DER3 or DER4, but not both, can occupy one of these AREAS.

4.7 Branch-and-Bound (BB) Strategy

The branch-and-bound algorithm is a well-known, optimal solution method.

Branch-and-bound (BB) algorithms are methods for solving non-convex global-

optimization problems [BB91, LW66, BJN98, Moo91]. They are exact

(non-heuristic) in the sense that they calculate a provable upper and lower bound

on the globally optimal objective value and that they terminate when all suboptimal

feasible solutions have been eliminated. Branch-and-bound algorithms can be

computationally slow. In the worst case, they require effort that grows exponen-

tially with problem size. We achieve fast convergence in our problems. We note

that, due to total unimodularity of the basic A matrix, a network-based, customized

linear-programming solver could be used to provide the lower bounds very quickly

in large problems. The BB algorithm is a well-known algorithm in the research

community [Wol98]. An example run of the BB algorithm is shown in Fig. 4.5,

followed by a snippet of MATLAB code showing the iterative output for each node

displayed in the branch-and-bound algorithm. We let the BINTPROG choose the

starting point.

x0 ¼ [];

f ¼ �c;
options ¼ optimset(‘Display’,‘iter’,‘NodeDisplayInterval’,1);
[x,fval,exitflag,output] ¼ bintprog(f,A,b,Aeq,beq,x0,options);

fval

exitflag.

output.

To reduce the number of nodes explored, the time, or the number of iterations

taken, there are alternative options available. BINTPROG uses the options to adjust

the algorithm with differing nodes and branching-variable strategies [Moo91,

MG05].

For example, the default branching strategy is j’maxinfeas’j, which chooses the

variable with the maximum integer infeasibility for the next branch, that is, the
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variable with the value closest to 0.5. Running the problem again with the

branching strategy set to j’mininfeas’j, the option of minimum integer infeasibility

is chosen (that is, the variable where the value is closest, but not equal, to 0 or 1.

To structure the tree, depth-first and best-node search strategies are available.

For example, in “df,” at each node in the search tree, if there is a child node one

level down in the tree that has not already been explored, the algorithm chooses one

such child to search. Otherwise, the algorithm moves to the node one level up in the

tree and chooses a child node one level down from that node. In a best-node

(bn) strategy, the node with the lowest bound on the objective function is the

default. In our limited computational experience, convincing and acceptable results

are quickly reached. For future work, we plan to increase the scale of our test

problems and to investigate improved BB schemes.

4.8 Results

The simulation is done with a MATLAB platform. The prebuilt in command for

branch-and-bound algorithm was used to simulate the following cases.
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Fig. 4.5 Branch-and-bound algorithm with inequality constraints
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4.8.1 Case 1

The results show that the optimal value is reached in 1.22 s after 163 iterations with

54 nodes participating (case 1) using the capacity-based Iterative Binary Integer

Linear Programming (C-IBILP)-based branch-and-bound method which maxi-

mizes the satisfaction of the DER preferences weighted by area capacities. The

final output shown in Fig. 4.6 presents the DER allocation with RUA1, or area

1, treated as empty for optimal assignment.

4.8.2 Case 2

If we change the DER preferences according to the matrix shown below, then the

optimal solution is reached in 0.047 s with 13 iterations and 1 node by using the

default-node and branch strategies shown in Fig. 4.7.

 empty   DER4   DER6 DER5 

  DER3   DER2 DER1

Fig. 4.6 An optimal DER assignment solution for case 1

 DER6 DER5  empty    DER3   

DER2 DER1  DER4  

Fig. 4.7 An optimal DER-assignment solution for case 2
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4.9 Conclusions

The chapter presented a resource-assignment problem for Smart-grid applications.

The Capacity-Based Iterative Binary Integer Linear Programming (C-IBILP)

model was designed to specify an optimal allocation of distributed energy resources

(DERs) during power-outage periods in order to satisfy shortages. Computational

results from the two studied cases showed that our C-IBILP algorithm exhibits very

good performance for the problem instances that were tested. A branch-and-bound

algorithm for the Smart-grid problem was described. It combined the extension

results previously presented in the literature with new elements, such as a lower

bound that works by exploiting some properties connected with the ad-hoc

branching rule that we developed. The computational results established that the

algorithm is very competitive. It greatly enhanced the results obtained with the

methods that have recently appeared in the literature. Our approach’s limitation was

that the method does not scale well for larger DERs. Our current efforts involve

extending this assignment model to a more scalable assignment formulation where

more DERs can serve each RUA.
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Chapter 5

Resource Allocation Using DW
Decomposition

Dantzig-Wolfe decomposition is a technique for dealing with linear- and integer-

programming problems that have embedded substructures that permit efficient

solution. The technique has been successfully applied in a variety of contexts

[Dan63, Chv83, BJN98]. Implementing DW-decomposition-based algorithms

poses various challenges. The primary constraint revolves around convergence of

the dual-bound computations and, in the context of integer programming, the

enforcement of integrality restrictions. The standard view of DW decomposition

is that it exploits the linear-programming formulation of the Lagrangian dual. This

so-called master linear program has an exponential number of variables that are

handled using dynamic column generation. An alternative view is that DW is a

reformulation technique that gives rise to a mixed-integer master program. Viewing

DW as a reformulation technique allows for the development of a theoretical

framework that facilitates the handling of branching decisions and cutting planes

in the master program.

5.1 Why Decompose?

There are computational and organizational advantages when using decomposition

algorithms. From a computational perspective, the advantage is that sub-problems

are usually easier to solve than the original problem. The sub-problems are, by

definition, smaller than the original problem. In many cases, the sub-problems have

special properties, such as convexity, sparsity, or network constraints, that enable

the use of efficient, specialized algorithms to solve them [Dan63]. By decomposing

the original problem, we can take advantage of the efficient solution method

available for sub-problems. Decomposition algorithms also allow Smart-grid prob-

lems to be solved in a distributed manner. The key point when designing a

decomposition algorithm in this environment is that only limited communication

between the sub-problems and the master problem is required. The aim is that

© Springer International Publishing AG 2017
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different engineering teams or subgroups of a Smart grid, such as the transmission

side or distribution side, can solve only their own sub-problems and that only a

small amount of communication is required with the central coordinator.

5.2 Objective Function and Illustration of the DW
Algorithm

The linear-programming problem set up for the Dantzig-Wolfe solution technique

can be formulated as follows:

Minimize Cx.
Ax ¼ b (Master problem constraints).

x2 to X (where X is a set of corner points).

To illustrate the Dantzig-Wolfe decomposition method, we first consider a 4-bus

system with 2 generators and 3 loads that plans to maximize its power based on

certain constraints (Fig. 5.1). A bus is a communication link that transports energy

from one point to another point. A network model of the 4-bus system is shown in

Fig. 5.2. The buses are declared using variables x1, x2, x3, and x4. The objective is
to maximize the power flow while keeping these constraints in mind. Constraints

1 and 3, namely C1 and C3, describe the line voltages that these buses should not

exceed: 5 kv and 8 kv, respectively. Constraints C2 and C4 specify the average

repair time needed for these buses to correct themselves in the event of any failure,

and the time should not exceed 12 h/year and 10 h/year, respectively. Constraint C5

tells us that the total bus reactive load power should not exceed 7 kW, and

Fig. 5.1 A 4-bus system

Fig. 5.2 A network model of the 4-bus system
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constraint C6 points out that the total resistance of these buses should not exceed

17 MΩ.
Let the objective function be defined as follows:

maximize power : 6x1 þ 5x2 þ 3x3 þ 4x4;

Subject to

x1 þ x2 � 5 kV; Constraint#1

3x1 þ 2x2 � 12 h per year; Constraint#2

x3 þ 2x4 � 8 kV; Constraint#3

2x3 þ x4 � 10 h per year; Constraint#4

x1 þ x2 þ x3 þ x4 � 7 kw; Constraint#5

2x1 þ x2 þ x3 þ 3x4 � 17 MΩ; Constraint#6

We can compute the border-feasible points (corner points) using AMPL soft-

ware directly or using a graphical approach. The corner points for the first two

equations (i.e., C1 and C2) are (0, 0), (0,5), (2,3), and (4,0), and of the four points,

point (2,3) maximizes the objective function with a value of Z ¼ 27. Similarly, the

corner points for the next two equations (i.e., C3 and C4) are (0, 0) (5, 0), (0, 4), and

(4, 2), and of the four points, point (4, 2) maximizes the objective function with a

value of Z ¼ 20. Constraints C5 and C6 are called master constraints.

minimize power : �6x1 � 5x2 � 3x3 � 4x4;

minimize :
X

CjλjXj

subject to
X

AλjXj � bi;

subject to
X

λj ¼ 1;

i:e:,Y Pj � Cj > 0;

Considering dual variables (Y ) and the entering column (Pj), we can formulate

the stopping criteria for the DW algorithm to terminate as follows:

w; αð Þ Axj
1

� �
� cXj > 0;

w; α� Cð ÞXj þ α > 0;

where y [i.e., w and α] is the dual variable, pj ¼ entering column, cj ¼ objective

function coefficients.

Let us introduce two slack variables, S1 and S2, to the master problem constraints

because these variables do not have any impact on the objective function or on the

optimal values. We create the identity matrix shown in Table 5.1 for S1, S2, and λ1.
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We then assign the right-hand side coefficients of the master constraints (C5 and

C6) toward the RHS column. The coefficients of the master constraints are in the A

matrix, and the initial corner values for x are taken as (2,3,4,2). The resultant

product is (11, 17).

Table 5.1 shows the procedure to compute optimal values using the Dantzig-

Wolfe technique. Table 5.1 has two slack variables, S1 and S2, and four convexity

constraints are needed to attain an optimal solution for the above-mentioned

constraints and objective function. The table provides analysis for attaining a

basic, feasible solution and determining which variable leaves the basis. The

computation step for the row and column operations is explained after the table.

Axj
1

� �
¼ 1 1 1 1

2 1 1 3

� � 2

3

4

2

0
BB@

1
CCA ¼

11

17

1

0
@

1
A

The minimum value of θ leaves the basis, hence row S1 with θ ¼ 7/11 is replaced

with λ2 in the next set. Then, a set of row operations is performed in the following

sequence.

λ2 ¼ s1
11

; S2 ¼ s2 � 17λ2ð Þ; λ1 newð Þ ¼ λ1 � λ2; Z � C ¼ Zc � 47λ2

Using the termination condition of the DW technique, we solve for

Table 5.1 Simplex table for the Dantzig-Wolfe for a 4-bus system

Variables S1 S2 λ1 RHS

Ax
1

� �
θ θ

S1 1 0 0 7 11 7/11

S2 0 1 0 17 17 1

λ1 0 0 1 1 1 1

Z�Cj 0 0 0 0 47

λ2 1/11 0 0 7/11 1 4/11 7/4

S2 �17/11 1 0 68/11 0 20/11 17/5

λ1 �1/11 0 1 4/11 0 7/11 4/7

Z�Cj �47/11 0 0 �329/11 76/11

λ2 1/7 0 �4/7 3/7 0 4/7 3/4

S2 �9/7 1 �20/7 36/7 0 48/7 3/4

λ3 �1/7 0 11/7 4/7 1 3/7 4/3

Z�Cj �23/7 0 �76/7 �237/7 20/7

λ4 ¼ 0 �1 ¾ 1

S2 �3 1 4 0 0

λ3 �1/4 0 2 ¼ 0

�4 0 8 36
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Max WA� Cð Þxþ α :

WA ¼ �47=11; 0ð Þ 1 1 1 1

2 1 1 3

� �

WA ¼ �47=11 �47=11 �47=11 �47=11ð Þ
WA� C ¼ 19=11 8=11 �14=11 �3=11ð Þ

Hence, the current objective function is modified as follows:

19

11
x1 þ 8

11
x2 � 14

11
x3 � 3

11
x4

Let us apply the same corner points to the new objective function, (0,0), (0,5),

(2,3) and (4,0), to get a point that maximizes the objective function. Here, it is (4,0)

for the first two constraints. Similarly, (0,0) maximizes constraints c3 and c4 from

border points (0,0), (5,0), (0,4), and (4,2).

Then, the current corner-point values are Xj ¼ (4,0,0,0) and maximize at Z¼ 76/

11. Again, let us calculate the new entering column information, Pj, that will enable

us to obtain
Axj
1

� �
.

Pj ¼ Axj
1

� �
¼ 1 1 1 1

2 1 1 3

� � 4

0

0

0

0
BB@

1
CCA ¼

4

8

1

0
@

1
A;

B�1 Axj
1

� �
¼

1=11 0 0

�17=11 1 0

�1=11 0 1

0
@

1
A

4

8

1

0
@

1
A ¼

4=11
20=11
7=11

0
@

1
A;

The value of dual variables w and α is noted (�47/11,0, 0) to improve the

objective function. This process continues until an optimal solution is reached as

shown in Table 5.2.

As noted in Table 5.2, corner point (4,0,0,0) repeats, and we have obtained the

preferred objective function to have a value of 0. This task terminates the algorithm,

enabling the calculation of the final corner point that maximizes our objective

function, resulting in Z ¼ 36. An AMPL output using a direct LP implementation

for our 4-bus example is shown in Fig. 5.3.

Table 5.2 Final corner

points and objective
x1,x2,x3,x4 Optimal value Iteration

(0,0,0,0) 0 Start 0

(2,3,4,2) 47 Iteration 1

(4,0,0,0) �76/11 Iteration 2

(4,0,0,4) 20/7 Iteration 3

(4,0,0,0) 0 Terminated
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The data file has the following parameters: param x1:¼0; param x2:¼0; param

x3:¼0; param x4:¼0.

Notice that the solution for both the direct LP and DW approaches is the same.

The final corner values that buses can take to achieve their maximization objective

can be calculated as

¼ λ3*x3 + λ4*x4.
¼ 1/4 * (4,0,0,0) + 3/4 * (4,0,0,4).

¼ (1,0,0,0) + (3,0,0,3).

Thus, x1, x2, x3, x4 ¼ (4,0,0,3).

For these point combinations, the final optimal value results in Z ¼ 36, hence

Bus 1 and Bus 4 should be kept at 4 kv and 3 kv of generation to obtain the

maximum power-flow capacity of 36 MW in the network. Thus, at each DW

iteration, a relaxed version of the master problem is solved. Then, N sub-problems

are solved using the reduced costs of the master linear program as parameters. As a

Fig. 5.3 An AMPL run of DLP
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result, each sub-problem generates a candidate variable that is introduced in the

master problem. The current relaxed master problem is updated by including all

candidate variables that were found by the sub-problems. We code both the

Dantzig-Wolfe technique and direct LP formulation for the same 4-bus problem

and observe the computational savings as shown in Table 5.3.

Thus, Dantzig-Wolfe decomposition is an efficient optimization method when

applied to large-scale problems with a special block-angular structure. Unlike the

sub-gradient method, the Dantzig-Wolfe decomposition method properly defines

new Lagrangian multipliers for subsequent sub-problems. The fast and monotonic

convergence is a distinct feature of the Dantzig-Wolfe decomposition [Dan63,

Chv83].

5.3 LP Formulation of the IEEE 14-BUS System

The IEEE bus system is a common practice that the academic and research

community uses to test new models. The data are readily available to develop

models and to perform analysis. We have used data from the system to develop our

formulations. We have formulated an LP model of the standard IEEE 14-bus

system using the AMPL package. The basic system is implemented and tested

with bus failure and repair rates to study the impact of line voltages and the buses’
dynamic behavior. The failure-rate and repair-rate data for the IEEE 14 bus are

taken from [WG10, Wan01] as shown in Tables 5.5–5.7. The objective for our

formulation is to minimize the failure rate and repair rate subject to flow-balance

constraints and capacity constraints. For simplicity, we have multiplied the failure

rate and repair rate, defining the objective function variable as a “risk” or “loss.”

Hence, the goal is to minimize the risk of any energy loss for the IEEE bus system

that is subjected to populated constraints.

A single-line diagram for the IEEE 14-bus standard system extracted from

[Son99, Moo91] is shown in Fig. 5.4. It consists of five generators with IEEE

type-1 exciters, three of which are synchronous compensators that are only used for

reactive power support. There are 11 loads in the system, totaling 258 MW and

81.3 Mvar. For our analysis, we have only taken the supply’s real power. The

Table 5.3 Computational savings of the Dantzig-Wolfe method over the direct approach

Number

of

variables

Using LP

directly

(in seconds)

D-Wolfe

(in seconds) Constraints Difference

Optimum

power

Iterations

using LP

4 0.000999 0.000183 10 8.16 � 10�4 Z ¼ 36 2

5 0.01999 0.000181 11 0.019802 Z ¼ 39 3

6 0.000999 0.00017 12 0.01982 Z ¼ 37.66 6

7 0.000999 0.00014 13 8.59 � 10�4 Z ¼ 37 7

8 0.000999 0.00014 14 8.59 � 10�4 Z ¼ 37.1 9
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supply and demand in the IEEE 14-bus system equal 258 MW. Hence, it is a

balanced system with equal values for the supply and demand units. Dynamic data

for the generator exciters are selected from [WG10].

The IEEE bus system shown in Fig. 5.4 is decomposed into three regions, RN1,

RN2, and RN3, as shown in Fig. 5.5. The IEEE 14-bus network model contains

14 nodes and 18 transmission lines. A node is similar to a bus or point junction

where two or multiple lines interconnect.

For example, lines 12 and 11 interconnect at node 6, and lines 14 and 12 connect

at line 13. We have decomposed the system into three regions as done in a previous

reliability study [WG10]. We may adapt random decomposition when choosing

lines. In this system, we treat transmission lines 1, 2, 3, 4, and 5 as region 1; lines

7, 8, 9, 10, 11, and 14 as region 2; and lines 6, 12, and 13 as region 3.

The number of generators varies in each region of the IEEE 14-bus system. For

example, there are three generators in region 1 (G1, G2, and G3), one generator in

region 3 (G4), and one generator in region 2 (G5).

In real electric networks, transformers are used to interconnect multiple regions.

For our analysis, we introduce new nodes, A1, A2, B1, B2, C1, and C2, that

interconnect regions. This structure is shown in Fig. 5.6. For example, nodes A2

and A1 interconnect regions 1 and 3, and nodes C1 and C2 connect regions 1 and

2. Similarly, nodes B1 and B2 interconnect regions 3 and 1. We include these nodes

and apply flow-balance constraints in our formulation.

In Fig. 5.6, the demand units (nodes) are represented as yellow circles, and the

generators are not colored. The individual regions that interconnect with the key

nodes are shown separately in Figs. 5.7–5.9, respectively. For example, only nodes

A1, A2, C1, and C2 from other regions are involved in our analysis for the region-1

study. These nodes represent the total supply and demand allocation from their

respective regions, hence it is not necessary to include all nodes.

As seen in Fig. 5.6, we introduce new artificial nodes, R1, R2, and R3, in the

IEEE 14-bus system to keep excess power from reaching other regions and nodes.

The presence of this node is due to the fact that we assume any loads can take power

from the five generators in all three regions. By adding these new R nodes, we make

sure that network follows the restriction on the available supply and demand values

as per the IEEE 14-bus data. For example, joint capacities at node 4 should not

exceed the demand of G41. The node G41 has an initial allocation of 16.5 MW, thus

the contribution of generator 4 to region 1 should not exceed 16.5 MW. A negative

sign in the R1 node for G41 indicates that it is a demand. Figure 5.7 shows the R1

node constraints for region 1.

We outline our basic formulation for Direct LP and Dantzig-Wolfe in Table 5.4.

The term “Direct LP” refers to allocating the IEEE 14 bus into regions without any

decomposition. The Dantzig-Wolfe formulation has variables d and f, indicating the
sub-problems or regional constraints. In Direct LP, we combine all constraints in

Ax¼ b notation, whereas with DW, only the master constraints are constructed. We

will discuss the details in the implementation section of Chap. 6.
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Fig. 5.6 IEEE 14-bus network model with local R constraints

Table 5.4 LP formulation of the Dantzig-Wolfe and direct approaches

Direct LP formulation

Dantzig-Wolfe decomposition

formulation

min Z ¼ Cx min Z ¼ Cλx

s.t. Ax � b; (Sub-problems 1,2. . .n and Master

constraints)

s.t. Aλx � b; (Master constraint)

s.t. dx � f; (Sub-problem 1,2,3. . .n)

s.t. x � 0; s.t. ∑kλk¼ 1; (convexity constraint)

s.t. x � 0;

where x is the decision variable where x is the decision variable
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5.3.1 Region 1 Constraints

The nodes that participate in region 1 are nodes 1, 2, 3, 4, and 5. The individual

regional decomposition for regions 1, 3, and 2 is detailed in Figs. 5.7–5.9, respec-

tively. The objective function for region 1 is the product of the failure rate and the

repair rate, which we define as the power loss or risk factor. The goal is to minimize

the risk, or loss, for region 1 subject to the flow-balance constraints and the

non-negativity additional constraints. The objective function for region 1 as well

as the actual values for the repair and failure rates are given in Table 5.5.

C2

C1

A1

A2

Region 3

Region 2

Region 1

G3
G2

G1

1

2

5

4

3

From
1,2,3,4 & 5 to

R1
(-G41, -G51
−G11, -G21,

-G31)

Fig. 5.7 R1 node constraint for nodes in Region 1

Table 5.5 Failure and Repair

rates for Region 1
Lines connecting Failure rate (λ) Repair rate (r)

1–2 5.5552 18

1–5 7.1424 26

2–3 6.1504 20

2–4 9.9200 38

2–5 6.3488 22

3–4 8.5312 32

4–5 7.3408 36
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5.3.1.1 Objective for Region 1 (ZLOSS)

ZLOSS�R1 ¼ 100x1�2�1 þ 186x1�5�1 þ 123x2�3�1 þ 376x2�4�1 þ 140x2�5�1þ
273x3�4�1 þ 262x4�5�1 þ 100x1�2�2 þ 186x1�5�2 þ 123x2�3�2þ
376x2�4�2 þ 140x2�5�2 þ 273x3�4�2 þ 262x4�5�2 þ 100x1�2�3þ
186x1�5�3 þ 123x2�3�3 þ 376x2�4�3 þ 140x2�5�3 þ 273x3�4�3þ
262x4�5�3 þ 100x1�2�4 þ 186x1�5�4 þ 123x2�3�4 þ 376x2�4�4þ
140x2�5�4 þ 273x3�4�4 þ 262x4�5�4 þ 100x1�2�5 þ 186x1�5�5þ
123x2�3�5 þ 376x2�4�5 þ 140x2�5�5 þ 273x3�4�5 þ 262x4�5�5;

The flow-balance constraints in region 1 are formulated at each node as follows:

5.3.1.2 Node 1

Here, there is no demand in node 1, so we assign zero on the right-hand side.

x1�2�1 þ x1�5�1ð Þ � x2�1�1 þ x5�1�1ð Þ þ x1�R1�1 ¼ 0; ð5:1Þ
x1�2�2 þ x1�5�2ð Þ � x2�1�2 þ x5�1�2ð Þ þ x1�R1�2 ¼ 0; ð5:2Þ
x1�2�3 þ x1�5�3ð Þ � x2�1�3 þ x5�1�3ð Þ þ x1�R1�3 ¼ 0; ð5:3Þ
x1�2�4 þ x1�5�4ð Þ � x2�1�4 þ x5�1�4ð Þ þ x1�R1�4 ¼ 0; ð5:4Þ
x1�2�5 þ x1�5�5ð Þ � x2�1�5 þ x5�1�5ð Þ þ x1�R1�5 ¼ 0; ð5:5Þ

5.3.1.3 Node 2

The flow-balance constraints for node 2 in region 1 are formulated at each node as

follows:

x2�1�1 þ x2�5�1 þ x2�4�1 þ x2�3�1ð Þ
� x1�2�1 þ x5�2�1 þ x4�2�1 þ x3�2�1ð Þ þ x2�R1�1

� G11 � 21:7; ð5:6Þ
x2�1�2 þ x2�5�2 þ x2�4�2 þ x2�3�2ð Þ
� x1�2�2 þ x5�2�2 þ x4�2�2 þ x3�2�2ð Þ þ x2�R1�2

� G21 � 21:7; ð5:7Þ
x2�1�3 þ x2�5�3 þ x2�4�3 þ x2�3�3ð Þ
� x1�2�3 þ x5�2�3 þ x4�2�3 þ x3�2�3ð Þ þ x2�R1�3

� G31 � 21:7; ð5:8Þ
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x2�1�4 þ x2�5�4 þ x2�4�4 þ x2�3�4ð Þ
� x1�2�4 þ x5�2�4 þ x4�2�4 þ x3�2�4ð Þ þ x2�R1�4

� G41 � 21:7; ð5:9Þ
x2�1�5 þ x2�5�5 þ x2�4�5 þ x2�3�5ð Þ
� x1�2�5 þ x5�2�5 þ x4�2�5 þ x3�2�5ð Þ þ x2�R1�5

� G51 � 21:7; ð5:10Þ

5.3.1.4 Node 3

The flow-balance constraints at node 3 in region 1 are formulated at each node as

follows:

x3�2�1 þ x3�4�1ð Þ � x2�3�1 þ x4�3�1ð Þ þ x3�R1�1 � G11 � 94:2; ð5:11Þ
x3�2�2 þ x3�4�2ð Þ � x2�3�2 þ x4�3�2ð Þ þ x3�R1�2 � G21 � 94:2; ð5:12Þ
x3�2�3 þ x3�4�3ð Þ � x2�3�3 þ x4�3�3ð Þ þ x3�R1�3 � G31 � 94:2; ð5:13Þ
x3�2�4 þ x3�4�4ð Þ � x2�3�4 þ x4�3�4ð Þ þ x3�R1�4 � G41 � 94:2; ð5:14Þ
x3�2�5 þ x3�4�5ð Þ � x2�3�5 þ x4�3�5ð Þ þ x3�R1�5 � G51 � 94:2; ð5:15Þ

5.3.1.5 Node 4

The flow-balance constraints at node 4 in region 1 are formulated at each node as

follows:

x4�5�1 þ x4�2�1 þ x4�3�1ð Þ � x5�4�1 þ x2�4�1 þ x3�4�1ð Þ þ x4�R1�1

� G11 � 47; ð5:16Þ
x4�5�2 þ x4�2�2 þ x4�3�2ð Þ � x5�4�2 þ x2�4�2 þ x3�4�2ð Þ þ x4�R1�2

� G21 � 47; ð5:17Þ
x4�5�3 þ x4�2�3 þ x4�3�3ð Þ � x5�4�3 þ x2�4�3 þ x3�4�3ð Þ þ x4�R1�3

� G31 � 47; ð5:18Þ
x4�5�4 þ x4�2�4 þ x4�3�4ð Þ � x5�4�4 þ x2�4�4 þ x3�4�4ð Þ þ x4�R1�4

� G41 � 47; ð5:19Þ
x4�5�5 þ x4�2�5 þ x4�3�5ð Þ � x5�4�5 þ x2�4�5 þ x3�4�5ð Þ þ x4�R1�5

� G51 � 47; ð5:20Þ
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5.3.1.6 Node 5

The flow-balance constraints at node 5 in region 1 are formulated at each node as

follows:

x5�1�1 þ x5�2�1 þ x5�4�1 þ x5,a2,1ð Þ
� x1�5�1 þ x2�5�1 þ x4�5�1 þ xa2,5, 4ð Þ þ x5�R1�1

� G11 � 7:6; ð5:21Þ
x5�1�2 þ x5�2�2 þ x5�4�2 þ x5,a2,2ð Þ
� x1�5�2 þ x2�5�2 þ x4�5�2 þ xa2,5, 4ð Þ þ x5�R1�2

� G21 � 7:6; ð5:22Þ
x5�1�3 þ x5�2�3 þ x5�4�3 þ x5,a2,3ð Þ
� x1�5�3 þ x2�5�3 þ x4�5�3 þ xa2,5, 4ð Þ þ x5�R1�3

� G31 � 7:6; ð5:23Þ
x5�1�4 þ x5�2�4 þ x5�4�4 þ x5,a2,4ð Þ
� x1�5�4 þ x2�5�4 þ x4�5�4 þ xa2,5, 4ð Þ þ x5�R1�4

� G41 � 7:6; ð5:24Þ
x5�1�5 þ x5�2�5 þ x5�4�5 þ x5,a2,5ð Þ
� x1�5�5 þ x2�5�5 þ x4�5�5 þ xa2,5, 4ð Þ þ x5�R1�5

� G51 � 7:6; ð5:25Þ

5.3.1.7 Joint-Capacity Constraints for Region 3

The joint-capacity constraints in region 1 are formulated at each node as follows:

x1�R1�1 þ x2�R1�1 þ x3�R1�1 þ x4�R1�1 þ x5�R1�1 � �G11; ð5:26Þ
x1�R1�2 þ x2�R1�2 þ x3�R1�2 þ x4�R1�2 þ x5�R1�2 � �G21; ð5:27Þ
x1�R1�3 þ x2�R1�3 þ x3�R1�3 þ x4�R1�3 þ x5�R1�3 � �G31; ð5:28Þ
x1�R1�4 þ x2�R1�4 þ x3�R1�4 þ x4�R1�4 þ x5�R1�4 � �G41; ð5:29Þ
x1�R1�5 þ x2�R1�5 þ x3�R1�5 þ x4�R1�5 þ x5�R1�5 � �G51; ð5:30Þ

5.3.1.8 Other Constraints

The other constraints in region 1 are formulated at each node as follows:

At A1,
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x6,a1,4 � xa1,a2,4ð Þ ¼ 0; ð5:31Þ
xa2,a1,1 � xa1,6, 1ð Þ ¼ 0; ð5:32Þ
xa2,a1,2 � xa1,6, 2ð Þ ¼ 0; ð5:33Þ

At A2,

xa2,a1,1ð Þ ¼ 0;

x5,a2,2 � xa2,a1,2 ¼ 0; ð5:34Þ
x5,a2,3 � xa2,a1,3 ¼ 0 ð5:35Þ
xa1,a2,4 � xa2,5,4ð Þ ¼ 0; ð5:36Þ
x5, a2,3 ¼ G33; ð5:37Þ
x5,a2,2 ¼ G23; ð5:38Þ
x5,a2,1 ¼ G13; ð5:39Þ
x5,a2,4 ¼ G43; ð5:40Þ
x5,a2,5 ¼ G53; ð5:41Þ
xa2,5,4 ¼ G41; ð5:42Þ

[END OF SUB PROBLEM 1].

5.3.2 Region 3 Constraints (Nodes 6, 12, and 13)

The nodes that participate in region 3 are nodes 6, 12, and 13. The individual

regional decomposition for region 3 is detailed in Fig. 5.8. The objective function

for region 3 is the product of the failure rate and the repair rate, which we define as

the power loss or risk factor. The goal is to minimize the risk, or loss, for region

3 subject to the flow-balance constraints and non-negativity additional constraints.

The following equation is the objective function for region 3, and the actual values

for the repair and failure rates are given in Table 5.5.

5.3.2.1 Objective for Region 3 (ZLOSS)

The objective function for Region 3 can be written as

ZLOSS�R3 ¼ 6:3x6�12�1 þ 5:5x12�13�1 þ 6:3x6�12�2 þ 5:5x12�13�2 þ 6:3x6�12�3

þ 5:5x12�13�3 þ 6:3x6�12�4 þ 5:5x12�13�4 þ 6:3x6�12�5

þ 5:5x12�13�5;
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The data to calculate the coefficients for objective function are taken from

Table 5.6.

The flow-balance constraints in region 3 are formulated at each node and given

as follows:

5.3.2.2 Node 12

x12�13�1 þ x12�6�1 � x13�12�1 þ x6�12�1ð Þ þ x12�R3�1

� � G13 � 6; ð5:43Þ
x12�13�2 þ x12�6�2 � x13�12�2 þ x6�12�2ð Þ þ x12�R3�2

� � G23 � 6; ð5:44Þ
x12�13�3 þ x12�6�3 � x13�12�3 þ x6�12�3ð Þ þ x12�R3�3

� � G33 � 6; ð5:45Þ
x12�13�4 þ x12�6�4 � x13�12�4 þ x6�12�4ð Þ þ x12�R3�4

� � G43 � 6; ð5:46Þ
x12�13�5 þ x12�6�5 � x13�12�5 þ x6�12�5ð Þ þ x12�R3�5

� � G53 � 6; ð5:47Þ

Region 3 - Allocation

Region 3

Region 1

Region 2

From
6, 12 & 13 to

R3
(-G13, -G23

−G33, -G53, -G43)

13

12

6

G4

A1

B2

B1

A2

Fig. 5.8 R3 node constraints for nodes in Region 3

Table 5.6 Failure and repair

rates for Region 3
Lines connecting Failure rate (λ) Repair rate (r)

6–12 0.274 23

6–13 0.44 0.44

12–13 0.25 22
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5.3.2.3 Node 13

x13�12�1 þ x13,b1,4 � x12�13�1ð Þ þ x13�R3�1 � G13 � 13:5; ð5:48Þ
x13�12�2 þ x13,b1,4 � x12�13�2ð Þ þ x13�R3�2 � G23 � 13:5; ð5:49Þ
x13�12�3 þ x13,b1,4 � x12�13�3ð Þ þ x13�R3�3 � G33 � 13:5; ð5:50Þ
x13�12�4 þ x13,b1,4 � x12�13�4ð Þ þ x13�R3�4 � G43 � 13:5; ð5:51Þ
x13�12�5 þ x13,b1,4 � x12�13�5ð Þ þ x13�R3�5 � G53 � 13:5; ð5:52Þ

5.3.2.4 Node 6

x6�12�1ð Þ � x12�6�1ð Þ þ x6�R3�1 � G13 � 11:2; ð5:53Þ
x6�12�2ð Þ � x12�6�2ð Þ þ x6�R3�2 � G23 � 11:2; ð5:54Þ
x6�12�3ð Þ � x12�6�3ð Þ þ x6�R3�3 � G33 � 11:2; ð5:55Þ
x6�12�4ð Þ � x12�6�4ð Þ þ x6�R3�4 � G43 � 11:2; ð5:56Þ
x6�12�5ð Þ � x12�6�5ð Þ þ x6�R3�5 � G53 � 11:2; ð5:57Þ

5.3.2.5 Joint-Capacity Constraints for Region 3

x12�R3�1 þ x13�R3�1 þ x6�R3�1 � �G13; ð5:58Þ
x12�R3�2 þ x13�R3�2 þ x6�R3�2 � �G23; ð5:59Þ
x12�R3�3 þ x13�R3�3 þ x6�R3�3 � �G33; ð5:60Þ
x12�R3�4 þ x13�R3�4 þ x6�R3�4 � �G43; ð5:61Þ
x12�R3�5 þ x13�R3�5 þ x6�R3�5 � �G53; ð5:62Þ

5.3.2.6 Other Constraints

x6,b1,4 � xb1,6, 4ð Þ ¼ 0; ð5:63Þ
x6,a1,4 � xa1,6, 4 ¼ 0; ð5:64Þ
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A1:

x6,a1,4 � xa1,a2,4ð Þ ¼ 0; ð5:65Þ
xa2,a1,1 � xa1,6, 1ð Þ ¼ 0; ð5:66Þ
xa2,a1,2 � xa1,6, 2ð Þ ¼ 0; ð5:67Þ

A2:

x5,a2,1 � xa2,a1,1ð Þ ¼ 0; x5,a2,3 � xa2,a1,3 ¼ 0; ð5:68Þ
xa1,a2,4 � xa2,5,4ð Þ ¼ 0; ð5:69Þ
x5,a2,2 � xa2,a1,2 ¼ 0 ð5:70Þ

B1:

x13,b1,4 þ x6,b1,4 � xb1,b2,4ð Þ ¼ 0; ð5:71Þ
xb2,b1,5 � xb1,6, 5 þ xb1;13;5

� � ¼ 0; ð5:72Þ

B2:

x14�b2�5 þ x11�b2�5 � xb2,b1,5ð Þ ¼ 0; ð5:73Þ
xb1,b2,4 � xb2�14�4 þ xb2�11�4ð Þ ¼ 0; ð5:74Þ
x6,b1,4 þ x13,b1,4 ¼ G42; ð5:75Þ
xb1,b2,4 ¼ G42; ð5:76Þ
xb2;14;4 þ xb2;11;4 ¼ G42; ð5:77Þ
xb2,b1,5 ¼ x14�b2�5 þ x11�b2�5;

[END OF SUB PROBLEM 2].

5.3.3 Region 2 Constraints

The nodes that participate in region 2 are nodes 7, 8, 9, 10, 11, and 14. The

individual regional decomposition for region 2 is detailed in Fig. 5.9. The objective

function for region 2 is the product of the failure rate and the repair rate, which we

define as the power loss or risk factor. The goal is to minimize the risk, or loss, for

region 2 subject to the flow-balance constraints and non-negativity additional

constraints. The following equation is the objective function for region 2, and the

actual values for the repair and failure rates are given in Table 5.7.
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Fig. 5.9 R2 node constraints for nodes in Region 2

Table 5.7 Failure and repair

rates for Region 2
Lines Failure rate (λ) Repair rate (r)

7–8 1.9973 20

7–10 0.946 15

7–11 1.08 13

8–9 1.506 14

8–10 1.121 12

9–10 0.595 8

9–14 0.981 8

10–11 0.38 6

10–14 1.29 16

10–0 1.12 13

14–0 0.85 11
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5.3.3.1 Objective for Region 2 (ZLOSS)

The objective function for region 2 is given as

ZLOSS�R2 ¼ 38x7�8�1 þ 4x9�10�1 þ 7:84x9�14�1 þ 2:28x10�11�1 þ 38x7�8�2

þ 4x9�10�2 þ 7:84x9�14�2 þ 2:28x10�11�2 þ 38x7�8�3 þ 4x9�10�3

þ 7:84x9�14�3 þ 2:28x10�11�3 þ 38x7�8�4 þ 4x9�10�4 þ 7:84x9�14�4

þ 2:28x10�11�4 þ 38x7�8�5 þ 4x9�10�5 þ 7:84x9�14�5 þ 2:28x10�11�5;

5.3.3.2 Node 7

There is no demand at node 7.

xC2,7,1 þ xC2,7, 2 þ xC2,7, 3ð Þ � x7,C2,5ð Þ þ x7�R2 ¼ 0; ð5:78Þ
x8�7�1 � x7�8�1ð Þ ¼ 0; ð5:79Þ
x8�7�2 � x7�8�2ð Þ ¼ 0; ð5:80Þ
x8�7�3 � x7�8�3ð Þ ¼ 0; ð5:81Þ
x8�7�4 � x7�8�4ð Þ ¼ 0; ð5:82Þ
x8�7�5 � x7�8�5ð Þ ¼ 0; ð5:83Þ

5.3.3.3 Node 8

There is no demand at node 8.

x8�7�1 � x7�8�1 þ x8�R2�1 ¼ 0; ð5:84Þ
x8�7�2 � x7�8�2 þ x8�R2�2 ¼ 0; ð5:85Þ
x8�7�3 � x7�8�3 þ x8�R2�3 ¼ 0; ð5:86Þ
x8�7�4 � x7�8�4 þ x8�R2�4 ¼ 0; ð5:87Þ
x8�7�5 � x7�8�5 þ x8�R2�5 ¼ 0; ð5:88Þ
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5.3.3.4 Node 9

x10�9�1 þ x14�9�1ð Þ � x9�10�1 þ x9�14�1ð Þ þ x9,c2,1 þ x9�R2�1

� G12 � 29:5; ð5:89Þ
x10�9�2 þ x14�9�2ð Þ � x9�10�2 þ x9�14�2ð Þ þ x9,c2,2 þ x9�R2�2

� G22 � 29:5; ð5:90Þ
x10�9�3 þ x14�9�3ð Þ � x9�10�3 þ x9�14�3ð Þ þ x9,c2,3 þ x9�R2�3

� G32 � 29:5; ð5:91Þ
x10�9�4 þ x14�9�4ð Þ � x9�10�4 þ x9�14�4ð Þ þ x9,c2,4 þ x9�R2�4

� G42 � 29:5; ð5:92Þ
x10�9�5 þ x14�9�5ð Þ � x9�10�5 þ x9�14�5ð Þ þ x9,c2,5 þ x9�R2�5

� G52 � 29:5; ð5:93Þ

5.3.3.5 Node 10

x10�11�1 þ x10�9�1 � x11�10�1 þ x9�10�1ð Þ þ x10�R2�1 � G12 � 9; ð5:94Þ
x10�11�2 þ x10�9�2 � x11�10�2 þ x9�10�2ð Þ þ x10�R2�2 � G22 � 9; ð5:95Þ
x10�11�3 þ x10�9�3 � x11�10�3 þ x9�10�3ð Þ þ x10�R2�3 � G32 � 9; ð5:96Þ
x10�11�4 þ x10�9�4 � x11�10�4 þ x9�10�4ð Þ þ x10�R2�4 � G42 � 9; ð5:97Þ
x10�11�5 þ x10�9�5 � x11�10�5 þ x9�10�5ð Þ þ x10�R2�5 � G52 � 9; ð5:98Þ

5.3.3.6 Node 11

x11�10�1 þ x11,b2,1 � x10�11�1 þ xb2;11;1
� �þ x11�R2�1 � G12 � 3:5; ð5:99Þ

x11�10�2 þ x11,b2,2 � x10�11�2 þ xb2;11;2
� �þ x11�R2�2 � G22 � 3:5; ð5:100Þ

x11�10�3 þ x11,b2,3 � x10�11�3 þ xb2;11;3
� �þ x11�R2�3 � G32 � 3:5; ð5:101Þ

x11�10�4 þ x11,b2,4 � x10�11�4 þ xb2;11;4
� �þ x11�R2�4 � G42 � 3:5; ð5:102Þ

x11�10�5 þ x11,b2,5 � x10�11�5 þ xb2;11;5
� �þ x11�R2�5 � G52 � 3:5; ð5:103Þ
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5.3.3.7 Node 14

x14�9�1 þ x14,b2,1 � xb2;14;1 þ x9�14�1

� �þ x14�R2�1 � G12 � 14:8; ð5:104Þ
x14�9�2 þ x14,b2,2 � xb2;14;2 þ x9�14�2

� �þ x14�R2�2 � G22 � 14:8; ð5:105Þ
x14�9�3 þ x14,b2,3 � xb2;14;3 þ x9�14�3

� �þ x14�R2�3 � G32 � 14:8; ð5:106Þ
x14�9�4 þ x14,b2,4 � xb2;14;4 þ x9�14�4

� �þ x14�R2�4 � G42 � 14:8; ð5:107Þ
x14�9�5 þ x14,b2,5 � xb2;14;5 þ x9�14�5

� �þ x14�R2�5 � G52 � 14:8; ð5:108Þ

5.3.3.8 Joint-Capacity Constraints for Region 2

x14�R2�1 þ x11�R2�1 þ x10�R2�1 þ x9�R2�1 þ x7�R2�1 þ x8�R2�1

� �G12; ð5:109Þ
x14�R2�2 þ x11�R2�2 þ x10�R2�2 þ x9�R2�2 þ x7�R2�2 þ x8�R2�2

� �G22; ð5:110Þ
x14�R2�3 þ x11�R2�3 þ x10�R2�3 þ x9�R2�3 þ x7�R2�3 þ x8�R2�3

� �G32; ð5:111Þ
x14�R2�4 þ x11�R2�4 þ x10�R2�4 þ x9�R2�4 þ x7�R2�4 þ x8�R2�4

� �G42; ð5:112Þ
x14�R2�5 þ x11�R2�5 þ x10�R2�5 þ x9�R2�5 þ x7�R2�5 þ x8�R2�5

� �G52; ð5:113Þ

5.3.3.9 Other Constraints

B1:

x13,b1,4 þ x6,b1,4 � xb1,b2,4ð Þ ¼ 0; xb2,b1,5 � xb1,6, 5 þ xb1;13;5
� � ¼ 0; ð5:114Þ

B2:

x14�b2�5 þ x11�b2�5 � xb2,b1,5ð Þ ¼ 0; ð5:115Þ
xb1,b2,4 � xb2�14�4 þ xb2�11�4ð Þ ¼ 0; ð5:116Þ
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C1:

x4,c1,1 � xc1,c2,1ð Þ ¼ 0; ð5:117Þ
x4,c1,2 � xc1,c2,2ð Þ ¼ 0; ð5:118Þ
x4,c1,3 � xc1,c2,3ð Þ ¼ 0; ð5:119Þ
xc2,c1,5 � xc1,4, 1 þ xc1,4,2 þ xc1,4,3ð Þ ¼ 0; ð5:120Þ

C2:

x9,c2,4 þ x7,c2,4 � xc2,c1,4ð Þ ¼ 0; ð5:121Þ
x9,c2,5 þ x7,c2,5 � xc2,c1,5ð Þ ¼ 0; ð5:122Þ
xc1,c2,1 � xc2,9,1 þ xc2,7,1ð Þ ¼ 0; ð5:123Þ
xc1,c2,2 � xc2,9,2 þ xc2,7,2ð Þ ¼ 0; ð5:124Þ
xc1,c2,3 � xc2,9,3 þ xc2,7,3ð Þ ¼ 0; ð5:125Þ
xa2,a1,3, ¼ G33; ð5:126Þ
xa2,a1,2 ¼ G23; ð5:127Þ
xa2,a1,1¼ G13; ð5:128Þ
xa1,6,1 ¼ G13; ð5:129Þ
xa1,6, 2 ¼ G23; ð5:130Þ
xa1,6, 3 ¼ G33; ð5:131Þ

[END OF SUB PROBLEM 3].

5.3.4 Master Constraints (Linking Constraints)

The master constraints are the linking constraints that connect to sub-problems or

regional constraints. The generator variables present in the master constraints are

also included or related to the region 1, region 2, and region 3 constraints, as

discussed above, during flow-balance and joint-capacity constraints. These con-

straints interact iteratively with the sub-constraints to reach an optimal solution via

dual values and convexity constraints as proposed in the objective formulation.

Constraints 153 to 158 serve as master constraints.

G11 þ G12 þ G13 ¼ 88 MC#1ð Þ ð5:132Þ
G21 þ G22 þ G23 ¼ 60; MC#2ð Þ ð5:133Þ
G31 þ G32 þ G33 ¼ 60 MC#3ð Þ ð5:134Þ
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G41 þ G42 þ G43 ¼ 25 MC#4ð Þ ð5:135Þ
G51 þ G52 þ G53 ¼ 25 MC#5ð Þ ð5:136Þ

This five set of constraints means Commodity 1 Constraints <¼88; Commodity

2 Constraints <¼60; Commodity 3 Constraints <¼60; Commodity 4 Constraints

<¼25; Commodity 5 Constraints <¼25;

5.4 Decomposing the IEEE 14-Bus System into Two
Regions

The constraints that change when modifying the three-region classifications into

two regions are given in the following sections.

5.4.1 R2 Node Constraint in Region 1

x12�R2�1 þ x6�R2�1 þ x13�R2�1 þ x11�R2�1 þ x10�R2�1 þ x14�R2�1

þ x9�R2�1 þ x8�R2�1 þ x7�R2�1 � �G12; ð5:137Þ
x12�R2�2 þ x6�R2�2 þ x13�R2�2 þ x11�R2�2 þ x10�R2�2 þ x14�R2�2

þ x9�R2�2 þ x8�R2�2 þ x7�R2�2 � �G22; ð5:138Þ
x12�R2�3 þ x6�R2�3 þ x13�R2�3 þ x11�R2�3 þ x10�R2�3 þ x14�R2�3

þ x9�R2�3 þ x8�R2�3 þ x7�R2�3 � �G32; ð5:139Þ
x12�R2�4 þ x6�R2�4 þ x13�R2�4 þ x11�R2�4 þ x10�R2�4 þ x14�R2�4

þ x9�R2�4 þ x8�R2�4 þ x7�R2�4 � �G42; ð5:140Þ
x12�R2�5 þ x6�R2�5 þ x13�R2�5 þ x11�R2�5 þ x10�R2�5 þ x14�R2�5

þ x9�R2�5 þ x8�R2�5 þ x7�R2�5 � �G52; ð5:141Þ

5.4.2 R1 Node Constraint in Region 1

x1�R1�1 þ x2�R1�1 þ x3�R1�1 þ x4�R1�1 þ x5�R1�1 � �G11; ð5:142Þ
x1�R1�2 þ x2�R1�2 þ x3�R1�2 þ x4�R1�2 þ x5�R1�2 � �G21; ð5:143Þ
x1�R1�3 þ x2�R1�3 þ x3�R1�3 þ x4�R1�3 þ x5�R1�3 � �G31; ð5:144Þ
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x1�R1�4 þ x2�R1�4 þ x3�R1�4 þ x4�R1�4 þ x5�R1�4 � �G41; ð5:145Þ
x1�R1�5 þ x2�R1�5 þ x3�R1�5 þ x4�R1�5 þ x5�R1�5 � �G51; ð5:146Þ

The nodal constraints remain the same except for removing the R3 variable. As

seen in Table 5.8, certain nodes are not considered. The coefficients are assigned a

zero if the variable is not involved with the decomposition process. Nodes B1 and

B2 are not considered.

5.5 Formulating the IEEE 30-Bus System’s Constraints

The Dantzig-Wolfe implementation is also tested with the next level of the IEEE

bus system. The IEEE 30-bus system has 6 generators and 20 loads as shown in

Fig. 5.10. This system is much larger compared to the IEEE 14-bus system that was

discussed previously. The generator and load data are given in Tables 5.9 and 5.10,

respectively.

The risk, or loss factor is calculated for objective-function coefficients using the

failure-rate and repair-rate data shown in Table 5.11.

The IEEE network model for the 30-bus system is shown in Fig. 5.11, and the

decomposed regions are shown in Fig. 5.12.

5.5.1 Nodal Constraints for Region 1

5.5.1.1 Node 1

x1�2�1 þ x1�3�1 � x2�1�1 þ x3�1�1ð Þ þ x1�R1�1ð Þ � G11; ð5:147Þ
x1�2�2 þ x1�3�2 � x2�1�2 þ x3�1�2ð Þ þ x1�R1�2ð Þ � G21; ð5:148Þ
x1�2�3 þ x1�3�3 � x2�1�3 þ x3�1�3ð Þ þ x1�R1�3ð Þ � G31; ð5:149Þ

Table 5.8 Eliminated nodes

for a two-region

decomposition

132 143 295 148 255

133 144 298 149 256

134 145 301 252 257

135 146 304 253 258

136 147 307 254 259

260 261 271 272 273

274

G13 ¼ 0 G23 ¼ 0 G33 ¼ 0 G43 ¼ 0 G53 ¼ 0
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x1�2�4 þ x1�3�4 � x2�1�4 þ x3�1�4ð Þ þ x1�R1�4ð Þ � G41; ð5:150Þ
x1�2�5 þ x1�3�5 � x2�1�5 þ x3�1�5ð Þ þ x1�R1�5ð Þ � G51; ð5:151Þ
x1�2�6 þ x1�3�6 � x2�1�6 þ x3�1�6ð Þ þ x1�R1�6ð Þ � G61; ð5:152Þ

5.5.1.2 Node 2

x2�4�1 þ x2�5�1 þ x2�6�1 þ x2�1�1

� x4�2�1 þ x5�2�1 þ x6�2�1 þ x1�2�1ð Þ þ x2�R1�1ð Þ
� G21 � 21:7; ð5:153Þ

Fig. 5.10 IEEE 30-bus system single-line diagram
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x2�4�2 þ x2�5�2 þ x2�6�2 þ x2�1�2

� x4�2�2 þ x5�2�2 þ x6�2�2 þ x1�2�2ð Þ þ x2�R1�2ð Þ
� G22 � 21:7; ð5:154Þ

x2�4�3 þ x2�5�3 þ x2�6�3 þ x2�1�3

� x4�2�3 þ x5�2�3 þ x6�2�3 þ x1�2�3ð Þ þ x2�R1�3ð Þ
� G23 � 21:7; ð5:155Þ

x2�4�4 þ x2�5�4 þ x2�6�4 þ x2�1�4

� x4�2�4 þ x5�2�4 þ x6�2�4 þ x1�2�4ð Þ þ x2�R1�4ð Þ
� G24 � 21:7; ð5:156Þ

x2�4�5 þ x2�5�5 þ x2�6�5 þ x2�1�5

� x4�2�5 þ x5�2�5 þ x6�2�5 þ x1�2�5ð Þ þ x2�R1�5ð Þ
� G25 � 21:7; ð5:157Þ

x2�4�6 þ x2�5�6 þ x2�6�6 þ x2�1�6

� x4�2�6 þ x5�2�6 þ x6�2�6 þ x1�2�6ð Þ þ x2�R1�6ð Þ
� G26 � 21:7; ð5:158Þ

5.5.1.3 Node 3

x1�3�1 þ x3�4�1 � x3�1�1 þ x4�3�1ð Þ þ x3�R1�1ð Þ � G11 � 2:4; ð5:159Þ

Table 5.10 Demand profile

for the IEEE 30-bus system
Nodes Load demand Nodes Load demand

1 0 16 3.5

2 21.7 17 9.0

3 2.4 18 3.2

4 67.6 19 9.5

5 34.2 20 2.2

6 0 21 17.5

7 22.8 22 0

8 30 23 3.2

9 0 24 8.7

10 5.8 25 0

11 0 26 3.5

12 11.2 27 0

13 0 28 0

14 6.2 29 2.4

15 8.2 30 10.6
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Table 5.11 Repair and failure rates for the IEEE 30-bus system

Network data of the IEEE 30-bus test system

Line No. From To X (p.u.) Flow limit (MW) Failure rate Repair rate

1 1 2 0.06 130 0.9783 0.0217

2 1 3 0.19 130 0.9841 0 0159

3 2 4 0.17 65 0.9532 0.0468

4 3 4 0.04 130 0.9172 0.0828

5 2 5 0.20 130 0.9786 0.0214

6 2 6 0.18 65 0.9497 0.0503

7 4 6 0.04 90 0.9828 0.0172

8 5 7 0.12 70 0.9760 0.0240

9 6 7 0.08 130 0.9211 0 0789

10 6 8 0.04 32 0.9494 0.0506

11 6 9 0.21 65 0.9494 0.0506

12 6 10 0.56 32 0.9211 0.0789

13 9 11 0.21 65 0.9535 0.0465

14 9 10 0.11 65 0.9509 0.0491

15 4 12 0.26 65 0.9660 0.0340

16 12 13 0.14 65 0.9838 0.0162

17 12 14 0.26 32 0.9754 0 0246

18 12 15 0.13 32 0.9598 0.0402

19 12 16 0.20 32 0.9510 0.0490

20 14 15 0.20 16 0.9494 0.0506

21 16 17 0.19 16 0.9494 0.0506

22 15 18 0.22 16 0.9236 0.0764

23 18 19 0.13 16 0.9514 0.0486

24 19 20 0.07 32 0.9509 0.0491

25 10 20 0.21 32 0.9666 0.0334

26 10 17 0.08 32 0.9824 0.0176

27 10 21 0.07 32 0.9786 0.0214

28 10 22 0.15 32 0.9612 0.0388

29 21 22 0.02 32 0.9462 0.0538

30 15 23 0.20 16 0.9498 0 0502

31 22 24 0.18 16 0.9506 0.0494

32 23 24 0.27 16 0.9181 0.0819

33 24 25 0.33 16 0.9483 0.0517

34 25 25 0.38 16 0.9537 0.0463

35 25 27 0.21 16 0.9733 0.0267

36 28 27 0.40 65 0.9818 0.0182

37 27 29 0.42 16 0.9808 0.0192

38 27 30 0.60 16 0.9564 0.0436

39 29 30 0.45 16 0.9537 0.0463

40 8 28 0.20 32 0.9537 0.0463

41 6 28 0.06 32 0.9536 0.0464
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x1�3�2 þ x3�4�2 � x3�1�2 þ x4�3�2ð Þ þ x3�R1�2ð Þ � G21 � 2:4; ð5:160Þ
x1�3�3 þ x3�4�3 � x3�1�3 þ x4�3�3ð Þ þ x3�R1�3ð Þ � G31 � 2:4; ð5:161Þ
x1�3�4 þ x3�4�4 � x3�1�4 þ x4�3�4ð Þ þ x3�R1�4ð Þ � G41 � 2:4; ð5:162Þ
x1�3�5 þ x3�4�5 � x3�1�5 þ x4�3�5ð Þ þ x3�R1�5ð Þ � G51 � 2:4; ð5:163Þ
x1�3�6 þ x3�4�6 � x3�1�6 þ x4�3�6ð Þ þ x3�R1�6ð Þ � G61 � 2:4; ð5:164Þ

5.5.1.4 Node 4

x4�6�1 þ x4�3�1 þ x4�2�1 þ x4�12�1

� x6�4�1 þ x3�4�1 þ x2�4�1 þ x12�4�1ð Þ þ x4�R1�1ð Þ
� G11 � 67:6; ð5:165Þ
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Fig. 5.11 Network model for the IEEE 30-bus system
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x4�6�2 þ x4�3�2 þ x4�2�2 þ x4�12�2

� x6�4�2 þ x3�4�2 þ x2�4�2 þ x12�4�2ð Þ þ x4�R1�2ð Þ
� G21 � 67:6; ð5:166Þ

x4�6�3 þ x4�3�3 þ x4�2�3 þ x4�12�3

� x6�4�3 þ x3�4�3 þ x2�4�3 þ x12�4�3ð Þ þ x4�R1�3ð Þ
� G31 � 67:6; ð5:167Þ

x4�6�4 þ x4�3�4 þ x4�2�4 þ x4�42�4

� x6�4�4 þ x3�4�4 þ x2�4�4 þ x42�4�4ð Þ þ x4�R1�4ð Þ
� G41 � 67:6; ð5:168Þ

x4�6�5 þ x4�3�5 þ x4�2�5 þ x4�12�5

� x6�4�5 þ x3�4�5 þ x2�4�5 þ x12�4�5ð Þ þ x4�R1�5ð Þ
� G51 � 67:6; ð5:169Þ
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Fig. 5.12 Network model for decomposing the IEEE 30-bus system to three regions
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x4�6�6 þ x4�3�6 þ x4�2�6 þ x4�12�6

� x6�4�6 þ x3�4�6 þ x2�4�6 þ x12�4�6ð Þ þ x4�R1�6ð Þ
� G61 � 67:6; ð5:170Þ

5.5.1.5 Node 12

x12�13�1 þ x12�4�1 þ x12�16�1 þ x12�14�1 þ x12�15�1

� x13�12�1 þ x4�12�1 þ x16�12�1 þ x14�12�1 þ x15�12�1ð Þ
þ x12�R1�1ð Þ
� G11 � 11:2; ð5:171Þ

x12�13�2 þ x12�4�2 þ x12�16�2 þ x12�14�2 þ x12�15�2

� x13�12�2 þ x4�12�2 þ x16�12�2 þ x14�12�2 þ x15�12�2ð Þ
þ x12�R1�2ð Þ
� G21 � 11:2; ð5:172Þ

x12�13�3 þ x12�4�3 þ x12�16�3 þ x12�14�3 þ x12�15�3

� x13�12�3 þ x4�12�3 þ x16�12�3 þ x14�12�3 þ x15�12�3ð Þ
þ x12�R1�3ð Þ
� G31 � 11:2; ð5:173Þ

x12�13�4 þ x12�4�4 þ x12�16�4 þ x12�14�4 þ x12�15�4

� x13�12�4 þ x4�12�4 þ x16�12�4 þ x14�12�4 þ x15�12�4ð Þ
þ x12�R1�4ð Þ
� G41 � 11:2; ð5:174Þ

x12�13�5 þ x12�4�5 þ x12�16�5 þ x12�14�5 þ x12�15�5

� x13�12�5 þ x4�12�5 þ x16�12�5 þ x14�12�5 þ x15�12�5ð Þ
þ x12�R1�5ð Þ
� G51 � 11:2; ð5:175Þ

x12�13�6 þ x12�4�6 þ x12�16�6 þ x12�14�6 þ x12�15�6

� x13�12�6 þ x4�12�6 þ x16�12�6 þ x14�12�6 þ x15�12�6ð Þ
þ x12�R1�6ð Þ
� G61 � 11:2; ð5:176Þ

5.5.1.6 Node 13

x13�12�1 � x12�13�1ð Þ þ x13�R1�1ð Þ � 0; ð5:177Þ
x13�12�2 � x12�13�2ð Þ þ x13�R1�2ð Þ � 0; ð5:178Þ
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x13�12�3 � x12�13�3ð Þ þ x13�R1�3ð Þ � 0; ð5:179Þ
x13�12�4 � x12�13�4ð Þ þ x13�R1�4ð Þ � 0; ð5:180Þ
x13�12�5 � x12�13�5ð Þ þ x13�R1�5ð Þ � 0; ð5:181Þ
x13�12�6 � x12�13�6ð Þ þ x13�R1�6ð Þ � 0; ð5:182Þ

5.5.1.7 Node 14

x14�15�1 þ x14�12�1 � x12�14�1 þ x15�14�1ð Þ þ x14�R1�1ð Þ � 0; ð5:183Þ
x14�15�2 þ x14�12�2 � x12�14�2 þ x15�14�2ð Þ þ x14�R1�2ð Þ � 0; ð5:184Þ
x14�15�3 þ x14�12�3 � x12�14�3 þ x15�14�3ð Þ þ x14�R1�3ð Þ � 0; ð5:185Þ
x14�15�4 þ x14�12�4 � x12�14�1 þ x15�14�4ð Þ þ x14�R1�4ð Þ � 0; ð5:186Þ
x14�15�5 þ x14�12�5 � x12�14�5 þ x15�14�5ð Þ þ x14�R1�5ð Þ � 0; ð5:187Þ
x14�15�6 þ x14�12�6 � x12�14�6 þ x15�14�6ð Þ þ x14�R1�6ð Þ � 0; ð5:188Þ

5.5.1.8 Node 16

x16�12�1 þ x16�17�1 � x12�16�1 þ x17�16�1ð Þ þ x16�R1�1ð Þ � G11 � 3:5; ð5:189Þ
x16�12�2 þ x16�17�2 � x12�16�2 þ x17�16�2ð Þ þ x16�R1�2ð Þ � G21 � 3:5; ð5:190Þ
x16�12�3 þ x16�17�3 � x12�16�3 þ x17�16�3ð Þ þ x16�R1�3ð Þ � G31 � 3:5; ð5:191Þ
x16�12�4 þ x16�17�4 � x12�16�4 þ x17�16�4ð Þ þ x16�R1�4ð Þ � G41 � 3:5; ð5:192Þ
x16�12�5 þ x16�17�5 � x12�16�5 þ x17�16�5ð Þ þ x16�R1�5ð Þ � G51 � 3:5; ð5:193Þ
x16�12�6 þ x16�17�6 � x12�16�6 þ x17�16�6ð Þ þ x16�R1�6ð Þ � G61 � 3:5; ð5:194Þ

5.5.1.9 Artificial Nodes in Region 1

The nodes that participate in region 1 are nodes 1, 2, 3, 4, 5, 12, 13, 14, and 16. Each

node is connected to R1 nodes.

x1�R1�1 þ x2�R1�1 þ x3�R1�1 þ x4�R1�1 þ x5�R1�1 þ x12�R1�1

þ x13�R1�1 þ x14�R1�1 þ x16�R1�1

� �G11; ð5:195Þ
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x1�R1�2 þ x2�R1�2 þ x3�R1�2 þ x4�R1�2 þ x5�R1�2 þ x12�R1�2

þ x13�R1�2 þ x14�R1�2 þ x16�R1�2

� �G21; ð5:196Þ
x1�R1�3 þ x2�R1�3 þ x3�R1�3 þ x4�R1�3 þ x5�R1�3 þ x12�R1�3

þ x13�R1�3 þ x14�R1�3 þ x16�R1�3

� �G31; ð5:197Þ
x1�R1�4 þ x2�R1�4 þ x3�R1�4 þ x4�R1�4 þ x5�R1�4 þ x12�R1�4

þ x13�R1�4 þ x14�R1�4 þ x16�R1�4

� �G41; ð5:198Þ
x1�R1�5 þ x2�R1�5 þ x3�R1�5 þ x4�R1�5 þ x5�R1�5 þ x12�R1�5

þ x13�R1�5 þ x14�R1�5 þ x16�R1�5

� �G51; ð5:199Þ
x1�R1�6 þ x2�R1�6 þ x3�R1�6 þ x4�R1�6 þ x5�R1�6 þ x12�R1�6

þ x13�R1�6 þ x14�R1�6 þ x16�R1�6

� �G61; ð5:200Þ

5.5.2 Nodal Constraints for Region 2

5.5.2.1 Node 30

x30�29�1 � x29�30�1ð Þ þ x30�R2�1ð Þ � G12 � 10:6; ð5:201Þ
x30�29�2 � x29�30�2ð Þ þ x30�R2�2ð Þ � G22 � 10:6; ð5:202Þ
x30�29�3 � x29�30�3ð Þ þ x30�R2�3ð Þ � G32 � 10:6; ð5:203Þ
x30�29�4 � x29�30�4ð Þ þ x30�R2�4ð Þ � G42 � 10:6; ð5:204Þ
x30�29�5 � x29�30�5ð Þ þ x30�R2�5ð Þ � G52 � 10:6; ð5:205Þ
x30�29�6 � x29�30�6ð Þ þ x30�R2�6ð Þ � G62 � 10:6; ð5:206Þ

5.5.2.2 Node 29

x29�30�1 þ x29�27�1 � x30�29�1 þ x27�29�1ð Þ þ x29�R2�1ð Þ � G12 � 2:4; ð5:207Þ
x29�30�2 þ x29�27�2 � x30�29�2 þ x27�29�2ð Þ þ x29�R2�2ð Þ � G22 � 2:4; ð5:208Þ
x29�30�3 þ x29�27�3 � x30�29�3 þ x27�29�3ð Þ þ x29�R2�3ð Þ � G32 � 2:4; ð5:209Þ
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x29�30�4 þ x29�27�4 � x30�29�4 þ x27�29�4ð Þ þ x29�R2�4ð Þ � G42 � 2:4; ð5:210Þ
x29�30�5 þ x29�27�5 � x30�29�5 þ x27�29�5ð Þ þ x29�R2�5ð Þ � G52 � 2:4; ð5:211Þ
x29�30�6 þ x29�27�6 � x30�29�6 þ x27�29�6ð Þ þ x29�R2�6ð Þ � G62 � 2:4; ð5:212Þ

5.5.2.3 Node 27

x27�29�1 þ x27�25�1 � x29�27�1 þ x25�27�1ð Þ þ x27�R2�1ð Þ � G12; ð5:213Þ
x27�29�2 þ x27�25�2 � x29�27�2 þ x25�27�2ð Þ þ x27�R2�2ð Þ � G22; ð5:214Þ
x27�29�3 þ x27�25�3 � x29�27�3 þ x25�27�3ð Þ þ x27�R2�3ð Þ � G32; ð5:215Þ
x27�29�4 þ x27�25�4 � x29�27�4 þ x25�27�4ð Þ þ x27�R2�4ð Þ � G42; ð5:216Þ
x27�29�5 þ x27�25�5 � x29�27�5 þ x25�27�5ð Þ þ x27�R2�5ð Þ � G52; ð5:217Þ
x27�29�6 þ x27�25�6 � x29�27�6 þ x25�27�6ð Þ þ x27�R2�6ð Þ � G62; ð5:218Þ

5.5.2.4 Node 15

x15�14�1 þ x15�12�1 þ x15�18�1 þ x15�23�1

� x14�15�1 þ x12�15�1 þ x18�15�1 þ x23�15�1ð Þ þ x15�R2�1ð Þ
� G12 � 8:2; ð5:219Þ

x15�14�2 þ x15�12�2 þ x15�18�2 þ x15�23�2

� x14�15�2 þ x12�15�2 þ x18�15�2 þ x23�15�2ð Þ þ x15�R2�2ð Þ
� G22 � 8:2; ð5:220Þ

x15�14�3 þ x15�12�3 þ x15�18�3 þ x15�23�3

� x14�15�3 þ x12�15�3 þ x18�15�3 þ x23�15�3ð Þ þ x15�R2�3ð Þ
� G32 � 8:2; ð5:221Þ

x15�14�4 þ x15�12�4 þ x15�18�4 þ x15�23�4

� x14�15�4 þ x12�15�4 þ x18�15�4 þ x23�15�4ð Þ þ x15�R2�4ð Þ
� G42 � 8:2; ð5:222Þ

x15�14�5 þ x15�12�5 þ x15�18�5 þ x15�23�5

� x14�15�5 þ x12�15�5 þ x18�15�5 þ x23�15�5ð Þ þ x15�R2�5ð Þ
� G52 � 8:2; ð5:223Þ
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x15�14�6 þ x15�12�6 þ x15�18�6 þ x15�23�6

� x14�15�6 þ x12�15�6 þ x18�15�6 þ x23�15�6ð Þ þ x15�R2�6ð Þ
� G62 � 8:2; ð5:224Þ

Similarly, flow-balance constraints for nodes 23, 26, 18, 19, 20, 24, 25, and

28 can be formulated. Due to space constraints, we have not included them here.

x28�27�1 þ x28�8�1 þ x28�6�1 � x27�28�1 þ x8�28�1 þ x6�28�1ð Þ
þ x28�R2�1Þ � G12;ð ð5:225Þ

x28�27�2 þ x28�8�2 þ x28�6�2 � x27�28�2 þ x8�28�2 þ x6�28�2ð Þ
þ x28�R2�2Þ � G22;ð ð5:226Þ

x28�27�3 þ x28�8�3 þ x28�6�3 � x27�28�3 þ x8�28�3 þ x6�28�3ð Þ
þ x28�R2�3Þ � G32;ð ð5:227Þ

x28�27�4 þ x28�8�4 þ x28�6�4 � x27�28�4 þ x8�28�4 þ x6�28�4ð Þ
þ x28�R2�4Þ � G42;ð ð5:228Þ

x28�27�5 þ x28�8�5 þ x28�6�5 � x27�28�5 þ x8�28�5 þ x6�28�5ð Þ
þ x28�R2�5Þ � G52;ð ð5:229Þ

x28�27�6 þ x28�8�6 þ x28�6�6 � x27�28�6 þ x8�28�6 þ x6�28�6ð Þ
þ x28�R2�6Þ � G62;ð ð5:230Þ

5.5.2.5 Joint-Capacity Constraints for Nodes in Region 2

x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G12; ð5:231Þ
x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G22; ð5:232Þ
x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G32; ð5:233Þ
x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G42; ð5:234Þ
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x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G52; ð5:235Þ
x30�R2�1 þ x29�R2�1 þ x27�R2�1 þ x15�R2�1 þ x23�R2�1 þ x26�R2�1

þ x18�R2�1 þ x19�R2�1 þ x20�R2�1 þ x24�R2�1 þ x25�R2�1 þ x28�R2�1

� �G62; ð5:236Þ

5.5.3 Nodal Constraints for Region 3

The nodes that participate in region 3 are nodes 5, 7, 6, 8, 22, 21, 10, 17, 11, and 9.

5.5.3.1 Node 5

x5�7�1 þ x5�2�1 � x7�5�1 þ x2�5�1ð Þ þ x5�R3�1ð Þ � G13 � 34:2; ð5:237Þ
x5�7�2 þ x5�2�2 � x7�5�2 þ x2�5�2ð Þ þ x5�R3�2ð Þ � G23 � 34:2; ð5:238Þ
x5�7�3 þ x5�2�3 � x7�5�3 þ x2�5�3ð Þ þ x5�R3�3ð Þ � G33 � 34:2; ð5:239Þ
x5�7�4 þ x5�2�4 � x7�5�4 þ x2�5�4ð Þ þ x5�R3�4ð Þ � G43 � 34:2; ð5:240Þ
x5�7�5 þ x5�2�5 � x7�5�5 þ x2�5�5ð Þ þ x5�R3�5ð Þ � G53 � 34:2; ð5:241Þ
x5�7�6 þ x5�2�6 � x7�5�6 þ x2�5�6ð Þ þ x5�R3�6ð Þ � G63 � 34:2; ð5:242Þ

Similarly, constraints for nodes 7, 6, 8, 22, 21, 10, 17, 11, and 9 can be

formulated.

5.5.3.2 Node 9

x9�11�1 þ x9�10�1 þ x9�6�1 � x11�9�1 þ x10�9�1 þ x6�9�1ð Þ þ x9�R1�1ð Þ
� G13; ð5:243Þ

x9�11�2 þ x9�10�2 þ x9�6�2 � x11�9�2 þ x10�9�2 þ x6�9�2ð Þ þ x9�R1�2ð Þ
� G23; ð5:244Þ

x9�11�3 þ x9�10�3 þ x9�6�3 � x11�9�3 þ x10�9�3 þ x6�9�3ð Þ þ x9�R1�3ð Þ
� G33; ð5:245Þ
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x9�11�4 þ x9�10�4 þ x9�6�4 � x11�9�4 þ x10�9�4 þ x6�9�4ð Þ þ x9�R1�4ð Þ
� G43; ð5:246Þ

x9�11�5 þ x9�10�5 þ x9�6�5 � x11�9�5 þ x10�9�5 þ x6�9�5ð Þ þ x9�R1�5ð Þ
� G53; ð5:247Þ

x9�11�6 þ x9�10�6 þ x9�6�6 � x11�9�6 þ x10�9�6 þ x6�9�6ð Þ þ x9�R1�6ð Þ
� G63; ð5:248Þ

5.5.3.3 Joint-Capacity Constraints for Region 3

x5�R3�1 þ x7�R3�1 þ x6�R3�1 þ x8�R3�1 þ x22�R3�1 þ x21�R3�1

þ x10�R3�1 þ x17�R3�1 þ x11�R3�1 þ x9�R3�1

� �G13; ð5:249Þ
x5�R3�2 þ x7�R3�2 þ x6�R3�2 þ x8�R3�2 þ x22�R3�2 þ x21�R3�2

þ x10�R3�2 þ x17�R3�2 þ x11�R3�2 þ x9�R3�2

� �G23; ð5:250Þ
x5�R3�3 þ x7�R3�3 þ x6�R3�3 þ x8�R3�3 þ x22�R3�3 þ x21�R3�3

þ x10�R3�3 þ x17�R3�3 þ x11�R3�3 þ x9�R3�3

� �G33; ð5:251Þ
x5�R3�4 þ x7�R3�4 þ x6�R3�4 þ x8�R3�4 þ x22�R3�4 þ x21�R3�4

þ x10�R3�4 þ x17�R3�4 þ x11�R3�4 þ x9�R3�4

� �G43; ð5:252Þ
x5�R3�5 þ x7�R3�5 þ x6�R3�5 þ x8�R3�5 þ x22�R3�5 þ x21�R3�5

þ x10�R3�5 þ x17�R3�5 þ x11�R3�5 þ x9�R3�5

� �G53; ð5:253Þ
x5�R3�6 þ x7�R3�6 þ x6�R3�6 þ x8�R3�6 þ x22�R3�6 þ x21�R3�6

þ x10�R3�6 þ x17�R3�6 þ x11�R3�6 þ x9�R3�6

� �G63; ð5:254Þ

The additional constraints that interconnect regions

xa1;14;1 � x14,c1,1ð Þ ¼ G12; ð5:255Þ
xa1;14;2 � x14,c1,2ð Þ ¼ G22; ð5:256Þ
xa1;14;3 � x14,c1,3ð Þ ¼ G32; ð5:257Þ
xa1;14;4 � x14,c1,1ð Þ ¼ G42; ð5:258Þ
xa1;14;5 � x14,c1,5ð Þ ¼ G52; ð5:259Þ
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xa1;14;6 � x14,c1,6ð Þ ¼ G62; ð5:260Þ
xa2,5,1 � x5,b1,1ð Þ ¼ G13; ð5:261Þ
xa2,5,2 � x5,b1,2ð Þ ¼ G23; ð5:262Þ
xa2,5,3 � x5,b1,3ð Þ ¼ G33; ð5:263Þ
xa2,5,4 � x5,b1,4ð Þ ¼ G43; ð5:264Þ
xa2,5,5 � x5,b1,5ð Þ ¼ G53; ð5:265Þ
xa2,5,6 � x5,b1,6ð Þ ¼ G63; ð5:266Þ
xa2,a1,1 ¼ G11; ð5:267Þ
xa2,a1,2 ¼ G21; ð5:268Þ
xa2,a1,3 ¼ G31; ð5:269Þ
xa2,a1,4 ¼ G41; ð5:270Þ
xa2,a1,5 ¼ G51; ð5:271Þ
xa2,a1,6 ¼ G61; ð5:272Þ

and additional constraints.

Thus, the LP formulation for the IEEE 14-bus and 30-bus systems is developed.

Now, we investigate the AMPL implementation of the Dantzig-Wolfe procedure

and the results in Chap. 6.
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Chapter 6

Implementation and Testing
of the Dantzig-Wolfe Procedure

This chapter discusses the AMPL implementation and results for running the IEEE

14-bus and IEEE 30-bus systems. The environment for the AMPL modeling

software is discussed regarding how to specify the model, data, and run-file

information.

6.1 Overview of Modeling in AMPL and the Results

Practical, large-scale mathematical programming involves more than just the min-

imization or maximization of an objective function subject to constraint equations

and inequalities. Before any optimizing algorithm can be applied, some effort must

be expended to formulate the underlying model and to generate the requisite

computational data structures. If algorithms could deal with optimization problems

as people do, then the formulation and generation phases of modeling might be

relatively easy. In reality, however, there are many differences between the form in

which human modelers understand a problem and the form in which algorithms

solve it. Reliable translation from the “modeler’s form to the algorithm’s form” is

often a considerable expense.

In the traditional approach for translation, the work is divided between a human

and a computer. First, a person who understands the modeler’s form writes a

computer program where the output represents the required data structures. Then,

a computer compiles and executes the program to create the algorithm’s form. This

arrangement is often costly and error-prone; most seriously, the program must be

debugged by a human modeler even though the algorithm’s output form is not

meant for people to read.

In the important special case of linear programming, the largest part of the

algorithm’s form is representing the constraint’s coefficient matrix. Typically, this

matrix is a very sparse one where rows and columns number in the hundreds or

thousands, and where nonzero elements appear in intricate patterns. A computer
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program that produces a compact representation of the coefficients is called a

matrix generator.

Compared to previous languages, AMPL is notable for the generality of its

syntax and for the similarity of its expressions to the algebraic notation customarily

used in the modeler’s form. AMPL offers a variety of types and operations to define

indexing sets as well as a range of logical expressions. AMPL draws considerable

inspiration from the XML prototype language [Fou83], incorporating many

changes and extensions.

AMPL is a new language that is designed to make these steps easier and less

error-prone. AMPL closely resembles the symbolic algebraic notation that many

modelers use to describe mathematical programs, yet it is regular and formal

enough to be processed by a computer system; it is particularly notable for the

generality of its syntax and for the variety of its indexing operations. We have

implemented a translator that takes a linear AMPL model and the associated data as

input and then produces output that is suitable for standard Dantzig-Wolfe linear-

programming optimizers.

6.2 Lagrangian Relaxation Procedure

Dual decomposition, and more generally Lagrangian relaxation, is a classical

method for combinatorial optimization [Sal04]. Dual decomposition leverages the

observation that many decoding problems can be broken into two or more

sub-problems, together with linear constraints that enforce some notion of agree-

ment among the different problems’ solutions. The sub-problems are chosen such

that they can be solved efficiently by using exact combinatorial algorithms. The

agreement constraints are incorporated using Lagrange multipliers, and an iterative

algorithm—for example, a sub-gradient algorithm—is used to minimize the

resulting dual variables. Dual decomposition algorithms have the following prop-

erties. They are typically simple and efficient. For example, sub-gradient algo-

rithms involve two steps for each iteration: first, each sub-problem is solved using a

combinatorial algorithm; second, simple additive updates are made to the Lagrange

multipliers. They have well-understood formal properties, particularly through

connections to linear-programming (LP) relaxations. In cases where the underlying

LP relaxation is tight, they produce an exact solution for the original decoding

problem, with a certificate of optimality. In cases where the underlying LP is not

tight, heuristic methods can be used to derive a good solution; alternatively,

constraints can be added incrementally until the relaxation is tight, at which point

an exact solution is recovered.

Dual decomposition, where two or more combinatorial algorithms are used, is a

special case of Lagrangian relaxation (LR). It is useful to consider LR methods that

utilize a single combinatorial algorithm together with a set of linear constraints that

are, again, incorporated using Lagrange multipliers. Utilizing a single combinato-

rial algorithm is qualitatively different from dual-decomposition approaches,
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although the techniques are very closely related. Lagrangian relaxation has a long

history in the combinatorial-optimization literature, going back to the seminal 1971

work of Held and Karp who derived a relaxation algorithm for the traveling-

salesman problem.

The Lagrangian relaxation of general LP is given as

Z ¼ minCx subject to Ax � b,Bx � d and x � 0

The DW version of the LP in equation is given by

MinimizeZ ¼ cx� λk Ax� boð Þ ð6:1Þ

subject to

Bx � b; xi � 0; bi � 0 ð6:2Þ

Figure 6.1 illustrates the interaction between the sub-problems and master

problems via dual variables and theta. The Lagrangian multiplier is chosen itera-

tively by the AMPL code to solve the problem.

Fig. 6.1 Lagrangian relaxation of the Dantzig-Wolfe decomposition
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6.3 Computational Results of IEEE Bus System

In testing this approach, we observe that the Lagrangian relaxation version of the

DW performs poorly when compared to other models such as Direct LP and Direct

DW implementation.

Table 6.1 indicates the real power values of the loads and generators for an IEEE

14-bus system. There is a balance in the total supply and demand for this system

which equals 258 MW. This system has five generators and 11 loads as seen in

Table 6.1. The initial assumption about generator values to individual regions is

shown in Table 6.2.

To run the DW procedure, we make initial assumptions about the generator

values as shown in Table 6.2.. These assumptions are reasonable when considering

the number of loads and generators in the given system. A print-screen view of the

model, data, and run file is shown in Fig. 6.2.

The number of master constraints or complicating constraints is indicated using

the “param” command in AMPL. For example, the “cr” variable refers to master

constraints, and the “or” variable refers to region constraints or other constraints.

The sub-problem classification is determined using the “nsub” parameter. The

convexity constraint is denoted using the lambda variable. The sub-problem matri-

ces are denoted using the d and f variables in the model file. Separate data and run

files are used to run the program. AMPL’s sub-problem setting is shown in Fig. 6.3,

and the commodity constraints are shown in Fig. 6.4.

The model file in Fig. 6.3 shows how the interactions between the master and

sub-problems occur iteratively and illustrates the process in which dual values are

calculated. For convenience, the run file is embedded in the data file. As indicated in

Fig. 6.4, the commodity constraints for each generator in the IEEE 14-bus system

are satisfied. This figure indicates that our algorithm did not exceed and within

limits of the capacities of these generators. For example, generator 1’s capacity has
not exceeded more than 88 MW, and similarly, generator 2 is within its limit of

60 MW. The nodes that participate are included when performing the aggregate

“sum” operation.

Figure 6.5 shows AMPL’s allocation output for all variables involved with the

IEEE 14-bus simulation. The total number of variables involved with the allocation

process is 307. Each variable is represented as a “node” in the AMPL modeling.

The individual nodes responsible for each commodity are listed in Fig. 6.6. The

computational results for the DW using 14 bus are shown in Table 6.3.

The complete list of all variables involved with the IEEE 14-bus system is

illustrated by an Excel snapshot in Fig. 6.6.

The model is extended and tested with the IEEE 30-bus system. The results show

that directly implementing LP takes a little longer than the decomposition scheme.

Moreover, the Dantzig-Wolfe relaxation procedure takes much longer and performs

worse than the Dantzig-Wolfe procedure. The Dantzig-Wolfe implementation runs

faster and provides reasonable computational time savings. Table 6.3 illustrates the

14-bus system’s performances with multi-region decomposition. The total number
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of variables in the 14-bus and 30-bus systems is 307 and 650 variables with 130 and

225 sub-constraints, respectively. The computational results for the IEEE 30-bus

system with various decomposition structures are given in Table 6.4. The allocation

and objective value for the cost parameter yields in same solution. The interactions

between the master and sub-problems take 212 iterations to attain an optimal cost

for the three-region decomposition. The same formulation can be broken into two

regions with some modifications. Certain variables that link to nodes are not

considered. The coefficients are assigned as zero if the variable is not part of the

decomposition process. For example, joint-capacity constraint R3 is not involved

with the two-region problem. Similarly, nodes B1 and B2 are neither considered nor

removed.

Our results show huge savings regarding computational cost and response time

for the entire IEEE 30-bus system compared to the Direct LP and Lagrangian

relaxation formulations. The key contribution is that we have developed,

implemented, and tested the Dantzig-Wolfe procedure in the IEEE bus system

Table 6.2 Initial allocation

of generator values for three

regions

Generators Region 1 Region 2 Region 3

G1 58.10 19.36 9.68

G2 39.65 13.20 6.60

G3 39.65 13.20 6.60

G4 16.50 5.50 2.75

G5 16.52 5.50 2.75

Fig. 6.2 Snapshot of the AMPL model file that shows the DW implementation
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with various decomposition structures. It is important to note that all decomposition

results and methods result in the same cost and allocation values, the main contri-

bution of this book.

Sensitivity analysis of the IEEE 14-bus system and the IEEE 30-bus system for

loss (failures and repair rates) is investigated. Finding the optimal solution for a

linear-programming model is important, but it is not the only information available.

There is a tremendous amount of sensitivity information, or information about what

happens when data values are changed. When formulating a problem as a linear

program, we have to invoke a certainty assumption: we have to know what values

the data took; finally, decisions are made based on the data from the LP run. Often,

this assumption is somewhat dubious: the data might be unknown, guessed, or

otherwise inaccurate. How can we determine the effect on the optimal decisions if

values such as the failure or repair rates change? Clearly, some numbers in the data

are more important than others. Can we find the “important” numbers? Can we

determine the effect of misestimating? Linear programming offers extensive capa-

bilities to address these questions. In the model, we test the sensitivity of our LP

formulation with respect to the effect on line failures. We have simulated certain

line failures by treating certain variables to zero and noticing the change in the

allocation procedure.

Fig. 6.3 AMPL model file of the DW
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In an IEEE 14-bus system, we simulated line failures in Region 1 by treating

x12 , x23 and x24 to 0. The authors were able to observe the re-allocation of power to

loads via other lines such as x15 and x54 to other regions and eventually reaching an
optimum value. Similarly, in an IEEE 30-bus system, lines x25 , x57 and x76 were set
to zero, and the allocation’s re-routing can be seen via the x13 , x34 lines to other

regions. Thus, the failure scenario can easily be modeled by treating those lines as

zero. Therefore, it is evident from these AMPL runs that the sensitivity of the DW

allocation process and the transmission lines for the IEEE 14-bus and IEEE 30-bus

systems are bound to the flow limits set on the transmission lines.

The inferences about the results and possible future tasks related to this proce-

dure are discussed in the final chapter with conclusions.

Fig. 6.4 Snapshot of the commodity constraints
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Fig. 6.5 Allocation results of the IEEE 14-bus system
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Fig. 6.6 Snapshot of the nodes and variables in the IEEE 14-bus simulation
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Chapter 7

Remarks About the Dantzig-Wolfe Scheme

A distributed linear-programming model has been created, developed,

implemented, and tested. Two standard IEEE bus systems are modeled and suc-

cessfully decomposed, in multiple ways, into sub-problems. The problem is solved

iteratively in each case and directly supports resource allocation in a Smart-grid

environment. I have shown that the LP-based design using the Dantzig-Wolfe

decomposition can execute and can quickly determine the primary resource sched-

uling and allocation issues if a failure occurs in the grid. The decomposition

procedure can easily be managed by system operators. In the study using the

4-bus, 14-bus, and 30-bus systems, the results indicate that the computational

benefits of the Dantzig-Wolfe approach enable fast responses on the order of a

millisecond to a few seconds as network size increases. Although the 30-bus system

is not a large bus network, the results clearly indicate a faster computation time if an

appropriate Dantzig-Wolfe structure is formulated. This approach can enable sys-

tem operators in the electric grid to respond to any allocation request for resources

in the event of outages or line failures. The book’s key contribution is the design,

development, and testing of a procedure that successfully decomposes an optimi-

zation problem that is defined over a large grid but can be solved in regional pieces.

The following inferences are made for my defined problem:

Inference 1: The larger size of decomposing into regions does not guarantee

computational savings for the overall problem. For example, the computational

time savings is greater with the three-region decomposition of the IEEE network

rather than with the ten-region decomposition network, an important and inter-

esting contribution of this book because it conveys that not all decompositions

can yield computation-time savings. However, the solution procedure is

decomposed by regions, which significantly spreads out the computational

load. In addition, the procedure demonstrates that feasible resource-allocation

solutions can be obtained on an intermediate basis, allowing solutions to be

terminated early with a still-valuable heuristic problem solution.

© Springer International Publishing AG 2017
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Inference 2: The Dantzig-Wolfe decomposition performs better with the IEEE

30-bus system than the IEEE 14-bus system. This finding is probably due to

increased variables as well as the large number of constraints and many inter-

related, complicated constraints with the sub-problems in the tested network’s
structure. Also, a large number of iterations are required between the

sub-problems and the master model.

Inference 3: The Lagrangian-Relaxation procedure performs poorly compared to

the actual Dantzig-Wolfe version. This finding suggests that a more sophisti-

cated procedure for setting Lagrangian multipliers is need.

Inference 4: Direct LP formulation performs better with the IEEE 14-bus system

compared to the decomposition scheme. This result is likely due to the relatively

small size of the test problems.

Inference 5: All models have identical resource allocation and identical cost as

measured by the objective-function value. This demonstrates that the computa-

tional procedures, although solved through decomposition, still provide the best

possible solution.

Inference 6: The number of iterations for interactions between the master problem

and sub-problems is different, ranging from 100 to 300 iterations. The approach

takes multiple iterations to reach an optimal cost as the solution for our objec-

tive, which demonstrates the appropriate and accurate interactions between the

master and sub-problem constraints.

Inference 7: The proposed DW method is tested for scalability up to the IEEE

30-bus system. Due to the large number of constraints for a given formulation,

scalability issues remain.

Inference 8: The benefits and significance of decomposition by regions yields

reasonable time savings for the computations compared to running all constraint

sets directly.

In summary, the key contribution is that we have developed, implemented, and

tested the Dantzig-Wolfe procedure in the IEEE bus system with various decom-

position structures. It is important to note that all decomposition structures result in

the same cost and allocation values. This is a significant and main contribution for

this book. In addition, I have modeled the LP formulation for resource allocation

with the known uncertainty information included in Chap. 3. A branch-and-bound

based algorithm for resource allocation is also presented in Chap. 4 as part of the

contribution.

In this book, we define scalability as the ability of a DW process to handle a

growing number of sub-problems or constraints in a capable manner, or its ability to

be enlarged to accommodate that growth. For example, it can refer to the capability

of a system to increase the total throughput (such as computational time) under an

increased load when resource constraints are added.

The DW algorithm is said to scale if it is suitably efficient and practical when

applied to large problems, such as when there are a large number of participating

nodes, as is the case with a typical, distributed Smart-grid system. The book shows
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that feasible scalability up to the level of the IEEE 30-bus system with 650 variables

and 325 constraints.

The application of the evaluated decompositions can be implemented on a

hierarchical US electric grid. For example, the practicality of a true large-scale

grid can be envisioned as distributing resources among the four Independent

System Operators (ISOs): the NYISO, MISO, Western Interconnection, and South-

ern Interconnection systems.

Regarding future plans for individuals who wish to study this problem, the

authors recommend that they test using large-scale systems such as the standard

118-bus, 300-bus, and 1000-bus models. The efficiency of the Dantzig-Wolfe

procedure relies on how complicated constraints are greatly involved with the

sub-problem variables and solutions.
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Chapter 8

A Linear Classifier for Decision Support
in a Smart Grid

8.1 Introduction

As more electric utility companies move toward a smart-grid environment on a

daily basis with the integration of renewables and the installation of a growing

number of smart meters, researchers should address the problem of how to mine and

manage the growing data that result from the grid’s smart meters and other

intelligent devices. In fact, some experts predict that the Smart-Grid (SG) data-

analytics market will reach $4.2 billion by 2015 and that SG distribution automa-

tion spending will be $46 billion worldwide by 2015. As a result, there is enormous

research and business potential in the data-analytics market [PR].

It has been studied recently in [SV10, SVY10] that the future for an efficient

Smart Grid should explore ways to maximize the utilization of renewable energy

sources, such as using GVs for sustainable Cyber Physical Energy Systems (CPES),

in order to reduce emissions and cost. The chapter uses CPES data that were

previously defined [SVY10].

Figure 8.1 shows a three-phase decision framework in a power system where

data from multiple sources are collected in phase 1 through renewable sources,

generators, sensors, and loads. Then, model tree-based decision models (M5 and

J48) are applied after it is integrated in phase 2, and finally in phase 3, the

classification or prediction of tree outcomes is distributed to the respective decision

makers, agents, or units. In data preprocessing, the data selection, cleaning, and

transformation are done. The data-preprocessing stage is where irrelevant or noisy

data are identified and removed, and relevant data are extracted from the raw data

[BF96]. There are many well-established approaches that deal with missing attri-

butes or ambiguous responses, ranging from the most common attribute, the event-

covering method, to ignoring the value altogether [GH01, LAP06].

We refer Power System operators (PSO) as personnel who act as a load dis-

patcher, substation inspector, power switchboard operator, hydro-electric station

operator, electrical technician, or supervising engineer. PSOs monitor and operate
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equipment on transmission lines and at transformer and power-generating stations.

PSOs control the distribution and regulate the flow of electrical power in the

transmission network. They are employed by electric-power generation, transmis-

sion, and distribution companies. They control the electricity that is generated and

distributed to a particular region by monitoring and operating the computerized or

pneumatic switchboards that regulate the power flow.

The distribution demands on a generating station or sub-station change daily due

to system outages, repair work, and other factors. It is their role to coordinate,

schedule, and direct power loads and line voltages to meet these demands. At any

given time, there is repair work or construction that requires part of the system to be

isolated and shut down. They consult operating drawings of the power system and

prepare switching orders that will isolate the work areas without causing a power

outage. They also have to consider voltages, load transfers, and line capacities in

order not to overload part of the system. How do they make decisions to control

such vast and complex grid operations? What computer-aided interface will help

make this decision making easier or control the various processes?

In this chapter, we restrict our attention to the decision-making process for these

operators with tree-based models using the available data from a Unit Commitment

(UC) Problem. Because the power system’s load varies throughout the day and

reaches a different peak value from 1 day to another, the electric utility has to

decide, in advance, which generators to start and when to connect them to the

network, as well as the sequence in which the operating units should be shut down

and for how long, based on the demand levels. The computational procedure to

Data Sources 1.2…..n 
(Sensors, Relays, PMUs etc.,.)

Data preprocessing, Extraction and 
Transformation

(Applicability of
J48/M5P Decision

System Operators interpret data in meaning ful way
and/or activate the processes in the Smart Grid.

(All levels: Generation, Transmission, Distribution)

Fig. 8.1 Decision

framework for the power-

system operators

96 8 A Linear Classifier for Decision Support in a Smart Grid



make such decisions is the unit commitment problem, and we say that a unit is

committed when it is scheduled for connection to the power system.

8.2 Background on a Data Source from a GV

The source of data in this chapter is renewables, hence our approach to a Smart Grid

has the following capabilities: (a) renewable energy sources, mainly wind and solar,

are used to reduce the electric industry’s emissions; (b) GVs are used to reduce the

transportation industry’s emissions; and (c) GVs are smartly used as loads; energy

storages; and small, portable power plants.

As discussed [SVY10], the next-generation plug-in vehicles, including plug-in

hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with vehicle-to-grid

capability, which are referred to as “gridable vehicles” (GVs) [SVY10], can reduce

emissions for the transportation industry. GVs can be used as loads, energy sources

(small, portable power plants) and energy storages in a smart grid that is integrated

with renewable energy. Smart charging and discharging of the GVs in a distributed-

energy source and load environment requires intelligent scheduling mechanisms

which have a great potential for efficiently transporting electric energy.

Vehicle-to-grid (V2G) describes a system where plug-in electric vehicles, such

as electric cars and plug-in hybrids (PHEVs), communicate with the power grid to

sell demand-response services either by delivering electricity to the grid or by

throttling the rates charged. Vehicle-to-grid can be used with such gridable vehi-

cles, that is, plug-in electric vehicles (PHEVs) with grid capacity. Because most

vehicles are parked an average of 90 plus percent of the time, their batteries could

be used to let electricity flow from the car to the power lines and back, thereby

saving costs and emissions. The concept allows V2G vehicles to provide power in

order to help balance loads by “valley filling” (charging at night when demand is

low) and “peak shaving” (sending power back to the grid when demand is high). It

can give utilities new ways to provide regulation services (keeping voltage and

frequency stable) and to provide spinning reserves (meet sudden demands for

power). These V2G/G2V data are presented as one column in the unit commitment

problem that we plan to analyze in the following sections (Fig. 8.2).

In the future development of Smart Grids, utilizing electric vehicles could buffer

renewable power sources, such as wind or solar power, by storing excess energy

that is produced during windy or sunny periods and then providing it back to the

grid during high-load periods, thus effectively stabilizing the intermittency of wind

and solar power. Some see this application of vehicle-to-grid technology as a

renewable-energy approach that can penetrate the baseline electric market. This

approach may even help public utilities to not have to build as many natural-gas or

coal-fired power plants in order to meet peak demand. This chapter focuses on how

data analytics can help with decision support for the generation, transmission, and

distribution pieces of the grid. We tested our decision models (specifically the J48,

decision-stump, and M4 models) using the WEKA data-mining tool from a 10-unit
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commitment data set from the Gridable Vehicles defined in [SVY10] and also the

NYISO data set [MEG11, NYI].

The rest of the chapter is sectioned as follows: Objectives, Decision-Tree

Methods, Introduction to the Weka Tool, Results, and Conclusion.

8.3 Objectives

We have multi-fold goals in this chapter. The first one is to discover how decision-

tree models, such as the M5 model, are applicable in power-domain specifically

problems such as unit-commitment and how in NYISO data set where demand level

can be forecasted based on the history of logs of committed demand data

[NYI]. Secondly, we have shown how decision-tree models can help the decision

support for system operators who need to do switching operations or to activate or

deactivate circuit breakers by exploring the data obtained with the Gridable Vehi-

cles or other data sources. We have also presented the predictive and classification

accuracy of the M5 tree-based model in the power-system domain when compared

to the Relative Absolute Error (RAE) and Root Mean Squared value (RMSE)

metrics of the J48 and decision-stump approaches.

8.4 Classifying and Predicting the Missing Values
Using Decision-Tree Models

Data mining studies the algorithms and computational paradigms that allow com-

puters to discover the databases’ structure; to perform prediction, classification, and

forecasting; and, generally, to improve performance through interaction with the

Fig. 8.2 V2G and G2V modes
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data. Machine learning is concerned with building computer systems that have the

ability to improve their performance in a given domain through experience. In this

chapter, we use M5P (where the “P” stands for “prime”) to generate M5 model trees

using the M5’ algorithm which was introduced by Wang and Witten (1997) and

enhances the Quinlan’s [Qui92] original M5 algorithm. We also show the applica-

bility of the J48 and Decision-Stump methods. The Decision-Stump approach

builds simple, binary decision “stumps” (one-level decision trees) for both numeric

and nominal classification problems. It copes with missing values by extending a

third branch from the stump, in other words treating the “missing” as a separate

attribute value. Decision Stumps implement trees with a single split only, which are

frequently used as base learners for meta learners such as Boosting.

Decision-tree models offer several ways of dealing with missing values that can

often minimize or eliminate those values’ effect on model performance. The

authors believe that the applicability of such decision-tree models in the Smart-

Grid platform has not been investigated at system-operator levels, which has

tremendous benefits to understand the demand levels from multiple generators,

the customers’ power use, and other related parameters.

8.5 Model Decision Trees

8.5.1 M5 Model Trees

The M5 model-tree algorithm was originally developed by Quinlan [Qui92]; we

used the software and implemented its M5 variation that was provided by Witten

and Frank (2000). Model trees combine a conventional decision tree with the

possibility of generating linear-regression functions at the leaves. This representa-

tion is relatively perspicuous because the decision structure is clear and because

regression functions do not normally involve many variables. The M5 tree is a

piecewise linear model, so it takes an intermediate position between the linear

models and the truly nonlinear models as ANNs.

The construction of a model tree is similar to that of a decision tree. Figure 8.3

illustrates how the splitting of space is done. First, the initial tree is built, and then,

the initial tree is pruned (reduced) to overcome the over-fitting problem (when a

model is very accurate with the training data set and fails with the test set). Finally,

the smoothing process is employed to compensate for the sharp discontinuities

between adjacent linear models at the leaves of the pruned tree. (This operation is

not needed to build the decision tree.)
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8.5.2 Related Work on Building Decision-Tree Models

Data-driven modeling based on the advances of machine learning and computa-

tional intelligence proved to be a powerful approach for a number of problems

[Sol02]. One of the most frequently and successfully used techniques in this respect

is an artificial neural network (ANN). It has been demonstrated that there is an

entire set of other methods that can be at least as accurate and have additional

advantages [SD03]. One such numerical prediction (regression) method that we

found to be practically unknown to practitioners is Quinlan’s so-called M5 model

tree [Qui92]. It is based on ideas from a popular classification method, a decision

tree that follows the principle of the input space’s recursive partitioning by using

entropy-based measures and assigning class labels to the resulting subsets.

Various decision-tree inductive algorithms have emerged in the past decades;

these algorithms are used to solve classification problems that primarily employ the

divide-and-conquer approach [BF96]. First, an attribute is selected and placed at the

root node, and one branch is made for each possible value; then, the example set is

split into subsets, with one for every value of the attribute. Now, the process can be

repeated recursively for each branch by only using those samples that actually reach

the branch. If, at any time, all samples at a node have the same classification, the

development of that part of the tree is stopped. We ran these algorithms in WEKA

because it has a collection of data-mining methods that are already available.
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Fig. 8.3 Example of an M5 model tree: Models 1–6 are linear-regression models
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8.5.3 WEKA Platform

Weka is a collection of machine-learning algorithms for data-mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java

code. Weka contains tools for data pre-processing, classification, regression, clus-

tering, association rules, and visualization. It is also well-suited for developing new

machine-learning schemes [MEG11]. Figure 8.4 shows the data set for the unit

commitment problem.

Figures 8.3 and 8.4 show the classification of the GV dataset’s decision trees into
five linear models: LM1, LM2, LM3, LM4, and LM5. For example, in Fig. 8.6,

there are ten values in the wind data set that exceed 12.8 MW of power and three

values that fall below 12.8 MW, which is useful information for power-system

operators to identify the demand scarce, redirection of power, activating and

deactivating the generators, and loads. Figure 8.4 shows the unit commitment

data from [SVY10].

8.5.4 Data Pre-Processing in Weka

Weka’s pre-processing capability is encapsulated in an extensive set of routines,

called filters, that enable data to be processed at the instance- and attribute-value

levels. The most important filter algorithms that are included in WEKA are as

follows:

weka.filter.AddFilter

weka.filter.DeleteFilter

weka.filter.MakeIndicatorFilter

Fig. 8.4 Unit commitment data set
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weka.filter.MergeAttrbuteValuesFilter

weka.filter.NominalToBinaryFilter

weka.filter.SelectFilter

weka.filter.ReplaceMissingValuesFilter

weka.filter.SwapAttributeValuesFilter

weka.filter.DiscretiseFilter

weka.filter.NumericTransformFilter

Building applications with WEKA is easier. In most data-mining applications,

the machine-learning component is just a small part of a far-larger software system.

To accommodate this, it is possible to access Weka’s programs from inside one’s
own code. This allows the machine-learning sub-problem to be solved with mini-

mal additional programming.

Figures 8.5 and 8.6 illustrate how the data set can be broken into sub-linear

models with a stopping criterion. In Fig. 8.5, there are seven instances where

attribute values showing the discharging process occur and where the power is

extracted from the electric grid, and there are two instances where charging occurs,

meaning that the power is inserted back to the electric grid, thereby acting as a

mobile, renewable storage unit. Such instances would help decision makers (system

operators) to understand their microgrid environments.

The attribute, which is chosen to be used for a split for a given set of samples,

can be determined by the splitting criterion. For decision trees, the splitting is based

on trying to minimize the entropy in the resulting subsets, in other words, trying to

filter as many samples as possible from the same class into one subset.

In other words, the M5 model tree is a numerical prediction algorithm, and its

splitting criterion is based on the standard deviation of the values in subset T of the

training data that reach a particular node (which is an analog of entropy). It is used

as a measure of the error at that node, and the attribute that maximizes the expected

error reduction is chosen for splitting at the node. Accordingly, in Fig. 8.6, the

Reserve attribute is selected for the root node with the split value 11.5. The splitting
process terminates when the output values for the samples that reach a node vary

slightly, that is, when their standard deviation is just a small fraction (less than 5%)

of the standard deviation for the original sample set. Splitting also terminates when

Fig. 8.5 An LM decision-tree branch on V2G/G2V data
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only a few samples remain in a subset. The linear-regression models are then built

for each subset of samples that are associated with the terminating (leaf) nodes.

8.5.5 Pruning and Smoothing the Model Trees

If a generated tree has too many leaves, it may be “too accurate” and, hence, overfit;

therefore, it is a poor generalizer. It is possible to make a tree more robust by

simplifying it, i.e., by pruning to merge some of the lower subtrees into one node.

The process used to compensate for the sharp discontinuities that will inevitably

occur at the leaves of the pruned trees between adjacent linear models is commonly

referred to as the smoothing phenomenon. Experiments show that smoothing

substantially increases the accuracy of prediction. For example, M5 pruned model

rules to the “Time” attribute (using smoothed, linear models) results in two rules as

follows:

Number of Rules: 2.

Rule: 1

IF

Time <¼ 19.5

THEN

U-4 ¼
�0.0093 � Time

+ 130.0772 [19/0%]

Fig. 8.6 An LM decision tree with reserve, time, and wind data
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Rule: 2

U-4 ¼
�0.42 � Time

+ 138.82 [5/70.711%]

8.6 J48 Classifier in Weka

J48 is an implementation of the C4.5 release that produces decision trees. This

standard algorithm is used for machine learning. Decision-tree induction is one of

the classification algorithms in data mining. The classification algorithm [PR] is

inductively learned to construct a model from the pre-classified data set. Each data

item is defined by the attributes’ values. Classification may be viewed as mapping

from a set of attributes to a particular class.

The decision tree classifies the given data item by using its attributes’ values.
The decision tree is initially constructed from a set of pre-classified data. The main

approach is to select the attribute which best divides the data items into their

classes. According to the attributes’ values, the data items are partitioned. This

process is recursively applied to each partitioned subset. The process terminates

when all the data items in the current subset belong to the same class. Table 8.1

shows a data set taken from the NYISO website.

Figure 8.7 shows a graphical view of the 24-h demand data for New York City in

Mega Watts. Table 8.2 shows some specific instances (12 a.m., 1 a.m., and 2 a.m.)

of the time attribute for the NYISO data in the WEKA explorer. We used these

instances to apply and test the J48, M5, and decision-stump methods. Figure 8.8 is a

decision tree that is run using the J48 classifier on WEKA. Each tree branch has a

condition as follows: 200 MW<demand<660 MW of power (attribute � value or
attribute > value).

8.6.1 Situational Awareness (SA)

PSOs can better understand situational awareness by mining these sensor data,

arriving at good estimate and control mechanisms to take the necessary switching

actions. Despite technological upgrades and advances, power-system operators

must assimilate overwhelming amounts of data in order to keep the electric utility

grid operating. Studies of recent blackouts have demonstrated the need to enhance

the operator’s ability to understand the system’s state and to anticipate possible

problems. With the grid’s increasing complexity and interconnectivity, the scope

and complexity of power-grid operations continue to grow. To confront this

escalation, new paradigms are needed to guide the research, tool development,

and training in order to enhance and improve operations. This study applies

classification theories for decision making to a situational-awareness
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Table. 8.1 NYISO data set from April 27, to May 3, 2011, for NYC

Time stamp 27-Apr 28-Apr 29-Apr 30-Apr 1-May 2-May 3-May Average

0:00 4808 4789 4772 4620 4572 4598 4842 4714.429

1:00 4568 4585 4525 4408 4296 4329 4461 4453.143

2:00 4409 4402 4323 4256 4123 4145 4247 4272.143

3:00 4320 4302 4207 4163 4017 4059 4142 4172.857

4:00 4303 4284 4178 4129 3971 4060 4126 4150.143

5:00 4461 4442 4312 4150 3975 4237 4291 4266.357

6:00 4890 4860 4673 4213 3973 4638 4716 4566.143

7:00 5504 5457 5210 4392 4082 5260 5850 5036.429

8:00 6050 5988 5688 4654 4260 5763 5355 5465.429

9:00 6426 6349 6018 4934 4499 6117 6210 5793.286

10:00 6614 6533 6187 5140 4707 6302 6396 5982.714

11:00 6702 6615 6266 5249 4353 6373 6503 6031.571

12:00 6724 6640 6285 5279 4943 6409 6588 6124

13:00 6733 6651 6304 5271 4989 6436 6672 6150.857

14:00 6720 6644 6294 5234 5002 6446 6722 6151.714

15:00 6698 6634 6267 5196 5003 6448 6745 6141.571

16:00 6675 6621 6237 5162 5011 6466 6776 6135.429

17:00 6633 6571 6172 5142 5058 6482 6743 6114.429

18: 00 6408 6328 5947 5118 5088 6337 6485 5958.714

19:00 6252 6169 5303 5156 5173 6241 6314 5374

20:00 6241 6152 5807 5289 5314 6219 6234 5893.714

21:00 6042 5958 5651 5234 5323 6092 6084 5769.143

22:00 5718 5642 5389 5068 5174 5788 5768 5506.714

23:00 5247 5192 5040 4821 4901 5351 5339 5127.286
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Fig. 8.7 Graph for the NYISO data set
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Table 8.2 A sample data

set showing 12 a.m. (t0),

1 a.m. (t1), and 2 a.m. (t2)

Time (s) Demand (in Mega Watts of power) Date

t0 4808 ap 27

t0 4789 ap 28

t0 4772 ap 29

t0 4620 ap 30

t0 4572 1-May

t0 4592 2-May

t0 4714 Average

t1 4568 ap 27

t1 4585 ap 28

t1 4525 ap 29

t1 4408 ap 30

t1 4296 1-May

t1 4329 2-May

t1 4469 Average

t2 4409 ap 27

t2 4402 ap 28

t2 4323 ap 29

t2 4256 ap 30

t2 4123 1-May

t2 4145 2-May

t2 4247 Average

Fig. 8.8 J48 on the NYISO data
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(SA) problem from a power-grid perspective and offers a framework to guide the

development of tools to increase the grid operator’s SA and to enhance operational

performance [FGR09].

A sample run of the J48 classifier with the NYISO data is shown below:

Here, new notations are used for convenience. For example, “april a” refers to

April 27, “april b” is April 28, “april c” refers to April 29, and “april d” is April 30.

8.7 Results and Discussion

The M5 models provide some advantages from both quantitative and qualitative

points of view when compared with simpler regression methods. From a quantita-

tive point of view, we can conclude that the goodness, i.e., estimation accuracy, of

M5 is better than the classical linear regression or least mean squares (Table 8.3) as

seen through Relative Absolute Error (RAE) measures. Various research studies

have suggested that selecting an error measure has an important effect on the
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conclusions about which set of classification or forecasting methods is most accu-

rate [Arm85, AC92, Fil92]. They conclude that the Relative Absolute Error (RAE)

is a useful measure, especially when making comparisons across a small set of time-

series data. The M5 algorithm greatly improves the estimates to levels which are

acceptable for the engineering community. Also, when compared with other tech-

niques, the M5 algorithm handles both continuous and categorical variables.

In addition to greater accuracy, the M5 model provides other qualitative advan-

tages. First, each subset is clearly defined in the sense that new instances are easily

assigned to a local model. Second, decision trees are easily understood by users, in

general, and by project managers, in particular, because we can read them as rules.

Such conditions in the power system can provide a clear indication about which

variables are most important for prediction (as conditionals in the tree branches).

The tree’s leaves allow the grid’s system operators to gain further knowledge about

the dataset’s characteristics. The following shows the classification results based on
the demand using the M5 and decision-stump methods. It is evident that the

decision-stump and J48 methods yield marginal classification and a high relative

absolute error (RAE).

8.8 Conclusion

We showed how the collected Smart-Grid data can be analyzed with the M5

algorithm for easier interpretation for system operators to build decision-support

engines. This chapter presented the results of applying the M5 algorithm as an

estimation technique to two weekly datasets generated from the power system’s
repository. We compared the classification results for the J48, M5, and stump

methods and found that there is improved accuracy with the results when using

the M5 model. Furthermore, the M5 method can help understand the datasets better;

the tree (rules) generated with the M5 method provides system operators with a

better understanding about what attributes are more important for a particular

dataset that can help influence a decision. Finally, we believe that the applicability

of the M5 method, in particular, to the power-system domain, in general, provides

certain advantages for power-system operators while keeping the estimation pro-

cess within reasonable complexity.

Table 8.3 Classification accuracy metrics

MMethod RMSE

Correlation

coefficient Relative absolute error Data set

J48 .3037 – 51.3% NYISO

M5 54.4 .968 14.5% Unit

commitment

Decision stump 125.19 .816 62.79% Unit

commitment

M5 17.6 .99 8.68 NYISO

Decision stump .3407 – 64% NYISO
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Chapter 9

Maximization of the Utility Function,
Time-Dependent Energy Allocation,
and Fuzzy-Logic Resource-AllocationModels

9.1 Introduction

Dynamic, real-time power systems often operate in continuously changing envi-

ronments such as adverse weather conditions, sudden transformer failures, or

malfunctioning of a sub-system of a transmission or distribution network. These

disruptions, along with the power-network systems’ complexity, cause the system’s
energy demand and loads to fluctuate, potentially resulting in widespread outages

and huge price spikes. Electric energy is traditionally generated at large power

plants and transferred, in bulk, to substations that distribute power to residential,

commercial, and industrial customers. A wide variety of devices are involved and

utilized, including transformers; sensors; controllers; and, more recently, smart

meters at the consumption points. A successful Smart Grid must be highly

instrumented, data rich, networked, and integrated and managed as a complete

“end-to-end” system. However, centralized control is clearly impossible, leading to

the challenge of distributing control while still providing high performance and

efficiency.

Data from the North American Electric Reliability Council (NERC) and ana-

lyses from the Electric Power Research Institute (EPRI) indicate that average

outages from 1984 to the present time have affected nearly 700,000 customers

per event annually as noted by Masood Amin [Ami04]. Smaller outages occur much

more frequently and affect tens to hundreds of thousands of customers every few

weeks or months while larger outages occur every 2–9 years and affect millions.

Although preventing these outages remains challenging, the consumers’ demand

changes (increases or decreases) can often be offset by distributed energy resources

(DERs), renewable resources such as solar and wind-based power, in order to

satisfy the shortages or to reduce the outage levels. In our work, we consider

using such DER-based standby mechanisms and formulate to support their issue.
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9.2 Background

Green-energy solutions that are described as “smart”—smart meters, smart build-

ings, smart appliances, and the Smart Grid—have intelligent sensors to measure

temperature or other variables to receive and transmit data, memory chips to store

the information and process it, and manage the power flow to adjust energy loads.

When building a Smart-Grid self-healing model, there are multiple considerations

that are important to include as explained by Amin. Some considerations pertain to

the physical infrastructure, such as the generators, busses, relays, and transmission

lines. Other considerations pertain to the cyber infrastructure, such as the commu-

nication networks, storage, protocols, and procedures for grid management. There

have been several studies that push for advanced, secure grid infrastructure as

described by Amin and Stringer.

The current electric grid in the U.S. is about 100 years old, and while incremen-

tal upgrades have been made over the last few decades, advancements in fields such

as software and internet technologies, and wireless technologies, have been slow to

transition into the grid. Today, the convergence of several factors provides for a

perfect storm that is expected to make a revolutionary change in the nature of the

electrical grid.

The various factors that led to the futuristic, self-healing grid are as follows:

• Rapid reduction in limited natural resources

• Population growth

• Rising cost of energy

• Current technology advances make it possible

• Increased global warming and climatic conditions

• Changes in the utility-business operations worldwide

• Deregulation in parts of the world

• Better awareness and education among consumers

• Increased renewable, distributed, and smaller power generation

• Increased power-storage capability

• Radio frequency IDs (RFIDs) and sensors that have narrowed the virtual dis-

tance between the physical and cyber worlds

As a result, there is tremendous pressure at the government, industry, and

consumer level to innovate. Various entities are working and have articulated

their visions about what the futuristic grid should look like.

Today’s grid features a typical, centralized approach where few powerful central

stations broadcast energy to different consumers. As renewable energy resources

pave their way, we expect that future users will not only be energy consumers, but

also producers; they reflect the ability to interchangeably slip between these roles.

The smart grid defined in Amin is an emerging concept with the goal to provide the

next-generation electricity network that will boast advanced configurability, reac-

tiveness, and self-manageability. It is a complex infrastructure that depicts a

system of system characteristics, such as the interdisciplinary nature, the
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elements’ operational and managerial independence, geographical distribution,

high heterogeneity of the networked systems, and emergent behavior and evolu-

tionary development. It is expected to be the key part in a global ecosystem of

interacting entities where cooperation will give birth to innovative cross-industry

services. Key driving forces behind these efforts are energy efficiency and better

management of the available resources (locally and globally). In order to achieve

this goal, fine-grained monitoring and management are needed. Primary consider-

ations for a self-healing, cyber-grid architecture are given in the following sections.

Identification of malfunctions. When an electricity supply/demand problem occurs,

it must be accurately and rapidly identified in terms of its location, type, and

severity. Smart meters that are programmed to report energy consumption at regular

intervals help to pinpoint problems by simply reporting that, suddenly, no electric-

ity is being consumed at specific sites. Phasor Measurement Units (PMUs) that are

located at interconnection points in the grid and that are synchronized in time using

the Global Positioning System (GPS) can report phase-angle differences that are

associated with unstable conditions. The precise unit timing allows for wide-area

sensing and monitoring at rates on the order of 60 samples per second. A Phasor

Data Concentrator (PDC) can receive data from multiple PMUs and can then

correlate, store, and trigger response actions to abnormal conditions. Networks of

smart meters and PMUs, along with other sensing and reporting devices, make it

possible to quickly and accurately determine the details of the grid’s problems.

Data storage. At least 33 U. S. states had smart meters installed in 2010, and an

estimate by the Edison Electric Institute indicates that 60 million will be installed

by 2019. The large volume of data from the grid-sensing devices underscores the

need for large-scale, distributed database systems in the Smart Grid. The nodes that

store data may be capable of carrying out the data mining to predict future

problems, to send alerts, and to make resource-allocation decisions autonomously.

Energy storage, by itself and in combination with distributed generation (termed

ES-DER), is a new and emerging technology that has been identified by FERC as a

key functionality of the smart grid, and standards related to storage should be

treated as a key priority by the Institute and industry in the interoperability

standards development process, subject to certain reservations. Coupled with

inverter-based technology, these systems can be used to improve EPS performance.

Due to the infancy of using storage and inverter technologies as a grid-integrated

operational asset, there are few standards to capture how it could or should be

utilized on the legacy grid and Smart Grid. For example, to date, there is no

guidance or standards to address grid-specific aspects of aggregating large or

small mobile storage, such as Plug-in Hybrid Electric Vehicles (PHEVs).

ES-DER is treated as a distributed energy resource in some standards, but there

may be distinctions between electric storage and connected generation. In particu-

lar, storage-based systems may function as a load more than 50% of the time.

At the same time, we are moving toward a large penetration of renewables in the

grid, which could be destabilizing, but should, in the context of the Smart Grid,

allow these renewables to be true utility assets. The potential for instability is
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twofold: first, due to the intermittent nature of renewables and, therefore, their

unsuitability to be dispatchable resources and, second, due to the interconnection

regulations that can lead the electronic interconnection interface (the inverter) to

trip in response to minor variations with grid voltage or frequency. Because a low

frequency is the result of insufficient generation, tripping high-level inverter-based

systems would contribute to the problem and cause possible stability issues in

response to a relatively minor disturbance. Appropriate interconnection standards,

smart-grid devices, and storage are key elements of the solution. Storage allocation

can be done using the linear-programming approach.

Utility function. Utility is an economic concept that is used to express the most basic

element of well-being for a representative consumer. Utility functions are generally

used to show logical inferences about the tradeoffs that consumers make and their

likely outcome. The concept of using utility functions to represent consumer choice
as reflecting likely consumer behavior has long been attacked, partially because it

appears (wrongly) to assume that economic actors are rational and partially because

it is tautological.

A utility is a numerical rating that is assigned to every possible outcome which a

decision maker may face. In a choice among several alternative prospects, the one

with the highest utility is always preferred. To qualify as a true utility scale,

however, the rating must be such that the utility of any uncertain prospect is

equal to the expected value (the mathematical expectation) for the utilities of all

its possible outcomes which could be either “final” outcomes or uncertain pros-

pects. When decisions are made by a so-called rational agent (If A is preferred to B

and B to C, then A must be preferred to C.), it should be clear that some numerical

scale can be devised to rate any possible outcome “simply” by comparing and

ranking these. Determining equivalence in monetary terms may be helpful with

such a systematic process, but it is not theoretically indispensable. What may be

less clear, however, is how to devise such a rating system so that it possesses the

above fundamental property that is required for a utility scale.
Measuring the benefit that is obtained with a management action is the well-

studied role of the utility function. A common convention is to normalize the utility

function into the range of 0–1,with the 0 end of rangemodeling theminimumbenefit.

Application conflicts. We presume that distributed software agents will run appli-

cations at various nodes in the grid in order to summarize and provide information,

to mine data, and to invoke certain control actions. Some applications’ polling
actions will compete to acquire the necessary data and bandwidth, degrading each

other’s performance. To maintain Quality of Service (QoS) standards, the applica-

tions will require resource allocations.

9.2.1 Large-Scale Resource Optimization

There are significant needs and benefits to address (1) large-scale supply chain

optimization problems; (2) product pipeline-management (Here, we refer to them
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as ‘agents.’) decision making; (3) the detailed optimization of process models;

(4) the design and optimization of the network’s nodes; and (5) optimization of

micro-grid models, such as small-scale or RTU designs, at the strategic, tactical,

and operational levels. These static and dynamic optimization models, which

commonly have hundreds of thousands of variables, include non-linear as well as

mixed-integer programming problems. These models can be posed in equation form

or with black-box simulation software. Rigorously handling non-convexities for the

nonlinear models has emerged as a major challenge that will involve global-

optimization methods that are potentially very expensive.

9.3 Related Research

Mathematical programming has enjoyed a burgeoning presence in theoretical

computer science, both as a framework for developing algorithms and, increas-

ingly, as a bona fide computation model. The limits are expressed in terms of sizes

of formulations and integrality gaps of formulations as the one described in Arora.

Linear formulations are an appealing computation model because both optimization

and decision problems fit naturally into the framework, and both theoretically

tractable and efficient practical algorithms exist to solve the linear program as

defined by R. E. Moore [Moo91].

Many practical problems in operations research can be expressed as linear-

programming problems. Certain linear-programming cases, such as network-flow
problems and multi-commodity-flow problems, are considered important enough to

have generated much research on specialized algorithms for their solution. A

number of algorithms for other optimization problems work by solving LP prob-

lems as sub-problems. Hanssmann and Hess developed a more comprehensive

linear-programming approach for the production-planning problem. This approach

became a model for several further research efforts and is the foundation for the

simple illustrative model presented in this chapter. A brief overview of this model

can be found in McLeavey and Narasimhan (1985).

Although the existence of optimization techniques can possibly be traced to the

era of Isac Newton, L. Euler, J. L. Lagrange, and A. L. Cauchy, the development of

the simplex method for linear programming by G. B. Dantzig in the mid-1940s, in a

sense, started the subject of mathematical optimization the way we understand it

today. Another major development was from H. W. Kuhn and A. W. Tucker (1951)

who gave necessary and sufficient optimality conditions for nonlinear optimization

or non-linear programming problems. Historically, ideas from linear programming

have inspired many central concepts of optimization theory, such as duality,
decomposition, and the importance of convexity and its generalizations by Hillar

and Gerald (2001). Likewise, linear programming is heavily used in microeconom-

ics and company management, such as planning, production, transportation, tech-

nology, and other issues. Although modern management issues are ever-changing,

most companies want to maximize profits or minimize costs with limited resources.
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Therefore, many issues can be characterized as linear programming. Although,

there may be studies using LP for many applications, we believe that no literature

has examined grid-resource allocation or the assignment problem using LP in the

electric-grid context. This chapter uses LP in the context of a Smart-Grid

application.

9.3.1 Collection of Generalized LP Models

Linear programming is a branch of applied mathematics that deals with solving

optimization problems of a particular form. Linear-programming problems have a

linear cost function (consisting of a certain number of variables) which is to be

minimized or maximized subject to a certain number of constraints. The constraints

are the variables’ linear inequalities that are used in the cost function. The cost

function is sometimes called the objective function. Linear programming is closely

related to linear algebra; the most noticeable difference is that linear programming

often utilizes inequalities, rather than equalities, in the problem statement. Linear

programming is a considerable field of optimization for several reasons.

Linear programming is a problem-solving technique that involves the optimiza-

tion of a decision, subject to one or more constraints. The basic logic of the

approach is displayed in four steps: (1) recognizing the LP problem, (2) formulating

the LP problem, (3) solving the LP problem, and (4) interpreting the LP solution.

Several conditions must exist before a problem can be addressed with linear

programming. (1) There must be a well-defined single objective that can be stated

mathematically as either a minimization or maximization function. (2) There must

be a set of decision variables that allow alternative courses of action. (3) There must

be constraints for the objective’s achievement that are imposed by the availability

of scarce resources or other restraints, such as product demand. (4) The objective

and all constraints must be able to be expressed as linear functions.

To formulate the LP problem, the example’s simple formulation is provided

using an objective function and constraints. Depending on the structure of the

linear-program formulation, one of several techniques can be applied to solve the

LP problem. The most common method is the simplex method, or we can apply

branch-and-bound technique that is discussed later in the chapter. To interpret the

LP solution, the example’s interpretation detail is provided later in the chapter.

We discuss generalizations about the LP models that are applicable to the

electric grid (Sect. 9.3.2) as well as the types of problems and constraints which

can be handled linearly. Some brief comments about its generalizations to handle

situations with multiple constraints are given. The following LP models can be

applied to electric-grid loads and supply resources.
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9.3.2 Section 1

9.3.2.1 Model 1. LP Model by Maximizing Utility

Multi-objective programming involves the recognition that the decision maker is

responding to multiple objectives. Generally, objectives are conflicting; not all

objectives can simultaneously arrive at their optimal levels. An assumed utility

function is used to choose appropriate solutions. Several fundamentally different

utility-function forms have been used with multi-objective models. These may be

divided into three classes: lexicographic utility, multi-attribute utility, and unknown

utility.

The lexicographic utility-function specification assumes that the decision maker

has a strictly ordered, pre-emptive preference system among objectives with fixed

target levels. For example, a lexicographic system could have its first priority goal

as power not less than 10,000 MW, the second priority as leisure that is not less than

20 h a week, the third as a power of no less than 12,000 MW, etc. This formulation

is typical of “goal-programming models”. The various goals are dealt with in strict

sequential order: higher goals before lower-order goals. Once a goal has been dealt

with (meeting or failing to meet the target level), its satisfaction remains fixed, and

the next lower-order goal is considered. Addressing the lower-level goals does not

alter the satisfaction of higher-level goals and cannot damage the higher-level goals

with respect to target-level attainment.

Multi-attribute utility approaches allow tradeoffs between objectives to attain

maximum utility. The most common form involves maximizing the sum of linearly

weighted objectives. This type of formulation has been used by Candler and

Boeljhe as well as Barnett, Blake, and McCarl. The third utility approach involves

an unknown utility-function assumption. Here, the entire Pareto efficient

(non-dominated) solution set is generated so that every solution is reported where

one of the multiple objectives is as satisfied as it possibly can be without making

another objective worse. We follow Candler’s approach for utility functions in this

chapter.

We explain LP using utility functions with a simple example as follows. In this

linear-programming model that maximizes utility, we consider two basic load

types. They are the High-Priority (HP) loads with a hard demand requirement

(i.e., Some demand units expect a high QoS that is sensitive to time.) and the

Low-Priority (LP) Loads with flexible demand requirements. The load-demand

levels, in terms of utility, for these two load types over time are shown in Fig. 9.1.

Assumptions

Here, the model makes the following assumptions:

There are M loads in the electric grid, and it has a high preference for high-

priority loads over low-priority loads.
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Priority: HP loads first, then LP loads.

Pricing: HP loads will pay more.

Two-Step Approach for a Mixed-Demand Load Power Grid

1. Satisfy the Quality of Service (QoS) requirement for HP loads (as many as

possible).

(a) Admission control

(b) Resource allocation

2. Remaining resources: Distribute them fairly among the LP loads.

max

Zi,k, ti

X

i2 LP loadsf g
VLP tið Þ:

Subject to

ti�Qi , i2 {HP loads} (HP Load Constraints)

Qi—QoS demand of i ‐ th HP loads

ti ¼
XL

l¼1

Ci, lZi, l i 2 loadsf g, l 2 clusters of mixed loadsf g

Ci, l —Capacity of the lth cluster on load i

XMloads

i¼1

Zi, l ¼ 1, Zi, l 2 0; 1½ �

Fig. 9.1 Utility functions for mixed loads in smart grid
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Note: Here, we define clusters by grouping adjacent loads in the grid. One reason

for using cluster approximation is that it reduces the number of variables during

allocation. Qi—QoS demand of i-th HP user.

9.3.2.2 Model 2. Time-Dependent Supply-Demand (Energy) Allocation

Each supply source in this resource-allocation model is said to have two parame-

ters: (a) a fixed pricing cost that is associated with employing a selected supply

source and (b) a demand meeting time period.

The fixed rental charge represents the cost of renting a resource and is paid once

if a resource is used in one or more time periods. The following mathematical

formulation characterizes the objective function and the constraints that are

required to identify the resource supply that minimizes the sum of all costs.

Therefore, we assume that the model has m time periods for which the demand

must be met by a selected supply and that there are n demand-fighting resources.

Min z ¼
Xm

j¼1

Xn

i¼1

ciHjDij

Subject to

8
Xm

Di, j � Zi

Decision variables:

Dij—Binary variable that takes on a value of 1 for the time period during which the

demand is achieved for the employed resources.

Hj—Time-period counter.

Ci—Cost employed to choose a resource, i.e., a power supply.

Zi—Binary variable defining whether the i-th resource has been dispatched.

Dispatched ¼ 1, not dispatched ¼ 0.

9.3.2.3 Model 3. LP Formulation with the Fuzzy-Rule Selection

Let I be a set ofm constrained resources, and let R and Yffi (Y1; Y2; . . ., Ym) bem + 1

random variables, with R being a reward and Yi being the amount of resources of

type i that are consumed. The joint distribution of R and Y depends on which fuzzy

rule is chosen. We make no assumptions about R and Y other than that each one has

a known expected value for every fuzzy rule that is selected.

The objective is to choose a fuzzy rule within some finite feasible set S, possibly
at random, to maximize E(R) subject to E(Y ) � b, where b is an appropriately

dimensioned vector of resources and E( ) is the expected value operator.
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Denote E(R) and E(Yi) when using rule s as ERs and EYsi, respectively. With this

notation, we can express our problem as a linear program, LP(S), where the xs
variable represents the probability of choosing fuzzy rule s:

LP Sð Þ : maximize
X

s2SERsxs

subject to
X

s2S
E Ysixs � bi 8i 2 I

X

s2S
xs ¼ 1, and xs � 0 8s 2 S

The sums in the objective function and the resource constraints are E(R) and
E(Yi), respectively, by the conditional expectation theorem. We assume that b � 0

and that there is a no fuzzy rule exist in S that consumes no resources, so LP(S) has a
feasible solution. The value of LP(S) will, in general, be greater than the value of

the restricted problem where the variables are required to be 0 or 1; that is, it is

significant that the decision maker is permitted to choose a strategy at random as

long as the expected resource consumption meets the constraints.

9.3.2.4 Model 4—Uncertainty Handling Through the POMDP Process
in an Agent-Oriented Smart Grid

The ability for an agent to reason under uncertainty is crucial for many planning

applications because an agent rarely has access to complete, error-free information

about its environment. Partially Observable Markov Decision Processes (POMDPs)

are a desirable framework in these planning domains because the resulting policies

allow the agent to reason about its own uncertainty. In domains with a hidden state

and noisy observations, POMDPs optimally trade between actions that increase an

agent’s knowledge and actions that increase an agent’s reward.
Bayesian networks have been widely used for diagnostic purposes [PPM08],

[Bou01]. These models can be extended to POMDPs to select the best action in the

smart-grid environment. This allows modeling partial observability due to causes

and the utility of executing various tests in the electric grid. We describe the

problem of refining diagnostic POMDPs when sensor feedback is available. The

sensor could be relays, switches, circuit breakers, PMUs, or the system operators

who monitor for any grid vulnerability. We propose utilizing sensor feedback to

pose constraints on the model, i.e., the transition, observation, and reward func-

tions. These constraints can then be used to efficiently learn the POMDP model and

to incorporate expert knowledge about the problem (Fig. 9.2).

The applicability of POMDPs to the renewable-resource allocation problem can

be addressed through agent-oriented design. A POMDP involves a sequence of

decisions such as activating which relays in the grid, U0, . . ., UN�1, and a sequence
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of sensor observations, Z0, Z2, ZN�1, with a decision-making rule are admissible if

Uk depends only on the observable history, Ik ¼ (Z0, Z1, . . . Zk; U0; U0, . . ., Uk�1),

for k¼ 0. . .N – 1. The Zk observation depends stochastically on the true state (Xk) of

the process at time k, but true state Xk is known only to the extent that it can be

deduced from Ik. The set of admissible fuzzy rules, S, in the electric grid is typically
enormous, but POMDPs are solvable as a practical matter because of the Markovian

nature of state evolution and the way that observations are generated. The crucial

observations
Belief States,
bo, b1

REAL-TIME ELECTRIC GRID
PROCESSESS + AGENTS

SMART
AGENTS

actions

State: So
Capacity 1500 MW
Left Relay (LR)

State: S1
Capacity: 100 MW
Right Relay (RR)

Pr(o=LR | So, monitor)=0.85
Pr(o=RR | S1, monitor)=0.15

Reward Function

Actions = {
3: monitor sensors,
1: Activate Left Relay
2: Activate Right Relay
}

Penalty for activating wrong switch : −$100.00
-Reward for activating correct switch: +$10.00
-Cost of monitoring sensors such as PMU’s etc.,: −$1.00

- to monitor the relays (sensors) on the Left (LR)
- to monitor the relays on the right (RR)

OBSERVATIONS

Pr(o=LR | So, monitor)=0.15
Pr(o=RR | S1, monitor)=0.85

Goal: Selecting appropriate actions

Fig. 9.2 POMDP relay example: an illustration of states, rewards, and observations when

switching between higher- and lower-capacity DER sources
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result is that the state-probability distribution given Ik is a sufficient statistic for

decision Uk [1], which has the effect of converting the POMDP into an ordinary

Markov Decision Process (MDP) over a much larger, but observable (via the Bayes

Theorem), state space [Bou02].

A POMDP can be seen as a continuous-space “belief MDP” because the agent’s
belief is encoded through a continuous “belief state.” We may solve this belief

MDP as before by using the value iteration algorithm to find the optimal policy in a

continuous space. However, some algorithm adaptations are needed to fit a

resource-allocation problem. There are two regions where uncertainties can exist:

uncertainty about the action outcome and uncertainty about the world state due to

imperfect (partial) information (Fig. 9.3).

9.3.3 Belief MDP

The policy of a POMDP maps the current belief state into an action. Because the

belief state holds all relevant information about the past, the POMDP’s optimal

policy is the solution for a continuous-space belief MDP.

For example, a belief MDP is a tuple <B, A, ρ, P>:

B ¼ infinite set of belief states

A ¼ finite set of actions

ρ(b, a) ¼ (reward function)

P(b0|b, a) ¼ (transition function)

The states’ reward and transition function can be defined as follows:

ρ b; að Þ ¼
X

s2S
b sð Þ R s; að Þ Reward Function

ρ b0ð jb, a� ¼
X

o2O
P b0ð jb, a, o�P oja, bð Þ Transition function

where P(b0|b, a, o) ¼ 1 if SE(b, a, o) ¼ b0,
P(b0|b, a, o) ¼ 0 otherwise;

9.3.3.1 Transitional Probabilities (Tables 9.1, 9.2 and 9.3)

Fig. 9.3 Agents and belief

states
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9.3.3.2 Observational Probabilities (Tables 9.4, 9.5, 9.6 and 9.7)

The belief vectors (bo, b1, etc.,) shown in Fig. 9.4 need to be updated at each state

based on the transition and observation probabilities, and they should be computed

as follows:

Table 9.1 Does not change

relay’s position
Prob. (monitor) Relay: left Relay: right

Relay: left 1.0 0.0

Relay: right 0.0 1.0

Table 9.2 Problem reset Prob. (left) Relay: left Relay: right

Relay: left 0.5 0.5

Relay: right 0.5 0.5

Table 9.3 Problem reset Prob. (right) Relay: left Relay: right

Relay: left 0.5 0.5

Relay: right 0.5 0.5

Table 9.4 Does not change

relay’s position
Prob. (monitor) O: LR O: RR

Relay: left 0.85 0.15

Relay: right 0.15 0.85

Table 9.5 Any observation

without monitoring sensors in

the grid is uninformative

Prob. (left) O: LR O: RR

Relay: left 0.5 0.5

Relay: right 0.5 0.5

Table 9.6 Any observation

without monitoring sensors in

the grid is uninformative

Prob. (right) O:LR O:RR

Relay: left 0.5 0.5

Relay: right 0.5 0.5

Table 9.7 Immediate rewards

Reward (monitoring sensors) Reward (left relays) Reward (right relays)

Relay: left -1 Relay: left �100 Relay: left +10

Relay: right -1 Relay: right +10 Relay: right �100

Fig. 9.4 Belief vectors
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Belief vectors updated from bo to b1

b1 Sið Þ ¼ P ojSi; að ÞPsj2SP SijSj; a
� �

bo Sj
� �

P oja; bð Þ

The sequence of optimal actions is known as the agent’s optimal policy for

interacting with its environment. We have two cases to choose an optimal policy for

using the POMDP smart-grid example.

Case 1. Optimal Policy at t ¼ 1 (Fig. 9.5)

Case 2. Optimal Policy at t ¼ 2 (Fig. 9.6)
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α0(1)=(−100.0, 10.0)
α1(1)=(−1.0, −1.0) α0(1)=(10.0, −100.0)

[0.00, 0.10]

S1

Left Relay

S2

Right relay

Optimal Policy
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Case 1. Optimal policy at t=1

Case 2. Optimal policy at t=2

Fig. 9.5 Optimal policy generation flow
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9.4 Conclusion

In this chapter, we have presented a series of models that are applicable to the

resource-allocation problem in a Smart-Grid environment. The presented POMDP

approach is efficient in dealing with uncertainties and imperfect information such as

on a complex power network application. The feasibility of these approaches needs

to be analyzed with real-time, electric-grid data as part of future studies.
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11 10 9

8 7

5

3

41

2

6

G

G

Fig. 9.6 State transitions that show relay switching and agent actions
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Chapter 10

Placement of Synchrophasors Using
Linear Programming and Zero-Injection
Constraints

10.1 Introduction

Electric-grid parameters, such as the frequency, amplitude, and phase of an electric

signal (collectively described by its phasor), must be constantly monitored by special

sensors that are usually referred to as Synchrophasors or phasor measurement units

(PMUs) [Pha93]. To produce useful data, the PMUs have to be time-synchronized

with the Universal Coordinated Time (UTC) with a Global Positioning System’s
(GPS) receivers or network systems that implement the Precision Time Protocol. One

concern with Phasor Measurement Units (PMU) is their location placement. A PMU

that is placed on a bus in a test system is capable of measuring currents, voltages, the

phasor, and frequencies for an entire transmission line incident to that bus. Using

Ohm’s law, when a PMU is placed on a bus, the neighboring buses also become

observable; i.e., adjacent bus voltages are easily computable. Thus, it is not necessary

to place a PMU on every bus in the system. PMUs are expensive sensor units, and

depending on the number of measurement channels and the needed features, the cost

can rise. The PMU’s price is a significant economic constraint for smaller utilities

because the communication and IT infrastructure that are required to receive PMU

data puts a burden on the total cost of purchasing a PMU unit. Although the usage of

PMUs is increasing annually, there is neither a concrete idea nor an effective

methodology to place PMUs on the bus systems. Therefore, an appropriate method-

ology is needed to determine the optimal locations to place these devices for complete

observability. The optimal locations can be strategic buses which are very critical to

the system. A location is said to be critical if there is large supply of electric

generation or demand units.

Various algorithms have been proposed for the placement problems. In

[BMB93], a bisecting search algorithm was proposed to find the minimum number

of PMUs needed to make the system fully observable. In [NPF05], a Simulated

Annealing (SA) technique was proposed in a graph-tree framework to find the

minimum number of PMUs. In [MB03], a Genetic Algorithm (GA) was proposed.
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Recent work on optimal PMU placement using an integer linear-programming

(ILP) approach was formulated by Abur [Abu04, BYA]. An economic approach

for how to schedule PMU placement in multiple stages was proposed

[DD08]. An integer quadratic-programming approach was used in [CKE09] for

the same OPP problem. The Particle Swarm Optimization (PSO) technique was

also used in [HRAS07]. Recently, a chemical-reaction optimization method

[WL13] was proposed for the OPP problem.

Literature studies have not considered zero-injection buses and critical buses as

constraints, although minimizing the number of PMUs was the objective [SSP12,

MH12]. In our model, we have included the following constraints:

1. Zero-injection buses

2. Critical buses

Zero-injection buses are similar to transshipment nodes in an OPP algorithm that

reduce the minimum number of PMUs. During contingency situations such as the

failure of the PMU, the loss of a communication channel, or the failure of a

transmission line, there is a loss of observability. In [MMML13] and [MMK10],

the authors consider zero injection as a special constraint in the formulation to keep

the system observable during contingency cases. This chapter considers both

constraints. The rest of the chapter is organized as follows: Sect. 10.2 introduces

the Inter Linear Programming (ILP) formulation for PMU placement problem. In

order to validate the proposed algorithm, different test cases are considered in Sect.

10.3. Section 10.3 provides the simulation results and comparative studies with the

existing literature. A summary is listed in the Sect. 10.4.

10.2 Placement Problem Formulation

For a system with N buses, the PMU’s placement problem can be formulated as

follows:

minimize
XN
i

wi � xi

s:t: f Xð Þ � b1,

where xi is a binary decision variable vector where the entries are defined using

binary variables as follows:

xi ¼
1 if a PMU is installed at bus i

0 other wise

(

b1 is a vector whose entries are all ones

wi is the cost associated with the installation of a PMU at particular bus i.
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Figure 10.1 shows a single-line diagram of an IEEE 14-bus system. There are

five generation points at buses 1, 2, 3, 6, and 8. Of them, only the generators at buses

1 and 2 create both active and reactive power while the generators at buses 3, 6, and

8 create reactive power. There are 11 load points connected at buses 2, 3, 4, 5, 6, 9,

10, 11, 12, 13, and 14 that consume the active and reactive power. With an ILP

approach, we consider two possible cases to evaluate the IEEE 14-bus system:

standalone PMU measurements (A), and a PMU with zero-injection buses (B). We

use the System Observability Redundancy Index (SORI) proposed in [DDKS08] to

choose the best optimal solution. The following example illustrates the ILP

approach for the PMU placement problem with the two cases.

10.2.1 System With No Conventional Measurements
and Zero/Flow Injections

A binary connectivity matrix, A, is formed to indicate links between the buses. The

entries for matrix A are defined as follows:

12 13 14

11 10 9

8 7

5

3

41

2

6

G

G

Fig. 10.1 IEEE 14-bus system. (Bus-7 is a zero-injection bus)
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Ak,m

1, if k ¼ m

1 if k and m are connected

0 if otherwise:

8>><
>>:

Matrix Ak ,m can be directly obtained from the bus-admittance matrix by

transforming its entries into binary form as follows:

Ak,m ¼

1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0 0 1

0 0 0 1 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1

2
66666666666666666666666666664

3
77777777777777777777777777775

Here, a zero (0) in the connectivity matrix that is derived from the admittance

matrix implies that there is no connection between busses k and m while a one

(1) implies that there is a connection. The ILP constraints for this matrix can be

formed as follows:

Bus 1 : f 1 ¼ x1 þ x2 þ x5 � 1 ð10:1Þ

Bus 2 : f 2 ¼ x1 þ x2 þ x3 þ x4 þ x5 � 1 ð10:2Þ

Bus 3 : f 3 ¼ x2 þ x3 þ x4 � 1 ð10:3Þ

Bus 4 : f 4 ¼ x2 þ x3 þ x4 þ x5 þ x7 þ x9 � 1 ð10:4Þ

Bus 5 : f 5 ¼ x1 þ x2 þ x4 þ x5 � 1 ð10:5Þ

Bus 6 : f 6 ¼ x6 þ x11 þ x12 þ x13 � 1 ð10:6Þ
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Bus 7 : f 7 ¼ x4 þ x7 þ x8 þ x9 � 1 ð10:7Þ

Bus 8 : f 8 ¼ x7 þ x8 � 1 ð10:8Þ

Bus 9 : f 9 ¼ x4 þ x7 þ x9 þ x10 þ x14 � 1 ð10:9Þ

Bus 10 : f 10 ¼ x9 þ x10 þ x11 � 1 ð10:10Þ

Bus 11 : f 11 ¼ x6 þ x10 þ x11 � 1 ð10:11Þ

Bus 12 : f 12 ¼ x6 þ x12 þ x13 � 1 ð10:12Þ

Bus 13 : f 13 ¼ x6 þ x12 þ x13 þ x14 � 1 ð10:13Þ

Bus 14 : f 14 ¼ x9 þ x13 þ x14 � 1 ð10:14Þ

The “þ” operator in the formulation is a logical “OR” operation. The inequality

operator (�) ensures that at least one variable in the sum will be non-zero. For

example, consider the following constraint associated with buses 1 and 2:

Bus 1 : f 1 ¼ x1 þ x2 þ x5 � 1

Bus 2 : f 2 ¼ x1 þ x2 þ x3 þ x4 þ x5 � 1

Constraint f1� 1 implies that at least one PMU must be placed on either of the

busses: 1(x1), 2(x2), and 5(x5). Similarly, f2� 1 implies that at least one PMU should

be installed for any one of the buses (1, 2, 3, 4, or 5) in order to make bus

2 observable or f2 satisfied.

10.2.2 System With Zero-Injection Measurements

Zero-injection buses are buses where no currents are injected into the system. In

other words, the buses have neither a load nor a generation unit. The use of

Kirchhoff’s Current law (KCL) to include zero-injection buses when modeling

the OPP problem helps to further reduce the number of required PMUs. Each

zero-injection node in a system creates an additional constraint in the formulation.

Thus, the number of PMUs required for complete system observability can be

reduced. For zero-injection bus i, let Ai indicate the set of buses that are adjacent

to bus i. Let Bi¼Ai[ {i}. Let the number of zero injections be Z. Because there

would not be any change in the current values with a zero-injection bus, the

variables related to the zero-injection bus are eliminated from all constraints. The
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model formulation allows the constraints in an ILP framework to selectively allow

some buses to be unobservable.
However, there are additional constrictions that need to be included for a fully

observable system:

1. The unobservable buses must be adjacent to the zero-injection buses.

2. The number of unobservable buses in set Bi (zero-injection bus and its adjacent

buses) is, at most, 1 (one).

Then, the LP formulation is written as follows:

min
Xn
i¼1

xi

s:t: Ax �
uj ¼ 18j=2B1 [ B2 . . . [ BzX

k2Bi

uk � Aij j8i2Z

In the IEEE 14-bus system shown in Fig. 10.1, bus 7 is a zero-injection bus.

Thus, Z¼ {7} , set A7¼ {4, 8, 9} , and set B7¼ {4, 7, 8, 9}. The new constraint can

be written as follows:

u4 þ u7 þ u8 þ u9 � 3 ð10:15Þ

Constraints (1–15) indicate that at least three of the four buses (4, 7, 8, and 9) are

required to keep the system fully observable. Thus, by including the above con-

straints, we use zero-injection variables, thereby reducing the number of PMUs. To

our knowledge, zero-injection constraints have not been applied to a large case test

system such as the IEEE 300-bus system. Our LP formulation includes results for

the OPP problem by considering the zero-injection constraints for the 300-bus

system.

10.2.3 System Observability Redundancy Index (SORI)

If there are multiple optimal solutions in an OPP placement problem, it is a

challenge to identify the correct optimal solution. To solve this problem, we use

the SORI index [DDK08]. If bus i is observed by a PMU ni times, then the SORI (γ)
is given by equation

γi ¼
X

ni:
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Choosing an optimal solution will provide maximum redundancy, enabling

complete observability. This reliable, large value for the redundancy index is useful

in contingency scenarios rather than choosing an optimal solution that are less

redundant. In general, a larger redundancy value yields higher index values for the

SORI. We believe that this SORI index is a good measure for our OPP placement

problem.

10.2.4 Optimal Redundancy Criterion (ORC)

Although the OPP problem yields solutions for full observability, there is a likeli-

hood that uncertainty during contingency situations will result in partial or zero

observability for the system. This means that, in certain cases, it is better to include

a certain percentage of buses that will be observed by multiple PMUs. Thus, the loss

of PMU measurements from one device would not affect the observability of any

other bus. The factor of percentage or observability weights of buses can be

considered in different ways. Some studies consider that high-voltage buses are

observed more than other buses while other researchers consider all generating

buses to be weighed or observed more, considering them critical buses. We propose

a new index, the Optimal Redundancy Criterion (ORC), which is based on the

number of connections to each bus. The OPC is defined as the ratio of the total

number of connections between buses to the total number of buses in the system.

ORC ¼ Sum of all bus connections to each bus

Number of buses

We can select the buses that have more connections or links by adapting the

following criteria:

ORC ¼
Pn

i¼1

Pn
j¼1, i6¼j Bi, j

n
ð10:ð16ÞÞ

where i and j represent the buses, Bi , j represents the connections between i and ,

and n is the total number of buses in the system.

Let us consider constraints (1) to (14), where each constraint represents a bus in

the IEEE 14-bus system. Here, the total number of connections for all 14 buses is

the sum of their connections. For example, there are 56 total link connections

between all buses.

B1 þ B2 þ . . .B14 ¼ 56
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There are 14 buses in the test system.

ORC ¼ 56

14
¼ 4

Therefore, we increase the weights on the buses which have more connections

than the ORC value. The buses with increased weights are buses 2, 4, and 9. The

constraint formulations’ weights appear on the right-hand side of the equation.

For full observability, we place a 1 on the right side of the constraint for a critical

bus, implying that each bus is observed at least once. Based on the system

requirements about how critical buses are, one can adjust the observability weights.

For our test system, we chose 2 for the constraint.

10.3 IEEE Bus Test Cases and Simulation Results

We consider several test systems, such as the IEEE 14-bus system, the IEEE 30-bus

system, the IEEE 57-bus system, the IEEE 118-bus system, the IEEE 300-bus

system, and the Southern Region Indian Power Grid [GCR13], to validate the ILP

method. The OPP programming is done with AMPL [AMPL].

Table 10.1 provides information about the zero-injection buses for each IEEE

bus system.

Linear-programming (LP) formulations are created for different test systems

with and without zero-injection buses. Table 10.2 shows the results obtained for all

bus systems. We also performed a comparative analysis with other existing

methods that are found in the literature. The results for the IEEE 57- and 118-bus

systems are better when zero-injection buses are considered. The SRIPG system has

a reduction of three PMUs when compared with the existing literature. To our

knowledge, no studies have considered zero injections w.r.t. the IEEE 300-bus

system. Our proposed ILP method proves to be more effective in minimizing the

number of PMUs by considering zero-injection buses.

Table 10.1 Zero-injection buses

Bus

systems Zero-injection bus numbers

Number of zero-

injection buses

14 {7} 1

30 {6, 9, 11,25,28} 5

57 {4,7,11,21,22,24,26,34,36,37,39,40,45,46,48} 15

118 {5, 9, 30,37,38,63,64,68,71,81} 10

300 {4,7,12,16,19,24,34,35,36,39,42,45,46,60,62,64,69,

74,78,81,85,86,87,88,100,115,116,117,128,129,130,

131,132,133,134,144,150,151,158,160,164,165,166,168,

169,174,193,194,195,210,212,219,226,237,240,244,

1201,2040,9001,9005,9006,9007,9012,9023,9044}

65
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Table 10.3 shows the results with the SORI index (γ) for the bus systems. As

stated earlier, we will be able to further reduce the number of PMUs by considering

zero injections. Our SORI results indicate that there is an increased number of

PMUs, implying that the observability redundancy of the buses has increased, when

compared with other methods. This implies that the chances of keeping the buses’
observability are much greater during the contingency scenarios when using our

approach.

During contingency situations, it is important to keep the observability alive for

the critical buses. Using our ORC index, utilities can identify the critical buses and

follow our placement solution. We strongly believe that our approach will provide

redundancy to the critical buses with equal or least increase in the PMUs. Columns

2 and 3 in Table 10.4 show the number of PMUs that are required for full

observability with the normal process and using ORC, respectively. Column 4 pro-

vides the value of the PMU’s percentage increase (if any) when ORCs are consid-

ered. The rule that we apply here for the ORC index is that the critically identified

buses should be observed by two PMUs. This means that, if one PMU’s measure-

ment is lost due to a failure, the critical buses should be observed by other PMUs in

the system. Column 3 provides the number of PMUs required when the critical

buses (formulated based on the ORC) are observed twice. By comparison, we

Table 10.2 Optimum number of PMUs

No. Test systems

Minimum no. of PMU’s

Without zero

injections

With zero

injections

Without zero

injections

With zero

injections

ILP method Other methods

1. IEEE 14-bus system 4 3 4 3

2. IEEE 30-bus system 10 7 10 7

3. IEEE 57-bus system 17 10 17 11

4. IEEE 118-bus system 32 27 32 28

5. SRIPG 208-bus system 55 NA 58 NA

6. IEEE 300-bus system NA

Table 10.3 System observability redundant index (SORI)

S. No. Bus system

SORI

Without zero

injections

With zero

injections

Without zero

injections

With zero

injections

ILP method Other methods [DD08]

1. IEEE 14-bus system 18 14 19 15

2. IEEE 30-bus system 51 46 NA NA

3. IEEE 57-bus system 72 52 72 61

4. IEEE 118-bus system 167 182 164 152

5. SRIPG 208-bus system NA NA NA

6. IEEE 300-bus system NA NA
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conclude that there is a minimal or no increase in the number of PMUs when the

ORC rule is enforced. The percentage increase w.r.t. different bus systems is seen in

column 4.

In the real world, a utility needs to set up a number of things before it can place

PMUs on the grid. These include constructing the communication infrastructure,

procuring PMUs, Phasor Data Concentrators (PDC), Synchronization clocks, etc.

Our related cost estimate to install a synchrophasor are as follows (Table 10.5):

The total cost run to ~ US$30,000 excluded from infrastructure, operational and

labor costs. However, PDCs collect data from a number of PMUs. Therefore, a

small utility can only install a few or a single PDC if it has fewer than 40 PMUs

considering the PDC cost as a fraction of the number of PMUs.

We also measure our LP run time by measuring the computational run time

taken to run the formulations. Table 10.6 shows the time taken by our ILP method

using AMPL. The results are compared with the findings in the existing literature.

We observe that it takes virtually zero seconds to compute the optimal solutions for

Table 10.5 Estimated costs for the PMU equipment

Type of equipment Cost (US$)

PMU with protection, automation, and controls ~15,000

PDC (up to 40 PMUs) ~ 8000

Synchronization clocks ~ 2000

Digital equipment (firewalls. . .) ~ 5000

Table 10.6 Computation time to obtain optimal solutions using the ILP method

Test bus systems

Proposed ILP

method (ms)

Other methods

[SSP12] (ms)

14 bus 0.00 660

30 bus 15.6 830

57 bus 15.6 870

118 bus 15.6 1340

208 bus 15.6 –

300 bus 15.6 –

Table 10.4 Comparison of full observability and redundant observability

Bus system

Number of PMUs

for full observability

Number of

PMUs with ORC

% Increase in

PMUs with ORC

IEEE 14-bus system 4 4 0

IEEE 30-bus system 10 10 0

IEEE 57-bus system 17 19 11.764%

IEEE 118-bus system 32 37 15.625%

SRIPG 208-bus system 55 60 7.272%

IEEE 300-bus system
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the test cases while the other methods take some time to find the optimal solution.

All the test cases are run on a PC with the following configurations: Intel Xeon

W3503 processor @2.4 GHz and 8 GB of installed memory.

10.4 Conclusion

A PMU placement problem that considers zero injections using Integer Linear-

Programming formulations is proposed. An ORC index is proposed to make the

system fully observable with large redundancy. Additionally, placing

synchrophasors creates economic benefits for smaller utilities using our approach.

Our results indicate that the proposed approach is 100% reliable and scalable.
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Chapter 11

Unbiased Optimal Power Flow (OPF)
for Power Systems with Wind-Power
Generation

Wind-power plants that are connected to power systems are often unable to utilize

all available power due to transmission constraints. This chapter illustrates the

situation with an optimal power flow (OPF) problem to schedule power from two

different wind plants in a 6-bus system. A cost function is proposed to schedule

wind power in an unbiased manner.

11.1 Introduction

Optimal power flow (OPF) is an enhanced form of the economic dispatch (ED)

optimization problem where both active and reactive powers are treated as control

variables and are adjusted to minimize the generation cost while observing the

associated power-flow constraints. The constraints include, but are not limited to,

thresholds on bus voltages, reactive power generation, and thermal ratings of

transmission lines. The large-scale penetration of wind generation has created

major technical challenges for power-system operation which, in turn, manifests

itself in the associated ED and OPF problems for the concerned power system

[XCF09]. This chapter discusses an OPF problem for a power system consisting of

thermal and wind-turbine generators (WTG), and proposes a cost function to

promote the equitable scheduling of power from multiple wind-power plants.

11.2 Motivation

One of the key challenges faced when integrating wind farms with the grid is

spillage due to transmission constraints. A case study [NCK09] has shown that as

much as 30% of the available wind may spill during periods of high wind-power

availability without using reactive power-compensation technologies such as
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flexible AC transmission systems (FACTS). While spillage can be reduced by

upgrading the grid infrastructure or by introducing energy storage, economic and

societal factors often impede such solutions. The power system’s admittance

properties may also cause more spillage in certain plants compared to others.

Hence, a more nuanced approach is required to provide unbiased treatment for all

power-plant operators.

11.3 OPF with Wind Generation

The standard OPF problem has been discussed in detail [FR12]. The optimization

problem can be stated as determining the Day-Ahead dispatch for a system

consisting of m buses, nt thermal plants, and nw wind plants. The objective is to

minimize the cost given by (11.1), the cost summation due to scheduled wind-

power generation (Pwind , j , i), thermal-power generation (Ptherm , j , i), and transmis-

sion loss (Ploss , i) over N time blocks. The length of each block is 24/N hours.The

thermal-generation cost is given by a polynomial cost function (Ct), while Rloss is

the cost per unit of energy lost in the transmission. Equation (11.2) is the overall

active-power balance constraint while the AC power flow is shown in Eqs. (11.3)

and (11.4). Here, admittances between the kth and lth buses (Gk , l+ jBk , l) are taken

in rectangular coordinates while voltage at the kth bus (Vk , ibδk , i) is in polar

coordinates. Physically, they convey

min
XN
i¼1

Xnt
j¼1

Ct Ptherm, j, i

� �þXN
i¼1

Xnw
j¼1

Cw Pwind, j, i

� �þ Rwholesale

XN
i¼1

Ploss, i ð11:1Þ

Xnt
j¼1

Ptherm, j, i þ
Xnt
j¼1

Pwind, j, i þ Ploss, i þ
Xm
j¼1

Pload, j, i ¼ 0 ð11:2Þ

Pgen,k, i � Pload,k, i ¼ Vk, i

Xm
l¼1

Vl, i Gk, l cos δk, i � δl, ið Þ þ Bk, l cos δk, i � δl, ið Þð Þ

ð11:3Þ

Qgen,k, i � Qload,k, i ¼ Vk, i

Xm
l¼1

Vl, i Gk, l sin δk, i � δl, ið Þ þ Bk, l sin δk, i � δl, ið Þð Þ

ð11:4Þ

that the active (Pgen , k , i) and reactive (Qgen , k , i) powers generated in the kth
bus minus the load at that bus (Pload , k , i,Qload , k , i) is equal to the net power flowing

from the bus. Active and reactive powers for thermal generation are constrained by

the generator ratings shown in Fig. 2.1. The reactive power limit for wind gener-

ation is calculated based on a power factor of 0.95 lag/lead [QH08]. Voltage limits
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for all buses are set between 0.9 and 1.1 p.u. The generation ramp rate limits and

transmission-line capacity constraints have not been considered.

11.4 Cost Function for Unscheduled Wind

Because there is no fuel cost associated with wind energy, power scheduled from a

wind plant cannot be assigned a cost in the traditional sense. At high levels of wind-

capacity penetration, the system’s operational costs can increase because of the

wind’s variable nature [SMD09]. The levelized cost of energy (LCOE), which is

calculated using a net present value analysis, is an indicator of the wind energy’s
generation cost [SatO6] and is calculated using Eq. (11.5). The LCOE is used as a

performance index in the coordinated output control of multiple DG resources in

[JTM10].

CLCOE
wind ¼ CI

wind

8760n

1

Prated
windCF

design
wind

 !
1þM

1þ Dð Þn � 1

D 1þ Dð Þn
� �� �

ð11:5Þ

From Eq. (11.5), it can be seen that, for a plant of rated capacity Prated
wind

� �
with

fixed investment parameters such as the amount of capital invested CI
wind

� �
, the

discount rate (D), the plant’s lifetime (n), and the annual maintenance-cost fraction

(M ), the wind plant’s design capacity factor CFdesign
wind

� 	
heavily influences the

LCOE. In order to enable a wind plant to be financially viable, enough power must

be scheduled so that the plant can maintain an average capacity factor CFactual
wind

� �
that

is close to the design capacity factor. This chapter calculates the opportunity cost

for unscheduled wind power (Cw) using Eq. (11.6) based on the difference between

the actual and design LCOE ΔCLCOE
wind, j

� 	
as given by Eq. (11.7). The authors assume

that the short-term estimated wind power Ppred
wind, i

� 	
is available for the OPF problem

and comes from physical and/or statistical models. A good overview of short-term

wind-power prediction methodologies is presented in [Gie11]. Additionally, in

order to quantify the amount of predicted wind that is utilized by wind plants, a

wind-utilization factor (Uwind), given by Eq. (11.8), is defined.

Cw Pwind, j, i

� � ¼ ΔCLCOE
wind, j Ppred

wind, i � Pwind, j, i

� 	
ð11:6Þ

ΔCLCOE
wind, j ¼

1

CFactual
wind, j

� 1

CFdesign
wind

 !
CI
wind, j

Prated
wind, j8760n

1þM
1þ Dð Þn � 1

D 1þ Dð Þn
� �� �

ð11:7Þ

11.4 Cost Function for Unscheduled Wind 139



Uwind ¼
PN
i¼1

Pwind, i

PN
i¼1

Ppred
wind, i

ð11:8Þ

11.5 Case Studies and Results

The 6-bus system shown in Fig. 11.1 is used in this study. The bus-admittance

matrix is constructed using data from [Web97] where each line has an impedance of

0.04 + 0.08j ohm and a line-charging reactance of 0.02j ohm. The load profile

shown in Fig. 2.2 is used, and the reactive load is calculated by assuming a lagging

power factor of 0.85 for all loads.

In the first scenario, we solve the OPF problem to minimize the thermal plant’s
generation cost and transmission loss; i.e., the wind-power cost function is not

included. However, power generation is scheduled for N time blocks for all the

Fig. 11.1 Six-bus power

system (Ward-Hale model)

[Web97]
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plants. The problem is solved for three different, predicted wind-power profiles, and

the results are tabulated in Table 11.1. The OPF solution consistently allows the

wind plant connected to bus 3 to utilize more of its predicted power compared to the

plant connected to bus 2. Another correlation is that a higher wind-power avail-

ability (predicted) does not translate to higher wind utilization.

In the second scenario, we include the cost function defined by Eqs. (11.6) and

(11.7). We assume that the CFactual
wind for the wind plants at buses 2 and 3 are 25 and

35%, respectively. This amounts to a ΔCLCOE
wind of $10.3/MWh and $2.45/MWh,

respectively, for the two wind plants. The load and wind profiles remain the same as

in the previous scenario. The results are tabulated in Table 11.2.

The OPF solution schedules more power for the wind plant at bus 2 in all cases.

Interestingly, the contribution of wind energy toward meeting the total energy

demand remains nearly the same irrespective of the cost functions. However, the

losses are comparatively higher with the wind-cost function. The thermal plants are

scheduled in such a way that the most efficient plant has the highest capacity factor.

The wind power scheduled for each time block in scenario 2 using wind profile

1 is shown in Fig. 11.2. The voltage profile at the load buses generated by the OPF

Table 11.1 OPF solution for the first scenario

Wind-power profile 1 3 2

Average predicted wind power (MW) 159.2 136.7 113.3

Wind utilization WTG1 (%) 70.7 72.4 86.1

Wind utilization WTG2 (%) 97.6 1 1

Total wind contribution (%) 61.3 53.9 48.2

Energy loss (MWh) 294 287.5 303.7

Load bus 1’s minimum voltage (p.u.) 1.01 1.02 1.01

Load bus 2’s minimum voltage (p.u.) 0.97 0.97 0.97

WTG1’s minimum voltage (p.u.) 1.1 1.1 1.11

WTG2’s minimum voltage (p.u.) 1.01 1.03 1.02

Table 11.2 OPF solution with the wind-power cost function

Wind-power profile 1 2 3

Average predicted wind power (MW) 159.2 136.7 113.3

Wind utilization WTG1 (%) 1 93.7 100

Wind utilization WTG2 (%) 70.3 79.4 87

Total wind contribution (%) 61.5 53.9 48.2

Energy loss (MWh) 369 317 327

Load bus 1’s minimum voltage (p.u.) 1.01 0.98 1.01

Load bus 2’s minimum voltage (p.u.) 0.97 0.92 0.97

WTG1’s minimum voltage (p.u.) 1.11 1.05 1.11

WTG2’s minimum voltage (p.u.) 1 1.02 1.01

Thermal plant 1 CF (%) 30 30 30

Thermal plant 2 CF (%) 37.8 50.6 60.6
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solution with and without the wind-power cost is shown in Fig. 11.3. The load

voltages are slightly less in certain time blocks for the OPF solution when the wind-

power cost function is used compared to the result without that cost function.

11.6 Further Discussion

In order to illustrate the merit of the proposed cost function for wind power, the cost

function proposed in [HYB08] is reproduced in its original form as shown in

Eq. (11.9). This function penalizes unscheduled wind-power production and is

part of a comprehensive cost function for an economic dispatch problem.

Cp,w, i Wi,av � wið Þ ¼ kp, i Wi,av � wið Þ ð11:9Þ

In Eq. (11.9), the term Wi , av�wi is the difference between the available and

scheduled wind power while kp , i is the penalty-cost coefficient.
It can be observed that Eq. (11.9) is similar to Eq. (11.6) except for a key

difference. The term kp , i, which was an arbitrary value in [HYB08], has been

replaced by ΔCLCOE
wind which is calculated based on the actual capacity factors of

the wind plants.

Fig. 11.2 Comparing power scheduled from both wind-power plants
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11.7 Conclusion

An OPF optimization problem for power systems with thermal- and wind-power

plants was investigated. A formulation to calculate the opportunity cost for

unscheduled, predicted wind-power production was proposed and compared with

the existing literature. Results from case studies with a six-bus system were

presented. The work may be extended to systems with more buses and additional

constraints.

Fig. 11.3 Voltage profile of the load buses (buses 5 and 6)
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Chapter 12

Smart-Grid Optimization Using A
Capacitated Transshipment Problem Solver

12.1 Introduction

Creating an autonomous, self-healing electrical grid is one of the most important

challenges facing electric-energy providers. Such a system, known as the “smart

grid,” must interweave a multitude of systems, both software and hardware, in order

to form a complete solution that is capable of meeting the requirements outlined by

the United States Department of Energy (DOE). According to the DOE [LSC05],

“It is a colossal task, but it is a task that must be done.”

This work focuses on a single aspect of those systems: optimal electrical flow

through the smart-grid network as determined by a cost factor. The cost factor can

be a different performance metric for various optimization objectives, including the

distance between generators and customers, electric-line repair times, or failure

rates.

In order to determine the best solution for multiple, different cost-related

problems that are associated with the smart grid, the capacitated transshipment

problem, or CTP, was chosen from the mathematical field of linear programming to

model the smart-grid network and its values. Using this model, a custom CTP

Solver was developed, allowing users to easily determine the optimal network flow

for a given smart-grid network topology.

For a better understanding about the purpose of the CTP Solver and this work,

some background information on the smart grid and linear programming is helpful.

In particular, the smart grid, the simplex algorithm, the network-flow problems,

and, especially, the capacitated transshipment problem are reviewed in some detail.

© Springer International Publishing AG 2017

P. Ranganathan, K.E. Nygard, A Distributed Linear Programming Models in a Smart
Grid, Power Electronics and Power Systems, DOI 10.1007/978-3-319-52617-1_12

145



12.2 Smart Grid

“The grid,” refers to the United States’ electric power grid. It is a network

consisting of substations, transformers, and transmission lines that are used to

provide electricity to homes and businesses; that electricity comes from an electric

power plant [DOE]. The existing electric grid originated in the 1890s; it has grown

and evolved to a network of more than 9200 electric-generating units. These

generators are capable of producing over one million megawatts of generating

capacity, which is then made available through more than 300,000 miles of

transmission lines [DOE].

While the current grid is considered an engineering marvel [DOE], it is begin-

ning to show its age. As electricity needs and demands increase and advance so, too,

must the electric grid that provides the power. It follows, then, that “smart grid”

refers to using computer-based remote control and automation in an effort to

modernize the utilities’ electricity delivery systems [DES]. Among the many

benefits for these automated systems is improving the electrical grid’s reliability
by dynamically re-routing power, as needed, to avoid cascading failures.

12.2.1 Self-Healing System

One of the greatest benefits of a fully functional smart grid is the concept of self-

healing. Current methods of outage detection vary and can be primitive at best,

requiring customers to call the electric provider with service-interruption notifica-

tions. This type of recovery solution is completely reactive and, often, much too

slow to prevent catastrophic failures such as cascading outages. When a generator

fails, a large system is affected and can cause other generators to overload. As

stations continue to fail, the outage spreads farther throughout the network.

Self-healing in the smart grid is just one aspect of a larger concept that is referred

to as “distribution intelligence.” It is concerned with the utility’s distribution

system: the wires, switches, and transformers that connect the utility substation to

the customers [DOE].

Outage detection is another aspect of smart-grid distribution intelligence. The

CTP Solver assumes that an outage has been detected and concerns itself with the

optimal redistribution of power based on the smart-grid network’s current state

(Fig. 12.1).
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12.3 Linear Programming

Sometimes referred to as “linear optimization,” linear programming can be defined

as the general approach to modeling and solving linear mathematical models

[CI94], p. 2.

The term “programming” can be a bit misleading because it does not specifically

mean computer programming, which many people might assume at first glance. In

this context, the term provides a more general reference to problem solutions; of

course, these solutions could, in fact, be implemented as computer programs, but

that is not a requirement.

Three basic steps are usually followed when formulating a model to represent a

given linear programming problem:

1. Determining the decision variables

2. Formulating the objective function

3. Formulating the constraints

The decision variables represent measurable aspects of the problem, such as the

unit cost. The objective function seeks to optimize the problem, and the constraints

are limitation requirements. With a model in place, the key concept of linear

programming is to optimize the objective function, which can also be thought of

in terms of minimization or maximization. When feasible, the solution to a linear-

programming problem is the best possible result of the objective function’s value
with respect to any constraints.

Some canonical examples of linear-programming problems include the assign-

ment problem; the traveling salesman problem; and the transportation problem, a

simplified variation of the capacitated transshipment problem. There are currently a

number of software solutions that focus on solving linear-programming and opti-

mization problems, including AMPL and SAS.

Fig. 12.1 Dynamic electrical power rerouting [DOE]
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12.3.1 Simplex Method

The simplex method, sometimes referred to as the simplex algorithm, is an alge-

braic process that is used to solve linear-programming problems. George Bernard

Dantzig is considered the creator of the simplex method, which was first published

in 1947 and was detailed at a 1951 Cowles Commission for Research in Economics

conference [Dan51].

To summarize its concepts, the simplex method mathematically models a prob-

lem so that its solution space can be described in one of three ways:

1. Feasible Solution

2. Infeasible Solution

3. Optimal Solution

An infeasible solution is any point that does not satisfy every constraint and

non-negativity condition of the linear program.

A feasible solution is any point that satisfies every constraint and non-negativity

condition of the linear program. The set of all feasible solutions is known as the

feasible region; this is the equivalent of the intersection of all feasible solutions.

If the linear program has a bounded feasible region, meaning that the feasible

solution space is fully contained, an optimal solution is some point on the feasible

region’s boundary. The simplex method effectively traverses the boundary in

search of these optimal points, which are also referred to as extreme points.

12.3.2 Network-Flow Problems

In general, a network-flow problem is any from a particular class where the solution

space can be described using nodes and arcs connecting those nodes with unit flow

along the arcs transferred from one node to another.

One of the keys to developing an efficient algorithm for this class of linear

programming problems is establishing a relationship between the algebraic and

graphical representations of basic solutions. In particular, one of the most important

relationships is the one that exists between basis matrices and rooted spanning trees

[CI94], p. 320.

Theorem 9.1: Every rooted spanning tree is a basis [CI94], p. 320.

Theorem 9.3: Every basis is a rooted spanning tree [CI94], p. 322.

A basis is defined as a collection of vectors, a1, a2,. . ., ak, in an n-dimensional

(real) Euclidean space, denoted by Rn, where the following conditions hold:

1. a1, a2,. . ., ak span Rn.

2. If any of these vectors is deleted, the remaining collections of vectors do not span

Rn [BJS10], pp. 48–49.
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Recall that the standard form of a linear-programming problem can be written in

the same vector notation and that an initial basis tree can be calculated using the

Big-M method, allowing the simplex algorithm to be applied to network-flow

problems.

Once the basis tree of a network-flow problem has been established, the net-

work’s simplex algorithm can be implemented. Network-flow problems are typi-

cally considered minimization problems, although they can be easily changed into

maximization problems by using negative cost values and changing the sign

polarity to positive values once the solution is obtained.

The four basic steps of the network’s simplex algorithm are as follows:

1. Determine the primal and dual solutions.

2. Check for optimality.

3. Determine the departing variable.

4. Pivot and update.

Modified versions of these steps are detailed in Section 5.

12.4 Capacitated Transshipment Problem

The capacitated transshipment problem, or CTP, is an important network-

optimization problem [BJS10], p. 513 that consists of four primary elements:

supply nodes, demand nodes, transshipment nodes, and connective arcs. The

basic concept of the CTP is to find a minimum cost path that connects every node

of the network and transfers all units of flow from the supply nodes to the demand

nodes without violating any of the network’s arc capacities.

12.4.1 Transportation Problem

The capacitated transshipment problem can be easily understood through a simpli-

fied network-flow variation that is known as the transportation problem [CI94],

p. 350. With the transportation problem, unit flow is pushed along the network arcs

from the supply nodes to the demand nodes. All supply units in the network must be

transferred from the supply nodes to the demand nodes. This is known as the flow-

balance constraint and can be written as Eq. (12.1).

Due to this constraint, if the total supply of a transportation problem is not equal

to its total demand, the problem is infeasible. The goal of the transportation problem

is to find the basis tree that minimizes the total cost of the unit flow along the

network.
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12.4.2 Transshipment Nodes

The capacitated transshipment problem generalizes the transportation problem by

adding transshipment nodes; or nodes with zero supply or demand. This means that

the nodes must still be connected in the basis tree, but all flow units simply pass

through the node. Transshipment nodes can cause degenerate arcs (arcs with a unit

flow of zero). These degenerate arcs have the potential to create infinite loops and

must be handled properly to prevent cycling through the same solutions.

12.4.3 Arc Capacities

In addition to transshipment nodes, the capacitated transshipment problem also

adds capacities and lower-bound requirements to arcs. Flow along any given arc

must be at least as much as the lower bound and not more than its capacity.

Violating either of these constraints causes an infeasible solution. Arcs with a

flow that is equal to their capacity can be considered as part of the solution without

taking up space in the basis tree. These arcs are referred to as non-basic arcs with

bounded flow.

12.4.4 CTP Standard Form

The capacitated transshipment problem can be described in algebraic standard form

as shown in Fig. 12.2. The objective function is to minimize the sum total of all arc

unit flows multiplied by their costs.

Constraint (1) ensures the flow balance at every node by making sure that the

total flow from a node is the same as the total flow into it with respect to the node’s
supply and demand requirements. This constraint also ensures that supply units are

distributed from all supply nodes to all demand nodes, creating a zero-net unit flow

for the entire network.

Constraint (2) ensures that all arcs have a non-negative unit flow.

Constraint (3) ensures that no arc capacities or upper-bound limits are violated.

Constraint (4) ensures that no arc lower-bound requirements are violated.

Formulating the problem in standard form allows the network’s simplex algo-

rithm to be applied in order to calculate the optimal solution.

Flow Out - Flow In - Supply = 0

Eq. 12.1 Flow-balance constraint
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12.4.5 CTP and the Smart Grid

Representing the smart grid using the model for a capacitated transshipment

problem allows multiple cost- and network-flow-related problems to be solved

easily. One of these problems is the smart grid’s self-healing aspect.

When a critical failure is detected in the system, the CTP can be used to find an

optimal and inherently feasible redirected path so that energy could be redistributed

throughout the smart grid. By finding the best-alternative distribution path, cus-

tomer outages can be minimized and rectified almost as quickly as they occur, when

possible. Figure 12.3 shows the diagram for the IEEE 14-bus system and its

network representation for use with the CTP Solver.

12.5 Implementation

Before getting into the nuts and bolts of the CTP Solver application, it is important

to understand the motivation behind its design and architectural decisions. Once

these design goals have been examined, it will, hopefully, be clear why certain

development choices were implemented.

Minimize z = Σcijxij

Subject to

xji - xij + bi = 0    for all arcs i,j
xij ≥ 0              for all arcs i,j
xij ≤ uij for all arcs i,j
xij ≥ lij for all arcs i,j

where

c = arc cost
x = arc flow
u = arc upper bound
l = arc lower bound
b = node supply (negative value for demand)

Fig. 12.2 CTP standard form

12.5 Implementation 151



12.5.1 Design Goals

The design goals of the CTP Solver can be broken into two primary categories:

1. User Experience

2. Application Development and Maintenance (Fig. 12.4)

Fig. 12.3 Left: IEEE 14-Bus Test System diagram. Right: IEEE 14-Bus Test System network

representation

Fig. 12.4 CTP Solver (screenshot and light CSS)
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12.5.1.1 User Experience

One of the primary factors driving the development decisions was the desire to

make the application convenient and easy for its end users. Considerations were

made to understand how the application would, generally, be used and what

information would be beneficial to have available for display as well as download.

The user-experience design goals can be summarized with a handful of basic

conveniences that were implemented with the user in mind.

• Automated Initial Basis Calculation

– User not burdened with calculating an initial basis to feed into the network

topology.

• Bi-Directional Arc Capability

– Flag allowing the flow to travel in either direction along a single arc.

• Multiple Network Topology Data Formats

– HTML Table (display)

– Database (import)

– XML (import and export)

– CSV (export)

• Decimal Values

– Enter the information as it exists instead of requiring pre-calculation trans-

formations into integer data types, etc.

• Configuration Options

– Big M Value

– Simplex Iterations Limit

– Show Detailed Simplex Information

– Show the Cycle Debugging Log

• Help System

• Accessibility

– Web Application

12.5.1.2 Application Development and Maintenance

In addition to the user-experience design goals, careful considerations were made

regarding the CTP Solver’s development and ongoingmaintenance. The purpose for

the application-development and maintenance goals was to design the application’s
architecture and code with the developer in mind. The application-development
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and maintenance goals can be summarized by some basic developer-focused

concepts.

• Ease of Use

– Simplicity

– Self-Documenting Code

– Partial Classes

• Universal Applications

– Generic Network Concepts

• Calculation Precision

– Decimal Data Type

• Maintainability

– Object-Oriented Concepts

12.5.2 Implementation Overview

The CTP Solver has been implemented as a C# ASP.NET web application, primar-

ily for accessibility among its users. Many applications are written as standalone

software; are platform dependent; or, in the case of an environment such as Java, are

dependent on some other service that must be installed on the end user’s machine.

While dependent on the ASP.NET framework on the host server, as a web

application, the CTP Solver can be made available to any machine or mobile device

that is connected to the internet, regardless of the operating system. This inherently

widens the potential user-base and also minimizes the required technical capabil-

ities for the people who would most benefit from its usage. The ability for the CTP

Solver to be as generic as possible is as important as the usage ubiquity that is

provided by the web. While it is a vital requirement to be able to handle smart-grid

network problems, it is equally imperative that the CTP Solver can process any

capacitated transshipment problem network. This requirement is met with basic

supply, demand, flow, and cost concepts, among others.

When a user uploads a custom file or selects a network option from the

dropdown of available choices, the CTP Solver reads the XML file (or database)

and commits the topology to memory. The network can be fully described through

two primary IList data structures: nodes and arcs; each one is described in more

detail below.

Once the network is in the memory, the CTP Solver iterates through its modified

simplex algorithm and displays the resulting optimal solution to the user. In

addition to some basic computational data, such as the execution time of the entire

process, the optimal network is also available for download in both the .CSV and
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XML format. This allows the user to easily import the optimal network into other

applications.

12.5.3 Smart-Grid Possibilities

A benefit of web applications related to the smart grid is that an implementation

could be created in such a way that a single CTP Solver application could simul-

taneously calculate optimal solutions for multiple client-network configurations.

This capability could be of some benefit when planning systems with budget

constraints as well as providing a single source of maintenance for IT staff. Because

the CTP Solver can connect to a database and can read XML files, it could be easily

integrated with other smart-grid systems, such as failure-notification solutions,

providing automatic, optimal electric-flow rerouting based on the supplied network

topology of the available nodes and arcs. Because arc capacities are taken into

consideration, the cascading-failure dynamic could possibly be avoided by ensuring

that the network flow is feasibly rerouted.

As the smart-grid system grows, more cost-performance measures are likely to

be revealed. Because the CTP Solver was built with generic concepts in mind, it

should be able to calculate the optimal results for any new network topology that

can be modeled by the capacitated transshipment problem. These potential smart-

grid applications, and more, are made possible by the CTP Solver’s integration of

various custom and framework-native data structures.

12.5.4 Data Structures

Traditional linear-programming techniques implement primitive data structures for

network-topology descriptions, such as arrays, or the standard model formulation

for use in specific modeling software such as AMPL. While these methods make

sense for application speed and simplicity, the CTP Solver introduces object-

oriented practices to take advantage of robust, modern programming-language

capabilities, such as LINQ for the ASP.NET framework, while maintaining very

comparable speed on the current hardware.

1. DataSet: The DataSet is a native structure to the ASP.NET framework. The

benefit of a DataSet object is that it takes on some properties of a traditional

relational database, including concepts such as rows and columns. The CTP

Solver reads the user-supplied network into a DataSet object. In doing so, the

same architecture can be used to read from either XML or a traditional database,

such as MSSQL or MySQL, eliminating code redundancy for, essentially, the

same process.
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2. IList: An IList is another native ASP.NET data structure that represents a

collection of objects, with the “I” referring to the term “Iterative,” making it

an iterative list. Objects stored in an IList can be “queried” much like relational

databases by using syntax that is similar to standard SQL. Another benefit of

utilizing an IList collection object is that it only uses as much memory as it

needs. Objects can be added and removed from the collection without requiring

explicit dimensions. This makes resizing the structures much more efficient than

resizing arrays.

The primary limit of concern with the IList structure is the maximum number

of elements allowed in a single IList object, which is the same limit as an array.

Theoretically, the maximum number of elements in an IList is 2,147,483,646;

however, a network of that size would most likely benefit from some kind of

partitioning, such as a modified Dantzig-Wolfe decomposition approach [NP].

Using a small number of these structures, the CTP Solver is able to intuitively

represent the entire network topology and more.

3. LINQ: “LINQ” stands for Language-Integrated Query [Mic15]. First introduced

in Visual Studio 2008, LINQ allows strongly typed object collections (such as

the IList described above) to be queried, providing an easy system to extract

relevant information from the data. LINQ queries are used generously in the

custom Arc class to provide partial lists for structures such as the basis tree and

all non-basic arcs.

4. Node: A node is a custom object class that is created to represent each node in

the network. All network nodes are added to an IList for easy access during the

calculations. The properties of each node are described in Table 12.1.

The Node class has a single method that is shown in Table 12.2.

5. Arc: An arc is the second custom object class that is used to represent connec-

tions, which are sometimes referred to as edges or links, between nodes. As with

nodes, all network arcs are added to an IList data structure, allowing a simple

representation of the network connections. The arc objects’ properties are

described in Table 12.3.

In addition to the properties just described, the arc class has a few important

methods that are used for the CTP Solver’s algorithms, as described in

Table 12.4.

6. Algorithm Methods: The modified simplex algorithm being implemented

(described below) is broken into a handful of methods as shown in Table 12.5.

7. Miscellaneous Data Structures: In addition to the primary data structures, a

small number of helper and utility classes are created to handle various aspects

of the application. Three utility classes are used to handle commonly used

functions, user-configurable options, and database interactions. In addition, all

custom-class structures are created as partial classes. Using a partial class allows

its methods to be defined in separate files. It is common practice to define an

entire class in a single file using the class name as the file name. The benefit of

using a partial class comes from the ability to logically separate categorized

156 12 Smart-Grid Optimization Using A Capacitated Transshipment Problem Solver



methods of a class for easier maintainability as well as allowing common generic

methods to be automatically generated.

To speed the development of creating the node and arc database interaction

methods, a custom object-relationship mapping application (commonly referred

Table 12.1 Node properties

Property Data type Description

id integer Providing each node with a unique id allows easy reference to

individual objects and makes database interactions nearly

seamless

ConnectedArcs IList<Arc> List of all arcs where the node is either a Head or Tail. This list

is used to calculate the net flow entering and leaving the node in

order to enforce the flow-balance requirements

Demand decimal A node’s demand represents the number of flow units required

at that node

Depth integer The node’s depth is its level in the basis tree starting from the

root node

Name string The name of the node is mainly included for the benefit of

human readability if the network topology is printed to a screen

or if future functionality includes generating network diagrams,

etc. The CTP Solver does not use this property for any purpose

in its algorithms other than simply storing the information

NetFlow decimal It is defined as the total flow coming into a node, minus the total

flow leaving a node, plus the node’s supply (which will be

subtracted when representing the demand because it is then a

negative value)

Parent integer The node’s parent is used in the basis tree structure. It repre-

sents the node immediately connected to and one depth level

above the current node. A negative parent value represents a

reflected arc in the basis-tree structure

Potential decimal A node’s potential is the equivalent to a dual variable in linear

programming. This value is used to calculate the reduced cost

of non-basic arcs in order to find the best candidate arc to enter

the basis tree

Successor integer The node’s successor is also used in the basis tree structure. It

represents the node following the current node in the preorder

thread. Unlike parent nodes, successor nodes in the preorder

thread are not necessarily directly connected by an arc

Supply decimal The node’s supply represents the number of flow units that are

available from that node. For simplicity in the CTP Solver

algorithm, the supply property also represents a given node’s
demand by reversing its polarity to a negative sign. Trans-

shipment nodes are given a supply value of zero

Table 12.2 Node methods

Method Description

GetArcs Returns an IOrderedEnumerable list of arcs where the node is either a Head or Tail.

This method is used to set the value of the ConnectedArcs property
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Table 12.3 Arc properties

Property

Data

type Description

Id integer Providing each arc with a unique id allows easy reference to

individual objects and makes database interactions nearly

seamless

BasisOrder integer Originally used before the initial basis was automatically

calculated, the basis order represents the arc’s order in the

basis tree

Capacity decimal The capacity is the upper-bound limit on units of flow that can

move across the arc at a given time. The capacity adheres to

the Big M maximum value limit that is set by the user in the

config element

Cost decimal The cost represents the price of moving one unit of flow

across the arc. It is important to note that an arc’s total cost is
calculated by multiplying the arc cost and flow. The cost

adheres to the Big M maximum value limit that is set by the

user in the config element

Cpx decimal Cpx is the capacity’s calculated value minus the flow of a

given arc

Flow decimal The flow is the number of units pushed across the arc from the

tail node to the head node. Its value must fall between the

arc’s capacity and lower bound

Head integer The arc’s head is the id of its destination node. It is the

stopping point of a directed arc. Unit flow along the arc starts

at the tail node and moves toward the head node

IsArtificial Boolean The IsArtificial flag determines whether the arc is artificial or

real. Artificial arcs are used when creating the initial basis and

connecting real nodes to the single artificial node. If an arc is

artificial, it is not allowed to re-enter the basis tree once it has

been removed

IsBasic Boolean The IsBasic flag determines whether the arc is in the basis

tree. It could be considered somewhat redundant due to the

BasisOrder property, but it is used in some logic checks and

output displays

IsBidirectional Boolean The IsBidirectional flag determines whether the arc can be

considered to have the flow move in either direction: from the

tail node to the head or from the head node to the tail

LowerBound decimal The lower bound is the minimum number of flow units

required on the arc

ReducedCost decimal The reduced cost is a value to determine which non-basic arc

will enter the basis. The arc with the best reduced cost,

meaning that the arc that will lower the basis’ overall cost by
the largest amount, is chosen to enter the basis

SameCycleDirection Boolean The same cycle direction flag determines whether the arc

follows the same flow direction as the cycle’s entering arc

Tail integer An arc’s tail is the id of its source node. It is the starting point
of a directed arc
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to as O/R mapping or ORM) is used to read the node and arc class structures

from a database and to automatically generate the code for their interactions.

Some common methods include getting an object or list of objects from the

database as well as inserting, modifying, and deleting object records.

Because the node and arc classes are created as partial classes, the generated

database methods could be easily re-generated and stored in separate files if

changes are made to the class properties. This eliminated the need to rewrite any

methods or to copy and paste code from the generated files into a single class file.

8. XML Input Files: The information required by the CTP Solver to represent the

network is relatively minimal. A user only needs to supply the following

properties for the nodes: id, name, and supply (negative value used for demand).

Again, the name property is simply included for human readability and could be

omitted from the XML document and require a single line to be commented out

in the CTP Solver’s code. If memory limitations arise, this would be a good first

step to minimize some overhead.

The required arc properties include Tail, Head, Capacity, LowerBound, Cost,

and BiDirectional. In addition to the node and arc information, the CTP Solver

also requires a configuration element. This element allows the user to set specific

values for Big M and the maximum simplex iterations. Enabling these two

Table 12.4 Arc methods

Method Description

GetArc Uses a LINQ query to return an arc from the provided head and tail

node id’s

GetBasis Uses a LINQ query to find all basic arcs in the provided IList object

and represents the basis-tree structure. It returns an

IOrderedEnumerable list of arcs that is used for procedures that only

require the basis tree

GetChildArcs Uses one of two LINQ queries to return the immediate basis-tree arcs

that are connected to the provided parent node. Does not select the arc

connecting the parent node and the provided grandparent node

GetNonBasic Uses a LINQ query to find all non-basic arcs in the provided IList

object. It returns an IOrderedEnumerable list of arcs that are used in

calculations that only require non-basic arcs, such as determining the

reduced cost. Excludes artificial arcs

GetNonBasicWithFLow Uses a LINQ query to find all non-basic arcs with non-zero flow (such

as upper- or lower-bounded arcs). Only used for output-display

purposes

GetReversePreorder Uses a LINQ query to find the basis tree in reverse order. While its

functionality could have been created by using a parameterized

version of the GetBasis() method, a separate method helps make the

purpose more clear in the calling procedures

ResetCycleDirections Sets the value of all the arc’s same cycle-direction flags to true for

new cycle calculations

ResetReducedCosts Sets the value of all the arc’s reduced cost values to zero for a new

reduced-cost calculation iteration
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values to be defined by the users provides some customization to the CTP

Solver’s capabilities without compromising the application’s algorithms with

problems such as infinite loops.

In addition to calculation options, the configuration element also allows the

user to choose whether to display the full output details for each simplex

iteration and/or cycle iteration’s debugging information. As shown in the results,

disabling this optional information can provide dramatic performance gains on

larger networks.

12.5.5 Modified Simplex Algorithm

Recall that the typical steps in the network simplex algorithm [BJS10], pp. 347–348

for the capacitated transshipment problem are as follows:

1. Determine Primal and Dual Solutions

2. Check Optimality

Table 12.5 Algorithm methods

Method Description

GetData Container method for reading the database or XML file, and initializing

the list structures and other variables

GetRecordCounts Counts the number of nodes and arcs that exist in the network

GetConfigSettings Reads the configuration options that are set by the user, including the

Big M value, maximum simplex iterations, and whether to display the

detailed information for each simplex iteration or the cycle-iteration

debugging

DisplayOptimal Builds the optimal solution table and prints the result to the screen

DisplayData Builds the tables displayed for each simplex iteration, including sepa-

rate tables for node and arc data, entering and leaving arcs, the basis

tree, and cycle arcs. The current total network cost is also included

BuildArcTableHeader Allows dynamic output table-header creation

GetNodes Reads the node information from the data and builds the list of nodes as

well as the initial basis

GetArcs Reads the arc information from the data and builds the list of arcs

CalculateSimplex The main calculation loop of the application. Calls helper methods to

calculate the reduced cost, create a cycle, and update the basis for each

simplex iteration

CalculateReducedCost Loops through non-basic arcs to find the entering arc for creating a

cycle

CreateCycle Builds the cycle created by adding the entering arc to the basis,

determines the maximum flow change, and chooses and removes the

leaving arc from the basis

TraverseBackpath Determines the basis-tree arc of a given node and depth; helper method

used in cycle creation

UpdateBasis Recursively updates the node preorder values, finds immediate child

nodes at a given basis depth, determines arc reflection, and node depths
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3. Add the Lower-Bounded Arc to the Basis

4. Add the Upper-Bounded Arc to the Basis

Because the CTP Solver was written with object-oriented concepts in mind, it

deviates from the standard linear-programming model and uses a modified simplex

algorithm to find the optimal solution of a given network; this process is described

in the following five steps:

1. Initialize

2. Calculate Reduced Costs

3. Create Cycle

4. Update Basis

5. Repeat Steps 2–4 Until Optimal

In comparison, Steps 1 and 2 are, by and large, performing the same function-

ality in both the typical algorithm and the CTP Solver’s algorithm. The typical

Steps 3 and 4 are essentially modified versions of the same step, making slight

alterations between the way lower-bounded and upper-bounded arcs are handled

and entered through a conditional check determined in Step 2. The CTP Solver

effectively combines these two steps into its Step 3 for creating the cycle when

either an upper-bounded or lower-bounded arc is added to the basis. The typical

Steps 3 and 4 also break into multiple sub-steps that include updating the basis tree.

This particular process makes sense because a separate subroutine can be more

easily understood as a separate step in the algorithm.

Finally, the CTP Solver’s Step 5 is included as a separate algorithmic step for

similar reasons as its Step 4, allowing a more simplified description of the process.

As with the basis-updating process, this step is also embedded as part of the typical

algorithm’s Steps 3 and 4.

12.5.5.1 Step 1: Initialize

During initialization, the CTP Solver attempts to read the database or XML file that

is chosen by the user. If an XML file is chosen, the application checks to make sure

that three tables exist in the file: config, node, and arc.

If the expected number of tables is not present in the XML file, the CTP Solver

will stop the execution and print an error message for the user. If the expected

number of tables is present in the XML file, the CTP Solver will read the file and

populate the lists of nodes and arcs as well as overwrite the default configuration

variables, such as Big M and the number of allowed simplex iterations.

1. Set the Root Node

A root node is simply a starting point for the basis tree (described next). From the

root node, the path to all other nodes in the network can be traced. When the CTP

Solver reads the node elements from the XML file or database, it creates an

artificial node as the default root node with an id value set as the node count. This

node is then inserted into the IList of nodes as the last element so that every real
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node can be referenced with its natural id/number (assuming that nodes are

ordered numerically starting at 1 in the original network).

2. Create the Basis Tree

A basis tree is essentially a feasible minimal spanning tree, or a structure where

every node is connected by the minimum number of required arcs, and it must be

an acyclic-directed graph. An example basis tree is shown in Fig. 12.5.

As a convenience to the application’s user, the CTP Solver automatically

creates an initial basis tree to represent a feasible topology of the network, thus

removing the need for the user to manually calculate an initial basis and allowing

him/her to focus on and only need knowledge about the specific network values.

Using the generated artificial node as the root, the CTP Solver creates an

artificial arc between every real node and the artificial node, forming the initial

basis. Each artificial arc in the initial basis is given a cost for the Big M value that

is set by the user in the configuration element, and a flow equal to the absolute

value of the node’s supply attribute. Using the Big M method as opposed to the

Two-Phase method allows the actual arc costs to be used in the first step of the

initial basis calculation instead of tracking the original costs as well as

reassigning the cost value for every arc in the network.

In addition to initial cost and flow values, each artificial arc is also given an id,

starting with the integer data type maximum value and decrementing as needed.

This provides a visual differentiation between real and artificial arcs that is easily

seen in the result tables. When determining the head and tail nodes of an artificial
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arc, the real node’s supply value is considered. If the supply is a positive value,

the node is considered a supply node with the real node set as the artificial arc’s
tail and the artificial root node set as the head. If the supply has a negative value,

the node is considered a demand node with the real node set as the artificial arc’s
head and the artificial root node set as the tail. Transshipment nodes are treated

in the same manner as supply nodes.

By directing transshipment nodes toward the root node, the initial basis tree is

considered strongly feasible. As such, degenerate arcs, or basic arcs with zero

unit flow, can be handled without creating an infinite loop that is caused by

repeatedly iterating through a sequence of degenerate, basic, feasible solutions

that correspond to the same simplex extreme point [CI94], pp. 341–343.

3. Determine the Node Potentials

In linear-programming terms, the node potentials are equivalent to the dual

variables. In algorithmic terms, the node potentials are the summed arc costs

along the path of any node back to the root node in the basis tree. Because the

initial basis tree essentially consists of a single arc between every real node and

the artificial root node, the potential of every node can simply be set by using the

user-specified Big M value in the network-configuration settings.

The Big M value that is defined in terms of the CTP Solver is just large

enough to be considered significantly higher than any existing network values

for cost or capacity. While it must be a large value, it cannot be too large as to

conflict with the limitations of the data types being used (i.e., setting it at the data

type’s maximum value). Because the CTP Solver uses the Big M value for

artificial arc costs, it could potentially be multiplied by itself as many times as

there are number of arcs in the network; however, that result is unlike. This

means that there must be enough difference between the Big M value and the

maximum data-type value to ensure that a very large node potential can be

accurately represented and used in the CTP Solver’s calculations.

12.5.5.2 Step 2: Calculate Reduced Costs

The reduced cost is the amount that the network’s overall total cost could poten-

tially be changed if a given non-basic arc were inserted into the basis. Because the

CTP Solver is created with minimization in mind, the best reduced cost belongs to

the arc that potentially lowers the total network cost by the greatest amount. The

CTP Solver could be utilized for maximization problems by simply using negative

cost values. The algorithm still minimizes the optimal solution, but the results can

be changed from negative to positive values.

1. Non-Basic Arcs

By definition, all reduced-arc calculations are carried out on non-basic arcs.

These arcs are easily represented in an IList object, allowing fast traversal of just

those arcs instead of the entire network.
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The reduced cost of an arc is calculated using Eq. (12.2).

2. Bidirectional Arcs

The CTP Solver handles bidirectional arcs by simply flipping an arc’s head
and tail nodes for the reduced-cost calculation, as shown in Eq. (12.3).

If an arc is at its lower bound with no flow, this calculation is done immedi-

ately after the normal reduced-cost calculation, and the two values are then

compared. If the bidirectional reduced cost is better than the original reduced

cost, the arc’s head and tail nodes are swapped. It is important to reiterate that

non-basic upper-bounded arcs and lower-bounded arcs with flow cannot be

considered bidirectional because they are already part of the current solution.

Allowing these arcs to be treated as bidirectional will often cause net-flow

violations, rendering the solution infeasible.

By handling bidirectional arcs in this way, the user does not need to

duplicate every instance of an arc when the only difference is the flow

direction. This simple implementation is a very important innovation in

directed-flow calculations because bidirectional arcs are usually treated as

two separate, directed arcs [HSR08], p. 121. The CTP Solver considers the

two directions differently even though they are only defined once. In net-

works consisting of all bidirectional arcs, the CTP Solver effectively halves

the size of the required data file, saving both hard-drive space and system

memory.

3. Choose the Entering Arc

The preferred reduced-cost value of a non-basic arc could be positive or

negative depending on its bounded flow. If the arc has a flow that is equal to

its lower bound, a positive reduced cost is desired. If the arc has a flow that is

Rij = πi - πj - cij

Where:
Rij = Reduced Cost of Arcij
πi = Tail Node Potential
πj = Head Node Potential
cij = Arc Cost

Eq 12.2 Arc reduced-cost calculation

R'ij = πj – πi - cij

Where:

R'ij = Bidirectional Reduced Cost of Arcij
πi = Tail Node Potential
πj = Head Node Potential
cij = Arc Cost

Eq. 12.3 Bidirectional-arc reduced-cost calculation
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equal to its capacity, a negative reduced cost is desired. The reduced cost of

every non-basic arc is compared to the best-available reduced-cost value.

When a reduced cost is found to be more attractive, the best-available

reduced-cost arc is replaced with the current arc. This process continues

until all non-basic arc reduced costs have been determined and the best

available reduced cost arc is chosen.

4. Enforce the Lower Bounds

In order to accommodate an attempted enforcement of the lower-bound flow

requirements, any arc with a lower-bound value greater than zero with flow less

than the lower bound is given priority. The algorithm forces these arcs into the

basis and attempts to push as much flow that is feasible onto them in order to

fulfill the lower-bound requirements. With realistic values, this method appears

to be sufficient to meet the lower-bound flow requirements. If the CTP Solver

finishes its simplex iterations and finds an optimal solution without meeting all

the lower-bound flow requirements, the application displays a warning message

that a lower-bound flow violation occurred.

Using the lower bound as an initial flow value is implemented as a possible

solution for lower-bound flow enforcement. Unfortunately, determining an

elegant process for guaranteed feasibility is not achieved because it is not always

clear which artificial arcs could be updated in conjunction with the lower-

bounded arc in order to maintain flow balance.

5. Optimality

The CTP Solver assumes optimality until it encounters an attractive entering arc.

If no arcs lower the total network cost when added to the basis tree, the solution

is optimal.

12.5.5.3 Step 3: Create Cycle

By definition, the basis tree is a connected graph with no cycles. This means that

there is a path between any two nodes but not a path from any node to itself

[Knu97], p. 363. When a non-basic arc is added to the basis tree, a cycle is created,

and an arc must be removed to preserve the basis tree’s acyclic property.
The process of creating a cycle is the most complex step of the CTP Solver’s

algorithm. If it were a simple shortest-path problem using the arc cost as the arc

weight, an algorithm such as Dijkstra’s [Dij59] could be used to find an optimal

solution. However, the capacitated transshipment problem includes both bounded

arcs and directed flowwith supply and demand, making it a much more complicated

problem (Fig. 12.6).

1. Add Arcs to the Cycle

Determining the entering arc, or the arc added to the basis tree to form a cycle, is

a relatively simple process. Traversing that cycle is a bit more complicated. The

algorithm used to create the list of only cycle arcs implements a node-depth

concept from [BBG77], following the back path from each entering arc’s node to
the root node of the basis tree. Using the node depth allows the two back paths to
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be traversed in pairs during the same iteration, starting at the deepest node in the

cycle (highest depth value) and working back up the basis tree until the two back

paths meet at the same parent node, or the root node is reached; either action

completes the cycle.

The trick to the CTP Solver’s algorithm comes from the need for the entering

arc’s head and tail nodes to be handled separately in order to account for the

correct cycle-direction modifier: a positive one for an arc with flow in the same

direction as the entering arc and a negative one for an arc with flow in the

opposite direction of the entering arc. By creating a parameterized method for

traversing the back path, the same code can be reused with only a few condi-

tional checks to determine the arc’s cycle direction. As the node back paths are

followed in this manner, the arc connecting each node and its parent is added to

the list of cycle arcs if it has not already been added, thus creating the complete

cycle.

2. Calculate the Maximum Feasible Flow Change

As each arc is added to the cycle, its maximum feasible flow change is calculated

based on the arc’s direction in relation to the cycle created by the entering arc.

This value, represented by the Greek letter theta, is the largest number of flow
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units that could be added or subtracted from a same- or opposite-cycle direction

arc, respectively, without violating the arc’s flow-capacity or lower-bound

requirement.

Using the theta value, the CTP Solver’s algorithm ensures that each simplex

iteration moves the current basis tree as close to the optimal solution as is

feasibly possible. For same-cycle direction arcs, the theta value is simply the

difference between the arc’s capacity and its current unit flow. For opposite-

cycle direction arcs, the theta value is calculated as the difference between the

arc’s current unit flow and its lower bound.

3. Choose the Leaving Arc

Once an arc’s theta value has been determined, it is compared against the cycle’s
current minimum theta value. To maintain feasibility when an arc is removed

from the cycle, the smallest theta value from all the cycle arcs must be used to

ensure that no capacity or lower-bound violations occur.

The cycle’s minimum theta value can only be changed if the current arc’s
theta value is strictly less than the cycle’s overall minimum or if the arc is

artificial. These two theta-updating conditions prevent infinite cycles due to

degeneracy and force artificial arcs from the basis, respectively.

4. Update the Cycle Flows

Once the leaving arc has been determined, the cycle is iterated a final time in

order to add or remove theta units of flow to its arcs. Using an arc’s direction
property, flow is added to same-direction cycle arcs and subtracted from

opposite-direction cycle arcs. By following the cycle direction, the solution’s
feasibility is ensured because arc limits are not capable of being violated by

adding or subtracting too many flow units.

5. Degeneracy

Recall, from the initial basis creation, that a degenerate arc is one with a unit

flow of zero. Degenerate arcs can cause infinite loops and must be handled

properly to avoid such problematic outcomes. The initial basis is created to be

strongly feasible, and the CTP Solver needs to maintain that status.

Using the node-depth method described for the cycle creation, the lowest

(deepest) degenerate arc can be chosen to leave the basis, preserving a strongly

feasible basis [BBG77]. This is accomplished with the algorithm’s tie-breaking
conditional check that occurs when determining the cycle’s minimum theta

value. Because the algorithm starts at the deepest cycle arc, a simple comparison

can be made between the current theta value and the cycle’s minimum value and

only change the value of theta if the former is less than the latter, thus always

choosing the deepest cycle arc.
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12.5.5.4 Step 4: Update Basis

Updating the basis involves a recursive method, or a method that calls itself,

starting from the root node as the top of the basis tree and working down one

node level at a time until all nodes and arcs have been updated. Possible errors

could result in allocating the system’s memory [Som11] during the recursive

process; however, the node and arc structures used in the method are already stored

in the memory using the IList structures. If memory allocation is an issue, it would

likely occur before the recursive process begins.

A possible optimization, discussed later, would be to only update the cycle nodes

and arcs instead of the entire basis tree. Using recursion through the full-basis tree is

chosen due to its simplification of the algorithmic process, essentially

implementing an easily comprehended depth-first search [RN10], p. 85. The search

space for each iteration is the size of a spanning tree, or one less than the number of

nodes in the network [HSR08], p. 236. During each recursive iteration of the basis

update method, the CTP Solver uses a LINQ query to find all of the current node’s
child nodes. Then for each child node, the method calls itself to find that node’s
child nodes. This process repeats until the entire basis tree has been traversed, and

the node potential and depth values have all been updated. Once the basis tree has

been updated, it is ready for use with the next simplex iteration unless it is already

optimal.

12.5.5.5 Step 5: Repeat Steps 2–4 Until Optimal

The CTP Solver assumes optimality until the non-basic-arc reduced-cost values are

calculated in Step 2. If adding a non-basic arc to the basis lowers the overall total

cost of the network solution, the optimality flag is set to false, and the CTP Solver

executes another simplex iteration, continuing through Steps 3 and 4 (Fig. 12.7).

Fig. 12.7 IEEE 14-Bus Test System basis update 13
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Once the reduced-cost calculation step determines that there are no non-basic

arcs that should become entering arcs, the process is complete, and the solution is

optimal.

12.5.6 Output

The CTP Solver provides the user with all available information about the resulting

network in addition to the step-by-step simplex iterations and the cycle debugging

log. The user is also shown a link to the original network file and the optimal

solution that are available for download in either XML or .CSV format.

12.5.6.1 Miscellaneous Information

Various information about the results is displayed to the user before any other data.

First, there are links to the network files, including the original network (if the

source was an XML file) as well as downloadable .CSV and XML files for the

optimal solution. After the network file links, the optimal network cost, number of

simplex iterations, node count, basic-arc count, non-basic arcs with flow count, and

execution time are all displayed.

Utilized in conjunction with the optimal network table, the user is able to quickly

understand the results of the CTP Solver and to download the information for

analysis or importing into other systems. A screenshot of the miscellaneous infor-

mation for the IEEE 14-bus test system using distance as a cost measure is shown in

Fig. 12.8.

Fig. 12.8 CTP solver’s optimal-network miscellaneous information (screenshot and light CSS)
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12.5.6.2 Optimal Solution

After the miscellaneous result information, the optimal network’s table is displayed
on the results page, showing the optimal network’s topology via the list of arcs.

Because the node information is not required to reconstruct the optimal network,

the list of nodes is omitted.

The table showing the optimal solution includes each arc’s id, tail node, head
node, cost, capacity, lower bound, flow, capacity minus flow, reduced cost, basis

order, and whether the arc is basic or an arc with bounded flow (denoted as “non-

basic”). All non-basic arcs without bounded flow are simply displayed with a

hyphen for the basis value. Artificial arcs are included in the final optimal display

table; however, they are visually separated from the real-network arcs and are not

included in the XML or .CSV exports. A screenshot of the optimal solution for the

IEEE 14-bus test system using distance as a cost measure is shown in Fig. 12.9.

12.5.6.3 Simplex Iterations

The information for each simplex iteration can be shown if the user so chooses in

the configuration options using the “showSimplexIterations” attribute. When

shown, every iteration is given a separate, expandable block of information that

details a snapshot of the network. In addition to the same information being

displayed for the optimal network’s list of arcs, each cycle, the entering and leaving
arcs, and an individual table for the basis tree are shown.

During the debugging process, showing the data for each simplex iteration can

be very useful as a way to step through the algorithm’s process to follow every

decision made for verification purposes. The first iteration is the network as it is

provided to the CTP Solver. Successive iterations show the evolving network as the

algorithm progresses.

12.5.6.4 Debugging Log

The debugging log includes the cycle created by each simplex iteration. As with the

simplex iterations, the cycle’s debugging log can be toggled by the user in the

network file’s configuration element using the “showDebuggingLog” attribute.

Each cycle begins with its entering arc and shows each cycle arc’s direction in

relation to that entering arc, along with its maximum feasible flow change. Just like

the simplex iterations, the cycle’s debugging log can be valuable to trace the CTP

Solver’s algorithmic process for verification.
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12.5.7 Limitations and Modifications

Not all networks are guaranteed to have a feasible solution. The CTP Solver handles

these networks by providing warning messages prior to displaying the best possible

solution that the application obtained. These warning messages alert the user to

infeasibilities, such as lower-bound flow violations, artificial arcs unable to be

removed from the basis, and net-flow violations on any nodes.

Fig. 12.9 CTP solver’s arc information for an optimal network (screenshot and light CSS)
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12.5.7.1 Performance Gains

The CTP Solver displays a lot of information. However, some users may not be

interested in the output generated for every simplex iteration or the debugging log

that shows each cycle. With these users in mind, the debugging and individual

simplex iterations can simply be turned off by setting the respective variables in the

network file’s configuration element. Because each simplex iteration and cycle

traversal generates data that are proportional to the network size that must then

be displayed during every new iteration, significant gains in the execution speed can

be achieved by choosing to hide this information for larger networks.

For example, a performance increase greater than an order of magnitude was

observed for a test network with just 30 nodes and 55 arcs by hiding the individual

simplex iterations. That performance was doubled when the debugging log was also

hidden. The full performance details are available in the results.

12.5.8 Network Generator

In order to test multiple networks with varying sizes and values, a network

generator is developed to accelerate the process of creating XML files for use

with the CTP Solver. The network generator can read the existing IEEE test-system

text files and generate some values, such as arc costs, as well as creating completely

random networks with user-defined topology values and limits.

In addition to exporting XML files for the CTP Solver, the network generator

also exports data files for use in AMPL and SAS. Automating the creation of these

additional files makes comparisons among the CTP Solver, AMPL, and SAS much

easier while also removing any user error caused by manual editing.

In addition to reading the standard IEEE test-system files, the network generator

is built with pseudorandom generic-network generation in mind. When creating a

generic network, the user can set a range of minimum and maximum values for the

following components:

1. Node Supply

2. Arc Capacity

3. Arc Lower Bound

4. Arc Cost

In addition, the user can set values for the total network supply and a lower-

bound frequency threshold, defined as an integer value from 1 to 100 essentially

acting as a percentage for approximately how often the user would like a lower-

bound value to occur for network arcs.
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12.6 Software Comparisons

The CTP Solver uses a customized simplex algorithm that is implemented in ASP.

NET C#. The results of multiple test networks are compared with two optimization

software programs: AMPL and SAS.

12.6.1 AMPL

AMPL is a comprehensive and powerful algebraic modeling language for linear

and nonlinear optimization problems; AMPL was developed at Bell Laboratories

[FGK03]. One of the primary benefits of AMPL is its separation between the model

and data files, allowing the user to utilize the same model for multiple datasets. The

user is expected to learn AMPL’s syntax to create his/her own models for specific

applications. AMPL also allows the user to choose from many different custom-

solution solvers. The solver chosen for the test networks was LPSOLVE, an open-

source simplex solver.

The AMPL version used on the test networks was AMPL Student Version

20100715 (MS VC++ 6.0). LPSOLVE solver version 4.0.1.0 was used because it

allowed the highest number of variables and constraints with the student version of

AMPL. Due to these software limitations, the IEEE 300-Bus Test System could not

be solved using AMPL’s student version because it had too many variables and

constraints.

12.6.2 SAS

SAS is a collection of software solutions that are used to solve complex business

problems based on three key capabilities: information management, analytics, and

business intelligence [SAS].

As with AMPL, SAS is a powerful software tool with the ability to separate a

problem model from its data. SAS requires its users to learn its programming-

language syntax in order to create their own models. The built-in SAS method used

for the test networks was the NETFLOW procedure. Unlike AMPL’s LPSOLVE
solver and the CTP Solver, the NETFLOW procedure uses the interior point

algorithm [SAP] instead of the simplex algorithm. It also uses the “good-path”

method described in “Algorithms for Networking Programming” by J. Kennington

and R. V. Helgason [SAS10]. Version 9.3 of the X64_VSPRO platform of the SAS

software was used for the test networks.
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12.6.3 CTP Solver

Due to the design goals of the CTP Solver’s implementation, it offers key benefits to

its users that are not provided by AMPL or SAS. Most of these benefits are directly

related to the CTP Solver’s ease-of-use design goal that focuses on simplicity for

the users.

1. Modeling: While incredibly robust and capable solutions, both AMPL and SAS

require the users to understand how to model the problems in order to understand

and utilize the solutions. This allows many more problem types to be solved, but

the learning curve may be too steep for most users because each software

application has its own syntax. Because the CTP Solver abstracts the user

from the modeling process, it can simply be utilized with properly formatted

XML files or a database.

2. Software Installation: The installation process for SAS, in particular, can be an

overwhelming experience for typical users, requiring both the SAS-software as

well as Java-runtime dependencies. It includes different business analytics,

intelligence, and information-management solutions, making it an extremely

complex process before using the software. AMPL does not need installation,

but it does require downloading and extraction, as well as user knowledge of the

program’s file structure in order to find the data and model files. Because the

CTP Solver is a web application, a user simply needs a browser to access and

utilize it, making it more accessible than either AMPL or SAS.

3. Output: Both AMPL and SAS produce simplified results by default, with SAS

more closely resembling the CTP Solver’s default table output. However, the

CTP Solver exports its results to XML and .CSV data files by default, or directly

to the database if the input network is a database source. Customized output

requires more user effort with both AMPL and SAS than with the CTP Solver.

12.6.4 Displayed Results’ Comparison

All three applications used to test the networks display information to the user in

their own way. The primary aspects of particular interest are displaying the optimal

solution value, along with key diagnostic information regarding the solver’s per-
formance, and the topology of the resulting optimal network including flows.

1. Optimal Display and Diagnostic Comparison

Both SAS and the CTP Solver do a relatively good job providing the user with

important, detailed information in an easy manner. AMPL requires a bit more

user effort to find some of the relevant data.

The CTP Solver displays this important information immediately before the

optimal network topology, allowing the user to quickly determine key aspects of

the results. SAS also displays its information in a way that is easy for the user to

access by utilizing its log-output window. When using AMPL, the user must
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specifically print the diagnostics that he/she is interested in viewing. This

requirement subjectively makes the diagnostics’ display in AMPL a bit more

cumbersome than SAS or the CTP Solver because the user must read through the

documentation and become familiar with the relevant variables and how they are

used in AMPL.

2. Optimal Network Comparison

In addition to important information about the results, all three applications

provide a representation of the optimal network with flows along the arcs.

The CTP Solver separates itself from AMPL and SAS with a few key features,

including exporting the resulting network to both XML and CSV for easy use in

other applications and portability among different systems. Another nice feature

of the CTP Solver is the inclusion of repeating table headers every 20 rows after

the artificial arcs, allowing the user to easily see which information is in each

table cell at a glance instead of scrolling all the way back to the top as SAS

requires. The CTP Solver also differentiates between basic and non-basic arcs

with flow, providing the user with more detailed information when bounded arcs

are included in the solution.

12.6.5 Accuracy Summary

Accuracy was determined by comparing the resulting optimal network flow com-

puted by the CTP Solver to the optimal network flow computed separately by both

AMPL and SAS for the same network.

The CTP Solver, AMPL, and SAS each employ optimal algorithms, so it should

be expected that they all obtain the same optimal result for the test networks. This

was the case with the tests performed, and because many optimal solvers currently

exist, new contributions should focus on improving performance and ease of use.

Because ease of use is inherently subjective, the software performance, in terms of

speed, should be considered the best comparison measure for the three solutions.

12.6.6 Performance Summary

On smaller networks, up to and including the IEEE 118-Bus Test System, there was

little difference among AMPL, SAS, and the CTP Solver. The computation time

was low enough that the measurement precision could be questioned due to the way

processing time is essentially estimated using the CTP Solver’s system clock. The

true performance comparison came from the larger, randomly generated test net-

works. Unfortunately, the student-license version of AMPL was only able to test up

to the IEEE 118-Bus Test System, so it was primarily a contest between the CTP

Solver and SAS.
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Sadly, the CTP Solver was destroyed by SAS on larger networks; it was not even

close. Somehow, and very surprisingly, both the AMPL LPSOLVE solver and the

SAS “netflow” procedure maintained a very consistent execution time throughout

all tests, even when the network size increased. The expectation was for the

execution time to become progressively higher as the node and arc counts grew,

as was the case with the CTP Solver.

During the CTP Solver’s implementation, the hope was that LINQ queries would

be fast enough to overcome the recursive traversal through the entire basis tree for

each simplex iteration. Unfortunately, this likely contributed to its poor perfor-

mance on larger networks. While this outcome was extremely disappointing, the

CTP Solver is not a wasted effort. Improvements can clearly be made to its

modified simplex process, and some possibilities are outlined in the Conclusion.

Its handling of bidirectional arcs is also an encouraging innovation that could be

utilized in other systems.

If the network size were small enough, the CTP Solver might be an optimal self-

healing method for the smart grid. Realistically, the CTP Solver, in its current state,

is simply too slow to be considered a viable solution. Interestingly, a couple of the

CTP Solver’s performance improvements were implemented before comparing the

results to SAS.

12.6.6.1 The CTP Solver’s Output-Performance Improvements

For the larger test-network comparisons, displaying each simplex iteration and

cycle traversal was unnecessary bloat. The configuration allows each display option

to be shown or hidden, allowing the user to decide whether the CTP Solver should

output the information.

Choosing to only display the final, optimal network provides significant speed

improvements. For each of the following tests, ten runs were made for each average

solve time along with the final results from the application comparison runs,

providing an approximate general-performance result.

The CTP Solver can display the entire network topology at every simplex

iteration, allowing the user to step through the results and to follow the solver’s
decisions. This can be beneficial when manually calculating solutions, such as

verifying student results for assignments in an academic course. However, for

large networks, manual solution calculations are simply infeasible, which is the

entire purpose of software such as the CTP Solver. As such, the output for these

individual simplex iterations can be set to not display, greatly improving the CTP

Solver’s execution-time performance. Tables 12.6–12.8 list the system’s perfor-

mance when different display options are hidden during program execution.

Another attempt to improve the CTP Solver’s performance was altering the

pricing or reduced-cost calculations (Step 2). In order to choose the best candidate

arc to enter the basis, this process iterates through every non-basic arc. While the

calculations are fast with the current machines, the number of comparisons can
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potentially decrease by three orders of magnitude in networks with thousands

of arcs.

12.6.7 Testing Environment and Setup

In order to maintain consistency for each of the three applications being compared,

the test networks were solved on the same machine. All tests were performed on an

Intel Core 2 Quad 2.67 GHz processor with 4 GB DDR2 800 RAM running on

Windows Vista x64. Both AMPL and SAS are standalone software applications.

The CTP Solver requires a web server, so a local virtual directory was created for it

using IIS, running the .NET 4.0 framework.

12.6.8 Test Network Results

All three software applications were compared using the IEEE 14-Bus Test System,

IEEE 30-Bus Test System, IEEE 57-Bus Test System, and IEEE 118-Bus Test

System. From there, the student-license version of AMPL was unable to calculate

the results due to variable and constraint limits, so only the CTP Solver and SAS

were used to compare the IEEE 300-Bus Test System and the Custom 400- and

500-Node Systems. For each network, a series of ten consecutive runs were

Table 12.6 The CTP Solver’s performance improvement: hiding simplex iterations

Average solve time (s) Display all Hide simplex iterations Improvement

IEEE 30-Bus 0.071875 0.00625 11.5� (1050%)

IEEE 57-Bus 0.290625 0.0234375 12.4� (1140%)

IEEE 118-Bus 2.529513889 0.168402778 15.02� (1402%)

Table 12.7 The CTP Solver’s performance improvement: hiding the cycle debugging log

Average solve time (s) Display all Hide cycle debugging log Improvement

IEEE 30-Bus 0.071875 0.059375 1.21� (21%)

IEEE 57-Bus 0.290625 0.28125 1.03� (3%)

IEEE 118-Bus 2.529513889 2.310763889 1.09� (9%)

Table 12.8 The CTP Solver’s performance improvement: hiding the cycle debugging log and

simplex iterations

Average solve time (s) Display all Hide all Improvement

IEEE 30-Bus 0.071875 0.00625 11.5� (1050%)

IEEE 57-Bus 0.290625 0.021875 13.29� (1229%)

IEEE 118-Bus 2.529513889 0.16875 14.99� (1399%)

12.6 Software Comparisons 177



executed for each solver, and an average of these runs was taken as the solver’s
general performance time. While this sample was admittedly a small, the intent was

to simply make a pedestrian comparison of the three solutions. The detailed test

results from the IEEE 30-bus system case are given below.

12.6.8.1 IEEE 30-Bus Results: Random Cost

The CTP Solver was on top, again, in this small network, but AMPL could have had

a better overall performance with a larger test sample size.

1. Accuracy

All three applications, again, arrived at the same optimal solution value:

23,692.6396. The CTP Solver had the fewest iterations at 31, with AMPL and

SAS following and requiring 35 and 37 iterations, respectively.

2. Performance (Table 12.9)

3. Performance Graphs (Figs. 12.10 and 12.11)

12.7 Results and Conclusion

In small-network tests, the CTP Solver excelled over SAS and also had slightly

better performance than AMPL. However, the larger the networks became, the

worse the CTP Solver performed.

SAS kept its growth pattern fairly linear as networks with more nodes and arcs

were calculated. Unfortunately, the CTP Solver’s growth pattern appeared to be

exponential. This was likely due to its traversal of the entire basis tree for each

Table 12.9 IEEE 30-Bus performance results

Solve time (s) AMPL (35 iterations) SAS (37 iterations) CTP Solver (31 iterations)

Test 1 0.015625 0.23 0.03125

Test 2 0 0.24 0.015625

Test 3 0.015625 0.25 0

Test 4 0 0.21 0

Test 5 0 0.26 0.015625

Test 6 0.015625 0.2 0

Test 7 0.015625 0.23 0

Test 8 0.015625 0.23 0

Test 9 0.015625 0.21 0

Test 10 0 0.18 0

Average 0.009375 0.224 0.00625
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simplex iteration, making the time complexity approximately O(n2), where “n” is

the number of nodes in the network.

It was hoped that using LINQ queries would compensate, but clearly the way the

algorithms were implemented, that was not the case, proving that math trumps faith.

An ongoing effort is attempting to resolve this issue while staying true to the use of

LINQ queries, but it might come down to reverting to traditional linear-

programming techniques as the best approach.

Figure 12.12 shows the average performance results starting from the IEEE

14-Bus System and progressing to the Random 500-Node test network. Only SAS

Fig. 12.10 IEEE 30-Bus performance graph

Fig. 12.11 IEEE 30-Bus average performance graph
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and the CTP Solver were graphed due to the fact AMPL was only tested on the four

smallest networks. The graph clearly shows the exponential growth pattern of the

CTP Solver and the linear nature of SAS.

One silver lining for the CTP Solver’s performance was its consistency in

requiring the fewest iterations to calculate its results. This leads to the possibility

of it potentially being much faster in a parallelized implementation.

Fig. 12.12 Overall average performance
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Chapter 13

Decomposition of Microgrids in Large-Scale
Electric Test Beds for Economic Dispatch
Optimization

13.1 Introduction

Microgrid decomposition (partitioning, splitting, and clustering) or otherwise deter-

mining community structures within a power transmission network is important to

optimal management of the transmission system. Power transmission system

decomposition is not itself a novel concept. Similar concepts have been utilized

dating back to the 1950s for various reasons [kro63]. There are very limited existing

literatures that use clustering for grid decomposition.

The earliest work involving grid decomposition focused on the development

methods for breaking large systems into smaller subsystems in order to make

complex analysis or computations more simple [kro63]. More recent works have

focused on the identification of power network zones within a grid [GOB16],

spectral clustering of power grids [Ruo13], and assessment of grid reliability

based on topological metrics [GTC07]. In [Ruo13], hierarchical spectral clustering

methods were used for power grid decomposition, and [GOB16] uses electrical

distance quantification as a parameter for dividing a bus system into microgrid-like

zones. To our knowledge, there is no paper that has considered an approach similar

to the approach proposed in this chapter. Metrics of betweenness centrality (BC)

and two-stage clustering bring novelty to grid decomposition. The importance of

efficient grid decomposition and microgrid utilization is becoming especially

important in considering emerging technologies related to smart grid. Optimal

grid decomposition will play an important role in uncertainty quantification, con-

tingency planning, resource allocation, optimal power flow, cascading failure

protection, incorporation of renewable power sources, and incorporation of renew-

able power sharing components of smart grid [SFN14].
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13.2 Background on Smart Grid Modeling Using
Graph Theory

13.2.1 Graph Theory and Network Community

A graph is a mathematical structure that represents pairwise relationships or

connections between objects [BHP09]. A graph is a set of vertices (nodes) that

are connected edges (lines). Because of the connectedness between objects in a

power transmission grid, these grids can be intuitively represented as a network

graph. Formally, notation for a graph is given as a pair of setsG¼ (V,E), whereG is

the graph, V is the set of vertices, and E is the set of edges, formed by the pairs of

vertices. A vertex set is a concatenated list of the name of each vertex in a graph and

is denoted by V(G). An edge list is a concatenated list of connected vertices in a

graph and is denoted by E(G). As an example, Fig. 13.1 shows a graph with V(G)¼
{1, 2, 3, 4, 5} and E(G)¼ {1� 2, 2� 4, 2� 5, 3� 4, 3� 5, 4� 5}.

Figure 13.1 displays a simple un-directed graph. An un-directed graph is a graph

where the edges of the graph are bidirectional [BHP09]. For the purposes of this

work, bus system graphs are considered to be un-directed graphs. The following

subsections describe criteria related to graph theory that can be used to determine

grid decomposition structures.

Weighted Graphs: The raw graph topology of a given graph does not provide or

display any functional information about the actual system the graph represents. In

terms of a power grid system, there is information about the buses and transmission

lines within the grid that must be considered in order to adequately model the

system. This can be accomplished via the use of vertex and edge weights. Weights

are simply a numeric value assigned to graph objects to convey some functional

information about the graph or specific graph object. A common example of an

edge weight is assigning a numerical value to a particular edge corresponding to the

length of that edge. For this chapter, the notation for an edge weight is W_(m,n),
where m and n are vertices in V(G) such thatW_(m,n) is the weighted value for the

edge that connects bus m to bus n.
In this chapter, four metrics have been considered for edge weights in a smart

grid power transmission system. These metrics are topological, admittance,

Fig. 13.1 Simple graph where V(G) ¼ {1,2,3,4,5} and E(G) ¼ {1–2,2–4,2–5,3–4,3–5,4–5}
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impedance, and line length weights. Topological weight assumes that Wm , n¼ 1

8m , n2E(G). The topological weighting metric captures the trivial topological

connections of the network graph and displays no bias toward certain network

objects. Admittance-based edge weights are determined based upon a calculation of

transmission line admittance. For this metric admittance weight is given by: Wm,n

¼ 1

Rm,nþjXm,nj j , where Rm , n is the resistance of the transmission line connecting bus

m to bus n and Xm , n is the reactance of the line. Impedance weight is the inverse of

the admittance weight. Length-based weighting assignsWm , n equal to the length of

the transmission line. For this work, IEEE 57, 118, and 300 bus test systems were

used and approximations of transmission line length were calculated according to

the method outlined in [Fre77]. This method first converts the per unit reactance

value to the actual value using an assumed Sbase¼ 100 MVA and Vbase¼ 135 kV.

The length of the line is then calculated assuming a conversion factor of 0.7Ω/mile.

These weights are static weights, in that they are constant for a given power

system. Other works have considered similar static metrics as well as dynamic

metrics including power flow [Ruo13]. The static edge weights can be interpreted

such that strongly connected vertices are more likely to be clustered together.

Topological weights represent a pure connectivity of the network. Admittance/

impedance weights represent and reveal the internal electrical structure based on

impedance or electrical distance of the network [GOB16], [Ruo13].

Shortest Path and Betweenness Centrality: Betweenness centrality [Dan60] is an
index that quantifies a vertex or edge’s centrality in a network. In order to under-

stand betweenness centrality, the graph theory concept of shortest paths needs to be

understood. The shortest path problem [JMF99] is a common concept in a study of

graph theory. The problem is defined by the task of finding the path between two

given vertices in a graph such that the sum of the edge weights of the constituent

edges of the path is minimized. A path in an un-directed graph is denoted by P¼
{vm, v1, v2 . . . vn}, where P is the path and vm : vn are vertices in graph G that are

contained in the path from vm to vn.
The formal definition of betweenness centrality is “the number of shortest paths

from all vertices in a graph to all other vertices in the graph that pass through a

particular object.”[Dan60], [GN02], [GN03] Betweenness centrality can be calcu-

lated for vertices or edges. Either of these calculations indicates how central,

connectively important, or “highly traveled” a particular edge or vertex is within

a graph. This metric is of importance for a smart grid transmission system due to the

ability to quantify vertices or edges that are of high connective importance to the

network. Buses and/or transmission lines with relatively high betweenness central-

ity may be more likely to cause cascading problems in the event of a failure to that

particular bus or line.
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13.2.2 Graph Clustering and Application to Grid
Decomposition

Graph clustering is an application of clustering algorithms to perform grouping of

nodes in graphs and is related to clustering techniques in the field of data mining.

General cluster analysis is the task of grouping a set of objects or data points in such

a way that objects in a particular group are more similar to each other than to objects

contained in other groups or subsets [New06]. The purpose of clustering is to get an

improved understanding of the input group or dataset. In this work methods of

clustering are applied to power transmission systems to form power zone community

structures that for intents of analysis are designated as microgrids. Graph clustering

is a term with several aliases depending upon the application. In general, graph

clustering, network community detection, graph partitioning, and graph decompo-

sition are different aliases bywhich similar processes are occurring. These aliases all

mean to discover community relationships between nodes within a graph. These

communities are characterized by relatively dense interconnections, but relatively

sparse connections between groups. Graph clustering algorithms are designed to

identify and quantify where these community structures exist within a graph.

1. Betweenness Centrality Graph Clustering (BCGC): A number of algorithms

exist that perform graph clustering based on calculations of the betweenness

centrality of graph objects. BCGC algorithms make use of the betweenness

centrality as a method of determining the likelihood that an edge is between

community structures in a graph. A notable algorithm for betweenness centrality

clustering is the Girvan–Newman (GN) algorithm [GN02], [RAK07].

The GN algorithm detects communities or clusters within a graph by itera-

tively removing edges from the original network graph. After the removal of

edges, the remaining connected components of the network graph are the

communities. The GN algorithm removes edges based upon the betweenness

index of each edge. Removing edges with high betweenness is a method of

separating community structures within a graph from one another. The steps of

the GN are as follows:

(a) The betweenness of all edges within a graph were calculated.

(b) The edge with the highest betweenness is removed.

(c) The betweenness of all edges affected by the removal of this edge are then

recalculated

(d) Repeat starting from step 2 until a desired cutoff has been obtained[GN02],

[RAK07].

The stopping point or cutoff of the algorithm can be determined in terms of

iterations, a desired betweenness, an optimality of graph modularity [SFO13],

when a desired number of clusters has been formed, or when there are no more

edges to be removed. The iGraph package in R software has a ready implemen-

tation function for this algorithm which was utilized for this work.
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The algorithm is related to agglomerative hierarchical clustering algorithms

due to the step-by-step way the algorithm decomposes the original graph. This

step-by-step decomposition can be viewed as a dendogram, or a hierarchical tree.

An example of a hierarchical dendogram is shown in Fig. 13.2b. Figure 13.2a

shows an example graph that corresponds to the dendogram in Fig. 13.2b. The

colored lines that enclose vertices and the dendogram branches represent the

clusters formed in this graph by the GN algorithm. The y axis displays the

betweenness centrality metric which can be used as a cutoff in the GN algorithm.

The x axis of the “tree” in 2B represent vertices in the graph. The dendogram

branches show the order in which the vertices form community structure per the

agglomerative nature of the GN algorithm. At the top of the dendogram, all the
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Fig. 13.2 Example of a graph (a) and a corresponding hierarchical clustering dendogram (b)
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vertices are together. As it works down the tree, branches split off and community

structures are formed as seen by the squares that group and encircle different

vertices. Figure 13.2b shows a cutoff betweenness of approximately 1.1. This is

seen by the clustering rectangles reaching a betweenness of 1.1 on the y axis.
It is important to note that betweenness centrality clustering can be performed

on a graph with edge weights. By default, a graph assumes a topological edge

weight of 1 as described in a previous section of this chapter. The way the GN

algorithm functions is that in calculating edge betweenness the algorithm mul-

tiplies the betweenness of an edge by the weight of that edge in determining

edges with the highest overall betweenness considering the weight of the edges.

In this work, topological, admittance, impedance, and length weights were used

in conjunction with betweenness centrality graph clustering.

2. Label Propagation Graph Clustering (LPGC): Another useful algorithm for

determining community structure in networks that was used in this work was an

algorithm called “Label Propagation” [New04]. The core idea for label propa-

gation graph clustering (LPGC) is for a set of node labels to “propagate” through

a network such that each node is assigned a label that corresponds to the nodes of

its neighbors. One of the main advantages of this algorithm is that its computa-

tion time is near linear. For large systems, this algorithm provides fast compu-

tation. The general process for pseudocode of the LPGC is as follows [New04]:

(a) Assign a unique label to each node.

(b) Reassign node labels, node will be assigned the label that most of its

neighbors are labeled with.

(c) If ties occur, they are broken randomly

(d) Stoppage criterion occurs when every node in the network has a label to

which the maximum number of its neighbors belong to. This stoppage

criterion requires that each vertex has at least as many neighbors within its

community as it has with each of the other communities.

3. Nearest-Generator (NG) Clustering: Nearest-generator clustering is a simple

but novel method utilized in this work specifically due to the requirements of

power systems. The nearest-generator method is appropriately named as the

algorithm functions by assigning each bus in the system to the generator which it

is nearest to according to a desired edge-weight metric such as line length or

impedance. This method was developed for a few reasons. The first reason is the

trivial logic of assigning a demand bus to the generator that it is nearest to. The

second reason this method was developed was that it is an efficient way to ensure

that the cluster decompositions follow the microgrid rule of containing at least

one generator. The authors know of no graph clustering algorithm that by default

would cluster the bus system in a way where each cluster would contain at least

one generator.
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4. Two-Stage Graph Clustering Method: To adjust for scalability of bus systems

as they get larger, a two-stage method of graph clustering was applied. As the

size of the bus system increases, the number of clusters formed by a graph

clustering algorithm will also increase as a general rule. As an example, when

betweenness centrality clustering is applied to the IEEE 300-bus system 14 clus-

ters result as the scheme with optimal modularity using this algorithm. In order

to decrease the number of clusters while still respecting optimal modularity and

improve the certainty that each cluster will contain generation and load, a

two-stage clustering method was adopted.

The general process of a two-stage method is as follows: A graph clustering

algorithm is applied to a desired network graph with the stoppage criterion of the

algorithm being set to optimal modularity. Once the algorithm has computed a

community structure, the topology of this structure is converged. A converged

community structure is essentially treating the output memberships of a graph

clustering algorithm as new graph vertices. As a simple example, Fig. 13.3

contains nine vertices. A graph clustering algorithm is applied resulting in

three microgrids as shown by the three clusters in the first-stage method.

A converged graph of this community structure assumes each community of

vertices output from a graph clustering algorithm to be a single vertex in a new

representative graph. Additionally, the edges between communities are the only

Fig. 13.3 Two-stage

process
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edges considered in a converged graph. Figure 13.3 contains a flowchart that

describes the two-stage process. The application of the first clustering algorithm

results in a three-microgrid system by clustering the nine-bus system. From this

converged graph, an additional graph clustering algorithm is applied, thus

becoming a two-stage method. A second-stage algorithm is applied to the

converged clusters from the first-stage method resulting in a final cluster forma-

tion containing only two clusters that represent and fully contain the original

nine vertices.

Deploying a two-stage method allows for important desired results to be

achieved. One consequence of a two-stage method is that the overall number

of clusters can be reduced when the system is large. Another important charac-

teristic of two-stage clustering is that desirable attributes of multiple clustering

algorithms can be considered in a single clustering scheme. As an example, in

this work, a combination of nearest-generator clustering and betweenness cen-

trality clustering were used in a two-stage method.

Two-Stage NG-GN: The nearest-generator (NG) method was used as a first-

stage algorithm and Girvan–Newman (GN) as the second stage. Using these two

algorithms in a two-stage method ensures that positive attributes of both algo-

rithms are encapsulated in the final result. The use of NG as the first-stage

method ensures that every cluster will have a generator. Using weighted

betweenness as a second-stage algorithm will encorporate the utility of finding

community structure based on betweenness. This method was deployed on the

three-bus systems and the economic dispatch for each was analyzed.

5. Graph Cluster Modularity: A method for quantifying the strength of a graph

clustering decomposition is necessary in order to quantitatively understand how

well a graph decomposition is actually clustered. This is why there is need for

graph modularity [SFO13], [GI16]. Modularity index measures the strength of a

division of a graph into clusters. Cluster decompositions with high modularity

scores have dense connections between vertices within clusters but sparse con-

nections between vertices in other clusters. The calculation of graph cluster

modularity allows for quantitative optimization of a graph clustering scheme.

The formula for modularity calculation is as follows.

A clustering scheme will split a graph into a division with k number of

clusters. The calculation of modularity first involves the construction of a matrix

e with dimenstions k� k whose element eij is the fraction of all edges in the

graph that link vertices in cluster i to vertices in cluster j. Conversely, the trace of
this matrix, Trace(e)¼Σieii, is the fraction of edges in the graph that connect

vertices in the same cluster. The trace has a maximum of Trace(e)¼ 1. In an

efficient graph clustering scheme, the trace is ideally near to 1. While this

number is important, it fails to signify any information about connections to

intercluster structure of a clustering scheme [GN03], [New06], [SFO13].

Modularity index goes another step further in including intercluster connec-

tions. Modularity defines a row sum ai¼Σjeij that represent the fraction of edges
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that connect to vertices in cluster i. Regarding these values, modularity is

calculated by:

Q ¼ Σi eii � a2i
� � ¼ Trace eð Þ� k e2 k ð13:1Þ

where kxk indicates the sum of the elements of the matrix x. This value measures

the fraction of edges in the graph that connect vertices of the same cluster minus the

expected value of the same quantity in a network with the same community

divisions but random connections between the vertices. This metric essentially

compares the connections of one scheme to the same scheme with the same number

of random connections. If the number of within-cluster edges is no better than

random, then Q¼ 0. The maximum value of Q is 1. Numbers near 1 indicate

stronger cluster structure. In practice, values for networks will typically fall

between 0.3 and 0.7. Higher values are considered to be rare [SFO13], [GI16].

13.2.3 Software Utilization

The authors used a statistical software, R, and a mathematical programing software,

AMPL to implement the graph-based clustering techniques and economic dispatch

linear program. R is an open source software programming environment that

contains an integrated suite for calculation, graphical display, and data manipula-

tion [UWD16]. AMPL stands for “A Mathematical Programming Language” and is

a useful software for performing optimization using linear programming.

13.3 Implementation and Modeling

13.3.1 Procedure

Figure 13.4 shows the different steps followed for the cluster analysis. A suitable

graph clustering scheme will be applied to a standard bus system to obtain the

different clusters. A multi-area economic dispatch will be applied to the clusters to

do the cost analysis and different indices will also be used to compare the clusters.

In this chapter, static edge weight methods were examined in conjunction with

betweenness centrality and two-stage graph clustering as they were applied to the

IEEE 57, IEEE 118, and IEEE 300 bus test systems. These methods were applied to

intelligently form power network zones or microgrid type structures within the test

bed system. IEEE bus test system data was obtained from [HSA12]. Test system

data come in the form of two separate spread sheets. One sheet contains data

pertaining to information regarding the buses (vertices) in the system. The other
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spreadsheet contains data regarding the transmission lines (edges) in the system.

Data sheets were analyzed using the “igraph” package of R software.

Transmission line lengths were calculated according to the method proposed by

[Fre77]. Admittance/impedance weights of each transmission line were calculated

per the specified line resistance and reactance. BC was also calculated for each

system. After calculation of the weights, graph clustering per weighted between-

ness centrality was performed using the GN algorithm for each type of weight

(topological, admittance/impedance, and length) for all three-bus systems. In addi-

tion to BCGC, other graph clustering algorithms were deployed for grid decompo-

sition. Alternate methods included combinations of a two-stage clustering

algorithm and the nearest-generator method.

The nearest-generator method was deployed both by itself and as a first stage of

the two-stage clustering method. The nearest-generator method assigns each load to

the generator that it was nearest to in accordance with the edge weights (e.g.,

impedance of a transmission line) with the stipulation that each bus on its path to

the nearest generator was also assigned to the same microgrid. This stipulation was

added because although a bus “a” may be nearest to generator “x”, but this does not
guarantee that the buses along bus a’s path to x are also most near to that generator.

Ties and differences may occur. The other deployed graph clustering algorithms do

not guarantee that the cluster scheme forms viable microgrids as it is possible, for

example, that some of the clusters/microgrids formed do not contain any generators.

This was themain reason for why the nearest-generator methodwas deployed. In this

case the decomposition is considered infeasible because it does not follow the

Fig. 13.4 The steps

followed for the cluster

analysis
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definition of a microgrid in its decomposition. We denote this by identifying if the

decomposition followsmicrogrid rules (MGRs). To quantify the effectiveness of the

microgrid decomposition, graph cluster modularity was calculated and compared for

each decomposition. The bus systemgraphswere then plotted as networkflowgraphs

using software capabilities to achieve an effective visualization.

Additionally, to adjust for scalability of bus systems as they get larger the

two-stage method of graph clustering was applied. In this work the two-stage

combination of the nearest-generator graph clustering algorithm and the Girvan–

Newman edge betweenness algorithm were deployed. The two-stage clustering

method could theoretically involve any combination of algorithms. This work

presents a two-stage method of nearest generator (NG) and Girvan–Newman

(GN). The NG graph clustering algorithm was deployed as the first algorithm of

the two-stage process. The GN algorithm was deployed as the second-stage algo-

rithm. Together the combination of these two algorithms in the two-stage clustering

process was denoted NGGN. Other combinations of algorithms were used in the

two-stage process, but since none of them by default guarantee that MGRs will be

followed, the NGGN method was analyzed most thoroughly.

13.4 Numerical Simulations

To see the impact of decomposition structures on cost, an economic load dispatch

problem is applied to these IEEE test systems. Economic load dispatch (ELD) is a

method to schedule the power generator outputs with respect to the load demands

and to operate the power system most economically. In other words, the main

objective is to allocate the optimal power generation of different units at the lowest

cost possible while meeting all system constraints [SBA13]. The economic load

dispatch is performed in a multigenerator system to schedule the generators to

satisfy the loads in the system subjected to generator and transmission line limits.

Attaining an optimal point in the generation values will result in significant savings

to power system companies in terms of fuel cost and resource utilization. In power

system, minimization of operation cost is very important, therefore we can use ELD

as an effectiveness way to evaluate the different clustering techniques.

The clustering techniques divide the bus system into different zones or areas and

the application of economic dispatch on such a system is known as Multi-Area

Economic Dispatch (MAED). The aim of MAED problems is the minimization of

power generation cost while satisfying the load demand in the system and subject to

generation and line flow constraints. The fuel cost for a generating unit i (in $ per
hour) supplying PGi amount of real power can be represented by a quadratic

equation [HSA12] as shown in Eq. (13.2):

Fi PGið Þ ¼ aiPGi
2 þ biPGi þ ci ð13:2Þ
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where ai, bi, and ci are the cost-coefficients of generating unit i and PGi is the real

power generation of the unit i. The objective is to minimize the total cost of

generation, which can be represented by the following equation:

F ¼
Xng

i¼1

Fi PGið Þ ð13:3Þ

where ng is the number of generators working in the bus system. The economic

dispatch problem is then solved subject to several formulated constraints

[ZRK07]. They are listed in Eqs. (13.4)–13.7).

PGimin
� PGi � PGimax

for i ¼ 1::::ng ð13:4Þ
Xng

i¼1

PGi ¼ D ð13:5Þ

Here, the constraint (13.4) implies that the generation from each generator must

be within its maximum and minimum values and the constraint (13.5) shows the

condition that the generation from all the generators should meet the total demand

in the system. The power flow through the tie lines connecting the areas is an

additional constraint in the MAED problem, as shown in constraint (13.6).

Tmnmin
� Tmn � Tmnmax

ð13:6Þ

The power flow between two areas m and n is subjected to a minimum and a

maximum value of Tmnmin and Tmnmax respectively.

Xmg

i¼1

PGi �
Xtc

j¼1

Tcj þ
Xtc

k¼1

Tkc ¼ Dc ð13:7Þ

Equation (13.7) ensure that the loads in each of the zones are satisfied by the

generation within the zone and from the power flow from neighboring zones. Here,

mg indicates the number of generators within the zone, tc the number of tie lines

connected to the zone and Tcj and Tkc indicate the power flowing out from the zone

and coming to the zone from connected zones, since the analysis is done consider-

ing bi-directional power flow between the clusters. The variable Dc indicates the

total active load in the microgrid under consideration. In our model, the cost of

power flow through the tie lines is also taken into consideration. A value of 0.1$ per

MW is taken as its cost and a 200 MW power limit is applied as maximum tie line

flow limit [SCJ13]. In order to compare the different zones obtained by using the

different clustering techniques, the generator cost functions are assumed to be the

same for all the generators in the grid system. The total cost function to be

minimized will be the sum of generation cost plus the cost of tie line power flow

and the modified equation is given in (13.8).
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F ¼
Xng

i¼1

Fi PGið Þ þ
Xt

j¼1

CjTj ð13:8Þ

The variable Cj denotes the cost of tie line power flow which is assumed to be

constant for all the tie lines, t represents the number of tie lines in the model, and Tj
is the amount of tie line power flow [Dan95]. The ED model is developed using the

concept of linear programming with the above-mentioned load, generator and tie

line flow constraints. The ED model is programmed using AMPL (A Mathematical

Programming Language), it is a popular tool used for solving linear programming

problems. AMPL software needs two type of files: a model and data file. The mod

file contains the linear programming code and .dat file contains the information or

data the code works on. A separate .dat and .mod files are created for IEEE 57-, 118-

and IEEE 300-bus systems for every decomposition structures. The ED model

considers only the active loads and generators in the system and does not consider

the reactive power in the system. Tables 13.1 and 13.2 list the generation cost, tie

line flow cost and the total cost for the IEEE 118- and 300-bus systems for the

Length-GN (L-GN), Admittance-GN(A-GN) and NGGN clustering technique

respectively.

For the 118-bus system, there is a 66.6% in reduction in tie-line flow cost for the

A-GN clustered system when compared to the L-GN system and there is a signif-

icant reduction of 86.13% in the case of NGGN method when compared to the

L-GN method. In the case of total cost the cost reductions are 1.21% and 1.64%

respectively for the A-GN and NGGN method.

For the 300-bus system case, the values for the tie line flow cost reductions are

0% for the A-GN method since the cluster was identical to the L-GN method and it

is 29.91% for the LPGN. Similarly, the reduction in total costs are 0% for the A-GN

and 12.64% for the NGGN method. From these results, there is a significant

reduction in tie line flow cost for the LPGN clustering technique when compared

Table 13.1 ED cost

distribution in an IEEE

118-bus system

L-GN A-GN NGGN

Number of clusters 10 11 5

Generation cost ($) 9074.86 9137.03 9148.06

Tie line flow cost ($) 262.871 87.725 36.45

Total Cost ($) 9337.73 9224.76 9184.51

Table 13.2 ED cost distribution in an IEEE 300-bus system

L-GN A-GN NGGN

Generation cost ($) 141,704 141,704 123,824

Number of clusters 14 14 8

Tie line flow cost ($) 233.089 233.089 163.361

Total cost ($) 141,937 141,937 123,988
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to L-GN and A-GN techniques and using the NGGN method we are also able to

achieve a reduction in total cost of the system.

Another parameter which can be used to compare grid clusters is the generation

to load (G/L) ratio in each of the individual clusters. Table 13.3 list the maximum

and minimum value of this G/L for the IEEE 118-bus system, excluding the zones

with no active power generation. A G/L value that is more than 100% indicates a

self-sufficient grid cluster with excess generation that can be given to other

microgrids. A G/L value less than 100% indicates that the generation within the

cluster is not sufficient to satisfy its load and thus require resources from neigh-

boring microgrids to meet its demand. Table 13.4 lists the G/L ratio for the IEEE

300-bus systems and from both these results LPGN clusters are more suited for a

grid system when compared to either of the other two cases because the values are

closer to the ideal value of 100.

13.5 Results

Several different decomposition criteria were utilized in analyzing the different grid

decompositions. This section shows a sample of some effective techniques. An

exhaustive display of structures is not provided due to length of the chapter.

Modularity scores for these criteria are recorded and shown in Tables 13.5, 13.6

and 13.7.

These tables show a modularity score, and whether the given decomposition

follows rules for being considered a microgrid. Modularity index for microgrid

decomposition is a useful metric in determining a grid structures ability to with-

stand microgrid or cascading failures. High modularity indicates dense microgrid

intra-connection while simultaneously maintaining sparse interconnection with

other microgrids. The physical bus system decomposition structures for the 118-

and 300-bus systems that accompany these tables can be seen by the visualizations

contained in Fig. 13.5. Tables 13.8 and 13.9 list all buses in their respective zones

obtained using the three clustering techniques for the IEEE 118- and 300-bus

systems.

Table 13.3 Generator/load

ratio of the 118-bus system

clusters

Generation/load ratio L-GN A-GN NGGN

Maximum value (%) 198.61 277.08 124.48

Minimum value (%) 49.62 47.22 50.63

Table 13.4 Generator/load

ratio of the 300-bus system

clusters

Generation/load ratio L-GN A-GN NGGN

Maximum value (%) 616.61 616.61 411.86

Minimum value (%) 61.90 61.90 86.96
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13.6 Discussion

Our preliminary results indicate that the highest modularity score for either test bus

system occurred using the GN algorithm with edge weights weighted with admit-

tance of the transmission lines. This was evident in the 118-bus system. The 57-bus

system microgrid decompositions were infeasible, when clustered according to any

weighted GN algorithm. The bare topology of the 57-bus system does not respect

betweenness clustering because generators in the 57-bus system are not well

distributed and are topologically positioned very near to each other. This causes

betweenness graph clustering to, by default, form microgrids that do not have

generators within them. Thereby, the decompositions contain microgrids that do

not hold to the definition of microgrid and are hence infeasible. However, when

using the nearest-generator algorithm in the 57-bus system, the highest modularity

Table 13.5 IEEE 57-bus

system displaying modularity

scores of microgrid

decomposition as well as

displays whether the

decomposition follows valid

microgrid rules and is a

feasible decomposition

IEEE 57-bus test system

Cluster scheme Modularity Follows MGR

Topology/GN 0.6307 No

L-GN 0.5505 No

A-GN 0.5071 No

Topology-NG 0.427 Yes

Length-NG 0.4424 Yes

Admittance-NG 0.45 Yes

NGGN 0.434 No

Table 13.6 IEEE 118-bus

system with modularity

scores and the algorithm that

obeys microgrid rule (MGR)

for microgrid decomposition

IEEE 118-bus test system

Cluster scheme Modularity Follows MGR

Topology-GN 0.6908 Yes

L-GN 0.6721 No

A-GN 0.74537 Yes

Topology-NG 0.5151 Yes

Length-NG 0.2995 Yes

Admittance-NG 0.1312 Yes

NGGN 0.6644 Yes

Table 13.7 IEEE 300-bus system displaying modularity scores of microgrid decomposition as

well as displays whether the decomposition follows valid microgrid rules and is a feasible

decomposition

IEEE 300-bus test system

Cluster scheme Modularity Follows MGR

Topology-GN 0.8344 No

L-GN 0.7824 No

G-GN 0.8344 No

NGGN 0.784 Yes
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Fig. 13.5 (a) 118-Bus system clustered with admittance-weighted GN algorithm. (b) 118-Bus
system clustered with length-weighted GN. (c) 118-Bus system clustered with two-stage NG +GN.

(d) 300-Bus system clustered with admittance-weighted GN. (e) 300-Bus system clustered with

length-weighted GN. (f) 300-Bus system clustered two-stage NGGN
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score occurs when the edge weights are determined using admittance. The nearest-

generator (NG) algorithm works poorly when applied by itself in the 118- and

300-bus systems. Betweenness centrality is a good metric for determining

microgrid structures within a given grid system, if generators are well distributed.

This is likely to be the case for smart grid networks. Further work needs to be done

to observe the scalability of these algorithms and focus could be attended to

development of a more specific algorithm that considers microgrid rules and the

BC of objects in the system. An algorithm considering these factors would provide

decompositions with high modularity but also conform to definitions of microgrid.

Modularity index for microgrid decomposition is a useful metric in determining a

grid structure’s ability to withstand microgrid or cascading failures. High modu-

larity indicates dense microgrid intra-connection while simultaneously maintaining

sparse interconnection with other microgrids. However, the modularity score of a

decomposition does not appear to have a significant relationship with the optimi-

zation of economic dispatch.

13.7 Conclusion

When examining economic dispatch of different microgrid decompositions, anal-

ysis shows that decompositions formed using two-stage clustering method show a

reduction in cost. This reduction in cost is mostly due to savings that occur in tie

line flow. Savings that occur in generation cost are quite small and not statistically

significant. The reduction in tie line flow cost results from more even distribution of

tie line flows found in the decompositions formed by two-stage clustering. Though

modularity for two-stage clustering schemes was slightly lower than one-stage

schemes, the economic dispatch showed to be more cost-effective. Though modu-

larity is a good indicator of clustering efficiency, its effect on economic dispatch is

less clear. The two-stage clustering method making use of admittance/impedance

weighted betweenness in conjunction with the nearest-generator method is a novel

method of analysis and grid decomposition. This method shows an overall reduc-

tion in dispatch cost compared to single-stage clustering methods while simulta-

neously ensuring that each microgrid zone will contain generation. Further work

involving scaling this method to very large systems and comparative analysis with

existing power system bus decompositions will add value.
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