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Node-Centric Detection of Overlapping
Communities in Social Networks

Yehonatan Cohen, Danny Hendler, and Amir Rubin

Abstract We present NECTAR, a community detection algorithm that generalizes
Louvain method’s local search heuristic for overlapping community structures.
NECTAR chooses dynamically which objective function to optimize based on the
network on which it is invoked. Our experimental evaluation on both synthetic
benchmark graphs and real-world networks, based on ground-truth communities,
shows that NECTAR provides excellent results as compared with state of the art
community detection algorithms.

Keywords Community detection ¢ Overlapping communities ¢ Extended
modularity * Louvain method ¢ Weighted community clustering

1 Introduction

Social networks tend to exhibit community structure [1], that is, they may be
partitioned to sets of nodes called communities (a.k.a. clusters), each of which
relatively densely-interconnected, with relatively few connections between different
communities. Revealing the community structure underlying complex networks in
general, and social networks in particular, is a key problem with many applications
(see e.g. [2, 3]) that is the focus of intense research. Numerous community detection
algorithms were proposed (see e.g. [4—14]). While research focus was initially
on detecting disjoint communities, in recent years there is growing interest in
the detection of overlapping communities, where a node may belong to several
communities.

Many community detection algorithms are guided by an objective function that
provides a quality measure of the clusterings they examine in the course of their
execution. Since exhaustive-search optimization of these functions is generally
intractable (see e.g. [15, 16]), existing methods settle for an approximation of the
optimum and employ heuristic search strategies.
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A key example is Blondel et al.’s algorithm [8], also known by the name “Louvain
method” (LM). The algorithm is fast and relatively simple to understand and use and
has been successfully applied for detecting communities in numerous networks.
It aims to maximize the modularity objective function [9]. Underlying it is a
greedy local search heuristic that iterates over all nodes, assigning each node to the
community it fits most (as quantified by modularity) and seeking a local optimum.
Unfortunately, the applicability of LM is limited to disjoint community detection.

Our Contributions We present NECTAR, a Node-centric ovErlapping Com-
munity deTection AlgoRithm. NECTAR generalizes the node-centric local search
heuristic of the Louvain algorithm so that it can be applied also to networks possess-
ing overlapping community structure. Several algorithmic issues have to be dealt
with in order to allow the LM heuristic to support multiple community-memberships
per node. First, rather than adding a node v to the single community maximizing an
objective function, v may have to be added to several such communities. However,
since the “correct” number of communities to which v should belong is not a-priori
known to the algorithm, it must be chosen dynamically.

A second issue that arises from multiple community-memberships is that differ-
ent communities with large overlaps may emerge during the algorithm’s execution
and must be merged. We describe the new algorithm and how it resolves these issues
in Sect. 2.

Modularity (used by LM) assumes disjoint communities. Which objective
functions should be used for overlapping community detection? Yang and Leskovec
[17] evaluated several objective functions and showed that which is most appropriate
depends on the network at hand. They observe that objective functions that are based
on triadic closure provide the best results when there is significant overlap between
communities. Weighted Community Clustering (WCC) [18] is such an objective
function but is defined only for disjoint community structures.

We define Weighted Overlapping Community Clustering (WOCC), a general-
ization of WCC that may be applied for overlapping community detection. More
details can be found in our technical report [19]. Another objective function that
fits the overlapping setting is QF [20]—an extension of modularity for overlapping
communities.

A unique feature of NECTAR is that it chooses dynamically whether to use
WOCC or QF, depending on the structure of the graph at hand. This allows it
to provide good results on graphs with both high and low community overlaps.
NECTAR is the first community-detection algorithm that selects dynamically which
objective function to use based on the graph on which it is invoked.

Local search heuristics guided by an objective function may be categorized
as either node-centric or community-centric. Node-centric heuristics iterate over
nodes. For each node, communities are considered and it is added to those of them
that are “best” in terms of the objective function. Community-centric heuristics
do the opposite: they iterate over communities. For each community, nodes are
considered and the “best” nodes are added to it. In order to investigate which of
these approaches is superior in the context of social networks, we implemented both
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anode-centric and a community-centric versions of NECTAR and compared the two
implementations using both the WOCC and the QF metrics. As can be seen in our
technical report[19], the node-centric approach was significantly superior for both
metrics used.

We conducted extensive competitive analysis of NECTAR (using a node-
centric approach) and nine other state-of-the-art overlapping community detection
algorithms. Our evaluation was done using both synthetic graphs and real-world
networks with ground-truth communities, based on several commonly-used metrics.
NECTAR outperformed all other algorithms in terms of average detection quality
and was best or second-best for almost all networks. Our code is publicly available
for download.

Background We now briefly describe a few key notions directly related to our
work. Louvain method [8] is a widely-used disjoint community detection algorithm,
based on a simple node-centric search heuristic that seeks to maximize the modu-
larity [9] objective function. Chen et al. extended the definition of modularity to
the overlapping setting [20]. For a collection of sets of nodes ¢, their extended
modularity definition, denoted QF (%), is given by:

Eg) = N .
(%) = 2|E| 2 2 [A” 2|E|]0i0,’ o

Cce% ijeC

where A is the adjacency matrix, k; is the degree of node i, and O; is the number of
communities i is a member of. If ¥ is a partition of network nodes, OF reduces to
(regular) modularity.

Yang and Leskovec [17] conducted a comparative analysis of 13 objective
functions in order to determine which captures better the community structure of
a network. They show that which function is best depends on the network at hand.
They also observe that objective functions that are based on triadic closure provide
the best results when there is significant overlap between communities.

Weighted Community Clustering (WCC) [18] is such an objective function. It
is based on the observation that triangle structures are much more likely to exist
within communities than across them. This observation is leveraged for quantifying
the quality of graph partitions (that is, non-overlapping communities). It is formally
defined as follows. For a set of nodes S and a node v, let #(v, S) denote the number
of triangles that v closes with nodes of S. Also, let vt(v, S) denote the number of
nodes of S that form at least one triangle with v. WCC(v, S), quantifying the extent
by which v should be a member of S, is defined as:

t.S) | vt(v,V) .
WCC(,5) = § 100 FUTe T it t(v, V) >0

otherwise,

INECTAR code and documentation may be downloaded from: https://github.com/amirubin87/
NECTAR.
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where V is the set of graph nodes. The cohesion level of a community S is defined as
WCC(S) = ﬁ Y ves WCC(v, S). Finally, the quality of a partition € = {Sy, ..., S}
is defined as the following weighted average: WCC(%) = ﬁ Zf;l |Si] - WCC(S;).
NECTAR uses Weighted Overlapping Community Clustering (WOCC)—our
generalization of WCC that can be applied to overlapping community detection.

2 NECTAR: A Detailed Description

The high-level pseudo-code of NECTAR is given by Algorithm 1. The input to the
NECTAR procedure (see 4) is a graph G =< V,E > and an algorithm parameter
B > 1 that is used to determined the number of communities to which a node should
belong in a dynamic manner (as we describe below).

NECTAR proceeds in iterations (lines 12—28), which we call external iterations.
In each external iteration, the algorithm performs internal iterations, in which it
iterates over all nodes v € V (in some random order), attempting to determine
the set of communities to which node v belongs such that the objective function is
maximized.

We implemented two overlapping community objective functions: the extended
modularity function [20], denoted QFf (¥¢), and WOCC—our generalization of the
WCC function [18]. These implementations are described in our technical report
[19,21]. NECTAR selects dynamically whether to use WOCC or QF, depending on
the rate of closed triangles in the graph on which it is invoked. If the average number
of closed triangles per node in G is above the trRate threshold, then WOCC is more
likely to yield good performance and it is used, otherwise the extended modularity
objective function is used instead (lines 5-8). We use trRate = 5, as this provides
a good separation between communities with high overlap (on which WOCC is
superior) and low overlap (on which extended modularity is superior).

Each internal iteration (comprising lines 13-23) proceeds as follows. First,
NECTAR computes the set C, of communities to which node v currently belongs
(line 14). Then, v is removed from all these communities (line 15). Next, the set S,
of v’s neighboring communities (that is, the communities of 4 that contain one or
more neighbors of v) is computed in line 16. Then, the gain in the objective function
value that would result from adding v to each neighboring community (relative to
the current set of communities %) is computed in line 17. Node v is then added to
the community maximizing the gain in objective function and to any community
for which the gain is at least a fraction of 1/8 of that maximum (lines 18-19).
Thus, the number of communities to which a node belongs may change dynamically
throughout the computation, as does the set of communities % .

2If no gain is positive, v remains as a singleton.



Node-Centric Detection of Overlapping Communities in Social Networks 5

If the internal iteration did not change the set of communities to which v belongs,
then v is a stable node of the current external iteration and the number of stable
nodes (initialized to O in line 13) is incremented (lines 20-21).

After all nodes have been considered, the possibly-new set of communities is
checked in order to prevent the emergence of different communities that are too
similar to one another. This is done by the merge procedure (whose code is not
shown), called in line 24. It receives as its single parameter a value o and merges any
two communities whose relative overlap is o or more. If the number of communities
was reduced by merge, the counter of stable nodes is reset to O (lines 25-26).

The computation proceeds until either the last external iteration does not cause
any changes (hence the number of stable nodes equals |V|) or until the maximum
number of iterations is reached (line 28), whichever occurs first. We have set the
maximum number of iterations to 20 (line 1) in order to strike a good balance
between detection quality and runtime. In practice, the algorithm converges within
a fewer number of iterations in the vast majority of cases. For example, in our
experiments on synthetic graphs with 5000 nodes, NECTAR converges after at most
20 iterations in 99.5% of the executions.

LM is a hierarchical clustering algorithm that has a second phase.We imple-
mented a hierarchical version of NECTAR. However, since in all our experiments
the best results were obtained in the first hierarchy level, we only describe the non-
hierarchical version of NECTAR (Algorithm 1).

3 Experimental Evaluation

Xie et al. [22] conducted a comparative study of state-of-the-art overlapping
community detection algorithms. We compare NECTAR with the following 5 of

Figure 1: NECTAR algorithm

1 const maxlter <— 20 12 repeat
2 consta < 0.8 13 s <0 forallthe v € V do
3 const trRate < 5 14 C, < v’s communities
4 Procedure NECTAR(G=<V,E>, B 15 Remove v from all C, communities
5 if triangles(G)/|V| = trRate then 16 Sy —{Ce|qu:ueCA@w L}
6 ‘ use WOCC 17 D < {A(v,C)|C € S,}
7 else 18 C, < {Ce€S|A(W.C)-B = max(D)}
8 ‘ use QE 19 Add v to all the communities of C{,
9 end 20 if C, = C, then
10 Initialize communities 21 | s+t
11 i<o0 22
23 end
24 merge(w)
25 if merge reduced communities num. then
26 ‘ s <0
27 i+

28 until (s = |V|) V (i = maxlter)




6 Y. Cohen et al.

the key performers out of the 14 algorithms they evaluated: the Greedy Clique
Expansion (GCE) algorithm [23], the Cfinder algorithm [12], the Order Statistics
Local Optimization Method (OSLOM) [13], the Community Overlap PRopagation
Algorithm (COPRA) [24], and the Speaker-Listener Label Propagation Algorithm
(SLPA) [10]. In addition, we also evaluate the following four algorithms: Fuzzy-
Infomap [14], Big-Clam [25], Link-Clustering (LC) [26], and DEMON [27]. Details
regarding these algorithms and the parameters we used when invoking them can be
found in our technical report [19, 21].

‘We conducted competitive analysis using both synthetic networks and real-world
networks with ground-truth. We evaluated results using the widely-used Normalized
Mutual Information (NMI) [5], Omega-index [28], and Average F1 score [29]
metrics (descriptions of these metrics can be found in [21]). Our evaluation shows
that NECTAR outperformed all other algorithms in terms of average detection
quality and provided best or second-best results for almost all networks, as we
describe now.

Synthetic Networks Lancichinetti et al. [30] introduced a set of benchmark graphs
(henceforth the LFR benchmark), parameterized on: the number of nodes, n, the
average node degree, k, the number of overlapping nodes, O,, the number of
communities an overlapping node belongs to, O,,, community sizes (varied in our
experiments between 20 and 100 for big communities and between 10 and 50 for
small communities), and more. We mostly use the LFR parameter values used by
[22].> We generate 10 instances for each combination of parameters and take the
average of the results for each algorithm and each metric over these 10 instances.
For each algorithm, we present the results for the algorithm parameter value that
maximizes this average.

Figure 1 presents the average performance of the four best algorithms in terms
of NMI as a function of O,, (the number of communities to which each of the O,
overlapping nodes belongs), for k € {10, 40} and O, € {2500, 5000}. The Omega-
index and average-F1 score results follow the same trends and are thus omitted for
lack of space. They can be found in our technical report [19].

With only a few exceptions, it can be seen that the performance of the algorithms
decreases as O,, increases. This can be attributed to the fact that the size of the
solution space increases with O,,.

We focus first on the results on graphs with a higher number of overlapping
nodes (0, = 2500) and high average degrees (k = 40). The rate of triangles in
these graphs is high (approx. 30 on average) and so NECTAR employs WOCC.
NECTAR is the clear leader for big communities. It achieves the best results for
almost all values of O, and its relative performance improves as O,, increases,
confirming that the combination of NECTAR’s search strategy and the WOCC
objective function is suitable for graphs with significant overlap. Cfinder improves
its relative performance as O,, increases and is the second performer for O,, €

3For more details on parameter values used for LFR, refer to [21].
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Big communities, k = 40, O, = 2500 Small communities, k = 40, O, = 2500
1

— T

= 0.8 b= —

Z 0.6 NECTAR
0.4 —r— GCE
0.2 ¥ 0.2 ——— C-Finder

2 3 4 5 6 7 8 2 3 4 5 6 7 8 | o os.om
Big communities, k = 10, O,, = 500 Small communities, k = 10, O, = 500| — 5 SLPA

NMI

Fi

i

g. 1 Four best performers over synthetic networks in terms of NMI

{4,7, 8}. For small communities, Cfinder has the lead with NECTAR being second
best and OSLOM third for most values of O,,, and NECTAR taking the lead for
O, =8.

We now describe the results on graphs with lower numbers of overlapping nodes
(0, = 500) and low average degree (k = 10). The rate of triangles in these graphs
is low (approx. 3.5 on average) and so NECTAR employs extended modularity.
NECTAR provides the best performance for both small and large communities
for almost all values of O,,. The relative performance of Cfinder deteriorates as
compared with its performance on high-overlap graphs. It is not optimized for
sparser graphs, since its search for communities is based on locating cliques.
OSLOM is second best on these graphs, having the upper hand for O, = 1
and providing second-best performance for O,, > 1. These results highlight the
advantage of NECTAR’s capability of selecting the objective function it uses
dynamically according to the properties of the graph at hand.

Summarizing the results of the tests we conducted on 96 different synthetic graph
types, NECTAR is ranked first, with average rank of 1.58, leading in 33 out of 96 of
the tests, followed by OSLOM, with average rank of 2.79.

Real-World Networks We conducted our competitive analysis on two real-world
networks—Amazon’s product co-purchasing network and the DBLP scientific col-
laboration network. We downloaded both from Stanford’s Large Network Dataset
Collection [31]. The Amazon graph consists of 334,863 nodes and 925,872 edges.
Nodes represent products and edges are between commonly co-purchased products.
Products from the same category are viewed as a ground-truth community.

The DBLP graph consists of 317,080 nodes and 1,049,866 edges. Nodes
correspond to authors and edges connect authors that have co-authored a paper.
Publication venues (specifically, conferences) are used for defining ground-truth
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Fig. 2 Seven best performers over real-world networks

communities. Thus, the set of authors that have published in the same conference is
viewed as a ground-truth community.

In [17], Yang and Leskovec rate the quality of ground-truth communities of
Amazon and DBLP (as well as those of additional networks) using six scoring
functions, such as modularity, conductance, and cut ratio. They rank ground-truth
communities based on the average of their ranks over the six corresponding scores
and maintain the 5000 top ground-truth communities per each network. These are
the ground-truth communities provided as part of the datasets of [31].

The left part of Fig.2 presents the results of the seven best algorithms on
Amazon. The right part refers to results on DBLP. The rate of triangles in the
Amazon graph is low, and so NECTAR employs extended modularity. NECTAR
provides the best performance with an overall score of 2.062, approximately 3.5%
more than InfoMap, which is second best. NECTAR has second-best average F1
score, lagging only slightly behind Cfinder. In terms of Omega-index, NECTAR is
second-best as well, lagging behind InfoMap, and Cfinder is the last performer.

In the DBLP network, the rate of triangles is high, and so NECTAR employs
WOCKC. Cfinder has the highest overall score, enjoying a small margin of approxi-
mately 2.5% w.r.t. NECTAR, which is second-best. LC is the third performer, with a
score lower than NECTAR’s by approximately 8%. In terms of NMI, Cfinder is first
with a score of 0.657 and NECTAR is third best, lagging behind by approximately
5.5%. NECTAR has the highest average F1 score, but Cfinder’s score is only
approximately 1% smaller. COPRA obtains the third score, nearly 17% less than
NECTAR’s. All algorithms fair poorly in terms of their Omega-index.

In order to assess the impact of dynamic objective function selection, we
compared NECTAR with two variants that consistently used either Q¥ or WOCC.
In cases of disagreement, NECTAR’s score was, on average, 30% higher than that
of the WOCC version and 13% higher than the QF version.

We also measured time complexity on numerous networks, while varying the
number of nodes and the average node degree. NECTAR’s average running time
was second best among all evaluated algorithms.
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4 Conclusions

We introduced NECTAR, a novel overlapping community detection algorithm that
generalizes Louvain’s search heuristic and selects dynamically which objective
function to optimize, depending on the structure of the graph at hand.

Our evaluation shows that NECTAR outperforms all other algorithms in terms
of average detection quality. Analysis of our empirical results shows that extended
modularity yields better results on networks with low average node degrees and low
community overlap, whereas WOCC yields better results on networks with higher
degrees and overlap. The fact that NECTAR is able to provide excellent results on
both types of networks highlights the importance of objective function dynamic
selection, as well as the general applicability of Louvain’s search heuristic.

Acknowledgements Partially supported by the Cyber Security Research Center at Ben-Gurion
University and by the Lynne and William Frankel Center for Computer Science.
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Community Structures Evaluation in Complex
Networks: A Descriptive Approach

Vinh-Loc Dao, Cécile Bothorel, and Philippe Lenca

Abstract Evaluating a network partition just only via conventional quality
metrics—such as modularity, conductance or normalized mutual of information—
is usually insufficient. Indeed, global quality scores of a network partition or
its clusters do not provide many ideas about their structural characteristics.
Furthermore, quality metrics often fail to reach an agreement especially in networks
whose modular structures are not very obvious. Evaluating the goodness of network
partitions in function of desired structural properties is still a challenge.

Here, we propose a methodology that allows one to expose structural information
of clusters in a network partition in a comprehensive way, thus eventually helps one
to compare communities identified by different community detection methods. This
descriptive approach also helps to clarify the composition of communities in real-
world networks. The methodology hence bring us a step closer to the understanding
of modular structures in complex networks.

Keywords Community structure ¢ Quality function ¢ Community evaluation

* Community detection

1 Introduction

Modular structures have been noticed in a large range of real-world networks
through many researches on social networks [6, 7, 11], computer networks such
as the Internet [5, 14], biochemical networks [9, 12], etc. Nodes in networks have a
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tendency to connect preferably with the similar ones to establish functional groups,
sometimes called clusters, modules or communities. Understanding modular struc-
tures of networks pays an essential role in the study of their functionalities.

Since the notion of community varies according to specific contexts, it seems
not appropriate to use a global quality criteria in order to evaluate graph partitions.
Depending on which kind of network is considered in which kind of application,
one might need to decompose a network into clusters that possess specific features
with desired structures. Once a network partition is available, the clusters need to
be analyzed to verify the existence of features as well as their quality in the global
image of the network.

In small networks, clusters can be evaluated manually by simple visualizations,
however when the sizes grow, manual evaluation is not feasible. In these cases,
expected concepts of community are mathematically translated into quality metrics
such as conductance or modularity Q [3, 7, 11] in order to quantify the quality
of clusters. Those quality functions score the goodness of clusters according to
their associated concepts of community but can not identify or describe more
specific structural patterns. In other words, many interested structure features in
communities are invisible to quality functions.

In this work, we propose a methodology to describe communities through intra-
cluster links and inter-cluster links in such a way that structural information is
exposed comprehensively to evaluators. Such a description will help one to evaluate
network partitions according to different concepts of community and to detect
more sophisticated structures. Our results show that ground-truth communities
composition in many real-world networks exposes a diversity in structural patterns,
which are very different from the conventional notion of community.

2 Related Works

Many researches have been conducted in order to understand the nature of ground-
truth communities in real-world networks as well as ones identified by community
detection algorithms over a broad range of networks. Although the notion of
community is not straight forward, these researches provide essential information so
that one can study several qualities of communities as well as their characteristics.

Leskovec et al. [13] compared the performance of 13 quality functions in term
of their efficiencies to identify community goodness properties such as density,
cohesiveness. Besides, the authors also analyzed the consistence of these quality
functions’ performances to many simulated perturbations.

Due to the fact that community structures may strongly differ from networks
to networks. Creusefond et al. [4] proposed a methodology to identify groups
of networks where quality functions perform consistently. The authors analyzed
quality functions in three levels of granularity from node-level to community-level
and network-level.
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Guimera et al. in [8] proposed a methodology that allows one to extract and
display information about node roles in complex networks. Specifically, the role
of a node in a network partition can be defined by its value of within-module
connectivity and its participation into inter-cluster connections. Our work here is
based on a similar method of illustration, but instead of analyzing roles of nodes in
a network partition, we conduct a community-level analysis to expose the nature of
communities that constitute the network.

3 Community Anatomy via Out Degree Fractions of Nodes

The idea behind quality metrics is that given a partition, they indicate how the
component subgraphs fit their concepts of community. In this section, we present
a methodology to analyze communities in networks based on the analysis of Out
Degree Fraction (ODF) of their nodes. We show that communities can be classified
in several structural types based on the variation of their nodes’ ODFs.

3.1 Community Structures in Term of ODF

A graph G = (V,E) is composed of a set of n = |V| nodes and m = |E| edges
where E = (u,v) : u,v € V. Given a cluster S of ng nodes, which is a subgraph of
G, a function f(S) quantifies a quality metric of S according to a particular notion of
community. Let d(u) be the degree of node u. The out degree fraction of node u in
community S is measured by:

|(u,v) € E:v ¢S]

ODFs(u) = 0

When evaluating a community, one would normally not only want to know the
average fraction of out degrees in that community, but also be curious about how are
they distributed over nodes. By observing the average and the standard deviation of
ODF values of nodes in a community, one could deduce the composition of its
population. From now on, for given a community S, meanODF and sdODF denote
the average and the standard deviation of ODF values of nodes in S respectively.
They are calculated as following:

* meanODF(S) = W

(1) — 2\ 1/2
« sdODF(S) = (Zues[onmm meanODF ()] )

ng—1

As a meanODF value indicates the average out degree fraction of nodes in a
community, a low meanODF implies that nodes in the community connect mostly
with other nodes inside the community while a high meanODF means that nodes
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Fig. 1 Six representative community structures that can be measured by community’s nodes out
degree fractions (meanODF and sdODF). Blue edges represent intra-community connections and
red edges (stubs) represent inter-community connections. Dark background zones in S4, S5, S6
structures illustrate a core-periphery arrangement

connect preferably to nodes in other communities rather than to the ones in its own.
We could refer low meanODF and high meanODF characteristics to assortative
structure and disassortative structure respectively. A medium value of meanODF in
this case signifies a hybrid structure of the community as shown in Fig. 1.

We know that a standard deviation of a variable help us to understand the
fluctuation of its values. Thus, to understand the composition of a community, we
inspect its sdODF value. A low sdODF value implies that community’s out degrees
are proportionally distributed among nodes in a way to limit the variation of ODF
values. Meanwhile, a high sdODF argues a diverse connection patterns of nodes
in the community. In other words, based on sdODF value of a community, one
can determine whether is there a clear division of roles [8] among nodes in the
community (high sdODF) or nodes are just basically regular ones (low sdODF).

One might wonder why we chose the average and the standard deviation of
ODF values of nodes in order to describe a community. In fact, each quality metric
has its own meaning and reveals a different aspect of community structure [13].
Because the notion of community also changes according to domains of application
and analysis purposes, there is actually no universal metric that can generalize
the goodness of communities. Generally, one would expect a clustering where the
majority of edges reside between nodes in a same cluster while there are few edges
that cross to other clusters. The meanODF and sdODF are used since together, they
can describe the distribution edges among nodes in an informative way. However,
quality metrics could be chosen differently to match with specific concepts of
community.
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3.2 Community Structures Classification via Nodes’ ODFs
Analysis

Follow this line of argumentation, we classify communities into different structural
groups based on their node orientations and their structure homogeneities. Commu-
nity structures in real networks are undeniably much more complex and can not just
only be described by meanODF and sdODF values. However, this simplification
helps one to have a general view of networks by qualifying community anatomy.
Here, we suggest to classify communities into six following groups, which are
illustrated in Fig. 1:

e Conventional communities (S1—low meanODF and low sdODF): This structure
corresponds to the traditional definition of community where the majority of
edges locate inside communities. Most of actual community detection methods
are based on this notion. In addition, community’s out degrees are homoge-
neously spread over its nodes.

e Casual communities (S2—medium meanODF and low sdODF'): Modular struc-
ture is not very clear in this type of community since there is not a clear
propensity in node connections inside and outside of communities.

o Extrovert communities (S3—high meanODF and low sdODF): This structure
exposes an explicit disassortative structure where members in a same community
are not joined together generally, but rather connect with members of other
communities.

* Full-core communities (S4—Ilow meanODF and high sdODF): This group of
communities shows a striking similarity with ones of S1 structure since both
possess relatively dense inner connections. The only distinction between S1 and
S4 structure is that S4 contains a few numbers of active connector nodes, which
attract most out links. These connectors form a peripheral zone, whereas the other
nodes constitute a core as illustrated in Fig. 1.

* Half-core communities (S5—medium meanODF and high sdODF): These com-
munities also display core-periphery structure, but there is not anymore a quantity
dominance of core nodes over periphery nodes like that of in structure S4.

o Seed-core communities (S6—high meanODF and high sdODF): Core-periphery
structure in this class of communities is degenerated or even disappeared since
out-bound connectors predominate in the whole community. Most nodes connect
mainly outside their community with a few exceptions. This structure have
many similarities with S3 structure and S5 structure and can be considered as
a transition state of community evolution between S3 and S5.

Here, a node is considered as a core node if it connects mostly inside its
community whether a periphery node is the one that attaches communities together.
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3.3 Network Partition Evaluation Methodology

We propose a methodology to decompose network partitions into classes of
structurally similar communities. For a given network partition:

1. Compute meanODF and sdODF values over all communities (cf. Sect. 3.1)

2. Present each community by its couple of values (meanODF, sdODF) to observe
the distribution of these quality metrics.

3. Choose thresholds for each quality metric in order to describe desired structure
qualities for communities.

4. Identify structure profiles of all communities based on a representative map (cf.
Fig. 1) defined from step 3

As previously mentioned in Sect. 3.1, quality metrics reveal different aspects of
community structures. Thus, replacing meanODF and sdODF in step 1 by other
quality metrics could also provide further structural information on community
structures of networks under consideration. A list of quality metrics and their
performances in detecting ground-truth communities in several networks can be
found in [13].

Based on requirements of each specific context, thresholds to be chosen in
step 3 could be varied and must not cover the whole ranges of meanODF and
sdODF . In this case, the methodology also serves as a filter to eliminate unqualified
communities. The choice of thresholds is, in fact, relative and can be a reference for
analysis purposes.

4 Community Description Experiment on Real-World
Networks

We analyze undirected, unweighted and scale-free networks [2] with ground-truth
communities on SNAP dataset [10]. These communities are overlapped and may
not cover the whole network, which means one node can belong to no community
or can be members of many communities at a same time. The community sizes, the
overlap sizes and the community memberships per node in these networks follow a
power-law distribution [13].

Livejournal network is an online blogging community where users declare their
friendships. Youtube network represents a social network on Youtube video sharing
website. DBLP computer science bibliography co-authorship network is constructed
in a way that two authors are connected if they published at least one paper together.
Amazon co-purchased network represents products which are frequently bought
together on Amazon website. A description of these networks and measures on their
ground-truth communities can be found in Table 1.

Here, we take the conductance j1 as an example to demonstrate the weaknesses of
conventional quality metrics [1]. The latter represents average portion of boundary
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Table 1 Network summary: N number of nodes, E number of edges, C number of communities,
S average community size, O community memberships per node, & average conductance [13] of
communities

Network N E C S O m Community nature
Livejournal®* | 4.0M 347M | 664,414 |10.79 |6.24 |0.95 | User-defined
communities
Youtube® 1.13M | 3.0M 16,386 7.89 245 091 | User-defined groups
DBLP* 0.32M | 1.05M 13,477 |53.41 |2.76 |0.62 | Publication venues
Amazon?® 0.33M | 0.93M 75,149 30.22 |7.16 |0.58 | Product categories

http://snap.stanford.edu/data/
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Fig. 2 The density of ground-truth communities on a meanODF, sdODF space. The dashed lines
represent thresholds between the six presented structures S1-S6 (cf. Sect. 3.2)

edges in ground-truth communities of a network. This metric could tell us a global
score of community quality, but they can not distinguish many different structures
that exist simultaneously in networks. For instance, the average conductance [t
shows that there are above 90% of edges in Livejournal and Youtube that cross
communities, meanwhile these numbers are about 60% in DBLP and Amazon.
However, one could not gain more insight into the differences of community
structure between Livenetwork and Youtube, or between DBLP and Amazon. Thus,
we describe the ground-truth communities of these networks in the next part by
applying the methodology presented in Sect. 3.3.

Figure 2 presents the landscape of meanODF, sdODF values of all ground-truth
communities in the four networks (cf. Sect.3.3, step 1 and 2). We classify these
communities into the six groups as presented in Sect. 3.2 by choosing thresholds for
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Table 2 The composition of Network S1 S2 S3 S4 S5 S6
ground-truth communities in —

the four networks (in Livejournal |0.29 | 0.74 |90.17 | 0.31 3.88 | 4.61
percentage). Bold values Youtube 0.08 | 2.36 |65.36 @ 1.37 |17.55 | 13.28
indicate dominant structure(s) DBLP 6.28 | 2.07 | 4.87 2344 5786 | 5.48

Amazon 833 |31.13 2357 | 9.13 |26.63 | 1.21

meanODF at 0.3, 0.7 and for sdODF at 0.2 (cf. Sect. 3.3, step 3). The landscape
helps us to analyze the composition of ground-truth community structures in each
network. We remind that the density landscapes in Fig.2 do not represent the
networks themselves, but the community structures in these networks.

We can see that the structural patterns of ground-truth communities within
four networks are totally distinct. Normally, one would expect that ground-truth
communities in a network have a quite similar structure, but the density landscapes
in Fig. 2 illustrate a more complex community composition. While in Livejournal
and Youtube networks, the majority of communities have a similar structure, those
in DBLP and Amazon networks vary in a large range. Table 2 describes a global
composition of the four networks in terms of the six basic structural groups (S1-
S$6). We find that S3 structure occupies around 90% and 65% of communities in
Livejournal and Youtube networks respectively. This implies the fact that most users
in these networks usually have friendships outside their communities rather than
inside. In addition, there are many closely-knit members in Youtube network, who
are not very active outside their communities (S5 and S6).

In DBLP and Amazon network, although there is always a dominance of
some structures, we notice a more equilibrate repartition of communities over
the landscapes. In the case of DBLP, nearly 60% of publication venues (S5)
attract a variety type of authors in term of cooperation profile. These communities
could represent traditional publication venues which gather at the same time high
influence authors and newcomers. Meanwhile, there is about 23.44% publication
venues where presented just a few active eminent authors. In Amazon network, the
high presence of S2 and S3 structures explains that products are more often co-
purchased with ones of other categories. Besides, there are also many miscellaneous
product categories (S1, S4, S5) which consist of a high portion of products that are
mostly complemented by ones in the same categories. Further analysis in natures
and functionalities of products need to be conducted in order to understand this
commercial network.

5 Conclusion

We know that optimizing a particular quality function could discard many interest-
ing community structures. The methodology proposed in this paper presented a new
approach to community analysis, where specialists can evaluate network partitions
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themselves according to contextual concepts with more insight into community
structures. We also extended the notion of community, which is actually generalized
for most community detection methods and then described communities in real
networks in an informative way that many quality metrics fail to do. The extended
notion could be applied in order to identify more complex structures in networks.
Furthermore, we continue to enrich this notion by employing other pairs of metrics
to describe more sophisticated characteristics that exist in real-world communities.
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Do Network Models Just Model Networks?
On the Applicability of Network-Oriented
Modeling

Jan Treur

Abstract In this paper for a Network-Oriented Modelling perspective based on
temporal-causal networks it is analysed how generic and applicable it is as a general
modelling approach and as a computational paradigm. This results in an answer to
the question in the title different from: network models do just model networks!

Keywords Network-oriented modeling ¢ Temporal-causal network models
* Applicability

1 Introduction

Although the notion of network itself and its use in different contexts can be
traced back to the years 1930-1960 (e.g., [1], or [2], Chap. 1, Sect. 1.4), the
notion of Network-Oriented Modelling as a modelling approach (sometimes also
indicated by NOM) can be found only in more recent literature, and only for specific
domains. More specifically, this term is used in different forms in the context of
modelling organisations and social systems (e.g., [3—5]), of modelling metabolic
processes (e.g., [6, 7]), and of modelling electromagnetic systems (e.g., [8]). The
Network-Oriented Modelling approaches put forward in this literature are specific
for the domains addressed, respectively social systems, metabolic processes and
electromagnetic systems.

This and other Network Science literature may suggest that sometimes in real
world domains networks occur, and by some modelling process, network models
are obtained that model these given networks. That might suggest a positive
answer to the question in the title: network models just model networks given in
real world domains. For example, network models can be obtained for metabolic
networks, brain networks, computer networks and social networks, all occurring (or
conceived) in the real world. However, if networks occur in real world domains,
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how often do they? Are networks everywhere? Or is there just a limited class of
situations or processes that are conceived as networks?

This paper shows that also a different answer is possible to the question in the
title. It is indicated how a generic, unified Network-Oriented Modelling method
can be obtained that is applicable more generally. The Network-Oriented Modelling
approach described here was developed initially with unification of modeling of
human mental processes and social processes in mind. However, it has turned out
that the scope of applicability has become much wider, as is shown in the current
paper. Actually, it will be indicated that in this way practically all processes in the
real world can be modelled from a Network-Oriented perspective, not only those
processes or situations in the real world that are generally conceived as networks.
This provides a negative answer on the question in the title: network models can
model all kinds of processes in the real world, not just processes generally conceived
as networks.

The Network-Oriented Modelling approach considered here uses temporal-
causal networks as a basis [2, 9]. The temporal perspective allows to model
the dynamics of the interaction processes within networks, and also of network
evolution. Temporal-causal network models can be represented in two equiva-
lent manners: by a conceptual representation, or by a numerical representation.
Conceptual representations can have a graphical form (as a labeled graph with
states as nodes and connections as arcs), or the form of a matrix. The following
three elements define temporal-causal networks, and are part of a conceptual
representation of a temporal-causal network model:

* Connection weight wyxy Each connection from a state X to a state Y has
a connection weight wyy representing the strength of the connection, often
between 0 and 1, but sometimes also below 0 (negative effect).

* Combination function cy(.) For each state Y (a reference to) a combination
function cy(.) is chosen to combine the causal impacts of other states on state
Y. This can be a standard function from a library (e.g., a scaled sum function) or
an own-defined function.

* Speed factor 1y For each state Y a speed factor ny is used to represent how fast
a state is changing upon causal impact. This is usually assumed to be in the [0,
1] interval.

Combination functions in general are similar to the functions used in a static
manner in the (deterministic) Structural Causal Model perspective described, for
example, in [10-12], but in the Network-Oriented Modelling approach described
here they are used in a dynamic manner, as will be pointed out below briefly.
Combination functions can have different forms. The more general issue of how to
combine multiple impacts or multiple sources of knowledge occurs in various forms
in different areas, such as the areas addressing imperfect reasoning or reasoning
with uncertainty or vagueness. For example, in a probabilistic setting, for modelling
multiple causal impacts on a state often independence of these impacts is assumed,
and a product rule is used for the combined effect; e.g., [6]. In the areas addressing
modelling of uncertainty also other combination rules are used, for example, in
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possibilistic approaches minimum- or maximum-based combination rules are used;
e.g., [6, 13, 14]. In another area, addressing modelling based on neural networks
yet another way of combining effects is used often. In that area, for combination of
the impacts of multiple neurons on a given neuron usually a logistic sum function is
used; e.g., [15-17].

The applicability of a specific combination rule may depend much on the type
of application addressed, and even on the type of states within an application.
Therefore the Network-Oriented Modelling approach based on temporal-causal
networks incorporates for each state, as a kind of label or parameter, a combination
function indicating a way to specify how multiple causal impacts on this state are
aggregated. For this aggregation a number of standard combination functions are
available as options; for more details, see [2], Chap. 2, Sects. 2.6 and 2.7). These
options cover, for example, scaled sum functions, logistic sum functions, product
functions and max and min functions. In addition, there is still the option to specify
any other (non-standard) combination function.

A conceptual representation of temporal-causal network model, including the
above three concepts (connection weight, combination function, speed factor) can
be transformed in a systematic and automated manner into an equivalent numerical
representation of the model [2, 9] by composing the following difference and
differential equation for each state Y (where the X; are the states with connections
to Y):

Y(t + At) = Y(t) + My [Cy ((1))(1, yXl(t), cee, @), ka(l)) — Y(l)] At
dY(D)dt = my [ey (@x,, yXi (1), ..., 0x., yXi(1)) — Y(1)]

This paper discusses how generic and applicable Network-Oriented Modeling
based on temporal-causal networks is in general as a dynamic modelling approach
both for continuous systems (Sect. 2) and discrete systems (Sect. 3). In Sect. 4 a
number of actual applications of Network-Oriented Modeling is discussed, varying
from mental processes to social interaction processes.

2 Modeling Continuous Dynamical Systems as Networks

In the current section it is discussed how temporal-causal networks subsume smooth
continuous dynamical systems, as advocated, for example in [18] to model human
mental processes. The notion of state-determined system, adopted from [19] was
taken as the basis to describe what a dynamical system is in [20], p. 6. That a
system is state-determined means that its current state always determines a unique
future behaviour. This property is reflected in modelling and simulation, as usually
some rules of evolution are specified and applied that indicate how exactly a future
state depends on the current state. State-determined systems can be specified in
mathematical formats; see [19], pp. 241-252 for some details. A finite set of states
(or variables) X1, ..., X, is assumed describing the system’s dynamics via functions
Xi(t), ..., X,(t) of time variable .
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In this section it is shown how any smooth continuous dynamical system
(assumed as state-determined) can be modeled by a temporal-causal network in two
steps. First it is discussed how any smooth continuous state-determined system can
be described by a set of first-order differential equations, and next it is shown how
any set of first-order differential equations can be modelled as a temporal-causal
network.

2.1 From State-Determined Systems to Differential Equations

From an abstract theoretical perspective the state-determined system criterion can be
formalized in a numerical manner by functions F;(Xj, ..., X, s) that express how
for each time point 7 the future value of each state X; at time 7 + s uniquely depends
on s and on X(t), ..., X,(t); see also [2], Chap. 2, Sect. 2.9; for an alternative
treatment, see [19], pp. 243-244. To illustrate the idea by a simple example, consider
a state-determined system in one state variable X with values >0 described by

X(t+5) = F(X(t),5) = (X(t)2 + as)

By differentiating both sides to s and by choosing s = 0 the following is obtained:

aX(1)  [OF (X(1).5)
dr _|: ds i|v=()

The right hand side can be worked out as follows:

OF (X(1).5) 9/ (X()* +as) 1a

s ds CJX@O+avs)

So by substituting s = 0:

|:8F(x(t),s)i| | e | e
R N e T
Thus the following differential equation for X is obtained:

dx@) la
dr— X(r)

This differential equation has an analytic solution of the form

X(s) = (X(O)2 + Ocs)
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which indeed confirms the formula assumed at the start of the example. This
illustrates how a state-determined system can be described by first-order differential
equations. For more details, see [2], Chap. 2, Sect. 2.9; for an alternative treatment,
see [19], pp. 243-244.

2.2 From Differential Equations to Temporal-Causal Networks

Next it is shown by an example how any model described by a set of first-order
differential equations can be described by a temporal-causal network. Consider an
arbitrary example of a model described by a set of first-order differential equations:

dVZt(’) = Z(0)-Y (1) (1 — W()
dxd_f) — X(1) (1 - W)
% = X(1) — Y(1) + Z(1)
di_gt) = Z() (1 - Y(0))

To determine a temporal-causal network representation for this model, the
four states W, X, Y, Z are considered as the nodes. From each of the equations
by inspecting which states occur in the right hand side it can subsequently be
determined that (in addition to the effect of the state itself): Y and Z affect W,
W affects X; X and Z affect Y; Y affects Z. These causal connections can be
represented in a conceptual graphical form that is shown in Fig. 1. Note that the
connection weights and speed factors are not mentioned as they are all assumed 1.
The combination functions will be discussed below. Considering the numerical
representation, note that, when comparing, for example, the second differential

Fig. 1 Graphical conceptual
representation for the

example model based on the w
given differential equation
representation

zZ

U
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equation to the numerical representation format defined in Sect. 1, it can be
rewritten as.

dXd—ft) =X (1 —=W(@) = [X(0) (1 —W() +X(©)] —X(0)

Here [X(1) (1 — W(t)) + X(t)] can be viewed as the result of a combination
function

ex(Vi.Vy) =V, (1-V)+V,

applied to X(t) (for Vi) and W(¢) (for V). In a similar manner the following
combination functions can be identified from the differential equations:

cw (Vi,Vo,Va) =V3-Vo, (1 =V)+ Vi =V-Va + Vi + ViV,
Cx (V],Vg) =V, (1 — V]) +V, =2V, — ViV,
cy(Vi,Vo, V) =Vi=Vo+ Vs + Vo =V + V3

cz(Vi, Vo) = Vo (1 =Vy) +V, =2V-ViV

Using these combination functions, the original differential equations transform
into the following numerical representation of a temporal-causal network represen-
tation where all speed factors y and all connection weights  for connected states
are 1:

dW(r)
dt

=Ny [ew (@ywY (1), 0zwZ(t), owwW (1)) — W(1)]

d);# =MNx [CX ((:)X,XX(I), (g)W’XW(Z‘)) _X(t)]

dz_gt) = nY [CY ((DX,YX(I), (oY,yY([)’ wZYZ(t)) _ Y([)]

dZd—Et) =nzlez (0yzY (1), 072Z(1)) — Z(1)]

It turns out that the model described by the differential equations can be
remodeled as a special case of a more general numerical temporal-causal network
model representation.

So, it has been found that any smooth continuous dynamical system can be
modelled as a temporal-causal network model, by choosing suitable parameters
such as connection weights, speed factors and combination functions. In this sense
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this Network-Oriented Modelling approach is as generic as dynamic modelling
approaches put forward, for example, in [15-19, 21]. This indicates that using this
Network-Oriented Modelling approach does not limit the scope of applicability of
the modelling in comparison to the general (smooth continuous) dynamical system
approach. In Sect. 3 the discrete case is analysed.

3 Modeling Discrete Dynamical Systems as Networks

The numerical representations of temporal-causal network models can also be used
to model any discrete and binary processes, as will be shown in this section.

3.1 Real-Valued Discrete Dynamical Systems

To consider discrete dynamical systems as often considered in discrete event
simulation (e.g., [22, 23]), for example, first set time step Ar = 1. Then the
difference equation for any state Y becomes

Y(t + l) = Y(t) + ny [CY ((’)le yXl (t)7 DRI (’)ka YXk(t)) _Y(t)]
=1 =y Y@ +nycy (wx,, vX (1), ..., 0x,, yXi (1)

As 0 < ny <1 is assumed here, the new value for Y is a weighted average of
the current value and the aggregated impact with ny and (1 — ny) as weights. Next,
if the connection weights for all states X and Y with a connection from X to Y is
assumed wyy = 1, the following is obtained:

Y+ 1) =0—my) Y@ +nyey Xi(0), ..., X(2)
Moreover, if ny = 1 for all states Y is assumed, the following is obtained:
Y+1) =cy (Xi(0),.... X))

This is a very general format, often used to specify iteration rules for discrete
simulations. So, all such approaches are covered by temporal-causal networks.
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3.2 Binary Discrete Dynamical Systems and Finite
State Machines

One step further is when all state values are assumed binary: O or 1, and all
combination functions cy(...) only generate values O or 1, when applied to values
0 or 1. Then the previous iteration equation

Y(e+1) =cy (Xi(0).....X(0)

can be taken as a general evolution or transition rule for a discrete binary dynamical

system. If the overall states are defined as vectors X(7) = (Xi(?), ..., Xi(t)) with
values O or 1, and for V = (Vy, ..., V}) the vector combination function ¢(.) is
defined by

c(V) = (ex1(V),....exx (V) = (ex, X1(D),.... Xk(®) ... .ex, (X1 (D), ..., X(D))),

the transitions of overall states are defined as
Xi@t+1D,.... %@+ 1)) = (cx, Xi(?),....X(0),...,ex, (Xi(9),...,Xk()))
or in short notation
X(t+1) =cX@®)

This is illustrated by a simple model of traffic lights at a crossing of two roads
A and B, where traffic on A has priority over traffic on B. For example, if no
approaching traffic is sensed on road A, then the traffic light for road B is not red,
and for road A red. The rules describing state transitions can be described by the
following transition relations:

traffic_on_road_A — no red_light_for_road_A A red_light_for_road_B

no traffic_on_road_A A traffic_on_road_B — no red_light_for_road_B A
red_ light_for_road_A

no traffic_on_road_A A no traffic_on_road_B — no red_light_for_road_A A
red_light_for_road_B

These transition relations can be represented by a (vector) combination function
defined by: ¢(1, V,, Vi, V4) = (1, V5, 0, 1); ¢(0, 1, V3, V4) = (0, 1, 1, 0); ¢(0, 0, V3,
V4) = (0, 0, 0, 1). This shows how the Network-Oriented Modelling approach based
on temporal-causal networks subsumes modelling by discrete binary dynamical
systems.

Within theoretical analyses often variants of transition systems or finite state
machines are used as universal ways to specify computational processes. In more
detail and illustrated by the above traffic light example, the format for binary discrete
dynamical systems described above as a special case of temporal-causal networks
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can be used to model transition systems or finite state machines in the format of this
Network-Oriented Modeling approach. This can be done by assuming that states are
described by vectors X based on a number of binary state variables X; (with values 0
or 1) and by defining ¢(X) = X’ if and only if within a given finite state machine or
transition system there is a transition from the overall state represented by vector X
to the overall state represented by vector X’. As finite state machines and transition
systems are often considered to be general computational formats, this shows how
very wide classes of computational processes can be covered by Network-Oriented
Modeling based on temporal-causal networks.

4 Some Actual Applications of Network-Oriented Modeling

In [2] in a number of chapters applications of Network-Oriented Modeling based
on temporal-causal networks for the area of human mental and social processes
are discussed. In Part II in Chapters 3 to 6 models are discussed that address the
way in which emotions are integrated in an interactive manner in practically all
mental processes. In this it is discussed how within Cognitive, Affective and Social
Neuroscience mechanisms have been found that indicate how emotions interact in
a bidirectional manner with many other mental processes and behaviour. Based
on this, an overview of neurologically inspired temporal-causal network models
for the dynamics and interaction for emotions is discussed. Thus an integrative
perspective is obtained that can be used to describe, for example, how emotions
interact with beliefs, experiences, decision making, and emotions of others, and also
how emotions can be regulated. It is pointed out how integrated temporal-causal
network models of such mental processes incorporating emotions can be obtained.

In Chap. 4 it is discussed how emotions play a role in generating dream episodes
from a perspective of internal simulation. Building blocks for this internal simula-
tion are memory elements in the form of sensory representations and their associated
emotions. In the presented temporal-causal network model, under influence of asso-
ciated feeling levels and mutual competition, some sensory representation states pop
up in different dream episodes. As a form of emotion regulation the activation levels
of both the feelings and the sensory representation states are suppressed by control
states. In Chap. 5 it is discussed how dreaming is used to learn fear extinction. Fear
extinction has been found not to involve weakening of fear associations, but instead
it involves the strengthening of fear suppressing connections that form a counter
balance against the still persisting fear associations. To this end neural mechanisms
are used that strengthen these suppressing connections, as a form of learning of
emotion regulation. The presented adaptive temporal-causal network model based
on Hebbian learning addresses this adaptation process.

Chapter 6 addresses the role of emotions in rational decision making. It has been
found that neurological mechanisms involving emotions play an important role in
rational decision making. In this chapter an adaptive temporal-causal network model
for decision making based on predictive loops through feeling states is presented,
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where the feeling states function in a process of valuing of decision options.
Hebbian learning is considered for different types of connections in the adaptive
model. Moreover, the adaptive temporal-causal network model is analysed from the
perspective of rationality. To assess the extent of rationality, measures are introduced
reflecting what would be rational for a given environment’s characteristics and
behaviour. It is shown how during the adaptive process this model for decision
making achieves higher levels of rationality.

Part III of [2], consisting of Chap. 7-11, focuses on persons functioning in a
social context. In Chap. 7 an overview is presented of a number of recent findings
from Social Neuroscience on how persons can behave in a social manner. For
example, shared understanding and collective power are social phenomena that
serve as a form of glue between individual persons. They easily emerge and often
involve both cognitive and affective aspects. As the behaviour of each person is
based on complex internal mental processes involving, for example, own goals,
emotions and beliefs, it would be expected that such forms of sharedness and
collectiveness are very hard to achieve. From a neurological perspective, mirror
neurons and internal simulation are core concepts to explain the mechanisms
underlying such social phenomena. In this chapter it is discussed how based on such
neurological concepts temporal-causal network models for social processes can be
obtained. It is discussed how these models indeed are an adequate basis to simulate
the emergence of shared understanding and collective power in groups.

Within a social context the notion of ownership of actions is important. Chapter 8
addresses this notion. It is related to mechanisms underlying self-other distinction,
where a self-ownership state is an indication for the self-relatedness of an action
and an other-ownership state to an action attributed to someone else. The temporal-
causal network model presented in this chapter generates prior and retrospective
ownership states for an action based on principles from recent neurological theories.
A prior self-ownership state is affected by prediction of the effects of a prepared
action as a form of internal simulation, and exerts control by strengthening or
suppressing actual execution of the action. A prior other-ownership state also
plays a role in mirroring and analysis of an observed action performed by another
person, without imitating the action. A retrospective self-ownership state depends on
whether the sensed consequences of an executed action co-occur with the predicted
consequences, and is the basis for acknowledging authorship of actions in social
context. Scenarios are shown for vetoing a prepared action due to unsatisfactory
predicted effects. Moreover, it is shown how poor action effect prediction capabil-
ities can lead to reduced retrospective ownership states, for example, in persons
suffering from schizophrenia. This can explain why sometimes the own actions are
attributed to others, or actions of others are attributed to oneself.

Chapter 9 addresses how in social interaction between two persons usually
each person shows empathic understanding of the other person. This involves
both nonverbal and verbal elements, such as bodily expressing a similar emotion
and verbally expressing beliefs about the other person. Such social interaction
relates to an underlying neural mechanism based on a mirror neuron system and
self-other distinction. Differences in social responses of individuals can often be
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related to differences in functioning of certain neurological mechanisms, as can be
seen, for example, in persons with a specific type of Autism Spectrum Disorder
(ASD). This chapter presents a temporal-causal network model which, depending
on personal characteristics, is capable of showing different types of social response
patterns based on such mechanisms, adopted from theories on the role of mirror
neuron systems, emotion integration, emotion regulation, and empathy in ASD.
The personal characteristics may also show variations over time. This chapter also
addresses this adaptation over time. To this end it includes an adaptive temporal-
causal network model capable of learning social responses, based on insights from
Social Neuroscience.

Chapter 10 addresses joint decision making. The notion of joint decision making
as considered does not only concern a choice for a common decision option, but also
sharing a good feeling and mutually acknowledged empathic understanding about
it. The model is based on principles from recent neurological theories on mirror
neurons, internal simulation, and emotion-related valuing. Emotion-related valuing
of decision options and mutual contagion of intentions and emotions between
persons are used as a basis for mutual empathic understanding and convergence
of decisions and their associated emotions.

In Chap. 11 it is discussed how adaptive temporal-causal network models can
be used to model evolving social interactions. This perspective simplifies persons to
just one state and expresses the complexity in the structure of the social interactions,
modelled by a network. The states can represent, for example, a person’s emotion, a
belief, an opinion, or a behaviour. Two types of dynamics are addressed: dynamics
based on a fixed structure of interactions (modelled by a non-adaptive temporal-
causal network model), and dynamics where the social interactions themselves
change over time (modelled by an adaptive temporal-causal network model). In the
case of an adaptive network model, the network connections change, for example
their weights may increase or decrease, or connections are added or removed.
Different types of adaptive social network models are addressed, based on different
principles: the homophily principle assuming that connections strengthen more
when the persons are more similar in their state (the more you are alike, the more
you like each other), and the more becomes more principle assuming that persons
that already have more and stronger connections also attract more and stronger
connections.

5 Discussion

The Network-Oriented Modelling approach based on temporal-causal networks as
discussed here, provides a modelling approach that enables a modeller to design
high level conceptual model representations in the form of (cyclic) labelled graphs,
which can be systematically transformed in an automated manner into numerical
representations that can be used to perform simulation experiments.
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It sometimes is a silent assumption that a Network-Oriented Modeling approach
can only work for specific application domains, where networks are more or less
already given or conceived in the real world. This paper shows that this not exactly a
correct assumption. It has been shown that the applicability of the Network-Oriented
Modeling approach based on temporal-causal networks is very wide; for example, it
subsumes modelling approaches based on the dynamical system perspective [18, 20]
often used to obtain cognitive models, and modelling approaches based on discrete
(event) and agent simulation [22, 23]. This provides a different light on the question
in the title of this paper, different from network models do just model networks!
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Visibility of Nodes in Network Growth Models

Siddharth Pal, Soham De, Tanmoy Chakraborty, and Ralucca Gera

Abstract Many real-world complex networks can be synthesized using growth
models, where nodes enter the network at discrete time steps and attach with
existing nodes based on their degree, or fitness, or a combination of both. While, the
literature has mostly focused on the asymptotic global properties of such models,
e.g., degree distribution, we intend to drive the focus towards investigating the
dynamics from the perspective of individual nodes. In this paper, we study how
the visibility of a node, i.e., the probability of the node to form new connections,
changes over time. In particular, we study three well-known network growth
models—preferential attachment, additive and multiplicative fitness models, and
focus primarily on “influential nodes” or “leaders” to understand how their visibility
changes over time. We present a thorough analytical study and validate our claims
through simulations. Our primary finding is that influential nodes in multiplicative
growth models can attain and maintain high visibility over time compared to other
models; something that might not be apparent by simply looking at global network
properties or other local node-centric properties.
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1 Introduction

Complex networks [8, 9] are often used to describe structure and emergence of
many real-world systems such as social, information, technological and biological
systems. The analysis of leaders and their behavior in these networks can yield
valuable insights into the understanding of how influential entities in real-world
networks attract and maintain significant presence over time. For instance, influ-
ential papers in citation networks continue to acquire new citations every year,
and likewise, celebrities in online social networks keep increasing their follower
count over time. In order to conduct such network analysis, we study the temporal
behavior of nodes in a network. We introduce a notion of visibility of a node, defined
as the probability of that node to form new connections in a growing network.
For instance, in a preferential attachment model [1, 2], the visibility of a node is
proportional to its degree, and inversely proportional to the number of edges in
the network. An essential aspect of the study is to investigate the visibility profile
of a node which characterizes the temporal evolution of the node’s visibility as the
network grows. We argue that studying the visibility profile of nodes leads to a better
understanding of network evolution due to attachment dynamics, which might not
be possible to obtain by simply analysing global network properties such as degree
distribution or local node-centric properties such as degree, clustering coefficient,
etc. Much like node persistence over time studied in [10], our approach allows to
make headway into this understanding by characterizing the visibility behavior of
leaders in that network. While, the framework is applicable to arbitrary nodes as
well, it is more interesting to first understand the leaders’ behavior.

We study the visibility of high degree nodes in the Barabdsi-Albert (BA)
model, aka preferential model, which explains power law behavior in real-world
networks through the “rich get richer” [2] phenomenon. A few years after the
introduction of the BA model, Bianconi and Barabadsi [3] proposed a new class of
growth models whose attachment mechanism was driven by inherent properties of
nodes such as novelty, usefulness, etc., captured through a fitness value. This was
inspired by the “fit get richer” phenomenon observed in real-world network [3].
Subsequently, Ergun and Rodgers [4] analysed the degree distribution of the
resultant growth models, when the attachment mechanism combines the degree
and fitness information in an additive and multiplicative fashion. Here, we compare
and contrast the visibility behaviors of the leaders in the additive and multiplicative
fitness models with that in the BA model.

In particular, we seek to address the following question: Given an influential
node with a high visibility at a certain point in time, how would its visibility evolve
across different network growth models? One of our primary theoretical findings
(mentioned in Sect. 3) is that, multiplicative fitness model allows more visibility to
leaders in comparison to the additive fitness and the BA models. Furthermore, in an
expected sense, influential nodes can improve their visibility over time, as long as
their inherent fitness remains large in comparison to the present network; whereas,
for the other two network models, the visibility is shown to always decrease in an
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expected sense. Simulation results (presented in Sect. 4) also support the theoretical
analysis that multiplicative fitness models are better suited for explaining continued
influence of leaders in certain networks.

2 Preliminaries

Consider the following sequence of graphs {G,, t = 0, 1,...}, where G, = (V,, E,),
with V, and E, being the set of nodes and edges in G, respectively. In a network
growth model, we have V, C V,; | and E, C E,4 forevery r = 0, 1, .... In other
words, new nodes arrive at every time step f, and form connections with existing
nodes, thus adding to the edge set of the previous graph G,—;. For purposes of
simplicity, here we consider the basic model where a single node enters at any time
step ¢, and forms a connection with one node in the existing graph G,—;. Therefore,
we can label the incoming node by the time index of its entry to the network, which
leads to V; = {0,1,...,t} forr = 0, 1,.... Note that all our results can be easily
extended to more general scenarios where multiple nodes can enter the network and
incoming nodes can form multiple connections. At time ¢, let the degree of the node
i in V, be denoted by D,(i). Also, let the rv S,1; denote the node with which an
incoming node 7 + 1 connects.

Barabasi-Albert (BA) Model In the preferential attachment mechanism [2], new
nodes connect preferentially to existing nodes with higher degree. Let pfA(t + 1) =
(pPA(t + 1), i € V;) be the pmf with which the new node indexed as ¢ + 1 connects
with the existing graph G, i.e., pP (¢ + 1) is the probability with which node 7 + 1
connects with an existing node i. This is given by:

Dy(i)

BA . | .

PG+ D) =P[Siyr = i] P = = i€ V. (1)
’ R VTG A

where .%, is the o-field generated by all the relevant random variables till time ¢.

Note that we term node i’s visibility in the graph G, by pPA(¢ + 1).

Fitness Based Attachment Rules In fitness based models [3, 4, 7], every node is
assumed to have a fitness value independently drawn from a distribution. Assume a
sequence of i.i.d. fitness rvs (§,&,, t = 0, 1,...). In the additive fitness attachment
rules, it is assumed that new nodes connect preferentially with existing nodes having
a higher sum of degree and fitness value. For r = 0, 1, ..., let the pmf delineating
formation of new connections at time 7 + 1 be given by p*f (¢ + 1), where

& + Di(i)

AF = —>> 17
P+ 1) S o &+ D)) i

ev,. )
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Similarly the attachment rule for multiplicative fitness model is given by

& - D:(i)

MEG 4+ 1) = =~
pi (t+1) S e & D)’

ieV, 3)

Therefore, the visibilities of node i in graph G, are given by p?f(r + 1) and
pME(r + 1) for the additive and multiplicative fitness models respectively. Note that
the influential nodes as described in Sect. 1 relates to nodes having high visibility as
defined for the particular network growth model in question.

3 Analytical Results on Node Visibility

In this section we first compare how the visibility of a particular node varies across
the three models for a given degree sequence. Subsequently, we study and compare
the evolution of node visibility over time for each of the three models.

3.1 Comparison of Node Visibility Across Growth Models

We state a lemma which compares the node visibilities across the three growth
models for any given graph. While we note that the different growth models will
lead to any specific graph with varying probabilities, we still conduct this exercise to
obtain some intuition as to how the node visibilities compare across growth models.

Lemma 1 Foreveryt = 0,1,..., and i in V,: Let G, be the graph at time t, we
have
Z‘ev E/'Dz(j)
(i) P+ 1) > pie+ 1) ifE > S )
ZZGV, DT(])
(@ e > pr e+ ) ifE > Dto')zfj—j’g" )
(ii) e+ 1) >pfa+ )i

& | D&MD) —Di() | + Dii) Y (E:D,) — EDi(j) > 0 (6)

Jjev; JEV:
Proof We do the pairwise comparison of node visibilities of the three models using
their expression defined in (1)—(3). Simple algebraic manipulations yields the result.

From (4), it is evident that nodes with high fitness will have greater visibility in
the multiplicative fitness model than the BA model. On the other hand, from (5),
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it is apparent that a particular node in the additive fitness model can have higher
visibility compared to the preferential attachment setting if it has a significantly
high fitness value. Observe that as ¢ increases, if E [§] < oo, the condition (5) could
be approximated as & > D,(i)@, which invariably gets violated as the degree of

node i increases beyond the threshold [éi. Therefore, an interesting conclusion is
that in the long run, when compared with additive fitness model, the BA model will
have greater visibility for influential nodes. Furthermore, if node i has high fitness
value §; and degree D, (i) compared to the rest of the nodes in G, then condition (6)
will be satisfied, leading to greater visibility of the node in the multiplicative fitness
model compared to the additive fitness model.

3.2 Change in Node Visibility Over Time

The following lemma describes the change in visibility with time for the three

growth models. First, we introduce some notation: Define =, = Ziev, & and
= Ziev, &D,(i),fort =0,1,....

Lemma 2 Let G, be the graph at time t—1. Foreveryt =0,1,...,andiin V,_;:
, 1= D1[S, = i] — D1 (i)

PG4 1) — pPA () = 7

(i) PP+ 1) =P STy )
D1 (i)

d E[pP*c+1)-pP0) | Fo] = - 8

and Blp+ 1) =p0) | Fim] = =25 ®)

L[S, = i][E—1 +2(t — D] = (& +2) [& + Di—1()]

L\ AF _ AP
R Er +20-1) (5 + 20

©
" o g o1 G Do) G+ D)

wd B D=0 178 = G
10)
(iii) pMF (e + 1) — pMF (1) = Eil [S: =] Xz—lX— D)z(—l(i) (s, + &) an

t—1 At
and E[p(+ 1) =p}" (0| i1 ] 2 6011 () Z’EV’E‘fD’Z)g[gi “&-6]
t—1

(12

Proof Fixt=0,1,...,andiin V,.
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Preferential Attachment Model The difference in the visibility of node i in the
BA model between time ¢ + 1 and ¢ is given as

Dt(i) _ Dz—l (l)

P+ =) =

2t 2(t—1)
_ Do)+ 1S =i D)
o 2t 2(t—1) (13)

and (7) follows. Furthermore, by noting that when looking at the expected difference
in visibility conditioned on .%#,_1, S, is the only random variable in (13), we obtain

D;—i(i) + P [St =i Gt—l] _ D1 (i)
2t 2(t—1)

E[pf(t+ 1) —pP () | Fimi] = (14)

and (8) follows.

Additive Fitness Model Similarly in the additive fitness model, the difference in
the visibility of node i can be written as

P+ 1) —pif ()
__&+D) &+ D)
Zjev, Sj + Dr(j) Zjev,_l Ej + Dz—l(j)

— 51‘ + Dt—l(i) +1 [St = i] _ Ei + Dt—l(i)
B +&+2 E_1+2(0—1)

15)

and the result (9) follows after simple algebraic manipulations. Taking expectation
on both sides conditioned on .%,_; and §&, leads to (10).

Multiplicative Fitness Model The difference in the visibility of node i can be
written for the multiplicative model as follows
P+ 1) —p (o)
_EDG) ED()
Zjev, Sth(/) Zjev,_l é§]‘Dt—1 (/)

_ &A@ 1S =] &D1 ()
X—1 + &, + & Xi—1

(16)

and the result (11) follows directly. Furthermore, we lower bound the expected
change in visibility as follows
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E[pi\/ﬂ’([ + 1) —pf‘/”:([) | ,9/71751]

=& {xz—lp[st =il F.&] _ D) { Y PIS =(] T8l MH

Y-t Qu—1 + &+ &) H—10) = X—1 + &+ &
> £ [ &iDi—1 (i) D) ey, ED—1 (O + 51)]
- Xi—1t (=1 + &+ &) Xi—1 )(,2_1

_ ED1 (D) | iy — Yrev, ED—1 (O + &) -1 + & + )
Xi—1 Yo (=1 + &+ §)
Eixi—1 — 2iev_, §Di—1 (O (& + fz)]
th—l(Xt—l +&+&)

= EiDr—l(i) |:

and the result follows.

From Lemma 2, it is evident that in the BA model, the visibility of the node
increases if it forms a new connection. However, in expectation, the visibility does
decrease, with the decrease being directly proportional to the degree D, (i). The
intuition behind this observation is that nodes with high degree already have a high
visibility in the network, and therefore their reduction in visibility would be greater
than other nodes whose visibility is low to begin with. For the additive fitness model,
the visibility increases when a new connection is formed if &, + 2(t — 1) >
(& + 2)[& + Di—1(D)]. Tt is expected that the above condition would be satisfied
for sufficiently large values of #, unless the fitness value £, or &;, or both, are very
large. For reasons similar to that in the BA model, the visibility decreases in the
expected sense in the additive fitness model as well, with the decrease being directly
proportional to the sum of degree and fitness values. Also, observe that the decrease
in visibility is directly proportional to the fitness of the new node which enters the
graph at time 7.

On the other hand, from (12) it is evident that, in the multiplicative fitness model,
the visibility could increase in an expected sense provided the fitness of the node is
sufficiently high. This result clearly sets apart the multiplicative fitness model from
the other two network models. Furthermore, the expected change in visibility is
found to be directly proportional to the product of fitness and the present degree of
the node, which allows a greater increase in the visibility of an influential node in
comparison to the other network models.

4 Simulation Results

In this section, we present simulation results to compare the visibility of nodes in
the BA model with additive and multiplicative fitness models. In all our simulations,
we sample fitness values of each incoming node from a Pareto distribution with the
following probability distribution p(f) = «/#**! for t > 1, and parameter «.
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Fig. 1 Visibility of nodes (averaged over 50 independent runs) over time in the three growth
models. The columns represent different parameters of the Pareto distribution: « = 1, 2, 3. Each
row shows visibility results of the kth most influential node after N iterations, where k = 1, 10, 30
(from top to bottom)

We are interested in studying how the visibility of leaders or influential nodes
changes over time in the BA, additive and multiplicative fitness models. To do this,
for each given growth model and parameter value o of the Pareto distribution, we
first build a graph till N = 10,000 nodes using the growth model. We then identify
the top k nodes with the highest visibility, and then track the change in the visibility
of those k nodes for the next 7 = 90,000 iterations. We average the results over 50
independent runs.

Figure 1 shows average visibility results of the kth most influential node after N
iterations, where k = 1, 10, 30, and for ¢« = 1,2, 3. From the plots, we observe
that, for the topmost node (k = 1), the multiplicative fitness model can reach and
maintain a higher visibility than the other models for the chosen period of time;
which is in agreement with the theoretical analysis given in Lemma 2. Further,
notice that while the additive fitness model can reach higher visibility on average
than the BA model when o = 1, it actually decreases and goes lower than the
BA model for « = 2, 3. This makes intuitive sense since for « = 1, the fitness
distribution has a mean that is not finite. Thus, high values of fitness result in some
of the nodes being able to attain higher visibility than BA with ¢ = 1, while this
effect is mitigated for greater values of «. Note that frequent high fitness value
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of incoming nodes, while helping a node attain high visibility for some time, also
results in a faster rate of decrease in visibility once a higher fitness node enters the
graph. This is exhibited in the plots where additive fitness models show a faster
rate of decrease in visibility than the other models. As predicted in the analysis
for the additive model [see (10)], the present scenario demonstrates the decrease
in expected visibility due to incoming nodes with high fitness values. However,
this effect is less pronounced in the multiplicative model since the degree of the
incoming node is small, which smooths out its effect on the visibility of the node
being tracked.

Another interesting observation from Fig. 1 is that when « is high, the multiplica-
tive fitness model can maintain a greater number of nodes with high visibility. On
the other hand, when o = 1, a few very high fitness nodes completely take over and
drive down the visibility of other nodes. For ¢« = 2,3 and k = 10, 30, the average
visibility behavior is seen to increase after an initial decrease, something that is not
observed in any plot for the other network models. This suggests that the observed
nodes acquire new connections in the mentioned time period, which lead to this
dramatic upturn in their visibility.

In Fig.2, we show some individuals runs for each « setting of the topmost
visible (k = 1) node. From our individual runs, we notice that runs with « = 1
have higher variance, and the variance progressively decreases as « increases. Since
lower value of « results in more frequent incoming nodes with high fitness, this
leads to higher variance among the individual results. This also explains the sudden
drops in visibility of the additive fitness model that we observe in Fig. 1, which is in
effect due to a very high fitness incoming node.

5 Conclusion

In this paper, we study the visibility profile of nodes in three network growth models.
Firstly, we observe that in the multiplicative fitness model, nodes with high fitness
values can successfully maintain visibility in the network to a greater extent when
compared with the additive fitness and BA models. High fitness nodes in the additive
fitness model, on the other hand, might not always be able to maintain visibility over
time even when compared with the BA model. Future work will stress on finding
further results on visibility of nodes in the limit of large graphs. Furthermore, it
would be interesting to analyse the fraction of nodes that remain influential and
reach infinite degree in the limit of large graph size for the fitness models. Also,
it is generally accepted and scientifically shown [5, 6, 11] that teams’ success
dominate individual success, and thus an interesting extension would be to study
teams visibility profile rather than individual visibility profile.
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Topological Data Analysis of Critical Transitions
in Financial Networks

Marian Gidea

Abstract We develop a topology data analysis-based method to detect early signs
for critical transitions in financial data. From the time-series of multiple stock prices,
we build time-dependent correlation networks, which exhibit topological structures.
We compute the persistent homology associated to these structures in order to track
the changes in topology when approaching a critical transition. As a case study, we
investigate a portfolio of stocks during a period prior to the US financial crisis of
2007-2008, and show the presence of early signs of the critical transition.

Keywords Stock correlation network e Critical transition ¢ Topological data
analysis

1 Introduction

A critical transition refers to an abrupt change in the behavior of a complex
system—arising due to small changes in the external conditions—which makes the
system switch from one steady state to some other steady state, after undergoing
a rapid transient process (e.g., ‘blue-sky catastrophe’ bifurcation). Examples of
critical transitions are ubiquitous, including market crashes, abrupt shifts in ocean
circulation and climate, regime changes in ecosystems, asthma attacks and epileptic
seizures, etc. A landmark paper on the theory of critical transitions and its
applications is [19].

A challenging problem of practical interest is to detect early signs of critical
transitions, that is, to identify significant changes in the structure of the time-series
data emitted by the system prior to a sharp transition. In this paper we propose
a new method to look for critical transitions, based on measuring changes in the
topological structure of the data. We consider systems that can be described as time-
varying weighted networks, and we track the changes in the topology of the network
as the system approaches a critical transition. We use tools from topological data
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analysis, more precisely persistent homology, to provide a precise characterization
of the topology of the network throughout its time-evolution. We observe, in
empirical data, that there are significant, measurable changes in the topology of
the network as the underlying system approaches a critical transition.

The pipeline of our approach is the following. The input of our procedure is
a time-evolving weighted network G(V,E), w, : E — [0,00), i.e., a graph of
nodes V and edges E, with each edge ¢ € E having assigned a weight w,(e)
which varies in time. At each instant of time #, using a threshold value of the
weight function as a parameter, we consider the threshold sub-network consisting
of those edges whose weights are below that threshold. We compute the homology
of the clique complex determined by that sub-network. As we vary the threshold
value, some of the homology generators persist for a large range of values while
others disappear quickly. The persistent generators provide information about the
significant, intrinsic patterns within the network, while the transient patterns may be
redeemed as less significant or random. This information can be encoded in terms
of a so-called persistent diagram, which provides a summary of the topological
information on the network. As the time evolves, the topology of the network
changes, and the corresponding persistent diagrams also change. There is a natural
metric (in fact, several) to measure distances between persistent diagrams. It is
important to note that persistent diagrams are robust, meaning that small changes in
the network yield persistent diagrams that are close to one another in terms of their
mutual distances. The output of our procedure consists of a sequence of distances
measured between the persistent diagram at time ¢ and the persistent diagram at
some initial time f.

The salient features of our approach are the following:

(i) We process the input signal in its entirety, as we do not filter out noise from
signal,
(i) For weighted networks, we obtain a global description of all threshold sub-
networks, for all possible threshold values;
(iii) We describe in more detail the structures of our networks, unlike the statistical-
type methods (e.g., centrality measures);
(iv) We provide an efficient way to compare weighted networks through the
distances between the associated persistent diagrams,
(v) For time-dependent networks, we track the changes of the topology of the
networks via the distances between persistent diagrams.

We point out that the networks that we consider in this paper are very noisy.
Metaphorically speaking, what we are trying to do here is to quantify the ‘shape of
noise’.

We illustrate our procedure by investigating financial time series for the US
financial crisis of 2007-2008. The time-varying network that we consider is the
cross correlation network C = (c;;) of the stock returns for the companies in
the Dow Jones Industrial Index (DJIA); the nodes of the network represent the
stocks, and the weights of the edges are given by the distances d;; = /2(1 —¢;;).
Following the process described above, we compute the time series of the distances
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between the persistent diagrams at time ¢ and the reference persistent diagram at
initial time #. The conclusion is that these time series display a significant change
prior to the critical transition (i.e., the peak of the crisis), which shows that the stock
correlation network undergoes significant changes in its topological structure.

For the computation of persistent diagrams and their mutual distances we use the
R package TDA [10].

2 Background

We provide a brief, largely self-contained, review of the persistent homology
method, and describe how to use it to analyze the topology of weighted networks.
Some general references and applications include [1-3, 6, 8, 13, 14, 16].

2.1 Persistent Homology

Persistent homology is a computational method to extract topological features from
a given data set (e.g., a point-cloud data set or a weighted network) and rank them
according to some threshold parameter (e.g., the distance between data points or
the weight of the edges). Topological features that are only visible at low levels of
the parameter are ranked lower than topological features that are visible at both low
and high levels. For each value of the threshold parameter one builds a simplicial
complex (i.e., a space made from simple pieces—geometric simplices, which are
identified combinatorially along faces). In our case, the vertices correspond to the
data points and the simplices are determined by the proximity of data points. When
the threshold parameter is varied, the corresponding simplicial complexes form a
filtration (i.e., an ordering of the simplicial complexes that is compatible with the
ordering of the threshold values). Then one tracks the topological features (e.g.,
connected components, ‘holes’ of various dimensions) of the simplicial complexes
across the filtration, and record for each topological feature the value of the
parameter at which that feature appears for the first time (‘birth value’), and the
value of the parameter at which the feature disappears (‘death value’). We now give
technical details.

A simplicial complex K is a set of simplices {0} of various dimensions that
satisfies the following conditions: (1) any face of a simplex o € K is also in K, and
(2) the intersection of any two simplices 07,0, € K is either @ or a face of both o
and o0,.

Given a simplicial complex K, we denote by H;(K) the ith homology group
with coefficients in Z,. This is a free abelian group whose generators consists
of certain chains of i-dimensional simplices (i.e., cycles that are not boundaries).
Note that H;(K) = 0 for i > m + 1. The generators of the ith homology group
account for the ‘independent holes’ in K at dimension i. For example, the number
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of 0-dimensional generators equals that of connected components of K, the number
of 1-dimensional generators equals that of ‘tunnels’ (or ‘loops’), the number of 2-
dimensional generators equals that of ‘cavities’, etc. For a reference, see, e.g., [12].

A filtration of K is a mapping a € A — Z(a) := K, C K, from a (totally
ordered) set of parameter values A € R to a set of simplicial sub-complexes of
K, satisfying the filtration condition: a < @ = K, < K. For any filtration
of simplicial complexes a — K, the corresponding homology groups also form
a filtration a — H;(K,), thatis,a < d = H;(K,) C Hi{(Ky).

For a < d, the inclusion H;(K,) € H;(K,) induces a group homomorphism
W Hi(K,) — Hi(Ky), in all i. Let H*Y = Im(h*“) be the image of & in
H;(K,). We say that a homology class y € H;(K}) is born at the parameter value
a=>bify ¢ Hf’_g”’ for any 6 > 0. If y is born at K, then we say that it dies
at the parameter value a = d, with b < d, if y coalesces with an older class in
H;(K,—.) as we go from K,_, to K, for & > 0, that is, h*“~(y) ¢ H"~*“* for any
small ¢,6 > 0, but hf"d(y) € Hf’_g‘d for some small § > 0. If y is born at K; but
never dies then we say that it dies at infinity. Thus, we have a value b(y) = b and a
death value d(y) = d for each generator y that appears in the filtration of homology
groups. The persistence, or ‘life span’ of the class y is the difference between the
two values, pers(y) = d(y) — b(y).

The ith persistent diagram of the filtration .% is defined as a multiset P; in R?,
fori =0, ..., m, obtained as follows:

» For each class y; we assign a point z; = (b;,d;) € R? together with a multiplicity
wi(b;, d;); where b; is the parameter value when y; is born, and d; is the parameter
value when y; dies. The multiplicity u;(b;, d;) of the point z; = (b;, d;) equals the
number of classes y; that are born at b; and die at d;. This multiplicity is finite
since the simplicial complex is finite.

+ In addition, P; contains all points in the positive diagonal of R?. These points
represent all trivial homology generators that are born and die at every level.
Each point on the diagonal has infinite multiplicity.

e The axes of the persistent diagram are birth values on the horizontal axis and
death values on the vertical axis.

An illustration of persistent diagrams for a simple example of point-cloud data
set and a filtration of simplicial complexes is shown in Fig. 1.

The space of persistent diagrams can be endowed with a metric space structure.
A standard metric that can be used is the degree p Wasserstein distance (earth mover

1/p

distance), with p > 0. This is defined by D, (P}, P}) = inf | Y g —¢(@[% | -
¢ qGPi1

where the summation is over all bijections ¢ : P} — P%. When p = oo the

Wasserstein distance D, is known as the bottleneck distance. Since the diagonal
set is by default part of all persistent diagrams, the pairing of points between P} and
Pl.2 via ¢ can include pairings between off-diagonal points and diagonal points.
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Fig. 1 A point-cloud data set representing a ‘noisy’ circle, together with a filtration of simplicial
complexes, corresponding to some threshold parameter values §; < 8, < 83 < 84. The O-
dimensional and the 1-dimensional persistence diagrams are shown at the botfom of the figure.
At §; there are eight connected components and no 1-dimensional hole. At §, the eight connected
components coalesce into a single one, indicated by the point (1, 2) in the O-dimensional diagram,
which has multiplicity 7; also, a 1-dimensional hole is born. There is no topological change at
83. At 8, the 1-dimensional hole gets filled in and dies, indicated by the the point (2, 4) in the 1-
dimensional diagram; the single connected component continues living for ever, and is represented
by filled diamond

We note that different value of the degree p yield different types of measurements
of the distances between persistent diagrams. Using p = oo, the corresponding
distance Do, only measures the distance between the most significant features
(farthest from the diagonal) in the diagrams, matched via some appropriate ¢. Using
p = 1 large, the corresponding distance D, puts more weight on the significant
features (farther from the diagonal) than on the least significant ones (closer to the
diagonal). Using p > 0 small has just the opposite effect on the measurement.

One of the remarkable properties of persistent diagrams is their robustness,
meaning that small changes in the initial data produce persistent diagrams that are
close to one another relative to Wasserstein metric. The essence of the stability
results is that the persistent diagrams depend Lipschitz-continuously on data. For
details see [5, 7, 9].
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2.2 Persistent Homology of Weighted Networks

A weighted network is a pair consisting of a graph G = G(V,E) and a weight
function associated to its edges w : E — [0, +00); let Opa= max(w). In the sequel
we will only consider graphs that are simple and undirected. In examples, the weight
function is chosen so that nodes with similar characteristics are linked together.

One standard recipe to investigate the topology of weighted graphs is via
thresholding, that is, by considering only those edges whose weights are below (or
above) some suitable threshold, and study the features of the resulting graph. Of
course, the choice of the threshold value makes a difference in the topology of the
resulting graph. Using persistent homology, we can extract the topological features
for each threshold graph, and represent all these features, ranked according to their
‘life span’, in a persistent diagram. We now give technical details.

For each 6 € [0, 6,,.«], we consider the sub-level sets of the weight function, that
is, we restrict to subgraphs G(6) which keep all edges of weights w below or equal
to the threshold 6. The graphs obtained by restricting to successive thresholds have
the filtration property, i.e., 8 < 8’ = G(6) < G(0’). In a similar way, we can
consider super-level sets, by restricting to subgraphs G(6) which keeps all edges of
weights w above or equal to the threshold 6. Super-level sets can be thought of as
sub-level sets of the weight function w' = O — w.

For each threshold graph G(6) we construct the Rips complex (clique complex)
K = X(G(0)). This is defined as the simplicial complex with all complete
subgraphs (cliques) of G(6) as its faces. That is, the 0-skeleton of K consists of
just the vertices of G(#), the 1-skeleton of all vertices and edges—which is the
graph G(0) itself—the 2-skeleton of all vertices, edges, and filled triangles, etc.
High dimensional cliques correspond to highly interconnected clusters of nodes
with similar characteristics (as encoded by the weight function). The filtration of
the threshold subgraphs yields a corresponding filtration of the Rips complexes
0 — Ky := X(G(0)); thus, & < 0/ — Ky C Ky . As it was noted before,
the homology groups associated to this filtration satisfy themselves the filtration
property, i.e., 8 < 6/ =— H;(Ky) C H;(Ky). From this point on, we can compute
the persistent homology and the persistent diagrams associated to this filtration, in
the manner described in Sect. 2.1.

In Sect.3 we will only compute persistent diagrams of dimension 0 and 1, so
we explain in detail the significance of these diagrams in terms of the threshold
networks.

A point (6,6;) in a O-dimensional persistent diagram has the following
meaning:

e At the threshold value 6), a connected component is born, where each pair of
nodes in the component is connected via a path of edges of weights 6 < 6,;

e At the threshold value 6; two or more connected components coalesce into a
single one, via the addition of one or several edges of weight § = 6, to the
threshold network.
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A point (6,,6;) in a 1-dimensional persistent diagram has the following
meaning:

e At the threshold value 6, a loop of 4 or more nodes is born, whose nodes are
connected in circular order by edges of weights 8 < 6,; note that a loop of 3
nodes yields a complete sub-graph in the Rips complex (i.e., a filled triangle),
which carries no 1-dimensional homology;

e At the threshold value & = 6, one or more loops get covered by filled
triangles, due to adding one or more edges of weight & = 6, thus making the
corresponding 1-dimensional homology generators vanish.

We note that applications of persistent homology to networks also appear, e.g.,
in [4, 11].

3 Detection of Critical Transitions from Correlation
Networks

3.1 Correlation Networks as Weighted Networks

The network that we analyze here is derived from the DJIA stocks listed as of
February 19, 2008. We utilize the time series of the daily returns based on the
adjusted closing prices S;(?), i.e., x;(t) = W where At = 1 day, and the
indices i correspond to the individual stocks. We restrict to the data from January
2004 to September 2008 (when Lehman Brothers filed for bankruptcy).

Now we define the weighted network G(V, E) that we analyze. The vertices V of
the network correspond to the individual DJIA stocks. Each pair of distinct vertices
i,j € Vis connected by an edge e, and each edge is assigned a weight w(e, t) at time
t defined as follows:

» Compute the Pearson correlation coefficient ¢;;(f) between the nodes i and j at
2 (D) =5 (5(0) =)

N @)= = () =5
where x;, x; denote the averages of x;(¢), x;(¢) respectively, over the time interval
[r—T.1;

» Compute the distance between the nodes i and j, d;j(r) = /2(1 — c;;(t))—the
fact that the metric axioms are satisfied follows easily from the properties of
correlation;

* Assign the weight w(e, t) = d;;(¢) to the edge e between i and j.

time ¢, over a time horizon T, by ¢;;(f) =
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For the computation of the correlation via the Pearson estimator, there is
empirical evidence against using longer time horizons when non-stationary behavior
is present. Therefore, in our computation we use a rather short time horizon of
T = 15; we also use the arithmetic return rather than the standard log return. For an
argument in support of these choices see [15].

The range of values of d;; is [0,2]. Note that d(i,j) = O if the nodes i
and j are perfectly correlated, and d(i,j) = 2 if the nodes are perfectly anti-
correlated. Edges between correlated nodes have smaller weights, and edges
between uncorrelated/anti-correlated nodes have bigger weights. Since correlation
between stocks is of interest, we focus on edges with low values of d.

In the sequel, we will consider both sub-levels sets and super-level sets of the
weight function.

Each sub-level set of the weight function w, at a threshold level 6 < [0,2],
yields a subgraph G(8) containing only those edges for which 0 < d;; < 6, that
is, GO) ={e =e(i,j)|1 — %02 < ¢ij < 1.} When 6 is small, G(8) contains only
edges between highly-correlated nodes. As 6 is increased up to the critical value
V2 = 1.414214 edges between low-correlated nodes are progressively added to the
network. As 6 is increased further, edges between anti-correlated nodes appear in
the network.

Each super-level set of the weight function w = d can be conceived as a sub-
level sets for the dual weight function w = 2 — d. The sub-level set G(6) for this
weight-function contains only those edges for which d;; > 2 — 6, hence G,/ (6) =
fe=eli,j)|] =1 < ¢; < 1-— %(2 — #)%.} When 6 is small, G,/ (#) contains
only edges between anti-correlated nodes. When 6 crosses the critical value 2 —
V2 = 0.5857864, edges between low-correlated nodes are progressively added
to the network. As 6 is increased further towards the highest possible value of 2,
highly-correlated nodes are added to the network.

Sub-level sets and super-level sets produce very different type of networks, and
they furnish complementary information. We will discuss this in Sect. 3.2.

3.2 Persistent Diagrams of Correlation Networks

In this section we use persistent homology to quantify the changes in the topology
of the correlation networks when approaching a critical transition. For illustrative
purposes, we show some correlation networks in Fig.2; the top three networks
represent instants of time far from the beginning of the 2007-2008 financial crisis,
while the bottom three diagrams represent instants of time preceding the crisis.

We compute persistent homology in dimensions 0 and 1 for the correlation
network from Sect. 3.1. We do not consider higher-dimensional persistent homology
because the network is very small, so the presence higher-dimensional cliques is
likely accidental.
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Fig. 3 Persistent diagrams (sub-level sets)

First, we consider threshold networks given by the sublevel sets of the weight
function w = d. Several persistent diagrams are shown in Fig. 3. The top three
diagrams correspond to instants of time far from the beginning of the 2007-2008
financial crisis, while the bottom three diagrams correspond to instants of time
preceding the crisis.

The 0-dimensional persistent homology provides information on how the net-
work connectivity changes as the value of 6 in increased from 0 to 2. Each black
dot on the persistent diagram corresponds to one (or several) connected component
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of the graph. The horizontal coordinate of each dot is 0, since all components are
born at threshold value & = 0. The vertical coordinate of a dot gives the threshold
value 6 at which a connected component dies, by joining together with another
connected component. The dot with highest vertical coordinate (other than 2) gives
the threshold value 6 for which the graph becomes fully connected. A dot at 2 (the
maximum value) indicates that once the graph is fully connected, it remains fully
connected (hence the component never dies) as 6 is further increased. Dots with
lower vertical coordinates indicate threshold values for which smaller connected
components consisting of highly correlated nodes die, i.e., coalesce together into
larger components. Dots with higher vertical coordinates correspond to death of
connected components due to the appearance of edges between uncorrelated or anti-
correlated nodes. We recall that the critical value of 6 that marks the passage from
correlation to anti-correlation is 1.41. Inspecting the diagrams in Fig.3 we see a
concentration of dots with higher vertical coordinates in the first period, and a a
concentration of dots with lower vertical coordinates in the second period. There is
less correlation in the network in the first period than in the second period.

These observations can be quantified by computing the time-series representing
the distances between the diagram at time # and some reference persistent diagram
at the initial time 7). We sample this time series at Az = 10. We show this in Fig. 4.
We use the Wasserstein distance of degree p = 2. We notice that the oscillations
in the second half of the time series are almost double in size when compared with
those in the first half. This shows a change in the topology of the network, in terms
of its connectivity, when approaching the critical transition.

Now we interpret the 1-dimensional persistent homology, illustrated in Fig. 3 by
red marks. The horizontal coordinate of a mark gives the birth value of a loop in
the network, and the vertical coordinate gives the death value of that loop. The
death of a loop occurs when edges between the nodes of the loop appear and

Distances between persistent diagrams Distances between persistent diagrams

1.5 20 25

distance
distance
0.00 0.01 0.02 0.03 0.04 0.05 0.06
1

1.0

0.5

0.0

T
0 20 40 60 80 100 120
time

Fig. 4 Left: distances between 0-dimensional persistent diagrams (sub-level sets). Right: distances
between 1-dimensional persistent diagrams (sub-level sets)
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form complete 2-simplices (filled triangles) that fill up the loop. Dots with low
coordinates indicate the presence of cliques that are highly correlated. Marks with
higher vertical coordinates indicate the death of loops due to edges between low-
correlated or anti-correlated nodes. The top three diagrams in Fig. 3 seem to indicate
a concentration of dots at a higher range of values when compared with the bottom
three diagrams.

We also compute the time-series (sampled at Az = 10) of the Wasserstein
distances of degree p = 2, between the diagram at time ¢ and the reference diagram
at . We show this in Fig. 4. The oscillations in the second part of the time series
are smaller than the ones in the first part. Again, there is a change in the topology
of the network, in terms of its cliques, when approaching the critical transition: the
number of loops of correlated nodes appears to stabilize itself.

We now compute the super-levels sets of w, which are sub-level set of w'. The
resulting persistent diagrams have a different interpretation. The critical value of
the threshold 6 for the switch from anti-correlation to correlations is 0.5857864.
Points in the persistent diagram with low vertical coordinates correspond to anti-
correlation/non-correlation, and points with higher value of the vertical coordinate
(other than 2) indicates the appearance of edges between correlated nodes. A point
on the persistent diagram with higher vertical coordinate represents the death of
a connected component (or a loop), possibly formed by anti-correlated or low
correlated nodes, when an edge between correlated nodes is added to the networks.
Thus, the homology generators identified by the persistent diagrams represent
cliques of stocks associated to ‘normal’ market conditions (which are associated
to lack of correlation). The death of these generators is caused by the addition
to correlated edges to the threshold network (in dimension 0, by joining together
different connected components, and in dimension 1 by closing the loops). That
is, the persistence diagrams capture the loss of normal market conditions. We
show some persistent diagrams in Fig. 5, the time series of distances between 0-
dimensional persistent diagrams, and between 1-dimensional persistent diagrams,
in Fig. 6.

4 Conclusions

The analysis of the persistent diagrams and of the distances between persistent
diagrams show significant changes in the topology of the correlation network in
the period prior to the onset of the 2007-2008 financial crisis; early signs become
apparent starting February 2007 (note that the U.S. stock market peaked in October
2007). These topological changes can be characterized by an increase in the cross
correlations between various stocks, as well as by the emergence of sub-networks
of cross correlated stocks.

These results are in agreement with other research asserting that crises are
typically associated with rapid changes in the correlation structure and in the
network topology (see, e.g., [15, 17, 18, 20]).
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Fig. 6 Left: distances between 0-dimensional persistent diagrams (super-level sets). Right: dis-
tances between 1-dimensional persistent diagrams (super-level sets)

In addition to the experiments presented here, we have used persistent homology
to analyze the time-series of some market indices (e.g., the VIX index) for the same
period, using point-cloud data sets obtained via delay-coordinate reconstruction
method. These tests also show early signs of critical transition; those results will
be presented elsewhere.
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Modeling and Analysis of Glass Ceiling
and Power Inequality in Bi-populated Societies

Chen Avin, Zvi Lotker, Yinon Nahum, and David Peleg

Abstract This paper attempts to rigorously analyze the social effects of power
inequality and glass ceiling in a society with two populations (e.g. men and women).
To this end, we define a mathematical model based on a social network with
two populations, in which these phenomena are studied. We define measures for
Normalized (or Differential) Power Inequality and Full-Spectrum Glass Ceiling,
and formalize the conditions for their existence in terms of three societal parameters,
the relative size of the two populations, the level of homophily, and the extent of the
“leaky pipeline” phenomenon.

Keywords Glass ceiling * Networks ¢ Model

1 Introduction

Background and Motivation The Federal Glass Ceiling Commission defines
Glass Ceiling as “the unseen, yet unbreachable barrier that keeps minorities and
women from rising to the upper rungs of the corporate ladder, regardless of their
qualifications or achievements” [6]. Glass Ceiling proves to be more prominent
in some fields than in others. In particular, it is known that women have been
historically underrepresented in the fields of Science, Technology, Engineering and
Mathematics (STEM) [2, 3, 5, 7, 8].
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The glass ceiling effect is in fact part of a wider phenomenon, namely, the
inequality between men and women' in society. In this paper we aim at formalizing
the Glass Ceiling effect and analyzing the conditions for its formation. While doing
so, we address also several related but distinct effects of societal power inequality, as
well as several distinct causes for such inequality, and attempt to formally analyze
the relationships between them.

Inequality Effects The inequality phenomena discussed in this paper relate
directly to some measures of power. Given any concrete sub-domain of societal
activity (such as politics, art, academia or the economy), we measure the power
level of an individual v at a given time ¢ by some function p(v,f). We view
this parameter as a random variable dependent on time, on the behavior of other
individuals, and on external parameters of the setting. Therefore, our focus is on
the expected power, E [p(v, 7)]. For a group W of individuals, we may consider the
average expected power, defined as p(W,1) = Y E[p(v,1)] /|W].

The first effect we look at is Power Inequality. For two individuals u and w, we
may quantify the inequality between them by comparing the values E [p(u, t)] and
E [p(w, 1)]. A formal measure for their power inequality could be the difference or
the ratio between these two parameters. For two sub-populations R and B (hereafter,
the “red” and “blue” communities, intuitively thinking of R as the disadvantaged
group), we may similarly compare p(R,?) and p(B,r). For example, a possible
evidence for the existence of power inequality against the red population could be
that p(R, 1) is significantly smaller than p(B, ). We say that there is Power Inequality
for the red community at time ¢ if p(R, f) < p(B, t). The resulting measure for power
inequality? is

PI() = p(R.0)/p(B.1). (1

Note that whenever lim p(B,f) = oo and lim PI(f) < 1, then not only is there
—>00 1—>00

power inequality, but also |p(B, t) — p(R, )| — oo. This leads to our next definition
of a strong power inequality. We say that there is a Strong Power Inequality for the
red community if there exists a constant ¢ < 1 such that Pl(r) < c for large enough z.

Popular discussions in the media on the Glass Ceiling effect often digress to
arguments related to power inequality. Note, however, that while the two effects
fall under the same general societal problem, power inequality effects are inherently
different from, and independent of, the Glass Ceiling effect. In particular, two sub-
populations may (at least theoretically) exhibit Power Inequality with no Glass
Ceiling whatsoever (e.g., women may reach the highest echelons in society, and
still have lower average power as a group), and vice versa. How should we then
define formally the Glass Ceiling effect?

"Much of the discussion in this paper applies also to minorities; however, for simplicity of
presentation we will henceforth restrict the discussion to gender, and denote the two sub-
populations as the “red” (women) and “blue” (men) communities, R and B.

2Throughout, we interpret x/0 = oo for x > 0.
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This question was tackled in [1], where two measures were proposed. The first,
termed Tail Glass Ceiling, focused on counting the number of highly powerful
individuals in each subgroup. The second measure proposed in [1], termed Moment
Glass Ceiling, relied on a quantity similar to the average power, except that it
averaged the variance (or, the second moment) of the power parameters.

The two measures of [1] do capture the global behavior of Glass Ceiling in the
limit, but still suffer from some limitations. First, those definitions only consider
the system behavior in the limit (as ¢ tends to 00), and do not apply in settings
where individuals have a bounded horizon of activity (from hiring to retirement).
Second, they only measure the Glass Ceiling as a global effect, reflecting on entire
sub-populations, and do not provide us with a means for directly comparing two
individuals. In particular, they do not take into account the personal capabilities and
experience of each individual.

In contrast, in this paper we also attempt to identify Glass Ceiling effects that
occur on a local or individual level. Our approach is motivated by the observation
that the power of any individual relies on subjective parameters such as the indi-
vidual’s personal capabilities and life/work experience. These parameters bound the
individual’s potential. Moreover, different individuals may invest different amounts
of time and efforts in developing their careers, and this may significantly influence
their power as well. Hence one may rightfully maintain that each individual has
a “private” (or “personal”) ceiling blocking his or her progress.® It follows that in
order to justify claims for the existence of Glass Ceiling effects on an individual
level, it is necessary to make our comparisons between individuals of similar
backgrounds, in order to factor out these subjective parameters. In fact, common
operational definitions of Glass Ceiling (cf. [4]) include the characteristics that
a Glass Ceiling inequality represents “A gender or racial difference that is not
explained by other job-relevant characteristics of the employee.”

To handle this issue, we propose a Normalized (or Differential) Power Inequality
measure, denoted NPI, based on comparing groups of individuals of similar
capabilities and experience. Abstractly capturing the capabilities and experience
of an individual v by a “profile” parameter P(v), we are interested in comparing
E[p(u,t) | P(u) = P]withE [p(w, ) | P(w) = P] for two individuals u and w. Thus
we define a measure

Elp(u.1) | Pu) = P|
E[p(w.1) | P(w) = P]

NPIl(u,w,t,P) = (2)

where the expectation is taken over the profiles and behavior of other individuals
and possibly other random factors. For a profile P, we say that a Local Glass Ceiling
effect is formed for R under the profile P if NPI(u,w,t,P) < 1forallu € R,w € B.
We say that a Full-Spectrum (or Total) Glass Ceiling effect is formed for R if a Local
Glass Ceiling effect is formed for every profile P, that is, NPl(u, w, t, P) < 1 for all
u € R,w € B and profile P.

3 A poignant variation of this observation is widely known as the Peter Principle.
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A potential advantage of our Normalized Power Inequality measure is that it
makes a first step towards a practically applicable measure* for power inequality. A
fully individualized measure may provide a tool for actually “putting accusations of
inequality to the test” in concrete individual cases, and not just pointing out “global
unfairness” in society. Note, though, that our current measure falls short of providing
such a test: one cannot compare just two individuals, since the Power Inequality
effect only occurs in expectation, so to apply it one must obtain a representative
sample of several individuals from each of the sets.

In some cases, Glass Ceiling proves to be a more sinister phenomenon than
Power Inequality. An example of such a case is where the profile consists of a log
of all the absence days of an employee (e.g., going on vacation or on leave, retiring
early, etc). In this case, while we expect individuals that are less active to suffer
the ill-effect of Power Inequality, the occurrence of a Full-Spectrum Glass Ceiling
effect means that two individuals, one from R and another from B, with identical
profiles, namely, who have taken vacations at the same time, do not have the same
expected power. This may commonly be considered an unfair disadvantage.

Inequality Causes We focus on three possible causes of inequality. The first is
minority, i.e., the fact that the number of women and men in the system is not
necessarily equal. The second is homophily, a potential cause for inequality that was
proposed and examined in [1], namely, the tendency of an individual to connect to
similar individuals rather than non-similar individuals. One may conjecture that the
tendency of men to connect to other men, and of women to connect to other women,
particularly in combination with other causes, such as minority, may promote
inequality. The third possible cause is a phenomenon called the leaky pipeline,
whereby women quit work at a higher rate than men. It was proposed in [7] that this
may be a key reason why women are underrepresented (specifically in the STEM
fields, but in other domains as well).

Social Network Model Following [1], to facilitate the study of Power Inequality
and Glass Ceiling in a concrete setting, we describe a mathematical model for social
networks, where Power Inequality and Glass Ceiling naturally arise. Our model
attempts to capture a collaborative social environment in which power is manifested
by the number of connections made by an individual, and incorporates homophily,
leaky pipeline and unequal initial conditions.

One major difference from the model of [1] is that while [1] considered the
potential causes of minority and homophily, it did not consider the leaky pipeline as
a possible cause. For this reason, we feel that the analysis of [1] may have failed to
capture the phenomenon in its full affect.

Formally, we consider a network modeled as a multigraph, with two types of
nodes, a set R of red nodes and a set B of blue nodes, representing our two
populations. We would like to model a process by which individuals join their
community at different times, stay in the community for a period of time during

“For example, a measure acceptable in the eyes of the law.
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which they can be active, and then quit, or “retire”. Formally, at every time ¢, a class
t consisting of r new red nodes and b new blue nodes joins the network. At every
timet =t,t+1,...,t+ L—1, every red (respectively, blue) node in class 7 decides
either to be active in the network at time 7, with probability gz (resp., gp), or to be
inactive, with probability 1 — g (resp., 1 — gp). At time ¢ 4+ L all nodes in class ¢
retire and become permanently inactive. Note that gg < gp implies that red nodes
tend to be inactive more often.

In this setting, power is represented by the ability to form connections, repre-
sented by links in the network. Link formation is modeled as follows. Every node
starts with degree 0. At every time step, every active node v that is currently in the
network attempts (simultaneously) to connect to a single other active node u in the
network, chosen uniformly at random. If v and u are of the same color, a new edge
(v, u) is added to the network. If v and u differ in color, however, then the nodes
might fail to connect. Specifically, if v € B and u € R, then with probability pg the
edge (v, u) is added, and with probability 1 — pg, the connection is not formed, and
v resumes its search for a node to connect to. Conversely, if v € R and u € B, then
with probability pg the edge (v, u) is added, and with probability 1 — pg, v resumes
its search. Note that when pp < 1 (respectively, pg < 1), the network exhibits
homophily by the blue (resp., red) nodes, i.e., nodes tend to connect to nodes of the
same color.

The power of an individual v at time ¢ is measured by its degree in the network
at that time, i.e., p(v, ) = d,(v). We thus define the Power Inequality measure as

E [di41(v)]

PO = )

3)

which is equal to the ratio between the expected degree of a red node v and
a blue node u, both from class ¢, upon retirement. To compare individuals of
similar profile, we represent the profile of an individual by a nonzero vector
L= Ls1,... . Lyr—1) € {0, 1}F, specifying whether v was active (if £, = 1) or
inactive (if £, = 0) at every time t < t < f + L. We can now provide a definition of
the Normalized Power Inequality measure that is tailored to our setting, as

Eldi(v) | P(v) = {]

NPIEO = F i P =1

“)

which is equal to the ratio between the expected degree of a red node v with profile
£ and a blue node u with profile £, both from class z, upon retirement. Note that both
Pl and NPI do not depend on v (respectively, ©) due to the symmetry between all
the red (resp., blue) nodes in class ¢.

Contributions In this paper we study the phenomena of Power Inequality and
Personalized Glass Ceiling discussed above, relate them to the causes of minority,
homophily and leaky pipeline, and show how these three elements contribute to the
creation (or absence) of the Power Inequality and Glass Ceiling effects.
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The social network model just described allows us to conveniently represent
the three causes discussed above. Let us define three ratios, the minority ratio, the
homophily ratio, and the leakage ratio, as follows:

r pp 1 —pr qr
Rminoriry =7 Rhomophily = , Rleakage =
b pr 1 —ps qs

representing the level of imbalance between the two sub-populations in one of the
three parameters discussed above. (The extreme cases where the denominator equals
0 require special treatment, but are in fact easier to analyze, and are expected to be
rare.) In a completely balanced society, these ratios will all be equal to 1.

Our main result is that for a large enough L, a Full-Spectrum Glass Ceiling will
gradually form for the red nodes, i.e., NPI(z, £) < 1 for every profile £, if

Rminority : Rhomophily : Rleakage <1.

Note that setting the parameters differently may create a Glass Ceiling for the blue
nodes. Moreover, note that a bias in either one of the three ratios may “single-
handedly” cause a Glass Ceiling effect, even if the other two ratios are both equal to
1, i.e., even if the society is balanced in two of the three parameters.

Let w({) = Zf:f_l {; denote the weight of the profile £, which can also be
seen as the total amount of experience associated with the profile £, and consider
Eq. (4). We show that, in our model, E [d;4(u) | P(u) = €] is linear’ in w({), thus
we have that E [d;4 1 (v) | P(v) = €] —E [d+.(u) | P(v) = €] is linear in the profile
weight w({), implying that the difference in the power increases (linearly) with the
experience of the individual.

We also derive the condition for the formation of a Power Inequality effect. This
condition is technically more cumbersome. However, we observe that the Power
Inequality measure PI(f) can be shown to be approximately equal to Rieakqge
NPI(z, £). This implies that if Rjeakeee = 1, then a Power Inequality will form for
the red nodes, i.e., PI(r) < 1, if

Rmirmrity : Rhonmphily <1.

In general, we show that for a large enough L, there exists a Strong Power Inequality
for the red nodes if

-~ gp - —ap - b-gp - —ap -
L Tar (gr — g5 pr) _ g5 - (48 — qr - PB)

qp +
r-qr+b-qp-pr b-gg+7-qr-ps

qr

and a Strong Power Inequality for the blue nodes if the inequality sign is flipped.
Note that Power Inequality and Glass Ceiling are indeed two independent phenom-

SThis is not necessarily true for all plausible models. For example, some natural models might
assign more weight to vacations/leaves that take place early in the career.
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ena. Namely, by setting (r, b, gr, g, pr, pg) to (1,4,1,0.5,0.5,0.5), we obtain a
full-spectrum glass ceiling for the red nodes and a strong power inequality for the
blue nodes.

2 The RLR Model

Our model incorporates the notion of a leave, where a node is temporarily inactive,
and that of retirement, where a node becomes inactive forever, thus introducing
the Recruitment, Leaves and Retirement (RLR) model. The system is described by
a dynamically growing multigraph G, = (R U B, E;) over two populations R and
B, the sets of red and blue nodes. The red population R = i, R, (respectively,
B = Uﬁl B,) is a disjoint union of sets of size r (resp., b), i.e., |[R{] = r and
|B;| = b for all r. We call C; = R, U B, the class of year t. Note that {C,},> are
pairwise disjoint, and that |C,| = r + b.

For every node v € R, (respectively, v € By) in class ¢, we set v to be inactive at
alltimesi < trandi > t+ L. Fortimes t < i < t + L, we set v to be active with
probability g (resp., gg), and inactive otherwise. We denote the activity profile of
node v from class by P(v) = (P,(v), Prt1(v), ..., Pigr—1(v)), where P;(v) = 1
if v is active at time i and O otherwise. The activity of a red (resp., blue) node v
from class ¢ is P;(v) = 0 for i < ¢, when v has not yet been recruited, as well as for
i > t+L, when v has already retired. During the period t < i < t4L, v is employed,
and P;(v) = 1 with probability gg (resp., gg) and O otherwise. We refer to L as the
career span, and think of time ¢ as the time of recruitment, the time ¢ + L as the time
of retirement, and the times ¢t < i < t + L such that P;(v) = 0 as leaves/vacations.
Another way of viewing this model is that at every time #, we add a class consisting
of r red nodes and b blue nodes. This class stays in the work force for L time, where
at every step, each red (respectively, blue) node in the class goes on a leave/vacation
with probability 1 — gg (resp., 1 — gp).

We now describe the process of edge formation. Starting with an empty graph
Gy = (RUB, 0), at every time 7 every active red (respectively, blue) node v chooses
(simultaneously) an active node u, sampled uniformly at random. If v and u are
of the same color, a new edge (v, u) is added to the multigraph, and if v and u
differ in color, then with probability pg (resp., pg) the edge (v, u) is added, and with
probability 1 — pg (resp., 1 — pp), v resumes its search for a node to connect to.

Letting d,(v) denote the degree of node v at time ¢, we define Power Inequality
and Normalized Power Inequality measures for the RLR model.

Power Inequality For nodes v € R, and u € B, in class t,

E [di+1(v)]

O i)

®)
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Normalized Power Inequality For nodes v € R, and u € B; in class ¢ with the
same profile £ = ({;, {41, ..., Lir1—1) € {0, 1}F

E[di+1(v) | P(v) = {]
E[dir(u) | Pw) =£]

NPI(z,£) = NPI(v,u,t,{) = 6)

Note that due to the symmetry between all the red (respectively, blue) nodes, these
two definitions do not depend on the specific choices of v and u.

3 Analysis of the RLR Model

We now analyze the RLR model and state our main results. Denoting the profile of
all the nodes by P = (P(v) | v € R U B), we prove the following theorem.

Theorem 1 In the RLR model, for every red node v € R; and 0 < j < L, we have

t+j—1

M%wm=zﬂ@@+ L +““),<n

ri+bi-pr  bi+ri-ps

and symmetrically for every blue node u € B,, we have

t+j—1

M%WW=Z%MO+ i +””),(&

bi+ri-pg  ri+bi-pr

where the expectation is conditioned on the activity profiles of the nodes.

Proof We prove Eq. (7). Consider a round i in which v is active. Then in this round
v’s degree will increase by 1 since v connects to another active node. In addition,
each red (respectively, blue) node u chooses to connect to v with probability p,, =
1/(r; + bipr) (resp., pp/(b; + r;pp)). There are r; (resp., b;) such nodes, so

r; bi - pp
E [dig1 (v) — d; =Pi(v) 1 :
[di1(v) ) [ 7] P(v)( +ri+bi‘pR+bi+ri'pB)

Summing over i from ¢ to ¢t 4+ j — 1, Eq. (7) follows (and similarly for Eq.(8)). O

Theorem 2 (Conditional Expected Degree) In the RLR model, for every class
t > L, red node v € R,, profile £, and 0 < j < L, we have

E[d+;(v) | P(v) = {]
i1

. b-an-
_ (1+ r-qr n 48 - PB +0(1)) Z ‘.
i=t

r-qr+b-qs-pr  b-qp+r-qrps
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where o(1) — 0 as L — oo. Similarly, for a blue node u € B,, we have

E [di1j(u) | Puw) = {]

t+j—1

b-qp T qr - PR )
= (1+ + +o(l t.
( b-qp+r-qrps T qr +b-qppr M ;

Consider the Glass Ceiling measure NPI(z, £) defined in Eq. (6). Note that NPI(z, £)
does not depend on v and u and is given by the following direct corollary of
Theorem 2.

Theorem 3 (Normalized Power Inequality) In the RLR model, for every career
span L, class t > L, and profile £, we have

1+ 4R b-q°pB
_ rqr+b-qppr b-qp+r-qr-p

NPI(, ) = i T (1),
b-qp+r-qr-pp rqr+b-qp-pr

where 0o(1) = 0 as L — oc.
Corollary 1 For a large enough career span L > 0 and a class t > L, a Full-
Spectrum Glass Ceiling will form for the red nodes in class t if

Rminm‘ity : Rhomophily . Rleakage <1.
A Full-Spectrum Glass Ceiling will form for the blue nodes in class t if the inequality
sign is flipped. Here we interpret x/0 = oo for every x > 0.
Proof This follows directly from Theorem 3 upon observing that for a large enough

career span L, a Glass Ceiling will form for the red nodes if

(1 =pr)-7-qr < (1 —pp)-b-qp
r-qr+b-qs-pr  b-qp+r-qr-ps’

and a glass will form for the blue nodes if the inequality sign is flipped. The corollary
then follows upon noting that

(1—pr)-r-qr _ (r-qr+b-g8)-pp-pr+b-qp- pr(1 — pp)
——————=1—(r-qr+b-gB)-
r-qr+b-qp-pr (r-qr+b-qp-pr)(b-qB +1-qr " PB)
(1—pp)-b-q8 (r-qr+b-q8)-pp-pr+ 7 qr-pp(1 — pR)
PP —— =1-(r-qr+b-gp)- .
g+ 7r-qr-pB (r-qr+b-gp-pr)(b-qp +r-qr - pB)
O

The following are also direct corollaries of Theorem 2.
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Corollary 2 For every class t > L, and every node v in class t, we have
that E [d,+j(v) | P(v) = E] is linear in the total amount of experience w(f) =

SN, thus the difference |E [dit;(v) | P(v) = €] — E[digj(u) | P(u) = €] |
increases (linearly) with the experience.

Theorem 4 (Expected Degrees) In the RLR model, for every class t > L, red node
v E€R;and 0 <j <L, we have

T qR b-qp - ps
r-qg+b-gg-pr  b-qp+7r-qr-pp

E[di+;(v)] = (1 + + 0(1)) J 4R

where o(1) — 0 as L — oc. Similarly, for a blue node u € B;, we have

b-qs i " 4qr - PR
b-qp+r-qr-pg  r-qr+b-gs-pr

Next, consider the Power Inequality measure Pl(¢) defined in Eq.(5). Note that
PI(#) does not depend on v and u and is given by the following direct corollary
of Theorem 4.

Theorem 5 (Power Inequality) In the RLR model, for every career span L and
class t > L, we have

1+ rgr b-qp-pB
qr rqr+b-qp'pr bqp+rqr-ps

PI(r) =
q

+o(1),

B ( + bgp "qR*PR )
b-qe+rqr-pp rqr+b-qp-pR

where 0o(1) = 0 as L — oc.

The following is a direct corollary of Theorem 5.

Corollary 3 For a large enough career span L, there exists a Strong Power

Inequality for the red nodes if

r-qr-(qr — 4B PR) b-qp- (g8 —qr - pB)
qr + <gp+ .
r-qr+b-qp-pr b-qg+7r-qr-ps

A Strong Power Inequality for the blue nodes exists if the inequality sign is flipped.
We now prove Theorem 2. The proof uses the following lemma.

Lemma 1 Fix nonnegative reals p,ci,c; > 0. Let X ~ B(my,q1) and Y ~
B(my, q2) be two independent binomially distributed random variables. Denote

C1+X E[X]
fX,Y) = and y = ——7—.
ci+co+X+pY E [X] + pE[Y]
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For m;,my = ©(n), we have

IE[f(X.Y)] —y| < O(yInn/n) .

Proof Letting Ux = E [X] 4+ «a./m; and Ly = E [Y] —«a./m5, we consider the event
E={X<Ux}N{Y > Ly}. We have

Ef(X.Y) =yl =Pr€]-E[f(X.Y) —y | E] + PrE]-E[f(X.Y) —y [ €7 .(9)

where £ is the complement of £. Note that f(X, Y) increases in X and decreases in
Y,and that 0 < f(X,Y) < 1and 0 < y < 1. Plugging this into Eq. (9) yields

Ef(X.Y) =yl = 1-(f(Ux,Ly) —y) + Pr[€] - 1.
Setting ¢ = +/Inn and applying Hoeffding’s inequality, we obtain
Pr[€] < Pr[X > Uy] + Pr[Y < Ly] < 2¢72" =2/n?,

whereas

AE[Y]-p—aE[X] +a-(/m-E[Y] + /m;-E[X])
EX]+pE[YD(c1 +c2+Ux +p-Ly)

O(y/Inn/n),

thus proving E [f(X,Y) — y] < O(y/Inn/n) (and similarly for E [—f (X, Y) + y]).

fWx.Ly) —y =

IA

O
Corollary 4 Following notations from Lemma I, if the limits lim "1 = B and
n—>oo
lim 22 = B, exist, we get
n—>oo
Bl )= 5 o)

Bigi + p- B2g>

where o(1) tends to 0 as n — oo.
Proof of Theorem 2. We prove the claim for the red nodes (a similar proof holds for
the blue nodes). By Eq. (7), for every red node v we have

t+L—1

Bldar) | PO) = 0= 3 b |1+ —

i=t

T bi - pp i|
bi-pr  bi+ri-ps
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Whenever £; = 0, the summand is equal to 0. When £; = 1, since the distribution of
r; (respectively, b;) is independent of i, the summand is also independent of i. Hence

E[diL(v) [ P(v) = {]

1+L—1 N
1 by -
=2t 'E[l+ AL (. }
= (I+7r)+b-pr b+ (1+7): pp

where 7y = 3 cp\ 3 Pr(w) is the number of red nodes active at time  not including
v. Note that at time ¢ > L, there are potentially L - r active nodes, thus 7, ~ B(L -
r — 1, gg) is a binomially distributed random variable. Applying Corollary 4 twice,
once with (X, Y, p, ¢y, ¢3) set to (7, by, pr, 1,0) and once with (X, Y, p, ¢y, ¢3) set to
(b, 71, pB, 0, pp), the claim follows. O

4 Discussion

Let us conclude with a discussion of the meaning and implications of the last result.
Consider, as a concrete example of relevance, a work environment with men and
women. We model the leaky pipeline phenomena where women leave the network
at a higher rate than men as gz < gg. While in many fields men and women arrive
to the network at similar rates (i.e., »r = b), a Glass Ceiling can also be generated
if women arrive at a higher rate than men, i.e. r > b, as long as their leaving rate
is high enough, they are discriminated enough, or have enough low self-homophily,
namely r-gg-pp- (1 —pr) <b-qp-pr- (1 — pp).

Corollary 3 formalizes the connection between the following three elements,
which contribute to the formation and destruction of Glass Ceilings: initial majority,
given by the relation between r and b; the leaving rates for the leaky pipeline,
modeled as g and gp; and the rate of homophily, given by pg and pg.

If no homophily exists (i.e., pg = pp = 1) then by symmetry, nodes with
identical profiles will have identical degree distribution, thus there will be no Glass
Ceiling. Dually, in the case of total homophily (i.e., pg = pg = 0), two disjoint
networks will be created, one with only blue nodes and the other with only red
nodes. By symmetry, in each network and each time step, each active node will
increase its expected degree by 2, thus all nodes with the same profile will have the
same expected degree.

If partial homophily exists (i.e., 0 < pg, pp < 1), then a Glass Ceiling will be
generated for the current minority, scaled by the homophily parameters. Specifically,
a Glass Ceiling for R will form if the product of the ratios Ruinoriry> Rhomopnity and
‘Ricakage 18 smaller than 1. It is important to consider all three elements, since if all
three ratios are nontrivial (i.e., equal to neither O nor infinity), then any one of them
can overthrow the other two by solely generating or breaking the Glass Ceiling.

Finally, let us mention that another attempt to formalize a Glass Ceiling effect
can be found in [4], where four criteria are formalized for the generation of Glass



Modeling and Analysis of Glass Ceiling and Power Inequality in Bi-populated Societies 73

Ceiling. This work, however, is very different from ours for a few reasons. First,
[4] does not take into account the personal capabilities and experience of each
individual. Second, their work attempts to quantify the Glass Ceiling by observing
empirical data, whereas we attempt to model a social network and explain the causes
for (and quantify) the Glass Ceiling.
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Elites in Social Networks: An Axiomatic
Approach

Chen Avin, Zvi Lotker, David Peleg, Yvonne-Anne Pignolet, and Itzik Turkel

Abstract Recent evidence shows that in many societies the relative sizes of the
economic and social elites are continuously shrinking. Is this a natural social
phenomenon? We try to address this question by studying a special case of a
core-periphery structure composed of a social elite, namely, a relatively small but
well-connected and highly influential group of powerful individuals, and the rest of
society, the periphery. Herein, we present a novel axiom-based model for the mutual
influence between the elite and the periphery. Assuming a simple set of axioms,
capturing the elite’s dominance, robustness and compactness, we are able to draw
strong conclusions about the elite-periphery structure. In particular, we show that
the elite size is sublinear in the network size in social networks adhering to the
axioms. We note that this is in controversy to the common belief that the elite size
converges to a linear fraction of society (most recently claimed to be 1%).

Keywords Social networks ¢ Core-periphery ¢ Elite * Block model ¢ Partition *
Axioms ¢ Influence ¢ Social structure

1 Introduction

In his book Mind and Society [21], Vilfredo Pareto wrote what is by now widely
accepted by sociologists: “Every people is governed by an elite, by a chosen
element of the population”. Indeed, with the exception of some rare examples
of utopian or totally egalitarian societies, almost all societies exhibit an (often
radically) uneven distribution of power, influence, and wealth among their members,
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and, in particular, between the elife and its complement, sometimes referred to
as the masses. Typically, the elite is small, powerful and influential, whereas the
complementary part of society is larger, less organized, and less dominant.

Looking more closely at social networks, the distinction between the elite and
the rest of society can be viewed as a special case of a more general division that
occurs in most complex networks, usually referred to as a core-periphery partition
of the network [5]. The core-periphery structure is arguably the most high-level
structure of society, and the problem of identifying this partition and understanding
its basic properties has recently received increasing attention [18, 23, 26]. Generally
speaking, the core vertices are more highly connected and feature higher centrality
values than the periphery vertices; these properties are naturally shared by elites in
social networks.

However, we argue that elites have some additional significant properties, which
distinguish them as a special class of cores worthy of independent study. In
particular, these properties imply two notable characteristics of elites, namely, that
they are relatively small and that they possess a disproportionate fraction of the
power, resources, and influence in society.

In this paper we study the properties of social elites. Our main contribution
is a characterization of elites, i.e., a set of properties (formulated as “axioms”)
concerning influence and density that any elite must possess. We stress that we do
not claim these axioms hold for every core-periphery partition, nor do we claim
that every social network admits a core-periphery partition that satisfies the axioms;
in fact, it is easy to find examples of both real-life complex networks and classical
evolutionary network models in which our axioms are not met by any core-periphery
partition. Rather, we focus on the class of social networks that do admit core-
periphery partitions that satisfy our axioms, referred to hereafter as the class of
elite-centered social networks.

A small illustrative example of the terms we use is provided in Fig.1. It
presents the network of the top 139 Marvel [1] superheroes and the 924 links
interconnecting them, partitioned into an elite and a periphery as shown by different
vertex colors. Two striking features can be clearly observed in this figure. First, the
elite (containing, e.g., Captain America, Spiderman, and Thor), depicted in Fig. 1b,
is dense and organized, while the periphery, presented in Fig. 1c, is much sparser and
less structured. Second, the size of the core is “only” 27 vertices, with 112 vertices
in the periphery. Note that despite this considerable size difference, the elite and the
periphery have almost the same number of internal edges (x 250).

Our axiomatic characterization does not lead to pinpointing a single definition
for the elite in a given social network. However, it is powerful enough to allow us
to derive several conclusions concerning basic properties of the elite in society. Our
main conclusion applies to the size of the elite. Recent reports show that the gap
between the richest people and the masses keeps increasing, and that decreasingly
fewer people amass more and more wealth [13, 20]. The question raised by us is: can
society help it, or is this phenomenon an unavoidable by-product of some inherent
natural properties of society? We claim that in fact, one can predict the shrinkage
of elite size over time (as a fraction of the entire society size) based on the very
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Fig. 1 Fictional illustrative
example: the social network
of the Marvel’s superheroes.
Two heroes are linked if they
appeared together in many
comic book titles [1]. (a) The
network (139 superheroes,
924 edges), partitioned into
an elite (red vertices and
internal edges) and a
periphery (green vertices and
internal edges). Blue
“crossing” edges connect
elite and periphery vertices.
(b) The (dense) elite
subgraph (27 vertices, 252 (b)
edges). (¢) The (sparser)
periphery subgraph (112
vertices, 249 edges)

Ty el o
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nature of social elites. In particular, in our model, such shrinkage is the natural
result of a combination of two facts: First, society grows, and second, elites are
denser than peripheries (informally, they are much better connected). Combining
these facts implies that the fraction of the total population size comprising dense
elites will decrease as the population grows with time. We prove this formally in
Theorem 2.

A dual question we are interested in concerns the stable size of the elite in a
growing society: How small can the elite be while still maintaining its inherent
properties? In general, elites of constant size can exist in societies where influence
might be sharply asymmetric. In contrast, we show that if the social network is
unweighted and undirected then an elite cannot be smaller than $2(/m), where m
is the number of network edges.

Supporting empirical results are presented in [4].

2 An Axiomatic Approach

The common approach to explaining empirical results on social networks is based
on providing a new concrete (usually random) evolutionary model and comparing
its predictions to the observed data. In contrast, we follow an axiomatic approach to
the questions at hand. This approach is based on postulating a small set of axioms,
capturing certain expectations about the network structure and the basic properties
that an elite must exhibit in order to maintain its power in the society. Our axioms
are inspired by elite definitions like the one from Wikipedia, by which:

In political and sociological theory, an elite is a small group of people who control a
disproportionate amount of wealth or political power.

To conceptualize these informal definitions, we employ the fundamental notion
of influence among groups of vertices, and propose three independent properties
related to the influence between the elite and the periphery. The underlying
assumption is that the excess influence of the elite allows it on the one hand to
control the rest of the population, and on the other to protect its members from
being controlled by others outside the elite. We refer to these two properties as
dominance and robustness respectively. In addition, the “wealth” is shared by the
elite few, implying that on average, the elite members hold much more influence
than individuals in the periphery. We refer to this property as compactness. We
characterize elite-centered social networks as the class of social networks that admit
core-periphery partitions satisfying these three properties. Next we make these
properties more formal.

Influence and Core-Periphery Partition We consider influence to be a measur-
able quantity between any two groups of people from the population, X and Y,
denoted by Z(X, Y). The groups X and Y are not necessarily distinct, and we are
also interested in the internal influence exerted by the vertices of a group X on
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themselves, referred to by Z(X, X). We provide the abstract notion of influence in
social networks a concrete interpretation based on edge weights. We also assume
that every individual has a self-opinion (modeled as a self-loop.) We denote the set
of core vertices by C and the rest of society (the periphery) by P. We call the pair
(C,P), which satisfies C NP = @ and C U P = V, a core-periphery partition, and
study the four influence quantities Z(C, C), Z(P, P), Z(C,P) and Z(P, C).

Formally, we model a social network as a directed, weighted graph G =
(V,E,w), with a set V of n vertices representing the members of society, connected
by aset E C V x V of m directed edges, and a positive weight function w : E — R
such that w(e) > 0 for every e € E. We are interested in the relative (and not
absolute) influence between vertices, so we shall initially fix the weights of self
loops to 1, thus defining a “unit of influence”, and assume that all other weights
are relativized to that unit, and next normalize the weight function w so that
> .epw(e) = |E| = m. For a set of edges E' C E, define the weight of E’ as
w(E') = ), w(e). Given an undirected network, we consider each undirected
edge as two equal weight directed edges. Given an unweighted network, we consider
all edges to have weight one.

For every vertex v and set of vertices X, let the set of directed edges connecting
v to vertices in X be denoted by E(v, X). Similarly, for vertex sets X,Y C V, let
E(X,Y) denote the set of directed edges connecting vertices in X to vertices in Y.
Based on the edge weights, we define the influence of X on Y, for X, Y C V, as

I(X,Y) = w(EX,Y)). 1)

Note that in general Z(X,Y) # Z(Y,X). However, if the social network is
undirected then Z(X,Y) = Z(Y, X) for every X, Y C V. In addition we define the
total power of a set X to be

I(X) = Z(X.X) + Z(X, V\ X) . )

Given a core-periphery partition (C, P) of V, the edge set E can be partitioned
into four disjoint edge sets E(C,C), E(C, P), E(P,C) and E(P,P). Looking at the
adjacency matrix A(G) of the core-periphery network G [7], these sets correspond
to the four basic parts of the block-model representation [14] of A(G).

Elite-Periphery Axioms We now propose three simple axioms that capture what
we consider to be basic structural properties required of the core-periphery partition
(€,P) in elite-centered social networks,! namely, dominance, robustness, and
compactness. To state our axioms we first define three corresponding quantitative
measures for the dominance, robustness, and compactness of the elite £ in a given
(&€, P) partition.

'To emphasize our focus on networks whose core is an elite, we denote the core set of the partition
by & rather than C.
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Dominance: The first measure, referred to as the elite dominance, concerns the
balance of forces exerted on the periphery; namely, it compares the influence of
the elite on the periphery with the internal influence of the periphery. Formally,

dom(&) =Z(E,P)/I(P,P),

and the first axiom is:

(A1) Elite-Dominance: dom (£) > ¢y, for a fixed constant ¢; > 0

This axiom states that the elite dominates the rest of society, namely, that the
external influence maintained by the elite £ on the periphery P is higher (or at
least not significantly lower) than the internal influence that the periphery has
on itself. Such high dominance is essential for the elite to be able to maintain its
superior status in society.

. Robustness: The second measure, referred to as the elite robustness, concerns

the forces exerted on the elite, namely, it compares the internal influence of the
elite with the influence of the periphery on the elite. Formally,

rob(&) = Z(E,E)/Z(P,E),

and the second axiom is:

(A2) Elite-Robustness: rob(£) > ¢,, for a fixed constant ¢, > 0

This axiom claims that elite is robust; to maintain its cohesiveness and be able
to stick to its opinions, the elite must be able to resist “outside” pressure in the
form of the periphery’s external influence. To achieve that, the internal influence
of the elite £ on itself must be greater (or at least not significantly less) than the
external influence exerted on £ by the periphery.

. Compactness: The third measure, referred to as the elite compactness, concerns

log Z(X)

lOgT denote

the disproportionality between the elite’s power and size. Let 8y =
the log-density of a set X C V. Then

comp(€) = 8¢ /dv,

and the third axiom is:

(A3) Elite-Compactness: comp(&) > 1 + ¢, for a fixed constant ¢, > 0

This axiom states that the elite members are more compact (or dense) than the
entire network. This means that on average an elite member holds significantly
more power than an arbitrary member of society.

The three axioms are illustrated graphically in Fig.2. We say that a family of »n-
vertex networks G, for growing n, satisfies the axiom A if there exists some n( such
that G, satisfies A for every n > ny.

Before showing the implications of these axioms we show that the three axioms

are independent. For any two axioms out of the three, there exist a social network
and a core-periphery partition that satisfies the two axioms but not the third. More
formally, we have the following.

Theorem 1 (Axiom Independence) Axioms (Al), (A2), (A3) are independent,
namely, assuming any two of them does not imply the third.
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(A1) Dominance (A2) Robustness (A3) Compactness

Fig. 2 Graphical illustration of the three axioms. Elite vertices are gray. (A1) The elite’s external
influence (blue edges), Z(£,P), dominates the periphery’s internal influence (black edges),
Z(P,P). (A2) The internal influence of the elite, Z(&, ), is robust to the periphery’s external
influence, Z(P, £). (A3) The elite is more compact and its average individual is more powertul
than an average individual in the society

Fig. 3 Network examples demonstrating the independence of the axioms (the gray vertices form
the core). (a) The core is robust and compact but not dominant. (b) The core is dominant and
compact but not robust. (¢) The core is dominant and robust but not compact. (d) An example of a
network satisfying all three axioms

Proof Sketch. We prove the theorem by considering three examples of families of
n-vertex (undirected, unweighted) networks and core-periphery partitions for them,
described next. Each of these partitions satisfies two of the axioms, but violates
the third, implying axiom independence. The first network and partition (Fig. 3a),
depict a core that is robust and compact but whose dominance tends to zero as the
network size n grows to infinity. The second example (Fig.3b) describes a core
that is dominant and compact but whose robustness tends to zero as the network
grows. The last example (Fig. 3c) describes a core that is dominant and robust its
compactness dominance tends to one as the network size n grows to infinity. i.e., the
average degree of core members and periphery members is almost the same. O

We observe that, as one can easily verify, there are certain networks for
which no core-periphery partition satisfies all three axioms (A1), (A2), and (A3)
simultaneously. Interestingly, in the special case of undirected networks, axioms
(A1) and (A2) are “inversely dependent”’, namely, every network and every core-
periphery partition must satisfy at least one of them. This implies that there are no
unweighted networks that disobey all three axioms.
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3 The Size of the Elite

We can now use our axioms to provide bounds on the elite size. The class of elite-
centered social networks consists of social networks that admit a core-periphery
partition satisfying all three axioms. Our main theorem shows that elite-centered
social networks have a sublinear elite. Formally,

Theorem 2 (Elite Size) If (£, P) satisfies the dominance, robustness, and com-
pactness axioms (Al), (A2), and (A3), then the elite size is sublinear in the size of
society, namely,

Sy 1
c-n¥e <|&| < nite .

We find it remarkable that three simple and intuitive assumptions lead to such
a strong implication on the elite size. Note that Theorem 2 is controversial to the
common belief that the elite size converges to a linear fraction of a society’s size
(most recently claimed to be 1% [22]). This discrepancy may perhaps be attributed
to the fact that our axiom-based approach characterizes the elite differently than in
previous approaches.

To prove Theorem 2 we first observe that every network satisfying the axioms
has the following properties.

Lemma 1 If (£, P) satisfies the dominance and robustness axioms (Al) and (A2),
then the total influence of the elite is at least a fraction of the total influence in
society, namely, for some constant ¢c; > 0,
ci-m < I(€) < m.
Proof We first note that since w(E) = m we have:
I(E.E)+IE.P)+I(P.E) + I(P,P) = m, 3
so Z(€) < m. By Eq. (3) and Axioms (A1) and (A2),

Z(E&€) n Z(E,P)

Cr Cq

ZEE+IEP)+

SO

(14 ey ) 7€) = m
min(c,, ¢q)

hence Z(€) > ¢ - m for constant ¢; = (1 + O

1 -1
min(cncd)) :

Using Axiom (A3), the elite size can now be tightly bounded in terms of the
compactness parameters g and dy, establishing Theorem 2.
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Proof (of Theorem 2) Recalling that m = n® and Z(E) = |£|%, the proof follows
directly from Lemma 1 and Axiom (A3), which states that 6y /8¢ < 1/(1 +¢.). O

In reality, the question of an upper bound for the “typical” elite is unanswered:
does the “universal” size of elites (if it exists) converge to a linear, or a sublinear,
function of the network size? In [4] we present evidence that many social networks
are elite-centered (namely, satisfy our axioms), which indicates sublinear elites.

Interestingly, if Axiom (A3) does not hold, then it is possible for the elite to be
of linear size. This will be the case, for example, in social networks where Dunbar’s
theory holds [12]. Dunbar suggested a cognitive limit to the number of people with
whom one can maintain stable social relationships. If this is the case, then one can
show that an elite that satisfies Axioms (A1) and (A2) must be of linear size. One
can even claim a slightly stronger result, stating that the elite’s average degree is
bounded from above by a constant times the average degree in the network (which
necessitates linear elite size). Formally, we state the following.

Lemma 2 If (£, P) satisfies the dominance and robustness axioms (Al) and (A2),
but has, for some constant c,

L&)€l = c-T(V)/IVI,

then |E| > c3 - n for some constant cs.
Proof By Lemma 1, and since here Z(€) < |€|cm/n, we have |E| > ¢in/c. |

We now turn lower bounds on the elite size. How small can the elite be while
still maintaining its power and satisfying the axioms? Let us first observe that in
the general case of weighted or directed networks (such as twitter for example), no
nontrivial lower bounds hold, and the network may have an extremely small elite
(possibly even constant size) that satisfies our axioms.

Lemma 3 There are (directed or weighted) networks for which an (€, P) partition
satisfies the dominance, robustness, and compactness axioms (Al), (A2), and (A3),
and the elite has a constant number of members.

Proof For directed networks, a classical example is the star graph, where a single
vertex (the center, forming the elite) has a directed edge to each of the periphery
vertices (with no incoming edges). Clearly the star center dominates the periphery,
and it is robust and compact.

Next consider undirected weighted graphs. Consider a tree network with n = 2k
vertices, so m = 4k — 1 (including self-loops). The weight of each self-loop is 1,
totaling 2k. Now the tree is constructed from two stars, with uniform edge weights
of 1/2, plus an edge of weight k connecting the two centers of the stars. It is easy
to check that the sum of the edge weights is m. The elite consisting of the two star
centers satisfies all three axioms. |

In contrast, in undirected unweighted networks, the following lower bound can
be established for elite size.
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Theorem 3 In an unweighted and undirected network G with a core-periphery
partition (£, P), if the core £ satisfies the dominance and robustness axioms (Al)
and (A2), then its size satisfies |E| > c4 - /m for some constant ¢4 > .

Proof In the undirected case Z(E,P) = Z(P, ), so
IZEE+IEP)+I(P,P) = m. 4)
By the two axioms and since G is undirected, we have
Z(E.E) = ¢ I(P.E) = c,ca-I(P,P).

Combining this with Eq. (4), we obtain

m < (1+l+ ! )1(5,5).

¢ CrCq
Hence, when setting ¢; = (1 + 1/c, + 1/(c,cp))~" it holds that
ZEE) = ¢ m. 5)

Graph-theoretical considerations dictate that Z(€, ) < (l‘g‘) < |&|?, implying that
€] = VZ(E,E). Combined with Eq. (5), the theorem follows. |

One can also show an example of what we call a purely elitistic society, where
the elite reaches its minimum possible size of ®(4/m) in undirected, unweighted
networks. See Fig. 3d for an illustrative example.

We remark that in addition to the theoretical results on elite axioms and
properties, we also studied some real networks, in order to examine the extent to
which our axioms manifest in reality, and provide evidence for the existence of real
elite-centered social networks [4].

4 Related Work

The axiomatic approach has been used successfully in many fields of science, such
as mathematics, physics, economy, sociology and computer science. See [2, 16] for
two examples in areas related to ours.

A variety of notions for measuring influence in a network and for core-periphery
partitions have been developed in the past (see the recent survey [9]). Borgatti and
Everett [5] measure the similarity between the adjacency matrix of a graph and the
block matrix (} (1)) This captures the intuition that social networks have a dense,
cohesive core and a sparse, disconnected periphery. an intuition also reflected in the
axioms postulated herein.

Methods for identifying core-periphery structures and partitioning networks
include algorithms for detecting (along with statistical tests for verifying) a-priori
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hypotheses [6], a coefficient measuring if a network exhibits a core-periphery
dichotomy [18], a method for extracting cores based on a modularity parameter [11],
a centrality measure computed as a continuous value along a core-periphery
spectrum [23], a coreness value attributed to each vertex, qualifying its position and
role based on random walks [24], a detection method using spectral analysis and
geodesic paths [10], and a decomposition method using statistical inference [26].
The recent [25] argues that the core-periphery structure is simply the result of
several overlapping communities and proposes a community detection method
coping with overlap. None of these works consider the asymptotic size of a core/elite
and the possibility that its size is sublinear in the population size.

One of the first papers to focus on the fact that the highest degree vertices are
well-connected [27] coined the term rich-club coefficient for the density of the
vertices of degree k or more. Mislove et al. [19] defined the core of a network to
be any (minimal) set of vertices that satisfies two properties. First, the core must
be essential for ensuring the connectivity of the network (i.e., removing it breaks
the remaining vertices into many small, disconnected clusters). Second, the core
must be strongly connected with a relatively small diameter. Mislove et al. used
an approximation technique based on removing increasing numbers of the highest
degree vertices (rich clubs) and analyzing the connectivity of the remaining graph.
The graphs studied in [19] have a densely connected core comprising of between
1% and 10% of the highest degree vertices, such that removing this core completely
disconnects the graph. Thus, the authors provide further evidence that rich clubs are
crucial in social networks and satisfy their core properties.

A very different perspective is offered in [17]; a network formation game is
studied, where benefits from connections exhibit decreasing returns and decay with
network distance. In line with our axioms, the equilibria of this game form core-
periphery structures. Another network formation game is developed in [15], where
players invest in information acquisition. The authors show what they call “The
Law of the Few”: the economic forces are leading to a robust equilibrium where the
majority of individuals to obtain most of the information from a very small subset
of the group. The size of this subset is sublinear, so its fraction out of the population
converges to zero. While these results hold under a more specific set of assumptions,
they confirm the results derived from our more general axioms.

Recently, [3] used ideas presented in this paper to study the influence properties
of the set of founders, the vertices arriving first, in the preferential attachment model
of [8] under different model parameters. If the number of edges in the model is
linear in the number of vertices (i.e., edge and vertex events happen with constant
probability), then networks generated by preferential attachment must have a linear
size founders set to be dominant, implying that this set will not satisfy our third
axiom. On the other hand, if the number of edges in the model is super-linear in the
number of vertices (i.e., the probability of vertex events decreases to zero over time),
then the generated networks feature a sublinear size founders set that is dominant.
This also demonstrates that both linear and sublinear cores are possible, depending
on the network type.
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5 Conclusion

In this article, we provide axioms modeling the influence relationships between the
elite and the periphery. We prove that for a core-periphery partition that satisfies our
axioms, the core forms an elite of sublinear size in the number of network vertices.
In particular, this means that an elite is much smaller than a constant fraction of the
network, evidence of which is often observed in the widening gap between the very
rich and the rest of society.

Some of the above findings may have been known on an anecdotal level, or
may seem obvious; our axioms allow us to quantify the forces at play and compare
different core-periphery partitions. For example, it is shown in [3] that also in the
well-accepted preferential attachment model, that founder cores might not satisfy
all our axioms. Thus, it is of a major interest to find evolutionary models in which
elites as described here emerge naturally.

Our results not only advance the theoretical understanding of the elite of social
structures, but may also help to improve infrastructure and algorithms targeted at
online social networks, e.g., to organize institutions better, or identify sources of
power in social networks in general.
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Ranking Scientific Papers on the Basis
of Their Citations Growing Trend

Michaél Waumans and Hugues Bersini

Abstract Analyzing databases of academic papers citations with the tools of graph
and network sciences produced many different results in the past: Publications rank-
ing algorithms, predicting the becoming of their popularity either using the citations
only or in association with the co-author or affiliations networks, understanding
better the “ethnological aspects” of citation practices. The examination of the
dynamical properties of such networks, i.e. how their nodes in-degree grows in time,
started more recently. In this paper, we propose a novel ranking algorithm that makes
a key use of these growth characteristics (for instance rewarding young, emerging
stars more, and old, declining ones less) while requiring much less information
and computation. To validate our ranking results and compare them with more
established algorithms such as PageRank and FutureRank, four well-known datasets
are used.

Keywords Network analysis * Dynamic networks ¢ Citations and bibliographic
networks ¢ Ranking ¢ Prediction

1 Introduction

Citations networks have gained a considerable attention over the years. This
growing interest may be justified by the crucial importance taken by citations in the
evaluation of a researcher’s career or of his academic professional progression. We
are also attending a shift in attention where “publish or perish” is being gradually
substituted with “be cited or perish”.

Many different methods have been proposed to assess a researcher’s influence
such as the well known H-Index [1] and many variations [2, 3] on it, including
the G-index [4], C-index [5] and E-index [6]. Different researches were also
conducted on the evaluation of the current impact of an article as well as the
evolution in time of its influence. This gives rise to the qualification of some
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publications with exotic names such Rising Stars [7], Sleeping Beauties [8], Gems
[9] or First-Movers [10]. Among the different algorithms that exist to estimate
the importance of a publication, one finds PageRank [11]. Several modifications
of this initial proposal [12—14] using simulations of network traffic have been
proposed. Alternative approaches [15, 16] base their ranking on an attempt to predict
what will be the most popular articles of tomorrow. The Z-Score [17] for instance
presents good aptitude at an early identification of promising articles by measuring
to what extent its citation growth differs from the others published in the same time
frame. Some of these proposals use complementary networks like the corresponding
authorship or affiliations ones to better anticipate the future fame of specific papers.
Any paper will gain some ranks if published by eminent scientists, in well-known
laboratories or simply referenced by popular authors. Other research concentrate
on the theoretical modelling of such networks in order to better understand (an
ethnological approach) the citation practice [18-20] and the observed temporal
effects in bibliographic networks [21, 22]. An increasing number of algorithmic
proposals examine these networks in a more dynamic fashion [23] while most of the
existing approaches were limited to static snapshots: taking a picture of a network’s
topology at one point in time only. Among them, the ranking method presented in
this paper is based on the type of citation growth of each article. By examining their
citation growth dynamics, very recent articles that do present a high citation rate will
be gratified a high ranking while old and well cited articles but with a decreasing
citation rate will be disqualified.

Ranking algorithms such as PageRank, or those in the footsteps of it, rely only
on an frozen-in-time topology of the network. In contrast, we only make use of
the growth dynamics of the network by examining each article’s time series. Not
surprisingly, a dynamical trend is more adapted to predict the future than just a static
snapshot. Using these growing trends, our proposal improves on the precedent static
methods mainly to anticipate the fate of an article, with no need (such as FutureRank
[24]) to use the co-author network or any additional information that present their
own biases and drawbacks.

2 Dynamics

Four different datasets were used in this work: ArXiV TH, PH, APS [25] and
PubMed.! Although the presented work was tested on all these datasets, we
hereby focus on the Arxiv TH network, on which many ranking algorithms were
tested in the past. Following the recent developments in citation network analysis,

The ArXiV HEPTH and HEPPH datasets are available online at the following address http://www.
cs.cornell.edu/projects/kddcup/datasets.html. The American Physical Society dataset is available
online at the following address http://journals.aps.org/datasets. The PubMed dataset is available
online at the following address http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/.
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Fig. 1 Examples of the most representative in-degree growth trends observed

we carefully examine the way the nodes in-degree grow in time. All scientific
publications do follow different growths, but they also present similar trends. In
a very first approximation, these trends can be loosely described as logarithmic,
linear, exponential or sigmoid curves, while not exactly fitting any of these functions

(Fig. 1).

2.1 Growth Trends

Since none of the observed growth curves perfectly fit any of the aforementioned
functions, let’s rather designate them using more neutral terms that resemble those
of the Robert Penner’s Tweening functions [26]. The five types do correspond to the
following natural intuitions:

* Growth-Out: Papers presenting similarities to a logarithmic growth are losing
the interest of the community. They still gather citations but less and less as time
passes.

* Growth-InOut: This type of article starts by gathering few citations during the
first months following its release, but gathers a lot more attention after a certain
period of time. Following this considerable gain of attention, it starts losing this
initial interest.

* Growth-OutIn: Some papers also follow a Growth-Outln trend; they are
however just a handful so we won’t consider them in this work. They are articles
that do gather a lot of citations but only later on, following a period during which
they lost attention. They may be assimilable to sleeping beauties [8], but very
few will keep this increase in interest at a constant pace for long.

* Growth-In: These papers gather a lot of interest and are cited more and more as
time passes (similar to an exponential growth). Although this kind of article can
be considered as stars in the field, ultimately they will also lose citations over the
years.

* Growth-Linear: The articles characterized by a linear curve are on average
presenting a constant growth. As a matter of fact, almost all articles are
comparable to these Growth-Linear ones during the first months following their
publication but again very few keep this constant pace for long.

The way scientific papers do gather citations over time changes and the identifica-
tion of these dynamical characteristics and shifts poses various challenges. Specific
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features should indicate not just whether an article gains or loses citations but how.
A small decline of the citation rate does not specifically mean that an article is losing
its popularity, but a consequent one could. This detection consequently requires to
better identify the growing dynamic regime in which an article falls at each point
in time. In what follows, we propose a simple set of features allowing to better
characterize the way each article in-degree citation rate changes over time.

2.2 Growth Characterization

These features are called quadrants although they differ from the analytical geom-
etry definition and just refer to quarters of a well-defined area. A quadrant value
defines the “amount of samples from a given normalized time series present in either
one of the four quadrants defined by cutting the normalized space (i.e. X-axis and
Y-axis) in two halves using the bisector and its perpendicular” (Fig. 2). This notion
allows to clearly identify the shape of a given curve even better than a direct fitting
would. More specifically, when following the evolution of a curve over time, the key
transition from Growth-In to Growth-Out becomes more salient using quadrants as
shown in the following examples. Different approaches were studied first to develop
those features but none was as simple and efficient to detect the transitions from one
dynamical regime to another.

Just using these four quadrants, Growth-Linear curves remain difficult to identify
since they do oscillate among all of the four areas. In order to better identify this
dynamical regime, an extra exclusion zone is added out of the quadrants. A point
close enough to the diagonal going from (0, 0) to (1, 1) will be considered to be
in this fifth “quadrant”. By resorting to these five features, all the types of curve
previously observed are clearly identifiable. Besides the capacity of this method to
properly identify each type of growth, it can further characterize the way these types
change in time.
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The Fig. 3 also shows all possible transition patterns between the possible growth
trends identified previously. The vertices of citation networks do not change over
time. Once an article is published it may only be updated but its main content
will not change and its popularity either: thus, the quadrant values computation are
always done using an opening time window, considering the in-degree values for
each month from the time of publication to the time chosen to make the computation.

We have so far proposed stable features to characterize the growth of any given
curve. They allow to identify properly Growth-Linear, Growth-In, Growth-Out as
well as Growth-InOut/Outln trends and the transitions among those types of growth
over time. The Fig. 4 illustrates this aspect. Looking at the evolution of the quadrant
values over time, we can easily see that this specific article is first Growth-In to then
become Growth-Out.

3 Ranking

Numerous ranking algorithms have been proposed over the years (e.g. Future Rank
[24], CiteRank [13], various versions of PageRank [11], ...). The evolution in
time is usually not taken into account in those proposals. These methods mainly
use snapshots of an entire network at a given date and establish a ranking of the
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nodes at that time, while often exploiting metadata of the nodes such as the co-
author network or the affiliation network. In the following sections, we propose a
simple and effective algorithm that only uses the dynamical growth properties of the
different nodes present in the network. The rank of an article is thus computed by
using its in-degree time series only and not relying on the exact topology resulting
from the connections made by the citations among the articles.

The most prominent articles usually have a high in-degree value. They belong
either to the Growth-Linear type, when they succeed to maintain this popularity
in time, or Growth-Out, when starting to lose attention. The articles we tend to
better rank in our algorithmic proposal are young articles that obviously did not
have enough time to accumulate many citations, but still present a Growth-Linear
or Growth-In trend, displaying a high, constant or even increasing citation rate. In
order to single out these specific articles and better rank them among the older stars
of the network, our algorithm takes into account the growth trend of any article at
the moment the ranking is computed. The quadrant values are the key indicators to
achieve just that. In essence, the popularity of an article is proportional to its average
in-degree growth over its last 12 months of existence, thus capturing its short term
impact. This value is furthermore weighted by taking into account this same article
growth trend.

As mentioned before, the quadrant values are used to characterize the growth
trend but not its curvature. For instance, one Growth-Out article may have shown a
high citation rate earlier in its life but a null one at the time of the ranking. Another
one may still present a significant growth rate when the ranking is established. In
brief, the first one would have left the stage while the second would still gather
citations. It is then important to quantify the curvature of either the Growth-In or
the Growth-Out curve to refine even more an article’s rank. Our algorithm takes
into account this area value. It is defined as the surface between the diagonals from
(0,0) to (1, 1) and the actual in degree time series. It may be positive for Growth-
Out articles or negative in the case of Growth-In ones. (See Fig. 5 for an example of
two Growth-Out curves. areal > area? that implies that the first article have lost
more popularity than the second one.)

The necessary information for each article is computed from the in-degree time
series as indicated in the algorithm at Lines 1-4. The indices indicate the time while
n is the length of the time-series itself. The time period may be chosen as a year, a
month or a day. Our analysis considers a 1 month time period to match the relatively
small number of citations present in the datasets being used, thus restricting the time
step we may use to keep consistent results. The final score of an article is computed
by taking into account the rate at which it gathers citations as well as the trend of its
growth curve. The final equation is presented below from Line 5 to 7.

inDegree = (inDegreey, . .., inDegreey) (D
i
growth; = Z inDegree; 2)
Jj=0
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In the score computation, only three quadrant values are used: ¢3, g4 and ¢5.
Our algorithm focuses on young articles displaying an increasing citation rate or
older ones displaying a great and constant pace, so Growth-In and Growth-Linear
articles, characterized by high ¢3 and g4 or ¢5 values. This emphasis will have for
effect to increase the rank of the articles presenting such trends of growth. The sum
of those quadrants is then multiplied by the average number of citations received
over the last 12 months period prior to the ranking time, in order to capture the most
up-to-date popularity of the publications. This effectively lowers the rank of older
articles gathering less citations as time passes. As explained, the curvature of the
time-series is estimated to further increase this aspect using the area value.

Our algorithm uses one parameter, «, that varies from O to 1. Maximising o
increases the importance of the time series trend in the score (i.e. Algo. Line 6),
while minimising it makes the score more focused on the average citation rate (i.e.
Algo. Line 5). By adjusting this parameter, we can modify the weight given to the
desired criteria. The results presented in the following are obtained with « = 0.5.
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4 Results

Once the score of each article is obtained, the rank of an article corresponds to the
position of its value among the others. The resulting ranking from our algorithm
computed in December 1998 in the ArXiV HEP-TH network is presented in Table 1
showing the first ten articles as well as the associated time series in Fig. 6. Looking
at the ranking (Table 1) and the in-degree curves captured until December 1998 then
December 2000 (Fig. 6), a few observations can be made :

1. The best ranked articles are far from being the oldest. The network being built
from 1992, and following the intuition of Preferential Attachment [20], we
should see an article published much before 1998 in the lead, but this is not
the case.

2. Articles presenting a higher in-degree value at the time the ranking is computed
do not occupy the very first places.

3. An article like AU6vVIYJS80SSKIEIHnmsS, published in 1994, that starts to
become Growth-Out in 1998, is clearly outranked by a more recent article:
AU6vIivYOSSKIEIHnpBW.

4. The article AU6vIIWwWOS5SKIEIHnj8h does not present a high in-degree value
by the year 2000. However, it displayed at the time of the ranking a surprising
growth of interest with its trend becoming strongly Growth-In and its in-degree
on average quadrupled. Such an article is definitely worth a closer look. However,
its ranking went down during the year 1999 where this sudden increase in interest
disappeared as quickly as it came. Anyway, this sudden spike in popularity
explains its position in our ranking.

Those observations underscore the way our method does achieve its goal. Older
articles that have lost attractiveness and have become Growth-Out do not occupy
the best positions. Few of them that present an interesting trend, the Growth-Outln
ones for example, are not discarded and persist in being well ranked. Also, as it

Table 1 Ranking established in December 1998

Rank ID Publication date 1998-12 2000-12
1 AU6vIXcOO05SKIEIHnmjQ 1997-11 664 1680
2 AU6vIivY0SSKIEIHnpBW 1998-02 507 1234
3 AU6vIPZGO5SKIEIHnk93 1998-02 468 1146
4 AU6v1ezTO5SSKIEIHnoIO 1996-10 655 961
5 AU6VIQuURO5SKIEIHnINw 1995-10 491 691
6 AU6vIYJ805SKIEIHnms8 1994-07 864 1108
7 AU6v1aD305SKIEIHnnGR 1994-08 693 868
8 AUG6VIIWwOS5SKIEIHnj8h 1992-05 208 296
9 AU6vIpGF05SKIEIHngep 1995-10 657 974
10 AUG6VIMIfO5SKIEIHnk{Z 1995-03 806 984

The current in-degree value is indicated as a reference as well as the value in December 2000
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Fig. 6 In-degree curves at the time of the ranking both in Dec. 1998 and in Dec. 2000

was already proven in other research, the best article in terms of in-degree is not
the best potential star of tomorrow anymore when not taking into account its growth
trend. One question must nevertheless be answered, even though we aim at a slightly
different objective: How does our algorithm compare to other ranking algorithms?

To validate the results of our proposal, we use the ranking produced by the
algorithms FutureRank [24] (i.e. FR) and PageRank [11] (i.e. PR) as a basis of
comparison. The PageRank algorithm is the traditional model with « = 0.9 and
random jumps taking place with probability of 0.1. The Future PageRank (i.e. FPR)
is the PageRank score of articles based only on the citations starting in 2001 until the
end of the dataset in 2003. At last, FutureRank is also based on PageRank. However,
it aims at improving this ranking by predicting the future number of citations an
article would receive. To achieve this goal, Sayyadi and Getoor have taken into
account more information, mainly the publication time and the authors (by using
a co-author network built using a strong matching criteria—the author’s names
must perfectly match). The top 20 articles according to FutureRank are presented in
Table 2 with their corresponding Pagerank as well as the resulting ranking from our
proposal.

The results presented in Table 2, not being directly compared to FutureRank by
means of a rank correlation measure because of the different ranking criteria used,
need to be discussed further to justify the validity of our approach. Few examples
are detailed in the following, explaining the major differences between the results
of our algorithm and the one proposed by Sayyadi and Getoor:

* 9711165: This article, published in November 1997, is ranked 17 in FutureRank
and 33 in Future PageRank. Our methods ranks this article in seventh position.
In December 2000, this article presents the following features : g3 = 0.30, g4 =
0.59, avgLast = 13.58, avgLife = 7.61 and area = 0.17. The growth trend of
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Table 2 TOP 20 articles D FR |FPR |PR | Proposal | Publication date

ranked by FutureRank with

their corresponding 9711200 | 1 1 10 1 1997-11

PageRank scores 9802150 | 2 4 28 5 1998-02
9906064 | 3 2 92 3 1999-06
9802109 | 4 5 37 6 1998-02
9908142 | 5 3 131 2 1999-08
9407087 | 6 |10 1 29 1994-07
9610043 | 7 8 14 22 1996-08
9510017 | 8 |14 4 20 1995-10
9711162 | 9 7 106 4 1997-11
9905111 | 10 6 174 10 1999-05
9503124 |11 |46 2 79 1995-03
9408099 |12 |25 6 76 1994-08
9510135 |13 |77 13 54 1995-10
9510209 | 14 9 40 8 1995-10
9611050 |15 |29 76 78 1996-11
9409089 |16 |15 95 42 1994-09
9711165 |17 |33 211 7 1997-11
9204099 |18 |62 69 | 107 1992-05
9410167 |19 |94 5 210 1994-10
9603142 |20 |17 167 11 1996-03

Ranking established at the very end of the year 2000 (PR
PageRank, FR FutureRank, FPR Future PageRank)

the article is Growth-In and its popularity started to increase more recently. It is
not a very recent article and it did not gather much attention before 1997, but
recently, it has attracted more and more attention.

* 9407087: This article, published in July 1994, is ranked 6 in FutureRank and 10
in Future PageRank. Our method ranks this article in 29th position. At the time
the ranking is established, its features are : g2 = 0.45, g3 = 0.0, g4 = 0.22,
avgLast = 9.25, avgLife = 13.69 and area = 0.05. This paper is of the Growth-
Out trend since the end of the year 1999 and still loses citations as time passes.
However, this trend is not well marked, and its popularity slowly decreases. This
article is just old and simply looses the focus of attention.

¢ 0005031: A very young paper published in 2000-05 is ranked in 15th position
in our proposal while not reaching the top 20 in the other ones (e.g. The most
recent article in the top 20 is from 1999-08 in the proposal from Sayyadi et
al.). PR places it at the 1993th position. It has a avgLast = 9.77 and displays
a strong Growth-In trend. This article, although very recent, has a very strong
impact since its publication. To put this in relief, the 20th best article overall in
term of avgLast receives only 8.25 citations whatever their age.

e 9204099: This article is another interesting one in our ranking. Even though
it was published in May 1992 and could be ranked lower since our algorithm
emphasizes the most recent ones, it is still ranked at the 107th position of more
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than 20,000 papers. This publication was gathering citations slowly since its
publication, at a rate of two citations per month on average. However, it displayed
a sudden regain of interest by the start of year 1998, entering so the Growth-Outln
trend: an old article regaining a lot of attention long after its publication. It is only
ranked in 107th position because this sudden interest was lost by 1999.

The FPR results can be seen as serving a sort of “ground truth” for the network’s
future traffic. Therefore, it is relevant to directly compare our proposal to it. Looking
at Table 2, we see that our results do resemble more closely the FPR results. The
Spearman’s rank correlation coefficient between the future PageRank computed
using the citations produced between 2001 and 2003 and our proposal calculated
in 2000 is 0.65.

5 Computational Aspects

From a purely computational perspective, our algorithm presents some advantages.
First, it is a non iterative method that only depends on one article’s time series,
not on the whole network’s topology. This approach, while reaching its goal of
improving young paper’s ranks, only relies on the time series extracted from a
citation network. Thus, the amount of data to gather, disambiguate and validate,
is reduced compared to other proposals making additional use of affiliation or co-
author networks. However, using alternative sources of information proved to be
helpful in improving the predictive capabilities of other algorithms and could be
equally used to refine our proposal. That said, by focusing on the citation dynamics
only, we have proposed a ranking that gives a better chance to young publications
while ignoring the identity of the author or laboratory issuing the publication.

Second, since the rank of an article is only dependent on the characteristics of
its growth, adding new vertices or edges to the network only requires to run the
computations again on the modified vertices, and not the entire network’s topology.
It may be even further improved by avoiding unnecessary computations for articles
receiving very few citations. Other papers show different possible optimizations [27,
28] of the PageRank algorithm and its followers by approximating the traffic in
the simulations or by focusing on local computations. Our algorithm hereby only
needs to update the required article rank while not making approximations and still
keeping the method simple and easily scalable to handle larger networks.

Our proposal is then perfectly suited for the computation of rankings on fractions
of the network to be used in more complex scenarios (e.g. Application in [29] to
build Genealogical Trees live from the Scopus API). It is useable as well on very
large datasets for which the amount of metadata may be limited to a minimum using
the citations and publications dates only. We thus avoid the trouble of dealing with
multiple networks of multi-million nodes and the challenge of properly weighting
the edges used in traffic simulations.
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6 Discussion and Conclusion

The ranking method proposed here dissociates the influence of the age of an article
from its actual impact. We consequentially provide a new ranking algorithm that
allows to emphasize the short term impact. This algorithm, by relying on the
in degree time series only, alleviates the burden of all the metadata validation
coming from multiple sources of information. As explained, our algorithm uses an
analysis of the in-degree growth curve through temporal windowing until the time
the ranking is computed. This was chosen because of the particular dynamics of
citations networks. Our proposal could however be applied on other types of more
dynamic network such as social ones by using a sliding time-window. This would
however imply the usage of other features than the quadrants. These specific features
are perfectly adequate in this use case but probably not in others since the existing
growth trends in such networks could be different.

Our algorithm also offers good predictive capabilities since it takes into con-
sideration the time of publication as well as the evolution of the rate at which
any article keeps receiving citations. This approach, though simple, only uses the
citations time series obtained by each article over time. By looking closely at the
dynamics of individual articles rather than taking into account the fame of the
writers or laboratories involved, our algorithm succeeds to reach its goal. It keeps
ignoring other sources of information and thus leveraging the induced complications
of building multiple networks that may sometimes be rather heavy to handle.
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Towards Network Economics: The Problem
of the Network Modus of Value

Alexey A. Baryshev

Abstract Network paradigm is already on the threshold of economic science. This
paper addresses conditions for the reality of network economy and the genesis
of the network content of value as a base category of economics. Identification
of the specifics of network phenomena as a perspective cornerstone of society
and economy is carried out. The concept of ontological status is employed as
methodological optics for the determination of the maturity of the network content
of social and economic categories. The network modus of value is hypothesized on
the basis of “affordance” and “preferential attachment”.

Keywords Network economy ¢ Austrian economic theory ¢ Economic action e
Heterogeneity of value * Shared value » Affordance ¢ Preferential attachment

1 Introduction

Development of information technology actualizes ideas and understanding of
network economy as quite a new mode of production of conditions for human
life. Simultaneously, theoretical comprehension of ideas, which are about to occur
and which therewith have been turned into an element of everyday knowledge, is a
challenging task.

The rapid rise of prosperous corporations Google (Alphabet), Facebook, Yahoo
and other giants of the IT industry and their approaching the previously inconceiv-
able capitalization of a trillion dollars create anxious expectations of radical global
changes in the economic order [1]. These significant quantitative changes in the
amount of the working capital are related not merely to fundamental transformations
of methods of value creation [2]. The thing is that the base economic categories
(value, interest rate, etc.) will continue to exist as long as economy exists regardless
of the fact whether it is network economy or whatever else. However, this does not
mean that their content will remain the same. These changes affect the fundamentals
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of the economic system, viz., the categories value and surplus value. With this
in mind, we intend to show that network economy changes the content of basic
economic categories.

The paper focuses on the ontological status of social networks in economic
objects, correlated with the stages of formation of both the theory of social
networks, and the formation of the network content of economic categories. By
“ontological status”, we mean the degree, to which network processes stipulate
the key characteristics of the behavior of an object in general. In other words, the
ontological status of one or another phenomenon characterizes the mechanism of
its self-maintenance, i.e., whether the phenomenon can exist independently on the
basis of those properties, which are defined as essential, or needs constant support
from the outside.

Hence, for example, the existence of a natural reserve, unlike biocenosis in wild
nature, depends on decisions of the state environmental agencies. Therefore, the
ontology of nature processes in the framework of the reserve has a dependent or
weak status.

In this case, networks creating biocenosis can coexist within a hierarchy provided
by governmental control. If biocenosis is funded by means of revenues derived from
tourist activities performed within it; then, the ontology of nature networks becomes
dependent on a substantially different base, viz., market of tourist services.

According to the main assumption of our article, an object can be supported
on the basis of various principles due to network interactions, hierarchy and market.
Consecutively, the ontological status of an object can be determined based on any of
these principles. As an illustration, an industrial organization of classical type acts as
a hierarchical system in spite of the fact that plenty of informal interactions among
people within the organization are carried out in network mode. If we consider this
object from the viewpoint of hierarchy; then, it is characterized by strong ontological
status. On the contrary, the ontology of social networks can be defined as weak or
precarious. At the same time, the considered organization can be investigated as
a network, but not as a hierarchy. However, it is necessary to remember that its
existence is mainly fulfilled on the basis of hierarchy, and the network in this case
is a research representation of the object. Regardless of the degree of clarity of this
representation, it is not able to change the real ontological status of the network in
the course of reproduction of this object.

In this regard, the following questions are considered in the paper:

1. How does the network view correspond to the network organization of economic
processes?

2. What conditions are necessary for transformation of networks into the basis of
economy?

3. What in this case happens to the content of basic economic categories, especially,
to value?
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2  Weak Ontology of Networks

The theory of social networks began to emerge in the late 19th —early 20th centuries
due to the interest of sociologists in the formation of groups of people. In the 1930s,
the first analytical tools for description of interpersonal relationship patterns in a
small group appeared. They were developed by J. Moreno [3, 4]. The term “social
network” was first suggested by James Barnes in 1954 and was defined as “...
not a corporate body, but rather a system of social relations through which many
individuals carry on certain activities, which are only indirectly coordinated with
one another” [5].

The subject of interactive processes in human communities, which were char-
acterized by flexibility, adaptability, and absence of a single center and clear
boundaries, was a research domain for anthropology, psychology and the sociology
of small groups called interactionism. !

The relationist focus of these studies on individual interactions and relations
among people surprisingly correlated with the analytical apparatus developed by
mathematicians (Erdés and Rényi) to describe social networks that did not have
obvious principles of construction. It was critical to regard networks as non-
deterministic formations.

These approaches to understanding networks contrasted with the traditional
understanding of society as a stable entity. As a result, the increased attention shifted
from the attributive characteristics of individuals to their relationships. However, the
principles of methodological individualism and interactionism proved ineffective to
support social macro processes.

B. Latour demonstrated that in order to create a society based only on interac-
tions, individuals would have to dedicate all their time to it [6]. Therefore, the status
of networks as a substance that ensures the unity and stability of society, turned out
to be precarious from the ontological point of view.

The economic theory of that time also attempted to comprehend the structure and
functioning of society and market on the basis of interactionism and individualism.

'Interactionism is a theoretical perspective, according to which all social phenomena can be
comprehended on the base of human interactions. It arose as rejection of the structuralist
approach to understanding social phenomena in terms of their relation to a larger structure or
through addressing social phenomena of a higher level. Interactionism can be interpreted as early
manifestation of network methodology in social sciences due to similarity of their major principle,
that is to say, there is nothing but individuals (nodes) and relations (links) between them.

’In order to secure interactions and networking from structuralist assumptions of privileged
structures that are responsible for stability and integrity of society and social objects, B.
Latour substituted individuals as nodes for “actants” of heterogeneous networks, in which the
distinction between “humans” and “non-humans” was eliminated. This is the core of the Actor-
Network Theory (ANT) developed by Latour and his colleagues. Due to the ANT, interactionism
(“intersubjectity” in B. Latour’s terms) was transformed into “interobjectivity”. The place of the
ANT in the general evolution of the network approach to society will be considered in our next
paper.



106 A.A. Baryshev

The Austrian school of economic theory designated the entrepreneur as the principal
agent of formation of economic categories and regarded market as an information
system, a sphere of distributed knowledge [7]. On the one hand, the activity of the
entrepreneur was presented as an absolutely interactive and cognitive process. On
the other hand, the value was interpreted by the Austrians in purely physical terms
on the basis of utility.

The most important concepts characterizing activities of the entrepreneur became
entrepreneurial alertness [8], opportunity discovery [9], and reshuffling resources
along with their newly discovered properties [10]. Unlike the first two concepts,
reshuffling relates to network matter and can be considered a prototype of net-
work approach [11]. However, due to the naturalistic background of the Austrian
economic theory [12], the concept of the objective value (market price) reveals no
traces of the mentioned network properties. Consequently, social value is interpreted
as a physical characteristic of goods.> Therefore, transition from the world of
utilities and human needs, which cannot be separated from the world of the physical
existence of man, to values is the most vulnerable part of the Austrian theory.

Apparently, attempts of the examined economic and social schools to theoreti-
cally describe society and market on the basis of individualism and interactionism
failed in terms of gnoseology because of the conflict between their network
ideology, on the one hand, and, on the other hand, because of the idea that networks
are something external in relation to things, which are “placed” inside networks.
In terms of ontology, the attempts were not productive due to the fact that apart
from the mechanism of interactions between individuals, society also employs some
other means of maintaining stability and integrity.* This focuses us on analysis of
the heterogeneous bases of social and economic life. One of these bases is networks.
The bases are usually applied to qualitatively different historical periods of economy
and society. As an example of this, D. Bell’s axial principles of preindustrial,
industrial and post-industrial societies are to be noted [13]. However, in fact, these
principles are not necessarily designated with reference to time and space, creating
independent institutional realms [14]. In re bases that create institutionally different
organizational integrities, we share W. Scott’s approach.

According to W. Scott’s theory of bases and carriers of institutionalization, there
are regulative, normative and cognitive “pillars” of institutions [15]. These pillars

3The Austrian School’s physical interpretation of value implies that they deny a specific metric of
the world of values. They understand value based on conventional metric and logic of interactions
of isolated things, viz., interactions between the human and the good, specifying it as subjective
utility. For instance, the concept of distance, identified as a ratio of route to a particular standard
of length, appears to be inapplicable for the purpose of measuring distance in network reality;
likewise, the concept subjective utility is inapplicable in economics, which is regarded as network.
“It is possible to say that contrary to the statements of the Austrians, the functioning of their
“network” in an implicit form assumes something else except for individuals interacting with their
subjective interests and estimates. In this regard, their metaphor “kaleidics” (from “kaleidoscope”)
[23, 24] is not a synonym, but a complete antithesis of network, as it implies availability of a special
hidden mirror device that creates an instant change of the multi-colored picture.
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are simultaneously represented in market economy, but the normative pillar plays
the leading role. This means that description of the functioning of such economy in
the subjectivist manner of the Austrian School is at least untimely. In fact, untimely
ascription of the cognitive pillar to market categories brought the Austrian theory
to a vision of economy as a self-organizing, dynamic and interactive information
system, which contradictorily coexisted with their naturalistic understanding of the
categories.

3 The Middle Network Ontology of Social and Economic
Phenomena

After the 1970s and especially the 1980s, the general theory of networks accumu-
lated a critical mass of new knowledge, formulated with the universal language
of mathematics. The general network metrics theory [16, 17] was deepened,
metrics of social objects [18, 19] were developed, “small world” concepts [20,
21] and concepts of structural holes [22] were furthered. Networks finally ceased
to be represented as a kind of metaphysical essence and metamorphosed into a
construction principle for the entire society and economy—not only local objects.
This paradigm shift was stipulated by the discovery of a new class of network, i.e.,
free-scale networks [25].

The new concept enables us to reconsider network theory and to integrate
numerous theories of social objects based on individuals’ interactions [26-28].
The ontological base of this breakthrough is the development of new human
communication methods and a factual increase in the importance of individual
actors in socioeconomic processes. In economics, this was clearly manifested in
a phenomenon that was first observed in the 1970s, viz., the so-called sustainable
competitive advantages revealed in a range of successful companies. An explanation
of sustainable competitive advantages emerged in the strategic theory of the
firm [29] that identified them as presence of valuable, rare, inimitable and non-
substitutable resources (VRIN-resources) [30].

Economists of the Austrian school made the greatest progress in explaining
the above-mentioned phenomena by developing the concept of the entrepreneurial
organization [31, 32], which lied in the framework of subjectivism and radical
subjectivism® [33]. They also developed the concept of capital heterogeneity into
the concept of human capital heterogeneity, or heterogeneity of mental models

SRadical-subjectivist strand of the Austrian Economics considers future unforeseeable. Compared
to the common subjectivism of the Austrian school, radical subjectivism does regards market
not only as a procedure of discovery (of future) but also as a process of dynamic creation (of
future). There are three levels of subjectivism forming the radical-subjectivist stance “First, the
subjectivism of wants . .. Second, the subjectivism of ends and means . . . Finally, the subjectivism
of active minds recognizes that in all aspects of action the active mind may produce interpretations
and possibilities the observing economist cannot imagine in advance [39].”
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of entrepreneurial team participants [34]. An entrepreneur’s main work task was
already reshuffling (that seems to be analogous to “reassembling” of the Actor
Network Theory) of people’s cognitive properties that resulted in obtaining a
unique combination of human capabilities, which could turn into the company’s
VRIN-resource and its invulnerability under conditions of competition. Despite this
theoretical advance, the radical-subjectivist approach left unchanged the content of
the basic economic categories although the idea of revising the concepts “good” and
“value” was about to occur; for example, in ANT-based economics of qualities [35].
Attempts to develop a new vision of value include the theory of co-creation of
value [36], the concept of shared value [37], and the concept of value constellation
[38]. Problematization of value topology is another major achievement. We, how-
ever, should note that these endeavors addressed networks merely as methods of
generating value in the conventional sense of the word. Therefore, in these cases,
value itself is based (as before) on such a property of reality of the human physical
world as utility, which is more personalized now and assumes greater involvement
of the consumer in the process of value creation. In addition, it is more distributed
among institutionally and technologically heterogeneous manufacturers, and more
comprehensive because it embodies the result of the integrated company’s activity.
An integrated company has a value-creation system where not only suppliers and
consumers, but also many other business partners and allies collaborate.

4 Conditions for the Reality of Network Economy
and Hypotheses of Modi of Value

For the purpose of formulating a content of economic categories, adequate to
network reality, we ought to clarify conditions for the reliable (or strong) ontological
status of any reality. The following three statements are true with regard to any
phenomenon being a steady and reliable object of a certain reality. Firstly, any
object supports the existence, interacting with other objects of this reality. Secondly,
the nature of the interactions is set by specifics of these particular objects. Thirdly,
the measurement and observation tools of the studied objects are homogeneous to
them and their interactions. The mechanical picture of the world, in which objects,
interactions (forces) and means of cognition are consubstantial with respect to each
other, is a clear illustration of this rule. It is evident that networks should correspond
to the stated conditions.

With this in mind, it is possible to say that network economy arises when and
where there is a particular network trinity, which consists in the following:

¢ Networks in the form of the world-wide web become carriers and transmitters of
economic agents’ actions, a domain, in which they interact, viz., their network
space.

e Networks become flexible, alternative and mobile forms of human relations,
forming a new form of a collectivity, i.e. social networks.
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* Networks in the form of computer programs of machine learning, visualization
of objects of a new type and other network facilities become adequate tools of
cognition the new reality based on a universal network science [40].

Network trinity, being the perfect form of the cognitive base for human relations,
modifies the representation of the social and, respectively of the content of social
and economic categories. Indeed, in the case of the regulative pillars, the social is
the authorized by the power matter or the sacral; in the case of normative pillars, the
social is a reified spontaneous force of collective rationality. Then as now, the social
is a network matter under conditions of specified triunity of networks.

Now, we can suggest a draft research program, which describes the main
problems to be solved, and a number of hypotheses. The program comprises the
following stages: definition of economic value in the network world; description
of the process of market value transformation into network value and interaction
between them; consideration of the network world’s heterogeneity; study of the
distinguishing features of the processes of value creation within specific parts
of network reality and interactions between nodes, belonging to various parts of
this fragmented reality; investigation of interactions between economic categories
bearing a formed network content and economic categories, in which the content is
created by market or coercive methods. Within this framework, the first most general
hypothesis is to be formulated and then the subsequent hypotheses are to be derived
from it.

H-1. Economic action is connected with the value of the product created by
this action because its structure includes procedures for convincing people that this
product makes sense for their life.

Support. Economic value is an economic duplicate of the social category of
sense. As products are increasingly moving away from “natural needs”, it is
becoming more obvious that their infusion with human life requires creation of
certain convictions in human minds. This implies convincing people that possession
or consumption of a product makes sense. Different methods for convincing will
result in various modes of economic value.

H-2. In the absence of special means of convincing, the value of products in
the isolated accidental interaction “seller-buyer” is created through the rhetorical
component of the economic action.

Support. The linguistic turn in economics revealed rhetoric as an essential part
of economic life [41]. This part is connected with the semantic, valuable content of
economic processes. If not a seller’s capability of convincing a would-be buyer of
his goods’ special effect on the buyer’s life, what else can determine the price when
a seller and a buyer meet for never-before-seen goods? The modus of value arising
in this case is rhetorical.

H-3. In the case of domination of hierarchical relations in an economic system,
the modus of value is stipulated as coercive by the economic action for implemen-
tation of instructions on quality and quantity of goods that can ensure the matching
of buyers’ convictions related to goods relevance and their imputed ideas about the
proper life.
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Support. Based on anthropological and ethnographic investigations, Polanyi
showed that market value is absent from traditional societies [42]. In today’s
economy, the value of goods is composed of actions oriented to compliance with
regulations. This stance is an economic duplicate of the philosophical idea of sense,
according to which the rational action is an action conforming to rules [43].

H-4.If methods for convincing consumers of product’ value based on power and
tradition are weak, if cognitive methods cannot work on a public scale; the modus
of value is established as market modus through collective reified interaction among
all producers and all potential buyers.

Support. The life of methods for convincing consumers of product value based
on reified collective rationality is still an insignificant episode (having transitional
nature) in human history. The transitivity of the market modus of value is determined
by the fact that it creates a standard of human life, denying the value of an individual
life trajectory. As soon as human identity commences to play a significant role in
the creation and functioning of economy, the personalized modus of production that
assumes direct interaction of producers and consumers [44] emerges.

H-5. Under the conditions of mass production of innovations, new products’
capacity for further participation in humans’ life is caused by matching the already
existing products with the newly-invented ones. In other words, their affordance [45]
serves as a means of convincing people of products’ value, thereby, the affordance
modus of value arises.

Support. Value as well as sense is created in context. Capacity for affordance
(including technology affordance [46]), openness for linkage with a multitude of
other things or technologies creates the value of particularly new products.

The market modus of value implicitly assumes the presence of “natural needs
and wants”, the order and the scope of which are a certain reality. Incidentally,
mass innovation products satisfy more and more “artificial” needs; therefore, they
(products) must convince people of their value by means of creating their own
context, where they make sense. The order and scope of needs in that case become
a matter of reassembling or reshuffling, but not the natural reality of the needs.
Reassembling leads to emergence of product matching networks, concentrating
around products that bear the highest value of affordance. The metrics of this
network is now replacing the former “natural” ordinality of goods. The value of
affordance is the precursor to network value. In addition, the network specifics of
affordance consist in the fact that it is performed in the absence of network trinity.
This makes it a dependent (not self-sufficient) modus of value as it must rely either
on market modus of value or on the coercive modus of value.

H-6. Providing that the three conditions of reality of network economy (network
trinity) are observed within product creation, the product value is created on the
ground of preferential attachment [47], i.e. the preferential attachment modus of
value operates here.

Support. Preferential attachment allows considering the value of network econ-
omy products in reliance on the degree of preferentiality of attachment. Both the
utility and abstract labor doctrines include particular products into the scope of
goods that ensures satisfaction of relatively static needs in the framework of the
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market modus of value; preferential attachment involves products in a dynamically
developing network. In this respect, the network modus of value and the market
modus of value perform the same function of product integration into the human life
world. The network modus of value or the preferential attachment value is similar
to affordance value. However, unlike the latter, the network modus of value must be
capable of integrating all the antecedent modi; thereby providing their subordination
to the processes that occur in the purely network-based economic space.

5 Conclusion

The conducted study proves that development of network theory is part of the
process of acquisition of a reliable (or strong) ontological status by network
phenomena. The weak ontology of networks is manifested in theories that allow
obtaining a network-based technical tool for description of society. When social
networks commence to declare themselves as real applicants for the role of domi-
nant sociality carriers based on the cognitive pillar, the middle ontology is achieved.
However, social and economic theories usually exaggerate the significance of
network effects in society and economy.

A criterion for a reliable ontology of network economy is formation of the actual
network content of habitual economic categories. The ad hoc factor is network
transformation of the basic elements of economic reality (i.e. objects, interactions
among them, and tools for man’s cognitive and practical use of them), whose unity
we named network trinity.

The value of network economy products under these conditions is determined
neither on ground of utility nor abstract labor or relevance to imperious instructions
or traditions. In our view, value formation occurs under conditions of pure network
economy on the base of preferential attachment. Consequently, it is possible to
retrospectively propose the heterogeneity of modi of value. The concepts of such
modi of value as market value, coercive value, affordance value, preferential
attachment value enable us to formulate a vision of network economy as of economy
based upon the value of preferential attachment, on the one hand; but on the other
hand, representing a patchy field of interactions of all the above-mentioned modi.

The most important problem of the theoretical cognition of the network modus
of value and its interaction with the antecedent modi is the problem of money as
an economic category. Judging by the antagonism that the official society shows in
response to bitcoins as a form of network money, it is obvious that regulative and
normative economic pillars do not intend to simply surrender to the cognitive pillar
in the form of networks along with their new concept of value.
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Open Questions in Multidimensional Multilevel
Network Science

Jeffrey H. Johnson

Abstract Network science has made great progress in the study of binary
relationships between pairs of elements. Although it has been known for decades
that n-ary are ubiquitous in complex systems, progress in this area has been
much slower. A condensed account is given of the family of network structures
which includes graphs, networks, multilevel networks and multiplex networks
for binary relations, and hypergraphs, simplices complexes and hypernetworks
for n-ary relations. These structures are naturally integrated in a generalising
framework. This family of network structures supports a new theory of multilevel
systems where structures at one level become vertices at higher levels through part-
whole aggregation interleaved with taxonomic aggregation. Although the structures
presented are necessary to understand the dynamics of complex multilevel systems,
there are many open questions. These are presented for consideration by the network
community.

Keywords n-ary relation ¢ Graph ¢ Hypergraph ¢ Network ¢ Simplicial
complex ¢ Q-analysis * g-percolation ¢ Multiplex network ¢ Hypernetwork
* Multilevel systems

1 Introduction

Network science has made great progress in the study of binary relationships
between pairs of elements. It is now becoming more widely accepted that there
is a need to embrace n-ary relations in network science [17]. This paper presents a
condensed account of a family of structures able to represent n-ary relations, and
the algebraic theory of multilevel systems they support. Although multidimensional
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network structures are necessary to understand the dynamics of complex multilevel
systems, there are many open questions. These are set out in the concluding section
for consideration by the network science community.

It will be assumed that the reader is familiar with graphs and networks. Multilayer
and multiplex networks provide a formalism for the analysis of networks defined by
many different relations [11]. A comprehensive account of multilayer and multiplex
networks is given by Boccaletti et al. in [10].

A weakness of conventional network theory is that the notation (v, v’) does not
discriminate between the defining relations. To do this an extra symbol is required.
For example, let V represents a set of people, R, the relation ‘is line managed by’ and
R, the relation ‘plays golf with’. Then v and v’ may satisfy both relations. Let the
notation (v, v’; Ry) means v’ is the boss of v. This is different to (v, v’; R,) meaning
that v plays golf with v’. This notation has the desirable feature that it naturally
allows the definition of algebraic operations on the relations such as (v, v'; Ry A Ry)
which combines the relations R and R, to form composite relations such as (R} A
R;) meaning ‘plays golf with the boss’.

2 Hypergraphs and the Galois Lattice

There are many of instances n-ary relations between more than two vertices. For
example, consider four people playing bridge. This is a 4-ary relation. n things are
related by an n-ary relation if it ceases to hold on removing any them. For example,
if one person leaves the bridge game, the game no longer continues normally. The
structures at the top of Fig. 1 generalise the structures at the bottom by allowing
relations between any number of vertices.

The French mathematician Claude Berge made an early attempt to generalise
relational structure to many vertices through his definition of hypergraphs developed
in the 1960s.

provide orientation allow many relations

simplicial
hypergraphs - ——» hypernetworks
ybergtap complexes yP
allow any allow any allow any
number of number of number of

vertices vertices vertices

graphs networks multiplex networks
provide orientation allow many relations

Fig. 1 The natural family of network structures embraces n-ary relations



Open Questions in Multidimensional Multilevel Network Science 117

Let X = {x1,x2,...,x,} be a finite set. A hypergraph on X is a family H =
(Ey, E,,...,E,) of subsets of X such that

() E#0 (i=12,...,m)
@ UL, =x.

The elements x;, x2, ..., x, are called vertices and the sets E|,E,, ..., E, are the
edges of the hypergraph [8, 9].

Let R be a relation between sets A and B. Let a Rb mean that a is R-related to b
where a € A and b € B. Let R(a) be the set of all b € B that are R-related to
a, R(a) = {b|aRb}. Then Hy(B,R) = {R(a)|for all a € A} is a hypergraph.
Similarly, let R(b) = {a|aRb}. Then Hg(A,R) = {R(b) |for all b € B} is a also
hypergraph.

Given the hypergraph H4 (B, R), let H4(B, R) be all the sets in H4 (B, R) together
with all their intersections. Let H4 (B, R) be called a Galois hypergraph. Similarly,
let Hp(A, R) be all the sets in Hg(A, R) together with all their intersections. Then
Ha(B, R) and Hp(A, R) are dual Galois hypergraphs.

Proposition The sets in the dual Galois hypergraphs H4 (B, R) and Hg(A, R) are in
one-to-one correspondence. This is called the Galois connection between the dual
hypergraphs.

A proof of this proposition can be found in [18]. The intuition behind the proposition
is that there are paired maximal subsets called Galois pairs, A’ <> B’ where every
member of A’ C A is R-related to every member of B’ C B.

Proposition There is an order relation on the set of Galois pairs with an associated
Galois Lattice

Let A’ < B and A” < B’ be Galois pairs. Then A’ C A” if and only if B' 2 B”.
Let < be definedas A’ < B’ < A” < B"if A’ C A”. Then < is an order relation
with an associated lattice structure. This is called the Galois Lattice for the relation
R between A and B. More details of the Galois connection and Galois Lattice can be
found in [13, 14, 16, 18].

3 Simplicial Complexes and Q-Analysis

Hypergraphs have the great advantage that they are simple set-theoretic structures
and this makes it easy to prove the existence of the Galois connection and Galois
Lattice. However set theory is too weak for most applications because the elements
are not ordered. For example, {R,E, P, A,I,R} = {R, A, P, I, E, R} so the words ‘repair’
and ‘rapier’ cannot be discriminated by the sets of their letters—the order of the
letters is also required.

At the same time that Berge was developing his theory of hypergraphs, the
British mathematician Ron Atkin was developing his theory of Q-analysis based
on simplicial complexes and algebraic topology [1-6].
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Fig. 2 Simplices can represent relations between two or more things. (a) Line 1-dimensional.
(b) Triangle 2-dimensional. (¢) Tetrahedron 3-dimensional. (d) 5-hedron 4-dimensional

(a) (b)

Fig. 3 g-connected polyhedra. (a) o and ¢’ are 1-near. (b) oy and o4 are 1-connected

Let V be a set of elements called vertices. An abstract p-dimensional simplex

{x0,x1,...,xp) is an ordered set of p + 1 vertices. A simplex (xg,x},...,x,)
is a g-dimensional face .of thc s.implex (x0,x1, ..., xp) iff {x5,x],.. .',x;}' c
{x0,x1,...,x,}. A set of simplices is called a simplicial family. A set of simplices

with all its faces is called a simplicial complex.

In algebraic topology it is common to use the symbol ¢ to represent simplices,
and this convention will be used here. Simplices have a geometric realisation as
p-dimensional polyhedra, as shown in Fig. 2.

Two simplices are g-near if they share a g-dimensional face. Two simplices are
g-connected if there is a chain of pairwise g-near simplices between them. The
tetrahedra o and ¢’ are 1-near in Fig. 3a because they share a 1-dimensional face.
In Fig. 3b 01 and o4 are 1-connected, since o7 is 1-near o5, 05 is 1-near 03, and o3 is
1-near oy4.

A Q-analysis determines classes of g-connected components, sets of simplices
that are all g-connected. An early application of Q-analysis studied land uses in
Colchester [6].

4 Backcloth, Traffic and Multidimensional Percolation

The vertices and edges of networks often have numbers associated with them. For
example in a social network the vertices may be associated with the amount of
money a person has and the edges may be associated with how much money passes
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between pairs of people. In electrical networks the vertices have voltage associated
with them and the edges have current. Although the network’s voltages and currents
may change, the network itself does not. Similarly in a road network the daily traffic
flows may vary but usually the network infrastructure does not. The same holds for
simplicial complexes when there are patterns of numbers across the vertices and the
simplices. The numbers may change when the underlying simplicial complex does
not.

Atkin suggested that the relatively unchanging network or simplicial complex
structure be called a backcloth and that the numbers be called the fraffic of activity
on the backcloth. As an example, the airline network acts as a backcloth to the traffic
of airline passengers. The term backcloth comes from the scenery painted on large
canvas sheets used in theatres as a static backdrop behind the actors.

Atkin first used simplicial complexes to characterise a wide variety of phenomena
in physics by his Cocycle Law that the space-time backcloth supporting many
physical phenomena has no holes. His conceptual leap “from cohomology in physics
to g-connectivity in social science” was published in 1972 [1, 12].

Networks are excellent for representing and calculating the dynamics of flows,
including electricity, fluids, vehicles and sentiments. Simplicial complexes are
multidimensional networks and they too can carry equally diverse traffic flows.
Generally the g-connectivity of the underlying backcloth constraints the dynamics
of the flows. This has been called g-transmission and has been described as a
multidimensional analogue to percolation in networks [15, 16].

S Hypernetworks

Although simplicial complex are a step forward in representing n-ary relations they
too have their limitations, as illustrated in Fig.4. Here the lines {y,..., £ are
arranged in a circle by the relation R;. The resulting structure (€1, ..., {1¢; R;) has
the emergent property that most people see a white disk at the centre of the lines,

~
=

o~
©

IR 0 L
(a) (b)
Fig. 4 The lines ¢;,. .., {;c organised by two different relations, R; and R,. (a) The sun illusion

o1 = ({1,...,416; R1). (b) The rectangle illusion 05 = ({1, ..., L16; R2)
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Fig. 5 Chemical isomers as relational simplices. (a) n-propyl alcohol. (b) Isopropyl alcohol. (c)
Methyl-ethyl-ether

the so-called sun illusion. Figure 4b shows the same set of lines assembled under
a different relation, R,. Now there is no disk but a rectangle shape emerges. This
example illustrates that the same ordered set of elements can be the subject of more
than one relation, and that the simplex notation ({1, ...,£;¢) cannot discriminate
these very different cases.

In order to do this another symbol is necessary to represent the relation. We write
R1 : <£1,. .. ,616> — (E], e ,616;R1) and Rz : (Zl,.. . ,616> — (El,. .. ,61(,;R2).
Let o) represent the sun configuration and o, represent the rectangle configuration.
Then o, and o0, are examples of relational simplices, or hypersimplices. Now the
notation enables o] to be discriminated from a5, since o1 # 05.

As another example, propanol assembles three carbon atoms with eight hydrogen
atoms and one oxygen atom, written as C3HgO or C3H;OH. Figure 5 shows the
atoms of propanol arranged in a variety of ways. The first two show the isomers
n-propyl alcohol and isopropyl alcohol. The oxygen atom is attached to an end
carbon in the first isomer and to the centre carbon in the second, but the C-O-H
hydroxyl group substructure is common to both. The rightmost isomer of C3HgO,
methoxyethane, has the oxygen atom connected to two carbon atoms and there is
no C-O-H substructure. This makes it an ether, methyl-ethyl-ether, rather than an
alcohol. Thus the relational simplices of the isomers have the same vertices, but the
assembly relations are different. n-propyl alcohol and isopropyl alcohol share the
hydroxyl group substructure C-O-H and are similar, but methyl-ethyl-ether does not
and has different properties. Thus

( C,C,C,H,H,H,H,H,H,H,H,O; Rn—propylalcohol) #
( C,C,C,H,H,H,H,H,H,H,H,O; Risopropylalcohol) #
( C,C,C,H,H,H,H,H,H,H,H,O; Rmelhyl—ethyl—ether)

In general a hypernetwork is defined to be any collection of hypersimplices. This
definition is deliberately undemanding, so that almost anything can be a hypersim-
plex, and any collection of hypersimplices can be a hypernetwork. Hypersimplices
can act as backcloth structure carrying a traffic of numbers on their vertices and on
their faces.
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Fig. 6 Remove a vertex and the simplex ceases to exist. (a) Remove a vertex and the cyclist
simplex ceases to exist. (b) Remove a vertex and the perfect gin and tonic ceases to exist

6 The Vertex Removal Test for n-ary Relations

The essential feature of a polyhedron is that it ceases to exist if any of the vertices
are removed. For example, consider a cyclist represented as the combination (rider,
bicycle; Ryiging). Remove either the man or the bicycle and what is left ceases to be a
cyclist. Remove any vertex from (gin, tonic, ice, lemon; Rpxeq) and it ceases to
be the perfect gin and tonic (Fig. 6). Generalising edges to polyhedra allows a
distinction to be made between the parts of things represented by vertices, and
wholes represented by hypersimplices. Using this test it is easy to find many
examples of n-ary relations, e.g. a path with n edges in a network forms a
hypersimplex—remove an edge and the path ceases to exist; four bridge players
form a hypersimplex—remove one and the game collapses; and a car and its wheels
are 5-ary related—without any of them it won’t work.

7 Hypernetworks and Multilevel Structure

Hypersimplices enable the definition of multilevel part-whole structures, e.g.
the four blocks assembled by the 4-ary relation R to form an arch in Fig.7. Here
the whole has the emergent property of a gap not possessed by any of its parts. If
the parts exist in the system at an arbitrary Level N then the whole exists at a higher
level, here shown as Level N+1. Thus assembly relations provide an immutable
upwards arrow for the definition of multilevel structure.

Part-whole aggregations are interleaved with taxonomic aggregations, as shown
in Fig. 8. The aggregation between Level N and Level N+ 1 combines graphical parts
to form faces. The aggregation between Level N+1 and Level N+2 establishes
classes of faces in a taxonomy. Such aggregations depend on the purpose of the
taxonomy. For example, there is no class of ‘frowny’ faces because, for the purpose
here, it is not required. Note that part-whole aggregations require all the parts.
In contrast taxonomic aggregations require just one example to aggregate. For
example, the round smiley face is sufficient for there to be a smiley face, irrespective
of whether or not there is a square smiley face.



122 J.H. Johnson

Level N+1 Level N+1
gap «@/» - whole

A p
Level N

O D D AN Level N parts

Fig. 7 The fundamental part-whole diagram of multilevel aggregation

Level N+2 round faces smiley faces square faces
A
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'\

part-whole
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Fig. 8 Part-whole and taxonomic aggregation

8 The Multilevel Fragment-Recombine Operator

When dealing with multilevel systems it would be useful to have a single symbol to
represent the very complicated multilevel cone structures illustrated in Fig. 9a. One
possibility is to enclose them by triangle. This representation allows a subsystem
to be represented by a triangle within a triangle as shown in Fig.9b. Since the
intersection of two triangles is also a triangle, this representation is convenient to
denote the intersection of two multilevel systems, as shown in Fig. 9c.

This representation suggests an exciting new possibility for multilevel complex
systems. To be more concrete consider a narrative as a multilevel structure made
of words, phrases, paragraphs and complete stories. Narratives are very important
in policy and very important for the development of a theory of complex social
systems.

For example, Europe is grappling with many narratives associated with migrants,
and these narratives work at the level of the plight of individual people, through
to more aggregate structures such as people traffickers’ boats to more aggregate
structures such as countries and their policies. The narratives include political and
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Fig. 9 Multilevel operations on multilevel triangles. (a) A multilevel triangle. (b) Subsystem.
(¢) Intersection
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Fig. 10 Multilevel fragment-recombine operators

economic aspects at many level of aggregation. Let this multilevel narrative be
called Nuigration @s shown top-left in Fig. 10. Let Ay be the state of the narrative
at time ¢;.

Alongside the strong migration narrative in the UK there are others, e.g. the
unemployment narrative, Nynemployment» Shown bottom-left in Fig. 10.

Both these narratives evolve in time, with information and invention being added
or lost as the meanings of the narrative evolve. Figure 10 shows these narratives
evolving independently until they crash into each other at time #s. The combinatorial
dynamics of such a crash is not well understood, but it involves parts of the two
multilevel systems interacting and each of the multilevel narratives fragmenting
before they recombine to form new composite narratives, €.g. Nmigrantsaretakingourjobs-
Let the fragment-recombine operator of multilevel systems, , be defined as

*x (AL A = A x Do

where A\ and /\, are multilevel systems before they crash and A x A\, is the
multilevel system after. There are many open questions associated with this.
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9 Open Questions in Multidimensional Network Science

Open Question 1 How are the dynamics of systems constrained by the g-
connectivity structure of the backcloth? What are the mechanisms for g-percolation?

This question concerns the dynamics of system traffic, i.e. the patterns of
numbers across the vertices and hypersimplices. The numbers on one hypersimplex
can directly influence the numbers on another through their shared face. For
example, consider two routes through a road traffic system. The routes can be
considered to be structured sets of road segments, R; = (so, 51, ..., Sn; Rioue). The
more segments that two routes share, the more their traffic will interact, with the
vehicles slowing each down. Thus the more highly connected the routes, the greater
the impact they have on each other.

Open Question 2 What are the processes of hypersimplex formation and loss?

This question is a generalised version of the question as to how links form in
networks. One answer to this for networks is the Barabdsi’s preferential attachment
mechanism [7]. A necessary condition for a hypersimplex to form is that all its
vertices are present. For the vertices to become n-ary related may require a process
in time involving a sequence of other p-ary relations. For example, for n people
to form a well-functioning team involves a process in which they learn to work
together. In the case the process may change the vertices. For example, some
members of the team may be trained in order to acquire necessary skills.

Open Question 3 What is the nature of multilevel backcloth-traffic dynamics?

This question combines the first and second questions in the context of multi-
level interactions. Bottom-up the traffic or patterns of numbers aggregate over
the multilevel backcloth. In general more aggregate numbers get larger and more
predictable in time. Furthermore, aggregation bottom-up tends to convert lower level
structures into numbers. For example, company taxation results in a time series of
numbers at the national level, where the details of companies and their activities
are not explicit. Similarly there are issues of how numbers are distributed top-down
over multilevel systems. The challenge is to understand how bottom-up and top-
down dynamics interact across multilevel systems.

Another aspect of this question concerns the formation of multilevel structure,
and the processes by which top-down decisions enable or require the creation of
lower level structures. For example a company may decide to invest in a new factory.
This requires information traffic to flow across higher management level resulting
in top-down flows of resources to create the lower level structure. Generally the
rationale for this is that the new lower structure will create new resources that will
flow up the structure to enhance the company’s profits.

When modelling systems it is always the case that some things are included and
some are left out. This includes deciding that some level is the lowest necessary
to model a multilevel system. The dynamics of a multilevel system are said to
be information complete at Level N if modelling their behaviour requires no
information from Level N-k for k > 1. Thus Open Question 3 includes how to decide
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the level at which a system is information complete. For example, until recently,
economic systems were modelled at the meso level of the ‘representative agent’.
Today it is increasing realised that many social system are information-complete
only at the level of the individual person. For example, the behaviour of road traffic
system emerges from the decisions of individual driver agents and increasingly they
are modelled at this level by agent-based simulations using the disaggregate data of
synthetic micro populations.

Open Question 4 What new algebraic operations can be defined between hyper-
simplices?
The generality of this question is given by the expression

(X(), Ce ,xpl;Rl) <& (y(], e ,y,,z;Rz) = (Z(), e ’ZPI.Z;RI ®R2>
where {zo, ..., 25} = {X0, ..., X ) { Y0, ..., ¥p, }. The challenge is to determine
the nature of the operators and @ .

This question has its origins in the simple question “what is the intersection of two
hypersimplices?”” An obvious but unsatisfactory answer is given by

?
(1,22, .. X R NV YLy, - Re) = (21,220 -, 20 R ARy,

where {z1,22, ..., 24} = {x1, %0, ... % OV YLy, LY )
The problem here is that R is defined on all the vertices x1, x5, ...,x, and R; is
defined on all the vertices yy,y», ...,y but, as written, their conjunction is defined

on {xi,x2, ..., X%} N{y1,¥2,...,yy}. Another possibility is to write

?
(1,22, .. X RO NV YLy, i Re) = (21,220 -+, 200 R A Ry,

where {z1,22,....24} = {x1, %2, .. . X Uy o, . 0 )
To investigate this question further consider two multiplex network edges, (x;, x2; R)

and (y;,y2: R')
def
(x1,x2:R) N (y1. ¥ R) = B for {x1.x0} N {y1.yn} =0

def
= (x1,x2; R AR') for {x1, %2} N {y1,y2} = {x1,x2}

E (v, 0) 2] (1. y2): RO R') otherwise

Of these, the first and second are not problematic, the former being an empty
intersection and the latter being the conjunction of the relations. But how should
the and @ operations be defined?

Suppose (xi, x2) 1,y2) = (x1,x2) N (y1,y2) = (x1). This means that
R@ R’ is defined on a single vertex. It is perhaps more promising to suppose that
(e, ) 2 (1, 32) = (x1,32) U (31, 32)?
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Open Question 5 What is the nature of the multilevel fragment-recombine operator
* 1 (A1, Ay, ..) =& Ay x Ay x ... for multilevel systems.

It may be easiest to answer by thinking ahead to how the x operation could be
implemented. In practice it is assumed that the multilevel systems are explicitly
represented in multilevel data structures based on the algebra sketched in this paper.
Then the question becomes how hypersimplices at compatible levels behave when
they crash into each other. Presumably there are various and (@ operations
to deconstruct and recombine the hypersimplices. The nature of these is a major
challenge for multilevel multidimensional network science.
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