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Preface

In recent years we have witnessed an explosion of DNA sequencing technol-
ogies that provide unprecedented insights into biology. Although this tech-
nological revolution has been driven by the biomedical sciences, it also 
offers extraordinary opportunities in the Earth and environmental sciences. 
In particular, the application of “omics” methods (genomics, transcrip-
tomics, proteomics) directly to environmental samples offers exciting new 
vistas of complex microbial communities and their roles in environmental 
and geochemical processes. However, there is currently a lack of resources 
and infrastructure to educate and train geoscientists about the opportu-
nities, approaches, and analytical methods available in the application of 
omic technologies to problems in the geosciences. This book aims to begin 
to fill this gap. Due to the rapidly advancing nature of DNA sequencing 
technologies, this book will almost certainly be well out of date by the time 
of publication. Nevertheless, my hope is that the accompanying e-book 
format will allow relatively frequent updates and will serve as a foundation 
and a gateway for students and other scientists to access this exciting field. 
I apologize in advance to the many researchers whose excellent work was 
inevitably not cited, due to either my own ignorance or constraints on space. 
I welcome suggestions for citations, additions, and corrections that can be 
incorporated into future editions.

Gregory Dick
Ann Arbor, Michigan, USA

August, 2017
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1
1.1  Exploring the Microbial World

Microorganisms shaped the geochemical evolution of our planet throughout 
its history, and they continue to play a key role in the modern world. In deep 
time they oxygenated Earth’s atmosphere and set the stage for life as we 
know it. Today, microbes mediate global biogeochemical cycles, influence 
the speciation and fate of pollutants, and modulate climate change through 
production and consumption of greenhouse gases. The field of geomicrobi
ology and microbial geochemistry (GMG), which studies the interplay bet
ween microbes and the Earth system, has roots in the 19th century (Druschel 
& Kappler 2015; Druschel et  al. 2014). However, only recently has the 
breadth of microbial geomicrobiological processes and extent to which they 
shape geological, geochemical, and environmental processes become clear. 
Many methods and concepts central to GMG are also relevant to environ
mental engineering (e.g., drinking water and wastewater treatment) and 
medicine (e.g., human microbiome), including the omics approaches that 
are the focus of this book.

How to study this microbial world? Inherent challenges abound; micro
organisms are small. Their cellular morphology is typically not informative of 
their phylogeny, physiology, or role in biogeochemical or ecological processes. 
Microbes often live in highly diverse microbial communities where it is hard 
to decipher the activities of different microorganisms or to trace specific 
microbial processes. Traditional microbiological approaches revolve around 
the cultivation of bacteria and archaea, which enables powerful laboratory
based methods of dissecting microbial physiology, biochemistry, and genetics 
as they relate to geochemical processes (Newman et al. 2012). Yet most micro
organisms in nature are resistant to cultivation owing to symbiotic lifestyles or 
unknown nutritional requirements (Staley & Konopka 1985). Further, it can 

Introduction



2  Introduction

be impractical to grow pure cultures due to the extremely slow growth of 
many microorganisms, which in the environment is perhaps more akin to 
stationary phase than to growing cultures (Roy et al. 2012). Comprehensive 
culturing is also impractical because of the stunning complexity of natural 
microbial communities (thousands of species). Finally, the results from pure 
cultures may not be representative of in situ processes (Madsen 2005).

Traditional geochemical methods of measuring process rates and 
products and using biological poisons or inhibitors of specific microbial 
enzymes offer critical quantitative data and some mechanistic insights 
(Madsen 2005; Oremland et al. 2005). However, these approaches provide 
little information with regard to the identity or nature of the microorgan
isms that underpin processes of interest. Exciting advances in microscopy 
and spectroscopy that provide opportunities to link microorganisms to 
biogeochemical processes are described and reviewed elsewhere (Behrens 
et al. 2012; Newman et al. 2012; Wagner 2009).

Recent advances in DNA sequencing technologies open up entirely new 
avenues to study geomicrobiology by circumventing the cultivation step and 
providing extensive information on microorganisms as they exist in natural 
settings. This data comes from the sequence of macromolecules (Box 1.1) 

Box 1.1 Definitions of key macromolecules studied by omics approaches

Deoxyribonucleic acid (DNA): DNA consists of four nucleotide bases – guanine (G), adenine (A), thymine (T), and 
cytosine (C) – that are joined together in a sequence to form genes.

Gene: a unit of genetic information encoding protein, tRNA, or ribosomal RNA. Genes are about 1000 bases long, on 
average.

Genome: the genome is the collection of all genetic information in an organism, including the genes as well as ele
ments between genes that are involved in regulating gene expression. Microbial genomes range in size from approxi
mately 400 000 to 10 million bases and from 400 to 10 000 genes.

Ribonucleic acid (RNA): There are several major forms of RNA, including messenger RNA (mRNA), transfer RNA 
(tRNA), and ribosomal rRNA (rRNA). mRNA is an intermediate between DNA and protein (see Fig. 1.1); rRNA is a 
structural and catalytic component of ribosomes, the machinery that translates mRNA into protein. tRNA are small 
molecules that recognize the threebase code of mRNA and translate it into amino acids during protein synthesis.

Protein: proteins are polymers (long chains) of amino acids. The two main roles of proteins are (1) to provide struc
ture or scaffolding, e.g., in cell wall or protein synthesis; (2) to catalyze biochemical reactions in the cell, including 
those required for energy metabolism, biosynthesis of macromolecules, transport of elements into and out of the cell, 
and generation of biogenic minerals (“biomineralization”). Proteins can also “sense” the environment and transduce 
signals that elicit cellular responses.

Lipids: hydrocarbons, often with polar head groups, that are the primary constituents of cell membranes. In some cases, 
specific lipids are diagnostic of specific microbial groups or metabolisms. Unlike other biological macromolecules, lipids 
may be preserved in sediments over geological time (millions to billions of years), so they have great value in potentially 
providing information on ancient ecosystems. Like other macromolecules, the synthesis of lipids is conducted by proteins 
that are encoded by genes. Hence, the “lipidome” can theoretically be predicted from the genome.

Carbohydrates: macromoleucles consisting of carbon, hydrogen. Carbohydrates decorate the cell surface and are an 
important interface between the cells and their environment. Because they are often negatively charged, they can play 
important roles in binding cations and influencing biomineralization.
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that constitute microbial cells (Fig. 1.1). This book focuses on DNA, RNA, 
and protein, and also touches on lipids and the pool of small molecules 
within a cell (metabolites). The collection of genes that encode an organism 
is known as the genome. Genes are transcribed as messenger RNAs, or tran
scripts, the total pool of which is called the transcriptome. Transcripts are 
then translated into protein, which actually performs the structural and 
biochemical functions of the cell. The total protein content of a cell is known 
as the proteome. The total content of small molecules within a cell is referred 
to as the metabolome. These small molecules include metabolites, the sub
strates, intermediates, and products of biochemical reactions catalyzed by 
enzymes. The study of the whole collection of each of these molecules in a 
pure culture is referred to as genomics, transcriptomics, proteomics, and 
metabolomics. When such information is derived from a whole community 
of microorganisms, we say “community genomics” or “metagenomics“ 
(or metatranscriptomics, metaproteomics). Collectively, these approaches, 
whether applied to a single organism or a community of organisms, are 
referred to in shorthand as “omics.”

Whereas genomes encode all the proteins that could possibly be made in 
a given cell, a genome does not give any information about which proteins 
and RNA are actually being produced at any given time, or about the quan
tities in which they are produced. Transcriptomics and proteomics provide 
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4  Introduction

this information. DNA, RNA, and protein have different lifetimes based on 
the stability of the molecules and the biochemical mechanisms that degrade 
them. Thus these molecules provide information at different time scales 
(Fig. 1.2). Genomes also provide a “molecular fossil record” of how genes 
and organisms have evolved over the billions of years of life on Earth (David 
& Alm 2011; Macalady and Banfield 2003; Zerkle et al. 2005).

1.2  The DNA Sequencing Revolution: Historical 
Perspectives

The “metaomics” revolution has its roots in the pioneering work of Carl 
Woese and colleagues, who sequenced microbial rRNA genes in order to 
uncover their phylogenetic relationships (Woese & Fox 1977). This work 
recognized that, because rRNA genes serve critical functions, they are pre
sent in every organism and are highly conserved at the sequence level. Thus, 
they hold invaluable information about the evolutionary relationships of 
microorganisms. Through painstaking labor, the sequence of rRNA genes 
from a wide range of organisms was deciphered, leading to an astonishing 
discovery: methaneproducing microorganisms previously assumed to be 
bacteria were actually a new and completely separate domain of life – the 
archaea (Sapp & Fox 2013). This transformed our understanding of the tree 
of life by revealing that it is composed of three domains: bacteria, archaea, 
and eukarya (Woese & Fox 1977). The advent of rRNA gene sequencing also 
provided a practical and objective tool for classifying microorganisms, a 
task which had been declared impossible previously (Woese & Goldenfeld 
2009).

Soon after, Pace and colleagues applied sequencing to rRNA genes puri
fied directly from uncultured communities of microorganisms (Stahl et al. 
1984). Subsequent application of polymerase chain reaction (PCR) to the 
amplification of rRNA genes (with an explicit focus on one of these genes, 
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Figure 1.2 Macromolecules that serve as the basis for 
the three main omics approaches. Source: Dick and Lam 
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known as 16S rRNA) directly from the environment increased the 
throughput of this approach and revealed startling insights into the micro
bial world in seawater and other environments (DeLong 1992; Fuhrman 
et  al. 1992). Spurred by rapidly advancing technologies and the ever 
declining costs and increasing throughput of DNA sequencing technologies 
(Loman et al. 2012), the cultureindependent approach quickly revealed the 
staggering diversity of the microbial world (Pace 2009). This work revealed 
that only a tiny fraction of microbial groups have been studied in culture 
(Baker & Dick 2013; Pace 2009).

In parallel with the explosion of 16S rRNA gene sequencing, faster, 
cheaper DNA sequencing also enabled a new era of sequencing whole 
microbial genomes (Land et  al. 2015). Information on the complete gene 
content theoretically provides a picture of the metabolic and physiological 
potential of microorganisms (however, see the caveats and challenges dis
cussed in Chapter 3). The first bacterial genomes were published in 1995 
(Fleischmann et al. 1995; Fraser et al. 1995), and the number of microbial 
genomes sequenced has expanded exponentially ever since (Fournier et al. 
2013).

A major initial finding of these sequencing efforts was that microbial 
genomes have startling variability of gene content (Tettelin et al. 2005; Welch 
et al. 2002). This led to concepts of the pangenome, core genome, and flex
ible genome (Cordero & Polz 2014) (see Chapter  2). Genome sequences 
from cultured organisms are valuable because they enable studies of the 
links between genotype and phenotype and represent taxonomic and 
functional anchors in the tree of life for interpreting metagenomic data. 
Particularly valuable are genomes from type strains that have been validly 
described and named, which are estimated to account for a substantial por
tion (~15%) of phylogenetic diversity (Kyrpides et  al. 2014). However, 
despite the microbial genome sequencing revolution, less than 3% of these 
type strains have had their genomes sequenced (Kyrpides et al. 2014). Thus, 
even the genomic coverage of cultured microbial life remains woefully inad
equate, and of course, the cultured portion is just a small fraction of the total 
microbial world. The Microbial Earth Project (www.microbialearth.org/) 
was recently launched to track the inventory of type strains of bacteria and 
archaea and their genome sequencing projects.

At the confluence of environmental 16S rRNA gene sequencing of micro
bial communities and whole genome sequencing of cultured microbes is the 
direct retrieval of genomes from uncultured microbial communities. Early 
metagenomic approaches used cloning of environmental DNA followed by 
sequencing and/or screening of expressed products for functions of interest 
(Riesenfeld et al. 2004; Stein et al. 1996). The term “metagenomics” was first 
coined in 1998, in the context of accessing natural products (e.g., antibi
otics) from uncultured soil microorganisms (Handelsman et al. 1998). The 
power of the functional metagenomics approach lies in the direct connec
tion of sequence to function and was illustrated beautifully by the discovery 
of bacterial lightdriven proton pumps as a new form of phototrophy in the 
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oceans (Béjà et al. 2000). This method can also provide valuable insights by 
directly linking phylogenetic marker genes to function (Pham et al. 2008), 
which is particularly valuable when the cloned fragments are large, as in 
BAC or fosmid libraries. However, because of the cost and labor involved in 
constructing and screening such clone libraries, this approach was not 
readily scalable. The “functional metagenomic” approach also faces prac
tical challenges such as genetic and biochemical incompatibility between 
environmental genes and hosts (e.g., differences in codon bias, required co
factors). Some of these issues can be overcome by recent synthetic genomic 
approaches, but they still limit the throughput of exploratory, discovery
driven functional screening.

Shotgun metagenomics, in which community DNA is randomly frag
mented and sequenced, was then demonstrated as a viable and valuable 
approach (Tyson et al. 2004; Venter et al. 2004) and quickly emerged as the 
dominant method used in metagenomics studies. For the first time, whole 
genomes of uncultured organisms could be reconstructed from microbial 
communities, revealing their metabolic potential (Tyson et  al. 2004) and 
evolutionary processes (Allen & Banfield 2005). Several spectacular discov
eries, including the linking of ammonia oxidation to archaea (Venter et al. 
2004), demonstrated the power and promise of metagenomics. A vision 
for the potential advances that metagenomics could bring to science and 
society was beginning to come into view (National Research Council 2007). 
Hugenholtz and Tyson (2008) recount a brief history and highlights of these 
early stages and different approaches of metagenomics. For a more indepth 
historical account see Handelsman (2004) and Gilbert and Dupont (2011). 
The rapid decrease in costs and increase in throughput of DNA sequencing 
has enabled shotgun sequencing of more complex microbial communities 
(Fig. 1.3). Recent papers report the reconstruction of thousands of genomes 
from metagenomes (Anantharaman et al. 2016).

While the genomic sequence provides information on the metabolic and 
physiological potential of microorganisms, it does not indicate whether 
those functions are being carried out at a particular point in time or space. 
To address this question, characterizing the expression of mRNA or protein 
is required. Metatranscriptomics was applied with great success to surface 
seawater microbial communities, revealing that flexible genes are highly 
expressed in the environment (FriasLopez et al. 2008). Critically, this paper 
also used qPCR to independently evaluate the accuracy of RNA amplification, 
which is required to obtain sufficient cDNA for many sequencing applica
tions (see Chapter 9).

Whereas the DNA and RNAbased analyses described above rely on the 
sequencing of nucleotides, proteomic tools use mass spectrometry to accu
rately measure the masses of small peptide fragments and even individual 
amino acids. The matching of these measured masses with calculated pep
tide masses derived from genomic information enables the identification 
of protein fragments. Metaproteomics is challenging because analytical 
methods for translating MS/MS spectra into protein sequence are complex 
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and largely reliant on having the corresponding genomic sequence for 
interpretation. Similarly, the recovery of total protein from many environ
mental samples is more challenging than the extraction of DNA and RNA. 
Not surprisingly, initial progress on application of proteomics to microbial 
communities was accomplished in lowdiversity communities for which 
genomic sequence was available (Ram et al. 2005; Verberkmoes et al. 2009). 
Indeed, with sufficient genomic information, protein expression from very 
closely related strains can be differentiated (Lo et al. 2007). These studies 
yielded insights into the biochemical mechanisms of iron oxidation, a 
central process sustaining primary production and pyrite dissolution in 
acid mind drainage, and showed that among the most highly expressed 
proteins are “hypothetical” and “conserved hypothetical” proteins (Ram 
et al. 2005). With growing databases of genomic sequence and improving 
algorithms for interpreting MS/MS spectra, metaproteomics is now a 
viable approach for studying more complex microbial communities (see 
Chapter 10).
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2
 Introduction

Bacterial and archaeal genomes are organized and structured in several dif-
ferent ways. Forms of organization include physical structure, nucleotide 
composition, genes and regulatory regions, operons, and higher-order units 
such as replichores. Collectively, this organization of a genome can be 
referred to as genome architecture. It is influenced by a variety of biochemical, 
ecological, and evolutionary processes and forces. Understanding the 
architecture of microbial genomes and the processes that shape it is critical 
for understanding several aspects of community omic data.

2.1  Genome Size, Organization, and Replication

The genome architecture of bacteria and archaea is qualitatively similar, and 
distinct from that of eukarya (Koonin & Wolf 2008). At the highest level, 
bacterial and archaeal genomes are organized into chromosomes. Many 
bacteria and archaea have just one chromosome (Fig. 2.1), but others can 
have multiple chromosomes. The chromosome is generally more stable than 
plasmids, which are smaller self-replicating pieces of DNA. Plasmids are 
more dynamic, being able to merge, split, and rearrange frequently.

Double-stranded DNA is copied by replication in both directions (“bidi-
rectional replication”) from a single point of origin (“ori”). DNA is copied in 
the 5’ to 3’ direction, with a helicase unzipping the two strands at the repli-
cation fork. The strand being copied in the same direction as replication 
fork movement is copied continuously and is referred to as the leading 
strand. The other strand, being copied in the direction opposite replication 

The Architecture of Microbial 
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fork movement, must be synthesized in fragments (“Okazaki fragments”) as 
the template becomes available. The leading and lagging strands are differ-
ent in terms of nucleotide composition (see below), gene orientation, and 
gene content. Many essential, highly expressed genes are co-oriented with 
replication on the leading strand, which may be advantageous for mini-
mizing collisions between replicating DNA polymerase/helicase and RNA 
polymerase (Koonin 2009). Also, because a new round of genome replica-
tion is often initiated before the previous round finishes, genes near the 
origin of replication can have up to eight times more copies per cell than 
genes near the terminus (Couturier & Rocha 2006). This effect is referred to 
as gene dose. Highly expressed genes are also often located near the origin 
of replication, in part to take advantage of the higher gene dose.

The genomes of bacteria and archaea are compact compared to those of 
eukaryotes, particularly multicellcular eukaryotes (Koonin 2009). Average 
coding density, i.e., the portion of a genome covered by genes, is 87%, and 
there is a strong correlation between the total number genes in a genome 
and the genome size (Kuo et al. 2009). However, there are exceptions. The 
cyanobacterial genus Trichodesmium has a coding percentage of ~60%, and 
many of the intergenic regions are expressed for unknown reasons (Walworth 
et al. 2015). Unlike eukaryotic genomes, genes in bacteria and archaea are 
generally not interrupted by introns, though there are exceptions to that rule 
as well (Simon et al. 2008; Tocchini-Valentini et al. 2011).

The size of bacterial and archaeal genomes varies across a 20-fold range, 
from 0.14 Mb to 13 Mb (Koonin & Wolf 2008; McCutcheon & Moran 
2012). In fact, the lower range of bacterial and archaeal genome size over-
laps with the upper range of viral genomes. Hence, there is no separation 
between the genome size of viral and cellular life (Koonin 2009). The 
lower range of cellular genomes is dominated by symbiotic bacteria; the 

Super-operon

ori

DNA

Genomic 
island

23S
16S

5S

Operon
Lagging strand

Leading strand

Lagging strand

Leading strand

Figure 2.1 Genome 
organization in bacteria and 
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smallest genome of a free-living organism is 580 kb (McCutcheon & 
Moran 2012). Genome size is not necessarily correlated with phylogeny 
(Bentley & Parkhill 2004), but rather is a function of the evolutionary 
forces that shape it, including both neutral and selective processes (see 
section 2.3).

A principal unit of organization of microbial genomes is the operon, a 
group of genes that are co-transcribed and thus regulated together. The 
intergenic space between genes within an operon (~0 bp) is shorter than that 
between operons (~100 bp) (Koonin & Wolf 2008). Operons are typically 
small, consisting of 2–4 genes, and are more strongly conserved in bacterial 
and archaeal genomes than is large-scale synteny (Koonin 2009). Operons 
often encode physically interacting proteins such as the various components 
of an ATP-dependent transporter (transmembrane, periplasmic, and 
ATPase subunits) (Koonin 2009). Such organization may help ensure correct 
balance of copy number of genes encoding subunits of protein complexes. 
Operons may be larger, such as those encoding 14 photosynthesis genes 
(Liotenberg et al. 2008) or over 50 ribosomal proteins (Koonin 2009). Such 
“super-operons” may be polycistronic (a single mRNA encodes multiple 
proteins), but there are also conserved groups of operons that form a “con-
served gene neighborhood,” or uberperon (Koonin 2009). Interestingly, the 
extent to which genomes are organized into operons varies widely; genomes 
like Thermatoga maritima are mostly organized into operons whereas some 
groups like cyanobacteria contain fewer operons (Koonin 2009). The factors 
that govern degree of “operonization” are not well understood, but it likely 
has to do with the balance of processes that disrupt operons (e.g., genome 
rearrangements) versus those that preserve them (e.g., horizontal gene 
transfer events that promote their survival and spread). Two main theories 
have been put forward to explain the existence of operons: (1) efficiency of 
regulation (Rocha 2008) and (2) the selfish gene/operon theory (Koonin 
2009).

A major conclusion from comparative genomic studies is that gene order 
is usually poorly conserved beyond the operon scale for all but the most 
closely related strains. Comparison of gene order is effectively accomplished 
with dot plots, which often display patterns indicative of inversions around 
the origin of replication, suggesting that rearrangements that occur during 
replication are a major process affecting the organization of genomes (Eisen 
et al. 2000).

Genomes of closely related microorganisms share large regions of 
conserved genes. However, these regions are punctuated by hypervari-
able regions called genomic islands (also chromosomal islands). Genomic 
islands consist of 10–100 genes that are highly variable and dynamic. These 
regions often contain genes encoding specialized functions that are not 
needed for simple survival but which may encode important ecological 
adaptations that differentiate strains or populations. For example, genomic 
islands can include genes for biodegradation of anthropogenic compounds 
such as aromatic hydrocarbons and pesticides, genes encoding key aspects 



14  The Architecture of Microbial Genomes

of pathogenesis (i.e., pathogenicity islands), and genes for the formation of 
magnetosomes, intracellular magnetite minerals that orient organisms 
with respect to Earth’s magnetic field and aid in navigation through redox 
gradients. Genes encoding proteins that are used for viral attachment are 
also common in genomic islands (Avrani et  al. 2011; Rodriguez-Valera 
et al. 2009).

The variable gene content within genomic islands leads to extraordinary 
diversity of gene content within microbial species. Genes that are variable 
across genomes at some taxonomic level (e.g., species) are referred to as 
flexible genes or accessory genes, whereas those that are present in all 
genomes are designated core genes (Cordero & Polz 2014). Significant shuf-
fling of the core genome takes hundreds of millions of years whereas the 
flexible genome is much more dynamic (Rocha 2008). Taken together, the 
core and flexible genes represent the entire pool of genetic diversity of a 
species or higher taxonomic level, and this is referred to as the pangenome. 
The flexible genome also includes mobile elements such as plasmids, trans-
posable elements, and integrated viruses (prophage). The degree of mobile 
elements in a genome varies tremendously and reflects the ecological and 
evolutionary characteristics of the microorganism. For example, the harm-
ful algal bloom-forming cyanobacterium Microcystis aeruginosa contains 
an exceptional number of transposes, which it appears to use to rapidly 
rearrange the genome to a degree that may be regulated by nutrient avail-
ability (Steffen et al. 2014).

DNA sequences that are repeated within microbial genomes can occupy 
substantial portions of microbial genomes (Walworth et  al. 2015). These 
elements can be important in the evolution of microbial genomes by medi-
ating genome rearrangements (Darmon & Leach 2014). Intriguingly, such 
genome rearrangements may be regulated in response to environmental 
conditions, suggesting an evolutionary strategy for rapidly adapting to the 
environment (Steffen et al. 2014). These repeat sequences can wreak havoc 
on efforts to assemble microbial genomes and metagenomes (see sections 
5.2 and 6.3).

2.2  Nucleotide Composition

The nucleotide composition of microbial genomes varies both within and 
across genomes. Within genomes, there is typically a difference in base com-
position between the leading and lagging strand. The leading strand is 
enriched in G and T whereas the lagging strand is enriched in A and C. This 
bias is often presented in terms of the percentage of excess of G over C (G-C/
G+C) and is known as GC-skew. It can be easily visualized on a microbial 
genome and it marks the origin and terminus of replication (Rocha 2008). 
The cause of GC-skew is still not fully understood but likely relates to differ-
ent mutational pressures that result from the different amount of time that 
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the leading and lagging strands spend as single-stranded DNA, which is 
more prone to mutation (Rocha 2008).

GC content is another commonly used measure of nucleotide com-
position. It measures the percentage of nucleotides that are G and C (i.e., 
(G+C)/(A+T+C+G)). GC content varies widely across different microbial 
genomes, from approximately 25% to 85%, a fact that has been recognized 
since the early days of molecular biology (Sueoka 1962). In general, GC 
content is not correlated with taxonomy at higher levels, but some groups 
show cohesiveness in this regard, such as the high-GC gram positives 
(Actinobacteria) (Bentley & Parkhill 2004). The drivers of nucleotide com-
position include both neutral (Sueoka 1988) and selective forces (Foerstner 
et al. 2005; Rocha 2002) and their relative importance is still debated (Bentley 
& Parkhill 2004).

GC content is strongly correlated with genome size and lifestyle. AT-rich 
genomes are often small and occur in obligate symbionts and/or stable envi-
ronments. GC-rich genomes tend to be large and in organisms that inhabit 
complex, highly variable environments. This has led to conclusions that GC 
content is an adaptive feature of the microbial genome that is selected on the 
basis of energetics/resources (Rocha 2002) or extreme environmental con-
ditions (high temperature, salinity) in which the stronger bonds between G 
and C may be advantageous (Musto et al. 2004). However, convincing argu-
ments have been made that nucleotide composition is the result of neutral 
processes such as mutational bias (Lynch 2007). Recent molecular studies 
support this contention (Wu et  al. 2012). In addition to varying between 
genomes, GC content varies within genomes and is often used to detect 
genomic islands that may be of foreign origin.

Intimately connected to GC content is the differential utilization of 
codons within and between organisms. Each amino acid (except for methi-
onine) can be encoded by multiple different codons (e.g., UUA, UUG, CUU, 
CUC, CUA, and CUG all encode leucine). The frequency at which each 
codon is used is highly variable. For example, in the cyanobacterium 
Synechocystis sp. PCC 6803 UUG is used in 30% of codons encoding leucine, 
whereas CUA is used only 9% of the time. This so-called “codon bias” 
reflects the tRNA content of a genome (Dong et al. 1996) and certain aspects 
of optimizing translation (Rocha 2004). The link between codon usage and 
translational efficiency may also be related to mRNAs stability (Boel et al. 
2016). Indeed, highly expressed genes often display a distinct codon usage 
from others, leading to a within-genome codon bias. However, there are 
codon biases that are pervasive across whole microbial genomes, and these 
biases are distinct and distinguishable between microbial genomes. Again, 
neutral mutational bias may play a primary role in shaping such between-
genome codon usage.

Whatever the forces that shape nucleotide composition are, there are 
strong signatures of nucleotide composition between genomes in terms of 
GC content and oligonucleotide frequency, and these signatures can be 
exploited for the purposes of metagenomic binning (see Chapter 7).
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2.3  Ecological and Evolutionary Aspects of Microbial 
Genomes

Here we will briefly explore the ecological and evolutionary forces that shape 
genome architecture and generate genomic diversity. As we will see in the 
next section, the extent of this genotypic diversity in microbial populations 
and communities is incredible, especially in terms of gene content.

Genomes are shaped by a number of different processes, some of which 
are adaptive but many of which are neutral. Adaptive processes are those 
that are shaped by natural selection, providing enhanced fitness. This 
includes genome reduction or “streamlining” in which smaller genomes 
are favored to minimize the energy and resource burden of genome repli-
cation (Giovannoni et al. 2014), genetic modifications that change pheno-
type resulting in avoidance of predation (e.g., by grazers or phage), and 
mutations that lead to enhanced performance such as improved nutrient 
uptake, adaptation to light quality or intensity, etc. However, many charac-
teristics of microbial genomes are random, have no discernible effect on 
fitness, and are apparently not under selective pressure. Thus, they are said 
to be neutral or nonadaptive. Mutation is essentially a stochastic process 
(point mutation, horizontal gene transfer, gene duplication, gene loss), as is 
recombination.

The effect on the fitness of organisms of these mutations can be positive, 
negative, or neutral. Preservation, loss, or even fixation (i.e., replacing all 
other variants at the same site in the genome) of new variants within a 
population can occur through random genetic drift (Kuo et al. 2009). Thus, 
a neutral or even slightly deleterious mutation can become fixed in a 
genome, and conversely, a slightly adaptive mutation can be lost through 
drift. Genetic changes that increase the complexity of genomes, such as gene 
duplication, are often neutral or slightly deleterious. They are retained only 
when selective pressure is weak. However, since the original copy of dupli-
cated genes still serves the original function, the new genes are free to evolve 
new functions and thus provide raw material for evolutionary innovation. 
Thus, mutations that were initially neutral can be subjected to selection at a 
later time. The strength of selection is directly tied to population size, with 
genomes of smaller populations shaped more by drift and genomes of larger 
populations more by selection (Lynch 2007).

The relative importance of these different mechanisms for generating 
genetic diversity varies across the branches of the tree of life. For example, 
sexual recombination and gene duplication are prevalent in eukaryotes, 
whereas the gene repertoire of bacteria and archaea is greatly shaped by 
horizontal gene transfer. In eukaryotes, overall genotypic variation is largely 
at the level of different gene alleles, whereas in bacteria and archaea, geno-
types are heavily influenced by gene content (Cordero & Polz 2014). These 
differences are due to differences in population size as well as fundamental 
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biological properties such as mode of reproduction, genome architecture, 
and cell biology (Koonin 2009). The relative importance of neutral and 
adaptive processes in shaping the gene content of bacteria is still under 
debate. Recent work suggests that turnover in the content of accessory genes 
through gene gain, loss, or duplication is largely driven by neutral processes 
(Andreani et  al. 2017; Wolf et  al. 2017), while others conclude that it is 
largely adaptive (McInerney et al. 2017).

The interplay of selective and neutral processes is illustrated in the con-
text of microbial genome size. Selective forces include genome streamlining, 
the idea that replicating the genome (and synthesizing the associated 
proteins) is costly in terms of energy and resources. Thus, in large popula-
tions that inhabit stable, oligotrophic environments, there may be strong 
selective  pressure to maintain a small genome and discard unnecessary 
genes (Giovannoni et  al. 2014). In the abundant and widespread marine 
bacterium SAR11, this results in small genomes with extreme coding density 
and reduced regulatory mechanisms (Giovannoni et al. 2005). The correla-
tion of genome size with rrn copy number, resource availability, maximum 
reproductive rate, and growth efficiency (inversely) lends further support to 
an adaptive role in genome streamlining (Roller et al. 2016). Interestingly, 
genome reduction also occurs at the other end of the spectrum of effective 
populations size, where symbionts of eukaryotic hosts have extremely small 
genomes. This drastic genome reduction may be the result of processes that 
are fundamentally different from those acting during genome streamlining 
(Batut et al. 2014).

On the other hand, highly variable environments may select for organ-
isms that are versatile, being able to compete under a range of different con-
ditions. Such a versatile lifestyle requires not only more genes to encode 
more processes (e.g., different electron acceptors and donors for energy 
metabolism, more transporters and pathways for nutrient utilization), but 
also more genes for environmental sensing and regulation of gene expres-
sion. Indeed, with increasing genome size, an increasing proportion of the 
genome is dedicated to transcription and signal transduction (i.e., sensing 
and regulation) (Konstantinidis & Tiedje 2004).

Neutral processes, primarily genetic drift, can also exert strong influence 
on the evolution and size of microbial genomes (Lynch 2007). Gene duplica-
tion and acquisition of genes via horizontal gene transfer provide raw mate-
rials for genome evolution in the form of new genes. While pressures such as 
those above can selectively retain or purge such genes, in the absence of 
strong selection pressure the new genes may be retained even in the absence 
of any benefit to the organism. Hence, it is generally thought that neutral 
processes tend to enlarge genomes. However, Sela et  al. (2016) recently 
provided support for a different theory – that gene acquisition is often ben-
eficial, and that this is balanced against intrinsic bias for gene loss. A sum-
mary of ecological and evolutionary aspects of genome size is provided in 
Table 2.1.
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Recent findings from different species of cyanobacteria illustrate the dif-
ferent evolutionary processes and patterns acting on microbial genomes. 
Evidence from hundreds of single cell genomes points to multiple distinct 
“genomic backbones” in Prochlorococcus (Kashtan et  al. 2014). These are 
coherent and ancient core genomes that encode functionally distinct strains, 
or “ecotypes,” of Prochlorococcus. In contrast, populations of the related 
Synechococcus have mosaic genomes in which recombination has apparently 
wiped away any vestiges of distinct genome-wide ecotypes (Rosen et  al. 
2015). This suggests that variable selection pressures act on many different 
individual loci across genomes, structuring diversity on local genomic scales 
(Desai & Walczak 2015; Retchless & Lawrence 2007). Understanding such 
dynamics is critical for defining genetically and ecologically cohesive units 
of microbial diversity (Cohan 2006; Shapiro & Polz 2014).

2.3.1 The Role of Viruses in Promoting Genomic Diversity

Viruses play an important role in promoting the genomic diversity of micro-
organisms. First, viruses gain access to host cells by attaching to specific 
proteins on the cell surface, leading to strong selection against these genes. 
In response, microbes diversify cell surface proteins in order to avoid viral 
predation. Interestingly, the genes encoding these highly variable proteins 
are clustered in hypervariable regions of the genome (Avrani et  al. 2011) 
such as the genomic islands described earlier. Second, some viruses can 
integrate into the genomes of their hosts. Through this and other mecha-
nisms, viruses can serve as vectors for horizontal gene transfer. The common 
occurrence of bacterial genes encoding metabolic processes such as photo-
synthesis (Mann et  al. 2003) and sulfur oxidation (Anantharaman et  al. 
2014) suggests that viruses can play important roles in shaping the genetic 
underpinning of biogeochemical cycles.

Table 2.1 Ecological and evolutionary aspects of genome size.

Characteristic Smaller genome Larger genome

General ecology Specialist
K strategist

Generalist
R strategist*

Habitat stability More stable More variable
Environmental sensing and gene regulation “Dumber” “Smarter”
Population size Large* Small
Selection pressure Strong Weak

*Interestingly, in symbiotic bacteria the opposite is true: small population sizes result in small 
genomes (Batut et al. 2014). The dichotomy of R versus K strategies is almost certainly an 
oversimplification (Krause et al. 2014), and the linkage with genome size is debatable and likely 
more complicated than presented here.
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2.4  Genomic Diversity in Microbial Communities

The form and extent of genomic diversity in a microbial community are 
important factors in considering strategies for analyzing and interpreting 
omics data from microbial communities, as well as potential pitfalls. 
Community genomic diversity occurs at several levels:

• diversity of microbial species (richness); different species will obvi-
ously have different genomic content

• microdiversity, i.e., clusters of closely related organisms containing 
less than 1% sequence divergence in the 16S rRNA gene (Acinas et al. 
2004) can still have substantial genomic variability

• on an even finer scale, within-population diversity. For example, 
organisms that share identical 16S rRNA genes may still have sub-
stantially different genotypes due to single-nucleotide polymor-
phisms and variable gene content and order.

This section reviews these forms of genomic diversity as they occur in 
microbial communities, building on the previous section, which considered 
the ecological and evolutionary causes and effects of this diversity.

The richness of a microbial community is a key parameter in determining 
the number of genomes present in a community (see section  4.2.2) and 
hence the sequencing effort required to cover those genomes. Microbial 
community richness varies widely, from relatively simple communities in 
extreme environments such as acid mine drainage (Tyson et al. 2004) and 
subsurface fracture fluids (Chivian et al. 2008) (just a few to less than 100 
species), to moderate-diversity communities such as seawater (hundreds to 
thousands of species), to high-diversity communities such as those found in 
soil and sediments (thousands of species) (Curtis et  al. 2002; Gans et  al. 
2005; Howe et al. 2014). Just as crucial as richness is evenness; even in the 
early days of next-generation sequencing, genomes could be assembled 
from communities with high richness as long as the community had some 
dominant members (Lesniewski et al. 2012).

The diversity within species (e.g., within an operational taxonomic unit 
(OTU) defined at 97% sequence identity of the 16S rRNA gene) also exerts 
tremendous influence on the outcomes of metagenomic assemblies. Such 
intra-OTU diversity has been shown to be prevalent in natural microbial 
communities (Acinas et al. 2004). It is readily visualized through fragment 
recruitment of metagenomic data to microbial genomes (Rodriguez-R & 
Konstantinidis 2014). Depending on the degree of divergence and the 
assembler and parameters used, sequences from closely related populations 
may co-assemble into the same contigs/scaffolds (see sections 5.2 and 5.3 
for definition and examples) or into separate contigs/scaffolds (Allen & 
Banfield 2005). Variation in gene order and content between populations, 
which is prevalent even between closely related genotypes (Koonin 2009), 
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will result in the premature termination of contigs/scaffolds in those cases 
where distinct populations co-assemble. Even in cases where populations 
generally assemble into separate contigs/scaffolds, highly conserved genes 
or repeat regions (e.g., transposons) may assemble together, potentially con-
founding the assembly process.

This type of intra-OTU genomic diversity may help to explain how dif-
ferent OTUs in the same community can produce very different assembly 
outcomes. For example, in microbial communities in hydrothermal plumes 
of the Guaymas Basin, SUP05, SAR324, and MGI Archaea genomes were 
effectively assembled whereas those of Methylococcacea were not, even 
though the latter were present at greater abundance at the OTU level 
(Lesniewski et al. 2012). The lack of clonality, or “genomic coherence,” has 
been observed to complicate assembly efforts in even low-diversity com-
munities that are dominated by just a few species (Teeling & Glockner 
2012).

Genomic diversity also occurs at fine phylogenetic scales, within popula-
tions. Allen et al. (2007) resolved genomic differences between two closely 
related genomes of Ferroplasma acidarmanus, one from an isolate and one 
an environmental population at the same site. Although these genotypes 
shared 99.8% nucleotide similarity of 16S rRNA genes, considerable differ-
ences in gene content and order were resolved. Much of this genomic varia-
tion was ascribed to rearrangements due to transposable elements and 
integration of prophage into the genomes. The major role of transposable 
elements in rearranging genomes has also been demonstrated for strains of 
the toxin-producing cyanobacterium Microcystis aeruginosa (Humbert et al. 
2013). Intriguingly, transcription of these transposons is regulated by 
nutrient availability, providing a window into how the evolutionary trajec-
tory of microbial genomes can be directly influenced by the environment, 
and potentially by anthropogenic activity (Steffen et  al. 2014). Genomic 
divergence between close relatives has been associated with ecological diver-
gence (Denef & Banfield 2012; Denef et al. 2010; Lo et al. 2007; Pena et al. 
2010). Phage also play a major role in population level heterogenetity 
(Avrani et al. 2011; Tyson & Banfield 2008).

Because of these multiple dimensions of genomic variation, there is 
incredible diversity of genes in natural microbial communities. At this stage 
of technological development, this diversity appears to be essentially limit-
less, and metagenomic sequencing has vastly expanded the known genetic 
and biochemical diversity of life on Earth (Yooseph et  al. 2007). Even in 
microbial communities for which there are dozens of representative cultures 
with genome sequences, a vast portion of the metagenomic reads does not 
map to the reference genomes (Oh et  al. 2014). Because of the typical 
architecture of microbial genomes, with large blocks of conserved/synten-
ous genes interrupted by regions of highly variable gene content (genomic 
islands – see section 2.1), the core and flexible portions of genomes can be 
expected to exhibit different outcomes of assembly in terms of coverage, 
contig length, and sequence polymorphism.
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2.5  Does Genomic Diversity Matter?

To summarize the discussion in the above sections, the evolution of microbial 
genomes can be viewed as a balance between neutral processes that create 
disorder and selective processes that can organize genomes (Koonin 2009). 
As a result, microbial genomes are of course far from random, but they are 
also far from having optimal architecture for biological functioning (Koonin 
2009). Although it is generally recognized that both neutral and selective 
processes shape microbial genomes, their relative importance is debated. This 
debate extends to the question of whether the extensive genomic diversity in 
microbial communities “matters.” In other words, are the many novel genes 
of unknown function that are commonly observed in microbial genomes, 
and especially metagenomic datasets, important ecologically? Or do they 
simply reflect neutral processes such as horizontal transfer of genes that are of 
little or no consequence to the organisms and communities that host them?

Several considerations suggest that much of the observed microbial 
genomic diversity is neutral. First is the extent of genomic diversity. Even 
strains that are nearly identical in sequence across the core genome can have 
hundreds of unique genes, and there are thousands of rare genotypes within 
strains (Thompson et al. 2005). Second, there are considerations relating to 
the relatively dilute nature of microbial genotypes within natural habitats 
that suggest that strong competitive interactions between genotypes are 
uncommon in time and space (Cordero & Polz 2014).

On the other hand, several lines of evidence indicate that the genomic 
diversity in microbes is tremendously important. In some cases, the content 
of the flexible genome correlates with phylogeny and encodes important 
interactions with the local environment that differentiate the ecology of 
closely related organisms (Kashtan et al. 2014). Indeed, the flexible genome 
is biased in terms of functions, often encoding proteins for the cell surface 
proteins, DNA binding, and pathogenesis (Nakamura et al. 2004). Further 
supporting their ecological importance, genes in the flexible genome are 
often highly expressed in the environment (Frias-Lopez et  al. 2008; Ram 
et al. 2005). However, it should be noted that the portion of flexible genes 
that are ecologically important may be small, as suggested by observations 
that the vast majority (>85%) of predicted proteins in genomes of acid mine 
drainage microorganisms were never identified in proteomics datasets 
across 27 samples (Denef et al. 2010).
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3
 Introduction

Now armed with a basic understanding of microbial genomics and an appre
ciation of the short but eventful history leading up to the current point in 
time, we are prepared to consider the potential for omics approaches to 
advance the Earth and environmental sciences. The applications are diverse. 
Omics approaches can help trace geochemical processes and intermediates 
that are difficult to detect with chemical approaches; reveal how biogeo
chemical cycles are coupled; provide new dimensions of data for building 
and evaluating biogeochemical and climate models; show how biomarkers 
are distributed across the tree of life; and serve as a valuable complement to 
the rock record in tracing the history of life and its co‐evolution with geo
chemistry. Portions of this text were drawn from early drafts of Dick and 
Lam (2015).

3.1  New Perspectives on Microbial Biogeochemistry

3.1.1 Redefining the Carbon and Nitrogen Cycles

Omics approaches provide entirely new ways of determining which organ
isms are responsible for specific biogeochemical processes and for revealing 
the biochemical mechanisms that underpin these processes. One of the first 
major advances using this approach was the discovery of previously 
unknown mechanisms of harnessing sunlight for energy and fixation of 
carbon. This included the recognition that light‐driven proton pumps (Béjà 
et al. 2000) and nonoxygen‐producing photosynthesis (Béjà et al. 2002) are 

Application of Omics Approaches 
to Earth and Environmental 
Sciences

Opportunities and Challenges



28  Application of Omics Approaches to Earth and Environmental Sciences

significant pathways of phototrophy in the world’s oceans (Karl 2002). Early 
environmental genomics studies also played a key role in deciphering the 
pathway for anaerobic methane oxidation (Hallam et al. 2004; Pernthaler 
et al. 2008). More recently, proteomics revealed patterns of nutrient stress 
in marine cyanobacteria, providing new insights into the factors that limit 
primary production and hence deepening our understanding of the carbon 
cycle (Saito et al. 2014). Omics approaches also played a key role in revealing 
unexpectedly high potential for dark carbon fixation based on lithotrophy 
in the deep ocean (Anantharaman et al. 2016a; Aristegui et al. 2009; Reed 
et al. 2015; Swan et al. 2011), the role of viral auxiliary metabolic genes in 
the carbon cycle (Thompson et al. 2011), and the existence of diverse micro
bial groups, including candidate phyla with no cultured representatives 
(Brown et  al. 2015) that appear to play key roles in the biogeochemical 
cycling of carbon and other elements (Solden et al. 2016; Wrighton et al. 
2014).

Omics approaches also revolutionized our understanding of the nitrogen 
cycle. Early on, the discovery of ammonia monooxygenase on a fragment 
of archaeal DNA led to the realization that dominant marine archaea 
(Venter et al. 2004) are involved in ammonia oxidation (Francis et al. 2005; 
Könneke et al. 2005). Omics approaches were also key to elucidating the 
evolutionary history and biochemical pathways of anaerobic ammonia 
oxidation (Strous et  al. 2006). This work enabled the development of 
genetic probes to track these processes in the environment, providing new 
data streams on the abundance and activity of different functional groups 
and new means of resolving major biogeochemical issues such as the path
ways responsible for nitrogen loss in the oceans (Kraft et al. 2014; Lam et al. 
2009; Ward et al. 2009). In an elegant demonstration of the complementary 
powers of omics and physiology, Ettwig et al. (2010) uncovered the intri
cate mechanisms of how methane oxidation is coupled to nitrite reduction 
via an O2 intermediate.

Where essentially complete microbial genomes can be reconstructed 
directly from environmental metagenomic data, the coupling of biogeo
chemical cycles can be revealed, as in the case of the sulfur and nitrogen 
cycles in oxygen minimum zones (Walsh et al. 2009). Just when the potential 
for major game‐changing advances in understanding the nitrogen cycle 
seemed to be dwindling, we encounter two more big surprises. In 2015, sev
eral different research groups independently used genome assembly to dis
cover that ammonia oxidation and nitrite oxidation, processes long thought 
to be split into two different organisms, can in fact be housed in the same 
organism (Daims et al. 2015, 2016; Pinto et al. 2015; van Kessel et al. 2015). 
Then, in 2016, single cell genomics and transcriptomics were used to show 
that certain lineages of SAR11, one of the most abundant groups of organ
isms in the oceans, are adapted to oxygen minimum zones, where they deni
trify nitrate to N2, thus participating in the main pathway for loss of oceanic 
N2 (Tsementzi et al. 2016).
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3.1.2 Omics as Sensitive and Efficient Tracers 
of Biogeochemical Processes

Omics approaches can also serve as a uniquely sensitive tracer of biogeo
chemistry. Whereas transient chemical intermediates may be difficult to 
detect by geochemical approaches, genes, transcripts, or proteins that are 
signatures of those chemical intermediates may be readily apparent. For 
example, Canfield et  al. (2010) uncovered a cryptic sulfur cycle in which 
oxidation of organic carbon fuels bacterial sulfate reduction, producing sul
fide. The cycle is cryptic in that the sulfide does not accumulate because it is 
immediately oxidized back to sulfate by sulfide‐oxidizing bacteria. In such 
cases where geochemical cycling proceeds rapidly and without the build‐up 
of products, metagenomic data can serve as a form of biogeochemical recon
naissance that generates hypotheses, which can then be tested with targeted 
methods as Canfield and colleagues did with isotopic labeling approaches.

More broadly than the value omics data affords for detecting cryptic 
processes, metagenomics can serve as a valuable tracer of biogeochemistry 
simply due to the sheer scale and geographic breadth of data in public data
bases, which are growing at an ever‐increasing rate. For example, Podar 
et al. (2015) recently leveraged 3500 publicly available microbial genomes to 
trace the global distribution of genes for mercury methylation in nature. 
Hence, as long as datasets are preserved in an accessible and usable form, 
omics data can serve as a complement or even a forerunner to geochemical 
measurements for understanding the biogeography of biogeochemical 
processes.

3.1.3 Omics Data is Valuable for Biogeochemical Models

As omics data from environments around the world accumulates at an 
accelerating pace, this information represents a valuable new resource for 
the development and evaluation of biogeochemical models. Although gaps 
in knowledge regarding the links between gene sequences and biochemical 
traits (e.g., enzymatic function, substrate specificity, kinetics) present a for
midable challenge (see section 3.3), initial efforts to incorporate omics data 
into biogeochemical models show promising results (Reed et  al. 2014). 
Incorporation of omics data into models is discussed in detail in Chapter 10.

3.1.4 Understanding Biotic Responses and Feedbacks 
to Global Change

Because microorganisms are a critical component in the response of the bio
sphere to global change, omics approaches can provide key insights into the 
biological feedbacks of global change on biogeochemical cycles and climate. 
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For example, microorganisms will likely influence the fate of carbon in per
mafrost, which holds roughly as much organic carbon as that in land plants 
and the atmosphere. Using a metagenomic approach, Mackelprang and col
leagues showed that microbial communities rapidly shift as permafrost 
thaws (Mackelprang et al. 2011). Methane is released during this thaw (both 
from previous accumulation and from new pro duction via methanogene
sis), but it is also rapidly consumed by methane‐oxidizing organisms. The 
omics data in this study suggest that microorganisms generate and con
sume methane, thus revealing pathways that influence the flux of greenhouse 
gases emitted from thawing permafrost. As is often the case, the omics data 
generated a hypothesis which could then be tested with follow‐up experi
mentation and/or quantitative models such as those described above.

Omics data can also be used to monitor microorganisms that conduct 
bioremediation and biodegradation, such as in revealing microorganisms 
involved in oil degradation following the Deepwater Horizon oil spill 
(Mason et  al. 2012; Rivers et  al. 2013). These opportunities have been 
perhaps demonstrated best in the sediment‐hosted perennially suboxic/
anoxic aquifer adjacent to the Colorado River, near Rifle, CO, USA, where 
omics approaches have been integrated with rich datasets from ex peri
ments and geochemistry. Numerous essentially complete genomes were 
recovered from complex communities in a uranium‐contaminated aqui
fer where in  situ acetate amendment was used to stimulate microbial 
reduction of soluble U(VI) to insoluble U(IV) (Wrighton et al. 2012). The 
metabolic status of these microbial communities was tracked with genomic 
and proteomic methods, yielding insights into the flux of energy and 
carbon and the rate‐limiting steps of the bioremediation process (Wilkins 
et al. 2009).

Importantly, the omics approaches were conducted in a community context 
so that the flow of carbon, sulfur, and metals through the ecosystem could be 
tracked both in the context of the different organisms catalyzing each step and 
in the context of interlinking biogeochemical cycles (Anantharaman et  al. 
2016b; Wrighton et al. 2014).

3.2  A Genomic Record of Biological and Geochemical 
Evolution

Genome sequences record valuable information on the history of life and its 
evolution in the context of evolving geochemistry (Raymond, 2005; Zerkle 
et al. 2005). They encode the microorganism’s potential to synthesize organic 
molecules, which may be preserved in the rock record as molecular fossils, 
or “biomarkers” (see Chapter 9). These molecules are often lipids, due to 
their exceptional preservation, and if they are specific to certain microbial 
groups or metabolisms then they can be used to infer the presence of those 
microbes and/or metabolisms in ancient ecosystems. Such biomarkers can 



Application of Omics Approaches to Earth and Environmental Sciences  31

also provide views into past environmental conditions (e.g., temperature, 
salinity, redox state).

How can we determine that certain biomarker molecules are only 
associated with certain organisms or metabolisms, and therefore represent a 
faithful signature of those organisms/metabolisms in the rock record? 
Traditionally, this has been done by screening microbial cultures for com
pounds of interest. However, because only a tiny fraction of microbial life 
has been brought into pure culture, lab cultures provide an incomplete pic
ture of which microbes produce which compounds. Another problem is that 
some compounds may be produced only under certain conditions, so the 
absence of a compound in a culture does not mean the organism is inca
pable of making it.

Genomic perspectives have already demonstrated their value through 
studies of biomarkers for oxygenic photosynthesis. 2‐Methylhopanes were 
long considered a biomarker of cyanobacteria, the organisms responsible 
for the oxygenation of Earth’s surface, and these molecules were key evi
dence of the appearance of oxygenic photosynthesis on the early Earth 
(Summons et al. 1999). However, the genes putatively involved in biosyn
thesis of 2‐methylhopanes were recently found to be present in the genomes 
of many noncyanobacteria that do not perform oxygenic photosynthesis 
(Welander et  al. 2010). These results suggested that 2‐methylhopanes 
should  not be used as direct biomarkers of oxygenic photosynthesis. 
Conversely, genome sequences can be used to predict biosynthetic pathways 
and determine which compounds are unique to certain taxonomic groups 
or metabolisms. Combined with additional approaches and applied to 
natural communities of microorganisms, this could provide a map of how 
biomarkers are distributed across the tree of life (Brocks & Banfield 2009; 
Pearson 2014).

A second form of information recorded within genomes that can help 
trace Earth’s geochemical evolution involves the function and metal content 
of predicted proteins. For example, gene families requiring the use of molec
ular oxygen (O2), and associated metabolic networks, are expected to have 
expanded upon the widespread oxygenation of Earth’s atmosphere (David & 
Alm, 2011; Raymond & Segre 2006). Similarly, the use of metals (e.g., Fe, Zn, 
Mn) as co‐factors in proteins that participate in redox reactions may reflect 
the environmental availability of those metals, which has changed through 
Earth history along with changing ocean chemistry (Dupont et  al. 2010; 
Glass 2015; Saito et al. 2003). Thus, analysis of modern genomes can help us 
to infer the order and patterns of evolutionary innovation as they relate to 
geochemistry. Further, models of the evolutionary history of proteins can 
shed light on the evolution of Earth’s redox status and geochemistry (David 
and Alm, 2011; Rothman et al. 2014; Zerkle et al. 2005).

Finally, sequence information can provide insights into the timing of the 
evolution of major microbial metabolisms and lineages. For example, molec
ular phylogenetic data has been used to constrain the timing and pathways 
of the evolution of methanogenesis, phototrophy, cell morphology, nitrogen 
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fixation, silica biomineralization, and colonization of land (Battistuzzi et al. 
2004; Blank & Sanchez‐Baracaldo 2010; Boyd & Peters 2013; Boyd et  al. 
2011; Schirrmeister et al. 2013; Trembath‐Reichert et al. 2015). There are, 
however, difficulties in using molecular clocks to translate sequence 
information into actual dates (Pulquerio & Nichols 2007).

3.3  Challenges and Limitations of Omics Approaches

A practical issue that presents very real barriers to many researchers is the 
computational challenge of dealing with enormous datasets. This includes 
the first‐order issues of having the necessary hardware to perform basic 
tasks of storage and processing. In contrast to the early days of DNA 
sequencing, the computational costs associated with storing and analyzing 
data now exceed those of producing the data! Next, there are limitations in 
software tools and expertise needed to accomplish tasks that geobiologists 
want to accomplish (see section 12.4).

There is also the challenge of data dissemination and access, which 
depends on issues of databases and their integration, standards for metadata 
and quality control, and data curation (Brown & Tiedje 2011; Gilbert et al. 
2014). Large centers and pipelines such as IMG (Markowitz et al. 2009) and 
MG‐RAST (Meyer et al. 2008) provide critical resources in terms of both 
analysis and databases, but have limitations in terms of turnaround times 
and breadth of analyses offered, and are typically not flexible to accommo
date special user needs. CAMERA (Seshadri et al. 2007) was another “top‐
down” resource that served some users from the marine microbiology 
community well but was not responsive enough to many user needs. These 
challenges will only multiply as the field moves towards more comparative 
and experimental studies that involve large numbers of samples and utilize 
multidimensional forms of data (e.g., genes, bins, transcripts, strains across 
space and time), omics approaches, and parallel geochemical and environ
mental data.

An exciting trend in the omics field is to enable dissemination and support 
of user‐developed applications through collaborative and open‐source plat
forms (see section  12.4). Here, the plant biology community provides a 
model with the iPlant Collaborative, which grew into CyVerse (www.
cyverse.org/) and was used as a foundation for iVirus (Bolduc et al. 2017). 
The US Department of Energy has also developed an open platform called 
kbase (https://kbase.us).

In addition to the practical issues discussed above, a major challenge 
inherent to omics data is lack of knowledge about the physiological or geo
chemical function of many genes and proteins. One of the most astounding 
insights to emerge from the omics age is that microbial life harbors incred
ible genetic diversity. This was recognized in early microbial genome 
sequencing efforts, where a large portion of apparent genes (predicted to be 
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genes on the basis of “open reading frames,” i.e., long stretches without a 
stop codon) were found to be novel and of unknown function (Roberts et al. 
2004). Metagenomic studies have further revealed extraordinary, seemingly 
infinite genetic and biochemical diversity in natural microbial communities 
(Temperton & Giovannoni 2012; Yooseph et  al. 2007). Genetic novelty is 
especially prevalent in the still numerous uncharted branches of the tree of 
life, so‐called “microbial dark matter” (Rinke et  al. 2013). An important 
question is: are such genes functionally important to their host organisms? 
For many genes, the answer is a resounding “yes.” Laboratory experiments 
on model organisms show that genes encoding protein domains of unknown 
function are often biologically essential (Goodacre et al. 2014).

The preponderance of unknown microbial genes underscores the urgent 
need to step up genetic and biochemical studies conducted on model organ
isms or enrichment cultures. These laboratory experiments are a key avenue 
to uncovering relationships between genes, geochemistry, physiology, and 
novel metabolic pathways; there is no substitute for such “traditional” 
approaches and a renewed commitment to these methods is required 
(Newman et  al. 2012). However, given the vast diversity of genes in the 
environment, higher‐throughput methods are also needed to formulate 
hypotheses of links between genes and geochemistry and to prioritize genes 
and organisms for targeted studies. To some extent, this can be accom
plished by developing high‐throughput methods of genetic screens in model 
organisms (Deutschbauer et al. 2011). A powerful yet challenging approach 
is “functional metagenomics” in which environmental DNA is cloned into 
model laboratory organisms, which express the encoded proteins, which 
can then be screened functionally (Handelsman 2004; Taupp et  al. 2011; 
Wrighton et  al. 2016). Though this approach has been around from the 
beginning of genomics and has demonstrated its value in some cases, there 
are many challenges associated with expressing genes from an unknown 
organism in a lab culture (“heterologous expression”). Likewise, high‐
throughput expression screening of metagenomic libraries (Uchiyama et al. 
2005) offers tantalizing potential but has not yet found widespread applica
tion. Renewed efforts to develop advanced technologies for functional 
annotation are much needed (Baric et al. 2016).

3.4 Omics as a Complement to Other Approaches

Given the inherent limitations of omics, how are these approaches best 
employed? First of all, it should be recognized that omics data represents a 
powerful resource for exploring microbial communities and generating 
hypotheses. This approach embraces the notion that “listening to what the 
microbes have to say” can provide incisive insights into key yet potentially 
unexpected processes such as cryptic sulfur cycling (Canfield et  al. 2010; 
Paez‐Espino et al. 2016). Omics tools are unparalleled in terms of hearing 



34  Application of Omics Approaches to Earth and Environmental Sciences

the language of microbes as it is whispered within natural microbial com
munities (i.e., detecting the presence and expression of metabolic pathways, 
nutrient status, cell–cell communications, etc.) (Moran 2009). The extraor
dinary value of the exploratory, hypothesis‐generating capabilities of omics 
data has been thoroughly demonstrated (Jansson 2013).

Whereas omics is often viewed as an alternative to cultivation, these two 
approaches can also be seen as partners. For example, omics data can pro
vide key information for cultivation strategies and direct biochemical 
studies to elucidate the enzymes that underpin geochemical reactions (Ram 
et al. 2005; Tyson et al. 2005). Indeed, omics approaches are most valuable 
when conducted in parallel with traditional geochemical and microbiolog
ical approaches in an integrated fashion (Oremland et  al. 2005). An out
standing example of how omics can be leveraged as one of a suite of methods 
to probe a geomicrobial system is provided by Wilbanks et al. (2014). Gene 
surveys, omics, and microscopy were used to generate hypotheses, which 
were then tested with voltammetry and stable isotope approaches. In another 
example, Pernthaler et  al. demonstrate the power of using cell capture to 
select certain microbial groups for omics analyses, yielding genomic predic
tions that methanotrophs are capable of fixing nitrogen. This hypothesis was 
then tested and confirmed by 15N2 labeling experiments that were tracked by 
fluorescent in situ microscopy coupled to secondary ion mass spectrometry 
(FISH‐SIMS) (Pernthaler et al. 2008). In cases where the process of interest 
involves cellular uptake of compounds, stable isotope probing is a powerful 
way to enrich functional guilds of interest prior to omics sequencing, thereby 
linking specific taxa and functions (Kalyuzhnaya et  al. 2008; von Bergen 
et al. 2013).
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4
 Introduction

Omics approaches can now be applied in a variety of ways to study microor-
ganisms in the environment. The materials that can be used as a starting 
point for extraction of nucleic acids include whole microbial communities 
sampled directly from the environment, enrichments or pure cultures, and 
populations or even single cells that have been separated from other mem-
bers of their communities by physical means (Fig. 4.1). Here our discussion 
focuses on genomics. In theory, each of these methods can also be applied to 
transcriptomics and proteomics, but in practice some of them (e.g., single-
cell genomics) are currently not applicable to transcriptomics and pro-
teomics due to limited material.

4.1  Choosing the Right Approach

4.1.1 Whole-Community Approaches

Because DNA sequencing technologies now offer massive throughput at low 
cost, whole microbial communities can be reasonably characterized by 
shotgun sequencing. DNA, RNA, and/or protein is extracted directly from 
whole environmental samples (e.g., cells collected from water by filtration; 
whole soil samples) and randomly fragmented and sequenced (see Fig. 4.1). 
This approach can be appealing for those who want a relatively unbiased 
view of the genetic and functional potential and expression of whole com-
munities. For example, such views can offer insights into how different pop-
ulations, functions, and trophic levels (i.e., grazers, autotrophs, heterotrophs, 

Overview of Approaches

From Whole-Community Shotgun 
Sequencing to Single-Cell Genomics
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Figure 4.1 Overview of approaches and procedures 
for omics approaches to the Earth and environmental 
sciences. Sampling is conducted from various aquatic 
and terrestrial environments. Omics studies can be 
performed on the whole microbial community 

(far right) or on specific portions of the community 
that are targeted, for example, by (1) single-cell 
approaches, (2) enrichment of populations by 
techniques such as flow cytometry, or (3) isolation of 
pure or mixed cultures.
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viruses) vary temporally, spatially, or as a function of environmental condi-
tions. A notable strength of this approach is the potential for discovery; the 
history of microbiology shows that many of the greatest advances have been 
serendipitous (Jansson & Prosser 2013); our knowledge of the microbial 
world is so poor that often we do not know the right questions to ask.

The challenge of whole-community shotgun omics is the size and com-
plexity of the datasets produced, especially for diverse microbial communities 
such as those found in soil. Key issues in considering the whole-community 
approach and how best to analyze the data are the availability of reference 
genomes and the feasibility of de novo assembly (see section  4.2.2 and 
Chapter 6). While de novo assembly was once possible only for simple com-
munities, recent advances enable its application to highly complex commu-
nities (Anantharaman et al. 2016; Sharon & Banfield 2013). In addition, the 
cost and time saved by the simple presequencing steps of shotgun sequencing 
relative to more complicated procedures for approaches such as single-cell 
genomics should be considered.

4.1.2 Targeted Approaches: Physical, Microbiological, 
and Isotopic Enrichment

When specific populations or functions are of interest, sequencing the 
whole community may not be necessary. Moreover, targeted capture of 
specific microbial groups followed by omics can be a powerful way to iden-
tify the microbes and/or genes, enzymes, and pathways that underpin 
processes of interest. This overall notion is as old as microbiology itself; 
microorganisms are isolated or enriched on the basis of metabolic or 
physiological characteristics. Enrichment and isolation of specific microbial 
species or consortia prior to omics analysis can greatly reduce the com-
plexity of the dataset and the required sequencing effort (Delmont et  al. 
2015) (see Fig. 4.1). In cases where pure cultures can be obtained, longer 
sequencing reads offered by technologies such as Illumina MiSeq offer a 
cost-effective way to obtain high-quality and even complete genomes (Coil 
et  al. 2015), whereas extremely long reads can resolve repeat regions in 
complex genomes that are otherwise difficult to assemble (Chin et al. 2013).

For microbial groups that cannot be isolated or sufficiently enriched, 
stable isotope probing can be used to enrich for macromolecules that incor-
porate elements through assimilatory pathways of interest. For example, to 
identify methanotrophic populations, 13C-labeled methane can be fed to a 
community (Kalyuzhnaya et  al. 2008). Extracted DNA or RNA that has 
incorporated the labeled carbon can then be fractionated on the basis of 
density such that the heavy nucleic acids containing 13C are physically sepa-
rated from the rest of the community members that did not take up the 
compound of interest, and the heavy fraction can be sequenced to identify 
the associated microbes and genes.
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Another method to target specific populations for omics approaches is 
physical selection (see Fig. 4.1). This is commonly done by oceanographers 
via flow cytometry, in which cells of a specific size class and/or natural fluo-
rescence (due to pigment content) are identified and sorted, resulting in a 
highly enriched population for omics analysis (Zehr et al. 2008). Alternatively, 
genetic probes can be used to “label” specific taxa via fluorescence-activated 
cell sorting (Martinez-Garcia et al. 2012; Pernthaler et al. 2008; Woyke et al. 
2009). Such approaches greatly reduce the complexity of the assemblage to 
be sequenced while still providing insights into population-level diversity 
afforded by community sequencing.

When a certain size class of cell is of interest, the community can be frac-
tionated by analyzing the appropriate size fraction after water is passed 
through a series of filtration steps (Satinsky et al. 2014; Venter et al. 2004). 
For example, in aquatic systems, one might focus on viruses (<0.2 µm), 
free-living bacteria (>0.2 µm, <3 µm), or particle attached bacteria (>3 µm). 
Elegant downstream methods for efficiently recovering the viral fraction 
have now been developed (Duhaime et al. 2012). In studies of symbionts 
where material from host cells is an issue, it may be necessary to physically 
separate symbiotic microbial cells from those of the host, e.g., via Percoll 
gradients (Caro et al. 2007). While size fractionation can be effective at sep-
arating major groups, reducing the complexity of datasets, and providing 
efficient access to the target of interest, such methods can complicate analyt-
ical efforts by increasing the number of datasets to be analyzed (where mul-
tiple fractions are studied).

4.1.3 Single-Cell Genomics

The finest-scale form of physical selection is single-cell genomics, in which 
individual microbial cells are isolated and the genome is sequenced. This 
can be accomplished either by microfluidics and laser tweezers or by fluo-
rescence activated cell sorting (Blainey and Quake, 2014; Gawad et al. 2016; 
Stepanauskas, 2012; Xu et al. 2016). Single-cell genomics provides unparal-
leled views of the genomic content at the level of individual cells (Gawad 
et  al. 2016; Hedlund et  al. 2014; Stepanauskas 2012; Woyke et  al. 2009). 
Single-cell genomics can effectively and definitively connect phylogeny and 
function (Rinke et al. 2013; Stepanauskas 2012; Swan et al. 2011), whereas 
whole-community shotgun methods may not yield sufficient assemblies to 
establish this link (though they often do). An important advantage of this 
approach is that the risk of chimeric assemblies is minimized (Stepanauskas 
2012), though chimeras are still possible due to repeats within genomes. 
Single-cell genomics can reveal physical associations such as those between 
viruses (Roux et al. 2014) and endosymbionts (Yoon et al. 2011) and their 
hosts. These relationships may not be apparent through whole-community 
sequencing. Another advantage of single-cell genomics is that it preserves 
information on how different gene variants are linked within a genome; this 
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information is often lost via metagenomics if strains cannot be resolved by 
advanced binning procedures (see section 6.5).

A persistent challenge of single-cell genomics is that the genome ampli-
fication necessary to generate enough material for sequencing leads to 
highly uneven coverage of the genome, which often prevents sequencing 
and assembly of complete genomes (Sharon & Banfield 2013). Genomes 
derived from single cells and cultures are valuable for interpretation of 
whole-community omics datasets, and the whole-community data can 
provide quantitative information, so these approaches are complementary 
(Hedlund et al. 2014).

4.2  Experimental Design and Sampling Considerations

Perhaps the most important phase of any microbial community omics 
study occurs before any samples are collected; careful consideration of the 
experimental design is critical. Several recent reviews have discussed var-
ious aspects of this issue in depth (Muller et al. 2013; Thomas et al. 2012, 
2015; Nayfach & Pollard 2016). Paramount are decisions of how many 
samples to sequence and how much sequencing effort to devote to each 
sample. Below, we touch on some of the major issues that inform this 
decision, including replication, sequencing effort, and costs. It is also 
necessary to consider the very real concerns of extraction bias and contam-
ination. The previous section on size fractionation and a later section on 
statistical analyses are also relevant here. Another important aspect of 
experimental design for environmental omics is the establishment of pro-
cedures for collecting and archiving metadata and samples in forms that 
are easily disseminated.

4.2.1 Replication

Too often, omics studies do not analyze a sufficient number of replicates in 
order to allow statistically rigorous analyses (Knight et al. 2012; Nayfach & 
Pollard 2016; Prosser 2010). While replicates may not be necessary for 
qualitative studies (e.g., reconstructing genomes to uncover the metabolic 
potential of a population), replication is required for most quantitative studies 
(e.g., comparing gene abundance or expression across samples). Indeed, it 
has been shown that variation due to technical variation may in some cases 
be comparable to the variation due to biological variation (McCarthy et al. 
2015; Tsementzi et  al. 2014). Hence, technical replicates are important to 
assess uncertainty due to technical variation (e.g., between different DNA 
extractions or sequencing runs, even when using the same technology). It is 
also important to have “biological replicates” (i.e., different samples or sub-
samples of the same experimental treatment or field condition) so that the 
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robustness of conclusions can be assessed. Fortunately, the dramatic decline 
in sequencing costs makes replication feasible.

4.2.2 Estimating Sequencing Effort: How Much Sequencing 
Do I Need to Do?

How much sequencing effort is required? The answer to this question 
depends on several factors.

First, what is the goal of the sequencing effort? To recover complete 
genomes from dominant community members? To recover complete geno-
mes from a particular functional group of organisms that may not be abun-
dant? To profile the major functions of the community? Sequencing effort 
must be tuned to the objectives at hand. Second, what is the biological diver-
sity of the sample? More diverse samples demand greater sequencing effort 
to cover all those different genotypes. Instead of trying to estimate the total 
number of genotypes, a crude yet reasonable approach is to base the calcu-
lation on the organism of interest that is least abundant (so that all other 
target organisms will be “sampled” at least as well as the least abundant one). 
The key here is to estimate the fraction of total community DNA repre-
sented by the least abundant organism; this can be difficult but a crude 
starting point is to assume that it is equal to the relative abundance in 16S 
datasets (in reality, this fraction will be further influenced by 16S gene copy 
number and genome size relative to genome sizes of other community mem-
bers). Hence, a simple calculation to estimate sequencing effort is:

 

([ [ ])
(

genome size] desired coverage
relative abundance of l

*
eeast abundant target organism as fraction

of community DNA))  

Let’s consider a simple example. We have a community in which we have 
identified 100 operational taxonomic units (OTUs) that each represent at 
least 0.1% of the total community (the threshold of abundance that we are 
interested in here). Let’s assume that we want to achieve 100× genomic cov-
erage of all OTUs present at this abundance level, that each of these OTUs 
contains just one genotype (probably not valid, see below), and that the 
average genome size of community members is relatively consistent at about 
5 Mb. In order to achieve 100 × coverage of those OTUs that represent 0.1% 
community abundance, we need to sequence 5 Mb * 100 (target coverage) * 
1000 (0.1% = 0.001/1 = 1000) = 500 Gbp.

In reality, it is much more complicated to accurately determine the 
amount of sequencing required to achieve desired outcomes. What really 
matters for genome assembly is the genomic diversity of populations and 
communities, especially the frequency of repeat sequences, and variation 
of gene order and orientation between genotypes. Because such genomic 
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diversity can occur at very fine levels of divergence, 16S rRNA data often 
provides only limited constraints. For example, in one of our studies some 
OTUs as defined at the 97% 16S rRNA gene identify level assembled neatly 
into one or several genomes, whereas the assemblies of other OTUs (that 
were even more abundant at the 16S level!) were fragmented into short 
contigs (Lesniewski et al. 2012). Such fragmentation can be due to either 
intragenome complexity or intra-OTU genomic diversity.

There have been advances beyond such intuitive yet crude “back of the 
envelope” calculations. Wendl et al. (2013) developed formalized methods 
by extending the Lander–Waterman theory (Lander & Waterman 1988) to 
statistically model metagenomic coverage as a function of sequencing effort, 
but these methods have not yet been widely applied to real metagenomic 
sequencing projects. Where genome assembly is not the goal, metrics and 
methods have been developed to estimate the coverage of a metagenomic 
dataset and the amount of sequencing needed to cover the total diversity in 
a sample (Rodriguez & Konstantinidis 2014). Note that “coverage” here 
refers to the fraction of diversity sampled rather than contig read-depth (the 
latter is the main way it is used in this book). This has been suggested as a 
useful metric to report for metagenomic studies (Rodriguez & Konstantinidis 
2014).

Three additional practical issues should be kept in mind when deter-
mining how much sequencing to conduct. First, beyond a certain threshold 
increased sequencing depth can actually inhibit genomic assembly due to 
effects of sequencing errors (Lonardi et al. 2015). Second, more broadly, we 
should recognize that bioinformatics analysis is now more expensive than 
sequencing; because this new paradigm has been slow to sink in, projects 
often do not have sufficient bioinformatics resources relative to sequence 
data (Sboner et al. 2011). Finally, given the still substantial costs of omics 
analyses (including bioinformatics) and the frequent need to analyze 
numerous samples for comparison and/or replication, consider a tiered 
approach in which cheaper/higher-throughput methods are used first to 
screen a large number of samples, then that data is used to pick key samples 
for further omics analyses (Tickle et al. 2013).

4.2.3 From Sample to Data: Biases Due to Preservation, 
Storage, Extraction, and Sequencing

Although culture-independent molecular approaches to microbial ecology 
avoid the well-known biases of cultivation, they are subject to a variety of 
other biases associated with how samples are preserved, stored, extracted, 
and sequenced (Forney et al. 2004; McCarthy et al. 2015; Nayfach & Pollard 
2016; Temperton & Giovannoni 2012; Tsementzi et al. 2014).

A particularly important source of potential bias is the method used for 
extraction of nucleic acids. Different extraction methods vary in their effec-
tiveness of cell lysis and DNA recovery. This effectiveness can even vary 
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between different microbial groups, presumably due to differences in the 
properties of cell walls and membranes. While these technical effects are 
typically small relative to the large biological differences often observed bet-
ween samples or treatments, they may be substantial where subtle differ-
ences or specific microbial groups are of interest (McCarthy et  al. 2015). 
The optimal method depends on the nature of the sample, the question 
being asked, and the downstream applications. If difficult-to-lyse cells are 
the target, or are abundant in the community, a physical method such as 
bead beating may be required. However, our lab has found that although 
DNA obtained with a bead-beating method is fine for Illumina sequencing, 
it does not work for PacBio sequencing, presumably due to damage to the 
DNA (e.g., nicks and shearing). In addition, special extraction or separation 
methods may be needed to avoid inhibitors or enzymes in certain sample 
types such as soil (Delmont et  al. 2011). When multiple omics methods 
(e.g., genomics, transcriptomics, proteomics) are being conducted and 
compared (e.g., gene expression as a ratio of RNA:DNA copies), it is impor-
tant that the same extraction procedures are used where possible (McCarthy 
et al. 2015; Muller et al. 2013). This can be achieved by using a single-stream 
extraction like the Qiagen AllPrep kit, or by customizing other extraction 
methods to use a general lysis procedure prior to DNA and RNA isolation 
procedures.

Environmental and geobiological studies often involve analysis of sam-
ples with low biomass, and these samples may be in limited supply due to 
accessibility issues (e.g., the deep sea or terrestrial subsurface). Such low-
biomass samples present several challenges. First, many DNA sequencing 
technologies require substantial inputs of material for construction of 
sequencing libraries (hundreds of nanograms to micrograms). Until recently, 
lower DNA concentrations would have to be increased with whole-genome 
amplification methods such as multiple displacement amplification, which 
have substantial biases due to uneven amplification (Abbai et  al. 2012; 
Pinard et  al. 2006). Newer methods of sequencing library construction 
amplify and multiplex DNA via polymerase chain reaction, which also 
introduces biases (Aird et al. 2011; Kozarewa et al. 2009; van Nieuwerburgh 
et  al. 2011). Commercial kits for preparation of metatranscriptomic 
sequencing libraries such as ScriptSeq v2 (Illumina) need as little as 500  pg 
of starting material. However, there are apparent biases across the different 
methods for library preparation; as of 2015, the currently available methods 
had not been rigorously evaluated and compared, but it is clear that meta-
transcriptomes prepared using different methods may not be comparable 
(Alberti et  al. 2014). Additional issues specific to metatranscriptomics, 
such  as sample preservation and rRNA removal, are discussed further in 
Chapter 9.

Another challenge that is exacerbated in low-biomass samples is contam-
ination. Recent studies show that contamination is a pervasive problem in 
DNA sequence datasets from microbial communities (Breier et  al. 2014; 
Salter et al. 2014; Tanner et al. 1998). This contamination can come from 
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many sources, including DNA extraction kits, laboratory reagents, instru-
ments and containers used for sampling, and even the researcher (Salter 
et  al. 2014; Weiss et  al. 2014). Not surprisingly, low-biomass samples are 
more susceptible to contamination due to a reduced signal to noise ratio; 
when there is less real sample (“signal”), the fraction of the total sample con-
tributed by contaminants (“noise”) is greater. These studies highlight the 
important of negative controls, replicates, and benchmarking and validation 
of protocols.

4.2.4 Estimating Absolute Abundance with Internal Standards

A key issue with omics data is that it typically comes in the form of relative 
abundance. Interpreting comparisons of relative abundance data across sam-
ples is complicated by the fact that the results of any entity (gene or organism) 
are affected by abundance of other entities in that sample. For example, con-
sider a study comparing a “normal” state (sample A) to a “bloom” state in 
which certain organisms have rapidly proliferated (sample B). An organism 
whose actual abundance remains the same between both states would have a 
lower relative abundance in sample B due to the increased abundance of 
other community members. Hence, it is often desirable to produce data in 
terms of absolute abundance. Efficient methods for calculating absolute 
abundance from shotgun omics data have been developed (Moran et  al. 
2013; Satinsky et al. 2013) but are not yet as widely applied as they should be.

4.3  Overview of Current DNA Sequencing 
Technologies

DNA sequencing technologies have enabled the omics revolution and 
continue to shape the way in which omics projects are approached today. 
A  number of options for DNA sequencing are currently available, each 
offering advantages and disadvantages with regard to cost, throughput, 
sequence read length, quality, and biases (Table 4.1). For a historical per-
spective, here we also include technologies that are no longer widely used. 
Several recent reviews provide more in-depth discussion of these technol-
ogies (Escobar-Zepeda et  al. 2015; Koren & Phillippy 2015; Loman & 
Watson 2015; Loman et al. 2012; Nagarajan & Pop 2013; Thomas et al. 2012; 
Weinstock 2012).

Sanger sequencing was the workhorse of early microbial genomics and 
it still provides high-quality, relatively long sequence reads that remain 
useful for some purposes. However, due to its much higher relative cost, 
it  is no longer used for high-throughput applications involving whole 
genomes. 454 Pyrosequencing was one of the first so-called “next- 
generation” technologies, and it had a substantial impact on microbial 
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omics in the mid 2000s. Two systematic issues of 454 were homopolymers 
(Huse et al. 2007), which cause errors in gene calling due to frameshifts, 
and artificial replicates, which cause overestimates of gene and taxon 
abundance (Gomez-Alvarez et al. 2009). 454 was superseded by the much 
cheaper and higher throughput capabilities of Illumina technologies. The 
Illumina HiSeq (2000/2500/3000/4000) provides unparalleled throughput 
and low cost, while the MiSeq provides longer read lengths in a platform 
that is more manageable and affordable for smaller labs. Like 454, all 
Illumina technologies also typically require PCR amplification with 
universal primers and subsequent cluster amplification, which introduces 
potential biases, especially at extremes of nucleotide composition (Aird 
et al. 2011; Kozarewa et al. 2009; Minoche et al. 2011; Schirmer et al. 2015). 
Although some of these issues have been mitigated by optimized proto-
cols, they still exist.

PacBio sequencing offers exceptionally long read lengths (10–40 kb), 
and methods for dealing with its high error rates (~15%) have now been 
developed (Berlin et al. 2015; Koren et al. 2012; Liao et al. 2015). Although 
PacBio is not competitive with Illumina in terms of cost, it is incredibly 
valuable for assembling large microbial genomes with high complexity. 
Although not yet feasible for standalone omics analysis of complex micro-
bial communities, PacBio is valuable for less complex communities or 
when employed in tandem with higher throughput, higher quality tech-
nologies such as Illumina (Frank et al. 2016). The homolog blog provides 
a nice overview of PacBio sequencing (www.homolog.us/Tutorials/index.
php?p=1.1&s=5).

Another approach, taken by Illumina TruSeq synthetic long-read 
sequencing, is to use a modified library preparation in which regular short 

Table 4.1 DNA sequencing technologies.*

Technology Error rate (%) Read length (bp) Reads per run Cost per Gb ($USD)

Sanger <0.1 800 96 2 000 000
454 1 400–1000 1 000 000 10 000
Illumina HiSeq (per lane) 0.1 100–150 300 000 000 30
Illumina MiSeq 0.1 150–300 40 000 000 150
Illumina TruSeq Synthetic 
Long-Reads

0.1 8000–10 000 Variable Variable

Oxford Nanopore 3–5 5000–15 000+ (up to 
100s kb)

Variable Variable

PacBio 13† 1000–40 000 50 000 500
IonTorrent 1 400 4 000 000 500

*Data provided are approximate and are changing with rapidly advancing technologies.
†For a single read, not consensus; see text.
Data taken from Nagajaran and Pop (2013), Escobar-Zepeda et al. (2015) and Genohub (2017).
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reads are reassembled into synthetic long reads (Kuleshov et al. 2014). Its 
application to metagenomics has proven useful for resolving intraspecies 
diversity (Kuleshov et al. 2016; Sharon et al. 2015). In some cases, the best 
approach may in fact be to combine two different technologies with comple-
mentary strengths, that is, a hybrid of Illumina and PacBio. An additional 
consideration is that short-read technologies offer a variety of insert sizes 
for paired end sequencing, which can assist in metagenomic assembly. 
Insert sizes are sufficiently short that the reads overlap, allowing paired 
reads to be merged, yielding longer effective read lengths (Liu et al. 2012; 
Seemann 2012). Additional technologies such as Ion Torrent have been 
developed (Loman & Watson 2015) but have yet to be demonstrated as com-
petitive for the purpose of metagenomics.

4.4  Quality Control and Sequence Processing

Ensuring the quality of DNA sequence is critical for maintaining the integ-
rity of many downstream analyses. Next-generation sequencing platforms, 
while producing massive data in a cost-effective manner, have a number of 
known biases and limitations that must be taken into account. The steps of 
sequence quality control, detailed in sections below, typically include (i) 
using the information held within a FASTQ file, (ii) dereplicating the data to 
save computational cost and/or remove artifacts, (iii) trimming bad 
sequence from reads and completely removing reads below some threshold 
prior to downstream approaches such as assembly (Fig. 4.2). FASTQ files are 
the most commonly used format for describing sequence quality. The format 
and an example of FASTQ files are shown in Figure 4.3.

4.4.1 Dereplication

A common practice in the processing of shotgun sequencing datasets is to 
dereplicate the data, i.e., remove reads that share identical sequence and 
start and stop positions. The rationale is two-fold:

• avoiding computational costs of downstream analyses by removing 
reads that provide no new information

• the assumption that duplicated reads are artifacts of the sequencing 
library construction process (Gomez-Alvarez et al. 2009).

FastQ Dereplication Trimming Assembly

Figure 4.2 Pipeline for quality control of next-generation sequence data.
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The latter stems from the notion that when DNA or cDNA is randomly 
fragmented, the likelihood of fragmentation at exactly the same genomic 
positions should be exceedingly low. Such duplicate reads can represent a 
significant portion of Illumina datasets (Aird et al. 2011) and may be pro-
duced as artifacts during the library construction process (Kozarewa et al. 
2009). However, at high-sequencing depth, duplicated reads are possible 
due to coincidence rather than artifact, and dereplication of the data may 
overcorrect amplification bias, leading to artifacts in itself (Zhou et al. 2014). 
The possibility that duplicate reads are real is higher for short transcripts 
with defined start and stop sites. Although models for correcting for such 
artifacts while considering the possibility that some duplicates could be real 
have been developed (Zhou et al. 2014), they are not yet widely applied to 
microbial community omics data.

4.4.2 Trimming

Trimming is used to remove positions of DNA sequence that are of ques-
tionable quality. Such low-quality sequence can interfere with numerous 
downstream tasks such as assembly, mapping reads to reference genomes, or 
querying databases. For Illumina sequencing, a quality score of 20 or above 
is considered acceptable. As an example, a simple trimming algorithm might 
look something like this.

Take window of N bases
Average quality score, A, for this window
Check if A < Desired minimum quality

if yes → chop sequence here
Go to next sequence

if no → Step by S bases
Repeat

(a)

(b)

Figure 4.3 (a) The FASTQ 
format; (b) screenshot of a 
FASTQ file.
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Sickle is an effective and commonly used method for trimming and it is 
freely available (https://github.com/najoshi/sickle). Methods of error 
correction and merging overlapping reads also reduce error rates (Schirmer 
et al. 2015).
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5
 Introduction

Traditionally, genome sequences were obtained from pure cultures of a 
single microbial species. More recently, methods for retrieving genome 
sequences from single cells and microbial communities have emerged. In 
all cases, DNA must be extracted and randomly fragmented into small 
pieces that are suitable for current DNA sequencing instruments prior to 
sequencing. Current DNA sequencing technologies (see section  4.3) 
produce sequence reads that are much shorter than microbial genomes 
(Fig. 5.1). Thus, in order to sequence a full genome, the short DNA 
sequences obtained from a DNA sequencing instrument must be joined 
together on the basis of overlapping sequences to form longer contig-
uous sequences called contigs (see Fig. 5.1). In turn, these contigs can be 
joined together into scaffolds using information about how pairs of DNA 
sequences are physically linked together on the same DNA fragment. 
Such genome assembly is not a trivial task, even for genomes of clonal 
cultures of a single species (heretofore referred to as isolate genomes) 
(Baker 2012).

This chapter provides a brief summary of the challenges of genome 
assembly and the solutions that have been produced so far. For more 
detailed information on genome assembly, the reader is referred to recent 
reviews on the topic (Compeau et  al. 2011; Nagarajan & Pop 2013). 
Challenges and methods for metagenomic assembly are discussed later 
(see Chapter 6).

Genomics of Single Species 
and Single Cells
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5.1  Algorithms for Genome Assembly

There are three main algorithms for de novo assembly: overlap-layout-con-
sensus (OLC), de Bruijn graph, and string graph. OLC is an algorithm that 
was used by many early assemblers (Nagarajan & Pop 2013). It makes pair-
wise alignments between all reads, then merges reads into longer sequences 
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Figure 5.1 Schematic overview of genome 
sequencing. (Top) A genome is randomly fragmented 
and sequenced, often with sequenced reads that are 
paired-ends or mate-paired; these reads are physically 
linked, and this information is useful for subsequent 
assembly. Solid arrows represent sequence reads; 
dotted lines represent unsequenced regions from 

DNA fragments. (Bottom) Schematic representation of 
assembled contigs and scaffolds, showing overlapping 
sequences from contigs and paired-ends (large bold 
arrows) which are used to link contigs into scaffolds. 
Coverage, which is indicated above, is used to quantify 
the number of reads at each position within a contig or 
scaffold.
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based on overlaps. Pairwise alignment is computationally expensive, and the 
number of alignments scales as a square of the number of reads. Perhaps 
more importantly, therefore, this approach is generally not suited to the 
massive datasets of short reads that are now widely used (i.e., Illumina). The 
string graph approach, based on OLC, is more memory efficient but suffers 
from some of the same limitations as OLC. Recent reviews that provide 
more detail than the overview below are available (Baker 2012; Miller et al. 
2010; Nagarajan & Pop 2013).

The de Bruijn graph method circumvents the need for pairwise align-
ments by breaking reads into shorter fragments called k-mers. From these 
k-mers, a de Bruijn graph is constructed, taking advantage of the fact that 
determining exact matches (linking k-mers) is much more computationally 
efficient than evaluating similarity (pairwise alignment). The de Bruijn 
graph is then used to reconstruct the genome using the computationally 
efficient Euler algorithm. An advantage of this approach is that graphs can 
be efficiently represented and explored (Compeau et  al. 2011; Conway & 
Bromage 2011; Pell et al. 2012). De Bruijn graph approaches are currently 
the most popular and effective for large, short-read datasets, but they often 
require substantial computational resources in the form of random access 
memory (RAM). For an excellent tutorial on de Bruign graph approaches, 
see the homolog blog (www.homolog.us/Tutorials/index.php?p=6.2&s=1). 
For more details about de Bruijn graph approaches and their mathematical 
foundations, the reader is referred to Compeau et al. (2011) and references 
therein.

The advent of long-read technologies has challenged the field to develop 
new assembly approaches that take advantage of the ability of long reads to 
span repeats and other difficult-to-assemble regions while dealing with 
their higher error rates (see below). Original strategies were based on OCL, 
but a recent study showed the effectiveness and potential of adapting the de 
Bruijn graph approach for long error-prone reads (Lin et  al. 2016). In 
addition to true de novo assembly, genome sequences from closely related 
organisms can also be used as templates to assist in assembly of new genomes 
(Gnerre et al. 2009).

5.2  Challenges of Genome Assembly

One of the major challenges of assembling microbial genomes is that they 
often contain sequences that are repeated at multiple locations of the 
genome. If DNA sequence reads produced by the DNA sequencer are too 
short to span such repeated regions and the unique sequences that flank 
them, a genome assembler cannot distinguish which location the repeat 
came from (Fig. 5.2). The result is that the repeats pile up, assembling 
together into one contig, which then has multiple conflicting paths into 
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adjacent genomic sequences. This can cause either termination of the contig 
or chimeric sequences, and it is particularly problematic for assembly of 
metagenomic data, where computational demand also becomes an issue 
(see Chapter 6).
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Figure 5.2 Challenges of genome assembly due to 
repeated sequence regions. (a) Schematic of a genome 
showing an identical repeat sequence region that is 
present in the genome in four copies (red). Unique 
sequence regions used further below are shown in other 
colors. For simplicity, the gray portion of the genome is 
not depicted in subsequent panels. (b) The genome is 
randomly fragmented for library preparation and 
sequencing. (c) Schematic of short reads (e.g., from 
Illumina), shown as dotted arrows in relation to genome 
fragments from (b). Key reads depicted below in (e) are 
shown in black and numbered. (d) Schematic of long 

reads (e.g., from PacBio), shown as dotted arrows in 
relation to genome fragments from (b). (e) Repeats 
sequenced with short read technology can result in 
disagreement between sequence reads that came from 
the repeat region at different genomic loci, leading to 
fragmentation of contigs. (f) Repeats sequenced with 
short-read technology can also result in chimeric 
assemblies in which genomic loci are erroneously 
brought together (yellow and brown in this case). 
(g) Long reads can resolve such repeat regions and thus 
are invaluable for producing accurate assemblies. Note 
that the various elements are not to scale.
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5.3  Scaffolding

No matter how efficient or effective the assembly algorithm, in many cir-
cumstances the sequence data simply does not provide enough information 
to resolve repeats, close gaps, and reconstruct complete genomes. A key tool 
for resolving repeats and the order of contigs relative to each other is scaf-
folding, in which mate-pair or paired-end information is used to determine 
longer-range orientation of reads (see Fig. 5.1). Mate-pair and paired ends 
are similar in that both are sequence data from a pair of reads sequenced 
from the same DNA fragment. Whereas paired-ends are on the ends of a 
linear DNA fragment, mate-pairs are on a circularized fragment. These 
paired-ends and mate-pairs point towards each other and the distance bet-
ween the reads is approximately known based on the genomic DNA 
fragmentation and size selection, providing valuable information that can 
be used during the assembly process, including the joining of contigs to 
form scaffolds.

Utilization of multiple DNA libraries with different insert sizes is a par-
ticularly effective method for assembling isolate genomes (Ribeiro et  al. 
2012). There are a number of tools for scaffolding (Hunt et al. 2014), and 
manual scaffolding is also typically possible for microbial genomes. Paired-
end and mate-pair information, together with coverage, are also key for 
detecting assembly errors during the evaluation of assemblies (Fig. 5.3) 
(see section 5.5).

5.4  Programs and Pipelines for Genome Assembly

Numerous software packages are now available for assembly of microbial 
genome sequences (Table 5.1). Choosing an appropriate assembler depends 
on a number of factors, including which technology was used to produce the 
DNA sequence, the size and complexity of the dataset, and the performance 
of the assembler. Also important are practical considerations such as com-
putational requirements (memory needs and software dependencies) and 
their scalability. Some assembly methods have been optimized for data 
derived from mixed communities and are discussed in the section on assem-
bly of metagenomic data (see section 6.3).

For microbial genome sequences derived from pure cultures, Illumina 
sequencing is an effective and cost-efficient method of producing essentially 
complete draft genomes. Particularly effective are longer paired-end reads 
that can be merged to generate effective read lengths of greater than 400 bp. 
Recent open-source pipelines for assembling MiSeq data automate the 
entire process, including adapter trimming, quality filtering, error 
correction, generation of contigs and scaffolds, and detection of misassem-
blies (Coil et al. 2015; Tritt et al. 2012).
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Figure 5.3 Identification of genome assembly 
problems using intrinsic features. (a) Schematic of a 
contig showing coverage and underlying paired-end 
reads as in Figure 5.1. a. A minimum in coverage can 
indicate a weak join. b. A peak in coverage well above 
the genome average may reflect erroneous assembly of 
a repeat region. c. Paired-end reads (black) that are 

improperly oriented indicate misassembly. d. Paired-
end reads that are too far apart relative to the expected 
insert size. (b) Screenshot of read mapping (top) and 
average coverage (bottom). e. A weak join and likely 
chimera indicated by a coverage minimum and 
mismatched sequences between overlapping 
sequence reads.
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While longer reads generated by Illumina MiSeq yield better assemblies 
than shorter reads, and can be used to finish smaller and simpler genomes, 
read lengths of the order of 500 bp are insufficient for resolving longer repeat 
sequence regions that are present in some larger and higher complexity 
genomes (Humbert et al. 2013). For such challenging genomes, the much 
longer reads provided by PacBio sequencing are key for obtaining complete 
genome sequences (Koren & Phillippy 2015). However, the lower accuracy 
of these long read technologies (see Table 4.1) is a challenge for genome 
assembly.

Several approaches have been used to circumvent the errors in long reads. 
First, combining error-prone long reads (e.g., PacBio) with high-accuracy 
short reads (e.g., Illumina) has proven to be effective (Koren et  al. 2012; 
Utturkar et al. 2014). Although such a hybrid approach that takes advantage 
of the much cheaper Illumina sequencing may be more cost- efficient based 
on the sequencing itself, it requires at least two library preparations. A sec-
ond approach uses only low-quality long reads by first assembling the long 
reads into highly accurate “preassembled reads” and then using those preas-
sembled reads for the genome assembly (Chin et al. 2013). Third, new algo-
rithms employ probabilistic approaches for the assembly of long reads 

Table 5.1 Methods for de novo genome assembly. Note that assemblers optimized for metagenomes are shown 
in Table 6.1.

Assembler Method Technology Notes

References

Original Examples

Phrap OLC Sanger Visualization provided by 
consed and phrapview

Green (1999) Tyson et al. 
(2004)

Velvet de Bruijn Illumina, SOLiD, 454, 
Sanger

Zerbino and Birney 
(2008)

Anantharaman 
et al. (2016)

IDBA de Bruijn Illumina Peng et al. (2010) Smalley et al. 
(2015)

Mira Greedy/OLC mix Sanger, 454, Illumina, 
IonTorrent, PacBio

Flexible, high accuracy, well 
supported; hybrid capability

Chevreux et al. 
(1999)

Lesniewski et al. 
(2012)

ABySS de Bruijn Illumina Simpson et al. 
(2009)

Wrighton et al. 
(2012)

A5 n/a Illumina MiSeq An integrated pipeline Tritt et al. (2012); 
Coil et al. (2015)

Mansor et al. 
(2015)

Spades de Bruijn Illumina Designed for single cell data; 
also works for multi-cell

Bankevich et al. 
(2012)

Lloyd et al. 
(2013)

ALLPATHS de Bruijn Illumina Hybrid capability Butler et al. (2008) Farrer et al. 
(2009)

ABruijn Combination of 
de Bruijn, OLC

Long reads (e.g., 
PacBio, Nanopore)

Designed for error-prone 
reads

Lin et al. (2016) n/a

Source: Adapted from Nagarajan and Pop (2013).
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(Berlin et al. 2015). The costs of PacBio are now low enough (a complete 
genome, including library preparation and sequencing, can now be pro-
duced for <$500) that in many cases the streamlined approach provided by 
stand-alone PacBio sequencing is attractive.

5.5  Evaluation of Genome Assemblies

As illustrated by the above discussion, genome assemblies are prone to 
errors. It should be recognized that many assembled genomes in publicly 
available databases likely have errors; this is true even for genomes from 
pure cultures (Baker 2012). Assemblies of communities of organisms involve 
additional challenges, such as the risk of assembling sequences from similar 
yet distinct organisms (see Chapter 6). Plummeting sequencing costs have 
democratized genome sequencing to the point where small individual labs 
now sequence microbial genomes on a scale that was conducted only by 
large sequencing centers just a short time ago. Further, the increased 
throughput and decreased cost have come at the expense of read length 
(although the advent of high-accuracy PacBio data reverses that trend), 
which is a key determinant of genome assembly quality. Thus, more than 
ever, genome assemblies must be critically evaluated and interpreted with 
caution.

How can the accuracy of different assemblers be evaluated? How can 
errors in assemblies be detected? There are a variety of approaches.

First and most powerful, inherent characteristics of assemblies can be 
directly evaluated. For example, theoretically, genomic coverage should be 
relatively even around a genome, although some variability is to be expected 
based on stochastic effects and biases in library preparation and nucleotide 
composition. Therefore, stark discontinuities in coverage represent red flags 
that may indicate problems such as excess coverage due to repeats or insuf-
ficient coverage representing a weak join of reads in the contig (see Fig. 5.3). 
Misorientation of mate-pairs and paired-ends can also indicate a potential 
problem (see Fig. 5.3). Whereas assemblers such as Phrap and Mira have 
built-in capabilities for visualization, some assembly methods, especially 
those using de Bruijn graph approaches, do not directly keep track of reads 
with respect to contigs. Thus, reads must be mapped back to the contigs 
with methods like BWA (Li & Durbin 2009), then visualized with separate 
applications such as the Integrative Genomics Viewer (IGV) (Robinson 
et al. 2011) or Geneious (Kearse et al. 2012). IGV provides a guide to inter-
preting read pair orientations (BroadInstitute).

Second, there are tools to assess basic statistics of assemblies, such as the 
QUAST tool, which produces reports and summary tables of assembly 
results (Gurevich et al. 2013). Assembly metrics that do not require a refer-
ence genome are constrained to number and size of contigs, including the 
number of contigs, length of largest contig, total bases assembled, and NX, 
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which is the length of the longest contig (L) such that all contigs of length ≥L 
account for at least X% of the bases of the assembly. This is commonly 
reported as an N50. These metrics can be useful for quickly assessing the 
extent to which sequences are assembled into contigs, but they say nothing 
about the quality of the assembly in terms of misassemblies (there are more 
options for evaluating this where references genomes are present) (Gurevich 
et al. 2013).

Third, assemblies and assemblers can be evaluated by benchmarking 
them with datasets for which the answer is known. This can be done by 
using artificial datasets as in the genome assembly gold standard evaluations 
(GAGE) (Salzberg et al. 2012), assembleathon competitions (Bradnam et al. 
2013), and de novo genome assembly project (dnGASP; http://cnag.bsc.es/). 
A concern with this approach is that artificial datasets may not accurately 
represent the data structure and issues of real genomes (Baker 2012). An 
alternative is to construct simulated datasets using real, high-quality, curated 
genomes (Junemann et  al. 2014; Mavromatis et  al. 2007; Utturkar et  al. 
2014). Additional methods for evaluating metagenomic assemblies are dis-
cussed below.

Another outcome of the transition towards cheaper sequencing and 
shorter read lengths is that the proportion of genomes that are only taken to 
the draft stage has increased dramatically (Chain et al. 2009). In the early 
days, sequencing was the major cost of a genome project, so it made sense 
to curate and close genomes. Now that sequencing represents a fraction of 
the cost, it is far more common to produce a draft genome that is never fin-
ished. This is not necessarily a problem; in some cases, draft genomes are 
sufficient for the scientific question at hand, and the cost and benefit of 
closing a genome (versus, for example, sequencing more genomes) are 
debatable (Fraser et al. 2002). For example, to determine the gene content of 
an organism, draft genomes are often sufficient provided that sequencing 
coverage is sufficiently high. However, major drawbacks of not closing 
genomes are (i) the inability to definitively say a gene is absent, and (ii) 
potential lack of information regarding ordering of contigs and hence 
overall genome organization and structure. In order to distinguish the 
quality of assembled genomes, there is a series of designations that reflect 
the degree of finishing and polishing that a genome has received (Chain 
et al. 2009) (Table 5.2). For the special case of viral genomes, separate cate-
gories and standards to convey assembly quality and utility have been put 
forward (Ladner et al. 2014).

5.6  Single-Cell Genomics

As discussed above and in Chapter 4, sometimes only a small subset of the 
community is of interest, and there are a variety of ways to target specific 
microbial cell types, guilds, or populations for sequencing. One of the most 
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powerful ways to conduct such targeted studies is by sequencing the 
genomes of individual microbial cells. There are now a variety of strategies 
and methods for single-cell genomics, and they have been detailed previ-
ously along with the strengths and weaknesses of this approach (Blainey 
2013; Hedlund et  al. 2014, 2015; Stepanauskas 2012; Xu et  al. 2016). All 
single-cell approaches involve several steps: cellular isolation, lysis of the 
cell, amplification of the genome, and sequencing; each of these steps pres-
ents challenges that are discussed below following an overview of the 
strengths of single-cell genomics.

An obvious and major strength of single-cell genomics is that the “sam-
pling” is discrete; individual cells are separated from other community 
members, including other closely related genotypes. Thus, some of the 
major challenges associated with metagenomic assembly (see Chapter  6), 
such as chimerism between different genotypes, are circumvented. Whereas 
metagenomic assemblies potentially represent composites of different geno-
types, genomes derived from single cells can be assigned to single genotypes 
with high confidence. Because of its high-throughput capability, single-cell 
genomics can be used to survey the cell-to-cell genomic diversity within 
populations (Kashtan et al. 2014) and communities (Swan et al. 2011). In 
addition, the isolated cells carry associated viruses and endosymbionts, 
which are also sequenced during single-cell genomics. Thus, single-cell 
genomics is also a powerful way of linking cellular organisms with their 

Table 5.2 Designating the stage of genome finishing. Note that Parks et al. (2015) have proposed simplifying this 
scheme to finished, noncontiguous finished, and draft, with the quality of draft genomes being further quantitatively 
described by their completeness and contamination.

Designation Meaning

Standard draft Minimally or unfiltered data assembled into contigs. Can be relatively incomplete and likely has many 
regions of poor quality. This is the minimum standard for submission to public databases

High-quality draft At least 90% complete. Efforts have been made to remove contaminating sequences, but little or no 
manual review of the product. No implied order and orientation to contigs. Sequence errors and 
misassemblies are possible. Appropriate for general assessment of gene content

Improved 
high-quality draft

Manual or automated improvements to the high-quality draft so that there are no discernible 
misassemblies. Some gaps have been closed to reduce the number of contigs and/or scaffolds. Low-quality 
regions and sequence errors may still be present. Suitable for comparative genomics

Annotation-directed 
improvement

In addition to the above, verification and correction of issues within coding regions such as frameshifts 
and stop codons. Repeat regions still not necessarily resolved. Valuable for gene comparisons and 
pathway reconstruction

Noncontiguous 
finished

High-quality assembly with automated and manual improvement. Closure approaches have been used to 
resolve most gaps, misassemblies, and low-quality regions. Only intractable gaps or repeats remain. 
Appropriate for most analyses

Finished The gold standard; less than 1 error per 100 000 bp and single contiguous sequence. Fully manually 
reviewed and edited. Appropriate for all types of analysis

Source: Data from Chain et al. (2009).
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associated viruses (Bhattacharya et al. 2013; Roux et al. 2014) and endosym-
bionts (Bhattacharya et al. 2012).

Single-cell genomics has advanced rapidly in the past 5 years but some 
difficult challenges remain. The amplification of genomic DNA, which is 
required to obtain enough material from one cell for sequencing, has sto-
chastic biases that cause highly uneven coverage. The extent of this bias is 
such that some regions of the genome are highly covered while others are 
not sequenced at all, making it difficult to obtain complete genome sequences 
from single cells (though it can be done with finishing steps) (Woyke et al. 
2010). Because the biased amplification is random, it can be resolved by 
sequencing multiple cells, but that can complicate the effort due to poten-
tially different genotypes between cells, dulling one of the main strengths of 
single-cell genomics.

Separate from the issue of covering the whole genome, the uneven 
coverage also introduces problems for genome assembly (Nagarajan & 
Pop 2013), though recently developed assemblers accommodate such 
uneven coverage (Nurk et al. 2013; Peng et al. 2012). Another challenge of 
amplification of minute quantities of DNA is its susceptibility to contamina-
tion. This contamination can be mitigated and largely eliminated by clean 
lab procedures (de Bourcy et al. 2014) and downstream bioinformatic detec-
tion but the steps necessary to do so are costly, which is one of the reasons 
why single-cell genomics is done in just a few specialized labs (Hedlund 
et al. 2015).

The strengths and weaknesses of single cell genomics are largely comple-
mentary to those of metagenomics, such that these two approaches are syn-
ergistic (Hedlund et al. 2014; Lasken & McLean 2014).
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6
 Introduction

The DNA sequence of whole genomes obtained directly from assemblages 
of multiple microbial taxa can provide powerful insights into the structure 
of microbial communities and their interaction with geochemical and 
environmental processes. This overall approach, called “metagenomics,” 
“community genomics” or “environmental genomics,” can be conducted by 
many different methods of sampling processing and data analysis. 
Considerations for sampling and experimental design and overall approach 
are common to other omics approaches and are described in Chapter  4. 
Here, we focus on strategies for analyzing metagenomic data. A key decision 
is whether to analyze it at the level of DNA sequence reads or to assemble 
the reads into contigs, scaffolds, and genomic bins. Although the decision 
on whether to assemble or not depends on the scientific question at hand, 
there are some overwhelming advantages to assembling reads into contigs 
and genomes, and a key hindrance to database-dependent approaches is the 
lingering lack of sufficient reference genomes that represent the genetic 
diversity inherent in natural microbial communities.

6.1  To Assemble or Not To Assemble?

Following sequencing, there are several different ways to approach the anal-
ysis of shotgun metagenomic dataset (Fig. 6.1). One of the first and most 
important questions is whether to assemble the reads into larger contigs or 
to conduct the analysis at the read level, either by directly annotating reads 
or by mapping them to reference genomes. A number of issues are factored 
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into this decision. First, the scientific question should dictate the best 
approach. For example, evaluation of the diversity and abundance of a mod-
est set of well-known genes or functions that have been curated with custom 
databases may be effectively conducted at the read level (Reed et al. 2015). 
Broader functional profiling of whole communities may also be conducted 
at the read level, though the resolution of such studies is somewhat coarse.

DNA RNACommunity cells Whole community
DNA or RNA sequences 

Genomic databaseGenbank or custom 
database

Unassigned reads

Unassembled reads

Reconstruction of novel genomes

Figure 6.1 An overview of 
approaches for analyzing 
metagenomic data.
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On the other hand, assembly provides crucial information about which 
functions belong to which organisms (Anantharaman et al. 2016a; Hultman 
et al. 2015; Lesniewski et al. 2012; Sheik et al. 2014; Tyson et al. 2004; Venter 
et al. 2004; Wrighton et al. 2012), insights into the evolutionary processes in 
natural populations (Allen & Banfield 2005; Allen et al. 2007; Simmons et al. 
2008) and the form, tempo, and ecological implications of strain-level vari-
ation (Andersson & Banfield 2008; Denef & Banfield 2012; Denef et  al. 
2010a, 2010b; Lo et  al. 2007). Some studies are focused on a particular 
species for which there are many reference genomes available, so it is appro-
priate and feasible to use a reference genome-based approach. However, 
there remain many entire clades and even divisions without reference 
genome sequences (Baker & Dick 2013), despite laudable efforts such as the 
GEBA project to enhance phylogenetic coverage of genome sequences (Wu 
et  al. 2009). Further, the extensive genomic diversity within microbial 
species means that reference genomes will often miss genes that encode key 
local environmental adaptations. The limitations of using reference genomes 
should be kept in mind when designing strategies for analysis of metage-
nomic data, and de novo assembly of genomes from metagenomes can fill 
this gap (Howe & Chain 2015).

A second major consideration in choosing the best approach to analyzing 
metagenomic data is the feasibility of assembly given the target community. 
In the early days of metagenomics, only the lowest diversity microbial com-
munities yielded substantial assemblies (Tyson et  al. 2004). With today’s 
massively high-throughput DNA sequencing technologies, high-diversity 
communities can now yield thousands of essentially complete genomes 
from diverse microbial communities (Anantharaman et al. 2016b). However, 
some of the highest diversity communities, such as those in soil, are still 
refractory to assembly. Assembly-based approaches to such communities 
may incorporate only a small fraction of the reads, although improved 
assembly methods are leading to advances in this area (Crusoe et al. 2015; 
Howe et al. 2014).

Finally, there are several practical advantages to assembly, even if down-
stream analysis will be at the gene level. Longer contigs that have multiple 
reads covering each position enable correction of sequencing errors and 
more accurate annotation methods than do short reads (Thomas et  al. 
2012). Assembly also compresses datasets into more manageable and com-
putationally tractable forms, though this may also be accomplished by clus-
tering methods.

6.2  Database-Dependent Approaches

As discussed above, because of the incredible diversity of microbial com-
munities, both in terms of novel organisms that have not been sequenced 
and highly variable genomic content within microbial species, the utility of 
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reference databases for interpretation of metagenomic data is limited. 
However, leveraging the prior knowledge available in databases can be 
effective, especially for organisms and functions that are well known.

There are three main approaches to analyzing metagenomic databases by 
comparison to databases:

• by comparing reads to publicly available or custom databases with pro-
grams such as BLAST (Altschul et al. 1990) or DIAMOND (Buch fink 
et al. 2015)

• via large publicly available pipelines such as MG-RAST that perform 
taxonomic and functional information at the read level

• by mapping reads to reference genomes by a process called fragment 
recruitment.

This section provides an overview of these approaches, whereas sub-
sequent sections focus on specific methods of functional and taxonomic 
annotations (see Chapter 8).

Direct comparison of sequence reads to databases with BLAST was one 
of the first approaches used to analyze metagenomic and metatranscrip-
tomic data, and it remains popular due to its flexibility. Comparisons can be 
conducted against databases ranging from the whole NCBI nonredundant 
database (NR) (DeLong et  al. 2006) and RefSeq (Satinsky et  al. 2015) 
to custom databases containing special functions of interest (Reed et al. 
2015). For whole-community overviews and comparative analysis, many 
researchers find that using more highly curated databases, in which se -
quences are organized into hierarchical functional categories or metabolic 
pathways, is useful; these include COG (Tatusov et  al. 2000), KEGG 
(Kanehisa et al. 2016), SEED (Overbeek et al. 2005), and MetaCyc (Caspi 
et  al. 2016). However, this higher degree of curation and organization 
comes at the expense of losing sequences in the database that may be criti-
cal for some queries and applications.

A major challenge with using large databases such as NR is the computa-
tional time – enormous computational resources and/or compute time are 
required. For all BLAST-based approaches, a weakness is the “top-hit” effect, 
wherein the best match is not necessarily the right answer because the 
difference between the query and subject may be large and the difference 
between the best hit and the second best hit may be small. A related issue is 
the difficulty in choosing a similarity threshold for positive matches, because 
the relationship between conservation of sequence and function varies 
widely across different protein families. Programs such as MEGAN (Huson 
et  al. 2007) and Darkhorse (Podell & Gaasterland 2007), that consider a 
number of hits for each query and the extent which they agree with each 
other, enable more accurate annotations and/or generation of confidence 
scores and help to alleviate this issue. Methods that use calculated gene- and 
position-specific thresholds are also critical for maximizing the accuracy of 
analyses of short-read datasets (Orellana et al. 2017).
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The metagenomics RAST (MG-RAST) server is perhaps the most widely 
used tool for analyzing metagenomic sequences at the sequence read level. 
MG-RAST is an automated and integrated pipeline for analyzing metage-
nomic data, and includes methods not just for annotating single reads but 
also for analysis of assembled contigs, upstream quality control and down-
stream comparison of datasets, statistical analysis and visualization, as well 
as tools for import and export of data (Meyer et al. 2008). However, its read-
level capabilities distinguish it from other platforms. Although MG-RAST is 
the best publicly available resource of its kind, it suffers from several issues 
inherent to read level analysis and generalized annotation. Functional anno-
tations are often quite coarse, being limited in their specificity by the short 
length of single reads (~100 bp). Some key functions of interest, such as 
certain sulfur cycling genes, are not included in databases used by MG-RAST 
(Crowe et al. 2014). Finally, as a free service for computationally intensive 
processing of enormous datasets, it is no surprise that the turnaround time 
for annotating datasets by MG-RAST can be months.

A third method of leveraging reference genomes or scaffolds to analyze 
metagenomic data at the read level is fragment recruitment, in which reads 
from environmental populations are mapped onto reference genomes 
(Rusch et al. 2007). The mapping is typically conducted at the nucleotide 
level with BLASTn (or k-mer-based mappers such as Bowtie (Langmead & 
Salzberg 2012) or BWA (Li & Durbin 2009) where only close matches are of 
interest), and the output is visualized as the percent identity of each read 
plotted by its location on the reference genome (Fig. 6.2). The results pro-
vide information about the presence, abundance, and genomic content of 
related populations. Reads that plot at high nucleotide identify (95–100%) 
are likely from populations closely related to the reference genome, whereas 
others (70–90%) stem from related but distinct populations, and these 
results can be interpreted in the context of average nucleotide identity for 
phylogenetic and taxonomic purposes (Rodriguez-R & Konstantinidis 
2014). Highly conserved regions of the genome and genomic islands present 
in the reference genome but not in the wild populations are easily identified 
(see Fig. 6.2). Differences in gene order can also be identified through the 
orientation of mate-pair or paired-end reads (Rusch et al. 2007) (see also 
Fig. 5.3).

Although fragment recruitment can be a powerful method of exploring 
how wild populations compare to reference genomes, it is important to rec-
ognize that genomic islands present in the wild populations but not in the 
reference genome will be missed. Since such variable portions of the genome 
often encode key adapations to the local environment, this is a critical weak-
ness of reference genome and database-dependent approaches. These same 
capabilities and limitations also apply to the use of reference genomes for 
analysis of metatranscriptomic and metaproteomics data. Combining the 
use of these several database-dependent strategies offers valuable comple-
mentary perspectives on metagenomic and metatranscriptomic datasets 
(Shi et al. 2011).
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6.3  Database-Independent Approaches: De Novo 
Assembly

De novo assembly is highly advantageous because it can potentially capture 
heterogeneity that is inherent to natural populations of microorganisms. 
However, assembly of metagenomic data presents special challenges above 
and beyond those of assembling genomes from single organisms (see sec-
tion 5.2) (Howe & Chain 2015; Pop 2009; Wooley et al. 2010).

First, there is the issue of extensive taxonomic diversity of microbial 
communities. Because different taxa have large differences in gene se -
quences and content, even among closely related organisms, there are typi-
cally staggering numbers of genotypes present in microbial communities, 
and they must be accounted for when calculating sequencing effort required 
for desired genomic coverage. This problem is particularly acute when low-
abundance organisms are of interest; extensive sequencing must be done to 
sequence through the abundant members and achieve sufficient coverage 
of low-abundance members. As a result, high-complexity microbial com-
munities require enormous volumes of sequence data, producing large 
datasets that are challenging in terms of the computer memory needed for 
assembly. Continued improvements in scalability of metagenomic assembly 
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Figure 6.2 A schematic example of fragment 
recruitment. Reads from a metagenome (or 
transcriptome) are plotted against a reference genome 
according to their percent identity. It is often the case 

that one population in the environment will have high 
similarity to the reference genome and several others 
will be more divergent, with a natural “gap” in sequence 
space in between.
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are required to tackle this issue (Boisvert et  al. 2012; Crusoe et  al. 2015; 
Howe et al. 2014; Li et al. 2015; Muggli et al. 2017; Pell et al. 2012).

Second, microbial communities seldom contain discrete populations that 
are completely distinct from each other at the genomic level. Rather, within 
taxonomic groups, there are typically multiple closely related genotypes in 
the same environment that share some genes but also contain genes that are 
unique to each genotype (Allen & Banfield 2005; Anantharaman et al. 2013; 
Sharon and Banfield 2013) (see section 2.4). The shared genes vary in their 
levels of sequence similarity between genotypes; some genes may even be 
conserved at 100% sequence identity while others show substantial dissim-
ilarity. The conserved genes may co-assemble, leading to erroneous chi-
meric sequences (Fig. 6.3). This can be particularly troublesome for highly 
conserved genes (e.g., rRNA genes) or mobile elements (plasmids or trans-
posases) that are identical between different strains or even species. 
Depending on the level of dissimilarity and the assembly platform and 
parameters used, different alleles of the same genes may be co-assembled 
into the same contig or segregated into different contigs. The former leads 
to  composite genome assemblies containing sequence diversity. Further, 
related genotypes often display differences in gene order and orientation 
(Allen & Banfield 2005), leading to multiple paths in metagenomic assem-
blies, which may cause premature termination of contigs and even lack of 
assembly altogether (see Fig. 6.3). For de Bruijn graph assemblies of short 
read data, the extent of this problem is such that even dominant organisms 
can be missed when there are multiple closely related organisms present 
(Sharon et al. 2015). Paired-end and mate-pair information can be used to 
resolve such issues in some cases (Iverson et al. 2012). Coverage is also a key 
source of information for separating contigs from closely related organisms 
(see Chapter 7).

Finally, a third challenge of metagenomic assembly is that different organ-
isms in a community are present at varying abundances and will therefore 
have different genomic coverage, which is typically flagged as a problem by 
traditional isolate genome assemblers. Most currently available genome 
assemblers were designed for assembly of genomes from single organisms 
rather than communities of organisms. However, there are now several 
assemblers that address this and other major challenges associated with 
assembly of metagenomic data (Table 6.1). A more detailed overview of 
current assemblers is provided by Vollmers et al. (2017).

IDBA-UD introduced several new strategies for dealing with metage-
nomic data and compares favorably with other assemblers in its performance 
in assembling metagenomic data (Peng et  al. 2012). In addition to using 
multiple k-mers as in IDBA (Peng et al. 2010), it uses a more sophisticated 
method for addressing uneven coverage and paired-end information to 
resolve local repeat sequences that otherwise introduce branches into the de 
Bruijn graph. IDBA-UD is a favorite of the author’s lab and has been 
employed with high success to complex communities, including ground-
water (Brown et al. 2015), deep-sea hydrothermal plumes (Anantharaman 
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Figure 6.3 Pitfalls of metagenomic assembly. (a) 
Schematic of microbial cells of three different species 
and genomes. Here we focus on the red species with 
circular cells, in which the thicker blocks of the genome 
represent identical sequence repeats between different 
strains. (b) The genomes are randomly fragmented for 
library preparation and sequencing. (c) Schematic of 
short reads sequencing technology (e.g., Illumina). 
Sequence reads are shown as dotted arrows in relation to 
genome fragments from (b). Key reads depicted below 
in (e) are shown in black and numbered. (d) Schematic 
of long read sequencing technology (e.g., PacBio). 

Sequence reads are shown as dotted arrows in relation to 
genome fragments from (b). (e) Repeats sequenced with 
short read technology can result in disagreement 
between sequence reads that came from the repeat 
region at different genomic loci, leading to 
fragmentation of contigs. (f) Repeats sequenced with 
short read technology can also result in chimeric 
assemblies in which genomic loci are erroneously 
brought together (yellow and brown in this case). 
(g) Long reads can resolve such repeat regions and thus 
are invaluable for producing accurate assemblies. Note 
that the various elements are not to scale.
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et al. 2016a), and estuary sediments (Baker et al. 2015). An interesting aspect 
of assembly that seems particularly acute with IDBA-UD is that it performs 
best at low to intermediate coverage. At higher coverage, contigs are frag-
mented, so performing assembly with a subset of reads may be optimal 
(Handley et al. 2014; Hug et al. 2016).

The new assembler MEGAHIT (Li et al. 2015) combines some features of 
IDBA-UD (namely the multiple k-mer size strategy) with the computational 
benefits of succinct de Bruijn graphs (Bowe et al. 2012) to produce a metage-
nomic assembler that is reportedly fast and accurate. MetaVelvet built on the 
genome assembler Velvet by using coverage and graph connectivity 
information to decompose the metagenomic de Bruijn graph into subgraphs 
representing single species (Namiki et al. 2012).

The advent of longer reads promises to once again change the landscape 
of assembly methods and outcomes for metagenomics. Improved assembly 
of MiSeq reads (300 bp) has been achieved with string overlap methods 
(Haider et al. 2014). PacBio offers read lengths 10 kb and longer; although 
more expensive than Illumina, this technology is already being used rou-
tinely for sequencing of isolate genomes because of the assembly advantage 
conferred by longer reads (see Chapter  5). For metagenomic data, where 
cost efficiency and throughput are at a premium, the optimal approach cur-
rently may be to conduct a combination of short and long read sequencing. 
This approach has been shown to effectively reconstruct genomes and, 
intriguingly, seems to be particularly powerful in resolving lower-abun-
dance community members (Sharon et al. 2015).

In addition to improvements in algorithms for metagenomic assembly, 
advances in methods upstream and downstream of assembly show prom-
ise. For example, physical cross-linking of DNA can be used to produce 
“contact probability maps” that help discern which reads came from the 

Table 6.1 Selected sequence assemblers for metagenomic data. Note that assemblers not optimized for metagenomic 
data are shown in Table 5.1.

Assembler Method Technology Notes References

Metavelvet de Bruijn Illumina, SOLiD, 
454, Sanger

Uses coverage and connectivity to decompose 
the de Bruijn graph

Namiki et al. 2012

Meta-IDBA de Bruijn Illumina Peng et al. 2011; 
Howe et al. 2014

IDBA-UD de Bruijn Illumina Also for single-cell genomes Peng et al. 2012
MEGA-HIT de Bruijn Illumina Uses some principles of IDBA, SOAP-de novo Li et al. 2015
Ray Meta de Bruijn Illumina Scalable across nodes by message passing Boisvert et al. 2012
Omega String graph 

(“overlap graph”)
Good for MiSeq Haider et al. 2014

Source: Adapted from Nagarajan and Pop (2013).
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same individual cell within a community (Beitel et al. 2014; Burton et al. 
2014), though this method has not yet been widely applied. Preassembly 
processing such as digital normalization and k-mer partitioning also shows 
promise (Cleary et  al. 2015; Crusoe et  al. 2015; Howe et  al. 2014). 
Postassembly processes for merging contigs can also improve assembly out-
comes (Scholz et al. 2014).

6.4  Evaluation of Metagenomic Assemblies

Methods for evaluating metagenomic assemblies are similar to the evalua-
tion of assemblies from isolate genomes, including inherent characteristics 
such as coverage and mate-pair/paired-end integrity. Basic statistics on real 
datasets have also been used to evaluate metagenomic assemblers (Vollmers 
et al. 2017). In addition, binning can be used to identify chimeric contigs, 
which are one of the major challenges with metagenomic assemblies. 
Contigs containing regions that fall into different genomic bins are highly 
likely to be chimeric (or, less likely, to contain horizontally transferred genes, 
which may retain the genomic signature of the donor organism) (Lawrence 
& Ochman 1998).

Finally, benchmarking of metagenomic assemblers had been done by 
using standardized datasets in which the solution is known. Mavromatis 
et  al. (2007) constructed simulated datasets of varying complexity by 
combining sequencing reads randomly selected from 113 isolate genomes. 
The reads were assembled and binned and evaluated relative to the “answer 
key.” Shakya and colleagues also present a synthetic metagenomic dataset 
(Shakya et al. 2013). This is a powerful method for understanding the limi-
tations and challenges of assembly, but it is imperfect in that simulated data-
sets may not accurately represent the various forms of diversity that are 
present within real microbial communities. An alternative is to spike in ref-
erence genomes into real metagenomes (Luo et al. 2012). This paper found 
that while single genotypes can be effectively reconstructed as long as 
genomic coverage is sufficiently high (>20×), at lower coverage there are 
problems with chimeras. In both cases, closely related genotypes could not 
be resolved.

6.5  A Philosophy of Metagenome Assemblies

Now that we have toured the ins and outs of metagenomic assembly, and 
considering what we know about microbial genomic diversity, how should 
we view genome assemblies? They almost always have errors, even for 
“clonal” genomes from pure cultures. As we discussed above, metagenomes 
have many pitfalls, and even when chimeras are not present, genomes 
assembled from metagenomes are composites from numerous cells and thus 
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likely do not reflect the exact genetic make-up of any single cell. However, 
this does not mean that metagenomic assemblies should be viewed as right 
or wrong. Assemblies can be viewed as constructs, as abstractions of the 
data and as a framework for interpreting and visualizing genomes and 
metagenomes and the genomic heterogeneity that is inherent to microbial 
populations and communities. An important conclusion is that the con-
sensus sequence represents just that – a composite that potentially masks 
underlying variation. In fact, assemblies can be an effective means of study-
ing this underlying diversity. For example, mate-pair or paired-end data can 
be used to scaffold and to identify gaps, insertions, rearrangements, etc. 
(Allen & Banfield 2005). SNP patterns can reveal population variation and 
evolutionary processes (Allen et al. 2007; Andersson & Banfield 2008; Rosen 
et al. 2015).

Finally, the complexities and pitfalls of metagenomic assembly must be 
weighed against the limitations of other approaches. Given extensive micro-
bial genomic diversity, we should be wary of using reference genomes because 
they may be missing key aspects of the genomes being studied. Single-cell 
genomics offers great promise for (ever-increasing) high-throughput explora-
tion of genomic diversity (Kashtan et al. 2014), but it lacks the wide-angle, 
whole-community view offered by metagenomics, and single-cell genome 
assemblies offer their own challenges.
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7
 Introduction

Only under the best circumstances will assembly of metagenomic sequences 
yield complete, closed genomes. This is rare and typically occurs only when 
high genomic coverage of populations with little strain variation is obtained 
(Chivian et al. 2008; Schofield et al. 2015)). More frequently, metagenomic 
assembly produces contigs of short to intermediate length (1–100s of kb). 
Assigning these contigs to particular microbial groups and/or organisms, a 
process known as metagenomic binning, offers critical biological and eco-
logical insights. For example, knowing which genes go with which organ-
isms enables an understanding of how different functions are coupled within 
genomes, thus linking biogeochemical cycles (Walsh et al. 2009); shows how 
functions are distributed across different organisms in a community, yield-
ing insights into metabolic interactions within communities (Anantharaman 
et al. 2016a); and provides whole-genome perspectives on microbial evolu-
tion (Bendall et al. 2016).

There are two main approaches to binning. The first involves comparing 
the unknown gene/contig sequences to sequences of known phyloge-
netic affiliation. This can be done by BLAST or other alignment tools. This 
approach may work well when the identity of organisms is known and refer-
ence genomes closely related to the target populations are available. How-
ever, because of the prevalence of horizontal gene transfer and the relatively 
low number (30–40) of reliable phylogenetic marker genes per genome 
(Ciccarelli et al. 2006), the vast majority of contigs in a metagenome are dif-
ficult to assign by such phylogenetic methods (also see Chapter 8). The sec-
ond method is to assign contigs to taxonomic groups based on signatures of 
nucleotide composition such as GC content or tetranucleotide frequency. 
The overwhelming advantage of using nucleotide composition for binning 
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is that the signal is pervasive throughout the genome, and horizontally 
transferred genes quickly take on the signal of their host (Lawrence & 
Ochman 1997). Nucleotide composition-based approaches are particularly 
valuable for novel genes, which are prevalent in microbial genomes (see 
Chapter 2) and would not be accurately binned by comparative approaches.

Here we focus primarily on compositional approaches. Note that in a 
strict sense, “binning,” in which sequences are clustered into subgroups that 
are not necessarily identified taxonomically, should be distinguished from 
“classification” in which taxonomic labels have been applied. However, as we 
will see, these processes are often coupled in practice.

7.1  Genomic Signatures of Nucleotide Composition

Remarkably, microorganisms have characteristic patterns of nucleotide 
composition that are conserved within genomes and distinct between 
genomes. Such compositional biases were recognized at the very beginning 
of the age of genomics (Karlin et al. 1997) and metagenomics (Teeling et al. 
2004; Tyson et al. 2004). The biases include features such as GC content 
((G+C)/(A+T+C+G)), and the relative abundance of oligonucleotide 
sequences of a given length (di-, tri-, tetra-, etc. nucleotides), which are 
illustrated in Figure 7.1. The driving force behind such signatures is still 
debated but it is related to both neutral (mutation bias due to replica-
tion, repair, and recombination) and selective (environmental adaptation, 
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Figure 7.1 Schematic illustration of genome signatures 
of two different microorganisms. For tetranucleotides, a 
four-base window is slid one base at a time and the 
frequency of each four-letter oligonucleotide is counted. 
The resulting frequency pattern (histograms at bottom) is 
conserved across the whole genome and distinct between 

genomes, provided sufficient evolutionary divergence. 
The strand of DNA sampled by metagenomics is 
disregarded by summing counts from pairs of reverse 
complementary oligonucleotides together. There are 256 
possible tetranucleotides but after summing reverse 
complements, only 136 are unique.
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codon usage, resource availability, energetics) processes (see section 2.3) 
(Bohlin 2011).

Importantly for metagenomics, strong environmental pressures shared by 
co-occurring microorganisms do not obscure the signatures between organ-
isms, even in extreme environments (Dick et al. 2009). Also critical is that 
the signature is pervasive in nearly all genes in a genome. However, recently 
acquired genes may have the signature of their donor organism (Lawrence & 
Ochman 1998). Over time, the nucleotide composition signature of hori-
zontally transferred genes is converted to that of the new host during the 
process of amelioration (Lawrence & Ochman 1997).

In theory, oligonucleotides of any length can be used for binning. What 
length is optimal? There is a trade-off between information content and 
length of contig required to provide sufficient data on frequency of specific 
oligo sequences. Longer oligo patterns contain more information and offer 
higher specificity (Bohlin et al. 2008). Yet the number of possible oligonu-
cleotides increases exponentially with oligo length: di-, tri-, tetra-, and 
pentanucleotides have 16, 64, 256, and 1024 possible oligos, respectively 
(including nonunique reverse complements). Thus, in order to generate a 
statistically significant frequency histogram, more “samples” are required 
for longer oligos. In other words, longer contigs are required for longer 
oligos. Tetranucleotide frequencies typically provide acceptable results 
down to ~2.5 kb and are very robust above 5 kb, and thus find wide applica-
tion in current metagenomics projects where contigs in this length range 
are abundant (Dick et  al. 2009). Alternatively, a recently developed 
approach called ABAWACA allows users to leverage the strengths of mul-
tiple lengths of oligonucleotides in a novel iterative algorithm (Brown et al. 
2015). A detailed description of this method is not yet published.

7.2  Binning Programs

Binning by nucleotide composition can be approached by either supervised 
or unsupervised methods. Supervised methods are trained on the signatures 
of reference genomes to construct a model that is then used to assign 
unknown contigs to the reference genomes. This approach is valuable where 
the organisms of interest are closely related to known reference genomes. 
Such supervised approaches are often superior in terms of specificity and 
sensitivity, especially in recognizing signatures in shorter sequence frag-
ments. Their major limitation is the reliance on reference genomes. At this 
stage of microbial ecology, in which the genomic diversity of many natural 
microbial communities is still vastly undersampled, this is a major disad-
vantage. Unsupervised approaches do not rely on a priori information about 
the genome signatures of reference genomes. Rather, they group unknown 
sequences into clusters directly based on the similarity of their genome 
signatures. Below, we highlight some of the main strategies used for both 
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supervised and unsupervised approaches through examples of several of the 
most widely used binning applications.

One of the most widely used supervised methods of metagenomic binning 
is Phylopithia (McHardy et al. 2007). This method “learns” the characteris-
tics of genome signatures of reference genomes through a support vector 
machine classifier and then phylogenetically classifies unknown 
sequences at multiple levels of taxonomy. In addition to nucleotide com-
position, it also leverages information from phylogenetic marker genes. 
Phylophythia is highly accurate in terms of both sensitivity and specificity, 
even for relatively short sequence fragments, though accuracy decreases 
below 3 kb and especially below 1 kb. The main limitation is that accuracy 
is lower for clades that are not represented in the “classifier” stage (i.e., ref-
erence genomes). A recent update to Phylophythia includes auto mated 
methods that enable higher throughput analyses across multiple metage-
nomes (Gregor et  al. 2016). It is also readily integrated with dif ferential 
coverage methods (Albertsen et al. 2013), discussed below, and the mmge-
nome toolbox and associated R packages (http://madsalbertsen.github.io/
mmgenome/).

Naive Bayesian classifiers have also been used to classify short sequence 
fragments (down to 400 bp) from genomes of pure cultures at an accuracy of 
85% (Sandberg et  al. 2001). Another approach uses interpolated Markov 
models to classify sequences down to 100 bp (Brady & Salzberg 2009). This 
approach can be combined with alignment (BLAST)-based methods and 
classifies sequences at all taxonomic levels in all three domains of life (Brady 
& Salzberg 2011). While quite accurate at higher levels, it is less accurate at 
finer scales such as the genus level (~70–80%).

Unsupervised methods of binning are indispensable in cases where suit-
able reference genomes are not available. A key aspect of unsupervised 
approaches is the visualization of discrete clusters of nucleotide composi-
tional space that signify genomic bins. One particularly effective method of 
clustering and visualizing sequences is self-organizing maps, which were 
first pioneered for binning purposes by Abe and colleagues (Abe et al. 2003, 
2005). Dick et al. (2009) showed that this approach works well for metage-
nomes containing novel microbial taxa with no a priori genomic information 
by evaluating the binning process using independently assembled genomes 
as the “answer key.”

The introduction of emergent self-organizing maps (Ultsch & Moerchen 
2005) for the purpose of binning improved visualization of genomic bins 
(Dick et al. 2009). In ESOM, the difference in genome signature between 
sequence fragments (e.g., Euclidean distance in tetranucleotide frequency) 
is represented by different colors on a map that serves as a background for 
the data points. Thus, small differences within genomes are visualized as 
cohesive genomics bins, and large differences between genomes are 
visualized as barriers between bins. Though this process is completely 
unsupervised, including reference genomes as internal standards facili-
tates interpretation and linking of environmental populations with known 
organisms. This approach is useful not only for resolving completely novel 
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taxa, but also for recognizing genome elements that are distinct yet related 
to the core genome signature, such as plasmids, phage, and other parts of 
the flexible genome (Anantharaman et al. 2014, 2016a; Dick et al. 2009). 
Recent papers report further improvements in accuracy and visualization 
of metagenomic binning (Laczny et al. 2015).

A major disadvantage of ESOM (and most current binning approaches) is 
that it is not fully automated. The capability to recover hundreds of genomes 
from one metagenome is already routine and recovery of thousands of 
genomes per metagenome is now being reported (Anantharaman et  al. 
2016b). Considering that current sequencing throughput now enables the 
sequencing of dozens of such metagenomes at a time, it becomes apparent 
that manual analysis of such metagenomic binning data quickly becomes 
intractable. Automated methods are required to deal with this data deluge, 
and recently developed applications provide just that.

MaxBin (and MaxBin2) provides an automated pipeline that uses an 
Expectation-Maximization algorithm, which is reported to push the se -
quence length threshold down to 1000 bp (Wu et al. 2014, 2016). MetaBat 
also uses a combination of tetranucleotide frequency and abundance (cov-
erage) information and is reported to be fully automated (Kang et al. 2015). 
This approach has been used in the binning of metagenomic data from per-
mafrost microbial communities (Hultman et  al. 2015). Anvi’o (Eren et  al. 
2015) uses the automated Concoct method and is highly valuable for its 
visualization and manual curation capabilities, which allow detailed evalua-
tion of binning evidence, refinement of bins, and comparison of binning 
results from different methods. Methods such as DAS Tool are critical for 
the efficient analysis of large complex metagenomic datasets because they 
enable the comparison and merging of bins from multiple samples and 
methods (Sieber et al. 2017). A recent review of binning approaches pro-
vides further detail and discussion of approaches for metagenomic binning 
(Sangwan et al. 2016).

A summary of some of the most popular binning programs is shown in 
Table 7.1. Publication of these new approaches often comes with claims of 
improvements in accuracy, speed, and visualization of binning. However, in 
some cases relative performance may depend on the dataset, and in other 
cases the “performance” can be somewhat subjective. In general, there is a 
need for more rigorous and comprehensive evaluation and benchmarking of 
these binning approaches on a variety of different datasets that span a range 
of diversity, complexity, and taxonomic composition.

7.3  Additional Signal and Steps for Binning: 
Coverage, Taxonomic Data, and Mini-Assemblies

In addition to nucleotide composition, another valuable factor for binning is 
the differential abundance of organisms across multiple samples. This idea 
rests on the fact that (i) all fragments of a given genome should be present at 
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roughly equal abundance in a sample (though see caveats below); (ii) the 
abundance of organisms (and their genomes) is likely to vary across differ-
ent samples; (iii) this variance in abundance is likely to be distinct for differ-
ent organisms. Organism abundance in metagenomic datasets is tracked by 
mapping reads to contigs to calculate coverage. Indeed, the value of coverage 
for metagenomic binning was demonstrated in one of the very first metage-
nomic sequencing efforts (Tyson et al. 2004). Differential coverage can be 
used in combination with nucleotide composition to enhance the resolution 
of binning (Alneberg et al. 2014; Sharon & Banfield 2013; Wrighton et al. 
2012). Other approaches that fully rely on differential abundance have also 
been reported to be highly successful (Albertsen et al. 2013; Nielsen et al. 
2014). Tutorials and tools that embrace this multi-metagenome concept are 
now available (http://madsalbertsen.github.io/multi-metagenome/; http://
madsalbertsen.github.io/mmgenome/).

Several potential complications should be kept in mind when using 
differential coverage for binning. First, technological sequencing biases 
can result in uneven sequence coverage, resulting in artificial coverage 
variance that could theoretically confound differential coverage binning. 
For example, some technologies have trouble sequencing extreme nucleo-
tide composition (i.e., GC-rich) and produce lower coverage in those 
genomic regions. Second, repetitive genomic elements often co-assemble 

Table 7.1 Selected methods for metagenomic binning.

Method
Oligo 
length

Minimum 
contig length Type Notes and references

Phylophythia 
(S+)

4 400 bp Supervised McHardy et al. 2007; Gregor et al. 2016

PhymmBL 100 bp Supervised Brady & Salzberg 2009, 2011
Tetra-ESOM 4 2.5 kb Unsupervised Effective visualization; not fully automated; Ultsch & 

Moerchen 2005; Dick et al. 2009
TETRA 4 N.D. Unsupervised Measures departure of signature from random 

expectation and compares via Pearson correlation 
coefficient; Teeling et al. 2004

MaxBin2 4 1 kb Unsupervised Fully automated; also uses differential coverage; 
Wu et al. 2016

VizBin 4 1 kb Unsupervised Laczny et al. 2015
MetaBat 4 1.5 kb Unsupervised Kang et al. 2015; Hultman et al. 2015
Concoct 4 1 kb Unsupervised Alneberg et al. 2014
ABAWACA Multiple 1 kb Unsupervised Brown et al. 2015
Anvi’o 4 N.A. Unsupervised/

manual finishing
Outstanding visualization of results, manual 
refinement, and comparison of results from different 
methods; Eren et al. 2015

N.A., not applicable; N.D., not determined.
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(see Chapters 5 and  6), producing “pile-ups” with artificially high cov-
erage. Third, in actively growing microorganisms the chromosomal copy 
number is in fact not equal across the whole genome. During DNA repli-
cation, which proceeds bidirectionally from a point of origin towards a 
single terminus, genes already passed by the replication fork will have a 
higher copy number than as yet unreplicated genes. Thus, variation in 
coverage within genomes of up to three-fold can be expected, especially 
for fast-growing microbes. This metric has even been proposed as means 
of estimating growth rate from metagenomic data (Brown et  al. 2016; 
Korem et al. 2015). The variance in coverage due to these three issues is 
generally low relative to the variance in genomic abundance between sam-
ples, but it may limit the resolution gained by using differential coverage 
information.

Binning can be used as a framework for performing several steps that can 
facilitate the improvement and analysis of metagenomic assemblies. One 
increasingly common strategy is to use the contigs associated with a specific 
genome bin through initial binning to extract all DNA sequence reads from 
that bin for subsequent reassembly. This can be done by mapping all reads 
from a metagenomic dataset onto the binned contigs of interest and seems 
to improve the assemblies substantially (Hug et al. 2013, 2016b). Mate-pair 
or paired-end information can also be used to evaluate the fidelity of bins 
and or add contigs to bins (Boetzer et al. 2011; Sekiguchi et al. 2015). This 
process can be facilitated through visualization strategies such as cytoscape 
(Shannon et al. 2003). Finally, because binning is often conducted on small 
fragments that represent a subset of each contig (e.g., a 5 kb window) (Dick 
et al. 2009), binning can be used to identify assembly errors. A contig that 
has pieces that fall into two different bins is likely chimeric; binning can 
quickly flag such contigs for further curation.

7.4  Identifying, Evaluating, and Assessing 
the Completeness of Genomic Bins

Identification of genomic bins leads to a series of questions regarding their 
composition and identity. How complete is each bin (i.e., what fraction of 
the genome was captured)? What is the taxonomic identity of these organ-
isms? Because bins are sometimes resolved at the species to genus level, 
there may very well be multiple genotypes present, so we also want to know 
how many different genomes/strains are contained within each bin.

Ideally, identification of genomic bins is done via the 16S rRNA gene, the 
gold standard of phylogenetic markers. The 16S rRNA gene can be found by 
annotating the contigs (see Chapter 8) or by searching contigs by BLAST 
against a database of 16S rRNA genes or with a rRNA predictor such as bar-
rnap (https://github.com/tseemann/barrnap). Because the automated anno-
tators often miss fragmented 16S rRNA genes, the latter is recommended. 
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However, there are two more fundamental issues that often thwart this 
effort: (i) because it does not encode protein, the 16S rRNA gene does not 
hold the genome signature of nucleotide composition and so sequence frag-
ments containing the 16S rRNA gene are often not binned properly; (ii) due 
to its high sequence conservation, the 16S rRNA gene is often misassem-
bled, including chimeras and consequent termination of contigs, resulting 
in contigs that are too short to bin. The situation with the 23S rRNA is 
slightly better in that it is less conserved but it still faces the same issues. 
Thus, protein-coding phylogenetic marker genes are highly valuable because 
of their greater sequence heterogeneity and conformity to the genome-wide 
signature of nucleotide composition that is used for binning. Ribosomal 
protein S3 (Baker et al. 2015; Hug et al. 2013) and concatenated ribosomal 
proteins (Hug et al. 2016a) have been used in this capacity.

Only a very small subset of genes in a genome is suitable for conducting 
universal phylogenetic analysis and evaluating bin completeness. Ideally, 
genes to be used for such analyses would be (i) universally present in all 
microorganisms in a single copy, and (ii) not frequently horizontally trans-
ferred, so as to reflect the core evolutionary signal of an organism. A set of 
31 such genes was originally identified by Ciccarelli et al. (2006) and is fre-
quently used in assessing genome completeness. However, there are down-
sides of using such a small set of marker genes in that it constitutes a very 
small portion of the genome, and the genes are typically distributed unevenly 
in a genome (Sharon & Banfield 2013). One solution is to relax the require-
ments for defining universal single-copy genes. Rinke et al. (2013) defined a 
set of 139 bacterial and 162 archaeal conserved single-copy genes on the 
basis of their presence in a single copy in 90% of genomes as identified by 
hits to the Pfam database. Another strategy is to define conserved single-
copy genes on a per phylum basis (Swan et  al. 2013). Lineage-specific 
markers have also been applied to taxonomic profiling of whole commu-
nities (Segata et al. 2012) (see Chapter 8).

Lineage-specific analysis of phylogenetic marker genes was recently 
integrated into CheckM, an automated method for assessing the complete-
ness and contamination of bacterial and archaeal genomes (Parks et  al. 
2015). The reference genomes used to generate marker gene sets are deter-
mined by phylogenetic analysis. Such lineage-specific marker gene sets offer 
better estimates of completeness and contamination than universal or 
domain-specific marker gene sets. Of course, this depends on the avail-
ability of phylogenetically related reference genomes; for some novel deeply 
branching phyla, which are remarkably common (Brown et  al. 2015), 
domain-specific marker sets must be used. CheckM also assesses the 
number of strains within a bin (a common occurrence in metagenomic 
bins), and distinguishes this from contamination (i.e., erroneous assign-
ment of contigs to a bin). The automated nature of this program makes it 
valuable for high-throughput analysis of large datasets. Another automated 
method, Phylosift, uses a phylogenetic approach and can also be applied to 
metagenomic bins (Darling et al. 2014).
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8
 Introduction

Metagenomic datasets are valuable for determining the taxonomic and/or 
functional composition of microbial communities. Several approaches can 
be taken to achieve these goals, and the choice of which approach to use 
depends on the scientific question as well as the nature of the dataset.

As discussed earlier, a key question is whether to utilize assembled con-
tigs and/or genomic bins or to work at the individual DNA sequence read 
level (see sections 4.1 and 6.1). Even in cases where assembly and genomic 
binning are conducted, a substantial portion of the dataset is often unas-
sembled and/or unbinned, and is thus left over as individual reads or as 
contigs that are too short for binning (Fig. 8.1). The proportion of the 
dataset that ends up in each of these pools varies from small to over-
whelming majority, depending on the amount and type of sequencing 
conducted, the taxonomic and genomic diversity of the community being 
sequenced, and the tools employed for analyses. In cases where many 
reads are unassembled or in contigs that are too short to bin, analysis at 
the read level may be appropriate. Where bins are available, there are 
tremendous advantages to utilizing the information they provide (see sec-
tion  6.1). Hence, this chapter covers both assembly/ bin-dependent and 
bin-independent methods for the tasks of taxonomic and functional 
studies of metagenomes.

Annotation

Gene Calling, Taxonomy, and Function
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8.1  Gene Calling

After genome assembly and binning, genes are identified within the contigs. 
For protein-coding genes, identification of gene start and stop sites is a key 
first step towards predicting amino acid sequences and inferring function 
and taxonomy. A nice overview of this process is provided in Thomas et al. 
(2012). After identification of genes by start and stop site, functions are 
assigned (see sections 8.1 and 8.2). Gene coordinates (start and stop sites) 
for protein-coding genes are generally determined by inherent features such 
as start and stop codons and ribosome binding sites, whereas RNAs are 
determined by comparison to databases, often with hidden markov models.

A challenge with applying methods developed for clonal genomes 
to metagenomes is that they may rely on reference genomes for training 

Figure 8.1 Schematic illustration of workflow for a 
metagenomic sequencing project with emphasis on 
materials used for taxonomic and functional annotation. 
Short thin lines represent individual sequencing reads, 
with different colours from different populations, and 
thicker longer lines represent consensus sequences of 

contigs. Assembly of sequencing reads into contigs and 
genomic bins is preferable, but even where that is 
possible, a large portion of the dataset is often on short 
contigs or individual reads that do not assemble. Thus, 
functional and taxonomic annotation of individual reads 
is also desirable.

Metagenomic 
reads 

Unassigned reads
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Genome bins Contigs too short for 
binning 

Taxonomic 
annotation 

Functional 
annotation 

Contigs



Annotation: Gene Calling, Taxonomy, and Function  103

and/or codon usage information, whereas metagenomes contain multiple 
genomes from multiple species. In addition, short sequences such as 
individual sequence reads or short contigs present challenges associated 
with sequencing errors and partial genes (Trimble et al. 2012). The Trimble 
et al. study showed that the best choice of gene prediction tool depends on 
the nature of the data: FragGeneScan for raw reads (Kim et al. 2015; Rho 
et al. 2010) and Prodigal (Hyatt et al. 2010, 2012) for assembled contigs. 
Genemark (Borodovsky et al. 2003), metagenemark (Zhu et al. 2010), and 
Prokka (Seemann 2014) are also competitive. In addition to using the 
intrinsic characteristics for the ab initio process described above, the new 
NCBI Prokaryotic Genome Automatic Annotation Pipeline method now 
integrates extrinsic information in the form of comparative analysis (e.g., 
alignment-based protein predictions) (Tatusova et al. 2016).

Although the accuracy of gene-calling processes is generally quite high, a 
significant portion of genes in unassembled metagenomic datasets can still 
be missed (Thomas et al. 2012). Assembly of reads into contigs facilitates 
gene calling. Pipelines such as MG-RAST (Meyer et al. 2008), IMG/M-ER 
(Markowitz et  al. 2009), and Metapathways (Hanson et  al. 2014) bring 
together numerous processes for calling of various types of genes and fea-
tures (e.g., CRISPRS, rRNAs, tRNAs, protein-coding genes) and synthesize 
results from search of multiple functional databases (see section 8.3).

8.2  Determining Taxonomic Composition

Determining which microorganisms are present in a sample is routinely 
done by sequencing a gene that is present in all target organisms and of suf-
ficiently conserved sequence and length that it can be reliably amplified and 
compared between organisms and to databases of sequences of known tax-
onomy for classification (e.g., PCR and sequencing of the 16S rRNA gene; 
see section 1.2). Although 16S rRNA gene sequence remains an effective and 
efficient method, there are several reasons why taxonomic analysis of 
shotgun sequence datasets is also valuable. First, so-called “universal” PCR 
primers for the 16S rRNA gene may introduce biases or even miss novel 
organisms (Baker et  al. 2006; Brown et  al. 2015). Second, whole-genome 
approaches can offer taxonomic data at finer scales, since sequences of 
numerous genes with higher resolving power than the 16S are produced. 
Third, in some projects the shotgun data is being produced anyway (e.g., for 
functional purposes); this may circumvent the need to do PCR-based 
studies. Finally, during the course of omics projects, it is often desirable to 
identify the taxonomy of particular genomic fragments (e.g., a functional 
gene of special interest) or bins that do not carry a 16S sequence.

The task of taxonomic identification can come in many flavors, involving 
a variety of different goals and types of data. For example, we may want to 
identify a particular genomic bin. Or, at the other end of the spectrum, we 
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may want to characterize an entire community by taxonomically profiling 
shotgun sequence data at the read level. Not surprisingly, such diverse ques-
tions are addressed with a diverse array of approaches. Below we highlight 
some of the challenges in conducting taxonomic identification on shotgun 
data and then outline some of the approaches and their strengths and 
weaknesses.

Several important challenges are encountered when performing taxo-
nomic identification using shotgun sequence data.

• Unlike sequences produced by PCR, shotgun sequences have arbi-
trary start and stop sites, complicating their alignment.

• Almost all genes display much more sequence heterogeneity than the 
16S gene, so the vast majority of genes in shotgun sequence data will 
be poorly conserved and potentially difficult to compare between dis-
tantly related organisms. This is important because microbes within 
natural microbial communities are often quite novel, so the most 
closely related sequences in databases may offer little resolving power 
for classification.

• There are few publicly available databases that offer highly curated 
taxonomic information, such as those available for 16S rRNA 
sequences (SILVA – Pruesse et al. (2007), RDP – Cole et al. (2009), 
and Greengenes – DeSantis et al. (2006)).

A common yet crude method of taxonomic assignment is taxonomic/ 
phylogenetic profiling, in which all sequences (reads or called genes/ 
predicted proteins) within a dataset are compared (e.g., with BLAST) to a 
database containing sequences of known taxonomic affiliation, and the tax-
onomic distribution of best matches is tabulated. This approach is imple-
mented as a tool in some of the commonly used publicly available analysis 
pipelines such as MG-RAST (Meyer et al. 2008) and Integrated Microbial 
Genomes (Markowitz et al. 2009), and is valuable as a “quick and dirty” 
view, but it has substantial shortcomings. First, only a very small portion of 
the dataset will be captured. Because of the extensive genomic diversity 
discussed earlier (see Chapter 2), there are typically many genes in natural 
communities that are not present in databases. Second, there is the “best hit 
problem” in which a sequence hits many different taxonomic groups with 
near-equal similarity. It would be assigned to the “best hit” but the difference 
between matches might not be statistically significant. This best hit issue 
can be resolved by employing a lowest common ancestor algorithm as 
described in the program MEGAN (Huson et  al. 2007). However, this 
approach often leads to low-resolution assignments (i.e., at very high taxo-
nomic levels) due to the inherent limitations of the databases. Another 
issue is that different proteins evolve at different rates, and thus the degree 
of sequence conservation varies enormously between and even within pro-
tein families. Thus, applying the same alignment threshold to very different 
proteins is not ideal.
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Aside from these issues that are inherent to the sequences and databases 
themselves, there are also limitations in the algorithms used to compare 
sequences to each other. For example, BLAST sequence similarity scores do 
not necessarily reflect phylogenetic relationships (Smith & Pease 2017). 
BLAST is also increasingly unfeasible due to the large computational 
requirements (and long compute times) required to analyze the large 
metagenomic datasets that are now routinely produced. Methods that avoid 
the computationally expensive step of inexact sequence alignment are much 
faster. For example, Kraken uses exact matches of short sequences (k-mers) 
(Wood & Salzberg 2014), and MASH efficiently estimates distances between 
pair-wise sequences (Ondov et al. 2016).

The whole-genome taxonomic profiling methods described above are 
coarse because they assign equal weight to the taxonomic signal of each 
gene in a genome. However, the degree to which a gene accurately reflects 
an organism’s evolutionary history varies widely; some genes have evolved 
together largely in one organism, in an evolutionary core, whereas others 
may be frequently horizontally transferred between organisms, obscuring 
their vertical evolutionary history. Genes that offer the most phyloge-
netic information are those that are (i) present in all (or most) organisms, 
(ii) rarely horizontally transferred, (iii) of sufficient length. Such genes are 
often a part of critical cellular processes such as translation, which is con-
ducted by all cellular life and involves highly specific functions of interact-
ing molecules in a way that the protein sequences must be highly conserved. 
As discussed in Chapter 7, these genes are invaluable in identifying metage-
nomics bins. Phylogenetic marker genes are also increasingly used to assess 
the taxonomic composition of microbial communities, through analysis of 
sequences at either the read or contig level.

As described above, a challenge of analyzing phylogenetic marker genes 
derived from shotgun sequence data is that the sequences have arbitrary 
start and stop sites. Thus, they may be only partially overlapping or even 
nonoverlapping, complicating efforts to construct sequence alignments, for 
example. A solution is to map onto reference phylogenies, a task for which 
effective methods have been developed (Matsen et  al. 2010; Segata et  al. 
2012; von Mering et al. 2007). One of these methods, pplacer, was recently 
integrated into PhyloSift, a pipeline for phylogenetic analysis of metage-
nomic data (Darling et al. 2014).

Another challenge of analyzing taxonomic composition is that reference 
phylogenies (or genomes) vastly underrepresent the diversity present in 
natural microbial communities (Baker & Dick 2013). In fact, a recent study 
showed that reference-based approaches can miss about half of species abun-
dance and richness (Sunagawa et  al. 2013). Thus, reference- independent 
methods for resolving the diversity inherent in the environment are required. 
An early solution was provided in the context of functional analysis by 
grouping protein-coding sequences into operational protein families, analo-
gous to operational taxonomic units (OTUs) (Schloss & Handelsman 2008). 
More recently, Sunagawa et  al. (2013) developed a method for forming 
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metagenomic operational taxonomic units (mOTUs) with single-copy phy-
logenetic marker genes.

8.3  Functional Annotation

The goal of many studies that apply omics approaches to questions in the 
Earth and environmental sciences is to uncover the roles of microorganisms 
in biogeochemical processes. Achievement of this goal requires that we 
assign physiological and biochemical functions to sequences, a process 
referred to as functional annotation. This can be done at either the level of 
individual sequence reads or after assembly of these reads into contigs (see 
Fig. 8.1). Annotation of contigs is preferable; it is generally more sensitive 
and accurate because full-length genes are available, but some high-diversity 
communities remain refractory to assembly, necessitating read-based 
approaches.

Functional annotation is a major challenge and only 20–50% of genes in 
a metagenomic dataset are typically assigned a function (Gilbert et  al. 
2010). Indeed, there is a huge amount of sequence data that has not been 
assigned functions (Yooseph et al. 2007); a substantial fraction of the pro-
teins these genes encode are essential (Goodacre et al. 2014), and this gap 
in knowledge is a major challenge to the field (Godzik 2011). Because links 
between sequence and function are almost always derived from genetic 
and  biochemical studies of cultured organisms, these so-called “culture-
independent” methods are absolutely dependent on existing knowledge 
from cultured organisms! Hence, there is appeal in using clustering-based 
approaches that do not rely on functional annotations, but allow ecological 
analysis to be conducted on the basis of homology (Schloss & Handelsman 
2008). However, such approaches have not yet seen the same widespread 
use as the functional annotation methods discussed below.

8.3.1 Overall Approach to Functional Annotation

In contrast to the mainly ab initio approach used for gene calling, functional 
annotations are typically done through comparison of the sequences to 
databases of gene or protein sequences with functional annotations. 
Comparisons are generally with one of two methods: BLAST (or some 
derivative, like BLAT) (Kent 2002) and hidden markov models (Eddy 2004). 
Since no reference database covers all biological functions, and each data-
base has strengths and weaknesses, many popular pipelines such as 
MG-RAST (Meyer et  al. 2008), IMG/M-ER (Markowitz et  al. 2009), and 
InterProScan (Jones et al. 2014) draw on searches against multiple databases 
and then merge them into a single framework. These databases include 
KEGG (Kanehisa et  al. 2016), eggNOG (Muller et  al. 2010), COG/KOG 
(Tatusov et  al. 2003), Pfam (Finn et al. 2016), and TIGRFAM (Haft et al. 



Annotation: Gene Calling, Taxonomy, and Function  107

2013). Thomas et al. (2012) and Teeling and Glockner (2012) discuss these 
methods in more detail. Functional annotations from one or more of these 
databases or pipelines can then be used in combination with a variety of 
statistical methods to compare the functions of microbial genomes or com-
munities (see Chapter 12). Recently developed software packages also syn-
thesize the annotations from isolate genomes or genomic bins to predict 
phenotype, including traits such as carbon and energy sources, sporulation, 
antibiotic susceptibility, and enzymatic activities (Weimann et al. 2016).

An entirely different strategy to investigate the function of microbial com-
munities is to make predictions based on phylogenetic marker genes such as 
16S rRNA, combined with knowledge of the functional capacity of closely 
related organisms. This approach has been pioneered by Curtis Huttenhower 
and colleagues with the software PICRUSt (Langille et al. 2013). It relies on 
correlation between function and phylogeny, which, as discussed in the sec-
tion on genomic diversity (see Chapter 2), is not always conserved. However, 
the power of this method is that the confidence (or uncertainty) of predic-
tions can be estimated by evaluating the link between phylogeny and function 
in reference genomes. While such an approach is no replacement for tracking 
functions with omics sequencing, it does provide potential value for making 
predictions and developing hypotheses, perhaps as one tier in a cost-effective 
process where screening a large number of samples with marker genes is 
then followed with shotgun sequencing of a subset of samples.

8.3.2 Predicting Metabolic Pathways

Annotation of functions to individual genes often gets us only part way to 
the goal of uncovering microbial physiology, metabolisms, and roles in bio-
geochemical cycling. The enzymes encoded by genes catalyze biochemical 
reactions that typically operate in concert with other enzymes within meta-
bolic pathways. Because some proteins can belong to multiple pathways 
while others are unique (and thus more informative) (Caspi et  al. 2013; 
Hanson et al. 2014), putting functional annotations into the context of the 
metabolic pathways in which they participate can be profitable. Of course, 
some pathways occur within a single organism, but there are also pathways 
that span multiple organisms via interspecies metabolic interactions. These 
interactions can be integral to biogeochemical processes, so investigating 
pathways in the context of whole microbial communities offers one means 
of identifying such interactions (Hanson et al. 2014).

Several methods are commonly used for analyzing metabolic pathways of 
microbial genomes and communities. Prediction of metabolic pathways 
remains challenging, especially determining directionality and specificity, 
so the output of these methods should be interpreted with caution (Caspi 
et al. 2013). The KEGG pathway is a collection of manually drawn metabolic 
maps that represent knowledge of pathways in model organisms (Kanehisa 
et  al. 2014). Genomic information from the nonmodel organisms being 
studied is then projected onto these maps in an attempt to associate their 
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genes with the experimentally derived links between sequence and function 
underlying the metabolic maps. This projection is done through KEGG 
Orthology (KO) groups using methods of defining orthology described 
above. Because the KEGG pathway is based on a limited number of model 
organisms, it does not have flexibility to accommodate variation in meta-
bolic pathways, and tends to have somewhat coarse resolution (Altman et al. 
2013). The KEGG Automatic Annotation Server (KAAS) is an online ser-
vice that uses BLAST to compare sequences against the manually curated 
KEGG GENES database, producing KO assignments and automatically gen-
erated KEGG pathways (www.genome.jp/tools/kaas/). KEGG is also imple-
mented in numerous metagenomic pipelines and downstream applications 
for comparing the functional composition of microbial communities 
(Abubucker et al. 2012).

MetaCyc is another database of metabolic pathways based on experi-
mental information (Caspi et al. 2016). Compared to KEGG, it uses smaller, 
more evolutionarily conserved units to represent the sequence–function 
link. MetaCyc interfaces with BioCyc, a collection of databases representing 
the genome and predicted metabolic networks for more than 3000 organ-
isms (ranging from highly curated to automated). These databases are asso-
ciated with the software package PathwayTools, which enables users to 
predict metabolic networks of a sequenced genome (Karp et  al. 2011). 
Together, these tools provide an integrated structure for investigating meta-
bolic pathways, complete with descriptions of the pathways and associated 
enzymes and literature citations so that users can critically assess predic-
tions. While this extensive documentation and the finer resolution of 
MetaCyc offer considerable advantages over KEGG, in the experience of the 
author’s lab the predicted pathways are often relatively sparse, suggesting a 
trade-off between sensitivity and specificity. However, this lack of sensitivity 
likely more accurately reflects the lack of experimental data and knowledge 
regarding the function of many genes within microbial communities.

An exciting development is the application of MetaCyc to whole environ-
mental sequence data through the MetaPathways annotations and analysis 
pipeline (Hanson et al. 2014). The MetaPathways pipeline offers (i) prediction 
of protein-coding open reading frames (ORFs) via Prodigal, (ii) annotation 
using the MetaCyc, RefSeq, KEGG, and COG protein databases, (iii) taxo-
nomic analysis using MEGAN, ML-TreeMap, 16S SSU and 23S LSU rRNA 
homology using the Silva and GreenGenes databases, and (iv) systematic 
creation of Environmental Pathway/Genome Databases (ePGDBs) mapping 
functional information onto the MetaCyc database of metabolic pathways.

8.3.3 The Importance of Experimental Annotation

Ultimately, the quality of functional annotation depends on the knowledge 
linking genes and proteins to biochemical and physiological functions. 
Because this knowledge is woefully inadequate, there is an urgent need for 
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continued and renewed experimental efforts aimed at identifying gene 
functions. These efforts include conventional genetic and biochemical 
approaches as well as high-throughput methods that can be applied on the 
whole-genome scale (see section 3.3).
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9
 Introduction

Messenger RNA (mRNA) is a short-lived intermediate between DNA and 
protein. Because transcription of mRNA is often tightly regulated, and 
the  lifetime of mRNA molecules (~minutes) is short with respect to the 
timescale of environmental changes, the characterization of mRNAs is a 
powerful method for investigating the cellular response to environmental 
conditions experienced by microorganisms.

(Meta)transcriptomic approaches seek to probe the transcriptional 
activity of microbes by characterizing the pool of RNAs that compose the 
transcriptome of a culture, population, or community. This is challenging 
for a number of reasons. Samples must be collected quickly and in a way 
that prevents artificial changes to the transcriptome during sampling. The 
cellular inventory of mRNA is low – much lower than that of rRNAs, genes, 
or proteins (Moran et al. 2013). It should also be recognized that there is 
a  poor correspondence between the abundance of transcripts and their 
corresponding proteins. This is chiefly due to the difference in lifetimes of 
mRNAs and proteins; most proteins persist long after the mRNAs have been 
degraded. However, additional factors such as posttranscriptional processing 
and regulation and variable translation efficiencies may also contribute to 
the mismatch between mRNA and protein abundance. Hence, transcrip-
tomics and proteomics (see Chapter  10) provide two different types of 
information; transcriptomics largely reflects current cellular demands or 
environmental signals, whereas proteomics more accurately reflects the 
standing stock of cellular proteins and their associated catalytic potential, 
which integrates protein synthesis over a longer timescale. Both types of 
information are valuable for tracking microbial activity. With current tech-
nologies, transcriptomics is substantially more sensitive, generating many 
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more identifiable sequence reads than MS/MS spectra per unit cost, thus 
providing more information especially for genes that are expressed at lower 
levels.

One of the outcomes of plunging costs of DNA sequencing has been that 
so-called RNAseq approaches, in which a pool of cDNA is randomly shotgun 
sequenced, have overtaken microarrays as the go-to method for conducting 
transcriptomics, including studies of gene expression in microbial commu-
nities. For microbiome studies, this has the tremendous advantage that all 
transcripts are sequenced, so the diversity inherent to natural microbial 
communities is captured (see Chapter 2). This is in contrast to microarray 
technologies that require probes of known genes. Hence, RNAseq approaches 
provide a window into community gene expression that is both sensitive to 
novel genes and holds a wealth of information regarding the variation of 
gene sequence. In the overview of transcriptomics below, we consider criti-
cal issues regarding sampling collection and library preparation, normaliza-
tion, and downstream applications. Statistical analyses that are common to 
other forms of data are considered in Chapter 12.

9.1  Sample Collection

Because of the short lifetime of mRNAs, care must be taken to avoid changes 
in the metatranscriptome during sampling. Concerns include (i) transcrip-
tional shifts that could occur due to changing conditions experienced dur-
ing sampling, e.g., in response to changes in light availability between the 
natural sample and a bottle; (ii) degradation of mRNA; and (iii) differential 
degradation of RNA between different community members (Stewart 2013). 
A detailed discussion of challenges and methods of sampling and preserva-
tion of community RNA from marine planktonic samples is available in 
Stewart (2013). Many of the considerations discussed therein are applicable 
to samples from any environment.

Regardless of sample type, minimizing the time between sample collec-
tion and preservation is critical. Samples can be preserved by snap freezing 
in liquid nitrogen or immersion in a reagent such as RNAlater (Stewart 
2013). Snap freezing has been found to preserve RNA with comparable 
effectiveness to other preservatives (Bachoon et al. 2001). However, when 
working in remote or extreme environments, RNAlater is convenient 
because it does not need to be frozen immediately and preserves DNA as 
well as RNA. For example, Breier et  al. (2014) developed a sampler for 
deep-sea hydrothermal vent plumes that filters water and immediately doses 
the filter with RNAlater in situ. In situ preservation is also critical to capture 
variation that occurs on short timescales. The Environmental Science 
Processor is an autonomous instrument (Herfort et al. 2016) that can also 
use RNAlater as a preservative of RNA for metatranscriptomics (Ottesen 
et al. 2011). A risk of using preservatives such as RNAlater, however, is that 
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they may introduce biases in the observed results of sequencing-based 
analyses (McCarthy et al. 2015; Reck et al. 2015).

9.2  RNA Extraction and Preparation of cDNA 
Libraries

RNA must be converted to cDNA prior to sequencing, and the methods 
used for this process can have substantial impacts on the results of metatran-
scriptomics studies (Alberti et al. 2014; Kratz & Carninci 2014). There are 
now a number of commercially available kits for preparation of cDNA 
sequencing libraries, some of which can take as little as 1 ng of RNA as 
starting material. However, less starting material means more amplification, 
which usually comes with a higher risk of artifacts. A high degree of technical 
variation has been observed between metatranscriptomics replicates, under-
scoring the need for replication and statistics in the assessment of biological 
variation of gene expression in the environment (Tsementzi et  al. 2014). 
Stewart (2013) and Sarode et al. (2016) provide in-depth looks at methods 
for RNA extraction and cDNA synthesis for metatranscriptomics.

9.2.1 Should rRNAs Be Removed Prior to Library 
Preparation and Sequencing?

Only 5–20% of cellular RNA is mRNA, with the balance being dominated by 
rRNAs. Thus, since mRNA is usually the target, methods for the removal of 
rRNAs have been developed in order to save sequencing costs. Typically, this 
is done by some form of subtractive hybridization. Although this was a 
cost-effective procedure in the early days of metatranscriptomic sequencing, 
careful consideration of the full costs of labor and supplies shows that it can 
be more cost-efficient not to remove rRNAs (Stewart 2013). This approach 
has the added benefit that rRNAs can be used as a measure of relative meta-
bolic activity of OTUs (Lesniewski et al. 2012; Urich et al. 2008), and any 
artifacts of sample handling during the rRNA removal process are avoided. 
Hence, the decision on whether to remove rRNAs prior to sequencing 
depends on the goals of the study and costs that are particular to specific 
facilities (e.g., labor). The author’s lab currently uses the RiboZero rRNA 
removal kits (Illumina).

9.3  Assigning Transcripts to Genes or Other Features

As is the case with metagenomic reads, short metatranscriptomic reads are 
difficult to annotate and classify directly. An effective approach is to map 
reads to longer reference genes. These reference genes can be from reference 
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genomes (Rivers et  al. 2013), paired metagenomes (Anantharaman et  al. 
2013; Lesniewski et al. 2012), or databases of genes, either publicly available 
(e.g., RefSeq) (Rivers et al. 2013) or custom databases of functional genes of 
interest (Satinsky et al. 2014) (Fig. 9.1). In cases where the reference genes 
are closely related to the transcripts (as in the case of paired metage-
nomes and metatranscriptomes), read mapping programs such as BowTie 
(Langmead & Salzberg 2012) and the Burrows–Wheeler Aligner (BWA) can 
be used. The tremendous advantage of this and similar methods is that they 
are fast relative to BLAST. The disadvantages are that (i) they are optimized 
for close matches (e.g., 2–3 mismatches over a 100 bp read), (ii) BWA is not 
“competitive,” meaning that a read will be assigned to the first database entry 
found to satisfy the search criteria, not necessarily the best match. BowTie2 
does use a quantitative scoring system and it performs well in terms of speed 
and accuracy relative to other mapping programs (Langmead & Salzberg 
2012). Thus, where differentiating expression of closely related genes is 
desired, cDNA read mapping is best done with a tool such as BLAST or 
BowTie2.

Where relationships between transcripts and genes are more distant, such 
as results when comparing environmental transcripts to the NCBI RefSeq 
database, more sensitive search programs such as BLAST must be used. 
Here, a major challenge is determining the appropriate cut-off (i.e., bitscore, 
alignment length, and/or % identity) for “assigning transcripts to genes,” a 
choice complicated by the fact that the relationship between sequence diver-
gence and function is different for each gene (see Chapter 8). New faster 
algorithms such as BLAT (Kent 2002), LAST (Kielbasa et  al. 2011), and 
RAPSearch2 (Zhao et al. 2012) may prove useful for these purposes. Once 
transcripts have been assigned to genes, these genes can be incorporated 
into broader levels of functional classification, such as metabolic pathways, 
using databases such as KEGG, etc. (Rivers et al. 2013).

9.4  De Novo Assembly

A potentially major disadvantage of any database-dependent approach is 
that transcripts for which there is no corresponding database entry will not 
be classified (see Fig. 9.1). This issue is particularly acute when using public 
databases that do not accurately represent the target microbial community. 
While use of paired metagenomes for analysis of metatranscriptomic datas-
ets helps minimize this problem, it does not completely eliminate it because 
metagenomes never capture the full gene content of microbial communities. 
The same risks exist for analysis of metagenomic data, but the stakes are 
even higher for metatranscriptomic data, where the possibility exists for 
highly expressed transcripts from low-abundance organisms.
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RNACommunity cells Whole community
RNA sequences 

Genomic or 
metagenomic 
database

Genbank database
Unassigned reads

Unassembled reads

mapping to reference genomes or paired metagenomes 

de novo assembly

Recontruction of
 unique transcripts, e.g. 
from low-abundance yet 
high-activity organisms

Figure 9.1 Annotation of transcripts in 
metatranscriptomics sequencing projects. In order 
to match a transcript with its corresponding gene, and to 
facilitate annotation, transcripts are often mapped to 
genes from reference genomes or from paired 

metagenomes. The disadvantage of this approach is that 
genes and associated contigs and genomes may be 
missing from the metagenome. Another option is to 
perform de novo genome assembly on the 
metatranscriptomic reads.



118  Metatranscriptomics

One potential solution to this issue is direct de novo assembly of meta-
transcriptomic data (Baker et al. 2013; Celaj et al. 2014; Peng et al. 2013). 
Each mRNA transcribed from an operon contains several co-transcribed 
genes, and each operon-derived transcript is physically separate and does 
not often overlap substantially with other transcripts, so cDNA reads derived 
from these transcripts will typically only assemble into short fragments of 
maximum length equal to operon size. However, even these relatively short 
cDNA contigs represent units of analysis that are a significant improvement 
in data format and reduction in data complexity over raw reads. Assembly of 
these operon-level transcriptional units, and subsequent quantification of 
reads belonging to them, enables the identification of highly transcribed 
genes and operons that are not present in genomic databases. Such genes 
can then be manually curated or studied with respect to variance in abun-
dance across environmental or experimental parameters for functional 
insights. Indeed, Baker et al. (2013) used de novo metatranscriptomic assem-
bly to find that some critical biogeochemical functions, such as nitrite 
oxidation, are mediated by organisms and genes that are at low abundance 
yet highly expressed.

9.5  Absolute Versus Relative Abundance 
and Normalization

As discussed above, shotgun sequencing (as opposed to microarrays) is now 
the dominant approach taken to conduct metatranscriptomics. Like other 
applications of DNA sequencing to microbial ecology (clone libraries, 
amplicon sequencing, shotgun metagenomics), metatranscriptomics pro-
duces data in terms of relative abundance, i.e., the number of reads observed 
for each gene (or any genetic unit) is dependent on sequencing effort and 
expressed as a portion of the total number of sequences generated. This 
complicates comparisons of gene expression between samples because the 
number of cDNA sequence reads observed for any one gene in a metatran-
scriptomic shotgun sequencing dataset is influenced by the relative abun-
dance of transcripts from all other genes in all other organisms of the 
sampled community (see section 4.2.4 and further discussion below).

To circumvent this issue, absolute abundance of transcripts in the sam-
pled community (e.g., number of transcripts per volume of sample) can be 
estimated by adding “internal mRNA standards” of known quantity to the 
mRNA pool to be sequenced. Absolute abundances of transcripts for a given 
gene are then calculated by determining the extent to which the internal 
standards are diluted by natural mRNAs in the sequence libraries (a dilution 
factor) and multiplying the observed cDNA reads (also known as “counts”) 
for the gene(s) of interest by the dilution factor (Moran et al. 2013; Satinsky 
et al. 2013), See Risso et al. (2014) on reliability of commercially available 
standards.
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In cases where internal standards are not used, careful thought must be 
given to the analysis and interpretation of the data. In particular, how should 
the data be normalized? Before addressing this question, we should first con-
sider the various factors that will influence the number of cDNA reads 
obtained for a given gene in a metatranscriptomic sequencing dataset. First, 
obviously, observed counts will depend on the expression level of the gene 
in a cell (i.e., number of transcripts per gene copy per cell). This gene expres-
sion level is often what we seek to investigate. Second, it depends on the 
abundance of cells expressing the gene. Here, we encounter a much different 
situation to that of transcriptomic studies of pure cultures, where with only 
one organism present the observed transcriptome is an aggregation of the 
transcriptomes of a collection of cells in a culture that have identical (or 
nearly identical) genome sequences. In the case of cultures, there may be 
differences in the transcriptome of individual cells, and the observed tran-
scriptome integrates this variation into an average of the whole culture, 
regardless of the number of cells in that culture. In contrast, in a microbial 
community the gene(s) of interest may be present in only a small fraction of 
the cells sampled, and the relative abundance of those cells directly influ-
ences the observed abundance of transcripts in a metatranscriptomic data-
set. Third, not only does the observed abundance of transcripts for a given 
gene in a shotgun sequencing dataset depend on transcription levels of that 
gene and the abundance of that cell, it also depends on transcription level of 
every other gene and the abundance of every other cell in the community. 
Relative abundance is relative to the abundance of other transcripts in the 
community, which depends on the same factors discussed above. Finally, the 
observed counts for a gene depend on its length; when reads are shorter 
than transcripts, the number of reads recovered is expected to be propor-
tional to gene length.

The above considerations emphasize that normalization is one of the 
most critical steps of analyzing metatranscriptomic data. This process is 
where we take into account factors such as gene length, sequencing effort, 
and potential effects of the composition of the RNA pool, so that transcript 
data can be compared across sequencing libraries and samples. In a pure 
culture in which copy number per gene does not vary among cells, a 
common and intuitive procedure is to calculate the proportion of each 
gene’s cDNA reads relative to the total number of cDNA reads and gene 
length. This proportion, which can then be compared across samples, is 
often represented as “reads per kilobase per million reads mapped” (RPKM) 
(Box 9.1). For paired-end data, “reads” is replaced with the “fragment” rep-
resenting the paired-ends (FPKM).

Though widely used, RPKM is not universally accepted as an optimal 
method for interpreting transcriptomics or metatranscriptomic data. For 
transcriptomic data, normalizing by gene length has been shown to intro-
duce bias (Dillies et al. 2013; Oshlack & Wakefield 2009), and for metatran-
scriptomic data there is additionally the issue that we sometimes do not 
know gene lengths. Further, as introduced above, metatranscriptomics data 
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Box 9.1 Methods for normalizing (meta)transcriptomic data.

Normalization is a critical step in analysis and interpretation of metatranscrip-
tomic datasets when the data is in terms of relative abundance (i.e., internal stan-
dards are not used). Here we summarize and discuss some of the most widely used 
methods for normalization. See the main text and Table 9.1 for further details, 
discussion, and references.

Normalization for read length

All else being equal, the number of reads retrieved for a gene from shotgun 
sequencing data will be proportional to the length of the gene. Thus, normalizing 
for gene length removes this effect and allows comparison of read counts between 
genes of different lengths.

Normalization for sequencing effort

Intuition suggests that read counts should be adjusted for the amount of 
sequencing done; if twice as much sequencing is done on one sample versus 
another, the observed counts should be divided by two for each gene. A simple 
normalization by number of cDNA reads in the library (and gene length) inte-
grates the effects of both cell abundance and transcription levels, and can be used 
as a measure of the relative contribution of a gene to a metatranscriptome.

RPKM/FPKM (reads/fragments per kilobase per million reads)

This metric is calculated as follows:

RPKM
cDNAreadsobserved per gene

genelength totalnumber of c
=

( )
( )( DDNAreadsinlibrary)

( )106

RPKM/FPKM normalizes by read length and sequencing effort. It is widely used 
for studies of single organisms.*

cDNA/DNA ratio

Calculating the ratio of cDNA reads to DNA reads for each gene has been used to 
measure the ratio of transcripts to gene copies, thus estimating gene expression 
levels.*

Normalize by total metatranscriptomic reads mapped to a genomic bin

This method provides a measure of the contribution of the transcripts of each 
gene relative to the other genes in a genome.*

DESeq

Normalizes the data with a scaling factor computed as the median of the ratio of 
the read count for each gene divided by its geometric mean across all samples/
conditions.

* These methods do not take into account organism abundance and/or the effects of other 
genes. Thus, the observation of counts for any gene is sensitive to the expression levels of all 
other genes in the sample. When applied to microbial communities, these methods do not 
provide an accurate measure of expression (transcripts per gene copy) but rather of the 
relative abundance of transcripts for each gene relative to all other genes.
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is sensitive to issues of proportionality that must be considered (i.e., observed 
“counts” for each gene are relative and thus sensitive to changes in the com-
position of the RNA pool) (Robinson & Oshlack 2010). Methods such as 
RPKM do not account for such issues of relative abundance and are thus not 
robust for making comparisons of metatranscriptomic data between sam-
ples (for a brief example see section 4.2.4). For a full description and evalu-
ation of seven commonly used methods of normalization of RNAseq data 
(for single organisms), see Dillies et al. (2013). In many cases the difference 
between these methods lies in whether “total number of reads” refers to 
reads generated, mapped, or some statistical treatment thereof.

For metatranscriptomic datasets for which cDNA has been obtained 
from microbial communities containing assemblages of numerous species, 
data analysis is more complex and depends on the scientific question and 
goal (Table 9.1). Researchers may be interested in the relative abundance of 
transcripts as a measure of the relative transcriptional activity of various 
populations, taking into account the combined effects of both cell abun-
dance and expression. In these cases, normalizing for library size and gene 
length and calculating the ratio of counts for genes under different condi-
tions can provide valuable biological insights (Lesniewski et  al. 2012; 

Table 9.1 Goals and strategies for normalizing metatranscriptomic data.

Goal Measure/methods (see Box 9.1) Notes References

Quantify overall 
transcriptional activity as 
proportion of all genes in 
an organism/ community

Relative abundance of transcripts in 
community; normalize by sequencing 
effort and gene length; includes 
RPKM/FPKM

Integrates effects of cell 
abundance and expression 
level*

Lesniewski et al. 2012; 
Sanders et al. 2013; 
Satinsky et al. 2013

Quantify the relative 
transcriptional 
importance of gene(s) 
within a particular 
organism

Normalize counts by number of cDNA 
reads mapped to genomic bin

Isolates each genomic bin; 
removes effects of genes from 
other bins

Ottesen et al. 2014

Assess gene expression 
level; identify 
differentially expressed 
genes

cDNA/DNA ratio For shotgun data, both 
transcriptomic and genomic 
data are relative*

Frias-Lopez et al. 2008

DESeq2 Assumption that most genes 
are not differentially 
expressed not well studied for 
communities

Love et al. 2014

Normalize to a housekeeping gene Major assumption of 
constitutive/constant 
expression level of 
housekeeping gene is difficult 
to verify

Harke et al. 2012; 
Kleiner 2017

*Indicates that in these methods, the results observed for any one gene are sensitive to transcription level of other genes.
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Sanders et al. 2013). In cases where expression (i.e., number of transcripts 
for gene copy) is the metric of interest, calculating the ratio of cDNA/DNA 
reads for each gene may be appropriate (Frias-Lopez et al. 2008). However, 
in calculating cDNA/DNA ratios for shotgun datasets, both the numerator 
and denominator would be in terms of relative abundance, and thus 
sensitive to the abundance and expression levels of other genes and organ-
isms in the community.

Another possibility is to normalize counts of cDNA reads for a gene to the 
counts retrieved for some housekeeping gene that is expected to be constitu-
tively expressed at a constant level. This is commonly done for quantitative 
PCR (Dheda et al. 2004; Harke et al. 2012) and has been done for proteomics 
(Ferguson et  al. 2005) and metagenomics (Manor and Borenstein 2015; 
Tsementzi et al. 2016). The concern with applying this method to metatran-
scriptomic data (i.e., to uncultured organisms) is that it is often difficult 
or impossible to verify that the requirement for constitutive and constant 
per-cell expression levels is satisfied (Kleiner 2017).

Where possible, normalization of metatranscriptomic data by number of 
transcripts mapped to a genomic bin can be valuable (Ottesen et al. 2014). 
This essentially isolates each bin and provides insights into the transcrip-
tional level of a gene relative to other genes in the genome. While it may also 
be possible to use reference genomes for the purpose of defining bins 
(Gifford et  al. 2013), this approach may potentially miss genes that are 
specific to “wild” populations, as discussed above. Satinsky et  al. (2014) 
employ all three of these scaling approaches, drawing on transcript inven-
tories, gene expression ratios, as well as transcripts mapping per taxon for 
various interpretations.

9.6  Detecting Differential Expression

Ultimately, the goal of many transcriptomic studies is to determine which 
genes are significantly differently expressed between samples and/or condi-
tions. For all methods of testing for differential expression, replication is 
critical (see section 4.2.1). One particularly valuable method for assessing 
differential expression is DESeq (DE for “differential expression”), which is 
available as an R/Bioconductor package (Anders & Huber 2010; Love et al. 
2014). This method makes the assumption that most genes are not differen-
tially expressed and therefore should have similar read counts across all 
samples. Thus, it normalizes the data with a scaling factor computed as the 
median of the ratio of the read count for each gene divided by its geometric 
mean across all samples. This method is now being used for transcriptomics 
studies and has now been used in a number of metatranscriptomic studies 
(Rivers et al. 2013; Tsementzi et al. 2014).

There are potential complications of applying DESeq2 to microbial 
communities, and these appear to have not been explicitly considered in the 
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literature. A critical question regarding the DESeq method of normalization 
described above is whether the variability in community composition com-
plicates the statistical treatment, in particular whether it violates the assump-
tion that most genes will be expressed at similar levels across all samples. In 
other words, due to substantial variation in the abundance of organisms 
(and therefore their genes) across samples, it may not be appropriate to nor-
malize based on the mean of raw read counts. Marchetti et al. (2012) argued 
that normalization methods such as the trimmed mean of M values (TMM) 
(a predecessor of DESeq) can help minimize the impacts of varying species 
abundances on inferring gene expression. To the author’s knowledge, this 
issue has not yet been directly evaluated in the published literature. A recent 
study on the use of DESeq2 for 16S rRNA gene amplicon datasets found that 
it can have a high false discovery rate under certain data characteristics 
(Weiss et al. 2017). Although this method should be used with caution when 
sequence libraries of vastly different size are being compared, it is the best 
currently available tool for determining differential abundance in RNAseq 
data when absolute abundance information is not available.
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10
 Introduction

Proteomics offers the ability to inventory the proteins in a microbial culture or 
community. Unlike genomic and transcriptomic approaches, where de novo 
sequencing is relatively straightforward (at least to produce the raw sequence!), 
the methods for sequencing proteins are more complicated and more 
dependent on databases. Nevertheless, the pay-off is worthwhile; because pro-
teins directly mediate biogeochemical processes, quantifying their abundance 
in the environment is critical to tracking the activity and metabolic status of 
microorganisms. By integrating this information with assembled genomes 
(e.g., from metagenomes), we can piece together the picture of who is pro-
ducing which proteins and catalyzing what biogeochemical functions. This 
integrated approach – aptly termed “proteogenomics” – was first used in cul-
tures (Jaffe et al. 2004), but was soon successfully applied to communities (Lo 
et al. 2007; Ram et al. 2005; Wilmes & Bond 2004). Proteogenomics opens up 
new opportunities to study the physiology, ecology, and evolution of microbial 
populations and communities (Verberkmoes et al. 2009). Verberkmoes et al. 
distinguish such proteogenomics, in which identified proteins are placed into 
the genomic context of individual species, from metaproteomics, in which the 
identified proteins are not assigned to particular species.

Community proteogenomics was pioneered in acid mine drainage ecosys-
tems (Denef et  al. 2010b; Ram et  al. 2005), where relatively low-diversity 
biofilm communities are often dominated by just a few species, allowing 
reconstruction of essentially complete genomes, even before next- generation 
sequencing (Tyson et al. 2004). These early forays yielded several far- reaching 
insights:

Metaproteomics



128  Metaproteomics

• 50% of the proteome of the dominant organism could be identified
• many proteins of unknown function, so-called “hypothetical pro-

teins,” were highly expressed, including some of the most abundant 
proteins in the entire community, showing that these proteins are real 
and likely ecologically relevant

• biochemical fractionation of cell components allowed proteins to be 
localized to cellular fractions (i.e., membrane, soluble, extracellular)

• mutations and posttranslational modifications could be inferred by 
patterns of peptide mapping

• abundant yet unknown proteins could be targeted for purification and 
characterization (Ram et al. 2005; Singer. et al. 2008). Recent reviews 
provide an overview of early community and meta-/community- 
proteomics studies (Abraham et al. 2014; Verberkmoes et al. 2009).

Proteomics is now being applied to complex microbial communities and 
across large scales (Hawley et al. 2014; Morris et al. 2010). Saito et al. (2014) 
recently investigated nutrient stress-related proteins across scales of thou-
sands of kilometers in the oceans. Provided that high-quality metagenomic 
assemblies and genomic bins or appropriate reference genomes are avail-
able, proteomics data can be resolved at fine taxonomic scales – at the level 
of strains – and can even be used to infer evolutionary processes such as 
patterns of genomic recombination (Denef et al. 2009, 2010b; Lo et al. 2007). 
In addition to the shotgun proteomics approaches that we focus on here, 
functional proteomics, including the in-gel identification of stained or active 
proteins, offers an effective way to link proteins with geomicrobiological 
processes (Dick et al. 2008; Yun et al. 2016).

10.1  Methodologies for Basic Proteomics

Proteomics includes several distinct approaches with varying levels of 
throughput. At the lower end of the throughput spectrum, proteins are first 
separated by one- or two-dimensional gel electrophoresis (Shevchenko et al. 
1996; Wilmes & Bond 2004). Proteins are then extracted from the gel, 
digested with proteases (typically trypsin) to generate peptides, then ana-
lyzed by tandem mass spectrometry (MS/MS) to identify the peptides. More 
recently, advances in mass spectrometry have enabled high-throughput 
methods that can be applied directly to complex mixtures of peptides gener-
ated through direct proteolytic digestion of samples (Verberkmoes et  al. 
2009). The development of this “shotgun sequencing” approach parallels the 
evolution of metagenomic methods, which started with targeted approaches 
but shifted towards shotgun methods as throughput increased and costs 
decreased.

An overview of a shotgun proteomic workflow is shown in Figure 10.1. 
Following collection and preservation (Saito et al. 2011b), cells are lysed, 
typically by french press or sonication. To obtain information about the 
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Figure 10.1 An overview of a shotgun proteomic 
workflow. Proteins are symbolized by chains of circles, with 
each circle representing an amino acid with its one-letter 

abbreviation. (a) Workflow from sample collection to mass 
spectrometry. (b) Bioinformatic generation of databases 
from genomic data. See text for details.
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cellular location of each protein and maximize protein detection, the crude 
protein extract may be physically separated into membrane, cytoplasmic, 
and extracellular fractions (Ram et al. 2005). Proteins are extracted from 
the community and cleaved at sequence-specific sites with proteases such 
as trypsin, which cleaves at arginine and lysine. A detailed protocol for cell 
lysis, protein extraction, and trypsin digestion from seawater is provided in 
both written and video forms (Colatriano & Walsh 2015). This method 
has  the advantage of providing both protein and DNA, enabling parallel 
metagenomic and metaproteomic analysis, which can aid in identification 
of proteins (see below). In this particular case, gel electrophoresis is used to 
eliminate SDS, which is used in the protein extraction but can affect trypsin 
digestion and mass spectrometry, and to fractionate the sample to improve 
proteomic coverage. Protein extraction from soils can suffer from interfer-
ences from elements such as humic substances, so the method of extraction 
can be critical for optimizing protein recovery (Keiblinger et al. 2012).

The resulting short peptides are then separated by nano-liquid chroma-
tography, followed by a first iteration of mass spectrometry. These “parent 
ions” are then physically fragmented into a series of daughter ions that rep-
resent portions of the parent ion structure. This mixture of daughter ions is 
then run through a second iteration of mass spectrometry, and the resulting 
MS/MS spectra are matched against theoretical masses of parent and 
secondary ions predicted from genomic databases. Several search algo-
rithms are available to perform this computational step, with SEQUEST 
(Eng et al. 2008) and MASCOT (Koenig et al. 2008) being two of the most 
widely used.

10.2  The Importance of Genomic Databases 
for Interpreting Proteomics Data

A key limitation of shotgun metaproteomics is the reliance on genomic 
databases for protein identification. De novo interpretation of MS/MS 
spectra without an underlying genomic database remains elusive, though 
progress in this area continues (Muth et  al. 2013). Because even a single 
amino acid difference between target and reference database typically con-
founds peptide identification, the use of reference genomes that are sub-
stantially different from the target organisms is challenging. However, as 
sequences diverge, some peptide sequences will be conserved; since as few 
as two peptides can be used for identification of a protein, some sequence 
divergence between reference and target can be accommodated. Com-
putational and experimental evidence shows that ~10% amino acid sequence 
divergence causes loss of half of identifiable proteins (Verberkmoes et  al. 
2009). Furthermore, since label-free quantitative approaches typically 
rely on the number of spectral matches per protein, lack of detection of 
peptides affects quantification efforts. Hence, the use of divergent genomes 
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as references to interpret proteomic data has even more limitations than for 
metagenomics, where the limitations are substantial.

Proteogenomic approaches are only as powerful as the underlying 
ge  nomic database, especially with regard to quantification and resolution of 
different microbial strains. A recent study shows that database selection is 
critical, and offers best practices for metaproteomic data interpretation and 
annotation (Timmins-Schiffman et  al. 2017). Ideally, genomics and pro-
teomics data is obtained from the same environmental sample. Where good 
genomic databases are available, such as for abundant marine cyanobacte-
ria, proteomics can resolve numerous microbial species and even ecotypes 
(Saito et al. 2014, 2015). In addition to the challenge of identification of pro-
teins, proteomics also inherits the challenge of functional annotation from 
genomics. Analysis of proteomic data in the context of operons (Ram et al. 
2005) and pathways (Mosier et al. 2015) can help to link proteins to functions 
and to more effectively assess differential expression, respectively.

10.3  Quantitative Proteomics

Quantification of shotgun proteomic data is challenging for a number of 
reasons. First, the detectability of peptides during mass spectrometry is 
highly nonuniform (Jarnuczak et al. 2016). Second, some peptides may be 
preferentially lost due to processes such as adherence of hydrophobic 
peptides to surfaces. Finally, as with shotgun metagenomics and metatran-
scriptomics, proteomic approaches typically produce data that is in terms of 
relative abundance rather than absolute abundance. Despite these chal-
lenges, three major strategies for quantitative proteomics have been devel-
oped and are discussed below: label free, isotopic labeling, and isobaric 
labeling.

Quantitative proteomics without labeling must rely on metrics intrinsic 
to MS measurements, such as the intensity or area of peptide peaks (Old 
et al. 2005), spectral counts (Liu et al. 2004), and normalized spectral abun-
dance factors (Florens et al. 2006). These approaches have been effectively 
applied to various microbial communities (Denef et al. 2010a; Hawley et al. 
2014; Justice et al. 2012; Lauro et al. 2011; Lo et al. 2007; Morris et al. 2010; 
Ram et al. 2005; Schneider et al. 2012; Sowell et al. 2011). However, label-
free methods of proteomic quantification are in terms of relative abundance, 
and even then their accuracy and precision are limited by the factors 
described above as well as run-to-run variation of mass spectrometry.

Stable isotope labeling is an effective method for obtaining more accu-
rate proteomic quantification, and potentially absolute abundance. This 
includes a variety of approaches, with either in vitro or in vivo labeling, 
some targeted and others high throughput (or “global”), and also combina-
tions of these two. The in vivo high-throughput approach that has been 
successfully applied to acid mine drainage microbial communities requires 
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that microbial communities are grown with a source of isotopically labeled 
nutrient, typically 15N, so that it is incorporated into every N atom of every 
protein (Pan & Banfield 2014). This labeled “reference” sample is then 
mixed in equal proportions with an unlabeled, “unknown” field sample and 
the mixture is run on LC-MS/MS. The relative intensity of the mass spectra 
provides the relative abundance of known versus unknown proteins 
(Belnap et al. 2010, 2011). A major disadvantage of in vivo isotopic labeling 
for proteomics is that the cultures or communities need to be grown in the 
laboratory in order for the stable isotopes to be effectively incorporated.

Absolute proteomic quantification can be achieved by using synthetic 
isotopically labeled peptide standards (with deuterium, 13C, or 15N) for pro-
teins of interest (Barnidge et  al. 2003; Gerber et  al. 2003). This targeted 
approach and the resulting absolute abundances can then be related to the 
relative abundance data provided by LC-MS parent ion spectra. If this is 
done with a sufficient number of isotopically labeled peptide standards for 
different proteins, a calibration for absolute quantification of unknown 
peptides (i.e., in terms of moles or grams of protein per liter) can be con-
structed (Malmstrom et al. 2009). The main disadvantage of this approach 
is in terms of throughput and cost. Nevertheless, it is effective for scientific 
questions in which certain proteins can be used as markers of biogeochem-
ical processes (Saito et  al. 2015). A combination of global and targeted 
quantitative proteomics has proven to be valuable in studying marine cya-
nobacterial communities and their response to nutrient availability (Saito 
et al. 2011a, 2014).

Most recently, proteomic quantification has been conducted by chemical 
isobaric labeling of peptides in a trypsin-digested mixture in vitro: Tandem 
Mass Tag (TMT) and Isobaric Tag for Relative and Absolute Quantification 
(iTRAQ) (Rauniyar & Yates 2014). “Isobaric” in this case means that the 
same overall mass is added to peptides from multiple samples, but those tags 
fragment during MS/MS analysis, yielding multiple “reporter ions” whose 
intensities are proportional to the abundance of a peptide in each sample. 
These methods offer improved accuracy over label-free methods of quanti-
fication (Li et al. 2012). Peptides from different samples are labeled differ-
ently and then pooled and run on the same LC-MS/MS run, thus avoiding 
concerns about run-to-run variation (though variation due to sample prep-
aration still needs to be considered). An example application of the TMT 
approach to microbial communities was to study the impact of temperature 
on individual microbial groups within acid mine drainage (Mosier et  al. 
2015).

These isobaric labeling approaches can simultaneously quantify many 
hundreds or even thousands of proteins, and yield results in terms of relative 
abundance (i.e., what is the abundance of protein X in sample A versus 
sample B?). Where absolute quantification is required, for example com-
paring the abundance of two different proteins in a single sample or placing 
protein quantities in terms of moles or grams per volume of sample, targeted 
proteomics with individual synthetic standards is required.
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10.4  Combining Stable Isotope Probing 
with Proteomics to Track Microbial Metabolism

Stable isotope probing can also be used to identify metabolically active 
microbes, to determine which organisms are incorporating isotopically 
labeled (13C, 15N, and 36S) substrates into protein, and to track metabolic 
interactions between community members via cross-feeding (von Bergen 
et al. 2013). “Metabolic labeling” of proteins can be done with isotopically 
labeled amino acids that are then directly incorporated into the protein, or 
by isotopically labeled nutrients or substrates that are of interest, such as 
inorganic (H13CO3

−, 15NO3
−) or organic (13C-acetate, 15N-urea) carbon and 

nitrogen sources. Direct incorporation yields signature spectral distributions 
and can be distinguished from indirect incorporation via subsequent release 
and uptake of metabolites or degradation products (von Bergen et al. 2013). 
Hence, SIP-proteomics can be used to trace the flux of elements through 
microbial communities via metabolic interactions, such as between auto-
trophs and heterotrophs (Justice et  al. 2014). This method has also been 
used to determine which community members are responsible for the deg-
radation of various organic contaminants and hydrocarbons (Bastida et al. 
2009; Bozinovski et al. 2012; Jechalke et al. 2013; Morris et al. 2012; Taubert 
et al. 2012).

Finally, proteomics can also be used to explore natural isotopic “finger-
prints” of microbial communities as they exist in the environment. Mohr 
et  al. (2014) have developed such a protein stable isotope fingerprinting 
(P-SIF) method, which measures the carbon isotope values (δ13C) of 
proteins  in order to link taxonomic identity of microbes to metabolic 
function. While to date, this method has only been applied in a proof-of-
concept study involving two species, it offers great promise in linking 
particular species to major metabolisms that impart isotopic fractionation 
(methanogenesis, methanotrophy, different pathways of autotrophy), and 
possibly for resolving trophic interactions.
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11
 Introduction

While this book focuses on methods for extracting information from the 
DNA, RNA, and proteins of microbial cells and communities, lipids and 
metabolites also provide unique and valuable molecular information about 
microbial geochemistry. Because of their exceptional potential for preserva-
tion in sediments and sedimentary rocks, lipids are especially valuable in the 
context of the geological record, where they can provide insights into the 
ecosystems and environments that characterized Earth millions and even 
billions of years ago (Briggs & Summons 2014; Brocks & Banfield 2009; 
Brocks & Pearson 2005; Newman et al. 2016; Summons & Lincoln 2012). 
They also may carry stable isotopic signatures that are indicative of certain 
metabolisms or utilization of specific substrates, such as methane. In the 
context of microbial geochemistry, lipidomics refers to the study of lipids 
and the genes and enzymes involved in their biosynthesis as they relate to 
ecosystem function and Earth history (Pearson 2014). Likewise, metabolo-
mics refers to the study of the pool of small-molecule metabolites associated 
with microbial cells or communities, which reflects the integrated activities 
of metabolic pathways and processes and the expression of their underlying 
genes and proteins (Moran et al. 2016).

11.1  Lipidomics

Unfortunately, the functional and taxonomic information preserved within 
lipids usually pales in comparison to that held within DNA, RNA, or protein 
sequences. Some lipid biomarkers are diagnostic of archaea, eukarya, and 
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bacteria (Briggs & Summons 2014; Summons & Lincoln 2012), but there are 
relatively few cases where specific lipids have been conclusively linked to 
specific taxonomic groups, such as the association of ladderanes with anam-
mox Planctomycetes (Pearson 2014; Sinninghe Damste et al. 2002). However, 
these organic biomarkers are often faithful indicators of specific meta-
bolic  or biosynthetic pathways, and the resolution and confidence of the 
information can be enhanced with isotopic data from the organic com-
pounds (Brocks & Pearson 2005; Hayes 2001; Hinrichs et al. 2001; Zhang 
et  al. 2009). Some lipid biomarkers may also reflect physiological state 
(Welander & Summons 2012). Further, the structure of some lipids corre-
lates systematically with environmental temperature and thus can provide 
insights into paleoclimate (Eglinton & Eglinton 2008; Kim et  al. 2010). 
Hence, despite their limitations, lipids are an indispensable component of 
the geobiological toolbox due to their high preservation potential, which 
provides opportunities to study organisms and ecosystems from millions 
and even billions of years ago.

Steranes such as cholestane have been taken as evidence for early eukary-
otes (Brocks et al. 1999), although recent advances have shown that reports 
of Archean steranes are artifacts of contamination (French et al. 2015). More 
rigorous contamination controls imposed reveal a revised biomarker record 
and suggest that eukaryotic algae did not rise to ecological prominence until 
the Neoproterozoic (Brocks et  al. 2017). Hence, even where phylogenetic 
resolution is low, lipid biomarkers can provide incredibly valuable insights. 
Steranes can also yield information about ancient metabolisms and environ-
ments. Because steroid biosynthesis requires molecular O2, steranes in the 
geological record provide a unique marker of O2, and knowledge of just how 
much O2 is required by biosynthetic pathways can be used to quantitatively 
constrain ancient O2 concentrations (Waldbauer et al. 2011). The molecular 
biomarker record of plant and animal life has also proven to be invaluable, 
providing insights into the rise of major groups such as diatoms (Sinninghe 
Damste et al. 2004), as well as characteristics of particular fossils such as the 
original color of various tissues (Briggs & Summons 2014).

Efforts to map the distribution of biomarkers across the tree of life now 
find new opportunities in the midst of the genome sequencing revolution 
(Brocks & Pearson 2005; Brocks & Banfield 2009; Newman et  al. 2016; 
Summons et al. 2006). Biosynthetic pathways for biomarkers of interest can 
be quickly found with computer searches of genome sequences (Pearson 
et al. 2003). However, this requires an understanding of the links between 
biosynthetic genes and biomarkers, which is a formidable challenge in itself. 
Advances in high-throughput functional approaches can uncover such link-
ages, and are discussed in depth with examples in Pearson (2014). Recent 
studies illustrate the crucial need to understand how specific compounds 
are distributed across the tree of life in order to successfully interpret the 
biomarker record. Whereas 2-methylhopanes were originally considered as 
a marker of oxygenic photosynthesis (Brocks et al. 1999), subsequent studies 
showed that they can also be produced in abundance by other organisms 
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that do not conduct oxygenic photosynthesis (Rashby et al. 2007; Welander 
et al. 2010). Newman et al. (2016) synthesize this story to illustrate how cel-
lular and molecular biological approaches in modern systems are central to 
the interpretation of biomarkers in the rock record. In a more recent 
example, the wider phylogenetic distribution of biosynthetic pathways for 
tetrahymanol, a precursor of the diagenetic product gammacerane, raised 
questions about its common use as a biomarker of water column stratifica-
tion (Banta et al. 2015, 2017).

Advances in high-throughput production of lipid data open exciting new 
opportunities for investigating lipid biomarkers in the sedimentary and geo-
logical record. Direct detection of target lipids in sediment sections at fine 
spatial scales enables the use of lipid biomarkers to track records of climate 
change on subannual to decadal time scales (Wörmer et  al. 2014), and 
advanced statistical techniques are increasingly being employed to help 
understand the biomarker data (Tierney & Tingley 2015). When combined 
with a better understanding of the phylogenetic and physiological meaning 
of specific lipids derived from the current revolution in DNA sequencing, 
proteomics, and other high-throughput functional approaches (Brocks & 
Banfield 2009; Pearson 2014), the future of lipidomics in geobiology looks 
particularly promising.

11.2  Metabolomics

Metabolomics is the study of the complete set of small molecules (metabo-
lites) within a microbial culture or community. It provides a valuable snap-
shot of the physiological status of microorganisms (Kido Soule et al. 2015; 
Tang 2011). Like lipidomics, metabolomics lags behind genomics, tran-
scriptomics, and proteomics, particularly in the context of whole microbial 
communities, where there have been comparatively few studies. In part, this 
is due to experimental challenges associated with identifying metabolites in 
complex environmental matrices. However, these challenges can be over-
come to some extent by advances in analytical (Johnson et al. 2017; Kido 
Soule et  al. 2015), computational (Longnecker & Kujawinski 2017; 
Longnecker et  al. 2015), and stable isotope labeling approaches (Mosier 
et al. 2013). The upside is huge because metabolomics can provide impor-
tant insights into the metabolic state of microorganisms, and how different 
microbes interact with each other and with their surroundings.

Metabolomics is particularly powerful when done in parallel with pro-
teomics because together they can produce a picture of what metabolites 
are present and what pathways are actively involved in their production, 
cellular uptake, and utilization. For example, Halter et al. (2012) character-
ized metabolites secreted by a photosynthetic protist in acid mine drain-
age, identifying specific compounds, and their corresponding proteins of 
biosynthetic pathways, that potentially impact the associated microbial 
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community. Also in acid mine drainage, Mosier et al. (2013) identified key 
metabolites for adaptation to acidic, metal-rich conditions. Metagenomic 
data can also be used to make predictions about which taxa are potentially 
responsible for production and consumption of metabolites (Larsen et al. 
2011).

Results of metabolomics studies conducted in pure cultures lay a 
foundation for interpreting metabolomic studies of microbial communities. 
Steffen and colleagues found that the metabolome of the cyanobacterium 
Microcystis aeruginosa was strikingly static compared to the transcriptome, 
and inferred that these two omics approaches are sensitive to different levels 
of environmental change (Steffen et al. 2014). These results emphasize that 
the mRNA pool turns over more quickly than the metabolite pool, and tran-
scriptomic and proteomic responses may be mounted to stabilize the metab-
olome. However, in other cases metabolomics has been used to identify 
small molecules potentially involved in adaptation to environmental changes 
in conditions such as temperature (Ghobakhlou et al. 2013; Trauger et al. 
2008).

Metabolomics is also valuable in studying the interactions between 
microorganisms. It has been used to identify cell-to-cell signaling pathways 
between cyanobacteria and associated heterotrophs that are involved in reg-
ulating nutrient uptake (van Mooy et  al. 2012). Viral infections promote 
dramatic changes in the metabolomes of infected populations, with implica-
tions for biogeochemical effects of virally mediated lysis (Ankrah et  al. 
2014). In some or perhaps even most cases, the exchange of compounds 
between organisms can be cryptic, due to low concentrations, rapid turn-
over, unknown compounds, or other analytical challenges.

New computational approaches show great promise in identification of 
environmentally relevant metabolites (Longnecker & Kujawinski 2017). 
Here, the utilization of transcriptomic approaches can be valuable, as was 
demonstrated in a co-culture of a marine autotroph and heterotroph 
(Durham et al. 2015).

Overall, these studies show how multiple omics approaches can be em -
ployed in parallel to draw on the specific strengths and minimize the weak-
nesses of each.
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12
 Introduction

Whereas previous chapters focused on the “nuts and bolts” of specific omics 
approaches, this chapter covers downstream tasks and issues surrounding 
data products generated by earlier stages of analysis. Although ultimately 
critical for realizing the full potential of omics approaches for the Earth and 
environmental sciences, associated resources and infrastructure remain 
underdeveloped and insufficient in many cases. Nevertheless, progress is 
being made as more and more publicly available tools make analysis of 
omics datasets more accessible to the nonexpert. Efforts led by both the 
community and funding agencies are making progress towards establish-
ment of infrastructure and standard practices for analyzing, storing, and 
sharing data. Recent advances in the integration of omics data into numerical 
models are particularly exciting because modeling offers vast potential for 
synthesizing large datasets and directly testing our level of understanding of 
microbial systems, and eventually for moving the field toward the ability to 
make predictions about outcomes of microbially mediated processes.

12.1  Comparative Omics

Whether derived from a culture, single cell, or a genomic bin of a community, 
comparing the gene content of different genomes is a central task in geno-
mics. For example, defining which genes are unique (or common) to a 
certain phylogenetic or functional group of organisms can reveal genetic 
and functional themes and differences. The core challenge is usually to define 

Downstream and Integrative 
Approaches and Future 
Outlook



146  Downstream and Integrative Approaches and Future Outlook

orthologs, homologous genes that serve a conserved function (as opposed to 
paralogs, which are homologous genes derived from gene duplication that 
often have different functions). One method to do this is a pair-wise all 
versus all BLAST, where the reciprocal best hits above a certain threshold 
are defined as orthologs (Kristensen et al. 2011). Markov chain clustering 
(MCL) is an effective method of comparing the gene content of multiple 
genomes (Li et al. 2003). Several software packages are available to accom-
plish this task, including publicly available programs IMG (Markowitz et al. 
2009) and Pogo-DB (Lan et al. 2014), which are useful where the genomes 
are publicly available and comparisons have been precomputed. GET_
HOMOLOGUES can define homologs using several different methods and 
produce graphical output on components of the pangenome (Contreras-
Moreira & Vinuesa 2013). Anvi’o also has a workflow for microbial pange-
nomics which can identify protein clusters and compare them across 
genomes and metagenome-assembled genomes (Eren 2017b).

Data derived from whole communities or from single cells presents sev-
eral challenges for comparative analyses. First, for genome-centric compar-
isons, data derived from metagenomic data or single cells is often incomplete. 
Methods to compare partial genomes, such as the modified mediator 
genome reference assembly approach, have been developed (Kashtan et al. 
2014; Wurtzel et  al. 2010). Second, omics data from communities often 
comes in the form of relative abundance, not absolute abundance. Thus, as 
discussed in the section on metatranscriptomics, careful consideration must 
be given to strategies for normalization and statistical inference of differential 
abundance.

12.2  Statistical Approaches

As DNA sequencing costs have declined, it has become possible to conduct 
community omics studies that include replicate sequencing of conditions or 
samples. This enables the application of rigorous statistical approaches to 
microbial community omics data, which are required to identify biologically 
meaningful differences between microbial communities. Many statistical 
approaches and pipelines that are applicable to microbial ecology data, espe-
cially 16S rRNA gene data (McMurdie & Holmes 2013), are well established. 
However, fewer tools have been developed for shotgun omics data, and like 
many aspects of research related to next-generation sequencing, keeping up 
with the best practices and approaches can be daunting (Buttigieg & Ramette 
2014a). Hence, software packages and dynamic online resources such as 
blogs, forums, and “how-to” guides are invaluable. The GUSTA ME (GUide 
to STatistical Analysis in Microbial Ecology) (Buttigieg & Ramette 2014b) 
and STAMPS (Strategies and Techniques for Analyzing Microbial Population 
Structure) (STAMPS 2017) websites (and course) provide valuable guides in 
this regard and contain some of the most common and useful tools for 
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statistical analysis of community omics (Buttigieg & Ramette 2014a; Parks 
et al. 2014).

Also widely used are statistical packages within R (Ismay & Kim 2015), 
those for general ecological analyses such as VEGAN (Simpson et al. 2017) 
and PRIMER-E (PRIMER-E 2017), and those borrowed from analysis of 
differential expression RNAseq data on single organisms such as DESeq 
(Love et al. 2014). For all of these methods, an important consideration is 
the type of data that is required for input. Some will take relatively raw input 
(e.g., cDNA read counts for genes, whether functionally annotated or not) 
whereas others require functional or taxonomic output from annotation 
pipelines described above such as MG-RAST or IMG/M. In addition, these 
major publicly available online tools now have built-in tools for performing 
statistical analysis of data (Markowitz et  al. 2009; Meyer et  al. 2008). 
Regardless, normalization is a critical consideration in the preprocessing of 
data (see section 7.5).

12.3  Visualization

Visualization can be a powerful way of exploring metagenomic data. 
Though no one single software package provides the wide range of visual-
ization tools needed for all metagenomics applications, there are a number 
of tools available for specific purposes. MG-RAST and IMG also now pro-
vide options for visualization of data. Several general applications for 
visualizing next-generation sequencing data are also indispensable for 
microbial community omics applications. “Strainer” provided an early 
example of how visualization could enable studies of genetic variation 
and  recombination within microbial populations (Eppley et  al. 2007). 
Integrated Genome Viewer (Robinson et al. 2011) and tablet (Milne et al. 
2013), though not designed for community genomic data, can effectively 
visualize coverage and paired-end information, which are useful for 
evaluating metagenomic assemblies (see section 5.5), together with gene 
annotations.

Several versatile platforms specifically designed for visualizing various 
forms and dimensions of community omics data are now available. Anvi’o is 
distinguished by its versatility, interactive interface, and customizability 
(Eren et  al. 2015). For example, you can load binning information from 
external applications and visualize it in parallel with coverage and taxo-
nomic information. The anvi’server (https://anvi-server.org/) shows great 
promise for channeling these unique capabilities in complex visualizing into 
new methods of sharing data in such a way that it can be explored further, 
with the various forms of highly interconnected data accessible. Elviz 
(Environmental Laboratory Visualization) is an interactive web-based tool 
for visualizing metagenome data and metadata (JGI 2017), but at this point 
it has more limited capabilities than anvi’o. It is designed for metagenomic 
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assemblies and allows users to plot GC content, relative abundance, phylo-
genetic affiliation, and length of contigs, using either publicly available or 
user-uploaded datasets.

A number of R-packages for visualization of meta-omics data are also 
now available. ShotgunFunctionalizeR offers visualization capabilities along 
with statistical methods for assessing functional differences between datas-
ets (Kristiansson et al. 2009).

Krona provides a web-based visualization of taxonomic data, using a 
hierarchical scheme for displaying and interactively exploring metagenomic 
classifications (Ondov et al. 2011). Large phylogenetic trees can be visual-
ized and edited with tools such as Dendroscope (Huson et  al. 2007) and 
iTOL (Interactive Tree Of Life) (Letunic & Bork 2011). Meta-SMART 
enables exploration of protein domains of metagenomic datasets in the phy-
logenetic context of iTOL (Letunic et  al. 2012). Visualization of metage-
nomic data has also played a key role in some binning applications, including 
anvi’o (Eren et al. 2015), emergent self-organizing maps (Dick et al. 2009; 
Ultsch & Moerchen 2005), and methods for nonlinear dimension reduction 
(Laczny et al. 2015).

12.4  Cyberinfrastructure for Environmental Omics

DNA sequencing is one of the few technologies that is advancing at a greater 
pace than computer processor speeds, the so-called Moore’s law (Kahn 
2011) (see Fig. 1.3). Yet it is beyond this issue of raw quantity of data where 
the true challenge lies  –  the multidimensional nature of environmental 
omics data (Fig. 12.1). Ideally, raw reads are assembled into contigs and scaf-
folds, which are then separated into genomic bins that represent organisms 
(or populations) with rich biological information about taxonomy and phe-
notype. Contigs are then annotated with the coordinates of genes, and the 
genes themselves are annotated with associated information about their 
biological function. In many cases, there are numerous orthologous genes, 
derived from related microbial strains or species, that share the same 
functions and that we may want to lump together or split at some level of 
divergence, depending on the task at hand. Each of these bins and genes is 
then associated with an abundance of mapped reads, transcripts, and/or 
peptides across samples in space and time. Each sample is linked to geo-
chemical and environmental data that researchers want to explore in the 
context of all the various levels of omics data.

Tracking all of these different dimensions of data and metadata, and linking 
them together, remains an unresolved challenge. A project within the National 
Science Foundation’s EarthCube program strives to synthesize cyberinfra-
structural needs, challenges, and resources for microbial community omics 
(Gilbert et al. 2014).
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12.4.1 Software Platforms for Integrated Analyses and Data 
Storage

As the field of environmental omics has matured, several large-scale plat-
forms for analysis and storage of data have emerged, and a few have endured. 
MG-RAST (Meyer et  al. 2008) and IMG (Markowitz et  al. 2009) provide 
critical resources in terms of both analysis and databases, but have limita-
tions in terms of breadth of analyses offered, being largely focused on anno-
tation and downstream comparative processes. Hence, input for these 
piplelines is typically at the stage of contigs/scaffolds, after metagenomic 
assembly and binning. Due to their size, large number of users, and limited 
financial support, MG-RAST and IMG are also relatively inflexible to 
accommodate special user needs, though they increasingly provide tools 
that are widely useful (e.g., http://jgi.doe.gov/data-and-tools/bbtools/). 
CAMERA (Seshadri et  al. 2007) was another “top-down” resource that 
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served some users from the marine microbiology community well, but it 
was not nimble or responsive enough to many user needs.

These challenges will only multiply as the field move towards more com-
parative and experimental studies that involve large numbers of samples and 
utilize multidimensional forms of data (e.g., genes, bins, transcripts, strains 
across space and time), omics approaches, and parallel geochemical and 
environmental data.

On the upstream end of omics analyses, commercial software packages 
Geneious (Kearse et al. 2012) and CLC Genomics Workbench (CLC 2017) 
provide graphical-user interfaces for assembly, mapping reads to scaffolds 
and visualizing them, and conducting statistical analyses for RNAseq.

Much progress in the development of software applications has also been 
made on a smaller scale, by individual investigators. The anvi’o platform 
(Eren et al. 2015) represents a major advance in terms of flexibility and visu-
alization. Unlike other platforms, it offers the ability to import and integrate 
output from other tools. For example, binning output can be easily imported 
and analyzed in the context of other anvi’o features. The importance of 
holistic analysis of community omics data  –  integrating and comparing 
single-cell genomes, metagenomes, and metatranscriptomes – was demon-
strated by Eren et al. (2015) in the reanalysis of Deepwater Horizon data. 
This work showed that only by linking these separate sources of data could 
key genomic structures (most likely plasmids or phage) be discovered. These 
results also highlighted the value of de novo assembly and nucleotide com-
position-based binning and the limitation of taxonomy-based binning. A 
series of helpful tutorials and blogs are also available to support users of 
anvi’o (Eren 2017a). The Australian Centre for Ecogenomics has also devel-
oped a series of widely used software applications for analysis of microbial 
community omics data (http://ecogenomic.org/software).

Another exciting trend in the field of omics is to enable dissemination 
and support of user-developed applications through collaborative and 
open-source platforms. Here, the plant biology community provides a 
model with Cyverse (www.cyverse.org/), which was used as a foundation 
for iVirus (Bolduc et  al. 2016). The US Department of Energy has also 
developed an open platform called kbase (https://kbase.us). A variety of 
smaller programming toolkits are also now available, including the Bio-
Community Perl toolkit (Angly et al. 2014) and the mmgenome R package 
(Karst et al. 2016).

Finally, demands for hardware for metagenomics research are increas-
ingly being met by public computing environments rather than local servers. 
Until it was recently retired, DIAG was a public computing environment 
designed specifically for genomics, with associated software and bioin-
formatic pipelines. JetStream provides cloud services for science and 
engineering in the US (https://jetstream-cloud.org/). General computing 
resources are also widely used; many universities now have subsidized high-
performance computing facilities, and cloud computing such as Amazon 
also provides cost-efficient computational power.
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12.5  Data and Sample Archival

Archiving data derived from molecular studies of microbial communities is 
crucial to ensure reproducibility and to make datasets available for reanal-
ysis and metaanalyses. Indeed, funding agencies and journals typically 
require submission of data to publicly available databases. Although data-
bases such as NCBI and IMG serve as repositories for microbial community 
data, they were not developed with this functionality in mind, or for 
community input. Thus, they do not adequately satisfy the needs of the 
community, especially in terms of storing and linking the many different 
forms of data and metadata that are inherent to microbial communities in 
the environment (Gilbert et al. 2014). Long-term storage and availability of 
samples from studies of microbial communities are also of great value but 
face even greater practical and cultural challenges (Cary & Fierer 2014).

As discussed above, a key challenge inherent to environmental omics data 
is its multidimensional nature (see Fig. 12.1). Proper archival of such data 
faces challenges due to its heterogeneity and complexity, but also due to the 
lack of incentives and appropriate resources (Brown & Tiedje 2011; 
Reichman et  al. 2011). Hence, it is critical to develop standards and best 
practices for omics data and metadata, a task that has been taken on by the 
community-driven effort of the Genomic Standards Consortium (Field 
et al. 2011), which has developed the Minimal Information about a MARKer 
gene Sequence (Yilmaz et al. 2011). Specific communities often have specific 
needs, which is reflected by recommendations of the Terragenome Project 
(www.terragenome.org) and the ocean sciences community (Gilbert et al. 
2014). Also critical for comparing data are quality control and standardiza-
tion of protocols and procedures to the extent possible; this is one of the 
goals of the Earth Microbiome Project (Knight et al. 2012) and the microbi-
ome quality control project (Sinha et al. 2015).

Data deluges such as the one faced by environmental genomics have been 
efficiently dealt with by other disciplines. For example, astronomy faced 
similar issues and found a solution in federated data repositories and stan-
dards for processing, interoperability, and metadata, which spurred the 
development of methods for analyzing and archiving data (Golden et  al. 
2013). Funding agencies should take a leadership role in demanding and 
supporting such efforts (NIH 2014).

12.6  Modeling

As discussed in section 3.1.3, the massive wave of new omics data provides 
new opportunities for developing and testing biogeochemical models. On 
the other hand, modeling is an emerging means of synthesizing omics data 
and generating and testing scientific hypotheses. The practice of developing 
models and comparing their output to real observations has high potential 
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for synthesizing information across different spatial and temporal scales, 
and for bridging the microbial and biogeochemical or ecosystems sciences 
(Dick 2017; Mock et al. 2016). The Gordon and Betty Moore Foundation 
Marine Microbiology Initiative has been a strong proponent of this approach 
(Fuhrman et al. 2013).

To date, relatively few biogeochemical models have integrated omics data, 
but several approaches have been pioneered. Reed et al. (2014) used genes 
encoding lithotrophic energy metabolism to track the abundance of various 
functional groups in oxygen minimum zones. Importantly, their results 
demonstrated that explicit incorporation of microbes into the biogeochem-
ical model helped to explain observed geochemical profiles. This method 
has also been used in conjunction with a fluid dynamics model to track 
microbial transport and metabolisms in the dynamic environment of 
deep-sea hydrothermal plumes, where the model conclusively showed that 
plume microbial communities must be derived from water column rather 
than seafloor sources (Reed et al. 2015). Louca et al. (2016) used a similar 
approach, but extended it to include mRNA and protein information. While 
many uncertainties remain regarding controls on production and degrada-
tion of mRNA and proteins in natural microbial communities, this paper 
highlighted the power of modeling to probe and evaluate our current under-
standing of these processes, and predicted that spatiotemporal datasets 
could provide further insights.

A key aspect of the omics-enabled, thermodynamic-kinetic, biogeochem-
ical modeling approach is that free energy available for microbial growth 
from lithotrophic metabolisms can be readily predicted based on observed 
geochemical conditions. Further, many specific redox reactions of lithotro-
phic metabolisms are catalyzed by enzymes encoded by well-known and 
well-conserved marker genes. Thus, community composition predicted 
from thermodynamics can be directly compared to observations. While this 
appears to work well for lithotrophic metabolisms in some systems, it is not 
readily applicable to photosynthetic or heterotrophic communities that 
largely drive Earth’s biogeochemical cycles.

Opportunities abound for linking genetic information to ecophysiolog-
ical traits so that omics data can be integrated into ecosystem models. If 
marker genes for key traits in terms of nutrient and light requirements, 
organic substrates, cell size, and response for perturbation can be defined, 
then one can imagine a fruitful synthesis of gene-centric modeling with a 
variety of models from theoretical ecology, which have advanced substan-
tially in the past decade (Follows & Dutkiewicz 2011; Litchman & Klausmeier 
2008; Ward et  al. 2014; Zomorrodi & Segre 2016). Indeed, trait-based 
models that are enabled and evaluated by metagenomic data promise to 
improve predictions about how soil microbial communities will respond to 
climactic perturbations such as drought (Bouskill et al. 2012; Martiny et al. 
2017). Multitrophic ecosystem models (Weitz et al. 2015) are also ripe for 
integration with gene-centric approaches.
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At a much more reductionist level, an entire field has developed around 
the aim of modeling cellular metabolism based on microbial genomes (Kim 
et al. 2012; Steuer et al. 2012). Recently, this approach was extended to whole 
microbial communities by assembling the species-level models from 
constituent community members (Zelezniak et al. 2015). This study revealed 
both competition and metabolite exchange between microbial groups across 
a wide variety of habitats. As such ecosystem and community level models 
begin to incorporate more details about the physiology and metabolism of 
specific populations (Bradley et al. 2015; Follows et al. 2007; Todd-Brown 
et al. 2012; Treseder et al. 2012; Wieder et al. 2015), the gap with genome-
scale models, which have matured over the past 15 years (Karlsson et  al. 
2011; Kim et al. 2012; Zomorrodi & Maranas 2012; Zomorrodi et al. 2014), 
should begin to close so that each approach could benefit from the other in 
moving towards genome-resolved biogeochemical models of whole ecosys-
tems. Exciting developments in this area are under way, and draw strength 
from direct integration of experimental data (Louca & Doebeli 2015). 
Transcriptomic, metabolomic, and proteomic data obtained directly from 
the environment, including information on enzyme concentrations, could 
be valuable to inform, verify, and calibrate models developed for natural 
communities.

12.7  Emerging Trends and Future Outlook

In 2011, Brown and Tiedje articulated a prescient vision of how metage-
nomics will develop in the future (Brown and Tiedje 2011). Before we can 
achieve the ultimate goal of a “systems biology of the biosphere” with pre-
dictive capabilities, effort and resources need to be shifted from sequencing 
to analysis and computation, and eventually towards experimentation and 
modeling. In fact, this vision is applicable not only to metagenomics but to 
all omics approaches, and remains largely relevant and accurate 7 years 
later.

Several new initiatives have the potential to tackle the computational 
challenge surrounding environmental omics approaches. The National 
Science Foundation EarthCube program began in 2011 with the goal to 
“enable geoscientists to address the challenges of understanding and pre-
dicting a complex and evolving Earth system by fostering a community- 
governed effort to develop a common cyberinfrastructure to collect, access, 
analyze, share and visualize all forms of data and resources, using advanced 
technological and computational capabilities” (Gil et  al. 2014). Within 
EarthCube, a research coordination network is focused on environmental 
genomics for ocean sciences and geobiology (ECOGEO 2017).

As discussed in section 3.3 and elsewhere (Dick & Lam 2015; Druschel 
et  al. 2014), a fundamental limitation of omics approaches is the lack of 
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knowledge regarding the physiological and biogeochemical functions of 
many genes (and vice versa; which genes encode which biogeochemical 
processes). The magnitude of this challenge is stunning. Consider the most 
intensively studied bacteria on Earth, such as E. coli. This organism, which 
has been subjected to intensive lab research for decades, still harbors a sub-
stantial fraction of genes of unknown function. Now consider the vast diver-
sity of uncultured microbes, of which we are just beginning to catch glimpses 
(Baker & Dick 2013; Brown et al. 2015). The gap between omics data and 
functional knowledge continues to widen (Galperin & Koonin 2010), and 
new high-throughput approaches are urgently needed in both culture-
dependent (Deutschbauer et al. 2014) and culture-independent (Taupp et al. 
2011) methods. Ironically, this grand challenge highlights the need for 
renewed efforts to develop functional metagenomic approaches, which were 
the focus of early metagenomic studies (Béjà et al. 2000; Riesenfeld et al. 
2004). Modeling approaches and their integration with experiments and 
observation also hold promise as a means for navigating through vast 
unknowns to arrive at a systems-level understanding of microbial commu-
nities and their role in Earth, environmental, and engineered systems (Dick 
2017).

Even as the lag between generation of sequence data and computational 
infrastructure and biochemical knowledge continues to widen with current 
sequencing technologies, new advances in DNA sequencing that could 
accelerate this disparity are on the horizon. Fortunately, certain aspects of 
these advances promise to ameliorate rather than exacerbate some of the 
primary challenges highlighted in this book. In particular, reports of ultra-
long reads (hundreds of kilobases in length!) are starting to emerge. These 
technologies could eventually provide a path to circumvent the challenges of 
metagenomic assembly and binning, and thus hold potential to once again 
change the landscape of possibilities for environmental omics. Single-cell 
transcriptomics is already here for eukaryotic cells and it is likely just a 
matter of time before remaining complications with its application to bacte-
rial and archaeal cells (mainly cell lysis and rRNA depletion) are resolved. 
Advances in structural biology, especially in computational modeling of 
protein structures, are already opening new perspectives on protein diver-
sity and biology (Ovchinnikov et  al. 2017) and could represent a game-
changer for shedding light on metagenomic sequences, especially those of 
unknown function.

Finally, we may be entering an era in which it is possible to leverage 
knowledge of microbial community omics to manipulate microbial systems 
through technologies such as probiotics, phage therapy, and CRISPR. These 
anticipated breakthroughs make it clear that microbial community omics 
will remain an exciting and dynamic field for the foreseeable future. 
However, perhaps most exciting is that the history of this field shows that 
the most transformative advances are likely to come in areas and from direc-
tions that are unimaginable to us right now.
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