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Preface 

When asked whether they wanted to contribute a chapter 
to these three volumes on the Molecular Repertoire of Adeno­
viruses almost all of my colleagues working in the field res­
ponded favorably and supplied fine chapters on their areas 
of expertise. 

In 1995, adenoviruses continue to provide a major and 
highly developed experimental system for biochemical, cell 
biological. genetic, virological, and epidemiological investi­
gations in mammalian molecular biology. As a considerable body 
of information has become available thanks to the continued 
efforts of many, this virus system has become particularly useful 
to those who want to address details of biological mechanisms 
and their relation to structure and function. 

We have tried to cover as wide a field as possible in current 
adenovirus research and to encompass the entire gamut of 
adenovirology and adenovirus molecular biology. In spite of the 
tendencies that come from many corners to seduce researchers 
into directing their efforts towards applied molecular biology, 
which of course has its place and merits, there are still sturdy 
groups who pursue their interests in basic molecular biology and 
in particular in adenovirus research, an "eternal archetype," as one 
of the experts chose to name the virus. 

In the first of the three volumes, we present an overview of 
adenovirus research and go on to cover the topics of the 
structure and assembly of adenoviruses, viral infection, and viral 
gene products. In the following two volumes, we turn our 
attention to topics such as DNA replication, recombination and 
integration, post-transcriptional control, transformati~n and E1A 
adenovirus genetics, pathogenesis, and gene therapy. 

The three volumes appearing now have also been initiated 
to mark with some, perhaps unavoidable, delay the occasion of 
the 40th anniversary of the discovery of adenoviruses by W.P. 
Rowe and R.J. Huebner and, independently, by M.R. Hilleman 
and J.H. Werner in 1953/1954. 
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was encouraged to undertake the task of editing the 
current three volumes on adenovirus molecular biology by visits 
to many libraries in different countries on several continents 
during the last decade and by the observation that the three 
volumes on The Molecular Biology of Adenoviruses, which I 
had edited for Springer-Verlag's series Current Topics in Micro­
biology and Immunology in 1983 and 1984, had apparently been 
diligently worked through by many readers. The craftsmanship 
of the book covers had barely resisted the intellectual assault 
and showed that the books had been consulted with curiosity. 

There are few viral genomes that have not been developed 
into useful vector systems. An increasing number of research 
reports have been devoted to adenoviruses as potential vectors 
for human somatic gene therapy. Should that virus system 
indeed prove its worth for this important application, researchers 
will have to appreciate the subtleties of the biology and the 
molecular biology of this virus system. As someone who has not 
been directly involved in research on gene therapy, it appears to 
me that considerable efforts will have to be expended before all 
the problems concerning the therapeutic application of the 
adenovirus system or, more likely, of even better systems will 
be solved. The importance of this goal justifies and will require a 
great deal of very active research. 

We wish to thank all the contributors, the editors of the 
Current Topics series, and in particular Springer-Verlag for their 
help in getting these three volumes to press. 

Cologne WALTER DOERFLER 

PETRA BOHM 
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1 Introduction 

Studies on the replication of adenovirus DNA were initiated more than two 
decades ago and quickly led to a novel displacement model for DNA replication 
(SUSSENBACH et al. 1972). These studies were mainly performed using intact 
infected cells or isolated nuclei. It was only after the development of C! system to 
study replication in vitro (CHALLBERG and KELLY 1979) that detailed information could 
be obtained about the protein-priming mechanism for initiation and about the 
replication proteins. The last decade has been characterized by the discovery of 
transcription factors as participants in initiation (NAGATA et al. 1982; PRUIJN et al. 

Laboratory for Physiological Chemistry, University of Utrecht, 3508 TA Utrecht, The Netherlands 
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1986), by complete reconstitution of the system with purified recombinant 
proteins, and by structural information on some of the replication proteins. After 
the previous review in this series (SUSSENBACH and VAN DER VLIET 1983), several 
reviews on adenovirus replication have appeared (KELLy1984; CAMPBELL 1986; VAN 
DER VLIET et al. 1988; CHALLBERG KELLY 1989; STILLMAN 1989; HAY and RUSSELL 1989; 
VAN DER VLIET 1990, 1991; SALAS 1991; DE PAMPHILIS 1993a). 

Here, I will give an overview of the latest developments regarding the 
replication in vitro and the role of the various replication proteins and present a 
model for the mechanisms of replication integrating the latest results. 

Initiation of replication of the 36-kb adenovirus replicon requires origin sequ­
ences located in the inverted terminal repeats. The length of these repeats varies 
between serotypes and is 102 bp long in the adenovirus type 2 (Ad2)/Ad5 
serotypes that will be discussed mainly in this review. The sequence (STEENBERGH 
et al. 1975) shows the presence of a region between positions 9 and 18 con­
served in all serotypes (TOULIN et al. 1979; STILLMAN et al. 1982a) that constitutes 
the core origin (see Fig. 1). Two other blocks of sequences are mainly conserved 
and are located in the auxiliary region of the origin, which enhances replication 
up to 200-fold both in vivo and in vitro (ROSENFELD et al. 1987; WIDES et al. 1987; 
CHALLBERG and RAWLINS 1984; GUGGENHEIMERR et al. 1984; HAY 1985; LALLY et al. 
1984). These regions bind the cellular transcription factors nuclear factor I (NFl) 
and NFIII/Oct-1 (NAGATA et al. 1982; PRUIJN et al. 1986) (Fig. 1). The total length of 
the origin is approximately 50 bp. Another important component is the 55-kDa 
terminal protein (ROBINSON et al. 1973) which is bound to the 5'-dCMP (deoxy­
cytidine monophosphate) residue of both strands via a phosphodiester bond with 
a serine residue (REKosH et al. 1977; CHALLBERG et al. 1980). This parental terminal 
protein serves several functions during replication (see Sect. 4). 

The general picture that has emerged from the various studies can be shortly 
characterized as follows. Replication requires three essential viral proteins en­
coded by the E2 transcription unit. These are the precursor terminal protein (pTP), 
the DNA polymerase (pol), and the DNA-binding protein (DBP). The first two are 

CORE ORIGIN AUXILIARY REGION 

~ 9 18 25 39 49 

TP ,I I, 1...-, ~ CATCATCAATAATATACCTTATTT~GGiTTGAAIGCCAA~ATGATAATGAGGGG 
~TAGTAGT1ATTATATG~T~CC~AACTT~A~TA~CCCC 

IpTP-poll NFl I Oct-! I 
Fig. 1. The adenovirus type 2/5 origin of DNA replication. The terminal protein (TP) is covalently 
attached to the 5' dCMP (deoxycytidine monophosphate) residue through Ser-580. Regions highly 
conserved in various serotypes are indicated in brackets. Binding sites for precursor TP-DNA 
polymerase (pTP-pol) in the core origin and for nuclear factor I (NFl) and NFIlI/Oct-1 in the auxiliary 
region are given 
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present in infected cells as a heterodimer (pTP-pol). These three proteins, 
together with the core origin, can sustain a low level of replication. Initiation is the 
rate-limiting step and can be enhanced by NFl and NFIII/Oct-1, which form a 
stabilized nucleoprotein structure at the origin together with the three viral 
proteins. Finally, a topoisomerase (NFII) is required for elongation of the total 
replicon. A summary of the properties of these proteins is presented in Table 1. 
Initiation occurs by a protein-priming mechanism in which pTP binds the 
first nucleotide of the nascent strand, a dCMP residue, covalently through a 

Table 1. Properties of viral and cellular DNA replication proteins (adenovirus type 5) 

Molecular Function 
mass (kDa) 

Initiation Elongation 

Viral proteins 

Precursor Terminal Protein (pTP) 80 Primer bound to pol 
Binds core origin 

DNA polymerase (pol) 140 Binds to core origin Polymerizes by 
(+pTP)Couples dCMP displacement 
to pTP (+DBP) 

DNA-binding protein (DBP) 59 Reduces Km for dCTP Protects ssDNA 
(72') Enhances binding of Unwinds duplex DNA in 

NFl fork 
Enhances processivity 

a nd rate of polymeri-
zation 

Changes sensitivity of 
pol to inhibitors 

Template-bound terminal protein 55 Protects 5' ends 
Enhances template 

activity 
Enhances pTP-pol 

binding 
Changes origin 

structure 

Cellular Proteins 

Nuclear factor I (NFl) 55 Binds auxiliary origin 
Binds pTP-pol 
Positions pTP-pol to 

origin 
Stabilizes preinitiation 

complex 
Nuclear factor II (NFII) 30 Permits synthesis of 

complete DNA 
(topoisomerase I) 

Nuclear factor III (NFIlI/Oct-1) 90 Binds auxiliary origin 
Bends DNA 
Binds pTP-pol weakly 

dCMP, deoxycytidine monophosphate; dCTP, deoxycytidine triphosphate; ss, single-stranded. 
, Apparent molecular mass in sodium dodecyl sulfate (SDS) polyacrylamide gels. 
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Ser-dCMP phosphodiester bond. The catalytic center for this reaction is present 
in the polymerase and coincides with the region required for elongation. The 
reaction velocity is enhanced by NFl and NFIII/Oct-1 by mechanisms to be 
described later. DBP also enhances initiation by changing, among others, the Km 
of the reaction. Following the pTP-dCMP formation, elongation starts by a 
displacement mechanism. Elongation is rapid (20-30 bp/s) and processive and 
requires only DBP and the polymerase. Both initiation and elongation are inde­
pendent of adenosine triphosphate (ATP). Unwinding is presumably caused by 
DBP, which has helix-destabilizing properties. Finally, the displaced strand can 
duplicate either by formation of a panhandle structure which regenerates an origin 
or by intermolecular renaturation of strands of opposite polarity originating from 
the use of origins at both molecular ends. A model is depicted in Fig. 2. Below, we 
will discuss the properties of the various replication proteins and give further 
details on the mechanism of replication. 

2 Viral Replication Proteins 

2.1 Precursor Terminal Protein-DNA Polymerase Complex 

The main actors in adenovirus DNA replication are pTP and pol. The 80-kDa pTP 
and the 140-kDa pol are products of the E2B gene and form a stable heterodimer 
(STILLMAN et al. 1982b). They are transported together to the nucleus of infected 
cells employing the nuclear location signal for pTP (ZHAO and PADMANABHAN 1988) 
and attach to the nuclear matrix (FREDMAN and ENGLER 1993). 

The amount of the pTP-pol complex in infected cells is very low compared 
to the other E2 product, DBP, despite the use of the same promoter. This has 
hampered investigations of these proteins considerably. Early attempts to 

Fig. 2. General outline of the first round of adenovirus (AD) DNA replication. The parental terminal 
protein (TP) containing template DNA (a) forms a multiprotein-DNA complex with DNA-binding 
protein (DBP; b) A preinitiation complex (c) is assembled with the various replication proteins (not on 
scale). Initiation occurs by covalent coupling of a deoxycytidine monophosphate (dCMP) residue to 
precursor TP (pTP). Details are given in Fig. 5. In the presence of deoxynucleoside triphosphate 
(dNTP). elongation starts by a displacement mechanism, minimally requiring DNA polymerase (pol) 
and DBP. Here, we have drawn a molecule which started replication at both origins simulataneously 
(d). Replication can proceed from both sides, leading to partially single-stranded replication inter­
mediates (e) and finally duplex daughter strands containing TP at one end and pTP at the other end (f). 
Alternatively, if replication started at either end in different molecules, single-stranded displaced 
strands of opposite polarities are formed (g). These can renature, a process enhanced by DBP, to form 
duplex DNA with two TP molecules (h). Another possibility is that intrastrand renaturation of the 
inverted terminal repeat occurs, leading to a panhandle structure (I). The regenerated double-stranded 
origin can be used again for protein-primed initiation, leading to a partially duplex intermediate (j) and 
finally a daughter molecule (f). pTP in these daughter molecules is processed later in infection by the 
Ad protease. It should be stressed that later in infection daughter molecules will be effectively used 
as templates for second and further rounds. This will lead to a considerable increase in daughter 
molecules containing pTP at both ends, while keeping the number of TP-containing molecules 
constant at the level of the input DNA 
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overproduce the polymerase in Escherichia coli were unsuccessful and gave 
only insoluble and inactive products. Only fusion proteins could be isolated and 
used for the preparation of antibodies (REKOSH et al. 1985; FRIEFELD et al. 1985). 
Another reason for these failures was that the mRNA for pol and pTP had not been 
characterized due to their low abundance, and therefore the actual open reading 
frame was not known. 

Successful expression of functional proteins was finally achieved using 
various eukaryotic systems: first infection of HeLa cells with recombinant vaccinia 
virus (STUNNENBERG et al. 1988) or transfection of COS cells (PETTIT et a1.1988; SHU 
et al. 1987; ZHAO and PADMANABHAN 1988) and later baculovirus (WATSON 
and HAY 1990; ZHAO et al. 1991; BOSHER et al. 1990). In all these systems three N­
terminal amino acids were included encoded by a small exon around map unit 39 
which contained the initiation codon. Apparently in earlier attempts the wrong 
start codon had been used for expression. Nowadays functional pTP and pol can 
be produced in large amounts, up to 5 mgtl infected HeLa cells using a T7-based 
recombinant vaccinia virus system (A. KING and P.C. VAN DER VLIET, unpublished 
work; NAKANO et al. 1991), and they heterodimerize spontaneously (STUNNENBERG 
et al. 1988; TEMPERLEY and HAY 1992). 

Overexpression provided the opportunity to mutagenize pTP and pol and 
study functional domains. The adenovirus pol contains five out of six regions that 
are conserved in all a-like DNA polymerases. Moreover, it has several conserved 
amino acids flanking region III in common with DNA polymerases that are involved 
in protein priming and which form a separate subgroup (T.s.-F. WANG et al. 1989). 

So far, it has not been possible to define distinctive domains involved in 
initiation or elongation, indicating that these functions might be closely linked. In 
most of the mutants constructed, several functions are lost simultaneously (CHEN 
and HORWITZ 1989; JOLING et al. 1991; JOUNG and ENGLER 1992; ROOVERS et al. 1991, 
1993). An exception may be a region containing several Cys and His residues 
around amino acids 250 (Cys-His I). Mutations in this region discriminate between 
basal pol activity (which is retained) and replication activity (which is destroyed) 
(JOUNG and ENGLER 1992). Hopefully, further mutagenesis studies will reveal more 
functional domains. 

For the p TP it has been equally difficult to identify specific regions required for 
the various functions of pTP such as priming activity or interaction with the pol. 
Single mutations scattered over the entire protein seem to eliminate most 
functions simultaneously, possible by changing the overall structure of pTP 
(FREIMUTH and GINSBERG 1986; FREDMAN et al. 1991; ROOVERS et al. 1991). The N 
terminus of pTP is essential for priming activity and DNA binding. (PETIIT et al. 
1989, R.T. HAY, personal communication). The C terminus is involved in matrix 
attachment (FREDMAN and ENGLER 1993) and contains the essential amino acid 
Ser-580 (Ad5) which binds the first dCMP residue during initiation. 

The enzymatic properties of DNA polymerase have only been investigated to 
a limited extent, mainly employing the native p TP-pol complex isolated from Ad5-
infected cells rather than the overexpressed, purified proteins. When assayed 
with activated DNA as template, the polymerase is sensitive to dideoxynucleoside 
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triphosphate (ddNTP) and almost resistant to aphidicolin, which is remarkable in 
view of its similarity to a-like DNA polymerases. Initiation is also completely 
resistant to aphidicolin, but the elongation process itself is moderately sensitive to 
aphidicolin (SUSSENBACH and VAN DER VLIET 1983; NAGATA et al. 1983). A similar result 
was obtained using another inhibitor, the dATP analogue (S)-HPMPApp (MUL et al. 
1989). Whereas on synthetic templates polymerization was resistant to the drug, 
viral DNA replication in a reconstituted system was considerably inhibited, 
competitive with dATP. This suggests that, in the authentic replication process, 
the conformation of the active site of the polymerase, or the template, is slightly 
different compared to synthetic templates. Presumably this is due to the presence 
of DBP, since DBP enhanced the sensitivity to (S)-HPMPApp on synthetic 
templates considerably (MUL et al. 1989). Thus, DBP modifies the sensitivity of 
the polymerase to at least some inhibitors. Interestingly, DBP also inhibits the 
3'~5' exonuclease activity intrinsic to the polymerase and presumably involved in 
proofreading (LINDENBAUM et al. 1986). Another factor that influences the activity of 
the pol is phosphorylation of Ser-67, which may be important for initiation 
(RAMACHANDRA et al. 1993). Finally, pTP can inhibit the polymerase activity on 
synthetic templates (FIELD et al. 1984). 

How does the pTP-pol complex recognize the origin and initiate replication? 
Direct binding studies have been performed using band shift assays and DNase I 
footprints (MuLand VAN DER VLlET1992; TEMPERLEY and HAy1992) Both proteins can 
recognize the origin separately, but the pTP-pol heterodimer does so with 
enhanced specificity, protecting the conserved bases 8-17 from DNase I cleavage 
(TEMPERLEY and HAY 1992). Nevertheless, the binding specificity and affinity is not 
very high and at increased protein concentrations other sequences in the origin 
are also bound. Also single-stranded origin DNA is bound strongly (KENNY and 
HURWITZ 1988), indicating that the sequence recognition is not very strong. This 
view is supported by mutagenesis studies, indicating that, except for positions 
17 and 18, single point mutations in the core origin have only a limited effect on 
initiation, at most fourfold (TEMPERLEY et al. 1991). A strong, site-specific recog­
nition of DNA is not very likely in view of the role of the polymerase, which must 
proceed along DNA during elongation without sequence-induced roadblocks. 
The specificity of origin recognition as well as the binding affinity of pTP-pol is 
enhanced by NFl (MUL and VAN DER VLIET 1992) as well as by the parental ter­
minal protein (TP) (PRONK and VAN DER VLIET 1993). The binding of pTP-pol to the 
origin induces specific changes in the origin that can be monitored by DNase I 
or chemical probing with KMn04 or OS04 (MUL and VAN DER VLIET 1992; R.T. HAY, 
personal communication). These changes are enhanced by NFl and DBP. Thus, 
origin recognition occurs apparently through the formation of a multiprotein 
complex consisting of at least five and possibly six polypeptides since NFIlI/ 
Oct-1 also binds pTP-pol (see Sect. 3.2.1). This is still a limited number compared 
to the requirements for DNA replication in prokaryotic systems or SV40. The 
various protein interfaces involved in protein-protein and protein-DNA recog­
nition have not yet been well defined. 
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2.2 DNA-Binding Protein 

Due to its abundance in infected cells, the first nonvirion viral protein to be 
discovered was a 72-kDa protein designated DBP (VAN DER VLIET and LEVINE 1973). 
DBP was found in a search for infected cell-specific proteins that could bind to the 
displaced single-stranded (ss) DNA originating from replication. Indeed, the 
protein has a high affinity for ss DNA but later turned out to recognize double­
stranded (ds) DNA and RNA as well. 

Fortunately, one of a limited number of temperature-sensitive mutants that 
are defective for DNA replication, H5ts125 (ENSINGER and GINSBERG 1972)' appeared 
to produce a temperature-sensitive DBP (VAN DER VLIET et al. 1975). This was 
evidence for a direct link between DNA replication and DBP and provided an 
opportunity to study the potential role of DBP in other aspects of the infection 
cycle as well. A subsequent extensive investigation of the phenotype of H5ts125 
revealed that DBP is a multifunctional protein also involved in transcriptional 
control, transformation, and virus assembly (CHASE and WILLIAMS 1986; VAN DER 
VLIET et al. 1988). Here I will describe mainly the role of DBP in DNA replication. 

2.2.1 Structure 

The Ad5 DBP contains 529 amino acids (relative molecular weight, 59 049). 
Other serotypes encode a DBP of similar size (KRUIJER et al. 1981). Based upon 
sequence comparisons and also on direct proteolytic digestion (TSERNOGLOU et al. 
1985), two domains can be distinguished in DBP. The N-terminal domain en­
compassing about one third of the molecule (1-173 in Ad5) is not well conserved 
among the different serotypes. It is heavily phosphorylated and contains two short 
sequences that constitute the nuclear location signal (MORIN et al. 1989). Mutants 
in this region display a modified host range by interfering with the splicing of late 
mRNA (ANDERSON and KLESSIG 1984). The N-terminal domain is dispensable for 
DNA replication. 

The C-terminal domain (174-529) is well conserved and contains several 
stretches of highly conserved amino acids (CR 1-3) (KITCHINGMAN 1985). This 
domain contains the nucleic acid-binding properties and is able to stimulate DNA 
replication as efficiently as the intact protein. The prototype DBP mutant H5ts125 
is located in this domain (Pro-413~Ser) as well as several other mutants affecting 
DNA replication, notably around positions 280-282. 

Due to its abundance in infected cells, Ad5 DBP could be isolated in large 
quantities (0.2 mgtl infected cells) and used for studies of its thre~-dimensional 
structure. Crystals could be obtained from the C-terminal region (TSERNOGLOU 
et al. 1984), but not from the intact protein. Recently, the crystal structure was 
solved, providing for the first time information on the structure of a eukaryotic 
single-stranded binding protein (SSB)-type protein (TUCKER et al. 1994). DBP 
contains two zinc atoms in different, novel coordinations. The first one is coor­
dinated by four cysteine residues that are all conserved, whereas the second 
one is coordinated by three cysteine residues and one histidine residue, again 



Adenovirus DNA Replication 9 

all conserved residues. Both zinc atoms have a structural role rather than being 
directly involved in the interaction with DNA. The need for zinc was already 
anticipated from the observations that Zn2+ is required during in vitro synthesis 
of DBP to obtain a functional DBP (Vos et al. 1988) and by 65Zn binding to DBP 
(EAGLE and KLESSIG 1992). 

A second, remarkable property is the presence of a 17-amino acid extension 
at the C terminus that hooks onto a hydrophobic pocket in a second molecule, 
thereby forming a protein chain. Deletion of this C-terminal "hook" destroys the 
cooperativity in ssDNA binding, which contributes to the overall affinity of DBP 
for ssDNA (KUIL et al. 1989). 

2.2.2 DNA-Binding Properties 

The binding of DBP to ssDNA has been studied using a number of techniques 
including sedimentation analysis, electron microscopy (EM), circular dichroism, 
and optical density measurements. The DBP binding site consists of 10-15 
nucleotides, depending upon the type of DNA studied, and the complex appears 
to have a regular structure in which the DNA is extended and the bases are 
tilted (VAN AMERONGEN et al. 1987). Binding is almost completely sequence inde­
pendent. The binding constant for poly rA is approximately 5 x 105 NIl at 50 mM 
NaCI, and the cooperativity constant co is 20-30 (KUIL et al. 1989). 

How does ssDNA bind to DBP? Cocrystals have not yet been obtained, but 
model building indicates that ssDNA winds around the protein chain, touching a 
band of positive electrostatic potential. This leads to a configuration in which the 
DNA has an extended structure with the bases unstacked, as predicted by circular 
dichroism measurements (VAN AMERONGEN et al. 1987). In this model the DNA is 
wound around the protein in an irregular, right-handed fashion with a pitch of 76 A 
and 26 bases per turn (13 bases per protein), making the overall length of the DNA 
slightly shorter (14%) than dsDNA. This agrees well with previous EM measure­
ments of the DBP-ssDNA complex (VAN DER VLIET et al. 1978). The complex is also 
much more rigid than protein-free DNA. Although the amino acids interacting with 
the DNA in this model are not exactly known, it is interesting that several residues 
in the proposed DNA-protein interface coincide with mutations that destroy DNA 
binding or areas that are proposed to be involved in DNA binding based upon 
cross-linking studies (CLEGHON and KLESSIG 1992). 

DBP binds also to dsDNA and forms a regular multimeric protein-DNA 
complex (STUIVER and VAN DER. VLIET 1990). In contrast to ssDNA binding to dsDNA 
is hardly cooperative. DNA and protein associate readily, but DBP rapidly disso­
ciates from dsDNA whereas the ssDNA-DBP complex is much more stable. EM 
measurements show thick filament-like and beaded structures in which the 
length of the dsDNA is not significantly altered, again in contrast to the ssDNA­
DBP complex. Although the exact structure is not known, cryoelectron micro­
graphs suggest the presence of interwound fibers, possibly consisting of two 
DBP chains, around the DNA (STUIVER et al. 1992). DBP induces distinct changes 
in the circular dichroism (CD) spectrum of DNA indicative of structural changes. 
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Such changes are also apparent from the hydroxyl radical breakdown pattern, 
which is much more regular with DBPthan without DBP. These subtle changes in 
the dsDNA structure may be instrumental in the enhanced binding of transcription 
factors (see below). No bending or twisting of DNA by DBP was observed. Thus, 
in conclusion DBP forms complexes with both dsDNA and ssDNA which are 
characterized by changes in the DNA structure which may be important for its role 
in DNA replication. 

2.2.3 Functions of DNA-Binding Protein in DNA Replication 

Based on its DNA-binding properties, a role in the elongation process seems likely 
and could indeed been shown, but DBP also influences initiation in several ways. 

During elongation, DBP enhances the processivity and rate of polymerization 
considerably, in particular on ssDNA templates (LINDENBAUM et al. 1986). More­
over, it changes the sensitivity of the polymerase to inhibitors such as the dAMP 
analogue (S)-HPMPA (MuL et al. 1989). These properties may be explained by a 
direct interaction between DBP and the DNa polymerase but the evidence for this 
is circumstantial. Although DBP protects the DNA polymerase from thermal 
inactivation (LINDENBAUM et al. 1986), the possibility cannot be excluded that this is 
caused by the presence of trace amounts of DNA. Therefore, it is equally possible 
that DBP exerts its effects in an indirect way through the changes in DNA 
structure which it induces. A changed DNA structure may lead to different 
presentation of the template to the DNA polymerase and thus to a change in the 
kinetic properties during elongation. 

Another way in which DBP may influence DNA chain elongation is by 
facilitating template unwinding. Although it was originally thought that DBP was 
not able to unwind dsDNA. recent experiments (GEORGAKI et al. 1992; ZIJDERVELD 
and VAN DER VLIET 1994; MONAGHAN et al. 1994) indicate that DBP is capable of helix 
destabilization in the replication fork. DBP can displace, in a concentration-depen­
dent fashion and independent of ATP, at least 200 nucleotides annealed to 
ssDNA. Also unwinding of short, fully duplex DNA is facilitated by DBP, but 
unwinding of longer fragments is only possible if single-stranded protruding 
ends are present (ZIJDERVELD and VAN DER VLIET 1994). These results suggest that 
DBP, through formation of a protein chain at the displaced strand, may destabi­
lize duplex DNA ahead of the replication fork, thus assisting in strand displace­
ment during elongation. 

A role for DBP in initiation has been debated for a long time, but has now been 
firmly established employing a reconstituted system and purified, components. 
DBP stimulates initiation in at least two different ways. First, it enhances the 
binding of NFl (CLEAT and HAY 1989; STUIVER and VAN DER VLIET 1990; BOSHER et al. 
1991). This leads to a moderate increase in Vmax at suboptimal NFl concentrations 
(MuL and VAN DER VLIET 1993). This effect is specific for NFl and no increase in 
binding of NFIlI/Oct-1 was observed despite its close proximity. Second, a much 
larger stimulation was caused by DBP independent of NFl. This was based on a 
reduction of the Km for dCTP (MuL and VAN DER VLIET 1993). The mechanism of this 
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reduction is not known, but might occur via enhanced unwinding of the origin by 
DBP, thereby improving the presentation of the dG residue in the template strand. 
Alternatively, DBP might induce a better fit for dCTP in the active site of the 
polymerase or change the active site of pTP through DNA structural changes. 
These two possibilities are not mutually exclusive and both will result in a higher 
activity of the initiation complex. 

Finally, DBP also has an effect on the later stages of replication, after comple­
tion of one round of displacement synthesis. This assumption is based on the 
obervation that DBP enhances intermolecular renaturation considerably compared 
to protein-free DNA (ZIJDERVELD et al. 1993). This could lead to enhanced formation 
of double-stranded daughter molecules from displaced strands of opposite polarity, 
originating from initiation at different molecular ends (see Fig. 2). The mechanism 
of enhancement is likely related to the structure of the ssDNA-DBP complex 
and might be due to shielding of electrostatic repulsion of the two DNA strands 
by DBP or to the removal of secondary structures from ssDNA. 

Interestingly, intramolecular renaturation between two complementary strands 
of a single-stranded molecule was severely inhibited by DBP. The most likely 
reason for this is that the rigid structure of the protein chain to which the DNA is 
bound increases the persistence length. Thus, molecular ends cannot be brought 
together as easily as in protein-free DNA. The implications for DNA replication are 
that panhandle formation is inhibited by DBP. This is somewhat surprising, since 
such panhandle formation can occur in vivo, as suggested by the repair of partially 
deleted inverted repeats (STOW 1981). This, as well as later results with mini­
chromosomes (HAY et al. 1984; K. WANG and PEARSON 1985). shows that panhandle 
formation is an essential step for correction of damage in inverted terminal 
repeats. However, this may occur infrequently and with a low efficiency in the 
presence of DBP. The main pathway for duplex formation from displaced strands 
may well be renaturation of displaced strands rather than panhandle formation. 

An overview of the DNA-binding properties of DBP is presented below: 

1. It binds ssDNA cooperatively. 
2. It binds dsDNA noncooperatively and rapidly dissociates from dsDNA. 
3. It enhances intermolecular renaturation. 
4. It inhibits intramolecular renaturation between complementary ends of ssDNA. 
5. It unwinds partially duplex DNA in an ATP-independent fashion. 

3 Cellular Replication Proteins 

3.1 Nuclear Factor I 

By straightforward protein purification guided by enhancement of DNA repli­
cation, the first cellular protein involved in initiation of viral replication was isolated 
and designated NFl (NAGATA et al. 1982) NFl was originally purified from HeLa cells 
as a 47-kDa protein, but later appeared to consist of a family of related proteins of 



12 P.C. Van der Vliet 

52-66 kDa originating from differential splicing (SANTORO et al. 1988; PAONESSA 
et al. 1988; MEISTERERNST et al. 1989). NFl binds specifically to a region in the origin 
between nucleotides 25 and 40. A detailed contact point analysis (DE VRIES et al. 
1987) showed that NFl makes base-specific and backbone contacts in two major 
grooves of the DNA located one helical turn apart. Thus, the protein binds at one 
side of the helix, presumably as a dimer in agreement with the twofold rotatio­
nal symmetry of the binding site (see Fig. 1). Indeed, subsequent protein-protein 
interaction studies confirmed the dimeric character (GOUNARI et al. 1990). Inte­
restingly, the NFl consensus binding site is present in many different promoters 
and enhancers of cellular and viral genes. Several of these cellular binding sites 
could functionally substitute for the viral NFl sites (ADHYA et al. 1986). Since the 
NFl recognition sequence has similarities with the CCM T box and since NFl binds 
to monomeric CCMT sites, the protein was also called CTF (CCMT binding 
factor; KA JONES et al. 1987). Binding to the CCM T site, however, is very weak 
(ZORBAS et al. 1992). Cloning of NFI/CTF cDNA from human, rat, chicken, and 
porcine origin showed that the various translation products differed in their 
C-'termini, but contained a conserved N-terminal domain. This domain, stretching 
from amino acids 1 to approximately 220, contains the DNA-binding properties 
and is therefore called the NFl-binding domain (NFI-BD; MERMOD et al. 1989; 
GOUNARI et al. 1990). The dimerization domain is also located in this region, 
although it does not coincide exactly with the DNA-binding domain. The regions 
interacting with DNA have not been determined yet. Binding requires four 
conserved cysteine residues (NOVAK et al. 1992), but none of the DNA-binding 
motifs found in other eukaryotic transcription factors, such as helix-turn-helix, Zn­
finger, b-zip, or b-HLH, is present. However, there is a putative a-helical domain 
located between residues 37 and 65 with basic amino acid residues spaced at 
intervals of seven which has been suggested to be involved in DNA recognition 
(MEISTERERNST et al. 1989). 

When MERMOD et al. (1989) and GOUNARI et al. (1990) investigated the do­
mains required for the stimulation of adenovirus DNA replication, they found to 
their surprise that NFI-BD was sufficient. This was in contrast with the require­
ment for a proline-rich transactivation domain for transcription enhancement. It 
also contrasts with the need for transcription activation domains for enhancement 
of papovavirus DNA replication by several other transcription factors (DE PAMPHILlS, 
1993b). So far, such a need for just the DNA-binding domain, which also holds for 
activation by NFIlI/ Oct-1 (see below) appears to be unique for adenoviruses. 
Possibly the virus selected conserved regions present in families of common 
transcription factors for optimal replication enhancement in order to enlarge its 
range of infection of different cell types. 

3.1.1 How Does Nuclear Factor I Binding Domain Stimulate Initiation? 

Upon reconstitution of replication with purified proteins, the level of stimulation 
appeared strongly dependent on the amount of the pTP-pol complex added to the 
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reaction. At low pTP-pol concentrations, NFI-BD stimulated up to 60-fold, 
whereas at high concentration the level of stimulation dropped to only twofold 
(MUL et al. 1990). This suggested that NFl could increase the binding of the pTP­
pol complex to the core origin by functioning as a recruitment factor for the 
polymerase. Indeed, a complex between pol and NFl was observed, both in the 
presence and the absence of DNA (CHEN et al. 1990; BOSHER et al. 1990; MUL 
et al. 1990). In agreement with its role in DNA replication, the interacting 
interface is located in NFI-BD, between amino acids 68 and 150 (CHEN et al. 
1990). This leads to a model in which NFl binds pTP-pol and, by using its own 
recognition site, positions the pTP-pol complex at the core origin. Such a model 
explains the strict positional requirement forthe NFl-binding site in the Ad2 origin 
(ADHYA et al. 1986; WIDES et al. 1987; COENJAERTS et al. 1991; BOSHER et al. 1990). 
The domain in pol involved in interaction with NFl has not been mapped in detail, 
but seems to be different from the regions involved in DNA recognition and 
polymerization based upon mutation of a potential Zn2+-binding region in pol 
(CHEN et al. 1990). 

By tethering pTP-pol, NFl may stabilize the formation of a preinitiation 
complex consisting of pTP, pol, and origin DNA. Indeed, by template challenge 
experiments, we were able to show that NFl reduced the dissociation of pTP-pol 
from the origin. Also a direct effect on the amount of pTP-pol-DNA complex was 
shown by band shift experiments (MUL and VAN DER VLIET 1992). Kinetic studies 
confirmed that NFl increases the amount of active initiation complex rather than 
increasing the Km of the reaction (MUL and VAN DER VLIET 1993). 

It is difficult to establish whether this is the only effect of NFl. NFl stimulates 
initiation up to 60-fold, whereas the level of stabilization of an initiation complex 
is only about threefold. Possibly NFl also acts at a later stage, for instance by 
facilitating changes in the DNA structure at the origin (ZORBAS et al. 1989). 

Is NFl essential in vivo? Clearly mutation of the NFl-binding site leads to a 
strong reduction in viral replication in vivo (HAY 1985; K. WANG and PEARSON 1985). 
Moreover, NFl is targeted to discrete subnuclear sites which coincide with 
replication foci together with other replication proteins including DBP (BOSHER 
et al. 1992; VOELKERDING and KLESSIG 1986). Although this is indirect evidence, it is 
suggestive of a role of NFl also in vivo. 

3.2 Nuclear Factor III 

A second replication-stimulating cellular protein NFIII, was discovered when 
fractionated nuclear extracts from HeLa cells were assayed for additional stimul­
ation in the presence of NFl and all three viral replication proteins (PRUIJN 
et al. 1986). NFIII binds to a site in the Ad5 origin next to the NFl site, approxi­
mately from bp 38 to 49, making contact with a contiguous stretch of bases (PRUIJN 
et al. 1988). Early studies showed that viruses containing the terminal 45 bp were 
fully infectious, indicating that an intact NFIII site was not important in vivo (HAY 
and McDOUGALL 1986). However, later studies (HATFIELD and HEARING 1993) using 
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viral deletion mutants showed that an intact NFIII site is important in vivo for 
efficient growth and DNA replication. 

NFIII was purified as a 90-kDa protein and, based upon several criteria, appeared 
identical to the ubiquitous transcription factor Oct-1 (0' NEILL et al. 1988; PRUIJN et al. 
1989). This protein preferentially recognizes the octamer sequence ATGCAAAT 
present in many promoters and enhancers of cellular genes. Examples are the 
histone 2B genes, the immunoglobulin genes, and U-snRNA genes. In Ad4 and 
Ad10, the consensus octamer sequence is present, while slightly degenerated 
sequences are present in other serotypes. For Ad2/Ad5, the sequence is 
ATGATAAT, which is bound with a threefold lower affinity (VERRIJZER et al. 1990a). 

Oct-1 belongs to the POU protein family of transcription factors. These 
proteins, with the prototypes Pit-1, Oct-1, and Unc-86, are characterized by a 
common DNA-binding domain called the POU domain (HERR et al. 1988). POU 
domain transcription factors from different subclasses, including Pit-1, Oct-2, 
Oct-4, Oct-6, and even the distantly related zebrafish POUlc], all stimulate adeno­
virus replication (VERRIJZER et al. 1992b). By deletion analysis (VERRIJZER et al. 
1990b), we showed that the POU domain suffices for stimulation of Ad DNA 
replication. Thus, both for NFl and NFIlI/Oct-1 the DNA-binding domains alone are 
sufficient. One should realize, however, that the function of these DNA-binding 
domains is not limited to just the recognition of DNA. NFI-BD also contains the 
dimerization domain and at least one interface for contact with the p TP-pol complex. 
Similarly, the POU domain makes contacts with other proteins. It is involved in homo­
and heterodimerization (INGRAHAM et al. 1990; VERRIJZER et al. 1992c) and it inter­
acts with the herpes simplex virus tegument protein VP16, which contains a strong 
trans-activating domain (O'HARE 1993), and with a complex of various other related 
proteins collectively called HCF (WILSON et al. 1993). 

The POU domain is a bipartite DNA-binding domain. It consists of a POU­
specific domain (PO Us, approximately 75 amino acids long) linked to a 60-amino 
acid POU homeodomain (POUhd). For stimulation of Ad DNA replication as well as 
for site-specific DNA binding, the intact POU domain is required (VERRIJZER et al. 
1990b). The POUhd by itself recognizes the right half of the octamer, with a 
consensus recognition sequence TAATNA. as determined by a binding site 
selection procedure (VERRIJZER et al. 1992a). This is very similar to the recognition 
sequence of classic homeodomain proteins. The POUs binds much weaker to 
DNA, but nevertheless is able to specifically recognize the sequence ATGCA. 
which is the other half of the octamer sequence. Thus both subdomains recognize 
half of the binding site. This unique mechanism of DNA recognition was recently 
further elucidated by determination of the solution structure of PQUs employing 
multidimensional nuclear magnetic resonance (NMR) techniques (DEKKER et al. 
1993; ASSA-MuNT et al. 1993). POUs consists of a tetrahelical structure employing 
a helix-turn-helix motif to bind DNA very similar to the A-repressor. Helix III 
recognizes the ATGCA sequence in the major groove. Since the POUhd also 
recognizes DNA by a helix-turn-helix motif, the POU domain represents the first 
example of two HTH motifs in one protein, together recognizing one consecutive 
series of bases in the major groove (Fig. 3). 
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Fig. 3. Three-dimensional structure of the Oct-1 POU domain. Top, the various functional regions of 
Oct-1 are given. The bipartite POU domain suffices for stimulation of adenovirus (Ad) DNA replication 
and has several other properties, as indicated. Bottom, model of the POU-DNA interaction based upon 
the nuclear magnetic resonance (NMR) structure of the POU-specific domain (DEKKER et al. 1993; 
ASSA-MuNT et al. 1993) and the POU homeodomain (POUhd; Cox et al. 1995). The orientation of helix 
III, the DNA recognition helix of the POU-specific domain (POU,), is arbitrary 

3.2.1 How Does Nuclear Factor III Stimulate 
Adenovirus DNA Replication 1 

In trying to determine how NFIII/Oct-1 stimulates adenovirus DNA replication, one 
should keep in mind the fact that the position of the NFIlI/Oct-1 binding site in the 
various Ad serotypes is even more conserved than its actual sequence. Insertion 
or deletion of more than one base between the NFl and Oct-1 sites leads to loss 
of stimulation, despite perfect binding of the protein to such a mutated origin 
(COENJAERTS et al. 1991). This suggests that the POU domain is involved in 
protein-protein contacts at the origin . No such contacts were detected between 
NFl and the POU domain and, despite their close proximity, both proteins bind 
DNA independently. Moreover, stimulation of initiation by NFl and NFIII/Oct-1 is 
additive (MuL et al. 1990), suggesting that they do not act through exactly the 
same target. 

A possible mechanism was suggested by the observation that the POU 
domain is capable of DNA bending as shown by three independent techniques 
(VERRIJZER et al. 1991). DNA bending might facilitate the interaction between the 
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various replication proteins, thereby enhancing the formation of an Initiation 
complex or stabilizing such a complex. However, in contrast to NFl, stabilization of 
a preinitiation complex by the POU domain could not be obseNed by template 
challenge experiments or by direct band shift experiments (MUL and VAN DER VLIET 

1993). An alternative explanation for the obseNed stimulation could be that the 
distortion of the DNA structure induced by bending leads to a facilitated opening 
of the origin, possibly aided by the energy stored in the bent protein-DNA 
complex. If this were true, it should be possible to exchange the Oct-1-binding 
site for binding sites for other DNA-binding transcription factors. We have inserted 
an AP1-binding site at several positions next to the NFl site, to replace the 
octamer sequences, and studied the effect of adding various combinations of 
c-fos and c-jun, but in no case was stimulation obseNed. The same was true for 
insertion of prebent DNA at that position. Thus, the effect of Oct-1, is presumably 
specific, in agreement with the obseNation that in none of the adenovirus ori­
gins have binding sites other than for NFl and Oct-1 been found. An attractive 
explanation is that the POU domain recognizes one of the viral proteins, possibly 
the pTP-pol complex. Such an interaction could also explain that the level of 
stimulation by the POU domain is dependent on the pTP-pol concentration, 
although less pronounced than with NFl (MUL et a\. 1990). At low concentrations 
of pTP-pol, the POU domain stimulates initiation about sevenfold, whereas 
at high concentrations most of the stimulation disappears and only a twofold 
effect remains. 

Direct evidence for an interaction between POU and pTP-pol was recently 
obtained by COENJAERTS et a\. (1994). He employed a GST-POU fusion protein im­
mobilized on glutathione-agarose beads and obseNed that the pTP-pol complex 
was specifically retained, using a replication assay to measure the amounts of 
pTP-po\. Binding by the POUhd was still measurable, but much lower than with 
the intact POU domain, while POUs was negative. Interestingly, NFl did not 
compete for this interaction, indicating that different domains of p TP-pol could be 
recognized by the two transcription factors. This agrees with the previous 
obseNations that stimulation by NFl and POU domain is additive and thus acts 
through slightly different targets. 

In conclusion, a picture emerges in which both transcription factors touch the 
pTP-pol complex (see also Fig. 5). Whether this is just aiding correct positioning 
of pTP-pol to the origin or whether it may have other consequences for the 
function of the polymerase is presently under investigation. Since neither NFl nor 
the POU domain changes the Km of the initiation reaction, the transcription factors 
do not seem to have a direct effect on the active site of the polYli)erase. 

3.3 Nuclear Factor II 

Although the three viral proteins, together with NFl and NFl I 1/0ct-1 , can sustain 
initiation very efficiently, these five proteins are not sufficient for replication of the 
intact genome. In vitro, replication does not proceed beyond approximately 30% 
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(10 kb) unless a third cellular protein is present (NAGATA et al. 1983b). This protein 
was purified as a 30-kDa polypeptide containing topoisomerase I activity and was 
called NFl!. Presumably NFl! is a proteolytic product of HeLa topoisomerase I. 
Topoisomerase I is also required in vivo as shown by specific inhibitors (SCHAACK 
et al. 1990a). Thus topological stress accumulates during movement of the 
replication fork, suggesting that unwinding is limited despite the presence of free 
molecular ends. In vivo this may be caused by attachment of DNA through TP to 
the nuclear matrix (FREDMAN and ENGLER 1993; SCHAACK et al. 1990b), but the need 
for topoisomerase in vitro cannot be explained in this way. Possibly TP DNA 
circularizes by interactions between the two terminal proteins, thereby restricting 
the rotational freedom of the templates. This would explain the circles that were 
observed originally by EM and that led to the discovery of the TP (ROBINSON 
et al. 1973). 

To investigate whether the presence of TP causes the limited elongation in 
vitro, we have analyzed the template activity of TP DNA obtained from Ad5dl309 
and digested with Xba!. This leads to two fragments of 1339 and 34.596 bp, 
respectively, each containing TP at one end. With these fragments as templates, 
replication of the short fragment was unimpeded, whereas the long fragment 
replicated only to about 25%, similar to intact TP DNA (D.C. ZIJDERVELD and 
P.C. VAN DER VLIET, unpublished work). This block could be relieved by adding 
topoisomerase I (Fig. 4). Since these templates initiate at the TP-containing 
origins and thus are TP free at the other molecular end, this means that there is no 
apparent reason for these molecules not to rotate freely. Therefore, we can 
conclude that the blockade is not caused by TP-TP interactions, but by the length 
of DNA. Possibly the proteins in the replication fork dissociate when positive 
supercoils accumulate and are not relieved in time. The reason for accumulation 
could be that the release of topological stress is too slow compared to the rate of 
fork movement, despite the presence of a free molecular end. In this respect it is 
interesting to note that several bacteriophages containing linear DNA such as T7 
also require topoisomerase action during replication (ITOH and TOMIZAWA 1977). 

4 Function of the Parental Terminal Protein 

Proteins covalently bound to the molecular ends of DNA are not uncommon. They 
occur, in addition to adenovirus, in a number of bacteriophages (notab,ly <1>29 and 
PRD-11, as well as in several plasm ids (SALAS 1991). Their function is clearly related 
to the protein-priming mechanism of initiation. 

The adenovirus TP are highly conserved in the various serotypes. pTP 
becomes attached to the DNA as a consequence of protein priming and is 
proteolytically cleaved by the viral protease late in infection. Proteolytical cleavage 
of the free pTP leads to inactivation of the priming capacity, since N-terminal 
deletions are lethal. Thus proteolysis could be a signal to stop replication late in 
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topal + + 

time (hr) 1 2 1 2 

A 
A B 
B C 
C 0 
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E 
E 

F 
F 

G 
G 

H 

H 

Fig. 4. Topoisomerase I (nuclear factor II), is required for replication of long stretches of adenovirus 
DNA irrespective of the presence of terminal protein (TP) at both ends. Ad5dl309 (N.C. JONES and 
SHENK 1979) was digested with Xbal , leading to short TP-containing fragment H (1339 bp) and a 34; 
5-kbp fragment. This mixture was used as a template for in vitro replication during 1 or 2 h and digested 
afterwards with Kpnl. In the absence of topoisomerase (lanes 1, 2), replication only proceeded for 
about 3 kbp, leading to the labeling of fragments G, H, and part of D. When topoisomerase I 
(Wheatgerm) was added, all fragments were labeled, indicating a suppression of the block 

infection. DNA-bound TP and pTP, however, appear not to differ significantly in 
template activity. This indicates that, in addition to priming and interaction with 
pol, the pTP harbors several other properties that are located in the TP moiety 
rather than in the precursor part of the molecule. 

What are the functions of the parental DNA-bound TP? First of all, it protects 
the DNA against nucleolytic breakdown by 5' ..--t3' exonucleases, such as pL (KENNY 
et al. 1988). It also prevents other end-binding proteins such as the NFIV/Ku 
protein to enter the DNA and block replication (DE VRIES et al. 1989). Also, TP-DNA 
has been shown to attach tightly to the nuclear matrix throughout the course of 
infection (BODNAR et al. 1989; SCHAACK et al. 1990b). Matrix association may 



Adenovirus DNA Replication 19 

localize the viral genome to particular nuclear compartments in which replication 
and transcription factors could be concentrated, as shown by the appearance of 
replication foci in infected cells. Thus, matrix association could be instrumented 
both in replication and transcription. 

An important function of TP is the enhancement of infectivity and template 
efficiency. TP-DNA is a much more efficient template than protein-free DNA 
(TAMANOI and STILLMAN 1982; VAN BERGEN et al. 1983). Under certain conditions the 
difference can be as much as 1 DO-fold (PRONK and VAN DER VLIET 1993). Only a part 
of the TP seems to be required for enhancement (PRONK et al. 1992). Since this 
enhanced template activity is observed in a reconstituted system, in which the 
nucleases or other end-binding proteins are absent and matrix association cannot 
occur, it must be an intrinsic property of TP itself. 

How does TP enhance template activity in vitro? First of all, it enhances the 
binding of p TP-pol to the origin two- to threefold. This could be shown employing 
band shift experiments with a short, TP-containing origin fragment that was end 
labeled. The isolation of such a fragment, in which the TP remains functionally 
intact, was possible by anion exchange chromatography of restriction enzyme 
digests of virion DNA. During chromatography, the presence of TP changes the 
elution profile enough to enable separation of TP-DNA from the main TP-free 
fragments. Whereas binding of pTP-pol is slightly enhanced, the binding of NFl or 
NFIII/Oct-1 was not influenced (PRONK and VAN DER VLIET 1993). Increased binding 
of pTP-pol can only partly explain the enhanced template efficiency. Therefore, it 
was interesting to note that TP also has a direct effect on the structure of the 
origin. By DNAse I footprinting, a clear difference in sensitivity was observed 
between TP-DNA and protein-free DNA. Strong DNAse I hypersensitivity was 
found at positions 5 and 6, close to the molecular end, as well as some less 
pronounced hypersensitivity further away, at portions 41, 42, and 48 in the top 
strand (PRONK and VAN DER VLIET 1993). These subtle changes in the origin structure 
could well be instrumental in influencing the interaction of other replication 
proteins with the origin. Alternatively, these changes in the origin could indicate 
some form of twisting of the DNA as a result of TP, which may help in unwinding 
of the origin occurring after formation of a preinitiation complex. 

5 An Integrated Model for Adenovirus DNA Replication 

5.1 Initiation 

Upon accumulation of the viral replication proteins and correct location inside 
infected nuclei, replication can start in vivo. The mechanism by which this occurs 
has been studied almost exclusively in vitro and will be described below. At 
sufficiently high concentrations, DBP forms a multimeric protein-DNA complex 
with viral DNA. This leads to subtle changes in the DNA configuration, as shown 
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by hydroxyl radical footprinting (STUIVER et al. 1992), and leaves the binding sites 
for NFl and Oct-1 accessible. The pTP-pol complex, either bound to NFl or free, 
recognizes the core origin weakly by itself, but it is mainly guided to the correct 
position by NFl which binds the pTP-pol"complex fairly tightly (CHEN et a1.1990; 
BOSHER et al. 1990; MUL and VAN DERVLlET 1992). Binding of NFl, orthe pTP-pol-NFI 
complex, to its recognition sequence in the auxiliary origin is facilitated by DBP. 
When positioned correctly, pTP-pol induces structural changes in the core origin 
that are enhanced by NFl and possibly by the other proteins as well. Binding and 
positioning of pTP-pol is further enhanced by the POU domain of Oct-1 and by the 
parental TP. The latter effects could occur via a direct interaction with particular 
domains on pTP-pol other than the domain bound by NFl or could be caused 
indirectly by structural changes that are induced by the POU domain (bending) or 
by TP (DNase I hypersensitivity at several positions). 

After assembly of this preinitiation complex (Fig. 5)' the origin must be 
unwound or otherwise distorted to permit the template strand to enter the active 
site of the polymerase. How this occurs is not yet clear. Unwinding may be 
facilitated by DBP, which has the intrinsic ability to unwind DNA (ZIJDERVELD 
and VAN DER VLIET 1994; MONAGHAN et al. 1994), by TP, and by the POU domain 
through structural DNA changes. For this unwinding, a helicase activity is not 
required in contrast to other replication systems. Moreover, initiation is indepen­
dent of ATP (PRONK et al. 1994) and occurs equally well in the presence of 
non hydrolyzable ATP analogues. Since unwinding occurs at the molecular ends, it 
may be easier than in other systems with internal origins. 

In a next step, the actual initiation reaction occurs, i.e., a serine residue of 
pTP is coupled to dCMP. This reaction requires Mg2+ (PRaNK et al. 1994), but two 
other bivalent cations (Mn2+, Ca2+) can substitute for Mg2+. The Km for dCTP for 
pTP-dCMP formation is 3.7±0.9jlMin the absence of DBP, whereas DBP lowers 
the Km six- to eightfold (MUL and VAN DER VLIET 1993). This might occur through a 
better presentation of the terminal dG residue in the template strand to pol, 
reSUlting in a more efficient selection and binding of the dCTP substrate. Other­
wise, DBP might induce a better fit for dCMP through structural changes in the 
polymerase active site. The two transcription factors NFl and NFIIIIOct-1 have 
no effect on the Km for dCTP, but rather they increase the Vmax' presumably by 
increasing the effective enzyme concentration and by stabilizing the initiation 
complex. Their recognition sequences in the auxiliary origin are critically spaced. 
This is in accordance with formation of a well-balanced multiprotein initiation 
complex stabilized by multiple protein-protein and protein-DNA interactions 
requiring precise ordering of all components involved. 

5.2 From Initiation to Elongation 

Several changes must occur in order to proceed from an initiation to an 
elongation mode. It is likely from mutagenesis studies that the same dNTP­
binding site is used for initiation and elongation. Therefore, the region of pTP 
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containing Ser-580 would be positioned close to the active site of the poly­
merase (Fig. 5) and must either shift its position or dissociate completely from 
the polymerase in order to give access to the moving template strand. In this 
respect, it is noteworthy that free pTP inhibits the polymerizing activity of pol. at 
least on synthetic templates. On the other hand, antibodies against pTP or TP 
inhibit elongation (RIJNDERS et al. 1983). which could indicate that pTP or TP are 
still present at or nearby a replication fork. Moreover, pTP mutants exist in which 
elongation activity is uncoupled from initiation activity, suggesting a role for pTP 
after the initiation step (PETTIT et al. 1989; RoovERs et al. 1993). Clearly this issue 
has not yet been settled. Despite this, it is likely that the active site of the 
polymerase changes its configuration when going from initiation to elongation, 
since Km the for dCTP is different. Moreover, initiation can occur with several 
bivalent cations, whereas the step from initiation to elongation depends 
exclusively on Mg2+ (PRONK et al. 1994). 

When elongation has started, the initiation complex presumably dissocia­
tes (Fig. 5). Dissociation of NFl occurs very early (COENJAERTS and VAN DER VLIET 
1994). Upon going from initiation to elongation, several other events may occur 
even before dissociation of the initiation proteins. Recently we observed that, 
during elongation at low dCTP concentrations, part of the pTP does not 
participate in elongation but remains trapped in an early intermediate form. 
Since dATP and dTTP were added, we presume that this represents pTP 
containing just the first three nucleotides, pTP-CAT (MuL and VAN DER VLIET 
1993). The accumulation of this product, a pTP-CAT intermediate (Fig. 5). 
indicates a kinetic barrier that inhibits proceeding beyond the fourth nucleotide, 
a C residue, despite, the presence of dCTP. This might be explained by a 
blockade at this position, due to the low dCTP concentrations, which delays 
further elongation and could lead to dissociation of the complex. Remarkably 
however, no such accumulation was observed at other C residues at positions 
7, 17, or 18, and therefore this explanation is less likely. A more interesting 
explanation is that, in order to proceed from initiation to elongation, the 
polymerase employs a slideback mechanism similar to that described for other 
protein-priming systems such as $29 and PRD-1 (MENDEZ et al. 1992; CALDENTEY 
et al. 1993). It could be that initiation actually occurs at G4 in the template 
strand, synthesizing pTP-CAT followed by a sliding or jumping back of the 
complex such that CAT can basepair with the first three nucleotides of the 
template strand. This process could be the rate-limiting step at low dCTP 
concentrations. This would agree with the presence of trinucleotide repeats in 
all adenovirus serotypes and is also in agreement with mutagenesis studies, 
showing that mutation of the first nucleotide in the single-stranded template 
has no effect, while mutating both G1 and G4 is lethal (DOBBS et al. 1990). 
Moreover, it explains that adenovirus can regenerate two nucleotides absent 
from both molecular ends (GRAHAM et al. 1989). presumably by making use of 
the information present in the repeat. Evidence for such a jumping-back 
mechanism was obtained by us recently after analyzing the length of elongated 
products made on mutated templates (KING and VAN DER VILET 1994). 
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5.3 From Elongation to Daughter Molecules 

Once started, elongation can occur at a high rate and unabated, provided that 
DBP is present and that NFII removes topological stress. The polymerase can 
synthesize at least 30 kbp on primed poly-dT in one single association step in 
the presence of DBP (FIELD et al. 1984). Thus, DBP makes the polymerase highly 
processive, presumably by influencing the DNA structure, although a direct 
interaction with the polymerase is not excluded (LINDENBAUM et al. 1986). DBP also 
facilitates unwinding as shown in direct assays (ZIJDERVELD and VAN DER VLIET 1994; 
MONAGHAN et al. 1994). enables displacement synthesis, and protects the ssDNA. 
Presumably it forms a protein polymer growing from C terminus to N terminus 
around which the DNA is wound, starting at the 5' displaced end of the DNA 
(TUCKER et al. 1994). Like initiation, elongation is ATP independent (DE JONG et al. 
1983). The replication fork then moves towards the end of the molecule, entering 
the inverted terminal repeat from the inside. It is unlikely that the inverted terminal 
repeat contains a specific termination signal, since virus mutants exist that contain 
multiple repeats of the inverted terminal repeat and nevertheless maintain their 
genome (CHEN and HORWITZ 1990). When arriving at the end of the molecule the 
polymerase most likely dissociates, but we cannot exclude the possibility that it 
remains bound to the end of the molecule and participates in initiatiOn at the 
other end, assisted by NFl, Oct-1, and TP present at this end. If the polymerase 
dissociates, the displaced ssDNA is released as a rather stable ssDNA-DBP 
complex. In principle, this could function again as a template by formation of a 
panhandle, restoring a double-stranded origin which can be used for the same 
protein-primed initiation process (LEEGWATER et al. 1988). However, the intra­
molecular renaturation process required for panhandle formation is inhibited 
considerably by DBP, presumably because the DBP chain is rather rigid and 
prevents panhandle formation of the displaced ssDNA (ZIJDERVELD et al. 1993). As 
an alternative, displaced strands with opposite polarity, arising from initiation at 
two different molecular ends, might renature to form a double-stranded daughter 
molecule (see Fig. 2). This interstrand renaturation process is considerably 
enhanced by DBP and might be the main pathway in vivo compared to intra­
molecular panhandle formation, although the latter process can occur in vivo 
(STOW 1981). In part of the molecules the need for complementary strand 
synthesis will be bypassed when both origins are used simultaneously. In that 
case both forks, when they meet, continue, while the two DNA molecules 
separate (Fig. 2). However, this process will occur only when the concentration of 
initiating proteins is high compared to the template concentration. This is less 
likely late in infection, when progeny DNA accumulates. Finally, the pTP-contain­
ing templates that originate from replication and that are as replication competent 
as TP-DNA will be processed during assembly by the viral protease. This enzyme 
is dependent for its activity on a peptide present in the viral protein PVI, which can 
function as a signal for the start of viral assembly (WEBSTER et al. 1993; MANGEL 
et al. 1993). Removal of the precursor part of free pTP by the protease will destroy 
its capacity to function as a primer and thus will stop replication, followed by 
assembly of progeny virions. 
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6 Perspectives 

Our understanding of the molecular processes governing initiation of adenovirus 
DNA replication has come a long way since the development of the first, crude in 
vitro system employing nuclear extracts. All essential proteins have been cloned, 
overexpressed, and purified and the three-dimensional structure of two (DBP, 
POU domain) has largely been solved. Moreover, a number of protein-protein 
and protein-DNA interactions have been described. Despite these considerable 
efforts, several essential questions remain unanswered. We still do not under­
stand if, how, and when the origin is opened during initiation. Moreover, we do not 
understand the conformational changes that must be the result of the various 
interactions and the dynamics of the process. Future studies will concentrate on 
these aspects now that large amounts of proteins can be produced. Also, 
intermediates in initiation will be defined, and site-directed mutagenesis will 
undoubtedly lead to a fine mapping of the interacting domains. In this respect, the 
adenovirus DNA replication system will remain one of the best-studied eukar­
yotic replication systems. On a longer timescale it may be possible to bring this 
reconstituted system back into permeabilized nuclei in order to study the effects 
of the interaction with nuclear matrix components. This may enable the study of 
replication in a more native environment mimicking control mechanisms that may 
exist in intact cells and might facilitate interactions due to high local concentra­
tions in replication foci. An initial step in this direction has recently been made 
by the development of an immobilized replication system (COENJAERTS and 
VAN DER VLIET 1994). 
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1 Introduction 

Over the past 20 years studies on the replication of adenovirus DNA have 
contributed not only to an understanding of the mechanics of adenovirus DNA 
replication, but have also shed light on basic processes such as the assembly of 
nucleoprotein complexes and virus-host interactions. This subject has been 
reviewed extensively (HAY and RUSSELL 1989; STILLMAN 1989; VAN DER VLIET 1990; 
SALAS 1991), but a number of recent findings have suggested that the time may be 
ripe for further evaluation of new developments in the field. 

Within the virion the linear adenovirus genome is found in a highly condensed 
form associated with small basic proteins. Upon infection of a susceptible cell, the 
virion is uncoated and the viral DNA released into the nucleus of the cell. Early 
transcription leads to the expression of three viral gene products, pre-terminal 
protein (pTPl. DNA polymerase (pol) and DNA-binding protein (DBPl. that genetic 
evidence indicates are required for viral DNA replication. Initial work utilising the in 
vitro system developed by CHALLBERG and KELLY (1979) quickly demonstrated that, 

Irvine Building, School of Biological and Medical Sciences, University of St. Andrews, North Street, St. 
Andrews KY16 9AL, Scotland, UK 



32 R.T. Hay et al. 

as well as the viral proteins, additional cellular factors were also required. While 
one of these factors was required for complete elongation of the genome and 
could be substituted for by calf thymus topoisomerase (NAGATA et al. 1982), the 
other factors were both sequence-specific DNA binding proteins that recognised 
DNA within the inverted terminial repeats (lTR) of the adenovirus genome (NAGATA 
et al. 1983; PRUIJN et al. 1986). The adenovirus genome is a linear, double­
stranded DNA molecule of 35-36 kb with ITR of about 100bp, the exact size 
depending upon serotype. DNA replication initiates at either terminus of the linear 
36-kbp viral genome by the formation of a covalent linkage between the a-phos­
phoryl group of the terminal residue, deoxycytidine monophosphate (dCMP), 
and the ~-OH group of a serine residue in pTP. The 3'-OH group of the pTP-dCMP 
complex then serves as a primer for synthesis of the nascent strand by the viral 
pol, which proceeds by displacing the non-template strand. Displaced single 
strands can form partial duplexes by base pairing of the ITR, on which a second 
round of DNA synthesis may be initiated (HAY et al. 1984; STOW 1982). An 
alternative to the formation of panhandle structures is that displaced comple­
mentary strands simply reanneal to form double-stranded products. This sugges­
tion is based on the in vitro properties of DBP, which promotes intermolecular 
reannealing but inhibits intramolecular reannealing (ZIJDERVELD et al. 1993). 

As the adenovirus genome can be replicated in vitro by the action of three viral 
proteins and two cellular transcription factors, all of which have been cloned, 
overexpressed and purified, it represents one of the few systems in which all the 
components for DNA replication have been precisely defined. The objective of 
this review will be to describe the components of the adenovirus replicon and 
discuss how these components assemble into a nucleoprotein complex that is a 
requirement for the initiation of viral DNA replication. 

2 Adenovirus Origins of DNA Replication 

Located within the ITR are the cis-acting DNA sequences which define ori, the 
origin of DNA replication. Covalently attached to each 5' end of the DNA is a 
terminal protein (TP), which is likely to be an additional cis-acting component of ori. 
Comparison of DNA sequences which constitute origins of DNA replication from 
many different adenoviruses and extensive mutational analysis on such templates 
has defined four regions within the terminal 51 bp of the adenovirus type 2 (Ad2) 
genome that contribute to ori activity in vitro and in vivo. Like many other viral 
origins of DNA replication, that of adenovirus appears to consist of an essential 
core region and auxilliary regions that enhance the efficiency of DNA replication. 
The terminal 18 bp of the viral genome are regarded as the minimal replication 
origin and contain a 10-bp region that is perfectly conserved in all of the human 
adenoviruses sequenced (STILLMAN et al. 1982). While the integrity of this region is 
required for viral replication, in isolation it can support only a very limited basal 
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level of initiation of DNA replication (CHALLBERG and RAWLINS 1984; 
GUGGENHEIMER et al. 1984; HAY 1985a; LALLyet al. 1984; TAMANOI and STILLMAN 1983; 
VAN BERGEN et al. 1983; WIDES et al. 1987). Separated from the "core" by a precisely 
defined spacer region (ADYHA et al. 1986; BOSHER et al. 1990; WIDES et al. 1987) is 
the recognition site for the cellular protein nuclear factor I (NFl) or CAAT 
transcription factor (JONES et al. 1987; MEISTERERNST et al. 1989; PAONESSA et al. 
1988; SANTORO et al. 1988). Binding of NFl to this region of the genome increases 
the frequency of initiation of viral DNA replication both in vivo and in vitro (NAGATA 
et al. 1983; RAWLINS et al. 1984; GUGGENHEIMER et al. 1984; DE VRIES et al. 1985; HAY 
1985a,b; SCHNEIDER et al. 1986). Immediately adjacent to the NFl-binding site is the 
recognition site for another cellular DNA binding protein, nuclear factor III (NFIII) or 
octamer-binding protein (Oct-1); O'NEILL and KELLY 1988; PRUIJN et al. 1986; 
ROSENFELD et al. 1987; STRUM et al. 1988; WIDES et al. 1987). Although dele-tion of 
this DNA sequence is without consequence in vivo (HAY and McDoUGALL 1986), 
addition of NFIII to an Ad2 in vitro system results in the stimulation of 
DNA replication (MUL et al. 1990). In contrast to Ad2, the subgroup E virus Ad4 
only requires the terminal 18 bp of the viral genome for efficient DNA replication 
in vivo (HAY 1985b) and in vitro (HARRIS and HAY 1988; TEMPERLEY and HAY 1991; 
TEMPERLEY et al. 1991). Thus Ad4 appears to have circumvented the need for the 
host factors NFl and NFIII. The inverted terminal repeat does not contain an NFl 
recognition site, and whilst it does have a binding site for NFIII neither factor is 
required for DNA replication in vivo or is capable of stimulating DNA replication in 
vitro (HAY et al. 1988) 

3 Role of Pre-terminal Protein, Terminal Protein 
and Protease in the Replication of Viral DNA 

It has been known for some time that a 55-kDa Tp is linked to the 5' termini of 
mature adenovirus DNA. However, early in vitro DNA replication studies indicated 
the presence of 80-kDa pTP covalently attached to the 5' ends of nascent DNA 
(CHALLBERG et al. 1980). Analysis of an Ad2 virus protease temperature-sensitive 
mutant, H2 ts1, which can replicate efficiently at its restrictive temperature, but 
whose progeny virions are not infectious, revealed that the 80-kDa pTP was 
processed to the mature TP late in infection (STILLMAN et al. 1981). Subsequent 
studies demonstrated that during the initiation of adenovirus DNA replication, 
dCMP was transferred onto pTP to act as the primer for viral DNA synthesis. This 
protein priming reaction was catalysed by the intimately associated adenovirus 
DNA polymerase. In adenovirus-infected cells, pTP and pol form a stable 
heterodimer that can only be dissociated under strong denaturing conditions such 
as 1.7 M urea (LICHY et al. 1982; STILLMAN et al. 1982). Studies on pTP have been 
facilitated by the cloning of cDNA copies of the gene (PETIIT et al. 1988) into 
vaccinia virus (STUNNENBERG et al. 1988) or baculovirus (BOSHER et al. 1990) vectors 
for high-level expression in human or insect cells. 
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Adenovirus pTP is processed to TP via an intermediate form by the action of 
the virus-coded protease, which is produced at high levels late in the infectious 
cycle and is essential for viral infectivity. Sequence alignments and site-directed 
mutagenesis of the protease indicate that the enzyme may represent a new 
subclass of cysteine protease (RANCOURT et al. 1994). Recently, it has been shown 
that adenovirus protease is activated by a disulphide-linked peptide (MANGEL et al. 
1993; WEBSTER et al. 1993) derived from the C terminus of the virus structural 
protein pVI, with the suggested activation mechanism being one of thiol-disul­
phide interchange (WEBSTER et al. 1993). Given the fact that the protein primer 
for DNA replication, pTP, is processed by adenovirus protease, it was suggested 
that DNA was a co-factor in the protease reaction (MANGER et al. 1993). However, 
other studies have demonstrated that, while DNA can stimulate protease activity 
under certain defined conditions, it is clearly not required for protease activity 
(WEBSTER et al. 1993, 1994). It has been demonstrated that Ad2 p TP is cleaved at 
three sites; MRGF-G and MGGR-G, separated by eight amino acids, to generate 
the intermediate TP (iTP), and MTGG-V to give TP. These sites were predicted 
previously based on synthetic peptide studies and are in accord with the substrate 
specificity of the adenovirus protease (WEBSTER et al. 1989). Furthermore, sites 
giving rise to both iTP and TP are conserved in all serotypes in which pTP has been 
sequenced to date, suggesting that the cleavage of pTP, via an intermediate, to 
TP, plays a role in the infectious cycle. 

The major approach to mapping the functional domains of pTP has been linker/ 
insertion mutagenesis, and although this approach has provided some useful 
information, the major conclusion appears to be that the virus is very sensitive to 
mutations in pTP, with changes throughout the 671 amino acids proving lethal 
(FREDMAN et al. 1991; FREIMUTH and GINSBERG 1986; ROOVERS et al. 1993). In terms of 
activity in in vitro replication assays, pTP is fractionally more tolerant to mutagene­
sis, but it has been shown that a number of regions spanning the N-terminal 250 
amino acids are absolutely required for initiation of DNA replication (PETIIT et al. 
1989; ROOVERS et al. 1993). In a recent study (WEBSTER et al. 1994) the natural 
processing of pTP, by adenovirus protease, was used to define the regions of pTP 
that bind to adenovirus pol (Ad pol) and the DNA at the origin of replication. 
Immunoprecipitation experiments demonstrated that pTP and iTP, but not TP, 
bound to Adpol, suggesting that the amino acids critical for interaction with Adpol 
reside between the iTP and TP sites. Further evidence that Adpol binds to pTP in 
proximity to iTP sites comes from the observation that the rate of digestion to iTP 
is much slower for the Adpol-pTP complex than for free pTP. Studies on the DNA­
binding properties of p TP and its digestion products show that only the p TP binds 
to DNA, indicating that the pTP probably contacts DNA in the region of the iTP 
cleavage sites. The importance of the amino acids in the region of the iTP cleavage 
sites in DNA replication is emphasised by studies of a mutant in179, in which an 
insertion has been introduced 48 amino acids to the N terminus of iTP site. It has 
been shown that the mutant virus has a delayed onset of DNA replication and that 
it has a trans-dominant negative effect in that in179 p TP inhibits wild-type DNA 
replication in a dose-dependent manner (FREIMUTH and GINSBERG 1986). 
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In considering the role of the pTP processing by protease in DNA replication, 
free pTP and pTPfTP which is covalently attached to the 5' end of DNA should be 
regarded as distinct functional entities. Clearly, the role of free pTP is to act as the 
protein primer for DNA replication, whilst the significance of the covalently 
attached pTPfTP remains to be fully elucidated; however, it has been known for 
some time that in transfection experiments the infectivity of TP-DNA is orders of 
magnitude greater than naked DNA. 

Roles for the covalently attached pTPfTP that have been suggested include 
protection of viral DNA from exonucleases, attachment of virus DNA to nuclear 
matrix (SCHAAK et al. 1990) and unwinding of the DNA duplex at the origin of 
replication. Although long suspected, it has only recently been demonstrated 
that the genome-bound TP serves to stabilise binding of the incoming pTP-pol 
heterodimer at the origin of DNA replication (PRONK and VAN DER VLIET 1993). In the 
same study the authors also presented evidence indicating that TP-bound origin 
DNA adopted a different structure to free origin DNA. However, it is yet to be 
established whether the altered DNA structure of origin DNA is responsible for the 
increased binding of pTP-pol or whether it is an entirely unrelated phenomenon. 
To date, however, few attempts have been made to distinguish between TP-DNA 
and pTP-DNA, and in most cases the terms have been used interchangeably. This 
is perhaps surprising, given that in vivo the template for early transcriptinn and the 
first round of DNA replication is TP-DNA, whilst the template for subsequent 
rounds of replication will be pTP-DNA, irrespective of whether infections are 
carried out with wild-type Ad2 or Ad2ts1 at the permissive or non-permissive 
temperatures. One role for the digestion of pTP-DNA to TP-DNA by the protease 
that has been suggested is that the cleavage is required to release the TP-DNA 
from the nuclear matrix, prior to assembly within the virus particles (FREDMAN and 
ENGLER 1993). The fact the p TP-DNA is packaged within virus particles during 
Ad2ts1 infections at non-permissive temperatures would tend to argue against 
this (WEBER 1990). It cannot be ruled out, however, that the nuclear matrix binding 
properties of TP-DNA and p TP-DNA are distinct and that this has some bearing on 
the transcription/replication sites of viral DNA. Another possibility is that the 
purpose of the processing of p TP-DNA to TP-DNA is to create a different template 
for either early transcription or the first round of DNA replication. As pTP binds to 
DNA and Adpol while the mature TP does not (WEBSTER et al. 1994), it would not 
be surprising to find differences between the properties of TP-DNA and p TP-DNA 
as templates for DNA replication. 

4 Adenovirus DNA Polymerase 

Purification of an activity required for viral replication from an Ad2-infected 
cytosolic extract yielded two polypeptide species: the previously described 80-
kDa pTP and a 140-kDa protein with a unique DNA polymerase activity distin­
guishable from cellular DNA polymerases (ENOMOTO et al. 1981). The viral origin of 
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the DNA polymerase was first suggested from complementation experiments 
with a group of temperature-sensitive mutants ofAd5 (group N mutants) defective 
in both the initiation and elongation of DNA replication in vivo (STILLMAN et al. 1982; 
VAN BERGEN et al. 1983). Nuclear extracts prepared from cells infected with these 
mutant viruses were unable to support initiation of DNA replication, but activity 
was restored by addition of the 140-kDa pol (STILLMAN et al. 1982). 

The presence of DBP was found to have a profound effect on both the pol 
and exonuclease activities of the Adpol (FIELD et al. 1984). DNA synthesis on poly­
dT:oligo-rA was stimulated ten- to 100-fold by the presence of DBP due to an 
increase in processitivity of the Adpol. This effect was template specific, as DNA 
synthesis on activated DNA and poly-dC:oligo-dG were not effected by DBP. 
Other single-stranded binding proteins (SSB) such as Escherichia coli SSB were 
unable to substitute for adenovirus DBP. Alternatively, it was found that adeno­
virus DBP did not substitute for human SSB in stimulating the activity of human 
cellular polymerase-a. These results are consistent with a specific cooperative 
interaction between DBP and the Adpol (LINDENBAUM et al. 1986) in which DBP is 
thought to act by stabilising the interaction between Adpol and the DNA temp­
late. Indirect evidence for the formation of a physical complex was provided by 
LINDENBAUM et al. (1986), who observed an increase in the thermostability of Adpol 
in the presence of an excess of DBP. Although physical evidence of functional 
complexes between SSB and pol have been found in a variety of procaryotes 
such as T 4 and T7 (HUBERMAN and KORNBERG 1971; REUBEN and GEFTER 1973) and 
eucaryotes such as human SSB (KENNY et al. 1989, 1990), it has not yet been 
possible to isolate an Adpol-DBP complex. 

In addition to its polymerase function Adpol also possesses an intrinsic 3'-5' 
exonuclease activity, common to many procaryotic and eucaryotic DNA poly­
merases (BERNAD et al. 1989). This exonuclease, which is thought to have a role in 
the proofreading of nascent DNA during elongation, was found to be inhibited up 
to sevenfold by the presence of DBP. The nature of inhibition by DBP was shown 
to be due to a direct effect upon the pol rather than binding to and protecting the 
DNA (LINDENBAUM et al. 1986) 

Expression of pol cDNA (SHU et al. 1987) in HeLa cells and insect cells using 
vaccinia virus (STUNNENBERG et al. 1988) and baculovirus vectors (WATSON and HAY 
1990) has allowed structure function analysis studies of pol to be initiated. Protein 
affinity chromatography, co-immunoprecipitation and cross-linking experiments 
have all demonstrated that pol can interact directly with the cellular protein NFl, 
which has been shown to stimulate the initiation of adenovirus DNA replication 
between five- and 30-fold (BOSHER et al. 1990; CHEN et al. 1990; Mu~ and VAN DER 
VLIET 1990). This protein-protein interaction is thought to play an important role in 
assembly of the pre-initiation nucleoprotein complex at the adenovirus DNA origin 
of replication (discussed below). 

The Adpol shares regions of amino acid sequence homology with a large 
number of DNA polymerases including procaryotic phage polymerases (bacterio­
phages T4 and <1>29), eucaryotic polymerases (human DNA polymerase a) and viral 
polymerases (adenovirus, herpes simplex and vaccinia virus). Four conserved 
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amino acid regions designated I-IV (I being the most conserved between species) 
have been found in the Adpol. The most conserved regions (I-I\) are present in the 
C-terminal domain of the protein and have been implicated in metal binding 
(region \) and substrate binding (regions II and II\). The importance of these 
conserved regions (BERNAD et al. 1987) is suggested by comparison with regions 
in mutant herpes simplex virus pol that confer altered sensitivity to nucleotide 
analogues such as aphidicolin and acyclovir (LARDER et al. 1987; MARcyet al. 1990). 
Mutations in conserved region I of pol have defects both in their ability to 
participate in the initiation of adenovirus DNA replication in vitro and in pol catalytic 
activity. Further mutational analysis has identified two potential metal-binding 
domains consisting of cysteine-histidine clusters in the Ad2 pol that affect its 
DNA-binding and catalytic properties. N-terminal domain mutations in this enzyme 
had a moderate effect on both DNA synthesis and elongation, but failed to make 
the pTP-dCMP complex or bind DNA. C-terminal mutants had the greatest effect 
on both DNA synthesis, DNA binding and pTP-dCMP complex formation (JOUNG 
and ENGLER 1992). Recent experiments using the active site label pyridoxal 
phosphate have suggested the involvement of a specific lysine residue in the 
catalytic mechanism of the pol enzyme (MONAGHAN and HAY, submitted for 
publication). While a candidate lysine residue is present in a domain involved in 
template-primer binding deoxynucleoside triphosphate (dNTP) selection, positive 
identification of the modified lysine must await microchemical analysis. 

Intriguingly, a role for phosphorylation in the activity of pol has been sugges­
ted (RAMACHANDRA et al. 1993) by the finding that pol is phosphorylated on S67 
by a stably associated histone H1 kinase which exhibits properties similar to the 
cdc2 family of kinases (RAMACHANDRA and PADMANABHAN 1993). Dephosphorylation 
of the protein altered its ability to participate in the initiation reaction. 

5 Adenovirus DNA-Binding Protein 

The abundance of DBP during the adenovirus infectious cycle (up to 5 x 106 mole­
cules per cell) helped make it become the first of the viral non-structural proteins 
to be identified and subsequently purified (VAN DER VUETand LEVINE 1973). Although 
DBP has an apparent molecular weight of 72 kDa, this was subsequently shown 
to be an aberrant electrophoretic mobility, with its true molecular weight as 
predicated from amino acid composition, being around 59 kDa (KRUIJER et al. 
1981 ). 

The essential role of DBP in viral infectivity was demonstrated genetically 
by isolation of the temperature-sensitive mutations Ad5 H5ts125 and H5ts1 07 in 
the DBP gene. Nuclear extracts from both of these mutants were found to be 
defective for full-length adenovirus DNA replication on both exogeneous and 
endogeneous templates (FRIEFELD et al. 1983). In both cases activity was restored 
by the addition of purified wild-type DBP. 
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Although the role of DBP in elongation has been well documented over the 
years by both in vivo and in vitro studies, its role in the initiation of adenovirus DNA 
replication has been more contentious. However, more recent studies using 
purified components have observed a stimulatory effect on the level of initiation 
when DBP is present (KENNY and HURWITZ 1988; CLEAT and HAY 1989; MUL and VAN 
DER VLIET 1993). One effect of DBP is a consequence of a functional interaction 
with NFl, a cellular DNA binding protein which has also been found to stimulate 
the initiation of DNA replication. This was initially suggested by the observation 
that the abilityof NFl to stimulate initiation in vitro was influenced by the con­
centration of DNA binding protein (DE VRIES et al. 1985). Subsequent experiments 
demonstrated that DBP co-operatively increased the affinity of NFl for its recog­
nition site in the adenovirus origin of DNA replication (CLEAT and HAY 1989; STUIVER 
and VAN DERVLlET 1990). However, no evidence for a direct interaction between the 
two proteins was detected, and it was suggested that the observed effect was a 
consequence of DBP's ability to alter the structure of bound DNA. Using a 
combination of electron microscopy, hydroxyl radical footprinting and circular 
dichromism, this contention was confirmed when it was demonstrated that 
DBP can remove the tertiary structure of double-stranded DNA fragments upon 
binding (STUIVER et al. 1992). Thus the structure of the DBP-DNA complex may 
alter the relative positions of hydrogen bond donor and acceptor groups in the 
major grooves, causing a fine tunning of the contacts between NFl and DNA that 
leads to a higher-affinity interaction. It has also been demonstrated that DBP can 
stimulate initiation of DNA replication by decreasing the Km of the polymerase for 
the initiatior nucleotide dCTP (MUL and VAN DER VLIET 1993). 

Partial chymotryptic digestion of purified DBP yields a C-terminal fragment of 
around 40 kDa and a highly phosphorylated 27-kDa N-terminal fragment (KLEIN 
et al. 1979). The C-terminal portion of the molecule can substitute for the full­
length molecule during adenovirus DNA replication in vitro and contains a number 
of conserved domains that are present in all adenovirus serotypes (KITCHINGMAN 
1985; Vos et al. 1988). Mutations in each of the three highly conserved domains 
alter the affinity of DBP for single-stranded DNA (NEALE and KITCHINGMAN 1990). 
Further investigation revealed the presence of a zinc-binding motif within this 
domain (between amino acids 273 and 286) which, when mutated, destroyed all 
of DBP's functions (EAGLE and KLESSIG 1992). More recent studies using limited 
proteolysis and photo-cross-linking techniques have revealed that the two resi­
dues, Met-299 and Phe-418, also play an important in DBP's ability to bind single­
stranded DNA (CLEGHORN and KLESSIG 1992). 

Adenovirus DBP has been shown to possess the properties of a helix­
destabilising protein (MONAGHAN et al. 1994; ZIJDERVELD and VAN DER VLIET 1994). 
When templates contain a large amount of single-stranded DNA, the double­
stranded portion is efficiently unwound in a highly co-operative reaction. 
Completely double-stranded templates are also unwound, but this reaction is 
restricted by the length and G+C content of the DNA fragment (MONAGHAN et al. 
1994). Like other helix-destabilising proteins, DBP-promoted unwinding requires 
neither adenosine triphosphate (ATP) nor MgCI2 • In fact, the latter is inhibitory to 
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the process, as are other agents, such as NaCl, which increase the stability of 
duplex DNA molecules. Very similar properties have recently been ascribed to 
both the calf thymus and herpes simplex virus-coded single-strand specific DBP 
which appear to be involved in cellular and viral DNA replication (GOERGAKI et al. 
1992; GOERGAKI and HUBSCHER 1993; BOEHMER and LEHMAN 1993). Two possibilities 
exist to explain the ability of DBP to unwind completely double-stranded DNA. In 
one model DBP could utilise its ability to first bind to double-stranded DNA (CLEAT 
and HAY 1989; STUIVER and VAN DER VLIET 1990). invade the DNA duplex and bind in 
a stable fashion to the exposed single strands. An alternative model is that DBP 
binds to transiently single-stranded regions of DNA that are exposed during 
"breathing" of short, double-stranded DNA molecules. What is clear, however, is 
that when the double-stranded DNA fragments are tighltly bound by either NFl or 
NFIII at their cognate recognition sites DBP is unable to unwind the DNA. This 
could be due to the bound proteins stabilising the DNA duplex or alternatively the 
bound proteins may interfere with the ability of DBP to form a continuous protein 
chain on the DNA. Unlike DNA helicases which translocate unidirectionally on 
DNA. there does not appear to be a strict directionality to the unwinding reaction 
catalysed by DBP. Determination of the three-dimensional structure of DBP by 
X-ray crystallography (TUCKER et al. 1994, and discussed in detail by P.C. VAN DER 
VLIET, this volume) has suggested a mechanism for the formation of a protein chain 
of DBP molecules on DNA. The ability of DBP to impose a rigid structure on DNA 
has recently been shown to be responsible for the ability of DBP to also promote 
renaturation of complementary single strands (ZIJDERVELD et al. 1993). However, 
whereas the denaturation reaction described here is inhibited by high concentra­
tions of monovalent and divalent cations, the renaturation reaction described 
above is highly resistant to their presence (ZIJDERVELD et al. 1993). 

The ability of DBP to destabilise double-stranded DNA duplexes could be 
utilised at a number of points in the viral replicative cycle. While DBP has been 
shown to stimulate the initiation of Ad2 DNA replication in vitro by decreasing the 
Km for transfer of dCMP onto pTP and by increasing the binding of NFl to the 
replication origin, neither of these reactions are likely to involve the melting of 
duplex DNA. However, DBP may stimulate the initiation of DNA replication by 
additional means, and it has previously been demonstrated that Ad4 DBP 
dramatically stimulates initiation of DNA replication. In this case the extent of 
stimulation is independent of the concentrations of NFl and dCTP (TEMPERLEY and 
HAY 1991). One possibility is that DBP may participate with other replication 
proteins in the unwinding of the DNA double helix that is expected to take place 
at the termini of the genome prior to initiation (see Fig. 1). Numerous experiments 
have indicated that TP (PRONK et al. 1992; PRONK and VAN DER VLIET 1993), NFl (DE 
VRIES et al. 1987; MUL and VAN DER VLIET 1992) and NFIII (VERRIJZER et al. 1991) can 
all distort adenovirus genomic DNA to some extent. Along with DBP's ability to 
distort and unwind short, fully duplex DNA, this could provide a mechanism by 
which the adenovirus replication proteins can destabilise and eventually open the 
origin DNA. The requirement for DBP during progress of the replication fork has 
been well established and it is likely to be a consequence of DBP stabilising 
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Fig. 1. Initiation of adenovirus type 2 (Ad2) DNA synthesis showing formation of the pre-initiation 
complex and helix opening at the origin of DNA replication. TP, terminal protein; NF, nuclear factor; 
pTP, precursor TP; dCTP, deoxycytidine triphosphate; dCMP, deoxycytidine monophosphate; pol, 
DNA polymerase; DBP, DNA-binding protein; ori, origin of DNA replication 

displaced single strands and altering the properties of the viral pol. In the latter 
case, DBP has been shown to convert pol into a form that is capable of strand 
displacement and highly processive DNA synthesis (FIELD et al. 1984; LINDENBAUM 
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et al. 1986). Both of these activities may well be a consequence of the ability of DBP 
to transiently destabilise double-stranded DNA at the advancing replication fork. 

6 Cellular Proteins Involved 
in Adenovirus DNA Replication 

Limited initiation of DNA replication in vitro can occur in the presence of only the 
virally encoded pTP, pol and DBP proteins. However, the addition of a crude 
nuclear extract of uninfected HeLa cells was observed to restore efficient levels of 
initiation. This stimulatory effect was due to the presence of two cellular transcrip­
tion factors, NFl and NFIII. As both of these factors will be discussed elsewhere 
(P.C. VAN DER VLIET et aI., this volume) only information that is relevant to the 
formation of a pre-initiation complex will be discussed here. 

6.1 Nuclear Factor I 

Early in vitro DNA replication studies by both IKEDA et al. (1982) and LICHY et al. 
(1982) demonstrated the need for a component in uninfected HeLa cell nuclear 
extract for optimal initiation and elongation in the presence of infected cytosol or 
purified pTP-pol heterodimer and DBP. Such an activity, purified from the nuclear 
extract, contained a single major protein species with a molecular weight of 47 
kDa which was termed NFl (NAGATA et al. 1982). Early characterisation of NFl con­
centrated on its ability to specifically bind the sequence 5'-TGGC (N6) GCCM-3' 
present in a number of adenovirus origins of DNA replication (LEEGWATER et al. 
1985). On the basis of immunological cross-reactivity data, amino acid com­
position and proteolytic cleavage patterns, it appears that the NFl proteins are 
indistinguishable from CCM T-binding transcription factors (CTF). a family of 
proteins involved in cellular gene transcription. Analysis of the cDNA from various 
human NFI/CTF mRNA have shown that they all originate from a single gene, 
giving rise to multiple mRNA transcripts by differential splicing of a precursor 
molecule (SANTORO et al. 1988; MEISTERERNST et al. 1989). The NFl proteins had 
virtually indistinguishable DNA-binding activities and stimulated Ad2/Ad5 initiation 
of DNA replication in vitro. Mutagenesis studies on the cDNA of the largest NFl 
protein (CTF-1) identified two functional domains: a highly conserved N-terminal 
domain, which contains the functions for DNA binding, dimerisation and DNA 
replication (SANTORO et al. 1988; MERMOD et al. 1989; GOUNARI et al. 1990; BOSHER 
et al. 1991) and a less highly conserved, proline-rich C-terminal domain which has 
a transcriptional activation function (MERMOD et al. 1989). 

The mechanism of stimulation of adenovirus DNA replication by NFl in vitro 
is complex (MUL et al. 1990). The degree of stimulation appears to be strongly 
dependent on the concentration of pTP-pol. At low pTP-pol concentrations, NFl 
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or the DNA-binding domain of NFl (NFI-BD) stimulated replication up to 50-fold, 
while at high concentrations of pTP-pol stimulation was less than twofold. This 
demonstrates that in vitro the need for NFl can be overcome by high pTP-pol 
concentrations. This result provided an explanation for the different levels of 
stimulation by NFl reported previously (ADHYA et al. 1986; DE VRIES et al. 1985) as 
well as a strong indication for a direct interaction between NFl and pTP-pol. The 
orientation and spacing between the NFl site and the 1-18 core origin sequence 
is critical in adenovirus DNA replication. Insertion of additional sequence between 
these two sequence regions abolished NFl-mediated stimulation of DNA repli­
cation in vitro (ADHYAet al. 1986; WIDES et al. 1987) and in vivo (BOSHER et al. 1990). 
This suggested that a strict constraint on the spatial arrangement between the 
1-18 core sequence and the NFl site existed which was neccessary to allow 
specific protein-protein interactions between NFl and other replication proteins. A 
direct interaction between NFl and pol was subsequently demonstrated (BOSHER 
et al. 1990; CHEN et al. 1990; MUL et al. 1990), the function of which was to stabi­
lise the relatively weak interaction between the pTP-pol heterodimer and its 
recognition site in the adenovirus origin of DNA replication. 

6.2 Nuclear Factor III 

The host encoded cellular factor NFIII was initially identified in HeLa nuclear 
extracts through its ability to stimulate the initiation of adenovirus DNA replication 
in vitro in the presence of NFl (PRUIJN et al. 1986). Purified NFIII has a molecular 
weight of 92 kDa and, when bound to its recognition site in the adenovirus origin, 
stimulates the level of initiation in vitro three- to sevenfold (O'NEILL and KELLY 
1988). A combination of DNase I footprinting and methylation protection studies 
on Ad2 identified the core binding site as 5'-TATGATAAT-3', which is situated 
between nucleotides 39 and 48 in theAd2 ITR. NFl II was recognised as a member 
of the octamer transcription factor family by O'NEILL et al. (1988) and PRUIJIN et al. 
(1989), who demonstrated that NFIII was indistinguishable from octamer 
transcriptiion factor (OTF-1). Many more octamer-binding proteins have been 
identified which contain a conserved DNA-binding region known as the POU 
domain. NFIII contains this domain, which like the N-terminal domain of NFl is 
sufficient for the in vitro stimulation of Ad2 DNA replication (VERRIJZER et al. 1990). 
While NFIII clearly stimulates Ad2 DNA replication in vitro, the mechanism by 
which it does so has yetto be determined. In vivo the situation is less clear, as 
mutantAd2 viruses containing genomes with a deleted NFIII site art? as infectious 
as wild-type virus with an intact NFIII site (HAY and McDOUGALL 1986). However, 
transfection assays on plasm ids containing only the 1-18 core origin of replication 
linked to an NFl II site (and no NFl site) found that these templates could replicate 
more efficiently than plasmids containing only the 1-18 core origin of replication 
(HAY et al. 1988). This confirmed in vitro replication studies by MUL et al. (1990), 
who found that both the NFl II and NFl-binding sites were needed for optimal 
stimulation of replication. Since the binding sites of the two proteins overlapped, 
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this suggested that they could interact in a co-operative manner to stimulate DNA 
replication. However, this does not appear to be the case, it seems that both 
proteins can, by binding to their respective recognition sites, stimulate initiation 
independently (MUL et al. 1990). It has been suggested that NFl II-induced bending 
of the DNA at the origin of DNA replication may stimulate DNA replication by 
promoting interactions between the various components in the pre-initiation 
complex (VERRIJZER et al. 1991). 

7 A Model for the Initiation 
of Adenovirus DNA Replication 

Based on the observations described above, a model outlined in Fig. 1 has been 
formulated to describe events that lead to the initiation of adenovirus DNA 
replication. Ad2 DBP, originally classified as a single-stranded DBP, but which also 
binds to double-stranded DNA, is produced in such large amounts that it is likely 
that in vivo all template molecules are coated with the protein. This has the effect 
of increasing the affinity of NFl for its recognition site in the Ad2 ori and thus 
ensuring that the NFl-binding site in ori is fully occupied (CLEAT and HAY 1989, 
STUIVER and VAN DER VLIET 1990). A direct protein-protein interaction between NFl 
and pol then recruits the pTP-pol heterodimer into the preinitiation complex 
(BOSHER et al. 1990; CHEN et al. 1990; MUL et al. 1990). Correct positioning of the 
pTP-pol heterodimer at the origin is accomplished by an interaction between 
pTP-pol and the DNA sequence from base pairs 9-18 that is perfectly conserved 
in all human adenoviruses sequenced to date and is regarded as the core of 
the Ad2 ori (MUL and VAN DER VLIET 1992; TEMPERLEY and HAY 1992). Further 

stabilisation of this complex may be accomplished by interactions between the 
incoming pTP-pol and genome-bound TP (PRONK and VAN DER VLIET 1993). At this 
stage the origin must unwind to expose the single-stranded DNA that is the 
template for DNA synthesis. The helix-destabilising properties of DBP may be 
particularly important in catalysing this reaction. Chemical modification experi­
ments have recently demonstrated that this unwinding takes place in the highly 
conserved region within the core of the viral origin of DNA replication (I. LEITH and 
R.T. HAY, unpublished work). 
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1 Introduction 

DNA tumor viruses have contributed immense wealth of knowledge in the past 
few years regarding the eukaryotic cellular processes involving replication, 
transcription, and translation. Adenoviruses (Ad) in particular have played a 
pioneering and significant role in the understanding of the mechanisms of many 
of these biological processes mainly due to the interaction of viral proteins with 
the host proteins during the virus life cycle. The development of the first cell-free 
system to study Ad DNA replication (CHALLBERG and KELLY 1979; for reviews, see 
CHALLBERG and KELLY 1989; STILLMAN 1989; HAY and RUSSELL 1989) was pivotal to 
our current understanding of eukaryotic DNA replication. 

The Ad genome contains a linear double-stranded DNA of 36 kb in length, and 
at each 5' end a 55-kDa protein (terminal protein, TP) is covalently linked through 
the ~-hydroxyl group of a serine via a phosphodiester bond (REKOSH et al. 1977; 
CHALLBERG et al. 1980; RONINSON and PADMANABHAN 1980; StiLLMAN 1981; DESIDERIO 
and KELLY 1981; CHALLBERG and KELLY Jr 1981; SMART and STILLMAN 1982). The viral 
DNA replication takes place in the nucleus of the host cell by a strand displace­
ment mechanism through the interaction of three viral proteins, preterminal 
protein (pTP), DNA polymerase (AdPol), and the DNA-binding protein (DBP), and 
at leastthree cellular proteins, nuclear factors (NF) I, II, and III, as well as the origin 
of DNA replication (ori DNA). The ori DNA is located at both ends of the viral 
genome within the first 51 bp of the inverted terminal repeat sequences, and 
depending on the Ad serotype the length of the inverted terminal repeat varies 
from 102 to 162 bp (ARRAND and ROBERTS 1979, SHINAGAWA and PADMANABHAN 1979, 
1980; TOLUN et al. 1979; TOKUNAGA et al. 1982; STILLMAN et al. 1982). The sequences 
required for Ad replication initiation include the minimal core origin between 
nucleotides 1 and 18 (domain A in WIDES et al. 1987) and an auxiliary region located 
between nucleotides 19 and 51 (domain B between 19 and 40, domain C between 
41 and 51) containing binding sites for the host transcription factors, NFl (or 
CCMT-box transcription factor, CTF; NAGATA et al. 1982; RAWLINS et al. 1984; 
LEEGWATER et al. 1985; JONES et al. 1987; WIDES et al. 1987; DE VRIES et al. 1989; 
GOUNARI et al. 1990; MUL and VAN DER VLIET 1992), and NFIII (Oct-1; PRUIJN et al. 
1986, 1987; O'NEILL and KELLY 1988; O'NEILL et al. 1988). 

The viral as well as the host proteins that participate in initiation and elonga­
tion reactions and the template requirements for initiation have been identified 
using the in vitro system (for reviews, see CHALLBERG and KELLY 1989; STILLMAN 
1989; HAY and RUSSELL 1989). The DNA replication starts by a novel protein-priming 
mechanism in which AdPol catalyzes the covalent linkage of the 5'-terminal 
nucleotide deoxycytidine monophosphate (dCM P) to the ~-OH of a serine residue 
of the pTP which then serves as a primer for elongation reaction. Studies have 
shown that NFl binding recruits the AdPol-pTP complex to the minimal ori through 
specific protein-protein and protein-DNA interactions (KENNY and HURWITZ 1988; 
CHEN et al. 1990; MUL and VAN DER VLIET 1992) to form the preinitiation complex. It 
has been suggested that a single-stranded region might be generated resulting 
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from the interaction of NFl with its binding site followed by unwinding of the 
duplex DNA at the core origin sequence (NAGATA et al. 1983b; CHALLBERG and 
RAWLINS 1984). In support of this model, a single-stranded oligodeoxynucleotide 
complementary to the template core origin sequence was found to inhibit the 
initiation of DNA replication, suggesting that formation of single-stranded region 
involving the core origin sequence is a prerequisite for the initiation reaction 
(DOBBS et al. 1990). 

Ad2- (or Ad5-) encoded DBP is thought to increase the affinity of NFl for its 
binding site (DE VRIES et al. 1985; KENNY and HURWITZ 1988; CLEAT and HAY 1989; 
STUIVER and VAN DER VLIET 1990; BOSHER et al. 1991) and stimulates the NFI­
dependent formation of p TP-dCMP initiation complex (NAGATA et al. 1982; DE VRIES 
et al. 1985). DBP binds preferentially in a nonsequence-specific manner to single­
stranded DNA (VAN DER VLIET and LEVINE 1973; LEVINE et al. 1976; LINNE et al. 1977; 
SUGAWARA et al. 1977; SCHECHTER et al. 1980) and plays an essential function in the 
AdPol-catalyzed elongation step of viral DNA replication (VAN DER VLIET et al. 1977; 
HORWITZ 1978; KEDINGER et al. 1978; KAPLAN et al. 1979; FRIEFELD et al. 1983; OSTROVE 
et al. 1983; VAN BERGEN and VAN DER VLIET 1983; for reviews, see HORWITZ 1990; VAN 
DER VLIET 1990; K.R. WILLIAMS and CHASE 1990). The rate of DNA synthesis as well 
as the processivity of AdPol increases in the presence of DBP during DNA chain 
elongation (FIELD et al. 1984; LINDENBAUM et al. 1986). In addition to its DNA 
replication function, DBP is involved in early (CARTER and BLANTON 1978; BABICH and 
NEVINS 1981; HANDA et a1.1983) as well as late viral gene expression (KLESSIG and 
GRODZICKER 1979) and in transformation (GINSBERG et al. 1974). 

Synthesis of full-length Ad DNA by AdPol in the in vitro DNA replication 
system requires, in addition to DBP, the NFII, a type I DNA topoisomerase (NAGATA 
et al. 1983a, b). More recently, the requirement for both topoisomerases I and II 
in Ad DNA replication was demonstrated by using camptothecin and VM26 as the 
respective inhibitors of these enzymes (SCHAACK et al. 1990a). Inhibition of 
topoisomerase I activity by camptothecin resulted in an immediate block of DNA 
replication, whereas the inhibition of topoisomerase II activity by VM26 occurred 
only after completion of approximately one additional round of DNA replication 
(SCHAACK et al. 1990a). 

2 Expression of Adenovirus DNA Replication Proteins 

A detailed biochemical characterization of AdPol and pTP has been difficult 
because of their low levels of synthesis in Ad-infected cells. In Ad2-infected cells, 
AdPol and pTP exist as a 1:1 stoichiometric complex, and attempts to purify this 
complex from Ad-infected cells resulted in low yields. For example, ENOMOTO et al. 
(1981) described a procedure for the purification of this protein complex about 
1 OOO-foid starting from Ad2-infected HeLa (2.5 x 1010) cells through several steps 
with an overall yield of about 7% of total activity and less than 110 Jlg protein. In 
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order to carry out a detailed biochemical characterization and identify the func­
tional domains of the Ad replication proteins, it was necessary to express these 
proteins using eukaryotic expression systems. 

2.1 Transcription Unit of E2 Region 

The mRNA for Ad Pol. pTP, and DBP are transcribed early from a single promoter 
at genome coordinate 75. The 59-kDa DBP is encoded by E2A region which 
shares common RNA leader sequences near genome coordinates 75 and 68 with 
mRNA for the pTP and AdPol. The pTP and the AdPol proteins are encoded by the 
E2B region of the viral genome and the mRNA share a common exon at genome 
coordinate 39 (STILLMAN et al. 1981; GINGERAS et al. 1982). These short exons are 
spliced to the main body of the open reading frames (m-ORF) for pTP and AdPol 
at genome coordinates 28.9 and 24.1, respectively. 

2.2 Expression of Adenovirus DNA Polymerase 
and Preterminal Protein in Biologically Active Forms 
Using Transient Expression Systems 

Several lines of experimental evidence suggested that the region upstream of the 
first translation initiation codon ATG of pTP and AdPol m-ORF might be important 
for biological activity. First, it had been suggested that the mRNA leader at 
coordinate 39 may encode the N-terminal amino acids of pTP, based on the 
observation that the sequence upstream of the first ATG of pTP and AdPol m-ORF 
is highly conserved among several serotypes (SMART and STILLMAN 1982; SHU et al. 
1986). Second, a linker scanning mutation that was mapped to the region 
upstream of the first ATG codon of pTP m-ORF was conditionally defective for 
DNA replication (FREIMUTH and GINSBERG 1986). Third, when the m-ORF of AdPol 
between genome coordinates 22.9 and 14.2, containing the first ATG at residue 
8367, was placed under the control of lac promoter, the resulting expression 
construct produced a protein of 120 kDa in size in Escherichia coli upon induction 
with isopropyl-beta-D-thiogalacto-pyranoside (lPTG). However, the rabbit poly­
clonal antibodies raised against this E. coli-produced protein recognized a 140-kDa 
protein in the nucleus of the Ad2-infected cells at late phase of Ad2 infection 
(SASAGURI et al. 1987). Since the size of the E. coli-expressed AdPol on sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was smaller than 
the native protein, it was suggested that the 140-kDa native AdPol contained 
additional amino acids coded by the short upstream exon (SASAGURI et al. 1987). 
Evidence that this upstream exon is important for the biological activity of AdPol 
and pTP came from the experiments in which the eukaryotic expression plasm ids 
containing the Hindll/J fragment encoding the exon at genome coordinate 39 
cloned upstream of the AdPol m-ORF (SHU et al. 1987) or the pTP m-ORF (PETIIT 
et al. 1988) produced biologically active AdPol and pTP in transient expression 
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systems. Independently, it was observed that synthetic linkers providing the 
translation initiation codon inserted upstream of the pTP and AdPol m-ORF also 
produced pTP and AdPol proteins in the transfected cells which were biologi­
cally active in the in vitro initiation of DNA replication, whereas the proteins 
expressed from the first ATG of the m-ORF of AdPol and p TP were not (ZHAO and 
PADMANABHAN 1988). The precise sequence of this exon from the genome 
coordinate 39 revealed that this exon, encoding three amino acids residues 
M-A-L, was spliced to the m-ORF of pTP and AdPol (SHU et al. 1988). 

2.3 Expression of Adenovirus DNA Polymerase 
and Preterminal Protein 
Using Recombinant Vaccinia Virus Expression Systems 

The DBP is expressed abundantly both early and late during the Ad life cycle (VAN 
DER VLIET and LEVINE 1973; LEWIS et al. 1976; SABORIO and OBERG 1976; FLINT and 
SHARP 1976; LEVINSON and LEVINE 1977), and therefore the amounts produced in the 
Ad-infected cells are sufficient for detailed biochemical analyses. For this reason, 
considerably more information is available regarding the function of DBP.than the 
other two replication proteins. In contrast, the amounts of AdPol and pTP 
produced in Ad-infected cells are very low, and in the transient expression 
systems they are still not sufficient in order to launch a detailed biochemical 
characterization of these proteins. STUNNENBERG et al. (1988) reported successful 
expression of pTP and AdPol using recombinant vaccinia virus expression system. 
The vaccinia expression vector pATA-18 containing a mutated 11 k late promoter 
(-100 to +8) was used. Both AdPol and pTP were produced at levels at least 
30-fold higher compared to extracts from Ad-infected cells and were active in the 
in vitro replication assay. 

AdPol and pTP proteins have been overproduced using the vaccinia expres­
sion vector pTM1 (described in Moss et al. 1990), in which the wild-type coding 
sequences of AdPol and pTP were cloned under the control of the bacteriophage 
T7 promoter and the 5'-untranslated leader sequences of the encephalomyo­
carditis virus (EMCV 5'-UTR) placed between the promoter and the gene (NAKANO 
et al. 1991). It was shown in earlier studies that in the absence of EMCV 5'-UTR 
sequences, although the RNA transcribed from the T7 promoter amounted to 
about 30% of the total steady state RNA in the cytoplasm of the infected cells, 
only a small fraction (about 5%-10%) of these transcripts were capped and 
methylated, which restricted the amount of translatable RNA in the 'cytoplasm 
(FUERST and Moss 1989). By the placement of the EMCV 5'-UTR immediately 
downstream from the T7 promoter, the translation of the transcripts was made 
cap independent, which increased the level of expression five- to ten-fold to about 
10% of the total cell protein (ELROy-STEIN et al. 1989). The levels of expression of 
AdPol and p TP were higher in this T7 hybrid system (NAKANO et al. 1991) than the 
previously used vaccinia expression vectors, and routinely at least 1-2 mg protein 
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could be obtained from one liter HeLa cells infected with the recombinant 
vaccinia virus. However, much of the protein produced in the recombinant 
vaccinia virus-infected cells was found to be associated with the nuclear pellet 
fraction, possibly due to aggregation resulting from over production. The protein 
in the pellet fraction could be solubilized using buffers of high ionic strengths 
(1 MNaCI). 

This recombinant vaccinia virusff7 promoter hybrid expression system offers 
some advantages over the other vaccinia expression systems used earlier in 
that site-directed mutants on pTP and AdPol can be constructed in the pTM1-
based expression plasm ids and their biological activities can be assayed rapidly 
using the "infection-transfection" protocol (Moss et al. 1990) without the necessity 
of constructing a recombinant vaccinia virus for each mutant. The amounts of 
heterologous protein produced in this transient expression system are sufficiently 
high to carry out a number of biochemical analyses. 

2.4 Expression of Adenovirus DNA Polymerase 
and Preterminal Protein in Insect Cells 
Using a Baculovirus Vector 

The expression in insect cells using the baculovirus Autographa cafifornica 
nuclear polyhedrosis virus (AcNPV) is currently one of the most widely used 
heterologous gene expression systems for structure and function studies of 
eukaryotic proteins, because the proteins produced using this system have 
been shown to undergo proper folding and post-translational processing and 
thus maintain biological activity (MILLER 1988; LUCKNOW and SUMMERS 1988). 
Using the baculovirus transfer vector pACRP23 (MATSUURA et al. 1987), the 
AdPol was expressed in insect cells to the level of 2-3 mg/I infected cells 
(2 x 109 cells). The recombinant AdPol was biologically active in the in vitro DNA 
replication assay (WATSON and HAY 1990). A different baculovirus transfer vector 
was constructed in which the polyhedrin promoter was assembled from syn­
thetic oligodexynucleotides, and a transcription unit for the expression of the 
facZ gene under the control of RSV-L TR promoter was inserted in the opposite 
orientation to that of the polyhedrin promoter. The coexpression of facZ allowed 
easy identification of the recombinant plaques generated from in vivo recombi­
nation. Using this modified transfer vector both pTP and AdPol were expressed 
in insect cells at high levels which could be detected by Coomassie blue staining 
of the SDS-PAGE on which crude extracts were fractionated (ZHAO et al. 1991; 
NAKANO et al. 1991). Both pTP and AdPol were biologically active in the in vitro 
DNA replication assay (ZHAO et al. 1991; NAKANO et al. 1991). Thus both AdPol 
and pTP have been overproduced using the heterologous eukaryotic expression 
systems, which should facilitate their structure and function studies in Ad2 DNA 
replication. 
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3 Nuclear Transport of Adenovirus Replication Proteins 

3.1 Adenovirus DNA Polymerase, Preterminal Protein, 
and DNA-Binding Protein Are Associated 
with Distinct Intranuclear Foci or Active Centers 
During Viral DNA Replication 

Ad DNA replication takes place in the nucleus of the infected cells producing 
104-105 progeny virus particles. Using in situ hybridization with biotinylated Ad 
DNA probes, replicating viral genomes were localized as discrete foci within the 
nuclei of infected cells (BRIGATI et al. 1983). When the localization of Ad5 DBP was 
examined in the infected Hela cells, VOELKERDING and KLESSIG (1986) obtained 
evidence for the presence of two nuclear subclasses of DBP. The first subclass of 
DBP exhibited diffuse intranuclear staining and was extractable by a buffer 
containing 1 % Nonidet P-40 and 150 mM NaCI. The second subclass of DBP, 
which required 2 M NaCI for extraction, appeared to be associated with distinct 
centers of active viral DNA replication and to be very similar to those distinct foci 
of replicating viral genomes observed by BRIGATI et al. (1983). In fact, the replica­
ting Ad5 DNA and DBP were colocalized in those globular structures (VOELKERDING 
and KLESSIG 1986). It has been suggested that the DBP globuler structures may 
represent sites of Ad DNA replication (SUGAWARA et al. 1977; GINSBERG et al. 1977; 
MCPHERSON et al. 1982; MURTI et al. 1990). 

In addition to the DBP, the replicating Ad2 DNA and AdPol were colocalized 
in these globular sites in the nucleus by in situ hybridization using biotinylated 
Ad2 DNA probe and by indirect immunofluorescence microscopy using rabbit 
polyclonal antibodies raised against a 120-kDa AdPol produced in E. coli (see 
Sect. 2.2; SASAGURI et al. 1987). Association of DBP and AdPol with these globular 
sites, which are presumably the centers for DNA replication, occurred only during 
viral DNA replication. When DNA replication was inhibited by treatment with 
hydroxyurea, or when the cells were infected with the temperature-sensitive 
AdPol mutant Ad5ts149 and the infected cells were incubated at nonpermissive 
temperature, only diffuse distribution of DBP and AdPol in the nucleus was 
observed (VOELKERDING and KLESSIG 1986; SASAGURI et al. 1987). Moreover, pTP was 
also localized in the nucleus of the Ad2-infected cells by subcellular fractionation 
(GREEN et al. 1981). Using immunofluorescence microscopy, pTP (ZHAO 1990; 
MURTI et al. 1990) as well asNFI (BOSHER et al. 1992) have been localized in distinct 
globular sites similar to those of AdPol within the nuclei of Ad2-inf~cted cells. 
Interestingly, infection with Ad4, which does not require NFl for its replication, did 
not result in the localization of NFl in these globular sites, in contrast to the 
localization of Ad4 DBP (BOSHER et al. 1992). 

The targeting of these replication proteins and the viral DNA to these foci or 
centers for DNA replication is not unique to Ad. The association of the herpes­
virus DBP with discrete foci has also been observed during viral DNA replication 
(QUINLAN et al. 1984; WILCOCK and lANE 1991). The host proteins p53 and retinobla-
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stoma susceptibility protein (Rb). which are presumably involved in the control of 
eukaryotic cell cycle and in the chromosomal DNA replication, have also been 
colocalized with the herpesvirus DBP, suggesting a possibility that these are the 
same sites utilized for chromosomal DNA replication (WILCOCK and LANE 1991). 
Moreover, by labeling with bromodeoxyuridine followed by indirect immuno­
fluorescence microscopy, the replicating eukaryotic chromosome has been 
shown to be associated with distinct foci (NAKAMURA et al. 1986). 

3.2 Identification of Nuclear Localization Signals 
for Preterminal Protein 

Nuclear proteins larger than 40-60 kDa are transported into the nucleus by a 
receptor-mediated process. This process is energy dependent (NEWMEYER and 
FORBES 1988; RICHARDSON et al. 1988) and requires the presence of nuclear locali­
zation signal (NLS) sequence (DE ROBERTIS et al. 1978) on the protein to be 
transported through the nuclear pore complex. The molecular mechanism invol­
ved in the nuclear import of proteins and export of RNA from the nucleus through 
the pore complex is an active area of research, and several excellent reviews have 
been published recently (DINGWALL and LASKEY 1986; GOLDFARB 1989; ROBERTS 1989; 
STARR and HANOVER 1990; SILVER 1991; DINGWALL 1991; NIGG et al. 1991; DINGWALL 
and LASKEY 1991, 1992; GARCIA-BUSTOS et al. 1991; HANOVER 1992). There is 
evidence that small proteins could freely diffuse into the nucleus and the rate of 
diffusion is inversely proportional to their size (reviewed in PETERS 1986), although 
very few nuclear proteins enter the nucleus by free diffusion (GOLDFARB and 
MICHAUD 1991). 

The best-studied example of the NLS sequence is that of SV40 large T 
antigen. The sequence PKK128KRKV has been shown to be necessary and 
sufficient for the nuclear targeting of the SV40 large T antigen. Mutation of the 
lysine-128 to threonine or asparagine was shown to abolish the nuclear targeting 
function of this sequence (KALDERON et al. 1984a,b; LANFORD and BUTEL 1984). This 
sequence was also functional in targeting a non-nuclear protein, chicken pyruvate 
kinase, to the nucleus in the form of a fusion protein (KALDERON et al. 1984b). A 
number of NLS sequences have been identified based on the initial search for the 
presence of a motif similar to the SV40 large T antigen NLS with respect to the 
presence of one contiguous cluster of basic amino acid residues. In many cases 
the mutational analysis of the putative NLS motif and its ability to target a 
heterologous non-nuclear protein to the nucleus fulfilled the two. criteria for the 
definition of an NLS that the sequence was necessary and sufficient for the 
nuclear targeting of the protein. 

In pTP, the NLS motif RLPVRRRRRRVP (between residues 380-391; 
Fig. 1). based on its similarity to the SV40 large T antigen NLS, was identified for 
further analysis. Several in- frame deletions were introduced into the coding 
sequence of pTP cloned into an expression vector under the control of RSV-LTR 
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Fig. 1. Nuclear localization signals (NLS) of adenovirus DNA replication proteins: top, adenovirus type 
2 (Ad2) preterminal protein (Ad2pTP); middle, Ad2 DNA polymerase (Ad2Pol); bottom, Ad5 DNA­
binding protein (Ad5DBP). The residues in the NLS are shown within boxes 

promoter and SV40 processing signals. These deletion constructs were tested 
by transient expression in monkey kidney (CV-1) cells and localization of the 
mutant proteins by immunofluorescence and subcellular fractionation. Mutant 
proteins which contained this motif were localized in the nucleus, whereas 
those which lacked this motif were localized predominantly in the cytoplasm, 
with one exception: the deletion construct encoding the C-terminal 213 amino 
acids devoid of this motif was localized in the nucleus (ZHAO and PADMANABHAN 
1988). It was suggested that this mutant polypeptide was transported to the 
nucleus by passive diffusion, possibly because of its small size and lack of an 
NLS, and was subsequently retained in the nucleus because of its affinity to 
some nuclear component (ZHAO and PADMANABHAN 1988). It is especially interest­
ing to test this possibility in view of recent reports that both TP and pTP have 
affinities for nuclear matrix (SCHAACK et al. 1990b; FREDMAN and ENGLER 1993). and 
the domain of TP or pTP involved in nuclear matrix attachment remains to be 
characterized. The motif RLPVRRRRRRVP of pTP was also functional in targeting 
E. coli ~-galactosidase as a fusion protein into the nucleus and thus fulfilling both 
criteria for a functional NLS. 

3.3 Nuclear Transport of Adenovirus DNA Polymerase 
Is Facilitated by Interaction with Preterminar Protein 

In the Ad-infected cells pTP forms a stoichiometric complex with AdPol which is 
required for initiation of DNA replication as shown by in vitro assays. This complex 
can be dissociated by treatment with urea (1.7 MI, suggesting that this complex 
is extremely stable (LICHYet al. 1982). Forthe synthesis of AdPol and pTP and thier 
complex formation, which is required for activity in the initiation reaction, the 
sequences upstream of the first ATG of the m-ORF of both pTP and AdPol are 
essential (SHU et al. 1987, 1988; PETIIT et al. 1988; ZHAO and PADMANABHAN 1988). 
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The proteins expressed from the first ATG of the m-ORF of AdPol and pTP genes 
(AdPol1 and pTP1) have a deletion of 142 N-terminal amino acids residues of 
AdPol and 18 residues of pTP, respectively. AdPol1 was localized exclusively in 
the cytoplasm, whereas the pTP1 was predominantly localized in the nucleus. 
These proteins were not biologically active in the in vitro DNA replication assay. 
When the expression plasm ids encoding AdPol1 and pTP1 were cotransfected 
into CV-1 cells and the subcellular distribution of AdPol1 and pTP1 was examined 
by immunofluorescence and immunoprecipitation experiments, it was found that 
the distribution of AdPol1 dramatically changed from 95% cytoplasmic to about 
40% nuclear location (ZHAO and PADMANABHAN 1988). These results indicated that 
AdPol1 was transported from the cytoplasm to the nucleus by a "piggyback" 
mechanism, and this observation, along with that of others (DINGWALL et al. 1982; 
MORELAND et al. 1987). provides a model for nuclear transport of a protein lacking 
an NLS as a complex with another protein with a functional NLS. 

The biologically active proteins produced from plasm ids constructed by 
inserting synthetic linkers containing the translational start sites upstream of the 
first ATG of the AdPol and pTP m-ORF were examined for subcellular localization. 
The AdPol, when expressed alone, was almost equally distributed between 
cytoplasm and nucleus, and this ratio changed to predominantly nuclear distri­
bution for AdPol1 when its functional partner pTP was coexpressed (ZHAO and 
PADMANABHAN 1988). Two conclusions were reached from these experiments. 
First, a comparison of the subcellular localization of AdPol1 expressed from the 
first ATG and that of the biologically active AdPol, which included the upstream 
region ofthe m-ORF, revealed thatthe NLS of AdPol1 is located within this region. 
Second, the nuclear transport of AdPol is facilitated, irrespective of the presence 
of its NLS, by interaction with pTP, and this complex is transported more 
efficiently than AdPol alone. It is possible that a conformational change resulting 
from the interaction of AdPol and p TP might render the AdPol N LS present within 
its N-terminal region more competent for efficient nuclear transport. Another 
explanation for the efficient nuclear transport of the AdPol-p TP complex is due to 
the cumulative effects of the NLS sequences of individual proteins. This notion is 
consistent with the observation that some nuclear proteins have more than one 
NLS for efficient nuclear transport. For example, polyomavirus large T antigen has 
two NLS sequences, PPKKARED and VSKRPRP, for its nuclear localization and 
only when both NLS were mutated was its nuclear location abolished (RICHARDSON 
et al. 1986). Other examples of proteins containing two NLS include influenza 
virus NS1, yeast MATa2, glucocorticoid receptor, and yeast ribosomal protein L29 
(UNDERWOOD and FRIED 1990; see also review by GARCIA-BUSTOS et al. 1991). It is 
possible that when more than one NLS is present in a protein or a protein complex, 
the rate of nuclear transport may be additive (LANDFORD et al. 1986). It has recently 
been shown that AdPol is tightly associated with a cdc2-related histone H 1 kinase, 
which consists of p33 or p34 catalytic subunit and a regulatory cyclin component, 
and this complex with AdPol does not exclude pTP (RAMACHANDRA and 
PADMANABHAN 1993; see Sect. 4.2.3). Thus, AdPol probably exists as a multimeric 
protein complex in Ad-infected HeLa cells, and the efficient nuclear transport of 
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this complex may provide a way of regulating their coordinate arrival and function 
in the nucleus during Ad DNA replication. Many of the biological processes in a 
eukaryotic cell nucleus are carried out by protein complexes, and even if all the 
individual proteins of these complexes may not have NLS sequences, their 
efficient transport is accomplished by those that do have these sequences. 

3.4 Nuclear Transport of Adenovirus DNA-Binding Protein 
and Adenovirus DNA Polymerase Is Mediated 
by Bipartite Nuclear Localization Signals 

A DBP mutant Ad5dl802rl containing a deletion of amino acids from 23 to 105 
in the coding region of DBP failed to localize in the nucleus, which suggested 
that this region contained the NLS of DBP (CLEGHON et al. 1989). Within this 
region two short clusters of basic amino acid residues, p84KKKKKR90 and 
p42 PKKR46 (Fig. 1), were identified as potential NLS based on their similarity to 
SV40 NLS. Mutational analysis of each of these basic regions followed by 
subcellular localization of the mutant proteins indicated that both domains were 
required for the nuclear transport of DBP (MORIN et al. 1989a). Thus, these two 
NLS sequences are not redundant like those of polyomavirus large T antigen or 
influenza virus NS1 protein (GREENSPAN et al. 1988), but they are interdependent 
or the NLS is bipartite in nature. These two basic domains are separated by a 
spacer region of 37 amino acid residues. Interestingly, the mutant DBP which 
was localized in the cytoplasm when expressed transiently in human 293 cells 
was targeted to the nucleus when the cells were infected with the Ad virus 
encoding the mutant DBP, suggesting that the mutant DBP was transported 
possibly through an interaction with a virally encoded or induced factor in the 
infected cells (MORIN et al. 1989a). Other examples of nuclear proteins with 
bipartite NLS are the influenza virus polymerase basic protein (BP1) and the 
Xenopus nucleoplasmin. The NLS of BP1 consists of two clusters of four basic 
amino acids, RKRR and KRKQR, separated by a spacer of 16 amino acids (NATH 
and NAYAK 1990), and the NLS of nucleoplasm in has two interdependent basic 
domains, K155R and K167KKK, which are separated by a spacer region of ten amino 
acids (ROBBINS et al. 1991). 

The N-terminal region of AdPol contains three clusters between residues 4 
and 52 which could function as NLS for the transport of AdPol (Fig.1). Deletion 
analysis and subcellular localization of mutant proteins showed that basic se­
quences (BS) I and II were both important for nuclear localization of AdPol. The 
deletion of either BSI or BSII resulted in cytoplasmic localization of AdPol. In 
contrast, the nuclear localization of mutant AdPol in which the BSIII was deleted 
was similar to the parent AdPol distributed equally between nucleus and cyto­
plasm, suggesting that BSIII was dispensible for the nuclear targeting of AdPol 
when expressed alone (ZHAO and PADMANABHAN 1991). When the region containing 
all three clusters of basic amino acids was fused to E. coil ~-galactosidase, the 
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fusion protein was predominantly localized in the nucleus and nucleolous, 
whereas the control (unfused) p-galactosidase was localized only in the cyto­
plasm. The analysis of the subcellular distribution of p-galactosidase fusion 
proteins containing an individual basic domain or pairs of basic domains revealed 
that the nuclear targeting of the /3-galactosidase fusion protein required the 
interdependent interaction of either the BSI and BSII pair or BSII and BSIII, but not 
the BSI and BSIII pair. Point mutations of two or more arginine residues in either 
cluster severely interfered with the nuclear localization of the fusion protein. 
Although a single mutation of a basic amino acid residue in either cluster had no 
effect in the bipartite NLS function, the presence of two single mutations, one for 
each cluster, reduced the nuclear localization significantly (ZHAO and PADMANABHAN 
1991). Similar results were obtained from the mutational analysis of the nucleo­
plasmin NLS (ROBBINS et al. 1991). 

The function of BSII and BSIII as a very efficient bipartite NLS in the nuclear 
targeting of p-galactosidase is interesting, because BSIII is dispensible for the 
nuclear targeting of the AdPol protein. From these studies it appears that the 
three basic regions of AdPol constitute two overlapping bipartite NLS which 
interact differentially with the cellular transport system for the nuclear targeting 
of AdPol and the E. colip-galactosidase. The presence of two bipartite NLS in the 
AdPol seems redundant for the nuclear targeting of AdPol when expressed 
alone. However, AdPol is normally complexed with pTP and NFI/CTF in the 
infected cell for its function in DNA replication. Moreover, as mentioned in 
Sect. 3.3, the pTP-AdPol complex also includes a histone H1 kinase in the Ad2-
infected cells (RAMACHANDRA and PADMANABHAN 1993). 

It is interesting that, although AdPol has mutliple basic clusters for nuclear 
localization, it is still distributed equally between the nuclear and cytoplasmic 
compartments. One possible explanation is that AdPol may have some cyto­
plasmic anchor in addition to an NLS. Its nuclear localization would only occur 
when the cytoplasmic anchor sites are saturated or no longer functional in 
retaining the AdPol due to conformational changes resulting from the interaction 
with pTP and other cellular proteins. In addition, when AdPol is complexed with 
pTP, NFl, and the histone H1 kinase, conformational changes, including those in 
the AdPol NLS, may in part account for the increased nuclear localization of 
AdPol that was observed earlier (ZHAO and PADMANABHAN 1988). Conformational 
changes can be induced by protein-protein, protein-nucleic acid or protein­
ligand interaction or by protein phosphorylation (see Sect. 4.5). A conforma­
tional change resulting from the ligand binding to the C-terminal 256-amino acid 
domain has been invoked to explain the increased nuclear accumulation of the 
glucocorticoid receptor (PICARD and YAMAMOTO 1987). Thus, although BSIII is 
dispensible for the nuclear localization of AdPol alone, it may contribute to the 
nuclear localization of the multimeric AdPol complex. 

The spacer region between BSI and BSII and between BSII and BSIII is 12 
and 11 amino acids, respectively (ZHAO and PADMANABHAN 1991). Spacer muta­
tions between BSII and BSIII were created which included a deletion of the first 
six amino acid residues or the entire spacer or an insertion of five amino acids 
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into the spacer. All the mutant NLS E. coli ~-galactosidase fusion proteins were 
predominantly localized in the nucleus, suggesting that the primary structure of 
the spacer is not critical for the bipartite NLS function (ZHAO and PADMANABHAN 
1991). These results are consistent with the report that the nuclear localization 
of a spacer mutant of the influenza virus BP1 protein was not affected when 
seven amino acids of the spacer were deleted, as well as with the finding that 
altered spacer lengths of the nucleoplasmin NLS by insertion of repeats of SPGG 
sequence did not affect the nuclear localization, although insertion of a single 
copy of a hydrophobic sequence OPWL in the spacer reduced the nuclear 
accumulation of the fusion protein (ROBBINS et al. 1991). 

The frequency of occurence of the nucleoplasmin-like bipartite NLS motif in 
nuclear proteins is significantly higher (about 50%) compared to the SV40-like 
NLS (17%), as determined by computer search of the Swiss Prot data base 
(DINGWALL and LASKEY 1991). If a common mechanism can be invoked in the 
bipartite signal-mediated nuclear transport of these proteins, then it is possible 
that the secondary and tertiary structure of a nuclear protein would playa role in 
briging these basic clusters into close proximity to one another, thus allowing 
their recognition by the cellular factor(s) as a single unit. First, this notion is 
supported by the observations that there are variations in spacer lengths in the 
bipartite motifs of nuclear proteins so far characterized. Second, insertion, 
deletion, and point mutations within the spacer do not seem to affect the 
nuclear targeting function (NATH and NAYAK 1990; ROBBINS et al. 1991; ZHAO and 
PADMANABHAN 1991). Third, the three-dimensional structure of the region con­
taining the DNA-binding domain and the bipartite NLS of the glucocorticoid 
receptor was determined recently using two-dimensional nuclear magnetic 
resonance (NMR) and distance geometry, and the data indicates that this 
domain may be in a flexible region (HARD et al. 1990; reviewed by DINGWALL and 
and LASKEY 1991). Two functional domains in a protein could be brought into 
close proximity in different ways, such as by simple folding, via a-helical 
structure, by the presence of one or more ~-turns, or by tertiary interactions in a 
protein molecule. Chou-Fasman predictive analysis (PREVELIGE and FASMAN 1989) 
of protein secondary structure in the vicinity of the bipartite NLS sequences of 
AdPol, Ad DBP, and nucleoplasmin support this model, in which protein 
conformation in the spacer region may play an important role in bringing these 
clusters of basic amino acids into close proximity (ZHAO and PADMANABHAN 1991). 
Further work is necessary to have a better understanding of how bipartite NLS 
function in nuclear transport. 

It has recently been reported that the heat-shock protein or its cognate is 
required for nuclear transport of a protein (FINLAY et al. 1991; IMAMoTO et al. 1992; 
SHI and THOMAS 1992). DINGWALL and LASKEY (1992) proposed a model in which two 
sequential receptors are involved in protein import into the nucleus. First, the 
Hsp70 (or its cognate) binds to and stabilizes a locally unfolded NLS and then 
presents it to a second receptor. Experimental evidence for this model will shed 
light on the mechanism of protein import into the nucleus. 
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4 Phosphorylation of Adenovirus DNA 
Replication Proteins 

Protein phosphorylation provides an excellent mechanism by which structure 
and function of a protein can be altered. Modulation of protein function by phos­
phorylation-dephosphorylation has been demonstrated for a number of proteins 
involved in DNA and RNA synthesis, and among them SV40 T antigen is one of 
the best-studied examples (for reviews, see PRIVES 1990; FANNING 1992). SV40 T 
antigen is phosphorylated on multiple sites, and depending upon the site of 
phosphorylation its DNA binding affinity and function are regulated positively 
or negatively. 

Among the Ad-encoded DNA replication proteins, DBP has been studied 
extensively for its phosphorylation modification. Recently, the other two virus­
encoded proteins, AdPol and pTP, have also been shown to be phosphorylated. 
This review summarizes our present state of knowledge concerning phosphory­
lation of Ad-encoded DNA replication proteins. Possible roles of phosphorylation 
in modulation of the activities of proteins involved in Ad DNA replication are 
discussed. 

4.1 Phosphorylation of DNA-Binding Protein 

DBP has been known to undergo phosphorylation modification (ROSENWIRTH et al. 
1976; LEVINSON et al. 1977; JENG et al. 1977; RUSSEL and BLAIR 1977; LINNE et al. 
1977; AxELROD 1978). DBP can be isolated from the infected cells as a phos­
phoprotein at early as well as late times after infection, and the degree of 
phosphorylation varies with the infection time (LINNE and PHILIPSON 1980). Iso­
electric focusing of purified DBP resolves into as many as 15 subspecies, of which 
at least some are the result of differing degrees of phosphorylation (KLEIN et al. 
1979; LINNE and PHILIPSON 1980). In Ad2 and Ad5, a moelcularweight of 59 kDa has 
been estimated for DBP based on sequence data, but SDS-PAGE analysis shows 
an apparent molecular weight of 72 kDa. Such a slow migration of the protein on 
an SDS polyacrylamide gel was initially thought to be the result of extensive 
phosphorylation. However, studies have later attributed the slower electro­
phoretic mobility of DBP to a relatively high proline content and to its highly 
asymmetric configuration (SUGAWARA et al. 1977; VAN DER VLIET et al. 1978). This 
conclusion was also supported by studies in which even after extensive dephos­
phorylation using calf intestinal alkaline phosphatase the apparent molecular 
weight of the protein was reduced by only 2 kDa (LINNE and PHILIPSON 1980). 

4.1.1 DNA-Binding Protein Is Phosphorylated on Multiple Sites 
and Mostly on the N-Terminal Domain 

Genetic and mutational analyses have indicated that DBP contains two domains 
that appear to be functionally distinct (RICE and KLESSIG 1984). These two domains 
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can be separated by mild chymotrypsin treatment (KLEIN et al. 1979; LINNE and 
PHILIPSON 1980)' and depending on the viral serotype chymotrypsin treatment 
yields products of 36-48 kDa arising from the C-terminal region and an N-terminal 
fragment of approximately 27 kDa. Occurence of such a cleavage within infected 
cells has also been reported (ASSELBERGS et al. 1983; BRANTON et al. 1985). Among 
these two domains, the N-terminal fragment is heavily phosphorylated on serine 
and threonine residues and contains most, if not all, of the estimated one to 13 
phosphates bound per DBP molecule (KLEIN et al. 1979; LINNE and PHILIPSON 1980). 
Many of the phosphorylation sites have been preliminarily mapped to serine 
residues at positions 31, 33, 35, 70, 76, 92, 100, and 107 and threonine residues 
at positions 12 and 75 (C.W. ANDERSON et al. 1986; MANN 1987) of Ad2 DBP, which 
are also conserved in Ad5 DBP (MORIN et a1.1989b). 

Although serine and threonine are the major phosphoamino acids present in 
DBP, the occurrence of a phosphotyrosine, possibly at position 195, has also been 
reported (RUSSELL et al. 1989). Identification of a phosphotyrosine was possible 
only when cells were grown and infected in the presence of sodium vanadate, a 
known phosphatase inhibitor, suggesting that the phosphotyrosine may be readily 
susceptible for phosphatase action (RUSSELL et al. 1989). The tyrosine phos­
phorylation occurs earlier in the infection than the bulk of the phosphorylations on 
serine and threonine residues and therefore is probably not readily detected at the 
later times of infection (RUSSELL et al. 1989). 

4.1.2 In Vitro Phosphorylation of DNA-Binding Protein 

Studies have shown that DBP as well as two other Ad-infected cell-specific 
proteins can be phosphorylated in vitro by an enzme activity present in the nuclei 
of Ad-infected cells (LEVINSON et al. 1977; POSTEL et al. 1978). In addition, this 
protein kinase activity phosphorylates on identical peptides of DBP in vitro that are 
phosphorylated in vivo (POSTEL et al. 1978). In a later study, KLEIN et al. (1979) 
purified a chromatin-associated protein kinase from uninfected HeLa cell extracts, 
which in addition to exhibiting phosphorylation of histones H1, H2A. and H4 was 
able to phosphorylate DBP in a dose-dependent manner. Furthermore, this 
purified kinase phosphorylated all but one phosphopeptide obtained in vivo, 
suggesting that it may be the major enzyme responsible for the in vivo phos­
phorylation of DBP. 

In vitro studies have also demonstrated the association or copurification of 
kinase (s) capable of phosphorylating DBP. CAJEAN-FEROLDI et al. (1981) found that 
at least two protein kinase activities of cellular origin, both capable of phosphory­
lating DBP, were coeluted with DBP on a DNA-cellulose affinity chromatography. 
Unlike the DBP kinase reported by KLEIN et al. (1979), the kinase that copurified 
with DBP did not phosphorylate histones. In vitro phosphorylation of DBP by an 
associated kinase which could also phosphorylate histone H3 was observed 
by BRANTON et al. (1985). DBP purified either by immunoprecipitation or single­
stranded DNA-cellulose column chromatography contained a kinase activity 
that specifically phosphorylated the N terminus. In addition, using photoaffinity 
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labeling with 8-azido-[a32Pl ATP, they were able to show that DBP contains an 
ATP-binding site at the N terminus (BRANTON et al. 1985). However, it was not clear 
whether the kinase activity is intrinsic to DBP or present in an associated enzyme. 
When the temperature-sensitive Ad DBP mutant H5ts125-infected cells were 
incubated at nonpermissive temperature,\ DBP was thermo-labile, whereas the 
associated kinase activity was still present, suggesting that the kinase activity is 
probably due to a DBP-associated enzyme (BRANTON et al. 1985). 

Taken together, the results from the in vitro phosphorylation studies suggest 
that probably two or more kinases of cellular origin that are associated with DBP 
may be involved in the in vivo phosphorylation of DBP. The nature of the kinases 
and the effect of in vitro phosphorylation on DBP function remain to be identified 
and further characterized. 

4.1.3 Functional Importance of DNA-Binding Protein Phosphorylation 

It has long been proposed that the various phosphorylated forms of DBP may carry 
out different roles of this multifunctional protein. Several attempts have been 
made to address the functional importance of DBP phosphorylation, but the 
results from earlier studies have been inconclusive. Among the two distinct do­
mains of DBP, N-terminal domain exhibits limited conservation among different 
serotypes and does not appear to playa direct role during DNA replication. Most 
of the estimated one to 13 phosphates bound per molecule of DBP are present in 
this N-terminal domain (KLEIN et al. 1979; LINNE and PHILIPSON 1980). The carboxyl 
part that is highly conserved among different adenovirus serotypes has the abilty 
to bind to DNA and RNA (ARIGA et al. 1980; CLEGHON and KLESSIG 1986, 1992; NEALE 
and KITCHINGMAN 1990) and to bind zinc (EAGLE and KLESSIG 1992) and is required for 
viral DNA replication at the level of DNA chain elongation (VAN DER VLIET and 
SUSSENBACH 1975; FRIEFELD et al. 1983; NAGATA et al. 1982). Characterization of 
adenovirus temperature-sensitive mutants and their revertants have also sug­
gested a role for the C-terminal domain in the regulation of early viral gene 
expression (CARTER and BLANTON 1978; BABICH and NEVINS 1981; C.W. ANDERSON 
et al. 1983; BROUGH et al. 1985) as well as viral assembly (NICOLAS et al. 1983). In 
contrast, the heavily phosphorylated N-terminal domain participates in late gene 
expression at both transcriptional and post-transcriptional levels (JOHNSTON et al. 
1985; KLESSIG and C.W. ANDERSON 1975; KLESSIG and GRODZICKER 1979 K.P. ANDERSON 
and KLESSIG 1983), and in nuclear transport of the protein (MORIN et al. 1989a), and 
it also may have a role in enhancement of its own expression (MORIN et al. 1989b). 
Studies with host range mutants have revealed that a mutation within the N­
terminal domain of DBP allows the efficient growth of Ad in non permissive 
monkey cells (KLESSIG and GRODZICKER 1979). Even after cleaving the C-terminal 
fragment from the highly phosphorylated N-terminal domain using chymotrypsin, 
the C-terminal fragment still retains the ability to bind to single-stranded DNA 
(KLEIN et al. 1979; LINNE and PHILIPSON 1980) and function in an in vitro DNA 
replication assay (ARIGA et al. 1980; FRIEFELD et al. 1983; TSERNOGLOU et al. 1985). In 
addition, LINNE and PHILIPSON (1980) found that removal of the majority of the 
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phosphates by alkaline phosphatase did not alter the ability of DBP to bind to 
single-stranded DNA or the ends of double-stranded DNA. Based on these 
observations, it was believed that phosphorylation of DBP may not play any role in 
Ad DNA replication. Such conclusions were further supported by the in vitro 
studies, in which the 44-kDa C-terminal fragment of the wild-type DBP was able 
to complement the temperature-sensitive replication defect of the H5ts125 DBP 
(ARIGA et al. 1980). 

However, several other findings suggest a role for phosphorylation of DBP 
in DNA replication. In their studies, KLEIN et al. (1979) found that the less phos­
phorylated species of DBP bound single-stranded DNA more tightly than the 
phosphorylated form, suggesting that although DNA binding is mediated by the 
C-terminal fragment, the overall phosphorylation status is important for DNA 
binding activity. A role for phosphorylation of DBP in DNA replication was also 
suggested by the observation that the degree of DBP phosphorylation varies with 
infection time, and upon blocking viral DNA replication by cytosine arabinoside the 
extent of DBP phosphorylation doubles (LINNE and PHILIPSON 1980). It was also 
shown that when cells infected with H5ts125 mutant adenovirus at permissive 
temperature were shifted to nonpermissive temperature, phosphorylation of the 
DBP decreased and viral DNA replication ceased, suggesting that phosphorylation 
of DBP may playa role in viral DNA replication (LEVINSON et al. 1977). 

In order to clarify the role of DBP phosphorylation, MORIN et al. (1989b) 
systematically substituted cysteine or alanine for up to ten phosphorylation sites 
of the Ad5 DBP, which were preliminarily mapped on the very closely related Ad2 
DBP (C.W. ANDERSON et al. 1986; MANN 1987). The mutant genes with one or more 
altered sites were introduced into the viral genome by in vivo recombination. 
Alteration of one or a few of these sites had little effect on the viability of virus 
containing the mutated DBP. However, when eight or more sites were altered, 
viral growth decreased significantly, suggesting that the overall phosphorylation 
state of the protein is more important. The reduction in growth correlated with 
both depressed DNA replication and expression of late genes. Moreover, 
although the stability of the mutated DBP was not affected, DBP synthesis and 
the level of its mRNA were depressed five- to tenfold for the under-phosphory­
lated protein, implying that DBP enhances its own expression and phosphory­
lation is important for this function. 

The functional interactions between the N- and C-terminal domains were also 
indicated by other studies (KREVOLIN and HORWITZ 1987; BROUGH et al. 1993). BROUGH 
et al. (1993) examined several viruses carrying lesions in the N-terminal region of 
DBP and found that accumulation of viral DNA and infectious virions was 
drastically reduced. Characterization of one of the mutants indicated that the 
N-terminal region (residues 2-38) affects viral DNA synthesis in vivo. The re­
duction in DNA synthesis was not due either to change in nuclear transport or 
disruption of DBP's role in early gene expression. In addition, the mutant also had 
single-stranded DNA-binding activities and participated efficiently in DNA elonga­
tion assays comparable to that of wild type, which further confirmed earlier 
studies that the C-terminal domain of DBP is responsible for these two functions. 
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Together these results suggest that, although DBP has two separate functional 
domains participating in DNA replication, for full activity of the protein both 
domains of the proteins are necessary. 

In the case of intact DBP, phosphorylation on multiple sites within the N­
terminal domain may possibly lead to a change in the conformation in such a way 
that it could affect the function mediated by the C-terminal domain. Similar to 
DBP, many other proteins including SV40 T antigen (SIMMONS et al. 1986)' cellular 
transcription factors, c-Jun (BOYLE et al. 1991), and c-Myb (BIEDENKAPP et al. 1988) 
contain phosphorylation sites that are located outside the DNA-binding domain, 
and phosphorylation has been shown to negatively regulate their DNA-binding 
activities. In the case of SV40 T antigen, it has been shown that in vivo phos­
phorylation of the N-terminal region decreases the binding of the protein to the 
DNA origin, and the effect is reversed by in vitro dephosphorylation (SIMMONS et al. 
1986; MOHR et al. 1987) or by proteolysis which removes the highly phosphory­
lated N-terminal arm of the polypeptide (SIMMONS et al. 1986). Enzymatic dephos­
phorylation of serine residues of SV40 T antigen also increases its activity in the 
initiation of viral DNA replication (MOHR et al. 1987), whereas in vitro phos­
phorylation of threonine-124 mediated by p34cdC2 kinase enhances both DNA 
binding and replication initiation activities (MCVEY et al. 1989). In contrast, casein 
kinase I-mediated in vitro phosphorylation of SV40 T antigen on many of the sites 
that are modified in vivo inhibits both origin unwinding and DNA replication 
(CEGIELSKA and VIRSHUP 1993). In the case of DBP, if an overall phosphorylation at 
the N terminus results in a physical or chemical constraint for DNA binding, then 
it would be logical to expect that the C-terminal fragment generated by enzymatic 
treatment or the dephosphorylated form of DBP would still bind to DNA, as shown 
previosly (KLIEN et al. 1979; LINNE and PHILIPSON 1980). Similar to SV40 T antigen, an 
overall phosphorylation of DBP may result in negative regulation of its DNA 
binding and, depending upon a specific site, the effect could be either positive or 
negative. 

4.2 Phosphorylation of Adenovirus DNA Polymerase 

Investigations of the phosphorylation of AdPol and pTP have been difficult 
because of their low levels of synthesis in Ad-infected cells. Recently, however, 
both pTP and AdPol have been overproduced using high-level recombinant 
vaccinia virus (STUNNENBERG et al. 1988; NAKANO et al. 1991) and baculovirus 
(WATSON and HAY 1990; ZHAO et al. 1991) systems. Several studies have suggested 
that the vaccinia virus expression system (for a review, see Moss 1991) is 
particularly suitable to analyze phosphorylation of proteins that are normally 
synthesized in mammalian cells (Hoss et al. 1990; TEMPLETON 1992). The initial 
detection of the phosphorylation of AdPol was possible using the recombinant 
vaccinia virus expression system (RAMACHANDRA et al. 1993). A large-scale meta­
bolic labeling of HeLa cells infected with Ad later confirmed that AdPol is also 
phosphorylated in the native system. In vivo labeling of insect cells infected with 
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recombinant baculovirus also confirmed the phosphoprotein nature of AdPol­
synthesized in insect cells using that system. Phosphoamino acid analysis of 32p_ 

AdPol indicated the presence of only phosphoserine independent of the source of 
AdPol. It is noteworthy that the extent of phosphorylation of AdPol was at least 60-
fold lower in insect cells infected with the recombinant baculovirus compared 
with that in HeLa cells infected with the recombinant vaccinia virus. A similar 
observation was made regarding the phosphorylation state of Rb produced in 
insect cells compared with the Rb expressed in Hela cells (TEMPLETON 1992). 

4.2.1 Adenovirus DNA Polymerase Is Phosphorylated 
on Multiple Sites 

It was important to establish that in the recombinant vaccinia virus expression 
system, AdPol was modified at the same sites as in Ad2-infected cells. Com­
parison of tryptic peptide maps of native and recombinant AdPol revealed that 
most of the tryptic phosphopeptides, with the exception of two, were common in 
AdPol isolated from either Ad2-infected cells or recombinant vaccinia virus 
expression system, indicating that probably same kinase or kinases are involved in 
the in vivo phosphorylation of both native and recombinant vaccinia virus­
expressed AdPol. There were nine spots in the tryptic phosphopeptide map of 
AdPol from Ad2-infected cells, indicating that phosphorylation occurs on multiple 
sites. Two-dimensional maps of AdPol expressed with or without pTP using 
recombinant vaccinia viruses showed that majority of the phosphopeptides were 
present in both preparations, suggesting that AdPol gets phosphorylated before 
its association with pTP or the interaction does not mask the major phosphory­
lation sites. AdPol isolated from nuclear and cytoplasmic fractions showed 
identical phosphopeptides on peptide maps, which suggests that AdPol gets 
phosphorylated on its potential sites in the cytoplasm and no other sites are 
modified in the nucleus (RAMACHANDRA et al. 1993). 

4.2.2 Serine-67 Is the Major Adenovirus DNA Polymerase 
Phosphorylation Site 

Since all the sites that were phosphorylated in native AdPol were also modified 
when the protein was expressed using the recombinant vaccinia virus expression 
sytem, the recombinant AdPol was used for mapping the phosphorylation sites 
using metabolic labeling, reverse-phase high-performance liquid chromatography 
(HPLC) fractionation oftryptic peptides, two-dimensional tryptic peptide mapping, 
and microsequence analysis techniques. One of the major phosphorylation sites 
was mapped at serine-67 (RAMACHANDRA et al. 1993). 

4.2.3 In Vitro Phosphorylation of Adenovirus DNA Polymerase 
by a Stably Associated cdc2-Related Protein Kinase 

Based on our observation (RAMACHANDRA et al. 1993) that serine-67 occurs at a site 
which is within the substrate recognition sequence of the families of serine/ 
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threonine kinases such as Pro-X-Ser/Thr-Pro for mitogen-activated protein-2 kinase 
(ALVAREZ et al. 1991; CLARK-LEWIS et al. 1991; for reviews, THOMAS 1992) or Ser-Pro 
for cyclin-dependent protein kinases (MORENO and NURSE 1990; TSAI et al. 1991), the 
ability of p34cdc2 kinase to phosphorylate AdPol in vitro was examined (RAMACHANDRA 
and PADMANABHAN 1993). In the in vitro kinase assays, AdPol was phosphorylated 
using purified p34cdC2 kinase or by a protein kinase that coimmunoprecipitated with 
AdPol. Phosphorylation occured only on serine residues and on identical peptides 
in vivo as well as in vitro either by p34cdc2 kinase or by the kinase that coimmuno­
precipitated with AdPol. In addition to demonstrating the in vitro phosphorylation 
of AdPol by cdc2 kinase, these results indicated an association of a cdc2 or a 
closely related protein kinase that may be responsible for the in vivo phos­
phorylation of Ad Pol. Similar to cdc2 kinase, the AdPol-associated kinase was able 
to phosphorylate histone Hl and was recognized by the anti-p34cdc2 antibodies in 
the immunoprecipitation and immunoblot experiments. 

Similar to AdPol phosphorylated in vivo, serine-67-containing peptide was the 
major phosphopeptide in the case of AdPol modified in vitro by p34cdc2 kinase or the 
AdPol-associated kinase. As mentioned above, this site is also within the substrate 
recognition sequence of mitogen-activated protein (MAP) kinase and cyclin-depen­
dent kinases. These kinases are closely related proteins, and studies have implied 
similar modes of regulation and substrate specificity for these cell-cycle-regulated 
enzymes (PELECH and SANGHERA 1992). Because of the overlapping phosphorylation 
site requirements, some of the proteins that have been proposed as targets for 
cyclin-dependent kinase are also substrates for MAP kinases (PELECH and SANGHERA 
1992). Phosphorylation of AdPol at serine-67 by MAP kinase may occur depending 
upon its steady state level at the time of synthesis of AdPol in the virus-infected 
cells. Studies with synthetic peptide analogues of the myelin basic protein have 
revealed that a proline residue present two residues upstream of the phospho­
acceptor amino acid, as in substrate recognition sequence for MAP kinase, opti­
mizes phosphorylation by p34cdc2 (PELECH and SANGHERA 1992). Among the seven 
potential cyclin-dependent kinase phosphorylation sites within AdPol, only serine-
67 is within the consensus recognition site for both cyclin-dependent kinase and 
MAP kinases. The other potential cyclin-dependent kinase phosphorylation sites in 
AdPol include serine residues at positions 51, 136, 387, 901,926, and 1069. 

Serine/threonine kinases such as 34-kDa cdc2, 33-kDa cdk2, cdk3, and cdk4 
associate with different cyclins in order to be catalytically active. Among these 
protein kinases, p34cdc2/cyclin B kinase is active in G2->M (PAGANO et al. 1992a; 
ROSENBLATI et al. 1992), whereas p33 cdc2/cyclin A kinase activity is maximum at 
G l->S transition (DRAETIA and BEACH 1988; PINES and HUNTER 1989). The levels of 
cdc2 kinase remain constant throughout the cell cycle (DRAETIA and BEACH 1988), 
and the interaction with cyclins and phosphorylation/dephosphorylation of critical 
residues regulate their activity at different phases of the cell cycle (for reviews, 
see DRAETIA 1990; MALLER 1990; MORENO and NURSE 1990). Recently, in addition to 
cyclins A and B, cyclins C-E and G (KOFF et al. 1991; LEOPALD and O'FARRELL 1991; 
LEW et a1.1991; MATSUSHIME et al. 1991; XIONG et al. 1991; TAMURA et al. 1993) and 
a large family of cdc2-like kinases (PARIS et al. 1991; TSAI et al. 1991; MEYERSON 
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et al. 1992). which may be active at different phases of cell cycle, have been 
discovered. All these cyclin-dependent kinases appear to recognize SerfThr-Pro 
motifs within their substrates, and except cyclin/cdk4 kinase other kinases utilize 
histone H1 as a substrate. Therefore, it is possible that in addition to p34cdc2/cyclin 
B complexes, several members of the cdc2 kinase family could phosphorylate 
AdPol at a given point in the cell cycle. For the phosphorylation of a viral protein 
such as AdPol, cell cycle-dependent phosphorylation by a specific cdc2/cyclin 
complex may not be important. As has been shown in the case of cellular protein 
such as the Rb, the in vitro phosphorylation on the same sites could be mediated 
by more than one cyclin-dependent protein kinases, including p34cdc2 (LEES et al. 
1992) and p33Cdk2 kinases (AKIYAMA et al. 1992). 

The AdPol-associated kinase was recognized by anti-p34cdc2 antibodies in the 
immunoprecipitation and immunoblot experiments, indicating the presence of 
p34cdc2 in the AdPol immunocomplex. However, we do not know whether p34cdC2 

is the only cyclin-dependent kinase present in association with AdPol. Moreover, 
the nature of cyclin(s) in the AdPol immunocomplex remains to be determined. It 
is reported that in nonsynchronized cells p34CdC2_cylin B is the major cdc2 kinase 
activity (DunA and STILLMAN 1992). The cdc2 kinase associates with cyclin Band 
cyclin A (MEYERSON et al. 1992). whereas, cdk2 and cdk4 interact with cyclins A, D, 
and E (TSAI et al. 1991; PAGANO et al 1992b; FAHA et al. 1993). 

The histone H 1 kinase activity capable of phosphorylating AdPol not only 
coimmunoprecipitates, but also copurifies with AdPol on a size exclusion column, 
further confirming a stable association of the kinase with AdPol. Copurification of 
other kinase activities with cellular DNA replication proteins, such as the 56-kDa 
protein kinase with DNA polymerase-a (PECK et al. 1993) and the casein kinase II 
with DNA topoisomerase II (CARDENAS et al. 1993). have recently been reported. 
However, stable associations of cdc2 kinases have previously been reported only 
with cell growth control proteins such as Rb (AKIYAMA et al. 1992; Hu et al. 1992; 
KITAGAWA et al. 1992; LEES et al. 1992; R.T. WILLIAMS et al. 1992) and p53 (KRAISS 
et al. 1990; STURZBECHER et al. 1990; for review, WEINBERG 1991) and viral onco­
proteins such as Ad E 1 A (GIORDANO et al. 1991; HERRMANN et al. 1991; KLEINBERGER 
and SHENK 1991; TSAI et al. 1991) and bovine papilloma virus E7 (TOMMASINO et al. 
1993). It is believed that the negative or positive effects of these proteins on 
cellular proliferation are exerted through their interactions with other proteins. 
Interaction with a cyclin-dependent kinase is postulated to divert the normal 
function of these enzymes, either by altering their substrate specificity or by 
making them unavailable for the phosphorylation of certain cellular proteins. 
Interaction of AdPol with cdc2 might reflect a requirement for the virus to interfere 
with the cellular DNA synthesis apparatus in order to replicate its own genome. 

4.2.4 Functional Importance 
of Adenovirus DNA Polymerase Phosphorylation 

To evaluate the role of phosphorylation in the modulation of the enzyme activity in 
the in vitro replication initiation assay, unlabeled AdPol was treated with agarose-
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immobilized calf intestinal alkaline phosphatase. Dephosphorylation of AdPol with 
calf intestinal alkaline phosphatase resulted in a significant decrease in its activity 
in the in vitro DNA replication initiation assay and a moderate decrease in the DNA 
polymerase activity, suggesting that phosphorylation is important for its biological 
activity (RAMACHANDRA et al. 1993). Unlike DNA polymerase activity, the DNA 
replication initiation requires the specific interaction of AdPol with pTP and NFl as 
well as with the DNA sequences at the replication origin. Our recent preliminary 
experiments show that dephosphorylation of AdPol does not affect AdPol's 
interaction with pTP, but significantly diminishes the ability of AdPol to specifically 
recognize the DNA templates containing the replication origin sequences (M. 
RAMACHANDRA and R. PADMANABHAN, unpublished results). In AdPol, there are two 
Cys-His-rich sequences that are conserved between different Ad serotypes that 
could potentially be folded into zinc finger motifs capable of binding to DNA (CHEN 
and HORWITZ 1989). Though these Cys-His-rich sequences do not precisely fit the 
consensus for a zinc finger, mutations in the regions affect DNA synthesis, DNA 
binding, and in vitro replication, but show little or no effect on binding to other 
proteins including pTP (CHEN et al. 1990; JOUNG and ENGLER 1992). It is interesting 
to note that the potential cdc2 phosphorylation sites in AdPol are present in the 
vicinity of these two Cys-His-rich regions (Fig. 2A). Therefore, it is likely that 
phosphorylation may playa role in DNA binding of AdPol mediated throLJgh these 
Cys-His-rich sequences. 

In order to address the functional importance of the major in vitro and in vivo 
phosphorylation site of AdPol, serine-67 was mutagenized to alanine and the 
mutant protein was transiently expressed in HeLa cells. Unlike the wild-type 
AdPol, the mutant was inactive in the DNA replication initiation assays. Our recent 
studies indicate that substitution of alanine for serine at position 67 affected 
overall stability of the protein, which could either be due to the absence of 
phosphate at this position or simply due to the presence of alanine at this position 
(M. RAMACHANDRA and R. PADMANABHAN, unpublished results). Attempts are under­
way to construct mutants with amino acids other than alanine in place of serine at 
position 67 to determine the importance of phosphorylation at this state. There are 
reported instances where mutation of a particular phosphoylation site affects the 
phosphorylation at one or more distant sites, as in the case of SV40 T antigen 
(SCHEIDTMAN et al. 1991). In the light of our results, it is interesting to note that in 
SV40 T antigen a mutant bearing a substitution of alanine for threonine at residue 
124 was unable to replicate SV40 DNA in monkey cells and in the in vitro DNA 
replication assays (SCHNEIDER and FANNING 1988). It has been established that the 
phosphorylation of threonirie-124 is mediated by p34cdc2 kinase (MCVEY et al. 1989; 

Fig. 2a-d. Location of the potential cyclin-dependent kinase sites and the known functional domains 
of proteins participating in adenovirus (Ad) DNA replication. a Ad DNA polymerase (Ad Pol). b Pre­
terminal protein (pTP). c DNA-binding protein (DBP). d Nuclear factor I (NFl). P, phosphorylation site 
(confirmed in vivo phosphorylation sites are indicated by an asterisk); NLS, nuclear localization signal; 
Zn++, zinc-binding region; aa, amino acid; CR2 and CR3, regions of DBP conserved in different Ad 
serotypes. The zinc-binding region as well as CR2 and CR3 are implicated in DNA binding of DBP 
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Hoss et al. 1990; MOAREFI et al. 1993). It is also noteworthy that serine-67 of Ad Pol, 
which could potentially be phosphorylated by cyclin-dependent kinase, is also 
conserved in Ad5 (CHROBOCZEK et al. 1992) and is not located within the conserved 
regions present in all the DNA-dependent DNA polymerases (BLANCO et al. 1991), 
suggesting that phosphorylation of this residue is relevant only for adenovirus 
DNA replication. 

Mapping all the phosphorylation sites of AdPol is a prerequisite in order to 
assign roles for individual phosphorylation sites and to identify the critical site(s) 
involved in AdPol function by site-directed mutagenesis. So far by using in vivo 
labeled AdPol we could identify only the major site of phosphorylation. The major 
drawback of the in vivo labeling approach is the difficulty in obtaining a relatively 
large quantity of purified, labeled AdPol for tryptic digestion followed by fractiona­
tion and microsequence analysis. Instead, in vitro phosphorylation of AdPol or 
synthetic peptides representing all the Ser-Pro motifs by p34cdc2 kinase or by the 
associated kinase would aid in identification of the other phosphorylation sites. 
Similar in vitro approaches using synthetic peptides have proven to be successful 
in identifying the phosphorylation sites of other proteins (STURZBECHER et al. 1990; 
LEES et al. 1992), 

4.3 Phosphorylation of Preterminal Protein 

Similar to AdPoI, phosphorylation of pTP was initially detected using the recom­
binant vaccinia virus expression system (KUSUKAWA et al. 1994). Subsequently, it 
was shown that pTP is also phosphorylated in Ad2-infected cells by a large-scale 
metabolic labeling experiment. In both these cases, pTP was phosphorylated 
only on serine residues, but on multiple sites as indicated by ten spots on two­
dimensional tryptic peptide maps. Peptide maps of pTP expressed with or with­
out AdPol using recombinant vaccinia viruses were similar, suggesting that an 
association with AdPol does not alter the phosphorylation state of pTP. It remains 
to be determined whether the same sites of pTP are phosphorylated in the 
vaccinia virus expression system as in Ad2-infected cells. 

In order to determine the effect of phosphorylation on the biological activity of 
pTP, pTP preparations were dephosphorylated using calf intestinal alkaline 
phosphatase (KUSUKAWA et al. 1994). Characterization of the dephosphorylated 
pTP showed that the in vitro DNA replication initiation activities of pTP were 
significantly reduced, suggesting that phosphates that are critical for the activity 
were removed under these conditions. Addition of nuclear extract prepared from 
uninfected HeLa cells did not restore the activity, which again suggests that the 
decrease in activity was specifically due to dephosphorylation of pTP. 

Studies have shown that phosphorylation can affect protein function by 
inducing conformational changes (SPRANG et al. 1988) as well as by electrostatic 
repulsion effects (HURLEY et al. 1990). Such mechanisms may result in altered 
protein-protein and protein-DNA interactions (HUNTER and KARIN 1992). Our 
experiments show that as in the case of AdPoI, dephosphorylation of pTP did not 
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alter the ability to form a tight pTP-AdPol complex in vitro. This result is not 
surprising, because many earlier mutational analyses of pTP and of AdPol suggest 
that the interaction of AdPol and pTP consists of multiple contact sites (CHEN and 
HORWITZ 1989; JOUNG and ENGLER 1992; ROOVERS et al. 1993). 

A specific recognition of pTP in the absence of AdPol with the Ad DNA 
replication origin can be demonstrated in gel shift assays, using double-stranded 
DNA sequences within the terminal 1-18 bp of the Ad2 genome (TEMPERLEY and 
HAY 1992; KUSUKAWA et al. 1994). Gel electrophoresis-based DNA mobility shift 
assays of dephosphorylated p TP indicated a reduction in specific interactions with 
the replication origin upon dephosphorylation, suggesting that the decreased 
binding to the template DNA may the major reason for its loss of replication 
initiation activity (KASUKAWA et al. 1994). DNase I footprinting analysis has shown 
that the binding of pTP-AdPol heterodimer protects base pairs 8-17 (TEMPERLEY 
and HAy19921, which is within the conserved nucleotides 9-18 present in all 
human Ad. Domains within pTP that are required for binding to the origin of DNA 
replication have not been precisely mapped. Further identification and characteri­
zation of phosphorylation sites in pTP might be valuable in precise mapping of the 
DNA-binding domains. 

The activities of many other proteins involved in DNA and RNA synthesis are 
modulated as a result of altered DNA binding. In the case of DNA polymerase-a, 
the phosphorylated form exhibits a lower affinity to DNA (NASHEUER et al. 1991). As 
noted earlier, in the case of SV40 T antigen the overall phosphorylation inhibits its 
DNA replication activities (SIMMONS' et al. 1986; MOHR et al. 1987; CEGIELSKA and 
VIRSHUP 1993), whereas specific phosphorylation of threonine-124 (SCHNEIDER and 
FANNING 1988) mediated by p34cdc2 kinase enhances both DNA binding and 
replication initiation activities (McVEY et al. 1989, 1993; MOAREFI et al. 1993). 
Similarly, depending upon the site of phosphorylation, the biological activities of 
pTP and AdPol may be affected. 

Similar to AdPol. pTP is phosphorylated on multiple serine residues. In cells 
infected with Ad or coinfected with recombinant vaccinia viruses encoding AdPol 
and pTP, the cdc2-related protein kinase exists in a multimeric complex that also 
contains pTP and AdPol (RAMACHANDRA and PADMANABHAN 1993). Therefore, it is 
likely that cdc2-related kinases also phosphorylate pTP. However, unlike AdPol, 
pTP contains only one site, serine-337, that could potentially be phosphorylated by 
cyclin-dependent kinases (Fig. 2B). Two-dimensional peptide maps of in vivo 
labeled pTP show multiple phosphopeptides, suggesting that even if cdc2 or 
related kinases are involved in phosphorylation of pTP they are probably not the 
major kinases. pTP also contains several other serine residues that occur within 
the substrate recognition sequences of other well-characterized protein kinases 
such as casein kinase II and DNA-dependent protein kinases. However, the 
number and location of phosphoserines on pTP as well as the protein kinase(s) 
responsible for the phosphorylation of individual sites remain to be determined. 

It is also well documented that phosphorylation plays an important role in the 
modulation of the activities of transcription factors (for review, see BOHMAN 1990; 
HUNTER and KARIN 1992). Although no trancriptional activation role has been directly 
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ascribed to pTP, mutational analysis suggests a role for p TP in efficient transcription 
of adenovirus DNA (SCHAAK et al. 1990b). In addition, pTP contains sequence 
characteristics in common with known activation domains of cellular transcription 
factors. As previously noted by SCHAACK et al. (1990b), p TP contains domains (amino 
acids 198-247, 13 of 50 acidic residues; amino acids 398-470, 26 of 73 acidic 
residues; amino acids 54~01, 15 of 53 acidic residues) whose negative charge is 
comparable to the acidic activating domains in transcription factors such as GCN4 
(HoPE and STRUHL 1986) and Gal4 (MA and PTASHNE 1987). These known acidic 
activating domains are capable of forming an amphipathic a-helical structure, and 
computer analysis indicated that the two of the three acidic domains in pTP exhibit 
this characteristic (SCHAAK et al. 1990b). pTP also contains two proline-rich domains 
(amino acids 334-397, 13 of 64 proline residues; amino acids 649-667, ten of 19 
proline residues) similar to proline-rich activating domain of CTF/NFI (MERMOD et al. 
1989; Fig. 2B). It remains to be seen whether phosphorylation of pTP has any effect 
in pTP/TP-mediated adenoviral transcription. 

4.4 Possible Involvement of Cyclin-Dependent Protein Kinases 
in Regulation of Adenovirus DNA Replication 

Several studies have implied that the cdc2 kinases target and regulate cellular 
DNA replication machinery. Among the four subunits of DNA polymerase-a, two 
polypeptides, the 180-kDa and the 70-kDa subunits, have been reported to be 
phosphorylated in a cell cycle-dependent manner and in vitro evidence indicates 
the involvement of p34cdc2 kinase in the mitotic phosphorylation of DNA poly­
merase-a (NAsHEuER et al. 1991). Replication protein A has been shown to be 
phosphorylated in Sand G2 phases of the cell cycle, and the phosphorylation is 
mediated by the cyclin B-cdc2 complex as well as cyclin A-associated cdc2-like 
kinases (DuTIA and STILLMAN 1992; NAsHEuER et al. 1992). Recently, it has been 
shown that phosphorylation of replication protein A by cyclin-dependent kinase 
facilitates DNA unwinding (GEORGAKI and HUBscHER 1993). In addition, cdc2 kinase 
stimulates DNA replication in extracts purified from G1 phase cells (DuTIA and 
STILLMAN 1992). D-Type cyclins associate with cellular DNA replication and repair 
factor, proliferating cell nuclear antigen, PCNA (XIONG et al. 1992). and cyclin A 
Icoalizes at the sites of cellular DNA replication (SOBCZAK-THEPOT et al. 1993). The 
observations that phosphorylation of replication proteins such as AdPol and SV40 
large T antigen by cdc2 is important for their function suggest that cdc2 kinases 
target not only cellular replication apparatus, but also the replication machinery of 
viruses multiplying in eukaryotic cells. Use of this kinase function may be a way by 
which the virus diverts a normal cellular mechanism for activation of its DNA 
replication. 

One of the widely used approaches to determine the potential kinase(s) 
responsible for phosphorylation of a specific protein is to map the in vivo sites of 
phosphorylation and examine whether they occur within the consensus substrate 
recognition sequences of known protein kinases. As mentioned before, pTP 



Expression, Nuclear Transport, and Phosphorylation 75 

contains only one site (serine-337) that could potentially be phosphorylated by 
cyclin-dependent protein kinases. It remains to be determined whether phos­
phorylation of this site is essential for the replication function of pTP. Among the 
ten confirmed DBP phosphorylation sites that are common to both Ad2 and Ad5 
(MORIN et al. 1989a), seven are present within the substrate recognition sequen­
ces (S{f-P) for cyclin-dependent protein kinases (Fig. 2C). In addition to the 
confirmed phosphorylation sites, DBP contains two other sites (threonine resi­
dues at 68 and 416) that could potentially be phosphorylated by cyclin-dependent 
protein kinases. It is interesting to note that all these cyclin-dependent kinase sites 
are present in both Ad2 and Ad5, and these sites, except threonine-416, are 
present in the N-terminal domain that are known to be phosphorylated in vivo. 
Although it has not been demonstrated, these observations strongly suggest that 
cyclin-dependent protein kinases are involved in the phosphorylation of DBP. It is 
interesting to note that mutational analysis have defined a region (residues 2-38) 
in the N terminus of DBP that is required for efficient in vivo viral DNA synthesis 
(BROUGH et al. 1993). and the sequence S-P-S-P-S-P (residues 31-36) within this 
region is conserved in four serotypes, Ad2, Ad4, AD5, and Ad7. Serine residues 
within this sequence are phosphorylated in vivo and cyclin-dependent protein 
kinases may be involved in the phosphorylation. 

Search of the primary sequence of NF I/CTF revealed that there are about 15 
residues (serine or threonine) which are within the consensus substrate recogni­
tion sequences for cyclin-dependent protein kinases. Most of these sites are 
located outside of NFl's DNA-binding domain (MERMOD et al. 1989; Fig. 2D). 
Therefore, one obvious possibility is that cyclin-dependent protein kinases may 
also target and phosphorylate NFl in vivo. This possibility is further supported by 
a recent study by KAWAMURA et al. (1993). in which they demonstrated the in vitro 
phosphorylation of NFl by cyclin-dependent protein kinases. However, in vivo 
phosphorylation of NFl and its impact on NFl's function have not, to our know­
ledge, been reported. It appears that the phosphorylation of NFl is not critical for 
its DNA binding and replication activities, as suggested by the ability of bacterially 
expressed NFl to carry out these reactions (MERMOD et al. 1989). Furthermore, the 
N-terminal DNA-binding domain of NFl (residues 14-240) is sufficient for dimeri­
zation as well as for stimulation of adenovirus DNA replication (MERMOD et al. 
1989; MUL et al. 1990). Based on the observation that serine and threonine 
residues that may be subject to phosphorylation in NFI/CTF-1 are absent in CTF-2 
and CTF-3, which are nevertheless highly active in transcription, MERMOD et al. 
(1989) proposed that post-translational modification may not be essential for 
transcriptional activity, but did not rule out a possible regulation of NFl activity 
in transcription and DNA replication by such modification. Even tHough phos­
phorylation is not necessary for the DNA-binding and replication activities of NFl, 
phosphorylation on multiple sites at the C-terminal part mediated by cyclin­
dependent protein kinases could result in a conformational change of the protein, 
which in turn could regulate NFl's DNA-binding and replication activities. 

The cellular transcription factor Oct-1/NFIII is known to be a phosphoprotein 
(TANAKA and HERR 1990) and it is phosphorylated in a cell cycle-specific manner (SEGIL 
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et al. 1991 a, b; ROBERTS et al. 1991). The cell cycle-dependent phosphorylation of 
NFl II is thought to involve multiple kinases including p34cdc2-related kinase as well as 
phosphatases (ROBERTS et al. 1991). A mitosis-specific phosphorylation in vitro by 
protein kinase A was shown to correlate with the inhibition of NFIII DNA binding 
activity (SEGIL et al. 1991 b). Similar to NFl, the Ad DNA-binding region (POU domain) 
of NFIII is sufficient for enhancement of Ad DNA replication (STURM and HERR 1988; 
VERRIJZER et al. 1990). Since phosphorylation negatively regulates the DNA-binding 
activity (SEGIL et al. 1991 b), it is likely that phosphorylation could also have an impact 
on NFllI's ability to enhance Ad DNA replication. 

Ad DNA replication initiation is highly specific, and it is believed that the 
specificity is due to orderly coordination of protein-protein and protein-DNA 
interactions at the replication origin. From various studies, we now know that 
during initiation of DNA replication, DBP forms a multimeric protein complex with 
the double-stranded DNA and enhances the binding of NFl with the specific 
sequences at the replication origin (CLEAT and HAY 1989; STUIVER and VAN DER VLIET 
1990; MUL et al. 1993). Because of the direct interaction between NFl and AdPol, 
pTP-AdPol complex is positioned at the origin, which results in the binding of 
pTP-AdPol to the origin sequence and stabilization of the preinitiation complex 
(BOSHER et al. 1990; CHEN et al. 1990; MUL et al. 1990; TEMPERLEY and HAY 1992; 
MUL and VAN DER VLIET 1992). A functional interaction between DBP and AdPol has 
also been demonstrated in which DBP increases the processivity of AdPol (FIELD 
et al. 1984; LINDENBAUM et al. 1986). The above-mentioned specific protein-protein 
and protein-DNA interactions, with the exception of functional interaction bet­
ween AdPol and DBP, probably are disrupted during the elongation of the primed 
template. However, the elements controlling the specific interactions at the 
replication origin are not known. In light of our observation that cdc2 or related 
kinase stably associates with AdPol, one possibility is that phosphorylation 
mediated by the AdPol-associated kinase may playa role in modulating these 
specific protein-protein and protein-DNA interactions. If indeed pTP, NFl, and 
DBP are the physiological substrates for cyclin-dependent protein kinases, the 
AdPol-associated kinase may be able to phosphorylate pTP, NFl. and DBP, which 
are also present along with AdPol in the preinitiation complex. Possible phos­
phorylation of NFl and DBP that are also interacting with the specific DNA 
sequences is consistent with the observation that majority of the potential cyclin­
dependent phosphorylation sites are present outside their DNA-binding domains 
(Fig. 2C, D). As discussed above, phosphorylation of pTP, NFl, and DBP either by 
the AdPol-associated kinase or free cyclin-dependent protein kinase during DNA 
replication may alter their protein-protein and protein-DNA interactions. The 
possibility of protein phosphorylation during DNA replication is in agreement with 
the findings that elongation of primed DNA template in vitro was stimulated 
severalfold by ATP or ATP-regenerating system (FIELD et al. 1984; LINDENBAUM et al. 
1986; LEITH et al. 1989), and little, if any, ATP hydrolysis occurs during DNA 
replication in vitro (LINDENBAUM et al. 1986). 
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4.5 Possible Involvement of Phosphorylation 
in Nuclear Transport and Nuclear Matrix Attachment 

As mentioned in Sect. 3.1, the virus-encoded DNA replication proteins and the 
replicating DNA have been shown to be associated with some discrete globular 
structures within the nucleus of Ad-infected cells. Ultrastructural studies support 
the observation that DBP is associated mainly with specific regions in the nuclei 
of Ad5-infected cells, which also contain large amount of viral single-stranded 
DNA (PUVION-DuTILLEUL and PUVION 1990a, b). PUVION-DuTILLEUL (1991) also demons­
trated that concomitant detection of immunostained proteins and proteins stained 
using bismuth, which specifically detects substructures containing highly phos­
phorylated proteins, is possible. Applying this improved method to sections of 
Ad5-infected cells, they showed that bismuth ions and viral anti-DBP antibody 
bound concomitantly to intranuclear virus-induced single-stranded DNA accumu­
lation sites, structures in which viral replication activity was intermittent, and also 
to the fibrillogranular peripheral replicative zones that surround the single-stran­
ded DNA accumulation sites, in which replication of the viral genome was conti­
nuous. Though it has not been shown, it is possible that the bismuth staining of 
these discrete structures is due to the presence of AdPol, pTP, and cellular 
proteins, in addition to DBP, in their phosphorylated forms. 

It should be noted that potential cyclin-dependent kinase and casein kinase II 
phosphorylation sites (based on consensus sequences described by KENNELLY and 
KREBS 1991; PEARSON and KEMP 1991) are present in the well-characterized nuclear 
transport signals of AdPol, pTP, and DBP (Table 1). Among these sites, in vivo 
phosphorylation of serine-67 in AdPol (RAMACHANDRA et al. 1993), and serines 31, 
33, 35, 76, 92, and 100 in DBP have been detected (ANDERSON et aL 1986; MANN 
1987; MORIN et al. 1989b). In the case of AdPol, our sequence analysis of the in 
vivo 32P-labeled protein showed that the casein kinase II phosphorylation site, 
serine-73, was not phosphorylated. However, it is possible that phosphorylation at 
this site occurs below the level of detection or may be sensitive to phosphatase(s) 
present in the infected cells. The presence of cyclin-dependent kinase and casein 
kinase II phosphorylation sites near the NLS of Ad DNA replication proteins is very 
interesting, because in a large number of proteins these kinase sites occur near 
their NLS (DINGWALL and LASKEY 1991). Based on this observation, it was suggested 
that the effect of phosphorylation on nuclear proteins may be widespread. In the 
case of SV40 T antigen, it has been clearly demonstrated that depending upon the 
site of phosphorylation near NLS, nuclear import of T antigen is affected (RIHS and 
PETERS 1989; JANS et aL 1991). The presence of threonines-111 and -112, which 
are part of consensus casein kinase II sites, and their phosphorylation together 
with NLS greatly enhanced the rate of SV40 T antigen nuclear import (RIHS et aL 
1991), whereas phosphorylation of threonine-124 mediated by p34cdc2 inhibited its 
nuclear entry (JANS et aL 1991). In addition to SV40 T antigen, many transciption 
regulatory proteins contain domains comprising potential casein kinase II sites, 
cdc2 sites, and NLS, raising the possibility that these three elements represent a 
functional unit regulating nuclear protein import (JANS et aL 1991). It remains to be 
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Table 1. Potential and confirmed phosphorylation sites in the vicinity of nuclear localization signals 
(NLS) 

Protein Casein kinase II site' cdc2 kinase site' NLS 

AdPol S73KDT S5'PGGS RARRRR46 (BSIII) 
S67PLLD 

pTP S303DPVD S337PPPT RLPV(R6)Vp39' 

DBP S53EDEE S31 PS33pS35pp PPKKR46 

S76AADL S92PKPER PKKKKK89 

S,ooPEVI 
SV40 T antigen S'l1S112DDE ST' 24PPK PKKKRKV'32 

'The phosphorylation sites are numbered. 
AdPol, adenovius DNA polymerase; pTP, preterminal protein; DBP, DNA-binding protein; SV, simian 
virus. 

seen whether phosphorylation has any influence on the nuclear entry of Ad DNA 
replication proteins. 

In the case of pTP, it has also been shown that pTP orTP mediates the nuclear 
matrix attachment of Ad DNA (BODNER et al. 1989; SCHAAK et al. 1990b; FREDMAN 
and ENGLER 1993). Mutational analysis has suggested a correlation between 
efficient nuclear matrix attachment and transcription of Ad DNA. Studies have 
implicated a role for phosphorylation in the association of other proteins with the 
nuclear structure. For instance, in the case of Rb, un- or underphosphorylated 
species are tightly associated with the nuclear structure, and such an association 
is essential for the growth-regulating function of Rb (MiTTANACHT and WEINBERG 
1991; TEMPLETON 1992). Possible involvement of phosphorylation in nuclear matrix 
association of DNA mediated by TP or pTP remains to be determined. 
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1 Introductory Remarks 

The observation that adenovirus genomes can undergo genetic recombination is 
almost a quarter of a century old (WILLIAMS and USTA~ELEBI 1971; T AKEMORI 1972; 
ENSINGER and GINSBERG 1972), yet despite its early discovery and its rapid exploi­
tation as a tool for mapping mutations and for creating new genotypes (reviewed 
in GINSBERG and YOUNG 1977; YOUNG et al. 1984b), the mechanisms underlying it 
are not well understood at the molecular and biochemical levels. Such an under­
standing, however, can be expected to shed light not only on the specific features 
peculiar to adenovirus recombination itself, but also on the more general 
characteristics of the repair and recombinational capacities of the cell. These 
cellular aspects are of considerable current theoretical and practical interest, 
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because of recent advances both in uncovering the molecular basis of genetic 
defects in DNA repair in mammalian cells and in the techniques of gene targeting 
by homologous recombination in order to investigate mammalian development 
and differentiation. As with many other fundamental biological phenomena, the 
study of adenovirus recombination can be expected to yield valuable insights into 
the normal capacities of the cell. 

The main purposes of this chapter are, first, to review the currently available 
facts and observations about adenovirus recombination, emphasizing those 
aspects not covered in detail in previous reviews (GINSBERG andYoUNG 1977; YOUNG 
et al. 1984b). and, second, to elaborate models for adenovirus recombination and 
to suggest experimental approaches to test their validity. 

2 General Characteristics of Adenovirus Recombination 

As with the bacteriophage systems upon which the experiments were based, the 
first attempts to define adenovirus recombination examined what might be 
termed the "population genetics" of the replicating mix of viral genomes. Using 
classical genetic approaches, with strains of virus marked with temperature­
sensitive mutations and distinguishable restriction enzyme sites, it was shown 
that the recombinant virus fraction increased with time after infection, that 
recombination could take place well into the late phase of the infectious cycle, 
and that individual genomes probably could undergo more than one recombi­
nation event (YOUNG and SILVERSTEIN 1980; MUNZ et al. 1983). The genetic evidence 
also suggested that recombination was characterized by "negative interference", 
i.e., that recombinant genomes had undergone more than the expected number 
of unselected recombination events (WILLIAMS et al. 1975; YOUNG and WILLIAMS 
1975; YOUNG and SILVERSTEIN 1980). The model that emerged from these studies 
was essentially the same as that proposed many years earlier for the T-even 
bacteriophages (DOERMANN 1953; VISCONTI and DELBRUCK 1953), namely that a pool 
of genomes underwent random recombination events during much of the 
infectious cycle, until individual genomes were withdrawn from the pool by 
packaging into mature virus. This model left open such questions as the precise 
structure of the genomes entering into recombination, the nature of the recombi­
national intermediates, and which viral and cellular functions were involved in 
both the formation and the resolution of such intermediates. 

3 Temporal and Functional Relationship 
Between Recombination and DNA Replication 

The first clue as to the possible viral DNA structures involved in the formation of 
recombination intermediates came from the kinetics of recombination, as meas-
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ured by Southern analysis of the intracellular pool of replicating molecules (YOUNG 
and SILVERSTEIN 1980). In this experimental design, two parental viruses with two 
restriction enzyme site differences, arranged either in cis or in trans, are used to 
coinfect cells. Recombination between the restriction enzyme sites will yield two 
recombinant genomes. All four products, parental and recombinant, can be 
detected among the intracellular DNA by hybridizing with a specific sequence 
located between the two sites of restriction enzyme difference. This technique is 
extremely valuable in monitoring recombination, because it does not require the 
formation of a viable recombinant virus and thus can detect recombination in 
circumstances where virus is not produced, as for example in eclipse or under 
nonpermissive conditions. This technique, first developed in adenovirus infec­
tion, is now commonly used to monitor recombination, in a variety of systems, 
such as yeast meiosis (BORTS et al. 1985). The kinetic analysis showed that a 
recombinant product could be detected only after the onset of DNA replication 
and that the proportion of product among the total pool of molecules increased 
with time thereafter. This could imply that some protein product, either viral or 
cellular and necessary for recombination, was elaborated or active only after DNA 
replication had commenced. Alternatively, it might mean that the process of 
replication itself was a prerequisite for recombination. This latter effect could be 
merely quantitative, for example by increasing the total number of gefibmes in 
the individual infected cell so that genomes of different genotype could find one 
another. It has been known for many years that adenovirus DNA replication 
occurs in discrete regions of the nucleus (see PUVILLON-DuTILLEUL and PUVION 
1990a,b, for recent evidence), and, if such "replication factories" initiate from 
single genomes, they might have to fuse before recombination could commence. 
Alternatively, and more interestingly, it could reflect the role of some genomic 
structure, produced during replication, as an active participant in recombination. 
The analysis of the structures produced by replication was well advanced at this 
time, and it seemed entirely plausible that the displaced single strands, intrinsic 
to adenovirus DNA replication, were involved in recombination, an idea which 
was first suggested by FLINT et al. (1976). Support for the idea that replicating 
molecules could be involved in recombination was obtained by WOLGEMUTH and 
Hsu (1981), who examined the intracellular pool of adenoviral DNA using electron 
microscopy (EM). Prominent among the paired duplex molecules were those in 
which replication had occurred on one duplex and the displaced single strand had 
been transferred to another duplex, a viral example of the general model for 
recombination proposed by MESELSON and RADDING (1975). The EM analysis also 
gave evidence for classical Holliday junctions (WOLGEMUTH and Hsu 1 ~80), which 
might suggest that recombination could also be initiated internally in the genome. 
This point will be considered later in the discussion of the models for adenovirus 
recombination. Taking these observations together, it seemed plausible that DNA 
replication and recombination might be intimately connected and that high levels 
of recombination might indeed be dependent on concurrent replication. If this 
latter linkage were true, then any treatment that blocked replication would also 
block recombination, and viral mutants with deficiencies in replication would also 
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be recombination deficient. This was tested, again using the Southern blot 
analysis of intracellular DNA, and it was found that blocking DNA replication by 
inhibitors of Aeither replication or early protein synthesis, or the use of tempera­
ture-sensitive mutants with lesions in known DNA synthesis genes, diminished 
DNA recombination as well (YOUNG et al. 1984a). If the replication block was 
removed during the course of the experiment, replication and recombination 
began in concert. It should also be pointed out that the block to recombination 
was observed even at high multiplicities of infection, suggesting that the role of 
replication in promoting recombination was not merely quantitative. All of these 
results, using a variety of techniques, are consistent with, although they do not 
prove, a model of recombination in which replication produces the specific 
substrates necessary for the high rates of recombination observed in adenovirus 
infection. 

4 Are Other Viral Gene Products Necessary 
for Adenovirus Recombination 7 

The results with the DNA synthesis inhibitors and with the temperature-sensitive 
mutants are consistent with an important role of replication in generating the 
substrates necessary for high rates of recombination. However, they do not 
address the question of whether or not viral or cellular functions are involved in 
the formation of recombination intermediates and for their resolution into fully 
recombinant products. Again, precedent from bacteriophages suggests thatviral 
early genes might playa primary role in recombination i.e., they might help to 
form the recombination intermediates or promote their resolution. These possi­
bilities are part of a broader question of whether or not recombination is an 
essential part of the viral life cycle and whether the virus encodes its own 
functions for this essential activity. If both suppositions are true, conditional lethal 
mutations in recombination could be searched for. However, the situation may be 
analogous to most bacteriophages, in which virally encoded recombination 
functions are not essential in most hosts, and thus the search for conditional 
lethal mutations in viral recombination functions is fruitless, unless conducted 
under very special host conditions. Despite these theoretical uncertainties, the 
accumulated efforts of .the last decade using site-directed mutagenesis have 
generated a cornucopia of conditionally lethal host range mutations and muta­
tions with no overt phenotype, principally in the early regions of a'denovirus. 

Adenovirus has an extremely varied repertoire of early gene products, many 
of whose functions are unknown, and thus it is possible that some of them may 
playa direct role in recombination. To test this, two parental viruses, both of which 
contained a mutation in the early region under consideration, but which could be 
distinguished by restriction site differences, were used to infect nonpermissive 
cells. The Southern hybridization technique allowed the analysis of intracellular 
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DNA, just as for the ts DNA synthesis mutants described above. Deletions 
encompassing parts or all of E1 band E4 had no effect on recombination, 
suggesting that none of the products encoded by these regions plays an important 
role in recombination (EpSTEIN and YOUNG 1991). Although these are negative 
results, they are worth some comment. It is known that deletions in the gene 
encoding the E1 b 19K protein result in a failure to protect both viral and cellular 
DNA from the actions of a DNA endonuclease induced by E 1 a gene products and 
characteristic of the phenomenon of programmed cell death, or apoptosis 
(reviewed in WHITE 1993). In the recombination experiment with the E1 b 19K 
deletion mutant, the total yield of viral DNA was reduced, as expected, and 
intracellular viral DNA showed the degradation characteristic of 19K mutants, 
suggesting that the apoptotic endonuclease was active. Despite this, the lowered 
amount of recombinant product was commensurate with the lowered amount of 
accumulated viral DNA. This suggests that the nicks, gaps, and breaks introduced 
into the viral DNA by the endonuclease do not increase the already high rate of 
recombination intrinsic to adenovirus infection. The results with the E4 deletion 
demonstrate not only that none of the E4 gene products are required for 
recombination, but also that late gene products are unlikely to be required either. 
The specific E4 deletions used are severely deficient in late gene product 
production (HALBERT et al. 1986; WEINBERG and KETNER 1986). Previous work has 
shown that E3 has no part to play in recombination (C.S.H. YOUNG, unpublished 
work), since viruses with major deletions in this area are recombination proficient. 
This is perhaps not surprising, since this region of the genome appears to encode 
gene products whose role is to modulate the response of the host organism to 
adenovirus infection (reviewed in WOLD and GOODING 1991). The results with an 
E1 a deletion showed that recombination is severely delayed and is observed 
approximately at the time when there is an increase in DNA accumulation, which 
of course is delayed in non permissive cells. Although the timing of the onset of 
recombination and its dependence on DNA replication were somewhat equi­
vocal. there can be no doubt that E1 a gene products are not necessary for 
recombination. This suggests, but of course does not prove, that cellular genes 
induced by E1 a are not essential for adenovirus homologous recombination. 

These results with the viral early mutants suggest, therefore, that the main 
role of viral gene products is to produce the appropriate substrates for initiating 
recombination. Obviously, there are some gaps in this analysis, not the least of 
which is the possibility that one or more of the DNA synthesis gene products 
might be involved in recombination, after, and in addition to, its role in producing 
the substrate itself. It is possible, for example, that the single strand DNA-binding 
protein (DBP), known to be multifunctional, might promote annealing of displaced 
single strands from two different parental genotypes. It is not known whether this 
protein, or indeed any other of those involved in replication, has a separable 
domain for recombination. So far none of the temperature-sensitive mutations 
located in any of the DNA replication genes have been shown to be deficient in 
some as yet undefined function, while proficient in DNA replication. However, 
there are mutations located at other positions in the DBP gene which have effects 
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on host range (KLESSIG and GRODZICKER 1979; ANDERSON et al. 1983) or on assembly 
(NICOLAS et al. 1983; ROOVERS et al. 1990), and these have not been tested for 
recombination. Another gap in the analysis is the lack of information about 
the possible role in recombination of such poorly characterized products as 
the i-leader-encoded proteins (LEWIS and ANDERSON 1983; SYMINGTON et al. 1986; 
SOLOWAY and SHENK 1990) or even RNA products such as the recently described 
pol III transcripts from the E2 gene (PRUZAN et al. 1992). Now that the complete 
genome sequences of several adenoviruses are available (CHROBOCZEK et al. 1992; 
ROBERTS et al. 1986), it is clear that there are many open reading frames (ORF) of 
unproven function. As more information becomes available about them, it may be 
necessary to test them in recombination assays. Finally, it should be pointed out 
that, although the known early regions have been tested in recombination assays, 
using large deletions in each specific region, it is always possible that such 
deletions have simultaneously inactivated positive and negative components in 
the system, leaving the mechanism essentially intact. 

5 Which Cellular Functions Are Involved 
in Adenovirus Recombination? 

Even the simple models of adenovirus recombination proposed at the end of this 
review include many enzymatic steps in the rearrangement of the parental 
genetic material. In Fig. 2, for example, these steps involve proteins to promote 
annealing of single strands, to recognize mismatched base pairs, to remove the 
mismatch, and to restore the uninterrupted duplex. Given the limited coding 
capacity of the adenovirus genome, it was always likely that the majority of 
recombination functions would be encoded by the cell and that they would be 
used for cellular repair and recombination purposes. Thus, although it was 
important to search, in a methodical fashion, for viral gene products involved in 
recombination, it was clearly imperative to try to discover the cellular genes 
involved in the process. In theory, adenovirus offers outstanding advantages in 
examining the processes of cellular repair and recombination. It can infect and 
replicate in most human cells, including primary fibroblasts, it can be recovered 
and examined easily, and its genetic analysis is at an advanced stage. Finally, the 
ability to transfect cells with DNA and recover the products, was, until the advent 
of polymerase chain reaction (PCR), a signal advantage. Bec~use of these 
perceived advantages, there have been many investigations using adenovirus to 
examine DNA repair and recombination in both normal and repair-deficient 
human cells (see for example RAINBOW 1991). However, it is probably fair to say 
that these investigations have not yielded any useful positive information about 
the mechanisms underlying adenovirus recombination. It is clear that none of the 
cell lines examined so far (WILLIAMS et al. 1974; YOUNG and FISHER 1980) has had 
any profound effect on the frequency of recombination, and the holy grail of a 
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human cell with a rec A-like phenotype has not been found. Cell lines which have 
been examined to date include those from patients with various disorders of DNA 
repair or chromosomal stability such as ultraviolet (UV)-sensitive xeroderma 
pigmentosum of complementation groups A. C, and "variant", Fanconi's anemia of 
unknown group, ataxia telangiectasia group D, Bloom's syndrome, and the human 
ligase 1 deficiency present in cell line 46BR (BARNES et al. 1992). Cell lines from a 
variety of other species permissive for human adenovirus replication have also 
been tested (WILLIAMS et al. 1974) and all show normal levels of recombination. 
Such negative results have been compounded, until very recently, by a virtual lack 
of understanding of the cellular genes and products involved in mammalian 
replication and repair. Fortunately this situation is changing rapidly with the 
genetic mapping of many of the human repair deficiency genes, isolation and 
sequencing of cDNA clones (reviewed in FRIEDBERG 1992), and the development of 
in vitro techniques for repair (see for example WOOD and COVERLEY 1991). Thus the 
time is ripe for a re-examination of repair-deficient cell lines' abilities to permit 
adenovirus recombination. This will be considered further in Sect. 8. 

6 Alternative Experimental Approaches 
to Studying Adenovirus Recombination 

6.1 Biochemical Approaches 

Although the genetic and molecular descriptions of adenovirus recombination 
during the infectious cycle are reasonably complete, it is clear from the preceding 
paragraphs that much remains to be uncovered about the functions that carry out 
recombination. It would obviously be a great advantage to develop in vitro 
systems for recombination similar to those that were so successful for DNA 
replication (CHALLBERG and KELLY 1979). Indeed, if it is true that recombination 
and replication are functionally linked, a system that permits replication might 
permit recombination. Attempts to use the Challberg and Kelly system to do so 
have been unsuccessful, however (G. KETNER, personal communication, and L.H. 
EpSTEIN and C.S.H. YOUNG, unpublished work). In the work in my own laboratory, 
the assay for recombination was based on the Southern technique, used in the 
analysis of intracellular viral DNA, which detects the rearrangement of restriction 
enzyme sites. Although this is an extremely sensitive technique, »,hich could 
detect the small percentage of recombinant products likely to be made in vitro, it 
may not be the best approach. The initial recombination intermediate will almost 
certainly have mismatched base pairs at the position of the restriction enzyme 
site difference. Many restriction enzymes fail to digest such mis-matches. 
Creation of a fully recombinant duplex may require the subsequent action of a 
mis-match repair system. Although such a system is found in mammalian cells 
and in vitro assays have been developed to measure it (HOLMES et al. 1990;THOMAS 
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et al. 1991)' the likelihood of both a recombinational event and mismatch repair 
happening to a particular genome may be very small. Nevertheless, despite such 
initial failures, the availability of a complete adenovirus DNA replication system, 
with purified products, should allow reexamination of the relationship between 
recombination and replication. 

6.2 DNA-Mediated Transfection 

One of the great advantages of using adenovirus to study the recombinational 
capacities of the cell is that infection can be initiated by DNA-mediated trans­
fection (GRAHAM and VAN DER EB 1973). Different arrangements of the adenovirus 
genome can be presented to the cell, and the recombinant products can be 
recovered and analyzed in detail. The results obtained can be compared and 
contrasted with those from recombination occurring in virus-initiated infections. 
For the purposes of this review, only those aspects which pertain to homologous 
recombination will be covered, but it should be pointed out that adenovirus DNA 
fragments also undergo nonhomologous end-joining to yield viable virus (MUNZ 
and YOUNG 1987, 1991), and this has given insight into one of the most marked 
characteristics of the mammalian cell, namely the ability to join broken DNA ends 
at high efficiency, regardless of the precise chemical nature of the ends (reviewed 
in ROTH and WILSON 1988). 

The investigation of homologous recombination using transfection has 
employed three different arrangements. The first approach, "marker rescue", 
was developed by FROST and WILLIAMS (1978) as a mapping tool and is formally 
analogous to simple gene replacement protocols in yeast and mammalian cells. 
In this arrangement, a full-length genome with a counter-selectable marker 
and a subgenomic fragment with a selectable marker are cotransfected 
into cells, and a recombinant product is selected. If the two parental DNA 
molecules differ at nonselected markers, as for example at several restric­
tion enzyme positions, the segregation of these sites can be followed in 
the selected set of recombinants. Using this approach, VOLKERT et al. (1989) 
showed that the further away the unselected marker was from the selected 
one, the less likely the former was to be inherited. There was an almost perfect 
linear relationship between position and frequency of inheritance of unselected 
markers. This strongly suggests that recombination can be initiated anywhere 
in the parental genomes and is not confined to the ends of the subgenomic 
fragment. Second, if a distal marker from the fragment was. inherited, all 
more proximal markers were also inherited. This demonstrates that genetic 
information is transferred as a block and is not transferred in small pieces. A 
second observation concerned the timing of marker rescue. The frequency of 
marker rescue in plaques arising from individually transfected cells varied over 
several orders of magnitude. This suggests that transfer of genetic information 
from fragment to full-length genome could occur after DNA replication had 
begun. The alternative formal possibility that the variability reflects the relative 
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proportion of full-length genomes and fragments initially present in the indi­
vidual transfected cell seems unlikely. The significance of these observations 
when compared and constrasted with viral recombination will be considered 
after the discussion of possible model for the latter. 

The second DNA arrangement to be exploited for recombinational purposes 
is that of overlapping left and right terminal fragments (CHINNADURAI et al. 1979; 
BERKNER and SHARP 1983; VOLKERT and YOUNG 1983), so-called overlap recombi­
nation. In this arrangement, viable virus can only arise by recombination, either 
by employing the homology within the region of overlap or, provided the 
overlapping region is not too long, by end-joining. Homologous recombination 
within the overlap has been extensively studied (VOLKERT and YOUNG 1983; 
MAUTNER and MACKAY 1984). Briefly, segregation of markers is strictly deter­
mined by their position in the overlapping region, and there is very little evidence 
for the formation of heteroduplex DNA in the region of overlap. This latter point 
has been established by examining the progeny arising from individual 
transfected cells in which multiple markers were included in the overlapping 
region. Most plaques contained virus that was genetically unmixed for all of the 
markers in the cross. Occasionally, the marker immediately adjacent to the point 
of crossover was present in an equal mixture of the two parental types, 
suggesting that heteroduplex DNA was present close to the point of crossover. 
From the positions of the sites employed in the cross, which were never more 
than 400 bp apart, we can further suggest that heteroduplex tracts are rarely 
longer than a few hundred base pairs in length. The determination of the length, 
location, and resolution of heteroduplex DNA is one of the most important 
pieces of genetic evidence to be gained in elaborating models for recombination 
in any system. It remains to be seen whether the results on heteroduplex tract 
length obtained with overlap recombination can be extrapolated to viral 
recombination, where it is much more difficult to establish the presence of 
heteroduplex DNA because of the dynamic population genetics of the mixed 
infection. 

One marked point of contrast between overlap recombination and viral 
recombination is in the independence of the former from viral DNA replication. 
Pairs of overlapping terminal fragments in which the promoter for the E2 genes 
is present on the right-hand member of the pair and the DNA polymerase is on 
the left-hand member recombine just as efficiently as pairs in which the whole 
E2 transcription unit is on either the left or right fragment. Expression of the 
adenovirus DNA polymerase, essential for viral replication, can only happen in 
the former case after reconstruction of the full-length viral gei;lOme. This 
independence of recombination from DNA replication is as expected. Gene 
fragments of selectable viral genes, such as that for thymidine kinase, can 
recombine efficiently in cotransfection experiments (FOLGER et al. 1982). 

The third DNA arrangement, and the one that is most relevant to viral 
recombination, derives from initial observations by HAY et al. (1984) and WANG and 
PEARSON (1985) that minichromosomes of the adenovirus genome can be created, 
and will undergo multiple rounds of DNA synthesis, if adenovirus replication 
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proteins are provided in trans. Pearson and his colleagues (AHERN et al. 1991; 
BENNETI and PEARSON 1993) have exploited this system to examine the possibility 
of hybridization of displaced single strands to form recombinant molecules and 
the repair of sequence mismatches in heteroduplex DNA. To examine the first 
possibility, cells were cotransfected with full-length adenovirus DNA, to provide 
the replication proteins in trans, and two linearized plasm ids, one containing the 
right and the other the left terminal sequence of the adenovirus genome. Neither 
plasmid alone is capable of continuous double-strand adenovirus DNA replication, 
because an inverted repeat is necessary for the panhandle stage of synthesis. 
However, because the terminal sequences in the two plasm ids were arranged so 
that displaced strand synthesis would generate complementary single-strands, 
hybridization of these strands followed by trimming of any single-stranded ends 
could generate a linear duplex with two inverted adenovirus termini. These 
duplexes would be expected to replicate to produce measurable quantities of 
duplex product. This was indeed the case, and the results are fully consistent with 
earlier observations (BODNAR and PEARSON 1980)' which suggested that late in 
infection complementary full-length viral single strands can hybridize. This sys­
tem is referred to as "replicative overlap recombination" to distinguish it from the 
recombination between non-replicating fragments described above. 

If the hybridizing single strands contain distinguishable genetic markers, they 
may be recognized by mismatch repair systems and contribute to the pool of 
recombinant products. This will be dealt with in more detail in the consideration 
of models. Another arrangement of the minichromosome again involved plas­
mids with a single adenoviral terminal sequence, but with two nonadenoviral 
inverted repeats, one located immediately internal to the adenovirus terminus 
and the other at the distal end of the linearized plasmid. Individual single strands 
can form a partially duplex panhandle using the inverted repeats, and the 3' end 
can prime synthesis to form a completely duplex panhandle (WANG et al. 1991). If 
pairing occurs between single strands produced from two such plasm ids, with 
distinguishable sites within the repeats, then the transfer of genetic information 
can be followed from one plasmid to the other. It was found that there was an 
amazingly high rate of such sequence conversion, because the "recombinant" 
product was as frequent as the parental types. Production of the recombinant 
was only found if both plasm ids had an intact origin of replication, strongly 
suggesting that the mechanism is replication dependent. Potentially, this system 
can be exploited to uncover the rules governing the formation, recognition, and 
resolution of mismatches of various types and extent, and certain constraints on 
heteroduplex formation and recognition have already been deter,,:",ined (BENNETI 
and PEARSON 1993). It was already clear from the replicative overlap experiment 
(AHERN et al. 1991) that large mismatches are ignored by the repair system, and 
the authors speculated that such large, single-stranded loops might be coated by 
the adenovirus DBP and protected from nuclease attack. It should be pointed out 
that these minichromosome replication systems also hold great promise in 
uncovering functional aspects of repair and recombination in adenovirus-in­
fected cells. 
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7 Models for Adenovirus Recombination 

Results from the genetic and functional analysis of adenovirus recombination 
and from the minichromosome system described above strongly suggest that 
recombination is intimately tied in with DNA replication. Given the failure to find 
any viral gene products (other than those involved in replication) which play an 
essential or important role in recombination, it seems most fruitful to focus on 
the specific products of DNA replication as the key to the high rates of 
adenovirus recombination. Two models for adenovirus recombination will be 
presented, with the understanding that they are not mutually exclusive and do 
not exclude other more conventional mechanisms. It is hoped that they will be 
helpful in designing strategies to answer both genetic and functional questions 
about mechanism. 

The first model (Fig. 1) proposes that a single strand, in the process of being 
displaced by ongoing DNA synthesis, is transferred to a recipient non replicating 
duplex and concurrently displaces the original strand of the same polarity, 
beginning at the termini of both interacting molecules. At some stage, the 
partially transferred strand and the recipient strand are broken and rejoined to 
form a partially heteroduplex molecule. The mismatched base pairs within this 
heteroduplex may be acted upon by the mismatch repair system of the cell, but 
regardless of whether or not this takes place a further round of replication will give 
rise to one duplex recombinant and one duplex parental genome. This model is a 
variant of that of MESELSON and RADDING (1975), differing in that the strand 
exchange begins at the termini of the two interacting molecules rather than by the 
formation of a D-Ioop. This model has certain experiment facts in its favor. First 
EM has shown two interacting duplexes with a single strand connecting them, 
albeit without the displaced recipient strand. The loss of this strand could be 
accounted for by endonuclease attack at the site of displacement or by a 5' or 3' 
exonucleolytic degradation of the displaced strand. True exonucleolytic degra­
dation of the displaced strand from the 5'end is, however, problematic because 
of the protection afforded by the covalently attached terminal protein (CARUSI 
1977; DUNSWORTH-BROWNE et al. 1980). The second set of observations favoring 
this model is that recombination with strains of adenovirus containing multiple 
restriction site markers shows genetic "polarity" i.e., there is a pronounced gra­
dient of recombination from the ends of the molecule (MUNZ and YOUNG 1984). This 
gradient can be altered by placing regions of non homology close to the ends of the 
interacting molecules, and recombination between regions of non homology is 
reduced, although not blocked completely. These genetic observations make 
sense if recombination initiates terminally and heteroduplex DNA extends for 
differing lengths in different interacting pairs. This would be a viral example of a 
widespread genetic phenomenon in which recombination frequency falls off with 
distance from the initiating site, as in gradients of gene conversion in yeast 
(DETLOFF et al. 1992) and in recombination stimulated by Chi sites in bacterio­
phage lambda (CHENG and SMITH 1989). 
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Fig.la-c. A modification of the Meselson and Radding strand invasion model for recombination. In this 
model, a single strand displaced by DNA replication of one duplex, the donor, invades a nonreplicating 
duplex, the recipient. The two parents are distinguished by the presence or absence of two restriction 
sites shown by the triangles, above and below the two strands of each duplex. The arrangement of sites 
is in trans, but could equally be in cis. The leftward-pointing arrow indicates the direction of replication, 
while the covalently attached terminal protein is shown by a solid oval at the 5' end of each stand. 
a A displaced strand is approaching a recipient duplex in the vicinity. Parent 1 (top) is a nonreplicating 
recipient and parent 2 (bottom) a replicating donor. b The single strand has invaded the recipient from 
the left-hand end. Invasion from the terminus could be promoted by the known protein-protein 
interactions between terminal proteins. The energy for strand transfer and assimilation could be derived 
from the ongoing replication on the donor duplex. Whether or not an independent helicase or 
topoisomerase type 1 activity is needed for the unwinding of the recipient, ahead of the transfer, is 
unknown. In a population of interacting molecules, there will be a diminishing transfer of genetic 
information from the donor to the recipient, with increasing distance form the end. c The single strands 
from both the donor and the recipient are cut at approximately the same genetic location; any gaps or 
overlapping regions are repaired by cellular nucleases and DNA polymerase and rejoined by DNA ligase. 
The upper strand of the joint molecule is recombinant, while the bottom strand is still parental. Fully 
recombinant duplexes can arise by replication or by mismatch repair of the heteroduplex. The model 
explains polarity (MUNZ and YOUNG 1984) and can easily accommodate the observation that multiple 
crossovers are usually distantly spaced (WIlliAMS et al. 1975; YOUNG and SILVERSTEIN 1980). Holliday 
structures, which have been seen in the electron microscope (WOLGEMUTH and Hsu 1980), can also be 
formed if, at step b, the recipient's displaced strand invades and displaces the replicating strand of the 
donor. This would create the classical, single-strand crossover 

The second model (Fig. 2) is based on ideas first formally presented by AHERN 

et al. (1991), but which were foreshadowed by the observations from pulse-chase 
density gradient experiments which suggested that complementary displaced 
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Fig. 2a-c. Recombination mediated by complete strand annealing and mismatch repair. a In this 
model, which is based on that of AHERN et al. (1991), complementary single strands are displaced from 
replication initiated on the opposite ends of two parental duplexes. b The single strand anneal. c The 
full-length heteroduplex is recognized and individual mismatched base pairs are corrected (only one 
such correction is show n). The repair tract (solid patch) is show n as being quite short, but longer ones 
might occur. All of the enzymatic activities required by this model have been demonstrated, either in 
adenovirus replication, the minichromosome system of AHERN et al. (1991), or in cellular extracts. 
However, the model does not explain polarity, nor does it account for the Holliday structures seen in the 
electron microscope 

single strands from two molecules might reanneal (BODNAR and PEARSON 1980). In 
this model, recombinant products only arise if the complementary strands from 
the two distinguishable parents are acted upon by mismatch repair systems. 
There is compelling evidence for such systems both from the genetic data from 
the minichromosome systems discussed above and also from direct biochemical 
data, primarily from Modrich and collaborators (reviewed in MODRICH 1991). If the 
mismatch repair tracts are short, say on the order of a few hundred base pairs, the 
resulting recombinants would be characterized as having closely spaced double 
crossovers . This is illustrated in Fig. 2C. Although this mechanism could help to 
explain the high rates of supernumerary crossovers observed in many adenovirus 
recombinants (YOUNG and SILVERSTEIN 1980), the precise pattern of such crossovers 
is not readily explained by limited mismatch repair. Supernumerary crossovers are 
well spaced in individual viral recombinants, as though they arise from indepen­
dent events (WILLIAMS et al. 1975; YOUNG and SILVERSTEIN 1980). The negative 
interference observed in most such populations of recombinants can easily be 
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explained by a selection for a subpopulation of genomes which has undergone 
recombination at least once and may be in a favored environment or context for 
furthe~ rounds of recombination. In addition, mismatch repair of full-length 
heteroduplexes does not explain the overall additivity of adenovirus recombi­
nation maps (WILLIAMS et al. 1974; YOUNG and WILLIAMS 1975), nor the deviations 
from linearity observed in polarity (MUNZ and Young 1984). Thus, in viral crosses, 
this mechanism of recombination may only operate at very late times in infection, 
when the pool of displaced single strands may be high. The reasons for its 
prominence in the minichromosome experiments may be that the pool of 
replicating molecules may be much higher in the individual transfected cell and 
the products are not withdrawn into capsids. One further aspect of mammalian 
mismatch repair worth mentioning in passing is that, unlike the prokaryotic 
systems, repair is not directed at the un methylated, newly synthesized strand. 
Instead, it is directed at the strand in which nicks are present (HOLMES et al. 1990). 
How this relates to the mechanisms observed in replicative overlap recombination 
is not clear, but the observed absence of methylation of adenovirus DNA (DOERFLER 
1981) is not a bar to mismatch correction. 

It is instructive to compare the models for viral recombination not only with 
the results from viral crosses, but also with those from DNA-mediated marker 
rescue and prereplicative overlap recombination. The segregation results from 
the marker rescue transfection experiments showed that, when distal unselected 
markers are inherited, proximal markers are almost invariably inherited too. This 
would not be the case if the transfer of information from the donor fragment to the 
full-length recipient involved a long stretch of single-stranded DNA. Mismatch 
repair would generate many instances of multiple crossovers in the selected re­
combinant. Because, as mentioned above, there is ample evidence for a mis­
match system in mammalian cells, the absence of such products argues against 
the formation of long heteroduplexes. Similarly, in the prereplicative overlap 
segregation analysis, in which direct evidence for mismatched base pairs can be 
obtained, very little evidence for extensive heteroduplex was found. Taken 
together, these DNA-mediated recombination results suggest that when the 
cellular machinery is solely responsible for genetic exchange, short heteroduplex 
formation is the rule. Either DNA-mediated transfection obeys different rules to 
those for virus or the models outlined above for virus recombination are incorrect. 
In one respect, however, marker rescue is similar to viral recombination, in that 
transfer of genetic information can occur after DNA synthesis of the full-length 
molecule has commenced. However, even in this instance, it is unlikely that 
transfer occurs by annealing one strand of the fragment to the displaced strand of 
the full-length recipient, because marker rescue is just as efficient with internal 
fragments as with terminal ones (VOLKERT et al. 1989). Transfer of a single-strand 
from an internal fragment would result in an internal duplex flanked by gaps. The 
gap at the 5'end could not be repaired by fill-in DNA synthesis. 
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8 Future Directions 

8.1 Tests for Heteroduplex Formation, Distribution, 
and Resolution 

As with any genetic system, the characteristics of the heteroduplex DNA in the 
intermediate structures formed during adenovirus recombination are the key to 
understanding the mechanism. The major difference between the two models of 
adenovirus recombination discussed above is the absolute dependence of the 
second mechanism on mismatch repair to generate recombinant products. Both 
models predict the formation of extensive regions of heteroduplex, although the 
extent and location is different. Recently, techniques developed to detect the 
formation of heteroduplex in cells (LICHTEN et al. 1990) have been used in pox virus 
infections, and very high concentrations of mismatched base pairs have been 
detected (FISHER et al. 1991). Similar approaches could be used in adenovirus to 
detect the overall level of mismatch formation, although the distribution of 
heteroduplex along the length of the genome would probably not be revealed 
using such population-based techniques. The alternative genetic approach, which 
depends on identifying populations of mixed genotype within individual virus 
plaques, as was first done with plaque morphology markers in bacteriophage 
(HERSHEY and CHASE 1951)' is extremely tedious to perform. Occasionally, there is 
evidence for such mixed plaques (YOUNG and SILVERSTEIN 1980)' but their rarity 
makes it difficult to draw any conclusions. The availability of more rapid and 
sensitive probes for genetic heterogeneity within a DNA population in a plaque 
might make such screens more easy to perform. If mismatch repair does play an 
important role in the resolution of heteroduplex structures to yield recombinant 
products, it may be possible to test human cell lines from the recently described 
mismatch repair-deficient hereditary nonpolyposis colorectal carcinoma (FISHEL 
et al. 1993; PARSONS et al. 1993). If the second model (Fig. 2) is correct, viral re­
combination will be markedly reduced. On the other hand, if the first model 
(Fig. 1) is the predominant mechanism, recombination may not be much reduced, 
but recombinants with supernumerary crossovers, found predominantly at late 
times (YOUNG and SILVERSTEIN 1980) may decline. 

8.2 A Continued Search for Cellular Functions Involved 
in Adenovirus Recombination 

The uncovering of the genetic and biochemical defects behind several inherited 
human DNA repair disorders is proceeding rapidly, spurred both by improve­
ments in genetic methods of gene mapping and isolation and by phylogenetic 
comparisons with unicellular eukaryotes, such ap the yeasts (reviewed by 
FRIEDBERG 1992). Now that a more rational approach can be taken as to which 
human cell lines to examine for their recombination phenotype, it is important to 
go back to this approach using a number of different measures of recombination. 
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This is entirely feasible with adenovirus, in which both viral infection and several 
different DNA-mediated transfection methods can be employed. As an example, 
in my laboratory Patricia Munz recently examined the ligase 1-deficient cell line 
46BR (BARNES et al. 1992) for its ability to undergo viral replication, recombination, 
prereplicative overlap recombination, and DNA end-joining. Almost all forms of 
recombination, both homologous and nonhomologous, require a ligation step. 
However, the results of all assays with this line were very similar to those 
obtained with any standard cell line, despite the marked reduction in the activity 
of the major DNA ligase of the cell. It is not surprising that viral DNA replication 
proceeded at close to normal rates, given that there is no ligation step involved in 
the mechanism of adenovirus DNA replication. However, the finding that end­
joining occurred in this line (although its efficiency has not been measured yet) 
suggests that ligase 1 is not involved or is functionally replaceable by the other 
two cellular ligases. The same argument would hold for the homologous recombi­
nation mechanisms. Several of the genes involved in UV repair have been cloned 
recently, and that mutated in xeroderma pigmentosum group D is now known to 
be a helicase (SUNG et al. 1993). The model in Fig. 1 may require the action of a 
helicase to open up the recipient duplex, and so a rational case can be made for 
examining the recombinational phenotype of xeroderma pigmentosum group D 
cell lines. As mentioned above, it will be valuable to examine cell lines derived 
from hereditary non polyposis colorectal carcinoma, since mismatch repair may 
playa role in adenovirus recombination. The number of cell lines in which the 
precise deficiency in repair mechanism has been defined biochemically is set to 
increase markedly over the next few years. As information becomes available, 
adenovirus recombination assays can be tried in the appropriate lines. This will be 
a useful adjunct to plasmid- or chromosome-based recombination assays, (e.g., 
MEYN 1993). 

8.3 Development of Biochemical Assays 

As mentioned earlier, biochemical approaches to adenovirus recombination have 
not been vigorously pursued. In theory, there are two general biochemical 
approaches that could be employed. The "top-down" approach involves the 
establishment of a crude extract system which mimics the in vivo results, as far 
as is possible, followed by the gradual purification and biochemical identification 
of individual components. The paradigm is the development of in vitro systems 
for DNA replication both in adenovirus and SV40 (reviewed in CHALLBERG and KELLY 
1989). Both models for adenovirus recombination described above require on­
going replication to promote recombination, so a logical place to start the search 
for in vitro recombination would be in the DNA replication systems already 
available. The most pressing issue is the development of a simple, sensitive, and 
quantitative assay for recombination. As mentioned previously, the Southern 
hybridization assay may need modification, because the initial recombination 
intermediate will yield restriction sites with mismatched base pairs, a chemical 
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structure not recognized by most restriction enzymes. Testing the formation of 
heteroduplex DNA in the in vitro system may be possible using new techniques 
developed for intracellular DNA (LICHTEN et al. 1990)' but this assay is cumber­
some for subsequent steps of purification of the individual components. Note that 
the problem of assay design is intrinsic to the development of biochemical 
systems for recombination. The products of recombination are chemically simi­
lar, although genetically different, to the input substrates; there is no net increase 
in mass of the reaction products. This precludes simple assays based on incor­
poration of labeled substrate, such as those used for measuring DNA replication. 
Assuming the assay problem can be overcome, the first step would be to 
establish whether or not adenovirus recombination does indeed need ongoing 
replication. Extracts deficient in one or other of the viral replication proteins, or 
substrates lacking origins of replication, should be deficient in both processes. It 
may also be possible to define cellular components involved in adenovirus 
recombination using biochemical complementation. For example, if the genetic 
results with a particular cell line suggest that the wild-type counterpart of the 
deficient product is involved, it should be possible to add this product back to 
extracts prepared from the cell line in question. 

The alternative approach to the biochemical investigation of adenovirus 
recombination is the "bottom-up" method, as exemplified by the extensive 
studies of prokaryotic recA protein. This approach is most fruitful if genetic results 
strongly implicate a specific gene product as being crucial for recombination. 
Currently, this is not the case, but might become so if. for example, the role of 
mismatch repair in adenovirus recombination is firmly established. The appro­
priate gene product would then be tested with model substrates. Note that in the 
absence of genetic data implicating a particular gene product, the bottom­
up approach is intrinsically open to artifact, because the discovery of proteins 
capable of reacting with the specific substrates employed in the assay does not 
mean that they are involved in the reaction which takes place in the cell. The 
absence of convincing evidence for mammalian homologs of recA, despite 
considerable efforts to find and characterize them, is an example of the difficulties 
of this approach. 

9 Concluding Remarks 

Recent technical developments in the detection of specific DNA sequence and 
structure, in the characterization, isolation, and expression of cellular repair gene 
products, and in model transfection systems, can be harnessed to uncover the 
mechanisms underlying adenovirus recombination. Although the detailed 
mechanism may be strongly influenced by the mode of adenovirus replication, 
the ways in which displaced single strands are handled by the cell should prove 
to be of general interest. Repair of DNA lesions is a topic of increasing interest to 
both the specialist and the clinician, as evidence mounts of environmentally 
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induced genetic defects underlying various forms of human cancer. The next few 
years promise to be exciting ones in the uncovering of this fundamental biological 
phenomenon, and adenovirus can be expected to play an important role in these 
discoveries. 
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The understanding of recombinative interactions between foreign (viral) DNA and 
mammalian DNA is of interest not only in tumor virology, gene therapy, and the 
generation of transgenic animals, but also for models about the possible 
evolutionary role of foreign DNA integration into established genomes. Foreign 
DNA can recombine with the host DNA in mammalian cells and thus become 
integrated into the cellular genome by what has been termed "nonhomologous 
recombination." Nonhomologous recombination plays a central role in the biology 
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of mammalian systems and is thought to be more common in mammalian cells 
than homologous recombination. 

The various DNA rearrangements known to occur in mammalian cells include 
homologous recombination, depending on extensive sequence homologies, and 
nonhomologous recombination, which requires little or no sequence identity. 
Examples for homologous recombination events include genetic recombination 
during meiosis (STAHL 1979), sister chromatid exchange (LAn 1981)' interchromo­
somal recombination during mitosis (KUNZ and HAYNES 1981; WASMUTH and HALL 
1984), and nonallelic gene conversion (SCHERER and DAVIS 1980; WEISS et al. 1983; 
LISKAY and STACHELEK, 1984). Examples of nonhomologous recombination include 
chromosome trans locations (GERONDAKIS et al. 1984), immunoglobulin and T cell 
receptor gene rearrangements (ALT and BALTIMORE 1982; HONJO 1983; HEDRICK et al. 
1984; MALISSEN et al. 1984; YANAGI et al. 1984) and movements of retroviruses and 
transposable elements (contributions in SHAPIRO 1983). Last but not least, the 
induction of tumors by adenovirus type 12 (Ad12) in hamsters (TRENTIN et al. 1962) 
is associated with the integration of Ad12 DNA into the hamster cell genome by 
a nonhomologous recombination mechanism (DOERFLER 1968, 1970; DOERFLER 
et al. 1983). Ad12 DNA in surprisingly large amounts can become associated with 
hamster chromosomes early after the infection of hamster cells (SCHROER and 
DOERFLER, submitted for publication). 

DNA rearrangements classified as nonhomologous events are rare in 
bacteria and yeast, but occur frequently in mammalian cells. Targeted integration 
of exogenous DNA at its homologous chromosomal location in mammalian cells 
is masked by a 1 ODD-fold higher frequency of integration at random genomic sites 
(SMITH and BERG 1984; LIN et al. 1985; SMITHIES et al. 1985; THOMAS et al. 1986). In 
contrast, nontargeted integration events are difficult to detect in bacteria and 
yeast (HICKS et al. 1978; HINNEN et al. 1978; ORR-WEAVER et al. 1981; ORR-WEAVER 
and SZOSTAK 1983). Sequence analyses of recombinant junction sites created by a 
variety of DNA rearrangements revealed only minimal homology requirements 
around these sites. For this reason, these recombination events were defined as 
"illegitimate" or nonhomologous recombination (FRANKLIN 1971). 

The molecular and biochemical mechanisms underlying nonhomologous 
recombination are largely unknown. Upon foreign DNA integration, new genetic 
potential is introduced into the cell's repertoire that can either reduce or stimulate 
the "fitness" of its host or can lead to alterations in the overall structure of the 
affected genomes. Since insertions can lead to the disruption of genes (insertional 
mutagenesis)' damage to cellular genes caused by integration of foreign DNA has 
to be kept at a minimum. Furthermore, it is probably essential for h~st survival that 
the expression of foreign genes potentially toxic to the cell can be shut off. Only 
those insertion events will eventually be survived by the cell which do not place 
the recipient host at a selective disadvantage. 

Among the functional consequences of foreign DNA integration into establi­
shed mammalian genomes are: (a) the de novo methylation of foreign DNA, and 
(b) alterations of DNA methylation patterns in the preexisting cellular genome. 
Integrated adenovirus genomes have been valuable models to study different 
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aspects of changes in viral DNA methylation, since the DNA in the infecting virus 
particle is not detectably methylated (GONTHERT et al. 1976). De novo methylation 
can inactivate foreign genes, and the host cell can thus be protected from 
possibly detrimental effects of foreign gene products. This modification reaction 
has been interpreted as a cellular defense mechanism against the activity of 
foreign genes integrated into established eukaryotic genomes (DOERFLER 1991a). 
Additionally, increases or decreases in the methylation of host genes can cause the 
shutoff or activation of cellular target genes, respectively (DOERFLER 1983a). Based 
on the observation that patterns of cellular DNA methylation (HELLER et al. 1995) 
as well as expression levels of certain cellular genes (ROSAHL and DOERFLER 1992) 
can be substantially altered upon adenovirus or bacteriophage lambda DNA 
integration at chromosomal locations remote from adenovirus insertion, we for­
mulated an extended version of the classical concept of insertional mutagenesis. 
Integration of adenovirus (foreign) DNA into a mammalian genome does not only 
alter cellular host DNA sequences and functions in the immediate vicinity of the 
insertion site via changes in methylation patterns, but can also affect methylation 
and transcriptional patterns at cellular sites at a considerable distance from the 
integration site and on different chromosomes. 

There are several reasons to investigate the interdependency between 
foreign DNA integration, alterations in methylation patterns of the hostDNA, and 
changes in cellular gene expression. A wide field of research will have to be 
addressed here: 

1. It is important to analyze whether and how the integration of viral or more 
generally of foreign DNA into mammalian genomes can be involved in onco­
genesis. 

2. Some of the current concepts in gene therapy are based on the integration of 
foreign genes into established human genomes. The constant, regulated 
expression of these artificially introduced genes would be a prerequisite for 
successful gene therapy. De novo methylation and inactivation of the thera­
peutic genes would jeopardize any beneficial effects. 

3. In mammalian cells, gene targeting by site-specific homologous recombination 
has become a routine method of generating mutant genes in transgenic 
animals in order to analyze the function of mammalian genes. However, the 
mechanisms of mitotic and meiotic recombination in mammalian cells are still 
unclear, and we have only limited knowledge about possible alterations of host 
DNA sequences caused by foreign DNA integration. 

Thus, for many reasons it would be desirable to understand the r:nechanism 
and consequences of integrative recombination of foreign DNA sequences with 
established mammalian genomes. Cell-free systems have proven to be useful in 
studying genetic recombination mechanisms (KUCHERLAPATI et ai. 1984; BROWN 
et al. 1987; JESSBERGER et al. 1989b; JESSBERGER and Berg 1991; SYMINGTON 1991; 
TATZELT et al. 1992, 1993). We have continued our efforts to develop and apply a 
cell-free system to elucidate the mechanism and enzymatic functions of this type 
of genetic recombination in mammalian cells. 
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2 Characteristics of Integration Patterns 
in Adenovirus-Transformed Cells 
and in Adenovirus Type 12-lnduced Tumors 

2.1 Adenovirus as a Model System 

The discovery of adenovirus oncogenesis in newborn hamsters (TRENTIN et al. 
1962; HUEBNER et al. 1962) and the ability of these viruses to transform hamster 
cells in culture (POPE and ROWE 1964; FREEMAN et al. 1967) have highlighted the 
human adenoviruses as valuable models to investigate DNA viral oncology and 
cell transformation. The molecular biology and the biochemistry of this virus have 
been studied in considerable detail (recent reviews in DOERFLER and BOEHM 1993 
and this volume). Our laboratory has been interested in the fate of adenovirus DNA 
in infected and transformed hamster cells and has concentrated on studies of the 
mechanism of adenovirus DNA integration. In addition, the differential trans­
cription of viral and cellular genes and alterations in DNA methylation patterns in 
the integrated and host genomes have been subjects of our research (for reviews, 
see DOERFLER 1991 b, 1992, 1993). 

Depending on a number of factors, including characteristics of the virus and the 
susceptibility of the cell, viral infections can lead to an abortive or to a productive 
infection or to the malignant transformation of the host cell. It is thought that one 
of the prerequisites for the transformation of nonpermissive cells by DNA or RNA 
tumor viruses is the persistence of at least parts of the viral genome in the affected 
cell, which ensures the continued expression of viral functions. In adenovirus­
transformed or Ad12-induced hamster tumor cells, the viral genome is found 
exclusively in a chromosomally integrated state. Free episomal forms of adeno­
virus genomes have not been detected in transformed or Ad12-induced tumor 
cells. It still remains to be investigated whether viral DNA insertion into the cellular 
host genome is involved in oncogenesis in a direct or indirect manner. In our 
investigations, major emphasis has therefore been placed on the analysis of 
adenoviral DNA integration. It has also been shown that in some cases even after 
the loss of all viral genomes, as determined by Southern blot hybridization, the 
oncogenic phenotype of the cells can be maintained (KUHLMANN et al. 1982). It cannot 
be ruled out that minute amounts of fragments of Ad 12 DNA are still present in these 
cells. 

The infection of hamster cells with Ad12 leads to an abortive infection during 
which Ad12 DNA can become integrated into the hamster cell genome (DOERFLER 
1968, 1970; SCHROER and DOERFLER, submitted for publication). Thereby, the whole 
viral genome or fragments of adenovirus DNA are covalently linked to the host 
genome (DOERFLER 1982; GRONEBERG et al. 1977; SUTTER et al. 1978; STABEL et al. 
1980; DOERFLER et al. 1983). This nonproductive infection is characterized by the 
complete failure of Ad12 virion production. Only the expression of early Ad12 
functions can be observed. Neither viral DNA replication nor transcription of late 
viral functions can be detected. The major late promotor (MLP) of Ad12 DNA is 
unable to function in hamster cells. A mitigator element in the downstream 
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sequence of this promotor is, at least in part, responsible for the inactivity of the 
MLP of Ad12 DNA in hamster cells (lOCK and DOERFLER 1990; lOCK et al. 1993a, b). 
The factors in virus-host interactions that determine the outcome of a viral 
infection are complex (for reviews, see DOERFLER 1991 b; lOCK et al. 1993b). Based 
on the absolutely nonpermissive nature of the Ad12-hamster cell interaction, 
natural selection does not work against the persistence of the entire Ad12 
genome in hamster cells. This lack of selective pressure facilitates the persis­
tence and integration of multiple copies of the Ad12 genome that are nearly intact 
and colinearly arranged as compared to the arrangement and orientation of the 
viral genes in virion DNA. In contrast, natural selection in a productive infection of 
hamster cells with Ad2 seems to select against the persistence of an intact viral 
genome free in the cell or integrated into the host genome. Persistence of intact 
Ad2 genomes would lead to cell death, since intact Ad2 genomes are able to 
replicate in hamster cells and thus Ad2-transformed cell lines would not get a 
chance to arise. In contrast to the situation in Ad12-transformed hamster cells, we 
have found mainly fragments of integrated Ad2 sequences or Ad2 genomes with 
varying lengths of internal deletions in Ad2-transformed hamster cells (DOERFLER 
et al. 1983). Therefore, it seems likely that the type of virus-host interaction can 
influence patterns of persistence and integration of viral DNA into the cellular host 
genome. 

Ad12 DNA becomes integrated early after viral infection (DOERFLER 1968, 
1970). Most of our studies on viral DNA integration have been performed in 
adenovirus-transformed cell lines or in Ad12-induced tumors or tumor cell lines 
(for reviews, see DOERFLER 1982, 1992, 1993; DOERFLER et al. 1983). These data 
pertain to analyses of the state of viral DNA in cell lines established and maintained 
in culture for a long period of time. In all these transformation or tumorigenesis 
experiments, virions and not viral DNA or DNA fragments have been used. 
Distinct differences in integration patterns exist between cells after the initial 
integration event following virus infection and the clonal cell lines. One possible 
explanation for these differences could be rearrangements and losses of inte­
grated viral genomes in the time period between the initial virus infection and the 
malignant transformation of the cell. We have so far restricted our studies on the 
parameters of Ad12 DNA integration mainly to cells obtained under cell culture 
conditions. Detailed studies on Ad12 DNA integration early after the infection of 
hamster cells have just been reinitiated (SCHROER and DOERFLER, submitted for 
publication). Although there may be limitations with respect to the generality of 
data adduced with the adenovirus system, we have argued that this virus offers 
obvious advantages, since its molecular biology has been studied in considerable 
detail (DOERFLER 1983b, 1984; GINSBERG 1985; DOERFLER et al. 1993; DOERFLER and 
BOEHM 1993 and this volume). 

2.2 Basic Features of Adenovirus DNA Integration 

The integration of foreign (viral) DNA into an established genome of mammalian 
cells immediately raises the question of how viral DNA insertion proceeds. Does 
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foreign DNA integrate randomly at many different, totally unrelated sites or at 
highly specific sites in the genome of the affected host cell? These two possi­
bilities are, of course, at the opposite ends of a scale of many conceivable inter­
mediate possibilities. 

Three different analytical approaches have been chosen to prove and investi­
gate the integrated state of adenovirus genomes in the cellular host genome: 

1. We have analyzed the localization of internal and terminal fragments of 
integrated adenovirus DNA with respect to cellular sequences in the host 
genome by using the technique of Southern blot hybridization (SOUTHERN 1975; 
SUDER et al. 1978; STABEL et al. 1980). With this protocol, the DNA from trans­
formed or tumor cells has been cleaved with restriction endonucleases, the 
fragments have been separated by gel eletrophoresis, and the adenovirus­
specific DNA fragments have been identified by DNA-DNA hybridization to 
adenovirus DNA or to the cloned terminal fragments of virion DNA. 

2. In order to prove the direct covalent linkage of the two DNA recombination 
partners, junction sites between adenoviral and cellular DNA sequences have 
been cloned, and their nucleotide sequences have been determined from the 
Ad12-transformed hamster cell lines T637 (OREND et al. 1995a) and HA 12/7 
(JESSBERGER et al. 1989a), the Ad2-transformed cell line HE5 (GAHLMANN et al. 1982; 
GAHLMANN and DOERFLER 1983)' the Ad12-induced hamster tumor cell lines CLAC1 
(STABEL and DOERFLER 1982)' CLAC3 (DEURING et al. 1981 b), T1111/2 (LICHTENBERG 
et al. 1987), and H 191 (OREND et al. 1995c), the Ad12-induced mouse tumor cell 
line CBA 12fT1 (SCHULZ and DOERFLER 1984), and the symmetric recombinant 
(SYREC2) of Ad12 virus (DEURING et al. 1981 a; DEURING and DOERFLER 1983). 

3. Recently, we have applied the fluorescent in situ hybridization technique 
(FISH) to determine the chromosomal locations of the integrated viral ge­
nomes (HELLER et aI., 1995; OREND et al. 1995b; SCHROER and DOERFLER, submit­
ted for publication). 

We have discovered morphological revertants of the adenovirus-transformed 
cell line T637 that have lost all or most of the formerly integrated viral genomes 
after cell passages, but still retained the tumorigenic phenotype (GRONEBERG 
et al. 1978; EICK et al. 1980). Similar revertants have been isolated from the 
Ad12- induced tumor cell line T1111 (1) (KUHLMANN et al. 1982). With the sensitive 
method of Southern blot hybridization we could not detect Ad12 DNA sequences 
in some of the revertant cell lines. We are now reexamining these cell lines with 
the highly sensitive technique of the polymerase chain reaction (PCR; SAIKI et al. 
1988) for the presence of minute amounts of Ad12 DNA sequences. For this 
purpose, however, these cell lines have to be extensively recloned cellularly. 

In summary, we have studied the topology of integrated adenovirus ge­
nomes in rodent cells transformed by adenoviruses, in Ad12-induced tumors, or in 
cells cultured from these Ad12-induced tumors. Though it is not certain whether 
these different cell types can be considered comparable with respect to their 
tumorigenic phenotype, the results of the analyses on integrated viral DNA can be 
summarized as follows: 
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Fig. 1a, b. Adenovirus type 12 (Ad12) DNA integration in the Ad12-transformed hamster ceil line T637 
as demonstrated by fluorescent in situ hybridization. a Interphase nuclei. b Chromosomal location 

a 

b 
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1. Ad12 DNA integrates chromosomally. As exemplified by the approximately 20 
copies of Ad12 DNA integrated in the Ad12-transformed hamster cell line T637, 
the viral DNA copies can be localized by fluorescent in situ hybridization to one 
chromosomal site (Fig.1 b). The Ad 12 genomes can be detected by the same 
technique in interphase nuclei as well (Fig.1 a), some of which might be partly 
diploid. 

2. In adenovirus-transformed cells or in Ad12-induced tumor cells, adenovirus 
DNA has never been found in an episomal free form, but always in an integrated 
state. Ad12 DNA molecules are covalently integrated intact or nearly intact via 
sites at or close to the termini of the virion DNA molecule. Frequently, the 
orientation of viral DNA integration is colinear with that of virion DNA at least for 
some of the integrants. In contrast, Ad2 DNA is inserted in a fragmented form 
or with internal deletions (DOERFLER 1982; DOERFLER et al. 1983). Some of the 
integrated viral DNA molecules can be rearranged in their sequence array (ElcK 
and DOERFLER 1982; OREND et al. 1995a). 

3. So far, results from analyses of several junction sites in transformed or tumor 
cells from different species have provided no evidence for the notion that 
adenovirus DNA had integrated in a highly specific cellular DNA sequence 
(DOERFLER et al. 1983). Adenoviral DNA can integrate into unique as well as 
repetitive cellular DNA sequences. In the productive system of human cells, 
Ad12 DNA was preferentially found in association with human chromosome 1, 
as described for early and late stages after infection (McDoUGALL et al. 1972; 
ROSAHL and DOERFLER 1988). 

4. Most frequently, multiple copies of viral genomes per cell can become inte­
grated into the host genome; copy numbers range between 1 and 30 or more 
(DOERFLER 1982; DOERFLER et al. 1983). 

5. Apparently, multiple copies of viral DNA are often not integrated in a truly 
tandem fashion. Either cellular or rearranged viral sequences separate indi­
vidual viral DNA molecules from each other. In some of the integrated adeno­
viral DNA sequences, viral DNA termini have been found to be rearranged, 
amplified, or partly inverted (SUDER et al. 1978; STABEL et al. 1980; KUHLMANN and 
DOERFLER 1982; KUHLMANN et al. 1982; OREND et al. 1991, 1994, 1995a). These 
rearrangements can be quite complicated in individual instances. We cannot 
rule out the possibility that rearrangements as well as transpositions and other 
alterations occurred in the period between the original integration event after 
virus infection or development of a tumor and the establishment and mainte­
nance of cells in culture. 

6. Adenovirus DNA integration can entail the deletion of cellular as well as terminal 
viral DNA sequences. However, integration can also proceed without the 
deletion of a single nucleotide in the viral or the cellular recombination partner. 
At the junction sites between viral and cellular DNA sequences, up to 174 
terminal viral nucleotides have been found deleted in different recombination 
events. Occasionally, the terminal viral nucleotides are completely preserved, 
e.g., the left end of integrated Ad12 DNA in the Ad12-transformed hamster cell 
line HA 12/7 (JESSBERGER et al. 1989a). Apparently, the process of viral DNA 
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insertion can be associated with deletions of larger segments of host DNA 
sequences (SCHULZ and DOERFLER 1984) or could proceed without the loss of a 
single nucleotide at the sites of linkage (GAHLMANN and DOERFLER 1983). 

7. Patchy homologies, short DNA stretches of sequence homology, between the 
two recombination partners at the sites of linkage are frequently observed 
and seem to playa role in the selection of sites for recombination. These 
homologies are found either between the linked viral and cellular DNA se­
quences or between the two recombination partners replacing each other after 
adenovirus DNA integration. In only a few instances, junctions devoid of such 
stretches of sequence identities have been observed. Nevertheless, patchy 
homologies occur too frequently to be dismissed as random events. 

8. The mechanism of insertional recombination in mammalian cells is character­
ized by an additional feature. Cellular sequences at the junction sites that have 
served as recombination targets for adenovirus DNA insertion, the so-called 
preinsertion sequences, have been shown to be transcriptionally active 
(GAHLMANN et al. 1984; SCHULZ et al. 1987; JESSBERGER et al. 1989a!. This tran­
scriptional activity can be documented both in the original host cells prior to 
contact with adenoviral DNA as well as in adenovirus-transformed cells and 
Ad12-induced tumor cells. Analyses of RNA molecules reveal differences in 
length and quality of the transcription products; they represent either short RNA 
without an intact open reading frame (ORF) or large products that contain ORFs. 
Actively transcribed cellular sequences might have assumed a chromatin 
configuration that facilitates foreign (viral) DNA integration. 

9. In many instances, Ad12 genomes are stably integrated into the host genome 
and the integration patterns remain constant for decades over many cell pass­
ages (SUDER et al. 1978; OREND et al. 1994). Morphological revertant cell lines 
have originated from the Ad12-transformed hamster cell line T637. In these 
revertants, the integrated viral DNA molecules are partly or completely lost 
(GRONEBERG et al. 1978; GRONEBERG and DOERFLER 1979; EICK et al. 1980; EICK and 
DOERFLER 1982; KUHLMANN et al. 1982). In the Ad12-induced tumor cell line 
T1111 (1). this loss of Ad12 DNA sequences does not affect the tumorigenic 
phenotype of these revertants (KUHLMANN et al. 1982). Obviously, the persistence 
of viral DNA or an intact E1 region is not an absolute prerequisite for the 
maintenance of the tumorigenic phenotype. This finding would argue against the 
importance of viral functions encoded in the E1 region of the adenovirus genome 
to maintain the oncogenic phenotype. Nevertheless, integration and continued 
expression of Ad12 genes in the host genome are somehow involved in the 
transformation event, but are not an absolute requirement in all instances. It has 
not been rigorously ruled out that the revertants might carry minute amounts 
of Ad12 DNA which cannot be detected by Southern blotting. 

For our understanding of the molecular mechanism of viral transformation, 
it seems conceivable that the integration of Ad12 DNA into the mammalian 
genome subsequent to viral infection and the secondary loss of formerly 
integrated viral DNA can entail an overall change either in the organization of 
the host genome or in the expression patterns of cellular genes. 
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2.3 Towards a Cell-Free Recombination System 

The data accumulated from in vivo studies of the junction sites between viral 
DNA and cellular DNA sequences support our concept that the mechanism of 
integrative recombination of foreign DNA into the mammalian genome is appar­
ently highly flexible. Therefore, it seems of little value to categorize the mecha­
nism according to simple parameters, e.g., sequence specificity or homology 
requirements. Studies on the requirements for sequence homologies between 
the two recombination partners demonstrate that it is difficult to classify Ad12 
DNA insertion as homologous or nonhomologous recombination (see also 
Sect 4.3). Studies on the sequence specificity of this integrative recombination 
reaction reveal that, at least in established cell lines of Ad12-induced tumor cells 
or adenovirus-transformed celis, a common or specific nucleotide sequence 
does not exist. However, under certain conditions and in cell lines cultivated for 
longer periods, Ad12 DNA has been found integrated at selective cellular 
sequences (see also Sect. 4.2). 

Another major question concerning foreign DNA integration into mammalian 
genomes in general is whether cellular proteins can catalyze the insertion by 
themselves or are dependent on the presence and/or participation of viral gene 
products. It is conceivable that adenoviral functions, though perhaps themselves 
not essential components of the recombination machinery, playa modifying or 
scaffolding role in the process. The fact that adenovirus DNA transfected into 
mammalian cells can become integrated in the absence of viral infection favors 
the existence of a general recombination machinery supplied by the affected host 
cell that is responsible for foreign DNA integration in general. 

Such a wide scale of obligatory and facultative requirements for the course of 
the insertion reaction may render this mechanism quite flexible and therefore 
successful and efficient. Questions concerning the interplay of several different 
parameters still remain unanswered. Despite the sophistication of the junction 
site analyses, a complete understanding of the recombination process requires a 
detailed biochemical analysis of the reaction in a cell~free system. In this way, we 
hope to shed light on the mechanism of integrative recombination of foreign (viral) 
DNA into the mammalian genome. 

3 Cell-Free Recombination System 

We have explored the mechanism and the requirements for enzymatic func­
tions of Ad12 DNA integration in more detail by developing and applying 
a cell-free system using nuclear extracts of BHK21 hamster cells. High-salt ex­
tracts from uninfected BHK21 cells are capable of catalyzing the in vitro recom­
bination reaction, when a hamster preinsertion sequence and fragments of 
Ad12 DNA are used as recombination targets (JESSBERGER et al. 1989b). It has 
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been reasoned that preinsertion sequences which had previously served as 
targets for Ad12 DNA integration in vivo might carry elements essential in 
eliciting recombination and hence might be recognized again even under cell­
free reaction conditions. The preinsertion sequence p7 from BHK21 hamster 
cells was cloned into the plasmid pBR322. This sequence represents the 
cellular integration site of Ad12 DNA in the Ad12-induced hamster tumor cell 
line CLAC1 (STABEL and DOERFLER 1982). Possibly because of apparent size 
limitations, we have so far not been able to use the intact Ad12 DNA molecule 
as the recombination partner for this preinsertion sequence. In previous work, 
a fragment of Ad12 DNA comprising nucleotides 20 885-24 053 of the full­
length Ad12 DNA molecule (SPRENGEL et al. 1994) has proved to recombine at an 
increased frequency with the hamster p7 sequence as compared to other 
segments of the Ad12 genome (JESSBERGER et al. 1989b). 

With the help of this cell-free recombination system we have started to gain 
insight into the mechanism of integrative recombination between the hamster 
preinsertion sequence p7 and Ad12 DNA. In the course of this work, we have 
purified the nuclear extracts to only a limited number of protein bands which have 
retained activity in cell-free recombination. 

3.1 Assays for the Identification of Cell-Free Recombinants 

To monitor integrative recombination reactions in mammalian cells under cell-free 
conditions, we have to be prepared to detect relatively rare recombination 
products. Assay systems for the identification of these infrequently arising 
products have to fulfil several preconditions to be useful in monitoring enzyme 
purification and in surveying the reaction mechanism, its requirements, and 
kinetics. The assay has to be reliable and yield reproducible results; it has to be 
as direct and rapid as possible. We have used two methods based on different 
principles to assess the generation of cell-free recombinants in our cell-free 
system. 

One test system relies on the transfection of possible recombination 
products into Escherichia coli followed by colony hybridization to Ad12 DNA. 
Ad12 DNA-hamster DNA recombinants generated upon incubation with the 
BHK21 hamster cell nuclear extract or with fractions purified from it were 
identified via transfection of the reextracted DNA into the recA- strain HB10l/ 
LM1035 of E. coli and followed by hybridization to 32P-labeled Ad12 DNA. 
Subse-quently, the presumptive recombinants thus isolated were verified by 
restriction analyses and in part by sequence determinations across the sites of 
linkage between the two recombination partners. Numerous control experi­
ments have validated the reliability of this identification assay (JESSBERGER et al. 
1989b; TATZELT et al. 1992,1993). In some of these controls, the recombination 
partners were separately incubated with extracts and then reextracted, mixed, 
and transfected into E. coli. recombinants were never found in these or other 
control experiments. 
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Although recombination-deficient bacteria were used as test organisms, it 
was still difficult to stringently rule out the possibility that E. coli could somehow 
have made a contribution to the recombination process. Events initiated in vitro in 
the cell-free system could have been completed by bacterial enzymes in vivo. 
Furthermore, the transfection assay could detect only recombinants infectious 
for E. coli under transfection conditions. 

We have, therefore, started to apply the polymerase chain reaction (PCR) 
technique for the identification of cell-free-generated recombinants (TATZELT 
et al. 1993). These in vitro products were analyzed with synthetic oligodeoxyribo­
nucleotide primers, whose locations were either close to the termini of the viral 
DNA fragment or within the circular p7 plasmid, close to but outside the hamster 
preinsertion sequence, since it could not be predicted where inside the p7 
preinsertion segment recombination might have occurred. After the identification 
of the amplified recombination products by subsequent Southern blot hybridi­
zation to 32P-labeled Ad12 DNA. the recombination products were further amplified 
by using primers located slightly internally to those employed in the first round of 
amplification. The identity of at least some of the thus documented recombinants 
was confirmed by nucleotide sequence analyses across the sites of junction. The 
negative results of many control experiments attested to the specifity of the 
amplification reaction and argued against PCR artifacts (TATZELT et aL 1993). The 
results obtained by the E. colitransfection assay system with the recombinationally 
active protein fractions and the structural characteristics of the cell-free-generated 
recombinants were thus confirmed by the PCR-based test system. 

Both assay systems have now been working reproducibly and reliably for 
several years and for several different investigators in this laboratory and, there­
fore, seem to be well suited for the purification of the recombinationally active 
protein(s) and for the characterization of the cell-free-generated recombination 
products. This optimistic evaluation does not preclude endeavors to develop a 
simpler and even more direct assay system (see Sect. 4.1). 

3.2 Purification of Recombinationally Active Proteins 

By using standard chromatographic procedures we have been able to purify 
enzymatic activities catalyzing cell-free recombination between the 20 885- to 
24 053-nucleotide fragment of Ad12 DNA and the hamster preinsertion sequence 
p 7. Figure 2 summarizes our present purification scheme for extracts from BH K21 
cell nuclei. Crude nuclear extracts were prepared from uninfected BHK21 hamster 
cells to yield crude nuclear fraction I (JESSBERGER et al. 1989b). The crude extract 
was then applied to a Sephacryl S-300 gel filtration column. The recombinationally 
active fractions eluted in the shoulder of the absorbancy profile at 280 nm and 
were pooled as fraction II (TATZELT et al. 1992). In subsequent purification steps on 
MonoS and MonoO ion-exchanger columns, the activity promoting cell-free 
recombination resided in the flowthrough of the cation exchanger (MonoS) as 
fraction III and could be eluted from the anion exchanger (MonoO) with a salt 
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concentration of about 500 mM NaCI as fraction IV (TATZELT et al. 1993). After 
dialyzing fraction IV against the standard buffer (see the legend to Fig. 2), it was 
loaded onto a Heparin-Sepharose column. Proteins that still retained the activity 
eluted in the flowthrough as recombinationally active fraction V. Figure 3 shows 
the protein composition of the most highly purified fraction V as determined by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (sDs-PAGE) followed 
by silver staining. Only about five major bands are left in this preparation. Table 1 
summarizes quantitative aspects of the purification procedure. The results demons­
trate the purification towards a limited set of recombinationally active protein(s) in 
the cell-free system. 

In successive chromatographic steps an about 470-fold purification was 
achieved. This degree of purification was calculated relative to the activity in the 
crude nuclear extract. The determination of the recombination frequency of 
protein fractions I-V was based on results obtained with the E. coli transfection 
assay (JESSBERGER et al. 1989b; TATZELTet al. 1992, 1993). The frequency of recom­
bination was standardized as Ad12-positive colonies per ampicillin-resistant 
(ampr) colonies. The specific activity was given in arbitrary units. One unit was 
equivalent to 1 % Ad12-positive colonies per Ilg protein. Fraction V was obtained 
by the consecutive fractionation of nuclear extracts over individual chromato­
graphic steps as described or, alternatively, by purifying fraction II directly over a 
MonoO column followed by Heparin-Sepharose purification (see Fig. 2). There 
was no obvious difference in protein composition or in activity between fraction 
V purified by either protocol. 

We are now working toward the further purification of the active fraction V by size 
fractionation on a Superdex 75 column. Since we do not expect a single protein to 
catalyze recombination, but more likely a recombination complex consisting of 
several proteins, we have also initiated extensive functional characterizations of 
the components of fraction V. Recent results demonstrate that this procedure yields 
fraction VI which is still active in cell-free recombination (FEcHTELER et al. 1995b). 

Results from in vitro studies have validated the reliability of the purified cell­
free recombination system. Apparently, the system works without a contribution 
of viral gene products. Hence, we postulate the existence of a functional recombi­
nation machinery to be supplied exclusively by the host cell. We will now concen­
trate on the enzymatic purification and characterization of its components. 
Nevertheless, an auxiliary or modifying role of viral proteins cannot be excluded 
based on data presently available from the cell-free system. We have, therefore, 
initiated the purification of nuclear extracts from BHK21 hamster cells, prepared at 
36 h after Ad12 infection. 

3.3 Characteristics of the In Vitro-Generated Ad12 
DNA-Hamster DNA Recombinants 

The quality of an in vitro recombination system is dependent on the cell-free 
reaction being as close as possible to the integration event in the living cell and on 
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Fig. 2. Fractionation of nuclear extracts from BHK21 hamster cells. Crude nuclear extracts were 
prepared from uninfected BHK21 hamster cells grown in suspension culture. Fraction I was applied to a 
Sephacryl S-300 column equilibrated and developed with buffer A (20 mM Hepes, pH 7.9, 20% glycerol, 
150 mM NaCI, 0.2 mM each ethylenediaminetetra-acetic acid, EDTA, and ethylene glycol tetra-acetic 
acid, EGTA. 2 mM dithiothreitol. 1 mM phenylmethylsulfonyl fluoride). The active fractions from the 
shoulder of the OD'80 em absorbancy profile were pooled. This fraction II was loaded onto a Mono S 
column equilibrated with buffer A. Fractions catalyzing cell-free recombination eluted in the flowthrough 
of the absorbancy profile as fraction III, which was adsorbed onto a Mono Q column equilibrated with 
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M V Fig. 3. Protein composition of fraction V purified from nuclear 
kDa kDa extracts from BHK21 hamster cells. The proteins in fraction V 

were analyzed by electrophoresis in sodium dodecyl sulfate 
(SDS)-polyacrylamide gels followed by silver staining. These 
proteins ranged in size between about 91 and about 44 kDa. 
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Table 1. Purification of proteins catalyzing recombination between adenovirus type 12 (Ad12) DNA 
and the p7 hamster preinsertion sequence 

Fraction Procedure Total Recovery Recombination Specific Purification 
(mg) of protein (%) frequency (%)' activity fold 

(unit)b 

Nuclear 
extract 30 100 0.2 4 x 10-3 

II Sephacryl 
S-300 5.5 18.5 0.1 0.02 5 

III Mono S 3.5 11.6 0.1 0.02 5 
IV Mono 0 1.2 4 0.5 0.2 50 
V Heparin 

Sepharose 0.5 1.7 4.25 1.89 472 

' Recombination frequencies of protein fractions I-V were determined by the Escherichia coli transfec­
tion assay. Frequency is measured as Ad 12-positive colonies per ampicillin-resistant (Amp) colonies. 
Values given are approximate values. 

bSpecific activity is given in arbitrary units. One unit is equivalent to 1 % Ad 12-positive colonies per ).1g 
protein. 

buffer A. Recombinationally active proteins were eluted with buffer A containing 500 mM NaCI, pooled 
and dialyzed against buffer A (fraction IV) . This fraction was applied onto a Heparin-Sepharose column 
equilibrated with buffer A. The recombinationally active fractions eluted in the flowthrough and were 
pooled as fraction V. Alternatively, the purification scheme was performed by loading fraction II directly 
on a Mono 0 column (fraction 111') followed by fractionation of the proteins over a Heparin-Sepharose 
column. There is no apparent difference in protein composition or in the activity of the two protein 
fractions. Ouantitative aspects of the purification of the nuclear extracts are shown in Table 1 
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the recombination products exhibiting the same characteristics as in vivo-prod­
uced recombinants. 

In order to determine the sequence characteristics of the cell-free-gene­
rated recombinants in more detail, we have analyzed numerous junction sites 
across viral and cellular host DNA sequences. As described for the linkage sites 
in adenovirus-transformed and Ad12-induced tumor cell lines, patchy homo­
logies between the two recombination partner sequences at the sites of 
integration are present in most, though not all, of the cell-free recombinants 
(TATZELT et al. 1992). Therefore, patches of short homology seem to playa role 
in the selection of sites for recombination, in recombination events in living 
cells, and in the cell-free system. Cell-free-generated recombination products 
also bear resemblance to in vivo-isolated recombinants with respect to their 
target preference. Though data from analyses of several junction sites in 
adenovirus-transformed and Ad12-induced tumor cell lines support the notion 
that a specific or common cellular insertion sequence does not exist, it is 
striking that the sequence motif 5'-CCTCTCCG-3' or sequences close to it have 
repeatedly served as preferred target sequences in cell-free recombination 
events (TATZELT et al. 1992, 1993). These analyses have revealed an interesting 
clustering of recombination sites in certain regions of the preinsertion DNA near 
or inside the sequence motif or at very closely related sequences. Possibly, 
proteins in all recombinationally active fractions were targeted to very similar 
sites, thereby facilitating the integration reaction and eliciting independent cell­
free recombi-nation events. Furthermore, the recombination site of Ad12 DNA 
integration in the original tumor cell line CLAC1, from which the p7 pre-insertion 
sequence has been derived, also falls directly inside a CCTCTCCG element 
(STABEL and DOERFLER 1982). We must however, emphazise that we have also 
observed integration sites in vitro which were different from those just 
described. 

Preinsertion sequences have been used as recombination targets in vivo and 
in the cell-free system. Randomly selected hamster sequences of the unique 
or repetitive sequence type do not give rise to in vitro recombinants, at least 
not at a frequency comparable to that of recombination with the p7 sequence 
(JESSBERGER et al. 1989b; TATZELT et al. 1992). However, in cell-free recombination 
reactions with another cloned preinsertion sequence p16 (LICHTENBERG et al. 
1987), we have been able to detect cell-free recombination products (JESSBERGER 
et al. 1989b). This apparent preference for preinsertion sequences is probably not 
absolute, since we have identified a few integration sites outside the preinsertion 
segment in the immediately adjacent pBR322 DNA sequences. of the same 
p 7 construct. 

Taken together, the documented characteristics of this cell-free recom­
bination system are consistent with the interpretation that this system mimics 
the integrative recombination reaction observed in living cells sufficiently closely 
to pursue the further development of this nuclear extract system. 
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3.4 Proteins in the Recombinationally Active Fractions 
Interact with DNA 

It was reasoned that proteins catalyzing cell-free recombination between viral and 
cellular host DNA sequences might specifically bind to sequence motifs inside 
the pre insertion sequence which were identified as recombination targets 
in vitro. Two synthetic double-stranded, 50-bp oligodeoxyribonucleotides were 
used in electrophoretic mobility shift assays to probe the recombinationally active 
proteins for their ability to interact specifically with this target DNA sequence. 
Both sequences derived from the preinsertion sequence could serve as acceptor 
sites for Ad12 DNA integration in independent cell-free recombination events, and 
both elements contained the target motif 5'-CCTCTCCG-3'. 

Interestingly, proteins in all recombinationally active fractions bound to double­
stranded oligodeoxyribonucleotides carrying multiple sites for cell-free recombi­
nation and formed specific protein-DNA complexes (T ATZELT et al. 1992, 1993; 
Fig. 4a, b). This complex formation could be inhibited by the same unlabeled 
oligodeoxyribonucleotides, attesting to the specifity of this protein-DNA interaction 
(Fig. 4a,b). Moreover, a double-stranded, 40-bp oligodeoxyribonucleotide compri­
sing the original Ad12 DNA integration site in the Ad12-induced tumor cell line 
CLAC1 could also compete for this protein binding. There was no competition 
detectable with nonspecific poly-dA:dT or with oligodeoxyribonucleotides with 
unrelated sequences, e.g., sequences from the late E2A promotor of Ad2 DNA 
(T ATZELT et al. 1993). 

We also tested the capability of proteins in the recombinationally active 
fractions to bind to single-stranded DNA. We used the same oligodeoxyribo­
nucleotide sequences in the single-stranded form and also observed protein-DNA 
interactions (Fig. 4c). However, in contrast to the interactions with the double­
stranded oligodeoxyribonucleotides, the newly identified interactions with single­
stranded DNA could be competed not only by the same unlabeled oligodeoxy­
ribonucleotide, but also with totally unrelated sequences, suggesting unspecific 
interactions of the recombinationally active proteins with single-stranded 
DNA (Fig. 4c). 

4 Integrative Recombination 

4.1 Does the Model Reaction Resemble the Reaction 
in Cells7 

Cell-free systems have been developed to investigate the integrative recombi­
nation of viral genomes (BROWN et al. 1987; JESSBERGER et al. 1989b; TATZELT et al. 
1992, 1993). Working with cell-free abstractions immediately raises the question 
to what extent the model reaction analyzed in vitro resembles the naturally 
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Fig. 4. Binding characteristics of recombinationally active proteins. Electrophoretic mobility shift 
assays of proteins from fraction II-V with the synthetic oligodeoxyribonucleotides 1 and 2. The 
sequences are indicated below (the preferred target motif 5'-CCTCTCCG-3 ' is underlined): (1) 5'­
CACTCCACCGACGCG G CCTCTCCGCACGCTTGCACAAGCAGCAACCAG CT-3'; (2) 5'­
CCCGCCCGCACTCCACCGACGCGGCCTCTCCGCACGCTIGCACAAGCAGC-3';. a Mobility shift assay 
of active proteins from fraction IV with the double-stranded, 50-bp oligodeoxyribonucleotide 1 (lane-, 
without competitor, comp), which represents a segment of the hamster preinsertion sequence and has 
served as acceptor target for adenovirus type 12 (Ad12) DNA in cell-free recombination. This delayed 
migration can be inhibited by the same unlabeled oligodeoxyribonucleotide, attesting to the specifity of 
this protein-DNA interaction. Different amounts of competitor have been used (50-, 100-. and 250-foldl. 
Unrelated oligodeoxyribonucleotides have not been able to compete for this protein binding. There is no 
competition with nonspecific poly-dA: dT (data not shown; TATZELT et at. 1992,1993). b Mobility shift 
assays of recombinationally active proteins from fraction II-V with the double-stranded, 50-bp oligode­
oxyribonucleotide 2. This sequence also encompasses the preferred target sequence for Ad12 DNA. 
Proteins in all recombinationally active fractions form the same protein-DNA complex. These inter­
actions seem to be identical to those observed between proteins in fraction IV and with oligodeo­
xyribonucleotide 1 . c Mobility shift assays of proteins from fractions IV and V with the single-stranded 
oligodeoxyribonucleotide 2 (lane-, without comp). The observed protein-DNA interactions can be 
inhibited by the same unlabeled oligodeoxyribonucleotide (lane 1) as well as by a 'single-stranded (ss), 
40-bp oligodeoxyribonucleotide comprising the original site of Ad12 DNA integration in the tumor CLAC 1 
(lanes 2 and 3; both strands). Both strands of an unrelated single-stranded oligodeoxyribonucleotide 
(lanes 4 and 5) derived from frog virus 3 DNA are also able to compete for protein binding, attesting to 
an unspecific single-stranded binding of the recombinationally active proteins. The competitors are listed 
below (the preferred target sequence is underlined in 1-3). There is no target sequence in 
unrelated DNA (items 4 and 5): 1) 5'CCCGCCCGCACTCCACCGACGCGG CCTCTCCGC­
ACGCTIGCACAAGCAGC-3';, (2) 5'-ACTIGAAGGAGACGCCGCCCTCTCCGGGGGTGCGAGTGCC-3;, 
(3) 5'-GGCACTCGCACCCCCGGAGAGGGCGGCGTCTCCTICAAGT-3';,(4) 5'-GGATAGAACGGCCACA­
TCTACCTCTGTGGCCGTCGGGTTCGAGGCGCAGG-3';,(5) 5'-CCTGCGCCT 
CGAACCCGACGGCCACAGAGGTAGATGTGGCCGTICTATCC-3 ' 
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occurring event in vivo. In order to monitor enzyme purification, to survey the 
reaction mechanism and its requirements, and the kinetics of the process, the 
analyzed reaction need be "simplified" to accommodate the system to work in 
vitro. Data obtained with the cell-free system demonstrate that the model 
recombination reaction, at least in certain aspects, resembles the natural Ad12 
DNA integration event in mammalian cells. In particular, details of the reaction 
parameters and characteristics of the recombination products are similar to the 
situation in the living cell and indicate that the cell-free system will be well suited 
for mechanistic and enzymatic studies of this recombination reaction. The 
system has enabled us to purify the crude extracts of BHK21 cell nuclei to five 
major protein bands still retaining recombinational activity. 

At that point, further work will be directed, on the one hand, towards a 
dissection of the complete reaction in order to study enzymatic functions of the 
components in the recombination machinery in more detail. We further wish to 
investigate the possibility of an adenovirus-specific integrative recombination 
mechanism. 

4.2 Specific Versus Nonspecific Adenovirus Type 12 DNA 
Integration 

One of the major questions concerning viral DNA integration is whether this type 
of recombination reaction occurs in a random or nonrandom manner. Does a 
common or specific target sequence exist at which viral DNA integrates into the 
mammalian genome? Though data derived from the junction site analyses of 
adenovirus-transformed cell lines and of Ad12-induced tumor cell lines do not 
support the notion of a site-specific type of recombination, it has to be analyzed 
whether, under certain conditions, adenovirus DNA may integrate at selective 
sequences. 

Cell-free recombination experiments with randomly selected hamster se­
quences of repetitive or unique origin did not give rise to in vitro recombinants 
(JESSBERGER et al. 1989b; T ATZELT et al. 1992). These negative controls validated a 
model of target preference. Preinsertion sequences might be endowed with 
features, primary sequence or chromatin structure, that render a region of the host 
genome a preferred target sequence that is recognized by the catalyzing en­
zymatic activities for foreign DNA insertion. Furthermore, since we have not 
found frequent integration events for Ad12 DNA in the backbone of the pBR322 
vector sequences, integrative recombination seems to be directed somehow by 
sequence characteristics of the hamster preinsertion sequence. i'ntegration, 
therefore, does not exhibit features of a completely random event. The finding 
that, in a few instances, Ad12 DNA recombination sites were located in the 
immediately adjacent pBR322 DNA sequences suggests a possible contribution 
of preinsertion sequences on neighboring DNA sequences, in spite of their 
bacterial origin. Moreover, the observation that proteins in all recombinationally 
active fractions bind specifically to double-stranded, synthetic oligodeoxyribo-
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nucleotides comprising certain regions of the preinsertion sequence that carry the 
target motif CCTCTCCG (TATZELT et al. 1992, 1993) supports our interpretation 
of a target preference of Ad12 DNA integration in vivo and in vitro. It seems 
conceivable that sequence preferences may exist for adenoviral (foreign) DNA 
insertion under certain conditions, but insertion is not strictly dependent on these 
requirements. 

Recombination reactions, though based on similar requirements, may be 
diverse with respect to their specificity and detailed mechanisms. This diversity 
can be illustrated by various integration patterns of retroelements. The scale 
reaches from site-specific to nonrandom integration reactions. It is beyond the 
scope of this review to discuss all these different reactions in various systems. 
Although retroviruses can insert at many different sites (HUGHES et al. 1978). much 
evidence suggests that integration of retroviruses is not completely random 
in vivo. Experiments in the mid-1980s with MoMLV infection of murine cells 
suggested that integration was nonrandom. These analyses also revealed that 
DNA integrated by retroviral infection, compared to DNA introduced by trans­
fection, tended to be in transcribed regions of the genome. Based on different 
approaches several investigators verified that insertions are associated with 
transcribed regions of the host genome (HWANG and GILBOA 1984; KING et al. 1985; 
SCHERDIN et al. 1990). 

Based on this diversity of integration patterns, one could imagine different 
ways in which genomic DNA was identified for preferential targeting. These 
possibilities ranged from specific to general and included parameters such as 
sequence content, chromatin structure, nuclear localization, accessibility to 
DNA by removal of chromatin proteins, and association with other non­
nucleosome proteins, e.g., nuclear matrix proteins, topoisomerases, transcrip­
tion, or replication factors. DNA or protein motifs could constitute a specific 
target for recombination. The targeting mechanism by itself could act directly or 
indirectly to influence integration site preferences. Transcription factors 
associated with DNA in nucleosome-free regions could target integration 
directly by association with the recombination machinery or indirectly by 
inducing changes in the DNA that increased the accessibility of recombination 
active protein(s) to target DNA. 

4.3 Homologous Versus Nonhomologous Recombination 

The observation that the recombination machinery is not dep~ndent on the 
presence of long stretches of perfect sequence identity, but may take advantage 
of patchy homologies, raises the question of whether this type of integration 
belongs to the class of homologous or nonhomologous recombination events. 

The genetic integrity of all organisms depends on the ability to repair damage 
to DNA caused by endogenous or exogenous agents or mechanisms. The gene 
products involved in DNA repair probably operate in multiple and perhaps 
functionally redundant pathways. Different modes of in vivo repair of double-
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strand breaks (DSB) have been described for various organisms: the recombi­
national DSB repair (DSBR) mode (SZOSTAK et al. 1983), the single-strand annea­
ling (SSA) mode (LIN et al. 1984), and end-to-end joining related to illegitimate 
recombination since it can join nonhomologous DNA ends (VIEIRA and MESSING 
1987; THODE et al. 1990). Although most DSB repair in Saccharomyces cerevisiae 
probably occurs via recombination involving homologous DNA sequ-ences (DSB 
repair or SSA modes), nonhomologous repair events can occur utilizing very 
weak or no sequence homologies, suggesting the existence of a recombination 
mechanism which is nearly homology independent. Such events are usually 
classified as illegitimate recombination. 

Interestingly, the recombinant junctions of the rare products created during 
nonhomologous repair in S. cerevisiae are very similar to those observed in the 
repair of DSB in mammalian cells (ROTH and WILSON 1986, 1988). However, DSB 
repair by illegitimate recombination is a minor pathway in S. cerevisiae. The 
frequency of illegitimate events either intra- or intermolecularly is at least 
1 OO-fold lower than in the presence of a cointroduced homologous sequence. In 
contrast, targeted integration of exogenous DNA at its homologous chromo­
somal location in mammalian cells is masked by a 1 OOO-foid higher frequency of 
random integration events (SMITH and BERG 1984; LIN et al. 1985; SMITHIES et al. 
1985; THOMAS et al. 1986). The presence of short, one- to five-nucleotide homo­
logies at many of nonhomologous junctions has led several investigators to 
propose that these homologies playa role in nonhomologous recombination 
(EFSTRATIADIS et al. 1980; ALBERTINI et al. 1982; ALT and BALTIMORE 1982; STRINGER 
1982; GAHLMANN et al. 1982; MARVO et al. 1983; RULEY and FRIED 1983; HOGAN and 
FAUST 1984; BULLOCK et al. 1985; ROTH et al. 1985). However, because these 
homologies are so short, it is difficult to distinguish between mechanistic 
relevance and chance occurrence. 

Patchy homologies between the hamster preinsertion DNA and adenoviral 
DNA sequences at the recombinant junction sites are not an absolute prerequisite 
for the mechanism of integrative recombination to take place in the mammalian 
cell. Nevertheless, the small but significant number of nucleotide identities may 
facilitate the Ad12 DNA integration event in vivo and in vitro. The stretches of 
homology vary in size ranging from one up to eight nucleotides. They might direct 
recombination reactions in mammalian cells, as discussed for adenovirus DNA 
integration (GAHLMANN et al. 1982) and also suggested by ROTH et al. (1985) and 
others. Possible explanations for the recombination machinery to take advantage 
of patchy homologies are end-to-end ligation of DNA ends in lower eukaryotes 
(SCHIESTL et al. 1993) or in mammalian cells (ROTH et al. 1985; ROTH and WILSON 
1986) or a stabilization of the two recombination partner molecules through an 
annealing event. We also suggest that patchy homologies may offer advantages 
over longer perfect homologies in partner recognition, since structural features 
can then be more distinctly recognized by the enzymatic activities of the host cell 
(TATZELT et al. 1993). The results from in vivo and in vitro studies indicate the 
existence of a recombination mechanism that is sensitive to very small regions of 
homology for the integration of adenoviral DNA into the mammalian genome. The 



130 K. Fechteler et al. 

terms "homologous" and "nonhomologous" recombination are not very precisely 
defined in the literature. Hence, we prefer to classify foreign (viral) DNA integra­
tion into mammalian genomes as integrative recombination. 

4.4 Possible Links Between Transcription 
and Integrative Recombination 
of Adenovirus Type 12 DNA 

Many cellular preinsertion sequences of adenovirus DNA integration analyzed so 
far have proven to be transcriptionally active (GAHLMANN et al. 1984; LICHTENBERG 
et al. 1987; SCHULZ et al. 1987; JESSBERGER et al. 1989a). Transcriptional activity has 
been documented in the original host cell from different species (hamster, 
mouse, human) prior to any contact with viral DNA during infection, integration, 
and transformation. Furthermore, transcriptional activity at the junction sites 
between viral and cellular DNA has also been demonstrated in Ad12-induced 
tumor cells and in adenovirus-transformed cells. The hypothesis of a possible 
stimulatory effect of transcription on adenovirus DNA integration is also sup­
ported by the fact that in other viral and cellular systems integrative recombi­
nation frequently takes place at transcriptionally active cellular sites {MOOSLEHNER 
et al. 1990; SCHERDIN et al. 1990). 

The observation that transcription might be somehow involved in the control 
of homologous recombination is not restricted to bacteria or lower eukaryotes. It 
has been also suggested, that transcription levels may influence homologous 
recombination in mammalian cells (MANSOUR et al. 1988; JOHNSON et al. 1989). 
Transcription has been implicated in the control of recombinational events in the 
course of the development of mammalian immune systems. During the develop­
ment of immunoglobulin genes in Band T cell receptor genes, specific recombi­
nation events mediate the assembly of mature genes from component gene 
segments (TONEGAWA 1983; ALT et al. 1986). ALT et al. (1986) and BLACKWELL et al. 
(1986) presented evidence for the notion that transcriptionally active immuno­
globulin gene segments recombine at high frequencies. Furthermore, NICKOLOFF 
and REYNOLDS (1990) have demonstrated that transcription stimulates homologous 
recombination between transfecting plasmids in mammalian cells. 

If integration of adenoviral DNA into the mammalian genome was somehow 
influenced by transcription, then the question immediately arises of how trans­
cription can influence or stimulate nonhomologous recombination. Assuming 
these proteins of the transcriptional machinery are present at the preferred cellular 
target sequences, it seems possible that these proteins are iiwolved in the 
mechanism of integrative recombination. This functional role is quite speculative, 
but at least it seems plausible that these cellular proteins can render the 
preinsertion sequences accessible for the recombination machinery (see also 
Sect. 4.2). Two possible explanations for a stimulating role of transcription are 
discussed: (1) accessibility of a chromosomal region may control whether re­
combination-active proteins (recombinases) are able to catalyze the reaction at the 
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target DNA. and this accessibility may be controlled by transcription; (2) 
alternatively, transcription might be controlled by factors that influence target 
accessibility to RNA polymerase and recombination-active protein(s). Considering 
the wide distribution of transcription-induced recombination in many animal 
systems, it seems conceivable that a variety of mechanisms are involved, not only 
in different organisms, but also in the different processes of homologous and 
nonhomologous recombination as well as foreign (viral) DNA integration. 

4.5 Do Viral Gene Products Make a Contribution? 

Assuming that the cell-free recombination system described does indeed resem­
ble the natural integration event, the postulated recombination machinery could 
be supplied by the affected host cell. This interpretation is supported by the fact 
that cell-free recombination between the adenoviral 20 885- to 24 053-nucleotide 
fragment and the hamster preinsertion sequence p 7 is catalyzed by crude nuclear 
extracts or purified protein fractions from uninfected BHK21 hamster cell nuclear 
extracts. This finding does not necessarily imply that viral-encoded functions are 
not also involved in the recombination process in vivo, either by contributing an 
obligatory enzymatic or structural component of the recombination machinery or 
as a modifier of the reaction in the living cell. Insertion of adenovirus DNA is very 
different from the prototype retroviral integration during which integrases encod­
ed and introduced into the cell by the retroviruses facilitate the integration event 
as catalysts. In our cell-free system, viral counterparts could modify a general 
cellular recombination reaction for the virus' aims. Apparently, the system works 
well without viral proteins under the chosen conditions, but we had to "simplify" 
the reaction in that we did not use the entire Ad12 genome as one of the DNA 
recombination substrates. Although adenovirus DNA was also found integrated in 
a fragmented form, the insertion of the intact Ad12 molecules proceeded mainly 
via the viral terminal sequences in vivo. The virion DNA termini are bound to the 
terminal protein at their 5' ends. It has not yet been investigated whether the 
terminal viral protein participates in integrative recombination of Ad12 DNA. 

Hence, one of our goals for the future remains to determine whether viral 
functions participate in the course of integrative recombination between foreign 
(viral) DNA and the mammalian genome. We have initiated different approaches 
to investigate several possibilities: (a) adenovirus DNA integration is exclusively 
catalyzed by the host cell recombination machinery; (b) viral gene products 
contribute to the recombination process enzymatically and/or structurally. 
A combination of items a and b also seems possible. 

We have cloned a 4-kbp fragment of BHK21 DNA into a cosmid vector 
that contains the hamster preinsertion sequence p7. This approach may help 
to use the entire Ad12 genome in the cell-free recombination reaction. Further­
more, instead of using protein-free, "naked" Ad12 DNA as the recombination 
partner, we wish to test the recombinational activity of subviral Ad12 particles. It 
is known that subviral particles reach the nucleus early after infection (LONBERG-
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HOLM and PHILIPSON 1969; MORGAN et al. 1969). Alternatively, we have initiated 
experiments to test nuclear extracts or purified fractions from Ad12-infected 
BHK21 hamster cells for recombinational activity. Crude nuclear extracts were 
prepared from BHK21 cells at 36 h after Ad12 infection and will be tested in the 
conventional cell-free system as well as in the cosmid-based recombination 
system. Our more recent data indicate that this cell-free system may work more 
efficiently than that from uninfected BHK21 cells (FECHTELER et al. 1995b). 

5 Outlook 

Results described in the preceding sections demonstrate that the integrative 
recombination reaction between Ad12 DNA and a hamster preinsertion se­
quence can be imitated in a cell-free system derived and purified from extracts 
of hamster BHK21 cell nuclei. This system will enable us to identify proteins 
active in catalyzing this type of nonhomologous recombination in mammalian 
cells and to survey mechanism, requirements, and kinetics of the reaction. 
Furthermore, we have adduced evidence for the general importance of the 
nonhomologous integration reaction in eukaryotic cells. We have been able to 
document that at least certain aspects of nonhomologous recombination bet­
ween the El fragment of Ad2 DNA and the EcoRI-O fragment of Autographa 
californica nuclear polyhedrosis virus (AcNPV) DNA (XIONG et al. 1991) can be 
reproduced in a cell-free system derived from partly purified nuclear extracts of 
Spodoptera frugiperda insect cells (SCHORR and DOERFLER 1992). With respect to 
reaction parameters and characteristics of the in vitro recombinants, there seem 
to be no major differences between the mammalian cell and insect cell systems, 
arguing for the existence of a widely distributed mechanism that operates 
generally in mammalian as well as in insect cells. 

The possible existence of common recombination mechanisms exceeding 
species limitations is supported by the isolation and cloning of recombination 
genes in higher organisms that share extensive homologies with RAD51 and recA 
(SHINOHARA et al. 1993; MORITA et a1.1993). In E. coli and many other prokaryotes, 
the recA protein or a recA-like protein plays an essential role in homologous 
recombination and in a variety of repair recombination processes elicited by DNA 
damage (RocAand Cox 1990; KOWALCZYKOWSKI1991 ).In yeast, the RAD51 gene has 
recently been cloned, and its gene product shows structural similarity to the E. coli 
recA protein with adenosine triphosphate (ATP)-dependent DNA-binding activity 
(SHINOHARA et al. 1992; ABOUSSEKHARA et al. 1992; BASILE et al. 1992). The wide 
distribution of structural homologs of the yeast RAD51 protein among eukaryotes 
and prokaryotes, including E. coli, suggests a common fundamental mechanism 
of recombination through evolution. 

For the immediate future, further work in our own research will be directed 
towards a detailed analysis of the enzymatic functions of the cellular proteins in 
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the recombination machinery. Currently, we are also exploring the possible 
participation of viral gene products. It will be mandatory to investigate whether 
the integration proceeds more efficiently in adenovirus-infected cells. Further­
more, we plan to use subviral Ad12 particles instead of purified Ad12 DNA as a 
substrate to investigate a putative influence of viral structural proteins on the 
integration event. We will also try to gain insight into the actual integration 
reaction of the entire Ad12 genome. Moreover, we will extend analyses of 
protein-DNA interactions between the recombinationally active proteins and 
regions of the hamster preinsertion sequences. It should also be interesting to 
evaluate sequence or structural requirements of recombination targets as they 
participate in the recombination reaction. 
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have been the subject of intense study. These studies have shown that, although 
control of transcription initiation is a major determinant of the observed pattern of 
viral gene expression, post-transcriptional control is also crucial to a successful 
outcome of infection. It is these latter mechanisms which are the subject of this 
chapter. 

Of the many human adenovirus serotypes isolated, the group C adenoviruses 
types 2 (Ad2) and 5 (Ad5) have been studied in greatest detail. The genomes of 
these viruses have been completely sequenced (ROBERTS et al. 1984; CHROBOCZEK 
et al. 1992), and they show a very high level of sequence identity over most of 
their length and virtually identical gene organization. The limited sequence varia­
tion between these serotypes is concentrated in genome segments enco­
ding parts of the hexon and fiber proteins and in the E3 gene (KINLOCH et al. 1984; 
CLADARAS and WOLD 1985; CHROBOCZEK and JACROT 1987). These sequence diff­
erences do not affect materially the processes of post-transcriptional control 
discussed below; data deriving from one or other of these viruses can therefore be 
taken to apply equally to both serotypes and, in the following discussion, these 
serotypes generally are not distinguished. 

2 Regulation of Adenovirus Gene Expression 
at the Level of Alternative RNA Splicing 

2.1 Exons and Introns: General Considerations 

Soon after the revolutionary discovery of split genes in the adenovirus system in 
1977 (BERGET et al. 1977; CHOW et al. 1977; DUNN and HASSELL 1977; KLESSIG 1977; 
LEWIS et al. 1977) it was shown that most viral transcription units encode not one 
but multiple alternatively spliced mRNAs (Fig. 1); many of these are translated into 
proteins that have unique biological activities (reviewed in AKUSJARVI et al. 1986). 
Furthermore, it was rapidly demonstrated that accumulation of alternatively 
spliced mRNAs in this system was a regulated process, with specific mRNA 
species accumulating at different time points during the infectious cycle. This 
provided the first evidence that eukaryotic gene expression may be regulated at 
the level of alternative RNA processing. 

Much of our knowledge about the biochemistry of RNA splicing comes from 
studies of the major late first intron. The conclusions from these and other studies 
have been extensively reviewed elsewhere (M.J. MOORE et al. 1993). Only a brief 
summary of the sequence elements and trans-acting factors necessary for 
splicing will be given here. Pre-mRNA splicing takes place in a large ribonucleo­
protein particle, the spliceosome. In addition to the pre-mRNA, spliceosomes 
contain the major small nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4/ 
U6, and U5 and many non-snRNP protein factors. The exon-intron boundaries, 
which are loosely conserved in metazoans, are defined in part by direct RNA-RNA 
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base pairing. The 5' splice site is recognized through base pairing with U1 snRNA 
and the 3' splice site is similarly defined by base pairing between U2 snRNA and 
the branch point. Assembly of the spliceosome has been shown to proceed 
through two stable intermediate stages, the commitment complex (or E complex) 
and the A complex (prespliceosome). Formation of the commitment complex, 
which is the earliest detectable stable precursor to the spliceosome, requires the 
5' splice site and the polypyrimidine tract at the 3' splice site of the pre-mRNA. The 
recognition and functional interaction of the 5' splice site and 3' splice site in the 
commitment complex appearto require U1 snRNP, which recognizes the 5' splice 
site, U2AF, which binds to the polypyrimidine tract at the 3' splice site, and non­
snRNP protein factors such as SC35, ASF/SF2, and/or other SR proteins. The 
commitment complex appears to be converted to the A complex by incorporation 
of U2 snRNP in a reaction that requires adenosine triphosphate (ATP) and other 
protein factors. The mature spliceosome is then formed by incorporation of the 
U4/U6-U5 triple snRNP. It is believed that formation of the commitment complex 
irreversibly defines the exon-intron boundaries in the pre-mRNA. Thus, formation of 
the commitment complex is likely to be a key step at which alternative splicing is 
regulated. 

The adenovirus system provides an excellent opportunity to study regulatory 
events that are manifested at the level of RNA splicing, since mOst of the viral 
transcription units encode two or more alternatively spliced mRNA. There are 
numerous ways in which multi-intronic pre-mRNA can be alternatively spliced. 
These include multiple 5' splice sites that can be paired with a single 3' splice site, 
a single 5' splice site that can be paired with multiple 3' splice sites, or both ends 
of an exon that can be bypassed, leading to exon skipping. 

Adenovirus genes contain few introns compared with cellular genes. Most 
viral mRNAs are matured by removal of one to three introns. The extreme 
examples are the polypeptide IX (piX) mRNA which contains no introns (ALESTROM 
et al. 1980)' and the variant fiber mRNA containing the auxiliary x, y, and z leaders 
(CHOW and BROKER 1978), which requires the removal of six introns. By contrast, 
splicing of cellular mRNAs is often more complex, involving removal of many introns. 
An extreme example is the gene encoding dystrophin, which contains more than 70 
introns (MANDEL 1989). A valid argument is, of course, that a virus has fewer introns 
since it has to compress much genetic information into the viral capsid. 

A second noticeable difference between the exon-intron arrangement in 
adenovirus genes compared to cellular genes is that the viral introns usually do not 
interrupt the protein-coding portion of the gene (the noticeable exception is E 1 A). 
Most often the introns are positioned in the 5' or the 3' noncodin.g portion of the 
precursor RNA. This is in striking contrast to cellular genes, where introns often 
interrupt the coding portion of the gene. This fragmentation of the protein­
coding portion of eukaryotic genes into modules is believed to be important by 
allowing for assembly of new gene combinations through exon shuffling. In the 
virus such evolutionary considerations are probably not as important, since the 
virus can compensate for a lack of sophistication in gene organization by having a 
short replication cycle. 
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2.2 Temporal Regulation of Adenovirus Alternative Splicing 

The potential to produce alternatively spliced mRNAs from a pre-mRNA is of 
great importance, since it allows for a novel mechanism to regulate adenovirus 
gene expression. It is clear that the temporal control of alternative splicing is of 
vital importance for lytic virus growth by controlling the synthesis of proteins that 
are needed at certain stages of the life cycle, e.g., activation of the synthesis of 
the mRNAs encoding the structural proteins of the viral capsid late during 
infection (Fig. 2). The general tendency is that shorter mRNAs produced by 
splicing out larger introns, accumulate at later time points of infection. For 
example, the E1 A 13S and the E1 B 22S mRNAs are the most abundant E1 
mRNAs expressed at early times of infection, whereas the E 1 A 9S and E1 B 13S 
mRNAs predominate at late times of infection. This shift in RNA production is a 
regulated process. 

Although mRNA accumulation from most viral transcription units is subjected 
to a temporal control, current research efforts have mostly been concentrated on 
the mechanisms involved in the control of alternative splicing of the E1A, E3, and 
major late transcription units (MLTU). The conclusions reached from these studies 
will be briefly summarized here. 

2.3 Temporal Regulation of Tripartite Leader Assembly 

A number of studies have shown that the temporal shift in major late mRNA 
accumulation requires late viral protein synthesis. This conclusion has been 
reached by comparing the early and late pattern of L 1 mRNA acccumulation in 
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Fig. 2. Physical map of the major late transcription unit. The linear viral genome is shown at the bottom 
in map units (m. u.). The position of the major late promoter (MLP) at 16.4 map units is indicated below 
the line. Above the line are the major exons encompassing, from left to right: the tripartite leader (1, 
2, and 3) and i exons; L 1 (with the 52/55K and lila mRNA bodies indicated) L2, L3, L4, the x, y, and z 
leaders, and L5. (Modified from DEZAZZO 1990) 
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various adenovirus mutant-infected cells (JOHNSToN et al. 1985; PILDER et al. 
1986b; SVENSSON and AKUSJARVI 1986; LARSSON etal. 1991) and wild type-infected 
cells treated with inhibitors of DNA or protein synthesis (SHAW and ZIFF 1980; 
THOMAS and MATHEWS 1980; AKUSJARVI and PERSSON 1981; NEVINS and WILSON 1981; 
LARSSON et al. 1991, 1992). However, it is only recently that two virus-encoded 
proteins with the properties expected of RNA splicing factors have been identi­
fied (NORDOVIST et al. 1994). 

The MLTU generates a primary transcript of approximately 28, 000 nucleo­
tides that can be processed into a minimum of 20 cytoplasmic mRNAs. These are 
grouped into five families (L 1-L5, Fig. 2). where each family consists of multiple, 
alternatively spliced species with coterminal 3' ends (see Sect. 3). An important 
consequence of the processing pathway is that all mRNAs expressed from the 
ML TU have a common 201-nucleotide tripartite leader sequence at their 5' end. A 
variant form of this leader contains the 440-nucleotide i-leader exon (Fig. 2). 
Splicing of the i-leader is temporally regulated during infection. Thus, splicing of 
major late mRNA at early times of infection usually leads to the inclusion of the 
i-leader exon (1,2, i, 3). while the large majority of mRNAs expressed late after 
infection contain the classical tripartite leader (1, 2, 3). The biological significance 
of the i-leader exon inclusion/skipping reaction is far from clear. However, it 
should be noted that the i-leader encodes a stable and abundant 16-kDa protein 
that is expressed at intermediate and late times of infection (SYMINGTON et al. 
1986). It appears to be translated predominantly from the early-transcribed mRNA. 
since large quantities of the 16-kDa protein accumulate in the absence of viral 
DNA replication (SYMINGTON et al. 1986). Although this protein is dispensable for 
virus growth in tissue culture cells (SOLOWAY and SHENK 1990) it may have an 
important function connected with virus growth in humans. 

2.4 E4 Open Reading Frames 3 and 6 
Are Virus-Encoded RNA Splicing Factors 
that Regulate Major Late Tripartite Leader Assembly 

Adenovirus mutants lacking early region 4 (E4) show a very complex phenotype, 
which includes defects in viral DNA accumulation, late viral mRNA accumulation, 
and protein synthesis, as well as a failure to shut off host cell protein synthesis 
(HALBERT et al. 1985; WEINBERG and KETNER 1986; see also Sect. 4.6). The primary 
lesion responsible for these defects could be the inability of E4 deletion mutants 
to efficiently accumulate nuclear and cytoplasmic RNA derived from the MLTU. 
This deficiency is not due to reduced transcriptional activity of the major late 
promoter in E4 mutant-infected cells (SANDLER and KETNER 1989). More likely, E4 
gene products are required for stable nuclear accumulation of the major late pre­
mRNA. To this end it has been shown that E4 post-transcriptionally stimulates 
tripartite leader assembly both during virus growth and in a transient expression 
assay (NORDOVIST and AKUSJARVI 1990; OHMAN et al. 1993; NORDOVIST et al. 1994). 
Expression of a transcription unit containing either the first, second, or both 
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tripartite leader introns is enhanced by region E4, whereas expression of a cDNA 
of the tripartite leader is not. The E4 enhancement works post-transcriptionally 
and requires efficient splicing signals. Enhancement is not strictly dependent on 
virus-specific sequences, although it works best with constructs containing 
tripartite leader introns. A surprising positional effect of the intron was observed. 
Thus, the intron has to be located within approximately 250 nucleotides of the 5' 
end of the pre-mRNA to be E4 responsive. The significance of this positional 
effect is still not clear, although some speculative models have been proposed 
(NORDQVIST and AKUSJARVI 1990). 

The E4 transcription unit is very complex. DNA sequence analysis in combi­
nation with mRNA mapping studies have suggested that E4 encodes a minimum 
of seven proteins (Fig. 3; FREYER et al. 1984; TIGGES and RASKAS 1984; VIRTANENet al. 
1984). Phenotypic analysis of E4 mutants has shown that the E4 open reading 
frame (ORF) 3 and the E4-0RF6 proteins appear to have redundant activities 
during infection, and expression of either one seems to be sufficient to establish 
an essentially wild-type virus infection (HEMSTROM et al. 1988; BRIDGE and KETNER 
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Fig. 3. Physical map of the E4 transcription unit. The linear genome is shown at the top with numbering 
in base pairs from the right end of the genome (conventional orientation). A single primary transcript 
gives rise to multiple mRNA species, which are indicated as bold lines and lettered A-L (other minor 
mRNAs formed by use of alternative splice acceptor sites in the 3' end of the gene have also been 
detected, but are not shown here). The protein coding regions ORF1 to ORF6/7 are indicated as boxes, 
with those referred to in the text being shaded. (Based on a figure in VIRTANEN et al. 1984) 
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1989; HUANG and HEARING 1989; KETNER et al. 1989). It is interesting to note that the 
same two E4 proteins are also the E4 products that regulate major late tripartite 
leader assembly in a transient assay (OHMAN et al. 1993; NORDOVIST et al. 1994). 
The E4-0RF3 protein functions as an exon inclusion factor, facilitating i-leader 
exon inclusion, and the E4-0RF6 protein functions as an exon skipping activity, 
preferentially stimulating tripartite leader assembly (1,2,3). Preliminary experiments 
suggest that E4-0RF3 and E4-0RF6 also regulate alternative splicing in an in vitro 
system (K. OHMAN and G. AKUSJARVI, unpublished work). 

The exon skipping activity of E4-0RF6 is not universal. For example, leader 2 
is never skipped under conditions where the i-leader exon is efficiently excluded. 
Available data suggest that the exon skipping activity of E4-0RF6 is restricted to 
exons that are unusual in some respect, for example those that are unusually long 
(e.g., the i-leader exon: internal exons in eukaryotes are normally less than 350 
nucleotides) or internal exons that have weak splice signals at their borders 
(NORDOVIST et al. 1994). Collectively, the data are compatible with the hypothesis 
that E4-0RF3 and E4-0RF6 are virus-encoded alternative splicing factors that 
either facilitate splice site communication across an exon (E4-0RF3) or cause 
exon skipping by disrupting weak 5' and 3' splice site interactions (E4-0RF6). It 
remains to be determined whether the E4-0RF3 and E4-0RF6 proteins are of 
global importance for alternative splicing of virus-specific mRNA.· However, it 
seems unlikely that the virus would devote two proteins to regulate only i-leader 
splicing, especially since the i-leader protein appears to be dispensable for lytic 
virus growth (SOLOWAY and SHENK 1990). 

E4-0RF3 and E4-0RF6 do not show any extensive primary sequence homo­
logy with other cloned metazoan RNA splicing factors. However the biological 
activities of E4-0RF3 and E4-0RF6 appear to be very similar to two cellular 
splicing activities, ASF/SF2 and hnRNP A 1/DSF (HARPER and MANLEY 1991; MAYEDA 
and KRAINER 1992; MAYEDA et al. 1993; NORDOVIST et al. 1994). ASF/SF2 has been 
shown to function as an exon inclusion factor and prevents exon skipping in 
complex pre-mRNAs (MAYEDA et al. 1993). This activity resembles the exon 
inclusion activity of E4-0RF3. By contrast, hnRNP A 1 has been shown to cause 
exon skipping in transcripts with improper exon length or in transcripts with a 
weak 3' splice site preceding an internal exon (MAYEDA et al. 1993). This is 
reminiscent of the activity of E4-0RF6. Similar to the E4-0RF6 protein, hnRNP A 1 
does not appear to cause inappropriate exon skipping on natural. consititutively 
spliced pre-mRNAs containing multiple exons (MAYEDA et al. 1993). The balanced 
expression of ASF/SF2 and hnRNP A 1 has been suggested to play an important 
role in regulation of alternative splicing in eukaryotic cells. Similarly, the level of 
E4-0RF3 and E4-0RF6 expression during adenovirus infection is likely to have 
important consequences for alternative splicing in the infected cell. 

2.5 Temporal Control of L 1 Alternative Splicing 

Expression of the L 1 mRNA family represents an example of alternative splicing 
in which the last intron is spliced using a common 5' splice site and two alternative 
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3' splice sites, generating two cytoplasmic mRNAs: the 52/55K (proximal 3' splice 
site) and the lila (distal 3' splice site) mRNAs (Fig. 4) . The pattern of splicing of the 
L 1 pre-mRNA is regulated during the infectious cycle (CHOW et al. 1979; AKUSJARVI 
and PERSSON 1981; NEVINS and WILSON 1981). The 52/55K mRNA is produced both 
early and late after infection, whereas the Ilia mRNA is produced exclusively late 
(Fig . 4) . Although Ilia splicing is a late-specific event, recent studies have shown 
that the Ilia 3' splice site can be recognized in uninfected cells both in vivo (DELSERT 
et al. 1989) and in vitro (KREIVI et al. 1991). The efficiency of Ilia splicing, however, 
is only around 10% of that of 52/55K splicing (KREIVI et al. 1991). This difference in 
splice site activity correlates with a reduced affinity of the Ilia 3' splice site for 
cellular polypyrimidine-binding proteins such as U2AF (J.P. KREIVI, unpublished 
data); this protein binds with a strong preference for long, pyrimidine-rich se­
quences, the longer the better (ZAMORE et al. 1992). It appears common in nature 
that one of the alternative splice sites in a regulated system has a weaker relative 
strength when compared to the others (SMITH et al. 1989). The 52/55K 3' splice 
site region is characterized by a very long polypyrimidine tract (18 pyrimidines out 
of 19 nucleotides), whereas the Ilia 3' splice site lacks such an extended 
polypyrimidine tract (KREIVI et al. 1991). Selective nuclear extraction procedures 
have suggested that lila splicing may require a distinct cellular trans-acting 
factor(s) that does not have a significant effect on splicing of transcripts which 
conform to the RNA 3' splice site consensus sequence (ZERIVITZ et al. 1992). 
However, the identity of this factor has not been determined. 

The order of RNA splice site presentation is very important in L 1 alternative 
RNA splicing. Although the Ilia 3' splice site is much weaker than the 52/55K 3' 
splice site, it competes efficiently with the 52/55K 3' splice site when it is 
presented as the proximal site in a tandem construct both in vivo (SCHMID et al. 
1987; DELSERT et al. 1989) and in vitro (KREIVI et al. 1991). Thus, the lack of Ilia 
splicing in early-infected cells can in part be explained by the distal location of the 
Ilia 3' splice site on the L 1 pre-mRNA. 

Efficient Ilia splicing requires late viral protein synthesis . The shift from the 
early pattern of exclusive 52/55K splicing to the late pattern of enhanced Ilia 
splicing can be reproduced in vitro, using splicing extracts prepared from the late 
virus-infected cells (KREIVI and AKUSJARVI1994). The activation of Ilia splicing under 

ilia --------------t.~ 
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Fig. 4. Physical map of the L 1 region . The linear genome is shown at the bottom with map units (m.u.) 
for reference. The top two lines represent the Ilia and 52/55K mRNA bodies. The third line shows the 
primary RNA transcript transversing this region, with the L 1 poly (A) site regulatory regions as discussed 
in the text,-50 to-113 and +33 to + 170 with respectto the cleavage site (pAl. shown as hatched boxes 
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such conditions results from an enhanced efficiency of lila splicing in late extracts 
combined with a virus-induced repression of 52/55K splicing. Three important 
findings have emerged to explain the temporal shift in L 1 3' splice site usage. 
First, the shift to increased lila splicing observed in late-infected extracts results 
from an increase in commitment complex formation using the distal (Ilia) 3' splite 
site. Second, splicing of the proximal (52/55K) mRNA is repressed in extracts 
prepared from late extracts. Third, the shift in L 1 3' splice site usage does not 
require cis competition between splice sites, since the upregulation of Ilia splicing 
and inhibition of 52/55K splicing can be observed on transcripts encoding the 
individual 3' splice sites. Interestingly, splicing of other pre-mRNA that contain 
long polypyrimidine tracts are also repressed in late virus-infected extracts 
( . MOHLEMANN, J.-P. KREIVI, and G. AKUSJARVI, submitted for publication). Thus, the 
shift in. specificity of RNA splice site choice from pyrimidine-rich to more purine­
rich 3' splice sites may be a general feature in the control of alternative splicing in 
late virus-infected cells. 

The Ilia 3' splice site is intrinsically weak and has a short, and frequently 
interrupted, polypyrimidine tract (KREIVI et al. 1991) which is poorly recognized by 
cellular polypyrimidine-binding proteins. The drastic increase in Ilia 3' splice site 
recognition in late extracts may be accomplished by the presence of a virus­
encoded splicing factor(s) that shows specificity for nonconsensus 3' splice 
sites. Alternatively, virus infection may lead to an increased synthesis or post­
translational modification of a cellular 3' splice site factor. Such a hypothetical 
virus-induced modulation would probably not involve the general splicing factor 
U2AF, since the steady state concentration of U2AF is not altered in virus-infected 
cells (KREIVI and AKUSJARVI 1994). Also, the activity of U2AF in late extracts does not 
appear to be changed since prespliceosome formation on the 52/55K 3' splice 
site, which efficiently binds U2AF, appears to be unchanged in virus-infected 
compared to uninfected extracts (KREIVI and AKUSJARVI 1994). Thus, regulation of 
Ilia splicing through U2AF would require a modification of that protein such that its 
specificity is extended to include short polypyrimidine tracts. It is also possible 
that adenovirus induces the synthesis of, or post-transcriptionally modifies, a 
second cellular 3' splice site factor which stimulates the activity of nonconsensus 
3' splice sites such as the Ilia 3' splice site. The existence of such a hypothetical 
HeLa cell 3' splice site factor is supported by the observation that uninfected HeLa 
cell nuclear extracts contain a distinct trans-acting factor that stimulates lila 
splicing but does not appear to have a significant effect on 52/55K or [3-globin 
splicing (ZERIVITZ et al. 1992). 

2.6 Regulation of E1A Alternative Splicing 

Considerable efforts have been spent in attempts to unravel the mechanism of 
adenovirus E1 A alternative splicing. The E1 A pre-mRNA gives rise to three major 
mRNAs, the 13S, 12S, and 9S mRNAs (Fig. 5), by alternative use of three 5' splice 
sites (BERK and SHARP 1978; CHOW et al. 1979; PERRICAUDET et al. 1979). and two 



Post-transcriptional Control of Adenovirus Gene Expression 149 

l3S ________ /"-.-..-. ___ _ 

12S _______ ~ ... ___ • 

11S 

lOS 

9S --~----------~,.------. 
'22Z22Z2Z2222Z22?22(Z22222222222222Z2i2222222222Z222(22~22722222222222222i 

500 1000 1500 2000 

Fig. 5. Physical map of the E1A transcription unit. Black arrows represent the exons and thin lines 
represent the introns. For reference, the relevant part of the linear viral DNA is shown at the bottom 
with numbering in base pairs from the left end of the genome. (Adapted from ULFENDAHL et al. 1987; 
STEPHENS and HARLOW 1987) 

minor mRNAs, the 1 OS and 11 S mRNAs, that were first detected in vitro (SCHMID 
et al. 1987) and later shown to be predominantly expressed late after infection 
(STEPHENS and HARLOW 1987; ULFENDAHL et al. 1987). They differ from the 13S and 
12S mRNAs in that they are formed by the removal of an additional intron; the 9S 
5' splice site is joined to a novel 3' splice site located upstream of the 12S 5' splice 
site. The inefficiency of 1 OS and 11 S mRNA production appears to result from the 
unusually long distance between the branch point sequence and the 3' splice site 
in the first intron (more than 50 nucleotides; GADONI et al. 1988; CHEBLI et al. 1989); 
in eukaryotes the distance between the branch site and the splice acceptor is 
usually between 18 and 40 nucleotides (M.J . MOORE et al. 1993). Evidence has 
also been presented that the 13S 5' splice site (POPIELARZ et al. 1994) and a hairpin 
structure, which shortens the operational distance between the branch site and 
the 3' splice site (CHEBLI et al. 1989), are important cis-acting elements for first 
intron splicing . Mutations that destroy or weaken this hairpin result in a reduction 
of 1 OS and 11 S splicing, whereas mutations that strengthen this hairpin improve 
the splicing efficiency (CHEBLI et al. 1989). 

The 9S mRNA is predominantly expressed late after infection and is not 
detected under standard in vitro splicing conditions in uninfected extracts (SCHMID 
et al. 1987). A shift to 9S mRNA production can be induced in several ways. For 
example, reduction of the ionic strength in uninfected extracts has been shown to 
partially activate 9S splicing (SCHMID et al. 1987). The significance of this for 
regulation of E1A splicing in vivo is not clear. Since 5' splice sites are recognized 
in part by RNA-RNA interactions, such an effect may result from differential 
destabilization of hairpins or U snRNA/pre-mRNA interactions. Also, the relative 
concentration of two pairs of cellular splicing factors, hnRNP-A 1 and ASF/SF2 
(MAYEDA and KRAINER 1992) or DSF and ASF/SF2 (HARPER and MANLEY 1991). have 
been shown to modulate 9S splicing in vitro. A high concentration of ASF/SF2 
favors 13S 5' splice site use, whereas a high concentration of hnRNP A 1 or DSF 
activates 9S 5' splice site usage. Changes in the relative concentration of general 
splicing factors which have antagonistic effects on splice site choice are a 
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potentially important way to regulate E1A alternative splicing in vivo. Since 
E4-0RF3 and E4-0RF6 have analogous biological activities to ASF/SF2 and 
hnRNP A 1 (NORDQVIST et al. 1994), they are candidate factors for regulating E1 A 
alternative splicing during infection. Most interestingly, extracts prepared from 
late adenovirus-infected cells have been shown to have an increased capacity to 
splice the 9S mRNA (GATIONI et al. 1991). This effect did not require late viral 
proteins and could be reproduced by addition of the nuclear RNA fraction prepared 
from the late extracts. This modulation of alternative E1 A splicing has been 
explained by a sequestering of general splicing factor(s) by high molecular weight 
nuclear RNA expressed from the MLTU (GATIONI et al. 1991). This RNA fraction is 
rich in RNA splice sites and may efficiently compete for binding of cellular splicing 
factors. The same conclusion concerning regulation of E1A alternative splicing 
was reached based on in vivo experiments using adenovirus infections (LARSSON 
etaI.1991). 
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Fig. 6. Physical map of the E3 transcription unit. Black arrows represent the exons of mRNA a-i , w ith 
the thickness of the arrow indicating the relative abundance of the mRNA. Thin lines indicate the introns 
removed during mRNA maturation. E3A and E3B denote two alternative polyadenylation sites used 
during E3 mRNA formation. For reference, the relevant part of the linear viral DNA is shown at the 
bottom with numbering in map units. Region I designates the position of the splice suppressor 
sequence discussed in the text. (Adapted from WOLD and GOODING 1991) 
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2.7 Regulation of E3 Splicing 

Region E3 is embedded within the MLTU (reviewed in AKUSJARVI et al. 1986). It 
expresses approximately nine alternatively spliced mRNA which are polyadeny­
lated at one of two sites, thus generating the E3A and the E3B families of mRNAs 
(Fig. 6). There are nine predicted E3 proteins in group C adenoviruses, most of 
which have been detected in infected cells by immunoprecipitation (reviewed 
in WOLD and GOODING 1991). Most appear to have a function in virus-host cell 
interactions or in combating immunoserveillance (reviewed by W.S. WOLD et aI., 
this volume). Accumulation of E3 mRNAs is subject to complex regulation. At 
early times after infection mRNAs a, c, f, and h are the most abundant E3 mRNAs. 
Late after infection transcription from the E3 promoter is drastically reduced 
(NEVINS et al. 1979; BHAT and WOLD 1986) and E3 mRNA synthesis is directed by 
the major late promoter. At this stage the mRNA profile changes such that mRNAs 
d and e (containing the tripartite leader) are the most abundant E3 mRNAs 
(TOLLEFSON et al. 1992). 

E3 mRNAexpression has been analyzed both in vivo (summarized below) and 
in vitro (DOMENJOUD et al. 1991). An impressive number of mutant viruses have 
been constructed to study the control of E3 mRNA accumulation. These studies 
have shown that multiple cis sequences around the E3A polyadenytation site 
have a crucial effect on E3 mRNA processing (SCARIA and WOLD 1994). The major 
conclusions are summarized here. A 129-nucleotide sequence element, desig­
nated region I (Fig. 6). that increases synthesis of mRNAs a and c has been 
structurally characterized (BRADY et al. 1992; SCARIA and WOLD 1994). This element 
is believed to function as a splice suppressor sequence, since region I deletion 
mutants show a dramatic increase in synthesis of mRNAs f and h at the expense 
of mRNAs a and c. The easiest interpretation of these studies would be that the 
outcome of E3 processing represents a simple competition between splicing 
(production of mRNAs f and h) and polyadenylation (production of mRNA a) at the 
E3A poly(A) (polyadenylation) site. However, this simple interpretation does not 
seem to be true, since region I mutants produce mRNA d with wild-type efficiency 
(SCARIA and WOLD 1994), suggesting that the E3A polyadenylation site is indeed 
functional. Collectively, the mutant studies have been interpreted to indicate that 
region I may have a specific function as a splice suppressor sequence favoring 
mRNAs a and c production and as a consequence efficient E3 19K production. 
Since this protein works stoichiometrically in reducing cell surface expression of 
major histocompatibility complex class I molecules, its production has to be 
maintained at a high level during infection. Similar splice suppressor ,sequences 
have been shown to increase the synthesis of unspliced mRNA in other systems, 
such as the genomic gag-pol RNA in Rous sarcoma virus (McNALLY and BEEMON 
1992). This conclusion does not exclude the possibility that competition between 
splicing and polyadenylation plays a role in E3 mRNA production. The 3' splice site 
for mRNA f is positioned four nucleotides upstream of the E3A AAUAAA hexa­
nucleotide, and thus competition between binding of splicing and polyadenylation 
factors at this site is likely to regulate mRNA f production. Indeed, a mutation in 
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which the AAUAAA sequence was changed to ATCGAT completely abolished 
E3A poly(A) site usage and resulted in almost exclusive mRNA f production (BRADY 
and WOLD 1988). However, in the natural context of the E3 promoter this cis 
competition does not appear to be sufficient to explain the phenotype of region I 
mutants (SCARIA and WOLD, 1994). 

The mechanism by which region I controls E3 mRNA processing is not yet 
known. It is noteworthy that region I is not located near a conventional splice 
signal or polyadenylation signal. The speculation is that region I binds a cellular 
or viral trans-acting factor that regulates E3 RNA splice site choice (SCARIA and 
WOLD, 1994). However, so far no obvious sequence homology between region 
I and binding sites for cellular or viral trans-acting factors has been found. 

2.8 Effect of Viral DNA Replication 
on Alternative RNA Splice Site Choice 

Although the evidence indicates that the temporal shift in viral mRNA profile is 
dependent on viral protein synthesis, recent data have shown that viral DNA 
replication per se plays an important role in the shift from the early to the late 
pattern of E1 A, E1 B, and L 1 mRNA accumulation in vivo (ADAMI and BABISS 1991; 
LARSSON et al. 1991). However, in the absence of late viral protein synthesis this 
shift was not complete, suggesting that viral proteins playa major regulatory role. 
The requirement for late viral protein synthesis differs among E1A, E1 B, and L 1 
alternative splicing, with L 1 showing the most pronounced dependence on viral 
protein translation. Without efficient late translation the L 1 mRNAs were incom­
pletely spliced, with a large fraction of the cytoplasmic mRNAs retaining the 
i-leader exon (LARSSON et al. 1991). 

The effect of viral DNA replication on the control of late mRNA structure has 
been explained by a sequestration model in which synthesis of large quantities of 
viral transcripts results in titration of one or more limiting cellular splicing factors 
(LARSSON et al. 1991). High molecular weight nuclear RNA expressed from the viral 
genome is rich in RNA splice sites and is proposed to preempt the cellular splicing 
factors that are necessary to maintain the early splice pattern. 

3 Regulation of mRNA 3' End Formation 

3.1 Cleavage and Polyadenylation of 3' Ends: 
General Considerations 

The regulation of gene expression by the alternative use of poly(A) sites is relatively 
rare compared to regulation by alternative splicing. In adenovirus, such regulation is 
most evident in the MLTU. We use the term "3' end formation" to refer to the 
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two-step process of endonucleolytic cleavage of the pre-mRNA followed by 
addition of the poly(A) tail. Much of our understanding of the biochemistry of 3' end 
formation has come from studies on the adenovirus L3 poly(A) site. This has been 
reviewed in depth elsewhere (MANLEY 1988; WICKENS 1990; WAHLE and KELLER 1992), 
but a brief description of the sequences and factors involved is in order here. The 
pre-mRNA molecule usually contains three sequence elements that make up the 
core poly(A) site. These are the cleavage site itself, the highly conserved hexa­
nucleotide AAUAAA, found just upstream of the cleavage site, and a G+U- (or U-) 
rich sequence located just downstream of the cleavage site. At least four bio­
chemically definable factors are involved in 3' end formation. The first factor, CPSF 
(cleavage and polyadenylation specificity factor), binds to the poly(A) site through 
recognition of the AAUAAA. This interaction is unstable, however. Binding of 
a second factor, CStF (cleavage stimulatory factor), is mediated through the G+U­
rich element and results in stabilization of the processing complex and commit­
ment to proceed with the reaction, which also requires the poly(A) polymerase and 
at least one other accessory factor. Cleavage occurs, and the poly(A) tail of 
approximately 200 residues is added to the newly formed 3' end. It is interesting to 
note that, unlike splicing, 3' end processing does not appear to require snRNP or 
other RNA components except for the substrate itself. 

3.2 Expression from the Major Late Transcription Unit 
Late in Infection 

The MLTU encodes five poly(A) sites, one for each family of mRNA, L1-L5 
(LE MOULLEC et al. 1983; see Fig. 2). During the late phase of the infection, RNA 
polymerase transcribes the entire MLTU each time it initiates (with the exception 
of some transcripts that are prematurely terminated very close to the promoter; 
EVANS et al. 1979), terminating somewhere just short of the right end of the 
genome (FRASER et al. 1979; DRESSLER and FRASER 1987). Pulse-labeling experi­
ments performed in the 1970s showed that each of the five poly(A) sites is used 
at roughly the same frequency, with the L 1 site being used slightly less than the 
other four (NEVINS and DARNELL 1978). These same studies demonstrated that 
3' end formation could occur soon after the poly(A) site was transcribed, before 
the RNA polymerase had reached the end of the MLTU. Thus, the promoter 
proximal sites should have a temporal advantage and be used more frequently 
than the distal sites. The reason they do not have such an advantage is not clear, 
but it has been proposed that if the promoter-distal poly(A) sites wer~ stronger 
sites, this could offset the effect of distance (NEVINS and DARNELL 1978). Support for 
this model comes from the recent finding that the L3 site competes more 
effectively for processing factors than the L 1 site (PRESCOTT and FALCK-PEDERSEN 
1992; MANN et al. 1993). Early studies also indicated that use of the L 1 poly(A) site 
might be mechanistically different than use of the other sites (MANLEY et al. 1982). 
In these experiments, nuclei isolated from late-infected cells were pulsed with 
radiolabeled uridine triphosphate (UTP), transcription was blocked, and the RNA 
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was chased into products. What was found was that the L 1 site differed from the 
other sites in that its use required ongoing transcription, thus appearing to be 
more of a cotranscriptional than post-transcriptional event. 

3.3 Expression from the Major Late Transcription Unit 
Early in Infection 

Another layer of regulation of poly(A) site choice became apparent when it was 
discovered that the major late promoter is also active during the early phase of 
infection, giving rise to a different pattern of poly(A) site use (SHAW and ZIFF 1980; 
AKUSJARVI and PERSSON 1981; NEVINS and WILSON 1981). These studies indicated that 
the L 1 poly(A) site is used almost exclusively prior to the onset of DNA replication. 
Moreover, the L4 and L5 regions are not transcribed during the early infection by 
RNA polymerases initiating at the major late promoter; instead, these poly­
merases terminate just upstream of the E3 promoter (IWAMOTO et al. 1986). 

The significance of this change in poly(A) site choice is not completely 
understood. One can speculate, however, that early in the infection the virus uses 
the major late promoter to drive synthesis of the L 1 52/55K protein, which is not 
a structural protein yet is required for viral assembly (HASSON et al. 1-989), in order 
to set the cell up to produce progeny virions. Late in the infection, then, the virus 
switches to production of the virion components and assembles them. In addition, 
it is possible that transcription termination early in the infection is required to 
prevent occlusion of the E2 and E3 promoters by polymerases initiating at the 
major late promoter. 

Recently, a change in poly(A) site use at intermediate times after infection has 
been described (LARSSON et al. 1992). In these experiments, protein synthesis 
inhibitors were used to block translation late in the infection. Under these 
conditions, only L 1 and L4 mRNAs accumulate, implying that the use of the L2, L3 
and L5 poly(A) sites may require one or more late viral factors. 

3.4 Competition Between Polyadenylation Sites 

The simple explanation for how the L 1 site is used predominantly early in the 
infection is the "first come, first seNed" mechanism described above. The finding 
that a miniature MLTU (mini-MLTU), containing only the L 1 and L3 poly(A) sites 
under the control of the major late promoter, exhibits a similar switch in poly(A) 
site choice implies that regulation is accomplished by simple competition bet­
ween the poly(A) sites, with no contribution from splice sites (FALCK-PEDERSEN and 
LOGAN 1989). This fits with the obseNation that 3' end processing precedes 
splicing in vivo (NEVINS and DARNELL 1978). These results have also led to the 
analysis of the cIs-acting sequences that are responsible for the predominant use 
of the L 1 site. A mutational study of the L 1 region indicated that there are 
sequences both upstream of the AAUAAA signal and downstream of the G+U-
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rich element that are required for its preferential use early in the infection (Fig. 4; 
DEZAZZO and IMPERIALE 1989). These same sequences are necessary for a change 
in relative use late in the infection (DEZAZZO et al. 1991). Deletion of either of these 
regulatory elements abolishes both effects. Although the mechanism by which 
these sequences act is not fully understood, progress is being made. For 
example, these sequences only function in cis: if the L 1 poly(A) site is the only 
poly(A) site on the assay construct, deletion of these elements has no effect on 
3' end processing (HALES et al. 1988; DEZAZZO and IMPERIALE 1989). This result is in 
agreement with the finding that if a mini-MLTU containing only the L 1 site is 
cloned onto one adenovirus chromosome, a second mini-MLTU containing only 
the L3 site is cloned onto another, and coinfection with the two viruses is carried 
out, regulation is not seen (FALCK-PEDERSEN and LOGAN 1989). Moreover, these 
same studies demonstrated that if cells are infected, the infection allowed to 
enter the late phase, and a second strain then superinfected, the superinfecting 
virus still gives an early pattern of poly(A) site use. Thus, the switch from early to 
late requires expression from a replicated template and, if it is mediated by trans­
acting factors, these factors are not freely diffusible in the nucleus. In this regard, 
the compartmentalization of viral DNA during replication may be involved in 
regulation of processing in that the local concentration of 3' end processing 
factors may be altered (MOYNE et al. 1978; BODNAR et al. 1989; WALTON et al. 1989; 
MOEN et al. 1990). A redistribution of splicing factors does appear to occur during 
infection (BRIDGE et al. 1993). 

3.5 Possible Mechanisms of the Early-to-Late Switch 

These cis-acting elements are also functional in vitro. When an L 1 poly(A) site 
containing the regulatory sequences is competed in cis in a combined in vitro 
transcription-processing reaction against either another L 1 site without these 
sequences or against the L3 site, the L 1 site with the regulatory sequences is 
used predominantly (WILSON-GUNN et al. 1992). Interestingly, however, when the 
L 1 and L3 sites are competed against each other in trans, or in cis on a 
presynthesized pre-mRNA, the L3 site is preferred (PRESCOTT and FALCK-PEDERSEN 
1992; . KIPATRICK and M.J. IMPERIALE, unpublished work). Therefore, it appears that 
when both sites are simultaneously presented to the processing machinery, L3 is 
the stronger site, but if the L 1 site is presented first, as it would be in the combined 
transcription-processing reaction, the temporal advantage overcomes the lower 
inherent strength of the L 1 site. This model is supported by the recent findings 
that the L3 site has a higher affinity for 3' end processing factors than does the 
L 1 site (PRESCOTT and FALCK-PEDERSEN 1992; MANN et al. 1993). The studies descri­
bed earlier indicating that use of the L 1 site might be more tightly linked to 
transcription than use of the other sites might be of relevance in this regard 
(MANLEY et al. 1982). For example, perhaps differences in the template early and 
late in the infection result in differences in polymerase elongation rates and, 
subsequently, L 1 site use. 
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The question, then, is the following: what are the trans-acting processing 
factors that either recognize these sequences directly or whose binding to other 
sequences is influenced by these regulatory elements? The L3 and L 1 sites 
clearly compete for common factors (PRESCOTr and FALCK-PEDERSEN 1992; MANN 
et al. 1993), but there is no evidence to date for specific factors that interact 
exclusively with the L 1 elements. A recent report looked at the concentration of 
processing factors early and late in an adenovirus infection (MANN et al. 1993). It 
was found that the level of CStF changes during the infection. These investigators 
also showed a slight decrease in the stability of processing complexes bound to 
a mutant L 1 site, but it is unclear whether this can account for the more dramatic 
switch in poly(A) site choice. The continued use of in vitro systems will likely gain 
us more insight into these issues. 

4 mRNA Transport and Stability 

4.1 mRNA Transport: General Considerations 

The term "RNA transport" embraces a number of events in eukaryotic gene 
expression that intervene between the completion of mRNA maturation in the 
nucleus and RNA entry into the actively translating cytoplasmic mRNA pool. These 
transport events include changes in the profile of proteins bound to the RNA (KUMAR 
and PEDERSON 1975; reviewed by DREYFUSS et al. 1993) and changes in the interaction 
of the RNA (as ribonucleoprotein) with a structure known as the nuclear matrix 
(BEREZNEY and COFFEY 1977; CiEJEK et al. 1982; reviewed by SCHRODER et al. 1987), as 
well as the translocation of the RNA from its site of synthesis to and then through 
a nuclear pore to enter the cytoplasmic compartment. Clearly, changes affecting any 
of these events could result in an altered rate of accumulation of RNA in the 
cytoplasmic pool of translatable mRNA. Furthermore, if there were sequence 
preference or specificity in any aspect of RNA handling through the transport 
pathway or if individual transcription units differed in their linkage to the transport 
apparatus, then this phase of gene expression would be a possible target for 
differential control. As the following discussion demonstrates, such control is 
evident during adenovirus infection, serving to facilitate the expression of certain 
viral genes. 

4.2 E1B Mutant Viruses Deficient in Late Gene Expression 

The adenovirus E1 B gene, which encodes two major proteins of 55K and 19K 
(Fig. 7; PERRICAUDET et al. 1980; VAN ORMONDT et al. 1980; Bos et al. 1981), was an 
early target of directed mutagenesis experiments, largely because of its role in 
adenovirus-mediated cell transformation. The resulting mutants have also been 
studied to determine the role of E1 B proteins in lytic infection. Deletion mutations 
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Fig. 7. Physical map of the El B transcription unit. The linear genome is shown with numbering in base 
pairs from the left end of the genome. Filled circles indicate transcription start sites. A single primary 
transcript gives rise to multiple mRNA species that are indicated as bold lines. A second promoter (IX), 
nested within the E1 B region, is also indicated. Boxes indicate the coding regions in each mRNA: 
hatched, E1 B 55K protein or related sequences; shaded, E1 B 19K protein; black, other potential E1 B 
coding segments; open, polypeptide IX (piX) . Below the transcripts the genome lesions are indicated 
in various E1 B mutants used in the characterization of the El B 55K protein (see text for references). 
The point of translation termination resulting from nonsense or frame-shift mutations is indicated by 
an X. The absence of this symbol indicates a missense or in-frame mutation 

specifically disrupting expression of the 55K protein were shown to cause an 
impaired growth phenotype in HeLa cells (BABISS and GINSBERG 1984; LOGAN et al. 
1984). This defect was attributed directly to reduced late viral protein synthesis, 
since neither early gene expression nor viral DNA replication was affected by 
these mutations. Analysis of cytoplasmic mRNAs levels further showed that this 
defect in late protein synthesis was a reflection of reduced levels of the relevant 
cytoplasmic mRNAs; the reduced rate of hexon protein synthesis matched the 
reduction in hexon mRNA levels (BABISS et al. 1985). Classical Ad5 point mutants 
(HARRISON et al. 1977; Ho et al. 1982). shown subsequently to carry specific E1 B 
55K mutations, gave similar results (WILLIAMS et al. 1986). The locations of 
mutations within the E1 B 55k protein used in the above studies are summa­
rized in Fig . 7. 

Contemporaneous with these basic mutational analyses, E1 B gene expres­
sion was shown to be somewhat more complex than had been thought. A 
previously described 18K protein was shown to comprise the Nand C termini of 
E1 B 55K with the central portion removed (ANDERSON et al. 1984). and mRNAs able 
to encode this and a further predicted 55K-related protein were detected (VIRTANEN 
and PETIERSSON 1985). Some of the specific E1 B 55K mutations, including d1338, 
on which much work has been done subsequently, affect synthesis of one or both 
of these proteins as well as 55K. However, a point nonsense mutant pm381 , 
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which affects only 55K and is otherwise isogenic with d1338 (Fig. 7), showed an 
identical phenotype to d1338 (LEPPARD et al. 1987), while splice site mutants 
unable to make some or all of the 55K-related E1 B polypeptides showed no 
growth defect (MONTEll et al. 1984; PllDER et al. 1986a). Thus, the E1 B 55K­
related proteins apparently have no essential unique role in lytic infection, and the 
lack of these proteins does not contribute to the phenotype of those E1 B 55K 
deletion mutants in which their synthesis is affected. 

4.3 A Defect in RNA Transport 
Underlies the E1 B 55K Mutant Phenotype 

Three studies, each employing different E1 B 55K mutants, have concluded that 
the requirement for 55K in viral late gene expression occurs at the level of mRNA 
transport or RNA stabilization postmaturation (BABISS et al. 1985; PllDER et al. 
1986b; WilLIAMS et al. 1986). In each case, the rate of entry of specific newly 
synthesized, late viral mRNA into the cytoplasm was found to be reduced by the 
55K mutation and this effect was seen from the earliest stages of viral late gene 
expression; while these findings could have resulted from effects on preceding 
steps in the pathway of mRNA production rather than from a direct effect on 
mRNA transport, such alternative explanations were excluded by other experi­
ments. In particular, the transcription rate across the ML TU was only minimally 
reduced by the absence of the 55K protein, at a stage of infection at which a 
considerable reduction in cytoplasmic late viral mRNA levels was already apparent 
(BABISS et al. 1985; PllDER et al. 1986b); those transcription rate differences that do 
emerge during the late phase of infection are likely, therefore, to be secondary 
consequences of the mutant phenotype rather than its primary cause. Also, 
steady state levels of selected mature poly(A)+virallate mRNA in the nucleus, as 
determined by Northern analysis, were unaltered in 55K-mutant infections, sug­
gesting that RNA processing is not the primary site of E 1 B 55K action (BABISS et al. 
1985; PllDER et al. 1986b; WilLIAMS et al. 1986). 

The rate of accumulation of an mRNA in the cytoplasmic pool depends on its 
stability as well as its intrinsic rate of transport out of the nucleus. PllDER et al. 
(1986b) showed that L5 cytoplasmic mRNA stability was unaltered in the absence 
of 55K at the beginning of the late phase, but was reduced somewhat later in the 
late phase. WilLIAMS et al. (1986). using different methodology and conditions, 
found some reduction in hexon mRNA half-life during the late phase. In neither 
case could these effects account, either in magnitude or in timing, for the 
observed reduction in cytoplasmic mRNA levels or rates of accumulation, thus 
sustaining the conclusion that the principal target of E1 B 55K action was mRNA 
transport. 

One study has sought to pinpoint directly the site of action of E1 B 55K within 
the transport pathway (LEPPARD and SHENK 1989). Here, a reduced temperature 
incubation was used, both to slow down the events of the transport pathway and 
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to exacerbate the 55K-negative phenotype (certain E1 B 55K mutants show cold 
sensitivity for lytic growth, Ho et al. 1982; df338 was found to display an exten­
ed eclipse phase and reduced final yield at 32°C in comparison with wild-type 
virus, LEPPARD and SHENK 1989). The movement of specific viral mRNA through 
various cellular compartments in either wild type- or mutant-infected HeLa cells 
was monitored by linking a standard in vivo pulse labeling and chase to a frac­
tionation protocol designed to separate cytoplasm, nuclear membrane, soluble 
nucleoplasm, and nuclear matrix. In the absence of E1 B 55K, late viral RNAs 
were released more slowly from the nuclear matrix (the site of transcription and 
processing) and arrived later in the nuclear membrane fraction. There was also a 
striking failure of specific late RNA accumulation in the soluble nuclear fractions, 
taken to indicate dramatically increased turnover of these RNAs in either this or 
preceding compartments in the kinetic pathway. From these observations it was 
concluded that E1 B 55K facilitated an early step in the transport pathway for late 
viral RNA, possibly the release of mature mRNA from the nuclear matrix (i.e., 
entry into the transport pathway), and that in the absence of such release, RNA 
was degraded within the nucleus. A role for E1 B 55K in the early stages of the 
transport pathway is in agreement with data localizing the protein to discrete 
intranuclear sites associated with viral replication and transcription rather than 
with nuclear pore complexes (ORNELLES and SHENK 1991). 

4.4 Selectivity of the E1B 55K RNA Transport Function 

A central feature of the E1 B 55K mutant virus phenotype is the absence of any 
effect on early gene expression other than that directly consequent upon the 
E1 B mutation. Steady state levels of cytoplasmic mRNA from selected early 
genes at early times were not affected by the absence of 55K function (BABISS 
and GINSBERG 1984; PILDER et al. 1986b; WILLIAMS et al. 1986) and a systematic 
analysis, by RNase protection, of the cytoplasmic levels of most of the individual 
mRNA species produced at early times has confirmed the generality of this 
result (LEPPARD 1993 and unpublished data). Interestingly, this finding also 
extends to L 1 52/55K mRNA, the only major late promoter-derived mRNA 
produced at early times, although at later times postinfection, accumulation of 
this mRNA becomes strongly E1 B 55K-dependent. All mRNAs expressed from 
the adenovirus genome during the early phase of infection seem, therefore, to 
be transported to the cytoplasm in an E1 B 55K-independent manner. 

The original demonstrations of defective late mRNA accumulation in E1 B 55K 
mutants employed Northern analysis with probes specific for selected segments 
of the ML TU (BABISS and GINSBERG 1984; PILDER et al. 1986b; WILLIAMS et al. 1986). 
In addition to the MLP, three other promoters, IX, IVa2, and E2-L, are activated in 
the late phase of infection (Fig. 1). The cytoplasmic levels of mRNAs derived from 
each of these promoters also show some dependence on E1 B 55K function 
(LEPPARD 1993). although the reduction in level when 55K is absent is less than for 
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the MLTU-derived mRNAs. Therefore, dependence on the E1 B 55K function is 
not restricted to MLTU-derived RNAs. 

Many adenovirus recombinants which express heterologous gene constructs 
during late infection have been isolated in various contexts. In general, these 
heterologous genes have not been characterized for expression in an E1 B 55K­
deficient background. However, PILDER et al. (1986b) showed that viruses ex­
pressing a second copy of the adenovirus L5 region under heterologous major late 
promoter control did so in an E1 B 55K-dependent manner. In contrast, MOORE and 
SHENK (1988) noted that herpes simplex virus tk gene expression from a re­
combinant virus under major late promoter control did not show any E1 B 55K­
dependence. Further examples will need to be analyzed before any general 
conclusion can be drawn concerning the expression of such heterologous con­
structs in the absence of E1 B 55K. 

The initial studies of E1 B 55K mutants suggested that the levels of defect in 
expression of RNA from specific ML TU segments might not all be equivalent 
(PILDER et al. 1986b; WILLIAMS et al. 1986). Further analysis of the levels of specific 
mRNA species from L 1, L2, and L3 revealed that within each segment it was the 
longest mRNA of the 3' coterminal set that was most strongly dependent on 55K 
function, with the steady state levels of the shorter members being correspond­
ingly less dependent on, or even independent of, this activity (LEPPARD 1993). 
Further evidence for the selective dependence of particular mRNA species on 
normal E 1 B 55K function came from a study of the regulated expression of the E4 
region. This gene transcript is differentially spliced to give at least 14 mRNAs 
(Fig. 3) encoding possibly seven distinct proteins (FREYER et al. 1984; TIGGES and 
RASKAS 1984; VIRTANEN et al. 1984). Certain of these mRNAs, such as C, D, G and 
J, are produced during the early phase, while others (A, E, H, K, U appear later, 
dependent on DNA replication (TIGGES and RASKAS 1984; Ross and ZIFF 1992; Dlx 
and LEPPARD 1993); the latest of these to appear is mRNA A. The cytoplasmic level 
of this mRNA, alone among the multiple E4 mRNA species examined, was 
strongly dependent on normal E1 B 55K function (Dlx and LEPPARD 1993). In 
summary, these data indicate that, while most mRNAs derived from the adeno­
virus genome at late times show some degree of dependence on E1 B 55K for 
cytoplasmic accumulation, there is considerable variation in the extent of that 
dependence, even between mRNAs closely related in sequence (for example E4 
mRNAs A and U. 

What determines whether a late viral mRNA will be strongly or weakly 
dependent on E1 B 55Kfunction? One hypothesis is that it is the presence in a 
mature mRNA of either unused splice donor and/or acceptor sites or.potential intron 
sequences that renders an mRNA strongly dependent on E1 B function (LEPPARD 
1993; Dlx and LEPPARD 1993). mRNAs retaining such features may be recognized as 
incompletely processed and thus retained in the nucleus by host cell systems; such 
systems certainly operate in the uninfected cell (C1EJEK et al. 1982)' and viruses that 
need such mRNAs to be translated might have to specify a function specifically to 
overcome this retention mechanism. This model fits nicely the observed pattern of 
selectivity in both E4 and the MLTU, since all the mRNAs from these genes that are 
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strongly dependent on E1 B 55K retain one or more unused splice sites and hence 
also retain potential intron sequences. In contrast, the less dependent mRNAs, 
which are expressed at late times from these genes, retain no or fewer splice 
signals, with those that are present being generally recognized inefficiently during 
infection (i.e., the resulting mRNAs are low in abundance). The observation that, in 
human immunodeficiency virus gene expression, the cytoplasmic accumulation 
of mRNAs containing unused splice sites critically depends on a viral trans­
acting function (reviewed in CHANG and SHARP 1990) supports the idea that similar 
mechanisms may be required in other systems. 

If E1 B 55K is needed to counteract the effects of a nuclear retention system 
on certain viral mRNAs which contain splicing/intron sequences, why do viral 
mRNAs without these features (e.g., IVa2; Fig. 1) show a low level of dependence 
on this function? One hypothesis, which unites all the above observations, is that 
late viral transcription, in contrast to early transcription, occurs in an environment 
which is poorly coupled to the RNA transport pathway. This circumstance might 
result from the saturation of the capacity of the infected cell for gene expression 
through the normal, efficient pathways in the late phase of infection. It is known 
that replication and late gene expression occur within viral inclusions within the 
nucleus in which viral DNA templates reach high concentrations (MOYNE et al. 
1978; BODNAR et al. 1989; WALTON et al. 1989; MOEN et al. 1990). Under such 
citcumstances, most or all mRNAs produced from late viral transcription com­
plexes would be released from the nuclear matrix into the transport pathway 
inefficiently and so their rate of cytoplasmic accumulation would be enhanced by 
a viral function which facilitated that release. Those mRNAs most strongly 
retained (above) would depend most on that function, suggested to be provided 
by E1 B 55K. Clearly, much further investigation is needed to test the validity of 
this model. 

4.5 Reciprocal Effects 
on Host and Viral Late mRNA Transport 

In the normal course of adenovirus infection, viral protein synthesis dominates 
total synthetic activity during the late phase of infection and host cell protein 
synthesis ceases (BELLO and GINSBERG 1967). In the same time frame, host mRNA 
in general (BELTZ and FLINT 1979), from randomly selected unidentified genes 
(BABICH et al. 1983), or from specific genes (FLINT et al. 1983; PILDER et al. 1986b) 
ceases to reach the cytoplasm, although transcription continues unchecked 
(however, the block to mRNA export from the nucleus is not believed to be the 
cause of the shutoff in protein synthesis; see Sect. 5.2). By contrast, cells infected 
by E1 B 55K mutant viruses show continued host protein synthesis through the 
late phase of the infectious cycle (BABISS and GINSBERG 1984; LOGAN et al. 1984; 
WILLIAMS et al. 1986) and continued entry of host mRNA into the cytoplasm (BABISS 
et al. 1985; PILDER et al. 1986b; WILLIAMS et al. 1986). Thus, the E1 B 55K protein, in 
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addition to having a positive regulatory role in late viral mRNAaccumulation, is also 
required for negative regulation of cellular mRNA accumulation during the late 
phase of infection. 

It remains to be determined whether the apparently reciprocal effects of E1 B 
55K on viral and cellular mRNA accumulation are both direct, independent 
consequences of 55K activity or whether a direct effect of 55K on one aspect of 
gene expression leads indirectly to the other effect. Considered in the context of 
the model for E1 B 55K dependence discussed earlier (Sect. 4.4). the block to cell 
mRNA accumulation could reflect 55K actively disconnecting cell mRNAs from 
a saturated transport apparatus to give viral mRNAs greater access. Alternatively, 
cell mRNAs might be passively excluded from transport by the overwhelming 
mass of viral mRNA that is competent for transport in the presence of E1 B 55K 
activity, although it is hard to envisage such a mechanism giving the 100% shutoff 
of transport of specific mRNAs that is seen. This latter mechanism also fails to 
account for the observation that certain cell mRNAs, products of genes subject to 
transcriptional induction after virus infection, are exempt from the block to export 
( .MOORE et al. 1987). This result can be accommodated more readily in an active 
displacement model, making the assumption that transcription induction increa­
ses the strength of linkage of a transcription complex to the transport machinery. 
Again, further work is needed to understand fully the relationship between the 
effects of E1 B 55K protein on viral and cell gene expression. 

4.6 Involvement of E4 Gene Products 
in Regulated mRNA Transport 

So far, this discussion has been restricted to consideration of the role of the 
adenovirus E1 B 55K protein in RNA transport regulation. However, other viral 
proteins also playa role in regulating this or closely related processes in the 
infected cell. In particular, studies of frame-shifting insertion or deletion mutations 
in each of the candidate E4 coding regions (Fig. 3; see also Sect. 2.4) showed that 
loss of E4-0RF6 function created a late viral and host cell protein synthesis 
phenotype very similar to that of E1 B 55K mutants (HALBERT et al. 1985). Since a 
molecular interaction between E1 B 55K and E4-0RF6 proteins had been pre­
viously described (SARNOW et al. 1984), these observations were taken to indicate 
that this molecular complex was the functional form of the two proteins. This idea 
gained subsequent support from the isolation of an E1 B 55K/E4-0RF6 double 
mutant which showed a pattern of late protein synthesis identical to that of each 
of the two single mutants from which it derived (CUTI et al. 1987). Studies of other 
E4 mutants deficient in ORF6 have given similar results (BRIDGE and KETNER 1989; 
HUANG and HEARING, 1989). 

Although the phenotype of E4-0RF6 mutants is similar to that of E1 B 55K 
mutants, it may not be identical. Some E4-0RF6 mutations show a small reduc­
tion in the rate of viral DNA replication in addition to larger effects on late gene 
expression (HALBERT et al. 1985; HUANG and HEARING 1989), while other ORF6-
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specific mutants have been reported to replicate DNA at normal or near-normal 
levels (BRIDGE and KETNER 1989); in contrast, E1 B 55K mutants show no detectable 
DNA replication defect. It is still unclear whether this apparent difference in 
phenotype reflects subtly distinct roles for the E4-ORF6 and E1 B 55K proteins 
within the complex or whether the E4-ORF6 protein has separate additional 
functions outside the complex. 

In the original genetic analysis of region E4, no phenotype was associated 
with inactivating E4-ORF3 (HALBERT et al. 1985)' unlike ORF6, above. However, 
double mutants of ORF3 and ORF6 have a very severe late gene expression and 
replication defect, suggesting that the functions of ORF3 and ORF6 are largely 
redundant and can compensate for one another (BRIDGE and KETNER 1989; HUANG 
and HEARING, 1989). A similarly severe phenotype is seen for an E 1 B 55K and E4-
ORF3 double mutant (BRIDGE and KETNER 1990). These findings implicated E4-
ORF3, as well as ORF6, in the control of mRNA transport and suggested a model 
in which two parallel pathways for adenovirus late mRNA biogenesis exist in the 
infected cell, one facilitated by E4-ORF3 and the other by E4-ORF6 in complex 
with E1 B 55K, with either one being sufficient for late gene expression to occur at 
significant levels. This model was refined by BRIDGE et al. (1991), who showed that 
E4-ORF6, but not E4-ORF3, stimulated cytoplasmic piX mRNA accumulation 
without having any dramatic effect on nuclear piX accumulation. This result may 
be informative, since the piX gene encodes an unspliced mRNA (ALESTROM et al. 
1980) whose expression would not be expected to be stimulated by the E4-ORF3 
protein if it regulated nuclear RNA accumulation at the level of RNA splicing. 

Kinetic analyses of cytoplasmic mRNA accumulation, analogous to those 
performed for E1 B 55K mutants, have not been reported for either E4-ORF3 
or ORF6 mutants. However, analysis of the steady state levels of a late viral mRNA 
or its unspliced precursors in the nucleus and cytoplasm of either E4-ORF3 or 
ORF3/E1 B 55K double mutant-infected cells showed no evidence for a defect in 
cytoplasmic mRNA accumulation due to the absence of ORF3 that could not be 
fully accounted for by the observed reduction in levels of the relevant RNA in the 
nucleus (BRIDGE and KETNER 1990). Thus, the E4-ORF3 protein may function solely 
as a splicing regulator, with consequent effects on RNA stability in the nucleus 
and/or mRNA recruitment into transport pathways. By similar analyses, mutants 
lacking E4-ORF6 showed a defect in cytoplasmic mRNA levels that could not be 
accounted for by reduced nuclear RNA levels (BRIDGE and KETNER 1990). Although 
the precise quantitation of RNA in these analyses depends crucially on the 
allowance made for changes in DNA copy number (also consequent upon the 
mutation and having a direct effect on the level of late gene expression), these 
findings probably indicate that E4-ORF6 does function directly in l1uclear RNA 
metabolism postmaturation. The collectively available data indicate that E4-ORF6 
serves two functions in RNA metabolism: an effect on nuclear levels of MLTU­
derived RNAs (e.g., stability, probably through a pathway involving RNA splicing) 
that can also be provided by E4-ORF3 and an effect on RNA transport, presumably 
provided in conjunction with E1 B 55K. 
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4.7 Relationship of RNA Transport Regulation 
to Transformation Functions 

The adenovirus E1 B 55K protein is known to be required forthe full transformation 
of rodent cells by infectious virus (BABISS et al. 1984). A review of the basis of this 
activity is outside the scope of this chapter; however, it is relevant to consider 
whether this activity of the protein is related to its known role in lytic infection. This 
point is best addressed by attempts to separate the two functions of E1 B 55K by 
mutation. YEW et al. (1990) reported the isolation and characterization of a series 
of in-frame linker insertion mutants of Ad2 E1 B 55K. Although their data did not 
allow the precise delineation of 55K domains to which specific functions could be 
assigned, certain mutants showed strongly discordant phenotypes in lytic growth 
versus transformation analyses. These data suggest that the biochemical func­
tions of E1 B 55K in these two situations are not identical. 

5 Translational Controls 

5.1 Virus-Associated RNAs Preserve Translational Activity 
During Late Infection 

This aspect of adenovirus infection has been reviewed in detail elsewhere 
(MATHEWS and SHENK 1991; ZHANG and SCHNEIDER 1993) and will be summarized only 
briefly here. Wild-type adenovirus expresses a short RNA pol III transcript, virus­
associated RNA VAl, which has been shown by mutational analysis to be required 
for late viral protein synthesis (THIMMAPPAYA et al. 1982). This RNA blocks the 
activation of the interferon-inducible protein kinase, DAI, by double-stranded (ds) 
RNA that forms due to symmetrical transcription of the viral genome and hence 
prevents the inactivation, by phosphorylation, of the essential translation factor 
elF2-a (SCHNEIDER et al. 1984, 1985; REICHEL et al. 1985). Thus in the absence of 
VAl, little or no translation of viral or cellular mRNA occurs in the late-infected cell. 

5.2 Virus-Mediated Shutoff of Host Protein Synthesis 

Although the effects of virus infection on cellular mRNA transport described 
earlier (Sect. 4.5) apparently correlate with changes in protein synthesis, a direct 
cause and effect relationship between the two effects is unlikely, because the 
block to mRNA transport makes only minimal impact on the cytoplasmic level of 
specific host mRNAs at times postinfection when the shutoff of host protein 
synthesis is virtually complete (BABICH et al. 1983). Also, those host mRNAs which 
escape the transport block nevertheless fail to be translated efficiently ( . MOORE 
et al. 1987). Studies of the inactivation of elF2-a by the protein kinase DAI in 
adenovirus-infected cells led to the suggestion that this inactivation was the basis 
of reduced host cell translation (O'MALLEY et al. 1989). More recently, the inacti-
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vation of cap-binding protein (CBP) has been shown to correlate with the shutoff 
of host cell protein synthesis during wild-type adenovirus infection (HUANG and 
SCHNEIDER 1991; reviewed in ZHANG and SCHNEIDER 1993). Although the shutoff of 
host protein synthesis clearly fails in the absence of E1 B 55K, it remains to be 
demonstrated that either CBP or eIF2-a. inactivation is altered in an E1 B 55K 
mutant infection. However, it is likely that the continued cell protein synthesis in 
such infections reflects a failure to produce a viral component needed to cause 
one or both of these modifications to the translation apparatus. This component 
might be 55K itself or another viral protein whose synthesis is impaired in a 55K 
mutant infection. 

5.3 Selective Translation of Viral Proteins 

As noted above, CBP, an essential translation factor, is inactivated in a late 
adenovirus infection. Despite this inactivation, synthesis of viral proteins conti­
nues efficiently in the infected cell. The ability of late viral mRNA to be translated 
in the absence of active CBP is conferred by the tripartite leader sequence (DOLPH 
et al. 1988). The tripartite leader is a 201-nucleotide RNA segment present at the 
5' end of virtually all late adenovirus mRNAs, and mRNAs carrying it had been 
shown earlier to display enhanced translation in a late adenovirus-infected cell 
(LOGAN and SHENK 1984). Its lack of secondary structure is believed to promote 
ribosome binding (DOLPH et al. 1990). 

A second viral function, the L4 1 OOK protein, is also required for efficient viral 
protein synthesis during late infection (HAYES et al. 1990). In its absence, a reduced 
proportion of specific cytoplasmic viral mRNA is found associated with poly­
somes. L4 1 OOK is known to bind mRNA in vivo (ADAM and DREYFUSS 1987) and in 
vitro (RILEY and FLINT 1993); the altered 1 OOK protein from a ts mutant in L4 that 
displays reduced late protein synthesis at elevated temperature showed a 
corresponding reduction in RNA binding at that restrictive temperature in vitro 
(RILEY and FLINT 1993). The L4 100K protein therefore appears to activate late 
translation via a direct interaction with RNA. Although there is no evidence for 
sequence-specific binding of 1 OOK to the tripartite leader, it is possible that this 
protein in some way mediates the translational enhancement attributed to the 
presence of the tripartite leader; alternatively, since the translation of viral RNA not 
containing tripartite leader is also enhanced by L4 1 OOK (HAYES et al. 1990), it may 
operate through an independent mechanism. Further experiments will be needed 
to determine this point. 

6 Conclusions 

In order to be able to maintain a compact genome size yet remain an effective 
pathogen, adenovirus has taken full advantage of the host cell's capacity to 
regulate gene expression post-transcriptionally. Differential splicing, 3' end pro-
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cessing, transport of mRNA, and stability of mRNA are all employed by the virus 
to maximize coding capacity and to tightly control the expression of its genes as 
well a!i those of the host. 

The common thread that seems to join these different processes together is 
the observation that some change occurs during the switch from the early to the 
late phase of the infection which results in the alteration of mRNA expression 
patterns. Exactly how the viral genome is assembled into chromatin, where it 
resides in the nucleus, and how efficiently each template is transcribed may all 
bear on this issue. The task in the future, then, is to continue to elucidate the 
molecular mechanisms of how the virus interacts with the cell's macromolecular 
synthetic machinery, from both a biochemical and structural standpoint, in order to 
accomplish its goals. Undoubtedly, as has been the case in the past, these studies 
will lend important insights not only into how the virus replicates and causes 
disease, but also into the functioning of the cell itself and the possible use of the 
virus as a tool in treating disease. 
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One of the charms of adenovirus is its unique blend of orthodoxy and idiosyn­
crasy. Although the virus operates largely via host cell mechanisms, at least for 
transcriptional and translational purposes, it coopts these mechanisms by using 
a variety of viral products to modify cellular activities for its own benefit. Nowhere 
is this better illustrated than in the virus-associated (VA) RNA genes, which are 
transcribed by RNA polymerase III (pol III) while the rest of the viral genome is 
grist for pol II. More abundant in the infected cell than any messenger RNA, the 
VA RNAs encode no protein but are essential for efficient translation, a feat that 
is accomplished through a protein kinase that is regulated by highly structured 
RNA molecules. The protein kinase is a key element in the cellular antiviral 
defenses that are induced by interferon, and it is probable that one of the roles of 
the VA RNAs in natural infections is to spike the defensive guns. 

VA RNA is a short RNA molecule with a long history. It was first reported in 
1966 by Weissman's laboratory (REICH et al. 1966) as a remarkably abundant new 
transcript that accumulated in cells infected with adenovirus type 2 (Ad2) and was 
termed VA RNA before hybridization studies demonstrated its viral origin. A few 
years later, work by MATHEWS (1975) and PETIERSSON and PHILIPSON (1975) revealed 
the existence of two Ad2 VA RNA species -a major species, VA RNA 1, equivalent 
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to the original VA RNA. and a minor species, VA RNA. - although not all 
adenoviruses are endowed with two such RNAs. The VA RNAs were among the 
first viral RNAs to be sequenced and have attracted a great deal of attention ever 
since as prototypical members of an expanding class of small virus-encoded 
RNA species, including the EBERs RNAs of Epstein-Barr virus, TAR RNA of 
human immune-deficiency virus (HIV), the U-RNAs of herpesvirus saimiri, the 
leader RNA of vesicular stomatitis virus (VSV) , and the polads of vaccinia. This 
expanding group is heterogeneous in structure, and undoubtedly in function, 
although in many cases the functions are not well understood. For VA RNA" the 
discovery of its function came through a series of experiments conducted by 
Shenk's group. Having defined the gene's promoter as an internal control region 
lying within the transcribed sequences, a mutant virus (dI331) was produced 
which carried a defective version of the gene from which the promoter had 
been excised (THIMMAPPAYA et al. 1982). This virus displayed a lesion in protein 
synthesis at late times of infection as well as an increased sensitivity to inter­
feron. Both of these phenomena were traced to the activation of the protein 
kinase DAI through a series of studies in the Shenk and Mathews laboratories 
(reviewed by MATHEWS and SHENK, 1991). Intriguingly, the equivalent VA RNAII 
mutant displayed no obvious phenotype, and the role of this minor species 
remains a subject of conjecture. 

Like many other viruses, adenovirus activates DAI, the double-stranded 
RNA (dsRNA)-activated inhibitor of protein synthesis. Also known by other 
names (PKR, P1, p68 etc.), the kinase phosphorylates the protein synthesis 
initiation factor e1F-2 on its a-subunit, leading to inhibition of a recycling factor 
(GEF or eIF-2B) and consequently bringing translational initiation in the cell to a 
halt (HERSHEY 1991). This pathway is depicted in Fig. 1. The activator of DAI 
appears to be dsRNA that is produced by symmetrical transcription of the two 
viral DNA strands: presumably, introns (or even exons) generated in large 
quantity by the high rate of viral transcription that occurs late in the infectious 
cycle anneal and overwhelm the cellular mechanisms that normally dispose of 
unwanted dsRNA (MARAN and MATHEWS 1988). With the increased nuclear per­
meability that accompanies the transition to the late phase, the dsRNA could then 
emerge into the cytoplasm where it encounters DAI. Present in many cells and 
tissues in a "latent" or inactive form, DAI becomes an active e1F-2 kinase through 
the act of autophosphorylation, which is mediated by dsRNA (HOVANESSIAN 1991; 
SAMUEL 1991). It is at this step that VA RNA intervenes, by preventing the auto­
phosphorylation and activation of DAI, hence averting the shutdown of protein 
synthesis (MATHEWS 1993). 

In principle, at least, the dsRNA could also leak out of infected cells and 
trigger the induction of interferon leading to the induction of DAI synthesis at the 
transcriptional level (Fig.1). Thus, dsRNA appears to sensitize the cell and 
organism to virus infection and switch on a mechanism that limits virus multipli­
cation. The role of VA RNA - at least its best-known role - is to intercede in the 
interest of viral protein synthesis. Evidence implicating these small RNAs in 
additional functions also exists. This chapter will summarize the current state of 
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The role of Ad2 VA RNAI 
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Fig. 1. The role of adenovirus type 2 (Ad2) virus-associated (VA) RNA I in infection (Summarizes data 
reviewed by MATHEWS and SHENK (1991)). ds, double-stranded; GEF, guanosine nucleotide exchange 
factor (elF -2B); elF, eucaryotic initiation factor 

knowledge in the field. For a comprehensive account of earlier work, the reader 
can consult the review by MATHEWS and SHENK (1991). 

2 Genes for Virus-Associated RNA 

All members of the Adenoviridae examined to date, including those infecting 
humans, monkeys, and birds, have genes encoding VA RNA so it seems likely 
that VA RNA arose early in adenovirus evolution and will be found in viruses 
infecting other species too. Simian adenovirus 7 (SA7) and some of the human 
adenovirus serotypes (those in groups A and F, as well as some group B viruses) 
possess a single VA RNA gene, usually 150-170 nucleotides in length, located at 
approximately map unit 30 on the genetic map (for references, see MA and 
MATHEWS 1993). Transcribed in the rightward direction as the genome is conven­
tionally oriented, it is sandwiched between exons of protein-coding genes. To its 
left is the second coding exon of the E2B gene,which is transcribed to the left and 
encodes the precursor to the terminal protein (pTP); to its right is the first coding 
exon of the L 1 family, transcribed to the right and encoding the 52-55-kDa 
polypeptide (L 1-52,55K). It is unclear whether the location of the VA RNA genes 
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at this particular genomic crossroads is of any significance, and whether the VA 
RNA sense or antisense sequences present in mRNA precursors play any role in 
the viral life cycle is also unknown. 

Most of the human adenovirus serotypes have two VA RNA genes, VA RNA, 
and VA RNA", within the same inteNal (see Fig. 2). They are oriented in the same 
direction and are separated by about 100 nucleotides of spacer sequence. It 
would appear that they originated by gene duplication sometime during the 
evolution of the human adenoviruses, followed by sequence divergence and 
functional specialization as discussed below. Half of the group B viruses, Ad11 
Ad 14, Ad34, and Ad35, seem to have discarded their VA RNA" genes at a late 
stage of their evolution. They possess a single VA RNA which is very similartothe 
VA RNA,of the other group B viruses and different from their VA RNA" species. 
Thus, in this subgroup of the B viruses, the single VA RNA species is of the 
VA RNA, type. Although it has been studied well only in the group C viruses Ad2 
and Ad5, and in Ad7 (a representative of group B), the VA RNA, species is more 
efficiently transcribed and accumulates to higher levels (SODERLUND et al. 1976). All 
of the genes retain sequences corresponding to the A and B boxes that comprise 
the promoter for pol III transcription, as well as the run of T residues that signals 
transcriptional termination. 

Exceptionally, the avian virus CELO (chick embryo lethal orphan) contains a 
VA RNA gene that maps near position 90 on the viral chromosome (LARssoN et al. 
1986). It is transcribed in the leftward direction, giving two RNAs that are 
substantially shorter than their mammalian counterparts: the two forms, of 90 
and 110 nucleotides, respectively, share a common 5' end but differ at their 3' 
ends as a result of the presence of two T-rich sequences which seNe as 
alternative terminal signals. Thus, the CELO VA RNA gene differs sharply from 
the genes of simian and human adenoviruses in its location, length, and tran­
scription; it does not display great homology with the mammalian virus except in 
its B box, so it may also differ in its evolutionary origin and in its function. 

3 Synthesis and Accumulation 

Most of the work on VA RNA synthesis, as well as its function, has been done 
on Ad2 or Ad5, but it seems reasonable to extend the conclusions since 
comparative studies of other serotypes are in general agreement insofar as they 
have been conducted. The VA RNA genes are transcribed copiously, by virtue of 
their strong pol III promoters, and the RNAs are stable and accumulate to high 
levels, possibly because of their compact secondary structure. Transcription 
begins in the early phase and accelerates dramatically late in infection. When 
there are two VA RNA genes, the VA RNA" species is made more slowly, in part 
because its promoter is intrinsically weaker than that of VA RNA, but also 
because of promoter competition (BHAT and THIMMAPPAYA 1984); consequently, 
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Fig. 2. Unrooted tree showing the sequence relationships among the virus-associated (VA) RNAs of 
human and simian adenoviruses. The ovals surround clusters of closely similar sequences and are 
labeled according to the virus group (A-F) and VA RNA type (I or II) in the cluster. When a sequence is 
found in more than one serotype, only a single name is shown to simplify the diagram (e.g., Ad5 
VA, = Adl VA,). (From unpublished data of Y. MA and M.B. MATHEWS) 
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ten- to 20-fold less VA RNAII accumulates. Nevertheless, bearing in mind that 
the VA RNA, concentration exceeds 108 copies per cell (roughly equivalent to 
the number of ribosomes), VA RNAII is still one of the most abundant RNA in the 
cell at late times of infection. 

The VA RNAs display a limited heterogeneity at their 5' and 3' ends. Start site 
selection is influenced by sequences at the 5' end of the gene as well as a short 
distance upstream (THIMMAPPAYA et al. 1979). The precise position of the 3' end 
within the run of T residues, as well as the choice of T-rich runs when there is more 
than one available, is determined by factors not fully understood. The functional 
significance, if any, of the heterogeneity is also a mystery. Consistent with the 
known function of VA RNA" at least a fraction of it is found in association with 
ribosomes upon biochemical fractionation of infected cell extracts (SCHNEIDER et al. 
1984). DAI is also in part ribosome associated (LANGLAND and JACOBS 1992). At the 
ultrastructural level, VA RNA is distributed rather uniformly throughout the 
cytoplasm, as expected. It also appears in the nucleoplasm as fine dots which 
grow larger during the late phase of infection (JIMENEZ-GARCIA et al. 1993). DAI, on 
the other hand, is seen in the nucleolus and diffusely distributed in the nucleo­
plasm, so the two moieties do not colocalize in the nucleus. Conceivably, this 
merely reflects their sites of synthesis (in the case of VA RNA) or assembly (in the 
case of DAI), but alternative explanations cannot be ruled out: for example, one or 
both of them may have an additional function, independent of the other, in the 
nucleus. Binding to a nuclear component, such as the La antigen, an RNA-binding 
protein that interacts with the run of 3' uridylate residues on VA RNA (MATHEWS 
and FRANCOEUR 1984) and is at least partly nuclear, could be responsible for the 
appearance of the RNA in this compartment of the cell. 

4 Secondary Structure 

Ever since the sequence of the Ad2 VA RNA became available, it was evident that 
the molecule is highly folded, and attempts were made to predict its secondary 
structure from thermodynamic parameters. However, none of the most stable 
computer-generated structures was entirely consistent with the experimental 
results obtained using nucleases to probe for regions of single- or double­
strandedness. Accordingly, second-generation models were created to take 
account of the nuclease sensitivity data as well as the base-pairing potential 
inherent in the sequence (MELLITS and MATHEWS 1988; FURTADO ~t aI.1989). An 
example of such a model, one of several that fits the data to a large degree, is 
shown in Fig. 3 (left). This particular structure proved quite robust, serving as a 
working model for several years. It consists of three regions: a terminal stem, in 
which the 5' and 3' ends of the molecule are paired; an apical stem-loop, also 
containing an extended region of duplexed RNA; and a connecting portion, 
dubbed the central domain, composed of a series of stems and loops. 
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Fig. 3. Structure of adenovirus type 2 (Ad2) virus-associated (VA) RNA,. Left, earlier structure, based 
largely on nuclease sensitivity analysis (MATHEWS and MELLITS 1988). Right, recent model, incorporating 
pairing of the conseNed tetranucleotides GGGU and ACCC (MA and MATHEWS 1993 and unpublished 
data; CLARKE and MATHEWS 1994). The three principal regions of the molecule are marked 
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While the structure withstood the test of mutagenesis in the apical stem 
(MELLITS et a1.1992) and (to the limited degree that is was examined) in the 
terminal stem, it succumbed to a detailed mutagenic analysis of the central 
domain that called into question a short but critical stem in this part of the 
molecule (PE'ERY et al. 1993). The groundwork for a revised central domain 
structure was laid by a comparison of the sequences and nuclease sensitivity 
patterns of the VA RNA from Ad2 and Ad7 (two species each) and Ad12 and SA7 
(each with a single VA RNA). This study disclosed the existence of two tetra­
nucleotide sequences that are conserved in all six RNAs (MA and MATHEWS 1993). 
Suggestive of an important structural role, the two tetranucleotides are mutually 
complementary (GGGU: ACCC)' are present in equivalent positions in the several 
VA RNA species, and are insensitive to single-strand-specific nucleases as if they 
are indeed paired. The revised structural model (Fig. 3, right) incorporates this 
conserved tetra nucleotide pair as a short stem within the central domain and is 
supported by data from other sources. First, extension of the phylogenetic 
comparison to include all of the human adenoviruses revealed only two excep­
tions to the conservation of the GGGU:ACCC pair, and in these cases (Ad40 and 
Ad41) the change (to GGGU:ACCU) was minor and still compatible with pairing 
(Y. MA and M.B. MATHEWS, manuscript in preparation). Second, mutagenesis of 
the tetranucleotides bolsters the idea that they pair together (Y. MA and M.B. 
MATHEWS, manuscript in preparation). Third, more refined examination of Ad2 VA 
RNA, with both nucleases and chemical probes (CLARKE and MATHEWS 1995) 
indicates that the central domain probably adopts the conformation shown in 
Fig. 3 (right). 

The revised structure is also compatible overall with the sequences deter­
mined for the VA RNA of other serotypes; although their structures have not 
yet been tested experimentally, it is apparent from sequence comparisons that 
the blueprint for the VA RNAs - with apical and terminal stems and a central 
domain - is evolutionarily durable, despite considerable sequence variation. The 
next challenge is to determine the molecule's tertiary structure. We presently 
have few clues as to the higher-order structure, but nuclease sensitivity analysis 
of central domain mutants suggests that folding in this region brings together 
loops that, in the two-dimensional representation, are depicted as lying far apart 
(PE'ERY et al. 1993). In view of the functional importance of the central domain, a 
deeper understanding of the conformation of this part of the molecule is critical 
for a complete understanding of its interactions with DAI. 

5 Interactions Between Virus Associated RNA and DAI 

DAI binds selectively to dsRNA, rather than single-stranded RNA, with a marked 
preference for perfectly duplexed molecules. It also displays a pronounced size 
dependence: duplexes of less than 30 bp bind poorly; binding efficiency increases 
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steadily between 30 and 85 bp; and longer duplexes bind with high affinity 
(MANCHE et al. 1992). The RNA-binding domain of DAI lies in its N-terminal third, 
while the conserved kinase domain is in the C-terminal half of the protein 
(reviewed by MATHEWS 1993). The RNA-binding domain is composed of two 
copies of a motif that characterizes a number of cellular and viral RNA-binding 
proteins (ST JOHNSTON et al. 1992; GREEN and MATHEWS 1992); each copy of the 
motif is about 67 residues long, rich in basic residues and containing a predicted 
a-helical region at its C terminus. Both copies of the motif are required for 
effective RNA binding, and all mutations studied to date seem to affect the 
binding of dsRNA and VA RNA equally (GREEN and MATHEWS 1992). Because 
dsRNA and VA RNA compete with one another for binding, they appear to bind 
at the same site or at sites that are very closely related. This being the case, it 
would not be surprising if duplex structure in VA RNA played a role in its binding 
to DAI. 

The relationship between VA RNA, structure and function has been addres­
sed in several ways, ranging from direct binding assays conducted in vitro to 
functional assays performed in tissue culture cells. Contrary to expectation, 
these assays unanimously pointto the central domain as a key element in VA 
RNA function, while the contribution of the stems has been disputed. Thus, 
mutations in the central domain have been shown to reduce the binding of VA 
RNA, to DAI in vivo and in vitro, to reduce its ability to block DAI activation by 
dsRNA in vitro, to reduce the efficiency of virus infection, and to reduce its 
ability to stimulate expression of a reporter gene in vivo and in vitro (see, for 
example, GHADGE et al. 1994; CLARKE et al. 1994; reviewed in MATHEWS and SHENK 
1991; MATHEWS 1993). Indeed, to the author's knowledge, no central domain 
mutant has been isolated which displays a wild-type level of function in all 
assays. Presumably this is because most central domain mutations have been 
relatively large, while the structure is subtle and intricate; however, even some 
relatively small alterations, changing as few as two nucleotides, ablate some 
functions (PE'ERY et al. 1993). 

The influence of mutations in stem sequences is less clear-cut, probably 
because the nature of the requirement is less stringent. Some studies have gone 
as far as to conclude that there is no stem requirement at all (GHADGE et al. 1991), 
but a detailed analysis-including the generation of mutations and compensating 
mutations which destroy and restore pairing in the apical stem-led to the 
conclusion that the existence of a stem is important, whereas its sequence is less 
critical (MELLITS et aI.1992). This view is supported by recent data (CLARKE and 
MATHEWS 1995) showing that DAI, as well as the isolated RNA-binding domain of 
the protein, protects a region of VA RNA encompassing the central domain and 
adjacent apical stem from attack by nucleases and chemical probes (Fig. 4). It 
could be argued that the apical stem requirement is more structural than func­
tional, perhaps serving as a scaffold to stabilize the central domain (GHADGE et al. 
1994). The absence of a defined sequence requirement in the region of the apical 
stem proximal to the central domain would be consistent with this view. How­
ever, the existence of close contacts in the minor groove of the helix {CLARKE and 
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MATHEWS, 1995), together with the absence of discernible changes in the central 
domain structure contingent on some apical stem alterations which never­
theless hamper function, makes it more likely that the stem plays a direct role in 
DAI binding. 

How does VA RNA, inhibit DAI activation? The simplest notion - that it 
serves as a competitive inhibitor of binding, much like short or imperfect RNA 
duplexes which fail to activate the enzyme - is rendered unlikely by the finding 
that the central domain, rather than the stems, plays a dominant role in inhibiting 
DAI. For the same reason, a second otherwise attractive hypothesis seems less 
plausible. Autophosphorylation and activation of DAI appear to occur by an 
intramolecular mechanism in which two DAI molecules dimerize on a single 
dsRNA strand. This could explain the dsRNA length dependence of DAI 
activation and, by the same token, could explain why the relatively short stems 
of VA RNA block DAI activation. Unless the central domain contrives to simulate 
a short stem, this idea cannot account for the role of the central domain, 
however. 

A third possibility, which places the central domain firmly at the focus of the 
action, is that this part of the molecule interacts with DAI in such a way as to 
preclude dsRNA binding. This could be accomplished by a conformational change 
which leads to a distortion of the RNA-binding domain. The chief drawbaCk to this 
idea is that it fails to take into account the growing body of data suggesting that the 
binding sites on DAI for VA RNA and dsRNA are the same. Since not all possible 
mutations in DAI have been made, it remains possible that the sites are similar but 
not identical, but this point of view is becoming less tenable as more mutants are 
tested. As a modification of this hypothesis, one might imagine that the central 
domain binds to the same site as dsRNA; once bound, because of its different 
structure, this ligand would failto activate the kinase and instead distorts the 
enzyme in such a way as to preclude activation. Such a view fits most of the 
known facts, but it is open to the criticism that it excludes the apical stem from 
playing any significant role in the process. 

If all the pieces of information are to be accommodated in a single model, 
the most comprehensive account would hold that parts of both the apical stem 
and central domain interact with the RNA-binding domain of DAI and that this 
inhibits either by causing a distortion (as in the previous model) or, alternatively, by 
positioning some portion of the VA RNA molecule - presumably part of the central 
domain - in a sensitive region of the enzyme such that its functioning 
is inhibited. Not only does this model explain the data described up to this point, 
but it also could explain the slight differences between DAI and jts isolated 
RNA-binding domain in protection experiments (CLARKE and MATHEWS 1995). 
However, it will probably require sophisticated biophysical analysis of the VA 
RNA-DAI complex and its separate components, providing high-resolution struc­
tures, to describe the mechanism precisely. 
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6 Additional Virus-Associated RNA Functions 

It seems clear that the predominant, if not the sole, role of Ad2 VA RNA1, is to 
prevent the activation of DAI. Other functions which have been postulated - in 
splicing (SVENSSON and AKuSJARvl, 1985), in mRNA stabilization (STRIJKER et al. 1989; 
SVENSSON and AKuSJARvl 1990); in transient expression assays (SVENSSON and 
AKUSJARVI 1985; KAUFMAN and MURTHA 1987). and possibly in the preferential 
translation of viral versus host mRNA as part of the host cell shutoff phenomenon 
(reviewed by ZHANG and SCHNEIDER 1993) - are all likely to reflect the inhibition of 
kinase activity as an underlying mechanism. On the other hand, the significance 
of VA RNAII is an enigma. It substitutes only poorly for VA RNAI in functional 
assays both in vivo and in vitro, so one might be led to believe that VA RNAII is an 
inert copy, analogous to a pseudogene. The absence of a second VA RNA species 
from several human adenoviruses, as well as from SA7, could be taken as 
evidence in support of this view. 

Circumstantial evidence speaks in favor of VA RNAII as a useful viral gene, 
however. First there is the contention that a virus with as compact a genome as 
adenovirus - sporting many overlapping genes and differentially spliced gene 
products - would not be expected to waste genetic space on a functionless gene. 
This admittedly weak argument is bolstered by a much stronger one, drawn 
from phylogenetic data. The evolutionary tree depicted in Fig. 2 indicates that the 
VA RNAII sequences are no more diverged from one another than are the VA RNAI 
sequences; in fact, they are less divergent because the group C VA RNAI 
sequences are relatively distant from those of groups B, E, and D. If there were 
no function associated with VA RNAII, there would be little pressure to conserve 
its sequence, so the sequences would be expected to drift apart. Because this 
has not occurred, there must be some pressure constraining the drift, most likely 
a VA RNAII function. Third, in a comparison of the single VA RNA of Ad2 and SA7 
with the two VA RNAs of Ad2 and Ad7, the VA RNAI species of Ad2 and Ad7 
worked best, their VA RNAII species registered essentially no activity, and the 
single VA RNA species displayed intermediate efficacy (MA and MATHEWS 1993). 
This hints that the VA RNAs might serve two distinct functions, DAI inhibition and 
some function presently unknown. Thus, the VA RNA I and II species might be 
specialized effectors for DAI inhibition and for the unknown function, respec­
tively, while the single VA RNA species of the group A and F viruses and SA7 
could serve both functions. Since it does double duty, the structure of the single 
VA RNA would represent a compromise between the demands of each function, 
and in consequence it might not do as well as VA RNAI in inhibitin'g the kinase. 

What might this unknown function be? A cardinal principle of adenoviral 
organization is that related functions are clustered on the genome: for example, 
E1 is concerned with transcriptional regulation, E2 with replication, E3 with 
neutralizing host defense mechanisms, and so on. Therefore, in imagining a role 
for VA RNAII, it would be reasonable to consider pathways that are related to the 
DAI pathway in some way. A front-running candidate involves the enzyme 2'-5' 
oligoadenylate synthetase. Like DAI, 2-5A synthetase is induced by interferon 
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and is activated by dsRNA (SAMUEl 1991; HOVANESSIAN 1991). It produces a short 
oligonucleotide of unusual structure, containing 2'-5' linked adenylate residues, 
which in turn activates a ribonuclease, RNase L, thereby limiting infection by 
certain viruses. Just as with VA RNA, and DAI, a mechanism for interfering with 
this antiviral defense would be beneficial to a virus, and we speculate that VA 
RNAII may interfere with the dsRNA-mediated activation of 2-5A synthetase, as 
diagrammed in Fig. 5. Although there is no direct experimental evidence for this 
hypothesis at present. it could explain why some adenoviruses in group B (e.g., 
Ad11 and Ad14) seem to have lost their VA RNAII genes secondarily. Perhaps in 
certain cell types or environments the 2-5A pathway is not a threat to the virus, 
so a mechanism to neutralize it would be superfluous: in such a case, there would 
be no advantage to expressing VA RNA II' and the pressures to compact the viral 
genome might lead to loss of the gene. Further investigations will be required to 
establish or refute this hypothesis. 

7 Concluding Remarks 

Investigation of VA RNA structure and function has shed light on the cellular 
processes that involve this viral gene product as well as on the viral genes 
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themselves. Because the adenovirus genome is limited in size, the virus confines 
itself to the essentials and targets important cellular processes for its attention. 
The study of VA RNA, has illuminated the functioning of the protein kinase DAI, 
translational control, and aspects of the interferon response - and continues to 
do so. Whether the discovery of the function of VA RNAII will be equally instruc­
tive remains to be seen. 
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In earlier work from this laboratory, we used human adenovirus type 12 (Ad12) 
extensively for basic research on the mechanism and the consequences of 
foreign DNA integration into mammalian genomes (DOERFLER 1968, 1970; for 
recent reviews DOERFLER 1991, 1992, 1993, 1995; FECHTELER et al. 1995). The 
investigations on Ad12 DNA integration led to a long-standing interest in the 
biological significance of DNA methylation, its role in the long-term silencing of 
eukaryotic promoters, and the mechanism of de novo methylation of foreign DNA 
in mammalian cells (SUDER et al. 1978; SUDER and DOERFLER 1980; DOERFLER 1981, 
1983, 1991, 1993, 1995). In the course of these studies it became necessary 
to perform nucleotide sequence determinations in various parts of the Ad12 
genome. Recently, the entire nucleotide sequence was completed (SPRENGEL et al. 
1994) and made generally available under EMBO Accession Number X73487. 
Complete nucleotide sequences were thus available for the DNAs of adenovirus 
type 2 (Ad2) (ROBERTS et al. 1986), Ad5 (CHROBOCZEK et al. 1992), Ad12 (SPRENGEL 
et al. 1994), and Ad40 (DAVISON et al. 1993; MAUTNER et al. 1995). 

During the productive infection of human cells in culture with Ad2 or Ad12, it 
was shown that the viral genome (Ad2) could recombine with human cellular DNA 

1 Institut fUr Genetik, Universitat zu Kbln, Weyertal 121, 50931 Cologne. Germany 
2 Present address: Oiagen, Max-Volmer-Str. 4, 40724 Hilden, Germany 



190 J. Sprengel et al. 

(BURGER and DOERFLER 1974; SCHICK et al. 1976) and that parts of the Ad12 genome 
were able to form symmetric recombinant (SYREC) molecules with human cell 
DNA (DEURING et al. 1981; DEURING and DOERFLER 1983). These SYREC molecules 
(Ad12) represented huge palindromes, in one instance with the left terminal 2081 
nucleotide pairs (nt.p.) from the left end of Ad12 DNA at either terminus and two 
symmetric stretches of cellular DNA between them. Upon denaturation and 
renaturation, half-length molecules could be demonstrated by electron micro­
scopy (DEURING et al. 1981). 

In constructing the Pstl clones of Ad12 DNA in the pBluescript KS vector, it 
was therefore mandatory to observe special precautions in order not to include 
Ad12-cellular DNA recombinants. Ad12 DNA was therefore prepared from the 
second passage of Ad12 on human embryonic kidney (HEK) cells of a newly 
purchased Ad12 inoculum from the American Type Culture Collection (ATCC VR-
863). The Pst I fragments from this Ad12 DNA preparation were immediately 
cloned. Experimental details were published previously (SPRENGEL et al. 1994). 
The entire nucleotide sequence in the double-stranded form was presented at 
the end of this paper (Fig. 10). The 17 Pstl cleavage sites used for cloing were 
indicated in the nucleotide sequence. 

It was reported previously that DNA sequences in the nucleic acid data bases 
GenBank or EMBL were not infrequently contaminated with DNA sequences 
from the vector (KRISTENSEN et al. 1992; LOPEZ 1992). We paid particular attention 
to this possibility before reporting the Ad12 nucleotide sequence and were 
confident that the Ad12 DNA sequence was free of vector contaminations. 

The total nucleotide sequence of 34 125 nucleotide pairs was determined 
independently for both DNA strands by using appropriate synthetic oligodeoxy­
ribonucleotide primers and a 373A DNA Synthesizer of Applied Biosystems. At 
randomly selected sites, a total of 3513 nt.p. (1 0.3%) of this nucleotide sequence 
was also determined "by hand" in a simple gel electrophoresis apparatus. Dis­
crepancies between these results and those of the automated procedure were 
not found. 

When we compared our nucleotide sequence with partial Ad12 DNA sequen­
ces reported earlier from several other laboratories, occasional deviations were 
apparent, as reported (SPRENGEL et al. 1994). Considering the different origins and/ 
or passage histories of various Ad12 isolates used in nucleotide sequence work, 
such variations were to be expected. 

2 Regions of Repetitive Sequences 

The interest in repetitive DNA sequences, especially in their functional signifi­
cance and in their facility to expand triplet repeats, led us to search for such 
structures in the Ad12 genome. For this search, a synthetic query DNA sequence 
was used with the programs COMPARE/DOTPLOT from the GCG program 



Nucleotide Sequence of the DNA of Human Adenovirus Type 12 191 

package (DEVEREUX et al. 1984). An artificial query sequence was constructed by 
creating multiple repeats for all 64 triplet sequences, regardless of the redun­
dancy which was introduced by the complementarity of DNA and the conversion 
of one triplet into another due to frame shifts. 

The relatively high copy number of 200 was chosen to simplify annotations. 
The advantage of visualizing repeats in this way was based on the ability to modify 
the stringency of the repeat regions. Application of this method revealed repeats 
and repeat-like segments as indicated by vertical lines in Fig. 1. The projections of 
vertical lines to the abscissa marked the positions in the Ad12 genome, the 
projections to the ordinate individual triplets. 
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Fig. 1. Repeat-like regions in the human adenovirus type 12 genome. This dot plot was generated by 
the programs COMPARE/DOTPLOT. Window size and stringency were set at 21 and 16.0, respectively. 
The query sequence used to probe for repeat-like structures contained all 64 possible triplets, each with 
a copy number of 200. Note that part of the information is redundant. Vertical bars indicate the positions 
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One of these repeat-like regions was located in the Pstl-E fragment close to 
the region of the E2-promoter of the Ad12 genome. The identified GGA repeat 
also presented a purine-rich DNA sequence motif which was thought to 
contribute to enhancer activities in SV40 and Iymphotropic papovavirus DNAs 
(PETTERSON and SCHAFFNER 1987). 

The alignment in Fig. 2 was produced with the program Ifasta (PEARSON and 
LIPMAN 1988) and revealed a multiple repeat of the triplet GGA in its core region. If 
the alignment was transposed/into the usual notation in which the sequence 
patterns were presented. the repetitive structure at position 23 885 in Ad12 DNA 
became distinct: 

Although non-GGA triplets were also part of the segment. the interspersed 
bases were in-frame and the whole segment could be presented as an (nnn)20 
repeat. The (nnn)20 sequence stretch carried 11 GGA-triplets together with five 
less stringent nGA and GGn triplets and was interrupted by only four triplets with 
different compositions. This striking repeat alignment could also be extended 
upstream to nucleotide 24 828. 

Constructing a "more perfect" (GGA)17 triplet segment by mutating the 
corresponding nucleotides. we easily could demonstrate the effect of an adeno­
viral-human interaction correlated to the fidelity of the (GGA) repeat in the virus. 
Exchanging the internal GGC to a (GGA) would result in a (GGA)6 repeat without 
affecting the amino acid translation in this frame. All triplets code for the amino 
acid glycine. 

TripI GGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 
III 111111 II 1111 III 11111 1111 1111 

Ad12 GGAAATCTGGGAGGAAGAATCTTGGGAGAGTCAGGCAGAGGACGAGGTCGAGG 
24830 24840 24850 24860 24870 24880 

TripI AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 
I III II 1"1111111111111 III II 11111 1111111111 

Ad12 ACTTGGAAGAATGGGAGGAGGAGGAGGCGGACAGCCTAGACGAGGATCCAGAGGAGGAGG 
24890 24900 24910 24920 24930 24940 

TripI AGGAGGAGGAGGAGGA-GGAG 
1111 I 1111 1111 

Ad12 AGGAAGGTTCCAAGGACGGAG 

Fig. 2. Core region of the alignment of the query GGA-repeat sequence to Ad12 DNA 
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3 Nucleotide Sequence Comparison 
to Other Adenovirus Genomes 

Up to data base release 41 of December 1994 in the EMBL data base, the 
complete nucleic acid sequences of adenovirus type 2 (ROBERTS et al. 1986), 
type 5 (CHROBOCZEK et al. 1992), type 12 (SPRENGEL et al. 1994), and type 40 
(DAVISON et al. 1993) were published. Table 1 summarizes general information 
about these sequences. 

To elucidate similarities or, perhaps more interestingly, differences between 
these genomes, we constructed a multiple alignment of all four sequences using 
the program CLUSTAL V (HIGGINS et al. 1992). A similarity profile based on these 
multiple alignments is shown in Fig. 3. 

Although the profile provides interesting information about locations and 
sizes of divergent or similar regions, one should be careful not to overinterpret 
these results for the following reasons: 

1. Alignment of four different DNA sequences of slightly different lengths of 
about 3.5 x 104 nt.p. requires an "overall best solution", which could be com­
promised by local translocations, inversions, and duplications in certain se­
quences. 

2. Due to the excessive search space and the resulting exorbitant memory 
requirements and computing power, the alignment had to be constructed 
using the default parameters inherent in the CLUSTAL V algorithm. 

3. The close similarity between Ad2 and Ad5 DNA of nearly 90% biased the 
profile towards this genome pair. 

Nevertheless, Fig. 3 presents some general properties of the sequence 
similarity profile. This profile was affected by sequence motifs, similarities and 
divergent regions with a length of at least one third of the window size. Depending 
on the window in which similarities were determined, short-, mid-, and long-range 
phenomena had to be distinguished. For a general oveNiew, we screened the 
profile with a 4000-nucleotide window (insert in Fig. 3). Nucleotide numbers 
reflect positions of the multiple alignment but not positions in one of the analyzed 
adenovirus genomes. 

Table 1. Completely sequenced adenovirus genomes; lengths of genomes are given in nucleotides 

Type Group Cons' Length IDb ACb 

2 E Yes 35937 AD2 J01917 
5 E Yes 35935 ADRCOMPGE M73260 

12 A No 34125 AT12CGA X73487 
40 F No 34214 ADRGENOME L19443 

'Indicates whether a sequence was determined as a consensus sequence. 
biD and AC, data base identifiers and accession numbers. respectively. 

ROBERTS et al. (1986) 
CHROBOCZEK et al.(1992) 
SPRENGEL et al. (1994) 
DAVISON et al. (1993) 
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The average similarity between the DNA sequences of the adenoviral ge­
nomes was estimated to be about 63%. The type-specific inverted terminal 
repeats (ITR) at the left and right ends of all adenovirus genomes exhibited a 
similarity well below the average of about 63%. The remarkable increase in the 
profile of up to 76% in the region between nucleotides 2 000 and 10000 reflected 
the highest similarity. The genes for DNA polymerase, terminal protein, and 
hexon-associated protein were located in this area. From nucleotide positions 

; \/ 

50"_ 

\74a \7 4b 

'0000 20000 30000 

Fig. 3. Similarities among the completely determined adenovirus DNA sequences. Similarity profile is 
derived from a multiple alignment of all the published, complete sequences of adenoviral genomes. 
Window size was 1000 nucleotides. Insert shows profile determined using a window size of 4000 
nucleotides. Numbering reflects positions in the alignment not in the sequence itself. Sequence 
segments flanking regions of similarity ("'1, "'2, "'3, and "'4) and of remarkable divergence ('\71, V2, V3, 
V4a, and V4b) were used to probe and to identify the corresponding areas in the adenovirus genomes. 

,11 This region (positions 11 800-13 200 in the alignment) belonged to the coding regions for the agno 
DNA binding protein, the LI 52K protein, the DNA polymerase, and the terminal protein and was found 
in all four genomes with a similarity close to 80%. 

,12 This peak region (positions 20 400-22 400 in the alignment) contains the hexon gene similar in all 
adenoviruses. 

,13 The region around nucleotide 26 000 belongs to the L 100 gene and to E2A transcripts. 

,14 I n the remarkable depression of the profile at the right end of the genomes, a moderately increased 
similarity was identified as the region which coded for the fiber protein. 

VI This depression resulted from a lack of sequence in Ad12 DNA. It was, how ever, represented in 
Ad2 and Ad5 DNAs and was identified as the region coding for VAil RNA which did not exist in Ad 12. 

V2, V3 These regions of divergence were not directly correlated to a certain function. 

V 4a, V 4b The whole segment (positions 28 000-34 000 in the alignment) corresponded to the intensely 
spliced regions E3 and E4, the most divergent regions in the adenovirus genomes 
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10 000 to 21 000 the similarity decreased but was still close to the average value. 
After an increase of the profile to about 70% at approximately position 21000, a 
marked depression to 40% similarity correlated with the intensively spliced 
regions E3 and E4. 

For a more elaborate profile analysis we utilized a window size of 1000 
nucleotides (Fig. 3). Further narrowing resulted in too much noise to provide useful 
information. For short-range comparisons, the "overall alignment" was not suitable. 

4 Restriction Maps of Ad12 DNA 

Table 2 summarizes cleavage sites and the resulting fragment lengths of a 
number of selected restriction enzymes for Ad12 DNA. In this sequencing project, 
the cloned Pstl fragments of Ad12 DNA were used to determine the entire Ad12 
DNA sequence. 

Adenovirus research in this laboratory has focused on the status and dyna­
mics in the development of DNA methylation patterns of integrated Ad12 (foreign) 
DNA in mammalian host cells. Figure 4 presents a graph with all the cleavage 
sites of the commonly used enzymes Pst!, EcoRI, BamHI, and Hindlll, and, in 
addition, the cleavage sites ofthe enzymes Hhal and Hpall (Mspl). Hhal and Hpall 
are methylation-sensitive restriction endonucleases frequently used in research 
on DNA methylation patterns. To illustrate one major drawback in investigating 

Table 2. Restriction maps of human adenovirus type 12 

Pstl HindIlI EcoRI 
from - to size from - to size from - to size 

A 1.'>.544 -20884 .5341 A 22719-27974 .52.56 A 22021 -3412.5 1210·5 
B :}.584 - 8.5.58 487.5 B 6233 -10874 4642 B 9.587 -18804 9218 
C 1 - 3.583 3.583 C 109.5.5 -14.590 36:}6 C 1 - .5.574 .5.574 
D 2088.5 -240.53 3169 D 14.591 -181.57 3.567 D .5.57.5 - 9.586 4012 
E 240.54 -2672.5 2672 E 30828-3412.5 3298 E 1880.5 -21299 249.5 
F 11108 -12862 l7S.5 F 3708 - 6232 2.52.5 F 21300 -22020 721 
G 26726 -283,54 1629 G 1 - 2319 2319 BamHl 
H 283.5.5 -29967 1613 H 2797.5 -29760 1786 from - to size 
I 30629 -32121 1493 I 2320 - 3707 1388 A 1 - 7999 7999 
.) 8.5.59 - 98.56 1298 .)1 190.51 -201.59 1109 B 2492.5 -30121 .5197 
K 142.54 -1.5,543 1290 .)2 20160 -21199 1040 C 20362 -24924 4.563 
L 33001 -3412.5 112.5 K 29836 -30827 992 D 11612 -16090 4479 
M 32122 -33000 879 L 22043 -22718 676 E 30122 -3412.5 4004 
N 98.57 -10698 842 M 181.58 -1869.5 .538 F 17461 -20361 2901 
0 13417 -142.53 837 N 21200 -21682 483 G 8000 -10331 2332 
P 29968 -30628 661 0 21683 -22042 360 H 10332 -11611 1280 

Q 12863 -13416 .5.54 P 18696 -190.50 3.5.5 I 16091 -17224 1134 
R 10699 -11107 409 Q 10875 -109,54 80 .) 17225 -17460 236 

R 29761 -29835 75 
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the target sites of the DNA methyltransferase system (5'-CG-3') with a few 
methylation~sensitive enzymes, Fig. 4 contrasts all 1500 5'-CG-3' dinucleotides 
in the Ad12 genome with the 75 Hpal/-Mspl (5'-CCGG-3') and the 181 Hhal 
(5'-GCGC-3') sites. Thus, of the 1500 sequences that could become methylated 
only 256, i.e., about 17%, could be assessed for their methylation status by the 
two methylation-sensitive restrictases. 

5 Open Reading Frames in the Ad12 Genome 

Table 3 summarizes start signals, reading frames, and lengths in amino acids of 
the putative proteins deduced from the open reading frames in the Ad12 DNA 
sequence. Moreover, the identifiers of all known homologous adenoviral proteins 
published in the SwissProt protein data base are included in the table. The 
proteins in the E3 and E4 regions, which are subject to intensive splicing, are not 
specified in detail. We did not try to predict native proteins in these regions. 
Figure 5 presents the organization of and landmarks in the Ad12 genome, i.e., the 
locations of prominent reading frames, the matching protein identifiers,and the 
location of the adenoviral promoters, which are indicated by triangles pointing 
in the direction of transcription. 

The open reading frame for the Ad12-encoded fiber protein (FIBP) (Table 4) 
was located in the intensely spliced region E3. The classification of the adenovirus 
subgroups has been based on the specificity of serological reactions. Hetero­
geneity in the amino acid sequences (Fig. 6) reflected serological divergence. 
This observation is consistent with the structurally and biologically exposed 
location of the fiber protein on the virus surface. The fiber is predominantly 
recognized as antigen by the host's immunological defense. 

6 The Viral Endoprotease 

The important function of the endoprotease VPRT in virus maturation possibly 
explains the much more homogeneous similarity profile as compared with that of 
the fiber protein (Figs. 6, 7). 

The open reading frame of the Ad12 endoprotease consists of '257 amino 
acids, whereas all other published adenoviral endoprotease sequences have a total 
length of around 210 amino acids. We repeatedly redetermined the nucleotide 
sequence in this region of the Ad12 genome and ascertained this striking length 
difference of > 50 amino acids. So far, the Ad12 endoprotease has not yet been 
isolated and analyzed from Ad12-infected cells. Sequence analyses for a cryptic 
splice site or a presumptive processing signal for the N-terminal 51 amino acid 
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Table 3. Adenovirus proteins 

Human adenovirus Protein Swiss Prot entry" 
type 12 reading frame 
Start Length Prefix Serotype 

nt aa 

503 B 198 E1A Protein E1A 12, S7, 7, 4, 2, 5, 40, NT, M1 
1542 C 163 E1 B small antigen E1BS 12, S7, 4, 40, 41, 2, 5, 7, NT, M1 
1847 B 482 EIB large antigen E1BL 12,7,2,5,40,41, NT, C2, M1 
3374 B 144 Hexon-associated 

protein IX HEX9 12,2,5,7, NT, C2 
6142 A 52 Y115 7,2 
7602 C 373 DNA-binding protein DNBI 2, 7 
8438 B 43 Y145 7 

10428 C 205 Late L 1 52-kD protein L52 2, 5, 7 
11570 B 582 Hexon-associated protein HEX3 2, 5 
13394 B 497 Penton, protein III PEN3 5, 2 
14902 A 188 Major core, protein VII VC07 2,5 
15500 B 347 Minor core, protein V VCOM 2, 5 
16568 B 72 11 kD protein 11KD 2 
16843 A 265 Protein VI, precursor PIV6 2,5,41 
17740 A 919 Hexon, late L2 protein HEX 41,40,5,2, B3, 12 
20372 B 51 (see text) 
20525 B 206 Endoprotease, late L3 VPRT 12,41,40,2,5,3, B3,4, B7 
22695 C 782 Late 100-kD L100 5,2,41,40 
22927 A 100 YL11 41 
25202 B 118 33-kD phosphoprotein V33P 2,5,41,40 
25612 A 233 Hexon-associated 

protein VIII HEX8 41,2,5,3, M1, C1, 40 
26313 C 105 Protein of the E3 region E312 3, 2, 5 
28207 A 91 Protein of the E3 region E310 3, 7, 2, 5 
28479 C 110 Protein of the E3 region E315 2, 5, 3, 7 
28804 A 128 Protein of the E3 region E314 5,2,7,3 
29368 A 587 Fiber protein FIBP 2,5,41,40,40,41,3, Ml, 7, 
C1 

5202 F 452 Maturation protein IVa2 PIV2 5,2,7, M1, 12 
8138 E 1061 DNA polymerase DPOL 12,2,5,7 

10132 D 606 Terminal protein TERM 12,2,5,7 
22669 D 484 E2A DNA-binding protein DNB2 12,40,41,5,2,4,7 
23753 E 43 YL12 41 
24067 D 53 YL13 41 
31407 F 74 Protein of the E4 region E417 2, 3 
32311 D 291 Protein of the E4 region E434 2, Ml, 2 
32606 E 120 Protein of the E4 region E413 2 
32963 E 116 Protein of the E4 region E411 5,2 
33355 D 131 Protein of the E4 region EXXK 2 
33770 E 127 Protein of the E4 region EXXK 2 

nt, Nucleotides; aa, amino acids. 
'Known adenoviral proteins published in the Swiss Prot database. In addition to the human adena-
viruses, viruses with the following host ranges were taken into account: NT. Tupaja; M1, mouse type1; 
C1, C2, canine types 1 and 2; 83, B7 bovine types 3 and 7; 57, simian type 7. 
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Fig. 5. Organization of the Ad12 genome. Shaded boxes represent identified proteins; open boxes 
indicate reading frames of 80 amino acids minimum. Promoters are designated by filled triangles 

Table 4. Adenoviral fiber proteins 

Type Length Weight Reference 
(amino acids) (KD) 

2 582 61.9 HERISSE et al. (1981) 
3 319 34.8 SIGNAs et al. (1985) 
5 581 61 .6 CHROBOCZEK and JACROT (1987) 
7 343 37.3 HONG et al. (1988) 
12 587 61.7 SPRENGEL et al. (1994) 
40 547 59.1 KIDD and ERASMUS (1989) 
41 562 60.6 PIENIAZEK et al. (1989) 
C1 543 57.0 DRAGULEV et al. (1991) 
M1 613 66.8 RAVIPRAKASH et al. (1989) 

i':t:tP 

~ P 

I'fJdeoIcI8I 
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Fig. 6. Similarity profile of adenoviral fiber proteins, deduced from the multiple alignment shown in 
Fig. 7. Numbering reflects positions in the alignment not in the nucleotide sequence 

peptide did not reveal any clues . This N-terminal peptide did not exhibit significant 
similarities to known proteins or protein motifs taken from the Swiss-Prot data 
base, suggesting that this peptide might not belong to the native protein . 

Table 5 compares published amino acid sequences, their lengths, molecular 
weights, and similarities of adenoviral endoproteases (Fig. 8) with the same para­
meters of the Ad12 endoprotease. We observed one deviation in the amino acid 
sequence deduced for the endoprotease from our Ad12 DNA sequence to the 
previously published Ad12 endoprotease sequence (HOUDE and WEBER 1988b) 
(see highlighted amino acid in Fig. 9, at position 191 in the alignment sequence) : 
Serine'Boin VPRT-Ad12 (HOUDE and WEBER 1988b) was found to be an asparaginelBo . 

The adenoviral endoprotease has been shown to cleave specifically alanine­
glycine-alanine residues in the virus precursor proteins TERM, pVI. pVII, Iia and 
11 kD (AKUSJARVI et al. 1981) and is thus essential for virus maturation. The 
catalytically active residues histidine60• asparticlOB. and serine'Bo. as well as the 

Table 5. Adenoviral endoproteases 

Type Length Weight Similarity Reference 
amino acids (KD) (%) 

2 204 23.1 75.9 AKUSJARVI et al. (1981) 
3 209 23.8 80.1 HOUDE and WEBER (1988a) 
4 201 22.8 70.6 HOUDE and WEBER (1987) 
5 204 23.0 75.9 KRUIJER et al. (1980) 
12' 206 23.5 99.5 HOUDE and WEBER (1988b) 
*12 206 23.5 100 SPRENGEL et a I. (1994) 
40 205 23.3 77.1 Vos et al. (1988) 
41 214 24.5 79.9 (Vos et al. (1988) 
B3 204 23.3 67.2 (CAl et al. (1990a) 
B7 202 23.3 39.1 CAl et al. 1990b) 

'The previously published protein sequence of the Ad12 endoprotease (HOUDE and WEBER, 1988b) and 
our deduced protein sequence (*12) differed in one position. The similarity was related to the *12 
VPRT protein sequence. 
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Fig. 7. Multiple alignment of the amino acid sequences of known adenovirus fiber proteins (FIBP) . Gaps 
introduced by the alignment program are shaded. The following adenovirus serotypes are included: 
2,3,5,7,40,41, C1, M1 and 12. Bottom-most entry shows the protein sequence derived from the 
completely sequenced human adenovirus type 12 genome 

Internal cleavage site alanine-glycine52- 53 , are parts of the highly conserved 
regions in these adenovirus proteins (see Figs. 8, 9) . 
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Fig. 8. Similarity profile of adenoviral endoproteases, deduced from the multiple alignment shown in 
Fig. 9, considers identical amino acid residues. Charge similarities of the amino aCids are not taken Into 
consideration. Numbering reflects positions in the alignment, not in the nucleotide sequence 
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Fig. 9. Multiple alignments of the amino acid sequences of the known endoproteases (VR7) from 
adenovirus types 2, 3, 4,5,40,41, B3, B7, and 12. Gaps introduced by the alignment program are light 
gray. Bottom-most entry shows the protein sequence derived from our Ad12 DNA sequence data 
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7 Presumptive Locations of Ad12 Promoters 

We identified positions of the viral promoter regions in the Ad12 genome by 
utilizing the Eucaryotic Promoter Database (EPD) (BUCHER and TRIFONOV 1986). As 
mentioned before, only biochemical data identified the exact position of a 
promoter as known for the major late promoter (MLP). 

8 The Human Adenovirus Type 12 DNA Sequence 

In closing, it should be mentioned that we failed to detect motifs in the Ad12 DNA 
nucleotide sequence that resembled previously published integrase-like or DNA 
methyltransferase-like sequences at the protein level. Such motifs would have 
been of interest for two of the main lines of research in the authors' laboratory. 

The complete double-stranded DNA sequence of Ad12 DNA is reproduced in 
Fig. 10. The following structural pecularities were emphasized, using the program 
ALSCRIPT (BARTON 1993): 

- The recognition sites of the restriction endonuclease Pstl were marked by 
lines at the corresponding cleavage sites (see Table 2 for the fragment 
identifiers and their sizes). 

- Every TATA-like sequence motif in the leftward or rightward transcribed DNA 
strand was marked (boxes). Due to the variations in the consensus motifs 
published in the Transcription Factor Database (TFD, GOSH 1992), overlapping 
boxes were possible. 

- Presumptive promoter sequences were underlined (leftward transcribed DNA 
strand) or marked by a line drawn on top of the corresponding sequence 
(rightward transcribed DNA strand). 

- The triplet repeat region (GGA)n was designated by a shaded background 
(p.253). 
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